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Résumé

Dans ce travail de thèse nous nous sommes intéressés à une catégorie spéci�que d'états quan-
tiques de la lumière : les états non-gaussiens. Ces états ont la particularité de présenter des
fonctions de Wigner à valeurs négatives. Cette propriété est indispensable pour réaliser des
opérations de calcul quantique mais trouve aussi des applications variées en communication
quantique ou métrologie par exemple.

Di�érentes stratégies peuvent être utilisées pour générer de tels états. Ici, les ressources
initiales sont des états dit gaussiens produits par des oscillateurs paramétriques optiques
en régime continu (i.e. vide comprimé bi-mode et mono-mode). Le caractère non-gaussien
ne peut être obtenu que par des phénomènes non-linéaires (hamiltonien sur-quadratique).
Dans notre cas, la non-linéarité est induite par des mesures basées sur le comptage de photon
(aussi appelées mesures non-gaussiennes).

Cette étude est principalement divisée en deux parties. Tout d'abord, la génération
d'états non-classiques correspondants à deux types d'encodages de qubits : le photon unique,
utilisé en information quantique dite à variables discrètes, et la superposition d'états co-
hérents (chat de Schrödinger optique), utilisée en information quantique dite à variables con-
tinues. Ces états ont ensuite été utilisés pour mettre en ÷uvre deux protocoles d'information
quantique. Le premier porte sur un témoin d'intrication en photon unique, l'autre sur la
génération d'intrication entre deux types d'encodages (aussi appelée intrication hybride).

Mots clés

optique quantique; information quantique; photon unique; chat de Schrödinger; intrication
hybride; tomographie quantique

Abstract

In the present PhD work, we focus on a speci�c class of quantum states of light: the
non-Gaussian states. These states have the particularity of exhibiting Wigner functions
with some negative values. This quantum feature is a necessary condition to perform some
quantum computation task; furthermore it is also useful for various other applications,
including quantum communication and metrology.

Di�erent strategies can be used to generate these states. Here, we start from Gaus-
sian states produced by optical parametric oscillators in the continuous wave regime, (i.e.
single-mode and two-mode squeezed vacuum states). The non-Gaussian feature can only
be obtained by non-linear phenomena (over-quadratic Hamiltonian). In our case, the non-
linearity is induced by photon-counting-based measurements (also called non-Gaussian mea-
surements).

This study is mainly divided into two parts. First, the generation of non-classical states
associated with two types of qubit encoding: the single-photon state, used for quantum in-
formation with discrete variables, and the coherent state superposition (the so-called optical
Schrödinger cat state), used for quantum information with continuous variables. These two
states have then been used to perform some quantum information protocols. The �rst one
addresses the problem of single-photon entanglement witness, and the other the generation
of entanglement between the two encodings (also called hybrid entanglement).

Keywords

quantum optics; quantum information; single photon; Schrödinger's cat; hybrid entangle-
ment; quantum tomography
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Introduction

If I were not a physicist, I would probably be a
musician. I often think in music. I live my
daydreams in music. I see my life in terms of
music...

Albert Einstein

History of quantum information

The foundations of quantum information have been established a few decades ago. It has
been initiated by some ideas like the one of Feynman who, noticing that classical computers
are not able to simulate quantum systems, suggested to use quantum systems as simulators
of other quantum systems. Similarly, people wondered how could we take advantage of the
�strange� features of quantum mechanics such as quantum superposition or entanglement.
These ideas, extended to the realm of information theory science, have led more recently
to some promising protocols exploiting the �quantum rules�. Indeed, they can solve di�cult
classical problems in a reasonable time and with a reasonable amount of resources, highlight-
ing the high potential of processing information by using quantum mechanics [85]. During
these last years, a large e�ort has been made theoretically and experimentally to make these
ideas more accessible.

Quantum information science can be divided into mainly two purposes: to transport and
to process the information. For this reason, we can distinguish quantum communication on
one side and, quantum computation (also called quantum information processing) on the
other side1. Although there is an important overlap, these two �elds have mostly progressed
separately so far.

More speci�cally, quantum communication has recently shown impressive advances as
exempli�ed by the implementation of quantum cryptography protocols [29]. In this latter,
quantum mechanics guarantees an unconditional secure exchange of classical information.
The �rst protocol of quantum cryptography was proposed in 1984 by Bennett and Bras-
sard (BB84) and has been, somehow, the �rst real application of quantum information.
Nowadays, the quantum cryptography has become a reality, not only in labs, but also as
an available commercial product. Quantum communication also concerns the exchange of
quantum information, indeed quantum cryptography only allows the exchange of classical
information, the added value by the quantum mechanics only lies in the secure aspect of the
information exchange. One can expect that in the future, quantum computation will also
require techniques to exchange quantum information. In contrast to classical information,
this task is very challenging as quantum information cannot be copied, as proven by the
no-cloning theorem [121]. A straightforward method is to move the information carrier from
one place to the other. However, quantum mechanics o�ers powerful alternative methods
such as the teleportation protocol. Indeed, this technique enables the exchange of quan-
tum information between two distance places without transport of the quantum information
carrier. The �rst experimental demonstrations of teleportation between light or material
systems are extremely recent (but still experimentally challenging).

1In [85], one would notice that the subdivision of quantum computation/quantum information is proposed
in order to consider more conceptual aspects linked to information theory.

ix



x Introduction

A contrario, one can notice that for quantum computation, although the theoretical pro-
posals are numerous, the experimental demonstrations are so far extremely limited. The
experimental realizations are indeed extremely challenging. In contrast to quantum cryp-
tography systems, quantum processing requires to control quantum systems of large sizes
with a very high reliability. In particular, defects induce the so-called decoherence which is
nowadays the main limitation to quantum computation. This e�ect is even stronger that the
defects scale with the size of the system. Thus, �ghting the decoherence by improving the
quality of the experimental setups and �nding more robust algorithms is the main challenge
to achieve any quantum computational task.

There is still a very long way to go for the implementation of quantum algorithms. For
this reason, quantum physics stay a topics of fundamental research, however new ideas and
experimental demonstrations are done regularly paving the way to potential applications.
Furthermore, it also permits to go through a deeper understanding of puzzling aspects of
quantum mechanics: is there a trivial interpretation of entanglement, of quantum superpo-
sition, how can we de�ne the quantum-classical limit?

The rules of the game

Let us continue this introduction by a more precise description of quantum information to
show what is required for a quantum system to be a good candidate for quantum information
tasks [85].

All the quantum information theory has been built by analogy with the digital informa-
tion, the goal is thus to �nd physical systems to encode the two logical levels 0 and 1: a
qubit. Hence, the system should have at least two states:

|0〉 = |ψ〉 , |1〉 = |φ〉. (1)

Furthermore, these states have to be orthogonal:

〈0|1〉 = 〈ψ|φ〉 = 0 . (2)

Indeed, these two levels have to be distinguishable without any ambiguities (with of course
the appropriate measurement). These are the basic requirements that a quantum system
has to ful�ll to be used as a qubit.

How the quantum computation will surpass classical computation lies in the fact that
we can have a superposition of these two logic levels:

a|0〉+ b|1〉 (3)

(with |a|2 + |b|2 = 1 for probability conservation). Somehow, this feature enables to perform
simultaneously di�erent calculations. A qubit, as any two-level quantum system, is usually
represented on the Bloch sphere via the expression

|ψ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉 . (4)

By analogy with classical computation, quantum algorithms have been decomposed with
the help of quantum gates. In contrast to classical gates, these ones have to preserve the
superposition feature. They constitute the building blocks of quantum computation. Any
gate operations can also be decomposed with the help of a set of basic operations. For
instance, the Pauli matrices for single-qubit operation

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (5)
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Another basis of single-qubit operation is often used

H =

[
1 1
1 −1

]
, S =

[
1 0
0 i

]
, T =

[
1 0

0 eiπ/4

]
. (6)

Similarly, we have also some gates involving more than one qubit. For instance, the
CNOT gate for which the matrix X will be applied or not, depending on the value of the
control qubit. This can be expressed in the basis {|0,0〉, |0,1〉, |1,0〉, |1,1〉}, by the matrix

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (7)

where the �rst qubit controls the gate applied on the second qubit.

Quantum Information with Quantum Optics

The undeniable advantage of light is its mobility and low interaction with the environment.
Even though it seems commonplace to say that, these are strong advantages compared to
the others physical systems. This is why most of the quantum communication protocols are
based on light states. However, these features have their downsides. First, light is di�cult
to store, the photon being a massless particle it cannot be stopped. Quantum memories
for light are nowadays an interesting challenge to solve this problem. Secondly, its low
interaction with the environment makes it stable but di�cult to manipulate.

Among the various protocols of quantum information, mainly four optical encodings are
used:

• |0〉, |1〉 photon numbers

• |α〉, | − α〉 phase of a �classical� light

• |t1〉, |t2〉 time bin 2,

• | ↑ 〉, | →〉 single-photon polarization 3.

These di�erent encodings can be separated into two families. First, the single-rail qubit
(two �rst encodings) where the qubit is de�ned on one mode. Secondly, the dual-rail qubit
(the two last ones), the qubit is de�ned on two modes. Actually, these two are very similar,
there is no particular di�culty to switch from one to the other (for instance with the help
of polarizing beam-splitter and optical switch) which is not the case with the �rst ones as
they are based on state of light of a very di�erent nature.

Furthermore, we can also distinguish the encodings based on single-photon and vacuum
states, and the one based on coherent states; the so-called discrete or continuous variables
implementation. This fundamental di�erence of nature has important consequences. Indeed,
the way to process the information involves very di�erent protocols and optical tools.

Interaction between photons is di�cult, indeed, it can be mediated by a beam-splitter but
this interaction is limited. Non-linear interaction is extremely di�cult to obtain e�ciently.
For this reason, the paradigm of Linear Optical Quantum Computing [48] has been devel-
oped, it is based only on standard optical elements like beam-splitter, wave- plates, delay

2the position in time of a single-photon encodes the qubit, the states being more precisely |t1〉 = |1〉t1 |0〉t2 ,
|t2〉 = |0〉t1 |1〉t2

3| ↑ 〉 = |1〉↑|0〉→, | →〉 = |0〉↑|1〉→
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and measurements. One complete scheme for discrete variables is the now the well-known
KLM proposal [47]. There are some equivalent schemes for continuous variables [43, 95, 28].

Interestingly, these last years it has been highlighted that the combination of discrete and
continuous variables, and their associated toolboxes, could yield to an improvement and/or
simpli�cation of quantum information tasks. This is the so-called optical hybrid approach of
quantum information [25].

Context and structure of the manuscript

This PhD lies within the framework of quantum state engineering and the development of
new protocols for the implementation of quantum networks. The generation of qubits is
the �rst step of any quantum information task based on photonic systems. Moreover, for
quantum information processing, these qubits have particular non-classical features. These
last few years, many groups have demonstrated experimental generation of non-classical
states of light such as single-photon state and optical Schrödinger cat state (almost in the
chronological order: Lvovsky, Grangier, Polzik, Bellini, Furusawa, Sasaki). Now, the main
goal is to use these resources in some quantum information protocols.

This PhD work is the �rst one in this �eld in the group of Quantum Optics at the Lab-
oratoire Kastler Brossel. However, it has been started on a well-studied optical parametric
oscillator [53]. Moreover, we could expect that this work will be extended to more complex
systems; for instance multi-mode non-Gaussian state with frequency comb or storage in
various quantum memories.

Before describing the main content of this PhD work, we introduce in Part I the theo-
retical concepts that we use and/or that justify some strategies we have chosen. In the �rst
chapter, we introduce the Wigner function, a formalism of quantum states now widely used
in quantum optics. It has the advantage to be a more familiar representation as it is a quan-
tum analog of the Fresnel representation. More importantly, the Wigner function allows
to distinguish two categories of quantum states: the Gaussian and non-Gaussian states.
Although one could think that it simply results from mathematical properties, recent works
shows that it seems to have a deeper physical meaning. Indeed, it has been proved that
non-Gaussian states are a necessary resource for quantum computation [68]. Furthermore,
we show in the second chapter that this distinction of quantum states can be extended to
quantum measurements: despite the name �Gaussian/non-Gaussian� is less appropriate in
that case, it can however highlight some similar important features.

As detailed in Part II, we thus have developed some non-Gaussian resources that cor-
respond to the main encodings of photonic qubits, with in mind the idea to make it usable.
Indeed, as we have noticed, there are many theoretical proposals but only few experimental
demonstrations, this is also due to the fact that, observing strong quantum signatures some
quantum features is always experimentally challenging. Starting from optical oscillators
(chap. 3), we have developed two main resources of quantum information in optics: the
single-photon state (chap. 4) and the coherent superposition of coherent states (chap 5).
In both cases, thanks to a very-well control spatio-temporal mode, a very high �delity has
been obtained making them suitable for further experiments.

Finally in Part III, we have then used these resources in novel quantum information
protocols. The �rst one is a witness for single-photon entanglement (chap. 7), which has
been designed and studied for realistic quantum networks. The second uses both resources
to generate an entangled state where each party uses a di�erent encoding (chap. 8). These
two latter experiments constitute some illustrations of the optical hybrid approach where the
continuous and discrete variables toolboxes have been mixed.
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1 | Quantum States

All the arts are based on two principles: reality and
ideality.

Frantz Liszt

This �rst chapter is devoted to a brief review of the descriptions of quantum states (speci�-
cally in quantum optics) through two formalisms: the density matrix and the Wigner func-
tion. Their general de�nitions and main mathematical properties are given. Furthermore,
we highlight that in some cases one of this formalism is more appropriate than the other
for calculation and/or for physical interpretations. These di�erences are then illustrated
with various states commonly used in quantum optics. All these concepts are of course well
explained in many textbooks, this chapter mainly allows us to de�ne the notations used
afterwards and to make this manuscript more accessible to non-specialists by giving the
minimum background.
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4 1.1. THE PHOTON... AND BEYOND

1.1 The photon... and beyond

Is the light a particle or a wave? This question has been a long debate for many years;
Newton was for particle, Huygens supporter of wave... When Maxwell derived his famous
equations, the debate seemed closed. But, during the beginning of the 20th century the
question came back. In particular, Planck found an empirical law using some particles of
light and later Einstein showed that the Wien's law implies a corpuscular description of
light with the fundamental quanta of energy E = hν. It was thus necessary to �nd a new
mathematical description to reconcile the two descriptions by quantizing the light.

Hence, the idea initiated by Dirac was to start from the Maxwell's equations of the elec-
tromagnetic �eld and to apply a canonical quantization in order to add the particle feature
of light, for which the energy is discretized by elementary quantity.

1.1.1 Quantization

The fundamental postulates of quantum mechanics say that a physical system is described
by vector states and the electromagnetic �eld, being a measurable quantity, is an Hermitian
operator (an observable). If we consider an harmonic plane wave at frequency ω with a wave
vector k in a volume V , the electromagnetic �eld is thus written

Ê(r, t) = E0

[
âe−i(ωt−k·r) + â†ei(ωt−k·r)

]
, (1.1)

with the operator â and its Hermitian conjugate â†, these two following the bosons commu-
tation rule [

â, â†
]

= 1 . (1.2)

Speci�cally, the creation operator adds one photon to photon-number states

â†|n〉 =
√
n+ 1 |n+ 1〉 , (1.3)

whereas the anihilation operator subtracts a photon (this operator gives 0 if applied to the
vacuum state)

â|n〉 =
√
n |n− 1〉 . (1.4)

The product of both operators forms the photon number operator

n̂ = â†â . (1.5)

Therefore, the constant E0 can be de�ned from the mean value of electromagnetic energy
for a state of n photons

〈n|
∫
ε0|Ê|2dr3|n〉 = ~ω(n+ 1/2) , (1.6)

leading to

E0 =

√
~ω

2ε0V
ep , (1.7)

where ep is the polarization vector and V the volume of the quantization box.
Moreover, as we usually do with classical �elds, we can rewrite the �eld (1.1) in the

Fresnel basis, as:

Ê(r, t) =
√

2E0

[
X̂ cos(ωt− k · r) + P̂ sin(ωt− k · r)

]
. (1.8)
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This leads to de�ne two Hermitian operators, called quadrature operators (X̂, P̂ ), as linear
combinations of the annihilation and creation operators. The commutation relation is then:

[X̂, P̂ ] = i . (1.9)

The mess of conventions Di�erent possible choices of normalization exist for the quadra-
ture operators. Unfortunately, this choice can be di�erent from one textbook or paper to
another... Worst, none of them seems dominant. In order to stay �compatible� with any
conventions, the best strategy consists in keeping a parameter that we can replace by any
numerical value afterwards. Among the di�erent conventions, one uses the Planck constant
in order to get the commutation relation as [X̂, P̂ ] = i~. However, we have done another
choice here: we use as reference the standard deviation of the vacuum �uctuation in such a
way that the quadrature x̂ (denoted with lowercase with this convention) satis�es

〈0|x̂2|0〉 = σ2
0 . (1.10)

Therefore, the Heisenberg uncertainty relation usually written

∆x∆p > ~/2 , (1.11)

where ∆x =
√
〈x̂2〉 − 〈x̂〉2 is a standard deviation, becomes in our case:

σxσp > σ2
0 . (1.12)

(We thus identify ~ = 2σ2
0 .) The choice of the letter σ refers to the usual notation of

a standard deviation in statistics (and avoids any possible confusion with the variance).
Moreover, this choice has two advantages. First, it highlights the statistical meaning of the
Wigner function that we introduce later. Secondly, it has a practical interest: the vacuum
state being extremely easy to produce, we can calibrate our measurement device with this
quantity. Hence, this notation will be used as much as possible in the whole manuscript.

Given this convention, the relationships between annihilation/creation operators and
quadratures operators are thus

â =
x̂+ ip̂

2σ0
, x̂ = σ0(a+ a†) , (1.13)

â† =
x̂− ip̂

2σ0
, p̂ = −iσ0(a− a†) . (1.14)

The quadrature operators follow the commutation relation

[x̂, p̂] = i2σ2
0 . (1.15)

The relationship with the photon number operator is

n̂ = â†â =
1

4σ2
0

(x̂2 + p̂2 − 2σ2
0) . (1.16)

The choice of the quadrature operators basis is a priori arbitrary. As for the Fresnel
representation, it is possible to rotate the basis. This is realized by the basic rotation
matrix for an angle θ (

x̂θ
p̂θ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x̂
p̂

)
. (1.17)
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In other words,
x̂θ = σ0(âe−iθ + â†eiθ) . (1.18)

Contrary to the annihilation/creation operators, x̂θ being an observable, is a Hermitian
operator. It thus has some orthonormal eigenvectors {|x, θ〉}x∈R (for each �xed θ) satisfying
x̂θ|x, θ〉 = x|x, θ〉 and the closure relation∫

R
dx |x, θ〉〈x, θ| = 1 . (1.19)

Hence, to avoid any confusion, instead of �Fresnel representation�, it will be better to talk
about �phase space�.

1.1.2 Modes

For a complete description of the light, we should consider the di�erent degrees of freedom
of the electromagnetic �eld. Indeed, the light can have di�erent polarizations, various fre-
quencies and various phase and intensity pro�les. Classically this is done by using a set of
orthonormal functions {uk(r, t)} which form a basis of solution of Maxwell's equations, each
function de�nes what we call a mode of the electromagnetic �eld.

So far, our quantization has been applied to a speci�c solution of Maxwell's equations,
yielding to an Hilbert space generated by a single Fock basis. The quantization can be
generalized to each mode. For instance the �eld operator associated to the mode k is thus
written

Ê
(+)
k (r, t) = Ekuk(r, t) · âk . (1.20)

Now, to each solution uk(r, t), we associate one Hilbert space Ek generated by one Fock
basis {|0〉k, |1〉k, ...} thanks to the annihilation/creation operators âk/â

†
k.

It is important to note that this formulation is general and that there is no particular
physics behind the index k. However, we usually work with only one degree of freedom, we
thus often use one subset of functions that have all the other degrees of freedom �xed. We
then talk about polarization mode, spatial mode... to focus on a particular degree of freedom.
For example, the spatial degree of freedom can be expanded over the di�erent transverse
electromagnetic modes

E = ETEM00 ⊗ ETEM01 ⊗ ... ETEM10 ⊗ ETEM11... . (1.21)

Each subspace being generated by a single Fock basis, we consider a family of mode which
have the same temporal and polarization mode (and more rigorously the same spatial origin
and direction of propagation). Now, if we consider �xed the temporal and spatial degrees of
freedom, we can have for instance the following decomposition over the polarization modes:

E = E↑ ⊗ E→
= E↖ ⊗ E↗
= E	 ⊗ E� .

(1.22)

As illustrated by this latter example, we can use di�erent mode basis, nothing is neces-
sarily �xed: one can switch from one mode expansion {âk}k∈N to another {b̂m}m∈N via the
linear transformation

b̂m =
∑
k

Ukmâk . (1.23)

In order to be physically consistant, the transformation has to preserve for instance the
commutation relation [bm, b̂

†
m′ ] = δmm′ in the new basis. Hence, the transformation should

be unitary ∑
k

(Umk )∗ Um
′

k = δmm′ ⇔ U†U = 1⇔ U† = U−1 . (1.24)
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Besides, it is also true for continuous mode expansion. Indeed, we have used above
integer indices but it can also be continuous variables. In that case, under the assumption
that there is no mathematical �contraindication�, a discrete sum becomes an integral. For
instance, we have the relationships with frequency decomposition and time decomposition
with the unitary Fourier transform

â(t) =
1√
2π

∫
dω â(ω)e−iωt , (1.25)

â(ω) =
1√
2π

∫
dt â(t)eiωt . (1.26)

Again, it satis�es the commutation relations
[
â(t), â(t′)†

]
= δ(t − t′) and

[
â(ω), â(ω′)†

]
=

δ(ω − ω′).
However, it is worth noting that, for a given system, some modes basis are sometimes

more relevant/�natural�, e.g. a change of polarization basis is always possible but the same
transformation applied to two spatially separated beams is a priori less appropriate. Fur-
thermore, without discussing the mathematical di�culties that can appear in the general
case, all the following will be under the paraxial and narrowband approximations, which is
highly reasonable for most of the quantum optics experiments nowadays. This will ensure
the orthogonality and the closure relation of the mode functions.

1.2 Density matrix

Most of the readers are probably familiar with this formalism. Nevertheless, it is never
useless to remind a few of its properties as this tool is rich and thus, usually, we do not keep
in mind all of these properties. Moreover, this section will be useful for the parallel with the
Wigner function next de�ned (and extensively used afterwards).

1.2.1 De�nition

The density matrix (also called density operator) has been introduced to bring an additional
description that is not possible when using only state vectors. Indeed, though the state of a
quantum system is always perfectly de�ned by a state vector, it is not necessarily well known
by the observer. Hence, the system is described by a statistical mixture of states. In other
word, this mixture of di�erent states can be interpreted as a result of a part of �ignorance�
of the observer about the system. It is of a particular importance to describe experiments:
experimental setups are never perfect, and thus some �leaks of knowledge� about the system
yield to this kind of states.

By de�nition, the density matrix of a pure state |ψ〉 is ρ̂ = |ψ〉〈ψ|. A non-pure state (or
mixed state) ρ̂ is, by extension, a sum of pure states ρ̂i each weighted by the probability Pi
of having ρ̂i in the mixture, i.e. ρ̂ =

∑
Piρ̂i, with the probability conservation

∑
Pi = 1.

1.2.2 Properties

As a direct consequence of its de�nition from state vectors, the density matrix has many
properties, sometimes with a physical meaning and some others purely mathematical (or
not yet physically interpreted).
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Completeness of probabilities For a pure state, the normalization of the state vector |ψ〉
to one 〈ψ|ψ〉 = 1 ensures the completeness of probability. The extension to the density
matrix gives a trace equal to one. For the same reason, when we consider a mixed state we
have

∑
Pi = 1 and ∀i,Tr[ρ̂i] = 1. Thus

Tr ρ̂ = 1 . (1.27)

Hermitian Straightforward consequence of its de�nition, the density matrix is an Hermitian
operator

ρ̂† = ρ̂ . (1.28)

Positivity Thanks to the spectral theorem the density matrix is diagonalizable and is said
positive semi-de�nite, i.e. all of its eigenvalues are positive or null. This is noted as:

ρ̂ ≥ 0 . (1.29)

Diagonalisation The density matrix is diagonal in a basis of orthogonal eigenvectors. In
other words, it can be written as a sum of pure states which are pairwise orthogonal.

ρ̂ =
∑
i

pi|ψi〉〈ψi| , with ∀i, j 〈i|j〉 = δij . (1.30)

According to the spectral theorem, this expansion is always possible and unique if there is
non degenerate eigenvalues pi. However, it can also be described by a mixture of pure states
but not necessary orthogonal. In this case, existence and uniqueness are not guaranteed.

Expectation value The expectation value of an observable Â is equal to

〈Â〉ρ̂ = Tr[Âρ̂]. (1.31)

Purity This quantity, as its name suggests, is used to give a quantitative value of the purity
of a state. When it is equal to 1, the state is pure and for a mixed state this quantity is
smaller than one.

P = Tr[ρ̂2] =
∑
i

p2
i . (1.32)

von Neumann entropy This is another criterion for the purity. For a single-mode state, it
can be written as

SvN = −Tr[ρ̂ ln ρ̂] = −
∑
i

pi ln pi . (1.33)

This quantity is equal to zero for pure states and positive otherwise.

Fidelity It is interesting to have a quantity to measure the similarity between two states.
Many quantities of this kind exist, but the most used, probably because relatively obvious,
is the �delity. For two pure states it corresponds to the projection

F = |〈ψ1|ψ2〉|2 . (1.34)

The general formulation for mixed states is more sophisticated [45] and can be written as:

F =

(
Tr

[√√
ρ̂2ρ̂1

√
ρ̂2

])2

. (1.35)
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However, if at least one state is pure, it simpli�es in 1

F = Tr[ρ̂1ρ̂2] . (1.36)

It is equal to 1 when the states are identical and 0 when they are orthogonal.

Marginal distribution It corresponds to the measurements distribution of a given quadra-
ture

Pρ̂(xθ) = 〈xθ|ρ̂|xθ〉 . (1.37)

Thanks to the positive semi-de�nite property, this value is always real and positive.

1.2.3 One example: e�ect of optical losses

This is a typical situation where some information on the system are lost and yielding to a
statistical mixture. The formalism of the density matrix is then necessary.

�
�� �� ’

j0i�

Figure 1.1: Most of the optical
losses can be modeled by a �cti-
tious beam-splitter. It result in a
mixing with the vacuum state and
a loss of information on one mode.

As depicted on �gure 1.1, the simplest model of optical losses is a beam-splitter with a
transmission η on the path of the beam (our ��ying� quantum system). Hence, the state is
modi�ed as following

(ρ̂a ⊗ |0〉〈0|b)
B̂η−→ B̂η(ρ̂a ⊗ |0〉〈0|b)B̂†η = ρ̂ab . (1.38)

The re�ected part, being not consider anymore, is �lost�. In other word, the experimentalist
does not control this part and thus doesn't know what is the exact e�ect of the beam-splitter
on the output state. Consequently, we trace the density matrix of the re�ected part

Trb[ρ̂ab] = ρ̂′a . (1.39)

For instance, let us consider a single-photon state |1〉a = â†|0〉a. Applying the beam-
splitter operator to a pure state is equivalent to applying it on the annihilation/creation
operator when the state is written as a function of these latter applied to the vacuum state
(see 1.5.2).

B̂†â†B̂ =
√
η â† +

√
1− η b̂† (1.40)

B̂†b̂†B̂ =
√
η b̂† −

√
1− η â† (1.41)

Therefore, our state becomes
√
η|1〉a|0〉b +

√
1− η|0〉a|1〉b. After tracing the mode b, we

obtain the resulting state
η|1〉〈1|a + (1− η)|0〉〈0|a . (1.42)

With the density matrix, we can therefore make the distinction between such a statistical
mixture and a coherent superposition of vacuum and single-photon. They have the same

1If we consider the pure state ρ̂1 = |ψ〉〈ψ|, we have
√
ρ̂1 = ρ̂1, then ρ̂1ρ̂2ρ̂1 = ρ̂1〈ψ|ρ̂2|ψ〉 a matrix times

a scalar. We obtain (Tr[
√
ρ̂1〈ψ|ρ̂2|ψ〉])2 = 〈ψ|ρ̂2|ψ〉(Tr[

√
ρ̂1])2 = 〈ψ|ρ̂2|ψ〉 which corresponds to the trace

of the product of the two matrices.
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photon number probabilities (diagonal elements of the density matrix) but the coherent
superposition has coherence terms di�erent from zero unlike the statistical mixture.

Nevertheless, we can already notice that the information is not completely lost. The
mechanism being known (the system is coupled to a vacuum state with a ratio η), it is
possible to infer the state before the losses with the complete measurements of the state
after the losses (this will be very useful for the states reconstruction in section 2.4).

This example is quite simple as we consider a space of size 2. For bigger states, the
calculation can become more painful... In the next section, we introduce the Wigner function.
With this formalism, the losses simply translate into a convolution with a Gaussian function.

1.3 Wigner function

In 1932, Eugen Wigner introduced this function in order to have a quasi-distribution proba-
bility of joint measurements of position and momentum of a particle. In our case, it applies
to the quadrature operators. This function, as for the density matrix, completely character-
izes a quantum state. Although it is not often used (at least less than the density matrix),
this representation has many useful features. First, it yields to a more convenient represen-
tation of a state (for instance, the complex values of the density matrix are a little di�cult
to plot). On the other hand, it is more convenient in terms of physical meaning. Indeed, it
is a �quantum� version of the Fresnel representation for the quadrature operators.

1.3.1 De�nition

The Wigner function of the state ρ̂ can be de�ned with the formula2

Wρ̂(x, p) =
1

2πσ2
0

∫
eiyp/σ

2
0 〈x− y|ρ̂|x+ y〉 dy . (1.44)

As mentioned before, the convention of normalization yields to many mistakes if not manip-
ulated carefully, that is why we give a de�nition with the parameter σ0

3.
For a pure state, the Wigner function can be expressed via the wave-function

Wρ̂(x, p) =
1

2πσ2
0

∫
eiyp/σ

2
0ψ∗(x− y)ψ(x+ y) dy . (1.46)

The wave-function of the n-th harmonic oscillator can be read as

〈n|xθ〉 = einθ
1

(
√

2πσ02nn!)1/2
Hn

(
x

σ0

√
2

)
e−(x/σ0

√
2)2/2 (1.47)

with Hn the n-th Hermite polynomial (D.3). For each elements of the density matrix [59]
one can write

W|k〉〈l|(x, p) =
(−1)l

2πσ2
0

√
l!

k!

(
x−iy
σ0

)k−l
e−(x2+p2)/2σ2

0Lk−ll

(
x2+p2

σ2
0

)
, (1.48)

2we can also �nd the expression

Wρ̂(x, p) =
1

2π2σ2
0

∫
eiyp/2σ

2
0 〈x− y/2|ρ̂|x+ y/2〉 dy . (1.43)

3 with the convention using ~, we can �nd the following de�nition

Wρ̂(x, p) =
1

2π~

∫
R
eipy/~〈x− y/2|ρ̂|x+ y/2〉 dy (1.45)
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with Lk−ll a Laguerre polynomial (D.2). This equation is true for k > l, otherwise, we
exchange l by k and y becomes −y. This function has complex values if l 6= k but, due to
the Hermitian properties of the density matrix, at the end, the Wigner function has only
real values. The Wigner function is thus conveniently calculated with

Wρ̂(x, y) =
∑
k,l

ρklW|k〉〈l|(x, y) . (1.49)

The equation (1.43) can be generalized to more than one mode, with two variables xi, pi
per mode i:

Wρ̂(x1, p1; ...;xn, yn) =
1

(2π2σ2
0)n

∫
R2n

eiy1p1/2σ
2
0+...iynpn/2σ

2
0

〈x1 − y1/2|...〈xn − yn/2|ρ̂|x1 + y1/2〉...|xn + yn/2〉dy1..dyn . (1.50)

We can use a matrix notation to pack all the variables of the Wigner function, but this is
not much more useful if we only consider a small number of modes.

1.3.2 Properties

As for the density matrix, the Wigner function has many properties. We give below the
di�erent analogs but also some more speci�c features.

Hemitian operators If the operator is Hermitian (like for density matrix ρ̂ = ρ̂†), the
Wigner function has only real values.

Linearity The Wigner function is linear in terms of operators

Wp1ρ̂1+p2ρ̂2+... = p1Wρ̂1 + p2Wρ̂1 + ... . (1.51)

Marginal distribution It can be written as

Pρ̂(xθ) =

∫
dpθWρ̂(xθ cos θ − pθ sin θ, pθ cos θ + xθ sin θ) , (1.52)

which is the density of probability to measure xθ with the observable x̂θ.

Probability completeness For the same reason that the trace of the density matrix sum
to one, the quasi-probability distribution sums up also to one∫∫

R2

Wρ̂(x, p)dxdp = 1 . (1.53)

Overlap formula This is a general formula for two Hermitian operators. This is an ex-
tremely useful property enablin gto make the parallel with calculations using density ma-
trix4

Tr[Ô1Ô2] = 4πσ2
0

∫∫
dxdp WÔ1

(x, p)WÔ2
(x, p) . (1.54)

Moreover, this formula is also valid for more than one mode. This latter remark will be
extremely useful afterwards5. (A factor of (4πσ2

0) should be added for each integrated
mode.)

4The demonstration can be found for instance in [59] and [105].
5Surprisingly, the fact that the overlap formula is also valid for more than one mode is never mentioned

yet not obvious a priori.
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Purity By a simple application of the overlap formula, we obtain the equivalent formulation
for the Wigner function

P = Tr[ρ̂2] = 4πσ2
0

∫∫
W 2(x, p)dxdp 6 1 . (1.55)

Fidelity Again, by applying the overlap formula on two states, one can write

F = Tr[ρ̂1ρ̂2] = 4πσ2
0

∫∫
Wρ̂1(x, p)Wρ̂2(x, p)dxdp 6 1 . (1.56)

In the case of mixed states, as for the density matrix, the formula is more elaborated.
However, this formula is still valid if at least one of the two states is pure [23], which is often
the case as we want to compare a non-perfect experimental state with a target pure state.

Origin of phase space The value of the Wigner function at the origin of the phase space
only depends on the diagonal elements of the density matrix

2πσ2
0Wρ̂(0, 0) =

∑
n

(−1)nρnn . (1.57)

Transposition Since ρ̂T = ρ̂∗, the transposition of the density matrix translated in terms
of Wigner function in

Wρ̂T (x, y) = Wρ̂(x,−y) . (1.58)

Bounds The values of the Wigner function are lower and upper bounded by

|W (x, p)| 6 1

2πσ2
0

. (1.59)

1.3.3 Wigner function for operators

The density matrix being an Hermitian operator in an Hilbert space, the mathematical
de�nition of the Wigner function can be also applied to any Hermitian operator:

W1(x, p) =
1

2πσ2
0

1

2
, (1.60)

Wx̂(x, p) =
1

2πσ2
0

x

2
, (1.61)

W 1
2{x̂,p̂}

(x, p) =
1

2πσ2
0

xp

2
, (1.62)

W|xθ〉〈xθ|(x, p) =
1

2πσ2
0

1

2
δ(x cos θ + p sin θ − xθ) . (1.63)

Of course, all the speci�c properties of the density matrix that we have extended to the
Wigner function formalism, for instance the trace equal to one, will not necessarily be valid
for these operators as they do not correspond to physical states.

Other operators and e�ects of non-Hermitian operators on states can be found in chapter
4 of Ref. [26].
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1.3.4 Other formulations of the Wigner function

Equation (1.43) is not the only formula for the Wigner function, it exists many other for-
mulations.

An interseting one use the equation (1.57) wichi can be written with the help of the
parity operator P̂ = eiπn̂

2πσ2
0Wρ̂(0, 0) = Tr[ρ̂P̂ ] . (1.64)

Therefore, as applying the displacement operator is equivalent to translate the Wigner func-
tion, it appears that we can express the Wigner function by the following way [34]

W (α) =
2

π
Tr[D̂(−α)ρ̂D̂(α)P̂ ] . (1.65)

Here, we do not use the quadrature variables but a complex number as the amplitude of a
coherent state. Sometimes, to avoid any ambiguities, it is also noted with the conjugated
values W (α, α∗) but the Wigner function is still a function of two real variables per mode.
The relationship between quadrature and complex amplitude is

W (α, α∗) = 4σ2
0W (x, p) , (1.66)

which is obtained by simply substituting α = (x+ ip)/2σ0.

1.4 Usual states in quantum optics

In the following, we review several states that we can encounter in quantum optics. We
mainly give some useful formulas, yet no particular physical discussions. Most of them are
pure states. Both descriptions are used: the density matrix or state vector within the photon
number basis and the Wigner function.

1.4.1 Fock states

All the photon number states can be generated from the vacuum state by iterative application
of the creation operator

|n〉 =
(â†)n√
n!
|0〉 . (1.67)

These states constitute an orthonormal eigenbasis of the photon number operator, i.e.
∀n, n̂|n〉 = n|n〉, usually named Fock basis. It thus veri�es orthogonality and unit norm
∀k, n 〈k|n〉 = δk,n and, since the basis is complete, it satis�es the completeness relation

∞∑
n=0

|n〉〈n| = 1 . (1.68)

As a consequence, any state can be decomposed on this basis

|ψ〉 = (
∑
n

|n〉〈n|)|ψ〉 (1.69)

=
∑

cn|n〉,with cn = 〈n|ψ〉 . (1.70)

For a given Fock state |n〉, the general expression of the Wigner function is

W|n〉(x, p) =
(−1)n

2πσ2
0

e−(x2+p2)/2σ2
0Ln

(
x2+p2

σ2
0

)
, (1.71)
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Figure 1.2: Wigner function of Fock states |0〉, |1〉, |2〉 and |3〉.

with Ln the n-th Laguerre polynomial. For instance, we give hereafter several Wigner
functions of Fock states and the corresponding marginal distributions:

W|0〉 = 1
2πσ2

0
e−(x2+p2)/2σ2

0 ,∫
dpW|0〉 = 1√

2πσ0
e−x

2/2σ2
0 ,

(1.72)

W|1〉 = 1
2πσ2

0
e−(x2+p2)/2σ2

0

(
x2+p2

σ2
0
− 1
)
,∫

dpW|1〉 = 1√
2πσ0

x2

σ2
0
e−x

2/2σ2
0 ,

(1.73)

W|2〉 = 1
2πσ2

0
e−(x2+p2)/2σ2

0

(
(x2+p2)2

2σ4
0
− 2(x2+p2)

σ2
0

+ 1
)
,∫

dpW|2〉 = 1√
2πσ0

e−x
2/2σ2

0
1

2

(
x2

σ2
0
− 1
)2

,
(1.74)

W|3〉 = 1
2πσ2

0
e−(x2+p2)/2σ2

0

(
(x2+p2)3

6σ6
0
− 3(x2+p2)2

2σ4
0

+ 3(x2+p2)
σ2
0
− 1
)
,∫

dpW|3〉 = 1√
2πσ0

e−x
2/2σ2

0
1

6

(
x3

σ3
0
− 3x

σ0

)2

.
(1.75)

The corresponding plots are given on �gure 1.2. It is easy to see on these Wigner functions
that the Fock states are phase invariant and, as a consequence, the marginal distributions
do not depend on the phase.

We can also notice that all these states have a Wigner function that reaches the maximal
value at the origin of the phase space with a sign given by the parity of the state

W|n〉(0, 0) = (−1)n/2πσ2
0 . (1.76)
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1.4.2 Coherent states

This is the state we have at the output of a laser (far above the threshold). It is often
described as a �classical� Gaussian state (i.e. without negative values of Wigner function).
Also called Glauber state, this state is often de�ned as the eigenvector of the annihilation
operator

â|α〉 = α|α〉 . (1.77)

The mean photon number is equal to the square of its amplitude

〈n̂〉|α〉 = |α|2 . (1.78)

We can also write the state as the action of the displacement operator on the vacuum state

D̂(α)|0〉 = |α〉 , (α ∈ C) (1.79)

where the displacement operator is D̂(α) = eαâ
†−α∗â. This can be simpli�ed in the following

way:

|α〉 = D̂(α)|0〉 = eαâ
†−α∗â|0〉 = e−|α|

2/2eαâ
†
e−α

∗â|0〉 = e−|α|
2/2eαâ

†
|0〉. (1.80)

Therefore, we deduce from this expression its expansion in the Fock basis

|α〉 = e−|α|
2/2

+∞∑
n=0

αn√
n!
|n〉 . (1.81)

Two coherent states are not orthogonal

|〈α|β〉|2 = e−|β−α|
2

∀α, β ∈ C . (1.82)

Nevertheless, they satisfy the completeness relation

1

π

∫
C
d2α |α〉〈α| = 1 , (1.83)

and thus constitute an over-complete non-orthogonal basis.
Now, if we look at the representation in the phase space (Fig. 1.3), it makes more sense

than the state vector (or density matrix) as it correspond to a simple translation of the
vacuum state Wigner function

W|α〉(x, p) =
1

2πσ2
0

e−(x−a)2/2σ2
0−(p−b)2/2σ2

0 , (1.84)

with α =
a+ ib

2σ0
.

Moreover, by analogy with the Fresnel representation where the state would be repre-
sented by a dot, this Gaussian shape highlights the vacuum �uctuations of the electromag-
netic �eld around a mean value α. Note that, here, the �uctuations saturate the Heisenberg
inequality σx = σp = σ0.

1.4.3 Squeezed vacuum state

Although the vacuum state shows some �uctuations, they can be squeezed. The variance
normalized to the variance of the vacuum �uctuation s = σ2

x/σ
2
0 is called the squeezing

factor. It is often given in a logarithmic scale

sdB = −10 log10 s = −10 log10

(
1− λ
1 + λ

)
=

20

ln 10
ζ , (1.85)
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Figure 1.3: Wigner function of a coherent state

with ζ the squeezing parameter that we can relate to the squeezing factor s = e−2ζ and
λ = thζ. The state can be written as:

|ψsq〉 = (1− λ2)1/4
∞∑
n=0

(
2n

n

)1/2(
λ

2

)n
|2n〉. (1.86)

The mean photon number of this state is

〈n̂〉 = 1
4 (s+ 1

s − 2) (1.87)

We show on �gure 1.4 how the populations change with the level of squeezing.
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Figure 1.4: a) Evolution of the populations as a function of the squeezing value
in dB scale. (left scale for p0 and right scale for pn>0). b) For 3 dB of squeezing,
although the vacuum component is as high as 94% and the two photon component
around 5% (〈n̂〉 = 0.12), the vacuum �uctuations are reduced by a factor of 2.
c) For 6 dB, the two photons component is more important (〈n̂〉 = 0.56). The
in�nite squeezing corresponds to the state |x = 0〉, an eigenstate of the quadrature
operator x̂.

The corresponding wave-function is

ψsq(x) =
1

(sπ)1/4
e−x

2/2s (1.88)
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The squeezing operator is

Ŝ(ζ) = e
ζ
2 (a2−a†2). (1.89)

More generally, if ζ ∈ C the compression operator is written

Ŝ(ζ) = e
ζ∗
2 a

2− ζ2a
†2
. (1.90)

If we note λ = th |ζ| and ζ/|ζ| = eiφ, the e�ect of this operator on the vacuum state is 6

Ŝ(ζ)|0〉 = (1− λ)1/4e−
λ
2 e
iφa†

2

|0〉. (1.91)

Of course, with the appropriate rotation in the phase space, we can have φ = 0.

