
HAL Id: tel-01067707
https://theses.hal.science/tel-01067707

Submitted on 23 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite Volume methods on unstructured grids for
solving anisotropic heat transfer and compressible

Navier-Stokes equations.
Pascal Jacq

To cite this version:
Pascal Jacq. Finite Volume methods on unstructured grids for solving anisotropic heat transfer and
compressible Navier-Stokes equations.. Numerical Analysis [cs.NA]. Université de Bordeaux, 2014.
English. �NNT : �. �tel-01067707�

https://theses.hal.science/tel-01067707
https://hal.archives-ouvertes.fr

THÈSE de DOCTORAT
PRÉSENTÉE à

L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET

D’INFORMATIQUE

Spécialité : Mathématiques Appliquées et Calcul Scientifique

Par Pascal JACQ

Méthodes numériques de type Volumes Finis sur

maillages non structurés pour la résolution de la

thermique anisotrope et des équations de

Navier-Stokes compressibles.

Finite Volume methods on unstructured grids for

solving anisotropic heat transfer and compressible

Navier-Stokes equations.

Directeur de thèse : Pierre-Henri Maire

Directeur de thèse : Rémi Abgrall

Soutenue le : 9 juillet 2014

Après avis des rapporteurs :
Florian De Vuyst Professeur, ENS Cachan
Boniface Nkonga Professeur, Université de Nice

Devant la commission d’examen composée de :
Rémi Abgrall Professeur, Université Zürich Directeur
Jean-Paul Caltagirone Professeur, Institut de Mécanique et d’Ingénierie Président
Florian De Vuyst Professeur, ENS Cachan . Rapporteur
Pierre-Henri Maire Ingénieur-Chercheur, CEA; Prof. associé, IPB . . Directeur
Boniface Nkonga Professeur, Université de Nice Rapporteur
Jean Roman Professeur, Directeur Scientifique adjoint INRIA Examinateur

ii

A mes proches.

iii

iv

Remerciements

Je tiens tout d’abord à remercier mon directeur de thèse, Pierre-Henri Maire, pour ces 3 années
de collaboration. J’ai beaucoup apprécié son côté pédagogique, sa façon bien à lui de présenter
les problèmes qui paraissent soudain si simples. Il y a bien sûr eu des hauts et des bas durant
ces années mais je tiens à le remercier de m’avoir poussé et aidé à arriver au bout de cette thèse.

Je tiens aussi à remercier chaleureusement mon autre directeur de thèse, Rémi Abgrall. C’est
vrai que notre collaboration a été plus intense lorsque j’étais ingénieur dans l’équipe Bacchus de
l’INRIA, que lorsque j’étais en thèse, mais c’est tout de même grâce à lui que j’ai pu rencontrer
Pierre-Henri et effectuer ces travaux. Ses remarques et conseils m’ont été très utiles lors de la
rédaction de ce manuscrit. Je tiens aussi à saluer sa pédagogie bien à lui et sa grande connais-
sance des vins Bretons.

Je tiens également à remercier Florian De Vuyst d’avoir accepté de rapporter cette thèse. Ses
remarques et questions sur le manuscrit m’ont beaucoup apporté. Je tiens tout particulièrement
à remercier mon autre rapporteur Boniface Nkonga qui m’a mis le pied à l’étrier il y a plus de 7
ans en me proposant un poste d’ingénieur à l’INRIA. A l’époque, à son plus grand désarroi, je
ne voulais pas entendre parler de thèse. Après quelques années de réflexion, j’ai changé d’avis
et je suis très heureux qu’il ait participé lui aussi à tout ça.

Merci beaucoup à Jean-Paul Caltagirone d’avoir accepté de présider ce jury quelques jours avant
de devenir émérite. Merci aussi à Jean Roman d’avoir accepté de faire partie de ce jury même
si l’aspect HPC n’était pas prédominant dans cette thèse.

Je tiens aussi à remercier chaleureusement Jean Claudel qui m’a beaucoup aidé pendant cette
thèse, surtout pour la partie Mécanique des Fluides. Sans ses connaissances et son soutien je
pense que les “carbuncles” et autres bizarreries numériques seraient venues à bout de ma santé
mentale. J’ai aussi beaucoup apprécié sa gentillesse et son humour, aussi décalé que ses goûts
pour la soupe. Enfin, j’ai aussi toujours aimé découvrir de nouvelles séries télé ou encore de
discuter avec lui de sa passion pour les vélos couchés.

Je tiens bien évidement à remercier tous les collègues et amis qui m’ont fait passer des bons
moments au travail et en dehors. Dans la catégorie thésards, ces camarades de galères, com-
pagnons de pauses café et amoureux des happy hours, il y a eu François que je souhaiterais
remercier pour avoir participé à la création de la 1ère version de ce désormais célèbre jeu vidéo
“Punch” et pour toutes les autres conneries qui nous ont fait passer de bonnes journées au
boulot. Cyril, toujours pret à se lancer avec moi dans la programmation d’un projet fou censé
nous rendre riches (ou pas). Gaby, qui a eu le malheur de tomber dans mon bureau au début
de son stage, désolé de t’avoir inculqué quelques mauvaises habitudes. Matthieu, mon dernier
co-bureau au CEA toujours prêt pour une pause café ou pour me mettre ma raclée au squash.

v

Damien pour ses sites d’informations (9gag et compagnie), pour son côté jovial et sa passion
pour les logiciels de repartitionnement.

Je tiens aussi à remercier les sportifs qui m’ont accompagné lorsque je me suis mis au running
dans le club “trail et apéro”. Merci à Orel et Fredo les coatchs de luxe, sportifs de l’extrême
et membres permanents de l’équipe de France de vin rouge. Merci surtout à Abdou mon com-
pagnon d’entrainement et de compétition avec qui on a parcouru de nombreux kilomètres, et
qui m’a poussé à aller bien au-delà de ce que je pensais possible. Il faudra qu’un jour on fasse
homologuer notre technique d’entrainement à handicap.

Au CEA je tiens à remercier Xavier pour son accueil dans l’équipe. Anne-Pascale pour sa
gentillesse, son efficacité et pour les costumes et les photos des poulets de la médocaine. Jean-
Jacques pour les exposés et pour ses innombrables connaissances. Olivier pour son côté geek
avec ses 17 PC qui lui servent de chauffage l’hiver et pour le fait qu’il vienne manger avec les
“jeunes” uniquement lorsqu’il y a des filles. Pierre qui le subit à temps plein. Céline pour sa
bonne humeur, Isabelle pour sa gentillesse. Murielle et Agnès pour les pauses cafés. Jean-Marc
pour ses questions python, Julien pour avoir supporté Gaby. Gérard et son côté boute-en-train.
David pour sa gentillesse, David pour sa méchanceté. Thanh-ha pour son gâteau vert et son
rire après les pots. Pierre pour son stage entre deux séances de voile.

A l’INRIA, il y a bien sûr Manu avec ses théories sur l’amour, qui m’a tout enseigné au babyfoot
pour devenir champion du monde de l’INRIA. Mathieu, que je ne remercie pas pour m’avoir
légué son appli du café mais plutôt pour son côté sociable, et pour les sorties karting où je lui
mettais sa misère. Robin le champion de France de Tremulous qui a fini sa thèse malgré son
emploi du temps restreint. Guillaume pour sa passion pour Kaamelott, son côté geek et pour la
version ultime malheureusement perdue de FBx. Christelle et XL avec qui on a passé de bons
moments avant que notre bureau ne brûle. Tous les anciens Nico, Adam, Jérémie, Stéphane,
Algiane, Mario, Guilhem, Patator,...
Je te remercie toi aussi qui lis cette ligne sans être tombé plus haut sur ton nom, c’est surement
un oubli et j’en suis désolé. N’hésite pas à me contacter pour toute réclamation.

Je tiens à remercier également mes parents pour avoir assisté à ma soutenance. C’était impor-
tant pour moi qu’ils soient là, ça l’était pour eux aussi j’imagine. Je tiens à m’excuser une fois
de plus d’avoir rédigé cette thèse en cette langue étrangère que sont pour eux les mathématiques
(ah et aussi l’anglais...).

Je ne saurais comment remercier Audrey qui m’a porté et supporté pendant cette fin de thèse.
Je ne serais sûrement pas arrivé au bout de ce manuscrit sans son soutien, ses encouragements,
ses petits plats et tous les sacrifices auxquels elle a consenti. Pour tout ça et pour le reste, merci
énormément.

vi

Résumé

Méthodes numériques de type Volumes Finis sur maillages non

structurés pour la résolution de la thermique anisotrope et des

équations de Navier-Stokes compressibles

Lors de la rentrée atmosphérique nous sommes amenés à modéliser trois phénomènes physiques
différents. Tout d’abord, l’écoulement autour du véhicule entrant dans l’atmosphère est hy-
personique, il est caractérisé par la présence d’un choc fort et provoque un fort échauffement
du véhicule. Nous modélisons l’écoulement par les équations de Navier-Stokes compressibles et
l’échauffement du véhicule au moyen de la thermique anisotrope. De plus le véhicule est protégé
par un bouclier thermique siège de réactions chimiques que l’on nomme communément ablation.

Dans le premier chapitre de cette thèse nous présentons le schéma numérique de diffusion
CCLAD (Cell-Centered LAgrangian Diffusion) que nous utilisons pour résoudre la thermique
anisotrope. Nous présentons l’extension en trois dimensions de ce schéma ainsi que sa par-
allélisation.
Nous continuons le manuscrit en abordant l’extension de ce schéma à une équation de diffusion
tensorielle. Cette équation est obtenue en supprimant les termes convectifs de l’équation de
quantité de mouvement des équations de Navier-Stokes. Nous verrons qu’une pénalisation doit
être introduite afin de pouvoir inverser la loi constitutive et ainsi appliquer la méthodologie
CCLAD. Nous présentons les propriétés numériques du schéma ainsi obtenu et effectuons des
validations numériques.
Dans le dernier chapitre, nous présentons un schéma numérique de type Volumes Finis per-
mettant de résoudre les équations de Navier-Stokes sur des maillages non-structurés obtenu en
réutilisant les deux schémas de diffusion présentés précédemment.

Mots clés : Méthodes Volumes Finis, Maillages Non-Structurés, Thermique Anisotrope, Equa-
tions de Navier-Stokes compressibles, Calculs Hautes Performances

vii

viii

Abstract

Finite Volume methods on unstructured grids for solving anisotropic

heat transfer and compressible Navier-Stokes equations

When studying the problem of atmospheric reentry we need to model three different physical
phenomenons. First, the flow around the atmospheric reentry vehicle is hypersonic, it is char-
acterized by the presence of a strong shock which leads to a rapid heating of the vehicle. We
model the flow using the compressible Navier-Stokes equations and the heating of the vehicle is
modeled with the anisotropic heat transfer equation. Furthermore the vehicle is protected by
an heat shield, where thermochemical reactions, commonly named ablation, occurs.

In the first chapter of this thesis we introduce the numerical diffusion scheme CCLAD (Cell-
Centered LAgrangian Diffusion) that we use to solve the anisotropic heat diffusion. We develop
its non trivial extension to three-dimensional geometries and present its parallelization.
We continue this thesis by the presentation of the extension of this scheme to tensorial diffusion.
This equation is obtained by suppressing the convective terms of the momentum equation of
the Navier-Stokes equations. We show that we need to introduce a penalization term in order
to be able to invert the constitutive law. The invertibility of the constitutive law allows us to
apply the CCLAD methodology to this equation straightforwardly. We present the numerical
properties of this scheme and show numerical validations.
In the last chapter, we present a Finite Volume scheme on unstructured grids that solves the
compressible Navier-Stokes equations. This numerical scheme is mainly obtained by gathering
the contributions of the two diffusion schemes we developed in the previous chapters.

Keywords : Finite Volume Methods, Unstructured Grids, Anisotropic Heat Transfer, Com-
pressible Navier-Stokes Equations, High Performance Computing

ix

x

Contents

Résumé 1

Introduction 5

1 A Finite Volume scheme for solving anisotropic diffusion on unstructured
grids 11

1.1 Governing equations . 13

1.2 Space discretization in two dimensions . 14

1.2.1 Notations and assumptions . 14

1.2.2 Expression of a vector in terms of its normal components 17

1.2.3 Sub-cell-based variational formulation . 18

1.2.4 Elimination of the half-edge temperatures 21

1.3 Space discretization in three dimensions . 24

1.3.1 Additional notations . 24

1.3.2 Expression of a vector in terms of its normal components 27

1.3.3 Sub-cell-based variational formulation . 28

1.3.4 Elimination of the sub-face temperatures 30

1.4 Construction and properties of the semi-discrete scheme 32

1.4.1 Properties of the matrices N and S . 32

1.4.2 Local diffusion matrix at a generic point 33

1.4.3 Construction of the global diffusion matrix 34

1.4.4 Fundamental inequality at the discrete level 35

1.4.5 Positive semi-definiteness of the global diffusion matrix 36

1.4.6 L2-stability of the semi-discrete scheme 36

1.4.7 Boundary conditions . 37

1.4.8 Volume weight ωpc computation . 39

1.5 Time discretization . 44

1.6 Parallelization . 46

1.6.1 Analysis of the problem . 46

1.6.2 Partitioning and communications . 47

1.6.3 Experiments . 49

1.7 Numerical results in two-dimensional geometries 51

1.7.1 Convergence analysis methodology . 52

1.7.2 Meshes description . 52

1.7.3 Piecewise linear problem with discontinuous isotropic conductivity tensor 55

1.7.4 Linear problem with discontinuous anisotropic conductivity tensor 55

1.7.5 Anisotropic linear problem with a non-uniform symmetric positive definite
conductivity tensor . 58

1.8 Numerical results in three-dimensional geometries 61

xi

1.8.1 Computational grids . 61
1.8.2 Isotropic diffusion problem . 62
1.8.3 Isotropic diffusion problem with a discontinuous conductivity 65
1.8.4 Anisotropic diffusion with a highly heterogeneous conductivity tensor . . 66

1.9 Conclusion . 67

2 A Finite Volume scheme for solving tensorial diffusion on unstructured grids 71
2.1 The tensorial diffusion equation . 72
2.2 Mathematical properties of the constitutive law 74
2.3 Construction of an invertible constitutive law . 77
2.4 Equivalence of the two formulations . 78

2.4.1 Expression of S in terms of Σ . 78
2.4.2 Properties of the two formulations . 80

2.5 Construction of a Finite Volume scheme for tensorial diffusion 81
2.5.1 Notations . 82
2.5.2 Expression of a second-order tensor in terms of its projections on a basis. 85
2.5.3 Sub-cell based variational formulation . 85
2.5.4 Expression of the velocity gradient tensor 87

2.5.5 Expression of Σ
+/−
pc in terms of V

+/−
pc and Vc 88

2.5.6 Elimination of the auxiliary unknowns . 90
2.5.7 Properties of the matrices N and S. 92
2.5.8 Boundary conditions . 94
2.5.9 Construction of the global linear system 95

2.6 Time discretization . 96
2.7 Mathematical properties of the scheme . 98

2.7.1 L2 stability of the semi discrete scheme 98
2.7.2 Definition of the volume weight . 99

2.8 Numerical results . 104
2.8.1 Methodology used for convergence analysis 104
2.8.2 Meshes description . 105
2.8.3 Convergence analysis for solutions characterized by a linear behavior with

respect to the space variable . 105
2.8.4 Convergence analysis for solutions characterized by a non-linear behavior

with respect to the space variable . 112
2.9 Conclusion . 117

3 A Finite Volume scheme for solving Fluid Dynamics on unstructured grids 119
3.1 Governing Equations of Fluid Dynamics . 121

3.1.1 Conservation laws of Fluid Dynamics . 121
3.1.2 Constitutive laws . 123
3.1.3 Equation of state . 126
3.1.4 Summary: the Navier-Stokes equations . 127
3.1.5 Non dimensional form of the compressible Navier-Stokes equations 129
3.1.6 Initial and boundary conditions . 130

3.2 The Euler equations . 131
3.2.1 Governing equations for an inviscid non heat conducting fluid 131
3.2.2 Mathematical properties of the Euler equations 133

3.3 Construction of a Finite Volume method for the Euler equations 136
3.3.1 Godunov scheme . 136
3.3.2 Riemann problem for the one-dimensional Euler Equations 137

xii

3.3.3 Approximate Riemann solvers . 138
3.3.4 Extension to higher-order . 142
3.3.5 Time discretization . 144
3.3.6 The Carbuncle Phenomenon: Causes and Cure 147
3.3.7 Numerical results . 150

3.4 Numerical scheme for solving Navier-Stokes equations 161
3.4.1 Construction of a Finite Volume scheme for the Navier-Stokes equations . 161
3.4.2 Gathering the contribution of Heat transfer 162
3.4.3 Gathering the contribution of Tensorial Diffusion 163
3.4.4 Final expression of the Finite Volume scheme 166
3.4.5 Numerical results . 166

3.5 Conclusion . 180

Conclusion and perspectives 181

A Using pyramid cells in the three-dimensional anisotropic diffusion scheme 185

Bibliography 189

xiii

xiv

Résumé

Ce manuscrit traite de la conception et de l’analyse de schémas numériques de type Volumes
Finis novateurs pour la résolution de la thermique anisotrope et des équations de Navier-
Stokes compressibles sur maillages non-structurés. Le contexte de cette étude est la simulation
numérique de la rentrée atmosphérique, avec comme finalité l’étude du phénomène d’ablation
qui occure dans les protections thermiques des véhicules de rentrée.

Figure 1: Exemple d’un véhicule de rentrée atmosphérique: IXV de l’ESA.

Pour modéliser la rentrée atmosphérique nous sommes amenés à prendre en compte trois
phénomènes physiques différents. Tout d’abord, l’écoulement autour du véhicule entrant dans
l’atmosphère est hypersonique, il est caractérisé par la présence d’un choc fort et provoque un
fort échauffement du véhicule. Nous modélisons l’écoulement par les équations de Navier-Stokes
compressibles et l’échauffement du véhicule au moyen de la thermique anisotrope. Les flux ther-
miques obtenus de part et d’autre de la paroi de l’objet sont ensuite les principaux ingrédients
qui pilotent les nombreuses réactions chimiques se déroulant au sein du bouclier thermique et
que l’on nomme communément ablation.

Schéma numérique de type Volumes Finis pour résoudre une

équation de diffusion anisotrope sur des maillages non-structurés.

Nous nous intéressons tout d’abord à la modélisation de la diffusion thermique au sein du
véhicule de rentrée. Les matériaux utilisés dans la construction de ce type de véhicule sont des
matériaux composites. Ces matériaux présentent de fortes anisotropies, ce qui nous ammène à

1

traiter de la diffusion thermique anisotrope. Pour ce faire, nous présentons la construction du
schéma numérique de diffusion CCLAD (Cell-Centered LAgrangian Diffusion).

Figure 2: Exemple d’un calcul de diffusion sur un cas test 3D d’une sphère tronquée.

Après avoir présenté le schéma sous sa forme classique en deux dimensions d’espace, nous
présentons son extension non triviale en trois dimensions. La caractéristique de ce schéma est
le partitionnement de chaque volume de contrôle polyédrique en sous-cellules, ainsi que le parti-
tionnement de chaque face de cellule en sous-faces. Nous définissons des variables auxiliaires au
centre de chaque sous-face, afin de construire des flux, au moyen d’une formulation variation-
nelle locale. Ces variables auxilaires sont ensuite éliminées par l’inversion d’un système linéaire
local aux noeuds, obtenu en écrivant les conditions de continuité de la température et des flux
sur chaque sous-face. Ceci nous permet alors de construire une matrice globale de diffusion,
creuse, faisant intervenir uniquement les degrés de libertés du schéma situés au barycentre des
cellules.
La taille des maillages tridimensionnels étant bien plus conséquente que celle des maillages bidi-
mensionnels, nous montrons qu’il est nécessaire de paralléliser le schéma. Du fait du caractère
local du schéma CCLAD nous montrons que la parallélisation réalisée est efficace. Nous voyons
que nous obtenons un speedup de 100 pour 128 coeurs.
Les propriétés mathématiques du schéma sont étudiées et nous montrons au moyen de nom-
breux cas tests numériques que le schéma obtenu est d’ordre 2 sur des maillages de quadrangles
et d’hexaèdres déformés de manière régulière ainsi que sur des maillages de triangles et de
tétraèdres.
Nous traitons aussi du cas particulier des pyramides en trois dimensions qui pose problème à
l’écriture du schéma CCLAD autour du sommet principal entouré de 4 faces. Nous proposons
alors une modification simple au schéma CCLAD pour ce type de sommet afin de pouvoir traiter
ces éléments particuliers. Cette modification nous permet alors d’écrire le schéma CCLAD sur
des maillages polyédriques quelconques.

2

Schéma numérique de type Volumes Finis pour résoudre une

équation de diffusion tensorielle sur des maillages non-structurés.

Nous abordons ensuite l’extension du schéma CCLAD à une équation de diffusion tensorielle.
Cette équation est obtenue en supprimant les termes convectifs de l’équation de quantité de
mouvement des équations de Navier-Stokes.
Nous montrons que l’extension à la diffusion tensorielle n’est pas triviale. En effet nous mettons
en évidence que la loi constitutive est non-inversible sur l’espace des tenseurs généraux du second
ordre. Cette non inversibilité poserait problème lors de la phase d’élimination des variables
auxiliaires. En s’appuyant sur les travaux d’Arnold-Falk en élasticité linéaire, nous proposons
alors une pénalisation de la loi constitutive, en y ajoutant un tenseur à trace nulle, qui permet
de rétablir l’inversibilité de la loi tout en laissant inchangée la divergence du tenseur. Ceci nous
amène à formuler un problème équivalent qui nous permet d’appliquer alors naturellement la
méthodologie CCLAD.
Nous présentons les propriétés mathématiques du schéma ainsi obtenu, et insistons sur le fait
que la pénalisation apportée conserve la propriété de divergence nulle au niveau discret.
Nous montrons au moyen de nombreuses validations numériques que le schéma est d’ordre 2
sur des maillages de quadrangles déformés de manière régulière et sur des triangles.
Enfin, grâce à une méthodologie de programmation élégante, nous montrons que ce schéma
bénéficie pleinement des développements informatiques effectués précédement, nottament en
terme de parallélisation.

Figure 3: Exemple d’un calcul de diffusion tensoriel sur un cas test représentant un vortex.

Schéma numérique de type Volumes Finis pour résoudre les équations

de la mécanique des fluides sur des maillages non-structurés.

Nous présentons ensuite les équations de la mécanique des fluides. Nous écrivons tout d’abord
les équations d’Euler qui réprésentent un fluide non visqueux et non conducteur thermique-
ment. Nous dérivons alors un schéma classique de type volume fini d’ordre 2 pour résoudre ces
équations. Ce schéma utilise des solveurs de Riemann approchés pour définir les flux numériques,

3

et utilise une recontruction de type MUSCL assortie de limiteurs de pente.
Nous présentons des cas tests de validation et abordons le problème du “carbuncle” qui appa-
rait dans les écoulements à fort Mach que nous souhaitons aborder. Nous proposons alors une
méthodologie de type flux tournés qui permet d’erradiquer ce phénomène tout en conservant
une grande précision numérique.

Nous présentons alors les équations de Navier-Stokes compressibles qui décrivent la mécanique
des fluides. Grâce à une décomposition de ces équations, nous proposons de les résoudre
en réutilisant l’ensemble des schémas numériques developpés au cours de cette thèse. Nous
présentons les différentes matrices de passages nécessaires à l’intégration des contributions ma-
tricielles de chaque schéma au problème global.
Finalement, nous présentons des cas tests de validation et effectuons des comparaisons avec
d’autres logiciels de mécanique des fluides développés par la NASA sur des cas tests de rentrée
athmosphérique. Les résultats numériques obtenus sont très convainquants et permettent de
valider le choix de nos différents schémas numériques.

Figure 4: Exemple d’un calcul Navier-Stokes représentant la répartition de la température
autour d’un cylindre à Mach 8.

4

Introduction

This document aims at presenting the numerical simulation of heat transfer in the domain of
hypersonic ablation of thermal protection systems [28, 29]. In this context, one has to solve
not only the compressible Navier-Stokes equations for the fluid flow but also the anisotropic
heat equation for the solid materials which compose the thermal protection. These two models,
i.e., the Navier-Stokes equations and the heat equation, are strongly coupled by means of a
surface ablation model which describes the removal of surface materials resulting from complex
thermochemical reactions such as sublimation and oxydation.

Figure 5: Schlieren photography of an early reentry-vehicle concept from NASA. Taken from
www.nasaimages.org.

In this work, we are considering the atmospheric reentry of human made vehicles. As pictured in
Figure 6, these vehicles can take the form of space shuttles or space probes. These vehicles after
a journey in space need to come back to earth, or to land on an other planet as what happened
with the Curiosity rover that landed on Mars in 2012. When entering the planet atmosphere,
these vehicles are moving at hypersonic speeds and need to be slowed down to land safely. For
instance, the starting reentry velocity of Curiosity was 5800ms−1, at the end of the reentry this
velocity was reduced to 470ms−1. At that time conventional parachutes were used to complete
the landing. During the first phase of the reentry, also called aerobraking, the flow around the
reentry vehicle is hypersonic. Figure 5 shows an interesting representation of an hypersonic
flow around an early reentry vehicle concept from NASA. The Schlieren photography process

5

Figure 6: Artists view of reentry vehicles : from http://www.esa.int/spaceinimages/.

(a) Intermediate eXperimental Vehicle from ESA.

(b) Atmospheric Re-entry Demonstrator from ESA.

used, allows us to observe the variations of the density in the fluid. We can see clearly on this
picture that a strong bow shock forms in front of the reentry-vehicle. This shock induces a
large increase of the temperature of the flow in front of the vehicle. The reentry vehicle undergo
extremely large heat fluxes which increases its temperature. For the Curiosity rover the heat
shield experienced peak temperatures of up to 2090◦C. At a certain point the temperature is so
high that chemical reactions occurs in the Thermal Protection System (TPS). These complex
chemical reactions are mentioned in the following as ablation. The TPS are conceived with
specific materials which when submitted to these extreme temperatures produces endothermic
chemical reactions. This allows to decrease the temperature of the reentry vehicle which can
remains intact until the final landing. All these phenomenons are pictured in Figure 7.

The book of Anderson [15] gives a great overview of the physical and mathematical fundamentals
of hypersonic and high-temperature gas dynamics. It starts from the description of extremely
simple, yet accurate, methods such as the Local Surface Inclination Method. These methods

6

Figure 7: Description of the physical phenomenons occurring during reentry.

Reentry vehicle

Thermal Protection System

Sho
k

Large heat �ux

Freestream M∞ >> 1

Figure 8: Galileo probe heat shield ablation : taken from www.nasaimages.org.

were used in the early days of hypersonic aerodynamics, in the 1950s, when very low compu-
tational power was available. He also presents in his book, the complex physical phenomenons
that happens in the gas at very high-temperatures. These problems can now be modeled ac-
curately with the help of modern high-order numerical methods and the huge computational
power available on modern supercomputers.

One of the main purpose of numerical simulations when dealing with atmospheric reentry is the
dimensioning of the Thermal Protection System of a reentry vehicle. For instance, in Figure 8,
we display the description of the heat shield of the Galileo probe, before and after its reentry.
We can observe that the mass of the heat shield was divided by two in the reentry phase. Yet,
the shield is still ten centimeter thick around the leading edge. This is why more accurate
simulations are needed. With the help of more accurate models, the design of the heat shield

7

could have been thinner around the leading edge. The shield would then have been lighter,
which is a very important issue when sending an object to space.

The CEA-CESTA, where this PhD thesis took place, is very interested in the numerical simula-
tion of atmospheric reentry. This thesis is one of the many that took place at the CEA-CESTA
with a focus on different aspects of the modelization. We can first cite the thesis of Anthony
Velghe [129] and Thibault Harribey [56] which were focused on the physical modeling of abla-
tion at the microscopic level. Using very high-order numerical methods and Direct Numerical
Simulations they were able to accurately model the effects of turbulence on the recession of ab-
lative materials. In his thesis, Manuel Latige [80] studied the ablation phenomenon at a higher
scale. He was interested by the study of the multiphasic ablation that happens when dealing
with composite materials. These kind of materials are composed of fibers and matrices which
reacts differently to the increase of temperature. These PhD thesis were devoted to a better un-
derstanding of the physical aspects of the ablation at microscopic and mesoscopic levels. From
these studies accurate ablation models have been designed. This brings us back to our thesis,
whose main purpose is to develop efficient parallel numerical methods on unstructured grids
to contribute to the improvement of the numerical modeling of the global atmospheric reentry
problem.

The remaining of this document is organized as follows. In Chapter 1, we present the con-
struction of a Cell-Centered Finite Volume scheme for solving anisotropic diffusion equation on
unstructured meshes. This Chapter follows the CCLAD methodology introduced by Maire and
Breil [32, 90]. After recalling the two-dimensional version of the CCLAD scheme, we present a
non trivial extension to the CCLAD scheme in three-dimensional geometries on unstructured
meshes. Then, we discuss the properties of the obtained scheme. We also focus on the parallel
implementation of this scheme. It is important to deal with this topic for two reasons. First in
three dimensions the cost of the scheme is important due to the usage of large meshes needed
for real life applications. Then, we think that, today, it is delusional to start the development
of a numerical method that cannot handle the massively parallel computational trend which is
happening in the world of High Performance Computing (HPC). Finally, the efficiency of the
parallel implementation is discussed and the robustness and accuracy of the numerical scheme
is studied with the help of numerous test cases.

In Chapter 2, we present the construction of a Cell-Centered Finite Volume scheme for solv-
ing tensorial diffusion on unstructured meshes. This tensorial diffusion equation corresponds
to the viscous fluxes contained in the momentum equation of the compressible Navier-Stokes
equations. The space discretization of this equation is presented as an extension to tensorial
diffusion of the CCLAD scheme explained in Chapter 1. However, the construction of this
scheme is not straightforward. After detailing the properties of the constitutive law, we remark
that we have to introduce a divergence free term, following the work of Arnold [16], in order
to renders it invertible over the space of generic second-order tensors. The invertibility of the
constitutive law is an essential property for the construction of the numerical scheme. The
CCLAD methodology is then successfully applied to this modified constitutive law, and allows
us to build our numerical scheme. The accuracy and robustness are this numerical scheme is
then assessed on a variety of numerical test cases.

Finally, Chapter 3 focuses on Computational Fluid Dynamics (CFD). We start by giving a
description of the compressible Navier-Stokes equations and its properties. Then, we consider
the specific case of a non viscous non heat conducting fluid, which leads us to write the Euler

8

equations. The properties of these equations are also discussed. We continue by presenting the
construction of a Cell-Centered Finite Volume scheme to solve the Euler equations. We use
the classical MUSCL approach along with the use of approximate Riemann solvers to build a
second-order space discretization of these equations. Explicit and implicit time discretization
are explained. This classical approach, serves as the foundation for the construction of our Cell-
Centered Finite Volume scheme which solves the Navier-Stokes equations. The novelty of this
scheme lies in the utilization of the numerical schemes developed in Chapter 1 and 2 in order
to discretize the viscous terms of the equations. The accuracy and robustness of this numerical
scheme are then assessed through the comparison between exact solutions or computational
codes from NASA [1] on various validation tests cases.

A part of our work has been presented in two international conferences and led to the pub-
lication of one paper in an international journal. Another paper, devoted to the construction
of a Cell-Centered Finite Volume scheme for the numerical simulation of the Navier-Stokes
equations on unstructured grids, is currently in preparation.

Oral communications

• A second-order cell-centered finite volume scheme for anisotropic diffusion on three-dimensional
unstructured meshes. European Congress on Computational Methods in Applied Sciences
and Engineering (ECCOMAS 2012), September 10-14, 2012, Vienna, Austria.

• A Finite Volume scheme on moving meshes for solving anisotropic diffusion with phase
change. Young Investigators Conference (YIC 2013), September 2-6, 2013, Talence,
France.

Publications

• P. Jacq, P.-H. Maire and R. Abgrall. A Nominally Second-Order Cell-Centered finite vol-
ume scheme for simulating three-dimensional anisotropic diffusion equations on unstruc-
tured grids. Communications in Computational Physics, Volume 16 (2014), pp. 841-891.

9

10

Chapter 1

A Finite Volume scheme for solving

anisotropic diffusion on unstructured

grids

In this chapter, we describe a finite volume scheme to solve anisotropic diffusion equations on
unstructured grids. This scheme called CCLAD for Cell-Centered LAgrangian Diffusion, was
initially presented by Maire and Breil in [32] and [90]. It was developed to be used in the
context of heat transfer within laser-heated plasma flows such as those obtained in the domain
of direct drive Inertial Confinement Fusion [17]. We will show that this scheme is also well
suited for other applications such as the numerical simulation of atmospheric reentry flows.
Here, we propose not only a three-dimensional unstructured extension of this scheme but also a
massively parallel implementation, which aims at dealing with real life applications. Moreover,
we analyze the performances and the efficiency of this parallel algorithm.
We recall that we aim at solving the heat transfer occurring in the thermal protection system
of a reentry vehicle. The thermal protection system consists of several distinct materials with
discontinuous and possibly anisotropic conductivity tensors. Our scheme needs to be able to
accurately take into account the interfaces between the different materials. Furthermore the
geometry of such systems can by extremely complicated. These geometrical complexities can
be efficiently treated by employing unstructured grids. This leads to the following requirements
related to the diffusion scheme under consideration:

• It should be a finite volume scheme where the primary unknown, i.e., the temperature is
located at the cell center. Therefore the interfaces of the mesh cells match the interfaces
of the materials.

• It should be a sufficiently accurate and robust scheme to cope with unstructured grids.
Therefore we could handle complex geometries.

Before describing the main features of our finite volume scheme, let us briefly give an overview of
the existing cell-centered diffusion scheme on unstructured grids. For a more detailed overview
of the existing methods, the interested reader, should refer for instance to [89].
The simpler cell-centered finite volume is the so-called two-point flux approximation wherein
the normal component of the heat flux at a cell interface is computed using the finite difference
of the adjacent temperatures. It is well known that this method is consistent if and only
if the computational grid is orthogonal with respect to the metrics induced by the symmetric
positive definite conductivity tensor. This restriction renders this method inoperative for solving
anisotropic diffusion problems on unstructured grids or distorted grids. It has motivated the

11

work of Aavatsmark and his co-authors to develop a class of finite volume schemes based on
multi-point flux approximations (MPFA) for solving the elliptic flow equation encountered in
the context of reservoir simulation, refer to [3, 4]. In this method, the flux is approximated by
a multi-point expression based on transmissibility coefficients. These coefficients are computed
using the point-wise continuity of the normal flux and the temperature across cell interfaces.
The link between lowest-order mixed finite element and multi-point finite volume methods on
simplicial meshes is investigated in [133]. The class of MPFA methods is characterized by cell-
centered unknowns and a local stencil. The global diffusion matrix corresponding to this type
of schemes on general 3D unstructured grids is in general non-symmetric. There are many
variants of the MPFA methods which differ in the choices of geometrical points and control
volumes employed to derive the multi-point flux approximation. For more details about this
method and its properties, the interested reader might refer to [5, 54, 6, 98] and the references
therein. It is also worth mentioning that the theoretical analysis of the MPFA O scheme for
heterogeneous anisotropic diffusion problems on general meshes have been performed in [13].
In this paper, the introduction of an hybrid discrete variational formulation and of a sufficient
local condition for coercivity, depending on the grid and on the conductivity tensor, allows to
prove the convergence of the proposed numerical method.

The mimetic finite difference (MFD) methodology is an interesting alternative approach for
solving anisotropic diffusion equations on general unstructured grids. This method mimics the
essential underlying properties of the original continuum differential operators such as conser-
vation laws, solution symmetries and the fundamental identities of vector and tensor calculus,
refer to [114, 115, 73, 72, 84]. More precisely, the discrete flux operator is the negative adjoint
of the discrete divergence in an inner scalar product weighted by the inverse of the conductivity
tensor. The classical MFD methods employ one degree of freedom per element to approximate
the temperature and one degree of freedom per mesh face to approximate the normal com-
ponent of the heat flux. The continuity of temperature and of the normal component of the
heat flux across cell interfaces allows to assemble a global linear system satisfied by face-based
temperatures unknowns. The corresponding matrix is symmetric positive definite. This type
of discretization is usually second-order accurate for the temperature unknown on unstructured
polyhedral grids having degenerate and non convex polyhedra with flat faces [85]. In the case
of grids with strongly curved faces the introduction of more than one flux per curved face is
required to get the optimal convergence rate [33].

Another class of finite volume schemes for solving diffusion equations, with full tensor coeffi-
cients, on general grids has been initially proposed in [62] and generalized in [63]. This approach
has been termed discrete duality finite volume (DDVF) [42] since it arises from the construction
of discrete analogs of the divergence and flux operators which fulfill the discrete counterpart
of vector calculus identities. The DDFV method requires to solve the diffusion equation not
only over the primal grid but also over a dual grid. Namely, there are both cell-centered and
vertex-centered unknowns. In addition, the construction of the dual grid in the case of a three-
dimensional geometry is not unique. There are at least three different choices which lead to
different variants of the three-dimensional DDFV schemes, see [64] and the references therein.
The DDFV method described in [64] is characterized by a symmetric definite positive matrix
and exhibits a numerical second-order accuracy for the temperature. Compared to a classical
cell-centered finite volume scheme, this DDFV discretization necessitates twice as much degrees
of freedom over hexahedral grids [65]. Let us point out that the use of such a method might be
difficult in the perspective of solving coupled problems such as heat transfer and fluid flow.

The main feature of our finite volume scheme relies on the partition of each polyhedral cell of the
computational domain into sub-cells and on the partition of each cell face into sub-faces, which
are composed of triangular faces. There is one degree of freedom per element to approximate

12

the temperature unknown and one degree of freedom per sub-face to approximate the normal
component of the heat flux across cell interfaces. For each cell, the sub-face normal fluxes
impinging at a vertex are expressed with respect to the difference between sub-face temperatures
and the cell-centered temperature. This approximation of the sub-face fluxes results from a
local variational formulation written over each sub-cell. The sub-face temperatures, which are
auxiliary unknowns, are locally eliminated by invoking the continuity of the temperature and
the normal component of the heat flux across each cell interface. This elimination procedure
of the sub-face temperatures in terms of the cell-centered temperatures surrounding a vertex
is achieved by solving a local linear system of reasonable size at each vertex. Gathering the
contribution of each vertex allows to construct easily the global sparse diffusion matrix. The
node-based construction of our scheme provides a natural treatment of the boundary conditions.
The scheme stencil is local and for a given cell consists of the cell itself and its node-based
neighbors. Since the constitutive law of the heat flux has been approximated by means of a
local variational formulation, the corresponding discrete diffusion operator inherits the positive
definiteness property of the conductivity tensor. In addition, the semi-discrete version of the
scheme is stable with respect to the discrete L2 norm. For tetrahedral grids, the scheme preserves
linear solutions with respect to the space variable and is characterized by a numerical second-
order convergence rate for the temperature. For smooth distorted hexahedral grids its exhibits
an accuracy which is almost of second-order. Let us point out that our formulation is similar
to the local MFD discretization developed in [86] for simplicial grids.

The remainder of this chapter is organized as follows. In Section 1.1, we first give the problem
statement introducing the governing equations, the notation and assumptions for deriving our
finite volume scheme. This is followed by Section 1.2, which is devoted to the space discretization
of the scheme in two dimension of space as presented in [89]. In fact this section recalls the space
discretization of the original CCLAD scheme which will be the cornerstone of this chapter. In
this section, we derive the sub-face fluxes approximation by means of a sub-cell-based variational
formulation. We also describe the elimination of the sub-face temperatures in terms of the
cell-centered unknowns to achieve the construction of the global discrete diffusion operator. In
Section 1.3, we will show a first extension of the scheme that was developed in this thesis, namely
the extension to three-dimensions of the scheme. This extension is not trivial, the geometry
of the cells are more complex and many hypothesis used in the two dimensional schemes are
not valid in three dimensions. We will show how to overcome these issues to build the scheme
in three dimensions. Section 1.4 is devoted to the presentation of the main properties of the
semi-discrete scheme and the boundary conditions implementation. The time discretization is
briefly developed in Section 1.5. We describe an other extension developed in this thesis, the
parallel implementation of the scheme, and its efficiency analysis in Section 1.6. Finally, the
robustness and the accuracy of the scheme are assessed using various representative test cases
in Section 1.8.

1.1 Governing equations

Our motivation is to describe a finite volume scheme that solves the anisotropic heat conduc-
tion equation on d-dimensional unstructured grids. Let us introduce the governing equations,
notations and the assumptions required for the present work. Let D be an open set of the
d-dimensional space Rd. Let x denotes the position vector of an arbitrary point inside the do-
main D and t > 0 the time. We aim at constructing a numerical scheme to solve the following

13

initial-boundary-value problem for the temperature T = T (x, t)

ρCv
∂T

∂t
+∇ · q = ρr, (x, t) ∈ D × [0,T] (1.1a)

T (x, 0) = T 0(x), x ∈ D (1.1b)

T (x, t) = T ∗(x, t), x ∈ ∂DD (1.1c)

q(x, t) · n = q∗N (x, t), x ∈ ∂DN (1.1d)

αT (x, t) + βq(x, t) · n = q∗R(x, t). x ∈ ∂DR (1.1e)

Here, T > 0 denotes the final time, ρ is a positive real valued function, which stands for the
mass density of the material. The source term, r, corresponds to the specific heat supplied to
the material and Cv denotes the heat capacity at constant volume. We assume that ρ, Cv, and
r are known functions. The initial condition is characterized by the initial temperature field T 0.
Three types of boundary conditions are considered: Dirichlet, Neumann and Robin boundary
conditions. They consist in specifying respectively the temperature, the flux and a combination
of them. We introduce the partition ∂D = ∂DD∪∂DN ∪∂DR of the boundary domain. Here, T ∗

and q∗N denote respectively the prescribed temperature and flux for the Dirichlet and Neumann
boundary conditions, whereas α, β and q∗R are the parameters of the Robin boundary condition.
The vector q denotes the heat flux and n is the outward unit normal to the boundary of the
domain D.

Eq. (1.1a) is a parabolic partial differential equation for the temperature T , where the con-
ductive flux, q, is defined according to the Fourier law

q = −K∇T. (1.2)

The second-order tensor, K, is the conductivity tensor. It is an intrinsic property of the material
under consideration. We suppose that K is positive definite to ensure the model consistency
with the Second Law of thermodynamics, i.e. q · ∇T ≤ 0. Namely, this property ensures that
heat flux direction is opposite to temperature gradient. Let us point out that in the problems
we are considering the conductivity tensor is always symmetric positive definite, i.e., K = Kt,
where the superscript t denotes transpose.

Comment 1: The normal component of the heat flux at the interface between two distinct
materials, labelled by 1 and 2, is continuous, that is

(K∇T)1 · n12 = (K∇T)2 · n12,

where n12 is the unit normal to the interface. The temperature itself is also continuous.

In the next two sections we make the distinction between the two dimensional version and the
three dimensional version of the scheme. In the following section we recall the two-dimensional
version of the CCLAD scheme as originally presented by Breil and Maire in [90]. This sec-
tion introduces the methodology and the key concepts behind the construction of most of the
numerical schemes that will be used in this thesis.

1.2 Space discretization in two dimensions

1.2.1 Notations and assumptions

Having defined the problem we want to solve, let us introduce some notation necessary to de-
velop the discretization scheme in two dimensions of space. Let ∪cωc denotes a partition of the

14

p

p+

p−

n+
pc

n−pc

ωpc

ωc

Figure 1.1: Notation related to polygonal cell ωc and one of its sub-cell ωpc.

computational domain D into polygonal cells ωc. The counterclockwise ordered list of vertices
(points) of cell c is denoted by P(c). In addition, p being a generic point, we define its position
vector denoted as xp and the set C(p) which contains all the cells surrounding point p. Being
given p ∈ P(c), p− and p+ are the previous and next points with respect to p in the ordered
list of vertices of cell c. Let ωc be a generic polygonal cell, for each vertex p ∈ P(c), we define
the sub-cell ωpc by connecting the centroid of ωc to the midpoints of edges [p−, p] and [p, p+]
impinging at node p, refer to Figure 1.1. In two dimensions the sub-cell, as just defined, is
always a quadrilateral regardless of the type of cells that compose the underlying grid. The
boundaries of the cell ωc and the sub-cell ωpc are denoted respectively ∂ωc and ∂ωpc. Finally,
considering the intersection between the cell and sub-cell boundaries, we introduce half-edge
geometric data. As the name implies, a half-edge is a half of an edge and is constructed by
splitting an edge down its length. More precisely, we define the two half-edges related to point
p and cell c as ∂ω−

pc = ∂ωpc ∩ [p−, p] and ∂ω+
pc = ∂ωpc ∩ [p, p+]. The unit outward normal and

the length related to half-edge ∂ω±
pc are denoted respectively n±

pc and l
±
pc.

To proceed with the construction of numerical scheme, let us integrate (1.1) over ωc and make
use of the divergence formula. This leads to the weak form of the heat conduction equation

d

dt

∫

ωc

ρCvT (x, t) dv +

∫

∂ωc

q · n ds =

∫

ωc

ρr(x, t)dv, (1.3)

where n denotes the unit outward normal to ∂ωc. We shall first discretize this equation with
respect to the spatial variable x. The physical data, ρ, Cv and r are supposed to be known
functions with respect to space and time variables. We represent them using a piecewise constant
approximation over each cell ωc. The piecewise constant approximation of any variable will be
denoted using subscript c. The tensor conductivity K space approximation is also constructed
using a piecewise constant representation over each cell, which is denoted by Kc. Concerning the
unknown temperature field, the discretization method we are going to use is the finite volume
method for which the finite dimensional space to which the approximate solution belongs is also
the space of piecewise constant functions. Bearing this in mind, (1.3) rewrites

mcCvc
d

dt
Tc +

∫

∂ωc

q · n ds = mcrc, (1.4)

15

Here, mc denotes the mass of the cell, that is, mc = ρc | ωc | where | ωc | stands for the volume
of the cell. Let us point out that Tc = Tc(t) is nothing but the mean value of the temperature
over ωc

Tc(t) =
1

| ωc |

∫

ωc

T (x, t) dv.

To define completely the space discretization it remains to discretize the surface integral in the
above equation. To do so, let us introduce the following piecewise constant approximation of
the normal heat flux over each half-edges

q±pc =
1

l±pc

∫

∂ω±
pc

q · n ds. (1.5)

The scalar q±pc stands for the half-edge normal flux related to the half-edge ∂ω±
pc. Knowing that

∂ωc = ∪p∈P(c)∂ω
±
pc, the semi-discretized heat conduction equation writes as

mcCvc
d

dt
Tc +

∑

p∈P(c)

l−pcq
−
pc + l+pcq

+
pc = mcrc. (1.6)

We conclude this paragraph by introducing as auxiliary unknowns the half-edge temperatures
T±
pc defined by

T±
pc =

1

l±pc

∫

∂ω±
pc

T (x, t) ds. (1.7)

In this equation, we have also assumed a piecewise constant approximation of the temperature
field over each half-edge. These half-edge temperatures will be useful in constructing the nu-
merical approximation of the heat flux.

Thanks to Comment 1, the piecewise constant approximations of the normal heat
flux and temperature along each edge are defined such that these half-edge-based
quantities are continuous across each edge. To exhibit these continuity conditions, let us
consider two neighboring cells, denoted by subscripts c and d, which share a given edge, refer to
Figure 1.2. This edge corresponds to the segment [p, p+], where p and p+ are two consecutive
points in the counterclockwise numbering attached to cell c. It also corresponds to the segment
[r−, r], where r− and r are two consecutive points in the counterclockwise numbering attached
to cell d. Obviously, these four labels define the same edge and thus their corresponding points
coincide, i.e., p ≡ r, p+ ≡ r−. The sub-cell of cell c attached to point p ≡ r is denoted ωpc,
whereas the sub-cell of cell d attached to point r ≡ p is denoted ωrd. This double notation,
allows to define precisely the half-edge fluxes and temperatures at the half-edge corresponding
to the intersection of the two previous sub-cells. Namely, viewed from sub-cell ωpc (resp. ωrd),
the half-edge flux and temperature are denoted q+pc and T+

pc (resp. q−rd and T−
rd). Bearing this

notation in mind, continuity conditions at the half-edge (ωpc ∪ωrd) for the half-edge fluxes and
temperatures write explicitly as

q+pc + q−rd = 0, (1.8a)

T+
pc = T−

rd. (1.8b)

The continuity condition for the heat flux follows from the definition of the unit outward nor-
mals related to ωpc ∪ ωrd, i.e., n

+
pc = −n−

rd.

To achieve the space discretization of (1.6), it remains to construct a consistent approxi-

16

T+
pc = T−

rd

ωpc

p−

n−pc

r+

p+ = r−

q+pc + q−
rd

= 0

ωrd

p = r

n+
rd

n+
pcn−

rd

T+
rd

q−pc
T−pc

q+
rd

Tc

ωc Td

ωd

Figure 1.2: Continuity conditions for the half-edge fluxes and temperatures at a half-edge shared
by two sub-cells attached to the same point. Labels c and d denote the indices of two neighboring
cells. Labels p and r denote the indices of the same point relatively to the local numbering of
points in cell c and d. The neighboring sub-cells are denoted by ωpc and ωrd. The half-edge
fluxes, q±pc, q

±
rd and temperatures, T±

cp, T
±
rd are displayed using blue color.

mation of the half-edge normal flux, that is, to define a numerical half-edge-based flux function
h±pc such that

q−pc = h−pc(T
−
pc − Tc, T+

pc − Tc), q+pc = h+pc(T
−
pc − Tc, T+

pc − Tc). (1.9)

Here, h±pc denotes a real valued function which is continuous with respect to its arguments. Let
us note that we have expressed this function in terms of the temperature difference Tc − T±

pc

since the heat flux is proportional to the temperature gradient. The next steps in the design of
our finite volume scheme are the following:

• Construction of the half-edge numerical fluxes by means of a local variational formu-
lation over the sub-cell.

• Elimination of the half-edge temperatures through the use of the continuity condition
(1.8) across sub-cell interface.

These tasks are the main topics of the next section.

Before proceeding any further, we start by giving a useful and classical result concerning the
representation of a vector in terms of its normal components. This result leads to the expres-
sion of the standard inner product of two vectors, which will be one the tools utilized to derive
the sub-cell variational formulation. Here, we recall briefly the methodology which has been
thoroughly exposed by Shashkov in [113, 93].

1.2.2 Expression of a vector in terms of its normal components

Let φ be an arbitrary vector of the two-dimensional space R2 and φpc its piecewise constant
approximation over the sub-cell ωpc. Let φ±pc be the half-edge normal components of φpc, that
is,

φpc · n−
pc = φ−pc,

φpc · n+
pc = φ+pc.

17

Introducing the corner matrix Jpc = [n−
pc,n

+
pc], the above 2× 2 linear system rewrites

Jt
pcφ =

(
φ−pc
φ+pc

)
.

Provided that n−
pc and n+

pc are not collinear, the above system has always a unique solution
written under the form

φpc = J−t
pc

(
φ−pc
φ+pc

)
. (1.10)

This equation allows to express any vector in terms of its normal components on two non-
collinear unit vectors. This representation allows to compute the inner product of two vectors
φpc and ψpc as follows

φpc ·ψpc = (Jt
pcJpc)

−1

(
ψ−
pc

ψ+
pc

)
·
(
φ−pc
φ+pc

)
. (1.11)

The 2× 2 matrix Hpc = Jt
pcJpc writes

Hpc =

(
n−
pc · n−

pc n−
pc · n+

pc

n+
pc · n−

pc n+
pc · n+

pc

)
=

(
1 − cos θpc

− cos θpc 1

)
, (1.12)

where θpc denotes the measure of the angle between the two half-edges of sub-cell ωpc impinging
at point p, refer to Figure 1.3. This matrix admits an inverse provided that θpc 6= 2kπ, where
k is an integer. It means that we can not deal with cells having straight angles. Under this
condition, H−1

pc writes

H
−1
pc =

1

sin2 θpc

(
1 cos θpc

cos θpc 1

)
.

This matrix, which is symmetric definite positive, represents the local metric tensor associated
to the sub-cell ωpc. Let us remark that we have recovered exactly the expressions initially
derived in [93].

1.2.3 Sub-cell-based variational formulation

We construct an approximation of the half-edge fluxes by means of a local variational formula-
tion written over the sub-cell ωpc. Contrary to the classical cell-based variational formulation
used in the context of Mimetic Finite Difference Method [72, 93, 85], the present sub-cell-based
variational formulation leads to a local explicit expression of the half-edge fluxes in terms
of the half-edge temperatures and the mean cell temperature. The local and explicit feature of
the half-edge fluxes expression is of great importance, since it allows to construct a numerical
scheme with only one unknown per cell.

