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General Introduction 5

Gravity is one of the most beautiful theories of modern physics. It is based on
an elegant mathematical structure-the differential geometry of curved spacetime-
and supported by all available experimental tests. Gravity has a special status, as
it is intimately connected with the geometry of space and time. The basic idea
in Einstein’s formulation of gravity-General Relativity (GR)- is that gravity is (a
manifestation of the curvature of the) geometry of spacetime.

The spacetime has no a priori fixed shape and it is dynamical. The structure
of the spacetime is governed by the local distribution of the matter that it contains
and the motion of the matter depends on the curvature of the spacetime.

The theory is based on two principles, the first one is that the physics remains
unaltered under a general coordinate transformation (diffeomorphisms). The second
principle, known as the (Einstein) equivalence principle, generalizes the accurately
experimentally verified equality between the gravitational and inertial masses. It can
be stated in many forms, one of them is the following: Local gravitational effects can
be got rid of by choosing an inertial frame. The dynamics of the theory is governed
by the Einstein equation, which is a set of coupled partial differential equations of
the metric of the spacetime. The metric is a mathematical object ( a tensor) that
tells us how to measure distances on the spacetime. Theses differential equations
are highly nonlinear which make them almost impossible to solve by direct methods.
The only way to find exact solutions of these equations is making some assumptions
about the form of the metric (ansatzé).

An outstanding problem in modern physics is reconciling Quantum Field (QFT)
Theory with General Relativity. So far all attempts to quantize gravity failed.

The central objects in GR (and the main purpose of the present thesis), and
which may shed light on the problem of Quantum Gravity are Black Holes. They
are the physical systems where gravity, statistical physics and quantum mechanics
meet. The idea of the existence of such objects traces back to 1789, when reverend
John Michell and later in 1795 (but independently) Simon Pierre de La Place. Both
predicted the existence of stars that are so massive that even light can not escape
from them. Their prediction was based on the corpuscular nature of light, that
it is, the idea of “dark stars” was abandoned after the Young two-slit interference
experiment showing that light has wavy nature in 1801.

The idea was left dormant for many years until the advent of the General Rela-
tivity by Albert Einstein in 1916. Few months after the publication of the final form
of Einstein’s theory, a German mathematician and astronomer, Karl Schwarzschild
succeeded to find the first exact solution of the complicated Einstein equation. He
assumed a spherically symmetric shape of the spacetime. The Schwarzschild solu-
tion shows a “singularity” at the very same radius of the Michell and Laplace “dark
stars”. It was realized that at this radius, the light undergoes an infinite redshift in
such a way that it never reaches an outside observer. On the other side it was shown
the geometry at Schwarzschild radius is perfectly smooth. An observer crossing this
area will notice nothing special. The aforementioned singularity turns to be only an
artifact of the coordinate system.

Astrophysical black holes may form at the final stage of stellar evolution, the
stars of masses of few solar masses may collapse into black holes.

Currently about 20 binary stars are known to exist in our milky way. They are
believed to contain black holes of few solar masses. Supermassive black holes are
believed to exist at the centers of galaxies including ours.

The purpose of this thesis is not discuss astrophysical black holes but to consider
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black holes from the theoretical point of view. It is believed that black hole physics
are may shed light on one of the fundamental problems of contemporary physics,
namely to find new ideas to reconcile dynamical spacetime geometry and quantum
mechanics. Though the final goal is still far from reach, considerable progress on
some aspects of black holes has been made during the last couple of decades.

The most interesting feature of black holes form the theoretical perspective is
that they are thermodynamical objects.

Many of the black hole problems may be addressed in (2 4 1)-dimensions.

A more ambitious theory is string theory. This theory claims providing a unified
description of all interactions including quantum gravity. The basic idea of string
theory is to replace point elementary particles of the conventional Quantum Field
Theory by one dimensional extended object called strings of which the vibrational
modes correspond to the elementary particles. The spectrum of the string contain a
massless spin-2 particle which can be identified with the graviton (the mediator of
the gravitational interactions). The theory is free of tachyons (particles with speed
greater than light’s speed) if one introduces a new symmetry, called supersymme-
try (SUSY), between bosons (integer spin particles) and fermions (half-integer spin
particles). String theory with such a symmetry is known as superstring theory.
The consistency of this theory requires the dimension of spacetime to be ten. The
problem of superstring theory is that it is not unique, there are five distinct string
theories. The main success of the “second string theory” is the discovery that all
the five string theories are related to each other. Moreover all these theories arise as
different limits of a unique theory coined “M-theory”. This theory is not yet known.
However, it is approximated by eleven dimensional gravity at low energies. Super-
gravity is the local version of supersymmetry. Superstring theory is not a theory of
strings only but it contains other extended objects called “D-branes”. A D-brane is
a hypersurface where open strings are attached. Yang-Mills fields are thought of to
live on D-brane. A breakthrough was provided by the study of the nonperturbative
aspects of D-branes. That is the microscopic derivation of the black hole entropy.
Using a special case in five dimensions, Strominger and Vafa [?] succeed to count
the microstates associated with D-branes (which are linked to black holes). The
extremal charged black holes which solve low energy limit supergravity.
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THIS THESIS

The thesis is divided into two loosely connected parts: the first one is concerned
with three dimensional Topologically massive gravity and the other is devoted to
generating solutions of black objects within five minimal dimensional supergravity
theory.

THE FIRST PART

The first chapter is meant to introduce a few selected issues about three dimensional
gravity and defining Topologically Massive Gravity (TMG).

The second chapter is aimed to first describe in some details the formalism based
on dimensional reduction of (2 + 1)-dimensional gravity to (1+ 0)-dimensions. This
formalism is used to construct a solution describing a black hole family in TMG
with cosmological constant.

The third chapter constitutes the core of the first part. After introducing the
method of Abbot-Deser-Tekin for calculating conserved quantities in gravity theo-
ries, we give the detailed calculation of the Killing charges in Topologically Massive
Gravity. Using the formalism presented in the previous chapter, we greatly simplify
the formula of the conserved charges in the case of stationary axially symmetric
spacetimes. The fourth chapter deals with thermodynamics of Topologically Mas-
sive Gravity. The relevant thermodynamical quantities entering in the first law are
computed. Amongst them is the entropy, which is computed using the method of
conical singularities. The different quantities together with the mass and the angu-
lar momentum, computed in the third chapter, all fit nicely in the first law of the
black hole thermodynamics.

THE SECOND PART

The chapter five is devoted to preliminary notions such as nolinear sigma model
and coset manifold. In the sixth chapter we present the dimensionl reduction of
five dimensional minimal supergravity down to (3+0)-dimensions to obtain, after
dualizing Kaluza-Klein gauge vectors to scalars, a nolinear sigma model coupled to
(3+0)-dimensional gravity. The next task is to make manifest the hidden symmetries
of the theory. We show that the the isotropy group of the scalar manifold is the
split real form of the exceptional group G, then the scalar matrix is given. The
sixth chapter is devoted to the generating technique of black objects. Especially
transforming neutral black hole and neutral black ring into charged ones is presented.
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GRAVITY IN (241) DIMENSIONS






(2+1) dimensional gravity in a nutshell

(2 4 1)—dimensional gravity (2 space dimensions and one time dimension)(with or
without cosmological constant) is essentially a gedanken laboratory to study issues
about quantum gravity. This theory provides us with a simpler picture of the more
realistic but complicated (3+ 1)-dimensional gravity. At first sight, gravity in (2+1)
dimensions looks trivial and may be unattractive. This is mainly due to the lack
of local degrees of freedom and the absence of Newtonian limit. The geometry of
the spacetime is flat outside the source of matter (or has a constant curvature if
one considers a cosmological constant). However, local distribution of matter affects
globally the geometry of the spacetime. For instance, the spacetime around a point
particle is conical with a deficit angle proportional to the particle’s mass.

The most dramatic turn in (2-+1)-dimensional gravity, was the discovery of a
solution with almost the usual features of black holes. This solution named BTZ
after Banados, Teitelboim and Zanelli [2].

One can remedy the problem of absence of degrees of freedom by adding to the
Hilbert-Einstein action an SO(1,2) gravitational Chern-Simons term. The theory
with such a modification is called Topologically Massive Gravity (TMG). It is a
consistent theory of gravity with a massive graviton having one degree of freedom

] .

1.1 The action

(2 4+ 1)-dimensional gravity (with cosmological constant) is the theory of gravity
described by the Einstein-Hilbert action

1

I =—
QKM

(R - 2A) + [mattera (11)

in one dimension of time and two dimensions of space. As usual the integration is
hold on the manifold M equipped with a metricg, R is the scalar curvature, A is the
cosmological constant, and k = 87G whit G is the Newton constant. I,user 1S the
matter action.
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The resulting Euler-Lagrange equations are the Einstein equations
G = K1, (1.2)

where
g#l/ = G,ul/ + Ag,uua

G,being the Einstein tensor defined by
1
G#V = R;w — iRg'ul/.

Even this theory has the very same form of the (3 + 1)—dimensional General
Relativity, it is very peculiar. Indeed this theory does not contain any dynamical
degrees of freedom.

1.2 The Peculiarity of (2 + 1)-dimensional General
Relativity

In any dimension the local geometric information about the spacetime is encoded in
the Riemann tensor. The latter can be decomposed into two parts as

v

po _ . lpg Ol po
R, " =9,"5," +Cu
where the tensor S,

4 4

Sw = 5B — Ty p =2y e

is a combination of the traces of the Riemann tensor. (), ,is a traceless and con-
forrmally invariant tensor (vanishes if the metric is a factor times the flat metric).
This tensor is called Weyl tensor. The ‘true’ gravitational degrees of freedom are
contained in the Weyl. While the Ricci tensor and scalar curvature can be identified
with the matter degrees of freedom, as it is suggests by Einstein equations. The
peculiarity of (2 + 1)—dimensional general relativity comes from the fact that the
Riemann tensor has the same number of the independent entries as the Ricci ten-
sor implying that Weyl tensor vanishes identically in three dimensions. This has
dramatic consequences: every solution of (1.2) with A =0 is flat, A < 0 is Ads and
A > 0is dS.

This means that the curvature is concentrated at the location of the matter. In
other words there is no propagating degrees of freedom, no gravitational waves at
the classical level and no graviton at the quantum level.

