
HAL Id: tel-01067477
https://theses.hal.science/tel-01067477v2

Submitted on 23 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal verification of a synchronous data-flow compiler :
from Signal to C

van Chan Ngô

To cite this version:
van Chan Ngô. Formal verification of a synchronous data-flow compiler : from Signal to C. Software
Engineering [cs.SE]. Université de Rennes, 2014. English. �NNT : 2014REN1S034�. �tel-01067477v2�

https://theses.hal.science/tel-01067477v2
https://hal.archives-ouvertes.fr

 ANNÉE 2014

THÈSE / UNIVERSITÉ DE RENNES 1

sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1
Mention : Informatique

École doctorale Matisse

présentée par

Van Chan NGO
Préparée à l’unité de recherche UMR 6074

 Institut National de Recherche en Informatique et en Automatique

Formal Verification of
a Synchronous Data-
flow Compiler : from
Signal to C

Thèse soutenue à Rennes
le 01 Juillet 2014
devant le jury composé de :

Sandrine BLAZY
Professeur à l’Université de Rennes/ présidente
Jean-Paul BODEVEIX
Professeur à l’Université de Toulouse / rapporteur

Laure GONNORD
Maître de Conférence, Université de Lyon /
rapportrice

Abdoulaye GAMATIÉ
Chargé de Recherche, CNRS-LIRMM / examinateur

Dumitru POTOP-BUTUCARU
Chargé de Recherche, INRIA Rocquencourt /
examinateur
Jean-Pierre TALPIN
Directeur de Recherche, INRIA Rennes / directeur
de thèse

To my loving parents.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Jean-Pierre Talpin. Thanks for all his
support, my three years of Ph.D. have been a very useful time. I learnt much from his
experience and knowledge. He has been a great advisor. He gave me the freedom of pursing
my goals and interests while always providing guidance. Thank you so much Jean-Pierre.

I would like to thank the members of my Ph.D. committee, specially Jean-Paul Bodeveix
and Laure Gonnord who agreed on reviewing my dissertation and gave useful and interesting
comments.

I also would like to thank my colleagues Loïc Besnard, Thierry Gautier, Paul Le Guer-
nic, Huafeng Yu, Yue Ma, Christophe Junke, Adnan Bouakaz, Sun Ke in the TEA group
at INRIA, Abdoulaye Gamatié and Sandeep Shukla for their friendship and support. My
special thanks to Thierry and Abdoulaye who has read and commented on every bit of my
reports and this dissertation, and who has listened to every idea I had during my time at
INRIA.

I also would like to thanks my friends here, in RENNES for their help and relaxed time.
Last but not least, I would like to thank my family, especially my parents, Van Tac &

Ngo Ngo who have always been there for me. Only I know that this dissertation cannot be
carried out without them.

ABSTRACT

Synchronous languages such as SIGNAL, LUSTRE and ESTEREL are dedicated to designing
safety-critical systems. Their compilers are large and complicated programs that may be
incorrect in some contexts, which might produce silently bad compiled code when com-
piling source programs. The bad compiled code can invalidate the safety properties that
are guaranteed on the source programs by applying formal methods. Adopting the transla-
tion validation approach, this thesis aims at formally proving the correctness of the highly
optimizing and industrial SIGNAL compiler. The correctness proof represents both source
program and compiled code in a common semantic framework, then formalizes a relation
between the source program and its compiled code to express that the semantics of the
source program are preserved in the compiled code.

Les langages synchrones tels que SIGNAL, LUSTRE et ESTEREL sont dédiés à la conception
de systèmes critiques. Leurs compilateurs, qui sont de très gros programmes complexes,
peuvent a priori se révéler incorrects dans certains situations, ce qui donnerait lieu alors à
des résultats de compilation erronés non détectés. Ces codes fautifs peuvent invalider des
propriétés de sûreté qui ont été prouvées en appliquant des méthodes formelles sur les pro-
grammes sources. En adoptant une approche de validation de la traduction, cette thèse vise à
prouver formellement la correction d’un compilateur optimisé et industriel de SIGNAL. La
preuve de correction représente dans un cadre sémantique commun le programme source
et le code compilé, et formalise une relation entre eux pour exprimer la préservation des
sémantiques du programme source dans le code compilé.

CONTENTS

Contents vii

Listings xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Correctness of compilation . 2

1.2 Formal compiler verification . 5

1.3 Translation validation . 7

1.4 Contributions . 9

1.4.1 Preservation of clock semantics 11

1.4.2 Preservation of data dependency 12

1.4.3 Preservation of value-equivalence of variables 13

1.4.4 Towards a formally verified SIGNAL compiler 13

1.5 Chapter plan . 14

2 Related work in compiler verification 16
2.1 Compiler verification based on testing . 18

2.2 Compiler verification based on formal methods 20

3 Synchronous data-flow languages 26
3.1 Embedded, reactive and real-time systems 26

3.1.1 Reactive systems . 27

3.1.2 Real-time systems . 28

3.2 Synchronous programming . 29

viii Contents

3.2.1 Classical approaches . 30

3.2.2 The synchronous approach . 31

3.3 The SIGNAL language . 31

3.3.1 Synchronized data flow . 31

3.3.2 An overview of the language . 32

3.3.3 Semantics of the language . 36

4 Translation validation of transformations on clocks 44
4.1 The clock calculus in SIGNAL compiler 45

4.2 The synchronization space Z/3Z . 47

4.2.1 PDS model . 49

4.3 Translation validation of PDSs . 53

4.3.1 Definition of correct transformation: PDS refinement 53

4.3.2 Proving refinement by simulation 56

4.3.3 Composition of compilation phases 58

4.3.4 Implementation with SIGALI . 59

4.4 Translation validation of clock models . 63

4.4.1 Clock model of SIGNAL program 63

4.4.2 Soundness of clock model . 69

4.4.3 Definition of correct transformation: Clock refinement 74

4.4.4 Proving clock refinement by SMT 76

4.4.5 Implementation with SMT . 78

4.4.6 Detected bugs . 83

4.5 Discussion . 84

5 Translation validation of SDDG 86
5.1 The data dependency analysis in SIGNAL compiler 87

5.2 Synchronous data-flow dependency graph 89

5.2.1 Data dependency graphs . 90

5.2.2 SIGNAL program as synchronous data-flow dependency graph . . . 90

5.3 Translation validation of SDDG . 94

5.3.1 Definition of correct implementation: Dependency refinement . . . 94

5.3.2 Adaptation to the SIGNAL compiler 98

5.3.3 Proving dependency refinement by SMT 99

5.3.4 Implementation . 100

5.4 Precise deadlock detection for SIGNAL compiler 103

Contents ix

5.4.1 Deadlock detection in the SIGNAL compiler 103
5.4.2 A more precise deadlock detection 105
5.4.3 Precise deadlock detection . 110

5.5 Discussion . 113

6 Evaluating SDVG translation validation: from SIGNAL to C 115
6.1 Code generation in SIGNAL compiler . 116

6.1.1 The principle . 116
6.1.2 Sequential code generation . 119

6.2 Illustrative example . 120
6.3 Synchronous data-flow value-graph . 123

6.3.1 Definition of SDVG . 125
6.3.2 SDVG of SIGNAL programs . 130
6.3.3 SDVG of generated C code . 138

6.4 SDVG translation validation . 143
6.4.1 An introduction to graph rewriting 143
6.4.2 Normalizing . 148
6.4.3 Implementation . 157

6.5 Discussion . 161

7 Conclusion 163
7.1 Summary of the contribution . 163
7.2 Future work . 165

References 167

LISTINGS

1.1 Bug 15549 . 2
1.2 Stack-machine code of (x+2)∗ y . 4
1.3 Pseudo-code implementation of formal verified SIGNAL compiler 14
2.1 Bit clear test case with SUPERTEST . 19
3.1 “Event driven” . 29
3.2 “Sampling” . 29
3.3 DEC in Signal . 35
4.1 ALTERN in Signal . 52
4.2 PDS of ALTERN . 53
4.3 Compute symbolic simulation . 60
4.4 Symbolic simulation implementation in SIGALI 61
4.5 DEC_BASIC_TRA in Signal . 80
5.1 DEC_SEQ_TRA in Signal . 101
5.2 CycleDependency in SIGNAL . 104
6.1 Structure of P_main.c . 117
6.2 Structure of P_io.c . 118
6.3 Program WHENOP in SIGNAL . 120
6.4 Synchronous Step of WHENOP . 120
6.5 Simple Program in SIGNAL . 131
6.6 SDVGMerge in SIGNAL . 140
6.7 Generated C code of SDVGMerge . 140
6.8 Normalizing value-graph . 148
6.9 MasterClk in SIGNAL . 154
6.10 Generated C code of MasterClk . 154
6.11 Generated C code of DEC . 159

LIST OF FIGURES

1.1 The compilation process of a synchronous compiler 1

1.2 Phases of compiler design . 3

1.3 A bird’s-eye view of translation validation framework 8

1.4 The compilation process of the SIGNAL compiler 9

1.5 The translation validation for the SIGNAL compiler 11

4.1 A bird’s-eye view of the verification process 45

4.2 The PDS translation validation . 60

4.3 Rule CLKREF . 76

4.4 The clock model translation validation . 79

5.1 Translation validation of SDDG . 87

5.2 The GCD of DEC . 89

5.3 CFG for Sum, with data dependency edges for i (dotted lines) 91

5.4 The SDDG of merge operator . 91

5.5 The SDDG of DEC . 94

5.6 A bird’s-eye view of the SDDG translation validation 101

5.7 The SDDG of DEC_SEQ_TRA . 102

5.8 Dependencies among y,u,v . 105

5.9 The SDDG+ of CycleDependency . 109

5.10 An overview of our approach . 111

6.1 A bird’s-eye view of the verification process 116

6.2 Code generation: General scheme . 117

6.3 The shared value-graph of WHENOP and WHENOP_step 123

6.4 The resulting transformed value-graph . 124

6.5 The final value-graph . 124

6.6 The directed graphs of a+b∗ c and a+b,b∗ c 127

xiv List of Figures

6.7 The subgraph rooted at node labeled + and a root-cyclic graph 127
6.8 An example of homomorphism . 128
6.9 The subgraphs of y := x∗ x1 and x1 := x+1 131
6.10 The SDVG graph of P . 132
6.11 The graph of y := f (x1, ...,xn) . 132
6.12 The graph of y := (x >= 1) and c . 133
6.13 The graph of y := x$1 init a . 134
6.14 The graph of y := (x$1 init 1)+ z . 134
6.15 The graph of y := x default z . 135
6.16 The graph of y := x default (z+1) . 135
6.17 The graph of y := x when b . 136
6.18 The graph of y := x when (z >= 1) . 137
6.19 The graphs of (1) z := x̂, (2) xˆ= y and (3) z := xˆ+ y 137
6.20 The graphs of (4) z := xˆ∗ y, (5) z := xˆ− y and (6) z := when b 138
6.21 The graph of SDVGMerge_step . 141
6.22 The graph of N’s computation . 142
6.23 The transformation of the graph of t ∗ (u+1) 144
6.24 The transformation of graph of t ∗ (u+1) with sharing of repeated subterms 144
6.25 The graph rule of the term rule φ(c,x, f alse)→ c∧ x 146
6.26 An example of graph rewriting . 147
6.27 Graph rewriting: Build and redirection phases 147
6.28 Graph rewriting: Garbage collection phases 148
6.29 The shared value-graph of MasterClk and MasterClk_step 155
6.30 The resulting graph of MasterClk and MasterClk_step by applying the rule

6.38 . 156
6.31 The resulting graph of MasterClk and MasterClk_step by applying the rule

6.39 . 156
6.32 The final normalized graph of MasterClk and MasterClk_step 157
6.33 A bird’s-eye view of the SDVG translation validation 158
6.34 The shared value-graph of DEC and DEC_step 159
6.35 The resulting value-graph of DEC and DEC_step 160
6.36 The final normalized graph of DEC and DEC_step 161

LIST OF TABLES

3.1 The implicit clock relations and dependencies 34

4.1 Translation validation of PDSs: Experimental results 64
4.2 Clock semantics of the SIGNAL primitive operators 71

5.1 The implicit dependencies and their encoding in GCD 88
5.2 The dependencies of the core language . 93

CHAPTER 1

INTRODUCTION

Synchronous programming languages such as SIGNAL, LUSTRE and ESTEREL propose a
formal semantic framework to give high-level specification of safety-critical software in
automotive and avionics systems [17, 71, 73, 81]. As other programming languages, syn-
chronous languages are associated with a compiler. The compiler takes a source program,
analyses and transforms it, performs optimizations, and finally generates executable code in
a general-purpose programming language (e.g., C, C++, or JAVA). This compilation process
is depicted as in Figure 1.1.

Synchronous Program Transformed Program Executable Code (C,
Java)

Verification Guarantees?Verification Guarantees

equivalence?

Verification Guarantees?

equivalence?

Fig. 1.1 The compilation process of a synchronous compiler

Safety-critical systems are those systems whose failure could result in loss of life, or
damage to the environment. Safety-critical systems need to be validated to ensure that their
specified safety properties are implemented correctly. Software validation is traditionally
done by using testing techniques which, in the case of safety-critical systems, is not suffi-
cient [102]. The validation of safety-critical systems needs to be complemented by the use
of formal verification, such as static analysis, model checking, or proof, to guarantee full
coverage of the safety requirements on the validated system.

Since synchronous languages are based on strong semantic models, they provide much
higher level of abstraction, expressivity, and clarity at source level rather than once compiled
into C code. That makes the application of formal methods much simpler to enforce safety
properties.

2 Introduction

However, a compiler is a large and very complex program which often consists of hun-
dreds of thousands, if not millions, lines of code, divided into multiple sub-systems and
modules. Moreover, compiler modules often interact in very complex ways, and the design
and implementation of a compiler is a substantial engineering task. The compilation process
involves many analyzes, program transformations and optimizations. Some transformations
and optimizations may introduce additional information, or constrain the compiled pro-
gram. They may refine its meaning and specialize its behavior to meet a specific safety or
optimization goal.

Consequently, it is not uncommon that compilers silently issue an incorrect result in
some unexpected context or inappropriate optimization goal. For example, the GNU Com-
piler Collection (GCC) is a compiler produced by GNU Project supporting several languages.
GCC has been widely used in software development. It is also available for most embed-
ded platforms. Although it has a long history of development and review by many people,
no programmer can assert that it is always right in any context; see the list of bugs which
have been found at GCC Bugzilla [121]. Considering bug number 15549, for instance, GCC

will compile the expression b < c as (b == 0)&(c! = 0) into the following program, which
always aborts.

Listing 1.1 Bug 15549

1 int lt(_Bool b, unsigned char c) {
2 return b < c;
3 }
4
5 int main() {
6 if (!lt(1,’a’)
7 abort ();
8 }

An incorrectly compiled program like the one above will most likely invalidate the safety
properties that were secured on the source program. Yet, it is natural to require a compiler
to guarantee the preservation of the source program’s semantics, hence the safety properties
are secured on it.

1.1 Correctness of compilation

Proving the correctness of a compiler can be based on the examination of the developed
compiler’s source code itself, meaning that a qualification process applies on the develop-

1.1 Correctness of compilation 3

ment of the compiler, the source of the compiler, and/or the compiler’s output. Qualifying
a compiler is rare because of the tremendous administrative effort involved. Qualification
amounts to demonstrate compliance with all recommendations and objectives specified in
the certification standards for safety-critical softwares: DO-178C and its European equiv-
alent ED-12 [49]. Although DO-178 has been successful in industry, the cost of comply-
ing with it is significant: the activities on verification it incurs may well cost seven times
more than the development effort needed [126]. A more traditional method is therefore to
solely inspect or formally verify the compiler’s output. This task requires less unitary effort,
but has to be repeated every time a new target code is generated. For instance, the work
of Blanchet et al. [23, 24] provides a method to design and implement a special-purpose
abstract interpretation based static program analyzer for the verification of safety critical
embedded real-time software. And the static program analyzer ASTRÉE [9] aims at proving
the absence of run time errors (RTE) in the generated C code of the synchronous data-flow
compiler from LUSTRE programs. One last resort is hence to formally verify the correctness
of the compiler itself.

A compiler is a computer program that reads an input program in one source language
and translates it into a semantically equivalent refined program in another target language,
Figure 1.2. The structure of a compiler consists of two parts:

Analysis The analysis part creates an intermediate representation of the source program
and stores information about the source program in a data structure, the symbol table.

Synthesis The synthesis part generates the desired output program from the intermediate
representation and information stored in the symbol table.

We usually call the analysis part the front end of the compiler, and the synthesis part its
back end.

Lexical Analysis Syntax Analysis Semantic Analysis

Intermediate Code Code GenerationOptimization

Source
Language

Target
Language

Fig. 1.2 Phases of compiler design

Suppose a specification of the properties that a computer program must satisfy when

4 Introduction

executed, e.g., its pre and post-conditions. It may describe interactions and relationships
among program components (e.g., program variables, functions,...). The program is said to
be correct with respect to its inputs and outputs if for all program executions with inputs
satisfying the required specification. This definition applies for a compiler as well. There
are two fundamental principles in design and implementation of a compiler which have to
be fulfilled [41]:

The compiler must preserve the meaning of the program being compiled.

The compiler must improve the input program in some discernible way.

For example, consider the compilation of an arithmetic expression, onto a stack-machine,
in the form of one address code. Compilation assumes the presence of a stack of operands.
Operations pop operands from the stack, evaluate them and push the result back onto the
stack. For instance, an integer multiplication takes the top two elements from the stack and
pushes their product onto the stack. Stack-machine code of the expression (x+2)∗y would
be as follows:

Listing 1.2 Stack-machine code of (x+2)∗ y

1 push x
2 push 2
3 add
4 push y
5 multiply

In order to prove the correctness of this compilation, one can develop an interpreter that
feeds test operations and parameters to the compiler and interprets the source and compiled
program to check output equality. For the stack-machine code generation, evaluating a
source expression with test inputs should yield the same result as the value on top of the
stack in the interpreted address code.

In this line of research, Sheridan’s paper [128] is a good survey on compiler testing. ACE

[2] provides the SUPERTEST compiler test and validation suite which is a large collection of
self-testing programs. The certifying compilation [104] attests that the generated object code
satisfies the properties established on the source program by generating concrete evidences
along the compilation into object code.

Systematic compiler verification techniques use formal methods. Formal methods advo-
cate the use of a mathematical framework for the specification, development and verification
of software and hardware systems. For the purpose of compiler verification, there are two
approaches, in general, to prove the software correctness:

1.2 Formal compiler verification 5

Formal compiler verification Specifying the intended behavior of the compiler in a for-
mal specification language and building a proof that the compiler satisfies behavioral equiv-
alence or refinement.

Translation validation Proving that each run of the compiler preserves the semantics of
the source program in the generated code.

We shall discuss these two approaches in Section 1.2 and Section 1.3, and their appli-
cation to the translation validation to a multi-clocked synchronous data-flow compiler in
Section 1.4.

1.2 Formal compiler verification

In the context of software systems, formal verification is a problem of proving the cor-
rectness of a system with respect to the desired properties, using formal methods. The
verification process consists of constructing an abstract mathematical model of the system
behavior and of providing a formal proof on that model. There are several mathematical
objects which may be used to construct the abstract model of a system, such as finite state
machines, labeled transition systems, Petri nets, automaton, process algebra, and formal
semantics of programming languages.

Formal verification can be done though many approaches. One such approach is deduc-

tive verification. It consists of providing deductive proofs that a system behaves in a certain
way that is described in the specification, with the aid of either interactive theorem provers
(such as HOL [33, 69], ISABELLE [78], or COQ [42]), or an automated theorem prover.
It often requires to have knowledge of the system mechanism and why the system works
correctly, and then convey this information to the verification process.

Another approach is model checking [37–39, 123]. It involves building an abstract model
of the system and ensure that the system model complies with specified requirements by ex-
ploring all its accessible states. The system to be verified is often represented in temporal

logics, such as Linear Temporal Logic (LTL) or Computational Tree Logic (CTL). The veri-
fication process produces a confirmation that the system model conforms to requirements or
a counterexample that can be used to locate and eliminate an error. The main disadvantage
of this approach is that it does not in general scale to large systems due to the state explo-

sion problem. Some techniques must be used to deal with this problem including abstract

interpretation, symbolic simulation and abstract refinement [43–45].

A new variant of model checking is inspired by recent advances in efficiently solving

6 Introduction

propositional satisfiability problems (or SAT). Bounded model checking (BMC) [20, 36]
encodes the fact that potential executions of the system model do not conform to the specifi-
cation in incremental fashion as propositional satisfiability formulas. The bounded number
of evaluation steps is increased as long as the resulting propositional formula is satisfiable.
Then a concrete counterexample can be extracted as a trace of system states leading to an
error state in the system model.

Another approach is to use inductive reasoning to prove that a system conforms to its
specification. The advances in solvers based on Satisfiability Modulo Theories (SMT) have
been useful in checking systems inductively. With these solvers, systems can be modeled ef-
ficiently, require fewer limitation on representation of the specifications, while still meeting
significant performance. In inductive approach, the transition relation of system a property
are encoded as logic formulas. Then, it checks that the property is satisfied at initial state
as the base case. If the base case holds true, take the assumption that the property holds for
some state and prove that it holds for next state as well.

As usual, formal compiler verification is the problem of proving that the behavior of a
compiler meets certain specifications. For instance, a compiler of arithmetic expressions
for stack machines has to verify that the result of an evaluated operation is the same as that
on top of the machine code’s stack after execution. A formal compiler verification con-
sists of establishing the given correctness property between source program and its com-
piled program. In our case, a correctness property should be that, if a source program has
well-defined semantics, then it should be observationally equivalent to its generated code.
Establishing this correctness property usually consists of:

• Specifying the intended behavior of a compiler in a specification language. This lan-
guage is defined deterministically based on formal, deductive logic. The specification
of the compiler is expressed in terms of the representation of the source and the com-
piled programs.

• Building a proof, based on some mathematical reasoning and automated proving tech-
niques, to show that the compiler satisfies its model of intended behavior.

Given a source program A, the compilation of a compiler can be considered as a function
Cp from a set of source programs to the set of compiled programs and the compilation
error: Ps −→ Pc ∪{Error}. We denote the compiled program of A by Cp(A) = C and the
compilation error by Cp(A) = Error. In other words, for every source program, the output
of the compilation is either a compiled program or an error. Then the semantic equivalence
between the compiled program and the source program is ensured by the correctness of the

1.3 Translation validation 7

compiler. Following the above conception of formal compiler verification, a compiler is a
formally verified compiler if it is accompanied with a formal proof of the following theorem
[92].

∀A ∈ Ps,C ∈ Pc, Cp(A) =C ⇒Correct(A,C) (1.1)

where Correct(A,C) denotes the correctness property between the source program A and its
compiled program C.

Therefore, formal compiler verification formally ensures the correctness of the com-
piler. It makes sure that all guarantees obtained on the source program are preserved in the
compiled program. This is particularly important if the compiler is used in development of
safety-critical embedded systems, since the safety requirements for the development tools
(e.g., compilers, translators,...) that translate programs are very high and require the most
rigorous verification methods.

1.3 Translation validation

In the translation validation approach, the compiler is not verified. Instead, a validator is
associated with the compiler to verify the correctness of each run of the compiler.

The notion of translation validation was first introduced by Pnueli et al. in [118] as an
approach to verify the correctness of translators (compilers, code generators). The main idea
of translation validation is that instead of proving the correctness of the translator, each indi-
vidual translation (e.g., run of the code generator) is followed by a validation process which
checks that the target program correctly implements the source program. It first constructs
the formal models of both the source and compiled programs capturing their semantics.
Then, it tries to establish a refinement relation between the formal models of the source and
target program. If the compiled program behaves differently than the source program then
one cannot establish that relation. Fortunately, the compilation scenario should provide a
counter-example to help correcting the compiler error.

A verification framework which adopts translation validation benefits from the following
features:

• The verification framework does not modify or instrument the compiler. It treats
the compiler as a “black box” (as long as there is no error in it). It only considers
the input program and its compiled result. Hence, it is not affected by updates and
modifications to the compiler, as long as its data-structures remain the same.

8 Introduction

• In general, the validator is much simpler and smaller than the compiler. Thus, the
proof of correctness of the validator takes less effort than the proof of the compiler.

• The verification process is fully automated.

• The validator can be scaled to large programs, in which we represent the desired pro-
gram semantics with our scalable abstraction and use efficient techniques to achieve
the expected goals: traceability and formal evidence.

A verification framework which adopts the translation validation approach consists of the
components depicted in Figure 1.3.

Model builder The model builder defines a common semantic representation to capture
the semantics of the source program and the compiled program of the translator. The outputs
of this module are the formal models of these programs (e.g., they can be a kind of labeled
transition system, or a first-order logic formula).

Analyzer The analyzer first formalizes the notion of "correct implementation" as a refine-
ment relation. This relation expresses that the semantics of the source program is preserved
during the compilation. This relation is defined based on the common semantic represen-
tation of the model builder. The analyzer also provides an automated proof method which
allows to prove the existence of the refinement between the formal models. If the analyzer
successfully proves the existence of the refinement, a proof script will be created. Other-
wise, it will generate a counter-example.

Translator

Source Program

Compiled Program

Model Builder

Model Builder

Analyzer

Counter-example

Correct Translation

Fig. 1.3 A bird’s-eye view of translation validation framework

For example, in the work of Pnueli et al., the semantics of the source program and its
compiled program are represented as Synchronous Transition Systems (STS). That is the

1.4 Contributions 9

common semantic framework. Given two STSs, they formalize the concept of “correct
translation” as a refinement relation for them which expresses that the semantics of the
source program is preserved in the compiled program. The refinement is checked by the use
of a solver and the proof script is also generated.

1.4 Contributions

Considering the compiler of the synchronous data-flow language SIGNAL, the compilation
process can be divided into three phases as depicted in Figure 1.4. It consists of a sequence
of code transformations and optimizations. Some transformations are optimizations that
rewrite the code to eliminate inefficient expressions. The transformations may be seen as
a sequence of morphisms rewriting SIGNAL programs to SIGNAL programs, meaning that
the intermediate representations produced by the compiler are written in SIGNAL. The final
steps, C or JAVA code generation, are simple morphisms over the ultimately transformed
program.

Clock calculation and Boolean abstraction Calculates the clock of all signals in the
program and defines a Boolean abstraction of the program. The clock of a signal defines
exactly when a signal shall be evaluated in a program. The intermediate representation of
this phase is written in SIGNAL language.

Static scheduling Based on the clock information and the Boolean abstraction obtained
at the first stage, the compiler constructs the Conditional Dependency Graph (CDG) to rep-
resent the static schedule of all signals’ evaluation.

Code generation The clocked and scheduled Signal program is ready to directly generate
executable code (e.g., sequential code in C or JAVA).

*.SIG *_BASIC_TRA.SIG *_BOOL_TRA.SIG *_SEQ_TRA.SIG C/C++, Java

Clock Calculation,
Boolean Abstraction Scheduling Code Generation

Fig. 1.4 The compilation process of the SIGNAL compiler

As a contribution to this dissertation, we evaluate the concept of translation validation
and study the way to adopt it to prove the correctness of the SIGNAL compiler. We also

10 Introduction

show that it is possible to construct a validator that is plugged to the compiler in such a way
it can provide formal correctness guarantees comparatively strong to these which could be
obtained by proof assisted formal compiler verification.

Write C to denote the compiled program and Error to denote the compilation error
of a source program A. Consider a validator Val which adopts the translation validation
approach. The validator can be represented as a function from the set of pairs of a source
program and its compiled program to the set of Boolean values: Ps×Pc −→B. The validator
that we want to build satisfies the following property:

∀A ∈ Ps,C ∈ Pc,Cp(A) =C,Val(A,C) = true ⇒Correct(A,C) (1.2)

We now associate each run of the compiler Cp with the validator Val. The following func-
tion CpVal defines a formally verified compilation process from Ps to Pc and the compilation
error.

CpVal(A) =

C if Cp(A) =C and Val(A,C) = true

Error if Cp(A) =C and Val(A,C) = false

Error if Cp(A) = Error

The verification of the derived compiler CpVal reduces to the verification of the associated
validator Val, meaning that the compiler does not need to be verified and can be consid-
ered as a black box. The following trivial theorem is the base of our line of work in this
dissertation.

Theorem 1 If the validator Val satisfies the property 1.2, then the derived compiler CpVal

is formally verified in the sense of Theorem 1.1.

It is obvious to prove globally that the source program and its final compiled program have
the same semantics. However, we believe that a better approach is to separate concerns
and prove each analysis and transformation stage separately with respect to ad-hoc data-
structures to carry the semantic information relevant to that phase.

In the case of the SIGNAL compiler, the preservation of the semantics can be decom-
posed into the preservation of clock semantics at the clock calculation phase and that of data
dependencies at the static scheduling phase, and, finally, value-equivalence of variables at
the code generation phase.

Figure 1.5 shows the integration of this verification framework into the compilation
process of the SIGNAL compiler. For each phase, the validator takes the source program and
its compiled counterpart, and constructs the corresponding formal models of the programs.

1.4 Contributions 11

Then, it checks the existence of the refinement relation to prove the preservation of the
considered semantics. If the result is that the relation does not exist then a “compiler bug”
message is emitted. Otherwise, the compiler continues its work.

*.SIG *_BASIC_TRA.SIG *_BOOL_TRA.SIG *_SEQ_TRA.SIG C/C++, Java

Clock calculation,
Boolean abstraction Scheduling Code generation

Clock
model

Clock
model

Clock
Refin
ement

Clock
Refin
ement

Clock
model

Signal Compiler

Validator

SDDG

SDDG

SDDG
Refinement

SDVG

SDVG

SDVG
Normalizing

Preservation of clock
semantics

Preservation of data
dependency

Preservation of value-
equivalence of variables

Fig. 1.5 The translation validation for the SIGNAL compiler

1.4.1 Preservation of clock semantics

The first verification stage focuses on proving that all clock relations associated with sig-

nals in the source and transformed program are equivalent. We propose two approaches to
implement this verification, one based on model checking and the other on SMT solving.

In the first approach, the clock semantics of the source and transformed programs are
represented by Polynomial Dynamical Systems (PDSs). A PDS is a system of equations,
in which the coefficients of equations range over Z/3Z. The notion of “correct imple-
mentation” is formalized as a PDS refinement. An automated proof method based on the
simulation technique is provided for checking the existence of this refinement.

In the second approach, the clock semantics of the source and transformed programs
are formally represented as clock models. A clock model is a first-order logic formula that
characterizes the presence/absence status of all signals in a SIGNAL program at a given in-
stant. Given two clock models, a clock refinement between them is defined which expresses
the semantic preservation of clock semantics. A method to check the existence of clock

12 Introduction

refinement is defined as a satisfiability problem which can be automatically and efficiently
proved by an SMT solver.

Let Cpsig and Valclk be the functions which define the SIGNAL compiler and a valida-
tor, respectively. The following function defines a formally verified compiler for the clock

calculation and Boolean abstraction phase. We write C ⊑clk A to denote that there exists a
refinement between A and C.

Cpsig
Valclk

(A) =

C if Cpsig(A) =C and Valclk(A,C) = true

Error if Cpsig(A) =C and Valclk(A,C) = false

Error if Cpsig(A) = Error

where Valclk(A,C) = true if and only if C ⊑clk A.

1.4.2 Preservation of data dependency

Given two signals in a source program, the aim of this work is to prove that data dependenies
between them are preserved in the scheduled program. This verification also ensures that if
there is no deadlock in the source program, then there is no deadlocks in the scheduled one
either.

In order to do that, the data dependencies among signals are represented by a common
semantic framework, called Synchronous Data-flow Dependency Graph (SDDG). A SDDG

is a labeled directed graph, in which each node is a signal or a clock and each edge represents
the dependency between nodes. Each edge is labeled by a clock expression called clock

constraint at which the dependency between two extremity nodes is effective. The notion of
“correct implementation” is formalized as a dependency refinement relation between graphs.
This relation expresses the semantic preservation of data dependencies. It is implemented
using an SMT solver to check the existence of the refinement relation.

Let Valdep be the function which defines a validator. The following function defines
a formally verified compiler for the static scheduling phase of the SIGNAL compiler. We
denote the fact that C refines A by C ⊑dep A.

Cpsig
Valdep

(A) =

C if Cpsig(A) =C and Valdep(A,C) = true

Error if Cpsig(A) =C and Valdep(A,C) = false

Error if Cpsig(A) = Error

where Valdep(A,C) = true if and only if C ⊑dep A.

1.4 Contributions 13

1.4.3 Preservation of value-equivalence of variables

This work focuses on proving that every output signal in the source program and the corre-
sponding variable in the compiled program, the generated C program, have the same values.
The computations of all signals and their compiled counterparts are represented by a shared
value-graph, called Synchronous Data-flow Value-Graph (SDVG).

Given a SDVG, assume that we want to show that two variables have the same value.
We simply need to check that they are represented by the same sub-graph, meaning that
they point to the same graph node. If all output signals in the source program A and the
corresponding variables in the generated C program have the same value, then we say that
C refines A, denoted by C ⊑val A.

Let Valval be the function which defines a validator. The following function defines a
formally verified compiler for the code generation phase.

Cpsig
Valval

(A) =

C if Cpsig(A) =C and Valval(A,C) = true

Error if Cpsig(A) =C and Valval(A,C) = false

Error if Cpsig(A) = Error

where Valval(A,C) = true if and only if C ⊑val A.

1.4.4 Towards a formally verified SIGNAL compiler

The derived SIGNAL compiler that is associated by the validator, denoted by Val, in Figure
1.5 can be defined by the following function from Ps to Pc and the compilation error.

Cpsig
Val(A) =

C if Cpsig(A) =Cclk,Cpsig(Cclk) =Cdep,Cpsig(Cdep) =C and

Val(A,C) = true

Error if Cpsig(A) =Cclk,Cpsig(Cclk) =Cdep,Cpsig(Cdep) =C and

Val(A,C) = false

Error if Cpsig(A) = Error or Cpsig(Cclk) = Error or

Cpsig(Cdep) = Error

Cclk and Cdep are the intermediate forms of the source program A as the outputs of the
clock calculation and Boolean abstraction and static scheduling phases. C is the generated
C program from the intermediate form Cdep. Val(A,C) = true if and only if Cclk ⊑clk

14 Introduction

A,Cdep ⊑dep Cclk and C ⊑val Cdep. The pseudo-code implementation of the function above
is given in Listing 1.3.

Listing 1.3 Pseudo-code implementation of formal verified SIGNAL compiler

1 if (Cpsig(A) == Error) return Error;
2 else
3 {
4 if (Cclk ⊑clk A)
5 {
6 if (Cpsig(Cclk) == Error) return Error;
7 else
8 {
9 if (Cdep ⊑dep Cclk)

10 {
11 if (Cpsig(Cdep) == Error) return Error;
12 else
13 {
14 if (C ⊑val Cdep) return C;
15 else return Error;
16 }
17 }
18 else return Error;
19 }
20 }
21 else return Error;
22 }

1.5 Chapter plan

In the remainder of this dissertation, the chapter structure is as follows:

• Chapter 2 surveys related works in the field of verification of the correctness of the
compilation process.

• Chapter 3 introduces the concept of synchronous programming. We study the SIGNAL

language as an instance of multi-clocked synchronous data-flow languages used to
describe reactive systems, specially safety-critical systems.

• Chapter 4 presents our methods of proving the preservation of clock semantics when
the SIGNAL compiler calculates the clock information and makes the Boolean ab-
straction.

1.5 Chapter plan 15

• Chapter 5 provides a method to prove the preservation of data dependencies. We
define the common semantic frameworks to capture the data dependencies among
variables in the programs, called Synchronous Data-flow Dependency Graph. Given
the formal representations of data dependencies, we formalize the notion of “correct
implementation” as a refinement relation between graphs.

• Chapter 6 presents a method based on the translation validation approach to prove the
preservation of value-equivalence of variables between a source SIGNAL program and
its generated C code. The computation of variables in the programs is represented as
a Synchronous Data-flow Value-Graph. Value-equivalence of variables is validated
by the normalization of graphs.

• Chapter 7 summarizes our work and details some directions of future research.

CHAPTER 2

RELATED WORK IN COMPILER VERIFICATION

The story of compiler verification began in 1967 with Mc.Carthy and Painter [99] present-
ing the correctness proof for an algorithm compiling arithmetic expressions into machine
language, and then with Milner’s mechanized logical proof of a compiler in [101].

Mc.Carthy and Painter proposed a method to prove the correctness of a simple compiling
algorithm. The input language of the compiler contains arithmetic expressions formed from
constants and variables. The expressions allow only one operator, addition. The compiled
code is written in an assembly-like language whose instructions are li (load immediate),
load, sto (store), and add. For example, (x+3)+(x+(y+2)) is compiled into the following
assembly code:

1 load x
2 sto t
3 li 3
4 add t
5 sto t
6 load x
7 sto t + 1
8 load y
9 sto t + 2

10 li 2
11 add t + 2
12 add t + 1
13 add t

17

The semantics of the source language is given by the following formula:

value(e,ξ) = if isconst(e) then val(e)

else if isvar(e) then c(e,ξ)

else if issum(e) then value(s1(e),ξ)+ value(s2(e),ξ)

where isconst(e), isvar(e) and issum(e) are predicates that check that an expression e is a
constant, a variable or the sum of two expressions, and ξ is a state vector. The state vector
associates the registers of the machine with their content. There are two functions on state
vectors: c(x,η) denotes the content of register x in machine state η . a(x,α,η) denotes the
state vector that is obtained from the state vector η by updating the content of register x

to α , leaving other registers unchanged. Two state vectors η1 and η2 are equal except for
variables in A, written η1 =A η2 if x ̸∈ A,c(x,η1) = c(x,η2).

In the same way, the semantics of the object code is given as follows. It describes the
state vector η that results from executing an instruction.

step(s,η) = if isli(s) then a(ac,arg(s),η)

else if isload(s) then a(ac,c(adr(s),η),η)

else if issto(s) then a(adr(s),c(ac,η),η)

else if isadd(s) then a(ac,c(adr(s),η)+ c(ac,η),η)

where isli(s), isload(s), issto(s) and isadd(s) are predicates to check that an instructor s is
load immediate, load, store, and add, respectively. And the state vector that results from
executing the program p with the state vector η , is given as follows:

outcome(p,η) = if null(p) then η

else outcome(rest(p),step(f irst(p),η))

The compiler is defined by a function from the abstract syntax of the source language to the
abstract syntax of the object code. The semantics of the compiling algorithm is given by the
following formula:

compile(e, t) = if isconst(e) then mkli(val(e))

else if isvar(e) then mkload(loc(e,map))

else if issum(e) then compile(s1(e), t)∗mksto(t)+ compile(s2(e), t +1)∗mkadd(t)

18 Related work in compiler verification

Symbol t stands for the index of a register in the state vector. All variables are stored in
the state vector at indexes less than t, so that registers at index t and above are available for
temporary storage. Instructions are named mkli,mkload,mksto and mkadd. The operation
p1 ∗ p2 denotes the program obtained by appending sub-program p2 at the end of p1.

Assume that there is a map loc(e,map) which associates each expression e to a location
in the memory map of the machine. The compiling algorithm is correct if executing the
compiled program puts ends up with the value of the compiled expression in the accumu-
lator. No registers except the accumulator and those with addresses ≥ t should be affected.
This can be expressed as follows:

If c(loc(v,η)) = c(v,ξ) then

outcome(compile(e, t),η) =t a(ac,value(e,ξ),η).

This work illustrates the main steps to formally prove the correctness of a simple compiler.
First, one needs to formalize the semantics of the source language and compiled code, and
then the compilation algorithm. Then, the definition of correct compilation has to be speci-
fied and a theorem proved to demonstrate that it is satisfied by the algorithm.

Since this pioneering work, many proofs of program correctness have been published,
using techniques based on testing or on formal methods; see [46] for a detailed survey.

2.1 Compiler verification based on testing

Trust regarding the correctness of a compiler’s translation of source code into object code
can be established by the validation of the compiler itself or by testing the compiler’s output.
For instance, the SUPERTEST suite [2] is one of the most comprehensive test and validation
suite to verify compilers. It contains a large collection of more than 3 millions test pro-
grams. These program are self-testing when compiled and run. They are be divided into the
following classes:

• Conformance test: to test compilation of the basic constructs of the programming
language.

• Early compiler bugs: derived from bugs found in earlier compilers that tend to occur
repeatedly.

• Negative tests: to ensure that compilers handle errors in programs accurately.

2.1 Compiler verification based on testing 19

• Stress tests: to seek the limits of the compiler in terms of sizes, number of basic
blocks, live variables, etc., that the compiler handles.

• Generated tests: to systematically exploring combinations of operators, types, storage
classes and constant values.

• Tests for the C++ Standard Library: These tests verify both conformity with the stan-
dard [1, 130] and correctness of the implementation.

The tool interprets the test set definition and test run parameters. Then, it feeds the tests to
the compiler. It might run the resulting programs to assert that the compiler passed by the
test. As an example, the self-testing program of the SUPERTEST suite in Listing 2.1 checks
the correctness of bit clear [89] implementation of a C++ compiler.

Listing 2.1 Bit clear test case with SUPERTEST

1 #define COUNT 6
2 int clear[COUNT] = {2, 3, 5, 7, 11, 13};
3
4 void test_bitclear(void) {
5 int i, bits , c;
6 bits = 0xffff;
7
8 for (i = 0; i < COUNT; i++) {
9 c = clear[i];

10 bits &= ~(1 << c);
11 }
12
13 /* the assertion */
14 CVAL_VERIFY(bits == 0xd753);
15 }

The correctness of the compiler’s translation of source code into object code can alter-
natively be based on the examination of the compiler’s output through the methodology pro-
posed by the DO-178 standard. This provides user a way to demonstrate that the properties
established in the source code still hold in the object code. In order to fulfil this objective,
DO-178 recommends a proof that requirements at source-code level can be traceable down
to the object code [55, 90], including the integration of software onto its hardware execution
platform.

