
HAL Id: tel-01066612
https://theses.hal.science/tel-01066612

Submitted on 22 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization for big joins and recursive query evaluation
using intersection and difference filters in MapReduce

Thuong-Cang Phan

To cite this version:
Thuong-Cang Phan. Optimization for big joins and recursive query evaluation using intersection and
difference filters in MapReduce. Other [cs.OH]. Université Blaise Pascal - Clermont-Ferrand II, 2014.
English. �NNT : 2014CLF22474�. �tel-01066612�

https://theses.hal.science/tel-01066612
https://hal.archives-ouvertes.fr

Note d’ordre : D.U : 2474 - EDSPIC : 661

BLAISE PASCAL UNIVERSITY - CLERMONT II
Engineering Doctoral School of Clermont Ferrand

LIMOS - CNRS UMR 6158

P H D T H E S I S

To obtain the degree of

Doctor of Philosophy
Specialty: Computer Science

Defended by

Thuong-Cang PHAN

Optimization for Big Joins and Recursive
Query Evaluation using Intersection and

Difference Filters in MapReduce

publicly defended on July 07th ,2014

Committee:
Reviewers:
 Pr. Dominique Laurent - University of Cergy-Pontoise, France
 Dr. Genoveva Vargas Solar - (HDR) LIG-LAFMIA, CNRS, France
Examiners:
 Pr. Mohand-Said Hacid - University C.Bernard Lyon1, France
 Pr. Farouk Toumani - University of Blaise Pascal, France
Advisors:
 Pr. Philippe Rigaux - CNAM Paris, France
 Dr. Laurent d’Orazio - University of Blaise Pascal, France

Author

Thuong-Cang PHAN - Ph.D student.
Email: ThuongCang.PHAN@isima.fr
 ptcang@cit.ctu.edu.vn
 ptcang@gmail.com
Thuong-Cang earned a bachelor's degree from Can
Tho University of Vietnam in 1998. Then, he
received the M.E. degree in Computer Science from
Asian Institute of Technology, Thailand, in 2006. He
obtained his PhD in Computer Science from Blaise
Pascal University, LIMOS UMR 6158, CNRS,
France (17/10/2011-07/07/2014). His research
interests include probabilistic data structures, Big
data, Big joins, large-scale recursive queries, grid
computing, cloud computing, SOA, MapReduce,
web service, semantic web, and information systems.

mailto:ThuongCang.PHAN@isima.fr
mailto:ptcang@cit.ctu.edu.vn
mailto:ptcang@gmail.com

II

Declaration

This dissertation has been completed by Thuong-Cang PHAN under the supervision
of Professor Philippe RIGAUX and Assoc. Professor Laurent D’ORAZIO and has
not been submitted for any other degree or professional qualification. I declare that
the work presented in this dissertation is entirely my own except where indicated by
full references.

SIGNATURE

III

Acknowledgements

It is a special feeling of great pleasure and happiness to look over the past journey
and remember all my advisors, friends and family who have helped and supported
me along this long but fulfilling road.
 Foremost, I would like to express my heartfelt gratitude to my advisors
Professor Philippe RIGAUX and Assoc. Professor Laurent D’ORAZIO for the
continuous support of my Ph.D study and research, for their patience, facilitation,
enthusiasm, and immense knowledge. Their invaluable guidance, advice, and
encouragement helped me all the time in doing research and writing this dissertation.
I believe that I could not do well my thesis without my advisors and mentors.
 Besides my advisors, I would also like to thank my reviewers, Professor
Dominique LAURENT and Madam (HDR) Genoveva VARGAS-SOLAR, who
provided encouraging and constructive feedbacks. It is not an easy task when
reviewing a thesis, and I am grateful for their thoughtful and detailed comments. I
would like to thank the rest of my thesis committee: Professor Farouk TOUMANI
and Professor Mohand-Said HACID, for their encouragement, insightful comments,
and critical questions.
 I would like to thank Blaise Pascal University, LIMOS and ISIMA Lab,
especially Ms. Pascale Gouinaud and Mr. Antoine Mahul (CRRI Clermont
Université), who were responsible for making sure the cluster used to run the
experiments worked fine. I also thank my fellow labmates in Big Data Group, for the
discussions, and for all the fun we have had in the last three years.

 I always remember the share of my brother, PHAN Anh-Cang, and my
Vietnamese colleague, TRAN T.T. Quyen, who shared the work and stress during my
most difficult moments.
 Last but not least, I would like to thank my family: my parents-in-law,
particularly my parents NGUYEN Thi-Tiep and PHAN Van-Mua, who always
supported me spiritually throughout my life and in all my pursuits; my loving wife,
TANG Dinh Ngoc Thao, who has been very patient, supportive and encouraging
throughout my PhD; and most of all, my little son, PHAN Thuong-Lam, who kept
me smiling during tough times in the PhD pursuit. Thank you so much !

Clermont-Ferrand, July 07 2014

Thuong-Cang PHAN

IV

Abstract

The information technology community has created unprecedented amount of data
through large-scale applications. As a result, the Big Data is considered as gold
mines of information that just wait for the processing power to be available, reliable,
and apt at evaluating complex analytic algorithms. MapReduce is one of the most
popular programming models designed to support such processing. It has become a
standard for processing, analyzing and generating large data in a massively parallel
manner. However, the MapReduce programming model suffers from severe
limitations of operations beyond simple scan/grouping, particularly operations with
multiple inputs. In the present dissertation we efficiently investigate and optimize the
evaluation, in a MapReduce environment, of one of the most salient and
representative such operations: Join. It focuses not only on two-way joins, but also
complex joins such as multi-way joins and recursive joins.
 To achieve these objectives, we first devise a new type of filter called
intersection filter using a probabilistic model to represent an approximation of the set
intersection. The intersection filter is then applied to two-way join operations to
eliminate most non-joining elements in input datasets before sending data to actual
join processing. In addition, we make an extension of the intersection filter to
improve the performance of three-way joins and chain joins including both cyclic
chain joins with many shared join keys. We use the Lagrangian multiplier method to
indicate a good choice between our optimized solutions for the multi-way joins.
 Another important proposal is a difference filter, which is a probabilistic data
structure designed to represent a set and examine disjoint elements of the set. It can
be applied to a wide range of popular problems such as reconciliation, deduplication,
error-correction, especially a recursive join operation. A recursive join using the
difference filter is implemented as an iteration of one join job instead of two jobs
including a join job and a difference job. This improvement will significantly reduce
the number of executed jobs by half, and the related overheads such as data
rescanning, intermediate data, and communication for the deduplication and
difference operations. Besides, this research also improves the general semi-naive
algorithm, as well as the evaluation of recursive queries in MapReduce.
 We then provide general cost models for two-way joins, multi-way joins, and
recursive joins. Thanks to these cost models, we can make comparisons of the join
algorithms more persuasive. As a result, with using the proposed filters, the join
operations can minimize disk I/O and communication costs. Moreover, the
intersection filter-based join operations are demonstrated to be more efficient than
existing solutions through experimental evaluations. Experimental comparisons of
different algorithms for joins are examined with respect to intermediate data amount,
the total output amount, the total execution time, and especially task timelines.
 Finally, our improvements on the join operations contribute to the global scene
of optimizing data management for MapReduce applications on large-scale
distributed infrastructures.

Key words: Big data, MapReduce, Bloom filter, Join, Recursive query evaluation,
Optimization.

V

Résumé

La communauté informatique a créé une quantité de données sans précédent
grâce aux applications à grande échelle. Ces données massives sont considérées
comme une mine d’or, ces informations n’attendant que la puissance de traitement
sûre et appropriée à l’évaluation d’algorithmes d’analyse complexe. MapReduce est
un des modèles de programmation les plus repute, connu pour la gestion de ce type
de traitement. Il est devenu un standard pour le traitement, l’analyse et la génération
de grandes quantités de données en parallèle. Cependant, le modèle de
programmation MapReduce souffre d’importantes limites pour des opérations non
simples (scans ou regroupements simples), en particulier les traitements avec entrées
multiples. Dans ce mémoire, nous étudions et optimisons l’évaluation, dans un
environnement MapReduce, d’une des opérations les plus importantes et
représentatives : la jointure. Notre travail aborde, en plus de la jointure binaire, des
jointures complexes comme la jointure multidimensionnelle et la jointure récursive.
 Pour atteindre ces objectifs, nous proposons d’abord un nouveau type de filtre
appelé filter d’intersection qui utilise un modèle probabiliste pour représenter une
approximation de l’intersection des ensembles. Le filtre d’intersection est ensuite
appliqué à l’opération de jointure bidirectionnelle pour éliminer la majorité des
éléments non-joints dans des ensembles de données d'entrée, avant d’envoyer les
données pour le processus de jointure. De plus, nous proposons une extension du
filtre d’intersection pour améliorer l’efficacité de la jointure ternaire et de la jointure
en cascade correspondant à un cycle de jointure avec plusieurs clés partagées lors de
la jointure. Nous utilisons la méthode des multiplicateurs de Lagrange afin de
réaliser un choix pertinent entre les différentes solutions proposées pour les jointures
multidimensionnelles.
 Une autre proposition est le filtre de différence, une structure de données
probabiliste formée pour représenter un ensemble et examiner des éléments disjoints.
Ce filtre peut être appliqué à un grand nombre de problèmes, tels que la
réconciliation, la déduplication, la correction d’erreur et en ce qui nous concerne la
jointure récursive. Une jointure récursive utilisant un filtre de différence est effectuée
comme une répétition de jointures en lieu et place d’une jointure et d’un processus de
différenciation. Cette amélioration réduit de moitié le nombre de tâches effectués et
les associés tels que la lecture des données, la génération des données intermédiaire
et les communications. Ceci permet notamment une amélioration de l’évaluation de
l’algorithme semi-naïf et par conséquent l’évaluation des requêtes récursives en
MapReduce.
 Ensuite, nous fournissons des modèles de coût généraux pour les jointures
binaire, à n-aire et récursive. Grâce à ces modèles, nous pouvons comparer les
algorithmes de jointure les plus représentatifs. Ainsi, nous pouvons montrer l’intérêt
des filtres proposés, grâce notamment à la réduction des coûts E/S (entrée/ sortie) sur
disque et sur réseau. De plus, des expérimentations ont été menées, montrant
l’efficacité du filtre d’intersection par rapport aux solutions, en comparant en
particulier des critères tels que la quantité de données intermédiaires, la quantité de
données produites en sortie, le temps d’exécution et la répartition des tâches.

VI

 Nos propositions pour les opérations de jointure contribuent à l’optimisation en
général de la gestion de données à l’aide du paradigme MapReduce sur des
infrastructures distribuées à grande échelle.

Mots clés: données massives, MapReduce, Filtre Bloom, Jointure, évaluation de
requêtes récursives, optimisation.

VII

Contents

INTRODUCTION... 1

1.1 Context and motivation ... 1

1.2 Goal of the thesis .. 3

1.3 Thesis outline ... 5

BACKGROUND AND RELATED WORKS 8

2.1 Background .. 8

2.1.1 Join operation .. 8

2.1.2 MapReduce framework .. 11

2.1.3 Parallelization of a join operation in MapReduce 13

2.1.4 Iteration in MapReduce ... 15

2.2 Basic join algorithms in MapReduce ... 17

2.2.1 Map-side join... 17

2.2.2 Reduce-side join .. 19

2.2.3 Broadcast join .. 22

2.2.4 Semi-join ... 24

2.3 Bloomjoin algorithm in MapReduce ... 27

2.3.1 Bloom filter ... 27

2.3.2 Bloomjoin algorithm description .. 31

2.4 Summary .. 34

OPTIMIZATION FOR TWO-WAY JOINS AND
IMPORTANT MULTI-WAY JOINS 38

3.1 Introduction .. 38

3.1.1 Previous work .. 38

3.1.2 Definitions and notations ... 40

3.2 Modeling intersection filter ... 41

3.2.1 Approach 1: a pair of Bloom filters .. 41

3.2.2 Approach 2: intersecting unpartitioned Bloom filters 42

3.2.3 Approach 3: intersecting partitioned Bloom filters 43

3.2.4 The false intersection probability ... 45

VIII

3.3 Optimization for two-way joins using intersection filters in MR 47

3.3.1 Implementation overview .. 47

3.3.2 Optimized two-way join algorithm .. 50

3.3.3 Cost analysis for two-way joins in MapReduce 52

3.4 Optimization for multi-way joins using intersection filters in MR 56

3.4.1 Extended intersection filter .. 56

3.4.2 Three-way join using intersection filter .. 56

3.4.3 Chain join using intersection filter ... 62

3.4.4 Star join using intersection filter .. 65

3.4.5 Cost analysis of three-way joins in MapReduce 66

3.4.6 Cost analysis of chain joins in MapReduce 69

3.5 Experimental evaluation ... 70

3.5.1 Two-way joins ... 70

3.5.2 Chain joins .. 77

3.6 Summary .. 81

OPTIMIZATION FOR RECURSIVE JOINS AND
SEMI-NAIVE ALGORITHM 83

4.1 Introduction .. 83

4.1.1 Previous work .. 83

4.1.2 Proposal for recursive join using filters .. 86

4.1.3 Definitions and notations ... 88

4.2 Modeling difference filter ... 89

4.2.1 Existing solutions .. 89

4.2.2 Problem definition ... 94

4.2.3 Difference filter design .. 95

4.2.4 Dynamic Bloom Filter ... 98

4.2.5 False difference probability.. 99

4.3 Optimizing recursive joins and semi-naive algorithm 105

4.3.1 Implementation model ... 105

4.3.2 Optimized semi-naive algorithm in MapReduce........................... 108

4.4 Cost analysis for recursive joins .. 113

4.4.1 Cost model .. 113

4.4.2 Cost comparison .. 115

4.5 Summary .. 117

IX

CONCLUSIONS AND FUTURE WORK 120

5.1 Thesis conclusions .. 120

5.2 Disscusion and future work ... 122

5.2.1 Two-way and multi-way joins .. 122

5.2.2 Recursive joins .. 125

5.2.3 Query language for NoSQL databases .. 128

Bibliography .. 130

X

List of Figures

2.1: Types of joins .. 10
2.2: MapReduce Execution ... 11
2.3: Difference between traditional parallelism and MapReduce 13
2.4: Parallel implementation of the join operation in MapReduce 15
2.5. HaLoop vs. Hadoop Programming Model [13] .. 16
2.6: Map-side join in MapReduce ... 17
2.7: Reduce-side join in MapReduce .. 20
2.8: Broadcast join in MapReduce .. 22
2.9: Semi-join in MapReduce ... 25
2.10: A Bloom filter BF(S) with 3 hash functions .. 28
2.11: Approximate representation of S with false positives...................................... 28
2.12: False positive rate and number of hash functions ... 29
2.13: Bloomjoin in MapReduce .. 32
3.1: Basic join operation using BF in MapReduce .. 39
3.2: Intersection Filter returning an output with two possibilities 41
3.3: Intersection filter using a pair of Bloom filters ... 42
3.4: Intersection filter based on intersecting unpartitioned Bloom filters................. 43
3.5: Partitioned Bloom filter BF(S) ... 43
3.6: Intersection filter based on intersecting partitioned Bloom filters 44
3.7: Set intersection representation using Bloom filters ... 45
3.8: Join implementation using intersection filter in MapReduce 47
3.9: Extended intersection filter - EIF(BF1, BF2, ..., BFk) .. 56
3.10: Distributing tuples of R, K, and L among r = m2 reducers 57
3.11: Three-way join operation using intersection filter .. 58
3.12: A chain join ... 62
3.13: Implementation of a chain join using a Bloomjoin cascade 62
3.14: Implementation of a chain join using a cascade of two-way joins using
intersection filters ... 63
3.15: Optimization of a chain join using extended intersection filters 64
3.16: A star join .. 65
3.17: Implementation of a star join ... 66
3.18: Comparison of Map output among the intersection filter-based joins 73
3.19: Total execution time .. 74
3.20: 70GB Task timelines during the execution of the join job 75
3.21: Threshold of redundant data amount for the joins with 2GB inputs 76
3.22: Total intermediate data ... 79
3.23: Total output data (Map output + Reduce output) .. 80
3.24: Total execution time .. 81

XI

4.1: Relationship between join and dup-elim tasks .. 84
4.2: Semi-naive implementation of recursive joins in MapReduce 86
4.3: Filter-based optimization for the semi-naive algorithm and recursive joins 87
4.4: Invertible Bloom filter ... 91
4.5: InvBF Subtraction.. ... 92
4.6: Difference filter returning an output with three possibilities 94
4.7: Design of difference filter .. 95
4.8: Example of difference filter ... 96
4.9: Dynamic Bloom filter DBF(Fi-1) .. 98
4.10: Output of difference filter .. 99
4.11: Representation of elements on each filtering level .. 100
4.12: Graph of the false difference probability with m2=100 102
4.13: False difference probability with variation of nr and m2 103
4.14: Example of filtering different elements .. 104
4.15: Pre-processing job for building initial filters .. 105
4.16: Recursive Join execution based on Intersection-Diff filter in MapReduce 106
5.1. A kind of Bushy join trees in PM approach .. 124
5.2. Two kinds of join trees in CM approach ... 124
5.3. Data skew in recursive join .. 127

XII

List of Tables

Table 3.1: List of notations ... 40
Table 3.2: Cost model parameters for two-way joins ... 52
Table 3.3: Input datasets used in three tests ... 71
Table 3.4: The number of intermediate tuples (Map output) 72
Table 3.5: Parameters of filters used in experiments.. 72
Table 3.6: Execution of pre-processing job and join job .. 74
Table 3.7: Input datasets used in three tests ... 77
Table 3.8: Parameters of filters used in experiments.. 78
Table 3.9: The total number of intermediate tuples (all map outputs) 79
Table 4.1: List of notations ... 89
Table 4.2: Cost model parameters for recursive join.. 113

CHAPTER

INTRODUCTION

1.1 Context and motivation
Since the advent of applications that proposes Web-based services to a worldwide
population of connected people, the information technology community has been
confronted to unprecedented amount of data, either resulting from an attempt to
organize an access to the Web information space (search engines), or directly
generated by this massive amount of users (e.g., social networks). Companies like
Google or Facebook, representative of those two distinct trends, have developed for
their own needs data processing platforms that combine an infrastructure based on
millions of servers, data repositories where the least collection size is measured in
Petabytes, and finally data processing softwares that massively exploit distributed
computing and batch processing to scale at the required level of magnitude. Besides,
although the Web is a primary source of information production, the Big Data Issue
can now be generalized to other areas that constantly collect data and attempt to
make sense of it. Sensors incorporated in electronic devices, satellite images, web
server logs, bioinformatics are now considered as gold mines of information that just
wait for the processing power to be available, reliable, and apt at evaluating complex
analytic algorithms.
 The MapReduce programming model [1], published ten years ago, has become a
standard for processing, analyzing and generating large data in a massively parallel
manner. Its success comes from its simplicity: users only define a map function that
maps a key/value pair into intermediate key/value pair(s), and a reduce function that
processes all intermediate values associated with the same intermediate key. In
addition, MapReduce proposes an abstraction of the underlying parallel execution,
and enjoys nice properties in terms of fault tolerance, a necessary feature when
hundreds or even thousands of commodity machines are involved in a job that may
extend of days or weeks.
 However, the MapReduce programming model suffers from severe limitations
when it comes to implement algorithms that require data access patterns beyond
simple scan/grouping operation. In particular, it is not suited for operations with
multiple inputs. In the present dissertation we efficiently investigate and optimize the
evaluation, in a MapReduce environment, of one of the most salient and
representative such operations: Join. A join combines related tuples from datasets on
different column schemes and thus raises at a generic level the problem of combining
several inputs with a programming framework initially design for scanning,
processing and grouping a single dataset. Joins are basic building blocks used in
many sophisticated data mining algorithms. An important first step toward the
efficient processing of the large-scale data analysis is therefore the optimization of
the join operation.

Chapter 1 INTRODUCTION

2

 This problem has become a hot research topic in recent years
[2][3][4][5][6][7][8][9]. Many studies have been conducted so far on join calculating
in a MapReduce environment. Two main classifications of the join computing
operation includes Map-side join [10][2][3] and Reduce-side join [10][2][3]. Besides,
some variants and improvements of the join operation like broadcast join [3], semi-
join [3], Bloomjoin [4][11], multi-way join [6], and recursive join [7][12][13][14]
have been proposed.
 Although joins in MapReduce can be implemented in many ways, the relative
performance of the various algorithms depends on certain assumptions such as the
size of inputs, strict constraints on data, joined rates between inputs, etc. Map-side
joins would be better to perform the entire joining operation in the map phase since it
may save the shuffle and reduce phases. But this solution is also limited in running
extra MapReduce jobs to repartition the data sources to be usable. Meanwhile,
Reduce-side joins are more flexible and general to process a join operation as a
standard MapReduce job without any constraints, but they are quite inefficient
solutions. Joining does not take place until the reduce phase. In addition, the shuffle
phase is really expensive since it needs to shuffle all data, sort and merge.
 Observing Reduce-side joins shows that many intermediate pairs generated in
the map phase may not actually participate in the joining process due to no matching
with any pairs in another input dataset. Consequently, it would be much more
efficient if we eliminate the non-joining data right in the map phase. This problem
can be solved by using a distributed cache to disseminate a hashmap of one of input
datasets across all the mappers, then dropping tuples whose join key not in the
hashmap. The main obstacle in this way resides at the hashmap because the hashmap
may not fit in memory and its replication across all the mappers may be inefficient.
In this situation, therefore, a probabilistic structure called Bloom filter [15] is a
worthy replacement for the hashmap. It consists of an m-bit array and k distinct hash
functions for doing existence tests in less memory than a full list of keys from the
hashmap. However, the filtering efficiency of all the solutions has not yet been taken
into consideration, even both recent research efforts [4][6]. There remain a lot of
non-joining data after filtering because the filters have only the ability to filter on one
of input datasets instead of both. Thus, it is necessary to have a better filter to address
this problem (a).
 In addition to the above two-way joins, the researchers are also confronted big
challenges that come from multi-way joins and recursive joins in MapReduce. The
multi-way join extends the two-way join by handling multiple input datasets,
whereas the recursive join represents a computation of a repeated join operation.
Both of them are still open issues and their existing solutions from traditional
distributed and parallel databases cannot be easily extended to adapt to a shared-
nothing distributed computing paradigm as MapReduce. For this reason, the
evaluation of the complex joins has become an urgent requirement and should be
thoroughly considered by the following problems.
 Computing the multi-way join often generates intermediate results that may be
inputs of component joins of the multi-way join. These intermediate results contain a
lot of non-joining data that considerably increases total overheads for I/O, CPU, sort,
merge, and especially communication. We need to figure out optimized solutions that
can prevent the non-joining data involved in the intermediate results. Besides,
minimizing the intermediate data amount sent to the reducers should be addressed
appropriately (b).

1.2 Goal of the thesis

3

 Finally, the recursive join is a fundamental operation in computing the transitive
closure that is required in many significant applications such as the reachability
analysis of transition networks representing system [16], the construction of parsing
automata in compiler [17], and especially recursive database queries [7][18][19]. The
transitive closure (TC) of a binary relation K with attributes x and y can be defined
as:

where K0 = K, and
Ki-1 • K0 is the composition of Ki-1 and K0 and is identified:

Ki-1 • K0 = {(x, y) |  z (x, z)  Ki-1 and (z, y)  K0}
l is the longest path length in the relation graph of K - 1

 The above presentation shows that the "•" operator is actually the projection-join
of the two relations Ki-1 and K0, and thus is related to transitive closure algorithms.
There are several major existing algorithms for computing the transitive closure of a
relation. They are classified into two main groups, iterative and direct algorithms.
The iterative algorithms (e.g., naive [20], semi-naive [21][22], smart [23][24],
minimal evaluations [23], etc.) are applied to a tabular representation of the base
relation. The main idea behind iterative algorithms is to evaluate the transitive
closure breadth-first, with a loop containing algebraic expressions that derive new
tuples, until no new element is generated. The direct algorithms (e.g., Warshall [25]
and Warren [26] algorithms) are used for a matrix representation of a graph, and
operate depth-first. In this research, we consider the semi-naive iterative algorithm in
MapReduce.
 The semi-naive evaluation is a simple variation of the naive evaluation. It is an
algorithm for computing the least fixpoint. The main idea is that each iteration only
uses new tuples derived from the previous iteration (denoted as incremental relation)
to join with initial relation, K0. This variation reduces the amount of redundant
computation and duplicate data mentioned by the naive evaluation. We can specify
the incremental relation by computing the difference between tuples generated in
current iteration and tuples generated in previous iterations. As a result, the semi-
naive is an efficient transitive closure algorithm because the cardinality of the
incremental relation involved in the joins is reduced. However, the overheads of the
join and difference operations are very expensive and complex in a MapReduce
environment. Therefore, we should consider the optimized possibilities for recursive
joins using the semi-join algorithm toward to evaluating transitive closures as well as
recursive queries (c).

1.2 Goal of the thesis
The four main results of this dissertation are the following:

(1) Intersection filter and Difference filter

Our first result is to devise two new types of Bloom filters, Intersection filter
and Difference filter. The intersection filter is a method for representing the
intersection of two sets, which is used to test whether an element is a
common member of the two sets with a false positive rate. Meanwhile, the

 01
11

KKKK i
li

i
li

 


 

Chapter 1 INTRODUCTION

4

difference filter represents a set, which is used to check for set difference
(NOT membership) with a false negative rate. Namely, three approaches to
building the intersection filter and one approach for the difference filter are
proposed in this research.
Based on space efficiency, our filters can be applied to deal with a wide range
of common problems such as join operation in databases [4][5][6][27];
reconciliation and deduplication in networking and distributed systems
[28][29][30][31], bioinformatics [32][33], as well as databases [34][35][36];
error-correction in networking applications [37][38][39]; etc.

(2) Optimization for two-way and multi-way joins and cost models

Our second result is that optimizations for two-way joins and multi-way joins
using the different approaches of the intersection filter are more efficient than
the prior join algorithms [5]. This is because our join operations can eliminate
most non-joining data in both input datasets before sending them to the actual
join processing. As a consequence, intermediate results of multi-way join
operations now contain no redundant data, reducing significantly the
associated overheads.

An interesting characteristic of the intersection filter-based join operations is
that they can be completed without doing anything if the intersection filter is
empty (i.e. joined input datasets are distinct).
Besides, we also make an extension of the intersection filter to improve the
performance of three-way joins and chain joins including both cyclic chain
joins with many shared join keys. Thanks to the Lagrangian multiplier
method, we can indicate a good choice between our optimized solutions.
Moreover, our intersection filter-based join algorithms are developed by
pseudo codes.
Lastly, two cost models for two-way joins and multi-way joins are then
proposed to compare among the join algorithms more convincing.
All these help us address the problems (a) and (b).

(3) Optimization for recursive join and cost model
Our third result is to provide a simple and efficient solution for optimizing the
general semi-naive algorithm as well as the recursive join in MapReduce.
This solution uses the intersection and difference filters to compute the join
operation and the incremental relation all in one job. Consequently, the
recursive join is processed in the fixed number of computation iterations, l
rather than of 2×l. This leads to a better performance with less I/O operation
and the communication. The join implementation is then illustrated by an
algorithm in form of pseudo code.
In addition, a complex cost model for recursive joins is designed to
demonstrate the efficiency of our solution compared with others.

This optimization is an extremely important contribution to support scalable
social network analysis, internet traffic analysis, DNA data analysis, and
general recursive query. That also means the problem (c) is tackled by this
work.

1.3 Thesis outline

5

(4) Experimental evaluation
Our last result consists of experiments of the different join algorithms using
various parameters. Experimental results indicate that join operations using
our filters are more efficient than the others. The efficiency here is examined
with respect to the intermediate data amount, the total output amount, the
total execution time, and especially task timelines.

Experimental evaluation helps us thoroughly evaluate the performance of the
join algorithms.

1.3 Thesis outline

In Chapter 2, we define the basic join types that help us gain a better understanding
of the basic characteristics and features of important equi-joins. It then covers
specific equi-join operations that are used in this thesis such as two-way joins, multi-
way joins and recursive joins. Besides, we also summarize background components
that are the essentials of the MapReduce framework, parallelization of the join
operation, and iteration in MapReduce supporting iterative data analysis applications.
Basic concepts, terminologies, and characteristics of the Bloom filter are described.
Notably, we present the classification and details of dominant join algorithms in
MapReduce. We specifically analyse advantages and disadvantages of each method
to point out their limitations related to our proposals.
 In Chapter 3, we present our first two contributions including the intersection
filter and optimizations for two-way joins and multi-way joins. We first provide a
short survey of previous works, and show existing problems of the joins and
especially Bloomjoin that need to be addressed. Then, we describe three approaches
to building the intersection filter. The false intersection probability of the approaches
is defined. We use the intersection filter to optimize two-way joins and important
multi-way joins. In addition, we show cost models for two-way joins and multi-way
joins, and make comparisons of the different join algorithms. In the end of the
chapter, we present experiments on the performance of the joins and compare the
joins using the intersection filter to previous methods mentioned in the literature.
 In Chapter 4, we detail our last contribution that is an optimization for recursive
joins. First, we examine prior solutions for evaluating the semi-naive algorithm. The
problems of the solutions are shown in detail. Next, we describe basic concepts and
design details of the difference filter. A false difference of the filter is identified by a
probability. Then, we propose an optimization for the general semi-naive algorithm
using the intersection and difference filters. Our semi-naive strategy computes the
recursive join as an iteration of one join job instead of two MapReduce jobs. Finally,
the optimization for recursive joins using the filters is proved more efficient than the
existing solutions through a cost model-based comparison.
 In Chapter 5, we present the conclusions of the thesis. Besides, we discuss open
challenges and perspectives in optimization for join operations.

Part I

Background and related works

CHAPTER

BACKGROUND AND RELATED WORKS

MapReduce has emerged as a popular large-scale data processing model because of
its attractive programming interface with abstraction of parallelism, scalability, and
reliability. Basic relational operators such as selection, projection, group and
aggregation can be implemented easily and efficiently in MapReduce. In contrast, a
join operation is much more difficult and expensive. Significant efforts have been
made to develop efficient join algorithms in recent years. Therefore, we have
conducted a survey of various join algorithms to support our research. This work
investigates related works, strategies as well as advantages and disadvantages of the
join algorithms in MapReduce.
 The chapter is organized in the following way. The first section includes the
definition of the basic join types that supply a better understanding of important equi-
joins. It then moves to the join ways such as two-way joins, multi-way joins and
recursive joins. In addition, the section summarizes the fundamentals of MapReduce
and Apache Hadoop to start making sense of the join processing in the real world. It
also describes parallelization of the join operation and iteration in MapReduce
environment. Section 2.2 presents the classification and details of recent approaches
to improving the join computation. The advantages and disadvantages of the
approaches are also discussed. Next, we review some basic concepts, terminologies,
and characteristics of the Bloom filter in Section 2.3. It is used as an optimization
technique for joins in our approach. Besides, we present the Bloomjoin algorithm in
detail. Finally, Section 2.4 concludes all elements help us make better optimizations
for the joins in this research.

