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Summary

The main purpose of constructing Intelligent Vehicles is to increase the safety for all traffic

participants. The detection of pedestrians, as one of the most vulnerable category of road users,

is paramount for any Advance Driver Assistance System (ADAS). Although this topic has been

studied for almost fifty years, a perfect solution does not exist yet. This thesis focuses on several

aspects regarding pedestrian classification and detection, and has the objective of exploring and

comparing multiple light spectrums (Visible, ShortWave Infrared, Far Infrared) and modalities

(Intensity, Depth by Stereo Vision, Motion).

From the variety of images, the Far Infrared cameras (FIR), capable of measuring the

temperature of the scene, are particular interesting for detecting pedestrians. These will usually

have higher temperature than the surroundings. Due to the lack of suitable public datasets

containing Thermal images, we have acquired and annotated a database, that we will name RIFIR,

containing both Visible and Far-Infrared Images. This dataset has allowed us to compare the

performance of different state of the art features in the two domains. Moreover, we have proposed a

new feature adapted for FIR images, called Intensity Self Similarity (ISS). The ISS representation

is based on the relative intensity similarity between different sub-blocks within a pedestrian region

of interest. The experiments performed on different image sequences have showed that, in general,

FIR spectrum has a better performance than the Visible domain. Nevertheless, the fusion of the

two domains provides the best results.

The second domain that we have studied is the Short Wave Infrared (SWIR), a light spectrum

that was never used before for the task of pedestrian classification and detection. Unlike FIR

cameras, SWIR cameras can image through the windshield, and thus be mounted in the vehicle’s

cabin. In addition, SWIR imagers can have the ability to see clear at long distances, making it

suitable for vehicle applications. We have acquired and annotated a database, that we will name

RISWIR, containing both Visible and SWIR images. This dataset has allowed us to compare the



performance of different pedestrian classification algorithms, along with a comparison between

Visible and SWIR. Our tests have showed that SWIR might be promising for ADAS applications,

performing better than the Visible domain on the considered dataset.

Even if FIR and SWIR have provided promising results, Visible domain is still widely used

due to the low cost of the cameras. The classical monocular imagers used for object detection

and classification can lead to a computational time well beyond real-time. Stereo Vision provides

a way of reducing the hypothesis search space through the use of depth information contained in

the disparity map. Therefore, a robust disparity map is essential in order to have good hypothesis

over the location of pedestrians. In this context, in order to compute the disparity map, we have

proposed different cost functions robust to radiometric distortions. Moreover, we have showed

that some simple post-processing techniques can have a great impact over the quality of the

obtained depth images.

The use of the disparity map is not strictly limited to the generation of hypothesis, and could

be used for some feature computation by providing complementary information to color images.

We have studied and compared the performance of features computed from different modalities

(Intensity, Depth and Flow) and in two domains (Visible and FIR). The results have showed that

the most robust systems are the ones that take into consideration all three modalities, especially

when dealing with occlusions.

Keywords: Intelligent Vehicles, Pedestrian Detection, Far-Infrared, Short-Wave Infrared,

StereoVision



Résumé

L’intérêt principal des systèmes d’aide à la conduite (ADAS) est d’accroître la sécurité de tous les

usagers de la route. Le domaine du véhicule intelligent porte une attention particulière au piéton,

l’une des catégories la plus vulnérable. Bien que ce sujet ait été étudié pendant près de cinquante

ans par des chercheurs, une solution parfaite n’existe pas encore. Nous avons exploré dans ce

travail de thèse différents aspects de la détection et la classification du piéton. Plusieurs domaines

du spectre (Visible, Infrarouge proche, Infrarouge lointain et stéréovision) ont été explorés et

comparés.

Parmi la multitude des systèmes imageurs existants, les capteurs infrarouge lointain (FIR),

capables de capturer la température des différents objets, reste particulièrement intéressants

pour la détection de piétons. Les piétons ont, le plus souvent, une température plus élevée que

les autres objets. En raison du manque d’accessibilité publique aux bases de données d’images

thermiques, nous avons acquis et annoté une base de donnée, nommé RIFIR, contenant à la fois

des images dans le visible et dans l’infrarouge lointain. Cette base nous a permis de comparer

les performances de plusieurs attributs présentés dans l’état de l’art dans les deux domaines.

Nous avons proposé une méthode générant de nouvelles caractéristiques adaptées aux images FIR

appelées « Intensity Self Similarity (ISS) ». Cette nouvelle représentation est basée sur la similarité

relative des intensités entre différents sous-blocks dans la région d’intérêt contenant le piéton.

Appliquée sur différentes bases de données, cette méthode a montré que, d’une manière générale,

le spectre infrarouge donne de meilleures performances que le domaine du visible. Néanmoins, la

fusion des deux domaines semble beaucoup plus intéressante.

La deuxième modalité d’image à laquelle nous nous sommes intéressé est l’infrarouge très

proche (SWIR, Short Wave InfraRed). Contrairement aux caméras FIR, les caméras SWIR sont

capables de recevoir le signal même à travers le pare-brise d’un véhicule. Ce qui permet de les

embarquer dans l’habitacle du véhicule. De plus, les imageurs SWIR ont la capacité de capturer



une scène même à distance lointaine. Ce qui les rend plus appropriées aux applications liées

au véhicule intelligent. Dans le cadre de cette thèse, nous avons acquis et annoté une base de

données, nommé RISWIR, contenant des images dans le visible et dans le SWIR. Cette base a

permis une comparaison entre différents algorithmes de détection et de classification de piétons

et entre le visible et le SWIR. Nos expérimentations ont montré que les systèmes SWIR sont

prometteurs pour les ADAS. Les performances de ces systèmes semblent meilleures que celles du

domaine du visible.

Malgré les performances des domaines FIR et SWIR, le domaine du visible reste le plus utilisé

grâce à son bas coût. Les systèmes imageurs monoculaires classiques ont des difficultés à produire

une détection et classification de piétons en temps réel. Pour cela, nous avons l’information

profondeur (carte de disparité) obtenue par stéréovision afin de réduire l’espace d’hypothèses

dans l’étape de classification. Par conséquent, une carte de disparité relativement correcte est

indispensable pour mieux localiser le piéton. Dans ce contexte, une multitude de fonctions coût

ont été proposées, robustes aux distorsions radiométriques, pour le calcul de la carte de disparité.

La qualité de la carte de disparité, importante pour l’étape de classification, a été affinée par un

post traitement approprié aux scènes routières.

Les performances de différentes caractéristiques calculées pour différentes modalités (Intensité,

profondeur, flot optique) et domaines (Visible et FIR) ont été étudiées. Les résultats ont montré

que les systèmes les plus robustes sont ceux qui prennent en considération les trois modalités,

plus particulièrement aux occultations.

Mots-clés: Véhicules intelligents, Détection de Piétons, Infrarouge lointain, Infrarouge à ondes

courtes, Stéréo Vision



Rezumat

Scopul principal al construt, iei vehiculelor inteligente este de a cres,te nivelul de sigurant,ă pentru

tot, i participant, ii la trafic. Detect, ia pietoniilor, fiind una dintre categoriile cele mai vulnerabile în

trafic, este de o important,ă majoră pentru orice Sistem de Asistent,ă Avansată la Conducere (en:

Advance Driver Assistance System - ADAS ). Des, i acest domeniu a fost studiat de aproape cincizeci

de ani, nu există încă o solut, ie perfectă. Această lucrare se concentreză pe diverse aspecte legate

de detect, ia s, i clasificarea pietonilor, s, i are ca obiectiv explorarea si compararea diverselor domenii

(Vizibil, Infraros,u de Lungime Scurtă, Infraros,u de Lungime Lungă) s, i modalităt, i (Intensitate,

Disparitate, Flux Optic).

Din divesele tipuri de senzori, spectrul Infraros,u de lungime de unde lungă (en: FIR), capabil

de a detecta temperatura diverselor obiecte, este deosebit de interesant pentru detectarea pietonilor.

Aces,tia din urmă, vor avea de regulă o temperatură mai ridicată decât mediul înconjurător. Din

lipsa unor baze de date adecvate cu imagini rutiere FIR, am achizit, ionat s, i adnotat o bază de

date cu imagini din acest spectru de lumină, pe care o vom numi RIFIR, cont, inând imagini atât

în spectrul Visibil cât s, i FIR. Aceste imagini ne-au permis să comparăm performant,a diverselor

caracteristici calculate pe imagini în cele două domenii. In contextul imaginilor termice, am

propus o nouă caracteristică adaptată pentru imaginile FIR, numită Intensity Self Similarity

(ISS ). Reprezentarea ISS este bazată pe calculul unor similarităt, i de intensitate între sub-blocuri

din interiorul unei regiuni de interes. Experimentele realizate pe diverse baze de imagini au arătat

că în general, spectrul FIR are o performant,ă mai bună decât domeniul Vizibil. Cu toate acestea,

fuziunea celor două spectre de lumină a dat performant,ele cele mai bune.

După analiza domeniului FIR, am studiat un alt spectru Infraros,u, care nu a fost folosit până

acum pentru detect, ia s, i clasificarea pietonilor, Infraros,u de Lungime Scurtă (Short Wave Infrared

- SWIR). Spre deosebire de camerele FIR, cele SWIR au abilitatea de a vedea prin parbriz, prin

urmare pot fi montate în interiorul vehiculului. În plus, camerele SWIR au posibilitatea de a



vedea clar pe distant,e lungi, ceea ce le face convenabile pentru aplicat, ii ADAS. Am achizit, ionat

s, i adnotat o nouă bază de imagini, pe care o vom numi RISWIR, cont, inând imagini atât din

Vizibil cât s, i din SWIR. Testele realizate au arătat rezultate promit,ătoare pentru spectrul SWIR

folosit în aplicat, ii de tip ADAS, având rezultate mai bune decât spectrul Visibil pe imaginile

considerate.

Chiar dacă FIR s, i SWIR au dat rezultate favorabile, spectrul Visibil este încă domeniul cel

larg utilizat, în special din cauza costului scăzut al echipamentelor. Clasicele imagini monoculare

folosite pentru detect, ia s, i clasificarea de obiecte pot să dea un timp de procesare foarte lung.

Stereo-Viziunea oferă o modalitate de a reduce spat, iul de căutare al ipotezelor prin folosirea

informat, iei privind distant,a până la obiecte, dată de harta de disparitate. Prin urmare, o hartă de

disparitate robustă este esent, ială pentru a avea ipoteze relevante cu privire la locat, ia pietonilor.

În acest context, pentru calculul hart, ii de disparitate am propus câteva funct, ii de cost robuste

la distorsiuni radiometrice. În plus, am arătat că technici simple de post-procesare pot avea un

impact semnificativ asupra calităt, ii hărt, ii de disparitate.

Folosirea hărt, ii de disparitate nu este strict limitată la generarea de ipoteze, ci poate să fie

utilizată s, i pentru calcularea unor caracteristici, funizând informat, ii complementare imaginilor

color. În acest context, am studiat s, i comparat performant,a caracteristicilor calculate pe diverse

modalităt, i (Intensitate, Disparitate s, i Fluxul Optic) în diverse domenii (Visibil s, i FIR). Rezultatele

au arătat că cele mai robuste sisteme sunt cele care iau în considerare toate cele trei modalităt, i,

în special pentru rezolvarea ocluziunilor.

Cuvinte cheie: Vehicule Inteligente, Detect, ia pietonilor , Infraros,u, FIR, SWIR, Stereo-Viziune
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Your car should drive itself. It’s amazing to

me that we let humans drive cars. It’s a bug

that cars were invented before computers.

Eric Schmidt

Introduction

Intelligent autonomous vehicles have long surpassed the stage of a Sci-Fi idea, and have become

a reality [62],[1]. The main motivation behind this technology is to increase the safety of both

driver and other traffic participants. In this context, pedestrian protection systems have become

a necessity. But merely passive components like airbags are not enough: active safety, technology

assisting in the prevention of a crash, is vital. For this, a system of pedestrian detection and

classification plays a fundamental role.

Challenges

Pedestrian detection and classification in the context of intelligent vehicles in an urban environment

poses a lot of challenges:

Pedestrian Appearance and Shape. By nature, the humans have different heights and body

shapes. But this variability in appearance is further increased by different cloth types. Moreover,

human shape can change a lot in a short period of time (for example a person that bends to

tie its shoes). Also the appearance depends on the point of view of the camera, as well as the

distance between the camera and the pedestrian. Close pedestrians can bear little resemblance

with the ones situated far away.

Occlusion. Occlusions represents an important challenge for the detection of any type of object,

and in the case of pedestrians they can be divided into: self and external occlusions. Self-occlusion

are cause especially by the pose of the object, in the case of a pedestrian that has a side-way

position in relation with the point of view of the camera will certainly exhibit occlusion of some

body-parts. Moreover different objects carried by the pedestrians might have the same effect (for

example hats, bags, umbrellas). In the external occlusions category we include other pedestrians

15
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(especially in an urban situation), poles, other cars, as well as the situation in which the pedestrian

is too close to the camera leading certain body-parts exit the field of view.

Environmental conditions. Although some meteorological circumstances might not have a

direct impact on the quality of images (for example light rain), they can influence the appearance

of pedestrians for cameras (for example a passer-by can open an umbrella which might lead to

occlusion of the head region). Other conditions might lead to situations where the quality of

retrieved images is altered (for example situations of haze, fog, snow, heavy rain etc.). Another

factor that should be taken into consideration is the time of day, that has a direct impact over the

amount of ambient light available - usually, during daytime the problem of pedestrian detection

and classification poses less problems than during night.

Sensor choice. Each existing sensor has certain disadvantages and advantages, depending

on the situation. For example, passive sensors like visible cameras can be affected by low light

conditions, giving poor images with low variation in intensity across objects and background,

while thermal cameras might experience the same problems when the environment has a similar

temperature with the pedestrians. Active sensors, like LIDAR, have the advantage of providing

distance to all objects in a scene, but they have as output a large datasets that might be difficult

to interpret.

Other objects. Distinction between non-pedestrians and pedestrians might not be always

simple, being difficult to construct a model that differentiates between pedestrians and any other

existing objects.

Main Research Contributions

Motivated by the importance of pedestrian detection, there exist an extensive amount of work

done in connection with this field. Our objective is to study the problem across different light

spectrum and modalities, with an emphasis on disparity map.

Our main contributions can be summarised as follows:

• Creation and annotation of two databases for benchmarking of pedestrian classification,

one for Far-Infrared (FIR) and the other one in Short-Wave Infrared (SWIR).

• In the context of Thermal images, we have proposed a new feature, Intensity Self Similarity

(ISS). The performance of ISS was compared on three different datasets with state of the

art features.
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• As a novelty, we have studied the SWIR spectrum for the task of pedestrian classification,

and we have performed a comparison with the Visible domain.

• As a low cost solution, we believe that Stereo Vision is a promising alternative. In this

context, we have also focused on improving Stereo Matching algorithm by proposing new

cost functions.

• We have studied the performance of different features across different domains (Visible,

FIR) and across multiple modalities (Intensity, Motion, Disparity map)

Thesis Overview

This thesis is organized as follows (see also figure 1):

Chapter 1 presents an in-depth analysis for the motivation of a pedestrian detection system,

along with an overview of existing types of sensors. Our sensor of choice is passive sensors

represented by cameras sensitive to different light spectrums: Visible, Far Infrared and Short

Wave Infrared. We present also a short review of the steps employed in the task of pedestrian

classification and detection with an emphasise on the step of feature computation.

In Chapter 2 we study the problem of pedestrian classification in Thermal images (Far-

Infrared Spectrum). After overviewing existing datasets of Thermal images, we have reached

the conclusion that they all have important disadvantages: either the quality of the thermal

images is poor and there is not possibility of direct comparison with the Visible spectrum; or

the datasets are not publicly available. In this context, we have acquired and annotated a new

dataset. Moreover we have proposed a feature adapted for pedestrian classification in Far-Infrared

images and compared it with other state of the art features, in different conditions.

A new spectrum that can be interesting for the task of pedestrian detection and classification

is the Short-Wave Infrared (SWIR). An analysis of this light spectrum is made in Chapter 3.

After having performed some preliminaries experiments on a restricted dataset, we have acquired

and annotated a dataset of SWIR images, along with the Visible correspondent. On this later

dataset, we have compared the two spectrums from the perspective of different features.

Infrared cameras represent an interesting alternative to Visible cameras, and in general with

better results, but remains an expensive one. In this context, StereoVision could improve the

results obtained by just the employment of Visible cameras. Chapter 4 deals with the algorithms

of Stereo Matching. We propose several improvements for this algorithm, that mostly focus on

the employed cost function.

Chapter 5 treats the problem of multi-modality pedestrian classification (Intensity, Depth
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Figure 1: Thesis structure

Figure 2: Domain-modality-feature relationship

and Optical Flow) in both Visible and FIR spectrum. In figure 2 is presented the difference

between the domains and modalities employed. Moreover we show a preliminary analysis of the

impact of the quality of the Disparity Map over the results of classification. Finally, conclusions

and future work are presented in Chapter 6.
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Management by objective works - if you know
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1.1 Motivation

As shown in a report published by World Health Organization from 2013 [104], it is estimated

that every year 1.24 million people die as a result of a road traffic collision. That means that

over 3000 deaths occur each day. An additional 20 to 50 million1 more people sustain non-fatal

injuries from a collision, leading the traffic collision to be also one of the top causes of disability

worldwide.
1Non-fatal crash injuries are insufficiently documented
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Road traffic injuries are the eight leading cause of death globally, among the three leading

causes of death for people between 5 and 44 years of age and the first cause of death for people

aged 15− 19. Another sad statistic is that road crashes kill 260 000 children a year and injure

about 10 million (join report of Unicef and the World Health Organization). Without any action

taken, road traffic injuries are predicted to become the fifth leading cause of death in the world,

reaching around 2 million deaths per year by 2020. The main cause of the increase in number of

deaths is caused by a rapid increase in motorization without sufficient improvement in road safety

strategies and land use planning. The economic consequences of motor vehicle crashes have been

estimated between 1% and 3% of the respective GNP2 of the world countries, reaching a total

over $500 billion.

Analysing the casualties worldwide by the type of road user shows that almost half of all

road traffic deaths are among vulnerable road users: motorcyclists (23%), pedestrians (22%) and

cyclists (5%). An additional 31% of deaths are represented by car occupants, while for the extra

19% there doesn’t exist a clear statistic of the road user type.
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Figure 1.1: Road traffic casualties by type of road user

Action must be taken on several levels and that is why, in March 2010 the United Nations

General Assembly resolution 64/255 proclaimed a Decade of Action for Road Safety 2011–2020

with a goal of stabilizing and then reducing the forecasted level of road traffic fatalities around

the world by increasing activities conducted at national, regional and global levels. There exist

five pillars to implement different activities: Road safety management, Safer roads and mobility,

Safer vehicles, Safer road users and Post-crash response.

Five key safety risk factors have been identified as speed, drink-driving, helmets, seat-bels,

and child restraints. For short term the way to address the problem of road collisions is better

legislation addressing these key factors. If all the countries would pass comprehensive laws,

according to [104], the number of world wide road casualties would decrease to a total of

around 800 000 per year. Therefore along a legislation that address key problems of road safety,

2Gross Net Product
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infrastructure and vehicle manufactures should follow along.

Because human factor is the leading cause of traffic accidents [50], contributing wholly or

partly for around 93% of crashes (see figure 1.2), we consider that for long term, Advanced Driver

Assistance Systems (ADAS) will play a key role in reducing the number of road accidents.
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Figure 1.2: Causes by percentage of road accidents (in USA and Great Britain)

Autonomous intelligent vehicles could represent a possible solution to the problem of traffic

accidents, having the capability in a lot of situations to react faster and being more effective,

due to possible access to multiple sources of information (given by different sensors, but also by

vehicle-to-vehicle communication). Moreover intelligent vehicles could have further benefits like

reducing traffic congestions, higher speed limit or relieving the vehicle occupants from driving.

But all these will be feasible only the moment when the vehicles become reliable enough.

Furthermore, in intelligent transportation field, the focus on passenger safety in human-

controlled motor vehicles has shifted, in recent years, from collision mitigation systems, such

as seat belts, airbags, roll cages, and crumple zones, to collision avoidance systems, also called

Advanced Driver Assistance Systems (ADAS). The latter includes adaptive cruise control, lane

departure warning, traffic sign recognition, blind spot detection, among others. If the collision

mitigation systems seek to reduce the effects of collisions on passengers, ADAS systems seek to

avoid accidents altogether.

In this context, it is imperative for the vehicles (both autonomous and human-controlled) to

be able to detect other traffic participants, especially the vulnerable road users like pedestrians.

1.2 Sensor types

Choosing the right sensor for an object detection problem is of paramount importance. The right

choice can have a huge impact over the ability of the system to perform robustly in different

situations and environments.

23



1.3. A SHORT REVIEW... CHAPTER 1. PRELIMINARIES

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

��
���

��
���

��
���

��
���

��
��

��
��

��
��

��
��

��
�

��
�

��
�

��
�

��
�

�	

	

����	�
���	� �� ����	��� �����

�	��

�� ��

�	�����	����
��
� 
!�

"	��!��#$%�&
'

���()����&*+'

,�� -"�� �"�� ."�� ���

�/0 �/� 1 � �2 �����


Figure 1.3: Electromagnetic spectrum with detailed infrared spectrum.

Because pedestrian detection is a challenging problem that has applications not only in the field

of intelligent vehicles but also for computer interaction or surveillance systems, different sensor

types have been taken into consideration for the information acquisition from the environment.

In table 1.1 there are presented different camera types, like webcams, mono-visible cameras,

stereo cameras or infrared cameras, with advantages and disadvantages. Moreover, in table 1.2

are presented some of the complementary sensors.

Testing all sensors types might prove difficult, therefore, due to convenience (access, databases,

low-sensor cost, wide applicability), we are going to explore just the use of passive sensors (i.e.

cameras) for the task of pedestrian detection and classification. We are going to analyse Visible

spectrum (i.e. range 0.4-0.75 µm) with emphasises on the use of depth information obtained

from Stereo Vision, Short-Wave Infrared and Far Infrared (i.e. range 8-15 µm). In figure 1.3, for

reference, is presented the electromagnetic spectrum. In literature, in the context of cameras, the

range 8-15 µm is referred either as Long-Wave Infrared or Far Infrared. Thus, throughout this

thesis we are going to use these terms interchangeably.

1.3 A short review of Pedestrian Classification and Detection

There is a significant amount of existing works in the domain of pedestrian classification. Recent

surveys compare different algorithms and techniques. Gandhi and Trivedi [54] present a review

of pedestrian safety and collision avoidance systems, that includes infrastructure enhancements.

They classify the pedestrian detection approaches according to type and sensor configurations.
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Table 1.1: Review of different camera types

Camera Type Pros Cons

Webcam - RGB

• Connection type: USB 2,
USB 3, IEEE 1394 (rare)

• Resolution range: usually
@30fps 640x480

• Cheap; Easy to find; Simple to
use

• Widely supported by different
software environment

• Usually poor image quality, espe-
cially in low light

• Difficult to change camera set-
tings

• Typically fixed lens

• Problems can be experienced
when functioning for extended pe-
riods of time

Mono-Visible Cameras
(CCD and CMOS)

• Connection type: USB 2,
USB 3, GigE, IEEE 1394

• High resolution at high frame rate
is possible

• Interchangeable lens to suit dif-
ferent applications

• Camera designed for long time
functioning

• Main types of cameras used

• In night time, or difficult weather
conditions the camera perfor-
mance can drop

• Depending on the application,
without any depth information,
the computation time could in-
crease well beyond real-time

• Software integration could be dif-
ficult because each type of cam-
era comes with it’s specific drivers
that are platform dependent

Stereo Vision Cameras

• Same advantages like the Mono-
Visible Cameras

• Extra information provided by
the computed depth can give
essential information about the
scene

• Same disadvantages like Mono-
Visible Cameras

• Depending on the stereo vision al-
gorithm used and the quality de-
sired for the disparity map, com-
putation time could increase a lot

Near-Infrared Cameras

• Generally the same resolution like
visible cameras

• They capture light that is not vis-
ible to human eye

• Low cost compared with other in-
frared cameras

• Can be used very low-light

• Monochrome;

• They require infrared light, and
to be used in low light situations
an IR emmiter

• Sensitivity to sunlight

Far-Infrared Cameras

• Generally the same resolution like
visible cameras

• They capture the thermal infor-
mation from the environment

• Will work in very low-light condi-
tions without any additional emit-
ter

• Robust to daytime and night
time, especially for people detec-
tion

• High-cost

• Can’t see through glass, there-
fore for an application ADAS they
must be mounted outside the ve-
hicle.

