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Abstract 

The information technology community has created unprecedented amount of data 
through large-scale applications. As a result, the Big Data is considered as gold 
mines of information that just wait for the processing power to be available, reliable, 
and apt at evaluating complex analytic algorithms. MapReduce is one of the most 
popular programming models designed to support such processing. It has become a 
standard for processing, analyzing and generating large data in a massively parallel 
manner. However, the MapReduce programming model suffers from severe 
limitations of operations beyond simple scan/grouping, particularly operations with 
multiple inputs. In the present dissertation we efficiently investigate and optimize the 
evaluation, in a MapReduce environment, of one of the most salient and 
representative such operations: Join. It focuses not only on two-way joins, but also 
complex joins such as multi-way joins and recursive joins. 
 To achieve these objectives, we first devise a new type of filter called 
intersection filter using a probabilistic model to represent an approximation of the set 
intersection. The intersection filter is then applied to two-way join operations to 
eliminate most non-joining elements in input datasets before sending data to actual 
join processing. In addition, we make an extension of the intersection filter to 
improve the performance of three-way joins and chain joins including both cyclic 
chain joins with many shared join keys. We use the Lagrangian multiplier method to 
indicate a good choice between our optimized solutions for the multi-way joins. 
 Another important proposal is a difference filter, which is a probabilistic data 
structure designed to represent a set and examine disjoint elements of the set. It can 
be applied to a wide range of popular problems such as reconciliation, deduplication, 
error-correction, especially a recursive join operation. A recursive join using the 
difference filter is implemented as an iteration of one join job instead of two jobs 
including a join job and a difference job. This improvement will significantly reduce 
the number of executed jobs by half, and the related overheads such as data 
rescanning, intermediate data, and communication for the deduplication and 
difference operations. Besides, this research also improves the general semi-naive 
algorithm, as well as the evaluation of recursive queries in MapReduce. 
 We then provide general cost models for two-way joins, multi-way joins, and 
recursive joins. Thanks to these cost models, we can make comparisons of the join 
algorithms more persuasive. As a result, with using the proposed filters, the join 
operations can minimize disk I/O and communication costs. Moreover, the 
intersection filter-based join operations are demonstrated to be more efficient than 
existing solutions through experimental evaluations. Experimental comparisons of 
different algorithms for joins are examined with respect to intermediate data amount, 
the total output amount, the total execution time, and especially task timelines. 
 Finally, our improvements on the join operations contribute to the global scene 
of optimizing data management for MapReduce applications on large-scale 
distributed infrastructures. 

Key words: Big data, MapReduce, Bloom filter, Join, Recursive query evaluation, 
Optimization. 
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Résumé 

La communauté informatique a créé une quantité de données sans précédent 
grâce aux applications à grande échelle. Ces données massives sont considérées 
comme une mine d’or, ces informations n’attendant que la puissance de traitement 
sûre et appropriée à l’évaluation d’algorithmes d’analyse complexe. MapReduce est 
un des modèles de programmation les plus repute, connu pour la gestion de ce type 
de traitement. Il est devenu un standard pour le traitement, l’analyse et la génération 
de grandes quantités de données en parallèle. Cependant, le modèle de 
programmation MapReduce souffre d’importantes limites pour des opérations non 
simples (scans ou regroupements simples), en particulier les traitements avec entrées 
multiples. Dans ce mémoire, nous étudions et optimisons l’évaluation, dans un 
environnement MapReduce, d’une des opérations les plus importantes et 
représentatives : la jointure. Notre travail aborde, en plus de la jointure binaire, des 
jointures complexes comme la jointure multidimensionnelle et la jointure récursive. 
 Pour atteindre ces objectifs, nous proposons d’abord un nouveau type de filtre 
appelé filter d’intersection qui utilise un modèle probabiliste pour représenter une 
approximation de l’intersection des ensembles. Le filtre d’intersection est ensuite 
appliqué à l’opération de jointure bidirectionnelle pour éliminer la majorité des 
éléments non-joints dans des ensembles de données d'entrée, avant d’envoyer les 
données pour le processus de jointure. De plus, nous proposons une extension du 
filtre d’intersection pour améliorer l’efficacité de la jointure ternaire et de la jointure 
en cascade correspondant à un cycle de jointure avec plusieurs clés partagées lors de 
la jointure. Nous utilisons la méthode des multiplicateurs de Lagrange afin de 
réaliser un choix pertinent entre les différentes solutions proposées pour les jointures 
multidimensionnelles. 
 Une autre proposition est le filtre de différence, une structure de données 
probabiliste formée pour représenter un ensemble et examiner des éléments disjoints. 
Ce filtre peut être appliqué à un grand nombre de problèmes, tels que la 
réconciliation, la déduplication, la correction d’erreur et en ce qui nous concerne la 
jointure récursive. Une jointure récursive utilisant un filtre de différence est effectuée 
comme une répétition de jointures en lieu et place d’une jointure et d’un processus de 
différenciation. Cette amélioration réduit de moitié le nombre de tâches effectués et 
les associés tels que la lecture des données, la génération des données intermédiaire 
et les communications. Ceci permet notamment une amélioration de l’évaluation de 
l’algorithme semi-naïf et par conséquent l’évaluation des requêtes récursives en 
MapReduce. 
 Ensuite, nous fournissons des modèles de coût généraux pour les jointures 
binaire, à n-aire et récursive. Grâce à ces modèles, nous pouvons comparer les 
algorithmes de jointure les plus représentatifs. Ainsi, nous pouvons montrer l’intérêt 
des filtres proposés, grâce notamment à la réduction des coûts E/S (entrée/ sortie) sur 
disque et sur réseau. De plus, des expérimentations ont été menées, montrant 
l’efficacité du filtre d’intersection par rapport aux solutions, en comparant en 
particulier des critères tels que la quantité de données intermédiaires, la quantité de 
données produites en sortie, le temps d’exécution et la répartition des tâches. 



 

VI 
 

 Nos propositions pour les opérations de jointure contribuent à l’optimisation en 
général de la gestion de données à l’aide du paradigme MapReduce sur des 
infrastructures distribuées à grande échelle. 
 
Mots clés: données massives, MapReduce, Filtre Bloom, Jointure, évaluation de 
requêtes récursives, optimisation. 
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CHAPTER
 

INTRODUCTION 

1.1 Context and motivation 
Since the advent of applications that proposes Web-based services to a worldwide 
population of connected people, the information technology community has been 
confronted to unprecedented amount of data, either resulting from an attempt to 
organize an access to the Web information space (search engines), or directly 
generated by this massive amount of users (e.g., social networks). Companies like 
Google or Facebook, representative of those two distinct trends, have developed for 
their own needs data processing platforms that combine an infrastructure based on 
millions of servers, data repositories where the least collection size is measured in 
Petabytes, and finally data processing softwares that massively exploit distributed 
computing and batch processing to scale at the required level of magnitude. Besides, 
although the Web is a primary source of information production, the Big Data Issue 
can now be generalized to other areas that constantly collect data and attempt to 
make sense of it. Sensors incorporated in electronic devices, satellite images, web 
server logs, bioinformatics are now considered as gold mines of information that just 
wait for the processing power to be available, reliable, and apt at evaluating complex 
analytic algorithms. 
 The MapReduce programming model [1], published ten years ago, has become a 
standard for processing, analyzing and generating large data in a massively parallel 
manner. Its success comes from its simplicity: users only define a map function that 
maps a key/value pair into intermediate key/value pair(s), and a reduce function that 
processes all intermediate values associated with the same intermediate key. In 
addition, MapReduce proposes an abstraction of the underlying parallel execution, 
and enjoys nice properties in terms of fault tolerance, a necessary feature when 
hundreds or even thousands of commodity machines are involved in a job that may 
extend of days or weeks. 
 However, the MapReduce programming model suffers from severe limitations 
when it comes to implement algorithms that require data access patterns beyond 
simple scan/grouping operation. In particular, it is not suited for operations with 
multiple inputs. In the present dissertation we efficiently investigate and optimize the 
evaluation, in a MapReduce environment, of one of the most salient and 
representative such operations: Join. A join combines related tuples from datasets on 
different column schemes and thus raises at a generic level the problem of combining 
several inputs with a programming framework initially design for scanning, 
processing and grouping a single dataset. Joins are basic building blocks used in 
many sophisticated data mining algorithms. An important first step toward the 
efficient processing of the large-scale data analysis is therefore the optimization of 
the join operation. 
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 This problem has become a hot research topic in recent years 
[2][3][4][5][6][7][8][9]. Many studies have been conducted so far on join calculating 
in a MapReduce environment. Two main classifications of the join computing 
operation includes Map-side join [10][2][3] and Reduce-side join [10][2][3]. Besides, 
some variants and improvements of the join operation like broadcast join [3], semi-
join [3], Bloomjoin [4][11], multi-way join [6], and recursive join [7][12][13][14] 
have been proposed. 
 Although joins in MapReduce can be implemented in many ways, the relative 
performance of the various algorithms depends on certain assumptions such as the 
size of inputs, strict constraints on data, joined rates between inputs, etc. Map-side 
joins would be better to perform the entire joining operation in the map phase since it 
may save the shuffle and reduce phases. But this solution is also limited in running 
extra MapReduce jobs to repartition the data sources to be usable. Meanwhile, 
Reduce-side joins are more flexible and general to process a join operation as a 
standard MapReduce job without any constraints, but they are quite inefficient 
solutions. Joining does not take place until the reduce phase. In addition, the shuffle 
phase is really expensive since it needs to shuffle all data, sort and merge. 
 Observing Reduce-side joins shows that many intermediate pairs generated in 
the map phase may not actually participate in the joining process due to no matching 
with any pairs in another input dataset. Consequently, it would be much more 
efficient if we eliminate the non-joining data right in the map phase. This problem 
can be solved by using a distributed cache to disseminate a hashmap of one of input 
datasets across all the mappers, then dropping tuples whose join key not in the 
hashmap. The main obstacle in this way resides at the hashmap because the hashmap 
may not fit in memory and its replication across all the mappers may be inefficient. 
In this situation, therefore, a probabilistic structure called Bloom filter [15] is a 
worthy replacement for the hashmap. It consists of an m-bit array and k distinct hash 
functions for doing existence tests in less memory than a full list of keys from the 
hashmap. However, the filtering efficiency of all the solutions has not yet been taken 
into consideration, even both recent research efforts [4][6]. There remain a lot of 
non-joining data after filtering because the filters have only the ability to filter on one 
of input datasets instead of both. Thus, it is necessary to have a better filter to address 
this problem (a). 
 In addition to the above two-way joins, the researchers are also confronted big 
challenges that come from multi-way joins and recursive joins in MapReduce. The 
multi-way join extends the two-way join by handling multiple input datasets, 
whereas the recursive join represents a computation of a repeated join operation. 
Both of them are still open issues and their existing solutions from traditional 
distributed and parallel databases cannot be easily extended to adapt to a shared-
nothing distributed computing paradigm as MapReduce. For this reason, the 
evaluation of the complex joins has become an urgent requirement and should be 
thoroughly considered by the following problems. 
 Computing the multi-way join often generates intermediate results that may be 
inputs of component joins of the multi-way join. These intermediate results contain a 
lot of non-joining data that considerably increases total overheads for I/O, CPU, sort, 
merge, and especially communication. We need to figure out optimized solutions that 
can prevent the non-joining data involved in the intermediate results. Besides, 
minimizing the intermediate data amount sent to the reducers should be addressed 
appropriately (b). 
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 Finally, the recursive join is a fundamental operation in computing the transitive 
closure that is required in many significant applications such as the reachability 
analysis of transition networks representing system [16], the construction of parsing 
automata in compiler [17], and especially recursive database queries [7][18][19]. The 
transitive closure (TC) of a binary relation K with attributes x and y can be defined 
as: 

  

where K0 = K, and 
Ki-1 • K0 is the composition of Ki-1 and K0 and is identified: 

Ki-1 • K0 = {(x, y) |  z (x, z)  Ki-1 and (z, y)  K0} 
l is the longest path length in the relation graph of K - 1 
 
 The above presentation shows that the "•" operator is actually the projection-join 
of the two relations Ki-1 and K0, and thus is related to transitive closure algorithms. 
There are several major existing algorithms for computing the transitive closure of a 
relation. They are classified into two main groups, iterative and direct algorithms. 
The iterative algorithms (e.g., naive [20], semi-naive [21][22], smart [23][24], 
minimal evaluations [23], etc.) are applied to a tabular representation of the base 
relation. The main idea behind iterative algorithms is to evaluate the transitive 
closure breadth-first, with a loop containing algebraic expressions that derive new 
tuples, until no new element is generated. The direct algorithms (e.g., Warshall [25] 
and Warren [26] algorithms) are used for a matrix representation of a graph, and 
operate depth-first. In this research, we consider the semi-naive iterative algorithm in 
MapReduce. 
 The semi-naive evaluation is a simple variation of the naive evaluation. It is an 
algorithm for computing the least fixpoint. The main idea is that each iteration only 
uses new tuples derived from the previous iteration (denoted as incremental relation) 
to join with initial relation, K0. This variation reduces the amount of redundant 
computation and duplicate data mentioned by the naive evaluation. We can specify 
the incremental relation by computing the difference between tuples generated in 
current iteration and tuples generated in previous iterations. As a result, the semi-
naive is an efficient transitive closure algorithm because the cardinality of the 
incremental relation involved in the joins is reduced. However, the overheads of the 
join and difference operations are very expensive and complex in a MapReduce 
environment. Therefore, we should consider the optimized possibilities for recursive 
joins using the semi-join algorithm toward to evaluating transitive closures as well as 
recursive queries (c). 

1.2 Goal of the thesis 
The four main results of this dissertation are the following: 

(1) Intersection filter and Difference filter 

Our first result is to devise two new types of Bloom filters, Intersection filter 
and Difference filter. The intersection filter is a method for representing the 
intersection of two sets, which is used to test whether an element is a 
common member of the two sets with a false positive rate. Meanwhile, the 
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difference filter represents a set, which is used to check for set difference 
(NOT membership) with a false negative rate. Namely, three approaches to 
building the intersection filter and one approach for the difference filter are 
proposed in this research. 
Based on space efficiency, our filters can be applied to deal with a wide range 
of common problems such as join operation in databases [4][5][6][27]; 
reconciliation and deduplication in networking and distributed systems 
[28][29][30][31], bioinformatics [32][33], as well as databases [34][35][36]; 
error-correction in networking applications [37][38][39]; etc. 

(2) Optimization for two-way and multi-way joins and cost models 

Our second result is that optimizations for two-way joins and multi-way joins 
using the different approaches of the intersection filter are more efficient than 
the prior join algorithms [5]. This is because our join operations can eliminate 
most non-joining data in both input datasets before sending them to the actual 
join processing. As a consequence, intermediate results of multi-way join 
operations now contain no redundant data, reducing significantly the 
associated overheads. 

An interesting characteristic of the intersection filter-based join operations is 
that they can be completed without doing anything if the intersection filter is 
empty (i.e. joined input datasets are distinct). 
Besides, we also make an extension of the intersection filter to improve the 
performance of three-way joins and chain joins including both cyclic chain 
joins with many shared join keys. Thanks to the Lagrangian multiplier 
method, we can indicate a good choice between our optimized solutions. 
Moreover, our intersection filter-based join algorithms are developed by 
pseudo codes. 
Lastly, two cost models for two-way joins and multi-way joins are then 
proposed to compare among the join algorithms more convincing. 
All these help us address the problems (a) and (b). 

(3) Optimization for recursive join and cost model 
Our third result is to provide a simple and efficient solution for optimizing the 
general semi-naive algorithm as well as the recursive join in MapReduce. 
This solution uses the intersection and difference filters to compute the join 
operation and the incremental relation all in one job. Consequently, the 
recursive join is processed in the fixed number of computation iterations, l 
rather than of 2×l. This leads to a better performance with less I/O operation 
and the communication. The join implementation is then illustrated by an 
algorithm in form of pseudo code. 
In addition, a complex cost model for recursive joins is designed to 
demonstrate the efficiency of our solution compared with others. 

This optimization is an extremely important contribution to support scalable 
social network analysis, internet traffic analysis, DNA data analysis, and 
general recursive query. That also means the problem (c) is tackled by this 
work. 
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(4) Experimental evaluation 
Our last result consists of experiments of the different join algorithms using 
various parameters. Experimental results indicate that join operations using 
our filters are more efficient than the others. The efficiency here is examined 
with respect to the intermediate data amount, the total output amount, the 
total execution time, and especially task timelines. 

Experimental evaluation helps us thoroughly evaluate the performance of the 
join algorithms. 

1.3 Thesis outline 

In Chapter 2, we define the basic join types that help us gain a better understanding 
of the basic characteristics and features of important equi-joins. It then covers 
specific equi-join operations that are used in this thesis such as two-way joins, multi-
way joins and recursive joins. Besides, we also summarize background components 
that are the essentials of the MapReduce framework, parallelization of the join 
operation, and iteration in MapReduce supporting iterative data analysis applications. 
Basic concepts, terminologies, and characteristics of the Bloom filter are described. 
Notably, we present the classification and details of dominant join algorithms in 
MapReduce. We specifically analyse advantages and disadvantages of each method 
to point out their limitations related to our proposals. 
 In Chapter 3, we present our first two contributions including the intersection 
filter and optimizations for two-way joins and multi-way joins. We first provide a 
short survey of previous works, and show existing problems of the joins and 
especially Bloomjoin that need to be addressed. Then, we describe three approaches 
to building the intersection filter. The false intersection probability of the approaches 
is defined. We use the intersection filter to optimize two-way joins and important 
multi-way joins. In addition, we show cost models for two-way joins and multi-way 
joins, and make comparisons of the different join algorithms. In the end of the 
chapter, we present experiments on the performance of the joins and compare the 
joins using the intersection filter to previous methods mentioned in the literature. 
 In Chapter 4, we detail our last contribution that is an optimization for recursive 
joins. First, we examine prior solutions for evaluating the semi-naive algorithm. The 
problems of the solutions are shown in detail. Next, we describe basic concepts and 
design details of the difference filter. A false difference of the filter is identified by a 
probability. Then, we propose an optimization for the general semi-naive algorithm 
using the intersection and difference filters. Our semi-naive strategy computes the 
recursive join as an iteration of one join job instead of two MapReduce jobs. Finally, 
the optimization for recursive joins using the filters is proved more efficient than the 
existing solutions through a cost model-based comparison. 
 In Chapter 5, we present the conclusions of the thesis. Besides, we discuss open 
challenges and perspectives in optimization for join operations. 
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CHAPTER 
 

BACKGROUND AND RELATED WORKS 

MapReduce has emerged as a popular large-scale data processing model because of 
its attractive programming interface with abstraction of parallelism, scalability, and 
reliability. Basic relational operators such as selection, projection, group and 
aggregation can be implemented easily and efficiently in MapReduce. In contrast, a 
join operation is much more difficult and expensive. Significant efforts have been 
made to develop efficient join algorithms in recent years. Therefore, we have 
conducted a survey of various join algorithms to support our research. This work 
investigates related works, strategies as well as advantages and disadvantages of the 
join algorithms in MapReduce. 
 The chapter is organized in the following way. The first section includes the 
definition of the basic join types that supply a better understanding of important equi-
joins. It then moves to the join ways such as two-way joins, multi-way joins and 
recursive joins. In addition, the section summarizes the fundamentals of MapReduce 
and Apache Hadoop to start making sense of the join processing in the real world. It 
also describes parallelization of the join operation and iteration in MapReduce 
environment. Section 2.2 presents the classification and details of recent approaches 
to improving the join computation. The advantages and disadvantages of the 
approaches are also discussed. Next, we review some basic concepts, terminologies, 
and characteristics of the Bloom filter in Section 2.3. It is used as an optimization 
technique for joins in our approach. Besides, we present the Bloomjoin algorithm in 
detail. Finally, Section 2.4 concludes all elements help us make better optimizations 
for the joins in this research. 

2.1 Background 

2.1.1  Join operation 

The join operation [40][41] is a fundamental operation and has been studied widely 
in the database literature because it is a time consuming and data-intensive operation 
in data processing. Based on a Cartesian product of relations, it combines related 
tuples from relations according to a condition on different attribute schemes to form 
a new relation with columns selected from across the multiple relations. 
 Equi-joins are a common type of joins and are considered as a default type of 
joins. We therefore consider the equi-joins as our main research object for optimizing 
joins. 
 The equi-join is a join where the join condition uses an equality operator (=) to 
relate the tuples of two datasets. Two-way equi-joins, multi-way equi-joins, recursive 
equi-joins, etc., are instances of the equi-join. Most of the existing work has 
concentrated on the two-way joins and has left readers to extend the idea for the 



2.1 Background 
 

9 
 

multi-way joins and the recursive joins. Our work will mention all of them. Before 
moving any further, we define the context of this research: 

 Two-way join: Given two datasets R and L, a two-way join is defined as a 
combination of tuples r  R and l  L, such that r.x = l.y; where x and y are 
columns in R and L respectively. This specification is represented as:  

R ⋈x=y L 

If the join columns in the datasets have the same name, we rewrite the two-
way join in a short form of R ⋈x L 

 Multi-way join [42]: Given n datasets R1, R2, ..., Rn, a multi-way join is 
defined as a composition of multiple two-way joins, noted as: 

R1 ⋈ R2 ⋈ R3 ⋈ ... ⋈ Rn 
We specifically consider multi-way joins using equi-joins, noted as: 

R1 ⋈x2=x2 R2 ⋈x3=x3 R3 ⋈ ... ⋈xn=xn Rn 

 Recursive join [43][44]: Given a dataset K(x, y), a recursive join is defined 
as the transitive closure of the dataset K: 

F(x, y) = K(x, y)  F(x, z) ⋈z=z K(z, y) 

Two methods for computing the recursive join are the iterative and direct 
methods. Our research focuses on the recursive join evaluation based on the 
iterative method. 

 
 For convenience, we use the following example during the research. 
Example. Given a user dataset R(uid, uname, location), a log dataset L(uid, event, 
logtime) and an acquaintance dataset K(uid1, uid2). We have the kinds of queries 
expressed by expressions in the relational algebra as follows. 
Q1 - Two-way join: Find the names and events of all users who have accessed before 
07/07/2014 
A1(uname, event) = ∏uname, event( R ⋈uid=uid logtime<12/02/2014 (L) ) 
This query uses a two-way join for combining two datasets R and L' selected from L. 
The two-way join is a basic type of joins. In this case, we consider the popular two-
way equi-join that uses equality operator on a common column uid. 
 
Q2 - Multi-way join: Find the ids, events and times of all users who are known by 
'Laurent dOrazio' 
A2(uid, event, logtime) = ∏uid, event,logtime(uname='Laurent dOrazio' (R) ⋈uid=uid1 K ⋈uid2=uid L) 
The query uses a multi-way join, precisely, a chain join. It links the datasets 
including R' selected from R, K and L. The chain join is an important special case of 
multi-joins, in which datasets are strung together to produce the result. 
 
Q3 - Recursive join: List the ids of all users who may be friends of 'Philippe Rigaux' 
A3(uid1, uid2) = K ⋈uid1=uid uname='Philippe Rigaux' (R) 
A3(A3.uid1, K.uid2) = A3 ⋈uid2=uid1 K 
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The query Q3 is defined by a recursive join to deduce a new dataset called friend A3. 
The new dataset includes the acquaintance dataset K' selected from K and all new 
tuples ('a','c') so that there exist K'('a', 'b') and K('b', 'c'). Actually, the query uses a 
compound operation that involves in repeating the join operation. 
 
 Although this research only addresses problems of the equi-join, we look at the 
context of general joins to be able to distinguish the equi-join from various types of 
joins. The join types can be grouped in two primary classifications including inner 
joins and outer joins [45]. 
 

       
 (a) Inner join (b) Left outer join (c) Right outer join (d) Full outer join 

Figure 2.1: Types of joins 

 Inner join: a join chooses only tuples that match a join condition in both 
joined relations (as in Figure 2.1(a)). It uses a comparison operator to match 
tuples from two relations based on some columns from each relation. This 
class is a typical join operation, which includes types as equi-joins, non-equi-
joins, natural joins, and cross joins. 

 Equi-join: an equi-join uses an equivalence operation or an equality 
operator (=) to match tuples from different datasets. 

 Non-equi-join: a non-equi-join uses a non-equality comparison operator, 
e.g., !=, <=, >=, >, < or BETWEEN, etc. 

 Natural join: a natural join offers a further specialization of equi-joins. 
The join compares all columns in both datasets that have the same 
column-name in the joined datasets. The resulting joined dataset contains 
only one column for each pair of equally-named columns. 

 Cross join: it produces the Cartesian product of all the tuples in both 
datasets. This type of join occurs when we do not specify a condition. 

 Outer join: a join returns all tuples from at least one of datasets. As shown in 
Figure 2.1(b-d), there are three types of outer join: 

 Left outer join: it returns all the tuples that would be returned by an inner 
join, plus all the tuples from the left (or first-listed) data set that do not 
match any tuple from the right data set. 

 Right outer join: it returns all the inner-join tuples, plus all the tuples from 
the right dataset that do not match any tuple from the left dataset. 

 Full outer join: it retains all tuples from datasets, regardless of matches. 
 
 From the above classification, our main research subject, which is the equi-join, 
belongs to an inner join. 

R                L R                L R                L R                L 
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2.1.2  MapReduce framework 

MapReduce [1] is a parallel and distributed programming model for large-scale data 
analysis run on computer clusters that can scale to thousands of nodes in a fault-
tolerant manner. The use of MapReduce has become widespread since Google first 
introduced it in 2004. It allows users to concentrate only on designing their data-
processing operations regardless of the inherent parallel or distributed nature of the 
cluster itself. 
 In this model, a MapReduce job consists of two distinct phases, namely, map 
phase and reduce phase. Each the phase executes a user-defined function as a 
distributed execution of parallelizable computations, which acts upon a pair of key 
and associated value(s). Figure 2.2 below describes MapReduce execution. 