1.2.1 Counting the degrees of freedom

The absence of the degrees of freedom can be further checked on by a naive counting.
The dynamical variables of general relativity in D—dimensions

are constant time hypersurface metric and its time derivative. The phase space
of the theory is then 2 x $D(D — 1), but there are D of the Einstein equations which
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are not dynamical but rather constraints, besides, we have D gauge freedom. We
are left then with

1 1
2% 5D(D—1) =D =D =2xD(D -3

In conclusion there are 1D(D — 3) degrees of freedom per point. In D = 4, on gets
the two polarizations of the gravitons, but in D = 3 there are no degrees of freedom.

1.2.2 The Newtonian limit

The (2 + 1)—dimensional gravity has no Newtonian limit. In the weak field approx-
imation of d > 2 dimensional GR

Guv = Nuv + h,ul/ )
Einstein equations read (we drop the cosmological constant for the time being)
Ohyw = 26T,

one recovers the Newtonian limit (namely Poisson’s law) V?¢ = 47Gp by the iden-
tifications hgg = ¢ and Tyy = 4nGp. The geodesic equation
d2z? D -3

az P2p =0

Obviously for D = 3, a test particle does feel any interaction.

1.3 The gravitational field of a point mass in (2+1)-
dimensions

We will show that spacetime is flat outside the matter source. The mass is reflected
in an angle deficit in the space and the spin has the effect of rendering the time
coordinate helical.

1.3.1 Static solution

Let us consider a spinless point particle of mass M at rest at rest of the coordinates
system. The energy-momentum tensor is given by

VIgIT® = —M§P(x), T =T% =0
We assume the ansatz for the metric
gij = €¢(X)> gio =0, goo = —NQ(X)~
The equations of motion be reduce to
N(x) = constant,

which can be set to N(x) = 1 by rescaling the time, and

V3(x) = —26M 5P (x).
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This is the Green’s function in two dimensions. Its solution is
K
6(x) = ~“Mn [x].

The line element is given then by

ds? = —d? + ||x|** PVdx?, a=1- ;M,
7r

Let us focus on the space line
A% = ||x|* Y dx?
=[x (d 1x]* + [1x]* dp)
If we make the change of variables

<™

r=-——and ¢ = ayp,
a

we obtain the line element of flat space in usual polar coordinates
di* = dr* 4 r*d¢?,

however the range of the angular variable is unusual, viz. 0 < ¢ < 2wa. Which
means that a wedge of angle 27(1 — «) is cut out from the flat space and the edges
are identified. This defines a cone.

1.3.2 Spinning point mass

We return now to the spinning point particle with angular momentum J The energy-
momentum tensor is given by

VI0gIT® = —M6®(x), T" =0

VI0gIT? = Je9;6® (x)
The line element is given then by

ds? = —(dt — ~Jdg)? + dr? + r2dg?,
T
If we define a new time 7 p
T=t——-Jop, (3.3)
T
The line element becomes that of a flat conical spacetime
ds* = —d7? 4 dr® + r*d¢?,

nevertheless, the transformation (3.3)is singular at x = 0, and the time has a unusual
structure as it is helical. At constant ¢, the new time 7 is identified as

2
r=r—"Jn
a

since ¢ = ¢ + 2mna.
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1.4 BTZ Black Holes

The BTZ black hole[2| is obtained from the universal covering AdSs; metric

o (T 2 o PP
ds® = Iz 1)de“ + 7 1 dr® +r7de (4.4)

if we identify ¢ ~ ¢ + 27 (this can be done since 0, is a Killing vector). (4.4) will
be a black hole. For constant ¢, » < ¢ are trapped surfaces. We know from section
(1.3.1) that identifying ¢ ~ ¢ + 2wy M has the effect of adding a mass then

r2 r2 -1
ds? = — (P - M) de? + <€2 - M) dr? + r2dy? (4.5)

where the following rescaling was made

t
g0—>i t—= — r— VMr

VM’ VM’
One can further add an angular momentum too the black hole. This can be done
by the identifications:

=t

/A

S Te T
PEUYT R
AZ_EQTQ_TE
2 2

+ —

1.5 Topologically Massive Gravity

As it was seen in the previous section, the (2 + 1)—dimensional gravity theory is
trivial due to the fact that the traceless part of the Riemann tensor (namely the
Weyl tensor) vanishes identically in three dimensions. However, there exists a tensor
which can play the role of the Weyl tensor in three dimension, that is the conformal
Cotton tensor

M — LE(MQBDQG”)ZB _
VIl
This has the same symmetries as the Einstein tensor, and one can hope to restore
some of the degrees of freedom contained in Weyl tensor if the Cotton tensor is added
to the Einstein tensor in the equation of motion.
Since C'* is one derivative higher order than Einstein tensor, it must be multi-

1
plied by a factor — of inverse mass dimension. The equation of motion then reads

1
Ew =G + ;C’W = K1 . (5.6)

In the same manner that Einstein term can be derived from the Einstein-Hilbert
action (1.1), the Cotton term can be derived from the following Chern-Simons
action

1 2
Iog = 2/ B/ =g T <8HF;‘U + 31“;‘”1“;) . (5.7)
M
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This action is called topological term since it does not depend on the metric but
only on the connections.

The theory described with Einstein-Hilbert action plus the Chern-Simons term
is called Topologically massive gravity (TMG) [1] . Adding the topological term
modifies the theory in a non trivial way. This can be seen by the linearized equation
of motion about Minkowski vacuum, this yields

O+ p?)p =0,
with

gb = (57,'j + éiéj)hij, éz = 81(—V2)*%

This indicates the presence of propagating of one massive degree of freedom,
hence the name massive gravity.
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TMG Black Holes

TMG black hole solutions was found in [1|. The purpose of this chapter is to extend
this solution to include cosmological constant.

2.1 The sationnary axial symmetric spacetimes in
(2-+1)-dimensional gravity:

We consider three dimensional spacetime with two commuting U (1) isometries. The

two U(1) isometries are generated by two non-commuting Killing vectors d; and

0,. We are interested in axially symmetric solutions, so we will take ¢ coordinate
periodic i.e ¢ ~ ¢ 4 27 (the orbits of d,, are closed).

2.1.1 Dimensional Reduction:

Upon dimensional reduction, along 0, and 0, isometries, from (2 + 1) to (1 + 0),
three dimensional metric can be then cast into the form

h
ds? = Agp(dz® + Bdp)(dz® + B'dp) + ]({Zt([))\)] dp®, a=1,2 (1.1)
0

x’ =1, =, 2 =p (1.2)

where A is the 2 x 2 matrix, h,,(p) is the metric on the p direction. B* is the Kaluza-
Klein gauge vector which can be removed through the coordinate transformations
x* — 2% 4+ F*(p).we denote by e the einbein in the p direction.

The metric (1.1) then takes the form

2
d 2 _ )\a dx®d b € (p) d 2 1.

2.1.2 Parametrization of the metric

The metric (1.3) is SL(2, R) invariant. This fact leads us to define a useful parametriza-
tion of the matrix A.
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There is a one-to-one mapping between vectors of R*! (The three dimensional
Minkowski space) and 2 x 2 real symmetrical matrices (this due to the isomorphism
SL(2,R) ~ SO(2,1)).

Let’s first, define the Lorentzian invariant dot product of two vectors A and B
belonging ,

and their Lorentz invariant cross product by
(A x B) =ne;, AFB (1.4)

where € is the Levi-Cevita symbol, with €y1o = +1 (thus €2 = —1).
Notice that some of the usual cross product identities may change due to the
Lorentzian signature of the metric 7;;.
For instance, the identity A X (B X C) = C(A-B) — B(A-C) has the
opposite sign of the usual one.
We will define the “light cone ” components A™ and A~ and the “transverse”
component AY of a vector A = (A, A!, A%)
At = A"+ A,
AY = A2
Recall that the SL(2,R) algebra is given by

[T’, 7']] = €k,

where the generators are the following Pauli matrices.

(85 (3w

To each vector V. = (VO V1 V2) € R'? one can associate a real symmetrical

matrix N v
vVt Vv
and the determinant of M is given by
det M = (V)2 — (V1)? — (V?)?

= UijViVj

=V
Conversely, for every real symmetric 2 x 2 matrix M, there is a vector V' € R!?
defined by

1
V: — §T’I"(TTOM)

o_1
2

1 1
V= §(M11 — Mys)

V2 = My

V (M1 + M)
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In particular, there is a vector X = (X°, X!, X?) associated with A such that
Xt Y
e w8
= |det Al
=X = X'X7 = -T?+ X* + Y2, (1.9)
It will be useful to associate to each vector A € R'2, a traceless matrix noted A or
a such that A
CLEAET-A:< _A+ _AY > (1.10)
Pauli matrices satisfy
il = n 4 A 7T = 79770 = 1. (1.11)

It follows immediately from the above two properties that for any twoR'? vectors
A, B one has

AB=A -Bl+A X B, (1.12)
where 1 is the 2 X 2 unit matrix. Also, the application of (??) to the vector X yields
1
A=712, Al= —@xTO (1.13)
From the background metric (1.3), we compute the Christoffel symbols
]. a ]_
F;b -5 ()\_1)‘,) b 1—\¢27,b _77?/2 )\/ab; F§2 = —R_l R, y (114)

2 2¢e?

where the prime stands for the derivative d/dp, and the corresponding Ricci tensor

1 “ 1 1
R'y=——((e"RR)1+(e')') , R,=-(—-(c"'"RR) +e'-X"?),
2e b e 2
(1.15)
where [ is the matrix associated with the vector
L=XxX. (1.16)

The Ricci scalar

1 1
R=- ( —2(e7'RR') + 612X’2> :

€

2.1.3 (2+1)-Dimensional Gravity as Particle Mechanics

The parametrization (1.3) reduces the action (1.1) to the form
1= d*z / dp L,
2%3
The effective action which governs the dynamics is given by

1
L=1 [e-l X”? —de A+ —e?X - (X! x X”)} (1.17)
o]
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The variable z'and z2are toroidal coordinates, then dynamically irrelevant, they can
be integrated out. The effective action which governs the dynamics is given by

1
Ip=— [ dpL 1.1
E 2/{1 pL, ( 8)

where

1V

EQaHd‘/QE/ d’z
K1 K3 T1,1

To make transparent the interpretation of the Lagrangian (1.17), let us turn off the

Chern-Simons action. The remaining Einstein-Hilbert action describes Lorentz in-

variant mechanics of a particle. The particle’s world-line ( geodesic) is parametrized
by p. The “position” of the particle is X(p) (the embedding of the world-line into the
an auxiliary Minkowski target space R1? ) . The variable e(p) is an einbein on the
world-line. The equations of motion are derived by externalizing the action (1.18)
with respect to X, this yields

X" =0.