The form of verification which is required by DO-178 is based on high-level require-
ments, such as “HLR1: the program is never in error state E1”, and low-level requirements,

20 Related work in compiler verification

such as “LLR1: function F computes output O1, ...,On from inputs I1, ..., Im”. For both
HLRs and LLRs, the DO-178 guidance requires compliance and robustness verification.
These verifications can be done either by testing or by using formal verification as indicates
the new standard, DO-178C, also known as DO-333 [50].

The compliance verification focuses on the intended nominal behavior of a compiler.
The robustness verification focuses on the behaviors outside the nominal behaviors (e.g.,
the compilers are free of runtime errors such as out-of-range array elements, deallocation of
null pointer, over-flow).

The new version of DO-178 permits to replace part of testing with formal verification.
For instance, AIRBUS uses formal analysis tools to compute the worst case execution time
and maximum stack usage of executable programs [56] in order to comply with some DO-
178 requirements. Compliance and robustness verifications can also be proved by using
formal methods. For instance, HLR1 can be expressed as a temporal logic formula on
traces of execution and an observer tool can check that the error state is unreachable.

2.2 Compiler verification based on formal methods

There are two approaches, in general, to prove the correctness of a compiler using formal
methods. One approach consists of specifying the intended behavior of the compiler in a
specification language as a formal model and of building a proof to show that the compiler
behaves exactly as prescribed by requirements. The second approach consists of examin-
ing the source and compiled programs in order to prove that, for each run of the compiler,
the semantics of the source program is preserved. Many correctness proofs of compiler
implementations based on the two above approaches have been carried out, formal veri-
fication of the compiler itself [27, 35, 120, 133] or the verification of its compiled code
[75, 85, 91, 105, 118, 119, 125, 140].

A recent and typical example of compiler correctness proof is [27]. In this example,
the correctness of the whole Iterated Register Coalescing (IRC) algorithm [67] is formally
verified. The verification process works in cooperation with the proof assistant COQ. The
register allocation via graph coloring which was invented by Chaitin et al. [34] is widely
used in compiler implementation. However, since IRC was published in 1996, several mis-
takes have been reported in some of its implementations.

The input of IRC is an interference graph and a palette of colors, the output is the
colored graph. In [27], the interference graph is first defined in a purely functional language,
GALLINA, and implemented in the COQ prover. Then IRC is written in GALLINA. The

2.2 Compiler verification based on formal methods 21

implementation of the abstract interference graph and the operations of the algorithm are
formally proved to be correct. The verified program is translated automatically into OCAML

code that can be plugged in the COMPCERT compiler to provide correct register allocation.

A compiler is a large and very complex program which often consists of hundreds of
thousands, if not millions, lines of code, and is divided into multiple sub-systems and mod-
ules. In addition, each compiler implements a particular algorithm in its own way. Con-
sequently, that makes two main drawbacks of the formal verification of the compiler itself
approach. First, constructing the specifications of the actual compiler implementation is
a long and tedious task. Second, the correctness proof of a compiler implementation, in
general, cannot be reused for another compiler.

To deal with this drawbacks of formally verifying the compiler itself, one can prove
that the source program and the compiled program are semantically equivalent, which is the
approach of translation validation. The principle of translation validation is as follows: for a
given input sample, the source and the compiled programs will give corresponding execution

traces. These traces are equivalent if they have the same observation. An observation
is a sequence (finite or infinite) of values (e.g., values of variables, arguments, returned
values,...). The compilation is correct if for any input, the source and the compiled programs
have observationally equivalent execution traces.

A pioneering contribution to this area was the work of Pnueli et al. [118, 119] to prove
the correctness of the code generator from SIGNAL programs to C programs. Pnueli et
al. formalize the semantics of a SIGNAL program and the generated C code in terms of
Synchronous Transition Systems (STS). A STS consists of the set of states, the set of ini-
tial sates and a transition relation. A running of program is represented by a computation

of STS which is an infinite sequence of states σ = ⟨s0,s1,s2, ...⟩ such that s0 is an initial
state and si+1 is the successor state of si, for all i ∈ N. And the set of all possible com-
putations represents the semantics of the program. Given a computation σ , an observation

is an infinite sequence of values by applying the observation function on each state of σ .
Then, the authors formalize the concept of “correct translation” as a refinement between two
STSs which expresses that the semantics of the source program is preserved at the compiled
program, meaning that for any observation of the STS of the compiled program, it is also
the observation of the STS of the source program. The refinement is generated as a set of
verification conditions, and it is proved by the use of a solver such as SMT solver.

Zuck et al. [95, 117, 139, 140] introduce a methodology to validate optimizations by
generating a set of verification conditions and using a theorem prover. The main idea of
their work is that the validator generates a set of verification conditions based on an invariant

22 Related work in compiler verification

for intra-procedural optimizations. The invariant for an intra-procedural optimization is
composed of:

• A relation between the nodes in the control-flow graphs.

• A relation between the program states (e.g., contents of registers, stacks, heaps,...).

• Invariants for the individual input and output programs.

This set of verification conditions indicates the program equivalence for finite slices of pro-
gram executions. That implies that the optimized program is a correct refinement of the
input program.

A representative example is the COMPCERT project [40]. The COMPCERT compiler is a
formally verified compiler for C language. The compiler is mostly written in the functional
programming language GALLINA. The implementation is formally verified and automati-
cally translated into OCAML code by COQ. Some representative works of the project are
carried out by Blazy et al. [25, 26, 59] and Leroy et al. [92–94].

For instance, Blazy et al. proposed a correctness proof of the translation from a large
subset of C language, Clight, into the intermediate language, Cminor, the front-end of the
COMPCERT compiler. The semantic preservation for the translation is formalized as a sim-

ulation for a Clight program and the translated Cminor program. The semantics of Clight
and Cminor, the memory state model, and the simulation are formalized in COQ. A Clight
program contains a list of functions, a list of global variables declarations, and the entry
point of the program, the main function. A Cminor is structured like the Clight language
with some differences (e.g., the operators are not overloaded, type casting is explicit,...).
The semantics of Clight and Cminor are both specified using big-step operational seman-
tics. We omit the details of evaluation judgements for Clight, Cminor, and the translation.
The interested readers should refer to the original article.

To prove the correctness of the translation, the notion of memory injections α is in-
troduced to map a block reference b to either None, meaning that block has no counter
part, or a sub-block b′ at offset δ in Cminor memory state. The memory injections are
used to define the relation between Clight values v and Cminor v′ and the relation between
Clight and Cminor memory states, denoted by α ⊢ v ≈ v′,α ⊢ M ≈ M′, respectively. A
memory injection α ′ extends the memory injection α , denoted by α ′ ≥ α; it is defined by
∀b,α ′(b) = α(b)∨α(b) = None.

A matching relation EnvMatch(γ,α,E,M,E ′,sp) is introduced to match a Clight en-
vironment E and memory state M to a Cminor environment E ′ and reference to a stack

2.2 Compiler verification based on formal methods 23

block sp, since the Clight environment E maps local variables to references of blocks con-
taining the values of the variables, while the Cminor environment E ′ maps directly local
variables to the values. γ is a translation environment which reflects the placement of Clight
variables. A call stack cs is a list of tuples (γ,E,E ′,sp). A call stack is global consistent

with respect to a memory state M and memory injection α , written CallInv(α,M,cs) if
EnvMatch(γ,α,E,M,E ′,sp) holds for all elements (γ,E,E ′,sp) of the stack.

Assuming suitable consistency conditions over the call stack, the semantics of the Clight
program is preserved in the translated Cminor program if the generated Cminor expressions
and statements evaluate in ways that simulate the evaluation of the corresponding Clight
expressions and statements. The definition of this simulation relation is given as follows.
Let G′ be the global Cminor environment obtained from the global Clight environment G.
Assume that CallInv(α,M,(γ,E,E ′,sp).cs) and α ⊢ M ≈ M′. Then, there exists a Cminor
environment E ′

1, a Cminor memory state M′
1 and a memory injection α1 ≥ α such that

• (R-values) If G,E ⊢ a,M ⇒ v,M1, ∃v′ such that G′,sp,L ⊢ Rγ(a),E ′,M′ → v′,E ′
1,M

′
1

and α1 ⊢ v ≈ v′.

• (L-values) If G,E ⊢ a,M ⇒l loc,M1, ∃v′ such that G′,sp,L⊢Lγ(a),E ′,M′→ v′,E ′
1,M

′
1

and α1 ⊢ Vptr(loc)≈ v′.

• (Statements) If G,E ⊢ s,M ⇒ out,M1, and τr is the return type of the function, ∃out ′

such that G′,sp ⊢ Sγ(s),E ′,M′ → out ′,E ′
1,M

′
1 and α1,τr ⊢ out ≈ out ′.

Furthermore, the final memory states M1 and M′
1 satisfy CallInv(α1,M1,(γ,E,E ′

1,sp).cs)

and α1 ⊢ M1 ≈ M′
1. The semantic preservation theorem is given as follows. Note that it is

assumed that programs always terminate. The semantic preservation is stated as follows:
Assume the Clight program p is well-typed and translated without errors to a Cminor pro-

gram p′. If ⊢ p ⇒ v, and if v is an integer or float value, then ⊢ p′ → v.

Another example is the work of Leroy [93] which describes the correctness proof of the
code generation, the back-end of the COMPCERT compiler, from a low-level, imperative
intermediate language Cminor into optimized POWERPC assembly code, using the COQ

proof assistant.

Inspired by the work of COMPCERT compiler, the formal development of a code gen-
erator based on the correct-by-construction components method is carried out in the GE-
NEAUTO project [66, 79, 80]. The GENEAUTO code generator takes as input a func-
tional description of a system specified in a high-level modeling language (e.g., SIMULINK,
STATEFLOW) and generates C code as output.

24 Related work in compiler verification

The GENEAUTO toolset is composed of several tools which represent either systems or
code models using XML file format. The project focuses on proving the correctness of the
block sequencer tool which assigns a unique execution order to each block in the system
specified in a high-level modeling language. The block sequencer has to satisfy the set of
sequencing constraints which contains:

• Data-flow: blocks computing values used by another block must be executed first.

• Control-flow: caller blocks must be executed during callee blocks after their inputs
have been computed.

• Sequential blocks: read part of Unit Delay blocks are executed before the write one.

• User priority: two blocks can be sequenced using a user defined priority if they cannot
be sequenced with the above constraints.

• Graphical position: if two blocks cannot be sequenced with the above constraints and
there is no user defined priority, they are sequenced based on the graphical position
defined implicitly in the graphical model.

All the sequencing constraints are translated into formal specification. The specification
is written in the functional language GALLINA within the COQ prover. The verification
phase proves the conformance to the set of sequencing constraints based on the translation
validation approach, meaning that the sequential generated code correctly implements the
system specified in a high-level modeling language with respected to the set of sequencing
constraints.

Another recent work inspired by the COMPCERT project is the correctness proof of the
translation from a small subset of SIGNAL language into the intermediate language, clock

guarded actions [30, 31], the front-end of a forthcoming verified compiler [138]. The se-
mantics of both input and output of the translation are expressed as trace semantics. Then,
the formal development of the translation follows a correct-by-construction components
method, meaning that for any translation from a primitive operator of SIGNAL into the cor-
responding clock guarded actions structure, it preserves the trace semantics. The translation
is written in the functional programming language GALLINA and formally proved to be cor-
rect. The verified translation is translated automatically into OCAML code as the formally
verified compiler prototype of the SIGNAL language.

Gamatié et al. [57, 61, 63] introduce an approach to statically analyze SIGNAL pro-
grams for efficient code generation. The main idea of their work is that the clocks and clock

2.2 Compiler verification based on formal methods 25

relations are formalized as first-order logic formulas with the help of interval-Boolean ab-
straction technique. This work aims to remove the dead-code segments (e.g., segment of
code to compute a data-flow which is always absent). The dead-code segments are iden-
tified by detecting the existence of empty clocks, mutual exclusion of two or more clocks,
or clock inclusions. The reasoning on the logic formulas is done using a SMT solver. With
the interval abstraction, the analysis of clock hierarchy is more precise and more efficient
when dealing with the numerical expressions. The common semantics frameworks which
are used to construct the translation validation of clock models and SDDGs in Chapter 4 and
Chapter 5 are based on their interval abstraction technique.

CHAPTER 3

SYNCHRONOUS DATA-FLOW LANGUAGES

This chapter introduces general concepts about reactive systems, the synchronous approach
to model reactive systems and the formal verification background. Section 3.1 first defines
what reactive systems are. It presents some main features as well as some important is-
sues that designers have to deal with during the design of these systems. Section 3.2 is
an introduction to the synchronous approach in designing reactive systems, which has been
proposed as a useful approach to describe embedded and safety-critical systems, particularly
in automotive and avionics. Then, in Section 3.3, we consider an instance of synchronous
programming language, the SIGNAL language. The polychronous semantic model which is
used to define the formal semantics of the language is studied as well.

3.1 Embedded, reactive and real-time systems

There are several definitions of embedded systems, here, we consider the definition which
is proposed by Henzinger and Sifakis [76]. The definition in [60] which conforms to theirs
is given as follows:

Definition 1 (Embedded system) An embedded system is a special-purpose computer sys-

tem that consists of a combination of software and hardware components that are subject to

physical constraints. Such physical constraints come from the system’s environment and its

execution platform.

This computer system is embedded as part of a complete device that includes hardware and
mechanical parts. Its function is specific, in contrast to a general-purpose computer, such as
a personal computer (PC), which is designed to be flexible with a wide range of services.

In general, embedded systems are designed based on micro-controllers (i.e CPUs with
integrated memory and/or peripheral interfaces). Physically, embedded systems can range

3.1 Embedded, reactive and real-time systems 27

from portable devices such as digital watches, smart phones, to large devices such as factory
controllers, hybrid vehicles, and avionics. They can have one micro-controller or multi
micro-controllers.

3.1.1 Reactive systems

In [74], Harel and Pnueli introduced the term “reactive system”, it is commonly accepted
to describe a computer system that continuously interacts with its environment at a speed
which is determined by this environment. One example of reactive systems is embedded
systems that can be seen anywhere in our modern life. And they are reactive in nature.

Definition 2 (Reactive system) A reactive system is a computer system that continuously

interacts with its environment at a speed which is determined by this environment.

It is different from a “transformational system”, which is a system whose role is to make
some outputs computed from some inputs. A transformational system terminates in a finite
time duration (e.g., a compiler). It also distinguishes from interactive systems, which inter-
act continuously with their environment, but at their own speed (e.g., operating systems).

Reactive systems range from very simple systems (e.g., a system with sensors to record
the temperature) to complex systems. Many reactive systems are safety-critical, meaning
that even minor errors are unacceptable, and minor errors can make systems go disastrously
wrong. For instance, health-related systems, automotive systems, airplane flight control
systems and control systems for nuclear plants are reactive systems. The main features of
reactive systems which are pointed out in [13, 16, 18, 110] are the following:

Concurrency A reactive system involves concurrency because of the concurrency be-
tween the system and its environment. In addition, it is convenient to consider a system as
a set of components, which cooperate to achieve the desired behavior. In practice, some
systems are implemented on parallel and distributed architectures in order to improve their
performance and reliability.

Strict time requirements The systems have to satisfy the requirements about their input
rate and their input/output response time. These constraints must be expressed in the system
specifications. In order to check these constraints, the evaluation of execution time has
especially to be precise during the system design.

28 Synchronous data-flow languages

Deterministic The outputs of the system are entirely determined by their input values
and by the occurrence times of these inputs. The systems will always behave in the same
manner, with respect to their expected functional requirements. This makes the validation
of the system much easier.

Reliability This can be considered as the most important feature of reactive systems. Er-
rors in reactive systems can be catastrophes, and involve human lives. Therefore, reactive
systems require especially rigorous design methods, for instance, formal verification must
be considered.

Mixing of hardware and software In many cases, reactive systems are partly imple-
mented by hardware and software, in which they cooperate to achieve the intended function.

3.1.2 Real-time systems

A reactive embedded system has to guarantee a response within a finite and specified time
interval, often referred to as “deadline”, is called a real-time system. Process control, man-
ufacturing support, command and control are all example application areas where real-time
systems have a major role. We consider the definition of a real-time system in [60] which is
given as follows:

Definition 3 (Real-time system) A reactive embedded system is a real-time system when

its correctness depends not only on the logical results of its associated computations, but

also on the delay after which the results are produced.

It is common to distinguish between hard and soft real-time systems. Hard real-time systems
are those whose responses occur strictly within the specified deadline. If the deadlines are
missed the system will be failed. Soft real-time systems are those where response time
is required to be within the specified deadline, however the system still function correctly
if deadlines are occasionally missed. Note that most systems combine both hard and soft
real-time subparts.

For example, the flight control system of an aircraft is a hard real-time system. A data
acquisition is an example of soft real-time system, as it is defined to sample the data from
an input sensor at regular time intervals, but it can tolerate some intermittent delays.

Time is obviously a critical resource for real-time systems and must be managed effec-
tively. Unfortunately, it is very difficult to design and implement a system that guarantees

3.2 Synchronous programming 29

timing requirements under all possible circumstances. Therefore, real-time systems are usu-
ally constructed with respect to “worst-case execution time”.

In general, real-time programming languages provide the developer real-time control
facilities. These control facilities specify times at which actions are to be performed and
have to be completed. They also provide the developer solutions to respond to the situ-
ations where the timing requirements cannot be met, and the situations where the timing
requirements are changed dynamically.

3.2 Synchronous programming

To implement a reactive system, one can use a single loop, of the form in Listing 3.1. This
programming scheme is called “event driven” since each reaction is triggered by an input
event from the environment.

Listing 3.1 “Event driven”

1 < Initialize Memory >
2 for each input_event do
3 < Compute Outputs >
4 < Update Memory >
5 end

Listing 3.2 shows a more common programming scheme, which periodically samples the
inputs from the environment.

Listing 3.2 “Sampling”

1 < Initialize Memory >
2 for each period do
3 < Read Inputs >
4 < Compute Outputs >
5 < Update Memory >
6 end

These two programming schemes do not deeply differ, but they correspond to different
intuitive points of view. In the following, we shall present the approaches to describe the
implementation of the above programming schemes (see [16, 110] for a more complete
representation).

30 Synchronous data-flow languages

3.2.1 Classical approaches

Reactive systems can be modeled using task-based models, finite automata, Petri-net-based
models, or classical concurrent and real-time programming languages.

Task-based models The system is designed as a set of sequential tasks. The tasks are
activated and controlled by a real-time operating system. The communication between tasks
is implemented using a shared memory. The time requirements are guaranteed by means
of scheduling instructions (interrupts, priorities,...) and are not directly expressed in the
description. Analysis, debug, and maintenance of such systems is hard. In addition, real-
time operating systems are generally nondeterministic, which in turn makes programming
more difficult.

Finite automata The control kernel of a reactive system is often implemented using an
automaton. From a current state, the automaton selects a transition, calls the corresponding
sequential tasks, and changes its states for the next reaction. A reaction is neither loop nor
recursion with no interrupt and no overhead. The “worst case” execution time can be accu-
rately bounded. Automata are deterministic and can be automatically analyzed by numerous
available formal verification techniques [38, 58, 122]. However, writing an automaton with
a big number of states is a difficult and error-prone task. Automata, in general, do not di-
rectly support hierarchical design and concurrency. Consequently, they are very difficult to
use to design complex systems. A small change to the system specifications might involve
a complete modification and rewriting of the automaton.

Petri-net-based models Petri-nets can be used to express concurrency in a natural way
[124]. But they lack modular structure and often lack determinism. Consequently, it is
suitable for small systems.

Classical concurrent and real-time programming languages Concurrent and real-time
programming languages such as ADA [4] or OCCAM [96] take concurrency as a primary
concern and support modularity. Communication and synchronization mechanisms use
rendez-vous, and fifo queues. However, they are essentially asynchronous and nondeter-
ministic: the time taken between the possibility of a communication and its actual achieve-

ment can be arbitrary and is unpredictable. And the order is also unpredictable when several
communications take place. In addition, the formal verification of program written in these

3.3 The SIGNAL language 31

languages is often not feasible because asynchrony makes the formal description of the
program very large [16].

3.2.2 The synchronous approach

The synchronous approach naturally expresses concurrency. It is deterministic and hierar-
chical, and possible to use automatic verification tools.

In the synchronous approach [14, 15], time is abstracted by a partial order relation.
Events occurring during the same reaction are regarded as simultaneous. Time only incre-
ments from one reaction to the next one. Durations between events are not specified. Under
this abstraction, computation is considered to take zero time. A synchronous program is
supposed to instantly and deterministically react to the events from its environment. To
illustrate the basic idea of synchronous approach, we consider an example in [110] which
requires the two following constraints:

• “The train must stop within 10 seconds”

• “The train must stop within 100 meters”

These constraints can be expressed in completely different ways if the physical time is
considered. In the synchronous model, they will be expressed by the following constraints:

• “The event stop must precede the 10th next occurrence of the event second”

• “The event stop must precede the 100th next occurrence of the event meter”

The notion of instant is understood as a logical instant: the history of a system is a totally
ordered sequence of logical instants. At each instant, there are zero, one, or several events
that can occur. Events which occur at the same instants are considered as simultaneous. In
the duration between two instants, nothing happens either in the system or its environment.
Finally, all the processes of the system have the same knowledge of the events occurring at
a given instant.

3.3 The SIGNAL language

3.3.1 Synchronized data flow

We shall consider the concept of synchronized data flow as described in [19, 62, 72]. Based
on the data flow semantics given by Kahn [84] as functions over flows, in the following

32 Synchronous data-flow languages

expression, y is the greatest sequence of values a′t + at where a′ is the sub-sequence of
strictly positive values in the sequence of values a.

1 if a > 0 then
2 x = a
3 y = x + a

If we consider an execution where the edges are FIFO queues [8], if a is a finite or infinite
sequence of zero or negative values, the queue associated with a grows or grows forever, the
queue associated with x is always empty. Assume that the queue consists only of a single
cell [48], the execution to compute a value of the sequence associated with y cannot perform
as soon as a negative value appears on the input since the first operand does not hold a value
(the sequence associated with a is empty), meaning that there exists a deadlock. To deal with
this situation in the context of embedded system design, synchronized data flow introduces
synchronizations between occurrences of flows. The absent of value is usually represented
by nil, null, or the symbol ⊥.

3.3.2 An overview of the language

SIGNAL [13, 65] is a polychronous data-flow language that allows the specification of multi-
clocked systems. It handles unbounded sequences of typed values x(t), t ∈N, called signals,
denoted as x. Each signal is implicitly indexed by a logical clock indicating the set of instants
at which the signal is present, noted Cx. At a given instant, a signal may be present where
it holds a value, or absent where it holds no value (denoted by ⊥). Given two signals, they
are synchronous if and only if they have the same clock. In SIGNAL, a process (written as P

or Q) consists of the synchronous composition (denoted by |) of equations over signals x,y,
and z, written as x := y op z or x := op(y,z), where op is an operator. A program itself is a
process.

Data domains Data types contain usual scalar types (Boolean, integer, float, complex, and
character), enumerated types, array types, tuple types, and the special type event, subtype
of the Boolean type which has only one value, true.

Operators The core language consists of two kinds of “statements” defined by the follow-
ing primitive operators: first four operators on signals and last two operators on processes.
The operators on signals define basic processes, with implicit clock relations, while the op-
erators on processes are used to construct complex processes with the parallel composition
operator.

3.3 The SIGNAL language 33

• Stepwise functions: y := f (x1, ...,xn), where f is a n-ary function on values, defines the
extended stream function over synchronous signals as a basic process whose output y

is synchronous with x1, ...,xn and ∀t ∈Cy,y(t) = f (x1(t), ...,xn(t)).

• Delay: y := x$1 init a defines a basic process such that y and x are synchronous,
y(t0) = a, and ∀t ∈ Cy ∧ t > 0,y(t) = x(t−), where t0 = inf{t ′|x(t ′) ̸= ⊥} and t− =

sup{t ′|t ′ < t ∧ x(t ′) ̸=⊥}.

• Merge: y := x default z defines a basic process which specifies that y is present if
and only if x or z is present, and that y(t) = x(t) if t ∈Cx and y(t) = z(t) if t ∈Cz \Cx.

• Sampling: y := x when b where b is a Boolean signal, defines a basic process such
that ∀t ∈Cx ∩Cb ∧b(t) = true,y(t) = x(t), and otherwise, y is absent.

• Composition: If P1 and P2 are processes, then P1 | P2, also denoted (|P1 | P2|), is the
process resulting of their parallel composition. This process consists of the composi-
tion of the systems of equations. The composition operator is commutative, associa-
tive, and idempotent.

• Restriction: P/x, where P is a process and x is a signal, specifies a process by consid-
ering x as local variable to P (i.e., x is not accessible from outside P).

Clock relations In addition, the language allows clock constraints to be defined explicitly
by some derived operators that can be replaced by primitive operators above.

• Clock extraction: y := x̂ specifies that y is the clock of x with type event. It is
equivalent to y := (x = x) in the core language.

• Synchronization: x =̂ y means that x and y have the same clock. It can be replaced by
x̂ = ŷ.

• Clock extraction from Boolean signal: when b indicates the sub-clock [b]. It is the
shortcut for b when b.

• Clock union: x +̂ y defines a clock as the union Cx ∪Cy, which can be rewritten as
x̂ default ŷ.

• Clock intersection: x ∗̂ y defines a clock as the intersection Cx ∩Cy, which can be
rewritten as x̂ when ŷ.

34 Synchronous data-flow languages

Dependency Clock relation

x Cx
Cx−→ x

c (Boolean signal) c
[c]−→ [c], c

[¬c]−−→ [¬c]

x c−→ y [c]
[c]−→ y

y := f (x1, ...,xn) x1
Cy−→ y ... xn

Cy−→ y Cy =Cx1 ... Cy =Cxn

y := x$1 init a Cy =Cx

y := x when b x
Cy−→ y, b

Cy−→Cy Cy =Cx ∩ [b]

y := x default z x Cx−→ y, z
Cz\Cx−−−→ y Cy =Cx ∪Cz

Table 3.1 The implicit clock relations and dependencies

• Clock difference: x −̂ y defines a clock as the set Cx \Cy, which can be rewritten as
when (not(ŷ) default x̂).

Implicit clock relations and dependencies The above basic processes induce clock rela-
tions and dependencies among signals. Table 3.1 shows these clock constraints for the prim-
itive operators. In this table, the sub-clock [c] (resp. [¬c]) is defined as {t ∈Cc|c(t) = true}
(resp. {t ∈Cc|c(t) = false}). Notice that a clock can be viewed as a signal with type event
(which has only one value, true, when it is present), thus the condition Cc means that the
signal c is present.

Let x,y be two signals and c be a Boolean signal, if at any instant t such that t ∈ Cx ∩
Cy ∩Cc and c(t) = true, setting a value to y cannot precede the availability of x, then we
say that y depends on x at the condition c. We use x c−→ y to denote the fact that there is a
dependency between y and x at the condition c. In particular, the following dependencies
apply implicitly.

• Any signal is preceded by its clock.

• For a Boolean signal c, [c] and [¬c] depend on c.

• Any dependency x c−→ y implies implicitly a dependency [c]
[c]−→ y.

Example The following Signal program emits a sequence of values FB,FB− 1, ...,2,1,
from each value of a positive integer signal FB coming from its environment.

3.3 The SIGNAL language 35

Listing 3.3 DEC in Signal

1 process DEC=
2 (? integer FB;
3 ! integer N)
4 (| FB =̂ when (ZN <=1)
5 | N := FB default (ZN -1)
6 | ZN := N$1 init 1
7 |)
8 where integer ZN
9 end;

Let us comment this program. FB, and N are respectively input and output signals of type
integer (line 2 and 3). FB is accepted, it is present, only when ZN becomes less than or
equal to 1 (line 4). N is set to FB when its previous value is less than or equal to 1, otherwise
it is decremented by 1 (line 5). ZN is defined as carrying the previous value of N and its
initial value is 1) (line 6). ZN is a local signal (line 8).
We can see that the clock of the output signal is more frequent than that of the input. This
is illustrated in the following possible traces:

1 t
2 FB 6 ⊥ ⊥ ⊥ ⊥ ⊥ 3 ⊥ ⊥ 2
3 ZN 1 6 5 4 3 2 1 3 2 1
4 N 6 5 4 3 2 1 3 2 1 2
5 CFB t0 t6 t9

6 CZN t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

7 CN t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Program structure The language is modular, meaning that a process can be used as a
basic pattern, by means of an interface that describes its parameters and its input and out-
put signals. Moreover, a process can use other subprocesses, or even external parameter
processes that are only known by their interfaces. For example, to emit three sequences of
values FBi−1, ...,2,1 for all three positive integer inputs FBi, with i= 1,2,3, one can define
the following process (in which, without additional synchronizations, the three subprocesses
have unrelated clocks):

1 process 3DEC=
2 (? integer FB1 , FB2 , FB3;
3 ! integer N1 , N2, N3)
4 (| N1 := DEC(FB1)
5 | N1 := DEC(FB2)

36 Synchronous data-flow languages

6 | N3 := DEC(FB3)
7 |)
8 end;

3.3.3 Semantics of the language

This section presents the operational and denotational semantics of the SIGNAL language.
Operational semantics are classified in two categories: big-step semantics and small-step

semantics [116]. Big-step semantics describe how the overall results of the executions are
obtained. By opposition small-step semantics formally describe how the individual steps
of a computation take place on an abstract machine. Denotational semantics [127] formal-
ize the meanings of programming languages by constructing mathematical objects (called
denotations) that describe the meanings of expressions from the languages. Denotational
semantics describe a valid program as a function from its inputs to its outputs. The opera-
tional and denotational semantics of SIGNAL were originally proposed by Benveniste et al.
in [14] and Le Guernic et al. in [72]. They are also presented by Gamatié in the book on
designing embedded systems with the SIGNAL language [60].

3.3.3.1 Operational semantics

Let X and V be a countable set of variables and their domain of values, respectively. The
domain with the absent value is denoted by V⊥ = V∪⊥. A signal variable can be assigned
values according to an environment that is defined as follows:

Definition 4 (Environment) Let X1 ⊂ X be a set of signal variables, an environment asso-

ciated with X1 is defined as a function ε : X1 → V⊥. This function assigns values to signals

at each instant during an execution.

The set of environments associated with X1 is written as εX1 . When the signal s is present,
the environment assigns a value v ∈ V to s (denoted by s(v) ∈ ε , or ε(s) = v). Otherwise,
s is associated with the special value, absent value (noted as s(⊥)). An environment where
all signals are absent is denoted by ⊥ε .

Definition 5 (Environment restriction) Consider an environment ε associated with X and

a subset X1 ⊆ X, the restriction written as εX1
is defined as follows:

εX1
: X \X1 → V⊥ such that ∀x ∈ X \X1,ε(x) = εX1

(x)

3.3 The SIGNAL language 37

For example, we consider the following environment:

ε : {s1,s2,s3}→ {v1,v2,v3,v4};ε(s1) = v1,ε(s2) = v2,ε(s3) = v3

Then, the environment restriction εs2 is defined as:

εs2 : {s1,s3}→ {v1,v2,v3,v4};ε(s1) = v1,ε(s3) = v3

The signal s2 is not visible in the environment restriction.

Definition 6 (Environment composability) Let ε1 ∈ εX1 and ε2 ∈ εX2 be two environments.

If for all signal variables x ∈ X1 ∩X2, ε1(x) = ε2(x), then they are composable and their

composition ε1 ⊕ ε2 is defined as follows:

⊕ :εX1 × εX2 → εX1∪X2

(ε1,ε2) 7→ ε1 ∪ ε2

For example, we consider the following environments:

ε1 :{s1,s2,s3}→ {v1,v2,v3,v4};ε(s1) = v1,ε(s2) = v2,ε(s3) = v3

ε2 :{s1,s4,s5,s6}→ {v1,v4,v5,v6};ε(s1) = v1,ε(s4) = v4,ε(s5) = v5,ε(s6) = v6

Since ε1 and ε2 are composable, we have their composition environment as follows:

ε1 ⊕ ε2 :{s1,s2,s3,s4,s5,s6}→ {v1,v2,v3,v4,v5,v6};

ε(s1) = v1,ε(s2) = v2,ε(s3) = v3,ε(s4) = v4,ε(s5) = v5,ε(s6) = v6

The operational semantics of the SIGNAL language is described by a labeled transition sys-
tems where the states are SIGNAL processes. It is given as follows:

C

p1
ε−→ p2

where p1 and p2 are processes, ε is an execution environment, and C is a precondition on
p1, p2, and ε . We now define the operational semantics for all primitive operators of the
language SIGNAL. Consider the environment in which all signals involved in a process p

are absent. Hence, the process p never reacts. The operational semantics of this process can

38 Synchronous data-flow languages

be represented by the following trivial rule:

p
⊥ε−→ p

Stepwise functions Let p be the basic process y := f (x1, ...,xn), the signal y is present
and holds the value calculated by the expression f (v1, ...,vn) when the signal x1, ...,xn are
present and carry the values v1, ...,vn, respectively. The operational semantics of p is defined
as follows:

p
x1(v1),...,xn(vn),y(f (v1,...,vn))−−−−−−−−−−−−−−−−−→ p

When all signals are absent, the operational semantics is represented by the trivial rule.

Delay The operational semantics of the basic process p = y := x$1 init a is defined by
the following transition rule.

p
x(v),y(a)−−−−−→ p′

where p′ = y := x$1 init v. The delay operator expresses a dynamic behavior in which
the value of the signal x is memorized after each transition. The process p′ memorizes the
previous value v carried by x as the new initialization value for the next transition. The
trivial rule is also applied for the delay operator.

Merge The semantics of merge operator, y := x default z, is defined by the following
transition rules:

p
x(v1),z(⊥),y(v1)−−−−−−−−−→ p

p
x(v1),z(v2),y(v1)−−−−−−−−−→ p

p
x(⊥),z(v2),y(v2)−−−−−−−−−→ p

p
⊥ε−→ p

3.3 The SIGNAL language 39

Sampling The semantics of sampling operator, y := x when b, is defined by the following
transition rules:

p
x(v),b(⊥),y(⊥)−−−−−−−−→ p

p
x(⊥),b(vb),y(⊥)−−−−−−−−−→ p

p
x(v),b(true),y(v)−−−−−−−−−−→ p

p
x(v),b(false),y(⊥)−−−−−−−−−−−→ p

p
⊥ε−→ p

Composition Let p1, p2, p3, and p4 be four processes within the environments ε1 and ε2.
The operational semantics of the composition operator is defined as follows:

p1
ε1−→ p2; p3

ε2−→ p4;ε1 and ε2 are composable

(p1 | p3
ε1⊕ε2−−−→ (p2 | p4)

The upper part of the transition rule defines the condition at which the composition of two
processes is possible (the two environments must be composable). The lower part describes
the composition whenever this condition is satisfied.

Restriction Let p1 and p2 be two processes within an environment ε . The semantics of
the process restriction is simply defined by restricting the visibility of the signals concerned
in the transition environment. The operational semantics is defined as follows:

p1
ε−→ p2

p1/x εx−→ p2/x

3.3.3.2 Denotational semantics

Let X ,B = { f f , tt},V ⊇ B, and T be a countable set of variables, a set of Boolean values
(f f and tt denote false and true, respectively), the domain of variables, and a dense set
equipped with a partial order relation ≤. The elements in T are called tags. The partially
ordered set (T ,≤) is a subset T ⊂ T such that:

• T is countable,

• T has a lower bound 0 for ≤,

40 Synchronous data-flow languages

• the partial order ≤ on T is well-founded.

We denote by CT the set of all chains C in T . Then, for a tag t ∈ C, min(C), max(C) and
predC(t) denote the minimum, maximum and the predecessor of t.

Definition 7 (Event, signal and behavior) Given a set T , an event e ∈ E is a relation

between a tag and a value. A signal s ∈ S = T ⇀ V is a partial function defined on a

chain of tags to a set of values. A behavior b ∈ B = X ⇀ S is a partial function that maps

a signal name x ∈ X to a signal s ∈ S .

We write tags(s) and vars(b) to denote the domain of s and domain of b, respectively. Then,
tags(b) =

⋃
x∈vars(b) tags(b(x)) denote the tags of the behavior b. Therefore, x is present at

instant t in behavior b can be formally expressed by t ∈ tags(b(x)).
For example, consider the following trace, we have:

1 t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 ...
2 x1: 1 2 3 ...
3 x2: 1 2 3 ...
4 x3: 1 2 3 ...

• X = {x1,x2,x3}

• V= {1,2,3}

• T = {t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, ...}

• E = {e0 = (t0,1),e1 = (t1,1),e2 = (t2,1),e3 = (t3,2),e4 = (t4,2),e5 = (t5,2),e6 =

(t6,3),e7 = (t7,3),e8 = (t8,3), ...}

• S = {s1 = {e0,e4,e6, ...},s2 = {e1,e5,e7, ...},s3 = {e2,e3,e8, ...}}

• B = {(v1,s1),(v2,s2),(v3,s3)}

The projection of a behavior b on a set X1 ⊂ X of names, b |X1 , is defined as follows:

• vars(b |X1) = X1

• ∀x ∈ X1,b |X1 (x) = b(x)

We write b/X1 for the projection of b on the complementary of X1 in vars(b). The empty
signal is denoted by λ . 0 |X1= {(x,λ) | x ∈ X1 to denote the association of X1 ⊂ X to the
empty signal.

3.3 The SIGNAL language 41

Definition 8 (Process) A process p ∈P is a stretch-closed set of behaviors which have the

same domain X (denoted by vars(p)). The synchronous composition of two processes p | q

is defined by the set of behaviors that extend a behavior b ∈ p by the restriction c/vars(p) of

a behavior c ∈ q provided that the projections of b and c on vars(p) ∩ vars(q) are equal.

p | q = {b⊎ c/vars(p) | (b,c) ∈ p×q,b |vars(p)∩vars(q)= c |vars(p)∩vars(q)}

Definition 9 (Stretching) A behavior c is a stretching of b, noted b ≤B c, iff vars(b) =

vars(c) and there exists a bijection f : T → T such that:

• ∀t,u ∈ T , t ≤ u ↔ f (t)≤ f (u)

• ∀C ∈ C ,∀t ∈C, t ≤ f (t)

• f orallx ∈ vars(b), tags(c(x)) = f (tags(b(x)))

• ∀x ∈ vars(b),∀t ∈ tags(b(x)),b(x)(t) = c(x)(f (t))

The stretching relation is a partial order on behaviors B. This provides an equivalence
relation between two behaviors.

Definition 10 (Stretch equivalence) The behaviors b and c are stretch-equivalent, written

b≶ c, iff there exists a behavior d such that d ≤B b and d ≤B c.

For a behavior b, the class of all behaviors that are stretch-equivalent is denoted by b∗.
The stretch closure of a set of behaviors p, denoted by p∗, is defined as p∗ =

⋃
b∈p b∗.

In particular, it is interesting to consider the class of processes which contain all possible
stretches of a given behavior.

Definition 11 (Stretch closure) A process p is stretching-closed iff for all b ∈ p and all

c ∈ B,c≶ b ⇒ c ∈ p.

A stretching-closed process p admits a set of strict behaviors, denoted (p)≶, such that
(p)≶ ⊂ p. It satisfies that for all behavior b ∈ p, there exists a unique behavior c ∈ (p)≶
such that c≶ b.

For each primitive operator of SIGNAL, we describe its denotational semantics in terms
of sets of behaviors. We denote by [[p]] the set of all possible behaviors of the process p.

42 Synchronous data-flow languages

Stepwise functions The denotational semantics of the stepwise functions, y := f (x1, ...,xn),
is defined as follows:

[[y := f (x1, ...,xn)]] = {b ∈ B |y,x1,...,xn|

tags(b(y)) = tags(b(x1)) = ...= tags(b(xn)) =C ∈ C \ /0

∀t ∈C,b(y)(t) = [[f]](b(x1)(t), ...,b(xn)(t))}

The denotational semantics of the stepwise functions is the set of behaviors b such that:

• The tags of each signal xi represent the same chain C of tags.

• For each tag in C, the relation f holds between the values carried by the involved
signals. We denote the stepwise interpretation of f by [[f]].

Delay The denotational semantics of the delay operator, y := x$1 init a, is defined as
follows:

[[y := x$1 init a]] = {0 |y,x}∪{b ∈ B |y,x|

tags(b(y)) = tags(b(x)) =C ∈ C \ /0

b(y)(min(C)) = a,∀t ∈C \min(C),b(y)(t) = b(x)(predC(t))}

The denotational semantics of the delay operator is the set of behaviors b such that:

• The tags of the signals y and x represent the same chain C of tags.

• At the initial tag of C, y holds the value a.

• For all other tag t in C, y holds the value that is carried by x at the predecessor of t.

Merge The denotational semantics of the merge operator, y := x default z, is defined as
follows:

[[y := x default z]] = {b ∈ B |y,x,z|

tags(b(y)) = tags(b(x))∪ tags(b(z)) =C ∈ C

∀t ∈C,b(y)(t) = b(x)(t) if t ∈ tags(b(x)) else b(z)(t)}

The set of behaviors satisfy:

• The tags of the signals y is the union of those associated with x and z.

3.3 The SIGNAL language 43

• The value taken by y is the value carried by x at any common tag of x and y. Otherwise,
y takes the value carried by z.