2.1 Background

2.1.1 Join operation

The join operation [40][41] is a fundamental operation and has been studied widely
in the database literature because it is a time consuming and data-intensive operation
in data processing. Based on a Cartesian product of relations, it combines related
tuples from relations according to a condition on different attribute schemes to form
a new relation with columns selected from across the multiple relations.
 Equi-joins are a common type of joins and are considered as a default type of
joins. We therefore consider the equi-joins as our main research object for optimizing
joins.
 The equi-join is a join where the join condition uses an equality operator (=) to
relate the tuples of two datasets. Two-way equi-joins, multi-way equi-joins, recursive
equi-joins, etc., are instances of the equi-join. Most of the existing work has
concentrated on the two-way joins and has left readers to extend the idea for the

2.1 Background

9

multi-way joins and the recursive joins. Our work will mention all of them. Before
moving any further, we define the context of this research:

 Two-way join: Given two datasets R and L, a two-way join is defined as a
combination of tuples r  R and l  L, such that r.x = l.y; where x and y are
columns in R and L respectively. This specification is represented as:

R ⋈x=y L

If the join columns in the datasets have the same name, we rewrite the two-
way join in a short form of R ⋈x L

 Multi-way join [42]: Given n datasets R1, R2, ..., Rn, a multi-way join is
defined as a composition of multiple two-way joins, noted as:

R1 ⋈ R2 ⋈ R3 ⋈ ... ⋈ Rn
We specifically consider multi-way joins using equi-joins, noted as:

R1 ⋈x2=x2 R2 ⋈x3=x3 R3 ⋈ ... ⋈xn=xn Rn

 Recursive join [43][44]: Given a dataset K(x, y), a recursive join is defined
as the transitive closure of the dataset K:

F(x, y) = K(x, y)  F(x, z) ⋈z=z K(z, y)

Two methods for computing the recursive join are the iterative and direct
methods. Our research focuses on the recursive join evaluation based on the
iterative method.

 For convenience, we use the following example during the research.
Example. Given a user dataset R(uid, uname, location), a log dataset L(uid, event,
logtime) and an acquaintance dataset K(uid1, uid2). We have the kinds of queries
expressed by expressions in the relational algebra as follows.
Q1 - Two-way join: Find the names and events of all users who have accessed before
07/07/2014
A1(uname, event) = ∏uname, event(R ⋈uid=uid logtime<12/02/2014 (L))
This query uses a two-way join for combining two datasets R and L' selected from L.
The two-way join is a basic type of joins. In this case, we consider the popular two-
way equi-join that uses equality operator on a common column uid.

Q2 - Multi-way join: Find the ids, events and times of all users who are known by
'Laurent dOrazio'
A2(uid, event, logtime) = ∏uid, event,logtime(uname='Laurent dOrazio' (R) ⋈uid=uid1 K ⋈uid2=uid L)
The query uses a multi-way join, precisely, a chain join. It links the datasets
including R' selected from R, K and L. The chain join is an important special case of
multi-joins, in which datasets are strung together to produce the result.

Q3 - Recursive join: List the ids of all users who may be friends of 'Philippe Rigaux'
A3(uid1, uid2) = K ⋈uid1=uid uname='Philippe Rigaux' (R)
A3(A3.uid1, K.uid2) = A3 ⋈uid2=uid1 K

Chapter 2 BACKGROUND AND RELATED WORKS

10

The query Q3 is defined by a recursive join to deduce a new dataset called friend A3.
The new dataset includes the acquaintance dataset K' selected from K and all new
tuples ('a','c') so that there exist K'('a', 'b') and K('b', 'c'). Actually, the query uses a
compound operation that involves in repeating the join operation.

 Although this research only addresses problems of the equi-join, we look at the
context of general joins to be able to distinguish the equi-join from various types of
joins. The join types can be grouped in two primary classifications including inner
joins and outer joins [45].

 (a) Inner join (b) Left outer join (c) Right outer join (d) Full outer join

Figure 2.1: Types of joins

 Inner join: a join chooses only tuples that match a join condition in both
joined relations (as in Figure 2.1(a)). It uses a comparison operator to match
tuples from two relations based on some columns from each relation. This
class is a typical join operation, which includes types as equi-joins, non-equi-
joins, natural joins, and cross joins.

 Equi-join: an equi-join uses an equivalence operation or an equality
operator (=) to match tuples from different datasets.

 Non-equi-join: a non-equi-join uses a non-equality comparison operator,
e.g., !=, <=, >=, >, < or BETWEEN, etc.

 Natural join: a natural join offers a further specialization of equi-joins.
The join compares all columns in both datasets that have the same
column-name in the joined datasets. The resulting joined dataset contains
only one column for each pair of equally-named columns.

 Cross join: it produces the Cartesian product of all the tuples in both
datasets. This type of join occurs when we do not specify a condition.

 Outer join: a join returns all tuples from at least one of datasets. As shown in
Figure 2.1(b-d), there are three types of outer join:

 Left outer join: it returns all the tuples that would be returned by an inner
join, plus all the tuples from the left (or first-listed) data set that do not
match any tuple from the right data set.

 Right outer join: it returns all the inner-join tuples, plus all the tuples from
the right dataset that do not match any tuple from the left dataset.

 Full outer join: it retains all tuples from datasets, regardless of matches.

 From the above classification, our main research subject, which is the equi-join,
belongs to an inner join.

R L R L R L R L

2.1 Background

11

2.1.2 MapReduce framework

MapReduce [1] is a parallel and distributed programming model for large-scale data
analysis run on computer clusters that can scale to thousands of nodes in a fault-
tolerant manner. The use of MapReduce has become widespread since Google first
introduced it in 2004. It allows users to concentrate only on designing their data-
processing operations regardless of the inherent parallel or distributed nature of the
cluster itself.
 In this model, a MapReduce job consists of two distinct phases, namely, map
phase and reduce phase. Each the phase executes a user-defined function as a
distributed execution of parallelizable computations, which acts upon a pair of key
and associated value(s). Figure 2.2 below describes MapReduce execution.

Figure 2.2: MapReduce Execution

 The user-defined map function (M) takes an input pair (k1, v1) from a Distributed
File System (DFS) and transforms into a list of intermediate key/value pairs list(k2,
v2). The intermediate values associated with the same key k2 are grouped together
and then passed to nodes that perform the reduce function.

map(k1, v1) → list(k2, v2)

 The reduce function (R) is called for each intermediate key k2 and a list of
values for that key to generate a new list of values.

reduce(k2, list(v2)) → list(k3, v3)

 As illustrated in Figure 2.2, a typical MapReduce job is executed within the two
phases across multiple nodes. The map phase and the reduce phase include map tasks
and reduce tasks, respectively. These tasks run simultaneously on the nodes.
 In the map phase, each map task reads a split of one input dataset, calls the map
function for each key/value pair to produce intermediate key/value pair(s). The map
task sorts the intermediate data and then calls a partition function on each key to
calculate its reducer node index. It means that the partition function operates on the
intermediate key/value pairs (k2, v2), and returns the partition index. The number of
partitions is equal to the number of reducers.

(k1,v1)

DFS

list(k3,v3)

DFS

Map phase

list(k2,v2)

 M

 M

 M
shuffle Reduce phase

(k2,list(v2))

 R

 R

Chapter 2 BACKGROUND AND RELATED WORKS

12

 The reduce phase has three steps, shuffle, sort and reduce. Shuffle is where the
intermediate data is collected by the reduce task from each map task. This can
happen while map tasks are generating data since it is only a data transfer. On the
other hand, sort and reduce can only start once all the map tasks are done. Each
reduce task collects the intermediate key/value pairs from all the map tasks,
sorts/merges the data with the same key, and then calls the reduce function to process
the value list and generate the final results. These results are then written back to
DFS.
 Intermediate pairs in the reduce phase are processed in increasing key order.
This ordering guarantee makes it convenient to generate a sorted data file on demand
and useful to support the reduce function that requires the order of keys.
 All of the reduce tasks can launch at the same time. Of course, the execution
time of one reduce task r1 can be different from others and r1 can run for a long
period of time. In other words, some reduce tasks finish faster, but other reduce tasks
may be executed longer.
 An optional combiner function pre-aggregates the map output in order to reduce
the amount of data to be transferred across the network. It runs after the map function
and before the reduce function. This means that the combiner function is executed on
the same node as the map node, receives data emitted by the map function on a given
node and emits output to the reduce nodes. Many data processing jobs use this
function such as search engine, machine learning and deduplication.
 After running the map function, if there are many identical key/value pairs, the
MapReduce framework has to send all those pairs to the reduce function. This can
incur a considerable overhead. To remove this redundant data, we can use the
combiner function. The example can be illustrated as follows.

Map: {(a, b), (a, b), (a, b), (a, d), (c, d)}
Combining: {(a, b), (a, d), (c, d)}
↓ shuffle
Reduce: {(a, [b, d]), (c, d)}

 We can see that the duplicate tuples (a, b) are eliminated by the combiner rather
than transferred to the reducer.

 Apache Hadoop [46] is an open source MapReduce framework written in Java
for executing applications on large clusters. While Google’s MapReduce framework
is not available to the public, several other implementations of MapReduce such as
DISCO [47] and Sphere [48] are also available but not as popular as Hadoop.
Hadoop includes a data storage component called Hadoop Distributed File System
(HDFS) and a data processing component called Hadoop MapReduce Framework.
These components correspond to the Google File System (GFS) and the general
MapReduce computing paradigm. Hadoop’s HDFS is a fault-tolerant distributed file
system. It divides files into blocks, replicates them, and stores them across the
cluster. HDFS provides high throughput access to application data in a distributed
environment [46][49][50]. To support this characteristic, HDFS leverages unusually
large (for a file system) block sizes and data locality optimizations to reduce network
input/output (I/O) [49]. It is therefore suitable for applications handling large

2.1 Background

13

datasets. Hadoop’s MapReduce is the processing component that distributes the
workload for operations on files stored in HDFS and automatically restarts failed
work. In our experiments, we use Hadoop to run MapReduce programs that examine
tackling large data joins using parallel processing.

2.1.3 Parallelization of a join operation in MapReduce

Before presenting this section in detail, we should look at the difference between the
MapReduce model and the existing parallel programming models like MPI,
OpenMP, CUDA, etc. MPI means Message Passing Interface, which is one of the
most portable high-performance computing programming models. It was designed to
enable parallel programming by communication on distributed-memory or shared
memory systems in which messages are data packets exchanged between processes.
MPI allows programs on one node to send data to another, or conversely receive. In
other words, tasks can use their own local memory during computation and exchange
data through communications by sending and receiving messages.
 Figure 2.3 depicts how a typical traditionally parallel application and
MapReduce application work.

(a) Traditional parallel model (b) MapReduce model

Figure 2.3: Difference between traditional parallelism and MapReduce

 Figure 2.3(a) illustrates a traditional parallel model. The input data is resided
some remote storage devices such as a file server serving files over NFS or a general
parallel file system (GPFS), etc. The compute nodes or workers are represented by
rounded rectangles. The tasks depicted eclipses can be MPI tasks, or threads on a
shared-memory system. The parallel application is executed as follows. A master
parallel worker (MPI rank, thread, etc.) reads the input data. The master worker then
splits the input data into chunks and sends them to each of the other workers. The
parallel workers compute on their chunk of the input data. The parallel workers
communicate their results with each other, and then continue the next computation.
For this model, the data is separated from the compute resources, e.g., the chunks of
computation are unavailable on compute nodes for the tasks. Besides, the master
worker can get around the bottleneck of reading performed serially, splitting and
distributing the large-scale input data to the compute nodes. These lead to limitations
for scalability.

Task 1Task 1
Task 1 Task 2 Task 1 Task n

Node 1

Data

Node 2

Data

Node n

Data

Master

JobTracker

metadata

data data

data
data data

Node 1

Task 1 Task 1

Node 2

Task 1 Task 2

Node n

Task 1 Task n

Data Data Data

Master

Master

Chapter 2 BACKGROUND AND RELATED WORKS

14

 In contrast, MapReduce model operates in a completely different way. It
conveys the computation close to where the data is, instead of moving the data to
where the computation is executed as the traditional model. It is shown in Figure
2.3(b). The model does not have to move any data because splits of the data already
reside on the compute nodes.
 As an illustration of using MapReduce, we consider the join operation of two
large datasets R (user dataset) and L (log dataset) to list the user names and
corresponding events that the users accessed to the system as the following query.

R(uname, uid) ⋈uid=uid L(uid, event)

 In large-scale data applications like social networks, this query may perform the
join of trillions of tuples. Therefore, the parallel model like MapReduce is a good
solution to this problem and significantly improves the response time.
 We show how to bring parallelism with MapReduce into the join execution as
depicted in Figure 2.4. The first step in building this parallel execution is specifying
sets of tasks that can run concurrently and partitions of data that can be concurrently
processed. Hence, there are two opportunities for parallelism in the join operation,
namely, parallel input processing and parallel join processing. They correspond to
parallel map tasks and parallel reduce tasks.
 The map tasks are responsible for processing splits of the inputs R and L
simultaneously. Because the splits of the two input datasets already reside on the
compute nodes, the parallel map tasks can handle its split independently and instantly
without moving any data. Even if the split is not available for the map task, the task
is closed to where the split is residing because of data locality in MapReduce. As in
Figure 2.4, the jobtracker creates three mappers to be able to process three splits of
the inputs concurrently. The first mapper computes on the first split consisting of
three tuples of R. The second split with one tuple of R and the third split with two
tuples of L are processed by the second and third mapper, respectively. The mappers
transform the tuples of R and L as follows.

 r is a tuple of R: r(uname, uid) → r'(uid, uname)
 l is a tuple of L: l(uid, event) → l'(uid, event)

It means that the join key uid is treated as the intermediate key for all the tuples.

As illustrated in Figure 2.4, we can show the parallel processing of the mappers in
detail.
 The mapper 1 for the first split of R:
 {(A, B), (C, B), (A, F)} → {(B, A), (B, C), (F, A)}
 The mapper 2 for the second split of R:
 {(C, D)} → {(D, C)}
 The mapper 3 for the split of L:
 {(B, C), (D, F)} → {(B, C), (D, F)}
 The intermediate tuples r' and l' are then shuffled to the reduce tasks.

2.1 Background

15

Figure 2.4: Parallel implementation of the join operation in MapReduce

 The reduce tasks perform joining for each key uid concurrently. The
intermediate tuples associated with the same key are passed to the same reducer. The
reduce function is called for each unique key with a list of values. The function
simply takes each tuple of R and finds tuples of L with the same join key to generate
the results. Figure 2.4 shows that the join key B has two tuples A and C of R joined
with one tuple C of L to produce two result tuples (A, C) and (C, C). We can see the
parallel join processing of the reducers in detail.

 The reducer 1 for the key join B: (B, [R:A, R:C, L:C]) → {(A, C), (C, C)}
 The reducer 2 for the key join F: (F, [R:A]) → {empty}
 The reducer 3 for the key join D: (D, [R:C, L:F]) → {(C, F)}

 The above execution shows that the parallel processing with MapReduce for the
join operation would be necessary to achieve high scalability and fault tolerance in
massive data joining.

2.1.4 Iteration in MapReduce

The fact is that the standard MapReduce framework lacks built-in support to perform
these iterative data processing applications. Instead, users must execute iterative
programs by manually linking. The general idea for these iterative algorithms in
MapReduce is to chain multiple jobs together, using the output of the last round as
the input of the next round. The program termination condition must be calculated

R(uname, uid) ⨝uid=uid L(uid, event)

parallel input processing

parallel join processing

Mapper Mapper Mapper

Shuffle and Sort: aggregate values by keys

Reducer Reducer Reducer

A B C B A F C D B C D F

B A B C F A D C B C D F

F A C B A C D C F

C A C C F C

Chapter 2 BACKGROUND AND RELATED WORKS

16

within a MapReduce driver program. Hadoop has added a feature, called Counters,
to execute this task. To check for a termination condition with Hadoop counters, we
run a job and collect statistics while it is running. Then, we obtain values of the
counters to compute the stop condition. Finally, we decide whether the loop is to stop
or to continue.
 HaLoop [13] is a modified version of the Hadoop framework, that is designed to
efficiently support such iterative MapReduce applications. HaLoop still uses the
Hadoop distributed file system for storing input and output data of MapReduce jobs.
The basic Hadoop framework is modified to accommodate the requirements of the
iterative applications. Task scheduler and task tracker modules are modified, and the
loop control, caching, and indexing modules are new. The task tracker not only
manages task execution, but also manages caches and indices on the slave node.
Besides, HaLoop provides a new application programming interface to simplify
iterative MapReduce programs as follows.

Figure 2.5. HaLoop vs. Hadoop Programming Model [13]

 Figure 2.5 shows the difference between HaLoop and Hadoop for supporting
iterative applications. HaLoop knows and controls the loop of map and reduce tasks,
while Hadoop only knows jobs with one map-reduce pair. Specifically, HaLoop
receives loop settings from a driver program and controls the loop execution,
whereas a driver program in Hadoop must control the loops.
 HaLoop provides three types of caches, namely, Reducer Input Cache (RIC),
Reducer Output Cache (ROC), and Mapper Input Cache (MIC).

 Reducer Input Cache: stores and indexes reducer inputs across all reducers.
This cache type is used to avoid reprocessing the same data with the same
mapper on iterations (e.g., a loop-invariant input relation K0).

 Reducer Output Cache: caches the most recent local output on each reducer
node and create a local index for the cached data. It is used in applications
where fixpoint evaluation should be conducted after each iteration.

 Mapper Input Cache: caches and indexes mapper inputs across all mappers. It
is used to avoid non-local data scans in mappers during non-initial iterations.

 Besides, HaLoop introduces the risk of recursive recovery, where a failure in
one step of one iteration may require re-execution of tasks in all preceding steps in
the same iteration or all preceding iterations. If there is a reduce task failure, the
failure recovery is similar to reducer task recovery in Hadoop and the cache must be

2.2 Basic join algorithms in MapReduce

17

reconstructed from the mapper output of iteration 0. In another case, if an entire node
fails, the mapper output of iteration 0 may be lost. Thus, the corresponding map tasks
are re-executed as needed.

2.2 Basic join algorithms in MapReduce

Most join algorithms in MapReduce are derived from the literature on join
processing in parallel RDBMSs [51][8][52][53][54] and distributed RDBMSs
[55][54][56] such as sort-merge join, repartition join, hash join, semi-join,
Bloomjoin, etc. However, they are not always straightforward to implement within
MapReduce environment because MapReduce is originally designed to read a single
input. Based on where the join processing takes place in a MapReduce phase, we can
show two main classifications of the join operation including Map-side join and
Reduce-side join [3]. In this section, therefore, we describe their implementation
details and discuss the difference between these two important join algorithms. Then,
some variants and improvements of the join algorithms like broadcast join and semi-
join are presented. The problem of skewed data processing in the join operation is
outside of our research scope.

2.2.1 Map-side join

Map-side join [2][3], which is similar to sort-merge join [51][52][57] in RDBMSs,
works by joining two datasets on the map side without a shuffle and reduce phase.
This algorithm however requires under certain conditions on input datasets. Each
input dataset must be divided into the same number of partitions, be sorted by the
join key, and has the same set of the keys. All the tuples associated with the same key
must reside in the same partition in each dataset. When a join job satisfies all the
mentioned requirements for two input datasets, map tasks are initiated and each map
task retrieves two partitions, one from each dataset. The join computation is
conducted by the map task before the data reaches the map function and then the
result can be directly written to DFS using the map function. We illustrate the Map-
side join algorithm on an example as Figure 2.6.

Figure 2.6: Map-side join in MapReduce

R(uid, uname) ⨝uid=uid L(uid, event)

R(uid, uname)
 1 user1

2 user2

n usern
... M

ap
pe

r
M

ap
pe

r
M

ap
pe

r

...

L(uid, event)

...
n logout

2 reg
2 mess
2 note

1 login
1 chat

DFS

usern logout

user2 reg
user2 mess
user2 note

user1 login
user1 chat

Chapter 2 BACKGROUND AND RELATED WORKS

18

 The illustration shows the join of two datasets user and log, R(uid, uname)
⋈uid=uid L(uid, event). The two datasets have the same n partitions with n join keys
sorted. Thus, the join job uses n mappers to process the partitions. The two partitions
with the join key 1 from the two datasets are read by the same first mapper. The first
mapper builds the cross product of all tuples with the same join key 1.

{(1, 'user1')} x {(1, 'login'), (1, 'chat')} → {('user1', 'login'), ('user1', 'chat')}

 The mapper then sends the output to the map function for storing into DFS. This
is similar to the other partitions with the key joins 2, ..., n.
The pseudo code of the Map-side join is shown in Listing 2.1.

Algorithm 1 - Map-side join algorithm

Job1: partition dataset R into n sorted partitions as requirement
Job2: partition dataset L into n sorted partitions as requirement
Job3: join two input datasets R and L

Init_Map() // init function for map phase

buff_R ← load(partitioni_R); //loading partitioni of R
buff_L ← load(partitioni_L); //loading partitioni of L
result ← empty; //for storing join computation
if (buff_R !=null & buff_L !=null) then

for each r in buff_R do
 for each l in buff_L do
 result.add(pair(r, l));

end if

Map(k: null, v: null)

for each t in result do
emit(null, t);

Listing 2.1: Pseudo code for Map-side join algorithm

 The Map initialization function, Init_Map(), defines an action to run before the
mapper processes any input. It loads the partition i of R and the partition i of L into
two memory buffers buff_R and buff_L, respectively, to then perform joining.

2.2 Basic join algorithms in MapReduce

19

We consider both advantages and disadvantages of using the Map-side join algorithm

 Advantages:

 The algorithm does not create intermediate data as well as has no the cost
incurred for the shuffle and reduce phases because it only scans the input
datasets and performs the join computation in the map phase.
Consequently, it is the most efficient join algorithm if its input datasets
meet all the mentioned conditions.

 Disadvantages:

 The drawback of the algorithm is the rigorous requirements on the input
datasets. They must be divided into the same number of partitions, be
strictly sorted by the join key, and have the same set of the join keys. For
arbitrary input datasets, therefore, the problem can be solved by passing
the input datasets through additional MapReduce jobs as a pre-processing
step that sorts and partitions the datasets in the same way. However, that
also means that this algorithm must take additional costs for the jobs of the
pre-processing step related to generating a large volume of intermediate
data, shuffling them to the reducers and performing local and remote I/O
operations.

 Another limitation of the algorithm is the buffering of both the two joined
partitions that can lead to a memory overflow for the compute node. The
two joined partitions consist of all the tuples with the same join key from
all the input datasets. As a result, the Map-side join can quickly run out of
memory when the size of the two joined partitions is larger than the size of
physical memory allocated for the mapper or the case of skewed datasets.

2.2.2 Reduce-side join

Reduce-side join [10][2] is also known as repartition join [3]. As implied by its
name, the actual join computation is only conducted on the reduce side. The
algorithm is based on the nature of the MapReduce framework. It partitions all tuples
of input datasets according to the join key into intermediate key/value pairs. Then it
shuffles (repartition) the immediate pairs to the corresponding reducers to compute
the join. All the pairs with the same join key must be sent to the same reducer and
sorted by the join key.
 When all the mappers are complete, the reducer calls the reduce function for
each the join key. The reduce function buffers only the pairs of one input dataset. It
then performs joining the buffered pairs with each pair of another input dataset
reaching. The output of the reduce function can be directly written to DFS. The
Reduce-side join algorithm is depicted as Figure 2.7.

Chapter 2 BACKGROUND AND RELATED WORKS

20

Figure 2.7: Reduce-side join in MapReduce

 The illustration shows the join of two datasets user and log, R(uname, uid)
⋈uid=uid L(uid, event) similar to the example of the Map-side join. The mappers scan
all fixed-size splits (e.g. two tuples) of R and L, extract the join key uid from the
tuples, and tick each tuple with a tag that indicates one input dataset containing this
tuple. The tuples in black are ticked with a tag 'R' and the tuples in blue are ticked
with a tag 'L'. Then the mappers emit tagged tuples with composite keys of the form
(uid, tag).
 We have to override the default partitioning function, namely a partitioner()
function. This function ensures that partitioning the tagged tuples takes into
consideration only the join key part (uid) and ignores the tag part (tag). As a result,
the reducers receive the tagged tuples of the form ((uid, tag), tuple) with the same
uid. For instance, the first reducer receives the three tagged-tuples with the same join
key 1: {((1,'R'), 'user1'), ((1,'L'), 'login'), ((1,'L'), 'chat')}.
 The tagged tuples are then sorted by the composite key or the tag part to reach to
the reduce function. The input to the reduce function is one list of the tuples in tag
order. The reduce function forms the cross product of the tuples of R that are buffered
and each tuple of S coming to complete the join and outputs new key/value pair(s)
with the uname as the key and event as the value.
 The output of the first reducer is a set of tuples {('user1', 'login'), ('user1',
'chat')}. The second reducer produces a set of tuples {('user2', 'reg'), ('user2', 'note')}
and the last reducer generates the empty output because it does not find any tuples
with the same join key.

Shuffle Combine & Sort Map Input Reduce Output

1,R user1
1,L login
1,L chat

2,R user2
2,L reg
2,L note

n,R usern
...

m,L logout

R(uname, uid)

...
n usern

2 user2
1 user1

L(uid, event)
 2 reg

1 login

1 chat
2 note

...
m logout

R(uname, uid) ⨝uid=uid L(uid, event)

DFS

 user1 login
 user1 chat

 user2 reg
 user2 note

M
ap

pe
r

...

M
ap

pe
r

M
ap

pe
r

M
ap

pe
r

M
ap

pe
r

...

R
ed

uc
er

R

ed
uc

er

R
ed

uc
er

2.2 Basic join algorithms in MapReduce

21

 The pseudo code of the Reduce-side join is shown in Listing 2.2.

Algorithm 2 - Reduce-side join algorithm

Map(k: null, v: a tuple from an R or L split)

tag ← a bit 0 or 1 corresponding to name of R or L;
key ← extract the join key from v;
emit(pair(key, tag), v);

Partitioner(k': taggedkey, v: value, p: the number of reducers)

return hash_func(k'.key) mod p;

Init_Reduce() // init function for the reduce phase

currentKey ← '0'; //for storing current key
buff ← empty; //for storing tuples with same key of R

Reduce(k': taggedkey, v': list of values v with key k')

if k'.key != currentKey then
clear(buff);
currentkey = k'.key;

endif
if k'.tag == '0' then

for each l in v' do
 add tuple l to buff;

else if k'.tag == '1' then
for each l in v' do
 for each r in buff do
 emit(null, pair(r, l));

end if

Listing 2.2: Pseudo code for Reduce-side join algorithm

 A reduce initialization function, Init_Reduce(), defines an action to run before
the reducer processes any input. It creates a memory object and allocates a memory
buffer for storing tuples with the same key of R.
 The Reduce-side join algorithm has the following advantages and disadvantages:

 Advantages:

 This algorithm uses the natural and flexible way of the MapReduce
framework to process a join operation as a standard MapReduce job. It is
the most general type of join algorithms without any constraints on input
datasets. Besides, it can address the problem of the memory overflow
better than the Map-side join because it buffers only tuples with the same
key of one input dataset instead of two input datasets as the Map-side join
done.

Chapter 2 BACKGROUND AND RELATED WORKS

22

 Disadvantages:

 Two major obstacles of this algorithm are the high I/O and communication
costs for intermediate data that is generated during the map phase and
transferred from map tasks to reduce tasks. It means that the entire input
datasets are sent across the network from the map nodes to the reduce
nodes.

 Like the Map-side join, the Reduce-side join can still run out of memory
when its input datasets are skewed.

2.2.3 Broadcast join

Broadcast join [3] in MapReduce is similar to a hash join in RDBMSs. The first hash
join algorithm has been mentioned in [53] and then in [51][8], etc. It is a special
variant of the Map-side join algorithm. However, it does not require the strict
restrictions on input datasets such as the same sorted-partitions and the same set of
join keys.
 For this join, a small input dataset is sent or broadcasted to all the compute
nodes. The mapper loads the small dataset into memory and calls the map function
for each tuple t from a larger input dataset. The map function probes the in-memory
dataset and finds matches with the tuple t to perform the join computation. It then
writes the joined tuples to DFS. Figure 2.8 shows an illustration of the broadcast join
algorithm.

Figure 2.8: Broadcast join in MapReduce

 Assume that we compute a join of two datasets user R(uname, uid) and log
L(uid, event), where R is a small dataset consisting of three tuples, and L is stored in
many splits, each containing two tuples. We can distribute the small dataset R to all
the mappers and each mapper can load it into memory by an initialize function. Next,

M
ap

pe
r

M
ap

pe
r

M
ap

pe
r

...

L(uid, event)

...
m logout

2 reg
1
1 chat
2 note

R(uid, uname)
 2 user2

1 user1
n usern

R(uid, uname) ⨝uid=uid L(uid, event)

DFS

user2 reg
user1 login

user1 chat
user2 note

2.2 Basic join algorithms in MapReduce

23

the mappers read splits of the dataset L. The first mapper reads the first split with two
tuples {(2, 'reg'), (1, 'login')}. The mapper calls the map function for each tuple t of
L. The map function goes through all tuples of the R in memory and joins them with
the tuple t if they have the same join key. We can look at the first mapper:

 {(2, 'user2'), (1, 'user1'), (n, 'usern')} x {(2, 'reg')} = {('user2', 'reg')}
 {(2, 'user2'), (1, 'user1'), (n, 'usern')} x {(1, 'login')} = {('user1', 'login')}

 The mapper emits each joined tuple to DFS. This work is similar to the other
mappers.

 There are some advantages and disadvantages to this broadcast join algorithm

 Advantages:

 The algorithm takes the advantages of the Map-side join algorithm, which
only includes the map phase without intermediate data and transmission of
the datasets over the network. It is even more efficient than the general
Map-side and Reduce-side join algorithms because it does not need the
pre-processing step for sorting the input datasets, buffers only one dataset,
and computes join at the map phase.

 Furthermore, it is important to note that the algorithm is not affected by
the problem of data skew because each mapper reads one split of the
larger input dataset in which the split fits in memory.

 Disadvantages:

 The broadcast join can be used for two arbitrary input datasets but one of
them should be quite small to be distributed to all the mappers and fit in
memory.

 The pseudo code of the broadcast join is shown in Listing 2.3.

Algorithm 3 - Broadcast join algorithm

Init_Map() // init function for map phase

buff_R ← load(R); //loading all tuples of R

Map(k: null, v: a tuple from an L split)

refKey ← extract the join column from v
for each r in buff_R do

joinKey ← extract the join column from r
if (joinKey == refKey) then

emit(null, pair(r,v));
end if

Listing 2.3: Pseudo code for Broadcast join algorithm

Chapter 2 BACKGROUND AND RELATED WORKS

24

2.2.4 Semi-join

Semi-join in MapReduce [3][9] is derived from the semi-join strategy that is a
popular technique for query processing in parallel and distributed database systems
[52][53][55][54][58][59]. This approach avoids sending non-joining tuples on the
network by eliminating tuples from one input dataset where their join keys are not
matching any value in another input dataset.
 We consider the join of two datasets user R(uname, uid) and log L(uid, event) as
the previous examples. The detail of the semi-join algorithm is described in three
computing stages:

 Stage 1: projects all tuples of the input dataset L on the join key column uid,
and stores these distinct keys into a file L.uid, assuming it is small enough to
fit in memory.

 Stage 2: distributes the file L.uid to all the compute nodes, and reduces each
split Ri to R'i by eliminating tuples whose join keys are not matching any of
L.uid

 Stage 3: broadcasts all the files R'i (R') to all the compute nodes, and
computes the cross product of each split Li and R'.

 To implement the algorithm, we use three MapReduce jobs corresponding to the
three stages as shown in Figure 2.9. These jobs are executed in the following
sequence.

 Job 1: determines a set of unique join keys of L (L.uid) by projecting tuples
of L on the join key column (uid). This job is a typical MapReduce job with
only one reducer. The mappers scan splits of L, extract the join key column
for each tuple, and pass these join keys to the reducer if they are not in a table
storing the previous distinct join keys. The reducer receives all the join keys
from all the mappers in which duplicate keys are eliminated, and saves the
distinct join keys to a file L.uid on DFS.