The variation of the action with respect to the field e gives the constraint
X"? 4+ 4e? A = 0. (1.19)

One can solve the previous equation in e and replace back it in the action (1.17),
this can be always done because (1.19) is not dynamical. The result is the more
familiar action

Iy = —/dps/|AX’2|
— Vil [ var,
where 7 is the proper time of the particle

de = —ﬁZ]dXZdX] = —XIQdPQ.

To recover the non-relativistic limit, we choose the gauge X° =T = 7, then

dx

dr
IE:—\/\A\/dT\/l—ﬁz, T =

dy

dar

In the limit of velocities small with respect to the velocity of light
1
Iy = /dT (- Al + 5 /A0 + ) |

One can identify the particle’s mass, being /|A|.
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2.1.4 TMG as Particle Mechanics

Let us now turn on the Chern-Simons term. Using (1.14), one has

1
Iog=— [ dpe?X - (X' x X" 1.20
c-S8 QHW/ pe (X" x ) ( )

This adds to the free particle action (1.18), an “interaction” potential. The dynamics
is governed now by the sum of the free particle action (1.18) and the interaction
(1.20). As aside note, the full action is second order in p, the extremization of such
an action needs either to add boundary conditions on the velocities X'(p;) = X'(py)
or to add of suitable a surface term. The equations of motion is then

1
X" = %0e B(X' x X") +2(X x X")] (1.21)
e
And the variation with respect to the Lagrange multiplier e yields constraint
2
X? - ZX(X'Xx X") +4e A =0. (1.22)
ep

These equations can be integrated once. This can be performed thanks to the con-
served angular momentum J associated to Lorentz transformations on the auxiliary
Minkowski space R%2. The conserved angular momentum J is found to be

J=L+S8,

1
with L=XxX' and S = —Q—[X’X(X x X') = 2X x (X x X")]. (1.23)
ue

The angular momentum L is associated the pure Einstein-Hilbert action, while S is
correspond to Chern-Simons term. From (1.21) , one can rewrite(1.23) as

2X2X" = 2epd — 2euX x X' 4 (X - X)X’ — (6@2A+2X’2)X, (1.24)
and the constraint reduces to
2 4
(X%A&M:—ixmxxxwz—§LX’ (1.25)

2.1.5 Solving the equations of motion

In this section we will solve the equations of motion (1.24). We will also assume
that X (p) is an analytic function of at p = 0, so it can be expanded in Taylor series

1
=2
n=0
The coefficients «,, are given

d"X(p)
dpm

«, =

p=0

Let us now expand equation (1.24) order by order in p. The order p° term just fixes
the angular momentum vector

)
J= 26!0 X a1 — al(ao . 051) — 00(662/\ — 5&1) (126)
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Let us further make an educated guess and suppose that @, is null and by a suitable
translation of coordinates setting a; - @y = 0. It follows that

a1 X Oy = + ||0!1H Qg (127)

Expanding the Hamiltonian constraint to order p° gives
9 1 1

o) +4e"A = —2—ap - () X @) = F2— ||a ]| ap - @z (1.28)
ep ep

Comparing to the second form of the Hamiltonian constraint

4
a; +4e’A = —30 - @ (1.29)
4 p?

we see that either a? = §E and g - g # 0 or af = —4e*A and ag - s =0 .
If a2 = —4¢*A then we can show that all higher order terms in the Taylor
expansion vanish, so the solution is just the BTZ black hole. Finally, let us consider

4 2
the case where a? = §% In this case the Hamiltonian constraint to the lowest
order reduces to . A
_ 2 -2

Qo - Oy = —gl,l, e (14—9#2) (130)

Expanding the constraint equation (1.25) to the linear order p' we discover that
ap - a3 = 0 then to p™ 2, p™ ! and pm!

)y =0 -y, =0 -y, =0 (1.31)

for all m > 3. The equations of motion to order p
2 Lo o
20503 + 2ep10 X gy — 3¢ (1> +9A) .
This can be solved by
Lo
a;=0 and ap X as = 3¢ (1° +9A) .

Proceeding in the same manner we find that the equation of motion to the p? is

solved by

2
oy = 0 and ), X Oy = —56/,602.

Now we will see that all the higher order terms in Taylor expansion vanish. Let us
suppose that the cubic and higher terms up to some m vanish

_ 1, 1,
X(p) =g +aip+ 5P +k§_;nk!,o ay; (1.32)
Using the Hamiltonian constraints ( 1.25), the equations of motion to the order p™ 2

reduces to
2

2 _
mQQQm =0
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We have just proven by induction that the higher terms vanish Indeed, we have
checked that a3 = 0 We have assumed then that the higher terms up to m vanish
and proven that in this case the higher order terms up to m 4+ 1 must vanish.

The conclusion is

X(p) = ap + a1p + %anQ (1.33)
with
ai=ay-a=0a-a;, =0, a?=1% o a,=—z,
ay X Qg = gal, a; X g = —zeuag. (1.34)
with
2=vi(1- 5%
V= zeu, B3 = % (1 - 2;?) (1.35)

2.1.6 Parametrization

We now proceed to the parametrization of the constant vectors subject to the Eqns
(1.34).
Let us start with the null vector as. A generic null vector can always be put in
the form
as = (a,acosf,asinb)., (1.36)

with a real and 0 < 6 < 27. From (1.1) and (1.8),
At large p, one has
1o—2_ 221
Gog ~ 50 p~ = ap”sin” 50 (1.37)

This should be nonnegative (to avoid CTC’s at infinity) thus either 1) 8 # 0 and
a>0,or2)60=0.

In the first case (0 # 0 and a > 0), making the change to a rotating frame
dp — dp = dp — cot(0/2)dt transforms ay to

&y = (@, acosB, asind)., (1.38)

but with &¥ = 0t leading to 0 = 7 . @ can be set equal to 1 by a scale transformation

t
p—)ﬁandt%j,thus
a a

ay = (1,—1,0). (1.39)

In the other case, the magnitude of ¢ can be set equal to 1 but the sign remains
unconstrained

ay = (+1,+£1,0). (1.40)
It was seen in |?| that this choice corresponds either to a non-black hole solution or
to the precedent solution.
Let us note
al = —Bp2, (1.41)
The equations (1.34) are fulfilled by the following parametrization:

1 2
02:(1,—1,0), alz(w)_wv_y)v aozi(z—i_u?Z_uv_ wz)? (142)
14
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where ) )
Wz pft

U
| z

It is to notice that in this parametrization, there are only two free parameters,
namely pg and w.

2.1.7 The Metric

Now we are ready to write the final form of the metric.
With the help of (1.8) and (1.9), the metric (1.3 ) may be put into the form

2
dsQ——&th2+X‘ d +Ldt +—d (1.43)
- X 7TX- Rz '

Using (1.33),(1.41) and (1.42), we have

Xt =12 (1-5?)

recall that

By replacing these in (1.43), we get
132 ?
62p pO dt2 +r |:d§0 _'_( ﬁ )W dt:|
T

62 dp
/62 2 , (1.44)
with 72 = X ~which can be written as
2 2 2 2 520(2)
r?=p —i—2cup+u}(1—/6’)—1—1_627 (1.45)

The natural background for the black hole family (1.44) is the extreme black hole
po =0 with w=20,

1717 1 dp?
52 = —p2dt* + p? [dgp — dt} + — 1.46
p ¢2p% p? (140
The vector X associated with (1.44) is of the form! From the wedge products
B2p2
axa=—a, axa=-—za, aXa= a— a, (1.47)
z

n this section we return to the convention introduced in Eq. (1.3), i.e. background geometrical
quantities are overlined.
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we obtain
L=ap*+2Bzp—f X, (1.48)
1 4
S:—oap2—2ﬁzp—§v+§zﬁ><7, (1.49)

leading to the constant super angular momentum

;214287

2.2 Global Structure

This black hole is regular for all p # 4p, (geodisically complete). It may be extended
through the horizons=+pg

1—43?
R= 5 g v? = 6A,
_Qp2 4
R, R" = 3-8 485 8”84 +86 vt (2.1)
There is no curvature singularity (at least for A # 0).
However the orbits of m = 90 should be nontimelike for the absence of CTC’s
i.e.m? > 0. Therefore r? must be nonnegative.
CT’s are absent if
B2 <1 and w?<po®/(1—p7). (2.2)

For 8% < 1 and w? > p3/(1 — %),and w > 0 p € [p_, ps],(p— < p+ < —po) Where
p_ and p, are the roots of

B2 p}
1— 52

/ 2
pr=—wxp w2—1é)62. (2.4)

r* = p® + 2wp + w?(1 — B?) +

(2.3)
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Conserved Quantities for TMG with
arbitrary background

3.1 Preliminaries

The definition of conserved charges is related to the mass-energy tensor, but the
definition of the latter is a subtle subject in general relativity. It might come as
surprise for non-specialist that a covariant mass-energy tensor of gravitational in-
teraction does not exist. To understand this fact one has to return to the basics of
general relativity. The principle of equivalence states that “One can get rid of all the
local physical effects of the gravitational field by jumping in an inertial (free falling)
frame ”. One can then cancel the energy-momentum tensor at every point. The
consequence of this is the non-localizability of the gravitational conserved charges.
Only the global charges of the whole spacetime are conserved. An other approach
is that quasi-local charges..... Since the conserved quantities are in general associ-
ated with the symmetries of the background (vacuum) not with the full theory, one
can look for a pseudotensor (a tensor that is covariant only under a subset of the
general coordinate transformations). Following [3, 4, 5| we will show how to build a
pseudotensor and compute the conserved charges. Consider a gravitation theory( a
theory which invariant under diffeomorphisms), with a generalized Einstein tensor
(GET) &€,, [g] and matter mass-energy tensor 7),,. The equation of motion

g,uy [g] = KTMV (11)

where E,, [g] is a Generalized Einstein Tensor (GET) of a gravitation theory, 7},
is the matter energy-momentum tensor, and x = 87 G is the Einstein gravitational
constant.

Given a background metric g,,solving the vacuum field equations

Ew 9] =0. (1.2)

The metric g,,, can be written as

Juv = Guv + h;w ) (13)
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where h,,, represents deviation from the background solution (k,, vanishes at infin-
ity, however it is not assumed to be small everywhere).

In the following we will refer by background fields to the fields constructed from
the background metric. The fields built from h,, will be called linearized fields.
Furthermore we will adopt the convention that indices on linearized tensors (together
with background tensors of course) are raised and lowered with g.

