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Gravity is one of the most beautiful theories of modern physics. It is based on
an elegant mathematical structure-the differential geometry of curved spacetime-
and supported by all available experimental tests. Gravity has a special status, as
it is intimately connected with the geometry of space and time. The basic idea
in Einstein’s formulation of gravity-General Relativity (GR)- is that gravity is (a
manifestation of the curvature of the) geometry of spacetime.

The spacetime has no a priori fixed shape and it is dynamical. The structure
of the spacetime is governed by the local distribution of the matter that it contains
and the motion of the matter depends on the curvature of the spacetime.

The theory is based on two principles, the first one is that the physics remains
unaltered under a general coordinate transformation (diffeomorphisms). The second
principle, known as the (Einstein) equivalence principle, generalizes the accurately
experimentally verified equality between the gravitational and inertial masses. It can
be stated in many forms, one of them is the following: Local gravitational effects can

be got rid of by choosing an inertial frame. The dynamics of the theory is governed
by the Einstein equation, which is a set of coupled partial differential equations of
the metric of the spacetime. The metric is a mathematical object ( a tensor) that
tells us how to measure distances on the spacetime. Theses differential equations
are highly nonlinear which make them almost impossible to solve by direct methods.
The only way to find exact solutions of these equations is making some assumptions
about the form of the metric (ansatzë).

An outstanding problem in modern physics is reconciling Quantum Field (QFT)
Theory with General Relativity. So far all attempts to quantize gravity failed.

The central objects in GR (and the main purpose of the present thesis), and
which may shed light on the problem of Quantum Gravity are Black Holes. They
are the physical systems where gravity, statistical physics and quantum mechanics
meet. The idea of the existence of such objects traces back to 1789, when reverend
John Michell and later in 1795 (but independently) Simon Pierre de La Place. Both
predicted the existence of stars that are so massive that even light can not escape
from them. Their prediction was based on the corpuscular nature of light, that
it is, the idea of “dark stars” was abandoned after the Young two-slit interference
experiment showing that light has wavy nature in 1801.

The idea was left dormant for many years until the advent of the General Rela-
tivity by Albert Einstein in 1916. Few months after the publication of the final form
of Einstein’s theory, a German mathematician and astronomer, Karl Schwarzschild
succeeded to find the first exact solution of the complicated Einstein equation. He
assumed a spherically symmetric shape of the spacetime. The Schwarzschild solu-
tion shows a “singularity” at the very same radius of the Michell and Laplace “dark
stars”. It was realized that at this radius, the light undergoes an infinite redshift in
such a way that it never reaches an outside observer. On the other side it was shown
the geometry at Schwarzschild radius is perfectly smooth. An observer crossing this
area will notice nothing special. The aforementioned singularity turns to be only an
artifact of the coordinate system.

Astrophysical black holes may form at the final stage of stellar evolution, the
stars of masses of few solar masses may collapse into black holes.

Currently about 20 binary stars are known to exist in our milky way. They are
believed to contain black holes of few solar masses. Supermassive black holes are
believed to exist at the centers of galaxies including ours.

The purpose of this thesis is not discuss astrophysical black holes but to consider
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black holes from the theoretical point of view. It is believed that black hole physics
are may shed light on one of the fundamental problems of contemporary physics,
namely to find new ideas to reconcile dynamical spacetime geometry and quantum
mechanics. Though the final goal is still far from reach, considerable progress on
some aspects of black holes has been made during the last couple of decades.

The most interesting feature of black holes form the theoretical perspective is
that they are thermodynamical objects.

Many of the black hole problems may be addressed in (2 + 1)-dimensions.
A more ambitious theory is string theory. This theory claims providing a unified

description of all interactions including quantum gravity. The basic idea of string
theory is to replace point elementary particles of the conventional Quantum Field
Theory by one dimensional extended object called strings of which the vibrational
modes correspond to the elementary particles. The spectrum of the string contain a
massless spin-2 particle which can be identified with the graviton (the mediator of
the gravitational interactions). The theory is free of tachyons (particles with speed
greater than light’s speed) if one introduces a new symmetry, called supersymme-
try (SUSY), between bosons (integer spin particles) and fermions (half-integer spin
particles). String theory with such a symmetry is known as superstring theory.
The consistency of this theory requires the dimension of spacetime to be ten. The
problem of superstring theory is that it is not unique, there are five distinct string
theories. The main success of the “second string theory” is the discovery that all
the five string theories are related to each other. Moreover all these theories arise as
different limits of a unique theory coined “M-theory”. This theory is not yet known.
However, it is approximated by eleven dimensional gravity at low energies. Super-
gravity is the local version of supersymmetry. Superstring theory is not a theory of
strings only but it contains other extended objects called “D-branes”. A D-brane is
a hypersurface where open strings are attached. Yang-Mills fields are thought of to
live on D-brane. A breakthrough was provided by the study of the nonperturbative
aspects of D-branes. That is the microscopic derivation of the black hole entropy.
Using a special case in five dimensions, Strominger and Vafa [?] succeed to count
the microstates associated with D-branes (which are linked to black holes). The
extremal charged black holes which solve low energy limit supergravity.
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This Thesis

The thesis is divided into two loosely connected parts: the first one is concerned
with three dimensional Topologically massive gravity and the other is devoted to
generating solutions of black objects within five minimal dimensional supergravity
theory.

The First Part

The first chapter is meant to introduce a few selected issues about three dimensional
gravity and defining Topologically Massive Gravity (TMG).

The second chapter is aimed to first describe in some details the formalism based
on dimensional reduction of (2+ 1)-dimensional gravity to (1+ 0)-dimensions. This
formalism is used to construct a solution describing a black hole family in TMG
with cosmological constant.

The third chapter constitutes the core of the first part. After introducing the
method of Abbot-Deser-Tekin for calculating conserved quantities in gravity theo-
ries, we give the detailed calculation of the Killing charges in Topologically Massive
Gravity. Using the formalism presented in the previous chapter, we greatly simplify
the formula of the conserved charges in the case of stationary axially symmetric
spacetimes. The fourth chapter deals with thermodynamics of Topologically Mas-
sive Gravity. The relevant thermodynamical quantities entering in the first law are
computed. Amongst them is the entropy, which is computed using the method of
conical singularities. The different quantities together with the mass and the angu-
lar momentum, computed in the third chapter, all fit nicely in the first law of the
black hole thermodynamics.

The Second Part

The chapter five is devoted to preliminary notions such as nolinear sigma model
and coset manifold. In the sixth chapter we present the dimensionl reduction of
five dimensional minimal supergravity down to (3+0)-dimensions to obtain, after
dualizing Kaluza-Klein gauge vectors to scalars, a nolinear sigma model coupled to
(3+0)-dimensional gravity. The next task is to make manifest the hidden symmetries
of the theory. We show that the the isotropy group of the scalar manifold is the
split real form of the exceptional group G2, then the scalar matrix is given. The
sixth chapter is devoted to the generating technique of black objects. Especially
transforming neutral black hole and neutral black ring into charged ones is presented.
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Part I

GRAVITY IN (2+1) DIMENSIONS





1
(2+1) dimensional gravity in a nutshell

(2 + 1)−dimensional gravity (2 space dimensions and one time dimension)(with or
without cosmological constant) is essentially a gedanken laboratory to study issues
about quantum gravity. This theory provides us with a simpler picture of the more
realistic but complicated (3+1)-dimensional gravity. At first sight, gravity in (2+1)
dimensions looks trivial and may be unattractive. This is mainly due to the lack
of local degrees of freedom and the absence of Newtonian limit. The geometry of
the spacetime is flat outside the source of matter (or has a constant curvature if
one considers a cosmological constant). However, local distribution of matter affects
globally the geometry of the spacetime. For instance, the spacetime around a point
particle is conical with a deficit angle proportional to the particle’s mass.

The most dramatic turn in (2+1)-dimensional gravity, was the discovery of a
solution with almost the usual features of black holes. This solution named BTZ
after Bañados, Teitelboim and Zanelli [2].

One can remedy the problem of absence of degrees of freedom by adding to the
Hilbert-Einstein action an SO(1, 2) gravitational Chern-Simons term. The theory
with such a modification is called Topologically Massive Gravity (TMG). It is a
consistent theory of gravity with a massive graviton having one degree of freedom
[1] .

1.1 The action

(2 + 1)-dimensional gravity (with cosmological constant) is the theory of gravity
described by the Einstein-Hilbert action

I =
1

2κ

∫

M
(R− 2Λ) + Imatter, (1.1)

in one dimension of time and two dimensions of space. As usual the integration is
hold on the manifold M equipped with a metricg, R is the scalar curvature, Λ is the
cosmological constant, and κ ≡ 8πG whit G is the Newton constant. Imatter is the
matter action.
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The resulting Euler-Lagrange equations are the Einstein equations

Gµν ≡ κTµν , (1.2)

where
Gµν ≡ Gµν + Λgµν ,

Gµνbeing the Einstein tensor defined by

Gµν ≡ Rµν −
1

2
Rgµν .

Even this theory has the very same form of the (3 + 1)−dimensional General
Relativity, it is very peculiar. Indeed this theory does not contain any dynamical
degrees of freedom.

1.2 The Peculiarity of (2 + 1)-dimensional General

Relativity

In any dimension the local geometric information about the spacetime is encoded in
the Riemann tensor. The latter can be decomposed into two parts as

R ρσ
µν = g

[ρ
[µ S

σ]
ν] + C ρσ

µν

where the tensor Sµν

Sµν ≡
4

D − 1
Rµν −

4

(D − 1)(D − 2)
Rgµν ,

is a combination of the traces of the Riemann tensor. Cµνρσis a traceless and con-
forrmally invariant tensor (vanishes if the metric is a factor times the flat metric).
This tensor is called Weyl tensor. The ‘true’ gravitational degrees of freedom are
contained in the Weyl. While the Ricci tensor and scalar curvature can be identified
with the matter degrees of freedom, as it is suggests by Einstein equations. The
peculiarity of (2 + 1)−dimensional general relativity comes from the fact that the
Riemann tensor has the same number of the independent entries as the Ricci ten-
sor implying that Weyl tensor vanishes identically in three dimensions. This has
dramatic consequences: every solution of (1.2) with Λ = 0 is flat, Λ < 0 is Ads and
Λ > 0 is dS.

This means that the curvature is concentrated at the location of the matter. In
other words there is no propagating degrees of freedom, no gravitational waves at
the classical level and no graviton at the quantum level.

1.2.1 Counting the degrees of freedom

The absence of the degrees of freedom can be further checked on by a naive counting.
The dynamical variables of general relativity in D−dimensions

are constant time hypersurface metric and its time derivative. The phase space
of the theory is then 2× 1

2
D(D−1), but there are D of the Einstein equations which
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are not dynamical but rather constraints, besides, we have D gauge freedom. We
are left then with

2× 1

2
D(D − 1)−D −D = 2× 1

2
D(D − 3)

In conclusion there are 1
2
D(D − 3) degrees of freedom per point. In D = 4, on gets

the two polarizations of the gravitons, but in D = 3 there are no degrees of freedom.

1.2.2 The Newtonian limit

The (2+ 1)−dimensional gravity has no Newtonian limit. In the weak field approx-
imation of d > 2 dimensional GR

gµν = ηµν + hµν ,

Einstein equations read (we drop the cosmological constant for the time being)

□hµν = 2κTµν

one recovers the Newtonian limit (namely Poisson’s law) ∇2ϕ = 4πGρ by the iden-
tifications h00 = ϕ and T00 = 4πGρ. The geodesic equation

d2xi

dt2
+ 2

D − 3

D − 2
∂iϕ = 0

Obviously for D = 3, a test particle does feel any interaction.

1.3 The gravitational field of a point mass in (2+1)-

dimensions

We will show that spacetime is flat outside the matter source. The mass is reflected
in an angle deficit in the space and the spin has the effect of rendering the time
coordinate helical.

1.3.1 Static solution

Let us consider a spinless point particle of mass M at rest at rest of the coordinates
system. The energy-momentum tensor is given by

√

|g|T 00 = −Mδ(2)(x), T 0i = T ij = 0

We assume the ansatz for the metric

gij = eϕ(x), gi0 = 0, g00 = −N2(x).

The equations of motion be reduce to

N(x) = cons tan t,

which can be set to N(x) = 1 by rescaling the time, and

∇2ϕ(x) = −2κMδ(2)(x).
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This is the Green’s function in two dimensions. Its solution is

ϕ(x) = −κ
π
M ln ∥x∥ .

