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Thèse soutenue par Julyan Arbel

pour le titre de Docteur en Mathématiques Appliquées
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Résumé

Un résumé des différents chapitres est proposé ci-dessous, et se trouve galement en dbut

de chaque chapitre.

Chapitre 1 : La thèse est divisée en deux parties portant sur deux aspects relativement

différents des approches bayésiennes non-paramétriques. Dans la première partie, nous

nous intéressons aux propriétés fréquentistes de lois a posteriori pour des paramètres

appartenant à l’ensemble des suites réelles de carré sommable. Dans la deuxième par-

tie, nous nous intéressons à des approches non-paramétriques modélisant des données

d’espèces et leur diversité en fonction de certaines variables explicatives. La présente

introduction reflète cette dichotomie. Dans un premier temps, nous rappelons les princi-

paux résultats concernant les propriétés fréquentistes asymptotiques des lois a posteriori

en dimension infinie. Puis nous décrivons les outils autour des modèles de mesures de

probiblité aléatoires qui nous servirons dans la modélisation de la diversité d’espèces.

Chapitre 2 (co-écrit avec Ghislaine Gayraud et Judith Rousseau) : On propose une

forme générique de distributions a priori pour obtenir des résultats de vitesse de contrac-

tion de la loi a posteriori dans plusieurs modèles. Ces lois a priori sont appelées sieve

priors. Elles permettent de plus d’obtenir des vitesses qui s’adaptent à la régularité

du paramètre, sans que cette régularité soit utilisée dans la méthode d’estimation. Les

résultats sont illustrés sur les modèles de densité, de régression, d’autorégression d’ordre

1 et de bruit blanc Gaussien. On montre en outre qu’une approche adaptative pour

une fonction de perte donnée (par exemple globale) peut s’avérer sous-optimale pour

une autre fonction de perte (par exemple locale) dans le cas du modèle de bruit blanc

Gaussien.

Chapitre 3 (co-écrit avec Judith Rousseau et Kerrie Mengersen) : On introduit dans ce

chapitre un modèle bayésien non-paramétrique pour étudier de manière probabiliste des

données d’espèces par site, c’est à dire des données de population pour lesquelles les indi-

vidus observés par site par site appartiennent à différentes espèces. Ces données peuvent

être représentées par une matrice constituée du nombre d’occurrences de chaque espèce

sur chaque site. Notre but est d’étudier l’impact de facteurs, ou variables explicatives,
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additionnels, tels que des variables environnementales, sur la structure des données, et

en particulier sur la diversité. A cet effet, on introduit de la dépendance a priori selon

les variables explicatives, et on montre que cela améliore l’inférence a posteriori. On

utilise une version dépendante de la distribution GEM, qui représente la distribution

des poids du processus de Dirichlet, de la même manière que sont dfinis les processus

de Dirichlet dépendants. La loi a priori est définie à partir de la construction stick-

breaking, dans laquelle on obtient les poids en transformant un processus gaussien, et la

dépendance découle de la fonction de variance-covariance de ce dernier. On explicite des

propriétés de distribution du modèle, telle que sa fonction de probabilité de partition

échangeable jointe. On décrit un algorithme de Monte-Carlo par châıne de Markov pour

l’échantillonnage a posteriori, ainsi que l’échantillonnage de la loi prédictive pour des

facteurs inobservés. Les deux algorithmes sont illustrés sur les données simulées et sur

des données d’expériences réalisées par des prélèvements dans le sol en Antarctique.

Chapitre 4 (co-écrit avec Judith Rousseau, Kerrie Mengersen, Ben Raymond et Cather-

ine King) : On étudie dans ce chapitre le modèle bayésien non-paramétrique du

Chapitre 3 dans une perspective plus appliquée, avec comme domaine d’application

l’écotoxicologie. Ici, les espèces sont des microbes, et le facteur est une variable de con-

tamination environnementale importante appelée Hydrocarbure de Pétrole Total. On

étudie son impact sur les données sous des angles différents: en terme de diversité de

Shannon, de clustering (en des groupes de microbes qui réagissent de manière simi-

laire au contaminant), et en terme de décroissance de la proportion relative des espèces

(l’estimation de quantités appelées IC50, qui correspondent au niveau de contamination

pour lequel la proportion relative est divisée par deux par rapport à la proportion rel-

ative à une valeur de contamination de référence). Ce modèle, étudié sur des données

microbiennes mesurées dans le sol en Antarctique, est applicable plus généralement à

de nombreux autres problèmes dans lesquels la structure des données et les questions

inférentielles sont similaires.

Chapitre 5 : Ce chapitre présente des travaux en lien avec la statistique bayésienne

non-paramétrique qui ont été commencés pendant la thèse et seront poursuivis par la

suite. Le premier projet concerne l’estimation adaptative spatiale. On se place dans

le cas où la régularité du paramètre varie dans l’espace de définition de ce dernier.

On recherche des lois a priori qui sont adaptatives optimales dans toutes les régions

de l’espace, c’est à dire dont la loi a posteriori converge avec une vitesse associée à la

régularité de la région de l’espace considérée. Le second projet concerne l’estimation

de densité dans un cadre multivarié dans lequel les variables ou composantes des ob-

servations ne sont pas directement comparables. Le cas de grandeurs physiques avec

des unités de mesure différentes, tel que l’espace des phases constitué des variables de
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position et de moment, représentent un exemple typique. On montre par des simula-

tions que l’estimation de la densité à partir de mélanges de processus de Dirichlet ont

des propriétés d’invariance qui font de ces mélanges une solution adaptée à ce type de

problèmes.





Abstract

A summary of each chapter, which can also be found in the abstract of some of them,

is proposed below.

Chapter 1: This thesis is divided in two parts on rather different aspects of Bayesian

statistics. In the first part, we deal with frequentist properties of posterior distributions

for parameters which belong to the space of real square sommable sequences. In the

second part, we deal with nonparametric approaches modelling species data and the di-

versity of these data with respect to covariates. This introduction reflects this dichotomy.

First, we recall the most important results about asymptotic frequentist properties of

posterior distributions in infinite dimension. Second, we describe the tools based on

random probability measures that will be utilised in modelling species diversity.

Chapter 2 (joint work with Ghislaine Gayraud and Judith Rousseau): A generic shape

of prior distributions which result in optimal posterior contraction rate in various models

is proposed. These prior distributions are called sieve priors. These allow derivation of

rates which are adaptive to the parameter smoothness, without using this smoothness

knowledge in the estimation. The results are illustrated on the density, regression,

order 1 autoregressive, and Gaussian white noise models. We show in addition that an

adaptive approach for a given loss function (for instance global) can prove to be severely

sub-optimal for another loss function (for instance local) in the case of the Gaussian

white noise model.

Chapter 3 (joint work with Judith Rousseau and Kerrie Mengersen): We introduce

a dependent Bayesian nonparametric model for the probabilistic modelling of species-

by-site data, i.e. population data where observations at different sites are classified in

distinct species. These data can be represented as a frequency matrix giving the number

of times each species is observed in each site. Our aim is to study the impact of additional

factors (covariates), for instance environmental factors, on the data structure, and in

particular on the diversity. To that purpose, we introduce dependence a priori across the

covariates, and show that it improves posterior inference. We use a dependent version of

the GEM distribution, which is the distribution of the weights of the Dirichlet process,
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in the same lines as the Dependent Dirichlet process is defined. The prior is thus defined

via the stick-breaking construction, where the weights are obtained by transforming a

Gaussian process, and the dependence stems from the covariance function of the latter.

Some distributional properties of the model are derived, such as its joint exchangeable

partition probability function. A Markov chain Monte Carlo algorithm for posterior

sampling is described, along with the sampling scheme of the predictive distribution for

unobserved factors. Both samplers are illustrated on simulated data and on a real data

set obtained in experiments conducted in Antarctica soil.

Chapter 4 (joint work with Judith Rousseau, Kerrie Mengersen, Ben Raymond and

Catherine King): We study the Bayesian nonparametric model of Chapter 3 from a

more applied perspective, with a focus in the field of ecotoxicology. Here, the species

are microbes, and the factor is an important environmental contaminant called Total

Petroleum Hydrocarbon. Its impact on the data is studied from different points of view:

in term of Shannon diversity, of clustering (into groups with similar behaviour with

respect to the contaminant), and of species relative proportion decrease (estimation of

a quantity called IC50, the covariate level for which the relative proportion is divided by

2 compared to the relative proportion at a given covariate value). The model, which is

studied on soil microbial data collected in Antarctica, is broadly applicable to a range

of other problems with the same data structure and inferential requirements.

Chapter 5: We present some work in Bayesian nonparametric statistic which were

started during the PhD and will be continued afterwards. The first project deals with

spatially adaptive estimation. The typical framework is the estimation of parameters

with a smoothness that varies over its domain. We are looking for priors which are

optimal adaptive in any region of the domain, that is to say whose posterior distribution

contracts with a rate which depends on the parameter smoothness specific to any region

of the domain. The second project deals with density estimation in a multivariate space

where the variables are not directly comparable. The typical case relates to physical

quantities with different units of measurement, such as the phase space which consists

of position and momentum variables. We show by a simulation study that density

estimation based on Dirichlet process mixtures have appropriate invariance properties

which make these mixtures good candidates for this kind of problems.
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du Crest ou de l’Insee, ou rencontrés en séjour à Rochebrune, Valencià, Milan, Pavie,
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Chapter 1

Introduction

La thèse est divisée en deux parties portant sur deux aspects relativement différents

des approches bayésiennes non-paramétriques. Dans la première partie, nous nous

intéressons aux propriétés fréquentistes de lois a posteriori pour des paramètres appar-

tenant à l’ensemble des suites réelles de carré sommable. Dans la deuxième partie, nous

nous intéressons à des approches non-paramétriques modélisant des données d’espèces

et leur diversité en fonction de certaines variables explicatives. La présente introduc-

tion reflète cette dichotomie. Dans un premier temps, nous rappelons les principaux

résultats concernant les propriétés fréquentistes asymptotiques des lois a posteriori en

dimension infinie. Puis nous décrivons les outils autour des modèles de mesures de

probiblité aléatoires qui nous servirons dans la modélisation de la diversité d’espèces.
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Chapter 1. Introduction 14

1.1 General introduction

Bayesian nonparametric modelling has recently attracted a lot of attention. Bernardo

and Smith (2009) define a “Bayesian nonparametric model” as a probability model with

infinitely many parameters, also referred to as a model with massively many parame-

ters in Müller and Mitra (2013). Bayesian nonparametric methods are motivated by

the aim of considering models that are not limited to finite parametrizations. Data

Y(n) = (Y1, . . . , Yn) ∼ P
(n)
θ is modelled by some infinite dimensional parameter θ in

a space Θ. We want to make inference typically on a curve, eg a density, a spectral

density, a regression function, a cumulative distribution function, a hazard function, a

link function, etc. The basic steps of the Bayesian machinery consist in (i) construct-

ing a prior distribution Π on the space Θ of infinite dimension ; (ii) computing the

posterior distribution Π
(
θ|Y(n)

)
. Practically, step (ii) involves Monte Carlo methods

such as Markov chain Monte Carlo algorithms (MCMC) or sequential Monte Carlo algo-

rithms. Theoretically, the performance of estimation can be established via asymptotic

properties such as consistency, rates of convergence, Bernstein-von Mises property, etc.