By formally expanding &,, [¢] around h,,,

L 0w |,

Ew 9] = Ew (g] + | Y+ O(R?) (1.4)
gOLB g
0w
Noting 0&,,, = 58” h? the exact Field equations (??) can then be written as
ga,@ g
58},&1/ = K/(T[U/ + tul/)a (15)
where .
by = E(gw/ — 0&w)

t,u 1s interpreted as the energy-momentum pseudotensor of the gravitational field
(generalization of the flat background to an arbitrary (curved) background). The
quantity

T = Ty + L

is then the total energy-momentum pseudotensor of matter and gravitation.

We will construct from 7, a locally conserved quantity.

For this, let’s notice first that the linearized GET inherits Bianchi identity from
the exact theory, indeed, we have

D, =D, EM + D, 5EM™ + O(h?)
= D,EM + 6Th EPY + 617, EM 4+ D,6EM + O(h?),

Using Bianchi identity for the exact theory
D, &" = 0. (1.6)
and that of the background
D, " = 0. (1.7)
to together with (1.2), one has the linearized Bianchi identity
D,6EM™ =0, (1.8)

This implies that
D, =0 (1.9)

with d the background covariant derivative. Now if the background admits an

isometry &, i.e. B
D&y =0 (1.10)

then
D,(T"¢,) =0. (1.11)
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is covariantly conserved (as a consequence of (1.9) and (1.10)). But the quantity
between parenthesis is a vector then

D, (T"¢,) = \/lmaﬂ (J@T“”gy) ~0. (1.12)

implying that is \/|g|7#"&, is locally conserved.
and that the charge

Q*(&) = /M VI0gl e, (1.13)

is conserved.
In practice, it is not an easy to calculate t* (in order to get ) for specific
physical problems. It is convenient to use the L-H side of (1.5)

rvg, = L,
K

then
1
@ = [ Vidlsers, (114
K Jm
We define the “superpotential”
1
Kr = 6Em¢, = 0,F" = ——=0, (/|g9|F" ), (1.15)
V19l ( >

Using Stokes theorem, one gets

Q&) = i/M 0, (J@PW) = i/{w Vgl Frds,. (1.16)

3.2 Conserved Quantities For TM G Solutions

The ADT procedure explained above will be applied to TMG with cosmological
constant.

3.2.1 The linearized Theory

Generalized Einstein tensor is defined by
- 1
g;w == g,uu + ECHV .

where the Einstein tensor is given by
Guw =Ry — %Rgm,, G =G+ Agpw - (2.17)

and the Cotton tensor is
1
O = ——€rfD GV, (2.18)
9] ’

with €#*# the antisymmetric symbol.
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In what follows 67 indicates the part linear in %, of the field 7" which reduced
to T on the background. Notice that §TH" # gh*g"# 5T ,5.
One can find the relation between 07" and 67,3 as follows

OT™ = 6(g" "6 Tog)
= "G 0Tas + 09" 9" Tap + 9"“09" Tag
— guagl/ﬁ(;f];ﬂ _ huafj‘au _ hl/b’j’uﬁ
— guagyﬂéTaﬁ _ h,uai—cw _ huai—/.wz

where the linearized metric
09w = hywy  0g"" = —hM (2.19)

The trace of the linearized metric is h = ¢"”h,,, and using the identity for any
matrix M, ddet M/det M = TrdM one can compute the linearized determinant
dg/g = h, and we have also

1 11

J =—- h.
Vigh 2Vl

The linearized Christoffel symbols are found to be

1
ory, = 5 <D#hpl, +D,h?, — D"hw) . (2.20)

One can deduce the linearized Ricci tensor

0R,, = D,oI%, —D,oI",

1P

= ;(DADuhAﬂ + DAD#h)\y - DADAh#y —_— D;U'Duh> 3 (221)

The linearized Ricci scalar reads

SR =6R,, g" — MR, = —D*Dyh + D,D, k" — h*'R,,,,, (2.22)
The linearized cosmological Einstein tensor is

5Gy = (G + Ah) = 3Ry — gy OR — L(R = 28) By,

Replacing (2.21) (2.22), one ends up with
G, = 3 <DADth + DD, by, — D Dby, — DHDyh)

- §9W< —D*Dyh+D,D, h““) -1 <(R —2A) hm,>
+ 50 R, h, (2.23)

The linearized Cotton tensor is found to be

e (I Yon IR
g
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3.2.2 The Superpotentials

Let us start with the superpotental corresponding to Einstein tensor,

Kh = &,0G" = 1¢, (D ADYAM 4+ DyDFRNY — DD — D“D”h)

+ 5&" <DADAh - D@M) - ;a( — ARWMAp\) 4 (R — 2A)h““)
+ 5E Ry h™, (2.25)

After integration by parts

Kf = 1D, (5’\Dl,h“” — DL RN + E,DFRNY — £, DM+ DM — f’\D“h)
+ 1 (DA& D™ 4+ DD, Y — DAEPD h)
+ éfy< — 2RMhy, — Rah™ 4+ RF 5\ WY + (R — 2A)h””>
+ 581 Ry I

and we have used the identity valid for Killing vectors

DuDug)\ = Rpuzz)\gp . (226)

Finally
1 1
K = DA (€) = 9" oy + €GN hy, — 267G, (2.27)
with the Einstein superpotential:
Fi(€) = L (¢Dyn™ — ¢'Dyn™ + D' — DV + ¢ DVh — £°D'h
+ D! — R DyE” + D) | (2.28)
Notice the that (2.27) is a total divergence for pure GR |, since the extra terms vanish

on-shell.
Now we shall turn to the Cotton term

1
=57 {Da <eﬂa55V5G”ﬁ + €L, 0G" 5 + ePE,0G” 5>
g
— 167D, &, 0G5 — L PE, D 0G
+BEATINGY — 3V alehC] (2:30)
Using
DadGs = —0T%,GY5 + 0T G, (2.31)
and the identity
€'l = 0L P, 4+ S E, + O PE, (2.32)

we shall cast K, into the same form as(2.27), namely a total derivative term plus
the extra terms where the Einstein tensor being replaced by the Cotton one. The
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aim is that the Einstein part and the Cotton part of each term will combine and
vanish on-shell.

Kt = T (25“0”@,, — MOy, + 5"0%)

2l 7

where
T" =D, <2ewﬁgyaauﬁ — 6“0”’5”5(?) — %D ,&,0GH
+2 <e°’5”5F5A + Ty, + 65“”5F3/\> &G
- <emﬁgyDaGﬂﬁ + B¢, DGR g — emﬂgﬂDaGyﬁ) hyY . (2.33)

T* is expected to be a total derivative, thus we shall integrate the rhs of (2.33) part.
To this end we define the vector
ve 1w ¢ (2.34)
TI = € PSSO .
2y/l9]

and express the 3-dimensional Riemann tensor in terms of the Einstein tensor,

R = €uac”’ G (2.35)
we have from (2.26) and (2.32)
v 1 A v
Din” = —=€""E,G" . (2.36)
varl
Using the definition (2.34), the second term of (2.33) can be rewritten as
1
— 53¢ Dak 06" s = V/]gln"5G" 5 (2.37)
1
= 5\/ |g|D <n’\Dl,h“” — "D, + 0, DFRNY — 0, D AWM + DB — 77’\D”h>
1
+ 5Vl (DWDVW — D, D*I + Dy, DM — DAn“DAh>
1
+5Vlgln” <h)\BGMA - hG“ﬁ) )
while the third term can be rewritten as
(eaﬁuargA + "V oTL, + eﬁ“’jdfg/\) £,Ghg =
1
= 2\/@1)0‘77/\< - Dahu)\ - D)\h/’ba + D#ha)\ + (55D)J’L>

1
+ ieuavgy(;/\ﬂ[)ahﬁ/\_ (2.38)
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Collecting these, and again integrating by parts, we arrive at

1 1
T =D, [ewgy(sczuﬁ — 560G + SVl <77ADVh“” — "D, b
+ DAY — n, DR 4 DA — DR+ Dyt
1
— Dy b + Diith — DWh) + 26M”§,,Gpghﬁp]
— Vgl (DADmW“ + DAD[“n”h)
1 HAV p B 1 B KA Iz
= 5@ DA &G |17+ SV gl | WGP — hGY
1
+3 (emﬁgyDaGﬂﬁ + B¢, DG g — eMB{“DaGVg) hy" . (2.39)

Using (2.34) and (2.36), and the identity (obtained [13] by computing [D*, D¥]n*,
first from (2.35), then from (2.36))

epyagaD)\Gﬂp - Ep)\U&TDUG'up = \/@(WAGTVT]T - QWGTAT)T + QGH)\”U - QGuynA) )

(2.40)
we finally obtain
Kt = DAFENE) — €°CMhy, + %g#c@hm - %gucm, (2.41)
with the Cotton superpotential:
FEE) = ) + Nlmew £ + \/1@@ (2%6@“,, - e“”A5G>
+ ;h(ngg + ;@R)] .

The total current
Kr = DyFr(€)

and superpotential

PO = FEO) + 1 FE ()

The mass )
M=QUe) =2 [ s,
K Jam
and the angular momentum
— O£l = 1 0i
J=Q(¥)=— [ FdS;
K Jom

3.2.3 Application To Stationary Axially Symmetric Solutions

Now we specialize to stationary axisymmetric spacetimes, and compute the con-
served quantities associated with the two commuting isometries 9, and 0.
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The linearized metric components are

R
hap = 0Aap, hoy = —262@. (2.42)
We will also need the mixed components
R 1 “ 0R
a -1 a 2

h b:()\ (S)\) bz(R”—i_WO—) b, h 2:—2%, (243)

where ¢ is the matrix associated with the vector
Y=Xx6X. (2.44)

and we have used (1.12) and (1.13). Note that (2.43) implies h = 0.

Let us apply this formalism to the computation of the ADT charges (?77). Choos-
ing the boundary OM to be a circle, we need only to compute the (02) superpotential
components. We begin by the computation of F%(V) for an arbitrary spacetime
vector V® (V2 = (). It is convenient to first compute the covariant components

1
Fra(V) = 2(AV)Q< — Ooh® 5+ T5,h% , + Th A b>

1 1
= 5OVl ;4 Sh? 305(AV)a

= %(AV)G [2 (573) L gROR 1Tr()\1)\’)\16)\)]

R R2 2
1 b oR
- §(>\V)b()\‘15)\) L= %(AV);. (2.45)

This leads to

1
FR(V) = 542 {v <X SOX! + 272’572)

!