Our starting point to derive the sub-cell based variational formulation consists in writing the
partial differential equation satisfied by the heat flux. From the heat flux definition (1.2), it
follows that q satisfies

K−1q +∇T = 0. (1.13)

Let us point out that the present approach is strongly linked to the mixed formulation utilized
in the context of mixed finite element discretization [7, 86, 119]. Dot-multiplying the above
equation by an arbitrary vector φ ∈ D and integrating over the cell ωpc yields

∫

ωpc

φ · K−1q dv = −
∫

ωpc

φ · ∇T dv, ∀φ ∈ D. (1.14)

18

Integrating by part the right-hand side and applying the divergence formula lead to the following
variational formulation

∫

ωpc

φ · K−1q dv =

∫

ωpc

T∇ · φ dv −
∫

∂ωpc

Tφ · n ds, ∀φ ∈ D. (1.15)

This sub-cell-based variational formulation is the cornerstone to construct a local and explicit
expression of the half-edge fluxes. Replacing T by its piecewise constant approximation, Tc, in
the first integral of the right-hand side and applying the divergence formula to the remaining
volume integral leads to

∫

ωpc

φ · K−1q dv = Tc

∫

∂ωpc

φ · n ds−
∫

∂ωpc

Tφ · n ds, ∀φ ∈ D. (1.16)

Observing that the sub-cell boundary, ∂ωpc, decomposes into the inner part ∂ωpc = ∂ωpc ∩ ωc

and the outer part ∂ωpc = ∂ωpc ∩ ∂ωc allows to split the surface integrals of the right-hand side
of (1.16) as follows
∫

ωpc

φ ·K−1q dv = Tc

∫

∂ωpc

φ ·n ds+Tc

∫

∂ωpc

φ ·n ds−
∫

∂ωpc

Tφ ·n ds−
∫

∂ωpc

Tφ ·n ds. (1.17)

We replace T by its piecewise constant approximation, Tc, in the fourth surface integral of the
right-hand side, then noticing that the second integral is equal to the fourth one, transforms
Eq. (1.17) into ∫

ωpc

φ · K−1q dv = Tc

∫

∂ωpc

φ · n ds−
∫

∂ωpc

Tφ · n ds. (1.18)

Comment 2: A this point it is interesting to remark that the above sub-cell-based formulation
is a sufficient condition to recover the classical cell-based variational formulation. This is due
to the fact that the set of sub-cells is a partition of the cell, i.e.,

ωc =
⋃

p∈P(c)

ωpc, and ∂ωc =
⋃

p∈P(c)

∂ωpc.

Thus, summing (1.18) over all the sub-cells of ωc leads to
∫

ωc

φ · K−1q dv = Tc

∫

∂ωc

φ · n ds−
∫

∂ωc

Tφ · n ds.

This last equation corresponds to the cell-based variational formulation of the partial differential
equation (1.13). This form is used in the context of Mimetic Finite Difference Method [72] to
obtain a discretization of the heat flux. More precisely, it leads to a linear system satisfied by
the half-edge fluxes. This results in a non explicit expression of the half-edge flux with respect to
the half-edge temperatures and the cell-centered temperature [85], which leads to a finite volume
discretization characterized by face-based and cell-based unknowns. In contrast to this approach,
the sub-cell-based variational formulation yields a finite volume discretization with one unknown
per cell.

Returning to the sub-cell based variational formulation, we discretize the right-hand side of
(1.18) by introducing the half-edge normal components of φ and the piecewise constant approx-
imation of the half-edge temperatures as follows

∫

ωpc

φ · K−1q dv = −[l−pc(T−
pc − Tc)φ−pc + l+pc(T

+
pc − Tc)φ+pc]. (1.19)

19

q+pc

T+
pc

p

Tc

ωpc

n−pc

n+
pc

p+

T−pcq−pc

ωc

θpc

p−

Figure 1.3: Fragment of a polygonal cell ωc. Notation for the sub-cell ωpc: The half-edge fluxes,
q±pc, and temperatures, T±

pc are displayed using blue color.

Assuming a piecewise constant representation of the test function allows to compute the volume
integral in the left-hand side thanks to the quadrature rule

∫

ωpc

φ · K−1q dv = wpcφpc · K−1
c qpc, (1.20)

Here, Kc denotes the piecewise constant approximation of the conductivity tensor and φpc, qpc
are the piecewise constant approximations of vectors φ and q, refer to Figure 1.3. In addition,
wpc denotes some positive corner volume related to sub-cell ωpc, which will be determined later.

Comment 3: Note that the corner volumes associated to the same cell ωc must satisfy the
consistency condition ∑

p∈P(c)

wpc =| ωc | . (1.21)

Namely, the corner volumes of a cell sums to the volume of the cell. This is the minimal
requirement to ensure that constant functions are exactly integrated using the above quadrature
rule.

Now, combining (1.20) and (1.19) and using the expression of the vectors q and φ in terms of
their half-edge normal components leads to the following variational formulation

wpc(J
t
pcKcJpc)

−1

(
q−pc
q+pc

)
·
(
φ−pc
φ+pc

)
= −

[
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

]
·
(
φ−pc
φ+pc

)
. (1.22)

Knowing that this variational formulation must hold for any vector φpc, this implies

(
q−pc
q+pc

)
= − 1

wpc
(Jt

pcKcJpc)

[
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

]
. (1.23)

This equation constitutes the approximation of the half-edge normal fluxes over a sub-cell. This
local approximation is coherent with expression of the constitutive law (1.2) in the sense that the
numerical approximation of the heat flux is equal to a tensor times a numerical approximation

20

of the temperature gradient. This tensor can be viewed as an effective conductivity tensor
associated to the sub-cell ωpc. Thus, it is natural to set

Kpc = Jt
pcKcJpc. (1.24)

Let us emphasize that this corner tensor inherits all the properties of the conductivity tensor
Kc. Namely, Kc being positive definite, Kpc is also positive definite. This comes from the fact
that

Kpcφ · φ = Kc(Jpcφ) · (Jpcφ), ∀φ ∈ R2.

Using a similar argument, note that if Kc is symmetric, Kpc is also symmetric. Recalling that
Jpc = [n−

pc,n
+
pc], we readily obtain the expression of the corner tensor Kpc in terms of the unit

normal n±
pc

Kpc =

(
Kcn

−
pc · n−

pc Kcn
+
pc · n−

pc

Kcn
−
pc · n+

pc Kcn
+
pc · n+

pc

)
. (1.25)

Let us remark that in the isotropic case, i.e, Kc = κcId, the corner tensor collapses to

Kpc = κcHpc, (1.26)

where κc denotes the piecewise constant scalar conductivity over cell ωc and Hpc is the second-
order tensor defined by (1.12).

We conclude by claiming that a sub-cell-based variational formulation has allowed to construct
the following numerical approximation of the half-edge normal fluxes

(
q−pc
q+pc

)
= − 1

wpc
Kpc

[
l−pc(T

−
pc − Tc)

l+pc(T
+
pc − Tc)

]
. (1.27)

Here, wpc is a positive volume weight, which will be determined later, and the corner conduc-
tivity tensor, Kpc is expressed by (1.25).

Comment 4: It is interesting to remark that the corner tensor Kpc is a linear function with
respect to the piecewise constant approximation of the conductivity tensor Kc. This follows
directly from (1.24). In addition, the corner tensor corresponding to the transpose of Kc is the
transpose of Kpc, i.e., Kpc(K

t
c) = Kt

pc(Kc).

1.2.4 Elimination of the half-edge temperatures

From (1.27), it appears that the numerical approximation of the half-edge fluxes at a corner
depends on the difference between the mean cell temperature and the half-edge temperatures.
The mean cell temperature is the primary unknown whereas the half-edge temperatures are
auxiliary unknowns, which can be eliminated by means of continuity argument (1.8a). Namely,
we use the fact that the half-edge normal fluxes are continuous across each half-edges impinging
at a given point. This local elimination procedure, which will be described below, yields a
linear system satisfied by the half-edge temperatures. We will show that this system admits
always a unique solution which allows to express the half-edge temperatures in terms of the
mean temperatures of the cells surrounding the point under consideration. Therefore, this local
elimination procedure results in a finite volume discrete scheme with one unknown per cell.

21

c + 1

c

c− 1

Tc

ωp,c−1

ωc−1

Tc−1

ωc

nc
c

nc−1
c−1

ωpc

nc−1
cT c

T c+1

T c−1

nc
c+1

p

Figure 1.4: Notation for sub-cells surrounding point p.

Local notation around a point

To derive the local elimination procedure, we introduce some convenient notation. Let p denotes
a generic point which is not located on the boundary ∂D. The treatment of boundary points is
postponed to Section 1.4.7, which is devoted to boundary conditions implementation. Let C(p)
be the set of cells that surround point p. The edges impinging at point p are labelled using the
subscript c ranging from 1 to Cp, where Cp denotes the total number of cells surrounding point
p. The cell (sub-cell) numbering follows the edge numbering, that is, cell ωc (sub-cell ωpc) is
located between edges c and c + 1, refer to Figure 1.4. The unit outward normal to cell ωc at
edge c is denoted by nc

c whereas the unit outward normal to cell ωc at edge c+ 1 is denoted by
nc+1
c . Assuming the continuity of the half-edge temperatures leads to denote by T c the unique

half-edge temperature of the half-edge c impinging at point p. Note that we have omitted the
dependency on point p in the indexing each time this is possible to avoid too heavy notion.
With this notation, the expression of the half-edge fluxes (1.27) turns into

(
qcc
qcc+1

)
= − 1

wpc
Kpc

[
lc(T c − Tc)

lc+1(T c+1 − Tc)

]
, ∀c ∈ C(p). (1.28)

Here, qcc (resp. q
c
c+1) denotes the half-edge normal flux at edge c (resp. c+1) viewed from cell c.

In addition lc denotes the half of the length of edge c. In these equations, we assume a periodic
numbering around the point p. According to (1.25), the sub-cell conductivity tensor is defined
as

Kpc =

(
Kcn

c
c · nc

c Kcn
c
c+1 · nc

c

Kcn
c
c · nc

c+1 Kcn
c
c+1 · nc

c+1

)
, ∀c ∈ C(p), (1.29)

where Kc is the piecewise constant approximation of the conductivity tensor in cell c. Combining
(1.28) and (1.29) yields the explicit expressions

qcc = −αc[lc(Kcn
c
c · nc

c)(T c − Tc) + lc+1(Kcn
c
c+1 · nc

c)(T c+1 − Tc)], (1.30a)

qcc+1 = −αc[lc(Kcn
c
c · nc

c+1)(T c − Tc) + lc+1(Kcn
c
c+1 · nc

c+1)(T c+1 − Tc)], (1.30b)

22

where we have introduced the inverse of the volume weight setting αc =
1

wpc
. Shifting index c,

i.e., c→ c− 1, in (1.30b) leads to the following expression for the half-edge normal flux at edge
c viewed from cell c− 1

qc−1
c = −αc−1[lc−1(Kc−1n

c−1
c−1 · nc−1

c)(T c−1 − Tc−1) + lc(Kc−1n
c−1
c · nc−1

c)(T c − Tc−1)]. (1.31)

Linear system satisfied by the half-edge temperatures

Bearing this in mind, we are now in position to proceed with the elimination of the half-edge
temperatures by writing the continuity of the half-edge normal fluxes at each edge c. This
continuity condition at edge c reads as

lcq
c−1
c + lcq

c
c = 0, ∀c ∈ C(p). (1.32)

Let us remark that this continuity condition provides Cp equations for the Cp auxiliary unknowns

T c. Substituting (1.31) and (1.30a) into the continuity condition yields

αc−1lc−1lc(Kc−1n
c−1
c−1 · n

c−1
c)T c−1 + [αc−1l

2
c(Kc−1n

c−1
c · n

c−1
c) + αcl

2
c(Kcn

c
c · n

c
c)]T c + αclclc+1(Kcn

c
c+1 · n

c
c)T c+1

= αc−1lc[lc−1(Kc−1n
c−1
c−1 · n

c−1
c) + lc(Kc−1n

c−1
c · n

c−1
c)]Tc−1 + αclc[lc(Kcn

c
c · n

c
c) + lc+1(Kcn

c
c+1 · n

c
c)]Tc.

To write this equation under a more concise form, let us introduce T = (T1, . . . , TCp)
t as the

vector of the cell-centered temperatures around point p and T = (T 1, . . . , T Cp)
t as the vector of

the half-edge temperatures around point p. The continuity condition (1.32) amounts to write
that T satisfies the following Cp × Cp linear system

NT = ST . (1.33)

Let us remark that N is a tridiagonal cyclic matrix. This cyclic form is natural consequence
of the periodic numbering we have used in solving continuity equations (1.32). The non-zero
terms corresponding to the cth row of this matrix write as





Nc,c−1 = αc−1lc−1lc(Kc−1n
c−1
c−1 · nc−1

c),

Nc,c = αc−1l
2
c (Kc−1n

c−1
c · nc−1

c) + αcl
2
c (Kcn

c
c · nc

c),

Nc,c+1 = αclclc+1(Kcn
c
c+1 · nc

c).

(1.34)

From the first equation it follows that

Nc+1,c = αclclc+1(Kcn
c
c · nc

c+1).

The comparison of this term with Nc,c+1 shows that N is symmetric if and only if the conductivity
tensor, Kc is also symmetric. Regarding S, it is a bidiagonal cyclic matrix, the non-zero terms
corresponding to the cth row are:

{
Sc,c−1 = αc−1lc[lc−1(Kc−1n

c−1
c−1 · nc−1

c) + lc(Kc−1n
c−1
c · nc−1

c)],

Sc,c = αclc[lc(Kcn
c
c · nc

c) + lc+1(Kcn
c
c+1 · nc

c)].
(1.35)

Comment 5: At that point, we have nearly all the information needed to construct the numeri-
cal scheme. It remains to present how the boundary conditions are introduced in the formulation.
This is explained in section 1.4.7. Solving the system (1.33) allows us to express the half-edge
fluxes in terms of cell temperatures. We can then build the global linear system by summing all
the contributions of the half-edge fluxes around each nodes. Before explaining how to proceed,
we show how to build the three-dimensional version of these linear systems.

23

1.3 Space discretization in three dimensions

We now present the space discretization in three dimensions. The methodology used is exactly
the same as the one used in the previous section. We will focus on the specific ingredients that
need to be introduced in order to deal with three dimensional geometries.

1.3.1 Additional notations

Let us introduce some additional notations that will be useful to develop the space discretiza-
tion of problem (1.1) in a three-dimensional geometry. The domain D is now paved with non
overlapping polyhedral cells, i.e., D = ∪cωc, where ωc denotes a generic polyhedral cell. In
two-dimensions the list of the counterclockwise ordered vertices belonging to a cell is sufficient
to fully define a cell. Unfortunately this is not the case anymore in three-dimensional geometry.
To complete the cell geometry description, we introduce the set F(c) as being the list of faces
of cell c and the set F(p, c), which is the list of faces of cell c impinging at point p. We observe
that the former set is linked to the latter by F(c) = ∪p∈P(c)F(p, c). A generic face is denoted

either by the index f or by ∂ωf
c .

Here, we consider a mesh composed of polyhedral cells. Namely, the term polyhedral cell
stands for a volume enclosed by an arbitrary number of faces, each determined by an arbitrary
number (3 or more) of vertices. If a face has four or more vertices, they can be non-coplanar,
thus the face is not a plane and it is difficult to define its unit outward normal. To overcome
this problem, we employ the decomposition of a polyhedral cell into elementary tetrahedra, as
introduced by Burton in [35], to discretize the conservation laws of Lagrangian hydrodynam-
ics onto polyhedral grids. According to Burton’s terminology, these elementary tetrahedra are
called iotas, since ι is the smallest letter in the Greek alphabet. Being given the polyhedral cell
c, we consider the vertex p ∈ P(c) which belongs to the face f ∈ F(c) and the edge e, refer
to Figure 1.5. The iota tetrahedron, Ipfe, related to point p, face f and edge e, is constructed
by connecting point p, the centroid of cell c, the centroid of face f and the midpoint of edge
e as displayed in Figure 1.5. Further, we denote by Ipfec, the outward normal vector to the
triangular face obtained by connecting the point p to the midpoint of edge e and the centroid
of face f . Let us point out that | Ipfec | is the area of the aforementioned triangular face.

We can define the decomposition of the polyhedral cell, ωc, into sub-cells. The sub-cell,
ωpc, related to point p is obtained by gathering the iotas attached to point p as follows

ωpc =
⋃

f∈F(p,c)

⋃

e∈E(p,f)

Ipfe,

where E(p, f) is the set of edges of face f impinging at point p. For the hexahedral cell displayed
in Figure 1.5, the sub-cell ωpc is made of 6 iotas since there are 3 faces impinging at point p
and knowing that for each face there are two edges connected to point p. The volume of the
sub-cell ωpc is given by

| ωpc |=
∑

f∈F(p,c)

∑

e∈E(p,f)

| Ipfe | .

It is worth mentioning that the set of sub-cells, {ωpc, p ∈ P(c)}, is a partition of the polyhedral
cell c and thus the cell volume is defined by

| ωc |=
∑

p∈P(c)

| ωpc | .

24

c

p

e

f

Ipfe Ipfec

Figure 1.5: Definition of the iota cell Ipfe and the outward normal vector Ipfec related to point
p, face f and edge e in the hexahedral cell c.

The sub-face related to point p and face f is denoted by ∂ωf
pc and defined as ∂ωf

pc = ωpc ∩ ∂ωf
c .

It consists of the union of the two outer triangular faces attached to the two iotas related to
point p and face f , refer to Figure 1.6. The area and the unit outward normal corresponding
to the sub-face ∂ωf

pc are given by

Af
pc =|

∑

e∈E(p,f)

Ipfec |, nf
pc =

1

A
f
pc

∑

e∈E(p,f)

Ipfec.

Let us point out that the set of sub-faces, {∂ωf
pc, p ∈ P(c, f)}, where, P(c, f) is the set of

points of cell c lying on face f , is a partition of the generic face f .

Now, we are in position to construct the space discretization of our diffusion problem. We
recall that Eq. (1.4) still holds using the notations introduced in section 1.2.1, namely

mcCvc
d

dt
Tc +

∫

∂ωc

q · nds = mcrc,

To achieve the first step of the space discretization of (1.4), it remains to discretize the surface
integral of the heat flux employing the partition of faces into sub-faces.

Knowing that ∂ωc = ∪f∈F(c)∂ω
f
c the surface integral of the heat flux reads

∫

∂ωc

q · n ds =
∑

f∈F(c)

∫

∂ωf
c

q · n ds.

Now, recalling the partition of face f into sub-cells, i.e., ∂ωf
c = ∪p∈P(c,f)ω

f
pc, leads to write the

above surface integral as

∫

∂ωc

q · n ds =
∑

f∈F(c)

∑

p∈P(c,f)

∫

ωf
pc

q · n ds

=
∑

p∈P(c)

∑

f∈F(p,c)

∫

ωf
pc

q · n ds.

25

p

f

e1

e2

Ipfe2

Ipfe1

Figure 1.6: Generic quadrilateral face, f , related to the hexahedral cell ωc. The sub-face, ∂ωf
pc,

related to point p and face f is obtained by gathering the triangular faces corresponding to the
iotas Ipfe1 and Ipfe2 .

Here, we have interchanged the order of the double summation to finally get a global summation
over the points of cell c and a local summation over the faces impinging at point p. Let us denote
by qfpc the piecewise constant representation of the normal component of the heat flux over sub-

face ∂ωf
pc

qfpc =
1

A
f
pc

∫

∂ωf
pc

q · n ds. (1.36)

Gathering the above results, Eq. (1.4) turns into

mcCvc
d

dt
Tc +

∑

p∈P(c)

∑

f∈F(p,c)

Af
pcq

f
pc = mcrc. (1.37)

To conclude this paragraph we introduce the sub-face temperature, which will be useful in the
description of our scheme as auxiliary unknown

T f
pc =

1

A
f
pc

∫

∂ωf
pc

T (x, t) ds. (1.38)

In writing this equation, we also assumed a piecewise constant approximation of the tempera-
ture field over each sub-face.

Let us write down the continuity conditions, in terms of sub-face fluxes and sub-face tem-
peratures. To this end, we consider two neighboring cells denoted by c and d sharing a face and
a point. The face is denoted by f in the local list of faces of cell c and g in the local list of faces
in cell d. Regarding the common point, it is denoted by p in the local numbering of cell c and
r in the local numbering of cell d. In what follows, we shall consider the sub-cells ωpc and ωrd

sharing the sub-face ∂ωf
pc ≡ ∂ω

g
rd, which is displayed in Figure 1.7. For sake of simplicity, we

have only plotted the common sub-face shared by the two sub-cells ωpc and ωrd. When viewed

26

p ≡ r

ωrd

ωd

∂ωf
pc ≡ ∂ω

g
rd

f ≡ g

ωpc

ωc T f
pc = T

g
rd

n
g
rd nf

pc

qfpc + q
g
rd = 0

Figure 1.7: Continuity conditions for the sub-face fluxes and temperature on a sub-face shared
by two sub-cells attached to the same point. Fragment of a polyhedral grid: quadrilateral face
shared by hexahedral cells c and d. Labels p and r denote the indices of the same point relatively
to the local numbering of points in cell c and d. The neighboring sub-cells are denoted by ωpc

and ωrd. They share the sub-face ∂ωf
pc ≡ ∂ωg

rd, which has been colored in blue.

from sub-cell ωpc the sub-face temperature and the sub-face flux are denoted by T f
pc and q

f
pc,

whereas viewed from sub-cell ωrd they are denoted respectively by T g
rd and qgrd. Using the above

notations and recalling that the unit outward normals satisfy nf
pc = −ng

rd leads to write the
continuity conditions for the temperatures and the heat flux as

Af
pcq

f
pc +A

g
rdq

g
rd = 0, (1.39a)

T f
pc = T

g
rd. (1.39b)

To achieve the space discretization of (1.37), it remains to construct an approximation of the

sub-face normal flux, that is, to define a numeric sub-face flux function hfpc such that:

qfpc = hfpc(T
1
pc − Tc, . . . , T k

pc − Tc, . . . , T
Fpc
pc − Tc), ∀f ∈ F(p, c), (1.40)

where Fpc denotes the number of faces of cell c impinging at point p, that is Fpc = |F(p, c)|.

To write our scheme we are going to define an approximation of the sub-face numerical fluxes
in terms of sub-face temperatures and cell-centered temperatures. We shall then eliminate the
sub-face temperatures using the continuity conditions (1.39) across the sub-faces interfaces.
This is the topic of the next section.

1.3.2 Expression of a vector in terms of its normal components

Here, we describe the methodology to recover a three-dimensional vector at each vertex of a
polyhedron from the normal components related to the sub-faces impinging at each vertex.

27

Let φ be an arbitrary vector of the three-dimensional space R3 and φpc its piecewise constant

approximation over the sub-cell ωpc. Let φ
f
pc be the sub-face normal components of φpc defined

by
φpc · nf

pc = φfpc, ∀f ∈ F(p, c),
where F(p, c) is the set of sub-faces belonging to cell c and impinging at point p. The above
linear system is characterized by 3 unknowns, i.e., the Cartesian components of the vector φpc

and Fpc =| F(p, c) | equations. This system is properly defined provided that Fpc = 3. Namely,
the number of faces of cell c, impinging at point p must be strictly equal to 3. In what follows,
we assume that the polyhedral cells we are working with are characterized by Fpc = 3. Let us
remark that this restriction allows us to cope with tetrahedron, hexahedron and prism. The
extension to the case Fpc > 3 is investigated in appendix A where we study the particular case of
pyramids for which Fpc = 4 at one vertex. This particular case is usually sufficient for handling
three-dimensional industrial meshes.

Bearing this assumption in mind, let us introduce the corner matrix Jpc = [n1
pc,n

2
pc,n

3
pc] to

rewrite the above 3× 3 linear system as

Jt
pcφpc =



φ1pc
φ2pc
φ3pc


 ,

where the superscript t denotes the transpose matrix. Granted that the vectors nf
pc, for f =

1 . . . 3, are not co-linear, the above linear system has always a unique solution, which reads

φpc = J−t
pc



φ1pc
φ2pc
φ3pc


 . (1.41)

This equation allows to express any vector in terms of its normal components on the local
basis {n1

pc,n
2
pc,n

3
pc}. This representation provides the computation of the inner product of two

vectors φpc and ψpc as follows

φpc ·ψpc =
(
Jt
pcJpc

)−1



ψ1
pc

ψ2
pc

ψ3
pc


 ·



φ1pc
φ2pc
φ3pc


 . (1.42)

A straightforward computation shows that the 3× 3 matrix Hpc = Jt
pcJpc is expressed in terms

of the dot products of the basis vectors

(Hpc)ij = n
j
pc · ni

pc.

This matrix is symmetric positive definite and represents the local metric tensor associated to
the sub-cell ωpc.

Comment 6: Let us remark that the problem of finding the expression of a vector in terms of
its normal components always admits a unique solution in the two-dimensional case (when not
co-linear) since the number of faces of cell c impinging at point p is always equal to two.

1.3.3 Sub-cell-based variational formulation

We recall the main result obtained from the sub-cell-based variational formulation in sec-
tion 1.2.3. After integrating Fourier Law on a sub-cell ωpc and applying some approximations,

28

the last result we obtained before developing the terms using the two-dimensional notations was
Eq. (1.18): ∫

ωpc

φ · K−1qdv = Tc

∫

∂ωpc

φ · nds−
∫

∂ωpc

Tφ · nds.

We pursue the study of the sub-cell-based variational formulation discretizing the right-hand
side of this equation using the three-dimensional notations. First, we recall that the outer
boundary of sub-cell ωpc decomposes into sub-faces as

∂ωpc =
⋃

f∈F(p,c)

∂ωf
pc,

where ∂ωf
pc is the sub-face associated to point p and face f in cell c, and F(p, c) is the set of faces

of cell c impinging at point p. Utilizing the above partition allows to rewrite the right-hand
side of (1.18) as

∫

ωpc

φ · K−1qdv = Tc
∑

f∈F(p,c)

∫

∂ωf
pc

φ · nds−
∑

f∈F(p,c)

∫

∂ωf
pc

Tφ · nds. (1.43)

Introducing the sub-face temperature, T f
pc, given by (1.38) and the sub-face approximation of

vector φ defined by φ
f
pc = 1

Af
pc

∫
∂ωf

pc
φ · n ds, where Af

pc is the area of the sub-face, leads to

rewrite the above equation as follows
∫

ωpc

φ · K−1qdv = −
∑

f∈F(p,c)

Af
pc(T

f
pc − Tc)φfpc. (1.44)

Finally, assuming a piecewise constant representation of the test function φ allows to compute
the volume integral in the left-hand side thanks to the quadrature rule

∫

ωpc

φ · K−1qdv = wpcφpc · K−1
c qpc. (1.45)

Here, Kc is the piecewise constant approximation of the conductivity tensor, φpc and qpc are the
piecewise constant approximation of the vectors φ and q. The corner volume wpc must satisfy
the consistency condition (1.21).
Expressing the vectors qpc and φpc in terms of their normal components by means of (1.41)
allows to write the right-hand side of (1.45) as

wpcφpc · K−1
c qpc = wpc

(
Jt
pcKcJpc

)−1



q1pc
q2pc
q3pc


 ·



φ1pc
φ2pc
φ3pc


 , (1.46)

where Jpc is the corner matrix defined by Jpc = [n1
pc,n

2
pc,n

3
pc]. Recalling that |F(p, c)| = 3

leads to rewrite the right-hand side of (1.44) as

−
∑

f∈F(p,c)

Af
pc(T

f
pc − Tc)φfpc = −



A1

pc(T
1
pc − Tc)

A2
pc(T

2
pc − Tc)

A3
pc(T

3
pc − Tc)


 ·



φ1pc
φ2pc
φ3pc


 . (1.47)

Finally, combining (1.46) and (1.47), the sub-cell variational formulation becomes

wpc

(
Jt
pcKcJpc

)−1



q1pc
q2pc
q3pc


 ·



φ1pc
φ2pc
φ3pc


 = −



A1

pc(T
1
pc − Tc)

A2
pc(T

2
pc − Tc)

A3
pc(T

3
pc − Tc)


 ·



φ1pc
φ2pc
φ3pc


 . (1.48)

29

Knowing that this equation must hold for any vector φpc, we obtain


q1pc
q2pc
q3pc


 = − 1

wpc
(Jt

pcKcJpc)



A1

pc(T
1
pc − Tc)

A2
pc(T

2
pc − Tc)

A3
pc(T

3
pc − Tc)


 . (1.49)

This equation constitutes the approximation of the sub-face normal fluxes. This local approx-
imation is compatible with the expression of the constitutive law (1.2) in the sense that the
discrete approximation of the heat flux is equal to a tensor times the approximation of the
temperature gradient. This tensor can be viewed as an effective conductivity tensor associated
to the sub-cell ωpc. As in the two-dimensional scheme, it is natural to set

Kpc = Jt
pcKcJpc.

Let us emphasize that this corner tensor inherits all the properties of the conductivity tensor Kc.
Namely, Kc being symmetric positive definite, Kpc is also symmetric positive definite. Recalling
that Jpc = [n1

pc,n
2
pc,n

3
pc], we readily obtain the expression of the entries of the corner tensor,

Kpc, in terms of the unit normals nf
pc for f = 1 . . . 3 and the cell conductivity Kc

(Kpc)fg = (Kcn
f
pc) · ng

pc.

Finally, the sub-face flux approximation for the sub-face f is written under the compact form

qfpc = −αpc

3∑

g=1

(Kpc)fg A
g
pc(T

g
pc − Tc), (1.50)

where αpc =
1

wpc
.

Comment 7: This result is equivalent to the one obtained in two dimensions in Eq. (1.27).
To obtain it we can replace the superscript f and g in Eq. (1.50) by the superscript + and −,
the third row and third column of the tensor Kpc being equal to zero.

1.3.4 Elimination of the sub-face temperatures

Having defined the flux approximation in terms of the difference between the cell and the sub-
face temperatures, we shall express the sub-face temperatures in terms of the cell temperatures
of the cells c surrounding a specific point p, using the continuity conditions of the normal heat
flux at cell interfaces. In order to have a simpler expression of the equations we are going to
introduce some new local notations. First of all, in this paragraph we are dealing with quantities
located around a point p, so in all the notations we will omit to specify the subscript p. For each
face f in the list F(p) of the faces impinging at the node p we associate two tuples (c, i) and
(d, j) which identify the neighboring cells c and d of the face f and their local numbering i (resp.
j) in the subset F(p, c) (resp. F(p, d)) of F(p). With this notation a sub-face temperature T i

pc

is denoted by T̄ i
c and using the continuity condition on the temperature is equal to T j

pd which

is denoted T̄
j
d and can also be simply denoted by T̄ f . The bar notation help us to make the

difference between the cell centered unknown and the sub-face unknown. Similarly the area of
the sub-face f can be indifferently noted Ai

c, A
j
d or Af . The local conductivity tensor Kpc will

now be denoted by Kc so its components (Kpc)ij can be written Kc
ij .

Using this notation, Eq. (1.50), which defines the heat flux approximation, rewrites

qic = −αc

3∑

k=1

Kc
ikA

k
c (T̄

k
c − Tc), (1.51)

30

where αc is the inverse of the volume weight. The continuity condition of the sub-face fluxes
across the face f ≡ (c, i) ≡ (d, j) reads

Ai
cq

i
c +A

j
dq

j
d = 0.

Replacing the sub-face fluxes by their approximation (1.51) into the above equation yields

−αcA
i
c

3∑

k=1

Kc
ikA

k
c (T̄

k
c − Tc)− αdA

j
d

3∑

k=1

Kd
jkA

k
d(T̄

k
d − Td) = 0.

Let us point out that this equation holds for all the faces f impinging at node p, i.e. for all
f ∈ F(p). Denoting Fp = |F(p)| the number of faces impinging at node p, the set of all the
above equations forms a Fp × Fp linear system, which writes under the compact form

NT̄ = ST . (1.52)

Here, the matrix N is a Fp×Fp square matrix and T̄ ∈ RFp is the vector of sub-face temperatures.
Denoting Cp = |C(p)| the number of cells surrounding node p, the matrix S is a Fp × Cp

rectangular matrix and vector T ∈ RCp is the vector of cell temperatures. The matrix N has
five non-zero terms on each lines, its diagonal part writes

Nff = αcA
i
cK

c
iiA

i
c + αdA

j
dK

d
jjA

j
d.

Regarding its extra-diagonal parts, two terms come from the contribution of the sub-cell ωpc.
Let g be a generic face of cell c impinging at point p characterized by the index k in the local
numbering , i.e., g ≡ (c, k), then the extra-diagonal entries related to cell c and faces i and k
write

Nfg = αcA
i
cK

c
ikA

k
c , for k ∈ [1, 3] and k 6= i.

The two remaining terms come from the sub-cell ωpd. Let g be a generic face of cell d impinging
at point p characterized by the index k in the local numbering , i.e., g ≡ (d, k), then the
extra-diagonal entries related to cell d and faces j and k write

Nfg = αdA
j
dK

d
jkA

k
d, for k ∈ [1, 3] and k 6= j

Let us remark that the matrix N has a symmetric structure, for g ≡ (c, k), f ≡ (c, i) we have
Ngf = αcA

k
cK

c
kiA

i
c and for g ≡ (d, k), f ≡ (d, j) we have Ngf = αdA

k
dK

d
kjA

j
d. We also note that

N is symmetric if and only if Kc (resp. Kd) is symmetric.

Finally, the matrix S has two non-zero terms on each row, one term for each neighboring
cell c and d of the face f

Sfc =αc

3∑

k=1

Ai
cK

c
ikA

k
c ,

Sfd =αd

3∑

k=1

A
j
dK

d
jkA

k
d.

Comment 8: While in two dimensions the structure of the N matrix was tridiagonal cyclic,
it is not the case anymore in three dimensions. This is one drawback of the scheme in three-
dimensions, the inversion of this matrix and thus the cost of the construction of the global system
is larger than in two-dimensions. The size of these local systems remains small regarding the
size of the global system as presented in Table 1.1.

In the next section, we investigate the properties of the matrices N and S. This allows to write
an explicit formulation of the sub-faces fluxes in terms of cell temperature. We then discuss the
properties of the resulting scheme.

31

1.4 Construction and properties of the semi-discrete scheme

In this section, we start by stating the properties of the matrices N and S defined earlier. This
lead us to the construction of the final form of the numerical scheme. We continue by describing
some interesting properties that characterize our finite volume semi-discrete scheme. First we
show that the fundamental inequality q ·∇T ≤ 0 is satisfied at the discrete level. Then, we show
that the scheme is characterized by a positive semi-definite global diffusion matrix. In a third
paragraph, we demonstrate the L2-stability of the space discretization. In the fourth paragraph,
we present how the boundary conditions are implemented and integrated in the global system.
Finally, in the last paragraph we present a way of computing the volume weight ωpc for various
kind of cells. From now on, we will use the notations of the three-dimensional version of the
scheme, which are more generic, but the results still holds in two-dimensions of space.

1.4.1 Properties of the matrices N and S

The main motivation of this paragraph is to demonstrate the invertibility of the matrix N to
ensure that the linear system (1.52) that solves the sub-face temperatures in terms of the cell
temperatures admits always a unique solution. To this end, let us show that N is a positive-
definite matrix. First, we introduce the matrix Lc of size 3× Fp defined by

Lc
ij =

{
1 if j ≡ (c, i),

0 elsewhere.

Here, Lc is the rectangular matrix which associates the sub-face of cell c in its local numbering
to its numbering around point p. We define the diagonal matrix A of size Fp×Fp, which contains
the area of the sub-faces, namely Aff = Ac

i for the face f ≡ (c, i). We define

Ac = LcA,

the matrix which relates the area of sub-face of cell c in its local numbering to its numbering
around the point p. Employing this notation, it is straightforward to show that matrix N writes

N =
∑

c∈C(p)

αc (A
c)t KcAc.

We are going to show that NT̄ · T̄ > 0, for all T̄ ∈ RFp . To this end, we compute NT̄ · T̄
employing the above decomposition of N

NT̄ · T̄ =
∑

c∈C(p)

αc (A
c)t KcAcT̄ · T̄

=
∑

c∈C(p)

αcK
c(AcT̄) · (AcT̄).

Recalling that αc is non-negative and Kc is positive definite ensures that the right-hand side of
the above equation is always non-negative, which ends the proof. Thus, matrix N is invertible
and the sub-face temperatures are expressed in terms of the cell temperatures by means of the
relation

T̄ =
(
N−1S

)
T . (1.53)

Further, if the cell temperature field is uniform, then the sub-face temperatures are also uniform
and share the same constant value. This property follows from the relation satisfied by the
matrices N and S (

N−1S
)
1Cp = 1Fp , (1.54)

32

Here, 1n, where n is an integer, is the vector of size n, whose entries are equal to 1. To
demonstrate the above relation, we show that S1Cp = N1Fp by developing respectively the left
and the right-hand side of this equality. Substituting the non-zero entries of matrix S leads to
write the left-hand side

(
S1Cp

)
f
=Sfc + Sfd

=αc

3∑

k=1

Ai
cK

c
ikA

k
c + αd

3∑

k=1

A
j
dK

d
jkA

k
d. (1.55)

Replacing the non-zero entries of matrix N allows to express the right-hand side as

(
N1Fp

)
f
= αcA

i
cK

c
iiA

i
c + αdA

j
dK

d
jjA

j
d +

3∑

k=1,k 6=i

αcA
i
cK

c
ikA

k
c +

3∑

k=1,k 6=j

αdA
j
dK

d
jkA

k
d.

Gathering the common terms in the above equation yields

(
N1Fp

)
f
= αc

3∑

k=1

Ai
cK

c
ikA

k
c + αd

3∑

k=1

A
j
dK

d
jkA

k
d. (1.56)

The comparison between (1.55) and (1.56) shows that for all f ∈ F(p),
(
N−1S

)
1Cp = 1Fp ,

which ends the proof.

After having expressed the half-edge temperatures in terms of the mean cell temperatures,
we are now in position to achieve the construction of the scheme by gathering the previous
results.

1.4.2 Local diffusion matrix at a generic point

In this paragraph, we achieve the space discretization of the diffusion equation gathering the
results obtained in the previous sections. We start by recalling the semi-discrete version of the
diffusion equation (1.37)

mcCvc
d

dt
Tc +

∑

p∈P(c)

∑

f∈F(p,c)

Af
pcq

f
pc = mcrc.

We define the contribution of the sub-cell ωpc to the diffusion flux as

Qpc =
∑

f∈F(p,c)

Af
pcq

f
pc.

Using the local numbering of the sub-faces surrounding point p yields to rewrite the above
expression as

Qpc =

3∑

k=1

Ak
cq

k
c .

Now, we replace the normal flux by its corresponding expression (1.51) to get

Qpc = −
3∑

k=1

Ak
c

[
αc

3∑

i=1

Kc
kiA

i
c(T̄

i
c − Tc)

]
.

33

Interchanging the order of the summations in the right-hand side yields

Qpc = −
3∑

i=1

[
αc

3∑

k=1

(Ai
cK

c
kiA

k
c)

]
(T̄ i

c − Tc).

To obtain a more compact form of Qpc, we define the matrix S̃ whose entries write S̃fc =
αc
∑3

k=1(A
i
cK

c
kiA

k
c), where f ≡ (c, i). Employing this notation, the sub-cell contribution to the

diffusion flux reads

Qpc = −
∑

f∈F(p)

S̃t
cf (T̄

f − Tc).

Eliminating the sub-face temperatures by means of (1.53) and using the property (1.54) leads
to

Qpc = −
∑

d∈C(p)

G
p
cd(Td − Tc), (1.57)

where Gp is a Cp × Cp matrix defined at point p by

Gp = S̃tN−1S. (1.58)

Let us point out that the entries of Gp have the physical dimension of a conductivity. Thus, it
can be viewed as the effective conductivity tensor at point p. More precisely, it follows from
(1.57) that the entry G

p
cd stands for the effective conductivity between cells c and d through the

point p. This node-based effective conductivity tensor will be the cornerstone to assemble the
global diffusion matrix over the computational grid.

Comment 9: If the conductivity tensor K is symmetric, it is straightforward to show that
S̃ = S. We claim that Gp is symmetric positive definite provided that the conductivity tensor K

is itself symmetric positive definite. To prove this result, it is sufficient to observe that

GpT · T =(S̃tN−1S)T · T
=N−1(ST) · (S̃T),

where T ∈ RCp is the vector of cell temperatures. Since K is symmetric, one deduces that S̃ = S,
in addition N is symmetric positive definite, which ends the proof.

1.4.3 Construction of the global diffusion matrix

Taking into account the previous results, the semi-discrete scheme over cell c reads

mcCvc
d

dt
Tc −

∑

p∈P(c)

∑

d∈C(p)

G
p
cd(Td − Tc) = mcrc, (1.59)

where P(c) is the set of points of cell c and C(p) is the set of cells surrounding the point p. This
equation allows to construct the generic entries of the global diffusion matrix, D, as follows

Dcc =
∑

p∈P(c)

∑

d∈C(p)

G
p
cd, (1.60a)

Dcd = −
∑

p∈P(c)

G
p
cd, c 6= d. (1.60b)

34

If CD denotes the total number of cells composing the computational grid, then matrix D is a
CD × CD square matrix. The vector of cell-centered temperatures, T ∈ RCD , is the solution of
the system of differential equations

MCv
d

dt
T + DT = MR. (1.61)

Here, R ∈ RCD is the source term vector, M and Cv are the diagonal matrices whose entries are
respectively the cell mass mc and the cell heat capacity Cvc.

1.4.4 Fundamental inequality at the discrete level

In this paragraph we demonstrate that the discrete approximation of the sub-face normal fluxes
(1.50) satisfies a discrete version of the fundamental inequality which follows from the Second
Law of thermodynamics: q · ∇T ≤ 0.

The discrete counterpart of the fundamental inequality states that for the sub-faces fluxes
defined according to (1.50) the following inequality holds

∑

c∈C(p)


 ∑

f∈F(p,c)

Af
pcq

f
pc


Tc ≥ 0. (1.62)

To demonstrate this result, let us introduce, Ip, the nodal quantity defined by

Ip =
∑

c∈C(p)


 ∑

f∈F(p,c)

Af
pcq

f
pc


Tc. (1.63)

We prove that Ip is always positive using the sub-cell variational formulation. Imposing φ = q
in (1.48) yields

wpcK
−1
pc



q1pc
q2pc
q3pc


 ·



q1pc
q2pc
q3pc


 = −



A1

pc(T
1
pc − Tc)

A2
pc(T

2
pc − Tc)

A3
pc(T

3
pc − Tc)


 ·



q1pc
q2pc
q3pc


 . (1.64)

Now, rearranging the right-hand side leads to

wpcK
−1
pc



q1pc
q2pc
q3pc


 ·



q1pc
q2pc
q3pc


 =

(
3∑

i=1

Ai
pcq

i
pc

)
Tc −

3∑

i=1

Ai
pcq

i
pcT

i
pc. (1.65)

We notice that the left hand-side of (1.65) is always non-negative since Kpc is positive definite.
Summing the equation (1.65) over all cells surrounding p yields

∑

c∈C(p)

wpcK
−1
pc



q1pc
q2pc
q3pc


 ·



q1pc
q2pc
q3pc


 =

∑

c∈C(p)

(
3∑

i=1

Ai
pcq

i
pc

)
Tc −

∑

c∈C(p)

(
3∑

i=1

Ai
pcq

i
pcT

i
pc

)
. (1.66)

Due to the continuity condition of the sub-face temperatures, the second term of the right-hand
side is equal to zero. Finally, Eq. (1.66) becomes

Ip =
∑

c∈C(p)

wpcK
−1
pc



q1pc
q2pc
q3pc


 ·



q1pc
q2pc
q3pc


 ≥ 0, (1.67)

which ends the proof.

35

Comment 10: Inequality (1.67) is not only the discrete counterpart of the Second Law of
thermodynamics but also the cornerstone to demonstrate the L2-stability of the semi-discrete
formulation of our finite volume scheme as we shall see in Paragraph 1.4.6.

1.4.5 Positive semi-definiteness of the global diffusion matrix

In the following sections, we consider that the solution has a compact stencil so we can safely
ignore the contribution of the boundary conditions. The integration of the boundary conditions
into the scheme are presented in section 1.4.7.

We demonstrate that the global diffusion matrix, D, is positive semi-definite, that is for all
T ∈ RCD

DT · T ≥ 0. (1.68)

To prove this results, let us write the c-th entry of vector DT

(DT)c =
∑

p∈P(c)

Qpc

=
∑

p∈P(c)

∑

f∈F(p,c)

Af
pcq

f
pc.

Employing the above expression, the left-hand side of (1.68) reads

DT · T =

CD∑

c=1

∑

p∈P(c)

∑

f∈F(p,c)

Af
pcq

f
pcTc.

Interchanging the order of summation lead to

DT · T =

PD∑

p=1

∑

c∈C(p)

∑

f∈F(p,c)

Af
pcq

f
pcTc

=

PD∑

p=1

Ip.

Here, PD is the total number of nodes of the computational grid and Ip =
∑

c∈C(p)

∑
f∈F(p,c)A

f
pcq

f
pcTc

has been already defined by Eq. (1.63). Due to the fundamental inequality satisfied by the dis-
crete sub-face normal flux approximation, refer to Paragraph 1.4.4, Ip is always positive, which
ends the proof.

1.4.6 L2-stability of the semi-discrete scheme

In this paragraph, we prove the stability of our semi-discrete scheme in the absence of source
term (r = 0) with respect to the discrete L2 weighted norm defined by

‖T ‖2w2 =

CD∑

c=1

mcCcvT
2
c , (1.69)

where CD is the total number of cells of the computational domain D. In the absence of the
source term, the semi-discrete scheme reads

MCv
dT

dt
+ DT = 0,

36

Dot-multiplying the above equation by T ∈ RCD yields

MCv
dT

dt
· T + DT · T = 0.

Assuming that the mass density and the heat capacity do not depend on time, the above
equation turns into

d

dt
(
1

2
MCvT · T) = −DT · T .

Recalling that the global diffusion matrix, D, is positive semi-definite and employing the defi-
nition of the discrete L2 norm (1.69) leads to the inequality

d

dt

(
‖T ‖2w2

)
≤ 0. (1.70)

Here, we have ignored the contributions of the boundary terms assuming for instance periodic
or homogeneous Neumann boundary conditions. This inequality shows that the L2 norm of the
semi-discrete solution remains bounded by the L2 norm of the initial data. This implies the
L2-stability of our semi-discrete finite volume scheme.

1.4.7 Boundary conditions

In this paragraph, we present a generic methodology to implement the boundary conditions,
which is crucial when dealing with real-word applications. It is worth mentioning that the
boundary terms discretization is derived in a consistent manner with the scheme construction.
To take into account the boundary terms, let us write the linear system linking the sub-face
temperatures with the cell temperatures under the form

NT̄ = ST +B, (1.71)

where the extra term B is the vector containing the boundary conditions contribution, which
shall be defined in the next paragraphs.

Let us consider a sub-face f located on the boundary of the domain, in the next paragraphs,
we describe the modifications to bring to the matrices and boundary vector, depending on the
boundary conditions types under consideration.

Dirichlet boundary condition

On the boundary sub-face f ≡ (c, i), the temperature T̄ ∗ is imposed, we have T̄ i
c = T̄ f = T̄ ∗.

We multiply this equation by Ai
c, thus A

i
cT̄

f = Ai
cT̄

∗. Let us write this equation under the
system form (1.71). The diagonal term of the fth line of the system writes

Nff = Ai
c.

The corresponding extra-diagonal term is given by

Nfg = 0, ∀ g 6= f.

Regarding the matrix S, we obtain
Sfg = 0, ∀ g.

Finally, the fth component of the vector B reads

Bf = Ai
cT̄

∗.

37

Neumann boundary condition

On the boundary sub-face f ≡ (c, i) the normal flux q∗ is prescribed, hence the continuity
condition rewrites

qic = q∗. (1.72)

Multiplying this equation by Ai
c and replacing qic by its expression (1.51) yields

−αcA
i
c

3∑

k=1

Kc
ikA

k
c (T̄

k
c − Tc) = Ai

cq
∗. (1.73)

The diagonal term of the fth line of matrix N reads

Nff = αcA
i
cK

c
iiA

i
c.

There are two non-zero extra-diagonal terms that come from the contribution of the sub-cell c.
If we note g ≡ (c, k), for k 6= i, these two terms write under the form

Nfg = αcA
i
cK

c
ikA

k
c .

The matrix S has only one non-zero term its fth line

Sfc = αc

3∑

k=1

Ai
cK

c
ikA

k
c .

Finally, the fth component of vector B is Bf = −Ai
cq

∗.

Robin boundary condition

On the boundary sub-face f ≡ (c, i), the condition αT̄ i
c+βq

i
c = q∗R is prescribed. Let us multiply

this equation by Ai
c and replace qic by its expression (1.51) to obtain

αAi
cT̄

i
c − βαcA

i
c

3∑

k=1

Kc
ikA

k
c (T̄

k
c − Tc) = Ai

cq
∗
R (1.74)

The diagonal term of matrix N reads

Nff = βαcA
i
cK

c
iiA

i
c − αAi

c.

This matrix has once again two non-zero extra-diagonal terms coming from the contribution of
the sub-cell c. Denoting g ≡ (c, k), for k 6= i, these two non-zero terms write

Nfg = βαcA
i
cK

c
ikA

k
c .

The non-zero term of the fth line of matrix S is given by

Sfc = βαc

3∑

k=1

Ai
cK

c
ikA

k
c .

Finally, the fth component of vector B is Bf = −Ai
cq

∗
R.

Let us remark that the Dirichlet boundary condition is recovered for α = 1, β = 0 and q∗R = T ∗

whereas, the Neumann boundary condition corresponds to the case α = 0, β = 1 and q∗R = q∗.

38

Table 1.1: Statistics about the size of the local node-based systems for a sequence of refined
tetrahedral grids.

Number of nodes Size of the global system Minimum size Maximum size Mean size

189 902 7 66 21

1219 6623 7 96 27

2447 13549 7 102 28

6543 37648 5 90 30

Contribution to the global diffusion matrix

We achieve the discretization of the boundary conditions by listing the modifications that we
have to take into account in the assembling of the global diffusion matrix. Solving the local
system (1.71), which relates the sub-face temperatures and the cell temperatures, yields the
following expression of the sub-face temperature vector

T̄ = N−1ST + N−1B, (1.75)

where the modifications inherent to matrices N, S and vector B have been detailed in the
previous paragraphs. The above expression of the sub-face temperature vector, T̄ , turns the
contribution of the sub-cell ωpc to the diffusion flux, Qpc, into

Qpc = −
∑

d∈C(p)

G
p
cd(Td − Tc)−

(
S̃tN−1B

)
c
, (1.76)

where the effective conductivity tensor, Gp, is defined by (1.58). Finally, the global linear system
corresponding to our finite volume scheme becomes

MCv
dT

dt
+ DT = MR+Σ, (1.77)

where Σ is the vector containing the boundary condition contributions, whose the cth entry

is given by Σc =
(
S̃tN−1B

)
c
. The definition of the other matrices and vectors of the above

system remain unchanged.

Size of the local node-based systems

In order to build the global system we need to solve local nodal systems. The size of these
systems, which remains small compared to the size of the global linear system, depends on the
number of faces impinging at a node. For instance, in a Cartesian structured grid the size of
these systems is constant and equal to 12x12 since at a given node the number of impinging
faces is equal to 12. In an unstructured tetrahedral grid the size of these systems may vary a
lot. To illustrate this point, we have counted the minimum and maximum size of these local
node-based linear systems for a sequence of refined tetrahedral grids of a truncated sphere,
refer to Figure 1.19(f). We observe in Table 1.1 that the size of these systems remains small
compared to the size of the global system.