Figure 1.5: Wigner function of squeezed vacuum states for 3 dB on the left and
6 dB on the right

The Wigner function of the squeezed vacuum state is given by

Wsq(x, p) =
1

2πσ2
0

e
− (x−〈x〉)2

2σ20s
− (p−〈p〉)2

2σ20/s . (1.92)

It is plotted on �gure 1.5. As we can notice, it corresponds to the Wigner function of the
vacuum state squeezed along one axis. However, the uncertainty relation being satis�ed
σxσp > σ2

0 , the Gaussian shape is �anti-squeezed� along the orthogonal axis. As for the
previous state, the vacuum state also saturates the Heisenberg inequality σ2

x = sσ2
0 and

σ2
p = 1

sσ
2
0 .

1.4.4 Two-mode squeezed vacuum state

This is a two-mode state and it is called two-mode squeezed vacuum since it can be simply
obtain by the mixing of two squeezed vacuum states on a 50:50 beam-splitter and vice
versa. It is also often called EPR state in reference to the paradox for entangled states, but
sometimes by misuse because it not always satis�es the criteria. Written in the Fock basis,
it can be read as:

|ψsq〉ab = (1− λ2)1/2
∞∑
n=0

λn|n〉a|n〉b . (1.93)

The Wigner function can be written as two squeezed vacuum states after combination on a
beam-splitter

W (xa, pa, xb, pb) =
1

(2πσ2
0)2

e
− (xa−xb)

2

4σ20s
− (xa+xb)

2

4σ20/s
− (pa−pb)

2

4σ20/s
− (pa+pb)

2

4σ20s (1.94)

6The proof can be found in [22] and [5].
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If we consider only one local mode, i.e. we lose the information of one of them, the state
is integrated on the lost mode∫

a

WEPR =
1

π

1

σ2
x + σ2

p

e−(x2+p2)/(σ2
x+σ2

p) , (1.95)

we obtain a thermal state as described now.

1.4.5 Thermal states

Although it is not very useful in quantum optics, we can encounter the thermal state in non-
perfect experiment and other physical phenomenon (black body radiation, sunlight,...). For
instance, this is the state we obtain if we trace one mode of a two-mode squeezed vacuum.

It is a statistical mixture of Fock states

ρ̂th =
∑

pT (n)|n〉〈n| , (1.96)

with pT (n) =
(

1− e−~ω/kBT
)
e−n~ω/kBT . We can also use the mean photon number

nth =
1

e~ω/kBT − 1
. (1.97)

Therefore, the photon number probability becomes

pT (n) =
nth

n

(nth + 1)n+1
. (1.98)

Thanks to this expression, the state can also be expressed as the following

ρ̂th =
1

nth + 1

(
nth

nth + 1

)n̂
. (1.99)

And in the basis of the coherent states it becomes

ρ̂th =
1

πnth

∫
d2αe−|α|

2/nth |α〉〈α| (1.100)

The Wigner function of the thermal state is a Gaussian phase invariant function, the
same as the vacuum state but with a larger standard deviation

W (x, p) =
1

2πσ2
th

e−(x2+p2)/2σ2
th . (1.101)

The variance of this state is σ2
th = (2nth+1)σ2

0 , i.e. the one of the vacuum with an additional
noise.

1.4.6 Gaussian states

This is a more general name that encompasses the thermal state, the coherent state, the
squeezed vacuum (or squeezed coherent state), the two-mode squeezed vacuum. But it also
includes the mixed state of these ones. (e.g. pure Gaussian states after lossy propagation.)
They are fully described with the covariance matrix. For a single mode state

Σ =

(
〈x̂2〉 − 〈x̂〉2 〈 12{x̂, p̂}〉 − 〈x̂〉〈p̂〉

〈 12{x̂, p̂}〉 − 〈x̂〉〈p̂〉 〈p̂2〉 − 〈p̂〉2
)
. (1.102)
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By using the following notation

X =

(
x
p

)
, X =

(
〈x̂〉
〈p̂〉

)
, (1.103)

it can be easily extended to more than one mode. We then obtain a compact form of the
Wigner function

Wgauss(X) =
1

(2π)N
√

det(Σ)
e−

1
2 (X−X)TΣ−1(X−X) , (1.104)

with N the number of modes.
The covariance matrix being real and symmetric, thanks to the spectral theorem, it

can be diagonalized with positive eigenvalues. Thus, we conveniently express the Wigner
function in the eigenbasis of a single-mode Gaussian state

Wgauss(x, p) =
1

2πσxσp
e
− (x−x0)2

2σ2x
− (p−p0)2

2σ2p . (1.105)

It is actually a simple rotation in the phase space.
The corresponding marginal distribution is∫

Wgauss(xθ, pθ)dpθ = P(xθ) =
1√

2πσ2
θ

e−(xθ−x0(θ))2/2σθ , (1.106)

with σ2
θ = σ2

x sin2 θ + σ2
p cos2 θ and x0(θ) = x0 cos θ + p0 sin θ.

The purity of the state, whatever its dimension, is directly obtained with the covariance
matrix

P = Tr[ρ̂2] =
1√

det(Σ)
. (1.107)

Hence, for a single-mode Gaussian state with the eigenvalues σ2
x, σ

2
p we have P = 1/σxσp.

We can also describe this state as a squeezed thermal state:

σ2
x

σ2
0

= (2nth + 1)e−2r
σ2
p

σ2
0

= (2nth + 1)e2r . (1.108)

The mean photon number is then:

〈n̂〉=
1

4σ2
0

(σ2
x + σ2

p − 2σ2
0) =

1

4
(sx + sp − 2) . (1.109)

1.4.7 Schrödinger's cat states

This state refers to the gedanken experiment of Schrödinger [106] in which he highlighted
the weird consequences of quantum mechanics when extended to our world (i.e. macroscopic
systems). Indeed, superposition of very di�erent states is possible thanks to the superposi-
tion principle, for instance the two levels of an atom. How such a situation could happen
in our world? In optics, the idea consists in a superposition of two orthogonal �classical�
states [27], i.e. two coherent states with large amplitudes. We thus call this state optical
Schrödinger cat state

|catφ〉 = 1
Nφ

(|α〉+ eiφ| − α〉) , (1.110)

where |α〉 is a coherent state of amplitude α and Nφ =
√

2(1 + cosφe−2|α|2) the normaliza-
tion factor.
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Nevertheless, the use this label for this state can be questionable. Does it completely
match the idea of Schrödinger? We could answer �yes� about the idea: we have quantum
phenomenon at the macroscopic scale. But concerning the picture used by Schrödinger, the
answer could be �no�: indeed, it relies on entanglement between a quantum particle with a
classical/macroscopic object. That is why coherent state superposition (CSS) is in principle
preferred. However, when α is small we also talk about �kitten�.

Two speci�c cases are interesting. When the phase of the superposition φ = 0, the state
is a superposition of even photon-numbers only and we call this state aneven cat states.

|cat+〉 =
1

N+
(|α〉+ | − α〉)

=
2

N+
e−|α|

2/2
+∞∑
n=0

α2n√
(2n)!

|2n〉 .
(1.111)

With φ = π, the state is this time a superposition of odd Fock states and logically we
call it an odd cat state.

|cat−〉 =
1

N−
(|α〉 − | − α〉)

=
2

N−
e−|α|

2/2
+∞∑
n=0

α2n+1√
(2n+ 1)!

|2n+ 1〉 .
(1.112)

We give on �gure 1.6 and 1.7 the population of both cats as a function of the amplitude α.
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Figure 1.6: Evolution of the population of the odd cat state |cat−〉 as a function
of the amplitude α. (left scale for p1 and right scale for pn>1)

The marginal distribution for the quadrature x̂θ is given by:

P|catφ〉(x, θ) = |〈x, θ|catφ〉|2 . (1.113)

As

|ψ±α(x, θ)|2 =
1√

2πσ0

exp

(
−
(

x

σ0

√
2
∓ |α|

√
2 cos(Φ− θ)

)2
)

(1.114)
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Figure 1.7: Evolution of the population of the even cat state |cat+〉 as a function
of the amplitude α. (left scale for p1 and right scale for pn>1)

and

eiφψ−αψ
∗
α + e−iφψαψ

∗
−α =

1√
2πσ0

exp

(
−2|α|2 cos2(Φ− θ)−

(
x

σ0

√
2

)2
)

(1.115)

× 2 cos

(
2
√

2
x

σ0

√
2
|α| sin(Φ− θ) + φ

)
(1.116)

with α = eiΦ|α| and θ angle of the quadrature (φ is the phase of the superposition and Φ is
the phase of the coherent state |α〉). The marginal distribution is thus given by

P|catφ〉(x) =
|ψ+α(x)|2 + eiφψ−αψ

∗
α + e−iφψαψ

∗
−α + |ψ−α(x)|2

1 + cos(φ)e−2|α|2 (1.117)

On �gure 1.8, we have plotted the marginal distributions associated with two quadratures
(θ = 0 and θ = π/2). For one, we see a pro�le of a mixture of two coherent states with
opposite phases but, on the other quadrature, the Gaussian shape of the expected mixture
of coherent state is modulated by some fringes.

If we choose a quadrature basis such as the amplitude is real (α ∈ R+), the Wigner
function of the cat state is

W|catφ〉(x, p) =
e−(x2+p2)/2σ2

0

2πσ2
0(1 + cosφe−2α2)

[
e−2α2

ch(2αx/σ0) + cos(2αp/σ0 − φ)
]

(1.118)

=
1

1 + cosφe−2α2

[
1

2
W|α〉(x, p) +

1

2
W|−α〉(x, p) +W|0〉(x, p) cos(2αp/σ0 − φ)

]
.

(1.119)

By looking at this expression and the associated plots on �gure 1.9, we can recognize the
two coherent states via the Gaussian function times the hyperbolic cosine. They correspond
to the terms |α〉〈α| and | − α〉〈−α|. The second part, the cosine function modulated by a
Gaussian function, gives the fringes of the �quantum interference� in the phase space. It
corresponds to the cross terms (or coherences) | − α〉〈α| and |α〉〈−α|. As we can see in this
latter the phase φ of the superposition simply shift the cosine pattern (but the Gaussian
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Figure 1.8: Marginal distributions of even cat state (CSS) and mixture of two
coherent states of opposite phases for two conjugated quadratures. (α = 2) For
the quadrature x it is not possible two distinguish both states whereas they are
completely di�erent for the conjugate quadrature.

Figure 1.9: Wigner function of the even cat states |cat+〉 on the top and odd cat
states |cat−〉 at the bottom, for a size α = 1.5 on the left and α = 3 on the right.

envelop stay the same). Hence, we switch from the even cat state to the odd cat state with
a π drift of the fringes.
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1.5 Gaussianity

Amongst the various states presented before, we have noticed that some of them have Wigner
functions with negative values whereas some others are everywhere positive. Interestingly,
most of the states that have a positive Wigner function have actually a gaussian Wigner
function. We show bellow that gaussianity constitue an important criteria to, some how,
�classify� quantum states.

1.5.1 Hudson-Piquet theorem

The negativity is a crucial property of the Wigner function, but what can we say about
this property? What does it mean physically? Failing to �nd a satisfying answer to this
question, an interesting theorem called the Hudson-Piquet's theorem gives a beginning of
answer. This theorem states [50]:

A necessary and su�cient condition for the Wigner density W corresponding to
the Schrödinger state vector ψ to be a true probability is that ψ be the exponential
of quadratic polynomial.

Where ψ denotes the wave function of the state. This can be rephrased: For a pure state,
the Wigner function is everywhere positive if and only if it is a Gaussian function. The
corresponding states are then logically called Gaussian states. As a consequence, any state
with some negative values is called non-Gaussian state. Hence, the states are now separated
into two categories.

Moreover, it is important to point out that this theorem is only valid for pure states.
Indeed, it exists some non-Gaussian mixed states without negative values of the Wigner
function. Moreover, it doesn't exist a generalization of this theorem (i.e. to mixed states)
[66]. For this reason, the negativity still keeps a part of �mystery�.

1.5.2 Gaussian operations

We have seen various operators that generate some Gaussian states, these are calledGaussian
operations. Interestingly, they map Gaussian states to other Gaussian states. Thus, all the
pure Gaussian states can be expressed as a combination of these operators applied to the
vacuum state.

There are four operations [119], three are single-mode and one spans on two modes.
This forms a complete basis of unitary a�ne application on quadratures variables X̂ =
(x̂1, p̂1, x̂2, p̂2, ...)

OG : X̂ 7→ UX̂ + X0 . (1.120)

Interestingly, this feature translates to the Wigner function by simply applying the trans-
formation OG on the variables of the Wigner function (instead of the quadrature with the
density matrix). All of these operators are unitary, Û†Û = 1. They are described by
interaction Hamiltonian with at maximum quadratic annihilation/creation operators.

Beam-splitter This two-mode operator is written

B̂(θ) = eθ(â
†b̂−âb̂†) , (1.121)

where t = cos θ and r = sin θ are the transmission and re�ection coe�cients in amplitude
(thus the square for energy coe�cients). The e�ect on the creation/annihilation operators
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is similar to one on the classical �eld

B̂†âB̂ = tâ+ rb̂ B̂†â†B̂ = tâ† + rb̂† (1.122)

B̂†b̂B̂ = tb̂− râ B̂†b̂†B̂ = tb̂† − râ† (1.123)

The action on the quadrature is similar to the ones on the annihilation/creation operators:

B̂†x̂aB̂ = tx̂a + rx̂b B̂†p̂aB̂ = tp̂a + rp̂b (1.124)

B̂†x̂bB̂ = tx̂b − rx̂a B̂†p̂bB̂ = tp̂b − rp̂a (1.125)

This operator can also describe the change of polarization basis.7

Displacement Already introduced previously, the displacement operator is

D̂(α) = eαâ
†−α∗â . (1.129)

Its action on the annihilation/creation operators is sum up by

D̂(α)†âD̂(α) = â+ α , D̂(α)†â†D̂(α) = â† + α∗ . (1.130)

The e�ect on the phase space is more intuitive, it corresponds indeed to a translation in the
phase space

D̂(α)†x̂D̂(α) = x̂+ 2σ0<[α] , D̂(α)†p̂D̂(α) = p̂+ 2σ0=[α] . (1.131)

This transformation can be obtained by mixing a state |ψ〉 and a bright coherent state
on a high transmission beam-splitter 1− η � 1.

B̂η|α〉a|ψ〉b = B̂ηD̂a(α)|0〉a|ψ〉b (1.132)

= B̂ηD̂a(α)B̂†ηB̂η|0〉a|ψ〉b (1.133)

∼ D̂a(α)D̂b(
√

1− ηα)B̂η|0〉a|ψ〉b . (1.134)

The mode b is displaced in the phase space of
√

1− Tα.

Phase-shift The phase shift operator is

Û(θ) = e−iθn̂ . (1.135)

It adds a phase term on the annihilation/creation operators

Û†âÛ = âe−iθ , Û†â†Û = â†e+iθ . (1.136)

The quadrature operators are changed by a rotation

x̂θ = Û†x̂Û = x̂ cos θ + p̂ sin θ , p̂θ = Û†p̂Û = −x̂ sin θ + p̂ cos θ , (1.137)

7

B̂(θ, φ) = eθ(e
iφâ† b̂−e−iφâb̂†) , (1.126)

B̂†âB̂ = tâ+ reiφb̂ B̂†â†B̂ = tâ† + re−iφb̂† (1.127)

B̂†b̂B̂ = tb̂− re−iφâ B̂†b̂†B̂ = tb̂† − reiφâ† (1.128)
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x̂θ = σ0(âe−iθ + â†eiθ) . (1.138)

The state is rotated in the phase space by an angle −θ (clockwise) which is also equivalent
to rotate the quadrature (counterclockwise) by an angle θ.

We note that it corresponds to the evolution of the free Hamiltonian Ĥ = ~ω[n̂ +

1/2]. Indeed, with the Heisenberg picture we have the time evolution Û(t) = e−iĤt/~ =
e−iωt[n̂+1/2] (the 1/2 can be removed as it only changes the global phase). This evolution
is relative to a reference. Practically, if the two beams are on the same spatial mode we
can use some combination of wave-plates, otherwise a simple small change of path length is
enough. Usually, this is realized by using piezoelectric stacks to increase of few wavelengths
the optical path.

Squeezing The squeezing operator is8

Ŝ(ζ) = e
ζ
2 (â2−â†2) . (1.139)

The e�ect on the creation and annihilation operators is

Ŝ†âŜ = â ch ζ − â† sh ζ , Ŝ†â†Ŝ = â† ch ζ − â sh ζ . (1.140)

The e�ect on the quadratures is equivalent to a rescaling with invert factors

Ŝ†x̂Ŝ = x̂e−ζ , Ŝ†p̂Ŝ = p̂e+ζ . (1.141)

This operation is obtained by parametric interaction. It is experimentally more di�cult to
realize. In contrast with all the previous ones, this operation requires non-linear optics, as
it will be seen in chapter 3.

1.6 Conclusion

We have recalled the main descriptions of quantum states: the density matrix which is
particularly appropriate when a system is not perfectly controlled; and the Wigner function
for which the physical interpretation is often easier than the density matrix. Furthermore
the density matrix appear to be a �natural� description when dealing with the corpusular
aspect of the quantum mechanics (discrete and the Wigner function when dealing is waves
(continuous). We have also used these two descriptions to present the quantum states that
are often encountered in quantum optics in theory and experiments.

However, in contrast to the density matrix, the Wigner has the singular feature to have
negative values (whereas it is mostly interpreted as a kind of probability density). Inter-
estingly, not all the states show this particularity. Thanks to the Hudson-Piquet theorem,
quantum state can be divided in two categories: the Gaussian and the non-Gaussian states.
On the other hand, it turns out that Gaussian states can be generated, and are stable, with
a set of operators, thus called Gaussian operators.

Since we have de�ned the various quantum states we are going to work with, we need
to interact (manipulate, probe,...) with them. This can be e�ciently performed by mea-
surements. In the following chapter, we present various kind of measurements and how they
give information about a quantum states, but also how they modify it. Again, we will use
both formalisms, Fock basis and Wigner functions.

8if ζ is a complex number the operator is written Ŝ(ζ) = exp[ ζ
2
â2 − ζ∗

2
â†2] which is equivalent to apply

a phase shift Û†ŜÛ
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2 | Quantum Measurements

Without craftsmanship, inspiration is a mere reed
shaken in the wind.

Johannes Brahms

In quantum information protocols, the measurement is a key element: the result of the
measurement is as important as the physical e�ect on the measured state. Indeed, as
in classical physics, the measurement gives some information about a system but, in the
quantum theory the measurement also a�ect the measured system. Here, we describe the
measurement with in mind these two aspects. More speci�cally, we will distinguish, as
for quantum states, Gaussian and non-Gaussian measurements where the Wigner function
associated to a measurement can also show some negative values. One will be useful to
manipulate/modi�ed quantum state of light whereas the other will be used to characterized
the quantum state of light.

We remind here the formalism of Positive Operator Valued Measures (POVM) to gener-
ally describe a measurement. Then, we discuss two widely used detectors: the single-photon
detector and the homodyne detection. We end by a brief review of the di�erent techniques
of states reconstruction, the so-called quantum state tomography, with an emphasis on the
di�erent possible processings. (Non-demolition measurements are not considered here as
they will be not used afterwards.)
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2.1 Formalism of the measurement

This topic gives rise mainly two di�culties: the physical interpretation of the quantum
measurement on one hand and its formalism on the other hand. Even though the �rst one
is still di�cult conceptually, the formalism of the measurement is nowadays satisfying, the
measurement apparatus can be simply described as a black box giving di�erent possible
outputs.

For more details, the reader can refer to the book of Nielsen and Chuang [85] section 2.2
where are detailed the di�erent approaches of measurement formalism.

2.1.1 Positive Operator Valued Measures

Often, the basics of measurement are introduced via the so-called observable operators which
are associated with physical quantity. These operators are Hermitian and can be thus
decomposed in the basis of eigenstates. For instance, the observable Â is written in its
eigenbasis {|ψλ〉}

Â =
∑
λ

λ|ψλ〉〈ψλ| , (2.1)

with each eigenvalue λ stand for the measurement results. Each element being a projector,
we talk about projective measurements. Moreover, they are all orthogonal. Hence, if one
measures λ and the eigenvalue is not degenerate, the state after the measurement will be in
the eigenstate |ψλ〉.

However, this model for measurements is not fully satisfying, at least from an experimen-
tal point of view. Indeed, the link with a realistic device in the lab is not straightforward,
this approach focuses more on what we would like to measure than what the apparatus
measures in reality. In the so-called generalized measurement, the approach is di�erent and,
as expected, more general.

Let us de�ne a set of measurement operators {M̂m} where each index corresponds to a
measurement outcome. Again, here, we do not start from the physical quantity we would
like to measure but, given an answer from the measurement apparatus, we focus on the
information it gives. Moreover, compared to the projective measurements, the measure-
ment operators are now not necessarily Hermitian, neither orthogonal nor projectors. The
measurement probability is

p(m) = 〈ψ|M̂†mM̂m|ψ〉 . (2.2)

Thus these operators follow the completeness relation (to conserve the probability)∑
m

M̂†mM̂m = 1̂ . (2.3)

After measurement, the state becomes1

|ψm〉 =
M̂m|ψ〉√
p(m)

. (2.4)

These expressions can be extended to the density matrix formalism

ρ̂m =
M̂mρ̂M̂

†
m

p(m)
, (2.5)

with the outcome probability
p(m) = Tr[M̂mρ̂M̂

†
m] . (2.6)

1to go further, we should use the Kraus formalism [54]



CHAPTER 2. QUANTUM MEASUREMENTS 29

Based on these measurement operators, we now de�ned a set of Hermitian operators,
called POVM such as

Π̂m = M̂†mM̂m . (2.7)

We do not discuss here the meaning of �Positive Operator Valued Measures� (this designation
refers to mathematical properties and no physics). We talk about POVM for the complete
set of operators and POVM element for one operator that corresponds to a speci�c outcome
of the measurement apparatus. By extension of the generalized measurement properties, we
have

p(m) = Tr[Π̂mρ̂] (2.8)

These operators also follow the completeness relation∑
m

Π̂m = 1̂ . (2.9)

Although the POVM elements are Hermitian and positive operators, they are not neces-
sarily projectors. The use of these operators is motivated by the fact that, most of the time,
the measured mode is destroyed or not considered anymore and we consequently apply the
trace on this mode. POVM cannot described a non-destructive measurement2. On the other
hand, it is important to note that observables are actually a speci�c case of this formalism.
Indeed, the POVM elements correspond to the projectors associated with the eigenstates of
the observable. We give examples of POVM in the next two sections to illustrate its interest.

We close this section with another important remark. These operators being Hermitian
we can compute there corresponding Wigner functions (i.e. it will be a function with values
in R). This phase space representation of a measurement can be sometime extremely con-
venient to understand it. Nevertheless, the POVM element are not normalized i.e. the trace
is not necessarily �nite and thus do not represent some physical states. Only in the case of
observables, the POVM correspond to a physical state (eigenstate of the observable).

2.1.2 Conditional preparation of quantum state

As underlined in the introduction of the chapter, a measurement gives us information on
quantum states but we can also take advantage of the measurement projectivity to modify
states. With the appropriate strategy, we can engineer some states: the state will be
projected onto the desired one for a speci�c result of measurement. This is why we talk
about conditional preparation. However, this strategy remains probabilistic and the success
rate thus becomes an important parameter.

A general picture could be the following. We start from a two-mode state ρ̂ina,b which is
entangled. On one of the mode, we perform a measurement Π̂a and, when the measurement
apparatus gives the desired answer, the state in the other mode is ρ̂cond,b (cf �gure 2.1).
Thanks to the formalism of POVM, this conditional state can be written as (with a simpli�ed
notation3):

ρ̂cond,b = Tra/a,b[Π̂aρ̂ab] . (2.11)

2However, this needs to be further discussed. It is not completely true to talk about non-destructive
measurement, if we look into details the measurement apparatus, we will see that the measurement is
mediated by an auxiliary system which will be destroyed... actually, it is more a question of where we de�ne
the limit between the system and the environment. This is part of a larger debate of the interest or not of
POVM as it is possible to obtain the same results with observables and unitary evolution [85]. In contrast,
the main idea of POVM is at the end to have a description of the di�erent interactions between the system
and the measurement apparatus as a black box and not to describe what happens inside.

3We omit 1b and use a more compact notation of the normalization. The exact writing should be

ρ̂cond,b =
Tra[Π̂a ⊗ 1bρ̂ab]

Tra,b[Π̂a ⊗ 1bρ̂ab]
. (2.10)
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Equivalently, for the Wigner function formalism, we apply the generalized overlap for-
mula for partial trace on a multi-mode state (1.54)4 and obtain the simple and very conve-
nient expression:

Wρ̂cond,b =

∫
a/a,b

WΠ̂a
Wρ̂ab . (2.13)

This last relation shows an important consequence. Indeed, if the input state has a Wigner
function with only positive values, this strategy will produce states with negative values
only if the Wigner function of the POVM element has some negative values. Hence, despite
the fact that Wigner function of the POVM does not necessarily represent a physical state,
the negativity of its Wigner function is also an important feature.

�����
���

��
"��"�

�

Figure 2.1: Conceptual scheme of a conditional preparation. A measurement is
performed on one mode of an entangled state. The measurement outcome then
heralds the preparation of a new state.

We will now study two types of detector usually used in quantum optics experiments:
the single-photon detector and the homodyne detection. These can be used in conditional
preparation. The important point, for this purpose, is to know what are the POVM elements
corresponding to the di�erent outcomes of the devices.

2.2 Photon detectors

We call �photon detector� a device which can detect at least a single-photon. These detectors
are basically characterized by two parameters: the quantum e�ciency and the dark count5.
Experimentally, the quantum e�ciency often strongly depends on the wavelength for various
reasons (material, coating,...). On the other hand, the noise is intrinsic to the detector: it
does not depend on the wavelength of the measured beam.

A �good� detector should have a high e�ciency and a low dark count. However, as we
will see below, it is not really possible to give absolute values to de�ne whether a detector
is �good� or �bad�. Actually, it depends a lot on the experiment in which we use it. The
typical characteristics of nowadays detector of di�erent technologies are given in appendix
A.

2.2.1 on/o� detectors

This model is typically used for avalanche photodiodes (APD). These detectors having only
two possible outputs, we call them �on/o� detectors�: detection of at least one photon, or no

4As for the expression with the density matrix, we simplify the notation by removing the normalization
and the variables. The rigorous writing is

Wρ̂cond,b (xb, pb) =

∫∫
R2 dxadpaWΠ̂a

(xa, pa)Wρ̂ab (xa, pa, xb, pb)∫∫∫∫
R4 dxadpadxbdpbWΠ̂a

(xa, pa)Wρ̂ab (xa, pa, xb, pb)
. (2.12)

5i.e. counts that do not come from light, however background light can also contribute to unwanted
photon detection events and is in practice included into this parameter.
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detection. Ideally, the output o� corresponds to the projector on the vacuum state Π̂o� =

|0〉〈0| and thus the output on the projector on all the other Fock states Π̂on =
∑
n=1

|n〉〈n|.

(Note that the completeness relation is satis�ed because the sum of the POVM is equal to
the identity Π̂o� + Π̂o� = 1.) The associated Wigner functions in this case are obvious: the
output o� is the vacuum state and for the output on we use the completeness relation

WΠ̂on
= W1 −W|0〉〈0| =

1

2πσ2
0

(
1

2
− e−(x2+p2)/2σ2

0

)
. (2.14)

We remind that the POVM element being not a physical state, it has not necessarily a trace
equal to one. Here, it is clear for instance that the integral does not converge.

2.2.2 Limited e�ciency

As underlined previously, the detectors are actually not perfect and have, most of the time,
a limited quantum e�ciency η. This can be simply modeling by a black box containing a
perfect detector with some optical losses upstream. In that case, the POVM element of the
output o� is given by:

Π̂o� =

+∞∑
n=0

(1− η)n|n〉〈n|. (2.15)

The detector becomes less sensitive to low photon-number, the weight is higher for the
outcome o� than for the high photon number. More precisely, the probability to have the
answer on with an input state |n〉〈n| is 1-(1 − η)n, i.e. the probability that any photon
reaches the detector (supposed perfect inside the black box).

To calculate the corresponding Wigner function, we use the formula

W|n〉 =
(−1)n

2πσ2
0

e−(x2+p2)/2σ2
0Ln

(
x2+p2

σ2
0

)
. (2.16)

Thus, we have

WΠ̂o�
=

1

2πσ2
0

e−(x2+p2)/2σ2
0

+∞∑
n=0

(1− η)nLn

(
x2+p2

σ2
0

)
. (2.17)

Then, with the help of the generating function
e−xt/(1−t)

1− t
=

+∞∑
n=0

Ln(x)tn we obtain

WΠ̂o�
=

1

2− η
1

2πσ2
0

exp

[
−x

2 + p2

σ2
0

(
1

2
− 1− η

2− η

)]
. (2.18)

We note σ2
η =

2− η
η

σ2
0 . The previous expression is simpli�ed in

WΠ̂on
= W1 −WΠ̂o�

=
1

2πσ2
0

(
1

2
− 1

2− η
e−(x2+p2)/2σ2

η

)
. (2.19)

This Wigner function has negative values in particular at the origin of the phase space.
However, this negativity is degraded by the e�ciency but still exist if η > 0 which is of
course always the case (�gure 2.2 left). We talk therefore about non-Gaussian detectors.
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2.2.3 Noisy detector

Another usual drawback of these detectors is the noise. Di�erent types of distributions can
be used, this mainly depends on the physical nature of the noise. However, the poissonian
distribution is relevant in most of the cases and the POVM element of the o� outcome can
be rewritten in the following form

Π̂o� = e−ν
+∞∑
n=0

(1− η)n|n〉〈n| , (2.20)

where ν is the mean value of the noise. Therefore, we adapt the equation (2.19) and obtain
the general Wigner function

WΠ̂on
= W1 −WΠ̂o�

=
1

2πσ2
0

(
1

2
− e−ν

2− η
e−(x2+p2)/2σ2

η

)
. (2.21)

It is important to underline that, in practice, the value of the noise ν is not completely
intrinsic to the detector, it also depends on the dynamic of the state impinging on the
detector. Indeed, e−ν is the mean number of photon in the detection window.
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Figure 2.2: On the top, cross sections of the Wigner function for the POVM
element Π̂on. On the left, no noise ν = 0 and various e�ciencies η from 100%
down to 20%. On the right, perfect e�ciency η = 1, and variable noise ν from 0
to 1. On the bottom, the Wigner function with perfect detection e�ciency and no
noise.

Now, with a noise ν, the negativity of the Wigner function can be lost (�gure 2.2 right).
Indeed, the negativity is preserved only if 1− η/2 < e−ν ; in other words, in the limit of low
noise ν � 1, since

ν < η/2 . (2.22)
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2.2.4 Detection of two photons

In the previous section we did not really explain how we have determined the POVM. Let
us use the example of the two-photon detection to show a method. Generally speaking, any
phase insensitive detector has a POVM element of the form

Π̂m =

∞∑
k=0

rk,m|k〉〈k| , (2.23)

where the weighting term rk,m corresponds to the probability to have the outcome �m� when
measuring the state |k〉. This term can be expressed as:

rk,m = Tr[Π̂m|k〉〈k|] = P (m|k) . (2.24)

An intuitive strategy to detect more than one photon is to combine single-photon detec-
tors and beam-splitters. Of course, even if the e�ciencies are equal to unity and the noise
equal to zero, it is still not equivalent to a photon-number resolved detector. Indeed, the
detector can detect many |n > 0〉〈n > 0| but not speci�c |n〉〈n|. However, these photon-
number resolved detectors are not yet well working (and not yet really available cf. appendix
A), the combination of several non-photon-number-resolved detectors is a good alternative.

50:50

��

��′

Π�

In

Figure 2.3: The measured beam is sent to a 50:50 beam-splitter with two single-
photon detector connected at each output. These two detectors have the POVM
element π̂m and π̂m′ . This device can be seen as a single detector with POVM
elements Π̂m.

As depicted on �gure 2.3, we now consider a device made of a beam-splitter and two
detectors. The idea is the following, when we have two clicks, we have a kind of detector
|2〉〈2| for low photon number states. An alternative scheme uses a time delay and recombines
the two outputs with another beam-splitter in order to save one detector. The two modes are
distinguished with a time delay. Hence, the detector now looks at two di�erent time windows
separated by a time delay τ (we talk about �Time Multiplexed Detectors�). Nevertheless,
with the second beam-splitter, half of the beam is lost and the count rate reduced. More
precisely using the TMD with a detector of e�ciency η of scheme (c) is equivalent to the
scheme (a) with two detectors of e�ciencies η/2. We �pay� the use of only one detector
(instead of two) by a diminution of a factor 2 on the e�ciency. However, a possible trick
to save this e�ciency is to recombine the two beams in polarization: instead of 50:50 beam
splitter, we use a polarizing beam-splitter [17].

This setup can be described globally as a single detector. To avoid any confusion, let us
now note by upper case the POVM element of the complete device Π̂m and by lower case the
POVM elements of each single-photon detectors π̂m that we have described in the previous
section. This new detector has tree possible outcomes: no clicks Π̂0, two clicks Π̂>2 and
one click Π̂1. Concerning the last one, we underline that the symmetry of the setup makes
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identical the outcomes �one click on detector 1, no one on 2� and �one click on detector 2,
no one on 1�.

We can calculate each POVM element by using its de�nition in equations (2.23) and
(2.24). We obtain the following expressions

Π̂0 =
∑
n

e−2ν(1− η)n|n〉〈n| , (2.25)

Π̂1 = 2
∑
n

(
e−ν(1− η/2)n − e−2ν(1− η)n

)
|n〉〈n| , (2.26)

Π̂>2 =
∑
n

(
1 + e−2ν(1− η)n − 2e−ν(1− η/2)n

)
|n〉〈n| , (2.27)

where η and ν are the e�ciency and noise of each single-photon detector as described in
the previous section. We easily check that these operators satisfy the completeness relation
Π̂0 + Π̂1 + Π̂>2 = 1.

The Wigner function is expressed by using the function

W η,ν =
e−ν

2− η
e−(x2+p2)/2σ2

η , (2.28)

where we still de�ned σ2
η =

2− η
η

σ2
0 . Thus

WΠ̂1
=

2

2πσ2
0

(
W η/2,ν −W η,2ν

)
, (2.29)

WΠ̂>2
=

1

2πσ2
0

(
1

2
+W η,2ν − 2W η/2,ν

)
, (2.30)

In contrast to the simple single-photon detector, we can see on �gure 2.4 left that the
shape of the Wigner function associated with the POVM element Π̂1 is now closer to the
single-photon projector |1〉〈1|. This is the improvement of the second detection: it allows a
better discrimination of the higher photon number as witness by the absence of plateau for
large x. As for the single-photon, we can see on �gure 2.4 right that the output �> 2� shows
a plateau for large x owing to the fact that it doesn't discriminate n > 2 [17, 16].

These di�erent models of detectors allow to understand how they can modify quantum
states of light, how the defects change their e�ects, in a conditional preparation scheme.
However, it is also possible to experimentally measure the POVM of a detector. As per-
formed in Ref. [17, 16], it basically consist in recording the response of a detector probed
by a set of coherent states (i.e. of di�erent amplitudes). These di�erent measurements of
input/output (of the detector) allow us to then reconstruct its POVM by using a technique
similar to the one used to reconstruct a quantum state (that we present in section 2.4.5).

2.3 Homodyne measurement

The previous detector shows POVM elements with negative Wigner function, and can there-
fore be called non-Gaussian detectors. Now, the detector we consider in this section does
not show such a feature, however it yields to useful measurements in particular to char-
acterize a state. This measurement has been widely used so far, surprisingly it allows to
perform quantum measurements with a priori classical devices: photodiodes and standard
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Figure 2.4: On the top, cross sections of the Wigner function associated with
the POVM element Π̂1 on the left and Π̂2 on the right without noise ν = 0 and
various e�ciencies η from 100% down to 20%. On the bottom Wigner functions
for perfect detector (η = 1,ν = 0).

electronics. (Despite photodiodes are based on quantum phenomenon, they cannot resolve
the discrete nature of light.)

In the following, we discuss the di�erent modeling and other theoretical aspects of the
homodyne detection. The technical details are discussed in the Appendix B.

2.3.1 Principle of the homodyne detection

The state ρ̂s we want to measure, called signal, is mixed with a bright beam, called local
oscillator, on a 50:50 beam-splitter (cf. �gure 2.5). This bright beam is a coherent state
|e−iθα〉 with a large amplitude α ∈ R+ and a phase θ. In terms of operators, we have after
the beam-splitter

â1 = (âLO + âs)/
√

2 , (2.31)

â2 = (âLO − âs)/
√

2 . (2.32)

The two resulting beams are measured with photodiodes, which provide a current propor-
tional to the number of photons i.e. î ∝ n̂ (one photon gives one electron in the ideal
case)

n̂1,2 = 1
2 [â†LOâLO + â†sâs ± â

†
LOâs ± â

†
sâLO] . (2.33)

The subtraction of the two photocurrents results in a signal proportional to

n̂1 − n̂2 = â†sâLO + â†LOâs . (2.34)
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Figure 2.5: Homodyne detection. The measured beam is mixed with a bright
coherent state called local oscillator on a 50:50 beam-splitter. The two outputs are
measured with two photodiodes. The resulting photocurrents are subtracted and
provide an output signal proportional to a quadrature measurement ampli�ed by
the amplitude of the local oscillator. Most of the time, the phase of the quadrature
is adjusted with a PZT on the path of the local oscillator.

The coherent state being bright, the observable mainly gives its mean value. As a result,
we can take the expected value of the local oscillator mode i.e. to replace the operator by
the amplitude of the coherent state6 :

n̂1 − n̂2 ≈ αe−iθâ†s + αeiθâs . (2.35)

We �nally recognize a quadrature observable with a phase de�ned by the phase of the local
oscillator

i1 − i2 ∝ αx̂θ . (2.36)

We can notice that this measurement at the quantum scale is enabled by the gain on the
measurement provided by the amplitude of local oscillator. The bigger is α, the better is
the sensitivity of the measurement.

However, one could underline that assuming the photodiode as a photon counter is
questionable. Indeed, stating î ∝ n̂ means that if we can measure precisely the current we
have detector able to resolve the number of photon! Actually, a more precise model would be
to consider this detector with a large noise compared to the single-photon scale. However,
at the end, even though the contribution of this noise is important it will be canceled out
by the fact that the local oscillator is a bright beam.

This general description is actually what the experimental apparatus tries to aim at.
One aspect that we do not consider here is the dynamical degree of freedom. This will be
the topic of chapter 6.

6This approximation can be justi�ed in the following way. If we consider the mean observable on the
signal mode by taking the mean value on the local oscillator mode

〈α|(n̂1 − n̂2)|α〉LO = αx̂s,θ ,

and we compare it to the mean value of its square

〈α|(n̂1 − n̂2)2|α〉LO = α2x̂2
s,θ + â†sâs .

We note that the standard deviation of the observable of the signal mode is negligible if its mean photon
number is negligible compare to the local oscillator. In other word, under this assumption we always have
the same observable on the signal mode.
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2.3.2 POVM of the homodyne measurement

The POVM elements are given by the eigenvectors of the quadrature observable. Here, in
the {x̂, p̂} quadrature basis we consider the general quadrature x̂θ = cos θx̂ + sin θp̂. The
POVM element associated with the outcome xθ is

Π̂(xθ) = |xθ〉〈xθ| , (2.37)

x̂θ|xθ〉 = xθ|xθ〉. An homodyne detection with a �xed phase (i.e. which measures a �xed
quadrature) is a detector associated with a given POVM, hence, all the di�erent answers

satisfy the completeness relation.
∫

Π̂(xθ)dxθ =

∫
|xθ〉〈xθ|dxθ = 1. Note that this relation

is true for each phase, two di�erent phases yielding to two di�erent POVMs (hence, it would
be wrong to sum also on all the phases). The corresponding Wigner function is

WΠ̂(xθ)(x, p) =
1

2πσ2
0

1

2
δ(x cos θ + p sin θ − xθ) . (2.38)

In practice, the homodyne detection is not perfect and can su�er from ine�ciency, i.e.
η < 1. More precisely, if each arm has the same limited e�ciency η, this is equivalent to
consider a beam-splitter of transmission η before a perfect homodyne detection (see [59]).
Thus we can write the measured marginal distribution Pη as a function of the marginal
distribution with a perfect e�ciency P:

Pη(xθ) =
1√

2πσ2
0(1− η)

∫
exp

(
−

(xθ −
√
ηyθ)

2

2σ2
0(1− η)

)
P(yθ)dyθ (2.39)

where Pη(xθ) = Tr
[
Π̂η(xθ)ρ̂

]
and P(xθ) = Tr

[
Π̂(xθ)ρ̂

]
. Thus, being true for any states we

deduce the corresponding POVM element

Π̂η(xθ) =
1√

2πσ2
0(1− η)

∫
exp

(
−

(xθ −
√
ηyθ)

2

2σ2
0(1− η)

)
|yθ〉〈yθ|dyθ , (2.40)

as a function of the POVM element for perfect e�ciency. We obtain the Wigner function
by using equation (2.38)

WΠ̂η(xθ)(x, p) =
1√

2πσ2
0(1− η)

exp

(
−

(xθ −
√
η(x cos θ + p sin θ))2

2σ2
0(1− η)

)
1

2πσ2
0

1

2
. (2.41)

The limited e�ciency broadens the Gaussian Wigner function which can be interpreted
by the fact that the contamination by the vacuum state is not controlled and makes the
measurement less precise.

All these measurements have positive Wigner functions and for this reason are called
Gaussian measurements.

2.4 State reconstructions

In free-space optics, the quantum state tomography with homodyne detection is a powerful
method to fully characterize a quantum state. The term of tomography comes from the
analogy with the medical imaging technique. Indeed, the mathematical description of the
reconstruction is exactly the same. For di�erent angles θ, we measure the transmitted X-ray

by a body. We can write it I(xθ) =

∫
dyθT (xθ, yθ) with T the transmission function of the
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body, yθ the propagation axis of the X-ray and I(xθ) the measured intensity pro�le. The
problem is to reconstruct the function T . In our case, the measurements of the quadrature

x̂θ give the marginal distribution P(xθ) =

∫
dyθW (xθ, yθ) and, we want to reconstruct the

Wigner function W .
The �rst used algorithm was the Radon transform. But now, in quantum optics, the

MaxLik algorithm is most of the time preferred as it allows to compensate optical losses,
and also because it intrinsically leads to a lower numerical noise.

Below, we describe various techniques of reconstruction. The �rst two ones are not
detailed as we will not use them. We mention them in order to justify why we prefer to
use the others. Unfortunately, for the next ones, we will see that none all of them is really
better than the other. Actually, there is always a compromise between the accuracy and the
speed of the calculation.

Among the following techniques, there are two possible strategies: reconstruct the Wigner
function �rst or the density matrix �rst. Moreover, we will see that we have simpler tech-
niques under the assumption of phase-invariant states. Importantly, this invariance can be
�arti�cial� by a phase averaging of the measurements, which can be use to access to the
diagonal elements of any state.

2.4.1 Radon transform

It is actually the analytical solution of the problem. Nevertheless, this reconstruction is sen-
sitive to the sampling which is unavoidable in real experiment. Rigorously, we call Radon
transform the marginal distribution from the Wigner function. On the other hand, it recon-
structs the Wigner function �rst and not the density matrix. This is not the best choice as
the conversion from the Wigner function to the density matrix is a little di�cult.

With a rigorous notation the marginal distribution is

P(xθ) =

∫
W (xθ cos θ + yθ sin θ, yθ cos θ − xθ sin θ)dyθ (2.42)

The Radon transform provides the following relation in the Fourier space

W̃ (kθ cos θ, kθ sin θ) = P̃(kθ) (2.43)

For each angle, the Fourier transform of the marginal distribution gives a radial cross section
of the Fourier transform of the Wigner function. Accumulating di�erent angles gives then
the complete Wigner function in the Fourier space, and the invert Fourier transform provides
the Wigner function of the state.

