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The main purpose of constructing Intelligent Vehicles is to increase the safety for all traffic participants. The detection of pedestrians, as one of the most vulnerable category of road users, is paramount for any Advance Driver Assistance System (ADAS). Although this topic has been studied for almost fifty years, a perfect solution does not exist yet. This thesis focuses on several aspects regarding pedestrian classification and detection, and has the objective of exploring and comparing multiple light spectrums (Visible, ShortWave Infrared, Far Infrared) and modalities (Intensity, Depth by Stereo Vision, Motion).

From the variety of images, the Far Infrared cameras (FIR), capable of measuring the temperature of the scene, are particular interesting for detecting pedestrians. These will usually have higher temperature than the surroundings. Due to the lack of suitable public datasets containing Thermal images, we have acquired and annotated a database, that we will name RIFIR, containing both Visible and Far-Infrared Images. This dataset has allowed us to compare the performance of different state of the art features in the two domains. Moreover, we have proposed a new feature adapted for FIR images, called Intensity Self Similarity (ISS). The ISS representation is based on the relative intensity similarity between different sub-blocks within a pedestrian region of interest. The experiments performed on different image sequences have showed that, in general, FIR spectrum has a better performance than the Visible domain. Nevertheless, the fusion of the two domains provides the best results.

The second domain that we have studied is the Short Wave Infrared (SWIR), a light spectrum that was never used before for the task of pedestrian classification and detection. Unlike FIR cameras, SWIR cameras can image through the windshield, and thus be mounted in the vehicle's cabin. In addition, SWIR imagers can have the ability to see clear at long distances, making it suitable for vehicle applications. We have acquired and annotated a database, that we will name RISWIR, containing both Visible and SWIR images. This dataset has allowed us to compare the performance of different pedestrian classification algorithms, along with a comparison between Visible and SWIR. Our tests have showed that SWIR might be promising for ADAS applications, performing better than the Visible domain on the considered dataset.

Even if FIR and SWIR have provided promising results, Visible domain is still widely used due to the low cost of the cameras. The classical monocular imagers used for object detection and classification can lead to a computational time well beyond real-time. Stereo Vision provides a way of reducing the hypothesis search space through the use of depth information contained in the disparity map. Therefore, a robust disparity map is essential in order to have good hypothesis over the location of pedestrians. In this context, in order to compute the disparity map, we have proposed different cost functions robust to radiometric distortions. Moreover, we have showed that some simple post-processing techniques can have a great impact over the quality of the obtained depth images.

The use of the disparity map is not strictly limited to the generation of hypothesis, and could be used for some feature computation by providing complementary information to color images.

We have studied and compared the performance of features computed from different modalities (Intensity, Depth and Flow) and in two domains (Visible and FIR). The results have showed that the most robust systems are the ones that take into consideration all three modalities, especially when dealing with occlusions.
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Introduction

Intelligent autonomous vehicles have long surpassed the stage of a Sci-Fi idea, and have become a reality [START_REF] Guizzo | How Google's Self-Driving Car Works[END_REF], [1]. The main motivation behind this technology is to increase the safety of both driver and other traffic participants. In this context, pedestrian protection systems have become a necessity. But merely passive components like airbags are not enough: active safety, technology assisting in the prevention of a crash, is vital. For this, a system of pedestrian detection and classification plays a fundamental role.

Challenges

Pedestrian detection and classification in the context of intelligent vehicles in an urban environment poses a lot of challenges:

Pedestrian Appearance and Shape. By nature, the humans have different heights and body shapes. But this variability in appearance is further increased by different cloth types. Moreover, human shape can change a lot in a short period of time (for example a person that bends to tie its shoes). Also the appearance depends on the point of view of the camera, as well as the distance between the camera and the pedestrian. Close pedestrians can bear little resemblance with the ones situated far away.

Occlusion. Occlusions represents an important challenge for the detection of any type of object, and in the case of pedestrians they can be divided into: self and external occlusions. Self-occlusion are cause especially by the pose of the object, in the case of a pedestrian that has a side-way position in relation with the point of view of the camera will certainly exhibit occlusion of some body-parts. Moreover different objects carried by the pedestrians might have the same effect (for example hats, bags, umbrellas). In the external occlusions category we include other pedestrians (especially in an urban situation), poles, other cars, as well as the situation in which the pedestrian is too close to the camera leading certain body-parts exit the field of view.

Environmental conditions. Although some meteorological circumstances might not have a direct impact on the quality of images (for example light rain), they can influence the appearance of pedestrians for cameras (for example a passer-by can open an umbrella which might lead to occlusion of the head region). Other conditions might lead to situations where the quality of retrieved images is altered (for example situations of haze, fog, snow, heavy rain etc.). Another factor that should be taken into consideration is the time of day, that has a direct impact over the amount of ambient light available -usually, during daytime the problem of pedestrian detection and classification poses less problems than during night.

Sensor choice. Each existing sensor has certain disadvantages and advantages, depending on the situation. For example, passive sensors like visible cameras can be affected by low light conditions, giving poor images with low variation in intensity across objects and background, while thermal cameras might experience the same problems when the environment has a similar temperature with the pedestrians. Active sensors, like LIDAR, have the advantage of providing distance to all objects in a scene, but they have as output a large datasets that might be difficult to interpret.

Other objects. Distinction between non-pedestrians and pedestrians might not be always simple, being difficult to construct a model that differentiates between pedestrians and any other existing objects.

Main Research Contributions

Motivated by the importance of pedestrian detection, there exist an extensive amount of work done in connection with this field. Our objective is to study the problem across different light spectrum and modalities, with an emphasis on disparity map.

Our main contributions can be summarised as follows:

• Creation and annotation of two databases for benchmarking of pedestrian classification, one for Far-Infrared (FIR) and the other one in Short-Wave Infrared (SWIR).

• In the context of Thermal images, we have proposed a new feature, Intensity Self Similarity (ISS). The performance of ISS was compared on three different datasets with state of the art features.

• As a novelty, we have studied the SWIR spectrum for the task of pedestrian classification, and we have performed a comparison with the Visible domain.

• As a low cost solution, we believe that Stereo Vision is a promising alternative. In this context, we have also focused on improving Stereo Matching algorithm by proposing new cost functions.

• We have studied the performance of different features across different domains (Visible, FIR) and across multiple modalities (Intensity, Motion, Disparity map)

Thesis Overview

This thesis is organized as follows (see also figure 1):

Chapter 1 presents an in-depth analysis for the motivation of a pedestrian detection system, along with an overview of existing types of sensors. Our sensor of choice is passive sensors represented by cameras sensitive to different light spectrums: Visible, Far Infrared and Short Wave Infrared. We present also a short review of the steps employed in the task of pedestrian classification and detection with an emphasise on the step of feature computation.

In Chapter 2 we study the problem of pedestrian classification in Thermal images (Far-Infrared Spectrum). After overviewing existing datasets of Thermal images, we have reached the conclusion that they all have important disadvantages: either the quality of the thermal images is poor and there is not possibility of direct comparison with the Visible spectrum; or the datasets are not publicly available. In this context, we have acquired and annotated a new dataset. Moreover we have proposed a feature adapted for pedestrian classification in Far-Infrared images and compared it with other state of the art features, in different conditions.

A new spectrum that can be interesting for the task of pedestrian detection and classification is the Short-Wave Infrared (SWIR). An analysis of this light spectrum is made in Chapter 3.

After having performed some preliminaries experiments on a restricted dataset, we have acquired and annotated a dataset of SWIR images, along with the Visible correspondent. On this later dataset, we have compared the two spectrums from the perspective of different features. 
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Motivation

As shown in a report published by World Health Organization from 2013 [START_REF]Global status report on road safety 2013: supporting a decade of action[END_REF], it is estimated that every year 1.24 million people die as a result of a road traffic collision. That means that over 3000 deaths occur each day. An additional 20 to 50 million 1 more people sustain non-fatal injuries from a collision, leading the traffic collision to be also one of the top causes of disability worldwide.

1 Non-fatal crash injuries are insufficiently documented Five key safety risk factors have been identified as speed, drink-driving, helmets, seat-bels, and child restraints. For short term the way to address the problem of road collisions is better legislation addressing these key factors. If all the countries would pass comprehensive laws, according to [START_REF]Global status report on road safety 2013: supporting a decade of action[END_REF], the number of world wide road casualties would decrease to a total of around 800 000 per year. Therefore along a legislation that address key problems of road safety, infrastructure and vehicle manufactures should follow along.

Because human factor is the leading cause of traffic accidents [START_REF]The Royal Society for the Prevention of Accidents. What are the most common causes of road accidents?[END_REF], contributing wholly or partly for around 93% of crashes (see figure 1.2), we consider that for long term, Advanced Driver Assistance Systems (ADAS) will play a key role in reducing the number of road accidents. Autonomous intelligent vehicles could represent a possible solution to the problem of traffic accidents, having the capability in a lot of situations to react faster and being more effective, due to possible access to multiple sources of information (given by different sensors, but also by vehicle-to-vehicle communication). Moreover intelligent vehicles could have further benefits like reducing traffic congestions, higher speed limit or relieving the vehicle occupants from driving.

But all these will be feasible only the moment when the vehicles become reliable enough. Furthermore, in intelligent transportation field, the focus on passenger safety in humancontrolled motor vehicles has shifted, in recent years, from collision mitigation systems, such as seat belts, airbags, roll cages, and crumple zones, to collision avoidance systems, also called Advanced Driver Assistance Systems (ADAS). The latter includes adaptive cruise control, lane departure warning, traffic sign recognition, blind spot detection, among others. If the collision mitigation systems seek to reduce the effects of collisions on passengers, ADAS systems seek to avoid accidents altogether.

In this context, it is imperative for the vehicles (both autonomous and human-controlled) to be able to detect other traffic participants, especially the vulnerable road users like pedestrians.

Sensor types

Choosing the right sensor for an object detection problem is of paramount importance. The right choice can have a huge impact over the ability of the system to perform robustly in different situations and environments. 

A short review of Pedestrian Classification and Detection

There is a significant amount of existing works in the domain of pedestrian classification. Recent surveys compare different algorithms and techniques. Gandhi and Trivedi [54] present a review of pedestrian safety and collision avoidance systems, that includes infrastructure enhancements.

They classify the pedestrian detection approaches according to type and sensor configurations. • Depending on the stereo vision algorithm used and the quality desired for the disparity map, computation time could increase a lot

Near-Infrared Cameras

• Generally the same resolution like visible cameras

• They capture light that is not visible to human eye

• Low cost compared with other infrared cameras

• Can be used very low-light

• Monochrome;

• They require infrared light, and to be used in low light situations an IR emmiter

• Sensitivity to sunlight

Far-Infrared Cameras

• Generally the same resolution like visible cameras

• They capture the thermal information from the environment

• Will work in very low-light conditions without any additional emitter

• Robust to daytime and night time, especially for people detection

• High-cost

• Can't see through glass, therefore for an application ADAS they must be mounted outside the vehicle.

• The integration could be difficult, due to custom electronics or capture hardware • They belong in fact to the IR cameras category in the sense that there exist an infrared light projection that is used to construct a depth image using structured light or time-offlight.

• They have all the advantages of stereo-cameras

• Depth image is constructed without the need of a stereo-matching algorithm, thus high frame rate is obtained

• Small range of effectiveness Geronimo et al. [START_REF] Geronimo | Survey of pedestrian detection for advanced driver assistance systems[END_REF] also survey the task of pedestrian detection for ADAS, but they choose to define the problem by analysing each different processing step. These surveys are an excellent source for reviewing existing systems, but sometimes it is difficult to actually compare the performance of different systems.

In this context, a few surveys try to make a direct comparison of different systems (features, classifier) based on Visible images. For example, Enzweiler and Gavrila [START_REF] Enzweiler | Monocular pedestrian detection: Survey and experiments[END_REF] cover the components of a pedestrian detection system, but also compare different systems (Wavelet-based AdaBoost, histogram of oriented gradient combined with an SVM classifier, Neural Networks using local receptive fields and a shape-texture model) on the same dataset. They conclude that the HOG/SVM approach outperformed all the other approaches considered. Enzweiler

and Gavrila [START_REF] Enzweiler | A multilevel mixture-of-experts framework for pedestrian classification[END_REF] compare different modalities like image intensity, depth and optical flow with features like HOG, LBP and they conclude that multi-cue/multi-feature classification results in a significant performance boost. Dollar et al. [START_REF] Dollar | Pedestrian detection: An evaluation of the state of the art[END_REF] proposed a monocular dataset (Caltech database) and make an extensive comparison of different pedestrian detectors. It is showed that all the top algorithms use in one way or another motion information.

In this section we will just provide a short overview of the components that take part of most of the pedestrian classification and detection systems.

A simplified architecture of a pedestrian detection system can be split into several modules (as presented in Figure 1.4): preprocessing, hypothesis generation and object classification/hypothesis refinement. Although several more modules could be added, like Segmentation or Tracking, we believe the three modules to be essential for the task. Furthermore, feedback loops between modules could be added in order to have a higher precision.

Preprocessing

This module contains functions like exposure time, noise reduction, camera calibration etc. Most existing approaches can be divided into monocular-based or stereo-based.

In case of monocular cameras, a few approaches undistort the images by computing the intrinsic camera parameters [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF]. Nevertheless, most of the existing datasets that benchmark pedestrian detection and classification algorithms, do not provide camera intrinsic parameters or undistorted images [START_REF] Dollar | Pedestrian detection: An evaluation of the state of the art[END_REF], [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF].

In case of stereo-based systems, camera calibration of both intrinsic and extrinsic is usually a requirement for the stereo-matching algorithm. Most of the systems will assume a fixed position of the cameras and will therefore use just once the calibration checkboard. Other systems, take into consideration the fact that the cameras relative position could be changed, therefore they propose to continuously update extrinsic parameters [START_REF] Broggi | Self-calibration of a stereo vision system for automotive applications[END_REF].

Hypothesis generation

Hypothesis generation, also referred as candidate generation or determining Regions of Interest (ROI) , has the purpose of extracting possible areas where a pedestrian might be found in the image.

An exhaustive method is that of using a sliding window. A fixed window is moved along the image. In order to detect pedestrians of different sizes, the image will be resized several times and then it is parsed again. In the next module (object classification), each window is separately classified into pedestrian/non-pedestrian. This technique will result in a high coverage by assuring that every pedestrian in the image is contained in at least one window. Nevertheless, it has several drawbacks. One disadvantage is the high number of hypothesis generating, thus a high processing time. Moreover, many irrelevant regions, like that of sky, road, buildings are parsed, usually leading to an increase in the number of false positives.

In monocular systems, other approaches perform image segmentation by considering color distribution across the image or gradient orientations. In case of Far-Infrared images, intensity threshold is a widely used technique, along with other methods like Point-of-Interest (POI) ?53''(@(&30(%)4,;<$%0=#'(',A#@()#2#)0 B('$3"(0<,C3$,&%2$/030(%) >"%/).,A#2%D35 E6'03&5#,B#0#&0(%)

;<$%0=#'(' ?53''(@(&30(%) A#@()#2#)0 In stereo-based systems, computation of disparity map provides valuable information. Techniques like stixels computation [START_REF] Benenson | Stixels estimation without depth map computation[END_REF] or ground removal followed by determining objects above a certain height from disparity maps [START_REF] Kramm | Obstacle detection using sparse stereovision and clustering techniques[END_REF], reduce the search space by up to a factor of 45 [START_REF] Benenson | Pedestrian detection at 100 frames per second[END_REF].

Object Classification/Hypothesis refinement

This module, usually, will take as input a list of ROIs generated in the previous step, and will classify them in pedestrian/non-pedestrian (in order to reduce the false positive rate). For this, different features are computed like: silhouette matching [START_REF] Dariu | Multi-cue pedestrian detection and tracking from a moving vehicle[END_REF], [START_REF] Broggi | Shapebased pedestrian detection[END_REF], appearance features computed using a holistic approach (Histogram of Oriented Gradients [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], HAAR wavelets [START_REF] Papageorgiou | A trainable system for object detection[END_REF], Haar-like features [START_REF] Viola | Detecting pedestrians using patterns of motion and appearance[END_REF], Local Binary Patterns [START_REF] Ojala | A comparative study of texture measures with classification based on featured distributions[END_REF] etc.) or by modelling different body parts using different appearance features. These features are used to learn a classifier like Support Vector Machine [START_REF] Cortes | Support-vector networks[END_REF], AdaBoost [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF], Artificial Neural Networks [START_REF] Zhao | Stereo-and neural network-based pedestrian detection[END_REF] The optimal hyper-plane (see figure 1.5) is used to classify an unlabeled input data X by using a decision function given by f (X) = sign( where SV is the set of support vector items X i , b is the offset value, K is the kernel function and α i are the optimized Lagrange parameters.

X i ∈SV (y i α i K(X i , X) + b)) (1.1)
In this thesis, we have chosen to work only with Support Vector Machine classifier, due to fast training and testing time. There exist different types of kernel functions that could be used with the SVM. Among them, we have chosen to perform experiments with the Linear kernel for a fast classification step.

In the next section we are going to present some of the significant features that are going to be used across this thesis. 

Features

Features, in the context of computer vision, represent different attributes or aspects of a particular image. For example, in figure 1.6 is presented how a pyramid is seen from two different points of view. In the same way, different features will ideally reveal various information about the image.

In recent years, a large amount of features were developed. In what follows, we are going to present a few features that are either widely used, or represent a reference point in literature, and will be further used in various chapters of the thesis.

Histogram of Oriented Gradients (HOG)

Gradient based features have become very popular due to the robust results obtained in both the sparse version (Scale Invariant Feature Transformation -SIFT [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF]) and dense representation (Histogram of Oriented Gradients -HOG [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]). HOG represents, currently, a state of the art feature for pedestrian classification.

Local object appearance can be well characterised by the distribution of local intensity gradients or edge directions. In the case of HOG, this is performed dividing the image into small cells. For each cell a 1-D histogram is constructed containing the gradient orientations. By normalising the obtained histogram inside bigger regions called blocks, it is obtained a better invariance to illumination conditions. The final feature vector is constructed by the simple concatenation of the computed histograms. In figure 1.7 are presented the main steps for computation of HOG features.

Local Binary Patterns (LBP)

In comparison with HOG, that is used to capture edge or local shape information [START_REF] Ojala | A comparative study of texture measures with classification based on featured distributions[END_REF], local binary pattern (LBP) operator is a texture descriptor that is widely used due to its invariance to gray level changes.

There exist different methods to compute LBP, varying by different choice of parameters. In order to compute the LBP operator we use the method described by Wang et al. [START_REF] Wang | An hog-lbp human detector with partial occlusion handling[END_REF], because has proven to be one of the most robust. In a formal manner the operator can be described by equation 1.2.

LBP p,r (c) = i∈Np,r(c) s(I i -I c ) * 2 p (1.2)
where p is the number of pixels in a considered neighbourhood, r is the radius of the neighbourhood, c are the coordinates of the central pixel, N p,r (c) represents the set of coordinates for the pixels found at radius r from the central pixel, and s(x) is defined by equation 1.3. The main steps to compute LBP are:

• Like in the case of HOG, the ROI is divided into cells of 8 × 8 pixels.

• Each pixel in a given cell is compared with the pixels in a considered neighbourhood and a bit-string is constructed. This vicinity region is usually considered a circle as shown in figure 1.8.

• The bit-string has the same length as the number of pixels in the neighbourhood, and is constructing by comparing the value of a pixel with the pixels in the vicinity. If the center pixel's value is smaller than the neighbour's value , then in the bit-string a "1" will be written, otherwise a "0", like showed in figure 1.9. Because in this approach a large number of patterns can be created that could introduce noise in the classification process, only the uniform patterns are considered. A uniform pattern, as seen in figure 1.10, is defined by those pattern that lead to a maximum of two 0-1 transitions.

• In the following step, over each cell, a histogram is computed based on the decimal valued of transformed bit-string.

• The histograms of all cells are concatenated and normalised. This gives the final feature vector for the considered window.

Local Gradient Patterns (LGP)

LBP features are sensitive to local intensity variations and therefore could lead to many different patterns in a small region. This might affect the performance of some classifiers. To overcome 

s(G i -G) * 2 p (1.4)
where gradient s is defined in equation 1.3, G p is defined in 1.5 as the absolute difference between the central pixels intensity I c and its neighbouring pixel I i , and G is defined in equation 1.6

G i = |I i -I c | (1.5) G = 1 p p-1 n=0 G n (1.6)
This operator is computed in a similar manner as LBP. Instead of working on intensity values of the pixels, it employs gradient values of the neighbourhood pixels (see equation 1.4). The gradient is computed as the absolute value of intensity difference between the given pixel and its neighbouring pixels. The central pixel value is replaced by the average of gradient values (see figure 1.11). 

Color Self Similarity (CSS)

Recent work has shown that local low-level features are particularly efficient ( [START_REF] Dollár | Integral channel features[END_REF], [START_REF] Wojek | Multi-cue onboard pedestrian detection[END_REF]). In [START_REF] Walk | New features and insights for pedestrian detection[END_REF] a new feature (CSS ), is proposed for images in the visible spectrum, based on second order statistics of colors. This method takes advantage of locally similar colors within an analysis window.

This window is first divided into blocks of 8 × 8 pixels. For a given color space, like RGB and HSV, a histogram with 3 × 3 × 3 bins is computed for each block. Every block is then compared to all others blocks using histogram intersection resulting in a vector of similarities. Finally, a L2-normalization is applied to that similarity vector.

Haar wavelets

Haar wavelets were introduced by Papageorgiou and Poggio [START_REF] Papageorgiou | A trainable system for object detection[END_REF]. The idea behind this type of features is to compute the difference between the sum of intensities in two rectangular areas in different configurations and sizes (see figure 1.12.a),1.12.b), 1.12.c)). These were extended by Viola et al. [START_REF] Viola | Detecting pedestrians using patterns of motion and appearance[END_REF]. They introduced two new configurations for the rectangular areas (see figure 1.12.d), 1.12.e)) and also proposed a classifier based on layers of weak classifiers (AdaBoost).