1.4.8 Volume weight ωpc computation

Two-dimensional geometry

In this paragraph, we aim at deriving practical formulas to compute the volume weight, wpc,
present in the flux approximation (1.27). To begin with, let us consider a triangular cell, ωc,

39

p+

p

θpc

Tc

T+
pc

n+
pc

t+pc

p−

n−pc

t−pc

T−pc

Figure 1.8: Notation for a triangular cell. Half-edge degrees of freedom are displayed in blue
color.

characterized by its counterclockwise ordered vertices p−, p and p+, refer to Figure 1.8. We
state that the flux approximation (1.27) preserves linear fields over triangular cells
provided that the volume weight is such that

wtri
pc =

1

3
| ωc | . (1.78)

To prove this result, let us consider Th = Th(x) a piecewise linear approximation of the
temperature field, i.e.,

Th(x) = Tc + (∇T)c · (x− xc), ∀x ∈ ωc. (1.79)

Here, xc =
1
3(xp−+xp+xp+) is the centroid of ωc and Tc = Th(xc) denotes the mean temperature

of the cell. In addition, (∇T)c corresponds to the uniform temperature gradient of the cell.
Using the piecewise constant approximation of the conductivity tensor, Kc, this gradient is
rewritten (∇T)c = −K−1

c qc, where qc is the piecewise constant approximation of the flux. With
this notation, (1.79) transforms into

Th(x) = Tc − K
−1
c qc · (x− xc), ∀x ∈ ωc. (1.80)

Expressing the two vectors qc and (x − xc) in terms of their half-edge normal components by
means of (1.10) yields

Th(x) = Tc − K
−1
pc

(
q−pc
q+pc

)
·
[
(x− xc)

−
pc

(x− xc)
+
pc

]
, ∀x ∈ ωc, (1.81)

where Kpc = JtpcKcJpc. Since this equation holds for all points in ωc, we apply it to x−
pc and x

+
pc

given by

x−
pc =

2xp + xp−

3
, x+

pc =
2xp + xp+

3
. (1.82)

This results in

Th(x
±
pc)− Tc = −K−1

pc

(
q−pc
q+pc

)
·
[
(x±

pc − xc)
−
pc

(x±
pc − xc)

+
pc

]
.

40

Knowing that

x−
pc − xc =

1

3
(xp − xp+) = −

2

3
l+pct

+
pc,

x+
pc − xc =

1

3
(xp − xp−) =

2

3
l−pct

−
pc,

where t±pc are the half-edge unit tangent vectors such that n±
pc × t±pc = ez, refer to Figure 1.8,

using t−pc · n+
pc = sin θpc and t

+
pc · n−

pc = − sin θpc leads to

Th(x
−
pc)− Tc = −

2

3
l+pc sin θpcK

−1
pc

(
q−pc
q+pc

)
·
(
1
0

)
,

Th(x
+
pc)− Tc = −

2

3
l−pc sin θpcK

−1
pc

(
q−pc
q+pc

)
·
(
0
1

)
.

Rearranging the above equations allows to express the half-edge normal components of the flux
as (

q−pc
q+pc

)
= − 3

2l−pcl
+
pc sin θpc

Kpc

[
l−pc(Th(x

−
pc)− Tc)

l+pc(Th(x
+
pc)− Tc)

]
. (1.83)

We have obtained an expression of the half-edge fluxes which is exact for a linear approximation
of the temperature field over a triangular cell. The comparison between this formula and the gen-
eral formula obtained previously shows that the volume weight is given by wpc =

2
3 l

−
pcl

+
pc sin θpc,

which is nothing but one third of the cell volume. In addition, this comparison reveals that
the piecewise constant half-edge approximations of the temperature have a clear geometrical
interpretation since T±

pc = Th(x
±
pc), refer to Figure 1.8.

Having defined the volume weight for triangular cells, we conclude this paragraph by giving
some indications about the volume weight definition for other types of cells. For quadrangular
cells, according to [72], a reasonable choice is to set

wquad
pc = l−pcl

+
pc sin θpc. (1.84)

This results in a corner volume equal to the half of the area of the triangle formed by points
p−, p and p+, refer to Fig 1.8. Unfortunately this choice does not allow to preserve linear
solution on quadrangular grids, except on grids made of parallelograms, refer to [90]. However,
the numerical results obtained on quadrangular grids with this choice appeared to be quite
satisfactory as we shall see in the section devoted to the numerical results. For general polygonal
cells, two possible choices are obtained setting

wpoly1
pc =

1

| P(c) | | ωc |, wpoly2
pc =| ωpc |, (1.85)

where | P(c) | is the total number of sub-cells in cell c. Since the behavior of the numerical
method will not be assessed on general polygonal grids, we do not pursue investigations about
an optimal choice of the volume weight for polygonal cell.

Three-dimensional geometry

We show that the sub-face normal fluxes approximation given by (1.49) preserves linear tempera-
ture fields over tetrahedral cells provided that the corner volume wpc is defined by wpc =

1
4 | ωc |.

To demonstrate this result, let us consider a generic tetrahedron, ωc, over which the temperature
field, T = T (x), is linear with respect to the space variable x. The vertices of this tetrahedron

41

xr

xp

n
(p,r,r+1)
c

xr+2

xr+1

xc

Figure 1.9: Generic tetrahedron with vertices (xp,xr,xr+1,xr+4) and centroid xc = 1
4(xp +

xr + xr+1 + xr+2).

are denoted respectively by p, r, r + 1 and r + 2, refer to Figure 1.9. The temperatures at
these vertices are Tp, Tr, Tr+1 and Tr+2. They coincide with the point-wise values of the linear
temperature field. The constant value of the conductivity tensor over ωc is Kc. The heat flux is
the constant vector qc = −Kc∇T , which satisfies the identity

qc = −
1

| ωc |

∫

ωc

Kc∇T dv.

Utilizing the divergence formula in the above equation turns it into

qc = −
1

| ωc |

∫

∂ωc

KcTn ds.

Now, expanding the surface integral over the triangular faces of the tetrahedral cell yields

qc = −
1

| ωc |
∑

f∈F(c)

KcA
f
cn

f
c T̃

f
c ,

where Af
c is the area of face f , nf

c is the unit outward normal to face f and T̃
f
c is the face-

averaged value of the temperature. This face-averaged temperature is computed by means
of

T̃ f
c =

1

3

∑

s∈P(c,f)

Ts, (1.86)

where P(c, f) is the set of points of cell c belonging to face f . Before proceeding any further, we
explicit our notations to highlight the role played by point p. Each triangular face is character-
ized by the set of its three vertices. The three faces impinging at point p are (p, r+k, r+k+1) for
k = 1 . . . 3 and assuming a cyclic indexing. Their area, unit outward normal and face-averaged
temperature are denoted respectively by Ak

c , n
k
c and T̃ k

c . The remaining face, which is opposite
to point p, is (r, r + 1, r + 2). Its area, unit outward normal and face-averaged temperature
are denoted respectively by Ar

c, n
r
c and T̃ r

c . With the above notations, the heat flux expression
becomes

qc = −
1

| ωc |

(
3∑

k=1

KcA
k
cn

k
c T̃

k
c + KcA

r
cn

r
cT̃

r
c

)
.

42

Knowing that Ar
cn

r
c = −

∑3
k=1A

k
cn

k
c leads to rewrite the above flux expression as

qc = −
1

| ωc |

3∑

k=1

KcA
k
cn

k
c

(
T̃ k
c − T̃ r

c

)
.

Substituting the expression of the face-averaged temperatures (1.86) in terms of the point
temperatures yields

qc = −
1

3 | ωc |

3∑

k=1

KcA
k
cn

k
c (Tp − Tr+k+2) .

Finally, to eliminate the point temperatures in the above expression, we introduce the cell-
averaged temperature

Tc =
1

4
(Tp + Tr+k + Tr+k+1 + Tr+k+2).

Due to the cyclic numbering, this expression is valid for k = 1 . . . 3. Expressing Tr+k+2 in terms
of the cell-averaged temperature and the remaining point temperatures leads to write

Tp − Tr+k+2 = 4
(
T̄ (p,r+k,r+k+1)
c − Tc

)
,

where T̄
(p,r+k,r+k+1)
c is the sub-face temperature given by

T̄ (p,r+k,r+k+1)
c =

1

4
(2Tp + Tr+k + Tr+k+1).

Since the temperature field is linear with respect to the space variable, we point out that the

above expression is the exact value of the temperature field taken at the point x̄
(p,r+k,r+k+1)
c

located on the triangular face (p, r + k, r + k + 1), refer to Figure 1.10, and defined by

x̄(p,r+k,r+k+1)
c =

1

4
(2xp + xr+k + xr+k+1).

Observing the triangular face displayed in Figure 1.10, we note that this point is the midpoint
of the median segment coming from vertex p.
Gathering the above results allows to rewrite the expression of the heat flux as

qc = −
4

3 | ωc |

3∑

k=1

KcA
k
cn

k
c

(
T̄ (p,r+k,r+k+1)
c − Tc

)
.

It remains to simplify the above expression of the heat flux by employing notations related
to the sub-face associated to point p and face k, displayed in blue color in Figure 1.10. It is
clear that the area of the sub-face, Ak

pc, is equal to one-third of the face area, Ak
c , and thus

Ak
c = 3Ak

pc. In addition, the unit outward normal to the sub-face, nk
pc, coincides with the unit

outward normal to the face, nk
c . Finally, defining the sub-face temperature T k

pc ≡ T̄
(p,r+k,r+k+1)
c

leads to write the heat flux

qc = −
4

| ωc |

3∑

k=1

KcA
k
pcn

k
pc

(
T k
pc − Tc

)
.

We dot-multiply the heat flux by the unit normal nl
pc to obtain the normal component of the

heat flux related to the sub-face l

qlpc = −
4

| ωc |

3∑

k=1

(
Kcn

k
pc

)
· nl

pcA
k
pc

(
T k
pc − Tc

)
.

43

xp

xr+k+1

xr+k

x̄
(p,r+k,r+k+1)
c

Figure 1.10: Triangular face (p, r+k, r+k+1) related to the tetrahedron displayed in Figure 1.9.
The sub-face related to point p has been colored in blue. The three degrees of freedom related
to the sub-face temperatures are plotted by means of blue squares.

This formula coincides with the one derived from the variational formulation, refer to Eq. (1.50),
provided that the volume weight satisfies wpc =

1
4 | ωc |, which ends the proof.

This shows that the flux approximation (1.50) is exact for linear temperature fields with respect
to the space variable. In addition, the sub-face temperatures coincide with the point-wise values
taken by the linear temperature field at the midpoint of the median segment coming from each
vertex of a triangular face. It is worth pointing out that this results has been already obtained
in [86] using a more theoretical framework.

Finally, for general polyhedral cells, the corner volume weight related to sub-cell ωpc is de-
fined by

wpc =
1

Pc
| ωc |, (1.87)

where Pc =| P(c) | is the number of vertices of cell ωc.

1.5 Time discretization

In this section, we briefly describe the time discretization of the system (1.77). We restrict
the presentation to the case of a linear heat equation knowing that in the non linear case the
interested reader might refer to [90]. First, let us prescribe the initial condition T (0) = T 0,
where T 0 is the vector of the cell-averaged initial condition. We solve the system over the time
interval [0,T] using the subdivision

0 = t0 < t1 < · · · < tn < tn+1 < · · · < tN = T.

The time step is denoted by ∆tn = tn+1 − tn . The time approximation of a quantity at time
tn is denoted using the superscript n, for instance T n = T (tn). Knowing that an explicit
time discretization of the diffusion operator necessitates a stability constraint on the time step

44

which is quadratic with respect to the smallest cell size, we prefer to use an implicit time
discretization. Further, we assume that the heat capacity and the conductivity tensor do not
depend on temperature. Integrating (1.77) over [tn, tn+1] yields the first-order in time implicit
discrete scheme

MCv
T n+1 − T n

∆tn
+ DT n+1 = MRn +Σn. (1.88)

We recall that Rn is the source term vector and Σn is the boundary vector at time tn. M and
Cv are the diagonal matrices whose entries are respectively the cell mass mc and the cell heat
capacity Cvc. D is the global diffusion matrix. The updated cell-centered temperatures are
obtained by solving the following linear system

(
MCv

∆tn
+ D

)
T n+1 =

MCv

∆tn
T n + MRn +Σn. (1.89)

Let us recall that D is positive semi-definite. Knowing that MCv is a positive diagonal matrix,
we deduce that the matrix MCv

∆tn + D is positive definite. Thus, the linear system (1.89) always
admits a unique solution. Finally, in the absence of source term and assuming periodic or
homogeneous boundary conditions, we observe that the above implicit time discretization is
stable with respect to the discrete weighted L2 norm defined by

‖T ‖2w2 = (MCvT · T),

where T is a vector of size CD. To prove this result, we dot-multiply (1.89) by T n+1 and obtain

(MCvT
n+1 · T n+1)− (MCvT

n · T n+1) = −∆tn(DT n+1 · T n+1).

Due to the positive definiteness of matrix D the right-hand side of the above equation is negative,
hence

(MCvT
n+1 · T n+1) ≤ (MCvT

n · T n+1).

Employing Cauchy-Schwarz inequality in the right-hand side of the above inequality yields

(MCvT
n · T n+1) ≤ ‖T n‖w2‖T n+1‖w2.

Gathering the above results leads to

‖T n+1‖w2 ≤ ‖T n‖w2,

which ends the proof.

Comment 11: The computation of the numerical solution requires to solve the sparse linear
system (1.89). This is achieved by employing the localized ILU(0) Preconditioned BiCGStab
algorithm, refer to [127, 95]. The parallel implementation of this algorithm and its efficiency
are discussed in Section 1.6. Knowing that the matrices encountered in this work are all sym-
metric, we could have employed a classical conjugate gradient method to solve the corresponding
linear system. However, our numerical scheme being able to cope with non-symmetric diffusion
equations, refer to [90], we have chosen to implement a more general solver to handle these
problems.

Comment 12: Let us give more details about the Cauchy-Schwarz inequality we used in this
section.

45

Let A and B be two vectors of size CD, and t ∈ R. We compute ‖A+ tB‖2w2.

‖A+ tB‖2w2 = (MCvA · A) + t(MCvA · B) + t(MCvB · A) + t2(MCvB · B)
= ‖A‖2w2 + t(MCvA · B) + t(MCvB · A) + t2‖B‖2w2

= ‖A‖2w2 + 2t (MCvA · B) + t2‖B‖2w2, because MCv is symmetric.

The right-hand side of this equation is a non-negative quadratic polynomial with respect to t,
thus its discriminant is non-negative

(MCvA · B)2 − ‖A‖2w2‖B‖2w2 ≤ 0.

This leads to the final result
| (MCvA · B) |≤ ‖A‖w2‖B‖w2,

which is the property we have used in this section.

1.6 Parallelization

When dealing with three-dimensional grids, the computational power needed to solve the prob-
lems grows quickly. In fact two problems occur, the memory consumption becomes higher and
the computational time becomes longer. These two problems can be overcome with the paral-
lelization of the scheme. The goal is to split the global problem into smaller problems that will
run concurrently on different processors. In the distributed memory case, the more processors
we add, the more memory we get. On the other hand communications are then needed between
the processors to solve the global problem.

First, we have a look at the implementation of the sequential algorithm and identify the parts we
need to parallelize in priority. Then, we describe the partitioning step and the communication
process. Finally, we present an experimental study to assess the efficiency of our parallelization
scheme.

1.6.1 Analysis of the problem

The sequential algorithm can be divided in two steps: assembling the matrix and solving the
system.

To build the global matrix we have to solve a local linear system at each vertex of the mesh.
This is a Vertex-Centered approach. The solving step is performed through the use of iterative
Krylov methods such as BiCGStab [127]. These methods need to perform matrix-vector mul-
tiplications and dot products. Here, the matrix involved associates a cell with its neighboring
cells; hence the solving step is a Cell-Centered approach.

In a parallel computation we would like to split the problem into equally balanced sub-problems,
this is called partitioning. The problem we have to face with our algorithm is that the optimal
partition for the Vertex-Centered approach is different from the optimal partition for the Cell-
Centered one. We thus have to make a choice, optimizing one step while sacrificing the other.

If we have a look at the sequential timings we can see that the construction process takes
approximately 10% of the overall time and the solving step takes 90% of the time. The Am-
dahl’s law [14] tells us that we have more to gain by optimizing the more time consuming step,
in our case the solving step, so we will focus on a Cell-Centered partitioning.

46

1.6.2 Partitioning and communications

The main kernel of iterative Krylov methods is a matrix-vector multiplication. This is why we
have to efficiently parallelize the matrix-vector product Y = AX. We assume that we have a
partitioning of our problem, it means that every processor owns a specific subset of the global
problem. If I is a processor it will only know the subset XI of the vector X and the subset YI

of the vector Y . This results in the following decomposition for the vectors X and Y :

Y =




Y1
...
YI
...
YN



, X =




X1
...
XI
...
XN



.

Similarly, we decompose the matrix A and express it in terms of a block matrix with AIJ

elements:

A =




A11 · · · A1N

. . .
... AIJ

...
. . .

AN1 · · · ANN




.

With these notations the matrix-vector multiplication Y = AX may be expressed as:

YI =
∑

J=1..N

AIJXJ , ∀I ∈ {1, . . . , N} .

To compute sub-vector YI processor I needs to access the bloc matrices AIJ where J = 1..N .
More precisely, processor I needs to access all the rows associated to its partition. We say
that the matrix is partitioned row-wise. Processor I also potentially needs to know the vectors
XJ where J = 1..N , which is the whole X vector. As we mentioned before, it only owns
XI vector. To perform the global operation, we thus need to receive the sub-vectors XJ from
the processors J (J 6= I). As matrix A is sparse, a block XJ is effectively needed if and
only if AIJ has non zero entries. Furthermore, AIJ may also be sparse. Thus, only part of

the elements of sub-vector XJ may be needed on processor I. We note X̂I
J the corresponding

pruned sub-vector (so-called “overlap”) and YI ← AIJXJ may be compacted into YI ← ˆAIJX̂
I
J .

The algorithm for the parallel matrix-vector on processor I can then be written as follows:

• For each processor J , send X̂J
I to processor J,

• Compute YI ← AIIXI ,

• For each processor J , receive X̂I
J from processor J and compute YI ← YI + ˆAIJX̂

I
J .

In order to hide the communication process, we consider non-blocking communications, which
occur while we compute the local matrix-vector multiplication YI ← AIIXI . If the amount

of computation for this operation is big enough the distant sub-vector X̂I
J may be transferred

without impact on the elapsed time.

A simple example of this decomposition is displayed in Figure 1.11(a). In this example, the first

47

1 2 3 4 5 7 8

1

2

3

4

5

6

7

8

6

(a) Matrix decomposition. (b) Mesh decomposition.

Figure 1.11: Example of matrix and mesh decomposition on two processors with overlaps con-
struction.

processor in blue owns the first four rows of the matrix and the first six elements of the vector,
while the second processor in red owns the last four rows and the last six elements of the vector.
On the first processor the overlaps are the element 5 and 6 of the vector, while the overlaps
of the second processor consist of the elements 3 and 4. These elements are not computed on
the local processor but are received from the other processor. The associated mesh and the
corresponding sub-meshes obtained after the decomposition are shown in Figure 1.11(b), the
grey cells represent the overlaps. The other parallel operation to perform in our iterative solver
is the inner product p =X ·Y =

∑
kXkYk. With our decomposition it writes p =

∑
J=1..N pJ

where pJ =
∑

kX
k
JY

k
J is the local inner product corresponding to the sub-problem J . This is

a global operation, every processor has to compute its local inner product and exchange it with
all the other processors. This communication cannot be overlapped by computation, this could
be a bottleneck in our algorithms.

How should we distribute the rows of the matrix? As we said before we want the load to
be balanced between the processors, in our case it is the number of operations in the matrix-
vector operation or the number of non-zero elements in the matrix. We also want to overlap
the communications with computations, and the communication time depends on the amount
of data to exchange. This amounts to reduce the volume of communication between processors.
This problem is really complicated, that is why to achieve these goals we use a graph partitioner
called Scotch [100]. We process the graph associated to the global matrix with this library which
retrieves for each row the partition it belongs to. With these information we can set up the
communication scheme explained earlier.

What are the changes needed by the scheme in parallel? When we add an element in the
overlap vector we add the corresponding cell in the local sub-mesh. So in every sub-mesh an
internal cell is surrounded by all its neighbors, we have all the information to build the row
corresponding to this cell in the matrix, so nothing has to be changed in the scheme. The
parallelism is only seen in the solving step.

48

We have implemented these methods in our development code but we can also use the PetSC
library [19, 18, 20]. This library implements scalable algorithms to solve scientific applications
modeled by partial differential equations. In this library the solving step and the communica-
tion process are hidden to the user. The problem we faced is that with the libraries available on
our experimental platform we could not use some preconditioners in parallel like ILU(0). Due
to that, the iterative method does not converge very well in parallel. This explains why the
experiments we ran with PetSC were not very conclusive.

1.6.3 Experiments

In order to quantify the quality of the parallelization we define two metrics: the speedup and
the efficiency. If Tp denotes the time needed to solve the problem on p processors the speedup
is defined by

S(p) =
T1

Tp
.

This quantity represents how much faster the algorithm is on p processors than in sequential.
Ideally on p processors we would like to be p times faster than in sequential, thus the ideal
speedup is defined by

Sideal(p) = p.

An other interesting metric is the efficiency. It is given by

E(p) =
T1

pTp
.

It assesses how efficiently the processors are used with respect to the ideal case (E(p) = 1).

We ran the experiments on the PLAFRIM (IMB/LABRI/INRIA) [2] platform. On each node of
this machine we have 2 Quad-core Nehalem Intel Xeon X5550 (8 CPU cores total per node)
running at 2,66 GHz. The nodes have 24Gb of RAM (DDR3 1333MHz) and are connected with
Infiniband QDR at 40Gb/s. To test the scalability of our method we ran the tests on 1 to 64
CPU cores (using 1 to 8 nodes). We run the speedup tests on two kinds of grids:

• A Cartesian hexahedral grid made of 512 000 cells, 531 441 nodes and with 13 481 272
non-zeros entries in the associated matrix,

• A unstructured tetrahedral grid made of 396 601 cells, 98 218 nodes and with 28 946 047
non-zeros entries in the associated matrix.

We specifically chose these meshes to illustrate the load balancing problem occurring between
the matrix construction and the solving step. On the first kind of mesh we have a perfect load
balancing while on the second one the load balancing of the construction step can be bad, due to
the unstructured feature of the grid. The partitioning of the coarsest versions of these grids are
displayed in Figure 1.12(a) for the structured grid and in Figure 1.12(b) for the unstructured
grid. On the speedup curve displayed in Figure 1.13 we can see that the more processors we
add, the further away from the ideal speedup we get. This highlights two different phenomena.
First, in the conjugate gradient method we need to compute some scalar products and vector
norms which need collective communications. This kind of communications does not scale very
well so the more processors we add the worse it gets. The other phenomenon is that by adding
more processors, the local matrices get smaller and we need to communicate more at the same
time. So at some point the computation can not overlap the communications anymore and the

49

(a) Structured hexahedral grid. (b) Unstructured tetrahedral grid.

Figure 1.12: Partitioning computed with the Scotch library (INRIA) [100] for 8 processors. One
distinct color is attributed to each processor.

Figure 1.13: Speedup curve for 1 to 64 processors on structured and unstructured 3D meshes.

50

Figure 1.14: Efficiency curve for 1 to 64 processors on structured and unstructured three-
dimensional meshes.

speedup gets worse.

On the efficiency curve displayed in Figure 1.14 we can see that from 1 to 8 CPU cores the
efficiency quickly drops from 1 to 0.85, then between 8 to 64 CPU cores it decreases more slowly.
This reflect the topology of the platform we used for the tests. From 1 to 8 CPU cores we are
only using one node. On a single node the communication cost is negligible, so we would expect
the efficiency to stay close to 1. The quick drop shows the existence of a bottleneck in the
memory usage. This may come from the usage of unstructured methods which uses a lots of
memory indirection, some optimization around the matrix numbering should reduce this effect.
The decrease in efficiency observed with more than 8 CPU cores is due to the communications
between the nodes.

Finally, we can comment the difference between the efficiency obtained on structured and un-
structured meshes. We observe the same phenomenon on the two kinds of meshes. We observe
that the efficiency is a bit better for the structured meshes. The difference is due to the imbal-
ance in the construction step. This imbalance could be lowered by adding information about
the cost of the matrix construction into the graph sent to the partitioner.

To conclude this paragraph we can claim that we developed a parallel implementation of the
classical BiCGStab method. This method has some blocking points, the inner products that
can not be overlapped by computations, so it is not fully scalable. In [137] the authors present
the IBiCGStab method, a modified BiCGStab algorithm with an equivalent numerical stability,
in which these blocking points are cured. Only one global synchronization point is needed per
iteration instead of four in the original algorithm. This is a more scalable method. In a future
work we plan to investigate this modification to improve the efficiency of our implementation.

1.7 Numerical results in two-dimensional geometries

The aim of this section is to assess the robustness and the accuracy of CCLAD scheme against
analytical test cases using various types of triangular and quadrangular grids.

51

1.7.1 Convergence analysis methodology

Let us recall that we are solving the generic diffusion equation

ρCv
∂T

∂t
−∇ · (K∇T) = ρr, (x, t) ∈ D × [0, T], (1.90a)

T (x, 0) = T 0(x), x ∈ D, (1.90b)

where r = r(x) is a source term. The density and the specific heat capacity are specified such
that ρ = 1 and Cv = 1. The boundary conditions, the source term and the heat conductivity
tensor K will be specified for each test case.
The analytical solutions of all the tests are stationary. Thus, we are going to compute them
starting with the initial condition T 0(x) = 0 and we run the simulation until the steady state is
reached. For these tests, the numerical solutions are obtained solving linear systems by means of
the localized ILU(0) Preconditioned BiCGStab algorithm [127, 95]. The relative error tolerance
to achieve the convergence is equal to 10−16.

We describe the procedure employed to perform the convergence analysis. First, we define
the mesh resolution

h =

(|D|
CD

) 1
d

,

where CD denotes the number of cells that paved the computational domain and d = 3 is
the dimension of the space. Let T = T̂ (x) be the steady analytical solution of the diffusion
equation (1.90a). Given a computational grid characterized by h, we denote by T̂ h

c the value of
the analytical solution evaluated at the centroid of the cell ωc, i.e., T̂

h
c = T̂ (xc), where xc is the

cell centroid. If T h
c denotes the cell averaged temperature computed by the numerical scheme,

we define the asymptotic numerical errors based on the discrete L2 and L∞ norms

Eh
2 =

√√√√
CD∑

c=1

(T h
c − T̂ h

c)
2 | ωc |,

Eh
∞ = max

c=1...CD

| T h
c − T̂ h

c | .

The asymptotic error for both norms is estimated by

Eh
α = Cαh

qα +O(hqα+1) for α = 2, ∞. (1.91)

Here, qα denotes the order of the truncation error and Cα is the convergence rate-constant which
is independent of h. Having computed the asymptotic errors corresponding to two different
grids characterized by mesh resolutions h1 and h2 < h1, we deduce an estimation of the order
of truncation error as

qα =
logEh2

α − logEh1
α

log h2 − log h1
. (1.92)

1.7.2 Meshes description

We performed the computations on different kind of meshes. For every mesh category we used
five levels of refinement of the meshes from coarse grid to finer grids. Here is a short description
of the different meshes used for the numerical tests.

• Meshes made of triangles as shown in Fig 1.15(a). These meshes are composed of 264,
1032, 4178, 16986 and 67548 triangles. There is an interface at x = 1

2 .

52

• Cartesian meshes as pictured in Fig 1.15(b). The different levels of refinement are made
of 10× 10, 20× 20, 40× 40, 80× 80 and 160× 160 quadrangles.

• Smoothly deformed meshes as shown in Fig 1.15(c). The different levels of refinement are
made of 10× 10, 20× 20, 40× 40, 80× 80 and 160× 160 quadrangles. The deformation
is defined by the mapping of the unit square [0, 1]2 onto itself:

{
x(ξ, η) = ξ + 0.1 sin(2πξ) sin(2πη),

y(ξ, η) = η + 0.1 sin(2πξ) sin(2πη).

• Kershaw type meshes pictured in Fig 1.15(e). The different levels of refinement are made
of 12× 12, 24× 24, 48× 48, 96× 96 and 192× 192 quadrangles.

• Randomly perturbed meshes as shown in Fig 1.15(d). The different meshes are made of
10×10, 20×20, 40×40, 80×80 and 160×160 quadrangles. The perturbation is described
by the mapping defined on the unit square [0, 1]2 by:

{
x(ξ, η) = ξ + 0.2hr1,

y(ξ, η) = η + 0.2hr2,

where ri are random numbers between −1 and 1, h is the characteristic mesh size. The
mapping is not applied on the interface x = 1

2 in order to preserve it.

53

(a) Mesh made of 1032 triangles, the inter-
face at x = 1

2
is preserved.

(b) Cartesian mesh made of 20×20 quadran-
gles.

(c) Smoothly deformed mesh made of 20×20
quadrangles.

(d) Randomly perturbed mesh made of 20×
20 quadrangles, the interface at x = 1

2
is pre-

served.

(e) Kershaw type mesh made of 24×24 quad-
rangles.

Figure 1.15: Example of the meshes used for the tests cases. These meshes are the second
coarsest meshes used for the scheme order computations.

54

1.7.3 Piecewise linear problem with discontinuous isotropic conductivity ten-

sor

This problem consists in finding the steady solution of (1.90) with r = 0 and an isotropic
discontinuous conductivity tensor given by

K(x, y) =

{
κlI if 0 ≤ x ≤ 1

2 ,

κrI if 1
2 ≤ x ≤ 1.

We want to obtain a piecewise linear analytical solution under the form

T̂ (x, y) =

{
a+ bx+ cy if 0 ≤ x ≤ 1

2 ,

a+ 1
2b

κr−κl
κr

+ b κl
κr
x+ cy if 1

2 ≤ x ≤ 1,

with a, b and c some real constants. In this test we have chosen κl = 4 and κr = 1 and
a = b = c = 1.

To obtain this solution we apply the analytical solution T̂ (x, y) using Dirichlet boundary con-
dition on all the boundaries. The solution obtained on the finest Cartesian mesh is displayed
on Figure 1.16.

When running this test on triangular and Cartesian meshes we obtain asymptotic errors equal
to zero up to machine precision. This is what we expected since we showed earlier that our
scheme preserves linear fields over triangular meshes and parallelograms.

The asymptotic errors and truncation errors obtained on the other quadrangular grids are
presented in table 1.2. We did not use the Kershaw meshes for this test since these meshes
do not have an interface at x = 1

2 . Table 1.2(a) shows an erratic behaviour in the order of
convergence on random meshes as already observed in [32, 90]. In Table 1.2(b) we show that
the scheme achieve second-order of accuracy for the two norms on smoothly deformed meshes.
It is important to note that the random kind of meshes are not usually encountered in real-life
applications, we are more likely to encounter smoothly deformed kind of meshes.

1.7.4 Linear problem with discontinuous anisotropic conductivity tensor

This problem consists in finding the steady solution of (1.90) with r = 0 and an anisotropic
discontinuous conductivity tensor given by

K(x, y) =





(
κxxl κ

xy
l

κ
yx
l κ

yy
l

)
if 0 ≤ x ≤ 1

2 ,

(
κxxr κ

xy
r

κ
yx
r κ

yy
r

)
if 1

2 ≤ x ≤ 1.

The one-dimensional solution, i.e., T̂ = T̂ (x) which corresponds to Dirichlet boundary condi-
tions: T̂ (0) = 0 and T̂ (1) = 1, writes as

T̂ (x) =





2κxxr
κxxl + κxxr

x, if 0 ≤ x ≤ 1

2
,

κxxr − κxxl
κxxr + κxxl

+
2κxxl

κxxl + κxxr
x, if

1

2
≤ x ≤ 1.

55

Figure 1.16: Piecewise linear solution on a 160 × 160 Cartesian mesh. 50 isovalues of the
temperature are represented, the color map represents values ranging from 1 (blue) to 4.5 (red).

Table 1.2: Piecewise linear problem with discontinuous isotropic conductivity tensor: asymp-
totic errors in both L2 and L∞ norms and corresponding truncation error orders for quadran-
gular grids.

(a) Random grids.

h EL2 qL2 E∞ q∞
1.00E-01 1.24E-03 0.87 5.05E-03 0.88

5.00E-02 6.80E-04 0.84 2.75E-03 0.46

2.50E-02 3.80E-04 0.94 1.99E-03 1.08

1.25E-02 1.98E-04 1.00 9.43E-04 0.44

6.25E-03 9.93E-05 - 6.95E-04 -

(b) Smooth grids.

h EL2 qL2 E∞ q∞
1.00E-01 3.63E-03 1.72 1.65E-02 1.66

5.00E-02 1.10E-03 1.90 5.22E-03 1.91

2.50E-02 2.95E-04 1.97 1.39E-03 1.98

1.25E-02 7.52E-05 1.99 3.52E-04 1.99

6.25E-03 1.89E-05 - 8.88E-05 -

56

Figure 1.17: Linear solution with discontinuous anisotropic conductivity tensor on a 160× 160
Cartesian mesh. 50 isovalues of the temperature are represented, the color map represents
values ranging from 0 (blue) to 1 (red).

This is a linear continuous solution for which the heat flux q̂ = −K∇T writes as

q̂ = −







2
κxxl κxxr
κxxl + κxxr

2
κ
yx
l κ

xx
r

κxxl + κxxr


 if 0 ≤ x ≤ 1

2 ,



2
κxxl κxxr
κxxl + κxxr

2
κxxl κ

yx
r

κxxl + κxxr


 if 1

2 ≤ x ≤ 1.

The normal component of the heat flux is continuous at the interface x = 1
2 whereas its tan-

gential component undergone a jump discontinuity since in general κyxl κ
xx
r 6= κxxl κ

yx
r .

The boundary conditions applied on the top and the bottom boundaries of the computational do-
main are Dirichlet boundary conditions deduced from the analytical solution. For the numerical
applications we have defined the entries of the conductivity tensor as κxxl = 1, κxyl = κ

yx
l = −1,

κ
yy
l = 4 and κxxr = 10, κxyr = κ

yx
r = −3, κyyr = 2.

As in the previous section, our finite volume scheme preserves linear solutions on triangu-
lar grids and on cells which are parallelograms.

The convergence analysis for smooth and random grids is performed computing the asymptotic
errors and the corresponding orders of truncation error. The results displayed in Table 1.3(a)

57

Table 1.3: Anisotropic linear problem with discontinuous conductivity tensor: asymptotic errors
in both L2 and L∞ norms and corresponding truncation error orders for quadrangular grids.

(a) Random grids.

h EL2 qL2 E∞ q∞
1.00E-01 1.27E-03 0.76 3.27E-03 0.23

5.00E-02 7.51E-04 0.87 2.78E-03 0.64

2.50E-02 4.12E-04 0.63 1.79E-03 0.60

1.25E-02 2.66E-04 0.28 1.18E-03 0.37

6.25E-03 2.20E-04 - 9.12E-04 -

(b) Smooth grids.

h EL2 qL2 E∞ q∞
1.00E-01 3.04E-03 1.69 8.99E-03 1.29

5.00E-02 9.45E-04 1.84 3.68E-03 1.48

2.50E-02 2.65E-04 1.93 1.32E-03 1.73

1.25E-02 6.92E-05 1.98 3.98E-04 1.87

6.25E-03 1.75E-05 - 1.09E-04 -

for the randomly perturbed grids shows an even more erratic behaviour as we have seen in the
previous section. For the smooth grids, the results displayed in Table 1.3(b) show that the
convergence rate is almost second-order in the L2 norm and a little bit less in the L∞ norm.

1.7.5 Anisotropic linear problem with a non-uniform symmetric positive def-

inite conductivity tensor

This test problem has been proposed in [101]. Once more, it consists in finding the steady
solution of (1.90). However, it is characterized by an anisotropic non-uniform conductivity
tensor which writes for all (x, y) ∈ [0, 1]2

K(x, y) =

(
y2 + ηx2 −(1− η)xy
−(1− η)xy x2 + ηy2

)
,

where η is a positive parameter characterizing the level of anisotropy. This tensor is symmetric
positive definite. Its eigenvalues are λ+ = x2 + y2 and λ− = η(x2 + y2). Thus, its condition
number is equal to 1

η . The source term, r, is computed such that the analytical solution (1.90)
is given by

T̂ (x, y) = sin2(πx) sin2(πy).

We apply a homogeneous Dirichlet boundary condition on the boundaries of the computational
domain, i.e., T (x, t) = 0, ∀x ∈ ∂D. For numerical applications, we choose η = 10−2. We assess
the accuracy of our finite volume scheme by running this test problem on sequence of triangular
and distorted quadrangular grids.

The convergence analysis results corresponding to the numerical simulations using the five
triangular grids are displayed in Table 1.4. They show that our finite volume scheme has a
second-order convergence rate in L2 norm on triangular grids. The convergence rate for the L∞

is a bit more erratic but seems to lay around second-order convergence rate too.

Concerning the quadrangular grids we perform the convergence analysis on four types of

58

Figure 1.18: Anisotropic linear solution with a non-uniform symmetric positive definite conduc-
tivity tensor on a 160 × 160 Cartesian mesh. 50 isovalues of the temperature are represented,
the color map represents values ranging from 0 (blue) to 1 (red).

h EL2 qL2 E∞ q∞
6.15E-02 2.69E-02 2.71 9.22E-02 2.57

3.11E-02 4.23E-03 2.16 1.60E-02 2.00

1.55E-02 9.32E-04 2.14 3.95E-03 2.17

7.67E-03 2.08E-04 2.03 8.61E-04 1.80

3.85E-03 5.11E-05 - 2.49E-04 -

Table 1.4: Anisotropic linear problem with a non-uniform symmetric positive definite conduc-
tivity tensor: asymptotic errors in both L2 and L∞ norms and corresponding truncation error
orders for triangular grids.

59

Table 1.5: Anisotropic linear problem with a non-uniform symmetric positive definite conduc-
tivity tensor: asymptotic errors in both L2 and L∞ norms and corresponding truncation error
orders for quadrangular grids.

(a) Rectangular grids.

h EL2 qL2 E∞ q∞
1.00E-01 1.69E-02 2.07 3.97E-02 2.08

5.00E-02 4.03E-03 2.02 9.41E-03 2.02

2.50E-02 9.95E-04 2.00 2.32E-03 2.01

1.25E-02 2.48E-04 2.00 5.78E-04 2.00

6.25E-03 6.20E-05 - 1.44E-04 -

(b) Smooth grids.

h EL2 qL2 E∞ q∞
1.00E-01 3.07E-02 2.08 1.79E-01 1.95

5.00E-02 7.25E-03 2.01 4.64E-02 1.94

2.50E-02 1.80E-03 2.00 1.21E-02 1.97

1.25E-02 4.48E-04 2.00 3.08E-03 2.00

6.25E-03 1.12E-04 - 7.71E-04 -

(c) Kershaw grids.

h EL2 qL2 E∞ q∞
8.33E-02 8.16E-02 2.00 3.39E-01 2.24

4.17E-02 2.04E-02 2.03 7.17E-02 2.04

2.08E-02 5.01E-03 2.01 1.74E-02 1.99

1.04E-02 1.24E-03 2.01 4.39E-03 1.91

5.21E-03 3.09E-04 - 1.17E-03 -

(d) Random grids.

h EL2 qL2 E∞ q∞
1.00E-01 2.17E-02 1.85 6.80E-02 1.49

5.00E-02 6.01E-03 1.76 2.42E-02 1.52

2.50E-02 1.77E-03 1.21 8.42E-03 0.88

1.25E-02 7.69E-04 0.73 4.58E-03 0.78

6.25E-03 4.63E-04 - 2.68E-03 -

grids: rectangular, smooth, Kershaw and random. We start by giving in Table 1.5(a) the con-
vergence analysis data for a sequence of five rectangular grids. These data demonstrate that
our finite volume scheme exhibits a second-order rate of convergence on rectangular grids.

Next, we pursue our investigations using the sequence of the five smooth distorted grids.
The convergence analysis results obtained with these five grids are presented in Table 1.5(b).
Once more, we observe a second-order convergence rate in L2 and L∞ norm. We can draw
similar conclusions with the sequence of Kershaw type meshes as presented in Table 1.5(c). In
this case we observe a second-order convergence rate in L2 norm, and the convergence rate in
L∞ norm is almost second-order.

The results of the convergence analysis corresponding to the sequence of random grids are
given in Table 1.5(d). In comparison to the previous results, these ones are representative of an

60

erratic behavior which clearly does not correspond to second-order.

1.8 Numerical results in three-dimensional geometries

The aim of this section is to assess the robustness and the accuracy of our finite volume scheme
against analytical test cases using various types of unstructured three-dimensional grids. The
tests cases have been chosen to highlight the different features of the scheme. The methodology
used is exactly the same as the one used for the two-dimensional geometries. First, we present
the three-dimensional structured and unstructured grids employed. Then, we describe the set
up of each test case, display the numerical results obtained and discuss the quality of the cor-
responding convergence analysis.

We recall that the numerical solutions are obtained solving linear systems by means of the
localized ILU(0) Preconditioned BiCGStab algorithm [127, 95]. The relative error tolerance to
achieve the convergence is equal to 10−16.

1.8.1 Computational grids

Here, we present the three-dimensional computational grids employed to run the test cases.
There are various types of grids: tetrahedral grids, hexahedral grids and hybrid grids which
are composed of tetrahedra, hexahedra and pyramids. The detailed description of these grids
is summarized in the list below:

• Tetrahedral grids, displayed in Figure 1.19(a) and Figure 1.19(f), have been constructed
using Gmsh, which is a three-dimensional finite element mesh generator [50];

• Hexahedral Cartesian grid displayed in Figure 1.19(b);

• Kershaw-type grid displayed in Figure 1.19(c);

• Smoothly deformed hexahedral grid resulting from the mapping defined on the unit cube
[0, 1]3 by

x(ξ, η, θ) =ξ + a0 sin(2πξ) sin(2πη) sin(2πθ),

y(ξ, η, θ) =η + a0 sin(2πξ) sin(2πη) sin(2πθ),

z(ξ, η, θ) =θ + a0 sin(2πξ) sin(2πη) sin(2πθ),

where the amplitude of the deformation is a0 = 0.1. Observing that the deformation
cancels on the boundary surfaces of the unit cube, this grid has not been displayed since
it looks like the Cartesian grid;

• Randomly deformed hexahedral grid, displayed in Figure 1.19(d), resulting from the map-
ping defined on the unit cube [0, 1]3 by:

x(ξ, η, θ) = ξ + a0hr1,

y(ξ, η, θ) = η + a0hr2,

z(ξ, η, θ) = θ + a0hr3,

where {ri}i=1...3 are random numbers in [−1, 1], h is the characteristic mesh size and
a0 = 0.2 the amplitude of the deformation;

61

• Hybrid grid, displayed in Figure 1.19(e), made of hexahedral cells, pyramidal cells and
tetrahedra.

Comment 13: We have introduced the hybrid grid because of its usefulness regarding real-
world applications. Let us point out that it is a convenient way to mesh a domain using both
hexahedral and tetrahedra cells with the constraint of keeping a conformal grid. In this case, a
layer of pyramids ensures the transition between hexahedra and tetrahedra. This kind of grid
can be used in the context of the computation of a viscous flow in the presence of a solid wall.
Indeed, the pyramid cells allows to match the boundary layer in the vicinity of the wall, paved
by means of hexahedra, with the rest of the domain paved using tetrahedra.

Comment 14: The tetrahedral grid displayed in Figure 1.19(f) corresponds to a truncated
sphere with an internal radius Ri and an external radius Re. This grid is also characterized by
an interface located at Rm, which allows to separate two distinct materials.

1.8.2 Isotropic diffusion problem

This problem consists in finding the steady solution of (1.90) with r = 0 and an isotropic con-
ductivity tensor defined by K = κI, where I is the unit tensor of R3 and the scalar conductivity
is given by κ = 1. The computation domain is D = [0, 1]3 and we apply the following boundary
conditions on the boundaries of D

• Dirichlet boundary condition

T (x) =0, for x = 0,

T (x) =1, for x = 1.

• Neumann boundary condition

q(x) · n = 0, for y = 0, y = 1, z = 0 and z = 1.

The steady analytical solution is T̂ (x) = x. The aim of this simple test case is to assess the
ability of our scheme to preserve linear fields.

First, we compute the steady numerical solution using a tetrahedral grid made of 8222 cells, refer
to Figure 1.19(a). The corresponding asymptotic errors are equal to zero up to machine preci-
sion. As expected, our finite volume scheme preserves linear solutions on tetrahedral grids. We
observe a similar behavior when computing the numerical solution on the Cartesian hexahedral
grid displayed in Figure 1.19(b). Let us point that this result confirms the conclusion already
drawn for this type of numerical methods, in the context of two-dimensional geometry, refer to
[32, 90]. The convergence analysis for smooth grids, Kershaw grids (refer to Figure 1.19(c)) and
random grids (refer to Figure 1.19(d)) are performed computing the asymptotic errors and the
corresponding orders of truncation error using formulas (1.91) and (1.92). The results displayed
in Table 1.6(a) show that the convergence rate is almost of second-order in the L2 norm and
a little bit less in the L∞ norm for the smooth grids. In Table 1.6(b), we observe a similar
behavior for the convergence analysis corresponding to the Kershaw grids. Proceeding with the
convergence analysis for random grids as before, we have displayed the corresponding results
in Table 1.6(c). The convergence rate is of first-order for the L2 norm and almost of first-order
for the L∞ norm.

62

(a) Tetrahedral grid made of 8222 cells. (b) Cartesian hexahedral grid made of 1000
cells.

(c) Kershaw-type grid made of 1000 cells. (d) Randomly perturbed grid made of 1000
cells.

(e) Hybrid grid made of 3432 tetrahedra, 100
pyramids and 500 hexahedra.

(f) Tetrahedral grid of a truncated sphere
made of 6623 cells.

Figure 1.19: Three-dimensional grids used for the test cases.

63

Table 1.6: Isotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corre-
sponding truncation errors for hexahedral grids.

(a) Smooth grids.

h Eh
∞ qh∞ Eh

2 q22 Iterations

1.00D-01 5.65D-03 1.60 2.18D-03 1.69 11

5.00D-02 1.87D-03 1.80 6.75D-04 1.90 22

2.50D-02 5.35D-04 1.92 1.81D-04 1.97 44

1.25D-02 1.41D-04 - 4.63D-05 - 101

(b) Kershaw grids.

h Eh
∞ qh∞ Eh

2 q22 Iterations

1.00D-01 3.22D-02 1.94 8.23D-03 2.04 14

5.00D-02 8.39D-03 1.39 2.00D-03 1.69 37

2.50D-02 3.20D-03 2.09 6.20D-04 2.06 80

1.25D-02 7.53D-04 - 1.49D-04 - 116

(c) Random grids.

h Eh
∞ qh∞ Eh

2 q22 Iterations

1.00D-01 2.09D-03 0.75 6.62D-04 1.00 11

5.00D-02 1.24D-03 0.81 3.31D-04 1.00 21

2.50D-02 7.07D-04 0.93 1.66D-04 1.00 42

1.25D-02 3.72D-04 - 8.29D-05 - 78

h Eh
∞ qh∞ Eh

2 q22 Iterations

6.28D-02 2.06D-03 0.99 2.66D-04 1.49 14

3.12D-02 1.04D-03 1.00 9.39D-05 1.50 27

1.56D-02 5.19D-04 1.74 3.32D-05 2.59 60

1.04D-02 2.58D-04 - 1.17D-05 - 95

Table 1.7: Isotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and corre-
sponding truncation errors for hybrid grids.

Comment 15: Let us point out that the last columns in the above tables represent the number
of iterations required by our ILU(0) Preconditioned BiCGStab algorithm to reach the relative
error tolerance required to achieve the convergence in solving the linear systems. This error
tolerance has been set equal to 10−16 which is a very small tolerance. This probably explains
the relatively high number of iterations of our solver. It is worth mentioning that for real life
applications we shall set the error tolerance equal to 10−8.

Finally, the convergence analysis for the hybrid grids, refer to Figure 1.19(e), is displayed in
Table 1.7. The corresponding data demonstrate that our numerical scheme exhibits a rate of
convergence located between first and second-order. Let us point out that the maximal error is
always located in the layer of pyramids which allows to link the tetrahedral and the hexahedral
regions of the grid. This clearly shows that the loss of accuracy is the consequence of the
particular treatment applied to pyramids to derive the flux approximation, refer to [74] for
more details.

64

h Eh
∞ qh∞ Eh

2 q22 Iterations

1.20D-01 1.23D-01 3.19 2.16D-02 2.49 7

5.80D-02 1.22D-02 1.65 3.57D-03 2.25 18

4.54D-02 8.14D-03 1.90 2.05D-03 2.08 39

3.17D-02 4.12D-03 - 9.73D-04 - 59

Table 1.8: Isotropic diffusion problem with a discontinuous conductivity, asymptotic errors in
both L∞ and L2 norms and corresponding truncation errors for tetrahedral grids.

1.8.3 Isotropic diffusion problem with a discontinuous conductivity

Here, the computational domain, D, is the truncated sphere, centered at the origin and charac-
terized by the inner radius Ri = 0.1 and the outer radius Re = 1. An interface, located at the
radius Rm = 0.5, splits the computational domain into two regions filled with two distinct ma-
terials. The conductivity tensor is isotropic and piecewise constant, i.e, K = κI where κ = κ(r)
with r =

√
x2 + y2 + z2. The scalar conductivity is given by

κ(r) =

{
κ1 if r ∈ [Ri, Rm[,

κ2 if r ∈]Rm, Re].

For numerical applications, we choose κ1 = 10 and κ2 = 1. Dirichlet boundary conditions are
prescribed at the inner and the outer boundary of the computational domain, i.e., T (Ri) = Ti =
0 and T (Re) = Te = 1. Due the radial symmetry of the problem, we consider a computational
domain restricted to 1

8 of the truncated sphere. The corresponding coarsest tetrahedral grid is
displayed in Figure 1.19(f). Homogeneous Neumann boundary conditions are prescribed at the
remaining boundaries of the computational domain to handle the symmetry of the problem.

The steady analytical temperature, T̂ (r), field is obtained by solving the following problem

1

r2
d

dr
(r2

dT

dr
) = 0, r ∈]Ri, Re[

T (Ri) = Ti,

T (R−
m) = T (R+

m), κ1
dT

dr
(R−

m) = −κ2
dT

dr
(R+

m),

T (Re) = Te.

Let us remark that the second equation in the above system expresses the continuity conditions
of the temperature and the heat flux across the interface located at Rm. Employing the previous
numerical values, the analytical solution reads

T̂ (r) =

{
− 1

18r +
5
9 if r ∈ [Ri, Rm],

− 5
9r +

14
9 if r ∈ [Rm, Re].

The steady analytical and numerical solutions are displayed in Figure 1.20. We have plotted
the averaged temperature of all the cells versus the cell centroid radius. We observe that the
numerical solution is almost superimposed to the analytical solution. This clearly shows
the ability of the scheme to preserve the radial symmetry on a highly anisotropic
unstructured grid, which is not aligned with the symmetry of the problem. We
investigate the convergence analysis for this problem using a sequence of four tetrahedral grids
made of 902, 6623, 13549 and 37648 cells. The resulting asymptotic errors and rate of conver-
gence in both L∞ and L2 norms are presented in Table 1.8. We observe that a second-order

65

Figure 1.20: Isotropic diffusion problem with a discontinuous conductivity: Temperatures in all
the cells with respect to the radii of the cell centroid for a tetrahedral grid composed of 13549
tetrahedra; comparison with the analytical solution.

rate of convergence is asymptotically reached in L2 norm. It is interesting to note the large gap
in the maximum errors between the coarsest grid and the second grid. This might be due to the
discretization of the spherical boundaries. On the coarsest grid, the mesh resolution is too poor
to properly capture the curvilinear inner and outer boundaries. When the grid is refined, the
curvilinear feature of the boundaries is better captured due to the increased mesh resolution.

1.8.4 Anisotropic diffusion with a highly heterogeneous conductivity tensor

This paragraph consists in assessing our finite volume scheme against a test case which is
representative of anisotropic diffusion characterized by a highly heterogeneous conductivity
tensor. This test case and its manufactured analytical solution are taken from [64]. Here, we
solve the problem (1.90) over the computational domain D = [0, 1]3. The conductivity tensor
is defined by

K = Q



1 0 0
0 ε 0
0 0 η(1 + x+ y + z)


Qt.

where, Q = Q(x) is the rotation given by

Q =



cos(πx) − sin(πx) 0
sin(πx) cos(πx) 0

0 0 1


 .

Here, ε and η are parameters which measure the degree of anisotropy of the conductivity tensor.
Indeed, the eigenvalues of the conductivity tensor are: 1, ε and η(1 + x+ y+ z). For numerical
applications, we shall take ε = 0.1 and η = 10. The source term, r = r(x), is computed such
that the analytical steady solution of (1.90) is given by

T̂ (x, y, z) = sin(πx) sin(πy) sin(πz).