2.4.2 Abel transform

It is a speci�c case of the Radon transform. Indeed, we assume that the state is phase
invariant or it will give a phase-randomized state. This assumption makes the problem
analytically simpler. As before, we start from a marginal distribution measurement

P(x) =

∫
W (x, y)dy, (2.44)

and the goal is to reconstruct the corresponding Wigner function. The one we consider here
has an axial symmetry. We can thus write it as a function of a single variable

W (x, y) = W (
√
x2 + y2) = W (r) . (2.45)
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Thus, by using the change of variable dy = rdr/
√
r2 − x2 the expression of the marginal

distribution becomes

P(x) = 2

∫ ∞
x

W (r)rdr√
r2 − x2

. (2.46)

The inverse of the Abel transform 7 is

W (r) = − 1

π

∫ ∞
r

dP
dx

dx√
x2 − r2

. (2.47)

The advantage, compared to the Radon transform, is that this operation does not require
to perform any Fourier transform.

2.4.3 Phase averaging and moments

The idea here, as for the next techniques, is quite di�erent: we want to directly infer the
density matrix and not �rst the Wigner function. To do so, we use the di�erent even orders
of quadratures to infer the diagonal elements of the state. Therefore, this technique, as the
previous one, requires an assumption of phase invariance of the measured state, or a phase
averaging. It also requires an assumption on the size of the Hilbert space. However, it is
extremely light in terms of computation resources (memory depth and computation speed),
and extremely simple to implement.

Nevertheless, one important issue is the possibility to obtain negative values which is
physically meaningless. But, on the other hand, this artifact happens mainly when the
measurement is not good enough (noise, too small Hilbert space, ...). This can be an
advantage somehow to detect some potential problems in the measurement.

The even moments of quadrature are used for the reconstruction

〈x2k〉|n〉 =
1√

2πσ02nn!

∫
x2kH2

n( x
σ0

√
2
)e−x

2/2σ2
0dx , (2.48)

and follows the recurrence relation 8:

〈x2k〉|n〉 = (2k − 1)
(
〈x2(k−1)〉|n〉 + 〈x2(k−1)〉|n−1〉

)
+ 〈x2k〉|n−1〉

9. (2.50)

7the marginal distribution should drop to 0 faster than 1/r but this is the case because the general form
of the marginal distribution is a Gaussian function times a polynomial

8a simple demonstration consists in simplifying with the Hermite polynomials called �statistic�, choose
σ0 = 1, then do an integration by parts and use the recurrence relation of the Hermite polynomials.

9Actually provides the numbers of Henri Delannoy, they follow the recurrence relation

D(m,n) = D(n− 1,m) +D(n− 1,m− 1) +D(n,m− 1) , (2.50)

then each row k is multiplied by (k − 1)!! = (k − 1)(k − 3) . . . (ie 〈x2k〉|0〉).
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For instance, we obtain the matrix

M =



〈x0〉|0〉 〈x0〉|1〉 〈x0〉|2〉 · · · 〈x0〉|n〉 · · ·
〈x2〉|0〉 〈x2〉|1〉 〈x2〉|2〉 · · · 〈x2〉|n〉 · · ·
〈x4〉|0〉 〈x4〉|1〉 〈x4〉|2〉 · · · 〈x4〉|n〉 · · ·

...
...

...
. . .

...
〈x2k〉|0〉 〈x2k〉|1〉 〈x2k〉|2〉 · · · 〈x2k〉|n〉

...
...

...
. . .


=



1 1 1 1 1 1 1 · · ·
1 3 5 7 9 11 13 · · ·
3 15 39 75 123 183 255
15 105 375 945 1935 3465 5655
105 945 4305 13545 33705 71505 135345
945 10395 57645 218295 643545 1590435 3452085

10395 135135 883575 3918915 13399155 37972935 93440655
...

...
. . .


. (2.51)

Let us call the vector of the even quadrature moments of the measured state

Xρ̂ =



〈x0〉ρ̂
〈x2〉ρ̂
〈x4〉ρ̂
...

〈x2k〉ρ̂
...


. (2.52)

Thus, it is clear that
M diag[ρ̂] = Xρ̂ . (2.53)

Hence, we simply infer the diagonal elements of the density matrix by inverting the latter
equation

diag[ρ̂] = M−1Xρ̂ . (2.54)

We remind again that this reconstruction, as the Abel transform, gives access to the
diagonal elements only. Moreover, if the measured state is not phase invariant, it requires a
phase averaging: the phase associated with the quadrature measurement should be equally
distributed. Interestingly, such a measurement cancels the coherences of the density matrix
whereas the diagonal elements remain unchanged.

2.4.4 Pattern functions

We only give here the reconstruction technique and not any proof of it. For a complete
demonstration of the formulas and more details the reader is invited to refer to Ref. [59].

The pattern function method is actually an extension of the Radon transform but it
enables us to directly infer the elements of the density matrix. Let us now call the marginal
distribution wθ(x; s) with s = 1 − η−1 the parametrization to compensate the detection
e�ciency η. The elements can be written as:

〈a|ρ̂|b〉 =

∫ π

0

∫ +∞

−∞
wθ(x; s)Fab(x, θ; s)dxdθ , (2.55)
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where Fab is the pattern function associated with |a〉〈b|. Note that the relevance of the
reconstruction is not guaranteed for an e�ciency η < 1/2. For N measurements {xn, θn}
with θn equally distributed on [0, π]

〈a|ρ̂|b〉 =
π

N

N∑
n=1

Fab(xn, θn, s) . (2.56)

Fock basis The pattern functions in the Fock basis are given by:

Fmn(x, θ; s) = ei(m−n)θfmn(x, s) , (2.57)

with

fmn(x, s) =
√
m!n!2m−n

m∑
p=0

h2p+n−m+1(x, s)

2pp!(m− p)!(n−m+ p)!
, (2.58)

if n > m, otherwise we use the same function and invert n and m. This function can be
computed with

hn(x, s) = hn
(
x/
√

1 + s
)
/(1 + s)(n+1)/2 , (2.59)

which follows the recurrence relation

hn+1(x)− 2xhn(x) + 2nhn−1(x) = 0 , (2.60)

with the �rst terms

h0(x) = − 1√
π
e−x

2

erfi(x) = − 2

π
Dw(x) , (2.61)

and

h1(x) = 2
π

[
1−
√
πxe−x

2

erfi(x)
]

(2.62)

= (1− 2xDw(x)) 2
π . (2.63)

The erfi is the imaginary error function but it is more convenient to use the Dawson function
Dw

10 as given in the last expression.

Coherent state basis A particular interest of this technique is the possibility to use di�erent
basis (nevertheless, without guarantee that the formal expression will be easy to derive or to
compute numerically). Here, we give the example of the pattern function for the coherent
states basis.

Fαβ(xθ, θ; s) =
1

1 + s
h1

(
x̃θ − xθ/

√
1 + s

)
e−|α−β|

2/2 , (2.64)

where
x̃θ =

(
α∗eiθ + βe−iθ

)
/
√

2 . (2.65)

Extension to two modes This technique can easily be extended to two modes. Indeed,

ρnmjk =

∫ π

0

∫ +∞

−∞

∫ π

0

∫ +∞

−∞
wθ1,θ2(x1, x2; s1, s2) Fnm(x1, θ1; s1) Fjk(x2, θ2; s2)dx1dθ1dx2dθ2

(2.66)
with wθ1,θ2(x1, x2; s1, s2) which is the two-mode marginal distribution (or joint density prob-
ability distribution). The matrix elements are then given by:

〈c|〈a|ρ̂|b〉|d〉 =
π2

N

N∑
n=1

Fab(x1,n, θ1,n, s)Fcd(x2,n, θ2,n, s) . (2.67)

10Note that the function erfi diverges extremely fast and its product with e−x
2
is numerically unstable.

The use of the interpolation of Dw is numerically safer.



42 2.4. STATE RECONSTRUCTIONS

Convention For all the previous formulas, note that the choice of convention should be
adapted. Indeed, for a standard deviation of the vacuum �uctuation given by σ0, the
quadrature measurement should be modi�ed as follows

x −→ xσ0√
2
, (2.68)

to be used in the previous formulas.

2.4.5 MaxLik algorithm

This last method, introduced recently [63, 62], is now widely used. It results from a statistical
approach, while the previous ones are based on analytical solution. As suggested by its name,
this is an algorithm which maximize the likelihood (the most powerful tool for statistical
estimation): it gives the �most compatible� state for a given set of measurement results. As
for the pattern function, it enables to correct for the detection losses. However, in contrast
to the previous techniques, the advantage of this reconstruction is the constraint on the
diagonal elements, which are always positive. It also gives the highest accuracy (Cramer-
Rao bound).

Nevertheless, this method has some drawbacks. At last, the main drawbacks we can
mention are the requirement of an assumption on the size of the Hilbert space and secondly,
it is heavier in terms of computation resources.

We start from a set of N measurements {xk, θk}. Depending on the sampling of the
measured signal, we have for x and θ, we can reorganize the results of the measurements
by packing them together when they are equal into another set of measurements {fj , xj , θj}
with fj the frequency of the result j (if we obtain nj times the results {xj , θj} among a total
number of N measurements fj = nj/N). The likelihood is then equal to

L(ρ̂) =
∏
j

pr(θj , xj)
fj (2.69)

with pr(θj , xj) = Tr[Π̂(θj , xj)ρ̂] the probability to obtain the result {xj , θj} for the state ρ̂.
We use the projector Π̂(θ, x) = |θ, x〉〈θ, x| corresponding to the measurement result x, θ. Its
elements in the Fock basis are

Πnm = 〈n|Π̂(θ, x)|m〉 = 〈n|θ, x〉〈θ, x|m〉 , (2.70)

which can be computed via the following formula (Fock state wave function)

〈n|x, θ〉 = einθ
1

(
√

2πσ02nn!)1/2
Hn

(
x

σ0

√
2

)
e−(x/σ0

√
2)2/2 , (2.71)

with Hn the n-th Hermite polynomial.
The algorithm consists in iterating the following recurrence

ρ̂(k+1) = N
[
R̂(ρ̂(k)) ρ̂(k) R̂(ρ̂(k))

]
, (2.72)

with N the normalization factor to have a trace equal to 1. For each iteration, we can
compute the iteration operator

R̂(ρ̂) =
∑
j

fj
pr(θj , xj)

Π̂j(θj , xj) . (2.73)
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The state is initialized with the matrix ρ̂(0) = N [1]. If the algorithm converges, we have

fj ∝ prj and
∑
j

Π̂j ∝ 1. So at the end R̂(ρ̂0) ∝ 1, i.e.

R̂(ρ̂0) ρ̂0 R̂(ρ̂0) ∝ ρ̂0 . (2.74)

Losses correction The other interest of this algorithm is the possibility to compensate the
optical losses. Indeed, if the state ρ̂0 is propagated into a channel of transmission η, the
state we measure is ρ̂η. The relationship we have between these two state is

〈m|ρ̂η|n〉 =

∞∑
k=0

Bm+k,m(η)Bn+k,n(η)〈m+ k|ρ̂0|n+ k〉 . (2.75)

with

Bn+k,n =
√(

n+k
n

)
ηn(1− η)k . (2.76)

The probability of measurement is thus changed in

prηθ (x) = 〈θ, x|ρ̂η|θ, x〉 (2.77)

=

∞∑
m,n=0

∞∑
k=0

Bm+k,m(η)Bn+k,n(η)〈n|θ, x〉〈θ, x|m〉〈m+ k|ρ̂0|n+ k〉 . (2.78)

And we replace the previous projectors Π̂(θ, x) by

Π̂η(θ, x) =
∑
m,n,k

Bm+k,m(η)Bn+k,n(η)〈n|θ, x〉〈θ, x|m〉|n+ k〉〈m+ k| . (2.79)

Extension to two modes The extension to a two-mode state is quite straightforward. The
state being expanded in the Fock bases as

ρ̂ =
∑
ijpq

ρijpq|i〉〈j| ⊗ |p〉〈q| . (2.80)

We should now consider one projector per mode

ρ̂ · (Π̂1 ⊗ Π̂2) =
∑

i,j,p,q,l,n

ρijpqΠjnΠql|i〉〈n| ⊗ |p〉〈l| , (2.81)

Or, if we consider the density matrix elements

ρijkl =
∑
m,n

ρimknΠmjΠnl . (2.82)

2.5 Conclusion

We have seen the two main aspects of measurements in quantum optics. First, it can be
used to prepare, engineer quantum states. In this case, the ability depends on the �non
-classicality� of the used measurements, for this reason we will see in the further chapters
that non-gaussian measurement are of a big importance. Secondly, we have shown a more
basic aspect of the measurement: how to use it to obtain information on a state and more
speci�cally the quantum tomography via homodyne measurements. It is worth noting that,
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each measurement has it own advantages and drawbacks for a given task. In our few ex-
amples, non-gaussian states can be conveniently prepared with non-Gaussian measurements
whereas it is not possible with a homodyne detection. Conversely, a homodyne detection be-
ing a phase sensitive measurement, it allows to fully characterize a state. A photon-counter
does not provide phase information (this is a key point of the work presented in the chapter
7).

All the performed experiments described in this manuscript take advantages of these two
aspects: conditional preparation and characterization.
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3 | Optical Parametric Oscillators

I frequently hear music in the heart of noise.

George Gershwin

Mainly used and known for frequency conversion, the optical parametric oscillators exhibit
nevertheless some fundamental quantum properties and are largely used in quantum optics.
Indeed, they can squeeze the vacuum �uctuations but also produce quantum correlated
beams. Two di�erent types of OPO exist given a non-linear crystal phase matching. The
type-I is the most used whereas the type II OPO is less known. This latter can produce a
two-mode squeezed vacuum (i.e. a source of entangled state) or, with another polarization
basis, two independent squeezed vacuum states.

The study of OPO's quantum properties and their use in various applications has been
an important activity of the Quantum Optics group at Laboratoire Kastler-Brossel, in
continuous-wave (cw) regime and more recently in pulsed regime. The type-II OPO we
use has been previously elaborated during the PhD of Julien Laurat [53]. A second OPO,
with a type-I phase matching, has been built during this PhD work with the same charac-
teristics as the type-II OPO. The initial idea was to make them compatible in order to be
used together in subsequent experiments.

We �rst give a description and a theoretical study of the OPO in cw-regime, operated
below the oscillation threshold. We thus obtain the basic properties that we use afterwards.
Then, we describe the practical implementation and characterizations of the two available
OPOs.

OPOs having being widely studied in many papers and PhD work, the aim of this chapter
is �rst to give the basics of OPO's physics, secondly to emphasize some important points for
our further experiments and �nally to give a description of the setups with the corresponding
results.

3.1 Theory in the continuous-wave regime . . . . . . . . . . . . . . . 48

3.1.1 Single-pass non-linear interaction . . . . . . . . . . . . . . . . . . 48
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3.1 Theory in the continuous-wave regime

3.1.1 Single-pass non-linear interaction

The crystal used in an OPO is a non-linear medium with in particular χ(2) susceptibility.
This can induce some frequency conversion. In our case, a pump photon is divided into two,
a signal and a idler, we talk about down-conversion. Such phenomenon happens only under
two conditions:

ωp = ωs + ωi energy conservation,

npωp ≈ nsωs + niωi momentum conservation.

The second condition is commonly called phase matching. It can be obtained thanks to the
birefringence (di�erent optical indexes for two polarizations) feature of the medium. Hence,
two situations can be considered

• Type-I phase matching : o←→ e+ e
the pump is polarized along the ordinary axis and, signal and idler are on the extraor-
dinary axis. (degenerate in polarization).

• Type-II phase matching : e←→ o+ e
the pump is along the extraordinary axis and, signal and idler on di�erent axis, one
along the ordinary axis the other on the extraordinary axis. It is non-degenerate in
polarization and s and i can be easily separated.

The corpuscular description gives us an easy understanding of the form of the Hamilto-
nian of interaction: for one annihilation of pump photon we create one photon signal and
one photon idler. We add to that the Hermitian conjugate, which actually corresponds to
the opposite process i.e. the up-conversion:

Hint = i
~g
2
â†sâ
†
i âp + h.c. . (3.1)

Under the hypothesis of bright coherent state for the pump beam,|α〉, the Hamiltonian is
rewritten

Hint = i
~κ
2
â†sâ
†
i + h.c. where κ = αg . (3.2)

Therefore, the evolution equation is

i~
d

dt
âl = [Hint, âl] . (3.3)

In the degenerate case âs = âi (that we then write â) we obtain
d

dt
â = −κâ† for which the

solution is
â(t) = â(0) ch(κt)− â†(0) sh(κt) . (3.4)

We then obtain the quadratures, with ζ = κτ where τ is the interaction time with the
non-linear crystal

x̂out = e−ζ x̂in , (3.5)

p̂out = eζ p̂in . (3.6)

from which we deduce a compression factor s = e−2ζ . The e�ect of the non-linear crystal
can also be written as the evolution operator

Ŝ(ζ) = e
ζ
2 (â2−â†2) . (3.7)
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Concerning a type-II phase matching, signal and idler are not degenerate. The interaction
is then given by

Ŝsi(ζ) = e
ζ
2 (âsâi−â†sâ

†
i ) . (3.8)

However, if we rotate the polarization basis i.e. at 45◦ of the ordinary and extraordinary
axis, we obtain the following transformation

âsâi − h.c. −→ 1√
2
2 (â2 + iâ1)(â1 + iâ2)− h.c. = 1

2 i(â
2
1 + â2

2)− h.c. (3.9)

at the end
Ŝsi −→ Ŝ1Ŝ2 . (3.10)

Thus, we have two squeezing operators. Hence, applied to a vacuum state, we obtain two-
mode squeezed vacuum state.

3.1.2 Non-linear crystal in a cavity

The non-linear process is an extremely weak e�ect. To enhance it, two strategies are possible.
The �rst one consists in increasing the pump power, but in that case, the required power is
possible only in the pulsed regime. The other possibility is to increase the interaction time,
not by increasing the size of the crystal (which is not impossible but extremely challenging)
but, by putting the crystal in a cavity. However, in this case the dynamics of the output
state, i.e. the e�ect of the cavity, has to be considered.

The idea is thus to write the di�erent dynamical relationships of the �elds inside the
cavity. First, we denote by T the intensity transmission of the output coupler and L the
intra-cavity losses for the signal and idler �elds that can be considered as coming from a
�ctitious beam-splitter inserted in the cavity. This coe�cient being small, the re�ection in
amplitude is r =

√
1− T ≈ 1− T/2.

Secondly, let's label the di�erent �elds. We use the letter â(t) for the annihilation
operator at time t. We use the indices to de�ne the various �elds: with p for the pump, s
for the signal and i for the idler; sL, iL for the modes coupled to the vacuum by the losses,
and iIn, sIn for the input modes outside of the cavity cf �gure 3.1).

In
Out

TL

i/s

Figure 3.1: Loop of the �elds inside the OPO cavity. L denotes the intra cavity
losses, In the input �elds (a priori vacuum) and Out the output �elds (a priori
squeezed vacuum).

Modes equation round-trip The dynamical relationships can be found by applying the
quantum Langevin equation [26]. Here we use another approach by considering the equations
with one round-trip [53]. The idea is to write the �eld, let say just before the output coupler,
before and after one round-trip. First, we consider a cavity resonant for the two �elds s and
i, therefore, they accumulate a phase-shift of an integer number of 2π after one round-trip.
Secondly, during one round-trip the �eld is re�ected on the output coupler, then submitted
to the non-linear interaction in the crystal (see previous section). Moreover, during one
round-trip the �eld is partly degraded by some losses inside the cavity. Finally, we call τ
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the time for one round-trip and we have also the non-linear gain through the whole crystal
g = 2L · g 1 (L the length of the crystal). We thus have for the signal and idler modes

âs(t+ τ) = (1− T ′/2)
[
âs(t) + gâp(t)â

†
i (t)
]

+
√
LâsL(t) +

√
T âsIn(t) , (3.11)

âi(t+ τ) = (1− T ′/2)
[
âi(t) + gâp(t)â

†
s(t)
]

+
√
LâiL(t) +

√
T âiIn(t) , (3.12)

with the simpli�cation (low transmission and low losses) r · tL = (1 − T/2)(1 − L/2) ≈
1 − T/2 − L/2 = 1 − T ′/2 with T ′ = L + T . The time constant being small, a Taylor
development leads to

τ
dâs
dt

= −T ′/2âs + gâpâ
†
i +
√
LâsL +

√
T âsIn , (3.13)

τ
dâi
dt

= −T ′/2âi + gâpâ
†
s +
√
LâiL +

√
T âiIn . (3.14)

These two equations can be decoupled by the following change of modes â1 = (âs +

âi)/
√

2, â2 = (âs − âi)/
√

2. The loop equations can be rewritten

τ
dâ1

dt
= −T ′/2â1 + gâpâ

†
1 +
√
Lâ1L +

√
T â1In , (3.15)

τ
dâ2

dt
= −T ′/2â2 − gâpâ

†
2 +
√
Lâ2L +

√
T â2In . (3.16)

Hence, we obtain the same equations as two independent type-I OPOs. We note also that
the two �elds �see� the pump with opposite phases, leading to squeezing on orthogonal
quadrature.

Threshold The pump is a bright coherent state, we thus can replace âp by ei(ωpt+φp)|α|.
Hence, the equation shows a threshold, i.e. a value of the pump for which the losses of the
cavity compensate the gain. −T ′/2 + g|α| > 0. We thus de�ne the threshold:

|αth|2 =
(T + L)2

4g2
. (3.17)

In addition to that, if the pump is resonant, it doesn't a�ect the intra-cavity equation
for the down-converted beams, it only changes the relationship between intra and extra-
cavity beam pump and yields to a higher intra-cavity power (compared to the input beam
power). In that case, we have the relation between the intra-cavity pump threshold and the
extra-cavity one (�eld inside a resonant Fabry-Perot cavity)

Pextth =
(Tp + Lp)

2

4Tp
Pintth , (3.18)

with Tp the transmission of the mirror for the pump. The pump enhancement enables to
drastically reduce the threshold. The cavity being also resonant for s and i, we have here a
triply resonant OPO.

If we consider the losses negligible compared to the mirror transmissions, we have the
scaling

Pextth ∝ Tp ·
T 2

L2
. (3.19)

1with a factor 2 for the linear cavity as the e�ective length of the crystal is twice the length of the crystal
L (round-trip of the beam inside the crystal)
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In the following, we will note the pump normalized to the threshold ε = |α|2g/T ′ =√
P/Pth. It can be interpreted as a strength of the pumping.
NB: We will always operate the OPO below threshold. Hence, it is not completely true

to talk about OPO as it is below the oscillation threshold, that is why sometime squeezer
(or two-mode squeezer) is preferred.

Correlation function After few manipulations of the loop equation, one obtains the corre-
lation equations

〈âs/i(t)âi/s(t′)〉 =
λ2 − µ2

4

(
e−µ|t−t

′|

2µ
+
e−λ|t−t

′|

2λ

)
, (3.20)

〈â†s/i(t)âs/i(t
′)〉 =

λ2 − µ2

4

(
e−µ|t−t

′|

2µ
− e−λ|t−t

′|

2λ

)
, (3.21)

〈âs/i(t)âs/i(t′)〉 = 〈â†s/i(t)âi/s(t
′)〉 = 0 . (3.22)

with λ =
T ′

2τ
(1/2 + ε) and µ =

T ′

2τ
(1/2− ε).

3.1.3 Noise spectrum

In order to study the noise spectrum of the OPO output, we do the following linear com-
bination within the rotating frame (aligned on the pump phase) to obtain the quadrature
observables

x̂(t) = (e−i(ω0t+φp/2)â(t) + e+i(ω0t+φp/2)â†(t))σ0 , (3.23)

where ω0 = ωp/2 is the down-converted frequency in the degenerate case. This yields to the
mode loop equations for the quadratures:

τ
dx̂1

dt
= −T ′/2x̂1 + g|α|x̂1 +

√
Lx̂1L +

√
T x̂1In , (3.24)

τ
dp̂1

dt
= −T ′/2p̂2 − g|α|p̂1 +

√
Lp̂1L +

√
T p̂1In . (3.25)

After a Fourier transform, we obtain(
1− τiω

T ′/2

)
x̂1(ω) = g|α|

T ′/2 x̂1(−ω) +
√
L

T ′/2 x̂1L(ω) +
√
T

T ′/2 x̂1In(ω) . (3.26)

By denoting ωc = T ′/(2τ), we �nally obtain:

(1 + ε− iω/ωc) x̂1(ω) =
√
L

T ′/2 x̂1L(ω) +
√
T

T ′/2 x̂1In(ω) . (3.27)

We have a similar equation with the conjugate quadratures by exchanging ε→ −ε.
Moreover, in order to have the output quadrature and to remove the intra-cavity quadra-

ture, we use the relation
x̂1Out =

√
T x̂1 − (1− T/2)x̂1In . (3.28)

Note that here we have a minus sign owing to our previous choice for the other output mirror
equation.

On the other hand, we have a vacuum state on mode 1In and 1L, thus 〈x̂1L(ω)x̂1L(−ω)〉 =
σ2

0 and 〈x̂1In(ω)x̂1In(−ω)〉 = σ2
0 but these two are not correlated 〈x̂1L(ω)x̂1In(−ω)〉 = 0.
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Finally, we obtain the Lorentzian shaped spectral density of noise normalized to the vacuum
noise sx = 〈x̂1Out(ω)x̂1Out(−ω)〉/σ2

0

sx(ω) = 1 + η
4ε

(1− ε)2 + 4(ω/ωc)2
, (3.29)

sp(ω) = 1− η 4ε

(1 + ε)2 + 4(ω/ωc)2
, (3.30)

with η = T/(T+L) the escape e�ciency. This quantity can be interpreted as the conditional
probability that if one photon escapes from the cavity it is by the output coupler T (and not
due to the losses L). More interestingly, this escape e�ciency can be seen as the transmission
of a beam-splitter of losses η right after a perfect OPO (i.e. without internal losses).

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

S
 (

dB
)

P /Pth = "2

Figure 3.2: Squeezing and anti-squeezing versus pump power at zero frequency
for di�erent values of the escape e�ciency (from 0.8 up to 0.96)

Figure 3.2 gives the squeezing and anti-squeezing versus the pump power. Owing to the
logarithmic scale, the anti-squeezing is not very sensitive to the escape e�ciency contrary
to the squeezing (see �gure ). Furthermore, the squeezing doesn't change a lot with a pump
power above 50% of the power threshold when η = 0.8. For high escape e�ciency, the
evolution is more signi�cant.

We can also note that the purity of the state decreases. Indeed, for a Gaussian state
P = 1/

√
s+s−. Hence, with a logarithmic scale the state is pure only if sdB+ = −sdB− .

The maximum of squeezing is reached at the threshold smax− = s−(Ω = 0, ε = 1) = 1−η.
Moreover, as the anti-squeezing diverges to +∞ when the pump power goes to the threshold,
the purity of the state decreases with the pump power.

On �gure 3.3, we illustrate the e�ect of the losses on the squeezing and the anti-squeezing.
Indeed, in addition to the escape e�ciency the subsequent losses (detection for instance)
also contribute to degrade the squeezing level. One interesting limit, that we will highlight
in the Complement, is the -3 dB. If this limit is crossed, we can say that the overall e�ciency
of the setup is greater than 50%.
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Figure 3.3: E�ect of the losses on the squeezing and anti-squeezing in logarithmic
scale the initial squeezing values corresponding to no losses). In red, the in�nite
squeezing.

The question that arises is: how to improve the quality of the state? Concerning the
detection e�ciency, the only trade-o� is on the electronic noise versus the bandwidth of the
homodyne detection as detailed in appendix B. Concerning the OPO, the intra-cavity losses
should be reduced at the minimum. However, as shown �gure 3.4, the transmission of the
output coupler can have a strong e�ect. Basically, if the losses are small compared to the
transmission of the output coupler, the escape e�ciency is high.
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3.2 Experimental realizations

The two OPOs we are going to describe are identical, only the type of crystal di�ers leading
to type I and type II phase matching. They are both operated below threshold.

3.2.1 Global setup

The OPO is made of a semi-monolithic cavity. One face of the crystal is used as a mirror
of the cavity by directly coating it. This geometry has the advantage to reduce the number
of interfaces and thus the intra-cavity losses. Additionally, it reduces the number of optical
elements, and thus increases the overall stability of the setup. It is pumped by a 532 nm
frequency doubled Nd:YAG laser (doubling crystal LiNbO3)

2.

Let us start by the optical description of the OPO (see �gure 3.5). The KTP and ppKTP
crystals are from the company Raicol, the coatings on the crystal have been made by the
company Layertech. One face (input ot the OPO) has a high-re�ection at 1064 nm for both
polarizations and 5% transmission at 532 nm. The other face (in the middle of the OPO)
has a double anti-re�ection coating for 532 nm and both polarizations at 1064 nm (DBAR).

As stated before, the intra-cavity losses are extremely important. The �gure 3.4 shows
that these losses have strong e�ect on the escape e�ciency η = T/(T +L) with L the intra-
cavity losses and T the output coupler transmission. For instance, with T = 10% only 0.5%
of losses yields to 5% of losses. Here, HR, AR coatings and absorption at 1064 nm contribute
to the intra-cavity losses. The output coupler has a high-re�ection (HR) coating at 532 nm
and 10% transmission at 1064 nm. Note that this value is a good trade-o� between a high
escape e�ciency, a not too large bandwidth, and a reasonable threshold.

DBAR
@1064
@532

HR @1064
T=5% @532

T=5% @1064
HR @532

Type-II : 3x3x10 KTP
Type-I : 1x2x10 ppKTP

ROC=-38

w0 (@1064) ≈ 60 µm
w0 (@532) ≈ 40 µm

Figure 3.5: Optical description of the OPO.

The length of the cavity is locked by a PZT on which the output coupler is mounted by
using the Pound-Drever-Hall technique. We use a Faraday isolator to get back the re�ection
of the pump beam that is re�ected on the input mirror of the OPO (and also to protect the
laser from back re�ections). The Diabolo laser beam is phase modulated at 12 MHz. The
re�ected beam measured by a photodiode and demodulated at 12 MHz, the resulting signal
is then used as an error signal in a proportional-integrate circuit. The output is then sent
to a high voltage ampli�er to set the PZT position. (For a detailed description see [53]).

The temperature of the crystal is controlled and stabilized with a PID locking. This one
heats up or cools down a copper oven via of a Peltier element. The temperature is measured
by a thermistor close to the crystal inserted into the oven (see �gure 3.6).

2Diabolo Laser from Innolight. The useful feature of this laser is its second output: a part of the 1064
nm beam used to pump the doubling cavity is directly accessible. This beam is therefore perfectly coherent
with the output state of the OPO.
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Output mirror 

Copper oven 

Peltier 

crystal 

Piezoelectric stack 

Collimating lens 

thermistor 

Temperature 
controller 

Figure 3.6: OPO layout. The non-linear crystal is inserted in a oven made of
copper. The temperature is controlled thanks a thermistor feedback to a Peltier
element. The output mirror is handled in a plastic mount glued on a piezo itself
placed in a high stability mirror mount. A lens is placed right after in order to
collimate the beam to a size of almost 1 mm.

3.2.2 Crystal phase-matching

Being in a semi-monolithic con�guration, it is not possible to use the tilt of the crystal
to adjust the phase-matching. The crystal should be directly cut with the good phase-
matching angle. As described in [53], this angle is extremely precise. Nevertheless, it is
possible to correct it by ajusting the cutting angle. A �rst measurement of phase-matching
versus temperature via up-conversion gives us the actual phase-matching temperature. As
shown on �gure 3.7, if we pump the crystal with a 1064 beam, we obtain a 532 nm beam
by up-conversion (second harmonic generation). When we vary the temperature, the phase-
matching condition varies and, as a consequence, the power of the 532 nm emitted light
changes. This temperature will be of course the same for the down-conversion. By knowing
the value of the temperature of phase-matching, we can compute how much the cutting
angle of the crystal should be corrected in order to shift this temperature to the desired one.
In practice, the targeted temperature is around 25◦C. Indeed, a temperature close to the
room temperature enables a better thermal stability.

3.2.3 Type-II OPO

Triply resonant OPO The triple resonance is probably the main di�culty of the setup.
Our cavity is necessary resonant for the signal and idler, but the resonance for the pump
o�ers two advantages. First, this yields to a lower threshold. Secondly, we can use the pump
to lock the cavity, otherwise it would be necessary to use an infrared beam. The OPO has
one geometric length but three optical lengths (for the pump, the signal and the idler). To
be resonant, each length should be an integer number of the corresponding wavelength. We
thus need at least three degrees of freedom. Here we use the geometric size of the cavity (via
a PZT), the relative change of index induced by the crystal temperature and the wavelength



56 3.2. EXPERIMENTAL REALIZATIONS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 15 20 25 30 35 40 45

P
o

w
e

r 
(V

 p
h

o
to

d
io

d
e

) 

T(°C) 

1001 : Raicol HGTR 11221001 

0

0.5

1

1.5

2

2.5

3

20 25 30 35 40 45

P
o

w
e
r 

(V
 p

h
o

to
d

io
d

e
) 

T(°C) 

1015 :  Raicol ppktp 7 112104884  

Figure 3.7: Up-conversion from 1064 nm versus temperature (in normal inci-
dence). The range of temperature for phase-matching is broader for the type-II
than the type-I. The substructure we can observe is due the re�ection on the non-
coated surfaces (e�ect of cavity, when at least one of the face is AR coated the
substructures vanish. These measurements have been performed on crystals before
coatings.)

of the pump laser. Note that being a semi-monolithic cavity, there is no degree of freedom
on the angle of the crystal, all the beams are necessarily with a normal incidence. Thus,
as demonstrated in [53], there is not anymore degree of freedom, and the triple resonance
condition is unique.

To �nd the good settings of the triple resonance condition, a seed is impinged on the OPO
for both polarizations 45◦ and separated at the output with a polarizing beam-splitter. The
cavity is then swept in order to see the di�erent peaks of resonance for the pump and the two
infrared lights. The goal is then to adjust these three optical lengths in order to superpose
the three resonances. Practically, the temperature of the OPO changes di�erently the indices
of the two polarizations (one changes faster than the other one) whereas the temperature of
the laser changes the two indices in the same way. We �rst adjust the temperature of the
laser to superpose the pump and the �slow� polarization and then, adjust the temperature of
the OPO to superpose the �fast� polarization. Of course, these two steps should be iterated
few times in order to converge to the good settings. However, if it is not possible to �nd some
stable settings we can use another input on the crystal. Indeed, the small heterogeneity of
the crystal leads to speci�c parameters for each position.

Measured output state Depending on the chosen polarization basis, the output state has
di�erent properties. In the basis of the crystal axis we have an EPR state. This state being
entangled, the relevant properties are obtained when the two modes are measured together.
When the polarization basis is rotated at 45◦, the output state is a squeezed vacuum state
on each polarization. The state being separable, we can focus on only one.

In both cases, we didn't try to perform the best measurement in terms of noise reduction.
Indeed, this is possible only close to the threshold. But the KTP crystal su�ers of gray
tracking for high pump power. So, to preserve the performance of the crystal, we didn't try
to see the highest level of squeezing. In addition to that, the triply resonance condition is
not often easy to �nd.

With a 5% transmission output coupler the threshold is around 20 mW, so we expect
that for a 10% transmission output coupler it would be around 80 mW. Again, since we use
a new crystal, we never operate the OPO with high pump power in order to avoid any gray
tracking.
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Besides, this OPO has been fully characterized in [53]. To sum up the di�erent results: 9.7
dB of noise compression on the intensity di�erence has been obtained above threshold (10%
transmission output coupler), and two squeezed vacuum states at -5 dB have been obtained
below threshold (5% transmission output coupler). Note that the homodyne detection has
also been largely improved since this time. Hence, we could expect higher performances
now.

3.2.4 Type-I OPO

Resonance The settings for the resonance are easier to tune than for the type-II OPO
as the cavity is only doubly resonant (s and i are degenerate in polarization). We simply
optimize the value of the squeezing by changing the temperature of the crystal.

Phase noise Beyond a certain level of squeezing the e�ect of phase noise is not at all
negligible. Indeed, the state is more phase sensitive. Although we discuss this in the type-I
OPO section, it is of course an issue for the type-II OPO too. However, it is one of the
main possible limitation of our type-I OPO. For instance, for the type-II OPO, the triple
resonnance tunning is a limitation that the type-I doesn't have.

Depending on the physical phenomenon at the origin of the phase noise, the way to
model it can be very di�erent. In all the cases, the measured state is a statistical mixture of
the same squeezed vacuum state but with di�erent phases. If this di�erent phases follow a

distribution f(θ), the state can be written as ρ̂f =

∫
dθf(θ)ρ̂θ with ρ̂θ a squeezed vacuum

state rotated by an angle θ. The measured squeezing is thus sf =

∫
dθf(θ)s(θ) with

s(θ) = sx sin2 θ + sp cos2 θ.
On �gure 3.8, we compare two types of distribution: a square distribution3 and a Gaus-

sian distributions4 which can correspond to a Brownian motion. In both, for small values
of squeezing up to -5 dB typically the e�ect is not really important, but for high values
the squeezing is degraded extremely fast.5 The e�ect is extremely close as for the Gaussian
distribution with δθ = σθ (the two models become di�erent for higher amplitude of noise).

In our experiment, we did not try to measure the phase noise precisely. The idea was
mainly to �nd a way to �diagnose� the possible sources of noise and afterwards to �x them.
We do not detail what we did here but explain the general idea.

A phase �uctuation cannot be measured directly with a photodetector. Hence, we need
some interference to �translate� the phase �uctuations into amplitude �uctuations. First,
we have looked at the interferences between the local oscillator and the seed (infrared beam

3

s′x(δθ) =
(2δθ + sin(2δθ))sx + (2δθ − sin(2δθ))sy

4δθ
(3.31)

4

s′x(σθ) =
(1 + e−2σ2

θ )sx + (1− e−2σ2
θ )sy

2
(3.32)

5The case of a harmonic noise is more delicate to treat. The phase oscillates between −δθ and δθ, but the
measurement is random in time. Thus the distribution in this case is f(θ) = 1/π

√
δθ2 − θ2. It is obvious

that the calculation will be more di�cult... However, we can assume the diverging part with Dirac function
i.e. f(θ) = (δ(θ − δθ) + δ(θ + δθ))/2 we obtain in that case

s(δθ) = sx sin2 δθ + sp cos2 δθ (3.33)
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Figure 3.8: E�ect of phase noise on the measured level of squeezing. Evolution
of the squeezing versus the amplitude of noise. (a) for a square distribution of 2δθ
large. (b) for a normal distribution with σθ standard deviation. For a large value
of squeezing the state is extremely sensitive to the noise. Moreover, these curves
only consider pure states.

injected in the OPO). Of course, some noises can come from the upstream of the seed,
and in that case, this noise is not present in our measurement. However, this technique
shows at least the noise on our measurement. As we can see on �gure 3.9 (a), the Fourier
transform of the interference signal contains interesting information. We have some broad
peaks at 15 Hz and one at 130 Hz. The �rst one is not obvious to discuss because not
always reproducible. The second one, well de�ned, is attributed to mechanical vibrations
but its source is unknown. We have checked individually each beam to make sure they do
not already contain any amplitude noise.

In order to remove the broad peaks, we have adjusted the air pressure of the optical table
by taking into account the weight of the elements on it (laser, mounts, ...). This procedure
strongly reduced the peaks and, after that, only the 50 Hz and harmonics peaks remained.
In conclusion, we can suspect that this noise was induced by coupling to the �oor and not
by acoustic in the air (at least in a quiet room).

Thereafter, we have suspected that the remaining noise was linked the pump light. This
was all the more con�rmed given the fact that without locking and with the pump (i.e. only
maintained the resonance by hand) the 50 Hz and harmonics noise disappear. Therefore, we
have also checked this possibility of phase noise on the pump. For this purpose, we use the
parametric gain on the seed. Indeed, the ampli�cation/desampli�cation is a function of the
relative phase between the pump and the seed. Once again, we observed the same peaks.

At the end, it turns out that this noise came from the laser. Indeed, when the doubling
cavity is not precisely locked on the top of the transmission peaks, we can observe a 50
Hz pattern �uctuations on the light. When locked on the side, we con�rmed that the
amplitude is stronger. It seems intrinsic to the electronics of the locking of the doubling
cavity. Actually, we have observed the same kind of noise with another Diabolo laser.

Eventually, a better setting of the optical table air pressure and a better locking of the
laser, as we can see on �gure 3.9 (b), have led to a reduction of all the peaks. Although the
obtained quantitative values are not obvious to compare, if we use the background noise as
reference we clearly see the improvement.
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f (Hz) f (Hz)

(a) (b)

Figure 3.9: Phase noise analysis: Fourier transform of the interferences between
the seed and the local oscillator. (a) First measurement. We can see mainly 3
peaks. One is broad and attributed to mechanical vibrations/relaxations. The two
others are extremely narrow (pure sine) one at 50 Hz and the other one at 150 Hz
and we can distinguish some others odd harmonics. These peaks are attributed to
the electronics. (b) After improvements. The peaks do not completely disappear,
but their amplitudes, compared to the background, have been strongly reduced
(the scale is divided by 10).

Nevertheless, it remains not completely clear whether the induced noise was in ampli-
tude only or also in phase and how did it a�ect the locking of the OPO. Anyway, as the
problem was �xed, and not very important for the next experiments, we didn't do further
investigations.
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the shot noise (i.e. S(ω)/SN(ω)).
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Squeezing measurements On �gure 3.10, we show the measured squeezing and anti-
squeezing for di�erent values of pump power. We also add the theoretical curves and
optimized the di�erent parameters: global e�ciency of η = 91% and ωc=65 MHz. We
can note that close to the threshold, the theory does not �t as well as for lower pump power.
Moreover the �tting is not perfect because these curves have been obtained �hand-made�,
i.e. there is no locking.
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Figure 3.11: Arches of squeezing. The various parameters are: the pump power
P= 40 mW for a threshold Pth = 50 mW, with a visibility 99% for the homodyne
detection. The spectrum analyser parameters are RBW= 300 kHz, VBW = 3 kHz,
F=4 MHz.

The best measurement of squeezing is reported on �gure 3.11 and shows a value as high
as 10.5 dB which means a global losses (OPO, propagation, detection) below 10%. We can
roughly estimate the di�erent losses: the visibility squared is V 2 = 99%, the photodiode of
the homodyne detection ηpd = 97%, the electronic noise ηe = 99% and the propagation (i.e.
non perfect AR coating of the various optics on the path) ηprop = 99%. All of this yields to
a detection e�ciency of 93%, hence we estimate the squeezing at the output of the OPO to
be -16.5 dB.

3.3 Conclusion

In this chapter, we have described the starting point of all the later experiments: the optical
parametric oscillators. Two types of OPO have been studied: a type-I phase matched OPO
with a ppKTP crystal in a doubly resonant cavity and a type-II phase matched OPO with
a KTP crystal in a triply resonant cavity. The type-II OPO has been widely studied during
the previous PhD works, and has shown some good performances. The type-I OPO being
new, it has been more investigated. This latter has shown comparable good performances
according to the di�erent enhancements performed on the homodyne detection.

In practice, the semi-monolithic architecture for a type-II OPO has some advantages
but also some drawbacks. It is easy to align and optically very stable. It also minimize
the intra-cavity losses which leads to a very good �quality� of the output state. However,
this has a �price�. Indeed, the triple resonance condition can be sometimes very di�cult to
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achieve. Moreover, these parameters have to be adjusted when the level of the pump power
is changed. On the other hand, it seems quite impossible to build a second type-II OPO
which would work with exactly the same parameters, it would require a perfectly identical
crystal. However, these possible drawbacks have to be balanced by the fact that a type-II
OPO is actually equivalent to two perfect copies of a type-I OPO, i.e. with the same level
of squeezing, perfectly mode-matched output, spectrally matched and phase locked, which
seems experimentally more challenging.

