
HAL Id: tel-01066750
https://theses.hal.science/tel-01066750v1

Submitted on 22 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A basis for intrusion detection in distributed systems
using kernel-level data tainting.

Christophe Hauser

To cite this version:
Christophe Hauser. A basis for intrusion detection in distributed systems using kernel-level data taint-
ing.. Other. Supélec; QUEENSLAND UNIVERSITY OF TECHNOLOGY, 2013. English. �NNT :
2013SUPL0013�. �tel-01066750�

https://theses.hal.science/tel-01066750v1
https://hal.archives-ouvertes.fr

No d'ordre : 2013-13-TH ANNÉE 2013

THÈSE DE DOCTORAT
Mention : Informatique

École doctorale MATISSE

présentée par

Christophe Hauser

préparée à l'unité de recherche CIDre
Con�dentialité Intégrité Disponibilité Réparti

Supélec/INRIA

Détection d'intrusions

dans les systèmes

distribués par

propagation de teinte

au niveau noyau

A basis for intrusion

detection in distributed

systems using kernel-level

data tainting

Thèse soutenue à Rennes
le 19 juin 2013

devant le jury composé de :

Hervé Debar
Professeur à Télécom SudParis / rapporteur

Alexander Pretschner
Professeur à Technische Universität München /
rapporteur

Anne-Marie Kermarrec
Directrice de recherche à l'INRIA/présidente

Ernest Foo
Professeur à Queensland University of Technology /
examinateur

Ludovic Mé
Professeur à Supélec / directeur de thèse en France

Frédéric Tronel
Professeur associé à Supélec / co-directeur de thèse

Colin Fidge
Professeur à Queensland University of Technology/
Directeur de thèse en Australie

2

Résumé en Français

Les systèmes d'information actuels, qu'il s'agisse de réseaux d'entreprises, de services en ligne
ou encore d'organisations gouvernementales, reposent très souvent sur des systèmes distribués,
impliquant un ensemble de machines fournissant des services internes ou externes. La sécurité de
tels systèmes d'information est construite à plusieurs niveaux (défense en profondeur). Lors de
l'établissement de tels systèmes, des politiques de contrôle d'accès, d'authenti�cation, de �ltrage
(�rewalls, etc.) sont mises en place a�n de garantir la sécurité des informations. Cependant,
ces systèmes sont très souvent complexes, et évoluent en permanence. Il devient alors di�cile de
maintenir une politique de sécurité sans faille sur l'ensemble du système (quand bien même cela
serait possible), et de résister aux attaques auxquelles ces services sont quotidiennement exposés.
C'est ainsi que les systèmes de détection d'intrusions sont devenus nécessaires, et font partie du jeu
d'outils de sécurité indispensables à tous les administrateurs de systèmes exposés en permanence
à des attaques potentielles.

Les systèmes de détection d'intrusions se classi�ent en deux grandes familles, qui di�èrent
par leur méthode d'analyse: l'approche par scénarios et l'approche comportementale. L'approche
par scénarios est la plus courante, et elle est utilisée par des systèmes de détection d'intrusions
bien connus tels que Snort [59], Prélude [75] et d'autres. Cette approche consiste à reconnaître
des signatures d'attaques connues dans le tra�c réseau (pour les IDS réseau) et des séquences
d'appels systèmes (pour les IDS hôtes). Il s'agit donc de détecter des comportements anormaux
du système liés à la présence d'attaques. Bien que l'on puisse ainsi détecter un grand nombre
d'attaques, cette approche ne permet pas de détecter de nouvelles attaques, pour lesquelles aucune
signature n'est connue. Par ailleurs, les malwares modernes emploient souvent des techniques dites
de morphisme binaire, a�n d'échapper à la détection par signatures. L'approche comportementale,
à l'inverse de l'approche par signature, se base sur la modélisation du fonctionnement normal du
système. Cette approche permet ainsi de détecter de nouvelles attaques tout comme des attaques
plus anciennes, n'ayant recours à aucune base de données de connaissance d'attaques existantes. Il
existe plusieurs types d'approches comportementales, certains modèles sont statistiques, d'autres
modèles s'appuient sur une politique de sécurité.

Dans cette thèse, on s'intéresse à la détection d'intrusions dans des systèmes distribués, en
adoptant une approche comportementale basée sur une politique de sécurité. Elle est exprimée
sous la forme d'une politique de �ux d'information. Les �ux d'informations sont suivis via une
technique de propagation de marques (appelée en anglais taint marking) appliquées sur les objets du
système d'exploitation, directement au niveau du noyau. De telles approches existent également
au niveau langage (par exemple par instrumentation de la machine virtuelle Java, ou bien en
modi�ant le code des applications) [50, 51] ou encore au niveau de l'architecture [67, 78] (en
émulant le microprocesseur a�n de tracer les �ux d'information entre les registres, pages mémoire
etc.), et permettent ainsi une analyse �ne des �ux d'informations. Cependant, nous avons choisi
de nous placer au niveau du système d'exploitation, a�n de satisfaire les objectifs suivants:

• Détecter les intrusions à tous les niveaux du système, pas spéci�quement au sein d'une ou
plusieurs applications.

• Déployer notre système en présence d'applications natives, dont le code source n'est pas
nécessairement disponible (ce qui rend leur instrumentation très di�cile voire impossible).

• Utiliser du matériel standard présent sur le marché. Il est très di�cile de modi�er physique-
ment les microprocesseurs, et leur émulation a un impact très important sur les performances

3

4

du système.

Vue d'ensemble

Nous avons ainsi étendu un modèle de propagation de marques, en nous appuyant sur des tech-
niques existantes, issues de précédents travaux au sein de l'équipe CIDre. Ensuite, ce modèle de
propagation a été implémenté via la réalisation d'un prototype. Ce nouveau modèle permet de
prendre en compte les spéci�cités du suivi de �ux d'information dans un système d'exploitation de
type Unix, mais peut aussi être utilisé dans des environnements distribués. Ce modèle attache des
marques (ou tags) aux objets du système d'exploitation, dans le but de suivre leur propagation
tout au long de la vie du système. Les objets tels que les �chiers, les processus et les sockets réseau
sont ainsi marqués par chaque �ux d'information. Nous avons implémenté ce modèle dans le noyau
Linux, en tant que module de sécurité. La conception et l'implémentation de ce modèle représen-
tent la première contribution de cette thèse. Nous avons publié et présenté ce modèle lors de
la conférence internationale ICC 2011 (IEEE International Conference on Communications) [65].

Nous avons ensuite étendu ces travaux a�n de prendre en considération les �ux d'information
sur le réseau. Cette extension du modèle permet de dé�nir une politique réseau a�n de contrôler
les interactions autorisées entre les applications ou utilisateurs vis à vis de l'information surveillée.
Cette politique dé�nit d'une part quelles informations sont autorisées à quitter le système via le
réseau, et d'autre part dans quelles conditions de nouvelles informations, arrivant par le réseau
depuis des sources connues ou inconnues, sont autorisées à se mélanger avec des informations
existantes sur le système surveillé. Cette politique est dé�nie de manière globale au système. Les
règles qui concernent l'information sortante protègent la con�dentialité des données, tandis que les
règles qui concernent l'information entrante protègent leur intégrité. La possibilité de dé�nir une
telle politique pour protéger des données privées o�re de nouvelles solutions quant à la détection
de violations de la vie privée ou au vol d'informations personnelles. Cette seconde contribution
a été publiée et présentée lors de la conférence internationale AISC 2012 (Australasian Information
Security Conference) [32].

En�n, notre dernière contribution concerne la généralisation du précédent modèle à la détection
d'intrusions en environnement distribué. En prenant de multiples machines (que nous réunissons
en groupes de machines) en considération, il devient possible de dé�nir une politique adaptée à des
systèmes plus complexes, tout en gardant une approche �à grain �n�, c'est à dire en conservant une
spéci�cation �ne de la politique. Une telle politique est dé�nie à l'échelle d'un groupe de machines.
Elle est distribuée au sein de chaque machine du groupe, et dé�nit les interactions autorisées entre
processus de machines di�érentes, ainsi qu'entre processus locaux. Cette dernière contribution
a donné lieu à une publication, qui a été acceptée et présentée lors de la conférence internationale
ICC 2013 [31].

Modèle de détection

Notre modèle de détection fait intervenir des marques appelées tags a�n de suivre les �ux d'information
entre objets du système d'exploitation surveillé. Ces objets sont considérés comme conteneurs
d'information, et à tout moment, nous souhaitons pouvoir déterminer le contenu de chaque objet
a�n de véri�er qu'il correspond à un état normal du système. La spéci�cation de cet état normal,
ou contenu normal, se fait via une politique de sécurité. Cette politique dissocie les données pas-
sives du code actif des applications: le code d'une application est considéré comme passif lorsqu'il
est stocké dans un �chier, mais il est considéré comme actif lorsque qu'il est en cours d'exécution.
Cette distinction nous permet d'exprimer �nement la politique de sécurité. Nous considérons ainsi
comme étant de l'information tout élément passif (donnée ou code stockés) ou actif (code en cours
d'exécution).

La dé�nition de la politique ainsi que le suivi de �ux d'informations font intervenir quatre types
de tags:

• Les tags d'information, ou information tags, décrivent le contenu des objets (ou conteneurs)
auxquels ils sont attachés, à tout instant. Ils contiennent des meta-informations, permettant

5

de décrire individuellement chaque élément d'information.

• Les tags de politique, ou policy tags, décrivent la politique des objets auxquels ils sont at-
tachés. Ils décrivent quelles sont les combinaisons légales d'information que ces objets peuvent
contenir. Toute déviation vis à vis de cette politique indique un comportement anormal du
système.

• Les tags de politique d'exécution, ou execute policy tags, décrivent le comportement légal des
processus résultant de l'exécution de code marqué. Ils sont attachés aux �chiers exécutables.
Ces tags ne sont utilisés qu'au moment de l'exécution, a�n de déterminer les tags de politique
des processus.

• Le tag de politique réseau, ou network policy tag, détermine les interactions légales entre
processus et données vis à vis du réseau. Il détermine quels processus (en se basant sur
la marque du code exécuté) peuvent légalement recevoir ou envoyer quelles informations à
quels autres processus distants, au sein d'un système distribué. Il n'existe qu'un seul tag de
politique réseau par machine, celui-ci dé�nit toutes les interactions légales entre processus,
information et réseau.

Ce modèle a été implémenté dans le noyau Linux, sous la forme d'un module de sécurité. Nous
suivons les �ux d'information entre les �chiers, les sockets réseau, les zones de mémoire partagée,
les �les de messages, les inodes etc. Cette implémentation utilise des mécanismes standard du
noyau, et les opérations complexes utilisent des structures de données optimisées a�n de limiter
l'impact sur les performances. Le code a été testé sur plusieurs architectures, et a été reporté
comme fonctionnel sur la plateforme Android.

Résultats expérimentaux

Les travaux réalisés au sein de cette thèse ont été véri�és expérimentalement dans plusieurs cas
de �gure. Outre les tests de validation de l'implémentation vis à vis du modèle mis en ÷uvre,
nous avons réalisé deux scénarios correspondant à des cas d'utilisation réels d'un système de dé-
tection d'intrusions. Dans le premier cas, les attaques contre la con�dentialité ont été visées. Ce
premier scénario met en ÷uvre une attaque contre le navigateur web Firefox1, en utilisant une
version vulnérable du plugin Java2, et vise à valider notre approche quant à la détection de fuites
d'informations impliquant des données con�dentielles, via l'exploitation d'une vulnérabilité (CVE
2008-5353) au sein d'une page web malveillante. A�n de détecter de telles fuites d'informations,
nous avons tout d'abord marqué chaque information con�dentielle avec un tag unique, puis nous
avons con�guré le système avec une politique de sécurité interdisant l'émission d'informations
marquées. La propagation de marques entre les objets du système permet ainsi de suivre les in-
formations de bout en bout, et de lever une alerte lorsque des informations marquées arrivent au
niveau des sockets réseau.

Le second scénario mis en ouvre s'applique aux systèmes distribués. Nous avons considéré un
ensemble de plusieurs machines supervisées, fournissant un service web distribué, composé d'un
serveur web (Apache), d'un serveur de bases de données (PostgreSQL) et du moteur de blog Word-
press3. Le moteur de blog utilise le plugin de e-commerce Foxypress, qui présente une vulnérabilité
(EDB-ID 18991). Cette vulnérabilité permet l'upload de �chiers arbitraires et l'exécution de code
à distance sur la machine qui héberge le service vulnérable. Le serveur web et la base de données
hébergent deux sites web, l'un étant public et accessible depuis l'internet, et l'autre privé et acces-
sible uniquement depuis le réseau local. Notre objectif ici était de démontrer la capacité de notre
système de détection d'intrusion à détecter les attaques réussies, non seulement au niveau de la
machine directement visée, mais également au niveau de chaque machine qui compose le système
distribué, a�n de pouvoir émettre un diagnostic plus riche de l'attaque a-posteriori. L'attaque que
nous avons mis en ÷uvre implique un attaquant extérieur qui souhaite accéder aux informations
con�dentielles du site web privé.

1http://www.mozilla.org/firefox/
2http://www.oracle.com/technetwork/java/
3http://www.wordpress.org

6

Nous avons ainsi déployé une politique de sécurité décrivant le comportement légal des processus
composant le service distribué, localement sur chaque système ainsi que sur le réseau lors de leurs
communications. Cette politique autorise le serveur web ainsi que le serveur de bases de données à
traiter des requêtes concernant un seul des deux sites web à la fois. Ceci est rendu possible par le fait
que, Apache et PostgreSQL créent un nouveau processus pour traiter chaque connexion, et en aucun
cas les informations des deux sites ne sont mélangées lorsque le système fonctionne normalement.
L'attaque que nous avons déployée injecte un script PHP contenant du code malveillant, en utilisant
la vulnérabilité présentée précédemment, sur le site public (seul site accessible depuis l'extérieur).
L'attaquant a ainsi la main sur le processus en question, et peut désormais e�ectuer des requêtes
concernant le second site web. Dès lors qu'il e�ectue une telle requête, le processus attaqué, qui
jusqu'alors était marqué avec des informations du site web public, se voit également marqué avec
des informations du site web privé, et viole ainsi la politique de sécurité. Une alerte est levée sur
la machine locale (le serveur web), et toute connexion entre le processus infecté et un processus
d'une autre machine supervisée provoque la contamination de ce dernier, levant ainsi des alertes
sur les autres machines.

Évaluation

Une évaluation de notre modèle et de son implémentation est présentée en conclusion du chapitre 8.
En terme de performances, notre implémentation ajoute une pénalité maximale de 30% en terme de
consommation mémoire, et de 40% en terme de consommation CPU. Le temps maximal d'exécution
de certaines opérations peut également s'élever à 300% dans des conditions extrêmes, limite dûe
à une utilisation excessive du système de �chier, que l'on estime aisément contournable à l'aide
d'optimisations (présentées dans la section 7.8).

L'évaluation de systèmes de détection d'intrusions fait généralement intervenir la notion de
taux de faux positifs et de faux négatifs. Par conception, notre approche est conservatrice et
surapproxime à tout moment la quantité d'information impliquée dans les �ux d'informations.
Ceci a pour e�et de limiter très fortement la présence de faux négatif, qui à l'exception de canaux
cachés ou de défauts dans la dé�nition de la politique de sécurité, sont considérés comme inexistants
dans notre système. Par ailleurs, le taux de faux positifs est directement lié à la précision avec
laquelle nous observons les �ux d'information. Nous identi�ons ainsi deux cas de �gure: les cas où
nous sommes contraints d'e�ectuer une forte surapproximation, par exemple lors de l'utilisation
de mémoire partagée entre plusieurs processus, et les cas où nous e�ectuons une surapproximation
plus modérée. Dans le premier cas, un grand nombre de faux positifs est généré, rendant di�cile
l'utilisation de notre système. Ceci est dû au niveau d'abstraction auquel nous nous plaçons dans
le système. Depuis le noyau, il est impossible d'observer de façon exacte les accès à la mémoire
e�ectués par les applications. Il s'agit de la principale limitation de notre approche, et nous
envisageons plusieurs solutions a�n d'a�ner l'analyse des �ux. Dans le second cas, la précision de
notre analyse est plus �ne, et nous sommes ainsi capables de détecter les intrusions avec un faible
taux de faux positifs. Ces aspects sont présentés plus en détails dans la section 8.4 de ce manuscrit.

Nous avons ainsi mis en ÷uvre et implémenté un modèle de détection d'intrusions au niveau
noyau, capable de détecter les intrusions aussi bien dans des machines isolées, qu'au sein de systèmes
distribués. La mise en ÷uvre d'expérimentations nous a permis de valider notre approche de
détection, et d'identi�er ses limitations. Des travaux en cours au sein de l'équipe CIDre s'appuient
sur notre travail, et ont pour objectif de mettre en ÷uvre des mécanismes de coopération entre des
moniteurs de suivi de �ux à plusieurs niveaux (niveau langage et niveau système d'exploitation),
visant ainsi un a�nement du suivi de �ux a�n de réduire les taux de faux positifs.

Cette thèse est organisée de la manière suivante: la première partie, composée des deux pre-
miers chapitres, présente le contexte de recherche dans lequel notre travail s'inscrit. Le chapitre
1 introduit les fondements de notre approche, ainsi que les travaux précédents existants dans la
littérature. Le chapitre 2 compare la base de notre modèle avec les modèles classiques de contrôle
d'accès et de contrôle de �ux d'information.

La seconde partie de cette thèse présente notre première contribution. Le chapitre 3 détaille
notre modèle de détection d'intrusions, et le chapitre 4 présente son implémentation.

En�n, la dernière partie de cette thèse présente l'extension de notre modèle au réseau et aux sys-

7

tèmes distribués, dans les chapitres 5 et 6, suivie de nos résultats expérimentaux dans le chapitre 8.

8

Abstract

Modern organisations rely intensively on information and communication technology infrastruc-
tures. Such infrastructures o�er a range of services from simple mail transport agents or blogs
to complex e-commerce platforms, banking systems or service hosting, and all of these depend on
distributed systems. The security of these systems, with their increasing complexity, is a chal-
lenge. Cloud services are replacing traditional infrastructures by providing lower cost alternatives
for storage and computational power, but at the risk of relying on third party companies. This risk
becomes particularly critical when such services are used to host privileged company information
and applications, or customers' private information. Even in the case where companies host their
own information and applications, the advent of BYOD (Bring Your Own Device [48]) leads to
new security related issues.

In response, our research investigated the characterization and detection of malicious activities
at the operating system level and in distributed systems composed of multiple hosts and services.
We have shown that intrusions in an operating system spawn abnormal information �ows, and
we developed a model of dynamic information �ow tracking, based on taint marking techniques,
in order to detect such abnormal behavior. We track information �ows between objects of the
operating system (such as �les, sockets, shared memory, processes, etc.) and network packets
�owing between hosts. This approach follows the anomaly detection paradigm. We specify the
legal behavior of the system with respect to an information �ow policy, by stating how users and
programs from groups of hosts are allowed to access or alter each other's information. Illegal
information �ows are considered as intrusion symptoms. We have implemented this model in
the Linux kernel4, as a Linux Security Module (LSM), and we used it as the basis for practical
demonstrations. The experimental results validated the feasibility of our new intrusion detection
principles.

This research is part of a joint research project between Supélec (École supérieure d'éléctricité)
and QUT (Queensland University of Technology).

4The source code is available at http://www.blare-ids.org.

9

10

Acknowledgements

The completion of this thesis marks the end of an amazing period, in which I met great people
and had the opportunity to work on so many interesting things. Spending a year at QUT gave me
the ability to discover a new culture, and to gather di�erent points of view and approaches on the
research side. This was a most exciting experience.

First of all, I would like to express my gratitude to my advisors, Frédéric Tronel and Ludovic
Mé for their encouragements, criticisms and support. Their tremendous knowledge of the �eld and
all their advices have been very helpful to complete this thesis.

I am also very grateful to Colin Fidge, Jason Reid and Andrew Clark for their welcoming
and their support during my stay in Australia. Their guidance and their broad skills were very
appreciable. In particular, many thanks to Andrew Clark, without whom this cooperation between
Supélec and QUT would probably not have been possible.

I would like to thank all the members of the CIDre team for all the interesting discussions
we had during the last few years, and all the members of the Information Security Institute for
welcoming me in Australia.

Special thanks to Sajal, Gleb, Mr Kush, Ken and Mark for all the enjoyable moments we spent
together.

Finally, thanks to my family and Sarah for supporting me throughout this long road.

11

12

Contents

Introduction 19

I Research Context 21

1 Background and Related Work 23
1.1 Traditional security mechanisms . 23

1.1.1 Firewalls . 23
1.1.2 Access control . 24
1.1.3 Limitations of access control . 26

1.2 Information �ow control . 26
1.2.1 Multi Level Security . 27
1.2.2 Decentralized models . 28

1.3 Related work . 28
1.3.1 VTT model . 29
1.3.2 Panorama . 29
1.3.3 Taintcheck . 29
1.3.4 Argos . 29
1.3.5 Taintdroid . 30
1.3.6 Laminar . 30
1.3.7 Pedigree . 30
1.3.8 Aeolus . 30
1.3.9 DStar . 31
1.3.10 Comparison of related work . 31

1.4 Intrusion detection . 32
1.4.1 Host-based and network-based IDS . 33
1.4.2 Anomaly detection and misuse detection . 33
1.4.3 Policy-based IDSes . 33
1.4.4 Distributed IDSes . 34

2 Information Flow Models 35
2.1 VTT model . 35

2.1.1 Policy . 35
2.1.2 Dynamic aspect . 37
2.1.3 Lattice . 37

2.2 Comparison with lattice based models . 37
2.2.1 Chinese walls . 37
2.2.2 Bell-LaPadula . 37
2.2.3 Biba . 38
2.2.4 Clark-Wilson . 38
2.2.5 DTE . 38
2.2.6 Myers and Liskov . 39
2.2.7 Summary of the comparison . 39

2.3 Objectives and requirements for intrusion detection 40

13

14 CONTENTS

II Intrusion Detection at the Host Kernel Level 41

3 Extended Model 43
3.1 A model based on VTT . 43

3.1.1 Evading VTT . 43
3.1.2 Proposed extension . 44

3.2 Data and code distinction . 44
3.3 Types of containers . 45
3.4 Supervision of processes . 46

3.4.1 Keeping tracks of running code . 46
3.4.2 Write access . 46
3.4.3 Execution . 47
3.4.4 Read access . 47
3.4.5 Summary of tainting rules . 47

3.5 Extended information �ow policy . 47
3.5.1 Constrained and unconstrained containers 48
3.5.2 Persistent policy . 49
3.5.3 Initialization . 49
3.5.4 User policy . 49
3.5.5 Processes . 50

3.6 Legality of information �ows . 50
3.6.1 Initialization of processes . 50

3.7 Lattice . 51
3.8 Derivation from a MAC policy . 52

3.8.1 AppArmor pro�les . 52
3.8.2 Algorithm . 53
3.8.3 Examples . 54

3.9 Conclusion . 55

4 Implementation 59
4.1 Overview . 60

4.1.1 Kernel access control hooks . 60
4.1.2 Tags . 60
4.1.3 Granularity . 61

4.2 Data structures . 61
4.2.1 Practical considerations . 63

4.3 Tags in kernel memory . 66
4.3.1 Information tags . 66
4.3.2 Policy tags . 66
4.3.3 Execute policy tags . 67

4.4 Tags on disk . 68
4.4.1 Serialization . 68

4.5 Users policy . 69
4.5.1 On disk . 69
4.5.2 In memory . 69
4.5.3 Communication between userspace and kernelspace 69

4.6 Operations and complexity . 70
4.6.1 Updates on information tags . 70
4.6.2 Updates on execute policy tags . 70
4.6.3 Legality check . 70

4.7 System calls and hooks . 70
4.7.1 Fork and clone . 72
4.7.2 Memory mappings . 73
4.7.3 Files and pipes . 76
4.7.4 Message queues . 77
4.7.5 Networking . 78

CONTENTS 15

III Distributed Intrusion Detection 81

5 Network Extension 83
5.1 Overview . 83
5.2 Network extension . 84

5.2.1 Network policy tag . 85
5.2.2 Legality of network information �ows . 85

5.3 Practical use cases . 85
5.3.1 All sensitive data must stay local . 85
5.3.2 Sensitive data may be sent over the network only through trusted applications 86
5.3.3 Per-application pro�les . 86

5.4 Dynamic policy changes . 86
5.5 Conclusion . 86

6 Distributed Policy Over Multiple Hosts 87
6.1 Context . 87
6.2 Host groups . 87
6.3 Network tainting . 88

6.3.1 Distributed security tokens . 89
6.3.2 Protocol . 90
6.3.3 Frequent updates . 91

6.4 Information �ow policy . 93
6.4.1 Users . 93
6.4.2 Programs . 94
6.4.3 Persistent containers . 94
6.4.4 Network packets . 95

6.5 Legality of information �ows . 95
6.5.1 Policy tags . 96

6.6 Conclusion . 96

7 Network and Distributed Implementation 99
7.1 Network policy . 99
7.2 Distributed policy . 100
7.3 CIPSO . 100
7.4 Netlabel . 101

7.4.1 Internal representation . 101
7.4.2 Conversion . 102

7.5 Execution contexts . 102
7.6 Socket operations . 103

7.6.1 Sending messages . 103
7.6.2 Receiving messages . 103

7.7 Bug and patch . 105
7.8 Future work . 105

7.8.1 Distributed security token . 105
7.8.2 Copy on write . 105
7.8.3 Filesystem bottleneck . 105
7.8.4 Enforcement mode . 106

7.9 Conclusion . 106

8 Experiments 107
8.1 Data leaks through a web browser . 107
8.2 Attack on a distributed web service . 108

8.2.1 Scenario . 109
8.2.2 Attack . 110

8.3 Evaluation of performances . 110
8.3.1 Overall completion time . 110

16 CONTENTS

8.4 Discussion . 111
8.4.1 Detection rate . 111
8.4.2 Improving accuracy . 112
8.4.3 Usability . 113

8.5 Conclusion . 113

Conclusion 114

Bibliography 116

Appendix A System Calls 123
A.1 Special cases . 133

List of Figures

1.1 Access control matrix . 24
1.2 Example: Access control rights . 27
1.3 Example of illegal indirect �ow. 27
1.4 Comparison of related work . 32

2.1 Comparison of information �ow models. 39

3.1 Tainting rules . 47
3.2 User policy . 50
3.3 Execution of a binary program . 51
3.4 Lattice . 51
3.5 AppArmor access modes . 53
3.6 Derivation algorithm. 54
3.7 Example pro�le for derivation . 54
3.8 Tags derived from the policy . 55

4.1 Access control hooks in the kernel . 60
4.2 Atomic information in �les at initialization time . 61
4.3 Number of �les on a Linux server. 64
4.4 Data structures memory overhead . 64
4.5 Memory allocation layers in the kernel . 65
4.6 Output of the slabtop command. 65
4.7 Information tags are represented as doubly linked lists 66
4.8 Policy tags are linked lists of binary trees . 67
4.9 Execute policy tags intersection algorithm . 71

5.1 Network information �ow tracking . 84

6.1 Host group . 88
6.2 Tainting rules . 88
6.3 P2P token exchange . 90
6.4 Distributed token protocol . 91
6.5 Computing deltas . 92
6.6 Deriving policy tags from the policy . 96

7.1 CIPSO option . 100
7.2 Tag types . 101
7.3 Tag type 1 . 101
7.4 The blare_tags structure, attached to sockets (and other objects) 104

8.1 Monitoring outgoing information . 108
8.2 group of trusted hosts . 108
8.3 Labels on �les . 109
8.4 CPU overhead on SSH transfer . 111
8.5 Memory overhead on SSH transfer . 112

17

18 LIST OF FIGURES

8.6 Information �ows within applications . 113

Introduction

Over the last decade, the huge development of internet and home networks led to new online
services, social networks and online mass market. Information systems have been expanded to �t
more and more users with increasing data volumes. This made distributed systems very common
and widely used. Nowadays, popular services store large amounts of user data online, �in the
cloud�. It is thus desirable that the underlying systems o�er good security properties. Such security
properties have to be de�ned and implanted into each system component through a security policy.
This is de�ned as a set of rules specifying how the system is authorized to manage information, i.e.,
what is legal within the system in terms of information and operations. Existing mechanisms have
been designed to implant such policies, such as access control and �rewalls. However, these are
very di�cult to maintain in complex growing environments, where perpetual bug �xes in software
development make evasion possible for potential attackers.

As a result of this, intrusion detection systems (IDSes) have become a necessary addition to
the security infrastructure of nearly every organization. IDSes typically record information from
observed events and notify the system administrators when possibly illegal events occur. Most
of the current approaches focus on misuse detection, by detecting patterns of abnormal behavior
of the monitored system, i.e., these are based on learned pro�les or signatures of known attacks.
Such approaches generally generate a high number of false positives, making it di�cult for system
administrators to successfully identify real attacks. Furthermore, these systems are not able to
detect previously unseen attacks also known as �zero day attacks�. An alternative approach to
misuse detection is anomaly detection, describing deviations from an established normal state of
the monitored system.

The aim of this research is to investigate the characterization and detection of malicious activ-
ities at the operating system level and in distributed systems composed of groups of hosts. Our
approach follows the anomaly detection paradigm. It is based on a security policy describing the
legal behavior of the system, an approach also known as policy-based intrusion detection. Detection
of illegal activity is done by tracking information �ows within the operating system and between
hosts. An information �ow policy de�nes the legal behavior of the system, by determining where
information is allowed to �ow, and which users or programs are allowed to access it. Any violation
of this policy is considered as a symptom of intrusion, and raises an alert.

In order to achieve these goals, we have �rst designed and implemented a model of taint marking,
labeling objects of the operating system with tags, so as to track their content by propagating taint
data. Objects such as �les, sockets and processes, amongst others, are tainted. It was implemented
in the Linux kernel as a Linux security module. The design and implementation of this model
represents our �rst contribution.

The consideration of network aspects, such as the policy regarding network interaction of appli-
cations, users and containers of information (e.g., �les, memory pages, etc.), represents our second
contribution. This includes an extension of our model and implementation so as to take network
sockets and packets into consideration. We introduced a network policy, de�ning the legality of
information �ows involving outgoing data, in terms of con�dentiality, and incoming new data, in
terms of integrity. It de�nes how new and possibly untrusted data is allowed to mix with data
already present in the system. Specifying such a policy for e.g., private user data o�ers a novel
solution for tracking privacy violations caused by applications.

Finally, our last contribution is the generalization of this approach in order to detect intrusions
in distributed systems. Taking multiple hosts into account (we gather hosts in groups, in which each
host is aware of the others), allows us to specify a distributed policy suitable for larger systems,

19

20 LIST OF FIGURES

while keeping a high granularity. Such a policy is distributed at the host level in each group, and
de�nes the legal interactions between processes running on di�erent hosts. It states how pieces of
authorized information may be accessible by applications and users from any given host of a group.

The model and implementation that we present in this thesis focus on the con�dentiality and
integrity aspects of information. Attacks against availability are not covered by our approach.
We only use o�-the-shelf components on commodity hardware, and the only trusted code is our
modi�ed operating system kernel.

The reminder of this thesis is organized as follows. The �rst part introduces the context of
this research. It �rst presents the necessary background in terms of access control, �rewalls and
information �ow control. After this, related work in the �eld is reviewed and compared to our
approach. The second part focuses on intrusion detection in isolated hosts. It presents our model
of intrusion detection based on taint marking and its implementation. The last part presents
the extensions of our model and implementation to detect intrusion detection in network and
distributed environments, as well as our experiments and results.

Part I

Research Context

21

Chapter 1

Background and Related Work

This Ph.D. project focuses on detecting intrusions at the operating system kernel
level, based on an information �ow tracking model implemented on top of access con-
trol mechanisms (the Linux Security Modules). These three aspects are central to our
approach, therefore, this chapter provides an overview of the background literature in
these �elds. Access control is �rst introduced, opposing traditional discretionary ac-
cess control coming as standard with most operating systems, with mandatory access
control as implemented in SELinux amongst others. Classic information �ow control
models are then introduced, followed by modern decentralized approaches as well as
related work in terms of information �ow tracking and taint marking. Finally, an
overview of existing research in the �eld of intrusion detection is presented.

1.1 Traditional security mechanisms

When it comes to secure information systems, �rewalls and access control provide basic security by
enforcing OS and network level security properties. These are available in most if not all operating
systems. The �rst part of this chapter is dedicated to these mechanisms, and highlights their
shortcomings with respect to the problem we aim to address.

1.1.1 Firewalls

Firewalls are devices or software that �lter network tra�c at di�erent layers of the ISO network
model. They can be set up to restrict access to a personal machine or a company's network from
other untrusted networks, thus creating trust boundaries [35]. Individuals can use software �rewalls
on their personal/portable computers to de�ne and enforce policies concerning both incoming and
outgoing network tra�c.

Deep Packet Inspection (DPI) �rewalls identify anomalous patterns in tra�c volumes by in-
specting both the headers and content of packets. They provide the capability of identifying
anomalous network tra�c as well as managing normal tra�c. They also form the core of many
commercially-available �rewalls and intrusion detection systems (IDS). Tamer et al. [1] present a
survey of the Deep Packet Inspection algorithms, implementation techniques, research challenges
and their usage in several existing technologies for intrusion detection systems. Some of the high-
lighted challenges include the complexity of research algorithms, the ever-increasing number of
attack signatures (which negatively impacts on performance) and the increasing prevalence of en-
crypted data which DPI cannot examine.

Considering the problem we seek to address, that is, detecting intrusions in potentially complex
distributed systems, �rewalls have several limitations:

• Regular (i.e. non DPI) �rewalls �lter tra�c based on reduced sets of properties, extracted
from packets headers. This is not suitable when dealing with advanced security policies.

23

24 CHAPTER 1. BACKGROUND AND RELATED WORK

• DPI �rewalls can be used to analyse network tra�c in a more �ne-grained manner, however,
since both the packets headers and packets content are analyzed, the overall process implies
high performance overhead.

1.1.2 Access control

Access control is the fundamental security mechanism of all operating systems. Though the generic
concept of access control exists in many forms, and may be applied to any kind of resource (e.g.
databases, web content etc.) our primary focus in this thesis is operating system security. Amongst
the available variants of access control, Discretionary Access Control (DAC), Mandatory Access
Control (MAC) and Role Based Access Control (RBAC) are most commonly implemented in
commodity operating systems. The following �rst introduces the notion of access control policy,
along with the various mechanisms to represent it, and then presents those three access control
variants, as well as implementations of MAC in modern operating systems.

Access control policy

When setting up a system, it is important to clearly understand the security requirements that
are involved, and to list them explicitly. This is done by specifying a policy. It is de�ned at a
high level of abstraction, and it represents a concise and formalized set of goals and requirements
[2]. In the case of access control, the security policy (access control policy) de�nes how subjects
(e.g. users or processes) are allowed to access objects (e.g. �les), by specifying a set of authorized
operations (e.g. read, write). Common representations of such policies include Lampson's matrix,
access control lists and capabilities.