 Job 2: determines a filtered version of R (denoted R') by removing keys not in
L.uid. It is a map-only job without the reduce phase. The file L.uid is
distributed to all the compute nodes using a distributed cache and loaded into
a hash table by an initialization function for the map phase. The mappers scan
splits of R, extract the join key column for each tuple of R to check in the
hash table of L.uid, and then emit the tuples if their join keys are in the hash
table. Each mapper generates the output file R'i and the dataset R' includes all
the output files R'i.

 Job 3: computes the join of L and R'. This job is also a map-only job and
similar to the broadcast join. First, we can use a distributed cache to broadcast
the filtered version R' (all R'i) to all the compute nodes. The mappers then
load R' into a hash table to perform joining with their split Li. The results of
the join are written to DFS.

2.2 Basic join algorithms in MapReduce

25

Figure 2.9: Semi-join in MapReduce

Job1
Creates a file L.uid containing distinct join keys of L

Map
Mappers emit
distinct keys

Reduce
Single reducer emits
a set of distinct keys

L.uid
distinct

keys

L(uid, event)

...
m logout

2 reg
1 login

Job2
Creates a filtered version R' of R by removing keys not in L.uid

 Distributed cache

file L.uid

Map
Mappers emit tuples

whose join keys in L.uid R'

R'i
tuples of

Ri

R'j
tuples of

Rj

R(uid, uname)

1 user1
2 user2

...
n usern

Job3
Joins L with R'

 Distributed cache

filtered R (R')

Map
Mappers emit joined

tuples of Li and R'

L(uid, event)

...
m logout

2 reg
1 login Li⨝R'

joined
tuples

Lj⨝R'
joined
tuples

Chapter 2 BACKGROUND AND RELATED WORKS

26

 Listing 2.4 presents the pseudo code of the semi-join algorithm.

Algorithm 4 - Semi-join algorithm

Job 1: Determine L.uid which is a set of unique join keys of L
Init_Map() // init function for map phase

keyTable ← empty; //storing distinct keys

Map(k: null, v: a tuple from an L split)

joinKey ← extract the join column from v
if (joinKey not in keyTable) then

add joinKey to keyTable;
emit(joinKey, null);

end if

Reduce(k′: a unique join key, v': a list of null)

emit(null, k′);

Job 2: Determine R' which is a filtered version of R using L.uid
Init_Map() // init function for map phase

refKeyTable ← load(L.uid); //loading L.uid to hashtable

Map(k: null, v: a tuple from an R split)

joinKey ← extract the join column from v
if (joinKey in refKeyTable) then

emit(null, v);
end if

Job 3: Compute the broadcast join of R' and L for the final result
Init_Map() // init function for map phase

buff_R' ← load(R'); //loading all Ri

Map(k: null, v: a tuple from an L split)

refKey ← extract the join column from v
for each r in buff_R' do

joinKey ← extract the join column from r
if (joinKey == refKey) then

emit(null, pair(r,v));
end if

Listing 2.4: Pseudo code for Semi-join algorithm

2.3 Bloomjoin algorithm in MapReduce

27

 There are advantages and disadvantages to this semi-join algorithm

 Advantages:

 The semi-join is a type of the Reduce-side join, which is used for joining
two arbitrary input datasets. For the algorithm, its input datasets are
filtered to remove the non-joining tuples in the map phase before they are
sent over the network, and thus this reduces the amount of intermediate
data and communication costs.

 In practice, this approach is used when many tuples of one input dataset
may not be actually joined with any tuples of another input dataset. A
typical example is the Facebook social network application with the user
dataset R containing more than 1.23 billion users [60]. We would like to
know information about user’s activities in a certain period of time (e.g. an
hour). Meantime, the log dataset L contains the activities of only a few
million unique users and most of the users are not present in this log at all.
To get the information, we need to join the two datasets R and L. In this
context, the broadcast join is not appropriate because a large amount of the
non-joining tuples in R are still broadcasted across the network (via the
distributed cache) and loading entire R into the hash table can result in
running out of memory. Therefore, the semi-join algorithm becomes a
more suitable choice to avoid these problems.

 Disadvantages:

 The algorithm uses the three MapReduce jobs paying extra costs as job
initialization cost, intermediate data, local and remote I/O operations, and
communication cost.

 It must scan the input datasets multiple times. Moreover, in the third job,
broadcasting the filtered version of R (all R'i) to all the compute nodes is
very inefficient, even it can cause a memory overflow on all the compute
nodes if R' is enough large and this is not rare.

 A per-split semi-join algorithm [3] is designed to improve the semi-join
algorithm by only sending R'i to the mapper which holds Li instead of
sending the whole filtered version R'. Although this may reduce the
network overhead for the third job, the algorithm also has the three jobs,
depends on the size of R'i, and is sensitive to skewed data.

2.3 Bloomjoin algorithm in MapReduce

2.3.1 Bloom filter

2.3.1.1 Bloom filter basics

Bloom filter (BF) [15] was introduced already in 1970 by Burton Bloom. It is a
space-efficient randomized data structure used for testing membership in a set with a
small rate of false positives.
 Building the Bloom filter is based on the following definition of a key/value
map:

Chapter 2 BACKGROUND AND RELATED WORKS

28

Definition 2.1. A key/value map is a function H: U → V ∪ {} where U is the input
space, V is the value set and  is the null value. |U| = u, |V| = v and the support S = {x
 U | H(x)  V} has size n. A key is an element x  U.

 From the general key/value map model, if we set V= {true} and let  signify
false, we obtain a set membership tester that identifies whether x  U is a member of
a set S.
 The Bloom filter BF(S) for representation of a set S is described as follows.

 The set S = {x1, x2, ..., xn} of n elements is represented by an array of m bits,
initially all set to 0.

 The filter uses k independent hash functions h1, h2, ..., hk with hi: x → {1..m}.

 To insert an element x  S, we compute h1(x), h2(x), ..., hk(x), and set the
corresponding positions in the bit array to 1. Once we have done this
operation for each element of S, we should have a bit array that acts as an
approximate representation of the set.

 To check if y  S, we check whether for each of the k hash functions, the
position hi(x) is set to 1 in the bit array. If at least one of these positions is set
to 0, it is clear that y  S. Otherwise, all the positions are set to 1, we know
that y may be a member of S with some probability.

Figure 2.10: A Bloom filter BF(S) with 3 hash functions

 As shown in Figure 2.10, an element x  S is inserted into BF(S). We check an
element y and y may be in the set S since all the hash positions are set to one. An
element z is not in the set S, because it hashes to one bit-array position containing 0.
For this BF(S), the size of the filter is m=12 and the number of hash functions is k=3.

2.3.1.2 False positive probability and hash functions

 It is possible that multiple elements from the set S will map to the same position
in the bit array and even y is not in S but all hi(y) are set to 1. As a result, the Bloom
filter can have false positives and it represents a superset of the set S. The actual
elements in S and the false positive elements of BF(S) are represented in Figure 2.11.

Figure 2.11: Approximate representation of S with false positives

0 1 1 0 1 0 1 0 1 0 0 1

x z  y
? h

U

false positives BF(S)

S
ᴥ

ᴥ

ᴥ

ᴥ

2.3 Bloomjoin algorithm in MapReduce

29

 False positives are test results that indicate elements belong to S but in reality
they are not in S. In contrast, false negatives are test results that specify elements not
in S but actually they are in S.
 It is very important that Bloom filters will only return false positives and never
give false negatives.
 Assume that the hash functions are perfectly random, k is the number of hash
functions, and m is the size of the Bloom filter BF(S), which is the number of bits in
the array. After inserting all n elements of S into the Bloom filter, the probability that
a particular bit is still 0, is

m
kni

i

knikn

e
mi
kn

m
p













 






   1lim11

 Hence, the probability of a false positive for an element not in the set can be
calculated as the following expression (the probability that all k bits have been
previously set).

 
k

m
knkkn

k e
m

pf 
























 


11111

 From equation (2.2)Error! Reference source not found., setting the partial
derivative of f with respect to k to zero, the false positive probability f is minimized
for









n
mk *2ln 







n
mk *2ln

 This will lead to the false positive probability is:

nm
k

f /
min 6185.0

2
1









 In practice, however, we should use only a small number of hash functions
because the computational overhead of each hash additional function is constant
while the incremental benefit of adding a new hash function decreases after a certain
threshold as shown in Figure 2.12.

(a) False positive rate (b) Size of Bloom filter

Figure 2.12: False positive rate and number of hash functions

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 4 7 10 13 16 19 22 25 28 31

Fa
lse

 p
os

iti
ve

s
 ra

te
 (l

og
 s

ca
le

)

Number of hash functions

0
10
20
30
40
50
60
70

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

B
its

 p
er

 e
nt

ry

Error rate (log scale)

k=2
k=4
k=8
k=16
k=32

(2.1)

(2.2)

(2.3)

(2.4)

Chapter 2 BACKGROUND AND RELATED WORKS

30

 Figure 2.12(a) depicts the false positive rate as a function of the number of hash
functions used. In this illustration, the size of the Bloom filter is 32 bits per entry
(m/n=32) and thus the false positive rate is minimized for k=22 hash functions.
However, we can see that adding a hash function does not considerably reduce the
false positive rate when more than 10 hashes are already used.
 Figure 2.12(b) describes the size of the Bloom filter (bits/entry) as a function of
the error rate desired. Various lines represent different numbers of hash keys used. It
is found that, for the false positive rate considered, using 32 keys does not bring
considerable benefits over using only eight keys.
 One prominent feature of the Bloom filter is that the size of the filter is space-
efficient and fixed regardless of the number of the elements of the set S, but there is a
clear tradeoff between the size of the filter and the false positive probability. From
equation (2.4), if the number of elements in S does not change, the error probability
decreases as m increases (i.e., more memory usage). In other words, Bloom filters
become more effective if we can minimize the percentage of the false positive of
Bloom filters through tuning two important parameters such as m and k. There would
be a good result when larger sized filters were used, but they are less efficient in
memory and transmission over the network.

2.3.1.3 Constructing Bloom Filters

We consider a set },...,,{ 21 nsssS  of n elements. A Bloom filter BF(S) represents
membership information of S using a bit vector V of length m bits. The Bloom filter
uses k hash functions, khhh ,...,, 21 with }..1{: mXhi  .

 The following algorithm describes building the Bloom filter BF(S).

Algorithm 5 - Building Bloom filter

BloomFilter(S: a set, H: hash functions, m: size of Bloom filter)

bloomFilter ← allocate m bits initialized to 0;
for each si in S do

for each hj in H do
bloomFilter[hj(si)] = 1;

return bloomFilter;

Listing 2.5: Pseudo code for building Bloom filter

 From Listing 2.6, each element si of S is inserted into the Bloom filter BF(S) by
setting k positions that correspond to hashed values of x to one.

2.3 Bloomjoin algorithm in MapReduce

31

 Listing 2.6 shows the pseudo code for the algorithm of testing an element x in
the Bloom filter BF(S).

Algorithm 6 - Checking an element in Bloom filter

MembershipTest(x: an element, filter: Bloom filter, H: hash functions)

for each hj in H do
if filter[hj(x)] != 1 return No

return Yes;

Listing 2.6: Pseudo code for testing an element in Bloom filter

 To check an element x in the set S, the algorithm tests the k positions (hi(x)) in
the filter. If all the k positions are set to 1, x may be a member of S. Otherwise, x is
not a member of S. In other words, x may be an element of S if and only if all hashed
values of x are set to one in BF(S).

2.3.2 Bloomjoin algorithm description

Bloomjoin is mentioned as the Reduce-side join using Bloom filter in [11][4]. This
algorithm is also originated from the Bloomjoin approach in DBMSs [61][56][62]
which is an improvement of the semi-join approach by using the well-known Bloom
filter [15], a space-efficient data structure, to represent the L.uid instead of using a
hash table.
 We present the Bloomjoin algorithm without any modifications to the basic
MapReduce framework.
 We still use the two datasets user R(uname, uid) and log L(uid, event) as an
illustration of the Bloomjoin. The algorithm is presented in two computing stages:

 Stage 1: projects all tuples of the input dataset L on the join key column uid,
hashes these keys into a Bloom filter, and stores the filter into a file
BF_L.uid. The filter is not dependent on the number of the keys as well as
key duplication and the size of the filter is small.

 Stage 2: distributes the file BF_L.uid to all the compute nodes, uses this filter
to eliminate non-joining tuples in R, then performs the join of the input
dataset L and the filtered version of R.

 The Bloomjoin algorithm can be implemented by using two MapReduce jobs as
shown in Figure 2.13.

 Job 1: builds a Bloom filter BF_L.uid storing all join keys of L by projecting
tuples of L on the join key column (uid). It is a full MapReduce job with only
one reducer. The mappers scan splits of L, extract the join key column for
each tuple, insert these join keys into local Bloom filters without considering
key duplication because of characteristics of the Bloom filter, and then emit
the local filters to the reducer. The reducer receives all the local filters from

Chapter 2 BACKGROUND AND RELATED WORKS

32

all the mappers, merges these filters into a global filter by using the bit-wise
OR. The global filter is stored into a file BF_L.uid on DFS.

 Job 2: filters out non-joining tuples in R and joins filtered version R' with L.
This job is a typical MapReduce job. We use a distributed cache to distribute
the file BF_L.uid to all the compute nodes and the mappers load it into an in-
memory Bloom filter structure using an initialization function. The mappers
scan splits of R and L, and extract the join key column for each tuple
(joinKey). For the tuples of R, the mappers check their join keys in the filter
BF_L.uid, and emit the tuples whose keys are in the filter. The tuples of L are
not filtered. Each the tuple is transformed into a pair in form of ((joinKey,
tag), tuple) and emitted to the reducers. The join processing is executed in the
reduce phase similar to the Reduce-side join algorithm.

Figure 2.13: Bloomjoin in MapReduce

Job1
Builds a Bloom filter BF_L.uid storing join keys of L

Map
Mappers hash keys
to local filters and
emit local filters

Reduce
Single reducer

merges local filters
and emits a global

filter

BF_L.uid
global
filter

L(uid, event)

...
m logout

2 reg
1 login

Job2
Filters out non-joining tuples in R and joins filtered version R' with L

Li⨝R'

joined
tuples

R' ⨝ L

joined
tuples

Reduce

Reducers emit
joined tuples

R' ⨝ L

R(uid, uname)

1 user1
2 user2

...
n usern

L(uid, event)

...
m logout

2 reg
1 login

 Distributed cache

file BF_L.uid

Map

Mappers emit
filtered tuples

whose join keys
in BF_L.uid

2.3 Bloomjoin algorithm in MapReduce

33

 Listing 2.7 presents the pseudo code of the Bloomjoin algorithm.

Algorithm 7 - Bloomjoin algorithm

Job 1: builds a Bloom filter BF_L.uid storing all join keys of L
Init_Map() // init function for map phase

bfilter ← empty; //storing keys of L

Map(k: null, v: a tuple from an L split)

joinKey ← extract the join column from v
add joinKey to bfilter;

Close_Map() // close function for map phase

emit(null, bfilter);

Init_Reduce() // init function for reduce phase

globalBF ← empty; //merging local filters

Reduce(k′: null, v': a list of local bloom filters)
for each bfilter in v' do

OR(bfilter, globalBF);

Close_Reduce() // close function for reduce phase

Save the filter structure globalBF into a file BF_L.uid on DFS

Job 2: filters out non-joining tuples in R and joins R' with L
Init_Map() // init function for map phase

globalBF ← load(BF_L.uid); //loading filter

Map(k: null, v: a tuple from an R or L split)

tag ← a bit 0 or 1 corresponding to name of R or L;
key ← extract the join key from v;
if (tag == '1' || (tag == '0' & key in globalBF)) then

emit(pair(key, tag), v);

Partitioner(k': taggedkey, v: value, p: the number of reducers)

return hash_func(k'.key) mod p;

Init_Reduce() // init function for reduce phase

currentKey ← '0'; //for storing current key
buff ← empty; //for storing tuples with same key of R

Reduce(k': taggedkey, v': list of values v with key k')

if k'.key != currentKey then
clear(buff);
currentkey = k'.key;

endif

Chapter 2 BACKGROUND AND RELATED WORKS

34

if k'.tag == '0' then
for each l in v' do
 add tuple l to buff;

else if k'.tag == '1' then
for each l in v' do
 for each r in buff do
 emit(null, pair(r, l));

end if

Listing 2.7: Pseudo code for Bloomjoin algorithm

Advantages and disadvantages of the Bloomjoin algorithm are listed below:

 Advantages:

 Like the semi-join, the Bloomjoin is an approach that can be used to
reduce the amount of data transferred and perform efficient join
processing without any restrictions on input datasets. The algorithm uses a
compact join key representation that is a bit vector for distributing to all
the compute nodes rather than transferring values of the join keys as the
semi-join done. It should be noted that the size of the filter does not
depend on the number of join keys. In addition, the algorithm uses only
two MapReduce jobs instead of the three jobs, thus it is more efficient
than the semi-join.

 There is now an effort to improve the Bloomjoin algorithm by Lee et al
[4]. The join only includes a MapReduce job. However, Lee have made
two changes to the typical MapReduce framework by assigning map tasks
in the order of the dataset and building the filter with the heartbeat
technique.

 Disadvantages:

 The algorithm uses an additional job for building the filter, which
represents extra costs as scanning the input dataset L two times,
intermediate filters, communication cost, etc.

 Broadcasting the filter becomes inefficient if the size of the filter is large.
Additionally, this approach also accepts a small false positive rate in
filtering the non-joining tuples.

2.4 Summary

This chapter reviews the two of popular and important techniques for handling large-
scale datasets, the MapReduce framework and the Bloom filter. The MapReduce
programming model enables easy development of scalable parallel applications to
process vast amounts of data. The Bloom filter based on space efficiency has found
applications in many fields, especially databases [63][64][65][59]. An illustration of
using the Bloom filter is an optimization for the join processing.

2.4 Summary

35

 Furthermore, we provide a state of the art on the status of studies on joins with
MapReduce and the recent research. We present an overview of the prominent join
algorithms and categorize them with respect to their strategies. The two main
existing approaches in literature for the MapReduce join operation are: (1) the Map-
side join approach, and (2) the Reduce-side join approach. In particular, we have
introduced the semi-join and Bloomjoin algorithms that allow reducing the amount
of redundant data transferred over the network, and the communication costs. In
addition, we also show the advantages and disadvantages of the join algorithms.
 Through the survey, we realize that there remain a lot of non-joining data sent to
the reducers in the existing join algorithms. The Bloomjoin can only remove
redundant data in one input dataset. Therefore, we need to look for a type of filter
that has the ability to eliminate all tuples whose join keys are not common keys in
input datasets. There are some important variations of the Bloom filter such as
compressed Bloom filter [66], spectral Bloom filter [67], Bloomier filter [68], space-
code Bloom filter [69], distance-sensitive Bloom filter [70], etc. A variant called
Counting Bloom Filters (CBF) [71] allows deletion of elements from the Bloom
filter by using counters instead of a single bit at every position. Furthermore, another
version of the Bloom filter is Invertible Bloom Filters (InvBF) [72] that supports not
only the insertion, deletion, and lookup of elements, but also enables a listing of its
contents with a probability. However, all the filters are not designed for our purposes.
As a result, an intersection filter for optimization of joins should be proposed.
 Multi-way joins can get benefits from the above idea because all their
intermediate join results contain only actual joining data.
 Nevertheless, some of problems of recursive joins still exist. As mentioned, our
recursive join is computed as an iteration of the join and difference operations with
the loop-invariant input relation K0. We face two problems for manually chaining
multiple MapReduce jobs. The first one is the loop-invariant data K0 that must be
rescanned, retransformed, and reshuffled on each iteration. It incurs significant
overheads such as I/O, CPU, and communication. The second problem is the
termination condition involving a fixpoint, i.e., the output of the current iteration and
the previous iteration is the same. This condition requires an additional MapReduce
job on each iteration to specify the fixpoint. It must once again incur substantial
overheads such as scheduling the extra job, rescanning the output of two last
iterations, and transferring large amounts of data via network.
 To overcome the existing limitations of the Hadoop MapReduce framework for
iterative applications, we mention the HaLoop framework to deploy our recursive
joins. HaLoop caches the loop-invariant input dataset K0 and the output of each
iteration on the physical node’s local disk for later reuse. If a cache becomes
unavailable, it is automatically reloaded, either from map task physical nodes, or
from HDFS. More importantly, we extend the Bloom filter to be able to specify
difference elements between datasets. Our difference filter is then used in the
recursive join without using an additional job. This improvement reduces many
associated overheads.
 All these elements help us devise better optimizations for the joins that are the
main subject of this research.

Part II

Contributions

CHAPTER

OPTIMIZATION FOR TWO-WAY JOINS

AND IMPORTANT MULTI-WAY JOINS

MapReduce has become an attractive and dominant model for processing large-scale
datasets. However, this model is not designed to directly support operations with
multiple inputs as joins. Many current studies on join algorithms including both
Bloomjoins in MapReduce have been conducted but they still have much redundant
data generated and transmitted over the network. This research will help us address
the problem by providing a new type of filter called Intersection Bloom filter using a
probabilistic model to remove most non-joining elements between input datasets.
Namely, three ways are proposed on the intersection filter. We then consider two-way
joins and important multi-way joins using the intersection filter, and analyze their
costs. As a result, thanks to the high accuracy intersection filter, the join processing
can minimize disk I/O and communication costs. Finally, the research is proved to be
more efficient than existing solutions through a cost-based comparison and
experiments of joins using different approaches.
 This chapter is formed as follows. Section 3.1 provides a short description of
previous work as well as points out its limitation. We then introduce an overview of
our contributions, definitions and notations. The remainder of the chapter therefore
presents our proposals in detail. Section 3.2 describes three approaches to building
the intersection filter with a small false intersection probability. Section 3.3 uses the
intersection filter for optimizing two-way joins. A cost model and a cost comparison
of two-way join algorithms are given. Next, we show advantages of an extended
intersection filter (EIF) for optimizing multi-way joins in Section 3.4, namely, three-
way joins and chain joins. The Lagrangian method is used to help us choose a three-
way join cascade and a two-way join cascade. In addition, two optimized solutions
using the EIF for chain joins are suggested in this section. Moreover, two cost
models for three-way joins and chain joins are also provided. Thanks to the cost
models, we can make comparisons of different join algorithms for multi-way joins
more convincing. The evaluation environments, experimental protocols and
experiments are reported in Section 3.5. Finally, Section 3.6 includes conclusions on
our work.

3.1 Introduction

3.1.1 Previous work

Bloomjoins in DBMSs [61][56][62] with the necessary modifications have been
deployed to handle large datasets in MapReduce. However, the standard Bloom filter
in Bloomjoins only have the ability to remove non-joining tuples from one of input

3.1 Introduction

39

datasets instead of both. As a result, there remains a large amount of non-joining data
from another input dataset sent to the reducers for the join processing. Figure 3.1
describes an illustration of a basic join operation using the Bloom filter in
MapReduce.

Figure 3.1: Basic join operation using BF in MapReduce

 A Bloom filter BF(L.uid) is first built for an input dataset L on a join key column
uid and is delivered across all the mappers. Each the mapper receives tuples from R
or L, it eliminates tuples whose join keys are not in BF(L.uid) and emits key/value
pairs for the remaining tuples. Then, the pairs are passed to corresponding reducers
to be joined. However, the filter efficiency of the Bloomjoin algorithm and even with
the recent extended researches [11][4] has not really been taken into consideration
yet. Namely, with using only the filter BF(L.uid) for both the two inputs R and L, the
algorithm can only eliminate non-joining tuples of the dataset R (e.g., tuples with the
join key values of 2 and 4) without eliminating non-joining tuples of the dataset L
(e.g., tuples with the join key values of 3 and 6). This redundancy considerably
increases associated overheads in cases of multi-way joins and iterative joins.
 We can see that the actual results of the inner join operation only contain tuples
whose join keys belong to the intersection of the two input datasets projected on the
join key column. As shown in Figure 3.1, the output is tuples whose join keys have
the same value as 1 and belong to the intersection of R.uid and L.uid:

{1}={1, 2, 4} ∩ {1, 3, 6}.
 For this reason, we need to build a new filter type representing the intersection
of the input datasets to be able to filter out non-joining data in both of these datasets.
The complex joins can take advantages from our proposed filter. This chapter,
therefore, makes the following main contributions: (a) the intersection filter with

DFS read/write
Local write
Remote communicaton

<6, L:6::y>

<1, R:a::1>

<2, R:b::2>
<2, R:c::2>
<4, R:d::4>

<1, L:1::t>
<3, L:3::z>

(a,1)
(b,2)
(c,2)
(d,4)

(1,t)
(3,z)
(6,y)

L

R

Group by join key

<6, L:6::y>

<1,[R:a::1,
 L:1::t]>
<3, L:3::z>
 [(a,1,t)]

[(R:a::1)]
X

[(L:1::t)]

 Input Map Shuffle Reduce Ouput

<1, R:a::1>
<2, R:b::2>
<2, R:c::2>
<4, R:d::4>

<1, L:1::t>
<3, L:3::z>
<6, L:6::y>

Pairs: (key, targeted record)

Bloom filter - BF(L.uid)

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

40

three approaches that approximates the intersection of datasets; (b) optimization for
two-way joins and multi-way joins using the intersection filter in MapReduce; (c)
comparison among the joins using different approaches through cost models and
experiments.
 It should be noted that major research subjects of the chapter are the queries Q1
and Q2 introduced in Chapter 2, which are inner join queries.

3.1.2 Definitions and notations

We supply definitions and notations used in this research as follows.

Definition 3.1. The intersection (denoted ∩) of two or more sets is the set of
elements that are common in all the sets.

Definition 3.2: An Intersection Bloom Filter (IBF) is a probabilistic data structure
designed to represent the intersection of sets. It is used to recognize common
elements of the sets with a false positive probability.

Notations are given by Table 3.1.

Table 3.1: List of notations

Notation Explanation

|S| The cardinality of a set S, which is the number of elements in set S

\ The difference operator

 The union operator

∩ The intersection operator

S1 ∩ S2 The intersection of two sets S1 and S2

IF(S1 ∩ S2) The general intersection filter representing the intersection of S1 and S2

BF(S) The Bloom filter built for a set S

BF(S1) ∩ BF(S2) Intersecting two Bloom filters BF(S1) and BF(S2)

IBF(S1 ∩ S2) The Intersection Bloom filter representing the intersection of S1 and S2

fBF The false intersection probability of Bloom filters

fPBF The false intersection probability of partitioned Bloom filters

EIF The extended intersection filter

3.2 Modeling intersection filter

41

3.2 Modeling intersection filter

We propose a filter type called Intersection Filter (IF) as follows:

Figure 3.2: Intersection Filter returning an output with two possibilities

 As illustrated in Figure 3.2, an intersection filter IF(S1 ∩ S2) represents an
approximation of the set intersection, (S1 ∩ S2). It is used to check whether an
element x is a common element (i.e. x  S1 ∩ S2). The intersection filter accepts an
input and returns an output that is one of two possibilities:

"no" : x is NOT a common element of the sets S1 and S2.

"yes" : x may be a common element of the sets S1 and S2.

 With this design, when the intersection filter returns an answer "no", the answer
is always the correct response. An answer "yes" may be the wrong response because
x may be NOT a common element. It also means that the intersection filter returns
"yes" answers with a false positive probability. As a result, the intersection filter
enables us to specify a superset of common elements including the "yes" elements,
and eliminate disjoint elements that are the "no" elements. Accordingly, we should
minimize false positives for the intersection filter.
 This section shows three approaches based on Bloom filters to build the
intersection filter, known as intersection Bloom filter (IBF). For convenience, two
Bloom filters BF(S1) and BF(S2) are used as the concise representation of two input
datasets R and L projected on the join key column, respectively. Since each of the
Bloom filters has the false positive probability, there exist "false" common elements
discovered by the intersection Bloom filter.

3.2.1 Approach 1: a pair of Bloom filters

First, we observe the following expression for set intersection representation of two
sets S1 and S2.

S1 ∩ S2 = (S1  S2) \ (S1 ∆ S2) = (S1  S2) \ ((S1 \ S2)  (S2 \ S1))

 From the above expression, we can specify the set intersection by eliminating all
elements of the difference between the sets. Precisely, the intersection filter

x is a common element ?

no

yes

IF(S1 ∩ S2)

•

•

•

• •
•

•

 S1 ∩ S2 x
*
*

*

S1

*

S2

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

42

recognizes common elements in the set S1 by BF(S2) and common elements in the set
S2 by BF(S1). To achieve this work, we use a pair of Bloom filters as follows.

Figure 3.3: Intersection filter using a pair of Bloom filters

 Each element in one set is queried into a Bloom filter of another set by k hash
functions. If the element is a member of the filter, the intersection filter returns a
"yes" answer because the element may be a common member of the sets. Otherwise,
the intersection filter returns a "no" answer because the element belongs to the set
difference. As Figure 3.3, for instance, an element x1 of the set S1 is queried into
BF(S2) and an element y1 of the set S2 is queried into BF(S1). If x1 is not a member of
BF(S2), the output of the IBF is "no" answer. If y1 is in BF(S1), the output of the IBF
is "yes" answer. After all elements of S1 and S2 are respectively queried into BF(S2)
and BF(S1), we get all common elements that are "yes" answers. This corresponds to
the operation of (S1  S2) \ ((S1 \ S2)  (S2 \ S1)). In other words, the intersection
filter IBF(S1 ∩ S2) can be obtained through the pair of the Bloom filters.
 This approach does not require the filters to have the same size m and k hash
functions.

3.2.2 Approach 2: intersecting unpartitioned Bloom filters

The second approach is based on the idea that intersecting Bloom filters will produce
a result filter called the intersection filter.
 There is little difference between the intersection filter and the intersection of
Bloom filters as shown in [73] then IBF(S1 ∩ S2) = BF(S1) ∩ BF(S2) with probability
(1 - 1/m)k.|S1 - S1S2|.k.|S2 - S1S2|.
 The intersection of filters is not sufficient to accurately calculate the intersection
filter IBF(S1 ∩ S2). However, we can get an approximation of the IBF by joining
BF(S1) and BF(S2) with the bit-wise AND, and the intersection Bloom filter still
maintains the inherent querying features [74][73]. This means that if all k positions
hashed for a join key x are set 1 in the intersection filter, x belongs to S1 ∩ S2 with
high probability.
 In this approach, we use standard (unpartitioned) Bloom filters with the same
size m and k hash functions. Building the intersection filter is shown in Figure 3.4.

. x4 x3 x2 x1 . y4 y3 y2 y1

?


BF(S2)

BF(S1)

?


S1 S2

IBF(S1 ∩ S2)

3.2 Modeling intersection filter

43

Figure 3.4: Intersection filter based on intersecting unpartitioned Bloom filters

 It illustrates that the intersection filter IBF(S1 ∩ S2) is formed by intersecting two
standard Bloom filters BF(S1) and BF(S2) with the bitwise AND operator. This can be
expressed by the following form:

IBF(S1 ∩ S2) = BF(S1) & BF(S2)
 It performs the bitwise AND operation between the two bit arrays BF(S1) and
BF(S2) with the same size, and place it in the third array IBF. The IBF is now an
approximate representation of the set intersection (S1 ∩ S2).
 Querying an element x into the intersection filter IBF is similar to the standard
Bloom filter. If x is in IBF(S1 ∩ S2), it returns a "yes" answer because x may be a
common element. Otherwise, it returns a "no" answer because x is an element of the
difference.
 With this approach, we only maintain one intersection Bloom filter to remove
most non-joining tuples from both input datasets instead of using two filters as the
first approach.

3.2.3 Approach 3: intersecting partitioned Bloom filters

Our last approach begins with the same idea as the second approach to create the
intersection filter but we use partitioned Bloom filters.