Sampling The denotational semantics of the sampling operator, y := x when b, is defined
as follows:

[[y := x when b]] = {b ∈ B |y,x,b|

tags(b(y)) = {t ∈ tags(b(x))∩ tags(b(b)) | b(b)(t) = tt}=C ∈ C

∀t ∈C,b(y)(t) = b(x)(t)}

The denotational semantics of the sampling operator consists of the behaviors which satisfy:

• The tags of the signals y is the intersection of the tags of x and the set of tags at which
b carries the value true.

• At each tag of y, it holds the value carried by x.

Composition The composition of two processes p and q is the stretch closure of the be-
haviors b such that the projections of these behaviors on vars(p) and on vars(q) give behav-
iors in p and q, respectively. The denotational semantics is given as follows:

[[p | q]] = ({b | b |vars(p)∈ p,b |vars(q)∈ q})∗

Restriction The restriction of a process p over x is the stretch closure of the behaviors
of p projected on the complementary set of {s}. The denotational semantics is defined as
follows:

[[p/x]] = ({c | ∃b ∈ p∧ c≶ b/{x}})∗

CHAPTER 4

TRANSLATION VALIDATION OF TRANSFORMATIONS

ON CLOCKS

Clocks and clock relations are used to represent all the control parts (e.g. activation events)
and interaction between different components in a system. The control flow resulting from
the analysis of clocks and clock relations is used to derive an optimized data-flow following
the transformations of the compiler. Therefore, the correctness of clock analysis in the
compilation of synchronous programs strongly impacts the quality of the compiled program.

In this chapter, we describe how the preservation of clock semantics can be proved based
on the translation validation approach. It focuses on proving that for any transformation in
the first phase of the SIGNAL compilation process, the source program and its compiled pro-
gram have the same clock semantics. We propose two approaches based on model checking
and the use of SMT solver.

In the first approach, the clock semantics of the programs are represented by Polyno-

mial Dynamical Systems (PDSs) that is considered as a common semantic framework in our
translation validation. A PDS refinement is formally formalized to express the concept of
correct transformation and provide a method to prove the existence of this refinement based
on the simulation technique.

In the second approach, the presence/absence status of all signals in a program at a given
instant is deterministically characterized by a first-order logic formula with uninterpreted

functions, called clock model. Given two clock models, a clock refinement between them
is defined which expresses the preservation of clock semantics. A method to check the
existence of clock refinement is defined as a first-order logic formula satisfiability problem.

We design a validator and plug it within the clock calculation and Boolean abstraction

phase. Figure 4.1 shows the integration of this validator into the compilation process. The
validator takes the source program and its compiled counterpart, and constructs the corre-

4.1 The clock calculus in SIGNAL compiler 45

sponding PDSs or clock models for the first and second approaches, respectively. It then
checks the existence of PDS refinement or clock refinement depending on which approach
is being used. If the result is that the relation does not exist then a “compiler bug” message
is emitted. Otherwise, the compiler continues its work.

*.SIG *_BASIC_TRA.SIG *_BOOL_TRA.SIG *_SEQ_TRA.SIG C/C++, Java

Clock Calculation,
Boolean Abstraction Scheduling Code Generation

Clock
Semantics

Preservation

Clock
Semantics

Preservation

Fig. 4.1 A bird’s-eye view of the verification process

The remainder of this chapter is organized as follows. Section 4.1, first, describes
how the SIGNAL compiler calculates the clocks and makes the Boolean abstraction of
synchronous programs to answer some important questions in the first phase compilation.
Section 4.2 addresses the Z/3Z encoding of signal clocks and values. In Section 4.3, we
consider the formal definition of PDSs, the translation of SIGNAL programs into PDSs and
translation validation of PDSs. Section 4.4 provides the definition of clock model, the en-
coding scheme from SIGNAL programs into clock models and the translation validation of
clock models. We also address the mechanism of the verification process, the application
of the verification process to the SIGNAL compiler, and its integration in the POLYCHRONY

toolset [77]. Section 4.5 presents some related works, concludes our work and outlines some
future directions.

4.1 The clock calculus in SIGNAL compiler

Consider the first phase of the SIGNAL compilation process, the goal of this phase is calcu-
lating clocks of all signals, synthesizing clock relations, and providing a Boolean abstraction
of a program. The compiled program is also written in SIGNAL language as depicted Figure
1.4. The compiler represents the clocks and clock relations as a system of equations. These
equations are encoded in the finite field Z/3Z of integers modulo 3, where −1 encodes the
presence of a Boolean signal holding the value false, 0 encodes the absence of a signal,
+1 encodes the presence of a Boolean signal holding the value true. The full encoding

46 Translation validation of transformations on clocks

scheme of SIGNAL programs will be presented in Section 4.2 and Section 4.2.1.

The analysis of such a system of equations provides some important functions of the
compiler [13]. The first function of this phase is the detection of empty behavior and syn-
chronization errors. If the system of equations has only one solution such that the empty
clock is set to every signal, then the program cannot execute. For instance, we consider the
following program:

1 (| x := a when (a > 0)
2 | y := a when not (a < 0)
3 | z := x + y
4 |)

which induces [a > 0] = [¬(a > 0)] =Ca \ [a > 0] (since x and y are synchronous), because
[a > 0]⊆Ca, we get Ca =Cx =Cy =Cz = /0.

If the program can be executed but some inputs from the environment are not accepted,
then the program can be deadlocked. This happens in the following program:

1 (| c := a > 0
2 | x := a when c
3 | y := x + a
4 |)

which provides Ca ∩ [c] = Ca and Ca = Cc, implies that [c] = Cc, which means that the
input signal a must always be positive. In consequence of this constraint on the input, this
program will be rejected if its environment provides a negative value for a which implies
that the signal a is present, c is present and holds the value false and x is absent.

The other function of this phase is to construct the control flow of the program. Given
a program, it may be established an order relation on the set of clocks: the clock of signal
h is said to be greater than the clock of signal k if the set of instants of k is a sub-set of the
set of instants of h (k is an under-sampling of h), denoted by Ch ≥Ck. Equivalently, we say
that the class Ch dominates the class Ck. The relation ≥ on the quotient set of signals by
ˆ= (two signal are in the same class if and only if they are synchronous) is called a clock

hierarchy [7]. When the clock hierarchy has a unique highest class, then the program has a
fastest rated clock (called the master clock) and the definitions of other clocks are expressed
as under-samplings of the fasted rated clock. In this case, the status (presence/absence) of
all signals is a pure flow function: this status depends neither on communication delays, nor
on computing latencies.

A program which contains only one master clock is referred to as endochronous, mean-
ing that there is a unique way to compute the clocks of its signals. Endochronous programs

4.2 The synchronization space Z/3Z 47

can be executed in a deterministic way [72]. If there exists more than one master clock,
some parts of the program can run at independent rates. Consider the following example:

1 (| x := (x$ init 0) + 1
2 | y := x when c
3 |)/x

We get the clock relation Cy =Cx∪ [c], which leaves the clock of x and c unrelated. The sig-
nal x is not synchronized by any external signal, thus its computation rate is undetermined.
As a result, the output y can be any subsequence of the sequence of integers. To make
the program execute in a deterministic way, this program needs extra information from its
environment (i.e., the clock of x needs to be synchronized by some external signal).

4.2 The synchronization space Z/3Z

We denote by Z/pZ[Z] the set of polynomials over variables Z = {z1, ...,zk} whose co-
efficients range over the finite field modulo p, Z/pZ, with p prime. For a polynomial
P ∈ Z/pZ[Z], the solutions of the equation P(Z) = 0 are denoted by Sol(P).

We say that P1 ≡ P2 whenever Sol(P1) = Sol(P2). And the representative of Sol(P) of
each ≡-equivalence class is called the canonical generator. In the rest of this chapter, we
shall use the following notations, where P|zi=v is P obtained by instantiating any occurrence
of variable zi by value v.

P , 1−Pp−1

P1 ⊕P2 , (Pp−1
1 +Pp−1

2)p−1

P1 ⇒ P2 , {Z ∈ (Z/pZ)k|P1(Z) = 0 ⇒ P2(Z) = 0}
∃ziP , P|zi=1 ∗P|zi=2 ∗ ...∗P|zi=p

∀ziP , P|zi=1 ⊕P|zi=2 ⊕ ...⊕P|zi=p

Following the above notations, we can see that the solutions of P are defined as Sol(P) =

(Z/pZ)k\Sol(P). And the polynomial P1 ⇒ P2 has the same the set of solutions as P1 ∗P2,
or P1 ⇒ P2 ≡ P1 ∗P2. The manipulations of polynomials over the finite field modulo p, with
p prime can be found in [29].

We consider the finite field modulo 3, Z/3Z= {−1,0,+1}. This field holds some very
interesting properties that are used to reason about properties of encoded statements. For

48 Translation validation of transformations on clocks

instance, let x be an element in Z/3Z and n ∈ N, then:

x2n = x2

x2n+1 = x

x+ x = −x
1
x = x,∀x ̸= 0
x(1− x2) = 0
(f (x2))2n = f (x2)

Our aim is to build a formal model which represents the behaviors of synchronous data-
flow programs in terms of the presence of signals and the relations among signals. Let us,
by the way of illustration, consider the basic SIGNAL process corresponding to the primitive
sampling operator, y := x when b, where x and y are non-Boolean signals and b is a Boolean
signal. This basic process expresses the following statements:

• if x is present, and b is present and holds the value true, then y is defined by the value
of x,

• if x is absent, or b is absent, or b is present and holds the value false, then y is absent.

It shows that at a given instant, to express the control, we need to represent the status of the
signals x, y and b. In this example, for the non-Boolean signals such as x, its status are: x

is present and x is absent. For the Boolean signal b, its status are: b is present and holds
the value false, b is present and holds the value true and b is absent. The principle is that
the status of a signal can be encoded in the finite field modulo p = 3,Z/3Z. This encoding
scheme were proposed by Le Guernic et al. in [62, 72] as a model of the synchronization
relation. For a Boolean signal, its three possible status at a given instant are encoded as:

• present and false →−1,

• present and true → 1,

• absent → 0.

For a non-Boolean signal, it only encodes the fact that the value is present or absent (it does
not encode value):

• present →±1,

• absent → 0.

4.2 The synchronization space Z/3Z 49

In this way, if x is the encoding of the signal x, its clock can be considered as x2 : 1 if x

is present; 0 if x is absent. Thus, for two synchronous signals x and y (they have the same
clock), x and y satisfy the constraint equation: x2 = y2.

4.2.1 PDS model

Processes are translated into systems of polynomial equations over the finite field modulo
p = 3, Z/3Z, following the above encoding scheme. Each individual SIGNAL equation is
translated into a polynomial equation. Since the language is defined from a few primitive
operators, we only need to define the translation of these primitive operators to polynomial
equations.

4.2.1.1 Stepwise functions

The functions which apply on signal values in the primitive stepwise functions are usual
logic operators (not, and, or), numerical comparison functions (<, >, =, <=, >=, /=), and
numerical operators (+, -, *, /). The encoding in the finite field modulo p = 3, Z/3Z, of
stepwise functions is given as follows:

• If x and y are Boolean signals:

y := not x −→ y =−x

z := x and y −→

{
z = xy(xy− x− y−1)
x2 = y2

z := x or y −→

{
z = xy(1− x− y− xy)

x2 = y2

• If x and y are non-Boolean signals:

y := f (x1, ...,xn) −→ y2 = x2
1 = ...= x2

n

4.2.1.2 Delay

Considering the delay operator, y := x$1 init a, its encoding is given as follows:

50 Translation validation of transformations on clocks

• If x,y and a are Boolean signals:

y := x$1 init a −→

m.x′ = x+(1− x2)m.x

y = x2m.x

m.x = a

• If x,y and a are non-Boolean signals:

y := x$1 init a −→ y2 = x2

This encoding requires that at any instant, signals x and y have the same status (present or
absent). If the signals are Boolean, it encodes the value of the output signal as well. Here,
we introduce a memorization variable m.x that stores the last value of x. The next value of
m.x is m.x′ and it is initialized to a in m.x = a.

4.2.1.3 Merge

The encoding of the merge operator, y := x default z is given as follows:

• If x,y and z are Boolean signals:

z := x default y −→ z = x+(1− x2)y

• If x,y and z are non-Boolean signals:

z := x default y −→ z2 = x2 + y2 − x2y2

For Boolean signals, the encoding equation can be interpreted as follows: if x is defined
then z is defined and holds the same value as x (z = x+(1−1)y = x). Otherwise, when y is
defined and x is not, then z holds the same value as y (z = 0+(1−0)y = y).

4.2.1.4 Sampling

The encoding of the sampling operator, y := x when b, is given as follows:

• If x,y and z are Boolean signals:

y := x when b −→ y = x(−b−b2)

4.2 The synchronization space Z/3Z 51

• If x,y and z are non-Boolean signals:

y := x when b −→ y2 = x2(−b−b2)

The encoding of this operator for Boolean signals may be interpreted as follows: y holds the
same value as x when b is defined and holds the value true (y = x(−1−1) = x).

4.2.1.5 Composition

Consider the composition of two processes P1 and P2. The encoding of φ(P1|P2) in the finite
field modulo p = 3, Z/3Z, is the union of the encodings of P1 and P2.

4.2.1.6 Restriction

The encoding of P/x is the same as the encoding of P. That means the local definitions do
not affect the encoding in the finite field modulo p = 3,Z/3Z.

4.2.1.7 Clock relations

Let us recall the rewriting of the clock relations. Following the above encoding scheme, we
can obtain the following encoding for derived operators on clocks. Here, z is a signal of
type event:

(z := x̂) = (x = x) −→ z = x2

(xˆ= y) = (̂x = ŷ) −→ x2 = y2

z := (when b) = (b when b) −→ z =−b−b2

z := (xˆ+ y) = (̂x default ŷ) −→ z = x2 +(1− x2)y2

z := (xˆ∗ y) = (̂x when ŷ) −→ z = x2y2

z := (xˆ− y) = (when (not ŷ default x̂)) −→ z = x2(1− y2)

The composition of the basic encodings of the SIGNAL primitive operators, presented
in the above encoding scheme, constructs a polynomial dynamical system. Formally, the
definition of PDS is given as follows:

Definition 12 (PDS) A PDS is a system of equations which is organized into three subsys-

52 Translation validation of transformations on clocks

tems of polynomial equations of the form:
Q(X ,Y) = 0
X ′ = P(X ,Y)

Q0(X) = 0

where:

• X is a set of n variables, called state variables, represented by a vector in (Z/3Z)n,

• Y is a set of m variables, called event variables, represented by a vector in (Z/3Z)m,

• X ′ = P(X ,Y) is the evolution equation of the system. It can be considered as a vecto-

rial function [P1, ...,Pn] from (Z/3Z)n+m to (Z/3Z)n,

• Q(X ,Y) = 0 is the constraint equation of the system. It is a vectorial equation

[Q1, ...,Ql],

• Q0(X) = 0 is the initialization equation of the system. It is a vectorial equation

[Q01, ...,Q0n].

The equations of PDS have the following meaning:

• The initialization equation represents the initialization of signals in the program.

• The constraint equation is a set of equations which expresses the clock relations of
the program. It is also considered as the invariant properties of the program.

• The evolution equation describes the evolution of state variables (corresponding to
the delay operators) according to the logical time in the program. Therefore, it shows
the dynamical behavior of the program.

4.2.1.8 Example

We consider the program Altern in Listing 4.1.

Listing 4.1 ALTERN in Signal

1 process ALTERN=
2 (? event A,B;
3 !)
4 (| X := not ZX
5 | ZX := X$1

4.3 Translation validation of PDSs 53

6 | A =̂ when X
7 | B =̂ when ZX
8 |)
9 where boolean X, ZX init false

10 end;

It is translated in the PDS model with variables a, b, x and zx corresponding to the signals
A, B, X and ZX , and a state variable m.x introduced by the delay operator. The PDS model
is given in Listing 4.2.

Listing 4.2 PDS of ALTERN

1 /* initial equation */
2 m.x =−1
3 /* evolution equation */
4 m.x′ = x+(1− x2)∗m.x
5 /* constraint equation */
6 x =−zx;
7 zx = m.x∗ x2;
8 a2 =−x− x2;
9 b2 =−zx− zx2

4.3 Translation validation of PDSs

To apply the translation validation to the transformations on clocks of the SIGNAL compiler,
we capture the clock semantics of the original program and its transformed counterpart by
means of PDSs that is proposed by Marchand et al. [98] to build a formal verification
framework of SIGNAL programs. The semantics of PDSs is considered as the common
semantics framework in our translation validation. Then, we introduce a refinement relation
which expresses the preservation of clock semantics, as a simulation relation between two
PDSs. We provide a method to check the existence of that simulation based on model
checking technique which is implemented as a library of SIGALI checker [52].

4.3.1 Definition of correct transformation: PDS refinement

Given a PDS model over the finite field Z/3Z, it can be viewed as an intensional Labeled

Transition System (ILTS) [86] as in the following definition.

Definition 13 (ILTS) An intensional labeled transition system is a structure L=(Q,Y,I ,T),

where Q is a set of states, Y is a set of m variables Y1, ...,Ym, I is a set of initial states, and

54 Translation validation of transformations on clocks

T ⊆ Q×Z/3Z[Y]×Q is the transition relation. Each transition is labeled by a polynomial

over the set Y .

The ILTS representation of a PDS can be obtained directly from the set of state variables,
event variables, initialization, constraint and evolution equations as follows:

• Q = DX , where DX = ∏
i∈[1,n]

Dxi = (Z/3Z)
n as the domain of a set of variables X =

(x1, ...,xn)

• Y = Y,DY = ∏
i∈[1,m]

Dyi = (Z/3Z)
m

• I = Sol(Q0(X))

• (q,Pq(Y),q′) ∈ T where Pq(Y)≡ Q(q,Y)⊕ (P(q,Y)−q′)

We write q
P(Y)−−→ q′ (or for short q P−→ q′), instead of (q,P(Y),q′) ∈ T . Then ILTSs can be

viewed as an “intensional” representation of classical LTSs, where the labels are tuples in
(Z/3Z)

m: each arrow of the ILTS labeled by P(Y) intensionally represents as many arrows
labeled by some y ∈ Sol(P(Y)). The corresponding “extensional” LTS of an ILTS L is
denoted by Ext(L), meaning that each arrow of L labeled by P(Y) is represented by the
number (the number of solutions of P(Y)) of arrows labeled by y ∈ Sol(P(Y)).

For example, we consider the PDS model in Listing 4.2. Its ILTS representation is given
as follows:

• Q = {−1,0,+1})

• Y = {a,b,x,zx}

• I = Sol(m.x =−1) = {0}

• (q,Pq(Y),q′) ∈ T where Pq(Y)≡ Q(q,Y)⊕ (P(q,Y)−q′),
Q(q,Y) = [x =−zx,zx = q∗ x2,a2 =−x− x2,b2 =−zx− zx2], and
P(q,Y) = x+(1− x2)∗q

Definition 14 (Execution) Let L = (Q,Y,I ,T) be an ILTS. The infinite sequence σ =

q0,y0,q1,y1,q2,y2, ..., where qi ∈ Q,yi ∈DY for each i ∈N, is an execution of L if it satisfies

the following requirements:

• q0 ∈ I .

4.3 Translation validation of PDSs 55

• There exists a polynomial P(Y) such that (qi,P(Y),qi+1) ∈ T ∧ yi ∈ Sol(P(Y)) for

each i ∈N.

We denote by σact = y0,y1,y2, an action-based execution, ||L||, ||L||act the sets of execu-
tions and action-based executions of the ILTS L, respectively.

Consider the two ILTSs LA =(Q2,Y,I2,T2) and LC =(Q1,Y,I1,T1), to which we refer
respectively as the ILTS of the source program A and the ILTS of the compiled program C

produced by the compiler. We assume that they have the same set of event variables. In case
the set of event variables of the compiled model is different from the set of event variables
of the source model, we consider only the set of common event variables and the different
event variables are considered as hiding events as described in [115]. That means that we
ensure that the clocks of common signals in the source and compiled programs are the same
after the transformations.

In our case, the set of action-based executions models the clock semantics of the pro-
gram. The set of action-based executions reflects the status of the clocks and clock relations
in the program. The strongest notion of clock semantics preservation during compilation is
that the source program A and its compiled program C have exactly the same clock seman-
tics, meaning that their corresponding intensional labeled transition systems have the same
set of action-based executions:

∀σact . (σact ∈ ||LC||act ⇔ σact ∈ ||LA||act) (4.1)

The compiled program C has fewer behaviors than the source program A. For instance,
compilers do transformations, optimizations for removing or eliminating some behaviors of
the source program (e.g., eliminating subexpressions, trivial clock constraints). To address
these issues, we relax the requirement 4.1 as follows:

∀σact . (σact ∈ ||LC||act ⇒ σact ∈ ||LA||act) (4.2)

Requirement 4.2 says that all action-based executions of LC are acceptable executions of
LA. And we say that LC refines LA w.r.t action-based executions, denoted by LC ⊑Pds LA. In
the next section we will present a method to establish the refinement between the two given
ILTSs LC and LA.

56 Translation validation of transformations on clocks

4.3.2 Proving refinement by simulation

We now discuss an approach to automatically prove that a compiler preserves the clock se-
mantics of the source program during its compilation, in the sense of refinement relation.
Given two ILTSs LA and LC, we use a symbolic simulation [86] for the two ILTSs to estab-
lish that LC ⊑Pds LA. The symbolic simulation satisfies the property that if there exists a
symbolic simulation for (LC,LA) then LC ⊑Pds LA.

Definition 15 (Symbolic simulation) Let LC = (Q1,Y,I1,T1) and LA = (Q2,Y,I2,T2)

be two ILTSs. A symbolic simulation for (LC,LA) is a binary relation R ⊆ Q1 ×Q2 which

satisfies the following properties:

1. ∀q1 ∈ I1,∃q2 ∈ I2,(q1,q2) ∈ R.

2. for any (q1,q2) ∈ R it holds that: if q1
P−→ q′1 there exists a finite set of transitions

(q2
Pi−→ qi

2)i∈I (where I is a set of indexes) with

• (P ⇒ ∏
i∈I

Pi)≡ 0 and

• (q′1,q
i
2) ∈ R,∀i ∈ I.

(P ⇒ ∏
i∈I

Pi) ≡ 0 denotes that the polynomial (P ⇒ ∏
i∈I

Pi) is equivalent to the zero poly-

nomial, which means that Sol((P ⇒ ∏
i∈I

Pi)) = Sol(0) = (Z/3Z)
m or Sol(P) ⊆ Sol(∏

i∈I
Pi).

Condition (1) asserts that every initial state of LC is related to an initial state of LA. Accord-
ing to condition (2), for every transition of the state q1 which is labeled by the set of events
(or actions) represented by Sol(P(Y)), there exist some transitions of the state q2 which are
labeled by the same set of events. And it states that every outgoing transition from q1 must
be matched by outgoing transitions from q2. Thus, Definition 15 captures exactly classic
action-based simulation definition of standard LTSs. Since symbolic simulation is closed
under arbitrary unions, there is a greatest symbolic simulation. In the following parts, when
we talk about symbolic simulation, we imply talking about the greatest symbolic simulation.

LC is simulated by LA (or equivalently, LA simulates LC), denoted by LC ≼ LA, if there
exists a symbolic simulation for (LC,LA). Given two states q1 ∈ Q1 and q2 ∈ Q2, the state
q1 is simulated by q2, denoted q1 ≼ q2, if there exists a symbolic simulation R for (LC,LA)

with (q1,q2) ∈ R. In that case, we say that the two states “q1 and q2 are similar”.

Definition 16 Let LC = (Q1,Y,I1,T1) and LA = (Q2,Y,I2,T2) be two ILTSs. We define

a family of binary relations ≼ j⊆ Q1 ×Q2 by induction over j ∈N.

4.3 Translation validation of PDSs 57

• ≼0 , Q1 ×Q2.

• q1 ≼(j+1) q2 iff ∀(q1,P,q′1) ∈ T1, there exists a finite set of transitions (q2,Pi,qi
2)i∈I

with (P ⇒ Πi∈IPi)≡ 0∧q′1 ≼ j qi
2,∀i ∈ I, where I is a set of indexes.

Based on the above definition, we can now have the following theorem which gives us a
method to compute the greatest symbolic simulation for two ILTSs.

Theorem 2 Let LC = (Q1,Y,I1,T1) and LA = (Q2,Y,I2,T2) be two ILTSs.

1. There exists a symbolic simulation for (LC,LA) iff there exists a simulation for the

corresponding “extensional” LTSs, (Ext(LC),Ext(LA)).

2. Then for all q1 ∈ Q1 and q2 ∈ Q2, q1 ≼ q2 iff q1 (
⋂

n∈N ≼n) q2, where (
⋂

n∈N ≼n) =

≼0 ∩ ≼1 ∩...∩ ≼n.

Proof 1 (1) Following an approach which is similar to [86],

(2) Since the number of state variables, event variables and the value domain of a PDS

are finite then its ILTS is finite. Symbolic simulation over a finite ILTS (therefore finitely

branching) is the limit of nested projective equivalences. Thus we can use the same proof

method as in [100] for strong simulation. We omit the proof here.

The use of a symbolic simulation as a proof method to establish the refinement between the
two given models LC and LA is stated in the following theorem.

Theorem 3 Let LC = (Q1,Y,I1,T1) and LA = (Q2,Y,I2,T2) be two ILTSs. If there exists

a symbolic simulation for (LC,LA), then LC ⊑Pds LA.

Proof 2 The proof of Theorem 3 is trivial, following Lemma 1.

Lemma 1 Let LC and LA be ILTSs, R is a symbolic simulation for (LC,LA), and (q1,q2) ∈
R. Then for each infinite (or finite) execution σ1 = q0,1,y0,1,q1,1,y1,1,q2,1,y2,1, ... starting in

q0,1 = q1 there exists an execution σ2 = q0,2,y0,2,q1,2,y1,2,q2,1,y2,2, ... from state q0,2 = q2

of the same length such that (q j,1,q j,2) ∈ R and y j,1 = y j,2 for all j.

Proof 3 Let σ1 = q0,1,q1,1,q2,1, ... be an execution in LC starting in q1 = q0,1 and assume

(q1,q2) ∈ R. We can define a corresponding execution in LA starting in q2 = q0,2 with the

same length (in case the execution σ1 is finite), where the transitions qi,1 −→ qi+1,1 are

matched by transitions qi,2 −→ qi+1,2 such that (qi+1,1,qi+1,2) ∈ R. We use the induction

method on i to prove it.

58 Translation validation of transformations on clocks

• Base case: i = 0. It follows directly from (q1,q2) ∈R in case q1 is a terminal state. If

there is a transition q0,1
P(Y)−−→ q1,1 such that y0,1 ∈ Sol(P(Y)) then there exists a finite

set of transitions (q0,2
Pj−→ q j

1,2) j∈J with Sol(P)⊆ Sol(∏
j∈J

Pj) and (q1,1,q
j
1,2)∈R,∀ j ∈

J. Because Sol(P) ⊆ Sol(∏
j∈J

Pj), there exists a polynomial Pj(Y) such that y0,1 ∈

Sol(Pj), and the transition q0,1
y0,1−−→ q1,1 can be matched by the transition q0,2

y0,1−−→ q j
1,2

with (q1,1,q
j
1,2) ∈R. This yields the execution fragment q0,2,y0,2,q1,2 with y0,1 = y0,2

in LA.

• Induction step: Assume i > 0 and that the execution q2,y0,2,q1,2,y1,2,q2,2,y2,2, ...,qi,2

is already constructed with (qk,1,qk,2) ∈ R and yk,1 = yk,2 for k = 0, ..., i. If σ1 has

length i and qi,1 is a terminal state, then the execution fragment σ2 = q2,y0,2,q1,2,y1,2,

q2,2,y2,2, ...,qi,2 is an execution fragment with the same length which is state-wise re-

lated to σ1. Now we assume that si,1 is not terminal. We consider the step qi,1
P(Y)−−→

qi+1,1 with yi,1 ∈ Sol(P(Y)) in σ1. Since (qi,1,qi,2)∈R, there exists a finite set of tran-

sitions (qi,2
Pj−→ q j

i+1,2) j∈J with Sol(P) ⊆ Sol(∏
j∈J

Pj) and (qi+1,1,q
j
i+1,2) ∈ R,∀ j ∈ J.

Because Sol(P)⊆ Sol(∏
j∈J

Pj), there exists a polynomial Pj(Y) such that yi,1 ∈ Sol(Pj),

and the transition qi,1
yi,1−−→ qi+1,1 can be matched by the transition qi,2

yi,1−−→ q j
i+1,2 with

(qi+1,1,q
j
i+1,2) ∈ R. This yields the execution fragment q2,y0,2,q1,2,y1,2, ...,qi,2,yi,2,

qi+1,2 which is state-wise related to the execution σ1 and yi,1 = yi,2 in LA.

4.3.3 Composition of compilation phases

Let Cp be an unverified compiler, the following process defines a derived compiler such that
it is formally verified.

1 if (Cp(A) == Error) return Error
2 else
3 {
4 if (LIR(A) ⊑Pds LA) return IR(A)
5 else return Error
6 }

where Cp(A) is the compilation of A to either compiled code (written as Cp(A) = IR(A))
or compilation errors (written as Cp(A) = Error), LA and LIR(A) are the intensional labeled
transition systems of A and IR(A), respectively.

4.3 Translation validation of PDSs 59

Compilation is always decomposed into several phases of transformations and optimiza-
tions through intermediate representations. Thus it is better to decompose the verification
process too. Fortunately, our verification process can be decomposed well thanks to the
transitive property of symbolic simulation. Let LA, LI and LC be three ILTSs, if LI ≼ LA and
LC ≼ LI then LC ≼ LA (the proof is trivial based on the definition of symbolic simulation).
We assume that there are two compilation phases Cp1 and Cp2 from the source program A

to the compiled program I and from the compiled program I to other compiled program C,
respectively. Consider the composition compilation as follows:

1 if (Cp1(A) == Error) return Error
2 else
3 {
4 if (LI ⊑Pds LA)
5 {
6 if (Cp2(I) == Error) return Error
7 else
8 {
9 if (LC ⊑Pds LI) return C

10 else return Error
11 }
12 }
13 else return Error
14 }

It is obvious to see that the compilation process from A to C is formally verified.

4.3.4 Implementation with SIGALI

In this section, we discuss how to implement the proof method with symbolic simulation
using the companion model-checker of the POLYCHRONY toolset, SIGALI.

4.3.4.1 Implementation

We design a validator that is integrated into the clock calculation and Boolean abstraction

phase of the SIGNAL compiler. The validator which is depicted in Figure 4.2 works as
follows. It takes the input program and its transformed counterpart to construct the corre-
sponding PDSs. These PDSs are given as the input of the model-checker SIGALI. In the
checking phase, SIGALI will answer whether there exists a symbolic simulation for two
PDSs.

60 Translation validation of transformations on clocks

Signal Program PDS Construction

PDS Construction

Sigali

1

2

Signal Program

Fig. 4.2 The PDS translation validation

Symbolic simulation can be implemented as an extended library of SIGALI. We repre-
sent an ILTS in the more specific form L = (X ,X ′,Y,I ,T), where:

• X ,X ′ and Y are the sets of state and event variables as in the PDS,

• I (X) = Q0(X) is the polynomial representing the set of initial states, Sol(I),

• T (X ,Y,X ′)≡Q(X ,Y)⊕(P(X ,Y)−X ′) is the polynomial representing the set of tran-
sitions.

In SIGALI, polynomials are internally represented as Ternary Decision Diagrams (TDD)
[52] which are an extension of Binary Decision Diagrams (BDD) [32]. They are conve-
nient for an efficient manipulation of the polynomial equation systems. Theorem 2 gives us
an iterative algorithm to compute the greatest symbolic simulation for two intensional la-
beled transition systems. It can be obtained by computing the convergence of the sequence
(R j) j∈N as in Listing 4.3 which can be efficiently implemented with the fixed-point com-
putation of the SIGALI kernel. The correctness of Listing 4.3 is proved by the following
proposition.

Listing 4.3 Compute symbolic simulation

1 Input: LC = (X1,X ′
1,Y,I1,T1),LA = (X2,X ′

2,Y,I2,T2)

2 Output: R(X1,X2)

3 R0(X1,X2)≡ 0
4 while (R j(X1,X2) is not convergent) do
5 {
6 R j+1(X1,X2) is the canonical generator of the ≡-class of:
7 R j(X1,X2)⊕
8 ∀X ′

1∀Y [(T1(X1,Y,X ′
1)⇒∃X ′

2(T2(X2,Y,X ′
2)⊕R j(X ′

1,X
′
2))]

9 }
10 if (∀X1[(I1(X1)⇒∃X2(I2(X2)⊕R(X1,X2))])

4.3 Translation validation of PDSs 61

11 return R(X1,X2)

12 else
13 return R(X1,X2)≡ 1

Proposition 1 For all j ∈N,R j(x1,x2) = 0 iff x1 ≼ j x2.

Proof 4 ⇒) We use an induction proving method over j. It holds obviously with j = 0.

Assume that we have R j+1(x1,x2) = 0 and let x1
P−→ x′1 be a transition in LC. It is clear that

P(Y) ≡ T1(x1,Y,x′1). We define the polynomial Q(Y) ≡ ∃x′2T2(x2,Y,x′2)⊕R j(x′1,x
′
2), R j

being computed in Listing 4.3 above. This polynomial captures the set {y|∃x2
Pi−→ xi

2,Pi(y) =

0 ∧ x′1 ≼ j xi
2}. By the definition of R j+1, the y value is in Sol(T1(x1,Y,x′1)). We have

Sol(P(Y))⊆
⋃

i Sol(Pi), which means x1 ≼(j+1) x2.

⇐) We can apply again an induction method over j similar to the proof of Theorem 2. Thus,

we omit it here.

Proposition 2 Algorithm in Listing 4.3 terminates and at the end, R(x1,x2) = 0 if and only

if x1 ≼ x2.

Proof 5 Termination is guaranteed by the fact that relations R j are finite and nested. The

second statement is a corollary of Proposition 1 and Theorem 2.

Listing 4.4 Symbolic simulation implementation in SIGALI

1 % internal function P1 => P2 %
2 def implies(P1 ,P2):
3 union(complementary(P1),P2);
4
5 def states_simulation(X_1 ,Y_1 ,X_1_nexts ,Rel_1 ,
6 X_2 ,Y_2 ,X_2_nexts ,Rel_2) :
7 with
8 % define utility variables %
9 Y_1_bar = diff_lvar(Y_1 ,Y_2),

10 Y_2_bar = diff_lvar(Y_2 ,Y_1),
11 Y = diff_lvar(Y_1 ,Y_1_bar),
12 X_1_X_2 = union_lvar(X_1 ,X_2),
13 X_1_nexts_Y_1_bar = union_lvar(X_1_nexts ,Y_1_bar),
14 X_2_nexts_Y_2_bar = union_lvar(X_2_nexts ,Y_2_bar),
15 X_1_X_2_nexts = union_lvar(X_1_nexts ,X_2_nexts)
16 do
17 % compute the simulation %

62 Translation validation of transformations on clocks

18 loop x =
19 intersection(x,
20 forall(forall(exist(implies(Rel_1 ,
21 exist(intersection(Rel_2 ,
22 rename(x,X_1_X_2 ,X_1_X_2_nexts)),
23 X_2_nexts_Y_2_bar)),Y_1_bar),Y),X_1_nexts))
24 init 0;
25
26 def ilts_simulation(S_I1 ,S_I2) :
27 with
28 % get the components of iLTS1 %
29 I_1 = initial_I(S_I1),
30 X_1 = state_var_I(S_I1),
31 X_1_nexts = state_var_next_I(S_I1),
32 Y_1 = event_var_I(S_I1),
33 Rel_1 = trans_rel_I(S_I1),
34 % get the components of iLTS2 %
35 I_2 = initial_I(S_I2),
36 X_2_d = state_var_I(S_I2),
37 X_2_nexts_d = state_var_next_I(S_I2),
38 Y_2 = event_var_I(S_I2),
39 Rel_2_d = trans_rel_I(S_I2),
40 % rename the states variables %
41 X_2 = declare_suff(X_2_d),
42 X_2_nexts = declare_suff(X_2_nexts_d),
43 Rel_2 = rename(Rel_2_d ,union_lvar(X_2_d ,X_2_nexts_d),
44 union_lvar(X_2 ,X_2_nexts)),
45 states_sim = states_simulation(X_1 ,Y_1 ,X_1_nexts ,
46 Rel_1 ,X_2 ,Y_2 ,X_2_nexts ,Rel_2)
47 do
48 % compute the systems simulation %
49 intersection(states_sim ,
50 forall(implies(I_1 ,exist(intersection(
51 states_sim ,I_2),X_2)),X_1));

We provide an implementation of algorithm in Listing 4.3 to compute the greatest simula-
tion for two ILTSs. The implementation uses some useful functions from the kernel of the
checker SIGALI. The inputs are the concrete and abstract ILTSs S_I1 and S_I2, respectively.

4.4 Translation validation of clock models 63

4.3.4.2 Experimental results

Table 4.1 shows some experimental results verifying the transformations of the SIGNAL

compiler with a simulation based proof method. The experimental results deal with the
complexity of the symbolic simulation computation. All the examples are available in the
online examples of the POLYCHRONY toolset. In the X ,Y , and “Correct” columns, we
write the numbers of state variables, event variables and the correctness of the compiler
transformations, respectively (hence, the transition relation T (X ,Y,X ′) will have 2X +Y

variables). We measure the complexity of the symbolic simulation by the size of fix point
computation in Listing 4.3 (in terms of the number of TDD nodes that we need to represent
the manipulation of polynomial equation systems). The number of TDD nodes is shown in
SIGALI model checker only when it is big enough, so for the tests whose numbers of TDD

nodes are not shown we write “Small” to indicate that the computation effort is light. We
denote R1(X1,X2),R2(X1,X2),R3(X1,X2) symbolic simulations for (A_TRA.z3z,A.z3z),
(A_BOOL_TRA.z3z,A_TRA.z3z) and (A_SEQ_TRA.z3z, A_BOOL_TRA.z3z), respectively, for
the compilation of program A.

4.4 Translation validation of clock models

We provide another approach to prove the preservation of the clock semantics for every
transformation of the compiler based on the translation validation approach. We use clock
model as the common semantic framework to represent the clock semantics of source pro-
gram and its compiled program. A refinement relation is formally defined to expresses the
preservation of clock semantics, as a relation on clock models. We write Φ(C)⊑clk Φ(A) to
denote that Φ(C) is a refinement of Φ(A).

4.4.1 Clock model of SIGNAL program

In this section, we describe the clock semantics of a program in terms of a first-order logic
formula. Let us consider the semantics of the sampling operator y := x when b. At any
logical instant, the signal y holds the value of x if the following conditions are satisfied:
x holds a value, and b is present and holds the value true; otherwise, it holds no value.
Hence, to represent the underlying control conditions, we need to represent the statuses:
present with the value true, present with the value false and absent for the signal b, and
the statuses: present and absent for the signal x. This section explores a method to construct
the control model of a program as an abstraction of the clock semantics, called clock model,

64 Translation validation of transformations on clocks

Name X Y R1(X1,X2) R2(X1,X2) R3(X1,X2) Correct

TDD nodes TDD nodes TDD nodes

MOUSE.z3z 2 5 Small Small Small Yes

_TRA.z3z 2 5

_BOOL_TRA.z3z 2 6

_SEQ_TRA.z3z 2 6

RAILROADCROSSING.z3z 2 40 Small Small Small Yes

_TRA.z3z 2 40

_BOOL_TRA.z3z 2 39

_SEQ_TRA.z3z 2 39

CHRONOMETER.z3z 6 33 Small Small Small Yes

_TRA.z3z 6 33

_BOOL_TRA.z3z 6 37

_SEQ_TRA.z3z 6 37

ALARM.z3z 19 45 3775163 3810301 4721454 Yes

_TRA.z3z 19 45

_BOOL_TRA.z3z 19 53

_SEQ_TRA.z3z 19 53

Table 4.1 Translation validation of PDSs: Experimental results

4.4 Translation validation of clock models 65

which is the computational model of our translation validation approach.

In SIGNAL, clocks play a much more important role than in other synchronous lan-
guages, they are used to express the underlying control (i.e., the synchronization between
signals) for any conditional definition. This differs from LUSTRE, where all clocks are built
by sampling the fastest clock. For instance, we consider again the basic process correspond-
ing to the primitive operator sampling, y := x when b, where x and y are numerical signals,
and b is a Boolean signal. To express the control, we need to represent the status of the
signals x, y and b at a given instant. In this example, we use a Boolean variable x̂ to capture
the status of x:

• (x̂ = true) means x is present.

• (x̂ = false) means x is absent.

In the same way, the Boolean variable ŷ captures the status of y. For the Boolean signal b,
two Boolean variables b̂ and b̃ are used to represent its status:

• (b̂ = true∧ b̃ = true) means b is present and holds a value true.

• (b̂ = true∧ b̃ = false) means b is present and holds a value false.

• (b̂ = false) means b is absent.

Hence, at a given instant, the implicit control relations of the basic process above can be
encoded by the following formula:

ŷ ⇔ (x̂∧ b̂∧ b̃)

Let X = {x1, ...,xn} be the set of all signals in program P consisting of input, output, register
(corresponding to delay operator), and local signals, denoted by I,O,R and L, respectively.
With each signal xi, based on the encoding scheme proposed in [57, 61, 63], we attach a
Boolean variable x̂i to encode its clock and a variable x̃i of same type as xi to encode its
value. If xi ∈ R then we introduce a memorization variable to store the initialized, previous
and next values. Formally, the abstract values which represent the clock semantics of the
program can be computed using the following functions:

ˆ: X −→ B associates a signal with a Boolean value,

˜: X −→ D associates a signal with a value of same type as the signal.