• The integration could be difficult,
due to custom electronics or cap-
ture hardware
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Table 1.2: Review of other types of sensors

Sensor Type Pros Cons

Depth Cameras

• They belong in fact to
the IR cameras category
in the sense that there ex-
ist an infrared light projec-
tion that is used to con-
struct a depth image using
structured light or time-of-
flight.

• They have all the advantages of
stereo-cameras

• Depth image is constructed with-
out the need of a stereo-matching
algorithm, thus high frame rate
is obtained

• Small range of effectiveness

• Shiny surfaces are not detected
or can cause strange artifacts

• Sensitivity to sunlight, therefore
not suitable for outside use

Radar

• Transmits microwaves in
pulses that bounce off any
object in the path, thus
being able determine dis-
tance to objects

• Fairly accurate in determining
the distance to objects

• Low spatial resolution therefore it
is not practical for detecting the
type of object

LIDAR

• Works by projecting op-
tical laser light in pulses
and analysing the reflected
light

• Is the most effective way of get-
ting a 3D model of the environ-
ment

• High resolution depth image; Fast
acquisition

• High cost

• Very large datasets might prove
difficult to interpret

Geronimo et al. [58] also survey the task of pedestrian detection for ADAS, but they choose to

define the problem by analysing each different processing step. These surveys are an excellent

source for reviewing existing systems, but sometimes it is difficult to actually compare the

performance of different systems.

In this context, a few surveys try to make a direct comparison of different systems (features,

classifier) based on Visible images. For example, Enzweiler and Gavrila [39] cover the com-

ponents of a pedestrian detection system, but also compare different systems (Wavelet-based

AdaBoost, histogram of oriented gradient combined with an SVM classifier, Neural Networks

using local receptive fields and a shape-texture model) on the same dataset. They conclude

that the HOG/SVM approach outperformed all the other approaches considered. Enzweiler

and Gavrila [40] compare different modalities like image intensity, depth and optical flow with

features like HOG, LBP and they conclude that multi-cue/multi-feature classification results

in a significant performance boost. Dollar et al. [36] proposed a monocular dataset (Caltech

database) and make an extensive comparison of different pedestrian detectors. It is showed that

all the top algorithms use in one way or another motion information.

In this section we will just provide a short overview of the components that take part of most

of the pedestrian classification and detection systems.
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A simplified architecture of a pedestrian detection system can be split into several modules (as

presented in Figure 1.4): preprocessing, hypothesis generation and object classification/hypothesis

refinement. Although several more modules could be added, like Segmentation or Tracking, we

believe the three modules to be essential for the task. Furthermore, feedback loops between

modules could be added in order to have a higher precision.

1.3.1 Preprocessing

This module contains functions like exposure time, noise reduction, camera calibration etc. Most

existing approaches can be divided into monocular-based or stereo-based.

In case of monocular cameras, a few approaches undistort the images by computing the

intrinsic camera parameters [57]. Nevertheless, most of the existing datasets that benchmark

pedestrian detection and classification algorithms, do not provide camera intrinsic parameters or

undistorted images [36],[30].

In case of stereo-based systems, camera calibration of both intrinsic and extrinsic is usually a

requirement for the stereo-matching algorithm. Most of the systems will assume a fixed position

of the cameras and will therefore use just once the calibration checkboard. Other systems, take

into consideration the fact that the cameras relative position could be changed, therefore they

propose to continuously update extrinsic parameters [23].

1.3.2 Hypothesis generation

Hypothesis generation, also referred as candidate generation or determining Regions of Interest

(ROI) , has the purpose of extracting possible areas where a pedestrian might be found in the

image.

An exhaustive method is that of using a sliding window. A fixed window is moved along

the image. In order to detect pedestrians of different sizes, the image will be resized several

times and then it is parsed again. In the next module (object classification), each window is

separately classified into pedestrian/non-pedestrian. This technique will result in a high coverage

by assuring that every pedestrian in the image is contained in at least one window. Nevertheless,

it has several drawbacks. One disadvantage is the high number of hypothesis generating, thus

a high processing time. Moreover, many irrelevant regions, like that of sky, road, buildings are

parsed, usually leading to an increase in the number of false positives.

In monocular systems, other approaches perform image segmentation by considering color

distribution across the image or gradient orientations. In case of Far-Infrared images, intensity

threshold is a widely used technique, along with other methods like Point-of-Interest (POI)
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Figure 1.4: A simplified example of architecture for pedestrian detection
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extraction.

In stereo-based systems, computation of disparity map provides valuable information. Tech-

niques like stixels computation [8] or ground removal followed by determining objects above a

certain height from disparity maps [79], reduce the search space by up to a factor of 45 [9].

1.3.3 Object Classification/Hypothesis refinement

This module, usually, will take as input a list of ROIs generated in the previous step, and will

classify them in pedestrian/non-pedestrian (in order to reduce the false positive rate). For this,

different features are computed like: silhouette matching [55],[22], appearance features computed

using a holistic approach (Histogram of Oriented Gradients [30], HAAR wavelets [106], Haar-like

features [126], Local Binary Patterns [100] etc.) or by modelling different body parts using

different appearance features. These features are used to learn a classifier like Support Vector

Machine [29], AdaBoost [52], Artificial Neural Networks [139] among others.

AdaBoost (Adaptive Boosting) is a machine learning algorithm that combines several weak

classifiers into a weighted sum. Contrary to SVM and Artificial Neural Networks, AdaBoost

selects only those features that have proven to improve the classification model. Because irrelevant

features do not need to be calculated, this will reduce the feature dimensionality and running

time. The main disadvantage of AdaBoost is that is susceptible to overfitting more than other

classification algorithms. It might also prove sensitive to noisy data and outliers.

Artificial Neural Networks is a machine learning algorithm inspired by the brain system. The

classifier is a simple mathematical model that works by constructing neurons (nodes) organized

in layers and connected by weighted axons (lines). Even though the model might be simple, the

main advantage of artificial neural networks is that they can learn complex patterns, even from

incomplete or noisy data. Neural networks require usually extensive learning times, the output

error might depend on the chosen architecture. A complex model can be used to learn complex

tasks, but overly complex models tend to lead to problems with learning.

SVM Classifier. Support Vector Machine is a supervised learning technique that constructs

a hyperplane in a high dimensional space using a relatively few training examples. Over-fitting

might be avoided by optimising the regularisation parameters, while expert knowledge about the

problem can be built by optimising the kernel used.

The optimal hyper-plane (see figure 1.5) is used to classify an unlabeled input data X by

using a decision function given by

f(X) = sign(
∑

Xi∈SV

(yiαiK(Xi, X) + b)) (1.1)
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Figure 1.5: For a SVM trained on two-class problem, it is shown the maximum-margin hyperplane
(along with the margins)

where SV is the set of support vector items Xi, b is the offset value, K is the kernel function and

αi are the optimized Lagrange parameters.

In this thesis, we have chosen to work only with Support Vector Machine classifier, due to fast

training and testing time. There exist different types of kernel functions that could be used with

the SVM. Among them, we have chosen to perform experiments with the Linear kernel for a fast

classification step.

In the next section we are going to present some of the significant features that are going to

be used across this thesis.

Figure 1.6: A pyramid as seen from two points of view

1.4 Features

Features, in the context of computer vision, represent different attributes or aspects of a particular

image. For example, in figure 1.6 is presented how a pyramid is seen from two different points

of view. In the same way, different features will ideally reveal various information about the image.
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In recent years, a large amount of features were developed. In what follows, we are going to

present a few features that are either widely used, or represent a reference point in literature,

and will be further used in various chapters of the thesis.

1.4.1 Histogram of Oriented Gradients (HOG)

Gradient based features have become very popular due to the robust results obtained in both

the sparse version (Scale Invariant Feature Transformation - SIFT [89]) and dense representation

(Histogram of Oriented Gradients - HOG [30]). HOG represents, currently, a state of the art

feature for pedestrian classification.

Local object appearance can be well characterised by the distribution of local intensity gradients

or edge directions. In the case of HOG, this is performed dividing the image into small cells. For

each cell a 1-D histogram is constructed containing the gradient orientations. By normalising

the obtained histogram inside bigger regions called blocks, it is obtained a better invariance to

illumination conditions. The final feature vector is constructed by the simple concatenation of

the computed histograms. In figure 1.7 are presented the main steps for computation of HOG

features.

1.4.2 Local Binary Patterns (LBP)

In comparison with HOG, that is used to capture edge or local shape information[100], local

binary pattern (LBP) operator is a texture descriptor that is widely used due to its invariance to

gray level changes.

There exist different methods to compute LBP, varying by different choice of parameters. In

order to compute the LBP operator we use the method described by Wang et al. [131], because

has proven to be one of the most robust. In a formal manner the operator can be described by

equation 1.2.

LBPp,r(c) =
∑

i∈Np,r(c)

s(Ii − Ic) ∗ 2p (1.2)

where p is the number of pixels in a considered neighbourhood, r is the radius of the neighbourhood,

c are the coordinates of the central pixel, Np,r(c) represents the set of coordinates for the pixels

found at radius r from the central pixel, and s(x) is defined by equation 1.3.
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Figure 1.7: HOG Feature computation
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s(x) =











1, if x ≥ 0

0, otherwise
(1.3)
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Figure 1.8: Examples of neighbourhood used to calculate a local binary pattern, where p are the
number of pixels in the neighbourhood, and r is the neighbourhood radius

The main steps to compute LBP are:

• Like in the case of HOG, the ROI is divided into cells of 8× 8 pixels.

• Each pixel in a given cell is compared with the pixels in a considered neighbourhood and

a bit-string is constructed. This vicinity region is usually considered a circle as shown in

figure 1.8.

• The bit-string has the same length as the number of pixels in the neighbourhood, and is

constructing by comparing the value of a pixel with the pixels in the vicinity. If the center

pixel’s value is smaller than the neighbour’s value , then in the bit-string a ”1” will be

written, otherwise a ”0”, like showed in figure 1.9. Because in this approach a large number

of patterns can be created that could introduce noise in the classification process, only the

uniform patterns are considered. A uniform pattern, as seen in figure 1.10, is defined by

those pattern that lead to a maximum of two 0-1 transitions.

• In the following step, over each cell, a histogram is computed based on the decimal valued

of transformed bit-string.

• The histograms of all cells are concatenated and normalised. This gives the final feature

vector for the considered window.

1.4.3 Local Gradient Patterns (LGP)

LBP features are sensitive to local intensity variations and therefore could lead to many different

patterns in a small region. This might affect the performance of some classifiers. To overcome
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Figure 1.9: Local binary pattern computation for a given pixel. In this example the pixel for
which the computation is performed is the central pixel having the intensity value 88.
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Figure 1.10: Examples of Uniform (a) and non-uniform patterns (b) corresponding for LBP
computed with r = 1 and p = 8. There exist a total of 58 uniform local binarry pattern plus
one(for others)

this, Jun et al. [72] proposed a novel representation called Local Gradient Patterns (LGP).

LBPp,r(c) =
∑

i∈Np,r(c)

s(Gi −G) ∗ 2p (1.4)

where gradient s is defined in equation 1.3, Gp is defined in 1.5 as the absolute difference

between the central pixels intensity Ic and its neighbouring pixel Ii, and G is defined in equation

1.6

Gi = |Ii − Ic| (1.5)

G =
1

p

p−1
∑

n=0

Gn (1.6)

This operator is computed in a similar manner as LBP. Instead of working on intensity values

of the pixels, it employs gradient values of the neighbourhood pixels (see equation 1.4). The

gradient is computed as the absolute value of intensity difference between the given pixel and its

neighbouring pixels. The central pixel value is replaced by the average of gradient values (see

figure 1.11).
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Figure 1.11: Local gradient pattern operator computed for the central pixel having the intensity
88.

1.4.4 Color Self Similarity (CSS)

Recent work has shown that local low-level features are particularly efficient ([34], [132]). In

[127] a new feature (CSS ), is proposed for images in the visible spectrum, based on second order

statistics of colors. This method takes advantage of locally similar colors within an analysis

window.

This window is first divided into blocks of 8× 8 pixels. For a given color space, like RGB and

HSV, a histogram with 3× 3× 3 bins is computed for each block. Every block is then compared

to all others blocks using histogram intersection resulting in a vector of similarities. Finally, a

L2-normalization is applied to that similarity vector.

1.4.5 Haar wavelets

Haar wavelets were introduced by Papageorgiou and Poggio [106]. The idea behind this type of

features is to compute the difference between the sum of intensities in two rectangular areas in

different configurations and sizes (see figure 1.12.a),1.12.b), 1.12.c)). These were extended by

Viola et al. [126]. They introduced two new configurations for the rectangular areas (see figure

1.12.d), 1.12.e)) and also proposed a classifier based on layers of weak classifiers (AdaBoost).

1.4.6 Disparity feature statistics (Mean Scaled Value Disparity)

A feature that is interesting from the perspective of using disparity map, is the disparity feature

statistics proposed by Walk et al. [128].

The main idea behind these features is that even if the heights of pedestrians are not identical,

they are still very similar. The disparity statistics proposed in [128] are based on the invariant

property of disparity map, that the ratio of disparity and observed heigh is inversely proportional

to the 3D object height.

In order to make the disparity statistics features independent of the distance to the object, in

a scenario of sliding window search, the disparity values are divided by the appropriate scale level
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Figure 1.12: Haar wavelets a),b),c) and Haar-like features d),e). The sum of intensities in the
white area will be subtracted from the sum of intensities of the black area.

of the image pyramid. The next step is to divide the considered window for classification into

cells of 8× 8 pixels, like performed for HOG and LBP. The mean value of the scaled disparities is

computed for each cell, and the final feature vector is obtained by concatenating the mean values

computed across all cells. Because other statistics could be computed on the disparity map, we

will name in what follows these features Mean Scaled Value Disparity (MSVD).

1.5 Conclusion

In this chapter we have presented an overview of the pedestrian detection and classification

sensors and systems. For the final experiments performed in this thesis we have chosen to work

with three different types of cameras: FIR, SWIR and Visible. Accordingly, in the following

chapter, we treat the problem of pedestrian classification in FIR spectrum.
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When you can’t make them see the light,

make them feel the heat.

Ronald Reagan
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Pedestrian detection and classification in Far Infrared Spectrum
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In this chapter, we study the pertinence of using a monocular FIR camera for the task of

pedestrian detection and classification. In recent years, the cost of infrared (IR) cameras has

decreased, making them an interesting alternative to visible cameras for pedestrian detection

systems ([10], [134], [115], [86]). Moreover, infrared cameras still provide pertinent and discrimi-

native information even in difficult illumination conditions (i.e. night, fog) and they are less prone

to confusion caused by colors, textures and shadows belonging to objects other than pedestrians.

Although there exists different IR sensors characterized by their wavelength, FIR camera seems

to be the most suitable for distinguishing hot targets like pedestrians. This ability represents an

advantage of FIR cameras over visible ones, especially during the night. Despite this, pedestrian

detection in IR images remains a challenging task, because the system has to deal not only
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with the problem of their variability in posture, range, orientation, but also with the lack of

texture information. Therefore, texture can be an advantage, due to less distractions in the

image, and disadvantage, due to less information available. Another challenge is that objects

other than pedestrian, like vehicles, animals, electricity sources, appear also as hot targets in the

FIR spectrum.

2.1 Related Work

Usually, the sliding window technique, mostly used in the Visible domain, is not suitable for

real-time object detection application that uses a complex classifier. In response to this, Infrared

domain offers the possibility of generating a smaller number of hypothesis to be tested, therefore

becoming an interesting alternative to the Visible spectrum. Moreover, thermal Infrared has

a clear advantage over Visible spectrum during the night, where it can still provide relevant

information about the environment.

For Region of Interest (ROI) generation in FIR images a natural solution would be to use a

threshold, like in [115], or even better an adaptive threshold by assuming that non-pedestrian

intensities follow a Gaussian distribution [13]. Unfortunately, the problem of estimating an

appropriate threshold remains a key issue because the pedestrian intensities vary with respect to

range and outside temperature.

Erturk [42] presents a region of interest extraction in infrared images based on one-bit transform.

Potential interest regions are obtained by using a target mask, followed by a comparison of the

original image histogram with the masked image histogram in order to obtain an automated

threshold value. This method was tested only on static images and is not followed by a classification

step.

Kim and Lee [73] present a region of interest generation method specialized for nighttime

pedestrian detection using far-infrared (FIR) images. They respond to the problem of finding

a good intensity threshold, by working with image segments and also using the low-frequency

characteristics of the FIR images.

Wang et al. [129] try to improve the local contrast between targets and background in the

static infrared images, by proposing a background model. In the same time to filter the false

negatives a ramp loss function is used to learn the characteristics of a pedestrian. Liu et al. [88]

use a pixel-gradient oriented vertical projection approach in order to estimate the vertical image

stripes that might contain pedestrians. Afterwards, a local thresholding image segmentation is

adopted to generate ROIs more accurately within the estimated vertical stripes.

Other approaches consists in detecting warm symmetrical objects with specific size and aspect
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ratio [18], or in detecting pedestrian heads based on pixel classification [16],[94].

For the pedestrian classification step there exist different approaches that are based on global

or region object representation. Bertozzi et al. [13] presents a validator stage for a pedestrian

detection system based on the use of probabilistic models for the infrared domain. Four different

models are employed in order to recognize the pose of the pedestrians; open, almost open, almost

closed and fully closed legs are detected. Nanda and Davis [98] use probabilistic templates

to capture the variations in human shape specially for the case where the contrast is low and

body parts are missing. Unfortunately, techniques based on symmetry verification or template

matching are not precise enough for the task of pedestrian detection. The global features that

include gray level features [117] and Gabor wavelets [3], are computed over all the pixels within a

Bounding Box (BB). Region-based features, like Haar wavelets [2] and Histogram of Oriented

Gradients (HOG) [115],[138] encode the influence of each pixel that lies in a BB.

Kim et al. [74] propose a modified version of the well-known HOG descripor, called historgram

of local intensity differences that claim it is more suited for FIR images in terms of both accuracy

and computation efficiency. Sun et al. [118] propose the use of Haar-like features in combination

with AdaBoost in order to detect pedestrians during the night. Also a pedestrian classification

system based on AdaBoost and a combination of Haar and ad-hoc-features is proposed by Cerri

et al. [27]. They test the system in the context of using NIR illuminators.

Li et al. [85] propose a feature based on local oriented shape context (LOSC) descriptor also

for nighttime pedestrian detection. They based their approach on a shape context descriptor that

is enhanced with edge’s orientation.

Zhang et al. [138] investigate the methods derived from visible spectrum analysis for the

task of human detection. They extend two feature classes (edgelets and HOG features) and

two classification models(AdaBoost and SVM cascade) to the FIR images. Zhang et al. [138]

concludes that it is possible to get detection performance in FIR images that is comparable to

state-of-the-art results for visible spectrum images on a dataset of around 1000 pedestrians.

Mählisch et al. [91] proposed a detector approach for low-resolution FIR images based on a

hierarchical contour matching algorithm and a cascaded classifier approach.

In order to take advantage of some properties of infrared images, Fang et al. [45] introduce a

projection feature for segmentation (in order to avoid shape-template and pyramid searching)

and two-axis pixel-distribution (histogram and inertial) feature for classification.

Krotosky and Trivedi [80] present an interesting analysis of Color-, Far-Infrared-, and

multimodal-stereo approaches to pedestrian detection. They design a four-camera experimental

testbed consisting of two color and two infrared cameras for capturing and analysing various
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configuration permutations for pedestrian detection, thus providing an in-depth analysis for the

use of color and FIR. Their conclusion is that on the tested images, visible images provided better

results than the infrared ones.

Olmeda et al. [102] propose a pedestrian detection system based on discrete features in thermal

infrared images, these descriptors are matched with defined regions of the body of a pedestrian.

In case of a match it creates a regions of interest which is then classified using an SVM. Olmeda

et al. [103] present a study on pedestrian classification and detection in FIR images using a

descriptor named Histograms of Oriented Phase Energy combined with a latent variable SVM

approach.

With the exception of the dataset used by Olmeda et al. [103], from our knowledge, the other

articles do not make public the acquired images. As a consequence, it is quite difficult to compare

the proposed approaches.

2.2 Datasets

Although there exists a reasonable number of benchmark datasets for the pedestrian detection in

the Visible domain1, in case of FIR images most of the datasets are not publicly available.

Datasets like that proposed by Simon Lynen [113], Davis and Keck [32], Davis and Sharma [33]

focus mostly on surveillance application, therefore they use a fixed-camera setup.

Recently Olmeda et al. (2013) [103] proposed a dataset2 acquired with an Indigo Omega,

having and image resolution of 164× 129. The dataset is divided in two parts: one that tacks

the problem of pedestrian classification (OlmedaFIR-Classification), and the other one that is

constructed for the problem of pedestrian detection (OlmedaFIR-Detection). In figure 2.1 are

presented examples of images from the OlmedaFIR-Detection dataset. Unfortunately, it does

not contain also information from the Visible spectrum, therefore making difficult a complete

assessment of the FIR performance.

An interesting dataset that contains both FIR and Visible images is proposed by Bertozzi

et al. [12]. Unfortunately, the dataset had just a small number of annotations (around 1000 BB),

therefore it might not provide statistically relevant results. Moreover, this dataset is not publicly

available3.

1The Visible domain dataset will be treated in chapter 5
2We will further refer to this dataset as OlmedaFIR
3This dataset is maintained by Vislab. Terms and conditions for usage may apply. http://vislab.it/
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a) b)

Figure 2.1: Images examples from Oldemera dataset a),b)

In order to respond to the deficiencies of the datasets proposed by Olmeda et al. [103]

and Bertozzi et al. [12], on one hand, we propose a new benchmark for pedestrian detection

and classification in FIR images, which consists of sequences acquired in an urban environment

with two cameras (FIR and color) mounted on the exterior of a vehicle. We will further refer

to the proposed dataset as RIFIR4. On the other hand, we have extended the annotations on

the dataset proposed by Bertozzi et al. [12]. We will further refer to the extended dataset as

ParmaTetravision.

In table 2.1 we present an overview of existing pedestrian datasets. In what follows we will

present dataset statistics for the both ParmaTetravision and RIFIR.

2.2.1 Dataset ParmaTetravision

Dataset ParmaTetravision contains information taken from two visible and two infrared cameras

and was provided to us by VisLAB laboratory in Parma Italy [12]. In a previous work [16], there

were annotated around 1000 pedestrians BB (table 2.2), but we felt that this will not provide a

large enough dataset in order to compare the performance of different features. Thus, we have

extended the annotation to include a much larger number of images and manually annotated BB

for both training and testing5.

Pedestrian Non-Pedestrian Overall

Number of BB (IR) 1089 1003 2092

Table 2.2: ParmaTetravision[Old] Dataset statistics

4The dataset is publicly available at the web address: www.vision.roboslang.org
5For training we have use sequences 1 and 5 from the dataset; while for testing sequences 2 and 6.
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As presented in table 2.3, the final dataset contains 10240 images for training having

annotated 11554 pedestrian BB in visible spectrum and 9386 BB in IR spectrum; and 8338 images

for testing with 9386 annotated pedestrian BB in visible and 8801 in IR. The disagreement in the

number of pedestrian from visible and IR is due to differences in camera optics and positioning.

For the final dataset used for the problem of pedestrian classification, we have retained only

those BB that have a height above 32px, are visible in both cameras and don’t present major

occlusions. Therefore in the end we have 6264 pedestrian BB for training and 5743 pedestrian

BB for testing. Furthermore, for the problem of pedestrian classification we have extracted

26316 negative BB for training and 14823 for testing.

Sequence Train Sequence Test Overall

Number of frames 10240 8338 18578

Number of unique pedestrians 120 160 280

Number of annotated pedestrian

BB (Visible)

11554 11451 23005

Number of annotated pedestrian

BB (IR)

9386 8801 18187

Number of pedestrian BB visible

in both cameras with height > 32 px,

and not presented major occlusions

6264 5743 12007

Number of negative BB annotated 26316 14823 41139

Table 2.3: ParmaTetravision Dataset statistics

In figure 2.3 is presented the height histogram for the annotated pedestrians for both Training

and Testing. Most of the pedestrians have a height inferior to 150 pixels. Due to a small difference

in optics, the pedestrians in FIR images will appear slightly larger than those in Visible images.