  
 

 

 

 

 

 

 

Figure 2.2: MapReduce Execution 

 The user-defined map function (M) takes an input pair (k1, v1) from a Distributed 
File System (DFS) and transforms into a list of intermediate key/value pairs list(k2, 
v2). The intermediate values associated with the same key k2 are grouped together 
and then passed to nodes that perform the reduce function. 
 

map(k1, v1) → list(k2, v2) 
 
 The reduce function (R) is called for each intermediate key k2 and a list of 
values for that key to generate a new list of values. 
 

reduce(k2, list(v2)) → list(k3, v3) 
 
 As illustrated in Figure 2.2, a typical MapReduce job is executed within the two 
phases across multiple nodes. The map phase and the reduce phase include map tasks 
and reduce tasks, respectively. These tasks run simultaneously on the nodes. 
 In the map phase, each map task reads a split of one input dataset, calls the map 
function for each key/value pair to produce intermediate key/value pair(s). The map 
task sorts the intermediate data and then calls a partition function on each key to 
calculate its reducer node index. It means that the partition function operates on the 
intermediate key/value pairs (k2, v2), and returns the partition index. The number of 
partitions is equal to the number of reducers. 
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 The reduce phase has three steps, shuffle, sort and reduce. Shuffle is where the 
intermediate data is collected by the reduce task from each map task. This can 
happen while map tasks are generating data since it is only a data transfer. On the 
other hand, sort and reduce can only start once all the map tasks are done. Each 
reduce task collects the intermediate key/value pairs from all the map tasks, 
sorts/merges the data with the same key, and then calls the reduce function to process 
the value list and generate the final results. These results are then written back to 
DFS. 
 Intermediate pairs in the reduce phase are processed in increasing key order. 
This ordering guarantee makes it convenient to generate a sorted data file on demand 
and useful to support the reduce function that requires the order of keys. 
 All of the reduce tasks can launch at the same time. Of course, the execution 
time of one reduce task r1 can be different from others and r1 can run for a long 
period of time. In other words, some reduce tasks finish faster, but other reduce tasks 
may be executed longer. 
 An optional combiner function pre-aggregates the map output in order to reduce 
the amount of data to be transferred across the network. It runs after the map function 
and before the reduce function. This means that the combiner function is executed on 
the same node as the map node, receives data emitted by the map function on a given 
node and emits output to the reduce nodes. Many data processing jobs use this 
function such as search engine, machine learning and deduplication. 
 After running the map function, if there are many identical key/value pairs, the 
MapReduce framework has to send all those pairs to the reduce function. This can 
incur a considerable overhead. To remove this redundant data, we can use the 
combiner function. The example can be illustrated as follows. 
 
Map:   {(a, b), (a, b), (a, b), (a, d), (c, d)}  
Combining:  {(a, b), (a, d), (c, d)} 
↓ shuffle 
Reduce:  {(a, [b, d]), (c, d)}  
 
 We can see that the duplicate tuples (a, b) are eliminated by the combiner rather 
than transferred to the reducer. 
 
 Apache Hadoop [46] is an open source MapReduce framework written in Java 
for executing applications on large clusters. While Google’s MapReduce framework 
is not available to the public, several other implementations of MapReduce such as 
DISCO [47] and Sphere [48] are also available but not as popular as Hadoop. 
Hadoop includes a data storage component called Hadoop Distributed File System 
(HDFS) and a data processing component called Hadoop MapReduce Framework. 
These components correspond to the Google File System (GFS) and the general 
MapReduce computing paradigm. Hadoop’s HDFS is a fault-tolerant distributed file 
system. It divides files into blocks, replicates them, and stores them across the 
cluster. HDFS provides high throughput access to application data in a distributed 
environment [46][49][50]. To support this characteristic, HDFS leverages unusually 
large (for a file system) block sizes and data locality optimizations to reduce network 
input/output (I/O) [49]. It is therefore suitable for applications handling large 
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datasets. Hadoop’s MapReduce is the processing component that distributes the 
workload for operations on files stored in HDFS and automatically restarts failed 
work. In our experiments, we use Hadoop to run MapReduce programs that examine 
tackling large data joins using parallel processing. 

2.1.3  Parallelization of a join operation in MapReduce 

Before presenting this section in detail, we should look at the difference between the 
MapReduce model and the existing parallel programming models like MPI, 
OpenMP, CUDA, etc. MPI means Message Passing Interface, which is one of the 
most portable high-performance computing programming models. It was designed to 
enable parallel programming by communication on distributed-memory or shared 
memory systems in which messages are data packets exchanged between processes. 
MPI allows programs on one node to send data to another, or conversely receive. In 
other words, tasks can use their own local memory during computation and exchange 
data through communications by sending and receiving messages. 
 Figure 2.3 depicts how a typical traditionally parallel application and 
MapReduce application work. 
 
 
 
 
 
 
 
 
 

 
(a) Traditional parallel model                                           (b) MapReduce model 

Figure 2.3: Difference between traditional parallelism and MapReduce 

 Figure 2.3(a) illustrates a traditional parallel model. The input data is resided 
some remote storage devices such as a file server serving files over NFS or a general 
parallel file system (GPFS), etc. The compute nodes or workers are represented by 
rounded rectangles. The tasks depicted eclipses can be MPI tasks, or threads on a 
shared-memory system. The parallel application is executed as follows. A master 
parallel worker (MPI rank, thread, etc.) reads the input data. The master worker then 
splits the input data into chunks and sends them to each of the other workers. The 
parallel workers compute on their chunk of the input data. The parallel workers 
communicate their results with each other, and then continue the next computation. 
For this model, the data is separated from the compute resources, e.g., the chunks of 
computation are unavailable on compute nodes for the tasks. Besides, the master 
worker can get around the bottleneck of reading performed serially, splitting and 
distributing the large-scale input data to the compute nodes. These lead to limitations 
for scalability. 
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 In contrast, MapReduce model operates in a completely different way. It 
conveys the computation close to where the data is, instead of moving the data to 
where the computation is executed as the traditional model. It is shown in Figure 
2.3(b). The model does not have to move any data because splits of the data already 
reside on the compute nodes. 
 As an illustration of using MapReduce, we consider the join operation of two 
large datasets R (user dataset) and L (log dataset) to list the user names and 
corresponding events that the users accessed to the system as the following query. 
 

R(uname, uid) ⋈uid=uid L(uid, event) 
 

 In large-scale data applications like social networks, this query may perform the 
join of trillions of tuples. Therefore, the parallel model like MapReduce is a good 
solution to this problem and significantly improves the response time. 
 We show how to bring parallelism with MapReduce into the join execution as 
depicted in Figure 2.4. The first step in building this parallel execution is specifying 
sets of tasks that can run concurrently and partitions of data that can be concurrently 
processed. Hence, there are two opportunities for parallelism in the join operation, 
namely, parallel input processing and parallel join processing. They correspond to 
parallel map tasks and parallel reduce tasks. 
 The map tasks are responsible for processing splits of the inputs R and L 
simultaneously. Because the splits of the two input datasets already reside on the 
compute nodes, the parallel map tasks can handle its split independently and instantly 
without moving any data. Even if the split is not available for the map task, the task 
is closed to where the split is residing because of data locality in MapReduce. As in 
Figure 2.4, the jobtracker creates three mappers to be able to process three splits of 
the inputs concurrently. The first mapper computes on the first split consisting of 
three tuples of R. The second split with one tuple of R and the third split with two 
tuples of L are processed by the second and third mapper, respectively. The mappers 
transform the tuples of R and L as follows. 
 
    r is a tuple of R:  r(uname, uid) → r'(uid, uname) 
    l is a tuple of L:  l(uid, event) → l'(uid, event) 
 
It means that the join key uid is treated as the intermediate key for all the tuples. 
  
As illustrated in Figure 2.4, we can show the parallel processing of the mappers in 
detail. 
 The mapper 1 for the first split of R:  
 {(A, B), (C, B), (A, F)} → {(B, A), (B, C), (F, A)} 
 The mapper 2 for the second split of R:   
 {(C, D)} → {(D, C)} 
 The mapper 3 for the split of L: 
 {(B, C), (D, F)} → {(B, C), (D, F)} 
 The intermediate tuples r' and l' are then shuffled to the reduce tasks. 
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Figure 2.4: Parallel implementation of the join operation in MapReduce 

 The reduce tasks perform joining for each key uid concurrently. The 
intermediate tuples associated with the same key are passed to the same reducer. The 
reduce function is called for each unique key with a list of values. The function 
simply takes each tuple of R and finds tuples of L with the same join key to generate 
the results. Figure 2.4 shows that the join key B has two tuples A and C of R joined 
with one tuple C of L to produce two result tuples (A, C) and (C, C). We can see the 
parallel join processing of the reducers in detail. 
 
 The reducer 1 for the key join B:   (B, [R:A, R:C, L:C]) → {(A, C), (C, C)} 
 The reducer 2 for the key join F:   (F, [R:A]) → {empty} 
 The reducer 3 for the key join D:   (D, [R:C, L:F]) → {(C, F)} 
 
 The above execution shows that the parallel processing with MapReduce for the 
join operation would be necessary to achieve high scalability and fault tolerance in 
massive data joining. 

2.1.4  Iteration in MapReduce 

The fact is that the standard MapReduce framework lacks built-in support to perform 
these iterative data processing applications. Instead, users must execute iterative 
programs by manually linking. The general idea for these iterative algorithms in 
MapReduce is to chain multiple jobs together, using the output of the last round as 
the input of the next round. The program termination condition must be calculated 
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within a MapReduce driver program. Hadoop has added a feature, called Counters, 
to execute this task. To check for a termination condition with Hadoop counters, we 
run a job and collect statistics while it is running. Then, we obtain values of the 
counters to compute the stop condition. Finally, we decide whether the loop is to stop 
or to continue. 
 HaLoop [13] is a modified version of the Hadoop framework, that is designed to 
efficiently support such iterative MapReduce applications. HaLoop still uses the 
Hadoop distributed file system for storing input and output data of MapReduce jobs. 
The basic Hadoop framework is modified to accommodate the requirements of the 
iterative applications. Task scheduler and task tracker modules are modified, and the 
loop control, caching, and indexing modules are new. The task tracker not only 
manages task execution, but also manages caches and indices on the slave node. 
Besides, HaLoop provides a new application programming interface to simplify 
iterative MapReduce programs as follows. 
 

 

Figure 2.5. HaLoop vs. Hadoop Programming Model [13] 

 Figure 2.5 shows the difference between HaLoop and Hadoop for supporting 
iterative applications. HaLoop knows and controls the loop of map and reduce tasks, 
while Hadoop only knows jobs with one map-reduce pair. Specifically, HaLoop 
receives loop settings from a driver program and controls the loop execution, 
whereas a driver program in Hadoop must control the loops. 
 HaLoop provides three types of caches, namely, Reducer Input Cache (RIC), 
Reducer Output Cache (ROC), and Mapper Input Cache (MIC). 

 Reducer Input Cache: stores and indexes reducer inputs across all reducers. 
This cache type is used to avoid reprocessing the same data with the same 
mapper on iterations (e.g., a loop-invariant input relation K0). 

 Reducer Output Cache: caches the most recent local output on each reducer 
node and create a local index for the cached data. It is used in applications 
where fixpoint evaluation should be conducted after each iteration. 

 Mapper Input Cache: caches and indexes mapper inputs across all mappers. It 
is used to avoid non-local data scans in mappers during non-initial iterations. 

 Besides, HaLoop introduces the risk of recursive recovery, where a failure in 
one step of one iteration may require re-execution of tasks in all preceding steps in 
the same iteration or all preceding iterations. If there is a reduce task failure, the 
failure recovery is similar to reducer task recovery in Hadoop and the cache must be 
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reconstructed from the mapper output of iteration 0. In another case, if an entire node 
fails, the mapper output of iteration 0 may be lost. Thus, the corresponding map tasks 
are re-executed as needed. 

2.2 Basic join algorithms in MapReduce 

Most join algorithms in MapReduce are derived from the literature on join 
processing in parallel RDBMSs [51][8][52][53][54] and distributed RDBMSs 
[55][54][56] such as sort-merge join, repartition join, hash join, semi-join, 
Bloomjoin, etc. However, they are not always straightforward to implement within 
MapReduce environment because MapReduce is originally designed to read a single 
input. Based on where the join processing takes place in a MapReduce phase, we can 
show two main classifications of the join operation including Map-side join and 
Reduce-side join [3]. In this section, therefore, we describe their implementation 
details and discuss the difference between these two important join algorithms. Then, 
some variants and improvements of the join algorithms like broadcast join and semi-
join are presented. The problem of skewed data processing in the join operation is 
outside of our research scope. 

2.2.1  Map-side join 

Map-side join [2][3], which is similar to sort-merge join [51][52][57] in RDBMSs, 
works by joining two datasets on the map side without a shuffle and reduce phase. 
This algorithm however requires under certain conditions on input datasets. Each 
input dataset must be divided into the same number of partitions, be sorted by the 
join key, and has the same set of the keys. All the tuples associated with the same key 
must reside in the same partition in each dataset. When a join job satisfies all the 
mentioned requirements for two input datasets, map tasks are initiated and each map 
task retrieves two partitions, one from each dataset. The join computation is 
conducted by the map task before the data reaches the map function and then the 
result can be directly written to DFS using the map function. We illustrate the Map-
side join algorithm on an example as Figure 2.6.  
 
 
  
 
 
 
 

 
 
 
 
 
 

Figure 2.6: Map-side join in MapReduce 
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 The illustration shows the join of two datasets user and log, R(uid, uname) 
⋈uid=uid L(uid, event). The two datasets have the same n partitions with n join keys 
sorted. Thus, the join job uses n mappers to process the partitions. The two partitions 
with the join key 1 from the two datasets are read by the same first mapper. The first 
mapper builds the cross product of all tuples with the same join key 1. 
 

{(1, 'user1')} x {(1, 'login'), (1, 'chat')} → {('user1', 'login'), ('user1', 'chat')} 
 
 The mapper then sends the output to the map function for storing into DFS. This 
is similar to the other partitions with the key joins 2, ..., n. 
The pseudo code of the Map-side join is shown in Listing 2.1. 
 

Algorithm 1 - Map-side join algorithm 
 

 
Job1: partition dataset R into n sorted partitions as requirement 
Job2: partition dataset L into n sorted partitions as requirement  
Job3: join two input datasets R and L 
 
Init_Map() // init function for map phase 

buff_R ← load(partitioni_R); //loading partitioni of R 
buff_L ← load(partitioni_L); //loading partitioni of L 
result ← empty; //for storing join computation 
if (buff_R !=null & buff_L !=null) then 

for each r in buff_R do 
      for each l in buff_L do 
            result.add(pair( r, l)); 

end if 
 
Map(k: null, v: null) 

for each t in result do 
emit(null, t); 

 

Listing 2.1: Pseudo code for Map-side join algorithm 

 The Map initialization function, Init_Map(), defines an action to run before the 
mapper processes any input. It loads the partition i of R and the partition i of L into 
two memory buffers buff_R and buff_L, respectively, to then perform joining. 
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We consider both advantages and disadvantages of using the Map-side join algorithm 

 Advantages: 

 The algorithm does not create intermediate data as well as has no the cost 
incurred for the shuffle and reduce phases because it only scans the input 
datasets and performs the join computation in the map phase. 
Consequently, it is the most efficient join algorithm if its input datasets 
meet all the mentioned conditions. 

 Disadvantages: 

 The drawback of the algorithm is the rigorous requirements on the input 
datasets. They must be divided into the same number of partitions, be 
strictly sorted by the join key, and have the same set of the join keys. For 
arbitrary input datasets, therefore, the problem can be solved by passing 
the input datasets through additional MapReduce jobs as a pre-processing 
step that sorts and partitions the datasets in the same way. However, that 
also means that this algorithm must take additional costs for the jobs of the 
pre-processing step related to generating a large volume of intermediate 
data, shuffling them to the reducers and performing local and remote I/O 
operations. 

 Another limitation of the algorithm is the buffering of both the two joined 
partitions that can lead to a memory overflow for the compute node. The 
two joined partitions consist of all the tuples with the same join key from 
all the input datasets. As a result, the Map-side join can quickly run out of 
memory when the size of the two joined partitions is larger than the size of 
physical memory allocated for the mapper or the case of skewed datasets. 

2.2.2  Reduce-side join 

Reduce-side join [10][2] is also known as repartition join [3]. As implied by its 
name, the actual join computation is only conducted on the reduce side. The 
algorithm is based on the nature of the MapReduce framework. It partitions all tuples 
of input datasets according to the join key into intermediate key/value pairs. Then it 
shuffles (repartition) the immediate pairs to the corresponding reducers to compute 
the join. All the pairs with the same join key must be sent to the same reducer and 
sorted by the join key. 
 When all the mappers are complete, the reducer calls the reduce function for 
each the join key. The reduce function buffers only the pairs of one input dataset. It 
then performs joining the buffered pairs with each pair of another input dataset 
reaching. The output of the reduce function can be directly written to DFS. The 
Reduce-side join algorithm is depicted as Figure 2.7. 
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Figure 2.7: Reduce-side join in MapReduce 

 The illustration shows the join of two datasets user and log, R(uname, uid) 
⋈uid=uid L(uid, event) similar to the example of the Map-side join. The mappers scan 
all fixed-size splits (e.g. two tuples) of R and L, extract the join key uid from the 
tuples, and tick each tuple with a tag that indicates one input dataset containing this 
tuple. The tuples in black are ticked with a tag 'R' and the tuples in blue are ticked 
with a tag 'L'. Then the mappers emit tagged tuples with composite keys of the form 
(uid, tag). 
 We have to override the default partitioning function, namely a partitioner() 
function. This function ensures that partitioning the tagged tuples takes into 
consideration only the join key part (uid) and ignores the tag part (tag). As a result, 
the reducers receive the tagged tuples of the form ((uid, tag), tuple) with the same 
uid. For instance, the first reducer receives the three tagged-tuples with the same join 
key 1: {((1,'R'), 'user1'), ((1,'L'), 'login'), ((1,'L'), 'chat')}. 
 The tagged tuples are then sorted by the composite key or the tag part to reach to 
the reduce function. The input to the reduce function is one list of the tuples in tag 
order. The reduce function forms the cross product of the tuples of R that are buffered 
and each tuple of S coming to complete the join and outputs new key/value pair(s) 
with the uname as the key and event as the value. 
 The output of the first reducer is a set of tuples {('user1', 'login'), ('user1', 
'chat')}. The second reducer produces a set of tuples {('user2', 'reg'), ('user2', 'note')} 
and the last reducer generates the empty output because it does not find any tuples 
with the same join key. 
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 The pseudo code of the Reduce-side join is shown in Listing 2.2. 
 

Algorithm 2 - Reduce-side join algorithm 
 

 
Map(k: null, v: a tuple from an R or L split) 

tag ← a bit 0 or 1 corresponding to name of R or L; 
key ← extract the join key from v; 
emit(pair(key, tag), v); 

 
Partitioner(k': taggedkey, v: value, p: the number of reducers) 

return hash_func(k'.key) mod p; 
 
Init_Reduce() // init function for the reduce phase 

currentKey ← '0';    //for storing current key 
buff ← empty; //for storing tuples with same key of R 

 
Reduce(k': taggedkey, v': list of values v with key k') 

if k'.key != currentKey then 
clear(buff); 
currentkey = k'.key;  

endif 
if k'.tag == '0' then 

for each l in v' do 
      add tuple l to buff; 
 

else if k'.tag == '1' then 
for each l in v' do 
      for each r in buff do  
           emit(null, pair(r, l)); 

end if 

Listing 2.2: Pseudo code for Reduce-side join algorithm 

 A reduce initialization function, Init_Reduce(), defines an action to run before 
the reducer processes any input. It creates a memory object and allocates a memory 
buffer for storing tuples with the same key of R. 
 The Reduce-side join algorithm has the following advantages and disadvantages: 

 Advantages: 

 This algorithm uses the natural and flexible way of the MapReduce 
framework to process a join operation as a standard MapReduce job. It is 
the most general type of join algorithms without any constraints on input 
datasets. Besides, it can address the problem of the memory overflow 
better than the Map-side join because it buffers only tuples with the same 
key of one input dataset instead of two input datasets as the Map-side join 
done. 
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 Disadvantages: 

 Two major obstacles of this algorithm are the high I/O and communication 
costs for intermediate data that is generated during the map phase and 
transferred from map tasks to reduce tasks. It means that the entire input 
datasets are sent across the network from the map nodes to the reduce 
nodes. 

 Like the Map-side join, the Reduce-side join can still run out of memory 
when its input datasets are skewed. 

2.2.3  Broadcast join 

Broadcast join [3] in MapReduce is similar to a hash join in RDBMSs. The first hash 
join algorithm has been mentioned in [53] and then in [51][8], etc. It is a special 
variant of the Map-side join algorithm. However, it does not require the strict 
restrictions on input datasets such as the same sorted-partitions and the same set of 
join keys. 
 For this join, a small input dataset is sent or broadcasted to all the compute 
nodes. The mapper loads the small dataset into memory and calls the map function 
for each tuple t from a larger input dataset. The map function probes the in-memory 
dataset and finds matches with the tuple t to perform the join computation. It then 
writes the joined tuples to DFS. Figure 2.8 shows an illustration of the broadcast join 
algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.8: Broadcast join in MapReduce 
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the mappers read splits of the dataset L. The first mapper reads the first split with two 
tuples {(2, 'reg'), (1, 'login')}. The mapper calls the map function for each tuple t of 
L. The map function goes through all tuples of the R in memory and joins them with 
the tuple t if they have the same join key. We can look at the first mapper: 
 
 {(2, 'user2'), (1, 'user1'), (n, 'usern')} x {(2, 'reg')}    = {('user2', 'reg')} 
 {(2, 'user2'), (1, 'user1'), (n, 'usern')} x {(1, 'login')} = {('user1', 'login')} 
 
 The mapper emits each joined tuple to DFS. This work is similar to the other 
mappers. 
 
 There are some advantages and disadvantages to this broadcast join algorithm 

 Advantages: 

 The algorithm takes the advantages of the Map-side join algorithm, which 
only includes the map phase without intermediate data and transmission of 
the datasets over the network. It is even more efficient than the general 
Map-side and Reduce-side join algorithms because it does not need the 
pre-processing step for sorting the input datasets, buffers only one dataset, 
and computes join at the map phase. 

 Furthermore, it is important to note that the algorithm is not affected by 
the problem of data skew because each mapper reads one split of the 
larger input dataset in which the split fits in memory. 

 Disadvantages: 

 The broadcast join can be used for two arbitrary input datasets but one of 
them should be quite small to be distributed to all the mappers and fit in 
memory. 

 The pseudo code of the broadcast join is shown in Listing 2.3. 
 

Algorithm 3 - Broadcast join algorithm 
 

 
Init_Map() // init function for map phase 

buff_R ← load(R); //loading all tuples of R 
 
Map(k: null, v: a tuple from an L split) 

refKey ← extract the join column from v 
for each r in buff_R do 

joinKey ← extract the join column from r 
if (joinKey == refKey) then 

emit(null, pair(r,v)); 
end if 

 

Listing 2.3: Pseudo code for Broadcast join algorithm 
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2.2.4  Semi-join 

Semi-join in MapReduce [3][9] is derived from the semi-join strategy that is a 
popular technique for query processing in parallel and distributed database systems 
[52][53][55][54][58][59]. This approach avoids sending non-joining tuples on the 
network by eliminating tuples from one input dataset where their join keys are not 
matching any value in another input dataset. 
 We consider the join of two datasets user R(uname, uid) and log L(uid, event) as 
the previous examples. The detail of the semi-join algorithm is described in three 
computing stages: 

 Stage 1: projects all tuples of the input dataset L on the join key column uid, 
and stores these distinct keys into a file L.uid, assuming it is small enough to 
fit in memory. 

 Stage 2: distributes the file L.uid to all the compute nodes, and reduces each 
split Ri to R'i by eliminating tuples whose join keys are not matching any of 
L.uid 

 Stage 3: broadcasts all the files R'i (R') to all the compute nodes, and 
computes the cross product of each split Li and R'. 

 To implement the algorithm, we use three MapReduce jobs corresponding to the 
three stages as shown in Figure 2.9. These jobs are executed in the following 
sequence. 

 Job 1: determines a set of unique join keys of L (L.uid) by projecting tuples 
of L on the join key column (uid). This job is a typical MapReduce job with 
only one reducer. The mappers scan splits of L, extract the join key column 
for each tuple, and pass these join keys to the reducer if they are not in a table 
storing the previous distinct join keys. The reducer receives all the join keys 
from all the mappers in which duplicate keys are eliminated, and saves the 
distinct join keys to a file L.uid on DFS. 

 Job 2: determines a filtered version of R (denoted R') by removing keys not in 
L.uid. It is a map-only job without the reduce phase. The file L.uid is 
distributed to all the compute nodes using a distributed cache and loaded into 
a hash table by an initialization function for the map phase. The mappers scan 
splits of R, extract the join key column for each tuple of R to check in the 
hash table of L.uid, and then emit the tuples if their join keys are in the hash 
table. Each mapper generates the output file R'i and the dataset R' includes all 
the output files R'i. 

 Job 3: computes the join of L and R'. This job is also a map-only job and 
similar to the broadcast join. First, we can use a distributed cache to broadcast 
the filtered version R' (all R'i) to all the compute nodes. The mappers then 
load R' into a hash table to perform joining with their split Li. The results of 
the join are written to DFS. 
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Figure 2.9: Semi-join in MapReduce 
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 Listing 2.4 presents the pseudo code of the semi-join algorithm. 
 