In 1974, Lampson described an access control matrix [41]. It is a table indexed by subject and
object (Lampson uses the term resources). The cells of the matrix contain access attributes that
specify the kinds of access each subject is allowed to perform on each object. Figure 1.1 shows an
example of access control matrix.

/etc/passwd /etc/apache2.conf /var/log/messages

Alice {read} {write} {read}

Bob {} {write} {read}

Carol {read} {} {read}

Figure 1.1: Access control matrix

For each object, the corresponding column lists all the kinds of access any subjects have to that
object.

Access Control Lists (ACL) associate each object with an access control list, which is a column
in Lampson's matrix. ACLs are the most common way to represent access control authority
relationships in modern operating systems. An ACL speci�es which subjects are allowed to operate
on the object, as well as which operations are permitted. When using ACLs, objects are identi�ed
by path names and other forgeable1 references. On UNIX, ACLs contain an owner, a group, and
rights in (R,W,X) standing for read, write, execute respectively. Di�erent rights can be assigned
for the owner, the group and the other subjects.

Another way to express an access control policy is to use capabilities. A Capability is a commu-
nicable and (assumed) unforgeable token of authority. A user or process that possesses a capability
will have the right to access certain objects, as described by this capability. Processes can perform
some operations on capabilities such as deleting them, passing them to another process or trans-
forming them into less privileged ones. Capabilities are implemented as privileged data structures
residing in kernel memory. A capability system associates each subject with a list of capabilities

1Such a reference does not give any information about who holds it and which access rights are associated with
it.

1.1. TRADITIONAL SECURITY MECHANISMS 25

(also called C-list) which can be represented as a row in Lampson's matrix. However, Miller et
al. [49] claim that capabilities based models have dynamic aspects that cannot be represented in
Lampson's matrix, as it is only a static representation of access rights. Miller et al. show that ca-
pabilities systems are actually more sophisticated than access rights, and that a direct comparison
using Lampson's matrix is not accurate. It should be emphasized that "Portable Operating System
Interface for Unix" (POSIX) capabilities are a di�erent kind of capabilities, and are not associated
with any object. A process owning a POSIX capability will have some privileges associated with
some operations, like listening to ports under 1024 which normally requires root privileges. It is a
coarse grained approach aimed to parcel the power of the root user, avoiding the use of setuid.

Discretionary access control

Discretionary access control (DAC) is the most commonly used access control mechanism and is the
default on UNIX based systems. Access is restricted given the identity and the group of subjects
trying to access objects. It is said to be discretionary because subjects are able to transfer certain
permissions to each other at their own discretion. This involves security related issues in systems
where end-to-end security policies need to be enforced.

Role Based Access Control

With Role Based Access Control (RBAC), the permissions to perform operations are assigned to
speci�c roles. Permissions are not directly assigned to subjects, but to roles instead. It di�ers from
the ACLs and allows �ner grain management of user rights. User rights are managed in a way that
has a meaning at the application or OS level, rather than using low level attributes. It has been
shown to be a good model for implementing the separation of duties.2 Each subject and object
has a set of security attributes, and any operation requires to test that it conforms to the policy.
It is therefore a particular case of mandatory access control.

Mandatory access control

Mandatory access control (MAC) is based on authorization rules (policy) enforced by the oper-
ating system, that are not modi�able by users (it is not discretionary). The Trusted Computer
System Evaluation Criteria (TCSEC) [55], also known as Orange Book, de�nes MAC as �a means
of restricting access to objects based on the sensitivity (as represented by a label) of the informa-
tion contained in the objects and the formal authorization (i.e., clearance) of subjects to access
information of such sensitivity�. A later publication from the NSA [43] states that this view of
MAC is tightly coupled with Multi Level Security (MLS, see Section 1.2.1), and is insu�cient to
meet the needs of either the US Department of Defense or private industry as it ignores critical
properties such as intransitivity and dynamic separation of duty. In response, the NSA proposed
a more general notion of mandatory security that was �rst introduced by the Secure Computing
Corporation [15]. A mandatory security policy is considered to be any security policy where the
de�nition of the policy logic and the assignment of security attributes is tightly controlled by a
system security policy administrator [43].

Generally speaking, mandatory access control policies are expressed in terms of security labels
attached to subjects and objects [62], as is the case with MLS systems. A label on an object is
called a security classi�cation, and a label on a subject is called a security clearance.

With MAC, regular users cannot change the classi�cation of information, and the policy is
enforced by the operating system at the kernel level (see the following subsection about MAC
frameworks). Some works have been focusing on the veri�cation of the policy consistency against a
given set of security goals [12, 38]. By using MAC mechanisms, one can �nely control the operations
each subject is allowed to perform on the objects of the system. When con�gured correctly, those
mechanisms can signi�cantly improve security by rejecting illegal accesses that would have been
allowed otherwise.

2Also known as segregation of duties, it is a concept of having more than one person required to complete a task.

26 CHAPTER 1. BACKGROUND AND RELATED WORK

MAC frameworks

Advances in common operating systems include the improvement of access control mechanisms.
While traditional discretionary access control remains widely used, previous research on mandatory
access control has led to implementations in common operating systems, such as Linux, FreeBSD,
MacOS X and Windows. Examples include SELinux [64], AppArmor [54], Smack [63], Tomoyo
[30] for Linux, and TrustedBSD [70] for FreeBSD. When used in so-called enforcement mode, they
block illegal accesses to objects. When used in permissive mode, their behavior is comparable to
an intrusion detection system, and alerts are logged when the policy is violated.

The following describes SELinux and AppArmor in further details.
SELinux [64] emerged from research led by the National Security Agency of the USA. It is the

�rst security module available in Linux, and it has been designed to implement a �exible MAC
mechanism called domain and type enforcement (DTE). Domain and Type Enforcement (DTE) has
been presented [DTE95,DTE96] as a model that improves access control. DTE groups processes
into domains and �les into types. It restricts access from domains to types as well as from domains
to other domains. The kinds of access modes that are considered by SELinux can be any of read,
write, execute, create, and directory descend. Domain access refers to the right to send signals as
well as to transition to a new domain. At any given time, a process belongs to exactly one domain.
Transition to a new domain is done by executing a �le which has been de�ned in the policy as
an entry point to the new domain. There are three types of domain transitions: auto, exec, or

none. For instance, if a domain DA has auto access to another domain DB , and a process in DA

executes an entry point for DB , it will automatically switch to DB . The exec property is similar,
except that the process can choose whether to switch to a new domain or not, by executing one of
its entry points.

AppArmor [54] is a simple MAC implementation available in the Linux kernel as an alternative
to SELinux. AppArmor aims to be easier to use and con�gure than SELinux. It is used by default
by Novell in their products and comes with a prede�ned policy, and a set of generic de�nitions to
ease the di�culty of creating new policies.

A signi�cant amount of work has been done on de�ning default security policies for SELinux
and AppArmor, o�ering rules for many server applications interacting with insecure data coming
from unknown clients through network connections. This makes those tools valuable for system
administrators, reducing the work needed to set up complex security policies in real life systems.

Distributed MAC

With the growing number of distributed environments and services across the internet, especially
during the last decade, researchers have focussed their interest on the extension of mandatory access
control [46, 33, 72] policies to distributed systems so as to control interaction between applications
of multiple hosts.

1.1.3 Limitations of access control

Access control, and especially MAC systems are useful to enforce strict policies, dramatically im-
proving the security of operating systems. As compared to traditional discretionary access control,
MAC o�ers tight control over access to objects by subjects or processes, in a centralized fashion.
However, access control focuses on the access to resources (i.e., system objects containing informa-
tion), rather than information, and does not make any distinction between the two. Information
�ow control and taint marking models allow for more �exibility. The next section further discusses
these aspects.

1.2 Information �ow control

Contrary to access control policies, which enforce security policies by controlling access to objects
containing information (which we call containers of information), information �ow control focuses
on the information itself. Thus, rather than preventing illegal (direct) access to containers, it pre-
vents illegal (direct or indirect) access to information, by specifying a policy regarding information

1.2. INFORMATION FLOW CONTROL 27

�ows between classes of information. This is a key di�erence between access control policies and
information �ow policies. The term taint marking is often used to refer to models of information
�ow, where taint data is propagated in labels. Information �ow tracking models do not enforce a
policy, but rather observe information �ows and report illegal actions.

�le 1 �le 2 �le 3

Alice {read} {write} {read}

Bob {read} {read} {}

Figure 1.2: Example: Access control rights

Figures 1.2 and 1.3 illustrate an example of illegal information �ow. Figure 1.2 de�nes the
access control rights for Alice and Bob on three �les of the system, in the form of an access control
list. Figure 1.3 shows how an illegal �ow is possible by indirect interaction between Alice and Bob:
Bob is able to access information he shouldn't have access to. Bob does not have the right to
read �le 3, but Alice does. Alice reads �le 3 and writes its content to �le 2. Bob has read access
on �le 2. This example highlights the key di�erence between access control and information �ow
control: access control does not prevent indirect access to information. Enforcing an information
�ow policy would have prevented bob to access �le 2.

Figure 1.3: Example of illegal indirect �ow.

1.2.1 Multi Level Security

The following presents the most common approaches of multi-level security. Though such models
can be considered as MAC to some extent, these enforce information �ow policies. Therefore, we
qualify them as information �ow control rather than access control.

In 1973, the Bell-LaPadula model was introduced [42], with the primary goal of protecting
con�dentiality. It is also known as Multilevel Security, and systems that implement it are called
Multilevel secure or MLS systems [2]. In this model, subjects and objects are labeled with a security
level, which represents their sensitivity or clearance. Any information �ow from a high security
classi�cation to a lower security classi�cation is illegal [4, 19, 23]. Implementations of MLS try
to accurately observe data manipulations in order to prevent illegal information �ows. Operating
systems with MLS implementation include SELinux, FreeBSD, Solaris and BAE XTS-400.

In 1976, Denning introduced �a lattice model of secure information �ow� [17]. She de�ned it
as a mathematical framework suitable for formulating the requirements of secure information �ow
among security classes. This formal model involves objects, processes and a set of security classes.
Objects each belong to a security class, subjects are objects, and processes are the active agents
responsible for all information �ows. The set of security classes encompasses the concepts of security
classi�cations. Denning also introduces a ��ow relation� and the �class combining operator�, which
together with a set of security classes forms a Lattice.

In 1977, the Biba model [7] was introduced, protecting integrity. It is often viewed as the Bell-
LaPadula model upside down [2]. It de�nes the Biba integrity property as follows: a high integrity

28 CHAPTER 1. BACKGROUND AND RELATED WORK

process cannot read lower-integrity data, execute lower-integrity programs or obtain lower-integrity
data in any other manner.

In 1987, Clark and Wilson proposed the Clark-Wilson integrity model [14]. As opposed to
Biba, it is not a direct derivative of the Bell-LaPadula model, and it does not use label based
classi�cation. It is derived from a concept of �double entry bookkeeping� an old practice used in
accounting [2]. In this model, low integrity data can �ow to high integrity data only if it goes
through a Filter (an information �ow channel). Clark and Wilson also claim that the security
needs in the commercial area are as important as those of the Department of Defense.

The models of Bell-LaPadula, Biba and Clark-Wilson can be represented as Lattice models in
Denning's framework. Furthermore, combining the Biba and Bell and LaPadula models results in
a Lattice, as lattice-based information �ow policies that combine several lattices can be cast within
a single lattice [62].

The Chinese wall model introduced by Bewer and Nash in 1989 [6] is a hybrid security policy
that addresses both con�dentiality and integrity. The motivation behind the Chinese wall policy
is to group datasets into �con�ict of interest classes�. In such a model, the subjects can access at
most one dataset belonging to the same con�ict of interest class. A common example to illustrate
this model is the example of consultants dealing with con�dential company information for their
clients. A consultant should not have access to the information of two concurrent banks, or two
concurrent companies of the same sector because it would create a con�ict of interest and a�ect
the way the consultant behaves. There is a dynamic aspect with the Chinese wall policy: before a
consultant actually accesses con�dential information from a speci�c company, say a bank company,
he is allowed to access the information of any bank company. As soon as he has accessed the
information from one bank, he cannot access any information from any other bank.

1.2.2 Decentralized models

In 1997, Myers and Liskov proposed a decentralized model for information �ow control [50]. This
model applies to systems with mutual distrust and decentralized authority. It di�ers from multi-
level security models by allowing users to declassify information in a decentralized way and improves
support for �ne-grained data sharing. This model allows users to associate con�dentiality and
integrity labels with data and to restrict information �ows based on these labels.

With MAC systems, an administrator sets a system-wide policy. When a server runs multiple
third-party applications, it is di�cult for a central administrator to understand in detail the se-
curity of all the applications. With Decentralized Information Flow Control (DIFC), the policy is
partially delegated to the individual applications [40]. Flume, Asbestos and Histar [40, 76, 21] are
implementations of decentralized information �ow control at the operating system level. Flume [40]
has been implemented in Linux and uses the standard operating system abstractions commonly
found on UNIX systems (processes, pipes, etc.). In Flume, processes are con�ned according to a
�ow control policy. Histar [76] is an operating system aiming to minimize the amount of code that
must be trusted. It provides a secure operating system using mostly untrusted user-level libraries
(the only fully trusted code being the kernel). It uses Asbestos [21] labels on six OS level object
types (threads, address spaces, segments, gates, containers and devices).

1.3 Related work

In the previous sections, we have shown how information �ow control addresses the problem of
tracking indirect information �ows within a system. Our work uses such mechanisms so as to track
information �ows at the operating system level. Recent work have been focussing on information
�ows control and information �ow tracking at di�erent levels for malware analysis, detect privacy
violations or to enforce complex security policies. These include VTT et al.'s model, Panorama [73],
TaintCheck [53], TaintDroid [22], Laminar [25], Pedigree [74], Aeolus [13] and DStar [77]. This
section �rst presents each approach individually and then compares them together.

1.3. RELATED WORK 29

1.3.1 VTT model

In 2009, Valérie Viet Triem Tong (VTT) et al. [66] proposed a model for specifying and enforcing
a �ne-grained information �ow policy. This model relies on tainting techniques in order to provide
information �ow tracking commodities. Content and containers are distinguished: content are
pieces of information while containers are logical storage objects such as �les or memory pages.
Information �ows are observed using tainting techniques. Tainting is performed by propagating
tags: containers are each labelled with two tags, an information tag describing the current content
of the container and a policy tag de�ning the policy regarding the information that can �ow towards
this container. Content and policy are described in such tags at any stage and for any supervised3

container in the system. The information �ow policy can either be automatically constructed from
a DAC policy or con�gured by an administrator. VTT et al.'s model is used as a basis in the
work presented in this thesis. We will come back to it later in the next chapter for a comparison
with classic multilevel security models as well as decentralized information �ow control models.
The reminder of this section presents recent information �ow models and how these di�er from our
approach.

1.3.2 Panorama

Panorama [73] is a system-wide information �ow tracking model based on dynamic taint analysis,
focussed on detection and analysis of malware for Microsoft Windows. It combines taint propaga-
tion information at the hardware level with operating system knowledge, so as to generate taint
graphs. Such graphs represent information �ows made by processes on tainted information, and
help identify how information is propagated in the system. Using such taint graphs along with
a policy allows for automatic detection of malicious code. Panorama provides a �ne-grained in-
formation �ow analysis, involving a small number of false positives. It su�ers from a signi�cant
slowdown of 20 times in average. However, given the purposes of such an analysis, this perfor-
mance overhead is not considered as a severe limitation. Automatic detection is done in three steps,
test, taint and analyse. A test engine �rst runs series of automated tests. Then, a taint engine
monitors how sensitive information is propagated within the system. A malware detection engine
along with a set of policies is able to detect malicious code. Finally, a malware analysis engine
can be used to examine the taint graphs, and provides detailed analysis information. Panorama
was implemented on top of QEMU, for processor emulation, along with a kernel module called
module noti�er, loaded on the guest Microsoft Windows operating system. As compared to our
current work (based on VTT et al.'s model), Panorama di�ers in the sense that it provides �ner
granularity when observing information �ows, but it also involves a high performance penalty, and
requires hardware emulation, which di�ers from our objectives, presented in Section 2.3.

1.3.3 Taintcheck

TaintCheck [53] dynamically taints incoming data from untrusted sources (e.g. network) and
detects when tainted data is used in any way that could be an attack. It uses full system emulation
at the instruction level so as to provide a very �ne-grained approach. However, as with Panorama,
the main limitation of such instruction-level models is a very high penalty in terms of performances;
a slowdown of 1.5 to 40 times is to be expected, according to its authors. For the same reasons,
this approach is not in accordance with our objectives.

1.3.4 Argos

Argos [58] is an emulator, based on Qemu, for generating signatures of attacks automatically.
It observes information �ows in the guest (emulated) system so as to track illegal use of unsafe
information, such as information from the network. Information from unsafe sources is tainted with
tags. Such tags are attached to the memory at the byte granularity, and to CPU registers using a
single tag per register. Argos traces access to physical memory addresses, and generates logs when

3Supervised containers have a policy tag, non supervised containers eventually obtain an information tag as these
get tainted.

30 CHAPTER 1. BACKGROUND AND RELATED WORK

a violation is detected. Such logs contain registers and memory information (memory dumps), and
are used for automatic generation of signatures (in Snort rules format) as well as manual analysis.
Argos is able to detect attacks in userspace as well as in kernelspace. When an attack occurs,
Argos injects its own shellcode, using the address space of the attacked process, so as to gather
additional information from this process. Such information may for instance be transmitted to the
host (running the emulator) for forensics analysis. In order to generate signatures, Argos looks for
patterns by comparing the memory dumps and the tra�c generated by the attack (after �ltering
out useless information, such as tra�c on untargeted ports). As for Taintcheck and Panorama, the
objectives of our work, presented in Section 2.3, di�er from these of Argos.

1.3.5 Taintdroid

TaintDroid [22] is an information �ow tracking system for realtime privacy monitoring on smart-
phones. It is based on taint marking at four di�erent levels of granularity, respectively at the
variable, message, method and �le levels. TaintDroid has a performance overhead of 14% on the
CPU. This approach is similar to the approach we have taken in this current work. However,
TaintDroid is focussed on the Android platform using the Dalvick interpreter and therefore it does
not apply to native applications, which represent most of the software present on standard desktop
and server operating systems. Furthermore, it does not propose a �ne-grained information �ow
policy, but rather focusses on some speci�c data with respect to privacy issues.

1.3.6 Laminar

Laminar [61] is a hybrid solution combining language level and operating system level Decentralized
Information Flow Control (DIFC). It requires light modi�cations (less than 10%) in the code of the
programs, where programmers can use secrecy and integrity labels so as to express security policies.
It uses the same abstractions for OS-level resources, and heap allocated objects. It implemented as
a modi�ed Java virtual machine along with a Linux security module. The performance overhead of
this approach varies from 1% to 56%. While Laminar o�ers interesting results by combining several
approaches, it requires modi�cations in the code of applications, where our approach focusses on
the use of unmodi�ed applications on commodity hardware.

1.3.7 Pedigree

Pedigree [74] enforces information �ow control across a network for legacy applications and operat-
ing systems. It implements two functions: a trusted labeller and a central controller. The trusted
labeler propagates labels on each host, it runs as a trusted module at the operating system level,
and tracks information �ows at the level of �les and processes. The central controller enforces the
policy. Therefore, the so-called data plane (forwarding of labels) is separated from the control plane
(enforcement of the policy). The security model of Pedigree is based on a lattice, and the policy is
centralized. 64-bit labels are attached to each resource (i.e., �les or processes) and contain taint.
On each host, a label store, implemented as an in-memory structure, attaches labels to resources.
A global label store is also maintained, and used by a network enforcer to enforce information �ows
between di�erent hosts. Taint may be of two kinds: secrecy or integrity. Users are allowed to
create new taint, modify a taint that they own, and modify labels on a resource that they own,
based on their capabilities. A capability database manages the capabilities, and users can have the
capability to set or unset the secrecy bit of a taint (s` and s´), to set or unset the integrity bit of
a taint (i` or i´) and to add or remove users who may manage the capabilities of a taint (o` or
o´). The main di�erence of our approach as compared to Pedigree is the information �ow policy
itself. We compare Pedigree with our approach in Section 6.6.

1.3.8 Aeolus

Aeolus [13] is a platform for building secure distributed applications. It performs decentralized
information �ow tracking at the thread level. Similarly to other models of DIFC, it allows users
to de�ne restrictions on the use of their own information. It is based on simple rules involving

1.3. RELATED WORK 31

principals and tags, where tags are used to categorize information, and principals are the entities
interested in such information. It provides �ne-grained delegation of authority, and supports revo-
cation. It makes use of a memory-safe language to isolate threads from each others. Support for
distributed programs involve a RPC mechanism, and provides the concept of boxes, allowing con-
�dential information to be communicated between two ends without tainting intermediates which
do not observe the information �ow. Aeolus is OS-independent, and it is implemented as a set
of runtime libraries. Its main implementation supports Java, but it has also been ported to C#
and PHP. Contrary to language-based information �ow tracking systems, Aeolus does not observe
individual variables. It remains more �ne-grained than OS approaches, as it observes individual
threads. A comparison of our work with Aeolus is presented in Section 6.6.

1.3.9 DStar

In the �eld of decentralized information �ow control, Zeldovich et al extended their previous
work [40, 21, 76] with DStar [77], so as to control information �ows in distributed systems. Dstar
controls how information �ows between processes on di�erent machines. It provides DIFC mech-
anisms for use by applications, in order to de�ne legal interactions between mutually distrustful
components. By opposition with MAC, where a central administrator controls the system, DIFC
gives control to application programmers, leading to a �ner granularity. In DStar, labels are at-
tached to processes, and de�ne the legal behavior of processes. By using such labels, Dstar ensures
that only processes allowed to communicate may do so. Each label contains a set of two categories:
secrecy and integrity. Secrecy categories in a message determine who is allowed to receive it, and
integrity constrains who may have sent it. It follows a �no read-up, no write-down� logic, with
respect to a partial order between labels, de�ned by the �can �ow to� (Ď) function. It ensures
that untrusted code does not access inappropriate data. In DStar, each process also has a set of
privileges, which allow it to bypass some permissions that are normally forbidden by the Ď relation
between labels. Processes may also raise their own label given their clearance. When processes
own a category, these can raise the labels of other processes in that category. In order to carry
labels over the network, DStar uses so-called exporter daemons on each host, which are the only
processes sending or receiving DStar messages over the network. Trust is decentralized between
categories owners of each host, through local exporters. Trust between exporters relies on cryp-
tographic certi�cates, and exporters may delegate trust in a category to other exporters. As for
Pedigree and Aeolus, we propose a comparison of our work with DStar in Section 6.6.

1.3.10 Comparison of related work

Current information �ow control and information �ow tracking models can be categorized into three
types: language level, operating system level and architecture level [61]. Language level solutions
[50, 51] rely extensively on type system changes and modify the program structures. Such solutions
are not able to track security violations at the level of system objects (such as �les and sockets).
Operating system level solutions [40, 76, 21] rely on page mappings and OS-level abstractions, and
cannot accurately monitor information �ows into applications, as those do not have access to inner
data structures [61]. However, these are able to observe information �ows over all the system. Our
work follows this approach, as presented in more details in Section 2.3. Architecture level solutions
[67, 78] are able to track data labels within applications but require trusted software to manage
the labels and involve high performance penalties in the case of full system emulation.

In terms of performance overhead, Taintcheck and Laminar have high performance penalty due
to their low-level approach (full system emulation). Though this provides a �ne-grained approach
while observing information �ows (which provides interesting results for malware analysis) this
approach is not practical for runtime monitoring of a full operating system, as required by our
intrusion detection approach (our requirements are explained in more details in Section 2.3).

Laminar, Pedigree, DStar, Aeolus and DIFC models enforce a security policy (i.e., these block
illegal information �ows) while Panorama, Taintcheck, VTT et al. and Taintdroid taint information
and let illegal information �ows occur. For a comparison of our approach with these related work,
see Sections 3.9 and 6.6.

32 CHAPTER 1. BACKGROUND AND RELATED WORK

Implementation Performance overhead Distributed History

Panorama OS and architecture high no no

Taintcheck architecture high no no

Taintdroid OS/language low no no

Laminar OS and architecture high no no

Pedigree OS low no no

Aeolus Language low yes no

DStar OS/language low yes no

VTT et al. OS/language low no yes

Figure 1.4: Comparison of related work

Figure 1.4 compares recent approaches of information �ow control and tracking, with respect
to the following criteria:

• Implementation refers to the level (i.e., layer) of deployment of the approach. OS refers
to operating system level approaches (userspace libraries wrappers or kernel), architecture
refers to full system emulation, and language refers to the modi�cation of virtual machines
or interpreters, or instrumentation of the code of applications.

• Performance overhead is a rough estimation of the performance of each approach.

• History refers to the fact of keeping tracks of individual pieces of information throughout the
system.

• Distributed refers to mechanisms providing information �ow control or tracking across mul-
tiple hosts over a network.

We believe that strict policies are not practical in all situations, as these can potentially break
functionalities by blocking legitimate information �ows when the security policy is too strict, or,
on the contrary, allow illegitimate access when the security policy is too permissive. This becomes
particularly problematic when applying such mechanisms to complex distributed systems made
of heterogeneous hosts, using multiple applications with various security requirements altogether.
Furthermore, most systems use o�-the-shelf components and applications, and these do not come
with prede�ned policies designed by the developers. Instead, the security requirements are speci�ed
a-posteriori, which requires a lot of e�ort and leads to complex security policies. On the contrary,
tainting information without blocking allows for information �ow tracking. To this extent, VTT
et al.'s model di�ers from existing tracking models as it provides �ne-grained information �ow
tracking and keeps information �ow history. Its policy di�ers from traditional MLS and from DIFC
(this aspect is further developed in Chapter 2) as it allows to specify rules for individual pieces
of information within a system. It also di�ers from recent approaches, as these are either based
on non-interference between security levels (e.g., low/high) or lattice-based (usually representing
hierarchies of security classes such as secret, top-secret etc.). We used the model introduced by
VTT et al. as the basis of our work. It is presented in more details in Chapter 2.

1.4 Intrusion detection

Intrusion detection is the process of monitoring and analysing system and network events, looking
for signs of intrusion. Intrusion detection systems (IDSes) are software layers which automate
these monitoring and analysis processes [16]. IDSes are used to detect attacks such as viruses and
malicious users or to monitor the security of a system to help in diagnosis and correction of �aws
[24].

1.4. INTRUSION DETECTION 33

1.4.1 Host-based and network-based IDS

Host-based Intrusion Detection Systems (HIDS) have access to the operating system information
[16, 3]. Such IDSes are able to detect the presence of malware and targeted attacks by analysing
low level system objects and information. Furthermore, encrypted network attacks can also be
detected by analysing low level network tra�c once it has been decrypted. HIDSes can generate
alerts corresponding to each malicious system event.

Network Intrusion Detection Systems (NIDS) can monitor segments or sections of networks,
depending on their placement [16]. Those typically work in so-called �promiscuous mode� (only
capturing tra�c) and have very little impact on the network. Such IDSes can consume system
resources when dealing with large or busy networks [38].

1.4.2 Anomaly detection and misuse detection

Among existing intrusion detection systems, two major approaches are used in order to di�erentiate
normal behavior and misuse. [82]. Anomaly detection de�nes a legal behavior that is known to be
safe. Any unknown action is considered as illegal. Statistical models are often used in this case.
Misuse detection, also called knowledge based, de�nes what is illegal, based on signatures of misuse
actions.

Misuse detection, is the most popular approach amongst commercial IDSes [80]. Misuse IDSes
make use of knowledge about known attacks, exploits and vulnerabilities and analyse system events
and network tra�c looking for matching patterns. Such knowledge is often called signatures. One
of the drawbacks of this approach is that the signatures database has to be maintained up to date
in order to be e�ective [16] . Another drawback is that it is possible to forge fake matching patterns
in network tra�c and/or system events, leading to false positives and overloading of the IDS. Also,
such IDSes can only detect known attacks that are already present in the signature database.

Debar et al.[16] have shown that misuse detection can be achieved using di�erent methodolo-
gies. These include expert systems, signature analysis, petri nets and state-transition analysis. A
common method amongst commercial IDSes is the use of signature analysis along with patterns of
attacks reduced to a low level of semantics. Well-known misuse detection IDSes include Snort [59]
and Bro [57]. These are both open-source.

Anomaly detection IDSes aim to identify abnormal/unusual behaviour (anomalies) by com-
paring current behaviour to a known normal state. It was �rst introduced by Denning in 1976
[18]. Denning was assuming that tra�c generated by attackers is clearly di�erent from normal
tra�c, which is recorded into pro�les. One advantage of anomaly detection systems is their ability
to detect previously unknown attacks (zero day) [56], which attackers may seek to exploit before
patches are released to �x the targeted vulnerabilities. Another advantage is the ability to detect
di�erent forms of the same attack, where signature-based IDS do not always have all the possible
matching signatures [56, 68].

Anomaly detection IDSes rely on several methodologies. Self learning systems (time series
based, such as arti�cial neural networks (ANN), or non time-series based such as descriptive statis-
tics and rule modelling) learn by example what constitutes the normal behavior of a system [3].
Programmed systems are taught by an administrator to detect abnormal behavior. Those can be
based on descriptive statistics algorithms, or on a default deny approach, stating only what is legal.

Statistical based anomaly detection models use statistics from di�erent parameters [24]. As
stated by Gates and Taylor [25], most modern anomaly detection systems are based on Denning's
assumptions [18]. Those assumptions consider that attacks are rare (as compared to normal events)
and di�er from the normal behavior of the system.

Hybrid systems [56] are combining both misuse detection and anomaly detection approaches.

1.4.3 Policy-based IDSes

Policy-based IDSes are anomaly detection IDSes following a �default-deny� approach. A number
of previous works exist in this domain, using sandboxing mechanisms at the language level [36]
or via Kernel based reference monitors such as BlueBox, REMUS, LIDS and Ko et al. system
wrappers [11, 28, 5, 39]. Similar sandboxing mechanisms also exist in user space, namely system

34 CHAPTER 1. BACKGROUND AND RELATED WORK

introspection [69, 37]. Blare [81, 82, 66, 26] is an IDS deployed at the host level, and at the
Java Virtual Machine level. It relies on information �ow models developped in the ISSN4 team
at Supélec. Its �rst model is host-based and was developed by Jacob Zimmermann [81, 82]. It
relies on the principle of non-interference. This principle was introduced in 1982 by Goguen and
Meseguer, and extended in 1984 by the same authors [27]. It is a strict multilevel security policy
model, where information is gathered in isolated security classes. Information cannot �ow from
one security class to another. Hiet, Viet Triem Tong, Morin and Mé have used the �rst version of
the Blare model along with JBlare5 to control the legality of information �ows in Java programs
using a non interference policy. This hybrid intrusion detection (OS/Language levels) allows to
re�ne information �ow tracking, thus reducing the number of false positives [34].

1.4.4 Distributed IDSes

Even though distributed systems have become very popular, particularly since the explosion of
cloud infrastructures, little research focussed on new models of intrusion detection suitable for
such environments. Existing approaches are based on aggregation or centralization of events re-
ported by individualmisuse IDSes, such as Snort [59] or Bro [57]. Examples of this are the following
approaches. In [60], Roschke, Cheng and Meinel proposed and implemented an extensible IDS
management architecture, providing central management of several sensors. It integrates several
sensors through an event gatherer, with support for several implementations of well known ID-
Ses. In [45], Mazzariello, Bifulco and Canonico proposed an approach of misuse detection for an
opensource cloud computing environment. It targets denial of service attacks, and it is based on
Snort [59] for analyzing network tra�c.

To our knowledge, the approach that is the most closely related to our current work is an
approach of anomaly detection introduced by Zimmermann and Mohay in [83]. It focuses on
detecting intrusions in clusters based on the principle of non-interference. Objects of the operating
system are supervised by monitoring the invocation of their methods (i.e. actions such as read or
write) and producing a trace. The policy speci�es the legal behavior of the system, by associating
domains to objectmethods. Violations of the policy are detected by evaluating a trace of the system
using an unwinding theorem. Such a theorem makes it possible to identify the set of existing traces
matching the desired non-interference properties. Reference monitors are deployed on each node
of the system, and messages between nodes are instrumented.

4Now CIDre.
5JBlare is an implementation of Blare in the Java Virtual Machine (JVM) able to monitor information �ows

withing Java programs.

Chapter 2

Information Flow Models

Our research is the continuation of previous work in the ISSN (Information Systems
Security and Networks) team at Supélec (now CIDre). Models for dynamic informa-
tion �ow tracking have been previously proposed, and have shown to be successful in
detecting intrusions [66, 82]. Our model is an extension the VTT model, and we target
intrusion detection in both isolated and distributed environments. In this chapter, we
�rst present the VTT model (introduced in Section 1.4.3). Then we compare it with
existing models of information �ow control and present a summary of the properties
o�ered by each model. We �nally present our requirements for intrusion detection.

2.1 VTT model

The following is a description of the model introduced by Valerie Viet Triem Tong et al. [66] in
2009. This model is an information �ow model based on taint marking techniques along with an
information �ow policy, it protects both integrity and con�dentiality. Objects of the operating
system potentially containing information, such as �les, are called containers of information.

De�nition 1. Labels called tags are attached to each container of information. Tags contain
meta-information, that are used to describe real content. These tags include a policy tag, and an
information tag :

• The information tag represents an over estimate of the information that the container may
contain.

• The policy tag represents the information �ow policy for the container (i.e. which information
it can legally contain).

Any information �ow towards a container, making changes to its content, requires an update
of its information tag so as to match the new content. After this, a legality check is performed in
order to ensure that its policy (as de�ned in its policy tag) has not been violated. If a violation of
the policy occurs, an alarm is raised.

2.1.1 Policy

The policy in the VTT model di�ers from other information �ow models. It is decentralized at the
container level in the policy tags of each speci�c container, and states �which information is allowed
to be contained in each container� or in other words �what can �ow towards each container�. The
policy for a container is expressed as a set of sets. Any set (or any subset of it) of the policy tag,
represents a legal combination of information for a given container, (i.e. a legal information tag).
Therefore, an information �ow towards a container is legal if and only if the updated information
tag of the container after the information �ow occurred is included in one of the sets of the policy
tag.

35

36 CHAPTER 2. INFORMATION FLOW MODELS

• The integrity of containers is protected by controlling which subsets of information are allowed
to mix together inside the containers (i.e. how information may be altered).

• The con�dentiality of information is controlled by determining which pieces of information
containers may contain (i.e. where information may �ow).

De�nition 2. Let C be the set of all containers. For any container c P C,
itagpcq lists the origin of content residing in the container, i.e. its information tag,
ptagpcq lists the policy attached to the container, i.e. its policy tag.