Disparity feature statistics (Mean Scaled Value Disparity)

A feature that is interesting from the perspective of using disparity map, is the disparity feature statistics proposed by Walk et al. [START_REF] Walk | Disparity statistics for pedestrian detection: Combining appearance, motion and stereo[END_REF].

The main idea behind these features is that even if the heights of pedestrians are not identical, they are still very similar. The disparity statistics proposed in [START_REF] Walk | Disparity statistics for pedestrian detection: Combining appearance, motion and stereo[END_REF] are based on the invariant property of disparity map, that the ratio of disparity and observed heigh is inversely proportional to the 3D object height.

In order to make the disparity statistics features independent of the distance to the object, in a scenario of sliding window search, the disparity values are divided by the appropriate scale level 

Conclusion

In this chapter we have presented an overview of the pedestrian detection and classification sensors and systems. For the final experiments performed in this thesis we have chosen to work with three different types of cameras: FIR, SWIR and Visible. Accordingly, in the following chapter, we treat the problem of pedestrian classification in FIR spectrum. In this chapter, we study the pertinence of using a monocular FIR camera for the task of pedestrian detection and classification. In recent years, the cost of infrared (IR) cameras has decreased, making them an interesting alternative to visible cameras for pedestrian detection systems ( [START_REF] Bertozzi | Pedestrian detection for driver assistance using multiresolution infrared vision[END_REF], [START_REF] Yasuno | Pedestrian detection and tracking in far infrared images[END_REF], [START_REF] Suard | Pedestrian detection using infrared images and histograms of oriented gradients[END_REF], [START_REF] Li | Robust pedestrian detection in thermal infrared imagery using the wavelet transform[END_REF]). Moreover, infrared cameras still provide pertinent and discriminative information even in difficult illumination conditions (i.e. night, fog) and they are less prone to confusion caused by colors, textures and shadows belonging to objects other than pedestrians.

Although there exists different IR sensors characterized by their wavelength, FIR camera seems to be the most suitable for distinguishing hot targets like pedestrians. This ability represents an advantage of FIR cameras over visible ones, especially during the night. Despite this, pedestrian detection in IR images remains a challenging task, because the system has to deal not only with the problem of their variability in posture, range, orientation, but also with the lack of texture information. Therefore, texture can be an advantage, due to less distractions in the image, and disadvantage, due to less information available. Another challenge is that objects other than pedestrian, like vehicles, animals, electricity sources, appear also as hot targets in the FIR spectrum.

Related Work

Usually, the sliding window technique, mostly used in the Visible domain, is not suitable for real-time object detection application that uses a complex classifier. In response to this, Infrared domain offers the possibility of generating a smaller number of hypothesis to be tested, therefore becoming an interesting alternative to the Visible spectrum. Moreover, thermal Infrared has a clear advantage over Visible spectrum during the night, where it can still provide relevant information about the environment.

For Region of Interest (ROI) generation in FIR images a natural solution would be to use a threshold, like in [START_REF] Suard | Pedestrian detection using infrared images and histograms of oriented gradients[END_REF], or even better an adaptive threshold by assuming that non-pedestrian intensities follow a Gaussian distribution [START_REF] Bertozzi | Pedestrian detection in far infrared images based on the use of probabilistic templates[END_REF]. Unfortunately, the problem of estimating an appropriate threshold remains a key issue because the pedestrian intensities vary with respect to range and outside temperature.

Erturk [START_REF] Erturk | Region of interest extraction in infrared images using one-bit transform[END_REF] presents a region of interest extraction in infrared images based on one-bit transform.

Potential interest regions are obtained by using a target mask, followed by a comparison of the original image histogram with the masked image histogram in order to obtain an automated threshold value. This method was tested only on static images and is not followed by a classification step.

Kim and Lee [START_REF] Kim | Segment-based region of interest generation for pedestrian detection in far-infrared images[END_REF] present a region of interest generation method specialized for nighttime pedestrian detection using far-infrared (FIR) images. They respond to the problem of finding a good intensity threshold, by working with image segments and also using the low-frequency characteristics of the FIR images.

Wang et al. [START_REF] Wang | Target detection and pedestrian recognition in infrared images[END_REF] try to improve the local contrast between targets and background in the static infrared images, by proposing a background model. In the same time to filter the false negatives a ramp loss function is used to learn the characteristics of a pedestrian. Liu et al. [START_REF] Liu | Robust and fast pedestrian detection method for far-infrared automotive driving assistance systems[END_REF] use a pixel-gradient oriented vertical projection approach in order to estimate the vertical image stripes that might contain pedestrians. Afterwards, a local thresholding image segmentation is adopted to generate ROIs more accurately within the estimated vertical stripes.

Other approaches consists in detecting warm symmetrical objects with specific size and aspect ratio [START_REF] Binelli | A modular tracking system for far infrared pedestrian recognition[END_REF], or in detecting pedestrian heads based on pixel classification [START_REF] Besbes | Evidential combination of svm road obstacle classifiers in visible and far infrared images[END_REF], [START_REF] Meis | Reinforcing the reliability of pedestrian detection in far-infrared sensing[END_REF].

For the pedestrian classification step there exist different approaches that are based on global or region object representation. Bertozzi et al. [START_REF] Bertozzi | Pedestrian detection in far infrared images based on the use of probabilistic templates[END_REF] presents a validator stage for a pedestrian detection system based on the use of probabilistic models for the infrared domain. include gray level features [START_REF] Sun | A multi-stage classifier based algorithm of pedestrian detection in night with a near infrared camera in a moving car[END_REF] and Gabor wavelets [3], are computed over all the pixels within a

Bounding Box (BB). Region-based features, like Haar wavelets [2] and Histogram of Oriented Gradients (HOG) [START_REF] Suard | Pedestrian detection using infrared images and histograms of oriented gradients[END_REF], [START_REF] Zhang | Pedestrian detection in infrared images based on local shape features[END_REF] encode the influence of each pixel that lies in a BB.

Kim et al. [START_REF] Kim | Histograms of local intensity differences for pedestrian classification in far-infrared images[END_REF] propose a modified version of the well-known HOG descripor, called historgram of local intensity differences that claim it is more suited for FIR images in terms of both accuracy and computation efficiency. Sun et al. [START_REF] Sun | Night vision pedestrian detection using a forwardlooking infrared camera[END_REF] propose the use of Haar-like features in combination with AdaBoost in order to detect pedestrians during the night. Also a pedestrian classification system based on AdaBoost and a combination of Haar and ad-hoc-features is proposed by Cerri et al. [START_REF] Cerri | Day and night pedestrian detection using cascade adaboost system[END_REF]. They test the system in the context of using NIR illuminators.

Li et al. [START_REF] Li | Nighttime pedestrian detection using local oriented shape context descriptor[END_REF] propose a feature based on local oriented shape context (LOSC) descriptor also for nighttime pedestrian detection. They based their approach on a shape context descriptor that is enhanced with edge's orientation.

Zhang et al. [START_REF] Zhang | Pedestrian detection in infrared images based on local shape features[END_REF] investigate the methods derived from visible spectrum analysis for the task of human detection. They extend two feature classes (edgelets and HOG features) and two classification models(AdaBoost and SVM cascade) to the FIR images. Zhang et al. [START_REF] Zhang | Pedestrian detection in infrared images based on local shape features[END_REF] concludes that it is possible to get detection performance in FIR images that is comparable to state-of-the-art results for visible spectrum images on a dataset of around 1000 pedestrians.

Mählisch et al. [START_REF] Mählisch | A multiple detector approach to low-resolution fir pedestrian recognition[END_REF] proposed a detector approach for low-resolution FIR images based on a hierarchical contour matching algorithm and a cascaded classifier approach.

In order to take advantage of some properties of infrared images, Fang et al. [START_REF] Fang | Comparison between infrared-image-based and visible-image-based approaches for pedestrian detection[END_REF] introduce a projection feature for segmentation (in order to avoid shape-template and pyramid searching)

and two-axis pixel-distribution (histogram and inertial) feature for classification.

Krotosky and Trivedi [START_REF] Stephen | On color-, infrared-, and multimodal-stereo approaches to pedestrian detection[END_REF] present an interesting analysis of Color-, Far-Infrared-, and multimodal-stereo approaches to pedestrian detection. They design a four-camera experimental testbed consisting of two color and two infrared cameras for capturing and analysing various configuration permutations for pedestrian detection, thus providing an in-depth analysis for the use of color and FIR. Their conclusion is that on the tested images, visible images provided better results than the infrared ones.

Olmeda et al. [START_REF] Olmeda | Discrete features for rapid pedestrian detection in infrared images[END_REF] propose a pedestrian detection system based on discrete features in thermal infrared images, these descriptors are matched with defined regions of the body of a pedestrian.

In case of a match it creates a regions of interest which is then classified using an SVM. Olmeda et al. [START_REF] Olmeda | Pedestrian detection in far infrared images[END_REF] present a study on pedestrian classification and detection in FIR images using a descriptor named Histograms of Oriented Phase Energy combined with a latent variable SVM approach.

With the exception of the dataset used by Olmeda et al. [START_REF] Olmeda | Pedestrian detection in far infrared images[END_REF], from our knowledge, the other articles do not make public the acquired images. As a consequence, it is quite difficult to compare the proposed approaches.

Datasets

Although there exists a reasonable number of benchmark datasets for the pedestrian detection in the Visible domain1 , in case of FIR images most of the datasets are not publicly available.

Datasets like that proposed by Simon Lynen [113], Davis and Keck [START_REF] James | A two-stage template approach to person detection in thermal imagery[END_REF], Davis and Sharma [START_REF] James | Background-subtraction using contour-based fusion of thermal and visible imagery[END_REF] focus mostly on surveillance application, therefore they use a fixed-camera setup.

Recently An interesting dataset that contains both FIR and Visible images is proposed by Bertozzi et al. [START_REF] Bertozzi | Low-level pedestrian detection by means of visible and far infra-red tetra-vision[END_REF]. Unfortunately, the dataset had just a small number of annotations (around 1000 BB), therefore it might not provide statistically relevant results. Moreover, this dataset is not publicly available3 . In order to respond to the deficiencies of the datasets proposed by Olmeda et al. [START_REF] Olmeda | Pedestrian detection in far infrared images[END_REF] and Bertozzi et al. [START_REF] Bertozzi | Low-level pedestrian detection by means of visible and far infra-red tetra-vision[END_REF], on one hand, we propose a new benchmark for pedestrian detection and classification in FIR images, which consists of sequences acquired in an urban environment with two cameras (FIR and color) mounted on the exterior of a vehicle. We will further refer to the proposed dataset as RIFIR 4 . On the other hand, we have extended the annotations on the dataset proposed by Bertozzi et al. [START_REF] Bertozzi | Low-level pedestrian detection by means of visible and far infra-red tetra-vision[END_REF]. We will further refer to the extended dataset as ParmaTetravision.

In table 2.1 we present an overview of existing pedestrian datasets. In what follows we will present dataset statistics for the both ParmaTetravision and RIFIR.

Dataset ParmaTetravision

Dataset ParmaTetravision contains information taken from two visible and two infrared cameras and was provided to us by VisLAB laboratory in Parma Italy [START_REF] Bertozzi | Low-level pedestrian detection by means of visible and far infra-red tetra-vision[END_REF]. In a previous work [START_REF] Besbes | Evidential combination of svm road obstacle classifiers in visible and far infrared images[END_REF], there were annotated around 1000 pedestrians BB (table 2.2), but we felt that this will not provide a large enough dataset in order to compare the performance of different features. Thus, we have extended the annotation to include a much larger number of images and manually annotated BB for both training and testing and Testing. Most of the pedestrians have a height inferior to 150 pixels. Due to a small difference in optics, the pedestrians in FIR images will appear slightly larger than those in Visible images.

In the dataset, annotated pedestrians tend to be concentrated into the same regions. In figure 2.2 is presented a normalized heat map obtained by plotting the annotated pedestrian BBs. The heat map is presented as in indicator that even if pedestrian tend to concentrate in the same region, different optics and environment will produce various heat maps. In figure 2.4 is presented an example of image from the ParmaTetravision dataset. 
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Feature description Inspired by CSS, we propose an original feature representation, called Intensity Self Similarity, adapted for FIR images. In contrast with images acquired with cameras in visible spectrum, that can provide color information, those taken using FIR sensor, provide only information about the pixel intensities, making CSS representation not suitable. After a careful analysis of road scenes in FIR spectrum, we believe that FIR images emphasise several intensity structures, since pixels within a pedestrian head region have approximately the same intensity values, the arms intensity values seem to be similar and this also could be applied to the leg areas. According to this, we propose a self similarity feature based on intensities values of thermal images, rather than on color information. For the comparison of two histograms H 1 and H 2 , we have tested different techniques like: 

• Histogram Intersection: i=1,histSize min(H 1 [i], H 2 [i]) • Histogram Difference: i=1,histSize |H 1 [i] -H 2 [i]| • Chi Square Distance: i=1,histSize (H 1 [i] -H 2 [i])
• Empirical Distribution: i=1,histSize 1 H 1 [i]≤H 2 [i]
Feature parameters optimisation This feature is used to feed up a fast, but efficient linearkernel SVM classifier. In order to validate the proposed feature we have used the dataset ParmaTetravision[Old] that contains 1089 pedestrians. The pedestrian detection performances are estimated by the precision rate, the recall rate and the F-measure, using a 10-fold Cross Validation (CV) technique.

In figure 2.9 is plotted the ROC 7 curve for each tested technique of histogram comparison.

Subsequently, we have chosen to use histogram difference rather than histogram intersection, like [START_REF] Walk | New features and insights for pedestrian detection[END_REF], because it provided lower false positive rate for a high recall.

For the choice of block and histogram size, we have tested blocks of 8 × 8 and 16 × 16 pixels, and six different histograms sizes. The results in terms of F-measure are presented in figure 2.10.

As it can be observed, the histogram size does not have a significant impact for the performance, results varying just between ±0.5%. On the contrary, the block size, has a greater influence over the results.

For the final configuration of ISS feature, we have chosen to use block size of 8 × 8 pixels, histogram of 16 bins and histogram difference for comparison algorithm. 7 Receiver operating characteristic ! """""" #$ """""" %& """""" $' """""" #&! """""" &($ """""" )# """""" )& """""" )% """""" )'

"""""" )( """""" )$ """""" )* """""" #$+#$ ,-./0 """""" !+! ,-./0 """""" 1234.5678 92:; <=>;73?6; @AB We emphasis the fact that there is a complementarity between ISS and HOG representations, since ISS features provide information about the similarities between different regions within a BB, while HOG features provide information concerning the shape of objects within a BB. We decided to exploit this complementarity with an early fusion at the feature level. 

A study on Visible and FIR

The initial experiments presented in section 2.3 showed ISS to be a promising feature given good results on its own. We also showed that ISS is complementary with HOG features increasing the F-Measure. Nevertheless, the testing dataset was fairly small. Consequently, we decided to extend the experiments to include more features and several datasets.

In this section we are going to compare the performance of different features like HOG, LGP, LBP and the proposed ISS on the Far Infrared domain, using three datasets: ParmaTetravision, OlmedaFIR-Classification and the proposed RIFIR. Moreover, a comparison between the FIR and Visible Domain is conducted using the datasets ParmaTetravision and RIFIR.

Preliminaries

For all three databases, in order to be consistent in the classification process, we have resized the annotated BBs to a size of 48 pixels in width and 96 in height.

HOG features are computed on cells of 8×8 pixels, accumulated on overlapping 16× 16 pixel blocks, with a spatial shift of 8 pixels. This results in a number of 1980 features.

LBPs and

LGPs features are computed using cells 8×8 pixels, and a maximum number of 0 -1 transitions of 2. This results in a number of 4248 features.

ISS is computed on cells of 8×8 pixels, histogram size of 16 pixels and histogram difference.

This results in a number of 5944 features.

These features are fed to a linear SVM classifier. For this, we have used the library LIBLINEAR [START_REF] Fan | Liblinear: A library for large linear classification[END_REF].

All the results in this section are reported in term of ROC curve (false positive rate vs classification rate), considering as reference point the false positive rate obtained for a classification rate of 90%.

Feature performance comparison on FIR images

First of all, we decided to evaluate the performance of the considered features (HOG, LBP, LGP, ISS) in the FIR domain. In figure 2 On datasets RIFIR and Oldemera-Classification the best performing feature is LBP, followed closely by LGP. On ParmaTetravision dataset, the best performing feature is LGP followed closely by LBP. On datasets ParmaTetravision and Oldemera-Classification HOG features performs better than ISS, while on RIFIR the situation is reversed.

In our opinion, the difference in performance between features comes from the fact that even if all three datasets were obtain using FIR cameras, there is a difference in sensors, road scenes and environmental conditions. It seems that as single feature, the Local Binary/Gradient Patterns are more adapted for the task of pedestrian classification in FIR images. Nevertheless, because the features are complementary, we will test a fusion of features in section 2.4.5.

In figure 2.11.d) is presented a comparison between the considered features on the Oldemeraclassification, in terms of False Positive Rate vs False Negative Rate (miss rate), on a log-log scale. We chose to present the results in this manner because this is the preferred approach of Olmeda et al. [START_REF] Olmeda | Pedestrian detection in far infrared images[END_REF]. The reference point is considered the false negative rate obtained for a false positive rate of 10 -4 . We report slightly different results than that of Olmeda et al. [START_REF] Olmeda | Pedestrian detection in far infrared images[END_REF] for HOG and LBP features. Thus, for HOG we obtain a miss rate of 0.125 ( in comparison with the reported 0.21 [START_REF] Olmeda | Pedestrian detection in far infrared images[END_REF], and for LBP we obtain a miss rate of 0.06 (in comparison with the reported 0.41 [START_REF] Olmeda | Pedestrian detection in far infrared images[END_REF]). The difference in results may come from slightly different implementation for the features and from the use of different libraries for SVM classifier. 

Feature performance comparison on Visible images

For the second scenario, we decided to evaluate the features (HOG, LBP, LGP and ISS) in the Visible domain on the datasets RIFIR and ParmaTetravision. The results are reported in figure 2.12. LBP continues to be one of the most robust features obtaining a false positive rate of 0.05 on RIFIR dataset and 0.02 on ParmaTetravision. For the other considered features the results are quite different.

As it can be observed from the example images from both datasets, RIFIR color images have more noise than the grayscale images from ParmaTetravision. This has a direct impact over the performance of features based on gradient: HOG and LGP. Thus, while ISS features manage to be more robust in the context of noise (RIFIR), HOG and LGP perform better on higher quality images (ParmaTetravision).

Visible vs FIR

Having the performance of different features on both Visible and FIR domains, we can now compare the two spectrums. In figure 2.13 is presented a comparison between the same feature computed on Visible and FIR for the two databases: RIFIR and ParmaTetravision. On both datasets, the features computed on the FIR images have a better performance than those computed on Visible. We withhold from drawing a definite conclusion that FIR cameras will always perform better than Visible ones because it depends on the quality of cameras used and also optics. What we can definitely say is that on the tested dataset the FIR spectrum gives better results.

The performance difference on the RIFIR dataset between Visible and FIR is quite large for

LGP and LBP with a factor of approximatively 30. HOG and ISS features computed on FIR result in a smaller number of false positives than the equivalent on Visible, with a factor of two, on both datasets.

Visible & FIR Fusion

In section 2.4.4 we have showed that on the two considered datasets, for the task of pedestrian classification, features computed on FIR images performed better than the counterpart computed on Visible.

By fusing both spectrums, as seen in figure 2.14.a) for RIFIR and 2.14.b) for ParmaTetravision, the false positive rate for a classification rate of 90%, is further reduced.

HOG features computed on Visible and FIR improve by a factor of two the results, in comparison with just computing on FIR domain, for RIFIR dataset, and by a factor of five for ParmaTetravision. For RIFIR dataset, the same factor of approximately two is obtained for LBP,

LGP, and ISS features, while on the ParmaTetravision the factor will be usually equal of larger than five.

Features computed from FIR and Visible are highly complementary, and the use of the two spectrums will always lower the error rate. Unfortunately, the information fusion is not straightforward because two different cameras are used, one for FIR and one for Visible domain, therefore there will always be difference in point of views. A correlation method between the two domains is necessary. A possible hardware solution is to construct a camera capable of capturing information from both light spectrums.

Conclusions

In this chapter we have described a new feature, ISS, that we adapted for the thermal images and performed extensive tests on different datasets. Moreover, we have proposed a new dataset, RIFIR, publicly available, in order to benchmark different algorithms of pedestrian detection and classification. This dataset contains both Visible and FIR images, along with correlated pedestrian and non-pedestrian bounding boxes in the two spectrums.

Moreover, a comparison between features computed on Visible and FIR spectrum is performed.

On the two tested datasets, Far-Infrared domain provided more discriminative features. Also, the fusion of the two domains will further decrease the false positive error rate.

As shown in the related work section of this chapter, FIR spectrum was already studied in different aspects for the task of pedestrian classification and detection. In comparison, in the next chapter we present an analysis performed on another infrared spectrum, less popular: the Short Wave Infrared. The purpose of this chapter is to investigate the suitability of the SWIR spectrum for the problem of pedestrian detection and classification. In what follows we present related work along with a short analysis of imagining in SWIR spectrum. Afterwards, in order to study the performance of pedestrian detection and classification using SWIR cameras we have performed two different experiments.

For the first one we have used a dataset provided by Vislab1 acquired with a low cost SWIR camera. After having annotated three different sequences of images, we then evaluated if features learned on visible images are suitable to be used on SWIR images. Other tests performed include an SVM classifier based on deformable part models ( [START_REF] Felzenszwalb | Cascade object detection with deformable part models[END_REF], [START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF]), on grammar models [START_REF] Ross B Girshick | Object detection with grammar models[END_REF] and a HAAR based classifier [START_REF] Lienhart | An extended set of haar-like features for rapid object detection[END_REF].

Due to the limitations of the first dataset, for the second experiment we have acquired and annotated a new set of images using two cameras, a SWIR and a Visible one. Thus, we are able to compare pedestrian classification performances in the two wavelengths on a fairly large dataset.

For this, we compare several spatial features like HOG, LBP and LGP. Moreover, we propose to enrich the intensity-based features from visible domain with features extracted from SWIR.