Algorithm 4 - Semi-join algorithm 
 

 
Job 1: Determine L.uid which is a set of unique join keys of L 
Init_Map() // init function for map phase 

keyTable ← empty; //storing distinct keys 
 
Map(k: null, v: a tuple from an L split) 

joinKey ← extract the join column from v 
if (joinKey not in keyTable) then 

add joinKey to keyTable; 
emit(joinKey, null); 

end if 
 
Reduce(k′: a unique join key, v': a list of null) 

emit(null, k′); 
 
Job 2: Determine R' which is a filtered version of R using L.uid 
Init_Map() // init function for map phase 

refKeyTable ← load(L.uid); //loading L.uid to hashtable 
 
Map(k: null, v: a tuple from an R split) 

joinKey ← extract the join column from v 
if (joinKey in refKeyTable) then 

emit(null, v); 
end if 

 
Job 3: Compute the broadcast join of R' and L for the final result 
Init_Map() // init function for map phase 

buff_R' ← load(R'); //loading all Ri 
 
Map(k: null, v: a tuple from an L split) 

refKey ← extract the join column from v 
for each r in buff_R' do 

joinKey ← extract the join column from r 
if (joinKey == refKey) then 

emit(null, pair(r,v)); 
end if 

 

Listing 2.4: Pseudo code for Semi-join algorithm 
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 There are advantages and disadvantages to this semi-join algorithm 

 Advantages: 

 The semi-join is a type of the Reduce-side join, which is used for joining 
two arbitrary input datasets. For the algorithm, its input datasets are 
filtered to remove the non-joining tuples in the map phase before they are 
sent over the network, and thus this reduces the amount of intermediate 
data and communication costs. 

 In practice, this approach is used when many tuples of one input dataset 
may not be actually joined with any tuples of another input dataset. A 
typical example is the Facebook social network application with the user 
dataset R containing more than 1.23 billion users [60]. We would like to 
know information about user’s activities in a certain period of time (e.g. an 
hour). Meantime, the log dataset L contains the activities of only a few 
million unique users and most of the users are not present in this log at all. 
To get the information, we need to join the two datasets R and L. In this 
context, the broadcast join is not appropriate because a large amount of the 
non-joining tuples in R are still broadcasted across the network (via the 
distributed cache) and loading entire R into the hash table can result in 
running out of memory. Therefore, the semi-join algorithm becomes a 
more suitable choice to avoid these problems. 

 Disadvantages: 

 The algorithm uses the three MapReduce jobs paying extra costs as job 
initialization cost, intermediate data, local and remote I/O operations, and 
communication cost. 

 It must scan the input datasets multiple times. Moreover, in the third job, 
broadcasting the filtered version of R (all R'i) to all the compute nodes is 
very inefficient, even it can cause a memory overflow on all the compute 
nodes if R' is enough large and this is not rare. 

 A per-split semi-join algorithm [3] is designed to improve the semi-join 
algorithm by only sending R'i to the mapper which holds Li instead of 
sending the whole filtered version R'. Although this may reduce the 
network overhead for the third job, the algorithm also has the three jobs, 
depends on the size of R'i, and is sensitive to skewed data. 

2.3 Bloomjoin algorithm in MapReduce 

2.3.1  Bloom filter 

2.3.1.1 Bloom filter basics 

Bloom filter (BF) [15] was introduced already in 1970 by Burton Bloom. It is a 
space-efficient randomized data structure used for testing membership in a set with a 
small rate of false positives. 
 Building the Bloom filter is based on the following definition of a key/value 
map: 
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Definition 2.1. A key/value map is a function H: U → V ∪ {} where U is the input 
space, V is the value set and  is the null value. |U| = u, |V| = v and the support S = {x 
 U | H(x)  V} has size n. A key is an element x  U.  
 
 From the general key/value map model, if we set V= {true} and let  signify 
false, we obtain a set membership tester that identifies whether x  U is a member of 
a set S. 
 The Bloom filter BF(S) for representation of a set S is described as follows. 

 The set S = {x1, x2, ..., xn} of n elements is represented by an array of m bits, 
initially all set to 0. 

 The filter uses k independent hash functions h1, h2, ..., hk with hi: x → {1..m}. 

 To insert an element x  S, we compute h1(x), h2(x), ..., hk(x), and set the 
corresponding positions in the bit array to 1. Once we have done this 
operation for each element of S, we should have a bit array that acts as an 
approximate representation of the set. 

 To check if y  S, we check whether for each of the k hash functions, the 
position hi(x) is set to 1 in the bit array. If at least one of these positions is set 
to 0, it is clear that y  S. Otherwise, all the positions are set to 1, we know 
that y may be a member of S with some probability. 

 
 
 
 

Figure 2.10: A Bloom filter BF(S) with 3 hash functions 

 As shown in Figure 2.10, an element x  S is inserted into BF(S). We check an 
element y and y may be in the set S since all the hash positions are set to one. An 
element z is not in the set S, because it hashes to one bit-array position containing 0. 
For this BF(S), the size of the filter is m=12 and the number of hash functions is k=3. 

2.3.1.2 False positive probability and hash functions 

 It is possible that multiple elements from the set S will map to the same position 
in the bit array and even y is not in S but all hi(y) are set to 1. As a result, the Bloom 
filter can have false positives and it represents a superset of the set S. The actual 
elements in S and the false positive elements of BF(S) are represented in Figure 2.11. 
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 False positives are test results that indicate elements belong to S but in reality 
they are not in S. In contrast, false negatives are test results that specify elements not 
in S but actually they are in S. 
 It is very important that Bloom filters will only return false positives and never 
give false negatives. 
 Assume that the hash functions are perfectly random, k is the number of hash 
functions, and m is the size of the Bloom filter BF(S), which is the number of bits in 
the array. After inserting all n elements of S into the Bloom filter, the probability that 
a particular bit is still 0, is 
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 Hence, the probability of a false positive for an element not in the set can be 
calculated as the following expression (the probability that all k bits have been 
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 In practice, however, we should use only a small number of hash functions 
because the computational overhead of each hash additional function is constant 
while the incremental benefit of adding a new hash function decreases after a certain 
threshold as shown in Figure 2.12. 
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Figure 2.12: False positive rate and number of hash functions 
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 Figure 2.12(a) depicts the false positive rate as a function of the number of hash 
functions used. In this illustration, the size of the Bloom filter is 32 bits per entry 
(m/n=32) and thus the false positive rate is minimized for k=22 hash functions. 
However, we can see that adding a hash function does not considerably reduce the 
false positive rate when more than 10 hashes are already used. 
 Figure 2.12(b) describes the size of the Bloom filter (bits/entry) as a function of 
the error rate desired. Various lines represent different numbers of hash keys used. It 
is found that, for the false positive rate considered, using 32 keys does not bring 
considerable benefits over using only eight keys. 
 One prominent feature of the Bloom filter is that the size of the filter is space-
efficient and fixed regardless of the number of the elements of the set S, but there is a 
clear tradeoff between the size of the filter and the false positive probability. From 
equation (2.4), if the number of elements in S does not change, the error probability 
decreases as m increases (i.e., more memory usage). In other words, Bloom filters 
become more effective if we can minimize the percentage of the false positive of 
Bloom filters through tuning two important parameters such as m and k. There would 
be a good result when larger sized filters were used, but they are less efficient in 
memory and transmission over the network.  

2.3.1.3 Constructing Bloom Filters 

We consider a set },...,,{ 21 nsssS  of n elements. A Bloom filter BF(S) represents 
membership information of S using a bit vector V of length m bits. The Bloom filter 
uses k hash functions, khhh ,...,, 21  with }..1{: mXhi  . 

 The following algorithm describes building the Bloom filter BF(S). 
 

Algorithm 5 - Building Bloom filter 
 

 
BloomFilter(S: a set, H: hash functions, m: size of Bloom filter) 

bloomFilter ← allocate m bits initialized to 0; 
for each si in S do 

for each hj in H do 
bloomFilter[hj(si)] = 1; 

return bloomFilter; 
 

Listing 2.5: Pseudo code for building Bloom filter 

 From Listing 2.6, each element si of S is inserted into the Bloom filter BF(S) by 
setting k positions that correspond to hashed values of x to one.  
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 Listing 2.6 shows the pseudo code for the algorithm of testing an element x in 
the Bloom filter BF(S).  
 

Algorithm 6 - Checking an element in Bloom filter 
 

 
MembershipTest(x: an element, filter: Bloom filter, H: hash functions) 

for each hj in H do 
if filter[hj(x)] != 1 return No 

return Yes; 
 

Listing 2.6: Pseudo code for testing an element in Bloom filter 

 To check an element x in the set S, the algorithm tests the k positions (hi(x)) in 
the filter. If all the k positions are set to 1, x may be a member of S. Otherwise, x is 
not a member of S. In other words, x may be an element of S if and only if all hashed 
values of x are set to one in BF(S). 

2.3.2  Bloomjoin algorithm description 

Bloomjoin is mentioned as the Reduce-side join using Bloom filter in [11][4]. This 
algorithm is also originated from the Bloomjoin approach in DBMSs [61][56][62] 
which is an improvement of the semi-join approach by using the well-known Bloom 
filter [15], a space-efficient data structure, to represent the L.uid instead of using a 
hash table. 
 We present the Bloomjoin algorithm without any modifications to the basic 
MapReduce framework. 
 We still use the two datasets user R(uname, uid) and log L(uid, event) as an 
illustration of the Bloomjoin. The algorithm is presented in two computing stages: 

 Stage 1: projects all tuples of the input dataset L on the join key column uid, 
hashes these keys into a Bloom filter, and stores the filter into a file 
BF_L.uid. The filter is not dependent on the number of the keys as well as 
key duplication and the size of the filter is small. 

 Stage 2: distributes the file BF_L.uid to all the compute nodes, uses this filter 
to eliminate non-joining tuples in R, then performs the join of the input 
dataset L and the filtered version of R. 

 The Bloomjoin algorithm can be implemented by using two MapReduce jobs as 
shown in Figure 2.13. 

 Job 1: builds a Bloom filter BF_L.uid storing all join keys of L by projecting 
tuples of L on the join key column (uid). It is a full MapReduce job with only 
one reducer. The mappers scan splits of L, extract the join key column for 
each tuple, insert these join keys into local Bloom filters without considering 
key duplication because of characteristics of the Bloom filter, and then emit 
the local filters to the reducer. The reducer receives all the local filters from 
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all the mappers, merges these filters into a global filter by using the bit-wise 
OR. The global filter is stored into a file BF_L.uid on DFS. 

 Job 2: filters out non-joining tuples in R and joins filtered version R' with L. 
This job is a typical MapReduce job. We use a distributed cache to distribute 
the file BF_L.uid to all the compute nodes and the mappers load it into an in-
memory Bloom filter structure using an initialization function. The mappers 
scan splits of R and L, and extract the join key column for each tuple 
(joinKey). For the tuples of R, the mappers check their join keys in the filter 
BF_L.uid, and emit the tuples whose keys are in the filter. The tuples of L are 
not filtered. Each the tuple is transformed into a pair in form of ((joinKey, 
tag), tuple) and emitted to the reducers. The join processing is executed in the 
reduce phase similar to the Reduce-side join algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.13: Bloomjoin in MapReduce 
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 Listing 2.7 presents the pseudo code of the Bloomjoin algorithm. 
 

Algorithm 7 - Bloomjoin algorithm 
 

Job 1: builds a Bloom filter BF_L.uid storing all join keys of L 
Init_Map() // init function for map phase 

bfilter ← empty; //storing keys of L 
 
Map(k: null, v: a tuple from an L split) 

joinKey ← extract the join column from v 
add joinKey to bfilter; 

 
Close_Map() // close function for map phase 

emit(null, bfilter); 
 
Init_Reduce() // init function for reduce phase 

globalBF ← empty; //merging local filters 
 

Reduce(k′: null, v': a list of local bloom filters) 
for each bfilter in v' do 

OR(bfilter, globalBF); 
 
Close_Reduce() // close function for reduce phase 

Save the filter structure globalBF into a file BF_L.uid on DFS 
 
Job 2: filters out non-joining tuples in R and joins R' with L 
Init_Map() // init function for map phase 

globalBF ← load(BF_L.uid); //loading filter 
 
Map(k: null, v: a tuple from an R or L split) 

tag ← a bit 0 or 1 corresponding to name of R or L; 
key ← extract the join key from v; 
if (tag == '1' || (tag == '0' & key in globalBF ) ) then 

emit(pair(key, tag), v); 
 
Partitioner(k': taggedkey, v: value, p: the number of reducers) 

return hash_func(k'.key) mod p; 
 
Init_Reduce() // init function for reduce phase 

currentKey ← '0';    //for storing current key 
buff ← empty; //for storing tuples with same key of R 

 
Reduce(k': taggedkey, v': list of values v with key k') 

if k'.key != currentKey then 
clear(buff); 
currentkey = k'.key;  

endif 
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if k'.tag == '0' then 
for each l in v' do 
      add tuple l to buff; 

else if k'.tag == '1' then 
for each l in v' do 
      for each r in buff do  
           emit(null, pair(r, l)); 

end if 
 

Listing 2.7: Pseudo code for Bloomjoin algorithm 

Advantages and disadvantages of the Bloomjoin algorithm are listed below: 

 Advantages: 

 Like the semi-join, the Bloomjoin is an approach that can be used to 
reduce the amount of data transferred and perform efficient join 
processing without any restrictions on input datasets. The algorithm uses a 
compact join key representation that is a bit vector for distributing to all 
the compute nodes rather than transferring values of the join keys as the 
semi-join done. It should be noted that the size of the filter does not 
depend on the number of join keys. In addition, the algorithm uses only 
two MapReduce jobs instead of the three jobs, thus it is more efficient 
than the semi-join. 

 There is now an effort to improve the Bloomjoin algorithm by Lee et al 
[4]. The join only includes a MapReduce job. However, Lee have made 
two changes to the typical MapReduce framework by assigning map tasks 
in the order of the dataset and building the filter with the heartbeat 
technique. 

 Disadvantages: 

 The algorithm uses an additional job for building the filter, which 
represents extra costs as scanning the input dataset L two times, 
intermediate filters, communication cost, etc. 

 Broadcasting the filter becomes inefficient if the size of the filter is large. 
Additionally, this approach also accepts a small false positive rate in 
filtering the non-joining tuples. 

2.4 Summary 

This chapter reviews the two of popular and important techniques for handling large-
scale datasets, the MapReduce framework and the Bloom filter. The MapReduce 
programming model enables easy development of scalable parallel applications to 
process vast amounts of data. The Bloom filter based on space efficiency has found 
applications in many fields, especially databases [63][64][65][59]. An illustration of 
using the Bloom filter is an optimization for the join processing. 
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 Furthermore, we provide a state of the art on the status of studies on joins with 
MapReduce and the recent research. We present an overview of the prominent join 
algorithms and categorize them with respect to their strategies. The two main 
existing approaches in literature for the MapReduce join operation are: (1) the Map-
side join approach, and (2) the Reduce-side join approach. In particular, we have 
introduced the semi-join and Bloomjoin algorithms that allow reducing the amount 
of redundant data transferred over the network, and the communication costs. In 
addition, we also show the advantages and disadvantages of the join algorithms. 
 Through the survey, we realize that there remain a lot of non-joining data sent to 
the reducers in the existing join algorithms. The Bloomjoin can only remove 
redundant data in one input dataset. Therefore, we need to look for a type of filter 
that has the ability to eliminate all tuples whose join keys are not common keys in 
input datasets. There are some important variations of the Bloom filter such as 
compressed Bloom filter [66], spectral Bloom filter [67], Bloomier filter [68], space-
code Bloom filter [69], distance-sensitive Bloom filter [70], etc. A variant called 
Counting Bloom Filters (CBF) [71] allows deletion of elements from the Bloom 
filter by using counters instead of a single bit at every position. Furthermore, another 
version of the Bloom filter is Invertible Bloom Filters (InvBF) [72] that supports not 
only the insertion, deletion, and lookup of elements, but also enables a listing of its 
contents with a probability. However, all the filters are not designed for our purposes. 
As a result, an intersection filter for optimization of joins should be proposed. 
 Multi-way joins can get benefits from the above idea because all their 
intermediate join results contain only actual joining data. 
 Nevertheless, some of problems of recursive joins still exist. As mentioned, our 
recursive join is computed as an iteration of the join and difference operations with 
the loop-invariant input relation K0. We face two problems for manually chaining 
multiple MapReduce jobs. The first one is the loop-invariant data K0 that must be 
rescanned, retransformed, and reshuffled on each iteration. It incurs significant 
overheads such as I/O, CPU, and communication. The second problem is the 
termination condition involving a fixpoint, i.e., the output of the current iteration and 
the previous iteration is the same. This condition requires an additional MapReduce 
job on each iteration to specify the fixpoint. It must once again incur substantial 
overheads such as scheduling the extra job, rescanning the output of two last 
iterations, and transferring large amounts of data via network. 
 To overcome the existing limitations of the Hadoop MapReduce framework for 
iterative applications, we mention the HaLoop framework to deploy our recursive 
joins. HaLoop caches the loop-invariant input dataset K0 and the output of each 
iteration on the physical node’s local disk for later reuse. If a cache becomes 
unavailable, it is automatically reloaded, either from map task physical nodes, or 
from HDFS. More importantly, we extend the Bloom filter to be able to specify 
difference elements between datasets. Our difference filter is then used in the 
recursive join without using an additional job. This improvement reduces many 
associated overheads. 
 All these elements help us devise better optimizations for the joins that are the 
main subject of this research. 
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CHAPTER
 

OPTIMIZATION FOR TWO-WAY JOINS 

AND IMPORTANT MULTI-WAY JOINS 

MapReduce has become an attractive and dominant model for processing large-scale 
datasets. However, this model is not designed to directly support operations with 
multiple inputs as joins. Many current studies on join algorithms including both 
Bloomjoins in MapReduce have been conducted but they still have much redundant 
data generated and transmitted over the network. This research will help us address 
the problem by providing a new type of filter called Intersection Bloom filter using a 
probabilistic model to remove most non-joining elements between input datasets. 
Namely, three ways are proposed on the intersection filter. We then consider two-way 
joins and important multi-way joins using the intersection filter, and analyze their 
costs. As a result, thanks to the high accuracy intersection filter, the join processing 
can minimize disk I/O and communication costs. Finally, the research is proved to be 
more efficient than existing solutions through a cost-based comparison and 
experiments of joins using different approaches. 
 This chapter is formed as follows. Section 3.1 provides a short description of 
previous work as well as points out its limitation. We then introduce an overview of 
our contributions, definitions and notations. The remainder of the chapter therefore 
presents our proposals in detail. Section 3.2 describes three approaches to building 
the intersection filter with a small false intersection probability. Section 3.3 uses the 
intersection filter for optimizing two-way joins. A cost model and a cost comparison 
of two-way join algorithms are given. Next, we show advantages of an extended 
intersection filter (EIF) for optimizing multi-way joins in Section 3.4, namely, three-
way joins and chain joins. The Lagrangian method is used to help us choose a three-
way join cascade and a two-way join cascade. In addition, two optimized solutions 
using the EIF for chain joins are suggested in this section. Moreover, two cost 
models for three-way joins and chain joins are also provided. Thanks to the cost 
models, we can make comparisons of different join algorithms for multi-way joins 
more convincing. The evaluation environments, experimental protocols and 
experiments are reported in Section 3.5. Finally, Section 3.6 includes conclusions on 
our work. 

3.1 Introduction 

3.1.1  Previous work 

Bloomjoins in DBMSs [61][56][62] with the necessary modifications have been 
deployed to handle large datasets in MapReduce. However, the standard Bloom filter 
in Bloomjoins only have the ability to remove non-joining tuples from one of input 
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datasets instead of both. As a result, there remains a large amount of non-joining data 
from another input dataset sent to the reducers for the join processing. Figure 3.1 
describes an illustration of a basic join operation using the Bloom filter in 
MapReduce. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

Figure 3.1: Basic join operation using BF in MapReduce 

 A Bloom filter BF(L.uid) is first built for an input dataset L on a join key column 
uid and is delivered across all the mappers. Each the mapper receives tuples from R 
or L, it eliminates tuples whose join keys are not in BF(L.uid) and emits key/value 
pairs for the remaining tuples. Then, the pairs are passed to corresponding reducers 
to be joined. However, the filter efficiency of the Bloomjoin algorithm and even with 
the recent extended researches [11][4] has not really been taken into consideration 
yet. Namely, with using only the filter BF(L.uid) for both the two inputs R and L, the 
algorithm can only eliminate non-joining tuples of the dataset R (e.g., tuples with the 
join key values of 2 and 4) without eliminating non-joining tuples of the dataset L 
(e.g., tuples with the join key values of 3 and 6). This redundancy considerably 
increases associated overheads in cases of multi-way joins and iterative joins. 
 We can see that the actual results of the inner join operation only contain tuples 
whose join keys belong to the intersection of the two input datasets projected on the 
join key column. As shown in Figure 3.1, the output is tuples whose join keys have 
the same value as 1 and belong to the intersection of R.uid and L.uid: 

{1}={1, 2, 4} ∩ {1, 3, 6}. 
 For this reason, we need to build a new filter type representing the intersection 
of the input datasets to be able to filter out non-joining data in both of these datasets. 
The complex joins can take advantages from our proposed filter. This chapter, 
therefore, makes the following main contributions: (a) the intersection filter with 
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three approaches that approximates the intersection of datasets; (b) optimization for 
two-way joins and multi-way joins using the intersection filter in MapReduce; (c) 
comparison among the joins using different approaches through cost models and 
experiments. 
 It should be noted that major research subjects of the chapter are the queries Q1 
and Q2 introduced in Chapter 2, which are inner join queries. 

3.1.2  Definitions and notations 

We supply definitions and notations used in this research as follows. 
 
Definition 3.1. The intersection (denoted ∩) of two or more sets is the set of 
elements that are common in all the sets. 
 
Definition 3.2: An Intersection Bloom Filter (IBF) is a probabilistic data structure 
designed to represent the intersection of sets. It is used to recognize common 
elements of the sets with a false positive probability. 
 
Notations are given by Table 3.1. 

Table 3.1: List of notations 

 
  

Notation Explanation 

|S| The cardinality of a set S, which is the number of elements in set S 

\ The difference operator 

 The union operator 

∩ The intersection operator 

S1 ∩ S2 The intersection of two sets S1 and S2 

IF(S1 ∩ S2) The general intersection filter representing the intersection of S1 and S2 

BF(S) The Bloom filter built for a set S 

BF(S1) ∩ BF(S2) Intersecting two Bloom filters BF(S1) and  BF(S2) 

IBF(S1 ∩ S2) The Intersection Bloom filter representing the intersection of S1 and S2 

fBF The false intersection probability of Bloom filters 

fPBF The false intersection probability of partitioned Bloom filters 

EIF The extended intersection filter 
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3.2 Modeling intersection filter 

We propose a filter type called Intersection Filter (IF) as follows: 
 
 
  
 
  
  
 
 

Figure 3.2: Intersection Filter returning an output with two possibilities 

 As illustrated in Figure 3.2, an intersection filter IF(S1 ∩ S2) represents an 
approximation of the set intersection, (S1 ∩ S2). It is used to check whether an 
element x is a common element (i.e. x  S1 ∩ S2). The intersection filter accepts an 
input and returns an output that is one of two possibilities: 

"no"  : x is NOT a common element of the sets S1 and S2. 

"yes"  : x may be a common element of the sets S1 and S2. 
 
 With this design, when the intersection filter returns an answer "no", the answer 
is always the correct response. An answer "yes" may be the wrong response because 
x may be NOT a common element. It also means that the intersection filter returns 
"yes" answers with a false positive probability. As a result, the intersection filter 
enables us to specify a superset of common elements including the "yes" elements, 
and eliminate disjoint elements that are the "no" elements. Accordingly, we should 
minimize false positives for the intersection filter. 
 This section shows three approaches based on Bloom filters to build the 
intersection filter, known as intersection Bloom filter (IBF). For convenience, two 
Bloom filters BF(S1) and BF(S2) are used as the concise representation of two input 
datasets R and L projected on the join key column, respectively. Since each of the 
Bloom filters has the false positive probability, there exist "false" common elements 
discovered by the intersection Bloom filter. 

3.2.1  Approach 1: a pair of Bloom filters 

First, we observe the following expression for set intersection representation of two 
sets S1 and S2. 
 

S1 ∩ S2 = (S1  S2) \ (S1 ∆ S2) = (S1  S2) \ ((S1 \ S2)  (S2 \ S1)) 
 
 From the above expression, we can specify the set intersection by eliminating all 
elements of the difference between the sets. Precisely, the intersection filter 
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recognizes common elements in the set S1 by BF(S2) and common elements in the set 
S2 by BF(S1). To achieve this work, we use a pair of Bloom filters as follows. 
 
 
 
 
 
 
 

 

Figure 3.3: Intersection filter using a pair of Bloom filters 

 Each element in one set is queried into a Bloom filter of another set by k hash 
functions. If the element is a member of the filter, the intersection filter returns a 
"yes" answer because the element may be a common member of the sets. Otherwise, 
the intersection filter returns a "no" answer because the element belongs to the set 
difference. As Figure 3.3, for instance, an element x1 of the set S1 is queried into 
BF(S2) and an element y1 of the set S2 is queried into BF(S1). If x1 is not a member of 
BF(S2), the output of the IBF is "no" answer. If y1 is in BF(S1), the output of the IBF 
is "yes" answer. After all elements of S1 and S2 are respectively queried into BF(S2) 
and BF(S1), we get all common elements that are "yes" answers. This corresponds to 
the operation of (S1  S2) \ ((S1 \ S2)  (S2 \ S1)). In other words, the intersection 
filter IBF(S1 ∩ S2) can be obtained through the pair of the Bloom filters. 
 This approach does not require the filters to have the same size m and k hash 
functions. 