Updates of the information tag

When an information �ow occurs from a container C1 to a container C2, the information tag of C2

is updated with the information tag of C1. Its new information tag (after the �ow occurred) is the
union of its old information tag with the old information tag of C1 (before the �ow occurred).

itagpC2qnew “ itagpC1qold Y itagpC2qold

Legality of an information �ow

De�nition 3. An information �ow towards a container is legal if and only if its information tag
is included in one of the sets of its policy tag :

LegalpitagpCq, ptagpCqq ô Dp P ptagpCq|itagpCq Ď p

Example 1. Consider an information �ow from C1 to C2 with the following tags:
itagpC1q “ t1, 2u
itagpC2q “ t2, 3u
ptagpC2q “ tt1, 2, 3, 4u, t5, 6uu
The following update on the information tag of C2 would occur :
itagpC2qnew “ itagpC2qold Y itagpC1qold “ t1, 2, 3u
This information �ow is legal because itagpC2q is a subset of one of the sets of ptagpC2q : t1, 2, 3u Ď
t1, 2, 3, 4u.

With such a policy, the con�dentiality and the integrity properties are independent. For in-
stance, the policy attached to a process might have a low level of con�dentiality (i.e. it would only
have access to a small subset of the information on the system), and a high level of integrity (i.e.
the data cannot mix with other data) at the same time. Empirically, con�dentiality and integrity
can be expressed as follows, and are compared to the same notions of the Bell-LaPadula and Biba
models later in Section 2.2.

• The con�dentiality level of a policy tag is determined by the set of di�erent atomic information
it allows in a container, regardless of how it allows them to mix together. The more di�erent
pieces of information are legal in the container, the higher the level of con�dentiality raises
for this container. The less information is legal in the container, the lower the level of
con�dentiality. For instance, a process with a high level of con�dentiality may have authorized
access to a lot of di�erent pieces of information, and thus have a policy tag allowing it
to contain a high number of di�erent pieces of information. The con�dentiality level of a
container c can be measured by:

|
ď

pPptagpcq

|

• The integrity level of a policy tag is determined by the combinations of information it allows
in a container. The more the information is allowed to mix with other information, the
lower the integrity. The less it is allowed to mix, the higher the integrity. For instance, a
process with a high level of integrity may not mix its content with low integrity information
and would thus have a policy tag forbidding it. The integrity level of a container c can be
measured by:

|ptagpcq|

|
Ť

pPptagpcq |

2.2. COMPARISON WITH LATTICE BASED MODELS 37

2.1.2 Dynamic aspect

In the VTT model, the set of authorized operations that processes can perform over objects (con-
tainers of information) is not constant. It may dynamically change over time: whether a process
can access an object depends on the information that it previously accessed. For instance, a process
might have the permission to write to a given container until it reads some data that is invalid in
this container, either for integrity reasons (e.g., the new data does not have a su�cient integrity
level), or for con�dentiality reasons, (e.g., the new data cannot be mixed with less con�dential
information). This notion of dynamic changes in the authorized behavior of processes could be
quali�ed as a dynamic clearance1.

This dynamic aspect can be summarized as follows:

• A policy is expressed on what containers are allowed to contain.

• The content of containers keeps changing (after each information �ow).

• The clearance of a process is dynamic in time.

2.1.3 Lattice

The VTT model can be formally represented in Denning's framework, �Lattice model of secure
information �ow� [17], and under certain assumptions, its components form a bounded lattice.
While the demonstration of this aspect is not covered here, we demonstrate this lattice property
later in Section 3.7 for our extension of the VTT model.

2.2 Comparison with lattice based models

The following is a comparison of the VTT model with the most common implementations of
multilevel security (MLS) systems and policies. We use the terms security class to refer to the
policy of one or more containers (see Section 3.7).

2.2.1 Chinese walls

The Chinese walls model is centered on the concept of separation of �con�ict of interest classes�
(see Section 1.2.1). Such a dynamic property can be de�ned in a VTT policy. Recall the previous
example from Chapter 1 with a consultant working for a bank company. A Chinese wall policy
could be de�ned such that once the consultant had access to information from any bank, his or
her access to the information from any other bank would be denied.

In the following, we call IBankk the class of all the information related to the bank Bankk.
Therefore, in a context where N concurrent banks exist, if the consultant has accessed the infor-
mation from Bank1 (IBank1

), his or her access to IBankk|2ďkďN is illegal.
Such a policy can be de�ned in the VTT model by attaching a user policy to the consultant

where each subset of the policy concerns the information from one speci�c bank. The following
policy is an example of this:

PUConsultant
“ ttIBankku1ďkďNu

The multiple subsets of this policy have a meaning of exclusion: the legal information for user
Uconsultant is de�ned by at most one of the composing sets of the policy at one time. It can be
seen as an exclusive or relation between the composing sets, allowing only one set at a time.

2.2.2 Bell-LaPadula

The Bell-LaPadula model labels data with levels of classi�cation. It can be summarized as follows:

• The simple security property also known as �no read up� states that no processes can read
data up from a higher level of classi�cation.

1The notion of clearance here is the same as in the Bell-Lapadula model, de�ning a level of authorization for a
subject over an object. See Section 1.2.1.

38 CHAPTER 2. INFORMATION FLOW MODELS

• The *-property also known as �no write down� states that no processes may write data down
to a lower level of classi�cation.

While this model protects con�dentiality, it does not protect integrity. In the VTT model, a
process may not read information that is illegal with respect to its policy tag (i.e., not contained
in one of the sets of its policy tag). This means that this information is contained in a higher
or incomparable security class in the policy's lattice. This is comparable to �no read up� in Bell-
LaPadula.

Example 2. A process with policy {{1,2,3},{4,5,6}} may not read a �le containing {1,2,3,4}.
It may not read a �le containing {5,6,7} either. Both are forbidden with respect to the policy.
However, {5,6,7} would be allowed if the policy was {{1,2,3},{4,5,6,7}}, which is considered as a
higher security class than {{1,2,3},{4,5,6}}in the policy's lattice (presented in Section 3.7).

In the VTT model, a process may not write information to a �le if such information is not legal
with respect to the �le's policy tag (i.e., not contained in one of the sets of its policy tag). The
meaning of this in terms of security class is that the involved information is contained in a higher
or incomparable security class in the policy's lattice. This notion is similar to �no write down� in
Bell-LaPadula.

Example 3. A process may not write information {1,2,3,4} in a �le with policy {{1,2,3},{4,5,6}}.
It may not write information {5,6,7} either. Both are forbidden with respect to the policy. However,
{1,2,3,4} would be legal with the policy {{1,2,3,4,5,6}}, which would be a higher security class in
the policy's lattice.

There are however two major di�erences between the VTT model and Bell-LaPadula. With
VTT, information �ows are illegal between di�erent security classes with incomparable levels of
security. Also, the VTT policy makes it possible to de�ne which information is allowed in which
containers, and is thus attached to containers themselves, it does not express any direct classi�ca-
tion of the information.

2.2.3 Biba

The di�erences between VTT and Biba are similar to those with Bell-LaPadula. Similarly to
con�dentiality, data with the same level of integrity are isolated as those are considered as being
di�erent security classes.

Integrity with VTT is protected on a �by container� basis, and given two pieces of information
i1 and i2, some containers may be allowed to mix them together (tti1, i2uu) while some other
containers may not (tti1u, ti2uu). The integrity which is protected is the integrity of the container,
not the integrity of the information itself.

2.2.4 Clark-Wilson

The Clark-Wilson model protects integrity. As opposed to Biba, it is not based on Bell-LaPadula,
and it does not make use of label-based classi�cation. In this model, low-integrity data can �ow
towards high integrity if it goes through a �lter (declassi�cation). This model is not based on a
lattice. It is not directly comparable to the VTT model in terms of policy.

2.2.5 DTE

DTE stands for �Domain and Type Enforcement� and SELinux is based on it. (See Section 1.1.2).
With DTE, a domain attribute is attached to subjects, and a type attribute is attached to objects.
Restrictions apply from domain to type, and also from domain to domain.

In the VTT model, the tags attached to processes and containers can be compared to domains
and types in DTE. Information �ows between two containers are legal if their policy tags allow it.
The information tags state which information the containers contains, and the relation between
policy tags and information tags can be seen as domain to type or domain to domain in DTE. In
the VTT model, this relation is bilateral:

2.2. COMPARISON WITH LATTICE BASED MODELS 39

• The relation between the information tag of a process and the policy tag of a �le de�nes if
the process is allowed to access this �le in write mode.

• The relation between the information tag of a �le and the policy tag of a process de�nes if
the process is allowed to access this �le in read mode or in exec mode.

However, the changes of domains in DTE have no equivalent in the VTT model. In DTE,
executing a binary program may cause a domain switch for the running process, and the new
domain can either extend or restrict the rights of the process. In the VTT model, any information
�ow between a subject and an object may change the information tag of either the subject or the
object, thus restricting the policy in one direction: from the subject to the object if the information
tag of the subject has been modi�ed, or the other way in the other case.

2.2.6 Myers and Liskov

As in the VTT model, the Myers and Liskov decentralised information �ow control model (DIFC)
is related to mandatory access control in the sense that the security policies are mandatory, and not
enforced at the discretion of application writers [40]. Where the M&L model allows decentralization
of the policy with the applications being allowed to declassify information that they own, VTT
policy speci�cation is centralized (though future works are planned to provide declassi�cation in the
model). Both M&L and VTT are based on a lattice and protect both integrity and con�dentiality
of data.

2.2.7 Summary of the comparison

The VTT model can be seen as a combination of Biba and Bell-LaPadula as it addresses both
con�dentiality and integrity aspects at once. It has however a dynamic aspect in common with the
Chinese walls. Furthermore, it allows data isolation when security classes of the same level are not
directly comparable. This later aspect is comparable with models based on Multiple Independent
Levels of Security (MILS).

VTT B&LP Biba CW C&W M&L DTE

Con�dentiality yes yes no yes no yes yes

Integrity yes no yes yes yes yes yes

Dynamic yes no no yes no yes yes

Decentralized no no no no no yes no

Declassi�cation no no no no yes yes no1

Distributed no no no no no yes no

Content based yes no no no no yes no

Flow history yes no no no no no no

Figure 2.1: Comparison of information �ow models.

1there is no declassi�cation mechanisms in DTE. However, domain transitions may provide comparable

properties in some situations. extent.

Figure 2.1 is a comparison of information �ow models: B&LP stands for Bell-LaPadula, CW
stands for Chinese walls, C&W stands for Clark-Wilson, M&L stands for Myers-Liskov. The
declassi�cation aspect of the VTT model is a work in progress in the CIDre team. The term
decentralized refers to the way the policy is de�ned. If it is centrally de�ned by one single authority
as it is most often the case, then it is characterized as centralized. Distributed refers to the network
distributed systems such as web services with multiple hosts. Content based refers to the distinction

40 CHAPTER 2. INFORMATION FLOW MODELS

between containers of information and content. Flow history refers to the ability to describe the
origins of all the content that is residing in a container.

2.3 Objectives and requirements for intrusion detection

In this Ph.D., we aim to dynamically detect intrusions in isolated hosts as well as in distributed
systems composed of multiple hosts. Our objectives are the following:

• Detecting violations of integrity and con�dentiality (which we consider as intrusions).

• Detecting successful attacks targeting all kinds of components (applications, OS-level services
etc.).

• The ability to use o�-the-shelf components: unmodi�ed applications running on commodity
hardware.

Our approach of intrusion detection follows the anomaly detection paradigm: we observe illegal
information �ows within the operating system, with respect to a security policy.

There exists a number of information �ow control models in the literature. Some of these
models can be used in permissive mode, where the security policy is not enforced, but alerts are
raised instead. Such behavior allows the information �ows to actually happen and modify the state
of the system. This is a �rst requirement for our approach of intrusion detection (we do not aim to
prevent intrusions). Another requirement is the ability to track the origin of information residing
within any of the objects of the operating system. Where most models of information �ow control
would let information spread once con�gured in permissive mode, they would not taint information
: no tracking of the propagation of information within the operating system would be possible.

As shown in Figure 2.1, the VTT model �ts both of these requirements :

• It is a permissive model: it does not enforce the policy, and it does not forbid information
�ows. Flows happen and modify the state of the system.

• The information �ow history is kept, and allows to track the origin of information residing
in any container of the system. This aspect relies on so-called taint marking techniques. It
will be further described later in Chapter 3.

For these reasons, our approach of intrusion detection is based on VTT's model. The contri-
butions of our work are presented in the next parts of this thesis. Our �rst contribution is an
extension of VTT's model and its implementation in the Linux kernel. This is presented in Part II.
Our second contribution is the extension of this �rst work to �t distributed systems, and it is
presented in Part III.

Part II

Intrusion Detection at the Host

Kernel Level

41

Chapter 3

Extended Model

As presented in Chapter 2, a number of information �ow models exist. These may be
applicable to intrusion detection when used in a permissive mode, where the policy
is not enforced and information �ows actually occur even when these are illegal. Our
choice of not enforcing the policy is motivated by the fact that we are interested in
intrusion detection rather intrusion prevention. However, future research in this �eld
may also focus on the enforcement mode of information �ow models. As shown in
Figure 2.1 in Chapter 2, the VTT model o�ers properties that best �t our require-
ments. Therefore, we use it as a basis in our intrusion detection approach. We have
however identi�ed some evasion issues when using the model as-is for designing a host
kernel level monitor. Although the VTT model o�ers the properties that are needed
for our approach of intrusion detection, it lacks consideration of some aspects of the
operating system that are necessary for realistic intrusion detection. This chapter
�rst highlights the evasion issues we found, and then presents our extended model
and how it allows to detect intrusions in isolated machines (distributed aspects are
covered in the third part of this thesis).

3.1 A model based on VTT

The VTT model provides �ne-grained information �ow tracking between containers of information.
When applied to an operating system of the UNIX family, it allows to track information between
objects of the operating system such as �les, sockets and the like, and users. This notion of user
di�ers from the traditional UNIX notion: users in VTT are considered as containers. Recall from
Chapter 2 that for any container c, itagpcq lists the origin of content residing in the container,
which we call its information tag. In VTT, this applies to users as well, as information tags are
attached to their representing containers. For instance, users A and B would be represented as
containers uA and uB , with itagpuAq “ iA and itagpuBq “ iB . If we now consider a container c
with the following policy: ptagpcq “ tiA, iBu, stating that c may only contain iA or iB , or both at
the same time (that is, any subset of tiA, iBu), then only users A and B are allowed to write in c
(no matter if one of them already wrote information to this container before the other).

3.1.1 Evading VTT

When applied to a real operating system, this model can be evaded through code execution, as it
does not con�ne executable code. Furthermore, the previous notion of users is only theoretical: no
process con�nement mechanisms are de�ned in the model. Whereas information from an exclusive
list of users is allowed in each container, the reverse is unde�ned (i.e. how information is allowed
to �ow towards a user). As an illustration of the shortcomings of this model with respect to code
execution, consider the following example:

Example 4. : A malicious user exploits a �aw in a service running on a web server, and injects
arbitrary code into the process running this service. The injected code is then interpreted and it

43

44 CHAPTER 3. EXTENDED MODEL

writes a malicious script into a new �le, before executing it as the current user.

In such a scenario, the VTT model would forbid the process to write into any �le c (container)
for which access is not allowed to the user uweb running the web server (i.e. the policy attached to
c does not allow uweb). On the contrary, writing to any �le allowing uweb in its policy is authorized,
and the same goes with the creation of new �les (as in the previous example). In such a situation,
there is no way to detect the intrusion: this is one potential scenario of evasion.

3.1.2 Proposed extension

We have presented and published the following extension of the VTT model at ICC 2011 [65]. This
new model improves the following aspects :

1. The execution of code and programs is supervised, based on the distinction between active
code, that is executed by processes, and passive stored information.

2. Containers of information are considered separately, depending on whether these are stored in
memory or on-disk. The former are called volatile containers, and the latter are called persis-
tent containers. We also make the distinction between (passive) objects, storing information,
and (active) subjects (i.e. processes running code on behalf of users).

3. The information �ow policy can be expressed separately for users, executable code (which
we also call programs1) and containers.

4. The information �ow policy can be derived from a mandatory access control policy. We have
formally de�ned a method for deriving an AppArmor2 policy into an information �ow policy
that is applicable to intrusion detection. It remains possible to derive an information �ow
policy from a discretionary access control policy, as it has been done in previous work with
the VTT model.

We further detail these aspects in the reminder of this chapter.

3.2 Data and code distinction

Recall from De�nition 1 in Chapter 2 that tags contain meta-information describing actual infor-
mation (or data3) of the system. In this new model, meta-information is represented by two sets
I and X as follows:

• I is the set of all meta-information describing passive data (i.e., stored in a �le). Note
that executable code (e.g., shared libraries, binary programs, executable scripts) is equally
represented in I as long as it is not executed, i.e. as long as it is not running as the code of
a process. Thus, stored data representing code is represented in I.

• X is a set describing active code being executed (i.e., being run as code in processes). Each
element of X is an image of one passive information element of I, through the Run relation
de�ned below.

This distinction of I and X was inspired by Denning's assumption: �Processes are the active agents
responsible for all information �ow� [17].

De�nition 4. The execution of code is characterized by the following relation:

Run : I Ñ X
1In this thesis, we equally refer to executable code or program to refer to any given combination of executable

information, potentially being executed by one or several processes.
2As introduced in Chapter 1, AppArmor is a Linux security module developed by Novel.
3We both refer to information and data interchangeably.

3.3. TYPES OF CONTAINERS 45

X is a bijection of I through the relation Run. Each program is described by one or more
elements of I when stored on disk, and by their image through Run when running as the code of a
process. We do not have any a-priori knowledge concerning the executable aspect of information.
Therefore, each passive information of I has an image in X , that is used upon eventual execution.

De�nition 5. A program (or application) is de�ned as a set of executable information in ℘pIq4.
We de�ne the set of all programs as Π:

@π P Π, π P ℘pIq5

Usually, we would label each supervised program with a unique meta-information of I, however,
in some cases, programs may be composed of multiple elements combined together, e.g. a C
program linked with shared libraries as in Example 5, or a virtual machine or interpreter loading
a script �le, as it is the case with most dynamic languages such as Ruby, Python, PHP and many
others. In such cases, the �nal program is the set of all of its composing elements, and it is tainted
with multiple meta-information of I. This aspect allows us to de�ne the legal interactions amongst
pieces of code or programs in the policy (which we introduce later in this chapter).

Example 5. Consider a C source �le s, labelled with information is. When compiling such
source code and linking it with external libraries l1, . . . , ln, which �les are respectively labelled with
information i1, . . . , in, the resulting binary program �le f is tainted with S “ tis, i1, . . . , inu P ℘pIq,
i.e. itagpfq “ S.

3.3 Types of containers

At the operating system level, containers of information do not all behave the same. We found
that several kinds of containers have di�erent properties. The �rst distinction we make concerns
subjects and objects. This notion is similar to the one used in access control models, where each
subject is able to perform actions on a set of objects. We use the terms active containers to
refer to subjects, and passive containers to refer to objects. We also make a distinction between
containers regarding their storage locations. We consider containers stored in memory as volatile
containers, as such containers would not survive power failure. Furthermore, even when no power
failure occurs, the lifetime of such containers is limited: most of them are destroyed after a given
time of execution, e.g. a socket is destroyed once a connection expires, a bunch of memory pages
is freed once a process calls free6 etc.. Therefore, we de�ne:

• The set of volatile containers (objects) as CV .

• The set of persistent containers (objects) as CP .

• The set of processes (subjects) as CΠ.

The set of all containers is de�ned as:

C “ CV Y CP Y CΠ

It should be emphasized that users are not considered as containers in our extended model.
Processes are the only active agents of the system and thus we consider those as the only active
containers. Processes act as subjects, running code doing operations on behalf of users, towards
objects being either volatile (e.g. sockets) or persistent (e.g. �les) containers. Therefore, con�ning
users as well as programs is done at the level of processes, and only the three previously introduced
types of containers exist in our model: volatile, persistent and processes.

4℘pAq (powerset) denotes the set of all the subsets of A.
5Empirically, processes are containers running the code of programs. The set of all programs is Π, therefore the

set of all processes is noted CΠ.
6In C programming, memory is allocated by calling the C library function malloc and released by calling the

function free.

46 CHAPTER 3. EXTENDED MODEL

3.4 Supervision of processes

As mentioned previously, we follow Denning's assumption that �processes are the active agents
responsible for all information �ows�. Therefore, tainting rules apply to operations made by pro-
cesses and involving potential7 information �ows. As we distinguish (passive) data from (active)
code in the meta-information used in tags, di�erent tainting rules are applied, depending on the
access mode and the kind of meta-information involved.

De�nition 6. For any container c,

• the function itag : C Ñ ℘pI Y X q returns the information tag of c.

• the function ptag : C Ñ ℘p℘pI Y X qq returns the policy tag of c.

In the following, we represent the operating system as a state-transition system:

σi Ñτi σi`1

We note σ0, σ1, . . . , σn the states of the system, and τ0, τ1, . . . , τn the transitions between these
states. We consider the read, write, and exec operations made by processes to be transitions
between states of the containers. Therefore, each information �ow is represented as a transition
between two states i and i ` 1, respectively referring to the state of information before and after
the information �ow occurred.

3.4.1 Keeping tracks of running code

Before going into the details of tainting rules, let us clarify how this distinction between code and
data in meta-information a�ects the meaning of information tags. When describing the VTT model
in Chapter 2, we stated that information tags indicate the origin of content in containers. This
remains true when considering elements of I, describing passive information. However, elements
of the new set X do not have the same meaning. Instead, such elements keep tracks of active
code involved in information �ows. In other words, the combination of elements of I and X in
information tags has a dual meaning, stating which couples xinformation, codey are involved in
information �ows. It also depends on the kind of container:

• Any element a P X in the information tag of a processes de�nes that the process potentially
runs this code.

• Any element a P X in the information tag of any passive container indicates a process running
such code wrote information in the container.

This allows us to express additional properties in the information �ow policy. We will come
back to this later in this chapter.

3.4.2 Write access

When a process p accesses a container c in write access, we distinguish two situations: either the
process overwrites the existing content, or it appends new information to the container. In the
�rst case (overwrite), we propagate the information tag of the process as-is towards the container.

itagpcqi`1 “ itagppqi

In the second case (append), the union of both the container and the process's information tags is
used as the new tag for the container:

itagpcqi`1 “ itagppqi Y itagpcqi

In any case, the new information tag of the container is tainted by both elements of I, i.e.
information that the process was holding at the time of the access, and elements of X , i.e. which
code the process was running at this time. This property allows to keep tracks of which processes
write information to containers, and to express policy rules based on it, as presented later in this
chapter.

7Recall that our analysis takes a maximum estimation of the possible content of containers into consideration.

3.5. EXTENDED INFORMATION FLOW POLICY 47

3.4.3 Execution

Recall the Run relation from previous Section 3.2 of this chapter. This relation characterizes the
execution of code or programs.

De�nition 7. We extend the Run relation from De�nition 4 as follows, so as to work with sets of
elements rather than individual elements:

Run : ℘pIq Ñ ℘pX q

RunpAq “ tRunpaq|a P Au

When a new process is created as the result of the execution of some code, its information
tag is initialized with the image of the information that was executed, through the relation Run.
Therefore, for any process p running code stored in a persistent container c, the information tag
of the new process is initialized as follows:

itagppqi`1 “ RunpitagpcqizX q

Elements of X in a running process give information related to the code that is currently
running. These meta-information also taint the containers where processes write information, as
described previously. Therefore, upon execution of content store in a container c, we discard
elements of X from the information tag of c: we do not want taint the new process with previous
writers of c (i.e., pieces of code being executed by previous processes which wrote information to
c).

3.4.4 Read access

When a process p accesses a container c in read access, it is tainted by the information tag of c,
as follows:

itagppqi`1 “ itagppqi Y pitagpcqizX q
We discard elements of X for the very same reasons described previously for the case of execu-

tion.

3.4.5 Summary of tainting rules

Operation i P I x P X

Read taint discard

Write taint taint

Execute taint with x “ Runpiq discard

Figure 3.1: Tainting rules

As shown on Figure 3.1, we apply di�erent tainting rules, depending on whether processes read,
write or execute content. In this �gure, taint means that the destination process or container
gets tainted by the meta-information. Discard means the destination process or container does
not get tainted by the meta-information. The latter only applies to elements of X , i.e. meta-data
attached to active code being executed.

3.5 Extended information �ow policy

Before going into further details about how the (information �ow) policy is attached to containers,
let us de�ne the policy itself. In our model, the policy can be expressed separately for users,
programs and persistent containers. It should be emphasized that volatile containers do not have a

48 CHAPTER 3. EXTENDED MODEL

policy because these directly depend on the processes creating them and acting on them. Checking
their content against the policy is done every time the acting process performs an operation tainting
its own information tag.

For any given system, let U be the set of all users, CP the set of all persistent containers and
Π the set of all programs (i.e. executable code).

The information �ow policy is a triplet: P “ pPCP
,PU ,PΠ) where: PCP

is the policy attached
to persistent containers, PU is the policy attached to users, and PΠ is the policy attached to the
executable code of programs.

• PCP
Ď CP ˆ ℘pI Y X q.

For any persistent container c protected by the policy, PCP
de�nes one or several sets S “

taY bu, a P ℘pIq and b P ℘pX q where:

1. Any subset of a may legally �ow into c.

2. Applications or programs running any subset of b as their code are allowed to write
information into c.

• PU Ď U ˆ ℘pI Y X q.
For any user u that is supervised by the policy, PU de�nes one or several sets S “ taY bu, a P
℘pIq and b P ℘pX q where:

1. Processes on behalf of u are allowed to access any subset of a.

2. Processes on behalf of u are allowed to execute any subset of b.

• PΠ Ď Πˆ ℘pI Y X q.
For any executable information π that is supervised by the policy, PΠ de�nes one or several
sets S “ taY bu, a P ℘pIq and b P ℘pX q where:

1. Processes running π as their code are allowed to read any subset of a.

2. Processes running π as code are allowed to execute any subset of b.

The (information �ow) policy is attached permanently to persistent containers and to users,
and dynamically to processes as these are created, in their policy tags.

De�nition 8. We de�ne the relation maycontain as follows:

@x P tCP ,U ,Πu, pc, pq P Px ô c maycontain p

where c P x and p Ď ℘pI Y X q

Therefore, for any container c P C

ptagpcq “ tp|c maycontain pu

3.5.1 Constrained and unconstrained containers

Unconstrained containers have no policy attached to them, i.e., their policy tags are empty, whereas
constrained containers have a policy tag de�ning their legal content. For any c P C,

• If c is unconstrained, then ptagpcq “ H.

• If c is constrained, then ptagpcq ‰ H.

• If c is constrained, and must remain empty, then ptagpcq “ tHu “ K.

3.5. EXTENDED INFORMATION FLOW POLICY 49

3.5.2 Persistent policy

Tags are permanently attached to persistent containers when the policy is de�ned and applied.
These are distributed in all persistent containers in the system. We qualify such a policy as
permanent because it will remain until a new policy is de�ned and distributed over the system
again, replacing the policy in place. Killing processes, rebooting the system or power failures will
not alter such policy tags.

We attach two tags describing a policy to each persistent container: the �rst one describes the
legal content into the container, and corresponds to a set of rules included in PCP

. (The set of all
of the policy tags of persistent containers is equal to PCP

).
The second one de�nes the policy attached to the potential executable content of the container

(program or code such as shared libraries). We call it execute policy tag, as it is used only when
the content is executed. The set of all of the execute policy tags of persistent containers is equal to
PCΠ

. We call this tag the execute policy tag of the container.

3.5.3 Initialization

At the time when we set up the (information �ow) policy, i.e. before we start to track information
�ows, we attach information tags, policy tags, and execute policy tags to the persistent containers
we wish to track. Recall that processes do not exist at this stage, and are dynamically tagged as
they are created when the system is running.

Initially, information tags are initialized to unique meta-information describing the initial con-
tent of the container. This initial information is considered as being atomic8. Therefore, the
minimal policy tag of any container allows at least this initial information.

De�nition 9. For any persistent container c, we note ptag0pcq its initial policy tag. It is de�ned
as the set of elements of the policy regarding this container, that we note c.policy9

@c P CP , ptag0pcq “ c.policy

with:

c.policy “ tS P ℘pI Y X q|pS, cq P PCP
u

De�nition 10. For any persistent container c eventually containing executable information, we
note xptag0pcq its initial execute policy tag. It is de�ned as the set of elements in the policy
regarding the execution of its content π (executable code or program).

@c P CP , xptag0pcq “ π.policy

with:

π.policy “ tS P ℘pI Y X q|pS, πq P PΠu

When no initial executable content exist in the container, we do not attach an execute policy
tag to it.

3.5.4 User policy

As opposed to persistent containers, where the policy is distributed in each container, the policy
attached to each user is globally de�ned in the system (e.g. in a hash table). The policy for each
user is de�ned as a set of rules included in PU . Figure 3.2 illustrates the user's policy for a system
with N users.

8Atomic information are the smallest pieces of information that we are able to distinguish in the system.
9The theoretical notation c.policy refers to the set of rules of the policy restraining the container c. It di�ers

from the notation ptagpcq, which denotes the policy tag attached to c, i.e. ptagpcq contains p.policy.

50 CHAPTER 3. EXTENDED MODEL

uid1 set1 P ℘p℘pI Y X qq
uid2 set2 P ℘p℘pI Y X qq
uidN setN P ℘p℘pI Y X qq

Figure 3.2: User policy

3.5.5 Processes

Because processes are dynamically created by the operating system upon execution of a program,
tags cannot directly be attached to processes before these actually exist. Instead, this is done at
runtime, at the time of execution. The policy for a process depends on the user on behalf of whom
it performs actions, as well as the program or code being run.

The policy tag of a process determines which are the legal information �ows the process can
perform, given the context xuser, programy. The policy regarding the running program is stored in
the execute policy tag of the persistent container storing its code on disk. This policy is used along
with the policy attached to the current user, in order to determine the policy tag of the process.

De�nition 11. The policy restraining a process p running a program π on behalf of user u is
dynamically computed upon execution, as follows:

p.policy “ u.policy [π.policy

where:
A[B “ taX b|a P A, b P BuztHu

Formally, A [B denotes the intersection of all the common sets of A and B. After this, the
policy tag of the new process is initialized to p.policy.

3.6 Legality of information �ows

The legality of information �ows remains the same as in the VTT model. Recall De�nition 3
from Chapter 2. Intuitively, an information �ow is legal if and only if the information tag of the
destination container, after the information �ow occurred, is included in one of the sets of its policy
tag.

The legality of information �ows is veri�ed each time an information tag is updated, i.e,. after
each information �ow towards a container.

3.6.1 Initialization of processes

In the case of the execution of programs, the state of the resulting new process must be veri�ed, to
check whether the execution is legal. Figure 3.3 summarizes the creation and initialization of the
tags attached to processes upon execution of code (or binary programs in this �gure, though this
applies as well to any other form of execution, such as executable memory mappings, see Chapter 4
for more details). When a new process is created, its policy tag and information tag are initialized
according to the rules de�ned in the previous sections of this chapter:

• The policy tag of the process is set according to the policy for the current user, as well as
the policy for the program being executed.

• The information tag of the process is set at runtime, as the image of the meta-data of the
executed code through the relation Run. Such code is stored in a persistent container, which
execute policy tag contains the appropriate policy to restrict its execution.

After the execution of a process p, we ensure that Legalpitagppq, ptagppqq stands, i.e.,

DS P ptagppq|itagppq Ď S

3.7. LATTICE 51

In Figure 3.3, ptag, itag, and xptag refer to the policy tags, information tag and execute policy
tag of the containers, respectively.

Figure 3.3: Execution of a binary program

3.7 Lattice

The following demonstration shows that the policy in our model is based on a lattice. In order to
demonstrate this property, we need to introduce the following de�nitions.

De�nition 12. Let SC be the set of all the security classes. A security class is a subset of the
policy such that for any s P SC, s P ℘p℘pI Y X qq

Security classes are subsets of the security policy attached to containers of information. In
practice, those are either policy tags or subsets of the policy attached to users.

De�nition 13. We introduce the relation Ď such that for any C1, C2 P SC,C1 Ď C2 ô @A P

C1, DB P C2 : A Ď B

Figure 3.4: Lattice

From the previous de�nitions, we can establish that xSC,Ďy forms a partially ordered set:

52 CHAPTER 3. EXTENDED MODEL

• Ď is re�exive: @C P SC,C Ď C

• Ď is transitive: @C1, C2, C3 P SC,C1 Ď C2 ^ C2 Ď C3 ñ C1 Ď C3

• Ď is antisymmetric: @C1, C2 P SC,C1 Ď C2 ^ C2 Ď C1 ñ C1 “ C2

Under the following assumptions, we can establish that xSC,Ď,J,Ky forms a universal bounded
lattice:

• SC is �nite.

• SC has a lower bound K“ ttuu such that @C P SC,KĎ C.

• SC has a greatest bound J “ ℘p℘pI Y X qq such that @C P SC,C Ď J.

This shows that the security classes of the policy in our model can be represented in a lattice.
Our model can be represented in Denning's mathematical framework �suitable for formulating the
requirements of secure information �ow amongst security classes� [7].

3.8 Derivation from a MAC policy

In this section, we present an algorithm to derive an information �ow policy, usable in our IDS,
from a MAC policy as used by AppArmor, a LSM module presented in Chapter 1. This work
has been published along with our theoretical model in the proceedings of the IEEE International
Conference on Communications in 2011 [65].

AppArmor [54], introduced in Chapter 1, is a Linux security module enforcing a Mandatory
Access Control (MAC) policy. In the following paragraphs, we provide a solution for deriving an
AppArmor MAC policy into an information �ow policy, usable in our model, and restricting the
execution of code or programs (PΠ). Such a policy does not specify rules based on users, and
thus the subset of the policy concerning users (PU) remains empty. As we monitor information
�ows, we discard pure access control rules which are unrelated to any possible information �ow10.
In AppArmor, the policy is composed of so-called pro�les, where each pro�le describes a set of
rules speci�c to an application (program). In order to derive a policy from a set of AppArmor
pro�les, and which we can use as an information �ow policy for our IDS, we proceed as follows:
for each statement of each AppArmor pro�le, we check whether such a statement is related to a
potential information �ow, and transform it into a corresponding statement in our model if it does.
The ability to derive an information �ow policy from such a wide spread format11 leads to two
major advantages. First, the speci�cation of the policy for a given program or application can be
a burden in some cases, as a lot of operations and information may be accessed by the application.
Secondly, it can be very useful to use a common policy speci�cation when comparing di�erent
models together.

3.8.1 AppArmor pro�les

In an AppArmor pro�le, the permission granted to a program π over a object o can be one of the
following: (r,w,l,m,ix,px,Px,ux,Ux). These permissions are listed in Figure 3.5.