3.2.3.1 Partitioned Bloom filter

A partitioned Bloom filter [75], a variant of the standard Bloom filter, is defined by
an array of m bits that is partitioned into k disjoint arrays of size mp=m/k bits. Figure
3.5 suggests that BF(S) consists of three 4-bit partitions, k=3 hash functions and size
m=12 bits.

Figure 3.5: Partitioned Bloom filter BF(S)

 We insert an element x  S into BF(S) by computing hi(x) and setting the
corresponding position in the ith partition to 1 (i=1...k). Similarly, we test if the
element z is in S by checking the position corresponding to hi(z) in the ith partition.
 The probability that a bit has remained 0 after inserting n elements for the
standard filter p and the partitioned filter pp is asymptotically equivalent. Precisely,
the standard Bloom filter tends to perform slightly better than the partitioned Bloom

BF(S1)

IBF(S1 ∩ S2)

BF(S2)

0 1 1 1 1 0 1 0 1 0 0 1
 1 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 1 0 1 0 0 0 0 1

h1(x) h2(x) h3(x)

0 1 1 1 1 1 0 0 0 1 0 1

x z  S

mp=4 bits

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

44

filter since when k > 1 the standard filter tends to have more 0's than the partitioned
filter as shown in the following expression. From expression (2.1), we derive the
following inequality:

n

p

kn

m
kp

m
p 






 






  111

 However, the partitioned filter is more flexible than the standard Bloom filter.
After building the partitioned filter, its false positive probability can still be changed
by increasing or reducing its partitions without rehashing. Consequently, intersecting
(merging) partitioned filters with different sizes can be performed by using the bit-
wise AND (OR) of two bit-arrays. Obviously, the resolution of one of the partitioned
Bloom filters may be adjusted. For example, the partitioned filter BF(S1) has three
4bit-partitions (the filter size m1=12 bits), BF(S2) has two 4bit-partitions (size m2=8
bits). To intersect these filters, we only eliminate the third partition of BF(S1), then
AND two remaining partitions of BF(S1) and BF(S2). This affects the resolution of
BF(S1). In contrast, we cannot reduce the size of the unpartitioned filter because we
have to completely rehash the bit array of the filter.

3.2.3.2 Intersection filter design

We describe the intersection filter IBF(S1 ∩ S2) built from two partitioned Bloom
filters BF(S1) and BF(S2) in Figure 3.6.

Figure 3.6: Intersection filter based on intersecting partitioned Bloom filters

 The intersection filter IBF(S1 ∩ S2) is generated by intersecting pairs of
partitions of the two partitioned filters. As shown in Figure 3.6, BF(S1) and BF(S2)
including three partitions are pairwise intersected with the bitwise AND to produce
IBF(S1 ∩ S2) including three 4-bit partitions. The filter IBF(S1 ∩ S2) represents the
approximate intersection of the sets S1 and S2.
 An interesting characteristic of this approach is that if the intersection filter
IBF(S1 ∩ S2) has at least one partition with all m/k bits set to 0, the sets S1 and S2 are
disjoint. Consequently, the join processing can be finished without doing anything.
This characteristic is really useful for joins and is not present in the first approach.
Even for the second approach, it would be rare for all m bits to be equal to 0.
 In addition, the third approach does not require the filters BF(S1) and BF(S2) to
have the same size. In this case, the filters may have different sizes but their
partitions should have the same size and the same hash functions. We can adjust the
partitioned filters BF(S1), BF(S2) and IBF(S1 ∩ S2) by reducing or adding partition(s)
without rehashing. Similar to the second approach, we also maintain one intersection
filter for filtering non-joining data in both input datasets.

(3.1)

mp=4 bits

 h1(x) h2(x) h3(x)
BF(S1)

BF(S2)

IBF(S1 ∩ S2)

0 1 1 1 1 0 1 0 1 0 0 1
 1 1 0 1 1 0 1 0 0 1 0 1

0 1 0 1 1 0 1 0 0 0 0 1

3.2 Modeling intersection filter

45

3.2.4 The false intersection probability

We can represent the intersection of two sets with false positives as follows.

Figure 3.7: Set intersection representation using Bloom filters

 The dark area (blue) in Figure 3.7 shows the actual intersection of the sets S1 and
S2. The bright area inside the dashed oval represents false positives of the set
intersection, also known as false intersections. The false intersections result from
intersecting the Bloom filters BF(S1) and BF(S2).
 The false intersection probability for each of the approaches corresponds to each
theorem below.

Theorem 3.1. A false intersection by a pair of Bloom filters is identified with one of

the two probabilities

 a. For BF(S1), b. For BF(S2),

1

11

1

||

1
)(

111

kSk

Spair m
f
























2
22

2

||

2
)(

111

kSk

Spair m
f
























where m1 and m2 correspond to the sizes of BF(S1) and BF(S2); k1 and k2 are the
numbers of hash functions of BF(S1) and BF(S2), respectively.

Proof. As shown in Figure 3.3, we obtain the approximate intersection of the sets
thanks to the pair of Bloom filters BF(S1) and BF(S2). From equation (2.2), it is easy
to show that the false intersection probability of BF(S1) for the set S2 is fpair(S1) as
equation (3.2) and the false intersection probability of BF(S2) for the dataset S1 is
fpair(S2) as equation (3.2) �.

Theorem 3.2. A false intersection by intersecting unpartitioned Bloom filters is
identified with probability

kSkkSk

BF mm
f 
















 
















 

|||| 21 111111

where BF(S1), BF(S2) and IBF(S1 ∩ S2) have the same size m and k hash functions.

(3.2)

(3.3)

U

false intersections

S1∩S2 S2 S1

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

46

Proof. It argues that the intersection of the unpartitioned Bloom filters causes false
intersections when all k bits in the resulting bit array is set to 1 from two different
join keys. From equation (2.2), the probability for k bits to be set in both BF(S1) and
BF(S2) from two different keys is the product of

kSk

m
f 
















 

||

1

1111 and
kSk

m
f 
















 

||

2

2111

It is also the false positive probability of IBF(S1 ∩ S2), and thus the theorem has been
demonstrated �.

Theorem 3.3. A false intersection by intersecting partitioned filters is identified with
probability

kSkS

PBF m
k

m
kf 
















 
















 

|||| 21

1111

where BF(S1), BF(S2) and IBF(S1 ∩ S2) have the same size m and k hash functions, k
partitions are the same size mp=m/k.

Proof. Similar to Theorem 3.2, the probability for k bits to be set in k partitions of
BF(S1) and BF(S2) with two different keys, thus also falsely be in IBF(S1 ∩ S2) is the
product of

kS

p m
kf 
















 

|| 1

1
11 and

kS

p m
kf 
















 

|| 2

2
11

It completes the proof of the theorem �.

Theorem 3.4. The false intersection probability of the unpartitioned filter
intersection is less than the false intersection probability of the partitioned filter

intersection PBFBF ff  

Proof. If Bloom filters have more bits set to 1, the probability for a bit collision can
be higher. And thus partitioned filters tend to have more 1's than unpartitioned filters.
As equation (3.1), we get

|||| 11

111
SSk

m
k

m






 






  =>

kSkSk

m
k

m 















 
















 

|||| 11

11111

From the above equation, we can simply compute the theorem �.
 It can be seen that the intersection filter by a pair of the filters is the most
flexible approach because the hash functions and the size of the filters can be
different while other approaches require the same size that affects the resolution of
filters. In contrast, the first approach needs to maintain two filters while others only
maintain one filter on nodes. Besides, the second and third approaches enable us to
discover disjoint sets and early stop the join processing. This characteristic is very
important for evaluating multi-way joins and recursive joins.

(3.4)

(3.5)

3.3 Optimization for two-way joins using intersection filters in MapReduce

47

3.3 Optimization for two-way joins using intersection filters
in MapReduce

We take a closer look at the semi-join and Bloom-join algorithms in Sections 2.2.4
and 2.3.2 of Chapter 2. The algorithms remove the non-joining tuples from only one
input dataset R. Consequently, the non-joining tuples in another input dataset L have
still not been filtered. For instance from Facebook, a largest online social network
with 1.23 billion monthly active users as of December 31, 2013 [60], the log dataset
L contains user's activities that many of them can deactivate their personal profiles.
Hence, the join operation of the user dataset R and the log dataset log L leads to
many non-joining tuples of the dataset L transferred across the network. Our join
optimization takes the data redundancy in both R and L sent to the join processing
into consideration.

3.3.1 Implementation overview

We implement a two-way join of the two datasets user R(uname, uid) and log L(uid,
event) to evaluate the query Q1 in Chapter 2. Because R and L are two arbitrary input
datasets, we will discuss and evaluate the join operation in general by using Reduce-
side join type. However, it can still use our intersection filter for the Map-side join
type.

Figure 3.8: Join implementation using intersection filter in MapReduce

DFS read/write
Local write
Remote communicaton

(a1) Initialize job_a (b2) Distribute Inter. Filter

(b1) Initialize job_b

(a2) Build local BF

 M

 M

 M

(b3) Filter, and Map pairs

shuffle

Input

DFS

 L ...

 R ...
Output

DFS

(a3) Merge local BFs
into two global BFs,
and Build IBF

 R

 R

(b4) Join pairs

(1) Submit job

JobTracker
Inter. Filter

(a) a pre-processing job
(b) a join job

IBF(R.uid ∩ L.uid)

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

48

The intersection filter-based join algorithm involves the following two computing
stages:

 Stage 1: projects all tuples of both the input datasets L and R on the join key
column uid, hashes the keys into two Bloom filters, computes the intersection
filter, and stores the filter into a file IBF.uid.

 Stage 2: distributes the file IBF.uid to all compute nodes, uses this
intersection filter to remove non-joining tuples in both R and L, and then
computes the join of two filtered datasets of R and L.

 Figure 3.8 illustrates the algorithm with two MapReduce jobs corresponding to
the two stages. The first job, known as pre-processing job, is to build the intersection
filter IBF(R.uid ∩ L.uid). The second one performs a join job using the intersection
filter generated earlier to remove redundant data in the Map phase. The details of
implementing the MapReduce jobs are described as follows.

3.3.1.1 Pre-processing job

The join operation (R ⋈ L) together with its input datasets R and L is configured and
submitted by a client to the jobtracker. At this moment, the operation is compiled
into two jobs in which the join job is blocked until the end of the pre-processing job.
 The pre-processing job includes two groups of parallel map tasks (mtgroup1 and
mtgroup2), and one reduce task for computing the intersection filter. The mtgroup1
processes the dataset R for creating local filters BF(R.uid) while the mtgroup2
independently processes the dataset L for creating local filters BF(L.uid). The
mappers scan splits of R and L, extract the join key column for each tuple, and insert
the join keys of R and L into local Bloom filters BF(R.uid) and BF(L.uid),
respectively, on tasktrackers. The mappers emit the local filters to the reducer. The
reducer receives all the local filters from all the mappers, merges these filters into
two respectively global filters BF(R.uid) and BF(L.uid) using the bit-wise OR (see
Section 3.3.1.3). Based on the three approaches proposed in Section 3.2, the reducer
computes the intersection filter IBF(R.uid ∩ L.uid) from the global filters. For the
first approach, the intersection filter is a pair of the global filters and thus it does
nothing. The intersection filter is then stored into a file IBF.uid on Distributed File
System (DFS).
 As an option, the pre-processing job can detect to not rebuild the existing filters,
even this job will be omitted if the intersection filter exists. Consequently, it enables
a dramatic reduction in I/O and computational overhead when joins are recalculated.
In addition, when the size of filters is large, the filter files will be compressed in
formats such as gzip, bzip2, LZO and Snappy. This compression is really efficient
for delivering filters to all nodes.
 Notably, the implementation of the pre-processing job can detect the empty
intersection filter to early complete the join operation. This interesting characteristic,
which is very useful for multi-way joins and recursive joins, is not present in the
existing studies.
 At the end of the pre-processing job, if the intersection filter is empty, the join
job will be omitted and the entire join operation will be finished. Otherwise, the
intersection filter will be written into a file on DFS. This pre-processing job

3.3 Optimization for two-way joins using intersection filters in MapReduce

49

corresponds to activities (a1) to (a3) in Figure 3.8. The activities are the job initiation
and map-reduce functions presented in Section 3.3.2.

3.3.1.2 Join job

This job will use the intersection filter generated earlier to remove redundant data
from both the input datasets R and L, and perform a cross join. Activities (b1) to (b4)
in Figure 3.8 describe the join job in detail. In order to start the job, the intersection
filter file IBF.uid is distributed to all the compute nodes in a cluster using a
distributed cache. Then, the jobtracker will create mp1 and mp2 map tasks for the
inputs R and L respectively, r reduce tasks, and assign each split to one map task run
on a tasktracker. Its implementation includes the following two phases.

 Map phase using the intersection filter:
Each mapper uses an initialization function to load the file IBF.uid into
memory IBF(R.uid ∩ L.uid). A tag '0' or '1' is used to tick a split of R or L,
respectively. The mapper reads each tuple from its split, produces a <key,
tuple> pair, and then calls a map function to process the pair. The map
function queries the join key (uid) of the tuple into the intersection filter IBF.
If the key is in the IBF, the tuple is mapped into a pair in form of
((uid, tag), tuple) and emitted to the reducers. Otherwise, the tuple is omitted.

A partition function, partitioner(), ensures that partitioning the tagged tuples
takes into consideration only the join key part (uid) and ignores the tag part
(tag). The tag attached to the join key uid is used to do a secondary sort that
ensures all tuples from one input dataset are processed before the other. This
is implemented by overriding the default grouping function.
When the mapper emits data, these intermediate pairs are partitioned, sorted,
merged and written to disk in a single intermediate file. Then, the framework
sends the pairs across the network to the corresponding reducers.

 Reduce phase:
This reduce phase is the same as the one of the basic Reduce-side join. The
reducer receives the tagged tuples of the form ((uid, tag), tuple) with the same
uid, and calls the reduce function for each join key uid. The reduce function
performs the cross product of the tuples of R that are buffered and each
incoming tuple of L. It is completed by writing the output to DFS.

3.3.1.3 Merging Bloom filters

We introduce the way to merge the local filters that it takes place in the Reduce
phase of the pre-processing job. Merging the Bloom filters is simpler than
intersecting these filters. The merging operation corresponds to the construction of
the union filter BF(S1  S2). We can build the union Bloom filter by the union of the
Bloom filters as shown in Lemma 1 and 2 below.

Lemma 1. [73] Assuming BF(S1), BF(S2) and BF(S1  S2) use the same size m and k
hash functions, then

BF(S1  S2) = BF(S1)  BF(S2)

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

50

We can easily extend Lemma 2 out to the following fact.
Lemma 2. Assuming BF(S1), BF(S2), ..., BF(Sq) and BF(S1  S2 ...  Sq) use the same
size m and k hash functions, then BF(S1  S2 ...  Sq) = BF(S1)  BF(S2) ... BF(Sq).

 The union of Bloom filters with the same size and hash functions is
implemented by bitwise OR. In the pre-processing job, therefore, the reducer collects
all the local Bloom filters from tasktrackers, merges the local filters by using the
bitwise OR of the bit arrays, and generates the global Bloom filter. This global filter
is then intersected with another global filter to create the intersection filter.

3.3.2 Optimized two-way join algorithm

Listing 3.1 shows the pseudo code of the intersection filter-based join algorithm.

Algorithm 1 - Two-way join algorithm using Intersection filter

Job1_2Way: builds intersection filter IBF.uid storing common join keys between R and L

Init_Map() // init function for map phase
bfilter_R ← empty; //storing keys of R
bfilter_L ← empty; //storing keys of L

Map(k: null, v: a tuple from an R or L split)

joinKey ← extract the join column from v
add joinKey to bfilter_R or bfilter_L;

Close_Map() // close function for map phase

emit('R ', bfilter_R);
emit('L', bfilter_L);

Init_Reduce() // init function for reduce phase

globalBF_R ← empty; //merging local filters of R
globalBF_L ← empty; //merging local filters of L

Reduce(k′: 'R' or 'L', v': a list of local bloom filters)

filterPointer ← null; // a pointer
if k' == 'R' then

filterPointer = &globalBF_R;
else

 filterPointer = &globalBF_L;
endif

for each bfilter in v' do

OR(bfilter, filterPointer);
emit(null, null);

Close_Reduce() // close function for reduce phase

IBF.uid ← empty; //intersection filter
compute IBF.uid from globalBF_R and globalBF_L
save IBF.uid into a file IBF.uid on DFS

3.3 Optimization for two-way joins using intersection filters in MapReduce

51

Job2_2Way: filters out non-joining tuples in R and L, and joins filtered datasets R' and L'

Init_Map() // init function for map phase
IBF.uid ← load(IBF.uid); //loading intersection filter

Map(k: null, v: a tuple from an R or L split)

tag ← a bit 0 or 1 corresponding to name of R or L;
key ← extract the join key from v;
if (key in IBF.uid) then

emit(pair(key, tag), v);
endif

GroupComparator(taggedKey1: taggedkey, taggedKey2: taggedkey)

res = compare(taggedKey1.key, taggedKey2.key);
if (res == 0) then

res = compare(taggedKey1.tag, taggedKey2.tag);
endif
return res;

Partitioner(k': taggedkey, v: value, p: the number of reducers)

return hash_func(k'.key) mod p;

Init_Reduce() // init function for reduce phase
currentKey ← '0'; //for storing current key
buff ← empty; //for storing tuples with same key of R

Reduce(k': taggedKey, v': list of values v with key k')
if k'.key != currentKey then

clear(buff);
currentkey = k'.key;

endif

if k'.tag == '0' then

for each l in v' do
 add tuple l to buff;

else if k'.tag == '1' then
for each l in v' do
 for each r in buff do
 emit(null, pair(r, l));

end if

Listing 3.1. Pseudo code for two-way join algorithm using intersection filter

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

52

3.3.3 Cost analysis for two-way joins in MapReduce

3.3.3.1 Cost model

We adapt the cost model presented in [76] to suit our cost model for two-way joins.
Suppose that R and L are two input datasets. Table 3.2 summarizes parameters within
our cost model for two-way joins.

Table 3.2: Cost model parameters for two-way joins

Parameter Explanation

|R| The size of the input dataset R

|L| The size of the input dataset L

cl The cost of reading or writing data locally

cr The cost of reading/writing data remotely

ct The cost of transferring data from one node to another

B+1 The size of the sort buffer is B+1 pages

mp1 The number of map tasks of the dataset R

mp2 The number of map tasks of the dataset L

mp = mp1+mp2 The total number of map tasks

t The number of tasktrackers

m The size of the Bloom filter (bits)

ϕ The compression ratio for the filter file

|O| The size of the join processing output

Cpre The total cost to perform the pre-processing job

Cread The total cost to read the data

Csort The total cost to perform the sorting and copying at the map and
reduce nodes

Ctr The total cost to transfer intermediate data among the nodes

Cwrite The total cost to write the data on DFS

3.3 Optimization for two-way joins using intersection filters in MapReduce

53

 Accordingly, we get the total cost of a two-way join using various algorithms as
follows:

C = Cpre + Cread + Csort + Ctr + Cwrite

where

 Cread = cr . |R| + cr . |L|

 Csort = cl . |D| . 2 . (   )(log)(log||log mpmpD BBB ) [76]

 Ctr = ct . |D|

 Cwrite = cr . |O|

 Cpre = C' + cr . m.ϕ . t
 Cread + (cl + ct) . m.ϕ . mp + a , for the intersection filter approaches

 C' =
 cr . |L| + (cl + ct) . m.ϕ . mp2, for the Bloomjoin

 a = cr . m . ϕ . t for the first intersection filter approach, otherwise a = 0

 Cpre = 0 for approaches without using the filters. Besides, assume that the
filters are the same size m. If m is small, we will not compress the filter
files, and so ϕ = 1.

 In equation (3.6), an additional cost Cpre should be added to the cost model in
[76]. Intuitively, we can see that |D|, the size of the intermediate data, decides the
total cost of the join operation. Thus, we should focus on analyzing this parameter for
our different approaches in order to have a more complete assessment.

3.3.3.2 Cost comparison of approaches

From the pros and cons of the join algorithms mentioned in Sections 2.2 and 2.3 of
Chapter 2, we consider three prominent join algorithms such as the Reduce-side join,
the Bloomjoin, and our intersection filter-based join with the three filter approaches.
These algorithms implement a general join model and have no restrictions on input
datasets. More importantly, the Bloomjoin and the intersection filter-based join are
good algorithms for optimizing the join performance. They are more efficient than
the semi-join because they execute lesser jobs, and use a smaller data structure that is
a bit vector for minimizing the amount of data transferred over the network. Besides,
these algorithms do not have to distribute the filtered input dataset that can be large
to all compute nodes.
 In order to estimate |D|, it is assumed that ∂L is the ratio of the joined records of
R with L, and ∂R is the ratio of the joined records of L with R. The size of
intermediate data with the false intersection probability is:

(3.6)

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

54

 ∂L|R| +)(Lpairf .(1 − ∂L)|R| + ∂R|L| +)(Rpairf .(1 − ∂R)|L|

 ∂L|R| + BFf .(1 − ∂L)|R| + ∂R|L| + BFf .(1 − ∂R)|L|

 ∂L|R| + PBFf .(1 − ∂L)|R| + ∂R|L| + PBFf .(1 − ∂R)|L|

 ∂L|R| +)(Lpairf .(1 − ∂L)|R| + |L|

 |R| + |L|

where
equation (3.7) for the IBF-based join with the pair of the filters (approach 1),
equation (3.8) for the IBF-based join with the unpartitioned IBF (approach 2),
equation (3.9) for the IBF-based join with the partitioned IBF (approach 3),
equation (3.10) for the Bloomjoin with one filter BF(L.uid),
equation (3.11) for the Reduce-side join,
and)(Lpairf ,)(Rpairf , BFf and PBFf refer to Section 3.2.4.

 From the equation of the intermediate data size |D| above, we can point out the
following important evaluation.

Theorem 3.5. The join operation using the intersection filter is more efficient than
using a basic Bloom filter because it produces less redundant and intermediate data
than the latter. Additionally, we can derive comparing equation for |D|:

|D|3.7  |D|3.8 < |D|3.9 < |D|3.10 < |D|3.11

where |D|i is the intermediate data size for equation ith (i = 3.7, ..., 3.11).

Proof. We can see that querying tuples of R into BF(L.uid) and tuples of L into
BF(R.uid) corresponds to finding common elements between the filters. It is also the
intersection operation of filters as presented in Section 3.2.2. Thus the intermediate
data generated by the first two approaches is equivalent |D|3.7  |D|3.8.
From Theorem 3.4, we get 0 < BFf < PBFf << 1. So we can deduce:

 ∂R|L| + BFf . (1 − ∂R)|L| < ∂R|L| + PBFf . (1 − ∂R)|L| < |L|
and
 ∂L|R| + BFf . (1 − ∂L)|R| < ∂L|R| + PBFf . (1 − ∂L)|R| < |R|

Additionally, we also have 0 < PBFf <)(Lpairf << 1. Thus it simply shows:

 ∂L|R| + PBFf .(1 − ∂L)|R| < ∂L|R| +)(Lpairf .(1 − ∂L)|R| < |R|

Combining inequalities (3.13), (3.14), (3.15), and (3.16) into equations (3.7), (3.8),
(3.9), (3.10), and (3.11), Theorem 3.5 is proved �.

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

|D| =

(3.16)

3.3 Optimization for two-way joins using intersection filters in MapReduce

55

 From equations (3.6) and (3.12), we can evaluate the total cost of the join
operation for the different approaches by the following theorem.

Theorem 3.6. The join operation using the intersection filter has the lowest cost. In
addition, we can derive comparing equation for the total cost of the algorithms:

C3.7  C3.8 < C3.9 < C3.10 < C3.11

where Ci is the total cost in case of equation ith (i = 3.7, ..., 3.11).

 It should be noted the total cost to perform the pre-processing job
 Cread + (cl + ct) . m.ϕ . mp + 2 . cr . m.ϕ . t; in case of (3.7)
 Cread + (cl + ct) . m.ϕ . mp + cr . m.ϕ . t; in cases of (3.8) and (3.9)
 cr . |L| + (cl + ct) . m.ϕ . mp2 + cr . m.ϕ . t; in case (3.10)
 0; in case of (3.11)

 For the data locality optimization, the MapReduce framework runs the map task
on a node where the input data resides in DFS and the data is directly fetched. Thus
the read cost of this phase is low. As a result, the total cost Cpre is negligible
compared to the creation and transfer of redundant data over the network.
 However, the join algorithm using the different intersection filters will become
inefficient when there is a large number of map tasks (mp), and very little redundant
data in the join operation. In the case of so many map tasks, a tasktracker running
multiple map tasks will merge the local filters of each task and will maintain only
two local filters BF(R) and BF(L). This is not difficult to be solved in our future
work. In the case of little redundant data, we will not need to use the filter as well as
the pre-processing job. For this reason, we should estimate the threshold of
redundant data so that the cost of the pre-processing job is less than the cost
associated with redundant data and thus the intersection filter becomes more useful.
 Let |D*| be the size of redundant data or removed data, C*sort be the total cost to
perform the sorting and copying redundant data at the map and reduce nodes, and
C*tr be the total cost to transfer redundant data among the nodes. Accordingly, the
cost associated with redundant data is the sum of C*sort and C*tr. We show the
threshold of the size of redundant data that the join optimization should use the
intersection filter as follows:

Cpre < C*sort + C*tr
where

 |D*| = |R| + |L|  |D|,

 C*tr = ct . |D*|,

 C*sort = cl . |D*| . 2 . (   )(log)(log|*|log mpmpD BBB ) [76]

Based on the size of intermediate data |D|, the threshold depends on ∂L (the ratio of
the joined records of R with L) and ∂R (the ratio of the joined records of L with R).

(3.17)

Cpre =

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

56

3.4 Optimization for multi-way joins using intersection
filters in MapReduce

Multi-way join algorithms are still an open issue and their existing solutions from
traditional distributed and parallel databases cannot be easily extended to adapt a
shared-nothing distributed computing paradigm as MapReduce. In this section,
therefore, we propose several intersection filter-based approaches to computing
important multi-way joins as the query Q2.

3.4.1 Extended intersection filter

In order to evaluate multi-way joins, we introduce an extended intersection filter
(EIF) as in Figure 3.9.

Figure 3.9: Extended intersection filter - EIF(BF1, BF2, ..., BFk)

 The EIF includes an array of standard Bloom and intersection filters hashed on
different join key columns x1, x2, ... xk. Each tuple t(x1, x2, ... xk, xk+1, ..., xn) may
contain k join keys linking to others. The extended intersection filter accepts an input
and returns a "yes" or "no" answer. If one of the join keys of the tuple t, t(xi), is not a
member of a component filter BFi of the EIF, the output is "no" answer. Otherwise,
the output of the EIF is "yes" answer, i.e., every t(xi) is in the component filter BFi of
the EIF.

3.4.2 Three-way join using intersection filter

In this section, we consider a different join way including three input datasets at once
instead of two datasets as the two-way join. This operation is called three-way join
and represented under the form of

R ⋈uid=uid1 K ⋈uid2=uid L
 It corresponds to the query Q2 in Chapter 2, which is a simple kind of multi-
joins. There are several ways to compute the three-way join as follows.

R ⋈uid=uid1 K ⋈uid2=uid L
= (R ⋈uid=uid1 K) ⋈uid2=uid L
= R ⋈uid=uid1 (K ⋈uid2=uid L)

 The execution plans show that we can implement the three-way join by a
sequence of 2 two-way joins mentioned earlier. The first way consists in joining two
datasets R and K, and then joins the intermediate output with L. Another way
performs joining two datasets K and L, and then joins R with the intermediate output.

BF1(S1) BF2(S2∩S3) BFk(Sk)

t(x1, x2,.., xk,.., xn)

 ?

 → → → → →

 x1 x2 xk t  filter EIF if

all t(xi)  BFi
(i=1...k)

3.4 Optimization for multi-way joins using intersection filters in MapReduce

57

 Both the two ways must use at least two MapReduce jobs to execute the three-
way join operation. However, there is an alternative way which joins all the three
datasets at once in a single MapReduce job. The algorithm is proposed by Afrati and
Ullman [6] for optimizing multi-way joins. It begins with the idea of a matrix of
reduce processes (reducers) as shown in Figure 3.10.

Figure 3.10: Distributing tuples of R, K, and L among r = m2 reducers

 Given the number of reducers r = m2 forming a reducer matrix m×m, and a hash
function h generating a random number within range 0, 1, 2, ..., m - 1. Each reducer
is associated with a cell (i, j) in the reducer matrix, where i and j are integers within
the range of m - 1. Namely, a cell (3, 2) associates with the reducer (i*m + j) = 17.
 To compute R(uname, uid) ⋈ K(uid1, uid2) ⋈ L(uid, event) in a MapReduce
job, the mappers distribute tuples of R, K, and L to the reducer matrix as follows. The
mappers send each tuple of K to only one reducer, while each tuple of R and L are
sent to many different reducers. Specifically, each tuple of K(uid1, uid2) is sent to
the reducer numbered (h(K.uid1), h(K.uid2)). Each tuple R(uname, uid) is sent to all
the reducers numbered (h(R.uid), x), for any x. Each tuple L(uid, event) is sent to all
the reducers numbered (y, h(L.uid)), for any y.
 As illustrated in Figure 3.10, we have a reducer matrix 5×5 with 25 reducers
(m=5). A tuple of R(uname, uid) with h(R.uid) = 3 is sent to all the reducers 15 to 19
(numbered (3, x)). A tuple of L(uid, event) with h(L.uid) = 2 is sent to all the reducers
2, 7, 12, 17, and 22 (numbered (y, 2)). A tuple of K(uid1, uid2) with h(K.uid1) = 1
and h(K.uid1) = 4 is sent to only one the reducers 9 (numbered (1, 4)). In the
example, the output of joining these tuples is empty. If there is a tuple of K(uid1,
uid2) with h(K.uid1) = 3 and h(K.uid1) = 2 is sent to the reducer 17, we get a result
of joining the tuples. Another example, we can easily see that if there are three tuples
R('Laurent dOrazio', 'b'), K('b', 'c'), and L('c', 'login'), they will all be sent to the
reducer numbered (h('b'), h('c')) and then the reducer computes the join of these
tuples correctly.
 We use the method of Lagrangian multipliers in order to present how to choose
the parameter r for minimizing the communication cost. For simplicity, it is assumed
|R|=|K|=|L|. The total communication cost for the optimal three-way join is O(|R| r)
and the total communication cost for the cascade of 2 two-way joins is O(|R|2.),
where  is the probability of two tuples from different datasets agreeing on their
common column. This analysis shows that the three-way join is better than the
cascade of the two-way joins when r < (|R|.)2, and becomes a good choice.

 0 1 2 3 4

0

1

2

3

4

h(R.uid)

h(L.uid)

h(R.uid) = 3

h(L.uid) = 2

h(K.uid1) = 1 and
h(K.uid2) = 4

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

58

 However, the use of the reducer matrix for distributing tuples of the input
datasets leads to tuple duplications. For each tuple of the dataset R or L, a mapper
generates m duplicates of the tuple because the mapper cannot ensure the join key of
a tuple in the dataset K. Consequently, the communication and I/O overheads are
large. This situation can be improved significantly if we can discover and remove
non-joining tuples of the input datasets R and L without replicating them. The
improvement is shown in Figure 3.11.