3.2.2  Approach 2: intersecting unpartitioned Bloom filters 

The second approach is based on the idea that intersecting Bloom filters will produce 
a result filter called the intersection filter. 
 There is little difference between the intersection filter and the intersection of 
Bloom filters as shown in [73] then IBF(S1 ∩ S2) = BF(S1) ∩ BF(S2) with probability 
(1 - 1/m)k.|S1 - S1S2|.k.|S2 - S1S2|. 
 The intersection of filters is not sufficient to accurately calculate the intersection 
filter IBF(S1 ∩ S2). However, we can get an approximation of the IBF by joining 
BF(S1) and BF(S2) with the bit-wise AND, and the intersection Bloom filter still 
maintains the inherent querying features [74][73]. This means that if all k positions 
hashed for a join key x are set 1 in the intersection filter, x belongs to S1 ∩ S2 with 
high probability. 
 In this approach, we use standard (unpartitioned) Bloom filters with the same 
size m and k hash functions. Building the intersection filter is shown in Figure 3.4. 
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Figure 3.4: Intersection filter based on intersecting unpartitioned Bloom filters 

 It illustrates that the intersection filter IBF(S1 ∩ S2) is formed by intersecting two 
standard Bloom filters BF(S1) and BF(S2) with the bitwise AND operator. This can be 
expressed by the following form:  

IBF(S1 ∩ S2) = BF(S1) & BF(S2) 
 It performs the bitwise AND operation between the two bit arrays BF(S1) and 
BF(S2) with the same size, and place it in the third array IBF. The IBF is now an 
approximate representation of the set intersection (S1 ∩ S2). 
 Querying an element x into the intersection filter IBF is similar to the standard 
Bloom filter. If x is in IBF(S1 ∩ S2), it returns a "yes" answer because x may be a 
common element. Otherwise, it returns a "no" answer because x is an element of the 
difference. 
 With this approach, we only maintain one intersection Bloom filter to remove 
most non-joining tuples from both input datasets instead of using two filters as the 
first approach. 

3.2.3  Approach 3: intersecting partitioned Bloom filters 

Our last approach begins with the same idea as the second approach to create the 
intersection filter but we use partitioned Bloom filters. 

3.2.3.1 Partitioned Bloom filter 

A partitioned Bloom filter [75], a variant of the standard Bloom filter, is defined by 
an array of m bits that is partitioned into k disjoint arrays of size mp=m/k bits. Figure 
3.5 suggests that BF(S) consists of three 4-bit partitions, k=3 hash functions and size 
m=12 bits. 
 
 
 
 

Figure 3.5: Partitioned Bloom filter BF(S) 

 We insert an element x  S into BF(S) by computing hi(x) and setting the 
corresponding position in the ith partition to 1 (i=1...k). Similarly, we test if the 
element z is in S by checking the position corresponding to hi(z) in the ith partition. 
 The probability that a bit has remained 0 after inserting n elements for the 
standard filter p and the partitioned filter pp is asymptotically equivalent. Precisely, 
the standard Bloom filter tends to perform slightly better than the partitioned Bloom 
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filter since when k > 1 the standard filter tends to have more 0's than the partitioned 
filter as shown in the following expression. From expression (2.1), we derive the 
following inequality: 
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 However, the partitioned filter is more flexible than the standard Bloom filter. 
After building the partitioned filter, its false positive probability can still be changed 
by increasing or reducing its partitions without rehashing. Consequently, intersecting 
(merging) partitioned filters with different sizes can be performed by using the bit-
wise AND (OR) of two bit-arrays. Obviously, the resolution of one of the partitioned 
Bloom filters may be adjusted. For example, the partitioned filter BF(S1) has three 
4bit-partitions (the filter size m1=12 bits), BF(S2) has two 4bit-partitions (size m2=8 
bits). To intersect these filters, we only eliminate the third partition of BF(S1), then 
AND two remaining partitions of BF(S1) and BF(S2). This affects the resolution of 
BF(S1). In contrast, we cannot reduce the size of the unpartitioned filter because we 
have to completely rehash the bit array of the filter. 

3.2.3.2 Intersection filter design 

We describe the intersection filter IBF(S1 ∩ S2) built from two partitioned Bloom 
filters BF(S1) and BF(S2) in Figure 3.6. 
 
 
 
 
 
 
 

Figure 3.6: Intersection filter based on intersecting partitioned Bloom filters 

 The intersection filter IBF(S1 ∩ S2) is generated by intersecting pairs of 
partitions of the two partitioned filters. As shown in Figure 3.6, BF(S1) and BF(S2) 
including three partitions are pairwise intersected with the bitwise AND to produce 
IBF(S1 ∩ S2) including three 4-bit partitions. The filter IBF(S1 ∩ S2) represents the 
approximate intersection of the sets S1 and S2. 
 An interesting characteristic of this approach is that if the intersection filter 
IBF(S1 ∩ S2) has at least one partition with all m/k bits set to 0, the sets S1 and S2 are 
disjoint. Consequently, the join processing can be finished without doing anything. 
This characteristic is really useful for joins and is not present in the first approach. 
Even for the second approach, it would be rare for all m bits to be equal to 0. 
 In addition, the third approach does not require the filters BF(S1) and BF(S2) to 
have the same size. In this case, the filters may have different sizes but their 
partitions should have the same size and the same hash functions. We can adjust the 
partitioned filters BF(S1), BF(S2) and IBF(S1 ∩ S2) by reducing or adding partition(s) 
without rehashing. Similar to the second approach, we also maintain one intersection 
filter for filtering non-joining data in both input datasets. 

(3.1) 

mp=4 bits 

         h1(x)                    h2(x)      h3(x) 
BF(S1) 

BF(S2) 

IBF(S1 ∩ S2) 

0 1 1 1  1 0 1 0  1 0 0 1 
 1 1 0 1  1 0 1 0  0 1 0 1 

 
0 1 0 1  1 0 1 0  0 0 0 1 
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3.2.4  The false intersection probability 

We can represent the intersection of two sets with false positives as follows. 
 
 
 
 
 
 
 

Figure 3.7: Set intersection representation using Bloom filters 

 The dark area (blue) in Figure 3.7 shows the actual intersection of the sets S1 and 
S2. The bright area inside the dashed oval represents false positives of the set 
intersection, also known as false intersections. The false intersections result from 
intersecting the Bloom filters BF(S1) and BF(S2). 
 The false intersection probability for each of the approaches corresponds to each 
theorem below. 

Theorem 3.1. A false intersection by a pair of Bloom filters is identified with one of 

the two probabilities 

 a. For BF(S1), b. For BF(S2), 
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where m1 and m2 correspond to the sizes of BF(S1) and BF(S2); k1 and k2 are the 
numbers of hash functions of BF(S1) and BF(S2), respectively. 
 
Proof. As shown in Figure 3.3, we obtain the approximate intersection of the sets 
thanks to the pair of Bloom filters BF(S1) and BF(S2). From equation (2.2), it is easy 
to show that the false intersection probability of BF(S1) for the set S2 is fpair(S1) as 
equation (3.2) and the false intersection probability of BF(S2) for the dataset S1 is 
fpair(S2) as equation (3.2) �. 
 
Theorem 3.2. A false intersection by intersecting unpartitioned Bloom filters is 
identified with probability 
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where BF(S1), BF(S2) and IBF(S1 ∩ S2) have the same size m and k hash functions. 
 

(3.2) 

(3.3) 

U 

false intersections 

 

S1∩S2 S2 S1
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Proof. It argues that the intersection of the unpartitioned Bloom filters causes false 
intersections when all k bits in the resulting bit array is set to 1 from two different 
join keys. From equation (2.2), the probability for k bits to be set in both BF(S1) and 
BF(S2) from two different keys is the product of 
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It is also the false positive probability of IBF(S1 ∩ S2), and thus the theorem has been 
demonstrated �. 
 
Theorem 3.3. A false intersection by intersecting partitioned filters is identified with 
probability 
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where BF(S1), BF(S2) and IBF(S1 ∩ S2) have the same size m and k hash functions, k 
partitions are the same size mp=m/k. 
 
Proof. Similar to Theorem 3.2, the probability for k bits to be set in k partitions of 
BF(S1) and BF(S2) with two different keys, thus also falsely be in IBF(S1 ∩ S2) is the 
product of 
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It completes the proof of the theorem �. 
 
Theorem 3.4. The false intersection probability of the unpartitioned filter 
intersection is less than the false intersection probability of the partitioned filter 

intersection PBFBF ff    
 
Proof. If Bloom filters have more bits set to 1, the probability for a bit collision can 
be higher. And thus partitioned filters tend to have more 1's than unpartitioned filters. 
As equation (3.1), we get 
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From the above equation, we can simply compute the theorem �. 
 It can be seen that the intersection filter by a pair of the filters is the most 
flexible approach because the hash functions and the size of the filters can be 
different while other approaches require the same size that affects the resolution of 
filters. In contrast, the first approach needs to maintain two filters while others only 
maintain one filter on nodes. Besides, the second and third approaches enable us to 
discover disjoint sets and early stop the join processing. This characteristic is very 
important for evaluating multi-way joins and recursive joins. 

(3.4) 

(3.5) 
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3.3 Optimization for two-way joins using intersection filters 
in MapReduce 

We take a closer look at the semi-join and Bloom-join algorithms in Sections 2.2.4 
and 2.3.2 of Chapter 2. The algorithms remove the non-joining tuples from only one 
input dataset R. Consequently, the non-joining tuples in another input dataset L have 
still not been filtered. For instance from Facebook, a largest online social network 
with 1.23 billion monthly active users as of December 31, 2013 [60],  the log dataset 
L contains user's activities that many of them can deactivate their personal profiles. 
Hence, the join operation of the user dataset R and the log dataset log L leads to 
many non-joining tuples of the dataset L transferred across the network. Our join 
optimization takes the data redundancy in both R and L sent to the join processing 
into consideration. 

3.3.1  Implementation overview 

We implement a two-way join of the two datasets user R(uname, uid) and log L(uid, 
event) to evaluate the query Q1 in Chapter 2. Because R and L are two arbitrary input 
datasets, we will discuss and evaluate the join operation in general by using Reduce-
side join type. However, it can still use our intersection filter for the Map-side join 
type. 
 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Figure 3.8: Join implementation using intersection filter in MapReduce 
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The intersection filter-based join algorithm involves the following two computing 
stages: 

 Stage 1: projects all tuples of both the input datasets L and R on the join key 
column uid, hashes the keys into two Bloom filters, computes the intersection 
filter, and stores the filter into a file IBF.uid. 

 Stage 2: distributes the file IBF.uid to all compute nodes, uses this 
intersection filter to remove non-joining tuples in both R and L, and then 
computes the join of two filtered datasets of R and L. 

 Figure 3.8 illustrates the algorithm with two MapReduce jobs corresponding to 
the two stages. The first job, known as pre-processing job, is to build the intersection 
filter IBF(R.uid ∩ L.uid). The second one performs a join job using the intersection 
filter generated earlier to remove redundant data in the Map phase. The details of 
implementing the MapReduce jobs are described as follows. 

3.3.1.1 Pre-processing job 

The join operation (R ⋈ L) together with its input datasets R and L is configured and 
submitted by a client to the jobtracker. At this moment, the operation is compiled 
into two jobs in which the join job is blocked until the end of the pre-processing job. 
 The pre-processing job includes two groups of parallel map tasks (mtgroup1 and 
mtgroup2), and one reduce task for computing the intersection filter. The mtgroup1 
processes the dataset R for creating local filters BF(R.uid) while the mtgroup2 
independently processes the dataset L for creating local filters BF(L.uid). The 
mappers scan splits of R and L, extract the join key column for each tuple, and insert 
the join keys of R and L into local Bloom filters BF(R.uid) and BF(L.uid), 
respectively, on tasktrackers. The mappers emit the local filters to the reducer. The 
reducer receives all the local filters from all the mappers, merges these filters into 
two respectively global filters BF(R.uid) and BF(L.uid) using the bit-wise OR (see 
Section 3.3.1.3). Based on the three approaches proposed in Section 3.2, the reducer 
computes the intersection filter IBF(R.uid ∩ L.uid) from the global filters. For the 
first approach, the intersection filter is a pair of the global filters and thus it does 
nothing. The intersection filter is then stored into a file IBF.uid on Distributed File 
System (DFS). 
 As an option, the pre-processing job can detect to not rebuild the existing filters, 
even this job will be omitted if the intersection filter exists. Consequently, it enables 
a dramatic reduction in I/O and computational overhead when joins are recalculated. 
In addition, when the size of filters is large, the filter files will be compressed in 
formats such as gzip, bzip2, LZO and Snappy. This compression is really efficient 
for delivering filters to all nodes. 
 Notably, the implementation of the pre-processing job can detect the empty 
intersection filter to early complete the join operation. This interesting characteristic, 
which is very useful for multi-way joins and recursive joins, is not present in the 
existing studies. 
 At the end of the pre-processing job, if the intersection filter is empty, the join 
job will be omitted and the entire join operation will be finished. Otherwise, the 
intersection filter will be written into a file on DFS. This pre-processing job 
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corresponds to activities (a1) to (a3) in Figure 3.8. The activities are the job initiation 
and map-reduce functions presented in Section 3.3.2. 

3.3.1.2 Join job 

This job will use the intersection filter generated earlier to remove redundant data 
from both the input datasets R and L, and perform a cross join. Activities (b1) to (b4) 
in Figure 3.8 describe the join job in detail. In order to start the job, the intersection 
filter file IBF.uid is distributed to all the compute nodes in a cluster using a 
distributed cache. Then, the jobtracker will create mp1 and mp2 map tasks for the 
inputs R and L respectively, r reduce tasks, and assign each split to one map task run 
on a tasktracker. Its implementation includes the following two phases. 

 Map phase using the intersection filter: 
Each mapper uses an initialization function to load the file IBF.uid into 
memory IBF(R.uid ∩ L.uid). A tag '0' or '1' is used to tick a split of R or L, 
respectively. The mapper reads each tuple from its split, produces a <key, 
tuple> pair, and then calls a map function to process the pair. The map 
function queries the join key (uid) of the tuple into the intersection filter IBF. 
If the key is in the IBF, the tuple is mapped into a pair in form of             
((uid, tag), tuple) and emitted to the reducers. Otherwise, the tuple is omitted. 

A partition function, partitioner(), ensures that partitioning the tagged tuples 
takes into consideration only the join key part (uid) and ignores the tag part 
(tag). The tag attached to the join key uid is used to do a secondary sort that 
ensures all tuples from one input dataset are processed before the other. This 
is implemented by overriding the default grouping function. 
When the mapper emits data, these intermediate pairs are partitioned, sorted, 
merged and written to disk in a single intermediate file. Then, the framework 
sends the pairs across the network to the corresponding reducers. 

 Reduce phase: 
This reduce phase is the same as the one of the basic Reduce-side join. The 
reducer receives the tagged tuples of the form ((uid, tag), tuple) with the same 
uid, and calls the reduce function for each join key uid. The reduce function 
performs the cross product of the tuples of R that are buffered and each 
incoming tuple of L. It is completed by writing the output to DFS. 

3.3.1.3 Merging Bloom filters 

We introduce the way to merge the local filters that it takes place in the Reduce 
phase of the pre-processing job. Merging the Bloom filters is simpler than 
intersecting these filters. The merging operation corresponds to the construction of 
the union filter BF(S1  S2). We can build the union Bloom filter by the union of the 
Bloom filters as shown in Lemma 1 and 2 below. 
 
Lemma 1. [73] Assuming BF(S1), BF(S2) and BF(S1  S2) use the same size m and k 
hash functions, then  

BF(S1  S2) = BF(S1)  BF(S2) 
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We can easily extend Lemma 2 out to the following fact. 
Lemma 2. Assuming BF(S1), BF(S2), ..., BF(Sq) and BF(S1  S2 ...  Sq) use the same 
size m and k hash functions, then BF(S1  S2 ...  Sq) = BF(S1)  BF(S2) ... BF(Sq). 
 
 The union of Bloom filters with the same size and hash functions is 
implemented by bitwise OR. In the pre-processing job, therefore, the reducer collects 
all the local Bloom filters from tasktrackers, merges the local filters by using the 
bitwise OR of the bit arrays, and generates the global Bloom filter. This global filter 
is then intersected with another global filter to create the intersection filter. 

3.3.2  Optimized two-way join algorithm 

Listing 3.1 shows the pseudo code of the intersection filter-based join algorithm. 
 

Algorithm 1 - Two-way join algorithm using Intersection filter 
 

 
Job1_2Way: builds intersection filter IBF.uid storing common join keys between R and L 

Init_Map() // init function for map phase 
bfilter_R ← empty; //storing keys of R 
bfilter_L ← empty; //storing keys of L 

 
Map(k: null, v: a tuple from an R or L split) 

joinKey ← extract the join column from v 
add joinKey to bfilter_R or bfilter_L; 

 
Close_Map() // close function for map phase 

emit('R ', bfilter_R); 
emit('L', bfilter_L); 

 
Init_Reduce() // init function for reduce phase 

globalBF_R ← empty; //merging local filters of R 
globalBF_L ← empty; //merging local filters of L 

 
Reduce(k′: 'R' or 'L', v': a list of local bloom filters) 

filterPointer ← null; // a pointer 
if k' == 'R' then 

filterPointer = &globalBF_R; 
else         

 filterPointer = &globalBF_L; 
endif 
 
for each bfilter in v' do 

OR(bfilter, filterPointer); 
emit(null, null); 

 
Close_Reduce() // close function for reduce phase 

IBF.uid ← empty; //intersection filter 
compute IBF.uid from globalBF_R and globalBF_L 
save IBF.uid into a file IBF.uid on DFS 
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Job2_2Way: filters out non-joining tuples in R and L, and joins filtered datasets R' and L' 

Init_Map() // init function for map phase 
IBF.uid ← load(IBF.uid); //loading intersection filter 

 
 
Map(k: null, v: a tuple from an R or L split) 

tag ← a bit 0 or 1 corresponding to name of R or L; 
key ← extract the join key from v; 
if (key in IBF.uid ) then 

emit(pair(key, tag), v); 
endif 

 
GroupComparator(taggedKey1: taggedkey, taggedKey2: taggedkey) 

res = compare(taggedKey1.key, taggedKey2.key); 
if (res == 0) then 

res = compare(taggedKey1.tag, taggedKey2.tag); 
endif 
return res; 

 
Partitioner(k': taggedkey, v: value, p: the number of reducers) 

return hash_func(k'.key) mod p; 
 

Init_Reduce() // init function for reduce phase 
currentKey ← '0';    //for storing current key 
buff ← empty; //for storing tuples with same key of R 
 

Reduce(k': taggedKey, v': list of values v with key k') 
if k'.key != currentKey then 

clear(buff); 
currentkey = k'.key;  

endif 
 
if k'.tag == '0' then 

for each l in v' do 
      add tuple l to buff; 
 

else if k'.tag == '1' then 
for each l in v' do 
      for each r in buff do  
           emit(null, pair(r, l)); 

end if 
 

Listing 3.1. Pseudo code for two-way join algorithm using intersection filter 
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3.3.3  Cost analysis for two-way joins in MapReduce 

3.3.3.1 Cost model 

We adapt the cost model presented in [76] to suit our cost model for two-way joins. 
Suppose that R and L are two input datasets. Table 3.2 summarizes parameters within 
our cost model for two-way joins. 

Table 3.2: Cost model parameters for two-way joins 

 
  
  

Parameter Explanation 

|R| The size of the input dataset R 

|L| The size of the input dataset L 

cl The cost of reading or writing data locally 

cr The cost of reading/writing data remotely 

ct The cost of transferring data from one node to another 

B+1 The size of the sort buffer is B+1 pages 

mp1 The number of map tasks of the dataset R 

mp2 The number of map tasks of the dataset L 

mp = mp1+mp2 The total number of map tasks 

t The number of tasktrackers 

m The size of the Bloom filter (bits) 

ϕ The compression ratio for the filter file 

|O| The size of the join processing output 

Cpre The total cost to perform the pre-processing job 

Cread The total cost to read the data 

Csort The total cost to perform the sorting and copying at the map and 
reduce nodes 

Ctr The total cost to transfer intermediate data among the nodes 

Cwrite The total cost to write the data on DFS 
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 Accordingly, we get the total cost of a two-way join using various algorithms as 
follows: 

C = Cpre + Cread + Csort + Ctr + Cwrite  
 
where 

 Cread = cr . |R| + cr . |L| 

 Csort = cl . |D| . 2 . (    )(log)(log||log mpmpD BBB  ) [76] 

 Ctr = ct . |D| 

 Cwrite = cr . |O| 

 Cpre = C' + cr . m.ϕ . t 
 Cread + (cl + ct) . m.ϕ . mp + a , for the intersection filter approaches 

 C' =     
 cr . |L| + (cl + ct) . m.ϕ . mp2, for the Bloomjoin 

 a = cr . m . ϕ . t  for the first intersection filter approach, otherwise a = 0 

 Cpre = 0 for approaches without using the filters. Besides, assume that the 
filters are the same size m. If m is small, we will not compress the filter 
files, and so ϕ = 1. 

 
 In equation (3.6), an additional cost Cpre should be added to the cost model in 
[76]. Intuitively, we can see that |D|, the size of the intermediate data, decides the 
total cost of the join operation. Thus, we should focus on analyzing this parameter for 
our different approaches in order to have a more complete assessment. 

3.3.3.2 Cost comparison of approaches 

From the pros and cons of the join algorithms mentioned in Sections 2.2 and 2.3 of 
Chapter 2, we consider three prominent join algorithms such as the Reduce-side join, 
the Bloomjoin, and our intersection filter-based join with the three filter approaches. 
These algorithms implement a general join model and have no restrictions on input 
datasets. More importantly, the Bloomjoin and the intersection filter-based join are 
good algorithms for optimizing the join performance. They are more efficient than 
the semi-join because they execute lesser jobs, and use a smaller data structure that is 
a bit vector for minimizing the amount of data transferred over the network. Besides, 
these algorithms do not have to distribute the filtered input dataset that can be large 
to all compute nodes. 
 In order to estimate |D|, it is assumed that ∂L is the ratio of the joined records of 
R with L, and ∂R is the ratio of the joined records of L with R. The size of 
intermediate data with the false intersection probability is: 
  

(3.6) 
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  ∂L|R| + )(Lpairf .(1 − ∂L)|R|  + ∂R|L| + )(Rpairf .(1 − ∂R)|L| 

  ∂L|R| + BFf      .(1 − ∂L)|R|  + ∂R|L| + BFf      .(1 − ∂R)|L| 

  ∂L|R| + PBFf    .(1 − ∂L)|R|  + ∂R|L| + PBFf    .(1 − ∂R)|L| 

  ∂L|R| + )(Lpairf .(1 − ∂L)|R|  +    |L| 

     |R|  + |L| 
 
where 
equation (3.7) for the IBF-based join with the pair of the filters (approach 1), 
equation (3.8) for the IBF-based join with the unpartitioned IBF (approach 2), 
equation (3.9) for the IBF-based join with the partitioned IBF (approach 3), 
equation (3.10) for the Bloomjoin with one filter BF(L.uid), 
equation (3.11) for the Reduce-side join, 
and )(Lpairf , )(Rpairf , BFf and PBFf refer to Section 3.2.4. 

 
 From the equation of the intermediate data size |D| above, we can point out the 
following important evaluation. 
 
Theorem 3.5. The join operation using the intersection filter is more efficient than 
using a basic Bloom filter because it produces less redundant and intermediate data 
than the latter. Additionally, we can derive comparing equation  for |D|: 

|D|3.7     |D|3.8  <  |D|3.9  <  |D|3.10  <  |D|3.11 
 
where |D|i is the intermediate data size for equation ith (i = 3.7, ..., 3.11). 
 
Proof. We can see that querying tuples of R into BF(L.uid) and tuples of L into 
BF(R.uid) corresponds to finding common elements between the filters. It is also the 
intersection operation of filters as presented in Section 3.2.2. Thus the intermediate 
data generated by the first two approaches is equivalent |D|3.7  |D|3.8. 
From Theorem 3.4, we get 0 < BFf  < PBFf  << 1. So we can deduce: 

  ∂R|L| + BFf . (1 − ∂R)|L| < ∂R|L| + PBFf . (1 − ∂R)|L| < |L| 
and 
  ∂L|R| + BFf . (1 − ∂L)|R| < ∂L|R| + PBFf . (1 − ∂L)|R| < |R| 

Additionally, we also have 0 < PBFf  < )(Lpairf << 1. Thus it simply shows: 

  ∂L|R| + PBFf .(1 − ∂L)|R| < ∂L|R| + )(Lpairf .(1 − ∂L)|R| < |R| 

Combining inequalities (3.13), (3.14), (3.15), and (3.16) into equations (3.7), (3.8), 
(3.9), (3.10), and (3.11), Theorem 3.5 is proved �. 
 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

|D| = 

(3.16) 
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 From equations (3.6) and (3.12), we can evaluate the total cost of the join 
operation for the different approaches by the following theorem. 
 
Theorem 3.6. The join operation using the intersection filter has the lowest cost. In 
addition, we can derive comparing equation for the total cost of the algorithms: 
 

C3.7  C3.8 < C3.9 < C3.10 < C3.11 
 
where Ci is the total cost in case of equation ith (i = 3.7, ..., 3.11). 
 
 It should be noted the total cost to perform the pre-processing job 
 Cread + (cl + ct) . m.ϕ . mp + 2 . cr . m.ϕ . t; in case of (3.7) 
 Cread + (cl + ct) . m.ϕ . mp + cr . m.ϕ . t; in cases of (3.8) and (3.9) 
 cr . |L| + (cl + ct) . m.ϕ . mp2 + cr . m.ϕ . t; in case (3.10) 
 0; in case of (3.11) 
 
 For the data locality optimization, the MapReduce framework runs the map task 
on a node where the input data resides in DFS and the data is directly fetched. Thus 
the read cost of this phase is low. As a result, the total cost Cpre is negligible 
compared to the creation and transfer of redundant data over the network. 
 However, the join algorithm using the different intersection filters will become 
inefficient when there is a large number of map tasks (mp), and very little redundant 
data in the join operation. In the case of so many map tasks, a tasktracker running 
multiple map tasks will merge the local filters of each task and will maintain only 
two local filters BF(R) and BF(L). This is not difficult to be solved in our future 
work. In the case of little redundant data, we will not need to use the filter as well as 
the pre-processing job. For this reason, we should estimate the threshold of 
redundant data so that the cost of the pre-processing job is less than the cost 
associated with redundant data and thus the intersection filter becomes more useful. 
 Let |D*| be the size of redundant data or removed data, C*sort be the total cost to 
perform the sorting and copying redundant data at the map and reduce nodes, and 
C*tr be the total cost to transfer redundant data among the nodes. Accordingly, the 
cost associated with redundant data is the sum of C*sort and C*tr. We show the 
threshold of the size of redundant data that the join optimization should use the 
intersection filter as follows: 
 

Cpre < C*sort + C*tr 
where 

 |D*| = |R| + |L|  |D|, 

 C*tr = ct . |D*|, 

 C*sort = cl . |D*| . 2 . (    )(log)(log|*|log mpmpD BBB  ) [76] 

Based on the size of intermediate data |D|, the threshold depends on ∂L (the ratio of 
the joined records of R with L) and ∂R (the ratio of the joined records of L with R). 