Related work

SWIR imaging began to be taken into consideration for computer vision applications because it could bring useful contrast or complementary information to situations and applications where visible or thermal imaging cameras are ineffective. This makes SWIR frequently used for diverse applications such as aligning telecommunications fibers and sources, engineering optical wave-guides, inspecting pharmaceutical quality, sorting recycled plastics, monitoring incoming sources of raw agricultural products to groom out contamination by dirt, stones or packaging debris, as well as grade sorting by moisture level or fat content, remote sensing of arid and semiarid ecosystems [4], vegetation mapping in semiarid aread [START_REF] Drake | Mapping vegetation, soils, and geology in semiarid shrublands using spectral matching and mixture modeling of swir aviris imagery[END_REF], ocean data color processing [START_REF] Wang | The nir-swir combined atmospheric correction approach for modis ocean color data processing[END_REF]. Applications that mainly benefit from reduced scattering effects of longer wavelengths, illumination from invisible sources (for example infrared active illumination or simply the night glow from the upper atmosphere) or thermal emitting objects with temperatures above 150 C • are candidates for SWIR cameras [START_REF] Marc | Overview of swir detectors, cameras, and applications[END_REF].

Unlike Mid Wave IR (MWIR) and Long Wave IR (LWIR), SWIR cameras can image through the windshield and thus be mounted in the vehicle's cabin for a "driver's eye" view of the way ahead. Moreover, SWIR imagers have the ability to see clearer at long distance through the atmosphere, making SWIR suitable for investigations in the field of automotive applications [START_REF] Valldorf | Advanced microsystems for automotive applications[END_REF].

The main issues concerning it have been to achieve low cost SWIR sensors, operating at close to room temperature and CMOS compatible.

The problem of pedestrian detection and classification has been approached from both a hardware and software perspective, using different sensors and developing many different detection techniques. A variety that however doesn't include Short Wave InfraRed (SWIR) sensors, able to provide images with a noticeably different information content from visible ones (see figure 3.1). The difference comes from the fact that visible spectrum covers the wavelength between 380 nm and 700 nm, therefore light in SWIR band ( wavelengths from 900nm to 1700nm) is not visible for the human eye. Despite of this, the light in the short wave infrared region interacts with objects in a similar way as the visible wavelengths. This is because light in the SWIR bandwidth is a reflective light (bouncing off objects in a similar way as the visible light).

SWIR Image Analysis

Most of the existing SWIR cameras are based on InGaAs 

Preliminary SWIR images evaluation for pedestrian detection

Hardware equipment

The device employed to acquire the visible and SWIR images shown in this section was developed within the European funded 2WIDE_SENSE collaborative project 5 . The camera has the possibility to acquire in the full Visible to SWIR bandwidth (see figure 3.3). In addition, the camera features a Bayer-like four filter pattern on its Focal Plane Array (FPA) 6 to enable the simultaneous and independent acquisition of four images, each one in a different spectral bandwidth (see figure 3.4a and 3.4b).

The filters Clear (C) (400-1700 nm)(acquires the full spectrum images), F1 (1300-1400nm), F2 (1000-1700nm), F4 (540-1700nm) were chosen to suit ADAS applications. Filter F4 is not used in the current work because it isolates the red bandwidths. While this might be useful for applications like traffic sign recognition or vehicle back lights, it might not be particularly interesting for the application of pedestrian detection.

2 Indium Gallium Arsenide The camera has an uncooled InGaAs sensor, having a resolution of 640 × 512 px. Table 3.1

presents an overview of the characteristics of the camera module. The main feature of the camera is its large spectrum sensitivity (400-1700nm).

Dataset overview

Corresponding to filters C, F1 and F2 we have acquired three image sequences choosing a fixed setup for the camera in order to be able to compare the results obtained using different bandwidth filters for similar scenes. The filters had to be manually changed for each acquisition therefore some differences in the scene can be expected. The number of full-frame images tested for each bandwidth are presented in table 3.2.

After the acquisition of the three sequences, we have manually annotated a total of 4348 Bounding Boxes (BB) surrounding pedestrians, from which only 4.57% are occluded. This corresponds to 1998 BB annotated in filter C bandwidth, 1200 for filter F2, 1150 for filter F1.

In figure 3.5 the height distribution of the annotated pedestrians in each sequence is presented.

We can observe that most of the BB are in medium range with 41% of the total number or near range with 48% of the total number of BB. The closest pedestrian (with an average height of 200 px ) are at a distance of about 4 m while the farthest (with a height around 50 px ) are at a distance of 30 m.
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Experiments

Features from Visible to SWIR

There may be some differences in the way that clothes and the human skin are represented, but people have a similar appearance from their edges gradients point of view. In fig. Histogram of Oriented Gradients (HOG) features [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF], usually by combining them with others as HAAR-like features [START_REF] Dollár | The fastest pedestrian detector in the west[END_REF], color self-similarity [START_REF] Walk | New features and insights for pedestrian detection[END_REF] etc. In order to test if features trained on visible images are suitable to use for the SWIR images, we have trained an SVM classifier based on HOG features, since it is one of the most popular features for human classification, using the images in the INRIA dataset 7 .

(a1) (b1) (c1) (d1) (e1) (a2) (b2) (c2) (d2) (e2) (a3) (b3) (c3) (d3) (e3)
We have tested this classifier on all the three sequences of images over the annotated BB as positive examples and randomly selected negative BB from the images. The number of negative BB is taken to be twice the number of positives. As seen in table 3.3, the precision 8 of detection is good for all the filters tested while a bigger difference is in the recall 9 values. 

Pedestrian Detection Evaluation

In the previous section we have successfully applied features learned from the visible spectrum to the SWIR in the task of pedestrian classification. In this section we proceed in the evaluation of pedestrian detectors. In order to see the performance of classifiers in the SWIR images we have chosen to test three pedestrian detectors: deformable part models [START_REF] Felzenszwalb | Cascade object detection with deformable part models[END_REF][START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF], grammar models [START_REF] Ross B Girshick | Object detection with grammar models[END_REF] and HAAR based classifier [START_REF] Lienhart | An extended set of haar-like features for rapid object detection[END_REF]. Since most of the annotated pedestrians are in medium or near range, the classifier based on deformable part models and the grammar models should be suitable for the task of detecting pedestrians [START_REF] Ross B Girshick | Object detection with grammar models[END_REF]. Both of them are based on HOG as features. The third classifier was chosen in order to evaluate the performance of another state-of-the-art feature, HAAR-like features. All the three classifiers were trained on the INRIA dataset.

A detected BB (BB dt ) is considered to be a true positive if it overlaps with a ground truth BB (BB gt ) with at least 50% (Pascal measure as used by Dollar et al. [START_REF] Dollar | Pedestrian detection: An evaluation of the state of the art[END_REF], see eq. 3.1). 

area(BB

dt ∩ BB gt ) area(BB dt ∪ BB gt ) > 0.5 (3.1) 
!!!!!! "#$%& !!!!!! '( !!!!!! ') * !!!!!! *+) !!!!!! *+( !!!!!! *+, !!!!!! *+- !!!!!! *+. !!!!!! *+/ !!!!!! *+0 !!!!!! *+1 !!!!!! 2&%33%&4## 55 !!!!!! 2&%33%&678$& 1*9: !!!!!! ;%&<65%=$> 4## 55 !!!!!! ;%&<65%=$> 1*9: !!!!!! '?#<$&= '6@$%=A&$ BCD

SWIR vs Visible: Comparison of pedestrian classification in

Visible and SWIR spectrum

In the previous section, we have tried to understand the effects that shorter wavelenghts (SWIR)

have upon the task of pedestrian detection and classification. From the filters tested the best results are obtained with F1-filter using the part-based detector followed by F2-filter with the grammar-based detector.

The previous experiments showed that SWIR spectrum might be suitable for pedestrian detection in ADAS context, however we were unable to draw a categorical conclusion whether SWIR can give better results than visible spectrum because we did not have access to visible information from the same scene.

In section 3.3 three different filters (400nm-1700nm; 1300-1700nm; 1000-1300nm) were compared in a scenario with a fixed camera. The background was similar but the annotated pedestrians had different poses. Therefore, for the next experiment we have decided to embed a SWIR camera inside a vehicle along with a camera in the Visible spectrum. This will guarantee the information captured in the two domains to be similar, even if we will not have exactly the same point of view of the scene for the two cameras. The purpose of this acquisition setup was to construct a benchmark in order to compare the pedestrian classification in the two light spectrums: Visible and SWIR.

Previous works that compare visible and infrared light spectrums are mostly focused in the long-wavelength infrared or far-infrared. To this day, from our knowledge there doesn't exist previous works that benchmarks the SWIR and Visible spectrum in a quantitative manner for the task of pedestrian detection in the ADAS context.

Characteristic Value

Pixel Resolution 320 × 256

Input Pixel Size 30 microns square

Spectral Response 950nm to 1700nm

Peak quantum efficiency approximately 80% at 1000nm

Gray Scale Resolution 16 bits

Pixel frequency 10MHz

Exposure Time From < 10µsec to > 1 second

Control

RS232 via GigE

Power requirements 110 or 230V ac 50/60Hz less than 50W

Operating Environment Operation Temperature:

0 • C to +50 • C;
Humidity: 0 -80% RH non-condensing Table 3.5: Camera specification

Hardware equipment

For the experiments presented in this section we have used a SWIR InGaAs camera with a format of 320× 256 pixels. The camera is based on a Indium Gallium Arsenide technology and provides a sensitivity in the 950 nm to 1700nm waveband. The most important camera parameters are presented in table 3.5. The quantum efficiency is usually superior of 70%, having a peak of 80% at 1000nm.

Unlike the previous experiment, the temperature of the sensor in this camera is reduced using a peltier cooler along with a secondary air cooling system. The cooling is necessary in order to reduce the build-up of thermally generated dark current. Therefore the camera is able to cope with extended exposure periods thus providing high sensitivity for faint signals.

The camera uses a digitisation of the CCD signal to 16 bits at 10M Hz pixel frequency. The maximum frame rate at a short exposure time is over 20 fps.

Dataset overview

We have collected two separate sequences of images, one used for training (Sequence Training)

and the other one for testing (Sequence Testing), using two cameras: the SWIR camera described in the previous subsection, and a color camera. These were placed side by side, at a distance of approximately 10cm, inside the car. We will further refer to this dataset as RISWIR 10The cameras were not synchronized from a hardware point of view (due to logistic problems), but rather as a post processing step performed after the image acquisition. Because there were used two separate cameras, some small differences could be observed in the scenes captured:

objects visible in one camera are not always present in the other ones view. This, along with differences in the focal length of the two cameras, have made the annotation process cumbersome:

each object (both positive and negative instances) had to be annotated manually in two separate views.
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Experiments

The reference point for any pedestrian classification experiment is the performance of different features in the Visible domain. Following this line, in figure 3.13 is ploted the classification rate versus the false positive rate for three features: HOG, LBP and LGP. The reference point of comparison is the false positive rate for a 90% classification rate.

In the Visible domain, HOG features seem to be the most robust tested feature with a false positive rate of 0.41. This is followed by the LBP with a false positive rate of 0. Moreover, in the SWIR domain the feature fusion has a highest impact than the counterpart in Visible (figure 3.16) . Once more, the combination of HOG and LGP (with a false positive rate of 0.12), gives better results than the combination of HOG and LBP (with a false positive rate of 0.16). Like in the case of Visible, the lowest error rate is obtained by combining all three features.

Other fusion strategies, like fusing for each feature the Visible and SWIR domain (figure 3.17)

or combining several features with both Visible and SWIR (figure 3.18) doesn't seem to lower the false positive rate.

Discussion

The results presented in this chapter show some promising prospects for the SWIR domain. On the collected dataset, features computed on SWIR images had a lower false positive rate than the once compute in the Visible domain. A possible explanation for the obtained results is that, on the collected dataset, the SWIR images, although captured at a much lower resolution (320×256 ), have sharper edges than the Visible ones. It should be noted that the acquisition of the dataset was done in a cloudy day (therefore, a lower level of light). This might have an impact (increased noise) over the quality of images obtained from the Visible camera.

Conclusions

In this chapter, we have studied the problem of pedestrian classification and detection in the SWIR domain. Also, we have acquired a dataset with images in both SWIR and Visible, thus allowing as to perform a comparison of the two domains. Our tests show that the SWIR domain might be promising for ADAS applications, but more tests should be performed in different meteorological conditions, in order for a decisive conclusion to be drawn. Also, further evaluations of the SWIR wavelengths should include night vision. Because the O-H molecules floating in the upper atmosphere radiates energy at various intensities throughout the night, night vision on moonless nights is possible in the long wavelengths. These emissions enable night-time vision under the passive illumination of the sky. This could make SWIR imagers very suitable for automotive applications as a valid alternative to current systems based on cameras sensible to Near InfraRed wavelengths (NIR) or thermal cameras sensible to the Far InfraRed ones (FIR). These sensors present some important disadvantages: NIR cameras need special IR illuminators integrated in the vehicle to illuminate the area in front of it, whereas FIR cameras do not have this limitation but are still inherently expensive sensors for high resolution specifications. The SWIR technology can be considered somewhat in between these two extremes, featuring good resolution images at affordable prices for current automotive applications and at the same time showing wider ranges scenarios than NIR cameras benefiting of the night sky's natural infrared glare, which shines within the SWIR range.

Until now, we have studied pedestrian classification in FIR and SWIR spectrums. While in FIR the pedestrian hypothesis search space can be reduced using for example intensity threshold (pedestrians will usually appear as hot regions in the image), in Visible and SWIR domains, this isn't the case. One technique that has the capability of generating fewer hypothesis, is the use of 3D vision. By using depth information, pixels found at a certain distance can be efficiently extracted. Moreover the extraction of objects of interest from noisy visual background can be greatly simplified. In the next chapter we are going to focus on the algorithms of depth computation through Stereo Vision.

But yield who will to their separation, My object in living is to unite 

My avocation and my vocation

As my two eyes make one in sight

Two tramps in mud time

Robert Frost

Stereo vision for road scenes

Stereo vision can represent a low cost solution for the problem of reducing the pedestrian

hypothesis search space. The use of depth information can eliminate effects of shadows, distinguishing objects at different range distance from the camera (for example a pedestrian that is partially occluded by a passing car), identifying moving and stationary objects. In this chapter we are going to study more in depth the algorithms of stereo vision. After presenting an introduction into this field of research, we are going to focus on improving different aspects of the algorithm of stereo matching, with a particular emphasis on road scene scenarios.

Stereo vision/Stereopsis (from the greek words: stereos1 meaning solid, with reference to threedimensionality, and opsis meaning view ) refers to the extraction of depth information from a scene when viewed bye a two camera system (eg. human eyes). When an object is viewed from a great distance, the optical axes of both eyes are parallel, therefore the object's projections, as seen by each eye independently, is similar. On the other hand, when the object is placed near the eyes, the optical axes will converge. When a person looks at an object, the two projections converge so that the object appears at the center of the retina in both eyes resulting in a three-dimensional image 2 .

From an evolutionary point of view, animals developed stereo vision in order to perceive relative depth rather than absolute depth [START_REF] Van Der Willigen | Disparity sensitivity in man and owl: Psychophysical evidence for equivalent perception of shape-from-stereo[END_REF]. Therefore, from a biological point of view, it seems that stereo vision is used mostly in recognition and less in controlling goal-directed movements. A task that is learned so easily by the human brain and performed unconsciously has proven to be difficult for computers. In traditional computer stereo vision, two cameras are placed horizontally at a certain distance in order to obtain different views of the scene (figure 4.1).

The distance between the cameras is called baseline and influences the minimum and maximum perceived depth. The amount to which a single pixel is displaced in the two images is called disparity and it is inversely proportional to its depth in the scene: closer objects will have greater disparity than background objects.

Computer stereo vision has various applications, from studying planets and stars3 to car navigation (Porter Car from VisLab intercotinental challenge) or robot navigation [START_REF] Kolter | Stereo vision and terrain modeling for quadruped robots[END_REF]. In this model the position of the point in the three-dimensional space can not be approximated because it could lie anywhere on the line L1 as seen in figure 4.2. If we introduce into the model a second pinhole camera (figure 4.3) we are able to infer the position in space of a certain point in the image by intersecting the two corresponding rays, L1 and L2. Unfortunately, the difficult part of this approach is to match the corresponding points in the images obtained with the two cameras.

Stereo Vision Principles

To solve the correspondence problem we need to search in a 2D image space. Unfortunately, this approach has an exponential running time. By introducing the constraint of rectification, the images are transformed by projection onto a common image plane. This will transform from a 2D search into one of finding corresponding points on the same line (epipolar constraint). This is why almost all the algorithms assume that the images have been rectified.
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Stereo vision fundamentals

Stereo matching is the process of inferring 3D scene structure from two or more images acquired from different viewpoints.

The output of the most stereo correspondence algorithms consists in a disparity map d(x, y) 4that specifies the relative displacement of matching points between images. The (x, y) pair represents the coordinate of a disparity space and they coincide with the pixel coordinates for the reference image. To find the corresponding pair of coordinates (x ′ , y ′ ) in the second image (the matching image), of the given pixel, we will use the equation 4.1:

Given that x'=x (epipolar constraint and rectified images),

y ′ = y + sign * d(x, y) (4.1)
where sign is +1 or -1, such that the disparity to be always positive.

The stereo matching algorithms could be divided into feature-based (which try to find features as edges and match them afterwards leading to a sparse disparity map) and area-based algorithms (which try to match each pixel leading to a dense disparity map). The main advantage of algorithms that produce sparse disparity map is usually their speed, while the main disadvantage is that even in the case of feature matching the error rate can be quite high and it tends to propagate in latter stages of the algorithms. In the case of algorithms that produce dense disparity maps they can have a significant running time depending on the accuracy of the disparity map obtained, but good results in real-time were achieved using either CPU processing [START_REF] Hermann | Iterative semi-global matching for robust driver assistance systems[END_REF] or the most popular GPU 5 programming [START_REF] Mei | On building an accurate stereo matching system on graphics hardware[END_REF]. Still, designing a stereo matching system with good trade off between accuracy and efficiency remains a challenging problem. In what follows we are going to present some of the main difficulties faced by the stereo matching algorithms and also present a short state of the art of the current methods and techniques.

As presented in [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF], most of the stereo matching algorithms are following four steps: Inside the aggregation area all the pixels are considered to have the same disparity. Therefore, in order to compute the cost for a pixel to have a disparity d with the help of a squared aggregation area, the sum of individual costs is computed for each pixel in the aggregation area to have the disparity d using the absolute difference of intensities. The following step is to find the disparity at which the cost will be minimised. This is just a simple example of a stereo matching algorithm.

In practice, because the problem of stereo matching is an NP complete one, even if we have found for each pixel the disparity that minimizes the cost for the pixel, this does not mean that the found disparity corresponds with the ground truth.

Stereo matching difficulties

The problem of stereo matching has an ill-posed nature [START_REF] Poggio | Computational vision and regularization theory[END_REF] therefore it is still challenging to obtain an accurate disparity map. Some of most difficult situations are given by:

• Radiometric distortions. Radiometrical differences or distortions are the situations where corresponding pixels have different intensity values. The assumption that pixels, in the two stereo images, corresponding to the same scene will have same brightness holds only for the Lambertian surfaces, i.e. surfaces that have the same brightness regardless of the viewing angle. In practice, non-Lambertian surfaces are quite frequent. Moreover, 5 GPU -Graphical Processing Unit. Currently the main framework for GPU programming is CUDA provided by NVIDIA radiometrical distortions are also caused by camera parameters (aperture, sensor) which can give different image noises or vignetting.
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• Ambiguity. In order to find two corresponding pixels, a cost has to be used that discriminates the matching pair from the other possible matches. Unfortunately, it is difficult to find such a cost in order to match untextured regions, i.e. a white wall. Moreover, repetitive patterns pose also a problem due to the fact that several points become viable candidates for matching, thus creating an ambiguity.

• Occlusions. The problem of finding a corresponding pixel becomes even more difficult when in fact that pixel does not really exist. Occlusions, i.e. situations where a pixel is visible in one of the images but not in the other, are frequent at depth discontinuities. Also, an object that is situated close to the point of view will cause occlusions for an object situated behind it.

Therefore, due to the challenges of the stereo matching given by textureless areas, occluded regions, reflective surfaces, sun glares, a stereo matching algorithm that simply uses the intensity values of the pixels like illustrated in figure 4.4 will give a result with a high error rate.

A few examples of images taken in real road conditions, that we consider to be a challenge for stereo matching algorithms, like textureless areas, repetitive patterns, sun glares, high contrast or reflective surfaces, are presented in figure 4.5.

Stereo matching Algorithms

Computer stereo vision has been a domain studied for a long time, thus a considerable amount of literature exists. Like presented in subsection 4.1.2, the stereo matching algorithm will usually follow four main steps: cost computation, cost aggregation, disparity computation through cost minimisation and disparity refinement.

If we take into account only the cost minimisation/optimisation step, a division of the stereo matching algorithms into local and global can be performed. In order to explain the difference between local and global algorithms one has to understand the smoothness assumption.

Most of the images depicting natural scenes show objects with a smooth surface. Therefore the assumption that can be made is that across an object like a lamp or person, the disparity will be the same or similar. This is defined as the smoothness assumption [START_REF] Marr | A computational theory of human stereo vision[END_REF], i.e. spatially close pixels that have similar or the same disparity. The smoothness assumption can be implicit as in the case of local stereo matching algorithms or explicit, as it is the case of global ones. The implicit smoothness that is made by the local methods assumes the fact that all the pixels in the defined zone of aggregation have constant disparity. When searching for a match of a given pixel, a window (or the chosen zone of aggregation) is shifted across the corresponding scanline from the other view.

(c) (d) (e) (f) (g) (h) (i) (j) (k) (l)
Most of the time, the final disparity is obtained by using the winner-takes-all strategy, i.e.

finding the point that will minimize the matching cost (see equation 4.2).

d p = min d min ≤d≤dmax q∈Np c(q, q -d) (4.2)
where

• d p is the final disparity assigned to pixel p

• d min and d max is the minimum possible disparity, respectively maximum.