66 Translation validation of transformations on clocks

The composition of SIGNAL processes corresponds to logical conjunction. Thus the clock
model of P will be a conjunction Φ(P) =

∧n
i=1 φ(eqi) whose atoms are x̂i, x̃i, where φ(eqi) is

the abstraction of statement eqi (using the SIGNAL primitive operators), and n is the number
of statements in the program. In the following, we present the abstraction corresponding to
each SIGNAL operator.

4.4.1.1 Stepwise functions

The functions which apply on signal values in the primitive stepwise functions are usual
logic operators (not, and, or), numerical comparison functions (<, >, =, <=, >=, /=), and
numerical operators (+, -, *, /). In our experience working with the SIGNAL compiler, it
performs very few arithmetical optimizations and leaves most of the arithmetical expres-
sions intact. Every variable is determinable by the inputs, memorizable values, otherwise
program cannot be compiled. This suggests that most of the implications will hold indepen-
dently of the features of the numerical comparison functions and numerical operators and
we can replace the operations by uninterpreted functions. Following the encoding proce-
dure of [3], for every numerical comparison function and numerical operator (denoted by
�) occurring in an equation, we perform the following rewriting:

• Replace each x � y by a new variable vi
� of a type equal to that of the value returned

by �. Two stepwise functions x� y and x′ � y′ are replaced by the same variable vi
�

iff x,y are identical to x′ and y′, respectively.

• For every pair of newly added variables vi
� and v j

�, i ̸= j, corresponding to the non-

identical occurrences x� y and x′� y′, add the implication (x̃= x̃′∧ ỹ= ỹ′)⇒ ṽi
�= ṽ j

�

into the abstraction Φ(P).

The abstraction φ(y := f (x1, ...,xn)) of stepwise functions is defined by induction as follows:

• φ(true) = true and φ(false) = false.

• φ(y := x) = (ŷ ⇔ x̂)∧ (ŷ ⇒ (ỹ ⇔ x̃)) if x and y are Boolean signals. φ(y := x) = (ŷ ⇔
x̂)∧ (ŷ ⇒ (ỹ ⇔ x̃))∧ (x̂ ⇒ x̃) if x is an event signal.

• φ(y := x1 and x2) = (ŷ ⇔ x̂1 ⇔ x̂2)∧ (ŷ ⇒ (ỹ ⇔ x̃1 ∧ x̃2)).

• φ(y := x1 or x2) = (ŷ ⇔ x̂1 ⇔ x̂2)∧ (ŷ ⇒ (ỹ ⇔ x̃1 ∨ x̃2)).

• φ(y := x1 � x2) = (ŷ ⇔ v̂i
�⇔ x̂1 ⇔ x̂2)∧ (ŷ ⇒ (ỹ = ṽi

�)).

4.4 Translation validation of clock models 67

4.4.1.2 Delay

Considering the delay operator, y := x$1 init a, its encoding φ(y := x$1 init a) con-
tributes to Φ(P) with the following conjunct:

(ŷ ⇔ x̂)

∧ (ŷ ⇒ ((ỹ = m.x)∧ (m.x′ = x̃)))

∧ (m.x0 = a)

This encoding requires that at any instant, signals x and y have the same status (present or
absent). To encode the value of the output signal as well, we introduce a memorization
variable m.x that stores the last value of x. The next value of m.x is m.x′ and it is initialized
to a in m.x0.

4.4.1.3 Merge

The encoding of the merge operator, y := x default z, contributes to Φ(P) with the follow-
ing conjunct:

(ŷ ⇔ (x̂∨ ẑ))

∧ (ŷ ⇒ ((x̂∧ ỹ = x̃)∨ (¬x̂∧ ỹ = z̃)))

4.4.1.4 Sampling

The encoding of the sampling operator, y := x when b, contributes to Φ(P) with the follow-
ing conjunct:

(ŷ ⇔ (x̂∧ b̂∧ b̃))

∧ (ŷ ⇒ (ỹ = x̃))

4.4.1.5 Composition

Consider the composition of two processes P1 and P2. Its abstraction φ(P1|P2) is defined as
follows:

φ(P1)∧φ(P2)

68 Translation validation of transformations on clocks

4.4.1.6 Restriction

Restriction process P1/x restricts the scope of the signal x to the process P. In our abstraction
the scope of signal declarations is not considered. The abstraction is given as follows:

Φ(P1/x) = Φ(P1)

4.4.1.7 Clock relations

Given the above rules, we can obtain the following abstraction for derived operators on
clocks. Here, z is a signal of type event:

• φ(z := x̂) = (ẑ ⇔ x̂)∧ (ẑ ⇒ z̃)

• φ(xˆ= y) = x̂ ⇔ ŷ

• φ(z := xˆ+ y) = (ẑ ⇔ (x̂∨ ŷ))∧ (ẑ ⇒ z̃)

• φ(z := xˆ∗ y) = (ẑ ⇔ (x̂∧ ŷ))∧ (ẑ ⇒ z̃)

• φ(z := xˆ− y) = (ẑ ⇔ (x̂∧¬ŷ))∧ (ẑ ⇒ z̃)

• φ(z := when b) = (ẑ ⇔ (b̂∧ b̃))∧ (ẑ ⇒ z̃)

4.4.1.8 Example

Applying the abstraction rules above, the clock semantics of the SIGNAL program DEC

in Listing 3.3 is represented by the following first-order logic formula Φ(DEC), where
ZN <= 1 and ZN − 1 are replaced by two fresh variables ZN1 and ZN2, respectively.
Two uninterpreted function symbols v1

<= and v1
− are used to encode the stepwise functions

ZN1 := ZN <= 1 and ZN2 := ZN −1.

(F̂B ⇔ ẐN1∧ Z̃N1)

∧ (ẐN1 ⇔ v̂1
<= ⇔ ẐN)∧ (ẐN1 ⇒ (Z̃N1 = ṽ1

<=))

∧ (ẐN ⇔ N̂)∧ (ẐN ⇒ (Z̃N = m.N ∧m.N′ = Ñ))∧ (m.N0 = 1)
∧ (N̂ ⇔ F̂B∨ ẐN2)∧ (N̂ ⇒ ((F̂B∧ Ñ = F̃B)∨ (¬F̂B∧ Ñ = Z̃N2)))

∧ (ẐN2 ⇔ v̂1
− ⇔ ẐN)∧ (ẐN2 ⇒ (Z̃N2 = ṽ1

−))

In the following sections, we denote input, output, register, memorization and local variables
in a clock model by Iclk,Oclk,Rclk,Mclk and Lclk, respectively. Note that the memorization

4.4 Translation validation of clock models 69

variables are introduced only by the translation into clock models, they are not original in
the SIGNAL programs.

4.4.1.9 Clock configuration

Consider a clock model Φ(P) of the program P. Let X̂ = Iclk ∪Oclk ∪Rclk ∪Mclk ∪Lclk be
the set of variables which is used to construct the clock model Φ(P). A clock configuration

Î is an interpretation over X̂ such that it is a model of the first-order logic formula Φ(P). For
instance,

(F̂B 7→ true, N̂ 7→ true, ẐN 7→ true, F̃B 7→ 6, Ñ 7→ 6, Z̃N 7→ 1)

is a clock configuration of Φ(DEC). But the following interpretation

(F̂B 7→ true, N̂ 7→ true, ẐN 7→ false, F̃B 7→ 6, Ñ 7→ 6, Z̃N 7→ 1)

is not a clock configuration since it is not a model of the clock model. The set of all clock
configurations of Φ(P), denoted by EΦ(P), is given as follows:

EΦ(P) = {Î | Î |= Φ(P)}

4.4.2 Soundness of clock model

We will show that the clock model is sound in terms of preservation of the clock semantics
of the abstracted program. That means if the clock model satisfies a property defined over
the clocks, then the abstracted SIGNAL program also satisfies this property.

4.4.2.1 Clock semantics of SIGNAL program

We rely on the basic elements of trace semantics [70] to define the clock semantics of a syn-
chronous data-flow program and the soundness proof method in [61]. Let X = {x1,x2, ...,xn}
be a finite set of typed variables. For each xi ∈ X , we use Dxi to denote its domain of val-
ues, and D⊥

xi
= Dxi ∪{⊥} to denote its domain of values with absent value, where ⊥ ̸∈ Dxi

denotes the absent value. Then, the domain of values of X with absent value is defined as
follows:

D⊥
X =

n⋃
i=1

Dxi ∪{⊥}

70 Translation validation of transformations on clocks

Definition 17 (Clock events) Given a non-empty set X, the set of clock events on X, de-

noted by E cX , is the set of all possible interpretations I over X.

An interpretation I is an assignment of values from X to D⊥
X . The assignment I(x) = ⊥

means x holds no value while I(x) = v means that x holds the value v, and I(X) is defined as
follows:

I(X) = (I(x1), I(x2), ..., I(xn)),xi ∈ X

For example, consider a program whose signals are X = {x,b} where x is an integer signal
and b is Boolean signal, the set of clock events is given as follows, where v is an integer
value:

E cX = {(x 7→ ⊥,b 7→ ⊥),(x 7→ ⊥,b 7→ false),

(x 7→ ⊥,b 7→ true),(x 7→ v,b 7→ false),

(x 7→ v,b 7→ true),(x 7→ v,b 7→ ⊥)}

Then at a given instant, the signals clock information is one of these clock events. By
convention, the set of clock events of the empty set is defined as the empty set E c /0 = /0.

Definition 18 (Clock traces) Given a non-empty set X, the set of clock traces on X, denoted

by T cX , is defined by the set of functions Tc defined from the set N of natural numbers to

E cX , denoted by Tc : N−→ E cX .

The natural numbers represent the instants, t = 0,1,2, ..., a trace Tc is a chain of clock
events. We denote the interpreted value of a variable xi at instant t by Tc(t)(xi). Considering
the above example:

(0,(x 7→ ⊥,b 7→ ⊥)),(1,(x 7→ 1,b 7→ false)), ...

is one of the possible clock traces on X = {x,b}, and Tc(0)(x) = Tc(0)(b) =⊥

Definition 19 (Restriction clock trace) Given a non-empty set X, a subset X1 ⊆ X, and a

clock trace Tc being defined on X, the restriction of Tc onto X1 is denoted by X1.Tc. It is

defined as X1.Tc : N−→ E cX1 such that ∀t ∈ N,∀x ∈ X1,X1.Tc(t)(x) = Tc(t)(x).

Let X be the set of all signals in program P. We write [[P]]c to denote the clock semantics
of P which is defined as the set of all possible clock traces on X . For any subset X1 ⊆ X , the
set of all restriction clock traces on X1 defines the clock semantics of P on X1, denoted by
([[P]]c)\X1 . Table 4.2 shows the clock semantics of the SIGNAL processes corresponding to
the primitive operators. In the clock semantics of the delay operator, in f is the infimum (or
the greatest lower bound) of the subset of instants such that x is present, sup is the supremum

4.4 Translation validation of clock models 71

Process P Clock semantics [[P]]c

y := f (x1, ...,xn) {Tc ∈ T c{y,x1,...,xn}| ∀t ∈ N,(∀i,Tc(t)(xi) = Tc(t)(y) =⊥) or

Tc(t)(y) = vy and Tc(t)(xi) = vxi and vy = f (vx1, ...,vxn}
y := x$1 init a {Tc ∈ T c{x,y}| ∀t ∈ N,(Tc(t)(x) = Tc(t)(y) =⊥) or

(Tc(t)(x) ̸=⊥ and Tc(t)(y) ̸=⊥ and Tc(t0)(y) = a and ∀t ≥ t0
Tc(t)(y) = Tc(t−)(x))

with t0 = in f{t ′|Tc(t ′)(x) ̸=⊥},
t− = sup{t ′|t ′ < t ∧Tc(t ′)(x) ̸=⊥}}

y := x when b {Tc ∈ T c{x,y,b}| ∀t ∈ N,(Tc(t)(b) = true and Tc(t)(y) = Tc(t)(x) =⊥) or

(Tc(t)(b) = true and Tc(t)(y) = Tc(t)(x) = v) or

(Tc(t)(b) = false and Tc(t)(y) = Tc(t)(x) =⊥) or

(Tc(t)(b) = false and Tc(t)(x) = v and Tc(t)(y) =⊥) or

(Tc(t)(b) =⊥ and Tc(t)(x) = Tc(t)(y) =⊥) or

(Tc(t)(b) =⊥ and Tc(t)(x) = v and Tc(t)(y) =⊥)}
y := x default z {Tc ∈ T c{x,y,z}| ∀t ∈ N,(Tc(t)(x) = v and Tc(t)(y) = v) or

(Tc(t)(x) =⊥ and Tc(t)(z) = v and Tc(t)(y) = v) or

(Tc(t)(x) = Tc(t)(z) = Tc(t)(y) =⊥)}
P1 | P2 {Tc ∈ T cX1∪X2| X1.Tc ∈ [[P1]]c and X2.Tc ∈ [[P2]]c}

where [[P1]]c ⊆ T cX1, [[P2]]c ⊆ T cX2

P1/x {Tc ∈ T cX1\{x}| ∃Tc1 ∈ [[P1]]c,(X1 \{x}).Tc1 = Tc}
where [[P1]]c ⊆ T cX1

Table 4.2 Clock semantics of the SIGNAL primitive operators

(or least upper bound) of the subset of instants such that they are smaller than the instant
t and x is present. For instance, the clock semantics of the basic process corresponding to
sampling operator is the following set of clock traces, where x,y are numerical signals and
b is Boolean signal:

Tc ={(0,(x0,b0,y)), ...,(i,(xi,bi,yi)), ...} such that

∀i,(xi,bi,yi) ∈ {(⊥,⊥,⊥),(⊥,false,⊥),(⊥,true,⊥),(v,⊥,⊥),(v,false,⊥),(v,true,v)}

72 Translation validation of transformations on clocks

4.4.2.2 Concrete clock semantics

Let Φ(P) be the clock model of the program P. We now define the concrete clock semantics

of a clock model based on the notion of clock configurations. Given a clock configuration Î,
the set of clock events according to Î is the set of interpretations I such that for every signal
xi, if xi holds a value then x̂i has the value true (meaning xi is present), and x̃i holds the
same value as xi. Otherwise, x̂i has the value false (meaning xi is absent). The set of clock
events according to Î and the set of all clock events of Φ(P) are computed as follows:

SE cX (Î) = {I ∈ E cX | ∀xi ∈ X ,(I(xi) = Î(x̃i)∧ Î(x̂i) = true)∨ (I(xi) =⊥∧ Î(x̂i) = false)}

SE cX (Φ(P)) =
⋃

Î|=Φ(P)

SE cX (Î)

With a set of clock events SE cX (Φ(P)), the concrete clock semantics of Φ(P) is defined by
the following set of clock traces:

Γ(Φ(P)) = {Tc ∈ T cX | ∀t,Tc(t) ∈ SE cX (Φ(P))}

For any subset X1 ⊆ X , the concrete clock semantics of Φ(P) on X1 is defined as follows:

Γ(Φ(P))\X1 = {X1.Tc| Tc ∈ T cX and ∀t,Tc(t) ∈ SE cX (Φ(P))}

Definition 20 Given the abstraction Φ(P), a property ϕ defined over the set of clocks X̂ is

satisfied by Φ(P) if for any interpretation Î, Î |= Φ(P) whenever Î |= ϕ , denoted by Φ(P) |=
ϕ .

To show the soundness of our abstraction, we consider a similar reasoning as in [61]. Our
abstraction above is sound in terms of preservation of the clock semantics of the abstracted
program P: if the clock semantics of the abstraction satisfies a property defined over the

clocks, then the abstracted program also satisfies this property as stated by the following

proposition. For any property ϕ which is defined over the set X̂ , its concretization Γ(ϕ) is
given by:

SE cX (ϕ) =
⋃

Î|=ϕ

SE cX (Î)

Γ(ϕ) = {Tc ∈ T cX | ∀t,Tc(t) ∈ SE cX (ϕ)}

4.4 Translation validation of clock models 73

Proposition 3 Let P, Φ(P) be a program and its abstraction, respectively, and ϕ is a prop-

erty defined over the clocks. If Φ(P) |= ϕ then [[P]]c ⊆ Γ(ϕ).

Proof 6 The proof of Proposition 3 is done by using Lemma 2. Given a clock trace Tc ∈
[[P]]c, applying Lemma 2, Tc ∈ Γ(Φ(P)) means that ∀t,Tc(t) ∈ SE cX (Φ(P)). Since Φ(P) |=
ϕ , then every interpretation Î satisfying Φ(P) also satisfies ϕ . Thus, any clock event I ∈
SE cX (Φ(P)) is also in SE cX (ϕ), meaning that ∀t,Tc(t) ∈ SE cX (ϕ). Therefore, we have Tc ∈
Γ(ϕ).

Lemma 2 For all programs P, [[P]]c ⊆ Γ(Φ(P)).

Proof 7 We prove it by induction on the structure of program P, meaning that for every

primitive operator of the language we show that its clock semantics is a subset of the corre-

sponding concretization.

• Stepwise functions: P : y := f (x1, ...,xn). First, consider y as numerical signal; follow-

ing the encoding scheme, we have Φ(P) = (ŷ ⇔ v̂k
f ⇔ x̂1 ⇔ ...⇔ x̂n)∧ (ŷ ⇒ ỹ = ṽk

f).

For any interpretation Î such that Î |= Φ(P), we have:

– either ∀i, ŷ = false, v̂k
f = false and x̂i = false;

– or ŷ = true, v̂k
f = true,∀i.x̂i = true and ỹ = ṽk

f .

Then the set of clock events according to Î is given as follows:

SE cX (Î) = {I ∈ E c{y,x1,...,xn,vk
f }
| I(y) = Î(ỹ)∧∀i, I(xi) = Î(x̃i) if Î(ŷ) = Î(v̂k

f) =

Î(x̂i) = true and I(y) = I(xi) =⊥ if Î(ŷ) = Î(v̂k
f) = Î(x̂i) = false}

Let Tc ∈ [[P]]c be a clock trace and t ∈ N be any instant, then either ∀i,Tc(t)(y) =

Tc(t)(xi) = ⊥ or Tc(t)(y) = f (Tc(t)(x1),Tc(t)(x2), ...,Tc(t)(xn)). We have Tc(t) ∈
SE cX (Φ(P)) for every instant t. Therefore, Tc ∈ Γ(Φ(P)). When y is a Boolean signal,

the proof is similar.

• Delay, sampling, and merging operators: we prove in the same manner.

• Composition: P=P1|P2. Let Tc ∈ [[P]]c be a clock trace, since X1.Tc ∈ [[P1]]c,X2.Tc ∈
[[P2]]c, [[P1]]⊆ Γ(Φ(P1)) and [[P2]]c ⊆ Γ(Φ(P2)), we have ∀t,Tc(t)∈ SE cX (Φ(P1)) and

Tc(t) ∈ SE cX (Φ(P2)). That means ∀t,Tc(t) ∈ SE cX (Φ(P1)∧Φ(P2)), or Tc ∈ Γ(Φ(P)).

74 Translation validation of transformations on clocks

4.4.3 Definition of correct transformation: Clock refinement

4.4.3.1 Clock refinement

Let Φ(A) and Φ(C) be two clock models of programs A and C, to which we refer respec-
tively as a source program and its transformed counterpart produced by the compiler. We
denote the sets of all signals in A, C by XA and XC, respectively. The corresponding sets of
variables which are used to construct the clock models are denoted by X̂A and X̂C.

Consider the finite set of common signals X = XA ∩XC and the set of common variables
which are used to construct the clock models is X̂ = X̂A ∩ X̂C, we say that A and C have the
same clock semantics on X if Φ(A) and Φ(C) have the same set of concrete restriction clock
traces on X :

∀X .Tc.(X .Tc ∈ Γ(Φ(C))\X ⇔ X .Tc ∈ Γ(Φ(A))\X) (4.3)

In fact, the compilation makes the transformed program more concrete. For instance, when
the SIGNAL compiler performs the “endochronization” which is used to generate the se-
quential executable code (see Section 3.3.2), the signal with the fastest clock is always
present in the generated code. Moreover, compilers perform transformations and optimiza-
tions for removing or eliminating some redundant behaviors of the source program (e.g.,
eliminating subexpressions, trivial clock relations). Additionally, the SIGNAL compiler
strengthens the data-flow dependencies expressed in the original program to produce se-
quential code. Consequently, Requirement (4.3) is too strong to be practical. Hence, we
have to relax the requirement as follows:

∀X .Tc.(X .Tc ∈ Γ(Φ(C))\X ⇒ X .Tc ∈ Γ(Φ(A))\X) (4.4)

Requirement (4.4) expresses that every restriction clock trace of Φ(C) is also a clock trace of
Φ(A) on X , or Γ(Φ(C))\X ⊆ Γ(Φ(A))\X . We say that Φ(C) is a correct clock transformation

of Φ(A), or Φ(C) is a clock refinement of Φ(A) on X , denoted by Φ(C)⊑clk Φ(A).

Proposition 4 The clock refinement is reflexive and transitive:

• ∀Φ(P),Φ(P)⊑clk Φ(P) on XP.

• Assume that X ⊆XP1,X ⊆XP2 and X ⊆XP3 . If Φ(P1)⊑clk Φ(P2) and Φ(P2)⊑clk Φ(P3)

on X, then Φ(P1)⊑clk Φ(P3) on X.

4.4 Translation validation of clock models 75

Proof 8 Proposition 4 is proved based on the clock refinement definition.

• Reflexivity: For every restriction clock trace X .Tc, we have X .Tc ∈ Γ(Φ(P))\X ⇒
X .Tc ∈ Γ(Φ(P))\X .

• Transitivity: For every clock trace X .Tc ∈ Γ(Φ(P1))\X , we have X .Tc ∈ Γ(Φ(P2))\X .

Since Φ(P2) ⊑clk Φ(P3) on X, we have X .Tc ∈ Γ(Φ(P3))\X , or Φ(P1) ⊑clk Φ(P3) on

X.

4.4.3.2 Adaptation to SIGNAL compiler

We will adapt the definition of the above general clock refinement to the case of the SIGNAL

compiler to prove the preservation of clock semantics when the compiler transforms one
SIGNAL program into the intermediate representation form written in SIGNAL as well. We
need to consider the following factors.

A first consideration is that the SIGNAL programs take the inputs from their environment
and the register values. Then, they calculate the outputs to react with the environment. In
general, the programs can use some local variables to make the output calculations. How-
ever, from the outside, the natural observation of the programs is the snapshot of the values
of the input and output signals. In our context, it is the snapshot of the presence of the input
and output signals. For example, for the program DEC, the observation is the tuple of the
presence of the signals (FB,N) at a considered instant.

A second consideration is that in the compilation process of the SIGNAL compiler, the
local signals in the source program do not necessarily have counterparts in the transformed
program. However, all input and output signals are preserved in the transformations and are
represented by identical names in the transformed program. Moreover, all signals in the R

set are also preserved in the transformations. Therefore, it is natural to choose the snapshot
of the presence of the input and output signals to be the observation for the transformed
program.

These considerations let us adapt the above definition of clock refinement as follows. Let
XA and XC be the sets of all signals in the source program A and its counterpart transformed
program C. We write XIO to denote the set of common input and output signals. We say
that C is correct transformation of A if at any instant, the tuples of values representing the
presence of the signals in XIO are the same in both programs. In other words, Φ(C) ⊑clk

Φ(A) on XIO.

76 Translation validation of transformations on clocks

4.4.4 Proving clock refinement by SMT

We shall propose a method to check the existence of refinement between two clock models
with the use of a SMT solver. Let Φ(A) and Φ(C) be the clock models of given input and
transformed programs. We denote the set of all common input and output signals between
A and C by XIO. Our aim is proving that Φ(C) refines Φ(A) on XIO. Let X̂A, X̂C and X̂IO be
the set of variables which are used to construct Φ(A), Φ(C) and the set of common variables
between the two clock models.

For every variable in the clock model Φ(C) except the common variables in X̂IO, we
added “c” as superscript to distinguish them from the variables in the clock model of the
input program. The standard way of proving the existence of the clock refinement is based
on the following elements:

• The identification of a variable mapping that maps the non input, output variables
from the clock model Φ(A) to the non input, output variables in the clock model
Φ(C). We denote the mapping by:

X̂A \ X̂IO = α(X̂C \ X̂IO)

• The premises of a rule such that if the premises hold, then the conclusion, Φ(C) refines
Φ(A), is true. The premise is presented in Figure 4.3.

For a variable mapping X̂A \ X̂IO = α(X̂C \ X̂IO),
Premise. ∀Î over X̂A ∪ X̂C.(Î |= Φ(C)⇒ Î |= Φ(A))

Conclusion. Φ(C)⊑clk Phi(A) on XIO

Fig. 4.3 Rule CLKREF

The rule CLKREF says that for any interpretation Î over X̂A ∪ X̂C such that the variable
mapping is evaluated to true, Î is a clock configuration of Φ(C) then it is also a clock
model of Φ(A). Then there exists a clock refinement for (Φ(C),Φ(A)). The rule CLKREF
is sound based on the following theorem.

Theorem 4 For a variable mapping X̂A \ X̂IO = α(X̂C \ X̂IO), if the formula Φ(C)⇒ Φ(A)

is valid, then Φ(C)⊑clk Φ(A) on XIO.

Proof 9 To prove it, we have to show that for every interpretation Î over X̂ = X̂A ∪ X̂C such

that it is evaluated to true. If Î |=(Φ(C)⇒Φ(A)), then Γ(Φ(C))\XIO ⊆Γ(Φ(A))\XIO . Given

4.4 Translation validation of clock models 77

XIO.Tc ∈ Γ(Φ(C))\XIO , it means that ∀t,Tc(t) ∈ SE cX (Φ(C)). Since for every interpretation

Î, Î |= Φ(C) implies that Î |= Φ(A)), thus SE cX (Φ(C)) ⊆ SE cX (Φ(A)) under the variable

mapping. We get Tc(t) ∈ SE cX (Φ(A)) for every t. Therefore, we have Tc ∈ Γ(Φ(A)).

Consider a variable x ∈ X̂A \ X̂IO, the mapping αx of the variable mapping defines the value
of x in the clock model Φ(A) α-related to the value represented by the clock model Φ(C).
We therefore need to describe the mappings αx for xc ∈ X̂C \ X̂IO = Mclk ∪Rclk ∪Lclk.

Recall that every state signal s, we introduce a memorization variable m.s in the clock
model Φ(A), and a corresponding a memorization variable m.sc in the clock model Φ(C).
For example, the state signal N in the equation ZN := N$1 init 1, makes use of the mem-
orization variables m.N and m.Nc in the clock models. Therefore, we define the following
instance of the α mapping for each state signal s:

s̃ ⇔ s̃c ⇒ m.s ⇔ m.sc if s is Boolean signal
s̃ = s̃c ⇒ m.s = m.sc if s is non-Boolean signal

For example, the mapping for the variables m.N and m.Nc will be given by the formula:

Ñ = Ñc ⇒ m.N = m.Nc

It remains to define the instance of the mapping α for variables l̂, l̃ ∈ Sclk ∪Lclk in the clock
model Φ(A) which correspond to the local or state signal named l in the SIGNAL program.
In a SIGNAL program, one signal is defined by an equation l = eq, if we follow the defi-
nitions of all output and local signals in this equation and apply successively substitutions,
then we get that the equation is constructed only by the input and state signals. This property
is yielded since the SIGNAL program is determinate, meaning that all definitions of signals
are defined determinately by the input and state signals, and the SIGNAL compilers rejects
all non-determinate program. Equivalently, in the corresponding clock model Φ(A), the
output, state and local variables are determinately defined by the input I and memorization
M variables. The definition is written in the clock model in the form l̂ ⇔ f̂ ∧ l̃ = f̃ , where
f̂ and f̃ are the formulas which define the clock relations and the values of the signal l in
the clock model Φ(A). Therefore, we define the following instance of the α mapping in the
clock model corresponding to each state or local signal l:

l̂ ⇔ f̂ ∧ l̃ ⇔ f̃ if l is Boolean signal
l̂ ⇔ f̂ ∧ l̃ = f̃ if l is non-Boolean signal

78 Translation validation of transformations on clocks

For example, the mapping for the variables ẐN and Z̃N in the clock model Φ(DEC) corre-
sponding to the local variable ZN in the SIGNAL program DEC will be given by the formula:

(ẐN ⇔ N̂)∧ (ẐN ⇒ (Z̃N = m.N ∧m.N′ = Ñ))∧ (m.N0 = 1)

Therefore, the variable mapping X̂A \ X̂IO = α(X̂C \ X̂IO) is expressed as the following for-
mula: (1) when the signal is of Boolean type and (2) the signal is of non-Boolean type.

∧
m.s∈M

(
s̃ ⇔ s̃c ⇒ m.s ⇔ m.sc (1)
s̃ = s̃c ⇒ m.s = m.sc (2)

)
∧

∧
l̂,l̃∈S∪L

(
l̂ ⇔ f̂ ∧ l̃ ⇔ f̃ (1)
l̂ ⇔ f̂ ∧ l̃ = f̃ (2)

)

To solve the validity of the formula (Φ(C) ⇒ Φ(A)) in Theorem 4 under the variable
mapping, a SMT solver is needed since this formula involves non-Boolean variables and
uninterpreted functions (using a SAT solver would not be sufficient). A SMT solver decides
the satisfiability of arbitrary logic formulas of linear real and integer arithmetic, scalar types,
other user-defined data structures, and uninterpreted functions. If the formula belongs to the
decidable theory, the solver gives two types of answers: sat when the formula has a model
(there exists an interpretation that satisfies it); or unsat, otherwise. In our case, we will
ask the solver to check whether the formula ¬(Φ(C)∧ X̂A \ X̂IO = α(X̂C \ X̂IO)⇒ Φ(A)) is
unsatisfiable, since this formula is unsatisfiable iff |= (Φ(C)∧ X̂A \ X̂IO = α(X̂C \ X̂IO) ⇒
Φ(A)). In our translation validation, the clock models which are constructed from Boolean
or numerical variables and uninterpreted functions belong to a part of first-order logic which
has a small model property according to [28]. The numerical variables are involved only in
some implications with uninterpreted functions such as

(x̃ = x̃′∧ ỹ = ỹ′)⇒ ṽi
� = ṽ j

�

In addition, the formula is quantifier-free. This means that the check of satisfiability can be
established by examining a certain finite cardinality of models. Therefore, the formula can
be solved efficiently and significantly improves the scalability of the solver.

4.4.5 Implementation with SMT

We describe the main steps of our approach, and the main techniques which are used to
implement them. This implementation can be integrated into the existing POLYCHRONY

toolset to prove the preservation of clock semantics.

4.4 Translation validation of clock models 79

4.4.5.1 Implementation

Given a source program A, with an unverified compiler, we consider the following compila-
tion process:

1. The compiler takes program A and transforms it.

2. If there is any error (e.g., syntax error), it outputs an Error.

3. Otherwise, it outputs the intermediate representation C = IR(A).

These steps can be represented in the following pseudo-code, where Cp(A) is the compila-
tion from the source program A to either compiled program IR(A) or compilation error:

1 if (Cp(A) is Error) return Error;
2 else return IR(A);

If we associate a verification process which checks that IR(A) refines A with respect to the
clock semantics, we obtain the following derived compiler that gives a guarantee of the
preservation of clock semantics during the compilation from A to IR(A).

1 if (Cp(A) == Error) return Error;
2 else
3 {
4 if (Φ(IR(A))⊑clk Φ(A)) return IR(A);
5 else return Error;
6 }

We design a validator depicted in Figure 4.4 that takes the source program A and the
counterpart compiled program C to construct the corresponding clock models. Then, it
establishes the first-order logic formula with the above mapping from C to A as the input of
the solver. Finally, in the solving phase, it checks the validity of the formula (Φ(C)∧ X̂A \
X̂IO = α(X̂C \ X̂IO)⇒ Φ(A)).

Signal Program
A

Clock Model
Construction

�(A)

Clock Model
Construction

�(C)

Yices Solver

1

3

Signal Program
C

Checking Formula
Construction

2

Fig. 4.4 The clock model translation validation

80 Translation validation of transformations on clocks

Clock model construction Given the input program A and its transformed programs C,
this step will construct the corresponding clock models according to the above encoding
scheme. At the end of this step, the clock models of the input and transformed programs are
represented as the first-order logic formulas Φ(A) and Φ(C), respectively.

Checking formula construction Consider the clock models Φ(A) and Φ(C). This step
first establishes the variable mapping, then it constructs the formula (Φ(C)∧ X̂A \ X̂IO =

α(X̂C \ X̂IO)⇒ Φ(A)) which is the input of the solving phase for checking its validity.

SMT-based proof We delegate checking the validity of the checking formula to a SMT

solver. For our implementation, we consider the YICES solver [51], which is one of the best
solvers at the SMT-COMP competition [131].

Let us illustrate the above process on the program DEC in Listing 3.3, and its transformed
program DEC_BASIC_TRA in Listing 4.5 at the first phase of the compilation process.

Listing 4.5 DEC_BASIC_TRA in Signal

1 (| CLK := CLK_N -̂ CLK_FB |)
2 | (| CLK_N := CLK_N +̂ CLK_FB
3 | CLK_N =̂ N =̂ ZN
4 |)
5 | (| CLK_FB := when (ZN <=1)
6 | CLK_FB =̂ FB
7 | CLK_12 := when (not (ZN <=1))
8 |)
9 | (| N := (FB when CLK_FB) default ((ZN -1) when CLK)

10 | ZN := N$1 init 1
11 |)
12 |)

In the first step, we will construct the clock models which are presented by the follow-
ing first-order logic formulas Φ(DEC) and Φ(DEC_BASIC_TRA), respectively, where ZN <=

1,ZNc <= 1,ZN −1 and ZNc −1 are replaced by the fresh variables ZN1,ZN1c,ZN2 and
ZN2c. The uninterpreted function symbols v1

<=,v
1c
<=,v

1
− and v1c

− are used to encode the step-

4.4 Translation validation of clock models 81

wise functions ZN1 := ZN <= 1,ZN1c := ZNc <= 1,ZN2 := ZN−1 and ZN2c := ZNc−1:

Φ(DEC) =

(F̂B ⇔ ẐN1∧ Z̃N1)

∧ (ẐN1 ⇔ v̂1
<= ⇔ ẐN)∧ (ẐN1 ⇒ (Z̃N1 = ṽ1

<=))

∧ (ẐN ⇔ N̂)∧ (ẐN ⇒ (Z̃N = m.N ∧m.N′ = Ñ))∧ (m.N0 = 1)
∧ (N̂ ⇔ F̂B∨ ẐN2)∧ (N̂ ⇒ ((F̂B∧ Ñ = FB)∨ (¬F̂B∧ Ñ = Z̃N2)))

∧ (ẐN2 ⇔ v̂1
− ⇔ ẐN)∧ (ẐN2 ⇒ (Z̃N2 = ṽ1

−))

Φ(DEC_BASIC_TRA) =
(ĈLKc ⇔ ̂CLK_Nc ∧¬ ̂CLK_FBc)∧ (ĈLKc ⇒ C̃LKc)

∧ (̂CLK_Nc ⇔ ̂CLK_Nc ∨ ̂CLK_FBc)∧ (̂CLK_Nc ⇒ ˜CLK_Nc)

∧ (̂CLK_Nc ⇔ N̂ ⇔ ẐNc)

∧ (N̂ ⇔ F̂B∧ ̂CLK_FBc ∧ ˜CLK_FBc ∨ ẐN2c ∧ĈLKc ∧C̃LKc)

∧ (N̂ ⇒ (F̂B∧ ̂CLK_FBc ∧ ˜CLK_FBc ∧ Ñ = F̃B

∨¬(F̂B∧ ̂CLK_FBc ∧ ˜CLK_FBc)∧ Ñ = Z̃N2c))

∧ (ẐN2c ⇔ v̂1c
− ⇔ ẐNc)∧ (ẐN2c ⇒ (Z̃N2c = ṽ1c

−))

∧ (ẐNc ⇔ N̂)∧ (ẐNc ⇒ (Z̃Nc = m.N ∧m.N′ = Ñ))∧ (m.N0 = 1

∧ (̂CLK_FBc ⇔ ẐN1c ∧ Z̃N1c)∧ (̂CLK_FBc ⇒ ˜CLK_FBc)

∧ (ẐN1c ⇔ v̂1c
<= ⇔ ẐNc)∧ (ẐN1c ⇒ (Z̃N1c = ṽ1c

<=))

∧ (̂CLK_FBc ⇔ F̂B)

∧ (̂CLK_12c ⇔ ẐN1c ∧¬Z̃N1c)∧ (̂CLK_12c ⇒ ˜CLK_12c)

In the second step, checking formula construction, our tool will establish the variable
mapping X̂DEC \ X̂IO = α(̂XDEC_BASIC_TRA \ X̂IO) as follows:

(ẐN ⇔ N̂)∧ (ẐN ⇒ (Z̃N = m.N ∧m.N′ = Ñ))∧ (m.N0 = 1)

∧ (ẐN1 ⇔ v̂1
<= ⇔ ẐN)∧ (ẐN1 ⇒ (Z̃N1 = ṽ1

<=))

∧ (ẐN2 ⇔ v̂1
− ⇔ ẐN)∧ (ẐN2 ⇒ (Z̃N2 = ṽ1

−))

In the third step, we delegate the checking validity of the formula (Φ(DEC_BASIC_TRA)∧
X̂DEC\ X̂IO =α(̂XDEC_BASIC_TRA\ X̂IO)⇒Φ(DEC)), named ϕ , to the SMT solver under the log-
ical context defined by the variable mapping and the following assertions:

(Z̃N = Z̃Nc ∧1 = 1)⇒ ṽ1
<= = ṽ1c

<=

(Z̃N = Z̃Nc ∧1 = 1)⇒ ṽ1
− = ṽ1c

−

82 Translation validation of transformations on clocks

With the YICES solver, we will get unsat when checking the satisfiability of ¬ϕ , which
means that ϕ is valid. Thus, we can conclude that the transformation is correct.

4.4.5.2 Constant clock

We describe the additional features that have to be considered when the translation val-
idation is applied on real SIGNAL programs. In SIGNAL, the occurrence of constants is
allowed to designate a constant signal (i.e., a signal with a constant value). However, each
occurrence of a constant has a particular clock since the corresponding signal is hidden,
and this clock is determined by the context where the constant is used, called context clock.
This makes our abstraction for SIGNAL operators above invalid in case a constant signal is
used. In consequence of that, we have to provide new definitions of the abstraction when
the operators use a constant signal (cst denotes a constant):

Stepwise functions

• φ(y := cst) = ŷ ⇒ (ỹ ⇔ cst) if y is Boolean signal.

• φ(y := cst) = ŷ ⇒ (ỹ ⇔ cst) if y is non-Boolean signal, where cst is an interpreted
function.

• φ(y := x and cst) = (ŷ ⇔ x̂)∧ (ŷ ⇒ (ỹ ⇔ x̃∧ cst)).

• φ(y := x or cst) = (ŷ ⇔ x̂)∧ (ŷ ⇒ (ỹ ⇔ x̃∨ cst)).

• φ(y := x� cst) = (ŷ ⇔ v̂i
�⇔ x̂)∧ (ŷ ⇒ (ỹ = ṽi

�)).

Merge

φ(y := x default cst) = (ŷ ⇔ (x̂∨ ŷ))∧ (ŷ ⇒ (x̂∧ ỹ = x̃∨¬x̂∧ ỹ = cst))

φ(y := cst default x) = (ŷ ⇔ (x̂∨ ŷ))∧ (ŷ ⇒ (ŷ∧ ỹ = cst ∨¬ŷ∧ ỹ = x̃))

Sampling

φ(y := x when true) = (ŷ ⇔ (x̂∧ ŷ))∧ (ŷ ⇒ (ỹ = x̃))

φ(y := x when false) = ŷ ⇔ false

φ(y := cst when b) = (ŷ ⇔ (b̂∧ b̃))∧ (ŷ ⇒ (ỹ = cst))

4.4 Translation validation of clock models 83

4.4.6 Detected bugs

So far, our validator has revealed two previously unknown bugs in the compilation of the
SIGNAL compiler. One of them is related to the multiple constraints of clocks. Another one
is a syntax error of generated C code from a SIGNAL program in which a constant signal is
used.

The first problem was introduced when multiple constraints condition a clock such as
in the following segment of SIGNAL program and its clock calculation part in transformed
programs:

1 /* P.SIG */
2 | x ^= when (y <= 9)
3 | x ^= when (y >= 1)
4 /* P_BASIC_TRA.SIG */
5 ...
6 | CLK_x := when (y <= 9)
7 | CLK := when (y >= 1)
8 | CLK_x ^= CLK
9 | CLK ^= XZX_24

10 ...
11 /* P_BOOL_TRA.SIG */
12 ...
13 | when Tick ^= C_z ^= C_CLK
14 | when C_z ^= x ^= z
15 | C_z := y <= 9
16 | C_CLK := y >= 1
17 ...

In the transformed counterpart P_BASIC_TRA, the introduction of signal XZX_24 and the
synchronization between CLK and XZX_24 cause the incorrect specification of clocks (in
program P_BASIC_TRA, the signal x might be absent when XZX_24 is absent, which is not
the case in the source program P, nor in P_BOOL_TRA). This bug was caught by our validator
when it found that Φ(P_BOOL_TRA) ̸⊑clk Φ(P_BASIC_TRA). In addition, signal XZX_24 is
introduced without declaration, which makes a syntax error in P_BASIC_TRA.