Loosely speaking, consistency means that if the data are generated according to a model

with a true parameter θ0, then the posterior Π
(
θ|Y(n)

)
should concentrate around θ0

as the number of observations n goes to infinity. The rate of contraction of the posterior

distribution characterizes how fast the convergence operates.

This introductory chapter reviews general aspects of Bayesian nonparametric methods.

Their theoretical large sample properties are presented in Section 1.2, while Section 1.3

is devoted to methodological aspects of random probability measures. The monograph

Ghosh and Ramamoorthi (2003) covers many aspect of Bayesian asymptotic statistics.

Surveys of Bayesian nonparametric models include Walker et al. (1999), Müller and

Quintana (2004), and a broad cover on random probability measures models can be

found in the monograph Hjort et al. (2010).

1.2 Large sample properties

We present in this section general theoretical results on the asymptotic behaviour of

posterior distributions in nonparametric models. Looking at the asymptotic behaviour

of the posterior distribution helps understanding how the prior acts on the likelihood.

In particular it sheds light on the most influential aspects of the prior, which are those

which do not disappear asymptotically. Typically in finite dimensional models, to first

order, the posterior is asymptotically independent of the prior and any prior leads to

asymptotically equivalent inference. In infinite dimensional models, this is not the case
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any more and the prior does not looses its influence, even to first order. Understanding its

influence is thus of crucial importance, given the complexity of the models and studying

the frequentist properties of the posterior distribution is one way to do so. Besides it

allows for a comparison with frequentist estimators.

1.2.1 Posterior consistency and posterior concentration rates

We now present briefly the various notions of consistency that are encountered in this

thesis. Let Y and Θ be complete and separable metric spaces endowed with their Borel

σ–algebras. We assume that observations Y(n) are random variables on Y. Let d( · , · )
be a loss function over Θ, and U any neighbourhood of a given point θ0 ∈ Θ associated to

this loss function, in other words U has the form U = {θ; d(θ0,θ) < ǫ}, for some ǫ > 0.

We then write U = Uǫ to make this dependence explicit. The loss d(., .) function can

be a metric, such as the Hellinger metric, see Equation (1.3), in the case of independent

and identically distributed (i.i.d.) observations when the parameter is the density of

the observations or a semi-parametric loss where only some aspects of the model are

of interest, such as the square error loss of a linear functional of the parameter. Let

p
(n)
θ denote the density of the probability measure P

(n)
θ with respect to some measure

µ (independent of θ), the posterior probability of any measurable subset B of Θ and

associated to a prior distribution Π on Θ can be written as

Π(B|Y(n)) =

∫
B p

(n)
θ (Y(n))dΠ(θ)

∫
Θ p

(n)
θ (Y(n))dΠ(θ)

. (1.1)

In the case of independent and identically distributions, for instance, θ = f the density

with respect to a given measure say dx and p
(n)
θ (Y(n)) =

∏n
i=1 f(Yi). We can then define

posterior consistency with respect to d(., .) in the following way (see for instance Ghosh

and Ramamoorthi, 2003).

Definition 1.1. The posterior distribution is said to be consistent at θ0 ∈ Θ if for any

ǫ > 0, the posterior probability of an ǫ neighbourhood of θ0, Uǫ = {θ ∈ Θ; d(θ0,θ) < ǫ},
converges to 1 under P

(n)
θ0

:

Π
(
Uǫ|Y(n)

)
→ 1,

either in P
(n)
θ0

-probability, or P
(∞)
θ0

almost surely, as n tends to infinity.

Note that speaking of a true parameter means we adopt what is called a frequentist-

Bayesian point of view. An argument for consistency is that it allows a correct iden-

tification of the mechanism that generated the data when unlimited data is available.

In particular when posterior consistency is not verified, interpretation of the posterior
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distribution is problematic. Moreover, in the case of exchangeable data Diaconis and

Freedman (1986) have shown that posterior consistency is equivalent to weak merging

of the posterior distributions associated to any proper prior. An early result of Doob

(1949) implies that when d(., .) is a metric and (Θ, d) is separable and complete and un-

der ergodicity conditions, any posterior distribution is consistent at θ0, Π almost surely.

This is a weak result since it does not provide the identification of the set of θ0 ∈ Θ

such that posterior consistency holds at θ0.

General approaches to prove consistency are due to Schwartz (1965) in the case of inde-

pendent and identically distributed observations, and by Barron (1988) in a generalized

case. These are based on two types of conditions, (i) conditions on the size of the model,

and (ii) prior support conditions for the Kullback–Leibler divergence (abbreviated KL).

Loosely speaking, Schwartz’s theorem states that the posterior is consistent if the model

is controlled by some tests, and the support of the prior is large in the sense of KL.

Recall that the Kullback–Leibler divergence between the distributions P
(n)
θ1

and P
(n)
θ2

is

defined by

KL(P
(n)
θ1
, P

(n)
θ2

) =

∫

Yn

p
(n)
θ1

(y) log

(
p
(n)
θ1

p
(n)
θ2

)
(y)dµ(y). (1.2)

We also denote by KL(f1,f2) the Kullback - Leibler divergence between the distributions

with density f1 and f2 with respect to a given measure µ. Schwartz’s Theorem then

states:

Theorem 1.2 (Schwartz (1965)). Assume that the Yi’s are independent and identi-

cally distributed with density f ∈ F on Y. Let Π be a prior on F such that any KL

neighbourhood of the true density f0 has positive prior probability:

Π(KL(f0,f) < ǫ) > 0 ∀ǫ > 0.

If there exists a sequence of tests φn(Y
(n))(said to be exponentially consistent) such that

for any neighbourhood U of f0, there exist C, β > 0 such that

Ef0
φ(Y(n)) ≤ Ce−nβ , sup

f∈Uc
Ef

(
1− φ(Y(n))

)
≤ Ce−nβ ,

then

Π(U |Y(n)) −→ 1 P
(n)
f0

a.s..

In the density problem, an example of metric d is the Hellinger metric. If P
(n)
θ1

and

P
(n)
θ2

are two probability measures, of respective densities p
(n)
θ1

and p
(n)
θ2

with respect to
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a common measure µ, the Hellinger metric between P
(n)
θ1

and P
(n)
θ2

is defined by

h2(P
(n)
θ1
, P

(n)
θ2

) =
1

2

∫ (√
p
(n)
θ1

(y)−
√
p
(n)
θ2

(y)

)2

dµ(y). (1.3)

There are alternative approaches to Schwartz’s which do not require the use of uniformly

exponentially consistent tests. For instance Walker (2004), Walker et al. (2005) uses a

martingale method. Another technique makes use of so-called power-posterior distribu-

tions: the Bayes formula is modified by raising the likelihood to a power α ∈ (0, 1). It is

thus an altered version of the Bayes paradigm, which has the advantage to be consistent

under the KL condition only, without having to resort to tests. See Walker and Hjort

(2001) for the original paper and the chapter ? of Hjort et al. (2010) for a concise

account on the principle of the method.

A more refined asymptotic property than consistency is the so-called posterior concentra-

tion (or contraction) rates, measuring how fast the posterior distribution shrinks around

the true parameter. In studying posterior consistency, we get a better understanding on

some aspects of the prior or at least on how it operates with respect to the likelihood. In

particular, in large or infinite dimensional models the prior does not completely vanish

asymptotically even to first order, as opposed to what happens in the parametric case.

The aspects, in the prior which are influential asymptotically are bound to have a strong

influence for finite samples and should be treated with particular care, in applications.

We now define the posterior concentration or contraction rate.

Definition 1.3. Given the prior Π, a rate of contraction of the posterior distribution in

P
(n)
θ0

probability with respect to a semimetric dn on Θ is defined as a sequence (ǫn)n≥1

such that

Π
(
θ : d2n(θ,θ0) ≥Mnǫ

2
n|Y n

)
−→
n→∞

0, (1.4)

in P
(n)
θ0

probability, for some θ0 ∈ Θ and every sequence Mn → ∞ as n→ ∞.

The best possible (i.e. the smallest) sequence (ǫn)n≥1 satisfying Equation (1.4) is called

the optimal rate of contraction.

In their seminal paper Ghosal et al. (2000) and in its extension to non i.i.d. settings,

Ghosal and van der Vaart (2007), the authors have developed a generic methodology to

obtain posterior concentration rates, following the ideas of Barron (1988) and Schwartz

(1965) (see also Shen and Wasserman, 2001). We give and discuss below a version of

the general result from Ghosal and van der Vaart (2007). First we define the following

kth centred moment of KL between the distributions P
(n)
θ1

and P
(n)
θ2

or equivalently their
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densities p
(n)
θi

, i = 1, 2, for k ≥ 2,

Vk

(
P

(n)
θ1
, P

(n)
θ2

)
=

∫
p
(n)
θ1

(y)

∣∣∣∣ log
(
p
(n)
θ1

p
(n)
θ2

)
(y)− KL

(
P

(n)
θ1
, P

(n)
θ2

)∣∣∣∣
k

dµ(y),

and let the following KL neighbourhood

Bn(θ0, ǫn, k) =
{
θ : KL

(
P

(n)
θ0
, p

(n)
θ

)
≤ nǫ2n,Vk

(
P

(n)
θ0
, p

(n)
θ

)
≤ (nǫ2n)

k/2
}
.

Theorem 1.4 (Theorem 3 of Ghosal and van der Vaart, 2007). Let d(., .) be a semimetric

(possibly depending on n) on Θ, ǫn > 0, ǫn → 0, nǫ2n → ∞, k > 1, K > 0, and Θn ⊂ Θ.

If there exists a (measurable) sequence of test functions φn : Y → [0, 1] such that for

every sufficiently large integer j

E
(n)
θ0
φn → 0, sup

θ∈Θn: jǫn<d(θ,θ0)≤2jǫn

E
(n)
θ (1− φn) ≤ e−Kj2nǫ2n , (1.5)

Π
(
θ ∈ Θn : jǫn < d(θ,θ0) ≤ 2jǫn

)

Π
(
Bn(θ0, ǫn, k)

) ≤ eKnǫ2nj
2/2, (1.6)

then for every Mn → 0, we have that

Π
(
θ ∈ Θn : d(θ,θ0) ≥Mnǫn|Y (n)

)
→ 0,

as n→ ∞ in P
(n)
θ0

-probability.

We give a brief intuition of the conditions required in Theorem 1.4. A more general

discussion can be found in Ghosal et al. (2000), Ghosal and van der Vaart (2007).