• N p represents the neighbourhood of pixel p that is taken as aggregation area

• c(q, qd) represents a cost between the pixel q in the left image and the corresponding pixel at disparity d in the right image Because local stereo matching methods usually go hand in hand with the step of cost aggregation, we will describe the local stereo matching algorithms according to the aggregation area chosen.

Window-based aggregation

In the window-based aggregation approach the neighbourhood area is usually represented by a square window of user-defined size. The main advantage of this approach is the fast computation time.

Unfortunately, the approach has several disadvantages. The first problem with the windowbased aggregation is in the disparity discontinuities regions as shown in figure 4.6. The main assumption of the local methods is that all the pixels in the defined aggregation area have the similar disparities. This assumption will not hold in disparity discontinuities regions and has as effect foreground fattening and implicitly errors in the disparity map. Another problem is with choosing a good window size. A big window will increase the computation time, but it will capture more texture. A small window size will provide a fast running time but it is less likely to capture discriminative features. Moreover, big or small are relative concepts depending on the type of scene and image size.

Several algorithms have been proposed to resolve the problems of square window aggregation.

A solution for choosing the right window size was proposed in the form of adaptive window size [START_REF] Fusiello | Efficient stereo with multiple windowing[END_REF], [START_REF] Hirschmüller | Real-time correlation-based stereo vision with reduced border errors[END_REF], while for the systematic errors that can be found at disparity discontinuities a possible solution is offered by adaptive support [START_REF] Yoon | Locally adaptive support-weight approach for visual correspondence search[END_REF], [START_REF] Hosni | Local stereo matching using geodesic support weights[END_REF].

Adaptive Windows

Fusiello et al. [START_REF] Fusiello | Efficient stereo with multiple windowing[END_REF] proposed a method that improved the classical window-based correlation by the use of nine different windows. The pixel, for which the disparity is computed, is no longer centred in the aggregation window, but it has different positions. The purpose is to find the best window that will not violate a disparity discontinuity, and thus the idea is that the smaller the cost error is, the greater is the chance that the window found covers a region of constant depth. The disparity with the smallest cost error per window is retained.

Another approach is not to have different windows, but to divide a centred aggregation window in nine parts, like proposed by Hirschmüller et al. [START_REF] Hirschmüller | Real-time correlation-based stereo vision with reduced border errors[END_REF]. The presumption is that not all the parts in an aggregation window are equally relevant. Therefore, the matching score is computed by retaining only the best five costs of the sub-windows.

The disadvantage of these approaches remains choosing of a good window size. Moreover, not always a window that does not violate the disparity discontinuity can be found or that five sub-parts are always relevant in an aggregation window.

Adaptive Support Weight Approach

Extending the idea proposed by Hirschmüller et al. [START_REF] Hirschmüller | Real-time correlation-based stereo vision with reduced border errors[END_REF] that not all the sub-parts of an aggregation window should contribute to the final score, techniques that associate to each sub-part a weight were proposed. Therefore, if in the classical window-based aggregation all the pixels have the same influence over the matching cost (equation 4.3), in the adaptive support weight approach a weight w(p, q) is used to determine the likelihood of two pixels, p and q, to have the same disparity (equation 4.4).

C (p,d) = q∈Np c(q, q -d) (4.3) C (p,d) = q∈Np w(p, q) * c(q, q -d) (4.4)
The main advantage of this method is that the foreground fattening is removed but another problem arises: how to compute the weights?

The usual assumption is that two points are likely to have the same disparity if they have similar colors and if they are similar in spatial positions.

Yoon and Kweon [START_REF] Yoon | Locally adaptive support-weight approach for visual correspondence search[END_REF] proposed a function for the weight computation that takes advantage of both color similarity and the spatial distance between two pixels (equation 4.5). This method has as advantage the fact that it provides good results at disparity discontinuities regions, but unfortunately has a high computational cost.

w(p, q) = exp(-(

δc pq γ c + δg pq γ g )) (4.5)
where

• δc pq computes a color dissimilarity

• δg pq computes the euclidean distance

• γ c and γ q are user defined parameters Because the euclidean distance between two pixels does not enforce two pixels to actually be on the same surface, a solution was proposed in [START_REF] Hosni | Local stereo matching using geodesic support weights[END_REF] by taking into consideration geodesic distances. A geodesic distance represents the shortest path that connect two pixels, p and q in color.

w(p, q) = exp(- D(p, q) γ ) (4.6)
where • D(p, q) denotes the geodesic distances

• γ is a user defined parameter

Cross-based aggregation

The drawback of aggregation areas that take into consideration both color and euclidean or geodesic distances is the high computation time. Zhang et al. [START_REF] Zhang | Cross-based local stereo matching using orthogonal integral images[END_REF] proposed an efficient technique based on cross-zone aggregation for computing a pixel aggregation region, that takes into consideration both color and euclidean distances.

The idea behind is to construct a cross region for each pixel. For this, it is necessary to find only four pixels, corresponding to the end of the four arms: up, down, left and right (figure 4.7.a).

Then, in order to construct a region of various shapes, for each pixel that lies on the vertical arm, the horizontal arm will give the region boundaries for the specific row (figure 4.7.b, 4.7.c).

In order to choose an arm endpoint p e for a given pixel p, two rules are applied that pose limitations on color similarity and maximum arm length:

• D c (p e , p) < τ . τ is a user-defined threshold value, while the color difference is defined to be

D c (p e , p) = max i∈R,G,B |I i (p e ) -I i (p)|.
• D s (p e , p) < L. L is a user-defined threshold value and represents a maximum length in pixels. D s (p e , p) is a spatial distance given by |p e -p|.

After having the cross region for each pixel, the next step is to compute the cost in the defined region. For this, the cost aggregation is computed in two steps. 

Global stereo matching

Global methods of stereo matching define the problem as a energy minimization problem.

The most common form of the energy function is: where D is the disparity map of the image (left), E data is the member that measures the consistency of the disparity map, and E smooth is a term that computes the smoothness.
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Usually the data term measures a color dissimilarity, but other cost functions can be considered. In what concerns the smoothness term, which is computed explicitly in global methods, it is described by equation 4.9.

E smooth (D) = <p,q>∈N s(d p , d q ) (4.9)
where N represents the set of neighbouring pixels and s is a smoothness function that imposes a penalty if two disparities are different.

s(d p , d q ) =    0 if d p = d q t otherwise (4. 10 
)
where t is a user defined penalty. The form of the function s described here is the Potts function but other functions for the smoothness function could be used. 

Dynamic programming

Dynamic programming can be an efficient technique to compute the disparity map, frequently used for real-world applications with real-time constraints. The algorithm of dynamic programming on a tree (see figure 4.10) is just a generalization of dynamic programming on a linear array. First of all a root node r is chosen (can be randomly) in the tree. The optimal disparity for the root node r can be found using equation 4.11 [START_REF] Veksler | Stereo correspondence by dynamic programming on a tree[END_REF]. Equation 4.12 represents the energy of a subtree having the root at v and the parent at p(v)

E v (d p(v) ) = min dv∈D m(d v ) + s(d v , d p(v) ) + w∈Cv E w (d v ) (4.12)
where s(d v , d p(v) ) is the smoothness penalty.

The problem is how to transform the four-connected grid (4.9) to a tree structure (for example as seen in figure 4.10). For this, several strategies could be employed.

Scanline Based Tree

One of the simplest way of transforming a four-connected grid to a tree is by deleting all the vertical edges. This has the advantage of being fast, but by doing this operation, we enforce just a horizontal smoothness assumption. Because the smoothness between neighbouring scanlines is not enforced the disparity images will have streaking problems. 

Intensity Based Tree

In [START_REF] Veksler | Stereo correspondence by dynamic programming on a tree[END_REF] a more efficient way of constructing the tree is proposed. For each edge in the four-connected grid, a weight w(p, q) is computed (see equation 4.13). Based on this, a minimum spanning tree6 is build. The advantage of this method is that the horizontal streaking are visibly reduced, but some vertical streaking might appear.

w(p, q) = |I(p) -I(q)| (4. [START_REF] Bertozzi | Pedestrian detection in far infrared images based on the use of probabilistic templates[END_REF] where I(p) is the intensity of pixel p.

Simple Tree Structures

Bleyer and Gelautz [START_REF] Bleyer | Simple but effective tree structures for dynamic programming-based stereo matching[END_REF] proposed two simple tree structures as seen in figure 4.12. The two structures, horizontal and vertical tree, were designed to capture the texture otherwise missed by other techniques. The idea proposed by Bleyer and Gelautz [START_REF] Bleyer | Simple but effective tree structures for dynamic programming-based stereo matching[END_REF] is to compute the optimal disparity for each point in the image by approximating the four-connected grid in each pixel using the two tree structured described. Streaking problem, that is inherent for most of the dynamic programming algorithms, is greatly reduced. Sun et al. [START_REF] Sun | Stereo matching using belief propagation[END_REF] has showed that an approximate solution for the energy minimization problem of stereo matching can be found using belief propagation. Belief Propagation is an energy minimization iterative algorithm that functions by passing messages within the directed-connected neighbouring pixels. Therefore the data cost term from the energy function is combined with four sets of message values corresponding to each possible disparity at each pixel. At each iteration an updated message value is sent to each four neighbouring pixels. After the iterations are completed, at each pixel the disparity value is estimated.

Due to the necessity of storing the data costs and message values for each possible disparity at each pixel the storage requirements are quite high. Moreover because it is an iterative process, it can be quite slow. This is why various methods of speeding up this algorithm have been developed.

One variant is hierarchical belief propagation [START_REF] Pedro | Efficient belief propagation for early vision[END_REF]. A pyramid scheme is constructed in which the width and height are halved at each pyramid level. The message values of the lower levels are initialized by the the higher pyramid levels. Other speed ups of the algorithm are proposed by implementation on GPU [START_REF] Brunton | Belief propagation on the gpu for stereo vision[END_REF], [START_REF] Grauer-Gray | Gpu implementation of belief propagation using cuda for cloud tracking and reconstruction[END_REF], [START_REF] Yang | Real-time global stereo matching using hierarchical belief propagation[END_REF]. Further speed up and reduction in the search space was proposed by Grauer-Gray and Kambhamettu [START_REF] Grauer | Hierarchical belief propagation to reduce search space using cuda for stereo and motion estimation[END_REF].

Graph-Cuts

As described by Kolmogorov and Zabih [START_REF] Kolmogorov | Computing visual correspondence with occlusions using graph cuts[END_REF], a graph cut is a partition of a graph with two distinguished terminals called source (s) and sink (t) into two sets V s and V t , such that s ∈ V s and t ∈ V t . The cost of the cut is represented by the sum of the edges' weights between the two partitions. Finding the minimum cut (the cut of minimum costs among all possible cuts), and implicitly the minimum cost, can be resolved by computing a maximum flow between terminals.

An example of a minimum cut in a graph is shown in figure 4. [START_REF] Bertozzi | Pedestrian detection in far infrared images based on the use of probabilistic templates[END_REF]. In practice the global energy minimisation technique using graph cuts has been shown to be effective with the condition of having an appropriate cost function. Graph cuts can be applied for the algorithm of stereo matching by modelling the pixels in the image as nodes in the graph. In figure 4.14a is shown an example of such a graph: all the pixels in the image are represented as nodes and all the nodes on a given level belong to the same disparity.

The edges starting directly from the source or going directly into sink are given an infinite cost.

The vertical edges that can be viewed in figure 4.14a have as weight the cost of matching a pixel at a certain disparity. In this implementation graph-cuts will output the same result as a local matching method with winner-takes-all strategy. This is because the smoothness assumption was not explicitly modelled. In figure 4.14b a smoothness assumption between horizontal pixels is modelled, thus each horizontal edge will be given a weight that represents the smoothness penalty.

The simplest way to define the smoothness penalty is to assign a user-defined weight w p when two neighboured pixels have different disparities, and 0 otherwise.

In practice, for the problem of stereo vision, the constructed graph is a three dimensional 

Stereo Vision Datasets

There exist several challenging databases for testing the stereo matching algorithms (4.1), from simulated road scenes like Van Synthetic stereo [START_REF] Van Der Mark | Real-time dense stereo for intelligent vehicles[END_REF] and EISATS [START_REF] Morales | Ground truth evaluation of stereo algorithms for real world applications[END_REF], to real road scenes with some degree of ground truth like KITTI [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF], Make3D Stereo [START_REF] Saxena | Depth estimation using monocular and stereo cues[END_REF] or Ladicky [START_REF] Ladickỳ | Joint optimization for object class segmentation and dense stereo reconstruction[END_REF]. Moreover one of the most well known benchmark for the stereo matching algorithms is the Middlebury [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] dataset.

The HCI/Bosch Challenge [START_REF] Meister | Outdoor stereo camera system for the generation of real-world benchmark data sets[END_REF] contains some difficult situations for all the stereo matching algorithms like: reflections, flying snow, rain blur, rain flares or sun flares, thus giving an insight of where the algorithms might fail. Unfortunately, it does not come with a ground truth thus making difficult the evaluation of stereo matching algorithms. Nevertheless, it is an interesting dataset from the perspective of the challenging situations presented. The dataset contains 11 sequences, each with a particular challenging situation, with a total of 451 images. [START_REF] Van Der Mark | Real-time dense stereo for intelligent vehicles[END_REF] and EISATS [START_REF] Morales | Ground truth evaluation of stereo algorithms for real world applications[END_REF] have the advantage of having ground truth for all the pixels, but they are composed of synthetic images. Other datasets containing real road images are Make3D Stereo [START_REF] Saxena | Depth estimation using monocular and stereo cues[END_REF] and Ladicky [START_REF] Ladickỳ | Joint optimization for object class segmentation and dense stereo reconstruction[END_REF] but provide ground truth for a limited number of pixels.

Dataset

One of the most popular datasets for comparison of stereo matching algorithms is the Middlebury dataset [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF]. Although the dataset presents a lot of challenges from the perspective of different situations captured, the images are taken inside a laboratory in controlled conditions.

In our experiments we have used this dataset for the validation of the stereo matching algorithms.

KITTI [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF] dataset provides real road images with ground truth for around 50% of the pixels, thus making a good dataset for evaluating different stereo matching algorithms. The KITTI dataset contains 389 pairs of stereo images divided into 194 images for training and 195 for testing. The authors provide the ground truth only for the training sequences, while for the testing sequences an evaluation server should be used in order to have the results. The ground truth disparity map was obtained using a Velodyne laser scanner therefore for only about 50% of the pixels in the image the ground truth is available. The main challenges in the KITTI dataset are the radiometric distortions caused by sun flares, reflections and "burned" images (caused by strong differences in intensity between light and shadow).

For our experiments we have chosen to work with the last two presented datasets: Middlebury, due to the considerable number of stereo matching algorithms that have been compared on these images, and KITTI, in view of our application context.

Cost functions

The matching cost function measures how "good" a correspondence is. It is important to make a difference between cost function, cost aggregation and the minimisation methods that use these costs. A typical classification of the matching costs is: parametric, non-parametric, and mutual information based costs [START_REF] Hirschmuller | Evaluation of stereo matching costs on images with radiometric differences[END_REF].

Related work

To better understand these categories, they have to be explained in the context of radiometric distortions. Radiometrical similar pixels refer to those pixels that lie in different images, but in fact correspond to the same 3D scene point. Thus they should have similar or in a more ideal case the same intensity values in both images [START_REF] Hirschmuller | Evaluation of cost functions for stereo matching[END_REF]. Radiometrical differences or distortions are therefore when corresponding pixels have in fact different intensities values. These are caused by: differences of camera parameters (aperture, sensor) that can induce different image noises and vignetting; surface properties like non-Lambertian surfaces 7 ; difference in time of acquisition of the images (like is the case of some satellite imaging).

The parametric costs incorporate the magnitude of pixel intensity. Although usually simple to compute, the main disadvantage of the parametric costs is that they are often not robust to radiometric changes. The non-parametric costs incorporate just a local ordering of intensities, thus it is said that the latter are more reliable to radiometric distortions. The mutual information (MI) costs are computed on an initial disparity map. MI handles radiometric changes well [START_REF] Fookes | Multi-spectral stereo image matching using mutual information[END_REF] but it can only handle radiometric distortions that occur globally thus it has problems to local radiometric changes (which in practice are more common).

Choosing the right cost function is paramount for having a good disparity map. There exists several studies where comparison of cost functions is performed, the most extended ones being made in Hirschmuller and Scharstein [START_REF] Hirschmuller | Evaluation of cost functions for stereo matching[END_REF], Hirschmuller and Scharstein [START_REF] Hirschmuller | Evaluation of stereo matching costs on images with radiometric differences[END_REF]. In comparison with the study made in 2007, where six cost functions where tested, Hirschmuller and Scharstein [START_REF] Hirschmuller | Evaluation of stereo matching costs on images with radiometric differences[END_REF] compared fifteen different stereo matching costs in relation with images affected by radiometric differences. These costs are compared using three different stereo matching algorithms: one 7 Lambertian surfaces are the surfaces that reflect the light the same regardless of the observer's angle of view based on global energy optimisation (Graph Cuts), one using semi-global matching [START_REF] Hirschmuller | Stereo processing by semiglobal matching and mutual information[END_REF] and a local window-based algorithm. They conclude that the cost based on CT gives the best overall performance.

In comparison with Hirschmuller and Scharstein [START_REF] Hirschmuller | Evaluation of stereo matching costs on images with radiometric differences[END_REF] that use both simulated and real radiometric changes in a laboratory environment (Middlebury dataset [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] ), we have chosen for the experiments to be performed on real road images from the KITTI dataset [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF] which presents significant radiometric differences, as well as the well known Middlebury dataset. Besides the cost functions that provided the best results in Hirschmuller and Scharstein [START_REF] Hirschmuller | Evaluation of stereo matching costs on images with radiometric differences[END_REF], we also test some recent functions based on CT that gave good results on the Middlebury dataset 

State of the art of matching costs

In the following we present briefly existing cost functions. We divide them in parametric, nonparametric and mixed parametric costs. We call mixed parametric costs, those costs that try to enhance the discriminative power of a non-parameteric cost by incorporating extra information given usually by a parametric cost.

Parametric costs.

One of the most popular cost matching function is the squared intensity differences (SD) ( see equation 4.14) like used by Kolmogorov and Zabih [START_REF] Kolmogorov | Computing visual correspondence with occlusions using graph cuts[END_REF] or absolute intensity differences (AD)

(see equation 4.15) which is typically combined with other information like used in Mei et al. [START_REF] Mei | On building an accurate stereo matching system on graphics hardware[END_REF],

Klaus et al. [START_REF] Klaus | Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[END_REF]. SD and AD costs make the assumption of constant color therefore are sensitive to radiometric distortions.

Let p be a pixel in the left image with coordinates (x, y) and d the disparity value for which we want to compute the cost of p. Also I l (x, y) i is the intensity value of pixel p in the left image on color channel i, while I r (x, yd) i is the intensity value of pixel given by coordinates (x, yd)

in the right image. We consider n the number of color channels used ( n = 1 for gray scale images and n = 3 for color images).

C SD (x, y, d) = 1 n i=1,n (I l (x, y) i -I r (x, y -d) i ) 2 ; (4.14) C AD (x, y, d) = 1 n i=1,n |I l (x, y) i -I r (x, y -d) i | (4.15)
If we consider N (x, y) to be the neighbourhood of the pixel with coordinates (x, y), than the cost AD on this neighbourhood is defined like in equation 4. [START_REF] Besbes | Evidential combination of svm road obstacle classifiers in visible and far infrared images[END_REF]. For the C SAD the line between being a cost function or a cost aggregation technique is very fine.

C SAD (x, y, d) = (a,b)∈N (x,y) C AD (a, b, d) (4.16)
Filter based parametric costs include algorithms like Laplacian of Gaussian [START_REF] Konolige | Small vision systems: Hardware and implementation[END_REF], Mean [START_REF] Emmanuel | SPOT stereo matching for Digital Terrain Model generation[END_REF],

Bilateral background subtraction [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF] which apply a filter on the input images, after which the matching cost is computed with absolute difference. Other parametric costs that are computed inside a support window include zero-mean sum of absolute differences(ZSAD), normalized cross-correlation (NCC) and zero-mean sum of normalized cross-correlation (ZNCC). The ZSAD subtracts the mean intensity of a support window from each intensity inside that window before computing the sum of absolute differences. NCC is a parameteric cost that can compensate for gain changes, while ZNCC is a variant that compensates both gain and offset within the correlation window [START_REF] Hirschmuller | Evaluation of stereo matching costs on images with radiometric differences[END_REF]. Because ZN CC is a correlation function with values in [0, 1], in order to obtain the cost we will subtract it from one (see equation 4.17).

C ZN CC (x, y, d) = 1 -ZN CC(x, y, d) (4.17)

ZN CC(x, y, d) = (a,b)∈N (x,y) ZV (I l , a, b)ZV (I r , a, b -d) (a,b)∈N (x,y) (ZV (I l , a, b)) 2 (a,b)∈N (x,y) (ZV (I r , a, b -d)) 2 (4.18) 
ZV (I, x, y) = I(x, y) -

I N (x,y) (x, y), (4.19) 
where I N (x,y) is the mean value computed in the neighbourhood N (x, y).

In practice the parametric costs have proven to be less robust than the non-parametric ones [START_REF] Hirschmuller | Evaluation of stereo matching costs on images with radiometric differences[END_REF], [START_REF] Banks | Quantitative evaluation of matching methods and validity measures for stereo vision[END_REF], with the exception of ZNCC [START_REF] Fookes | Multi-spectral stereo image matching using mutual information[END_REF], [START_REF] Szeliski | A comparative study of energy minimization methods for markov random fields with smoothness-based priors[END_REF].

Non-parametric costs.

The most popular non-parametric costs include Rank, Census [START_REF] Zabih | Non-parametric local transforms for computing visual correspondence[END_REF], and Ordinal [START_REF] Dinkar | Ordinal measures for image correspondence[END_REF], or pixelwise costs represented by hierarchical mutual information which were successfully applied by Sarkar and Bansal [START_REF] Sarkar | A wavelet-based multiresolution approach to solve the stereo correspondence problem using mutual information[END_REF]. The costs based on gradient or non-parametric measures are more robust to changes in camera gain and bias or non-lambertian surfaces while being less discriminative [START_REF] Klaus | Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[END_REF].