In the dataset, annotated pedestrians tend to be concentrated into the same regions. In figure

2.2 is presented a normalized heat map obtained by plotting the annotated pedestrian BBs. The

heat map is presented as in indicator that even if pedestrian tend to concentrate in the same

region, different optics and environment will produce various heat maps. In figure 2.4 is presented

an example of image from the ParmaTetravision dataset.
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(a) (b)

Figure 2.2: Heat map of training for ParmaTetravision Dataset: a) Visible b) FIR
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Figure 2.3: Pedestrian height distribution of training (a) and testing (b) sets for ParmaTetravision

a) b)

Figure 2.4: Images examples from ParmaTetravision dataset a) Visible spectrum b) Far-infrared
spectrum
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2.2.2 Dataset RIFIR

For the acquired dataset, we have used two cameras: one Visible domain camera (colour) with

a resolution of 720 × 480 and a FIR camera with a resolution of 640 × 480. In table 2.4 are

presented some information regarding the employed FIR camera6.

Characteristic Value

Pixel Resolution 640× 480

Focal length 24.5 mm

Spectral range 7.5µm to 13µm

Object temperature range −20 to +150◦C

Accuracy ±2% of reading

Image frequency 50Hz

Control GigE Vision and GenICam compatible

Power system 12/24 VDC, 24 W absolute max

Operating Environment Operation Temperature: −15◦C to

+50◦C; Humidity: 0− 95%

Table 2.4: Infrared Camera specification

Due to difference in camera optics and position, we had to annotate the pedestrian indepen-

dently in the Visible and FIR images. As presented in table 2.5 the final dataset contains 15023

images in training with 19190 annotated pedestrian BBs in Visible spectrum and 14356 in FIR

spectrum; and 9373 images for testing with 7133 annotated pedestrian BBs in Visible and 6268

in the FIR domain.

Following the same methodology as in the case of ParmaTetravision dataset, for the final

constructed classification dataset we have only considered those pedestrians with a height above

32 pixels, that are visible in both cameras, and do not present occlusions. In consequence, there

are 9202 pedestrian BB for training and 2034 for testing. In what concerns the negative BBs, we

have considered 25608 in training set and 24444 in testing.

6The camera was provided by Laboratoire d’Electronique, d’Informatique et de l’Image (Le2i) http://le2i.

cnrs.fr/
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In figure 2.5 is presented the height histogram for the annotated pedestrian in both Training

and Testing. While in the ParmaTetravision dataset most of the pedestrians had a height below

150 pixels, in the case of RIFIR dataset, most of the pedestrians have a height below 100 pixels,

thus making the dataset more challenging. In figure 2.6 is presented the heat map, for both

Visible and FIR, obtained by superimposing the annotated pedestrians. Small differences are due

to camera optics and positioning. In figure 2.7 is presented an extract from the RIFIR dataset.

Sequence Train Sequence Test Overall

Number of frames 15023 9373 24396

Number of unique pedestrians 138 33 171

Number of annotated pedestrian

BB (Visible)

19190 7133 26323

Number of annotated pedestrian

BB (IR)

14356 6268 20624

Number of pedestrian BB visible

in both cameras with height > 32 px

9202 2034 11236

Number of negative BB annotated 25608 24444 50052

Table 2.5: RIFIR Dataset statistics
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Figure 2.5: Pedestrian height distribution of training (a) and testing sets (b) for RIFIR
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(a) (b)

Figure 2.6: Heat map of training for RIFIR Dataset: a) Visible, b) FIR

a) b)

Figure 2.7: Images examples from RIFIR dataset a) Visible spectrum b) Far-infrared spectrum

2.3 A new feature for pedestrian classification in infrared images:

Intensity Self Similarity

Motivation In [15], detection of pedestrians ROIs based on an algorithm of head detection

was combined with a classifier based on local and global SURF-based features. The local

features describe the appearance of an obstacle and are extracted from a codebook of scale and

rotation-invariant SURF descriptors. Whereas, global features, extracted from a set of interest

points, provide complementary information by characterizing the shape and the texture. The

disadvantage of SURF points used in the phase of ROI classification is that detected key points

repeat more often on background and less on the people even when looking at two consecutive

frames of a video [84]. Therefore, another type of descriptor is needed that will be more robust

to consecutive frames, like HOG or CSS.
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Feature description Inspired by CSS, we propose an original feature representation, called

Intensity Self Similarity, adapted for FIR images. In contrast with images acquired with cameras

in visible spectrum, that can provide color information, those taken using FIR sensor, provide

only information about the pixel intensities, making CSS representation not suitable. After a

careful analysis of road scenes in FIR spectrum, we believe that FIR images emphasise several

intensity structures, since pixels within a pedestrian head region have approximately the same

intensity values, the arms intensity values seem to be similar and this also could be applied to

the leg areas. According to this, we propose a self similarity feature based on intensities values of

thermal images, rather than on color information.

Figure 2.8: Visualisation of Intensity Self Similarity using histogram difference computed at
positions marked with blue in the IR images. A brighter cell shows a higher degree of similarity.

We divide each pedestrian full-body BB into n blocks of 8× 8 pixels (see figure 2.8). After

computing a histogram for each block, we construct a similarity vector of n ∗ (n− 1)/2 elements,

by comparing the histogram of each block with the histograms of all the other blocks within a

given BB.

For the comparison of two histograms H1 and H2, we have tested different techniques like:

• Histogram Intersection:
∑

i=1,histSizemin(H1[i], H2[i])

• Histogram Difference:
∑

i=1,histSize |H1[i]−H2[i]|

• Chi Square Distance:
∑

i=1,histSize(H1[i]−H2[i])
2/H2[i]
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Figure 2.9: Performance of ISS feature on the dataset ParmaTetravision[Old] using different
histogram comparison strategies

• Empirical Distribution:
∑

i=1,histSize 1H1[i]≤H2[i]

Feature parameters optimisation This feature is used to feed up a fast, but efficient linear-

kernel SVM classifier. In order to validate the proposed feature we have used the dataset

ParmaTetravision[Old] that contains 1089 pedestrians. The pedestrian detection performances

are estimated by the precision rate, the recall rate and the F-measure, using a 10-fold Cross

Validation (CV) technique.

In figure 2.9 is plotted the ROC7 curve for each tested technique of histogram comparison.

Subsequently, we have chosen to use histogram difference rather than histogram intersection, like

[127], because it provided lower false positive rate for a high recall.

For the choice of block and histogram size, we have tested blocks of 8× 8 and 16× 16 pixels,

and six different histograms sizes. The results in terms of F-measure are presented in figure 2.10.

As it can be observed, the histogram size does not have a significant impact for the performance,

results varying just between ±0.5%. On the contrary, the block size, has a greater influence over

the results.

For the final configuration of ISS feature, we have chosen to use block size of 8 × 8 pixels,

histogram of 16 bins and histogram difference for comparison algorithm.

7Receiver operating characteristic
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Figure 2.10: Comparison of performance in terms of F-measure for different combination of
Histogram Size and Blocks Size

In table 2.6 are presented the classification performances obtained with ISS and HOG features

with an SVM classifier trained with a Linear kernel and a penalty parameter one, to allow fast

classification and fair feature representations comparison. As it can be observed, on the tested

dataset, ISS, with an F-measure of 96.5%, has provided better results than HOG feature, with an

F-measure of 92.3%.

We emphasis the fact that there is a complementarity between ISS and HOG representations,

since ISS features provide information about the similarities between different regions within a BB,

while HOG features provide information concerning the shape of objects within a BB. We decided

to exploit this complementarity with an early fusion at the feature level. The results presented

in table 2.6 show that the fusion of these two descriptors provides a statistically significant

improvement of the F-measure up to 97.7% on ParmaTetravision[Old].

Features ISS HOG ISS+HOG
F-Measure(%) 96.5 92.3 97.7

Precision(%) 96 91.5 97.8

Recall(%) 97 93.1 97.7

Table 2.6: Classification results with early fusion of ISS and HOG features FIR images on
ParmaTetravision[Old]

2.4 A study on Visible and FIR

The initial experiments presented in section 2.3 showed ISS to be a promising feature given good

results on its own. We also showed that ISS is complementary with HOG features increasing
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the F-Measure. Nevertheless, the testing dataset was fairly small. Consequently, we decided to

extend the experiments to include more features and several datasets.

In this section we are going to compare the performance of different features like HOG, LGP,

LBP and the proposed ISS on the Far Infrared domain, using three datasets: ParmaTetravision,

OlmedaFIR-Classification and the proposed RIFIR. Moreover, a comparison between the FIR

and Visible Domain is conducted using the datasets ParmaTetravision and RIFIR.

2.4.1 Preliminaries

For all three databases, in order to be consistent in the classification process, we have resized the

annotated BBs to a size of 48 pixels in width and 96 in height.

HOG features are computed on cells of 8×8 pixels, accumulated on overlapping 16× 16 pixel

blocks, with a spatial shift of 8 pixels. This results in a number of 1980 features.

LBPs and LGPs features are computed using cells 8×8 pixels, and a maximum number of

0− 1 transitions of 2. This results in a number of 4248 features.

ISS is computed on cells of 8×8 pixels, histogram size of 16 pixels and histogram difference.

This results in a number of 5944 features.

These features are fed to a linear SVM classifier. For this, we have used the library LIBLINEAR

[44].

All the results in this section are reported in term of ROC curve (false positive rate vs

classification rate), considering as reference point the false positive rate obtained for a classification

rate of 90%.

2.4.2 Feature performance comparison on FIR images

First of all, we decided to evaluate the performance of the considered features (HOG, LBP, LGP,

ISS) in the FIR domain. In figure 2.11 is presented the performance of using each individual

feature independently on dataset RIFIR (figure 2.11.a), ParmaTetravision (figure 2.11.b) and

Oldemera-Classification(figure 2.11.c).

On datasets RIFIR and Oldemera-Classification the best performing feature is LBP, followed

closely by LGP. On ParmaTetravision dataset, the best performing feature is LGP followed closely

by LBP. On datasets ParmaTetravision and Oldemera-Classification HOG features performs

better than ISS, while on RIFIR the situation is reversed.

In our opinion, the difference in performance between features comes from the fact that even if

all three datasets were obtain using FIR cameras, there is a difference in sensors, road scenes and

environmental conditions. It seems that as single feature, the Local Binary/Gradient Patterns

51



2.4. A STUDY ON VISIBLE AND FIR CHAPTER 2. PEDESTRIAN.. FIR SPECTRUM

0 0.05 0.1 0.15 0.2 0.25
0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

C
la

s
s

if
ic

a
ti

o
n

 R
a

te

 

 

HOG (IR): 0.1561

LBP (IR) : 0.0019

LGP (IR) : 0.0107

ISS (IR) : 0.0319

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12

0.88

0.9

0.92

0.94

0.96

0.98

1

False Positive Rate

C
la

s
s

if
ic

a
ti

o
n

 R
a

te

 

 

HOG (IR): 0.0225

LBP (IR) : 0.0067

LGP (IR) : 0.0042

ISS (IR) : 0.0236

(b)

0 0.01 0.02 0.03 0.04 0.05 0.06

0.94

0.95

0.96

0.97

0.98

0.99

1

False Positive Rate

C
la

s
s

if
ic

a
ti

o
n

 R
a

te

 

 

HOG (IR) 0.000317

LBP (IR) 0.0000001

LGP (IR) 0.000045

ISS (IR) 0.002449

(c)

10
−4

10
−2

10
0

10
−3

10
−2

10
−1

10
0

False Positive Rate

F
a

ls
e

 N
e

g
a

ti
v

e
 R

a
te

 (
m

is
s

)

 

 
HOG (IR) 0.125

LBP (IR) 0.06

LGP (IR) 0.07

ISS (IR) 0.335

(d)

Figure 2.11: Performance comparison for features HOG, LBP, LGP and ISS in the FIR spectrum
on datasets a) RIFIR b) ParmaTetravision c) Oldemera-classification. The reference point is
considered the obtained false positive rate for a classification rate of 90%. In figure d) are also
shown the results for Oldemera-classification but this time as miss-rate vs false positive rate. In
this case the reference point is the miss rate obtained for a false positive rate of 10−4

are more adapted for the task of pedestrian classification in FIR images. Nevertheless, because

the features are complementary, we will test a fusion of features in section 2.4.5.

In figure 2.11.d) is presented a comparison between the considered features on the Oldemera-

classification, in terms of False Positive Rate vs False Negative Rate (miss rate), on a log-log

scale. We chose to present the results in this manner because this is the preferred approach of

Olmeda et al. [103]. The reference point is considered the false negative rate obtained for a false

positive rate of 10−4. We report slightly different results than that of Olmeda et al. [103] for

HOG and LBP features. Thus, for HOG we obtain a miss rate of 0.125 ( in comparison with the

reported 0.21 [103], and for LBP we obtain a miss rate of 0.06 (in comparison with the reported

0.41 [103]). The difference in results may come from slightly different implementation for the

features and from the use of different libraries for SVM classifier.
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Figure 2.12: Peformance comparison for the features HOG, LBP, LGP and ISS in the Visible
domain on datasets a) RIFIR, b) ParmaTetravision

2.4.3 Feature performance comparison on Visible images

For the second scenario, we decided to evaluate the features (HOG, LBP, LGP and ISS) in the

Visible domain on the datasets RIFIR and ParmaTetravision. The results are reported in figure

2.12. LBP continues to be one of the most robust features obtaining a false positive rate of 0.05

on RIFIR dataset and 0.02 on ParmaTetravision. For the other considered features the results

are quite different.

As it can be observed from the example images from both datasets, RIFIR color images have

more noise than the grayscale images from ParmaTetravision. This has a direct impact over the

performance of features based on gradient: HOG and LGP. Thus, while ISS features manage to

be more robust in the context of noise (RIFIR), HOG and LGP perform better on higher quality

images (ParmaTetravision).

2.4.4 Visible vs FIR

Having the performance of different features on both Visible and FIR domains, we can now

compare the two spectrums. In figure 2.13 is presented a comparison between the same feature

computed on Visible and FIR for the two databases: RIFIR and ParmaTetravision. On both

datasets, the features computed on the FIR images have a better performance than those computed

on Visible. We withhold from drawing a definite conclusion that FIR cameras will always perform

better than Visible ones because it depends on the quality of cameras used and also optics. What

we can definitely say is that on the tested dataset the FIR spectrum gives better results.

The performance difference on the RIFIR dataset between Visible and FIR is quite large for

LGP and LBP with a factor of approximatively 30. HOG and ISS features computed on FIR

53



2.5. CONCLUSIONS CHAPTER 2. PEDESTRIAN.. FIR SPECTRUM

result in a smaller number of false positives than the equivalent on Visible, with a factor of two,

on both datasets.

2.4.5 Visible & FIR Fusion

In section 2.4.4 we have showed that on the two considered datasets, for the task of pedestrian

classification, features computed on FIR images performed better than the counterpart computed

on Visible.

By fusing both spectrums, as seen in figure 2.14.a) for RIFIR and 2.14.b) for ParmaTetravision,

the false positive rate for a classification rate of 90%, is further reduced.

HOG features computed on Visible and FIR improve by a factor of two the results, in

comparison with just computing on FIR domain, for RIFIR dataset, and by a factor of five for

ParmaTetravision. For RIFIR dataset, the same factor of approximately two is obtained for LBP,

LGP, and ISS features, while on the ParmaTetravision the factor will be usually equal of larger

than five.

Features computed from FIR and Visible are highly complementary, and the use of the

two spectrums will always lower the error rate. Unfortunately, the information fusion is not

straightforward because two different cameras are used, one for FIR and one for Visible domain,

therefore there will always be difference in point of views. A correlation method between the two

domains is necessary. A possible hardware solution is to construct a camera capable of capturing

information from both light spectrums.

2.5 Conclusions

In this chapter we have described a new feature, ISS, that we adapted for the thermal images

and performed extensive tests on different datasets. Moreover, we have proposed a new dataset,

RIFIR, publicly available, in order to benchmark different algorithms of pedestrian detection

and classification. This dataset contains both Visible and FIR images, along with correlated

pedestrian and non-pedestrian bounding boxes in the two spectrums.

Moreover, a comparison between features computed on Visible and FIR spectrum is performed.

On the two tested datasets, Far-Infrared domain provided more discriminative features. Also, the

fusion of the two domains will further decrease the false positive error rate.

As shown in the related work section of this chapter, FIR spectrum was already studied in

different aspects for the task of pedestrian classification and detection. In comparison, in the

next chapter we present an analysis performed on another infrared spectrum, less popular: the

Short Wave Infrared.
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Figure 2.13: Performance comparison of features between Visible and FIR domains on: a), c), e),
g) RIFIR dataset; b), d), f), h) ParmaTetravision dataset
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Figure 2.14: Individual feature fusion between Visible and FIR domain on a) RIFIR dataset b)
ParmaTetravison dataset
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There are two kinds of light - the glow that

illumines and the glare that obscures

James Thurber

3
Pedestrian Detection and Classification in SWIR
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The purpose of this chapter is to investigate the suitability of the SWIR spectrum for the

problem of pedestrian detection and classification. In what follows we present related work

along with a short analysis of imagining in SWIR spectrum. Afterwards, in order to study the

performance of pedestrian detection and classification using SWIR cameras we have performed

two different experiments.

For the first one we have used a dataset provided by Vislab1 acquired with a low cost SWIR

camera. After having annotated three different sequences of images, we then evaluated if features

learned on visible images are suitable to be used on SWIR images. Other tests performed include

an SVM classifier based on deformable part models ([47], [48]), on grammar models [59] and a

HAAR based classifier [87].

1Artificial Vision and Intelligent Systems Laboratory (VisLab) of Parma University (Italy) - www.vislab.it
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Due to the limitations of the first dataset, for the second experiment we have acquired and

annotated a new set of images using two cameras, a SWIR and a Visible one. Thus, we are able

to compare pedestrian classification performances in the two wavelengths on a fairly large dataset.

For this, we compare several spatial features like HOG, LBP and LGP. Moreover, we propose to

enrich the intensity-based features from visible domain with features extracted from SWIR.

3.1 Related work

SWIR imaging began to be taken into consideration for computer vision applications because

it could bring useful contrast or complementary information to situations and applications

where visible or thermal imaging cameras are ineffective. This makes SWIR frequently used for

diverse applications such as aligning telecommunications fibers and sources, engineering optical

wave-guides, inspecting pharmaceutical quality, sorting recycled plastics, monitoring incoming

sources of raw agricultural products to groom out contamination by dirt, stones or packaging

debris, as well as grade sorting by moisture level or fat content, remote sensing of arid and

semiarid ecosystems[4], vegetation mapping in semiarid aread [37], ocean data color processing

[130]. Applications that mainly benefit from reduced scattering effects of longer wavelengths,

illumination from invisible sources (for example infrared active illumination or simply the night

glow from the upper atmosphere) or thermal emitting objects with temperatures above 150 C◦

are candidates for SWIR cameras [63].

Unlike Mid Wave IR (MWIR) and Long Wave IR (LWIR), SWIR cameras can image through

the windshield and thus be mounted in the vehicle’s cabin for a “driver’s eye” view of the way

ahead. Moreover, SWIR imagers have the ability to see clearer at long distance through the

atmosphere, making SWIR suitable for investigations in the field of automotive applications [122].

The main issues concerning it have been to achieve low cost SWIR sensors, operating at close to

room temperature and CMOS compatible.

The problem of pedestrian detection and classification has been approached from both a

hardware and software perspective, using different sensors and developing many different detection

techniques. A variety that however doesn’t include Short Wave InfraRed (SWIR) sensors, able to

provide images with a noticeably different information content from visible ones (see figure 3.1).

3.2 SWIR Image Analysis

From an empirical perspective, visible and SWIR images acquired indoor highlight some very

different characteristics (e.g. figure 3.1), but as soon as acquisitions are moved outdoor (in clear
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visibility conditions), those differences span reduce. (fig. 3.2).

(a) (b)

(c) (d)

Figure 3.1: Indoor image examples of how clothing appears differently between visible [a, c] and
SWIR spectra [b, d]. Appearance in the SWIR is influenced by the materials composition and
dyeing process.

swir visible

Figure 3.2: Images acquired outdoor: SWIR and visible bandwidths highlight similar features
both for pedestrian and background.
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The difference comes from the fact that visible spectrum covers the wavelength between 380

nm and 700 nm, therefore light in SWIR band ( wavelengths from 900nm to 1700nm) is not

visible for the human eye. Despite of this, the light in the short wave infrared region interacts

with objects in a similar way as the visible wavelengths. This is because light in the SWIR

bandwidth is a reflective light (bouncing off objects in a similar way as the visible light).

Most of the existing SWIR cameras are based on InGaAs2, HgCdTe 3 or InSb4 sensors. Sensors

based on HgCdTe or InSb are not very practical for an ADAS application due to the fact that

they have to be cooled at very low temperatures [71], therefore throughout this chapter we have

worked only with SWIR cameras based on InGaAs sensor. If efficient sensors are build, they can

be very sensitive to light, thus permitting for SWIR cameras to work in dark conditions.

Another advantage of the SWIR cameras in comparison with other types of infrared cameras

is the ability to capture images through glass, thus it can be mounted inside a vehicle.

3.3 Preliminary SWIR images evaluation for pedestrian detec-

tion

3.3.1 Hardware equipment

The device employed to acquire the visible and SWIR images shown in this section was developed

within the European funded 2WIDE_SENSE collaborative project5. The camera has the

possibility to acquire in the full Visible to SWIR bandwidth (see figure 3.3). In addition, the

camera features a Bayer-like four filter pattern on its Focal Plane Array (FPA)6 to enable

the simultaneous and independent acquisition of four images, each one in a different spectral

bandwidth (see figure 3.4a and 3.4b).

The filters Clear (C) (400-1700 nm)(acquires the full spectrum images), F1 (1300-1400nm),

F2 (1000-1700nm), F4 (540-1700nm) were chosen to suit ADAS applications. Filter F4 is not

used in the current work because it isolates the red bandwidths. While this might be useful

for applications like traffic sign recognition or vehicle back lights, it might not be particularly

interesting for the application of pedestrian detection.

2Indium Gallium Arsenide
3Mercury Cadmium Telluride
4Indium antimonide
5http://www.2wide-sense.eu.
6A focal plane is a sensing device used in imaging consisting of an array of pixels that are light-sensing at the

focal plane of a lens.
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Characteristic Value

Spectral Range VIS/NIR/SWIR

Filter Pattern C(400÷1700)nm

F1(1300÷1700)nm

F2(1000÷1700)nm

F4(540÷1700)nm

Dynamic Range 120dB

Angular Resolution min 11px/◦

Field of View HFOV30

VFOV22

Imager Resolution 640× 512px

Pixel Pitch 15 µ

Focal Length 18mm

Frame Rate > 24fps

Camera Size (130×40×40)mm

Camera weight 500gr

Temperature Range (-40 ÷ 80)

Supply Voltage (6 ÷ 16) V

Power Consumption < 1V

Table 3.1: Camera specifications

61



3.3. PRELIMINARY SWIR... CHAPTER 3. PEDESTRIAN... SWIR

Figure 3.3: SWIR 2WIDE_SENSE camera

(a)

(b)

Figure 3.4: a) The 4× 4 filter mask applied on the FPA. b) Filters F1, F2 and F4 transmission
bands.

The camera has an uncooled InGaAs sensor, having a resolution of 640× 512 px. Table 3.1

presents an overview of the characteristics of the camera module. The main feature of the camera

is its large spectrum sensitivity (400-1700nm).

3.3.2 Dataset overview

Corresponding to filters C, F1 and F2 we have acquired three image sequences choosing a fixed

setup for the camera in order to be able to compare the results obtained using different bandwidth

filters for similar scenes. The filters had to be manually changed for each acquisition therefore

some differences in the scene can be expected. The number of full-frame images tested for each

bandwidth are presented in table 3.2.

After the acquisition of the three sequences, we have manually annotated a total of 4348

Bounding Boxes (BB) surrounding pedestrians, from which only 4.57% are occluded. This

corresponds to 1998 BB annotated in filter C bandwidth, 1200 for filter F2, 1150 for filter F1.