The Θn, called sieve spaces, allow focusing on well-behaved parameters (in terms of

complexity, of size, etc), and to avoid the problematic part of the space, Θ\Θn, whose

size is controlled. The tests in condition (1.5) can be thought of as separating θ0 with

any θ supported by the prior and away from θ0. Often the construction of φn involves

a covering of Θn into small balls Vn,l with individual tests φn,l satisfying

E
(n)
θ0

[φn,l] ≤ e−cnd(θ0,θl)
2
, sup

θ∈Vn,l

Eθ (1− φn,l) ≤ e−cnd(θ0,θl)
2
,

θl some point in Vn,l. Then φn = maxl φn,l satisfies condition (1.5) as soon as the

covering number Nn,l of {θ ∈ Θn; jǫn < d(θ,θ0) ≤ 2jǫn} by these balls is bounded by

ecnj
2ǫ2n/2. Furthermore, a sufficient condition which ensures that condition (1.6) holds

is that the prior Π puts some minimal mass on the Kullback-Leibler neighbourhoods

Bn(θ0, ǫn, k) of θ0.
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From Theorem 1.4, we see that posterior concentration rates depend on the ability to

approximate the true model in the prior model. This is influenced typically by either

some shape constraints on the parameter or by smoothness assumptions on the curve

when the parameter is a curve. Hence, it is common practice to determine posterior

concentration rates uniformly over functional (or parameter) classes and the posterior is

said to concentration at a minimax rate if the posterior concentration rate over this class

corresponds to the minimax convergence rate over the same class and under the same

loss function d(., .). In the last decade posterior concentration rates have been derived

for various types of families priors and models and minimax posterior concentration

rates have been achieved in many cases (up to log n terms). These notions are described

in the following section.

Adaptation and minimax posterior concentration rates

In some cases, we assume some restrictions on the parameter space Θ. Usually, these

restrictions are intended to focus on particular well-behaved classes. The subspace Θβ ⊂
Θ can be for example a class of a given smoothness β (eg , if the parameters are curves,

these include Hölder, Sobolev and Besov classes as leading examples).

The theory of contraction rates can be related to the classical (or frequentist) theory

of optimal rates of convergence. A celebrated criterion is the minimax criterion: given

a functional class Θ0, the minimax risk is defined by the maximal risk of an estimator

with minimal risk among all estimators. More precisely the minimax rate for estimating

θ under the loss function d(., .) over the class Θ0 ⊂ Θ is defined by any sequence vn

satisfying (see eg Tsybakov, 2009)

lim inf
n

inf
θ̂n

sup
θ0∈Θ0

v−1
n E

(n)
θ0

[
d(θ̂n,θ0)

]
> 0

and there exists an estimator θ̃n such that

lim sup
n

sup
θ0∈Θ0

v−1
n E

(n)
θ0

[
d(θ̃n,θ0)

]
< +∞.

A posterior distribution is said to concentrate at the minimax rate over the class Θ0

in terms of the loss d(, ., .) if its posterior concentration is the corresponding minimax

estimation rate. It is shown (eg in Ghosal et al., 2000) that the posterior yields a

point estimate that converges at the same rate as the posterior contraction rate, at

least for convex and bounded loss functions. Hence, the optimal rate of contraction

cannot be better than the minimax rate, uniformly over the class. For instance various

types of priors have been studied in the context of density estimation for independent
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and identically distributed data. The nonparametric mixture models have proved in

particular to lead to minimax (up to a log n term) posterior concentration rates for

Hölder functional classes, see for instance Ghosal and van der Vaart (2001, 2007) or

Kruijer et al. (2010), Shen et al. (2013) in the case of Gaussian mixtures, Ghosal (2001),

Kruijer and Van der Vaart (2008), Rousseau (2010) and McVinish et al. (2009) for

mixtures of Beta distributions or triangular densities. Posterior concentrations for other

types of curves such as regression, autoregressions, spectral densities have also been

studied. For the former, priors are often based on Gaussian processes, see for instance

van der Vaart and van Zanten (2008), while histograms have been considered for the

second type in Ghosal and van der Vaart (2007) and series expansions for the later

in Rousseau et al. (2012). If one wants to estimate a univariate β–smooth function,

say β-Hölder, for instance a density or a regression, then the minimax rate under the

squared error loss is typically of order n−β/(2β+1). When the smoothness parameter β

is unknown, it may be hard to construct a good estimator, in the sense that its rate

of contraction is the minimax rate. It is desirable to build estimators which do not

depend explicitly on β. In other words, from a Bayesian point of view, it means that

the prior should be constructed without the knowledge of β, and one then speaks of

adaptive posterior distribution. When the posterior concentration rate is the same as

the adaptive minimax estimation rate over the given collection of smoothness classes

then we say that it concentrates at the minimax adaptive rate.

This problem of adaptive optimality is studied in different settings. The first result

on posterior adaptation has been obtained when the unknown parameter is assumed

to belong to a discrete set, in Belitser and Ghosal (2003). Later more general aspects

of adaptations have been considered. In the context of density and regression function

estimation, some criteria have been obtained by Huang (2004) and Ghosal et al. (2008)

and specific families of priors have been studied by Scricciolo (2006), van der Vaart and

van Zanten (2009), Rivoirard and Rousseau (2012), Rousseau (2010) and Kruijer et al.

(2010), de Jonge and van Zanten (2010), in the context of spectral density estimation

minimax adaptive posterior contraction rates have been derived by Rousseau and Kruijer

(2011) and Rousseau et al. (2012). Recent results also concern adaptation with respect to

the dimension of the problem, see for instance Bhattacharya et al. (2013), nonparametric

testing problems as in Salomond (2013) or some empirical Bayes approaches as in Szabó

et al. (2013). For a general discussion on the impact of the loss function and on posterior

adaptation see also the recent work of Hoffmann et al. (2013).



Chapter 1. Introduction 21

1.2.2 Contributions to asymptotic aspects of Bayesian nonparametric

approaches in Chapter 2

The motivation of Chapter 2 stems from the observation that in the Bayesian nonpara-

metric asymptotic literature, the computations involved to derive the posterior concen-

tration rates under priors on curves based on series expansions used the same types of

ingredients, for various types of models. Hence, we have proposed in Chapter 2, which

is also published in Arbel et al. (2013), a generic study of such families of priors, called

sieve prior. In this chapter we propose a general theorem, in a similar spirit of the works

of van der Vaart and van Zanten (2008, 2009) and we apply this theorem to a series of

models. The sieve priors can be defined as follows: let Θ = ℓ2, the set of real sequences

θ = (θn)n satisfying
∑

n θ
2
n < +∞ and consider the following hierarchical prior on Θ

θ ∼ Π(.) =
∞∑

k=1

π(k)Πk(.),

where
∑∞

k=1 π(k) = 1 and for each k, Πk(.) is a probability on Θk = R
k. In Chapter 2

we restrict our attention to the case of conditionally independent prior, in other words

for each k

∀θk = (θ1, · · · , θk) ∈ Θk, Πk(θk) =
k∏

j=1

1

τj
g(θj/τj),

with possibly the restriction over some ball A across Θ. In the above definition π(.),

τj and g may depend on n. Such prior can be used for instance in a regression or

autoregression setting where the regression function is assumed to be square integral, as

is common practice. It can also be used combined with some nonlinear transformation,

as in the case of density estimation or for modelling a spectral density. In all these

cases θ represents the vector of the coefficients of the expansion of the function (or

some transformation of it) on a basis. Under some weak conditions on g, π(.) and τj ,

adaptive posterior concentration rates of order n−β/(2β+1)(log n)κ, for some positive κ,

are obtained over collections of Sobolev balls in the form Θβ(L) = {θ ∈ ℓ2;
∑∞

j=1(1 +

j)2βθ2j ≤ L}, when both the loss function and the Kullback - Leibler divergence can be

compared in some weak sense with the l2 norm on θ, see Theorem 2.2 and Corollary 2.3

in Chapter 2. This theorem is applied in various contexts, where this rate is minimax up

to a log n term and some novel results on regression models and nonlinear auto-regressive

models are provided. Moreover a lower and an upper bound is obtained in the case of

the white noise model with the local loss function

d(θ,θ′) =
( ∞∑

j=1

θj − θ′j

)2

,
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showing that for such local loss functions these priors lead to suboptimal posterior con-

centration rates and estimates. This is the motivating example of the work by Hoffmann

et al. (2013), which has lead these authors to analyse the impact of the loss function in

the determination of posterior concentration rates.

The family of priors considered in Chapter 2 are useful for modelling curves but rather

limited for density estimation, in particular when they are used after exponentiation :

fθ(x) = exp




∞∑

j=1

θjφj(x)− c(θ)


 ,

since it forces (i) to have compact support and (ii) strong conditions on the behaviour

of the densities at the boundary of their support. For density estimation or distribution

modelling, models based on nonparametric mixtures for the former or completely random

measures for the latter are typically favoured. In the former case, the densities are then

written as

fP =

∫

Θ
Kθ(x)dP (θ),

where for each θ, Kθ is a density kernel and P is a probability measure which is assumed

to be a realisation, under the prior, of a normalized completely random measure or

some other random probability measure (abbreviated RPM). Models based on random

probability measures will be examined in detail in Section 1.3.

Rates of convergence in the density model under RPMmixtures have been widely studied

in the last decade, as presented in Section 1.2.1, the special case of DPM have been

considered in particular by Ghosal and van der Vaart (2007) in the Gaussian univariate

case, Shen et al. (2013) in the Gaussian multivariate using earlier results of Kruijer et al.

(2010), the case of Pitman-Yor processes and of normalized inverse-Gaussian processes

(introduced by Lijoi et al., 2005) by Scricciolo (2012). Consistency under the large class

of Gibbs-type priors is studied by De Blasi et al. (2012).

RPM can also be used to model directly the observations, species sampling models is a

typical example of this. The asymptotic properties of these models are studied by Jang

et al. (2010).

Section 1.3.2 introduces dependent RPMs, which also are central to Chapter 3. Since

the seminal paper by MacEachern (1999) and the introduction of Dependent Dirichlet

process (DDP), many extensions were proposed in the Bayesian nonparametric liter-

ature of covariate dependent models (see references in Section 1.3.2). It is shown by

Barrientos et al. (2012b) that the DDP has full weak support. A mean of comparison

between the models is to study their asymptotic properties, a recent line of research

initiated by Norets and Pelenis (2011). They obtain posterior consistency under kernel
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stick-breaking processes (KSBP) for modelling the mixing probabilities in conditional

distribution estimation. In the same problem, Pati et al. (2013) use dependent mixtures

of Gaussian linear regressions.

We now turn to review some properties about the Dirichlet process and extensions.

We will mainly focus on dependent extensions, which are the subject of Chapter 3 and

Chapter 4. As an application, diversity measures arising in Bayesian nonparametric

dependent models will be presented at the end of the section.

1.3 Random probability measures

We now turn to review some properties about the Dirichlet process and extensions.

We will mainly focus on dependent extensions, which are the subject of Chapter 3 and

Chapter 4. Diversity measures arising in species sampling models will be presented at

the end of the section.

1.3.1 Discrete random probability measures

A step of the Bayesian nonparametric approach consists in constructing prior distribu-

tions on infinite dimensional spaces, like functions, or probability distributions. Random

probability measures play a key role because their probability distribution precisely acts

as priors for Bayesian inference as stated by the celebrated de Finetti’s representation

theorem (de Finetti, 1937). Suppose that data (Y1, . . . , Yn), sampled in the measur-

able space (Y,Y), are exchangeable, that is, for any n ≥ 1, for any permutation σ

of {1, 2, . . . , n}, (Y1, . . . , Yn) and (Yσ(1), . . . , Yσ(n)) are equal in distribution. Then de

Finetti’s representation theorem states that there exists a probability measure Π on the

space of probability distributions
(
PY,PY

)
on (Y,Y) such that

P
(
Y1 ∈ A1, . . . , Yn ∈ An

)
=

∫

PY

n∏

i=1

p(Ai)Π(dp). (1.7)

The probability measure Π is called de Finetti’s measure. Conditionally on p, it is clear

from Equation (1.7) that the Yi’s are independent and identically distributed (i.i.d.)

with common distribution p. Hence, the exchangeability assumption enables to write

the following model

Yi | p iid∼ p for i ≥ 1, (1.8)

p ∼ Π,
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where Π acts as a prior distribution for Bayesian inference as it is the law of a random

probability measure p.