C CT . As defined by Zabih and Woodfill [START_REF] Zabih | Non-parametric local transforms for computing visual correspondence[END_REF] to compute the Census Transform (CT ) of a pixel p a window called the support neighbourhood (n × m), must be centered on each pixel.

Based on this, a bit-string is computed by converting the color values inside the window to value one, if the corresponding pixel has the value of the color greater than the center pixel's color value or zero otherwise. The local intensity relation is given by the equation 4.22, where p 1 and p 2 are pixels in the image. The census transform is given by equation 4.21, where ⊗ denotes a bitwise concatenation and n × m is the census window size. The CT cost is given by the Hamming distance (D H ) between the two bit strings (equation 4.20).

C CT (x, y, d) = D H (CT (x, y), CT (x, y -d)), (4.20) 
where CT is the bit string build like in eq. 4.21.

CT (u, v) = ⊗ i=1,n j=1,m (ξ(I(u, v), I(u + i, v + j))), (4.21) 
where n × m is the census support window, ⊗ denotes a bitwise concatenation, and ξ function is defined in eq. 4.22.

ξ(p 1 , p 2 ) =    1 p 1 ≤ p 2 0 p 1 > p 2 (4.22) 
CT can be computed on a dense ( eq. 4.21) or sparse window (eq.4.23). In a sparse window [START_REF] Humenberger | A fast stereo matching algorithm suitable for embedded real-time systems[END_REF], it is used only every second pixel and every second row as shown in figure 4.16. The filled blue pixels are the pixels used to compute CT.

CT Sparse (u, v) = ⊗ i=1:step:n,j=1:step:m (ξ(I(u, v), I(u + i, v + j))) (4.23) 
where step is an empirical chosen value, usually two.

Mixed parametric costs.

Non-parametric costs are robust to radiometric distortions but they are less discriminative. That is why in recent works several combinations between parameteric and non-parameteric costs are proposed. In what follows we will present these functions. If the authors did not name the proposed cost functions we are going to use the first name on the article to name the cost.

C klaus . One of the top three algorithms on the Middlebury dataset [START_REF] Klaus | Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[END_REF] proposes the function C klaus (equation 4.24) that is a combination between C SAD (equation 4.16) with a gradient based 

C klaus (x, y, d) = (1 -w) * C SAD (x, y, d) + w * C GRAD (x, y, d) (4.24) 
where

C GRAD (x, y, d) = (a,b)∈N (x,y) |∆ x I l (a, b) -∆ x I r (a, b -d)|+ (a,b)∈N (x,y) |∆ y I l (a, b) -∆ y I r (a, b -d)|, (4.25) 
where ∆ x and ∆ y are the horizontal and vertical gradients of the image.

Combinations based on CT became popular due to the good results obtained on the Middlebury dataset. For example one of the top algorithms on the Middlebury dataset [START_REF] Mei | On building an accurate stereo matching system on graphics hardware[END_REF], uses a combination between the C CT and C AD (eq. 4.26 ). The new cost, C ADcensus , reduces the error in non-occluded areas, for the Middlebury dataset, in average with 1.3%.

C ADcensus (x, y, d) = ρ(C CT (x, y, d), λ census )+ ρ(C AD (x, y, d), λ AD ) (4.26) 
where λ census and λ AD control the influence of each cost, and ρ is defined in equation 4.27.

ρ(c, λ) = 1 -exp(- c λ ) (4.27) 
Another combination of a C CT and C AD (eq. 4.28), where both are computed on the gradient images, is proposed by Stentoumis et al. [START_REF] Stentoumis | A local adaptive approach for dense stereo matching in architectural scene reconstruction[END_REF]. It was shown that this new function, C cstent ( equation 4.28) can give up to 2.5% less erroneous pixels on Middlebury dataset.

C cstent (x, y, d) = ρ(C ∆census (x, y, d), λ census )+ ρ(C AD (x, y, d), λ AD )+ ρ(C ∆AD (x, y, d), λ ∆AD ), (4.28) 
where ∆census and ∆AD are the costs, CT and AD respectively, computed on gradient images.

Motivation: Radiometric distortions

For a stereo matching system to be functional in different conditions, it has to be robust to radiometrical differences. As previously stated, radiometrical similar pixels refers to those pixels that correspond to the same scene point and have similar or in an ideal case the same values in different images [START_REF] Hirschmuller | Evaluation of cost functions for stereo matching[END_REF]. Radiometrical differences or distortions are therefore the situations where corresponding pixels have different values. In order to analyse the amount of radiometric distortions in different images, we have compared the dataset Middlebury and KITTI. In figure 4.17 is presented the mean percentage of radiometric distortions for the two datasets, over the absolute difference between corresponding pixels. As stated by Hirschmuller and Scharstein [START_REF] Hirschmuller | Evaluation of cost functions for stereo matching[END_REF], the Middlebury dataset is taken inside a laboratory in controlled light conditions. Even so, for example at a color absolute difference of five, on the Middlebury dataset the average percentage of radiometric distortions is around 28%. On the other hand on KITTI dataset, where the images were collected outside, the average percentage of radiometric distortions at the same difference of color is larger than 45%. Therefore it is important to find a cost function that remains robust to radiometrical distortions.
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Contributions

We have proposed two cost functions, one based on a modified CT that has the advantage of a small computational time while in the same time reducing the error, and the other one based on a combination between a CT-based cost and a mean sum of differences of intensities that will provide low errors in radiometrical affected regions.

Cross Comparison Census

We propose a new technique to compute the Census Transform bit string, that we named Cross Comparison Census (CCC). In comparison with CT , the bit string for CCC is obtained by comparing each pixel in the considered window with those in the immediate vicinity in a clockwise direction. For comparing the two bit-strings the Hamming distance is used like in the case of CT . N (i, j, step) = {(i, j + step); (i + step, j + step);

(i + step, j); (i + step, j -step)} (4.29)
where (j + step) < m and (i + step) < n and (jstep) >= 0 I CCCensus (u, v) = ⊗ i=0:step:n,j=0:step:m (ξ(I(i, j), N (i, j, step)) (4.30) that is captured in the CCC bit string will result in the possibility of using a smaller window size and fewer elements in the bit string while keeping all the robust results of the CT or even improving them. CCC can be computed in a very efficient way. First each pixel is compared with those in the immediate neighbourhood forming a mini bit string which is stored in a matrix. Secondly the final bit string of a given pixel is formed by the simple concatenation of the mini bit strings corresponding to the relevant pixels in the census window. These operations remove the redundant comparisons performed in the CT, making CCC very fast to compute. In the same time this method is friendly from a hardware perspective because it allows a greater degree of parallelism than CT. In figure 4.19 it is presented a comparison between computing time of CT and CCC in a single threaded configuration. It can be observed that when increasing the image size, defined as the total number of pixels in an image, the computation time for CT has a fast growing rate while for CCC the computation time increases with a lower rate. The same situation can be observed in the case of increasing the size of the neighbourhood window. In figure 4.20 we present comparison between computation time for CT and CCC when increasing the window size while keeping constant the image size.
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DiffCensus

We propose a new function that combines the CT [START_REF] Zabih | Non-parametric local transforms for computing visual correspondence[END_REF], or our proposed variant CCC, with the mean sum of relative differences of intensities inside a window (eq. 4.31). We consider CCC separately from CT due to its fast computation time. In comparison with functions like
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)* ))) !"! #"# $"$ %"% &&"&& &!"&! &#"&# &$"&$ # &' &# (' (# *0;+ 7-+<2,1-:
C DIF F is defined in eq. 4.32.

C DIF F (x, y, d) = |DIF F l (x, y) -DIF F r (x, y -d)| (4.32)
where n × m is the same support window that is used to compute the CT, and DIF F l is the DIF F function applied to the left image, while DIF F r is the DIF F function applied to the right image.

DIF F (u, v) = DIF F (u, v) CensusSize (4.33)
where CensusSize is the size of the bit string given by the support window n × m and step (eq.

4.29).

DIF F (u, v) = i=1:step:n j=1:step:m

(|I(u, v) -I(u + i, v + j)|), (4.34) 

Algorithm

In order to test the proposed cost functions we use two different stereo matching algorithms: one based on graph cuts, and the other based on local cross aggregation.

Graph cuts

As described by Kolmogorov and Zabih [START_REF] Kolmogorov | Computing visual correspondence with occlusions using graph cuts[END_REF], a graph cut is a partition of a graph with two distinguished terminals called source (s) and sink (t) into two sets V s and V t , such that s ∈ V s and t ∈ V t . The cost of the cut is represented by the sum of the edges' weights between the two partitions. Finding the minimum cut, and implicitly the minimum cost, can be resolved by computing a maximum flow between terminals. In practice the global energy minimisation technique using graph cuts has been shown to be effective with the condition of having an appropriate cost function.

For the cost comparison, the energy function is used as described by Kolmogorov and

Zabih [START_REF] Kolmogorov | Computing visual correspondence with occlusions using graph cuts[END_REF]. The purpose is to find a disparity function f that minimizes a global energy E(f ) as seen in equation 4. [START_REF] Dollár | The fastest pedestrian detector in the west[END_REF]. The occlusion term E occ imposes a penalty for occluded pixels, while E smooth is the smoothness term which forces neighbouring pixels in the same image to have similar disparities. The data term E data (f ) measures the cost of matching the function f .

E(f ) = E data (f ) + E occ (f ) + E smooth (f ) (4.35) 
The data term used by Kolmogorov and Zabih [START_REF] Kolmogorov | Computing visual correspondence with occlusions using graph cuts[END_REF] is defined as the cost of squared intensity differences (C SD ). For the following experiments, we will only modify the data term, while keeping E smooth and E occ as defined by Kolmogorov and Zabih [START_REF] Kolmogorov | Computing visual correspondence with occlusions using graph cuts[END_REF].

Cross-Zones Aggregation & Histogram Voting

For the local technique of energy minimisation we chose to test a cross-based aggregation as described by Zhang et al. [START_REF] Zhang | Cross-based local stereo matching using orthogonal integral images[END_REF]. The algorithm consists in finding for each pixel a cross support zone. In the first step, a cross is constructed for each pixel. Given a pixel p, its directional arms (left, right, up or down) are found by applying the following rules: • D s (p, p a ) < L, where D s represents the euclidean distance between the pixels p and p a and L is the maximum length threshold.

• D c (p,
Each pixel in the image has a cost given by the considered cost functions. The cost values in the support region are summed up efficiently using integral images. To select the disparity, the minimum cost value is selected using a Winner-Take-All strategy. Then a local high-confidence voting scheme for each pixel is used as described by Lu et al. [START_REF] Lu | Anisotropic local high-confidence voting for accurate stereo correspondence[END_REF]. In what follows, we use the KITTI stereo images for all the numerical experiments. KITTI dataset is divided into 194 images in the training set for which the ground truth images is provided, and 195 images in the testing set for which an evaluation server should be used in order to obtain the results. The following experiments are performed only on the 194 images in the training set 9

Experiments

9 At the moment of performing the tests, only one submission in 72 hours was allowed on the evaluation server. Thus having an important number of situations to be tested, we have opted to use just the training set. All the cost functions in this section are evaluated by the average percentage of erroneous pixels in all zones, occlusions included, and computed at 3 pixels error threshold.
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Discriminative power of cost functions

In order to quantify how pertinent the information given by each cost function is, we have compared all the cost functions in relation to all the possible disparities. This is the equivalent of computing the error rate of stereo matching using only these functions without any cost aggregation technique. Because some of the cost functions are defined in a neighbourhood, thus having an advantage in report with the others, we also compute the error given by each function when using a fixed aggregation window. The results for an error threshold of three pixels are presented in table 4.2.

Table 4.2: Error percentage of stereo matching with no aggregation (NoAggr) and window aggregation (WAggr). For the results obtained with an aggregation window we have used one of 9 × 7 pixels. With no aggregation and winner takes it all strategy, the most discriminative function is the cost given by the ZN CC with an error of 39.97%, followed by C klaus with 57.52%. From the census based functions, C Dif f CCC provides the best results with an error of 58.96% followed by C CCC with 62.3%. The combination of AD with either CT or CCC, overall increases the error rate at 71.9% and 71.6% respectively. Therefore from a discriminative point of view, C ZN CC , C klaus and C CCC are the most competitive.

Function C AD C SD C CT C ADCT C CCC C ADCCC Ccstent C klaus C ZN CC C Dif f CCC C Dif f CT
For the results obtained using a window aggregation and winner takes it all strategy, the proposed function based on mean sum of relative differences provides the best results: C Dif f CT with 21.60%, followed by C Dif f CCC with 22.36%. These are followed by the functions based on ADCensus: C ADCT and C ADCCC both with 23.49%.

Results with graph cuts stereo matching

The graph cuts minimisation algorithm was used as described by Kolmogorov and Zabih [START_REF] Kolmogorov | Computing visual correspondence with occlusions using graph cuts[END_REF] and section 4.3.5.1. Graph cuts minimisation is an iterative process, with the error decreasing when increasing the number of iterations. One iteration takes around six minutes 10 to complete for an image of size 1241 × 376 pixels. We have started the experiments using six iterations but we did not observed any significant improvement over using just one iteration, while the running time was considerably increased. Therefore all the experiments presented in this section were carried out with one iteration.

In order to show the importance of the data term for the energy function, we have tested the nine cost functions presented in section 4. 
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Discussion

Even though the tested cost functions show different discriminative power, as seen in subsection While for the first image, results in columns one and two, a satisfactory disparity map is obtained with both stereo matching algorithms, the second image presented is more challenging due to large regions without texture. For a better visualisation of the disparity map results, we refer the reader to appendix C.

For the graph cuts algorithm the proposed C Dif f CCC function provided the best results with very smooth disparity results in the road region but still erroneousness pixels could be found in textureless areas.

The local stereo matching algorithm gives comparable results with those of graph cuts at a much lower time cost. In this situation the best results are given by our proposed function C Dif f CT . The disparity map is not as smooth as in the case of the graph cuts algorithm because we did not used any method of post-filtering. The main problems of the local minimisation technique based on cross-aggregation lies in big regions of similar color. The assumption when using an aggregation area is that in the considered region all the pixels have the same disparity.

In practice large areas of same or similar color will not have the same disparity (for example road region and slanted walls).

Concerning the sensitivity of the cost functions in the presence of radiometric distortions, distortions quantified as absolute color difference of corresponding pixels, a comparison of different cost functions is performed (see figure 4.24 ). For this, at each level of radiometric distortion, for all the 194 images from the training set, the error of the pixels belonging to that level was In what concerns the function behaviour in texture less areas, due to the nature of the function, it will not improve the results in these regions no more than the other cost function will. For instance, in a white wall region all the cost functions will not, in general, be able to provide discriminative values. Therefore it seems that, in texture less areas, the problem does not lay in the cost function, rather than in the aggregation area or the energy minimisation algorithm used. =7>?@A18B?C -?38@B8?@23 D0E3@6481 .@6@B -?FF1B12C1G HBB@B =781 D6@IJ3C761G In the process of stereo matching using grayscale images, ambiguity could arise in situation where objects of different colors, for example red and green, produce pixels of similar intensities. Thus intuitively, color should contribute for stereo matching due to the fact that it provides additional information in comparison with grayscale.

Related work

There exist a few surveys that study the impact of color information in the stereo matching algorithms. Some studies show that the use of color leads a major improvement by reducing the error rate like shown in Chambon and Crouzil [START_REF] Chambon | Colour correlation-based matching[END_REF], Okutomi et al. [START_REF] Okutomi | Color stereo matching and its application to 3-d measurement of optic nerve head[END_REF], Mühlmann et al. [START_REF] Mühlmann | Calculating dense disparity maps from color stereo images, an efficient implementation[END_REF] or Bleyer et al. [START_REF] Bleyer | Evaluation of different methods for using colour information in global stereo matching approaches[END_REF], others by contrary Hirschmuller and Scharstein [START_REF] Hirschmuller | Evaluation of stereo matching costs on images with radiometric differences[END_REF] report that color ). On the following lines are the output disparity maps corresponding to different functions: on the first ( a2-a10) and third column ( b2-b10) the output obtained with the cross zone aggregation (CZA) algorithm, while on columns two (b2-b10) and fourth (d2-d10) the output of the graph cuts algorithm. Images a2-a10 and b2-b10 correspond to the disparity map computed for image a1 while the images c2-c10 and d2-d10 correspond to the disparity map computed for image c1.

does not help, especially when using in combination with radiometric insensitive cost functions.

Bleyer and Chambon [START_REF] Bleyer | Does Color Really Help in Dense Stereo Matching[END_REF] reports that color has consistently led to performance degradation, particularly with radiometric insensitive cost functions. Also in [START_REF] Bleyer | Does Color Really Help in Dense Stereo Matching[END_REF] there is shown the particular inefficiency of color stereo matching when the output images from the stereo system present some color discrepancies.

In the field of autonomous vehicles some stereo matching algorithms using color exist. For instance Cabani et al. [START_REF] Cabani | A Fast and Self-adaptive Color Stereo Vision Matching; a first step for Road Obstacle Detection[END_REF] explored color gradient to detect edges in the stereo image pair. The stereo matching is carried out by computing the photometric distance between the feature point with its neighbour. This approach remains, however, sensitive to any lighting condition variations due to a fixed camera gain. In comparison with Cabani et al. [START_REF] Cabani | A Fast and Self-adaptive Color Stereo Vision Matching; a first step for Road Obstacle Detection[END_REF] and Bleyer and Chambon [START_REF] Bleyer | Does Color Really Help in Dense Stereo Matching[END_REF] , we will combine different color spaces with several stereo matching cost functions using different stereo matching algorithms.

A color space is an mathematical model that describes different ways in which the colors can be represented. When acquiring color images, because of the natural outdoors lighting conditions, the same object may have important discrepancies of color intensities in the stereo image pair.

This makes hard the stereo matching task and hence the disparity computation. In order to choose an appropriate color space, we will evaluate the error given by the disparity map obtained using eight different color spaces: RGB, XYZ, LUV, LAB, HLS, YCrCb, HSV and the gray scale space, as presented in table 4.4.

Experiments

In order to compare different color spaces, we have chosen as database the Middleburry dataset. It is the only dataset that provides color stereo images along with ground truth values. Performance of different color spaces can be influenced by the cost function used and also the stereo matching algorithm. For example the local stereo matching based on cross zones aggregation uses color thresholds to construct the aggregation region.

For tests we have compared nine different algorithms. In table 4 
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Discussion

As shown in table 4.3, the color space that consistently provided slightly better results is the XYZ. Between RGB and GRAY the difference is quite negligible, with the exception of the SD cost for which the improvement was of 4.3% and AD cost for which the the improvement was of 5.2%. Therefore we back up the claims made by Bleyer and Chambon [START_REF] Bleyer | Does Color Really Help in Dense Stereo Matching[END_REF]: in the context of radiometric insensitive the cost functions the color does not bring an improvement. Nevertheless it doesn't degenerate the performance. Moreover, the costs that incorporate some kind of color information like ADCCC, ADCT, DIFFCT, DIFFCCC, provided better results that the classical census transform (CT).

We have only tested the performance of different color spaces for stereo matching on the Middlebury dataset, where images were acquired with the same type of cameras. Further tests should include color images taken in different conditions with a variety of cameras in order to insure a diversity that will make the findings statistical relevant.

Conclusion

In this chapter we have proposed several cost functions robust to radiometric distortions. These were compared against other state of the art function using two different stereo matching algorithms: a global method based on graph cuts and a local method based on cross zone aggregation with high confidence voting.

In the field of pedestrian classification and detection, the main focus was on using the intensity/color information from the Visible domain. This is proven by the large number of existing datasets and features developed specifically for the visible domain. Nevertheless, pedestrian classification in particular, and object classification in general, is still a challenging problem for computers, whereas for the human perception is a rather easy task. Humans do not use just the intensity information from the scene, rather employ also cues like depth and motion.

In this chapter we study the performance of different features computed on modalities like depth and motion, in comparison with the intensity information from Visible domain, along with different fusion strategies. Moreover, we extend the analysis to the intensity information from Far Infrared domain.

these features.

FIR domain.

In addition of multi-modality fusion in the Visible domain, several studies use Stereovision in the Far-Infrared domain. For example, Krotosky and Trivedi [START_REF] Stephen | A comparison of color and infrared stereo approaches to pedestrian detection[END_REF] use a four-camera system (two visible cameras and two infrared) and compute two dense disparity maps: one in visible and one in infrared. They use the information from the disparity map through the computation of v-disparity [START_REF] Labayrade | Real time obstacle detection in stereovision on non flat road geometry through" v-disparity" representation[END_REF] in order to detect obstacles and generate pedestrian hypothesis. This work is extended in [START_REF] Stephen | On color-, infrared-, and multimodal-stereo approaches to pedestrian detection[END_REF], where HOG-like features are computed on Visible, Infrared and Disparity map and then fused. Unfortunately, the tests performed by Krotosky and Trivedi [START_REF] Stephen | A comparison of color and infrared stereo approaches to pedestrian detection[END_REF], [START_REF] Stephen | On color-, infrared-, and multimodal-stereo approaches to pedestrian detection[END_REF] were on a relative small dataset where no other obstacles beside the pedestrians were present.

Bertozzi et al. [START_REF] Bertozzi | Stereo vision-based approaches for pedestrian detection[END_REF], [START_REF] Bertozzi | Infrared stereo vision-based pedestrian detection[END_REF] proposed a system for pedestrian detection in stereo infrared images based on warm area detection, edge based detection and v-disparity computation. Stereo information is used just to refine the hypothesis generated and compute the distance and size of detected objects, but it is not used in the classification process.

Overview and contributions

In comparison with Enzweiler and Gavrila [START_REF] Enzweiler | A multilevel mixture-of-experts framework for pedestrian classification[END_REF] we extend the analysis of the impact of different modalities (Intensity, Depth and Motion) in combination with different features, along with several fusion strategies: between same features but different modalities, different features same modality, different features different modalities, of "best features" fusion for each modality. All these results are presented in section 5.5.