In figure 3.5 the height distribution of the annotated pedestrians in each sequence is presented.

We can observe that most of the BB are in medium range [50-100) with 41% of the total number
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or near range [100-200] with 48% of the total number of BB. The closest pedestrian (with an

average height of 200 px ) are at a distance of about 4m while the farthest (with a height around

50 px ) are at a distance of 30m.
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Figure 3.5: Height distribution over the annotated pedestrians.

Bandwidth Clear F2 F1

Full-frame Images 1704 1374 1421

Table 3.2: Number of full-frame images on each tested bandwidth

3.3.3 Experiments

3.3.3.1 Features from Visible to SWIR

There may be some differences in the way that clothes and the human skin are represented,

but people have a similar appearance from their edges gradients point of view. In fig. 3.6 a

visualisation of Haar wavelength computed on diagonal, horizontal and vertical, along with Sobel

filter (which is the basis for our gradient computation of HOG features) for the same scene under

the three different filters C, F1 and F2 is shown. As it can be seen from the images, the features

are quite similar in the different bandwidths. Small differences can be observed in the hair,

clothes and background, but the main contours of the objects are quite similar for both Haar

transformations and Sobel transformation in the different tested bandwidths.

Most of the top algorithms developed for images acquired in the Visible bandwidth employ

Histogram of Oriented Gradients (HOG) features [30], usually by combining them with others as

HAAR-like features [35], color self-similarity [127] etc.
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(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

(a3) (b3) (c3) (d3) (e3)

Figure 3.6: Image comparison between Visible range (a1), F2 filter range (a2) and F1 filter
range (a3) with the corresponding on-column visualization of HAAR wavelets: diagonal (b1, b2,
b3), horizontal (c1), (c2), (c3), vertical (d1), (d2), (d3) and Sobel filter (e1), (e2), (e3). Due to
negligible values of the HAAR wavelet features along the diagonal direction, the corresponding
images [b1, b2, b3] appear very dark.

In order to test if features trained on visible images are suitable to use for the SWIR images,

we have trained an SVM classifier based on HOG features, since it is one of the most popular

features for human classification, using the images in the INRIA dataset7.

We have tested this classifier on all the three sequences of images over the annotated BB as

positive examples and randomly selected negative BB from the images. The number of negative

BB is taken to be twice the number of positives. As seen in table 3.3, the precision8of detection

is good for all the filters tested while a bigger difference is in the recall9 values.

Table 3.3: Results of HOG classifier on BB

Clear F2 F1

Precision(%) 95.18 94.79 93.85

Recall(%) 59.00 88.12 76.92

F-measure(%) 72.84 91.33 84.54

7http://pascal.inrialpes.fr/data/human/
8
Precision =

TruePositives
TruePositives+FalsePositives

9
Recall =

TruePositives
TruePositives+FalseNegatives
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3.3.3.2 Pedestrian Detection Evaluation

In the previous section we have successfully applied features learned from the visible spectrum to

the SWIR in the task of pedestrian classification. In this section we proceed in the evaluation of

pedestrian detectors. In order to see the performance of classifiers in the SWIR images we have

chosen to test three pedestrian detectors: deformable part models [47, 48], grammar models [59]

and HAAR based classifier [87]. Since most of the annotated pedestrians are in medium or near

range, the classifier based on deformable part models and the grammar models should be suitable

for the task of detecting pedestrians [59]. Both of them are based on HOG as features. The

third classifier was chosen in order to evaluate the performance of another state-of-the-art feature,

HAAR-like features. All the three classifiers were trained on the INRIA dataset.

A detected BB (BBdt) is considered to be a true positive if it overlaps with a ground truth

BB (BBgt) with at least 50% (Pascal measure as used by Dollar et al. [36], see eq. 3.1).

area(BBdt ∩BBgt)

area(BBdt ∪BBgt)
> 0.5 (3.1)

Table 3.4: Classifier Comparison in terms of Precision (P) and Recall (R) on SWIR images over
all the images

Part-Models Grammar-Models HAAR

P(%) R(%) P(%) R(%) P(%) R(%)

C 64.89 57.10 67.38 38.77 63.51 7.10

F1 68.51 80.62 71.96 45.64 83.33 3.00

F2 41.21 87.13 79.30 64.19 81.05 6.50

The results obtained for the three different filters are presented in table 3.4. The results vary

depending on the classifier and used filter. The part based classifier obtains better results on

the scenes taken with C and F1 filter, while with the grammar based classifier better results are

obtained on the scene taken with F2 filter. Examples of pedestrian detection results with all the

three tested algorithms are presented in fig. 3.7.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: Image examples from the sequences showing similar scenes and corresponding output
results given by the grammar models: C filter range (a), (d), (g), F2 filter range (b), (e), (h) and
F1 filter range (c), (f), (i). False positives produced by the algorithm are surrounded by red BB
while true positives are in green BB.

Due to differences in terms of pedestrian height in the three sequences acquired, we have also

performed a test where we only consider the pedestrians with a height above 80 px. This test was

chosen due to the fact that some of the pedestrian detectors, like the one based on deformable

part models, perform better on close range pedestrians. Moreover this equilibrates the pedestrian

heights over the three tested sequences. The results are presented in fig. 3.8. For the grammar

model based detector the difference in performance is negligible, having an improvement only for

the Clear filter. For the part-based detector the results improve for the Clear sequence but have

a drawback in the F1 sequence.
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Figure 3.8: Results comparison when testing on all the BB vs. BB surrounding pedestrians over
80 px only.

3.4 SWIR vs Visible: Comparison of pedestrian classification in

Visible and SWIR spectrum

In the previous section, we have tried to understand the effects that shorter wavelenghts (SWIR)

have upon the task of pedestrian detection and classification. From the filters tested the best

results are obtained with F1-filter using the part-based detector followed by F2-filter with the

grammar-based detector.

The previous experiments showed that SWIR spectrum might be suitable for pedestrian

detection in ADAS context, however we were unable to draw a categorical conclusion whether

SWIR can give better results than visible spectrum because we did not have access to visible

information from the same scene.

In section 3.3 three different filters (400nm-1700nm; 1300-1700nm; 1000-1300nm) were com-

pared in a scenario with a fixed camera. The background was similar but the annotated pedestrians

had different poses. Therefore, for the next experiment we have decided to embed a SWIR camera

inside a vehicle along with a camera in the Visible spectrum. This will guarantee the information

captured in the two domains to be similar, even if we will not have exactly the same point of

view of the scene for the two cameras. The purpose of this acquisition setup was to construct a

benchmark in order to compare the pedestrian classification in the two light spectrums: Visible

and SWIR.

Previous works that compare visible and infrared light spectrums are mostly focused in the

long-wavelength infrared or far-infrared. To this day, from our knowledge there doesn’t exist
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previous works that benchmarks the SWIR and Visible spectrum in a quantitative manner for

the task of pedestrian detection in the ADAS context.

Characteristic Value

Pixel Resolution 320× 256

Input Pixel Size 30 microns square

Spectral Response 950nm to 1700nm

Peak quantum efficiency approximately 80% at 1000nm

Gray Scale Resolution 16 bits

Pixel frequency 10MHz

Exposure Time From < 10µsec to > 1 second

Control RS232 via GigE

Power requirements 110 or 230V ac 50/60Hz less than 50W

Operating Environment Operation Temperature: 0◦C to +50◦C;

Humidity: 0− 80% RH non-condensing

Table 3.5: Camera specification

3.4.1 Hardware equipment

For the experiments presented in this section we have used a SWIR InGaAs camera with a format

of 320× 256 pixels. The camera is based on a Indium Gallium Arsenide technology and provides

a sensitivity in the 950 nm to 1700nm waveband. The most important camera parameters are

presented in table 3.5. The quantum efficiency is usually superior of 70%, having a peak of 80%

at 1000nm.

Unlike the previous experiment, the temperature of the sensor in this camera is reduced using

a peltier cooler along with a secondary air cooling system. The cooling is necessary in order to

reduce the build-up of thermally generated dark current. Therefore the camera is able to cope

with extended exposure periods thus providing high sensitivity for faint signals.

The camera uses a digitisation of the CCD signal to 16 bits at 10MHz pixel frequency. The
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maximum frame rate at a short exposure time is over 20 fps.

3.4.2 Dataset overview

We have collected two separate sequences of images, one used for training (Sequence Training)

and the other one for testing (Sequence Testing), using two cameras: the SWIR camera described

in the previous subsection, and a color camera. These were placed side by side, at a distance of

approximately 10cm, inside the car. We will further refer to this dataset as RISWIR10

The cameras were not synchronized from a hardware point of view (due to logistic problems),

but rather as a post processing step performed after the image acquisition. Because there were

used two separate cameras, some small differences could be observed in the scenes captured:

objects visible in one camera are not always present in the other ones view. This, along with

differences in the focal length of the two cameras, have made the annotation process cumbersome:

each object (both positive and negative instances) had to be annotated manually in two separate

views.

Sequence Train Sequence Test Overall

Number of frames 7049 3150 10199

Number of unique pedestrians 65 13 78

Number of annotated pedestrian
BB

8618 1753 10371

Average pedestrian duration (frames) 132 134 133

Number of pedestrian BB visible
in both cameras

6892 1372 8264

Number of pedestrian BB with
height > 32 px

4743 1023 5766

Number of negative BB annotated 6675 3219 9894

Table 3.6: RISWIR Dataset statistics

In the training sequence we have annotated a total of 8618 BB corresponding to pedestrian

instances and 6675 BB corresponding to non-pedestrian areas, while in the testing set a number

of 1753 pedestrian BB and 3219 non-pedestrian BB were annotated. As presented in table

3.6 the number of unique pedestrians is of 65 in training and 13 for testing. Also, the average

presence duration of a pedestrian in the sequences, is around 130 frames.

In order to test if the training and testing sequences contain pedestrians similar in appearance

we have plotted the histogram of heights for the training and testing sequence, taking bins of 25

10It is publicly available at the following web address: www.vision.roboslang.org
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Figure 3.9: Height distribution for the Training Sequence
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Figure 3.10: Height distribution for the Testing Sequence

pixels. As it can be observed from figure 3.9 and figure 3.10, most of the annotated pedestrians

have a height in the interval [25− 100] pixels.

In figure 3.11 we have plotted the normalized heat-map of annotated pedestrians in both

SWIR ( 3.11b,3.11d, 3.11f) and visible ( 3.11a, 3.11c, 3.11e).

Our purpose is to compare as accurate as possible classification rate of pedestrians in SWIR

and visible images. Therefore, we have only taken into consideration those BB that have a

correspondence in both SWIR and Visible images. Also, as shown in [36], pedestrians with

a height under 32 pixels are nearly impossible to detect, therefore we have eliminated these

instances from both training and testing. For the final dataset we kept 4743 positive instances

and 6675 negative examples for the training set, and 1023 positive instances and 3219 negative

examples for the testing. In order to facilitate testing, all the considered BB were scaled at a
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(a) Training Visible (b) Training SWIR

(c) Negatives Visible (d) Negatives SWIR

(e) Testing Visible (f) Testing SWIR

Figure 3.11: Heat map given by the annotated pedestrians across training/testing and
SWIR/visible.
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a) b)

c) d)

Figure 3.12: Examples of images from the dataset: a),c) Visible domain and the corresponding
images from the SWIR domain b),d)

dimension of 48× 96 pixels.

3.4.3 Experiments

The reference point for any pedestrian classification experiment is the performance of different

features in the Visible domain. Following this line, in figure 3.13 is ploted the classification rate

versus the false positive rate for three features: HOG, LBP and LGP. The reference point of

comparison is the false positive rate for a 90% classification rate.

In the Visible domain, HOG features seem to be the most robust tested feature with a false

positive rate of 0.41. This is followed by the LBP with a false positive rate of 0.56 and LGP with

0.6. Fusing different features, in the visible domain, lowers slightly the error rate (figure 3.14).

Even if LGP feature had the highest false positive rate when testing each feature independently

on the Visible dataset, in combination with HOG, has a better performance than the fusion of

LBP and HOG. The lowest error rate is obtained by combining all three features.
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HOG (Vis): 0.417

LBP (Vis) : 0.564

LGP (Vis) : 0.604

Figure 3.13: Feature performance comparison in the Visible domain. The reference point is
considered the obtained false positive rate for a classification rate of 90%.

In what concerns the situation in the SWIR domain, see figure 3.16, LBP and LGP have a

better performance than HOG. The leading feature now is LBP with a false positive rate of 0.25,

followed by LGP with 0.29. HOG feature has a false positive rate of 0.31. It can be observed

that all three features have a better performance in the SWIR domain than in the Visible one.

Moreover, in the SWIR domain the feature fusion has a highest impact than the counterpart in

Visible (figure 3.16) . Once more, the combination of HOG and LGP (with a false positive rate

of 0.12), gives better results than the combination of HOG and LBP (with a false positive rate of

0.16). Like in the case of Visible, the lowest error rate is obtained by combining all three features.

Other fusion strategies, like fusing for each feature the Visible and SWIR domain (figure 3.17)

or combining several features with both Visible and SWIR (figure 3.18) doesn’t seem to lower the

false positive rate.

3.4.4 Discussion

The results presented in this chapter show some promising prospects for the SWIR domain. On

the collected dataset, features computed on SWIR images had a lower false positive rate than the

once compute in the Visible domain.
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HOG (Vis) + LBP (Vis):                             0.383

HOG (Vis) + LGP (Vis) :                            0.361

LBP (Vis) + LGP (Vis) :                             0.429

HOG (Vis) + LBP (Vis) + LGP (Vis) :  0.356

Figure 3.14: Comparison of feature fusion performance in Visible domain. The reference point:
classification rate of 90%.
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HOG (SWIR): 0.316

LBP (SWIR) : 0.253

LGP (SWIR) : 0.293

Figure 3.15: Feature performance comparison in SWIR domain. The reference point: classification
rate of 90%.
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HOG (SWIR) + LBP (SWIR):                                   0.199

HOG (SWIR) + LGP (SWIR) :                                  0.129

LBP (SWIR) +LGP (SWIR) :                                    0.162

HOG (SWIR) + LBP (SWIR) + LGP (SWIR) :  0.125

Figure 3.16: Comparison of feature fusion performance in SWIR domain. The reference point:
classification rate of 90%.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

C
la

s
s
if
ic

a
ti
o
n
 R

a
te

 

 

HOG (Vis) + HOG (SWIR): 0.232

LBP (Vis) + LBP (SWIR):   0.254

LGP (Vis) + LGP (SWIR) : 0.312

Figure 3.17: Comparison of Domain fusion performance for different features. The reference
point: classification rate of 90%.
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HOG (Vis) + LBP (Vis) + HOG (SWIR) + LBP (SWIR):            0.133

HOG (Vis) + LGP (Vis) + HOG (SWIR) + LGP (SWIR) :           0.152

LBP (Vis) + LGP (Vis) + LBP (SWIR) +LGP (SWIR) :            0.199

HOG (Vis) + LBP (Vis) + LGP (Vis) + HOG (SWIR) + LBP (SWIR) + LGP (SWIR) : 0.158

Figure 3.18: Comparison in performance of Domain and different feature fusion strategies. The
reference point: classification rate of 90%.

First, we have tested HOG, LBP and LGP independently on each domain. On the Visible

domain, HOG features had the best results, whereas in the SWIR domain LBP worked better.

Second, we have tested feature fusion on the same domain. Using different features from both

modalities, the combination of HOG and LGP gave better results than HOG and LBP, for both

Visible and SWIR.

Third, we have assessed the performance of fusing the two domains, Visible and SWIR, along

different features. This fusion didn’t have a great impact over the false positive rate. The overall

best results were obtained by the combination HOG, LGP and LBP on the SWIR domain, but

very close results were obtained with just the combination of HOG and LGP.

A possible explanation for the obtained results is that, on the collected dataset, the SWIR

images, although captured at a much lower resolution (320×256 ), have sharper edges than the

Visible ones. It should be noted that the acquisition of the dataset was done in a cloudy day

(therefore, a lower level of light). This might have an impact (increased noise) over the quality of

images obtained from the Visible camera.
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3.5 Conclusions

In this chapter, we have studied the problem of pedestrian classification and detection in the

SWIR domain. Also, we have acquired a dataset with images in both SWIR and Visible, thus

allowing as to perform a comparison of the two domains. Our tests show that the SWIR domain

might be promising for ADAS applications, but more tests should be performed in different

meteorological conditions, in order for a decisive conclusion to be drawn.

Also, further evaluations of the SWIR wavelengths should include night vision. Because the

O-H molecules floating in the upper atmosphere radiates energy at various intensities throughout

the night, night vision on moonless nights is possible in the long wavelengths. These emissions

enable night-time vision under the passive illumination of the sky. This could make SWIR imagers

very suitable for automotive applications as a valid alternative to current systems based on

cameras sensible to Near InfraRed wavelengths (NIR) or thermal cameras sensible to the Far

InfraRed ones (FIR). These sensors present some important disadvantages: NIR cameras need

special IR illuminators integrated in the vehicle to illuminate the area in front of it, whereas FIR

cameras do not have this limitation but are still inherently expensive sensors for high resolution

specifications. The SWIR technology can be considered somewhat in between these two extremes,

featuring good resolution images at affordable prices for current automotive applications and at

the same time showing wider ranges scenarios than NIR cameras benefiting of the night sky’s

natural infrared glare, which shines within the SWIR range.

Until now, we have studied pedestrian classification in FIR and SWIR spectrums. While in

FIR the pedestrian hypothesis search space can be reduced using for example intensity threshold

(pedestrians will usually appear as hot regions in the image), in Visible and SWIR domains,

this isn’t the case. One technique that has the capability of generating fewer hypothesis, is

the use of 3D vision. By using depth information, pixels found at a certain distance can be

efficiently extracted. Moreover the extraction of objects of interest from noisy visual background

can be greatly simplified. In the next chapter we are going to focus on the algorithms of depth

computation through Stereo Vision.
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But yield who will to their separation,

My object in living is to unite

My avocation and my vocation

As my two eyes make one in sight

Two tramps in mud time

Robert Frost

4
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Stereo vision can represent a low cost solution for the problem of reducing the pedestrian

hypothesis search space. The use of depth information can eliminate effects of shadows, distin-

guishing objects at different range distance from the camera (for example a pedestrian that is

partially occluded by a passing car), identifying moving and stationary objects. In this chapter we

are going to study more in depth the algorithms of stereo vision. After presenting an introduction
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into this field of research, we are going to focus on improving different aspects of the algorithm of

stereo matching, with a particular emphasis on road scene scenarios.

Stereo vision/Stereopsis (from the greek words: stereos1 meaning solid, with reference to three-

dimensionality, and opsis meaning view) refers to the extraction of depth information from a

scene when viewed bye a two camera system (eg. human eyes). When an object is viewed from a

great distance, the optical axes of both eyes are parallel, therefore the object’s projections, as seen

by each eye independently, is similar. On the other hand, when the object is placed near the eyes,

the optical axes will converge. When a person looks at an object, the two projections converge so

that the object appears at the center of the retina in both eyes resulting in a three-dimensional

image2.

From an evolutionary point of view, animals developed stereo vision in order to perceive

relative depth rather than absolute depth [124]. Therefore, from a biological point of view,

it seems that stereo vision is used mostly in recognition and less in controlling goal-directed

movements.

Figure 4.1: An object as seen by two cameras. Due to camera positioning the object can have
different appearance in the constructed images. The distance between the two cameras is called
a baseline, while the difference in projection of a 3D point scene in each camera perspective
represents the disparity.

A task that is learned so easily by the human brain and performed unconsciously has proven

to be difficult for computers. In traditional computer stereo vision, two cameras are placed

horizontally at a certain distance in order to obtain different views of the scene (figure 4.1).

The distance between the cameras is called baseline and influences the minimum and maximum

perceived depth. The amount to which a single pixel is displaced in the two images is called

disparity and it is inversely proportional to its depth in the scene: closer objects will have greater

1http://dictionary.reference.com/browse/stereo-
2A study published by Richards [108] shows that at least 3% of persons posses no wide-field stereopsis in one

hemisphere
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disparity than background objects.

Computer stereo vision has various applications, from studying planets and stars3 to car

navigation (Porter Car from VisLab intercotinental challenge) or robot navigation[77].

4.1 Stereo Vision Principles

4.1.1 Pinhole camera

As described by Forsyth and Ponce [51], a pinhole camera is the simplest model, where the lens

are represented by a single point in 3D space. This will allow to exactly one light ray to pass

through the pinhole, connecting a scene point to a single point in the image plane (see figure 4.2).

!!
!!

!
!"

Figure 4.2: Pinhole camera. With a single camera, we cannot distinguish the position of a
projected point (P) in the 3D space (L1).

In this model the position of the point in the three-dimensional space can not be approximated

because it could lie anywhere on the line L1 as seen in figure 4.2. If we introduce into the model

a second pinhole camera (figure 4.3) we are able to infer the position in space of a certain point

in the image by intersecting the two corresponding rays, L1 and L2. Unfortunately, the difficult

part of this approach is to match the corresponding points in the images obtained with the two

cameras.

To solve the correspondence problem we need to search in a 2D image space. Unfortunately,

this approach has an exponential running time. By introducing the constraint of rectification,

the images are transformed by projection onto a common image plane. This will transform from

a 2D search into one of finding corresponding points on the same line (epipolar constraint). This

is why almost all the algorithms assume that the images have been rectified.

3NASA Solar TErrestrial RElations Observatory (STEREO): Studying the sun in 3D
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!" !#

Figure 4.3: Stereo cameras. If we are able to match two projection points in the images as being
the same, we can easily infer the position of the considered 3D point by simply intersecting the
two light rays (L1 and L2)

4.1.2 Stereo vision fundamentals

Stereo matching is the process of inferring 3D scene structure from two or more images acquired

from different viewpoints.

The output of the most stereo correspondence algorithms consists in a disparity map d(x, y)4

that specifies the relative displacement of matching points between images. The (x, y) pair

represents the coordinate of a disparity space and they coincide with the pixel coordinates for the

reference image. To find the corresponding pair of coordinates (x′, y′) in the second image (the

matching image), of the given pixel, we will use the equation 4.1:

Given that x’=x (epipolar constraint and rectified images),

y′ = y + sign ∗ d(x, y) (4.1)

where sign is +1 or -1, such that the disparity to be always positive.

The stereo matching algorithms could be divided into feature-based (which try to find features

as edges and match them afterwards leading to a sparse disparity map) and area-based algorithms

(which try to match each pixel leading to a dense disparity map). The main advantage of

algorithms that produce sparse disparity map is usually their speed, while the main disadvantage

is that even in the case of feature matching the error rate can be quite high and it tends to

propagate in latter stages of the algorithms. In the case of algorithms that produce dense disparity

maps they can have a significant running time depending on the accuracy of the disparity map

4Disparity was originally referring to the difference in image location of an object seen by the left and right
eyes.
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obtained, but good results in real-time were achieved using either CPU processing [64] or the

most popular GPU5 programming[93]. Still, designing a stereo matching system with good trade

off between accuracy and efficiency remains a challenging problem. In what follows we are going

to present some of the main difficulties faced by the stereo matching algorithms and also present

a short state of the art of the current methods and techniques.

As presented in [112], most of the stereo matching algorithms are following four steps:

1. Computation of a matching cost function

2. Support zone cost aggregation

3. Disparity computation through cost minimisation

4. Disparity refinement

Figure 4.4 shows an example of a basic stereo matching algorithm. In this example the cost

taken in consideration is the absolute difference of intensities. Because this cost is not very

discriminative, an aggregation area represented by a squared window of 3 × 3 pixels is used.

Inside the aggregation area all the pixels are considered to have the same disparity. Therefore, in

order to compute the cost for a pixel to have a disparity d with the help of a squared aggregation

area, the sum of individual costs is computed for each pixel in the aggregation area to have the

disparity d using the absolute difference of intensities. The following step is to find the disparity

at which the cost will be minimised. This is just a simple example of a stereo matching algorithm.

In practice, because the problem of stereo matching is an NP complete one, even if we have found

for each pixel the disparity that minimizes the cost for the pixel, this does not mean that the

found disparity corresponds with the ground truth.