Figure 3.11: Three-way join operation using intersection filter

 The input datasets R and L are filtered by intersection filters IBF(R.uid ∩
K.uid1) and IBF(K.uid2 ∩ L.uid), respectively. The input dataset K(uid1, uid2) is
filtered by an extended intersection filter including the two filters IBF(R.uid ∩
K.uid1) and IBF(K.uid2 ∩ L.uid). In other words, the dataset K is filtered two times
by IBF(R.uid ∩ K.uid1) and IBF(K.uid2 ∩ L.uid) on the distinct join key columns
uid1 and uid2, respectively. Obviously, the solution considerably reduces the amount
of data transferred to the reducers.
 Similarly to the two-way join, implementing the three-way join with the
(extended) intersection filter also uses two MapReduce jobs. However, this
implementation needs to be changed to comply with its three inputs. The pre-
processing job now generates two intersection filters IBF1(R.uid ∩ K.uid1) and
IBF2(K.uid2 ∩ L.uid) on distinct join key columns. An extended intersection filter
EIF(IBF1, IBF2) consists of the two filters IBF1 and IBF2, which is used to filter the
dataset K. The join job is executed like the reduce-side join using BF1, BF2 and EIF
to remove redundant data from its inputs R, L and K, respectively, in the Map phase.
Additionally, map and reduce functions of the join job are modified more complexly
than the two-way join job. These are described in the following details.

Pre-processing job
A join operation with three input datasets R, K and L is submitted and compiled into
two MapReduce jobs, in which a pre-processing job is followed by a join job. The
pre-processing job has three groups of parallel map tasks (mp1, mp2 and mp3) to build
local Bloom filters and one reduce task to produce two intersection filters IBF1(R.uid
∩ K.uid1) and IBF2(K.uid2 ∩ L.uid). The mp1 processing R creates local Bloom
filters BF(R.uid), the mp2 handling K produces local filters BF(K.uid1) and
BF(K.uid2), while the mp3 processes L to generate local filters BF(L.uid). All the
local filters are then sent to the reducer. The reducer merges the corresponding local
filters to generate four global filters BF(R.uid), BF(K.uid1), BF(K.uid2) and
BF(L.uid). Based on the proposals for the intersection filter, the reducer calculates on
the global filters and generates two intersection filters IBF1(R.uid ∩ K.uid1) and

R K L

 J1,2,3
⋈

uid1 uid2

IBF(R.uid ∩ K.uid1)

IBF(K.uid2 ∩ L.uid)

3.4 Optimization for multi-way joins using intersection filters in MapReduce

59

IBF2(K.uid2 ∩ L.uid). Then, the two intersection filters IBF1 and IBF2 will be saved
to DFS.
 It should be noted that the join operation will return the empty output
immediately without executing the join job if one of the intersection filters IBF1 and
IBF2 is empty. This feature is necessary to compute multi-way joins.

Join job
The job begins with distributing the two intersection filters BF1 and BF2 to all
tasktrackers. Next, the jobtracker will create mp1, mp2 and mp3 map tasks for inputs
R, K and L respectively, r reduce tasks and assign each split to one map task. Two
phases to implement this job are described by the following phases.

 Map phase with filtering: the mapper reads each tuple from its split and calls
a map function to process. The map function queries the join key of the tuple
into the corresponding filter. Specifically, the tuple of R or L is queried into
IBF1 or IBF2 on the join key column uid, respectively. The tuple of K is
queried into EIF(IBF1, IBF2) on the join key columns uid1 and uid2. If the
tuple is not present in the filter, it is eliminated. Otherwise, the tuple is
replicated into tagged pair(s) ((uid, tag), tuple) that are then sent to the
reducers. The tuple replication is executed as shown in Figure 3.10.

 Reduce phase: the reduce function takes its input and does a full cross-
product of tuples from the different input datasets for each join key pair of K
to create the joined output. The reducer buffers the tuples of R and L, and
performs the cross product of R, L and K for each incoming tuple of K. It is
completed by writing the output to DFS.

The following pseudo code presents a three-way join algorithm using the intersection
filter.

Algorithm 2 - Three-way join algorithm using Intersection filter

Job1_3Way: builds two intersection filters IBF(R.uid ∩ K.uid1) and IBF(K.uid2 ∩ L.uid)

Init_Map() // init function for map phase
bfilter_R ← empty; //storing keys R.uid
bfilter_K1 ← empty; //storing keys K.uid1
bfilter_K2 ← empty; //storing keys K.uid2
bfilter_L ← empty; //storing keys L.uid
tag = null; //storing name of input dataset
localFilterPointer ← null; // a pointer

Map(k: null, v: a tuple from an R, K or L split)

if (tag == null) then
tag = name of input dataset 'R', 'K', or 'L';
switch (tag)

case 'R': localfilterPointer = &bfilter_R;
case 'K': localfilterPointer = &bfilter_K1;
case 'L': localfilterPointer = &bfilter_L;

endswitch
endif

joinKey ← extract the join column from v

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

60

add joinKey to localfilterPointer;
if (tag == 'K') then

joinKey2 ← extract the join column uid2 from v
add joinKey2 to bfilter_K2

endif

Close_Map() // close function for map phase

emit(tag, localfilterPointer);
if (tag == 'K') then

emit('K2', bfilter_K2);
endif

Init_Reduce() // init function for reduce phase
globalBF_R ← empty; //merging local filters BF(R.uid)
globalBF_K1 ← empty; //merging local filters BF(K.uid1)
globalBF_K2 ← empty; //merging local filters BF(K.uid2)
globalBF_L ← empty; //merging local filters of BF(L.uid)

Reduce(k′: 'R', 'K', 'K2' or 'L', v': a list of local bloom filters)

globalFilterPointer ← null; // a pointer
switch (k')

case 'R ': globalFilterPointer = &globalBF_R;
case 'K': globalFilterPointer = &globalBF_K1;
case 'K2': globalFilterPointer = &globalBF_K2;
case 'L': globalFilterPointer = &globalBF_L;

endswitch

for each bfilter in v' do

OR(bfilter, globalFilterPointer);
emit(null, null);

Close_Reduce() // close function for reduce phase

IBF_R_K ← globalBF_R; //intersection filter IBF(R.uid ∩ K.uid1)
IBF_K_L ← globalBF_L; //intersection filter IBF(K.uid2 ∩ L.uid)
AND(globalBF_K1, IBF_R_K);
AND(globalBF_K2, IBF_K_L);
save IBF_R_K and IBF_K_L into two files IBF_R_K and IBF_K_L on DFS

Job2_3Way: filters out non-joining tuples in R, K and L, and joins filtered datasets R', K' and L'

Init_Map() // init function for map phase
IBF_R_K ← load(IBF_R_K); //loading intersection filter IBF(R.uid ∩ K.uid1)
IBF_K_L ← load(IBF_K_L); //loading intersection filter IBF(K.uid2 ∩ L.uid)
reducerMatrixSize ← sqrt(the number of reducers);

Map(k: null, v: a tuple from an R or L split)

tag ← 1, 2, or 3 corresponding to name of R, L or K;
key ← extract the join key from v; //R.uid, L.uid or K.uid1
p = h(key) mod reducerMatrixSize;
if (tag == 1 && key in IBF_R_K) then
//sending v(uname, uid) of R to reducers: (h(uid), j)

for (j=0; j<reducerMatrixSize; j++) do
partition = p*reducerMatrixSize + j;
emit(pair(key, tag:partition), v);

else
if (tag == 2 && key in IBF_K_L) then

//sending v(uid,event) of L to reducers: (i, h(uid))
for (i=0; i <reducerMatrixSize; i++) do

partition = i*reducerMatrixSize + p;

3.4 Optimization for multi-way joins using intersection filters in MapReduce

61

emit(pair(key, tag:partition), v);
else

key2 = ← extract the join key uid2 from v; // K.uid2
if (tag == 3 && key in IBF_R_K && key2 in IBF_K_L) then

//sending v(uid1, uid2) of K to reducer (h(uid1), h(uid2))
col = h(key2) mod reducerMatrixSize;
partition = p*reducerMatrixSize + col;
emit(pair(key, tag:partition), v);

endif
endif

endif

GroupComparator(taggedKey1: taggedkey, taggedKey2: taggedkey)
res = compare(taggedKey1.tag, taggedKey2.tag);
if (res == 0) then

res = compare(taggedKey1.key, taggedKey2.key);
endif
return res;

Partitioner(k': taggedkey, v: value, p: the number of reducers)

return k'.tag.getPart();

Init_Reduce() // init function for reduce phase
multiMap_R ← empty; //storing <key, values> of R
multiMap_L ← empty; //storing <key, values> of L

Reduce(k': taggedKey, v': list of values v with key k')
if (k'.tag == 0) then

 add (k'.key, v') into multiMap_R
else

if (k'.tag == 2) then
add (k'.key, v') into multiMap_L

else
//for tuples of K
if (k'.key in multiMap_R) then

for each k in v' do
if (k.uid2 in multiMap_L) then

for each r in multiMap_R[k'.key] do
for each l in multiMap_L[k.uid2] do

emit(r, pair(k, l));
endif

endif
endif

endif

Listing 3.2. Pseudo code for three-way join algorithm using intersection filter

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

62

3.4.3 Chain join using intersection filter

We consider a chain join, which is a cascading join of relations so that each relation
is linked to the following one by a single or multiple attributes. This join case has the
form of R1(x1, x2) ⋈ R2(x2, x3) ⋈ R3(x3, x4) ⋈ ... ⋈ Rn(xn, xn+1), and is shown by:

Figure 3.12: A chain join

 The query Q2 in Chapter 2 is an illustration of the chain join. We begin with an
implementation of the chain join using a cascade of Bloomjoins in MapReduce. It is
an iterative implementation of two-way Bloomjoins as presented in Figure 3.13.

Figure 3.13: Implementation of a chain join using a Bloomjoin cascade

 The implementation of the two-way Bloomjoin is earlier mentioned in Section
2.3.2. The chain join operation includes multiple Bloomjoin jobs for joining datasets,
two datasets at a time. Considering n datasets R1... Rn, R1 is joined with R2 on the key
x2 as one job. The result of this join, R1,2, is joined with R3 and so on.
 In the cascade of the Bloomjoins, we can see that the dataset R1 and intermediate
join results R1,2, R1,2,3, ..., R1,2,..,n-1, are filtered by BF(R2.x2), BF(R3.x3), BF(R4.x4), ...,
BF(Rn.xn), respectively. Meanwhile, the input datasets R2, R3, ..., Rn are not filtered
and thus there remain a lot of non-joining data transferred over the network. This
situation will be considerably improved by using intersection filters as follows.

x1 x2 x3 x4 ... xn-1 xn xn+1

 R1 R2 R3 ... Rn-1 Rn

Map

Reduce

Map

Reduce

Map

Reduce

Rn

 R1,2,3, ..., n-1, n
⋈ xn

BF(Rn.xn)

R1 R2

BF(R2.x2)

⋈ x2

 R1,2,3

 R1,2 R3

BF(R3.x3)

⋈ x3

3.4 Optimization for multi-way joins using intersection filters in MapReduce

63

Figure 3.14: Implementation of a chain join using a cascade of two-way joins using

intersection filters

 The intersection filter IBF(Ri.a ∩ Rj.b) is formed from two basic filters BF(Ri.a)
and BF(Rj.b) with using the approaches in Section 3.2. It is an approximate
representation of the set intersection Ri ∩ Rj.
 Figure 3.14 illustrates the implementation of the chain join as a cascade of two-
way joins using intersection filters. All the input datasets and the intermediate join
results are filtered by their corresponding intersection filters. For instance, the
intersection filter IBF(R1,2.x3 ∩ R3.x3) is used to eliminate most of non-joining data in
both the datasets R1,2 and R3. Based on Theorem 3.5, it is easy to deduce that
intermediate data sent to the reducers in the case of the intersection filter-based join
cascade is less than in case of the Bloomjoin cascade.
 For all the above implementations, however, the intermediate join results R1,2,
R1,2,3, ..., R1,2,..,n-1 still contains redundant tuples passed to the next join. This is
because the join processing i generates result tuples that some of them do not
participate the next join processing i+1. We therefore discover two improvments for
chain joins using extended intersection filters as follows.

Map

Reduce

Map

Reduce

Map

Reduce

 R1,2,3

R1 R2

⋈ x2

IBF(R1.x2 ∩ R2.x2)

 R1,2 R3

⋈ x3

IBF(R1,2.x3 ∩ R3.x3)

Rn

 R1,2,3, ..., n-1, n
⋈ xn

IBF(R1,2,..,n-1.xn ∩ Rn.xn)

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

64

 (a) Two-way join cascade (b) Three-way join cascade

Figure 3.15: Optimization of a chain join using extended intersection filters

 In the first solution as Figure 3.15 (a), the chain join is implemented by a two-
way join cascade. We have to filter out redundant data from an intermediate join
result. Instead, we should move this filtering operation into the previous join job.
Hence, the input datasets R2, ..., Rn are filtered by extended intersection filters EIF.
The extended filter EIFi includes a Bloom filter BF(R1, ..., i-1.xi) built from the
intermediate join result and a filter BF(Ri+1.xi+1) from the next input dataset.
Particularly, EIF2 contains BF(R1.x2) and BF(R3.x3). Besides, R1 and Rn are filtered
by standard Bloom filters BF(R2.x2) and BF(R1,2,..., n-1.xn), respectively. Obviously, we
now do not need to perform any extra filtering operations for the intermediate join
results. In other words, the intermediate results generated by the two-way joins of the
chain join only contain actual joining data and can be sent to the next join without
filtering. This is an important special characteristic while other solutions need to use
the complement filters to check the intermediate join results.
 To execute this solution, we first use a pre-processing job to build the Bloom
filters BF(Ri.xi) from the input datasets Ri (i = 2, ..., n), and BF(R1.x2) from R1. Next,
we implement the chain join as an iteration of one two-way join job with changing
the inputs. The first input of the two-way join, R1, ..., i-1, do not need to be filtered,
exceptionally for R1 filtered by BF(R2.x2). The second input of the join, Ri, is filtered
by the filter EIFi that is formed by BF(R1, ..., i-1.xi) and BF(Ri+1.xi+1). Initially, for i = 2,
BF(R1, ..., i-1.xi) is the filter BF(R1.x2). Then, for 3  i  n, the filter BF(R1, ..., i-1.xi) is
generated in the reduce phase of the join processing between R1, ..., i-2 and Ri-1. As a
result, building the filters from the intermediate join results do not have any

Map

Reduce

Map

Reduce

Map

Reduce ⋈ x2
R1,2 R3

BF(R4.x4)

 BF(R1,2.x3)

⋈ x3
R1,2,3

R1,2,..,n-1 Rn

⋈ xn
R1,2,..,n-1, n

 BF(R1,2, ..., n-1.xn)

R1 R2

BF(R2.x2)
BF(R3.x3)

BF(R1.x2)

 R1,2,3,4,5
⋈ x4 x5

 R1,2,3, ..., n-1, n

 R1,..,n-2 Rn-1 Rn

⋈ xn-1 xn

BF(R1,...,n-2.xn-1)
IBF(Rn-1.xn ∩ Rn.xn)

 R1,2,3 R4 R5

BF(R6.x6)

BF(R1,2,3.x4)

IBF(R4.x5 ∩ R5.x5)

BF(R2.x2)

 R1 R2 R3

⋈ x2 x3

IBF(R2.x3 ∩ R3.x3)
BF(R4.x4)

BF(R1.x2)

3.4 Optimization for multi-way joins using intersection filters in MapReduce

65

additional overheads. The iteration stops when one of the two input datasets is null.
The output of the chain join is the join result R1, ..., i that is then written to DFS.
 As in Figure 3.15 (b), the second solution suggests that the chain join includes a
cascade of the three-way joins using the extended intersection filters. Assume that i
is an even number and greater than 1. The first input dataset of each the three-way
join, R1, ..., i-1, does not need to be filtered, exceptionally for R1 filtered by BF(R2.x2).
The second input of the join is filtered by the extended intersection filter EIFi that
consists of a filter BF(R1, ..., i-1.xi), and a filter IBF(Ri.xi+1 ∩ Ri+1.xi+1). The last input of
the join needs the extended filter EIF'i to remove redundant data. The EIF'i includes
a filter IBF(Ri.xi+1 ∩ Ri+1.xi+1) and a filter BF(Ri+2.xi+2).
 The execution of the second solution is similar to the first solution. The solution
runs a pre-processing job to produce the Bloom filters BF(Rj.xj) from the input
datasets Rj (j = 2, ..., n), and BF(R1.x2) from R1. Next, the chain join is implemented
as an iteration of one three-way join job (R1,...,i-1 ⋈ Ri ⋈ Ri+1) using their
corresponding intersection filters. It is noted that each the filter BF(R1, ..., i-1.xi) is
generated in the reduce phase of emitting the intermediate join result R1, ..., i-1.
Besides, the last join may be one two-way join. Initially, for i = 2, the dataset R1, ..., i-1
is also the dataset R1. The evaluation of the three-way join with the corresponding
inputs is repeated until the first input or the second input is null. The final output is
the intermediate join result R1, ..., i stored on DFS.
 The solution (a) is designed to use less memory than the solution (b) because the
former only buffers one input for each two-way join, whereas the second one must
buffer two inputs for each three-way join. However, the first solution uses more jobs
than the second one. Assume that n is the number of the input datasets, the number of
the two-way join jobs of the first solution is (n-1), while the second one has (n-1)/2
jobs for the three-way joins.

3.4.4 Star join using intersection filter

We examine a star join including a set of joins in which a fact table (a large central
table) is joined with several dimension tables (smaller tables containing descriptions
for keys in the fact table). The star join is shown in Figure 3.16.

Figure 3.16: A star join

 The fact table is a dataset R0 and the dimension tables are R1, R2, ..., Rn. The star
join query is a popular query in data warehouses that are also a target domain of
data-parallel frameworks. Evaluating the star join query in data warehouses is
expensive because the fact table participates in every join operation.

R0

Rn

R1
R2

x'1
x1

x'n

xn

x2
x'2

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

66

 The implementation of the star join using the extended intersection filters in
MapReduce is suggested by Figure 3.17.

Figure 3.17: Implementation of a star join

 We build an extended intersection filter that is an array of n filters EIFi(Ri.xi),
and n filters BF(R0.xi), i=1...n. The size of the extended filter is not too big because
dimension tables are small. As shown in Figure 3.17, a star join is executed by
joining all the datasets in one, in which the large central dataset R0 is filtered by the
extended filter and the other datasets are filtered by the filters BF(R0.xi), respectively.
Consequently, there is no redundant data when the datasets are sent to the join
processing. This implementation is more efficient than Bloomjoins because the
extended filter can eliminate non-joining tuples from the central dataset at the map
phase of one job and it reduces the number of intermediate join jobs to zero.

3.4.5 Cost analysis of three-way joins in MapReduce

3.4.5.1 Cost model

The cost model of the three-way join is constructed similarly to the one of the two-
way join. We also use the parameters in Table 3.2 for this model. Assume that R, K,
and L are three input datasets. We obtain the total cost of the three-way join as
follows:

C3wJoin = Cpre + Cread + Csort + Ctr + Cwrite

where

 Cread = cr . |R| + cr . |K| + cr . |L|

 Csort = cl . |D| . 2 . (   )(log)(log||log mpmpD BBB ) [76]

 mp = mp1 + mp2 + mp3, the total number of map tasks for the three inputs

 Ctr = ct . |D|

 Cwrite = cr . |O|

 Cpre = Cread + (cl + ct) . m.ϕ . mp + 2 . cr . m.ϕ . t

 Cpre = 0 for the approach without using the filters. Besides, assume that the
filters are the same size m.

R0

BF(R0.x2)

R1

BF(R0.x1)

BF(R0.xn)

R2

Rn

BF(R1.x1)

BF(R2.x2)

BF(Rn.xn)

⋈
 x1 x2 xn

Map

Reduce

(3.18)

3.4 Optimization for multi-way joins using intersection filters in MapReduce

67

 Because the parameter |D| (the size of intermediate data) decides the total cost,
we should consider it to indicate the efficiency of the three-way join.

3.4.5.2 Comparison with cascade of 2 two-way joins

We make a comparison of the intermediate data size between the three-way join and
the cascade of 2 two-way joins for evaluating the query Q2. It is noted that the size of
the intermediate data is also the amount of communication in MapReduce. To
simplify the computation, we suppose that the input datasets R, K and L are the same
size.
 The implementation model described in Section 3.4.2 shows that the three-way
join increases the communication cost because each tuple of R and L is sent to many
different reducers. However, in compensation, this data replication helps us avoid
incremental costs of the two-way join cascade such as incurring an additional job,
scanning and shuffling the intermediate join result. Multi-way joins can therefore
take the benefits of the three-way join, especially if a typical tuple of one dataset
joins with many tuples of another dataset. For instance, we multiply or join copies of
the Web matrix.
 The optimal three-way join raises two problems that need to be considered. They
include choosing the number of reducers and the size of the reducer matrix.

Theorem 3.7. A three-way join R(A, B) ⋈ K(B, C) ⋈ L(C, D) is more efficient than a
cascade of 2 two-way joins (R(A, B) ⋈ K(B, C)) ⋈ L(C, D) or R(A, B) ⋈ (K(B, C) ⋈
L(C, D)) when r < (|R|.)2. Additionally, the size of the intermediate data is specified
by

 2.|R|. r , for the optimal three-way join.

 |R|2., for the cascade of the 2 two-way joins.
where r is the number of reducers, |R| = |K| = |L|, and  is the probability of two
tuples from different datasets agreeing on their common column.

Proof. First, we consider the three-way join. Two attributes B and C of the join query
are join key columns. Thus, we use hash functions to map values of B to b different
buckets, and values of C to c buckets, as long as b.c = r.
The intermediate data size of the three-way join is

|R|.c + |K| + |L|.b
We must find optimal values b and c to minimize the above expression subject to the
constraint that b.c = r with b and c are positive integers. In this case, the Lagrangian
multiplier method is used to present the solution.
Here L = |R|.c + |K| + |L|.b − λ(b.c − r). We consider the problem

0,
min

cb
[|R|.c + |K| + |L|.b − λ(b.c − r)]

We make derivatives of L with respect to variables b and c.

b
L

 = |L| − λ.c = 0  |L| = λ.c

c
L

 = |R| − λ.b = 0  |R| = λ.b

|D| =

(3.19)

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

68

We obtain the Lagrangian equations:

|L|.b = λ.r
|R|.c = λ.r

We can multiply these two equations together to get |L|.|R| = λ2.r. From here, we
deduce λ = rLR . . Applying the value of λ into the Lagrangian equations, we get

b = LrR . and c = RrL .

Then, substituting these values in expression (3.19) to be optimized, we get the
minimum communication amount of the three-way join:

LrRLKRrLR  ≈ 2.|R|. r

Next, we specify the intermediate data size of the cascade of 2 two-way joins:

|R|.|K|. + |L| ≈ |R|2. (where |R|. > 1)

The cost of the three-way join O(|R| r) is thus compared with the cost of the two-
way join cascade O(|R|2.). We can conclude that the three-way join will be better the
cascade when r

< |R|.. In other words, for the optimal three-way join, there is a
limit on the number of reducers r < (|R|.)2. The theorem is proved �.

 We can easily extend Theorem 3.7 for a general three-way join with n join key
columns using an n-dimensional reducer matrix. For example, a three-way join R(A,
B) ⋈ K(B, C) ⋈ L(C, A) with three join attributes A, B, and C. This three-way join
needs a three-dimensional reducer matrix. The optimal three-way join will become
more efficient than the cascade of 2 two-way joins when r < (|R|.)3 and its amount
of communication is 3.|R|. 3 r . In fact, choosing the number of reducers is not
difficult to satisfy this condition. For example, if |R|. = 15, as might be the case for
the Web incidence matrix, we can use the number of reducers r up to 3375.
 Similarly, the intermediate data size of the three-way join using the intersection
filters is shown by the following theorem.

Theorem 3.8. A three-way join R(A, B) ⋈ K(B, C) ⋈ L(C, D) is more efficient with
the intersection filters than without the intersection filters. Besides, the three-way
join using the filters is also more efficient than the two-way join cascade using the
filters when r < (|R'|.)2. In the cases of using the intersection filters, the size of the
intermediate data is defined by

 2.|R'|. r , for the optimal three-way join.

 |R'|2., for the cascade of 2 two-way joins.
 |R'| = ∂.|R| + BFf .(1 − ∂)|R|, R' is the filtered dataset of one input.

where r is the number of reducers,  is the probability of two tuples from different
datasets agreeing on their common column, |R| = |K| = |L|, ∂ is the ratio of the
joined records of one input dataset with another, and BFf is the false intersection
probability between the datasets.

|D| =

3.4 Optimization for multi-way joins using intersection filters in MapReduce

69

Proof. We have the following inequalities:

0 < ∂ << 1 and 0 < BFf << 1

 ∂.|R| + BFf .(1 − ∂)|R| < |R|  |R'| < |R|

Combining this equality with Theorem 3.7, we can easily prove Theorem 3.8 �.

3.4.6 Cost analysis of chain joins in MapReduce

3.4.6.1 Cost model

Given a chain join of n input datasets R1, R2, ..., Rn. We use the optimized solution (b)
to evaluate the chain join as an repetition of one three-way join job with changing
inputs, J


= {J2, J4, J6, ..., J(n-1)/2}. Initially, J1 scans n inputs for building the filters,

the initial join result R1, ..., i-1 is the dataset R1. On each iteration, Ji performs the join
of three inputs including R1, ..., i-1, Ri, and Ri+1. The output of the job Ji is the
intermediate join result R1, ..., i+1 that becomes the input of the next join job Ji+2. The
final output is written to DFS. Based on the cost model of the three-way join, we can
extend to compute the total cost of the chain join as follows:

)()()()()(
)2/1(2

2
iwriteitrisort

nii

i
ireadCachedistpre JCJCJCJCCCJC  







where

 Cpre = 









||.
1

i

n

i
r Rc + (cl + ct) . m.ϕ . mp

 CdistCache = 3 . cr . m.ϕ . t

 CdistCache = 0 for the approach without using the filters.

 Cread(Ji) = cr . |R1,...,i-1| + cr . |Ri| + cr . |Ri+1|

 Csort(Ji) = cl . |Di| . 2 . (   )(log)(log||log mpmpD BBiB )

 mp = mp1 + mp2 + mp3, the total number of map tasks for the three inputs

 |Di| is the size of the intermediate data in the ith iteration

 Ctr(Ji) = ct . |Di|

 Cwrite(Ji) = cr . |R1, ..., i+1| + a

 a = 2 . cr . m.ϕ . t, for building the filter BF(R1, ..., i+1) in the ith iteration

 Cpre = 0 and m = 0 for the approach without using the filters. Besides,
assume that the filters are the same size m.

(3.20)

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

70

3.4.6.2 Comparison between three-way and two-way join cascades

We can see that the computation of a chain join using the optimized solution (a) can
be considered as an iteration of one three-way join job, in which the three-way join
job is compiled into 2 two-way join jobs. Therefore, the total cost of the chain join
using the solution (a) is determined by the sum of)(JC


and the extra costs of writing

and re-reading the intermediate results of the two-way joins on DFS. In other words,
the total cost of the solution (a) is the total cost of the solution (b) added the extra
costs of writing and re-reading the intermediate results. The problem arises that we
should consider the intermediate data generated by each the solution.
 From Theorem 3.8, we can easily show that the three-way join cascade using the
intersection filters is more efficient than the two-way join cascade using the filters
when r < (|R'|.)2. Associating with Theorem 3.6, we deduce that a chain join using
the three-way join cascade with the intersection filters becomes a better choice than a
chain join using the Bloomjoin cascade and the two-way join cascade.

3.5 Experimental evaluation

In this section, we present experimental results obtained from the execution of two-
way joins and chain joins using the different approaches. Together with this, our
discussion focuses on their performance aspects.

3.5.1 Two-way joins

3.5.1.1 Cluster environment and datasets

All experiments were run on a computer cluster of 15 virtual machines using
Virtualbox [77]. Each machine has two 2.4Ghz AMD Opteron CPUs with 2MB
cache, 10GB RAM and 100GB SATA disks. The operating system is 64-bit Ubuntu
server 12.04.2 LTS, and the java version is 1.7.0.21. We installed Hadoop [46]
version 1.0.4 on all nodes in which one of the nodes was selected to act as master and
ran the namenode and the jobtracker processes; the remaining nodes were the
tasktrackers that acted as both storage and CPU. Each tasktracker node was
configured to run up to two simultaneous map tasks and two reduce tasks. Some non-
default hadoop configuration parameters used to run our experiments. The HDFS
block size was set to 128MB, size of read/write buffer was 128KB, heap-size for
child jvms of maps/reduces was set to 2048M, and the number of reduce tasks is set
to 28.
 All test datasets were produced by a data generation script of the Purdue
MapReduce Benchmarks Suite [78], called “PUMA” which represents a broad range
of MapReduce applications exhibiting application characteristics with high/low
computation and high/low shuffle volumes. The maximum number of columns in the
datasets is 39 and string length in each column is set 19 characters. The dataset
dataset1 contains the first column as a foreign key that refers to the fifth column of
the dataset dataset2. Table 3.3 summarizes the various dataset sizes used in our
experiments.

3.5 Experimental evaluation

71

Table 3.3: Input datasets used in three tests

Inputs
Test 1 Test 2 Test 3

size records size records size records

dataset1 15GB 40,259,163 35GB 92,681,333 55GB 145,099,559

dataset2 15GB 40,108,215 35GB 92,524,495 55GB 139,573,823

Total 30GB 80,367,378 70GB 185,205,828 110GB 284,673,382

 We used three sets of the test datasets such as Test 1, Test 2, and Test 3. These
tests have the different sizes, namely, 30GB, 70GB, and 110GB. Each the test
includes the two inputs dataset1 and dataset2. For the test1, dataset1 and dataset2
contain 40,259,163 and 40,108,215 records, respectively. All the datasets are saved in
the same text file format.

3.5.1.2 Experimental protocol

We evaluated our experiments by executing the different algorithms for a join query
on the datasets of each the test. The following join query is used.

SELECT *
FROM dataset1(c0..c20) d1, dataset2(c0..c20) d2
WHERE d1.column0 = d2.column5 AND
 d1.ROWNUM <= $number1 AND
 d2.ROWNUM <= $number2
ORDER BY d1.column0

 The query is executed by changing $number1 and $number2 to the number of
records of the dataset1 and the dataset2, respectively. An output tuple of the
experiments t is defined by the concatenation of the pair of tuples of the first 21
columns that joined to produce the output. Furthermore, for general joins, we set up a
many-to-many relationship between the datasets. Accordingly, a parent tuple in
dataset1 contains several child tuples in dataset2, and vice versa.
 For comparing the efficiency of the join algorithms, we are especially interested
in four main aspects for each the algorithm evaluation. They include the number of
intermediate tuples generated (i.e. Map output), the total execution time, the task
timeline of the implementation, and large-scale input data (e.g. applying the
algorithms to different data amounts).

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

72

3.5.1.3 Evaluation of approaches

First, it is important to focus on comparing the amount of intermediate data (Map
output) listed in Table 3.4. The intermediate data is a decisive factor that affects the
total execution time of the two-way join.

Table 3.4: The number of intermediate tuples (Map output)

Join algorithms 30GB. Test 1 70GB. Test 2 110GB. Test 3

Pair-Filters-Join 43,453 106,116 179,091

Intersect-Filter-Join 43,453 106,116 179,091

PartIntersect-Filter-Join 59,986 220,214 357,336

BloomJoin 40,276,915 92,747,151 145,206,430

Reduce-Side-Join 80,320,684 185,098,062 284,510,488

 We consider the Reduce-side join where no pre-processing job is done. As
shown in Table 3.4, it is the most inefficient solution compared to the other
approaches although it only runs a single join job. This is mainly due to its
intermediate results containing a large amount of non-joining data. The number of
intermediate tuples generated in this case is nearly equal to the number of Map input
records (see Table 3.3 and Table 3.4). This slight difference is because some records
of dataset2 do not contain column5.
 We then consider the Bloomjoin and the intersection filter-based joins where the
pre-processing job and the filtering operation are done to improve the join
performance. To efficiently execute these algorithms, we specified the size of filters
according to the cardinality of the join keys of datasets and chose the largest filter.
There is a tradeoff between m and the probability of a false positive. Hence the
probability of a false positive f is approximated by:

 kmnkef /.1 

 For a given false positive probability f, the length of the Bloom filter m is
proportionate to the number of elements being filtered n as Table 3.5.