Moreover, in section 5.7, we extend the same feature analysis, but this time comparing the modalities: Far-Infrared, Intensity, Depth and Motion. In addition, we present some insights into the impact of different stereo vision algorithms for the classification task.

Datasets

There exists several datasets that are publicly available and commonly used for pedestrian classification and detection in the visible domain. Table 5.1 presents an overview of existing datasets in the Visible Domain.

Visible Domain.

INRIA [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] is a well established dataset, but in comparison with newer datasets, it has a relative small number of people. NICTA dataset [START_REF] Overett | A new pedestrian dataset for supervised learning[END_REF] consists mostly of images taken with a digital camera having as training and testing set cropped BB containing people.
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In comparison with these two datasets, Caltech [START_REF] Dollar | Pedestrian detection: An evaluation of the state of the art[END_REF], Daimler Monocular [START_REF] Enzweiler | Monocular pedestrian detection: Survey and experiments[END_REF], Daimler Multi-Cue [START_REF] Enzweiler | Multi-cue pedestrian classification with partial occlusion handling[END_REF] , ETH [START_REF] Ess | Depth and appearance for mobile scene analysis[END_REF] and KITTI [START_REF] Enzweiler | Monocular pedestrian detection: Survey and experiments[END_REF] are all captured in an urban scenario with a camera mounted on a vehicle or stroller ( as in the case of ETH).

Caltech [START_REF] Dollar | Pedestrian detection: An evaluation of the state of the art[END_REF] is one of the most challenging monocular databases having a huge number of annotated pedestrians for both training and testing datasets. Daimler Monocular [START_REF] Enzweiler | Monocular pedestrian detection: Survey and experiments[END_REF] provides cropped BB of pedestrians in the training set, but road sequences of images for the testing.

Daimler Multi-Cue [START_REF] Enzweiler | Multi-cue pedestrian classification with partial occlusion handling[END_REF] is a multi modal dataset that contains cropped pedestrian and nonpedestrian BB, but with information from visible, depth and motion. ETH [START_REF] Ess | Depth and appearance for mobile scene analysis[END_REF] is a dataset acquired mostly on a side walk using a stroller and a stereovision setup, thus it has both temporal information (images are provided in a sequence) and the possibility of using the disparity information. KITTI object dataset [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF] is a newer dataset that contains stereo images with annotated pedestrians, cyclists and cars. Although it does not have the possibility of using temporal information, there is the possibility of using 3D laser data.

Infrared Domain.

Aside from the datasets from the Visible domain, we have considered also the dataset 

Preliminaries

Throughout this chapter, for the experiments we are going to use the following configuration:

Classifier. In terms of classifier we have chosen to work with Support Vector Machine. For this, we have used the library LibLinear [START_REF] Fan | Liblinear: A library for large linear classification[END_REF].

Domains. This chapter contains two major parts: section 5.5 that focuses on Visible domain and section 5.7 that deals with Far-Infrared domain.

Modalities. As modalities we will study Intensity, from Visible and Infrared domain, and Depth and Motion computed using the information from the Visible domain.

Features. In terms of features we compare HOG (as presented in section 1.4.1), ISS (as presented in section 2.3), LBP (as presented in section 1.4.2), LGP (as presented in section 1.4.3), HaarWavelets (as presented in section 1.4.5) and MSVZM (Mean Scale Value Zero Mean).

In what concerns MSVZM we have implemented a variation based on the feature MSVD described in section 1.4.6. MSVD is a feature proposed specially for Disparity modality. The difference between our implementation and the one proposed by Walk et al. [START_REF] Walk | Disparity statistics for pedestrian detection: Combining appearance, motion and stereo[END_REF] is that we compute a zero-mean and perform L1 normalization, which results in a better performance.

Multi-modality pedestrian classification in Visible Domain

For 

Feature-level fusion

After having analysed the effect of each modality independently for different features, we now evaluate the effect of using for a given feature, modality fusion. Results are given in figure 5.5.

For all features, one can always observe an improvement when fusing the information provided by different modalities. No matter what is the feature employed, the fusion of all three modalities always lowers the false positive rate. In figure 5.6.a) is showed a comparison of performance when using all modalities fusion for different features. The best features in term of performance are HOG, LGP and LBP with a difference in the false positive rate extremely low. These are followed by ISS feature, but with a factor of approximately ten of higher false positive rate.

While the fusion of all three modalities of HOG feature has the lowest false positive rate at a classification rate of 90%, the fusion of best feature on each modality seems to be slightly more robust overall. These results are presented in figure 5.6.b).

In figure 5 

Stereo matching algorithm comparison for pedestrian classification

In the same way as different features yield different performance in the classification task, different stereo matching algorithms can lead to a variation in the error rate for the same feature.

In the previous section, for the experiments performed on Daimler Multi-cue dataset, the Disparity was pre-computed by the authors using a semi-global matching algorithm [START_REF] Hirschmuller | Stereo processing by semiglobal matching and mutual information[END_REF]. Since they don't provide the initial Stereo images, there is no possibility of recomputing the Depth map using another stereo matching algorithm. Thus, in order to be able to compare different stereo matching algorithms, we have used as dataset ParmaTetravision. Three different Disparity maps were computed on ParmaTetravision using three different stereo matching algorithms in combination with different features. The purpose of this is to test if the error difference between these algorithms found in the Disparity map reflects in an error difference when using Depth information for the classification task.

We have chosen the following stereo matching algorithms:

• Local stereo matching based on a cost function of DiffCensus computed in a square window aggregation and used in combination with cross zone voting (as proposed in chapter 4.3.5.2).

• The same algorithm as described above, but this time just changing the cost function with

ADCensus [START_REF] Mei | On building an accurate stereo matching system on graphics hardware[END_REF].

• An efficient stereo matching algorithm proposed by Geiger et al. [START_REF] Geiger | Efficient large-scale stereo matching[END_REF], which is based on triangulation on a set of support points that can be robustly matched. This algorithm achieved good results on the KITTI dataset, while in the same time has a fast running time. [START_REF] Geiger | Efficient large-scale stereo matching[END_REF] The results of comparison in performance of the stereo matching algorithm for different features are presented in figure 5.8. Overall, the lowest false positive rate is obtained by the DiffCensus-based stereo matching algorithm, followed closely by the same algorithm but this time using as cost function ADCensus. The stereo matching algorithm proposed by Geiger et al. [START_REF] Geiger | Efficient large-scale stereo matching[END_REF] has a higher false positive rate for all the considered features.

In figure 5.9 we present the same results but in a different light. This time we consider separately each stereo matching algorithm, and we plot the results obtained with different features for that algorithm. We can observe that LBP gives consistently a lower error rate for all three stereo matching algorithms. This is followed by HOG feature in the case of the cross-based stereo matching using DiffCensus or ADCensus, while for the algorithm proposed by Geiger et al. [START_REF] Geiger | Efficient large-scale stereo matching[END_REF],

LGP gives better results than HOG.

In general the stereo matching algorithm proposed by the Geiger et al. [START_REF] Geiger | Efficient large-scale stereo matching[END_REF] provides slightly better results than the cross-based algorithm in terms of disparity error1 . Nevertheless, due to the fact that Geiger et al. [START_REF] Geiger | Efficient large-scale stereo matching[END_REF] only considers the robust regions, for the task of classification, this leads a loss in information in the regions for which is difficult to compute the disparity map.

In the case of the cross-based stereo matching algorithm using DiffCensus or ADCensus, we don't disregard the regions for which the disparity map has a high error rate. Thus, in our opinion, even if we extract features on a disparity map where some errors exist, the classification algorithm manages to learn and even extract information from these errors. 

Individual feature classification

In figure 5.10 are presented the performance of each feature on each individual modality. For each feature, the best performing modality is that of Infrared, followed by Visible and Depth.

The best performing feature on Visible is LBP with a factor of two of less false positives than a comparable HOG classifier on Visible. This is in comparison with the dataset Daimler, where HOG had the best performance.

On the Infrared modality, the best performing feature is LGP, followed closely by LBP. HOG and ISS features on Infrared have also a similar performance but they have a larger error rate:

LGP has a factor of five of less false positives than the comparable HOG classifier on Infrared.

On Depth modality, the best performing feature is LBP, followed this time by HOG. Even if on Daimler dataset ISS feature had the best results on Depth, on the ParmaTetravision it is not very robust, having a factor of two more false positives than the LBP.

In what concerns the Motion modality, in comparison with the experiments performed on Daimler dataset where LGP gave the best results, on these images the best performing feature was HOG. We believe that this variation in results is given by the quality of the dense optical flow image obtained. Nevertheless, because of the important difference in performance between Flow and Intensity modalities, for the fusion of modalities we will consider for now only Infrared Intensity (IR) , Visible Intensity, and Depth. LGP on the other hand has a factor of over 100 less false positives than the HOG classifier.

Conclusions

In this chapter we have studied the impact of multi-modality (intensity, depth, motion) usage over the pedestrian classification results. Various features have different performances across modalities. As single modality, Intensity has the best performance on both tested datasets (Daimler and ParmaTetravision), followed by Depth. Nevertheless, the fusion of modalities provides the most robust pedestrian classifier. As single features, local based patterns features (LGP, LBP) have consistently given robust results, but overall a fusion of complementary features as well as modalities had the best performance.

Even if the fusion of Intensity and Depth lowers the false positive rate for all features in comparison with the results obtained just on Intensity in Visible Modality, on the tested dataset, the Intensity values from the FIR domain had consistently lower error rate. On the other hand, a fusion between the two domains, FIR and Visible, along with information given by the disparity map has given the best results on the ParmaTetravision dataset. FIR. We have started by analysing Far-Infrared Spectrum. For this, we have annotated a large dataset, ParmaTetravision. Because this dataset is not publicly available, we have also acquired a new dataset called RIFIR. This has allowed us to construct a benchmark in order to analyse the performance of different features, and in the same time tof compare FIR and Visible spectrums. Moreover, we have proposed a feature adapted for thermal images, called ISS. Altough ISS has a similar performance with that of HOG in the far infrared spectrum, local-binary features like LBP or LGP proved to be more robust. Moreover, in our tests, FIR consistently proved to be superior to Visible domain. Nevertheless, the fusion between Visible and FIR gave the best results, lowering the false positive rate with factor of ten in comparison with just using the FIR domain.

Since one of the main advantages of thermal images is the fact that the search space for possible pedestrians can be reduced to hot regions in the image, future work should include a benchmark of ROI extraction algorithms. Moreover, we can extend the feature comparison by testing different fusion techniques in order to find the most appropriate configuration.

SWIR With the advent of new camera sensors, a promising new domain is represented by Short-Wave Infrared (SWIR). In this context, we have experimented with two types of cameras. The preliminary experiments that were performed on a dataset that we have annotated, ParmaSWIR. This contains images taken using different filters with the purpose of isolation of different bandwidths. Since the results were promising, we have acquired another dataset, RISWIR, this time using both a SWIR and a Visible camera. On RISWIR, the short-wave infrared provided better results than the Visible one. In our opinion, this is due to the fact that acquired images in SWIR spectrum are sharper, having well-defined edges.

Further tests in SWIR domain should include different meteorological conditions, along with an evaluation during night conditions. Moreover, we believe for the results to be conclusive, SWIR cameras should be compared against several Visible cameras.

StereoVision Since Visible domain represents a low cost alternative to other spectrums, we give a special attention to Depth modality obtained by constructing the disparity map using different stereo matching algorithms. In this context, we have worked to improve existing stereo matching algorithms by proposing new cost function robust to radiometric distortions. As future work we plan on analysing the impact that post-processing algorithms have over the disparity map.

In addition, in order to incorporate the findings of chapter 5, we should improve the information contained in the areas subject to occlusions.

Multi-domain, multi-modality. In a similar manner with the way human perception uses clues given by depth and motion, a new direction of research is the combination of different modalities and features. A lot of articles tacked this problem from different features point of view for the Visible domain. Daimler Multi-cue dataset provides a way to centralize this analysis. In this context we have extended the number of features compared on the dataset with different modalities, along with several fusion scenarios. The best results were always obtained by fusing different modalities. Moreover, we extended the analysis multi-modality to a multi-domain approach, comparing Visible and FIR on ParmaTetravision dataset. Even if the FIR spectrum continues to give the best results, the fusion between Visible and Depth manages to perform close to the results given by FIR. Moreover, the fusion between Visible, Depth and FIR lowers the false positive rate by a factor of thirty, than just the use of FIR information.

As future work, we want to extend the analysis to include more datasets (like ETH [START_REF] Ess | Depth and appearance for mobile scene analysis[END_REF]), along with a comparison of different new features. Moreover, in the multi-modalities experiments we have only treated the problem of pedestrian classification, but we plan of extending the analysis in a pedestrian detection framework.

There exist various approaches used for the task of pedestrian detection and classification task.

In this thesis, we have showed that a multi-modality, multi-domain approach, and furthermore multi-feature, is essential for a good pedestrian classification system. 
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 15 Figure 1.5: For a SVM trained on two-class problem, it is shown the maximum-margin hyperplane (along with the margins)
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 1718 Figure 1.7: HOG Feature computation
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 19 Figure 1.9: Local binary pattern computation for a given pixel. In this example the pixel for which the computation is performed is the central pixel having the intensity value 88.
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 110 Figure 1.10: Examples of Uniform (a) and non-uniform patterns (b) corresponding for LBP computed with r = 1 and p = 8. There exist a total of 58 uniform local binarry pattern plus one(for others)

  LBP p,r (c) = i∈Np,r(c)
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 111 Figure 1.11: Local gradient pattern operator computed for the central pixel having the intensity 88.
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 112 Figure 1.12: Haar wavelets a),b),c) and Haar-like features d),e). The sum of intensities in the white area will be subtracted from the sum of intensities of the black area.

  Four different models are employed in order to recognize the pose of the pedestrians; open, almost open, almost closed and fully closed legs are detected. Nanda and Davis [98] use probabilistic templates to capture the variations in human shape specially for the case where the contrast is low and body parts are missing. Unfortunately, techniques based on symmetry verification or template matching are not precise enough for the task of pedestrian detection. The global features that

  [START_REF] Olmeda | Pedestrian detection in far infrared images[END_REF] [START_REF] Olmeda | Pedestrian detection in far infrared images[END_REF] proposed a dataset 2 acquired with an Indigo Omega, having and image resolution of 164 × 129. The dataset is divided in two parts: one that tacks the problem of pedestrian classification (OlmedaFIR-Classification), and the other one that is constructed for the problem of pedestrian detection (OlmedaFIR-Detection). In figure2.1 are presented examples of images from the OlmedaFIR-Detection dataset. Unfortunately, it does not contain also information from the Visible spectrum, therefore making difficult a complete assessment of the FIR performance.
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 21 Figure 2.1: Images examples from Oldemera dataset a),b)
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 22 Figure 2.2: Heat map of training for ParmaTetravision Dataset: a) Visible b) FIR
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 2324 Figure 2.3: Pedestrian height distribution of training (a) and testing (b) sets for ParmaTetravision
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 252627 Figure 2.5: Pedestrian height distribution of training (a) and testing sets (b) for RIFIR
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 28 Figure 2.8: Visualisation of Intensity Self Similarity using histogram difference computed at positions marked with blue in the IR images. A brighter cell shows a higher degree of similarity.
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 29 Figure 2.9: Performance of ISS feature on the dataset ParmaTetravision[Old] using different histogram comparison strategies
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 210 Figure 2.10: Comparison of performance in terms of F-measure for different combination of Histogram Size and Blocks Size

  .11 is presented the performance of using each individual feature independently on dataset RIFIR (figure 2.11.a), ParmaTetravision (figure 2.11.b) and Oldemera-Classification(figure 2.11.c).
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 211 Figure 2.11: Performance comparison for features HOG, LBP, LGP and ISS in the FIR spectrum on datasets a) RIFIR b) ParmaTetravision c) Oldemera-classification. The reference point is considered the obtained false positive rate for a classification rate of 90%. In figure d) are also shown the results for Oldemera-classification but this time as miss-rate vs false positive rate. In this case the reference point is the miss rate obtained for a false positive rate of 10 -4
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 212 Figure 2.12: Peformance comparison for the features HOG, LBP, LGP and ISS in the Visible domain on datasets a) RIFIR, b) ParmaTetravision
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 3132 Figure 3.1: Indoor image examples of how clothing appears differently between visible [a, c] and SWIR spectra [b, d]. Appearance in the SWIR is influenced by the materials composition and dyeing process.
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 33 Figure 3.3: SWIR 2WIDE_SENSE camera
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 35 Figure 3.5: Height distribution over the annotated pedestrians.
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 36 visualisation of Haar wavelength computed on diagonal, horizontal and vertical, along with Sobel filter (which is the basis for our gradient computation of HOG features) for the same scene under the three different filters C, F1 and F2 is shown. As it can be seen from the images, the features are quite similar in the different bandwidths. Small differences can be observed in the hair, clothes and background, but the main contours of the objects are quite similar for both Haar transformations and Sobel transformation in the different tested bandwidths.Most of the top algorithms developed for images acquired in the Visible bandwidth employ
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 36 Figure 3.6: Image comparison between Visible range (a1), F2 filter range (a2) and F1 filter range (a3) with the corresponding on-column visualization of HAAR wavelets: diagonal (b1, b2, b3), horizontal (c1), (c2), (c3), vertical (d1), (d2), (d3) and Sobel filter (e1), (e2), (e3). Due to negligible values of the HAAR wavelet features along the diagonal direction, the corresponding images [b1, b2, b3] appear very dark.
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 37 Figure 3.7: Image examples from the sequences showing similar scenes and corresponding output results given by the grammar models: C filter range (a), (d), (g), F2 filter range (b), (e), (h) and F1 filter range (c), (f), (i). False positives produced by the algorithm are surrounded by red BB while true positives are in green BB.
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 38 Figure 3.8: Results comparison when testing on all the BB vs. BB surrounding pedestrians over 80 px only.
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 310311312 Figure 3.10: Height distribution for the Testing Sequence
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 313 Figure 3.13: Feature performance comparison in the Visible domain. The reference point is considered the obtained false positive rate for a classification rate of 90%.
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 318 Figure 3.18: Comparison in performance of Domain and different feature fusion strategies. The reference point: classification rate of 90%.
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 41 Figure 4.1: An object as seen by two cameras. Due to camera positioning the object can have different appearance in the constructed images. The distance between the two cameras is called a baseline, while the difference in projection of a 3D point scene in each camera perspective represents the disparity.

4. 1 . 1

 11 Pinhole cameraAs described by Forsyth and Ponce[START_REF] Forsyth | Computer vision: a modern approach[END_REF], a pinhole camera is the simplest model, where the lens are represented by a single point in 3D space. This will allow to exactly one light ray to pass through the pinhole, connecting a scene point to a single point in the image plane (see figure4.2).
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 42 Figure 4.2: Pinhole camera. With a single camera, we cannot distinguish the position of a projected point (P) in the 3D space (L1).
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 43 Figure 4.3: Stereo cameras. If we are able to match two projection points in the images as being the same, we can easily infer the position of the considered 3D point by simply intersecting the two light rays (L1 and L2)

1. Computation of a matching cost function 2 .

 2 Figure 4.4 shows an example of a basic stereo matching algorithm. In this example the cost taken in consideration is the absolute difference of intensities. Because this cost is not very discriminative, an aggregation area represented by a squared window of 3 × 3 pixels is used.
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 44 Figure 4.4: Basic steps of stereo matching algorithms assuming rectified images. a) The problem of stereo matching is to find for each pixel in one image the correspondent in the other image. b) For each pixel a cost is computed, in this example the cost is represented by the difference in intensities. c) A cost aggregation represented by a squared window of 3 × 3 pixels. d) The disparity of a pixel is usually chosen to be the one that will give the minimum cost.
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 45 Figure 4.5: Challenging situations in stereo vision. The images a)-h) are extracted from the KITTI dataset[START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF], while the images i)-l) from HCI/Bosh Challenge[START_REF] Meister | Outdoor stereo camera system for the generation of real-world benchmark data sets[END_REF]. The left column represents the left image from a stereo pair, and the right column the corresponding right image.: a)-b) Textureless area on the road caused by sun reflection; c)-d) Sun glare on the windshield produces artefacts; e)-f) "Burned" area in image where the white building continues with the sky region caused by high contrast between two areas of the image; g)-h) Road tiles produce a repetitive pattern in the images; i)-j) Night images provide fewer information; k)-l) Reflective surfaces will often produce inaccurate disparity maps
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 46 Figure 4.6: Disadvantage of square window-based aggregation at disparity discontinuities. In red is the pixel, and the square is the corresponding aggregation area.

  First the horizontal matching cost is computed and stored (figure 4.8.a), secondly the final cost is obtained by aggregating the intermediate results vertically (figure 4.8.b). The two steps can be efficiently computed using 1D integral images.
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 47 Figure 4.7: Cross region construction: a) For each pixel four arms are chosen based on some color and distance restrictions; b),c) The cross region of a pixel is constructed by taking for each pixel situated on the vertical arm, its horizontal arm limits.
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 48 Figure 4.8: Cross region cost aggregation is perfomed into two steps: first the cost in the cross-region is aggregated horizontally b) and then vertically b)

E

  data (D) = p∈I c(p, pd p ) (4.8) , where d p is the disparity of p in the disparity map D, and the c(p, pd p ) computes a cost (for example color dissimilarity) between pixels of left and right images.
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 49 Figure 4.9: Four connected grid
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 410 Figure 4.10: Tree example. If smoothness assumption is modeled as a tree instead of a four connected grid, the solution could be computed using dynamic programming
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 411 Figure 4.11: From four-connected grid to tree: Scanline based tree
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 412 Figure 4.12: Simple Tree structures: Horizontal Tree and Vertical Tree
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 413 Figure 4.13: Example of a minimum cut in a graph. A cut is represented by all the edges that lead from the source set to the sink set (as seen in red edges). The sum of these edges represents the cost of the cut.

  structure. If in figure 4.14b each layer represents just one scanline, in figure 4.15 each layer represents all the pixels in an image. The vertical edges represent the disparity edges, while all the horizontal edges represent the smoothness assumption.
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 414415 Figure 4.14: Graph cuts example on a scanline in stereo vision: a) without smoothness assumption; b) modelling smoothness assumption
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 416 Figure 4.16: Census mask: a) Dense configuration of 7 × 7 pixels b) Sparse configuration for CT with window size of 13 × 13 pixels and step 2 .
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 417 Figure 4.17: The mean percentage of radiometric distortions over the absolute color differences between corresponding pixels in KITTI, respectively Middlebury dataset .
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 418 Figure 4.18: Bit string construction where the arrows show comparison direction for a) CT: '100001111', b) CCC: '00001111101111110100' in dense configuration, c) CCC in a sparse configuration

Figure 4 .