0
+V)\< —o' + 27720 - 2R6R>\‘1>\’> A — 2R6RV’} . (2.46)

After some algebra with use of (1.12) , (1.13) and (1.11) one finds

/

M=o+ 27710 —2RIRAININT! = 7P 2R/ORI — 61)7° = (—2R/6RI— 817, (2.47)

and finally

0
FR(V) = %e‘Q KX 0X' - 5z> V- 2R5RV’} . (2.48)

Now we move on to the computation of the Cotton part of the superpotential.
Using £ = 0, the vector defined in (2.34) takes the form!

1

1 b ¢! 1\
= —V = —— . 2.4
1 = e = —o (6) (249

L1Our convention €12 = —1 implies €*? = —¢% with ' = +1.
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Replacing in (2.48), and using again (1.12) one gets
1 1 0
Fi(n) = 16_3 { <5L XD -6(X x L)+ 55(X’2)X - 5(X2)X”) g} . (2.50)

The next term in (??) contributes

1 0b C _1 Oc _ 1 -3 [ l 1 2 0 ’
Tm(xg)c (e OR® ), — e 6R> = 5e _5)\ ol + J6(X2)0 ) 7
1 — ! ! !
= 5 P [(X x 0L/ + J6(X*)X — X 611) ¢]°
_ %e*i” (5 (X x L) — %5(X2)X” + (X" 6X) X
1 i 0
+Z<5(X’2)X -X- 5L’u> g} : (2.51)

Finally, the last term in (??) contributes

Zﬁeoa(xg)a (hbcRCb + h22R22> =z <7;z e X (RR’)’]) (€)°
= —%e_?’X" S 6X (2£)°, (2.52)
where we have used
$-L = (X X" )RR — R¥(X" - 6X). (2.53)

Collecting(2.50), (2.51) and(2.52), we end up with a simple expression for the Cotton
superpotential
02 1 -3 / 1 / 1 1 I 0
}-0(5)256 (5X><L—§(5X ><L+§X-5L[I—X-5LI] Er . (2.54)
The net ADT charge (?7?) is a linear combination of the Einstein superpotential
(2.48) (for V = &) and the Cotton superpotential (2.54). To make contact with the
SAM approach of |?], we define the spin super angular momentum

1
=— [%X' x L —X X L’} , (2.55)
ep
and the total conserved super angular momentum [9]
J=L+8S, (2.56)
in terms of which the Killing charge is given by
T o1 o1, 0
QE)=—2310J—-X-6XT+ —(X-0L' — =X"-5L)I | £ » . (2.57)
Ke eu 2

Choosing £ to be one of the two Killing vectors of (1.3), {u) = (=1, 0) and &,y =
(0, 1), we finally obtain the mass and angular momentum of the field configuration
X 40X relative to the background X:
1 /1
M=-" [(UY—I—X-éX’—I—(X’-(SL—X-(SL’)] , (2.58)
Ke e \ 2

J="6J". (2.59)
Ke
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3.2.4 TMG BH Conserved Charges

The mass and angular momentum for the solution (1.44) can be easily computed,

the result is
167 22 82 (1 — 6%)
= ————
27k C c
47 1-p32 1+ B2
_ 77M52 OJ2 2

J = _
9k c 1—526p0
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4.0.5 Chern-Simons Entropy
The first ingredient is the black hole entropy S. This is the sum

S =5+ Sc (01)

of an Einstein and a Cotton (or Chern-Simons) contribution. The Einstein entropy
is as usual proportional to the horizon “area” (perimeter in the present case),

4 2
Sy =y, (0.2)
K

The general formula for the Chern-Simons contribution to the entropy was first given
by Solodukhin [11],
Sog = —— | wapetebe
cS o . bty
where

e
af €

S

€

(n®n,)(n"n,)
lg

« — « «
(n%n,) = niny, + nsng,,

Wab = Wap,udz* s the spin connection and n; and ny is a pair of vectors normal to
the horizon hypersurface ¥ and orthogonal to each other.

The orthonormal basis e* = ejdz# for the metric (1.43) is

evaluated on the horizon, where wq, = wgp ,d2* is the spin connection.

From the black hole metric (1.44), which is already in the ADM form

1

ds? = —=N?dt* +r*(dp + N¥dt)? + L dp?, (0.3)
The dreibein e® for the metric (0.3) is
1
e =Ndt, e'=r(dp+ N?dt), e*=-——dp. (0.4)

(rN
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The corresponding spin connections are
0 1o 1 11
w'y = (r[N'e +§7’(N“°)e],

1
W’y = C?ET(N“")'eQ ,

1 /
wlo = ¢r |:27“(th)/€0 + NZel} , (0.5)
o 2
Scs = —— woz,p de, (0.6)
0
leading to
272 272 1 L~
Scg = ——(ri(N?) = - — 0.7
cs = = r O N (o) = === e 0.7
47? c w
=—— 1—25° 1-8=]. 0.8
-2 - )2 0.8)
The total entropy is
872

S = /1= [(1+B%)po + (1= *)w] (0.9)

4.0.6 The First Law of Black Hole Thermodynamics

We read the Hawking temperature

1 1B% po
— P — =
Th = on'! OpN | p=po 3 (0.10)
where n* = +/|g| = (rN, and
1
= 1(p0) = ———po + (1 — B?)u] (0.11)
V1 — 2

is the horizon areal radius. The horizon angular velocity is
V1=

Putting (?7), (??) and (0.9) together, it is easy to check that the first law is
satisfied for independent variations of the black hole parameters pg and w.



Conclusion

We have shown that black holes exist in topologically massive gravity with cosmo-
logical constant. They are free of causal singularity for a given range parameters.
We have discussed the problem of the conserved charges in gravity and given their
values in any background. Finally, it was shown that TMG Black Holes do obey to
the first law of Black Hole thermodynamics.
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Part 11
GRAVITY IN FIVE DIMENSIONS






Introduction

Let us consider a five-dimensional (super)gravity action. The solution of the cor-
responding equations of motion (the metric §,,and the graviphoton potential AH).
We assume that all the fields are independent of two coordinates (one timelike and
the other spacelike). That is the solution is stationary and axisymmetric. This al-
lows to reduce the five-dimensional (super)gravity action down to three dimensions.
We mean by reducing just dropping the dependence on the mentioned coordinates.

In three dimensions, it is always possible to trade vectors for scalars. These
scalars together with those stemming directly upon dimensional reduction, will con-
stitute the "matter" part of a three-dimensional gravitational action. Moreover they
arrange themselves in such a way they form a non-linear o-model coupled to three-
dimensional gravity. The experience shows that such non-linear o-models obtained
upon reduction of (super)gravity theories (and dualisation of vector fields) are based
on interesting structures called coset spaces. This allow to pack the scalars (that
are the all degrees of freedom of the theory) into a (Hermitian) matrix which is in
a representation of the group GG of the isometries of the scalar manifold. We will
refer to the former matrix by the scalar matrix. Once achieving to do this, one can
cast the reduced action into a nice form which has the feature of being G symme-
try manifest. Acting on the scalar matrix globally by the G elements doesn’t alter
the three dimensional action (neither the three-dimensional metric). The invariance
property property provides us with powerful generating technique (constructing new
(super)gravity field equations exact solutions from already known ones).

That is, starting from a solution having two (commuting) killing vectors
(G AH) that we call the “seed” solution. One can obtain the corresponding scalar
matrix M by following the steps explained above. All computations done, one has
(hij, M). By acting with suitable elements of G on M, one obtain a new scalar
matrix M’, h;; being inert , one has the transformed couple (h;j, M’). The next
move is to unpack the scalars fields from the new scalar matrix. The scalars initially
coming from dualising vector fields should be dedualised. All what remains to be
done is to lift the solution from three dimensions to five.

The central problem dealt with in this part consists to applying this program to
the minimal supergravity in five dimensions. One start by reducing the action of the
bosonic part of the theory (which is all what we need for our purposes). The action is
composed by the Einstein-Hilbert gravitational term, the Maxwell term and a U(1)
Chern-Simons term. By simple counting degrees of freedom one can see that this
theory has 8 degrees of freedom. It comes as a no surprise that the reduction and
the dualisation of the graviphoton potential together with the Kaluza-Klein vector
field will give 8 scalars. These scalars span an eight-dimensional scalar manifold
(the target space of the nonlinear sigma models). The isometry group of the former
manifold is the group Gy2) a non-compact real form of the exceptional group Gb.
The dimension of this group is 14 and since the isotropy group is SL(2,R) x SL(2,R)
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which has 8 dimensions one has a coset space of dimension 14 — 6 = 8 as it should
be.

Exponentiating a suitable set of the generators of the algebra that spans the Gy
group (this set is called the solvable algebra), one can get the representative that
will give the scalar matrix. The scalar matrix is the central tool for the generating
technique, once it was found, all what remains is to apply procedure explained above.



Dimensional Reduction, Non-Linear

o-Models, Cosets And All That

5.1 Non-linear c-model coupled to gravity

Let L be a Lagrangian defined on a n-dimensional spacetime manifold M, with
coordinates {z'} where ¢ runs from 1 to n, and a metric h;;. The Lagrangian
depends on (scalar) fields ¢ taking their values in a target space 7 with coordinates
{¢pA(2)},A=1,..,dim T and a metric Gp.

The scalar fields ¢ map the the space time to the target space, that is

ot M, — T
v — ¢*(x)

The target space is sometimes called the scalar manifold. The action of the non-
linear o-nonlinear model coupled to gravity is given by

I—/d”x |h|[R + 10,0 (2)0;0" (2)G a] (1.1)

R being the Ricci scalar with respect to the metric h.
The variation of the above action yields the field equations:

Rij — 8i¢A(x)8j¢A(x)GAB =0
Do (x) = 0

with [%;; and D denote respectively the Ricci tensor and the covariant derivative

with respect to the spacetime metric. The fields that are solutions of these equa-

tions are called the harmonic maps.

An interesting situation occurred when the target space happens to be a (pseudo)Riemannian
homogeneous space (or coset space) G/H with G is the isometry group of the target

space, and H is a subgroup of G.