AppArmor pro�les also constrain access to network resources and POSIX capabilities. However,
these are pure access control rules and thus these are not taken into account in our model. Instead,
possible information �ows related to access to information are captured.

De�nition 14. An AppArmor policy P is a set of pro�les. A pro�le p P P is a set of rules of the
form po, αq where o is an object and α is a permission. All these rules con�ne a given program
π P Π. We formally de�ne such a pro�le as follows:

p “ pπ, tpo1, α1q, . . . , pon, αnquq

10Creating a �le does not cause any direct information �ow as long as nothing is written in it. However, reading
or writing information from/to a �le does. We do only rely on such rules possibly responsible for information �ows.

11AppArmor is used by default on some Linux distributions.

3.8. DERIVATION FROM A MAC POLICY 53

r read (executing also needs this permission)

w write

a append

l link mode: mediates access to symlinks and
hardlinks

m allow executables mapping: mmap

ix inherit execute mode: The resource inherits the
current pro�le, even if a pro�le already exists for this
resource. AppArmor normally makes a transition to
the pro�le of the newly executed program on execve.
However, it is sometimes wanted to keep the current
pro�le's permission while executing the new program
(so as to avoid loosing permissions of the current pro-
�le, or gaining new permissions from the target's pro-
�le).

px discrete pro�le execute mode: if no pro�le is de-
�ned for the resource, execution is denied. This re-
quires a pro�le for the executed program and forces
a transition to the new pro�le upon execution.

Px discrete pro�le execute mode/scrub the envi-
ronment: same as px but scrubs the environment
before execution. It will tell glibc to clean the en-
vironment before executing the resource, by clearing
some environment variables which may be used to
modify the behavior of programs. It helps protect
against e.g. LD_PRELOAD abuse. This is done by
using the kernel's unsafe exec routines (otherwise, the
kernel only scrubs the kernel environment in speci�c
situations, such as the execution of setuid/setgid bi-
naries).

ux unconstrained execute mode: no pro�le is needed
to execute the target.

Ux unconstrained/scrub the environment: same as
ux but scrubs the environment (see above).

Figure 3.5: AppArmor access modes

In order to compute an information �ow policy which we can use in our model, from an Ap-
pArmor policy, we proceed as follows:

• For each AppArmor pro�le, we attach an information tag to each object (persistent contain-
ers) whose accesses are restricted by the pro�le, and we initialize it with a unique identi�er.

• For each rule of a pro�le, we infer legal information �ows towards the involved objects, and
set the policy tags to these objects using the algorithm described in Figure 3.6.

3.8.2 Algorithm

The algorithm presented in Figure 3.6 transforms an AppArmor policy (a set of pro�les) into an
expression of an information �ow policy (set of policy tags on containers). Let P be the set of all
the AppArmor pro�les in the policy. For any pro�le p P P , p.container is the container associated
to the binary program constrained by p, p.canreadpq is the list of �les on which a read_like access
is authorized, p.canexecpq is the list of executable �les allowed to be executed, and p.canwritepq is
the list of paths where it is allowed to write. TOP represents the set of all atomic information tags

54 CHAPTER 3. EXTENDED MODEL

in the system (it corresponds to J), inheritppq : bool returns true if the pro�le p inherits from its
parent's pro�le and false otherwise. unconstrainedppq : bool returns true if the associated program
(subject) is unconstrained and false if not. RunpIq is de�ned in Section 3.2.

function tag(P)

for each p in P ; do

class = Run(itag(p.container))

if unconstrained(p)

data = TOP

code = TOP

else

for r in p.canread() ; do

data += itag(r)

end

for x in p.canexec() ; do

code += Run(x)

end

end

xptag(p.container) = data + code

for w in p.canwrite() ; do

w.ptag += data + class

end

end

end

Figure 3.6: Derivation algorithm.

3.8.3 Examples

The following two examples respectively show how we can derive an information �ow policy from
a simple AppArmor pro�le, and how intrusions are detected by our model when using such a
derived policy as well as how it compares to access control with respect to the detection of illegal
information �ows (we consider AppArmor being setup in permissive mode). Here, the security is
centered on programs, with no user-related policy rules.

{/usr/bin/apache,

{(/etc/apache2.conf, w), (/etc/apache2.conf, r),

(/www/index.php,r), (/usr/bin/ftpd, px)}

}

{/usr/bin/ftpd,

{(/etc/ftpd.conf,w), (/etc/ftpd.conf,r),

(/home/ftpd/data,w)}

}

Figure 3.7: Example pro�le for derivation

Example 6. Consider the AppArmor policy example shown in Figure 3.7, where two programs
are con�ned : apache and ftpd. Both own �les that the other is not allowed to read. Using the
algorithm in Figure 3.6, we can derive an information �ow policy and compute its expression on
the tag system. This leads to the information �ow policy shown in Figure 3.8.

Example 7. The following execution sequence takes place, as presented in Figure 3.1. The
apache process �rst reads its con�guration �le /etc/apache2.conf. Then it reads and interprets

3.9. CONCLUSION 55

path itag ptag xptag

/usr/bin/apache ti1u ti1u tRunpi1q, Runpi2q, i3, i6u

/usr/bin/ftpd ti2u ti2u tRunpi2q, i4u

/etc/apache2.conf ti3u tRunpi1q, i3, i6u J

/etc/ftpd.conf ti4u tRunpi2q, i4u J

/home/ftpd/data ti5u tRunpi2q, i4, i5u J

/www/index.php ti6u tRunpi1q, i3, i6u J

Figure 3.8: Tags derived from the policy

/www/index.php, containing a security �aw. Arbitrary code is injected and executed through
apache. It introduces a malware in the binary code of /usr/bin/ftpd. In this �rst part of the
execution, the process running apache is not expected to write into /usr/bin/ftpd : the policy tag
of this container is not allowed to receive information by a process running apache. Furthermore,
the information apache previously read (and �guring in its information tag) does not belong to
the policy tag of /usr/bin/ftpd. In such a situation, both AppArmor (con�gured in permissive
mode) and our reference monitor would report an alert.

Then, apache runs the modi�ed ftpd. The process running apache is allowed to execute ftpd
in the security policy, hence AppArmor would allow this execution. But here, the information
tag of ftpd has been modi�ed when the arbitrary code was written into it, and meta-information
have been added to it. Those new meta-information do not �gure in the policy tag of the process
running apache, thus it is not authorized to run ftpd anymore, and our reference monitor would
trigger an alert for illegal code execution.

3.9 Conclusion

In this chapter, we have presented a model of intrusion detection based on an information �ow
policy, dynamically checking that it is respected. The policy speci�es which pieces of information
may be combined together and which ones the containers are allowed to contain. This model o�ers
high expressiveness since we are able to assign meta-information to any data in the system and to
constrain the behavior of programs when those data are involved. The policy expresses restrictions
on access to information regardless of where it is located in the system by using a tag system
associating meta-information to information containers. We explain how we maintain tags when
information �ows occur and how we can check whether the policy is respected. A central concept
of this model is the execution of programs. This model performs dynamic checking at execution
time, and is able to detect executions of illegal code or illegal �ows of information. Today's MAC
implementations in the Linux kernel come with extensive default security policies. It is possible
to set up a policy for the model we propose from an existing MAC policy. We have shown how to
derive a Blare information �ow policy from an AppArmor MAC policy, and we gave an example
of practical use. This model and its implementation (introduced in Chapter 4) represent our
�rst contribution. Our new model di�ers from existing information �ow models in the literature,
such as Flume [40], Asbestos [21], Histar [76] and other DIFC models, using integrity and secrecy
labels for enforcing the information �ow policy. Such models are similar to multi-level security
and use security classes, but provide declassi�cation mechanisms to application programmers, so
as to decentralize the authority. However, in such models, code and data are similarly considered
as information, and no distinction is made between the two. For instance, a process labeled with
a given secrecy level may not access a piece of code that is stored in a �le with a higher secrecy
level. On the contrary, our model de�nes the legal interactions of users and applications' code
with respect to each individual pieces of information, allowing to track access to information and
the execution of code separately. Furthermore, existing DIFC models do not keep the history of

56 CHAPTER 3. EXTENDED MODEL

state
action

itag(π
1)

itag(π
2)

itag(/usr/bin/ftp
d)

alert

0
π

1
“
ex
ec
p{u

sr
{bin

{a
p
a
ch
e
q

R
u
n
pi1
q

i2

1
(apac he,/etc/apache2.conf,r)

R
u
n
pi1
q,i3

H
i2

2
(apac he,/w

w
w
/index.php,r)

R
u
n
pi1
q,i3 ,i6

H
i2

3
(apache,/usr/bin/ftp

d,w
)

R
u
n
pi1
q,i3 ,i6

H
i2 ,i3 ,i6 ,R

u
n
pi1
q

B
oth

A
ppA

rm
or

and
B
lare

4
(apache,/usr/bin/ftp

d,x)
R
u
n
pi1
q,i3 ,i6

R
u
n
pi2
q,R

u
n
pi3
q,R

u
n
pi6
q

i2 ,i3 ,i6 ,R
u
n
pi1
q

B
lare

only

^
π

2
“
ex
ec
pf
tp
d
q

i2 ,i3 ,i6 ,R
u
n
pi1
q

5
(ftp

d,/hom
e/ftp

d/data,w
)

H
R
u
n
pi2
q,R

u
n
pi3
q,R

u
n
pi6
q

i2 , i3 ,i6 ,R
u
n
pi1
q

T
a
ble

3
.1
:
E
xecu

tio
n
sequ

en
ce

3.9. CONCLUSION 57

information �ows. While this last aspect is not required when enforcing the security policy, it
is a major advantage when tracking information �ows as it provides useful information, e.g., for
diagnosis of attacks or malware analysis.

TaintDroid [22] is a related work using taint data in a similar manner, however it focusses on
privacy issues by attaching taint information to speci�c pieces of information, so as to track their
illegitimate use. TaintDroid does not allow for a �ne-grained policy de�nition, and instead relies
on basic non-interference mechanisms. It is speci�cally designed for the Android platform, and
does not allow to track o�-the-shelf applications (such as binary applications) which is one of our
requirements to provide system-wide supervision.

58 CHAPTER 3. EXTENDED MODEL

Chapter 4

Implementation

This chapter presents our implementation, which we built from the model described
previously, in Chapter 3. This implementation is the basis for all the experiments
which have been conducted during this Ph.D project. It integrates in the LSM
framework, with slight modi�cations, and makes use of kernel standard API and data
structures. It was designed to provide a generic and versatile implementation ready
for future improvements and changes in the underlying model, with manageable
performance overhead.

We track information �ows within the operating system by using a reference monitor
(see Section 1.4.3), which we will call KBlare1 in the reminder of this chapter. This approach is
commonly used to enforce Mandatory Access Control policies in most modern operating systems,
where subjects may (or may not) perform a set of operations on objects. We borrowed this
principle from access control mechanisms in order to track information �ows between such subjects
and objects, however we do not enforce any policy, but rather make use of these mechanisms to
observe all information �ows in a dynamic fashion. We have implemented this reference monitor
at the kernel level, as it has several advantages:

• We do not need to modify userspace programs.

• We can monitor a substantial amount of information �ows.

• Only kernel exploits may possibly a�ect our IDS.

Though our model could have been implemented in other operating systems, we have chosen to
implement it in the Linux kernel for several reasons: Linux is free and open-source, it has a great
community of developers and is used by the industry as well as many individuals and researchers.
Furthermore, with the development of SELinux [64], the kernel developers and the NSA2 have
extended the Linux kernel with a new framework, the Linux Security Modules3 (LSM), in order to
allow di�erent security models to be implemented (see Section 1.1.2). LSM is built on top of a set
of hooks, initially suited for access control but those can be diverted to implement various security
models and policies [71]. Our implementation makes use of these hooks because they provide the
following advantages and guarantees:

• The code has been proven to be safe, and the hooks well placed, based on static analysis,
avoiding race conditions and such �aws [79].

• The LSM framework is part of the mainstream kernel and exports a (rather4) stable API,

1KBlare is the name of this reference monitor in our open-source project.
2National Security Agency of the United Sates of America.
3When the NSA introduced SELinux in 1998 [64], the Linux kernel security was based on DAC, and did not o�er

any generic framework for implementing other security models and policies. Such a framework was required in order
to implement SELinux.

4At the beginnings, the API was not quite stable, which has been widely criticized by the community. The
current API, however, is much more stable and it is now an easy task to back/forward port a set of patches using
LSM on any kernel version since around kernel version 2.6.26.

59

60 CHAPTER 4. IMPLEMENTATION

which simpli�es the task of following the latest kernel versions.

The reminder of this chapter is organized as follows. First, we present an overview of general
principles used in our implementation. Then, we present common data structures available in the
kernel API, and discuss about some practical considerations regarding their use in our code. After
this, we discuss about the operations involved in our analysis, and their complexity in terms of
algorithms. Finally, we present all the hooks that we used in order to track information �ows
within the kernel, and show an exhaustive list of system calls that we track.

4.1 Overview

Our implementation builds on top of the LSM framework. Such access control hooks are used by
kernel MAC mechanisms, and several modules can be chosen, one at a time, to enforce a di�erent
kind of security policy. As these hooks have been thought with access control in mind, they are
not always practical for information �ow control, and we have been obliged to introduced a few
supplementary hooks for that matter. Also, we do not make use of all the hooks available in LSM,
as a lot of these are speci�c to access control, and are unrelated to any potential information �ow.
Examples of this include hooks related to the flock() system call, de�ned in fs/locks.c, which
triggers security_file_lock(). Except eventual hidden channels making use of the state of �le
locks, no information �ows are involved in such a situation. However, it is unpractical to observe
hidden channels, and this is out of the scope of this work.

4.1.1 Kernel access control hooks

The Linux kernel provides mandatory access control mechanisms, but this is not the only access
control implementation available. Traditionally, discretionary access control has been used for
years, and it is still the case by default on many Linux distributions. Discretionary access control
has precedence over mandatory access control, in such a way that if an access is denied by DAC
mechanisms, the code will return without reaching MAC related hooks and functions, as shown on
Figure 4.1. In other words, MAC is more restrictive than DAC, but it does not replace it.

Discretionary Access Control

Mandatory Access Control

Application

Userspace

Kernelspace

syscalls

Figure 4.1: Access control hooks in the kernel

4.1.2 Tags

Recall that in our model, taint marking is performed at each object level by appending (taint)
elements in sets called information tags, in ℘pI Y X q. Information tags are attached to objects,
or containers and describe their content. Those tags are represented as ordered sets of integers in

4.2. DATA STRUCTURES 61

this implementation. Positive integers represent elements of I, whereas negative integers represent
elements of X :

• I “ N`˚

• X “ N´˚

Example 8. This is a valid information tag : {1,2,3,4,5}

The policy, determining the legality of information �ows, is de�ned at each object level by a
set of sets in ℘p℘pI Y X qq called policy tag.

Example 9. The following is a valid policy tag :
{ {1,2,3},{-4,5,6},{7,8,9} }

Tags are represented di�erently in system memory and on the �lesystem. When representing
tags in system memory, operations such as checking the legality of an information �ow, or append-
ing taint data to an existing tag must be e�cient in terms of CPU and memory space. When
representing tags on the �lesystem, we aim to minimize the impact on input/output operations.
The following section is a discussion about possible data structures to be used amongst those
available in the Linux kernel.

4.1.3 Granularity

This implementation is based on Linux abstractions. The containers of information that we de-
scribed in our model in Chapter 3 are operating system objects, including �les, sockets, memory
pages, pipes, network packets etc.. In order to track information �ows, we attach meta-information
to such OS objects. Thus, the level of granularity of our analysis is bound to the granularity of
these objects. Because �les are the only persistent objects of the operating system (i.e. stored
on the �lesystem, and available after reboot), we de�ne the initial content of �les as atomic in-
formation, as this is the �nest level of granularity that it is possible to observe at the operating
system abstractions level (e.g. we cannot distinguish information from two distinct bytes nor two
distinct lines of a �le from the OS perspective). In a word, information tags are attached to each
OS object, and describe which atomic information are contained in those objects, as well as the
origin of their content.

File Meta-information

�le 1 i1

�le 2 i2

.

Figure 4.2: Atomic information in �les at initialization time

Figure 4.2 is an example of how atomic meta-information can be attached to �les at initialization
time. Files content is described by a unique meta-information as long as their content is not altered.
Whenever an information �ow occurs towards a �le, its information tag is updated so as to match
the new content.

4.2 Data structures

The choice of data structures to be used is important, especially because our code runs in kernel
space, where memory has a much higher cost than it has in userspace, because memory is mostly
allocated in a physically contiguous manner, but also because there is a limited amount of memory
available for the system kernel. It is also important to pay particular attention to evaluating the
cost of all operations required by our analysis, as these occur for each information �ow between

62 CHAPTER 4. IMPLEMENTATION

subjects and objects of the operating system, and this may considerably a�ect overall system
performances. Information tags are sets of elements which could be represented as bitmaps, arrays
of integers, binary trees, linked lists and other data structures. Policy tags are each composed of
multiple sets, and may also be represented by such data structures. The following outlines our
choices and compares data structures suiting our requirements. We equally refer to tags as policy
tags or information tags, i.e. �ordered sets of meta-information�.

Bitmaps

Bitmaps can be implemented with any contiguous zone in memory, such as C arrays. When
representing a set with a bitmap, each bit represents a distinct element of the set, and its value
in t0, 1u represents respectively the absence or presence of this element in the set. Therefore, we
need as many bits in the bitmap as there are atomic information to represent.

• Advantages : this leads to very fast logical operations using masks (logical AND, OR, etc.) to
test the presence of individual or multiple elements at once.

• Drawbacks : it is memory hungry in situations where many �les are labeled (i.e. the bitmap
must contain as many bits as there are labeled �les in the �lesystem initially). Bitmaps
also have a �xed size, which is not practical for our analysis, because the actual number of
meta-information in information tags is dynamic.

Bitmaps provide good performances in the case of analyses supervising a reduced subset of the
�lesystem. It would be suitable if we enforced the policy instead of tracking information �ows, as
described in Chapter 7 (in this case, the upper bound of the size of information tags depends on
policy tags), but in the present case, these are impractical when the system grows larger due to
memory limitations.

Bloom �lters

Bloom �lters [10] are probabilistic and space-e�cient data structures, and are used to represent
sets of information. Testing the presence of an element in a set represented by a bloom �lter can
be subject to false positives, but not to false negatives. Elements can be added to the set, but not
removed. Adding elements increases the probability of false positives. A bloom �lter relies on a
bitmap along with a variable number of hash functions. When the bloom �lter is empty, all bits
of the bitmap are set to 0. For any given element of the set, each hash function maps it to one
positions in the bitmap, with a uniform random distribution. Adding an element to the bloom �lter
is done by �rst passing it to each hash function, and then by setting the mapped bits to 1. Testing
the presence of an element is done by checking that all the mapped bits (through all of the hash
functions) for a given element are set to 1. If any of the bits is not set to 1, then it is guaranteed
that the element is not present in the set. Otherwise, the element may be present. Examples of
use of bloom �lters include symbols resolution by the dynamic linker to load shared libraries on
Linux [20], where a hash table is traditionally used for the resolution. Using bloom �lters to test
the presence of an element before the actual lookup in the hash table leads to a dramatic increase in
lookup time by �ltering 80% to 90% of the unnecessary lookups. Bloom �lters may be used in the
same manner to avoid unnecessary lookups in policy tags, but using such a structure to represent
information tags would increase the number of false positives in our intrusion detection model (i.e.
increasing the number of intrusion alerts where no actual intrusion occurred). Policy tags may also
directly be represented with bloom �lters. Each policy tag being composed of several sets, it would
require the same number of bloom �lters to represent each set of the policy. However, this would
lead to false negatives in our intrusion detection model, as information may be wrongly reported
as present in the sets of the policy, thus allowing illegal information �ows to occur.

Linked lists

The Linux kernel provides an implementation of doubly linked lists in include/linux/list.h. In the
case of our implementation, doubly linked lists provide a scalable alternative to bitmaps, where

4.2. DATA STRUCTURES 63

the size can be dynamically adjusted by inserting or removing elements without signi�cant change
in the underlying structure.

• Insertion and deletion time is in θp1q.

• Fusion sort is in Opnq time if the lists are preliminary sorted (which is the case here) or
Opn.logpnqq otherwise.

Trees

The Linux kernel provides rbtree.h, an implementation of the so called �Red Black Trees�5. Inser-
tion, deletion and iteration cost is Oplogpnqq. According to the Linux kernel documentation, in
Documentation/rbtree:

Red-black trees are a type of self-balancing binary search tree, used for storing sortable
key/value data pairs. This di�ers from radix trees (which are used to e�ciently store
sparse arrays and thus use long integer indexes to insert/access/delete nodes) and hash
tables (which are not kept sorted to be easily traversed in order, and must be tuned for
a speci�c size and hash function where rbtrees scale gracefully storing arbitrary keys).
Red-black trees are similar to AVL trees, but provide faster real-time bounded worst
case performance for insertion and deletion (at most two rotations and three rotations,
respectively, to balance the tree), with slightly slower (but still O(log n)) lookup time.

Arrays

Arrays can also be used to represent sets. An array of int of size N for instance, noted int[N] in
C, may be used to represent up to N distinct elements, with a memory load of Nˆ sizeof(int),
where sizeof(int) “ 32 bit (or 4 bytes) on all architectures. Allocating such an array has a very
bad impact on kernel memory, as the kernel memory allocator needs a contiguous slab of N ˆ 32
bits of memory.

4.2.1 Practical considerations

The number of atomic information in a container at a given time can vary from zero to potentially
(but unlikely) all the information of the �lesystem (e.g. in the case where a single �le, process or
other object contains data from all the �les of the �lesystem). However, a lot of containers contain
only one atomic information. Such containers include containers exclusively accessed read-only
by all processes, and in this case their information tags are never tainted with any new meta-
information. Usually, most containers have an asymptotic limit of possible content from various
�les of the �lesystem. The memory overhead of tags depends on:

• The number σ of distinct meta-information in the system (i.e. how many �les were initially
labeled with distinct meta-information).

• The average size (length) l of tags, i.e. from how many sources does the content of containers
come from.

Dynamic vs static

In the following, c1 and c2 are two constants respectively representing the memory space require-
ment per element in a static (�xed-size) structure and in a dynamic structure (e.g. c1 “ 1 in the
case of a bitmap). When using �xed size data structures, such as bitmaps, the memory overhead
m of tags is constant, and l “ σ, thus:

m “ σ ˆ c1

Conversely, using dynamic data structures, such as doubly linked lists, to represent each set of the
tags, the memory overhead m depends on the average length l of tags:

m “ l ˆ c2
5see http://lwn.net/Articles/184495/ for more information about their implementation in the Linux kernel.

64 CHAPTER 4. IMPLEMENTATION

Example 10. Figure 4.3 is an example of a �lesystem from a production server, running several
services including a web server and a database. The �lesystem of this server contains 66544
�les. Figure 4.4 shows the maximum memory overhead per set of meta-information represented
as bitmaps, arrays and doubly linked lists, considering that all the 66544 �les have been labelled
initially. Using bitmaps requires a constant size of 66544 for each set, where using doubly linked
lists requires pp32 ` 8q ˆ lq6 bits per element of the set, and arrays of integers require 32 ˆ l bits
per element of the set.

find / -print | wc -l

66544

Figure 4.3: Number of �les on a Linux server.

The example on Figure 4.4 shows that, in the case of a �lesystem containing 66544 �les, it is
preferable to use dynamic data structures when the average length of tags is below around a thou-
sand of �les. When containers contain information from a limited number of distinct sources, using
dynamic data structures leads to a more e�cient memory management. This can be generalized
as follows, where l is the average length of tags.

pc1 ˆ σ “ l ˆ c2q ô l “
σ ˆ c1
c2

 1

 10

 100

 1 10 100 1000 10000

M
a
x
im

a
l
s
iz

e
 o

f
a
 t
a
g
 (

o
rd

e
re

d
 s

e
t)

 i
n

 K
B

Lenght of a tag (ordered set) (l)

Arrays
Bitmaps

Linked lists

Figure 4.4: Data structures memory overhead

Memory allocation in the kernel

Another critical aspect to consider is the way the kernel handles memory. In order to minimize
fragmentation due to allocation and deallocation of memory inside the kernel, the developers

6Linked lists of integers require at least an integer and two pointers (4 bit each) per element, sizeof(int) = 32

and sizeof(struct list_head) = 8.

4.2. DATA STRUCTURES 65

introduced a new mechanism called slab allocation [8]. This mechanism is based on the fact that
initializing and destroying objects has a superior cost than allocating and freeing memory for the
same objects. The so-called slab allocator maintains caches of the same objects types, so that the
basic structure of frequently used objects is preserved between uses. When allocating memory for
untypical object types, with uncommon sizes, the kernel does not directly make use of slab caches,
but rather allocates chunks of contiguous memory to �t the objects. This is handled by the buddy
allocator, which maintains caches of multiples sizes (2k page frames each), and delivers a chunk of
memory of the most appropriate size, from those available. This process involves some waste of
memory: for any object o, there is a waste of 2k ˚ sizeofppageq ´ sizeofpoq. The slab allocator
itself is built on top of of the buddy allocator, so as to e�ciently maintains caches of 2k pages.
In order to keep memory overhead small, it is preferable to work with small objects with common
sizes, so that a slab cache is available, rather than big chunks of memory, which is more di�cult for
the kernel to handle, and is more likely to waste memory. In order to allocate and free contiguous
chunks of memory, the kernel provides, the two functions kmalloc() and kfree(). These are
implemented on top of the slab allocator, and the kernel maintains pools of various sizes for this
purpose. Figure 4.5 illustrates these three layers of the memory allocation system. It is possible to
directly work at any of these three levels, by invoking di�erent functions exported by the kernel.

kmalloc()/kfree()

Slab allocator

Buddy allocator

Figure 4.5: Memory allocation layers in the kernel

Statistics of the usage of slab caches are available with the slabtop command, as showed on
Figure 4.6. Caches named kmalloc-* are slab caches used by kmalloc.

Active / Total Objects (% used) : 1194073 / 1293683 (92.3%)

Active / Total Slabs (% used) : 44670 / 44670 (100.0%)

Active / Total Caches (% used) : 78 / 111 (70.3%)

Active / Total Size (% used) : 348175.33K / 363819.84K (95.7%)

Minimum / Average / Maximum Object : 0.01K / 0.28K / 14.88K

OBJS ACTIVE USE OBJ SIZE SLABS OBJ/SLAB CACHE SIZE NAME

146568 146547 99% 0.66K 6107 24 97712K reiser_inode_cache

88434 83521 94% 0.89K 5202 17 83232K ext4_inode_cache

[...]

73472 68244 92% 0.06K 1148 64 4592K kmalloc-64

67116 66627 99% 0.09K 1598 42 6392K kmalloc-96

36768 36166 98% 0.25K 2298 16 9192K kmalloc-256

24960 20207 80% 0.03K 195 128 780K kmalloc-32

23072 22805 98% 1.00K 1442 16 23072K kmalloc-1024

12032 12032 100% 0.02K 47 256 188K kmalloc-16

10592 10110 95% 0.12K 331 32 1324K kmalloc-128

9728 8055 82% 0.01K 19 512 76K kmalloc-8

5859 3203 54% 0.19K 279 21 1116K kmalloc-192

848 710 83% 0.50K 53 16 424K kmalloc-512

[...]

Figure 4.6: Output of the slabtop command.

66 CHAPTER 4. IMPLEMENTATION

4.3 Tags in kernel memory

Operations such as checking the legality of information �ows, updating information tags etc. are
done in kernel memory, on behalf of processes, which are �the active agents responsible for all
information �ows� [7].

4.3.1 Information tags

In the previous section, we have shown in paragraph 4.2.1 that using dynamic data structures
minimizes memory overhead in the cases where the average number of meta-information per tag
does not exceed a certain limit. In paragraph 4.2.1, we also made some considerations about the
average size of tags, being either limited to a single meta-information in some cases, or bound by
an asymptotic limit in other cases. Finally, we have shown that allocating small data structures
with common types is handled e�ciently by the kernel, by using slab caches. We therefore chose to
represent information tags, being ordered sets of integers, in doubly linked lists, as represented on
Figure 4.7. We may also have chosen to use red black trees, as both structures allow for dynamic
expansion of data and make e�cient use of slab caches. However, as it is shown later in this chapter,
the operations we perform in our information �ow analysis require iterating over all the elements of
information tags, which makes doubly linked lists, as available in the kernel API, the most simple
and e�cient way to represent such ordered sets of integers. Information tags are represented by
the following structure in the code of KBlare (de�ned in security/blare/blare.h):

iNi3i2i1

Figure 4.7: Information tags are represented as doubly linked lists

struct information{

struct list_head node;

int value;

};

where node is a structure containing information related to the list layout (list_head being the
type for list nodes in the kernel API, containing pointers to the next and previous nodes), and value
is an integer representing one atomic information. We decided to encode information as follows:
positive values represent data (i.e. elements of I), while negative values represent executed code
(i.e. elements of X).

4.3.2 Policy tags

Policy tags describe the legal content of containers. Contrary to information tags, such tags are
statically de�ned, and thus are rarely modi�ed, these may only be updated when changes happen
in the policy. The policy attached to a container is a set of multiple ordered sets, each describing
one possible combination of legal content. Each ordered set within the policy tag is represented as
a balanced binary tree. It makes verifying the legality of information (against the policy) faster
than it would be with a linear structure, as search operations in a binary tree are performed in
Oplog2pnqq. Binary trees of the same policy tag are linked together inside a linked list, as the
process of verifying the legality of information consists in iterating over all the sets of the policy
until one makes it legal. In other words, policy tags are linked lists of binary trees. Figure 4.8
shows an example of policy tag, composed of three sets, with roots r1, r2, . . . , rN linked together
in a doubly linked list. The following data structures are used to represent policy tags (de�ned in
security/blare/blare.h):

struct policy{

struct list_head list;

4.3. TAGS IN KERNEL MEMORY 67

struct policytree tree;

};

struct policy_tree{

struct list_head list;

struct rb_root *root;

int cardinal;

};

a2 a1

bN

r1

r2

cN c1c2

rN

aN

b1b2

Figure 4.8: Policy tags are linked lists of binary trees

4.3.3 Execute policy tags

Recall from Chapter 3 (Section 3.6.1) that the policy regarding programs and executable code is
distributed in the execute policy tags of objects. We refer to this subset of the policy as the execute
policy and it is stored:

• On disk, in the extended attributes of �les containing executable code (e.g. binary �les and
shared libraries) which we want to con�ne, as described later in this chapter.

• In memory, in the execute policy tags of processes, shared memory mappings, pipes, queues
and sockets, which we will further discuss here.

The semantics di�ers in each case. The execute policy tags of �les are used at runtime (along with
the policy of users) to determine the policy tags of processes (as presented in Chapter 3). When
attached to processes, execute policy tags are stored in kernel memory, and are updated whenever
processes either execute or read some code (e.g., a shared library) with an information �ow policy
attached to it (i.e. the �le containing the code has an execute policy tag). In such a case, the
execute policy tag of the process is tainted by the execute policy tag of this executable content: we
compute a new tag containing the common set of both execute policy tags, as described later in this
chapter, in Section 4.6.2. The aim of tainting processes with execute policy tags is to make sure
the execute policy of all executable content that has been accessed is kept when new information
�ows occur towards other containers. The following example shows a possible issue which happens
if we do not taint objects with execute policy tags.

Example 11. File /home/alice/flash_plugin.bin has the following execute policy tag :
{{1,2,5},{-1,2}} Now imagine that Alice (or any program on her behalf) runs :

alice@alicebox:„/ cat flash_plugin.bin > .firefox/plugins

After running this command, the shell will fork and execute cat, which in turn will read
flash_plugin.bin, and output its content to another �le in .firefox/plugins. The new �le
will not have any execute policy tag attached to it unless we do make sure execute policy tags get
tainted.

68 CHAPTER 4. IMPLEMENTATION

To overcome this issue, we need to ensure that :

• Whenever a process reads a �le or other object containing executable code, we read the
execute policy tag of this object, and append it to the execute policy tag of the process.

• Whenever a process writes to an object, it appends its execute policy tag to the execute policy
tag of the object.

By doing so, we make sure that all objects have their execute policy tag updated when code
gets copied to another object. Whenever a new subset of the execute policy (i.e. an element of
℘p℘pI Y X qq), bound to a piece of executable information, is read or executed, it is included7 in
the execute policy tag of the current process. When processes write information to �les or shared
memory mappings, the execute policy tags of these objects also get tainted the same way.

4.4 Tags on disk

The persistence of a system with everything running into memory is very limited. It would also
be very ine�cient in terms of memory to maintain in-memory data structures for every object,
especially for every �le of the �lesystem. In order to be able to restore the state of the system
after rebooting, or to be able to free in-memory information tags of �les no longer accessed by any
running process, tags are stored on disk, in the extended attributes of the �lesystem, in the form
of name:value pairs, each containing up to 64 KB of binary data8. We store values in the security
namespace (security.*), as used by the other LSM modules.

• Information tags use one �eld of the extended attributes: security.blare.info

• Policy tags and execute policy tags use several �elds (one key:value pair for each ordered set
of the policy). For a policy tag with N subsets, �elds names are:

security.blare.policytku, with 0 ď k ă N

For an execute policy tag, �elds names are:

security.blare.xpolicytku, with 0 ď k ă N .

Example 12. The policy tag { {1,2,3},{-4,5,6},{7,8,9} } of a given �le, would be represented in
three distinct key:value pairs:

• security.blare.policy0

• security.blare.policy1

• security.blare.policy2

4.4.1 Serialization

Serialization is the process of converting data structures from an in-memory format, into a format
that can be stored, or transmitted over a network connection, in such a way that it can later
be restored back to its original live form, by an operation called unserialization. We need a
serialization mechanism in our implementation, in order to be able to store live tags into the
extended attributes of the �lesystem, and to restore live tags back into memory when processes
access information stored into �les not currently in use. The extended attributes are represented on
disk as �at and contiguous sets of bytes. Such a representation requires an intermediate structure
that is contiguous in memory, so that we can dump it into a key:value pair (i.e. we cannot write
non contiguous data structures in the extended attributes). We chose to use ordered arrays of
integers for this purpose. On access to �les, meta-information into tags are converted from their
disk representation to their memory representation, and vice-versa.

7The result is the union of the two sets of sets.
8According to the manpage of attr, extended attributes on XFS �lesystem objects on Linux.

4.5. USERS POLICY 69

• On read accesses, meta-information is read from the extended attributes and converted into
a live representation (tree or list).

• On write accesses, meta-information is written to the extended attribute and thus converted
into a linear representation (continuous memory region).

Example 13. int array[6] allocates 6 * sizeof(int) in a contiguous region of memory.