Dirichlet process

The most celebrated example of prior Π is the Dirichlet process prior (DP), introduced

by Ferguson (1973). A DP is a distribution on probability measures that can be defined

as follows. Let M > 0 and G0 be a probability measure on a space Θ. The law of the

process can be written in a constructive way (see Sethuraman, 1994) as the law of the

following random probability measure G, known as the stick-breaking representation:

G =

∞∑

j=1

pjδθj , (1.9)

pj = Vj
∏

l<j

(1− Vl), with Vj
iid∼ Beta(1,M) and θj

iid∼ G0, (1.10)

mutually independently, where δθj stands for the Dirac point mass at θj . We write

G ∼ DP(M,G0).

One of the most general use of the DP is as a mixing prior for the density problem, what

is called Dirichlet process mixtures (DPM). For instance, in the context of Section 5.2,

let some bivariate data as represented on the left part of Figure 1.1. A DPM prior can

be used to estimate the density of the data, and is illustrated on Figure 1.1.
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Figure 1.1: Data (100 observations) sampled in the distribution (5.2) (see Chapter 5)
and contour of a Dirichlet process mixtures estimate.

PD and GEM distributions

Chapter 3 and Chapter 4, we are mainly dealing with different types of models, corre-

sponding to probability measures on N, the set of positive integers. Let P be the space
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of probability measures on the positive integers:

P = {p = (pj)j : pj ≥ 0,
∞∑

j=1

pj = 1}.

Define the two following RPMs on P:

Definition 1.5 (PD(M), Kingman, 1975). Let Γ(1) > Γ(2) > . . . be the points of a

Poisson random measure on (0,∞) with mean measure Mx−1e−xdx. The distribution

of the sequence p = (pj) defined by

pj = Γ(j)/Σ where Σ =
∑

j

Γ(j),

is called the Poisson Dirichlet distribution with parameter M , abbreviated PD(M). It

satisfies p1 > p2 > . . . and
∑

j pj = 1 almost surely.

Definition 1.6 (GEM(M), Ewens, 1990). The distribution of a sequence p = (pj) which

can be written as

p1 = V1, pj = Vj
∏

l<j

(1− Vl), j ≥ 2,

where the Vj are i.i.d. variables with Be(1,M) distribution P(Vj ∈ dx) = M(1 −
x)M−1 dx, is called the GEM(M) distribution, after Griffiths-Engen-McCloskey.

The weights of a Dirichlet process DP(M,G0) have the GEM(M) distribution, which

does not depend on G0. The history and background of the GEM distribution is detailed

in Chapter 41 of Johnson et al. (1997).

Remark 1.1. Pitman (2006) generalized both distributions PD(M) and GEM(M) to two-

parameter distributions PD(α,M) and GEM(α,M). The associated RPM on a generic

ambient space with base measure G0 is then called the Pitman-Yor process, abbreviated

PY(α,M,G0).

Size-biased permutations

Let p = (p1, p2, . . .) be a probability in P. A size-biased permutation (SBP) of p, is a

sequence p̃ = (p̃1, p̃2, . . .) obtained by reordering p by a permutation σ with particular

probabilities. Namely, the first index appears with a probability equal to its size, P(σ1 =

j) = pj ; the subsequent indices appear with a probability proportional to their size in

the remaining indices, i.e. for k distinct integers j1, . . . , jk,

P(σk = jk|σ1 = j1, . . . , σk−1 = jk−1) =
pjk

1− pj1 − . . .− pjk−1

. (1.11)
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The following theorem sheds light on the close link between GEM and PD distributions:

Theorem 1.7 (McCloskey, 1965). Let p̃ be a size-biased permutation of a sequence of

random variables p such that p1 > p2 > . . . > 0 with
∑∞

j=1 pj = 1. Then

p̃j = Vj
∏

l<j

(1− Vl),

for a sequence of i.i.d. random variables (Vj) if and only if p has PD(M) distribution

for some M > 0. Then the common distribution of the Vj is Be(1,M), and p̃ has the

GEM(M) distribution.

The correspondence described in the latter theorem can be illustrated by the following

diagram between both distributions:

GEM(M)
Rank

⇋
SBP

PD(M).

As a consequence, the GEM distribution is invariant under size-biased permutations:

spelled out, this means that if p has the GEM distribution, then a size-biased permutation

of p also has the GEM distribution.

Species population data

Ewens (1990) used the GEM distribution in the fields of genetics and ecology. An early

occurrence of species sampling model was proposed by Fisher et al. (1943). This example,

along with Engen (1978), shows that the discreteness of the GEM and PD distributions

is appreciated in models in ecology. It allows the handling of the problem of species

sampling. Pitman (1996) describes the following sampling. Suppose that a sample

Y1, Y2, . . . is drawn from a large population where individuals are divided into species.

The Yk represent the species of the kth individual sampled. The species are actually

labelled by tags, in an arbitrary space. This tagging allows transforming the random

partition of n individuals into species, into the random sequence Y1, Y2, . . .. Such a

sampling process will be studied in Chapter 3 and Chapter 4. From now on we will

describe some distributional properties of this sampling process which will be used in

these chapters.

Ewens formula and EPPF

The partition structure of a sample Y(n) = (Y1, Y2, . . . , Yn) obtained as described above

can be characterized in two ways when the labels are unimportant. The sample induces
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a partition Nn = (n1, n2, . . . , nk) of the n first integers [n] = {1, 2, . . . , n} into Kn = k

species, where the first one that appeared in the sampling process appeared n1 times,

the second one appeared n2 times, etc. Another representation of the partition structure

of the sample with no mention of the labels is An = (a1, a2, . . . , an), where ak counts

the number of species which appeared k times in the sample of size n. So Nn and An

satisfy
k∑

j=1

= n,
n∑

j=1

jaj = n.

The distributions of Nn and An under the GEM(M) distribution for the relative frequen-

cies of species are known as the exchangeable partition probability function (EPPF) and

the Ewens formula (see Ewens, 1972, Antoniak, 1974). Exchangeable partition proba-

bility functions are a tool for studying clustering in Bayesian analysis. For an account

about random partitions, see for instance Pitman (2006).

Definition 1.8. When p ∼ GEM(M), the exchangeable partition probability function

of Y(n) is:

P(Nn = (n1, n2, . . . , nk)) = p(n1, n2, . . . , nk) =
Mk

M(n)

k∏

j=1

(nj − 1)!, (1.12)

where M(n) =M(M + 1) . . . (M + n− 1). Ewens sampling formula is

P(An = (a1, a2, . . . , an)) =
n!

M(n)

n∏

j=1

(M
j

)aj 1

aj !
(1.13)

The EPPF (1.12) can be recovered by Ewens formula (1.13) by enumeration and expec-

tation of all possible configurations of labels:

p(n1, n2, . . . , nk) = E

(∑

(∗)
pn1
i1
. . . pnk

ik

)
,

where the sum (∗) runs over all distinct i1, . . . , ik. Corollary 7 in Pitman (1995) provides

a more straightforward representation of p(n1, n2, . . . , nk) in terms of p as follows:

p(n1, n2, . . . , nk) = E

[( k∏

i=1

pni−1
i

) k−1∏

i=1

(
1−

i∑

j=1

pj
)]
.

By using the stick-breaking representation of Definition 1.6 and the relation
∑

l<j pl +∏
l<j(1− Vl) = 1, one obtains:

p(n1, n2, . . . , nk) = E

[ k∏

i=1

V ni−1
i (1− Vi)

ni+1+···+nk

]
, (1.14)



Chapter 1. Introduction 28

and by independence of the Vi and computation of moments derived from the beta

distributions in Equation (6.1) in Appendix:

p(n1, n2, . . . , nk) =

k∏

i=1

1(ni−1)Mni+1+···+nk

(M + 1)ni+···+nk−1
,

which coincides with the EPPF formula (1.12).

Section 1.3.2 introduces dependent random probability measures. In this setting also

the EPPF is of interest, since it can be a tool for defining posterior sampling schemes

We define such a joint EPPF for a dependent GEM distribution in Chapter 3.

Note that p(n1, n2, . . . , nk) is a symmetric function, i.e. p(nσ(1), nσ(2), . . . , nσ(k)) =

p(n1, n2, . . . , nk) for any permutation σ of {1, 2, . . . , k}. This illustrates the exchange-

ability of the sequence (Y1, Y2, . . . , Yn). The formulae of Definition 1.8 are given for the

two-parameter Poisson-Dirichlet distribution PD(α,M) by Pitman (1992).

A recent extension of the EPPF is provided by Broderick et al. (2013). Instead of

corresponding to a single cluster or species, each data point is allowed to belong to an

arbitrary number of groups. The group is called a feature, or a topic. The paper provides

an extension of the EPPF for this model called the exchangeable feature probability

functions (EFPF).

Pólya urn and Chinese Restaurant process

Now we turn to define the Pólya urn (PU) and the Chinese Restaurant process (CRP)

which can be seen as predictive rules. They are of interest here since some of the random

probability measures which will be reviewed later are defined by their predictive rule.

In the generic exchangeable model (1.8), define the predictive rule of the random prob-

ability measure Π as the distribution of the first element Y1 in the sample, and then, for

n ≥ 1, the distribution of Yn+1 conditional to the observed sample (Y1, Y2, . . . , Yn).

Definition 1.9. The predictive rule of the Dirichlet process given in Equation (1.9) with

a sample (Y1, Y2, . . . , Yn+1) is called the Blackwell–MacQueen Urn scheme, and has the

following form

P(Y1 ∈ · ) = ν( · ), and for n ≥ 1,

P(Yn+1 ∈ · |Y1, Y2, . . . , Yn) =
M

M + n
G0( · ) +

1

M + n

n∑

j=1

δYj ( · ). (1.15)
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This predictive rule is also called the Pólya Urn (abbreviated PU), or Hoppe’s Urn, from

the point of view of a process on colors. It is obtained as follows, which is equivalent

to (1.15). Consider an urn which initially contains a black ball of mass M . Ball will

be successively drawn with probabilities proportional to their masses: if a black ball is

drawn, it is return with a ball of a new color of mass 1; if a coloured ball is drawn, it is

returned with a ball of the same color of mass 1.

Note that there exist equivalent ways to present the same sampling process:

Definition 1.10. The Chinese Restaurant process (abbreviated CRP) is a discrete-time

partition valued process on partitions of the first n integers [n] = {1, 2, . . . , n} at time n.

It has a positive parameter M . Its probability distribution is popularly defined with the

restaurant analogy. At time 1, the first customer sits at table 1 with probability 1, i.e.