(3.17) 

Cpre = 
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3.4 Optimization for multi-way joins using intersection 
filters in MapReduce 

Multi-way join algorithms are still an open issue and their existing solutions from 
traditional distributed and parallel databases cannot be easily extended to adapt a 
shared-nothing distributed computing paradigm as MapReduce. In this section, 
therefore, we propose several intersection filter-based approaches to computing 
important multi-way joins as the query Q2. 

3.4.1  Extended intersection filter 

In order to evaluate multi-way joins, we introduce an extended intersection filter 
(EIF) as in Figure 3.9.  
 
  
 
 
 
 

Figure 3.9: Extended intersection filter - EIF(BF1, BF2, ..., BFk) 

 The EIF includes an array of standard Bloom and intersection filters hashed on 
different join key columns x1, x2, ... xk. Each tuple t(x1, x2, ... xk, xk+1, ..., xn) may 
contain k join keys linking to others. The extended intersection filter accepts an input 
and returns a "yes" or "no" answer. If one of the join keys of the tuple t, t(xi), is not a 
member of a component filter BFi of the EIF, the output is "no" answer. Otherwise, 
the output of the EIF is "yes" answer, i.e., every t(xi) is in the component filter BFi of 
the EIF. 

3.4.2  Three-way join using intersection filter 

In this section, we consider a different join way including three input datasets at once 
instead of two datasets as the two-way join. This operation is called three-way join 
and represented under the form of 

R ⋈uid=uid1 K ⋈uid2=uid L 
 It corresponds to the query Q2 in Chapter 2, which is a simple kind of multi-
joins. There are several ways to compute the three-way join as follows. 

R ⋈uid=uid1 K ⋈uid2=uid L 
= (R ⋈uid=uid1 K) ⋈uid2=uid L 
= R ⋈uid=uid1 (K ⋈uid2=uid L) 

 The execution plans show that we can implement the three-way join by a 
sequence of 2 two-way joins mentioned earlier. The first way consists in joining two 
datasets R and K, and then joins the intermediate output with L. Another way 
performs joining two datasets K and L, and then joins R with the intermediate output. 

   

BF1(S1)    BF2(S2∩S3)      BFk(Sk) 
 

t(x1, x2,.., xk,.., xn) 
 

 ? 
 

  →         →           →  .....  →          → 
 

  x1        x2                   xk   t  filter EIF if 
 
all t(xi)  BFi  
(i=1...k) 
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 Both the two ways must use at least two MapReduce jobs to execute the three-
way join operation. However, there is an alternative way which joins all the three 
datasets at once in a single MapReduce job. The algorithm is proposed by Afrati and 
Ullman [6] for optimizing multi-way joins. It begins with the idea of a matrix of 
reduce processes (reducers) as shown in Figure 3.10. 
 
 
 
 
 
 
 
 
 
 

Figure 3.10: Distributing tuples of R, K, and L among r = m2 reducers 

 Given the number of reducers r = m2 forming a reducer matrix m×m, and a hash 
function h generating a random number within range 0, 1, 2, ..., m - 1. Each reducer 
is associated with a cell (i, j) in the reducer matrix, where i and j are integers within 
the range of m - 1. Namely, a cell (3, 2) associates with the reducer (i*m + j) = 17. 
 To compute R(uname, uid) ⋈ K(uid1, uid2) ⋈ L(uid, event) in a MapReduce 
job, the mappers distribute tuples of R, K, and L to the reducer matrix as follows. The 
mappers send each tuple of K to only one reducer, while each tuple of R and L are 
sent to many different reducers. Specifically, each tuple of K(uid1, uid2) is sent to 
the reducer numbered (h(K.uid1), h(K.uid2)). Each tuple R(uname, uid) is sent to all 
the reducers numbered (h(R.uid), x), for any x. Each tuple L(uid, event) is sent to all 
the reducers numbered (y, h(L.uid)), for any y. 
 As illustrated in Figure 3.10, we have a reducer matrix 5×5 with 25 reducers 
(m=5). A tuple of R(uname, uid) with h(R.uid) = 3 is sent to all the reducers 15 to 19 
(numbered (3, x)). A tuple of L(uid, event) with h(L.uid) = 2 is sent to all the reducers 
2, 7, 12, 17, and 22 (numbered (y, 2)). A tuple of K(uid1, uid2) with h(K.uid1) = 1 
and h(K.uid1) = 4 is sent to only one the reducers 9 (numbered (1, 4)). In the 
example, the output of joining these tuples is empty. If there is a tuple of K(uid1, 
uid2) with h(K.uid1) = 3 and h(K.uid1) = 2 is sent to the reducer 17, we get a result 
of joining the tuples. Another example, we can easily see that if there are three tuples 
R('Laurent dOrazio', 'b'), K('b', 'c'), and L('c', 'login'), they will all be sent to the 
reducer numbered (h('b'), h('c')) and then the reducer computes the join of these 
tuples correctly. 
 We use the method of Lagrangian multipliers in order to present how to choose 
the parameter r for minimizing the communication cost. For simplicity, it is assumed 
|R|=|K|=|L|. The total communication cost for the optimal three-way join is O(|R| r ) 
and the total communication cost for the cascade of 2 two-way joins is O(|R|2.), 
where  is the probability of two tuples from different datasets agreeing on their 
common column. This analysis shows that the three-way join is better than the 
cascade of the two-way joins when r < (|R|.)2, and becomes a good choice. 

 0 1 2 3 4 
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 However, the use of the reducer matrix for distributing tuples of the input 
datasets leads to tuple duplications. For each tuple of the dataset R or L, a mapper 
generates m duplicates of the tuple because the mapper cannot ensure the join key of 
a tuple in the dataset K. Consequently, the communication and I/O overheads are 
large. This situation can be improved significantly if we can discover and remove 
non-joining tuples of the input datasets R and L without replicating them. The 
improvement is shown in Figure 3.11. 
 
 
 
 
 
 
 

Figure 3.11: Three-way join operation using intersection filter 

 The input datasets R and L are filtered by intersection filters IBF(R.uid ∩ 
K.uid1) and IBF(K.uid2 ∩ L.uid), respectively. The input dataset K(uid1, uid2) is 
filtered by an extended intersection filter including the two filters IBF(R.uid ∩ 
K.uid1) and IBF(K.uid2 ∩ L.uid). In other words, the dataset K is filtered two times 
by IBF(R.uid ∩ K.uid1) and IBF(K.uid2 ∩ L.uid) on the distinct join key columns 
uid1 and uid2, respectively. Obviously, the solution considerably reduces the amount 
of data transferred to the reducers. 
 Similarly to the two-way join, implementing the three-way join with the 
(extended) intersection filter also uses two MapReduce jobs. However, this 
implementation needs to be changed to comply with its three inputs. The pre-
processing job now generates two intersection filters IBF1(R.uid ∩ K.uid1) and 
IBF2(K.uid2 ∩ L.uid) on distinct join key columns. An extended intersection filter 
EIF(IBF1, IBF2) consists of the two filters IBF1 and IBF2, which is used to filter the 
dataset K. The join job is executed like the reduce-side join using BF1, BF2 and EIF 
to remove redundant data from its inputs R, L and K, respectively, in the Map phase. 
Additionally, map and reduce functions of the join job are modified more complexly 
than the two-way join job. These are described in the following details. 
 
Pre-processing job 
A join operation with three input datasets R, K and L is submitted and compiled into 
two MapReduce jobs, in which a pre-processing job is followed by a join job. The 
pre-processing job has three groups of parallel map tasks (mp1, mp2 and mp3) to build 
local Bloom filters and one reduce task to produce two intersection filters IBF1(R.uid 
∩ K.uid1) and IBF2(K.uid2 ∩ L.uid). The mp1 processing R creates local Bloom 
filters BF(R.uid), the mp2 handling K produces local filters BF(K.uid1) and 
BF(K.uid2), while the mp3 processes L to generate local filters BF(L.uid). All the 
local filters are then sent to the reducer. The reducer merges the corresponding local 
filters to generate four global filters BF(R.uid), BF(K.uid1), BF(K.uid2) and 
BF(L.uid). Based on the proposals for the intersection filter, the reducer calculates on 
the global filters and generates two intersection filters IBF1(R.uid ∩ K.uid1) and 

R                 K                  L 

 J1,2,3 
⋈  

uid1       uid2 

IBF(R.uid ∩ K.uid1) 
 

IBF(K.uid2 ∩ L.uid) 
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IBF2(K.uid2 ∩ L.uid). Then, the two intersection filters IBF1 and IBF2 will be saved 
to DFS. 
 It should be noted that the join operation will return the empty output 
immediately without executing the join job if one of the intersection filters IBF1 and 
IBF2 is empty. This feature is necessary to compute multi-way joins. 
 
Join job 
The job begins with distributing the two intersection filters BF1 and BF2 to all 
tasktrackers. Next, the jobtracker will create mp1, mp2 and mp3 map tasks for inputs 
R, K and L respectively, r reduce tasks and assign each split to one map task. Two 
phases to implement this job are described by the following phases. 

 Map phase with filtering: the mapper reads each tuple from its split and calls 
a map function to process. The map function queries the join key of the tuple 
into the corresponding filter. Specifically, the tuple of R or L is queried into 
IBF1 or IBF2 on the join key column uid, respectively. The tuple of K is 
queried into EIF(IBF1, IBF2) on the join key columns uid1 and uid2. If the 
tuple is not present in the filter, it is eliminated. Otherwise, the tuple is 
replicated into tagged pair(s) ((uid, tag), tuple) that are then sent to the 
reducers. The tuple replication is executed as shown in Figure 3.10. 

 Reduce phase: the reduce function takes its input and does a full cross-
product of tuples from the different input datasets for each join key pair of K 
to create the joined output. The reducer buffers the tuples of R and L, and 
performs the cross product of R, L and K for each incoming tuple of K. It is 
completed by writing the output to DFS. 

 
The following pseudo code presents a three-way join algorithm using the intersection 
filter. 
 

Algorithm 2 - Three-way join algorithm using Intersection filter 
 

 
Job1_3Way: builds two intersection filters IBF(R.uid ∩ K.uid1) and IBF(K.uid2 ∩ L.uid) 

Init_Map() // init function for map phase 
bfilter_R ← empty; //storing keys R.uid 
bfilter_K1 ← empty; //storing keys K.uid1 
bfilter_K2 ← empty; //storing keys K.uid2 
bfilter_L ← empty; //storing keys L.uid 
tag = null; //storing name of input dataset 
localFilterPointer ← null; // a pointer 

 
Map(k: null, v: a tuple from an R, K or L split) 

if (tag == null) then 
tag = name of input dataset 'R', 'K', or 'L'; 
switch (tag) 

case 'R': localfilterPointer = &bfilter_R; 
case 'K': localfilterPointer = &bfilter_K1; 
case 'L': localfilterPointer = &bfilter_L; 

endswitch 
endif 
 
joinKey ← extract the join column from v 
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add joinKey to localfilterPointer; 
if (tag == 'K' ) then 

joinKey2 ← extract the join column uid2 from v 
add joinKey2 to bfilter_K2 

endif 
 
Close_Map() // close function for map phase 

emit(tag, localfilterPointer); 
if (tag == 'K') then 

emit('K2', bfilter_K2); 
endif 
 

Init_Reduce() // init function for reduce phase 
globalBF_R ← empty; //merging local filters BF(R.uid) 
globalBF_K1 ← empty; //merging local filters BF(K.uid1) 
globalBF_K2 ← empty; //merging local filters BF(K.uid2) 
globalBF_L ← empty; //merging local filters of BF(L.uid) 

 
Reduce(k′: 'R', 'K', 'K2' or 'L', v': a list of local bloom filters) 

globalFilterPointer ← null; // a pointer 
switch (k') 

case 'R ':   globalFilterPointer = &globalBF_R; 
case 'K':   globalFilterPointer = &globalBF_K1; 
case 'K2': globalFilterPointer = &globalBF_K2; 
case 'L':   globalFilterPointer = &globalBF_L; 

endswitch 
 
for each bfilter in v' do 

OR(bfilter, globalFilterPointer); 
emit(null, null); 

 
Close_Reduce() // close function for reduce phase 

IBF_R_K ← globalBF_R; //intersection filter IBF(R.uid ∩ K.uid1)  
IBF_K_L ← globalBF_L; //intersection filter IBF(K.uid2 ∩ L.uid) 
AND(globalBF_K1, IBF_R_K); 
AND(globalBF_K2, IBF_K_L); 
save IBF_R_K and IBF_K_L into two files IBF_R_K and IBF_K_L on DFS 

 
 
Job2_3Way: filters out non-joining tuples in R, K and L, and joins filtered datasets R', K' and L' 

Init_Map() // init function for map phase 
IBF_R_K ← load(IBF_R_K); //loading intersection filter IBF(R.uid ∩ K.uid1) 
IBF_K_L ← load(IBF_K_L); //loading intersection filter IBF(K.uid2 ∩ L.uid) 
reducerMatrixSize ← sqrt(the number of  reducers); 

 
Map(k: null, v: a tuple from an R or L split) 

tag ← 1, 2, or 3 corresponding to name of R, L or K; 
key ← extract the join key from v; //R.uid, L.uid or K.uid1 
p = h(key) mod reducerMatrixSize; 
if (tag == 1 && key in IBF_R_K) then 
//sending v(uname, uid) of R to reducers: (h(uid),  j) 

for (j=0; j<reducerMatrixSize; j++) do 
partition = p*reducerMatrixSize + j; 
emit(pair(key, tag:partition), v); 

else 
if (tag == 2 && key in IBF_K_L) then 

//sending v(uid,event) of L to reducers: (i, h(uid)) 
for (i=0; i <reducerMatrixSize; i++) do 

partition = i*reducerMatrixSize + p; 
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emit(pair(key, tag:partition), v); 
else 

key2 = ← extract the join key uid2 from v; // K.uid2 
if (tag == 3 && key in IBF_R_K && key2 in IBF_K_L) then 

//sending v(uid1, uid2) of K to reducer (h(uid1), h(uid2)) 
col = h(key2) mod reducerMatrixSize; 
partition = p*reducerMatrixSize + col; 
emit(pair(key, tag:partition), v); 

endif 
endif 

endif 
 

GroupComparator(taggedKey1: taggedkey, taggedKey2: taggedkey) 
res = compare(taggedKey1.tag, taggedKey2.tag); 
if (res == 0) then 

res = compare(taggedKey1.key, taggedKey2.key); 
endif 
return res; 

 
Partitioner(k': taggedkey, v: value, p: the number of reducers) 

return k'.tag.getPart(); 
 

Init_Reduce() // init function for reduce phase 
multiMap_R ← empty; //storing <key, values> of R 
multiMap_L ← empty; //storing <key, values> of L 
 

Reduce(k': taggedKey, v': list of values v with key k') 
if (k'.tag == 0) then 

 add (k'.key, v') into multiMap_R 
else 

if (k'.tag == 2) then 
add (k'.key, v') into multiMap_L 

else 
//for tuples of  K 
if (k'.key in multiMap_R) then  

for each k in v' do 
if (k.uid2 in multiMap_L) then 

for each r in multiMap_R[k'.key] do 
for each l in multiMap_L[k.uid2] do 

emit(r, pair(k, l)); 
endif 

endif 
endif 

endif 
 

Listing 3.2. Pseudo code for three-way join algorithm using intersection filter 
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3.4.3  Chain join using intersection filter 

We consider a chain join, which is a cascading join of relations so that each relation 
is linked to the following one by a single or multiple attributes. This join case has the 
form of R1(x1, x2) ⋈ R2(x2, x3) ⋈ R3(x3, x4) ⋈ ... ⋈ Rn(xn, xn+1), and is shown by: 
 
 
 

Figure 3.12: A chain join 

 The query Q2 in Chapter 2 is an illustration of the chain join. We begin with an 
implementation of the chain join using a cascade of Bloomjoins in MapReduce. It is 
an iterative implementation of two-way Bloomjoins as presented in Figure 3.13. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.13: Implementation of a chain join using a Bloomjoin cascade 

 The implementation of the two-way Bloomjoin is earlier mentioned in Section 
2.3.2. The chain join operation includes multiple Bloomjoin jobs for joining datasets, 
two datasets at a time. Considering n datasets R1... Rn, R1 is joined with R2 on the key 
x2 as one job. The result of this join, R1,2, is joined with R3 and so on. 
 In the cascade of the Bloomjoins, we can see that the dataset R1 and intermediate 
join results R1,2, R1,2,3, ..., R1,2,..,n-1, are filtered by BF(R2.x2), BF(R3.x3), BF(R4.x4), ..., 
BF(Rn.xn), respectively. Meanwhile, the input datasets R2, R3, ..., Rn are not filtered 
and thus there remain a lot of non-joining data transferred over the network. This 
situation will be considerably improved by using intersection filters as follows. 
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Figure 3.14: Implementation of a chain join using a cascade of two-way joins using 

intersection filters 

 The intersection filter IBF(Ri.a ∩ Rj.b) is formed from two basic filters BF(Ri.a) 
and BF(Rj.b) with using the approaches in Section 3.2. It is an approximate 
representation of the set intersection Ri ∩ Rj. 
 Figure 3.14 illustrates the implementation of the chain join as a cascade of two-
way joins using intersection filters. All the input datasets and the intermediate join 
results are filtered by their corresponding intersection filters. For instance, the 
intersection filter IBF(R1,2.x3 ∩ R3.x3) is used to eliminate most of non-joining data in 
both the datasets R1,2 and R3. Based on Theorem 3.5, it is easy to deduce that 
intermediate data sent to the reducers in the case of the intersection filter-based join 
cascade is less than in case of the Bloomjoin cascade. 
 For all the above implementations, however, the intermediate join results R1,2, 
R1,2,3, ..., R1,2,..,n-1 still contains redundant tuples passed to the next join. This is 
because the join processing i generates result tuples that some of them do not 
participate the next join processing i+1. We therefore discover two improvments for 
chain joins using extended intersection filters as follows. 
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 (a) Two-way join cascade (b) Three-way join cascade 

Figure 3.15: Optimization of a chain join using extended intersection filters 

 In the first solution as Figure 3.15 (a), the chain join is implemented by a two-
way join cascade. We have to filter out redundant data from an intermediate join 
result. Instead, we should move this filtering operation into the previous join job. 
Hence, the input datasets R2, ..., Rn are filtered by extended intersection filters EIF. 
The extended filter EIFi includes a Bloom filter BF(R1, ..., i-1.xi) built from the 
intermediate join result and a filter BF(Ri+1.xi+1) from the next input dataset. 
Particularly, EIF2 contains BF(R1.x2) and BF(R3.x3). Besides, R1 and Rn are filtered 
by standard Bloom filters BF(R2.x2) and BF(R1,2,..., n-1.xn), respectively. Obviously, we 
now do not need to perform any extra filtering operations for the intermediate join 
results. In other words, the intermediate results generated by the two-way joins of the 
chain join only contain actual joining data and can be sent to the next join without 
filtering. This is an important special characteristic while other solutions need to use 
the complement filters to check the intermediate join results. 
 To execute this solution, we first use a pre-processing job to build the Bloom 
filters BF(Ri.xi) from the input datasets Ri (i = 2, ..., n), and BF(R1.x2) from R1. Next, 
we implement the chain join as an iteration of one two-way join job with changing 
the inputs. The first input of the two-way join, R1, ..., i-1, do not need to be filtered, 
exceptionally for R1 filtered by BF(R2.x2). The second input of the join, Ri, is filtered 
by the filter EIFi that is formed by BF(R1, ..., i-1.xi) and BF(Ri+1.xi+1). Initially, for i = 2, 
BF(R1, ..., i-1.xi) is the filter BF(R1.x2). Then, for 3  i  n, the filter BF(R1, ..., i-1.xi) is 
generated in the reduce phase of the join processing between R1, ..., i-2 and Ri-1. As a 
result, building the filters from the intermediate join results do not have any 
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additional overheads. The iteration stops when one of the two input datasets is null. 
The output of the chain join is the join result R1, ..., i that is then written to DFS.  
 As in Figure 3.15 (b), the second solution suggests that the chain join includes a 
cascade of the three-way joins using the extended intersection filters. Assume that i 
is an even number and greater than 1. The first input dataset of each the three-way 
join, R1, ..., i-1, does not need to be filtered, exceptionally for R1 filtered by BF(R2.x2). 
The second input of the join is filtered by the extended intersection filter EIFi that 
consists of a filter BF(R1, ..., i-1.xi), and a filter IBF(Ri.xi+1 ∩ Ri+1.xi+1). The last input of 
the join needs the extended filter EIF'i to remove redundant data. The EIF'i includes 
a filter IBF(Ri.xi+1 ∩ Ri+1.xi+1) and a filter BF(Ri+2.xi+2). 
 The execution of the second solution is similar to the first solution. The solution 
runs a pre-processing job to produce the Bloom filters BF(Rj.xj) from the input 
datasets Rj (j = 2, ..., n), and BF(R1.x2) from R1. Next, the chain join is implemented 
as an iteration of one three-way join job (R1,...,i-1 ⋈ Ri ⋈ Ri+1) using their 
corresponding intersection filters. It is noted that each the filter BF(R1, ..., i-1.xi) is 
generated in the reduce phase of emitting the intermediate join result R1, ..., i-1. 
Besides, the last join may be one two-way join. Initially, for i = 2, the dataset R1, ..., i-1 
is also the dataset R1. The evaluation of the three-way join with the corresponding 
inputs is repeated until the first input or the second input is null. The final output is 
the intermediate join result R1, ..., i stored on DFS. 
 The solution (a) is designed to use less memory than the solution (b) because the 
former only buffers one input for each two-way join, whereas the second one must 
buffer two inputs for each three-way join. However, the first solution uses more jobs 
than the second one. Assume that n is the number of the input datasets, the number of 
the two-way join jobs of the first solution is (n-1), while the second one has (n-1)/2 
jobs for the three-way joins. 

3.4.4  Star join using intersection filter 

We examine a star join including a set of joins in which a fact table (a large central 
table) is joined with several dimension tables (smaller tables containing descriptions 
for keys in the fact table). The star join is shown in Figure 3.16. 
 
 
 
 
 
 
 

Figure 3.16: A star join 

 The fact table is a dataset R0 and the dimension tables are R1, R2, ..., Rn. The star 
join query is a popular query in data warehouses that are also a target domain of 
data-parallel frameworks. Evaluating the star join query in data warehouses is 
expensive because the fact table participates in every join operation. 
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 The implementation of the star join using the extended intersection filters in 
MapReduce is suggested by Figure 3.17. 
 
 
 
 
 
 
 
 
 

Figure 3.17: Implementation of a star join 

 We build an extended intersection filter that is an array of n filters EIFi(Ri.xi), 
and n filters BF(R0.xi), i=1...n. The size of the extended filter is not too big because 
dimension tables are small. As shown in Figure 3.17, a star join is executed by 
joining all the datasets in one, in which the large central dataset R0 is filtered by the 
extended filter and the other datasets are filtered by the filters BF(R0.xi), respectively. 
Consequently, there is no redundant data when the datasets are sent to the join 
processing. This implementation is more efficient than Bloomjoins because the 
extended filter can eliminate non-joining tuples from the central dataset at the map 
phase of one job and it reduces the number of intermediate join jobs to zero. 

3.4.5  Cost analysis of three-way joins in MapReduce 

3.4.5.1 Cost model 

The cost model of the three-way join is constructed similarly to the one of the two-
way join. We also use the parameters in Table 3.2 for this model. Assume that R, K, 
and L are three input datasets. We obtain the total cost of the three-way join as 
follows: 

C3wJoin = Cpre + Cread + Csort + Ctr + Cwrite  
 
where 

 Cread = cr . |R| + cr . |K| + cr . |L| 

 Csort = cl . |D| . 2 . (    )(log)(log||log mpmpD BBB  ) [76] 

 mp = mp1 + mp2 + mp3, the total number of map tasks for the three inputs 

 Ctr = ct . |D| 

 Cwrite = cr . |O| 

 Cpre = Cread + (cl + ct) . m.ϕ . mp + 2 . cr . m.ϕ . t 

 Cpre = 0 for the approach without using the filters. Besides, assume that the 
filters are the same size m. 
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 Because the parameter |D| (the size of intermediate data) decides the total cost, 
we should consider it to indicate the efficiency of the three-way join. 

3.4.5.2 Comparison with cascade of 2 two-way joins 

We make a comparison of the intermediate data size between the three-way join and 
the cascade of 2 two-way joins for evaluating the query Q2. It is noted that the size of 
the intermediate data is also the amount of communication in MapReduce. To 
simplify the computation, we suppose that the input datasets R, K and L are the same 
size. 
 The implementation model described in Section 3.4.2 shows that the three-way 
join increases the communication cost because each tuple of R and L is sent to many 
different reducers. However, in compensation, this data replication helps us avoid 
incremental costs of the two-way join cascade such as incurring an additional job, 
scanning and shuffling the intermediate join result. Multi-way joins can therefore 
take the benefits of the three-way join, especially if a typical tuple of one dataset 
joins with many tuples of another dataset. For instance, we multiply or join copies of 
the Web matrix. 
 The optimal three-way join raises two problems that need to be considered. They 
include choosing the number of reducers and the size of the reducer matrix. 
 