We apply a homogeneous Dirichlet boundary condition on the boundaries of the computational
domain, i.e., T (x, t) = 0, ∀ x ∈ ∂D. First, we compute the numerical solution using a se-

66

h Eh
∞ qh∞ Eh

2 q22 Iterations

1.12D-01 3.01D-01 2.43 7.98D-02 2.55 10

4.95D-02 4.18D-02 1.94 1.01D-02 2.14 14

2.47D-02 1.08D-02 1.64 2.26D-03 1.99 32

1.23D-02 3.45D-03 - 5.70D-04 - 61

Table 1.9: Anisotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and
corresponding truncation errors for tetrahedral grids.

quence of four tetrahedral grids. The coarsest grid has been displayed in Figure 1.19(a). The
asymptotic errors in both L∞ and L2 norms and the corresponding truncation errors are sum-
marized in Table 1.9. They show that the convergence rate in L2 norm is of second-order.
Regarding the convergence analysis on hexahedral grids, we have also used a sequence of four
grids for the following types of grids: Cartesian, Kershaw, smooth and random. These grids
are showed respectively in Figure 1.19(b), Figure 1.19(c) and Figure 1.19(d). Let us recall
that the smooth grid has not been displayed since the deformation cancels on the boundaries
of the computational domain. We start by giving in Table 1.10(a) the convergence analysis
data for a sequence of four Cartesian grids. These data demonstrate that our scheme exhibits
an almost second-order rate of convergence on Cartesian grids. The same conclusion holds for
the convergence analysis performed on smooth grids, refer to Table 1.10(c). We observe that
the rate of convergence in L2 norm are better than those obtained for the rectangular grids,
however the asymptotic errors on smooth grids are approximately three times bigger than the
ones corresponding to the Cartesian grids. Next, we pursue our investigation using a sequence
of four Kershaw grids. The related convergence analysis is summarized in Table 1.10(b). This
time, the rate of convergence in both L∞ and L2 norms is lying between first and second-order.
Finally, we compute the numerical solution on a sequence of four random grids. The results
of the convergence analysis corresponding to this sequence of grids are given in Table 1.10(d).
In comparison to the above results, these ones are representative of an erratic behavior, which
clearly does not correspond to a second-order rate of convergence.

We achieve the convergence analysis of the present problem by studying the numerical solutions
obtained employing a sequence of four hybrid grids, refer to Figure 1.19(e). The asymptotic
errors and the convergence rates in both L∞ and L2 norms are displayed in Table 1.11. The
results demonstrate that the scheme is characterized by a rate of convergence located between
first and second-order. Once more, the maximal error is located in the layer of pyramids which
allows to link the tetrahedral and the hexahedral regions of the grid. Let us repeat that this
loss of accuracy is the consequence of the particular treatment applied to pyramids to derive
the flux approximation, refer to [74].

1.9 Conclusion

In this chapter, we have described a cell-centered finite volume scheme, which aims at solving
anisotropic diffusion problems on two and three-dimensional unstructured grids. This scheme
is characterized by cell-centered unknowns, a local stencil and a symmetric positive definite
matrix. The partition of grid cells (resp. faces) into sub-cells (resp. -faces) allows to con-
struct a sub-face fluxes approximation by means of a sub-cell-based variational formulation.
The sub-face fluxes are locally expressed at each node in terms of the surrounding cell-centered
temperatures invoking continuity conditions of temperature and normal heat flux at each cell
interface. Regarding its accuracy, the scheme preserves linear fields with respect to the space

67

Table 1.10: Anisotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and
corresponding truncation errors for hexahedral grids.

(a) Cartesian grids.

h Eh
∞ qh∞ Eh

2 q22 Iterations

1.00e-01 1.32D-02 1.68 4.86D-03 1.91 10

5.00D-02 4.13D-03 1.62 1.30D-03 1.95 21

2.50D-02 1.34D-03 1.69 3.35D-04 1.98 43

1.25D-02 4.15D-04 - 8.50D-05 - 112

(b) Kershaw grids.

h Eh
∞ qh∞ Eh

2 q22 Iterations

1.00D-01 3.01D-02 1.15 7.80D-03 1.72 13

5.00D-02 1.36D-02 1.25 2.38D-03 1.55 28

2.50D-02 5.72D-03 1.65 8.13D-04 1.99 53

1.25D-02 1.82D-03 - 2.05D-04 - 109

(c) Smooth grids.

h Eh
∞ qh∞ Eh

2 q22 Iterations

1.00D-01 6.03D-02 2.09 1.60D-02 2.12 16

5.00D-02 1.41D-02 1.68 3.69D-03 2.03 37

2.50D-02 4.41D-03 1.89 9.03D-04 2.00 87

1.25D-02 1.19D-03 - 2.26D-04 - 123

(d) Random grids.

h Eh
∞ qh∞ Eh

2 q22 Iterations

1.00D-01 2.44D-02 1.41 7.35D-03 1.86 11

5.00D-02 9.17D-03 1.09 2.02D-03 1.56 21

2.50D-02 4.31D-03 0.86 6.85D-04 0.72 46

1.25D-02 2.37D-03 - 4.16D-04 - 94

h Eh
∞ qh∞ Eh

2 q22 Iterations

6.28D-02 4.67D-02 1.63 9.58D-03 2.01 18

3.12D-02 1.49D-02 1.47 2.34D-03 1.93 26

1.56D-02 5.38D-03 1.31 6.14D-04 1.83 65

1.04D-02 3.18D-03 - 2.95D-04 - 128

Table 1.11: Anisotropic diffusion problem, asymptotic errors in both L∞ and L2 norms and
corresponding truncation errors for hybrid grids.

68

variable over triangular and tetrahedral grids and exhibits an almost second-order rate of con-
vergence on smooth distorted quadrangular and hexahedral grids. The parallel implementation
of the scheme is discussed and its evaluation shows a satisfying efficiency. This last point is
crucial for dealing with real life three-dimensional applications.

69

70

Chapter 2

A Finite Volume scheme for solving

tensorial diffusion on unstructured

grids

Here, we are interesting in developing an unstructured Finite Volume discretization of the
viscous flux contained in the compressible Navier-Stokes equations, refer to Chapter 3. This
viscous flux is characterized by a constitutive law which expresses the deviatoric part of the
Cauchy stress tensor in terms of the deviatoric part of the strain rate tensor, i.e., the sym-
metric part of the velocity gradient tensor. In what follows, we present a cell-centered Finite
Volume discretization of a generic tensorial diffusion equation which is nothing but the mo-
mentum equation of the compressible Navier-Stokes equations wherein the pressure gradient
term has been suppressed. This space discretization is the non-trivial extension of the CCLAD
scheme to a generic tensorial diffusion equation. This Finite Volume scheme is described in
a two-dimensional framework knowing that the three-dimensional extension can be derived
straightforwardly. In this approach, the degrees of freedom are located at the cell centers and
the divergence of the viscous stress tensor is discretized by means of half-edge viscous fluxes
which are the projections of the viscous stress tensor onto the unit outward normal to the
cell interfaces. As in CCLAD scheme, the half-edge viscous fluxes approximation relies on a
variational formulation of the constitutive law. However, in the present case, this methodology
leads to a space approximation of the constitutive law which is only positive semi-definite. This
lack of definiteness renders the straightforward CCLAD extension to tensorial diffusion inoper-
ative. It is a direct consequence of the fact that the constitutive law is not invertible over the
space of generic second-order tensors. Indeed, the constitutive law is only invertible over the
space of traceless symmetric second-order tensors. This problem has been already encountered
by Arnold [16] in the context of linear elasticity. To solve it, he has proposed a new mixed
variational formulation for the equations of linear elasticity which does not require symmetric
tensors and consequently is easy to discretize by adapting mixed finite elements developed for
scalar second-order elliptic problems.

Here, we adapt Arnold’s approach by adding a divergence free term to the constitutive law such
that it renders it invertible over the space of generic second-order tensors while keeping the
generic tensorial diffusion equation satisfied by the velocity field unchanged. This methodology
allows us to derive a robust approximation of the half-edge viscous fluxes in terms of the cell-
centered velocity and the half-edge velocities, which are supplementary degrees of freedom.
These auxiliary unknowns are then eliminated by solving node-based invertible linear systems
which are obtained by writing the continuity of the half-edge viscous fluxes across cell interfaces
impinging at a given node. The remainder of this chapter is organized as follows: we start by

71

presenting the generic tensorial diffusion equation and its connection to the compressible Navier-
Stokes equation. Then, we address the mathematical properties of the constitutive law, which
lead us to the construction of an invertible constitutive law by adapting the pioneering work of
Arnold. Finally, we apply the CCLAD’s methodology developed in Chapter 1 to construct a
cell-centered Finite Volume scheme for the tensorial diffusion equation. We finish this chapter
by conducting extensive numerical tests cases to assess the robustness and the accuracy of our
numerical method.

2.1 The tensorial diffusion equation

Let us study the Finite Volume discretization of the generic tensorial diffusion equation obtained
by removing the convective terms from the momentum equation of the classical compressible
Navier-Stokes equations, refer to Chapter 3. Let D be an open set of the d-dimensional space
Rd and x is the position vector of an arbitrary point inside the domain D and t > 0 is the
time. We aim at constructing a numerical scheme to solve the following initial-boundary-value
problem for the velocity vector V = V (x, t)

ρ
∂V

∂t
−∇ · S = 0, ∀(x, t) ∈ D × [0,T], (2.1a)

V (x, 0) = V 0(x), ∀x ∈ D. (2.1b)

Here T > 0 is the final time, ρ is a positive real valued function, which stands for the mass
density and V 0 stands for the initial velocity. The second-order tensor, S, represents the
deviatoric part of the Cauchy stress tensor which is defined by the constitutive law

S = 2µ

[
D− 1

3
(trD)I

]
,

where µ = µ(x) > 0 is the kinematic viscosity and D is the strain rate tensor, which is nothing
but the symmetric part of the velocity gradient tensor, i.e.

D =
1

2

[
∇V + (∇V)t

]
.

Being given a generic second-order tensor, T, its deviatoric part, T0, is given by

T0 = T− 1

3
(trT)I.

Finally, employing the above notation, the constitutive law turns into the more compact form

S = 2µD0. (2.2)

It remains to prescribe the boundary conditions. Although a lot of different boundary conditions
can be defined for the above tensorial diffusion equation (2.1a), we restrict our study to the ones
that will be used in fluid dynamics computations. We shall develop three kinds of boundary
conditions employing the following partition of the domain boundary ∂D = ∂Dk ∪ ∂Dn ∪ ∂Ds

Kinematic boundary condition on ∂Dk

Here, the velocity is prescribed as

V (x, t) = V ⋆(x, t), ∀x ∈ ∂Dk,

where V ⋆ is the boundary velocity. This type of boundary condition corresponds to a wall
boundary condition.

72

V

V ′

n

Π t

x+ hn

x

x− hn

Figure 2.1: Notation related to symmetry boundary condition, for a plane of symmetry Π.

Free boundary condition on ∂Dn

Here, the projection of the velocity gradient tensor onto the direction of the unit outward normal
is prescribed as

(∇V)n = G⋆(x, t), ∀x ∈ ∂Dn,

where n is the unit outward normal to the boundary and G⋆ is a real valued vector defining
the normal velocity gradient. This boundary condition is applied to outlets, where the gradient
of the velocity is supposed to be equal zero in the normal direction to the boundary.

Symmetry boundary condition on ∂Ds

Here, we assume that the flow admits a symmetry plane which is denoted Π. This plane is
defined by its unit normal vector n, refer to Figure 2.1. Let Vt be the tangential projection of
V onto Π. We have the following decomposition of the velocity

V = (V · n)n+ Vt.

The symmetric of V with respect to the plane Π writes

V ′ = −(V · n)n+ Vt.

Combining the two above expressions leads to

V ′ = V − 2(V · n)n.

Let x be a point located on the symmetry plane Π, and let x+hn and x−hn with h > 0 be two
symmetrical points with respect to plane Π, refer to Figure 2.1. If the fluid flow is symmetrical
with respect to the plane Π then

V (x+ hn) = V ′(x− hn).

Substituting the expression of V ′ in the above equation leads to

V (x+ hn) = V (x− hn)− 2[V (x− hn) · n]n. (2.3)

Using a first-order Taylor expansion yields

V (x+ hn) = V (x) + h∇V (x)n+O(h2), (2.4)

V (x− hn) = V (x)− h∇V (x)n+O(h2). (2.5)

73

Substituting (2.4) and (2.5) into (2.3) leads to

V (x) + h∇V (x)n = V (x)− h∇V (x)n− 2[(V (x)− h∇V (x)n) · n]n+O(h2).

The above equation has to be satisfied up to first-order, then for all h > 0 there holds

2(V (x) · n)n+ 2h∇V (x)n− 2h(∇V (x)n · n)n = 0.

This is equivalent to the following conditions

(V (x) · n)n = 0,

∇V (x)n− (∇V (x)n · n)n = 0,

Finally, we claim that the boundary conditions to apply on a symmetry boundary condition are
respectively V · n = 0 and (∇V n) · t = 0 for all x ∈ ∂Ds. Here, t is the unit tangent vector
which defines Π in the case of a two-dimensional geometry. In the case of a three-dimensional
geometry, we should write (∇V n) · t1 = 0 and (∇V n) · t2 = 0, where (t1, t2) is an orthonormal
basis of Π.

2.2 Mathematical properties of the constitutive law

In this paragraph we are going to study the invertibility of the constitutive law which defines
the viscous flux of the Navier-Stokes equations. Let us begin with some definitions. Let T be
the space of general second-order tensors with components in Rd with d ∈ {2, 3}. Let us note
Ts the space of symmetric second-order tensors defined by

Ts =
{
T ∈ T ;Tt = T

}
. (2.6)

We note T 0
s the space of traceless symmetric second-order tensors which writes

T 0
s = {T ∈ Ts; trT = 0} . (2.7)

We define the fourth-order tensor ¯̄C as:

¯̄C : T −→ T
T 7−→ ¯̄CT = 2µ

[
1
2

(
T + Tt

)
− 1

3(trT)I
]
.

(2.8)

The constitutive law (2.2) is expressed in terms of ¯̄C as follows:

S = ¯̄C∇V . (2.9)

Determination of the kernel of ¯̄C

Let us study the invertibility of the above constitutive law, by determining the kernel of ¯̄C.
To this end, we compute the solution of ¯̄CT = 0 by developing the two terms 1

2

(
T + Tt

)
and

1
3(trT)I onto a Cartesian basis as follows

1

2

(
T + Tt

)
=

1

2




2T11 T12 + T21 T13 + T31
T12 + T21 2T22 T23 + T32
T23 + T32 T13 + T31 2T33


 ,

and

1

3
(trT)I =

1

3



T11 + T22 + T33 0 0

0 T11 + T22 + T33 0
0 0 T11 + T22 + T33


 .

74

Finding the kernel of ¯̄C amounts to solve the linear system





2T11 − T22 − T33 = 0
T12 + T21 = 0
T13 + T31 = 0

2T22 − T11 − T33 = 0
T23 + T32 = 0

2T33 − T11 − T22 = 0

which collapses to 



T11 = T22
T22 = T33

T12 + T21 = 0
T13 + T31 = 0
T23 + T32 = 0

Finally, the elements of the kernel of ¯̄C are second-order tensors of the form

T = αI + W, (2.10)

where α ∈ R and W is a generic skew symmetric second-order tensor, i.e., Wt = −W. Let us
point out that the elements of Ker¯̄C correspond respectively to pure dilatational deformation,
i.e., αI and to rigid body rotation, i.e., W.

Dimension of the kernel of ¯̄C

We pursue by determining the dimension of this kernel, using the characterization of the kernel
defined by (2.10). First, the dimension of the space of symmetric tensors is dim Ts = 1

2d(d+ 1)
and the dimension of the space of skew symmetric tensors is 1

2d(d− 1). Thus, the dimension of

the kernel of ¯̄C is

dimKer ¯̄C = 1 +
1

2
d(d− 1). (2.11)

The dimension of T being d2, it is clear that ¯̄C is not invertible over T .

Comment 16: We recall that dim T = d2, dim Ts = d
2(d + 1) and dim T 0

s = dim Ts − 1 =
d
2(d + 1) − 1. Knowing that dimKer ¯̄C = 1 + 1

2d(d − 1), the rank theorem leads to dim Im ¯̄C =
1
2d(d+ 1)− 1 = dim T 0

s .

Invertibility of ¯̄C over T 0
s

By virtue of comment 16, if we restrict the definition of ¯̄C to the space T 0
s then ¯̄C becomes an

invertible operator. We will first verify that the definition (2.10) of the kernel space restricted
to T 0

s is reduced to 0. Then we will prove that, over the space of symmetric traceless tensors
T 0
s , the fourth-order tensor ¯̄C is invertible.

It is trivial to prove that the kernel of ¯̄C defined on the space of traceless symmetric second-order
tensors T 0

s is reduced to 0. We can check it directly.
For all T ∈ T 0

s we have trT = 0 and T = Tt. If we take T ∈ Ker ¯̄C we also have T = αI+W with
Wt = −W.
We compute the transpose of T to obtain Tt = αI−W. Because T = Tt we conclude that W = 0.
Thus T writes under the form T = αI.
Let us compute the trace of T, trT = αd and trT = 0 which means that α = 0. It remains

75

T = 0, which ends the proof.

Let us recall the definition of the inner product of two tensors T and Q ∈ T

T : Q = tr
(
QtT

)
, (2.12)

which express in terms of the tensors components as

T : Q =
∑

i,j

TijQij . (2.13)

For all T ∈ T 0
s the constitutive law (2.2) simplifies to ¯̄CT = 2µT0. Let us compute the inner

product with T:

¯̄CT : T = 2µT0 :

(
T0 +

1

3
(trT)I

)

= 2µT0 : T0

= 2µ|T0|2.

Where |.| is the norm associated with the inner product. Namely |T| =
√

T : T =

√∑

i,j

T2
ij .

Thus, for all T ∈ T 0
s we have the following bounds

2µ|T0|2 ≤ ¯̄CT : T ≤ 2µ|T0|2, (2.14)

where µ = minx∈Rd µ(x) and µ = maxx∈Rd µ(x).

Invertibility of ¯̄C over T

What can we say about the invertibility of the constitutive law over the whole space of second-
order tensors?

For all T ∈ T we have:

¯̄CT : T = ¯̄C
T + Tt

2
:
T + Tt

2
,

= 2µ

[∣∣∣∣
T + Tt

2

∣∣∣∣
2

− 1

3
(trT)2

]
,

≥ 2µ

[
1

4

(
|T|2 + 2T : Tt + |Tt|2

)
− 1

3
(trT)2

]
thanks to (2.14),

≥ µ
[
|T|2 + T : Tt − 2

3
(trT)2

]
. (2.15)

We cannot say anything about the sign of the right hand side. This shows that for a generic
tensor we cannot conclude that ¯̄C is invertible. This is why in the next section we introduce a
modification of the constitutive law to obtain an equivalent invertible constitutive law on T .

76

2.3 Construction of an invertible constitutive law

In this section, we will focus on the construction of an equivalent invertible constitutive law. It is
a very important issue regarding the construction of our numerical scheme. As for the CCLAD
scheme presented in Chapter 1, the numerical approximation of the viscous fluxes should be
based on a sub-cell variational formulation of the constitutive law, and the elimination of the
edge-based auxiliary unknowns should require the inversion of nodal linear systems. Knowing
that the invertibility of the nodal linear systems is directly linked to the invertibility of the
constitutive law. Thus, it is crucial to ensure its invertibility. Arnold [16], in the domain of
linear elasticity, has faced the same difficulties. The Hellinger-Reissner variational formulation
he had to solve was defined on the space of symmetric d × d tensors, and the construction of
suitable Finite Element methods for such problems was extremely difficult. In [16], Arnold has
introduced a modification of the constitutive law to be able to write an equivalent formulation
of the Hellinger-Reissner variational principle defined on the space of generic d× d tensors. He
was then able to apply classical Finite Element method to this problem. In this section, we
adapt his methodology to our problem.

Let us define the fourth-order tensor ¯̄D as

¯̄DT = (trT)I− Tt, ∀T ∈ T . (2.16)

Let us compute the inner product with T to obtain

¯̄DT : T = (trT)2 − Tt : T. (2.17)

Then we define ¯̄RT = ¯̄CT + β ¯̄DT, where β ∈ R, and compute its inner product with T

¯̄RT : T = ¯̄CT : T + β ¯̄DT : T,

≥ µ
[
|T|2 + T : Tt − 2

3
(trT)2

]
+ β(trT)2 − βT : Tt, thanks to (2.15).

Choosing β = µ leads to

¯̄RT : T ≥ µ
[
|T|2 + 1

3
(trT)2

]
≥ 0. (2.18)

Comment 17: Thanks to this manipulation the fourth-order tensor ¯̄R is positive definite on
the space of second-order tensors T and is thus invertible.

We have defined a positive definite operator, let us show how to use it in our initial problem.
Let us first introduce Σ = ¯̄R∇V = (¯̄C + β ¯̄D)∇V . We will show that Σ and S satisfy the same
divergence equation.

Recalling the tensorial identity ∇ · (∇V)t = ∇(∇ · V) for all V ∈ Rd we easily show that

∇ · (¯̄D∇V) = ∇ · [tr(∇V)I]−∇ · (∇V)t,

= ∇(∇ · V)−∇(∇ · V),

= 0.

This implies that Σ = (¯̄C + β ¯̄D)∇V satisfies

∇ · Σ = ∇ · (¯̄C∇V),

= ∇ · S.

77

which ends the proof.

We claim that the fourth-order tensor ¯̄R = ¯̄C + β ¯̄D, where β = µ, is positive definite and

satisfies ¯̄RT : T ≥ µ
[
|T|2 + 1

3 (trT)2
]
for all T ∈ T . This allows us to define the invertible

constitutive law Σ = ¯̄R∇V such that ∇ · Σ = ∇ · S.

In what follows, we study the discretization of the following initial boundary value problem:

ρ
∂V

∂t
−∇ · Σ = 0, ∀(x, t) ∈ D × [0, T], (2.19a)

V (x, 0) = V 0(x), ∀x ∈ D, (2.19b)

with the constitutive law given by:
Σ = ¯̄R∇V . (2.20)

The boundary conditions defined earlier remains identical. They were defined using the velocity
vector or the velocity gradient tensor, thus the modification of the constitutive law has no impact
on it.

2.4 Equivalence of the two formulations

In this section we aim at showing that the new invertible constitutive law Σ is equivalent to the
constitutive law S. We start by finding an expression of S in terms of Σ, then we will list the
properties of the two formulations in order to prove their equivalence.

2.4.1 Expression of S in terms of Σ

Let us recall the definition of S = ¯̄C∇V and Σ = ¯̄R∇V where ¯̄RT = ¯̄CT + β ¯̄DT, ∀T ∈ T .
We have ¯̄DT = (trT)I− Tt and ¯̄CT = 2µ

[
1
2

(
T + Tt

)
− 1

3(trT)I
]
.

We observe that ¯̄R−1Σ = ∇V , so Σ rewrites:

Σ = ¯̄R∇V ,

=
(
¯̄C + β ¯̄D

)
∇V ,

= S + β ¯̄D¯̄R−1Σ.

Finally the expression of S in terms of Σ writes

S = Σ− β ¯̄D¯̄R−1Σ. (2.21)

To compute the right-hand side of (2.21) we need to determine ¯̄R−1. Let us start by developing
the term ¯̄RT. We have

¯̄RT = µ
(
T + Tt

)
− 2µ

3
(trT)I + β(trT)I− βTt,

= µT + (µ− β)Tt +
1

3
(3β − 2µ)(trT)I.

We use the decomposition of T in terms of its deviatoric part T0 to write

¯̄RT = µT0 + (µ− β)Tt
0 +

1

3
(3β − 2µ+ µ+ µ− β)(trT)I,

= µT0 + (µ− β)Tt
0 +

2

3
β(trT)I.

78

Let us note Q ∈ T the right-hand side of the previous equation, namely ¯̄RT = Q. The decom-
position Q = Q0 +

1
3(trQ)I leads to

µT0 + (µ− β)Tt
0 = Q0,

2β trT = trQ.

The two second-order tensors T0 and Tt
0 satisfy the following linear system

µT0 + (µ− β)Tt
0 = Q0,

(µ− β)T0 + µTt
0 = Qt

0.

Using linear combinations of the previous equations we obtain

µ2T0 + µ(µ− β)Tt
0 = µQ0,

−(µ− β)2T0 − µ(µ− β)Tt
0 = −(µ− β)Qt

0.

Summing these equations allow us to write

(2µ− β)βT0 = µQ0 − (µ− β)Qt
0,

which also rewrites under the more convenient form

T0 =
1

(2µ− β)β
[
µQ0 + (β − µ)Qt

0

]
, (2.22)

provided that 2µ− β 6= 0, which is true since β = µ = minR µ.

We recall that Q also have to verify the following equation

trT =
1

2β
trQ. (2.23)

Since T = T0 +
1
3(trT)I we use the results obtained in (2.22) and (2.23) to write

T =
1

(2µ− β)β
[
µQ0 + (β − µ)Qt

0

]
+

1

3

1

2β
(trQ)I,

=
1

(2µ− β)β

[
µQ + (β − µ)Qt − 1

3
β(trQ)I

]
+

1

3

1

2β
(trQ)I.

Finally T is expressed in terms of Q under the form

T =
1

(2µ− β)β
[
µQ + (β − µ)Qt

]
+

1

3

2µ− 3β

2β(2µ− β)(trQ)I.

We recall that Q was introduced as ¯̄RT = Q. Then, ¯̄R−1 is then defined by ¯̄R−1Q = T and writes

¯̄R−1Q =
1

(2µ− β)β
[
µQ + (β − µ)Qt

]
+

1

3

2µ− 3β

2β(2µ− β)(trQ)I, ∀Q ∈ T . (2.24)

Now that we have the expression of ¯̄R−1 we are able to compute ¯̄S in terms of Σ. Let us start

by computing ¯̄D¯̄R−1Σ recalling that tr
(
¯̄R−1Q

)
= 1

2β trQ

¯̄D¯̄R−1Σ = tr
(
¯̄R−1Σ

)
I−
(
¯̄R−1Σ

)t
,

=
1

3

3(2µ− β)
2β(2µ− β)(trΣ)I− 1

(2µ− β)β
[
µΣt + (β − µ)Σ

]

− 1

3

(2µ− 3β)

2β(2µ− β)(trΣ)I,

=
1

3

2µ

β(2µ− β)(trΣ)I− 1

(2µ− β)β
[
µΣt + (β − µ)Σ

]
.

79

It remains to compute S as follow

S = Σ− β ¯̄D¯̄R−1Σ,

= Σ− 1

3

2µβ

(2µ− β)β (trΣ)I +
β

(2µ− β)β
[
µΣt + (β − µ)Σ

]
,

=
µ

(2µ− β)
[
Σ + Σt

]
− 1

3

2µ

(2µ− β)(trΣ)I.

Finally, S is expressed in terms of Σ as

S =
2µ

(2µ− β)

[
1

2

(
Σ + Σt

)
− 1

3
(trΣ) I

]
.

S is proportional to the deviatoric part of 1
2

(
Σ + Σt

)
. Note that S is well defined because

2µ − β > 0 due to the fact that 2µ − β ≥ µ > 0. In addition if β = 0, then S collapses to the

deviatoric part of 1
2

(
Σ + Σt

)
.

2.4.2 Properties of the two formulations

In this section we list the properties of the two formulations, this will allow us to rule on the
equivalence of the formulations.

• The constitutive law of (2.1) is characterized by the fourth-order tensor ¯̄C which is not
invertible over the space of second-order tensors.

• The constitutive law of (2.19) is characterized by the fourth-order tensor ¯̄R which is a
positive definite fourth-order tensor ¯̄RT : T ≥ 0, ∀T ∈ T .

• The viscous stress S = ¯̄C∇V and the pseudo viscous stress Σ = ¯̄R∇V are related by
Σ = S + β ¯̄D∇V and S is expressed linearly in terms of Σ as follows

S =
2µ

(2µ− β)

[
1

2

(
Σ + Σt

)
− 1

3
(trΣ) I

]
.

• By virtue of the identity ∇ · (∇V)t = ∇(∇ · V) one can show that ∇ · (¯̄D∇V) = 0 and
thus

∇ · Σ = ∇ · S

• Finally, the boundary conditions of (2.1) and (2.19) do not depend on the constitutive
laws, they are identical in the two formulations.

These properties allow us to conclude that (2.1) and (2.19) share the same solutions (provided
that a solution exists). The equation (2.19) is a perturbation of (2.1) parametrized by β which
is characterized by a positive definite constitutive law. This positive definiteness is of great
importance to derive a robust cell-centered finite volume discretization.

Before proceeding to the construction of the numerical scheme we conclude this section by
stating some useful remarks about the properties of the modified formulation (2.19).

• While S was symmetric by construction, Σ is not. This information will be of great impor-
tance when choosing the numerical methods to solve the linear systems in our numerical
scheme.

80

• The generic tensorial diffusion equation (2.19) satisfies a principle of dissipation of kinetic
energy.
Dot-multiplying (2.19a) by V leads to

ρ
∂

∂t
(
V 2

2
)− (∇ · Σ) · V = 0,

using the tensorial identity ∇ · (ΣtV) = V · (∇ · Σ) + Σ : ∇V allows to rewrite the above
equation as

ρ
∂

∂t
(
V 2

2
)−∇ · (ΣtV) + Σ : ∇V = 0. (2.25)

Integrating the above equation over the region ω yields

d

dt

∫

ω
ρ
V 2

2
dv +

∫

∂ω
V · Σnds = −

∫

ω

¯̄R∇V : ∇V .

Now, assuming boundary conditions such that either Σn = 0 or V = 0 on ∂ω and
observing that ¯̄R is positive definite, we finally get the following inequality

d

dt

∫

ω
ρ
V 2

2
dv ≤ 0.

This shows that the kinetic energy dissipation is ensured by the generic tensorial diffusion
equation (2.19).

2.5 Construction of a Finite Volume scheme for tensorial diffu-

sion

Now that we showed the equivalence of the formulations (2.1) and (2.19), we will address the
construction of the numerical scheme. From now on we will use the modified formulation (2.19)
that we recall here

ρ
∂V

∂t
−∇ · Σ = 0, ∀(x, t) ∈ D × [0, T],

V (x, 0) = V 0(x), ∀x ∈ D,
with the constitutive law given by:

Σ = ¯̄R∇V .
The boundary conditions can be kinematic, symmetrical or of Neumann kind. For simplicity
reasons we will describe the construction of the numerical scheme in two dimensions of space.
The three-dimensional version of the scheme will be straightforward to implement
using the notations employed in the previous chapter for the three-dimensional
version of the CCLAD scheme.

We will start this section by introducing useful notations to develop the numerical scheme, we
will continue by explaining the expression of a second-order tensor in terms of its projections
on a basis. This is the tensorial counterpart of the methodology used for vectors in Chapter 1.
We will then build a sub-cell variational formulation of the constitutive law, which will leads
us to an expression of the numerical fluxes at the half-edges using auxiliary unknowns. The
half-edges auxiliary unknowns can then be eliminated using the continuity conditions around
each node, which leads to the construction of a global linear system. We will then discuss the
mathematical properties of the numerical scheme and a section will be devoted to the verifica-
tion of the equivalence of the two-formulations (2.1) and (2.19) at the discrete level. Finally,
the robustness and the accuracy of the scheme are assessed using various representative test
cases.

81

2.5.1 Notations

p

p+

p−

n+
pc

n−pc

ωpc

ωc

Figure 2.2: Notations related to a generic cell ωc and one of its sub-cell ωpc.

We consider a partition ∪cωc of the computational domain D into polyhedral cells ωc. In the
following a cell is indifferently denoted ωc or by its index c. The list of points p belonging to
a cell c is denoted by P(c). We note C(p) the set which contains the cells surrounding a point
p. In the counterclockwise ordered list of points of cell c, p− denotes the point before p and p+

the point following p as pictured in Figure 2.2.

We define the sub-cell ωpc as the quadrangle obtained by connecting the point p, the mid
point of [p, p+], the centroid of cell c and the mid-point of [p, p−]. It is trivial to realize that
ωc =

⋃
p∈P(c) ωpc.

We note ∂ω
+/−
pc the half-edge obtained by connecting point p to the mid point of [p, p+/−] and

n
+/−
pc its unit outward pointing normal. Finally we note l

+/−
pc the length of the half-edge ∂ω

+/−
pc .

Using these notations, we integrate (2.19a) over the cell ωc, then we employ the divergence
theorem to obtain

d

dt
(mcVc)−

∫

∂ωc

Σn ds = 0, (2.27)

where mc =
∫
ωc
ρ dv is the mass of cell ωc and Vc =

1
|ωc|

∫
ωc
V dv the averaged velocity over the

cell and n is the unit outward pointing normal to ∂ωc the boundary of ωc.

The partition of the cell boundary ∂ωc, in terms of the sub-cells outer boundary writes

∂ωc =
⋃

p∈P(c)

(∂ω−
pc ∪ ∂ω+

pc). (2.28)

Employing (2.28) in the second term of (2.27) leads to

∫

∂ωc

Σn ds =
∑

p∈P(c)

∫

∂ω−
pc

Σn ds+

∫

∂ω+
pc

Σn ds. (2.29)

82

We introduce the half-edge fluxes Σ
+/−
pc which are defined as

Σ+/−
pc =

1

l
+/−
pc

∫

∂ω
+/−
pc

Σn ds. (2.30)

Substituting (2.30) and (2.29) in (2.27) yields

d

dt
(mcVc)−

∑

p∈P(c)

l−pcΣ
−
pc + l+pcΣ

+
pc = 0. (2.31)

To achieve the space discretization of (2.19) it remains to construct an approximation of the
half-edge fluxes. This approximation should take the form

Σ+/−
pc =H+/−

pc (V −
pc − Vc,V

+
pc − Vc), (2.32)

where V
+/−
pc are the half-edge velocities defined by

V +/−
pc =

1

l
+/−
pc

∫

∂ω
+/−
pc

V ds. (2.33)

These half-edge velocities, pictured in Figure 2.4, are auxiliary unknowns which will be elim-
inated using the continuity conditions across the cell interfaces, namely the continuity of the
velocity field V and the continuity of the half-edge fluxes Σn.

To exhibit these continuity conditions, let us consider two neighboring cells, denoted by sub-
scripts c and d, which share a given edge, refer to Figure 2.3. This edge corresponds to the
segment [p, p+], where p and p+ are two consecutive points in the counterclockwise numbering
attached to cell c. It also corresponds to the segment [r−, r], where r− and r are two consecu-
tive points in the counterclockwise numbering attached to cell d. Obviously, these four labels
define the same edge and thus their corresponding points coincide, i.e., p ≡ r, p+ ≡ r−. The
sub-cell of cell c attached to point p ≡ r is denoted ωpc, whereas the sub-cell of cell d attached
to point r ≡ p is denoted ωrd. This double notation, in spite of its heaviness, allows to define
precisely the half-edge fluxes and velocities at the half-edge corresponding to the intersection
of the two previous sub-cells. Namely, viewed from sub-cell ωpc (resp. ωrd), the half-edge flux
and velocity are denoted Σ+

pc and V +
pc (resp. Σ−

rd and V −
rd). Bearing this notation in mind,

continuity conditions at the half-edge (ωpc ∪ ωrd) for the half-edge fluxes and velocities write
explicitly as

Σ+
pc +Σ−

rd = 0, (2.34a)

V +
pc = V −

rd . (2.34b)

The continuity condition for the flux follows from the definition of the unit outward normals
related to (ωpc ∪ ωrd), i.e., n

+
pc = −n−

rd.

We are seeking an approximation of the half-edge fluxes Σ
+/−
pc in terms of the half-edge

velocities V
+/−
pc and the cell-centered velocity Vc. To this end we will develop a sub-cell based

variational formulation. Before proceeding any further we show how to express a second-order
tensor in terms of its projection onto a given basis.

83

V +
pc = V

−
rd

ωpc

p−

n−pc

r+

p+ = r−

Σ+
pc +Σ−

rd
= 0

ωrd

p = r

n+
rd

n+
pcn−

rd

V +
rd

Σ−pc
V −pc

Σ+
rd

V c

ωc V d

ωd

Figure 2.3: Continuity conditions for the half-edges fluxes Σ
+/−
pc and velocities at a half-edge

shared by two sub-cells attached to the same point. Labels c and d denote the indices of two
neighboring cells. Labels p and r denote the indices of the same point relatively to the local
numbering of points in cell c and d. The neighboring sub-cells are denoted by ωpc and ωrd. The

half-edge fluxes, Σ
+/−
pc , Σ

+/−
rd and velocities, V

+/−
pc , V

+/−
rd are displayed using blue color.

Σ+
pc

V +
pc

p

V c

ωpc

n−pc

n+
pc

p+

V −pcΣ−pc

ωc

θpc

p−

Figure 2.4: Notations for a generic sub-cell ωpc.

84

2.5.2 Expression of a second-order tensor in terms of its projections on a

basis.

Let T be a second-order tensor and {n1,n2} a basis of R2 where n1 and n2 are unit non-
collinear vectors.

Ti = Tni for i = 1, 2 are the projections of T on the basis vectors. Since {n1,n2} is a ba-
sis, the knowledge of T1 and T2 is sufficient to fully determine tensor T. The representation of
T by means of its projections is denoted by [T1,T2] = [Tn1,Tn2].

Introducing the matrix J12 = [n1,n2] leads to

[T1,T2] = TJ12 ⇔ T = [T1,T2]J
−1
12 , (2.35)

J12 is invertible since {n1,n2} is a basis.

Let U be a second-order tensor U = [U1,U2]J
−1
12 . We express the inner product between U

and T in terms of the projections and the matrix J12.

T : U = [T1,T2](J
t
12J12)

−1 : [U1,U2]. (2.36)

Here, Jt
12J12 =

(
n1 · n1 n1 · n2

n2 · n1 n2 · n2

)
is the metric tensor related to the basis {n1,n2}. It is a

symmetric positive semi definite matrix.

Indeed, we have det(Jt
12J12) = (n1 · n1)(n2 · n2) − (n1 · n2)

2 ≥ 0 using Cauchy Schwarz.
We note that the determinant is equal to zero if and only if n1 and n2 are collinear.

We conclude this paragraph by giving a result which will be useful for the next sections. Let
W1 and W2 be two arbitrary vectors, then the matrix product [W1,W2]

t[T1,T2] writes

[W1,W2]
t[T1,T2] =

(
W1 · T1 W1 · T2
W2 · T1 W2 · T2

)
. (2.37)

Recalling that S : T = tr(StT) leads to

[W1,W2]
t[T1,T2] =W1 · T1 +W2 · T2. (2.38)

2.5.3 Sub-cell based variational formulation

In this section we construct an approximation of the half-edges fluxes using a local variational
formulation written over the sub-cell ωpc. This variational formulation leads to a local explicit
expression of the half-edges fluxes in terms of the half-edges velocities and the mean cell velocity.

The starting point to derive the sub-cell based variational formulation consist in writing the
modified constitutive law (2.20) as follow

¯̄R−1Σ−∇V = 0. (2.39)

Let us take T ∈ T an arbitrary second-order tensor, we apply the inner-product of T to the
previous equation to obtain

¯̄R−1Σ : T− T : ∇V = 0, ∀T ∈ T . (2.40)

85

Integrating the above equation over ωpc and using the tensorial identity∇·(TtV) = (∇·T)·V +T :
∇V yields

∫

ωpc

¯̄R−1Σ : T dv =

∫

∂ωpc

TtV · n ds−
∫

ωpc

(∇ · T) · V dv,

=

∫

∂ωpc

Tn · V ds−
∫

ωpc

(∇ · T) · V dv,

Introducing the approximation
∫
ωpc

(∇ · T) · V dv = Vc ·
∫
ωpc

(∇ · T) dv allow us to rewrite the

above equation as
∫

ωpc

¯̄R−1Σ : T dv =

∫

∂ωpc

Tn · V ds− Vc ·
∫

∂ωpc

Tn ds. (2.41)

The boundary of the sub-cell ∂ωpc is decomposed into an inner part ∂ωpc and an outer part
∂ωpc as ∂ωpc = ∂ωpc ∪ ∂ωpc, where ∂ωpc = ∂ω−

pc ∪ ∂ω+
pc.

We use the following approximation
∫
∂ωpc

Tn · V ds = Vc ·
∫
∂ωpc

Tn ds and introduce it into

(2.41) to obtain ∫

ωpc

¯̄R−1Σ : T dv =

∫

∂ωpc

(V − Vc) · Tn ds. (2.42)

Employing the definitions (2.32) and (2.33) of the half-edge approximations of the tensor T and
the velocity V leads to

∫

ωpc

¯̄R−1Σ : T dv = l−pc(V
−
pc − Vc) · T−

pc + l+pc(V
+
pc − Vc) · T+

pc. (2.43)

Finally, we use (2.38) to rewrite the above equation under the compact form
∫

ωpc

¯̄R−1Σ : T dv =
[
l−pc(V

−
pc − Vc), l

+
pc(V

+
pc − Vc)

]
:
[
T−
pc,T

+
pc

]
. (2.44)

We can now approximate the left-hand side of the above equation by means of the quadrature
formula ∫

ωpc

¯̄R−1Σ : T dv = wpc(
¯̄R−1Σ)pc : Tpc, (2.45)

where (¯̄R−1Σ)pc and Tpc are piecewise constant approximations of ¯̄R−1Σ and T over the sub-cell

ωpc. Note that wpc is a volume weight which satisfies
∑

p∈P(c)

wpc = |ωc| and wpc > 0 . Sec-

tion 2.7.2 will be devoted to the definition of the volume weight for different kinds of cells. As
we will see it is a key element to ensure some mandatory properties of the scheme.

Employing the expression (2.36) of the inner product of tensors (¯̄R−1Σ)pc and Tpc in terms
of their projections on the basis {n−

pc,n
+
pc} leads to

(¯̄R−1Σ)pc : Tpc = [(¯̄R
−1

Σ)−pc, (
¯̄R
−1

Σ)+pc](J
t
pcJpc)

−1 : [T−
pc,T

+
pc]. (2.46)

Gathering the left-hand side of (2.44) and the right-hand side of (2.46) of the variational for-
mulation yields

wpc[(
¯̄R
−1

Σ)−pc, (
¯̄R
−1

Σ)+pc](J
t
pcJpc)

−1 : [T−
pc,T

+
pc] =

[
l−pc(V

−
pc − Vc), l

+
pc(V

+
pc − Vc)

]
:
[
T−
pc,T

+
pc

]
.

(2.47)

86

Knowing that it must hold for all T ∈ T , this implies

wpc

[
(¯̄R

−1
Σ)−pc, (

¯̄R
−1

Σ)+pc

]
(Jt

pcJpc)
−1 =

[
l−pc(V

−
pc − Vc), l

+
pc(V

+
pc − Vc)

]
, (2.48)

then [
(¯̄R

−1
Σ)−pc, (

¯̄R
−1

Σ)+pc

]
=

1

wpc

[
l−pc(V

−
pc − Vc), l

+
pc(V

+
pc − Vc)

]
Jt
pcJpc. (2.49)

Recalling that (¯̄R−1Σ)pc =
[
(¯̄R

−1
Σ)−pc, (

¯̄R
−1

Σ)+pc

]
J−1
pc leads to

(¯̄R−1Σ)pc =
1

wpc

[
l−pc(V

−
pc − Vc), l

+
pc(V

+
pc − Vc)

]
Jt
pc. (2.50)

Observing that (¯̄R−1Σ)pc =
¯̄R−1
c Σpc where ¯̄R−1

c is the piecewise constant approximation of ¯̄R−1

over the cell ωc we obtain

Σpc =
1

wpc

¯̄Rc

{[
l−pc(V

−
pc − Vc), l

+
pc(V

+
pc − Vc)

]
Jt
pc

}
. (2.51)

Finally,
[
Σ−

pc,Σ
+
pc

]
= ΣpcJpc and

[
Σ−

pc,Σ
+
pc

]
=

1

wpc

¯̄Rc

{[
l−pc(V

−
pc − Vc), l

+
pc(V

+
pc − Vc)

]
Jt
pc

}
Jpc. (2.52)

We conclude this section by recalling that ¯̄R is the fourth-order tensor defined by

¯̄RT = µT + (µ− β)Tt +
1

3
(3β − 2µ) tr(T)I, (2.53)

µ has a piecewise constant approximation and β is a constant parameter over D, since β =
minR µ.

2.5.4 Expression of the velocity gradient tensor

Let G = ∇V be the velocity gradient tensor. Using the above variational formulation with
¯̄R = ¯̄I we get

[
G−
pc,G

+
pc

]
=

1

wpc

[
l−pc(V

−
pc − Vc), l

+
pc(V

+
pc − Vc)

]
Jt
pcJpc. (2.54)

We recall that Jt
pcJpc =

(
n−
pc · n−

pc n−
pc · n+

pc

n+
pc · n−

pc n+
pc · n+

pc

)
and we use the following identities (a ⊗ b)c =

a(b · c) and (a⊗ c)b = a(c · b) = (a⊗ b)c in order to express G−
pc as

G−
pc =

1

wpc

[
l−pc(V

−
pc − Vc)(n

−
pc · n−

pc) + l+pc(V
+
pc − Vc)(n

+
pc · n−

pc)
]
,

=
1

wpc

{
l−pc
[
(V −

pc − Vc)⊗ n−
pc

]
n−
pc + l+pc

[
(V +

pc − Vc)⊗ n+
pc

]
n−
pc

}
,

=
1

wpc

[
l−pc(V

−
pc − Vc)⊗ n−

pc + l+pc(V
+
pc − Vc)⊗ n+

pc

]
n−
pc.

This implies that the piecewise approximation of the velocity gradient tensor over the sub-cell
ωpc is given by

Gpc =
1

wpc

[
l−pc(V

−
pc − Vc)⊗ n−

pc + l+pc(V
+
pc − Vc)⊗ n+

pc

]
. (2.55)

87

It is trivial to show that G+
pc = Gpcn

+
pc.

Substituting Gpc =
[
G−
pc,G

+
pc

]
J−1
pc into (2.54) we obtain

Gpc =
1

wpc

[
l−pc(V

−
pc − Vc), l

+
pc(V

+
pc − Vc)

]
Jt
pc. (2.56)

The comparison to the expression of Σpc obtained in (2.51) leads to Σpc =
¯̄RcGpc where Gpc is

defined by (2.55).

Comment 18: Let us point out that the expression of the velocity gradient tensor given by
(2.55) could have been obtained by simply applying the Green-Gauss formula as follows

∫

ωpc

∇V dv =

∫

∂ωpc

V ⊗ n ds.

2.5.5 Expression of Σ
+/−
pc in terms of V

+/−
pc and Vc

In this section we seek an expression of the half-edges viscous fluxes Σ
+/−
pc in terms of the

auxiliary unknowns V
+/−
pc and the mean cell velocities Vc. Let us start by recalling that the

approximation of the half-edge viscous fluxes is given by Σ
+/−
pc = Σpcn

+/−
pc . The tensor Σpc is

determined by Σpc = ¯̄RcGpc, where
¯̄Rc is the local approximation of the fourth-order tensor ¯̄R

given by
¯̄RcT = µcT + (µc − β)Tt +

1

3
(3β − 2µc) tr(T)I, ∀T ∈ T . (2.57)

Here, µc is the piecewise constant approximation of µ over the cell c. These definitions lead us
to write Σpc as

Σpc = µcGpc + (µc − β)Gt
pc +

1

3
(3β − 2µc) tr(Gpc)I.

Let us compute the different terms of the right hand-side of this equation. First Gpc is defined
by

Gpc =
1

wpc

[
l−pc(V

−
pc − Vc)⊗ n−

pc + l+pc(V
+
pc − Vc)⊗ n+

pc

]
,

we also need its transpose matrix, which writes

Gt
pc =

1

wpc

[
l−pcn

−
pc ⊗ (V −

pc − Vc) + l+pcn
+
pc ⊗ (V +

pc − Vc)
]
,

and the trace operator applied to Gpc yields

tr(Gpc) =
1

wpc

[
l−pc(V

−
pc − Vc) · n−

pc + l+pc(V
+
pc − Vc) · n+

pc

]
.

We recall that Σ
+/−
pc are defined as Σ

+/−
pc = Σpcn

+/−
pc . Let us start by computing Σ−

pc. The first
term G−

pc writes

G−
pc = Gpcn

−
pc,

=
1

wpc

{[
l−pc(V

−
pc − Vc)⊗ n−

pc

]
n−
pc +

[
l+pc(V

+
pc − Vc)⊗ n+

pc

]
n−
pc

}
,

=
1

wpc

[
l−pcI(V

−
pc − Vc)− l+pc cos θpcI(V +

pc − Vc)
]
.

88

The second term (G−
pc)

t writes

(G−
pc)

t = Gt
pcn

−
pc,

=
1

wpc

[
l−pcn

−
pc ⊗ (V −

pc − Vc) + l+pcn
+
pc ⊗ (V +

pc − Vc)
]
n−
pc,

=
1

wpc

[
l−pc(n

−
pc ⊗ n−

pc)(V
−
pc − Vc) + l+pc(n

+
pc ⊗ n−

pc)(V
+
pc − Vc)

]
.

Finally, taking the trace of the trace Gpc we get

(tr(Gpc)I)n
−
pc =

1

wpc

[
l−pc(V

−
pc − Vc) · n−

pc · n−
pc + l+pc(V

+
pc − Vc) · n+

pc · n−
pc

]
,

=
1

wpc

[
l−pc(n

−
pc ⊗ n−

pc)(V
−
pc − Vc) + l+pc(n

−
pc ⊗ n+

pc)(V
+
pc − Vc)

]
,

Summing all these terms together allow us to write

Σ−
pc =

1

wpc

{
l−pcµc

[
I +

1

3
(n−

pc ⊗ n−
pc)

]
(V −

pc − Vc)

+l+pc

[
−µc cos θpcI + (µc − β)(n+

pc ⊗ n−
pc) +

1

3
(3β − 2µc)(n

−
pc ⊗ n+

pc)

]
(V +

pc − Vc)

}
. (2.58)

Proceeding similarly, the term Σ+
pc writes

Σ+
pc =

1

wpc

{
l−pc

[
−µc cos θpcI + (µc − β)(n−

pc ⊗ n+
pc) +

1

3
(3β − 2µc)(n

+
pc ⊗ n−

pc)

]
(V −

pc − Vc)

+l+pcµc

[
I +

1

3
(n+

pc ⊗ n+
pc)

]
(V +

pc − Vc)

}
. (2.59)

Let us introduce the three following 2× 2 matrices

M−
pc = µc

[
I +

1

3
(n−

pc ⊗ n−
pc)

]
, (2.60)

M+
pc = µc

[
I +

1

3
(n+

pc ⊗ n+
pc)

]
, (2.61)

Epc = −µc cos θpcI + (µc − β)(n+
pc ⊗ n−

pc) +
1

3
(3β − 2µc)(n

−
pc ⊗ n+

pc), (2.62)

where θpc is the corner angle of the sub-cell ωpc. Using the above 2×2 matrices, formulas (2.58)
and (2.59) are expressed in the much more compact form

Σ−
pc =

1

wpc

[
M−
pcl

−
pc(V

−
pc − Vc) + Epcl

+
pc(V

+
pc − Vc)

]
, (2.63)

Σ+
pc =

1

wpc

[
Et
pcl

−
pc(V

−
pc − Vc) + M+

pcl
+
pc(V

+
pc − Vc)

]
. (2.64)

Thus, the half-edge pseudo-stresses are expressed in terms of the half-edge velocities and the
cell-centered velocities as follows

(
Σ−

pc

Σ+
pc

)
=

1

wpc

(
M−
pc Epc

Et
pc M+

pc

)(
l−pc(V

−
pc − Vc)

l+pc(V
+
pc − Vc)

)
. (2.65)

89

Let us prove that the block matrix

(
M−
pc Epc

Et
pc M+

pc

)
is invertible. This will be a useful property in

order to build the global system associated with our numerical scheme. We start by introducing
the scalar Kpc defined by Kpc = Σ−

pc · l−pc(V −
pc − Vc) + Σ+

pc · l+pc(V +
pc − Vc). Recalling that

Σ
+/−
pc = Σpcn

+/−
pc leads to

Kpc = Σpcl
−
pcn

−
pc · (V −

pc − Vc) + Σpcl
+
pcn

+
pc · (V +

pc − Vc)

= l−pcn
−
pc · Σt

pc(V
−
pc − Vc) + l+pcn

+
pc · Σt

pc(V
+
pc − Vc).

Employing the identity a · b = tr (a⊗ b) yields

Kpc = tr
{
l−pcn

−
pc ⊗ Σt

pc(V
−
pc − Vc) + l+pcn

+
pc ⊗ Σt

pc(V
+
pc − Vc)

}

= tr
{[
l−pcn

−
pc ⊗ (V −

pc − Vc)
]
Σpc +

[
l+pcn

+
pc ⊗ (V +

pc − Vc)
]
Σpc

}
.

Recalling the definition of the inner product T : Q = tr
(
QtT

)
yields

Kpc =
[
l−pc(V

−
pc − Vc)⊗ n−

pc + l+pc(V
+
pc − Vc)⊗ n+

pc

]
: Σpc

= wpcGpc : Σpc thanks to (2.55) .