Table 3.5: Parameters of filters used in experiments

Tests f k n m/n m (bit) mk=m/k (bit)
Test 1 0.001 7 14866 15 222990 31856
Test 2 0.0001 8 15790 21 331590 41449
Test 3 0.0001 8 15790 21 331590 41449

where m/n is the number of bits allocated for each join key and mk is the size of a
partition of the partitioned filter.

3.5 Experimental evaluation

73

 We can determine optimal parameters for the filter (e.g. f, k and m). In practice,
however, we should choose values less than optimal value to reduce computational
overhead. As shown in Table 3.5, we deliberately select various values of f, k and m/n
for the experiments to consider if they might affect our join performance. In addition,
the filter files generated in the tests are compressed in the gzip format.
 For the Bloomjoin, the number of intermediate tuples is considerably reduced
and so it is better than the Reduce-side join. However, when we compare the amount
intermediate data of the Bloomjoin to the intersection filter-based join in each the test
(see in Table 3.4), it still produced much more redundant data because the filtering
operation is only executed on one input dataset (dataset1). This situation is overcome
by the intersection filter which has the ability to filter out redundant data from both
the input datasets.
 Although the intersection filter-based joins have the additional cost for the pre-
processing job, they are still the most efficient solutions because most unnecessary
data has been removed from both the inputs. As a result, the amount of intermediate
data is very small compared to the Bloomjoin (see in Table 3.4).

Figure 3.18: Comparison of Map output among the intersection filter-based joins

 It is noted that the joins using the pair of filters and the intersection filter (known
as our approach 1 and 2) generate the same amount of intermediate data. This data
amount is smaller than the amount of intermediate data of the join using the
partitioned intersection filter (the approach 3). These arguments have been verified
by our experiments and presented in Figure 3.18. The results show that the
performance of the intersection filter proposed by the approach 1 or 2 is better than
the approach 3.

 Next, we evaluate the efficiency of these join algorithms by comparing their
total execution time. Generally, the join algorithms generating lesser intermediate
data are executed faster.

0

50000

100000

150000

200000

250000

300000

350000

400000

30GB Test 70GB Test 110GB Test

In
te

rm
ed

ia
te

 t
up

le
s

Pair-Filters-Join

Intersect-Filter-Join

PartIntersect-Filter-Join

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

74

Table 3.6: Execution of pre-processing job and join job

Join algorithms
30GB. Test 1 70GB. Test 2 110GB. Test 3

Pre-processing
job time(min)

Join job
time(min)

Pre-processing
job time(min)

Join job
time(min)

Pre-processing
job time(min)

Join job
time(min)

Pair-Filters-Join 3.08 6.32 6.45 24.67 11.22 94.67

Intersect-Filter-Join 3.17 6.15 6.45 24.25 10.00 92.12

PartIntersect-Filter-Join 3.40 6.95 7.28 24.65 11.50 95.70

BloomJoin 2.12 17.07 3.63 43.63 5.22 139.58

Reduce-Side-Join 0 28.25 0 70.13 0 150.00

Figure 3.19: Total execution time

 Table 3.6 identifies in detail the execution time of the pre-processing job and the
join job for the join algorithms. The execution time of the pre-processing job for the
IF-based joins is greater than the time for the Bloomjoin and the Reduce-side join
because the IF-based joins have to scan two input datasets for building the
intersection filter. In contrast, the execution time of the join job for the IF-based joins
is much less than the others because they filter out redundant data in both the input
datasets.
 Figure 3.19 demonstrates that the best execution is the join using the intersection
filter. Its total execution time is significantly reduced compared to the Bloomjoin
even if the execution time of its pre-processing job is greater. The IF-based join
using a pair of filters or the unpartitioned intersection filter runs faster than the join
using the partitioned intersection filter. This is because the filtering performance of
redundant data of the approaches 1 and 2 is better than the one of the approach 3.
The worst performance is the standard Reduce-side join because there are much

0

20

40

60

80

100

120

140

160

30GB Test 70GB Test 110GB Test

To
ta

l
ex

ec
ut

io
n

 ti
m

e
(m

in
)

Pair-Filters-Join

Intersect-Filter-Join

PartIntersect-Filter-Join

BloomJoin

Reduce-Side-Join

3.5 Experimental evaluation

75

redundant data generated. All these results have been shown through the experiments
of 30GB, 70GB and 110GB inputs.

 Finally, we should analyze their task timelines during the execution of the join
job as presented in Figure 3.20. This helps us thoroughly evaluate the performance of
the join algorithms. We will not refer to the task timelines of the pre-processing job
because it is negligible when we run the join query with the large input datasets (see
in Table 3.6).

 (a) Join using the intersection filter (b) Join using the partitioned intersection filter

 (c) Bloomjoin (d) Reduce-side join

Figure 3.20: 70GB Task timelines during the execution of the join job

 Figure 3.20 represents the task timelines of 70GB join jobs using the various
algorithms. The task timeline of the join using the pair of filters is omitted because it
is quite similar to Figure 3.20 (a). These graphs are created by parsing log files that
were generated by Hadoop when we ran the join jobs including 555 map tasks and 28
reduce tasks to process 185,205,828 input records and produce 26,062,967 output
records. For each graph, it will start off mostly running map tasks, and by the end,
only reduce tasks will be running. The maximum number of simultaneous map or
reduce tasks is 28. It may be observed that the peak number of tasks running of the
filter-based joins at once is about 52 while the Reduce-side join requires 56.
 For the join using the intersection filter as shown in Figure 3.20 (a), the
execution time of all map tasks and reduce tasks is significantly reduced versus the
Bloomjoin and the Reduce-side join as in Figure 3.20 (b) and Figure 3.20 (c).
Besides, the map and reduce phases of the intersection filter-based joins are finished
earlier than the Bloomjoin and the Reduce-side join because they have lesser

0

10

20

30

40

50

60

1
10

0
19

9
29

8
39

7
49

6
59

5
69

4
79

3
89

2
99

1
10

90
11

89
12

88
13

87

nu
m

be
r

of
 ta

sk
s

reduce
merge
shuffle
maps

0

10

20

30

40

50

60

1
10

0
19

9
29

8
39

7
49

6
59

5
69

4
79

3
89

2
99

1
10

90
11

89
12

88
13

87

nu
m

be
r o

f t
as

ks

reduce
merge
shuffle
maps

0

10

20

30

40

50

60

1
17

6
35

1
52

6
70

1
87

6
10

51
12

26
14

01
15

76
17

51
19

26
21

01
22

76
24

51

nu
m

be
r

of
 ta

sk
s

reduce
merge
shuffle
maps

0

10

20

30

40

50

60

1
26

4
52

7
79

0
10

53
13

16
15

79
18

42
21

05
23

68
26

31
28

94
31

57
34

20
36

83
39

46

nu
m

be
r

of
 ta

sk
s

reduce
merge
shuffle
maps

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

76

intermediate data and, as a consequence, the total cost of the local I/O, sort, and
remote data copy is also smaller. The joins using the intersection filter are the most
efficient solutions because their data filtering efficiency is the best and thus the
amount of intermediate data is at least.
 However, the two-way join algorithms using the filter(s) are just really efficient
when there is a minimum amount of redundant data in the input datasets. The
minimum amount, also called threshold, is defined by the two parameters ∂dataset2 and
∂dataset1. These parameters are the ratios of the joined records between the datasets.
We conducted a survey of the ratios of the joined records for the join algorithms with
2GB input; results are shown in Figure 3.21 below.

 Total execution time (min)

Figure 3.21: Threshold of redundant data amount for the joins with 2GB inputs

 In the first case, dataset1 and dataset2 are disjoint (i.e. the joined ratios are 0% :
0%). The joins using the intersection filter (exceptionally, the pair of filters) are the
best performances because they only run the pre-processing job and discover the
empty intersection to omit the join job. Meanwhile, the other joins cannot discover
the empty intersection and, as a result, they continue running the join job. Because
we use the small input datasets 2GB, the performance of the joins using the filter is
not better than the Reduce-side join. This is because they have to incur the additional
overhead of the pre-processing job. It means that the filter-based joins should not be
used for small input datasets.
 We consider two cases of the joined ratios (85% : 4%) and (95% : 65%). There
is little redundant data in these cases. Consequently, the total execution time for the
joins using the filter increases rapidly than the Reduce-side joins. These are the
redundant data thresholds for the filter-based joins. In other words, we should use the

0% : 0% 50% : 0,8% 85% : 4% 95% : 65% 100% : 100%

Pair-Filters-Join 2.27 7.22 31.29 64.12 105.41

Intersect-Filter-Join 0.54 7.05 30.49 50.11 106.55

PartIntersect-Filter-Join 0.58 7.12 30 63.05 107.58

BloomJoin 2.44 7.36 31.46 50.18 99.51

Reduce-Side-Join 1.34 7 31.25 50 84.5

0

20

40

60

80

100

120

To
ta

l
ex

ec
ut

io
n

 ti
m

e
(m

in
)

Redundant data threshold
for the joins using the pair
and partitioned filters

Redundant data threshold for
the joins using the IF and the

Bloomjoin

∂dataset2 : ∂dataset1

3.5 Experimental evaluation

77

filter-based join algorithms when the amount of redundant data is greater than the
threshold (i.e. the joined ratios, ∂dataset2 : ∂dataset1, are smaller).
 In the last case, there is no redundant data in the input datasets with 2GB (i.e. the
joined ratios are 100% : 100%). The Reduce-side join is better than the others
because the filtering operation is not necessary here.

3.5.2 Chain joins

3.5.2.1 Cluster environment and datasets

We run experiments for the chain join on another computer cluster of 15 virtual
machines using KVM (Kernel-based Virtual Machine) [79]. Each machine has two
1.4Ghz AMD Opteron CPUs with 512KB cache, 5GB RAM and 100GB SATA disks.
The operating system is 64-bit Ubuntu server 12.04.2 LTS, and the java version is
1.7.0.21. We installed Hadoop [46] version 1.0.4 on all nodes. The other
configurations of this cluster are similar to the ones of the cluster running the
experiments of the two-way join. The number of reduce tasks is set to 25.
 All test datasets were also produced by the data generation script of the PUMA.
The maximum number of columns in the datasets is 39 and string length in each
column is set 19 characters. The datasets dataset1, dataset2, dataset3, and dataset4
contain the join key columns such as column1 (c1), column2 (c2), column3 (c3), and
column4 (c4). Table 3.7 summarizes the different dataset sizes used in our
experiments.

Table 3.7: Input datasets used in three tests

Inputs
Test 1 Test 2 Test 3

size records size records size records

dataset1 10GB 26,836,497 20GB 53,675,946 20GB 53,682,929

dataset2 3GB 8,051,454 10GB 26,838,960 30GB 73,881,305

dataset3 10GB 26,836,497 20GB 53,675,946 20GB 53,682,929

dataset4 3GB 8,051,454 10GB 26,838,960 30GB 73,881,305

Total 26GB 69,775,902 60GB 161,029,812 100GB 255,128,468

 We used three sets of the test datasets such as Test 1, Test 2, and Test 3. These
tests correspond to 26GB, 60GB, and 100GB. Each the test includes the two inputs
dataset1 and dataset2. Each the test includes the four inputs dataset1, dataset2,
dataset3, and dataset4. All the datasets are saved in the same text file format.

3.5.2.2 Experimental protocol

Seven chain join algorithms developed in our experiments are the Reduce-side join
cascade, the Bloomjoin cascade, the intersection filter-based join cascade (using
three filtering approaches: the pair of the filters, the IBF, and the partitioned IBF), the
optimal two-way join cascade (the solution (a) of optimization for the chain join),
and the optimal three-way join cascade (the solution (b)).

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

78

 We run our experiments by executing the different algorithms for a chain join
query on the datasets of each the test. The following chain join query is used.

SELECT *
FROM dataset1(c1..c10) d1, dataset2(c1..c10) d2,
 dataset3(c1..c10) d3, dataset4(c1..c10) d4
WHERE d1.column2 = d2.column2 AND
 d2.column3 = d3.column3 AND
 d3.column4 = d4.column4 AND
 d1.ROWNUM <= $number1 AND
 d2.ROWNUM <= $number2 AND
 d3.ROWNUM <= $number3 AND
 d4.ROWNUM <= $number4
ORDER BY d4.column4

 The query is executed by changing $number1, $number2, $number3, and
$number4 to the number of records of the dataset1, dataset2, dataset3, and dataset4,
respectively. A quadruple ($number1; $number2; $number3; $number4) corresponds
to one test. For example, (26,836,497; 8,051,454; 26,836,497; 8,051,454) is the Test
1 of 26GB.
 An output tuple of the experiments t is defined by the concatenation of four
tuples of the first 11 columns that joined to produce the output. Furthermore, for
general joins, we set up a many-to-many relationship between the datasets.
 For each of the tests, we compare the seven chain join algorithms on three main
aspects such as the total intermediate data amount, the total output data amount, and
the total execution time.

3.5.2.3 Evaluation of approaches

A given false positive probability f, the length of the Bloom filter m is proportionate
to the number of elements being filtered n, m/n is the number of bits allocated for
each join key and mk is the size of a partition of the partitioned filter. The
experiments use the parameters of the Boom filters as calculated in Table 3.8.

Table 3.8: Parameters of filters used in experiments

Tests f k n m/n m (bit) mk=m/k (bit)
Test 1 0.000101 8 13147 21 276087 34511
Test 2 0.000101 8 13840 21 290640 36330
Test 3 0.000101 8 15295 21 321195 40150

 First, we consider the total amount of intermediate data generated by each the
chain join algorithm as in Table 3.9.

3.5 Experimental evaluation

79

Table 3.9: The total number of intermediate tuples (all map outputs)

Chain join algorithms 26GB. Test 1 60GB. Test 2 100GB. Test 3

Intersect-Filter-Joins 1,309,349 1,469,048 1,497,692

Pair-Filters-Joins 1,309,349 1,469,048 1,497,692

PartIntersect-Filter-Joins 1,309,349 1,475,849 1,497,692

BloomJoins 45,402,907 89,201,979 89,248,190

Reduce-Side-Joins 88,296,034 196,465,292 290,582,143

Chain-Optimal-2-WayJoin 1,281,036 1,417,684 1,445,428

Chain-Optimal-3-WayJoin 1,221,769 1,359,575 1,385,053

Figure 3.22: Total intermediate data

 As we can see in Table 3.9, the cascades of Bloomjoins and Reduce-side joins
generate much more intermediate data than any other chain join algorithms because
of the existence of much redundant data. We take a look at Figure 3.22 to have a
visual look for a comparison of the others using the intersection filters. The chain
optimal three-way join has the least amount of intermediate data because it has less
intermediate join jobs than the two-way join cascades, and has no redundant data in
the intermediate join result(s). The intermediate data amount of the chain optimal
two-way join is slightly larger than the chain optimal three-way join due to more
intermediate join jobs. However, it is still better than the typical intersection filter-
based join cascades. The typical intersection filter-based join cascades cannot prevent
redundant data included in intermediate join results. Overall, the intermediate data
amounts of these typical intersection filter-based methods are almost the same. The
chain two-way join using the partitioned intersection filters tends to generate more
intermediate data than using the different intersection filters.

 Next, we examine the total output of the chain join algorithms. The total output
consists of all the intermediate data and the intermediate join results. In other words,
it includes all map output records and reduce output records of the chain join. This
output has significant overheads involving I/O and communication overheads. The
results of the total output are presented in Figure 3.23.

1,200,000

1,250,000

1,300,000

1,350,000

1,400,000

1,450,000

1,500,000

1,550,000

26GB Test 60GB Test 100GB Test

To
ta

l i
nt

er
m

ed
ia

te
 d

at
a

(r
ec

or
ds

) Intersect-Filter-Joins

Pair-Filters-Joins

PartIntersect-Filter-Joins

Chain-Optimal-2-WayJoin

Chain-Optimal-3-WayJoin

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

80

Figure 3.23: Total output data (Map output + Reduce output)

 Figure 3.23 illustrates the amount of the total output of the seven chain join
algorithms over the three tests 26GB, 60GB and 100GB. It can clearly be seen that
the Reduce-side join cascade and the Bloomjoin cascade generate the largest outputs,
whilst the chain optimal two-way join and the chain optimal three-way join using the
intersection filters (Chain2-WayJoin and Chain3-WayJoin) have the least outputs of
the seven. The chain intersection filter-based joins generally produce a little more
output than the optimal chain joins. The main reason is that the optimal chain joins
have the ability to filter out much more redundant data than the others.
 To begin, the Reduce-side join cascade and the Bloomjoin cascade show a
similar pattern, with both significantly increasing for the tests from 26GB to 100GB.
Obviously, the Reduce-side join cascade is the highest over all the tests. In the Test 1,
the Reduce-side join cascade outputs around 119,928,957 records, while the
Bloomjoin cascade about 77,035,830 records and the chain intersection filter-based
joins about 32,942,272 records lower. With the similarity in the Test 3, the Reduce-
side join cascade produces around 371,782,345 records, whereas the Bloomjoin
cascade about 170,448,392 records and the chain intersection filter-based joins about
82,697,894 records much lower.
 The outputs that are generated the least are the Chain2-WayJoin and the Chain3-
WayJoin. In the Test 1, the Chain2-WayJoin emits around 15,577,281 records, while
the Chain3-WayJoin about 15,255,188 records lower. Observing the Test 3, the
Chain2-WayJoin produces around 48,436,677 records and the Chain3-WayJoin about
48,097,527 records lower.

 Lastly, we make a performance comparison among the seven chain join
algorithms. Overall, the optimal chain joins have the total execution time the lowest
because they produce the total output the least. This is demonstrated in the following.

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

400,000,000

26GB Test 60GB Test 100GB Test

To
ta

l
ou

tp
ut

 (
re

co
rd

s)

Intersect-Filter-Joins

Pair-Filters-Joins

PartIntersect-Filter-Joins

BloomJoins

Reduce-Side-Joins

Chain2-WayJoin

Chain3-WayJoin

3.6 Summary

81

Figure 3.24: Total execution time

 Figure 3.24 presents the total execution time of the chain join using the different
algorithms from 26GB to 100GB. There are seven graphs in the chart. The bottom
two graphs show the total execution time of the optimal chain joins, the next three
ones deal with the chain intersection filter-based joins and the top two graphs show
the Bloomjoin cascade and the Reduce-side join cascade. For the test 100GB, the
Chain2-WayJoin and the Chain3-WayJoin run about 52.57 and 57.22 minutes
respectively, while the chain intersection filter-based joins about 65.13 minutes. The
Bloomjoin cascade and the Reduce-side join cascade execute about 72.09 and 88.34
minutes much longer. It is similar to compare the total execution time of the
algorithms for the remaining tests. From the chart, we can conclude that the optimal
chain joins have the total execution time the least, although they additionally run the
pre-processing job. This is logical since they have less the output than as analyzed
above. It is observed that the Chain3-WayJoin tends to perform better than the
Chain2-WayJoin.

3.6 Summary

In this research, we consider the problem of computing the intersection Bloom filter
to optimize two-way joins and important multi-way joins in MapReduce. Based on
the probabilistic model, three ways are proposed on the intersection filter such as the
pair of Bloom filters, the intersection of Bloom filters, and the intersection of
partitioned Bloom filters. The intersection filter is then applied to two-way join
operations to eliminate most of the non-joining tuples in the input datasets before
sending the intermediate pairs to actual join processing. Additionally, we make an
extension of the intersection filter to improve the performance of three-way joins and
chain joins including both cyclic chain joins with many shared join keys. The two
optimized solutions for chain joins are proposed in this research. We use the
Lagrangian multiplier method to indicate a good choice between the two solutions.
Remarkably, we build the general cost models for two-way joins and multi-way
joins. Thanks to these cost models, we can make comparisons of the join algorithms
more persuasive. As a result, with using the intersection filters, the join operations

0

10

20

30

40

50

60

70

80

90

100

26GB Test 60GB Test 100GB Test

To
ta

l e
xe

cu
tio

n
tim

e
(m

in
)

Intersect-Filter-Joins

Pair-Filters-Joins

PartIntersect-Filter-Joins

BloomJoins

Reduce-Side-Joins

Chain2-WayJoin

Chain3-WayJoin

Chapter 3 OPTIMIZATION FOR TWO-WAY JOINS AND IMPORTANT MULTI-
WAY JOINS

82

can minimize disk I/O and communication costs. Finally, the intersection filter-based
join operations are demonstrated to be more efficient than existing solutions through
the experimental evaluations. The joins using a pair of filters and the unpartitioned
intersection filter are more efficient than the joins using the partitioned intersection
filter because of their filtering performance. However, the partitioned intersection
filter is easy to discover disjoint datasets on a join key column and stop the join
processing.
 This work leads to one publication [5] in Proceedings of the 2Nd International
Workshop on Cloud Intelligence (Cloud-I@VLDB).

mailto:(Cloud-I@VLDB).

CHAPTER

OPTIMIZATION FOR RECURSIVE

JOINS AND SEMI-NAIVE ALGORITHM

Implementing a recursive join is considered as the calculation of the transitive
closure to evaluate a recursive query with fixpoint semantics. It is a complex and
expensive operation because it involves repeating the join operation. In the
MapReduce environment, the issue becomes even more complicated when we
implement a recursive join as an iteration of a join job and a deduplication-difference
job (dedup-diff job). In this chapter, we present a simple and efficient solution for
recursive join evaluation. It folds the join job and the dedup-diff job into one single
job using a Difference filter. The evaluation, based on alternating sequences of Join
→ Deduplication-Difference operations, is now replaced by an iteration of one
combined operation. This improvement will significantly reduce the number of
executed jobs by half, and especially the overheads of data rescanning, intermediate
data, and communication for the deduplication and difference operations. Therefore,
the difference filter-based optimization for recursive joins as well as the general
semi-naive algorithm is thoroughly considered in this research.
 We discuss previous works and propose our solution for optimizing recursive
joins in Section 4.1. Some definitions and notations are also introduced. Each
remaining section of this chapter therefore highlights a contribution of our work.
Section 4.2 provides a difference filter to check whether an element is not in a set.
The existing problems, concepts, and design details for the difference filter are
described. Specially, the false difference probability that affects to the filtering
performance is also considered and analyzed thoroughly. Next, Section 4.3 presents
an optimization for the recursive join as well as the semi-naive algorithm. The
processing phases and the general algorithm are detailed in this section. We compare
the proposal to the previous approach through a cost model, and show the advantages
of our approach in Section 4.4. Finally, we conclude our contributions in Section 4.5.

4.1 Introduction

4.1.1 Previous work

We consider the query Q3 in Chapter 2 that is a recursive join query also known as a
typical transitive closure query. We can point out its similar form expressed in
Datalog as follows.
 Friend(x, y) ← Know(x, y);
 Friend(x, y) ← Friend(x, z) ⋈ Know(z, y);

“friend” depends on Know and itself; recursive

Chapter 4 OPTIMIZATION FOR RECURSIVE JOINS AND SEMI-NAIVE
ALGORITHM

84

 There are many algorithms designed to compute the transitive closure of a
database relation in the literature [80][23][81][82]. However, they are not always
well suited for implementing in the MapReduce environment. Several recent studies
have found solutions for evaluating this query type in the environment. Afrati et al
[7][12] propose an implementation of recursion on a cluster with addressing the
transitive closure as a starting point. The authors show how to significantly reduce
the number of needed rounds for evaluating nonlinear transitive closures. Namely,
the solution decreases the number of rounds to O(log2 n) rather than O(n) on a n-
node graph.

Figure 4.1: Relationship between join and dup-elim tasks

 As shown in Figure 4.1 [12], the solution uses two groups of tasks consisting of
Join tasks and Dup-elim tasks. The join tasks compute the join of tuples. The dup-
elim tasks is to remove duplicate f-tuples before they can be delivered. Each join task
i receives and stores no duplicate tuples f(a, b) such that h(a) or h(b) is i. It then
searches its store for tuples (b, c) and (c, a), and sends corresponding tuples (a, c)
and (c, b) to dup-elim tasks numbered g(a, c) and g(c, b), respectively. The dup-elim
task checks each received tuple in its store. If the tuple exists, it is omitted.
Otherwise, the tuple is stored and sent to join tasks h(a) and h(b).
 A major obstacle of this solution is due to long-running recursive tasks that may
increase risk for failures. In addition, there are modifications to the typical
MapReduce framework such as blocking property and failure recovery methods. The
blocking property aims to deals with compute node failures by controlling tasks in a
way that each task does not deliver output to any other task until it has completely
finished its work. For this solution, however, the tasks cannot have the blocking
property in which the tasks can deliver some output before finishing. As a result, it
uses alternative failure recovery mechanisms such as idempotence and checkpointing
[12] which are complex and are not directly supported in Hadoop. Moreover, this
solution is used to calculate nonlinear transitive closures and its communication cost

f(a,b) if h(a) = i
or h(b) = i

To join
node
h(c)

f(c,d) if
g(c,d) = j

f(c,d) if
never seen

before

To join
node
h(d)

Join
node 0

....
Join

node i

Dup-elim
node j

....

Dup-elim
node 0

4.1 Introduction

85

is typically much greater than that of linear transitive closures due to the ouput
replication of the dup-elim tasks.
 Pregel [83] executes true recursion on a graph using the Bulk Synchronous
Parallel (BSP) model, but checkpoints all tasks at intervals. If there is a failed task,
all tasks are rolled back to the previous checkpoint.
 HaLoop [84] has modified version of Hadoop to support efficient iterative data
processing on clusters. This system implements recursion by repetition of
MapReduce jobs and minimizes communication by caching the Mapper Input (MIC)
and the Reducer Input/Output (RIC/ROC). This solution can avoid re-scanning and
re-shuffling data on every iteration, of course it still must rescan the caches. A
limitation is that tasks should operate in synchronous rounds and the output of one
task must be passed to the next MapReduce phase. In addition, a drawback of the
cache implementation in the current HaLoop comes from completely rewriting the
cache on every iteration. Moreover, HaLoop still uses an old version (0.20.2), and it
is not updated to the latest versions of Hadoop.
 We look at another algorithm for evaluating the recursive join query. The well-
known semi-naive algorithm [85] is used to find the fixpoint of the evaluation. It
replaces recursion by a repetition of MapReduce job(s). In this algorithm,
incremental relations are used to avoid recomputing the same facts.
 Assuming F and K denote the relations Friend and Know, respectively. Let Fi, i

between 0 and n, be the temporary value of the relation Friend at iteration step ith, and K
be the relation Know at all iterations. The differential of Fi between step i and step i-1
is defined as follows.

∆Fi = Fi - Fi-1 = ∏xy(∆Fi-1 ⋈z K) – Fi-1

 ∆Fi is also called an incremental relation of the relation Fi at iteration step i. The
details of the algorithm is shown in Listing 4.1.

Algorithm 1 - Semi-Naive evaluation for recursive joins

F0=⌽, ∆F0=K(x,y), i=1
While ∆Fi-1 not empty do

Fi-1 = (∆F0  ...  ∆Fi-1)
∆Fi = ∏xy(∆Fi-1 ⋈z K) – Fi-1
i++

Listing 4.1: Pseudo code for Semi-naive algorithm

 At each iteration step i, some new facts are inferred and stored in ∆Fi. To infer a
new fact at step i, one must use at least one fact derived at step i-1. The loop is
repeated until no new fact is inferred (∆Fi=⌽), i.e., the fixpoint is reached. The result
is that the union of all the incremental relations, (∆F0  ...  ∆Fi-1), is a least fixed
point of the query.

Chapter 4 OPTIMIZATION FOR RECURSIVE JOINS AND SEMI-NAIVE
ALGORITHM

86

 The advantage of the semi-naive method is that at each iteration a differential
term Fi-1 is used in each join computation instead of the whole Fi-1. For this way,
the time complexity of a computation is decreased significantly.
 Shaw et al [14] have proposed an optimization for implementing this semi-naive
algorithm in MapReduce as follows. On each iteration of the evaluation, the
command line ∆Fi = ∏xy(∆Fi-1 ⋈z K) – Fi-1 is compiled into two MapReduce jobs,
namely, one for join job and one for deduplication and difference (dedup-diff) job.
Their implementation is described in MapReduce framework as Figure 4.2.

Figure 4.2: Semi-naive implementation of recursive joins in MapReduce

 The evaluation of a recursive join first executes the join job (∆Fi-1 ⋈ K) that
joins the incremental relation of Friend with the relation Know to produce new tuples
of the result. The second job aims to eliminate duplicate tuples in the result, compute
the difference of the new result and all previous results, and then generate next
incremental relation ∆Fi. This execution plan is then iterated until the ∆Fi is empty.
 The difference job using the RIC cache is described as follows. Each tuple is
stored in the cache as a key/value pair (t, i), where the key is the tuple t discovered
by the previous join job and the value is the iteration number i for which that tuple
was discovered. On each iteration, the map phase of the difference job hashes the
incoming tuples as keys with values indicating the current iteration number. During
the reduce phase, for each incoming tuple (from the map phase), the cache is probed
to find all instances of the tuples previously discovered across all iterations. Both the
incoming and cached data are passed to the user-defined reduce function. Any tuples
that were previously discovered are omitted from the output. If the tuple had never
before been seen, this tuple should be included in the ∆Fi and emit the tuple.

4.1.2 Proposal for recursive join using filters

Our research focuses on the general semi-naive algorithm for computing the
recursive join as well as the transitive closure of a relation. More importantly, this
algorithm can be translated to the MapReduce distributed computing environment.
The main idea behind the algorithm is a loop containing operations such as join,

 ∆Fi = ∆Fi-1 ⋈ K ∆Fi = (a,b), (b,c), (a,c), (a,c)
 ∆Fi = ∆Fi - Fi-1

R

 2. Deduplication & Difference job

RIC for K

M

M

 RIC for Fi-1

R

M

M

M

∆Fi-1

K

1. Join job

R

R

4.1 Introduction

87

projection and difference to calculate the transitive closure breadth-first. However,
the MapReduce model is not the convenient model for the iterative computation and
the join operation. As illustrated in Figure 4.2, it turns out that the semi-naive
algorithm has some problems that need to be considered.

(1) With the join job (∆Fi-1 ⋈ K), the relation K is always re-scanned and re-
shuffled on every iteration even though it is invariant.

(2) With the difference job (∆Fi - Fi-1), all the incremental relations (Fi-1) are also
re-scanned and re-shuffled on every iteration.

(3) On each loop, there are the two jobs consisting of the join job and the
difference job; this makes implementing the recursive join quite expensive.

 Shaw et al have addressed the problems (1) and (2) in the HaLoop system by
using the RIC cache. To avoid re-scanning and re-shuffling the datasets on each loop,
the solution uses the RIC cache for the datasets K and Fi-1 in the job join and the
dedup-diff job, respectively, as described in Figure 4.2. However, the solution from
Shaw cannot overcome the problem (3) because it still requires the additional
difference job to calculate the incremental relation ∆Fi. This job takes expensive
overheads such as rescanning the output of the join job on DFS, incurring a new job,
generating intermediate data from the output of the join job, and shuffling the
intermediate data. Besides, the overhead of implementing the cache is significant
because all discovered results are cached, indexed and probed during the evaluation.
In addition, the cache is rewritten completely on every iteration during which new
results are discovered. Therefore, folding the difference operator into the join job
would considerably save the overheads for the recursive join implementation. This
also improves the semi-naive algorithm in MapReduce such that the number of
computation steps as well as the jobs can be reduced to l instead of 2×l, where l is the
longest path length in the relation graph - 1.
 For this reason, we propose a solution to optimize the recursive join and the
semi-naive algorithm in MapReduce as follows.