 4 Figure 4.18.a shows the standard CT , while Figure 4.18.b and Figure 4.18.c show the CCC

Figure 4 . 19 :

 419 Figure 4.19: Computation time comparison between CT and CCC for different image sizes. In the figure an image size of 36 * 10 4 corresponds to an image of 600 × 600 pixels. For both CT and CCC we used a window of 9 × 7 pixels, but CCC is computed using a step of two.
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 420 Figure 4.20: Computation time comparison between CT and CCC for different neighbourhood sizes for an image of 1000 × 1000 pixels.

  p a ) < τ . The color difference (D c ) between the pixel p and an arm pixel p a should be less than a given threshold τ . The color difference is defined as D c (p, p a ) = max i=1,n |I i (p) -I i (p a )|, where I i (p) is the color intensity of the pixel p at channel i, and n are the number of color channels considered.
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 3619595902804 Figure 4.21 shows the sensitivity of the cost function C Dif f CT for the three images, by varying the parameters λ census and λ Dif f , in the interval (0, 100]. Darker values in the figure show smaller error rate. For the studied function the standard deviation of the error is of 0.52%. The optimised parameters were use throughout the experiments. In what concerns the other parameters specific for the two stereo matching algorithms used, details are given in appendix B, tables B.1 and B.2.
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 421 Figure 4.21: Cost function (C Dif f CT ) sensitivity to different parameters values

3 . 2 :

 32 C AD , C Census , C CCCensus , C klaus , C ADcensus , C cstent , C ZN CC , C DIF F CCC and C DIF F CT . This functions were used without an aggregation window with the except of C klaus where a neighbourhood of 3 × 3 pixels is required by the algorithm and C ZN CC where, for the same reasons, a neighbourhood of 9 × 7 pixels was used.

Figure 4 .

 4 Figure 4.22 presents the mean error rate on all the 194 images from the training KITTI dataset. The error with C SD is quite large, while with the other cost functions the error decreases significantly. The best overall performance is given by the proposed C Dif f CCC function with an error of 12.26%, followed by C Dif f CT with 12.97% and very closely by C ZN CC with 12.98%. In terms of computing time the C ZN CC is the slowest function taking in average ten times longer to compute in comparison with the other two functions.

Figure 4 . 22 :

 422 Figure 4.22: Mean error for each cost function using graph cuts stereo matching.

Figure 4 . 23 :

 423 Figure 4.23: Mean error for each cost function using local cross aggregation stereo matching.

4. 3 . 6 .

 36 2 where C CCC has proven to be the most discriminative, a cost aggregation or cost minimisation algorithm can change the ranking. For each minimisation method must be chosen a specific cost function. In figure4.25 a visualisation of the output disparity map for each function in combination with the two stereo algorithms is shown. Columns one and three show the results obtained using the local stereo matching based on cross zone aggregation, while columns two and four the results obtained with graph cuts. The output results for two images is presented.

  measured. As it can be observed from the figure the proposed cost functions, C Dif f CCC and C Dif f CT , give the lowest error rate even in the presence of radiometric distortions.
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Figure 4 . 24 :

 424 Figure 4.24: Output error (logarithmic-scale) for different cost functions in presence of radiometric distortions

a1)

  Visible left image 0 b1) Ground truth image 0 c1) Visible left image 2 d1) Groud truth image 2 a2)CZA: CSD: 19.36% b2)GC: CSD: 24.501% c2)CZA: CSD: 51.22% d2)GC: CSD: 55.25% a3)CZA: CCCC : 11.55% b3)GC: CCCC : 5.27% c3)CZA: CCCC : 14.24% d3)GC: CCCC : 17.78% a4)CZA: CCT : 12.50% b4)GC: CCT : 5.83% c4)CZA: CCT : 12.82% d4)GC: CCT : 15.31% a5)CZA: CADCensus: 8.81% b5)GC: CADCensus: 9.20% c5)CZA:CADCensus: 11.27%d5)GC: CADCensus: 16.20% a6)CZA: C klaus : 11.99% b6)GC: C klaus : 22.09% c6)CZA: C klaus : 14.96% d6)GC: C klaus : 34.82% a7)CZA: C Dif f CCC : 8.65% b7)GC: C Dif f CCC : 7.22% c7)CZA: C Dif f CCC : 13.08%d7)GC: C Dif f CCC : 15.04% a8)CZA: C Dif f CT : 7.89% b8)GC: C Dif f CT : 8.05% c8)CZA: C Dif f CT : 11.56% d8)GC: C Dif f CT : 14.22% a9)CZA: Ccstent: 9.08% b9)GC: Ccstent: 14.92% c9)CZA: Ccstent: 15.27% d9)GC: Ccstent: 15.53% a10)CZA: CZNCC : 9.45% b10)GC: CZNCC : 5.88% c10)CZA: CZNCC : 20.21% d10)GC: CZNCC : 13.18%

Figure 4 . 25 :

 425 Figure 4.25: Comparison between cost functions. On first row there are presented two left visible images ( a1 and c1) from the KITTI dataset with the corresponding ground truth disparity images ( b1 and d1 ). On the following lines are the output disparity maps corresponding to different functions: on the first ( a2-a10) and third column ( b2-b10) the output obtained with the cross zone aggregation (CZA) algorithm, while on columns two (b2-b10) and fourth (d2-d10) the output of the graph cuts algorithm. Images a2-a10 and b2-b10 correspond to the disparity map computed for image a1 while the images c2-c10 and d2-d10 correspond to the disparity map computed for image c1.
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  ParmaTetravision. This contains images from both Visible and Infrared. Moreover the dataset contains stereo-images, thus making an interesting dataset for comparing different domains and modalities. An overview of available datasets in Infrared Domain is given in chapter 2.2. In what follows, we are going to use for the experiments the dataset Daimler Multi-Cue for Visible domain, and ParmaTetravision for Infrared domain. The reason why we didn't chose for Infrared domain RIFIR dataset, is because it does not contain stereo images.

Figure 5 . 3 :

 53 Figure 5.3: Individual classification performance comparison of different features in the three modalities: a) Intensity; b) Depth; c) Motion; d) Best feature on each modality

Figure 5 . 2 :

 52 Figure 5.2: Individual classification (intensity, depth, motion) performance of on non-occluded Daimler dataset a) HOG; b) ISS; c) LBP; d) LGP; e) Haar Wavelets; f) MSVZM . The reference point is considered the obtained false positive rate for a classification rate of 90%.

Figure 5 . 8 :

 58 Figure 5.8: Classification performance comparison of three stereo matching algorithms from the perspective of four features: a) HOG , b) ISS, c) LBP, d) LGP.

Figure 5 . 9 :

 59 Figure 5.9: Classification performance comparison between different features (HOG, ISS, LGP, LBP ) for Depth computed with three different stereo matching algorithms: a) Local stereo matching using DiffCensus cost, b) Local stereo matching using ADCensus cost, c) Stereo matching using the algorithm proposed by[START_REF] Geiger | Efficient large-scale stereo matching[END_REF] 
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 7 Multi-modality pedestrian classification in Infrared and Visible Domains In section 2.4 we have presented experiments comparing the visible domain and the far-infrared domain on two datasets: ParmaTetravision and RIFIR. ParmaTetravision dataset in comparison with RIFIR, provides information from two visible cameras, therefore the possibility of performing Stereo matching. In this section, we extend the experiments on the ParmaTetravision classification dataset, by evaluating the performance of Depth modality in comparison with Intensity from Visible and Intensity from FIR domain. In the same way that we have done the analysis for the Daimler database, we firstly compare each feature individually on each modality. We have chosen for comparison four features: HOG, ISS, LBP and LGP and four modalities: Intensity given by Visible Domain, Depth computed from pair of Visible Stereo Images (using the Stereo matching algorithm based on Cross zone and DiffCensus cost function -see section 5.6), Motion using Visible images and Intensity values give by Far-Infrared Domain. The later will be further referenced as simply IR.For the experiments shown in section 5.7.1 and 5.7.2 we have computed a disparity map based on the algorithm proposed in chapter 4: for fast computation we employed a square aggregation window of 7×11 pixels, combined with a voting strategy in a cross window, and a DiffCensus cost function. In what concerns the dense optical flow algorithm we have used the implementation provided by Sun et al.[START_REF] Sun | A quantitative analysis of current practices in optical flow estimation and the principles behind them[END_REF].
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 510511 Figure 5.10: Individual classification (visible, depth, flow and IR) performance of a) HOG; b) ISS; c) LBP; d) LGP;
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 72 Feature-level fusionIn figure 5.11 we compare for each feature different modality fusions: Visible with Infrared, Visible and Depth, Infrared and Depth, along with all three modalities fusion: Visible, Depth and Infrared. The fusion of Visible and Depth lowers the false positive rate for all features in comparison with the results obtained just on Visible Modality. This result are consistent with the results obtained on Daimler dataset. Unfortunately, they are still not as good as those obtained just by the Infrared modality. Fusing Infrared and Depth on the other hand, lowers the false positive rate in comparison with just the Infrared modality. For the fusion of Infrared and Depth with HOG feature there is a factor of approximately of f our less false positives than the just the HOG on Infrared. For ISS, the factor is just of 1.6 and for LBP the factor is of 3.3. The biggest improvement in the context of fusion of Infrared and Depth, is for LGP feature with a staggering factor of 96 less false positives than just the LBP feature on Infrared. The fusion of all three modalities Visible, Infrared and Depth provides the overall best results for all features. In comparison with Daimler dataset where HOG features had the best results, on ParmaTetravision HOG and ISS modality fusion have a similar false positive rate. However, the family of local binary features are much more robust. LBP on Visible, Depth and IR has a factor of nine less false positives than the similar HOG classifier trained on the same three modalities.

I 6 Conclusion

 6 think and think for months and years.Ninety-nine times, the conclusion is false.The hundredth time I am right.Albert EinsteinIn this thesis we have focused on the problem of pedestrian detection and classification using different domains (FIR, SWIR, Visible) and different modalities (Intensity, Motion, Depth Map), with a particular emphasis on the Disparity map modality.

  Aggregation area is a very important step for the local algorithms of stereo matching. Global stereo matching algorithms model in an explicit way the smoothness term (which enforces that spatially close pixels to have similar disparity). Local algorithms having to model the smoothness term in an implicit way, the pixels found in the same aggregation area will have a similar disparity.As presented in subsection 4.1.3.1 there exist a great variety of methods for construction a cost aggregation area, from the window aggregation areas to adaptive windows or cross-zone aggregation.
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 110 Figure D.1

  Road traffic injuries are the eight leading cause of death globally, among the three leading causes of death for people between 5 and 44 years of age and the first cause of death for people aged 15 -19. Another sad statistic is that road crashes kill 260 000 children a year and injure about 10 million (join report of Unicef and the World Health Organization). Without any action taken, road traffic injuries are predicted to become the fifth leading cause of death in the world, reaching around 2 million deaths per year by 2020. The main cause of the increase in number of deaths is caused by a rapid increase in motorization without sufficient improvement in road safety strategies and land use planning. The economic consequences of motor vehicle crashes have been estimated between 1% and 3% of the respective GNP 2 of the world countries, reaching a total over $500 billion.Analysing the casualties worldwide by the type of road user shows that almost half of all
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road traffic deaths are among vulnerable road users: motorcyclists (23%), pedestrians (22%) and cyclists (5%). An additional 31% of deaths are represented by car occupants, while for the extra 19% there doesn't exist a clear statistic of the road user type.

Table 1 .

 1 1: Review of different camera types

	Camera Type		Pros	Cons
	Webcam -RGB		
	• Connection type: USB 2,	• Cheap; Easy to find; Simple to	• Usually poor image quality, espe-
	USB 3, IEEE 1394 (rare)	use	cially in low light
	• Resolution range: usually	• Widely supported by different	• Difficult to change camera set-
	@30fps 640x480		software environment	tings
				• Typically fixed lens
				• Problems can be experienced
				when functioning for extended pe-
				riods of time
	Mono-Visible	Cameras	
	(CCD and CMOS)		• High resolution at high frame rate	• In night time, or difficult weather
	• Connection type: USB 2,	is possible	conditions the camera perfor-
	USB 3, GigE, IEEE 1394	• Interchangeable lens to suit dif-	mance can drop
			ferent applications	• Depending on the application,
			• Camera designed for long time functioning • Main types of cameras used	without any depth information, the computation time could in-crease well beyond real-time • Software integration could be dif-
				ficult because each type of cam-
				era comes with it's specific drivers
				that are platform dependent
	Stereo Vision Cameras	
			• Same advantages like the Mono-	• Same disadvantages like Mono-
			Visible Cameras	Visible Cameras
			• Extra information provided by
			the computed depth can give
			essential information about the
			scene

Table 1 .

 1 2: Review of other types of sensors

	Sensor Type	Pros	Cons
	Depth Cameras		

Table 2 .

 2 5 .

	Pedestrian Non-Pedestrian Overall

2: ParmaTetravision[Old] Dataset statistics

4 

The dataset is publicly available at the web address: www.vision.roboslang.org

5 

For training we have use sequences 1 and 5 from the dataset; while for testing sequences 2 and 6.

Table 2 .

 2 As presented in table 2.3, the final dataset contains 10240 images for training having annotated 11554 pedestrian BB in visible spectrum and 9386 BB in IR spectrum; and 8338 images for testing with 9386 annotated pedestrian BB in visible and 8801 in IR. The disagreement in the number of pedestrian from visible and IR is due to differences in camera optics and positioning.For the final dataset used for the problem of pedestrian classification, we have retained only those BB that have a height above 32px, are visible in both cameras and don't present major occlusions. Therefore in the end we have 6264 pedestrian BB for training and 5743 pedestrian BB for testing. Furthermore, for the problem of pedestrian classification we have extracted 26316 negative BB for training and 14823 for testing.

		Sequence Train Sequence Test Overall
	Number of frames	10240	8338	18578
	Number of unique pedestrians	120	160	280
	Number of annotated pedestrian	11554	11451	23005
	BB (Visible)			
	Number of annotated pedestrian	9386	8801	18187
	BB (IR)			
	Number of pedestrian BB visible	6264	5743	12007
	in both cameras with height > 32 px,			
	and not presented major occlusions			
	Number of negative BB annotated	26316	14823	41139

1: Datasets comparison for pedestrian classification and detection in FIR images a Dataset statistics based on our annotations b Only two-class occlusion labels available: occluded or not occluded

Table 2 .

 2 

3: ParmaTetravision Dataset statistics In figure 2.3 is presented the height histogram for the annotated pedestrians for both Training

Table 2 .

 2 2.2.2 Dataset RIFIRFor the acquired dataset, we have used two cameras: one Visible domain camera (colour) with a resolution of 720 × 480 and a FIR camera with a resolution of 640 × 480. In table2.4 are presented some information regarding the employed FIR camera6 .In figure2.5 is presented the height histogram for the annotated pedestrian in both Training and Testing. While in the ParmaTetravision dataset most of the pedestrians had a height below 150 pixels, in the case of RIFIR dataset, most of the pedestrians have a height below 100 pixels, thus making the dataset more challenging. In figure2.6 is presented the heat map, for both Visible and FIR, obtained by superimposing the annotated pedestrians. Small differences are due to camera optics and positioning. In figure2.7 is presented an extract from the RIFIR dataset.

	Characteristic	Value
	Pixel Resolution	640 × 480
	Focal length	24.5 mm
	Spectral range	7.5µm to 13µm

Object temperature range -20 to +150 • C Accuracy ±2% of reading Image frequency 50Hz Control GigE Vision and GenICam compatible Power system 12/24 VDC, 24 W absolute max Operating Environment Operation Temperature: -15 • C to +50 • C; Humidity: 0 -95% Table 2.4: Infrared Camera specification Due to difference in camera optics and position, we had to annotate the pedestrian independently in the Visible and FIR images. As presented in table 2.5 the final dataset contains 15023 images in training with 19190 annotated pedestrian BBs in Visible spectrum and 14356 in FIR spectrum; and 9373 images for testing with 7133 annotated pedestrian BBs in Visible and 6268 in the FIR domain. Following the same methodology as in the case of ParmaTetravision dataset, for the final constructed classification dataset we have only considered those pedestrians with a height above 32 pixels, that are visible in both cameras, and do not present occlusions. In consequence, there are 9202 pedestrian BB for training and 2034 for testing. In what concerns the negative BBs, we have considered 25608 in training set and 24444 in testing. 5: RIFIR Dataset statistics
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  2 , HgCdTe3 or InSb 4 sensors. Sensors based on HgCdTe or InSb are not very practical for an ADAS application due to the fact that they have to be cooled at very low temperatures[START_REF]Why swir? what is the value of shorwave infrared[END_REF], therefore throughout this chapter we have worked only with SWIR cameras based on InGaAs sensor. If efficient sensors are build, they can be very sensitive to light, thus permitting for SWIR cameras to work in dark conditions.

Another advantage of the SWIR cameras in comparison with other types of infrared cameras is the ability to capture images through glass, thus it can be mounted inside a vehicle.

Table 3 .
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	Characteristic	Value
	Spectral Range	VIS/NIR/SWIR
	Filter Pattern	C(400÷1700)nm
		F1(1300÷1700)nm
		F2(1000÷1700)nm
		F4(540÷1700)nm
	Dynamic Range	120dB
	Angular Resolution min 11px/•
	Field of View	HFOV30
		VFOV22
	Imager Resolution	640 × 512px
	Pixel Pitch	15 µ
	Focal Length	18mm
	Frame Rate	> 24f ps
	Camera Size	(130×40×40)mm
	Camera weight	500gr
	Temperature Range (-40 ÷ 80)
	Supply Voltage	(6 ÷ 16) V
	Power Consumption < 1V

3 

Mercury Cadmium Telluride 4 Indium antimonide 5 http://www.2wide-sense.eu.

6 

A focal plane is a sensing device used in imaging consisting of an array of pixels that are light-sensing at the focal plane of a lens. 1: Camera specifications

Table 3 . 2

 32 

: Number of full-frame images on each tested bandwidth

Table 3 .

 3 3: Results of HOG classifier on BB

			Clear F2	F1
		Precision(%)	95.18	94.79 93.85
		Recall(%)	59.00	88.12 76.92
		F-measure(%) 72.84	91.33 84.54
		T rueP ositives	
	9 Recall =	T rueP ositives+F alseP ositives T rueP ositives T rueP ositives+F alseN egatives	

7 

http://pascal.inrialpes.fr/data/human/ 8 P recision =
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	4: Classifier Comparison in terms of Precision (P) and Recall (R) on SWIR images over
	all the images				
		Part-Models	Grammar-Models	HAAR
		P(%) R(%)	P(%) R(%)	P(%) R(%)
	C	64.89 57.10	67.38 38.77	63.51	7.10
	F1 68.51 80.62	71.96 45.64	83.33	3.00
	F2 41.21 87.13	79.30 64.19	81.05	6.50
	The results obtained for the three different filters are presented in table 3.4. The results vary
	depending on the classifier and used filter. The part based classifier obtains better results on

the scenes taken with C and F1 filter, while with the grammar based classifier better results are obtained on the scene taken with F2 filter. Examples of pedestrian detection results with all the three tested algorithms are presented in fig.

3.7. 

Table 3 .

 3 Train Sequence Test Overall 6: RISWIR Dataset statisticsIn the training sequence we have annotated a total of 8618 BB corresponding to pedestrian instances and 6675 BB corresponding to non-pedestrian areas, while in the testing set a number of 1753 pedestrian BB and 3219 non-pedestrian BB were annotated. As presented in table3.6 the number of unique pedestrians is of 65 in training and 13 for testing. Also, the average presence duration of a pedestrian in the sequences, is around 130 frames.

	Number of frames	7049	3150	10199
	Number of unique pedestrians	65	13	78
	Number of annotated pedestrian	8618	1753	10371
	BB			
	Average pedestrian duration (frames)	132	134	133
	Number of pedestrian BB visible	6892	1372	8264
	in both cameras			
	Number of pedestrian BB with	4743	1023	5766
	height > 32 px			
	Number of negative BB annotated	6675	3219	9894

In order to test if the training and testing sequences contain pedestrians similar in appearance we have plotted the histogram of heights for the training and testing sequence, taking bins of 25

  [START_REF] Geiger | Efficient large-scale stereo matching[END_REF] and LGP with 0.6. Fusing different features, in the visible domain, lowers slightly the error rate (figure 3.14).
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Even if LGP feature had the highest false positive rate when testing each feature independently on the Visible dataset, in combination with HOG, has a better performance than the fusion of LBP and HOG. The lowest error rate is obtained by combining all three features.

  Figure 3.14: Comparison of feature fusion performance in Visible domain. The reference point: classification rate of 90%.Figure 3.16: Comparison of feature fusion performance in SWIR domain. The reference point: classification rate of 90%.
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Figure 3.15: Feature performance comparison in SWIR domain. The reference point: classification rate of 90%.

Figure 3.17: Comparison of Domain fusion performance for different features. The reference point: classification rate of 90%.

Table 4 .