P({1}) = 1. At time n+ 1, the (n+ 1)th customer sits

• at an occupied table j with probability proportional to the number of sitting cus-

tomers,

• at a new table k + 1 with probability proportional to M .

In the Pólya urn, if instead of picking a new color one picks a random value in a diffuse

base distribution G0, the resulting distribution over labels is the same as the distribution

over draws from a Dirichlet process.

The Chinese Restaurant process and the Pólya urn define the same process with a slightly

different point of view: the first one focuses on partitions while the second one focuses

on the predictive of a new element of the process. Consider the marginal distribution of

the Yi’s in the following exchangeable model

Yi |G iid∼ G for i ≥ 1,

G ∼ DP,

which boils down to marginalizing out thee DP distribution. Then the Pólya urn is the

conditional distribution of any of the Yi’s given all others.

Note also that the link between EPPF and the predictive probability function in species

sampling models is studied by Lee et al. (2013).

1.3.2 Dependent random probability measures

Up to now, we have reviewed problems where a single distribution is assigned a non-

parametric prior distribution. In many applications, it is desirable to model a collection
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of distributions, G = {GX , X ∈ X}, where X is a covariate of a space X , such as a

treatment, time, a spatial coordinate, etc. Two extreme solutions consist in

1. assume a single distribution everywhere, GX = G for all X: this is restrictive as

it does not allow for variations for varying predictors.

2. assume independence across X: this prevents from sharing common components

between X’s.

An extension proposed by MacEachern (1999) as the Dependent Dirichlet process, DDP,

allows the weights pj and/or the clusters θj to vary with a predictor X, according to

stochastic processes pj(X) and θj(X):

GX1 =
∞∑

j=1

pj(X)δθj(X),

where pj(X) = Vj(X)
∏

l<j(1− Vl(X)) with Vj(X)
iid∼ Beta(1,M) and θj(X)

iid∼ G0 mu-

tually independently. For any fixed X, one recovers Equations(1.10), so this yields a DP

distribution for GX .

The DDP is an extension of the DP, in the case of more structured data, when the usual

exchangeability assumption does not hold. Previous reference to predictor-dependent

DP models include Cifarelli and Regazzini (1978) and Muliere and Petrone (1993), where

the centring measure of an independent collection of DP is based on a regression. In-

corporating the dependence in the base measure of Dirichlet processes however limits

the flexibility of the model to capturing the structure of dependence of the regression.

In the HDP extension, Teh et al. (2006) propose a hierarchical model in which the base

measure is itself a draw from a DP. Since draws from a DP are almost surely discrete,

it forces a sharing of clusters between the different probability measures.

There has been increasing interest since MacEachern (1999) in the construction of pre-

dictor dependent probability measures. See the chapter Dunson (2010) for a general

review of the methods, with a focus on biostatistics applications. The case with fixed

weights pj(X) = pj (called single-p) was implemented in a wide range of applications.

To name but a few, De Iorio et al. (2004) use a DDP in the case of categorical predic-

tors, which allows defining an ANOVA model for unknown densities. It is used in spatial

applications by Gelfand et al. (2005), Duan et al. (2007) in dynamic models by Caron

et al. (2006), in variable selection by Chung and Dunson (2009b) and in testing settings

by Dunson and Peddada (2008). Extensions with varying weights include order-based

DDP, or πDDP (Griffin and Steel, 2006), local DP, or lDP (Chung and Dunson, 2009a),
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weighted mixtures of DP (Dunson and Park, 2008), and kernel stick-breaking processes,

or KSBP (Dunson et al., 2007).

In a recent work, Wade et al. (2013) define a DDP with a particular focus on the random

partitions it creates. The focus is on the regression problem in dimension 1, tackled with

Dirichlet process mixtures. They impose an order constraint that if two subjects with

covariatesX andX ′ are clustered together then all subjects whose covariates are between

X and X ′ are in the same cluster. This constraint is effective only in dimension 1, hence

limits this approach to univariate covariates X.

The types of dependent priors used in the literature are diverse. For instance, dependent

Bernstein polynomials are used by Barrientos et al. (2012a) in the regression problem.

Completely random measures are used by Lijoi et al. (2013) which focus on clustering

properties, and by Chen et al. (2013), Barrientos et al. (2012a). Dependence is intro-

duced via Gaussian processes by Williamson et al. (2010), Palla et al. (2013). This is also

the tool which we use in Chapter 3 for defining dependent GEM distributions, although

from a different angle.

Measuring dependence under the DDP

Now that we have introduced dependent random probability measures, we turn to de-

scribe simple measures of dependence that arise from these processes, and allow a better

understanding of these. The results are given in the case of the DDP, and constitute

an introduction for the results that are provided in Chapter 3 for the dependent GEM

process.

First, denote by cM = cM (|X1 −X2|) the dependence factor between the process at two

covariate points X1 and X2 defined by:

cM (|X1 −X2|) = (M + 1)2E(V (X1)V (X2)),

We identify two extreme cases denoted by:

• (I): independence, V (X1) ⊥⊥ V (X2) (eg |X1 −X2| → ∞), then cM = 1.

• (E): equality, X1 = X2, i.e. V (X1) = V (X2) in distribution, then cM = 2(M +

1)/(M + 2) = 1 +M/(M + 2),

Suppose that GX ∼ DDP(MG0), and let A be a measurable subset of Y. A defini-

tion of the DP, equivalent to (1.9), given by Ferguson (1973), entails that GX(A) ∼
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Beta(MG0(A),MG0(A
c)), and thus

E(GX1(A)) =
MG0(A)

MG0(A) +MG0(Ac)
= G0(A), (1.16)

Var(GX1(A)) =
1

M + 1
G0(A)(1−G0(A)).

The covariance is given by

Cov(GX1(A), GX2(A)) = CV (X1, X2)
(
P(θ(X1) ∈ A ∩ θ(X2) ∈ A)−G0(A)

2
)
,

where CV (X1, X2) =
E(V (X1)V (X2))

E(V (X1)) + E(V (X2))− E(V (X1)V (X2))
.

By independence between the weights and the clusters in a DP, the structure of the

covariance between GX1(A) and GX2(A) appears to be separated in two parts, with

the weights in the one hand with the term CV (X1, X2), and with the clusters in the

other hand. Equation (1.16) shows that the process on the clusters, θ(X), plays a major

role in the dependence structure since Cov(GX1(A), GX2(A)) can vanish only if there

is independence between θ(X1) and θ(X2). The process on the weights intervene as a

multiplicative constant: CV (X1, X2) is maximum when X1 = X2, equal to 1/(M + 1),

and is minimum when there is independence between V (X1) and V (X2) (which can

occur for instance when the distance between X1 and X2 goes to ∞), and then its value

tends to 1/(2M + 1).

In the case of a single–θ DDP, the covariance between GX1(A) and GX2(A) can be

written by

Cov(GX1(A), GX2(A)) = CV (X1, X2)
(
G0(A)−G0(A)

2
)
,

= (M + 1)CV (X1, X2)
(
Var(GX1(A))Var(GX2(A))

)1/2
,

hence the correlation between GX1(A) and GX2(A) will not depend on A, and we can

define this quantity as the correlation between GX1 and GX2 , which is

Corr(GX1 , GX2) = (M + 1)CV (X1, X2).

Also, denote by Y1|GX1 ∼ GX1 and Y2|GX2 ∼ GX2 , X1 6= X2 two conditionally inde-

pendent draws in the Dependent Dirichlet process GX . Then

E(Y1) = E(θ(X1))

Var(Y1) =
1

M + 1
Var(θ(X1))

Cov(Y1, Y2) =
1

M + 1
Cov(θ(X1), θ(X2)).
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Note that one can link the dependence at the level of GX and the dependence at the

level of draws YX |GX ∼ GX by the notion of α–dependence defined as follows:

Definition 1.11 (Bradley et al., 1986). Let two random variables Y1 and Y2 on the

measurable space Y, and let A be a measurable subset of Y. Then αA–dependence between

Y1 and Y2 is defined by

αA(Y1, Y2) = P(Y1 ∈ A, Y2 ∈ A)− P(Y1 ∈ A)P(Y2 ∈ A).

Then we have the following corollary

Corollary 1.12. We have

αA(Y1, Y2) = Cov(GX1(A), GX2(A)) = CV (X1, X2) αA(θX1 , θX2). (1.17)

Proof. P (Y1 ∈ A) = E(P (Y1 ∈ A|GX1)) = E(GX1(A)) = G0(A), and P (Y1 ∈ A, Y2 ∈
A) = E(P (Y1 ∈ A, Y2 ∈ A|GX1 , GX2)) = E(GX1(A)GX2(A)) by conditional indepen-

dence of Y1 and Y2.

This means that the covariance can be interpreted at the level of draws from the priors.

The Dirichlet process has the simple Pólya urn predictive rule, as described in Defi-

nition 1.9. The additional layer due to the predictor-dependent feature in dependent

models makes the prediction more involved. In several single-θ processes, predictive

rules can be obtained by marginalising out the process GX . The following theorem by

Dunson and Park (2008) holds for the particular case of the kernel stick-breaking pro-

cess, when the clusters θj(X) are fixed through X (i.e. single–θ case), when the base

measure is diffuse and when the weights are stationary (i.e. their distribution is fixed

over X):

Theorem 1.13 (Dunson and Park, 2008). Let GX be a kernel stick-breaking process in

the above special case, and Yi |Xi
ind∼ GXi. The predictive rule of the KSBP is given by

P(Yi ∈ . |Y1, . . . , Yi−1, X1, . . . , Xi) = π0G0(.) +
i−1∑

j=1

πjδYj (.), (1.18)

where the probability weights πj are defined as follows: let N (r,s)
i (resp. N (r,s)

i,j ) be the set

of all r-dimensional subsets of {1, . . . , s} including i (resp. including i and j). Define

µI = E
(∏

i∈I VXi

)
and ωI = µI

∑|I|
t=1(−1)t−1

∑
J∈ItµJ

, where It is the set of all t-element
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subsets of I. Then

π0 = 1−
i∑

r=2

(−1)r
∑

I∈N (r,s)
i

ωI , πj =

i∑

r=2

(−1)r
∑

I∈N (r,s)
i,j

ωI
r − 1

for j ≥ 1.

In the case when there is a unique covariate value Xi = X, then the prediction rule

(1.18) reduces to the standard Pólya urn of Equation (1.15) with πj =
1

M+i−1 for j ≥ 1.

Note that the results hold for stationary Dependent Dirichlet process GX ∼ DDP(MG0)

and can be generalized to the non stationary case GX ∼ DDP(MXG0,X). Such an

extension can better accommodate for changes in the data structure.

Measuring dependence under the GEM

Chapter 3 defines a dependent version of the GEM distribution called the Dep− GEM.

Specific properties of this prior, in terms of dependence and predictive rule, are presented

in Section 3.5 therein.

1.3.3 Diversity indices

We present here a Bayesian nonparametric approach to the study of species diversity.

It is based on the choice of a random probability measure as a prior distribution for the

unknown relative abundance frequencies of species, and is developed in Chapter 3 by

using a dependent GEM distribution. Applications to the field of ecotoxicology are given

in Chapter 4.

Diversity in populations that are classified into groups were studied in the seminal papers

Fisher et al. (1943), Simpson (1949). See Pielou (1975) for an account in ecology.