The second problem detected was not found by the translation validation but was in-
directly discovered when trying to apply it. It occurred in a SIGNAL program in which a
merge operator with a constant signal was used, such as y := 1 default x. In this case, the
code generation phase of the compiler dealt wrongly with the clock context of a constant
signal by introducing a syntax error in the generated C code. The bug and its fix are given
by:

84 Translation validation of transformations on clocks

1 /* Version with bug */
2 if (C_y)
3 {
4 y = 1; else y = x;
5 w_ClockError_y(y);
6 }
7 /* Version without bug */
8 if (C_y)
9 {

10 if (C_y) y = 1; else y = x;
11 w_ClockError_y(y);
12 }

4.5 Discussion

Beside the works which have adopted the translation validation approach in verification of
a compiler as discussed in Chapter 2, the static analysis of SIGNAL programs for efficient
code generation [61] can be considered as our closest related work.

The common semantics framework which are used to construct the translation validation
of clock models in this chapter is inspired by the interval-Boolean abstraction of [61]. The
objective of this paper was to propose a method to make the code generated by the Signal
compiler more efficient by detecting and removing the dead-code segments (e.g., segment of
code to compute a data-flow which is always absent). The technique allows to detect empty
clocks, mutual exclusion of clocks, or clock inclusions, by reasoning on an interval-Boolean
model using an SMT solver. The choice of SMT solvers is explained by the fact that it is
more judicious than the Interval Decision Diagram (IDD) technique used in [63]. In IDDs,
intervals are defined on integers. To deal with other data types, IDDs require an encoding
into integers. Using SMT solving, the story is different, since the solvers support a large
range of algebras. From a practical point of view, SMT solving is also easier to integrate
in the current Signal compiler. In our work, we used an interval-Boolean abstraction to
represent the condition of dependencies among signals to make a more efficient deadlock
detection technique.

On the other hand, Pouzet et al. [22] introduce a generic machine-based intermediate
presentation to describe the transition functions in the modular compilation of SCADE/LUS-
TRE. The formalization of the intermediate presentation appears as a fundamental need in
order to develop a certified compiler using a proof assistant. However, as we mentioned
above, this approach yields a situation where any change of the compiler requires redoing

4.5 Discussion 85

the proof. Moreover, a realistic compiler is in general a much bigger and more difficult
object to verify than a single translation function.

The present chapter provides a proof of correctness of a multi-clocked synchronous pro-
gramming language compiler for clock semantics preservation and applies this approach to
the synchronous data-flow language SIGNAL compiler. We have presented two approaches
based on model checking and the use of SMT solving to prove the preservation of clock
semantics during the compilation. The clock semantics of a given source program and its
transformed program are represented as PDSs over the finite field modulo 3, Z/3Z. A re-
finement relation between the source program and its compiled program is used to express
the preservation. A proof based on the simulation technique is presented to establish the
existence of the refinement relation. In the second approach based on the use of SMT solver,
the clock semantics is represented as a clock model. A refinement relation between two
clock models is used to express the preservation, which is checked by using a SMT solver.

A compilation phase, followed by the refinement verification process, guarantees that
the clock semantics of the source program is preserved in the compiled program. We have
proposed methods to implement and integrate our verification process within the POLY-
CHRONY toolset by extending the functionality of the existing model checker SIGALI, and
the use of SMT solver to prove the correctness of the first two phases of the SIGNAL com-
piler.

Thanks to this experiment, we observed that the approach based on model checking suf-
fers from the increasing state-space when it deals with large programs (the programs contain
a huge amount of variables). The number of states grows exponentially with the number of
program variables. On the contrary, in the approach based on the use of SMT solver, the
clock semantics is presented as a first-order logic formula over Boolean variables and unin-

terpreted functions. Thanks to the efficiency of the SMT implementation, this approach can
deal with programs whose number of variables is very big.

CHAPTER 5

TRANSLATION VALIDATION OF SDDG

In this chapter, we describe how the preservation of data dependencies among signals in the
compilation of SIGNAL can be proved by showing that for every pair of signals x and y in
the source program, if there exists a data dependency between x and y, then this dependency
is also in the compiled program. The data dependencies among signals in the program are
represented by a formal representation, called Synchronous Data-flow Dependency Graph

(SDDG).

A SDDG is a labeled directed graph in which each node is a signal or a clock, each
edge from a node to another node represents the dependency between nodes that is labeled
by a condition, called clock constraint. Therefore, a dependency between two signals is
conditioned: the dependency is effective whenever the condition holds. For instance, the
basic process y := x when b specifies that at any instant such that x is present, b is present,
and b holds the value true, y cannot be set before the evaluation of x. We can use a Boolean
expression x̂∧ b̂∧ b̃ to encode the fact that x is present, b is present, and b holds the value
true, where x̂, b̂, b̃ are Boolean variables. Hence, the value of y depends on the current
value of x whenever the condition x̂∧ b̂∧ b̃ is satisfied. Given two SDDGs of the source and
compiled programs, a refinement relation between them is formally defined which expresses
the semantic preservation of data dependency. We delegate checking the refinement to a
SMT solver.

Figure 5.1 shows our validation and its integration into the SIGNAL compilation pro-
cess. If the validator points out that there does not exit a refinement then a “compiler bug”
message is emitted. Otherwise, the compiler continues its work.

The remainder of this chapter is organized as follows. The definition of synchronous
data-flow dependency graph and the encoding scheme from SIGNAL programs into SDDGs
are studied in Section 5.2. The translation validation of SDDGs is described in Section 5.3.

5.1 The data dependency analysis in SIGNAL compiler 87

*.SIG *_BASIC_TRA.SIG *_BOOL_TRA.SIG *_SEQ_TRA.SIG C/C++, Java

Clock Calculation,
Boolean Abstraction Scheduling Code Generation

SDDG
Translation
Validation

SDDG SDDG

Fig. 5.1 Translation validation of SDDG

We also address the mechanism of the verification process, the application of the verification
process to the SIGNAL compiler, and its integration in the POLYCHRONY toolset [77]. Sec-
tion 5.4 introduces an application of SDDG to build a precise deadlock detection for SIGNAL

compiler. We present some related works, conclusion and future research in Section 5.5.

5.1 The data dependency analysis in SIGNAL compiler

The second phase of the SIGNAL compiler, static scheduling, aims to make the precise de-
termination of dependencies among signals in programs. The analysis of such dependencies
provides some important functions of the compiler. The first function is to detect that the
program does not contain any cyclic definition, called deadlock detection. The deadlock
detection is studied in detail in Section 5.4.1. The other function is to statically calculate the
scheduling for a multi-processor implementation.

In order to do the above functions, the SIGNAL compiler constructs a graph which rep-
resents the data dependencies among signals, called Graph of Conditional Dependencies

(GCD) as described in [13]. For any pair of signals (x,y), it specifies under what condition
the signal x depends instantly on the signal y.

To detect a cyclic definition, for a cycle in the graph, the compiler computes the con-
junction of all the conditions associated with this cycle, and checks that the conjunction is
identically false.

The scheduling can be statically calculated by defining subgraphs of the GCD that maybe
distributed on different processors. For instance, the computation of two output signals x

and y can be distributed on two different cores of a single processor or on two different
processors if there is no data dependencies between them.

88 Translation validation of SDDG

Dependency Encoding in GCD

x Cx
Cx−→ x x2 x2

−→ x

c (Boolean signal) c
[c]−→ [c], c

[¬c]−−→ [¬c] c −c−c2
−−−−→ (−c− c2)

c c−c2
−−−→ (c− c2)

x c−→ y [c]
[c]−→ y (−c− c2)

−c−c2
−−−−→ y

y := f (x1, ...,xn) x1
Cy−→ y ... xn

Cy−→ y x1
y2

−→ y ... xn
y2

−→ y

y := x$1 init a

y := x when b x
Cy−→ y, b

Cy−→Cy x
y2

−→ y, b
y2

−→ y2

y := x default z x Cx−→ y, z
Cz\Cx−−−→ y x x2

−→ y, z
z2(1−x2)−−−−−→ y

Table 5.1 The implicit dependencies and their encoding in GCD

We first recall the analysis of implicit dependencies among signals of the primitive oper-
ators as in Section 3.3.2. We use x c−→ y to denote the fact that there is a dependency between
y and x at the condition c. In particular, the following dependencies apply implicitly.

• Any signal is preceded by its clock.

• For a Boolean signal c, [c] and [¬c] depend on c.

• Any dependency x c−→ y implies implicitly a dependency [c]
[c]−→ y.

Then, we have the implicit dependencies among signals for the core language that are given
in Table 5.1. As an example, for the basic process y := x when b, the signal y depends on
the signal x whenever y is present. The clock Cy depends on the Boolean signal b whenever
y is present.

A GCD calculated by the SIGNAL compiler is a labeled directed graph, in which the
vertices are the signals or clock variables. The edges indicate the data dependencies among
signals and clock variables, and the labels are clocks which are polynomials whose coef-
ficients range over the finite field of integers modulo 3, Z/3Z. These clocks represent the
conditions at which the dependencies are valid.

For example, we consider the program DEC in Section 3.3.2 which emits a sequence of
values FB,FB−1, ...,2,1, from each value of a positive integer signal FB coming from its
environment. The data dependencies among the signals FB,ZN and N can be represented
by the graph in Figure 5.2, where we introduce two fresh variables ZN1 and ZN2 to replace

5.2 Synchronous data-flow dependency graph 89

the expressions ZN <= 1 and ZN −1, respectively. The clocks which label the edges in the
graph are encoded as polynomials over Z/3Z related as follows.

ZN12 = ZN22 = ZN2 = N2

FB2 =−ZN1−ZN12

N2 = FB2 +(1−FB2)ZN22

FB2

FB

N

ZN12

ZN

ZN1

ZN2

FB2

ZN22(1−FB2)

FB2

ZN2

ZN12

ZN22

ZN22ZN12

FB2

FB2

Fig. 5.2 The GCD of DEC

5.2 Synchronous data-flow dependency graph

We will describe the data dependencies among signals in terms of SDDGs. In presenting the
construction of a SDDG below, we first explain that a usual Data Dependency Graph (DDG)
is not sufficient to represent the dependencies among signals in a polychronous program.
Next, we show how clock constraints which are represented as first-order logic formulas
as in Section 4.4.1 can be used to express the conditional dependencies. Let us consider
again the sampling operator, y := x when b, the dependency of y on x is conditioned by the
formula x̂∧ b̂∧ b̃. That means that at a given instant, y depends on x only when this formula
is evaluated to be true.

90 Translation validation of SDDG

5.2.1 Data dependency graphs

As in [6], a DDG is a directed graph which contains nodes that represent locations of def-

initions and uses of variables in basic blocks, and edges that represent data dependencies
between nodes. Once the DDG is constructed, the dependencies among variables are fixed.
They do not vary along the time, in other words, DDGs can only be used to represent the
data dependencies which are static in terms of the time.

Considering the pseudo-code of the following program Sum. Figure 5.3 partially shows
its DDG (the figure shows only the data dependencies that are related to variable i). Data
dependency edges are depicted by dotted lines which are added to the Control Flow Graph

(CFG) [41, 111], and labeled by the name of the variable that creates the dependency. Node
numbers in the CFG correspond to statement numbers in the program (we treat each state-
ment as a basic block). Each node that represents a transfer of control (e.g., node 5) has two
edges with labels true and false, all others are unlabeled.

1 Program Sum {
2 read(n);
3 i = 1;
4 sum = 0;
5 while (i <= n) {
6 sum = sum + i;
7 i = i + 1;
8 }
9 write(sum);

10 }

5.2.2 SIGNAL program as synchronous data-flow dependency graph

Data dependency graphs would not really represent the data dependencys of a SIGNAL

program since the presence of signals may vary along time (which is defined by their clock),
in consequence, the dependencies among signals in the program are not static, they also
vary. To deal with that, the dependencies must be conditioned by the clocks at which the
dependencies are effective.

To illustrate the definition of SDDGs, we consider a process which involves the basic
process corresponding to the merge operator:

1 (|
2 | x := expression
3 | z := expression

5.2 Synchronous data-flow dependency graph 91

entry

(2)

(3)

(4) (5) (6)

(7)(9)

exit

true

false

i

i
i

Fig. 5.3 CFG for Sum, with data dependency edges for i (dotted lines)

4 | ...
5 | y := x default z
6 |)

The statements (2), (3) and (5) represent the expressions defining the signal x,z and y, re-
spectively. The signal x is defined at statement 2 and is fetched at statement 5 if the signal
x is present. Considering the basic process y := x default z (and the clock constraints
between signals), the “valid” states are: x is present and y is present; or x is absent, z is
present, and y is present; or x, y and z are absent. They can be expressed by ŷ ⇔ (x̂∨ ẑ) in
our abstraction as in Section 4.4.1. According to the valid states of the signals, the different
data dependencies among signals are depicted in Figure 5.4, where the labels represent the
conditions at which the dependencies are effective. For instance, when x̂ = true, y is de-

y

x z

x̂ ¬x̂∧ ẑ

Fig. 5.4 The SDDG of merge operator

92 Translation validation of SDDG

fined by x; otherwise it is defined by z when x̂ = false and ẑ = true. The graph has the
following property: an edge cannot exist if one of its extremity nodes is not present (or the
corresponding signal holds no value). In our example, this property can be translated in our
abstraction of clock semantics as:

x̂ ⇒ ŷ∧ x̂ and ¬x̂∧ ẑ ⇒ ŷ∧ ẑ

A SDDG for a given program is a labeled directed graph in which each node is a signal
or clock variable and each edge represents the dependency between nodes. Each edge is
labeled by a first-order logic formula that represents the clock at which the dependency
between the extremity nodes is effective. Formally, a SDDG is defined as follows:

Definition 21 (SDDG) A SDDG associated with a SIGNAL program is a labeled directed

graph G = ⟨N,E, I,O,C,mN ,mE⟩, where:

• N is a finite set of nodes. Each node is a signal or a clock variable.

• E ⊆ N ×N is the set of edges. They describe the data dependencies among signals

and clock variables in the program. Each edge is labeled by a clock constraint that is

a first-order logic formula in our abstraction.

• I ⊆ N is the set of input nodes. They are the set of input signals.

• O ⊆ N is the set of output nodes. They are the set of output signals.

• C is the set of conditions, called clock constraints. The conditions are encoded as the

expressions of clocks in the abstraction in Section 4.4.1.

• mN : N −→ C is a mapping labeling each node with a clock contraint. It defines the

existence condition of a node.

• mE : E −→C is a mapping labeling each edge with a clock constraint. It defines the

existence condition of an edge.

In contrast with DDG, the clock labeling in SDDG provides a dynamic dependency feature.
This clock labelling imposes two properties which are implicit:

• An edge cannot exist if one of its two extremity nodes does not exist. This property
can be translated in our abstraction as:

∀(x,y) ∈ E,mE(x,y)⇐ (mN(x)∧mN(y))

5.2 Synchronous data-flow dependency graph 93

Operators Encoding in SDDG

x x̂ x̂−→ x, mN(x̂) = x̂, mN(x) = x̂

c (Boolean signal) c
[c]−→ [c], mN(c) = ĉ, mN([c]) = [c], c

[¬c]−−→ [¬c], mN(c) = ĉ

mN([¬c]) = [¬c]

x c−→ y [c]
[c]−→ y, mN([c]) = [c], mN(y) = ŷ

y := f (x1, ...,xn) x1
ŷ−→ y ... xn

ŷ−→ y, mN(xi) = x̂i, mN(y) = ŷ, i = 1, ...,n

y := x$1 init a mN(x) = x̂,mN(y) = ŷ

y := x when b x
ŷ−→ y, mN(x) = x̂,mN(y) = ŷ, b

ŷ−→ ŷ, mN(b) = b̂, mN(ŷ) = ŷ

y := x default z x x̂−→ y, mN(x) = x̂, mN(y) = ŷ, z ẑ∧¬x̂−−−→ y, mN(z) = ẑ, mN(y) = ŷ

Table 5.2 The dependencies of the core language

• A cycle of dependencies does not stand for a deadlock if the conjunction of all the
conditions associated with the cycle is identically false. It can be expressed as:

x1, ...,xn,x1 is not a deadlock if mE(x1,x2)∧mE(x2,x3)∧ ...∧mE(xn,x1) is false

We denote the fact that there exists a dependency between two nodes x and y at a clock
constraint mE(x,y) = ĉ by x ĉ−→ y. Then, a dependency path from x to y is any set of nodes
s = ⟨x0,x1, ...,xk⟩ such that xi+1 depends on xi for all i from 0 to k−1. The clock constraint
at which the dependency path is effective is ĉ =

∧k−1
i=0 ĉi, where ĉi = mE(xi,xi+1). When the

number of nodes is two, the path is an edge. We also write x = x0
ĉ0−→ x1

ĉ1−→ ...
ĉk−1−−→ xk = y

to denote a path from x to y.

In Table 5.2, we construct the dependencies among signals for the core language, where
the sub clocks [c] and [¬c] are encoded as ĉ∧ c̃ and ĉ∧¬c̃, respectively, in our abstraction.
The edges are labeled by clocks which are represented by a first-order formula. For instance,
the basic process of the primitive operator sampling satisfies that ŷ ⇒ x̂∧ ŷ and ŷ ⇒ b̂∧ ŷ.

We assume that all considered SIGNAL programs are written with the primitive opera-
tors, meaning that derived operators are replaced by their definition with primitive ones, and
there are no nested operators (these nested operators can be broken by using fresh signals).
Following the above construction rules, we can obtain the SDDG in Figure 5.5 for the pro-
gram DEC in Section 3.3.2, where we introduce two fresh variables ZN1 and ZN2 to replace
the expressions ZN <= 1 and ZN − 1, respectively. Note that we omit some parts of the
graph such as the signal N depends on its clock N̂. The clocks which label the edges in the

94 Translation validation of SDDG

graph are encoded as the first-order formulas given as follows.

ẐN1 = ẐN2 = ẐN = N̂

F̂B = ẐN1∧ Z̃N1

N̂ = F̂B∨ ẐN2

F̂B

FB

N

ẐN1

ZN

ZN1

ZN2

F̂B
¬F̂B∧ ẐN2

F̂B

ẐN

ẐN1

ẐN2

ẐN2ẐN1

F̂B

F̂B

Fig. 5.5 The SDDG of DEC

5.3 Translation validation of SDDG

In this section, we adopt the translation validation approach to prove the correctness of the
compiler in the static scheduling phase of the compilation process. Given two SDDGs, we
first formalize the notion of “correct implementation” as a dependency refinement relation.
This refinement expresses the semantic preservation of data dependencies. Then, we pro-
pose a method to implement our verification framework by the use of a SMT solver for
checking the existence of the above refinement relation.

5.3.1 Definition of correct implementation: Dependency refinement

Let SDDG(A) = ⟨NA,EA, IA,OA,CA,mNA,mEA⟩ and SDDG(C) = ⟨NC,EC, IC,OC,CC,mNC ,mEC⟩,
to which we refer respectively as the data dependency representations of the source program
and its transformed counterpart produced by the SIGNAL compiler. Let x and y be two sig-
nals in both programs A and C. A dependency path from the signal x to the signal y in

5.3 Translation validation of SDDG 95

SDDG(C) is a reinforcement of the dependency path from x to y in SDDG(A) if at any in-
stant t, the dependency path in SDDG(A) is effective (meaning that the conjunction of all
the conditions associated with the path is evaluated to be true at t), then the corresponding
dependency path in SDDG(C) is also effective. The formal definition of reinforcement is
given as follows.

Definition 22 (Reinforcement) Let d p1 = ⟨x0,x1, ...,xn⟩ and d p2 = ⟨x′0,x′1, ...,x′m⟩ be two

dependency paths in SDDG(A) and SDDG(C), respectively, where x = x0 = x′0,y = xn = x′m
and ĉi, ĉ′j denote the clock constraints mEA(xi,xi+1) and mEC(x

′
j,x

′
j+1). It is said that d p2 is

a reinforcement of d p1 iff the following formula is valid.

|=
n−1∧
i=0

ĉi ⇒
m−1∧
j=0

ĉ′j

We write d p2 ≼dep d p1 to denote the fact that d p2 is a reinforcement of d p1. The assertion
|=
∧n−1

i=0 ĉi ⇒
∧m−1

j=0 ĉ′j indicates that if the dependency path d p1 in SDDG(A) is effective at
any instant, then the dependency path d p2 in SDDG(C) is also effective. In the special case

when m = n = 1, x
ĉ′0−→ y is a reinforcement of x

ĉ0−→ y iff |= ĉ0 ⇒ ĉ′0.

Consider a dependency path from x to y in a SDDG graph. Assume that there exists a
path from y to x, that makes a dependency cycle between x and y. We say that such cycle is
a deadlock iff the dependencies of x to y and vice-versa are effective at the same time. The
formal definition of deadlock is given as follows.

Definition 23 (Deadlock) Let d p = ⟨x0,x1, ...,xn,x0⟩ be a cycle in a SDDG graph. The

dependency cycle d p stands for a deadlock if the conjunction of all the clock constraints

associated with the cycle is satisfiable, meaning that there exists some interpretation that

makes the conjunction formula mE(x0,x1)∧mE(x1,x2)∧ ...∧mE(xn,x0) true.

Obviously, a dependency cycle does not stand for a deadlock if the conjunction of all the
clock constraints associated with the cycle, in which the dependencies are effective, is iden-
tically false. That means the dependencies of the cycle cannot be present at the same time.
It can be expressed as:

M ̸|=
n∧

i=0

ĉi, where ĉi is the clock constraint associated with the cycle.

96 Translation validation of SDDG

It indicates that there is no interpretation that makes the conjunction of all the clock con-
straints associated with the cycle true. Based on the above definition of deadlock, a SDDG

is deadlock-free if every dependency cycle in the graph does not stand for a deadlock.

Definition 24 (Deadlock-consistent) Let d p1 and d p2 be two dependency paths from the

signal x to the signal y in SDDG(A) and SDDG(C), respectively. The dependency path d p2

is deadlock-consistent with d p1 if the following condition is satisfied: if every dependency

cycle between x and y in SDDG(A) is not a deadlock then all dependency cycles between x

and y in SDDG(C) are not deadlocks.

Let d p1 = ⟨x0,x1, ...,xn⟩ and d p2 = ⟨x′0,x′1, ...,x′m⟩ be two dependency paths in SDDG(A)
and SDDG(C), respectively, where x = x0 = x′0,y = xn = x′m and ĉi, ĉ′j denote the clock con-
straints mE(xi,xi+1) and mE(x′j,x

′
j+1). The Definition 24 can be expressed as follows. For

any dependency path d pinv
1 = ⟨xinv

0 ,xinv
1 , ...,xinv

p ⟩, where xinv
0 = y,xinv

p = x, that forms a cycle
between x and y in SDDG(A), then for every dependency path d pinv

2 = ⟨xinv′
0 ,xinv′

1 , ...,xinv′
q ⟩,

where xinv′
0 = y,xinv′

q = x, that forms a cycle between x and y in SDDG(C), it satisfies:

|= (
n−1∧
i=0

ĉi ∧
p−1∧
j=0

ĉinv
j)⇔ false⇒ (

m−1∧
k=0

ĉ′k ∧
q−1∧
l=0

ĉinv′
l)⇔ false

We write d p2 ≍dep d p1 to denote the fact that d p2 is deadlock-consistent with d p1. Dead-
lock consistency expresses the fact that if there is a cycle between two signals x and y in
the graph of the source program such that it does not stand for a deadlock, then in the graph
of the compiled program, every cycle between x and y must not stand for a deadlock. In

the special case where m = n = p = q = 1, x
ĉ′0−→ y is deadlock-consistent with x

ĉ0−→ y if
|= (c0 ∧ cinv

0 ⇔ false)⇒ (c′0 ∧ cinv′
0 ⇔ false).

Recall that SDDG(A) and SDDG(C) are two synchronous data-flow dependency graphs,
to which we refer respectively as the data dependency representations of the source program
and its transformed counterpart produced by the SIGNAL compiler. We assume that they
have the same set of nodes, NA = NC. Let x and y be two signals, we say that C preserves
the data dependencies among signals in A if the following conditions are satisfied.

• For every dependency path from the signal x to the signal y in A, there exists a depen-
dency path from x to y in C.

• If there is no deadlock in A, then C introduces no deadlock. In other words, if A is
deadlock-free, then it is required that C is deadlock-free.

5.3 Translation validation of SDDG 97

These conditions can be expressed in terms of the synchronous data-flow dependency graphs
as follows.

• For every dependency path from the signal x to the signal y in SDDG(A) at a clock
constraint ĉ1, then there exists a dependency path from x to y at a clock constraint
ĉ2 in SDDG(C) such that the dependency path in SDDG(C) is effective whenever the
dependency path in SDDG(A) is effective.

• If SDDG(A) is deadlock-free, then SDDG(C) is also deadlock-free.

If two SDDGs satisfy the above conditions, we say that SDDG(C) is a dependency refine-

ment of SDDG(A) on NA and C is a correct implementation of A. We write SDDG(C) ⊑dep

SDDG(A) to denote the fact that there exists a dependency refinement relation between
SDDG(C) and SDDG(A). We formalize the definition of dependency refinement as follows.

Definition 25 (Dependency refinement) Let SDDG(A) and SDDG(C) be two synchronous

data-flow dependency graphs, SDDG(C) is a dependency refinement of SDDG(A) if:

1. for every dependency path d p1 = ⟨x0,x1, ...,xn⟩ in SDDG(A), there exists a depen-

dency path d p2 = ⟨x′0,x1, ...,x′m⟩ in SDDG(C) such that d p2 ≼dep d p1,

2. for every dependency path d p1 = ⟨x0,x1, ...,xn⟩ in SDDG(A), for any dependency path

d p2 = ⟨x′0,x1, ...,x′m⟩ in SDDG(C), it satisfies d p2 ≍dep d p1.

Based on the definitions of reinforcement, deadlock consistency, and dependency refinement
relations, important properties are given in Proposition 5.

Proposition 5 The reinforcement, deadlock consistency and dependency refinement are re-

flexive and transitive:

1. ∀d p,d p ≼dep d p

2. ∀d p,d p ≍dep d p

3. ∀SDDG(P),SDDG(P)⊑dep SDDG(P)

4. If d p1 ≼dep d p2 and d p2 ≼dep d p3 then d p1 ≼dep d p3

5. If d p1 ≍dep d p2 and d p2 ≍dep d p3 then d p1 ≍dep d p3

98 Translation validation of SDDG

6. If SDDG(P1) ⊑dep SDDG(P2) and SDDG(P2) ⊑dep SDDG(P3) then SDDG(P1) ⊑dep

SDDG(P3)

Proof 10 The proof is based on the definitions of reinforcement, deadlock consistency and

dependency refinement.

Reinforcement For every dependency path d p, we always have d p ≼dep d p.

Assume that d p1 ≼dep d p2 and d p2 ≼dep d p3, we have (|=
∧n−1

i=0 ĉi ⇒
∧m−1

j=0 ĉ′j) and (|=∧m−1
j=0 ĉ′j ⇒

∧p−1
k=0 ĉ′′k). Thus, (|=

∧n−1
i=0 ĉi ⇒

∧p−1
k=0 ĉ′′k), or d p1 ≼dep d p3.

Deadlock consistency For every dependency path d p, we always have d p ≍dep d p.

Because d p1 ≍dep d p2 and d p2 ≍dep d p3, we have |= (
∧n−1

i=0 ĉi ∧
∧p−1

j=0 l̂ j) ⇔ false ⇒
(
∧m−1

u=0 ĉ′u∧
∧q−1

v=0 l̂′u)⇔ false and |=(
∧m−1

u=0 ĉ′u∧
∧q−1

v=0 l̂′u)⇔ false)⇒ (
∧r−1

t=0 ĉ′′t ∧
∧s−1

z=0 l̂′′z)⇔
false. Therefore, |= (

∧n−1
i=0 ĉi ∧

∧p−1
j=0 l̂ j) ⇔ false ⇒ (

∧r−1
t=0 ĉ′′t ∧

∧s−1
z=0 l̂′′z) ⇔ false, or

d p1 ≍dep d p3.

Dependency refinement For every dependency path d p ∈ SDDG(P), we have d p≼dep d p

and d p ≍dep d p, thus SDDG(P)⊑dep SDDG(P).

For every dependency path d p3 ∈ SDDG(P3), there exists a dependency path d p2 ∈ SDDG(P2)

such that d p2 ≼dep d p3. Then, there exists a dependency path d p1 ∈ SDDG(P1) such that

d p1 ≼dep d p2. Following the transitivity of the reinforcement, we have d p1 ≼dep d p3. In

the same way, for every dependency path d p3 ∈ SDDG(P3), any dependency path d p1 ∈
SDDG(P1) satisfies d p1 ≍dep d p3. Therefore, SDDG(P1)⊑dep SDDG(P3).

5.3.2 Adaptation to the SIGNAL compiler

We shall adapt the above definition of dependency refinement to the case of the SIGNAL

compiler to prove the preservation of data dependencies among signals when the compiler
transforms one SIGNAL program into the intermediate representation form also written in
SIGNAL language. We need to consider the following factors as described previously in
Section 4.4.3.

A first consideration is that the SIGNAL programs take the inputs from their environment
and the register values. Then, they calculate the outputs to react with the environment. In
general, the programs can use some local variables to make the output calculations. How-
ever, from the outside, the natural observation of the programs is the snapshot of the values
of the input and output signals. In our context, it is the snapshot of the dependencies among

5.3 Translation validation of SDDG 99

the input and output signals. For example, for the program DEC, the observation is the de-
pendencies between the signals (FB,N) at a considered instant.

A second consideration is that in the compilation process of the SIGNAL compiler, the
local signals in the source program do not necessarily have counterparts in the compiled
program. However, all input and output signals are preserved in the transformations and
are represented by identical names in the transformed program. Therefore, it is natural to
choose also the observation for the transformed program as the snapshot of the dependencies
among the input and output signals.

These considerations let us adapt the above definition of clock refinement as follows. Let
SDDG(A) and SDDG(C) be two synchronous data-flow dependency graphs such that they
have same set of input and output nodes, IA = IC and OA = OC. We say that C is a correct
implementation of A if at any instant, the dependencies among the signals in IA∪OA are also
the dependencies among the signals in IC ∪OC. In other words, SDDG(C) ⊑dep SDDG(A)
on IA ∪OA.

5.3.3 Proving dependency refinement by SMT

We now discuss a method to check the existence of a refinement between two SDDGs in
Definition 25 with the use of a SMT solver. Let SDDG(A) and SDDG(C) be the synchronous
data-flow dependency graphs of given input and compiled programs. The set of all common
input and output signals between A and C is represented by the common set of input and
output nodes in the graphs, IA ∪OA. For all signals or clock variables in SDDG(C) except
the common input and output signals, we added “c” as superscript to distinguish them from
the signals in SDDG(A). The variable mapping that maps the non input, output signals from
SDDG(A) to the non input, output signals in SDDG(C) is constructed as described in Section
4.4.4. Our aim is proving that SDDG(C) refines SDDG(A) on IA ∪OA.

To check the existence of the dependency refinement, we traverse the entire graphs
SDDG(A) and SDDG(C) to verify the following.

• For every path d p1 from x to y such that x,y ∈ IA ∪OA in SDDG(A), there exists a
reinforcement path d p2 from x to y in SDDG(C).

• And for every path d p1 from x to y such that x,y ∈ IA∪OA in SDDG(A), any path d p2

from x to y in SDDG(C) is deadlock-consistent with the path d p1.

Consider two dependency paths d p1 = ⟨x0,x1, ...,xn⟩ and d p2 = ⟨x′0,x1, ...,x′m⟩ in SDDG(A)
and SDDG(C), respectively, where ĉi and ĉ′j denote the clock constraints mE(xi,xi+1) and

100 Translation validation of SDDG

mE(x′j,x
′
j+1). As in Definition 22, d p2 is a reinforcement of d p1 iff the following formula

is valid.

n−1∧
i=0

ĉi ⇒
m−1∧
j=0

ĉ′j (5.1)

In the same way, to check the deadlock consistency between d p1 and d p2, we have to check
the validity of the following formula.

(
n−1∧
i=0

ĉi ∧
p−1∧
j=0

ĉinv
j)⇔ false⇒ (

m−1∧
k=0

ĉ′k ∧
q−1∧
l=0

ĉinv′
l)⇔ false (5.2)

To solve the validity of the formula above under the variable mapping, a SMT solver is
needed since this formula involves non-Boolean variables and uninterpreted functions as in
our abstraction of clock semantics. In our case, we shall ask the solver to check whether
the formula ¬(5.1) is unsatisfiable, since this formula is unsatisfiable iff |= (5.1). We do
the same for the formula (5.2) meaning that we ask the solver to check whether the formula
¬(5.2) is unsatisfiable.

The clock constraints which are constructed from Boolean or numerical variables and
uninterpreted functions belong to a part of first-order logic which has a small model property
according to [28]. This means that satisfiability can be established by examining a certain
finite cardinality of models, and it can be solved efficiently.

5.3.4 Implementation

Let A and C be the source and compiled programs. Cp denotes an unverified compiler which
compiles the source program A into the compiled program C = IR(A) or a compilation error.
We now associate Cp with a validator that checks that the compiled program preserves the
data dependencies among signals in A. Accordingly, we get the following derived compiler:

1 if (Cp(A) == Error) return Error;
2 else
3 {
4 if (SDDG(IR(A))⊑dep SDDG(A)) return IR(A);
5 else return Error;
6 }

Figure 5.6 shows the main components of the validator. First, it takes the input pro-
gram A and the counterpart transformed program C. It constructs the corresponding syn-

5.3 Translation validation of SDDG 101

chronous data-flow dependency graphs. Then, it establishes the first-order logic formulas as
the formula 5.1 and the formula 5.2, and the above variables mapping from the transformed
program to the input program. Finally, in the solving phase, it checks the validity of the
formulas in the previous step to indicate the dependency refinement.

Signal
Program SDDG Construction

SDDG Construction

Checking Formula
Construction

1

2

Transformed
Signal

Program

Yices Solver

3

Fig. 5.6 A bird’s-eye view of the SDDG translation validation

SDDG construction Given the input program A and its transformed program C, this step
will construct the corresponding synchronous data-flow dependency graphs SDDG(A) and
SDDG(C) according to the above encoding scheme.

Checking formula construction Consider the graphs SDDG(A) and SDDG(C). This step
first establishes the variable mapping. Then, it traverses the graphs to construct the formulas
as the formula 5.1 for every pair of paths from x to y in the graphs, and the formula 5.2 for
every cycle in the graph SDDG(A). The formulas are the input of the solving phase for
checking their validity.

SMT-based proof We delegate checking the validity of the formulas in the previous step
to a SMT solver.

Let us illustrate the above process on the program DEC and its transformed program
DEC_SEQ_TRA in Listing 5.1 at the scheduling phase of the SIGNAL compilation process.

Listing 5.1 DEC_SEQ_TRA in Signal

1 (| when Tick =̂ ZN =̂ C_FB =̂ C_CLK_12
2 | (| when C_FB =̂ FB |)
3 | (| N := (FB when C_FB) default ((ZN - 1) when C_CLK_12)
4 | ZN := N$1 init 1
5 | C_FB := ZN <= 1

102 Translation validation of SDDG

6 | C_CLK_12 := not (ZN <= 1)
7 |)
8 |)

In the first step, we shall construct the synchronous data-flow dependency graphs which
are depicted in Figure 5.5 and Figure 5.7. Two fresh variables FB1 and ZN3 are used
to replace the expressions FB when C_FB and ZN2 when C_CLK_12. We omit the de-
pendencies among the signals FB, F̂B,C_FBc and Ĉ_FBc in the graph of the program
DEC_SEQ_TRA.

FB

FB1c

N

F̂B1c

ZN3c

C_FBc

ZN1c

ẐN3c

ZN2c

ZNc

C_CLK_12c

F̂B1c

¬F̂B1c ∧ ẐN3c

F̂B1c F̂B1c

F̂B1c

Ĉ_FBc ẐN1c

ẐN3c

ẐN2c

ẐN3c
ẐN3c

̂C_CLK_12c

Fig. 5.7 The SDDG of DEC_SEQ_TRA

In the second step, checking formula construction, our tool will establish the variable
mapping X̂DEC \ X̂IO = α(̂XDEC_BASIC_TRA \ X̂IO) as in Section 4.4.5.1. Next, it finds all depen-
dency paths from the signal FB to the signal N, and the cycles in the graphs SDDG(DEC) and
SDDG(DEC_SEQ_TRA) to generate the formulas for checking the dependency refinement. In
this example, we get the following formula:

F̂B ⇒ (F̂B1c ∧ F̂B1c)

In the third step, we delegate the checking validity of the formula to YICES solver. We
get unsat when checking the satisfiability of ¬(F̂B ⇒ (F̂B1c ∧ F̂B1c)), which means the
formula is valid. Therefore, we can conclude that SDDG(DEC_SEQ_TRA) ⊑dep SDDG(DEC)

5.4 Precise deadlock detection for SIGNAL compiler 103

on the signals FB and N.

5.4 Precise deadlock detection for SIGNAL compiler

The SIGNAL compiler constructs the data dependencies among signals in a program, repre-
sented as a labeled directed graph, in which the labels are polynomials in Z/3Z. For each
dependency cycle in the graph, it checks the product of the cycle labels. If this product,
which is represented as a polynomial, is equal to the null clock, then it does not stand for a
deadlock. However, consider the sampling operator y := x when b, in which the clock of the
signal y is defined by the condition clock [b], which defines the instants where b is present
and has value true. If the Boolean expression b is a non Boolean relation (e.g., a compar-
ison between numerical expressions), then the Z/3Z abstraction considers the expression’s
clock instead. This yields an approximation of the actual dependency which may cause the
compiler to approximate dependencies, like in the example above.

In this section, we propose a more precise deadlock detection approach. Our approach
permits the compiler to detect deadlocks with numerical expressions. The data dependencies
among signals are represented by a synchronous data-flow dependency graph-like, called
SDDG+. A SDDG+ is a labeled directed graph in which each node is a signal or clock
variable and each edge represents a dependency between two nodes. Each edge is labeled
by a condition at which the dependency is effective. We use the Boolean-interval abstraction
that was originally proposed by Gamatié et al. [57] to encode the clock labels. That means
every signal is associated with a pair of the form (clock, value), where clock is a Boolean
function and value is a Boolean or numerical function, abstracted as an interval. We use a
SMT solver to reason on the labels when deciding a dependency cycle in a SDDG+ to stand
for a deadlock. We show how our approach addresses the limitation of the current deadlock
detection used in the SIGNAL compiler through a concrete example.

5.4.1 Deadlock detection in the SIGNAL compiler

Before generating the executable code on a given architecture, the compilation performed
by the SIGNAL compiler aims at proving the reactivity and the determinism of programs
by modeling the synchronization relations and checking the absence of cyclic data depen-
dencies in program specifications. In our consideration, the compiler needs to answer the
following question: “Is the program deadlock-free?”. To answer this question, the Signal
compiler uses the Graph of Conditional Dependencies (GCD) in which a dependency be-

104 Translation validation of SDDG

tween data is conditioned by a clock. We will illustrate this technique with an example (a
more detailed discussion is presented in [97]).

The SIGNAL program in Listing 5.2 emits an integer sequence v whose ith value vi is
the double of the input xi depending on the other input c.

Listing 5.2 CycleDependency in SIGNAL

1 process CycleDependency=
2 (? integer x, c;
3 ! integer v)
4 (| y := (v when (c <= 0)) default x
5 | u := y + x
6 | v := u when (c >= 1)
7 |)
8 where integer y, u
9 end;

A possible run of the program is depicted by the following trace:

1 x 1 3 2 2 # # 4 7 9 ...
2 c 1 3 0 1 -1 -2 3 6 2 ...
3 y 1 3 2 2 # # 4 7 9 ...
4 u 2 6 4 4 # # 8 14 18 ...
5 v 2 6 # 4 # # 8 14 18 ...

Apply the Z/3Z encoding scheme on the program CycleDependency, we have the follow-
ing algebraic coding, where we introduce three fresh variables c1,c2 and v1 to replace the
expressions (c <= 0),(c >= 1) and (v when c1), respectively:

y2 = v2
1 +(1− v2

1)x
2

v2
1 = v2(−c1 − c2

1)

u2 = y2 = x2

c2
1 = c2 = c2

2

v2 = u2(−c2 − c2
2)

Given the algebraic encoding above, the SIGNAL compiler can establish the dependencies
among signals y,u and v as a graph of conditional dependencies which is depicted in Figure
5.8.

Based on GCD graphs, the SIGNAL compiler identifies the potential deadlocks in the
program. Such a bad dependency between signals will appear as a cycle in the graph if the
product of the labels of its edges is not the null clock.

5.4 Precise deadlock detection for SIGNAL compiler 105

u

v v1 y

u2(−c2 − c2
2)

v2(−c1 − c2
1) v2

1

u2

Fig. 5.8 Dependencies among y,u,v

However, for the sampling operator y := x when b, if the expression b is a non Boolean
relation, then the Z/3Z encoding considers this condition clock as an indeterminate value.
This naturally yields over-approximated detection when dealing with non Booleans values.

The CycleDependency program and its dependencies among the signals y,u and v in
Figure 5.8 exemplify the over-approximated detection (we omit the dependencies among
v,v1,y and u). These dependencies introduce a cycle in the graph. To verify that this cycle
is not a deadlock, the SIGNAL compiler calculates the following product of the labels is null
clock:

v2(−c1 − c2
1)∗ v2

1 ∗u2 ∗u2(−c2 − c2
2)

Replacing the definitions of v2,v2
1 and u2, we have:

x2(−c2 − c2
2)(−c1 − c2

1)∗ x2(−c2 − c2
2)(−c1 − c2

1)∗ x2 ∗ x2(−c2 − c2
2)

With the current clock calculus, the compiler concludes that this cycle may cause a deadlock
since at some instants the above product is different from 0 (e.g. when the signals x,c1,c2

are present and both c1 and c2 hold the value true, or x2 = 1,c1 = 1, and c2 = 1). But in
fact, c1 and c2 cannot hold the value true at the same time.