Figure 4.3: Filter-based optimization for the semi-naive algorithm and recursive joins

in MapReduce

Intersection filter (IF)

K

M

M

M

∆Fi-1
 Ki

 Kj

 R

 R

Join and Project
∆Fi = ∆Fi-1 ⨝ K

Deduplication & Difference
∆Fi = (a,b), (b,c), (a,c), (a,c)
∆Fi = ∆Fi - Fi-1

Reducer input cache (RIC)

Difference filter (DF)

Chapter 4 OPTIMIZATION FOR RECURSIVE JOINS AND SEMI-NAIVE
ALGORITHM

88

 As shown in Figure 4.3, a typical MapReduce job performs the join operation
between two input datasets K and ∆Fi-1 (the incremental relation at iteration step i-1).
The dataset K is scanned only one time at the first loop. Ki and Kj are splits of K,
which are cached at the reducer input caches i and j, respectively. An intersection
filter (IF) [5] contains common join keys between the input datasets. The reducer
input cache is used to cache the loop-invariant relation K. A difference filter (DF)
stores distinct tuples discovered. The join job uses the IF to remove non-joining data
at the map phase. The RIC is used to avoid rescanning the input dataset K on each
iteration. The DF is to eliminate duplicate results and computes actual new results for
the next iteration.
 For our solution, the recursive join is implemented as an iteration of the join job.
Initially, the IF and the DF are empty. The dataset ∆F0 is assigned to K. The map
phase hashes the tuples of both the datasets by the join key. The tuples whose join
keys are not in the IF are eliminated. This checking is not conducted in the first loop
since the BF is nothing. The tuples then are passed to the reducers. At the reducer, the
RIC caches the tuples of K to avoid re-scanning and re-shuffling the loop-invariant
dataset K on the next iterations (the problem (1)). The reduce phase performs the join
of ∆Fi-1 and K for each unique key. Each result of the join is queried into the
difference filter DF. If the result is not in the DF, it is the actual new result and thus it
is hashed to the DF and emitted to the output Oi. Otherwise, it is the duplicate result
and omitted. The output Oi is the incremental relation ∆Fi that is used for the next
iteration. In addition, the intersection filter IF is recomputed by the common join
keys from ∆Fi and K. The iteration of this job ends when the IF is empty because of
no common join key between ∆Fi and K. The final output of the recursive join
includes all the outputs Oi. It is very important to note that using the difference filter
DF avoids the overheads of re-scanning and re-shuffling all the incremental relations
(Fi-1) and incurring the additional difference job (the problem (2) and (3)).

 We address the problems of the general semi-naive algorithm for evaluating the
recursive join query in the MapReduce environment, and propose the difference filter
to compute the incremental relation without using the expensive difference job. Two
key aspects of the difference filter need to be considered including (1) approach to
modeling the difference filter, (2) probability of a false difference.

4.1.3 Definitions and notations

We introduce definitions and notations used in this research.

Definition 4.1. A disjoint element of a set is an element NOT in the set. Given a set
S, x is a disjoint element of S if x  S.

Definition 4.2. Disjoint elements of sets S1 and S2 are elements of (S1 \ S2)  (S2 \ S1)

Definition 4.3: A difference filter (DF) is a probabilistic data structure designed to
represent a set and examine whether an element is NOT present in the set. In other
words, the difference filter of a set is to recognize the disjoint elements of the set.
This is contrary to a Bloom filter used for membership queries.

4.2 Modeling difference filter

89

For formality, suppose that R and S are two sets. The difference filter of S, DF(S) that
represents the set S, is used to test whether an element x of R is NOT in S (x  R \ S).

Definition 4.4: A recursive join of a relation is an operation to compute the transitive
closure of the relation. It is a compound operation, which involves repeating the join
operation until no further result is produced (“fixpoint”).

Table 4.1: List of notations

4.2 Modeling difference filter

4.2.1 Existing solutions

First, we should consider existing solutions that are relevant to this issue, e.g., data
reconciliation, deduplication, error-correction, etc. Data reconciliation and
deduplication are important tasks in distributed systems and have been carried out in
a few different ways. These tasks can be efficiently carried out thanks to accurately
identifying disjoint elements of two sets.
 The easiest way to recognize disjoint elements of two sets is based on hash
tables. The hash table T contains fingerprints of all elements belonging to one set and
checks whether elements of another set are present. For instance, we perform
reconciliation in a distributed environment for a set of records A. Assume that A1 and
A2 of A are distributed over two various data sites S1 and S2, respectively. S1 sends the
hash table T1 of A1 to S2 and receives T2 of A2 from S2. We can now specify disjoint
elements through querying the records of A1 into the table T2 at S1, and the records of
A2 into T1 at S2. Using a perfect hash function for the sets, this approach needs Oc(|A1|
+ |A2|) communication overhead for exchanging these two hash tables T1 of size |A1|
and T2 of size |A2|. It also requires Ot(|A1| + |A2|) run time to query |A1| and |A2|

Notation Explanation

K A dataset Know that is a loop-invariant dataset

∆Fi An incremental relation Friend in iteration i

Fi All incremental relations on iterations 0 to i (∆F0  ...  ∆Fi)

DF(S) A difference filter built for a set S

BF(S) A Bloom filter built for a set S

DBF(S) A dynamic Bloom filter built for a set S

LHT(S) A Lossy Hash Table built for a set S

T A Hash table

DFS Distributed File System

\ The difference operator, e.g. R \ S is the difference of R with S

Chapter 4 OPTIMIZATION FOR RECURSIVE JOINS AND SEMI-NAIVE
ALGORITHM

90

elements into the two hash tables. However, the hash tables are space-inefficient on
large data sets because the number of buckets in the hash table grows at the same rate
as the cardinality of the set so that it remains nearly the same size.
 A better solution involves an approximate membership query data structure
called a Bloom filter [15], which excels at determining if an item is a member of a
set. Since we exchange the filters containing only bits that represent elements of one
set, the communication overhead can be reduced and is proportional to the size of the
filter. Although, the run time for checking elements in the two sets is also Ot(|A1| +
|A2|), the approach is very space-efficient for both large data sets because Bloom
filter uses a bit array and its size is fixed regardless of the cardinality of the set. Of
course, there is a clear tradeoff between the size of the filter and the false positive
probability. As shown in [74], if the number of elements in the set does not change,
the error probability decreases as the size increases (i.e., more memory usage).
 Several recent approaches have extended Bloom filter such as Stable Bloom
Filters [86], Time Interval Bloom Filters [87], Approximate Reconciliation Trees
[29], horizontal and vertical Bloom filters [88], etc. They minimize the amount of
memory assigned to the filters and the number of errors, including false positives and
false negatives. It is noted that a false positive is a disjoint element wrongly reported
as duplicate, and a false negative is a duplicate element wrongly reported as
difference.
 Unfortunately, these solutions work on a shortcoming because of accepting false
positives. Based on the standard Bloom filter, the extended filters always generate
false positives [86][87][29][88] and sometimes additional false negatives [86][88].
As a result, the filters can indicates a superset of duplicate elements, consisting of all
actually duplicate elements and a few disjoint elements that are false positives. In
contrast, they cannot identify a set of all disjoint elements because the missing
disjoint elements of the set belong to the false positives approximated by a
probability. This is an obstacle for applying the Bloom filters to deduplication and
reconciliation. For an instance of deduplication, if an element x exists in the filter; x
will be omitted because it is a duplicate element. However, a disjoint element y will
be still omitted if the filter reports y as an existing element due to a false positive
error. The solutions [86][88] can reduce the false positive errors without removing
them.
 That is unacceptable for our difference filter in which it requires the ability to
recognize a superset of all disjoint elements. To achieve this goal, the difference
filters should only generate false negatives without false positives. The false
negatives are duplicate elements wrongly reported as disjoint elements. Precisely, the
difference filters allow us to specify a superset, which consists of all disjoint
elements and a few duplicate elements with a small rate.
 Another good alternative was proposed by Eppstein, Goodrich et al. [89].
Actually, the authors have solved the set difference problem that is related to our
problem. This solution supplies a data structure Difference Digest to compute the set
difference with communication proportional to the size of the difference. The data
structure is based on an Invertible Bloom filter [31], [72] (InvBF). The InvBF is a
variant version of the Bloom Filter that uses a three-component data structure to
supports not only the insertion, deletion, and lookup of key-value pairs, but also
allows a listing of its contents with high probability. Figure 4.4 below describes the
data structure.

4.2 Modeling difference filter

91

Figure 4.4: Invertible Bloom filter

Each bucket of the InvBF contains three fields, which are initially set to 0:

 A keySum field, which is the sum of all the keys that have been mapped to
this bucket.

 A valueSum field, which is the sum of all the values that have been mapped
to this bucket.

 A count field, which counts the number of entries that have been mapped to
this bucket.

The invertible Bloom filter supplies fourth operations:

 INSERT(x, v): insert a key-value pair, (x, v), into the InvBF.

 GET(x): return the value v such that there is a key-value pair, (x, v), in the
InvBF.

 DELETE(x, v): delete the key-value pair, (x, v), from the InvBF.

 LIST_ENTRIES(): list all the key-value pairs being stored in the InvBF. With
low probability, it may return a partial list along with an “list-incomplete”
error condition.

The INSERT and DELETE operations never fail, whereas the GET and
LIST_ENTRIES operations may fail with low probability.

 Similarly to the standard Bloom filter, the InvBF uses k hash functions to
compute locations for storing an element in an array of buckets. The hash functions
hk() will result in storing multiple data elements in the same location. Therefore, it
cannot prevent collisions and a form of collision resolution is needed.
 We can see that we cannot store x and then store z in the same location because
this would wipe out all trace of x. The solution is to use a reversible storage function.
For example, if we stored x in an InvBF at location i and then we insert z into the
same location of x, we add it to the key sum:

InvBF[i].keySum = InvBF[i].keySum + z // i.e., = x + z
 We can remove z by subtracting it:

InvBF[i].keySum = InvBF[i].keySum - z // i.e., = (x + z) - z = x
 It means that if the invertible Bloom filter already stored x before and we added
z then we subtract z, we can get the value x back again. For this reason, the

1 2 3 4 5 6 7 ... m

 ...  keySum += x1
 valueSum += v1
 count ++

 ...

Fi-1 = { (x1, v1), (x2, v2), ...}

hk

Chapter 4 OPTIMIZATION FOR RECURSIVE JOINS AND SEMI-NAIVE
ALGORITHM

92

INSERT() function uses the addition operator and the DELETE() function uses the
subtraction operator.
 Applying the invertible Bloom filter to compute the set difference includes three
steps such as encode, subtraction and decode. Suppose R{X, Y, V, W} and S{Y, Z,
W} are two sets, k hash functions hk() are used to locate positions (k=3), hc() is a
cryptographic hash function that maps an element to a fixed-size bit string. The set
difference between the sets is conducted as follows.

 Encode: constructs two invertible Bloom filters, InvBFR and InvBFS
initialized to zero, by inserting each element x in R or S to InvBFR or InvBFS,
respectively. For each index i returned from hk(), we XOR x into
InvBF[i].keySum, XOR hc(x) into InvBF[i].hashSum, and increase
InvBF[i].count.

 Subtraction: subtracts InvBFR from InvBFS cell by cell. To subtract cells, the
keySum and hashSum fields are XOR'ed, and count fields are subtracted. The
results of the subtracting are written to a new invertible Bloom filter, InvDiff
of the same size. This subtracting process is illustrated in Figure 4.5.

Figure 4.5: InvBF Subtraction. InvDiff results from subtracting InvBFR from InvBFS

cell by cell.

For each index i, we XOR InvBFR[i].keySum and InvBFS[i].keySum into
InvDiff[i].keySum, XOR InvBFR[i].hashSum and InvBFS[i].hashSum into
InvDiff[i].hashSum, and subtract InvBFR[i].count from InvBFS[i].count into
InvDiff[i].count.
It is very important to note that the elements common to InvBFR and InvBFS
(shown blue bolded) are cancelled during the XOR operation. Therefore, the
result filter InvDiff only contains disjoint elements of the sets.

V+X+Y
hc(V)+hc(X)+hc(Y)

3

V+W+X
hc(V)+hc(W)+hc(X)

3

X
hc(X)

1

V+W+Y
hc(V)+hc(W)+hc(Y)

3

W+Y
hc(W)+hc(Y)

2

keySum
hashSum

count

InvBFR={X,Y,V,W}

Y
hc(Y)

1

W+Z
hc(W)+hc(Z)

2

Z
hc(Z)

1

W+Y
hc(W)+hc(Y)

2

W+Y+Z
hc(W)+hc(Y)+hc(Z)

3

keySum
hashSum

count

InvBFS={Y,Z,W}

V+X
hc(V)+hc(X)

2

V+X+Z
hc(V)+hc(X)+hc(Z)

1

X+Z
hc(X)+hc(Z)

0

V
hc(V)

1

Z
hc(Z)

-1

keySum
hashSum

count

InvDiff=InvBFR - InvBFS

InvBFR ⊕ InvBFS

4.2 Modeling difference filter

93

 Decode: recovers “pure” cells from the InvDiff 's table. Pure cells are those
whose keySum matches the value of an element x in the set difference. In
order to verify that a cell is pure, it must satisfy two conditions: the count
field must be either 1 or -1, and the hashSum field must equal hc(keySum). If
the InvDiff is the result of subtracting the InvBFR from the InvBFS, then a
positive count indicates x  (R - S), while a negative count indicates x  (S -
R).
The decoding process begins by scanning the InvDiff 's table and creating a
list of all pure cells. For each pure cell in the list, we add the value x=keySum
to the appropriate output set (R - S or S - R) and remove x from the table. The
process of removal is similar to that of insertion. We compute the list of
distinct indices where x is present, then decrement count and XOR the
keySum and hashSum by x and hc(x), respectively. If any of these cells
becomes pure after x is removed, we add its index to the list of pure cells. The
process continues until no indices remain in the list of pure cells. At this
point, if all cells in the table have been cleared (i.e. all fields have value equal
to zero), then the decoding process has successfully recovered all elements in
the set difference. Otherwise, some encoded elements remain in the table, but
insufficient information is available to recover them. This problem is
considered as "list-incomplete" error.

 We should consider the following features of the solution mentioned by
Eppstein:

(1) Two sets R and S must be defined before performing subtraction.

(2) It can list the disjoint elements encoded in the InvDiff.

(3) The decoding process may fail because some encoded elements may not be
recovered.

(4) It requires an additional job for computing the set difference.
 We realize that this solution is not suitable for our work. For the feature 1, we
cannot know in advance the datasets to avoid rescanning the data multiple times.
Besides, we need a checking for membership (e.g. whether an element x is a disjoint
element) instead of a listing of disjoint elements in the filter (the feature 2).
Moreover, the decoding process may only output a partial list of the disjoint elements
due to some cells in the InvDiff with non-zero counts (the feature 3). This leads to a
disadvantage that we cannot specify a superset of the disjoint elements that is
requested in our work. Finally, for the feature 4, using an additional job to compute
the set difference is expensive because it has to rescan the datasets, generate
intermediate filters, and pass the filters to the reducers. The job can be folded into
our join job.

Chapter 4 OPTIMIZATION FOR RECURSIVE JOINS AND SEMI-NAIVE
ALGORITHM

94

4.2.2 Problem definition

From the limitations of the existing solutions, we propose a new filter type called
Difference Filter as follows:

Figure 4.6: Difference filter returning an output with three possibilities

 As illustrated in Figure 3.2, a difference filter DF(S) represents a set S and
checks whether an element x of a set R is NOT in the set S. It accepts an input and
returns an output that is one of three possibilities:

 "no" : x is NOT a disjoint element of S if x is in the set S.

 "yes" : x is a disjoint element of S if x is NOT in the set S.

 "unknown" : x "may be or may be NOT" a disjoint element of S.

 With this assumption, when the difference filter returns an answer "no" or "yes",
the answer is always the correct response and it is considered as an answer "known".
An answer "unknown" may be the wrong response because x may be in the set S.
This means that the difference filter only generates false negatives without false
positives. As a result, the difference filter allows us to identify a superset of disjoint
elements consisting of the "yes" and "unknown" elements, and eliminate duplicate
elements that are the "no" elements. Accordingly, minimizing the number of the
"unknown" elements will be the key for an effective solution to build the difference
filter. In addition, it is noted that we cannot know elements of a set in advance to
avoid reading data multiple times. Thus, the filter should be designed to update
dynamically new elements according to the incoming data of a certain job, e.g., the
join job. This feature aims to respond to the continuous updating of the incremental
relations into the difference filter in the recursive join evaluation without using an
additional job.
 In our context, the difference filter is better than the prior solutions because it
has the ability to dynamically filter out duplicate elements and retain disjoint
elements with a specified false negative rate. The next sections therefore present a
method to build the difference filter.

x is NOT in a set S ?

x
*
*

*

R

*

•

•

•

• •
•

•

• S

DF(S) no

yes

unknown

CHAPTER

CONCLUSIONS AND FUTURE WORK

In this final chapter, we will conclude by describing the results of the optimization
for the two-way joins using the intersection filter and its extensions to the problems
of the multi-way joins in MapReduce. Another important result is the improvement
of the recursive joins using the difference filter. We will also suggest some future
research directions which would further extend its applicability.

5.1 Thesis conclusions

Nowadays, more and more applications have encountered difficulties to handle large-
scale data using traditional data processing methods. We can easily find such kind in
applications of social networks, bibliographies, bioinformatics, databases, etc. The
MapReduce programming model has become very popular recently for processing,
analyzing and generating such large data in a massively parallel manner. However,
this model has its own limitations. Complex operations in MapReduce are used
extensively and expensively, especially the join operation. The research efforts have
markedly expanded to address this problem and given some solutions surveyed in
Chapter 2, in which a join operation will be compiled to MapReduce job(s). For
these solutions, however, it is realized that much redundant data is involved in the
join operation. Therefore, this dissertation is dedicated to solving the problems of the
joins in the efficient ways. It focuses not only on the two-way joins, but also the
complex joins such as the multi-way joins and the recursive joins. The main
contributions of our research are the following:

(1) Intersection filter

Based on the probabilistic model, we propose three approaches to compute
the intersection filter that approximates the intersection of sets. The
approaches include the pair of Bloom filters, the intersection of Bloom
filters, and the intersection of partitioned Bloom filters. The intersection
filter is used to remove most of the disjoint elements between the sets.

(2) Difference filter
We define a new filter type, the difference filter, to represent a set and test
whether an element is NOT present in the set. It is contrary to a Bloom
filter used for membership queries. Notably, the false difference
probability that affects to the performance of the filter is also considered
and analyzed thoroughly. It can be applied to a wide range of popular
problems such as recursive join operation, reconciliation and
deduplication, error-correction, etc.

5.1 Thesis conclusions

121

(3) Optimization for two-way and multi-way joins and cost models

 We provide a survey on the prominent join algorithms in MapReduce
recently.

 We minimize the amount of intermediate data gennerated in two-way joins
and three-way joins using the different approaches of the intersection
filter. The three-way join is then compared to the cascade of 2 two-way
joins by the Lagrangian method.

 We point out two optimized solutions of chain joins using the intersection
filter, the two-way join cascade and the three-way join cascade. Our
analysis shows that the three-way join cascade is better than the two-way
join cascade when the number of reducers is smaller than the output size
of the join of two sets (r < (|R'|.)2) and becomes a good choice.

 We give the optimized join algorithms of two-way joins, three-way joins,
and chain joins.

 We supply cost models for comparisons of our join algorithms and the
existing algorithms.

 We also specify a threshold of the amount of redundant data that the join
optimization using the intersection filter becomes a good choice.

(4) Optimization for recursive join and cost model

 We propose an optimization for recursive joins using the difference filter
in MapReduce. A recursive join is implemented as an iteration of one join
job instead of two jobs including a join job and a difference job. Thanks to
the difference filter, we can compute the join of two datasets and the
incremental relation in the join job, and thus eliminate the significant
overheads of the difference job on each iteration. These overheads consist
of re-scanning and re-shuffling all the incremental relations. As a result,
our recursive join is processed in the fixed number of jobs (or iterations), l
rather than of 2×l. The recursive join implementation is then illustrated by
an algorithm in form of pseudo code.

 We provide a cost model for the recursive join. Our recursive join is then
proved more efficient than the existing solution through the cost model-
based comparison.

(5) Experimental evaluation

 We deploy MapReduce Hadoop over two different computer clusters to
utilize the computing effectively. The clusters are built with virtual
machines using Virtualbox and KVM virtualization techniques, namely,
first cluster of 15 virtual machines using Virtualbox and second cluster of
15 virtual machines using KVM.

 Experiments of two-way joins and multi-way joins implemented by the
different algorithms are supplied.

Chapter 5 CONCLUSIONS AND FUTURE WORK

122

 Experimental comparisons of the different algorithms for each the join are
examined with respect to the intermediate data amount, the total output
amount, the total execution time, and especially task timelines.

 Our filter designs bring vital benefits that they can be applied to solve popular
problems in various fields such as join operation, reconciliation and deduplication,
error-correction, etc.
 Both the cost models and the experiments show that a join operation using the
intersection filter is more efficient than using the other solutions since it significantly
reduces redundant data, and thus produces less intermediate data. Moreover, the
intersection filter provides an extremely important characteristic for the join cascade
in which intermediate join results generated from component joins only contain
actual joining data without filtering. These significantly reduce I/O and
communication overheads. Although the intersection filter has false positives and an
extra cost for the pre-processing job, its efficiency in space-saving and filtering often
outweighs these drawbacks.
 Besides, this research indicates that joins using the pair of filters or the
unpartitioned intersection filter are more efficient than using the partitioned
intersection filter. But the partitioned filter-based joins are still much better than the
existing join algorithms.
 More importantly, this research also improves the general semi-naive algorithm,
as well as the evaluation of recursive queries in MapReduce.
 Finally, all these contribute to the global scene of optimizing data management
for MapReduce applications on large-scale distributed infrastructures.

5.2 Disscusion and future work
A number of open problems should be solved to allow the complete development of
large-scale data-parallel processing in MapReduce. These problems suggest some
research directions as follows.

5.2.1 Two-way and multi-way joins

Together with the popularity of MapReduce for processing large-scale datasets, join
algorithms using MapReduce has also received much attention during the past few
years. However, most two-way join algorithms are sensitive to data skew that may be
due to the bad partitioning function or a large number of tuples with the same join
key. They need to be improved to overcome this problem.
 Overall, studies of the join operation have largely concentrated on two-way join
algorithms. Hence, there are many challenges in evaluating multi-way joins through
the existing join algorithms in a shared-nothing environment.
 To implement join query, we need to specify an execution plan. In this section,
therefore, we discuss some scheduling strategies for the n-way join query evaluation
in MapReduce. First, we should take a simple multi-way join query as follows:

R1 ⋈ R2 ⋈ R3 ⋈ R4
 We can implement this query by the following possible execution plans.
 R1 ⋈ R2 ⋈ R3 ⋈ R4 = (((R1 ⋈ R2) ⋈ R3) ⋈ R4)
 = ((R1 ⋈ R2 ⋈ R3) ⋈ R4)

(5.1)
(5.2)

5.2 Disscusion and future work

123

 = (R1 ⋈ R2) ⋈ (R3 ⋈ R4)
 = (R1 ⋈ R2 ⋈ R3 ⋈ R4)

 A typical approach is to use a sequence of two-way joins, called a cascade of
two-way joins (C2), as shown in equation (5.1). In the C2 approach, each join
operation needs at least one separate MapReduce job and depends on the output of a
previous join operation. In other words, these join operations have to run
sequentially. As a result, the C2 approach does not implement the join operations in
parallel but each its join operation includes parallel tasks. This form of parallelism is
termed intra-operator parallelism.
 Similarly, we also have an approach using a cascade of three-way joins (C3), as
represented in equation (5.2). In this approach, the join operations perform joining
three input datasets at the same time that is mentioned in Chapter 3.
 Another approach to the above query evaluation is to through parallel two-way
join operations (P2), as represented in equation (5.3). The join R12=(R1 ⋈ R2) and the
join R34=(R3 ⋈ R4) are run simultaneously. The output of the query is the join of R12
and R34. Hence, the P2 approach implements the join operations in parallel and each
join operation has concurrent tasks. This form of parallelism is known as inter-
operator parallelism.
 The last approach is to employs joining all the relations at the same time (All-in-
One), as shown in equation (5.4). Joining all relations in one requires only one
MapReduce job rather than using multiple jobs as others approaches. Consequently,
there are no intermediate results which may save physical space and communication
overhead. However, buffering tuples to process the join can easily lead to memory
overflow error.
 We need to specify the number of MapReduce iterations of each approach. The
C2 approach uses three iterations, the C3 approach uses two iterations, the P2
approach uses two iterations, and the All-in-One approach uses one iteration.
 From the illustration of the 4-way join, we can generally compute the number of
iterations for the typical multi-way join as follow. The approaches 1 and 2 are
summarized as a cascade of m-way joins (CM), where m is the number of inputs of a
component join operation. The approach 3 is generalized as parallel m-way join
operations (PM).
 For the general n-way join, the number of iterations of the CM is (n-1)/(m-1),
where n is the total number of the relations of the multi-way join (n ≥ 2), m is the
number of the relations of the component join (m ≥ 2 and m ≤ n). In the case of the
PM algorithm, the number of iterations is (logm n).

 We can encounter the following challenges when implementing the approaches:

 Choice of join order:

The n-way join can be processed by combining m-way joins (m ≤ n). As a
result, there are some combination ways of the component joins for
evaluating the query. Each way can have different join tree representations.

For the PM approach, we have Bushy join tree representation [94] as shown
in Figure 5.1.

(5.3)
(5.4)

Chapter 5 CONCLUSIONS AND FUTURE WORK

124

Figure 5.1. A kind of Bushy join trees in PM approach

The Bushy join tree includes a set of both left-deep and right-deep trees. This
tree kind performs parallelism of join operations in the query.
For the CM approach, we have two kinds of join tree representations
including left-deep trees and right-deep trees [94] as depicted in Figure 5.2.

(..(((R1 ⋈ R2) ⋈ R3) ⋈ R4) ... ⋈ Rn) (R1 ⋈ (R2 ⋈ (R3 ⋈ (... (Rn-1 ⋈ Rn)..))))

(a) Left-Deep join trees (b) Right-Deep join trees

Figure 5.2. Two kinds of join trees in CM approach

The left-deep join trees (Figure 5.2 (a)) are executions of the CM approach in
which the combination of the component joins (the m-way joins) are executed
from left to right. Meanwhile, another execution kind of the CM approach
that chains the component joins from right to left is called the right-deep join
trees (Figure 5.2 (b)). The join trees of the CM approach are also known as
linear trees or linear processing trees.

It is very important to note that the number of possible join orders determine
the number of join trees. For the n-way join query, therefore, the number of

R1 R2

⨝ x2
R1,2

R3 R4

⨝
R3,4

 x4

⨝
R1,2,3,4

 x3 x..

Rn-1 Rn

⨝
Rn-3,n-2,n-1,n

⨝ xi R1,2,3, ..., n-1, n

⨝
Rn-1,n

 xn

Rn-1 Rn

Rn-2 Rn, n-1

 R1

⨝ xn

Rn, n-1, n-2
⨝ xn-1

 Rn, n-1, n-2, ..., 1
⨝ x2

R1 R2

Rn

⨝ x2
R1,2 R3

⨝ xn
 R1,2,3, ..., n-1, n

⨝
R1,2,3

 x3

5.2 Disscusion and future work

125

left-deep or right-deep trees is calculated as n factorial (n!) and the number of
bushy trees is specified by (2n – 2)!/(n – 1)!.
The problem of choosing an optimal join order that is expected to result in a
minimum cost for a query in MapReduce is difficult and even impossible
because analyzing all the possible join orders could take a long time and
especially many communication overheads. Consequently, a query optimizer
cannot perform an exhaustive search and instead uses some heuristics to
support the search process. This problem should be considered with respect to
sort, merge, and communication overheads.

 Choice of join algorithm:

Besides specifying the join order, we need to choose a MapReduce join
algorithm for each of the component joins as well. When selecting a join
algorithm, the optimizer should take into account factors such as the size of
each input relation, indexes and partitions available on each relation, a
particular join order, the number of rows to be scanned for each relation in
each join order, non-joining data rate, cost model, etc.
For example, we can use the star join algorithm for queries that have one
large input dataset and other small datasets. As another instance of the PM
approach, we may apply the intersection filter-based join algoritm for the
initial joins (R1 ⋈ R2), (R3 ⋈ R4), ..., (Rn-1 ⋈ Rn). The intermediate results,
which are indexed and partitioned by the join key, are joined together using
the Map-side join algorithm.

The selection of MapReduce join algorithms for a query can even decide to a
join order (a join tree). Therefore, the choice of a join order should also take
the choice of join algorithms and the communication overheads into
consideration. In the future work, we need to further discuss on the query
optimizer which uses a good heuristic algorithm for choosing an efficient
query execution plan in a MapReduce environment.

5.2.2 Recursive joins

 Assume that we have the relation Know K = {(bert, alice), (bert, george), (alice,
derek),(alice, pat), (derek, frank)} and it can be represented as a directed graph which
we refer to as the following relation graph.

 The tuples correspond to edges in the graph and the unique attribute values
correspond to the nodes. A tuple (x, y) in relation K becomes an edge from node x to
node y in the directed graph.

 alice george

derek pat

bert

frank

Chapter 5 CONCLUSIONS AND FUTURE WORK

126

 The relation Friend (F) is built by a recursive join F(x, y) = F(x, z) ⋈ K(z, y). A
tuple (x, y) in F means that there is a non-zero length path from node x to node y (the
transitive closure (TC) of the relation K). In general, any linearly recursive query can
be expressed as a transitive closure, preceded or followed by relational algebra
operations [95]. Therefore, the number of iterations to evaluate a recursive join is the
longest path length in the graph-1, called the depth of the transitive closure (l). For
the example, the number of iterations or the number of MapReduce jobs is 2 (l=3-1).
 We can consider two main performance aspects for a MapReduce operation,
namely the amount of data in each job and the number of jobs done. We solved
reducing the amount of data in each job and the number of jobs on each round. There
remains an opportunity for us to reduce the number of jobs by reducing the number
of iterations. With the same input data and algorithm in MapReduce environment,
computation of an operation becomes better if it has less jobs.
 From the above arguments, we find here other challenges that need to be
considered to further improvement of the recursive join evaluation in MapReduce.
Four ideas make these possible: (1) minimize the number of iterations, (2) solve a
recursive join in an unbalanced graph, (3) handle data skew in recursive joins, and
(4) handle small increment relations in every join performed. For clarity, it is
necessary to go into some detail here.

5.2.2.1 Minimize the number of iterations

We try to reduce the number of iterations as much as possible. This can reduce the
number of MapReduce jobs for the evaluation. As a result, we can avoid rescanning
input data and generating much intermediate data as well as transferring the data over
the network.
 In fact, this problem is not new in databases. Several algorithms have been
presented in the literature to efficiently process the transitive closure (TC) of a
relation [80][23][24][96]. Afrati and Ullman [19] have also made a comparison of
Smart TC and related algorithms, where they examine the relative efficiency, in
terms of data-volume cost. However, these algorithms are not suitable in MapReduce
environment because they can reduce the number of round iterations but they do not
actually reduce the number of join jobs in MapReduce. For instance, Smart and
Logarithmic TC algorithms [23][24] reduces the number of iterations by computing
more of the transitive closure in each iteration and so it also requires to execute more
of join jobs in each iteration. They use (l/n) iterations, where l is the longest path
length in the relation graph - 1 and n is the number of join jobs in each iteration.
Indeed the total of join jobs in these algorithms is still l jobs. Consequently, their
improvement is useless in MapReduce.