In the following section we will describe nonlinear o-models based on Coset spaces.
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5.2 Coset spaces

Let us first define what a coset G/H means, and start with an example. Consider
the n-dimensional sphere S™. The sphere is invariant under G = SO(n + 1), the
group of the (n + 1)-dimensional rotations. G is called the isometry group and its
elements are isometries. If G acts transitively on the space, that is, given any two
points in the manifold they can be connected by a transformation, such a space is
homogeneous. Obviously the sphere is a Homogeneous space as every two points
on S™ are connected by an SO(n + 1) isometry. However the rotation connecting
these two points is not unique as every point on S™ is invariant under H = SO(n)
subgroup. H is known as the isotropy group. It is clear that if a transformation
g € G maps some point onto another point, then the composition of the two trans-
formations g = g.h, with h € H, will do the same. Therefore every point on the
sphere can be associated with a class of group elements g € G that are equivalent
up to multiplication by elements h € H (from the right). Such equivalent classes
are called cosets and noted G/H. The sphere is an SO(n + 1)/SO(n) coset.



The G2<2> o-model for five-dimensional
minimal supergravity

Introduction

6.1 Five-to-three dimensional reduction

The bosonic sector of five-dimensional minimal supergravity is defined by the Einstein-
Maxwell-Chern-Simons action

- 1 1A
I5 = ¥ g|( — R— ~F"™F, 1.1
vim g [ o V(- R ) (1)

1 2N nl n )
- me“ P ’\FWFPUA,\] : (1.2)
where F;w = 28[Mfll,], p,v,---=1,--- 5 and é*r?* is the five-dimensional antisym-

metric symbol.
We starting with the 5-dimensional Einstein action

JA— / P (1.3)

2/4352

which, up to a surface term, may be written

1 /A pvp piv e YIRZ
]5 = w dD.f —g(Qﬂl—,ﬁQu P— QQﬁpﬁQpM — 4Qﬁﬁ“Qpp ) (14)

where ;55 are the anholonomy coefficients.
We split the vielbein (actually the fnbein) and the vector field as

2 _ ei €i(_i ~ _ 4
Br= (00 ) A= () (15)
The flat Lorentz indices ji,7,p... =0, ..., 4 are split into 7,7,k... = 1,2,3 and

a,b,...=0,1.
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The metric takes the form

~ <h” + )\abBiaij /\abBia)

=7 B Nt (16)

Guv =

The indices 7, 7, . . . are raised by the metric h;; = ne;"e;? , n; = diag[+1, +1, +1], Aw

Napea’es’, Nap = diag[—1,+1]; b = det(hy;) and 7 = |\, respectively; B;® = e%e;®
is the Kaluza-Klein gauge vector field strength.

If we choose a gauge e,* = 0, the only non-vanishing components are

O

7k

] a
Qe = eaze're! e

szc szc = —€ B€;8i€a5 (17)

where
Gz'ja - 28[iBj]“ (18)
is the Kaluza-Klein strength field.

Here we have assumed that all fields are independent of the extra coordinates
z%. This yields the 3-dimensional action

1 . 1. ..
Iy = 5 / d3x\/ET[R—ZAabGij“leth]hkl+Zh‘J(A“”)\Cd—)\“d)\d’)@Aabaj)\cd] (1.9)
R3
or
. 1. ..
I3 = 5 d3x\f7[ T)\abGZ] Grlhnk — h”@i In70;In1 + Zh”&-)\ab@j/\“b]
K3?
(1.10)
We can eliminate 7 by a Weyl rescaling
. (1.11)
or equivalently
hij — Thij
to obtain
1 3 1 byiii ki 1. .. b 1. ..
[3 d \/E[R - *TAabGijale h"h + fh”@-/\ab(?j/\a - fh”@» In T(?j In ’7']
2k52 4 4 4
(1.12)

Let move on to the Maxwell term
1 = a -
Ly = 1\/ |9|F” F.

In flat indices R K ) R
Fap = QE[ﬂ“auAD] - QﬂﬂﬁAﬁ

and
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Ay = i,
giving

Ai = ﬁeiiA/ia

where
A=A, — B'A,
and
Finally
Az =€ A,

F{j = T@fiejj [28[214;] + G%Aa]

ia
Fiﬁ, = T€3 e(—laiAa

The reduced Maxwell lagrangian reads

Ly = BF Fpy = V(T FIF); + 20" h179;A,0; Ay)
Where
= 28[Z»A;] + G A,
Chern-Simons now

L 720N nEEE n I\ 1 77k _ab
Les = mGH PP Fpo Ay = 37\/36 e [FEJ'FIEEAB - FZEF]_BAE]
After some algebra, switching to to curved indices and discarding a surface term,
one has:

1 ik a / c
Los = —67\/36 ikeab A0 Ay [BFz‘j - GijAC]

6.2 Dualization

Dualisation can be done by enforcing Bianchi identity, this can be achieved by means
of Lagrange multipliers. )

Since Fj; doesn’t obey Bianchi identity, we introduce an auxiliary field Fi; defined
by

Fj = Fj; = GHA.

Which obviously fulfills Bianchi identity.
We add the following term to the Lagrangian

V3 V3

Llag. = —TEijluakﬁ;j - 7Eijkwaa}€G?j
The factors were chosen to give simple normalization.
The variation 25 = 0 gives

oF;;
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» V3 1
Frii = L= ¢k =0 —€e® A, 0L A, . 2.13
T\/EE Mk 5 M, k:/H‘SE e Ap ( )

d2£ = 0 yield
and ;55 yields

g 1 .. 1
)\abiZJ = Wé]kv;zk s ‘/ak = 8kwa - \/éAa <8k,u + 9€bCAb8kAc> s (214)

T

The expressions of F'and G®J are pure algebraic (not differential) equations,
then can be replaced in the Lagrangian.
The result is:

1. .. 11 1
L£=vVh {R = 5h” {zaiAabajA“b + 5070 I — VAV,
+3 (@wa)\“b@jwb - 7'717],'7]]‘)] } . (215)
where we have made the replacements:

A; = V34, Ay — V3,

6.3 The Hidden Symmetries of the mSUGRAS5

If we note the scalars ®4(A = 1,2, ..., 8) the scalar (with respect to the 3-dimensional
space) Agp,wa,¥, and p, the above Lagrangian describes 3-dimensional gravity cou-
pled to a nonlinear o —model:

94 9dP

= — — : 1
L=vVh(R-Gyp o ) (3.16)

The metric of the target space is given by
1 1
ds? = §Tr(A—ldAA—ldA)+§T—2dT2—T-lvTA-1v+3 ("X 'dy — 77'%) L (3.17)

The dualized action (and the scalar manifold) is invariant under isometries of the
target space:
4 = 04 + e X(D)

X#’s are Killing vectors, which can be found by solving the Killing equation:
X =0

Semi-colon denotes G 4p covariant derivative. Instead of solving Killing equation
directly (which is very hard), one can find the isometry group, let us note it G by
indirect methods.

There are obvious symmetries, the remnant of GL(5, R) upon reduction: GL(3, R)x
R3, the generators of this group are

Mt = 2 pe—— —— Py + 8 8# (3.18)
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0
= 1
N awd ) (3 9)
0
= = 3.2
Q=75 (3.20)
and the remnant of the gauge symmetry
. 0 0 b 9 0
R = a0, + 3u8wa €1y <3M + %E)wC) (3.21)

where a runs from 1to2.

Now, since SL(3,R) C G ( five dimensional gravity is a consistent truncation
of minimal five dimensional supergravity), one must add two generators say L, to
M,’and N® to form an sl(3, R) algebra,

(M, L] = (8L.+6.L,), (3.22)
[N, L] = M, (3.23)
(Lo, Ly = 0. (3.24)

The commutation of L, with () requires the introduction of two generators P,
such that
(@, La] = Pa, (3.25)

Finally commutation of L, with the R® requires four more generators, a traceless
tensor A,” and a scalar T,

[Ra, Lb] =A%+ 5gT . (326)

We make the assumption that the algebra g is minimal and closes with a single
scalar generator T' (leading to vanishing Aab), thus

[R*, Ly = 80T . (3.27)

The five generators L,, P,, and T" are determined by solving the Lie brackets, up to
a single integration constant, this is determined by demanding that T is an isometry
of the metric (3.17). The result is

0
T = [2uXpe + 6€de)\bdwcwe} E3W
be

0
+ [Buws + 371, — €“webytha + ATANyhebd] oon

0
n [wb + by + 2€cd/\bdwc} wa (3.28)

0
+ [M2 +7 - 6bcwlﬂbc + 27)\bcwbwc] 87,111 )
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The L,, P,can be fully determined from [R®, T| = 2¢** P, and [P,,T] = 3L,.

0
La = [2wb/\ac + 2M ()\bcwa - 3)‘abwc) + 2€de)\bdwawcwe] w
+ [wawb + TAab — 1 €as — ety
0
_Q,UECd)\addjbd}c + 67'1/111,‘/}6 + QTAdeawbwcwd] 87%
+ [_/’LQEab + ,u>\ab + waa (329)
0

- a + ECd)\ a%c| o,

oty batatbe 90

0
+ [Mwa - /ﬁwa - Mem)\adwc + Twa + kacqﬂawb@bc] % ’

0
P, = 22X — 6 bV =——
[2Apct) b¥c] B,
0
+ [_3:“26111) - 2:U’¢a¢b - QECd)\adwb’(/)c] 87
Wh
0
—2p€ap + Nap — V) =— 3.3
+ [—2p€ap + Aab ¢¢b]a¢b (3.30)
0
+ [wa - Zﬂwa - 66d>\ad¢c] % .
The generators obey to the following algebra:

[M,°, M. = 6bM, " — M. (3.31)
[M,", N¢| = —(05N” + 6UN°) (3.32)
[M.",Q] = —6,Q. (3.33)
[N*,N’] =0, (3.34)
(@ N*]=0 (3.35)
[M,", k] = =6.R", (3.36)
[N“,R'] =0, (3.37)
@, R"] = 3N*, (3.38)
[R*, R"] = 2¢"Q (3.39)
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[M,", P.] = 6°P,, (3.40)
(M0, T] = 6T, (3.41)
[N Py] = 8,Q, (3.42)
[N, T) = R*, (3.43)
[Qv Pa] = _2€abR ) (344)
[Q,T]=Tr(M), (3.45)
[Ra, Pb] = —3Mba + 5bTT(M) (346)
[R*,T] = 2P, (3.47)
[La, B3] =0, (3.48)
(Lo, T) =0, (3.49)
[P, B)) = 2e,T , (3.50)
[P,,T] = 3L, (3.51)
[RY, Ly] = 0y T . (3.52)
This is a rank 2 algebra which can be put in the Cartan form, with
oo MM M - M
1 \/6 ) 2 \/§ )
Ey=—M,", E_ =—M",
EZZ%Rov E72:%P07
o T P (3.53)
3 — V3 ) -3 — V3 1,
Ei=1Q, E= 5T,
E5:_N07 E*E):LO;

Eﬁz_va E76:L17
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Figure 6.1: The root diagram for gs.