The line element is given then by

ds2 = −dt2 + ∥x∥2(α−1) dx2, α ≡ 1− κ

2π
M,

Let us focus on the space line

dl2 = ∥x∥2(α−1) dx2

= ∥x∥2(α−1) (d ∥x∥2 + ∥x∥2 dφ2)

If we make the change of variables

r =
∥x∥α
α

and ϕ = αφ,

we obtain the line element of flat space in usual polar coordinates

dl2 = dr2 + r2dϕ2,

however the range of the angular variable is unusual, viz . 0 ≤ ϕ ≤ 2πα. Which
means that a wedge of angle 2π(1− α) is cut out from the flat space and the edges
are identified. This defines a cone.

1.3.2 Spinning point mass

We return now to the spinning point particle with angular momentum J The energy-
momentum tensor is given by

√

|g|T 00 = −Mδ(2)(x), T 0i = 0
√

|g|T ij = Jεij∂jδ
(2)(x)

The line element is given then by

ds2 = −(dt− κ

π
Jdϕ)2 + dr2 + r2dϕ2,

If we define a new time τ
τ = t− κ

π
Jϕ, (3.3)

The line element becomes that of a flat conical spacetime

ds2 = −dτ 2 + dr2 + r2dϕ2,

nevertheless, the transformation (3.3)is singular at x = 0, and the time has a unusual
structure as it is helical. At constant t, the new time τ is identified as

τ ≡ τ − 2κ

α
Jn

since ϕ ≡ ϕ+ 2πnα.
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1.4 BTZ Black Holes

The BTZ black hole[2] is obtained from the universal covering AdS3 metric

ds2 = −
(

r2

ℓ2
− 1

)

dt2 +

(

r2

ℓ2
− 1

)−1

dr2 + r2dφ2 (4.4)

if we identify φ ∼ φ + 2π (this can be done since ∂φ is a Killing vector). (4.4) will
be a black hole. For constant t, r < ℓ are trapped surfaces. We know from section
(1.3.1) that identifying φ ∼ φ+ 2π

√
M has the effect of adding a mass then

ds2 = −
(

r2

ℓ2
−M

)

dt2 +

(

r2

ℓ2
−M

)−1

dr2 + r2dφ2 (4.5)

where the following rescaling was made

φ→ φ√
M
, t→ t√

M
, r →

√
Mr

One can further add an angular momentum too the black hole. This can be done
by the identifications:

t̂ =
r+
ℓ
t− r−φ

φ̂ =
r+
ℓ
φ− r−

ℓ2
t

r̂2 = ℓ2
r2 − r2−
r2+ − r2−

1.5 Topologically Massive Gravity

As it was seen in the previous section, the (2 + 1)−dimensional gravity theory is
trivial due to the fact that the traceless part of the Riemann tensor (namely the
Weyl tensor) vanishes identically in three dimensions. However, there exists a tensor
which can play the role of the Weyl tensor in three dimension, that is the conformal
Cotton tensor

Cµν =
1

√

|g|
ϵ(µαβDαG

ν)
β .

This has the same symmetries as the Einstein tensor, and one can hope to restore
some of the degrees of freedom contained in Weyl tensor if the Cotton tensor is added
to the Einstein tensor in the equation of motion.

Since Cµν is one derivative higher order than Einstein tensor, it must be multi-

plied by a factor
1

µ
of inverse mass dimension. The equation of motion then reads

Eµν ≡ Gµν +
1

µ
Cµν = κTµν . (5.6)

In the same manner that Einstein term can be derived from the Einstein-Hilbert
action (1.1), the Cotton term can be derived from the following Chern-Simons
action

ICS =
1

2

∫

M
d3x

√−gελµνΓrλσ
(

∂µΓ
σ
rν +

2

3
ΓσµτΓ

τ
νr

)

. (5.7)
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This action is called topological term since it does not depend on the metric but
only on the connections.

The theory described with Einstein-Hilbert action plus the Chern-Simons term
is called Topologically massive gravity (TMG) [1] . Adding the topological term
modifies the theory in a non trivial way. This can be seen by the linearized equation
of motion about Minkowski vacuum, this yields

(□+ µ2)ϕ = 0,

with

ϕ ≡ (δij + ∂̂i∂̂j)h
ij, ∂̂i ≡ ∂i(−∇2)−

1

2 .

This indicates the presence of propagating of one massive degree of freedom,
hence the name massive gravity.
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2
TMG Black Holes

TMG black hole solutions was found in [1]. The purpose of this chapter is to extend
this solution to include cosmological constant.

2.1 The sationnary axial symmetric spacetimes in

(2+1)-dimensional gravity:

We consider three dimensional spacetime with two commuting U(1) isometries. The
two U(1) isometries are generated by two non-commuting Killing vectors ∂t and
∂φ. We are interested in axially symmetric solutions, so we will take φ coordinate
periodic i.e φ ∼ φ+ 2π (the orbits of ∂φ are closed).

2.1.1 Dimensional Reduction:

Upon dimensional reduction, along ∂t and ∂φ isometries, from (2 + 1) to (1 + 0),
three dimensional metric can be then cast into the form

ds2 = λab(dx
a +Badρ)(dxb +Bbdρ) +

hρρ(ρ)

|detλ| dρ
2 , a = 1, 2 (1.1)

x0 = t, x1 = φ, x2 = ρ (1.2)

where λ is the 2×2 matrix, hρρ(ρ) is the metric on the ρ direction.Ba is the Kaluza-
Klein gauge vector which can be removed through the coordinate transformations
xa → xa + F a(ρ).we denote by e the einbein in the ρ direction.

The metric (1.1) then takes the form

ds2 = λab(ρ) dx
adxb +

e2(ρ)

|detλ| dρ
2 , (1.3)

2.1.2 Parametrization of the metric

The metric (1.3) is SL(2,R) invariant. This fact leads us to define a useful parametriza-
tion of the matrix λ.
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There is a one-to-one mapping between vectors of R
2,1 (The three dimensional

Minkowski space) and 2×2 real symmetrical matrices (this due to the isomorphism
SL(2,R) ≈ SO(2, 1)).

Let’s first, define the Lorentzian invariant dot product of two vectors A and B
belonging ,

A ·B = ηijA
iBj

and their Lorentz invariant cross product by

(A×B)i = ηijϵjklA
kBl , (1.4)

where ϵijk is the Levi-Cevita symbol, with ϵ012 = +1 (thus ϵ012 = −1).
Notice that some of the usual cross product identities may change due to the

Lorentzian signature of the metric ηij.
For instance, the identity A × (B × C) = C(A · B) − B(A · C) has the

opposite sign of the usual one.
We will define the “light cone ” components A+ and A− and the “transverse”

component AY of a vector A = (A0, A1, A2)

A± ≡ A0 ± A1 , (1.5)

AY ≡ A2 (1.6)

Recall that the SL(2,R) algebra is given by

[

τ i, τ j
]

= ϵijkτk

where the generators are the following Pauli matrices.

τ 0 =

(

0 1
−1 0

)

, τ 1 =

(

0 1
1 0

)

, τ 2 =

(

−1 0
0 1

)

, (1.7)

To each vector V = (V 0, V 1, V 2) ∈ R
1,2 one can associate a real symmetrical

matrix

M = τ 0τττ .V =

(

V + V Y

V Y V −

)

.

and the determinant of M is given by

detM = (V 0)2 − (V 1)2 − (V 2)2

= ηijV
iV j

= −∥V ∥2

Conversely, for every real symmetric 2 × 2 matrix M , there is a vector V ∈ R
1,2

defined by

V = −1

2
Tr(τττ τ 0M)

V 0 =
1

2
(M11 +M22)

V 1 =
1

2
(M11 −M22)

V 2 =M12
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In particular, there is a vector X = (X0, X1, X2) associated with λ such that

λ =

(

X+ Y
Y X−

)

, (1.8)

R2 ≡ |detλ|
= X2 = ηijX

iXj = −T 2 +X2 + Y 2 . (1.9)

It will be useful to associate to each vector A ∈ R
1,2, a traceless matrix noted A or

a such that

a ≡ A ≡τττ · A=

(

−AY −A−

A+ AY

)

(1.10)

Pauli matrices satisfy

τ iτ j = ηij + ϵijkτk , τ iT = τ 0τ iτ 0 = τi . (1.11)

It follows immediately from the above two properties that for any twoR1,2 vectors
A, B one has

AB = A ·B I+A×B , (1.12)

where 1 is the 2×2 unit matrix. Also, the application of (??) to the vector X yields

λ = τ 0x , λ−1 = − 1

R2
xτ 0 . (1.13)

From the background metric (1.3), we compute the Christoffel symbols

Γa2b =
1

2

(

λ−1λ′
)a

b
, Γ2

ab = − 1

2e2
R2 λ′ab , Γ2

22 = −R−1 R′ , (1.14)

where the prime stands for the derivative d/dρ, and the corresponding Ricci tensor

Ra
b = − 1

2e

(

(e−1RR′)′I + (e−1l)′
)a

b

, R2
2 =

1

e

(

− (e−1RR′)′ + e−11

2
X′2

)

,

(1.15)
where l is the matrix associated with the vector

L ≡ X×X′ . (1.16)

The Ricci scalar

R =
1

e

(

− 2(e−1RR′)′ + e−11

2
X′2

)

,

2.1.3 (2+1)-Dimensional Gravity as Particle Mechanics

The parametrization (1.3) reduces the action (1.1) to the form

I =
1

2κ3

∫

d2x

∫

dρL ,

The effective action which governs the dynamics is given by

L = 1
2

[

e−1 X′2 − 4eΛ +
1

µ
e−2X · (X′ ×X′′)

]

(1.17)
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The variable x1and x2are toroidal coordinates, then dynamically irrelevant, they can
be integrated out. The effective action which governs the dynamics is given by

IE =
1

2κ1

∫

dρL , (1.18)

where

1

κ1
≡ V2
κ3

and V2 ≡
∫

T1,1

d2x

To make transparent the interpretation of the Lagrangian (1.17), let us turn off the
Chern-Simons action. The remaining Einstein-Hilbert action describes Lorentz in-

variant mechanics of a particle. The particle’s world-line ( geodesic) is parametrized
by ρ. The “position” of the particle is X(ρ) (the embedding of the world-line into the
an auxiliary Minkowski target space R

1,2 ) . The variable e(ρ) is an einbein on the
world-line. The equations of motion are derived by externalizing the action (1.18)
with respect to X, this yields

X′′ = 0.

The variation of the action with respect to the field e gives the constraint

X′2 + 4e2 Λ = 0. (1.19)

One can solve the previous equation in e and replace back it in the action (1.17),
this can be always done because (1.19) is not dynamical. The result is the more
familiar action

IE = −
∫

dρ
√

|ΛX′2|

= −
√

|Λ|
∫ √

dτ 2,

where τ is the proper time of the particle

dτ 2 = −ηijdX idXj = −X′2dρ2.

To recover the non-relativistic limit, we choose the gauge X0 ≡ T = τ , then

IE = −
√

|Λ|
∫

dT

√

1−−→
U 2,

−→
U ≡











dX

dT

dY

dT











.

In the limit of velocities small with respect to the velocity of light

IE =

∫

dT

(

−
√

|Λ|+ 1

2

√

|Λ|−→U 2 + ...

)

.

One can identify the particle’s mass, being
√

|Λ|.
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2.1.4 TMG as Particle Mechanics

Let us now turn on the Chern-Simons term. Using (1.14), one has

IC−S =
1

2κ1µ

∫

dρ e−2X · (X′ ×X′′) (1.20)

This adds to the free particle action (1.18), an “interaction” potential. The dynamics
is governed now by the sum of the free particle action (1.18) and the interaction
(1.20). As aside note, the full action is second order in ρ, the extremization of such
an action needs either to add boundary conditions on the velocities X′(ρi) = X′(ρf )
or to add of suitable a surface term. The equations of motion is then

X′′ =
1

2µe
[3(X′

×X′′) + 2(X×X′′′)] (1.21)

And the variation with respect to the Lagrange multiplier e yields constraint

X′2 − 2

eµ
X.(X′

×X′′) + 4e−2 Λ = 0. (1.22)

These equations can be integrated once. This can be performed thanks to the con-
served angular momentum J associated to Lorentz transformations on the auxiliary
Minkowski space R

1,2. The conserved angular momentum J is found to be

J = L+ S,

with L ≡ X×X′ and S ≡ − 1

2µe
[X′×(X×X′)− 2X×(X×X′′)]. (1.23)

The angular momentum L is associated the pure Einstein-Hilbert action, while S is
correspond to Chern-Simons term. From (1.21) , one can rewrite(1.23) as

2X2X′′ = 2eµJ− 2eµX×X′ + (X ·X′)X′ − (6e2Λ+
5

2
X′2)X, (1.24)

and the constraint reduces to

(X′2 + 4e2Λ) = − 2

µe
X · (X′ ×X′′) = −4

3
X ·X′′ (1.25)

2.1.5 Solving the equations of motion

In this section we will solve the equations of motion (1.24). We will also assume
that X(ρ) is an analytic function of at ρ = 0, so it can be expanded in Taylor series

X(ρ) =
∞
∑

n=0

1

n!
ρnαααn

The coefficients αααn are given

αααn =
dnX(ρ)

dρn

∣

∣

∣

∣

ρ=0

Let us now expand equation (1.24) order by order in ρ. The order ρ0 term just fixes
the angular momentum vector

J = 2ααα0 ×ααα1 −ααα1(ααα0 ·ααα1)−ααα0(6e
2Λ− 5

2
ααα1) (1.26)
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Let us further make an educated guess and suppose that ααα2 is null and by a suitable
translation of coordinates setting ααα1 ·ααα2 = 0. It follows that

ααα1 ×ααα2 = ±∥ααα1∥ααα0 (1.27)

Expanding the Hamiltonian constraint to order ρ0 gives

ααα1 + 4e2Λ = −2
1

eµ
ααα0 · (ααα1 ×ααα2) = ∓2

1

eµ
∥ααα1∥ααα0 ·ααα2 (1.28)

Comparing to the second form of the Hamiltonian constraint

ααα1 + 4e2Λ = −4

3
ααα0 ·ααα2 (1.29)

we see that either α2
1 =

4

9

µ2

ζ2
and α0 · α2 ̸= 0 or α2

1 = −4e2Λ and α0 · α2 = 0 .