The above limitation makes the SIGNAL compiler reject some possibly valid programs.
To address this issue, we propose a new deadlock detection to better handle numerical op-
erators.

5.4.2 A more precise deadlock detection

In this section, we will present a more precise deadlock detection technique compared to
the technique currently used by the SIGNAL compiler. This technique uses the concept of

106 Translation validation of SDDG

SDDG+ to express the data dependencies among the signals in a program.

In presenting our deadlock detection below, we first describe the abstraction which is
used to encode the clock relations of a SIGNAL program and the construction of a SDDG+.

5.4.2.1 A Boolean-interval abstraction for clock semantics

Let X = {x1, ...,xn} be the set of all signals in program P. With each signal xi, we attach
a Boolean variable x̂i to encode its clock and a variable x̃i of same type as xi to encode its
value. Formally, the abstract values which represent the semantics of the program can be
computed using the following functions:

ˆ: X −→ B associates a signal with a Boolean value
˜: X −→ D associates a signal with a value of the same type

The composition of SIGNAL processes corresponds to logical conjunctions. Thus the ab-
stract model of P will be a conjunction Φ(P) =

∧n
i=1 φ(eqi) whose atoms are x̂i, x̃i, where

φ(eqi) is the abstraction of statement eqi (statement using the Signal primitive operators),
and n is the number of statements in the program. In the following, we present the abstrac-
tion corresponding to each SIGNAL operator. There are two definitions of Φ according to
the type of the signal on the left hand side in each equation: (1) stands for numerical type
and (2) is for logical type. The Boolean-interval abstraction preserves the behaviors of the
program being abstracted, in other word, it is sound. The details of the abstraction and the
soundness proof are presented in [57].

Stepwise functions The functions which apply on signal values in the primitive stepwise

functions are usual logic operators (not, and, or), numerical comparison functions (<, >, =,
<=, >=, /=), and numerical operators (+, -, *, /) (denoted by �). In our implementation,
we replace the operation results by intervals and their representation in logic context by
uninterpreted functions.

The abstraction φ(y := f (x1, ...,xn)) of stepwise functions is defined as follows:

∧n
i=1(ŷ ⇔ x̂i)∧ (ŷ ⇒ ỹ ∈ φ(f (x1, ...,xn))) (1)∧n
i=1(ŷ ⇔ x̂i)∧ (ŷ ⇒ ỹ ⇔ φ(f (x1, ...,xn))) (2)

where the abstraction φ(f (x1, ...,xn) is defined by induction as follows:

• φ(true) = true and φ(false) = false.

5.4 Precise deadlock detection for SIGNAL compiler 107

• φ(x) = x̃ if x is of Boolean type; φ(x) = true if x is of event type.

• φ(x) = inv(x) if x is of non-Boolean type, where inv(x) is the interval of x.

• φ(x1 and x2) = x̃1 ∧ x̃2.

• φ(x1 or x2) = x̃1 ∨ x̃2.

• φ(not x1) = ¬x̃1.

• φ(x <= c) = x̃ ∈ (−∞,c]; φ(x < c) = x̃ ∈ (−∞,c).

• φ(x1 <= x2) = (x̃ ∈ φ(x1 − x2))∧ x̃ ∈ (−∞,0], where x is a fresh variable.

• φ(x1� x2) = �̃(φ(x1),φ(x2)), an approximation of numerical operations on intervals,
corresponding to� as in [5]. For example, for addition operation i+̃ j ≡ [i−+ j−, i++

j+], where i− and i+ are respectively the lower and upper bounds of the interval i.

Delay Considering the delay operator, y := x$1 init a, its encoding φ(y := x$1 init a)

contributes to Φ(P) with the following conjunct. This encoding requires that at any instant,
signals x and y have the same clock. If they are numerical signals, then they have the same
interval. Otherwise, we introduce a memorization variable m.x that stores the last value of
x. The next value of m.x is m.x′ and it is initialized to a in m.x0.

(ŷ ⇔ x̂)∧ (ŷ ⇒ (ỹ ∈ φ(x)∨ ỹ = a)) (1)
(ŷ ⇔ x̂)∧ (ŷ ⇒ (ỹ ⇔ m̃.x∧ m̃.x′ ⇔ x̃)) ∧ (m̃.x0 ⇔ a) (2)

Merge The encoding of the merge operator, y := x default z, contributes to Φ(P) with
the following conjunct:

(ŷ ⇔ x̂∨ ẑ)∧ (ŷ ⇒ (x̂∧ (ỹ = x̃))∨ (¬x̂∧ (ỹ = z̃)))

Sampling The encoding of the sampling operator, y := x when b, contributes to Φ(P) with
the following conjunct:

(ŷ ⇔ (x̂∧ b̂∧ b̃))∧ (ŷ ⇒ (ỹ = x̃))

Composition Consider the composition of two processes P1 and P2. Its abstraction φ(P1|P2)

is defined by φ(P1)∧φ(P2).

108 Translation validation of SDDG

Clock relations Given the above rules, we can obtain the following abstraction for derived
operators on clocks. Here, z is a signal of type event:

• φ(z := x̂) = (ẑ ⇔ x̂)∧ (ẑ ⇒ z̃)

• φ(xˆ= y) = x̂ ⇔ ŷ

• φ(z := xˆ+ y) = (ẑ ⇔ (x̂∨ ŷ))∧ (ẑ ⇒ z̃)

• φ(z := xˆ∗ y) = (ẑ ⇔ (x̂∧ ŷ))∧ (ẑ ⇒ z̃)

• φ(z := xˆ− y) = (ẑ ⇔ (x̂∧¬ŷ))∧ (ẑ ⇒ z̃)

• φ(z := when b) = (ẑ ⇔ (b̂∧ b̃))∧ (ẑ ⇒ z̃)

Example Assume that the intervals for the signals are given as x∈ (−∞,+∞), c∈ (−∞,+∞),
y ∈ (−∞,+∞), u ∈ (−∞,+∞), v ∈ (−∞,+∞). Applying the abstraction rules above, the ab-
straction of the program CycleDependency is represented by the following first-order logic
formula, where we introduce three fresh variables c1,c2 and v1 to replace the expressions
(c <= 0),(c >= 1) and (v when c1), respectively:

(ŷ ⇔ v̂1 ∨ x̂)∧ (ỹ ∈ (−∞,+∞))∧ (v̂1 ⇔ v̂∧ ĉ1 ∧ c̃1)∧ (ṽ1 ∈ (−∞,+∞))

∧(ĉ1 ⇔ ĉ)∧ (c̃1 ⇔ (c̃ ∈ (−∞,0]))∧ (û ⇔ ŷ ⇔ x̂)∧ (ũ ∈ (−∞,+∞))

∧(v̂ ⇔ û∧ ĉ2 ∧ c̃2)∧ (ṽ ∈ (−∞,+∞))∧ (ĉ2 ⇔ ĉ)∧ (c̃2 ⇔ (c̃ ∈ [1,+∞)))

A SDDG+ for a given program is a labeled directed graph in which each node is a signal
or clock variable and each edge represents the dependency between nodes. Each edge is
labeled by a first-order logic formula which represents the clock at which the dependency
between the extremity nodes is effective. Formally, a SDDG+ is defined as follows:

Definition 26 (SDDG+) A SDDG+ associated with a process P is a tuple G= ⟨N,E, I,O,C,mN ,mE⟩
where:

• N is a finite set of nodes, each of which represents the equation defining a signal or a

clock.

• E ⊆ N ×N is the set of dependencies between nodes.

• I ⊆ N is the set of input nodes.

• O ⊆ N is the set of output nodes.

5.4 Precise deadlock detection for SIGNAL compiler 109

• C is the set of first-order logic formulas over a set of clocks in the Boolean-interval

abstraction.

• mN : N −→ C is a mapping labeling each node with a clock; it defines the existence

condition of a node.

• mE : E −→C is a mapping labeling each edge with a clock constraint; it defines the

existence condition of an edge.

The clock labeling in SDDG+ provides a dynamic dependency feature. This clock imposes
the following property: An edge cannot exist if one of its two extremity nodes does not exist.
This property can be translated in our Boolean-interval abstraction as:

∀(x,y) ∈ E,mE(x,y)⇐ (mN(x)∧mN(y))

We denote the fact that there exists a dependency between two nodes x and y at a clock
condition mE(x,y) = ĉ by x ĉ−→ y. A dependency path from x to y is any set of nodes s =

{x0,x1, ...,xk} such that (an edge is a special case when k = 1):

x = x0
ĉ0−→ x1

ĉ1−→ ...
ĉk−1−−→ xk = y

The dependencies among signals for the primitive operators of the SIGNAL language are the
same as the encoding in Table 5.2 except that the clock constraints which label the edges in
the graph are represented in the Boolean-interval abstraction.

Following the above construction rules, we can obtain the SDDG+ in Figure 5.9, for
the simple program CycleDependency (we omit the parts of the graph that represent the
dependencies of c1 and c2 on c). In this graph, the clock labels are defined in the above
Boolean-interval abstraction.

v

u

v1

y

c2 c1 x

v̂1 v̂1

v̂ û

¬v̂1 ∧ x̂

û

v̂
v̂1

Fig. 5.9 The SDDG+ of CycleDependency

110 Translation validation of SDDG

5.4.3 Precise deadlock detection

In this section, we shall present a more precise deadlock detection technique which is based
on the concept of SDDG+ along with the Boolean-interval abstraction. We shall show the
performance comparison of our technique with the current technique of the SIGNAL com-
piler using a concrete example.

5.4.3.1 Deadlock definition

Let G be a SDDG+, and x ĉ−→ y be an edge in G. Assume that there exists a path from y to
x, that makes a dependency cycle between x and y. A cycle of dependencies, standing for
a deadlock, is defined with a similar meaning to the one in GCD. We say that such cycle is
a deadlock in G iff the dependencies of x to y and vice-versa are effective at the same time.
Transposing the notion of deadlock to SDDG+ graphs, we have the following definition:

Definition 27 (Deadlock) Let G= ⟨N,E, I,O,C,mN ,mE⟩ be a SDDG+, and pc = x1, ...,xn,x1

be a cycle in G. pc is said a deadlock in G if there exists some interpretations that make the

first-order logic formula mE(x1,x2)∧mE(x2,x3)∧ ...∧mE(xn,x1) true.

Based on the definition of deadlock in SDDG+ graphs, we can have the definition of deadlock-

free of a SDDG+ as follows:

Definition 28 (Deadlock-free) Let G= ⟨N,E, I,O,C,mN ,mE⟩ be a SDDG+. G is deadlock-

free iff for every cycle (x1, ...,xn,x1) in G, the conjunction of all the conditions associated

with the cycle mE(x1,x2)∧mE(x2,x3)∧ ...∧mE(xn,x1)⇔ false is identically false.

Obviously, the fact that the conjunction of first-order logic formulas associated with the
cycle, in which the dependencies are effective, is false indicates that a deadlock does not
exist if all the dependencies of the cycle in the SDDG+ graph cannot be present at the same
time.

5.4.3.2 Proving deadlock free by SMT

Given the SDDG+ of a program, we introduce an approach to check that the graph is
deadlock-free. It is implemented with a SMT solver [51, 131]. A SMT solver decides the
satisfiability of arbitrary logic formulas of linear real and integer arithmetic, scalar types,
other user-defined data structures, and uninterpreted functions. If the formula belongs to the
decidable theory, the solver gives two types of answers: sat when the formula has a model
(there exists an interpretation that satisfies it); or unsat otherwise. In our case, the formulas

5.4 Precise deadlock detection for SIGNAL compiler 111

which label the edges of the graph are over Boolean variables and uninterpreted functions,
thus the solving is decidable and very efficient [3, 21].

Following Definition 28, we shall traverse the entire graph to find all cycles such as
(x1, ...,xn,x1) and for each of them, we verify the following property. Notice that here,
we do not provide any specific algorithm to find the cycles in a directed graph, interested
readers can be refer to any research on this problem (e.g. the work of Johnson [82]).

mE(x1,x2)∧mE(x2,x3)∧ ...∧mE(xn,x1)⇔ false

It means that the basic element we have to prove is that given a dependency cycle and the
conjunction of its labels, this conjunction formula is always evaluated to the value false.

Consider a dependency cycle x1
ĉ1−→ x2

ĉ2−→ ...
ĉn−1−−→ xn

ĉn−→ x1. This cycle does not stand
for a deadlock iff the formula (

∧n
i=0 ĉi ⇔ f alse) is valid within the logical context defined

by the abstraction of P. The checking of this condition can be implemented by asking a SMT

solver to check |= (
∧n

i=0 ĉi ⇔ false). In the equal way, we can ask the SMT solver to check
the formula ¬(

∧n
i=0 ĉi ⇔ false) is unsatisfiable, or M ̸|= ¬(

∧n
i=0 ĉi ⇔ false).

5.4.3.3 Implementation and illustrative example

We describe the main steps of our approach, and the techniques we use to implement them.
This implementation can be integrated in the existing Polychrony toolset [77] to check that
a SDDG+ graph is deadlock-free.

At a high level, our tool, which is depicted in Figure 5.10, works as follows. First,
it takes the input program P, and constructs the corresponding SDDG+ graph. It finds all
cycles in the graph. Finally, in the solving phase, it checks the validity of the formula
(
∧n

i=0 ĉi ⇔ false) for each cycle (x1, ...,xn,x1).

Signal Program Interval Analyzer

Boolean-intervval Abstraction SDDG+ Construction and
Proven Formulas

SMT Solver

1

2 3

4

Fig. 5.10 An overview of our approach

112 Translation validation of SDDG

Interval analyzer This step determines the interval of every signal in the program. For
every input signal, it is assumed that its interval is known. This step applies the algorithm
presented in [68]. The tool in [88] is used to compute an over-approximation of the variation
interval of each numerical signal.

Abstraction The input program is encoded according to the Boolean-interval abstraction
scheme in Section 5.4.2.1. The output of this step is a first-order logic formula.

SDDG+ construction After obtaining the interval analysis and the abstract model of the
input program, this step will construct the corresponding SDDG+ graph according to the
rules in Table 5.2. The labels of edges in the graph are encoded as first-order logic formulas
based on the above Boolean-interval abstraction scheme. In this step, the tool also detects
all dependency cycles in the graph and produces the conjunction formula of all clock labels
for each cycle as input for the solver.

SMT-based proof We delegate checking the validity of the formulas to a SMT solver. Our
implementation uses the Yices [51] solver.

Let us illustrate the above deadlock detection technique on the program CycleDependency.
In the first step, we shall determine the variation interval for all signals in the program. We
assume that the variation intervals for input signals x and c are (−∞,+∞),(−∞,+∞). Af-
ter the analysis, we get: x ∈ (−∞,+∞), c ∈ (−∞,+∞), y ∈ (−∞,+∞), u ∈ (−∞,+∞),
v ∈ (−∞,+∞). Recall that we rewrite equation at lines (4) and (6) as follows:

1 (| y := v1 default x
2 | v1 := v when c1
3 | c1 := c <= 0
4 | v := u when c2
5 | c2 := c >= 1
6 |)

In the second step, Boolean-interval abstraction, our tool will translate the program into
a logic formula Φ according to the above abstract scheme. Let us focus on the clocks of
signals y,u, and v, which are given as follows:

ŷ ⇔ v̂1 ∨ x̂, v̂1 ⇔ v̂∧ ĉ1 ∧ (c̃ ∈ (−∞,0])

v̂ ⇔ û∧ ĉ2 ∧ (c̃ ∈ [1,+∞)), û ⇔ ŷ ⇔ x̂, ĉ1 ⇔ ĉ2 ⇔ ĉ

In the third step, we construct the SDDG+ graph in Figure 5.9. Here, we detect that there

5.5 Discussion 113

exists a dependency cycle (v,v1,y,u,v) in the graph, the tool then generates the formula,
referred to as ϕ , to delegate to the SMT solver as follows:

(v̂1 ∧ v̂1 ∧ û∧ v̂)⇔ false

In the logical context defined by Φ, replacing the definitions of ĉ1, ĉ2, û, v̂ and v̂1 in the
program abstraction model, we get:

(x̂∧ ĉ∧ (c̃ ∈ [1,+∞))∧ ĉ∧ (c̃ ∈ (−∞,0])∧ x̂∧ ĉ∧ (c̃ ∈ [1,+∞))

∧ĉ∧ (c̃ ∈ (−∞,0])∧ x̂∧ x̂∧ ĉ∧ (c̃ ∈ [1,+∞)))⇔ false

With the Yices solver, we will get unsat when checking the satisfiability of ¬ϕ , which
means that ϕ is valid. Thus, the graph is deadlock-free.

Our deadlock detection technique is more precise than the current technique used by
the SIGNAL compiler when dealing with numerical expressions. It admits less erroneous
(or “spurious”) decision on deadlock detection than the current technique. That means that
when our approach is applied on the SIGNAL compiler, it will make the compiler avoid
rejecting valid programs. The reason why our technique is more expressive than the current
one is that it uses a more suitable and precise abstraction for numerical expressions. For
instance, here, our tool can detect that the two signals v and v1 cannot be present at the same
time.

5.5 Discussion

Much work has been performed before in the area of dependency-based program represen-
tations. Dennis opened up the area of data flow computation in [47]. The data flow graph

[113, 114] represents global data dependency at the operator level, called the atomic level
in [87]. Transformations that involve both control and data dependency cannot be specified
in a consistent manner with this form since control is represented by a conventional control
flow graph. The data dependencies among variables are presented statically in the graph.

The GCD [13, 97] is used to check deadlocks in a SIGNAL program and schedule in-
structions. The edges of a GCD indicate the data dependencies among signals and clock
variables, they are labeled by clocks. These clocks are polynomials whose coefficients
range over the finite field Z/3Z. These clocks represent the conditions at which the depen-
dencies are valid, meaning that the dependencies can be represented dynamically. Based on

114 Translation validation of SDDG

the concept of GCD, we have defined synchronous data-flow dependency graph in which
the dependencies among signals can be represented dynamically by conditioning the depen-
dency between two signals with a Boolean expression. They differ from GCD in the labels
of the edges in the graphs. In synchronous data-flow graphs, the labels are clocks which are
encoded as first-order logic formulas. The synchronous data-flow dependency graphs are
used as the common semantics framework of our translation validation for the scheduling

phase of the SIGNAL compiler. We formalize the notion of “correct transformation” as a
refinement relation between two synchronous data-flow dependency graphs. This relation
expresses the preservation of the dependencies, whose existence can be checked by using a
SMT solver. We also propose a technique to implement and integrate our validator within
the POLYCHRONY toolset by the use of YICES solver.

In addition, we also propose a more precise deadlock detection approach for deadlock-
free checking of synchronous programs written in SIGNAL language. Our approach permits
the compiler avoiding emitting spurious decision on deadlock detection while the current
technique does when dealing with numerical expressions. In our solution, the data depen-
dencies among signals are represented by SDDG graphs, in which the nodes are signals or
clock variables, edges are dependencies. Each edge is labeled by a condition expressed as a
first-order logic formula at which the dependency is effective. We use a SMT solver to rea-
son on the labels when deciding a dependency cycle in a SDDG to stand for a deadlock. In
our work, we use the interval-Boolean abstraction as a more suitable abstraction to represent
the condition of dependencies among signals to make a more efficient deadlock detection
technique. The concept of interval-Boolean abstraction was introduced in [57] by Gamatié
et al. to make a more efficient static analysis of SIGNAL compiler.

The deadlock detection analysis presented in this chapter to the project POP [112], as
such, it complements the case study of [103] on synthesis safety wrappers for polychronous
specifications through polyhedral analysis, and generalises the work presented in [83] on
false-loop detection using SMT-solving to the case of a polyhedral analysis.

CHAPTER 6

EVALUATING SDVG TRANSLATION VALIDATION:

FROM SIGNAL TO C

In Chapter 4 and Chapter 5, we provide approaches that are based on translation validation
technique to prove the preservation of clock semantics and data dependency in the compi-
lation process of the SIGNAL compiler. In this chapter, we describe how the preservation of
value-equivalence of variables can be proved based on translation validation of synchronous
data-flow value-graphs. It focuses on proving that every output variable in the original pro-
gram and its counterpart in the transformed program, the generated C code, have the same
values. The computation of all output variables and their counterparts is represented by a
formal representation, called Synchronous Data-flow Value-Graph (SDVG).

This graph symbolically represents the computation of the outputs in the original pro-
gram and their counterparts in the transformed program. The same structures are shared in
the graph, meaning that they are represented by the same nodes. Assume that we want to
show that two output variables have the same value. We simply need to check that they are
represented by graphs which are rooted at the same graph node. We manage to realize the
check by normalizing SDVGs using some rewrite rules.

For a transformation, our validator takes the input program and its transformed coun-
terpart and constructs the corresponding SDVG for each output variable. Then it checks
that for every output variable in the input program and its counterpart in the transformed
program, they have the same values. If the result says that there exists any non-equivalence
then the compiler emits a compilation error. Otherwise, the compiler continues its work.
The integration of this verification process into the compilation process can be depicted as
in Figure 6.1. The remainder of this chapter is organized as follows. Section 6.1 describes
how code can be generated, as the final step of the compilation process, following different
schemes. Section 6.2 illustrates the concept of SDVG and the verification procedure. In

116 Evaluating SDVG translation validation: from SIGNAL to C

*.SIG *_BASIC_TRA.SIG *_BOOL_TRA.SIG *_SEQ_TRA.SIG C/C++, Java

Clock Calculation,
Boolean Abstraction Scheduling Code Generation

SDVG
Translation
Validation

Fig. 6.1 A bird’s-eye view of the verification process

Section 6.3, we consider the formal definition of SDVG and the representation of SIGNAL

program and generated C code as SDVGs. Section 6.4 addresses the mechanism of the veri-
fication process based on the rewrite rules and the normalization of a SDVG. It also presents
the application of the verification process to the SIGNAL compiler, and its integration in the
Polychrony toolset [77]. Section 6.5 discusses some related works, concludes our work and
outlines future directions.

6.1 Code generation in SIGNAL compiler

Code generation is the final step in the compilation process of SIGNAL compiler as depicted
in Figure 6.2. When a program P has no deadlocks and is free of clock constraints one can
generate code for P with the code generation functionalities of the POLYCHRONY toolset.
The code can be generated for different general purpose languages (C, C++, and JAVA) on
different architectures. The generated code in this case is called reactive code. However,
one can generate a defensive code when the program has clock constraints; in this mode,
alarms are emitted when a contraint is violated during the simulation.

6.1.1 The principle

The principle of code generation [19] is based on the use of the clock hierarchy and the
graph of conditional dependencies. The code generation follows the general scheme that
is depicted in Figure 6.2. The generated code contains a main program which controls
the step block. The step block consists of a step scheduler that drives the execution of its
step component and updates the state variables corresponding to delay operators and local
variables. The execution of the step block is scheduled by the step scheduler. The step
component can be hierarchical, which consists of a set of sub-components called clusters.

6.1 Code generation in SIGNAL compiler 117

The step component has its own local step scheduler. The step block communicates with its
environment through the IO container.

I/O Container

State Variables

Step Component
(Hierarchical)

Step Scheduler

Local Variables

Main

Fig. 6.2 Code generation: General scheme

In general, the generated program consists of several files. We consider that the target
language code is C. For a process P, a main program is defined in the file P_main.c, the
program which contains the step block called body program is defined in the file P_body.c.
An input-output program which contains the IO container is defined in the file P_io.c. Each
component of the generated code can be seen as a SIGNAL process. Then they can be reused
in an embedding SIGNAL process.

6.1.1.1 The main program

The pseudo-code in Listing 6.1 shows the structure of the main program. It first opens
the IO communication channels with the program environment and calls the initialization
function. If everything goes fine then it calls the step function repeatedly in an infinite loop
to interact with the environment. The infinite loop can be stopped if the step function returns
the error code 0, meaning that the input stream is empty. And the main program will close
the communication channels. All the called functions are defined in the body program.

Listing 6.1 Structure of P_main.c

1 EXTERN int main()
2 {
3 logical code;
4 P_OpenIO ();
5 code = P_initialize ();
6 while(code)
7 {

118 Evaluating SDVG translation validation: from SIGNAL to C

8 P_stepIO_begin ();
9 code = P_step ();

10 P_stepIO_end ();
11 }
12 P_CloseIO ();
13 }

6.1.1.2 The step block

Once the IO communication channels and the initialization are completed, the step function
P_step() is responsible for the calculation of the effect of one synchronous step of the
system to interact with the environment. It is the essential part of the concrete code. It
reads data from the input streams, computes the outputs and writes the results to the output
streams. In the POLYCHRONY toolset, the implementation of the step function can be done
in many schemes based on the clock hierarchy and the graph of conditional dependencies.
These code generation schemes consist of:

• Global code generation: sequential code, clustered code with static scheduling, clus-
tered code with dynamic scheduling.

• Modular code generation.

• Distributed code generation.

The next section will describe the sequential, inlining code generation of the step block. For
other code generation schemes, interested readers can refer to [10, 64, 97].

6.1.1.3 The IO container

The IO container implements the communication of the generated program with the environ-
ment in case the being compiled process contains input and output signals. In the simulation
mode, each input or output signal communicates with the environment via a file as the input
stream or output stream. The IO container in Listing 6.2 consists of global functions for
opening, closing all files, and for reading and writing data for each input and output signal.

Listing 6.2 Structure of P_io.c

1 EXTERN void P_OpenIO () EXTERN void P_CloseIO ()
2 { {
3 fra = fopen (...); ...
4 if (!fra) { fclose(fwx);

6.1 Code generation in SIGNAL compiler 119

5 ... }
6 exit (1);
7 } EXTERN int r_P_a(integer *a)
8 fwx = fopen (...); {
9 if (!fwx) { return (fscanf(fra ,"%d",a) != EOF);

10 ... }
11 exit (1);
12 } EXTERN void w_P_x(integer x)
13 ... {
14 } fprintf(fwx ,"%d",x);
15 fprintf(fwx ,"\n");
16 fflush(fwx);
17 }

6.1.2 Sequential code generation

In the context of this work, we shall consider the sequential, inlining code generation scheme
for the step function that directly interprets the SIGNAL process obtained after the clock cal-
culation, Boolean abstraction, and scheduling phases of the compiler front-end. We describe
the code structure of the step function for a simple process represented in Listing 6.3. The
step function obtained by compiling it is given in Listing 6.4. The C code introduces an
explicit variable for each signal to represent the clock. Variable C_N is the clock of N

and C_FB1,C_FB2 are the clocks of FB1 and FB2, respectively. As soon as the clock is
evaluated and is true, the signal is read if it is an input signal or updated, otherwise. The
precedence of the statements must be consistent with the graph of conditional dependencies,
and one can observe the tree structure of conditional if-then-else statements which expresses
directly the clock hierarchy.

The step function works as follows. It reads the clock values of FB1 and FB2. If C_FB2,
the clock of FB2, has the value true, a new value for FB2 is read and used to compute the
clock of N. In a similar way, if C_FB1 has the value true, a new value for FB1 is read. If
C_N, the clock of N, has the value true, N gets the value 4∗FB1. The updated value of N

is also output.

A trace of this program is given below. At the initialization, the variables can have
arbitrary values which are denoted by ∗.

1 FB1 * 1 2 2 3 5 4 6 9 ...
2 FB2 * 3 0 1 5 4 2 6 2 ...
3 N * 4 4 4 12 20 20 24 24 ...

120 Evaluating SDVG translation validation: from SIGNAL to C

Taking into account that N in C code is the value of the corresponding signal in SIGNAL pro-
gram, we have an observation that in a run of the step function, the value of N is unchanged
when C_N, the clock of N, has the value false. Intuitively, based on this observation, we
can say that if there is a variable in the generated C program whose value is never updated
in a run of the step function. Then it will be assigned no value, denoted as ⊥. In the next
sections, we shall show how this assumption can be formalized to represent the computation
of step function as a shared value-graph.

6.2 Illustrative example

We begin by showing how our verification process works for an illustrative example. Con-
sider the synchronous program WHENOP written in SIGNAL language which is given in List-
ing 6.3.

Listing 6.3 Program WHENOP in SIGNAL

1 process WHENOP=
2 (? integer FB1; integer FB2;
3 ! integer N)
4 (| N := 4*FB1 when (FB2 >=3)
5 |)
6 end;

WHENOP_step which is shown in Listing 6.4 is the step function of the generated C code.
This function which is called repeatedly in an infinite loop, simulates one synchronous step
of the SIGNAL program.

Listing 6.4 Synchronous Step of WHENOP

1 EXTERN logical WHENOP_step ()
2 {
3 if (! r_WHENOP_C_FB1 (& C_FB1))
4 return FALSE;
5 if (! r_WHENOP_C_FB2 (& C_FB2))
6 return FALSE;
7 if (C_FB2)
8 {
9 if (! r_WHENOP_FB2 (&FB2))

10 return FALSE;
11 }
12 C_CLK_36 = (C_FB2 ? (FB2 >= 3)

6.2 Illustrative example 121

13 : FALSE);
14 C_N = C_FB1 && C_CLK_36;
15 if (C_FB1)
16 {
17 if (! r_WHENOP_FB1 (&FB1))
18 return FALSE;
19 }
20 if (C_N)
21 {
22 N = 4 * FB1;
23 w_WHENOP_N(N);
24 }
25 WHENOP_step_finalize ();
26 return TRUE;
27 }

In this example, we use the concept of gated φ -function such as x = φ(c,x1,x2) that is
mentioned in more details in the next sections. It is used to represent a branching in a
program, which means x takes the value of x1 if the condition c is satisfied, and the value
of x2, otherwise. Since the generated C programs use persistent variables (i.e. variables
that always have some values), while SIGNAL programs which use volatile variables. We
shall assume that if a variable (including the input and output variables) in the generated
C program is such that its value is never updated then it will be assigned the absent value,
denoted as ⊥. If a statement involves a variable x before its value update then the value of
this variable is the previous value, denoted as m.x.

Considering the equation N := 4∗FB1 when (FB2 >= 3), at a considered instant t, the
signal N is present if the signals FB1,FB2 are present and FB2 is greater than or equal to
3. When N is present, its value is defined by the value of FB1 multiplied by 4. The value of
N is ⊥ when it is absent. The computation of this equation can be replaced by the following
gated φ -function:

N = φ(N̂, Ñ,⊥)

where N̂ ⇔ (F̂B1∧ F̂B2∧ (F̃B2 >= 3)), Ñ = 4 ∗ F̃B1. Here, N̂, F̂B1, F̂B2 are Boolean
variables that represent the states (false: absent, true: present) of signals N,FB1 and
FB2 at instant t, respectively. And Ñ, F̃B1, F̃B2 are values of signals N,FB1 and FB2 with
the same types. Then, this gated φ -function indicates that at any instant t such that signals
FB1 and FB2 are present and the value of FB2 is greater than or equal to 3, then the value
of N is equal to the value of FB1 multiplied by 4, otherwise the value of N is ⊥.

122 Evaluating SDVG translation validation: from SIGNAL to C

In the same way, we use a gated φ -function to represent the branching in C code. For
instance, if C_N is true then the value of variable N is defined by the value of FB1 multi-
plied by 4. Otherwise, the value of N is never updated. This computation can be replaced
by the following gated φ -function:

N = φ(C_N,4∗FB1,⊥)

We replace the variables C_CLK_36 and C_N by their definition, and we obtain the syn-
chronous data-flow value-graph for the output N that is presented in Figure 6.3. Notice
that the compiler prefers to write C_CLK_36 = (C_FB2?(FB2 >= 3) : FALSE) instead of
C_CLK_36 = C_FB2&&(FB2 >= 3), which can be represented by the following gated
φ -function:

C_CLK_36 = φ(C_FB2,FB2 >= 3,false)

The dashed arrows are not parts of the graph. They only mean that for each node, there is
a set of labels that indicates which nodes of the graph correspond to which signals, clocks
or variables in the programs. The SIGNAL program and its generated C program have been
represented in the same graph. The nodes which represent the same structures (clocks,
signals, variables and function symbols) have been reused. The unique occurrence of a
reused node is said to be shared. For example, the nodes labeled >= and ⊥ are shared in
the graph.

The values of input signals and their corresponding variables in the generated C code are
represented by the same nodes in the shared graph. In general, it is safe to assume that the
values of input signals and the corresponding variables in the generated C code are equal.
Thus, in the shared graph, the input signal values F̃B1, F̃B2 and the variables FB1,FB2 in
the C code are represented by the same nodes.

Suppose that we want to verify that the signal N in the WHENOP and WHENOP_step (de-
noted by Nc) will have the same value. This can be done by showing that they are rep-
resented by the same subgraph. That means that they are labels of the same node in the
graph. In the following, we say that they point to the same node in the graph. In Figure 6.3,
we cannot conclude that they are equivalent, however we can transform the value-graph by
applying normalization rules. First, by exploiting the generated program, C_FB1,C_FB2
are clocks of FB1 and FB2, respectively (the values of inputs FB1,FB2 are updated only
when C_FB1,C_FB2 are valid). The first rule we shall apply is that: “If x is an input and

the clock of x is read as input parameter (it is not defined in the program) then its clocks in

SIGNAL program and C code are represented by the same node”. Thus, F̂B1 and C_FB1

6.3 Synchronous data-flow value-graph 123

{N} {Nc}

F̃B2 3

C_FB2 >=

f alse

C_FB1 φ 4 F̃B1

∧ ∗ ⊥

φφ

∧

∧F̂B1

F̂B2

Fig. 6.3 The shared value-graph of WHENOP and WHENOP_step

are represented by the same node. With the same reason, F̂B2 and C_FB2 are represented
by the same node as in Figure 6.4. Until now, the subgraphs that represent the variable N

in the two programs are not rooted at the same node. We shall apply the following second
rewrite rule to the resulting graph, and we shall replace φ(C_FB2, F̃B2 >= 3,false) with
C_FB2∧ F̃B2

φ(c,x,false) is replaced by (c∧ x) for any Boolean expression x.

We shall go into details about the rules in the next section. After this replacement, and
maximizing the variable sharing, the variable N in both programs points to the same node in
the resulting graph (Figure 6.5). Therefore, we can conclude that the outputs are equivalent.

6.3 Synchronous data-flow value-graph

In this section, we describe the computation of a signal in a SIGNAL program and the corre-
sponding variable in the generated C code in terms of SDVGs. Let us recall the computation
of the output signal y in the equation y := x when b in the previous section. At any instant,
the signal y holds the value of x if the following conditions are satisfied:

• x and b are defined.

• b holds the value true.

124 Evaluating SDVG translation validation: from SIGNAL to C

N Nc

F̃B2 3

C_FB2 >=

f alse

C_FB1 φ 4 F̃B1

∧ ∗ ⊥

φφ

∧
∧

Fig. 6.4 The resulting transformed value-graph

N Nc

F̃B2 3

C_FB2 >=

C_FB1 ∧ 4 F̃B1

∧ ∗ ⊥

φ

Fig. 6.5 The final value-graph

Otherwise, it holds no value. Thus, at a given instant, to represent the underlying control
conditions and the computation of this equation, we can use the following gated φ -function:

y = φ(x̂∧ b̂∧ b̃, x̃,⊥)

The condition (x̂∧ b̂∧ b̃) represents the state in which x holds a value (x̂ = true), and b

holds the value true (b̂ = true∧ b̃ = true). This section explores a method to construct
that shared value-graph for both SIGNAL and generated C code programs, which is the
computational model of our translation validation approach.

6.3 Synchronous data-flow value-graph 125

6.3.1 Definition of SDVG

Graphs can be used to describe many structures in computer science: program control flows,
communication processes, computer networks, pointer structure on the heap and many oth-
ers. In fact, for most activities in software development, many types of visual notations
have been introduced, including UML, state diagrams, control flows graphs, block diagrams.
These notations construct models that can be seen as graphs. This section intends to focus
on graphs which represent expressions for computing the variable values in programs. We
present basic definitions, including the notion of gated φ -function, and introduce a linear
syntax presentation for terms represented as graphs. Finally, we provide the definition of
our considered type of graph, synchronous data-flow value-graph. The interested readers
can refer to [53] for more detailed discussion on term graphs and linear syntax presentation
for graphs.

6.3.1.1 Gated φ -function

In Static Single Assignment (SSA), a φ -node is placed at the confluence of a program con-
trol flow to represent the different choices of a variable. However, it does not contain the
condition to determine which incoming branch reaching a confluence node is chosen. By
contrast, gating functions are defined with some extra parameters to represent the conditions
for choosing. To construct a SDVG, we shall employ the notation of gating function to cap-
ture the branching statements in computation of signals in synchronous data-flow programs
and variables in the generated C code.

Gating functions were first introduced by Ballance et al. in [11] to represent the con-
ditions that guard the paths to a φ -node. There are several types of gating functions as
follows:

• The gated φ -function, which is an if - then - else representation. It captures the con-
dition for choosing a branch of the confluence node. For instance, x3 = φ(c,x1,x2)

returns the value x1 or x2 depending on the value of c. If c is true, x3 = x1 and x3 = x2

if c is false.

• The µ function is used to capture the initial and loop-carried values at the header of a
loop. For instance, x2 = µ(i = 1,n,x0,x1) represents that x2’s initial value is x0 when
i is the first iteration and its subsequent value is x1.

• The η function is placed at the loop exit. It selects the last value at the end of the
loop. For instance, x2 = η(i > n,x1) means that x2 takes the last value computed by

126 Evaluating SDVG translation validation: from SIGNAL to C

the loop, x1.

6.3.1.2 Terms as trees and graphs

Let X and F be an infinite set of variables and a (finite or infinite) set of function symbols

such that X ∩F = /0. Each f ∈ F , denoted by f (x1,x2, ...,xn), where n is the arity of f , has a
number of arguments (or arity) greater or equal to 0. Function symbols of arity 0 are called
constants. Then the set of terms T is inductively defined by the following rules:

• Any variable is a term.

• Any expression f (t1, t2, ..., tn), where f ∈ F and t1, ..., tn ∈ T , is a term.

Given a term t, the substerms of t are t and if t = f (t1, ..., tn), all subterms of t1, ..., tn. For
example, let X = {x,y} and F = { f ,g}, then T = {x,y, f (x),g(y), f (x,y)...}. Note that we
do not assume that function symbols have fixed arities.

Definition 29 A directed term graph over X and F is a pair ⟨N,succ⟩ involving a (finite

or infinite) set N of nodes which can be labeled by an element in X ∪F and a function

succ : N −→ N∗. The set of nodes n1, ...,nk = succ(n) is the set of successors of n.

We write succ(n)i to denote the ith element of succ(n). The pair of nodes e = (n,succ(n)i) is
called an edge, the set of all edges is denoted by E. When we draw the visual representation
of graphs, a directed edge e will go from n to succ(n)i, the ordering of the edges from n to
succ(n) is left-to-right corresponding to the ordering of the elements of succ(n).

For example, let X = {a,b,c},F = {+,∗} be the set of variables and the set of function
symbols, respectively. The set of nodes and the function succ is defined as follows:

N = {+,∗,a,b,c}
succ(+) = (a,∗),succ(∗) = (b,c),succ(a) = (),succ(b) = (),succ(c) = ()

This defines a directed graph which is depicted on the left of Figure 6.6. Other directed
graphs over F and X are depicted on the right side of the figure. Note that in the third graph,
the nodes with repeated label b are represented by a same node, and the label is shared in
the graph.

Given a directed graph G = ⟨N,succ⟩, a path in G is a list of nodes (n0,n1, ...,nk) where
k ≥ 0 and ni+1 is a successor of ni. This path is said to be from n0 to nk and k is the length
of the path. A path of length greater than 0 from a node to itself is called a cycle, and
the repeated node is called cyclic node. A graph which contains a cycle is a cyclic graph,
otherwise it is acyclic.

6.3 Synchronous data-flow value-graph 127

a

b c

∗

+

a b c

+ ∗

a b b c

+ ∗

Fig. 6.6 The directed graphs of a+b∗ c and a+b,b∗ c

Definition 30 A tuple ⟨N,succ,r⟩ is a term graph at the node r ∈ N where ⟨N,succ⟩ is a

directed graph, if every node of the term graph is reachable by a path from r. The node r is

called the root of the graph.

In a term graph, a path from the root is said to be rooted. The term graph is root-cyclic

if there is a cycle containing the root. Given a directed graph G = ⟨N,succ⟩, let n be a
node in G. The subgraph of G rooted at n is the term graph ⟨N′,succ′,n⟩ where N′ =

{n′ ∈ N| there is a path from n to n′} and succ′ is the restriction of succ to N′. We write
G |n= ⟨NG|n ,succG|n⟩ to denote the fact that G |n is the subgraph rooted at n of G.

Consider, for example, the following directed graph which is depicted on the left of
Figure 6.7. The subgraph rooted at the node labeled + is depicted as the second graph in
the figure. The third graph is a root-cyclic graph.

a b

∗ c

+ d

−

a b

∗ c

+

p

q

∧

∨

Fig. 6.7 The subgraph rooted at node labeled + and a root-cyclic graph

The linear notation for graphs is defined by the following context-free grammar:

graph := node | node + graph

node := x | f (node, ...,node) | nid | nid : x | nid : f (node, ...,node)

f and x are respectively a symbol function in F and a variable in X ; nid ranges over a
set, disjoint from X and F , of node identifiers. Any node identifier nid in a graph which
identifies a node must occur exactly once in the context nid : x or nid : f (node, ...,node).
The constants are simply represented by symbol functions with arities equal to 0. This

128 Evaluating SDVG translation validation: from SIGNAL to C

syntax is similar to the syntax for graphs in [12]. For instance, the three graphs of the
examples in Figure 6.6 can be expressed in this syntax as follows:

+(a,∗(b,c)),+(a,b)+∗(b,c) and +(a,nid1 : b)+∗(nid1,c)

Note that multiple uses of the same node identifier mean that there are multiple references
to the same node.