Theorem 3.7. A three-way join R(A, B) ⋈ K(B, C) ⋈ L(C, D) is more efficient than a 
cascade of 2 two-way joins (R(A, B) ⋈ K(B, C)) ⋈ L(C, D) or R(A, B) ⋈ (K(B, C) ⋈ 
L(C, D)) when r < (|R|.)2. Additionally, the size of the intermediate data is specified 
by 

 2.|R|. r , for the optimal three-way join. 

 |R|2., for the cascade of the 2 two-way joins. 
where r is the number of reducers, |R| = |K| = |L|, and  is the probability of two 
tuples from different datasets agreeing on their common column. 
 
Proof. First, we consider the three-way join. Two attributes B and C of the join query 
are join key columns. Thus, we use hash functions to map values of B to b different 
buckets, and values of C to c buckets, as long as b.c = r. 
The intermediate data size of the three-way join is 

|R|.c + |K| + |L|.b 
We must find optimal values b and c to minimize the above expression subject to the 
constraint that b.c = r with b and c are positive integers. In this case, the Lagrangian 
multiplier method is used to present the solution. 
Here L = |R|.c + |K| + |L|.b − λ(b.c − r). We consider the problem 

0,
min

cb
[|R|.c + |K| + |L|.b − λ(b.c − r)] 

We make derivatives of L with respect to variables b and c. 

b
L

  = |L| − λ.c = 0  |L| = λ.c 

c
L

  = |R| − λ.b = 0  |R| = λ.b 

|D| = 

(3.19) 
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We obtain the Lagrangian equations: 

|L|.b = λ.r 
|R|.c = λ.r 

We can multiply these two equations together to get |L|.|R| = λ2.r. From here, we 
deduce λ = rLR . . Applying the value of λ into the Lagrangian equations, we get 

b = LrR . and c = RrL .  

Then, substituting these values in expression (3.19) to be optimized, we get the 
minimum communication amount of the three-way join: 

LrRLKRrLR ....   ≈ 2.|R|. r  

 
Next, we specify the intermediate data size of the cascade of 2 two-way joins: 

|R|.|K|. + |L| ≈ |R|2. (where |R|. > 1) 

The cost of the three-way join O(|R| r ) is thus compared with the cost of the two-
way join cascade O(|R|2.). We can conclude that the three-way join will be better the 
cascade when r  

< |R|.. In other words, for the optimal three-way join, there is a 
limit on the number of reducers r < (|R|.)2. The theorem is proved �. 
 
 We can easily extend Theorem 3.7 for a general three-way join with n join key 
columns using an n-dimensional reducer matrix. For example, a three-way join R(A, 
B) ⋈ K(B, C) ⋈ L(C, A) with three join attributes A, B, and C. This three-way join 
needs a three-dimensional reducer matrix. The optimal three-way join will become 
more efficient than the cascade of 2 two-way joins when r < (|R|.)3 and its amount 
of communication is 3.|R|. 3 r . In fact, choosing the number of reducers is not 
difficult to satisfy this condition. For example, if |R|. = 15, as might be the case for 
the Web incidence matrix, we can use the number of reducers r up to 3375. 
 Similarly, the intermediate data size of the three-way join using the intersection 
filters is shown by the following theorem. 
 
Theorem 3.8. A three-way join R(A, B) ⋈ K(B, C) ⋈ L(C, D) is more efficient with 
the intersection filters than without the intersection filters. Besides, the three-way 
join using the filters is also more efficient than the two-way join cascade using the 
filters when r < (|R'|.)2. In the cases of using the intersection filters, the size of the 
intermediate data is defined by 

 2.|R'|. r , for the optimal three-way join. 

 |R'|2., for the cascade of 2 two-way joins. 
 |R'| = ∂.|R| + BFf .(1 − ∂)|R|, R' is the filtered dataset of one input. 

where r is the number of reducers,  is the probability of two tuples from different 
datasets agreeing on their common column, |R| = |K| = |L|, ∂ is the ratio of the 
joined records of one input dataset with another, and BFf is the false intersection 
probability between the datasets. 

|D| = 
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Proof. We have the following inequalities: 

0 < ∂ << 1 and  0 < BFf  << 1 

 ∂.|R| + BFf .(1 − ∂)|R| < |R|  |R'| < |R| 

Combining this equality with Theorem 3.7, we can easily prove Theorem 3.8 �. 

3.4.6  Cost analysis of chain joins in MapReduce 

3.4.6.1 Cost model 

Given a chain join of n input datasets R1, R2, ..., Rn. We use the optimized solution (b) 
to evaluate the chain join as an repetition of one three-way join job with changing 
inputs, J


= {J2, J4, J6, ..., J(n-1)/2}. Initially, J1 scans n inputs for building the filters, 

the initial join result R1, ..., i-1 is the dataset R1. On each iteration, Ji performs the join 
of three inputs including R1, ..., i-1, Ri, and Ri+1. The output of the job Ji is the 
intermediate join result R1, ..., i+1 that becomes the input of the next join job Ji+2. The 
final output is written to DFS. Based on the cost model of the three-way join, we can 
extend to compute the total cost of the chain join as follows: 

)()()()()(
)2/1(2

2
iwriteitrisort

nii

i
ireadCachedistpre JCJCJCJCCCJC  






 

 
where 

 Cpre = 









||.
1

i

n

i
r Rc  + (cl + ct) . m.ϕ . mp 

 CdistCache = 3 . cr . m.ϕ . t 

 CdistCache = 0 for the approach without using the filters. 

 Cread(Ji) = cr . |R1,...,i-1| + cr . |Ri| + cr . |Ri+1| 

 Csort(Ji) = cl . |Di| . 2 . (    )(log)(log||log mpmpD BBiB  ) 

 mp = mp1 + mp2 + mp3, the total number of map tasks for the three inputs 

 |Di| is the size of the intermediate data in the ith iteration 

 Ctr(Ji) = ct . |Di| 

 Cwrite(Ji) = cr . |R1, ..., i+1| + a  

 a = 2 . cr . m.ϕ . t, for building the filter BF(R1, ..., i+1) in the ith iteration 

  Cpre = 0 and m = 0 for the approach without using the filters. Besides, 
assume that the filters are the same size m. 

  

(3.20) 
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3.4.6.2 Comparison between three-way and two-way join cascades 

We can see that the computation of a chain join using the optimized solution (a) can 
be considered as an iteration of one three-way join job, in which the three-way join 
job is compiled into 2 two-way join jobs. Therefore, the total cost of the chain join 
using the solution (a) is determined by the sum of )(JC


and the extra costs of writing 

and re-reading the intermediate results of the two-way joins on DFS. In other words, 
the total cost of the solution (a) is the total cost of the solution (b) added the extra 
costs of writing and re-reading the intermediate results. The problem arises that we 
should consider the intermediate data generated by each the solution. 
 From Theorem 3.8, we can easily show that the three-way join cascade using the 
intersection filters is more efficient than the two-way join cascade using the filters 
when r < (|R'|.)2. Associating with Theorem 3.6, we deduce that a chain join using 
the three-way join cascade with the intersection filters becomes a better choice than a 
chain join using the Bloomjoin cascade and the two-way join cascade. 

3.5 Experimental evaluation 

In this section, we present experimental results obtained from the execution of two-
way joins and chain joins using the different approaches. Together with this, our 
discussion focuses on their performance aspects. 

3.5.1  Two-way joins 

3.5.1.1 Cluster environment and datasets 

All experiments were run on a computer cluster of 15 virtual machines using 
Virtualbox [77]. Each machine has two 2.4Ghz AMD Opteron CPUs with 2MB 
cache, 10GB RAM and 100GB SATA disks. The operating system is 64-bit Ubuntu 
server 12.04.2 LTS, and the java version is 1.7.0.21. We installed Hadoop [46] 
version 1.0.4 on all nodes in which one of the nodes was selected to act as master and 
ran the namenode and the jobtracker processes; the remaining nodes were the 
tasktrackers that acted as both storage and CPU. Each tasktracker node was 
configured to run up to two simultaneous map tasks and two reduce tasks. Some non-
default hadoop configuration parameters used to run our experiments. The HDFS 
block size was set to 128MB, size of read/write buffer was 128KB, heap-size for 
child jvms of maps/reduces was set to 2048M, and the number of reduce tasks is set 
to 28. 
 All test datasets were produced by a data generation script of the Purdue 
MapReduce Benchmarks Suite [78], called “PUMA” which represents a broad range 
of MapReduce applications exhibiting application characteristics with high/low 
computation and high/low shuffle volumes. The maximum number of columns in the 
datasets is 39 and string length in each column is set 19 characters. The dataset 
dataset1 contains the first column as a foreign key that refers to the fifth column of 
the dataset dataset2. Table 3.3 summarizes the various dataset sizes used in our 
experiments. 
  



3.5 Experimental evaluation 
 

71 
 

Table 3.3: Input datasets used in three tests 

Inputs 
Test 1 Test 2 Test 3 

size records size records size records 

dataset1 15GB 40,259,163 35GB 92,681,333 55GB 145,099,559 

dataset2 15GB 40,108,215 35GB 92,524,495 55GB 139,573,823 

Total 30GB 80,367,378 70GB 185,205,828 110GB 284,673,382 

 
 We used three sets of the test datasets such as Test 1, Test 2, and Test 3. These 
tests have the different sizes, namely, 30GB, 70GB, and 110GB. Each the test 
includes the two inputs dataset1 and dataset2. For the test1, dataset1 and dataset2 
contain 40,259,163 and 40,108,215 records, respectively. All the datasets are saved in 
the same text file format. 

3.5.1.2 Experimental protocol 

We evaluated our experiments by executing the different algorithms for a join query 
on the datasets of each the test. The following join query is used. 
 

SELECT *  
FROM dataset1(c0..c20) d1, dataset2(c0..c20) d2 
WHERE  d1.column0 = d2.column5 AND  
       d1.ROWNUM <= $number1 AND  
   d2.ROWNUM <= $number2 
ORDER BY d1.column0 

 
 The query is executed by changing $number1 and $number2 to the number of 
records of the dataset1 and the dataset2, respectively. An output tuple of the 
experiments t is defined by the concatenation of the pair of tuples of the first 21 
columns that joined to produce the output. Furthermore, for general joins, we set up a 
many-to-many relationship between the datasets. Accordingly, a parent tuple in 
dataset1 contains several child tuples in dataset2, and vice versa. 
 For comparing the efficiency of the join algorithms, we are especially interested 
in four main aspects for each the algorithm evaluation. They include the number of 
intermediate tuples generated (i.e. Map output), the total execution time, the task 
timeline of the implementation, and large-scale input data (e.g. applying the 
algorithms to different data amounts). 
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3.5.1.3 Evaluation of approaches 

First, it is important to focus on comparing the amount of intermediate data (Map 
output) listed in Table 3.4. The intermediate data is a decisive factor that affects the 
total execution time of the two-way join. 

Table 3.4: The number of intermediate tuples (Map output) 

Join algorithms 30GB. Test 1 70GB. Test 2 110GB. Test 3 

Pair-Filters-Join 43,453 106,116 179,091 

Intersect-Filter-Join 43,453 106,116 179,091 

PartIntersect-Filter-Join 59,986 220,214 357,336 

BloomJoin 40,276,915 92,747,151 145,206,430 

Reduce-Side-Join 80,320,684 185,098,062 284,510,488 

 
 We consider the Reduce-side join where no pre-processing job is done. As 
shown in Table 3.4, it is the most inefficient solution compared to the other 
approaches although it only runs a single join job. This is mainly due to its 
intermediate results containing a large amount of non-joining data. The number of 
intermediate tuples generated in this case is nearly equal to the number of Map input 
records (see Table 3.3 and Table 3.4). This slight difference is because some records 
of dataset2 do not contain column5. 
 We then consider the Bloomjoin and the intersection filter-based joins where the 
pre-processing job and the filtering operation are done to improve the join 
performance. To efficiently execute these algorithms, we specified the size of filters 
according to the cardinality of the join keys of datasets and chose the largest filter. 
There is a tradeoff between m and the probability of a false positive. Hence the 
probability of a false positive f is approximated by: 

 kmnkef /.1   

 For a given false positive probability f, the length of the Bloom filter m is 
proportionate to the number of elements being filtered n as Table 3.5. 

Table 3.5: Parameters of filters used in experiments 

Tests f k n m/n m (bit) mk=m/k (bit) 
Test 1 0.001 7 14866 15 222990 31856 
Test 2 0.0001 8 15790 21 331590 41449 
Test 3 0.0001 8 15790 21 331590 41449 

 

where m/n is the number of bits allocated for each join key and mk is the size of a 
partition of the partitioned filter. 
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 We can determine optimal parameters for the filter (e.g. f, k and m). In practice, 
however, we should choose values less than optimal value to reduce computational 
overhead. As shown in Table 3.5, we deliberately select various values of f, k and m/n 
for the experiments to consider if they might affect our join performance. In addition, 
the filter files generated in the tests are compressed in the gzip format. 
 For the Bloomjoin, the number of intermediate tuples is considerably reduced 
and so it is better than the Reduce-side join. However, when we compare the amount 
intermediate data of the Bloomjoin to the intersection filter-based join in each the test 
(see in Table 3.4), it still produced much more redundant data because the filtering 
operation is only executed on one input dataset (dataset1). This situation is overcome 
by the intersection filter which has the ability to filter out redundant data from both 
the input datasets. 
 Although the intersection filter-based joins have the additional cost for the pre-
processing job, they are still the most efficient solutions because most unnecessary 
data has been removed from both the inputs. As a result, the amount of intermediate 
data is very small compared to the Bloomjoin (see in Table 3.4). 
 

 

Figure 3.18: Comparison of Map output among the intersection filter-based joins 

 It is noted that the joins using the pair of filters and the intersection filter (known 
as our approach 1 and 2) generate the same amount of intermediate data. This data 
amount is smaller than the amount of intermediate data of the join using the 
partitioned intersection filter (the approach 3). These arguments have been verified 
by our experiments and presented in Figure 3.18. The results show that the 
performance of the intersection filter proposed by the approach 1 or 2 is better than 
the approach 3. 
  
 Next, we evaluate the efficiency of these join algorithms by comparing their 
total execution time. Generally, the join algorithms generating lesser intermediate 
data are executed faster. 
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Table 3.6: Execution of pre-processing job and join job 

Join algorithms 
30GB. Test 1 70GB. Test 2 110GB. Test 3 

Pre-processing 
job time(min) 

Join job 
time(min) 

Pre-processing 
job time(min) 

Join job 
time(min) 

Pre-processing 
job time(min) 

Join job 
time(min) 

Pair-Filters-Join 3.08 6.32 6.45 24.67 11.22 94.67 

Intersect-Filter-Join 3.17 6.15 6.45 24.25 10.00 92.12 

PartIntersect-Filter-Join 3.40 6.95 7.28 24.65 11.50 95.70 

BloomJoin 2.12 17.07 3.63 43.63 5.22 139.58 

Reduce-Side-Join 0 28.25 0 70.13 0 150.00 

 
 

 

Figure 3.19: Total execution time 

 Table 3.6 identifies in detail the execution time of the pre-processing job and the 
join job for the join algorithms. The execution time of the pre-processing job for the 
IF-based joins is greater than the time for the Bloomjoin and the Reduce-side join 
because the IF-based joins have to scan two input datasets for building the 
intersection filter. In contrast, the execution time of the join job for the IF-based joins 
is much less than the others because they filter out redundant data in both the input 
datasets. 
 Figure 3.19 demonstrates that the best execution is the join using the intersection 
filter. Its total execution time is significantly reduced compared to the Bloomjoin 
even if the execution time of its pre-processing job is greater. The IF-based join 
using a pair of filters or the unpartitioned intersection filter runs faster than the join 
using the partitioned intersection filter. This is because the filtering performance of 
redundant data of the approaches 1 and 2 is better than the one of the approach 3. 
The worst performance is the standard Reduce-side join because there are much 
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redundant data generated. All these results have been shown through the experiments 
of 30GB, 70GB and 110GB inputs. 
 
 Finally, we should analyze their task timelines during the execution of the join 
job as presented in Figure 3.20. This helps us thoroughly evaluate the performance of 
the join algorithms. We will not refer to the task timelines of the pre-processing job 
because it is negligible when we run the join query with the large input datasets (see 
in Table 3.6). 
 

     
 (a) Join using the intersection filter             (b) Join using the partitioned intersection filter 

 

     
  (c) Bloomjoin                                                 (d) Reduce-side join 

Figure 3.20: 70GB Task timelines during the execution of the join job 

 Figure 3.20 represents the task timelines of 70GB join jobs using the various 
algorithms. The task timeline of the join using the pair of filters is omitted because it 
is quite similar to Figure 3.20 (a). These graphs are created by parsing log files that 
were generated by Hadoop when we ran the join jobs including 555 map tasks and 28 
reduce tasks to process 185,205,828 input records and produce 26,062,967 output 
records. For each graph, it will start off mostly running map tasks, and by the end, 
only reduce tasks will be running. The maximum number of simultaneous map or 
reduce tasks is 28. It may be observed that the peak number of tasks running of the 
filter-based joins at once is about 52 while the Reduce-side join requires 56. 
 For the join using the intersection filter as shown in Figure 3.20 (a), the 
execution time of all map tasks and reduce tasks is significantly reduced versus the 
Bloomjoin and the Reduce-side join as in Figure 3.20 (b) and Figure 3.20 (c). 
Besides, the map and reduce phases of the intersection filter-based joins are finished 
earlier than the Bloomjoin and the Reduce-side join because they have lesser 
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intermediate data and, as a consequence, the total cost of the local I/O, sort, and 
remote data copy is also smaller. The joins using the intersection filter are the most 
efficient solutions because their data filtering efficiency is the best and thus the 
amount of intermediate data is at least. 
 However, the two-way join algorithms using the filter(s) are just really efficient 
when there is a minimum amount of redundant data in the input datasets. The 
minimum amount, also called threshold, is defined by the two parameters ∂dataset2 and 
∂dataset1. These parameters are the ratios of the joined records between the datasets. 
We conducted a survey of the ratios of the joined records for the join algorithms with 
2GB input; results are shown in Figure 3.21 below. 
 

 
 Total execution time (min) 

Figure 3.21: Threshold of redundant data amount for the joins with 2GB inputs 

 In the first case, dataset1 and dataset2 are disjoint (i.e. the joined ratios are 0% : 
0%). The joins using the intersection filter (exceptionally, the pair of filters) are the 
best performances because they only run the pre-processing job and discover the 
empty intersection to omit the join job. Meanwhile, the other joins cannot discover 
the empty intersection and, as a result, they continue running the join job. Because 
we use the small input datasets 2GB, the performance of the joins using the filter is 
not better than the Reduce-side join. This is because they have to incur the additional 
overhead of the pre-processing job. It means that the filter-based joins should not be 
used for small input datasets. 
 We consider two cases of the joined ratios (85% : 4%) and (95% : 65%). There 
is little redundant data in these cases. Consequently, the total execution time for the 
joins using the filter increases rapidly than the Reduce-side joins. These are the 
redundant data thresholds for the filter-based joins. In other words, we should use the 
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filter-based join algorithms when the amount of redundant data is greater than the 
threshold (i.e. the joined ratios, ∂dataset2 : ∂dataset1, are smaller). 
 In the last case, there is no redundant data in the input datasets with 2GB (i.e. the 
joined ratios are 100% : 100%). The Reduce-side join is better than the others 
because the filtering operation is not necessary here. 

3.5.2  Chain joins 

3.5.2.1 Cluster environment and datasets 

We run experiments for the chain join on another computer cluster of 15 virtual 
machines using KVM (Kernel-based Virtual Machine) [79]. Each machine has two 
1.4Ghz AMD Opteron CPUs with 512KB cache, 5GB RAM and 100GB SATA disks. 
The operating system is 64-bit Ubuntu server 12.04.2 LTS, and the java version is 
1.7.0.21. We installed Hadoop [46] version 1.0.4 on all nodes. The other 
configurations of this cluster are similar to the ones of the cluster running the 
experiments of the two-way join. The number of reduce tasks is set to 25. 
 All test datasets were also produced by the data generation script of the PUMA. 
The maximum number of columns in the datasets is 39 and string length in each 
column is set 19 characters. The datasets dataset1, dataset2, dataset3, and dataset4 
contain the join key columns such as column1 (c1), column2 (c2), column3 (c3), and 
column4 (c4). Table 3.7 summarizes the different dataset sizes used in our 
experiments. 

Table 3.7: Input datasets used in three tests 

Inputs 
Test 1 Test 2 Test 3 

size records size records size records 

dataset1 10GB 26,836,497 20GB 53,675,946 20GB 53,682,929 

dataset2 3GB 8,051,454 10GB 26,838,960 30GB 73,881,305 

dataset3 10GB 26,836,497 20GB 53,675,946 20GB 53,682,929 

dataset4 3GB 8,051,454 10GB 26,838,960 30GB 73,881,305 

Total 26GB 69,775,902 60GB 161,029,812 100GB 255,128,468 

 
 We used three sets of the test datasets such as Test 1, Test 2, and Test 3. These 
tests correspond to 26GB, 60GB, and 100GB. Each the test includes the two inputs 
dataset1 and dataset2. Each the test includes the four inputs dataset1, dataset2, 
dataset3, and dataset4. All the datasets are saved in the same text file format. 

3.5.2.2 Experimental protocol 

Seven chain join algorithms developed in our experiments are the Reduce-side join 
cascade, the Bloomjoin cascade, the intersection filter-based join cascade (using 
three filtering approaches: the pair of the filters, the IBF, and the partitioned IBF), the 
optimal two-way join cascade (the solution (a) of optimization for the chain join), 
and the optimal three-way join cascade (the solution (b)). 
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 We run our experiments by executing the different algorithms for a chain join 
query on the datasets of each the test. The following chain join query is used. 
 

SELECT *  
FROM  dataset1(c1..c10) d1, dataset2(c1..c10) d2, 
 dataset3(c1..c10) d3, dataset4(c1..c10) d4 
WHERE  d1.column2 = d2.column2 AND  
 d2.column3 = d3.column3 AND 
 d3.column4 = d4.column4 AND 
 d1.ROWNUM <= $number1 AND 
 d2.ROWNUM <= $number2 AND  
 d3.ROWNUM <= $number3 AND  
 d4.ROWNUM <= $number4 
ORDER BY d4.column4 

 
 The query is executed by changing $number1, $number2, $number3, and 
$number4 to the number of records of the dataset1, dataset2, dataset3, and dataset4, 
respectively. A quadruple ($number1; $number2; $number3; $number4) corresponds 
to one test. For example, (26,836,497; 8,051,454; 26,836,497; 8,051,454) is the Test 
1 of 26GB. 
 An output tuple of the experiments t is defined by the concatenation of four 
tuples of the first 11 columns that joined to produce the output. Furthermore, for 
general joins, we set up a many-to-many relationship between the datasets. 
 For each of the tests, we compare the seven chain join algorithms on three main 
aspects such as the total intermediate data amount, the total output data amount, and 
the total execution time. 

3.5.2.3 Evaluation of approaches 

A given false positive probability f, the length of the Bloom filter m is proportionate 
to the number of elements being filtered n, m/n is the number of bits allocated for 
each join key and mk is the size of a partition of the partitioned filter. The 
experiments use the parameters of the Boom filters as calculated in Table 3.8. 

Table 3.8: Parameters of filters used in experiments 

Tests f k n m/n m (bit) mk=m/k (bit) 
Test 1 0.000101 8 13147 21 276087 34511 
Test 2 0.000101 8 13840 21 290640 36330 
Test 3 0.000101 8 15295 21 321195 40150 

 
 First, we consider the total amount of intermediate data generated by each the 
chain join algorithm as in Table 3.9. 
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Table 3.9: The total number of intermediate tuples (all map outputs) 

Chain join algorithms 26GB. Test 1 60GB. Test 2 100GB. Test 3 

Intersect-Filter-Joins 1,309,349 1,469,048 1,497,692 

Pair-Filters-Joins 1,309,349 1,469,048 1,497,692 

PartIntersect-Filter-Joins 1,309,349 1,475,849 1,497,692 

BloomJoins 45,402,907 89,201,979 89,248,190 

Reduce-Side-Joins 88,296,034 196,465,292 290,582,143 

Chain-Optimal-2-WayJoin 1,281,036 1,417,684 1,445,428 

Chain-Optimal-3-WayJoin 1,221,769 1,359,575 1,385,053 

 

 

Figure 3.22: Total intermediate data 

 As we can see in Table 3.9, the cascades of Bloomjoins and Reduce-side joins 
generate much more intermediate data than any other chain join algorithms because 
of the existence of much redundant data. We take a look at Figure 3.22 to have a 
visual look for a comparison of the others using the intersection filters. The chain 
optimal three-way join has the least amount of intermediate data because it has less 
intermediate join jobs than the two-way join cascades, and has no redundant data in 
the intermediate join result(s). The intermediate data amount of the chain optimal 
two-way join is slightly larger than the chain optimal three-way join due to more 
intermediate join jobs. However, it is still better than the typical intersection filter-
based join cascades. The typical intersection filter-based join cascades cannot prevent 
redundant data included in intermediate join results. Overall, the intermediate data 
amounts of these typical intersection filter-based methods are almost the same. The 
chain two-way join using the partitioned intersection filters tends to generate more 
intermediate data than using the different intersection filters. 
 