If α2
1 = −4e2Λ then we can show that all higher order terms in the Taylor

expansion vanish, so the solution is just the BTZ black hole. Finally, let us consider

the case where ααα2
1 =

4

9

µ2

ζ2
. In this case the Hamiltonian constraint to the lowest

order reduces to

ααα2 ·ααα0 = −1

3
µ2e−2

(

1 + 9
Λ

µ2

)

(1.30)

Expanding the constraint equation (1.25) to the linear order ρ1 we discover that
ααα0 ·ααα3 = 0 then to ρm−2,ρm−1 and ρm−1

ααα0 ·αααm = ααα1 ·αααm = ααα2 ·αααm = 0 (1.31)

for all m ≥ 3. The equations of motion to order ρ

2ααα2
2ααα3 + 2eµα0 ×ααα2 −

1

2
e2

(

µ2 + 9Λ
)

ααα1.

This can be solved by

ααα3 = 0 and ααα0 ×ααα2 =
1

2
e2

(

µ2 + 9Λ
)

ααα1.

Proceeding in the same manner we find that the equation of motion to the ρ2 is
solved by

ααα4 = 0 and ααα1 ×ααα2 = −2

3
eµααα2.

Now we will see that all the higher order terms in Taylor expansion vanish. Let us
suppose that the cubic and higher terms up to some m vanish

X(ρ) = ααα0 +ααα1ρ+
1

2
ααα2ρ

2 +
∞
∑

k=m

1

k!
ρkαααk (1.32)

Using the Hamiltonian constraints ( 1.25), the equations of motion to the order ρm−2

reduces to
2

(m− 2)!
ααα2

2αααm = 0
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We have just proven by induction that the higher terms vanish Indeed, we have
checked that ααα3 = 0 We have assumed then that the higher terms up to m vanish
and proven that in this case the higher order terms up to m+ 1 must vanish.

The conclusion is

X(ρ) = ααα0 +ααα1ρ+
1

2
ααα2ρ

2 (1.33)

with

ααα2
2 = ααα0 ·ααα1 = ααα1 ·ααα2 = 0, ααα2

1 = ν2, ααα0 ·ααα2 = −z,

ααα0 ×ααα2 =
z

ν
ααα1, ααα1 ×ααα2 = −2

3
eµααα2. (1.34)

with

z ≡ ν2(1− β2)

ν ≡ 2

3
eµ, β2 ≡ 1

4

(

1− 27Λ

µ2

)

(1.35)

2.1.6 Parametrization

We now proceed to the parametrization of the constant vectors subject to the Eqns
(1.34).

Let us start with the null vector ααα2. A generic null vector can always be put in
the form

ααα2 = (a, a cos θ, a sin θ)., (1.36)

with a real and 0 ≤ θ < 2π. From (1.1) and (1.8),
At large ρ, one has

gϕϕ ∼ 1
2
α−
2 ρ

2 = aρ2 sin2 1
2
θ (1.37)

This should be nonnegative (to avoid CTC’s at infinity) thus either 1) θ ̸= 0 and
a > 0, or 2) θ = 0.

In the first case (θ ̸= 0 and a > 0), making the change to a rotating frame
dφ→ dφ̂ = dφ− cot(θ/2)dt transforms ααα2 to

α̂αα2 = (â, â cos θ̂, â sin θ̂)., (1.38)

but with α̂Y = 0t leading to θ̂ = π . â can be set equal to 1 by a scale transformation

ρ→ ρ̂

â
and t→ t̂

â
, thus

ααα2 = (1,−1, 0). (1.39)

In the other case, the magnitude of c can be set equal to 1 but the sign remains
unconstrained

ααα2 = (±1,±1, 0). (1.40)

It was seen in [?] that this choice corresponds either to a non-black hole solution or
to the precedent solution.

Let us note
ααα2

0 ≡ −β2ρ20, (1.41)

The equations (1.34) are fulfilled by the following parametrization:

ααα2 = (1,−1, 0) , ααα1 = (ω,−ω,−ν) , ααα0 =
1

2
(z + u, z − u,−2ωz

ν
) , (1.42)
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where

u ≡ ω2z

ν2
+
ρ0β

2

z
.

It is to notice that in this parametrization, there are only two free parameters,
namely ρ0 and ω.

2.1.7 The Metric

Now we are ready to write the final form of the metric.
With the help of (1.8) and (1.9), the metric (1.3 ) may be put into the form

ds2 = −R2

X−dt
2 +X−

(

dφ+
Y

X−dt

)2

+
e2

R2
dρ2 (1.43)

Using (1.33),(1.41) and (1.42), we have

X+ = ν2
(

1− β2
)

X− ≡ (ρ+ ω)2 + β2

(

ρ20
1− β2

− ω2

)

,

R2 ≡ X2(ρ) = β2(ρ2 − ρ20)

Y = −ν
[

ρ+ ω
(

1− β2
)]

recall that

ν ≡ 2

3
eµ, β2 ≡ 1

4

(

1− 27Λ

µ2

)

By replacing these in (1.43), we get

ds2 = −β2ρ
2 − ρ20
r2

dt2 + r2
[

dφ− ν
ρ+ (1− β2)ω

r2
dt

]2

+
e2

β2

dρ2

ρ2 − ρ20
, (1.44)

with r2 ≡ X−which can be written as

r2 = ρ2 + 2ωρ+ ω2(1− β2) +
β2ρ20
1− β2

, (1.45)

The natural background for the black hole family (1.44) is the extreme black hole
ρ0 = 0 with ω = 0 ,

ds̄2 = −β2 dt2 + ρ2
[

dφ− 1

ρ
dt

]2

+
1

ζ2β2

dρ2

ρ2
. (1.46)

The vector X associated with (1.44) is of the form1 From the wedge products

ααα×ααα = −ααα , ααα×ααα = −zααα , ααα×ααα =
β2ρ2

z
ααα− ααα, (1.47)

1In this section we return to the convention introduced in Eq. (1.3), i.e. background geometrical
quantities are overlined.
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we obtain

L = α ρ2 + 2β zρ− β × γ , (1.48)

S = −α ρ2 − 2β zρ− 1

3
γ +

4

3
zβ × γ , (1.49)

leading to the constant super angular momentum

J =
2β2

3

[

− 1 + 2β2

1− β2
ρ20ααα + γ

]

. (1.50)

2.2 Global Structure

This black hole is regular for all ρ ̸= ±ρ0 (geodisically complete). It may be extended
through the horizons±ρ0

R =
1− 4β2

2
ν2 = 6Λ,

RµνR
µν =

3− 8β2 + 8β4

4
ν4 , (2.1)

There is no curvature singularity (at least for Λ ̸= 0).

However the orbits of m =
∂

∂ϕ
should be nontimelike for the absence of CTC’s

i.e.m2 ≥ 0. Therefore r2 must be nonnegative.
CT’s are absent if

β2 < 1 and ω2 < ρ0
2/(1− β2) . (2.2)

For β2 < 1 and ω2 > ρ20/(1− β2),and ω > 0 ρ ∈ [ρ−, ρ+],(ρ− < ρ+ < −ρ0) where
ρ− and ρ+ are the roots of

r2 = ρ2 + 2ωρ+ ω2(1− β2) +
β2ρ20
1− β2

, (2.3)

r2 = 0

ρ± = −ω ± β

√

ω2 − ρ02

1− β2
. (2.4)
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3
Conserved Quantities for TMG with

arbitrary background

3.1 Preliminaries

The definition of conserved charges is related to the mass-energy tensor, but the
definition of the latter is a subtle subject in general relativity. It might come as
surprise for non-specialist that a covariant mass-energy tensor of gravitational in-
teraction does not exist. To understand this fact one has to return to the basics of
general relativity. The principle of equivalence states that “One can get rid of all the
local physical effects of the gravitational field by jumping in an inertial (free falling)
frame ”. One can then cancel the energy-momentum tensor at every point. The
consequence of this is the non-localizability of the gravitational conserved charges.
Only the global charges of the whole spacetime are conserved. An other approach
is that quasi-local charges..... Since the conserved quantities are in general associ-
ated with the symmetries of the background (vacuum) not with the full theory, one
can look for a pseudotensor (a tensor that is covariant only under a subset of the
general coordinate transformations). Following [3, 4, 5] we will show how to build a
pseudotensor and compute the conserved charges. Consider a gravitation theory( a
theory which invariant under diffeomorphisms), with a generalized Einstein tensor
(GET) Eµν [g] and matter mass-energy tensor Tµν . The equation of motion

Eµν [g] = κTµν (1.1)

where Eµν [g] is a Generalized Einstein Tensor (GET) of a gravitation theory, Tµν
is the matter energy-momentum tensor, and κ = 8πG is the Einstein gravitational
constant.

Given a background metric ḡµνsolving the vacuum field equations

Eµν [ḡ] = 0 . (1.2)

The metric gµν , can be written as

gµν = ḡµν + hµν , (1.3)
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where hµν represents deviation from the background solution (hµν vanishes at infin-
ity, however it is not assumed to be small everywhere).

In the following we will refer by background fields to the fields constructed from
the background metric. The fields built from hµν will be called linearized fields.
Furthermore we will adopt the convention that indices on linearized tensors (together
with background tensors of course) are raised and lowered with ḡ.

By formally expanding Eµν [g] around hµν

Eµν [g] = Eµν [ḡ] +
δEµν
δgαβ

∣

∣

∣

∣

ḡ

hαβ +O(h2) (1.4)

Noting δEµν ≡
δEµν
δgαβ

∣

∣

∣

∣

ḡ

hαβ, the exact Field equations (??) can then be written as

δEµν = κ(Tµν + tµν), (1.5)

where

tµν ≡
1

κ
(Eµν − δEµν)

tµν is interpreted as the energy-momentum pseudotensor of the gravitational field
(generalization of the flat background to an arbitrary (curved) background). The
quantity

τµν ≡ Tµν + tµν

is then the total energy-momentum pseudotensor of matter and gravitation.
We will construct from τµν a locally conserved quantity.
For this, let’s notice first that the linearized GET inherits Bianchi identity from

the exact theory, indeed, we have

DνEµν = D̄ν Ēµν + D̄νδEµν +O(h2)

= D̄ν Ēµν + δΓµµρĒρν + δΓνµρĒµρ + D̄νδEµν +O(h2),

Using Bianchi identity for the exact theory

DνEµν = 0. (1.6)

and that of the background

D̄ν Ēµν = 0. (1.7)

to together with (1.2), one has the linearized Bianchi identity

D̄νδEµν = 0 , (1.8)

This implies that
D̄ντ

µν = 0 (1.9)

with d the background covariant derivative. Now if the background admits an
isometry ξµ, i.e.