Now, using Σpc =
¯̄RcGpc yields Kpc = wpc(

¯̄RcGpc) : Gpc. Since wpc > 0 and ¯̄Rc is positive definite,
we get Kpc ≥ 0.

It is trivial to see that Kpc can also be written as

Kpc =
1

wpc

(
M−
pc Epc

Et
pc M+

pc

)(
l−pc(V

−
pc − Vc)

l+pc(V
+
pc − Vc)

)
·
(
l−pc(V

−
pc − Vc)

l+pc(V
+
pc − Vc)

)
.

With this notation, we observe that Kpc is a quadratic form with respect to l−pc(V
−
pc − Vc) and

l+pc(V
+
pc − Vc), we just showed Kpc is non-negative, so we can conclude that the 2 × 2 block

matrix

(
M−
pc Epc

Et
pc M+

pc

)
is positive definite and thus invertible.

2.5.6 Elimination of the auxiliary unknowns

From (2.65), it appears that the numerical approximation of the half-edge fluxes at a corner
depends on the difference between the cell-centered velocity and the half-edges velocities. The
cell-centered velocities are the primary unknown whereas the half-edge velocities are auxiliary
unknowns, which can be eliminated by means of continuity argument (2.34a). Namely, we
use the fact that the half-edge normal fluxes are continuous across each half-edges impinging
at a given point. This local elimination procedure, which will be described below, yields a
linear system satisfied by the half-edge velocities. We will show that this system admits always
a unique solution which allows to express the half-edge velocities in terms of the cell-centered
velocities of the cells surrounding the point under consideration. Therefore, this local elimination
procedure results in a Finite Volume discrete scheme with one unknown per cell.

Local notation around a point

To derive the local elimination procedure, we shall introduce some convenient notation. Let p
denotes a generic point which is not located on the boundary ∂D. The treatment of boundary
points is postponed to Section 2.5.8. Let C(p) be the set of cells that surround point p. The
edges impinging at point p are labelled using the subscript c ranging from 1 to Cp, where Cp

90

V c

V c−1

V c+1

nc
c

nc−1
c−1

nc
c+1

nc−1
c

c + 1

c

c− 1

V c

ωp,c−1

ωc−1

V c−1

ωc
ωpc

p

Figure 2.5: Notations employed around a point.

denotes the total number of cells surrounding point p. The cell (sub-cell) numbering follows
the edge numbering, that is, cell ωc (sub-cell ωpc) is located between edges c and c + 1, refer
to Figure 2.5. The unit outward normal to cell ωc at edge c is denoted by nc

c whereas the
unit outward normal to cell ωc at edge c + 1 is denoted by nc+1

c . Assuming the continuity of
the half-edge velocities leads to denote by V c the unique half-edge velocity of the half-edge c
impinging at point p. Finally we note Σc

c the half-edge flux defined on cell c for the half-edge c
and Σc

c+1 the half-edge flux defined on cell c for the half-edge c+1. Note that we have omitted
the dependency on point p in the indexing each time this is possible to avoid too heavy notation.

Let us rewrite with this new notation the expression of the half-edge fluxes (2.63) and (2.64).

Σc
c+1 = αc

[
lc+1M

c
c+1(V c+1 − Vc) + lcEc(V c − Vc)

]
, (2.66)

Σc
c = αc

[
lc+1E

t
c(V c+1 − Vc) + lcM

c
c(V c − Vc)

]
, (2.67)

where we have introduced αc defined by αc = 1
wc

> 0. Here we recall the definition of the
different matrices used in these expressions

Mc
c+1 = µc

[
I +

1

3
(nc

c+1 ⊗ nc
c+1)

]
, (2.68)

Mc
c = µc

[
I +

1

3
(nc

c ⊗ nc
c)

]
, (2.69)

Ec = −µc cos θcI + (µc − β)(nc
c ⊗ nc

c+1) +
1

3
(3β − 2µc)(n

c
c+1 ⊗ nc

c). (2.70)

Shifting the index c to c − 1 in (2.66) allows us to obtain the definition of the half-edge flux
defined on cell c− 1 for the half-edge c. It yields

Σc−1
c = αc−1

[
lcM

c−1
c (V c − Vc−1) + lc−1Ec−1(V c−1 − Vc−1)

]
. (2.71)

91

Linear system satisfied by the half-edge velocities

Using the previous definitions we are now in position to express the half-edge velocities in
terms of the cell centered velocities. To do so we need to write the continuity conditions at the
half-edges. The continuity condition of the half-edge flux across the half-edge c writes

lcΣ
c−1
c + lcΣ

c
c = 0 (2.72)

Substituting (2.71) and (2.67) into (2.72) leads to

αc−1lc−1lcEc−1(V c−1 − Vc−1) + αc−1l
2
cM

c−1
c (V c − Vc−1)

+αcl
2
cM

c
c(V c − Vc) + αclclc+1E

t
c(V c+1 − Vc) = 0,

then rearranging the terms yields

αc−1lc−1lcEc−1V c−1 + l2c (αc−1M
c−1
c + αcM

c
c)V c + αclclc+1E

t
cV c+1 =

αc−1lc(lc−1Ec−1 + lcM
c−1
c)Vc−1 + αclc(lcM

c
c + lc+1E

t
c)Vc.

We remark that this continuity conditions provides Cp vectorial equations. Here Cp denotes the
number of edges surrounding a node, which, in two dimensions, is equal to the number of cells
surrounding a node (if not on a boundary). We also remark that we have Cp auxiliary unknowns
V c.
We introduce the following block vector V = (V1, . . . ,VCp)

t as the block vector of the cell-

centered velocities around point p and V = (V 1, . . . ,V Cp)
t as the block vector of the half-edge

velocities around point p. Using these block vectors the continuity conditions around point p
writes

NV = SV . (2.73)

Let us specify the expression of the block matrices N and S we just introduced. The non-zero
terms corresponding to the cth row of block matrix N write as





Nc,c−1 = αc−1lc−1lcEc−1,

Nc,c = l2c (αc−1M
c−1
c + αcM

c
c),

Nc,c+1 = αclclc+1E
t
c.

(2.74)

We can see that the half-edge velocities satisfies a linear system which has a tridiagonal block
structure. We can also note it is a cyclic system due to the cyclic numbering of the half-edges
and cells. From the first equation it follows that

Nc+1,c = αclclc+1Ec.

We observe that Nc+1,c is exactly the transpose of Nc,c+1. Finally, the bidiagonal cyclic matrix
S is characterized by writing the non-zero entries corresponding to the cth row

{
Sc,c−1 = αc−1lc(lc−1Ec−1 + lcM

c−1
c),

Sc,c = αclc(lcM
c
c + lc+1E

t
c).

(2.75)

To achieve the elimination of the half-edge velocities, it remains to show that the system (2.73)
is invertible.

2.5.7 Properties of the matrices N and S.

Here, we present some interesting properties of the matrices N and S.

92

Invertibility of matrix N

Let us first show that matrix N is invertible. To this end, we define the matrix Pc, which is a
block matrix of size 2× Cp characterized by the two following non-zero blocks

{
Pc
1,c = lcI,

Pc
2,c+1 = lc+1I.

(2.76)

Employing this matrix allows to express matrix N as

N =

Cp∑

c=1

αc(P
c)tHcPc,

where Hc is the block matrix

(
Mc
c Et

c

Ec Mc
c+1

)
. In Section 2.5.5 we have shown that this block

matrix is positive definite and thus invertible. Bearing in mind this decomposition we claim
that N is a positive definite matrix, namely

NV · V > 0, ∀V ∈ RCp .

We use the decomposition of N to write

NV · V =




Cp∑

c=1

αc(P
c)tHcPc


V · V ,

rearranging the terms yields

NV · V =

Cp∑

c=1

αcH
c(PcV) · (PcV),

and since Hc is positive definite, the right-hand side of this equation is always positive, which
ends the proof.

Preservation of uniform velocity fields

An interesting property of the scheme is that it preserves uniform velocity fields. This property
is obtained thanks to the following relation

(
N−1S

)
1Cp = 1Cp , (2.77)

where 1n, with n an integer, is the vector of size 2n, whose entries are equal to 1. The size 2n
is due to the block-definition of the matrices which are composed of blocks of size 2 × 2. To
demonstrate the above relation, let us show that S1Cp = N1Cp by developing respectively the
left and the right-hand side of this equality. Substituting the non-zero entries of matrix S leads
to write the left-hand side

(
S1Cp

)
c
= Sc,c−1 + Sc,c

= αc−1lc(lc−1Ec−1 + lcM
c−1
c) + αclc(lcM

c
c + lc+1E

t
c)

= αc−1lc−1lcEc−1 + l2c (αc−1M
c−1
c + αcM

c
c) + αclclc+1E

t
c.

Replacing the non-zero entries of matrix N allows to express the right-hand side as
(
N1Cp

)
c
= Nc,c−1 + Nc,c + Nc,c+1

= αc−1lc−1lcEc−1 + l2c (αc−1M
c−1
c + αcM

c
c) + αclclc+1E

t
c.

Comparing the two above expressions shows that the equality (2.77) is satisfied.

93

2.5.8 Boundary conditions

We describe a generic methodology to implement the boundary conditions. It is worth mention-
ing that the boundary terms discretization is derived in a consistent manner with the scheme
construction. To take into account the boundary terms, let us write the linear system linking
the half-edge velocities with the mean cell velocities under the form

NV̄ = SV +B, (2.78)

where the extra term B is the block vector containing the boundary conditions contribution,
which shall be defined in the next paragraphs. We have to note that on the boundaries a point
p is surrounded by Cp cells and Cp+1 edges. The size of the matrix N is then (Cp+1)× (Cp+1)
on the boundaries, the size of the matrix S is (Cp + 1)× Cp. The size of the block-vector V̄ is
(Cp + 1), V is of size Cp and the size of B is (Cp + 1).

Let us consider a half-edge c located on the boundary of the domain, in the next paragraphs,
we describe the modifications to bring to the matrices and boundary vector, depending on the
boundary conditions types under consideration. If not specified the value of Bc is equal to zero.

Free boundary condition

On this boundary we want to impose the value of the half-edge velocity to be equal to V ⋆. It
means we want to write

V̄c = V
⋆.

To do so it remains only one non-zero terms on the c-th row of block matrix N. It writes as

Nc,c = I2.

The c-th row of block matrix S is set equal to zero. To impose the boundary value it remains
to set

Bc = V
⋆.

The Neumann boundary condition

On this boundary we impose the normal gradient to the boundary, namely

(∇V)n = G⋆.

Let us consider that we are dealing with the edge Cp +1, in that case the discrete expression of
∇V n is defined by Gc

c+1. We recall its definition

Gc
c+1 = αc

[
lc+1I(V c+1 − Vc)− lc cos θcI(V c − Vc)

]
.

We can rewrite this expression under a matricial form. The non zero terms of the (Cp + 1)-th
row of matrix N write {

NCp+1,Cp = −αCp lCp cos θCpI,

NCp+1,Cp+1 = αCp lCp+1I.

There is only one non-zero term on the (Cp + 1)-th row of matrix S. It writes

SCp+1,Cp = αCp lCp+1I− αCp lCp cos θCpI.

To impose the boundary value it remains to set

BCp+1 = G
⋆.

The case corresponding to edge number 1 is obtained in a similar manner utilizing the definition
of Gc

c.

94

The symmetrical boundary condition

On this boundary we need to apply the two scalar expressions V · n = 0 and (∇V n) · t = 0.
These two scalar expressions are the projections on a basis of the two boundary conditions we
just described above. The first relation is a kinematic boundary condition projected on vector n
and the second one, a Neumann boundary condition projected on t. Once again we consider we
are dealing with the edge Cp+1 so that we can express ∇V n as Gc

c+1. Note that we could have

presented the discretization with edge number 1 and the definition of Gc
c. We note n =

(
n1
n2

)

and t =

(
t1
t2

)
. Let us write the two scalar expressions under the matricial form. The non-zero

terms of the (Cp + 1)-th row of matrix N write




NCp+1,Cp = −αCp lCp cos θCp

(
0 0
t1 t2

)
,

NCp+1,Cp+1 =

(
n1 n2

αCp lCp+1t1 αCp lCp+1t2

)
.

There is only one non-zero term on the (Cp + 1)-th row of matrix S. It writes

SCp+1,Cp = αCp(lCp+1 − lCp cos θCp)

(
0 0
t1 t2

)
.

The block vector B is set to
BCp+1 = 0.

2.5.9 Construction of the global linear system

In this paragraph, we achieve the space discretization of the diffusion equation gathering the
results obtained in the previous sections. We recall that the semi discrete scheme (2.31) writes

mc
d

dt
Vc −

∑

p∈P(c)

l−pcΣ
−
pc + l+pcΣ

+
pc = 0. (2.79)

We define the contribution of the sub-cell ωpc to the diffusion flux as

Qpc = l−pcΣ
−
pc + l+pcΣ

+
pc

Using the local numbering of the half-edges surrounding point p yields to rewrite the above
expression as

Qpc = lcΣ
c
c + lc+1Σ

c
c+1.

Now, we replace the normal fluxes by their corresponding expressions (2.66) and (2.67) to get

Qpc = αclc
[
lc+1E

t
c(V c+1 − Vc) + lcM

c
c(V c − Vc)

]
+αclc+1

[
lc+1M

c
c+1(V c+1 − Vc) + lcEc(V c − Vc)

]
.

Rearranging the order of the terms in the right-hand side yields

Qpc = αclc+1

[
lcE

t
c + lc+1M

c
c+1

]
(V c+1 − Vc) + αclc [lcM

c
c + lc+1Ec] (V c − Vc).

To obtain a more compact form of Qpc, we define the block-matrix S̃ whose entries write

{
S̃c,c = αclc(lcM

c
c + lc+1Ec),

S̃c+1,c = αclc+1(lcE
t
c + lc+1M

c
c+1).

(2.80)

95

Employing this notation, the sub-cell contribution to the diffusion flux reads

Qpc = S̃c+1,c(V c+1 − Vc) + S̃c,c(V c − Vc).

Which rewrites
Qpc =

∑

d∈C(p)

S̃t
cd(V d − Vc).

Eliminating the half-edge velocities by means of (2.73) and using the property (2.77) leads to

Qpc =
∑

d∈C(p)

G
p
cd(Vd − Vc) +B

p
d , (2.81)

where Gp is a Cp × Cp matrix defined at point p by

Gp = S̃tN−1S. (2.82)

Bp is the vector containing the boundary conditions information. It is defined by

Bp = S̃tN−1B. (2.83)

Taking into account the previous results, the semi-discrete scheme over cell c reads

mc
d

dt
Vc −

∑

p∈P(c)

∑

d∈C(p)

G
p
cd(Vd − Vc) =

∑

p∈P(c)

∑

d∈C(p)

B
p
d , (2.84)

where P(c) is the set of points of cell c and C(p) is the set of cells surrounding the point p. This
equation allows to construct the generic entries of the global tensorial diffusion matrix, T, as
follows

Tcc = −
∑

p∈P(c)

∑

d∈C(p)

G
p
cd, (2.85a)

Tcd =
∑

p∈P(c)

G
p
cd, c 6= d. (2.85b)

Let CD be the total number of cells composing the computational grid, we denote by V ∈ R2CD

the vector of cell-centered velocities which has 2CD components in the Cartesian frame (0, x, y).
Gathering the previous results, this vector is the solution of the global linear system

M
d

dt
V + TV = B. (2.86)

Here, M is a 2CD × 2CD block diagonal matrix whose entries are the cell mass mc, and B is the
vector collecting the boundary conditions contributions. Finally, matrix T is a 2CD×2CD block
matrix whose entries are given by (2.85).
To achieve the construction of the numerical method it remains to describe the time discretiza-
tion. This is the topic of the next section.

2.6 Time discretization

In this section, we briefly describe the time discretization of the system (2.86). First, let us
prescribe the initial condition V(0) = V0, where V0 is the vector of the cell-averaged initial
condition. We solve the system over the time interval [0,T] using the subdivision

0 = t0 < t1 < · · · < tn < tn+1 < · · · < tN = T.

96

The time step is denoted by ∆tn = tn+1 − tn . The time approximation of a quantity at time
tn is denoted using the superscript n, for instance Vn = V(tn). Knowing that an explicit time
discretization of the tensorial diffusion operator necessitates a stability constraint on the time
step which is quadratic with respect to the smallest cell size, we prefer to use an implicit time
discretization. Integrating (2.86) over [tn, tn+1] yields the first-order in time implicit discrete
scheme

M
Vn+1 − Vn

∆tn
+ TVn+1 = Bn. (2.87)

The updated cell-centered velocities are obtained by solving the following linear system
(

M

∆tn
+ T

)
Vn+1 =

M

∆tn
Vn +Bn. (2.88)

Let us recall that T is a positive semi-definite block matrix. Knowing that M is a positive
block diagonal matrix, we deduce that the matrix M

∆tn + T is positive definite. Thus, the linear
system (2.88) always admits a unique solution. Finally, in the absence of source term and
assuming periodic or homogeneous boundary conditions, we observe that the above implicit
time discretization is stable with respect to the discrete weighted L2 norm defined by

‖V‖2w2 = (MV · V),

where V is a vector of size 2CD. To prove this result, we dot-multiply (2.88) by Vn+1 and obtain

(MVn+1 · Vn+1)− (MVn · Vn+1) = −∆tn(TVn+1 · Vn+1).

Due to the positive definiteness of matrix T the right-hand side of the above equation is negative,
hence

(MVn+1 · Vn+1) ≤ (MVn · Vn+1).

Employing Cauchy-Schwarz inequality in the right-hand side of the above inequality yields

(MVn · Vn+1) ≤ ‖Vn‖w2‖Vn+1‖w2.

Gathering the above results leads to

‖Vn+1‖w2 ≤ ‖Vn‖w2,

which ends the proof.

Comment 19: The computation of the numerical solution requires to solve the sparse linear
system (2.88). Once again, this is achieved by employing the localized ILU(0) Preconditioned
BiCGStab algorithm, refer to [127, 95]. The matrices encountered in this chapter are not sym-
metric anymore, so using a classical conjugate gradient method was not sufficient. Therefore,
the implementation of a more general solver is this time justified.

Comment 20: We are now going to mention the parallelization of the scheme. The construc-
tion of the tensorial diffusion scheme we just presented follows the same methodology used by
the CCLAD scheme. This means that it can also benefits from the developments made for the
parallelization of the CCLAD scheme. The only notable difference when constructing the global
linear system is, that the notion of matrix and vector needs to be replaced by the notion of
block-matrix and block-vector. This small modification was straightforward to implement in our
code. With these developments, our code is able to solve a distributed linear system represented
as a block-matrix and block-vector using a parallel localized block-ILU(0) Preconditioned [61]
BiCGStab algorithm. The only difference in the algorithm being in the storage of the matrix
and vector, the parallel efficiency observed are the same as the one presented in section 1.6.

97

2.7 Mathematical properties of the scheme

The aim of this section is to present the mathematical properties of the numerical scheme.
We start by a discussion on the L2 stability of the semi discrete scheme. Then, we prove
that it is possible to compute the volume weights in such a way that the fundamental identity
∇ · (¯̄D∇V) = 0, where ¯̄D is the fourth-order tensor defined by Eq. (2.16), is satisfied at the
discrete level by our Finite Volume space discretization. This compatibility condition is of great
importance since it ensures that the viscous tress, S, and the pseudo-viscous stress, Σ, have the
same divergence, i.e., ∇ · S = ∇ · Σ. In this sense, we have constructed a compatible Finite
Volume method which mimics at the discrete level the identity satisfies by the mathematical
operators at the continuum level.

2.7.1 L2 stability of the semi discrete scheme

Let us recall that the semi-discrete form of our Finite Volume scheme writes (refer to Eq. (2.31))

mc
d

dt
Vc −

∑

p∈P(c)

l−pcΣ
−
pc + l+pcΣ

+
pc = 0,

where Σ±
pc is the half-edge flux related to the pseudo-viscous stress, refer to Section 2.3. To

obtain the time rate of change of kinetic energy we dot-multiply the above equation by the
cell-centered velocity Vc as follows

mc
d

dt

(
V 2
c

2

)
=
∑

p∈P(c)

(
l−pcΣ

−
pc + l+pcΣ

+
pc

)
· Vc. (2.89)

We assume that the solution is periodic or characterized by a compact support so that we do
not care about the boundary conditions. Summing (2.89) over all the cells yields

d

dt

(
∑

c

1

2
mcV

2
c

)
=
∑

c

∑

p∈P(c)

(
l−pcΣ

−
pc + l+pcΣ

+
pc

)
· Vc,

=
∑

p

∑

c∈C(p)

(
l−pcΣ

−
pc + l+pcΣ

+
pc

)
· Vc,

where C(p) is the set of cells sharing the vertex p.
To investigate the sign of the right-hand side of the above equation, we set

Ip =
∑

c∈C(p)

(
l−pcΣ

−
pc + l+pcΣ

+
pc

)
· Vc.

The continuity of the pseudo-viscous stress across cell interfaces implies that

∑

c∈C(p)

l−pcΣ
−
pc · V −

pc + l+pcΣ
+
pc · V +

pc = 0.

Thus, Ip can be rewritten as Ip = −
∑

c∈C(p)

l−pcΣ
−
pc · (V −

pc − Vc) + l+pcΣ
+
pc · (V +

pc − Vc).

Recalling that Σ
+/−
pc = Σpcn

+/−
pc leads to

Ip = −
∑

c∈C(p)

l−pcΣpcn
−
pc · (V −

pc − Vc) + l+pcΣpcn
+
pc · (V +

pc − Vc).

98

Noticing that for all vectors a, b and tensor T, there holds a · Ttb = (b⊗ a) : T, we rewrite Ip
as

Ip = −
∑

c∈C(p)

[
l−pc(V

−
pc − Vc)⊗ n−

pc + l+pc(V
+
pc − Vc)⊗ n+

pc

]
: Σpc,

= −
∑

c∈C(p)

wpcGpc :
¯̄Rc(Gpc).

Here, ¯̄R is the fourth-order tensor defined by Eq. (2.53). Since ¯̄R is positive definite, the inner
product ¯̄Rc(Gpc) : Gpc is non negative and thus Ip < 0. Therefore, our Finite Volume scheme
satisfies

d

dt

(
∑

c

1

2
mcV

2
c

)
< 0.

This shows its L2 stability at the semi-discrete level.

2.7.2 Definition of the volume weight

During the construction of our Finite Volume method we have introduced the volume weight
wpc, which needs to be defined for over each sub-cell ωpc. So far, we have just stated that wpc

should be non negative and that
∑

p∈P(c)

wpc = |ωc|. Here, we shall show how to compute the

volume weight wpc to ensure that the identity ∇ · S = ∇ · Σ is satisfied at the discrete level.

More precisely, this amounts to prove that the following tensorial identity ∇· (¯̄D∇V) = 0 holds
at the discrete level.

Formulas for triangular and quadrangular cells

In Section 2.5, employing a sub-cell-based variational formulation, we have derived the following
approximation of the velocity gradient tensor over the sub-cell ωpc

Gpc =
1

wpc

[
l−pc(V

−
pc − Vc)⊗ n−

pc + l+pc(V
+
pc − Vc)⊗ n+

pc

]
,

where, wpc denotes the volume weight related to ωpc. It remains to specify how to compute this
volume weight to ensure a sufficient accuracy for the above formula. To this end, let us consider a
polygonal cell ωc. We set G = ∇V and we define the cell-averaged value of the velocity gradient
as Gc =

1
|ωc|

∫
ωc
∇V dv. Applying the divergence formula leads to Gc =

1
|ωc|

∫
∂ωc
V ⊗ n ds and

Gc =
1

|ωc|
∑

f∈F(c)

lfVf ⊗ nf ,

where F(c) is the set of faces of cell c and lf , Vf and nf denotes the length, the velocity and
the unit outward pointing normal to the face f . Let us focus on the triangular cell ωc with
vertices p,q and r. We assume that the velocity field is linear with respect to the space variable.
The following results hold:

• If f = [p, q] then Vf = 1
2 (Vp + Vq).

• We have the geometric identity
∑

f∈F(c)

lfnf = 0.

99

One can note that the above properties are true on any polygonal cell. Using the geometric
identity we get lqrnqr = − (lpqnpq + lrpnrp), thus the velocity gradient over ωc writes

Gc =
1

|ωc|
[lpq(Vpq − Vqr)⊗ npq + lrp(Vrp − Vqr)⊗ nrp] , (2.90)

with

Vpq − Vqr =
1

2
(Vp + Vq − Vq − Vr) =

1

2
(Vp − Vr) , (2.91)

Vrp − Vqr =
1

2
(Vr + Vp − Vq − Vr) =

1

2
(Vp − Vq) . (2.92)

Using theses notations equation (2.90) rewrites

Gc =
1

2|ωc|
[lpq(Vp − Vr)⊗ npq + lrp(Vp − Vq)⊗ nrp] . (2.93)

We introduce the cell-centered velocity Vc =
1
3 (Vp + Vq + Vr). It can be used under the follow-

ing forms Vr = 3Vc − Vp − Vq and Vq = 3Vc − Vp − Vr to obtain

Vp − Vr = Vp − 3Vc + Vp + Vq,

= 3

(
2Vp + Vq

3
− Vc

)
,

and

Vp − Vq = Vp − 3Vc + Vp + Vr,

= 3

(
2Vp + Vr

3
− Vc

)
.

Finally, the cell-averaged velocity gradient writes

Gc =
1

2|ωc|
3

[
lpq(V

⋆
pq − Vc)⊗ npq + lrp(V

⋆
pr − Vc)⊗ nrp

]
, (2.94)

where V ⋆
pq =

2Vp+Vq

3 and V ⋆
pr =

2Vp+Vr

3 .

With a slight change of notation, refer to Figure 2.6(a), we recover the formula obtained by
means of the variational formulation. It is sufficient to set 1

2 lpq = l+pc,
1
2 lrp = l−pc, npq = n+

pc,
nrp = n

−
pc, V

⋆
pq = V

+
pc and V ⋆

rp = V
−
pc in order to obtain

Gc =
1

|ωc|
3

[
l−pc(V

−
pc − Vc)⊗ n−

pc + l+pc(V
+
pc − Vc)⊗ n+

pc

]
. (2.95)

The volume weight is given by wpc = 1
3 |ωc| moreover the half-edge velocities correspond to

point wise values of the velocity field. We also have

|ωc| =
1

2

(
p−p× pp+

)
· ez,

=
1

2
2l−pc2l

+
pc sin θpc,

= 2l−pcl
+
pc sin θpc.

100

ωc

n+
pc

n−pc

p

θpc

p+

p−

(a) Triangular cell.

p
p−

p+

ωc

θpc

n+
pc

n−pc

(b) Quadrangular cell.

Figure 2.6: Local notation related to the point p and the cell ωc.

so we can define wpc as

wpc =
2

3
l−pcl

+
pc sin θpc. (2.96)

We claim that this definition of the volume weight provides a space approximation
of the velocity gradient tensor which is exact for linear velocity fields.

For a quadrangular cell, refer to Figure 2.6(b), we can define the volume weight as follows. We
consider the triangle p−pp+, related to point p, its volume is given by Vpc =

1
2

(
p−p× pp+

)
·ez =

2l−pcl
+
pc sin θpc. The summation of this volume over the set of nodes of the quadrangle ωc is equal

to twice the volume of ωc. Thus, we have |ωc| =
∑

p∈P(c)

l−pcl
+
pc sin θpc and it is natural to introduce

in this case

wpc = l−pcl
+
pc sin θpc. (2.97)

Discretization of ∇ · (¯̄D∇V)

Having defined the volume weights for triangular and quadrangular cells in the previous para-
graph, we are in position to prove that their definitions allows the formula ∇ · S = ∇ · Σ to be
satisfied at the discrete level. Let us point out that this formula is crucial since it ensures the
equivalence between the tensorial diffusion equation expressed in terms of the viscous stress, S

and the one expressed in terms of the pseudo-viscous stress, Σ. Since this formula is a conse-
quence of the tensorial identity ∇ · (¯̄D∇V) = 0, where ¯̄D is the fourth-order tensor defined by
¯̄DT = trTI− Tt for all second-order tensor T, we start by investigating the space discretization
of the above tensorial identity. First, applying the divergence theorem over the cell ωc leads to
rewrite this tensorial identity as ∫

∂ωc

¯̄D∇V n ds = 0,

where n is the unit outward normal to the cell boundary ∂ωc. Using the notation defined in
Section 2.5, leads to write the space approximation of right-hand side of the above equation as
follows ∫

ωc

¯̄D∇V n ds =
∑

p∈P(c)

l−pc(
¯̄D∇V)−pc + l+pc(

¯̄D∇V)+pc. (2.98)

101

Utilizing the definition of the fourth-order tensor, ¯̄D, the half-edge flux (¯̄D∇V)−pc is given by

(¯̄D∇V)−pc = trGpcn
−
pc − Gt−

pc ,

=
1

wpc

[
l−pc(n

−
pc ⊗ n−

pc)(V
−
pc − Vc) + l+pc(n

−
pc ⊗ n+

pc)(V
+
pc − Vc)

]

− 1

wpc

[
l−pc(n

−
pc ⊗ n−

pc)(V
−
pc − Vc) + l+pc(n

+
pc ⊗ n−

pc)(V
+
pc − Vc)

]
,

=
1

wpc
l+pc
[
(n−

pc ⊗ n+
pc)− (n+

pc ⊗ n−
pc)
]
(V +

pc − Vc).

Similarly, the half-edge flux (¯̄D∇V)+pc writes

(¯̄D∇V)+pc = trGpcn
+
pc − Gt+

pc ,

=
1

wpc

[
l−pc(n

+
pc ⊗ n−

pc)(V
−
pc − Vc) + l+pc(n

+
pc ⊗ n+

pc)(V
+
pc − Vc)

]

− 1

wpc

[
l−pc(n

−
pc ⊗ n+

pc)(V
−
pc − Vc) + l+pc(n

+
pc ⊗ n+

pc)(V
+
pc − Vc)

]
,

=
1

wpc
l−pc
[
(n+

pc ⊗ n−
pc)− (n−

pc ⊗ n+
pc)
]
(V −

pc − Vc).

Combining these two terms and summing over all p ∈ P(c) yields
∫

ωc

¯̄D∇V n ds =
∑

p∈P(c)

l−pcl
+
pc

wpc

[
(n−

pc ⊗ n+
pc)− (n+

pc ⊗ n−
pc)
]
(V +

pc − Vc)

+
l−pcl

+
pc

wpc

[
(n+

pc ⊗ n−
pc)− (n−

pc ⊗ n+
pc)
]
(V −

pc − Vc),

=
∑

p∈P(c)

l−pcl
+
pc

wpc

[
(n−

pc ⊗ n+
pc)− (n+

pc ⊗ n−
pc)
]
(V +

pc − V −
pc).

Observing that (b⊗ a− a⊗ b)x = (a× b)× x for all vectors a, b, c and x leads to transform
the above equation into

∫

ωc

¯̄D∇V nds =
∑

p∈P(c)

l−pcl
+
pc

wpc
(n+

pc × n−
pc)× (V +

pc − V −
pc) (2.99)

To be compatible with the continuous identity ∇· (¯̄D∇V) = 0, the right-hand side of the above
equation should be equal to zero. We shall show that this is true provided that the volume
weight is properly defined. To this end, we start by computing the right-hand side of (2.99).
First, we observe that n±

pc × t±pc = ez and n±
pc = tpc × ez, where t±pc denotes the unit tangential

vector related to [p−, p], refer to Figure 2.7. Then, we develop the cross product of the unit
outward normals as follows

n+
pc × n−

pc = n
+
pc × (t−pc × ez),

= (n+
pc · ez)t−pc − (n+

pc · t−pc)ez,
= −

[
(t+pc × ez) · t−pc

]
ez,

= −
[
(t−pc × t+pc) · ez

]
ez,

= − sin θpcez,

102

p+

p

θpc

V c

V +
pc

n+
pc

t+pc

p−

n−pc

t−pc

V −pc

Figure 2.7: Notations in a triangular cell.

where θpc is the measure of the corner angle related to point p and cell c, refer to Figure 2.7.
Substituting the above geometrical result into (2.99) yields

∫

ωc

¯̄D∇V nds =
∑

p∈P(c)

l−pcl
+
pc

wpc
(n+

pc × n−
pc)× (V +

pc − V −
pc),

=
∑

p∈P(c)

l−pcl
+
pc sin θpc

wpc
(V +

pc − V −
pc)× ez.

Due to the cyclic numbering of the half-edges we get
∑

p∈P(c)

(V +
pc − V −

pc) × ez = 0. Thus, a

sufficient condition to ensure the vanishing of the right-hand side of (2.99) consists
in setting

wpc = νcl
−
pcl

+
pc sin θpc, (2.100)

where νc is a non-negative constant, which uniquely depends on cell c. Moreover, this
constant should be such that

∑
pP(c)wpc =| ωc |. We claim that the definitions of the volume

weights (2.96) and (2.97) that we have proposed in the previous paragraph satisfy the sufficient
condition (2.100). Indeed, for triangular and quadrangular cells we respectively get

• For triangular cells, the cell volume reads |ωc| = 2l−pcl
+
pc sin θpc, whereas the sub-cell volume

is given by wpc = 2
3 l

−
pcl

+
pc sin θpc, thus the coefficient νc writes νc = 2

3 and is indeed a
constant number over cell c.

• For quadrangular cells, the cell volume reads |ωc| =
∑

p∈P(c)

l−pcl
+
pc sin θpc, whereas the sub-

cell volume is given by wpc = l−pcl
+
pc sin θpc, thus the coefficient νc writes νc = 1 and is also

a constant number over cell c.

We conclude that the definitions (2.96) and (2.97) of the volume weights ensures that our Finite
Volume discretization is compatible with the integral form of the tensorial identity

∫

∂ωc

¯̄D∇V ds = 0.

103

This important compatibility property implies that the divergence of the viscous stress and the
divergence of the pseudo-viscous stress coincide at the discrete level, i.e., ∇ · S = ∇ · Σ.

2.8 Numerical results

This section aims at assessing the robustness and the accuracy of our numerical method against
numerous representative test cases. Firstly, we describe the methodology employed to performed
the convergence analysis. Then, we present the numerical tests and the grids used. We conclude
by commenting the features of the numerical results obtained.

2.8.1 Methodology used for convergence analysis

In what follows, we solve the following generic tensorial diffusion equation

ρ
∂V

∂t
−∇ · S = ρr, ∀(x, t) ∈ D × [0, T], (2.101a)

V (x, 0) = V 0(x), ∀x ∈ D, (2.101b)

where r = r(x) is a given source term. We are interested in steady analytical solutions, and
thus we shall compute them starting with the initial condition V 0(x) = 0 and running the
simulation until the steady state is reached. The density and the dynamic viscosity are defined
by ρ = 1 and µ = 1. The boundary conditions and the source term r are specified for each test
case.
To assess the accuracy of the numerical method we introduce the L2 and L∞ discrete norms as
follows. If V is a generic vector function its discrete L2 norm writes

‖V ‖2 =

√√√√
CD∑

c=1

|ωc|Vc
2,

whereas its discrete L∞ norm is given by

‖V ‖∞ = max
c=1...CD

|Vc|.

For a given mesh composed of CD cells we define the characteristic length h as

h =

(| D |
CD

) 1
d

,

where d = 1, 2, 3 denotes the space dimension and | D | is the measure of the computational
domain volume. To perform a convergence analysis of the numerical method we introduce the
absolute errors between the analytical solution, Ve, of (2.101a) and the numerical solution Vh:
the L2 absolute error writes

Eh
2 = ‖Vh − Ve‖2 ,

whereas its L∞ counterpart writes

Eh
∞ = ‖Vh − Ve‖∞ .

Let us note that the computation of both errors are performed using the analytical solution
evaluated at the cells centroid. The asymptotic error for both norms is estimated by

ehα = Cαh
qα +O(hqα+1), for α = 2,∞,

104

where qα denotes rate of convergence and Cα the convergence rate-constant which is independent
of h. Having computed the absolute errors corresponding to two different grids characterized by
mesh resolutions h1 and h2 < h1, we deduce the estimation of the convergence rate as follows

qα =
logEh2

α − logEh1
α

log h2 − log h1
.

2.8.2 Meshes description

We perform the computations on different kind of meshes. For every mesh category, we employ
5 levels of refinement of the meshes from coarse grid to finer grids. A short description of the
different grids used for the numerical tests is provided hereafter.

• A triangular grid is displayed in Figure 2.8(a). There are 5 grids, which are respectively
composed of 242, 1054, 4262, 16818 and 67872 triangles.

• A Cartesian grid is displayed in Figure 2.8(b). The 5 grids are made of 10 × 10,20 × 20,
40× 40, 80× 80 and 160× 160 squares.

• A smoothly deformed grid is displayed in Figure 2.8(c). The 5 five grids are composed
of 10 × 10, 20 × 20, 40 × 40, 80 × 80 and 160 × 160 quadrangles. The deformation is
characterized by the mapping of the unit square [0, 1]2 onto itself

{
x(ξ, η) = ξ + 0.1 sin(2πξ) sin(2πη),

y(ξ, η) = η + 0.1 sin(2πξ) sin(2πη).

• A Kershaw type grid is displayed in Figure 2.8(e). The 5 grids are made of 12×12, 24×24,
48× 48, 96× 96 and 192× 192 quadrangles.

• A randomly perturbed grid is displayed in Figure 2.8(d). The 5 grid are made of 10 ×
10, 20 × 20, 40 × 40, 80 × 80 and 160 × 160 quadrangles. The random perturbation is
characterized by the mapping defined on the unit square [0, 1]2 by:

{
x(ξ, η) = ξ + 0.2hr1,

y(ξ, η) = η + 0.2hr2,

where ri for i = 1, 2 are random numbers chosen in] − 1, 1[and h is the characteristic
mesh size.

• A hybrid grid made of triangles and quadrangles is displayed in Figure 2.8(f). The se-
quence of 5 hybrid grids contains respectively 132, 508, 2064, 8516 and 33796 triangles
and 50, 200, 800, 3200 and 12800 quadrangles.

2.8.3 Convergence analysis for solutions characterized by a linear behavior

with respect to the space variable

Here, we investigate the ability of our Finite Volume scheme to preserve a linear solution with
respect to the space variable x. The analytical steady solutions under consideration are defined
by

Ve(x, y) = A

(
x

y

)
+B, (2.102)

where Ve is the analytical solution, x and y are the Cartesian coordinates of the position vector
x, A is a 2× 2 constant matrix and B is a constant vector of R2. The boundary conditions is
specified for each test case, namely it can be of kinematic or symmetric type depending on the
definition of the matrix A.

105

(a) Mesh made of 1054 triangles. (b) Cartesian mesh made of 20× 20 quadran-
gles.

(c) Smoothly deformed mesh made of 20× 20
quadrangles.

(d) Randomly perturbed mesh made of 20×20
quadrangles.

(e) Kershaw type mesh made of 24×24 quad-
rangles.

(f) Hybrid mesh made of 508 triangles and
10× 20 quadrangles.

Figure 2.8: Example of the grids employed for the tests cases. For each category, we have
displayed the grids related to the second level of refinement among the 5 levels available.

106

Linear velocity field with respect to x coordinate

Here, we set A =

(
1 0
0 0

)
and B =

(
0
0

)
. Thus, the analytical solution Ve is a linear function

with respect with the x coordinate, namely V (x, y) = x ex. The computational domain is the
unit square. Regarding the boundary conditions, they are of symmetric type at y = 0 and

at y = 1 and of kinematic type elsewhere, that is V (0, y) =

(
0
0

)
and V (1, y) =

(
1
0

)
. We

have displayed the numerical solution in Figure 2.9. The convergence analysis is obtained by

Figure 2.9: Linear velocity field with respect to x coordinate. Representation of the numerical
solution on the 20× 20 Cartesian grid.

looking at the numerical results displayed in Table 2.1. We observe that the numerical scheme
is characterized by a second-order rate of convergence on smooth and Kershaw grids, whereas
it exhibits an erratic behavior on randomly perturbed grids. It is worth mentioning that the
numerical method captures exactly the analytical solution on the unstructured triangular grids.

Rigid rotation velocity field

For this test case we prescribe A =

(
0 1
−1 0

)
and B =

(
0
0

)
. The analytical solution, Ve

corresponds a rigid rotation velocity field. The computational domain is still the unit square.

The kinematic boundary condition V (x, y) =

(
−y
x

)
is specified on all the boundaries of the

computational domain. The numerical velocity field has been plotted in Figure 2.10. We
observe that the velocity contours are circles centered at the origin of the Cartesian frame
(0, x, y). The numerical results dedicated to the convergence analysis of the numerical scheme
on quadrangular grids are summarized in Table 2.2. They show that the numerical method has
an almost second-order rate of convergence on smoothly distorted grids. On the other hand, on
randomly distorted grids the convergence rate is almost of first-order. We have also assessed

107

Table 2.1: Linear velocity field with respect to x coordinate. Asymptotic errors in both L2 and
L∞ norms and corresponding truncation error orders for quadrangular grids.

(a) Smooth grids.

h EL2 qL2 E∞ q∞
1.00e-01 2.20e-03 1.95 4.54e-03 1.78

5.00e-02 5.69e-04 1.99 1.32e-03 1.94

2.50e-02 1.44e-04 2.00 3.44e-04 1.98

1.25e-02 3.60e-05 2.00 8.72e-05 2.00

6.25e-03 9.02e-06 - 2.19e-05 -

(b) Kershaw grids.

h EL2 qL2 E∞ q∞
8.33e-02 3.99e-03 1.86 1.49e-02 1.63

4.17e-02 1.10e-03 1.95 4.80e-03 1.84

2.08e-02 2.85e-04 1.98 1.34e-03 1.87

1.04e-02 7.21e-05 2.00 3.65e-04 1.88

5.21e-03 1.81e-05 - 9.92e-05 -

(c) Random grids.

h EL2 qL2 E∞ q∞
1.00e-01 1.21e-03 0.79 3.11e-03 0.11

5.00e-02 7.00e-04 0.99 2.87e-03 1.17

2.50e-02 3.52e-04 0.97 1.28e-03 0.59

1.25e-02 1.79e-04 0.99 8.53e-04 1.27

6.25e-03 9.03e-05 - 3.54e-04 -

Figure 2.10: Rigid rotation velocity field. Representation of the solution on the 20×20 Cartesian
grid.

108

Table 2.2: Rigid rotation velocity field. Asymptotic errors in both L2 and L∞ norms and
corresponding truncation error orders for the different categories of quadrangular grids.

(a) Smooth grids.

h EL2 qL2 E∞ q∞
1.00e-01 2.56e-03 1.93 3.91e-03 1.68

5.00e-02 6.73e-04 1.97 1.22e-03 1.87

2.50e-02 1.71e-04 1.99 3.35e-04 1.96

1.25e-02 4.31e-05 2.00 8.61e-05 1.99

6.25e-03 1.08e-05 - 2.17e-05 -

(b) Kershaw grids.

h EL2 qL2 E∞ q∞
8.33e-02 4.56e-03 1.85 1.38e-02 1.62

4.17e-02 1.26e-03 1.95 4.48e-03 1.79

2.08e-02 3.25e-04 1.98 1.30e-03 1.79

1.04e-02 8.22e-05 2.00 3.74e-04 1.91

5.21e-03 2.06e-05 - 9.98e-05 -

(c) Random grids.

h EL2 qL2 E∞ q∞
1.00e-01 1.54e-03 0.86 3.44e-03 0.44

5.00e-02 8.49e-04 0.95 2.53e-03 1.10

2.50e-02 4.39e-04 0.97 1.18e-03 0.64

1.25e-02 2.24e-04 0.98 7.59e-04 1.06

6.25e-03 1.14e-04 - 3.64e-04 -

Table 2.3: Rigid rotation velocity field. Asymptotic errors in both L2 and L∞ norms and
corresponding truncation error orders for hybrid grids.

h EL2 qL2 E∞ q∞
7.41e-02 3.05e-04 1.50 1.39e-03 0.26

3.76e-02 1.10e-04 1.64 1.16e-03 0.94

1.87e-02 3.51e-05 1.81 6.01e-04 1.54

9.24e-03 9.79e-06 1.42 2.02e-04 0.34

4.63e-03 3.68e-06 - 1.60e-04 -

109

the accuracy of the numerical methods on a sequence of 5 hybrid grids composed of triangular
and quadrangular cells. In this particular case, the rate of convergence is located between first
and second-order as it is shown in Table 2.3

Stretching velocity field

Here, we set A =

(
3 0
0 2

)
and B =

(
0
0

)
. The analytical solution, Ve, corresponds a to a

stretching velocity field. The computational domain is once more the unit square. Since x and
y axis are symmetry axis for the solution, we apply symmetry boundary conditions at x = 0

and at y = 0. We specify the kinematic boundary condition, V (x, y) =

(
3x
2y

)
, at x = 1 and

y = 1. The analytical solution of this problem has been plotted in Figure 2.11. We observe that
the deformation rate tensor related to this velocity field is equal to A. The eigenvalues are 3
and 2 respectively associated to the eigenvectors ex and ey. Thus, the coordinate axis are the
principal directions of the tensor of deformation rate. The results of the convergence analysis

Figure 2.11: Stretching velocity field. Representation of the solution on the 20 × 20 Cartesian
grid.

performed on quadrangular grids are displayed in Table 2.4. Once more, the numerical scheme
is characterized by a second-order rate of convergence on smooth grids, whereas the order of
convergence is almost one on randomly perturbed grids. We also note that the convergence rate
in L∞ norm for the random grids, refer to Table 2.4(c), is rather erratic. Regarding the hybrid
grids, refer to Table 2.5, we observe a convergence rate which is between first and second-order.

General comments for the linear tests

For all of the linear tests conducted on the triangular and on the Cartesian grids, we point
out that we get round-off error. This fact is consistent with the theoretical result that the

110

Table 2.4: Stretching velocity field. Asymptotic errors in both L2 and L∞ norms and corre-
sponding truncation error orders for quadrangular grids.

(a) Smooth grids.

h EL2 qL2 E∞ q∞
1.00e-01 7.16e-03 1.96 1.17e-02 1.80

5.00e-02 1.84e-03 1.99 3.36e-03 1.96

2.50e-02 4.62e-04 2.00 8.64e-04 1.98

1.25e-02 1.16e-04 2.00 2.18e-04 2.00

6.25e-03 2.89e-05 - 5.47e-05 -

(b) Kershaw grids.

h EL2 qL2 E∞ q∞
8.33e-02 1.01e-02 1.90 2.97e-02 1.63

4.17e-02 2.71e-03 1.96 9.59e-03 1.84

2.08e-02 6.94e-04 1.99 2.68e-03 1.87

1.04e-02 1.75e-04 2.00 7.30e-04 1.88

5.21e-03 4.38e-05 - 1.98e-04 -

(c) Random grids.

h EL2 qL2 E∞ q∞
1.00e-01 3.94e-03 0.88 8.04e-03 0.33

5.00e-02 2.14e-03 0.95 6.40e-03 1.08

2.50e-02 1.11e-03 0.98 3.03e-03 0.68

1.25e-02 5.63e-04 0.98 1.90e-03 1.07

6.25e-03 2.85e-04 - 9.03e-04 -

Table 2.5: Stretching velocity field. Asymptotic errors in both L2 and L∞ norms and corre-
sponding truncation error orders for hybrid grids.

h EL2 qL2 E∞ q∞
7.41e-02 2.46e-04 1.15 2.01e-03 0.26

3.76e-02 1.13e-04 1.55 1.69e-03 0.94

1.87e-02 3.83e-05 2.03 8.74e-04 1.60

9.24e-03 9.14e-06 1.20 2.83e-04 0.29

4.63e-03 3.99e-06 - 2.32e-04 -

111

Table 2.6: Vortex-like velocity field. Asymptotic errors in both L2 and L∞ norms and corre-
sponding truncation error orders for triangular grids.

h EL2 qL2 E∞ q∞
6.43e-02 3.60e-03 1.94 4.95e-03 1.89

3.08e-02 8.62e-04 1.99 1.23e-03 1.71

1.53e-02 2.15e-04 2.00 3.72e-04 2.07

7.71e-03 5.42e-05 2.01 9.01e-05 1.91

3.84e-03 1.34e-05 - 2.38e-05 -

numerical method is able to preserve linear solutions provided that the volume weights are
properly chosen, refer to Section 2.7.2.
All these linear tests are characterized by quadratic convergence rate on both smoothly deformed
and Kershaw meshes. For the randomly deformed meshes and the hybrid meshes it is harder to
draw conclusions. Let us point out that the randomly perturbed grids are scarcely encountered
in real life applications. Regarding the hybrid grids, we get a round-off error for the linear
velocity field with respect to x coordinate, and observe convergence rates between first and
second-order for the other tests. While for all the other types of grids the 5 levels of refinement
were obtained in a continuous manner by multiplying the number of cells in x and y directions,
it is not the case anymore for the random and the hybrid grids. Indeed, the refined versions
of the random grids are made of smaller cells but due to the random process used to generate
them there is no continuous relations linking two different levels of refinement together. For
the hybrid grids, the Cartesian part undergoes a continuous refinement, whereas it is not the
case for the triangular part. This is due to the fact that the triangles are generated using a
Delaunay algorithm. This non-uniformity in the grid generation may explain the poor rate of
convergence obtained on hybrid grids.

2.8.4 Convergence analysis for solutions characterized by a non-linear be-

havior with respect to the space variable

Vortex-like velocity field

In this test problem we consider the analytical solution generated by the velocity field

Ve =

((
y − 1

2

)
sin (πx) sin (πy)(

1
2 − x

)
sin (πx) sin (πy)

)

This analytical solution corresponds to a vortex, which is obtained by specifying the source
term, r, as

r =

(
−7

3

(
y − 1

2

)
π2 sin (πx) sin (πy) + 5

3π sin (πx) cos (πy) +
1
3

(
1
2 − x

)
π2 cos (πx) cos (πy)

−7
3

(
1
2 − x

)
π2 sin (πx) sin (πy)− 5

3π cos (πx) sin (πy) +
1
3

(
y − 1

2

)
π2 cos (πx) cos (πy)

)

We prescribe the kinematic boundary condition V (x, y) =

(
0
0

)
at all the boundaries of the

computational domain, which is the unit square. The corresponding numerical solution has
been plotted on a 20× 20 Cartesian grid in Figure 2.12. We observe that the velocity contours
are circles centered at (12 ,

1
2). We run this test problem on a sequence of 5 triangular grids.

The corresponding numerical errors are displayed in Table 2.6. We observe that the numerical
method exhibits a second-order rate of convergence on this type of grids. The numerical results
obtained on the different categories of quadrangular grids are displayed in Table 2.7. Once more

112

Table 2.7: Vortex-like velocity field. Asymptotic errors in both L2 and L∞ norms and corre-
sponding truncation error orders for quadrangular grids.

(a) Cartesian grids.

h EL2 qL2 E∞ q∞
1.00e-01 5.59e-03 2.00 7.20e-03 1.93

5.00e-02 1.40e-03 2.00 1.88e-03 1.97

2.50e-02 3.50e-04 2.00 4.81e-04 1.99

1.25e-02 8.75e-05 2.00 1.22e-04 1.99

6.25e-03 2.19e-05 - 3.05e-05 -

(b) Smooth grids.

h EL2 qL2 E∞ q∞
1.00e-01 5.20e-03 1.92 1.10e-02 1.84

5.00e-02 1.37e-03 1.97 3.08e-03 1.80

2.50e-02 3.51e-04 1.99 8.84e-04 1.83

1.25e-02 8.84e-05 2.00 2.48e-04 1.92

6.25e-03 2.21e-05 - 6.55e-05 -

(c) Kershaw grids.

h EL2 qL2 E∞ q∞
8.33e-02 5.88e-03 1.76 1.39e-02 1.72

4.17e-02 1.74e-03 1.91 4.24e-03 1.75

2.08e-02 4.61e-04 1.97 1.26e-03 1.81

1.04e-02 1.18e-04 1.99 3.61e-04 1.90

5.21e-03 2.98e-05 - 9.69e-05 -

(d) Random grids.

h EL2 qL2 E∞ q∞
1.00e-01 5.51e-03 2.20 9.33e-03 1.63

5.00e-02 1.20e-03 1.63 3.02e-03 0.84

2.50e-02 3.87e-04 -0.09 1.69e-03 1.04

1.25e-02 4.12e-04 -0.16 8.23e-04 0.14

6.25e-03 4.61e-04 - 7.47e-04 -

113

Figure 2.12: Vortex-like velocity field. Representation of the solution on a 20 × 20 Cartesian
grid.