4.1.2.1 Stereo matching difficulties

The problem of stereo matching has an ill-posed nature [107] therefore it is still challenging to

obtain an accurate disparity map. Some of most difficult situations are given by:

• Radiometric distortions. Radiometrical differences or distortions are the situations

where corresponding pixels have different intensity values. The assumption that pixels, in

the two stereo images, corresponding to the same scene will have same brightness holds

only for the Lambertian surfaces, i.e. surfaces that have the same brightness regardless

of the viewing angle. In practice, non-Lambertian surfaces are quite frequent. Moreover,

5GPU - Graphical Processing Unit. Currently the main framework for GPU programming is CUDA provided
by NVIDIA
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Figure 4.4: Basic steps of stereo matching algorithms assuming rectified images. a) The problem
of stereo matching is to find for each pixel in one image the correspondent in the other image.
b) For each pixel a cost is computed, in this example the cost is represented by the difference
in intensities. c) A cost aggregation represented by a squared window of 3 × 3 pixels. d) The
disparity of a pixel is usually chosen to be the one that will give the minimum cost.
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radiometrical distortions are also caused by camera parameters (aperture, sensor) which

can give different image noises or vignetting.

• Ambiguity. In order to find two corresponding pixels, a cost has to be used that discrimi-

nates the matching pair from the other possible matches. Unfortunately, it is difficult to

find such a cost in order to match untextured regions, i.e. a white wall. Moreover, repetitive

patterns pose also a problem due to the fact that several points become viable candidates

for matching, thus creating an ambiguity.

• Occlusions. The problem of finding a corresponding pixel becomes even more difficult

when in fact that pixel does not really exist. Occlusions, i.e. situations where a pixel is

visible in one of the images but not in the other, are frequent at depth discontinuities. Also,

an object that is situated close to the point of view will cause occlusions for an object

situated behind it.

Therefore, due to the challenges of the stereo matching given by textureless areas, occluded

regions, reflective surfaces, sun glares, a stereo matching algorithm that simply uses the intensity

values of the pixels like illustrated in figure 4.4 will give a result with a high error rate.

A few examples of images taken in real road conditions, that we consider to be a challenge for

stereo matching algorithms, like textureless areas, repetitive patterns, sun glares, high contrast or

reflective surfaces, are presented in figure 4.5.

4.1.3 Stereo matching Algorithms

Computer stereo vision has been a domain studied for a long time, thus a considerable amount of

literature exists. Like presented in subsection 4.1.2, the stereo matching algorithm will usually

follow four main steps: cost computation, cost aggregation, disparity computation through cost

minimisation and disparity refinement.

If we take into account only the cost minimisation/optimisation step, a division of the stereo

matching algorithms into local and global can be performed. In order to explain the difference

between local and global algorithms one has to understand the smoothness assumption.

Most of the images depicting natural scenes show objects with a smooth surface. Therefore

the assumption that can be made is that across an object like a lamp or person, the disparity

will be the same or similar. This is defined as the smoothness assumption [92], i.e. spatially close

pixels that have similar or the same disparity. The smoothness assumption can be implicit as in

the case of local stereo matching algorithms or explicit, as it is the case of global ones.

85



4.1. STEREO VISION PRINCIPLES CHAPTER 4. STEREO VISION FOR ROAD SCENES

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 4.5: Challenging situations in stereo vision. The images a)-h) are extracted from the KITTI
dataset[57], while the images i)-l) from HCI/Bosh Challenge [95]. The left column represents
the left image from a stereo pair, and the right column the corresponding right image.: a)-b)
Textureless area on the road caused by sun reflection; c)-d) Sun glare on the windshield produces
artefacts; e)-f) "Burned" area in image where the white building continues with the sky region
caused by high contrast between two areas of the image; g)-h) Road tiles produce a repetitive
pattern in the images; i)-j) Night images provide fewer information; k)-l) Reflective surfaces will
often produce inaccurate disparity maps
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4.1.3.1 Local stereo matching

The implicit smoothness that is made by the local methods assumes the fact that all the pixels in

the defined zone of aggregation have constant disparity. When searching for a match of a given

pixel, a window (or the chosen zone of aggregation) is shifted across the corresponding scanline

from the other view.

Most of the time, the final disparity is obtained by using the winner-takes-all strategy, i.e.

finding the point that will minimize the matching cost (see equation 4.2).

dp = mindmin≤d≤dmax

∑

q∈Np

c(q, q − d) (4.2)

where

• dp is the final disparity assigned to pixel p

• dmin and dmax is the minimum possible disparity, respectively maximum.

• Np represents the neighbourhood of pixel p that is taken as aggregation area

• c(q, q − d) represents a cost between the pixel q in the left image and the corresponding

pixel at disparity d in the right image

Because local stereo matching methods usually go hand in hand with the step of cost aggrega-

tion, we will describe the local stereo matching algorithms according to the aggregation area chosen.

Window-based aggregation

In the window-based aggregation approach the neighbourhood area is usually represented by a

square window of user-defined size. The main advantage of this approach is the fast computation

time.

Unfortunately, the approach has several disadvantages. The first problem with the window-

based aggregation is in the disparity discontinuities regions as shown in figure 4.6. The main

assumption of the local methods is that all the pixels in the defined aggregation area have the

similar disparities. This assumption will not hold in disparity discontinuities regions and has as

effect foreground fattening and implicitly errors in the disparity map.
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Figure 4.6: Disadvantage of square window-based aggregation at disparity discontinuities. In red
is the pixel, and the square is the corresponding aggregation area.

Another problem is with choosing a good window size. A big window will increase the

computation time, but it will capture more texture. A small window size will provide a fast

running time but it is less likely to capture discriminative features. Moreover, big or small are

relative concepts depending on the type of scene and image size.

Several algorithms have been proposed to resolve the problems of square window aggregation.

A solution for choosing the right window size was proposed in the form of adaptive window size

[53], [68], while for the systematic errors that can be found at disparity discontinuities a possible

solution is offered by adaptive support [135],[69].

Adaptive Windows

Fusiello et al. [53] proposed a method that improved the classical window-based correla-

tion by the use of nine different windows. The pixel, for which the disparity is computed, is

no longer centred in the aggregation window, but it has different positions. The purpose is to

find the best window that will not violate a disparity discontinuity, and thus the idea is that

the smaller the cost error is, the greater is the chance that the window found covers a region of

constant depth. The disparity with the smallest cost error per window is retained.

Another approach is not to have different windows, but to divide a centred aggregation window

in nine parts, like proposed by Hirschmüller et al. [68]. The presumption is that not all the parts

in an aggregation window are equally relevant. Therefore, the matching score is computed by

retaining only the best five costs of the sub-windows.

The disadvantage of these approaches remains choosing of a good window size. Moreover,

not always a window that does not violate the disparity discontinuity can be found or that five

sub-parts are always relevant in an aggregation window.
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Adaptive Support Weight Approach

Extending the idea proposed by Hirschmüller et al. [68] that not all the sub-parts of

an aggregation window should contribute to the final score, techniques that associate to each

sub-part a weight were proposed. Therefore, if in the classical window-based aggregation all the

pixels have the same influence over the matching cost (equation 4.3), in the adaptive support

weight approach a weight w(p, q) is used to determine the likelihood of two pixels, p and q, to

have the same disparity (equation 4.4).

C(p,d) =
∑

q∈Np

c(q, q − d) (4.3)

C(p,d) =
∑

q∈Np

w(p, q) ∗ c(q, q − d) (4.4)

The main advantage of this method is that the foreground fattening is removed but another

problem arises: how to compute the weights?

The usual assumption is that two points are likely to have the same disparity if they have

similar colors and if they are similar in spatial positions.

Yoon and Kweon [135] proposed a function for the weight computation that takes advantage

of both color similarity and the spatial distance between two pixels (equation 4.5). This method

has as advantage the fact that it provides good results at disparity discontinuities regions, but

unfortunately has a high computational cost.

w(p, q) = exp(−(
δcpq
γc

+
δgpq
γg

)) (4.5)

where

• δcpq computes a color dissimilarity

• δgpq computes the euclidean distance

• γc and γq are user defined parameters

Because the euclidean distance between two pixels does not enforce two pixels to actually

be on the same surface, a solution was proposed in [69] by taking into consideration geodesic

distances. A geodesic distance represents the shortest path that connect two pixels, p and q in

color.

w(p, q) = exp(−
D(p, q)

γ
) (4.6)
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where

• D(p, q) denotes the geodesic distances

• γ is a user defined parameter

Cross-based aggregation

The drawback of aggregation areas that take into consideration both color and euclidean

or geodesic distances is the high computation time. Zhang et al. [137] proposed an efficient

technique based on cross-zone aggregation for computing a pixel aggregation region, that takes

into consideration both color and euclidean distances.

The idea behind is to construct a cross region for each pixel. For this, it is necessary to find

only four pixels, corresponding to the end of the four arms: up, down, left and right (figure 4.7.a).

Then, in order to construct a region of various shapes, for each pixel that lies on the vertical arm,

the horizontal arm will give the region boundaries for the specific row (figure 4.7.b, 4.7.c).

In order to choose an arm endpoint pe for a given pixel p, two rules are applied that pose

limitations on color similarity and maximum arm length:

• Dc(pe, p) < τ . τ is a user-defined threshold value, while the color difference is defined to be

Dc(pe, p) = maxi∈R,G,B|Ii(pe)− Ii(p)|.

• Ds(pe, p) < L. L is a user-defined threshold value and represents a maximum length in

pixels. Ds(pe, p) is a spatial distance given by |pe − p|.

After having the cross region for each pixel, the next step is to compute the cost in the defined

region. For this, the cost aggregation is computed in two steps. First the horizontal matching

cost is computed and stored (figure 4.8.a), secondly the final cost is obtained by aggregating the

intermediate results vertically (figure 4.8.b). The two steps can be efficiently computed using 1D

integral images.

4.1.3.2 Global stereo matching

Global methods of stereo matching define the problem as a energy minimization problem.

The most common form of the energy function is:

E(D) = Edata(D) + Esmooth(D) (4.7)
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Figure 4.7: Cross region construction: a) For each pixel four arms are chosen based on some
color and distance restrictions; b),c) The cross region of a pixel is constructed by taking for each
pixel situated on the vertical arm, its horizontal arm limits.
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Figure 4.8: Cross region cost aggregation is perfomed into two steps: first the cost in the
cross-region is aggregated horizontally b) and then vertically b)

91



4.1. STEREO VISION PRINCIPLES CHAPTER 4. STEREO VISION FOR ROAD SCENES

where D is the disparity map of the image (left), Edata is the member that measures the

consistency of the disparity map, and Esmooth is a term that computes the smoothness.

Usually the data term measures a color dissimilarity, but other cost functions can be considered.

Edata(D) =
∑

p∈I

c(p, p− dp) (4.8)

, where dp is the disparity of p in the disparity map D, and the c(p, p− dp) computes a cost (for

example color dissimilarity) between pixels of left and right images.

In what concerns the smoothness term, which is computed explicitly in global methods, it is

described by equation 4.9.

Esmooth(D) =
∑

<p,q>∈N

s(dp, dq) (4.9)

where N represents the set of neighbouring pixels and s is a smoothness function that imposes a

penalty if two disparities are different.

s(dp, dq) =







0 if dp = dq

t otherwise
(4.10)

where t is a user defined penalty. The form of the function s described here is the Potts function

but other functions for the smoothness function could be used.

Figure 4.9: Four connected grid

Now the problem is posed: how to balance the data term and the smoothness term. One could

think of smoothness term as modelling a four-connected grid as shown in figure 4.9, where each

pixel has an edge connection with the immediate neighbours. This renders the problem of finding

the minimum energy E(D) to be a NP-complete problem. The problem of global methods does

not lie into the algorithms of energy minimization, but most likely into the problem of energy

modelling. There are several optimisation algorithms that could be used:
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Dynamic programming

Dynamic programming can be an efficient technique to compute the disparity map, frequently

used for real-world applications with real-time constraints. The algorithm of dynamic programming

on a tree (see figure 4.10) is just a generalization of dynamic programming on a linear array. First

of all a root node r is chosen (can be randomly) in the tree. The optimal disparity for the root

node r can be found using equation 4.11 [125].

Figure 4.10: Tree example. If smoothness assumption is modeled as a tree instead of a four
connected grid, the solution could be computed using dynamic programming

L(r) = mindr∈D

(

m(dr) +
∑

w∈Cr

Ew(dr)

)

(4.11)

where m(dr) is the data term and represents the cost of matching the pixel r at disparity d,

Cr is the set of children of r, and Ew(dr) is the energy on a subset of the graph (see equation

4.12).

Equation 4.12 represents the energy of a subtree having the root at v and the parent at p(v)

Ev(dp(v)) = mindv∈D

(

m(dv) + s(dv, dp(v)) +
∑

w∈Cv

Ew(dv)

)

(4.12)

where s(dv, dp(v)) is the smoothness penalty.

The problem is how to transform the four-connected grid (4.9) to a tree structure (for example

as seen in figure 4.10). For this, several strategies could be employed.

Scanline Based Tree

One of the simplest way of transforming a four-connected grid to a tree is by deleting all the

vertical edges. This has the advantage of being fast, but by doing this operation, we enforce just

a horizontal smoothness assumption. Because the smoothness between neighbouring scanlines is
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not enforced the disparity images will have streaking problems.

Figure 4.11: From four-connected grid to tree: Scanline based tree

Intensity Based Tree

In [125] a more efficient way of constructing the tree is proposed. For each edge in the

four-connected grid, a weight w(p, q) is computed (see equation 4.13). Based on this, a minimum

spanning tree6 is build. The advantage of this method is that the horizontal streaking are visibly

reduced, but some vertical streaking might appear.

w(p, q) = |I(p)− I(q)| (4.13)

where I(p) is the intensity of pixel p.

Simple Tree Structures

Bleyer and Gelautz [20] proposed two simple tree structures as seen in figure 4.12. The two

structures, horizontal and vertical tree, were designed to capture the texture otherwise missed

by other techniques. The idea proposed by Bleyer and Gelautz [20] is to compute the optimal

disparity for each point in the image by approximating the four-connected grid in each pixel using

the two tree structured described. Streaking problem, that is inherent for most of the dynamic

programming algorithms, is greatly reduced.

6A minimum spanning tree is a tree connecting all the nodes whose sum of weights is minimum among all such
trees
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� �

Figure 4.12: Simple Tree structures: Horizontal Tree and Vertical Tree

Belief Propagation

Sun et al. [119] has showed that an approximate solution for the energy minimization

problem of stereo matching can be found using belief propagation. Belief Propagation is an energy

minimization iterative algorithm that functions by passing messages within the directed-connected

neighbouring pixels. Therefore the data cost term from the energy function is combined with four

sets of message values corresponding to each possible disparity at each pixel. At each iteration an

updated message value is sent to each four neighbouring pixels. After the iterations are completed,

at each pixel the disparity value is estimated.

Due to the necessity of storing the data costs and message values for each possible disparity

at each pixel the storage requirements are quite high. Moreover because it is an iterative process,

it can be quite slow. This is why various methods of speeding up this algorithm have been

developed.

One variant is hierarchical belief propagation [46]. A pyramid scheme is constructed in which

the width and height are halved at each pyramid level. The message values of the lower levels are

initialized by the the higher pyramid levels. Other speed ups of the algorithm are proposed by

implementation on GPU [25],[61], [133]. Further speed up and reduction in the search space was

proposed by Grauer-Gray and Kambhamettu [60].

Graph-Cuts

As described by Kolmogorov and Zabih [76], a graph cut is a partition of a graph with two

distinguished terminals called source (s) and sink (t) into two sets V s and V t, such that s ∈ V s

and t ∈ V t. The cost of the cut is represented by the sum of the edges’ weights between the two

partitions. Finding the minimum cut (the cut of minimum costs among all possible cuts), and

implicitly the minimum cost, can be resolved by computing a maximum flow between terminals.
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An example of a minimum cut in a graph is shown in figure 4.13. In practice the global energy

minimisation technique using graph cuts has been shown to be effective with the condition of

having an appropriate cost function.
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Figure 4.13: Example of a minimum cut in a graph. A cut is represented by all the edges that
lead from the source set to the sink set (as seen in red edges). The sum of these edges represents
the cost of the cut.

Graph cuts can be applied for the algorithm of stereo matching by modelling the pixels in the

image as nodes in the graph. In figure 4.14a is shown an example of such a graph: all the pixels in

the image are represented as nodes and all the nodes on a given level belong to the same disparity.

The edges starting directly from the source or going directly into sink are given an infinite cost.

The vertical edges that can be viewed in figure 4.14a have as weight the cost of matching a pixel

at a certain disparity. In this implementation graph-cuts will output the same result as a local

matching method with winner-takes-all strategy. This is because the smoothness assumption was

not explicitly modelled. In figure 4.14b a smoothness assumption between horizontal pixels is

modelled, thus each horizontal edge will be given a weight that represents the smoothness penalty.

The simplest way to define the smoothness penalty is to assign a user-defined weight wp when

two neighboured pixels have different disparities, and 0 otherwise.

In practice, for the problem of stereo vision, the constructed graph is a three dimensional

structure. If in figure 4.14b each layer represents just one scanline, in figure 4.15 each layer

represents all the pixels in an image. The vertical edges represent the disparity edges, while all

the horizontal edges represent the smoothness assumption.
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Figure 4.14: Graph cuts example on a scanline in stereo vision: a) without smoothness assumption;
b) modelling smoothness assumption
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Figure 4.15: Graph Cuts applied to stereo vision algorithm.

4.2 Stereo Vision Datasets

There exist several challenging databases for testing the stereo matching algorithms (4.1), from

simulated road scenes like Van Synthetic stereo [123] and EISATS [96], to real road scenes with
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some degree of ground truth like KITTI [57], Make3D Stereo [111] or Ladicky[83]. Moreover one

of the most well known benchmark for the stereo matching algorithms is the Middlebury[112]

dataset.

The HCI/Bosch Challenge [95] contains some difficult situations for all the stereo matching

algorithms like: reflections, flying snow, rain blur, rain flares or sun flares, thus giving an insight

of where the algorithms might fail. Unfortunately, it does not come with a ground truth thus

making difficult the evaluation of stereo matching algorithms. Nevertheless, it is an interesting

dataset from the perspective of the challenging situations presented. The dataset contains 11

sequences, each with a particular challenging situation, with a total of 451 images.

Dataset Number of Images Ground truth Scene Image Type

KITTI [57] 389 YES (for 50% of px) Road Real

Middlebury[112] 38 YES (for 100% of px) Indoors Real

EISATS[96] 498 YES (for 100% of px) Road Synthetic

Make3D Stereo [111] 257 YES (for 0.5% of px) Road Real

Ladicky[83] 70 YES - manual labels Road Real

HCI/Bosch Challenge[95] 451 NO Road Real

Van Syntetic stereo[123] 325 YES (for 100% of px) Road Synthetic

Table 4.1: Datasets comparison for stereo matching evaluation

Datasets like Van Syntetic stereo [123] and EISATS [96] have the advantage of having ground

truth for all the pixels, but they are composed of synthetic images. Other datasets containing

real road images are Make3D Stereo [111] and Ladicky [83] but provide ground truth for a limited

number of pixels.

One of the most popular datasets for comparison of stereo matching algorithms is the

Middlebury dataset[112]. Although the dataset presents a lot of challenges from the perspective

of different situations captured, the images are taken inside a laboratory in controlled conditions.

In our experiments we have used this dataset for the validation of the stereo matching algorithms.

KITTI [57] dataset provides real road images with ground truth for around 50% of the pixels,

thus making a good dataset for evaluating different stereo matching algorithms. The KITTI

dataset contains 389 pairs of stereo images divided into 194 images for training and 195 for

testing. The authors provide the ground truth only for the training sequences, while for the

testing sequences an evaluation server should be used in order to have the results. The ground

truth disparity map was obtained using a Velodyne laser scanner therefore for only about 50% of

the pixels in the image the ground truth is available. The main challenges in the KITTI dataset

are the radiometric distortions caused by sun flares, reflections and “burned" images (caused by
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strong differences in intensity between light and shadow).

For our experiments we have chosen to work with the last two presented datasets: Middlebury,

due to the considerable number of stereo matching algorithms that have been compared on these

images, and KITTI, in view of our application context.

4.3 Cost functions

The matching cost function measures how "good" a correspondence is. It is important to make a

difference between cost function, cost aggregation and the minimisation methods that use these

costs. A typical classification of the matching costs is: parametric, non-parametric, and mutual

information based costs [67].

4.3.1 Related work

To better understand these categories, they have to be explained in the context of radiometric

distortions. Radiometrical similar pixels refer to those pixels that lie in different images, but in

fact correspond to the same 3D scene point. Thus they should have similar or in a more ideal

case the same intensity values in both images [65]. Radiometrical differences or distortions are

therefore when corresponding pixels have in fact different intensities values. These are caused by:

differences of camera parameters (aperture, sensor) that can induce different image noises and

vignetting; surface properties like non-Lambertian surfaces7; difference in time of acquisition of

the images (like is the case of some satellite imaging).

The parametric costs incorporate the magnitude of pixel intensity. Although usually simple

to compute, the main disadvantage of the parametric costs is that they are often not robust to

radiometric changes. The non-parametric costs incorporate just a local ordering of intensities,

thus it is said that the latter are more reliable to radiometric distortions. The mutual information

(MI) costs are computed on an initial disparity map. MI handles radiometric changes well [49]

but it can only handle radiometric distortions that occur globally thus it has problems to local

radiometric changes (which in practice are more common).

Choosing the right cost function is paramount for having a good disparity map. There exists

several studies where comparison of cost functions is performed, the most extended ones being

made in Hirschmuller and Scharstein [65], Hirschmuller and Scharstein [67]. In comparison with

the study made in 2007, where six cost functions where tested, Hirschmuller and Scharstein [67]

compared fifteen different stereo matching costs in relation with images affected by radiometric

differences. These costs are compared using three different stereo matching algorithms: one

7Lambertian surfaces are the surfaces that reflect the light the same regardless of the observer’s angle of view
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based on global energy optimisation (Graph Cuts), one using semi-global matching [66] and a

local window-based algorithm. They conclude that the cost based on CT gives the best overall

performance.

In comparison with Hirschmuller and Scharstein [67] that use both simulated and real

radiometric changes in a laboratory environment (Middlebury dataset [112] ), we have chosen for

the experiments to be performed on real road images from the KITTI dataset [57] which presents

significant radiometric differences, as well as the well known Middlebury dataset. Besides the

cost functions that provided the best results in Hirschmuller and Scharstein [67], we also test

some recent functions based on CT that gave good results on the Middlebury dataset8. Moreover

we propose two new cost functions: a fast function similar with the CT called Cross Comparison

Census (CCC) and other function CDiffCensus that remains robust to radiometric changes.

4.3.2 State of the art of matching costs

In the following we present briefly existing cost functions. We divide them in parametric, non-

parametric and mixed parametric costs. We call mixed parametric costs, those costs that try to

enhance the discriminative power of a non-parameteric cost by incorporating extra information

given usually by a parametric cost.

4.3.2.1 Parametric costs.

One of the most popular cost matching function is the squared intensity differences (SD) ( see

equation 4.14) like used by Kolmogorov and Zabih [76] or absolute intensity differences (AD)

(see equation 4.15) which is typically combined with other information like used in Mei et al. [93],

Klaus et al. [75]. SD and AD costs make the assumption of constant color therefore are sensitive

to radiometric distortions.

Let p be a pixel in the left image with coordinates (x, y) and d the disparity value for which

we want to compute the cost of p. Also Il(x, y)i is the intensity value of pixel p in the left image

on color channel i, while Ir(x, y− d)i is the intensity value of pixel given by coordinates (x, y− d)

in the right image. We consider n the number of color channels used ( n = 1 for gray scale images

and n = 3 for color images).

CSD(x, y, d) =
1

n

∑

i=1,n

(Il(x, y)i − Ir(x, y − d)i)
2; (4.14)

8http://vision.middlebury.edu/stereo/
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CAD(x, y, d) =
1

n

∑

i=1,n

|Il(x, y)i − Ir(x, y − d)i| (4.15)

If we consider N(x, y) to be the neighbourhood of the pixel with coordinates (x, y), than the

cost AD on this neighbourhood is defined like in equation 4.16. For the CSAD the line between

being a cost function or a cost aggregation technique is very fine.