D̄(µξν) = 0 (1.10)

then
D̄µ(τ

µνξν) = 0 . (1.11)
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is covariantly conserved (as a consequence of (1.9) and (1.10)). But the quantity
between parenthesis is a vector then

D̄µ(τ
µνξν) =

1
√

|ḡ|
∂µ

(

√

|ḡ|τµνξν
)

= 0 . (1.12)

implying that is
√

|ḡ|τµνξν is locally conserved.
and that the charge

Qµ(ξ) =

∫

M

√

|ḡ|τµνξν (1.13)

is conserved.
In practice, it is not an easy to calculate tµν (in order to get τµν) for specific

physical problems. It is convenient to use the L-H side of (1.5)

τµνξν =
1

κ
δEµνξν

then

Qµ(ξ) =
1

κ

∫

M

√

|ḡ|δEµνξν (1.14)

We define the “superpotential”

Kµ ≡ δEµνξν = ∂νFµν =
1

√

|ḡ|
∂ν

(

√

|ḡ|Fµν
)

, (1.15)

Using Stokes theorem, one gets

Qµ(ξ) =
1

κ

∫

M
∂ν

(

√

|ḡ|Fµν
)

=
1

κ

∫

∂M

√

|ḡ|FµνdSν . (1.16)

3.2 Conserved Quantities For TMG Solutions

The ADT procedure explained above will be applied to TMG with cosmological
constant.

3.2.1 The linearized Theory

Generalized Einstein tensor is defined by

Eµν ≡ Gµν +
1

µ
Cµν .

where the Einstein tensor is given by

Gµν ≡ Rµν − 1
2
Rgµν , Gµν ≡ Gµν + Λgµν . (2.17)

and the Cotton tensor is

Cµν =
1

√

|g|
ϵ(µαβDαG

ν)
β , (2.18)

with ϵµαβ the antisymmetric symbol.
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In what follows δT indicates the part linear in hµν of the field T which reduced
to T̄ on the background. Notice that δT µν ̸= gµαgνβδTαβ.

One can find the relation between δT µν and δTαβ as follows

δT µν = δ(gµαgνβδTαβ)
= ḡµαḡνβδTαβ + δgµαgνβT̄αβ + gµαδgνβT̄αβ
= ḡµαḡνβδTαβ − hµαT̄ α

ν − hνβT̄ µ
β

= ḡµαḡνβδTαβ − hµαT̄ αν − hναT̄ µα

where the linearized metric

δgµν ≡ hµν , δgµν = −hµν (2.19)

The trace of the linearized metric is h ≡ gµνhµν , and using the identity for any
matrix M , δ detM/ detM = TrδM one can compute the linearized determinant
δg/g = h , and we have also

δ
1

√

|g|
= −1

2

1
√

|g|
h .

The linearized Christoffel symbols are found to be

δΓρµν =
1

2

(

Dµh
ρ
ν +Dνh

ρ
µ −Dρhµν

)

. (2.20)

One can deduce the linearized Ricci tensor

δRµν = DρδΓ
ρ
µν −DνδΓ

ρ
µρ

= 1
2

(

DλDνhλµ +DλDµhλν −DλDλhµν −DµDνh

)

, (2.21)

The linearized Ricci scalar reads

δR ≡ δRµν g
µν − hµνRµν = −DλDλh+DµDν h

µν − hµνRµν , (2.22)

The linearized cosmological Einstein tensor is

δGµν ≡ (δGµν + Λhµν) = δRµν − 1
2
gµν δR− 1

2
(R− 2Λ)hµν , .

Replacing (2.21) (2.22), one ends up with

δGµν = 1
2

(

DλDνhλµ +DλDµhλν −DλDλhµν −DµDνh

)

− 1
2
gµν

(

−DλDλh+DµDν h
µν

)

− 1
2

(

(R− 2Λ)hµν

)

+ 1
2
gµνRλρh

λρ, (2.23)

The linearized Cotton tensor is found to be

δCµν =
1

√

|g|
ϵ(µαβ

(

DαδG
ν)
β + δΓ

ν)
αλG

λ
β

)

− 1
2
hCµν . (2.24)
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3.2.2 The Superpotentials

Let us start with the superpotental corresponding to Einstein tensor,

Kµ
E ≡ ξνδG

µν = 1
2
ξν

(

DλD
νhλµ +DλD

µhλν −DλDλh
µν −DµDνh

)

+ 1
2
ξµ
(

DλD
λh−DλDνh

λν

)

+ 1
2
ξν

(

− 4R(µλhλ
ν) + (R− 2Λ)hµν

)

+ 1
2
ξµRλρh

λρ, (2.25)

After integration by parts

Kµ
E = 1

2
Dλ

(

ξλDνh
µν − ξµDνh

λν + ξνD
µhλν − ξνD

λhµν + ξµDλh− ξλDµh

)

+ 1
2

(

DλξνD
λhµν +Dλξ

µDνh
λν −Dλξ

µDλh
)

+ 1
2
ξν
(

− 2Rµλhλν −Rνλh
λµ + Rµ

ρλνh
λρ + (R− 2Λ)hµν

)

+ 1
2
ξµRλρh

λρ

and we have used the identity valid for Killing vectors

DµDνξλ = Rρ
µνλξρ . (2.26)

Finally

Kµ
E = DλFµλ

E (ξ)− ξνGµλhλν +
1

2
ξµGλρhλρ −

1

2
ξνGµνh , (2.27)

with the Einstein superpotential:

Fµν
E (ξ) = 1

2

(

ξνDλh
λµ − ξµDλh

λν + ξλD
µhλν − ξλD

νhλµ + ξµDνh− ξνDµh

+ hνλDλξ
µ − hµλDλξ

ν + hD[µξν]
)

, (2.28)

Notice the that (2.27) is a total divergence for pure GR , since the extra terms vanish
on-shell.

Now we shall turn to the Cotton term

Kµ
C ≡ ξνδC

µν (2.29)

=
1

2
√

|g|

[

Dα

(

ϵµαβξνδG
ν
β + ϵναβξνδG

µ
β + ϵµνβξνδG

α
β

)

− 1
2
ϵναβDαξνδG

µ
β − 1

2
ϵµνβξνDαδG

α
β

+ϵ(ναβξνδΓ
µ)
αλG

λ
β − 1

2

√

|g|ξνhCµν
]

. (2.30)

Using
DαδG

α
β = −δΓααλGλ

β + δΓλαβG
α
λ , (2.31)

and the identity
ϵµαβξν ≡ δµν ϵ

αβρξρ + δαν ϵ
βµρξρ + δβν ϵ

µαρξρ , (2.32)

we shall cast Kµ
C into the same form as(2.27), namely a total derivative term plus

the extra terms where the Einstein tensor being replaced by the Cotton one. The
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aim is that the Einstein part and the Cotton part of each term will combine and
vanish on-shell.

Kµ
C ≡ 1

2
√

|g|
T µ − 1

2

(

2ξνCλµhλν − ξµCλρhλρ + ξνCµ
νh

)

where

T µ = Dα

(

2ϵµαβξνδG
ν
β − ϵµανξνδG

)

− ϵναβDαξνδG
µ
β

+ 2

(

ϵαβνδΓµαλ + ϵµανδΓβαλ + ϵβµνδΓααλ

)

ξνG
λ
β

+

(

ϵλαβξνDαG
µ
β + ϵµαβξνDαG

λ
β − ϵλαβξµDαGνβ

)

hλ
ν . (2.33)

T µ is expected to be a total derivative, thus we shall integrate the rhs of (2.33) part.
To this end we define the vector

ην ≡ 1

2
√

|g|
ϵνρσDρξσ , (2.34)

and express the 3-dimensional Riemann tensor in terms of the Einstein tensor,

Rρσ
µν = ϵµναϵ

ρσβGα
β (2.35)

we have from (2.26) and (2.32)

Dµην =
1

√

|g|
ϵµρλξρG

ν
λ . (2.36)

Using the definition (2.34), the second term of (2.33) can be rewritten as

− 1

2
ϵναβDαξνδG

µ
β =

√

|g|ηβδGµ
β (2.37)

=
1

2

√

|g|Dλ

(

ηλDνh
µν − ηµDνh

λν + ηνD
µhλν − ηνD

λhµν + ηµDλh− ηλDµh

)

+
1

2

√

|g|
(

Dλη
µDνh

λν −DληνD
µhλν +DληνD

λhµν −Dλη
µDλh

)

+
1

2

√

|g|ηβ
(

hλβG
µ
λ − hGµ

β

)

,

while the third term can be rewritten as
(

ϵαβνδΓµαλ + ϵµανδΓβαλ + ϵβµνδΓααλ

)

ξνG
λ
β =

=
1

2

√

|g|Dαηλ
(

−Dαh
µ
λ −Dλh

µ
α +Dµhαλ + δµαDλh

)

+
1

2
ϵµανξνG

λ
βDαh

β
λ . (2.38)
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Collecting these, and again integrating by parts, we arrive at

T µ = Dλ

[

ϵµλβξνδG
ν
β −

1

2
ϵµλνξνδG+

1

2

√

|g|
(

ηλDνh
µν − ηµDνh

λν

+ ηνD
µhλν − ηνD

λhµν + ηµDλh− ηλDµh+Dνη
µhλν

−Dνη
µhλν +Dµηλh−Dληµh

)

+
1

2
ϵµλνξνG

ρ
βh

β
ρ

]

−
√

|g|
(

DλDνη
[µhλ]ν +DλD

[µηλ]h

)

− 1

2
ϵµλνDλ

(

ξνG
ρ
β

)

hβρ +
1

2

√

|g|ηβ
(

hλβG
µ
λ − hGµ

β

)

+
1

2

(

ϵλαβξνDαG
µ
β + ϵµαβξνDαG

λ
β − ϵλαβξµDαGνβ

)

hλ
ν . (2.39)

Using (2.34) and (2.36), and the identity (obtained [13] by computing [Dλ,Dν ]ηµ,
first from (2.35), then from (2.36))

ϵρνσξσD
λGµ

ρ − ϵρλσξσD
νGµ

ρ =
√

|g|
(

gµλGτνητ − gµνGτλητ + 2Gµλην − 2Gµνηλ
)

,

(2.40)
we finally obtain

Kµ
C = DλFµλ

C (ξ)− ξνCλµhλν +
1

2
ξµCλρhλρ −

1

2
ξνCµ

νh , (2.41)

with the Cotton superpotential:

Fµν
C (ξ) ≡ Fµν

E (η) +
1

2
√

|g|
ϵµνρ

[

ξρh
λ
σG

σ
λ +

1
√

|g|
ξλ

(

2ϵµνρδGλ
ρ − ϵµνλδG

)

+
1

2
h

(

ξσG
σ
ρ +

1

2
ξρR

)]

.

The total current
Kµ = DλFµλ(ξ)

and superpotential

Fµλ(ξ) ≡ Fµν
E (ξ) +

1

µ
Fµν
C (ξ)

The mass

M = Q0(ξ(t)) ≡ 1

κ

∫

∂M

F0idSi

and the angular momentum

J = Q0(ξ(φ)) ≡ 1

κ

∫

∂M

F0idSi

3.2.3 Application To Stationary Axially Symmetric Solutions

Now we specialize to stationary axisymmetric spacetimes, and compute the con-
served quantities associated with the two commuting isometries ∂t and ∂φ.
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The linearized metric components are

hab = δλab , h22 = −2e2
δR
R3

. (2.42)

We will also need the mixed components

ha b = (λ−1δλ)a b =

(

δR
R I +

1

R2
σ

)a

b

, h2 2 = −2
δR
R , (2.43)

where σ is the matrix associated with the vector

Σ ≡ X× δX . (2.44)

and we have used (1.12) and (1.13). Note that (2.43) implies h = 0.
Let us apply this formalism to the computation of the ADT charges (??). Choos-

ing the boundary ∂M to be a circle, we need only to compute the (02) superpotential
components. We begin by the computation of F 02

E (V ) for an arbitrary spacetime
vector V a (V 2 = 0). It is convenient to first compute the covariant components

FEa2(V ) =
1

2
(λV )a

(

− ∂2h
2
2 + Γ2

22h
2
2 + Γb2ch

c
b

)

− 1

2
(λV )b∂2h

b
a +

1

2
h2 2∂2(λV )a

=
1

2
(λV )a

[

2

(

δR
R

)′

+ 2
R′δR
R2

+
1

2
Tr(λ−1λ′λ−1δλ)

]

− 1

2
(λV )b

(

λ−1δλ
)′b

a
− δR

R (λV )′a . (2.45)

This leads to

F02
E (V ) =

1

2
ζ2

{

V

(

X · δX′ + 2R′δR
)

+V λ

(

− σ′ + 2
R′

R σ − 2RδRλ−1λ′
)

λ−1 − 2RδRV ′
}0

. (2.46)

After some algebra with use of (1.12) , (1.13) and (1.11) one finds

λ(−σ′ +2
R′

R σ− 2RδRλ−1λ′)λ−1 = τ 0(2R′δRI− δl)τ 0 = (−2R′δRI− δlT ) , (2.47)

and finally

F02
E (V ) =

1

2
e−2

[(

X · δX′
I − δl

)