The roots are given by

R
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—_
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Sl

Q Q
> w
| \

(e
=

R
[S2

|
—
S~—

SRS

(16:(

a; + s being simple roots, one has

a3 =1+ s, 0y =01+ 2 g, a5 =1 + 3 oy, 05 = 2001 + 3.

The root space diagram is that of the 14-dimensional algebra go() which is the real

form of gs.
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6.4 Building Gy9)/[SL(2,R) x SL(2,R)] coset

An 8 x 8 matrix representation of gos) may be found in [15] (one has to do a Weyl
trick namely multiplying by —i the Z matrices there) Then one has generic block
decomposition:

gy (M =1,---,14)

S Vo VU
i=| -U =5 Vav |, (4.54)
VovT Ut 0

where S is a 3 x 3 matrix, U and V are 3-component column matrices, U” and V7T
the corresponding transposed row matrices, and U , V are the 3 x 3 dual matrices
Uij = €;jxUx. The matrices m,’, n® and ¢, generating SL(3, R) are of type S, the
corresponding 3 x 3 blocks being

10 0 010
Smee=[ 0 0 0 s Smer =100 0 |,
0 0 —1 000
000 00 O
Spo=110201],S,,=101 0 )
000 0 0 —1
0 00 0 0 O
Spo= 0 00 ),S.=|0 0 0], (4.55)
-1 00 0 -1 0
0 01 000
See=10001],8,=(001
000 000
The matrices p, and ¢q are of type U, the corresponding 1 x 3 blocks being
1 0 0
Up=101,U,=1|11], U= 0 . (4.56)
0 0 -1
The matrices r* and ¢ are of type V, the corresponding 1 x 3 blocks being
1 0 0
Vo= 01, Va=|(11], V=1 0 |. (4.57)
0 0 1

Due to the form of (4.54), the transposed matrices j4 are related to the original
matrices j4 by
Jh=—KjakK, (4.58)

where K has the block structure

o O

(4.59)

O O =
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It follows from (4.54) and (??) that the matrix M has the symmetrical block
structure

A B V2U
M = BT c V2V ], (4.60)
Vut avt s
where A and C' are symmetrical 3 x 3 matrices, B is a 3 X 3 matrix, U and V are

3-component column matrices, and S a scalar. It also follows from (4.58) that the
inverse matrix is given by

C BT -2V
M*'=KMK = B A —2U |, (4.61)
Vvt —2ut S

Computation of the product (??), with the matrices (??), (??) and (??) gives
the coset matrix M in the form (4.60), with

[(1 — A+ 2+ )yt — 70T -

A= A = ATy T )
15T 1
_ - (w14 y)AJ — 2+ )+ PTA @)Y
B = (¢¢T_MJ))‘ 1_T 1W¢TJ —|—(Z—,LLJ)\71)(:}] 7
T_1¢TJ —Z
(14 )71 = Xy A Ao — J(z — pJ XY
C = ~ ~T)\71~_2 T)\71~
ATV AT —E()l PSP =) )
U (1+z—pJXN Y —pur™'@
= e ,
v (A4 pur ) (4.62)
T\ NS - 2) )
S=14+2x—-vy),
with

O=w—mp. z=0" N\, y=r14% z=y—7WWJD. (4.63)
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Solution Generating Technique in
five-dimensional minimal supergravity

7.1 Gyy/ISL(2,R) x SL(2,R)] Generating Technique

7.1.1 The subgroup preserving asymptotic flatness:

In five dimensions, there are two possible boundary conditions: asymptotically flat
M5, or asymptotically Kaluza-Klein M, x S'spacetime.
The metric of the former is given by

ds* = —dt* + dr® + r*dQs (1.1)

where
dQ; = d6? + sin® 0d¢? + cos® Ody?

is the volume element of the three sphere.
and the latter can be obtained by adding to the 4-dimensional Minkowski space
M, a fifth dimension (wrapped on the circle), the metric of such a space reads

ds* = —dt* + dr® + r?*dQ + dz* (1.2)

dQ = db? + sin® 0d?

For both of the above asymptotic spacetimes one can derive the rigid G2 trans-
formation(s) preserving them (i.e. their isotropy group).

ds* = —dt* + dr® 4+ r*(d6? + sin? 0d¢* + cos® Odyp?) (1.3)
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The Boundary conditions for M;
Consider the metric (1.1) and take 2° =t and z' = 2 one has :

r?
)\00 = —]_, )\11 = ECOSQQ, )\10 =0
r? 2
T:ﬁCOS 0, wpy=0, w =0
Yo=0, ¢1=0, p=0,

the coset representative :

—1 0 0 0 0 0 0
2
0 7 cos? 6 0 0 0 0 0
82
— 0
r2 cos? 0
M = 0 — 0
62
0 0 0 72 cos? 0 ) 0 0
0 0 —2—2 cos?d 0
0 0 0

Ounly the combination G, = P; — T preserve the above nonconstant matrix (at
spatial infinity). This turns to be charge-generating transformation, and will be
used to generate electrically charged solution from neutral seed solution.

But also one can exploit the coset model to its full potentialities, this can be
achieved by reducing (1.1) with respect to 2° = t and 2! = £(¢p + ¢), (this a
generalization of Giusto and Saxena [?] remarks to the minimal SUGRA), it gives

7"2 7ﬂ2

ﬁ? A10207 T ==

Ao =—1, A= 7

Kaluza- Klein vectors
B] =0, Bj]=/{cos20

The 3-dimensional metric

2
hijdxida:j = 4%2 [dr2 + r2d6? + sin 6% cos «92d7]2}

The dualization yields

and obviously

w():()? wlzov /-1’207

The coset representative in this case
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-1 0 0 0 0 00
0 0 1 0 0 00
2
0 1 —Zti 0O 0 00
M = o 0o 0o -1 0 00
40>
0 0 0 0 =) 10
0 0 0 0 1 00
0 0 0 0 0 01
At spatial infinity,
-1 00 0 00O
0 01 0 00O
0O 10 0 000
My = 0 00 -1 000
0 00 0 010
0O 00 0 100
0 00 0 0O01

There are six transformations leaving invariant the matrix M, :

F+:—M10—L0, F():Mll, Ffz_Mol"i_Noa
G,=P -T, Gy=P,+R, G =R'+Q. (1.4)

This can be seen ,just by verifying that the product of each one of the above
generators with M, is antisymmetric

(MooJa)T = —(Mo o)
These generators form an s((2, R) @ sl(2, R) algebra

[Jo, Jo] =+, [Jy, ] = o,

[JOa Ji} = :l:jia [j—H j—] = ‘]07

[Ja, 3] =0,
with ] 1
Ja:Z(Fa_Ga)a ja: Z(SFa—FGQ).

The three transformations Fy, F_, and G_ are pure gauge transformations
(general coordinates transformations), and thus doesn’t affect physics. It remains
three physical transformations preserving asymptotic flatness are the spin-generating
transformation F', , G the charging transformation already found, and the trans-
formation Gj.

Their matrix representations can be found ind the Appendix.
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The Boundary conditions for M, x S':

Choosing 2 = t and 2! = z, the data from the metric (1.2) gives the asymptotic
coset representative :

-10 0 0 0 0 0
00 1.0 0 0 0 0
00 -1 00 0 0
MEE=1 "0 0 0 -1 0 0 0
000 0 0 1 0 0
000 0 0 0 —10
00 0 0 0 0 1

There are 6 transformations that preserve this configuration:

Jo=M' +M°, Jo=N°+L° Jy=N'—-L"

Ji=Q—-T, Js=P+R", Js=R'+P. (1.5)
It is worthy to note that one can go from MEX to M., by through the expression

where
10 0 0 0 0 0
0 1/v/2 1/¥V2 0 0 0 0
0 —1/vV/2 1/vV2 0 0 0 0
Psg=]0 0 0 1 0 0 0
0 0 0 0 1/vV2 —1/V/2 0
0 0 0 0 1/vV2 1/vV2 0
0 0 0 0 0 0 1

The Psy quiet generally can transform a black string into a black hole in 5-
dimensions.

7.1.2 Charging Neutral Seeds

Consider the charging transformation

2 0 0 52 0 0 2sc
0 c 0 0 0 s 0
0 0 c 0 —s 0 0
Po = 2 0 0 & 0 0 +2sc¢ |, (1.6)
0 0 —s 0 c 0 0
0 s 0 0 0 c 0
V2se 0 0 V2s¢ 0 0 2+ s2

where ¢ = cosh «, s = sinh a.
The transformation (1.6) acting on a neutral (¢, = p = 0) seed solution (Agp,
w,) leads to the target space following data, extracted from the transformed matrix
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representative M/,

' =D7'r, (1.7)
N, =D\, (1.8)
Ny = D72[¢* Ay + 8° M) (1.9)
wy = D72 + 8% + 25 A1 )wr — 82267 + (¢ + 8%) A1) i) (1.10)
wh = wy + D723 [—cAN2, + (22 — A1) Adpwr — AWl (1.11)
Y =V3D se(1+ M), (1.12)
Vb = V3D se(chyg — swy), (1.13)
1 =V3D tsclew — shia), (1.14)

with D = 62 + 82)\11 =1+ 82(1 + )\11).

7.2 The Seeds

7.2.1 Black Holes:

The metric for five-dimensional rotating black hole, in the Boyer-Lindquist coordi-
nates, is ([?]):

2
ds® = I—A da® + p*d9* — dt* + (z + a®) sin® 0 d¢? + (z + b*) cos® O dyp*

2

+ 20 [dt + a sin® 0.dp + b cos> 0 ] . (2.15)
P
Here,

p* =z +a* cos® 0 + b* sin?0, (2.16)
A= (z+a*)(z+b)—riw. (2.17)

The angles ¢ and ¢ lie in the interval [0, 27], while the angle  belongs to [0,7/2].
The black hole horizon is located at © = x, where

e =g {7’8 —a* -V =+ \/(7”3 —a? = b?)?2 — 4a2b?| . (2.18)

The determinant of this metric is given by
1
V—g= 55111(90059/)2. (2.19)
The metric (2.15) is invariant under the following transformation
v
0 b, 99(5—9), ey (2.20)

It possesses 3 Killing vectors, 0;, 0, and 0.
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7.2.2 Black Rings

Black rings with one angular momentum

ds* = —Z};Ei; (dt — CRlJ(”)ch) (2.21)
g R - G a7

e F=1+X, G =01-)(1+vE), (2.22)

" C= AQ—uﬁfi. (2.23)

The dimensionless parameters A and v are in the range
O<v <A<, (2.24)

with —oo <y < —1 and —1 < x < 1, spatial asymptotic infinity is recovered when
r — —1,y — —1. The axis of rotation around the 1 direction is at y = —1, and
the axis of rotation around ¢ is divided into two pieces: x = 1 is the disk bounded
by the ring, and x = —1 is its complement from the ring to infinity. The horizon is
located at y = —1/v. Outside it, at y = —1/\, lies an ergosurface.