Example 5.1: compute a transitive closure (∆Fi-1 • K • K)
We use an iteration of two-way join jobs to evaluate the transitive closure: ((∆Fi-1 ⋈
K) ⋈ K)
Input (a, b) • (b, c) • (c,d) is compiled as:
(a, b) ⋈ (b, c) => the join result: r1 = (a, b), (b, c), (a, c)
r1⋈ (c,d) => the final join result: r2 = (a, b), (b, c), (a, c), (c,d), (b, d), (a,d).
For each iteration, we have to use the two join jobs to compute the transitive closure.

5.2 Disscusion and future work

127

 The recent results of Afrati and Ullman [12][7] showed a interesting way to
compute the transitive closure by recursive doubling. To implement the way, there
will be four groups of tasks consisting of two groups of join tasks and two groups of
deduplication tasks. A limitation of this solution is long-running recursive tasks that
may increase risk for failures. In addition, its failure recovery mechanisms are
complex and have not been directly supported in Hadoop. Moreover, large amounts
of data are transferred back and forth among the groups.
 In this case, our solution is proposed as the following. We will adapt the solution
of our three-way join based on the intersection filters [5] in each iteration to fit
evaluating recursive joins in Mapreduce. Hence our algorithm only requires
[log2(l+1)] iterations as well as [log2(l+1)] join jobs. The modification of the three-
way join is defined by discovering three transitive closures on each round iteration
instead of only one as the three-way join. That requires recomputing the amount of
data of each input tuple distributed to corresponding reducers, deriving all the
possible transitive closures as well as showing its cost model as compared with
existing solutions.

5.2.2.2 Solve a recursive join in an unbalanced graph

We address the problem of a recursive join in an unbalanced graph. This recursive
join will be executed with a large amount of MapReduce join jobs. It is interesting to
think about an algorithm to partition the graph into a set of subgraphs and evaluate
them in parallel. The final result of the recursive join is transitive closures among the
subgraphs.

5.2.2.3 Handle data skew in recursive joins

We consider the problem of a large number of tuples that are sent to the same
reducer.

Figure 5.3. Data skew in recursive join

 Data skew [97] is an asymmetry in the distribution of tuples to reducers. This
leads to some nodes working in overcrowding situation. It is noted that data skew in
the recursive join includes not only data skew with the different join key but also
data skew with the same join key. For example, we have 5,000,000 tuples in which
4,000,000 tuples are sent to the same reducer1 even though they may have the
different join keys. Another example, we have 7,000,000 tuples including 6,000,000
tuples with the same join key that must be sent the same reducer 2. There exist

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

reducer1 reducer2 reducer3 reducer4 reducer5 reducer6

#tuples

Chapter 5 CONCLUSIONS AND FUTURE WORK

128

several solutions [98][99][100] to address data skew for the first example but not the
second example. Therefore, we have to address the problem of efficiently processing
MapReduce join jobs with join reducer tasks over skewed data with tuples having the
same join key. Without any optimization, the actual task completion time for each
join reducer differs significantly and the overall system performance is largely
affected by the long running tasks.
 In this case, we will implement a hybrid join algorithm which is a combination
of the reduce-side join, the hash join, and Reducer Input Cache (RIC) with the
ability to handle skew. In general, we consider two arbitrary big datasets that have
not been sorted/partitioned yet. For the first job, one dataset S will be partitioned and
these partitions will be cached at reducers. For the second job, another dataset R will
be mapped into pairs and sent to the reducers. Each pair of R will be joined on fly
with one corresponding partition of S.

5.2.2.4 Handle small increment relations in joins performed

 We focus on the problem of intermediate results of a recursive join. They are
incremental relations in each iteration that may be small relations. In this case, we
should find a good choice for storing the intermediate results to avoid rescanning and
reshuffling them many times over the network. In this case, we may re-implement
cache technology to be able to merge/append small cache outputs into one bigger file
without rewrite all small caches as the existing solution.
 Solving all these challenges aims to optimize recursive joins. It becomes more
important when the recursive joins is a decisive factor for evaluating recursive
queries in MapReduce.

5.2.3 Query language for NoSQL databases

For over forty years, the relational database (RDBMS), in which data are structured
into tables or relations that are easily restructured for accessing data in different
ways, has been the dominant model for database management. Together with
RDBMS, SQL has become a standard language supported by most relational
database systems. SQL provides a complete data-definition language, including the
ability to create relations with the specified attribute types, and the ability to define
integrity constraints on the data [101].
 However, as information technology becomes ever more prevalent in nearly
every aspect of our lives, the vast amount of data generated and stored continues to
grow at an astounding rate, especially with social network applications today. This
arises new challenges for data management, most notably scalability of storage,
flexible data model, non-relational, and dynamic and implicit schema for collections
of documents with varying structure. The relational database technologies have not
kept pace with these changes. Although there have also been many attempts to
extend the technologies (horizontal and vertical sharding, distributed caching and
data denormalization), these tactics nullify key benefits of the relational model while
increasing total system cost and complexity.
 A major trend over the last few years has seen that NoSQL, Non-relational,
“Cloud", or “Document” databases is an alternative model for data management in
order to match the new challenges. In a NoSQL database, there are no a fixed schema
and may be no joins. An RDBMS "scales up" by getting faster hardware and adding

5.2 Disscusion and future work

129

memory. NoSQL, on the other hand, can take advantage of "scaling out". Scaling out
refers to spreading the load over many commodity systems. This is the component of
NoSQL that makes it an inexpensive solution for large datasets. NoSQL is designed
for distributed data stores where very large scale data needs.
 NoSQL databases have grown up and prove themselves worthy, such as
Google's BigTable, Amazon's Dynamo, Facebook's Cassandra, 10gen's MongoDB,
Apache's CouchDB, etc. that are now mature. Even Oracle, a company which is
known by its RDBMS, also launched a product called Oracle NoSQL Database, a
multi-terabyte distributed key/value pair storage [102].
 NoSQL's initial success and the explosion of related modern applications have
led to an increase in the amount of new document databases and data formats.
However, each such database system creates a new query language in a framework or
an API that only works with a single document store. At the moment the new
database systems have no query language (completely depending on the highly
specialized map/reduce approach), while others like (e.g. MongoDB or Cassandra)
have rudimentary and proprietary query languages. The query methods tend to be
very low-level and must now be manually coded into the application by the
programmer instead of being handled automatically by the database engine. In other
words, document databases have their own proprietary and incompatible query
methods, meaning that it is hard to move an application from one database engine to
another. This caused many difficulties for developers in implementing or integrating
systems because it still lacks a common query tool that attempts to query multiple
document databases. As a result, this has hindered the popularity of document
databases.
 For all reasons, developers generally agree that a standard language will be good
for the NoSQL space and not too early. And this problem becomes an attractive topic
that has been discussed so much in order to give out a feasible solution. We are
therefore aiming to a logic-based abstract approach to a high-level standard query
language for document databases. It is called Datalog-based Document Query
Language (DLogQL) including the following features:

 Provide a standard abstract query language for document databases. It is a
powerful expressive language supporting relational operations and recursion.

 Give an abstract-level logical query language whose semantics is a subset of
Datalog and let syntax specification at an abstract level. As a result, many
sub-languages may be derived from DLogQL. Each sub-language will be
represented in a popular data format (e.g. key-value data model). This aims to
adapt to the continuous change of modern application model and data format
and close the gap among query language, programming language and the
database.

 Extend the well-known Datalog language, including abstract-level language,
ability to query scalable document databases and scalable Datalog over
Hadoop (an efficient parallel implementation of Datalog on the MapReduce
framework).

 A mediation solution for document databases and ability to model documents
in a document database as a deductive data model.

 DLogQL towards a general logical query language for databases aims to adapt to
the continuous change of modern application model and data format.

Bibliography

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” in Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, Berkeley, CA, USA, 2004, pp.
137–150.

[2] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel data
processing with MapReduce: a survey,” SIGMOD Rec., vol. 40, no. 4, pp. 11–20,
Jan. 2012.

[3] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian, “A
comparison of join algorithms for log processing in MaPreduce,” in Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data,
New York, NY, USA, 2010, pp. 975–986.

[4] T. Lee, K. Kim, and H.-J. Kim, “Join processing using Bloom filter in
MapReduce,” in Proceedings of the 2012 ACM Research in Applied Computation
Symposium, New York, NY, USA, 2012, pp. 100–105.

[5] T.-C. Phan, L. d’ Orazio, and P. Rigaux, “Toward Intersection Filter-based
Optimization for Joins in MapReduce,” in Proceedings of the 2Nd International
Workshop on Cloud Intelligence, New York, NY, USA, 2013, pp. 2:1–2:2.

[6] F. N. Afrati and J. D. Ullman, “Optimizing joins in a map-reduce environment,”
in Proceedings of the 13th International Conference on Extending Database
Technology, New York, NY, USA, 2010, pp. 99–110.

[7] F. N. Afrati, V. Borkar, M. Carey, N. Polyzotis, and J. D. Ullman, “Map-reduce
extensions and recursive queries,” in Proceedings of the 14th International
Conference on Extending Database Technology, New York, NY, USA, 2011, pp.
1–8.

[8] S. Blanas, Y. Li, and J. M. Patel, “Design and evaluation of main memory hash
join algorithms for multi-core CPUs,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, New York, NY, USA, 2011,
pp. 37–48.

[9] M. A. H. Hassan and M. Bamha, “Semi-join computation on distributed file
systems using map-reduce-merge model,” in Proceedings of the 2010 ACM
Symposium on Applied Computing, New York, NY, USA, 2010, pp. 406–413.

[10] T. White, Hadoop: the definitive guide 2012. Farnham: O’Reilly, 2012.
[11] C. Lam, Hadoop in Action, 1st ed. Manning Publications, 2010.
[12] F. N. Afrati, V. Borkar, M. Carey, N. Polyzotis, and J. D. Ullman, “Cluster

Computing, Recursion and Datalog,” in Datalog Reloaded, O. de Moor, G.
Gottlob, T. Furche, and A. Sellers, Eds. Springer Berlin Heidelberg, 2011, pp.
120–144.

[13] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Efficient Iterative
Data Processing on Large Clusters,” Proc. VLDB Endow., vol. 3, no. 1–2, pp.
285–296, Sep. 2010.

Bibliography

131

[14] M. Shaw, P. Koutris, B. Howe, and D. Suciu, “Optimizing Large-Scale Semi-
Naïve Datalog Evaluation in Hadoop,” in Datalog in Academia and Industry, P.
Barceló and R. Pichler, Eds. Springer Berlin Heidelberg, 2012, pp. 165–176.

[15] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[16] T. Bolognesi and S. A. Smolka, “Fundamental Results for the Verification of
Observational Equivalence: A Survey,” in Protocol Specification, Testing and
Verification VII, Proceedings of the IFIP WG6.1 Seventh International
Conference on Protocol Specification, Testing and Verification, Zurich,
Switzerland, 5-8 May, 1987, 1987, pp. 165–179.

[17] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, 2nd edition. Boston: Addison Wesley, 2006.

[18] S. Ceri, G. Gottlob, and L. Tanca, “What You Always Wanted to Know About
Datalog (And Never Dared to Ask),” IEEE Trans. on Knowl. and Data Eng., vol.
1, no. 1, pp. 146–166, Mar. 1989.

[19] F. N. Afrati and J. D. Ullman, “Transitive Closure and Recursive Datalog
Implemented on Clusters,” in Proceedings of the 15th International Conference
on Extending Database Technology, New York, NY, USA, 2012, pp. 132–143.

[20] F. Bancilhon, “Naive Evaluation of Recursively Defined Relations,” in On
Knowledge Base Management Systems, M. L. Brodie and J. Mylopoulos, Eds.
Springer New York, 1986, pp. 165–178.

[21] I. Balbin and K. Ramamohanarao, “A generalization of the differential approach
to recursive query evaluation,” The Journal of Logic Programming, vol. 4, no. 3,
pp. 259–262, Sep. 1987.

[22] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman, “Magic Sets and Other
Strange Ways to Implement Logic Programs (Extended Abstract),” in
Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, New York, NY, USA, 1986, pp. 1–15.

[23] Y. E. Ioannidis, “On the Computation of the Transitive Closure of Relational
Operators,” in Proceedings of the 12th International Conference on Very Large
Data Bases, San Francisco, CA, USA, 1986, pp. 403–411.

[24] P. Valduriez and H. Boral, “Evaluation of Recursive Queries Using Join
Indices,” presented at the Expert Database Conf., 1986.

[25] S. Warshall, “A Theorem on Boolean Matrices,” J. ACM, vol. 9, no. 1, pp. 11–
12, Jan. 1962.

[26] H. S. Warren,Jr., “A Modification of Warshall’s Algorithm for the Transitive
Closure of Binary Relations,” Commun. ACM, vol. 18, no. 4, pp. 218–220, Apr.
1975.

[27] S. Ramesh, O. Papapetrou, and W. Siberski, “Optimizing Distributed Joins with
Bloom Filters,” in Distributed Computing and Internet Technology, M. Parashar
and S. K. Aggarwal, Eds. Springer Berlin Heidelberg, 2009, pp. 145–156.

[28] Z. Sun, J. Shen, and J. Yong, “A Novel Approach to Data Deduplication over the
Engineering-oriented Cloud Systems,” Integr. Comput.-Aided Eng., vol. 20, no.
1, pp. 45–57, Jan. 2013.

[29] J. W. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed Content
Delivery Across Adaptive Overlay Networks,” IEEE/ACM Trans. Netw., vol. 12,
no. 5, pp. 767–780, Oct. 2004.

Bibliography

132

[30] G. Cormode and S. Muthukrishnan, “What’s New: Finding Significant
Differences in Network Data Streams,” IEEE/ACM Trans. Netw., vol. 13, no. 6,
pp. 1219–1232, Dec. 2005.

[31] D. Eppstein and M. T. Goodrich, “Straggler Identification in Round-Trip Data
Streams via Newton’s Identities and Invertible Bloom Filters,” IEEE
Transactions on Knowledge and Data Engineering, vol. 23, no. 2, pp. 297–306,
2011.

[32] L. Y. Rusin, E. V. Lyubetskaya, K. Y. Gorbunov, and V. A. Lyubetsky,
“Reconciliation of Gene and Species Trees,” BioMed Research International,
vol. 2014, p. e642089, Mar. 2014.

[33] Y. Zheng, T. Wu, and L. Zhang, “Reconciliation of Gene and Species Trees With
Polytomies,” arXiv:1201.3995 [q-bio], Jan. 2012.

[34] O. Hassanzadeh and R. J. Miller, “Creating Probabilistic Databases from
Duplicated Data,” The VLDB Journal, vol. 18, no. 5, pp. 1141–1166, Oct. 2009.

[35] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate Record
Detection: A Survey,” IEEE Trans. on Knowl. and Data Eng., vol. 19, no. 1, pp.
1–16, Jan. 2007.

[36] F. Panse, M. van Keulen, and N. Ritter, “Indeterministic Handling of Uncertain
Decisions in Deduplication,” J. Data and Information Quality, vol. 4, no. 2, pp.
9:1–9:25, Mar. 2013.

[37] T. Mandel and J. Mache, “Practical Error Correction for Resource-constrained
Wireless Networks: Unlocking the Full Power of the CRC,” in Proceedings of
the 11th ACM Conference on Embedded Networked Sensor Systems, New York,
NY, USA, 2013, pp. 3:1–3:14.

[38] N. Chilamkurti, J. H. Park, and N. Kumar, “Concurrent Multipath Transmission
with Forward Error Correction Mechanism to Overcome Burst Packet Losses for
Delay-sensitive Video Streaming in Wireless Home Networks,” Multimedia
Tools Appl., vol. 65, no. 2, pp. 201–220, Jul. 2013.

[39] M. Burke, B. Amento, and P. Isenhour, “Error Correction of Voicemail
Transcripts in SCANMail,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, New York, NY, USA, 2006, pp. 339–348.

[40] E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,”
Commun. ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.

[41] E. F. Codd, “Relational Completeness of Data Base Sublanguages,” In: R. Rustin
(ed.): Database Systems: 65-98, Prentice Hall and IBM Research Report RJ 987,
San Jose, California, 1972.

[42] K.-L. Tan and H. Lu, “A Note on the Strategy Space of Multiway Join Query
Optimization Problem in Parallel Systems,” SIGMOD Rec., vol. 20, no. 4, pp.
81–82, Dec. 1991.

[43] S. Idreos, E. Liarou, and M. Koubarakis, “Continuous Multi-way Joins over
Distributed Hash Tables,” in Proceedings of the 11th International Conference on
Extending Database Technology: Advances in Database Technology, New York,
NY, USA, 2008, pp. 594–605.

[44] C. Ordonez, “Optimizing Recursive Queries in SQL,” in Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data, New
York, NY, USA, 2005, pp. 834–839.

Bibliography

133

[45] M. T. Özsu and P. Valduriez, Principles of distributed database systems. New
York: Springer Science, 2011.

[46] “Apache Hadoop.” [Online]. Available: http://hadoop.apache.org/docs/stable/.
[Accessed: 30-Jan-2013].

[47] “The Disco Project.” [Online]. Available: http://discoproject.org/. [Accessed: 30-
Jan-2013].

[48] “Sector/Sphere: High Performance Distributed Data Storage and Processing.”
[Online]. Available: http://sector.sourceforge.net/. [Accessed: 30-Jan-2013].

[49] A. Holmes, Hadoop in Practice, 1 edition. Manning Publications, 2012.
[50] J. Lin, S. Konda, and S. Mahindrakar, Low-Latency, High-Throughput Access to

Static Global Resources within the Hadoop Framework. 2009.
[51] D. DeWitt and J. Gray, “Parallel Database Systems: The Future of High

Performance Database Systems,” Commun. ACM, vol. 35, no. 6, pp. 85–98, Jun.
1992.

[52] P. Valduriez and G. Gardarin, “Join and Semijoin Algorithms for a
Multiprocessor Database Machine,” ACM Trans. Database Syst., vol. 9, no. 1,
pp. 133–161, Mar. 1984.

[53] E. Babb, “Implementing a Relational Database by Means of Specialzed
Hardware,” ACM Trans. Database Syst., vol. 4, no. 1, pp. 1–29, Mar. 1979.

[54] M. Bamha and G. Hains, “An Efficient Equi-semi-join Algorithm for Distributed
Architectures,” in Computational Science – ICCS 2005, V. S. Sunderam, G. D.
van Albada, P. M. A. Sloot, and J. J. Dongarra, Eds. Springer Berlin Heidelberg,
2005, pp. 755–763.

[55] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie,Jr.,
“Query Processing in a System for Distributed Databases (SDD-1),” ACM Trans.
Database Syst., vol. 6, no. 4, pp. 602–625, Dec. 1981.

[56] L. F. Mackert and G. M. Lohman, “R* Optimizer Validation and Performance
Evaluation for Distributed Queries,” in Proceedings of the 12th International
Conference on Very Large Data Bases, San Francisco, CA, USA, 1986, pp. 149–
159.

[57] M. W. Blasgen and K. P. Eswaran, “Storage and access in relational data bases,”
IBM Syst. J., vol. 16, no. 4, pp. 363–377, Dec. 1977.

[58] M. G. Gouda and U. Dayal, “Optimal Semijoin Schedules for Query Processing
in Local Distributed Database Systems,” in Proceedings of the 1981 ACM
SIGMOD International Conference on Management of Data, New York, NY,
USA, 1981, pp. 164–175.

[59] J. K. Mullin, “Optimal semijoins for distributed database systems,” IEEE
Transactions on Software Engineering, vol. 16, no. 5, pp. 558 –560, May 1990.

[60] “Facebook Reports Fourth Quarter and Full Year 2013 Results - Facebook.”
[Online]. Available: http://investor.fb.com/releasedetail.cfm?ReleaseID=821954.
[Accessed: 10-Feb-2014].

[61] K. Bratbergsengen, “Hashing Methods and Relational Algebra Operations,” in
Proceedings of the 10th International Conference on Very Large Data Bases, San
Francisco, CA, USA, 1984, pp. 323–333.

[62] L. Michael, W. Nejd, O. Papapetrou, and W. Siberski, “Improving distributed
join efficiency with extended bloom filter operations,” in 21st International

http://hadoop.apache.org/docs/stable/.
http://discoproject.org/.
http://sector.sourceforge.net/.
http://investor.fb.com/releasedetail.cfm?ReleaseID=821954.

Bibliography

134

Conference on Advanced Information Networking and Applications, 2007. AINA
’07, 2007, pp. 187 –194.

[63] L. L. Gremillion, “Designing a Bloom Filter for Differential File Access,”
Commun. ACM, vol. 25, no. 9, pp. 600–604, Sep. 1982.

[64] M. V. Ramakrishna, “Practical performance of Bloom filters and parallel free-
text searching,” Commun. ACM, vol. 32, no. 10, pp. 1237–1239, Oct. 1989.

[65] J. K. Mullin, “A Second Look at Bloom Filters,” Commun. ACM, vol. 26, no. 8,
pp. 570–571, Aug. 1983.

[66] M. Mitzenmacher, “Compressed Bloom Filters,” IEEE/ACM Trans. Netw., vol.
10, no. 5, pp. 604–612, Oct. 2002.

[67] S. Cohen and Y. Matias, “Spectral Bloom Filters,” in Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, New York,
NY, USA, 2003, pp. 241–252.

[68] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier Filter: An
Efficient Data Structure for Static Support Lookup Tables,” in Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia,
PA, USA, 2004, pp. 30–39.

[69] A. Kumar, J. (Jim) Xu, L. Li, and J. Wang, “Space-code Bloom Filter for
Efficient Traffic Flow Measurement,” in Proceedings of the 3rd ACM
SIGCOMM Conference on Internet Measurement, New York, NY, USA, 2003,
pp. 167–172.

[70] A. Kirsch and M. Mitzenmacher, “Distance-Sensitive Bloom Filters,” in Proc.
Eighth Workshop Algorithm Eng. and Experiments (ALENEX ’06, 2006.

[71] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: A Scalable
Wide-area Web Cache Sharing Protocol,” IEEE/ACM Trans. Netw., vol. 8, no. 3,
pp. 281–293, Jun. 2000.

[72] M. T. Goodrich and M. Mitzenmacher, “Invertible Bloom Lookup Tables,”
arXiv:1101.2245 [cs], Jan. 2011.

[73] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The Dynamic Bloom Filters,”
IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 1, pp. 120
–133, Jan. 2010.

[74] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters: A
Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[75] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance: building a
better bloom filter,” in Proceedings of the 14th conference on Annual European
Symposium - Volume 14, London, UK, UK, 2006, pp. 456–467.

[76] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas, “MRShare:
sharing across multiple queries in MapReduce,” Proc. VLDB Endow., vol. 3, no.
1–2, pp. 494–505, Sep. 2010.

[77] “Oracle VM VirtualBox.” [Online]. Available: https://www.virtualbox.org/.
[Accessed: 05-Jun-2013].

[78] “pumadatasets - Faraz Ahmad.” [Online]. Available:
https://sites.google.com/site/farazahmad/pumadatasets. [Accessed: 25-May-
2014].

[79] “Main Page - KVM.” [Online]. Available: http://www.linux-
kvm.org/page/Main_Page. [Accessed: 27-May-2014].

https://www.virtualbox.org/.
https://sites.google.com/site/farazahmad/pumadatasets.
http://www.linux-

Bibliography

135

[80] R. Agrawal and H. V. Jagadish, “Direct Algorithms for Computing the Transitive
Closure of Database Relations,” in Proceedings of the 13th International
Conference on Very Large Data Bases, San Francisco, CA, USA, 1987, pp. 255–
266.

[81] H. Lu, “New Strategies for Computing the Transitive Closure of a Database
Relation,” in Proceedings of the 13th International Conference on Very Large
Data Bases, San Francisco, CA, USA, 1987, pp. 267–274.

[82] H. Lu, K. P. Mikkilineni, and J. P. Richardson, “Design and Evaluation of
Algorithms to Compute the Transitive Closure of a Database Relation,” in
Proceedings of the Third International Conference on Data Engineering,
Washington, DC, USA, 1987, pp. 112–119.

[83] G. Malewicz, M. H. Austern, A. J. . Bik, J. C. Dehnert, I. Horn, N. Leiser, and G.
Czajkowski, “Pregel: A System for Large-scale Graph Processing,” in
Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, New York, NY, USA, 2010, pp. 135–146.

[84] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “The HaLoop Approach to
Large-scale Iterative Data Analysis,” The VLDB Journal, vol. 21, no. 2, pp. 169–
190, Apr. 2012.

[85] J. D. Ullman, Principles of Database and Knowledge-base Systems, Vol. I. New
York, NY, USA: Computer Science Press, Inc., 1988.

[86] F. Deng and D. Rafiei, “Approximately Detecting Duplicates for Streaming Data
Using Stable Bloom Filters,” in Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, New York, NY, USA, 2006,
pp. 25–36.

[87] C.-H. Lee and C.-W. Chung, “An approximate duplicate elimination in RFID
data streams,” Data & Knowledge Engineering, vol. 70, no. 12, pp. 1070–1087,
Dec. 2011.

[88] G. Koloniari, N. Ntarmos, E. Pitoura, and D. Souravlias, “One is Enough:
Distributed Filtering for Duplicate Elimination,” in Proceedings of the 20th ACM
International Conference on Information and Knowledge Management, New
York, NY, USA, 2011, pp. 433–442.

[89] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, “What’s the
Difference?: Efficient Set Reconciliation Without Prior Context,” SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 218–229, Aug. 2011.

[90] D. E. Knuth, The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting
and Searching. Redwood City, CA, USA: Addison Wesley Longman Publishing
Co., Inc., 1998.

[91] “SHA-3,” Wikipedia, the free encyclopedia. 15-Jun-2014.
[92] “Cryptographic hash function,” Wikipedia, the free encyclopedia. 15-Jun-2014.
[93] D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and Network Applications of

Dynamic Bloom Filters,” in INFOCOM 2006. 25th IEEE International
Conference on Computer Communications. Proceedings, 2006, pp. 1 –12.

[94] Y. E. Ioannidis and Y. C. Kang, “Left-deep vs. Bushy Trees: An Analysis of
Strategy Spaces and Its Implications for Query Optimization,” in Proceedings of
the 1991 ACM SIGMOD International Conference on Management of Data, New
York, NY, USA, 1991, pp. 168–177.

Bibliography

136

[95] H. V. Jagadish, R. Agrawal, and L. Ness, “A Study of Transitive Closure As a
Recursion Mechanism,” in Proceedings of the 1987 ACM SIGMOD International
Conference on Management of Data, New York, NY, USA, 1987, pp. 331–344.

[96] Y. E. Ioannidis and R. Ramakrishnan, “Efficient Transitive Closure Algorithms,”
in Proceedings of the 14th International Conference on Very Large Data Bases,
San Francisco, CA, USA, 1988, pp. 382–394.

[97] Y. Kwon, K. Ren, M. Balazinska, and B. Howe, “Managing Skew in Hadoop,”
IEEE Data Eng. Bull., vol. 36, no. 1, pp. 24–33, 2013.

[98] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, “Handling Data Skew in
MapReduce,” presented at the CLOSER, 2011, pp. 574–583.

[99] S. R. Ramakrishnan, G. Swart, and A. Urmanov, “Balancing Reducer Skew in
MapReduce Workloads Using Progressive Sampling,” in Proceedings of the
Third ACM Symposium on Cloud Computing, New York, NY, USA, 2012, pp.
16:1–16:14.

[100] Y. Gan, X. Meng, and Y. Shi, “Processing Online Aggregation on Skewed
Data in Mapreduce,” in Proceedings of the Fifth International Workshop on
Cloud Data Management, New York, NY, USA, 2013, pp. 3–10.

[101] S. Abiteboul, R. Hull, and V. Vianu, Eds., Foundations of Databases: The
Logical Level, 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1995.

[102] “Oracle NoSQL Database (Version: 12cR1.3.0.9 Enterprise Edition, 2014-
05-02 11:52:34 UTC.” [Online]. Available:
http://docs.oracle.com/cd/NOSQL/html/index.html. [Accessed: 09-Jun-2014].

http://docs.oracle.com/cd/NOSQL/html/index.html.

	Optimization for Big Joins and RecursiveQuery Evaluation using Intersection andDifference Filters in MapReduce
	Author
	Acknowledgements
	Abstract
	Contents
	CHAPTER 1 - INTRODUCTION
	1.1 Context and motivation
	1.2 Goal of the thesis
	1.3 Thesis outline

	Part I - Background and related works
	CHAPTER 2 - RELATED WORKS
	2.1 Background
	2.1.1 Join operation
	2.1.2 MapReduce framework
	2.1.3 Parallelization of a join operation in MapReduce
	2.1.4 Iteration in MapReduce

	2.2 Basic join algorithms in MapReduce
	2.2.1 Map-side join
	2.2.2 Reduce-side join
	2.2.3 Broadcast join
	2.2.4 Semi-join

	2.3 Bloomjoin algorithm in MapReduce
	2.3.1 Bloom filter
	2.3.2 Bloomjoin algorithm description

	2.4 Summary

	Part II -
Contributions
	CHAPTER 3 - OPTIMIZATION FOR TWO-WAY JOINSAND IMPORTANT MULTI-WAY JOINS
	3.1 Introduction
	3.1.1 Previous work
	3.1.2 Definitions and notations

	3.2 Modeling intersection filter
	3.2.1 Approach 1: a pair of Bloom filters
	3.2.2 Approach 2: intersecting unpartitioned Bloom filters
	3.2.3 Approach 3: intersecting partitioned Bloom filters
	3.2.4 The false intersection probability

	3.3 Optimization for two-way joins using intersection filtersin MapReduce
	3.3.1 Implementation overview
	3.3.2 Optimized two-way join algorithm
	3.3.3 Cost analysis for two-way joins in MapReduce

	3.4 Optimization for multi-way joins using intersectionfilters in MapReduce
	3.4.1 Extended intersection filter
	3.4.2 Three-way join using intersection filter
	3.4.3 Chain join using intersection filter
	3.4.4 Star join using intersection filter
	3.4.5 Cost analysis of three-way joins in MapReduce
	3.4.6 Cost analysis of chain joins in MapReduce

	3.5 Experimental evaluation
	3.5.1 Two-way joins
	3.5.1.1 Cluster environment and datasets
	3.5.1.2 Experimental protocol
	3.5.1.3 Evaluation of approaches

	3.5.2 Chain joins
	3.5.2.1 Cluster environment and datasets
	3.5.2.2 Experimental protocol
	3.5.2.3 Evaluation of approaches

	3.6 Summary

	CHAPTER 4 - OPTIMIZATION FOR RECURSIVEJOINS AND SEMI-NAIVE ALGORITHM
	4.1 Introduction
	4.1.1 Previous work
	4.1.2 Proposal for recursive join using filters
	4.1.3 Definitions and notations

	4.2 Modeling difference filter
	4.2.1 Existing solutions
	4.2.2 Problem definition
	4.2.3 Difference filter design
	4.2.4 Dynamic Bloom Filter
	4.2.5 False difference probability

	4.3 Optimizing recursive joins and semi-naive algorithm
	4.3.1 Implementation model
	4.3.1.1 Pre-processing job for recursive join
	4.3.1.2 Recursive join job

	4.3.2 Optimized semi-naive algorithm in MapReduce

	4.4 Cost analysis for recursive joins
	4.4.1 Cost model
	4.4.2 Cost comparison

	4.5 Summary

	CHAPTER 5
- CONCLUSIONS AND FUTURE WORK
	5.1 Thesis conclusions
	5.2 Disscusion and future work
	5.2.1 Two-way and multi-way joins
	5.2.2 Recursive joins
	5.2.3 Query language for NoSQL databases