With the type-I OPO, we have shown high squeezing value measurements, con�rming
the high e�ciency of the overall setup (up to 90%). At this level, the limitation does not
only come from the optical losses but also from the phase noise. The remaining losses are
almost half from the escape e�ciency, and the other half from the detection, in particular
the photodiode e�ciency and the mode matching.

To go further in termes of performances, the �rst possible solution would be to shorten the
crystal to reduce the absorption losses. Of course, this will lead to a signi�cant enhancement
only if the absorption is the main contribution of the intra cavity losses. Indeed, there is not
enough precise measurement concerning the coatings to know its contribution in the intra-
cavity losses. Actually, all the possible improvements will need optical characterizations
improved by one order of magnitude better compared to what we can do with standard
optics.
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4 | Generation of Heralded Single-Photon

I think there's a great beauty to having problems.
That's one of the ways we learn.

Herbie Hancock

The single photon was at the origin of the quantum theory. It has been used to illustrate
many thought experiments. In particular, it highlights the wave-particle duality of light.
Being an extremely simple state, it has also been used as a basic element in many di�er-
ent protocols of quantum information. Nowadays, the reliable generation of single-photon
states is a central resource for the development of quantum information sciences and tech-
nologies, including quantum communication and computing [10, 103]. For instance, since
the seminal proposal by Knill, La�amme and Milburn [47], single-photons are indeed at the
heart of linear-optical quantum computation (LOQC) [48]; it is a key element of discrete
variable quantum information. Practical implementations however require to generate such
states with a low admixture of vacuum as e�cient LOQC protocols are constrained by loss
thresholds [114]. Indeed, losses induce some errors but this can be compensated with quan-
tum error correction algorithms. Nevertheless, these algorithms are e�cient up to a certain
level of losses. For instance, the best known �gure to date, which applies to cluster state
computation, is a 1/2 overall loss tolerance [30], i.e. the product of the source �delity and
detector e�ciency has to be above this value. This constraint puts a challenging demand on
single-photon generation. Additionally, linear-optical processing cannot increase the �delity
of the state, even with multiple imperfect sources [6]. Moreover, gates implementation re-
quires to make single-photons interfere with a high visibility and thus to be emitted into a
well-controlled spatio-temporal mode.

This experiment is the �rst milestone of this PhD thesis work [74]. This is the simplest
conditional preparation: the state is phase invariant, the losses are easy to estimate, the
di�erent defects are simple to model and understand.

This chapter is divided into three parts. In the �rst one, we describe the principle of the
experiment and derive di�erent models taking into account the realistic aspects of the ex-
periment. Then, we describe the experimental setup and we �nally present the experimental
results.
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4.1 Principle of the experiment and models

The generation technique consists in using photon pairs emitted in two distinct modes: the
detection of a single-photon on one mode heralds the preparation of a single-photon into
the other one [40]. This conditional preparation technique has been widely used so far with
a variety of physical systems, including atomic cascade, atomic ensemble [52] and pulsed
single-pass parametric down-conversion (PDC) [64, 123, 88, 42]. More recently, continuous-
wave OPOs, where PDC occurs in cavity, have also been considered for this purpose [82].

In this latter case, two methods can be used to obtain the two distinct modes. The �rst
one is based on tapping a very small fraction of a squeezed vacuum [118], leading intrinsically
to a low count rate. The other method consists in using non-degenerate modes emitted into
the same spatial mode of the OPO cavity. Using a type-I non-linear interaction, signal and
idler have the same polarization: the only degree of freedom is thus the frequency. The
two correlated modes can be then two modes with frequencies separated by multiples of
the cavity free spectral range, as demonstrated in [79]. However, this con�guration requires
for the homodyne tomography to use local oscillators with shifted frequencies. Here we
use another possibility with a type-II interaction: the frequency-degenerate signal and idler
modes have orthogonal polarizations and can be easily separated. This con�guration has
been commonly used with pulsed system in single-pass OPA, however this is the �rst time
that it is used with a cavity.

4.1.1 Basic scheme

We use here a strategy of conditional preparation. The generation of the state is probabilistic
but heralded. The output state of the type-II OPO is described by1

|ψsq〉ab = (1− λ2)1/2
∞∑
n=0

λn|n〉a|n〉b , (4.1)

where a and b denote the two correlated modes. These modes have orthogonal polarizations
at the output of the OPO and become two di�erent spatial modes after a polarizing beam-
splitter.

From this expression, one can see immediately that any photon-number measurement
|n〉〈n| on one mode will project the other mode onto the corresponding Fock state |n〉.
Therefore, one beam is send to a single-photon detector |1〉〈1|. Each detection event heralds
the preparation of a single-photon on the other mode. The generated state is then char-
acterized by quantum state tomography (Chap. 2) with quadrature measurements, which
provide a marginal distribution

P(x) = Tr[ρ̂cond|x〉〈x|] . (4.2)

With this distribution we can reconstruct the state ρ̂cond. The prepared state being phase
invariant one can notice that this distribution will be the same whatever the phase of the
measured quadrature.

4.1.2 Model of the experiment

Unfortunately, many experimental defects exist and can �damage� the state. We can divide
the experiment defects into three parts

• the conditioning path,

1with σ2
x/σ0 = s = (1− λ)/(1 + λ) the squeezing factor cf. section 1.4.3
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• the state of the OPO output,

• the characterization.

In the following, we are going to consider the defects of each part more or less inde-
pendently, in order to estimate the importance of each of them. In other words, the goal
is not to give a precise and exhaustive model of this experiment but more a study of the
�symptomatic� e�ects of the di�erent parts. For this purpose, we are going to use the POVM
formalism (cf Chap 2) where the conditional preparation is written2

ρ̂cond,b = Tra/a,b[Π̂aρ̂ab] , (4.3)

Otherwise, we use the equation (2.13)3:

Wρ̂cond,b =

∫
a/a,b

WΠ̂a
Wρ̂ab , (4.4)

when using the Wigner function formalism. Ideally, the POVM element of the detector is
Π̂on = |1〉〈1|. We �rst study the e�ect of the detector when considering di�erent models
described in section 2.2, then the e�ect of the output state of the OPO and �nally the
characterization of the state.

Perfect, non-resolved photon detector We �rst consider a photon detector which cannot
resolve the number of photons but with a perfect quantum e�ciency and without noise. The
POVM element corresponding to a detection event is

Π̂on =

∞∑
k=1

|k〉〈k| . (4.5)

The resulting conditional state is

ρ̂cond = (1− λ2)

∞∑
k=1

λ2(k−1)|k〉〈k| . (4.6)

Being not photon-number resolved, the detector not only heralds a single-photon state but
also higher Fock states. Nevertheless, the contribution of the higher photon-number depends
on the level of the squeezing parameter λ of the EPR state. This latter can be expressed as

a function of the squeezing with the relation λ =
1− s
1 + s

. We can see on �gure 4.1 that only

for a low squeezing the p2 and upper photon number are small. For instance, with a relative
pump of at 10%, we have 4% of |2〉〈2| with a perfect detector and if the e�ciency is as low
as 1% the two-photon component is equal to 8%.

2we remind that we use a condensed notation of

ρ̂cond,b = Tra[Π̂a ⊗ 1bρ̂ab]/Tra,b[Π̂a ⊗ 1bρ̂ab]

3again, we use a condensed notation of

Wρ̂cond,b (xb, pb) =

∫∫
R2 dxadpaWΠ̂a

(xa, pa)Wρ̂ab (xa, pa, xb, pb)∫∫∫∫
R4 dxadpadxbdpbWΠ̂a

(xa, pa)Wρ̂ab (xa, pa, xb, pb)
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Figure 4.1: Photon number probability of the conditional state ρ̂cond (p1 on the
left scale, p2, p3 on the right scale) as a function of the squeezing of the input
state on the left and as a function of the pump power on the right. These plots
are done for di�erent levels of detector e�ciency. The e�ect of the non-resolution
of the photon detector is already strong for a small pump.

Lossy non-resolved photon detector Of course, our detector is not perfect and at our
wavelength (1064 nm) the quantum e�ciency is probably the main weakness of nowadays
single-photon detectors. It is important to remark that the losses we consider here can also
include the propagation losses within the conditioning path. The POVM element in this
case is given by:

Π̂on =

∞∑
k=1

[1− (1− η)k]|k〉〈k| , (4.7)

with η the overall e�ciency of the detector.
If the e�ciency of the detector decreases, it becomes less sensitive to low-photon numbers:

a part of the high-photon numbers survives through the lossy path more often than the low
photon numbers. Thereby, the contribution of higher-photon numbers is even bigger as the
e�ciency of the conditioning path is low. The conditional state becomes

ρ̂cond = (1− λ2)
1− λ2(1− η)

η

∞∑
k=1

λ2(k−1)[1− (1− η)k]|k〉〈k| . (4.8)

We show on �gure 4.1 the photon number probabilities for di�erent e�ciencies. Moreover,
the level of squeezing is not always accessible experimentally, so it is also interesting to
consider the pump level. We use the equation (3.30) and, for simplicity, only consider
squeezing value at zero frequency

s− = 1− 4ε

(1 + ε)2
, (4.9)

which is a function of the power normalized to the threshold ε2 = P/Pth. This way, we
have roughly the dependency of the state with the pump power. We do not consider here
the e�ect of the imperfection of the OPO (i.e. escape e�ciency).

Noisy photon detector In contrast to the e�ect of the e�ciency, the e�ect of the noise is
probably more intuitive. If the �click� of the detector comes from the noise, the heralded
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state is the partial trace of the EPR state (a thermal state): if the click comes from a �true�
detected photon(s) the state is the one corresponding to the previous case (lossy detector
without noise). These two di�erent clicks being not coherent, the resulting state is a mixed
state weighted by the statistics of the di�erent clicks

ρ̂′cond =
Nsig −Ndk

Nsig
ρ̂cond +

Ndk
Nsig

Tra[ρ̂abEPR] , (4.10)

where Ndk is the dark count rate, i.e. the rate of clicks when no beam is send to the detector,
and Nsig the count rate from the detection events, i.e. the rate of clicks when the experiment
is running (so, it includes the dark count events).

The POVM element of the noisy detector (noted as a function of ν) is (see section 2.2.3
for details)

Π̂on(ν) =

∞∑
k=0

[1− e−ν(1− η)k]|k〉〈k|. (4.11)

The relationship between the noise ν and the experimental parameters is a priori not straight-
forward. We should actually rewrite this POVM element as a function of Π̂on(0) the POVM
element without noise

Π̂on(ν) = 1− e−νΠ̂o�(0)

= 1− e−ν1+ e−ν1− e−νΠ̂o�(0)

= (1− e−ν)1+ e−νΠ̂on(0) .

(4.12)

The conditional state is thus

ρ̂′cond =
e−ν ρ̂cond + (1− e−ν) Tra[ρ̂abEPR]

e−ν 1−λ2(1−η)
ηλ2 + 1− e−ν

. (4.13)

We can then identify 1− e−ν = Ndk/Nsig which, for a small noise, gives ν ≈ Ndk/Nsig.
It is obvious to say that the noise should be as low as possible, but for a given dark count

rate, it is not possible to say if the detector is good or not as it should be compared to the
count rate of �true� events, which also depends on the e�ciency of the detector.

Lossy OPO To study the e�ect of the output state of the OPO on the �nal heralded state,
we are going to use the formalism of the Wigner function. It will be easier for this calcu-
lation, but also because the output of an OPO being a Gaussian state, we experimentally
characterize it by measuring its covariance matrix. Moreover, we will assume that the OPO
losses are the same for both modes.

A non-pure EPR state can be written as a mixing of two non-pure squeezed vacuum
(that we assume identical) on a 50:50 beam-splitter
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We reorganize the terms in the exponential to directly apply the Gaussian integral formula4

WEPR =
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(2πσxσp)2
exp
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First, we consider that the photon-detector is not photon-number resolved but with a
perfect e�ciency η = 1. The Wigner function associated with its POVM element is

WΠ̂on
= W1 −W|0〉〈0| =

1

2πσ2
0

(
1

2
− e−(x2+p2)/2σ2

0

)
. (4.16)

Hence, we obtain∫
b
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. (4.17)

After normalization and simpli�cation, we obtain the value at the origin of the phase space
(2πσ2

0W = W )

W ρ̂cond(0, 0) = −
s−1

+ + s−1
− − 2

s+ + s− − 2
· 2 + s+ + s−

2 + s−1
+ + s−1

−
· 2

s+ + s−
. (4.18)

The �rst two terms limit the negativity as the EPR state is not pure (i.e. when s+s− > 1)
while the third one translates the fact that the detector is not photon-number resolved and
limits the negativity even if the EPR state is pure.

We now consider the complete model of the photon detector including the e�ciency η
and the noise ν. We use the equation (2.21)

WΠ̂on
= W1 −WΠ̂o�

=
1

2πσ2
0

(
1

2
− e−ν

2− η
e−(x2+p2)/2σ2

η

)
, (4.19)

with σ2
η =

2− η
η

σ2
0 . Compared to the previous case, the derivation is slightly modi�ed: we

change the weighting of Π̂o� and the standard deviation of the Gaussian function∫
b
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After normalization of the state and simpli�cations, we obtain5

W ρ̂cond(0, 0) = −
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. (4.23)

5an alternative writing can be the following∫
b
WEPRWΠ̂on

=
1

2πσ2
0

[
1

2

1

π(σ2
x + σ2

p)
exp

(
−
x2 + p2

σ2
x + σ2

p

)

−
e−ν

2− η
1

π(σ2
x + σ2

p + 2
σ2
xσ

2
p

2σ2
η

)
exp

(
−(x2 + p2)

1 + (σ2
p + σ2

x)/2σ2
η

σ2
x + σ2

p + 2σ2
xσ

2
p/2σ

2
η

)
�thermal� standard deviation σ2

th =
σ2
x + σ2

p

2

negativity standard deviation σ2
n =

σ2
th + σ2

xσ
2
p/σ

2
η

1 + σ2
th/σ

2
η



CHAPTER 4. GENERATION OF HERALDED SINGLE-PHOTON 69

Lossy homodyne detection This loss leads to a more complex model (analytically speak-
ing) but actually, it can be included in the losses of the OPO. Indeed, as depicted on �gure
4.2, we can model the di�erent losses with �ctitious beam-splitters. ηOPO for the OPO
(equal to the escape e�ciency), ηPD the e�ciency of the single-photon detector and ηHD
the e�ciency of the homodyne detection. If ηPD < ηHD we can decompose the e�ciency of
the photon detector into two factors, with one equal to the homodyne detection e�ciency i.e.
ηPD = η′PD · ηHD. Therefore, we can �move� back the two beam-splitters of e�ciency ηHD
before the PBS and add these two to the e�ciency of the OPO i.e. η′OPO = ηOPO ·ηHD. This
way we show that the situation is analytically equivalent to the case of a perfect homodyne
detection. The only assumption ηPD < ηHD is, in practice, always satis�ed.

OPO �/2

PBS
HD

�������

���

OPO �/2

PBS
HD

����′

��� ’

=

Figure 4.2: Loss model of the experiment. We consider a perfect OPO, single-
photon detector,(PD) and homodyne detection (HD). The limited e�ciency of
each is modeled by �ctitious beam-splitters. Because the losses of the conditioning
part are higher than the homodyne detection, we can consider a model (to simplify
the calculation) where only the OPO and the conditioning path are not perfect.

Conclusion We can conclude by summing up the important points. First, we should work
at a very low pump level for two reasons: to avoid the multi-photon components (owing to
the detector that cannot resolve the number of photons) and the purity of the EPR state that
decreases as the pump increases (this would make an admixture of vacuum). However, the
pump level cannot be too low, otherwise the count rate would be small and the dark count
of the detector would have a non-negligible e�ect (also an admixture of vacuum). Secondly,
the losses of the conditional state from the OPO to the homodyne detection should be as
low as possible, the �delity of the state being extremely sensitive to these losses.

4.2 Experimental setup

The experimental setup is sketched on �gure 4.3. Only the important elements are repre-
sented, we omit wave-plates, beam-splitters, mirrors, lenses, etc. The laser has two outputs.
One at 532 nm pumps the type-II OPO. The two modes of the EPR state from the OPO
are separated via a polarizing beam-splitter. One mode is sent through the conditioning
path. In this part, the correlated photon is selected by a two-stage optical �ltering and then
detected by a superconducting single-photon detector (SSPD). Each detection event heralds
the preparation of a single-photon state which is afterwards characterized by quantum state
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normalized with ∫
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tomography with the help of a homodyne detection. The second output of the laser provides
the local oscillator (at 1064 nm). All the measurements are then acquired and processed by
an oscilloscope/computer.

Figure 4.3: General picture of the experiment. A 532 nm beam from a Diabolo
Laser pumps a type II OPO. The generated EPR state is separated by a polarizing
beam-splitter. One polarization is sent through a �ltering stage made of an inter-
ferential �lter (IF) and a Fabry-Pérot cavity (FP) and then to a superconducting
single-photon detector. The resulting state, on the other beam, is then charac-
terized by homodyne measurement: for each detection event on the SSPD the
homodyne signal is recorded by an oscilloscope. This signal is then post-processed
to reconstruct the state.

4.2.1 Type-II OPO

The OPO we use has been already described in the Chapter 3, we remind the main char-
acteristics of this OPO. The pump is at 532 nm and the OPO, degenerate in frequency,
gives an output at 1064 nm. As seen in the modeling (cf previous section) the OPO should
be operated at low pump power for two main reasons. First, to reduce the multi-photon
components due to the non-resolution in photon of the detector. Secondly, to increase the
purity of the output state. Here, for a mirror with 10% of transmission, the threshold is
around 80 mW of pump power. In order to have a reasonable count rate, we use a pump
power of 1 mW.

The separation of the two polarization-modes can be monitored by injecting a seed beam
(1064 nm) into the OPO. When the length of the cavity is swept and the OPO set out of
the triple resonance condition, the peaks of transmission of each polarization appear for
di�erent cavity lengths. We can thus easily separate with precision the two modes.

4.2.2 Conditioning path

One point that we have not consider hitherto is the fact that the parametric down conversion
process occurs over a wide range of the spectrum, especially for a KTP crystal with type-II
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phase-matching. The down-conversion process converts a pump-photon into two photons at
two frequencies ω0 − ν and ω0 + ν (following the energy conservation rule with the pump
frequency ωp = 2ω0). In our case, we want to herald a photon at ω0 by detecting a photon
at the same frequency. The cavity of the OPO acts as a �lter and allows only some speci�c
frequencies ω0 ± p∆ separated by the free spectral range of the cavity ∆ (and p ∈ N). The
phase-matching being broader than the free spectral range of the cavity, many other modes,
not only the degenerate pairs of frequencies, are emitted at the output of the OPO. In order
to make sure that the detected photon comes from the degenerate frequencies, it is thus
necessary to eliminate all the other frequencies.

Filtering The chosen method uses a two-stage of �ltering. The strategy is depicted on
Figure 4.4. The �rst stage is an interferential �lter (from Barr Associates) with a bandwidth
equal to 0.5 nm and a transmission of 80% at 1064 nm and 8.10−6 outside of the transmission
band. A large part of the unwanted frequencies are removed. With a free spectral range
of 4.3 GHz for the OPO, around 60 non-degenerate peaks remain. The second stage is a
homemade Fabry-Perot cavity. In order to eliminate the remaining frequencies, the free
spectral range should be larger than the bandwidth of the interference �lter. We need a
cavity with a free spectral range at least twice the bandwidth of the �lter: this constraint
leads to a maximal value of the cavity length 2.FSRcav = 265 GHz = c/L > BWfilter

→ L/2 < 0.5 mm (with L/2 the size of the cavity, the optical length L being two times this
value). Experimentally, we have measured a free spectral range of 330 GHz and a length of
0.45 mm (more details in Appendix.C). We thus call it µCavity in the next. Moreover, the
bandwidth of the cavity should be broader than the one of the OPO cavity to transmit the
entire degenerate mode to the single-photon detector (for instance, 4 times broader), but of
course, small compared to the free spectral range of the OPO cavity. FSROPO � ∆cav >
4∆OPO with ∆cav = FSRcav · T/π and T the sum of the transmission T = T1 + T2. We
obtain 10%� T > 0.6%. Finally, the re�ection should be high enough to strongly reject the
other frequencies, so we choose two mirrors with T = 0.3% which gives a cavity bandwidth
of 320 MHz.

OPO
Fabry-Perot

Interferential Filter

370GHz4GHz

350MHz

60MHz

0.5nm =130GHz

Figure 4.4: Conditioning path. The frequency-degenerate mode is selected by two
�ltering stages, �rst a narrow interferential �lter then a Fabry-Perot cavity with
a bandwidth broader than the OPO cavity bandwidth and a free spectral range
bigger than the bandwidth of the interferential �lter.

Relatively to the degenerate mode, we can roughly estimate thatamong the 60 non de-
generate peaks only T 2.60 = 0.05% of the overall is transmitted. A more precise calculation,
taking into account the spectrum of the �ltering cavity, gives a contribution of 0.3% i.e. a
-25dB rejection of the non-degenerate modes.

Although the size of the cavity is a bite challenging, it simpli�es the setup of the condi-
tional path as it only needs one active stabilization. Indeed, similar experiments require 3
cavities to realize the �ltering of all the non-degenerate modes [80].
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Locking and optical path A quarter-wave plate combined with the input mirror of the
cavity plays the role of a Faraday mirror. This avoids any extended cavity with the OPO.
Indeed, when the mode matching is well realized a cavity can be formed between the output
mirror of the OPO and the input mirror of the µCavity, or some more complex con�gurations.
Nevertheless, it appears extremely hard to have a reproducible good isolation all the time,
especially if the mode matching is well done. So, it has been �nally more convenient to add
a Faraday rotator.

IR
locking beam

PBS �/4

MEMS IR

MEMS APD�/4 �/2

PIS&H

High
voltage

synch

�Cavity

10���

timing

SSPD/APD
OPO
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PBS �/4

MEMS IR

MEMS APD�/4 �/2

PIS&H

High
voltage
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�Cavity

10���

timing

SSPD/APD
OPO

a) measurements

b) locking

Figure 4.5: The length of the µCavity is modulated at 10kHz. The transmitted
beam is then demodulated. The error signal is sampled during the locking time
and turn to 0 during the measurement thanks to the sampler-and-holder (S&H).
The error signal is integrated, ampli�ed and fed back to PZT of the µCavity.
All the timing is adjusted by a digital delay generator (timing). a) During the
measurement time, the locking beam is blocked by the �MEMS IR� and the �MEMS
APD� connects the conditioning path to the single-photon detector. b) During the
locking time, the MEMS are switched in order to connect the locking beam and
disconnect the single-photon detector.

The cavity is locked with the Dither-and-Lock technique [53]. This requires a bright beam
(few µW). Here we use a contra-propagating beam in the same optical path than the OPO
output. This is achieved by using a micro-mechanical �ber switch called MEMS (stands for
Micro-Electro-Mechanical Systems). A quarter-wave plate and a half-wave plate are used
to control and/or compensate the polarization of the beam from the �ber output. These
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two plates are adjusted in order to completely reject the locking beam by the polarizing
beam-splitter also used in the Faraday circulator. The PZT of the cavity is modulated by a
sine signal at 10 kHz. The transmission signal measured by a photodiode is demodulated at
the same frequency. Hence, we obtain the derivative of the cavity transmission as a function
of the piezo position. This signal is used as error signal and send to a proportional-integral
(PI). The integrated signal is at the end ampli�ed at a high voltage and send to the piezo
of the cavity.

NB: Actually, we use a second MEMS. In principle, one is enough because the isolation
between the two paths is extremely high. Moreover, the locking beam can be very weak (few
µW). However, during the transition some light from the locking beam can go to the photon
detector. We thus use another MEMS to turn on and o� the locking beam to overcome any
bright beam during the transition time (Fig. 4.5).

An alternative setup has been implemented later in which we can remove the MEMS,
this in order to increase the transmission e�ciency of the conditioning path, see Fig. 6.6 in
Chap. 6.

Timing We cannot lock the µCavity and perform measurements at the same time. So, the
experiment is conducted in a cyclic fashion: one period to lock the µCavity and the other
for the measurement. For this purpose, the locking system of the cavity is �frozen�. During
this period the homodyne measurements can be performed.

The choice of the two durations is at least constrained by the locking. The measurement
time should be smaller than the time of stability of the cavity and the locking period long
enough to lock again the cavity. Here, we typically use 40 ms for the locking and 60 ms
for the measurement. But, in a reasonably quiet condition, it can be adjusted to 10 ms of
locking and 90 ms of measurements.

To avoid any unexpected behavior of the locking, a small delay is adjusted between each
transitions (see Fig. 4.6). Starting from a measurement step, �rst the MEMS is switched
on and send the locking beam to the cavity, then the second MEMS turns on the locking
beam and �nally the locking is released. To switch back to the measurement period we do
exactly the opposite sequence as depicted on Fig. 4.6.

S&H

MEMS

APD

MEMS IR

hold

sampled

Locking beam

SSPD/APD

open

close

Figure 4.6: Some small delays are used to adjust the order of each element to
avoid some unexpected behavior. The APD is disconnected prior to any locking
step. Then the locking beam is send to the cavity. The size of the cavity is thus
adjusted within a short time by releasing the proportional-integrate.

In hold position, the output signal of the lockin' ampli�er (our error signal) is 0 in such
a way that the PI does not change its output value and, at the end, keeps the position of
the piezo �xed during the measurement period.
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4.2.3 Homodyne measurement, data acquisition and processing

Given a detection event on the conditioning path, the heralded state is then characterized by
quantum state tomography performed via a homodyne detection. The 6 mW local oscillator
is provided by the 1064 nm output of the laser, after spatial mode �ltering by a high-�nesse
cavity6. The homodyne detection is based on a pair of high-quantum e�ciency InGaAs
photodiodes (Fermionics) with a diameter of 500 µm and a quantum e�ciency of above
97%. More details on the homodyne dectection are given in the Appendix B. An optical
isolator just before the homodyne detection is required in our setup to remove the light from
the local oscillator backscattered by the photodiodes. Unfortunately, this weak light can go
back to the OPO, then to the single-photon detector and �nally induces some �false� events.

Figure 4.7: Processing of the homodyne detection. The quadrature measurement
of the conditional state is obtained by applying a temporal mode on the output
signal of the homodyne detection at each trigger event.

A C++ program controls the acquisition with an oscilloscope (Lecroy Wavepro 7300A)
(Appendix F), post processes the data and displays the results of the experiment in quasi-
real-time (the main limitation of the speed being the data transfer and the rate of events).
For each trigger event, the photocurrent is recorded with the oscilloscope at a sampling rate
of 5 GS/s during 100 ns.

The output signal from the homodyne detection x(t) is continuous. Each measure-
ment corresponds to a quadrature measurement in a subspace generated by the annihi-
lation/creation operator â(t)/â†(t) at a time t. However, the heralded state will be in a
di�erent temporal mode [82]. This part will be studied in more detail in a further chapter
(Chap.6). Nevertheless, an intuitive picture could be the following: the two photons are
emitted at the same time and one of them is detected by the single-photon detector but,
being in a cavity, the twin photons can escape from the cavity at di�erent time following a
double exponential decay function. This being in an indistinguishable fashion, it leads to

a superposition of single-photon at di�erent times
∫
f(t)|1〉tdt =

∫
f(t)â†(t)dt|0〉 = â†f |0〉.

The temporal mode is the Fourier transform of the cavity spectrum, i.e. a Lorentzian

f̃(ν) =
1
√
πν0

1

1 + (ν/ν0)2
with ν0 the -3 dB bandwidth (HWHM), related to the cavity by

2ν0 = γ = 65MHz (FWHM). The temporal mode is thus f(t) =
√
πγe−πγ|t|.

Hence, with a continuous quadrature measurement we can obtain a quadrature mea-
surement speci�cally in this temporal mode by applying the same transformation x̂f =∫
f(t)x̂(t) (cf �gure 4.7). This is an intuitive picture and is only relevant in a ideal case.

Indeed, we do not consider the e�ect of the µCavity.

6The �ltering cavity is a priori not important here. The classical noise is removed in the homodyne
measurement. Indeed, the subtraction of the two signals remove all classical noises. Secondly, the spatial
mode of the laser is already good, so it is not really improved by the �ltering cavity. Nevertheless, we never
tried to run the experiment without this cavity, which was necessary in previous experiment performed above
threshold.
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All the acquired waveforms are processed by applying such a temporal mode. We have
thus a set of quadrature measurements in this speci�c mode. The time delay between the
photon detector and the homodyne detection can be adjusted with the help of the temporal

variance of the homodyne detection signal 〈x(t)2〉 = 1
N

N∑
k=1

xk(t)2 plotted on �gure 4.8,

which easily indicates at which time the temporal mode should be centered.
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Figure 4.8: Temporal variance of the homodyne signal. We use it to adjust the
delay between the SSPD trigger event and the temporal mode function on the
homodyne signal.

NB: This temporal mode could be directly applied by electronics or shaping of the local
oscillator to avoid any post-processing. But, this has no real interest here as the speed of
measurement is not a limitation. Moreover, this would require more experimental abilities
and we will see in the chapter 6 that recording the complete signal can give useful additional
information.

Moreover, a calibration of the homodyne measurement signal is required. Indeed, the
signal is proportional to a quadrature measurement but not equal. To perform this calibra-
tion, we use the vacuum �uctuation as reference: the signal path is blocked, we thus obtain
quadrature measurements of the vacuum state. The same temporal mode is applied to each
recorded waveform, then we compute the variance of the measured quadratures which gives
us the normalization factor to use.

Practically, to summarize the process, if we call sk(t) the output signal of the ho-
modyne detection related to the k-th heralding event, we compute with each waveform

sk =

∫
dtf(t)sk(t), then we obtain the normalization factor N0 =

√
〈s2〉/σ0, and we use

it to obtain the quadrature measurement xk = sk/N0. This calibration is achieved with
typically 50,000 points and repeated for each run7.

The state is reconstructed by using the MaxLik algorithm with typically 50,000 points.
For this state, a size of the Fock space up to |6〉 is quite enough, and 200 iterations of the

7In principle it is not necessary to repeat this operation but the power of the local oscillator can change,
and it is thus preferable to do this calibration regularly.
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algorithm gives a reasonable accuracy. We also monitor in real time the experiment with
the method of the moments described in sec.2.4.3.

4.3 Results and discussions

All the di�erent parts have been optimized in order to have a state as pure as possible.
However, the light from the local oscillator scattered by the photodiodes, has appeared to
be a big issue to solve, and is probably the main limitation of the purity in the actual setup.
Below we present the best obtained results.

4.3.1 Results

Results are displayed on Fig. 4.9:(a) gives the histogram of the measured quadrature values,
while (b) and (c) show respectively the diagonal elements of the reconstructed density matrix
and the corresponding Wigner function.
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Figure 4.9: High-�delity single-photon state. (a) Marginal distribution from
50,000 quadrature measurements with average phases. The black solid line is
a �t of the experimental data, while the blue solid line provides the distribution for
a perfect single-photon state and the gray line for the vacuum. (b) Diagonal ele-
ments of the density matrix of the generated state, with and without correction for
detection losses. (c) Corresponding Wigner function. The solid lines give the theo-
retical cross-section for a perfect single-photon and the experimental cross-section
after correction.

The state is, in a good approximation, a mixture of vacuum and single-photon state.
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The two-photon component is around 3%, resulting from multi-photon pairs created by the
down-conversion process and the non-resolution of photon number by the SSPD. The OPO
is operated far below threshold (1 mW for a threshold of 80 mW) to limit this contribution.
Without any corrections, the single-photon component reaches 78.6 ± 0.5% (Error bar is
estimated by following the method in [73]). By taking into account the detection losses, we
infer a state just before the homodyne detection with value as high as 91%.

The heralding rate for single-photon generation is 30 kHz. Given the bandwidth of the
OPO, it corresponds to a brightness of 400 photons/s per MHz. This rate is mainly limited
by the losses in the conditioning path, which reaches 97%: the quantum e�ciency of the
SSPD is 7% and the overall transmission (including optical switch and �ltering elements) is
40%. Corrected for the losses in this path, the rate can be close to 750 kHz.

The value of the bandwidth γ of the temporal mode has been optimized to maximize the
single-photon component.

4.3.2 Global e�ciency

Table 4.1 gives the various e�ciencies a�ecting the �nal result. Two contributions have
to be distinguished. A �rst one comes from the overall losses along the propagation and
the detection. This includes the propagation e�ciency ηprop, the mode overlap limited by
the visibility V of the local oscillator-signal interference ηvis = V 2 [4], the e�ciency of the
photodiodes ηphot and the electronic noise of the detection ηnoise = 96% (the electronic
noise is 20 dB below vacuum noise at the central frequency) [49]. They sum up to an overall
detection loss of 1−ηtot = 15%, which is taken into account to give the values with correction.
The second contribution is more fundamental and cannot be corrected as it is related to the
generation process. It depends on the OPO escape e�ciency, given by ηOPO = T/(T + L),
where T is the transmission of the output coupler and L the intracavity loss. This value is
estimated to be here ηOPO = 96%. Given these estimated parameters, the expected vacuum
component is 18%, in very good agreement with the measured value.

ηnoise ηphot ηvis ηprop ηtot ηOPO
96% 97% (98%)2 95% 85% 96%

Table 4.1: Experimental e�ciencies

4.3.3 Asymmetric marginal distributions

One can notice that the marginal distribution is not perfectly symmetric, contrary to what
we could expect. Actually, it can also be much worse (see Fig. 4.10). This cannot be
explained by some statistical e�ects as the number of points is large enough to have relevant
statistics: it has physical origin.

This asymmetry can be explained by a weak displacement on the triggering mode, which
would come from the backscattered light,

b〈1|D̂b(β) (|0〉a|0〉b + λ|1〉a|1〉b) . (4.24)

The approximation of a weak displacement gives D̂(β) = eβb̂
†−β∗b̂ ∼ 1+ βb̂† − β∗b̂, we thus

obtain for the �rst order in λ and β the conditional state

β|0〉+ λ|1〉 , (4.25)
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Figure 4.10: Two examples of asymmetric marginal distributions. This situation
happens when the isolation is not e�cient enough and/or the sources of scattering
are not controlled or too numerous.

a coherent superposition of single-photon and vacuum state. We rewrite the state in the
general form with two reals α and β (following α2 + β2 = 1) with a relative phase φ

α|0〉+ βeiφ|1〉 . (4.26)

The wave function of this state is

〈xθ|ψ〉 = ψ(x) =
e−x

2/4σ2
0

(
√

2πσ0)1/2

(
α+ β

x

σ0
ei(θ+φ)

)
. (4.27)

The corresponding marginal distribution is thus

ψ(x)ψ∗(x) =
e−x

2/2σ2
0

√
2πσ0

(
α+ β

x

σ0
ei(θ+φ)

)(
α+ β

x

σ0
e−i(θ+φ)

)
=
e−x

2/2σ2
0

√
2πσ0

(
α2 + β2 x

2

σ2
0

+ 2αβx cos(θ + φ)

)
.

By choosing σ0 = 1 and including a detection e�ciency of η, we �nally obtain

P(xθ) =
e−x

2/2

√
2π

[
η
(
α2 + β2x2 + 2αβx cos(θ + φ)

)
+ 1− η

]
. (4.28)

Depending on the phase of the local oscillator (i.e. the measured quadrature), the marginal
distribution can be asymmetric. We show on �gure 4.11 that the e�ect is easy to see for
small values of α.

Surprisingly, the shape of this asymmetry is the same whatever the phase of the local
oscillator. Moreover, it changes only after a long time (typically tens of minutes). This is
not physically possible because the averaging of the phase should compensate it. This is
why we should �nd an explanation linked to the local oscillator. Indeed, the light inducing
this displacement comes from the local oscillator. So, when we change the phase of the local
oscillator to measure another quadrature, the phase of the displacement follows. That is
why, despite we sweep the phase, we actually always measure the same quadrature. This
quadrature is de�ned by the relative phase between the local oscillator and the path to the
point of displacement. The experimental setup being (mechanically) extremely stable, this
relative phase changes extremely slowly and thus the asymmetry changes slowly too. Hence,
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Figure 4.11: E�ect of the scattering for α2 = 0%, 1%...4% (cf eq. (4.26)).
We also include the limited e�ciency with typically η = 80%. The asymmetry
appears clearly even from a very small amount of superposed vacuum state. (see
eq. (4.28)).

if we do not measure all the quadrature of a state which is not phase invariant, one can
wonder how �true� is our quantum state tomography. Actually, at least in this particular
case and with this reasonable asymmetry, this can only lead to an underestimation of the
single-photon component.

Unfortunately, two points are still not completely explained. First, by which mech-
anism(s) the light can go back to the OPO? It seems clear that the photodiodes of the
homodyne detection contribute but, is it from some scattering by the surface of the sensitive
area? does it depend on the wave front of the beam? It also seems that the surface of the
mirrors can play an important role. Secondly, where exactly the displacement takes place?
On the output mirror of the OPO? Does this weak beam enter into the OPO and is then
ampli�ed by the parametric gain? The main di�culty, to study this problem, is the fact that
the asymmetry appears more or less strongly as it depends on the measured quadrature,
but we cannot control it!

Moreover, the accuracy and particularly the stability of the count rate is not enough to
study the problem. In other words, we should be able to resolve few percents of �uctuation in
the count rate. Some interferences between the scattered light on each part of the homodyne
detection are possibly making the global scattered light going to the OPO sometimes and,
back to the local oscillator the other times.

To conclude, this issue is di�cult to understand as it involves some scattering phe-
nomenon at the single-photon scale! Nevertheless, we �gure out recently that the use of
mirrors with IBS8 coatings reduces the problem.

4.4 Beyond: the qubit

It has not been implemented here but our source is a starting point to many protocols
with discrete variables as di�erent encodings use the single-photon state. For instance,
the polarization encoding (dual rail) a simple combination of wave-plate can transform the
single-photon state in any qubit of the Bloch sphere.

8Ion-Beam-Sputtered
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If we consider the photon number encoding9, the setting of the qubit is less straightfor-
ward. One possibility is to displace the conditioning beam: the indistinguishable detection
of a photon from the displacement or the EPR state will lead to a coherent superposition of
vacuum and single-photon. The relative complex amplitude is thus tuned by the amplitude
and phase of the displacement relatively to the EPR beam. Another strategy consists in
sending the single-photon onto a 50:50 beam-splitter. A quadrature measurement is real-
ized by an homodyne detection on one output. The selection of speci�c results gives the
desired superposition. The main disadvantage of this last method is its probabilistic na-
ture in addition to the single-photon heralding. For this reason, the previous one would be
preferable.

4.5 Conclusion

In conclusion, we have generated of high-�delity heralded single-photons, using a con�g-
uration based on a type-II optical parametric oscillator below threshold. A 79% �delity
has been demonstrated, mainly limited by the losses in the detection path. Corrected for
this limited e�ciency, the state just before the homodyne detection is above 92%. Thanks
to the OPO cavity, the spatial mode enables to reach high interference visibilities without
the need of additional �lterings. Moreover, the frequency-degenerate interaction makes the
operation much simpler than previous realizations. This practical tool can facilitate the
implementation of various new experiments in quantum information processing [73]. The
technique developed in [84] could be extended to our e�cient scheme if time-gating of the
single-photons is required.

The novelty of this experiment relies on the use of a degenerate (in frequency) type-II
down conversion and the simplicity of the setup. The reported value is also one of the highest
reported to date. The main criticism we can make about this setup is its wavelength. Indeed,
it is neither telecoms one nor for an atomic transition. The other possible criticism is the
probabilistic nature of the source, however nowadays deterministic sources are extremely
impure, and thus are somehow, more probabilistic than ours.

Besides, there are numerous demonstrations of single-photon sources based on sponta-
neous parametric down conversion. In contrast to many of them, the important feature of
our source is the well control of the mode in which lies the single-photon state. This is high-
lighted by the characterization via an homodyne detection. Indeed, the detector performed
a measurement in a precise mode (actually the one of the local oscillator). Moreover, this
prove that homodyne detection can be used with this source, which, as we will see in the
next, open up some possible protocols.

This source will be used in the next experiments performed in this PhD work. One
concerns a single-photon entanglement witness, presented in Chap.7, and in the generation
of hybrid entanglement, presented in Chap.8.

9 |0〉 to encode 0 and |1〉 to encode 1



5 | Generation of Schrödinger Cat-Like State

I start in the middle of a sentence and move both
directions at once.

John Coltrane

As introduced in the chapter 1, we call optical Schrödinger cat state the superposition of
two coherent states with opposite phases

|cat±〉 =
|α〉 ± | − α〉√
2(1± e−2|α|2)

, (5.1)

where |α〉 is a coherent state of amplitude α. These states are of large interest for continuous
variable quantum computation where the qubit is encoded on the phase of a coherent state.
Indeed, this qubit being easy to measure with a homodyne detection, numerous protocols
of quantum information based on this encoding have been proposed (see [95] and references
therein). Thus, the cat states as de�ned here correspond to the equator of the Bloch sphere.

There are di�erent strategies to generate these states but all of them require high non-
linearities. For instance, in Ref. [18] a phase shift of a cavity �eld is induced by interaction
with an atom and depends on its state. Another possible strategy, in free space, is analyti-
cally similar to the previous example. It consists in replacing the atomic levels by vacuum
and single-photon state and mediating the interaction by a cross-Kerr e�ect [44]. Neverthe-
less, so far, no known material provides a su�cient Kerr non-linearity. At least one order
of magnitude more is necessary. Here, the non-linearity will be induced by a measurement.
It consists in subtracting one photon from a squeezed vacuum state [15]. Nevertheless, the
states produced here are an approximation: it is not rigorously the cat state. More rigor-
ously, we saw in chapter 1 that this state does not exactly �map� the idea of Schrödinger
and that it is preferable to talk about coherent state superposition (CSS). Hence, we would
label the state generated in this chapter CSS-like state.

The technique implemented here has been widely used so far and realized in many groups:
Grangier in the pulsed regime and Furusawa, Polzik, Sasaki in the continuous wave regime
[89, 78, 118]. There is no particular novelty in our experimental realization. However, the
quality of the OPO plus the very e�cient detection, make us expect a state of a �high
quality�, as we will see.

This chapter will be shorter as there are many things in common with the previous
one. The experimental setup varies only a little, and the main di�erence will be the phase
information required for the tomography of the state.
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5.1 Principle of the experiment and models

The experiment here is similar to the single-photon one: we use a measurement-induced non-
linearity with the same single-photon detector and start from a Gaussian state. However,
the initial resource, here, is a squeezed vacuum state.