Table 2.8: Vortex-like velocity field. Asymptotic errors in both L2 and L∞ norms and corre-
sponding truncation error orders for hybrid grids.

h EL2 qL2 E∞ q∞
7.41e-02 4.22e-03 2.12 7.15e-03 1.97

3.76e-02 9.99e-04 2.05 1.87e-03 1.15

1.87e-02 2.39e-04 1.76 8.40e-04 1.52

9.24e-03 6.93e-05 1.12 2.88e-04 0.29

4.63e-03 3.20e-05 - 2.36e-04 -

the Cartesian, smooth and Kershaw grids are characterized by an almost second-order rate
of convergence whereas the randomly perturbed grids exhibit an erratic rate of convergence.
Finally, on hybrid grids, refer to Table 2.8, we observe a rate of convergence which is located
between first and second-order.

Boundary layer-like velocity field

Here, we consider the test problem characterized by the analytical velocity field

Ve =

(
1− exp(λ(1−y))

exp(λ)

0

)
,

where λ is a non-negative real valued parameter. This analytical solution is obtained by speci-
fying the source term, r, as follows

r =

(
λ2

exp(λ(1−y))
exp(λ)

0

)
.

114

Table 2.9: Boundary layer-like field. Asymptotic errors in both L2 and L∞ norms and corre-
sponding truncation error orders for boundary layer grids.

h EL2 qL2 E∞ q∞
5.00e-02 1.04e-03 1.99 3.40e-03 1.91

2.50e-02 2.61e-04 2.00 9.00e-04 1.96

1.25e-02 6.54e-05 2.00 2.32e-04 1.98

6.25e-03 1.64e-05 - 5.87e-05 -

We prescribe the kinematic boundary condition V (x, y) = Ve(x, y) at all the boundaries of the
computational domain, which is still the unit square. The parameter λ is set λ = 10. Let
us note that the x-component of the velocity field is maximum and equal to one at the top
boundary (y = 1), whereas it decreases exponentially to zero at the bottom boundary (y = 0).
The λ parameter is a stretching parameter, which characterizes the exponential decaying of the
x-component of the velocity field when approaching the bottom boundary. This test problem
allows to mimic a boundary layer problem, which is representative of viscous flow in presence of
a solid wall. The corresponding numerical solution has been plotted in Figure 2.13 employing a
20 × 20 stretched Cartesian grid. This Cartesian stretched grid has been refined near the axis

Figure 2.13: Boundary layer-like velocity field. Representation of the solution on a 20 × 20
stretched Cartesian grid.

y = 0 where the solution varies the most. This kind of mesh is classically used when dealing
with viscous flow problems in the presence of a solid boundary. We have displayed in Table 2.9
the numerical results obtained using a sequence of stretched Cartesian grids in y direction.
They show a second-order rate of convergence for our numerical method. We also perform the
convergence analysis on a sequence of 5 unstructured triangular grids and we observe a second-
order convergence rate in Table 2.10. The results obtained for the convergence analysis made
for the different categories of quadrangular grids are displayed in Table 2.11. Once more, we

115

Table 2.10: Boundary layer-like field. Asymptotic errors in both L2 and L∞ norms and corre-
sponding truncation error orders for triangular grids.

h EL2 qL2 E∞ q∞
6.43e-02 1.47e-02 1.80 5.47e-02 1.61

3.08e-02 3.91e-03 2.13 1.68e-02 1.96

1.53e-02 8.86e-04 1.93 4.28e-03 1.88

7.71e-03 2.36e-04 1.99 1.18e-03 1.89

3.84e-03 5.90e-05 - 3.15e-04 -

Table 2.11: Boundary layer-like field. Asymptotic errors in both L2 and L∞ norms and corre-
sponding truncation error orders for quadrangular grids.

(a) Cartesian grids.

h EL2 qL2 E∞ q∞
1.00e-01 2.55e-02 1.85 8.07e-02 1.66

5.00e-02 7.08e-03 1.96 2.55e-02 1.85

2.50e-02 1.82e-03 1.99 7.08e-03 1.93

1.25e-02 4.59e-04 2.00 1.86e-03 1.96

6.25e-03 1.15e-04 - 4.77e-04 -

(b) Smooth grids.

h EL2 qL2 E∞ q∞
1.00e-01 2.72e-02 1.58 1.11e-01 1.22

5.00e-02 9.07e-03 1.87 4.75e-02 1.57

2.50e-02 2.48e-03 1.97 1.60e-02 1.80

1.25e-02 6.34e-04 1.99 4.58e-03 1.91

6.25e-03 1.59e-04 - 1.22e-03 -

(c) Kershaw grids.

h EL2 qL2 E∞ q∞
8.33e-02 1.87e-02 1.89 6.10e-02 1.73

4.17e-02 5.03e-03 1.97 1.84e-02 1.88

2.08e-02 1.29e-03 1.99 5.01e-03 1.94

1.04e-02 3.23e-04 2.00 1.30e-03 1.97

5.21e-03 8.09e-05 - 3.32e-04 -

(d) Random grids.

h EL2 qL2 E∞ q∞
1.00e-01 2.26e-02 1.76 8.00e-02 1.37

5.00e-02 6.69e-03 2.05 3.09e-02 1.47

2.50e-02 1.61e-03 1.27 1.11e-02 0.99

1.25e-02 6.68e-04 -0.16 5.62e-03 1.09

6.25e-03 7.45e-04 - 2.63e-03 -

116

Table 2.12: Boundary layer-like field. Asymptotic errors in both L2 and L∞ norms and corre-
sponding truncation error orders for hybrid grids.

h EL2 qL2 E∞ q∞
7.41e-02 1.83e-02 1.86 7.37e-02 1.61

3.76e-02 5.20e-03 2.00 2.47e-02 1.81

1.87e-02 1.29e-03 2.06 6.97e-03 1.69

9.24e-03 3.01e-04 1.79 2.12e-03 1.34

4.63e-03 8.77e-05 - 8.42e-04 -

draw the same conclusions than before: the numerical scheme is characterized by an almost
second-order rate of convergence on Cartesian, smooth and Kershaw grids, whereas it shows an
erratic behavior on randomly distorted grids, refer to Table 2.11(d). Finally, we conclude this
section, by running this test problem on a sequence of 5 hybrid grids composed of triangular
and quadrangular cells. The convergence analysis results are summarized in Table 2.12. They
show a convergence rate located between first and second-order.

2.9 Conclusion

In this chapter we have constructed an original compatible cell-centered Finite Volume method
for solving generic tensorial diffusion equations, knowing that this generic equation is nothing
but the momentum equation of Navier-Stokes equations without the pressure gradient term,
refer to Chapter 3. Adapting the seminal idea of Arnold [16], we have modified the constitutive
law, which defines the deviatoric part of the Cauchy stress tensor in terms of the deviatoric
part of the strain rate tensor, by adding a supplementary term, which renders it invertible.
This amounts to define a pseudo-viscous stress tensor, which is characterized by an invertible
constitutive law over the space of second-order tensors. The divergence free feature of the
aforementioned extra term ensures the equivalence of the formulations of the tensorial diffusion
equation either based on the viscous stress or based on the pseudo viscous stress. A sub-cell-
based variational formulation of the invertible constitutive law allows us to construct a numerical
approximation of the half-edge pseudo-viscous fluxes in terms of the half-edge velocities and the
cell-centered velocity at a cell corner. The half-edge velocities are extra degrees of freedom
which are eliminated by invoking the half-edge viscous fluxes continuity at cell interfaces. This
elimination procedure consists in solving invertible small linear systems located at each node
of the computational grid. The construction of the global diffusion matrix provides a global
linear system which is characterized by a positive definite matrix. The corresponding numerical
scheme is characterized by a L2 stability property, it preserves linear solutions on triangular
grids and achieves second-order convergence rate on smoothly deformed meshes. We have also
showed numerically that it is well suited to capture boundary layer-like solutions that we will
need to handle when dealing with Navier-Stokes equations. Although we have given a two-
dimensional presentation of this scheme, we claim that its three-dimensional extension may be
easily developed using the notation changes presented for the CCLAD scheme in Chapter 1.

117

118

Chapter 3

A Finite Volume scheme for solving

Fluid Dynamics on unstructured

grids

We start this chapter by a brief overview of the main numerical methods used in the resolution
of fluid dynamics problems. The interested reader should refer to [135] for a more detailed
review of these methods.

Finite Volume Method

The Finite Volume schemes [82, 45] are certainly the most mature and the most documented
numerical methods for fluid dynamics. To this day they are present at the core of most of
the industrial codes devoted to Computational Fluid Dynamics (CFD). These methods can
be developed on structured and unstructured meshes, and we can distinguish two kinds of
approaches, the vertex-centered and the cell-centered approach. These methods differ in the
definition of the control volume and its interpretation in regards to the mesh. In the cell-
centered approach, the control volumes are defined as the cells of the mesh. In the vertex-
centered approach the unknowns of the problem are located at the nodes of the mesh, the
control volumes are defined as a volume in the vicinity of the nodes and correspond to the cells
of the dual mesh. For the discretization of the inviscid fluxes the two approaches are equivalent.
The idea is to solve a Riemann problem at each interface of the mesh [53]. The main difference
is obtained for the development of the viscous fluxes. The classical methodology used with the
vertex-centered approach is to use an hybrid Finite Volume-Finite Element scheme [46]. The
gradients of the unknowns are obtained with a Finite Element method defined on each cell,
and are then used in the Finite Volume scheme through the use of Green formulas. For the
cell-centered approach a wide range of methods are used for the discretization of the viscous
terms [41]. We can cite for example the Coirier’s diamond path reconstruction [132, 126] or
the weighted least squares methods. High-order can be achieved with Finite Volume Methods
using the ENO [58] or WENO [87, 75] methodology on structured grids, or the MUSCL [128]
methodology on unstructured grids for instance.

Finite Element Method

The Finite Element method (FE) is widely used in the domain of structural analysis, it can be
also applied to CFD problems. In the Finite Element method the discrete solution is expressed as
a linear combination of basis functions which are continuous piecewise polynomials. High-order
versions of the FE method are easily obtained by increasing the degree of the polynomial basis

119

functions. The basic FE formulation brings to the well known Galerkin scheme, which is however
not stable for wave equations and a stabilization mechanism must be added. Many types of
stabilizing techniques have been developed to cure the stability issue. We can cite for instance
the streamline upwind Petrov-Galerkin (SUPG) method [70, 136, 30], the Galerkin/least squares
approach [71] or the Taylor Galerkin method [88]. Moreover, when discontinuities are present
in the solution an additional shock capturing term must be added in order to guarantee the
monotonicity of the solution. Unfortunately, Venkatakrishnan et al. [131] noted that no shock-
capturing terms can guarantee stability for SUPG in the general case.

Discontinuous Galerkin Method

The Discontinuous Galerkin (DG) method combines features of the FV and FE methods. As in
the FE method, the DG method is based on the Galerkin formulation of the governing equations.
Here, the solution is assumed to be discontinuous between two adjacent elements [116]. The
discontinuities of the solution at the faces of the elements are taking into account by numerical
fluxes, usually under the form of Riemann solvers, as what is done in the FV approach. For a
review of the DG method, see [39, 31].
Higher-order solution is obtained by using high-order polynomials within elements. Due to the
local definition of the polynomials the DG schemes are extremely compact and flexible. These
features makes the DG method ideally suited for parallel computations. Impressive results have
been already obtained for the Euler equation [24] and the compressible Navier-Stokes equations
[23]. One of the major drawbacks of these approaches is the computational cost induced by
the huge amount of degrees of freedom obtained when dealing with high-order polynomials.
This computational cost grows a lot faster than the cost of classical FE methods when using
the same polynomials. Moreover, in the presence of discontinuities, the high order polynomial
approximation produces spurious oscillations in the numerical solution and thus reduce the
benefit of using a high-order method. Once again some stabilization technique is required to
prevent these oscillations. This can be done by the introduction of artificial viscosity terms [60]
or with the use of slope limiters [34].

Residual Distribution Scheme

The Residual Distribution Scheme (RDS) is a class of method that uses a continuous repre-
sentation of the variables, similarly to the standard Finite Element methods. It has been first
studied by Roe in [109] under the name of Fluctuation Splitting method. The method defines
the residual, which is an integral quantity over each element, representing the balance of infor-
mation entering the element. Following well defined rules [8], this residual is then distributed to
the variables defining this element. An impressive bibliography on these methods is available in
Ricchiuto’s PhD and HDR thesis [105, 106]. Larat in his PhD thesis [79] developed high-order
RDS schemes in two and three dimensions of space. He showed that this method is suitable
to solve Navier-Stokes equations and is able to solve industrial problems in three dimensional
geometry with the help of an efficient parallelization [9, 10]. Later De Santis [111, 12, 11] im-
proved the discretization of the viscous terms and the boundary conditions treatment. He also
extended the formulation to the Reynolds Averaged Navier-Stokes (RANS) equations. This
impressive work makes this kind of schemes a serious candidate to become the cornerstone in
the construction of the future generation of industrial high-order CFD codes. It is worth men-
tioning that the methodology has been also successfully applied to other equations such as those
of Magneto-Hydro-Dynamics (MHD) [69].

120

In the following, after describing the construction and properties of the equations of fluid dy-
namics, we present a cell-centered Finite Volume scheme on unstructured meshes for solving
the Navier-Stokes equations. We start by describing the discretization of the inviscid fluxes by
building a scheme for the resolution of the Euler equations. It requires the use of approximate
Riemann solvers. We then discuss the high-order extension of this scheme with the description
of the classical MUSCL method. We continue the description of our scheme by the presentation
of an explicit version of the time discretization. Since we need to solve the equations to steady
state we observe that, the time step limitation of the explicit method is a barrier to obtain a
sufficient convergence rate. This time step limitation is a consequence of the very small cell
sizes needed to capture the thin boundary layers present in the supersonic regime. That leads
us to develop an implicit version of the scheme. We then use this scheme as a starting point to
the construction of a numerical scheme for solving the Navier-Stokes equation. The novelty in
our approach is that we use the numerical schemes developed in Chapter 1 and Chapter 2 in
order to discretize the diffusive terms of the equations. Finally, we present various numerical
tests cases in order to assess the robustness and the accuracy of our numerical method.

3.1 Governing Equations of Fluid Dynamics

The aim of this section is to recall briefly the Fluid Dynamics equations. These equations
express simply the classical principles of conservation of mass, momentum and total energy
which relies on a continuum description of the fluid flow. This means that the fluid is viewed as
continuum medium and the length scale at which it is studied is very large with respect to the
mean free path of the particles it contains. Let us recall that the mean free path is the average
distance traveled by a moving particle between successive collisions, which modify its direction
or energy or other particle properties.

The physical derivation of the conservation laws of Fluid Dynamics is beyond the scope of the
present work. It is the main subject of many classical textbooks [55, 117, 49, 118, 110, 112, 77,
138], which the interested reader may refer to. We want also to mention the book of Chorin and
Marsden [38]. Let us note that an interesting presentation of these equations, with a focus on
numerical methods, is given in the book of Toro [120]. The interested reader may also consult
[120] and [67, 66] to discover the wide spectrum of numerical methods devoted to Computational
Fluid Dynamics. The remainder of this section is organized as follows. Firstly, we recall the
main properties and the various forms of the Fluid Dynamics equations. Secondly, we recall the
constitutive laws and the thermodynamic closure which lead to the well known compressible
Navier-Stokes. Then, we simplify this model and recall the compressible Euler equations dedi-
cated to the modeling of inviscid non heat conducting fluids. Let us also mention the interesting
work of Caltagirone about a new formulation of the conservation laws of continuum mechanics
[36].

3.1.1 Conservation laws of Fluid Dynamics

The conservation laws of Fluid Dynamics consist of a set of partial differential equations which
describe respectively the conservation of mass, momentum and total energy of a fluid particle.
Before writing these equations, let us introduce the primarily physical variables which are the
mass density ρ, the velocity field V and the specific total energy E. All these variables depend
on the vector position, x, of the fluid particle and also on time t. These physical quantities are

121

governed by the following set of equations

∂ρ

∂t
+∇ · (ρV) = 0, (3.1a)

∂

∂t
(ρV) +∇ · (ρV ⊗ V) = ∇ · T, (3.1b)

∂

∂t
(ρE) +∇ · (ρEV) = ∇ · (TV)−∇ · q. (3.1c)

Here, T stands for the Cauchy stress tensor and q is the heat flux vector. It is worth mentioning
that the Cauchy stress tensor is symmetric, i.e., Tt = T, to ensure the conservation of angular
momentum, refer to [55]. Let us note that in the above system we do not take into account
body forces such as gravity neither heat source term since they are useless for the type of
applications under consideration (aerodynamics). Decomposing the specific total energy into
specific internal energy, e, and specific kinetic energy, 1

2 | V |2, leads to E = e+ 1
2 | V |2.

We remark that the above equations are derived consistently with fundamental laws of mechanics
and thermodynamics. Namely, (3.1a) states that the mass of fluid enclosed in a region moving
with the fluid velocity is conserved. The momentum equation (3.1b) is nothing but the second
Newton law applied to a co-moving fluid region, which states that the time rate of change of
momentum is balanced by the sum of the external forces exerted on the fluid domain. Here,
since we have ignored the body forces it only remains the surface forces expressed by means
of the Cauchy stress tensor. More precisely, if we consider an element of fluid surface, ds
characterized by its unit normal, n, then the element surface force, df , exerted onto this surface
writes df = Tn ds according to Cauchy theorem [55]. Finally, the total energy equation (3.1c)
is a direct consequence of the First Law of Thermodynamics, which states that the total energy
of a co-moving fluid region is the sum of the power of the external forces exerted supplemented
by the heat rate supplied to the fluid region.
System (3.1) represents the conservative local form of the Fluid Dynamics equations. We also
introduce its local non-conservative form as

ρ
d

dt
(
1

ρ
)−∇ · V = 0, (3.2a)

ρ
d

dt
V −∇ · T = 0, (3.2b)

ρ
d

dt
E −∇ · (TV) +∇ · q = 0. (3.2c)

Here, d
dt() =

∂
∂t()+V ·∇() denotes the material derivative, that is the time derivative following

the fluid particles paths. We point out that the two above formulations, (3.1) and (3.2) are
strictly equivalent provided that the smoothness of the fluid variables is granted, refer to [55].
Using the above non-conservative form, it is useful to construct the time rate of change of the
specific internal energy. To this end, we first derive the time rate of change of kinetic energy
dot-multiplying the momentum equation by V

ρ
d

dt
(
1

2
V 2) + V · ∇ · T = 0. (3.3)

Now, subtracting the above equation to the total energy equation (3.2c) and employing the
tensorial identity

∇ · (TV) = V · ∇ · T + T : D,

where D = 1
2 [∇V + (∇V)t] is the symmetric part of the velocity gradient tensor, ∇V , leads to

the internal energy equation

ρ
de

dt
− T : D +∇ · q = 0. (3.4)

122

Let us recall that the symbol : denotes the inner product between second-order tensors, namely
T : D = tr(TtD), where tr is the trace operator.
We observe that the system (3.1) is not closed since there are much more unknowns than equa-
tions. To achieve the closure of this system, one needs to specify the constitutive laws which
define the Cauchy stress tensor and the heat flux vector in terms of the physical variables.
Moreover, one also needs to provide a thermodynamic closure which allows to relate the ther-
modynamic variables. The constitutive laws specification relies on two fundamental principles
which are:

• The requirement that the constitutive laws should obey the Principle of Material Frame
Indifference [55].

• The constitutive laws must be determined in a such a way that they ensure the consistency
with the Second Law of Thermodynamics.

The Principle of Material Frame Indifference simply states that the constitutive laws should not
depend on whatever external frame of reference is used to describe them. Regarding the Second
Law of Thermodynamics, it is an evolution principle which states that all real thermodynamic
transformation is accompanied by a transfer of energy due to the fluctuations of atoms and/or
molecules at the microscopic level [55]. The disorder in the system induced by these fluctuations
is measured by means of the entropy. The Second Law of Thermodynamics simply states that
the entropy production is non-negative. The entropy imbalance is governed by the famous
Clausius-Duhem inequality, which in our case writes

∂

∂t
(ρη) +∇ · (ρηV) +∇ · (q

T
) ≥ 0. (3.5)

Here, η denotes the specific entropy and T > 0 is the absolute temperature. Introducing the
material derivative and employing the mass conservation equation leads to rewrite the above
inequality under the non-conservative form

ρT
dη

dt
+ T∇ · (q

T
) ≥ 0. (3.6)

Introducing Pirr as the net entropy production allows to transform the above inequality into
the equation

ρT
dη

dt
+ T∇ · (q

T
) = Pirr, (3.7)

where the net entropy production term is always non-negative, i.e. Pirr ≥ 0. It remains to
determine the expressions of T and q to ensure the compatibility of the constitutive laws with
the Principle of Material Frame Indifference and the Second Law of Thermodynamics. This is
the topic of the next paragraph.

3.1.2 Constitutive laws

Here, we recall the construction of the constitutive laws for an isotropic, compressible, heat
conducting, viscous fluid. As a consequence of frame-indifference [55], the constitutive relations
for the Cauchy stress tensor and the heat flux vector are of the form

T ≡ T(ρ, T,D), q ≡ q(ρ, T,∇T).

In addition, the constitutive relation for the Cauchy stress tensor admits the decomposition

T = −p(ρ, T) I + S(ρ, T,D). (3.8)

123

Here, the scalar valued function, p, represents the stress in the fluid in the absence of flow,
it is called the thermodynamic pressure. The tensor function S, which is termed the viscous
stress tensor, represents the part of the stress due to the flow, it vanishes in the absence of
fluid motion. It is an isotropic function, that is QS(ρ, T,D)Qt = S(ρ, T,QDQt), where Q is an
arbitrary rotation, i.e., QtQ = I and detQ = 1. Usually, one also defines the mechanical pressure
as pm = −1

3 trT. This quantity is related to the thermodynamic pressure by means of

pm = p(ρ, T)− 1

3
trS. (3.9)

We observe that the mechanical pressure in a compressible viscous fluid includes both a ther-
modynamic contribution and a dynamical contribution generated by the viscosity of the fluid.
Regarding the thermodynamic pressure, p, it is related to the other thermodynamic variables
(density, temperature, internal energy and entropy) by means of the fundamental Gibbs relation

Tdη = de+ pd(
1

ρ
). (3.10)

This relation allows to define properly the thermodynamic pressure and the temperature by
means of the fundamental equation of state written under the form e ≡ e(ρ, η). Taking the
total differential of this expression and employing the Gibbs relation (3.10) yields

p = ρ2
(
∂e

∂ρ

)

η

, T =

(
∂e

∂η

)

ρ

.

Let us point out that the equation of state is an intrinsic property of the material under con-
sideration. It can be specified under various forms depending on the number of state variables
which are employed. For practical applications involving thermal processes, it is convenient to
define the equation of state by expressing the specific internal energy and the thermodynamic
pressure in terms of the density and the temperature, i.e., e = e(ρ, T) and p = p(ρ, T).
Gathering the previous results, we are now in position to exhibit the thermodynamic restriction
on the constitutive laws to ensure their compatibility with the Second Law. To this end, we
shall compute the net entropy production term defined by (3.7). Employing the fundamental
Gibbs relation (3.10) leads to write the time rate of change of entropy as

ρT
dη

dt
= ρ

de

dt
+ pρ

d

dt
(
1

ρ
).

Then, substituting the time rates of change of specific internal energy (3.4) and specific volume
(3.2a) into the above equation yields

ρT
dη

dt
= (T + p I) : D−∇ · q.

Finally, comparing the above equation to the Clausius-Duhem equation (3.7) leads to the fol-
lowing expression of the net entropy production

Pirr = S : D− 1

T
q · ∇T. (3.11)

Here, we have made use of the decomposition (3.8) of the Cauchy stress tensor. The com-
patibility with the Second Law requires to have Pirr ≥ 0. Recalling that the temperature
is non-negative, this amounts to require that the constitutive laws satisfy the two following
conditions

S : D ≥ 0, (3.12a)

−q · ∇T ≤ 0. (3.12b)

124

These are the constraints imposed by Thermodynamics on the modeling of the constitutive
laws that characterize the fluid. The first constraint simply expresses that viscous deformation
converts mechanical energy into heat while the second states that heat flux direction is opposite
to temperature gradient.
We assume that the fluid is linearly viscous in the sense that the viscous stress is linear in D. In
this case, since the viscous stress tensor, S, is an isotropic function, the representation theorem
for isotropic linear tensor functions [55] states that S is expressed in terms of D as follows

S = 2µD + λ tr(D) I. (3.13)

Here, the real valued coefficients, λ = λ(ρ, T) and µ = µ(ρ, T), are called the viscosity co-
efficients. A linearly viscous fluid is also named a Newtonian viscous fluid. Introducing the
classical decomposition of the strain rate tensor, D, into deviatoric and dilatational part yields

S = 2µD0 + (λ+
2

3
µ)(trD) I, (3.14)

where the deviatoric part of the strain rate tensor writes D0 = D − 1
3(trD) I. The coefficient

λ + 2
3µ is known as the bulk or dilatational viscosity whereas µ is also named the dynamic

or shear viscosity. In order to investigate the consequence of the thermodynamic restriction
(3.12a) on the viscosity coefficients, we compute the inner product S : D. Utilizing definition
(3.14) yields

S : D = 2µD0 : D0 + (λ+
2

3
µ)(trD)2.

This shows that the thermodynamic constraint (3.12a) is satisfied provided that the viscosity
coefficients are such that

µ ≥ 0, and λ+
2

3
µ ≥ 0. (3.15)

We also assume that the heat flux is linear in the temperature gradient, thus the heat flux writes
under the form

q = −K∇T, (3.16)

where K = K(ρ, T) is the conductivity tensor of the fluid. This constitutive law is called the
Fourier law. To satisfy the second thermodynamic constraint (3.12b), the conductivity tensor
must be definite positive

KA ·A ≥ 0, ∀A ∈ Rd. (3.17)

For classical fluids such as air, the conductivity tensor is diagonal and collapses to K = κ I,
where κ denotes the thermal conductivity of the fluid, which has to be non-negative to satisfy
the thermodynamic requirement. Combining the above results leads to write the net entropy
production as

Pirr = 2µD0 : D0 + (λ+
2

3
µ)(trD)2 +

1

T
K∇T · ∇T.

Finally, the time rate of change of entropy for a linearly viscous fluid characterized by a linear
heat flux writes

ρT
dη

dt
+ T∇ · (q

T
) = 2µD0 : D0 + (λ+

2

3
µ)(trD)2 +

1

T
K∇T · ∇T ≥ 0. (3.18)

This shows that the Newtonian fluid satisfies the Clausius-Duhem inequality and is thus ther-
modynamically consistent.
Recalling the relationship (3.9) between the mechanical and the thermodynamic pressure and
utilizing the expression of the constitutive law yields

pm = p(ρ, T)− (λ+
2

3
µ) trD.

125

We observe that these two pressures coincide either if trD = 0 or if λ + 2
3µ = 0. The former

case corresponds to an incompressible fluid flow and is excluded for the present study, whereas
the latter corresponds to the Stokes relation

λ+
2

3
µ = 0. (3.19)

This assumption is valid for monoatomic gases and for gases that are rarefied enough, refer to
[55]. In what follows, we shall assume that the Newtonian fluid under consideration satisfied
the Stokes relation (3.19). Thus, the constitutive law of a Newtonian fluid satisfying the Stokes
assumption writes

S = 2µD0. (3.20)

For practical applications it remains to give explicit expressions of the transport coefficients, µ
and κ, in terms of the mass density and temperature. These expressions depend on the flow
regime. Let us point out that it is possible to obtain accurate approximation of the transport
coefficients utilizing the kinetic theory of rarefied gases. In this framework, an asymptotic
expansion of the Boltzmann equation provides formulas for the transport coefficients which
depend on the nature of the intermolecular forces. The interested reader may refer to [68].
Here, we shall employ simple approximations of these transport coefficients knowing that their
applicability is physically restricted. First, the dynamic viscosity coefficient is expressed in
terms of temperature by means of the Sutherland formula

µ(T) = µ0

(
T

T0

) 3
2 T0 + C

T + C
, (3.21)

where µ0 is the reference viscosity at the reference temperature T0 and C is the Sutherland
constant for the fluid under consideration. For the air, we shall use the following values, µ0 =
1.789 · 10−5 Pa s, T0 = 288K and S = 110K. Regarding the heat conductivity, κ, it shall be
defined later from the viscosity coefficient.

3.1.3 Equation of state

We have already seen in the above paragraph that the thermodynamic closure of the Fluid
Dynamics equations (3.1) is ensured by means of an equation of state written under the generic
form

p = p(ρ, T), and e = e(ρ, T). (3.22)

Here, we have chosen to work with the temperature. It is also possible to consider the equation
of state written under the form p = p(ρ, η) in which we are working with entropy. Taking the
differential of this equation of state yields

dp = (
∂p

∂ρ
)ηdρ+ (

∂p

∂η
)ρdη.

If the flow undergoes a thermodynamic transformation for which entropy is conserved, then
dη = 0 and thus the above formula collapses to dp = (∂p∂ρ)ηdρ. This kind of transformation is
called isentropic and characterized by the fact that the pressure fluctuation is proportional to
the density fluctuation. Assuming that the equation of state is such that this coefficient satisfies
(∂p∂ρ)η > 0 allows to introduce the isentropic sound speed as

c =

√
(
∂p

∂ρ
)η. (3.23)

126

For our numerical applications, we shall consider the simple situation which corresponds to
a calorically perfect gas knowing that the applicability of such an assumption is limited to
moderate levels of temperatures, refer to [15]. For instance, in the case of real life applications
such as those encountered in the domain of atmospheric reentry flows, the level of reached
temperatures is so high that one needs to employ more sophisticated equation of states to
properly describe the complex thermodynamic processes at play in such flows, refer to [15].
A calorically perfect gas is characterized by the fact that the specific internal energy and the
specific enthalpy are linear functions with respect to temperature, knowing that the specific
enthalpy is defined by h = e+ p

ρ . Namely, e and h write

e = CvT and h = CpT, (3.24)

where Cv and Cp are the specific heat respectively at constant volume and constant pressure.

For a calorically perfect gas the specific heats are constant and in turn, their ratio, γ =
Cp

Cv
,

which is also constant and such that γ > 1, is called the polytropic index. Finally, the specific
heats are defined by means of the Mayer relationship

Cp − Cv =
R

M , (3.25)

where R = 8.314 J K−1mol−1 is the ideal gas constant and M is the molar mass of the gas.
For air in standard conditions, the molar mass is aboutM = 29 10−3 kg mol−1. Employing the
Mayer relationship (3.25) and the polytropic index, γ, leads to

Cp =
γR

(γ − 1)M , Cv =
R

(γ − 1)M .

For air, which is a diatomic gas, the value of the polytropic index is set to γ = 7
5 .

Now, using the definition of the specific enthalpy and (3.24) allows to write the equation of
state under the form

p = ρ
R

MT, e = CvT. (3.26)

We remark that employing the expression of Cv in terms of the molar mass, it also possible to
express the pressure under the form p = (γ − 1)ρe. For a calorically perfect gas, the isentropic
sound speed is given by

c =

√
γ
p

ρ
=

√
γ
R

MT .

3.1.4 Summary: the Navier-Stokes equations

Gathering the above results, we are now in position to write the partial differential equations
which govern the fluid under consideration. This set of equations consists of the famous com-
pressible Navier-Stokes equations

∂ρ

∂t
+∇ · (ρV) = 0, (3.27a)

∂

∂t
(ρV) +∇ · (ρV ⊗ V) +∇p = ∇ · S, (3.27b)

∂

∂t
(ρE) +∇ · (ρEV) +∇ · (pV) = ∇ · (SV)−∇ · q. (3.27c)

127

These equations are supplemented by the constitutive laws which define respectively the viscous
stress tensor, S, and the heat flux, q, as

S = 2µD0,

q = −κ∇T.

Here, µ > 0 is the dynamic viscosity and κ > 0 the heat conductivity, which are intrinsic
properties of the fluid under consideration. We recall that the deviatoric part of the strain rate,
D0, writes

D0 =
1

2
[∇V + (∇V)t]− 1

3
(∇ · V) I.

The pressure, p, and the specific internal energy, e = E − 1
2V

2, are expressed in terms of the
density and the temperature by means of the equation of state. In Rd, the Navier-Stokes system
consists of d+2 scalar equations, whereas the number of unknowns (for instance ρ, V and T) is
also equal to d+2 thanks to the constitutive laws and the equation of state, thus the system of
governing equations is closed. The specific energy equation related to the Navier-Stokes system
is obtained by combining (3.4) and the mass conservation equation

∂

∂t
(ρe) +∇ · (ρeV) + p∇ · V = S : D−∇ · q.

Substituting the specific enthalpy, h = e+ p
ρ , into the above equation yields

∂

∂t
(ρh) +∇ · (ρhV)− dp

dt
= S : D−∇ · q, (3.28)

where dp
dt denotes the material derivative of the pressure. Utilizing the Fourier law and the

calorically perfect gas equation of state, we get the following convection-diffusion equation
satisfied by the temperature field

∂

∂t
(ρCpT) +∇ · (ρCpTV)− dp

dt
−∇ · (κ∇T) = S : D. (3.29)

Here, the right-hand side represents the viscous heating which is nothing but the work rate of
the viscous stress.
We point out that system (3.27) represents the local conservative form of the Navier-Stokes
equations. For the subsequent Finite Volume discretization of the Navier-Stokes, it is worth
taking into consideration the integral form of this system. It is simply obtained by integrating
equations (3.27a), (3.27b) and (3.27c) over the fixed region ωf ⊂ D and employing the divergence
theorem to get

∂

∂t

∫

ωf

ρ dv +

∫

∂ωf

ρV · n ds = 0, (3.30a)

∂

∂t

∫

ωf

ρV dv +

∫

∂ωf

V (ρV) · n ds+

∫

∂ωf

pn ds =

∫

∂ωf

Sn ds, (3.30b)

∂

∂t

∫

ωf

ρE dv +

∫

∂ωf

E(ρV) · n ds+

∫

∂ωf

pV · n ds =

∫

∂ωf

(SV) · n ds−
∫

∂ωf

q · n ds. (3.30c)

Here, ∂ωf denotes the boundary of the fixed region, ωf , and n its unit outward normal.
We conclude this paragraph by recalling the time rate of change of entropy. Combining (3.7),
(3.11) and the expression of the constitutive laws leads to the entropy equation

∂

∂t
(ρη) +∇ · (ρηV) +∇ · (q

T
) =

2µ

T
D0 : D0 +

κ

T 2
(∇T)2 ≥ 0, (3.31)

128

where q = −κ∇T is the heat flux vector. We note in passing that the right-hand side of the
above equation is always positive, which ensures the fulfillment of the Clausius-Duhem inequality
and thus the thermodynamic consistency of this model. Finally, integrating the above equation
over the fixed domain ωf and applying the divergence theorem yields the integral form of the
entropy equation

d

dt

∫

ωf

ρη dv +

∫

∂ωf

η(ρV) · n ds+

∫

∂ωf

q

T
· n ds =

∫

ωf

1

T

[
2µD0 : D0 +

κ

T
(∇T)2

]
dv. (3.32)

The integrand at the right-hand side is the dissipation function, it is a source term characterizing
the intrinsic irreversibilities related to the viscosity and conductivity of the fluids.

3.1.5 Non dimensional form of the compressible Navier-Stokes equations

The aim of this paragraph is to recall briefly the non dimensional form of the Navier-Stokes
equations. The main interest of this non dimensional form lies in the fact that it allows to
measure the order of magnitude of the different terms present in the Navier-Stokes equations.
In addition, this procedure provides a natural introduction to the dimensionless numbers of
compressible fluid mechanics such as the Mach, Reynolds and Prandtl numbers.
Being given the physical variable, ϕ = ϕ(x, t), we define its corresponding order of magnitude,
ϕ⋆, and also the corresponding dimensionless variable ϕ̄ = ϕ

ϕ⋆ . The order of magnitude is
chosen such that ϕ̄ = O(1). We remark that the length scale is denoted by L, where L is a
characteristic length attached to the flow, this might be for instance the length of the chord line
when one is dealing with the aerodynamic flow around a wing. The order of magnitude of the
thermodynamic pressure is taken to be equal to the density scale times the square of the sound
speed scale, i.e. p⋆ = ρ⋆(c⋆)2. Regarding the specific internal energy and the specific enthalpy,
they share the same scale which is the square of the sound speed scale, i.e., e⋆ = h⋆ = (c⋆)2.
These choices are justified for high-speed compressible flows to the extent that for such flows
the internal energy is strongly related to the kinetic energy induced by the thermal agitation of
the molecules composing the fluid. We assume that the order of magnitude of time corresponds
to convective time scale, that is t⋆ = L

V ⋆ , where V ⋆ is the order of magnitude of velocity.
Introducing the decomposition ϕ = ϕ⋆ ϕ̄ into the Navier-Stokes equations yields

ρ̄
d

dt̄
(
1

ρ̄
)− ∇̄ · V̄ = 0, (3.33a)

ρ̄
d

dt̄
V̄ +

1

M2
a

∇̄p− 1

Re
∇̄ · S̄ = 0, (3.33b)

ρ̄
dh̄

dt̄
− dp̄

dt̄
− M2

a

Re
(S̄ : D̄) +

1

RePr
∇̄ · q̄ = 0. (3.33c)

The above equations are the dimensionless form of the Navier-Stokes equations. They contain
the dimensionless numbers Ma, Re and Pr which respectively stands for the Mach, Reynolds
and Prandtl numbers. These dimensionless numbers are defined by

Ma =
V ⋆

c⋆
,

Re =
ρ⋆V ⋆L

µ⋆
,

Pr =
µ⋆C⋆

p

κ⋆
.

Here, µ⋆, κ⋆ and C⋆
p are respectively the orders of magnitude of the dynamic viscosity, heat

conductivity and specific heat at constant pressure. The Mach number represents the ratio

129

of the flow speed to the sound speed. For Ma < 1 the flow is called subsonic whereas it is
termed supersonic for Ma > 1. The Reynolds number represents the ratio of the inertial forces
to the viscous forces. Introducing the convective and the viscous time scales as tconv = L

V ⋆

and tvisc =
ρ⋆L2

µ⋆ leads to rewrite the Reynolds number as the ratio of the aforementioned time

scales, i.e., Re = tvisc
tconv

. Finally, introducing the conductive time scale tcond =
ρ⋆C⋆

pL
2

κ⋆ yields to
present the Prandtl number as the ratio of the conductive time scale to the viscous time scale,
i.e., Pr = tcond

tvisc
. It can be also viewed as the ratio of the energy dissipated by viscosity to the

energy transported by thermal conduction. Let us note that for low speed flows, i.e. Ma ≪ 1,
the viscous heating term plays no role in the energy equation (3.33c). On the other hand, in
the case of high speed flows, for which Ma ≫ 1, the viscous heating term has a significant
importance in the energy balance. It also implies a strong coupling between the momentum
and the energy equations.

We point out that the Prandtl number uniquely depends on the nature of the fluid. For air at
moderate level of temperatures, it is almost constant and set to the constant value Pr = 0.71,
refer to [15]. In our numerical applications, we shall use these fixed value of the Prandtl number
to define the heat conductivity, knowing the dynamic viscosity.

3.1.6 Initial and boundary conditions

We consider that the fluid is flowing inside a domain D which is a sub-region of the d-dimensional
space Rd. If the flow is unsteady, the determination of the solution of the Navier-Stokes equa-
tions at time t > 0 (provided that it exists) requires the specification of the initial values of the
following flow variables

ρ(x, 0) = ρ0(x), V (x, 0) = V 0(x) and T (x, 0) = T 0(x), for all x ∈ D. (3.34)

Here, ρ0, V 0 and T 0 are respectively the initial density, velocity field and temperature, which
are given.

Concerning the boundary conditions specification for the Navier-Stokes system, one usually
makes the distinction between two situations which correspond respectively either to the case
of a solid boundary or to the case of an inlet or outlet boundary. The former is encountered in the
presence of a solid wall in the domain where the fluid is flowing. The latter is a consequence of
the fact that the spatial domain occupied by the fluid is unbounded whereas the computational
domain is bounded. Then, arises the subtle problem of specifying boundary data on this inlet
or outlet boundary. We discuss briefly these two cases.

Wall boundary conditions

Let Γ be a solid surface contained into the computational domain D. The velocity of fluid
particle which lies on the solid wall must be equal to the velocity of the solid wall, that is

V (x, t) = VΓ(x, t), for all x ∈ Γ and t > 0. (3.35)

Here, VΓ is the given solid wall velocity. In the case of a fixed solid wall, this boundary condition
is termed a no-slip boundary condition and the fluid velocity vanishes at the solid wall.

Regarding the thermal behavior of the fluid, one has the three following exclusive choices:
either the normal heat flux at the wall is prescribed (Neumann boundary condition) or the wall
temperature is imposed (Dirichlet boundary condition) or one can specify a linear combination
of the normal heat flux and the temperature (Robin boundary condition). We summarize these
conditions as follows

130

• Dirichlet boundary condition

T (x, t) = TΓ(x, t), for all x ∈ Γ and t > 0, (3.36)

where TΓ is the solid wall temperature.

• Neumann boundary condition

q(x, t) · n = qΓ(x, t), for all x ∈ Γ and t > 0, (3.37)

where n is the unit outward boundary to the boundary surface and qΓ is a given wall heat
flux.

• Robin boundary condition

αT (x, t) + βq(x, t) · n = q̃Γ(x, t), for all x ∈ Γ and t > 0, (3.38)

where α, β are given parameter and q̃Γ is a given wall heat flux.

Inlet and outlet boundary conditions

These particular boundary conditions are encountered when the fluid enters or leaves the
bounded computational domain. According to [31] the number of boundary conditions to apply
depends on whether the boundary is an inlet or an outlet. For the Navier-Stokes equations, a
full set of boundary conditions has to be specified at both supersonic and subsonic inflows and
one less at the outflow. An heuristic argument to justify this relies on the fact that the mass
conservation is a first-order advection equation which requires only one boundary condition at
the inlet whereas the momentum and the total energy equations are second-order advection
diffusion equations which require boundary conditions at both inlet and outlet.

3.2 The Euler equations

In this section, we describe a simpler model than the Navier-Stokes equations, which is deduced
from them by assuming a non viscous and non heat conducting fluid. This simplification of the
Navier-Stokes equations corresponds to the famous Euler equations. Then, we shall recall some
useful mathematical properties of this model.

3.2.1 Governing equations for an inviscid non heat conducting fluid

The Euler equations have been first described by Euler [44] and at that time they only consisted
of the continuity equation and the momentum equation. The energy equation has been added
sixty years later by Laplace [78]. Nowadays, the whole set of equations is called the Euler
equations. These equations are simply obtained from the Navier-Stokes equations by assuming
that the fluid under consideration is non viscous and does not conduct heat. Namely, the
constitutive laws (3.20) and (3.16) collapses to S = 0 and q = 0 since the dynamic viscosity,
µ, and the heat conductivity, κ, are equal to zero. Substituting these assumptions into (3.27)
leads to

∂ρ

∂t
+∇ · (ρV) = 0, (3.39a)

∂

∂t
(ρV) +∇ · (ρV ⊗ V) +∇p = 0, (3.39b)

∂

∂t
(ρE) +∇ · (ρEV) +∇ · (pV) = 0. (3.39c)

131

The thermodynamic closure of the above system is ensured by an equation of state written
under the form p = p(ρ, e), where e = E − 1

2V
2 is the specific internal energy. The above

system of equations consists of the local conservative form of the Euler equations. Introducing
the material derivative and employing the mass conservation equation leads to the local non
conservative form of the Euler equations

ρ
d

dt
(
1

ρ
)−∇ · V = 0, (3.40a)

ρ
d

dt
V +∇p = 0, (3.40b)

ρ
d

dt
E +∇ · (pV) = 0. (3.40c)

This system is the counterpart of (3.2) in which we set T = −p I and q = 0. Using this non
conservative form and the fundamental Gibbs relation (3.10), we obtain the time rate of change
of entropy

ρT
dη

dt
= 0. (3.41)

This equation shows that the entropy is conserved along the fluid particles paths. We point out
that this result only holds for smooth flows since the equivalence between the non conservative
and the conservative form of the Euler equations is only valid under a sufficient smoothness
assumption of the flow variables. It is well known that the Euler equations can admit discontin-
uous solutions such as shock waves or contact discontinuities, refer to [52]. In this case, the use
of the Euler equations written under the non conservative form is forbidden. For this reason,
the most convenient form of the Euler equations is the integral form which is deduced from
(3.30)

∂

∂t

∫

ωf

ρ dv +

∫

∂ωf

ρV · n ds = 0, (3.42a)

∂

∂t

∫

ωf

ρV dv +

∫

∂ωf

V (ρV) · n ds+

∫

∂ωf

pn ds = 0, (3.42b)

∂

∂t

∫

ωf

ρE dv +

∫

∂ωf

E(ρV) · n ds+

∫

∂ωf

pV · n ds = 0, (3.42c)

where ωf is a fixed sub region of the domain, D occupied by the fluid. If ωf contains a
discontinuity surface, through which the flow variables undergo a jump, then the above system
has to be supplemented by jump relations, which express the conservation of mass, momentum
and total energy through the discontinuity surface. These jump relations, which allow to define
weak solutions of the Euler equations in the presence of a discontinuity, are called the Rankine-
Hugoniot relations, refer to [55, 52].
The integral form of the entropy equation is deduced from its Navier-Stokes counterpart (3.32)
passing to the limit µ→ 0 and κ→ 0 and we get the entropy imbalance

d

dt

∫

ωf

ρη dv +

∫

∂ωf

η(ρV) · n ds ≥ 0. (3.43)

This entropy inequality ensures the thermodynamic consistency of the Euler equations. In the
presence of flow discontinuities, it guarantees that the kinetic energy is properly dissipated into
internal energy through irreversible processes such as shock waves, according to the Second Law
of Thermodynamics. In other words, from a mathematical point of view, it provides a criterion
to select the physically relevant weak solution when dealing with discontinuous solutions of the

132

Euler equations. For a rigorous mathematical treatment of this subtle topic, the interested
reader might refer to [52].

We conclude this paragraph by writing the Euler equations under the following compact form,
which shall be useful for the subsequent space discretization

∂

∂t
U +∇ · F e(U) = 0, (3.44)

where U = (ρ, ρV , ρE)t is the vector of the conservative variables and F e is the corresponding
fluxes vector.

3.2.2 Mathematical properties of the Euler equations

In this section, we aim at briefly recalling some important well known results concerning the
mathematical structure of the compressible Euler equations. One of its most important features
lies in the fact that the system of Euler equations is hyperbolic. We describe this property by
means of a plane-wave analysis.

Hyperbolicity and plane-wave analysis

For sake of completeness, we briefly recall the definition of hyperbolicity for a system of conser-
vation law in several space variables [52]. Let D be an open subset of Rp, and let Fj , j = 1 . . . d,
be d smooth functions from D into Rp. The general form of a system of conservation laws writes

∂

∂t
U +

d∑

j=1

∂

∂xj
Fj(U) = 0. (3.45)

Here, U = U(x, t) ∈ Rp is the vector of unknowns, x ∈ Rd and t > 0 denote the position vector
and the time. The function Fj is called the flux function and we denote by Aj = Aj(U) its
Jacobian matrix, defined as follows

Aj = ∇UFj(U),

where ∇U denotes the gradient operator with respect to the components of U . With this
notation, the system (3.45) reads

∂

∂t
U +

d∑

j=1

Aj(U)
∂

∂xj
U = 0. (3.46)

This equation corresponds to the non conservative form of the system (3.45). We are now in
position to recall the definition of hyperbolicity. The system (3.45) is called hyperbolic if, for
any U ∈ D and any ω ∈ Rd, ω 6= 0, the matrix

A(U ,ω) =
d∑

j=1

ωjAj(U) (3.47)

has p real eigenvalues and p linearly independent corresponding eigenvectors.

Now, let us show the links between the notions of hyperbolicity and plane-wave analysis. The
plane-wave analysis consists in looking for a solution of system (3.45) which writes under the
form U = U(x ·n− at). Here, n, is a unit vector of Rd which characterizes the wave direction

133

and a ∈ R is the wave speed. We introduce ξ = x · n − at and denote by U ′ the derivative of
U with respect to ξ. Applying the chain rules leads to

∂

∂t
U = −aU ′,

∂

∂xj
U = njU

′,

where nj denotes the jth component of n. Substituting the previous formulas into the system
written under the non conservative form (3.46) leads to

−aU ′ +

d∑

j=1

njAj(U)U ′ = 0.

Utilizing the definition (3.47), we observe that this system rewrites

[A(U ,n)− aI]U ′ = 0.

This equation is nothing but the eigenvalue problem which corresponds to the study of the
hyperbolicity of system (3.45). More precisely, the plane wave characterized by (n, a) exists if
and only if a is a real eigenvalue of A. This shows the links between the plane-wave analysis
and the hyperbolic feature of a system of conservation laws.

Plane-wave analysis of the Euler equations

Before proceeding any further, assuming a sufficient smoothness of the flow variables, the non
conservative form of the Euler equations writes

d

dt
p+ ρc2∇ · V = 0, (3.48a)

d

dt
V +

1

ρ
∇p = 0, (3.48b)

d

dt
η = 0. (3.48c)

This system has been derived from the non conservative system (3.40) replacing the total energy
equation by the entropy equation (3.41) which is valid granted a sufficient smoothness of the
flow variables. In addition, considering an equation of state written under the form p = p(ρ, η)
allows to express the density variation in terms of the pressure variation as follows dp = c2 dρ,
where c is the isentropic sound speed. Substituting this relation into the mass conservation
equation (3.40a) yields the first equation of the above system.
Let ϕ = ϕ(x, t) be a generic flow variable, we are looking for plane-wave solutions of the above
system, written under the form ϕ = ϕ(x · n − at). Here, n is a unit vector of Rd which
characterizes the direction of the wave and a is the wave speed. Setting ξ = x · n − at, we
denote by ϕ′(ξ) the derivative of ϕ with respect to ξ. Now, using the previous notation and the
chain rule derivative leads to the following useful formulas

∇P = P ′n, (3.49a)

∇ · V = V ′ · n. (3.49b)

Recalling that the material derivative reads d
dtϕ = ∂ϕ

∂t + V · ∇ϕ yields the practical formulas

d

dt
P = −(a− V · n)P ′, (3.50a)

d

dt
V = −(a− V · n)V ′. (3.50b)

134

It is convenient for the subsequent computations to introduce w = a − V · n which is the
relative speed of the wave with respect to the flow velocity projected onto the wave direction.
Substituting the plane-wave form of the variables (p,V , η) into (3.48) yields

− wp′ + ρc2V ′ · n = 0,

− wV ′ +
1

ρ
p′n = 0,

− wη′ = 0.

Let us introduce the vector W = (p,V , η)t of size d+ 2 and the (d+ 2)× (d+ 2) block matrix

A =




0 ρc2nt 0
1
ρn 0d 0d
0 0 0


 , (3.51)

where 0d denotes the square matrix of size d and 0d the vector of size d whose all entries are
equal to zero. Employing this notation allows to rewrite the above system under the compact
form

(A− wId+2)U = 0d+2,

where Id+2 is the unit matrix of size d+2. As expected, this shows that the plane-wave analysis
amounts to investigate the eigenstructure of matrix A. It remains to study this eigenstructure.

To this end, we first observe that W = (0,0d, 1) satisfies AW = 0d+2, thus w = 0 is an
eigenvalue whose eigenvector writes W = (0,0d, 1). Secondly, let τ be a vector of size d, then
W = (0, τ , 0) satisfies AW = (ρc2n · τ ,0d, 0)t. Choosing τ ∈ {n}⊥ yields AW = 0d+2. Thus,
w = 0 is once more an eigenvalue associated to the eigenspace {n}⊥ of dimension d− 1.

Now, setting W = (1, 1
ρcn, 0)

t leads to AW = c(1, 1
ρcn, 0)

t. This means the w = c is the

eigenvalue related to the eigenvector W = (1, 1
ρcn, 0)

t. Similarly, W = (1,− 1
ρcn, 0)

t is the
eigenvector associated to the eigenvalue w = −c.
We are now in position to summarize the previous analysis. Matrix A admits the following
eigenstructure

• 0 is an eigenvalue of multiplicity d and its corresponding eigenvectors are respectively
(0,0d, 1)

t (multiplicity 1) and (0, τ , 0)t (multiplicity d− 1), where τ belongs to {n}⊥;

• c is the eigenvalue corresponding to the eigenvector (1, 1
ρcn, 0)

t;

• −c is the eigenvalue corresponding to the eigenvector (1,− 1
ρcn, 0)

t.