V − 2RδRV ′
]0

. (2.48)

Now we move on to the computation of the Cotton part of the superpotential.
Using ξ′a = 0, the vector defined in (2.34) takes the form1

ηa =
1

2e
ϵabξ′b = − 1

2e
(x′ξ)

a
. (2.49)

1Our convention ϵ
012 = −1 implies ϵ

ab2 = −ϵ
ab with ϵ

01 = +1.
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Replacing in (2.48), and using again (1.12) one gets

F02
E (η) =

1

4
e−3

{(

δL ·X′
I − δ (X′

× L) +
1

2
δ(X′2)X− δ(X2)X′′

)

ξ

}0

. (2.50)

The next term in (??) contributes

1
√

|g|
(λξ)c

(

ϵ0bδRc
b −

1

4
ϵ0cδR

)

=
1

2
e−3

[

ξλ

(

δl′ +
1

4
δ(X′2)I

)

τ 0
]0

=
1

2
e−3

[(

X× δL′ + 1
4
δ(X′2)X−X · δL′

I
)

ξ
]0

=
1

2
e−3

[(

δ (X× L′)− 1

2
δ(X2)X′′ + (X′′ · δX)X

+
1

4
δ(X′2)X−X · δL′

I

)

ξ

]0

. (2.51)

Finally, the last term in (??) contributes

1

2
√

|g|
ϵ0a(λξ)a

(

hbcR
c
b + h22R

2
2

)

=
1

2
e−3

(

1

R2
Σ · L′ +

δR
R [X′2 − (RR′)′]

)

(xξ)0

= −1

2
e−3X′′ · δX(xξ)0 , (2.52)

where we have used

Σ · L′ = (X ·X′′)RδR−R2(X′′ · δX) . (2.53)

Collecting(2.50), (2.51) and(2.52), we end up with a simple expression for the Cotton
superpotential

F02
C (ξ) =

1

2
e−3

{(

δX× L′ − 1

2
δX′

× L+
1

2
X′ · δLI −X · δL′

I

)

ξ

}0

. (2.54)

The net ADT charge (??) is a linear combination of the Einstein superpotential
(2.48) (for V = ξ) and the Cotton superpotential (2.54). To make contact with the
SAM approach of [?], we define the spin super angular momentum

S ≡ 1

eµ

[

1
2
X′ × L−X× L′ ] , (2.55)

and the total conserved super angular momentum [9]

J = L+ S , (2.56)

in terms of which the Killing charge is given by

Q(ξ) = − π

κe

{(

δJ−X · δX′
I +

1

eµ
(X · δL′ − 1

2
X′ · δL)I

)

ξ

}0

. (2.57)

Choosing ξ to be one of the two Killing vectors of (1.3), ξ(t) = (−1, 0) and ξ(φ) =
(0, 1), we finally obtain the mass and angular momentum of the field configuration
X + δX relative to the background X:

M = − π

κe

[

δJY +X · δX′ +
1

eµ

(

1

2
X′ · δL−X · δL′

)]

, (2.58)

J =
π

κe
δJ− . (2.59)
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3.2.4 TMG BH Conserved Charges

The mass and angular momentum for the solution (1.44) can be easily computed,
the result is

M =
16

27

π

κ

µ2

ζ

β2 (1− β2)

c
ω

J =
4

9

π

κ
µβ2

[

1− β2

c
ω2 − 1 + β2

1− β2
cρ20

]
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4.0.5 Chern-Simons Entropy

The first ingredient is the black hole entropy S. This is the sum

S = SE + SC (0.1)

of an Einstein and a Cotton (or Chern-Simons) contribution. The Einstein entropy
is as usual proportional to the horizon “area” (perimeter in the present case),

SE =
4π2

κ
rh . (0.2)

The general formula for the Chern-Simons contribution to the entropy was first given
by Solodukhin [11],

SCS = −2π

κµ

∫

Σ

ωab,φe
a
µe
b
ν ϵ̂
µν .

where

ϵ̂αβ ≡ ϵµνφ
√

|g|
(nαnµ)(n

βnν)

(nαnµ) ≡ nα1n1µ + nα2n2µ,

ωab = ωab,µdx
µ is the spin connection and n1 and n2 is a pair of vectors normal to

the horizon hypersurface Σ and orthogonal to each other.
The orthonormal basis ea = eaµdx

µ for the metric (1.43) is
evaluated on the horizon, where ωab = ωab,µdx

µ is the spin connection.
From the black hole metric (1.44), which is already in the ADM form

ds2 = −N2 dt2 + r2(dφ+Nφ dt)2 +
1

(ζrN)2
dρ2 , (0.3)

The dreibein ea for the metric (0.3) is

e0 = N dt , e1 = r(dφ+Nφdt) , e2 =
1

ζrN
dρ . (0.4)
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The corresponding spin connections are

ω0
2 = ζr[N ′e0 +

1

2
r(Nφ)′e1] ,

ω0
1 = ζr

1

2
r(Nφ)′e2 ,

ω1
2 = ζr

[

1

2
r(Nφ)′e0 +N

r′

r
e1
]

, (0.5)

SCS = −2π

κµ

∫ 2π

0

ω02,φ dφ , (0.6)

leading to

SCS = −2π2

κµ
ζr3h(N

φ)′(ρ0) = −2π2

κ

1

eµ

L−
√
X−

∣

∣

∣

∣

(0.7)

= −4π2

3κ

√

c

1− β2

[

(1− 2β2)ρ0 + (1− β2)
ω

c

]

. (0.8)

The total entropy is

S =
8π2

3κ
√

1− β2

[

(1 + β2)ρ0 + (1− β2)ω
]

. (0.9)

4.0.6 The First Law of Black Hole Thermodynamics

We read the Hawking temperature

TH =
1

2π
nρ ∂ρN |ρ=ρ0 =

µβ2

3π

ρ0
rh
, (0.10)

where nρ =
√

|g| = ζrN , and

rh = r(ρ0) =
1

√

1− β2
[ρ0 + (1− β2)ω] (0.11)

is the horizon areal radius. The horizon angular velocity is

Ωh = −Nφ(ρ0) =

√

1− β2

rh
. (0.12)

Putting (??), (??) and (0.9) together, it is easy to check that the first law is
satisfied for independent variations of the black hole parameters ρ0 and ω.

dM = THdS + ΩhdJ . (0.13)



Conclusion

We have shown that black holes exist in topologically massive gravity with cosmo-
logical constant. They are free of causal singularity for a given range parameters.
We have discussed the problem of the conserved charges in gravity and given their
values in any background. Finally, it was shown that TMG Black Holes do obey to
the first law of Black Hole thermodynamics.
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Part II

GRAVITY IN FIVE DIMENSIONS





Introduction

Let us consider a five-dimensional (super)gravity action. The solution of the cor-
responding equations of motion (the metric ĝµνand the graviphoton potential Âµ).
We assume that all the fields are independent of two coordinates (one timelike and
the other spacelike). That is the solution is stationary and axisymmetric. This al-
lows to reduce the five-dimensional (super)gravity action down to three dimensions.
We mean by reducing just dropping the dependence on the mentioned coordinates.

In three dimensions, it is always possible to trade vectors for scalars. These
scalars together with those stemming directly upon dimensional reduction, will con-
stitute the "matter" part of a three-dimensional gravitational action. Moreover they
arrange themselves in such a way they form a non-linear σ-model coupled to three-
dimensional gravity. The experience shows that such non-linear σ-models obtained
upon reduction of (super)gravity theories (and dualisation of vector fields) are based
on interesting structures called coset spaces. This allow to pack the scalars (that
are the all degrees of freedom of the theory) into a (Hermitian) matrix which is in
a representation of the group G of the isometries of the scalar manifold. We will
refer to the former matrix by the scalar matrix. Once achieving to do this, one can
cast the reduced action into a nice form which has the feature of being G symme-
try manifest. Acting on the scalar matrix globally by the G elements doesn’t alter
the three dimensional action (neither the three-dimensional metric). The invariance
property property provides us with powerful generating technique (constructing new
(super)gravity field equations exact solutions from already known ones).

That is, starting from a solution having two (commuting) killing vectors
(ĝµν , Âµ) that we call the “seed” solution. One can obtain the corresponding scalar
matrix M by following the steps explained above. All computations done, one has
(hij,M). By acting with suitable elements of G on M, one obtain a new scalar
matrix M′, hij being inert , one has the transformed couple (hij,M′). The next
move is to unpack the scalars fields from the new scalar matrix. The scalars initially
coming from dualising vector fields should be dedualised. All what remains to be
done is to lift the solution from three dimensions to five.

The central problem dealt with in this part consists to applying this program to
the minimal supergravity in five dimensions. One start by reducing the action of the
bosonic part of the theory (which is all what we need for our purposes). The action is
composed by the Einstein-Hilbert gravitational term, the Maxwell term and a U(1)
Chern-Simons term. By simple counting degrees of freedom one can see that this
theory has 8 degrees of freedom. It comes as a no surprise that the reduction and
the dualisation of the graviphoton potential together with the Kaluza-Klein vector
field will give 8 scalars. These scalars span an eight-dimensional scalar manifold
(the target space of the nonlinear sigma models). The isometry group of the former
manifold is the group G2(2) a non-compact real form of the exceptional group G2.
The dimension of this group is 14 and since the isotropy group is SL(2,R)×SL(2,R)
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which has 8 dimensions one has a coset space of dimension 14− 6 = 8 as it should
be.

Exponentiating a suitable set of the generators of the algebra that spans the G2(2)

group (this set is called the solvable algebra), one can get the representative that
will give the scalar matrix. The scalar matrix is the central tool for the generating
technique, once it was found, all what remains is to apply procedure explained above.



5
Dimensional Reduction, Non-Linear

σ-Models, Cosets And All That

5.1 Non-linear σ-model coupled to gravity

Let L be a Lagrangian defined on a n-dimensional spacetime manifold Mn with
coordinates {xi} where i runs from 1 to n, and a metric hij. The Lagrangian
depends on (scalar) fields ϕA taking their values in a target space T with coordinates
{ϕA(x)}, A = 1, ..., dim T and a metric GAB.

The scalar fields ϕA map the the space time to the target space, that is

ϕA :Mn −→ T
x 7−→ ϕA(x)

The target space is sometimes called the scalar manifold. The action of the non-
linear σ-nonlinear model coupled to gravity is given by

I =

∫

dnx
√

|h|[R + hij∂iϕ
A(x)∂jϕ

B(x)GAB] (1.1)

R being the Ricci scalar with respect to the metric h.
The variation of the above action yields the field equations:

Rij − ∂iϕ
A(x)∂jϕ

A(x)GAB = 0

Di∂iϕ
A(x) = 0

with Rij and D denote respectively the Ricci tensor and the covariant derivative
with respect to the spacetime metric. The fields that are solutions of these equa-
tions are called the harmonic maps.
An interesting situation occurred when the target space happens to be a (pseudo)Riemannian
homogeneous space (or coset space) G/H with G is the isometry group of the target
space, and H is a subgroup of G.
In the following section we will describe nonlinear σ-models based on Coset spaces.
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5.2 Coset spaces

Let us first define what a coset G/H means, and start with an example. Consider
the n-dimensional sphere Sn. The sphere is invariant under G = SO(n + 1), the
group of the (n + 1)-dimensional rotations. G is called the isometry group and its
elements are isometries. If G acts transitively on the space, that is, given any two
points in the manifold they can be connected by a transformation, such a space is
homogeneous. Obviously the sphere is a Homogeneous space as every two points
on Sn are connected by an SO(n + 1) isometry. However the rotation connecting
these two points is not unique as every point on Sn is invariant under H = SO(n)
subgroup. H is known as the isotropy group. It is clear that if a transformation
g̃ ∈ G maps some point onto another point, then the composition of the two trans-
formations g = g̃.h, with h ∈ H, will do the same. Therefore every point on the
sphere can be associated with a class of group elements g ∈ G that are equivalent
up to multiplication by elements h ∈ H (from the right). Such equivalent classes
are called cosets and noted G/H. The sphere is an SO(n+ 1)/SO(n) coset.



6
The G2(2) σ-model for five-dimensional

minimal supergravity

Introduction

6.1 Five-to-three dimensional reduction

The bosonic sector of five-dimensional minimal supergravity is defined by the Einstein-
Maxwell-Chern-Simons action

Î5 :=
1

2κ52

∫

d5x

[

√

|ĝ|
(

− R̂− 1

4
F̂ µνF̂µν

)

(1.1)

− 1

12
√
3
ϵ̂µνρσλF̂µνF̂ρσÂλ

]

, (1.2)

where F̂µν = 2∂[µÂν], µ, ν, · · · = 1, · · · , 5, and ϵ̂µνρσλ is the five-dimensional antisym-
metric symbol.