5.1.1 Basic scheme

The experiment follows the initial idea suggested by Dakna et al [15]: by subtracting a
single-photon from a squeezed vacuum state, one can obtain the following state

|cat−〉 ≈
âŜ|0〉√

|〈0|Ŝ†â†âŜ|0〉|
. (5.2)

For this purpose, the idea is to tap a small part of the squeezed vacuum with a beam-splitter,
and to detect a single-photon on this part. In the limit of in�nitely small tapping ratio, this is
equivalent to apply the annihilation operator. Indeed, the beam-splitter operator is written
B̂ = eθ(âb̂

†−â†b̂) ≈ 1 +θ(b̂†â− b̂â†) in the limit of a small re�ection (sin θ ≈ θ). We thus have

B̂Ŝ|0〉a|0〉b ≈ Ŝ|0〉a|0〉b + θâŜ|0〉a|1〉b . (5.3)

We clearly see that the detection of one photon on the tapped mode b heralds the annihilation
of one photon on mode a.1 Moreover, we can conveniently rewrite the state as a squeezed
single-photon âŜ|0〉 ∝ ŜŜ†âŜ|0〉 = Ŝ(â ch r − â† sh r)|0〉 ∝ Ŝ|1〉. The state is written in the
Fock basis as:

Ŝ|1〉 =
(1− λ2)3/4

λ

∑
n=1

√
(2n)!

n!
(λ/2)n

√
2n|2n− 1〉 . (5.4)

Of course, approximating a cat state with this state is not valid for any parameters. The
reliability of the approximation can be evaluated via the �delity. Hence, we compare the
squeezed single-photon with the odd cat state (with the amplitude α). The �delity is given
by

F1 =
∥∥∥〈cat−|Ŝ|1〉∥∥∥2

(5.5)

=
2α2eα

2(th r−1)

(ch r)3(1− e−2α2)
. (5.6)

We more conveniently express it as a function of the squeezing factor s

F1 =
2α2eα

2(th r−1)

(ch r)3(1− e−2α2)
(5.7)

=
16α2e−2α2/(1+1/s)

(1− e−2α2)(s−1/2 + s1/2)3
, (5.8)

and �nd that this �delity is maximal for

sopt =
√

1 + (2α2/3)2 − 2α2/3 . (5.9)

As we can see on �gure 5.1, the approximation is almost valid up to |α|2 = 1.5 with
F > 98%. This is an important result as the overlap between two coherent states |〈α|−α〉|2 =

e−4|α|2 is below 2% for |α|2 > 1 and we remind that the two states encoding the qubit have
to be orthogonal.

1Although the physics is exactly the same as the previous experiment - by splitting a part of the squeezed
vacuum we obtain an entangled state - the idea is di�erent in the sense that the goal is to apply the
annihilation operator, the entanglement is not really exploited.
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Figure 5.1: Fidelity between photon subtracted squeezed vacuum and odd
Schrödinger cat state.

5.1.2 Models

Also in this experiment, we need to model the setup in order to understand the e�ect of the
di�erent parameters, at least qualitatively. Indeed, the non-perfect single-photon detector
and the various optical losses will a�ect the quality of the prepared state.

Ideal single-photon subtraction The e�ect of the photon subtraction for the density matrix
can be written as ρ̂′ ∝ âρ̂â†. With the Wigner function formalism, this is equivalent to apply
the operator D̂, Wâρ̂â† = D̂Wρ̂, as detailed in [59]. This operator is

D̂ =
1

2

[
1 +

x2 + p2

2σ2
0

+ x∂x + p∂p +
σ2

0

2
(∂2
x + ∂2

p)

]
. (5.10)

Any Gaussian state is written

WG(x, p) =
1

2πσxσp
e−x

2/2σ2
x−p

2/2σ2
p . (5.11)

When we apply the annihilation of one photon, we obtain

D̂WG =
1

2

[
1− σ2

0

2σ2
x

− σ2
0

2σ2
p

+

(
1

2σ2
0

− 1

σ2
x

+
σ2

0

2σ4
x

)
x2 +

(
1

2σ2
0

− 1

σ2
p

+
σ2

0

2σ4
p

)
p2

]
WG

(5.12)

=
1

2

[
1− σ2

0

2σ2
x

− σ2
0

2σ2
p

+

(
1− σ2

0

σ2
x

)2
x2

2σ2
0

+

(
1− σ2

0

σ2
p

)2
p2

2σ2
0

]
WG . (5.13)

To normalized the state, i.e. Tr[ρ̂′] = 1, we should divide by∫∫
dxdpD̂WG(x, p) =

1

2

[
σ2
x + σ2

p

2σ2
0

− 1

]
. (5.14)
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Figure 5.2: E�ect of losses on the conditional state. (a)100% e�ciency, (b) 75%,
(c) 55%. One can notice that it does not only a�ect the negativity of the state
but also the shape of the Wigner function.

We have started from a general Gaussian state and applied a perfect photon subtraction.
Hence, this model only gives the e�ect of the losses on the states (i.e. by adapting the
covariance elements of the Gaussian states) and does not include neither the imperfections
of the single-photon detector (e�ciency, noise, not photon-number resolved) nor the value
of the tapping ratio. However, here, we do not need any estimation of these losses and we
can directly use the Gaussian parameters that we measure usually, i.e. squeezing and anti-
squeezing. Although this model is derived in a single-mode description, it is actually not so
far from the reality. On �gure 5.2, we can see how the losses a�ect the Wigner function of
the conditional state.

Overall model We start from the most general single-mode Gaussian state. We mix it
with the vacuum state via a beam-splitter of re�ection r (t2 + r2 = 1)

1
2πσxσp

e−x
2
a/2σ

2
x−p

2
a/2σ

2
p 1

2πσxσp
e−x

2
b/2σ

2
0−p

2
b/2σ

2
0 →

1
(2π)2σxσpσ2

0
e−(txa+rxb)

2/2σ2
x−(tpa+rpb)

2/2σ2
p−(txb−rxa)2/2σ2

0−(tpb−rpa)2/2σ2
0 . (5.15)

Then, we apply the POVM element corresponding to a detection event of the detector. For
this purpose, we use the model of a noisy ine�cient non-resolving photon detector given in
chapter 2:

WΠ̂on
= W1 −WΠ̂o�

=
1

2πσ2
0

(
1

2
− e−ν

2− η
e−(x2+p2)/2σ2

η

)
, (5.16)

with σ2
η =

2− η
η

σ2
0 , η the e�ciency of the detector (note that we also include in this e�ciency

the full transmission of the conditioning path i.e. η = ηpath · ηSSPD), and ν the noise. The
conditional state is then written∫

b

WG(a, b)WΠ̂on
(b) =

1

2πσ2
0

1

2

exp
(
− x2

2(r2σ2
0+t2σ2

x)
− . . .p

)
2π
√

(r2σ2
0 + t2σ2

x)(. . .p)
− e−ν

2− η

exp
(
−x2 1+(t2σ2

0+r2σ2
x)/σ2

η

2(r2σ2
0+t2σ2

x+σ2
0σ

2
x/σ

2
η)
− . . .p

)
2π

√
(r2σ2

0 + t2σ2
x +

σ2
0σ

2
x

σ2
η

)(. . .p)


(5.17)
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(where . . . p denotes that we have the same expression as x for the variable p). This condi-
tional state should be normalized by∫

a

∫
b

WG(a, b)WΠ̂on
(b) =

1

2πσ2
0

1

2
− e−ν

2− η
1√

(1 + (t2σ2
0 + r2σ2

x)/σ2
η)(. . .p)

 . (5.18)

For ν = 0 et η = 1 the Wigner function at the origin of the phase space is

W (0, 0) =

1
2

1√
(t2sx+r2)(t2sp+r2)

− 1√
(r2+t2sx+sx)(r2+t2sp+sp)

1
2 −

1√
(1+t2+r2sx)(1+t2+r2sp)

. (5.19)

As for the single-photon experiment the noise induced some �false� events, i.e. heralds
a squeezed vacuum. The dark count has to be as small as possible compared to the �true�
event count rate.
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Figure 5.3: E�ect of the tapping ratio on the Wigner function at the origin of
the phase space for di�erent e�ciencies of the conditioning path. (Without noise
ν = 0 and for a pure input squeezed vacuum state.) Left: -3 dB squeezed vacuum
state. Right: -6 dB.

The limited e�ciency and the non-resolution in photon-number is less simple to inter-
pret. Indeed, it should be considered with the tapping ratio. As highlighted by �gure 5.3,
if the e�ciency decreases, the detector is less sensitive to low photon-numbers, in other
words, more sensitive to high photon-number than low photon number. Hence, this can be
compensated by lowering the tapping ratio, because the re�ection of n photon scales as rn.
We thus lower the probability of high photon-number. Moreover, if the squeezing increases,
we should lower it because the state populates higher photon-number.

5.1.3 What we learnt

These di�erent models provide a more precise idea of how we should operate the experiment.
First, we should pump the OPO within the region of -3 dB of squeezing in order to have
a good �delity with a �true� cat state. On the other hand, the tapping ratio has to be
adjusted in order to have a reasonable count rate, especially compared to the dark count
rate. However, the tapping ratio cannot be too large. Actually, the tapping ratio has to be
as small as possible to avoid the detection of more than one photon a fortiori if the e�ciency
of the detector is low. As for the previous experiment, there is a trade-o� to �nd between
the targeted quality of the state and the contribution of the noise.
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5.2 Experimental Setup

According to the previous section, we should tap at maximum 10%, but the lower is better.
Practically, we use a tunable beam-splitter made of a half-wave plate and a polarizing beam-
splitter in order to adjust the tapping ratio to the minimum value. The tapped beam is then
sent to the conditioning path. As explained previously, we use a combination of an etalon
and a very short cavity to �lter out all photons at frequencies di�erent from 1064 nm (cf
�gure 5.4). This ensures that the detected photon comes from the degenerate mode only.
Each detection event of the single-photon detector heralds the preparation of the target
state.

Figure 5.4: A small part of the squeezed vacuum state at the output ot a type I
OPO is tapped. Then, similarly to the generation described in Chap.4, the beam is
�ltered out with an interferential �lter and a Fabry-Perot cavity in order to detect a
photon in the degenerate mode of the OPO. For each detection event on the single
photon detector, the homodyne signal is recorded. All the signals are then post-
processed to extract the quadrature measurements to be used in the tomographic
reconstruction algorithm.

The state is also characterized by quantum state tomography. We thus record the homo-
dyne signal for each detection event and apply to it the temporal mode. Besides, contrary
to the single-photon state, the one we generate here is not phase-invariant, we should at
least acquire the information of phase of the measured quadrature. For this purpose, we
have tried di�erent methods. Two are described below and another one in Chap. 8.

5.2.1 Phase information

For experimental convenience, instead of locking the phase we use the randomness of the
event detection to make sure that we perform measurements for all phases. However, the
phase for each event has to be known.

Fitting of stable phase What we use is the variance of the quadrature measurement. For
each event, we compute the variance of the recorded segment. Indeed, this value for the
squeezed vacuum state is a sine function of the phase. The sweep of the phase is synchronized
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with the cycle of measurement and with a duty cycle adjusted in order to have one direction
of sweep during the measurement time of one cycle.
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Figure 5.5: Phase estimation with variance in time. Top left, full time of a single
tomography. We can see the packs of events that correspond to the �sequence�
mode of the oscilloscope acquisition. Top right, zoom on one sequence. We can
see the cycle of the experiment with 20 ms of locking and 80 ms of measurement
for each cycle. Bottom left, second zoom on two cycles. We can see the fringes of
squeezing due to the phase sweep. Bottom right, superposition of all the cycles.
The fringes become more obvious.

On �gure 5.5, we illustrate the way we extract the phase of each measurements. On
top left is the full time of a single tomography. We can see that events are packed in
time at regular intervals. This corresponds to the �sequence� mode of the oscilloscope:
N measurements are accumulated in the memory and then accessible for processing. The
dead-time corresponds to the processing and mainly to the backup of the data. (The times
of acquisition and processing seem to be equal but this is by chance). On the top left,
we zoom on one of the sequence (i.e. N measurement). We can again see some packs
of events with the same duration of 80 ms. This actually corresponds to the di�erent
cycles of measurement: the µCavity is locked during 20 ms and �frozen� during 80 ms, the
measurements are performed during this time. On bottom left, we zoom again onto two
cycles. We can see that the same fringes pattern for each cycle. Eventually, we superpose
all the cycle (bottom right �gure), the fringes pattern becomes more obvious. We can also
clearly see the di�erent step of the cycle. Note that the locking step is in the middle because
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the �rst measurement does not necessarily happen at the beginning of this step. Practically,
if ti is the timestamp2 of the i-th detection event, we overlap all the cycle by using the
modulo of the timestamp t′i = (ti − t0) modT with T the period of the cycles (here 100ms).
We can shift the time with t′i = (ti − t0 + to�set) modT . In order to �t this sine, we reduce
the statistical noise by taking the mean value of 0.1 ms bin (see �gure 5.6 left). The sweep
is linear but the response of the piezo is not linear. Hence, the �t we use is of second order
in the sine (sin(at2 + bt+ c)).

This strategy is only possible because the phase is stable over the time necessary to
accumulate enough quadrature measurements for one tomography, in our case, few minutes.
The other necessary assumption is that the state is not extremely phase sensitive. This last
assumption is reasonable when we look at the mean phase drift during one experiment on
�gure 5.6 right.
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Figure 5.6: Temporal variance of the homodyne signal. Mean values of the
variance for 0.1 ms long bins. On the left, the phase sweep is �tted with a second
order non-linear model. On the right: two sets of data are represented, the �rst
15 s in red and in green the last 15 s of the measurement. We can see that the
phase drift is very small (a little on the right). This con�rms the reliability of the
assumption that the phase is stable during one measurement.

Parallel monitoring Another possibility is to monitor the arches of squeezing in parallel.
The output of the homodyne detection is also connected to a spectrum analyzer. For each
sequence, we acquire the complete signal and use it to infer the phases. In this case, we
assume the stability of the phase during one sequence. The di�culty is more the synchro-
nization and the impedance matching when we connect the homodyne signal to the spectrum
analyzer and the oscilloscope. (Two follower circuits would be appropriate; nevertheless us-
ing high impedance for the oscilloscope and low impedance for the spectrum analyzer works
�ne.)

2The absolute time of each event is systematically recorded by the oscilloscope. This time is called
�timestamps�. It is an absolute time (equal to 0 for the 1st of January 2000) with a resolution of 1 ns. Most
of the high-speed oscilloscopes have this feature.
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5.3 Results and discussion

First of all, despite the di�erent con�guration of polarizations, we have observed the same
phenomenon of back scattering from the local oscillator to the single-photon detector (cf
section 4.3.3). Worst, this time, one isolator was not enough: a second isolator was necessary
to get rid of the back scattered photons.

On table 5.1, we give the various parameters of the reconstructed states obtained with
various pump powers. As expected, the state is less pure and thus the negativity of the
Wigner function decreases (we will see in the appendix 6.4 that purity is nevertheless not
a relevant parameter). The tapping ratio used for this set of measurements is around 5%
(3◦ for the half-wave plate). This being �xed, the count rate also increases with the pump
power.

P (mW) 2πσ2
0W (0, 0)

count rate
(kHz) S−/S+

6 -0.37 | -0.58 1.5 -3.0 | 4.0

9 -0.38 | -0.60 2.7 -3.5 | 5.0

12 -0.32 | -0.52 3.5 -4.0 | 6.0

15 -0.29 | -0.51 5.6 -4.5 | 7.0

21 -0.30 | -0.51 6.5 -5.0 | 8.0

27 -0.24 | -0.40 8.0 -5.5 | 9.5

33 -0.14 | -0.30 13 -6.0 | 11

Table 5.1: Typical parameters of the reconstructed states for various pump powers,
i.e. for various squeezed vacuum states. We can see that the Wigner function at
the origin is given without correction on the left and with 85% correction on the
right. As expected the negativity decreases with the pump power as the purity
decreases. S−/S+ are the squeezing and anti-squeezing of the initial state.

On �gure 5.7, we show typical results with -3 dB and -6 dB of squeezing without correc-
tion for losses for both. We can see, as expected, a domination of the odd terms. However,
the losses contribute to populate the even photon-number. The �delity is maximal for
α2 ≈ 1 as expected and equal to 65% without correction and 77% with 85% correction for
losses. These results are a little disappointing. Indeed, the setup is extremely similar to the
single-photon experiment but with a �delity more than 10% lower. In addition to that, the
measurement of the squeezed vacuum (cf. chapter 3) was good enough to expect a higher
�delity. Actually, this is not completely surprising when we go into details. Compared to
the single-photon experiment we have added one more isolator. Secondly, the tapping ratio
a�ects also the quality of the state (cf. �gure 5.3). Working with 3% would be better3. We
cannot work far from the threshold because we need to start with a -3 dB squeezed vacuum
state so the state we use is less pure. In addition to that, this state is more sensitive to
losses than the single-photon state (see appendix 6.4). We can also suspect a contribution
of the non-perfect phase measurement but probably negligible compared to the others.

35% was necessary to have a reasonable count rate
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Figure 5.7: Reconstructed state without corrections. (a) Wigner function from a
squeezed vacuum state of -3 dB, (c) corresponding photon-number distribution. (b)
Wigner function from -6 dB of squeezed vacuum state (d) corresponding photon-
number distribution.

Beyond 4 dB, the generated states have a priori no particular interest. We have mainly
generated them to obtain an overall picture of the setup abilities and to see how far the
negativity can be kept.

On the other hand, one can notice that the shape of the Wigner function is not completely
smooth for the -6 dB of squeezing. This is probably due to the technique use to infer the
phase. Indeed, this state is more sensitive to the phase and thus the non-perfect measure of
phase is more obvious here.

5.4 What about even cat states?

The motivation for generating cat state is its potential to be used in quantum protocols
with continuous variables. However, the next step is the ability to generate any qubit of the
Bloch sphere. When we look at the state vector of an even cat state and squeezed vacuum
it seems obvious that for a good choice of parameters the �delity between the two states
will be good. Nevertheless, one can wonder: how is it possible? or is it relevant? Indeed,
according to the Hudson-Piquet theorem, one is negative and not the other. Actually, when
we plot the even cat state, we see some negative regions but these are very small and the
state looks like a squeezed vacuum state.

We end this chapter with few words on the possible extension of this protocol by sub-
tracting one more photon. Indeed, the approximation of the squeezing as an even cat state
is not completely satisfactory even though it seems to work in many cases with α small.
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Double subtraction To obtain a state even closer to the even cat state with negative region,
it is possible to subtract two photons from a squeezed vacuum ([83] and others). After two
subtractions, the state is

|2PS〉 =
â2Ŝ|0〉
‖â2Ŝ|0〉‖

(5.20)

=
(1− λ2)5/4

λ
√

1 + 2λ2

∞∑
n=1

(
2n

n

)1/2(
λ

2

)n√
2n(2n− 1) |2(n− 1)〉 . (5.21)

This state gives a �delity with an even cat state equal to:

F2 =
2e−α

2(1−λ)

1 + e−2α2

(1− λ2)5/2

1 + 2λ2
(1 + α2λ)2 . (5.22)
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Figure 5.8: Fidelity between �true� cat state and photon subtracted form squeezed
vacuum and the corresponding optimal values of squeezing

On �gure 5.8, we see that, compared to the squeezed vacuum, with a two-photon sub-
traction we can achieve a �delity close to unit for a higher range of amplitude α. Thus, the
orthogonality of the encoding state will be better satis�ed. More interestingly, on �gure 5.9
we note that for a �xed squeezing, the optimal α is not the same for the squeezed vacuum
and for the squeezed single-photon state. In contrast, the optimal amplitude is reasonably
the same for the state obtained by two subtractions and the squeezed single-photon. This
important feature means that we can work starting with the same squeezed vacuum state.

Similarly to the calculation of one photon subtraction on a Gaussian state (section 5.1.2,
we can calculate the double subtraction. We �rst note the state after the �rst subtraction

D̂W =
1

2

[
A+Bxx

2 +Bpp
2
]
WG , (5.23)
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by applying again the subtraction operator we obtain

D̂D̂WG =
1

4

[(
A+Bxx

2 +Bpp
2
)2

+ (Bx +Bp)σ
2
0

+2Bx

(
1− σ2

0

σ2
x

)
x2 + 2Bp

(
1− σ2

0

σ2
p

)
p2

]
WG , (5.24)

that we normalize with∫∫
D̂D̂W =

3σ4
x + 3σ4

p + 2σ2
pσ

2
x − 8σ2

0(σ2
x + σ2

p) + 8σ4
0

(4σ2
0)2

. (5.25)

Continuous variables qubits To go further, one could ask how to generate any qubit with
the continuous variable encoding of the kind c0|α〉+ c1| − α〉? This could be done by mixing
a weak beam to the conditioning path to realize a displacement. This would yield to a state
a|cat+〉 + b|cat−〉 where the weights and coherences of the superposition depends on the
phase and the amplitude of the weak beam.

Interestingly, this is a good way to �see� the limit of the approximation |cat+〉 ≈ Ŝ|0〉
and how two subtractions is better. Indeed, we can look at the pole of the Bloch sphere i.e.
(|cat+〉 + |cat−〉)/

√
2 = |α〉 or (|cat+〉 − |cat−〉)/

√
2 = | − α〉. To illustrate this point, Fig.

5.10 gives the comparison between the superposition with the approximation |cat+〉 ∼ Ŝ|0〉
(a) and |cat+〉 ∼ â2Ŝ|0〉 (b) for the even cat state, (with still for the odd cat state |cat−〉 ∼
âŜ|0〉). As can be seen in Fig. 5.10, the �delity with a coherent state is better with a second
subtraction. Indeed, on �gure (a) we have clearly a negative part whereas for (b) is it almost
positive and with a shape the that better �lled the one of the coherent state.

The double subtraction has not been realized so far, mainly because the SSPD didn't
show su�cient e�ciency. However, some very signi�cant progresses have been recently
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a b

Figure 5.10: Superposition of optical Schrödinger cats. Plot of the Wigner
function associated with (|cat+〉 + |cat−〉)/

√
2, which is a coherent state in the

ideal case. (a) The even cat state is approximated by a squeezed vacuum state
|cat+〉 ∼ Ŝ|0〉. (b) The even cat state is approximated by a squeezed vacuum state
on which we subtracted two photons |cat+〉 ∼ â2Ŝ|0〉. The black grid corresponds
to a coherent state.

obtained in the �eld of superconducting detector with typically some e�ciencies above 50%
(compared to the 7% of our detector). Note that, only the group of Sasaki has realized a
double subtraction experiment [108]. However, the scope was di�erent and now the next
challenge is to generate any qubit on the Bloch sphere with a double subtraction in order
to enhance the reliability of the generated states.

5.5 Conclusion

In this chapter, we have presented the generation of optical Schrödinger cat state by sub-
tracting a single-photon from a squeezed vacuum state. Starting from a -3 dB squeezed
vacuum state generated by a type-I OPO, and subtracting a single-photon from it, we have
obtained a state with 65% of �delity with a cat state of amplitude |α|2 ≈ 1. The main
limitation that decreases this �delity comes from the detection losses (two optical isolators).
Indeed, in the ideal case we expect a �delity up to 99%.

These results were expected given the ones obtained in the previous chapter for single-
photon state generation with a type II OPO. Indeed, although we consider states of very
di�erent natures, the setups are quite similar and thus the performances are comparable.
Here, a new limitation could be the phase measurement, however it is manageable because
it do not require a high precision for the size of cat we consider. Nevertheless, it is worth
noting that the technique we use to measure the phase works well here but it is neither
robust nor perennial. Therefore, it has been modi�ed for the next experiments, as we will
see in chapter 8.
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6 | Temporal Mode and

Two-Photons Fock State Generation

Only play what you hear. If you don't hear
anything, don't play anything.

Chick Corea

In quantum state engineering, a precise knowledge of the modal structure of the generated
states is essential as it strongly in�uences the success of the targeted operations. Indeed, the
detection or the processing mode has to be precisely adapted to the resource. For instance,
homodyne detection [59] projects the impinging state into the mode of a so-called local
oscillator, which has thus to be perfectly matched. Any mode mismatch will translate to
losses. Similarly, in quantum information processing schemes, such as linear optical comput-
ing where light states are combined in optical circuits, the modal structure plays a central
role [97]. De�ning this mode structure very often relies on a detailed a priori knowledge
of the used resources, when available, and can additionally call for an involved theoretical
modeling. In contrast, we investigated a method based on homodyne measurements with a
continuous-wave local oscillator, which enables to realize a multimode expansion via the au-
tocorrelation function. The optimal temporal mode, or the existence of various independent
modes, can then be inferred.

In this chapter, we describe in more details the temporal mode that we have assumed
in the previous experiments [75]. We �rst review the two main theoretical approaches
to determine the temporal modes in some speci�c experiments. Then, we investigate a
practical and direct method to experimentally infer the temporal mode pro�le of traveling
quantum light states, not only single-photon states, without prior information and without
any optimization procedure. We implemented this approach in the single-photon Fock states
and Schrödinger cat-like states preparation presented in the previous chapters 4 and 5. Such
a technique enables a high-�delity quantum state preparation and provides a variety of
information about the multimode structure of a given state, as highlighted later by the case
of a two-photon Fock state generation presented at the end of the chapter.
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6.1 Theories of temporal modes

Let us formulate the problem from a practical point of view. We consider a setup which
heralds the preparation of a state and we would like to characterize the state by quantum
state tomography. For this purpose, we use a homodyne detection, with a continuous-wave
local oscillator, that performs some quadrature measurements. The output of the homodyne
detection is continuous and provides the measurement of the observable x̂(t). So, how to
process the signal x(t) that we record for each detection event to obtain a quadrature
measurement of the generated state? We should consider the �good� temporal mode f(t)

that we apply to the signal xf

∫
dtf(t)x(t). The question that arise is: what is the optimal

temporal mode?
Mainly two approaches have been proposed to study theoretically the temporal mode in

a conditional preparation within the continuous wave regime. To brie�y compare, the �rst
one is based one a temporal mode expansion adapted to the di�erent characteristic times
of the experimental setup. The other one optimizes the mode to maximize the �delity with
the target state.

In the following, we detail a little bit more these two approaches to highlight their main
di�erences. For more details, the reader is invited to refer to Ref. [82, 81, 72] for the �rst
one, and [104] for the second one.

6.1.1 Time- and band-limited signal expansion

In Ref. [104], the main idea is to �nd a mode expansion appropriate to the di�erent dynamics
of the experiment: the OPO cavity, the conditioning path, the photon detector and the ho-
modyne detection (cf �gure 6.1). The OPO and the conditioning path are frequency limited,
and we note B the corresponding bandwidth. As the detector and the homodyne detection
are time limited, we note T this characteristic time (practically, it basically corresponds to
the time jitter of the single-photon detector).

Figure 6.1: Time limited measurement and frequency limited cavity in a coherent
state preparation scheme. Extracted from [104].

Hence, we want to �nd a mode expansion appropriate to the time- and frequency-limited
system. If we consider some rectangle modes [−T/2;T/2] in time and [−πB;πB] in fre-
quency. The relevant expansion in this case uses a basis of prolate spheroidal functions.
They are solutions of the equations

χk(c)Ψk(c, t) =

∫ T/2

−T/2
dt′

sinπB(t− t′)
π(t− t′)

Ψk(c, t′) , (6.1)
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χk(c)Φk(c,Ω) =

∫ πB

−πB
dΩ′

sin (Ω−Ω′)T
2

π(Ω− Ω)
Φk(c,Ω′) . (6.2)

Ψk and Φk are linked by the relation

χk(c)Φk(c,Ω) =

∫ T/2

−T/2
dtΨk(c, t)eiΩt , (6.3)

where χk(c) (where c = πBT/2) is the eigenvalue of the mode k and corresponds to the
weight of this mode compared to the others.

On the other hand, the annihilation operator noted

â(t) = 1
2π

∫ +∞

−∞
dΩâ(ω0 + Ω)e−i(ω0+Ω)t , (6.4)

can be rewritten in the basis rotating at the pulsation ω0 of the degenerate mode of the
OPO

Â(t) = â(t)eiω0t = 1
2π

∫ +∞

−∞
dΩÂ(Ω)e−iΩt . (6.5)

The squeezing operator is thus written

Ŝ = exp

[
1

2π

∫ +πB

−πB
dΩ

γ(Ω)

2
[Â(Ω)Â(−Ω)− Â†(Ω)Â†(−Ω)]

]
(6.6)

with γ the squeezing factor which will later be supposed constant. But, the expansion on
time and frequency limited modes is written

Â(Ω) =

∞∑
k=0

ÂkΦk(c,Ω) , (6.7)

with

Âk =
1

2π

∫ πB

−πB
dΩÂ(Ω)Φk(c,Ω) =

∫ ∞
−∞

dtÂ(t)Ψ∗k(c, t) , (6.8)

verifying the commutation relation
[
Âk, Â

†
l

]
= δkl. The squeezing operator is thus written

Ŝ =

∞⊗
k=0

Ŝk, avec Ŝk = exp
[ηk

2
(Â2

k − Â
†2
k )
]
, (6.9)

where the squeezing parameter of the mode k is ηk = (−1)kγ.
This decomposition highlights the multimode aspect of the experiment. Actually, it

mainly depends on the factor χk(c), but this latter goes suddenly to 0 for k > 2c/π = BT
(Fig.6.2). Hence, we understand that for BT � 1 only the mode k = 0 will stay, in such a
way that we can consider only one mode. We should thus try to adjust these two parameters
in order to be in this situation. Typically, for the µCavity BµCav ≈ 300 MHz > BOPO ≈
30 MHz and a characteristic time T ≈ 0.5 ns we have BT ≈ 0.015. So, only the mode k = 0
matters. Eventually, we obtain

Ψ0(t) =
√
ζe−ζ|t| , (6.10)

with t = 0 the detection event on the photon detector, and ζ the characteristic bandwidth
of the whole OPO and µCavity. This way, we obtain the quadrature measured by the
homodyne detection

x̂φ ∼
∫ T/2

−T/2
dtΨ0(t)x̂φ(t) . (6.11)
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Figure 6.2: Eigenvalues χk(c) for di�erent product BT . Extract from [104]. We
note that only one eigenvalues dominate if BT � 1.

6.1.2 Optimal mode for a maximal �delity

The second approach proposed in Ref. [82] is very di�erent. The idea is to �nd the temporal
mode which will give the highest �delity with a single-photon state.

We consider that the single-photon detector will make a measurement on a given temporal
mode 1 (i.e. the trigger mode) assumed to be a rectangle

f1(t) =


1√
∆tc

if tc −∆tc/2 < t < tc + ∆tc/2,

0 otherwise.
(6.12)

With as previously ∆t the characteristic time of the detector. On its side, the heralded state
will be in another mode 2 (i.e. the signal mode). We can thus describe the state with a
two-mode covariance matrix. We start from the correlation at the OPO output by

〈â±(t)â∓(t′)〉 =
λ2 − µ2

4

(
e−µ|t−t

′|

2µ
+
e−λ|t−t

′|

2λ

)
, (6.13)

〈â†±(t)â±(t′)〉 =
λ2 − µ2

4

(
e−µ|t−t

′|

2µ
− e−λ|t−t

′|

2λ

)
, (6.14)

〈â±(t)â±(t′)〉 = 〈â†±(t)â∓(t′)〉 = 0 , (6.15)

with λ = γ/2 + ε et µ = γ/2− ε et ε/γ =
√
P/Pth. Then, we apply the two temporal modes

â1 =

∫
f1(t)â+(t)dt , (6.16)

â2 =

∫
f2(t)â−(t)dt . (6.17)

Hence, we obtain the coe�cient of the covariance matrix:

V11 = V22 = 1 + 2〈â†1â1〉 , (6.18)

V33 = V44 = 1 + 2〈â†2â2〉 , (6.19)

V13 = V31 = −V24 = −V42 = 2 <(〈â1â2〉) , (6.20)

V14 = V41 = V23 = V32 = 2 =(〈â1â2〉) , (6.21)
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Figure 6.3: Optimal mode function for ε/γ = 0 (solid line), ε/γ = 0.1 (dashed
line), ε/γ = 0.2 (dot-dashed line), and ε/γ = 0.3 (dotted line). Extracted from
[82].

V12 = V21 = V34 = V43 = 0 . (6.22)

The annihilation of one photon in the trigger mode (and traced out because the mode is
lost) yields to the Wigner function of the conditional state

W (x, p) =
[
A1 +A2(x2 + p2)

]
e−A3(x2+p2) , (6.23)

where the coe�cients are function of the covariance matrix elements

A1 =
V11V33 − V 2

13 − V 2
14 − V33

π(V11 − 1)V 2
33

, (6.24)

A2 =
V 2

13 + V 2
14

π(V11 − 1)V 2
33

, (6.25)

A3 = 1/V33 . (6.26)

We also assume that the characteristic time of the detector is small compared to the decay

rate of the OPO cavity. At the end, the �delity
∫∫

dxdpW (x, p)W|1〉(x, p) is maximized by

optimizing the temporal mode of the signal f2(t). Figure 6.3 shows the optimal modes for
di�erent pump power. Furthermore, in the limit of zero pump, the mode takes the shape of
a double exponential function and that this shape changes with the pump power. However,
we have seen that it is preferable to operate the OPO far from the threshold. So, the e�ect
of the pump power on the temporal mode is not a concern in the reported experiments.
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6.2 Measurement of the temporal modes

Precisely controlling this modal structure has been a long quest for quantum optics. In some
experiments, the temporal mode pro�le can be easily inferred from the setup features. In
pulsed parametric down conversion for instance, the temporal mode is de�ned by the pulse
shape. When using a continuous-wave optical parametric oscillator, the cavity bandwidth
leads to a double-decaying exponential pro�le [82]. However, even in these simple cases,
the theoretical mode is only approximated given the imperfections and complexity of the
setups. Indeed, it requires questionable assumptions: in the examples we detailed in the
previous section, the �rst one assumes rectangular shape for the cavity spectrum, in the
other one the possible e�ect of the �ltering on the conditioning path is not taken into
account. More critically, the pulse shape can also be strongly altered after its generation
due to some propagation e�ects or additional frequency �ltering may also change the optimal
pro�le, leading to large mismatch between the expected mode and the actual one. In some
experiments, the mode in which the light is emitted can even be harder to predict. This
is the case for instance for photonic states generated from atomic systems, including from
large atomic ensembles [21].

Furthermore, although the theoretical mode yields to good experimental results, it seems
interesting to �nd a way to measure this mode in order to compare it with the theory. Various
techniques have been developed to infer the temporal wavepacket of single-photon states.
One technique can rely on the use of photon counting to access the temporal statistics [39].
However, this straightforward approach is not always easy to implement due to low count
rates and can be constrained by the limited photon-number resolution of available detectors
for characterizing states involving higher photon-number contributions. Furthermore, it does
not give access to any sign information in the modal structure. Recently, another technique
based on homodyne detection, which enables a full tomographic reconstruction, has been
proposed for ultrashort single-photon pulses. It relies on an adaptive scheme to iteratively
map the mode into the one of the local oscillator using pulse shaping techniques [93, 98].

In the following, the idea is to take advantage of the continuous-wave regime of our
homodyne detection and exploit all the available information in the homodyne detection
signal to recover the temporal mode.

6.2.1 Eigenmode expansion

To introduce the method, we �rst consider the case of a light �eld containing a single-
photon state in a well-de�ned spatial mode. It can be shown that single-photon states can
always be considered as single mode states, in a mode that has to be determined [109]. The
question is to determine the temporal mode occupied by the single-photon by directly using
the raw homodyne data. For each realization of the experiment, the homodyne detection,
as illustrated in Fig. 6.4, provides a continuous measurement x(t). This homodyne signal
can then be processed with a temporal mode f(t) to give a single quadrature outcome

xf =

∫
f(t)x(t)dt. Various quantity could be use as parameter to maximize. Here, the

initial idea is to to maximize the variance of the measured quadrature in a given time
interval. Indeed, the variance of the vacuum is 〈x̂2〉|0〉 = σ2

0 while it is three times larger
for the single-photon state, 〈x̂2〉|1〉 = 3σ2

0 . The variance 〈x̂2
f 〉 is thus a good parameter to

maximize in order to infer the optimal temporal mode function.
Interestingly, it can be shown that the variance 〈x̂2

f 〉 of the �ltered mode and the temporal
mode f(t) are linked to the autocorrelation function of the un�ltered homodyne signal by
the expression:

〈x̂2
f 〉 =

∫∫
dtdt′f(t)f(t′)〈x̂(t)x̂(t′)〉. (6.27)
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Figure 6.4: (color online). Schematic sketch. The propagating quantum state ρ̂in
is measured by homodyne detection with a continuous-wave local oscillator. The
reported method consists in accessing the optimal temporal mode via a multimode
analysis using eigenfunction expansion of the autocorrelation function 〈x(t)x(t′)〉.

The variance is thus expressed as a quadratic integral form. The kernel, given here by the
autocorrelation function, K(t, t′) = 〈x̂(t)x̂(t′)〉, is symmetric and positive de�nite. As a
result of the Mercer's theorem, it can be expanded in a series [14]:

K(t, t′) =

∞∑
k=0

κkfk(t)fk(t′), (6.28)

where fk(t) are orthonormal eigenfunctions satisfying the completeness relation

∞∑
k=0

fk(t)fk(t′) = δ(t− t′) (6.29)

and the eigenvalue equation ∫
fk(t′)K(t, t′)dt′ = κkfk(t). (6.30)

Any temporal mode f(t) can be expressed as a linear combination of the eigenmodes, i.e.

f(t) =

∞∑
k=0

λkfk(t) with
∞∑
k=0

λ2
k = 1. The quadrature operator of each mode is then de�ned

by

x̂fk =

∫
fk(t)x̂(t)dt. (6.31)

Given this expansion, the variance for a given temporal mode f(t) can be written as

〈x̂2
f 〉 =

∞∑
k=0

λ2
kκk 6 max

k∈N
κk. (6.32)

It results from this expression that the maximum of variance is obtained for the eigenmode
with the largest eigenvalue.

Actually this multimode expansion has a deeper a more general physical meaning. As
〈x̂fk x̂fk′ 〉 = 0 for k 6= k′, it corresponds to an expansion over non-correlated modes. Choos-
ing a temporal mode indeed realizes a single-mode measurement: the state is thus traced
over all the other modes and the process would result in a statistical mixture if there were
some correlations with other modes.
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The method introduced here is thus general and not only restricted to the single-photon
case presented above. It can be applied to various quantum state engineering experiment
for which extracting the optimal temporal mode is a central issue. Nevertheless, it is worth
noting that we only consider here in phase correlation and the uniqueness of the expansion is
only true if the eigenvalues are di�erent. When eigenvalues are equal, but di�erent from the
one of the vacuum, this expansion does not guarantee that all the modes are separable and
results in a partial Schmidt-like decomposition. Indeed, it does not ensure that 〈x̂kp̂k′〉 = 0
if k 6= k′. More over it arises more fundamental questions: is the expansion based on
〈x̂(t)x̂(t′)〉 and the one on 〈p̂(t)p̂(t′)〉 yields always to the same expansion? Of course, this
question is beyond our scope as we want to engineered states a priori single-mode.

6.2.2 Example of the single-photon and cat-like state preparations

As a �rst example, we illustrate this approach with the heralded preparation of single-photon
from a two-mode squeezed vacuum emitted by a continuous-wave frequency degenerated
type-II optical parametric oscillator (OPO) (cf. Ref. [74]). As described in Chap. 4, the
detection of a single-photon in one beam heralds the generation of a single-photon in the
other one [40]. Due to the continuous-wave nature of the pump, the temporal mode in which
the single-photon is generated has to be determined.

Experimentally, for each heralding event, the homodyne signal is recorded during 200
ns. The auto-correlation function is then computed from the recorded segments. This
measurement being sampled (5 Gs/s rate) the homodyne signal of the i-th trigger event is a
vector Xi of 1000 elements, the experimental autocorrelation function is thus a 1000× 1000
real and symmetric matrix

M =
1

N

N∑
i=1

XiX
T
i . (6.33)

The eigenfunctions and their corresponding eigenvalues are then computed numerically.
Figure 6.5(a) provides such eigenvalues for the vacuum state and for the heralded single-
photon. Let us �rst note that the eigenvalues for the vacuum are not all equal. This decrease
for the modes with higher frequency components results from the �nite bandwidth of the
homodyne detection. Secondly, for the single-photon state, we observed that only the �rst
eigenvalue is largely above the values of the vacuum state, as expected theoretically for such
a state [109]. The associated eigenfunction provides thereby the optimal temporal mode,
as plotted in Fig. 6.5(b). This mode is then used for the state reconstruction [62] and the
Wigner function corresponding to the heralded state is displayed in Fig. 6.5(c), together
with the diagonal elements of the density matrix.

We also applied this practical method to the generation of a Schrödinger cat-like state,
which includes higher photon numbers. This generation is heralded by the subtraction of a
single-photon from a squeezed vacuum. For this purpose, we tap out with a beam splitter
5% of a 3 dB-squeezed vacuum generated by a type-I optical parametric oscillator as detailed
in Chap. 5 and, as previously, heralds the preparation by a detection event given by the
superconducting single-photon detector. In contrast to the previous case, the generated state
is not phase invariant but the autocorrelation function is computed with a phase-average
of the quadrature measurements. The eigenvalues are given in Fig. 6.5(a) and only one
mode with a large eigenvalue appears. The other modes are squeezed vacuum leading to
eigenvalues slightly larger than the vacuum state. The associated temporal pro�le is given
in Fig. 6.5(b) and the Wigner function corresponding to the heralded single-mode state is
displayed in Fig. 6.5(d).
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Figure 6.5: (color online). Single-photon and Schrödinger cat-like state genera-
tion. (a) Eigenvalues of the autocorrelation function 〈x(t)x(t′)〉 given in blue for
a vacuum state, in green for a single-photon and in red for a Schrödinger cat-like
state. Due to the �nite bandwidth of the detection, the eigenvalues decrease for the
modes with higher frequency components. (b) First eigenmode for single-photon
in green and Schrödinger cat-like state in red. The black line gives the theoretical
temporal mode corresponding to a double-decaying exponential pro�le. (c) and (d)
Associated Wigner functions using the optimal temporal modes. The insets show
the diagonal elements of the density matrices, without correction from detection
losses.

6.2.3 Theoretical expression

In order to compare to a model, we derive below the theoretical expression of the optimal
temporal mode using the method based on the autocorrelation function expansion. To
derive the theoretical expression of the autocorrelation function, we start from equation
(6.23) (derived in [82]). The Wigner function of the conditional state is

W (x, p) =
[
A1 +A2(x2 + p2)

]
e−A3(x2+p2) , (6.34)

where the di�erent coe�cients are function of the elements of the covariance matrix (reduced
to the speci�c temporal modes of the conditioning path and signal path)

A1 =
V11V33 − V 2

13 − V 2
14 − V33

π(V11 − 1)V 2
33

, (6.35)

A2 =
V 2

13 + V 2
14

π(V11 − 1)V 2
33

, (6.36)

A3 = 1/V33 . (6.37)

We can thus compute the variance of the state as

〈x̂2〉 =

∫∫
x2W (x, p)dxdp = π

[
A1

2A2
3

+
A2

A3
3

]
=

1

2

(
V33 +

V 2
13 + V 2

14

V11 − 1

)
. (6.38)
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After simpli�cation and identi�cation with equation (6.27), we obtain the autocorrelation
function

〈x̂(t)x̂(t′)〉 = δ(t− t′) + 2〈â†s(t)âs(t′)〉 + 2
〈âtrigâs(t)〉〈âtrigâs(t′)〉

〈â†trigâtrig〉
, (6.39)

where âtrig corresponds to the operator associated with the idler photon in the mode in
which the heralding detection takes place. The �rst and second terms of Eq. (6.39) are
functions of |t − t′| and thus do not come from the conditional operation. The �rst one
corresponds indeed to the vacuum and the second one to the thermal state.

In a type-II OPO, the signal and idler photons are emitted pairwise, leading to quantum
correlations. Using the correlation functions for the annihilation and creation operators for
the two modes, well-known for an OPO [19, 82]. In the case of a low pump power ε −→ 0
(λ = µ = γ), - which is the case in the experiment in order to limit higher photon number
contamination - the contribution from the thermal state is negligible and the autocorrelation
function simpli�es as:

〈x̂(t)x̂(t′)〉 = δ(t− t′) + 2Φ(t)Φ(t′) (6.40)

with Φ(t) =
〈âtrigâs(t)〉√
〈â†trigâtrig〉

. Given this form, Φ(t) is the only eigenfunction with an eigen-

value di�erent from unity. It thus corresponds to the mode of the heralded single-photon.

Moreover, if we consider an extremely fast detector, leading to âtrig =

∫
dtâi(t)δ(t), by us-

ing equation (6.13), we obtain the temporal mode Φ(t) =
√
γe−|t|γ where γ is the bandwidth

of the OPO cavity. This double-decaying exponential pro�le was already demonstrated in
[82, 104] but using di�erent methods, as shown in the �rst section of the chapter.