CSAD(x, y, d) =
∑

(a,b)∈N(x,y)

CAD(a, b, d) (4.16)

Filter based parametric costs include algorithms like Laplacian of Gaussian [78], Mean[6],

Bilateral background subtraction [121] which apply a filter on the input images, after which the

matching cost is computed with absolute difference. Other parametric costs that are computed

inside a support window include zero-mean sum of absolute differences(ZSAD), normalized

cross-correlation (NCC) and zero-mean sum of normalized cross-correlation (ZNCC). The ZSAD

subtracts the mean intensity of a support window from each intensity inside that window before

computing the sum of absolute differences. NCC is a parameteric cost that can compensate

for gain changes, while ZNCC is a variant that compensates both gain and offset within the

correlation window [67]. Because ZNCC is a correlation function with values in [0, 1], in order

to obtain the cost we will subtract it from one (see equation 4.17).

CZNCC(x, y, d) = 1− ZNCC(x, y, d) (4.17)

ZNCC(x, y, d) =

∑

(a,b)∈N(x,y)

ZV (Il, a, b)ZV (Ir, a, b− d)

√

∑

(a,b)∈N(x,y)

(ZV (Il, a, b))2
∑

(a,b)∈N(x,y)

(ZV (Ir, a, b− d))2
(4.18)

ZV (I, x, y) = I(x, y)− IN(x,y)(x, y), (4.19)

where IN(x,y) is the mean value computed in the neighbourhood N(x, y).

In practice the parametric costs have proven to be less robust than the non-parametric ones

[67], [7], with the exception of ZNCC [49],[120].

4.3.2.2 Non-parametric costs.

The most popular non-parametric costs include Rank, Census [136], and Ordinal [17], or pixelwise

costs represented by hierarchical mutual information which were successfully applied by Sarkar

and Bansal [110]. The costs based on gradient or non-parametric measures are more robust to
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changes in camera gain and bias or non-lambertian surfaces while being less discriminative [75].

CCT . As defined by Zabih and Woodfill [136] to compute the Census Transform (CT ) of

a pixel p a window called the support neighbourhood (n×m), must be centered on each pixel.

Based on this, a bit-string is computed by converting the color values inside the window to value

one, if the corresponding pixel has the value of the color greater than the center pixel’s color value

or zero otherwise. The local intensity relation is given by the equation 4.22, where p1 and p2 are

pixels in the image. The census transform is given by equation 4.21, where ⊗ denotes a bitwise

concatenation and n × m is the census window size. The CT cost is given by the Hamming

distance (DH) between the two bit strings (equation 4.20).

CCT (x, y, d) = DH(CT (x, y), CT (x, y − d)), (4.20)

where CT is the bit string build like in eq. 4.21.

CT (u, v) = ⊗ i=1,n
j=1,m

(ξ(I(u, v), I(u+ i, v + j))), (4.21)

where n×m is the census support window, ⊗ denotes a bitwise concatenation, and ξ function is

defined in eq. 4.22.

ξ(p1, p2) =







1 p1 ≤ p2

0 p1 > p2
(4.22)

CT can be computed on a dense ( eq. 4.21) or sparse window (eq.4.23). In a sparse window

[70], it is used only every second pixel and every second row as shown in figure 4.16. The filled

blue pixels are the pixels used to compute CT.

CTSparse(u, v) = ⊗i=1:step:n,j=1:step:m(ξ(I(u, v), I(u+ i, v + j))) (4.23)

where step is an empirical chosen value, usually two.

4.3.2.3 Mixed parametric costs.

Non-parametric costs are robust to radiometric distortions but they are less discriminative. That

is why in recent works several combinations between parameteric and non-parameteric costs

are proposed. In what follows we will present these functions. If the authors did not name the

proposed cost functions we are going to use the first name on the article to name the cost.

Cklaus. One of the top three algorithms on the Middlebury dataset [75] proposes the function

Cklaus (equation 4.24) that is a combination between CSAD (equation 4.16) with a gradient based
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(a) (b)

Figure 4.16: Census mask: a) Dense configuration of 7× 7 pixels b) Sparse configuration for CT
with window size of 13× 13 pixels and step 2

.

measure CGRAD ( equation 4.25). The two costs are computed in a neighbourhood N(x, y) of

3× 3 pixels and are weighted by w.

Cklaus(x, y, d) = (1− w) ∗ CSAD(x, y, d) + w ∗ CGRAD(x, y, d) (4.24)

where

CGRAD(x, y, d) =
∑

(a,b)∈N(x,y)

|∆xIl(a, b)−∆xIr(a, b− d)|+

∑

(a,b)∈N(x,y)

|∆yIl(a, b)−∆yIr(a, b− d)|,
(4.25)

where ∆x and ∆y are the horizontal and vertical gradients of the image.

Combinations based on CT became popular due to the good results obtained on the Middlebury

dataset. For example one of the top algorithms on the Middlebury dataset[93], uses a combination

between the CCT and CAD (eq. 4.26 ). The new cost, CADcensus, reduces the error in non-occluded

areas, for the Middlebury dataset, in average with 1.3%.

CADcensus(x, y, d) = ρ(CCT (x, y, d),λcensus)+

ρ(CAD(x, y, d),λAD)
(4.26)

where λcensus and λAD control the influence of each cost, and ρ is defined in equation 4.27.

ρ(c,λ) = 1− exp(−
c

λ
) (4.27)

Another combination of a CCT and CAD (eq. 4.28), where both are computed on the gradient
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images, is proposed by Stentoumis et al. [114]. It was shown that this new function, Ccstent (

equation 4.28) can give up to 2.5% less erroneous pixels on Middlebury dataset.

Ccstent(x, y, d) = ρ(C∆census(x, y, d),λcensus)+

ρ(CAD(x, y, d),λAD)+

ρ(C∆AD(x, y, d),λ∆AD),

(4.28)

where ∆census and ∆AD are the costs, CT and AD respectively, computed on gradient images.

4.3.3 Motivation: Radiometric distortions

For a stereo matching system to be functional in different conditions, it has to be robust to

radiometrical differences. As previously stated, radiometrical similar pixels refers to those pixels

that correspond to the same scene point and have similar or in an ideal case the same values in

different images [65]. Radiometrical differences or distortions are therefore the situations where

corresponding pixels have different values.
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Figure 4.17: The mean percentage of radiometric distortions over the absolute color differences
between corresponding pixels in KITTI, respectively Middlebury dataset .

In order to analyse the amount of radiometric distortions in different images, we have compared

the dataset Middlebury and KITTI. In figure 4.17 is presented the mean percentage of radiometric

distortions for the two datasets, over the absolute difference between corresponding pixels. As

stated by Hirschmuller and Scharstein [65], the Middlebury dataset is taken inside a laboratory

in controlled light conditions. Even so, for example at a color absolute difference of five, on the
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Figure 4.18: Bit string construction where the arrows show comparison direction for a) CT:
‘100001111’, b) CCC: ‘00001111101111110100’ in dense configuration, c) CCC in a sparse configu-
ration

Middlebury dataset the average percentage of radiometric distortions is around 28%. On the

other hand on KITTI dataset, where the images were collected outside, the average percentage

of radiometric distortions at the same difference of color is larger than 45%. Therefore it is

important to find a cost function that remains robust to radiometrical distortions.

4.3.4 Contributions

We have proposed two cost functions, one based on a modified CT that has the advantage of a

small computational time while in the same time reducing the error, and the other one based on

a combination between a CT-based cost and a mean sum of differences of intensities that will

provide low errors in radiometrical affected regions.

4.3.4.1 Cross Comparison Census

We propose a new technique to compute the Census Transform bit string, that we named Cross

Comparison Census (CCC). In comparison with CT , the bit string for CCC is obtained by

comparing each pixel in the considered window with those in the immediate vicinity in a clockwise

direction. For comparing the two bit-strings the Hamming distance is used like in the case of CT .

N(i, j, step) = {(i, j + step); (i+ step, j + step);

(i+ step, j); (i+ step, j − step)}
(4.29)

where (j + step) < m and (i+ step) < n and (j − step) >= 0

ICCCensus(u, v) = ⊗i=0:step:n,j=0:step:m(ξ(I(i, j), N(i, j, step)) (4.30)

Figure 4.18.a shows the standard CT , while Figure 4.18.b and Figure 4.18.c show the CCC
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principle in dense configuration and respectively in sparse configuration. The extra information

that is captured in the CCC bit string will result in the possibility of using a smaller window

size and fewer elements in the bit string while keeping all the robust results of the CT or even

improving them.
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Figure 4.19: Computation time comparison between CT and CCC for different image sizes. In
the figure an image size of 36 ∗ 104 corresponds to an image of 600× 600 pixels. For both CT
and CCC we used a window of 9× 7 pixels, but CCC is computed using a step of two.

CCC can be computed in a very efficient way. First each pixel is compared with those in

the immediate neighbourhood forming a mini bit string which is stored in a matrix. Secondly

the final bit string of a given pixel is formed by the simple concatenation of the mini bit strings

corresponding to the relevant pixels in the census window. These operations remove the redundant

comparisons performed in the CT, making CCC very fast to compute. In the same time this

method is friendly from a hardware perspective because it allows a greater degree of parallelism

than CT. In figure 4.19 it is presented a comparison between computing time of CT and CCC in

a single threaded configuration. It can be observed that when increasing the image size, defined

as the total number of pixels in an image, the computation time for CT has a fast growing rate

while for CCC the computation time increases with a lower rate. The same situation can be

observed in the case of increasing the size of the neighbourhood window. In figure 4.20 we present

comparison between computation time for CT and CCC when increasing the window size while

keeping constant the image size.

4.3.4.2 DiffCensus

We propose a new function that combines the CT [136], or our proposed variant CCC, with

the mean sum of relative differences of intensities inside a window (eq. 4.31). We consider

CCC separately from CT due to its fast computation time. In comparison with functions like
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Figure 4.20: Computation time comparison between CT and CCC for different neighbourhood
sizes for an image of 1000× 1000 pixels.

CADCensus or Ccstent that use the pixel intensities values, the CDIFFCensus does not rely on the

value of the pixel intensity but on the difference of intensity between a considered pixel and

its neighbourhood. This keeps the function as a non-parametric one while incorporating extra

information.

CDIFFCensus(x, y, d) = ρ(Ccensus(x, y, d),λcensus)+

ρ(CDIFF (x, y, d),λDIFF )
(4.31)

where Ccensus can be either CCT , which will give CDIFFCT , or CCCC , which will give CDIFFCCC ;

CDIFF is defined in eq. 4.32.

CDIFF (x, y, d) = |DIFFl(x, y)−DIFFr(x, y − d)| (4.32)

where n ×m is the same support window that is used to compute the CT, and DIFFl is the

DIFF function applied to the left image, while DIFFr is the DIFF function applied to the

right image.

DIFF (u, v) =
DIFF (u, v)

CensusSize
(4.33)

where CensusSize is the size of the bit string given by the support window n×m and step (eq.

4.29).
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DIFF (u, v) =
∑

i=1:step:n
j=1:step:m

(|I(u, v)− I(u+ i, v + j)|), (4.34)

4.3.5 Algorithm

In order to test the proposed cost functions we use two different stereo matching algorithms: one

based on graph cuts, and the other based on local cross aggregation.

4.3.5.1 Graph cuts

As described by Kolmogorov and Zabih [76], a graph cut is a partition of a graph with two

distinguished terminals called source (s) and sink (t) into two sets V s and V t, such that s ∈ V s

and t ∈ V t. The cost of the cut is represented by the sum of the edges’ weights between the

two partitions. Finding the minimum cut, and implicitly the minimum cost, can be resolved

by computing a maximum flow between terminals. In practice the global energy minimisation

technique using graph cuts has been shown to be effective with the condition of having an

appropriate cost function.

For the cost comparison, the energy function is used as described by Kolmogorov and

Zabih [76]. The purpose is to find a disparity function f that minimizes a global energy E(f)

as seen in equation 4.35. The occlusion term Eocc imposes a penalty for occluded pixels, while

Esmooth is the smoothness term which forces neighbouring pixels in the same image to have

similar disparities. The data term Edata(f) measures the cost of matching the function f .

E(f) = Edata(f) + Eocc(f) + Esmooth(f) (4.35)

The data term used by Kolmogorov and Zabih [76] is defined as the cost of squared intensity

differences (CSD). For the following experiments, we will only modify the data term, while

keeping Esmooth and Eocc as defined by Kolmogorov and Zabih [76].

4.3.5.2 Cross-Zones Aggregation & Histogram Voting

For the local technique of energy minimisation we chose to test a cross-based aggregation as

described by Zhang et al. [137]. The algorithm consists in finding for each pixel a cross support

zone. In the first step, a cross is constructed for each pixel. Given a pixel p, its directional arms

(left, right, up or down) are found by applying the following rules:

• Dc(p, pa) < τ . The color difference (Dc) between the pixel p and an arm pixel pa should be

less than a given threshold τ . The color difference is defined as Dc(p, pa) = maxi=1,n|Ii(p)−
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Ii(pa)|, where Ii(p) is the color intensity of the pixel p at channel i, and n are the number

of color channels considered.

• Ds(p, pa) < L, where Ds represents the euclidean distance between the pixels p and pa and

L is the maximum length threshold.

Each pixel in the image has a cost given by the considered cost functions. The cost values in

the support region are summed up efficiently using integral images. To select the disparity, the

minimum cost value is selected using a Winner-Take-All strategy. Then a local high-confidence

voting scheme for each pixel is used as described by Lu et al. [90].

4.3.6 Experiments

4.3.6.1 Cost function Parameters

We have optimised each cost function by performing a grid search for the parameters on the first

three images from the KITTI training dataset. For this, we have applied the algorithm of local

stereo matching based on cross zone aggregation. Based on the obtained results, we have found

the parameter values that minimize the error rate as follows:

• CDiffCT : λcensus = 55; λDiff = 95

• CDiffCCC : λcensus = 55; λDiff = 95

• CADcensus: λcensus = 90; λAD = 90

• Cklaus: w = 0.2

• Ccstent: λcensus = 80; λAD = 35; λ∆AD = 80

Figure 4.21 shows the sensitivity of the cost function CDiffCT for the three images, by varying

the parameters λcensus and λDiff , in the interval (0, 100]. Darker values in the figure show smaller

error rate. For the studied function the standard deviation of the error is of 0.52%. The optimised

parameters were use throughout the experiments.

In what concerns the other parameters specific for the two stereo matching algorithms used,

details are given in appendix B, tables B.1 and B.2.

In what follows, we use the KITTI stereo images for all the numerical experiments. KITTI

dataset is divided into 194 images in the training set for which the ground truth images is provided,

and 195 images in the testing set for which an evaluation server should be used in order to obtain

the results. The following experiments are performed only on the 194 images in the training set9

9At the moment of performing the tests, only one submission in 72 hours was allowed on the evaluation server.
Thus having an important number of situations to be tested, we have opted to use just the training set.
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Figure 4.21: Cost function (CDiffCT ) sensitivity to different parameters values

All the cost functions in this section are evaluated by the average percentage of erroneous pixels

in all zones, occlusions included, and computed at 3 pixels error threshold.

4.3.6.2 Discriminative power of cost functions

In order to quantify how pertinent the information given by each cost function is, we have

compared all the cost functions in relation to all the possible disparities. This is the equivalent

of computing the error rate of stereo matching using only these functions without any cost

aggregation technique. Because some of the cost functions are defined in a neighbourhood, thus

having an advantage in report with the others, we also compute the error given by each function

when using a fixed aggregation window. The results for an error threshold of three pixels are

presented in table 4.2.

Table 4.2: Error percentage of stereo matching with no aggregation (NoAggr) and window
aggregation (WAggr).

Function CAD CSD CCT CADCT CCCC CADCCCCcstent Cklaus CZNCC CDiffCCC CDiffCT

Error
NoAggr

85.8% 86.22% 71.9% 74.5% 62.3% 71.6% 68.05% 57.52% 39.97% 58.96% 66.51%

Error
WAggr

42.20% 43.56% 26.92% 23.49% 26.51% 23.49% 27.29% 31.28% 28.68% 22.36% 21.60%

For the cost functions we compare CAD, CSD, CCT with a support window of 7× 9 pixels

(bit string of 63 elements), CCCC with a support window of 7 × 9 pixels and a step of 2 (bit

string of 55 elements), CADCT and CADCCC , Ccstent, Cklaus, CZNCC , CDiffCCC and CDiffCT .
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For the results obtained with an aggregation window we have used one of 9× 7 pixels. With no

aggregation and winner takes it all strategy, the most discriminative function is the cost given

by the ZNCC with an error of 39.97%, followed by Cklaus with 57.52%. From the census based

functions, CDiffCCC provides the best results with an error of 58.96% followed by CCCC with

62.3%. The combination of AD with either CT or CCC, overall increases the error rate at 71.9%

and 71.6% respectively. Therefore from a discriminative point of view, CZNCC , Cklaus and CCCC

are the most competitive.

For the results obtained using a window aggregation and winner takes it all strategy, the

proposed function based on mean sum of relative differences provides the best results: CDiffCT

with 21.60%, followed by CDiffCCC with 22.36%. These are followed by the functions based on

ADCensus: CADCT and CADCCC both with 23.49%.

4.3.6.3 Results with graph cuts stereo matching

The graph cuts minimisation algorithm was used as described by Kolmogorov and Zabih [76]

and section 4.3.5.1. Graph cuts minimisation is an iterative process, with the error decreasing

when increasing the number of iterations. One iteration takes around six minutes10 to complete

for an image of size 1241× 376 pixels. We have started the experiments using six iterations but

we did not observed any significant improvement over using just one iteration, while the running

time was considerably increased. Therefore all the experiments presented in this section were

carried out with one iteration.

In order to show the importance of the data term for the energy function, we have tested

the nine cost functions presented in section 4.3.2: CAD, CCensus, CCCCensus, Cklaus, CADcensus,

Ccstent, CZNCC , CDIFFCCC and CDIFFCT . This functions were used without an aggregation

window with the except of Cklaus where a neighbourhood of 3 × 3 pixels is required by the

algorithm and CZNCC where, for the same reasons, a neighbourhood of 9× 7 pixels was used.

Figure 4.22 presents the mean error rate on all the 194 images from the training KITTI

dataset. The error with CSD is quite large, while with the other cost functions the error decreases

significantly. The best overall performance is given by the proposed CDiffCCC function with an

error of 12.26%, followed by CDiffCT with 12.97% and very closely by CZNCC with 12.98%. In

terms of computing time the CZNCC is the slowest function taking in average ten times longer to

compute in comparison with the other two functions.
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Figure 4.22: Mean error for each cost function using graph cuts stereo matching.
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Figure 4.23: Mean error for each cost function using local cross aggregation stereo matching.

4.3.6.4 Local energy optimisation based on cross zone aggregation

Without a real time constraint, the global energy optimisation technique can give very accurate

disparity maps. In comparison, local techniques could achieve real time running with some

trade-off concerning the quality of the disparity map. We have chosen to compare with the global

energy optimisation based on graph cuts a local optimisation based on cross zone aggregation

and local high confidence voting [137] due to the promising results obtained on the Middlebury

[112] dataset.

The same cost functions tested with the graph cuts were evaluated with the local energy

optimisation. The color threshold for cross zone construction used is τ = 20, as chosen by

Zhang et al. [137]. For the maximum arm length two different thresholds were used, vertical arm

Lvertical = 10 and horizontal arm Lhoriz = 17, due to an observed predilection in the considered

dataset of objects to have the same disparity in horizontal. The results obtained on the KITTI

dataset are presented in figure 4.23.

10Our tests were performed on a computer with Dual Core 2.4 GHz single threaded
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The overall results are better than those obtained with the graph cuts method (tested in a

reasonable running time situation). When comparing the functions, the best results are obtained

by our proposed functions based on sum of differences: CDiffCCC and CDiffCT . CDiffCT , with

a 12.8% error rate, gives better results than the CDiffCCC , with a 14.07% error rate, but the

latter has a smaller running time of around 40%. The DIFF based functions are followed as

results by the CADCensus and standard CCT based cost functions.

4.3.7 Discussion

Even though the tested cost functions show different discriminative power, as seen in subsection

4.3.6.2 where CCCC has proven to be the most discriminative, a cost aggregation or cost min-

imisation algorithm can change the ranking. For each minimisation method must be chosen a

specific cost function. In figure 4.25 a visualisation of the output disparity map for each function

in combination with the two stereo algorithms is shown. Columns one and three show the results

obtained using the local stereo matching based on cross zone aggregation, while columns two

and four the results obtained with graph cuts. The output results for two images is presented.

While for the first image, results in columns one and two, a satisfactory disparity map is obtained

with both stereo matching algorithms, the second image presented is more challenging due to

large regions without texture. For a better visualisation of the disparity map results, we refer the

reader to appendix C.

For the graph cuts algorithm the proposed CDiffCCC function provided the best results with

very smooth disparity results in the road region but still erroneousness pixels could be found in

textureless areas.

The local stereo matching algorithm gives comparable results with those of graph cuts at

a much lower time cost. In this situation the best results are given by our proposed function

CDiffCT . The disparity map is not as smooth as in the case of the graph cuts algorithm because

we did not used any method of post-filtering. The main problems of the local minimisation

technique based on cross-aggregation lies in big regions of similar color. The assumption when

using an aggregation area is that in the considered region all the pixels have the same disparity.

In practice large areas of same or similar color will not have the same disparity (for example road

region and slanted walls).

Concerning the sensitivity of the cost functions in the presence of radiometric distortions,

distortions quantified as absolute color difference of corresponding pixels, a comparison of different

cost functions is performed (see figure 4.24 ). For this, at each level of radiometric distortion,

for all the 194 images from the training set, the error of the pixels belonging to that level was
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measured. As it can be observed from the figure the proposed cost functions, CDiffCCC and

CDiffCT , give the lowest error rate even in the presence of radiometric distortions.

In what concerns the function behaviour in texture less areas, due to the nature of the function,

it will not improve the results in these regions no more than the other cost function will. For

instance, in a white wall region all the cost functions will not, in general, be able to provide

discriminative values. Therefore it seems that, in texture less areas, the problem does not lay in

the cost function, rather than in the aggregation area or the energy minimisation algorithm used.
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Figure 4.24: Output error (logarithmic-scale) for different cost functions in presence of radiometric
distortions

4.4 Choosing the right color space

In the process of stereo matching using grayscale images, ambiguity could arise in situation where

objects of different colors, for example red and green, produce pixels of similar intensities. Thus

intuitively, color should contribute for stereo matching due to the fact that it provides additional

information in comparison with grayscale.

4.4.1 Related work

There exist a few surveys that study the impact of color information in the stereo matching

algorithms. Some studies show that the use of color leads a major improvement by reducing the

error rate like shown in Chambon and Crouzil [28], Okutomi et al. [101], Mühlmann et al. [97]

or Bleyer et al. [21], others by contrary Hirschmuller and Scharstein [67] report that color

114



CHAPTER 4. STEREO VISION FOR ROAD SCENES 4.4. CHOOSING THE RIGHT COLOR SPACE

a1) Visible left image 0 b1) Ground truth image 0 c1) Visible left image 2 d1) Groud truth image 2

a2)CZA: CSD: 19.36% b2)GC: CSD: 24.501% c2)CZA: CSD: 51.22% d2)GC: CSD: 55.25%

a3)CZA: CCCC : 11.55% b3)GC: CCCC : 5.27% c3)CZA: CCCC : 14.24% d3)GC: CCCC : 17.78%

a4)CZA: CCT : 12.50% b4)GC: CCT : 5.83% c4)CZA: CCT : 12.82% d4)GC: CCT : 15.31%

a5)CZA: CADCensus: 8.81% b5)GC: CADCensus: 9.20% c5)CZA:CADCensus: 11.27%d5)GC: CADCensus: 16.20%

a6)CZA: Cklaus: 11.99% b6)GC: Cklaus: 22.09% c6)CZA: Cklaus: 14.96% d6)GC: Cklaus: 34.82%

a7)CZA: CDiffCCC : 8.65% b7)GC: CDiffCCC : 7.22% c7)CZA: CDiffCCC : 13.08%d7)GC: CDiffCCC : 15.04%

a8)CZA: CDiffCT : 7.89% b8)GC: CDiffCT : 8.05% c8)CZA: CDiffCT : 11.56% d8)GC: CDiffCT : 14.22%

a9)CZA: Ccstent: 9.08% b9)GC: Ccstent: 14.92% c9)CZA: Ccstent: 15.27% d9)GC: Ccstent: 15.53%

a10)CZA: CZNCC : 9.45% b10)GC: CZNCC : 5.88% c10)CZA: CZNCC : 20.21% d10)GC: CZNCC : 13.18%

Figure 4.25: Comparison between cost functions. On first row there are presented two left visible
images ( a1 and c1) from the KITTI dataset with the corresponding ground truth disparity
images ( b1 and d1 ). On the following lines are the output disparity maps corresponding to
different functions: on the first ( a2-a10) and third column ( b2-b10) the output obtained with
the cross zone aggregation (CZA) algorithm, while on columns two (b2-b10) and fourth (d2-d10)
the output of the graph cuts algorithm. Images a2-a10 and b2-b10 correspond to the disparity
map computed for image a1 while the images c2-c10 and d2-d10 correspond to the disparity map
computed for image c1.
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does not help, especially when using in combination with radiometric insensitive cost functions.