We starting with the 5-dimensional Einstein action

I5 =
1

2κ52

∫

d5x
√

−ĝR̂ (1.3)

which, up to a surface term, may be written

I5 =
1

2κ52

∫

dDx
√

−ĝ(Ωµ̄ν̄ρ̄Ω
µ̄ν̄ρ̄ − 2Ωµ̄ν̄ρ̄Ω

ρ̄µ̄ν̄ − 4Ωρ̄µ̄
µ̄Ωρ̄

ν̄
ν̄) (1.4)

where Ωµ̄ν̄ρ̄ are the anholonomy coefficients.
We split the vielbein (actually the fnbein) and the vector field as

Êµ
µ̄ =

(

ei
ı̄ ei

ā

ea
ı̄ ea

ā

)

, Â = (Aa, Ai) (1.5)

The flat Lorentz indices µ̄, ν̄, ρ̄ . . . = 0, . . . , 4 are split into ı̄, ȷ̄, k̄ . . . = 1, 2, 3 and
ā, b̄, . . . = 0, 1.
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The metric takes the form

ĝµν =

(

hij + λabBi
aBj

b λabBi
a

λabBj
b λab

)

(1.6)

The indices i, j, . . . are raised by the metric hij ≡ ηı̄ȷ̄ei
ı̄ej

ȷ̄ , ηı̄ȷ̄ = diag[+1,+1,+1], λab ≡
ηāb̄ea

āeb
b̄, ηāb̄ = diag[−1,+1]; h = det(hij) and τ = |λab|, respectively; Bi

a = eaāei
ā

is the Kaluza-Klein gauge vector field strength.

If we choose a gauge eaı̄ = 0, the only non-vanishing components are

Ωı̄ȷ̄k̄

,
Ωȷ̄̄ıc̄ = eac̄e

i
ı̄e
j
ȷ̄Gij

a

Ωı̄b̄c̄ = −Ωb̄ı̄c̄ = −eab̄ẽiı̄∂ieac̄ (1.7)

where
Gij

a = 2∂[iBj]
a (1.8)

is the Kaluza-Klein strength field.
Here we have assumed that all fields are independent of the extra coordinates

za. This yields the 3-dimensional action

I3 =
1

2κ32

∫

d3x
√
hτ [R−1

4
λabGij

aGkl
bhijhkl+

1

4
hij(λabλcd−λadλcb)∂iλab∂jλcd] (1.9)

or

I3 =
1

2κ32

∫

d3x
√
hτ [R− 1

4
τλabGij

aGkl
bhijhkl − 1

4
hij∂i ln τ∂j ln τ +

1

4
hij∂iλab∂jλ

ab]

(1.10)
We can eliminate τ by a Weyl rescaling

ei
ı̄ → τ−

1

2 ei
ı̄ (1.11)

or equivalently

hij → τhij

to obtain

I3 =
1

2κ32

∫

d3x
√
h[R− 1

4
τλabGij

aGkl
bhijhkl +

1

4
hij∂iλab∂jλ

ab − 1

4
hij∂i ln τ∂j ln τ ]

(1.12)
Let move on to the Maxwell term

LM ≡ 1

4

√

|ĝ|F̂ µνF̂µν

In flat indices
F̂µ̄ν̄ = 2Ê[µ̄

µ∂µÂν̄] − Ωµ̄ν̄
ρ̄Âρ̄

and
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Âµ̄ = Êµ̄
µÂµ

giving

Aı̄ =
√
τeı̄

iA′
i,

where
A′
i ≡ Ai − Ba

i Aa

and
Finally

Aā = eaāAa.

Fı̄ȷ̄ = τeı̄
iej̄

j
[

2∂[iA
′
j] +Ga

ijAa
]

Fı̄ā = τeı̄
ieaā∂iAa

The reduced Maxwell lagrangian reads

LM = ÊF̂ µ̄ν̄F̂µ̄ν̄ =
√
h(τF ′ijF ′

ij + 2λabhij∂iAa∂jAb)

Where
F ′
ij ≡ 2∂[iA

′
j] +Ga

ijAa

Chern-Simons now

LCS =
1

12
√
3
ϵ̂µνρσλF̂µνF̂ρσÂλ =

1

3
√
3
ϵı̄ȷ̄k̄ϵāb̄

[

Fı̄ȷ̄Fk̄āAb̄ − Fı̄āFȷ̄b̄Ak̄
]

After some algebra, switching to to curved indices and discarding a surface term,
one has:

LCS = − 1

6
√
3
ϵijkϵabAa∂kAb

[

3F ′
ij −Gc

ijAc
]

6.2 Dualization

Dualisation can be done by enforcing Bianchi identity, this can be achieved by means
of Lagrange multipliers.

Since F ′
ij doesn’t obey Bianchi identity, we introduce an auxiliary field F̃ij defined

by

F̃ij ≡ F ′
ij −Gc

ijAc

= 2∂[iA
′
j]

Which obviously fulfills Bianchi identity.
We add the following term to the Lagrangian

Llag. ≡ −
√
3

2
ϵijkµ∂kF̃ij −

√
3

2
ϵijkωa∂kG

a
ij

The factors were chosen to give simple normalization.
The variation δL

δF̃ij
= 0 gives
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F ′ij =

√
3

τ
√
h
ϵijkηk , ηk = ∂kµ+

1

3
ϵabAa∂kAb . (2.13)

and δL
δGa

ij

= 0 yields

λabG
bij =

1

τ
√
h
ϵijkVak , Vak = ∂kωa −

√
3Aa

(

∂kµ+
1

9
ϵbcAb∂kAc

)

, (2.14)

The expressions of F ′ijand Gbij are pure algebraic (not differential) equations,
then can be replaced in the Lagrangian.

The result is:

L =
√
h

{

R− 1

2
hij

[

1

2
∂iλab∂jλ

ab +
1

2
∂i ln τ∂j ln τ − τ−1Vaiλ

abVbj

+3
(

∂iψaλ
ab∂jψb − τ−1ηiηj

)] }

. (2.15)

where we have made the replacements:

Ai →
√
3Ai, Aa →

√
3ψa

6.3 The Hidden Symmetries of the mSUGRA5

If we note the scalars ΦA(A = 1, 2, . . . , 8) the scalar (with respect to the 3-dimensional
space) λab,ωa,ψa and µ, the above Lagrangian describes 3-dimensional gravity cou-
pled to a nonlinear σ−model:

L =
√
h(R−GAB

∂ΦA

∂xi
∂ΦB

∂xj
hij) (3.16)

The metric of the target space is given by

dS2 =
1

2
Tr(λ−1dλλ−1dλ)+

1

2
τ−2dτ 2−τ−1V Tλ−1V +3

(

dψTλ−1dψ − τ−1η2
)

. (3.17)

The dualized action (and the scalar manifold) is invariant under isometries of the
target space:

Φ′A = ΦA + εXA(Φ)

XA’s are Killing vectors, which can be found by solving the Killing equation:

X(A;B) = 0

Semi-colon denotes GAB covariant derivative. Instead of solving Killing equation
directly (which is very hard), one can find the isometry group, let us note it G by
indirect methods.

There are obvious symmetries, the remnant ofGL(5,R) upon reduction: GL(3,R)⋉
R
3, the generators of this group are

Ma
b = 2λac

∂

∂λcb
+ ωa

∂

∂ωb
+ δbaωc

∂

∂ωc
+ ψa

∂

∂ψb
+ δbaµ

∂

∂µ
(3.18)
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Na =
∂

∂ωa
, (3.19)

Q =
∂

∂µ
(3.20)

and the remnant of the gauge symmetry

Ra =
∂

∂ψa
+ 3µ

∂

∂ωa
− ϵabψb

(

∂

∂µ
+ ψc

∂

∂ωc

)

(3.21)

where a runs from 1to2.
Now, since SL(3,R) ⊂ G ( five dimensional gravity is a consistent truncation

of minimal five dimensional supergravity), one must add two generators say La to
Ma

band Na to form an sl(3,R) algebra,

[

Ma
b, Lc

]

= (δbcLa + δbaLc) , (3.22)

[Na, Lb] = Mb
a , (3.23)

[La, Lb] = 0 . (3.24)

The commutation of La with Q requires the introduction of two generators Pa
such that

[Q,La] = Pa , (3.25)

Finally commutation of La with the Ra requires four more generators, a traceless
tensor Aa

b and a scalar T ,

[Ra, Lb] = Ab
a + δabT . (3.26)

We make the assumption that the algebra g is minimal and closes with a single
scalar generator T (leading to vanishing Aa

b), thus

[Ra, Lb] = δabT . (3.27)

The five generators La, Pa, and T are determined by solving the Lie brackets, up to
a single integration constant, this is determined by demanding that T is an isometry
of the metric (3.17). The result is

T =
[

2µλbc + 6ϵdeλbdψcψe
] ∂

∂λbc

+
[

3µωb + 3τψb − ϵcdωcψbψd + 4τλcdψbψcψd
] ∂

∂ωb

+
[

ωb + µψb + 2ϵcdλbdψc
] ∂

∂ψb
(3.28)

+
[

µ2 + τ − ϵbcωbψc + 2τλbcψbψc
] ∂

∂µ
,
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The La, Pacan be fully determined from [Ra, T ] = 2ϵabPb and [Pa, T ] = 3La.

La =
[

2ωbλac + 2µ (λbcψa − 3λabψc) + 2ϵdeλbdψaψcψe
] ∂

∂λbc
+
[

ωaωb + τλab − µ3ϵab − µ2ψaψb

−2µϵcdλadψbψc + 6τψaψb + 2τλcdψaψbψcψd
] ∂

∂ωb
+
[

−µ2ϵab + µλab + ωbψa (3.29)

−µψaψb + ϵcdλbdψaψc
] ∂

∂ψb

+
[

µωa − µ2ψa − µϵcdλadψc + τψa + τλbcψaψbψc
] ∂

∂µ
,

Pa = [2λbcψa − 6λabψc]
∂

∂λbc

+
[

−3µ2ϵab − 2µψaψb − 2ϵcdλadψbψc
] ∂

∂ωb

+ [−2µϵab + λab − ψaψb]
∂

∂ψb
(3.30)

+
[

ωa − 2µψa − ϵcdλadψc
] ∂

∂µ
.

The generators obey to the following algebra:

[

Ma
b,Mc

d
]

= δbcMa
d − δdaMc

b . (3.31)

[

Ma
b, N c

]

= −(δcaN
b + δbaN

c) , (3.32)
[

Ma
b, Q

]

= −δbaQ , (3.33)
[

Na, N b
]

= 0 , (3.34)

[Q,Na] = 0 . (3.35)

[

Ma
b, Rc

]

= −δcaRb , (3.36)
[

Na, Rb
]

= 0 , (3.37)

[Q,Ra] = 3Na , (3.38)
[

Ra, Rb
]

= 2ϵabQ . (3.39)
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[

Ma
b, Pc

]

= δbcPa , (3.40)
[

Ma
b, T

]

= δbaT , (3.41)

[Na, Pb] = δabQ , (3.42)

[Na, T ] = Ra , (3.43)

[Q,Pa] = −2ϵabR
b , (3.44)

[Q, T ] = Tr(M) , (3.45)

[Ra, Pb] = −3Mb
a + δabTr(M) , (3.46)

[Ra, T ] = 2ϵabPb , (3.47)

[La, Pb] = 0 , (3.48)

[La, T ] = 0 , (3.49)

[Pa, Pb] = 2ϵabT , (3.50)

[Pa, T ] = 3La . (3.51)

[Ra, Lb] = δabT . (3.52)

This is a rank 2 algebra which can be put in the Cartan form, with

H1 = −M0
0 +M1

1

√
6

, H2 = −M0
0 −M1

1

√
2

,

E1 = −M1
0 , E−1 = −M0

1 ,
E2 =

1√
3
R0 , E−2 =

1√
3
P0 ,

E3 =
1√
3
R1 , E−3 =

1√
3
P1 ,

E4 =
1√
3
Q , E−4 =

1√
3
T ,

E5 = −N0 , E−5 = L0 ,
E6 = −N1 , E−6 = L1 ,

(3.53)
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Figure 6.1: The root diagram for g2.

The roots are given by

α1 = (0,−
√
2) ,

α2 = (
1√
6
,
1√
2
) ,

α3 = (
1√
6
,
−1√
2
) ,

α4 = (

√
2√
3
, 0) ,

α5 = (

√
3√
2
,
1√
2
) ,

α6 = (

√
3√
2
,
−1√
2
) ,

α1 + α2 being simple roots, one has

α3 = α1 + α2, α4 = α1 + 2 α2, α5 = α1 + 3 α2,α6 = 2α1 + 3α2.