In kernel code, operations that we can perform on inodes, such as operations on the extended
attributes, are associated to each inode structure. The following two operations are used in our im-
plementation, and are available after �lesystem initialization (the kernel would return -EOPNOTSUP9

before this stage, or when extended attributes are unavailable on the �lesystem in use).

inode->i_op->getxattr(dentry, name, buffer, size)

inode->i_op->setxattr(dentry, name, buffer, size)

4.5 Users policy

Recall from Chapter 3 that in our model, the information �ow policy is composed of three distinct
subsets, PΠ,PU and PCP

, respectively expressing the policy regarding executable code, the policy
regarding users, and the policy regarding containers. The following gives implementation details
about PU .

4.5.1 On disk

A user policy de�nes what a user (or uid) is allowed to do. In practice, it is used to determine
which subsets of information a process on behalf of a given user is allowed to access. For each uid,
a user policy can be de�ned, and is similar to the policy tag of containers in the sense that it is a
set of ordered sets.

Example 14. The following is a valid user policy : { {1,2,3},{-4,5,6},{7,8,9} }.

Where the policy tags can be stored in the extended attributes of each �le, user roles need to
be centrally de�ned somewhere on the �lesystem. The policy for each user (uid) can be de�ned
and stored, from userspace, in the extended attributes of a �le /etc/blare/uid. This ensures that
the users policy is stored in a persistent fashion, and it allows us to restore it at boot time.

4.5.2 In memory

The policy for each user is stored in a linked list of binary trees, the same way policy tags and
execute policy tags are represented in memory. It is used at runtime along with execute policy tags
to compute the policy tags of processes (as presented in Chapter 3).

4.5.3 Communication between userspace and kernelspace

The kernel should not directly read the special �le storing users policy in the �lesystem
(/etc/blare/uid) because the location of such �le is a policy and thus should not be de�ned within
kernel code. Instead, we use the securityfs interface (mounted as /sys/kernel/security), which
exports a pseudo-�lesystem available from userspace, to load users policy at boot time. For each
user, a special �le is created in the pseudo-�lesystem, thus allowing the system administrator to
load the policy (set of sets) of this user. Each set of the policy that is loaded this way is copied into
kernel memory, into a policy tag attached to the appropriate user id. Each special �le is named
after the uid of the corresponding user, and is created in /sys/kernel/security/blare/users.
When a running process on behalf of a user runs the exec system call, it checks whether a policy
has previously been loaded in kernel memory for this user, and uses it along with the execute policy
tag of the executable �le.

9Return code standing for �operation not supported�.

70 CHAPTER 4. IMPLEMENTATION

4.6 Operations and complexity

4.6.1 Updates on information tags

Information tags are updated when information �ows occur (the destination container's information
tag is updated). If both the source and destination containers are in memory (sockets, processes,
IPC, . . .), the involved operation is the fusion of two linked lists, which complexity is Opn `mq
for two lists of respective sizes n and m. If one of the containers is a �le, a conversion from/to a
linear structure is needed (see Section 4.4.1).

• On read operations from �les, the extended attributes are dumped in a memory bu�er (
of type int*). We iterate over the resulting array, and store each array value in the (in-
memory) information tag (linked list) of the current process performing the read operation.
See itag_insert from security/blare/itag.c.

• On write operations, we overwrite the information tag of the �le with the information
tag of the current process. We iterate over the linked list, and create an array of inte-
ger from it, so as to write it into the extended attributes. See blare_write_info from
security/blare/itag.c.

• On append operations, we �rst read the information tag of the �le, append it together with
the information tag (linked list) of the current process into an array of int and write the
new array to the extended attributes of the �le.

A process P reading information from a container C has its information tag updated as follows:

itagpP qi`1 “ itagpP qi Y itagpCqi

where i ` 1 refers to the state of the tag after the information �ow occurred, and i refers to the
state of the tag before the information �ow occurred.

4.6.2 Updates on execute policy tags

Execute policy tags of processes are also updated dynamically, whenever an information �ow occurs,
potentially involving executable code con�ned by the execute policy. This operation involves the
restriction of two policy tags against each other, i.e. the intersection of all the sets of one execute
policy tag with all the sets of the other one. If we consider the fusion of two execute policy tags
A “ pa1, a2, . . . , anq and B “ pb1, b2, . . . , bmq, then the complexity of this operation is in Opn2.m2q.
We de�ne this operation as A [B, as presented in De�nition 11 previously in Chapter 3. It is
implemented by the pseudo-code described in Figure 4.9.

4.6.3 Legality check

To verify the legality of an information �ow between two containers, we check that the information
tag of the destination container (Cdest) is legal with respect to its policy tag:

DS P ptagpCdestq|itagpCdestq Ď S

The legality check is performed by iterating over the information tag of Cdest, checking that
all of its elements belong to its policy tag. This is a linear operation with respect to the size of
the information tag. Its complexity is in Opk ˆ `ˆ log2pnqq, where k is the length of the involved
information tag, l is the number of subsets of the policy and n is the maximum size of the sets of
the policy.

4.7 System calls and hooks

System calls are the interface between applications and the kernel. A lot of operations such as
opening �les, creating shared memory mappings or executing programs involve system calls, most

4.7. SYSTEM CALLS AND HOOKS 71

new := {}
s i z e := 0
f o r (i := 1 to n) do

f o r (j := 1 to m) do
c := ai X bj

f o r (k := 1 to s i z e) do
i f (c Ď new [k]) then

break
done
i f (k = s i z e +1) then

new := new Y c
s i z e++

f i
done

done

Figure 4.9: Execute policy tags intersection algorithm

often indirectly by calling wrapper functions from the C library10 rather than directly invoking the
underlying system calls. It is necessary to track system calls in order to track information �ows
between processes. The LSM framework provides hooks for tracking system calls involving access
to information. In Appendix A, we provide a detailed list of the system calls in the Linux kernel
version 3.2, where system calls which may lead to information �ows are identi�ed. In this section,
we show how our reference monitor uses LSM hooks and which system calls correspond to it. All
the hooks that we use are de�ned in security/blare/lsm_hooks.c. The LSM framework made
changes to the structures used in kernel space to represent kernel objects, including �le descriptors,
inodes and processes credentials, by adding an opaque security �eld of type void*, that the LSM
modules can use to store their own security attributes [71]. Furthermore, processes credentials11

have been extended to support concurrent access, and now have a supplementary void* security

�eld to store opaque structures. The credentials (including the security �eld) are protected by
Read Copy Update (RCU) mechanisms [47].

Special structures

As previously described in our theoretical model in Chapter 3, containers of information are sep-
arated into three classes: volatile objects, persistent objects (i.e. backed on the �le system), and
processes. The blare_tags structure is used for all volatile objects. It is de�ned as follows:

struct blare_tags{

struct list_head *info;

/* Used by softirqs invoking rcv_skb*/

spinlock_t info_lock;

atomic_t refcount;

int info_rev; //unused

struct list_head *policy;

struct list_head *xpolicy;

};

Where info is a pointer to an information tag, policy is a pointer to a policy tag, and xpolicy is
a pointer to an execute policy tag. Files and processes have their own data structures, respectively
blare_file_struct and blare_task_struct and are described later in this chapter.

10The GNU C library is the most common C library on Linux, often called glibc.
11Credentials are used to store various security information related to processes, and are attached to the

task_struct structure in the cred �eld. See documentation/credentials.txt in the kernel source tree.

72 CHAPTER 4. IMPLEMENTATION

4.7.1 Fork and clone

Fork

When a process forks by calling the libc function fork (which in turn calls the clone system call
with special �ags), the resulting child process is an exact copy of the parent process in terms of
memory, except for a couple of properties (listed in the manpage of fork (2)). A number of �ags
may a�ect the behavior of fork, by determining how the parent and the child may share system
objects. Amongst those �ags, MADV_DONTFORK, which can be set on memory mappings using the
madvise system call, a�ects the semantics of possible information �ows between the child and the
parent. Memory mappings (described in the next subsection) are normally inherited during the fork
process, unless those have been marked with this �ag. Similarly, the set of open �le descriptors is
inherited by the child, however we track the actual access to �les (through fread or fwrite system
calls), so this does not a�ect our analysis. The same goes with open message queue descriptors, as
we track actual calls to msgget. In all cases,

• The child's information tag is an exact copy of the parent's information tag.

• The child's policy tag is an exact copy of the parent's policy tag.

• The child's execute policy tag is an exact copy of the parent's execute policy tag.

Clone

The clone system call is mostly used to create threads. When the CLONE_VM �ag is passed, the
child process uses the same address space as the parent (and any call to mmap or munmap a�ects
both processes). Otherwise, the child process has its own address space. In this later case, existing
anonymous shared mappings of the parent are shared with the child. If the CLONE_NEWIPC �ag is
passed, then the child uses a new IPC namespace, and will not be able to see the objects created
in the parent's namespace. If this �ag is not set, the child shares the same IPC namespace, and is
able to access shared memory segments through shmat and messages through msgget. In the case
of shared memory segments, KBlare considers an over-estimate of the possible information �ows
from the time when the segment is attached with shmat until it is detached with shmdt.

Related hooks

Both clone and fork are hooked in the LSM framework (security_task_create) and trigger two
functions in KBlare. The �rst one is de�ned as follows:

static int blare_task_create(unsigned long clone_flags);

It is not yet used in our implementation, but it gives useful information about the clone �ags,
which may be used in the future to track individual threads of the same process12. The second
one is de�ned as follows:

static int blare_prepare_creds(struct cred *new, const struct cred *old, gfp_t

gfp);

This function is part of the RCU13 mechanisms protecting access to the credentials of processes,
and returns an exact copy of the protected structures (blare_tags in this case).

12We do not track individual threads in our current implementation, because all threads of a process share the
same address space. Therefore, there is no way to dynamically track information �ows between threads. In order
to track threads individually, it would be necessary to ensure no information �ow can possibly occur, by auditing
the code, which is out of the scope of this work.

13RCU stands for Read Copy Update, it is a low overhead synchronization mechanism widely used in the Linux
Kernel. See McKenny and Walpole's work [47] for more about RCU.

4.7. SYSTEM CALLS AND HOOKS 73

4.7.2 Memory mappings

In this section, we describe separately how KBlare deals with shared memory mappings (i.e. mmap)
and shared memory segments (System V shared memory, i.e. shmat).

Mapping a �le to memory

Processes have the ability to create memory mappings, by calling the mmap system call. Memory
mappings are often used to map the content of �les to memory, but they can also be used without
any underlying �le. In this case, it is similar to shared memory segments (as described in the next
subsection).

void *mmap(void *addr, size_t length, int prot, int flags,

int fd, off_t offset);

Any mapped �le can be unmapped by calling the munmap system call. Amongst the possible �ags,
MAP_PRIVATE, MAP_ANONYMOUS and MAP_SHARED change the behavior of memory mappings, and
how other processes may access it.

• MAP_PRIVATE: the memory mapping is not visible by other processes, and changes made to
the mapping are not backed to the underlying �le. Conversely, changes to the underlying
�le may or may not a�ect the memory region, this behavior is unspeci�ed by the POSIX
speci�cation. In order to keep a conservative approach, changes to mapped �les should
update memory mappings as well in our implementation. This particular aspect is not taken
into consideration in our current implementation, and it will be �xed in the future.

• MAP_SHARED: updates on the memory mapping are visible to other processes mapping the
same �le. Content is also updated on the �lesystem, but it may not actually be updated
until msync or munmap is called. Note: Calling mmap with MAP_SHARED before a fork will
make those mappings available to the child.

• MAP_ANONYMOUS: the memory mapping is not backed to any �le. The information is
kept in memory. Anonymous shared mapping are available to the child after a fork
(MAP_ANONYMOUS|MAP_SHARED).

The protection �ags also a�ect the way information may �ow between processes and a mapping
(these �ags are enforced by the hardware, when possible):

• PROT_EXEC allows execution of the pages' content.

• PROT_READ allows reading the pages.

• PROT_WRITE allows writing to the pages.

In our implementation, information tags are attached to shared memory mappings, when those
allow at least write access to the owner process14. Non shared memory mappings directly a�ect the
process's information tag in a way that is similar to the other �le system operations. Information
�ows between a process and a shared memory mapping are tracked until the process unmaps the
�le (or memory region in case no �le descriptor exists).

Hooks

KBlare tracks calls to both mmap and munmap. The latter is not part of the LSM framework and
had to be manually added in our kernel patch. The following hook ensures that we update the
information tags of processes having access to mapped �les or regions:

14Non writeable mappings occur quite frequently, e.g. when loading shared libraries. Such mappings are equivalent
to reading the �le, in terms of information �ows

74 CHAPTER 4. IMPLEMENTATION

static int blare_file_mmap(struct file *file, unsigned long reqprot,

unsigned long prot, unsigned long flags,

unsigned long addr, unsigned long addr_only);

The semantics is the following, when pages are writeable:

• In the case of non anonymous shared mappings, a blare_tags structure is attached to the
�le descriptor of the mapping, in its file->_security �eld, in order to store the information
tag of the memory mapping (we do not set any policy on the mappings, the policy veri�cation
is left to the processes, as described in the model in Chapter 3).

• In the case of anonymous shared mappings, only the child process may have access to it,
unless MADV_DONTFORK was set. No �le descriptor is available for this kind of mappings, as
it is not backed to any �le. Information tags of the parent and the child have to be kept
synchronized until one of them releases the mapping. This is not supported in our current
implementation. A special �ag should be added to blare_task_struct, and set to 1 for
all parents having child processes sharing memory mappings with them (this can be done in
security_task_create).

• In the case of non anonymous non shared mappings, information is backed to the �le in case
of changes to the mapping.

System V shared memory

From userspace, shared memory segments are allocated by processes invoking shmget. Once a
shared memory segment is created, processes can attach it to their address space by calling shmat.
If the SHM_RDONLY �ag is passed, then the calling process has read-only access to the memory
segment, and otherwise it has read and write access to it. Processes detach memory segments from
their address space by invoking shmdt. Processes attached to a memory segments can access it
directly, and this is not caught by the operating system. In kernelspace, shared memory segments
are represented by struct shmid_kernel *shp:

struct shmid_kernel /* private to the kernel */

{

struct kern_ipc_perm shm_perm;

struct file * shm_file;

unsigned long shm_nattch;

unsigned long shm_segsz;

time_t shm_atim;

time_t shm_dtim;

time_t shm_ctim;

pid_t shm_cprid;

pid_t shm_lprid;

struct user_struct *mlock_user;

};

Each struct shmid_kernel embeds a struct kern_ipc_perm:

4.7. SYSTEM CALLS AND HOOKS 75

struct kern_ipc_perm{

spinlock_t lock;

int deleted;

int id;

key_t key;

uid_t uid;

gid_t gid;

uid_t cuid;

gid_t cgid;

mode_t mode;

unsigned long seq;

void *security;

};

The security �eld of struct kern_ipc_perm is used by KBlare to store meta-information con-
cerning the shared memory segment. Such meta-information is stored in a struct blare_tags,
as with other volatile objects.

struct blare_tags{

struct list_head *info;

/* Used by softirqs invoking rcv_skb*/

spinlock_t info_lock;

atomic_t refcount;

int info_rev; //unused

struct list_head *policy;

struct list_head *xpolicy;

};

Hooks

The LSM framework provides a hook for shmat, but a hook for shmdt had to be manually added
in our patch set, in order to be able to stop tracking processes after a shared memory segment
is released. A process attaches a shared memory segment to his address space by invoking the
shmat() system call. KBlare tracks this system call with the security_shm_shmat hook, with a
callback on the following function in our security module:

static int blare_shm_shmat (struct shmid_kernel *shp,

char __user *shmaddr, int shmflg);

KBlare maintains a list of currently attached shared memory segments for each process (in
cred->security->shm). For each memory segment of the list, a pointer to the tags of the memory
segment (of type struct blare_tags), as well as the �ags determining the access mode (e.g.,
SHM_RDONLY) are stored in the following structure:

struct blare_shmptr{

struct list_head node;

struct blare_tags *ptr;

int shmflg; //shmat() flags, i.e. SHM_RDONLY etc.

};

Processes detach a memory segment from their address space by invoking the shmdt system call.
KBlare tracks this system call with the security_shm_shmdt hook, with a callback on the following
function in our security module:

76 CHAPTER 4. IMPLEMENTATION

static void blare_shm_shmdt(struct shmid_kernel *shp);

On release of a memory segment, the following actions are performed:

• The information tag of the current process is updated with the information tag of the shared
memory segment.

• The memory segment is removed from the list of attached memory segments for the current
process (cred->security->shm).

Access to shared memory

As previously mentioned, access to attached shared memory segments is not subject to any system
call and is not tracked by the operating system. Therefore, KBlare calculates an overestimation of
the possible information �ows between a process and its attached shared memory segments.

• When a process P reads new content and updates its information tag (e.g., by reading
information in a �le or socket), all the shared memory segments it has attached with write
(read and write) access also have their information tag updated.

• Before any process writes or appends information to a container, the information tags of all
the attached shared memory segments are merged into the process's information tag.

4.7.3 Files and pipes

The most common way for processes to access information is certainly through the �lesystem.
Processes access �les using system calls. Amongst available system calls, fopen and fclose are
used to respectively open and close a �le descriptor. When a �le is opened, a �ag called open mode
is speci�ed, and takes a value in {a,w,r}.

• r opens the �le in read mode if it exists.

• w opens the �le in write mode or create it if it does not exist. Any content in the �le is
overwritten (the �le is truncated to zero length).

• a opens the �le in append mode, content may be written at the end of the �le, and existing
content cannot be altered.

• Furthermore, r+, w+ and a+ are also valid modes. r+ is like r with write access allowed, w+
and a+ are like w and a with read access allowed

After this, input/output access is performed by read and write or pread and pwrite. The �p�
variants allow to read or write from a given o�set. These system calls are responsible for information
�ows between processes and �les, and are tracked in KBlare. Similarly, pipes can be created with
the pipe system call, and accessed with the system calls read and write.

Hooks

In the LSM framework, access to �les and inodes is veri�ed by two distinct hooks:
security_file_permission and security_inode_permission. In kernel space, �le descriptors
may describe regular �les or pipes. Each �le descriptors is linked to an underlying inode (except
before �lesystem initialization). When it describes a pipe, the inode has a special �eld i_pipe,
which we use to distinguish it from regular �les. However, inodes are also used by sockets, and
other objects. As the kernel relies on inodes in many cases, hooking inode accesses results in a lot
of callbacks for each process. In our implementation, we rather verify access at other levels. In the
case of �les, the security_file_permission hook triggers the following callback:

static int blare_file_permission (struct file *file, int mask);

4.7. SYSTEM CALLS AND HOOKS 77

where file is a pointer to the �le descriptor, and mask is the access mask (which determines the
access mode). KBlare stores its security attributes in the opaque security pointer �eld of the file
structure, as introduced by the LSM framework: file->f_security. The security attributes we
attach to �les are speci�ed as follows:

struct blare_file_struct{

int *info_array;

int info_size;

struct policy_array **policy_arrays;

int policy_count;

struct policy_array **xpolicy_arrays;

int xpolicy_count;

struct blare_tags tags; // used for unnamed pipes

};

Recall from Section 4.4 that tags associated to �les are stored in the extended attributes of the
�lesystem. Such a representation is ��at�, i.e. it is represented as a contiguous region of memory.

• When a process reads a �le, KBlare reads the extended attributes and stores it in the
info_array data structure, and sets info_size to the size (number of elements) of the
array. This is later converted into a �live� representation, as previously described in this
chapter in Section 4.3.

• In the case of pipes, no extended attributes are used, as pipes are residing in memory, and
the �live� representation is used directly by using a blare_tags structure.

4.7.4 Message queues

Message queues are another inter process communication mechanisms allowing processes to ex-
change so called messages, stored in queues. Messages have a priority, and messages with the
highest priority are delivered to the receiving process �rst. Linux implements POSIX message
queues, as well as SYSV message queues. Both use a distinct API.

SYSV message queues

As with �les, and other data structures, SYSV message queues as well as their messages themselves
have been modi�ed by the LSM patches to add an opaque security �eld. The structure struct

msg_queue is de�ned in include/linux/msg.h as follows:

struct msg_queue {

struct kern_ipc_perm q_perm;

time_t q_stime; /* last msgsnd time */

time_t q_rtime; /* last msgrcv time */

time_t q_ctime; /* last change time */

unsigned long q_cbytes; /* current number of bytes on queue */

unsigned long q_qnum; /* number of messages in queue */

unsigned long q_qbytes; /* max number of bytes on queue */

pid_t q_lspid; /* pid of last msgsnd */

pid_t q_lrpid; /* last receive pid */

struct list_head q_messages;

struct list_head q_receivers;

struct list_head q_senders;

};

As for shared memory structures (see Section 4.7.2), the structure for message queues embeds a
kern_ipc_perm structure, itself having an opaque security �eld. However, rather than labelling
the message queues, KBlare labels individual messages. Messages are de�ned as follows:

78 CHAPTER 4. IMPLEMENTATION

struct msg_msg {

struct list_head m_list;

long m_type;

int m_ts; /* message text size */

struct msg_msgseg* next;

void *security;

/* the actual message follows immediately */

};

The security �eld of this structure is used by KBlare to store its tags (in a blare_tags structure).

Related hooks

Two hooks are used by KBlare, and are triggered upon sending or receiving messages:
security_msg_queue_msgrcv and security_msg_queue_msgsnd. Those hooks trigger the fol-
lowing functions of our module:

static int blare_msg_queue_msgrcv (struct msg_queue *msq,

struct msg_msg *msg, struct task_struct *target,

long type, int mode);

static int blare_msg_queue_msgsnd (struct msg_queue *msq,

struct msg_msg *msg, int msqflg);

One of the caveats with the reception of inline messages (i.e. fetching the �rst message available
in the queue) is that the target process is not equal to the current process15 in this portion of the
code (the kernel runs in a di�erent context). Whenever the target di�ers from the current process,
we are unable to alter the credentials of the receiving process, because of the RCU protection
mechanisms, forbidding a task to alter other tasks' credentials (there are good reasons16 for this,
as it would make the credentials management much more complex). The best way we found to
work around this was to force the scheduler to wake up the target process:

/* We cannot alter target's credentials unless it is the current process */

if (target != current)

wake_up_process(target);

POSIX message queues

Posix message queues make use of inode structures to pass messages. This could be tracked by
using the security_inode_permission hook, but it is not yet supported in our implementation.

4.7.5 Networking

UNIX domain sockets, or IPC sockets, allow processes of the same host to communicate through
network packets. Furthermore, network sockets allow processes of di�erent17 hosts to communicate
over a network. KBlare tracks communication over UNIX domain sockets of type AF_UNIX, and
network sockets of type AF_INET. After receiving messages through a socket (at state i), the new
information tag of the process (at state i` 1) is updated by appending the new content from the
information tag of the socket to it.

15See include/linux/security.h.
16From Documentation/security/credentials.txt:�[. . .]As previously mentioned, a task may only alter its own

credentials, and may not alter those of another task. This means that it doesn't need to use any locking to alter its
own credentials.[. . .]�

17It can also be used on the same host.

4.7. SYSTEM CALLS AND HOOKS 79

itagpprocessqi`1 “ itagpsocketqi Y itagpprocessqi

Similarly, when sending information through a socket, the information tag of the socket is
updated with the information tag of the process in the same manner:

itagpsocketqi`1 “ itagpsocketqi Y itagpprocessqi

Kernel structures

Sockets are described in kernel space by the socket structure, de�ned as follows in
include/linux/net.h:

struct socket {

socket_state state;

kmemcheck_bitfield_begin(type);

short type;

kmemcheck_bitfield_end(type);

unsigned long flags;

struct socket_wq __rcu *wq;

struct file *file;

struct sock *sk;

const struct proto_ops *ops;

};

The socket structure has a pointer to a sock structure, containing the network layer representation
of sockets. This is a quite complex structure, and we will not fully describe it here. The sock

structure contains a �eld called sk_family, and we use it to determine whether sockets are of type
AF_UNIX or AF_INET. As other volatile objects, sockets are labeled by KBlare with a blare_tags

structure, attached to their opaque security �eld. This �eld is de�ned in the sock structure as
sk_security of type void*.

Related hooks

Communication over AF_UNIX sockets is monitored by two hooks. Sending messages is caught
by security_unix_may_send, and receiving messages is caught by security_socket_recv_msg.
This later hook is also triggered when receiving information through internet sockets, and KBlare
treats both cases in the same place, by determining the kind of socket. Sending messages over
AF_INET sockets is caught by security_socket_sendmsg.

Netlink messaging

Netlink is a communication mechanism between kernelspace and userspace. It uses BSD sockets
of the AF_NETLINK family. It can also be used to communicate between userspace processes, even
thought this is not its primary goal. Netlink messages are not supported yet in KBlare, this is left
for future work. At the moment, the following stubs are de�ned:

static int blare_netlink_send (struct sock *sk,

struct sk_buff *skb);

static int blare_netlink_recv (struct sk_buff *skb, int cap);

80 CHAPTER 4. IMPLEMENTATION

Part III

Distributed Intrusion Detection

81

Chapter 5

Network Extension

In the previous chapters, we have introduced a model of intrusion detection based
on taint marking techniques. It tracks information �ows between objects of the oper-
ating system, and allows to detect abnormal behavior caused by intrusions on a local
host. The next step towards detecting intrusions in distributed systems is to track
information �ows at the network level. This chapter presents a network extension to
the previous model, adding further control over information with respect to outgoing
tra�c (the more complex case of incoming tra�c is presented in Chapter 6). We
have extended the previous information �ow policy with a so-called network policy,
stating how information may leave the system, restraining sockets given the current
(user, code) context. Furthermore, we have developed a framework that allows users
to trace how their private data is used by applications, and to monitor sensitive in-
formation that �ows out over the network. This led to experiments presented in
Chapter 8, and to a publication in the proceedings of the Australasian Information
Security Conference (AISC) 2012 [32]. Details regarding the implementation of this
network extension are presented in Chapter 7.

5.1 Overview

Most of today's personal computers rely on untrusted third party applications such as browser
plugins or so called `apps'. Many of these are closed source, which makes static analysis extremely
di�cult (if not impossible) in the case of native code. And even in the case of opensource appli-
cations, there is always a risk of security �aws or coding errors potentially leaking sensitive data.
Dynamically detecting the leak of sensitive information is challenging given that:

• One application can exchange information with another through IPC, shared memory, etc.

• It is impractical to modify o�-the-shelf applications; instead, we prefer to implement a refer-
ence monitor in the operating system kernel as a more pragmatic solution.

• The performance overhead must be small to maintain a responsive system, i.e., not a�ecting
the user's experience and causing them to disable the security mechanisms.

As presented in Part II, we use dynamic tracking of information �ows between objects of the oper-
ating system. A de�ning aspect of our approach is that we distinguish data from containers: data
is the actual information we track, whereas containers are storage entities such as �les, memory
pages, etc. Sensitive data is �rst identi�ed and their containers are labeled with meta-data called
tags. As information �ows between containers, tags are dynamically updated to re�ect the contain-
ers' content. When it comes to protecting sensitive data against leakage by untrusted applications
or via malware that exploits security �aws, existing approaches have several limitations. Individ-
uals can use software �rewalls on their internet-connected personal/portable computing devices
to �lter network connections without changing the security policy of the underlying operating
system. However, while such mechanisms may successfully protect a host from outside threats,

83

84 CHAPTER 5. NETWORK EXTENSION

they typically do not prevent the leak of information by untrusted or miscon�gured applications.
Deep packet inspection �rewalls are able to identify data patterns in network packets, however
this approach is too coarse-grained to e�ciently track the presence of sensitive data in network
exchanges and is thus not an e�ective solution to protect against sensitive data leaks. Mandatory
access control tools such as AppArmor [54] and Tomoyo [30] are similarly not practical when it
comes to protecting con�dentiality:

• When used in enforcement mode, information �ows are blocked, which may break some
functionalities. This e�ectively renders the approach unusable for most end users.

• When used in permissive mode, these tools are unable to track indirect information �ows
[65].

Figure 5.1 presents our approach to taint tracking for monitoring data leaks. A kernel reference
monitor has been implemented in the Linux Kernel and allows for e�cient dynamic information
�ow tracking at the level of system objects (processes, �lesystem inodes, etc.).

Figure 5.1: Network information �ow tracking

Sensitive data is labelled at the �lesystem level, and the level of granularity of our approach
is at the �le level (i.e., �les are considered as atomic pieces of information). Our implementation,
presented in Chapter 4, takes advantage of the Linux Security Modules (LSM) framework available
in the Linux kernel, and taint propagation is triggered by access control hooks. Our design goals
are to provide a model that is easy to use, does not lock all the system by default by labelling only
the sensitive information, and does not miss any information �ow (no false negatives).

5.2 Network extension

We have extended our previous model so as to supervise network interactions. Network sockets
are information channels, and we track information �owing towards them. There are di�erent
families of sockets, including UNIX domain sockets and internet sockets. The latter are used to
communicate with untrusted remote hosts through the internet, and we focus on their usage by
userspace applications. Sockets by themselves are not labelled, as we consider those as part of the
process memory. Instead, tracking is performed when processes actually send information through
those information channels.

5.3. PRACTICAL USE CASES 85

5.2.1 Network policy tag

The policy for communicating with internet sockets is de�ned globally through a unique shared net-
work policy tag. The network policy tag is a set of sets de�ning which combinations of information
may legally leave the local system through internet sockets, and optionally which applications may
communicate, as well as which information each application may communicate (per-application
pro�les).

A network policy tag is de�ned as follows:

Pnet P ℘p℘pI Y X qq

It is a set of sets that can contain any combination of elements from I (passive data) and X
(running code).

The following semantics is associated with Pnet:

• Elements of I in the sets of Pnet represent mutually exclusive sets of data which can legally
�ow out of the system (i.e., only one of the sets is legal at one time).

• Elements of X in the sets of Pnet represent supervised1 code which is allowed to communicate
through internet sockets.

• Any combination A P ℘pI Y X q in the sets of Pnet de�nes a pro�le for applications, where
elements of I de�ne which data can be sent over the network, and elements of X de�ne which
running code may send that information.

5.2.2 Legality of network information �ows

When a process sends information through a socket, a legality veri�cation is performed on its
current information tag against the global network policy tag. The information �ow is legal if and
only if the content of its information tag is contained in one of the subsets of the network policy
tag.

De�nition 15. For any information tag containing a set of data S P ℘pIYX q, the boolean relation
Legalnet is de�ned as follows:

LegalnetpSq ô Dp P Pnet|S Ď p

5.3 Practical use cases

Our approach covers the following use cases. In the following, the term labelling refers to the action
of attaching a unique information tag to a �le.

5.3.1 All sensitive data must stay local

In this use case, the user of the system wants all of the sensitive data to stay local. Any network
transfer of those data is a violation of the policy and our reference monitor, in its extended version,
will report a privacy violation alert. This can be accomplished by only labelling sensitive data
(�les) that should never �ow out of the system. By de�ning an empty network policy tag, no data
can legally �ow out through network sockets, and the user will be noti�ed every time a socket sends
such tainted data over the network.

Pnet “ ttuu “ K

1The corresponding binary �le is labelled with an information tag.

86 CHAPTER 5. NETWORK EXTENSION

5.3.2 Sensitive data may be sent over the network only through trusted
applications

In this use case, the system contains both trusted and untrusted applications, as well as some
sensitive data which may �ow over the network only through trusted applications. This can be
accomplished by labelling all the binary applications on the system along with all the sensitive
data. The network policy tag is set to match the union of all the information tags of the binaries
and those of sensitive �les on the �lesystem. In this case, the network policy tag is a set with only
one set.

Pnet “ pS Y Cq

Here S is the set of all the sensitive data and C the set of all trusted code.

5.3.3 Per-application pro�les

In this use case, the system contains both trusted and untrusted applications, and each trusted
application may send a di�erent set of sensitive data over the network. This can be accomplished
by labelling all the binary applications on the system along with all the sensitive data. Then, the
network policy tag is a set of several sets, where each set represents one application pro�le, such
as:

Pnet “ t
N
ď

i“1

psi Y ciq|si Ď S, ci Ď C,Legalnetpci Y siqu

where LegalnetpaYbq states that the application a is allowed to send information b over the network,
as presented in De�nition 15.

5.4 Dynamic policy changes

Taint marking can sometimes lead to a growing number of false positives due to the fact that
tainted data remains tainted until the system reboots, and information �ows keep propagating
tainted data between objects of the operating system. This may lead to repetitive alerts about
the same data leaking. Furthermore, the user or administrator may decide to declassify some
information that he or she previously considered as private, and allow it to �ow over the network.

For this reason, users can decide to modify the policy on the �y while the system is running.
New sets can be dynamically added to the network policy tag at runtime. Several situations may
occur:

• Only sensitive data has been labelled, and may not �ow over the network. There are no
trusted applications. In this case, the user can permanently neutralize alerts concerning a
set of sensitive data S by adding a new set S to the network policy tag.

• Both sensitive data and trusted application's code have been labelled, and the user wants to
neutralize alerts concerning one set of sensitive data S leaked by processes running code C.
This can be performed by adding a new set to the network policy tag containing pC Y Sq.

5.5 Conclusion

In this chapter, we presented a �rst aspect of our network extension, focussed on tracking outgoing
information. We de�ned a network policy, stating how information may leave the operating system
through network sockets. The network policy can be set on its own, or on top of an information
�ow policy con�ning users, applications and persistent containers, as presented in Chapter 3. This
extension led to a framework for detecting con�dentiality violations through applications leaking
information towards the network, which we implemented and evaluated, see Chapter 8.

Chapter 6

Distributed Policy Over Multiple

Hosts

This chapter presents our distributed model of intrusion detection. It relies on the
host based model that we presented in the �rst part of this thesis, along with new
aspects to take into consideration with respect to the distribution of taint over the
network, towards multiple hosts of a supervised network. In the previous part of this
thesis, we have shown how using taint marking techniques along with an information
�ow policy allows us to detect intrusions at the host kernel level. In the previous
Chapter, we have extended our host-level so as to track outgoing tra�c, and im-
plemented a framework for con�dentiality violation detection. In this chapter, we
introduce the distributed mechanisms and additions to our model that allow us for
intrusion detection in groups of supervised hosts.

6.1 Context

In the reminder of this thesis, we propose a distributed model allowing for rich policy speci�ca-
tion and �ne-grained information �ow tracking. We have extended our model in order to detect
intrusions in distributed systems composed of multiple hosts gathered in groups. Hosts of the same
group share a common information �ow policy. It is distributed in each host at the container level.

In this chapter, we �rst present the distribution of taint information across all the supervised
hosts of a distributed system. After this, we de�ne a distributed information �ow policy, allowing
to specify the legal behavior of information �ows amongst processes of multiple hosts with respect
to the involved pieces of information and users on behalf of which processes are running.

Recall from Part II that objects of the operating system such as �les, sockets, memory mappings
etc. are considered as containers of information in our model, and that we attach labels to such
containers: information tags, policy tags and execute policy tags. Labels are composed of meta-
information represented by two sets I and X , representing respectively passive data and active code.
In the �rst part of our work, labels were containing meta-information speci�c to the particular host
running the IDS.