Definition 31 A tree is a term graph at the node r such that there is exactly one path from r

to each node in the graph.

Based on the above definition, in Figure 6.7 the first and second graphs are trees and the
third one is not. Thus it is obvious that a tree is always acyclic.

6.3.1.3 Homomorphisms of graphs and trees

Let G1 = ⟨N1,succ1,r1⟩ and G2 = ⟨N2,succ2,r2⟩ be two graphs, the definition of homomor-

phism is given as follows:

Definition 32 An homomorphism from G1 to G2 is a map f : N1 −→ N2 such that for all

n ∈ N1,

• f (n) and n have the same label

• succ2(f (n)) = f (succ1(n))

where f (n1, ...,nk) = (f (n1), ..., f (nk)). This definition states that homomorphisms preserve
node labels, successors and their order. We write G1 −→ G2 to denote the fact that there is
an homomorphism from G1 to G2. Figure 6.8 shows an example of homomorphism.

x

x

+

∗

y

−→

x

∗

+

y

Fig. 6.8 An example of homomorphism

Definition 33 Let G1 = ⟨N1,succ1,r1⟩ and G2 = ⟨N2,succ2,r2⟩ be two graphs.

• An homomorphism f from G1 to G2 is rooted if f (r1) and r2 have the same label.

6.3 Synchronous data-flow value-graph 129

• An isomorphism is an homomorphism which is inverse. We denote an isomorphism

from G1 to G2 by G1 ∼ G2.

• When there is a rooted isomorphism from G1 to G2, we say that they are equivalent,

denoted by G1 ≈ G2.

Proposition 6 For all graphs G1 and G2, we have G1 ≈ G2 implies G1 ∼ G2. Every rooted

homomorphism from one tree to another is an isomorphism.

6.3.1.4 Synchronous data-flow value-graph

Let X be the set of all variables which are used to denote the signals, clocks and variables in
a SIGNAL program and its generated C program. In our consideration, the functions which
apply on signal values in the primitive stepwise functions are usual logic operators (not,
and, or), numerical comparison functions (<, >, =, <=, >=, /=) and numerical operators (+,
-, *, /). A constant is defined as a function symbol of arity 0. Thus in this chapter, we
consider the set of function symbols which consists of the above functions and the gated
φ -function, denoted by F .

As it is illustrated in Section 6.2, the computation of signals in a SIGNAL program and
variables in the corresponding generated C code can be represented as a directed graph, in
which a node can have multiple parents, and identical subgraphs are reused. That makes the
maximal sharing among graph nodes. We shall consider the definition and examine some
basic properties of SDVG. Formally, a SDVG is defined as follows:

Definition 34 A SDVG associated with a SIGNAL program and its generated C code is a

directed graph G = ⟨N,E, I,O, lN ,mN⟩, where:

• N is a finite set of nodes.

• E ⊆ N ×N is the set of edges. It describes the computation relation between the

nodes.

• I ⊆ N is the set of input nodes. They are the input signals and their corresponding

variables in the generated C code.

• O ⊆ N is the set of output nodes. They are the output signals and their corresponding

variables in the generated C code.

130 Evaluating SDVG translation validation: from SIGNAL to C

• lN : N −→ X ∪F is a mapping labeling each node with an element in X ∪F. A node

represents a clock, a signal, a variable, an operator or a gated φ -node function. And

the subgraph rooted at a node is used to describe the computation of the correspond-

ing element labeled at the node.

• mN : N −→P(V) is a mapping labeling each node with a finite set of clocks, signals,

and variables. It defines the set of clocks, signals or variables in the SIGNAL program

and the generated C code such that they are equivalent to the label of the node.

In the rest of this chapter, we denote the fact that there exists an edge between two nodes
x and y by x −→ y. A path from x to y is any set of nodes s = {x0,x1, ...,xk} such that
∀i = 0, ..,k−1,xi −→ xi+1. An edge is a special case when k = 1. In a shared value-graph,
the set of clocks, signals or variables {x0, ...,xn} that they are equivalent to the node labeled
by y is written as a node with label {x0, ...,xn} y.

6.3.2 SDVG of SIGNAL programs

Let P be a SIGNAL program, we write X = {x1, ...,xn} to denote the set of all signals in
program P which consists of input, output, state (corresponding to delay operator) and local
signals, denoted by I,O,S and L, respectively. For each xi ∈ X , we use Dxi to denote its
domain of values, and D⊥

xi
=Dxi ∪{⊥} to denote its domain of values with the absent value,

where ⊥ ̸∈ Dxi . Then, the domain of values of X with absent value is defined as follows:

D⊥
X =

n⋃
i=1

Dxi ∪{⊥}

With each signal xi (Boolean or non-Boolean type), we attach a Boolean variable x̂i to
encode its clock at a given instant (true: xi is present, false: xi is absent), and x̃i with the
same type as xi to encode its value. Formally, the abstract values to represent the abstract
clock and value of a signal can be represented by a gated φ -function, xi = φ(x̂i, x̃i,⊥), where
x̂i and x̃i are computed using the following functions:

ˆ: X −→ B associates a signal with a Boolean value,
˜: X −→ DX associates a signal with a value of same type as the signal.

Assume that the computation of signals in processes P1, P2 is represented as shared value-
graphs G1 and G2, respectively. Then the value-graph G of the synchronous combination
process P1|P2 can be defined as G = ⟨V,E, I,O,mN⟩ in which for any node x, we replace it

6.3 Synchronous data-flow value-graph 131

by the subgraph that is pointed by x in G1,G2. And in G1 and G2, every identical subgraph
is reused, in other word, we maximize sharing among graph nodes in G1 and G2. Thus,
the shared value-graph of a SIGNAL program P can be constructed as a combination of the
sub-value-graphs of its equations as above.

To demonstrate the above combination rule, we consider a simple SIGNAL program P

as follows:

Listing 6.5 Simple Program in SIGNAL

1 process P=
2 (? integer x;
3 ! integer y)
4 (| y := x * x1
5 | x1 := x + 1
6 |)
7 where integer x1
8 end;

Suppose that we have the subgraphs that represent the equations y := x∗ x1 and x1 := x+1
as depicted in Figure 6.9 (here, we omit to represent the abstract clocks of x and x1 at the
node ŷ, x̃1 at the node +). We replace the node x1 by the subgraph which defines it while
reusing the identical node x. As a result, the shared synchronous data-flow value-graph of P

is depicted in Figure 6.10.

ŷ

φ

x̃

∗

φ

x̃1

φ

⊥

y

x̂1

φ

x̃

+

φ

1

⊥

x1

Fig. 6.9 The subgraphs of y := x∗ x1 and x1 := x+1

A SIGNAL program is built through the set of primitive operators. Therefore, it is obvi-
ous that to construct SDVGs of SIGNAL programs, we shall construct a subgraph for each
primitive operator. In the following, we present the value-graph corresponding to each SIG-
NAL primitive operator.

132 Evaluating SDVG translation validation: from SIGNAL to C

ŷ

φ

x̃

∗

φ

+

1

φ

⊥

y

Fig. 6.10 The SDVG graph of P

6.3.2.1 Stepwise functions

Consider the operator y := f (x1, ...,xn), it indicates that if all signals from x1 to xn are
defined, then the output signal y is defined by the result of the function f on the values of
x1, ...,xn. Otherwise, it is assigned no value. Thus, the computation of y can be represented
by the following gated φ -function:

y = φ(ŷ, f (x̃1, x̃2, ..., x̃n),⊥)

where
ŷ ⇔ x̂1 ⇔ x̂2 ⇔ ...⇔ x̂n

The synchronous data-flow value-graph of the stepwise functions is depicted in Figure 6.11.
Note that in the graph, {x̂1, ..., x̂n}, ŷ means that the subgraph representing the computation
of ŷ is also the computation of x̂1, ..., and x̂n. In other words, x̂1, ..., x̂n and ŷ are equivalent,
meaning that they label the same node in the graph.

{x̂1, ..., x̂n} ŷ

φ

⊥

{ỹ} f

x̃1

φ

x̃2

φ

... x̃n

φ

Fig. 6.11 The graph of y := f (x1, ...,xn)

6.3 Synchronous data-flow value-graph 133

For instance, consider the following SIGNAL equation:

y := (x >= 1) and c

It can be represented by the gated φ -function, y= φ(ŷ, x̃1∧ c̃,⊥), where we replace (x>= 1)
by the fresh signal x1. Thus the graphic representation is depicted in Figure 6.12.

{x̂, x̂1, ĉ} ŷ

φ

⊥

{ỹ} ∧

{x̃1} >=

φ

x̃ 1

φ c̃

φ

Fig. 6.12 The graph of y := (x >= 1) and c

6.3.2.2 Delay

Consider the basic process which corresponds to the delay operator y := x$1 init a. The
output signal y is defined by the last value of the signal x when the signal x is present.
Otherwise, it is assigned no value. Thus, the computation of y can be represented by the
following nodes:

y = φ(ŷ, m̃.x,⊥) and m̃.x0 = a

where
ŷ ⇔ x̂

m̃.x and m̃.x0 are the last value of x and the initialized value of y. The synchronous data-flow
value-graph of the delay operator is depicted in Figure 6.13. Note that in the graph, {x̂} ŷ

means that the clocks x̂ and ŷ are equivalent, meaning that they point to the same node in
the graph.

For instance, consider the following SIGNAL equation:

y := (x$1 init 1)+ z

134 Evaluating SDVG translation validation: from SIGNAL to C

{x̂} ŷ

φ

⊥

{ỹ} m̃.x

{m̃.x0} a

Fig. 6.13 The graph of y := x$1 init a

It can be represented by the gated φ -function, y = φ(ŷ, m̃.x+ z̃,⊥) and the node m̃.x0 = 1.
Thus the graphic representation is depicted in Figure 6.14.

{x̂, ẑ} ŷ

φ

⊥

{ỹ}+

m̃.x z̃

φ

{m̃.x0} 1

Fig. 6.14 The graph of y := (x$1 init 1)+ z

6.3.2.3 Merge

Consider the basic process which corresponds to the merge operator y := x default z. If
the signal x is defined then the signal y is defined and holds the value of x. The signal y is
assigned the value of z when the signal x is not defined and the signal z is defined. When
both x and z are not defined, y holds no value. The computation of y can be represented by
the following node:

y = φ(ŷ,φ(x̂, x̃, z̃),⊥)

where
ŷ ⇔ (x̂∨ ẑ)

The representation uses a nested φ -function which indicates that when ŷ is true, y is defined
by the gated φ -function φ(x̂, x̃, z̃). Otherwise, it holds no value. The synchronous data-flow
value-graph of the sampling operator is depicted in Figure 6.15. Note that in the graph, the
clock ŷ is represented by the subgraph of x̂∨ ẑ.

6.3 Synchronous data-flow value-graph 135

{ŷ} ∨

φ

⊥

{ỹ} φx̂ ẑ

x̃

φ

z̃

φ

Fig. 6.15 The graph of y := x default z

For instance, consider the following SIGNAL equation:

y := x default (z+1)

It can be represented by the nested φ -function, y = φ(ŷ,φ(x̂, x̃, z̃1),⊥), where we replace
(z+1) by the fresh signal z1. Thus the graphic representation is depicted in Figure 6.16.

{ŷ} ∨

φ

⊥

{ỹ} φx̂ {ẑ} ẑ1

x̃

φ

{z̃1}+

φ

z̃

φ

1

Fig. 6.16 The graph of y := x default (z+1)

6.3.2.4 Sampling

Consider the basic process which corresponds to the sampling operator y := x when b. If the
signal x,b are defined and b holds the value true, then the signal y is defined and holds the
value of x. Otherwise, y holds no value. The computation of y can be represented by the
following node:

y = φ(ŷ, x̃,⊥)

136 Evaluating SDVG translation validation: from SIGNAL to C

where
ŷ ⇔ (x̂∧ b̂∧ b̃)

The synchronous data-flow value-graph of the sampling operator is depicted in Figure 6.17.
Note that in the graph, the clock ŷ points to the root of the subgraph of (x̂∧ b̂∧ b̃).

{ŷ} ∧

φ

⊥

{ỹ} x̃φx̂ ∧

b̂ b̃

φ

Fig. 6.17 The graph of y := x when b

For instance, consider the following SIGNAL equation:

y := x when (z >= 1)

It can be represented by the gated φ -function, y = φ(ŷ, x̃,⊥), where ŷ ⇔ (x̂∧ ẑ1 ∧ z̃1) and
we replace (z >= 1) by the fresh signal z1. Thus the graphic representation is depicted in
Figure 6.18.

6.3.2.5 Restriction

The shared synchronous data-flow value-graph of restriction process P1\x is the same as the
graph of P1.

6.3.2.6 Clock relations

Given the above graph representations of the primitive operators, we can obtain the shared
value-graphs for derived operators on clocks as depicted in Figure 6.19 and Figure 6.20.
Here, z is a signal of type event. Its computation can be represented by the following gated
φ -function:

z = φ(ẑ,true,⊥)

6.3 Synchronous data-flow value-graph 137

{ŷ} ∧

φ

⊥

{ỹ} x̃φx̂ ∧

{ẑ} ẑ1 {z̃1} >=

z̃ 1

φ

φ

Fig. 6.18 The graph of y := x when (z >= 1)

The clock relations between signals are given as follows:

z := x̂ : ẑ ⇔ x̂

xˆ= y : x̂ ⇔ ŷ

z := xˆ+ y : ẑ ⇔ (x̂∨ ŷ)

z := xˆ∗ y : ẑ ⇔ (x̂∧ ŷ)

z := xˆ− y : ẑ ⇔ (x̂∧¬ŷ)

z := when b : ẑ ⇔ (b̂∧ b̃)

{ẑ} x̂ {z̃} true ⊥

φ {x̂} ŷ

{ẑ} ∨ {z̃} true ⊥

φ

x̂ ŷ

(1)

(2)

(3)

Fig. 6.19 The graphs of (1) z := x̂, (2) xˆ= y and (3) z := xˆ+ y

138 Evaluating SDVG translation validation: from SIGNAL to C

{ẑ} ∧ {z̃} true ⊥

φ

x̂ ŷ

{ẑ} ∧ {z̃} true ⊥

φ

x̂ ¬

ŷ

{ẑ} ∧ {z̃} true ⊥

φ

b̂ b̃

φ

(4) (5)

(6)

Fig. 6.20 The graphs of (4) z := xˆ∗ y, (5) z := xˆ− y and (6) z := when b

6.3.3 SDVG of generated C code

For constructing the shared value-graph, the generated C program is translated into a sub
value-graph along with the sub value-graph of the SIGNAL program. Let A be a SIGNAL

program and C its generated C code, we write XA = {x1, ...,xn} to denote the set of all
signals in A, and XC = {xc

1, ...,x
c
m} to denote the set of all variables in C. We added “c” as

superscript for the variables, to distinguish them from the signals in the SIGNAL program.

As described in the principles of code generation in the SIGNAL compiler, the generated
C program of the SIGNAL program A consists of the following files:

• A_main.c is the implementation of the main function. This function opens the IO
communication channels, and calls the initialization function. Then it calls the step

6.3 Synchronous data-flow value-graph 139

function repeatedly in an infinite loop to interact with the environment.

• A_body.c is the implementation of the initialization function and the step function.
The initialization function is called once to provide initial values to the program vari-
ables. The step function, which contains also the step initialization and finalization
functions, is responsible for the calculation of the outputs to interact with the environ-
ment. This function, which is called repeatedly in an infinite loop, is the essential part
of the concrete code.

• A_io.c is the implementation of the IO communication functions. The IO functions
are called to setup communication channels with the environment.

The scheduling and the computations are done inside the step function of the generated C
program. Therefore, it is natural to construct a sub value-graph of this function in order to
prove that its variables and the corresponding signals have the same values. To construct the
value-graph of the step function, the following considerations need to be studied.

An original signal named x has a corresponding Boolean variable named C_x in the step

function. Then the computation of x is implemented by conditional if - then -else statements
as follows:

1 if (C_x)
2 {
3 computation(x);
4 }

If x is an input signal then its computation is the reading operation which gets the value of
x from the environment. In case x is an output signal, after computing its value, it will be
written to the IO communication channel with the environment. Note that the C programs
use persistent variables (e.g. variables which always have some value) to implement the
input SIGNAL programs which use volatile variables. As a result, there is a difference in the
types of a signal in a SIGNAL program and of the corresponding variable in the C program.
When a signal has the absent value, ⊥, at a given instant, the corresponding C variable
always has a value. For instance, in the step function WHENOP_step(), we observe that the
value of variable N is maintained when the Boolean variable C_N has the value false as in
the following code segment:

1 if (C_N)
2 {
3 N = 4 * FB1;
4 w_WHENOP_N(N);
5 }

140 Evaluating SDVG translation validation: from SIGNAL to C

This consideration implies that we have to detect that a variable in the C program whose
value is never updated. In this case, it will be assigned the absent value, ⊥. Thus, the
computation of such variables, called xc, can fully be represented by a gated φ -function as
follows:

xc = φ(C_xc, x̃c,⊥)

where x̃c denotes the newly updated value of the variable. For example, we consider the
generated code of basic process corresponding to the primitive operator merge in Listing
6.6.

Listing 6.6 SDVGMerge in SIGNAL

1 process SDVGMerge=
2 (? integer x, y; boolean cx , cy;
3 ! integer z;
4)
5 (| z := x default y
6 | x ^= when cx
7 | y ^= when cy
8 |)
9 ;

The generated C code of the step function is given in Listing 6.7. The computation of
variable z in this function can be represented by the following gated φ -function:

zc = φ(C_zc,φ(cx_50c, x̃c, ỹc),⊥)

The shared value-graph of SDVGMerge_step() is depicted in Figure 6.21. In this graph, we
replace the node φ(C_cxc,φ(c̃xc, x̃c,⊥),⊥) by φ(C_cxc ∧ c̃xc, x̃c,⊥). We do the same for
the node φ(C_cyc,φ(c̃yc, ỹc,⊥),⊥).

Listing 6.7 Generated C code of SDVGMerge

1 EXTERN logical SDVGMerge_step ()
2 {
3 if (! r_SDVGMerge_C_cx (&C_cx)) return FALSE;
4 if (! r_SDVGMerge_C_cy (&C_cy)) return FALSE;
5 if (C_cx)
6 {
7 if (! r_SDVGMerge_cx (&cx)) return FALSE;
8 if (cx)
9 {

6.3 Synchronous data-flow value-graph 141

10 if (! r_SDVGMerge_x (&x)) return FALSE;
11 }
12 }
13 cx_50 = (C_cx ? cx : FALSE);
14 if (C_cy)
15 {
16 if (! r_SDVGMerge_cy (&cy)) return FALSE;
17 if (cy)
18 {
19 if (! r_SDVGMerge_y (&y)) return FALSE;
20 }
21 }
22 cy_56 = (C_cy ? cy : FALSE);
23 C_z = cx_50 || cy_56;
24 if (C_z)
25 {
26 if (cx_50) z = x; else z = y;
27 w_SDVGMerge_z(z);
28 }
29 SDVGMerge_step_finalize ();
30 return TRUE;
31 }

C_cxc
c̃xc C_cyc c̃yc

φ φ

{cx_50c} ∧ {cy_56c} ∧ x̃c ỹc

{C_zc} ∨ {xc} φ {z̃c} φ {yc} φ ⊥

{zc} φ

Fig. 6.21 The graph of SDVGMerge_step

In the generated C program, the computation of the variable whose clock is the master
clock, which ticks every time the step function is called, is implemented without the condi-

142 Evaluating SDVG translation validation: from SIGNAL to C

tional if - then -else statement and it is always updated when the step function is invoked.
The computation of such variables can be represented by a node in the shared value-graph
as follows:

{x̃c} xc

That means that the the variable xc is always updated and holds the value x̃c. For instance,
we consider the following C code segment, it is generated from the program DEC in Listing
3.3 which computes the values of the output signal N.

1 if (C_FB) N = FB;
2 else N = N - 1;
3 w_DEC_N(N);

The computation of N can be represented by the sub value-graphs in Figure 6.22, where
m.Nc denotes the previous value of the variable N.

C_FBc
F̃Bc −

m.Nc 1

{Nc, Ñc} φ

Fig. 6.22 The graph of N’s computation

Considering the following code segment, the observation is that the variable x is involved
in the computation of the variable y before the updating of x.

1 if (C_y)
2 {
3 y = x + 1;
4 }
5 ...
6 if (C_x)
7 {
8 x = ...
9 }

10 ...

In this situation, we refer to the value of x as the previous value, denoted by m.xc. It can
happen when the delay operator is applied on the signal x in the SIGNAL program. The

6.4 SDVG translation validation 143

computation of y is represented by the following gated φ -function:

yc = φ(C_yc,m.xc +1,⊥)

6.4 SDVG translation validation

In this section, we introduce the set of rewrite rules to transform the shared value-graph
resulting from the previous step. This procedure is called normalizing. At the end of the
normalizing procedure, for any output signal x and its corresponding variable xc in the gen-
erated C code, we check whether x and xc point to the same node in the graph. That means
they are represented by the same subgraph, meaning they have the same values. We also
provide a method to implement the representation of synchronous data-flow value-graph
and adapt the normalizing procedure with any future optimization of the compiler.

We introduce the graph rewriting techniques in Section 6.4.1. Section 6.4.2 provides
the set of rewrite rules which is used to perform the normalizing procedure on the shared
value-graph. In Section 6.4.3, we consider a method to implement the data structure of
synchronous data-flow value-graph and the normalizing procedure.

6.4.1 An introduction to graph rewriting

Graphs provide a simple and powerful approach to a variety of problems of software en-
gineering, and system modeling in particular. These graphs are mostly static descriptions
of system states. Adding dynamics requires some ways to express state changes and thus
graph transformations are involved, either explicitly or behind the scenes. In fact, the theory
of graph transformation has found many applications in implementing functional languages
based on term rewriting [136], in modeling of concurrent systems [54] and in other areas
such as software engineering, hardware designs and visual languages.

First, we recall the basic concepts of term rewriting, and we explain informally how it
works in a simple example. We then define our notion of graph rewriting. For a comprehen-
sive introduction of term rewriting and graph rewriting, the interested reader may consult
the textbook [53]. Consider, for example, the following rewrite rules for definition of natural
number multiplication:

x∗0 −→ 0
x∗ (y+1) −→ (x∗ y)+ x

We shall apply the second rewrite rule to the expression t ∗ (u+1), where t and u are subex-

144 Evaluating SDVG translation validation: from SIGNAL to C

pressions, which is represented by the graph on the left of Figure 6.23. When applying the

t

u

∗

+

1 t

∗

u

+

t

Fig. 6.23 The transformation of the graph of t ∗ (u+1)

above rewrite rule, the subexpression t is represented two times in the graph as depicted
on the right of the figure. The subexpression t is evaluated two times if it has not been yet
evaluated when we evaluate the expression. To solve this problem, an easy solution is, in-
stead of copying the subexpression t, to create two references to the existing subexpression
t, meaning that the repeated subterms are shared. Then the result of applying the above
rewrite rule is given in Figure 6.24.

t

u

∗

+

1 t

∗

u

+

Fig. 6.24 The transformation of graph of t ∗ (u+1) with sharing of repeated subterms

Let X and F be the set of variables and function symbols, such that X ∩F = /0. We
denote the set of all terms over X and F by TX ,F . A mapping σ : TX ,F −→ TX ,F is called
a substitution if σ(c) = c and σ(f (t1, ..., tn) = f (σ(t1), ...,σ(tn)) for every constant c and
term f (t1, ..., tn).

Definition 35 A term rewrite rule over TX ,F is a pair of terms (tl, tr), written as tl → tr, such

that:

• tl is not a variable, and

• ∀x ∈ X .(x ∈ tr ⇒ x ∈ tl).

The terms tl and tr are, respectively, the left and right-hand sides of the rewrite rule. A
rewrite rule is left-linear (resp. right-linear) if no variable occurs more than once in its
left-hand side (resp. right-hand side).

6.4 SDVG translation validation 145

A term rewriting system is a tuple ⟨F,R⟩, in which F is a set of function symbols and R

is the set of term rewrite rules over TX ,F . A term rewriting system is said to be left-linear
(resp. right-linear) if all its rules are.

Given two terms t1 and t2, we say that there exists a rewrite relation on TX ,F for (t1, t2)
induced by ⟨F,R⟩, denoted by t1 t2, if it satisfies:

• There exists a rule (l,r) ∈ R and a substitution σ such that σ(l) is a subterm of t1.

• The term t2 is obtained from t1 by replacing the occurrence of σ(l) by σ(r).

We now define the application of term rewriting rules to graph, in other words, we make
the graph representation of term rewriting rules. Let G = ⟨NG,succG,rG⟩ be a graph and n

and n′ be nodes of G, a triple (G,n,n′) is called a graph rewrite rule and n, n′ are the left

root and the right root of the rule.
Given a graph G0 = ⟨N0,succ0,r0⟩, a pair ∆= (r, f) is a redex in G0 if r is a graph rewrite

rule (G,n,n′) and f is an homomorphism from G |n to G0. The homomorphism is called
an occurrence of the rule r. We first begin with some example to illustrate the definition
of graph rewriting technique by showing how the translation of term rewrite rules to graph
rewrite rules works.

Let tl → tr be a term rewrite rule, we shall construct the corresponding graph rewrite rule
(G,n,n′). The construction works as follows. First we take the graphs representing both left
and right hand sides of the term rewrite rule to form the union of these graphs, sharing those
nodes which represent the same structures in tl and tr. This resulting shared graph is G.
Then we take the roots of tl and tr to be n and n′, respectively. For example, we illustrate
the construction of the graph rewrite rule for the following term rewrite rule:

φ(c,x,false)→ c∧ x

We first make the graph representing of φ(c,x,false) and c∧x on the left of the Figure 6.25.
Then the union graph sharing the same nodes (c and x) is depicted on the right. Finally, the
left root n and right root n′ are the nodes labeled φ and ∧. Thus the graph rule is represented
as follows:

(n : φ(nc : c,nx : x,false)+n′ : ∧(nc,nx),n,n′)

Let ((G,n,n′), f : G|n →G0) be a redex in the graph G0. We now present a formal definition
of the general construction of the graph rewriting from a graph rewrite rule (G,n,n′). The
construction consists of three phases: build, redirection and garbage collection, which are
defined as follows.

146 Evaluating SDVG translation validation: from SIGNAL to C

c x

φ

f alse c

∧

x c

n : φ

x f alse

n′ : ∧

Fig. 6.25 The graph rule of the term rule φ(c,x, f alse)→ c∧ x

The build phase The resulting graph G1 = ⟨N1,succ1,r1⟩ in this phase, denoted by G1 =

G0 + f (G,n,n′), is constructed as follows.

• N1 = N0⊎ (NG|n′ \NG|n), where ⊎ denotes the disjoint union of two sets. For any node
m ∈ N1, it has the same label as in G0 if m ∈ N0. Otherwise, it has the same label as
in G.

• r1 = r0.

• for every node mi = succ1(m)i,

mi =

succ0(m)i if m ∈ N0

succG(m)i if m,succG(m)i ∈ NG|n′ \NG|n

f (succG(m)i) if m ∈ NG|n′ \NG|n,succG(m)i ∈ NG|n

The redirection phase In this step all references to the node f (n) are replaced by the
references to the node n′, the resulting graph is denoted by G2 = ⟨N2,succ2,r2⟩=G1[f (n) :=
n′]. This replacement is defined by a substitution of the node f (n) for the node n as follows:

• for every node c ∈ N1 and c ∈ N2, they have the same label.

• for every node c ∈ N1, succ2(c)i = n′ if succ1(c)i = f (n), otherwise succ2(c)i =

succ1(c)i.

• r2 = n′ if r1 = f (n), otherwise r2 = r1.

The garbage collection phase In this last step, we define G3 = G2|r2 which is a part of
the graph G2 accessible from its root. We denote the graph G3 by GC(G2).
Given a redex ∆ = (r, f) and a graph G0, the construction of the graph resulting from reduc-
ing the redex ∆ in the graph G0, denoted by RED(∆,G0), is defined as:

RED(((G,n,n′) f),G0) = GC((G0 + f (G,n,n′))[f (n) := n′])

6.4 SDVG translation validation 147

To illustrate the above construction of graph rewriting, we consider a graph rewriting
rule (G,n,n′), a graph G0, and an homomorphism f from G|n to G0 as depicted in Figure
6.26. The graph rewriting rule (G,n,n′) and G0 are given as follows:

(G,n,n′) = (n : φ(nc : c,nx : x,false)+n′ : ∧(nc,nx),n,n′)

G0 = ∨(φ(c,x,false),y)

c

n : φ

x f alse

n′ : ∧

c

φ

x f alse

∨

y

Fig. 6.26 An example of graph rewriting

We first copy the part of G|′n which is not contained in G|n to G0, with node labels,
successors, and root defined in the build phase. We obtain the resulting graph G1. Then all
edges of G1 pointing to f (n) are replaced by edges pointing to the copy of n′, giving the
graph G2 as depicted in Figure 6.27. The root of G2 is the root of G1 if that node is not equal
to f (n). Otherwise, the root of G2 is the copy of n′ as described in the redirection phase.
From the graph G2, we remove all nodes which are not accessible from the root, giving the

c

copy of n’:∧

x

f (n) : φ

f alse

∨

y

c

∧

x

φ

f alse

∨

y

(G1) (G2)

Fig. 6.27 Graph rewriting: Build and redirection phases

result of the rewrite, the graph G3 as depicted in Figure 6.28.

148 Evaluating SDVG translation validation: from SIGNAL to C

c

∧

x

φ

f alse

∨

y

c

∧

x

∨

y

(G2) (G3)

Fig. 6.28 Graph rewriting: Garbage collection phases

6.4.2 Normalizing

Once a shared value-graph is constructed for the SIGNAL program and its generated C pro-
gram, if the values of an output signal and its corresponding variable in the C program are
not already equivalent (they do not point the same node in the shared value-graph), we start
to normalize the graph. Given a set of term rewrite rules, the normalizing process works as
described in Listing 6.8.

Listing 6.8 Normalizing value-graph

1 Input: G: A shared value -graph.
2 R: The set of rewrite rules.
3 S: The sharing among graph nodes.
4 Output: The normalized graph
5
6 while (∃s ∈ S or ∃r ∈ R that can be applied on G) do
7 {
8 while (∃r ∈ R that can be applied on G)
9 {

10 for (n ∈ G)
11 if (r can be applied on n)
12 apply the rewrite rule to n
13 }
14 maximize sharing
15 }
16 return G

The normalizing algorithm indicates that we apply the rewrite rules to each graph node
individually. When there is no more rules that can be applied to the resulting graph, we
maximize the shared nodes. The process terminates when there exists no more sharing or

6.4 SDVG translation validation 149

rules that can be applied.

We classify our set of rewrite rules into three basic types: general simplification rules,
optimization-specific rules and synchronous rules. In the following, we shall present the
rewrite rules of these types, and we assume that all nodes in our shared value-graph are
typed. Note that we only write the rewrite rules in form of term rewrite rules, tl → tr.

6.4.2.1 General simplification rules

The general simplification rules contain the rules which are related to the general rules
of inference of operators, denoted by the corresponding function symbols in F . In our
consideration, the operators used in the primitive stepwise functions and in the generated C
code are usual logic operators (not, and, or), numerical comparison functions (<, >, =, <=,
>=, /=), and numerical operators (+, -, *, /). When applying these rules, we will replace a
subgraph rooted at a node by a smaller subgraph. In consequence of this replacement, they
will reduce the number of nodes by eliminating some unnecessary structures.

= (t, t)→ true (6.1)

̸= (t, t)→ false (6.2)

= (t,true)→ t (6.3)

̸= (t,true)→¬t (6.4)

= (t,false)→¬t (6.5)

̸= (t,false)→ t (6.6)

The first set of general simplification rules simplifies applied numerical and Boolean com-
parison expressions. In these rules, the term t represents a structure of value computing
(e.g., the computation of expression b = x ̸= true). The rules 6.3, 6.4, 6.5, and 6.6 only
apply on the Boolean type. These rules are self explanatory, for instance, with any structure
represented by a term t, the expression t = t can always be replaced with the value true.

The second set of general simplification rules eliminates unnecessary nodes in the graph
that represent the φ -functions, where c,c1 and c2 are Boolean expressions. For better repre-
sentation, we divide this set of rules into several subsets as follows.

φ(true,x1,x2)→ x1 (6.7)

φ(false,x1,x2)→ x2 (6.8)

150 Evaluating SDVG translation validation: from SIGNAL to C

The rules in this set replace a φ -function with its left branch if the condition always holds
the value true. Otherwise, if the condition holds the value false, it is replaced with its
right branch.

φ(c,false,true)→¬c (6.9)

φ(c,true,false)→ c (6.10)

The rules operate on Boolean expressions represented by the branches. When the branches
are Boolean constants and hold different values, the φ -function can be replaced with the
value of the condition c.

φ(c,false,x)→¬c∧ x (6.11)

φ(c,true,x)→ c∨ x (6.12)

φ(c,x,false)→ c∧ x (6.13)

φ(c,x,true)→¬c∨ x (6.14)

The rules operate on Boolean expressions represented by the branches. When one of the
branches is Boolean constant, the φ -function can be replaced with a Boolean expression of
the condition c and the non-constant branch. For instance, when the left branch is a constant
and holds the value true, then the φ -function is replaced with the Boolean expression c∨x.

φ(c,x,x)→ x (6.15)

The rule 6.15 removes the φ -function if all of its branches contain the same value. A φ -
function with only one branch is a special case of this rule. It indicates that there is only one

6.4 SDVG translation validation 151

path to the φ -function as happens with branch elimination.

φ(c,φ(c,x1,x2),x3)→ φ(c,x1,x3) (6.16)

φ(c,x1,φ(c,x2,x3))→ φ(c,x1,x3) (6.17)

φ(c,φ(¬c,x1,x2),x3)→ φ(c,x2,x3) (6.18)

φ(c,x1,φ(¬c,x2,x3))→ φ(c,x1,x2) (6.19)

φ(c1,φ(c2,x1,x2),x3)→ φ(c1,x1,x3) if c1 ⇒ c2 (6.20)

φ(c1,φ(c2,x1,x2),x3)→ φ(c1,x2,x3) if c1 ⇒¬c2 (6.21)

φ(c1 ∧ c2,φ(c1,x1,x2),x3)→ φ(c1 ∧ c2,x1,x3) (6.22)

φ(c1 ∧ c2,φ(c2,x1,x2),x3)→ φ(c1 ∧ c2,x1,x3) (6.23)

φ(c1,x1,φ(c2,x2,x3))→ φ(c1,x1,x2) if ¬c1 ⇒ c2 (6.24)

φ(c1,x1,φ(c2,x2,x3))→ φ(c1,x1,x3) if ¬c1 ⇒¬c2 (6.25)

φ(c1 ∨ c2,x1,φ(c1,x2,x3))→ φ(c1 ∨ c2,x1,x3) (6.26)

φ(c1 ∨ c2,x1,φ(c2,x2,x3))→ φ(c1 ∨ c2,x1,x3) (6.27)

Consider a φ -function such that one of its branches is another φ -function. The rules 6.16 to
6.27 remove the φ -function in the branch if one of the following conditions is satisfied:

• The conditions of the φ -functions are the same (as in the rules 6.16 and 6.17).

• The condition of the first φ -function is equivalent to the negation of the condition of
the second φ -function (as in the rules 6.18 and 6.19).

• The condition of the first φ -function either implies the condition of the second φ -
function or its negation (as in the rules 6.20 to 6.23).

• The negation of the condition of the first φ -function either implies the condition of
the second φ -function or its negation (as in the rules 6.24 to 6.27).

The following code segment in C illustrates the use of the above rewrite rules:

1 if (c)
2 {
3 a = 0; b = 0; d = a;
4 }
5 else
6 {
7 a = 1; b = 1; d = 0;

152 Evaluating SDVG translation validation: from SIGNAL to C

8 }
9 if (a == b)

10 x = d;
11 else
12 x = 1;
13 return x;

If we analyze this code segment the return value is 0. In fact, a and b have the same value
in both branches of the first “if” statement. Thus in the second “if” statement the condition
is always true, then x always holds the value of d which is 0. We shall apply the general
simplification rules to show that the value-graph of this code segment can be transformed to
the value-graph of the value 0. We represent the value-graph in form of linear notation. The
value-graph of the computation of x is φ(= (a,b),d,0). Replacing the definition of a,b and
d, and normalizing this graph, we get:

x 7→φ(= (φ(c,0,1),φ(c,0,1)),φ(c,φ(c,0,1),0),0)

φ(true,φ(c,φ(c,0,1),0),0) by (6.1)

φ(c,φ(c,0,1),0) by (6.7)

φ(c,0,0) by (6.16)

0 by (6.15)

6.4.2.2 Optimization-specific rules

Based on the optimizations of the SIGNAL compiler, we have a number of optimization-

specific rules in a way that reflexes the effects of specific optimizations of the compiler.
These rules do not always reduce the graph or make it simpler. One has to know specific
optimizations of the compiler when she wants to add them to the set of rewrite rules. In our
case, the set of rules for simplifying constant expressions of the SIGNAL compiler is given
as follows.

• Specific rules for constant expressions with numerical operators:

+(cst1,cst2)→ cst, where cst = cst1 + cst2 (6.28)

∗(cst1,cst2)→ cst, where cst = cst1 ∗ cst2 (6.29)

−(cst1,cst2)→ cst, where cst = cst1 − cst2 (6.30)

/(cst1,cst2)→ cst, where cst = cst1/cst2 (6.31)

6.4 SDVG translation validation 153

• Specific rules for constant expressions with usual logic operators:

¬false→ true (6.32)

¬true→ false (6.33)

∧(cst1,cst2)→ cst, where cst = cst1 ∧ cst2 (6.34)

∨(cst1,cst2)→ cst, where cst = cst1 ∨ cst2 (6.35)

• Specific rules for constant expressions with numerical comparison functions:

�(cst1,cst2)→ cst (6.36)

where � = <, >, =, <=, >=, /=, and the Boolean value cst is the evaluation of the constant
expression �(cst1,cst2) which can hold either the value false or true.

We also may add a number of rewrite rules that are derived from the list of rules of infer-

ence for propositional logic. For example, we have a group of laws for rewriting formulas
with and operator, such as:

∧(x,false)→ false

∧(x,true)→ x

∧(x,⇒ (x,y))→ x∧ y

We consider the following SIGNAL program and its generated C code, the input signal x is
present when the other Boolean input signal cx holds the value true.

1 /* Signal equation */
2 | x ^= when cx
3 /* Generated C code */
4 if (C_cx)
5 {
6 if (cx)
7 {
8 if (!r_P_x (&x)) return FALSE;
9 }

10 }

The computation of x is represented by x = φ(x̂, x̃,⊥), where x̂ ⇔ ĉx∧ c̃x. In the generated
C code, the value of x is read only when the condition C_cx∧cx is true. That is represented
by x = φ(C_cx,φ(cx, x̃,⊥),⊥). This observation makes us add the following rewrite rule

154 Evaluating SDVG translation validation: from SIGNAL to C

into the systems to mirror the above rewriting of the SIGNAL compiler.

φ(c1,φ(c2,x1,x2),x2)→ φ(c1 ∧ c2,x1,x2) (6.37)

6.4.2.3 Synchronous rules

In addition to the general and optimization-specific rules, we also have a number of rewrite
rules that are derived from the semantics of the code generation mechanism of the SIGNAL

compiler. To illustrate why the synchronous rules need to be added in our validator, we
consider the SIGNAL program in Listing 6.9 and the corresponding generated C code in
Listing 6.10. The shared value-graph of the SIGNAL program and its generated C code is
given in Figure 6.29.

Listing 6.9 MasterClk in SIGNAL

1 process MasterClk=
2 (? integer x;
3 ! integer z)
4 (| z := x default 0
5 | pz := z$1 init 0
6 | x ^= when (pz <= 1)
7 |)
8 where integer pz
9 end;

Listing 6.10 Generated C code of MasterClk

1 EXTERN logical MasterClk_step ()
2 {
3 C_x = z <= 1;
4 if (C_x)
5 {
6 if (! r_MasterClk_x (&x)) return FALSE;
7 }
8 if (C_x) z = x; else z = 0;
9 w_MasterClk_z(z);

10 MasterClk_step_finalize ();
11 return TRUE;
12 }

In this example, the fastest clock is ẑ, called the master clock. All other clocks are expressed
as calculus expression of the master clock (the clock x̂ is an under-sampling of ẑ according to

6.4 SDVG translation validation 155

{ẑ, p̂z} ∨

{x̂}∧

<=

{p̃z} m̃.z
1

{z} φ

{z̃} φ

x̃ 0

⊥

{pz} φ {x} φm.zc

{C_xc} <=

{zc, z̃c} φ

x̃c

{xc} φ

Fig. 6.29 The shared value-graph of MasterClk and MasterClk_step

the values of Boolean expression pz <= 1). Such programs are referred to as endochronous,
and can be executed in a deterministic way.

Consider the generated C code, we observe that the value of the variable z is always
updated. It holds the value of x if Cx is true, otherwise it is 0. Hence, we have the following
rule that mirrors the above situation.

xc 7→ φ(true, x̃c,⊥)→ x 7→ φ(true, x̃,⊥) (6.38)

We write x 7→ φ(true, x̃,⊥) to denote that x points to the subgraph rooted at the node labeled
by φ -function. The rule 6.38 indicates that if a variable in the generated C code is always
updated, then we require that the corresponding signal in the source program is present at
every instant, meaning that the signal never holds the absent value. In consequence of this
rewrite rule, the signal x and its value when it is present x̃ (resp. the variable xc and its
updated value x̃c in the generated C code) point to the same node in the shared value-graph.
Every reference to x and x̃ (resp. xc and x̃c) point to the same node.