Given the experimental bandwidth of the OPO used here (γ = 60 MHz), the theoretical
temporal pro�le is superimposed on Fig. 6.5(b). Due to a very optimized experimental
setup, the results are very closed to this simplest theoretical model: the overlap between
experimental and theoretical temporal modes is above 99%. A tiny di�erence can however
be observed on the pro�le. The experimental functions are indeed smoother on the top.
This could be explained by some jitter on the detection signal but the superconducting
single-photon detector used for this experiment is around 50 ps. The main reason comes
from the limited bandwidth of the homodyne detection which is larger but not much larger
than the one of the OPO cavity. This result clearly con�rms the e�ciency of the method,
providing the optimal temporal mode without prior information.

6.3 Two-photon Fock state: a further example

As a third illustrative experiment, we consider the more complex case corresponding to the
generation of a two-photon Fock state. Such generation has already been demonstrated in
the pulse regime [88, 122, 7] but never in the continuous-wave regime. The setup is the
same as for the single-photon generation but instead of detecting one photon we detect two
photons. For this purpose, the conditioning path is now split into two in order to detect two
single-photons as heralding events.

As we work in the continuous wave regime, some question arises: what can be the delay
between the two detection events? what is exactly the state and the temporal mode structure
for a given time delay?
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Figure 6.6: Conditioning path setup optimized for the transmission. A Faraday
isolator avoids any re�ection from the µCavity input mirror to go back to the OPO
(otherwise, it would form an extended cavity with the OPO). One polarization is
used for the signal beam from the OPO and the other for the locking beam. The
cavity is locked with the Dither-and-lock technique. Some mechanical shutters are
used to block the beams depending on the locking or measurement step. Beams
have been obviously shifted for clarity.

6.3.1 Experimental setup

Starting from the single-photon generation experiment (cf Chap. 4), we modi�ed the condi-
tioning path to detect two photons. We explain in the following the changes operated and
how the data have been obtained e�ciently.

Enhancing the conditioning path e�ciency

The MEMS �ber switch has the advantage to simplify the setup but, on the other hand,
the actual technology does not provide devices with a good transmission (in our case 60%).
This becomes a critical issue to detect more than one photon. Indeed, for multi-photon
detection the count rate can be extremely small. Some parts of the conditioning path, like
the µCavity or the detector, are di�cult to improve but, the transmission of the MEMS can
be replaced.

Now, we use two polarizations: one for the signal beam send to the single-photon detector
and the other for the locking beam (see �gure 6.6). Of course, the isolation between the two
polarizations is not enough to avoid any light from the locking beam to reach the single-
photon detector. We thus use free-space mechanical shutters. They are slower than the
MEMS (around 5 ms of transition) but this is clearly not a limitation for our setup. The
timing is pushed at the limit of stability to have a measurement time as long as possible
compared to the locking time and, increases the global count rate.

All delays in one experiment

Contrary to the pulsed regime, the two heralding events can occur at di�erent times, t and
t + ∆t, and the modal structure strongly depends on this delay. The idea is to record in
one experiment di�erent delays. To do so, we should trigger each time that |∆t| is below a
certain duration.1

1Let us note that with our oscilloscope it is not possible to do conditional triggering exactly in this way.
Only one sign is possible i.e. for a given event, only the trigger with a second event after (limited to a certain
time) or a second event before. But we would like to select both. In principle, it is useless, the behavior is
supposed to be symmetric, but we want to check that also. The trick that we use is to delay, with a longer
cable, one of the detector signal of twice the characteristic time of the temporal mode (in our case 75 ns).
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Figure 6.7: Time distribution of the second detection event. We can see the
acceptance window set in the oscilloscope trigger setup. Interestingly, the double
detection happens with a higher probability. This bunching is explained in the
equations developed in [81].

We post-process the data by selecting a given delay between the two detection events
and use them for the state reconstruction. On �gure 6.7, we give the time distribution of
the second detection event.

Long time shot noise calibration The calibration of the shot noise is done once before the
two-photon acquisition. However, the power of the local oscillator can �uctuate during few
hours of experiment. To compensate these �uctuations, we record for each event the level
of the local oscillator. Thanks to this information, we can apply the relevant normalization
factor of the shot noise to compensate the small �uctuations.

6.3.2 Results

Figure 6.8(a) gives the results obtained for ∆t = 0 (with typically 10,000 quadrature mea-
surements). In this case, only one eigenvalue is above the vacuum level and the corresponding
temporal pro�le is similar to the one obtained previously for the single-photon state or the
Schrödinger cat-like state. Figure 6.8(b) gives the associated Wigner function and the di-
agonal elements of the reconstructed density matrix. To the best of our knowledge, this is
the �rst generation of a two-photon Fock state with a two-photon component around 50%
without correction (49±1%). By taking into account the detection losses, we infer a value
as high as 73±1%.

Interestingly, when the time delay ∆t is di�erent from zero, the situation becomes very
di�erent. A second eigenvalue above the vacuum appears: the two-photon Fock state is
continuously split into two single-photon states in a symmetric and an antisymmetric modes.
We give in Fig. 6.9(a) and Fig. 6.9(b) the experimental results for ∆t = 20 ns. One can
notice that the symmetric mode is not perfectly symmetric. This can be explained by the
dark noise being more important on one heralding detector than on the other. This is
an example of experimental defaults di�cult to take into account into a model. Figure

For instance, if the two events arrive at the same time, this means that the �true� event has a delay of 75
ns, if the delay event is 75 ns earlier this means the two �true� detections have happen at the same time.



CHAPTER 6. TEMPORAL MODE AND TWO-PHOTON FOCK STATE 107

0

0.05

0.1

0.15

-100 -50 0 50 100

time (ns)

theoretical
experimental

0

20

40

60

0 1 2 3 4 5 6

W
ei

g
h
t

(i
n
%

)

Photon number

(a) (b)

0

1

2

3

0 1 2 3 4 5

E
ig

en
v
al

u
es

# mode

¢t = 0ns

-4
-2

0
2

4

-4

-2

0

2

4

-0.1

0

0.1

0.2

0.3

xp

Figure 6.8: (color online). Two-photon Fock state generation with a delay ∆t = 0
between the two heralding events. (a) Eigenvalues of the experimental autocorre-
lation function and optimal temporal mode. (b) Associated Wigner function. The
inset shows the diagonal elements of the density matrix, without correction for
detection losses.
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Figure 6.9: Two-photon Fock state generation with a delay ∆t between the two
heralding events. In this case, two eigenvalues largely above the vacuum ones
appear, as shown in the inset. (a) and (b) provide for ∆t = 20 ns the two
�rst eigenmodes, respectively symmetric and antisymmetric. (c) shows the two
eigenvalues as a function of the delay. Around ∆t = 0, only the symmetric mode
has an eigenvalue distinct from the one of a vacuum mode.

6.9(c) provides the two eigenvalues as a function of the delay ∆t. Around ∆t = 0, only the
symmetric mode has an eigenvalue distinct from the one of a vacuum mode. Signi�cantly, our
method directly provides the exact multimode content of the measured state, and therefore
allows us to de�ne an optimal mode.
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6.3.3 Temporal mode theory

As before, to compare with a theoretical model, one can use the autocorrelation function de-
�ned in Eq.(6.39) and adapt the heralding mode, which now depends on the time separation
between the two detection events. For this purpose, we follow the same reasoning as 6.2.3.
After two single-photon detections at di�erent times, the corresponding Wigner function is

W (x, p) =
1

C1
[C2 + C3(x2

3 + p2
3) + C4(x2

3 + p2
3)2]e−C5(x2

3+p22) . (6.41)

Thereby, the variance is given by

〈x̂2〉 =

∫∫
x2W (x, p)dxdp

= π
C2C

2
5 + 2C3C5 + 6C4

2C1C4
5

=
1

2
V55 +

2V15V35V13 + V 2
15(V33 − 1) + V 2

35(V11 − 1)

2 ((V11 − 1)(V33 − 1) + V 2
13)

.

Here, 1 and 2 correspond to the trigger mode of the �rst subtracted photon at time t = 0.
As we consider a fast detector, the temporal mode we choose is δ(t). 3 and 4 correspond
to the second subtracting photon with a time delay (respectively to the �rst one) ∆t the
temporal mode is this case is δ(t−∆t). Eventually, we identify the autocorrelation function

〈x̂(t)x̂(t′)〉 =
1

2
δ(t−t′)+〈â†−(t)â−(t′)〉+ 〈â1â−(t)〉〈â1â−(t′)〉

〈â†1â1〉
+
〈â3â−(t)〉〈â3â−(t′)〉

〈â†3â3〉
. (6.42)

In the limit of a low pump power ε −→ 0 and by considering two fast detection events
separated by a delay ∆t, it can be written as:

〈x̂(t)x̂(t′)〉 = δ(t− t′) + 2Φ(t)Φ(t′) + 2Φ(t+ ∆t)Φ(t′ + ∆t) , (6.43)

where Φ(t) has been de�ned earlier in the single-photon case. Like in Eq. (6.40), the
�rst term corresponds to the vacuum, and the others to the heralding. The two main
eigenfunctions of this kernel are given by:

Ψ±(t) =
1

N±(∆t)
(Φ(t)± Φ(t+ ∆t)), (6.44)

with N±(∆t) the normalization factor. All other functions orthogonal to these modes are
eigenfunctions for the vacuum. The theoretical pro�les are superimposed in Fig. 6.9.

6.4 Conclusion

In conclusion, we have introduced a method to directly access the complete modal con-
tent of traveling quantum light states, using raw measurements obtained by homodyning
with a continuous-wave local oscillator. This continuous measurement enables a multimode
expansion using the autocorrelation function, without making any assumptions on the ex-
perimental setup. We provided a detailed study of this method for various quantum state
engineering experiments, leading therefore to a very high �delity state generation. These
examples clearly show the e�ciency of the procedure to achieve an optimal mode match-
ing taking directly into account all practical aspects. Apart from this crucial aspect, this
approach also reveals the single-mode or multimode character of the �eld states.

Finally, the theoretical temporal mode is in a good agreement with the experimental
one. It con�rms the good control we have on the generated state: our various engineered
quantum states lie within the same temporal mode which makes them �compatible� if we
combine both experiments.



Complement: Negativity of the Wigner function

Einstein said that "the most beautiful experience we
can have is the mysterious." So why do so many of
us try to explain the beauty of music, thus depriving
it of its mystery?

Leonard Bernstein

The negativity of the Wigner function is often called a signature of non-classicality. Does
it mean that any state with positive Wigner function is classical? Yes and no, it depends
where we de�ne the boundary. If we call non-classical any state which cannot be described
by the classical theory (for instance the Maxwell equations in optics), in this case the vacuum
itself is non-classical as it shows some �uctuations. If we call non-classical any state which
allows to do some quantum computation, in that case the negativity of the Wigner function
is probably a good criteria [68, 116]. Actually it seems di�cult to de�ned a boundary and
maybe the better approach is to consider a classi�cation of the states: from the more classical
to the more non-classical. However, up to now, no commonly admitted criteria enable such
an ordering, a fortiori when we consider multimode states with entanglement and mixed
states.

In this complement, we will focus on the main limitation to quantum features in our
experimental setup: the optical losses. It is actually a speci�c case of a broader topic, the
decoherence phenomenon. Hence, we will go back to the previous experiments in order to
draw a more general picture of non-Gaussian state under experimental conditions. Despite
the absence of real novelty in the following, our main purpose is to emphasize some properties
of the non-Gaussian states too poorly-known or not clearly understood.

Cp.1 Negativity of the conditional states . . . . . . . . . . . . . . . . 109

Cp.1.1 Negativity at the origin . . . . . . . . . . . . . . . . . . . . . . . 109
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Cp.1.3 Losses on Gaussian states . . . . . . . . . . . . . . . . . . . . . . 112

Cp.2 Losses and Gaussian operations . . . . . . . . . . . . . . . . . . . 113

Cp.3 General negativity bound for losses . . . . . . . . . . . . . . . . 114

Cp.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Cp.1 Negativity of the conditional states

In the previous chapters, we have derived some models as a function of the input state; we
now go back on to focus on the negativity of the generated state. Here, the term negativity
refers to the minimal value of the Wigner function.

Cp.1.1 Negativity at the origin

In the chapter about the generation of Schrödinger cat state (chap. 5), we have obtained the
equation (5.13) and (5.14) corresponding to an ideal photon subtraction from a Gaussian

109
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state

2πσ2
0Wsp(0, 0) = −

s−1
x + s−1

p − 2

sx + sp − 2
, (Cp.45)

with sx = σ2
x/σ

2
0 , sp = σ2

p/σ
2
0 the normalized quadrature variances of the initial state.

Similarly, we have obtained the equation (4.18) for the generation of single-photon state
(chap. 4):

2πσ2
0Wsp(0, 0) = −

s−1
+ + s−1

− − 2

s+ + s− − 2
· 2 + s+ + s−

2 + s−1
+ + s−1

−
· 2

s+ + s−
. (Cp.46)

Interestingly, both equations have one identical term. Moreover, this term is the only one
that can be negative, and thus yield to W (0, 0) < 0. Furthermore, if the initial state is pure,
i.e. sxsp = 1, we have Wcat = −1. This is not the case for the single-photon state, but this
is due to the model used for the detector, being not able to resolve the number of photons.
The negativity is therefore degraded by the higher photon-numbers as s+ increases. In the
limit of small squeezing, s− ≈ 1, we have W (0, 0) = −1. Nevertheless, we are going to use
the cat state generation model afterwards, to detail this speci�c term.
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Figure Cp.10: Wigner function of the conditional state as a function of the
anti-squeezing for various values of squeezing. For small values of squeezing, the
negativity is extremely sensitive to the value of the anti-squeezing. Interestingly,
for -3 dB of squeezing and beyond, the state is always negative whatever the
anti-squeezing.

On �gure Cp.10, we have plotted the value of the Wigner function at the origin versus
the values of the anti-squeezing for various value of squeezing. As noted with the equation,
when the state is pure i.e. s+s− = 1, the conditional state reaches the highest negativity
(2πσ2

0W (0, 0) = −1), but decreases as the anti-squeezing increases and thus the state be-
comes less pure. However, the value at the origin is always negative when we start from
more than 3 dB of squeezing. This can be directly proved from the equation. The condition
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of negativity is written s−1
− − 2 > 0 for any value of anti-squeezing (i.e. s+ > 1/s−), this

yields to sdB− < −3dB (rigorously −10 log10(2)).

Cp.1.2 Negativity versus pump

In chapter 3, we have studied the state generated by an OPO. Here, we remind the equations
of the squeezing/anti-squeezing as a functions of all the di�erent parameters of the OPO

s+(Ω) = 1 + η
4ε

(1− ε)2 + 4Ω2/Ω2
c

(Cp.47)

s−(Ω) = 1− η 4ε

(1 + ε)2 + 4Ω2/Ω2
c

(Cp.48)

With

• Ωc = 2γ/τ the bandwidth of the cavity,

• η = T1/(T1 + L) the escape e�ciency,

• ε =
√
P/Pth the strength of pumping relative to the threshold.

According to these equations, the purity of the state decreases with the pump power (s+

is diverging close to the threshold): the OPO should be thus operated with a pump power
as low as possible.
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Figure Cp.11: Evolution of the negativity of the conditional state as a function
of the pump power. If the pump power increases, the purity of the initial state
decreases and thus the negativity decreases too. However, when the pump power
goes to 0, the purity goes to 1 but the negativity does not go to -1.

On �gure Cp.11, we have plotted 2πσ2
0W (0, 0) as a function of the pump power of the

OPO. As expected, when the pump increases, the purity of the state decreases and thus the
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negativity is degraded. However, even in the limit of a zero pump power, which means in
the limit of a pure state, we do not converge to a perfect negativity. Indeed, we obtain the
limit (with ε→ 0)

2πσ2
0W (0, 0) > −(2η − 1) (Cp.49)

Note that hitherto, we have use the model of the cat state generation but actually we have
the same limit for the two conditional states (cat and single-photon).

Furthermore, the escape e�ciency can be easily inferred (or at least lower bounded).
Indeed we have smax− = s−(Ω = 0, ε = 1) = 1− η. Hence, the negativity bound can also be
written

2πσ2
0W (0, 0) > 2smax− − 1. (Cp.50)

Finally, the result is not really surprising: if there are some losses, the generated state
cannot be perfect. The a priori close to unity purity actually hides this parameter. We
can thus conclude that the purity is not a relevant parameter in the case of conditional
preparation (at least not enough). An alternative criteria could be the equivalent losses.
However this will be not always appropriate as all mixed states do not necessarily come
from pure states a�ected by losses.

Cp.1.3 Losses on Gaussian states

If the loss is the key parameter, how can we evaluate it from the variance of a given Gaus-
sian state? Let us consider a Gaussian state with the quadrature variances sx, sp. After
propagation in a lossy channel, the variances becomes

s′x = 1− η + ηsx , (Cp.51)

s′p = 1− η + ηsp . (Cp.52)

If the initial state is a pure Gaussian state, it saturates the Heisenberg relation i.e sxsp = 1.
With the previous equations, we obtain

η =
1 + s′xs

′
p − s′x − s′p

2− s′x − s′p
. (Cp.53)

As one can note again, it cannot be expressed as a function of the purity only.
It is also possible to go back to the state before any losses but there is no simple formula as

for the Gaussian states. The density matrix after losses can be computed with the following
formula

〈m|ρ̂η|n〉 =

∞∑
k=0

Bm+k,m(η)Bn+k,n(η)〈m+ k|ρ̂0|n+ k〉 . (Cp.54)

with

Bn+k,n =
√(

n+k
n

)
ηn(1− η)k . (Cp.55)

However, it can be inverted

〈m|ρ̂0|n〉 =

∞∑
k=0

B′m+k,m(η)B′n+k,n(η)〈m+ k|ρ̂η|n+ k〉 . (Cp.56)

with

B′n+k,n =
√(

n+k
n

)
η−n(1− 1/η)k . (Cp.57)

Nevertheless, in practice, i.e. when a state is reconstructed from a set of measurements,
it seems not guaranteed that the state can be corrected for more than 50% of losses [59].
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Cp.2 Losses and Gaussian operations

It is usually stated that a quantum state looses its negativity faster as its mean photon-
number is high. However, this statement should be understood with caution. We are thus
going to illustrate this point in the following.

On �gure Cp.12, we can see how the losses degrade the negativity of a non-Gaussian state.
Interestingly, in the case of a squeezed single-photon state Ŝ|1〉, the negativity decreases
faster as the squeezing is high. We can also see a similar behavior on Fock states.
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Figure Cp.12: E�ect of decoherence on the negativity of a squeezed single photon
for various values of squeezing.

Now, one can wonder if the displacement of a state, which increases the mean photon
number, will yield to a similar behavior. Let us consider a state �rst displaced and then
impinging on a beam splitter of transmission η, this beam-splitter being actually some losses

B̂ηD̂a|ψ〉a|0〉b = B̂ηD̂a(B̂†ηB̂η)|ψ〉a|0〉b . (Cp.58)

The action of the beam-splitter on the prior displacement can be written

B̂ηD̂a(α)B̂†η = exp(α(
√
ηâ† +

√
1− ηb̂†)− α∗(√ηâ+

√
1− ηb̂) (Cp.59)

= D̂a(
√
ηα)D̂b(

√
1− ηα). (Cp.60)

We thus obtain

B̂ηD̂a(α)|ψ〉a|0〉b = D̂a(
√
ηα)D̂b(

√
1− ηα)B̂η|ψ〉a|0〉b (Cp.61)

Of course, the mode b being lost its displacement has no importance. This is easy to prove
mathematically, being a single mode operator, the displacement can be permuted inside the
trace. Thus we obtain the general results

Trb

[
B̂ηD̂a(α)(ρ̂⊗ |0〉〈0|)D̂†a(α)B̂†η

]
= D̂a(

√
ηα) Trb

[
B̂η(ρ̂⊗ |0〉〈0|)B†η

]
D̂′†a (
√
ηα) (Cp.62)
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Figure Cp.13: The displacement of amplitude α of any state before a lossy channel
of transmission η is perfectly equivalent to a displacement of amplitude

√
ηα.

In conclusion, any displacement before losses is equivalent to a smaller displacement after
the losses, it means that the displacement has no e�ect on the decoherence and the shape
of the Wigner function is the same. Only the value of the mean �eld changes.

Cp.3 General negativity bound for losses

The previous plot Cp.12 shows another interesting characteristics of the decoherence process.
Indeed, in all the previous examples, we can note that the bound of negativity is always
reached for 50% of losses. On the other hand, it is also the case for �true� cat states. However,
the even cat state is less negative than the odd cat state (in terms of min[W (x, p),R2]), but
the bound is the same. At �rst sight we could be tempted to say that this value of the
Wigner function is roughly the mean value of the non-Gaussian state and the one of the
vacuum state. But more surprisingly, if we consider the qubit a|0〉+ b|1〉, the bound is also
50% even if the state exhibit small negative values of the Wigner function, i.e. 1� b 6= 0.

The 50% bound is actually general for any pure state. The proof has been almost done
in [61]. For this, we use the parameterized Wigner function, W (α, s). With s = 1 − 1/η,
we have the Wigner function of any state after a lossy channel of transmission η. When the
transmission decreases the parameter s also decreases. For η = 1/2 we have s = −1. The
Wigner function of the state after losses is equal to the Q function of the state (without
losses). Or, the Q function is everywhere positive for any state. This proves that after 50%
of losses, any state has a positive Wigner function. Now, we want to prove that, for pure
non-Gaussian states the negative values of the Wigner function remains until this limit.

Ref. [61] gives the following theorem

If W (α, s) > 0 for all α and W (α, s) = 0 for at least one α0, then there is
no s′ with s′ > s and W (α, s′) > for all α

Using a similar demonstration as the Hudson one (via the Hadamard theorem) , they show
that:

The only pure state with Q(α) > 0 (i.e. non zeros) are Gaussian states.

Under our scope of decoherence, this means that the only pure states which have positive
Wigner function after η > 1/2 are Gaussian states. This yields to the �nal formulation:

Any pure non-Gaussian state still have Wigner function with negative values
after a lossy channel of transmission η > 0.5 but none if η 6 0.5.

We have noted, in the models of our experiment, that if we start from squeezing higher
than -3 dB, the conditional state will be always negative whatever the value of the anti-
squeezing. Actually, -3 dB ensure that the losses are lower than 50%, that is why, thanks to
the general bound, we have obtained this result.
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Cp.4 Conclusion

This study gives mainly three take-home messages. First, the purity appears to be an
irrelevant quantity, at least when conditional operation are involved. Second, the idea that
a state is more fragile under decoherence when it is big should be clari�ed. The �size� to
consider is n′ = (〈x̂2〉 − 〈x̂〉2 + 〈p̂2〉 − 〈p̂〉2 − 2σ2

0)/4σ2
0 . It is important to note that the

mean �eld does not a�ect the decoherence of any state. However, this is not true for all
Gaussian operation as the squeezing can increase the rate of decoherence. Finally, there is a
general bound for which the negativity disappears. Interestingly, this bound is the same for
any pure non-Gaussian state and the negativity only disappears after the limit (not before).
This last statement leads to the conclusion that we can a priori see quantum features like
the negativity of the Wigner function, if the system has an overall e�ciency above 50%.

Moreover, it leads to a more fundamental question. To the best of our knowledge, the
most e�cient quantum error correction known today is limited at 50% [30] (it applies to
cluster state computation). On the other hand, it is known that pure Gaussian state, and a
fortiori mixed state, cannot be used for quantum computing and thus the negativity of the
Wigner function is a necessary condition. Does it mean that the negativity of the Wigner
function is a su�cient condition for quantum computing [115]?
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7 | Single-Photon Entanglement Witness

Talking about music is like dancing about
architecture.

Thelonious Monk

Many proposals of quantum network architectures are based on discrete variables. In partic-
ular, they allow to share/transfer/teleport some information between two distant sites with
the help of single-photon entanglement, i.e. entanglement of the form:

1√
2

(|1〉A|0〉B + |0〉A|1〉B) . (7.1)

Although, this state is easy to produce by impinging a single photon on a 50:50 beam-
splitter, it is less obvious to characterize in particular without any a priori assumption on
the measured state. In this chapter we study a new single-photon entanglement witness
designed for realistic quantum networks [73]. The important feature of this protocol is that
it only relies on local homodyne detections, i.e. on continuous quadrature measurements and
not on photon counting, and o�ers signi�cant advantages relative to other detection methods
[3, 51]. Indeed, it does not require post-selection and the measurements are operated only
locally on the entangled modes, an important feature if applied to large scale networks
[46, 101]. Besides, this protocol is an illustration of the promising optical hybrid approach in
which we take advantage of the continuous variables and discrete variables: here we witness
a discrete variable entanglement with the measurement tools of the continuous variables.
Another illustration will be given in Chap.8.

After giving the di�erent motivations, we detail the witness protocol. Then, we in-
vestigate two aspects of the proposed witness. First, how sensitive it is to the �level� of
entanglement. Secondly, how robust it is to losses, which is one of the main limitations in a
network.

We note that this protocol has been developed in the context of the European project
QScale that we collaborate with the Group of Applied Physics (GAP) from Université de
Genève to develop this new single-photon entanglement witness. This was well appropriate
to the experimental abilities in the laboratory.
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7.1 Motivations

We consider a quantum network in which Alice and Bob share as entanglement resource the
single-photon state (|1〉|0〉+|0〉|1〉)/

√
2. The question is how one can check the entanglement

in the case of a realistic quantum network (ie distant places, lossy channels,...)? Hitherto,
there are four prescribed methods to detect single-photon entanglement.

1- post-selective projection The �rst one converts two copies of a single-photon en-
tangled state into one copy of two-particle entanglement. Starting from entanglement
(|1〉A1

|0〉B1
+ |0〉A1

|1〉B1
) ⊗ (|1〉A2

|0〉B2
+ |0〉A2

|1〉B2
) between the modes A1 and B1 and

between A2 and B2, it basically consists of a post-selective projection onto the subspace
with one excitation in each location, yielding |1〉A1

|1〉B2
+ |1〉A2

|1〉B1
[20]. The latter is

analogous to conventional polarization or time-bin entanglement and any witness suited for
such entanglement, Bell inequality for instance, can thus be used to post-selectively detect
single-photon entanglement. Nevertheless, this approach is not fully satisfying conceptually
because it relies on post-selection. Furthermore, for practical implementation, the need to
create two copies requires twice the number of resources at each node.

2- partial quantum state tomography The second method is based on partial quantum
state tomography. Speci�cally, one can reconstruct a reduced density matrix that corre-
sponds to a projection of the full density matrix into a subspace with at most one photon
locally. The presence of entanglement is then inferred from an entanglement measure com-
puted from the reduced density matrix [12]. Speci�cally, this tomographic approach requires
the knowledge of probabilities pmn of having m photons in mode A and n in mode B, where
m,n ∈ {0, 1}, and the visibility V of the single-photon interference pattern obtained by com-
bining the modes A & B into a beam-splitter. Although it has triggered highly successful
experiments [12, 11, 110, 55], this approach presented in Ref. [12] cannot be directly used in
large scale networks when one needs to check the entanglement between far away locations,
since the knowledge of V relies on a joint measurement of A & B modes. Recombining the
two modes is indeed not suitable for a realistic network.

3- Homodyne tomography In principle, a state can be fully characterized by homodyne to-
mography, and consequently this procedure enables to conclude whether a state is entangled
or not [3]. But what is the reliability of the reconstructed state? This is a di�cult ques-
tion and an active topic of research. The main issues are the reconstruction technique, the
number of measurements, the choice of quadratures. However, the tomographic approach
requires a number of measurements that increases with the dimension of the state being
measured [57]. In practice, one could be tempted to make an assumption on the regularity
of the measured Wigner function to reduce the number of measurements or, equivalently,
on the dimension of the system's Hilbert space, especially when focusing on single-photon
entanglement. But this would amount to make an assumption about the system that we
want to characterize. One can also estimate the dimension of the state from measurements
but it is not clearly established how errors on this estimation can a�ect the conclusion about
the presence of entanglement. More generally, the exponential increase of required measure-
ments with the number of measured subsystems makes the tomography not suited to decide
on the presence of entanglement in quantum networks, contrary to entanglement witnesses
[32]. Homodyne tomography targets indeed a full information whereas an entanglement
witness only tests the presence/absence of entanglement.

4- Local oscillator and photon-counting In 2004 the group of Björk proposed a scheme
similar to a two-mode homodyne detection [35, 8]. Instead of using the subtraction of pho-
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tocurrents, they use photon-counting. The rate of coincidence is therefore used as a witness
of entanglement. From a general point view, using photon-counting when the photon detec-
tor does not resolve the number of photon will require some assumptions on the measured
state at some points. More practically, this is quite impossible in our experiment. Indeed, it
would probably require additional �lterings and more importantly the quantum e�ciency of
detectors at our wavelength (and a fortiori at telecom wavelength) are not enough to obtain
a reasonable count rate of triple coincidence.

These two last methods are interesting. Indeed, although there are not completely satis-
fying, they can witness entanglement with local measurements only, in contrast to the two
previous ones. Contrary to the polarization entanglement, here, simple photon counting
locally is not enough. Hence, the use a local oscillator is a shared phase-sensitive reference
between Alice and Bob and thus can perform phase-sensitive measurements. Therefore it
gives access the relevant information for single-photon entanglement.

7.2 Principle

Although the two-mode homodyne tomography is not suited for an entanglement witness,
the involved measurements are however a good way to extract the required information.
Speci�cally, for entangled states like eq. (7.1), it can provide some phase information thanks
to the local oscillator. That is why the scheme of homodyne tomography is here rethought
in term of acquisition of information. In other words, the measurement device is the same
but the choice of the measurements and the exploitation of their results are di�erent.

The idea of the protocol is �rst described in the ideal case i.e. when the state is fully
described in the qubit subspace {|0〉, |1〉}. Then we consider the realistic case of a quantum
network by considering typical issues like higher photon-number components and measure-
ment accuracy. Eventually, we give the complete practical summary of the protocol.

7.2.1 Starting idea

When we talk about entanglement, we usually have in mind the well-known Bell-test. It
was previously thought for polarization entanglement, but it has been generalized to other
degrees of freedom. Here the entanglement concerns the number of photons and the measure-
ments are in the phase space. We thus choose a basis of quadratures instead of polarization,
as done in the standard Bell-test.

The idea is thus to apply a Bell-test scenario in the phase space. Alice performs some
measurements among two quadratures {X,P} while Bob does it in a basis rotated by 45◦

{X + P,X − P}. Contrary to the photon-counting measurement used in the standard Bell
test, the results of quadrature measurements are continuous. So, in order to obtain some
binary outcomes, we consider only the sign of the measurement results (+1 for positive mea-
surement result and -1 for a negative one). Like in a Bell test, Alice and Bob randomly choose
their quadratures measurements. With the four di�erent combinations of quadratures, we
obtain a measure of the Clauser-Horne-Shimony-Holt (CHSH) polynomial [13]

S = EX,X+P + EX,X−P + EP,X+P − EP,X−P , (7.2)

where the correlators are de�ned by

E = p(1, 1) + p(−1,−1)− p(1,−1)− p(−1, 1) , (7.3)

with p(i, j) the probability that Alice measures i and Bob j simultaneously.
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Figure 7.1: Like in a Bell test, Alice and Bob perform some measurements on
speci�c basis but here, it is not on the basis of polarization but in phase space.
To obtain some binary outcomes, Alice and Bob only consider the sign of their
measurements. By repeating this measurement, they can estimate some correla-
tors for di�erent combinations of quadratures and, at the end, compute a CHSH
polynomial.

Sign-binning of homodyne measurement in the qubit subspace {|0〉, |1〉} is equivalent to
a noisy spin measurement [94]. For instance, the operator associated with a sign-binned X-
measurement corresponds to

√
2/π σ̂x where σ̂x is the standard Pauli matrix. A maximally

entangled state, (|1〉|0〉+ |0〉|1〉) /
√

2, thus leads to Smax = 2
√

2 .2/π ' 1.8, the maximal
value that one can obtain using the aforementioned measurements. The proposed witness
cannot show any non-locality as the bound to violate in that case is 2, but this is not the
purpose of this witness: we only want to conclude about the entanglement.

The question that arises now is the value of the separable bound. It can be demonstrated
that the maximal value over the set of all the separable states is equal to Ssep = 2

√
2/π ' 0.9

[99]. A witness above 0.9 enables thus to conclude that the two modes are single-photon
entangled.

7.2.2 Suitability for a realistic network

The bound Ssep ' 0.9 corresponds to the separable states limited to the subspace {|0〉, |1〉}.
In practice, the Hilbert space to consider is larger as the states can contain more than one
photon (Fig. 4.9 of Chap. 4). Unfortunately, these higher photon number components can
contribute to the value of S and, in some cases, lead to a wrong conclusion by violating
the separable bound whereas the state is separable. It is thus necessary to evaluate the
separable bound in this larger space.

We need to bound the space of separable states. Indeed, for an in�nite size of the Hilbert
space, the S parameter for separable states can be as large as for entangled states. The idea
is to bound the joint probability that at least one of the two modes contains more than one
photon

p∗ = 2− pA0 − pA1 − pB0 − pB1 > p(nA > 2 ∪ nB > 2) , (7.4)

with pAn the local probability of having n photons in the mode of Alice (idem for Bob). The
important point to underline is that this bound is obtained with local probabilities only.

A simple way to determine these local probabilities without additional experimental abil-
ities, is to perform a phase-averaged tomography by locally averaging the phase of the local
oscillator. Indeed, by averaging the phase, the coherence terms vanish whereas the diagonal
elements remain. Moreover, this average of phase is already required in the protocol for the
measurements of the correlators. We can thus re-use the same quadrature measurements
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to estimate the local photon number probabilities. This can be realized by applying the
pattern function1 as described in [58] (and in section 2.4.4 p.40)

pn =

∫
dθ

∫
R

dxfnn(x)P (x) , (7.5)

with P the phase averaged marginal distribution.
Now we can divide a general density matrix like

ρ̂ =


ρ̂(0,1)2 ρ̂coh

ρ̂coh ρ̂>2

 . (7.6)

Since ρ̂>2 possibly spans a Hilbert space of in�nite dimension, there could be an in�nite
number of coherence terms. However, a few of them give a non-zero contribution to the
CHSH polynomial if a phase-averaged homodyne detection is used at each location (random
and equally distributed) in such a way that 〈eikϕA,B 〉 = 0 with k ∈ N∗. After simpli�cations,
it can be shown that the CHSH polynomial corresponding to the state (7.6) is (see SI of ref.
[73])

Smax =
16

π
√

2
<
[
〈01|ρ̂(0,1)2 |10〉

]
+

8

π
(< [〈20|ρ̂coh|11〉] + < [〈02|ρ̂coh|11〉])

+ 2
√

2p(nA > 2 ∪ nB > 2)

(7.7)

Fig. 7.2 gives the separable bound as a function of p(nA ≥ 2 ∪ nB ≥ 2). This �gure
mainly illustrate the importance to take into account the part of the state out of the qubit
subspace. However, in this numerical optimization no speci�c constraints have been applied
on each local probabilities, only on the global statistics. If we include the speci�c values
of all this local probabilities, we add more information, more constraints on the compatible
separable states. This, most of the time, yields to a tighter bound, easier to violate and
makes this witness more robust contrary to what could suggest Fig.7.2.

7.2.3 Simpli�cation and summary of the protocol

The fact that it is necessary to average the local phases (i.e. between the state and the two
local oscillators) leads to some simpli�cations. Only the relative phase between Alice and
Bob has to be controlled (±π/4 et ±3π/4). Furthermore, for an homodyne measurement, we
have xθ = −xθ+π. Hence, the cases π/4 (resp. −π/4) correspond to the same measurements
as −3π/4 (resp. π/4) with an opposite sign. As a consequence, we only needed to estimate
two correlators.

1 the article [77] use another expression

pn =

∫
R

dxMn(x)P (x)

Mn(x) =
n∑

m=0

(−1)m+n

(2m+ 1)!!

(n
m

)
22m+1x2mΦ(m+ 1,m+ 1

2
,−x2) with the double factorial n!! = n(n− 2)(n−

4)..., 1!! = 1 et 0!! = 1, and the con�uent hypergeometric function Φ(a, b, z) =

∞∑
n=0

(a)n

(b)n

zn

n!
where (a)n =

a(a+ 1)(a+ 2)...(a+ n− 1), (a)0 = 1
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Figure 7.2: Separable bound Smax
sep as a function of the probability that at least

one of the two protagonists gets more than one photon p(nA ≥ 2 ∪ nB ≥ 2).
The dashed curve allows one to know the maximum value of the CHSH polynomial
Smax

sep that a state that is separable in the {|0〉, |1〉}⊗2 subspace can reach. If the
observed CHSH value Sobs > Smax

sep , one can conclude that the projection of the
state in the subspace with zero and one photon locally is entangled. The full curve
gives the maximum value that a separable state can reach. If the observed CHSH
value is higher than the latter, one can conclude about entanglement but without
saying where the entanglement lies.

Figure 7.3: The idea of the separable bound calculation can be represented by
a picture as above. The two-mode Hilbert space can be divided into two, the
separable states and the entangled states. By bounding the joint probability with
p∗ > p(nA 6 2 ∪ nB 6 2), we reduce the space that can be occupied by the
measured state. We �nd the separable bound Smax

sep by maximizing the parameter
S over all possible separable states in the bounded space. In order to witness the
entanglement speci�cally in the qubit subspace, we also include in the maximization
the states that are separable in the qubit subspace.
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In order to make the witness suitable for realistic network, we have modi�ed it compared
to the initial idea. Now we can summarize the complete protocol in a practical way as
follows.

• Quadrature measurements for two di�erent dephasings between Alice and Bob: +π/4
and −π/4 and a local phase-averaging.

• For each phase, we thus have a set of N measurements {xA1 , ...} for Alice and {xB1 , ...}
for Bob. From these measurements, we can estimate the two correlators

E =
1

N

N∑
k=1

sign(xAk ). sign(xBk ) , (7.8)

and then the CHSH parameter

S = 2E+π/4 + 2E−π/4 . (7.9)

• With the same quadrature measurements, we can estimate the local photon-number
probabilities in the qubit subspace, pA0 , p

A
1 for Alice and pB0 , p

B
1 for Bob

pn =
π

N

N∑
k=1

Fnn(xk) (7.10)

with Fnn the pattern function de�ned in section 2.4.4,

• and then the corresponding separable bound Smaxsep can be calculated.

7.3 Experiment with di�erent levels of entanglement

In this �rst experiment, we would like to test the entanglement witness for di�erent �levels�
of entanglement (cf �gure 7.4). This is realized by sending a single-photon state on a tunable
beam-splitter for di�erent values of the transmission. The single-photon state is produced as
described in Chap.4. The tunable beam-splitter is made of a half-wave plate and a polarizing
beam-splitter. The state after the beam-splitter is given by

cos(2θ)|0〉A|1〉B + sin(2θ)|1〉A|0〉B , (7.11)

where θ is the angle of the half-wave plate2.

Choice of the basis For the two homodyne detection measurements, we use the setup
already used in [53] mainly for two reasons. First, this scheme allows a passive stability of
the relative phase of the local oscillator between the two local oscillators. Secondly, it seems
more realistic, for a network, to use both polarizations: one as a quantum channel and the
other one to share the local oscillator. This kind of strategies is already used in quantum
key distribution protocols [24].

The relative phase is tuned with the help of a quarter-wave plate. If the axis of the
quarter-wave plate aligned with the linear polarization of the input beam, the polarization
remains the same, if it is turn by 45◦ the output polarization is circular. The setting of
the relative phase is done manually by changing the angle of the wave-plates. The behavior
of these wave-plates is not perfect and the relative phase is set precisely by monitoring the

2the polarization is turned by an angle 2θ
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Figure 7.4: Experimental setup. A tunable single-photon entangled state is cre-
ated by sending a heralded single-photon on a tunable beam-splitter based on a
polarizing beam-splitter (PBS) and a half-wave plate (λ/2). The proposed witness
is then tested with two independent homodyne detections (Alice & Bob). The local
oscillator is superposed to each modes via the �rst PBS. Its global phase is swept
with a piezoelectric actuator. The relative phase ∆ϕ is set with a combination of
wave plates.

fringes of interference between the seed from the OPO (instead of the single-photon state)
and each local oscillators. The relative phase resulting in a delay between the two fringes
when swept. We adjust this delay to obtain the desired relative phase. 3 4 In principle, the
choice of basis should be random, but for practical reasons this is not the case here.

Eventually, to average the local phases, a PZT before the polarizing beam-splitter is
swept over 2π exactly during the measurement time. This not only makes the local phase
random but, above all, makes it equally distributed. Nevertheless, the state we have tested is
not sensitive to this speci�c point, thus we do not expect any issue if this is not well-realized.

Data processing We perform the quadrature measurements by applying a temporal mode
to the continuous signal from the homodyne detection (as described in Chap.4). We then
perform the two processings required by the protocol. First, we compute the correlators for
both relative phases via eq. (7.9) and (7.8), and with the same data we estimate the �rst
two local probabilities with the pattern functions via eq. (7.10). It is important to note that
this reconstruction method is preferred to the MaxLik algorithm because, contrary to this
latter, it does not require assumption on the size of the Hilbert space. Nevertheless, for a
Hilbert space up to 5 photons, the MaxLik algorithm gives the same results.

3The precision of this setting has been mainly inferred by processing the waveform of the two fringes.
Some measurement of this kind are included in oscilloscopes softwares but the accuracy of this measurement
is di�cult to evaluate.

4The precise angles for the two wave plates have been found in a �semi-randomly� way: the behavior of
the wave-plates being not perfect, the precise setting is found by playing a little bit around the theoretical
positions. Nevertheless, by noting the angle of each wave-plates, it is possible to go back to the con�guration
and obtain a reproducible relative phase.
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Error estimation As we want a trustworthy conclusion of entanglement, it is necessary to
estimate the di�erent sources of errors due to the experimental imperfections but also sta-
tistical estimations. Indeed, the computation of the separable bound consists in maximizing
the S parameter with the constraint that the state is PPT. It also takes into account the
various errors that we now enumerate.

Firstly, statistical errors a�ect the measured value of the CHSH polynomial Sobs. These
errors are estimated in a standard way by using the central limit theorem. They are basically
very small (see Table 7.5) because they were deduced from 200,000 results.

Secondly, the accuracy with which the relative phase ∆ϕAB between Alice & Bob's
measurements is estimated to be 2◦. This means that when Alice and Bob choose a mea-
surement settings, the relative phase is not exactly equal to ±π/4 as it should be, but
∆ϕAB = ±π/4 + δϕ where −1◦ ≤ δϕ ≤ 1◦. This error is taken into account into the
separability bound.