6.2 Host groups

Distributed systems are generally composed of multiple services running as processes across mul-
tiple hosts, involving variable amounts of information. Such information may involve public data,
con�dential data, executable code etc., from multiple hosts. In order to de�ne an information �ow
policy for a distributed service, or for a whole distributed system involving multiple services, we
gather hosts in groups and de�ne a distributed information �ow policy per group. Let us consider
a given network N . Let H be the set of all hosts on network N . Each host of a group is identi�ed
by a unique id hk P H.

87

88 CHAPTER 6. DISTRIBUTED POLICY OVER MULTIPLE HOSTS

The �rst step towards de�ning a distributed policy amongst the hosts of a group is to identify
the information to track on each host. Recall from Part II that information tags are sets of elements
in I Y X , identifying passive data and active code residing in containers. For any given host hk,
we de�ne Ik as the set of all passive data managed by this host, and Xk the image of Ik through
the Run function, i.e. the code originating from this host which may be executed by processes on
any host. Ik and Xk are partitions of respectively I and X representing all the information of the
group:

I “
ď

hkPH
Ik ^ X “

ď

hkPH
Xk

Figure 6.1: Host group

We also de�ne a mapping allowing any host of the group to determine the origin of information:
for any piece of tainted information we must be able to determine which host manages it, i.e. from
which host does a speci�c tainted information come from.

De�nition 16. The originating host of an element of pI Y X q, i.e. the host managing a given
piece information, is determined by the following relation:

Host : pI Y X q Ñ H

6.3 Network tainting

Operation i P I x P X

Read taint discard

Write taint taint

Execute taint with x “ Runpiq discard

Send taint taint

Receive taint check legality & discard

Figure 6.2: Tainting rules

6.3. NETWORK TAINTING 89

Processes are responsible for all information �ows1. When processes perform actions on objects
(i.e. other containers), subsequent information �ows occur (depending on the operation). The
way taint data is carried in our distributed model follows the tainting rules presented in Part II,
which apply to all the system objects, with the addition of two new rules, send and receive,
targeting network tra�c (through sockets) from and towards other hosts of a group, as presented
in Figure 6.2. In this �gure, Taint means that the destination process or container gets tainted by
the meta-information. Discard means the destination process or container does not get tainted by
the meta-information. (For details about the legality of information �ows, see Section 6.4).

Hosts from the same group exchange information through network messages, which we consider
as containers, as well as any other object of the operating system containing information. We
therefore attach labels to messages, in order to carry information tags between multiple hosts, the
same way as we do between containers of the same host. In order to carry taint information, we
have considered two methods:

• Embedding information tags as security labels within network messages. This solution can
be e�ective when a small amount of taint data is used. This aspect is further detailed in
Chapter 7.

• Translating information tags into security tokens, which can then be resolved between hosts
in a peer to peer fashion, using a distributed protocol. We present this method in the next
subsection.

• Embedding so-called deltas relative to security tokens previously resolved, this is presented
later in this chapter.

6.3.1 Distributed security tokens

Information tags can be composed of any amount of meta-information, and thus have dynamic
sizes and require variable amounts of space. It may not always be possible to directly represent
information tags within the labels of networking messages. Therefore, we have introduced a dis-
tributed security token protocol allowing hosts of a group to exchange security labels in a peer to
peer fashion, as shown in Figure 6.3.

De�nition 17. Security tokens are images of information tags through a cryptographic hash
function H as follows, where Θ is the set of all possible tokens:

H : ℘pI Y X q Ñ Θ

We use such tokens, images of information tags, as security labels on network messages. Recall
that information tags are dynamic: their content is updated after every information �ow. There-
fore, processes often need to update the labels they attach to network messages. Our distributed
protocol involves so-called resolvers, one per host. Resolvers maintain caches of xkey : valuey
pairs, storing mappings between information tags and security tokens. From the point of view of
userspace processes, whenever a new token is needed, or an unknown token is received in a network
message, a request is made to the local resolver.

After every information �ow, if the information tag of the process has changed, a request
is made to the local resolver to create a new token for this process, corresponding to its new
information tag. We call this step token creation in the protocol de�ned below. Whenever a
process receives an unknown token (i.e. a token which hasn't been seen before), it needs to query
the local resolver, which in turn will query the originating host in order to receive a mapping, in the
form of a xkey : valuey pair, associating the requested token with an information tag. We call this
step token resolution. Such a mapping allows to translate the new token into an information tag,
and to taint the process which received the network message accordingly. Local resolvers run on
each machine, represented as R1 and R2 in Figure 6.3, and are the only processes communicating
with no security labels, i.e. the code of resolvers is trusted and we do not track information �ows

1processes are the only active objects of the system: the execution of any pieces of code is necessarily performed
through a process.

90 CHAPTER 6. DISTRIBUTED POLICY OVER MULTIPLE HOSTS

1

2

3

4

Figure 6.3: P2P token exchange

between the resolvers of multiple hosts. In practice, the code of the resolvers needs to be audited
and veri�ed against security �aws.

Figure 6.3 summarizes the steps involved in the protocol:

1. A message containing a security token is sent by a userpace process p1 on host h1 to another
process p2 on host h2.

2. Process p2 asks the local resolver R2 to look up in its local cache in order to resolve this
token.

3. If it cannot �nd it, R2 asks R1 for resolution using the protocol de�ned in the next section.

4. R1 replies to R2 with a mapping. R2 is now able to resolve the new token for p2.

6.3.2 Protocol

Resolvers maintain a local cache of sent and received tokens for each remote host of the group, as
shown in Figure 6.4. For any pair of hosts (h1, h2q, we name the caches as follows:

• senth1
rh2s is the cache of tokens sent to host h2, on host h1.

• recvh1
rh2s is the cache of tokens received from host h2, on host h1.

The sizes of sent and received caches are equal and noted `. Caches contain xkey : valuey pairs
in (Θˆ℘pIYX qq. Token resolution and token creation (described below) ensure that for each pair
of hosts (h1, h2), senth2

rh1s is synchronized with recvh1
rh2s. Token resolution is performed over

an alternate secure channel, using unlabeled messages (i.e. no security labels). Possible operations
on both caches are:

• Creating a new entry pCq.

• Overwriting an existing entry pOq.

• Reading an existing entry pRq.

a. Token resolution: when a process receives a network message labeled with a security token,
it needs to resolve it in order to be able to append the appropriate taint data to its information
tag. Token resolution is de�ned by the following relation:

resolve : Θ Ñ ℘pI Y X q

Token resolution can be done directly by the local resolver if the token is in the local cache of
received tokens. Otherwise, it is necessary to query the remote host using the protocol de�ned
below.

b. Token creation: when a process on host hlocal updates its information tag, the following
actions are necessary before sending data to any destination host hdest.

1. Create a new token tknew “ Hpitagq where itag is the current information tag of the process,
and H is a cryptographic hash function (see De�nition 17).

6.3. NETWORK TAINTING 91

host1 host2

<tk1 : {I1}>
<tk2 : {I2}>

. . .
<tkN : {IN}>

Sent

Reeived

To host2

<tk1 : {I1}>
<tk2 : {I2}>

. . .
<tkN : {IN}>

To host3

<tk1 : {I1}>
<tk2 : {I2}>

. . .
<tkN : {IN}>

From host2

<tk1 : {I1}>
<tk2 : {I2}>

. . .
<tkN : {IN}>

From host3

<tk1 : {I1}>
<tk2 : {I2}>

. . .
<tkN : {IN}>

Sent

To host1

<tk1 : {I1}>
<tk2 : {I2}>

. . .
<tkN : {IN}>

To host3

Reeived

<tk1 : {I1}>
<tk2 : {I2}>

. . .
<tkN : {IN}>

From host1

<tk1 : {I1}>
<tk2 : {I2}>

. . .
<tkN : {IN}>

From host3

ℓ

ℓ

Figure 6.4: Distributed token protocol

2. Read local cache entries (R) and check for collisions2 with tknew: senthlocal
rhdestsrtknews may

already exist as a key for a di�erent information tag.

3. In case of collision, overwrite (O) existing values and set flag to O_REPLACE.

4. Otherwise, create (C) tknew in senthlocal
rhdests and set �ag to O_NEW.

5. Send token to remote host (using the protocol de�ned below and the appropriate �ag).

c. Token exchange protocol: hosts of a group exchange tokens using a protocol based on
the two following operations:

• Function token_queryptoken, hostq: query host about token. The remote host replies with
token_send and sets a �ag to either O_NEW or O_REPLACE. When O_REPLACE is set, a previous
cache entry with the same key already exists and must be replaced. Otherwise, it is a new
entry.

• Function token_sendptoken, flag, hostq: send the pair ptoken,Hptokenqq to host with flag
in {O_NEW, O_REPLACE}.

6.3.3 Frequent updates

The overhead of the protocol that we de�ned depends on how often information tags of commu-
nicating processes require updates. Considering that our model does not yet have support for
declassi�cation3 the behavior of information tags is such that, for a given process, it can only grow
in size, and never diminish, until the process gets killed (or respawned). New elements may be
added to the information tags, but no elements may be removed.

De�nition 18. Whenever a process p receives a network message m, while in state i, we compute
the update information tag of p as follows:

itagppqi`1 “ itagppqi Y itagpmqi

2Even though collision probability is extremely low, it may occur, as in practice, H is a hash function.
3In our model, the support for declassi�cation would refer to the ability for users, programs or containers to

declassify information based on rules de�ned in the information �ow policy. This could be done, for instance, by
untainting some information given such rules, or by tainting it with new identi�ers.

92 CHAPTER 6. DISTRIBUTED POLICY OVER MULTIPLE HOSTS

As opposed with labeling a connection between two hosts, we label each network message
individually, based on the state of processes at the moment when each message is sent. One
possible drawback of this approach is when small updates are performed frequently on a process's
information tag (e.g. because it accesses new tainted �les before sending each message). In this
case, the performance overhead of the resolution protocol would increase considerably. In order to
avoid such a problem, we compute deltas.

Figure 6.5: Computing deltas

Deltas contain the di�erence between two information tags (i.e. their union minus their inter-
section), or the di�erence between two states of the same information tag, e.g. the information
tag of the process p1 in state i and in state i4 “ i ` 4. We embed deltas directly within network
messages, in the security labels, when possible. It is not always possible due to size restrictions,
therefore, deltas are used when �small� changes happen in information tags, i.e., when the memory
space required to represent the new elements to append does not exceed the maximum size of
security labels.

De�nition 19. We de�ne the ∆ relation as follows, returning the delta between two information
tags (sets of elements of ℘pI Y X q):

∆pa, bq “ tx|x P a^ x R bu

De�nition 20. Let us de�ne the maximum available space in a network message security label
as λlbl, and the size (space) of individual elements of information tags as λtag. Labelling network
messages with lambdas rather than with security tokens is preferred whenever the available space
in network messages is su�cient, i.e. whenever:

|∆pitagppqt, itagppqt`kq| ˆ λtag ă λlbl

Example 15. Figure 6.5 shows an example of two communicating processes p1 and p2. For
each process, bullet points represent the di�erent states of their information tags. Process p1 has
states s1 to s5 and p2 has states σ1 to σ5. We consider the initial states s1 and σ1 synchronized
with respect to the token caches: senth1

rh2s is synchronized with recvh2
rh1s and senth2

rh1s is
synchronized with recvh1rh2s.

1. Process p1 sends a message M1 to p2, labelled with the token tk1.

2. Due to network latency, p2 is in a new state σ2 when it receives the message. However it can
directly resolve the token tk1, as this one is present in the local cache of received tokens.

3. Process p2 now sends a message M2 to p1. As the state of p2 has changed from σ1 to σ2, it is
required to compute δ1 “ ∆pitagpp2qσ1

, itagpp2qσ2
q. As this is a minor change, between two

consecutive states of process p2, δ1 can �t in M2.

4. Process p1 receives M2. Its information tag has changed two times since it sent M1, and it is
now in state s3. The delta since state s1 is d1. It uses δ1 to update its information tag with
the information in M2, and jumps to state s4.

6.4. INFORMATION FLOW POLICY 93

5. Process p1 sends message M3 to p2. In the local cache senth1rh2s, the last sent token is tk1,
p1 changed of state 4 times since then. It now computes δ2 “ ∆pitagpp1qs1 , itagpp1qs4q and
check whether it �ts in the message label (see De�nition 20). As it �ts, M3 is labeled with
δ2.

6. Upon reception of M3, p2 reads delta δ2 and update its information tag.

6.4 Information �ow policy

In Chapter 3, we have introduced the information �ow policy of our model at the host level.
Processes run code (or programs) on behalf of users. Recall from Chapter 3 that their policy tags
are determined dynamically by PU and PΠ, at execution time, as the intersection of the policy
attached to the user on behalf of which the program is being executed, and the policy attached to
the executed program (i.e. Pu [Pπ, u P U , π P Π). When dealing with multiple hosts gathered in
groups, we need to take new aspects into consideration. With a distributed information �ow policy,
each local information �ow may involve tainted information from any host of the group. The local
information �ow policy on each host therefore refers to such disperse information, as well as how it
may �ow from one host to another. It involves users, active code (programs), persistent containers
(e.g. �les) and network sockets.

De�nition 21. The local information �ow policy on any host hi of a group, is expressed indepen-
dently for users, active code (programs), persistent containers (e.g. �les), and network packets,
and is speci�ed in the policy tags of containers, in a decentralized manner. It is de�ned by the
quadruplet Phi

“ pPCP
,PU ,PΠ,PNetq where:

• PCP
is the set of all the policy tags restricting passive containers (mostly �les).

• PU is the policy restricting local users.

• PΠ is the policy restricting executable code.

• PNet is the policy restricting network communication (as presented in Chapter 5).

De�nition 22. The information �ow policy Pgroup of a group of hosts ph1, ¨ ¨ ¨ , hN q, identi�ed at
each host's level is de�ned as

Pgroup “ pPh1 , ¨ ¨ ¨ ,PhN
q

The following properties can be expressed (any number of each), and veri�ed by the reference
monitor of each host.

6.4.1 Users

Users in our model refer to the users on behalf of processes (in the UNIX sense). The following
properties may be expressed in the information �ow policy so as to restrict the behavior of processes
towards information (data or code) from other hosts of the same group with respect to local users
on each machine.

@u P U ,Pu Ď ℘p
N
ď

k“1

pIkqq (6.1)

(6.1) speci�es the following properties:

• Local user u may only access the speci�ed pieces of information from hosts h1, . . . , hk within
the group4, (secrecy w.r.t. users).

• Local user u may only mix together the speci�ed piece of information from host h1, . . . , hk
within the group (integrity w.r.t. users).

4Including the local host, this goes for all the other properties as well.

94 CHAPTER 6. DISTRIBUTED POLICY OVER MULTIPLE HOSTS

@u P U ,Pu Ď ℘p
k

ď

1

pXkqq (6.2)

(6.2) speci�es the following property:

• Only the speci�ed pieces of code from hosts h1, . . . , hk may be executed by user u on the
local host (execution w.r.t. users).

Properties 6.1 and 6.2 may be used together in the policy. In this case, the resulting policy contains
sets of elements of I and X , i.e. Pu Ď ℘p

Ťk
1pIk Y Xkqq.

6.4.2 Programs

Programs refer to the active code being run by processes. Once (optional) rules have been de�ned
for user accounts (users, on behalf of which processes are being executed), the information �ow
policy may also contain the following properties, specifying rules attached to pieces of active code
being run by processes (individual or multiple elements of X forming any program π P Π).

@π P Π,Pπ Ď ℘p
k

ď

1

pXkqq (6.3)

(6.3) speci�es the following property:

• Local processes running π as code on the local host may only execute the speci�ed sets of
information from hosts h1, . . . , hk of the group (execution w.r.t. running code).

@π P Π,Pπ Ď ℘p
k

ď

1

Ikq (6.4)

(6.4) speci�es the following properties:

• Local processes running π as code may only access the speci�ed pieces of information from
hosts h1, . . . , hk within the group (secrecy w.r.t. programs).

• Local processes running π as code may only mix the speci�ed pieces of information from
hosts h1, . . . , hk together (integrity w.r.t. programs).

Properties 6.3 and 6.4 may be used together in the policy, leading to Pπ Ď ℘p
Ťk

1 Ik Y Xkq.

6.4.3 Persistent containers

Persistent containers are individually protected by the following properties.

@c P PC ,Pc Ď ℘p
k

ď

1

Ikq (6.5)

(6.5) speci�es the following properties:

• Persistent container c may only contain the speci�ed pieces of information from hosts
h1, . . . , hk within the group (secrecy w.r.t. persistent containers).

• Persistent container c may only mix the speci�ed pieces of information from hosts h1, . . . , hk
together (integrity w.r.t. persistent containers).

@c P PC ,Pc Ď ℘p
k

ď

1

Xkq (6.6)

(6.6) speci�es the following properties:

6.5. LEGALITY OF INFORMATION FLOWS 95

• Write (or append) access to the persistent container c is only authorized to processes running
the speci�ed code, from hosts h1, . . . , hk within the group (integrity of containers w.r.t.
running code).

Properties 6.5 and 6.6 may be de�ned together, leading to Pc Ď ℘p
Ťk

1 Ik Y Xkq.

6.4.4 Network packets

Incoming and outgoing tra�c is tracked at the network packet level. The following properties may
be expressed in PNet so as to restrict incoming or outgoing tra�c.

PNet Ď p℘p
k

ď

1

Ikq (6.7)

• In the case of incoming tra�c, only the speci�ed sets of information from hosts h1, . . . , hk
are allowed in.

• In the case of outgoing tra�c, only the speci�ed sets of information from hosts h1, . . . , hk are
allowed out.

PNet Ď ℘p
k

ď

1

Xkq (6.8)

• In the case of incoming tra�c, only accept tra�c from remote processes running the speci�ed
sets of code (programs).

• In the case of outgoing tra�c, only accept outgoing tra�c from local processes running the
speci�ed sets of code (programs).

Both properties 6.7 and 6.8 may be used together, resulting in:

PNet Ď ℘p
k

ď

1

Ik Y Xkq (6.9)

6.5 Legality of information �ows

Recall de�nition 18 and Figure 6.2 from this Chapter, de�ning tainting rules with respect to
the di�erent objects of the operating system. Such rules apply after each operation responsible
for information �ows, made by processes running code on behalf of users. The legality of such
information �ows depends on the updated information tags with respect to the local information
�ow policy on the local host, on each host of the group. Therefore, information �ows between several
hosts involve the local information �ow policies of each host (subsets of Pgroup). An information �ow
towards any container c is legal if and only if its new information tag itagpcq, after the information
�ow occurred, is included in at least one of the sets of its policy tag ptagpcq. This applies to all
kinds of containers (i.e. processes as well as passive containers and sockets), based on the properties
de�ned above. In a group involving k hosts, itagpcq P ℘p

Ťk
1 IkYXkq and ptagpcq Ď ℘p

Ťk
1 IkYXkq.

This is veri�ed by the relation Legal, de�ned in Part II (De�nition 3), which can be generalized
as follows:

LegalpA,Bq ô Da P A|a Ď B

96 CHAPTER 6. DISTRIBUTED POLICY OVER MULTIPLE HOSTS

6.5.1 Policy tags

In our model, policy tags are the link between the information �ow policy with its di�erent aspects,
or subsets, and the objects of the operating system we actually supervise at runtime. Each policy
tag contains rules, that are part of either PPC

,PU ,PΠ or PNet. In Chapter 3, we introduced the
notion of policy tags of persistent containers and processes, and how these two relate to di�erent
subsets of the information �ow policy. Recall from previous chapters that the policy tags of
processes are dynamically set up at runtime, upon process creation, from PU and PΠ. The policy
of persistent containers is initially attached to their respective policy tags, and expressed from rules
of PPC

. Similarly, the network policy tag, directly equal to PNet, is attached to network sockets
so as to track incoming and outgoing network packets. However, it is common to all sockets,
regardless of which process created them. The reason for this is that processes each have their own
policy tag already. PNet is intended to track incoming and outgoing tra�c based on the properties
de�ned above.

PPC
PU PΠ PNet

Processes X X

Persistent containers X

Sockets X

Figure 6.6: Deriving policy tags from the policy

6.6 Conclusion

In this chapter, we have shown how we extended our information �ow model to distributed systems
made of multiple hosts gathered in groups. Security labels are carried over the network, and we are
now able to de�ne the legal interactions between processes of di�erent hosts, given their underlying
tuser, codeu context. The information �ow policy is distributed in a peer to peer fashion, and hosts
exchange security labels through a distributed token protocol. As our model may involve frequent
updates of security labels in some situations, we propose a solution to diminish the stress on the
token protocol by computing deltas, containing the relative di�erence between the states of the
information tags of communicating processes. The information �ow policy is de�ned at each host
level, in the information tags of processes, persistent containers and sockets, as shown in Figure 6.6.
It is veri�ed by each host kernel, the only trusted code in our model. This extended model and its
implementation represent our second contribution. Related work include Aeolus [13], DStar [77]
and Pedigree [74]. Our approach di�ers from these in multiple manners:

• Aeolus is a framework for building secure applications. It tracks information �ows at the
thread level and allows users to restrict the use of their information, which is categorized in
tags. Such a framework o�ers �ner-grained information �ow tracking than our approach (we
work at the system object level, e.g., processes instead). However, this framework does not
provide system-wide supervision, and it is not applicable to native applications. Its policy
de�nition is user-centric and o�ers limited expressiveness.

• DStar [77] is an extension of decentralized information �ow control models such as Flume [40]
and Histar [76], to distributed systems. It uses integrity and secrecy labels so as to categorize
information and restrict processes. It ensures that only processes allowed to communicate
may actually do so, and follows a �no read-up, no write-down� logic. As other decentralized
information �ow control models, DStar requires applications to be modi�ed in order to bene�t
from the declassi�cation mechanisms that it o�ers. DStar uses exporter daemons along with
cryptographic certi�cates to exchange security labels between hosts. Our approach uses
similar mechanisms (though it lacks mechanisms to enforce the integrity of security labels
in its current state) to exchange security labels amongst hosts. However, both our labels

6.6. CONCLUSION 97

and our security policy di�er from DStar. On the one hand, our labels contain unlimited
taint information elements, each describing one individual piece of information. On the other
hand, the de�nition of the policy in our model does not rely on security classes but instead
attaches individual sets of rules to each piece of information, in a �ne-grained manner. This
allows us to track illegal execution of code as well as integrity or con�dentiality violations by
users or applications.

• In Pedigree, taint information is attached to resources such as �les. Taint information may
of two kinds: secrecy and integrity. As DStar, the policy is based on a lattice. However, as
opposed to DStar, the policy is centralized. The particularity of Pedigree is that it provides
capabilities mechanisms attached to taint information, so as to provide declassi�cation. Our
approach does not o�er declassi�cation mechanisms, but it keeps information �ow histories
and allows to de�ne �ne-grained policies (as described in the previous paragraph).

To the best of our knowledge, the model that we have introduced is the only anomaly detection
model combining OS-level taint analysis along with a �ne-grained policy de�nition so as to detect
intrusions in distributed systems. In the next chapters, we present the implementation of this
model as well as our experiments along with a discussion of the strong and weak points of our
approach (in Section 8.4).

98 CHAPTER 6. DISTRIBUTED POLICY OVER MULTIPLE HOSTS

Chapter 7

Network and Distributed

Implementation

This chapter presents our distributed implementation. It presents the additions we
added in the previous implementation in order to take the network and distributed
aspects of the model into account. This implementation is an extension of the im-
plementation presented in Chapter 4. It adds support for security labels on network
sockets, along with a network policy, checking that only processes allowed to do so may
leak the speci�ed information, as presented in Chapter 5.2. Furthermore, it takes new
distributed aspects into consideration, by labelling individual network packets with
security information (information tags), so as to carry taint information between hosts
of a group.

7.1 Network policy

The Network policy tag, that we introduced in Chapter 5.2, is used to track outgoing tra�c through
internet sockets, by specifying which processes (more exactly, which pieces of executed code) are
allowed to communicate information out of the system. A single network policy tag is centrally
de�ned for all the system. As the other policy tags, attached to other types of containers, it is
speci�ed as a set of sets:

Pnet P ℘p℘pI Y X qq

It is implemented as a linked list of legal sets of information, where each set is stored in a red black
tree for fast oplogpnqq lookups. A userspace interface is exported through the securityfs1 �lesystem,
in order to load the network policy tag in kernel memory at boot time. This interface is accessible
through sys/kernel/security/blare/network (once the securityfs �lesystem has been mounted,
e.g. by adding the correct line to /etc/fstab). Userspace tools have been written to set and update
the network policy at runtime, and are available for download at http://blare-ids.org. These
tools add new sets of information, one at a time, to the network policy. Each set is represented
in userspace as an array of integers, contiguous in memory. The kernel code receipts the data and
converts it into blare_policy_tree elements.

1Securityfs is a pseudo �lesystem based on sysfs and is used by the LSM modules, generally mounted as /sys/k-
ernel/security.

99

100 CHAPTER 7. NETWORK AND DISTRIBUTED IMPLEMENTATION

/* A policy tag is a list of binary trees (a set of sets)

* Each binary tree has the following type:

* */

struct policy_tree{

struct list_head list;

struct rb_root *root;

int cardinal;

};

Such elements make use of the SLAB for e�cient memory allocation (see Chapter 4). The
relevant code is de�ned in security/blare/network.h.

The network policy applies to both socket families AF_INET and AF_INET6, respectively related
to IPv4 and IPv6. A userspace daemon reports alerts to the user via the libnotify library (by
checking the output of the system logs for entries written by our reference monitor).

7.2 Distributed policy

The distributed version of this implementation carries security labels on network packets, so as to
transfer taint information between hosts of the same group. The information �ow policy for the
group is distributed in each host, at the container level. Hosts are able to determine the origin
(i.e. which host it came from) of each piece of information, and the local policy tags of container
determine their legality. The network policy, as de�ned in the previous section, can be used to
track incoming and outgoing information on each host of the group. Therefore, the legality of
information �ows towards processes is veri�ed in a two way run:

• First, on packet reception, the reference monitor checks the content of the security label, and
veri�es that it is legal with respect to PNet.

• Then, the data content of the label (elements of I only2) is merged with the information
tag of the process, and the updated information tag's legality is veri�ed. This process is the
same as when reading �les: elements of X are discarded, see Chapter 3.

7.3 CIPSO

To achieve the transportation of security labels over the network, we use CIPSO labels: CIPSO3 is
an IETF draft proposing a �Commercial IP Security Option�. It de�nes a type of security options
for IPv4 packets. Note that we do not support IPv6 yet in this implementation. Existing e�orts
to support labels on IPv6 packets include the Common Architecture Label IPv6 Security Option
(CALIPSO), however no support for any such option exists in the Linux kernel at this time. As

Type 134 Option Length Domain of interpretation Tags

8 bit 8 bit 32 bit 272 bit

Ð 320 bit Ñ

Figure 7.1: CIPSO option

shown on Figure 7.1, CIPSO option size is limited to 40 bytes (320 bits), the current limit for
IPv4 options. The tags �eld is used to pass the actual security information related to the packets

2Recall that elements of X in a process's information tag refer to the code currently being run. Similarly, elements
of X on a network packet security label refer to the code being run by the process which sent the message. Therefore,
merging such elements in the information tag of processes on packet reception would make the new tag inconsistent.

3https://tools.ietf.org/html/draft-ietf-cipso-ipsecurity-01

7.4. NETLABEL 101

content, describing so-called categories (in our case, categories refer to the meta-information of
information tags). The Domain of interpretation (DOI) �eld gives the ability to de�ne separate
domains where categories may have di�erent meanings, e.g. for some systems, a value of 5 in
the tags may be equal to the MLS level �top secret�, where in some other domains, it could be
interpreted as �public�.

Tag type Tag length Tag Information

8 bit 8 bit 256 bit

Figure 7.2: Tag types

CIPSO allows for up to 128 tag types, however the current draft only de�nes types 1, 3 and 5.

• Tag type 1 de�nes a bitmap of categories, (i.e. values representing information in the packets)
from category 0 to category 239.

• Tag type 3 de�nes a set of enumerated categories (i.e. representing sparse values).

• Tag type 5 de�nes categories ranges, where each range includes multiple categories.

Tag type Tag length Alignment Octet Sensitivity Level Bitmap of Categories

8 bit 8 bit 8 bit 8 bit 240 bit

Figure 7.3: Tag type 1

In our implementation, information tags are sets of 32 bit integers, thus we cannot have more
than 10 information tag elements per IP option if we directly taint network packets with infor-
mation tags. In order to overcome this limitation, we have designed a distributed security token
management protocol, allowing any host of a group to securely exchange security labels, as pre-
sented in Chapter 6. However, for the sake of simplicity, our current implementation labels network
packets directly by using the tag type 1 as de�ned in CIPSO, as shown on Figure 7.3. By using
a bitmap, we are able to represent up to 240 distinct information tags, and thus track up to 240
distinct information elements (including data and code) per group of supervised hosts, which lets
us track a su�cient amount of taint information for realistic experiments. Therefore, each host
h1, . . . , hN of the group has reserved space in the bitmap to represent its local information IN and
code XN .

7.4 Netlabel

CIPSO labels are supported in the Linux Kernel, through the NetLabel subsystem. NetLabel
provides an API for LSM modules to attach CIPSO labels to outgoing or incoming network tra�c
generated by userspace applications. The API provides functionalities exported to LSM modules,
translating operations on packets into low level protocol operations. This is de�ned in the kernel
source, in the header �le include/net/netlabel.h.

7.4.1 Internal representation

The main structure that is used by NetLabel to represent security information is the following:

102 CHAPTER 7. NETWORK AND DISTRIBUTED IMPLEMENTATION

struct netlbl_lsm_secattr {

u32 flags;

[...]

u32 type;

char *domain;

struct netlbl_lsm_cache *cache;

struct {

struct {

struct netlbl_lsm_secattr_catmap *cat;

u32 lvl;

} mls;

u32 secid;

} attr;

};

This structure contains the necessary �elds to represent a CIPSO option. It embeds a so-called
category mapping in struct netlbl_lsm_secattr_catmap *cat;. This latter structure is used to
represent the tags. Labels can be attached and removed from sockets. When a label is attached to
a socket, all the packets leaving the system through this socket are labelled with it. The following
functions are used to set or remove a label on a socket:

static inline int netlbl_sock_setattr(struct sock *sk, u16 family, const struct

netlbl_lsm_secattr *secattr);

static inline void netlbl_sock_delattr(struct sock *sk);

It is also possible to directly label network packets, by using the following function:

static inline int netlbl_skbuff_setattr(struct sk_buff *skb,

u16 family,

const struct netlbl_lsm_secattr *secattr);

7.4.2 Conversion

In order to convert from and to NetLabel CIPSO bitmap representation into information tags (i.e.
doubly linked lists of integers, see Chapter 4) as used in our model, we de�ned two functions in
security/blare/netlabel.c:

struct list_head *blare_catmap2itag(struct netlbl_lsm_secattr_catmap *catmap);

int blare_itag2catmap(struct list_head* itag, struct netlbl_lsm_secattr_catmap

*catmap);

These two functions respectively convert a category mapping in the form of a 240 bit bitmap into a
linked list of 32 bit integers, and the other way round. It allows us to embed bitmaps into outgoing
packet headers using CIPSO option type 1, and to retrieve them from incoming packets. The LSM
hooks that we use for this purpose are presented later in this chapter.

7.5 Execution contexts

Before going into further details about how we have implemented network information �ow tracking,
let us introduce the notion of execution contexts. Kernel code may run in di�erent contexts.
When executing code on behalf of a userspace process (e.g., executing a system call), it runs in
process context, where it has access to all the data structures of the current userspace process.
The code running in process context can sleep (and be rescheduled later). Most aspects of this
implementation run in process context. Networking code, however, is often related to low level data

7.6. SOCKET OPERATIONS 103

structures, involving time critical operations, e.g., copying data from the network card bu�ers into
memory on reception of packets. When a piece of hardware uses an interrupt to notify the CPU
about some event, the CPU immediately schedules the appropriate interrupt handler (based on
the interrupt number). When executing an interrupt handler, the kernel is in interrupt context.
This context is not attached to any process (though the address space of the interrupted process is
left as-is), and the code cannot sleep. Interrupt handlers may interrupt important code, including
other interrupt handlers, or may disable all other interrupts for the time of their execution. For
these reasons, interrupt context code has to run for the shortest possible time. Therefore, the
processing of interrupts is split in two parts: top half and bottom half. The interrupt handler is the
top half, and it only processes immediate and time critical operations. All the remaining processing
is left for the bottom half, generally deferred in a softirq or in a tasklet. We will not go into further
details about these inner mechanisms, please refer to Robert Love's �Linux Kernel Development�
book [44], or �Understanding the Linux Kernel� by Daniel Bovet and Marco Cesati [9] for a more
comprehensive description.

7.6 Socket operations

In Chapter 4, we showed how network tra�c between local processes is tracked, involving UNIX
sockets (AF_UNIX) or internet sockets (AF_INET). We will now present mechanisms to track infor-
mation between processes of di�erent hosts of the same group by using CIPSO labels.

7.6.1 Sending messages

We attach labels to outgoing network packets by using the LSM hook security_socket_sendmsg,
hooking the function __sock_sendmsg() in net/socket.c. This hook calls back functions in our
LSM module, and the code runs in the context of the userspace process which called the sendmsg
system call. Whenever the destination host is di�erent from the local host, information tags are
converted into bitmaps at this stage, and embedded into the network packet using the Netlabel
LSM API. Otherwise, the information tag of the socket itself is labelled, as presented in Chapter 4.
The relevant code is de�ned in security/blare/lsm_hooks.c. In order to avoid concurrent access
to to the underlying sock structure, attached to the socket, we need to take extra precaution when
attaching a security label to it.

local_bh_disable();

bh_lock_sock_nested(sk);

rc = netlbl_sock_setattr(sk, sk->sk_family, &secattr);

bh_unlock_sock(sk);

local_bh_enable();

The local_bh_disable() macro disables bottom halves on the local CPU. This ensures that we
are not interrupted by a softitq, like those triggered by the reception of network packets (see next
Section). However, bottom halves may still execute on other CPUs, therefore we also need locking
on the sock structure, and this is what the macro bh_lock_sock_nested() does by disabling the
preemption (by calling preempt_disable()) and holding a spinlock.