Diversity was first modelled in a Bayesian framework by Gill and Joanes (1979), and in

a Bayesian nonparametric framework in Lijoi et al. (2007).

Data classified into groups are common in many fields, for instance ecological data

(species are microbes), biological data, population genetics (species are alleles). Several

indices can account for a measure of diversity between species. One of such is the

Shannon index defined by

HShan(p) = −
∑

j

pj log pj ,
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where the observations are species indexed by positive integers j with respective prob-

abilities pj . Many other diversity indices can be thought of, such as the Simpson index

HSimp(p) = 1−
∑

j

p2j , (1.19)

and the generalized diversity index proposed by Good (1953) in the form of

HGood,α,β(p) = −
∑

j

pαj log
β pj , (1.20)

for non-negative integer values of α and β. It includes both the Shannon index HGood,1,1

and the Simpson index HGood,2,0 + 1. It was further extended to values for (α, β) in the

real plane, where only several regions lead to sensible indices (see eg Baczkowski et al.,

1998) that satisfy the following basic properties (stated eg in Pielou, 1975):

• for fixed J , the index increases as the relative abundances become more equal,

• for equal relative abundances, the index is an increasing function of J .

Figure 3.1 illustrates three diversity indices on the real data set studied in Chapter 3.

We present now the prior diversity induced by a dependent GEM prior. In Chapter 3,

we also give a joint distribution of the prior diversity under this prior. To this purpose,

some of the material introduced before is needed, such as size-biased permutations of a

sample defined in Equation (1.11). We denote a size-biased permutation of an infinite

vector of probabilities p = (p1, p2, . . .) by p̃ = (p̃1, p̃2, . . .), whose first element p̃1 is

called the size-biased pick. The following result is proved in Equation (2.23) of Pitman

(2006)

E
(∑

f(pj)
)
= E

(∑
f(p̃j)

)
= E

(
f(p̃1)

p̃1

)
. (1.21)

Hence the distribution of the size-biased pick p̃1 encodes much information about p. It

is sufficient in order to compute the expectation of any additive transform of the form
∑
f(pj), for example the generalized diversity index given in Equation (1.20). In the

case of a GEM(M) prior on p, the prior expectation of Simpson diversity is found by

Cerquetti (2012)

E(HSimp) =
M

1 +M
. (1.22)

The result for the Shannon diversity index is given in an unpublished work by Cerquetti

E(HShan) = ψ(M + 1)− ψ(1), (1.23)

where ψ is the digamma function, i.e. the derivative of the log of the gamma function.

The prior expectation of the diversity in both cases is an increasing function of the



Chapter 1. Introduction 36

precision parameters M : it vanishes when M goes to 0, and is maximum when M goes

to ∞, as illustrated in Figure 1.2.

Extended properties of the diversity under the dependent prior Dep− GEM are presented

in Section 3.5.

M
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Figure 1.2: Prior expectation of the Simpson index (1.22) (in green) and Shannon
index (1.23) (in blue) under GEM distribution.
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Chapter 2

Bayesian optimal adaptive

estimation using a sieve prior

On propose une forme générique de distributions a priori pour obtenir des résultats de

vitesse de contraction de la loi a posteriori dans plusieurs modèles. Ces lois a priori

sont appelées sieve priors. Elles permettent de plus d’obtenir des vitesses qui s’adaptent

à la régularité du paramètre, sans que cette régularité soit utilisée dans la méthode

d’estimation. Les résultats sont illustrés sur les modèles de densité, de régression,

d’autorégression d’ordre 1 et de bruit blanc Gaussien. On montre en outre qu’une

approche adaptative pour une fonction de perte donnée (par exemple globale) peut

s’avérer sous-optimale pour une autre fonction de perte (par exemple locale) dans le cas

du modèle de bruit blanc Gaussien.
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Abstract

We derive rates of contraction of posterior distributions on nonparametric models re-

sulting from sieve priors. The aim of the paper is to provide general conditions to get

posterior rates when the parameter space has a general structure, and rate adaptation

when the parameter space is, e.g., a Sobolev class. The conditions employed, although

standard in the literature, are combined in a different way. The results are applied to

density, regression, nonlinear autoregression and Gaussian white noise models. In the

latter we have also considered a loss function which is different from the usual l2 norm,

namely the pointwise loss. In this case it is possible to prove that the adaptive Bayesian

approach for the l2 loss is strongly suboptimal and we provide a lower bound on the

rate.

Keywords: adaptation, minimax criteria, nonparametric models, rate of contraction,

sieve prior, white noise model.

2.1 Introduction

The asymptotic behaviour of posterior distributions in nonparametric models has re-

ceived growing consideration in the literature over the last ten years. Many different

models have been considered, ranging from the problem of density estimation in i.i.d.

models (Barron et al., 1999, Ghosal et al., 2000), to sophisticated dependent models

(Rousseau et al., 2012). For these models, different families of priors have also been

considered, where the most common are Dirichlet process mixtures (or related priors),

Gaussian processes (van der Vaart and van Zanten, 2008), or series expansions on a basis

(such as wavelets, see Abramovich et al., 1998).
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In this paper we focus on a family of priors called sieve priors, introduced as compound

priors and discussed by Zhao (1993, 2000), and further studied by Shen and Wasserman

(2001). It is defined for models (X (n), A(n), P
(n)
θ : θ ∈ Θ), n ∈ N\{0}, where Θ ⊆

R
N, the set of sequences. Let A be a σ-field associated to Θ. The observations are

denoted Xn, where the asymptotics are driven by n. The probability measures P
(n)
θ

are dominated by some reference measure µ, with density p
(n)
θ . Remark that such

an infinite-dimensional parameter θ can often characterize a functional parameter, or

a curve, f = fθ. For instance, in regression, density or spectral density models, f

represents a regression function, a log density or a log spectral density respectively,

and θ represents its coordinates in an appropriate basis ψ = (ψj)j≥1 (e.g., a Fourier,

a wavelet, a log spline, or an orthonormal basis in general). In this paper we study

frequentist properties of the posterior distributions as n tends to infinity, assuming that

data Xn are generated by a measure P
(n)
θ0

, θ0 ∈ Θ. We study in particular rates of

contraction of the posterior distribution and rates of convergence of the risk.

A sieve prior Π is expressed as

θ ∼ Π( · ) =
∞∑

k=1

π(k)Πk( · ), (2.1)

where
∑

k π(k) = 1, π(k) ≥ 0, and the Πk’s are prior distributions on so-called sieve

spaces Θk = R
k. Set θk = (θ1, . . . , θk) the finite-dimensional vector of the first k entries

of θ. Essentially, the whole prior Π is seen as a hierarchical prior, see Figure 2.1. The

hierarchical parameter k, called threshold parameter, has prior π. Conditionally on k,

the prior on θ is Πk which is supposed to have mass only on Θk (this amounts to say

that the priors on the remaining entries θj , j > k, are point masses at 0). We assume

that Πk is an independent prior on the coordinates θj , j = 1, . . . , k, of θk with a unique

probability density g once rescaled by positive τ = (τj)j≥1. Using the same notation Πk

for probability and density with Lebesgue measure or Rk, we have

∀θk ∈ Θk, Πk (θk) =

k∏

j=1

1

τj
g

(
θj
τj

)
. (2.2)

Note that the quantities Π, Πk, π, τ and g could depend on n. Although not purely

Bayesian, data dependent priors are quite common in the literature. For instance, Ghosal

and van der Vaart (2007) use a similar prior with a deterministic cutoff k = ⌊n1/(2α+1)⌋
in application 7.6.
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Figure 2.1: Graphical representation of the hierarchical structure of the sieve prior
given by Equation (2.1)

We will also consider the case where the prior is truncated to an l1 ball of radius r1 > 0

(see the nonlinear AR(1) model application in Section 2.2.3)

∀θk ∈ Θk, Πk (θk) ∝
k∏

j=1

1

τj
g

(
θj
τj

)
I(

k∑

j=1

|θj | ≤ r1). (2.3)

The posterior distribution Π( · |Xn) is defined by, for all measurable sets B of Θ,

Π(B|Xn) =

∫
B p

(n)
θ (Xn)dΠ(θ)

∫
Θ p

(n)
θ (Xn)dΠ(θ)

. (2.4)

Given the sieve prior Π, we study the rate of contraction of the posterior distribution in

P
(n)
θ0

−probability with respect to a semimetric dn on Θ. This rate is defined as the best

possible (i.e. the smallest) sequence (ǫn)n≥1 such that

Π
(
θ : d2n(θ,θ0) ≥Mǫ2n|Xn

)
−→
n→∞

0,

in P
(n)
θ0

probability, for some θ0 ∈ Θ and a positive constant M , which can be chosen as

large as needed. We also derive convergence rates for the posterior loss Π(d2n(θ,θ0)|Xn)

in P
(n)
θ0

−probability.

The posterior concentration rate is optimal when it coincides with the minimax rates

of convergence, when θ0 belongs to a given functional class, associated to the same

semimetric dn. Typically these minimax rates of convergence are defined for functional

classes indexed by a smoothness parameter Sobolev, Hölder, or more generally Besov

spaces.

The objective of this paper is to find mild generic assumptions on the sieve prior Π

of the form (2.1), on models P
(n)
θ and on dn, such that the procedure adapts to the

optimal rate in the minimax sense, both for the posterior distribution and for the risk.

Results in Bayesian nonparametrics literature about contraction rates are usually of two

kinds. Firstly, general assumptions on priors and models allow to derive rates, see for

example Shen and Wasserman (2001), Ghosal et al. (2000), Ghosal and van der Vaart
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(2007). Secondly, other papers focus on a particular prior and obtain contraction rates

in a particular model, see for instance Belitser and Ghosal (2003) in the white noise

model, De Jonge and van Zanten (2010) in regression, and Scricciolo (2006) in density.

The novelty of this paper is that our results hold for a family of priors (sieve priors)

without a specific underlying model, and can be applied to different models.

An additional interesting property that is sought at the same time as convergence rates

is adaptation. This means that, once specified a loss function (a semimetric dn on Θ),

and a collection of classes of different smoothnesses for the parameter, one constructs

a procedure which is independent of the smoothness, but which is rate optimal (under

the given loss dn), within each class. Indeed, the optimal rate naturally depends on

the smoothness of the parameter, and standard straightforward estimation techniques

usually use it as an input. This is all the more an important issue that relatively few

instances in the Bayesian literature are available in this area. That property is often

obtained when the unknown parameter is assumed to belong to a discrete set, see for

example Belitser and Ghosal (2003). There exist some results in the context of density

estimation by Huang (2004), Scricciolo (2006), Ghosal et al. (2008), van der Vaart

and van Zanten (2009), Rivoirard and Rousseau (2012a), Rousseau (2010) and Kruijer

et al. (2010), in regression by De Jonge and van Zanten (2010), and in spectral density

estimation by Rousseau and Kruijer (2011). What enables adaptation in our results

is the thresholding induced by the prior on k: the posterior distribution of parameter

k concentrates around values that are the typical efficient size of models of the true

smoothness.