 Next, we examine the total output of the chain join algorithms. The total output 
consists of all the intermediate data and the intermediate join results. In other words, 
it includes all map output records and reduce output records of the chain join. This 
output has significant overheads involving I/O and communication overheads. The 
results of the total output are presented in Figure 3.23. 
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Figure 3.23: Total output data (Map output + Reduce output) 

 Figure 3.23 illustrates the amount of the total output of the seven chain join 
algorithms over the three tests 26GB, 60GB and 100GB. It can clearly be seen that 
the Reduce-side join cascade and the Bloomjoin cascade generate the largest outputs, 
whilst the chain optimal two-way join and the chain optimal three-way join using the 
intersection filters (Chain2-WayJoin and Chain3-WayJoin) have the least outputs of 
the seven. The chain intersection filter-based joins generally produce a little more 
output than the optimal chain joins. The main reason is that the optimal chain joins 
have the ability to filter out much more redundant data than the others. 
 To begin, the Reduce-side join cascade and the Bloomjoin cascade show a 
similar pattern, with both significantly increasing for the tests from 26GB to 100GB. 
Obviously, the Reduce-side join cascade is the highest over all the tests. In the Test 1, 
the Reduce-side join cascade outputs around 119,928,957 records, while the 
Bloomjoin cascade about 77,035,830 records and the chain intersection filter-based 
joins about 32,942,272 records lower. With the similarity in the Test 3, the Reduce-
side join cascade produces around 371,782,345 records, whereas the Bloomjoin 
cascade about 170,448,392 records and the chain intersection filter-based joins about 
82,697,894 records much lower. 
 The outputs that are generated the least are the Chain2-WayJoin and the Chain3-
WayJoin. In the Test 1, the Chain2-WayJoin emits around 15,577,281 records, while 
the Chain3-WayJoin about 15,255,188 records lower. Observing the Test 3, the 
Chain2-WayJoin produces around 48,436,677 records and the Chain3-WayJoin about 
48,097,527 records lower. 
 
 Lastly, we make a performance comparison among the seven chain join 
algorithms. Overall, the optimal chain joins have the total execution time the lowest 
because they produce the total output the least. This is demonstrated in the following. 
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Figure 3.24: Total execution time 

 Figure 3.24 presents the total execution time of the chain join using the different 
algorithms from 26GB to 100GB. There are seven graphs in the chart. The bottom 
two graphs show the total execution time of the optimal chain joins, the next three 
ones deal with the chain intersection filter-based joins and the top two graphs show 
the Bloomjoin cascade and the Reduce-side join cascade. For the test 100GB, the 
Chain2-WayJoin and the Chain3-WayJoin run about 52.57 and 57.22 minutes 
respectively, while the chain intersection filter-based joins about 65.13 minutes. The 
Bloomjoin cascade and the Reduce-side join cascade execute about 72.09 and 88.34 
minutes much longer. It is similar to compare the total execution time of the 
algorithms for the remaining tests. From the chart, we can conclude that the optimal 
chain joins have the total execution time the least, although they additionally run the 
pre-processing job. This is logical since they have less the output than as analyzed 
above. It is observed that the Chain3-WayJoin tends to perform better than the 
Chain2-WayJoin. 

3.6 Summary 

In this research, we consider the problem of computing the intersection Bloom filter 
to optimize two-way joins and important multi-way joins in MapReduce. Based on 
the probabilistic model, three ways are proposed on the intersection filter such as the 
pair of Bloom filters, the intersection of Bloom filters, and the intersection of 
partitioned Bloom filters. The intersection filter is then applied to two-way join 
operations to eliminate most of the non-joining tuples in the input datasets before 
sending the intermediate pairs to actual join processing. Additionally, we make an 
extension of the intersection filter to improve the performance of three-way joins and 
chain joins including both cyclic chain joins with many shared join keys. The two 
optimized solutions for chain joins are proposed in this research. We use the 
Lagrangian multiplier method to indicate a good choice between the two solutions. 
Remarkably, we build the general cost models for two-way joins and multi-way 
joins. Thanks to these cost models, we can make comparisons of the join algorithms 
more persuasive. As a result, with using the intersection filters, the join operations 
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can minimize disk I/O and communication costs. Finally, the intersection filter-based 
join operations are demonstrated to be more efficient than existing solutions through 
the experimental evaluations. The joins using a pair of filters and the unpartitioned 
intersection filter are more efficient than the joins using the partitioned intersection 
filter because of their filtering performance. However, the partitioned intersection 
filter is easy to discover disjoint datasets on a join key column and stop the join 
processing. 
 This work leads to one publication [5] in Proceedings of the 2Nd International 
Workshop on Cloud Intelligence (Cloud-I@VLDB). 
 

mailto:(Cloud-I@VLDB).


 

CHAPTER
 

OPTIMIZATION FOR RECURSIVE 

JOINS AND SEMI-NAIVE ALGORITHM 

Implementing a recursive join is considered as the calculation of the transitive 
closure to evaluate a recursive query with fixpoint semantics. It is a complex and 
expensive operation because it involves repeating the join operation. In the 
MapReduce environment, the issue becomes even more complicated when we 
implement a recursive join as an iteration of a join job and a deduplication-difference 
job (dedup-diff job). In this chapter, we present a simple and efficient solution for 
recursive join evaluation. It folds the join job and the dedup-diff job into one single 
job using a Difference filter. The evaluation, based on alternating sequences of Join 
→ Deduplication-Difference operations, is now replaced by an iteration of one 
combined operation. This improvement will significantly reduce the number of 
executed jobs by half, and especially the overheads of data rescanning, intermediate 
data, and communication for the deduplication and difference operations. Therefore, 
the difference filter-based optimization for recursive joins as well as the general 
semi-naive algorithm is thoroughly considered in this research. 
 We discuss previous works and propose our solution for optimizing recursive 
joins in Section 4.1. Some definitions and notations are also introduced. Each 
remaining section of this chapter therefore highlights a contribution of our work. 
Section 4.2 provides a difference filter to check whether an element is not in a set. 
The existing problems, concepts, and design details for the difference filter are 
described. Specially, the false difference probability that affects to the filtering 
performance is also considered and analyzed thoroughly. Next, Section 4.3 presents 
an optimization for the recursive join as well as the semi-naive algorithm. The 
processing phases and the general algorithm are detailed in this section. We compare 
the proposal to the previous approach through a cost model, and show the advantages 
of our approach in Section 4.4. Finally, we conclude our contributions in Section 4.5. 

4.1 Introduction 

4.1.1  Previous work 

We consider the query Q3 in Chapter 2 that is a recursive join query also known as a 
typical transitive closure query. We can point out its similar form expressed in 
Datalog as follows. 
 Friend(x, y) ← Know(x, y); 
 Friend(x, y) ← Friend(x, z) ⋈ Know(z, y); 

“friend” depends on Know and itself; recursive 
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 There are many algorithms designed to compute the transitive closure of a 
database relation in the literature [80][23][81][82]. However, they are not always 
well suited for implementing in the MapReduce environment. Several recent studies 
have found solutions for evaluating this query type in the environment. Afrati et al 
[7][12] propose an implementation of recursion on a cluster with addressing the 
transitive closure as a starting point. The authors show how to significantly reduce 
the number of needed rounds for evaluating nonlinear transitive closures. Namely, 
the solution decreases the number of rounds to O(log2 n) rather than O(n) on a n-
node graph. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Relationship between join and dup-elim tasks 

 As shown in Figure 4.1 [12], the solution uses two groups of tasks consisting of 
Join tasks and Dup-elim tasks. The join tasks compute the join of tuples. The dup-
elim tasks is to remove duplicate f-tuples before they can be delivered. Each join task 
i receives and stores no duplicate tuples f(a, b) such that h(a) or h(b) is i. It then 
searches its store for tuples (b, c) and (c, a), and sends corresponding tuples (a, c) 
and (c, b) to dup-elim tasks numbered g(a, c) and g(c, b), respectively. The dup-elim 
task checks each received tuple in its store. If the tuple exists, it is omitted. 
Otherwise, the tuple is stored and sent to join tasks h(a) and h(b). 
 A major obstacle of this solution is due to long-running recursive tasks that may 
increase risk for failures. In addition, there are modifications to the typical 
MapReduce framework such as blocking property and failure recovery methods. The 
blocking property aims to deals with compute node failures by controlling tasks in a 
way that each task does not deliver output to any other task until it has completely 
finished its work. For this solution, however, the tasks cannot have the blocking 
property in which the tasks can deliver some output before finishing. As a result, it 
uses alternative failure recovery mechanisms such as idempotence and checkpointing 
[12] which are complex and are not directly supported in Hadoop. Moreover, this 
solution is used to calculate nonlinear transitive closures and its communication cost 

f(a,b) if h(a) = i 
or h(b) = i 

To join 
node  
h(c) 

f(c,d) if 
g(c,d) = j 

f(c,d) if 
never seen 

before 

To join 
node  
h(d) 

Join  
node 0 

....
Join  

node i 

Dup-elim 
node j 

.... 

Dup-elim 
node 0 



4.1 Introduction 
 

85 
 

is typically much greater than that of linear transitive closures due to the ouput 
replication of the dup-elim tasks. 
 Pregel [83] executes true recursion on a graph using the Bulk Synchronous 
Parallel (BSP) model, but checkpoints all tasks at intervals. If there is a failed task, 
all tasks are rolled back to the previous checkpoint. 
 HaLoop [84] has modified version of Hadoop to support efficient iterative data 
processing on clusters. This system implements recursion by repetition of 
MapReduce jobs and minimizes communication by caching the Mapper Input (MIC) 
and the Reducer Input/Output (RIC/ROC). This solution can avoid re-scanning and 
re-shuffling data on every iteration, of course it still must rescan the caches. A 
limitation is that tasks should operate in synchronous rounds and the output of one 
task must be passed to the next MapReduce phase. In addition, a drawback of the 
cache implementation in the current HaLoop comes from completely rewriting the 
cache on every iteration. Moreover, HaLoop still uses an old version (0.20.2), and it 
is not updated to the latest versions of Hadoop. 
 We look at another algorithm for evaluating the recursive join query. The well-
known semi-naive algorithm [85] is used to find the fixpoint of the evaluation. It 
replaces recursion by a repetition of MapReduce job(s). In this algorithm, 
incremental relations are used to avoid recomputing the same facts. 
 Assuming F and K denote the relations Friend and Know, respectively. Let Fi, i 

between 0 and n, be the temporary value of the relation Friend at iteration step ith, and K 
be the relation Know at all iterations. The differential of Fi between step i and step i-1 
is defined as follows. 

∆Fi = Fi - Fi-1 = ∏xy(∆Fi-1 ⋈z K) – Fi-1 
 

 ∆Fi is also called an incremental relation of the relation Fi at iteration step i. The 
details of the algorithm is shown in Listing 4.1. 
 

Algorithm 1 - Semi-Naive evaluation for recursive joins 
 

 
F0=⌽,  ∆F0=K(x,y), i=1 
While ∆Fi-1 not empty do 

Fi-1 = (∆F0  ...  ∆Fi-1) 
∆Fi = ∏xy(∆Fi-1 ⋈z K) – Fi-1 
i++  

 

Listing 4.1: Pseudo code for Semi-naive algorithm 

 At each iteration step i, some new facts are inferred and stored in ∆Fi. To infer a 
new fact at step i, one must use at least one fact derived at step i-1. The loop is 
repeated until no new fact is inferred (∆Fi=⌽), i.e., the fixpoint is reached. The result 
is that the union of all the incremental relations, (∆F0  ...  ∆Fi-1), is a least fixed 
point of the query. 
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 The advantage of the semi-naive method is that at each iteration a differential 
term Fi-1 is used in each join computation instead of the whole Fi-1. For this way, 
the time complexity of a computation is decreased significantly. 
 Shaw et al [14] have proposed an optimization for implementing this semi-naive 
algorithm in MapReduce as follows. On each iteration of the evaluation, the 
command line ∆Fi = ∏xy(∆Fi-1 ⋈z K) – Fi-1 is compiled into two MapReduce jobs, 
namely, one for join job and one for deduplication and difference (dedup-diff) job. 
Their implementation is described in MapReduce framework as Figure 4.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: Semi-naive implementation of recursive joins in MapReduce 

 The evaluation of a recursive join first executes the join job (∆Fi-1 ⋈ K) that 
joins the incremental relation of Friend with the relation Know to produce new tuples 
of the result. The second job aims to eliminate duplicate tuples in the result, compute 
the difference of the new result and all previous results, and then generate next 
incremental relation ∆Fi. This execution plan is then iterated until the ∆Fi is empty. 
 The difference job using the RIC cache is described as follows. Each tuple is 
stored in the cache as a key/value pair (t, i), where the key is the tuple t discovered 
by the previous join job and the value is the iteration number i for which that tuple 
was discovered. On each iteration, the map phase of the difference job hashes the 
incoming tuples as keys with values indicating the current iteration number. During 
the reduce phase, for each incoming tuple (from the map phase), the cache is probed 
to find all instances of the tuples previously discovered across all iterations. Both the 
incoming and cached data are passed to the user-defined reduce function. Any tuples 
that were previously discovered are omitted from the output. If the tuple had never 
before been seen, this tuple should be included in the ∆Fi and emit the tuple. 

4.1.2  Proposal for recursive join using filters 

Our research focuses on the general semi-naive algorithm for computing the 
recursive join as well as the transitive closure of a relation. More importantly, this 
algorithm can be translated to the MapReduce distributed computing environment. 
The main idea behind the algorithm is a loop containing operations such as join, 
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projection and difference to calculate the transitive closure breadth-first. However, 
the MapReduce model is not the convenient model for the iterative computation and 
the join operation. As illustrated in Figure 4.2, it turns out that the semi-naive 
algorithm has some problems that need to be considered. 

(1) With the join job (∆Fi-1 ⋈ K), the relation K is always re-scanned and re-
shuffled on every iteration even though it is invariant. 

(2) With the difference job (∆Fi - Fi-1), all the incremental relations (Fi-1) are also 
re-scanned and re-shuffled on every iteration. 

(3) On each loop, there are the two jobs consisting of the join job and the 
difference job; this makes implementing the recursive join quite expensive. 

 Shaw et al have addressed the problems (1) and (2) in the HaLoop system by 
using the RIC cache. To avoid re-scanning and re-shuffling the datasets on each loop, 
the solution uses the RIC cache for the datasets K and Fi-1 in the job join and the 
dedup-diff job, respectively, as described in Figure 4.2. However, the solution from 
Shaw cannot overcome the problem (3) because it still requires the additional 
difference job to calculate the incremental relation ∆Fi. This job takes expensive 
overheads such as rescanning the output of the join job on DFS, incurring a new job, 
generating intermediate data from the output of the join job, and shuffling the 
intermediate data. Besides, the overhead of implementing the cache is significant 
because all discovered results are cached, indexed and probed during the evaluation. 
In addition, the cache is rewritten completely on every iteration during which new 
results are discovered. Therefore, folding the difference operator into the join job 
would considerably save the overheads for the recursive join implementation. This 
also improves the semi-naive algorithm in MapReduce such that the number of 
computation steps as well as the jobs can be reduced to l instead of 2×l, where l is the 
longest path length in the relation graph - 1. 
 For this reason, we propose a solution to optimize the recursive join and the 
semi-naive algorithm in MapReduce as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3: Filter-based optimization for the semi-naive algorithm and recursive joins 

in MapReduce 
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 As shown in Figure 4.3, a typical MapReduce job performs the join operation 
between two input datasets K and ∆Fi-1 (the incremental relation at iteration step i-1). 
The dataset K is scanned only one time at the first loop. Ki and Kj are splits of K, 
which are cached at the reducer input caches i and j, respectively. An intersection 
filter (IF) [5] contains common join keys between the input datasets. The reducer 
input cache is used to cache the loop-invariant relation K. A difference filter (DF) 
stores distinct tuples discovered. The join job uses the IF to remove non-joining data 
at the map phase. The RIC is used to avoid rescanning the input dataset K on each 
iteration. The DF is to eliminate duplicate results and computes actual new results for 
the next iteration. 
 For our solution, the recursive join is implemented as an iteration of the join job. 
Initially, the IF and the DF are empty. The dataset ∆F0 is assigned to K. The map 
phase hashes the tuples of both the datasets by the join key. The tuples whose join 
keys are not in the IF are eliminated. This checking is not conducted in the first loop 
since the BF is nothing. The tuples then are passed to the reducers. At the reducer, the 
RIC caches the tuples of K to avoid re-scanning and re-shuffling the loop-invariant 
dataset K on the next iterations (the problem (1)). The reduce phase performs the join 
of ∆Fi-1 and K for each unique key. Each result of the join is queried into the 
difference filter DF. If the result is not in the DF, it is the actual new result and thus it 
is hashed to the DF and emitted to the output Oi. Otherwise, it is the duplicate result 
and omitted. The output Oi is the incremental relation ∆Fi that is used for the next 
iteration. In addition, the intersection filter IF is recomputed by the common join 
keys from ∆Fi and K. The iteration of this job ends when the IF is empty because of 
no common join key between ∆Fi and K. The final output of the recursive join 
includes all the outputs Oi. It is very important to note that using the difference filter 
DF avoids the overheads of re-scanning and re-shuffling all the incremental relations 
(Fi-1) and incurring the additional difference job (the problem (2) and (3)). 
 
 We address the problems of the general semi-naive algorithm for evaluating the 
recursive join query in the MapReduce environment, and propose the difference filter 
to compute the incremental relation without using the expensive difference job. Two 
key aspects of the difference filter need to be considered including (1) approach to 
modeling the difference filter, (2) probability of a false difference. 

4.1.3  Definitions and notations 

We introduce definitions and notations used in this research. 
 
Definition 4.1. A disjoint element of a set is an element NOT in the set. Given a set 
S, x is a disjoint element of S if x  S. 
 
Definition 4.2. Disjoint elements of sets S1 and S2 are elements of (S1 \ S2)  (S2 \ S1) 
 
Definition 4.3: A difference filter (DF) is a probabilistic data structure designed to 
represent a set and examine whether an element is NOT present in the set. In other 
words, the difference filter of a set is to recognize the disjoint elements of the set. 
This is contrary to a Bloom filter used for membership queries. 



4.2 Modeling difference filter 
 

89 
 

For formality, suppose that R and S are two sets. The difference filter of S, DF(S) that 
represents the set S, is used to test whether an element x of R is NOT in S (x  R \ S). 
 
Definition 4.4: A recursive join of a relation is an operation to compute the transitive 
closure of the relation. It is a compound operation, which involves repeating the join 
operation until no further result is produced (“fixpoint”). 

Table 4.1: List of notations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 Modeling difference filter 

4.2.1  Existing solutions 

First, we should consider existing solutions that are relevant to this issue, e.g., data 
reconciliation, deduplication, error-correction, etc. Data reconciliation and 
deduplication are important tasks in distributed systems and have been carried out in 
a few different ways. These tasks can be efficiently carried out thanks to accurately 
identifying disjoint elements of two sets. 
 The easiest way to recognize disjoint elements of two sets is based on hash 
tables. The hash table T contains fingerprints of all elements belonging to one set and 
checks whether elements of another set are present. For instance, we perform 
reconciliation in a distributed environment for a set of records A. Assume that A1 and 
A2 of A are distributed over two various data sites S1 and S2, respectively. S1 sends the 
hash table T1 of A1 to S2 and receives T2 of A2 from S2. We can now specify disjoint 
elements through querying the records of A1 into the table T2 at S1, and the records of 
A2 into T1 at S2. Using a perfect hash function for the sets, this approach needs Oc(|A1| 
+ |A2|) communication overhead for exchanging these two hash tables T1 of size |A1| 
and T2 of size |A2|. It also requires Ot(|A1| + |A2|) run time to query |A1| and |A2| 

Notation Explanation 

K A dataset Know that is a loop-invariant dataset 

∆Fi An incremental relation Friend in iteration i 

Fi All incremental relations on iterations 0 to i (∆F0  ...  ∆Fi) 

DF(S) A difference filter built for a set S 

BF(S) A Bloom filter built for a set S 

DBF(S) A dynamic Bloom filter built for a set S 

LHT(S) A Lossy Hash Table built for a set S 

T A Hash table 

DFS Distributed File System 

\ The difference operator, e.g. R \ S is the difference of R with S 
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elements into the two hash tables. However, the hash tables are space-inefficient on 
large data sets because the number of buckets in the hash table grows at the same rate 
as the cardinality of the set so that it remains nearly the same size. 
 A better solution involves an approximate membership query data structure 
called a Bloom filter [15], which excels at determining if an item is a member of a 
set. Since we exchange the filters containing only bits that represent elements of one 
set, the communication overhead can be reduced and is proportional to the size of the 
filter. Although, the run time for checking elements in the two sets is also Ot(|A1| + 
|A2|), the approach is very space-efficient for both large data sets because Bloom 
filter uses a bit array and its size is fixed regardless of the cardinality of the set. Of 
course, there is a clear tradeoff between the size of the filter and the false positive 
probability. As shown in [74], if the number of elements in the set does not change, 
the error probability decreases as the size increases (i.e., more memory usage). 
 Several recent approaches have extended Bloom filter such as Stable Bloom 
Filters [86], Time Interval Bloom Filters [87], Approximate Reconciliation Trees 
[29], horizontal and vertical Bloom filters [88], etc. They minimize the amount of 
memory assigned to the filters and the number of errors, including false positives and 
false negatives. It is noted that a false positive is a disjoint element wrongly reported 
as duplicate, and a false negative is a duplicate element wrongly reported as 
difference. 
 Unfortunately, these solutions work on a shortcoming because of accepting false 
positives. Based on the standard Bloom filter, the extended filters always generate 
false positives [86][87][29][88] and sometimes additional false negatives [86][88]. 
As a result, the filters can indicates a superset of duplicate elements, consisting of all 
actually duplicate elements and a few disjoint elements that are false positives. In 
contrast, they cannot identify a set of all disjoint elements because the missing 
disjoint elements of the set belong to the false positives approximated by a 
probability. This is an obstacle for applying the Bloom filters to deduplication and 
reconciliation. For an instance of deduplication, if an element x exists in the filter; x 
will be omitted because it is a duplicate element. However, a disjoint element y will 
be still omitted if the filter reports y as an existing element due to a false positive 
error. The solutions [86][88] can reduce the false positive errors without removing 
them. 
 That is unacceptable for our difference filter in which it requires the ability to 
recognize a superset of all disjoint elements. To achieve this goal, the difference 
filters should only generate false negatives without false positives. The false 
negatives are duplicate elements wrongly reported as disjoint elements. Precisely, the 
difference filters allow us to specify a superset, which consists of all disjoint 
elements and a few duplicate elements with a small rate. 
 Another good alternative was proposed by Eppstein, Goodrich et al. [89]. 
Actually, the authors have solved the set difference problem that is related to our 
problem. This solution supplies a data structure Difference Digest to compute the set 
difference with communication proportional to the size of the difference. The data 
structure is based on an Invertible Bloom filter [31], [72] (InvBF). The InvBF is a 
variant version of the Bloom Filter that uses a three-component data structure to 
supports not only the insertion, deletion, and lookup of key-value pairs, but also 
allows a listing of its contents with high probability. Figure 4.4 below describes the 
data structure. 



4.2 Modeling difference filter 
 

91 
 

 
 
 
 
 
 
 
 

Figure 4.4: Invertible Bloom filter 

Each bucket of the InvBF contains three fields, which are initially set to 0: 

 A keySum field, which is the sum of all the keys that have been mapped to 
this bucket. 

 A valueSum field, which is the sum of all the values that have been mapped 
to this bucket. 

 A count field, which counts the number of entries that have been mapped to 
this bucket. 

The invertible Bloom filter supplies fourth operations: 

 INSERT(x, v): insert a key-value pair, (x, v), into the InvBF. 

 GET(x): return the value v such that there is a key-value pair, (x, v), in the 
InvBF. 

 DELETE(x, v): delete the key-value pair, (x, v), from the InvBF. 

 LIST_ENTRIES(): list all the key-value pairs being stored in the InvBF. With 
low probability, it may return a partial list along with an “list-incomplete” 
error condition. 

The INSERT and DELETE operations never fail, whereas the GET and 
LIST_ENTRIES operations may fail with low probability. 
 
 Similarly to the standard Bloom filter, the InvBF uses k hash functions to 
compute locations for storing an element in an array of buckets. The hash functions 
hk() will result in storing multiple data elements in the same location. Therefore, it 
cannot prevent collisions and a form of collision resolution is needed. 
 We can see that we cannot store x and then store z in the same location because 
this would wipe out all trace of x. The solution is to use a reversible storage function. 
For example, if we stored x in an InvBF at location i and then we insert z into the 
same location of x, we add it to the key sum: 

InvBF[i].keySum = InvBF[i].keySum + z   // i.e.,  = x + z 
 We can remove z by subtracting it: 

InvBF[i].keySum = InvBF[i].keySum - z   // i.e.,  = (x + z) - z = x 
 It means that if the invertible Bloom filter already stored x before and we added 
z then we subtract z, we can get the value x back again. For this reason, the 

 

1 2 3 4 5 6 7 ... m 

 ...    keySum += x1  
 valueSum += v1 
 count ++ 

 ...   

 

Fi-1 = { (x1, v1), (x2, v2), ...} 

hk 
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INSERT() function uses the addition operator and the DELETE() function uses the 
subtraction operator. 
 Applying the invertible Bloom filter to compute the set difference includes three 
steps such as encode, subtraction and decode. Suppose R{X, Y, V, W} and S{Y, Z, 
W} are two sets, k hash functions hk() are used to locate positions (k=3), hc() is a 
cryptographic hash function that maps an element to a fixed-size bit string. The set 
difference between the sets is conducted as follows. 

 Encode: constructs two invertible Bloom filters, InvBFR and InvBFS 
initialized to zero, by inserting each element x in R or S to InvBFR or InvBFS, 
respectively. For each index i returned from hk(), we XOR x into 
InvBF[i].keySum, XOR hc(x) into InvBF[i].hashSum, and increase 
InvBF[i].count. 

 Subtraction: subtracts InvBFR from InvBFS cell by cell. To subtract cells, the 
keySum and hashSum fields are XOR'ed, and count fields are subtracted. The 
results of the subtracting are written to a new invertible Bloom filter, InvDiff 
of the same size. This subtracting process is illustrated in Figure 4.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5: InvBF Subtraction. InvDiff results from subtracting InvBFR from InvBFS 

cell by cell. 