7.6.2 Receiving messages

Incoming tra�c is tracked with the LSM hooks security_sock_rcv_skb and
security_socket_recvmsg. The former is called on frames reception, just after those get
attached to the related socket. The code calling this �rst hook does not run in the context
of the userspace process which received the message. In other words, we do not have access
to the data structures related to the process receiving the message. This is due to the fact
that receiving messages is done in interrupt context. The interrupt handler copies the packet
(or frame) in an sk_buff structure and initializes some other data structures before notifying
the kernel about the new received frame, and deferring further processing to a softirq. The

104 CHAPTER 7. NETWORK AND DISTRIBUTED IMPLEMENTATION

hook security_sock_rcv_skb is triggered by the function sk_filter() in net/core/filter.c,
�ltering socket bu�ers. The caller of this hook holds spinlocks and runs in a softirq, therefore the
code from our module that is called back at this very instant cannot sleep (otherwise resulting
in a catastrophic behavior, most likely ending up as a kernel panic). Note that there are no
mechanisms avoiding the same softirq to run concurrently on several CPUs, therefore speci�c
precautions have to be taken so as to avoid concurrency issues. Furthermore, when allocating
kernel memory in such a context, one needs to make sure that the GFP_ATOMIC �ag is used, so as
to avoid the underlying call to get_free_pages() to sleep. In this part of the code, we perform
the following operations:

1. Dump the security attributes attached to the headers of the packet. This is done by calling
netlbl_skbuff_getattr() from the netlabel API.

2. Acquire a spinlock on the socket's tags. blare_tags structures (see Figure 7.4 below) are
attached to sockets in their sk->sk_security �eld. This ensures that no concurrent softirq
running the same code accesses the same data structure at the same time. Note that we
do not disable local bottom halves here, on the �rst hand because softirqs never preempt
each other (only interrupt handlers may preempt softirqs), and on the second hand because
the only possible concurrent code in this situation is the same softirq running on another
processor, which is solved by the spinlock.

3. Extract the bitmaps from network packets and make the conversion into the information tag
of the socket.

4. Release the spinlock.

/* Set of tags to attach to any object */

struct blare_tags{

struct list_head *info;

/* Used by softirqs invoking rcv_skb*/

spinlock_t info_lock;

atomic_t refcount;

int info_rev; //unused

struct list_head *policy;

struct list_head *xpolicy;

};

Figure 7.4: The blare_tags structure, attached to sockets (and other objects)

At this point, the information tag of the socket, stored in the info �eld of the socket's tags, is
up to date. We now have to update the information tag of the process which received the message,
with the socket's information tag. This is done by a second hook, security_socket_recvmsg.
This part of the code does:

1. Get a copy (RCU) of the current process's information tag.

2. Merge the socket's information tag into this copy of the process's information tag.

3. Commit (RCU) the new information tag (which replaces the current process's information
tag with the new one).

No speci�c precautions are required here, as this code run in process context: we can access the
relevant data structures directly (which we could not in the previous hook), and we can safely sleep
(no precautions regarding memory allocation or speci�c function calls). Furthermore, though the
two hooks may run concurrently (i.e. a new frame may arrive in the network card bu�er, deferring
work in a softirq, triggering the �rst hook, while the code called by the second hook runs on another
CPU), this code is perfectly safe without any locking. This is due to the fact that information tags

7.7. BUG AND PATCH 105

of sockets are, like those of processes, implemented as doubly linked lists. Such data structures are
safe in the case of concurrent readers and writers, as long as there is no more than one writer at
the same time.

7.7 Bug and patch

During the development of our kernel monitor, we stumbled across an issue due to a bug in the
code of the kernel, outside our module in the Netlabel subsystem. Our testing environment was
composed of several virtual hosts running our modi�ed kernel, connected over a virtual bridged
network. The host kernel was the default Debian kernel. In our test case, all the packets containing
a CIPSO label were dropped by the host kernel. After a period of testing and discussion with the
author4 of the code, we could �gure that this was due to a bug in the code of Netlabel and identify
possible ways to reproduce it. A patch has been released by Paul Moore to �x this bug5, and it
was accepted in the Linux kernel in version 3.5-rc1. Before this patch, it was required that the
host kernel be con�gured to use netlabel with the same domain of interpretation as the guests.
Not doing so was resulting in a host kernel failing to route network packets in the case of bridged
networks.

7.8 Future work

In the future, several optimizations and new features should be considered, so as to increase
performance and stability to a higher level.

7.8.1 Distributed security token

We have not implemented the distributed security token protocol presented in Chapter 6, this is
left for future work. Therefore, the current implementation has a limitation on the number of
distinct meta-information that can be carried on network packets. The protocol we de�ned can
be implemented using netlink messaging [52], so as to communicate with a user space daemon on
each host. Labels resolution would then be performed by the local userspace daemon towards the
remote daemon in a peer to peer fashion every time a new and unseen token arrives in a network
packet.

7.8.2 Copy on write

Information tags of processes, sockets, shared memory segments, and every other objects repre-
sented in memory, should be implemented using copy on write so as to reduce the memory overhead
of our reference monitor. Objects of the system tainted by the same information tag should hold a
pointer to the same data structure rather than a copy of it, until it needs to modify it to add new
taint data. A cache could be used to maintain all existing information tags in the system, using
reference counts to free up memory when some elements are no longer in use.

7.8.3 Filesystem bottleneck

Our experiments (presented in Chapter 8) show that a bottleneck exists at the �lesystem level,
slowing down our reference monitor. This is due to the frequency of updates on the extended
attributes of �les, which are performed in a very synchronized way every time a read or write

access occurs. Recall from Chapter 4 that the extended attributes are represented as contiguous
��at� portions of memory. Therefore, accessing such information requires conversions to our in-
memory representation of information tags on read access, and the other way round on write

access. Furthermore, on write access, it is also required to load the policy tags of the �les into

4Many thanks to Paul Moore for his kind help and cooperation.
5This patch was released on the mailing lists of the kernel, with the following subject: �cipso: handle CIPSO

options correctly when NetLabel is disabled�.

106 CHAPTER 7. NETWORK AND DISTRIBUTED IMPLEMENTATION

memory before checking the legality of their new content. A solution to cope with this shortcoming
would be to maintain a cache of open �le descriptors, containing for each �le:

• The current policy tag.

• The current information tag.

7.8.4 Enforcement mode

Our primary goal is intrusion detection, therefore we do not block any information �ow in the
present model and implementation (we run in so-called permissive mode). However, the ability
to enforce a policy may be considered in some situations including the deployment of an IPS
(Intrusion Prevention System) based on our model, or setting up information �ow control6 in a
trusted computing environment. As our implementation uses the LSM framework, providing access
control mechanisms to security modules, the choice of enforcing the policy instead of raising an alert
requires minor code modi�cations. Also, in terms of data structures, blocking illegal information
�ows reduces the amount of space required by the tainting: when running in permissive mode, we
need to taint all the information present in all information �ows. When enforcing a policy, some
information �ows are blocked, thus reducing the amount of tainting. Some simpli�cations can be
done in the information tags in such a situation. Consider a container c, with a policy tag ptagpcq
and an information tag itagpcq. Recall the Legal relation from de�nition 3 in Chapter 2. When
enforcing the policy, the state of the information tag of the container is always legal with respect
to its policy tag: Legalpitagpcq, ptacpcqq always stands. In such a case, the information tag of any
container is always a subset of its policy tag.

One possible optimization of our implementation, when used in enforcement mode, would be
the use of �xed-sized bitmaps to represent information tags, rather than doubly linked lists. The
latter are very e�cient in the case of dynamic allocation, when no size boundary exists. However,
in the present case, the size of information tags is bound by the policy: each subset of the policy
de�nes one possible legal state of the information tag of the container. For any policy tag P “

ttp1u, tp2u, . . . , tpNuu, the corresponding legal information tag is bound by:

I “
N
ď

1

pi

We could represent such information tags in a �xed-size bitmap for every supervised container of
the operating system, thus reducing the memory overhead of our implementation when enforcing
the policy.

7.9 Conclusion

In this chapter, we have presented the distributed aspects of our implementation, relying on the
Netlabel subsystem to attach CIPSO labels to network packets leaving each host of a group.
The distributed token protocol (and the computation of deltas) has not been implemented at the
moment. Instead, we use �xed-size bitmaps in the labels that we attach to network packets. In its
current state, this implementation allowed us to perform the experiment presented in this thesis,
and available for download from our website7, released under the GPLv2 license. At the time of this
writing, researchers outside our team have contacted us and started using it for other purposes, as
a framework for information tainting, claiming that this is the only freely available implementation
of such a tainting framework today. In an e�ort to distribute and cooperate on this project even
more, our research team8 is currently pursuing this project with several Ph.D. students and a
research engineer.

6As opposed to information �ow tracking, information �ow control systems block illegal tra�c.
7http://www.blare-ids.org
8The CIDre team, at Supélec, www.supelec.fr.

Chapter 8

Experiments

To conclude on the third part of this thesis, introducing network and distributed
aspects to the intrusion detection model presented earlier in previous chapters, we
will now detail our experiments based on the implementation explained in Chapter 7.
We �rst present a case of intrusion on the client side, by visiting a malicious service
using a web browser and a �awed plugin. The malicious service targets sensitive
data on the client by using a remote exploit on the Java Virtual Machine. This
�rst experiment shows how we are able to detect con�dentiality violations and data
leaks with our IDS along with a network policy, as introduced in Chapter 5.2. After
this, we present a second experiment, involving a distributed web service composed
of supervised hosts sharing a distributed information �ow policy. We show how the
reference monitor of each host is able to individually identify illegal information �ows
spawned by a successful attack. We �nally present an assessment of the performances
at the host level and discuss about the usability, advantages and shortcomings of our
approach.

8.1 Data leaks through a web browser

This �rst experiment makes use of the network policy, that we introduced in Chapter 5.2. The
following scenario, as illustrated on Figure 8.1 shows how our new model and implementation can
detect con�dentiality violations by untrusted code interpreted by a Web browser. Web browsers
were initially simple applications displaying HTML content to the �nal user, but those have evolved
into complex applications running JavaScript and other interpreted languages on the client machine,
inevitably exposing user data to a number of real threats. In this scenario, a client is running
a modi�ed Linux kernel with our reference monitor, including the network extension that we
presented in Chapter 5.2. The client visits a malicious web page using Mozilla Firefox 3.5 and
the Java runtime environment plugin (JRE) version 6 update 10. This version is subject to the
�Java calendar deserialization� vulnerability (CVE 2008-5353) that may lead to the execution of
arbitrary code by an attacker. The client executes malicious Java code exploiting this issue and
embedding a payload that allows the attacker to get a remote shell on the machine.

Assume the folder/home/alice/confidential/ contains 64 con�dential �les. We labeled these
�les as being con�dential, and assigned an information tag containing a unique identi�er between 1
and 64 to each of them. The information tag of these �les is a set containing one unique identi�er,
e.g., {1}. This experiment is similar to the use case �all sensitive data must stay local� introduced
in Chapter 5.3.1. We de�ned an empty network policy tag as follows :

Pnet “ ttuu “ K

In this con�guration, any application sending any of the labelled �les to any remote host
is a security policy violation and triggers an alert. Now we visited a crafted web page
http://www.malicious-host/malicious-page.html embedding a malicious Java applet containing an
attack against the previously mentioned vulnerability. This malicious page causes Mozilla Firefox

107

108 CHAPTER 8. EXPERIMENTS

itag

ptag

Private file

Read

Write

f1

Firefox

Socket

Network policy

Figure 8.1: Monitoring outgoing information

to execute the Java virtual machine (JVM) in a separated process, which in turn interprets the
Java code containing a remote shell allowing the attacker to connect to the local machine. As the
attacker accesses labelled �les of the local �lesystem, the information tag of the process running
Java is updated with information tags of the �les it reads. At the moment when it sends infor-
mation through a socket, our kernel reference monitor considers that the data being sent contains
information from the �les it previously read, and proceeds to a lookup throughout the network
policy tag to ensure this behavior is allowed by the user. For every illegal attempt to illegally
send information by the Java process, we were warned by the reference monitor with the following
message:
[BLARE_POLICY_VIOLATION] Illegal information sent to socket by

process [PID] running java

8.2 Attack on a distributed web service

WEB SERVER DATABASE

TRUSTED CLIENT UNTRUSTED HOST

UNTRUSTED

TRUSTED

Figure 8.2: group of trusted hosts

The following describes an experiment in a distributed system. We have set up an attack
scenario targeting a group of trusted hosts running our modi�ed kernel. This group is composed of
three hosts: a web server, a database server and a client, all three connected to the same Virtual
Private Network (VPN). The web server (Apache) hosts two websites, isolated in two virtual hosts

8.2. ATTACK ON A DISTRIBUTED WEB SERVICE 109

www1 and www2 (Apache vhosts1.) The database server (PostgreSQL) hosts two databases, storing
data of the two virtual hosts: db1 stores information related to www1, and db2 stores information
related to www2. Connections to www1 are allowed from the outside. Connections to the other
hosts of the VPN and to www2 are forbidden from the outside. This policy is enforced by classical
�rewall rules. The following shows how it is possible with our intrusion detection model to detect
illegal information �ows between hosts caused by an intrusion. We used Debian Squeeze virtual
guests running as KVM [29] instances. The two websites run Wordpress. The website www1 runs
the e-commerce plugin Foxypress2. We used the version 0.4.2.2 of this plugin, which is vulnerable
to an upload exploit (EDB-ID: 18991)3. This vulnerability allows for arbitrary �le upload and
remote code execution.

8.2.1 Scenario

As shown on Figure 8.3, we labeled all the �les of www1 and www2 as well as the PHP5 dynamic
library (used by apache to interpret PHP code) with distinct information tags on the web server.
On the database server, we labeled the PostgreSQL binary as well as two tables on each database.
We could label information at the table level by using the option default_with_oids = on in
PostgreSQL's con�guration �le. Object identi�ers (OIDs) are used in PostgreSQL as primary keys
for system tables, as well as user-created tables when using this option. Each table in PostgreSQL
is mapped to a �le named after its OID. Thus, we could label the �les related to the supervised
tables.

Host Files Itag Execution

Web server www1 i1 x1

www2 i2 x2

libphp5.so iphp xphp

apache2 ia xa

Database server db1: wp_users iu1 xu1

db1: wp_posts ip1 xp1

db2: wp_users iu2 xu2

db2: wp_posts ip2 xp2

postgres ipg xpg

Figure 8.3: Labels on �les

By default, both Apache and PostgreSQL create a new process for each connection. Recall
the Run function from De�nition 3.4.3. When a process executes a binary �le (or the content of
a dynamic library) labeled with ik, its information tag is set to xk “ Runpikq. Therefore, both
Apache and PostgreSQL processes always have their information tags initialized to respectively
xa “ Runpiaq and xpg “ Runpipgq. We used the following policy tag for both Apache and Post-
greSQL processes: P “ ttxa, xpg, xphp, i1, iu1

, ip1
utxa, xpg, xphp, i2, iu2

, ip2
uu. Such a policy makes

it illegal for any process running Apache or PostgreSQL to hold information from both websites
simultaneously, or to run any code other than Apache and PosgreSQL binaries and libphp5. When
an external visitor visits www1, the web server creates a new process for this connection and reads
�les labeled with i1. It also maps libphp5.so in executable memory pages which taints the pro-
cess with xphp. It queries the database server. The database server forks a new process and reads
information from db1. At this stage, the information tag of the PostgreSQL process is tainted
with S1 “ txa, xpg, xphp, i1, iu1 , ip1u. After the PostgreSQL process has responded to the Apache

1From http://www.apache.org: the term Virtual Host refers to the practice of running more than one web site
on a single machine.

2www.foxy-press.com
3http://www.exploit-db.com/exploits/19100/

110 CHAPTER 8. EXPERIMENTS

process, both processes have equal information tags4, as each process labels network packets with
a CIPSO option containing its information tag (in a bitmap, as described in Chapter 7). When
an internal host connects to the internal virtual host www2, similar interactions happen between
the hosts, and the information tags of both processes handling the connection are tainted with
S2 “ txa, xpg, xphp, i2, iu2

, ip2
u. In both cases, information �ows are legal, and so no alert is raised,

because information tags are subsets of the policy tags in both containers: S1 Ď P ^ S2 Ď P .

8.2.2 Attack

The following attack leaks information from the private web site www2 located on the intranet.
The attacker runs the upload exploit on the Foxypress plugin on www1 and injects a malicious
PHP �le on the web server. We used Metasploit5 to run the attack. After injecting the �le, the
running web server process's information tag was equal to S1 “ txa, xpg, xphp, i1, iu1 , ip1u, and so
was the information tag of the malicious PHP �le. From there, any illegal action triggered an alert:

• Executing the malicious PHP �le, which taints6 the process's information tag withRunpS1q “

tx1, xu1 , xp1u is illegal, as RunpS1q Ł P

• Querying the database server to access data from www2, which taints the process's informa-
tion tag with S3 “ txa, xpg, xphp, i1, iu1

, ip1
, iu2

, ip2
u is illegal as well, as S3 Ł P .

Information tags are carried over the network through CIPSO labels, therefore both the web
server and the database server raise an alert in the case of illegal information �ow, as both servers
are a�ected by the attack: data from the database server leaks, and the web server runs arbitrary
code.

8.3 Evaluation of performances

The following is an evaluation of our implementation in terms of performances. In order to assess
the performance overhead of our LSMmodule, we uncompressed a Linux kernel source tree and used
it as a dataset containing 39048 �les, that we individually labeled with a unique information tag.
The machine we used is a Pentium 4 3.0 Ghz with 2.5 GB of RAM. We evaluated the performances
of our kernel by transferring all the �les of our dataset through a SSH tunnel, following the scenario
�all sensitive data must stay local� as presented in Chapter 5.2.

Figure 8.4 compares the CPU idle time when using Linus Torvald's kernel (that we call Vanilla)
and the Blare kernel. As expected, the Vanilla kernel gives lower CPU overhead during the transfer
(higher CPU idle value). Our security framework adds 30% to 40% of extra overhead to the data
transfer.

Figure 8.5 compares the memory overhead of our kernel and makes a comparison with a Vanilla
kernel executing the same �le transfer operation. As KBlare is attaching meta-information to every
system object, the memory consumption remains higher by 30% on average when using our Kernel.

8.3.1 Overall completion time

The overall completion time was 300% longer with our kernel than with the Vanilla kernel. This
limitation is due to a bottleneck at the �lesystem level in our prototype (as described in Chapter 7).
The extended attributes of the �lesystem are used extensively in our implementation with no
optimization. We believe that the overall performances of our system can be improved dramatically
by optimizing the current prototype as follows: rather than updating tags at each �lesystem
operation (i.e. fread and fwrite), we could instead maintain a cache for open �le descriptors,
and synchronize it with the actual �lesystem whenever a call to fclose is performed. An e�cient
cache may be implemented with a binary tree indexed on the inode numbers of each �le.

4At the time of this experiment, we did not discard elements of X when receiving network packets, and the
network policy and the policy of the process were combined into the policy tag of the process. This experiment is
still valid in the current model, with minor changes in the way tags propagate.

5http://www.metasploit.com
6Apache maps PHP �les in executable memory pages (PROT_EXEC), like it does with dynamic libraries.

8.4. DISCUSSION 111

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400

C
P

U
 i
d
le

 [
%

]

Time [s]

SSH data transfer

Vanilla
Blare

Figure 8.4: CPU overhead on SSH transfer

8.4 Discussion

8.4.1 Detection rate

When evaluating an intrusion detection system, a common measure is the rate of false negatives and
false positives. By design, our conservative approach does not allow false negatives7. Our model
of information �ow tainting makes an overestimate of all possible content residing in containers,
and maintains it updated after every information �ow, both at the operating system level and on
the network. Network tra�c, or other forms of datasets, are a common basis for evaluating misuse
IDSes, or anomaly IDSes based on statistical models. As our approach does not rely on network
tra�c analysis, nor on learned pro�les, no such dataset can be used to evaluate our model. In our
case, the dataset is determined by the pool of attacks we run. These attacks are included in the
Metasploit framework as well as in the �Common Vulnerabilities and exposures� (CVE) database8.

In our experiments, we have been able to successfully detect intrusions with no false positives
as long as the system was following a legal behavior. Each time an event involving an illegal
information �ow occurred, all the subsequent information �ows performed by the same process (or
set of processes involved in the attack) in read access were considered illegal, as well as all the
information �ows towards supervised objects in write access (i.e. objects protected by a policy
tag restraining their legal content).

Our model does not rely on a �xed information �ow policy. The policy is manually adjusted
to �t the di�erent requirements of each supervised system. Therefore, the rate of false positives is
highly variable. It depends on the following parameters:

1. The accuracy and consistency of the de�ned information �ow policy.

2. The lifetime of tainted processes (these tend to accumulate more tags with time, leading to
more false positives).

3. The use of IPC (Inter Process Communication).

4. The number of processes or services accessing the same set of �les (including temporary �les)
or common objects.

It is impractical to perform a comprehensive study of the false positive rate in our current work.
However, we can identify the following behavior from our experiments.

7Except in the case of eventual covert channels, which by nature are very di�cult if not impossible to track.
Furthermore, attacks relying on such methods are very uncommon.

8http://cve.mitre.org/

112 CHAPTER 8. EXPERIMENTS

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 0 50 100 150 200 250 300 350 400

M
e
m

o
ry

 u
s
a
g
e
 [
M

B
]

Time [s]

SSH data transfer

Vanilla
Blare

Figure 8.5: Memory overhead on SSH transfer

Situation with low false positive rates

Server-side services and applications often involve multiple processes, where each process handles
one client connection, like in the experiment on a distributed web service previously presented in
Section 8.2. Running the attack on the web server spawns illegal information �aws that we are able
to detect. As both Apache and PostgreSQL fork one process per connection, the number of alerts
reported by our reference monitor after an illegal information �ow occurs is limited by the lifetime
of such processes. Once a connection ends, the related process is killed. When a new connection
occurs, a new process is forked from a �clean� process: the so-called worker process, from which
new processes are forked, does not get tainted by information �ows of its child processes, and
every new connection leads to an untainted process. Furthermore, such server-side applications
handle isolated sets of �les (e.g. Apache works with �les in /var/www where PostgreSQL stores its
database tables in �les located in /var/lib/postgresql), which eases the task of de�ning suitable
information �ow policies.

Situations with high false positive rates

On the contrary, desktop applications often involve buses such as DBUS, graphical environments,
and other long term processes, staying active until the current user closes his or her session. De�ning
a suitable information �ow policy in such a situation is more complex. Furthermore, by computing
an overestimate of possible information �ows, our reference monitor lacks accuracy in this context.

Recall the experiment from Section 8.1. In this scenario, alerts are reported when sensitive data
may have left the system through a network connection. When conducting this experiment, no
false positives occurred until the web browser accessed sensitive information. From this point on,
all subsequent information �ows were considered illegal. This approach is valid for tracking access
to sensitive information which should by no mean leave the system, and where access is performed
by unwanted and/or malicious events.

In other situations, where a �ner analysis inside applications' code is required, our approach
involves a high number of false positives, and lacks accuracy.

8.4.2 Improving accuracy

In this Ph.D., we focused on OS-level mechanisms. Our model and implementation provide a
basis for system-wide intrusion detection based on taint marking. The level of granularity of our
approach in terms of tracking is limited, in our current implementation, by the abstraction of
UNIX systems. Figure 8.6 illustrates our approach. It represents a process with inputs i1, i2, i3

8.5. CONCLUSION 113

and outputs o1, o2, o3. From our level of abstraction, we cannot determine how information �ows
within processes (or applications). Therefore, we compute an overestimate of the possible �ows:
the outputs of the process are considered as function of all the previous inputs, at any time. This
overestimate generates variable amounts of false positives depending on the context, as presented
in the previous section.

Taking this current work as a basis, a solution to dramatically reduce the amount of false
positives is to increase the accuracy of our data �ow analysis. By combining application-level
information �ow tracking techniques with our OS-level reference monitor, it becomes feasible to
�nely observe information �ows within processes, and to supervise multiple applications as well as
their interactions through the operating system in a �ne-grained manner. This aspect is out of the
scope of this Ph.D., and is part of current research in the CIDre team.

Figure 8.6: Information �ows within applications

8.4.3 Usability

This model does not replace access control mechanisms, nor enforce any security policy but instead
helps to ensure that no unwanted behaviour happens with respect to de�ned sets of information
managed by users and applications of multiple hosts. The situation where a web-browser accesses
some personal information is a good example of our goals: where access control mechanisms could
have been used to block this particular access in the �rst place, it would not prevent applications
from indirectly accessing the same information by another channel (shared memory, IPC with
another application etc.). Furthermore, in this example, we focus on the fact that this information
should not leave the system through the network, therefore no alert would be raised when an
application accesses such information but does not send it over.

The main limitation of our OS-level approach is its accuracy, as it computes an over-estimate
of the actual content involved in information �ows. This has a direct impact on the false positives
rate. Work in progress in the CIDre team seeks to address this shortcoming by several means:

1. By �ltering alerts in userspace. For instance any sequence of false positives triggered by the
same event can safely be discarded after the event has been reported.

2. By using our framework in cooperation with language or architecture-level monitors.

3. By instrumenting native applications.

8.5 Conclusion

In this chapter, we presented our experiments, as well as an analysis of the performances and accu-
racy of our intrusion detection model. We have shown that it is suitable for detecting intrusions in
both isolated and distributed systems. The maximum performance penalty that we have measured
was close to 30% in terms of memory overhead, and 30-40% in terms of CPU overhead. Due to
a bottleneck at the �lesystem level in our current implementation, the overall completion time of
our experiments was 300% longer when using our IDS. We believe that this could be dramatically
improved by the mean of optimizations (e.g., using caches). We have identi�ed situations where our

114 CHAPTER 8. EXPERIMENTS

model is suitable for realistic intrusion detection, as well as situations highlighting its shortcomings
in terms of accuracy, leading to high rates of false positives. Solutions exist so as to address the
identi�ed shortcomings, and are considered in current research in the CIDre project team.

Conclusion

In response to the complexity of securing ever evolving information systems, often relying on
distributed services across multiple hosts, we have designed and implemented an information �ow
model using taint marking techniques, in order to detect intrusions at the OS kernel level. Our
approach of anomaly detection is based on the speci�cation of an information �ow policy. By
tracking information �ows between objects such as �les, sockets, pipes, memory mappings etc., as
well as in network packets �owing between hosts, we are able to successfully detect intrusions, both
in isolated hosts and in distributed services composed of multiple hosts (gathered in groups).

We have presented our model of information �ow tracking, specifying a �ne-grained policy at
four di�erent levels: containers of information, users, applications and network. Our reference
monitor was implemented in the Linux kernel, as a Linux Security Module. This model and its
implementation represent our �rst contribution. The validation of the implementation was exper-
imental. For each experiment, the involved aspects in the theoretical model were identi�ed, and
the results were compared to the expected behavior of the system with respect to the theory. Our
new intrusion detection principles have been validated through our experiments. In Chapter 8, we
have practically set up and presented two realistic applications of this approach. A �rst application
followed a scenario involving an attack against con�dentiality, by exploiting a security �aw in a
plugin, inside a web browser. We demonstrated that our model was able to successfully detect
the illegal information �aws spawned by the attack. A second application focused on distributed
services across several hosts. Our reference monitor was successful at detecting attacks against
a frontal web server. Illegal information �aws spawned by the attacked web server, communicat-
ing with remote processes, were also detected at the level of each host composing the distributed
service, and alerts were reported by each reference monitor. The extension of our model and
implementation to distributed systems represents the second contribution of this work.

The performance overhead of our reference monitor reaches 30% in memory consumption, and
30-40% in CPU, in extreme situations involving a high number of distinct taint information. Its
main limitation is an overhead on the completion time of some operations in some cases, reaching
up to 300% in extreme situations. Our current prototype may be further optimized so as to
decrease the involved performance penalty, and we proposed possible tracks for improvement in
Chapter 7.

Our model and its implementation are suitable for the following applications:

• Supervision of users and programs: our model can be used to track applications by attaching
a policy (i.e., a set of policy rules) to their related code (binary programs, scripts, shared
libraries etc.). A policy may also be attached to local users. When a process executes some
code, such a policy is used along with the policy of the current user (if de�ned) to determine
the legal information �ows caused by the resulting processes. Any violation of the policy
triggers an alert. This may be used to protect users' privacy, as well as the integrity of
information.

• Supervision of network communications: a network policy can be used to de�ne the legal in-
teractions between processes (i.e., applications executed by users) of di�erent hosts involving
sets of supervised information.

• Tracking the changes made by viruses: by keeping the origins of all data present in each
container, we can retrieve all the information �ows that were caused by a virus (or any given

115

116 CHAPTER 8. EXPERIMENTS

piece of executable information). This may be used e.g. to and track the modi�cations that
were made in order to perform a rollback of the system to a safe state.

• Detect the presence of an attacker by detecting abnormal behavior of programs, services or
daemons.

• Detect the execution of modi�ed applications and rootkits: as we do not trust code that has
been illegally modi�ed, we can detect malware and rootkits. When the code of an application
or library is altered by a process, we keep tracks of such changes in the information tag of
the modi�ed application �le(s). These meta-data give information about the running code
as well as information hold by the process which altered the �le. Whenever such changes are
illegal, the execution of the new code is illegal too.

The framework that we presented provides a basis for system-wide intrusion detection in dis-
tributed systems and services. The overall accuracy of our model depends on the level of granularity
o�ered by the underlying OS abstractions. Even though we were able to successfully detect intru-
sions with this model, it presents shortcomings in situations where accuracy is required, as shown
in Chapter 8. It is impractical, at the OS level, to �nely observe information �ows within applica-
tions. Therefore, in its current state, our framework is usable in simple situations, but it generates
high rates of false positives in environments where processes communicate with IPC mechanisms.
In order to address these shortcomings, current work in the CIDre team focuses on the cooperation
of our OS-level reference monitor with application-level reference monitors.

Our model may also be further distributed in future work. We proposed a distributed protocol
allowing hosts of a group to exchange security tokens in a peer to peer fashion. While the resolvers
on each host manage information tainting in a fully distributed manner, the speci�cation of the
policy in our current work is done manually on each host of the groups, by a central system
administrator. The speci�cation of the policy could instead be determined independently on each
host in a decentralized way. Such a policy could rely on a peer-to-peer protocol, allowing each
pair of hosts to agree on a common set of rules, regarding legal interactions of their processes with
respect to the data they manage.

Bibliography

[1] T. AbuHmed, A. Mohaisen, and D.H. Nyang. A survey on deep packet inspection for intrusion
detection systems. Arxiv preprint arXiv:0803.0037, 2008.

[2] Ross J. Anderson, Frank Stajano, and Jong-Hyeon Lee. Security policies. Advances in Com-
puters, 55:186�237, 2001.

[3] Stefan Axelsson. Intrusion detection systems: A taxonomy and survey. Technical Report
99-15, Dept. of Computer Engineering, Chalmers University of Technology, March 2000.

[4] D. E. Bell and L. J. LaPadula. Secure computer system: Uni�ed exposition and multics
interpretation. Mtr-2997 (esd-tr-75-306), MITRE Corp., 1976.

[5] Massimo Bernaschi, Emanuele Gabrielli, and Luigi V. Mancini. Remus: a security-enhanced
operating system. ACM Trans. Inf. Syst. Secur., 5:36�61, February 2002.

[6] D. F. C. Bewer and M. J. Nash. The chinese wall security policy. In Proceedings of the IEEE
Symposium on Security and Privacy, 1989.

[7] K. Biba. Integrity considerations for secure computer systems. Technical Report N ESD-TR
76-372, MITRE Co., April 1977.

[8] Je� Bonwick and Sun Microsystems. The slab allocator: An object-caching kernel memory
allocator. In In USENIX Summer, pages 87�98, 1994.

[9] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly & Associates Inc,
2005.

[10] Andrei Broder and Michael Mitzenmacher. Network applications of bloom �lters: A survey.
In Internet Mathematics, pages 636�646, 2002.

[11] Suresh N. Chari and Pau-Chen Cheng. Bluebox: A policy-driven, host-based intrusion detec-
tion system. ACM Trans. Inf. Syst. Secur., 6:173�200, May 2003.

[12] Yi-Ming Chen and Yung-Wei Kao. Information �ow query and veri�cation for security policy
of security-enhanced linux. In Proceedings of IWSEC, pages 389�404, 2006.

[13] Winnie Cheng, Dan R. K. Ports, David Schultz, Victoria Popic, Aaron Blankstein, James
Cowling, Dorothy Curtis, Liuba Shrira, and Barbara Liskov. Abstractions for usable informa-
tion �ow control in aeolus. In Proceedings of the 2012 USENIX conference on Annual Technical
Conference, USENIX ATC'12, pages 12�12, Berkeley, CA, USA, 2012. USENIX Association.

[14] D. D. Clark and D. R. Wilson. A comparison of commercial and military computer security
policies. In Proceedings of the IEEE Symposium on Security and Privacy (SSP'87), pages
184�194. IEEE Society Press, mai 1987.

[15] Secure Computing Corporation. Dtos general system security and assurability assessment
report. Technical report, Secure Computing Corporation, 1997.

[16] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-detection
systems. Computer Networks, 31(8):805�822, 1999.

117

118 BIBLIOGRAPHY

[17] Dorothy E. Denning. A lattice model of secure information �ow. Commun. ACM, 19(5):236�
243, 1976.

[18] Dorothy E. Denning. An Intrusion-Detection Model. IEEE transaction on Software Engineer-
ing, 13(2):222�232, 1987.

[19] Department of Defense. Trusted network interpretation of the DoD TCSEC (red book).
NCSC-TG-005, 1987.

[20] Ulrich Drepper. How to write shared libraries. Technical report, Red Hat, Inc., 2011.

[21] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cli� Frey, David Ziegler, Eddie
Kohler, David Mazières, Frans Kaashoek, and Robert Morris. Labels and event processes in
the asbestos operating system. In SOSP '05: Proceedings of the twentieth ACM symposium
on Operating systems principles, pages 17�30, New York, NY, USA, 2005. ACM.

[22] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick Mc-
Daniel, and Anmol N. Sheth. Taintdroid: an information-�ow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of the 9th USENIX conference on Oper-
ating systems design and implementation, OSDI'10, pages 1�6, 2010.

[23] Simon N. Foley, Stefano Bistarelli, Barry O'Sullivan, John Herbert, and Garret Swart. Mul-
tilevel security and the quality of protection. In Proceedings of First Workshop on Quality of
Protection, page 2006. Springer, 2006.

[24] Pedro Garcia-Teodoro, Jesús E. Díaz-Verdejo, Gabriel Maciá-Fernández, and E. Vázquez.
Anomaly-based network intrusion detection: Techniques, systems and challenges. Computers
& Security, 28(1-2):18�28, 2009.

[25] Carrie Gates and Carol Taylor. Challenging the anomaly detection paradigm: a provocative
discussion. In Proceedings of the 2006 workshop on New security paradigms, NSPW '06, pages
21�29, New York, NY, USA, 2007. ACM.

[26] Laurent Georges, Valérie Viet Triem Tong, and Ludovic Mé. Blare tools: A policy-based
intrusion detection system automatically set by the security policy. In Proceedings of the 12th
International Symposium on Recent Advances in Intrusion Detection (RAID 2009), 2009.

[27] J. Goguen and J. Meseguer. Unwinding and inference control. In IEEE Symposium on Security
and Privacy, 1984.

[28] Irfan Habib. Getting started with the linux intrusion detection system. Linux J., 2006, March
2006.