The angular variables must be identified with periodicity

FED _ eyl =2 (2.25)

A=A =dmen T oy

and the two parameters A\, v must satisfy

2v

= — 2.26
1+ 02 ( )

Black rings with two angular momenta

An exact solution for a black ring with both rotations been achieved by Pomeransky
and Sen’kov in |?] They have furthermore managed to present it in a fairly compact
form:

2 __ H(y,l‘) F($,y) 2 J(x7y) F(y,%) 2
B =~ (dt + Q)2 — iy ™ = 2370y 00+ i %0
B 2k*H () da? B dy?
P (&6~ 867) 227

Here we follow the notation introduced in [?], except that we have chosen mostly
plus signature, and exchanged ¢ <+ 1) to conform to the notation in (2.21). It
worth to mention that the angles ¢ and v have been rescaled here to have canonical
periodicity 2.
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The one-form €2 characterizing the rotation is
2EXA/ (1 +1v)2 — N2 9
Q=-— 1 — 2*)y/vdo
H{(y,z) L

ity
1-)M+v

(I+A—v+2’y(l =X —v) +2va(l —y)) dy], (2.28)
and the functions G, H, J, F' become

G(z)=(1-2%) (14 Az +va?) ,
H(z,y) = 1+ N = v + 20w(1 = 2%)y + 200(1 — y*v°) + 2*y°v(1 = N* — %),
21— )1 - PN

Jow)=—r—jar GHA - ey — (- —(j;;),
F(x,y) = @— y)QZkZ )y [G(ZE)(l — %) [((1 . /\2) (14+v) +yA1— N+ 20 — SVQ)]

+ G 2N +2A((1 = v + X)) + 2 (1 —v)* = X) (1+v) + 2°A(1 = N = 3v° + 2°)
— 21— v)(=14+ N+ 1/2)]].
When A = 0 one finds flat spacetime. In order to recover the metric (2.21) one must

take v — 0, identify R? = 2k*(1 + \)? and rename A\ — v.
The parameters A and v are restricted to

0<v<l, 2V <A< 14v (2.30)

for the existence of regular black hole horizons. The bound A > 24/v is actually a
Kerr-like bound on the rotation of the S2. To see this, consider the equation for
vanishing G(y),

1+ Ay +vy? =0, (2.31)
Electrifying Myers and Perry

Starting with the five-dimensional Myers and Perry [?]:

2 2
ds* = —dt2+p—dx2+p2d02+(x+a2) sin? fd¢® 4 (z+b*) cos? 0d1/12—|—%) (dt + asin®0dg + bcos® 9d¢)2 ,
p

4A
(2.32)
where
p* =+ a’cos® f + b*sin’ 6, A= (z+a*)(z+b*) —rpx. (2.33)
Choosing 2° =t, 2! =1, we find :
o o 2 2 2 o, 4
Ao =—1+4+ =, A= —bcos™0, Ay = (x+0b°)cos”0 + —b”cos” 0,
P P
2
T = <x + b —rg + T—gaz cos® (9) cos® ), (2.34)
P
17 2 2 2 1 17 2 2
ag = —7 '3 (z 4 b*)asin® 0 cos® 0, a, =T —absin®fcos" 0, (2.35)
p p
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and the three-metric

o 2 A 1
hijdz'ds’ =T <zfAdx2 + p*df* + = sin® 0 cos? ngbz) , Vh = iTpQ sin 6 cos 6.
T
(2.36)
The dualization of the vector fields gives

r2 2
wo = ga cos® ), wy = ——gab cos? 6. (2.37)

p p

The action of our charge-generating transformation with parameter a (¢ =
cosha, s = sinh ) on this neutral seed leads to the transformed fields according
o (1.7). Performing the inverse dualization, we obtain the charged black hole solu-
tion

d 2 __ D72 1 T(Q) d Q/ 2 D p2 2d02 2 r(2)a2 : 20 : 29d 2
%= — ~ (dt + )" + A TP +lxz+a +p2— 5 sin” 6 ) sin® Od¢
0
rib?
-0—2 = sin? 6 cos® Ododi) + <x + 0%+ 3 0 5 cos? 9) cos? Qddjﬂ , (2.38)
o pT—To
Bb 3
|:< ) sin 0d¢ + <pc_7n2 + Sp;) COS2 9d¢:| R (239)
0
2
= V/3scD! g [dt + (ca + sb) sin® 0d¢ + (cb + sa) cos® 6di)] (2.40)
with
2
D=1+ 82—3.
P

The same solution is obtained if reduction is carried out with respect to the angular
variable ¢ instead of 1. Note that it is regular on the polar axis sinf = 0.
This solution could be put in the following form

s 29 - / —\2 527“22722 2 | 2\ i 2 2
ds* = —dt* — S v(dt — ) + = (dt — ©) —i—Tdr + p°df” + (r* + a”) sin” 0d¢
p? P
(2.41)
+ (r? + b%) cos® Odnp?, (2.42)
- V3q .

where
bsin® fd¢ + a cos® Ody), w = asin® Od¢ + bcos® Odyp, f=2mp* — ¢,
(7’ + a®)(r* + b*) + ¢ + 2abq — 2mr?, p* =1r*+a*cos® 0 + b?sin? 6.
The metrics ds'? and ds? are related by the following coordinate and parameter

transformation:

r? = x4 s*(rg — a® — b*) — 2absc, 2m = (1 + 25)rg,
q= —SCT‘(Q), a = —ca — sb, b= —cb— sa,
implying -
P> = Dp? :p2—|—s2r8, A =A.
Comparing then the electromagnetic potentials, we find A = —A’, so the two solu-
tions are identical under charge conjugation (or a simultaneous sign change of ¢, ¢

and ¢
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7.2.3 Forging a charged doubly spinning black rings

One can either choose dr! = dt and da? = di) or do' = dt and da? = d¢. Switching
between the two choices is achieved by making the exchange F(x,y) <> F(y, ) and
Q4 <> Q. For the first choice (dz® = dyb), the seed A, can be read off from Eq. (1)
of PS,

Fly, z) __H(y)
Ty A0 = T
H{(z,y) H(z,y)

while the seed w, must be obtained by dualizing the Bg,

)\10 = Qw)\o() s (244)

T =

g 1 .. 1
TApGY = — €% | Opw, — o (Ot + ——=€" Okt 2.45
b 7 e Vo (Ot 373 UyOke) (2.45)
with Gf; = 0;B} — 0; B, and
J(z,y)
Bl'=Q,-Q,B, Bl=_-—2%7 2.46
¢ O ¢ F(y,x) (2:46)

where Q, = Q4(2,y) and Qy = Qy(x,y) are given in Eq. (2) of PS. Inspection of
relations (1.7) shows that it is not necessary to compute wsy, while the computation
of wy yields simply

Similarly, the w; corresponding to the second choice (dz? = dg) is
wi(z,y) = Qu(y, ). (2.48)

To write down the charged solution, there remains to dualize back the w/, and '
to the a’§ and Aj,. Tt is easy to show (without explicit dualization) from the above
relations, that o’ é, = a}é, while

. , a2
G/quﬁ _ C3G11¢> + 83 _ w1G21¢ + ﬁé]ajglﬁ ’ (249)
Flio _ B/lqﬁazw'l + B/2¢51¢/2 _ D{_\S/%Eu (cOjwr + S)\%lﬁjﬂd)) ) (2.50)

We have solved the first duality equation (2.49) for the second choice (dz? = di)),
with the result R R )
B'y(z,y) = ¢ By(x,y) — s°By(y, z), (2.51)

leading to R X R

Q;(I7y) - CSQl/J(xv y) - SgQ(b(ya ‘T) - QZL(I7y) : (252)
This shows that the charged solution does not depend on the choice of the second
Killing vector (0, or 0y).

The final charged black ring metric is

2 __ 72H(y7:’:) \2 _ F(x,y) 2 J(may)

ds” = —D H(x,y)(dt+9) —i—D{ H(y,x)d¢ QH(y,:L")dgbdw
F(y,z) 2k?H (z,y) do®  dy’
Ay T TR (G(m) G(M ’ (2.53)
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Q= (CgQTﬂ(Ia y) - 539¢(ya x))dw + (039¢<$, y) + 5391/)(:% $))d¢, (254)

. 222 = v)(z —y)(1 — vay)
A’ =+/3seD [ Hz.y) dt

+ ( — cg(i: z) Qy(z,y) + sQy(y, x))dw

(1)
_H2)
*( H(z, )

Qul,y) — 50y x>)d¢] | (2.55)

with
201 —v)(x —y)(1 — vay) .

H(z,y)

This is to be compared with the charged black ring given in |?], Sect. 4 (exchange
¥ and @!). A difference is that Elvang et al. start with a seed having an extra
parameter (dipole charge), which can be fine tuned so that Dirac-Misner strings are
absent. Such string singularities arise if the orbits of Jy (our #, their ¢) do not
close off at # = 1. In the present case it is clear that both (2 (1,y) and Aj (1,y)
are proportional to 4(y, 1), which does not vanish, so that string singularities are
unavoidable. Specifically,

D=1+5s"

(2.56)

Ak
N{ET Y

The vector field Qip can be made regular by a translation, leading to a NUT charge
which can in principle be cancelled by a NUT-generating transformation.

Q(ly) =—5 (2.57)
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Conclusion

We developed a solution generating technique in minimal five dimensional super-
gravity based on the hidden dualities of this theory. It was found that the nonlinear
sigma model which arises upon dimensional reduction and dualization the vector
fields of this theory has a coset structure Ga2)/[SL(2,R) x SL(2,R)] , where the
isometry group G is a compact form of the rank 2 exceptional group G5. One of
the transformations which conserve asymptotic flatness is identified as a transfor-
mation charging electrically neutral solutions. This transformation is applied to a
neutral rotating black hole solution to obtain a charged rotating black hole in five
dimensions. This charging procedure is then used to get a charged doubly spinning
black ring from a neutral. The resulting solution suffers from a singularity known
as Dirac-Misner string.