As seen from our assumptions in Section 2.2.1 and from the general results (Theorem 2.2

and Corollary 2.3), adaptation is relatively straightforward under sieve priors defined by

(2.1) when the semimetric is a global loss function which acts like the Kullback-Leibler

divergence, the l2 norm on θ in the regression problem, or the Hellinger distance in the

density problem. If the loss function (or the semimetric) dn acts differently, then the

posterior distribution (or the risk) can be quite different (suboptimal). This is illustrated

in Section 2.3.2 for the white noise model (2.16) when the loss is a local loss function as

in the case of the estimation of f(t), for a given t, where dn(f ,f0) = (f(t) − f0(t))
2.

This phenomenon has been encountered also by Rousseau and Kruijer (2011). It is not

merely a Bayesian issue: Cai et al. (2007) show that an optimal estimator under global

loss cannot be locally optimal at each point f(t) in the white noise model. The penalty

between global and local rates is at least a log n term. Abramovich et al. (2004) and

Abramovich et al. (2007a) obtain similar results with Bayesian wavelet estimators in the

same model.
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The paper is organized as follows. Section 2.2 first provides a general result on rates of

contraction for the posterior distribution in the setting of sieve priors. We also derive

a result in terms of posterior loss, and show that the rates are adaptive optimal for

Sobolev smoothness classes. The section ends up with applications to the density, the

regression function and the nonlinear autoregression function estimation. In Section 2.3,

we study more precisely the case of the white noise model, which is a benchmark model.

We study in detail the difference between global or pointwise losses in this model, and

provide a lower bound for the latter loss, showing that sieve priors lead to suboptimal

contraction rates. Proofs are deferred to the Appendix.

Notations

We use the following notations. Vectors are written in bold letters, for example θ or θ0,

while light-face is used for their entries, like θj or θ0j . We denote by θ0k the projection

of θ0 on its first k coordinates, and by p
(n)
0k and p

(n)
0 the densities of the observations

in the corresponding models. We denote by dn a semimetric, by ‖ · ‖2 the l2 norm

(on vectors) in Θ or the L2 norm (on curves f), and by ‖ · ‖2,k the l2 norm restricted

to the first k coordinates of a parameter. Expectations E
(n)
0 and E

(n)
θ are defined with

respect to P
(n)
θ0

and P
(n)
θ respectively. The same notation Π ( · |Xn) is used for posterior

probability or posterior expectation. The expected posterior risk and the frequentist

risk relative to dn are defined and denoted by Rdn
n (θ0) = E

(n)
0 Π(d2n(θ,θ0)|Xn) and

Rdn
n (θ0) = E

(n)
0 (d2n(θ̂,θ0)) respectively (for an estimator θ̂ of θ0), where the mention

of θ0 might be omitted (cf. Robert, 2007, Section 2.3). We denote by ϕ the standard

Gaussian probability density.

LetK denote the Kullback-Leibler divergenceK(f, g) =
∫
f log(f/g)dµ, and Vm,0 denote

the mth centered moment Vm,0(f, g) =
∫
f | log(f/g)−K(f, g)|mdµ, with m ≥ 2.

Define two additional divergences K̃ and Ṽm,0, which are expectations with respect to

p
(n)
0 , K̃(f, g) =

∫
p
(n)
0 | log(f/g)|dµ and Ṽm,0(f, g) =

∫
p
(n)
0 | log(f/g)−K(f, g)|mdµ.

We denote by C a generic constant whose value is of no importance and we use . for

inequalities up to a multiple constant.

2.2 General case

In this section we give a general theorem which provides an upper bound on posterior

contraction rates ǫn. Throughout the section, we assume that the sequence of positive
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numbers (ǫn)n≥1, or (ǫn(β))n≥1 when we point to a specific value of smoothness β, is

such that ǫn −→
n→∞

0 and nǫ2n/ log n −→
n→∞

∞.

We introduce the following numbers

jn = ⌊j0nǫ2n/ log(n)⌋, kn = ⌊M0jn log(n)/L(n)⌋, (2.5)

for j0 > 0,M0 > 1, where L is a slow varying function such that L ≤ log, hence jn ≤ kn.

We use kn to define the following approximation subsets of Θ

Θkn(Q) =
{
θ ∈ Θkn : ‖θ‖2,kn ≤ nQ

}
,

for Q > 0. Note that the prior actually charges a union of spaces of dimension k, k ≥ 1,

so that Θkn(Q) can be seen as a union of spaces of dimension k ≤ kn. Lemma 2.13

provides an upper bound on the prior mass of Θkn(Q).

It has been shown (Ghosal et al., 2000, Ghosal and van der Vaart, 2007, Shen andWasser-

man, 2001) that an efficient way to derive rates of contraction of posterior distributions

is to bound from above the numerator of (2.4) using tests (and kn for the increasing

sequence Θkn(Q)), and to bound from below its denominator using an approximation of

p
(n)
0 based on a value θ ∈ Θjn close to θ. The latter is done in Lemma 2.14 where we

use jn to define the finite component approximation θ0jn of θ0, and we show that the

prior mass of the following Kullback-Leibler neighbourhoods of θ0, Bn(m), n ∈ N
∗, are

lower bounded by an exponential term:

Bn(m) =
{
θ : K

(
p
(n)
0 , p

(n)
θ

)
≤ 2nǫ2n, Vm,0

(
p
(n)
0 , p

(n)
θ

)
≤ 2m+1(nǫ2n)

m/2
}
.

Define two neighbourhoods of θ0 in the sieve space Θjn , B̃n(m), similar to Bn(m) but

using K̃ and Ṽm,0, and An(H1), an l
2 ball of radius n−H1 , H1 > 0:

B̃n(m) =
{
θ ∈ Θjn : K̃

(
p
(n)
0jn
, p

(n)
θ

)
≤ nǫ2n, Ṽm,0

(
p
(n)
0jn
, p

(n)
θ

)
≤
(
nǫ2n
)m/2

}
,

An(H1) =
{
θ ∈ Θjn : ‖θ0jn − θ‖2,jn ≤ n−H1

}
.

2.2.1 Assumptions

The following technical assumptions are involved in the subsequent analysis, and are

discussed at the end of this section. Recall that the true parameter is θ0, under which

the observations have density p
(n)
0 .
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A1 Condition on p
(n)
0 and ǫn. For n large enough and for some m > 0,

K
(
p
(n)
0 , p

(n)
0jn

)
≤ nǫ2n and Vm,0

(
p
(n)
0 , p

(n)
0jn

)
≤
(
nǫ2n
)m/2

.

A2 Comparison between norms. The following inclusion holds in Θjn

∃H1 > 0, s.t. An(H1) ⊂ B̃n(m).

A3 Comparison between dn and l2. There exist three non negative constantsD0, D1, D2

such that, for any two θ,θ′ ∈ Θkn(Q),

dn(θ,θ
′) ≤ D0k

D1
n

∥∥θ − θ′
∥∥D2

2,kn
.

A4 Test Condition. There exist two positive constants c1 and ζ < 1 such that, for

every θ1 ∈ Θkn(Q), there exists a test φn(θ1) ∈ [0, 1] which satisfies

E
(n)
0 (φn(θ1)) ≤ e−c1nd2n(θ0,θ1) and

sup
dn(θ,θ1)<ζdn(θ0,θ1)

E
(n)
θ (1− φn(θ1)) ≤ e−c1nd2n(θ0,θ1).

A5 On the prior Π. There exist positive constants a, b,G1, G2, G3, G4, H2, α and τ0

such that π satisfy

∀k = 1, 2, . . . , e−akL(k) ≤ π(k) ≤ e−bkL(k), (2.6)

where the function L is a slow varying function introduced in Equation (2.5); g satisfy

∀θ ∈ R, G1e
−G2|θ|α ≤g(θ) ≤ G3e

−G4|θ|α . (2.7)

The scales τ defined in Equation (2.2) satisfy the following conditions

max
j≥1

τj ≤ τ0, (2.8)

min
j≤kn

τj ≥ n−H2 , (2.9)

jn∑

j=1

|θ0j |α /ταj ≤ Cjn log n. (2.10)

Remark 2.1.
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• Conditions A1 and A2 are local in that they need to be checked at the true param-

eter θ0 only. They are useful to prove that the prior puts sufficient mass around

Kullback-Leibler neighbourhoods of the true probability. Condition A1 is a limit-

ing factor to the rate: it characterizes ǫn through the capacity of approximation

of p
(n)
0 by p

(n)
0jn

: the smoother p
(n)
0 , the closer p

(n)
0 and p

(n)
0jn

, and the faster ǫn. In

many models, they are ensured because K(p
(n)
0 , p

(n)
θjn

) and Vm,0(p
(n)
0 , p

(n)
θjn

) can be

written locally (meaning around θ0) in terms of the l2 norm ‖θ0 − θjn‖2 directly.

Smoothness assumptions are then typically required to control ‖θ0 − θjn‖2.

It is the case for instance for Sobolev and Besov smoothnesses (cf. Equation

(2.12)). The control is expressed with a power of jn, whose comparison to ǫ2n

provides in turn a tight way to tune the rate (cf. the proof of Proposition 2.6).

Note that the constant H1 in Condition A2 can be chosen as large as needed: if

A2 holds for a specified positive constant H0, then it does for any H1 > H0. This

makes the condition quite loose. A more stringent version of A2, if simpler, is the

following.

A′

2
Comparison between norms. For any θ ∈ Θjn

K̃
(
p
(n)
0jn
, p

(n)
θ

)
≤ Cn ‖θ0jn − θ‖22,jn and

Ṽm,0

(
p
(n)
0jn
, p

(n)
θ

)
≤ Cnm/2 ‖θ0jn − θ‖m2,jn .

This is satisfied in the Gaussian white noise model (see Section 2.3).

• Condition A3 is generally mild. The reverse is more stringent since dn may be

bounded, as is the case with the Hellinger distance. A3 is satisfied in many common

situations, see for example the applications later on. Technically, this condition

allows to switch from a covering number (or entropy) in terms of the l2 norm to

a covering number in terms of the semimetric dn.

• Condition A4 is common in the Bayesian nonparametric literature. A review of

different models and their corresponding tests is given in Ghosal and van der Vaart

(2007) for example. The tests strongly depend on the semimetric dn.

• Condition A5 concerns the prior. Equations (2.6) and (2.7) state that the tails of π

and g have to be at least exponential or of exponential type. For instance, if π is the

geometric distribution, L = 1, and if it is the Poisson distribution, L(k) = log(k)

(both are slow varying functions). Laplace and Gaussian distributions are covered

by g, with α = 1 and α = 2 respectively. These equations aim at controlling the

prior mass of Θc
kn
(Q), the complement of Θkn(Q) in Θ (see Lemma 2.13). The

case where the scale τ depends on n is considered in Babenko and Belitser (2009,

2010) in the white noise model. Here the constraints on τ are rather mild since
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they are allowed to go to zero polynomially as a function of n, and must be upper

bounded. Rivoirard and Rousseau (2012a) study a family of scales τ = (τj)j≥1 that

are decreasing polynomially with j. Here the prior is more general and encompasses

both frameworks. Equations (2.6) - (2.10) are needed in Lemmas 2.13 and 2.14

for bounding respectively Π(Bn(m)) from below and Π(Θc
kn
(Q)) from above. A

smoothness assumption on θ0 is usually required for Equation (2.10).