Bleyer and Chambon [19] reports that color has consistently led to performance degradation,

particularly with radiometric insensitive cost functions. Also in [19] there is shown the particular

inefficiency of color stereo matching when the output images from the stereo system present some

color discrepancies.

In the field of autonomous vehicles some stereo matching algorithms using color exist. For

instance Cabani et al. [26] explored color gradient to detect edges in the stereo image pair. The

stereo matching is carried out by computing the photometric distance between the feature point

with its neighbour. This approach remains, however, sensitive to any lighting condition variations

due to a fixed camera gain. In comparison with Cabani et al. [26] and Bleyer and Chambon [19]

, we will combine different color spaces with several stereo matching cost functions using different

stereo matching algorithms.

A color space is an mathematical model that describes different ways in which the colors can

be represented. When acquiring color images, because of the natural outdoors lighting conditions,

the same object may have important discrepancies of color intensities in the stereo image pair.

This makes hard the stereo matching task and hence the disparity computation. In order to

choose an appropriate color space, we will evaluate the error given by the disparity map obtained

using eight different color spaces: RGB, XYZ, LUV, LAB, HLS, YCrCb, HSV and the gray scale

space, as presented in table 4.4.

4.4.2 Experiments

In order to compare different color spaces, we have chosen as database the Middleburry dataset. It

is the only dataset that provides color stereo images along with ground truth values. Performance

of different color spaces can be influenced by the cost function used and also the stereo matching

algorithm. For example the local stereo matching based on cross zones aggregation uses color

thresholds to construct the aggregation region.

For tests we have compared nine different algorithms. In table 4.3 is presented the mean

error rate for each color space and for each cost function across all the algorithms. Results for

individual algorithms across different color spaces and different cost functions are presented in

appendix A.
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Name Comments
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LUV L∗ =

{

( 29
3
)3Y/Yn, Y/Y n ≤ ( 6

29
)3

116(Y/Yn)
1
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HSV

H - similar to H component from HLS

V = max(R,G,B)

S =

{

0 if C=0
C

V
otherwise

Gray I = 0.3*R+0.59*G+0.11*B

Table 4.4: Color Spaces used for comparison117



4.5. CONCLUSION CHAPTER 4. STEREO VISION FOR ROAD SCENES

RGB XYZ LUV LAB HLS YCrCb HSV GRAY

CSD 26.19 27.09 25.94 26.09 37.28 25.56 37.10 30.51

CAD 24.40 24.54 25.15 25.36 31.93 24.89 30.82 29.57

CCCC 15.81 14.37 21.73 19.87 34.62 21.66 38.93 15.69

CCT 18.12 16.81 23.89 21.88 35.63 23.26 39.51 18.20

CADCT 16.28 15.40 20.09 18.79 27.97 19.53 28.74 16.54

CADCCC 15.01 14.13 19.14 17.83 27.71 18.84 28.49 15.18

CDIFFCT 16.31 15.17 20.48 19.03 30.57 20.20 32.10 15.41

CDIFFCCC 17.60 16.40 21.05 19.98 30.45 20.84 31.22 16.74

Table 4.3: Average error

4.4.3 Discussion

As shown in table 4.3, the color space that consistently provided slightly better results is the

XYZ. Between RGB and GRAY the difference is quite negligible, with the exception of the SD

cost for which the improvement was of 4.3% and AD cost for which the the improvement was of

5.2%. Therefore we back up the claims made by Bleyer and Chambon [19]: in the context of

radiometric insensitive the cost functions the color does not bring an improvement. Nevertheless

it doesn’t degenerate the performance. Moreover, the costs that incorporate some kind of color

information like ADCCC, ADCT, DIFFCT, DIFFCCC, provided better results that the classical

census transform (CT).

We have only tested the performance of different color spaces for stereo matching on the

Middlebury dataset, where images were acquired with the same type of cameras. Further tests

should include color images taken in different conditions with a variety of cameras in order to

insure a diversity that will make the findings statistical relevant.

4.5 Conclusion

In this chapter we have proposed several cost functions robust to radiometric distortions. These

were compared against other state of the art function using two different stereo matching

algorithms: a global method based on graph cuts and a local method based on cross zone

aggregation with high confidence voting.
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Experiments show that on KITTI dataset the results of local methods are comparable with

those of global methods. In addition local methods have a high computing speed. From the

tested functions, the proposed function gives the smallest error rate and has proven to be more

robust to radiometric distortions. Consequently, in the context of real time constraint of the

intelligent vehicle application, our choice as a stereo matching algorithm is for the local method

in combination with a cost function based on DIFF (CDiffCT , CDiffCCC).

KITTI dataset for stereovision contains only grayscale information, but color could provide

further discriminative information about the scene, as shown by the experiments performed

Middlebury dataset. Therefore, as future work it would be interesting to test the functions on

color road stereo images.

In the next chapter we are going to study the performance of a multi-modal classifier, Intensity,

Disparity and even Motion, for the task of pedestrian classification. As stereo matching algorithm

for the experiments performed in the next chapter we chose the local stereo matching algorithm

based on cross zone aggregation with high confidence voting and the cost function CDiffCT .
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In the field of pedestrian classification and detection, the main focus was on using the

intensity/color information from the Visible domain. This is proven by the large number

of existing datasets and features developed specifically for the visible domain. Nevertheless,

pedestrian classification in particular, and object classification in general, is still a challenging

problem for computers, whereas for the human perception is a rather easy task. Humans do not

use just the intensity information from the scene, rather employ also cues like depth and motion.

In this chapter we study the performance of different features computed on modalities like

depth and motion, in comparison with the intensity information from Visible domain, along with

different fusion strategies. Moreover, we extend the analysis to the intensity information from

Far Infrared domain.
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5.1 Related work

A new direction of research for pedestrian classification and detection is represented by the

combination of different features and modalities, extracted from Visible Domain, such as intensity,

motion information from optical flow and depth information given by the disparity map.

Visible Domain.

Most of the existing research is using depth and motion just for hypothesis generation, by

constructing a model of the scene geometry. For example, Bajracharya et al. [5] use stereovision

in order to segment the image into regions of interest, followed by the use of geometric features

computed from a 3D point cloud. Enzweiler et al. [38] use motion information in order to extract

region of interest in the image, followed by shape based detection and texture based classification.

Ess et al. [43] integrate stereo depth cues, ground-plane estimation, and appearance-based

object detection. Gavrila and Munder [55] use (sparse) stereo-based ROI generation, shape-

based detection, texture-based classification and (dense) stereo-based verification. Nedevschi

et al. [99] propose a method for object detection and pedestrian hypothesis generation based on

3D information, and use a motion-validation method to eliminate false positives among walking

pedestrians.

Rather than just using depth and motion as cues for the hypothesis generation, a few research

works began integrating features extracted from these modalities directly into the classification

algorithm. For example, Dalal et al. [31] proposed the use of histogram of oriented flow (HOF)

in combination with the well known HOG for human classification. Rohrbach et al. [109]

propose a high level fusion of depth and intensity utilizing not only the depth information in the

pre-processing step, but extracting discriminative spatial features (gradient orientation histograms

and local receptive fields) directly from (dense) depth and intensity images. Both modalities

are represented in terms of individual feature spaces. Wojek et al. [132] incorporates motion

estimation, using HOG, HAAR and Oriented Histograms of Flow. Walk et al. [127] proposed a

combination of HOF and HOG, along with other intensity based features, with very good results

on a challenging monocular dataset: Caltech[36]. Walk et al. [128] proposed the combination

of HOG, HOF, and a HOG-like descriptor applied on the disparity field (HOS), along with a

proposed Disparity statistics (DispStat) feature. Most of these articles have used just one feature

applied on different modalities and they lack an analysis of the performance of different features

computed from a given modality.

Enzweiler et al. [41], [40] proposed a new dataset for pedestrian classification and combine

different modalities, eg. intensity, shape, depth and motion, extracting HOG, LBP and Chamfer

distance features. Moreover they propose a mixture-of-expert framework in order to integrate all
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these features.

FIR domain.

In addition of multi-modality fusion in the Visible domain, several studies use Stereovision in the

Far-Infrared domain. For example, Krotosky and Trivedi [81] use a four-camera system (two

visible cameras and two infrared) and compute two dense disparity maps: one in visible and

one in infrared. They use the information from the disparity map through the computation of

v-disparity [82] in order to detect obstacles and generate pedestrian hypothesis. This work is

extended in [80], where HOG-like features are computed on Visible, Infrared and Disparity map

and then fused. Unfortunately, the tests performed by Krotosky and Trivedi [81],[80] were on a

relative small dataset where no other obstacles beside the pedestrians were present.

Bertozzi et al. [14],[11] proposed a system for pedestrian detection in stereo infrared images

based on warm area detection, edge based detection and v-disparity computation. Stereo

information is used just to refine the hypothesis generated and compute the distance and size of

detected objects, but it is not used in the classification process.

5.2 Overview and contributions

In comparison with Enzweiler and Gavrila [40] we extend the analysis of the impact of different

modalities (Intensity, Depth and Motion) in combination with different features, along with

several fusion strategies: between same features but different modalities, different features same

modality, different features different modalities, of "best features" fusion for each modality. All

these results are presented in section 5.5.

Moreover, in section 5.7, we extend the same feature analysis, but this time comparing the

modalities: Far-Infrared, Intensity, Depth and Motion. In addition, we present some insights into

the impact of different stereo vision algorithms for the classification task.

5.3 Datasets

There exists several datasets that are publicly available and commonly used for pedestrian

classification and detection in the visible domain. Table 5.1 presents an overview of existing

datasets in the Visible Domain.

Visible Domain.

INRIA [30] is a well established dataset, but in comparison with newer datasets, it has a

relative small number of people. NICTA dataset [105] consists mostly of images taken with a

digital camera having as training and testing set cropped BB containing people.
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In comparison with these two datasets, Caltech [36], Daimler Monocular [39], Daimler Multi-

Cue [41] , ETH [43] and KITTI [39] are all captured in an urban scenario with a camera mounted

on a vehicle or stroller ( as in the case of ETH).

Caltech [36] is one of the most challenging monocular databases having a huge number of

annotated pedestrians for both training and testing datasets. Daimler Monocular [39] provides

cropped BB of pedestrians in the training set, but road sequences of images for the testing.

Daimler Multi-Cue [41] is a multi modal dataset that contains cropped pedestrian and non-

pedestrian BB, but with information from visible, depth and motion. ETH [43] is a dataset

acquired mostly on a side walk using a stroller and a stereovision setup, thus it has both

temporal information (images are provided in a sequence) and the possibility of using the disparity

information. KITTI object dataset [57] is a newer dataset that contains stereo images with

annotated pedestrians, cyclists and cars. Although it does not have the possibility of using

temporal information, there is the possibility of using 3D laser data.

Infrared Domain.

Aside from the datasets from the Visible domain, we have considered also the dataset

ParmaTetravision. This contains images from both Visible and Infrared. Moreover the dataset

contains stereo-images, thus making an interesting dataset for comparing different domains and

modalities. An overview of available datasets in Infrared Domain is given in chapter 2.2.

In what follows, we are going to use for the experiments the dataset Daimler Multi-Cue for

Visible domain, and ParmaTetravision for Infrared domain. The reason why we didn’t chose for

Infrared domain RIFIR dataset, is because it does not contain stereo images.

5.4 Preliminaries

Throughout this chapter, for the experiments we are going to use the following configuration:

Classifier. In terms of classifier we have chosen to work with Support Vector Machine. For

this, we have used the library LibLinear[44].

Domains. This chapter contains two major parts: section 5.5 that focuses on Visible domain

and section 5.7 that deals with Far-Infrared domain.

Modalities. As modalities we will study Intensity, from Visible and Infrared domain, and

Depth and Motion computed using the information from the Visible domain.
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Features. In terms of features we compare HOG (as presented in section 1.4.1), ISS (as

presented in section 2.3), LBP (as presented in section 1.4.2), LGP (as presented in section 1.4.3),

HaarWavelets (as presented in section 1.4.5) and MSVZM (Mean Scale Value Zero Mean).

In what concerns MSVZM we have implemented a variation based on the feature MSVD

described in section 1.4.6. MSVD is a feature proposed specially for Disparity modality. The

difference between our implementation and the one proposed by Walk et al. [128] is that we

compute a zero-mean and perform L1 normalization, which results in a better performance.

5.5 Multi-modality pedestrian classification in Visible Domain

For the dataset used for the first set of experiments, that of feature comparison for the problem of

pedestrian classification in Visible domain, we have used the dataset Daimler Multi-cue proposed

by Enzweiler et al. [41]. The dataset is publicly available and contains cropped pedestrians

at a dimension of 96 × 48 pixels, along with manually annotated negative examples. It is a

good benchmark for feature comparison in different modalities due to available information from

intensity, flow and disparity.

Pedestrians Pedestrians Non-Pedestrians

(labeled) (jittered)

Train Set 6514 52112 32465

Partially Occluded Test Set 620 11160 16235

Non-Occluded Test Set 3201 25608 16235

Table 5.2: Training and test set statistics for Daimler Multi-Cue Dataset

5.5.1 Individual feature classification

For this experiment, we use each feature independently, HOG, ISS, LBP, LGP, Haar Wavelets

and MSVZM, operating in each modality (intensity, depth or motion).

First of all, we have compared MSVD and MVDZM by drawing the ROC curves corresponding

to the classification of the Daimler non-occluded dataset using only Depth information (see figure

5.1). Based on the ROC curve, at a classification rate of 90%, the false positive rate for MSVD is

of 0.391, while for the MVDZM is of 0.36. Even if we use L1 normalization for MSVD the false

positive rate remains at 0.39 therefore it seems that the process of zero mean lowers the error.
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Figure 5.1: Comparison of Mean Scaled Value Disparity and Mean Value Disparity Zero Mean

In figure 5.2 are presented the performance of different features, independently on each domain,

and on obtained testing set with no occlusions, while in figure 5.4 the same experiments are

performed on the partially occluded testing set.

Enzweiler and Gavrila [40] have also compared HOG and LBP features independently on each

modality and have drawn the conclusion that classifiers in the intensity modality have the best

performance, by a large margin. Overall, we draw the same conclusions, but in a different light.

Several features computed on Intensity domain indeed give the best overall performance (HOG,

LBP and LGP), but other features perform better in the depth domain (ISS, Haar Wavelets and

MSVZM). On the whole, the best performance is obtained by HOG features on the intensity

domain, but followed very closely by LGP computed also on Intensity. In the Depth domain,

ISS attains the lowest error rate, followed closely by LGP. HOG, even if on the Intensity gave

the best results, in the Depth domain proves to be less robust than ISS or the texture based

features like LGP and LBP. Haar Wavelets and MSVZM have overall, on all three domains, a

poor performance in comparison with the other features.

In figure 5.3, to better visualize differences between features, we plot for each modality the

results obtained with different features, along with the best performing feature on each modality.

By caring on the same set of experiments on the testing set with partial occlusions, we could

observed that this time there is a turnover: the best domain is the depth one, giving the best

results for HOG, ISS, LBP and LGP, while for Haar Wavelets and MSVZM the motion has the

best results. ISS features, although had a very good performance on the Depth domain for the

non-occluded testing set, in the presence of occlusion are less robust, being outperformed by LGP,
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LBP and HOG. The most robust feature is LGP computed on the Depth domain, by quite a large

margin in comparison with the other considered features. Of course, in order to treat occlusions

there exist better techniques [41],[47], [48], [59], than the holistic one employed here, but our

desired was to test the robustness of each feature across different modalities. Further results on

the partially occluded testing set using different features are presented in appendix F.1.
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Figure 5.3: Individual classification performance comparison of different features in the three
modalities: a) Intensity; b) Depth; c) Motion; d) Best feature on each modality

5.5.2 Feature-level fusion

After having analysed the effect of each modality independently for different features, we now

evaluate the effect of using for a given feature, modality fusion. Results are given in figure 5.5.

For all features, one can always observe an improvement when fusing the information provided by

different modalities.

The best single modality for HOG, LBP and LGP is the Intensity. But, by fusing Depth

and Motion modalities, is obtained a similar performance with that given by Intensity. In what
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Figure 5.2: Individual classification (intensity, depth, motion) performance of on non-occluded
Daimler dataset a) HOG; b) ISS; c) LBP; d) LGP; e) Haar Wavelets; f) MSVZM . The reference
point is considered the obtained false positive rate for a classification rate of 90%.
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Figure 5.4: Individual classification (intensity, depth, motion) performance on the partial occluded
testing set of a) HOG; b) ISS; c) LBP; d) LGP; e) Haar Wavelets; f) MSVZM
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concerns the other possible fusions per feature, they always provide a smaller false positive rate

than any modality used alone.

As a single modality, Depth always performed better than Motion. When used in combination

with Intensity, the fusion of Intensity and Motion seems to give lower error rate than the

combination Intensity and Depth for the features HOG, LBP and LGP. For ISS features, because

they have a good performance on Depth, the situation is reversed. For the other two considered

features, Haar Wavelets and MSVZM, the fusion of Intensity and Depth also has a better

performance than Intensity and Flow, even if it is at a relative higher overall error.

Fusing Intensity with Depth using a HOG classifier has approximative a factor of 2.6 of less

false positives than a comparable HOG classifier using intensity only; a Intensity and Motion

fusion has a factor of 4.5 less false positives, while all three channels fusion has a factor of

approximative 11 less false positives than the HOG classifier based on Intensity. Taking as

reference the same HOG classifier based on Intensity, the fusion of Depth with Intensity using

LBP based classifier has also a factor of 2.6 less false positives, while an LGP based classifier has

a factor of 3.

Using modality fusion for ISS feature also lowers the error rate in comparison with a single

modality ISS, but the diminishement in the false positive rate is less significant. The same

behaviour is for Haar Wavelets and MSVZM features.

No matter what is the feature employed, the fusion of all three modalities always lowers

the false positive rate. In figure 5.6.a) is showed a comparison of performance when using all

modalities fusion for different features. The best features in term of performance are HOG, LGP

and LBP with a difference in the false positive rate extremely low. These are followed by ISS

feature, but with a factor of approximately ten of higher false positive rate.

While the fusion of all three modalities of HOG feature has the lowest false positive rate at a

classification rate of 90%, the fusion of best feature on each modality seems to be slightly more

robust overall. These results are presented in figure 5.6.b).

In figure 5.7 we compare a classifier based on the best feature on each modality (HOG on

Intensity, ISS on Depth and LGP on Motion), with inter-feature fusion on all modalities. The

best performing system is a classifier trained on four features (HOG, ISS, LGP and LBP) and all

three modalities, having an approximative factor of 50 less positives than a comparable HOG

classifier using Intensity.
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Figure 5.5: Classification performance comparison for each feature using different modality fusion
(Intensity+Motion; Depth+Motion; Intensity+Depth; Intensity+Depth+Flow) and the best single
modality for each feature: a) HOG; b) ISS; c) LBP; d) LGP; e) Haar Wavelets; f) MSVZM.
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Figure 5.6: Classification performance comparison between different features using all modality
fusion per feature (a) along (b) with a comparison between the best feature modality fusion
(HOG on Intensity, Depth and Flow) and the best performing feature on each modality ( HOG
on Intensity, ISS on Depth and LGP computed on Motion )
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Figure 5.7: Classification performance comparison between the fusion of best performing feature
on each modality ( HOG on Intensity, ISS on Depth and LGP on Motion ) with all modalities
fusion of different features (HOG and LBP; HOG, ISS and LBP; HOG, ISS and LGP; HOG, ISS,
LBP and LGP)
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5.6 Stereo matching algorithm comparison for pedestrian classi-

fication

In the same way as different features yield different performance in the classification task, different

stereo matching algorithms can lead to a variation in the error rate for the same feature.

In the previous section, for the experiments performed on Daimler Multi-cue dataset, the

Disparity was pre-computed by the authors using a semi-global matching algorithm [66]. Since

they don’t provide the initial Stereo images, there is no possibility of recomputing the Depth

map using another stereo matching algorithm. Thus, in order to be able to compare different

stereo matching algorithms, we have used as dataset ParmaTetravision.
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Figure 5.8: Classification performance comparison of three stereo matching algorithms from the
perspective of four features: a) HOG , b) ISS, c) LBP, d) LGP.

Three different Disparity maps were computed on ParmaTetravision using three different

stereo matching algorithms in combination with different features. The purpose of this is to test

if the error difference between these algorithms found in the Disparity map reflects in an error
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difference when using Depth information for the classification task.

We have chosen the following stereo matching algorithms:

• Local stereo matching based on a cost function of DiffCensus computed in a square window

aggregation and used in combination with cross zone voting (as proposed in chapter 4.3.5.2).

• The same algorithm as described above, but this time just changing the cost function with

ADCensus [93].

• An efficient stereo matching algorithm proposed by Geiger et al. [56], which is based on

triangulation on a set of support points that can be robustly matched. This algorithm

achieved good results on the KITTI dataset, while in the same time has a fast running time.
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Figure 5.9: Classification performance comparison between different features (HOG, ISS, LGP,
LBP ) for Depth computed with three different stereo matching algorithms: a) Local stereo
matching using DiffCensus cost, b) Local stereo matching using ADCensus cost, c) Stereo matching
using the algorithm proposed by [56]

The results of comparison in performance of the stereo matching algorithm for different
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features are presented in figure 5.8. Overall, the lowest false positive rate is obtained by the

DiffCensus-based stereo matching algorithm, followed closely by the same algorithm but this time

using as cost function ADCensus. The stereo matching algorithm proposed by Geiger et al. [56]

has a higher false positive rate for all the considered features.

In figure 5.9 we present the same results but in a different light. This time we consider

separately each stereo matching algorithm, and we plot the results obtained with different features

for that algorithm. We can observe that LBP gives consistently a lower error rate for all three

stereo matching algorithms. This is followed by HOG feature in the case of the cross-based stereo

matching using DiffCensus or ADCensus, while for the algorithm proposed by Geiger et al. [56],

LGP gives better results than HOG.

In general the stereo matching algorithm proposed by the Geiger et al. [56] provides slightly

better results than the cross-based algorithm in terms of disparity error1. Nevertheless, due to

the fact that Geiger et al. [56] only considers the robust regions, for the task of classification,

this leads a loss in information in the regions for which is difficult to compute the disparity map.

In the case of the cross-based stereo matching algorithm using DiffCensus or ADCensus, we don’t

disregard the regions for which the disparity map has a high error rate. Thus, in our opinion,

even if we extract features on a disparity map where some errors exist, the classification algorithm

manages to learn and even extract information from these errors.

5.7 Multi-modality pedestrian classification in Infrared and Vis-

ible Domains

In section 2.4 we have presented experiments comparing the visible domain and the far-infrared

domain on two datasets: ParmaTetravision and RIFIR. ParmaTetravision dataset in comparison

with RIFIR, provides information from two visible cameras, therefore the possibility of performing

Stereo matching.

In this section, we extend the experiments on the ParmaTetravision classification dataset, by

evaluating the performance of Depth modality in comparison with Intensity from Visible and

Intensity from FIR domain.

In the same way that we have done the analysis for the Daimler database, we firstly compare

each feature individually on each modality. We have chosen for comparison four features: HOG,

ISS, LBP and LGP and four modalities: Intensity given by Visible Domain, Depth computed

from pair of Visible Stereo Images (using the Stereo matching algorithm based on Cross zone and

1The assessment was done visually, since we don’t have a ground truth for the disparity map
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DiffCensus cost function - see section 5.6), Motion using Visible images and Intensity values give

by Far-Infrared Domain. The later will be further referenced as simply IR.