This shows that matrix A admits d+2 real eigenvalues, thus the system of unsteady compress-
ible Euler equations is an hyperbolic system. The corresponding plane waves are respectively
characterized by the wave speeds a = V ·n for w = 0, a = V ·n+ c for w = c and a = V ·n− c
for w = −c.
Let us point out that the mathematical structure of the steady Euler equations is more complex
since the steady system is hyperbolic if and only if the flow is supersonic. More precisely, this
system becomes elliptic in the subsonic regions. This change of mathematical structure renders
quite difficult the design of numerical methods to solve directly the steady compressible Euler
equations for both subsonic and supersonic fluid flows. In this case, it is easier to reach the
steady state solution by employing a time marching algorithm. This strategy consists in solving
the unsteady compressible Euler equations to reach the steady state, knowing that a lot of
robust and accurate numerical methods are available for solving these hyperbolic equations.

135

Boundary conditions

Contrary to the Navier-Stokes equations, the Euler equations are only first-order in space partial
differential equations. This change has an impact on the definition of the boundary conditions
for the Euler equations. Let us pursue the discussion initiated in Section 3.1.6 for the Navier-
Stokes equations.

Regarding the wall boundary conditions, they are prescribed as follows on the solid surface, Γ,
contained in the computational domain

V (x, t) · n = VΓ(x, t) · n, for all x ∈ Γ and t > 0. (3.52)

Here, VΓ is the given solid wall velocity and n is the unit outward normal to the solid wall.
This boundary condition is termed as a slip boundary condition, since it means that the flow
does not cross the boundary but may move tangentially. For the energy equation, no boundary
condition is required at the wall.

It remains to discuss the case of the artificial boundary conditions related to the boundaries
of the computational domain where the fluid may leave or enter. In this case, a theoretical
analysis which relies on the study of the sign of the eigenvalues of the Jacobian matrix of the
Euler system, provides the number of boundary conditions to specify. More precisely, this
allows to determine the number of incoming waves in the direction normal to the boundary.
The interested reader may consult [52]. Hereafter, we summarize this study by claiming that

• For a supersonic inflow d+ 2 boundary conditions have to be prescribed;

• For a subsonic inflow d+ 1 boundary conditions have to be prescribed;

• For a supersonic outflow 0 boundary condition has to be prescribed;

• For a subsonic outflow 1 boundary condition has to be prescribed.

3.3 Construction of a Finite Volume method for the Euler equa-

tions

3.3.1 Godunov scheme

The Euler equations are a system of conservation laws. The Finite Volume methods were
constructed to deal with conservation laws. Thus, the Finite Volume method is a natural choice
when deciding to develop a numerical scheme for these equations. We integrate the equation
(3.44) over a cell ωc ∫

ωc

∂U

∂t
ds+

∫

ωc

∇ · F e(U)ds = 0, (3.53)

and we use the Green theorem to obtain

d

dt

∫

ωc

Uds+

∫

∂ωc

F e(U) · ndl = 0. (3.54)

We introduce the mean cell conservative variables Uc defined by

Uc =
1

wc

∫

ωc

Uds,

136

with wc =

∫

ωc

ds. We introduce Cf (c) the set of cells sharing the edge f with cell c. We note

lcd the length of the edge shared by cell c and cell d. We denote by ncd the unit normal to this
edge pointing from cell c to cell d. With these notations equation (3.54) writes

d

dt
wcUc +

∑

d∈Cf (c)

lcdF̂
e(Uc,Ud) · ncd = 0. (3.55)

We have introduced the numerical flux F̂ e(Uc,Ud) between cells c and d. It now remains to
give the expression of this flux.

The equation (3.55) with the numerical flux F̂ e(Uc,Ud) defined as the solution to the Rie-
mann problem defined by the two states, Uc and Ud, is called the Godunov scheme. It was first
presented by Godunov [53] in 1959. In the next section we give the definition of the Riemann
problem followed by the presentation of some approximate Riemann solvers.

3.3.2 Riemann problem for the one-dimensional Euler Equations

A Riemann problem is defined by a system of hyperbolic conservation laws subject to the
simplest, non-trivial, initial conditions. For the one-dimensional Euler equations it writes

∂U

∂t
+
∂F e(U)

∂x
= 0, (3.56)

with U = [ρ, ρu, ρE]t and F e(U) = [ρu, ρu2 + p, u(ρE + p)]t, with u the velocity component
along x axis. This equation is completed with the initial conditions

U(x, 0) =

{
UL if x < 0,

UR if x > 0.
(3.57)

While the definition of this problem seems extremely simple, its solution contains the funda-
mental physics and mathematical properties of the system of equations. The solution of the
equations with more complex initial conditions can be seen as a superposition of the solutions
of local Riemann problem, this is how the Riemann problems are used in the Godunov scheme.

There is no exact expression for the solution to the Riemann problem for the Euler equa-
tions. However it is possible to construct numerical solutions to the Riemann problem, with
the accuracy of your choice, using iterative procedures. Once again Godunov was the first to
present a so called exact Riemann solver for the Euler equations [53]. A lot of work has been
made to improve this solver, and we can cite for example the work of Toro [121], which is suit-
able for ideal gas and covolume gases. The key elements to take into account when designing
an efficient exact Riemann solver are the variables used, the number of equations used, the
iterative procedure technique and a method to avoid nonphysical values.

The development of exact Riemann solvers is important. It is useful to study the physical
properties of the equations and to design numerical tests cases in order to assess the validity
of numerical methods. However, an exact solver cannot be used within a Godunov scheme to
compute the numerical flux for practical computations. The problem is twofold. First, the
construction of the solution is expensive. Then, when used in a Godunov method only a small
portion of the solution is in fact needed. It means that a huge computational effort is wasted
in computing the solution. In practice, approximate Riemann solvers are used instead of exact
solvers. This is the topic of the next section.

137

Comment 21: The multidimensional evaluation of the numerical flux at cell interfaces is usu-
ally performed by solving exactly or approximately a one-dimensional Riemann problem in the
direction normal to the interface. The left and right states are the states located on both sides
of the interface.

3.3.3 Approximate Riemann solvers

A lot of research has been done about this topic. When designing an approximate Riemann
solver, assumptions have to be made in order to simplify the problem. Depending on the prop-
erties of the flow you want to study you can try to satisfy these properties in the development of
your approximate Riemann solver. From these different assumptions a huge amount of solvers
was created. For an exhaustive review on Riemann solvers the reader should refer to [120].
Other Riemann solvers with interesting properties were developed by Gallice in [47, 48]. In this
thesis we restrict the presentation to the construction of four classical Riemann solvers, namely
the Rusanov solver, the approximate solver of Roe, the HLL solver and the HLLC solver.

Rusanov solver

The Rusanov solver, also called local Lax-Friedrichs solver, is one of the simplest approximate
Riemann solver. It writes

FRusanov(UL,UR) =
1

2
(FL + FR) +

|λm|
2

(UL −UR) ,

where FL = F e(UL) and FR = F e(UR). We note |λm| the absolute value of the largest
eigenvalue of the linearised problem, namely,

|λm| = max(|uL|+ cL, |uR|+ cR).

This numerical flux is very dissipative but is straightforward to implement. It can be useful
in the early stages of the development of a CFD code. For these purposes, it is also worth
mentioning the numerical scheme developed in [134], which is based on a hybridization of the
Lax-Wendroff and the Lax-Friedrichs fluxes. This approach is more accurate than the simple
Rusanov solver, while its implementation remains straightforward.

Roe solver

In [108] Roe described the well known Roe solver. The Roe solver is in fact an exact Riemann
solver applied to the linearized Riemann problem. The linearized Riemann problem writes

∂U

∂t
+ Â(UL,UR)

∂U

∂x
= 0, (3.58)

where Â is the Roe averaged Jacobian matrix. The problem is completed with the initial
condition

U(x, 0) =

{
UL if x < 0

UR if x > 0.
(3.59)

The Roe averaged Jacobian matrix is required to satisfy the three following properties:

• Â is required to have real eigenvalues, we note them λ̂i. We can order them as λ̂1 ≤ λ̂2 ≤
· · · ≤ λ̂n. Â is also required to have a complete set of linearly independent left and right
eigenvectors denoted L and R respectively. The matrix can be written under the form

Â = LΛR

where Λ = diag(λ1, λ2, λ3).

138

• The consistency is ensured with the exact Jacobian

Â(U ,U) = A(U).

• The conservation is ensured across discontinuities

FR − FL = Â(UR −UL).

The Roe averaged Jacobian matrix can be constructed by different methods. For instance, one
can use the classical Roe method [108] or the Roe-Pike method [107]. These methods leads to
the definition of the Roe averaged quantities

ρ̂ =
√
ρLρR, (3.60)

û =
uL
√
ρL + uR

√
ρR√

ρL +
√
ρR

, (3.61)

v̂ =
vL
√
ρL + vR

√
ρR√

ρL +
√
ρR

, (3.62)

Ĥ =
HL
√
ρL +HR

√
ρR√

ρL +
√
ρR

, (3.63)

ĉ =

√
(γ − 1)

(
Ĥ − û2 + v̂2

2

)
. (3.64)

Finally the Roe flux writes

FRoe(UL,UR) =
1

2
(FL + FR)−

1

2
RΛ̂L (UR −UL) ,

where Λ̂ = diag(|λ1|, |λ2|, |λ3|) = diag(|û − ĉ|, |û|, |û + ĉ|). We have R the right eigenvector of
matrix Â and L = R−1.
The linearized Riemann problem solutions obtained consists of discontinuous jumps only. This
is a correct approximation for contact discontinuities and shocks. For the rarefaction waves
on the other hand the approximation can lead to nonphysical phenomenons called rarefaction
shocks. To avoid having this problem we need to add an entropy fix to the Roe approximate
solver. This entropy fix can be introduced by modifying the modulus of the eigenvalue of the
nonlinear fields [57] as follows

|λk|∗ =
{
|λk|, if |λk| ≥ δ,
1
2δ (|λk|2 + δ2), if |λk| < δ,

(3.65)

where δ = 0.2 for instance and k = 1 or k = 3.

HLL solver

Harten, Lax and van Leer described the HLL solver in [59]. The construction of this solver is
based on three basic assumptions:

• The possible wave patterns are represented by a single wave pattern,

• The only waves represented are the left and right non-linear waves,

• Estimates of SL and SR representing these wave speeds are available.

139

A

D

B

C
U ∗

t

x

SR

0

SL

UL UR

Figure 3.1: Structure of the solution of the Riemann problem in the x-t plane for the HLL
approximate Riemann solver.

The structure of the approximate solver obtain is presented in Figure 3.1. We note that the
contact discontinuity is not present in this representation of the solution, the whole star region
is modelled by a unique constant state U∗. The numerical flux is then determined by

F (UL,UR)
HLL =





F (UL), 0 ≤ SL
F ∗, SL ≤ 0 ≤ SR
F (UR), SR ≥ 0.

To obtain the values of U∗ and F ∗ we see that equation (3.56) recasts to
∮
Udx− F e(U)dt = 0. (3.66)

Evaluating the integral (3.66) for the rectangle ABCD depicted in Figure 3.1 yields

U∗ =
SRUR − SLUL − (FR − FL)

SR − SL
, (3.67)

with FL = F e(UL) and FR = F e(UR). We can also compute directly the numerical flux F ∗ as

F ∗ =
SRFL − SLFR + SLSR(UR −UL)

SR − SL
. (3.68)

To conclude the description of this numerical flux, we need to talk about the wave speed
estimates SL and SR. Once again an impressive amount of literature deals with this particular
topic, refer to [43] and [124] for instance.
A simple choice for the wave speed estimates is to take

{
SL = min (uL − cL, uR − cR) ,
SR = max (uL + cL, uR + cR) .

An other classical choice is to use the Roe averaged states û and ĉ defined earlier as follows
{
SL = min (uL − cL, û− ĉ) ,
SR = max (û+ ĉ, uR + cR) .

140

HLLC solver

Toro et al. developed the HLLC solver in [124], it is an extension of the HLL solver where the
contact discontinuity is also resolved. The structure of the solution, presented in Figure 3.2,
is composed of four distinct constant states separated by three different waves. The additional
wave speed is denoted by S∗. The numerical flux is determined by

S∗

U ∗
R

U ∗
L

UR

t

x

SR

UL

0

SL

Figure 3.2: Structure of the solution of the Riemann problem in the x-t plane for the HLLC
approximate Riemann solver.

F (UL,UR)
HLLC =





F (UL), 0 ≤ SL,
F ∗
L, SL ≤ 0 ≤ S∗,
F ∗
R, S∗ ≤ 0 ≤ SR,
F (UR), SR ≥ 0,

where

F ∗
L = FL + SL(U

∗
L −UL),

and

F ∗
R = FR + SR(U

∗
R −UR).

Once again the values of the different unknowns are obtained using equation (3.66). Different
choices for the wavespeeds SL and SR are discussed in [25]. The intermediate speed S∗ is
computed in terms of SL and SR as

S∗ =
pR − pL + ρLuL(SL − uL)− ρRuR(SR − uR)

ρL(SL − uL)− ρR(SR − uR)

The intermediate states U∗
K with K = L or K = R are given by

U∗
K = ρK

(
SK − uk
SK − S∗

)



1
S∗

EK + (S∗ − uK)
(
S∗ +

pK
ρK(SK−uK)

)


 . (3.69)

141

3.3.4 Extension to higher-order

The numerical method we have presented is only first-order accurate, which is clearly not
enough for real life applications. Many different methods were developed to build higher-
order Finite Volume schemes. We can cite for instance the ENO method [58] which stands
for Essentially Non Oscillatory, and the improved WENO method [87, 75] which stands for
Weighted ENO. These methods are well suited for structured meshes, but, due to the use of a
large stencil, their implementation is not straightforward on unstructured meshes. Furthermore,
the parallelization of these methods leads to an increase in the number of communications
which decreases the parallel efficiency. We can also mention the ADER methodology [125]
which involves the resolution of Generalized Riemann Problems [120]. Finally we can cite the
Weighted Average Flux (WAF) method [122, 123] where the intercell flux is represented by an
integral average of the physical flux across the full structure of the solution of a local Riemann
problem. In this thesis we use the MUSCL method which we describe in the next paragraph.

The MUSCL approach

The MUSCL method which stands for Monotone Upwind Scheme for Conservation Laws, was
first introduced by van Leer in 1976 [128] and is well explained by Barth [21] and Leveque [82].
It consists of constructing a linear representation of the unknowns and using the reconstructed
states in the Riemann solvers. When constructing the linear states we have to take care of not
creating artificial nonphysical extrema. To do so we introduce the notion of slope limiter, which
prevents the creation of nonphysical states.

We recall that we use the following constant approximation of the solution

Uc =
1

wc

∫

ωc

Uds. (3.70)

From these constant states we are going to build a linear reconstruction. To do so we define
the approximation of the gradient in cell c as (∇U)c, it is a constant tensor in each cell. Using
this discrete gradient we can then build the linear reconstruction with

Ũc(x) = Uc + (∇U)c(x− xc), (3.71)

where xc is the gravity center of cell ωc. Using this definition we have

1

wc

∫

ωc

Ũc(x)ds =
1

wc

∫

ωc

U(x)ds = Uc. (3.72)

It means that the MUSCL approach conserves the mean values of the unknowns. In order to
use this MUSCL approach we need to define a procedure to build the gradient tensors. We do
this by using a least squares method.

Least squares method

In order to build the gradient tensor (∇U)c in the cell ωc we use the value of the unknown
Uc and the values of the unknowns Ud belonging to the neighbors of cell ωc. First we need to
define the neighborhood of cell c. There is many different ways of defining this, we chose here
to match the neighborhood defined by the Godunov scheme. Namely N(c) is the set of cells
sharing an edge with cell c. Then, we can define the gradient tensor by ensuring that for all
cell d ∈ N(c)

Ũc(xd) = Ud, (3.73)

142

the problem is that this system is overdeterminated. We introduce Uc and Ud as respectively
Uc and Ud taken component by component. (∇U)c then represent the gradient of U in cell
c componentwise. With these notations, we can satisfy (3.73) in a least squares sense by
minimizing the function

Ic =
∑

d∈N(c)

1

2
(Ũc(xd)− Ud)

2 =
∑

d∈N(c)

1

2
[Uc − Ud + (∇U)c(xd − xc)]

2 . (3.74)

A straightforward computation shows that the solution to this problem writes

(∇U)c = M−1
c

∑

d∈N(c)

(xd − xc)(Uc − Ud), (3.75)

where Mc is the 2× 2 matrix defined as

Mc =
∑

d∈N(c)

(xd − xc)⊗ (xd − xc).

It is a positive definite and thus invertible matrix, which means that the tensor (∇U)c is well
defined. The interesting features of the least squares procedure is that it is valid for any type
of cells and moreover it preserves the linear fields.

Slope limiters

When constructing the states we can create new non-physical extrema. To avoid this, we need
to introduce slope limiters. In each cell we compute the quantity φc which will limit the slope.
The reconstructed value (3.71) becomes

Ũc(x) = Uc + φc(∇U)c(x− xc). (3.76)

In order to not create extremum we want for all p ∈ P(c) to have

{
Ũc(xp) < Umax

c = max
(
maxd∈N(c)(Ud), Uc

)
,

Ũc(xp) > Umin
c = min

(
mind∈N(c)(Ud), Uc

)
.

(3.77)

Thanks to this formula, we can define the slope limiter as

φc = min
p∈P(c)

φc,p, (3.78)

knowing that

φc,p =





µ
(

Umax
c −Uc

Ũc(xp)−Uc

)
if Ũc(xp)− Uc > 0,

µ
(

Umin
c −Uc

Ũc(xp)−Uc

)
if Ũc(xp)− Uc < 0,

1 if Ũc(xp)− Uc = 0.

(3.79)

Here, µ denotes a real valued function characterizing the limiter. In the following we define
three limiters and give their associated µ function. The representation of these functions is
presented in Figure 3.3.

In [27] Berger makes an analysis of the properties of different slope limiters on irregular grids.
Barth and Jespersen [22] demonstrated the use of limited-reconstruction on unstructured grids
for the solution of the Euler equations. They defined µ(x) = min(1, x). In practice their limiter
causes a degradation in the convergence performance because of its non-differentiability.

143

Venkatakrishnan [130] modified the limiter to be differentiable and managed to obtain an effi-

cient convergence to steady state. He defined µ(x) = x2+2x
x2+x+2

.

Michalak [92] pointed out that the Venkatakrishnan’s limiter has the drawback of reducing
the gradient in regions with no extrema. Hence he developed a new limiter, monotone and
differentiable, that can achieve good convergence properties while maintaining high-order ac-
curacy in smooth regions where no extrema exist. He proposed the following definition of
µ(x) = m̃in(1, x) with

m̃in(1, x) =

{
P (x) if x < xt,

1 if x ≥ xt,

where 1 < xt < 2 is a threshold and P (x) is the cubic polynomial satisfying

P |0 = 0 P |xt = 1
dP
dx |0 = 1 dP

dx |xt = 0

The choice of the threshold xt is a compromise between maintaining accuracy near extrema,
which is obtained with xt < 2, and maintaining good convergence properties, which is easier
with larger values of xt. In [92] the authors used the value xt = 1.5, we follow their choice in
our work.

Figure 3.3: Representation of the limiter function µ, for the limiters of Barth-Jespersen,
Venkatakrishnan and Michalak.

3.3.5 Time discretization

To complete the description of our scheme it remains to deal with the time discretization. Let us
start by giving the latest expression of the semi-discrete scheme (3.55) when using the MUSCL
method.

d

dt
wcUc +

∑

d∈Cf (c)

lcdF̂
e(Ũd

c , Ũ
c
d) · ncd = 0, (3.80)

144

where Ũd
c stands for the limited reconstructed state of the cell c at the interface between cells c

and d. Ũd
c stands for the limited reconstructed state of the cell d at the interface between cells

c and d.

We can define the residual of cell ωc

Rc(U) =
∑

d∈Cf (c)

lcdF̂
e(Ũd

c , Ũ
c
d) · ncd, (3.81)

where U is the block-vector of size CD defined by U c = Uc. Using these notations equation (3.80)
yields

d

dt
wcUc = −Rc(U). (3.82)

Explicit scheme

When dealing with a second order space discretization as the one described in (3.80), it is com-
mon practice to develop a second order time discretization. To do so we develop an explicit
Runge-Kutta method of order two (RK2), also called predictor-corrector method.

The RK2 method is a two step method, the first step writes

U∗
c = Un

c −
∆t

2wc
Rc(U

n), (3.83)

where Un
c is the variable taken at time tn, ∆t = tn+1 − tn is the time step, and U∗

c represent

the value of the variables in cell ωc at the intermediate time step tn+
1
2 . The solution at time

tn+1 can then be updated by applying the second step

Un+1
c = Un

c −
∆t

wc
Rc(U

∗). (3.84)

We need to append to this scheme a CFL condition in order keep it stable. For the Euler
equations this condition depends on the value of the largest eigenvalue of the system |u|+ c and
the size of the mesh.

∆t ≤ min
1≤d≤CD

(
rd

‖Vd‖+ cd

)
, (3.85)

where rd is the radius of the cell ωd. Vd and cd are respectively the velocity of the fluid and the
speed of sound in cell ωd. This formula is in practice used under the form

∆t = CFL min
1≤d≤CD

(
rd

‖Vd‖+ cd

)
, (3.86)

where 0 < CFL ≤ 1 is the CFL number.

Comment 22: In our applications we need to solve the Euler equations to reach a steady state.
We recall that the flows we are studying are hypersonic. If we use an explicit scheme to solve
our problem we are limited by a time step bounded by a very restrictive CFL property (3.85).
Reaching steady state with this kind of approaches requires solving a lot of time steps. The
solution to this problem is to use an implicit scheme, which is the topic of the next paragraph.

145

Implicit scheme

We apply the simple backward Euler methodology to equation (3.82), it yields

wn+1
c Un+1

c − wn
cU

n
c

∆t
= −Rc(U

n+1). (3.87)

Since the mesh remains the same during the computation, the volume of the cells does not
evolve, we have wn+1

c = wn
c = wc. Rc(U

n+1) is the residual in cell c taken at time tn+1. We
introduce δUc = U

n+1
c −Un

c , equation (3.87) yields

wc

∆tn
δUc = −Rc(U

n+1). (3.88)

We have to find an expression of the residual at time tn+1. To do so we remark that Un+1
c =

Un
c + δUc. We can write a truncated Taylor expansion of the residual which writes

Rc(U
n+1) = Rc(U

n) +
∑

1≤d≤CD

∂Rc

∂Ud
δUd +O

(
∆t2

)
, (3.89)

where ∂Rc
∂Ud

are the Jacobians of the numerical flux. Equation (3.88) yields

(
V

∆tn
+ En

)
δU = −Rn, (3.90)

where δU is the global block-vector of size CD defined by δU c = δUc. Rn is the global block-
vector of size CD containing the residuals. It is defined by Rn

c = Rc(U
n). Finally V is the

diagonal block-matrix containing the volumes of the cells, it is defined by Vcc = wcI, and En is
the block-matrix containing the Jacobians of the numerical flux computed at time tn.

In [26], Batten et al., present a detailed version of an exact Jacobian for the HLLC fluxes.
They show that with this method they can achieve an efficient convergence rate. The method
they developed is quite complicated and it is not straightforward to extend it to all the numer-
ical fluxes.

In practice we seek to find an approximate version of the Jacobian matrix. We want to solve
(3.90) to steady state, which means we want to find δU → 0, which is achieved if R(Un)→ 0.
The first approximation that is usually made is to compute the Jacobian of the first-order
residuals, even if we use an higher-order approximation. In this thesis, we also make the ap-
proximation of computing the Jacobian of the residuals considering that the simple Rusanov
flux is used, even if we use a more precise solver.

We recall the definition of the Rusanov flux

FRusanov =
1

2
(FL + FR) +

|λLRm |
2

(UL −UR) ,

where |λLRm | is the absolute value of the largest eigenvalue of the linearised problem at the
interface between the states L and R. We then use a truncated Taylor expansion to write

F n+1
K = F n

K +
∂F e

∂U
|KδUK +O

(
∆t2

)
. (3.91)

F n+1
K represent the flux in cell K at time tn+1 and F n

K represent the flux at time tn. ∂F e

∂U |K
is

the exact Jacobian of the Euler equations estimated at UK .

146

The implicit Rusanov flux writes

F n+1(UL,UR) = F
n(UL,UR) +

1

2

(
∂F e

∂U
|LδUL +

∂F e

∂U
|RδUR

)
+
|λLRm |
2

(δUL − δUR) . (3.92)

From this equation we can deduce the expression of En. The diagonal block at cell c writes

En
cc =

1

2

∑

d∈Cf (c)

lcd

(
∂F

∂U
|c + |λcdm |I

)
. (3.93)

The extra diagonal blocks for the line c writes for all d ∈ Cf (c)

En
cd =

1

2
lcd

(
∂F

∂U
|d − |λcdm |I

)
. (3.94)

Backward Euler method is unconditionally stable, we are not constrained by small time steps
bounded with a restrictive CFL condition anymore. However, due to the use of an approximate
Jacobian we cannot use arbitrary large time steps until the convergence is “well enough” estab-
lished. This is even more true at the beginning of a computation, where we usually start from
a constant state, some nonphysical phenomenons can occurs if the time steps are too important
[26]. This is of course not only due to the approximation of the Jacobian, non-linear unsteady
effects takes place during the transition to steady state, and are not very well handled for large
time steps.

To converge to steady state, we use a CFL ramping technique. We start the computation
by specifying a small CFL number, usually taken around 0.5, and increase it during a certain
number of iterations. We define the starting CFL number CFLs and a target CFL number
CFLt. The CFL number grows to the target in kt iterations using the formula

CFL = min

(
1,
k

kt

)
CFLt +

(
1−min

(
1,
k

kt

))
CFLs,

where k represent the iteration number.

Comment 23: This very simple CFL ramping technique may not be optimal in order to reach
steady-state. Furthermore the choice of the different parameters is test case and mesh dependent.
As an improvement we should consider using a more advanced CFL evolution technique such
as the switched evolution relaxation (SER) method [94] for instance. This method increases the
CFL inversely to the residual norm reduction and is supposed to increase the convergence speed.

3.3.6 The Carbuncle Phenomenon: Causes and Cure

A non-physical phenomenon

In [103] Quirk exposed the failures of classical approximate Riemann solvers. Theses failures are
commonly named carbuncles and occurs mainly when dealing with supersonic computations.
Due to the kind of applications we want to model, it is important to talk about this phenomenon
in this thesis. The carbuncle phenomenon can appears in different situations.

In Figure 3.4 we consider the diffraction of a shock around a 90◦ corner, refer to section 3.3.7
for details. The mesh used in this computation is a Cartesian 400 × 400 mesh and we observe

147

Figure 3.4: Carbuncle in the shock diffraction test at t=0.18.

(a) Contours of density for the Shock Diffraction test
case using HLLC solver. The carbuncle phenomenon
appears in the top right.

(b) Contours of density for the Shock Diffraction test
case using HLL solver. There is no carbuncle in that
case.

that the Carbuncle appears along the shock when the HLLC solver is used. It does not form
when using the more dissipative HLL solver.

The Carbuncle phenomenon also appears when dealing with a supersonic flow around a cylin-
der at M = 8, as pictured in Figure 3.5. It forms in front of the cylinder and then pollutes
the whole computational domain. This phenomenon is highly unstable and the scheme is un-
able to converge when using a solver that creates a carbuncle. Once again we can remark that
the more diffusive HLL solver does not produces a carbuncle while the HLLC solver produces it.

The Carbuncle phenomenon is highly mesh dependent. The problem is that it appears when
refining the mesh, refer to [99] for instance. Moreover, we are facing a dilemma here, when we
use an accurate approximate Riemann solver capable of capturing the whole set of waves of the
problem it may creates some nonphysical phenomenons. If we use a more dissipative solver, the
carbuncles are not produced, but the physics we solve is also less precise. In the next section we
present a possible cure to this problem, combining the properties of these two kinds of solvers.

A possible cure

In [97] Nishikawa introduces an approximate Riemann solver that have an excellent boundary-
layer-resolving capability and does not produces carbuncles. The authors observed that diffusive
solvers such as the two-waves HLL solver do not produce carbuncles but are too much dissipa-
tive in the rest of the domain. On the other side full-wave solvers such as HLLC or Roe solvers
gives an excellent resolution of the flow but can produce carbuncles near shocks. To combine
the good properties of these two kinds of solvers they used the technique of rotated Riemann
solver, introduced by [40] and [83]. These solvers adaptively select a direction suitable for up-
winding and applies a Riemann solver along that direction. Therefore they are able to capture
multidimensional flow features very accurately using one-dimensional physic. Originally, this
approach was proposed to better resolve shocks and shear layers in [40] and [83], but the gain

148

Figure 3.5: Carbuncle around a cylinder at Mach 8

(a) Contours of density for the
cylinder at Mach 8 using the
HLLC solver. The carbuncle
phenomenon pollutes the so-
lution in all the domain.

(b) Contours of density for
the cylinder at Mach 8 using
the HLL solver. There is no
carbuncle.

(c) Unstructured mesh used
for the computations. It is
composed of 7257 triangles
and 3757 Nodes.

was very limited when it was used with second-order methods. In his work, Ren [104] applied
this approach to build a robust shock-capturing scheme. He applied the Roe solver on two
directions, one aligned with the velocity difference vector, which is normal to shocks, and the
second orthogonal to that direction. This rotated flux demonstrates a robust shock-capturing
capability and was shown to suppress the carbuncle phenomena by an extra dissipation intro-
duced by the rotated flux mechanism. In [97] Nishikawa applies two different Riemann solvers
in the two directions. He applies a carbuncle-free flux function along to the velocity difference
vector direction. In the other direction, he employs the Roe solver to prevent the resulting
flux from being too dissipative. Furthermore when the velocity difference vector is too small
the main direction is defined as being aligned with the cell-tangent instead of the cell-normal
which is usually chosen. With this modified definition, the Roe flux is activated for smoothly
varying flows, instead of the more dissipative solvers, and thus the accuracy is improved. Let
us describe how this rotated solver is obtained.

First, we note n the unit outward normal to the edge where we are deriving the flux. We
note n⊥ a unit vector perpendicular to n. We define ∆q = VR − VL the velocity difference
vector. As we said earlier we can define the main direction of our rotated solver using this
vector. We note n1 the unit vector defining this direction, it is defined by

n1 =

{
∆q

‖∆q‖ if ‖∆q‖ > ǫ,

n⊥ otherwise.
(3.95)

149

The parameter ǫ is a small number, it can be adjusted to define what is a smoothly varying
flow. Then we define the unit vector n2 perpendicular to n1, i.e.,

n1 · n2 = 0,

and ‖n1‖ = ‖n2‖ = 1. We project the cell-edge normal n on these two vectors to obtain

n = α1n1 + α2n2,

where α1 = n · n1 and α2 = n · n2. We also want α1 ≥ 0 and α2 ≥ 0, so we may change the
direction of n1 and n2 to ensure this last property.

Finally the rotated solver writes

FRHLL(n) =

{
α1F

HLL(n1) + α2F
Roe(n2) if ‖∆q‖ > ǫ,

FRoe(n⊥) otherwise.
(3.96)

It is clear that we can exchange the HLL solver by an other diffusive solver, Nishikawa [97]
also used the Rusanov solver for instance to create the Rotated-RR solver. The solver of Roe
can also be replaced by any other solver like the HLLC solver for instance. This was done for
instance in [76] where the authors presented the HLLC-HLL scheme. They did not used the
rotated framework, but defined a sensor to switch between the two solvers, they also manage
to produce a carbuncle free solver. The interest of the rotated solvers is that the approximate
Riemann solvers are applied along directions characterized by the flow itself and thus does not
rely on the mesh description anymore. This last property is even more important when dealing
with unstructured meshes, where the normals to the edges of the mesh may vary a lot.

3.3.7 Numerical results

In this section we present numerical results to assess the quality of the schemes we have pre-
sented. Most of these tests are taken from [51] where the authors present a collection of fluid
mechanics problems with exact solutions.

Supersonic Jet

This test case taken from [97] is a one-dimensional Riemann problem in a two-dimensional
domain. The computational domain is the unit square, the left boundary is split in two parts,
they are defined as supersonic inlets with the following values




ρ

u

v

p




Top

=




0.25
4
0

0.25


 (3.97)

on the top half. This is an inflow at M = 3.38. On the bottom half we specify an inflow at
M = 2.87 with the values 



ρ

u

v

p




Bottom

=




1
2.4
0
0.5


 . (3.98)

The remaining boundaries are treated as supersonic outlets. The numerical results computed
on a 200× 200 Cartesian mesh using HLLC fluxes and the implicit Euler method are displayed

150

in Figure 3.6. In Figure 3.7 we compare our solution at the outlet, at x = 1, to the analytical
solution obtained with an exact Riemann solver. We observe that our numerical results are
really close to the exact solution. The shock is captured in two cells, the contact discontinuity
lies in three or four cells and the expansion wave is well captured too.

Figure 3.6: Supersonic jet problem using HLLC fluxes on a 200× 200 Cartesian mesh.

(a) Contours of density. (b) Contours of pressure.

(c) Contours of velocity along x-axis. (d) Contours of velocity along y-axis.

Oblique shock problem

This test presents an oblique shock along a wedge. Once again we are able to compute the exact
solution of this problem. We use the oblique shock wave theory, well explained in the book of
Anderson [15]. For a given Mach number, M1, and corner angle, θ, the oblique shock angle, β,
and the downstream Mach number, M2, can be calculated. M2 is always smaller than M1. The
problem is pictured in Figure 3.8 and the relation linking these values is given by

tan θ = 2 cotβ
M2

1 sin
2 β − 1

M2
1 (γ + cos 2β) + 2

. (3.99)

151

Figure 3.7: Supersonic jet problem : Comparison of the numerical solution and the exact
solution at x=1.

(a) Density. (b) Pressure.

(c) Velocity along x-axis. (d) Velocity along y-axis.

Shock

β

θ

M1

ρ1
p1

M2

ρ2
p2

Figure 3.8: Notations used for the oblique shock problem.

152

This relation is pictured in Figure 3.9. We can also compute the pressure ratio with

Figure 3.9: Relation between the deflection angle and the shock wave angle for various Mach
numbers.

p2

p1
= 1 +

2γ

γ + 1
(M2

1 sin
2 β − 1). (3.100)

The density ratio is given by
ρ2

ρ1
=

(γ + 1)M2
1 sin

2 β

(γ − 1)M2
1 sin

2 β + 2
. (3.101)

Finally the Mach after the shock is given by the relation

M2 =
1

sin(β − θ)

√√√√1 + γ−1
2 M2

1 sin
2 β

γM2
1 sin

2 β − γ−1
2

.

We have now all the information needed to generate a test case.

For this purpose we deal with a wedge with an angle θ = 10◦ at Mach 5. We take γ = 1.4. Using
Equations (3.99), (3.100) and (3.101) we obtain the admissible weak shock solution β = 19.376◦,
p2
p1

= 3.044 and ρ2
ρ1

= 2.129.

We run the test case on a structured 50 × 50 mesh, refer to Figure 3.10, using the HLLC
solver. We use the implicit Euler time discretization until steady state is reached. The solution
obtained is presented in Figure 3.10. To compare the results with the theoretical values we plot
the solution at the outlet of the mesh at x = 0.2. The profiles are displayed in Figure 3.11
and compared to the exact solution. After some post-processing of the results we obtain the
numerical values β = 19.676◦, p2

p1
= 3.042 and ρ2

ρ1
= 2.127. These results are really close to the

153

Figure 3.10: Oblique shock test along a wedge at 10 degrees at Mach 5.

(a) Contours of density.

(b) Contours of pressure.

(c) Contours of Mach number.

(d) Mesh used in the computations. Composed of 50× 50 quadrangles.

154

Figure 3.11: Oblique shock test along a wedge at 10 degrees at Mach 5.

(a) Comparison of the exact and computed density at x = 0.2.

(b) Comparison of the exact and computed pressure at x = 0.2.

155

theoretical values. For the pressure we observe that the numerical solution matches perfectly
the theoretical values on both sides of the shock, and the shock spans over three cells. For
the density, we can see that the freestream density remains unperturbed. The numerical result
underestimate a bit the density near the wall. We can note that this error when compared to
the theoretical value is below 1%.

Shock diffraction problem

Incoming shock

Area of the study

Figure 3.12: Description of the geometry of the shock diffraction problem.

This test taken from [103] models a normal shock diffracting around a 90 degree corner. The
geometry of the problem is presented in Figure 3.12. We only mesh a unit square domain,
named area of study in Figure 3.12. The corner is located in the middle of the left boundary.
The top left boundary is an inlet while the bottom left boundary is a slipping wall. The top
and bottom boundary conditions are also modeled with slipping walls while the right boundary
condition is defined as a supersonic outlet. The inflow conditions are given using the conditions
computed behind a normal shock with the following formulas

ρ∞ = ρ0
(γ + 1)M2

shock

(γ − 1)M2
shock + 2

,

where ρ0 is the density before the shock, ρ∞ is the density behind the shock and Mshock is the
Mach number of the shock.

p∞ = p0
2γM2

shock − (γ − 1)

(γ + 1)
,

where p0 is the pressure before the shock and p∞ behind the shock.

u∞ =

(
1− ρ0

ρ∞

)
ushock,

where u0 is the velocity along x-axis before the shock and p∞ after the shock. Finally we set
the velocity along y-axis v∞ to zero.

156

In this test case we set Mshock = 5.09, ρ0 = 1 and p0 =
ρ0
γ . The inflow conditions are




ρ∞
u∞
v∞
p∞




Inflow

=




7.04
4.08
0.0

30.06


 . (3.102)

We run the computation up to t = 0.18, on a 400 × 400 Cartesian mesh. This test case is
unsteady, therefore we need to use a precise time discretization. For this purpose we use the
explicit Runge-Kutta method of order two described previously.
As we showed in section 3.3.6, this test produces carbuncles along the normal shock near the
top wall, when we use Roe solver or HLLC solver as flux functions. In Figure 3.13 and 3.14 we
picture the contours of density and pressure when using the rotated-RHLL fluxes. As expected
no carbuncle is formed in this case. For comparison purposes we used the OSSAN-Euler2D
CFD code available at [96]. It is an unstructured second-order node-centered Finite Volume
CFD code developed by Nishikawa for educational purposes. The results obtained by this code
are in good agreement with the ones obtained with our scheme.

Figure 3.13: Contours of density for the shock diffraction problem using rotated-RHLL fluxes.

157

Figure 3.14: Contours of pressure for the shock diffraction problem using rotated-RHLL fluxes.

Cylinder at Mach 17.6

A
A sin θ

V∞ sin θ
V∞

θ

Figure 3.15: Notations used in the Newtonian model.

In this test case we study the flow around a cylinder at Mach 17.6 and compare the results
to the Newtonian theory for hypersonic flows [15]. Before proceeding any further, we recall
briefly the main features of this theory. Newton modeled a fluid flow as a stream of particles
in rectilinear motion, which, when striking a surface lose all their momentum in the direction
normal to the surface, but keep their momentum along the surface. In Figure 3.15 we picture
a stream with velocity V∞ impacting on a surface of area A inclined at the angle θ to the
freestream. We see that the change in normal velocity is V∞ sin θ. The mass flux incident on
the surface is equal to ρ∞V∞A sin θ. Finally the time rate of change of momentum of this mass
flux is (ρ∞V∞A sin θ)(V∞ sin θ) = ρ∞V

2
∞A sin2 θ.

The second law of Newton states that the time rate of change of momentum is equal to the
force F exerted on the surface

F = ρ∞V
2
∞A sin2 θ,

which also writes
F

A
= ρ∞V

2
∞ sin2 θ. (3.103)

158

In Equation (3.103), F
A has the dimension of a pressure and must be interpreted as the pressure

difference above the freestream static pressure, namely,

F

A
= p− p∞. (3.104)

Equations (3.103) and (3.104) yield

p− p∞ = ρ∞V
2
∞ sin2 θ,

then
p− p∞
1
2ρ∞V

2
∞

= 2 sin2 θ,

the left-hand side is the definition of the pressure coefficient, hence the Newtonian law writes

Cp = 2 sin2 θ. (3.105)

This is the classical Newtonian Law. Lees [81] proposed a modification to this theory writing
Equation (3.105) as

Cp = Cpmax sin
2 θ, (3.106)

where Cpmax is the maximum value of the pressure coefficient, evaluated at a stagnation point
behind a normal shock wave. We have

Cpmax =
ps − p∞
1
2ρ∞V

2
∞

, (3.107)

where ps is the total pressure behind a normal shock wave at the freestream Mach number.
From normal shock-wave theory we have

ps

p∞
=

[
(γ + 1)2M2

∞

4γM2
∞ − 2(γ − 1)

] γ
γ−1
[
1− γ + 2γM2

∞

γ + 1

]
. (3.108)

Noting that 1
2ρ∞V

2
∞ = γ

2p∞M
2
∞, Equation (3.107) yields

Cpmax =
2

γM2
∞

[
ps

p∞
− 1

]
. (3.109)

Combining Equations (3.108) and (3.109) we obtain the final expression of Cpmax

Cpmax =
2

γM2
∞

{[
(γ + 1)2M2

∞

4γM2
∞ − 2(γ − 1)

] γ
γ−1
[
1− γ + 2γM2

∞

γ + 1

]
− 1

}
. (3.110)

We can now compute Cpmax for our test case. We have γ = 1.4 and M∞ = 17.6, we obtain
Cpmax = 1.8369. In Figure 3.16 we compare the pressure coefficient obtained on a structured
30 × 30 mesh and a structured 60 × 60 mesh to the Modified Newtonian Law. We observe a
good agreement between the two approaches for angles below 40 degrees. For angles above 40
degrees the two approaches do not match anymore. We can also see on this Figure that the
coarse mesh give an overestimation of the Cpmax , but the finer mesh gives the expected value.
In Figure 3.17 we compare the pressure coefficient obtained by the Modified Newtonian Law
against the pressure coefficient obtained on two unstructured meshes made of 1030 and 4006
triangles. Once again we show a that the pressure coefficient matches the Newtonian theory
for angles below 40 degrees. We can note that the coarsest mesh manages to give the expected
value for the Cpmax .

159

Figure 3.16: Comparison between the pressure coefficient given by the modified Newton law
and the numerical results obtained on a 30× 30 mesh and a 60× 60 mesh.

Figure 3.17: Comparison between the pressure coefficient given by the modified Newton law
and the results obtained on two unstructured meshes made of 1030 and 4006 triangles.

160

3.4 Numerical scheme for solving Navier-Stokes equations

Let us go back to the full set of Navier-Stokes equations. We present in this section a numerical
scheme for solving these equations using all the work presented in this thesis. We first present the
decomposition of the equation in terms of the contributions of Euler equations, heat transfer and
tensorial diffusion. Then, we show how the different contributions from the numerical schemes
developed for each equation can be introduce in the global scheme. In the last section we present
numerical results which assess the robustness and the accuracy of the obtained scheme.

3.4.1 Construction of a Finite Volume scheme for the Navier-Stokes equa-

tions

First, we recall the Navier-Stokes equations

∂ρ

∂t
+∇ · (ρV) = 0 (3.111a)

∂ρV

∂t
+∇ · (ρV ⊗ V + pI) = ∇ · S (3.111b)

∂ρE

∂t
+∇ · ((ρE + p)V) = ∇ · (SV)−∇ · q. (3.111c)

It also writes in a more compact form as

∂U

∂t
+∇ · F e(U) = ∇ · F v(U ,∇U), (3.112)

with U = [ρ, ρV , ρE]t, the vector of conservative variables. The left hand side of this equation
represents the Euler equations and the right hand-side contains the viscous part of the Navier-
Stokes equations.

In the right-hand side of equation (3.111b), we find the term ∇·S that we studied in Chapter 2.
In the right-hand side of equation (3.111c), we find the term ∇·q that we studied in Chapter 1.
In equation (3.111c) we also find the term ∇ · (SV). This term has not been derived yet but
we will discuss how to reuse elements of the scheme developed for the tensorial diffusion to dis-
cretize it in section 3.4.3. What we want to point out here is that the Navier-Stokes equations
are an assembly of all the equations we described in this thesis. We are going to explain how
to assemble the numerical schemes we developed in order to construct a numerical scheme for
the Navier-Stokes equations.

Let us write the Finite Volume method for the Navier-Stokes equations. We integrate equa-
tion (3.112) over a cell ωc

∫

ωc

∂U

∂t
ds+

∫

ωc

∇ · F e(U)ds =

∫

ωc

∇ · F v(U ,∇U), (3.113)

we use the Green theorem

d

dt

∫

ωc

Uds+

∫

∂ωc

F e(U) · ndl =
∫

∂ωc

F v(U ,∇U) · ndl. (3.114)

We introduce the mean cell conservative variables Uc as defined for the Euler equation. Equa-
tion (3.114) rewrites

d

dt
wcUc +

∑

d∈Cf (c)

lcdF̂
e(Ũd

c , Ũ
c
d) · ncd =

∑

d∈C(c)

lcdF̂
v(Uc,Ud) · ncd. (3.115)

161

F̂ e is the Euler numerical flux defined earlier, which is evaluated by an approximate Riemann
solver. Ũd

c and Ũ c
d are the second-order reconstructed states obtained by a MUSCL type proce-

dure. F̂ v is the numerical flux gathering the diffusion terms. It is defined in the neighborhood
C(c) of all the cells sharing a node with cell ωc. We introduce the backward Euler scheme (3.90)
obtained in the beginning of this chapter for the Euler equations in (3.115), which yields

(
V

∆tn
+ En

)
δU = −Rn +N (U), (3.116)

where N (U) contains the viscous fluxes of the Navier-Stokes equations, that we still have not
discretized. In this numerical flux we gather the numerical fluxes defined in chapter 1 and 2.
This is the topic of the following two paragraphs.

3.4.2 Gathering the contribution of Heat transfer

Let us start by recalling the conservation of energy in the Navier-Stokes equations. It writes

∂ρE

∂t
+∇ · ((ρE + p)V) = ∇ · (SV)−∇ · q. (3.117)

In this section we are interested by the discretization of the term ∇·q. We recall that Chapter 1
was dealing with the discretization of anisotropic heat equation, namely

ρCv
∂T

∂t
+∇ · q = 0. (3.118)

We recall here the final version of the numerical scheme we obtained, when neglecting the source
terms (

MCv

∆tn
+ D

)
T n+1 =

MCv

∆tn
T n +Σn. (3.119)

We note δT = T n+1 − T n, equation (3.119) becomes

(
MCv

∆tn
+ D

)
δT = −DT n +Σn. (3.120)

The important things to note in this equation are the matrix D which discretize the term ∇ · q,
and the right hand side Σn which contains the boundary conditions. The matrix MCv

∆tn corre-

sponds to the discretization of the term ρCv
∂T
∂t , which is not needed in equation (3.117), the

time discretization being taken care of in the Euler part of the scheme.

In the Navier-Stokes equation we are dealing with δU instead of δT . Therefore, we need
to express equation (3.120) in terms of δU . We have the relation

δT =
∂T

∂U
δU . (3.121)

U = (ρ, ρu, ρv, ρE)t and for an ideal gas e = CvT . We recall that e = E − 1
2(u

2 + v2). We can

then compute ∂U
∂T as follow

∂T

∂ρ
=

∂

∂ρ


ρE −

(ρu)2

2ρ −
(ρv)2

2ρ

ρCv


 =

u2 + v2 − E
ρCv

(3.122a)

∂T

∂ρu
=
−u
ρCv

(3.122b)

162

∂T

∂ρv
=
−v
ρCv

(3.122c)

∂T

∂ρE
=

1

ρCv
(3.122d)

We introduce the bloc matrix D̄ defined by

D̄ij = DijP
T
j , (3.123)

where PT
c is the transformation matrix defined for each cell c by

PT
c =

(
∂Tc
∂ρ

∂Tc
∂ρu

∂Tc
∂ρv

∂Tc
∂ρE

)
. (3.124)

This matrix allows us to transform the operator ∇·q expressed for the unknown T as the same
operator defined in terms of the unknown U .

Finally, since we are dealing with the full set of Navier-Stokes equations we need to integrate
the heat transfer scheme in the global system. The global system is composed of 4×4 blocks in
two dimensions, expressing the four equations in terms of the four unknowns. The heat transfer
is only present in the last equation, so we define the matrix QT which is defined by

QT =




0
0
0
1


 . (3.125)

This transformation matrix allows to define matrix D̂ as

D̂ij = QTDijP
T
j =




0 0 0 0
0 0 0 0
0 0 0 0

∂Tc
∂ρ

∂Tc
∂ρu

∂Tc
∂ρv

∂Tc
∂ρE


Dij , (3.126)

which is the contribution of the heat transfer in terms of the conservative variables in the
equation of energy. We also define the vector Σ̂n by

Σ̂n
c = QT ((−DT n)c +Σn

c) =




0
0
0

(−DT n)c +Σn
c


 , (3.127)

it contains the explicit contribution of the heat transfer and the boundary conditions.

3.4.3 Gathering the contribution of Tensorial Diffusion

Let us now consider the conservation of momentum in the Navier-Stokes equations. It writes

∂ρV

∂t
+∇ · (ρV ⊗ V + pI) = ∇ · S. (3.128)

In this section we are interested by the term ∇ · S. In Chapter 2, we have dealt with tensorial
diffusion, namely

ρ
∂V

∂t
−∇ · S = 0. (3.129)

163

We then introduced the modified constitutive law Σ such that ∇ · Σ = ∇ · S. We use this
modified constitutive law in this section in order to solve equation (3.128) under the form

∂ρV

∂t
+∇ · (ρV ⊗ V + pI) = ∇ · Σ. (3.130)

In Chapter 2, we expressed equation (3.129) under the form

ρ
∂V

∂t
−∇ · Σ = 0. (3.131)

We developed a numerical scheme to solve this problem. We recall the final version of this
scheme in the absence of source term.

(
M

∆tn
+ T

)
Vn+1 =

M

∆tn
Vn +Bn. (3.132)

We note δV = Vn+1 − Vn, equation (3.132) becomes

(
M

∆tn
+ T

)
δV = −TVn +Bn. (3.133)

Once again, the important matrix here is T, which is the discrete equivalent of ∇ · Σ, and, the
right-hand side Bn, which contains the boundary conditions.

We express δU in terms of δV using the relation

δV =
∂V

∂U
δU . (3.134)

We have V = (u, v)t, let us deal with u first

∂u

∂ρ
=

∂

∂ρ

(
ρu

ρ

)
=
−u
ρ
, (3.135a)

∂u

∂ρu
=

1

ρ
, (3.135b)

∂u

∂ρv
= 0, (3.135c)

∂u

∂ρE
= 0. (3.135d)

We do the same for v
∂v

∂ρ
=

∂

∂ρ

(
ρv

ρ

)
=
−v
ρ
, (3.136a)

∂v

∂ρu
= 0, (3.136b)

∂v

∂ρv
=

1

ρ
, (3.136c)

∂v

∂ρE
= 0. (3.136d)

We introduce the bloc matrix T̄ defined by

T̄ij = TijP
V
j , (3.137)

164

where PV
c is the transformation matrix defined for each cell c by

PV
c =

(
∂uc
∂ρ

∂uc
∂ρu

∂uc
∂ρv

∂uc
∂ρE

∂vc
∂ρ

∂vc
∂ρu

∂vc
∂ρv

∂vc
∂ρE

)
=

1

ρ

(
−u 1 0 0
−v 0 1 0

)
. (3.138)

This matrix allows us to transform the operator ∇ ·Σ expressed in terms of the unknown V as
the same operator defined in terms of the unknown U .

In order to integrate this in the full set of Navier-Stokes equations we introduce the matrix
QV which is defined by

QV =




0 0
1 0
0 1
0 0


 . (3.139)

Using this transformation we are able to define the matrix T̂ which express the operator ∇ · Σ
in the equation of momentum in terms of the conservative variables. It writes

T̂ij = QV TijP
V
j , (3.140)

We also define the vector B̂n, which contains the explicit terms of the numerical scheme for
tensorial diffusion and the boundary terms. It is defined by

B̂n
c = QV ((−TVn)c +Bn

c) . (3.141)

Contribution of the work of the viscous forces

In the energy equation we still have to discretize the term ∇ · (SV).

Wc =

∫

ωc

∇ · (SV)dv =

∫

∂ωc

(SV) · nds. (3.142)

Using the notations defined in chapter 2 this terms rewrites

Wc =
∑

p∈P(c)

l−pc(SpcV
−
pc) · n−

pc + l+pc(SpcV
+
pc) · n+

pc. (3.143)

All the terms in this equation have been defined in chapter 2 and are easily accessible when
building matrix T. It means that we can define the vector Ŵ n

c

Ŵ n
c = QTW n

c . (3.144)

This vector contains the contributions of the work of the viscous forces in the equation of
conservation of energy expressed in the global system.