Thirdly, errors also a�ect the local photon-number probabilities, which are estimated us-
ing the phase-averaged homodyne measurements [77]. Evaluating these errors is not a trivial
task. We use the following method for estimating the overall error. The tomography that we
use to access the local photon-number distributions leaves us with the diagonal elements of
an estimated density matrix ρestimate. Using this matrix, we simulate the quadrature data,
then reconstruct the diagonal elements of a simulated density matrix ρsimul. This matrix is
not perfectly equal to ρestimate for the same reasons than this latter is not exactly equal to
the real state. We simulate 200 matrices, always from the same initial state ρestimate. We
can thus estimate the errors make on the state reconstruction for each local probability pA0 ,
pB0 , p

A
1 , p

B
1 . . . The corresponding standard deviations provide δpA0 , δp

B
0 , δp

A
1 , δp

B
1 . . .

angle p _0 error p _1 error p >1 error p _0 error p _1 error p >1 error p * error S obs error S sep
max

0 99.8 0.1 0.2 0.1 0.01 0.01 30.6 0.2 65.4 0.3 3.94 0.19 3.9 0.262 0.104 0.001 0.235
5 98.9 0.2 1.1 0.2 0.06 0.04 30.6 0.2 65.5 0.3 3.84 0.20 3.9 0.258 0.353 0.003 0.355
10 92.9 0.2 7.0 0.2 0.10 0.06 36.9 0.2 60.4 0.3 2.70 0.18 2.8 0.274 0.776 0.004 0.643
15 83.6 0.2 16.1 0.2 0.32 0.10 45.6 0.2 52.1 0.3 2.28 0.17 2.6 0.294 1.085 0.004 0.893
20 72.3 0.2 27.2 0.3 0.54 0.13 55.5 0.2 43.2 0.3 1.26 0.17 1.8 0.314 1.289 0.004 1.017
22.5 65.0 0.2 34.0 0.3 0.95 0.16 63.1 0.2 35.8 0.3 1.06 0.16 2.0 0.338 1.326 0.004 1.060
25 59.4 0.2 39.3 0.3 1.33 0.17 67.3 0.2 31.8 0.3 0.90 0.13 2.2 0.312 1.330 0.004 1.072
30 48.3 0.2 49.6 0.3 2.17 0.17 78.2 0.2 21.3 0.2 0.47 0.10 2.6 0.292 1.235 0.004 0.989
35 38.8 0.2 58.4 0.3 2.77 0.18 89.5 0.2 10.5 0.2 0.05 0.06 2.8 0.283 0.951 0.004 0.755
40 32.2 0.2 64.2 0.3 3.66 0.20 96.9 0.2 3.1 0.2 0.05 0.04 3.7 0.265 0.527 0.003 0.493
45 30.1 0.2 66.3 0.3 3.59 0.19 99.7 0.1 0.2 0.1 0.02 0.01 3.6 0.224 0.112 0.001 0.233

Alice Bob

Figure 7.5: Experimental estimation of local probabilities and their corresponding
errors. The measured CHSH polynomial Sobs and the separable bound calculated
from the local probabilities.

Results We can see on Fig. ?? the results of the witness for di�erent levels of entanglement.
For each angle, the separable bound has been numerically calculated. For θ = 0, the
state |0〉|1〉 is separable and of course S doesn't violate the bound Smaxsep . By continuously
increasing the angle θ, we increase the entanglement and obtain a violation of the bound. The
S parameter goes back below Smaxsep for the separable state |1〉|0〉 (θ = π/4). We obtain the

best violation of the bound for the maximally entangled state (|0〉|1〉+ |1〉|0〉)/
√

2. However,
the maximal value is S = 1.3, even though the maximal expected value is S = 1.8. This is
due to the non-perfect single-photon resource and the losses of the homodyne detections. In
the next section, we will see how losses can degrade the entanglement and how the witness
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behaves in that case.
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Figure 7.6: Observed CHSH
values Sobs (the size of the
points accounts for the sta-
tistical errors) and separable
bound Smax

sep as a function
of the beam-splitter angle θ.
When Sobs > Smax

sep , one can
conclude that the measured
state is entangled.

7.4 Sensitivity to losses

Another important question is the following: is the protocol robust to the losses? Indeed,
one of the main issue of quantum networks is the losses which as a consequence limit its
range. In this second experiment, we test the witness with some losses on the channels. Two
cases can be distinguished, when the losses are symmetric, i.e. the same on both channels,
and asymmetric, i.e. one channel is more lossy than the other.

It is thus not obvious to have an intuition of what are the expected results: the losses
decrease the value of the parameter S but, in the same time, Smaxsep is also a�ected as the
local probabilities change too.

7.4.1 Theoretical study

For obvious reasons of simplicity, we �rst study the e�ect of the losses under the assumption
that the state is only in the qubit subspace. The way we study the e�ect of losses is the
following. We �rst consider the perfect single-photon entanglement of eq. (7.1). Then
we calculate the state a�ected by some losses and then the corresponding S parameter.
Secondly, from the corresponding local probabilities, we compute the separable bound and
also the maximal value of S. This study is applied to two cases of lossy channels, with
symmetric or asymmetric losses.

Bound with local probabilities For any state within the qubit subspace the CHSH param-
eter S is simply

S =
16

π
√

2
< [〈01|ρ̂|10〉] . (7.12)

We consider that the states, separable or not, which can maximize S are of the form (see SI
of [12])

ρ̂ =


p00 0 0 0
0 p01 d 0
0 d∗ p10 0
0 0 0 p11

 . (7.13)

This state should verify the following properties:



CHAPTER 7. SINGLE-PHOTON ENTANGLEMENT WITNESS 129

• pA0 = p00 + p01 and pB0 = p00 + p10 relationship between joint probabilities and local
probabilities,

• Tr[ρ̂] = 1 conservation of probabilities,

• ρ̂ > 0 physical state, all eigenvalues are positive, p01p10 > |d|2,

• 0 6 pij 6 1 probabilities.

The maximization of |d| under all these constraints gives the upper bound of S as

Smax =
16

π
√

2


√
pA0 p

B
0 if pA0 + pB0 6 1,√

(1− pA0 )(1− pB0 ) if pA0 + pB0 > 1.
(7.14)

If now we add the constraint of separability (PPT criterion)

ρ̂ is a separable state ⇒ ρ̂TB > 0⇔ |d|2 6 p00p11 .

Once again, the maximization of |d| gives the maximal value of S but this time for the
separable states,

Smaxsep =
16

π
√

2

√
pA0 p

B
0 (1− pA0 )(1− pB0 ) , (7.15)

which is the separable bound.

Symmetric losses

The case of symmetric losses is equivalent to start with a mixture of vacuum and single-
photon

η|1〉〈1|+ (1− η)|0〉〈0| . (7.16)

Obviously, the state after a 50:50 beam-splitter is

ρ̂sym = ηρ̂+ (1− η)|0〉|0〉〈0|〈0| (7.17)

with ρ̂ the ideal state (7.1) when one start from a perfect single-photon state.
To avoid any confusion, we note SMax ' 1.8 the maximal value achievable by a maximally

entangled state as explained at the beginning of the chapter and Smax the maximal value
compatible with the measured local probabilities. We have here the relationship

Smax = ηSMax . (7.18)

After the losses, the local probabilities become

pA1 = pB1 = η/2 . (7.19)

Replaced in eq. (7.14), we obtain the maximal value

Smax =
16

π
√

2
η/2 , (7.20)

In this case, the single-photon entangled state (7.1) maximizes the parameter S (i.e. Smax =
S(ρ̂η)). Similarly, by replacing the local probabilities in eq. (7.15), we have the correspond-
ing separable bound

Smaxsep =
16

π
√

2

η

2
(1− η/2) . (7.21)
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Asymmetric losses

We start by considering the ideal single-photon entanglement. We call ηA the transmission
e�ciency on Alice's channel and naturally ηB for Bob's one. The calculation gives, after
propagation through the lossy channels, the state

ρ̂ =
1

2


2− ηA − ηB 0 0 0

0 ηA
√
ηBηA 0

0
√
ηBηA ηB 0

0 0 0 0

 . (7.22)

In that case the CHSH polynomial provides the value

S(ρ̂) =
16

π
√

2

√
ηAηB

2
. (7.23)

Furthermore, the losses change the local probabilities in

pA1 =ηA/2 , (7.24)

pB1 =ηB/2 . (7.25)

The maximal value of Smax eq.(7.15) is again saturated by the state given in eq.(7.23) and
the corresponding separable bound is in that case

Smaxsep =
16

π
√

2

√
ηA
2

ηB
2

(1− ηA/2)(1− ηB/2) . (7.26)

Discussion The two cases are plotted on �gure 7.7. One can be tempted to readily conclude
that the parameter S is more sensitive to symmetric losses than asymmetric losses as Ss(η) <
Sas(η), but this is not relevant. Indeed, the question should be asked as following. The
distance between Alice and Bob is �xed, let us call ηAB the overall transmission of the
channel. The question is where to place the single-photon entanglement source? On Bob
side? or in the middle?

These two situations are depicted on �gure 7.8. If the source is on Bob side, this is
equivalent to take in the model ηA = ηAB and ηB = 1. If the source is in the middle,
we have ηA = ηB =

√
ηAB . In order to compare both cases in terms of distance, we use

a logarithmic scale (i.e. losses in dB). Indeed, the distance is proportional AB ∝ log10 η.
Actually, in both cases, S is the same, but on the other hand the two separable bounds are
di�erent.

7.4.2 Experiment

Strategies The �rst obvious idea, to add some losses on a channel, is to add a variable
attenuation (made of a polarizing beam-splitter and a half-wave plate) but, in that case,
we introduce some losses in the experiment and we would like to start with a good state.
Moreover, the local oscillator and the state being shared in the same spatial-mode but two
orthogonal polarizations, the losses will be much more di�cult to manage as it could also
a�ect the homodyne detection.

Another possibility was to increase the dark count. Indeed, we increase in that case the
vacuum component in the statistical mixture, which is equivalent to some losses. But this
method has two drawbacks: �rst, it only allows to study symmetric losses and secondly,
the experiment changes during time. Hence, we do not really study only the e�ect of
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Figure 7.7: S parameter and associated separable bound for di�erent values of
the transmission channel. Left: symmetric losses. Right: asymmetric losses.
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Figure 7.8: For a �xed distance between Alice and Bob, the source of entangle-
ment can be on one site (Bob for instance) or in the middle (left). Depending
on this position, losses will not be split in the same way, only the global losses is
preserved ηAB = ηAηB . It turns out that the measured parameter S is the same
whatever the position of the source (right). However, this is not the case for the
separable bound, and it is easier to violate the bound with asymmetric losses.

losses.5 Moreover, owing to the sensitivity of the separable bound it seems di�cult to study
the behavior of the witness with losses if, in the same time, the multi-photon components

5by increasing the polarization current of the SSPD, we have observed a decrease of the single-photon
component and an increase of the vacuum component as expected but, in the same time, an increase of
the two-photon component that is, on the other hand, unexpected. This behavior is not explained. The
increase of the polarization current increases the quantum e�ciency but in the same time the e�ect of the
dark count should be slower. At least, we can expect to see a slower decrease of the two-photon compared
to the single-photon.
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change. So we have considered another strategy.
Eventually, we have taken advantage of the continuous-wave regime of our homodyne

detections. If the temporal mode is not centered on the single-photon mode, there is a
temporal mode mismatch, and the other modes being �lled by the vacuum state (or a state
extremely close with at least 98% of vacuum state), this is equivalent to optical losses. These
losses are given by the overlap between the two temporal modes.

η(τ) =

∫
f(t)f(t+ τ)dt = (1 + γ|τ |)e−γ|τ | . (7.27)

This strategy has many advantages: we work with exactly the same state, only the losses
vary; we can make the losses asymmetric and we can a priori precisely control the value of
the losses. Hence, we reuse the previous data in the case of the maximally entangled state
and modify the temporal mode.

Results The results of the two situations are plotted on �gure 7.9. In order to have a
better illustration, we consider the whole losses, with η = ηAηB . We roughly estimate the
local losses (in a good approximation) with the local probability ηA = 2pA1 and ηB = 2pB1 .
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Figure 7.9: Single-photon entanglement witness for various losses. Left: the losses
are applied in the same way for both homodyne detections. Right: the losses vary
on only one side. For both we give the two separable bounds: the �standard� one
based on local probabilities of 0 and 1 photon; and the �enhanced� bound based
on the additional local probabilities of two photons.

Surprisingly, the symmetric losses allows to prove the entanglement further than the
case of asymmetric, where the theoretical study lets us think that it would be the contrary.
However, these results are quite recent and probably require deeper investigations. Indeed,
for important value of losses, may be the small defects become less negligible.
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7.5 Conclusion

We have presented and experimentally tested a witness for single-photon entanglement.
This witness does not need post-selection and uses local measurements only. Moreover,
it does not rely on assumptions about the dimension of the measured state. Our work
thus brings experiments based on continuous variables into the realm of device independent
quantum information processing. Note that our witness can be easily adapted to detect few-
photon entanglement without additional complications. We believe that it will naturally �nd
applications in long distance quantum communication, allowing users to check whether two
remote nodes of a given quantum network are entangled. One important challenge in this
context is to reveal the entanglement shared by a large number of parties. Finding Bell
inequalities that could be used as witnesses for multi-partite single-photon entanglement is
work for future.

Besides, we have shown that this witness is in the ideal case robust against losses. In the
realistic case the range is limited by the photon component outside of the qubit subspace.
Nevertheless we have shown that the range of the witness can be extended if we include
the knowledge of the two-photon components which actually are the main part of the state
outside of the qubit subspace.

To go further in the discussion, we have seen that in principle the witness is robust to
any losses, but in practice this is not the case, the only limitation comes from the amount
of state out of the qubit subspace. Could we reduce the e�ect in order to extend the range
of the witness? Generally, the part out of the qubit subspace contains mainly some two-
photon components. Without additional measurements, it is possible to measure the higher
photon-number local probabilities. Therefore, the idea is to include the supplementary local
probabilities pA2 and pB2 in the optimization of Smaxsep . As can be seen on �gure 7.9, this
additional knowledge makes the bound tighter and thus extends the range for which the
bound can be violated.

However, as indicated by the previous theoretical study, as the losses increases, the vi-
olation becomes smaller, that is why we do not expect a strong decrease of the bound.
Nevertheless, the violation should be always possible. One can thus wonder what is the
limitation and how we can improve again this bound. It turns out that the two remaining
limitations are the error on the local probabilities and the uncertainty on the phases. Nev-
ertheless, even without any errors the bound is not improved a lot. Actually, the fact that
a part of the state is outside of the qubit subspace makes necessarily this witness limited.
In conclusion, to extend the range of the witness, the source itself should be enhanced with
a lower part out of the qubit subspace.
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8 | Hybrid Entanglement

I always think of music as interior decoration. So,
if you have all kinds of music, you are fully
decorated!

Wayne Shorter

The wave-particle duality of light has led to two di�erent encodings for optical quantum
information processing [86]. Several approaches have emerged based either on particle-
like discrete-variable states [48], e.g. �nite-dimensional quantum systems, or on wave-like
continuous-variable states [107], e.g. in�nite-dimensional systems. Moreover, none seems to
be better than the other. Indeed, both have advantages and drawbacks. More interestingly,
most of the time, it turns out that the weakness of one corresponds to a strong point for
the other. The question that arise is: can we take advantage of both? Can a hybrid system
be better?

Here, we demonstrate the �rst measurement-induced generation of entanglement be-
tween optical qubits of these di�erent types, located at distant places and connected by
a lossy channel [76]. Such hybrid entanglement, which is a key resource for a variety of
recently proposed schemes [113], including quantum cryptography and computing, enables
to convert information from one Hilbert space to the other via teleportation and therefore,
connect remote quantum processors based upon di�erent encodings. Beyond its fundamental
signi�cance for the exploration of entanglement and its possible instantiations, our optical
circuit opens the promises for heterogeneous network implementations, where discrete and
continuous-variable operations and techniques can be e�ciently combined.

In this chapter, we �rst highlight the interest of hybrid strategy. Next, we describe the
protocol for generating hybrid entanglement between �eld-like and wave-like optical qubits.
Then the experiment is described and the obtained results are analyzed. After, we give more
details about the the experimental setup. We end with a discussion of possible extensions
and improvements.

8.1 Hybrid strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2.1 Optical circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2.2 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2.3 Phase terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.3 Experimental demonstration . . . . . . . . . . . . . . . . . . . . . 139

8.3.1 Global setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 139

8.4 Details about the experiment . . . . . . . . . . . . . . . . . . . . 142

8.4.1 Connecting the two OPOs . . . . . . . . . . . . . . . . . . . . . . 143

8.4.2 Control and measurements of the phases . . . . . . . . . . . . . . 144

8.4.3 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.4.4 Data acquisition and processing . . . . . . . . . . . . . . . . . . . 148

8.5 Further discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

135



136 8.1. HYBRID STRATEGY

8.1 Hybrid strategy

The discrete and the continuous-variable approaches to linear optical quantum computing
[96] and quantum communication rely on di�erent physical states for their implementation.
The �rst one involves single-photons [47], and the photonic qubits live in a two-dimensional
space spanned for example by orthogonal polarizations or the absence or presence of a single-
photon, as expressed by c0|0〉+ c1|1〉. In the continuous alternative, the encoding is realized
in the quadrature components of a light �eld, in an inherently in�nite-dimensional space,
and the qubits, also known as qumodes [113], can be implemented for instance as arbitrary
superpositions of classical light waves with opposite phases [43, 95], c0|α〉+ c1| − α〉, where
|α〉 is a coherent state with a mean photon number |α|2.

In parallel to the demonstration of groundbreaking experiments with single-photons, co-
herent state superpositions also spurred a considerable theoretical and experimental activity
over the last years as reminiscent of the Schrödinger cat state but also as the main o�-line
resource for investigating continuous-variable-based protocols as seen in chapter 5. Quan-
tum repeater architectures using this paradigm have been proposed [102, 9] and there is now
a variety of schemes for quantum computing using such a computational basis, including
fault tolerant operations with small amplitude coherent states [60].

Both encodings have their own advantages and drawbacks [90]. Continuous-variables
can bene�t from unconditional operations, high detection e�ciencies, unambiguous state
discrimination and more practical interfacing with conventional information technology. It
is however well-known that they su�er from a strong sensitivity to losses and intrinsically
limited �delities. On the other side, discrete-variable approaches can achieve close to unity
�delity but usually at the expense of probabilistic implementations. Combining the two,
i.e. achieving hybrid architectures, may o�er serious advantages [113, 56]. In this endeavor,
transferring information between the two encodings is a crucial requirement.

Hence, entangled states between modes using a di�erent encoding are therefore labeled
hybrid entanglement. These states are obviously useful resources to connect systems using
di�erent encodings.

8.2 Protocol

In contrast to proposals based on a daunting dispersive light-matter interaction [112] or Kerr
non-linearities between single-photon and coherent states ([44] and references therein), we
have proposed and implement a measurement-induced generation of such an entangled state
at a distance. Similar to the Duan-Lukin-Cirac-Zoller protocol in the discrete variable regime
[20], or the remote generation of quasi-Bell states in the continuous variable regime [87], our
scheme relies on a probabilistic preparation heralded by the detection of a single-photon in
an indistinguishable fashion. The fragile components remain local and only single-photons
propagate between the two distant nodes. A lossy channel a�ects in this way the preparation
rate but not the �delity of the resulting state.

8.2.1 Optical circuit

The optical circuit is illustrated in Fig. 6.4a. Alice and Bob (denoted A and B in the
following), who are using respectively discrete variable (DV) and continuous-variable (CV)
encodings for information processing, are willing to establish hybrid entanglement. In order
to establish this inter-node connection, they prepare locally two non-classical light �elds:
a two-mode squeezed state in the very low gain limit on Alice's side, |ψ〉s,i = |0s, 0i〉 +
λ|1s, 1i〉+O(λ) where s and i stand for the signal and idler modes and a single-mode even
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Figure 8.1: Distant nodes of a quantum network can rely on di�erent information
encodings, i.e. continuous (CV) or discrete (DV) variables. A Router enables at a
distance to establish hybrid entanglement between the nodes. For instance, Alice
sends one mode of a weak EPR state |0〉|0〉 + λ|1〉|1〉 towards the Router while
Bob transmits a small part of a cat state |α〉 + | − α〉. The two modes interfere
in an indistinguishable fashion on a beam-splitter. Each detection event at the
output heralds the generation of qubit-qumode entanglement between Alice and
Bob, which can be used for further processing or hybrid teleportation.

cat state on Bob's node, |cat+〉 = |α〉 + | − α〉. A small fraction of the cat state is then
tapped o� and transferred to a router station, where it can be superposed on a tunable
beamsplitter, in an indistinguishable way, with the idler mode of Alice's state. Conditioned
on the detection of a single-photon at the output, and with a beamsplitter ratio adjusted to
balance the two contributions, the resulting state is a maximally entangled state, which in
the ideal case can be written as:

|Ψ〉AB = |0〉A|cat−〉B + eiϕ|1〉A|cat+〉B , (8.1)

where ϕ is the overall relative phase for the triggering modes, which can be controlled and
adjusted, and |cat−〉 = |α〉 − | − α〉 denotes an odd cat state.

This generation procedure can be understood in the following way: a detection event
heralds either the subtraction of a single-photon from the even cat state, resulting in a
parity change and leaving Alice's signal mode in a thermal state very close to vacuum, or
the detection of a single-photon in the idler mode, resulting in projecting the signal into a
single-photon state and leaving unchanged the initial cat state. Importantly, the generation
process is not a�ected by the losses in the transfer to the router station as only single-photons
propagate.

The resulting entangled state can also be written using for Alice the rotated qubit basis{
|+〉 = (|0〉+ |1〉)/

√
2, |−〉 = (|0〉 − |1〉)/

√
2
}
as:

|Ψ〉AB = |+〉A|α〉B + eiϕ
′
|−〉A| − α〉B . (8.2)

This state directly enables the teleportation of a qubit encoded in the {|+〉, |−〉} basis
to the coherent state computational basis {|α〉, | − α〉}. It also refers to the spirit of the
Schrödinger Gedankenexperiment where the two classical states (in the sens of the Wigner
function negativity) are entangled with a microscopic degree of freedom. Let us note also
that a Hadamard gate, which can be performed with non-gaussian ancilla and projective
measurements [67], would enable to convert this state into the state |0〉A|α〉B + |1〉A| −α〉B .
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8.2.2 Calculation

Let us put in equation this protocol. We tap a small amount of the cat state with a
beam-splitter of small re�ection. This is written B̂ = eθ(âb̂

†−â†b̂) ≈ 1 + θ(b̂†â − b̂â†) with
r = sin θ ≈ θ � 1. The mode b being vacuum the second term becomes 0. The resulting
state is (1 + θb̂†â)Ŝa|0〉a|0〉b. On the other side, the type-II OPO produce a weak EPR state
|0〉c|0〉d + λ|1〉c|1〉d with λ� 1. The full state is written

(1 + θb̂†â)(1 + λĉ†d̂†)|cat+〉a|0〉b|0〉c|0〉d . (8.3)

The mode b and c are mixed on a beam-splitter of transmission t and re�ection r in ampli-
tude. We then do the exchange b̂† −→ tb̂† + rĉ† and ĉ† −→ tĉ† − rb̂†. This yields to

(1 + θâ(tb̂† + rĉ†))(1 + λd̂†(tĉ† − rb̂†))|cat+〉a|0〉b|0〉c|0〉d . (8.4)

By neglecting the second order terms λθ, one obtain:[
1 + θâ(tb̂† + rĉ†) + λd̂†(tĉ† − rb̂†)

]
|cat+〉a|0〉b|0〉c|0〉d . (8.5)

We detect one photon on mode c, the state is then (without normalization)

θr|0〉dâ|cat+〉a|0〉b + λt|1〉d|cat+〉a|0〉b . (8.6)

Knowing that â|cat+〉 = α|cat−〉 the state is rewritten as:

θr|0〉dα|cat−〉a|0〉b + λt|1〉d|cat+〉a|0〉b . (8.7)

The mode b is not considered anymore and being not entangled with the other modes, it
doesn't a�ect the state on mode a and d. The ratio of the superposition can be adjusted
with the re�ection of the beam-splitter.

8.2.3 Phase terms

In the previous calculation we did not include the phase, more speci�cally the e�ect of
propagations. Let us modify this calculation to take them into account.

First, we do not consider the phase of the cat state and we include it in the amplitude
α (i.e. α = eiφ0 |α|). Similarly for the EPR state, lets say that λ is possibly a complex
number. When the small part of squeezing is tapped on mode b, it then propagates to the
second beam-splitter to be mixed with mode c, and similarly the mode c propagates to the
beam-splitter too. During this propagation, we have a phase shift given by the Hamiltonian
of evolution, in other words b̂† −→ eiϕI b̂† and â† −→ eiϕII ĉ†. Thus, the equation (8.3)
becomes

(1 + eiϕIθb̂†â)(1 + eiϕIIλĉ†d̂†)|cat+〉a|0〉b|0〉c|0〉d . (8.8)

This yields at the end to the state

θr|0〉dα|cat−〉a|0〉b + ei(ϕII−ϕI)λt|1〉d|cat+〉a|0〉b . (8.9)

Independently of the choice of the two output modes bases, the phase of the superposition
can be adjusted by the path lengths of the two mixed modes. This is why this paths should
be controlled as well as the phase of the two output states.
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8.3 Experimental demonstration

8.3.1 Global setup

In this experiment, we run the single-photon experiment (Chap.4) and the cat experiment
(Chap.5) together. On Bob's site, a type-I OPO is used to generate a single-mode squeezed
vacuum with 3 dB noise reduction below shot noise level. For |α|2 . 1, this state has a
close to unity �delity with an even cat state |cat+〉. A small fraction, R = 3%, of the light
is tapped o� via a beam-splitter. Subtracting a single-photon from this state results in
the generation of an odd cat state (cf chapter 5). On Alice's side, the required two-mode
squeezed vacuum is generated by a type-II frequency-degenerate OPO. At the output, the
orthogonally polarized signal and idler modes are spatially separated via a polarizing beam
splitter. The device is operated very far below threshold (around 100 times below) in order
to limit the multi-photon component to a few percents (cf chapter 4). The tapped mode and
the idler mode are then brought to interfere. Before detection, frequency �ltering elements
are needed to remove the non-degenerate modes emitted by the OPOs. Finally, the �ltered
mode is detected by a superconducting single-photon detector (SSPD, Scontel) working at
cryogenic temperature. The very low dark noise (below 1Hz) avoids false detection events,
a crucial feature to achieve high-�delity in the state generation.

To achieve entanglement, various parameters have to be strictly controlled. First, the su-
perposed beams must be indistinguishable in all degrees of freedom. This stringent condition
requires in particular to match the bandwidth of the two OPOs. Starting from similarly-
built OPOs, a �ne tuning of the cavity lengths is performed by adjusting the temporal modes
in which the conditional states are emitted when operated separately.

Second, the relative phase ϕ has to be kept constant [111]. The di�erent phases in the
experiment are therefore controlled and actively stabilized by using auxiliary weak beams
injected into both OPOs. The additional di�culty, compared to when the experiments
are run independently, are the di�erent phases to control. In particular, the stability of
the relative phase between the two beams from each OPOs on the mixing point should be
controlled otherwise the coherence part of the state is lost leading to a statistical mixture
of the form |1〉〈1| ⊗ |cat+〉〈cat+|+ |0〉〈0| ⊗ |cat−〉〈cat−|.

Eventually, to realize a two-mode tomography it is necessary to perform pairwise quadra-
ture measurements (xI , θ;xII , ϕ) with all possible combinations of the phases θ and ϕ. We
should either control the phases of the local oscillator or measure it. The control is more
di�cult, that is why we have chosen the option to measure the phases. For this purpose, we
will use the information of the interference between the seed and the local oscillator.

8.3.2 Results and discussion

The heralded state ρ̂ is characterized by a two-mode quantum tomography performed with
two high-e�ciency homodyne detections (η = 85%), one on each node.

This new kind of hybrid state raises the question of how to represent it in a visual
and illustrative manner. Indeed, density matrix is well suited for DV states and Wigner
function for CV states. However, whatever the encoding, we consider qubits. Hence, a
density matrix in the qubit basis speci�c to each mode should be appropriate... but the
decoherence can be an issue. For the DV qubit, despite decoherence the state stays in the
two-dimension basis, but this is not the case for the CV part. Therefore, we have chosen
as a convenient representation to display the Wigner functions associated with the reduced
density matrices 〈k|ρ̂|l〉, where |k〉,|l〉 stand for the discrete qubit states. It is worth noting
that the sub-matrices are not normalized (which actually would not make sense for the o�
diagonal matrix). Hence, as for a density matrix, each Wigner function is weighted by their
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Figure 8.2: Experimental setup. Alice and Bob locally generate the required
resources by using continuous-wave optical parametric oscillators operated below
threshold. A two-mode squeezer and a single mode-squeezer are used respectively
on Alice's and Bob's node. A small fraction of Bob's squeezed vacuum is tapped
(3%) and mixed at a central station to the idler beam generated by Alice. The
resulting beam is then frequency �ltered (conditioning path) and detected by a
superconducting single photon detector (SSPD). Given a detection event, which
heralds the entanglement generation, the hybrid entangled state is characterized
by two high-e�ciency homodyne detections. Photodiodes P1, P2 and P3 are used
for phase control and stabilization. The beam-splitter ratio in the central station
enables to choose the relative weights in the superposition. FP stands for Fabry-
Perot cavity, IF for interferential �lter, PBS for polarizing beam-splitter and LO for
local oscillator.

contribution in the whole state. Moreover, when k = l the reduced matrix is Hermitian thus
the corresponding Wigner functions have real values.

The experimental results are given in Fig.8.3a without and with correction for detection
losses, for a phase set to ϕ = π and a beam-splitter ratio tuned to balance the detection
probability from each nodes. The diagonal elements, namely the projection 〈0|ρ̂|0〉 and
〈1|ρ̂|1〉, correspond respectively to a photon-subtracted squeezed state and to a squeezed
state. The non-zero o�-diagonal terms witness the coherence of the superposition. The
generated state can also be represented using as another projection basis the rotated one{
|+〉 = (|0〉+ |1〉)/

√
2, |−〉 = (|0〉 − |1〉)/

√
2
}
(Fig. 8.3b). As it can be clearly seen from the

contour plots, the two projections 〈+|ρ̂|+〉 and 〈−|ρ̂|−〉 exhibit an opposite displacement in
phase space, corresponding with large �delity to the two states |α〉 and | − α〉. Corrected
for detection losses, we obtain a �delity 77±3% with the targeted state with ϕ = π and
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ba

Figure 8.3: Experimental quantum state tomography. The relative phase
is set to ϕ = π and the beamsplitter ratio in the central station is adjusted to
generate a maximally entangled state, i.e. with equal weights. a, Wigner functions
associated with the reduced density matrices 〈k|ρ̂|l〉 with k, l ∈ {0, 1}, without
and with correction for detection losses (η = 85%). The components with k 6= l
being not Hermitian, the corresponding Wigner functions are not necessarily real,
but conjugate. The plot gives therefore the real part for 〈0|ρ̂|1〉 (back corner) and
the imaginary part for 〈1|ρ̂|0〉 (front corner). b, Wigner functions associated with
the reduced density matrices 〈k|ρ̂|l〉 with k, l ∈ {+,−}, corrected for detection
losses.

|α| = 0.9.
There are numerous criteria for entanglement, in appendix E we describe few of them.

The von Neuman entropy is not relevant in our case because we have mixed states. The
concurrence will be not considered either because its generalization to mixed states is not
straightforward to compute. To quantitatively assess the generated entanglement, we have
computed the negativity [117] given by N =

(
||ρTA ||1 − 1

)
/2, where TA stands for the

partial transposition. Here, we have used the useful form

N (ρ̂) =
1

2

∑
i

|λi| − λi , (8.10)

where λi are the eigenvalues of the partial transpose (we could also use the logarithmic
negativity EN (ρ̂) = log2 ‖ρTA‖1 = log2(2N + 1)). We remind that for a qubit the maximal
value of the negativity is 0.5.

Ideally, the state reaches 0.5 (i.e. maximally-entangled state). Experimentally, N =
0.26 ± 0.01 is obtained without correction for detection losses and N = 0.37 ± 0.01 when
corrected, demonstrating the hybrid entanglement remotely prepared between the two par-
ties. The heralding rate is equal to 30 kHz, limited by an overall loss in the conditioning
path equal to 97%. This lossy channel would be equivalent to 75 km of �ber at telecom
wavelength. This value con�rms the reliability of our method to establish entanglement
connection on long distances.
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Figure 8.4: Experimental quantum states from separable to maximally en-

tangled. The relative phase is set to ϕ = 0 and the beam-splitter ratio at the
central station is tuned. The blocks provide the Wigner functions associated with
the reduced density matrices 〈k|ρ̂|l〉 with k, l ∈ {0, 1}. For each generated state,
the negativity N is computed, showing the transition from separable to maximally
entangled state and back to separable.

The accurate control on the experimental parameters achieved in our implementation
also enables the complete engineering of the hybrid state by choosing the relative phase ϕ
and the superposition weights. Figure 8.4 provides the example of states with ϕ = 0, i.e.
opposite to the one used in Fig.8.3, and for di�erent ratio of the beam-splitter used for
the mixing. The two extreme states result indeed from heralding events coming only from
Alice's node or Bob's node. The �gure in the middle provides the balanced case, which is
very similar to the one provided in Fig.8.3a but with an opposite phase, as can be seen in
the o�-diagonal terms. The two other blocks give examples of intermediate ratios, showing
the building up of the coherences. The negativity is provided in each case, showing the
transition from separability to entanglement and back.

Experimental imperfections can be summarized on both nodes by an e�ective local ef-
�ciency, ηA and ηB , which mostly arises here from transmission losses, �nite detection
e�ciency and escape e�ciency of the OPO given by T/(T +L) where T is the transmission
of the output coupler and L the intracavity losses. Dark counts are negligible in our ex-
periment. By using the value of the Wigner function at the origin for the states generated
independently, these e�ciencies are estimated to be ηA = 76±2% and ηB = 71±2%. These
values are in agreement with the observed negative value at the origin of the Wigner function
for the odd cat state 〈0|ρ̂|0〉 given in Fig. 8.3a, W0 = −0.14 ± 0.01 (not corrected, ideally
−1). Let us note that both local e�ciencies contribute in this resulting value. Projecting
on Alice's side translates indeed into adding an extra vacuum contribution on Bob's side
resulting from her non-unity local e�ciency. Achieving negativity without correction is thus
a di�cult task here and constitutes a notable feature of our work.

8.4 Details about the experiment

In this section, we discuss in detail the experimental setup. In particular, how are controlled
the various phases, the acquisition of the data etc.
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8.4.1 Connecting the two OPOs

The states emitted by the optical parametric oscillators (OPOs) have to be combined in an
indistinguishable fashion. To meet this stringent requirement, the two OPOs are built with
as close as possible cavity geometry and coupler transmissions. An additional �ne tuning
is performed for the spectral matching by adjusting the length of the cavities. This tuning
is checked by computing the overlap between the reconstructed temporal modes. A value
above 99% is obtained, as shown in Fig. 6.5b) (in Chap 6). This value may seem too high
but if we make the calculation1 we �nd that this matching is not extremely sensitive to the
size of the cavities (see �gure 8.5).

The two beams are put in the same spatial mode with the help of a polarizing beam-
splitter, then a half-wave plate and another polarizing beam-splitter allows us to choose the
ratio of the superposition. This ratio can be tuned with the respective count rate from each
OPO, the seeds being not proportional to it, we cannot realize it by simply balancing the
two seeds.

The two beams are also spatially matched and a visibility equal to 80% is obtained right
after the beam-splitter where the modes interfere. However, the subsequent Fabry-Perot
cavity in the heralding path as well as the optical �ber towards the detector plays the role
of spatial �lters. Indeed, only the mode spatially matched with the cavity is transmitted.
In other words, the beams impinging on the single-photon detector are the projections in
the same spatial mode of the two combined beams. The visibility before this �ltering only
a�ects the count rate.
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Figure 8.5: Spectral mode-matching. For a OPO cavity of length L1 = 35 mm
(and a 10% transmission of the output coupler) we plot the spectral overlap as a
function of the second cavity length L2.

1Thanks to Parceval's theorem we have

∫
f1(t)f2(t)dt =

∫
f1(ω)f2(ω)dω. Here we have

1
√
πωc

1

1 + (ω/ωc)2
with ωc ∝ 1/L. We thus obtain

∫
f1(t)f2(t)dt =

∫
π
√
γ1γ2e

−π(γ1+γ2)|t|dt =

2
√
γ1/γ2

1 + γ1/γ2
=

2
√
L2/L1

1 + L2/L1
.
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Figure 8.6: Locking of the relative phases.

8.4.2 Control and measurements of the phases

As in the previous experiments, we repeat a two step pattern: one for the measurements and
one for the locking of the µCavity. Here, we use the time of locking, which is a dead time
for the measurements, to also control the di�erent phases. More precisely, during this time,
some weak beams (coherent states the so-called seeds) are injected in the di�erent parts
of the setup and used as reference to adjust the di�erent path lengths in order to control
the relative phase between the two OPOs and the quadrature phases for each homodyne
detections.

The various phases involved in the experiment are depicted in Fig. 8.6. After an heralding
event, the generated state |Ψ〉AB can be in the ideal case written as:

|Ψ〉AB = |0〉A|cat−〉B ± eiϕ|1〉A|cat+〉B (8.11)

where ϕ = (φp1 + φ1a)− (φp2 + φ2a). φp1 and φp2 are the overall propagation phases deter-
mined by the pumps, while φ1a and φ2a correspond to the phases acquired in propagation
from the OPOs to the mixing beam-splitter. To achieve entanglement, ϕ has to be kept
constant [111]. The ± sign comes from the π phase shift between the two outputs of the
beam-splitter. Only one output is used to herald the generation in our experimental imple-
mentation.

We actively stabilize the relative phase ϕ by using auxiliary weak beams injected into
the two OPOs. The relative phase can be re-written as ϕ = β1 − β2 + ξ with

βi = (φpi − φsi) (8.12)

ξ = (φs1 + φ1a)− (φs2 + φ2a) (8.13)

βi represents the relative phase between the pump and the seed, while ξ is the relative phase
between the two arms formed by the seeds and their propagations to the beam-splitter.

Another way to approach the problem of phases is to see the experiment in the Fresnel
plane. First, a phase is never absolute, it is always de�ned thanks to a reference. The phase
di�erence between two coherent states is easy to measure with interferences. For the states
we consider and, above all, the power of these states, this is impossible. Hence, each seed
will be the reference of the homodyne measurement. In other words, these coherent state
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will be �xed in their respective Fresnel basis. We thus know the measured quadrature with
the interference with the local oscillator. To obtain reliable tomography, we �rst need to
locally �x the phase of the state in the basis of measurement. The state is π periodic so
any uncertainty modulo π will be not an issue. Secondly, the two basis should be relatively
�xed, in order to measure the quantum nature of the correlations. This is be possible by
locking the interference of the seeds on a �xed interference level.

All the trick lies in the fact that the propagation phase shift is assumed to be the same
for the quantum state and the seeds, which is reasonable for short times.

NB: It was �rst considered using the pump beams exiting from the two OPOs to lock
the di�erent paths. But two problems make this technique not possible. First, the pump
beam at 532 nm and the state at 1064 nm are not exactly in the same spatial mode from
the output of the OPO and this separation increases through each optical element. This is
due to the non-perfect normal incidence of these latter. In any case, even if we could reach
a perfect alignment, the thermal �uctuations change the optical path of the two di�erent
wavelengths.

Phase reference βi As depicted on �gure 8.7, a weak 1064 nm beam (seed) is injected into
each OPO. Owing to the parametric ampli�cation, the amplitude of the beam depends on
the relative phase βi between the pump and the seed. Locking the output beam at a constant
intensity level enables to set the phase of the output beam. For this purpose, a small ratio
of the seed is tapped locally from the conditioning path and measured with a photodiode
(P1 and P2 in Fig. 8.6). We then lock it on a maximum, by using the Dither-and-lock
technique.

IR seed

OPO

DTH locking + High
voltage amplifier

timing

Mechanical
shutter

�/2 PBS

Conditioning
path

Homodyne
detection

Figure 8.7: A weak IR beam is injected into the OPO (seed) and measured by
tapping a small part of it on the conditioning path. The seed is lock in phase with
the pump by using the e�ect of ampli�cation (parametric gain) as the amplitude
depends on the relative phase between the pump and the seed. A feed-back on a
PZT changes the phase of the seed relatively to the pump. The seed has thus the
same phase as the state from the output of the OPO.

Phase of superposition ξ The phase of the superposition φ in our state |1〉|cat+〉 +
eiφ|0〉|cat−〉 can be de�ned by the path di�erence between the two OPOs. (Actually, it
is the path di�erence from the splitting of the two pump beams to the mixing point on the
conditioning path.) It is thus necessary to lock it. For this purpose, we lock the phase with
the help of the interference between the two seeds (cf �g 8.8).
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After combination of the two modes, we lock the relative phase ξ using the interference
between the two seeds, as shown in Fig. 8.7. The value of this phase can be chosen by
the locking point. This capability enables to engineer the entangled state by choosing the
relative phase ϕ. We note that the ratio of the beam splitter can also be modi�ed to choose
the relative weights.
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OPO 2
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High voltage
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Figure 8.8: The beam from the two OPO are combined into the same spatial
mode with a polarizing beam-splitter, they are then mixed with a second polarizing
beam-splitter after rotating the polarization with a half-wave plate. This rotation
that will de�ne the ratio of the superposition. Thanks to the locking of the seed
depicted on Fig. 8.7, the two seeds have the same phase than the states (output of
the the two OPO). The interference between the two seeds gives the information
of phase di�erence between the two OPO outputs including propagation up to this
�mixing� point. This relative phase is the relative phase of the superposition. We
can thus lock this phase by using the interference signal as an error signal.

Local phase The phase of the quadrature measured by the homodyne detection is not
controlled: the random nature of the events gives us an homogeneous distribution of phases
and we don't need more for the two-mode tomography. However, failing to control the phase,
we need at least to be able to measure it. This is quite easy for the CV part: we can measure
the arches of squeezing. But for the DV part, we cannot use this trick. So we use the seed
and look at its interference with the local oscillator to infer the phase (the level of the signal
is linked to the relative phase between the two beams). Thus, if we know the relationship
between the signal and the phase, we can estimate the current phase between two cycles.
Unfortunately, the amplitude of the seed is not perfectly stable and, on the other hand, the
precision is not the same for all phases. To overcome these two di�culties, the phase of
the local oscillator is swept thanks to a PZT and we then �t the resulting signal (fringes of
interference pattern) with a sine function. However, the response of the PZT is not linear.
We take into account this non-linearity with a second order term (sin(at2 + bt+ c)). a and
b are intrinsic to the PZT and do not change when the sweep parameters (speed, voltage,
o�set) stay unchanged. The parameter c corresponds to the phase drift of the local

oscillator (change of path length by mechanical relaxation) and does not vary extremely
fast. Thus, for one tomography, the complete �t is done once, after, only the parameter
c is adjusted. Note that the interference is directly measured with the DC signal of the
homodyne detection. Besides, this non-linearity also depends on the speed of the sweep. As
the phase is also swept during the measurement, it is necessary to use the same sweep during
the phase of measurement and during the phase of locking-calibration. As a consequence, it
will be the same time duration for both: 50ms of calibration and 50ms of measurement.
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NB: We need some quadrature measurements for all the di�erent possible distributions
of phase of the two homodyne detections. Due to the good stability of the experiment, the
phase drift between the two homodyne detections is extremely slow (typically π after few
minutes), the relative phase is thus constant during a too long time. An additional piezo is
thus used to arti�cially create a phase drift.

In order to check the reliability of the lockings and calibration, we have use as a witness
the sign correlation of the quadrature measurements C(δθ) = 〈sign(x̂θx̂θ+δθ)〉. It should be
a sine function with a phase function of δθ. As can be seen in Fig. 8.9, when the phase is
not properly locked, we can still observe some fringes due to the passive phase stability of
the setup, but the fringes are drifting from one run to the other. When the phase is properly
locked, the fringes are at the same position for every run.
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Figure 8.9: Witness of phase locking. On the left, the phase is not properly locked,
nevertheless the stability of the experiment allows to see the fringes of correlations.
The phase of the fringes drift from one run to the other. On the right the phases
have been properly locked indeed the fringes are always at the same place

Improvement of the locking All the lockings here use analogical signals. The changes of
phase mainly come from mechanical relaxation. For long optical path the length can change
by many wavelengths. In an optical cavity, this is not the case. That is why, here, the piezos
are, after a while, often out of range. Two strategies to compensate this problem can be
considered. One consists in using piezos with longer range. This will probably increase the
time of possible locking but not completely �xed the issue. The other, a priori robust over
an unlimited time range, would be to use a numerical locking which is able to jump of 2π
to the previous locking point each time the piezo reaches its range limit. This solution is
currently investigated.