For the experiments shown in section 5.7.1 and 5.7.2 we have computed a disparity map based

on the algorithm proposed in chapter 4: for fast computation we employed a square aggregation

window of 7×11 pixels, combined with a voting strategy in a cross window, and a DiffCensus cost

function. In what concerns the dense optical flow algorithm we have used the implementation

provided by Sun et al. [116].

5.7.1 Individual feature classification

In figure 5.10 are presented the performance of each feature on each individual modality. For

each feature, the best performing modality is that of Infrared, followed by Visible and Depth.

The best performing feature on Visible is LBP with a factor of two of less false positives than

a comparable HOG classifier on Visible. This is in comparison with the dataset Daimler, where

HOG had the best performance.

On the Infrared modality, the best performing feature is LGP, followed closely by LBP. HOG

and ISS features on Infrared have also a similar performance but they have a larger error rate:

LGP has a factor of five of less false positives than the comparable HOG classifier on Infrared.

On Depth modality, the best performing feature is LBP, followed this time by HOG. Even if

on Daimler dataset ISS feature had the best results on Depth, on the ParmaTetravision it is not

very robust, having a factor of two more false positives than the LBP.

In what concerns the Motion modality, in comparison with the experiments performed on

Daimler dataset where LGP gave the best results, on these images the best performing feature

was HOG. We believe that this variation in results is given by the quality of the dense optical

flow image obtained. Nevertheless, because of the important difference in performance between

Flow and Intensity modalities, for the fusion of modalities we will consider for now only Infrared

Intensity (IR) , Visible Intensity, and Depth.
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Figure 5.10: Individual classification (visible, depth, flow and IR) performance of a) HOG; b)
ISS; c) LBP; d) LGP;
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Figure 5.11: Classification performance comparison for each feature using different modality fusion
(Visible+IR; Visible+Depth; IR+Depth; Intensity+Depth+IR) and the best single modality for
each feature: a) HOG; b) ISS; c) LBP; d) LGP. In order to highlight differences between different
features, in e) is plotted for comparison of all modality fusion for different features.
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5.7.2 Feature-level fusion

In figure 5.11 we compare for each feature different modality fusions: Visible with Infrared,

Visible and Depth, Infrared and Depth, along with all three modalities fusion: Visible, Depth

and Infrared. The fusion of Visible and Depth lowers the false positive rate for all features in

comparison with the results obtained just on Visible Modality. This result are consistent with the

results obtained on Daimler dataset. Unfortunately, they are still not as good as those obtained

just by the Infrared modality.

Fusing Infrared and Depth on the other hand, lowers the false positive rate in comparison

with just the Infrared modality. For the fusion of Infrared and Depth with HOG feature there is

a factor of approximately of four less false positives than the just the HOG on Infrared. For

ISS, the factor is just of 1.6 and for LBP the factor is of 3.3. The biggest improvement in the

context of fusion of Infrared and Depth, is for LGP feature with a staggering factor of 96 less

false positives than just the LBP feature on Infrared.

The fusion of all three modalities Visible, Infrared and Depth provides the overall best results

for all features. In comparison with Daimler dataset where HOG features had the best results, on

ParmaTetravision HOG and ISS modality fusion have a similar false positive rate. However, the

family of local binary features are much more robust. LBP on Visible, Depth and IR has a factor

of nine less false positives than the similar HOG classifier trained on the same three modalities.

LGP on the other hand has a factor of over 100 less false positives than the HOG classifier.

5.8 Conclusions

In this chapter we have studied the impact of multi-modality (intensity, depth, motion) usage

over the pedestrian classification results. Various features have different performances across

modalities. As single modality, Intensity has the best performance on both tested datasets

(Daimler and ParmaTetravision), followed by Depth. Nevertheless, the fusion of modalities

provides the most robust pedestrian classifier. As single features, local based patterns features

(LGP, LBP) have consistently given robust results, but overall a fusion of complementary features

as well as modalities had the best performance.

Even if the fusion of Intensity and Depth lowers the false positive rate for all features in

comparison with the results obtained just on Intensity in Visible Modality, on the tested dataset,

the Intensity values from the FIR domain had consistently lower error rate. On the other hand, a

fusion between the two domains, FIR and Visible, along with information given by the disparity

map has given the best results on the ParmaTetravision dataset.
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I think and think for months and years.

Ninety-nine times, the conclusion is false.

The hundredth time I am right.

Albert Einstein

6
Conclusion

In this thesis we have focused on the problem of pedestrian detection and classification using

different domains (FIR, SWIR, Visible) and different modalities (Intensity, Motion, Depth Map),

with a particular emphasis on the Disparity map modality.

FIR. We have started by analysing Far-Infrared Spectrum. For this, we have annotated a large

dataset, ParmaTetravision. Because this dataset is not publicly available, we have also acquired a

new dataset called RIFIR. This has allowed us to construct a benchmark in order to analyse the

performance of different features, and in the same time tof compare FIR and Visible spectrums.

Moreover, we have proposed a feature adapted for thermal images, called ISS. Altough ISS has a

similar performance with that of HOG in the far infrared spectrum, local-binary features like

LBP or LGP proved to be more robust. Moreover, in our tests, FIR consistently proved to be

superior to Visible domain. Nevertheless, the fusion between Visible and FIR gave the best

results, lowering the false positive rate with factor of ten in comparison with just using the FIR

domain.

Since one of the main advantages of thermal images is the fact that the search space for

possible pedestrians can be reduced to hot regions in the image, future work should include a

benchmark of ROI extraction algorithms. Moreover, we can extend the feature comparison by

testing different fusion techniques in order to find the most appropriate configuration.

SWIR With the advent of new camera sensors, a promising new domain is represented by Short-

Wave Infrared (SWIR). In this context, we have experimented with two types of cameras. The

preliminary experiments that were performed on a dataset that we have annotated, ParmaSWIR.

This contains images taken using different filters with the purpose of isolation of different

bandwidths. Since the results were promising, we have acquired another dataset, RISWIR, this

time using both a SWIR and a Visible camera. On RISWIR, the short-wave infrared provided
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CHAPTER 6. CONCLUSION

better results than the Visible one. In our opinion, this is due to the fact that acquired images in

SWIR spectrum are sharper, having well-defined edges.

Further tests in SWIR domain should include different meteorological conditions, along with

an evaluation during night conditions. Moreover, we believe for the results to be conclusive,

SWIR cameras should be compared against several Visible cameras.

StereoVision Since Visible domain represents a low cost alternative to other spectrums, we

give a special attention to Depth modality obtained by constructing the disparity map using

different stereo matching algorithms. In this context, we have worked to improve existing stereo

matching algorithms by proposing new cost function robust to radiometric distortions. As future

work we plan on analysing the impact that post-processing algorithms have over the disparity map.

In addition, in order to incorporate the findings of chapter 5, we should improve the information

contained in the areas subject to occlusions.

Multi-domain, multi-modality. In a similar manner with the way human perception uses

clues given by depth and motion, a new direction of research is the combination of different

modalities and features. A lot of articles tacked this problem from different features point of view

for the Visible domain. Daimler Multi-cue dataset provides a way to centralize this analysis. In

this context we have extended the number of features compared on the dataset with different

modalities, along with several fusion scenarios. The best results were always obtained by fusing

different modalities. Moreover, we extended the analysis multi-modality to a multi-domain

approach, comparing Visible and FIR on ParmaTetravision dataset. Even if the FIR spectrum

continues to give the best results, the fusion between Visible and Depth manages to perform close

to the results given by FIR. Moreover, the fusion between Visible, Depth and FIR lowers the

false positive rate by a factor of thirty, than just the use of FIR information.

As future work, we want to extend the analysis to include more datasets (like ETH [43]), along

with a comparison of different new features. Moreover, in the multi-modalities experiments we

have only treated the problem of pedestrian classification, but we plan of extending the analysis

in a pedestrian detection framework.

There exist various approaches used for the task of pedestrian detection and classification task.

In this thesis, we have showed that a multi-modality, multi-domain approach, and furthermore

multi-feature, is essential for a good pedestrian classification system.
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A
Comparison of Color Spaces

Table A.1: Color space comparison using No Aggregation and a Winner takes it all

strategy.

Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY

CSD 66.16 74.94 66.91 67 70.13 66.52 78 75.64

CADCCC 34.76 32.12 43.07 40.35 53.63 43.32 55.94 34.11

CAD 66.57 67.88 67.09 67.28 69.86 66.71 69.11 75.64

CCCC 41.49 37.35 53.49 50.01 63.41 54.55 67.13 40.64

CCT 51.43 48.07 61.49 58.63 68.99 61.9 72.01 51.09

CADCT 42.22 40.01 49.43 47.33 57.68 49.51 59.33 42.65

CDiffCCC 38.77 35.43 47.02 44.36 58.67 48 61.39 36.50

CDiffCT 46.94 43.14 52.73 50.81 63.82 53.67 65.67 42.73

Table A.2: Color space comparison using No Aggregation and Window Voting strategy.

Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY

CSD 30.00 31.7675 32.4208 32.3042 35.1031 31.7288 33.8995 48.17

CADCCC 14.76 13.42 21.8807 20.0289 28.1008 21.4795 29.8935 15.77

CAD 31.21 32.6914 33.4616 33.5808 35.4658 33.0343 34.2492 48.17

CCCC 17.1627 14.90 27.2618 24.4854 37.0718 27.575 42.1272 17.16

CCT 19.7743 17.67 29.8086 27.1517 38.7429 29.9694 43.5671 20.37

CADCT 15.6836 14.45 21.7888 20.1423 27.3889 21.2061 28.984 16.58

CDiffCCC 16.2719 14.60 23.938 22.1868 31.8153 23.5583 34.4055 16.40

CDiffCT 16.7015 15.10 22.817 21.5034 30.8558 22.8666 32.6899 16.69
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Table A.3: Color space comparison using No Aggregation and Cross Voting strategy.

Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY

CSD 23.1853 24.6221 23.8924 23.4984 35.6116 21.74 34.5799 43.62

CADCCC 9.8853 9.53 12.0777 11.057 23.8956 11.8662 25.0917 10.26

CAD 25.2124 25.9624 24.8991 24.6209 35.9399 23.36 35.1634 43.62

CCCC 10.8492 9.98 14.0195 12.6536 32.452 14.0836 38.5133 10.35

CCT 13.8631 12.78 18.4191 17.1274 36.3517 17.6975 42.7936 13.76

CADCT 10.6197 10.33 13.0203 11.9332 24.2607 11.8536 25.0075 11.31

CDiffCCC 11.0843 10.47 13.4342 12.2978 27.4328 13.1517 29.6087 10.50

CDiffCT 12.3039 11.28 14.3126 13.553 28.2325 13.6517 29.7005 11.50

Table A.4: Color space comparison using Window Aggregation and Winner take it all

strategy.

Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY

CSD 28.843 26.8752 24.0554 24.6697 45.5687 24.0179 45.0384 22.47

CADCCC 16.3617 15.22 22.4926 20.8911 27.7786 21.7776 28.7909 16.85

CAD 21.56 20.52 22.2395 22.938 27.83 22.2445 26.7601 21.55

CCCC 16.3865 14.55 25.6282 23.1288 35.0064 25.1609 39.2748 16.51

CCT 16.9811 15.27 25.6533 23.0397 34.0793 25.0693 37.9766 17.26

CADCT 16.7156 15.52 22.5112 20.8071 27.5222 21.9147 28.5869 17.13

CDiffCCC 17.2878 15.92 23.7943 22.164 30.5305 23.1127 32.0148 16.77

CDiffCT 17.2317 16.02 22.6881 21.4227 29.0603 22.3661 29.624 17.20

Table A.5: Color space comparison using Window Aggregation and Window Voting strat-

egy.

Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY

CSD 26.135 24.3667 20.9516 21.3165 43.0206 20.7607 42.8491 19.04

CADCCC 14.897 14.09 20.0291 18.7216 24.6324 19.4426 25.3579 15.31

CAD 18.0667 17.20 18.6889 19.1435 23.1094 18.6812 22.1849 18.00

CCCC 14.4862 13.22 22.1633 20.1229 30.6773 21.5609 34.4548 14.62

CCT 14.8307 13.66 21.6604 19.4697 28.9722 20.9686 32.296 14.99

CADCT 14.9334 14.10 19.6912 18.0869 23.8878 19.0941 24.6584 15.14

CDiffCCC 15.668 14.64 21.2967 19.7834 27.1354 20.6203 28.3192 15.13

CDiffCT 15.5516 14.72 20.1489 18.8904 25.4204 19.7925 25.8481 15.36
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Table A.6: Color space comparison using Window Aggregation and Cross Voting strategy.

Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY

CSD 12.6762 12.42 12.918 13.0423 21.5226 12.5993 20.6503 12.92

CADCCC 10.8963 10.34 12.7115 11.4688 20.31 12.2459 20.3794 10.99

CAD 12.268 12.13 12.707 12.9205 19.3606 12.4246 18.5638 12.96

CCCC 10.4625 9.66 12.8513 11.6512 25.5045 12.6764 28.9731 10.36

CCT 11.005 10.50 13.7054 11.8693 24.1079 12.7627 26.1566 11.35

CADCT 11.2006 10.74 13.168 11.9889 19.8799 12.2537 20.0019 11.53

CDiffCCC 11.5268 10.75 13.5024 12.1339 22.7681 12.814 23.7329 10.76

CDiffCT 11.7755 11.16 13.8078 12.6727 21.3157 12.977 21.5008 11.62

Table A.7: Color space comparison using Cross Aggregation and Winner Takes it all

strategy.

Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY

CSD 18.7188 18.65 19.503 19.7141 35.7187 19.4803 33.4478 19.89

CADCCC 12.3434 11.86 14.6939 13.8241 27.9153 14.3914 28.259 11.94

CAD 17.1391 16.88 17.495 17.7178 31.9723 17.5203 30.1517 17.37

CCCC 11.9277 11.03 15.7659 14.0439 35.0787 15.1236 40.6607 11.52

CCT 14.2699 13.18 18.4644 16.1716 38.1547 17.039 43.9023 13.63

CADCT 13.1236 12.50 15.4782 14.3622 29.2378 14.8011 29.6902 12.70

CDiffCCC 13.2558 12.6632 15.1867 14.0014 30.1137 14.8062 31.3186 11.67

CDiffCT 14.1111 13.3458 15.9304 15.0104 30.7311 15.586 30.9725 12.99

Table A.8: Color space comparison using Cross Aggregation and Window Voting strategy.

Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY

CSD 15.22 15.3307 16.6239 16.863 24.2304 16.821 22.4271 16.76

CADCCC 10.9851 10.64 13.3125 12.596 21.8262 13.0357 21.6177 10.93

CAD 13.98 13.9967 15.0722 15.2701 21.9465 15.2162 20.5315 14.70

CCCC 10.0924 9.64 13.0713 11.9509 26.597 12.7037 30.164 10.22

CCT 10.878 10.43 13.8252 12.3969 25.7543 12.701 28.6817 10.97

CADCT 11.3643 10.84 13.5748 12.6573 21.0923 12.9682 21.3276 11.15

CDiffCCC 11.8087 11.415 13.8045 12.7777 23.6381 13.5168 24.1776 10.75

CDiffCT 12.348 11.806 14.1029 13.4131 22.3486 13.8942 22.5228 11.62
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Table A.9: Color space comparison using Cross Aggregation and Cross Voting strategy.

Cost Function RGB XYZ LUV LAB HLS YCrCb HSV GRAY

CSD 14.77 14.8463 16.2026 16.3635 24.611 16.4097 22.9833 16.11

CADCCC 10.2129 9.92 11.9966 11.5529 21.2961 12.0302 21.0467 10.49

CAD 13.57 13.6026 14.6569 14.809 21.8622 14.8233 20.642 14.11

CCCC 9.41481 8.92 11.3475 10.7914 25.775 11.47 29.0424 9.80

CCT 10.077 9.68 11.9903 11.0646 25.4984 11.2415 28.2317 10.39

CADCT 10.6396 10.08 12.1749 11.8233 20.7813 12.1242 21.0541 10.68

CDiffCCC 11.0808 10.6242 12.3572 11.5996 23.064 12.2227 23.917 10.22

CDiffCT 11.4388 10.9748 12.9124 12.5185 22.282 12.7513 22.4395 10.94
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B
Parameters algorithms stereo vision

Parameter Value

Subpixel Computation false

I_threshold1 5

I_threshold2 8

Interaction Radius 6

Lambda 1 15

Lambda 1 5

K 25

Occlusion Penalty 10000

Maximum number of iterations 1

Randomize every iteration true

Table B.1: Parameters Algorithms Graph Cuts

Parameter Value

Arm Length Vertical 10

Arm Length Horizontal 17

Table B.2: Parameters Algorithms Cross Zone Aggregation
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C
Disparity Map image examples

a) Visible left image 0

b) Ground truth image 0

c)CZA: CCT : 12.50%

d)CZA: CDiffCT : 7.89%

Figure C.1: Comparison between cost functions. On first row there are presented the left visible
image number 0 ( a ) from the KITTI dataset with the corresponding ground truth disparity ( b).
On the following lines are the output obtained with the cross zone aggregation (CZA) algorithm
with two different functions: c) Census Tranform; d) the proposed DiffCT
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APPENDIX C. DISPARITY MAP IMAGE EXAMPLES

a) Visible left image 0

b) Ground truth image 0

c)CZA: CCT : 15.31%

d)CZA: CDiffCT : 14.22%

Figure C.2: Comparison between cost functions. On first row there are presented the left visible
image number 2 ( a ) from the KITTI dataset with the corresponding ground truth disparity (
b). On the following lines are the output obtained with the graph cuts (GC) algorithm with two
different functions: c) Census Tranform; d) the proposed DiffCT
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D
Cost aggregation

Aggregation area is a very important step for the local algorithms of stereo matching. Global

stereo matching algorithms model in an explicit way the smoothness term (which enforces that

spatially close pixels to have similar disparity). Local algorithms having to model the smoothness

term in an implicit way, the pixels found in the same aggregation area will have a similar disparity.

As presented in subsection 4.1.3.1 there exist a great variety of methods for construction a

cost aggregation area, from the window aggregation areas to adaptive windows or cross-zone

aggregation.

Figure D.1

In section 4.3.5.2 we described the method proposed by Zhang et al. [137]. Mei et al. [93]

proposed an extension for the algorithm of cross-zone aggregation, by using two thresholds for

the maximum area of aggregation:

1. Dc(pl, p) < τ1 and Dc(pl, pl + (1, 0)) < τ1

2. Ds(pl, p) < L1
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APPENDIX D. COST AGGREGATION

(a) Left Image (b) Ground Truth

(c) Zhang et al. (2009) (7.73%) (d) Mei et al. (2011) (10.58%)

Figure D.2: Different cost aggregation strategies: a) Left Image; b) Disparity Ground Truth; c)
Disparity map computed using the strategy proposed by Zhang et al. [137]; d) Disparity map
computing using the strategy proposed by Mei et al. [93]

3. Dc(pl, p) < τ2 if L1 < Ds(pl, p) < L2

where L1, L2 are distance thresholds, τ1, τ2 are color thresholds, Dc(pl, p) is a color difference

of two pixels, while Ds(pl, p) is a spatial distance between two pixels.

Based on the above rules, the arms of the cross zones are contructed in the following way:

the first color threshold (τ1) and first size threshold (L1) are used the same way as by Zhang

et al. [137]; in order for the arm to not run across edges a color restriction is enforced between pl

and its predecessor pl + (1, 0) on the same arm; for second size threshold (L2) should be large

enough in order to cover the large textureless areas, but in this case a second color threshold

much more restricive is used (τ2). This strategy gives very good results on the Middlebury dataset

therefore we have tested it on KITTI dataset as well.

Unfortunately, this method of constructing the cross area does not improve the results. The

overall error on the training set from KITTI database is of 21% in comparison with 12.70%

obtained using the strategy of Zhang et al. [137]. We don’t deny the impact of the strategy

proposed by Mei et al. [93] in the textureless areas parallel with the camera plane (see figure

D.2, window area in the right side of the image), but this comes at a higher error rate in the

inclined areas, as that of the road regions.
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E
Voting-based disparity refinement

In section 4.3.5.2 we have briefly presented the cross-based cost aggregation proposed by Zhang

et al. [137]. The initial disparity is selected for each pixel using a Winner Takes-All (WTA)

method. Because the aggregated costs can be usually similar at different disparities, the WTA

will not give very good results. Moreover, WTA strategy has difficulties to handle pixels in the

occluded regions. The refinement scheme proposed by Lu et al. [90] and use also by Zhang

et al. [137] consists in a local voting method.

For every pixel p, having a disparity estimate dp cumputed with WTA, a histogram hp of

disparities is build as showed by equation E.1:

hp(d) =
∑

q∈U(p)

δ(dq, d) (E.1)

where U(p) represents the set of all aggregation areas that contain the pixel p, and the function

δ is defined as follows:

δ(da, db) =







1 if da = db

0 otherwise

d∗p = argmax(hp(d)) (E.2)

where d ∈ [0, dmax].

Different from Zhang et al. [137], we propose an extension for the voting algorithm. Due to

the fact that different but close disparities have similar matching costs, the surface of inclined

objects will not appear very smooth. Our proposal is for the voting scheme to not only consider

the disparity dp obtained with WTA, but also the disparities in the interval [dp − v, dp + v].
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APPENDIX E. VOTING-BASED DISPARITY REFINEMENT

(a) Ground Truth (b) WTA (9.77 %)

(b) Voting Zhang et al. (2011) (7.49%) (c) Our proposed voting (4.50%)

Figure E.1: Different Voting Strategies for the same image

hp(d) =
∑

d∈[d−v,d+v]

∑

q∈U(p)

δ(dq, d) (E.3)

Disparity Decision Strategy Error Rate

Winner Takes-All 15.05%

Voting Zhang et al. [137] 12.70%

Proposed Voting (v=2) 10.50%

Table E.1: Comparison of different strategy methods for choosing the disparity

In table E.1 is presented a comparison of obtained error rates on the KITTI dataset using

cross-zone aggregation, the cost CDIFFCF , and three strategies for deciding the final disparity:

WTA, the voting method proposed by Zhang et al. [137], and our proposed voting. It can be

observed that by simply adding the votes to a disparity interval rather than just one disparity

values the error rate decreases with 2.2%.
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F
Multi-modal pedestrian classification

F.1 Daimler-experiments - Occluded dataset

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

C
la

s
s
if

ic
a
ti

o
n

 R
a
te

 

 

HOG (Intensity) 0.6123

LGP (Intensity) 0.6487

LBP (Intensity) 0.7330

ISS (Intensity) 0.9113

MSVZM (Intensity) 0.9732

HaarW (Intensity) 0.9809

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

C
la

s
s
if

ic
a
ti

o
n

 R
a
te

 

 

LGP (Depth) 0.2168

HOG (Depth) 0.3132

LBP (Depth) 0.4291

ISS (Depth) 0.5279

MSVZM (Depth) 0.7899

HaarW (Depth) 0.8260

a) b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

C
la

s
s
if

ic
a
ti

o
n

 R
a
te

 

 

LBP (Flow) 0.4581

LGP (Flow) 0.5138

HaarW (Flow) 0.5285

ISS (Flow) 0.5371

HOG (Flow) 0.5522

MSVZM (Flow) 0.5772

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

C
la

s
s
if

ic
a
ti

o
n

 R
a
te

 

 

HOG (Intensity) 0.6123

LGP (Depth) 0.2168

LBP (Flow) 0.4581

c) d)

Figure F.1: Individual classification performance comparison of different features in the three
modalities for partially occluded testing set: a) Intensity; b) Depth; c) Motion; d) Best feature on
each modality
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F.1. DAIMLER-EXPERIMENTS - OCCLUDED DATASETAPPENDIX F. MULTI-MODAL PEDESTRIAN CLASSIFICATION
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Figure F.2: Classification performance comparison for each feature using different modality
fusion on partially occluded testing set (Intensity+Motion; Depth+Motion; Intensity+Depth;
Intensity+Depth+Flow) and the best single modality for each feature: a) HOG; b) ISS; c) LBP;
d) LGP; e) Haar Wavelets; f) MSVZM.
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APPENDIX F. MULTI-MODAL PEDESTRIAN CLASSIFICATIONF.1. DAIMLER-EXPERIMENTS - OCCLUDED DATASET
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Figure F.3: Classification performance comparison on the partially occluded testing sets between
different features using the best modality fusion per feature
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Figure F.4: Classification performance comparison on the partially occluded testing sets between
different features using the all modality fusion per feature
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