[29] Irfan Habib. Virtualization with kvm. Linux J., 2008(166), February 2008.

[30] Toshiharu Harada, Takashi Horie, and Kazuo Tanaka. Access policy generation system based
on process execution history. Network Security Forum, 2003.

[31] Christophe Hauser, Frédéric Tronel, Colin Fidge, and Ludovic Mé. Distributed intrusion detec-
tion, an approach based on taint marking. Proceedings of the IEEE International Conference
on Computer Communications (ICC), 2013.

[32] Tronel F. Reid J. Hauser, C. and C. Fidge. A taint marking approach to con�dentiality
violation detection. In C. Pieprzyk, J.and Thomborson, editor, Australasian Information
Security Conference (AISC 2012), volume 125 of CRPIT, pages 83�90, Melbourne, Australia,
2012. ACS.

[33] Alejandro Hernandez and Flemming Nielson. Enforcing mandatory access control in dis-
tributed systems using aspect orientation. In 21st Nordic Workshop on Programming Theory
� NWPT2009, pages 62�64, 2009.

BIBLIOGRAPHY 119

[34] G. Hiet, L. Mé, B. Morin, and V. Viet Triem Tong. Monitoring both os and program level
information �ows to detect intrusions against network servers. In IEEE Workshop on �Moni-
toring, Attack Detection and Mitigation�, 2007.

[35] Kenneth Ingham and Stephanie Forrest. A History and Survey of Network Firewalls. Technical
report, 2002.

[36] Hajime Inoue and Stephanie Forrest. Anomaly intrusion detection in dynamic execution
environments. In Proceedings of the 2002 workshop on New security paradigms, NSPW '02,
pages 52�60, New York, NY, USA, 2002. ACM.

[37] K. Jain and R. Sekar. User-level infrastructure for system call interposition: A platform for
intrusion detection and con�nement. In Network and Distributed Systems Security Symposium,
1999.

[38] Amy L. Herzog Joshua D. Guttman and John D. Ramsdell. Information �ow in operating
systems : Eager formal methods. Workshop on Issues on the Theory of Security (WITS),
2003.

[39] Calvin Ko, Timothy Fraser, Lee Badger, and Douglas Kilpatrick. Detecting and countering
system intrusions using software wrappers. In Proceedings of 9th USENIX Security Symposium
(SEC 2000), August 2000.

[40] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cli�er, M. Frans Kaashoek, Eddie
Kohler, and Robert Morris. Information �ow control for standard os abstractions. In Pro-
ceedings of the 21st Symposium on Operating Systems Principles, Stevenson, WA, October
2007.

[41] Butler W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8:18�24, January 1974.

[42] Leonard J. LaPadula and D. Elliott Bell. Secure computer systems: A mathematical model.
MTR-2547 (ESD-TR-73-278-II) Vol. 2, MITRE Corp., Bedford, may 1973.

[43] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Taylor, S. Je�
Turner, and John F. Farrell. The inevitability of failure: The �awed assumption of security
in modern computing environments. In Proceedings of the 21st National Information Systems
Security Conference, pages 303�314, 1998.

[44] R. Love. Linux Kernel Development. Novell Press. Novell Press, 2005.

[45] Claudio Mazzariello, Roberto Bifulco, and Roberto Canonico. Integrating a network ids into
an open source cloud computing environment. In Information Assurance and Security (IAS),
2010 Sixth International Conference on, pages 265�270. IEEE, 2010.

[46] Jonathan M. McCune, Trent Jaeger, Stefan Berger, Ramón Cáceres, and Reiner Sailer. Sha-
mon: A system for distributed mandatory access control. In Proceedings of ACSAC, pages
23�32, 2006.

[47] Paul E. McKenney and Jonathan Walpole. Introducing technology into the Linux kernel: a
case study. SIGOPS Oper. Syst. Rev., 42(5):4�17, 2008.

[48] K.W. Miller, J. Voas, and G.F. Hurlburt. Byod: Security and privacy considerations. IT
Professional, 14(5):53�55, 2012.

[49] Mark Miller, Ka-Ping Yee, Jonathan Shapiro, and Combex Inc. Capability myths demolished.
Technical report, 2003.

[50] Andrew C. Myers and Barbara Liskov. A decentralized model for information �ow control.
SIGOPS Oper. Syst. Rev., 31(5):129�142, 1997.

[51] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol., 9(4):410�442, 2000.

120 BIBLIOGRAPHY

[52] Pablo Neira-Ayuso, Rafael M. Gasca, and Laurent Lefevre. Communicating between the kernel
and user-space in linux using netlink sockets. Software: Practice and Experience, 40(9):797�
810, 2010.

[53] James Newsome and Dawn Song. Dynamic Taint Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Commodity Software. In Proceedings of the Network
and Distributed System Security Symposium (NDSS 2005), 2005.

[54] Novell/SUSE. Apparmor, application security for linux. Technical report.

[55] Department of Defense. Trusted computer system evaluation criteria (orange book). DoD
5200.28-STD, 1983.

[56] Animesh Patcha and Jung-Min Park. An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Comput. Netw., 51:3448�3470, August 2007.

[57] Vern Paxson. Bro: A system for detecting network intruders in real-time. In Proc. of the 7th
Usenix Security Symposium, pages 31�51, San Antonio, TX, January 1998.

[58] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: an emulator for �ngerprinting
zero-day attacks for advertised honeypots with automatic signature generation. SIGOPS Oper.
Syst. Rev., 40(4):15�27, April 2006.

[59] Martin Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of the
USENIX LISA'99 conference, pages 229�238, Seattle, WA, November 1999.

[60] S. Roschke, Feng Cheng, and C. Meinel. Intrusion detection in the cloud. In Dependable,
Autonomic and Secure Computing, 2009. DASC 09. Eighth IEEE International Conference
on, pages 729�734, 2009.

[61] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett Witchel.
Laminar: practical �ne-grained decentralized information �ow control. In Proceedings of the
2009 ACM SIGPLAN conference on Programming language design and implementation, 2009.

[62] Ravi S. Sandhu. Lattice-based access control models. Computer, 26(11):9�19, 1993.

[63] Casey Schau�er. The simpli�ed mandatory access control kernel. Technical report.

[64] Chris Vance Stephen Smalley. Implementing SELinux as a Linux Security Module. Technical
report, NAI Labs, 2002.

[65] Stéphane Geller, Christophe Hauser, Frédéric Tronel, Valérie Viet Triem Tong. Information
�ow control for intrusion detection derived from mac policy. Proceedings of the IEEE Inter-
national Conference on Computer Communications (ICC), 2011.

[66] Valérie Viet Triem Tong, Andrew Clark, and Ludovic Mé. Specifying and enforcing a �ne-
grained information �ow policy: Model and experiments. In Proceedings of MIST, 2010.

[67] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan, Guilherme Ottoni,
Jason A. Blome, George A. Reis, Manish Vachharajani, and David I. August. Ri�e: An
architectural framework for user-centric information-�ow security. In MICRO 37: Proceedings
of the 37th annual IEEE/ACM International Symposium on Microarchitecture, pages 243�254,
Washington, DC, USA, 2004. IEEE Computer Society.

[68] Giovanni Vigna, William Robertson, and Davide Balzarotti. Testing network-based intru-
sion detection signatures using mutant exploits. In The ACM Conference on Computer and
Communication Security (ACM CCS, pages 21�30, 2004.

[69] David A. Wagner. Janus: an approach for con�nement of untrusted applications. Technical
report, Berkeley, CA, USA, 1999.

[70] Robert Watson and Chris Vance. The trustedbsd mac framework: Extensible kernel access
control for freebsd 5.0. In In USENIX Annual Technical Conference, pages 285�296, 2003.

BIBLIOGRAPHY 121

[71] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-Hartman.
Linux security modules: General security support for the linux kernel. In USENIX Security
Symposium, pages 17�31, 2002.

[72] Ruoyu Wu, Gail-Joon Ahn, Hongxin Hu, and Mukesh Singhal. Information �ow control in
cloud computing. In CollaborateCom'10, pages 1�7, 2010.

[73] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda. Panorama:
capturing system-wide information �ow for malware detection and analysis. In Proceedings of
the 14th ACM conference on Computer and communications security, CCS '07, pages 116�127,
2007.

[74] Mukarram Bin Tariq Yoges Mundada, Anirudh Ramachandran and Nick Feamster. Practical
data-leak prevention for legacy applications in enterprise networks. Technical report, Georgia
Institute of Technology, 2011.

[75] Krzysztof Zaraska. Prelude ids: current state and development perspectives, 2003.

[76] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making infor-
mation �ow explicit in histar. In OSDI '06: Proceedings of the 7th symposium on Operating
systems design and implementation, pages 263�278, Berkeley, CA, USA, 2006. USENIX As-
sociation.

[77] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing distributed systems
with information �ow control. In NSDI'08: Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, pages 293�308, Berkeley, CA, USA, 2008.
USENIX Association.

[78] Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis. Hardware enforce-
ment of application security policies using tagged memory. In Richard Draves and Robbert
van Renesse, editors, Proceedings of OSDI, pages 225�240. USENIX Association.

[79] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Using cqual for static analysis of au-
thorization hook placement. In Proceedings of the 11th USENIX Security Symposium, pages
33�48, Berkeley, CA, USA, 2002. USENIX Association.

[80] Hu Zhengbing, Li Zhitang, and Wu Junqi. A novel network intrusion detection system (nids)
based on signatures search of data mining. In Proceedings of the 1st international conference
on Forensic applications and techniques in telecommunications, information, and multimedia
and workshop, e-Forensics '08, pages 45:1�45:7, 2008.

[81] Jacob Zimmermann, Ludovic Mé, and Christophe Bidan. Introducing reference �ow control
for detecting intrusion symptoms at the os level. In Andreas Wespi, Giovanni Vigna, and
Luca Deri, editors, Proceedings of the 5th International Symposium on Recent Advances in
Intrusion Detection (RAID'2002), volume 2516 of Lecture Notes in Computer Science, pages
292�306. Springer, 2002.

[82] Jacob Zimmermann, Ludovic Mé, and Christophe Bidan. Experimenting with a policy-based
hids based on an information �ow control model. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), December 2003.

[83] Jacob Zimmermann and George Mohay. Distributed intrusion detection in clusters based on
non-interference. In Proceedings of the 2006 Australasian workshops on Grid computing and
e-research - Volume 54, ACSW Frontiers '06, pages 89�95, Darlinghurst, Australia, Australia,
2006. Australian Computer Society, Inc.

122 BIBLIOGRAPHY

Appendix A

System Calls

The following is the list of all system calls on Linux-3.2/x86_64. We analyzed the semantics
of all system calls in order to determine in which cases information �ows may occur between
two or more objects of the operating system. In our implementation, we track information �ows
resulting in a communication between userspace processes. We consider the kernel as trusted (if
the attacker can modify the kernel, he already has full access over the system). Special cases,
where information �ows may occur, potential hidden channels may exist, particular aspects are
highlighted, are numbered in the information �ow column of the table below, and are described
at the end of this section. The system calls that we track in our implementation are marked with
a cross in the Tracked column. A „ symbol indicates that only a partial or indirect tracking is
performed.

Number Name Description Flow Tracked

0 read read from a �le descriptor yes1 X

1 write write to a �le descriptor yes1 X

2 open open and possibly create a �le or
device

no1

3 close close a �le descriptor no

4 stat get �le status no

5 fstat � no

6 lstat � no

7 poll wait for some event on a �le descrip-
tor

no

8 lseek reposition read/write �le o�set no

9 mmap map �les or devices into memory yes

10 mprotect set protection on a region of mem-
ory

yes2 „

11 munmap unmap �les or devices into memory no3 X

12 brk change data segment size no

13 rt_sigaction examine and change a signal action no

14 rt_sigprocmask examine and change blocked signals no

15 rt_sigreturn return from signal handler and
cleanup stack frame

no

16 rt_ioctl manipulates the underlying device
parameters of special �les

no4

123

124 APPENDIX A. SYSTEM CALLS

Number Name Description Flow Tracked

17 pread64 read from from a �le descriptor at
a given o�set

yes1 X

18 pwrite64 write to a �le descriptor at a given
o�set

yes1 X

19 readv read data from multiple bu�ers yes1 X

20 writev write data into multiple bu�ers yes1 X

21 access check real user's permissions for a
�le

no

22 pipe create pipe no1

23 select synchronous I/O multiplexing no

24 sched_yield yield the processor no

25 mremap remap a virtual memory address no5

26 msync synchronize a �le with a memory
map

yes6 „

27 mincore determine whether pages are resi-
dent in memory

no

28 madvise give advice about use of memory no

29 shmget allocates a shared memory segment no7

30 shmat attaches the shared memory seg-
ment identi�ed by shmid to the ad-
dress space of the calling process

yes7 X

31 shmctl shared memory control no

32 dup duplicate a �le descriptor no1

33 dup2 � no1

34 pause wait for signal no

35 nanosleep high-resolution sleep no

36 getitimer get value of an interval timer no

37 alarm set an alarm clock for delivery of a
signal

no

38 setitimer set value of an interval timer no

39 getpid process identi�cation no

40 send�le transfer data between �le descrip-
tors

yes1 X

41 socket create an endpoint for communica-
tion

no8

42 connect initiate a connection on a socket no8

43 accept accept a connection on a socket no8

44 sendto send a message on a socket yes8 X

45 recvfrom receive a message from a socket yes8 X

46 sendmsg send a message on a socket yes8 X

47 recvmsg receive a message from a socket yes8 X

48 shutdown shut down part of a full-duplex con-
nection

no

125

Number Name Description Flow Tracked

49 bind bind a name to a socket no8

50 listen listen for connections on a socket no8

51 getsockname get socket name no

52 getpeername get name of connected peer socket no

53 socketpair create a pair of connected sockets no8

54 setsockopt set options on sockets no

55 getsockopt get options on sockets no

56 clone create a child process yes9 X

57 fork create a child process yes9 X

58 vfork create a child process and block par-
ent

�

59 execve execute program yes10 X

60 exit terminate the calling process no

61 wait4 wait for process to change state,
BSD style

no

62 kill send signal to a process no

63 uname get name and information about
current kernel

no

64 semget get a semaphore set identi�er no

65 semop semaphore operations no

66 semctl semaphore control operations no

67 shmdt detaches a shared memory segment no11

68 msgget get a message queue identi�er no

69 msgsnd send message to a message queue yes12 X

70 msgrcv receive message from a message
queue

yes12 X

71 msgctl message control operations no

72 fcntl manipulate �le descriptor no

73 �ock apply or remove an advisory lock on
an open �le

no

74 fsync synchronize a �le's in-core state
with storage device

no

75 fdatasync � �

76 truncate truncate a �le to a speci�ed length no

77 ftruncate � �

78 getdents get directory entries no

79 getcwd Get current working directory no

80 chdir change working directory no

81 fchdir � �

82 rename change the name or location of a �le no

83 mkdir create a directory no

126 APPENDIX A. SYSTEM CALLS

Number Name Description Flow Tracked

84 rmdir delete a directory no

85 creat open and possibly create a �le or
device

no

86 link make a new name for a �le no

87 unlink delete a name and possibly the �le
it refers to

no

88 symlink make a new name for a �le no

89 readlink read value of a symbolic link no

90 chmod change permissions of a �le no

91 fchmod � �

92 chown change ownership of a �le no

93 fchown � �

94 lchown � �

95 umask set �le mode creation mask no

96 gettimeofday get time no

97 getrlimit get resource limit no

98 getrusage get resource usage no

99 sysinfo returns information on overall sys-
tem statistics

no

100 times get process times no

101 ptrace process trace yes13

102 getuid get user identity no

103 syslog read and/or clear kernel message
ring bu�er; set console_loglevel

no

104 getgid get group identity no

105 setuid set user identity no

106 setgid set group id no

107 geteuid get user identity no

108 getegid get group id no

109 setpgid set process group no

110 getppid get process identi�cation no

111 getpgrp get process group no

112 setsid creates a session and sets the pro-
cess group ID

no

113 setreuid set real and/or e�ective user ID no

114 setregid set real and/or e�ective group ID no

115 getgroups get list of supplementary group IDs no

116 setgroups set � �

117 setresuid set real, e�ective and saved user ID no

118 getresuid get real, e�ective and saved user
IDs

no

127

Number Name Description Flow Tracked

119 setresgid set real, e�ective and saved group
ID

no

120 getresgid get real, e�ective and saved group
ID

no

121 getpgid get process group no

122 setfsuid set user identity used for �le system
checks

no

123 setfsgid set group identity used for �le sys-
tem checks

no

124 getsid get session ID no

125 capget get capabilities of thread(s) no

126 capset set capabilities of thread(s) no

127 rt_sigpending examine pending signals no

128 rt_sigtimedwait synchronously wait for queued sig-
nals

no

129 rt_sigqueueinfo queue a signal and data to a process no14

130 rt_sigsuspend wait for a signal no

131 sigaltstack set and/or get signal stack context

132 utime change �le last access and modi�ca-
tion times

no

133 mknod create a special or ordinary �le no15

134 uselib load shared library yes16 X

135 personality set the process execution domain no

136 ustat get �le system statistics no

137 statfs � �

138 fstatfs � �

139 sysfs get �le system type information no

141 getpriority get program scheduling priority no

141 setpriority set program scheduling priority no

142 sched_setparam set scheduling parameters no

143 sched_getparam get scheduling parameters no

144 sched_setscheduler set scheduling policy/parameters no

145 sched_getscheduler get scheduling policy/parameters no

146 sched_get_priority_max get static priority range no

147 sched_get_priority_min � no

148 sched_rr_get_interval get the SCHED_RR interval for
the named process

no

149 mlock lock memory no

150 munlock unlock memory no

151 mlockall local memory no

152 munlockall unlock memory no

153 vhangup virtually hangup the current tty no

128 APPENDIX A. SYSTEM CALLS

Number Name Description Flow Tracked

154 modify_ldt get or set ldt no

155 pivot_root change the root �le system no

156 _sysctl read/write system parameters no

157 prctl operations on a process no

158 arch_prctl set architecture-speci�c thread
state

no

159 adjtimex tune kernel clock no

160 setrlimit set resource limits no

161 chroot change root directory no

162 sync commit bu�er cache to disk no

163 acct switch process accounting on or o� no

164 settimeofday set time no

165 mount mount a �lesystem no

166 umount2 umount a �le system no

167 swapon start swapping to �le/device yes17

168 swapo� stop swapping to �le/device no

169 reboot reboot or enable/disable Ctrl-Alt-
Del

no

170 sethostname set hostname no

171 setdomainname set domain name no

172 iopl change I/O privilege level no

173 ioperm set port input/output permissions no

174 create_module create a loadable module entry no

175 init_module initialize a loadable module entry yes18

176 delete_module delete a loadable module entry no

177 get_kernel_syms retrieve exported kernel and mod-
ule symbols

no

178 query_module query the kernel for various bits
pertaining to modules

no

179 quotactl manipulate disk quotas no

180 nfsservctl syscall interface to kernel nfs dae-
mon

no

181 getpmsg receive next message from a
STREAMS �le (not implemented)

yes

182 putpmsg send a message on a STREAM (not
implemented)

yes

183 afs_syscall not implemented n/a

184 tuxcall not implemented n/a

185 security not implemented n/a

186 gettid get thread identi�cation no

187 readahead perform �le readahead into page
cache

yes1 X

129

Number Name Description Flow Tracked

188 setxattr set an extended attribute value yes19

189 lsetxattr � �

190 fsetxattr � �

191 getxattr retrieve an extended attribute value yes19

192 lgetxattr � �

193 fgetxattr � �

194 listxattr list extended attribute names no

195 llistxattr � �

196 �istxattr � �

197 removexattr remove an extended attribute no

198 lremovexattr � �

199 fremovexattr � �

200 tkill send a signal to a thread no

201 time get time in seconds no

202 futex Fast Userspace Locking system call no

203 sched_seta�nity set a process's CPU a�nity mask no

204 sched_geta�nity get a process's CPU a�nity mask no

205 set_thread_area Set a Thread Local Storage (TLS)
area

no

206 io_setup create an asynchronous I/O context no

207 io_destroy destroy an asynchronous I/O con-
text

no

208 io_getevents read asynchronous I/O events from
the completion queue

no

209 io_submit submit asynchronous I/O blocks for
processing

no

210 io_cancel cancel an outstanding asyn-
chronous I/O operation

no

211 get_thread_area Get a Thread Local Storage (TLS)
area

no

212 lookup_dcookie return a directory entry's path no

213 epoll_create open an epoll �le descriptor no

214 epoll_ctl_old

215 epoll_wait_old

216 remap_�le_pages create a nonlinear �le mapping no

217 getdents64 get directory entries no

218 set_tid_address set pointer to thread ID no

219 restart_syscall restart a system call no

220 semtimedop semaphore operation no

221 fadvise64 predeclare an access pattern for �le
data

no

222 timer_create create a POSIX per-process timer no

130 APPENDIX A. SYSTEM CALLS

Number Name Description Flow Tracked

223 timer_settime arm/disarm and fetch state of
POSIX per-process timer

no

224 timer_gettime � no

225 timer_getoverrun get overrun count for a POSIX per-
process timer

no

226 timer_delete delete a POSIX per-process timer no

227 clock_settime clock and time functions no

228 clock_gettime � �

229 clock_getres � �

230 clock_nanosleep high-resolution sleep with speci�-
able clock

no

231 exit_group exit all threads in a process no

232 epoll_wait wait for an I/O event on an epoll
�le descriptor

no

233 epoll_ctl control interface for an epoll de-
scriptor

no

234 tgkill send a signal to a thread no

235 utimes change �le last access and modi�ca-
tion times

no

236 vserver not implemented n/a

237 mbind Set memory policy for a memory
range

no

238 set_mempolicy set default NUMA memory policy
for a process and its children

no

239 get_mempolicy Retrieve NUMA memory policy for
a process

no

240 mq_open open a message queue no

241 mq_unlink remove a message queue no

242 mq_timedsend send a message to a message queue yes12 X

243 mq_timedreceive receive a message from a message
queue

yes12 X

244 mq_notify register for noti�cation when a mes-
sage is available

no

245 mq_getsetattr get/set message queue attributes no

246 kexec_load load a new kernel for later execution yes20

247 waitid wait for process to change state no

248 add_key Add a key to the kernel's key man-
agement facility

yes21

249 request_key Request a key from the kernel's key
management facility

yes21

250 keyctl Manipulate the kernel's key man-
agement facility

no

251 ioprio_set set I/O scheduling class and prior-
ity

no

131

Number Name Description Flow Tracked

252 ioprio_get get I/O scheduling class and prior-
ity

no

253 inotify_init initialize an inotify instance no

254 inotify_add_watch add a watch to an initialized inotify
instance

no

255 inotify_rm_watch remove an existing watch from an
inotify instance

no

256 migrate_pages move all pages in a process to an-
other set of nodes

no

257 openat open a �le relative to a directory �le
descriptor

no

258 mkdirat create a directory relative to a di-
rectory �le descriptor

no

259 mknodat create a special or ordinary �le rel-
ative to a directory �le descriptor

no

260 fchownat change ownership of a �le relative
to a directory �le descriptor

no

261 futimesat change timestamps of a �le relative
to a directory �le descriptor

no

262 newfstatat get �le status relative to a directory
�le descriptor

no

263 unlinkat remove a directory entry relative to
a directory �le descriptor

no

264 renameat rename a �le relative to directory
�le descriptors

no

265 linkat create a �le link relative to direc-
tory �le descriptors

no

266 symlinkat create a symbolic link relative to a
directory �le descriptor

no

267 readlinkat read value of a symbolic link rela-
tive to a directory �le descriptor

no

268 fchmodat change permissions of a �le relative
to a directory �le descriptor

no

269 faccessat check user's permissions of a �le rel-
ative to a directory �le descriptor

no

270 pselect6 synchronous I/O multiplexing no

271 ppoll wait for some event on a �le descrip-
tor

no

272 unshare disassociate parts of the process ex-
ecution context

no

273 set_robust_list get/set the list of robust futexes no

274 get_robust_list � �

275 splice splice data to/from a pipe yes22

276 tee duplicating pipe content yes22

277 sync_�le_range sync a �le segment with disk no

278 vmsplice splice user pages into a pipe yes22

132 APPENDIX A. SYSTEM CALLS

Number Name Description Flow Tracked

279 move_pages move individual pages of a process
to another node

no5

280 utimensat change �le timestamps with
nanosecond precision

no

281 epoll_pwait wait for an I/O event on an epoll
�le descriptor

no

282 signalfd create a �le descriptor for accepting
signals

283 timerfd_create timers that notify via �le descrip-
tors

no

284 eventfd create a �le descriptor for event no-
ti�cation

yes23

285 fallocate manipulate �le space no

286 timerfd_settime timers that notify via �le descrip-
tors

yes24

287 timerfd_gettime � �

288 accept4 accept a connection on a socket no

289 signalfd4 create a �le descriptor for accepting
signals

no

290 eventfd2 create a �le descriptor for event no-
ti�cation

no

291 epoll_create1 open an epoll �le descriptor no

292 dup3 duplicate a �le descriptor no

293 pipe2 create pipe no

294 inotify_init1 initialize an inotify instance no

295 preadv read or write data into multiple
bu�ers

yes1 X

296 pwritev � �

297 rt_tgsigqueueinfo queue a signal and data yes14

298 perf_event_open set up performance monitoring no

299 recvmmsg receive a message from a socket yes8 X

300 fanotify_init initializes the fanotify subsystem no

301 fanotify_mark Management of noti�cation events no

302 prlimit64 get and set a process resource limits no

303 name_to_handle_at convert name to handle no

304 open_by_handle_at Open the �le handle no

305 clock_adjtime posix clock operation no

306 syncfs commit bu�er cache to disk no

307 sendmmsg send a message on a socket yes8 X

308 setns reassociate thread with a names-
pace

no

309 getcpu determine CPU and NUMA node
on which the calling thread is run-
ning

no

A.1. SPECIAL CASES 133

Number Name Description Flow Tracked

310 process_vm_readv transfer data between process ad-
dress spaces

yes25

311 process_vm_writev � �

A.1 Special cases

1. read, write, open, pread64, pwrite64, readv, writev, sendfile, pipe, dup,

dup2, readahead: we do not directly track all these calls, but instead, we track calls to
read, write, from/towards the underlying �le descriptor or inode, were actual information
�ows occur.

2. mprotect: even though mprotect does not directly cause information �ows, it changes the
protection mode of memory pages. In cases where shared memory mappings exist with other
processes (attached via mmap1 with the MAP_SHARED �ag), it may a�ect the way information
�ows occur. As stated in the manpage of mprotect: �On Linux it is always permissible to
call mprotect() on any address in a process's address space (except for the kernel vsyscall
area). In particular it can be used to change existing code mappings to be writable�. For this
reason, we need to hook calls to mprotect as well.

3. munmap: as stated in the system calls table, this system call does not cause any information
�ow, however it helps us re�ne our analysis. When a process shares a memory mapping with
another process, there is no way to know which information is swapped between the two,
therefore we compute an overestimate of the possible information �ows: all information read
by one process having write access to the memory region is assumed to be read by the other
processes having read access to it. A call to munmap tells us when to stop tracking the caller
process (w.r.t a given memory mapping). Tracking munmap is done by a custom added hook,
it is not part of LSM.

4. rt_ioctl: this system call manipulates the underlying device parameters of special �les. This
is commonly used in drivers, for instance, and information may usually be transfered towards
a particular device. The last argument of this system call is an untyped pointer to memory,
and in some situations, this may possibly lead to information �ows between objects of the
operating system that we track. However, this case is not handled in our implementation at
the moment due to the underlying complexity of hardware drivers. We think reasonable to
consider such a case as a hidden channel.

5. mremap, move_pages: the pages remain accessible by the same process through its own
address space, therefore there is no communication with other processes.

6. msync: an information �ow occurs, as the corresponding memory mapping is synchronized
with its underlying �le. However, we track information �ows at the level of shmat and shmdt,
and we consider that the mappings are always synchronized (this is an overestimate).

7. shmat,shmget: we do not directly track the creation of memory segments by processes with
shmget, but rather when processes actually attach or detach them to and from their address
space, with shmat and shmdt.

8. socket, connect, accept, sendto, recvfrom, sendmsg, recvmsg, bind, listen,

socketpair: we do not directly track all these calls, but instead, we track calls to sendmsg

and recvmsg, were actual information �ows occur.

9. clone, fork:

1POSIX says that the behavior of mprotect() is unspeci�ed if it is applied to a region of memory that was not
obtained via mmap(2)

134 APPENDIX A. SYSTEM CALLS

• clone is mostly used to create threads within one process's address space. If called with
CLONE_VM or CLONE_THREAD �ags, the memory space of the parent is shared with the
child.

• fork is a glibc wrapper, it invokes clone with the corresponding �ags.

10. execve: execute a program. This is tracked in our implementation.

11. shmdt: this system call does not cause any information �ow. However, as with munmap,
we need to keep tracks of processes detaching memory segments, in order to stop tracking
information �ows from and towards to the detached memory segment.

12. msgsnd, msgrcv, mq_timedsend, mq_timedreceive: send/receive a message from message
queue. This is tracked by our implementation.

13. ptrace: information �ows are involved when a process is traced: the caller may ac-
cess information from the child, and communicate information towards the child. Trac-
ing processes as well as accessing sensitive information in /proc is tracked by LSM (hooks
security_ptrace_access_check and security_ptrace_traceme). We do not track calls
to ptrace in our current implementation.

14. rt_sigqueueinfo: this system call provides the low-level interface to send a signal plus data
to a process or thread. We consider it as a hidden channel, as the main purpose of this
interface is signal handling. The receiver of the signal can obtain the accompanying data
by establishing a signal handler with the sigaction(2) SA_SIGINFO �ag. We do not track
this in our current implementation. This could be tracked by adding a hook on calls to
sigaction.

15. mknod: �le is created empty, therefore there is no information �ow.

16. uselib: we do not directly track these calls, but we track the underlying calls to mmap when
mapping the shared library into memory.

17. swapon: starts swapping to �le/device. Even though swapping involve information �ows, we
do not track access to the swap area, as is impractical to do so (because swapping is managed
by the kernel, and we do not hook kernel code, that we consider as trusted). Accessing the
swap area from userspace is only allowed to the system administrator. Future versions of
our implementation may restrict access to the swap area from userspace (even to the system
administrator).

18. init_module: loads an ELF binary into kernel space. This system call requires privileges,
and is not tracked by our implementation as it modi�es the kernel.

19. setxattr, lsetxattr, fsetxattr, getxattr, lgetxattr, fsetxattr: get/set �le ex-
tended attributes. An information �ow occurs and may be used to exchange infor-
mation between userspace processes. We do not track it in our current implementa-
tion, however this is achievable by using LSM hooks (security_inode_setxattr and
security_inode_getxattr). It will be implemented in future releases.

20. kexec_load: this is used to load a new kernel at runtime (live booting of a new kernel over
the currently running kernel). We do not track such a low-level mechanism: it would be
required to �ag portions of the memory that are not overwritten by the new kernel.

21. add_key, request_key: access kernel's key management facility. This is used e.g. to mount
remote �lesystem which require authentication or a key to enable access. It is possible to use
it in a diverted way to establish communication between userspace processes. It is untracked
in our current implementation.

22. splice, tee, vmsplice: move data between �le descriptors without copying between
userspace and kernelspace � copy standard output to �les and standard output � move user
pages into a pipe. Information �ows occur between userspace and kernelspace.

A.1. SPECIAL CASES 135

23. eventfd: can be used by userspace applications as a wait/notify mechanism. Possible hidden
channels may be implemented with it. Untracked in our implementation.

24. timerfs_settime, timerfd_gettime: those operate on a timer delivering noti�cations via
a �le descriptor. These may be used as hidden channels. Untracked in our implementation.

25. process_vm_readv, process_vm_writev: transfer data between the address space of two
processes (a local process and a remote process). The data is moved directly, without passing
through kernel space.

	Introduction
	I Research Context
	Background and Related Work
	Traditional security mechanisms
	Firewalls
	Access control
	Limitations of access control

	Information flow control
	Multi Level Security
	Decentralized models

	Related work
	VTT model
	Panorama
	Taintcheck
	Argos
	Taintdroid
	Laminar
	Pedigree
	Aeolus
	DStar
	Comparison of related work

	Intrusion detection
	Host-based and network-based IDS
	Anomaly detection and misuse detection
	Policy-based IDSes
	Distributed IDSes

	Information Flow Models
	VTT model
	Policy
	Dynamic aspect
	Lattice

	Comparison with lattice based models
	Chinese walls
	Bell-LaPadula
	Biba
	Clark-Wilson
	DTE
	Myers and Liskov
	Summary of the comparison

	Objectives and requirements for intrusion detection

	II Intrusion Detection at the Host Kernel Level
	Extended Model
	A model based on VTT
	Evading VTT
	Proposed extension

	Data and code distinction
	Types of containers
	Supervision of processes
	Keeping tracks of running code
	Write access
	Execution
	Read access
	Summary of tainting rules

	Extended information flow policy
	Constrained and unconstrained containers
	Persistent policy
	Initialization
	User policy
	Processes

	Legality of information flows
	Initialization of processes

	Lattice
	Derivation from a MAC policy
	AppArmor profiles
	Algorithm
	Examples

	Conclusion

	Implementation
	Overview
	Kernel access control hooks
	Tags
	Granularity

	Data structures
	Practical considerations

	Tags in kernel memory
	Information tags
	Policy tags
	Execute policy tags

	Tags on disk
	Serialization

	Users policy
	On disk
	In memory
	Communication between userspace and kernelspace

	Operations and complexity
	Updates on information tags
	Updates on execute policy tags
	Legality check

	System calls and hooks
	Fork and clone
	Memory mappings
	Files and pipes
	Message queues
	Networking

	III Distributed Intrusion Detection
	Network Extension
	Overview
	Network extension
	Network policy tag
	Legality of network information flows

	Practical use cases
	All sensitive data must stay local
	Sensitive data may be sent over the network only through trusted applications
	Per-application profiles

	Dynamic policy changes
	Conclusion

	Distributed Policy Over Multiple Hosts
	Context
	Host groups
	Network tainting
	Distributed security tokens
	Protocol
	Frequent updates

	Information flow policy
	Users
	Programs
	Persistent containers
	Network packets

	Legality of information flows
	Policy tags

	Conclusion

	Network and Distributed Implementation
	Network policy
	Distributed policy
	CIPSO
	Netlabel
	Internal representation
	Conversion

	Execution contexts
	Socket operations
	Sending messages
	Receiving messages

	Bug and patch
	Future work
	Distributed security token
	Copy on write
	Filesystem bottleneck
	Enforcement mode

	Conclusion

	Experiments
	Data leaks through a web browser
	Attack on a distributed web service
	Scenario
	Attack

	Evaluation of performances
	Overall completion time

	Discussion
	Detection rate
	Improving accuracy
	Usability

	Conclusion

	Conclusion
	Bibliography
	Appendix System Calls
	Special cases