For example, consider the value-graph in Figure 6.29, we rewrite the subgraph repre-
senting the clock ẑ and p̂z into a single node labeled by the value true. Then, we apply the
rule 6.7 on the resulting graph, and we obtain the reduced graph in Figure 6.30.

A second synchronous rule mirrors the semantics of the delay operator. For instance, we
consider the equation pz := z$1 init 0 in Listing 6.9. We use the variable m̃.z to capture
the last value of the signal z. In the generated C program, the last value of the variable zc is

156 Evaluating SDVG translation validation: from SIGNAL to C

{x̂} <=

{pz, p̃z} m̃.z 1

{z, z̃} φ

x̃ 0

⊥

{x} φm.zc

{C_xc} <=

{zc, z̃c} φ

x̃c

{xc} φ

Fig. 6.30 The resulting graph of MasterClk and MasterClk_step by applying the rule 6.38

denoted by m.zc. We require that the last values of a signal and the corresponding variable
in the generated C code are the same. That means m̃.z = m.zc.

m.xc 7→ G1 + m̃.x 7→ G2 → m.xc, m̃.x 7→ G1 (6.39)

The rule 6.39 indicates that for any signal x which is involved in a delay operator, and its
corresponding variable in the generated C program, then it is required that the last values of
x and xc are the same. Therefore, every reference to m.xc and m̃.x points to the same node.

Consider the value-graph in Figure 6.30, m.zc and m̃.z point to the same node by rule
6.39. Then, C_x and x̂ are represented by the same subgraph. And any reference to C_x and
x̂ points to the same node in the graph as depicted in Figure 6.31.

{C_xc, x̂} <=

{m.zc, pz, p̃z} m̃.z 1

{z, z̃} φ

x̃ 0

⊥

{x} φ

{zc, z̃c} φ

x̃c

{xc} φ

Fig. 6.31 The resulting graph of MasterClk and MasterClk_step by applying the rule 6.39

6.4 SDVG translation validation 157

Finally, we add rules that mirror the relation between input signals and their correspond-
ing variables in the generated C code. First, for any input signal x and the corresponding
variable xc in the generated C code, if x is present, then the value of x which is read from the
environment and the value of the variable xc after the reading statement must be equivalent.
That means x̃c and x̃ are represented by the same subgraph in the graph. Second, if the clock
of x is also read from the environment as a parameter, then the clock of the input signal x is
equivalent to the condition in which the variable xc is updated. It means that we represent x̂

and C_xc by the same subgraph.

x̃c 7→ G1 + x̃ 7→ G2 → x̃c, x̃ 7→ G1 (6.40)

C_xc 7→ G1 + x̂ 7→ G2 →C_xc, x̂ 7→ G1 (6.41)

Consequently, every reference to x̂ and C_xc (resp. x̃ and x̃c) points to the same node.
Considering the value-graph of the program in Listing 6.10 and its generated C code, by
rule 6.40 we obtain the final normalized graph that is depicted in Figure 6.32. We can
observe that the value of the signal z and the corresponding variable zc are represented by
the same subgraph. Therefore, we can safely conclude that the value of output signal z and
the corresponding variable zc in the generated C code are equivalent.

{m.zc, pz, p̃z} m̃.z

{C_xc, x̂} <=

1

{zc, z̃c,z, z̃} φ

{x̃c} x̃ 0 ⊥

{xc,x} φ

Fig. 6.32 The final normalized graph of MasterClk and MasterClk_step

6.4.3 Implementation

Given a SIGNAL program A, with an unverified compiler Cp, we consider the following
derived compiler that is followed by a validator. The validator checks that for any output
signal x in the source program A and the corresponding variable xc in the C program, they
have the same values (x̃ = x̃c). In other words, x̃ and x̃c point to the same node in the shared
value-graph. We denote this fact by C ⊑val A.

158 Evaluating SDVG translation validation: from SIGNAL to C

1 if (Cp(A) is Error) return Error;
2 else
3 {
4 if (C ⊑val A) return C;
5 else return Error;
6 }

The main components of the validator are depicted in Figure 6.33. The validator works
as follows. First, it constructs a shared value-graph that represents the computation of all
signals and variables in both programs. The value-graph can be considered as a general-
ization of symbolic evaluation. The shared value-graph is transformed by applying some
graph rewrite rules, this process is called normalization. The set of rewrite rules reflexes
the general rules of inference of operators, or the optimizations of the compiler. For in-
stance, consider the 3-node subgraph representing the expression 1 > 0, the normalization
will transform that graph into a single node subgraph representing the value true, as it
reflexes the constant folding.

Finally, it compares the values of the output signals and the corresponding variables in
the C program. For every pair of output signal and its corresponding variable, the validator
checks whether they point to the same node in the shared graph. Therefore, in the best
case, when semantics has been preserved, this checking has constant time complexity O(1).
In fact, it is always expected that most transformations and optimizations are semantics-
preserving, thus the best-case complexity is important.

Signal Program SDVG Construction

SDVG Construction

Shared
Value-graph

1

2

Generated C
Program

Normalized Shared
Value-graph

Are every pair of output signal and
its corresponding variable in C are

equivalent?

3

4

Fig. 6.33 A bird’s-eye view of the SDVG translation validation

Let us illustrate the above steps on the program DEC in Listing 3.3 and its generated C
code DEC_step() in Listing 6.11.

6.4 SDVG translation validation 159

In the first step, we shall compute the shared value-graph for both programs to represent
the computation of all signals and their corresponding variables. This graph is depicted in
Figure 6.34.

Listing 6.11 Generated C code of DEC

1 EXTERN logical DEC_step ()
2 {
3 C_FB = N <= 1;
4 if (C_FB)
5 {
6 if (! r_DEC_FB (&FB)) return FALSE;
7 }
8 if (C_FB) N = FB; else N = N - 1;
9 w_DEC_N(N);

10 DEC_step_finalize ();
11 return TRUE;
12 }

{N̂, ẐN} ∨

{F̂B} ∧

<=

{Z̃N} m̃.N 1

{N} φ

{Ñ} φ

F̃B −

⊥

{ZN} φ {FB} φm.Nc

{C_FBc} <=

{Nc, Ñc} φ

F̃Bc

{FBc} φ

−

Fig. 6.34 The shared value-graph of DEC and DEC_step

Note that in the C program, the variable Nc (“c” is added as superscript for the C program
variables, to distinguish them from the signals in the SIGNAL program) is always updated
(line (8)). In lines (3) and (8), the references to the variable Nc are the references to the last
value of Nc denoted by m.Nc. The variable FBc which corresponds to the input signal FB

is updated only when the variable C_FBc is true.

160 Evaluating SDVG translation validation: from SIGNAL to C

In the second step, we shall normalize the above initial graph. Below is a potential nor-
malization scenario, meaning that there might have more than one normalization scenario,
and the validator can choose one of those. For example, given a set of rules that can be
applied, the validator can apply these rules with different order. Figure 6.35 depicts the
intermediate resulting graph of this normalization scenario. And Figure 6.36 is the final
normalized graph from the initial graph when we cannot perform any more normalization.

• The clock of the output signal N is a master clock which is indicated in the generated
C by the variable Nc being always updated. By rule 6.38, the node {N̂, ẐN} ∨ is
rewritten into true.

• By rule ∧(true,x)→ x, the node {F̂B} ∧ is rewritten into {F̂B} <=.

• The node φ -function representing the computation of N is removed and N points to
the node {Ñ} φ by rule 6.7.

• The node φ -function representing the computation of ZN is removed and ZN points
to the node {Z̃N} m̃.N by rule 6.7.

• The nodes F̃Bc and F̃B are rewritten into a single node {F̃B} F̃Bc by rule 6.40. And
all references to them are replaced by the references to {F̃B} F̃Bc.

• The nodes m.Nc and m̃.N are rewritten into a single node {m̃.N} m.Nc by rule 6.39.
And all references to them are replaced by the references to {m̃.N} m.Nc.

{F̂B} <=

{ZN, ˜ZN} m̃.N 1

{N, Ñ} φ

F̃B −

⊥

{FB} φm.Nc

{C_FBc} <=

{Nc, Ñc} φ

F̃Bc

{FBc} φ

−

Fig. 6.35 The resulting value-graph of DEC and DEC_step

In the final step, we check that the value of the output signal and its corresponding
variable in the generated code merge into a single node. In this example, we can safely

6.5 Discussion 161

{m̃.N,ZN, Z̃N} m.Nc

{C_FBc, F̂B} <=

1

{Nc, Ñc,N, Ñ} φ

{F̃Bc} F̃B − ⊥

{FBc,FB} φ

Fig. 6.36 The final normalized graph of DEC and DEC_step

conclude that the output signal N and its corresponding variable Nc is equivalent since they
point to the same node in the final normalized graph.

6.5 Discussion

There is a wide range of works for value-graph representations of expression evaluations
in a program. For example, in [137], Weise et al. present a nice summary of the various
types of value-graph. In our context, the value-graph is used to represent the computation
of variables in both source program and its generated C code and identical structures are
shared. We believe that this representation will reduce the required storage and make the
normalizing process more efficient. Another remark is that the calculation of clocks as well
as the special value, the absent value, are also represented in the shared graph.

Another related work which adopts the translation validation approach in verification of
optimizations, Tristan et al. [135], recently proposed a framework for translation validation
of LLVM optimizer. For a function and its optimized counterpart, they compute a shared
value-graph. The graph is normalized (the graph is reduced). After the normalizing, if the
outputs of two functions are represented by the same sub-graph, they can safely conclude
that both functions are equivalent.

On the other hand, Tate et al. [132] proposed a framework for translation validation.
Given a function in the input program and the corresponding optimized version of the func-
tion in the output program, they compute two value-graphs to represent the computations of
the variables. Then they transform the graph by adding equivalent terms through a process
called equality saturation. After the saturation, if both value-graphs are the same, they can
conclude that the return value of two given functions are the same. However, for the trans-
lation validation purpose, our normalization process is more efficient and scalable since we

162 Evaluating SDVG translation validation: from SIGNAL to C

can add some rewrite rules into the validator that reflects what a typical compiler intends to
do (e.g., a compiler will do the constant folding optimization, then we can add the rewrite
rule for constant expressions such as three nodes subgraph 1+2 is replaced by a single node
3).

The present chapter provides a proof of the preservation of value-equivalence and ap-
plies this approach to the synchronous data-flow compiler SIGNAL. With the simplicity
of the graph normalization, we believe that translation validation of synchronous data-flow
value-graph for the industrial compiler SIGNAL is feasible and efficient. Moreover, the nor-
malization process can always be extended by adding new rewrite rules. That makes the
translation validation of SDVG scalable and flexible.

The proof of the preservation of value-equivalence might be extended to the whole com-
pilation process of the SIGNAL compiler. To realize that, we shall prove that for every
signal in the source program, if it is present then the corresponding variable in the gener-
ated C code is updated. Otherwise, if the signal is absent then the corresponding variable is
never updated. In other words, for every clock associated with a signal and the correspond-
ing Boolean value in the generated C code, thay are represented by the same subgraph.
However, we have claimed in Chapter 1 that it is better to separate the concerns and proving
for each phase the preservation of different kinds of semantics.

CHAPTER 7

CONCLUSION

7.1 Summary of the contribution

Our aim in this dissertation was to present an approach to compiler verification that adopts
translation validation to build a formally verified compiler verifier within the existing SIG-
NAL toolset as described in Figure 1.5. By further decomposing translation validation fol-
lowing the successive compilation steps of the SIGNAL compiler, we were able to narrow
down the problem to simpler proofs on simpler properties that observational equivalence.
Moreover, the validator is smaller, modular and insensitive to minor updates of the compiler.
In consequence, this works experiments with a solution that is in total significantly lighter
in terms of efforts than a formal compiler verification, while providing, if not the same, a
tangible level of assurance with respect to DO-330 requirements.

To realize this aim, we did not prove that all source programs and their generated code
have the same semantics. Instead, we separated the proof into three smaller, independent,
sub-problems: the proof of clock semantic preservation, the proof of data dependency
preservation, and the proof of value-equivalence preservation of variables. These smaller
proofs apply on different, successive, phases of the compilation process.

We have designed three special-purpose validators for each phase of the compilation
process to carry out the proof of correctness. The validators benefit from the advantages of
the translation validation approach and satisfy correctness requirements. The design of the
validators is novel and constitutes the primary contribution of this work.

When solving the preservation of clock semantics problem, we defined a common se-
mantic representation, called clock model, that is inspired by the interval-Boolean abstrac-
tion to represent clock semantics. With the efficiency of SMT solving, we found that rep-
resenting the clock semantics with clock models is suitable and profitable compared to the

164 Conclusion

approach based on model checking. The validator can deal with large programs and avoid
the state-space explosion problem.

We define the concept of SDDGs as the common semantic framework in the translation
validation to prove the preservation of data dependencies. The dependencies are dynami-
cally represented by conditioning the dependencies with Boolean expressions. SDDGs dif-
fer from GCDs in the labels of the edges in the graphs. A refinement relation between two
graphs expresses the preservation of the dependencies, whose existence can be checked,
again, by using an SMT solver. In addition, a synchronous data-flow dependency graph in
which the labels between nodes are encoded in the interval-Boolean abstraction, is used to
make a more precise deadlock detection for the SIGNAL compiler.

For an output program of the static scheduling phase and its generated C program, we
construct a shared value-graph to represent the computation of all signals and variables in
both programs. This shared graph is normalized using a set of rewriting rules. An output
signal x and its corresponding variable are checked equivalent iff they are represented by the
same sub-graph. Symbolic evaluation and graph rewriting turn out to be valuable techniques
to build validators. We believe that the use of symbolic evaluation and graph rewriting to
prove the preservation of value-equivalence is novel. Moreover, normalization makes proofs
scalable and flexible.

Finally, we have shown that it is possible to construct a validator to prove the correctness
of the whole compilation process of the SIGNAL compiler. This validator can be considered
as the modular composition of special-purpose validators. It ensures that the clock seman-
tics, data dependencies among signals, and value-equivalence of variables are preserved
when the compiler compiles a SIGNAL program into the corresponding generated C pro-
gram. Should a new compilation module or phase be added, such as desynchronization, one
could add another dedicated validator to prove its specific transformation correct.

The work on clock semantics has been published in the proceedings of the 9th Interna-
tional Conference on Integrated Formal Methods [106] and presented in June 2012 in Pisa,
Italy. The work on clock semantics of the code generation phase was accepted for presen-
tation at IEEE International High-Level Design, Validation and Test Workshop HLDVT’12
in California, USA [107]. The combined work on clock semantics and data dependencies
has been published in Frontiers of Computer Science with special issue on Synchronous
Programming, Springer journal in 2013 [108]. The deadlock detection technique in Section
5.4 has been published in the proceedings of the 2014 Electronic System Level Synthe-
sis Conference, ESLsyn 2014 [109] and presented in June 2014 in San Francisco, USA.
The translation validation of synchronous data-flow value-graph is being prepared for some

7.2 Future work 165

international conference and peer-review journal.

7.2 Future work

There is a number of possible directions for extending the proof of correctness of syn-
chronous compiler. This work showed the use of SMT solver to prove the preservation of
clock semantics and data dependencies. One possible next work is to fully implement the
validators and the sets of experiments which demonstrate the capability of dealing with very
large programs.

Considering the last phase of the compilation process, the executable code generation
from SIGNAL to sequential C code, we provide a proof of correctness of the SIGNAL com-
piler for the preservation of value-equivalence. A possibility is to extend this proof to use
with the other code generation schemes including cluster code with static and dynamic
scheduling, modular code, and distributed code. One path forward is the combination of the
work in Chapter 5 and Chapter 6. That means that we use synchronous data-flow depen-
dency graphs and synchronous data-flow value-graphs as a common semantic framework to
represent the semantics of the generated code. The formalization of the notion of “correct
transformation” is defined as the refinements between two synchronous data-flow depen-
dency graphs and in a shared value-graph as described in previous chapters.

Another possibility is that we use a SMT solver to reason on the rewriting rules. For
example, we recall the following rules:

φ(c1,φ(c2,x1,x2),x3)→ φ(c1,x1,x3) if c1 ⇒ c2

φ(c1,φ(c2,x1,x2),x3)→ φ(c1,x2,x3) if c1 ⇒¬c2

To apply these rules on a shared value-graph to reduce the nested φ -functions (e.g., from
φ(c1,φ(c2,x1,x2),x3) to φ(c1,x1,x3)), we have to check the validity of first-order logic
formulas, for instance, we check that |= (c1 ⇒ c2) and |= c1 ⇒ ¬c2. We consider the use
of SMT to solve the validity of the conditions as in the above rewrite rules to normalize
value-graphs.

The SME environment based on Model-Driven Engineering (MDE) technologies in the
ECLIPSE environment is a front-end of the POLYCHRONY toolset that relies on the Eclipse
Modeling Framework (EMF). It allows developers to write SIGNAL programs as graphical
models based on the TOPCASED modeling facilities [134]. It would be interesting to con-
struct a validator for the translation from graphical models into SIGNAL programs. It would

166 Conclusion

also be profitable to extend this validator to other translators from graphical models such as
SIMULINK tool of MathWorks [129] that translate diagrams into C/C++ programs.

REFERENCES

[1] ISO 14882. Standard for programming language c++. https://isocpp.org/files/
papers/N3690.pdf, 2013.

[2] ACE. Ace supertest suite. http://www.ace.nl/compiler/supertest.html, 2013.

[3] W. Ackerman. Solvable cases of the decision problem. Study in Logic and the Foun-
dations of Mathematics. North-Holland, Amsterdam, 1954.

[4] Ada. The programming language ada reference manual. New York: Springer Verlag
LNCS 155, 1983.

[5] G. Alefeld and J. Hertzberger. Introduction to interval computation. Academic Press.
New York, 1983.

[6] F.E. Allen. Control flow analysis. In proceedings of a Symposium on Compiler
Optimization, SIGPLAN, pages 1–19, 1970.

[7] T. Amagbegnon, L. Besnard, and P. Le Guernic. Arborescent canonical form of
boolean expressions. INRIA Report n.2290, 1994.

[8] Arvind and K.P. Gostelow. Some relationships between asynchronous interpreters of
data-flow language. North-Holland, 1978.

[9] Astrée. The static program analyzer. http://www.astree.ens.fr/, 2014.

[10] P. Aubry, P. Le Guernic, and S. Machard. Synchronous distribution of signal pro-
grams. In Proceedings of the 29th Hawaii International Conference on System Sci-
ences, IEEE Computer Society Press, 1:656–665, 1996.

[11] R. Ballance, A. Maccabe, and K. Ottenstein. The program dependence web: A rep-
resentation supporting control, data, and demand driven interpretation of imperative
languages. In Proceedings of the SIGPLAN’90 Conference on Programming Lan-
guage Design and Implementation, pages 257–271, 1990.

[12] H.P. Barendregt, M.C. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer,
and M.R. Sleep. Towards an intermediate language based on graph rewriting. These
Proceedings van den Broek, P.M and G.F van der Hoeven, 1987.

[13] A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the signal
language. IEEE Transactions on Automatic Control, 35(5):535–546, 1990.

https://isocpp.org/files/papers/N3690.pdf
https://isocpp.org/files/papers/N3690.pdf
http://www.ace.nl/compiler/supertest.html
http://www.astree.ens.fr/

168 References

[14] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming with
events and relations: the signal language and its semantics. Science of Computer
Programming, 16:103–149, 1991.

[15] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. De
Simone. The synchronous languages 12 years later. In Proceedings of the IEEE,
91(1), 2003.

[16] G. Berry. Real-time programming: Special purpose or general purpose languages. In
IFIP World Computer Congress, San Francisco, 1989.

[17] G. Berry. The foundations of esterel. In Proof, Language and Interaction: Essay in
Honor of Robin Milner, MIT Press, 2000.

[18] G. Berry, P. Couronné, and G. Gonthier. Synchronous programming of reactive sys-
tems, an introduction to esterel. In Programming of Future Generation Computers,
Elsevier Science Publisher B.V. North Holland, 1988.

[19] L. Besnard, T. Gautier, P. Le Guernic, and J-P. Talpin. Compilation of polychronous
data-flow equations. In Synthesis of Embedded Software Springer, pages 1–40, 2010.

[20] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without bdds.
In Int. Conf. On Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’99), 1999.

[21] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability: Volume
185 Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, The
Netherlands, 2009.

[22] D. Biernacki, J-L. Colaco, G. Hamon, and M. Pouzet. Clock-directed modular code
generation of synchronous data-flow languages. In ACM International Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES), 2008.

[23] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. In The Essence of Compu-
tation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones, T.
Mogensen and D.A. Schmidt and I.H. Sudborough (Editors), 2566 of Lecture Notes
in Computer Science:85–108, 2002.

[24] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In PLDI 2003
— ACM SIGPLAN SIGSOFT Conference on Programming Language Design and
Implementation, page 196–207, 2003.

[25] S. Blazy. Which c semantics to embed in the front-end of a formally verified com-
piler? Tools and Techniques for Verification of System Infrastructure, TTVSI, 2008.

[26] S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a c compiler front-end.
14th Symposium on Formal Methods (FM’06), Lecture Notes in Computer Science
(LNCS 4085), Springer, pages 460–475, 2006.

References 169

[27] S. Blazy, B. Robillard, and A.W. Appel. Formal verification of coalescing graph-
coloring register allocation. 19th European Symposium On Programming (ESOP
2010), Lecture Notes in Computer Science (LNCS 6012), Springer, pages 145–164,
2010.

[28] E. Borger, E. Gradel, and Y. Gurevich. The classical decision problem. Spinger-
Verlag, 1996.

[29] M. Le Borgne, A. Benveniste, and P. Le Guernic. Dynamical systems over galois
fields and control problems. In Proceedings of 33th IEEE on Decision and Control,
3:1505–1509, 1991.

[30] J. Brandt, M. Gemünde, K. Schneider, S.K. Shukla, and J.P. Talpin. Integrating
system descriptions by clocked guarded actions. In FDL, IEEE, pages 1–8, 2011.

[31] J. Brandt, M. Gemünde, K. Schneider, S.K. Shukla, and J.P. Talpin. Representation
of synchronous, asynchronous, and polychronous components by clocked guarded
actions. Design Automation for Embedded Systems, pages 1–35, 2012.

[32] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, 1986.

[33] J. Camilleri and T. Melham. Reasoning with inductively defined relations in the hol
theorem prover. Technical Report 265, Computer Laboratory, University of Cam-
bridge, 1992.

[34] G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W.
Markstein. Register allocation via coloring. Computer Languages, 6:47–57, 1981.

[35] L.M. Chirica and D.F. Martin. Towards compiler implementation correctness proofs.
ACM TOPLAS, 1986.

[36] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfia-
bility solving. In Int. Conf. On Formal Methods in System Design, 19:7–34, 2001.

[37] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proceedings of the IBM Workshop on Logics
of Programs, Springer-Verlag, Berlin, 131:52–71, 1981.

[38] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finie-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8:244–263, 1986.

[39] E.M. Clarke, O. Grumberg, and D.A. Peled. Automatic verification of finie-state
concurrent systems using temporal logic specifications. Model Checking, The MIT
Press, Cambridge, MA, 2000.

[40] CompCert. Compcert c verified compiler. http://compcert.inria.fr/partners.
html, 2014.

[41] K. Cooper and L. Torczon. Engineering a Compiler, Second Edition. Morgan Kauf-
mann, 2011.

http://compcert.inria.fr/partners.html
http://compcert.inria.fr/partners.html

170 References

[42] Coq-Inria. Coq proof assistant. http://coq.inria.fr/, 2014.

[43] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and
Computation, 2:511–547, 1992.

[44] P. Cousot and R. Cousot. Abstract interpretation and application to logic programs.
Journal of Logic Programming, 13:103–179, 1992.

[45] P. Cousot and R. Cousot. Refining model checking by abstract interpretation. Auto-
mated Software Engineering, 6:69–95, 1999.

[46] M.A. Dave. Compiler verification: A bibliography. SIGSOFT Software Engineering
Notes, 28(6):2–2, 2003.

[47] J.B. Dennis. First version of a data flow procedure language. Revised Comp. Struc.
Group Memo 93 MIT LCS, 1975.

[48] J.B. Dennis, J.B. Fosseen, and J.P. Linderman. Data flow schemas. In A. Ershov and
V.A. Nepomniaschy, editors, International Symposium on Theoretical Programming,
Lecture Notes in Computer Science, 5:187–216, 1978.

[49] RTCA DO-178. Software considerations in airborne systems and equipment certifi-
cation. RTCA and EUROCAE, 2011.

[50] RTCA DO-333. Formal methods supplement to do-178c and do-278a. RTCA and
EUROCAE, 2011.

[51] B. Dutertre and L. de Moura. Yices smt solver. http://yices.csl.ri.com, 2009.

[52] B. Dutertre, M. Le Borgne, and H. Marchand. Sigali: un système de calcul formel
pour la vérification de programmes signal. Manuel d’Utilisation. Note Technique,
Non Publiée, 1998.

[53] H. Ehrig, G. Engels, H-J. Kreowski, and G. Rozenberg. Handbook of Graph Gram-
mars and Computing by Graph Transformation, Vol.2: Applications, Languages and
Tools. World Scientific, 1999.

[54] H. Ehrig, H-J. Kreowski, U. Montanari, and G. Rozenberg. Handbook of Graph
Grammars and Computing by Graph Transformation, Vol.3: Concurrency, Parallel-
lism, and Distribution. World Scientific, 1999.

[55] D. Brown et al. Guidance for using formal methods in a certification context. Proc.
Embedded Real-time Systems and Software, 2010.

[56] J. Souyris et al. Formal verification of avionics software products. In Proc. Formal
Methods, Springer, 2009.

[57] P. Feautrier, A. Gamatié, and L. Gonnord. Enhancing the compilation of synchronous
data-flow programs with combined numerical-boolean abstraction. In CSI Journal of
Computing, 1(4):86–99, 2012.

[58] J.C. Fernandez. An implementation of an efficient algorithm for bisimulation equiv-
alence. Science of Computer Programming, 13(2-3), 1990.

http://coq.inria.fr/
http://yices.csl.ri.com

References 171

[59] R.B. França, S. Blazy, D. Favre-Félix, X. Leroy, M. Pantel, and J. Souyris. Formally
verified optimizing compilation in acg-based flight control software. Embedded Real
Time Software and Systems, ERTS2, 2012.

[60] A. Gamatié. Designing Embedded Systems with the Signal Programming Language.
Springer, 2010.

[61] A. Gamatié and L. Gonnord. Static analysis of synchronous programs in signal for
efficient design of multi-clocked embedded systems. In ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, Tools and Theory for Embedded Systems -
LCTES’2011. Chicago, IL, USA, 2011.

[62] A. Gamatié, T. Gautier, P. Le Guernic, and J-P. Talpin. Polychronous design of
embedded real-time applications. ACM Transactions on Software Engineering and
Methodology, 2005.

[63] A. Gamatié, T. Gautier, and P. Le Guernic. Towards static analysis of signal programs
using interval techniques. In Synchronous Languages, Applications, and Program-
ming (SLAP’06), 2006.

[64] T. Gautier and P. Le Guernic. Code generation in the sacres project. In Towards
System Safety, Proceedings of the Safety-critical Systems Symposium, pages 127–
149, 1999.

[65] T. Gautier, P. Le Guernic, and L. Besnard. Signal, a declarative language for syn-
chronous programming of real-time systems. In Proc. 3rd. Conf. on Functional Pro-
gramming Languages and Computer Architecture, LNCS 274, 1990.

[66] GeneAuto. Geneauto project. www.geneauto.org, 2014.

[67] L. George and A.W. Appel. Iterated register coalescing. In TOPLAS, 18(3):300–324,
1996.

[68] L. Gonnord and N. Halbwachs. Abstract acceleration to improve precision on linear
relation analysis. Research Report, Verimag, 2010.

[69] M.J.C. Gordon and T.F. Melham. Introduction to hol: A theorem proving environ-
ment for higher order logic. Cambridge University Press, 1993.

[70] P. Le Guernic and T. Gautier. Advanced topics in data-flow computing, chapter data-
flow to von neumann: the signal approach. Prentice-Hall, pages 413–438, 1991.

[71] P. Le Guernic, M. Le Borgne, T .Gautier, and C. Le Maire. Programming real-time
applications with signal. another look at real-time programming. Proceedings of the
IEEE Special Issue, 1991.

[72] P. Le Guernic, J-P. Talpin, and J-C. Le Lann. Polychrony for system design. Journal
for Circuits, Systems and Computers, 12(3):261–304, 2003.

[73] N. Halbwachs. A synchronous language at work: the story of lustre. In 3th ACM-
IEEE International Conference on Formal Methods and Models for Codesign (MEM-
OCODE’05), 2005.

www.geneauto.org

172 References

[74] D. Harel and A. Pnueli. On the development of reactive systems. In Logic and Models
of Concurrent Systems, NATO Advanced Study Institute on Logics and Models for
Verification and Specification of Concurrent Systems, Springer Verlag, 1985.

[75] A.P. Heffter and M. Gawkoski. Towards proof generating compilers. Proceedings of
COCV, 2004.

[76] T.A. Henzinger and J. Sifakis. The embedded systems design challenge. In Formal
Method (FM’06), LNCS, 4085:1–15, 1985.

[77] Inria/Espresso. Polychrony toolset. http://www.irisa.fr/espresso/Polychrony,
2013.

[78] Isabelle. Isabelle proof assistant. http://www.cl.cam.ac.uk/research/hvg/
Isabelle/, 2013.

[79] N. Izerrouken, M. Pantel, and X. Thirioux. Machine checked sequencer for critical
embedded code generator. International Conference on Formal Engineering Methods
(ICFEM 2009), pages 521–540, 2009.

[80] N. Izerrouken, O.S. Yan Kai, M. Pantel, and X. Thirioux. Use of formal methods
for building qualified code generator for safer automotive systems. Proceedings of
the 1st Workshop on Critical Automotive applications: Robustness and Safety, ACM,
pages 53–56, 2010.

[81] D. Jackson. A direct path to dependable software. Communications of the ACM,
pages 52(4):78–88, 2009.

[82] D.B Johnson. Finding all the elementary circuits of a directed graph. In SIAM J. Com-
put, 1(4), 2012.

[83] B. Jose, A. Gamatié, J. Ouy, and S. Shukla. Smt based false causal loop detection
during code synthesis from polychronous specifications. In 9th ACM-IEEE Interna-
tional Conference on Formal Methods and Models for Codesign, IEEE, 2011.

[84] G. Kahn. The semantics of a simple language for parallel programming. In
J.L. Rosenfeld, editor, Information Processing 74, pages 471–475, 1974.

[85] G. Klein and T. Nipkow. A machine-checked model for a java-like language, virtual
machine and compiler. Technical Report 0400001T.1, National ICT Australia. To
appear in ACM TOPLAS, 2004.

[86] O. Kouchnarenko and S. Pinchinat. Intensional approaches for symbolic methods. In
Electronic Notes in Theoretical Computer Science, 1998.

[87] D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe. Dependence graphs
and compiler optimizations. In 8th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 207–218, 1981.

[88] G. Lalire, M. Argoud, and B. Jeannet. Interproc: An inter-procedural analyzer for im-
perative languages. http://pop- art.inrialpes. fr/people/bjeannet/bjeannet- forge/in-
terproc, 2009.

http://www.irisa.fr/espresso/Polychrony
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/

References 173

[89] C++ Programming Language. Bitwise operators and bit manipulation. http://www.
cplusplus.com/doc/tutorial/operators/, 2014.

[90] E. Ledinot and D. Pariente. Formal methods and compliance to the do-178c/ed12c
standard in aeronautics. Static Analysis of Software, 2012.

[91] D. Leinenbach, W. Paul, and E. Petrova. Towards the formal verification of a c0 com-
piler. In Proc. Conf. on Software Engineering and Formal Methods (SEFM 2005),
Koblenz, Germany, 2005.

[92] X. Leroy. Formal certification of a compiler back-end, or: Programming a compiler
with a proof assistant. In 33rd Symposium Principles of Programming Languages,
pages 42–54, 2006.

[93] X. Leroy. A formally verified compiler back-end. In Journal of Automated Reasoning
Manuscript, pages 43(4):363–446, 2009.

[94] X. Leroy and S. Blazy. Formal verification of a c-like memory model and its uses for
verifying program transformations. Journal of Automated Reasoning, 41(1):1–31,
2008.

[95] R. Leviathan and A. Pnueli. Validating software pipelining optimizations. In Int.
Conf. On Compilers, Architecture, and Synthesis for Embedded Systems (CASES
2002), pages 280–287, 2006.

[96] Inmos Ltd. The occam programming manual. Englewood Cliffs, NJ: Prentice-Hall,
1984.

[97] O. Maffeïs and P. Le Guernic. Distributed implementation of signal: Scheduling and
graph clustering. In 3rd International School and Symposium on Formal Techniques
in Real-time and Fault-tolerant Systems, LNCS, 863:547–566, 1994.

[98] H. Marchand, E. Rutten, M. Le Borgne, and M. Samaan. Formal verification of
signal programs: Application to a power transformer station controller. In Science of
Computer Programming, 41(1):85–104, 2001.

[99] J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expression.
Mathematical Aspects of Computer Science, 1967.

[100] R. Milner. Operational and algebraic semantics of concurrent processes. Research
Report ECS-LFCS-88-46, Lab. for Foundations of Computer Science, Edinburgh,
1998.

[101] R. Milner and R.W. Weyhrauch. Proving compiler correctness in a mechanized logic.
Machine Intelligence 7, Edinburgh University Press, 1972.

[102] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate. Testing or formal verifica-
tion: Do-178c alternatives and industrial experience. IEEE Software, focus: Safety-
Critical Software, 2013.

[103] M. Nanjundappa, M. Kracht, J. Ouy, and S. Shukla. Synthesizing embedded software
with safety wrappers through polyhedral analysis in a polychronous framework. In
Electronic System Level Synthesis Conference, IEEE, 2012.

http://www.cplusplus.com/doc/tutorial/operators/
http://www.cplusplus.com/doc/tutorial/operators/

174 References

[104] G. C. Necula. Proof-carrying code. In 24th symposium Principles of Programming
Languages, pages 106–119, 1997.

[105] G.C. Necula. Translation validation for an optimizing compiler. In Proceeding
PLDI’00 Proceedings of the ACM SIGPLAN 2000 Conference on Programming Lan-
guage Design and Implementation, pages 83–94, 2000.

[106] V.C. Ngo, J-P. Talpin, T. Gautier, P. Le Guernic, and L. Besnard. Formal verification
of compiler transformations on polychronous equations. In Proceedings of 9th In-
ternational Conference on Integrated Formal Methods IFM 2012, Springer Lecture
Notes in Computer Science, 2012.

[107] V.C. Ngo, J-P. Talpin, T. Gautier, P. Le Guernic, and L. Besnard. Formal verifi-
cation of automatically generated c-code from polychronous data-flow equations.
Accepted at IEEE International High-Level Design, Validation and Test Workshop
HLDVT 2012, California, USA, 2012.

[108] V.C. Ngo, J-P. Talpin, T. Gautier, P. Le Guernic, and L. Besnard. Formal verifi-
cation of synchronous data-flow program transformations toward certified compil-
ers. In Frontiers of Computer Science, Special Issue on Synchronous Programming,
Springer, 2013.

[109] V.C. Ngo, J-P. Talpin, and T. Gautier. Efficient deadlock detection for polychronous
data-flow specifications. In Proceedings of the 2014 Electronic System Level Synthe-
sis Conference, ESLsyn 2014, San Francisco, CA, USA, 2014.

[110] N.Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic
Pub, 1993.

[111] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-
Verlag Berlin Heidelberg, 2005.

[112] Polychrony on Polarsys. An eclipse project of the polarsys industry working group.
http://www.polarsys.org/projects/polarsys.pop, 2014.

[113] K.J. Ottenstein. An intermediate program form based on a cyclic data-dependence
graph. CS-TR 81-1, Dept. of Computer Science, Michigan Technological Univ.,
Houghton, MI, 1982.

[114] K.J. Ottenstein and L.M. Ottenstein. The program dependence graph in a software
development environment. In Proceedings of the ACM SIGPLAN/SIGSOFT Sympo-
sium on Practical Programming Development Environments, 9(3):177–184, 1984.

[115] S. Pinchinat, H. Marchand, and M. Le Borgne. Symbolic abstractions of automata
and their application to the supervisory control problem. In INRIA Technical Reports
No 1279, pages 1–29, 1999.

[116] G.D. Plotkin. The origins of structural operational semantics. Journal of Logic and
Algebraic Programming, 60-61:3–15, 2004.

[117] A. Pnueli and A. Zaks. Validation of interprocedural optimization. In Proc. Workshop
Compiler Optimization Meets Compiler Verification (COCV 2008), Elsevier, 2008.

http://www.polarsys.org/projects/polarsys.pop

References 175

[118] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In B. Steffen, editor,
4th Intl. Conf. TACAS’98, pages LNCS 1384:151–166, 1998.

[119] A. Pnueli, O. Shtrichman, and M. Siegel. Translation validation: From signal to c.
In Correct Sytem Design Recent Insights and Advances, pages LNCS 1710:231–255,
2000.

[120] W. Polak. Compiler verification and specification. Lecture Notes In Computer Sci-
ence, 124, 1981.

[121] GNU Project. Gcc bugzilla. http://gcc.gnu.org/bugzilla/, 2014.

[122] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in
cesar. In International Symposium on Programming, LNCS 137, Springer Verlag,
1982.

[123] J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in
cesar. In Proc. 5th Int. Symp. in Programming, 1981.

[124] W. Reisig. Petri nets. New York: Springer Verlag, 1985.

[125] M.C. Rinard. Credible compilation. Technical Report of MIT Lab for Computer
Science 776, 1999.

[126] J. Rushby. New challenges in certification for aircraft software. In Proc. 9th ACM
Int’l Conf. Embedded Software, ACM, 2011.

[127] D. Scott and C. Strachey. Toward a mathematical semantics for computer languages.
Oxford Programming Research Group Technical Monograph. PRG-6, 1971.

[128] F. Sheridan. Practical testing of a c99 compiler using output comparison. Software:
Practice and Experience, pages 37(14):1475–1488, 2007.

[129] Simulink. Simulation and model-based design. http://www.mathworks.com/
products/simulink/index.html?s_tid=gn_loc_drop, 2014.

[130] STL. Standard c++ library reference. http://www.cplusplus.com/reference/,
2014.

[131] A. Stump and M. Deters. Smt-comp. http://www.smtcomp.org/2009, 2009.

[132] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equility saturation: A new approach to
optimization. In 36th Principles of Programming Languages, pages 264–276, 2009.

[133] J.W. Thatcher, E.G. Wagner, and J.B. Wright. More on advice on structuring compil-
ers and proving them correct. Lecture Notes In Computer Science, 94, 1980.

[134] TopCase. The open-source toolkit for critical systems. http://www.topcased.org/,
2013.

[135] J-B. Tristan, P. Govereau, and G. Morrisett. Evaluating value-graph translation val-
idation for llvm. In ACM SIGPLAN Conference on Programming and Language
Design Implementation, 2011.

http://gcc.gnu.org/bugzilla/
http://www.mathworks.com/products/simulink/index.html?s_tid=gn_loc_drop
http://www.mathworks.com/products/simulink/index.html?s_tid=gn_loc_drop
http://www.cplusplus.com/reference/
http://www.smtcomp.org/2009
http://www.topcased.org/

176 References

[136] D.A. Turner. A new implementation technique for applicative languages. In Software:
Practice and Experience, 9:31–49, 1979.

[137] D. Weise, R.F. Crew, M.D. Ernst, and B. Steensgaard. Value dependence graphs:
Representation without taxation. In 21th Principles of Programming Languages,
pages 297–310, 1994.

[138] Z. Yang, J-P. Bodeveix, M. Filali, K. Hu, and D. Ma. A verified transformation: from
polychronous programs to a variant of clocked guarded actions. In 17th International
Workshop on Software and Compilers for Embedded Systems (SCOPES’14), 2014.

[139] L. Zuck, A. Pnueli, and R. Leviathan. Validation of optimizing compilers. Technical
Report MCS01-12, Weizmann Institute of Science, 2001.

[140] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. Voc: A translation validator for opti-
mizing compilers. Electronic Notes in Theoretical Computer Science, 65(2), 2002.

ABSTRACT

Synchronous languages such as SIGNAL, LUSTRE and ESTEREL are dedicated to designing
safety-critical systems. Their compilers are large and complicated programs that may be
incorrect in some contexts, which might produce silently bad compiled code when com-
piling source programs. The bad compiled code can invalidate the safety properties that
are guaranteed on the source programs by applying formal methods. Adopting the transla-
tion validation approach, this thesis aims at formally proving the correctness of the highly
optimizing and industrial SIGNAL compiler. The correctness proof represents both source
program and compiled code in a common semantic framework, then formalizes a relation
between the source program and its compiled code to express that the semantics of the
source program are preserved in the compiled code.

Les langages synchrones tels que SIGNAL, LUSTRE et ESTEREL sont dédiés à la conception
de systèmes critiques. Leurs compilateurs, qui sont de très gros programmes complexes,
peuvent a priori se révéler incorrects dans certains situations, ce qui donnerait lieu alors à
des résultats de compilation erronés non détectés. Ces codes fautifs peuvent invalider des
propriétés de sûreté qui ont été prouvées en appliquant des méthodes formelles sur les pro-
grammes sources. En adoptant une approche de validation de la traduction, cette thèse vise à
prouver formellement la correction d’un compilateur optimisé et industriel de SIGNAL. La
preuve de correction représente dans un cadre sémantique commun le programme source
et le code compilé, et formalise une relation entre eux pour exprimer la préservation des
sémantiques du programme source dans le code compilé.

	Ngo_Van-Chan1
	Ngo_Van-Chan3