The root space diagram is that of the 14-dimensional algebra g2(2) which is the real
form of g2.
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6.4 Building G2(2)/[SL(2,R)× SL(2,R)] coset

An 8× 8 matrix representation of g2(2) may be found in [15] (one has to do a Weyl
trick namely multiplying by −i the Z matrices there) Then one has generic block
decomposition:

jM (M = 1, · · · , 14)

j =





S Ṽ
√
2U

−Ũ −ST
√
2V√

2V T
√
2UT 0



 , (4.54)

where S is a 3× 3 matrix, U and V are 3-component column matrices, UT and V T

the corresponding transposed row matrices, and Ũ , Ṽ are the 3 × 3 dual matrices
Ũij = ϵijkUk. The matrices ma

b, na and ℓa generating SL(3, R) are of type S, the
corresponding 3× 3 blocks being

Sm0
0=





1 0 0
0 0 0
0 0 −1



 , Sm0
1 =





0 1 0
0 0 0
0 0 0



 ,

Sm1
0 =





0 0 0
1 0 0
0 0 0



 , Sm1
1 =





0 0 0
0 1 0
0 0 −1



 ,

Sn0=





0 0 0
0 0 0
−1 0 0



 , Sn1 =





0 0 0
0 0 0
0 −1 0



 , (4.55)

Sℓ0 =





0 0 1
0 0 0
0 0 0



 , Sℓ1 =





0 0 0
0 0 1
0 0 0



 .

The matrices pa and q are of type U , the corresponding 1× 3 blocks being

Up0 =





1
0
0



 , Up1 =





0
1
0



 , Uq =





0
0
−1



 . (4.56)

The matrices ra and t are of type V , the corresponding 1× 3 blocks being

Vr0 =





1
0
0



 , Vr1 =





0
1
0



 , Vt =





0
0
1



 . (4.57)

Due to the form of (4.54), the transposed matrices jTA are related to the original
matrices jA by

jTA = −KjAK , (4.58)

where K has the block structure

K =





0 I 0
I 0 0
0 0 −1



 . (4.59)
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It follows from (4.54) and (??) that the matrix M has the symmetrical block
structure

M =





A B
√
2U

BT C
√
2V√

2UT
√
2V T S



 , (4.60)

where A and C are symmetrical 3 × 3 matrices, B is a 3 × 3 matrix, U and V are
3-component column matrices, and S a scalar. It also follows from (4.58) that the
inverse matrix is given by

M−1 = KMK =





C BT −
√
2V

B A −
√
2U

−
√
2V T −

√
2UT S



 , (4.61)

Computation of the product (??), with the matrices (??), (??) and (??) gives
the coset matrix M in the form (4.60), with

A =





[

(1− y)λ+ (2 + x)ψψT − τ−1ω̃ω̃T

+µ(ψψTλ−1J − Jλ−1ψψT )
] τ−1ω̃

τ−1ω̃T −τ−1



 ,

B =





(ψψT − µJ)λ−1 − τ−1ω̃ψTJ

[

(−(1 + y)λJ − (2 + x)µ+ ψTλ−1ω̃)ψ
+(z − µJλ−1)ω̃]

τ−1ψTJ −z



 ,

C =





(1 + x)λ−1 − λ−1ψψTλ−1 λ−1ω̃ − J(z − µJλ−1)ψ

ω̃Tλ−1 + ψT (z + µλ−1J)J

[

ω̃Tλ−1ω̃ − 2µψTλ−1ω̃
−τ(1 + x− 2y − xy + z2)]



 ,

U =

(

(1 + x− µJλ−1)ψ − µτ−1ω̃
µτ−1

)

,

V =

(

(λ−1 + µτ−1J)ψ
ψTλ−1ω̃ − µ(1 + x− z)

)

,

S = 1 + 2(x− y) ,

(4.62)

with

ω̃ = ω − µψ . x = ψTλ−1ψ , y = τ−1µ2 , z = y − τ−1ψTJω̃ . (4.63)
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7
Solution Generating Technique in

five-dimensional minimal supergravity

7.1 G2(2)/[SL(2,R)× SL(2,R)] Generating Technique

7.1.1 The subgroup preserving asymptotic flatness:

In five dimensions, there are two possible boundary conditions: asymptotically flat
M5, or asymptotically Kaluza-Klein M4 × S1spacetime.

The metric of the former is given by

ds2 = −dt2 + dr2 + r2dΩ3 (1.1)

where
dΩ3 ≡ dθ2 + sin2 θdϕ2 + cos2 θdψ2

is the volume element of the three sphere.
and the latter can be obtained by adding to the 4-dimensional Minkowski space

M4 a fifth dimension (wrapped on the circle), the metric of such a space reads

ds2 = −dt2 + dr2 + r2dΩ + dz2 (1.2)

dΩ ≡ dθ2 + sin2 θdϕ2

For both of the above asymptotic spacetimes one can derive the rigid G2(2) trans-
formation(s) preserving them (i.e. their isotropy group).

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdϕ2 + cos2 θdψ2) (1.3)
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supergravity

The Boundary conditions for M5

Consider the metric (1.1) and take z0 = t and z1 = ℓψ one has :

λ00 = −1, λ11 =
r2

ℓ2
cos θ2, λ10 = 0

τ =
r2

ℓ2
cos2 θ, ω0 = 0, ω1 = 0

ψ0 = 0 , ψ1 = 0, µ = 0,

the coset representative :

M =

































−1 0 0 0 0 0 0

0
r2

ℓ2
cos2 θ 0 0 0 0 0

0 0 − ℓ2

r2 cos2 θ
0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0
ℓ2

r2 cos2 θ
0 0

0 0 0 0 0 −r
2

ℓ2
cos2 θ 0

0 0 0 0 0 0 1

































Only the combination G+ ≡ P1 − T preserve the above nonconstant matrix (at
spatial infinity). This turns to be charge-generating transformation, and will be
used to generate electrically charged solution from neutral seed solution.

But also one can exploit the coset model to its full potentialities, this can be
achieved by reducing (1.1) with respect to z0 = t and z1 = ℓ(ψ + ϕ), (this a
generalization of Giusto and Saxena [?] remarks to the minimal SUGRA), it gives

λ00 = −1, λ11 =
r2

ℓ2
, λ10 = 0, τ =

r2

ℓ2
,

Kaluza- Klein vectors

Bη
0 = 0, Bη

1 = ℓ cos 2θ

The 3-dimensional metric

hijdx
idxj =

r2

4ℓ2
[

dr2 + r2dθ2 + sin θ2 cos θ2dη2
]

The dualization yields

ω0 = 0, ω1 =
r2

ℓ2

and obviously

ψ0 = 0 , ψ1 = 0, µ = 0,

The coset representative in this case
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M =



























−1 0 0 0 0 0 0
0 0 1 0 0 0 0

0 1 −4ℓ2

r2
0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0
4ℓ2

r2
1 0

0 0 0 0 1 0 0
0 0 0 0 0 0 1



























At spatial infinity,

M∞ =





















−1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1





















There are six transformations leaving invariant the matrix M∞ :

F+ = −M1
0 − L0 , F0 =M1

1 , F− = −M0
1 +N0 ,

G+ = P1 − T , G0 = P0 +R0 , G− = R1 +Q . (1.4)

This can be seen ,just by verifying that the product of each one of the above
generators with M∞ is antisymmetric

(M∞Jα)
T = −(M∞Jα)

These generators form an sl(2,R)⊕ sl(2,R) algebra

[J0, J±] = ±J± , [J+, J−] = J0 ,
[

J̄0, J̄±
]

= ±J̄± ,
[

J̄+, J̄−
]

= J̄0 ,
[

Jα, J̄β
]

= 0 ,

with

Jα =
1

4
(Fα −Gα) , J̄α =

1

4
(3Fα +Gα) .

The three transformations F0, F−, and G− are pure gauge transformations
(general coordinates transformations), and thus doesn’t affect physics. It remains
three physical transformations preserving asymptotic flatness are the spin-generating
transformation F+ , G+ the charging transformation already found, and the trans-
formation G0.

Their matrix representations can be found ind the Appendix.
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The Boundary conditions for M4 × S1:

Choosing z0 = t and z1 = z, the data from the metric (1.2) gives the asymptotic
coset representative :

MKK
∞ =





















−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1





















There are 6 transformations that preserve this configuration:

J1 =M0
1 +M1

0 , J2 = N0 + L0 , J3 = N1 − L1 ,

J4 = Q− T , J5 = P0 +R0 , J6 = R1 + P1. (1.5)

It is worthy to note that one can go from MKK
∞ to M∞ by through the expression

M∞ = P T
SHMKK

∞ PSH

where

PSH =





















1 0 0 0 0 0 0

0 1/
√
2 1/

√
2 0 0 0 0

0 −1/
√
2 1/

√
2 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1/
√
2 −1/

√
2 0

0 0 0 0 1/
√
2 1/

√
2 0

0 0 0 0 0 0 1





















The PSH quiet generally can transform a black string into a black hole in 5-
dimensions.

7.1.2 Charging Neutral Seeds

Consider the charging transformation

PC =





















c2 0 0 s2 0 0
√
2sc

0 c 0 0 0 s 0
0 0 c 0 −s 0 0

s2 0 0 c2 0 0
√
2sc

0 0 −s 0 c 0 0
0 s 0 0 0 c 0√
2sc 0 0

√
2sc 0 0 c2 + s2





















, (1.6)

where c ≡ coshα, s ≡ sinhα.
The transformation (1.6) acting on a neutral (ψa = µ = 0) seed solution (λab,

ωa) leads to the target space following data, extracted from the transformed matrix
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representative M′,

τ ′ = D−1τ , (1.7)

λ′11 = D−2λ11 , (1.8)

λ′12 = D−2[c3λ12 + s3λ11ω1] , (1.9)

ω′
1 = D−2[c3(c2 + s2 + 2s2λ11)ω1 − s3(2c2 + (c2 + s2)λ11)λ12] , (1.10)

ω′
2 = ω2 +D−2s3[−c3λ212 + s(2c2 − λ11)λ12ω1 − c3ω2

1] , (1.11)

ψ′
1 =

√
3D−1sc(1 + λ11) , (1.12)

ψ′
2 =

√
3D−1sc(cλ12 − sω1) , (1.13)

µ′ =
√
3D−1sc(cω1 − sλ12) , (1.14)

with D = c2 + s2λ11 = 1 + s2(1 + λ11).

7.2 The Seeds

7.2.1 Black Holes:

The metric for five-dimensional rotating black hole, in the Boyer-Lindquist coordi-
nates, is ([?]):

ds2 =
ρ2

4∆
dx2 + ρ2 dθ2 − dt2 + (x+ a2) sin2 θ dϕ2 + (x+ b2) cos2 θ dψ2

+
r20
ρ2

[

dt+ a sin2 θ dϕ+ b cos2 θ dψ
]2
. (2.15)

Here,
ρ2 = x+ a2 cos2 θ + b2 sin2 θ , (2.16)

∆ = (x+ a2)(x+ b2)− r20 x . (2.17)

The angles ϕ and ψ lie in the interval [0, 2π], while the angle θ belongs to [0, π/2].
The black hole horizon is located at x = x+ where

x± =
1

2

[

r20 − a2 − b2 ±
√

(r20 − a2 − b2)2 − 4a2b2
]

. (2.18)

The determinant of this metric is given by

√−g = 1

2
sin θ cos θ ρ2 . (2.19)

The metric (2.15) is invariant under the following transformation

a↔ b , θ ↔
(π

2
− θ

)

, ϕ↔ ψ . (2.20)

It possesses 3 Killing vectors, ∂t, ∂ϕ and ∂ψ.
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7.2.2 Black Rings

Black rings with one angular momentum

ds2 = −F (y)
F (x)

(

dt− CR
1 + y

F (y)
dψ

)2

(2.21)

+
R2

(x− y)2
F (x)

[

−G(y)
F (y)

dψ2 − dy2

G(y)
+

dx2

G(x)
+
G(x)

F (x)
dϕ2

]

,

where
F (ξ) = 1 + λξ, G(ξ) = (1− ξ2)(1 + νξ) , (2.22)

and

C =

√

λ(λ− ν)
1 + λ

1− λ
. (2.23)

The dimensionless parameters λ and ν are in the range

0 < ν ≤ λ < 1 . (2.24)

with −∞ ≤ y ≤ −1 and −1 ≤ x ≤ 1, spatial asymptotic infinity is recovered when
x → −1, y → −1. The axis of rotation around the ψ direction is at y = −1, and
the axis of rotation around ϕ is divided into two pieces: x = 1 is the disk bounded
by the ring, and x = −1 is its complement from the ring to infinity. The horizon is
located at y = −1/ν. Outside it, at y = −1/λ, lies an ergosurface.