 4 

		Number of Images Ground truth	Scene	Image Type
	KITTI [57]	389	YES (for 50% of px)	Road	Real
	Middlebury[112]	38	YES (for 100% of px) Indoors Real
	EISATS[96]	498	YES (for 100% of px) Road	Synthetic
	Make3D Stereo [111]	257	YES (for 0.5% of px) Road	Real
	Ladicky[83]	70	YES -manual labels	Road	Real
	HCI/Bosch Challenge[95]	451	NO	Road	Real
	Van Syntetic stereo[123]	325	YES (for 100% of px) Road	Synthetic

1: Datasets comparison for stereo matching evaluation Datasets like Van Syntetic stereo

  8 . Moreover we propose two new cost functions: a fast function similar with the CT called Cross Comparison Census (CCC) and other function C Dif f Census that remains robust to radiometric changes.

10

  Our tests were performed on a computer with Dual Core 2.4 GHz single threadedThe overall results are better than those obtained with the graph cuts method (tested in a reasonable running time situation). When comparing the functions, the best results are obtained by our proposed functions based on sum of differences: C Dif f CCC and C Dif f CT . C Dif f CT , with a 12.8% error rate, gives better results than the C Dif f CCC , with a 14.07% error rate, but the latter has a smaller running time of around 40%. The DIF F based functions are followed as results by the C ADCensus and standard C CT based cost functions.

  .3 is presented the mean error rate for each color space and for each cost function across all the algorithms. Results for individual algorithms across different color spaces and different cost functions are presented in appendix A.

	Name	Comments		
							
			X				0.49	0.31	0.20
	XYZ	  	Y	   =	1 0.17697	  	0.17697 0.81240 0.01063
			Z				0	0.01	0.99

Table 4 .

 4 

	4: Color Spaces used for comparison

False Positive Rate Classification Rate LGP (Flow) 0.1497 LBP (Flow) 0.1688 HOG (Flow) 0.1896 ISS (Flow) 0.3097 HaarW (Flow) 0.5356 MSVZM (Flow) 0.5957

  the dataset used for the first set of experiments, that of feature comparison for the problem of pedestrian classification in Visible domain, we have used the dataset Daimler Multi-cue proposed by Enzweiler et al. [41]. The dataset is publicly available and contains cropped pedestrians at a dimension of 96 × 48 pixels, along with manually annotated negative examples. It is a good benchmark for feature comparison in different modalities due to available information from intensity, flow and disparity. ISS attains the lowest error rate, followed closely by LGP. HOG, even if on the Intensity gave the best results, in the Depth domain proves to be less robust than ISS or the texture based features like LGP and LBP. Haar Wavelets and MSVZM have overall, on all three domains, a poor performance in comparison with the other features.LBP and HOG. The most robust feature is LGP computed on the Depth domain, by quite a large margin in comparison with the other considered features. Of course, in order to treat occlusions there exist better techniques[START_REF] Enzweiler | Multi-cue pedestrian classification with partial occlusion handling[END_REF],[START_REF] Felzenszwalb | Cascade object detection with deformable part models[END_REF],[START_REF] Felzenszwalb | Object detection with discriminatively trained part-based models[END_REF],[START_REF] Ross B Girshick | Object detection with grammar models[END_REF], than the holistic one employed here, but our desired was to test the robustness of each feature across different modalities. Further results on the partially occluded testing set using different features are presented in appendix F.1.
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				Table 5.2: Training and test set statistics for Daimler Multi-Cue Dataset
	5.5.1 Individual feature classification			
	For this experiment, we use each feature independently, HOG, ISS, LBP, LGP, Haar Wavelets In figure 5.3, to better visualize differences between features, we plot for each modality the
	and MSVZM, operating in each modality (intensity, depth or motion). results obtained with different features, along with the best performing feature on each modality.
	First of all, we have compared MSVD and MVDZM by drawing the ROC curves corresponding By caring on the same set of experiments on the testing set with partial occlusions, we could
	to the classification of the Daimler non-occluded dataset using only Depth information (see figure observed that this time there is a turnover: the best domain is the depth one, giving the best

5.1).

Based on the ROC curve, at a classification rate of 90%, the false positive rate for MSVD is of 0.391, while for the MVDZM is of 0.36. Even if we use L1 normalization for MSVD the false positive rate remains at 0.39 therefore it seems that the process of zero mean lowers the error. Figure 5.1: Comparison of Mean Scaled Value Disparity and Mean Value Disparity Zero Mean In figure 5.2 are presented the performance of different features, independently on each domain, and on obtained testing set with no occlusions, while in figure 5.4 the same experiments are performed on the partially occluded testing set.

Enzweiler and Gavrila

[START_REF] Enzweiler | A multilevel mixture-of-experts framework for pedestrian classification[END_REF] 

have also compared HOG and LBP features independently on each modality and have drawn the conclusion that classifiers in the intensity modality have the best performance, by a large margin. Overall, we draw the same conclusions, but in a different light.

Several features computed on Intensity domain indeed give the best overall performance (HOG, LBP and LGP), but other features perform better in the depth domain (ISS, Haar Wavelets and MSVZM). On the whole, the best performance is obtained by HOG features on the intensity domain, but followed very closely by LGP computed also on Intensity. In the Depth domain, results for HOG, ISS, LBP and LGP, while for Haar Wavelets and MSVZM the motion has the best results. ISS features, although had a very good performance on the Depth domain for the non-occluded testing set, in the presence of occlusion are less robust, being outperformed by LGP,

False Positive Rate Classification Rate HOG (Intensity) 0.0122 ISS (Depth) 0.0745 LGP (Flow) 0.1497

  

	c)	d)

False Positive Rate Classification Rate HaarWave (Depth) 0.3819 HaarWave (Intensity+Flow) 0.3634 HaarWave (Depth+Flow) 0.2368 HaarWave (Intensity+Depth) 0.2854 HaarWave (Intensity+Depth+Flow) 0.1776

  .7 we compare a classifier based on the best feature on each modality (HOG on Intensity, ISS on Depth and LGP on Motion), with inter-feature fusion on all modalities. The
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	best performing system is a classifier trained on four features (HOG, ISS, LGP and LBP) and all
	three modalities, having an approximative factor of 50 less positives than a comparable HOG
	classifier using Intensity.										

False Positive Rate Classification Rate MSVZM (Depth) 0.3836 MSVZM (Intensity+Flow) 0.4149 MSVZM (Depth+Flow) 0.2558 MSVZM (Intensity+Depth) 0.2997 MSVZM (Intensity+Depth+Flow) 0.1997

  Figure 5.6: Classification performance comparison between different features using all modality fusion per feature (a) along (b) with a comparison between the best feature modality fusion (HOG on Intensity, Depth and Flow) and the best performing feature on each modality ( HOG on Intensity, ISS on Depth and LGP computed on Motion )
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	Figure 5.7: Classification performance comparison between the fusion of best performing feature
	on each modality ( HOG on Intensity, ISS on Depth and LGP on Motion ) with all modalities
	fusion of different features (HOG and LBP; HOG, ISS and LBP; HOG, ISS and LGP; HOG, ISS,
	LBP and LGP)							

Table A .

 A 1: Color space comparison using No Aggregation and a Winner takes it all strategy. ADCCC 34.76 32.12 43.07 40.35 53.63 43.32 55.94 34.11 C AD 66.57 67.88 67.09 67.28 69.86 66.71 69.11 75.64 C CCC 41.49 37.35 53.49 50.01 63.41 54.55 67.13 40.64 C CT 51.43 48.07 61.49 58.63 68.99 61.9 72.01 51.09 C ADCT 42.22 40.01 49.43 47.33 57.68 49.51 59.33 42.65 C Dif f CCC 38.77 35.43 47.02 44.36 58.67 48 61.39 36.50 C Dif f CT 46.94 43.14 52.73 50.81 63.82 53.67 65.67 42.73 Table A.2: Color space comparison using No Aggregation and Window Voting strategy.

	Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY
	C SD	66.16 74.94 66.91 67	70.13 66.52	78	75.64
	C Cost Function RGB	XYZ	LUV	LAB	HLS	YCrCb HSV	GRAY
	C SD	30.00	31.7675 32.4208 32.3042 35.1031 31.7288 33.8995 48.17
	C ADCCC	14.76	13.42	21.8807 20.0289 28.1008 21.4795 29.8935 15.77
	C AD	31.21	32.6914 33.4616 33.5808 35.4658 33.0343 34.2492 48.17
	C CCC	17.1627 14.90	27.2618 24.4854 37.0718 27.575	42.1272 17.16
	C CT	19.7743 17.67	29.8086 27.1517 38.7429 29.9694 43.5671 20.37
	C ADCT	15.6836 14.45	21.7888 20.1423 27.3889 21.2061 28.984	16.58
	C Dif f CCC	16.2719 14.60	23.938	22.1868 31.8153 23.5583 34.4055 16.40
	C Dif f CT	16.7015 15.10	22.817	21.5034 30.8558 22.8666 32.6899 16.69

Table A .

 A 3: Color space comparison using No Aggregation and Cross Voting strategy. SD 23.1853 24.6221 23.8924 23.4984 35.6116 21.74 34.5799 43.62 ADCT 10.6197 10.33 13.0203 11.9332 24.2607 11.8536 25.0075 11.31 C Dif f CCC 11.0843 10.47 13.4342 12.2978 27.4328 13.1517 29.6087 10.50 C Dif f CT 12.3039 11.28 14.3126 13.553 28.2325 13.6517 29.7005 11.50 Table A.4: Color space comparison using Window Aggregation and Winner take it all strategy. SD 28.843 26.8752 24.0554 24.6697 45.5687 24.0179 45.0384 22.47 C ADCCC 16.3617 15.22 22.4926 20.8911 27.7786 21.7776 28.7909 16.85

	Cost Function RGB	XYZ	LUV	LAB	HLS	YCrCb HSV	GRAY
	C C ADCCC	9.8853	9.53	12.0777 11.057	23.8956 11.8662 25.0917 10.26
	C AD	25.2124 25.9624 24.8991 24.6209 35.9399 23.36	35.1634 43.62
	C CCC	10.8492 9.98	14.0195 12.6536 32.452	14.0836 38.5133 10.35
	C CT	13.8631 12.78	18.4191 17.1274 36.3517 17.6975 42.7936 13.76
	C Cost Function RGB	XYZ	LUV	LAB	HLS	YCrCb HSV	GRAY
	C C AD	21.56	20.52	22.2395 22.938	27.83	22.2445 26.7601 21.55
	C CCC	16.3865 14.55	25.6282 23.1288 35.0064 25.1609 39.2748 16.51
	C CT	16.9811 15.27	25.6533 23.0397 34.0793 25.0693 37.9766 17.26
	C ADCT	16.7156 15.52	22.5112 20.8071 27.5222 21.9147 28.5869 17.13
	C Dif f CCC	17.2878 15.92	23.7943 22.164	30.5305 23.1127 32.0148 16.77
	C Dif f CT	17.2317 16.02	22.6881 21.4227 29.0603 22.3661 29.624	17.20

Table A .

 A 5: Color space comparison using Window Aggregation and Window Voting strategy. ADCT 14.9334 14.10 19.6912 18.0869 23.8878 19.0941 24.6584 15.14 C Dif f CCC 15.668 14.64 21.2967 19.7834 27.1354 20.6203 28.3192 15.13 C Dif f CT 15.5516 14.72 20.1489 18.8904 25.4204 19.7925 25.8481 15.36 Table A.6: Color space comparison using Window Aggregation and Cross Voting strategy. SD 12.6762 12.42 12.918 13.0423 21.5226 12.5993 20.6503 12.92 C ADCCC 10.8963 10.34 12.7115 11.4688 20.31 12.2459 20.3794 10.99 ADCT 11.2006 10.74 13.168 11.9889 19.8799 12.2537 20.0019 11.53 C Dif f CCC 11.5268 10.75 13.5024 12.1339 22.7681 12.814 23.7329 10.76 C Dif f CT 11.7755 11.16 13.8078 12.6727 21.3157 12.977 21.5008 11.62 Table A.7: Color space comparison using Cross Aggregation and Winner Takes it all strategy. Dif f CCC 13.2558 12.6632 15.1867 14.0014 30.1137 14.8062 31.3186 11.67 C Dif f CT 14.1111 13.3458 15.9304 15.0104 30.7311 15.586 30.9725 12.99 Table A.8: Color space comparison using Cross Aggregation and Window Voting strategy. Dif f CCC 11.8087 11.415 13.8045 12.7777 23.6381 13.5168 24.1776 10.75 C Dif f CT 12.348 11.806 14.1029 13.4131 22.3486 13.8942 22.5228 11.62 Table A.9: Color space comparison using Cross Aggregation and Cross Voting strategy.

	Cost Function RGB C SD 26.135 C ADCCC 14.897 C AD 18.0667 17.20 XYZ 24.3667 20.9516 21.3165 43.0206 20.7607 42.8491 19.04 LUV LAB HLS YCrCb HSV GRAY 14.09 20.0291 18.7216 24.6324 19.4426 25.3579 15.31 18.6889 19.1435 23.1094 18.6812 22.1849 18.00 C CCC 14.4862 13.22 22.1633 20.1229 30.6773 21.5609 34.4548 14.62 C CT 14.8307 13.66 21.6604 19.4697 28.9722 20.9686 32.296 14.99 C Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY C C AD 12.268 12.13 12.707 12.9205 19.3606 12.4246 18.5638 12.96 C CCC 10.4625 9.66 12.8513 11.6512 25.5045 12.6764 28.9731 10.36 C CT 11.005 10.50 13.7054 11.8693 24.1079 12.7627 26.1566 11.35 C Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY C SD 18.7188 18.65 19.503 19.7141 35.7187 19.4803 33.4478 19.89 C ADCCC 12.3434 11.86 14.6939 13.8241 27.9153 14.3914 28.259 11.94 C AD 17.1391 16.88 17.495 17.7178 31.9723 17.5203 30.1517 17.37 C CCC 11.9277 11.03 15.7659 14.0439 35.0787 15.1236 40.6607 11.52 C CT 14.2699 13.18 18.4644 16.1716 38.1547 17.039 43.9023 13.63 C ADCT 13.1236 12.50 15.4782 14.3622 29.2378 14.8011 29.6902 12.70 C Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY C SD 15.22 15.3307 16.6239 16.863 24.2304 16.821 22.4271 16.76 C ADCCC 10.9851 10.64 13.3125 12.596 21.8262 13.0357 21.6177 10.93 C AD 13.98 13.9967 15.0722 15.2701 21.9465 15.2162 20.5315 14.70 C CCC 10.0924 9.64 13.0713 11.9509 26.597 12.7037 30.164 10.22 C CT 10.878 10.43 13.8252 12.3969 25.7543 12.701 28.6817 10.97 C ADCT 11.3643 10.84 13.5748 12.6573 21.0923 12.9682 21.3276 11.15 XYZ LUV LAB HLS YCrCb HSV GRAY C SD 14.77 14.8463 16.2026 16.3635 24.611 16.4097 22.9833 16.11 C ADCCC 10.2129 9.92 11.9966 11.5529 21.2961 12.0302 21.0467 10.49 C AD 13.57 13.6026 14.6569 14.809 21.8622 14.8233 20.642 14.11 C CCC 9.41481 8.92 11.3475 10.7914 25.775 11.47 29.0424 9.80 C CT 10.077 9.68 11.9903 11.0646 25.4984 11.2415 28.2317 10.39 C ADCT 10.6396 10.08 12.1749 11.8233 20.7813 12.1242 21.0541 10.68 C Dif f CCC 11.0808 10.6242 12.3572 11.5996 23.064 12.2227 23.917 10.22 C Dif f CT 11.4388 10.9748 12.9124 12.5185 22.282 12.7513 22.4395 10.94 B Parameters algorithms stereo vision Parameter Value Subpixel Computation false I_threshold1 5 I_threshold2 8 Interaction Radius 6 Lambda 1 15 Lambda 1 5 K 25 Occlusion Penalty 10000 Maximum number of iterations 1 Randomize every iteration true Table B.1: Parameters Algorithms Graph Cuts Parameter Value Arm Length Vertical 10 C Cost Function RGB Arm Length Horizontal 17

Table B .

 B 2: Parameters Algorithms Cross Zone Aggregation

Gross Net Product

The Visible domain dataset will be treated in chapter 5

We will further refer to this dataset as OlmedaFIR

This dataset is maintained by Vislab. Terms and conditions for usage may apply. http://vislab.it/

The camera was provided by Laboratoire d'Electronique, d'Informatique et de l'Image (Le2i) http://le2i. cnrs.fr/

Artificial Vision and Intelligent Systems Laboratory (VisLab) of Parma University (Italy)www.vislab.it

It is publicly available at the following web address: www.vision.roboslang.org

http://dictionary.reference.com/browse/stereo-2 A study published by Richards[START_REF] Richards | Stereopsis and stereoblindness[END_REF] shows that at least 3% of persons posses no wide-field stereopsis in one hemisphere

NASA Solar TErrestrial RElations Observatory (STEREO): Studying the sun in 3D

Disparity was originally referring to the difference in image location of an object seen by the left and right eyes.

A minimum spanning tree is a tree connecting all the nodes whose sum of weights is minimum among all such trees

4.1. STEREO VISION PRINCIPLES CHAPTER 4. STEREO VISION FOR ROAD SCENES

http://vision.middlebury.edu/stereo/

The assessment was done visually, since we don't have a ground truth for the disparity map
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Experiments show that on KITTI dataset the results of local methods are comparable with those of global methods. In addition local methods have a high computing speed. From the tested functions, the proposed function gives the smallest error rate and has proven to be more robust to radiometric distortions. Consequently, in the context of real time constraint of the intelligent vehicle application, our choice as a stereo matching algorithm is for the local method in combination with a cost function based on DIF F (C Dif f CT , C Dif f CCC ). KITTI dataset for stereovision contains only grayscale information, but color could provide further discriminative information about the scene, as shown by the experiments performed Middlebury dataset. Therefore, as future work it would be interesting to test the functions on color road stereo images.

In the next chapter we are going to study the performance of a multi-modal classifier, Intensity, Disparity and even Motion, for the task of pedestrian classification. As stereo matching algorithm for the experiments performed in the next chapter we chose the local stereo matching algorithm based on cross zone aggregation with high confidence voting and the cost function C Dif f CT .

Related work

A new direction of research for pedestrian classification and detection is represented by the combination of different features and modalities, extracted from Visible Domain, such as intensity, motion information from optical flow and depth information given by the disparity map.

Visible Domain.

Most of the existing research is using depth and motion just for hypothesis generation, by constructing a model of the scene geometry. For example, Bajracharya et al. [5] use stereovision in order to segment the image into regions of interest, followed by the use of geometric features computed from a 3D point cloud. Enzweiler et al. [START_REF] Enzweiler | Monocular pedestrian recognition using motion parallax[END_REF] use motion information in order to extract region of interest in the image, followed by shape based detection and texture based classification.

Ess et al. [START_REF] Ess | Depth and appearance for mobile scene analysis[END_REF] integrate stereo depth cues, ground-plane estimation, and appearance-based object detection. Gavrila and Munder [START_REF] Dariu | Multi-cue pedestrian detection and tracking from a moving vehicle[END_REF] use (sparse) stereo-based ROI generation, shapebased detection, texture-based classification and (dense) stereo-based verification. Nedevschi et al. [START_REF] Nedevschi | Stereo-based pedestrian detection for collision-avoidance applications[END_REF] propose a method for object detection and pedestrian hypothesis generation based on 3D information, and use a motion-validation method to eliminate false positives among walking pedestrians.

Rather than just using depth and motion as cues for the hypothesis generation, a few research works began integrating features extracted from these modalities directly into the classification algorithm. For example, Dalal et al. [START_REF] Dalal | Human detection using oriented histograms of flow and appearance[END_REF] proposed the use of histogram of oriented flow (HOF) in combination with the well known HOG for human classification. Rohrbach et al. [START_REF] Rohrbach | High-level fusion of depth and intensity for pedestrian classification[END_REF] propose a high level fusion of depth and intensity utilizing not only the depth information in the pre-processing step, but extracting discriminative spatial features (gradient orientation histograms and local receptive fields) directly from (dense) depth and intensity images. Both modalities are represented in terms of individual feature spaces. Wojek et al. [START_REF] Wojek | Multi-cue onboard pedestrian detection[END_REF] incorporates motion estimation, using HOG, HAAR and Oriented Histograms of Flow. Walk et al. [START_REF] Walk | New features and insights for pedestrian detection[END_REF] proposed a combination of HOF and HOG, along with other intensity based features, with very good results on a challenging monocular dataset: Caltech [START_REF] Dollar | Pedestrian detection: An evaluation of the state of the art[END_REF]. Walk et al. [START_REF] Walk | Disparity statistics for pedestrian detection: Combining appearance, motion and stereo[END_REF] proposed the combination of HOG, HOF, and a HOG-like descriptor applied on the disparity field (HOS), along with a proposed Disparity statistics (DispStat) feature. Most of these articles have used just one feature applied on different modalities and they lack an analysis of the performance of different features computed from a given modality.

Enzweiler et al. [START_REF] Enzweiler | Multi-cue pedestrian classification with partial occlusion handling[END_REF], [START_REF] Enzweiler | A multilevel mixture-of-experts framework for pedestrian classification[END_REF] Based on the above rules, the arms of the cross zones are contructed in the following way:

the first color threshold (τ 1 ) and first size threshold (L 1 ) are used the same way as by Zhang et al. [START_REF] Zhang | Cross-based local stereo matching using orthogonal integral images[END_REF]; in order for the arm to not run across edges a color restriction is enforced between p l and its predecessor p l + (1, 0) on the same arm; for second size threshold (L 2 ) should be large enough in order to cover the large textureless areas, but in this case a second color threshold much more restricive is used (τ 2 ). This strategy gives very good results on the Middlebury dataset therefore we have tested it on KITTI dataset as well.

Unfortunately, this method of constructing the cross area does not improve the results. The overall error on the training set from KITTI database is of 21% in comparison with 12.70% obtained using the strategy of Zhang et al. [START_REF] Zhang | Cross-based local stereo matching using orthogonal integral images[END_REF]. We don't deny the impact of the strategy proposed by Mei et al. [START_REF] Mei | On building an accurate stereo matching system on graphics hardware[END_REF] in the textureless areas parallel with the camera plane (see figure D.2, window area in the right side of the image), but this comes at a higher error rate in the inclined areas, as that of the road regions.