Comment 24: We have to point out that the time discretization of this term is explicit. This
is the only term of the global scheme that is not implicited. It may cause convergence issues.
The implicitation of this term should be studied in order to obtain a fully implicit scheme. We
will show that the scheme can be still used without the implicitation.

165

3.4.4 Final expression of the Finite Volume scheme

We are now able to build the Finite volume scheme for the Navier-Stokes equations. We gather
the terms defined by (3.90), (3.126),(3.127),(3.140),(3.141),(3.144) to obtain

(
V

∆tn
+ En + D̂ + T̂

)
δU = Rn + B̂

n
+ Σ̂n + Ŵ n. (3.145)

This is a sparse linear system, the dimension of the matrix is CD×CD and is composed of block-
matrices of size 4×4 in two dimensions. The right-hand side and the vector δU are block-vectors
composed of CD sub-vectors of size 4 in two dimensions. In order to solve this sparse linear
system we employ the localized ILU(0) Preconditioned BiCGStab algorithm [127, 95] already
described in chapter 1 and 2. As mentioned in comment 19 the Conjugate Gradient method
would not be sufficient to solve this linear system because it is not symmetric.

Comment 25: We need to mention the parallelization of this numerical scheme. In com-
ment 20 we presented the small amount of developments needed by the tensorial diffusion scheme
to benefit from the parallel implementation of the CCLAD scheme. We have to mention that
these developments also benefits to the Navier-Stokes numerical scheme we constructed. The
Finite Volume scheme allows us to build a linear system composed of a block-matrix and a
block-vector. The difference with the tensorial diffusion scheme only lies in the dimension of
the blocks. It means that we benefit from a parallel numerical Navier-Stokes scheme without
further developments.

3.4.5 Numerical results

In this section we present numerical results to assess the quality of the schemes we presented
here. The first test case is designed to verify the validity of the discretization of the viscous
terms. Then we present the classical flat plate test case. It allows us to understand how the
numerical scheme handle the mesh refinement needed to correctly capture the boundary layer.
Finally, we compare the results obtained with our scheme on a supersonic viscous flow around
a cylinder, with the results obtained with two CFD codes developed by NASA [1].

Thermal Couette flow

This test case adapted from [67] will allow us to verify the discretization of the viscous terms.
The test describes a laminar flow between two infinitely long walls. These walls are parallel and
separated by a distance L. The top wall is moving at a constant speed ut while the bottom wall
stands still. Finally, the top wall is heated at a temperature Tt and the bottom wall is heated
at a temperature Tb such that Tt > Tb.

Since the walls are considered infinitely long all the x-derivatives have to vanish. We also
point out that the velocity v needs to be equal to zero, which yields

V =

(
u(y)
0

)
.

We also consider that the pressure is constant in the whole domain

p = p∞.

With this assumptions the conservation of momentum simplifies to

∂

∂y
(µ
∂u

∂y
) = 0. (3.146)

166

We take µ = Cte so equation (3.146) reduces to

∂2u

∂y2
= 0. (3.147)

The boundary conditions are given by u(0) = 0 and u(L) = ut, which yields

u(y) =
y

L
ut. (3.148)

The conservation of energy yields

κ
∂2T

∂y2
+ µ

(
∂u

∂y

)2

= 0, (3.149)

which simplifies to
∂2T

∂y2
= −µu

2
t

κL2
. (3.150)

We can deduce that the temperature profile is parabolic. T (y) writes under the form

T (y) = −µu
2
t

κL2
y2 + ay + b, (3.151)

with T (0) = Tb and T (L) = Tt. The temperature writes

T (y) = −µu
2
t

κ

(y
L

)2
+ (Tt − Tb +

µu2t
κ

)
y

L
+ Tb. (3.152)

It is interesting to introduce the adimensionned length ỹ = y
L and the adimensionned tempera-

ture T̃ = T−Tb
∆T with ∆T = Tt − Tb . Equation (3.152) rewrites

T̃ (ỹ) = (1 +
µu2t
κ∆T

(1− ỹ))ỹ. (3.153)

We introduce the Prandtl number Pr =
µCp

κ and the Eckert number Ec =
u2
t

Cp∆T . This adi-
mensionned number is the ratio of the dynamic temperature induced by fluid motion to the
characteristic temperature difference in the fluid. Equation (3.153) yields

T̃ (ỹ) = (1 +
1

2
PrEc(1− ỹ))ỹ. (3.154)

An interesting variation of temperature is obtained for PrEc = 4 where the maximum temper-
ature is greater than the maximal temperature at the wall.

For this test case we impose the values Tb = 300K , Tt = 310K, ut = 10. We use the classical
value of the Prandtl number for the air Pr = 0.72. We impose µ = 1. It remains to specify Cp

such that PrEc = 4, we obtain Cp = 1.8.

Figure 3.18 shows the profile of temperature obtained at the outlet for a series of Cartesian
meshes. We observe that the maximal temperature obtained gives a small overestimation of
the theoretical maximal value, but, with the help of mesh refinement the approximation tends
to become more accurate. In Figure 3.19 we can observe the profile of temperature obtained at
the outlet for a series of triangular meshes. The same remarks apply.

167

Table 3.1: Thermal Couette flow: asymptotic errors in both L2 and L∞ norms and correspond-
ing truncation error orders for the velocity on Cartesian grids.

h EL2 qL2 E∞ q∞
2.00e-03 4.20e-04 1.89 8.00e-04 1.92

1.00e-03 1.13e-04 1.96 2.11e-04 1.94

5.00e-04 2.29e-05 - 5.50e-05 -

Table 3.2: Thermal Couette flow: asymptotic errors in both L2 and L∞ norms and correspond-
ing truncation error orders for the velocity on triangular grids.

h EL2 qL2 E∞ q∞
1.23e-03 3.41e-04 1.95 5.63e-04 1.78

6.12e-04 8.74e-05 2.01 1.62e-04 1.94

3.08e-04 2.20e-05 - 4.29e-05 -

In Figure 3.20 we picture the profiles of velocity for a series of Cartesian meshes and for a
series of triangular meshes. We observe that we obtain a very good approximation of the linear
velocity profile for all of the meshes.

In Tables 3.3 and 3.4 we compute the L2 and L∞ errors of the scheme for the temperature
field, along with their order of convergence rate. As expected in regards with the results ob-
tained in chapter 1 for the heat transfer we achieve second order accuracy for the temperature
field on both the Cartesian and triangular meshes.

In Tables 3.1 and 3.2 we compute the L2 and L∞ errors of the scheme for the linear velocity
field, along with their respective order of convergence. We observe that we only reach second
order accuracy for the two kinds of meshes. In chapter 2 we showed that we achieved round-off
error on Cartesian meshes and on triangular meshes for linear fields. As a first explanation we
can say that this accuracy is not obtained for this Navier-Stokes test case, because, we are this
time dealing with a system of equations in which some of the fields are not linear. The error
obtained on the other variables, such as the temperature, has then an influence on the velocity
field. Still we obtain second order accuracy which is the expected order of the scheme for general
solutions. An other possible explanation is that theoretically the pressure is constant and the
vertical velocity v is equal to zero. This is not the case in practice, the variables p and v appears
to have small variations. This can be interpreted as the presence of compressible effects which
are not taken into account in the theory we presented.

Table 3.3: Thermal Couette flow: asymptotic errors in both L2 and L∞ norms and correspond-
ing truncation error orders for the temperature on Cartesian grids.

h EL2 qL2 E∞ q∞
2.00e-03 4.11e-03 1.91 5.05e-03 2.02

1.00e-03 1.09e-03 1.97 1.24e-03 1.95

5.00e-04 2.78e-04 - 3.22e-04 -

168

Figure 3.18: Thermal Couette flow on Cartesian meshes.

(a) Profile of temperatures.

(b) Profile of temperature, zoom around the maximal value.

Table 3.4: Thermal Couette flow: asymptotic errors in both L2 and L∞ norms and correspond-
ing truncation error orders for the temperature on triangular grids.

h EL2 qL2 E∞ q∞
1.23e-03 4.52e-03 1.95 7.19e-03 1.97

6.12e-04 1.16e-03 1.91 1.82e-03 1.93

3.08e-04 3.00e-04 - 4.83e-04 -

169

Figure 3.19: Thermal Couette flow on triangular meshes.

(a) Profile of temperatures.

(b) Profile of temperature, zoom around the maximal value.

170

Figure 3.20: Thermal Couette flow comparison of the velocity.

(a) Profile of velocity on a series of Cartesian meshes.

(b) Profile of velocity on a series of triangular meshes.

171

Supersonic flow over an adiabatic flat plate

We are going to study an adiabatic flat plate in a supersonic flow [102] at the Mach number
1.7605. The freestream conditions are as follows:

V∞ =500m.s−1,

ρ∞ =10−3kg.m−3,

T∞ =300K,

Ma =1.7605

The flat plate has a length of one meter. We use the Sutherland formula (3.21) to compute the
dynamic viscosity. We can compute the Reynolds Number using

Re =
ρ∞V∞L

µ∞
.

We have L = 1 and µ∞ = µ(T∞) ≈ 1.7366 · 10−5. Which yields

Re =
10−3 · 500 · 1
1.7366 · 10−5

≈ 28800.

For the values of the specific heat ratio and Prandtl number, we use the classical values γ = 1.4
and Pr = 0.71. The flat plate is adiabatic so we have qwall · n = 0. We should note that the
mesh used for the computation starts a bit before the plate itself (0.1m). This is to avoid the
use of a complicated inflow condition. The boundary condition applied in the lower part of the
mesh before the actual plate is a slipping wall.

The mesh is presented in Figure 3.21. We can see the refinement in the boundary layer. In
Figure 3.22 we show the contours of temperature and velocity. In Figure 3.23 we have plotted
the profiles of the velocity at different positions along the plate. We have also displayed the
profiles of temperatures at different positions. The zoom in Figure 3.23 allows us to see that
the adiabatic condition qwall · n = 0 is well respected on the plate.

172

Figure 3.21: Supersonic viscous flow over an adiabatic flat plate: Mesh.

(a) Presentation of the mesh. 50×30 structured mesh. 50 cells along the plate and 30 cells perpendicular
to the plate.

(b) Zoom of the mesh in the vicinity of the leading edge of the flat plate.

Figure 3.22: Supersonic viscous flow over an adiabatic flat plate : Contours.

(a) Contours of temperature.

(b) Contours of velocity.

173

Figure 3.23: Supersonic viscous flow over an adiabatic flat plate : Profiles.

(a) Profile of velocity at different sections of the mesh.

(b) Profile of temperature at different sections of the mesh.

(c) Profile of temperature at different sections of the mesh.
Zoom near the plate.

174

Supersonic flow around a cylinder at constant temperature

We are going to study a cylinder at constant temperature in a supersonic flow at the Mach
number 17.605. This test case is used for validation purposes by the CFD codes FUN2D and
LAURA from NASA and is described in [1]. The freestream conditions are as follows:

V∞ =5000m.s−1,

ρ∞ =10−3kg.m−3,

T∞ =200K,

Twall =500K,

Ma =17.605,

Re =376930.

The cylinder has a radius of one meter. We use the Sutherland formula (3.21) to compute the
dynamic viscosity. We can verify that with this choice we obtain the expected Reynolds Number.

We recall that the Reynolds Number is obtained by

Re =
ρ∞V∞L

µ∞
.

We have L = 1 and µ∞ = µ(T∞) ≈ 1.329 · 10−5. Which yields

Re =
10−3 · 5000 · 1
1.329 · 10−5

≈ 376930.

In [1] no information is given for the choice of the specific heat ratio or for the Prandtl number.
We chose to use the classical values γ = 1.4 and Pr = 0.71 in our work. This can be the reason
of the differences obtained between their results and ours.

In Figure 3.24 we picture the numerical results we obtained. We display the contour of temper-
ature and contour of the scaled pressure p̄ = p

ρ∞V 2
∞

. We display the same isovalues as the ones

used for the representation of the results obtained by FUN2D and LAURA in Figure 3.25. In
Figure 3.24 we also show the mesh we used for the computations and a zoom in the vicinity of
the boundary layer.

After this qualitative verification against the NASA codes we also make a more quantitative
verification. In Figure 3.26 we present the pressure coefficient obtained around the cylinder.
These results are compared with the ones obtained with FUN2D and LAURA. The pressure
coefficients are compared to the modified Newtonian law presented in equation (3.106).
In Figure 3.27 we present the heating rate coefficient obtained around the cylinder. The results
obtained with our scheme are compared with the ones obtained with FUN2D and LAURA. The
definition of the heating rate coefficient is given by

CH =
q · n

1
2ρ∞V

3
∞

. (3.155)

The results we obtain for the pressure coefficient are in good agreement with the ones obtained
by FUN2D and LAURA. It is also interesting to note that the very simple Newtonian model
also matches perfectly the results for angles below 50 degrees.
Concerning the heating rate coefficient we first need to comment the huge difference in the results

175

obtained with FUN2D and LAURA. At the leading edge FUN2D gives an overestimation of the
heating fluxes which is 50 percent higher than the fluxes obtained with LAURA, the NASA
reference code. This is why we are proud to present the results obtained with our code. First,
using the same mesh used by FUN2D we obtain a good approximation of the heating rate near
the leading edge. The difference with the results obtained on the structured and unstructured
mesh remains very small and is mainly due to the non-symmetry of the unstructured mesh.
However some differences can be spotted between our results and the results obtained with
LAURA. These differences can come from different factors. For example, the test case lacks of
some information. We have made some assumptions that can differ from the ones used in the
two NASA codes. There is also different ways of computing the heating rate coefficient, which
leads to apply the Sutherland formula with different temperatures. Due to the high variation of
the temperature in the vicinity of the boundary layer, this can explain the differences between
the heating rate coefficient obtained with LAURA and with our code.

176

Figure 3.24: Supersonic viscous flow around a cylinder.

(a) Contours of temperature. Isolines
ranging from 7000K to 12000K every
1000K.

(b) Contours of the scaled pressure p̄ =
p

ρ∞V 2
∞

. 20 isolines ranging from 0.1 to

0.9.

(c) Coarse mesh used for the com-
putations. 32 cells along the cylin-
der, 64 cells in the direction normal
to the cylinder.

(d) Zoom in the vicinity of the boundary layer. Representation
of the velocity vectors on the finest grid (64× 128).

177

Figure 3.25: Supersonic viscous flow around a cylinder. Results from the NASA codes FUN2D
and LAURA [1].

(a) Contours of temperature.

(b) Contours of the scaled pressure p̄ = p
ρ∞V 2

∞

.

(c) Presentation of the meshes used for the computations.

178

Figure 3.26: Supersonic viscous flow around a cylinder: Comparison of the pressure coefficient
obtained with FUN2D and LAURA from NASA and with our code on the same meshes.

Figure 3.27: Supersonic viscous flow around a cylinder: Comparison of the heating rate coeffi-
cient obtained with FUN2D and LAURA from NASA and with our code on the same meshes.

179

3.5 Conclusion

In the beginning of this chapter we have constructed a classical cell-centered Finite Volume
method for solving the Euler equations. This numerical scheme relies on the resolution of
mono-dimensional Riemann problems along the directions defined by the normals of the cell
interfaces. These Riemann problems are solved with the help of approximate Riemann solvers.
We showed that some of these approximate solvers could introduce nonphysical phenomenons
usually called carbuncles in the presence of strong shocks aligned with the directions of the
mesh. We have presented a possible cure to this problem through the use of rotated Riemann
solvers able to switch from an accurate Riemann solver in smooth regions to a more diffusive
solver in the presence of strong shocks. We also mentioned the higher-order space discretization
that we have developed. It is based on the classical MUSCL reconstruction method and can
be used with slope limiters developed by Barth-Jespersen, Venkatakrishnan and Michalak. We
then discussed the time discretization of the numerical scheme. We have developed a second
order explicit Runge-Kutta method and a backward Euler implicit method. Then we were able
to asses the accuracy of the our scheme by running a series of validation cases. We compared
our results with exact solutions or to the results obtained with other computational codes.
We then presented a numerical cell-centered Finite Volume method for solving the Navier-
Stokes equations. Due to the very small cell sizes needed to capture the thin boundary layers
that appears in viscous supersonic flows, the time limitation induced by the CFL condition of an
explicit scheme forced us to develop an implicit version of the scheme in order to reach steady-
state. The Euler scheme developed earlier was used as the starting point for the construction
of this numerical scheme. We then used the numerical schemes developed in chapter 1 and 2 to
discretize the viscous fluxes. We explained how to append the contributions of these schemes
to the matrix and to the right-hand side of the global system describing the implicit numerical
scheme. This had lead us to construct a new kind of cell-centered Finite Volume Navier-
Stokes numerical scheme, characterized by an accurate discretization of the viscous fluxes. We
then presented three tests cases that allowed us to assess the accuracy and robustness of the
discretization of the viscous fluxes. We finished the presentation by successfully showing some
comparative results with two CFD codes developed by NASA on a complete supersonic viscous
test case.

180

Conclusion and perspectives

General conclusion

We started this dissertation by the presentation of a Cell-Centered Finite Volume scheme which
solves anisotropic diffusion on unstructured meshes. We first presented the CCLAD scheme of
Maire and Breil [32, 90]. Then, we extended this two-dimensional scheme to three-dimensional
geometries on unstructured grids. This extension was not trivial due to some specifically two-
dimensional mesh properties used by the original scheme. Then, we have discussed the mathe-
matical properties of this scheme and showed by means of various numerical experiments that it
is a nominaly second-order accuracte numerical method. To cope with the evolution of modern
supercomputers, we presented the parallel version of this scheme. Due to a compact stencil the
efficiency of this parallel implementation is rather good, which is an important factor to take
into account when designing numerical methods.

Then, we developed a Cell-Centered Finite Volume scheme which solves tensorial diffusion
on unstructured meshes. This equation corresponds to the viscous fluxes present in the mo-
mentum equation of the Navier-Stokes equations. In order to apply the CCLAD methodology
we needed to introduce a penalization of the original constitutive law. Indeed, after study-
ing the mathematical properties of this constitutive law, we were able to conclude on its non
invertibility on the space of generic second-order tensors. Using the methodology introduced
by Arnold [16], we added a divergence free term in the constitutive law, which rendered it
invertible while having no influence on the original equation. The CCLAD methodology was
then successfully applied to this modified constitutive law, which lead us to the construction of
an innovative numerical scheme. Once again, we observed a nominally second-order accuracy
using numerous numerical tests cases. The parallel implementation was easily obtained from
the parallel CCLAD implementation, with the introduction of block-matrices and block-vectors.

Finally, we discussed of the development of a Cell-Centered Finite Volume scheme which solves
the Navier-Stokes equations on unstructured meshes. We started the Chapter by describing
the construction of a second-order scheme to solve the Euler equations. The construction of
this scheme follows the classical Cell-Centered MUSCL approach with the use of approximate
Riemann solvers. An explicit Runge-Kutta method of order two is presented along with the
implicit backward-Euler time discretization. The novelty of the methodology lies in the con-
struction of the Navier-Stokes scheme. We used the numerical schemes developed in Chapter 1
and 2 to discretize the viscous terms of the equations. The parallelization of this method was
obtain without further effort by reusing the parallel implementation of the tensorial diffusion
scheme. This Chapter ended with the presentation of various tests cases that assessed the ac-
curacy and robustness of this numerical scheme. The scheme was also successfully compared to
two state-of-the-art CFD solvers from NASA [1], on a characteristic test case.

181

To put it in a nutshell, we used the CCLAD methodology and applied it to various equations.
It allowed us to build an accurate numerical scheme to solve anisotropic diffusion equation,
which allows us to model the heat transfer inside a reentry vehicle. Due to the use of unstruc-
tured meshes, we can easily handle the complex geometries associated with the multi-materials
construction of the Thermal Protection System of this kind of objects. Using the CCLAD
methodology also allowed us to construct an original Cell-Centered Finite Volume discretiza-
tion for solving the Navier-Stokes equations. This numerical method is robust and accurate and
allows us to model the fluid flow around the reentry vehicle. The use of unstructured grids is
also very well suited to the numerical modeling of fluid flows around complex geometries.

Perspectives

Putting an end to this thesis gives me mixed feelings. On one hand it is rewarding to settle
down and take a look on all the work that has been done during these three and a half years.
Of course this manuscript represents only a subset of the work we really produced. Not all
of our developments had room in this dissertation, and, many of the paths we explored where
finally abandoned. Not knowing which road to take is one of the many things that keep research
interesting. On the other hand, it is frustrating to have to put an end to this work. We just
reached a point where very interesting topics can be studied, and, were small developments
could allow us to make a huge step forward in the modeling of the whole problem. In fact, this
may also be one of the interests of a PhD thesis, raising more questions than it answers. In the
following we give a quick overview of some of these perspectives.

In our work we used the Ideal Gas model as the Equation Of State (EOS) for the fluids.
However this model does not apply for the very high temperatures reached in hypersonic vis-
cous flows. In Anderson [15] the author presents different EOS that are better suited for the
high-temperature gas dynamics. These models produce more accurate results, the temperatures
reached in the fluid around the hypersonic cylinder test case with these kinds of methods are
much lower than the ones predicted with the Ideal Gas model. These models are called Real
Gas models and usually consider that the gas state is defined as an equilibrium of the reactions
between multiple species. These models should be straightforward to implement in our code,
where the EOS are taken into account in a generic way. A set of functions needs to be defined
in order to compute the appropriate values or derivatives to be used in the numerical scheme.

An other interesting improvement of this work would be the extension to three-dimensional
geometries of the tensorial diffusion. As we explained in Chapter 2, the methodology used
for the development of the tensorial diffusion scheme follows the construction of the CCLAD
scheme, the extension to three dimensional geometries should then be straightforward. With
these developments, we should also be able to extend easily the Navier-Stokes numerical scheme
to three dimensional geometries. Finally, we point out one more time the fact that the parallel
version of all these methods comes free of charge.

When we introduced the numerical scheme for anisotropic diffusion we explained that the pur-
pose was to compute the heat transfer that occurs inside a reentry vehicle. These heat transfer
occurs because of the heating induced by the fluid. One of the next step toward the resolution
of the global problem is the study of the coupling between the heat transfer in the solid and the
equations of Navier-Stokes. This can be done in different ways. During the construction of the
Navier-Stokes equation we build the matrix associated to the heat transfer in the fluid. Instead
of building this matrix only in the fluid we could build it in the whole domain composed of

182

the fluid and the solid. The matrix subset corresponding to the fluid could then be used in the
Navier-Stokes scheme, and the matrix subset corresponding to the solid portion could be used
“as is”. This would allow us to build a strong coupling of the heat transfer at the interface
between the fluid and the solid. An other way to perform the coupling is to do it in a weak
form. The numerical systems in the fluid and in the solid are constructed independently. Then
an iterative procedure at the interface tries to determine at the appropriate temperatures which
leads to an equilibrium of the thermal fluxes.

All these perspectives leads to the resolution of the global problem we described in the in-
troduction. Namely, the coupling of Navier-Stokes equations and heat transfer through an
ablation model. We already started to work toward this direction by studying a simplified
ablation-like problem. As a model problem for ablation we started to study the problem of Ste-
fan [91] which deals with ice melting issues. This work was done with the help of the internship
of Pierre Cantin [37]. He studied this problem in one-dimensional geometries, and managed to
develop an iterative procedure to obtain the energy balance at the moving interface between ice
and water. Following this methodology, we then have extended his work to multi-dimensions.
It lead us to the development an Arbitrary Lagrangian Eulerian version to the CCLAD scheme
that preserve the Discrete Geometrical Conservation Law on moving meshes. The mesh mo-
tion is only given by the model at the melting interface. The motion of the rest of the mesh
is performed by a numerical scheme that solve an elastodynamic problem at the nodes of the
mesh. These developments were presented in the YIC2013 conference. They still requires some
improvements but will be a good starting point for the full Navier-Stokes, ablation and heat
transfer coupling.

183

184

Appendix A

Using pyramid cells in the

three-dimensional anisotropic

diffusion scheme

Pyramid cells are required to construct a conformal partition of a computational domain made
of tetrahedral and hexahedral cells. Indeed, the pyramid cells allow to make the transition be-
tween the tetrahedral zones and the hexahedral zones. In this case, we have to slightly modify
our finite volume scheme to take into account the fact that pyramids are cells for which the
number of faces incident to one vertex is strictly greater than 3. We describe the needed mod-
ifications by considering a generic pyramid ωc and we denote by p the vertex characterized by
Fpc = 4, where Fpc denotes the number of faces of cell c impinging at point p, refer to Figure A.1.
Knowing that Fpc = 4 faces are incident to the vertex p, the decomposition of a vector in terms
of its normal components within sub-cell ωpc, refer to Paragraph 1.3.2, is not possible. Indeed,
the number of equations, i.e., Fpc = 4, being greater than the number of unknowns, i.e., the
3 Cartesian components of the vector under consideration, we end up with an overdetermined
system.

To overcome this difficulty, we subdivide the sub-cell ωpc into the Fpc = 4 fictive sub-cells
ωpcf defined by

ωpcf =
⋃

e∈E(p,f)

Ipfe, for f ∈ F(p, c).

Here, E(p, f) is the set of edges of face f impinging at point p. Namely, being given a face f
incident to the vertex p, the sub-cell ωpcf is constructed by gathering the two iota tetrahedra
attached to the two edges of face f incident to point p. We observe that there is one fictive sub-
cell, ωpcf , per face impinging at vertex p. Each fictive sub-cell ωpcf has 3 faces impinging at node

p: the outer sub-face ∂ωf
pc and two inner sub-faces which result from the subdivision. Bearing

this in mind, we can employ (1.51) to write the flux approximation within each fictive sub-cell
ωpcf . Having added the supplementary fictive sub-cells, the number of sub-cells surrounding
point p, which was equal to Cp, becomes equal to C△

p = Cp + Fpc − 1. Here, without loss of
generality, we suppose that there is only one pyramid in the set of cells surrounding vertex p.
Regarding the number of faces incident to vertex p, it was equal to Fp and becomes equal to
F△p = Fp+Fpc. Therefore, at the vertex p, the vector of sub-face temperatures, T̄ △, is of size F△

and the vector of cell-centered temperatures, T △, is of size C△

p . Utilizing the flux approximation
(1.51) and enforcing the normal flux continuity across the cell interfaces surrounding vertex p
in the same manner than in Paragraph 1.3.4 leads to the linear system satisfied by the sub-face

185

p

ωc

Figure A.1: Sketch of a pyramid cell.

temperatures

N△T̄ △ = S△T △.

Here, N△ and S△ are respectively matrices of size F△p × F△p and F△p × C△

p which are constructed
in the same way than in Paragraph 1.3.4. The matrix N△ is invertible, refer to Paragraph 1.4.1,
and the solution of the above linear system writes

T̄ △ =
(
N△
)−1

S△T △.

This formula allows to express the sub-face temperatures p in terms of the cell-centered tem-
peratures surrounding vertex p. Finally, using the same procedure than in Paragraph 1.4.2, the
contribution of cell c to the diffusion flux at vertex p writes

Qpc = −
∑

d∈C△(p)

G
p,△
cd (T△

d − T△

c), (A.1)

where C△(p) is the set of cells surrounding vertex p including the fictive sub-cells. The C△

p ×C△

p

matrix Gp,△ is given by Gp,△ =
(
S̃△

)t
(N△)−1

S△, refer to Paragraph 1.4.2 for the definition

of S̃. We point out that the cell index, d, employed in (A.1), can refer to a fictive sub-cell.
More precisely, Qpc contains contributions coming from temperatures attached to the fictive
sub-cells. These supplementary degrees of freedom are eliminated equating them to the cell
temperature Tc. This amounts to express the vector of the cell-centered temperatures including
the temperatures of the fictive sub-cells, T △ ∈ RC△

p , in terms of the initial vector of the cell-
centered temperatures T ∈ RCp as follows

T △ = PT . (A.2)

Here, P is a rectangular matrix of size C△

p × Cp. Let i (resp. j) be the generic index of a cell
in the local numbering of the cells belonging to C△(p) (resp. C(p)), then according to (A.2),
temperature T

△

i writes

T
△

i =

Cp∑

j=1

PijTj .

186

For i = 1 . . .C△

p and j = 1 . . .Cp, the generic entry of P writes

Pij =





1 if i corresponds to a fictive sub-cell of c and j corresponds to cell c,

1 if i corresponds to cell c and j corresponds to cell c,

0 elsewhere.

Finally, substituting (A.2) into (A.1) leads to the expression of Qpc in terms of cell-centered
temperatures

Qpc = −
∑

d∈C(p)

G
p
cd(Td − Tc), (A.3)

where G
p
cd = PtGp,△P. It is worth pointing out that the definition of the global diffusion matrix

remains unchanged.

We have described the above modification in the particular case of a pyramid but there is
nothing to prevent us from applying it to general polyhedral cells.

187

188

Bibliography

[1] FUN3D Web page: Hypersonic benchmarks. Available at http://fun3d.larc.nasa.

gov/chapter-9.html#hypersonic_benchmarks.

[2] PlaFrim Web page. Available at https://plafrim.bordeaux.inria.fr/doku.php?id=
start.

[3] I. Aavatsmark, T. Barkve, O. Boe, and T. Mannseth. Discretization on unstructured
grids for inhomogeneous, anistropic media. Part I: derivation of the methods. SIAM J.
Sci. Comput., 19:1700–1716, 1998.

[4] I. Aavatsmark, T. Barkve, O. Boe, and T. Mannseth. Discretization on unstructured grids
for inhomogeneous, anistropic media. Part II: discussion and numerical results. SIAM J.
Sci. Comput., 19:1717–1736, 1998.

[5] I. Aavatsmark, T. Barkve, and T. Mannseth. Control volume discretization methods for
3D quadrilateral grids in inhomogeneous, anisotropic reservoirs. SPE J., 3:146–154, 1998.

[6] I. Aavatsmark, G.T. Eigestad, B.-O. Heimsund, B.T. Mallison, J.M. Nordbotten, and
E. Øian. A new finite-volume approach to efficient discretization on challenging grids.
SPE J., 15:658–669, 2010.

[7] I. Aavvatsmark, G.T. Eigestad, R.A. Klausen, M.F. Wheeler, and I. Yotov. Convergence
of a symmetric MPFA method on quadrilateral grids. Technical Report TR-MATH 05-14,
University of Pittsburgh, 2005.

[8] R. Abgrall. Toward the ultimate conservative scheme: following the quest. J. Comput.
Phys., 167:277–315, 2001.

[9] R. Abgrall, G. Baurin, P. Jacq, and M. Ricchiuto. Some examples of high order simula-
tions parallel of inviscid flows on unstructured and hybrid meshes by residual distribution
schemes. Computers and Fluids, 61(0):6 – 13, 2012.

[10] R. Abgrall, R. Butel, P. Jacq, C. Lachat, X. Lacoste, A. Larat, and M. Ricchiuto. Implicit
strategy and parallelization of a high order residual distribution scheme. In ADIGMA -
A European Initiative on the Development of Adaptive Higher-Order Variational Methods
for Aerospace Applications, Notes on Numerical Fluid Mechanics and Multidisciplinary
Design, pages 209–224. Springer (Kluwer Academic Publishers), 2010.

[11] R. Abgrall and D. de Santis. Linear and non-linear high order accurate residual distribu-
tion schemes for the discretization of the steady compressible Navier-Stokes equations. J.
Comput. Phys. in revision.

189

[12] R. Abgrall and D. de Santis. High-order preserving residual distribution schemes for
advection-diffusion scalar problems on arbitrary grids. SIAM J. Sci. Comput., 2014. in
press.

[13] L. Agelas and R. Masson. Convergence of the finite volume MPFA O-scheme for heteroge-
neous anisotropic diffusion problems on general meshes. Comptes Rendus Mathématique,
(346):1007–1012, 2008.

[14] G. Amdahl. Validity of the single processor approach to achieving large-scale computing
capabilities. AFIPS Conference Proceedings, (30):483–485, 1967.

[15] J. D. Anderson. Hypersonic and high-temperature gas dynamics. AIAA education series.
American Institute of Aeronautics and Astronautics, 2006.

[16] D. N. Arnold and R. S. Falk. A new mixed formulation for elasticity. Numer. Math,
53:1–2, 1988.

[17] S. Atzeni and J. Meyer-Ter-Vehn. The physics of inertial fusion. Oxford Science publica-
tions, Oxford University Press, 2004.

[18] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical
Report ANL-95/11 - Revision 3.3, Argonne National Laboratory, 2012.

[19] S. Balay, J. Brown, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C.
McInnes, B.F. Smith, and H. Zhang. PETSc Web page, 2012. Available at http:

//www.mcs.anl.gov/petsc.

[20] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of par-
allelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and
H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202.
Birkhäuser Press, 1997.

[21] T. J. Barth. Numerical methods for conservation laws on structured and unstructured
meshes. Technical report, VKI Lecture Series, 2003.

[22] T. J. Barth and D. C. Jespersen. The design and application of upwind schemes on
unstructured meshes. In AIAA paper 89-0366, 27th Aerospace Sciences Meeting, Reno,
Nevada, 1989.

[23] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for
the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys.,
131(2):267–279, 1997.

[24] F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution of the
2D Euler equations. J. Comput. Phys., 138(2):251–285, 1997.

[25] P. Batten, N. Clarke, C. Lambert, and D. M. Causon. On the choice of wavespeeds for
the HLLC Riemann solver. J. Comput. Phys., 18:1553–1570, 1997.

[26] P. Batten, M.A. Leschziner, and U.C. Goldberg. Average-state Jacobians and implicit
methods for compressible viscous and turbulent flows. J. Comput. Phys., 137(1):38 – 78,
1997.

190

[27] M. Berger, S. M. Murman, and M. J. Aftosmis. Analysis of slope limiters on irregular
grids. 43rd AIAA Aerospace Sciences Meeting, 2005.

[28] D. Bianchi. Modeling of ablation phenomena in space applications. PhD thesis, Universitá
degli Studi di Roma, 2007.

[29] D. Bianchi, F. Nasuti, and E. Martelli. Navier-Stokes simulations of hypersonic flows with
coupled graphite ablation. Journal of Spacecraft and Rockets, 47(4), 2010.

[30] M. Billaud, G. Gallice, and B. Nkonga. A simple stabilized finite element method for
solving two phase compressible-incompressible interface flows. Comput. Methods Appl.
Mech. Engrg., 200(9-12):1272 – 1290, 2011.

[31] P. Birken. Numerical methods for the unsteady compressible Navier-Stokes equations. Hdr
thesis, Universität Kassel, 2012.

[32] J. Breil and P.-H. Maire. A cell-centered diffusion scheme on two-dimensional unstructured
meshes. J. Comput. Phys., 224(2):785–823, 2007.

[33] F. Brezzi, K. Lipnikov, M. Shashkov, and V. Simoncini. A new discretization methodology
for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech.
Engrg., 196:3682–3692, 2007.

[34] A. Burbeau, P. Sagaut, and C. H. Bruneau. A problem-independent limiter for high-order
Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys., 169:111–150, 2011.

[35] D.E. Burton. Multidimensional discretization of conservation laws for unstructured poly-
hedral grids. Technical Report UCRL-JC-118306, Lawrence Livermore National Labora-
tory, 1994.

[36] J.-P. Caltagirone. Conservation laws in discrete mechanics. Technical report, Uni-
versité de Bordeaux, Institut de Mécanique et d’Ingénierie, 2014. http://hal.

archives-ouvertes.fr/hal-00927279.

[37] P. Cantin. Méthode des Volumes Finis sur maillage mobile pour la résolution de problèmes
issus de la rentrée atmosphérique. Projet de Fin d’Études, Ensta-Supaero, 2013.

[38] A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Mechanics.
Springer, third edition, 2010.

[39] B. Cockburn, G.E. Karniadakis, and C.W. Shu. Discontinuous Galerkin methods: theory,
computation and application. Lecture notes in computational science and engineering,
2000. Springer, Berlin.

[40] S. F. Davis. A rotationally biased upwind difference scheme for the Euler equations. J.
Comput. Phys., 56(1):65 – 92, 1984.

[41] B. Diskin, J. L. Thomas, E. J. Nielsen, H. Nishikawa, and J. A. White. Comparison of
node-centered and cell-centered unstructured finite-volume discretizations. part I: Viscous
fluxes. American Institute of Aeronautics and Astronautics, 48:1326–1338, 2010.

[42] K. Domelovo and P. Omnes. A finite volume for the Laplace equation on almost arbitrary
two-dimensional grids. Mathematical Modelling and Numerical Analysis, 39(6):1203–1249,
2005.

191

[43] B. Einfeldt. On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal., 25:294–
318, 1988.

[44] L. Euler. Principes généraux du mouvement des fluides. Mémoires de l’Academie des
Sciences de Berlin, 11:274–315, 1757.

[45] R. Eymard, T. Gallouët, and R. Herbin. Finite Volume methods. Handbook of Numerical
Analysis. Elsevier Sciences, 2000.

[46] L. Flandrin. Cell-centered methods for Euler and Navier-Stokes computations on unstruc-
tured meshes. PhD thesis, Université Bordeaux I, 1995.

[47] G. Gallice. Schémas de type godunov entropiques et positifs préservant les disconti-
nuités de contact. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics,
331(2):149 – 152, 2000.

[48] G. Gallice. Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec
terme source. Comptes Rendus Mathématique, 334(8):713 – 716, 2002.

[49] P. Germain. Mécanique, volume I. Ellipses, 1986.

[50] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh genera-
tor with built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering, 79(11):1309–1331, 2009.

[51] U. Ghia, S. Bayyuk, S. Habchi, C. Roy, T. Shih, T. Conlisk, C. Hirsch, and J. M. Powers.
The AIAA code verification project - test cases for CFD code verification. Aerospace
Sciences Meetings, 2010.

[52] E. Godlewski and P.-A. Raviart. Hyperbolic Systems of Conservation Laws. Springer
Verlag, 2000.

[53] S. K. Godunov. A difference scheme for numerical solution of discontinuous solution of
hydrodynamic equations. Math. Sbornik, 47:271–306, 1959.

[54] D. Gunasekera, P. Childs, J. Herring, and J. Cox. A multi-point flux discretization
scheme for general polyhedral grids. In Proceedings of the SPE International Oil and Gas
Conference and Exhibition in China, number SPE 48855, Beijing, China, 1998.

[55] M.E. Gurtin, E. Fried, and L. Anand. The Mechanics and Thermodynamics of Continua.
Cambridge University Press, 2009.

[56] T. Harribey. Simulation numérique directe de la turbulence en présence d’une paroi ab-
latable. PhD thesis, ISAE Toulouse, 2011.

[57] A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys.,
49(3):357 – 393, 1983.

[58] A. Harten, B. Engquist, S. Osher, and S.R. Chakravarthy. Uniformly high order accurate
essentially non-oscillatory schemes, III. J. Comput. Phys., 71(2):231 – 303, 1987.

[59] A. Harten, P.D. Lax, and B. van Leer. On upstream differencing and Godunov-type
schemes for hyperbolic conservation laws. SIAM Review, 25(1):35–61, 1983.

[60] R. Hartmann. Adaptive discontinuous Galerkin methods with shock-capturing for the
compressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 51:1131–1156, 2006.

192

[61] P. Hénon, P. Ramet, and J. Roman. On finding approximate supernodes for an efficient
block-ILU(k) factorization. Parallel Computing, 34(6 - 8):345 – 362, 2008. Parallel Matrix
Algorithms and Applications.

[62] F. Hermeline. A finite volume method for the approximation of diffusion operators on
distorded meshes. J. Comput. Phys., 160:481–499, 2000.

[63] F. Hermeline. Approximation of 2-D and 3-D diffusion operators with variable full tensor
coefficients on arbitrary meshes. Comput. Methods Appl. Mech. Engrg., 196:2497–2526,
2007.

[64] F. Hermeline. A finite volume method for approximating 3D diffusion operators on general
meshes. J. Comput. Phys., 228:5763–5786, 2009.

[65] F. Hermeline. Un point sur les méthodes DDFV, 2010. Advanced methods for the diffusion
equation on general meshes; Université Pierre et Marie Curie, Paris France, July 2010;
available at http://www.ann.jussieu.fr/~despres/WEB/Talks/hermeline.pdf.

[66] C. Hirsch. Numerical computation of internal and external flows. Vol. 2. , Computational
methods for inviscid and viscous flows. Wiley series in numerical methods in engineering.
J. Wiley, 1990.

[67] C. Hirsch. Numerical computation of internal and external flows. Vol. 1. , The Fun-
damentals of Computational Fluid Dynamics. Butterworth-Heinemann, second edition,
2007.

[68] J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird. Molecular theory of gases and liquids.
Wiley, 1954.

[69] R. Huart. Simulation numérique d’écoulements magnétohydrodynamiques par des schémas
distribuant le résidu. PhD thesis, Université Bordeaux I, 2012.

[70] T. J.R. Hughes. Recent progress in the development and understanding of SUPG methods
wi th special reference to the compressible Euler and Navier-Stokes equations. Int. J.
Numer. Meth. Fluids, 7(11):1261–1275, 1987.

[71] T. J.R. Hughes, L. P. Franca, and G. M. Hulbert. A new finite element formulation
for computational fluid dynamics: Viii. the galerkin/least-squares method for advective-
diffusive equations. Comput. Methods Appl. Mech. Engrg., 73(2):173 – 189, 1989.

[72] J. Hyman, J.E. Morel, M. Shashkov, and S. Steinberg. Mimetic finite difference methods
for diffusion equations. Computational Geosciences, 6:333–352, 2002.

[73] J. Hyman, M. Shashkov, and S. Steinberg. The numerical solution of diffusion problems
in strongly heterogeneous non-isotropic materials. J. Comput. Phys., 132:130–148, 1997.

[74] P. Jacq, P.-H. Maire, and R. Abgrall. High-order cell-centered finite volume scheme for
simulating three-dimensional anisotropic diffusion equations on unstructured grids. Com.
in Comp. Phys., 16(4):841–891, 2014.

[75] G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted ENO schemes. J.
Comput. Phys., 126(1):202 – 228, 1996.

[76] S. D. Kim, B. J. Lee, H. J. Lee, and I.-S. Jeung. Robust HLLC Riemann solver with
weighted average flux scheme for strong shock. J. Comput. Phys., 228(20):7634 – 7642,
2009.

193

[77] L. Landau and E. Lifchitz. Mécanique des Fluides. Mir, 1989.

[78] P. S. Laplace. Sur la vitesse du son dans l’air et dans l’eau. Ann. de Chim. et de Phys.
iii, 238, 1816.

[79] A. Larat. Conception and analysis of very high order distribution schemes: Application
to fluid mechanics. PhD thesis, Université Bordeaux I, 2009.

[80] M. Latige. Simulation numérique de l’ablation liquide. PhD thesis, Université Bordeaux
I, 2013.

[81] L. Lees. Hypersonic flow. Fifth International Aeronautical Conference, Los Angeles, pages
241–276, 1955.

[82] R. J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge University
Press, 2002.

[83] D. W. Levy, K. G. Powell, and B. van Leer. Use of a rotated Riemann solver for the
two-dimensional Euler equations. J. Comput. Phys., 106(2):201 – 214, 1993.

[84] K. Lipnikov, J.E. Morel, and M. Shashkov. Mimetic finite difference methods for diffusion
equations on non-othogonal non-conformal meshes. J. Comput. Phys., 199:589–597, 2004.

[85] K. Lipnikov, M. Shashkov, and D. Svyatskiy. The mimetic finite difference discretization
of diffusion problem on unstructured polyhedral meshes. J. Comput. Phys., 211:473–491,
2006.

[86] K. Lipnikov, M. Shashkov, and I. Yotov. Local flux mimetic finite difference methods.
Numer. Math, 112(1):115–152, 2009.

[87] X.-D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes. J.
Comput. Phys., 115(1):200 – 212, 1994.

[88] R. Löhner, K. Morgan, and O.C. Zienkiewicz. An adaptive finite element procedure for
compressible high speed flows. Comput. Methods Appl. Mech. Engrg., 51(1-3):441–465,
1985.

[89] P.-H. Maire. Contribution to the numerical modeling of Inertial Confinement Fusion.
Habilitation à diriger des recherches, Université Bordeaux I, 2011.

[90] P.-H. Maire and J. Breil. A high-order finite volume cell-centered scheme for anisotropic
diffusion on two-dimensional unstructured grids. J. Comput. Phys., 224(2):785–823, 2011.

[91] A.M. Meirnanov. The Stefan Problem. Walter de Gruyter Edition, 1992.

[92] K. Michalak and C. Ollivier-Gooch. Limiters for unstructured higher-order accurate so-
lutions of the Euler equations. 46th AIAA Aerospace Sciences Meeting, 2008.

[93] J.E. Morel, R. M. Roberts, and M. Shashkov. A local support-operators diffusion dis-
cretization scheme for quadrilateral r-z meshes. J. Comput. Phys., 144:17–51, 1998.

[94] W.A. Mulder and B. van Leer. Experiments with implicit upwind methods for the Euler
equations. J. Comput. Phys., 59:232–246, 1985.

194

[95] K. Nakajima, H. Nakamura, and T. Tanahashi. Parallel iterative solvers with localized ilu
preconditioning. In Bob Hertzberger and Peter Sloot, editors, High-Performance Comput-
ing and Networking, volume 1225 of Lecture Notes in Computer Science, pages 342–350.
Springer Berlin Heidelberg, 1997.

[96] H. Nishikawa. I do like CFD. Free CFD Codes Web page. Available at http://www.

cfdbooks.com/cfdcodes.html.

[97] H. Nishikawa and K. Kitamura. Very simple, carbuncle-free, boundary-layer-resolving,
rotated-hybrid Riemann solvers. J. Comput. Phys., 227(4):2560 – 2581, 2008.

[98] M. Pal and M.G. Edwards. Quasi monotonic continuous Darcy-flux approximation for
general 3-D gids on any element type. In Proceedings of the SPE International Reservoir
Simulation Symposium, number SPE 106486, Houston, USA, 2007.

[99] M. Pandolfi and D. D’Ambrosio. Numerical instabilities in upwind methods: Analysis
and cures for the carbuncle phenomenon. J. Comput. Phys., 166(2):271 – 301, 2001.

[100] F. Pellegrini. Scotch Web page, 2012. Available at https://gforge.inria.fr/

projects/scotch/.

[101] C. Le Potier. Schéma volumes finis monotone pour des opérateurs de diffusion fortement
anisotropes sur des maillages de triangles non structurés. Comptes Rendus Mathématique,
341:787–792, 2005.

[102] C.B. Allen P.R. Ess. Parallel computation of two-dimensional laminar inert and chemically
reactive multi-species gas flows. International Journal of Numerical Methods for Heat and
Fluid Flow, 15:228–256, 2005.

[103] J.J. Quirk. A contribution to the great Riemann solver debate. International Journal for
Numerical Methods in Fluids, (18):555–574, 1994.

[104] Y.-X. Ren. A robust shock-capturing scheme based on rotated Riemann solvers. Com-
puters and Fluids, 32(10):1379 – 1403, 2003.

[105] M. Ricchiuto. Construction and Analysis of Compact Residual Discretizations for Con-
servation Laws on Unstructured Meshes. PhD thesis, Von Karman Institute for Fluid
Dynamics, 2005.

[106] M. Ricchiuto. Contributions to the development of residual discretizations for hyperbolic
conservation laws with application to shallow water flows. Hdr thesis, Université Bordeaux
I, 2011.

[107] P. L. Roe and J. Pike. Efficient construction and utilisation of approximate Riemann
solutions. In Proc. Of the Sixth Int’L. Symposium on Computing Methods in Applied
Sciences and Engineering, VI, pages 499–518. North-Holland Publishing Co., 1985.

[108] P.L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J.
Comput. Phys., 43(2):357 – 372, 1981.

[109] P.L. Roe. Fluctuations and signals – a framework for numerical evolution problems. Nu-
merical Methods for Fluid Dynamics, K.W.Morton, M.J.Baines (Eds.), Academic Press,
pages 219–257, 1982.

195

[110] J. Salençon. Mécanique des milieux continus, volume I, Concepts généraux. Editions de
l’Ecole Polytechnique, 2005.

[111] D. De Santis. Development of a high-order residual distribution method for Navier-Stokes
and RANS equation. PhD thesis, Université Bordeaux I, 2013.

[112] J. Serrin. Mathematical Principles of Classical Fluid Mechanics. In Handbuch der Physik,
volume VIII, pages 125–263. Springer Verlag, 1959.

[113] M. Shashkov. Conservative Finite-Difference Methods on General Grids. CRC Press,
1996.

[114] M. Shashkov and S. Steinberg. Support-operator finite-difference algorithms for general
elliptic problems. J. Comput. Phys., 118:131–151, 1995.

[115] M. Shashkov and S. Steinberg. Solving diffusion equations with rough coefficients in rough
grids. J. Comput. Phys., 129:383–405, 1996.

[116] C.-W. Shu and B. Cockburn. The Runge-Kutta discontinuous Galerkin method for con-
servation laws V: Multidimensional systems. J. Comput. Phys., 141(2):199–224, 1998.

[117] A.J.M. Spencer. Continuum Mechanics. Dover, 2004.

[118] P. Le Tallec. Modélisation et calcul des milieux continus. Editions de l’Ecole Polytech-
nique, 2009.

[119] J.-M. Thomas and D. Trujillo. Mixed finite volume methods. International Journal for
Numerical Methods in Engineering, 46:1351–1366, 1999.

[120] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics : A Practical
Introduction. Springer, third edition, 2009.

[121] E.F. Toro. A fast Riemann solver with constant covolume applied to the random choice
method. Int. J. Numer. Meth. Fluids, 9:1145–1164, 1989.

[122] E.F. Toro. A Weighted Average Flux method for hyperbolic conservation laws. Proc. R.
Soc. Lond. A, 423(1865):401–418, 1989.

[123] E.F. Toro. The weighted average flux method applied to the Euler equations. Philos.
Trans. R. Soc. Lond. A, 341(1662):499–530, 1992.

[124] E.F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the HLL-
Riemann solver. Shock Waves, 4(1):25–34, 1994.

[125] E.F. Toro and V.A. Titarev. ADER schemes for scalar non-linear hyperbolic conservation
laws with source terms in three-space dimensions. J. Comput. Phys., 202(1):196 – 215,
2005.

[126] J.-M. Vaassen, D. Vigneron, and J.-A. Essers. An implicit high order finite volume scheme
for the solution of 3d Navier- Stokes equations with new discretization of diffusive terms.
Journal of Computational and Applied Mathematics, 215(2):595 – 601, 2008.

[127] H.A. van der Vorst. Bi-CGStab: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM J. Sci. and Stat. Comput., 13(2):631–644,
1992.

196

[128] B. van Leer. Towards the ultimate conservative difference scheme. IV-a new approach to
numerical convection. Lecture Notes in Physics, 23:276–299, 1977.

[129] A. Velghe. Modélisation de l’interaction entre un écoulement turbulent et une paroi ablat-
able. PhD thesis, INP Toulouse, 2007.

[130] V. Venkatakrishnan. Convergence to steady state solutions of the Euler equations on
unstructured grids with limiters. J. Comput. Phys., 118:120–130, 1995.

[131] V. Venkatakrishnan, S. Allmaras, D. Kamenetskii, and F. Johnson. Higher order schemes
for the compressible Navier-Stokes equations. American Institute of Aeronautics and
Astronautics, 2003. 16th AIAA Computational Fluid Dynamics Conference.

[132] D. Vigneron, J.-M. Vaassen, and J.-A. Essers. An implicit high order cell-centered finite
volume scheme for the solution of three-dimensional Navier-Stokes equations on unstruc-
tured grids. Computational Fluid and Solid Mechanics, pages 211–230, 2005. Third MIT
Conference on Computational Fluid ans Solid Mechanics.

[133] M. Vohralik. Equivalence between lowest-order mixed finite element and multi-point finite
volume methods on simplicial meshes. Mathematical Modelling and Numerical Analysis,
40(2):367–391, 2006.

[134] F. De Vuyst. Stable and accurate hybrid finite volume methods based on pure convexity
arguments for hyperbolic systems of conservation law. J. Comput. Phys., 193(2):426 –
468, 2004.

[135] Z.J. Wang. High-order methods for the Euler and Navier-Stokes equations on unstructured
grids. Progress in Aerospace Sciences, 43(1-3):1 – 41, 2007.

[136] C. Wervaecke. Simulation d’écoulements turbulents compressibles par une méthode
d’éléments finis stabilisés. PhD thesis, Université Bordeaux I, 2010.

[137] L.T. Yang and R.P. Brent. The improved BiCGStab method for large and sparse unsym-
metric linear systems on parallel distributed memory architectures. In Algorithms and
Architectures for Parallel Processing, 2002. Proceedings. Fifth International Conference
on, pages 324 –328, oct. 2002.

[138] Ya. B. Zel’dovich and Yu. P. Raizer. Physics of Shock Waves and High-Temperature
Hydrodynamic Phenomena, volume I. Academic Press, 1967.

197