8.4.3 Timing

The choice of the timing is constrained by the di�erent information/measurements we need.
As in all the previous experiments, it is required to lock regularly theµCavity and to �freeze�
it during the measurement. We thus use this period to also lock and calibrate the di�erent
phases. Three phases are locked: the two seeds with parametric gain, and the phase of the
superposition. As for the µCavity, we use some sampler and holder to �freeze� the lockings
during the measurement step and a shutter to turn on and o� the seeds. Furthermore, it is
important to do each transition step by step. As depicted on �gure 8.10, if we start from a
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measurement step the transition to the locking phase the transition should be done with the
following sequence. First, we close the path to the SSPD, and then the shutter of the seeds
is open. We can now release the locking of their phase. It is then possible to release the
locking of the superposition and record a sweep of phase for each local oscillator. To do the
other transition, i.e. from locking to measurements, we should follow exactly the opposite
sequence.
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Figure 8.10: Timing of the experiment

The delays between the di�erent steps are adjusted in order to obtain a reliable behavior.
For instance, the locking cannot be released until we have an error signal and the error signal
cannot be available until the locking beam is blocked.

8.4.4 Data acquisition and processing

We summarize in the following the data acquired on both homodyne detections in order to
perform the two mode quantum tomography:

• During the locking/calibration period, for both homodyne detections, we record the
fringes of interference and the voltage values on the PZTs. The �ttings explained
previously provide the relationships between the voltages and the phases θ(VI) and
φ(VII).

• During the data acquisition, for each heralding events we record the two homodyne
signals (200 ns segments). These data are processed with the temporal mode and
provide the two quadrature values xI and xII. We also record the voltages vI and vII,
which are used to obtain the phase of the measured quadrature. We note that the
voltage is swept all the time and thus the phase changes during the acquired segment.
However, this change is extremely small: indeed, the phase is swept by almost 2π in
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50 ms whereas the homodyne window is 200 ns, leading to a negligible phase change
of the order of of 2π 4.10−6.

In practice, this data corresponds to two di�erent �sizes� of signals triggered by two
di�erent events. The short ones correspond to homodyne data and are triggered by the
single-photon detector. The long ones correspond to each cycle of measurements and are
triggered by the global timing. Therefore, two oscilloscopes are used: one oscilloscope records
the �short� signals with a high sampling rate (Lecroy WaveRunner 610Zi) whereas the other
records the �long� signals with a low sampling rate (Lecroy WaveSurfer 434). These two
oscilloscopes are remotely controlled by a computer via a LAN connection. Contrary to the
previous experiments, this time, all the experiment is controlled by a �master� computer.
One of the computers included in the oscilloscope could be used as a master computer but
this will increase the workload needlessly.

To summarize the di�erent signals recorded by the oscilloscopes. For each single-photon
detection event we record:

• homodyne signal from type I,

• homodyne signal from type II,

• piezo voltage (to infer the phases),

• trigger SSPD,

• trigger measurement time.

This oscilloscope is run in �sequence mode�, N detection events are accumulated in the
memory of the oscilloscope. For this N events the second oscilloscope records once the
di�erent information for the phases:

• DC homodyne I (fringes between seeds and local oscillator),

• DC homodyne II (the same for the other part),

• pzt voltage,

• cycle's trigger.

One tomography start with the shot noise calibration. Typically 50,000 data points
of vacuum state are acquired with each homodyne detection, this gives us access to the
normalization factor we should apply to the quadrature measurements.

Next, start the tomography of the state. The goal is to have the quadratures measure-
ments for each heralding event and the corresponding phases. For this purpose, the two
oscilloscopes are armed at almost the same time and the number of sequences is adjusted
in order to have all the N events in a few numbers of cycles. Indeed, we assume that the
calibration of the phase is reliable for few cycles, that is why N is adjusted in function of
the rate of events. When the N measurements are completed, all the data are collected to
the master computer. Since the data transfer is done, the oscilloscopes triggers are armed
again for the next N detection events.

After accumulating typically 200,000 events, the state is reconstructed via the two-mode
MaxLik algorithm (see ref.[65] and section 2.4.5).
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8.5 Further discussions

Up to now we have been relatively general about the use of this state. Di�erent points have
to be addressed in more details.

The �rst interest, as illustrated by �gure 8.1, is the use of hybrid state to connect
two di�erently encoded nodes by using it as a resource for teleportation. An universal
teleporter uses a bright EPR state as entangled resource. The �rst issue is its limitation
for long distance. It is necessary to propagate the EPR state between the two nodes and
unfortunately this will degrade the state and thus the quality of the teleportation. The
advantage of our measurement-induced state is that the distance doesn't a�ect the entangled
state. Secondly, if the state of the sender is teleported to the addressee, this latter has to
convert it if using another encoding. The other interest of the hybrid entanglement is that
both operations (i.e. teleportation and conversion) are done in the same time. However, it
can be see as conceptually di�erent: here we want to transfer the information encoded in
a qubit regardless of the encoding of the sender and the addressee, whereas the universal
teleportation transfers a state whatever the state.

The question that one could ask now is how to teleport the state? Actually, various
teleportation protocols already exist for each encoding. Interestingly, most of the time, the
mode of the receiver is never a�ected by the nature of its encoding: the possibly required
operations are only logic quantum gate. This means that these protocols can be directly
reused with our state and choose it depending on the encoding of the sender.

Now, let us consider a situation in which the long distance feature is useless, for instance
for a local quantum processor where the di�erent algorithms use di�erent encodings. Ac-
tually, the authors of [71] have proposed and demonstrated a qubit conversion between the
two encodings (in both direction). To compare, their proposed conversion is deterministic,
which is not our case. However, as prelude in the chapter 5, the main weakness of this
protocol and of ours lies in the approximation of the squeezed vacuum as an even cat state.

Indeed, as can be seen in Fig.8.3b in the rotated basis, the projected states 〈+|ρ̂|+〉 and
〈−|ρ̂|−〉 are not completely round as expected for coherent states. This feature comes from
the initial approximation consisting in starting with a squeezed vacuum in the experimental
protocol. The maximum achievable �delity with the targeted hybrid state is therefore 94%
in this case. Moreover, starting from a squeezed vacuum within the region of -3 dB, after
one and two subtractions leads to odd and even cat with the same α this is less the case for
higher squeezing.

To go beyond this demonstrated result in future extensions, Bob can perform a local
single-photon subtraction to initially prepare an odd cat state. Furthermore, this procedure
would readily enable a larger distance in phase space between the two coherent states,
paving the way to the study of squeezing induced micro-macro states [1]. After the non-
local subtraction, the �delity with an even cat state is higher for also a larger amplitude
(typically |α|2 ≈ 1.1 with a 99% �delity).

Our optical circuit is well-suited for these operations and provides a platform for subse-
quent experiments. Higher values of squeezing with high purity will be necessary, and are
readily available given our OPO escape e�ciency. Furthermore, e�cient photon detectors
are also required for these cascaded detections however our detector is not e�cient enough
but some better one can achieved by the new generation of superconducting devices working
in the near infrared [69].
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8.6 Conclusion

In summary, we have achieved entanglement between two remote nodes that are using dif-
ferent information encodings. Living in Hilbert space of di�erent dimensionality, the two
parties establish heralded qubit-qumode entanglement, which enables for instance to map
particle qubits {|0〉, |1〉} onto coherent state wave qubits {|α〉, | − α〉}. The work presented
here constitutes the �rst demonstration of such hybrid entanglement enabling to link com-
putational basis of di�erent nature. This possibility, in combination with further works on
high-�delity quantum state engineering, provides a new resource for optical hybrid architec-
ture and quantum network operation based on heterogeneous systems.

Furthermore, we have shown that the weakness of the used approximation can be over-
come by a simple additional photon subtraction, which is a temporary technological limita-
tion mainly due to the low quantum e�ciency of single-photon detector at our wavelength,
and that would be overcome in next years.

In addition, this type of state give rise to some more general questions beyond the
quantum information framework. What kind of criteria could highlight the speci�city of
this state? What fundamental properties have this state compared to the usual states (e.g.
|0〉|1〉+ |1〉|0〉 or |α〉|α〉+ | − α〉| − α〉)?
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Conclusion

Friends applaud, the comedy is over.

Ludwig van Beethoven

During this work, we have developed two di�erent sources of non-classical optical states:
one generating a single-photon state and one generating a Schrödinger cat state. These
sources have been used in two di�erent protocols. A �rst one, using the single-photon
state, has provided a proof of principle of a new single-photon entanglement witness. In
another experiment we have combined both sources to generate hybrid entanglement between
particle-like and wave-like optical qubits.

The single-photon source is the �rst one based on a degenerate type-II OPO. It allows
to understand the di�erent critical points of the conditional preparation technique. This
source shows a �delity as high as 80%, one of the highest value so far [74]. Moreover, the
characterization with an auxiliary beam (local oscillator) witnesses the high level of control
of the generated state. The same setup has been also used to generate a two-photon Fock
state that we use in a deeper study of the temporal mode in which the states are generated.

The Schrödinger cat states have been generated via a single-photon subtraction from a
squeezed vacuum state. Being based on an OPO identical to the previous one, except the
crystal which is type-I phase-matched, we have obtained, as for the single-photon generation,
a high �delity and thus a strong signature of non-classicality in the sense of the negativity
of the Wigner function.

Furthermore, we have studied in detail the temporal aspect of the generated non-Gaussian
states and demonstrated an e�cient method to extract the temporal mode from the raw
measurements of the heralded state [75] without resorting to any a priori model of the
system.

From a single-photon state, it is extremely easy to generate single-photon entanglement.
However, it is extremely di�cult to prove the entanglement by measurements without any
assumption on the tested state, in particular in a realistic situation of long distance quantum
networks. We have tested a new trustworthy single-photon entanglement witness in various
situations, and showed its relevance [73].

The last experiment combines the two sources in order to generate entanglement between
two (potentially) distant sites using di�erent encodings [76]. The generated state is useful for
long distance heterogeneous quantum networks or processors as it can bridge two nodes using
di�erent encodings. Indeed, it can be used as a suitable resource for quantum teleportation
between the two. It also addresses further questions about the properties such kind of novel
hybrid states.

Future of the experiment

Two experimental limitations have to be addressed: the improvement of the heralding de-
tection losses, i.e. better e�ciency and better photon-number resolution, and the overall
losses of the setup.

First, thanks to the recent progresses of superconducting single-photon detectors these
last years, we can expect an opening of many new possibilities. Indeed, a better e�ciency
will make possible more cascaded operations. Moreover, if the e�ciency is close to unity,
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the single-photon detector is also a good detector of vacuum. This will enlarge the feasible
protocols.

Secondly, optimizations of the setup are still possible, so far there are no limitations
intrinsic to the setup itself. Without going into details, we can give for instance few options.
A ring cavity con�guration would eliminate the issue of the backscattered light. The quality
of the di�erent optics used could be also improved, limiting in this way the loss but also the
back scattering of the local oscillator that induced wrong conditioning events.

The stability of the experiment is good however, as its size increases, this stability has to
be pushed further. All the lockings of the experiment are based on analog circuits, the next
step is to replace or modify them to increase the autonomy of the experiment, for instance
with programmable devices for re-locking. Various solutions are already under investigation.

Next challenges

Up to the actual knowledges, the possible technological applications of quantum processing
are still far away. However, this last decade has seen tremendous progress on the generation
of non-classical quantum states, i.e. non-Gaussian states. More recently, they started to
be used in quantum operations. We can actually see that the di�erent building-blocks are
demonstrated one by one, and in a more reliable way.

The main di�culty of such experiments remains the control of the quantum systems to
preserve it from decoherence. Here an important e�ort has been done to obtain quantum
states of high �quality�. In our setup, the use of a cavity o�er a strong advantage as it
precisely de�nes the spatio-temporal mode of the state. In contrast, similar experiments
realized with pulsed light using single pass in a non-linear crystal usually su�er from this
control of mode. Moreover, it turns out that the control of the modal structure of generated
quantum states, more than its knowledge, is of a crucial importance for nowadays and
future quantum optics experiments. Indeed, apart from the competitive aspect of having
good results, the quality of a quantum state is above all a necessary feature for further
applications. Moreover, even some protocols can be insensitive to losses like the dual-rail
encoding strategies, these losses turn into probabilistic any operations yielding to the vanish
of the calculation speed up induced by quantum mechanics. Nevertheless, the bound of the
required �qualities� remains blurred in general, and theoretical investigations on quantum
error correction algorithms will probably clarify this problem.
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A | SSPD and APD

In this experimental work, we have used both an avalanche photodiode (APD) and a su-
perconducting single-photon detector (SSPD), also called superconducting nanowire single-
photon detector (SNSPD).

The advantages of the SSPD, compared to the APD, are its low noise (few hertz for the
SSPD against 50 Hz or more for the APD) and its quantum e�ciency. Our SSPD has indeed
a QE of 7% for one detector and 4% for the other, when the APD is at 1.5%. The APD
we used is based on Silicon, which is more sensitive to the visible light than the infrared.
InGaAs is more sensitive to the infrared (one of the most sensitive) but make it working
in the Geiger mode seems challenging at the moment. The quantum e�ciency has never
reached more than 30%. Nevertheless, this value is better than the two devices we used.
Actually, InGaAs is an extremely noisy material and most of the time the dark count is
above few kHz, which can be an important issue for our experiments.

One of the disadvantage of the SSPD is the necessity of cryogenic cooling. The detector
is operated at 1.4 K by pumping of liquid Helium (expansion). This is why the APD is used
�rst to align the experiment and then, the SSPD is used for the �nal measurements.

Table A.1: 2013 photon detector features. Some typical values re�ecting the
performances of each technologies at 1064 nm. For a more detailed review, see
[33].

Detector QE (%)
dark count

(Hz)
jitter dead-time/

max freq
working

T◦
number
resolved

TES >90 <1 100 ns 1 µs 100 mK yes (5)

SSPD
Scontel

20 <10 60 ps 1 ns 1.4 K no

SNSPD
NIST/JPL

70 ? 0.1-1k 30 ps 1 ns
100mK-
1.5K?

not
(yet?)

APD
silicon

1.5-2 20-50 400 ps 100 ns room T◦ no

APD
InGaAs

<40 >100 400 ps >1µs -80 ◦C no

Principle of the SSPD The superconducting nanowire meander of typically 4 nm thickness
is polarized with a current of few micro amps close to the critical value. By absorbing photon,
the superconductivity is broken locally: the current tries then to bypass this hot-spot and
this leads to an increase of the current density over the critical value resulting in a complete
transition in the normal phase of the nanowire.

This technology is still under development and has progressed extremely fast this last
few years. One of the critical issue that has been addressed by labs which work on this
technology is the alignment of the �ber on the superconducting meander pattern. Indeed, the
cycle of cooling and heating induced mechanical constraints and movements, this yielding to
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Figure 1.1: Widely used picture (but form unknown origin). Typical measured
output signal from SSPD.

a misalignment. Hence, the light do not arrived to the detector and it becomes as ine�cient
as a Silicon APD. This is typically what happened to our detector during the last four years.
The e�ciency was at the beginning relatively good but, it decreased by jumps: 20% to 7%
after 1 year, 7% to 4% 3 years after.

Figure 1.2: overall performance after delivering
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Figure 1.3: Overall performance two years after delivering.
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B | Homodyne detection:
technical considerations

In this appendix, we study step by step each part of the homodyne detection setup. However,
we only consider the continuous regime, which is of interest in our case.

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.2 Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.2.1 Photodiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.2.2 PBS, NPBS, plate BS . . . . . . . . . . . . . . . . . . . . . . . . 162

B.3 Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B.3.1 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B.3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.3.3 Temporal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.3.4 Electronic e�ciency . . . . . . . . . . . . . . . . . . . . . . . . . 165

B.3.5 Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

B.1 Introduction

The model in section 2.3 shows only one defect: the e�ciency of the homodyne detection
ηHD. Below, we detail the contributions of each part of the homodyne detection.

• ηvis = V 2 e�ciency given by the overlap of the spatial modes: the homodyne detection
measure the state projected on the mode of the local oscillator, resulting in an e�ciency
given by the square of the visibility of the interferences [4],

• ηphot e�ciency of the photodiodes,

• ηnoise e�ciency of the electronics,

• ηprop propagation losses.

We note the noise by lower cases. Rigorously, it corresponds to the standard deviations

i? :=
√
〈i2?〉 − 〈i?〉2. Moreover, two noises with di�erent origins are not correlated and

consequently their variances are summed (and not their standard deviations).

B.2 Optics

B.2.1 Photodiodes

The conversion rate of photons into electrons is written as the ratio between the current
generated in the diode (photocurrent) and the input beam power

Id
Pphot

=
eλ

hc
. (2.1)
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with e the electron charge and hν the energy of one photon. For a 1064 nm beam, we expect
a response of 0.858 A.W−1 for a unity quantum e�ciency. The response of the photodiode

is thus written R(A/W ) =
ηpde

hν
with ηpd the quantum e�ciency of the photodiode.

The ine�ciency can have various origins: transparency, absorption, re�ection on the air-
semiconductor interface. Typically, the transparency is reduced by increasing the thickness
of the semi-conductor; and an anti-re�ection coating reduces the re�ection. However, a
possible trick to increase the e�ciency, if the main source of ine�ciency is the re�ection at
the interface, is to send back the re�ected beam to the photodiode. Nevertheless, in our
quantum state engineering experiments, we are very sensitive to the back re�ected lights
and by doing this, we would generate a lot of other scattering.

B.2.2 PBS, NPBS, plate BS

The homodyne detection can be mounted with di�erent optical elements: with polarizing
beam splitter, non-polarizing beam-splitter or plate beam-splitter. The question is which
one is the best?

Most of the time, polarizing beam-splitters have a bad transmission. However this defect
does not come from neither AR coating nor absorptions. Actually, the missing part of the
transmitted polarization is re�ected. This yields to two defects: we have some losses on the
transmitted polarization, and the re�ected part has to be �ltered to remove the remaining
part of the polarization that should have been transmitted. The other solution consists in
�nding better PBS. But, most of the time, manufacturers �sacri�ce� the transmission to
obtain a better rejection of the re�ected polarization. Unfortunately, this is not the main
concern for our experiments.

The non-polarizing beam-splitter appears to be a reasonable solution but, most of the
time, the balancing is obtained by playing on the polarization (the ratio being not the same
for s and p polarizations), but this degrade the visibility. Finally, we found that the best
strategy is to use plate beam-splitters with a custom coating precisely designed for 50:50
ratio for one polarization (Altechna).

B.3 Electronics

The following study is based on Ref.[38, 37].

B.3.1 Strategies

The subtraction of the photocurrents from the two phodiodes corresponds to the signal of
our quantum measurement, the goal is to measure it. The most immediate idea is to use
a resistance in order to convert the current into voltage. Unfortunately, the photodiodes
have a parasitic capacitance, leading then to a RC �lter. The current signal is extremely
weak, it is thus relevant to use a high value of resistance but this will reduce the bandwidth
of the RC �lter. In addition, we will have a thermal noise, which translates into a current
noise inside the resistance. This current noise is even lower that the resistance is high. It is
thus necessary to have a high resistance to expect that our signal is not lost inside all these
noises. An e�cient strategy to improve the bandwidth with still the same resistance is to
use the well-known trans-impedance scheme. Di�erent architectures are possible:

• two separated photodiodes (i.e. an ampli�cation circuit for each). The advantage is
that we can easily and independently position the photodiodes. We can also compen-
sate the di�erence of e�ciency by playing with the gain of each circuit.
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• Two photodiodes in the same ampli�cation circuit. We intrinsically divide by two the
electronics noise but we cannot look at the two signals separately and the beams are
more di�cult to align.

To separate the high and low frequency there is also two possible strategies: just after the
photodiodes or after ampli�cation.

• In the �rst case, we secure the op amp against any saturation. However, the circuit is
more sensitive to the choice of the component, more di�cult to model and potentially
noisier. Indeed, the noise of the additional component will be ampli�ed and this could
be an important issue for our use.

• In the second case, the DC part is ampli�ed by the same gain than the HF part.
However, the DC is not used in our measurement as it is removed during the subtrac-
tion.Therefore, we are limited here by the saturation of the amp op.

Figure 2.1: Electrical scheme of the homodyne detection.

As we will see below, the trans-impedance circuit is a well-known circuit and can be
modeled with high accuracy. However, some other architectures are possible, for instance
based on transistor or by combining two op amps with a feedback loop on both. We didn't
try these other possibilities, �rst because these circuits are not well-known and secondly
because the circuit we have is satisfying as we will see.

B.3.2 Model

With a reliable model we can estimate what is the best choice of settings for the di�erent
components.

The photon noise is iph =
√

2eId A/
√
Hz with Id the photo-current. The thermal noise

from the resistance is iR =
√

4kT/R.
Concerning the op amp, the open loop gain (tension) is

AV ol =
Adc

(1 + jf/fdom)(1 + jf/f2)
, (2.2)

Adc is the zero frequency gain. The gain bandwidth product (GBWP) corresponds to a
frequency for which the gain is equal to one, consequently we have fdom ≈ GBWP/Adc which
is generally low for AOP with high gain. f2 allows to take into account the e�ects from other
stages of the op amp. Typically, 4.GBWP > f2 > 1.2.GBWP . For the LMH6624 amp op,
this model is not reliable i.e. does not provide a model consistent with the measurements.
However, by using the curves of the datasheet (amplitude and phase of the gain in open
loop) the model is closer to the measurements. Finally,

Zm =
AV olZL

1 +AV ol + j2πfCpdZL
, (2.3)
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with the load impedance ZL =
1

j2πfCL + 1/RL
.

AV cl =
AV ol

1 +AV ol/(1 + j2πfCpdZL)
, (2.4)

with the LMH6624 amp op and a resistance of 3 kΩ, the noise of the resistance is comparable
to the noise of the amp op and, the signal noise ratio is high. Hence, increasing the resistance
beyond this value does not improve a lot.

Figure 2.2: Electrical noise of the homodyne detection.

Note that all the current noises are ampli�ed by the same gain, that is why the rising of
the electronic noise comes from the voltage noise of the op amp, its amplitude is also linked
to the capacity of the photodiodes and the input capacitance of the op amp.

B.3.3 Temporal mode

The temporal mode corresponding to the state we have generated (chap. 4, chap.5, ...) is
√
γe−γ|t| (normalized function). Its Fourier transform (unitary) is

1
√
γ

2

1 + (2πf/γ)2
with

fc = γ/2π the frequency. This latter corresponds to the half-width at half-maximum
(HWHM) whereas the bandwidth, which is the full width at half-maximum (FWHM) is
twice the cut-o� frequency BP = γ/π.

It is preferable to have a cut-o� frequency far from the typical frequency. Indeed, even if
the information is not completely lost, it avoids some post-processings of signals which are
delicate to do for non-specialists of signal processing (numerical deconvolution).

The bandwidth depending on the parasitic capacitance of the photodiodes, is could be
interesting to reduce it. First, by increasing the voltage polarization of the photodiodes we
can reduce the parasitic capacitance. However, the polarization we use already decrease it
a lot and going further in voltage would not change it a lot. The other possibility is to
use photodiodes with smaller sensitive area. However, we did not noticed big di�erences
between the photodiodes of 300 µm large and 500 µm. In principle, we expected a change of
bandwidth but, being not the main limitation, to increase the bandwidth we should reduce
the other parasitic capacitance.
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not perfectly in particular the order of the slope at high frequency is not good.

B.3.4 Electronic e�ciency

The way to quantify the equivalent e�ciency of the homodyne detection when contaminated
by noise is detailed in ref. [49]. This equivalent e�ciency is equal to

ηe = 1− 〈Q̂2
e〉

〈Q̂2
meas〉

, (2.5)

The losses are given by the ratio of the electronic noise contribution by the whole noise.
Moreover, these two terms depends on the part of the spectrum we look at. Indeed, if we call
ψ̃ the Fourier transform of the temporal mode we want to measure, these two contributions
are

〈Q̂2
e〉 =

∫
Se(ν)|ψ̃(ν)|2dν , (2.6)

and similarly

〈Q̂2
meas〉 =

∫
S(ν)|ψ̃(ν)|2dν , (2.7)

with Se the electronic noise spectrum, S the measured spectrum for the vacuum state (which
thus also contains the contribution of the electronic noise). Se and S are directly measurable
with a spectrum analyzer.

B.3.5 Op Amp

Concerning the op amp, they are numerous but it seems that only 3 can currently lead to
the best performances. First, the AOP847 is not really stable for moderate gains: for a load
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resistance of 1 kΩ we observe some self-oscillations. Moreover, its spectrum is di�cult to
predict with good accuracy. The one we have mainly use is the LMH6624. It is actually very
stable and gives some very �clean� spectrum gain. The upper model is the op amp LMH6626
but this 4 GHz GBWP is under very small CMS package. Realizing circuits with this model
requires high quality circuit facilities that we don't have in the lab. Nevertheless, thanks to
the characteristics of this latter op amp, we do not expect a big improvement compared to
the LMH6624.



C | Optical cavities

We remind below various useful formula for optical cavities, and more precisely descibe the
µCavity used in the di�erent experiments.

C.1 TEM00 Gaussian beam . . . . . . . . . . . . . . . . . . . . . . . . 167

C.2 Optical cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

C.3 micro-Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.1 TEM00 Gaussian beam

• Intensity pro�le

I(r, z) = I0(z)e−2r2/w2(z) (3.1)

• Rayleigh length

zR =
πw2

0

λ
(3.2)

• Radius of curvature

R(z) = z

[
1 +

(
πw2

0

λz

)2
]

= z

[
1 +

(zR
z

)2
]

(3.3)

• Beam size

w(z) = w0

√
1 +

(
λz

πw2
0

)2

= w0

√
1 +

(
z

zR

)2

(3.4)

other useful formula

w0 =
w2

1 +
(
πw2

λR

)2 (3.5)

z =
R

1 +
(
λR
πw2

)2 (3.6)

C.2 Optical cavity

In the case of low transmission i.e. T1 + T2 + T3 � 1.

• Finesse

F =
2π

T1 + T2 + T3
(3.7)

• Free spectral range

I =
c

L
(3.8)
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• bandwidth

∆ =
I
F

=
c(T1 + T2 + T3)

2πL
(3.9)

Resonance transmission for high �nesse cavity

T =
4T1T2

(T1 + T2 + T3)2
(3.10)

We can characterize an optical cavity with the following equations. First we scan the
transmission of the cavity with a PZT. We then �t with a lorentzian pro�le the di�erent
peaks of resonance. The �tting will provide the center of the peaks cI00 for the �rst TEM00

mode, for instance. A00 the area of the peak, w00 its width

rap =
c01 − cI00

cII00 − cI00

(3.11)

F =
cII00 − cI00

wI00 + wII00

(3.12)

L = ROC(1− cos2(πrap)) (3.13)

Cp =
AI00

A00 +A01 +A02 + ...
(3.14)

∆ =
c

LF
(3.15)

I =
c

L
(3.16)

Note that L corresponds to the length of one round-trip in the cavity.

C.3 micro-Cavity

We have explained in chapter 4 the choice of the di�erent parameters of the cavity. Figure
3.1 gives the drawing and a picture of it.

PZT 
Output mirror 
ROC = 1 m 

Input mirror 

Adjustment ormolu 0.2 mm 

Mirror support ormolu 0.4 mm 
3 parts Invar cavity 

Figure 3.1: Scheme and picture of the µCavity. The length of the cavity is
adjusted with the help of ormolu of 0.2 mm (chrysocale in french).



D | Useful mathematical formula

D.1 Gauss integrals∫
R

e−ax
2+bxdx =

√
π

a
eb

2/4a (4.1)

∫
R

x2e−ax
2+bxdx =

(
1

2a
+

b2

4a2

)∫
R

e−ax
2+bxdx (4.2)

∫
1√

2πσ0

x4e−x
2/2σ2

0 = 3σ4
0 (4.3)

D.2 Laguerre polynomial

Lαn(x) =

n∑
i=0

(−1)i
(
n+α
n−i
)xi
i!

(4.4)

Lαn(x) =
α+ 1− x

n
Lα+1
n−1 −

x

n
Lα+2
n−1(x) (4.5)

Lk−ll (x) =
k − l + 1− x

l
L
k−(l−1)
l−1 − x

l
L
k−(l−2)
l−2 (x) (4.6)

with Lk0 = 1, Lk−l1 = −x+ (k− 1) + 1. This way we have a recurrence relation on l only for
each k

D.3 Hermite polynomials (physicist version)

This is the de�nition we use in the whole manuscript

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (4.7)

with H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2
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E | Entanglement

The entanglement is a tricky property. Indeed, it is not only intrinsic to the state but also
to the basis we use to describe it. We review in the following the usually used quantity to
prove entanglement.

E.1 PPT criterion

The PPT criterion from Peres and Horodecki [91, 41] gives a necessary condition for separa-
bility. If we consider ρ̂ a bi-partite state on mode A and B and one of its partial transpose1

we have

If ρ̂TA � 0, the state ρ̂ is entangled ,

Any separable state has a positive partial transpose.
(5.1)

For small spaces H2 ⊗H2 and H2 ⊗H3 this condition is su�cient.For larger space, the
condition is not su�cient: some entangled states can have a positive partial transpose.

E.2 Von Neumann entropy

The von Neumann entropy is de�ned by

S(ρ) = −Tr[ρ log ρ] (5.2)

and with the eigenvalues λi for ρ

S(ρ) = −
∑
i

λi log λi (5.3)

This criteria is not often use for experimental demonstration as it is only appropriate to
pure states.

E.3 Concurrence

The concurrence has been �rst designed for qubit entanglement [36, 120] (i.e. two Hilbert
spaces each of dimension 2)

C(ρ̂) = max(0, λ1 − λ2 − λ3 − λ4) , (5.4)

where λ1, λ2, ... are the eigenvalues in the decreasing order of the matrix

R =

√√
ρ̂ρ̃
√
ρ̂ , (5.5)

1 we remind that for a state ρ̂ =
∑
ijkl

|i〉〈j|A⊗|k〉〈l|B its partial transpose on mode B is ρ̂TB =
∑
ijkl

|i〉〈j|A⊗

|l〉〈k|B (inversion of index k and l). Being partial, the symbol of transposition is sometimes noted ΓB (a
half of T ).
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with
ρ̃ = (σy ⊗ σy)ρ̂∗(σy ⊗ σy) (5.6)

Another possible formulation but only valid for pure state is

C(|ψ〉) =
√

1− Tr ρ̂2
r (5.7)

where ρ̂r is the density matrix of the state reduced by a tracing over one mode. This can be
understand in the following way: the trace of the squared matrix correspond to the purity.
Hence, if a state is separable the trace over one mode let the purity of the other equal to
one, on the contrary if the state is entangled the trace over one mode yields to a statistical
mixture for which the purity is small if the state is strongly mixed.

This can be generalized to spaces larger than qubit [100, 70, 31]

C(|ψ〉) =

√
d

d− 1
(1− Tr ρ̂r

2) (5.8)

and d the dimension of each party. The additional factor allows to keep the concurrence
between 0 and 1. And generalized to mixed state by a convex roof

C(ρ̂) = min
∑
i

piC(|ψ〉) (5.9)

where the minimization is over all the possible decompositions of the state like ρ̂ =
∑
i

pi|ψi〉〈ψi|.

E.4 Negativity

The negativity is also a measure of entanglement [117]. For a two-mode density matrix, it
is de�ned by:

N (ρ) =
‖ρ̂TA‖1 − 1

2
, (5.10)

where TA is the partial transpose in the subspace A et ‖X‖1 = Tr |X| = Tr
√
X†X is the

trace norm. An alternative expression is

N (ρ̂) =
1

2

∑
i

|λi| − λi , (5.11)

with λi are the eigenvalues of the partial transpose. This formulation makes sense in the
light of of the PPT criterion: a separable state having positive eigenvalues we measure how
far the state is from this property.

This criterion is convex
N (
∑

piρ̂i) ≤
∑

piN (ρ̂i) , (5.12)

and entanglement monotone
N (P (ρ̂)) ≤ N (ρ̂i) , (5.13)

where P is LOOC (Local Operations and Classical Communication). In other words, this
measure of entanglement cannot be increased with local operations.

A logarithmic version is also used [2, 92]:

EN (ρ̂) = log2 ‖ρTA‖1 = log2(2N + 1) . (5.14)

Note that for a system of qubit the logarithmic negativity cannot exceed 1 (or 0.5 for the
negativity). However, we have equality when the state is maximally entangled. In contrast,
with a two-mode squeezed vacuum, each mode lies in a Hilbert space of dimension above 2.
Depending on the squeezing parameter, the state can show values of negativity above 0.5.



F | Acquisition and interface

What is the best strategy? Most of the time we have to deal with a compromise between the
time needed to implement the acquisition system and how long this system will be useful.
Nowadays, the possibilities of measurement acquisition are numerous and develop extremely
fast. Thus, trying to �nd the best one can be extremely time consuming and true only
few years. In our experiment, we need a good time resolution typically above 1GS/s, and
with many channels. Therefore, an oscilloscope with integrated computer is preferred to an
acquisition card integrated in a computer.

We have used some oscilloscopes from LeCroy. One of their strong advantage compared to
others, is the speed of data transfer. In our case, this is not critical but, we can think that
in the future experiments it could become necessary. We have developed two interfaces:
one directly in the oscilloscope's computer (this is the fastest mode) and one via LAN
communication.

F.1 Single-oscilloscope con�guration

The data can be loaded with two strategies. The main di�erence between the two is the speed
of the data transfer. The �rst one called �fastWaveform� (and later �multifastwaveform� for
more than one channel) uses a shared memory managed by the operating system (here
Windows) this strongly minimized the time of data transfer, actually probably the fastest
solution. (The used shared memory is synchronized with the two processes by mutual
exclusion mutex.)

Shared memory Experiment software 
 

 

for { 

    armed_scope(); 

    WaitForSingleObject(data_available); 

    data_processing(); 

    diplay(); 

    save_raw_data(); 

    SetEvent(processing_completed); 

} 

 

tomography(); 

 

Scope software 
(FastWaveForm  
in web editor) 

Acquisition hardware 
 
 ADC 

Figure 6.1: Single mode experiment. The data are transfered in a shared memory.
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F.2 Two-oscilloscope con�guration

The other possibility is to use a LAN connection. As we need more signals in the last
experiment (chapter 8), we have used this technique. There are actually many libraries
for this purpose, in particular, one for LeCroy but it requires to use additional libraries
speci�c to Microsoft. Here, we use a library downloaded from internet �VICPClient.h�
(sourceforge). This is a low-level input/output (quest/answer) of communication with a
LeCroy oscilloscope. We have extended it with the library �dso.h�. This latter library
manages some memories to load the contents of the di�erent channels of the oscilloscope,
save the raw data, and read back the data (for additional post-processings). In contrast to
the previous con�guration, the speed of data transfer is obviously slower.

armed_slow_scope(); 

armed_fast_scope(); 

 

for{ 

    load_slow_scope_data(); 

    load_fast_scope_data(); 

     

    armed_slow_scope(); 

    armed_fast_scope(); 

 

    save_all_raw_data(); 

    light_data_processing(); 

} 

 

Full_tomography(); 

Ch1 Ch2 Ch4 Ch3 

HF HD1 

HF HD2 

sweep 

SSPD 

synch 

Aux 

Fast oscilloscope 
(sequence mode) 

Ch1 Ch2 Ch4 Ch3 

BF HD1 

BF HD2 

sweep 

synch 

Aux 

Slow oscilloscope 
(std mode) Conditional 

triggering 

Master computer 

HF HD: high frequency output of homodyne detection 
BF HD: low frequency output of homodyne detection 
Sweep: voltage sweep apply to PZT of local oscillator 
Synch: high -> acquisition, low -> measurement  

LAN 

Dso.h 
  * VICP.h 

Qlib.h 
  * maxlik.h/maxlik2.h 
  * pattern_function.h 
  * gnuplot.h 

Figure 6.2: Acquisition setup for two-mode tomography (cf chapter 8)

As depicted on �gure 6.2, the two oscilloscopes are controlled by a master computer.



G | Numerical computing

G.1 Homodyne data simulation

The ability to simulate the measurement can be convenient mainly for two purposes. First,
to test the reliability of the data processing. Secondly, to evaluate the accuracy of the
reconstruction methods.

The goal is to generate some random numbers following a given probability distribution
P(x, θ) = |〈x, θ|ψ〉|2 (marginal distribution). Basically, a computer provides a random
number generator equally distributed (which can be rescaled to the interval [0, 1]). The
question is how to use this number generator to obtain the targeted marginal distribution?
Starting from this, some e�cient formulas exist for some particular case like the Gaussian
distribution.

In all the other cases, we use the following method. Let us note Y the generated number
from the computer's random number generator (equally distributed between 0 and 1) and
X the random number following the distribution f(x). Hence, we have the number X such

as
∫ X

∞
f(x)dx = Y .

Note that computing the integral for each random number is potentially heavy! The

trick is thus to compute once the distribution
∫ x

∞
f(x)dx = y. Therefore, the sampling dx

small enough to assume a good accuracy, the interval Xmin, Xmax large enough, and the dy
depending on the chosen resolution of the simulated measurement.

The two-mode case is a little bit trickiest. Indeed we need at least one local distribution
probability but also the joint distribution probability. Below we give the corresponding
formula for the single-photon entanglement. For the joint probability we have

P(xa, θa, xb, θb) =

∣∣∣∣〈xa, θa|〈xb, θb| |0〉|1〉+ |1〉|0〉√
2

∣∣∣∣2 (7.1)

=
1

4πσ4
0

e−x
2
a/2σ

2
0−x

2
b/2σ

2
0
[
x2
a + x2

b + 2xaxb cos(θa − θb)
]

(7.2)

=
e−x

2
a/2σ

2
0√

2πσ2
0

e−x
2
b/2σ

2
0√

2πσ2
0

[
x2
a

2σ2
0

+
x2
b

2σ2
0

+
xa
σ0

xb
σ0

cos(θa − θb)
]
. (7.3)

For the local probability

P(xa, θa) =

∫
R

dxaP(xa, θa, xb, θb) (7.4)

=
e−x

2
b/2σ

2
0√

2πσ2
0

[
1

2
+

x2
b

2σ2
0

]
. (7.5)

Of course, we always have the probability conservation∫
R

∫
R

dxadxb P(xa, θa, xb, θb) = 1 (7.6)

Hence, we generate the random measurement by �rst ,generating the resultXa for a given
phase θa thanks to the local probability distribution, and then the random measurement Xb

for a given phase θb by using the distribution probability P(Xa, θa, xb, θb) (one would have
notice that only xb is not �xed).
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G.2 MaxLik in practice

In contrast to the other methods of reconstruction, it is necessary with MaxLik to make a
choice for the value of the di�erent parameters: the size of the Hilbert space, the number of
iterations.

We start from N measurements {xk, θk}, depending on the sampling, the measurement
results can be packed and associated with a frequency {fi, xi, θi} with fi the frequency of
the result i (if we obtain ni times the results {xi, θi} among a total number of N mea-
surements fi = ni/N). In this case, the number of measurement is almost �xed. Indeed,
the measurements are expected to be in [xmin;xmax] and this interval is divided into Nx
bins. The same for the phase: we divided it into Nθ, we thus obtain Nx ·Nθ measurements.
However, this only speed up the algorithm if Nx · Nθ < N . In our experiments, speed of
reconstruction was not an important criteria, thus we did not use this latter solution.

However, if implemented �brutally�, the algorithm can be heavy: with a never-ending
time of computation! Hence, the goal is to take advantage of the various mathematical
properties and recurrence relation to save the number of operation. For instance, we have
used the following tricks to speed up the computation:

• we store all the calculated projectors and thus do not compute it for each iteration,

• the o�-diagonal elements of the matrix product are not calculated when we want only
the trace of this product for instance for the probability pi = Tr[Π̂iρ̂],

• we only compute the upper half elements of the matrix the other part being by de�-
nition complex conjugate (all the matrix are Hermitian),

• in order to compute faster the projectors we also have taken advantages of the recur-
rence relations

〈n′|Êη(θ, x)|m′〉 =
∑

k>m′,n′

Bm′,m′−k(η)Bn′,n′−k(η)Π̂n′−k,m′−k , (7.7)

with

Bn′,n′−k+1 =

√
k

n′ − k + 1

η

1− η
Bn′,n′−k , (7.8)

and the initialization
Bn′,0 =

√
(1− η)n′ . (7.9)

If we count the number of operation for on iteration of the algorithm, we �nd almost the
following scale law in time

time ∝ NFock2 ·Ndata. (7.10)

This is con�rmed by �gure 7.1. Moreover, if we consider two modes of size each NFock1,
NFock2, this is equivalent to work with a matrix of size NFock′ = NFock1NFock2.
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before but for two-mode states. (Core 2 Duo, 2.53 GHz)
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Résumé

Dans ce travail de thèse nous nous sommes intéressés à une catégorie spéci�que d'états quan-
tiques de la lumière : les états non-gaussiens. Ces états ont la particularité de présenter des
fonctions de Wigner à valeurs négatives. Cette propriété est indispensable pour réaliser des
opérations de calcul quantique mais trouve aussi des applications variées en communication
quantique ou métrologie par exemple.

Di�érentes stratégies peuvent être utilisées pour générer de tels états. Ici, les ressources
initiales sont des états dit gaussiens produits par des oscillateurs paramétriques optiques
en régime continu (i.e. vide comprimé bi-mode et mono-mode). Le caractère non-gaussien
ne peut être obtenu que par des phénomènes non-linéaires (hamiltonien sur-quadratique).
Dans notre cas, la non-linéarité est induite par des mesures basées sur le comptage de photon
(aussi appelées mesures non-gaussiennes).

Cette étude est principalement divisée en deux parties. Tout d'abord, la génération
d'états non-classiques correspondants à deux types d'encodages de qubits : le photon unique,
utilisé en information quantique dite à variables discrètes, et la superposition d'états co-
hérents (chat de Schrödinger optique), utilisée en information quantique dite à variables con-
tinues. Ces états ont ensuite été utilisés pour mettre en ÷uvre deux protocoles d'information
quantique. Le premier porte sur un témoin d'intrication en photon unique, l'autre sur la
génération d'intrication entre deux types d'encodages (aussi appelée intrication hybride).

Mots clés

optique quantique; information quantique; photon unique; chat de Schrödinger; intrication
hybride; tomographie quantique

Abstract

In the present PhD work, we focus on a speci�c class of quantum states of light: the
non-Gaussian states. These states have the particularity of exhibiting Wigner functions
with some negative values. This quantum feature is a necessary condition to perform some
quantum computation task; furthermore it is also useful for various other applications,
including quantum communication and metrology.

Di�erent strategies can be used to generate these states. Here, we start from Gaus-
sian states produced by optical parametric oscillators in the continuous wave regime, (i.e.
single-mode and two-mode squeezed vacuum states). The non-Gaussian feature can only
be obtained by non-linear phenomena (over-quadratic Hamiltonian). In our case, the non-
linearity is induced by photon-counting-based measurements (also called non-Gaussian mea-
surements).

This study is mainly divided into two parts. First, the generation of non-classical states
associated with two types of qubit encoding: the single-photon state, used for quantum in-
formation with discrete variables, and the coherent state superposition (the so-called optical
Schrödinger cat state), used for quantum information with continuous variables. These two
states have then been used to perform some quantum information protocols. The �rst one
addresses the problem of single-photon entanglement witness, and the other the generation
of entanglement between the two encodings (also called hybrid entanglement).

Keywords

quantum optics; quantum information; single photon; Schrödinger's cat; hybrid entangle-
ment; quantum tomography
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