The angular variables must be identified with periodicity

∆ψ = ∆ϕ = 4π

√

F (−1)

|G′(−1)| = 2π

√
1− λ

1− ν
(2.25)

and the two parameters λ, ν must satisfy

λ =
2ν

1 + ν2
. (2.26)

Black rings with two angular momenta

An exact solution for a black ring with both rotations been achieved by Pomeransky
and Sen’kov in [?] They have furthermore managed to present it in a fairly compact
form:

ds2 = −H(y, x)

H(x, y)
(dt+ Ω)2 − F (x, y)

H(y, x)
dψ2 − 2

J(x, y)

H(y, x)
dψdϕ+

F (y, x)

H(y, x)
dϕ2

− 2k2H(x, y)

(x− y)2(1− ν)2

(

dx2

G(x)
− dy2

G(y)

)

. (2.27)

Here we follow the notation introduced in [?], except that we have chosen mostly
plus signature, and exchanged ϕ ↔ ψ to conform to the notation in (2.21). It
worth to mention that the angles ϕ and ψ have been rescaled here to have canonical
periodicity 2π.
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The one-form Ω characterizing the rotation is

Ω = −2kλ
√

(1 + ν)2 − λ2

H(y, x)

[

(1− x2)y
√
νdϕ

+
1 + y

1− λ+ ν

(

1 + λ− ν + x2yν(1− λ− ν) + 2νx(1− y)
)

dψ
]

, (2.28)

and the functions G, H, J , F become

G(x) = (1− x2)
(

1 + λx+ νx2
)

,

H(x, y) = 1 + λ2 − ν2 + 2λν(1− x2)y + 2xλ(1− y2ν2) + x2y2ν(1− λ2 − ν2) ,

J(x, y) =
2k2(1− x2)(1− y2)λ

√
ν

(x− y)(1− ν)2
(

1 + λ2 − ν2 + 2(x+ y)λν − xyν(1− λ2 − ν2)
)

,

(2.29)

F (x, y) =
2k2

(x− y)2(1− ν)2

[

G(x)(1− y2)
[(

(1− ν)2 − λ2
)

(1 + ν) + yλ(1− λ2 + 2ν − 3ν2)
]

+G(y)
[

2λ2 + xλ((1− ν)2 + λ2) + x2
(

(1− ν)2 − λ2
)

(1 + ν) + x3λ(1− λ2 − 3ν2 + 2ν3)

− x4(1− ν)ν(−1 + λ2 + ν2)
]

]

.

When λ = 0 one finds flat spacetime. In order to recover the metric (2.21) one must
take ν → 0, identify R2 = 2k2(1 + λ)2 and rename λ→ ν.

The parameters λ and ν are restricted to

0 ≤ ν < 1 , 2
√
ν ≤ λ < 1 + ν (2.30)

for the existence of regular black hole horizons. The bound λ ≥ 2
√
ν is actually a

Kerr-like bound on the rotation of the S2. To see this, consider the equation for
vanishing G(y),

1 + λy + νy2 = 0 , (2.31)

Electrifying Myers and Perry

Starting with the five-dimensional Myers and Perry [?]:

ds2 = −dt2+ ρ2

4∆
dx2+ρ2dθ2+(x+a2) sin2 θdϕ2+(x+b2) cos2 θdψ2+

r20
ρ2

(

dt+ a sin2 θdϕ+ b cos2 θdψ
)2
,

(2.32)
where

ρ2 = x+ a2 cos2 θ + b2 sin2 θ, ∆ = (x+ a2)(x+ b2)− r20x. (2.33)

Choosing z0 = t, z1 = ψ , we find :

λ00 = −1 +
r20
ρ2
, λ01 =

r20
ρ2
b cos2 θ, λ11 = (x+ b2) cos2 θ +

r20
ρ2
b2 cos4 θ,

τ =

(

x+ b2 − r20 +
r20
ρ2
a2 cos2 θ

)

cos2 θ, (2.34)

a0ϕ = −τ−1 r
2
0

ρ2
(x+ b2)a sin2 θ cos2 θ, a1ϕ = τ−1 r

2
0

ρ2
ab sin2 θ cos2 θ, (2.35)
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and the three-metric

hijdx
idxj = τ

(

ρ2

4∆
dx2 + ρ2dθ2 +

∆

τ
sin2 θ cos2 θdϕ2

)

,
√
h =

1

2
τρ2 sin θ cos θ.

(2.36)
The dualization of the vector fields gives

ω0 = −r
2
0

ρ2
a cos2 θ, ω1 = −r

2
0

ρ2
ab cos4 θ. (2.37)

The action of our charge-generating transformation with parameter α (c =
coshα, s = sinhα) on this neutral seed leads to the transformed fields according
to (1.7). Performing the inverse dualization, we obtain the charged black hole solu-
tion

ds′2 = −D−2

(

1− r20
ρ2

)

(dt+ Ω′)2 +D

[

ρ2dx2

4∆
+ ρ2dθ2 +

(

x+ a2 +
r20a

2

ρ2 − r20
sin2 θ

)

sin2 θdϕ2

+2
r20ab

ρ2 − r20
sin2 θ cos2 θdϕdψ +

(

x+ b2 +
r20b

2

ρ2 − r20
cos2 θ

)

cos2 θdψ2

]

, (2.38)

Ω′ = −r20
[(

c3a

ρ2 − r20
+
s3b

ρ2

)

sin2 θdϕ+

(

c3b

ρ2 − r20
+
s3a

ρ2

)

cos2 θdψ

]

, (2.39)

A′ =
√
3scD−1 r

2
0

ρ2
[

dt+ (ca+ sb) sin2 θdϕ+ (cb+ sa) cos2 θdψ
]

, (2.40)

with

D = 1 + s2
r20
ρ2
.

The same solution is obtained if reduction is carried out with respect to the angular
variable ϕ instead of ψ. Note that it is regular on the polar axis sin θ = 0.

This solution could be put in the following form

ds̄2 = −dt2 − 2q̄

ρ̄2
ν̄(dt− ω̄) +

f̄

ρ̄4
(dt− ω̄)2 +

ρ̄2r2

∆̄
dr2 + ρ̄2dθ2 + (r2 + ā2) sin2 θdϕ2

(2.41)

+ (r2 + b̄2) cos2 θdψ2, (2.42)

Ā =

√
3q̄

ρ̄2
(dt− ω̄), (2.43)

where

ν̄ = b̄ sin2 θdϕ+ ā cos2 θdψ, ω̄ = ā sin2 θdϕ+ b̄ cos2 θdψ, f̄ = 2m̄ρ̄2 − q̄2,

∆̄ = (r2 + ā2)(r2 + b̄2) + q̄2 + 2āb̄q̄ − 2m̄r2, ρ̄2 = r2 + ā2 cos2 θ + b̄2 sin2 θ.

The metrics ds′2 and ds̄2 are related by the following coordinate and parameter
transformation:

r2 = x+ s2(r20 − a2 − b2)− 2absc, 2m̄ = (1 + 2s2)r20,

q̄ = −scr20, ā = −ca− sb, b̄ = −cb− sa,

implying
ρ̄2 = Dρ2 = ρ2 + s2r20, ∆̄ = ∆.

Comparing then the electromagnetic potentials, we find Ā = −A′, so the two solu-
tions are identical under charge conjugation (or a simultaneous sign change of t, ϕ
and ψ
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7.2.3 Forging a charged doubly spinning black rings

One can either choose dx1 = dt and dx2 = dψ or dx1 = dt and dx2 = dϕ. Switching
between the two choices is achieved by making the exchange F (x, y) ↔ F (y, x) and
Ωϕ ↔ Ωψ. For the first choice (dx2 = dψ), the seed λab can be read off from Eq. (1)
of PS,

τ =
F (y, x)

H(x, y)
, λ00 = −H(y, x)

H(x, y)
, λ10 = Ωψλ00 , (2.44)

while the seed ωa must be obtained by dualizing the Ba
ϕ,

τλabG
bij =

1√
h
ϵijk

[

∂kωa − ψa(∂kµ+
1

3
√
3
ϵbcψb∂kψc)

]

(2.45)

with Ga
ij = ∂iB

a
j − ∂jB

a
i , and

B′1
ϕ = Ωϕ − ΩψB

1
ϕ , B1

ϕ = − J(x, y)

F (y, x)
, (2.46)

where Ωϕ = Ωϕ(x, y) and Ωψ = Ωψ(x, y) are given in Eq. (2) of PS. Inspection of
relations (1.7) shows that it is not necessary to compute ω2, while the computation
of ω1 yields simply

ω1(x, y) = −Ωϕ(y, x) . (2.47)

Similarly, the ω1 corresponding to the second choice (dx2 = dϕ) is

ω̂1(x, y) = Ωψ(y, x) . (2.48)

To write down the charged solution, there remains to dualize back the ω′
a and µ′

to the a′aϕ and A′
ϕ. It is easy to show (without explicit dualization) from the above

relations, that a′1ϕ = a1ϕ, while

G′0iϕ = c3G1iϕ + s3
[

− ω1G
2iϕ +

λ211

τ
√
h
ϵij∂jΩψ

]

, (2.49)

F ′iϕ = B′1ϕ∂iψ′
1 +B′2ϕ∂iψ′

2 −
√
3sc

Dτ
√
h
ϵij(c∂jω1 + sλ211∂jΩψ) . (2.50)

We have solved the first duality equation (2.49) for the second choice (dx2 = dψ),
with the result

B̂′1
ψ(x, y) = c3B̂1

ψ(x, y)− s3B̂1
ϕ(y, x) , (2.51)

leading to
Ω̂′
ψ(x, y) = c3Ω̂ψ(x, y)− s3Ω̂ϕ(y, x) = Ω′

ψ(x, y) . (2.52)

This shows that the charged solution does not depend on the choice of the second
Killing vector (∂ψ or ∂ϕ).

The final charged black ring metric is

ds′2 = −D−2H(y, x)

H(x, y)
(dt+ Ω′)2 +D

[

− F (x, y)

H(y, x)
dϕ2 − 2

J(x, y)

H(y, x)
dϕdψ

+
F (y, x)

H(y, x)
dψ2 +

2k2H(x, y)

(1− ν)2(x− y)2

(

dx2

G(x)
− dy2

G(y)

)]

, (2.53)
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Ω′ = (c3Ωψ(x, y)− s3Ωϕ(y, x))dψ + (c3Ωϕ(x, y) + s3Ωψ(y, x))dϕ , (2.54)

A′ =
√
3scD−1

[

2λ(1− ν)(x− y)(1− νxy)

H(x, y)
dt

+

(

− c
H(y, x)

H(x, y)
Ωψ(x, y) + sΩϕ(y, x)

)

dψ

+

(

− c
H(y, x)

H(x, y)
Ωϕ(x, y)− sΩψ(y, x)

)

dϕ

]

, (2.55)

with

D = 1 + s2
2λ(1− ν)(x− y)(1− νxy)

H(x, y)
. (2.56)

This is to be compared with the charged black ring given in [?], Sect. 4 (exchange
ψ and ϕ!). A difference is that Elvang et al. start with a seed having an extra
parameter (dipole charge), which can be fine tuned so that Dirac-Misner strings are
absent. Such string singularities arise if the orbits of ∂ψ (our ψ, their ϕ) do not
close off at x = 1. In the present case it is clear that both Ω′

ψ(1, y) and A′
ψ(1, y)

are proportional to Ωϕ(y, 1), which does not vanish, so that string singularities are
unavoidable. Specifically,

Ω′
ψ(1, y) = −s3 4kλ

√

(1 + ν)2 − λ2
. (2.57)

The vector field Ω′
ψ can be made regular by a translation, leading to a NUT charge

which can in principle be cancelled by a NUT-generating transformation.
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Conclusion

We developed a solution generating technique in minimal five dimensional super-
gravity based on the hidden dualities of this theory. It was found that the nonlinear
sigma model which arises upon dimensional reduction and dualization the vector
fields of this theory has a coset structure G2(2)/[SL(2,R) × SL(2,R)] , where the
isometry group G2(2) is a compact form of the rank 2 exceptional group G2. One of
the transformations which conserve asymptotic flatness is identified as a transfor-
mation charging electrically neutral solutions. This transformation is applied to a
neutral rotating black hole solution to obtain a charged rotating black hole in five
dimensions. This charging procedure is then used to get a charged doubly spinning
black ring from a neutral. The resulting solution suffers from a singularity known
as Dirac-Misner string.