For each index i, we XOR InvBFR[i].keySum and InvBFS[i].keySum into 
InvDiff[i].keySum, XOR InvBFR[i].hashSum and InvBFS[i].hashSum into 
InvDiff[i].hashSum, and subtract InvBFR[i].count from InvBFS[i].count into 
InvDiff[i].count. 
It is very important to note that the elements common to InvBFR and InvBFS 
(shown blue bolded) are cancelled during the XOR operation. Therefore, the 
result filter InvDiff only contains disjoint elements of the sets. 
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 Decode: recovers “pure” cells from the InvDiff 's table. Pure cells are those 
whose keySum matches the value of an element x in the set difference. In 
order to verify that a cell is pure, it must satisfy two conditions: the count 
field must be either 1 or -1, and the hashSum field must equal hc(keySum). If 
the InvDiff is the result of subtracting the InvBFR from the InvBFS, then a 
positive count indicates x  (R - S), while a negative count indicates  x  (S - 
R). 
The decoding process begins by scanning the InvDiff 's table and creating a 
list of all pure cells. For each pure cell in the list, we add the value x=keySum 
to the appropriate output set (R - S or S - R) and remove x from the table. The 
process of removal is similar to that of insertion. We compute the list of 
distinct indices where x is present, then decrement count and XOR the 
keySum and hashSum by x and hc(x), respectively. If any of these cells 
becomes pure after x is removed, we add its index to the list of pure cells. The 
process continues until no indices remain in the list of pure cells. At this 
point, if all cells in the table have been cleared (i.e. all fields have value equal 
to zero), then the decoding process has successfully recovered all elements in 
the set difference. Otherwise, some encoded elements remain in the table, but 
insufficient information is available to recover them. This problem is 
considered as "list-incomplete" error. 

  
 We should consider the following features of the solution mentioned by 
Eppstein: 

(1) Two sets R and S must be defined before performing subtraction. 

(2) It can list the disjoint elements encoded in the InvDiff. 

(3) The decoding process may fail because some encoded elements may not be 
recovered. 

(4) It requires an additional job for computing the set difference. 
 We realize that this solution is not suitable for our work. For the feature 1, we 
cannot know in advance the datasets to avoid rescanning the data multiple times. 
Besides, we need a checking for membership (e.g. whether an element x is a disjoint 
element) instead of a listing of disjoint elements in the filter (the feature 2). 
Moreover, the decoding process may only output a partial list of the disjoint elements 
due to some cells in the InvDiff with non-zero counts (the feature 3). This leads to a 
disadvantage that we cannot specify a superset of the disjoint elements that is 
requested in our work. Finally, for the feature 4, using an additional job to compute 
the set difference is expensive because it has to rescan the datasets, generate 
intermediate filters, and pass the filters to the reducers. The job can be folded into 
our join job. 
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4.2.2  Problem definition 

From the limitations of the existing solutions, we propose a new filter type called 
Difference Filter as follows: 
 
 
  
 
  
  
 
 

Figure 4.6: Difference filter returning an output with three possibilities 

 As illustrated in Figure 3.2, a difference filter DF(S) represents a set S and 
checks whether an element x of a set R is NOT in the set S. It accepts an input and 
returns an output that is one of three possibilities: 

 "no"    : x is NOT a disjoint element of S if x is in the set S. 

 "yes"    : x is a disjoint element of S if x is NOT in the set S. 

 "unknown" : x "may be or may be NOT" a disjoint element of S. 
 
 With this assumption, when the difference filter returns an answer "no" or "yes", 
the answer is always the correct response and it is considered as an answer "known". 
An answer "unknown" may be the wrong response because x may be in the set S. 
This means that the difference filter only generates false negatives without false 
positives. As a result, the difference filter allows us to identify a superset of disjoint 
elements consisting of the "yes" and "unknown" elements, and eliminate duplicate 
elements that are the "no" elements. Accordingly, minimizing the number of the 
"unknown" elements will be the key for an effective solution to build the difference 
filter. In addition, it is noted that we cannot know elements of a set in advance to 
avoid reading data multiple times. Thus, the filter should be designed to update 
dynamically new elements according to the incoming data of a certain job, e.g., the 
join job. This feature aims to respond to the continuous updating of the incremental 
relations into the difference filter in the recursive join evaluation without using an 
additional job. 
 In our context, the difference filter is better than the prior solutions because it 
has the ability to dynamically filter out duplicate elements and retain disjoint 
elements with a specified false negative rate. The next sections therefore present a 
method to build the difference filter. 
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CONCLUSIONS AND FUTURE WORK 

In this final chapter, we will conclude by describing the results of the optimization 
for the two-way joins using the intersection filter and its extensions to the problems 
of the multi-way joins in MapReduce. Another important result is the improvement 
of the recursive joins using the difference filter. We will also suggest some future 
research directions which would further extend its applicability. 

5.1 Thesis conclusions 

Nowadays, more and more applications have encountered difficulties to handle large-
scale data using traditional data processing methods. We can easily find such kind in 
applications of social networks, bibliographies, bioinformatics, databases, etc. The 
MapReduce programming model has become very popular recently for processing, 
analyzing and generating such large data in a massively parallel manner. However, 
this model has its own limitations. Complex operations in MapReduce are used 
extensively and expensively, especially the join operation. The research efforts have 
markedly expanded to address this problem and given some solutions surveyed in 
Chapter 2, in which a join operation will be compiled to MapReduce job(s). For 
these solutions, however, it is realized that much redundant data is involved in the 
join operation. Therefore, this dissertation is dedicated to solving the problems of the 
joins in the efficient ways. It focuses not only on the two-way joins, but also the 
complex joins such as the multi-way joins and the recursive joins. The main 
contributions of our research are the following: 

(1) Intersection filter 

Based on the probabilistic model, we propose three approaches to compute 
the intersection filter that approximates the intersection of sets. The 
approaches include the pair of Bloom filters, the intersection of Bloom 
filters, and the intersection of partitioned Bloom filters. The intersection 
filter is used to remove most of the disjoint elements between the sets. 

(2) Difference filter 
We define a new filter type, the difference filter, to represent a set and test 
whether an element is NOT present in the set. It is contrary to a Bloom 
filter used for membership queries. Notably, the false difference 
probability that affects to the performance of the filter is also considered 
and analyzed thoroughly. It can be applied to a wide range of popular 
problems such as recursive join operation, reconciliation and 
deduplication, error-correction, etc. 
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(3) Optimization for two-way and multi-way joins and cost models 

 We provide a survey on the prominent join algorithms in MapReduce 
recently. 

 We minimize the amount of intermediate data gennerated in two-way joins 
and three-way joins using the different approaches of the intersection 
filter. The three-way join is then compared to the cascade of 2 two-way 
joins by the Lagrangian method. 

 We point out two optimized solutions of chain joins using the intersection 
filter, the two-way join cascade and the three-way join cascade. Our 
analysis shows that the three-way join cascade is better than the two-way 
join cascade when the number of reducers is smaller than the output size 
of the join of two sets (r < (|R'|.)2) and becomes a good choice. 

 We give the optimized join algorithms of two-way joins, three-way joins, 
and chain joins. 

 We supply cost models for comparisons of our join algorithms and the 
existing algorithms. 

 We also specify a threshold of the amount of redundant data that the join 
optimization using the intersection filter becomes a good choice. 

(4) Optimization for recursive join and cost model 

 We propose an optimization for recursive joins using the difference filter 
in MapReduce. A recursive join is implemented as an iteration of one join 
job instead of two jobs including a join job and a difference job. Thanks to 
the difference filter, we can compute the join of two datasets and the 
incremental relation in the join job, and thus eliminate the significant 
overheads of the difference job on each iteration. These overheads consist 
of re-scanning and re-shuffling all the incremental relations. As a result, 
our recursive join is processed in the fixed number of jobs (or iterations), l 
rather than of 2×l. The recursive join implementation is then illustrated by 
an algorithm in form of pseudo code. 

 We provide a cost model for the recursive join. Our recursive join is then 
proved more efficient than the existing solution through the cost model-
based comparison. 

(5) Experimental evaluation 

 We deploy MapReduce Hadoop over two different computer clusters to 
utilize the computing effectively. The clusters are built with virtual 
machines using Virtualbox and KVM virtualization techniques, namely, 
first cluster of 15 virtual machines using Virtualbox and second cluster of 
15 virtual machines using KVM.  

 Experiments of two-way joins and multi-way joins implemented by the 
different algorithms are supplied. 
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 Experimental comparisons of the different algorithms for each the join are 
examined with respect to the intermediate data amount, the total output 
amount, the total execution time, and especially task timelines. 

 Our filter designs bring vital benefits that they can be applied to solve popular 
problems in various fields such as join operation, reconciliation and deduplication, 
error-correction, etc. 
 Both the cost models and the experiments show that a join operation using the 
intersection filter is more efficient than using the other solutions since it significantly 
reduces redundant data, and thus produces less intermediate data. Moreover, the 
intersection filter provides an extremely important characteristic for the join cascade 
in which intermediate join results generated from component joins only contain 
actual joining data without filtering. These significantly reduce I/O and 
communication overheads. Although the intersection filter has false positives and an 
extra cost for the pre-processing job, its efficiency in space-saving and filtering often 
outweighs these drawbacks. 
 Besides, this research indicates that joins using the pair of filters or the 
unpartitioned intersection filter are more efficient than using the partitioned 
intersection filter. But the partitioned filter-based joins are still much better than the 
existing join algorithms. 
 More importantly, this research also improves the general semi-naive algorithm, 
as well as the evaluation of recursive queries in MapReduce. 
 Finally, all these contribute to the global scene of optimizing data management 
for MapReduce applications on large-scale distributed infrastructures. 

5.2 Disscusion and future work 
A number of open problems should be solved to allow the complete development of 
large-scale data-parallel processing in MapReduce. These problems suggest some 
research directions as follows. 

5.2.1  Two-way and multi-way joins 

Together with the popularity of MapReduce for processing large-scale datasets, join 
algorithms using MapReduce has also received much attention during the past few 
years. However, most two-way join algorithms are sensitive to data skew that may be 
due to the bad partitioning function or a large number of tuples with the same join 
key. They need to be improved to overcome this problem. 
 Overall, studies of the join operation have largely concentrated on two-way join 
algorithms. Hence, there are many challenges in evaluating multi-way joins through 
the existing join algorithms in a shared-nothing environment. 
 To implement join query, we need to specify an execution plan. In this section, 
therefore, we discuss some scheduling strategies for the n-way join query evaluation 
in MapReduce. First, we should take a simple multi-way join query as follows: 

R1 ⋈ R2 ⋈ R3 ⋈ R4 
 We can implement this query by the following possible execution plans. 
  R1 ⋈ R2 ⋈ R3 ⋈ R4 = (((R1 ⋈ R2) ⋈ R3) ⋈ R4 ) 
 = ((R1 ⋈ R2 ⋈ R3) ⋈ R4) 

(5.1) 
(5.2) 
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 = (R1 ⋈ R2) ⋈ (R3 ⋈ R4) 
 = (R1 ⋈ R2 ⋈ R3 ⋈ R4) 
  
 A typical approach is to use a sequence of two-way joins, called a cascade of 
two-way joins (C2), as shown in equation (5.1). In the C2 approach, each join 
operation needs at least one separate MapReduce job and depends on the output of a 
previous join operation. In other words, these join operations have to run 
sequentially. As a result, the C2 approach does not implement the join operations in 
parallel but each its join operation includes parallel tasks. This form of parallelism is 
termed intra-operator parallelism. 
 Similarly, we also have an approach using a cascade of three-way joins (C3), as 
represented in equation (5.2). In this approach, the join operations perform joining 
three input datasets at the same time that is mentioned in Chapter 3. 
 Another approach to the above query evaluation is to through parallel two-way 
join operations (P2), as represented in equation (5.3). The join R12=(R1 ⋈ R2) and the 
join R34=(R3 ⋈ R4) are run simultaneously. The output of the query is the join of R12 
and R34. Hence, the P2 approach implements the join operations in parallel and each 
join operation has concurrent tasks. This form of parallelism is known as inter-
operator parallelism. 
 The last approach is to employs joining all the relations at the same time (All-in-
One), as shown in equation (5.4). Joining all relations in one requires only one 
MapReduce job rather than using multiple jobs as others approaches. Consequently, 
there are no intermediate results which may save physical space and communication 
overhead. However, buffering tuples to process the join can easily lead to memory 
overflow error. 
 We need to specify the number of MapReduce iterations of each approach. The 
C2 approach uses three iterations, the C3 approach uses two iterations, the P2 
approach uses two iterations, and the All-in-One approach uses one iteration. 
 From the illustration of the 4-way join, we can generally compute the number of 
iterations for the typical multi-way join as follow. The approaches 1 and 2 are 
summarized as a cascade of m-way joins (CM), where m is the number of inputs of a 
component join operation. The approach 3 is generalized as parallel m-way join 
operations (PM). 
 For the general n-way join, the number of iterations of the CM is (n-1)/(m-1), 
where n is the total number of the relations of the multi-way join (n ≥ 2), m is the 
number of the relations of the component join (m ≥ 2 and m ≤ n). In the case of the 
PM algorithm, the number of iterations is (logm n). 
 
 We can encounter the following challenges when implementing the approaches: 

 Choice of join order: 

The n-way join can be processed by combining m-way joins (m ≤ n). As a 
result, there are some combination ways of the component joins for 
evaluating the query. Each way can have different join tree representations. 

For the PM approach, we have Bushy join tree representation [94] as shown  
in Figure 5.1.  

(5.3) 
(5.4) 
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Figure 5.1. A kind of Bushy join trees in PM approach 

The Bushy join tree includes a set of both left-deep and right-deep trees. This 
tree kind performs parallelism of join operations in the query. 
For the CM approach, we have two kinds of join tree representations 
including left-deep trees and right-deep trees [94] as depicted in Figure 5.2. 
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(a) Left-Deep join trees        (b) Right-Deep join trees 

Figure 5.2. Two kinds of join trees in CM approach 

The left-deep join trees (Figure 5.2 (a)) are executions of the CM approach in 
which the combination of the component joins (the m-way joins) are executed 
from left to right. Meanwhile, another execution kind of the CM approach 
that chains the component joins from right to left is called the right-deep join 
trees (Figure 5.2 (b)). The join trees of the CM approach are also known as  
linear trees or linear processing trees. 

It is very important to note that the number of possible join orders determine 
the number of join trees. For the n-way join query, therefore, the number of 
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left-deep or right-deep trees is calculated as n factorial (n!) and the number of 
bushy trees is specified by (2n – 2)!/(n – 1)!. 
The problem of choosing an optimal join order that is expected to result in a 
minimum cost for a query in MapReduce is difficult and even impossible 
because analyzing all the possible join orders could take a long time and 
especially many communication overheads. Consequently, a query optimizer 
cannot perform an exhaustive search and instead uses some heuristics to 
support the search process. This problem should be considered with respect to 
sort, merge, and communication overheads. 

 

 Choice of join algorithm: 

Besides specifying the join order, we need to choose a MapReduce join 
algorithm for each of the component joins as well. When selecting a join 
algorithm, the optimizer should take into account factors such as the size of 
each input relation, indexes and partitions available on each relation, a 
particular join order,  the number of rows to be scanned for each relation in 
each join order, non-joining data rate, cost model, etc. 
For example, we can use the star join algorithm for queries that have one 
large input dataset and other small datasets. As another instance of the PM 
approach, we may apply the intersection filter-based join algoritm for the 
initial joins (R1 ⋈ R2), (R3 ⋈ R4), ..., (Rn-1 ⋈ Rn). The intermediate results, 
which are indexed and partitioned by the join key, are joined together using 
the Map-side join algorithm. 

The selection of MapReduce join algorithms for a query can even decide to a 
join order (a join tree). Therefore, the choice of a join order should also take 
the choice of join algorithms and the communication overheads into 
consideration. In the future work, we need to further discuss on the query 
optimizer which uses a good heuristic algorithm for choosing an efficient 
query execution plan in a MapReduce environment. 

5.2.2  Recursive joins 

 Assume that we have the relation Know K = {(bert, alice), (bert, george), (alice, 
derek),(alice, pat), (derek, frank)} and it can be represented as a directed graph which 
we refer to as the following relation graph. 
 
 
 
 
 
 
 
 The tuples correspond to edges in the graph and the unique attribute values 
correspond to the nodes. A tuple (x, y) in relation K becomes an edge from node x to 
node y in the directed graph. 

    alice        george 

derek        pat 

bert 

frank 
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 The relation Friend (F) is built by a recursive join F(x, y) = F(x, z) ⋈ K(z, y). A 
tuple (x, y) in F means that there is a non-zero length path from node x to node y (the 
transitive closure (TC) of the relation K). In general, any linearly recursive query can 
be expressed as a transitive closure, preceded or followed by relational algebra 
operations [95]. Therefore, the number of iterations to evaluate a recursive join is the 
longest path length in the graph-1, called the depth of the transitive closure (l). For 
the example, the number of iterations or the number of MapReduce jobs is 2 (l=3-1). 
 We can consider two main performance aspects for a MapReduce operation, 
namely the amount of data in each job and the number of jobs done. We solved 
reducing the amount of data in each job and the number of jobs on each round. There 
remains an opportunity for us to reduce the number of jobs by reducing the number 
of iterations. With the same input data and algorithm in MapReduce environment, 
computation of an operation becomes better if it has less jobs. 
 From the above arguments, we find here other challenges that need to be 
considered to further improvement of the recursive join evaluation in MapReduce. 
Four ideas make these possible: (1) minimize the number of iterations, (2) solve a 
recursive join in an unbalanced graph, (3) handle data skew in recursive joins, and 
(4) handle small increment relations in every join performed. For clarity, it is 
necessary to go into some detail here. 

5.2.2.1 Minimize the number of iterations 

We try to reduce the number of iterations as much as possible. This can reduce the 
number of MapReduce jobs for the evaluation. As a result, we can avoid rescanning 
input data and generating much intermediate data as well as transferring the data over 
the network. 
 In fact, this problem is not new in databases. Several algorithms have been 
presented in the literature to efficiently process the transitive closure (TC) of a 
relation [80][23][24][96]. Afrati and Ullman [19] have also made a comparison of 
Smart TC and related algorithms, where they examine the relative efficiency, in 
terms of data-volume cost. However, these algorithms are not suitable in MapReduce 
environment because they can reduce the number of round iterations but they do not 
actually reduce the number of join jobs in MapReduce. For instance, Smart and 
Logarithmic TC algorithms [23][24] reduces the number of iterations by computing 
more of the transitive closure in each iteration and so it also requires to execute more 
of join jobs in each iteration. They use (l/n) iterations, where l is the longest path 
length in the relation graph - 1 and n is the number of join jobs in each iteration. 
Indeed the total of join jobs in these algorithms is still l jobs. Consequently, their 
improvement is useless in MapReduce. 
 
Example 5.1: compute a transitive closure (∆Fi-1 • K • K) 
We use an iteration of two-way join jobs to evaluate the transitive closure: ((∆Fi-1 ⋈ 
K) ⋈ K) 
Input (a, b) • (b, c) • (c,d) is compiled as: 
(a, b) ⋈ (b, c) => the join result: r1 = (a, b), (b, c), (a, c)    
r1⋈ (c,d) => the final join result: r2 = (a, b), (b, c), (a, c), (c,d), (b, d), (a,d). 
For each iteration, we have to use the two join jobs to compute the transitive closure. 
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 The recent results of Afrati and Ullman [12][7] showed a interesting way to 
compute the transitive closure by recursive doubling. To implement the way, there 
will be four groups of tasks consisting of two groups of join tasks and two groups of 
deduplication tasks. A limitation of this solution is long-running recursive tasks that 
may increase risk for failures. In addition, its failure recovery mechanisms are 
complex and have not been directly supported in Hadoop. Moreover, large amounts 
of data are transferred back and forth among the groups. 
 In this case, our solution is proposed as the following. We will adapt the solution 
of our three-way join based on the intersection filters [5] in each iteration to fit 
evaluating recursive joins in Mapreduce. Hence our algorithm only requires 
[log2(l+1)] iterations as well as [log2(l+1)] join jobs. The modification of the three-
way join is defined by discovering three transitive closures on each round iteration 
instead of only one as the three-way join. That requires recomputing the amount of 
data of each input tuple distributed to corresponding reducers, deriving all the 
possible transitive closures as well as showing its cost model as compared with 
existing solutions. 

5.2.2.2 Solve a recursive join in an unbalanced graph 

We address the problem of a recursive join in an unbalanced graph. This recursive 
join will be executed with a large amount of MapReduce join jobs. It is interesting to 
think about an algorithm to partition the graph into a set of subgraphs and evaluate 
them in parallel. The final result of the recursive join is transitive closures among the 
subgraphs. 

5.2.2.3 Handle data skew in recursive joins 

We consider the problem of a large number of tuples that are sent to the same 
reducer. 

 

Figure 5.3. Data skew in recursive join 

 Data skew [97] is an asymmetry in the distribution of tuples to reducers. This 
leads to some nodes working in overcrowding situation. It is noted that data skew in 
the recursive join includes not only data skew with the different join key but also 
data skew with the same join key. For example, we have 5,000,000 tuples in which 
4,000,000 tuples are sent to the same reducer1 even though they may have the 
different join keys. Another example, we have 7,000,000 tuples including 6,000,000 
tuples with the same join key that must be sent the same reducer 2. There exist 
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several solutions [98][99][100] to address data skew for the first example but not the 
second example. Therefore, we have to address the problem of efficiently processing 
MapReduce join jobs with join reducer tasks over skewed data with tuples having the 
same join key. Without any optimization, the actual task completion time for each 
join reducer differs significantly and the overall system performance is largely 
affected by the long running tasks. 
 In this case, we will implement a hybrid join algorithm which is a combination 
of the reduce-side join, the hash join, and  Reducer Input Cache (RIC) with the 
ability to handle skew. In general, we consider two arbitrary big datasets that have 
not been sorted/partitioned yet. For the first job, one dataset S will be partitioned and 
these partitions will be cached at reducers. For the second job, another dataset R will 
be mapped into pairs and sent to the reducers. Each pair of R will be joined on fly 
with one corresponding partition of S. 

5.2.2.4 Handle small increment relations in joins performed 

 We focus on the problem of intermediate results of a recursive join. They are 
incremental relations in each iteration that may be small relations. In this case, we 
should find a good choice for storing the intermediate results to avoid rescanning and 
reshuffling them many times over the network. In this case, we may re-implement 
cache technology to be able to merge/append small cache outputs into one bigger file 
without rewrite all small caches as the existing solution. 
 Solving all these challenges aims to optimize recursive joins. It becomes more 
important when the recursive joins is a decisive factor for evaluating recursive 
queries in MapReduce. 

5.2.3  Query language for NoSQL databases 

For over forty years, the relational database (RDBMS), in which data are structured 
into tables or relations that are easily restructured for accessing data in different 
ways, has been the dominant model for database management. Together with 
RDBMS, SQL has become a standard language supported by most relational 
database systems. SQL provides a complete data-definition language, including the 
ability to create relations with the specified attribute types, and the ability to define 
integrity constraints on the data [101]. 
 However, as information technology becomes ever more prevalent in nearly 
every aspect of our lives, the vast amount of data generated and stored continues to 
grow at an astounding rate, especially with social network applications today. This 
arises new challenges for data management, most notably scalability of storage, 
flexible data model, non-relational, and dynamic and implicit schema for collections 
of documents with varying structure. The relational database technologies have not 
kept pace with these changes. Although there have also been many attempts to 
extend the technologies (horizontal and vertical sharding, distributed caching and 
data denormalization), these tactics nullify key benefits of the relational model while 
increasing total system cost and complexity. 
 A major trend over the last few years has seen that NoSQL, Non-relational, 
“Cloud", or “Document” databases is an alternative model for data management in 
order to match the new challenges. In a NoSQL database, there are no a fixed schema 
and may be no joins. An RDBMS "scales up" by getting faster hardware and adding 
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memory. NoSQL, on the other hand, can take advantage of "scaling out". Scaling out 
refers to spreading the load over many commodity systems. This is the component of 
NoSQL that makes it an inexpensive solution for large datasets. NoSQL is designed 
for distributed data stores where very large scale data needs. 
 NoSQL databases have grown up and prove themselves worthy, such as 
Google's BigTable, Amazon's Dynamo, Facebook's Cassandra, 10gen's MongoDB, 
Apache's CouchDB, etc. that are now mature. Even Oracle, a company which is 
known by its RDBMS, also launched a product called Oracle NoSQL Database, a 
multi-terabyte distributed key/value pair storage [102]. 
 NoSQL's initial success and the explosion of related modern applications have 
led to an increase in the amount of new document databases and data formats. 
However, each such database system creates a new query language in a framework or 
an API that only works with a single document store. At the moment the new 
database systems have no query language (completely depending on the highly 
specialized map/reduce approach), while others like (e.g. MongoDB or Cassandra) 
have rudimentary and proprietary query languages. The query methods tend to be 
very low-level and must now be manually coded into the application by the 
programmer instead of being handled automatically by the database engine. In other 
words, document databases have their own proprietary and incompatible query 
methods, meaning that it is hard to move an application from one database engine to 
another. This caused many difficulties for developers in implementing or integrating 
systems because it still lacks a common query tool that attempts to query multiple 
document databases. As a result, this has hindered the popularity of document 
databases. 
 For all reasons, developers generally agree that a standard language will be good 
for the NoSQL space and not too early. And this problem becomes an attractive topic 
that has been discussed so much in order to give out a feasible solution. We are 
therefore aiming to a logic-based abstract approach to a high-level standard query 
language for document databases. It is called Datalog-based Document Query 
Language (DLogQL) including the following features: 

 Provide a standard abstract query language for document databases. It is a 
powerful expressive language supporting relational operations and recursion. 

 Give an abstract-level logical query language whose semantics is a subset of 
Datalog and let syntax specification at an abstract level. As a result, many 
sub-languages may be derived from DLogQL. Each sub-language will be 
represented in a popular data format (e.g. key-value data model). This aims to 
adapt to the continuous change of modern application model and data format 
and close the gap among query language, programming language and the 
database. 

 Extend the well-known Datalog language, including abstract-level language, 
ability to query scalable document databases and scalable Datalog over 
Hadoop (an efficient parallel implementation of Datalog on the MapReduce 
framework). 

 A mediation solution for document databases and ability to model documents 
in a document database as a deductive data model. 

 DLogQL towards a general logical query language for databases aims to adapt to 
the continuous change of modern application model and data format. 
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