2.2.2 Results

Concentration and posterior loss

The following theorem provides an upper bound for the rate of contraction of the pos-

terior distribution.

Theorem 2.2. If Conditions A1 - A5 hold, then for M large enough and for L intro-

duced in Equation (2.5),

E
(n)
0 Π

(
θ : d2n(θ,θ0) ≥M

log n

L(n)
ǫ2n|Xn

)
= O

(
(nǫ2n)

−m/2
)

−→
n→∞

0.

Proof. See the Appendix.

The convergence of the posterior distribution at the rate ǫn implies that the expected

posterior risk converges (at least) at the same rate ǫn, when dn is bounded.

Corollary 2.3. Under the assumptions of Theorem 2.2, with a value of m in Conditions

A1 and A2 such that (nǫ2n)
−m/2 = O(ǫ2n), and if dn is bounded on Θ, then the expected

posterior risk given θ0 and Π converges at least at the same rate ǫn

Rdn
n = E

(n)
0 Π(d2n(θ,θ0)|Xn) = O

(
log n

L(n)
ǫ2n

)
.

Proof. Denote D the bound of dn, i.e. for all θ, θ′ ∈ Θ, dn(θ,θ
′) ≤ D. We have

Rdn
n ≤ M

log n

L(n)
ǫ2n + E

(n)
0 Π

(
I

(
d2n(θ,θ0) ≥M

log n

L(n)
ǫ2n

)
d2n(θ,θ0)|Xn

)

≤ M
log n

L(n)
ǫ2n +DE

(n)
0 Π

(
θ : d2n(θ,θ0) ≥M

log n

L(n)
ǫ2n|Xn

)

so Rdn
n = O(log n/L(n)ǫ2n) by Theorem 2.2 and the assumption on m.

Remark 2.4. The condition on m in Corollary 2.3 requires nǫ2n to grow as a power

of n. When θ0 has Sobolev smoothness β, this is the case since ǫ2n is typically of order
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(n/ log n)−2β/(2β+1). The condition on m boils down to m ≥ 4β. When θ0 is smoother,

e.g. in a Sobolev space with exponential weights, the rate is typically of order log n/
√
n.

Then a common way to proceed is to resort to an exponential inequality for controlling

the denominator of the posterior distribution of Equation (2.4) (see e.g. Rivoirard and

Rousseau, 2012b).

Remark 2.5. We can note that this result is meaningful from a non Bayesian point of

view as well. Indeed, let θ̂ be the posterior mean estimate of θ with respect to Π. Then,

if θ → d2n (θ,θ0) is convex, we have by Jensen’s inequality

d2n(θ̂,θ0) ≤ Π
(
d2n(θ,θ0)|Xn

)
,

so the frequentist risk converges at the same rate ǫn

Rdn
n = E

(n)
0 (d2n(θ̂,θ0)) ≤ E

(n)
0 Π

(
d2n(θ,θ0)|Xn

)
= Rdn

n = O
(
log n

L(n)
ǫ2n

)
.

Note that we have no result for general pointwise estimates θ̂, for instance for the MAP.

This latter was studied in Abramovich et al. (2007b, 2010).

Adaptation

When considering a given class of smoothness for the parameter θ0, the minimax cri-

terion implies an optimal rate of convergence. Posterior (resp. risk) adaptation means

that the posterior distribution (resp. the risk) concentrates at the optimal rate for a

class of possible smoothness values.

We consider here Sobolev classes Θβ(L0) for univariate problems defined by

Θβ(L0) =



θ :

∞∑

j=1

θ2j j
2β < L0



 , β > 1/2, L0 > 0 (2.11)

with smoothness parameter β and radius L0. If θ0 ∈ Θβ(L0), then one has the following

bound

‖θ0 − θ0jn‖22 =
∞∑

j=jn+1

θ20jj
2βj−2β ≤ L0j

−2β
n . (2.12)

Donoho and Johnstone (1998) give the global (i.e. under the l2 loss) minimax rate

n−β/(2β+1) attached to the Sobolev class of smoothness β. We show that under an addi-

tional condition between K, Vm,0 and l2, the upper bound ǫn on the rate of contraction

can be chosen equal to the optimal rate, up to a log n term.
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Proposition 2.6. Let L0 denote a positive fixed radius, and β2 ≥ β1 > 1/2. If for n

large enough, there exists a positive constant C0 such that

sup
β1≤β≤β2

sup
θ0∈Θβ(L0)

K
(
p
(n)
0 , p

(n)
0jn

)
≤ C0n ‖θ0 − θ0jn‖22 , and

sup
β1≤β≤β2

sup
θ0∈Θβ(L0)

Vm,0

(
p
(n)
0 , p

(n)
0jn

)
≤ Cm

0 n
m/2 ‖θ0 − θ0jn‖m2 , (2.13)

and if ConditionsA2 -A5 hold with constants independent of θ0 in the set ∪β1≤β≤β2Θβ(L0),

then for M sufficiently large,

sup
β1≤β≤β2

sup
θ0∈Θβ(L0)

E
(n)
0 Π

(
θ : d2n(θ,θ0) ≥M

log n

L(n)
ǫ2n(β)|Xn

)
−→
n→∞

0,

with

ǫn(β) = ǫ0

(
log n

n

) β
2β+1

,

and ǫ0 depending on L0, C0 and the constants involved in the assumptions, but not de-

pending on β.

Remark 2.7. In the standard case where dn is the l2 norm, ǫn is the optimal rate

of contraction, up to a log n term (which is quite common in Bayesian nonparametric

computations).

Proof. Let β ∈ [β1, β2] and θ0 ∈ Θβ(L0). Then θ0 satisfies Equation (2.12), and Condi-

tion (2.13) implies that

K
(
p
(n)
0 , p

(n)
0jn

)
≤ C0L0nj

−2β
n , Vm,0

(
p
(n)
0 , p

(n)
0jn

)
≤ C0L

m
0 n

m/2j−mβ
n .

For given θ0 and β, the result of Theorem 2.2 holds if Condition A1 is satisfied. This is

the case if we choose ǫn(β,θ0) ≥ C0L0j
−β
n , provided that the bounds in Conditions A2 -

A5 and in Equation (2.13) are uniform. Combined with jn = ⌊j0nǫ2n/ log n⌋, it gives as
a tight choice ǫn(β,θ0) = ǫ0(β,θ0)(log n/n)

β/(2β+1) with ǫ0(β,θ0) ≤ (L0C0j
−β
0 )1/(2β+1).

So there exists a bound ǫ0 > 0 such that supβ1≤β≤β2
supθ0∈Θβ(L0) ǫ0(β,θ0) = ǫ0 < ∞,

which concludes the proof.

2.2.3 Examples

In this section, we apply our results of contraction of Section 2.2.2 to a series of models.

The Gaussian white noise example is studied in detail in Section 2.3. We suppose in

each model that θ0 ∈ Θβ(L0), where Θβ(L0) is defined in Equation (2.11).
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Throughout, we consider the following prior Π on Θ (or on a curve space F through

the coefficients of the functions in a basis). Let the prior distribution π on k be Poisson

with parameter λ, and given k, the prior distribution on θj/τj , j = 1, . . . , k be standard

Gaussian,

k ∼ Poisson(λ),

θj
τj

| k ∼ N (0, 1), j = 1, . . . , k, independently. (2.14)

It satisfies Equation (2.6) with function L(k) = log(k) and Equation (2.7) with α = 2.

Choose then τ2j = τ0j
−2q, τ0 > 0, with q > 1/2. It is decreasing and bounded from

above by τ0 so Equation (2.8) is satisfied. Additionally,

min
j≤kn

τj = τkn = k−2q
n ≥ n−H2

for H2 large enough, so Equation (2.9) is checked. Since θ0 ∈ Θβ(L0),

τ20

jn∑

j=1

θ20j/τ
2
j =

jn∑

j=1

θ20jj
2q =

jn∑

j=1

θ20jj
2βj2q−2β ≤ jn

jn∑

j=1

θ20jj
2β ≤ jnL0,

as soon as 2q − 2β ≤ 1. Hence by choosing 1/2 < q ≤ 1, Equation (2.10) is verified for

all β > 1/2. The prior Π thus satisfies Condition A5.

Since Condition A5 is satisfied, we will show in the three examples that Conditions A2 -

A4 and Condition (2.13) hold, thus Proposition 2.6 applies: the posterior distribution at-

tains the optimal rate of contraction, up to a log n term, that is ǫn = ǫ0(log n/n)
β/(2β+1),

for a distance dn which is specific to each model. This rate is adaptive in a range of

smoothness [β1, β2].

Density

Let us consider the density model in which the density p is unknown, and we observe

i.i.d. data

Xi ∼ p, i = 1, 2, . . . , n,

where p belongs to F ,

F =
{
p density on [0, 1] : p(0) = p(1) and log p ∈ L2(0, 1)

}
.

Equality p(0) = p(1) is mainly used for ease of computation. We define the parameter

θ of such a function p, and write p = pθ, as the coefficients of log pθ in the Fourier basis
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ψ = (ψj)j≥1, i.e. it can be represented as

log pθ(x) =
∞∑

j=1

θjψj(x)− c(θ),

where c(θ) is a normalizing constant. We assign a prior to pθ by assigning the sieve

prior Π of Equation (2.14) to θ.

A natural choice of metric dn in this model is the Hellinger distance dn(θ,θ
′) = h(pθ,pθ′) =(∫ (√

pθ −√
pθ′

)2
dµ
)1/2

. Lemma 2 in Ghosal and van der Vaart (2007) shows the ex-

istence of tests satisfying A4 with the Hellinger distance.

Rivoirard and Rousseau (2012b) study this model in detail (Section 4.2.2) in order to

derive a Bernstein-von Mises theorem for the density model. They prove that Conditions

A2, A3 and (2.13) are valid in this model (see the proof of Condition (C) for A2 and

(2.13), and the proof of Condition (B) for A3). With D1 = D2 = 1, Condition A3 is

written h(pθ,pθ′) ≤ D0kn
∥∥θ − θ′

∥∥
2,kn

.

Regression

Consider now the following nonparametric regression model

Xi = f(ti) + σξi, i = 1, . . . , n,

with the regular fixed design ti = i/n in [0, 1], i.i.d. centered Gaussian errors ξi with

variance σ2. The unknown σ case is studied in an unpublished paper by Rousseau and

Sun. They endow σ with an Inverse Gamma (conjugate) prior. They show that this

one dimensional parameter adds an n log(σ/σ0) term in the Kullback-Leibler divergence

but does not alter the rates by considering three different cases for σ, either σ < σ0/2,

σ > 3σ0/2, or σ ∈ [σ0/2, 3σ0/2].

We consider now in more detail the σ known case. Denote θ the coefficients of a re-

gression function f in the Fourier basis ψ = (ψj)j≥1. So for all t ∈ [0, 1], f can be

represented as f(t) =
∑∞

j=1 θjψj(t). We assign a prior to f by assigning the sieve prior

Π of Equation (2.14) to θ.

Let P
n
t = n−1

∑n
i=1 δti be the empirical measure of the covariates ti’s, and define the

square of the empirical norm by ‖f‖2
Pn
t
= n−1

∑n
i=1 f

2(ti). We use dn = ‖ · ‖Pn
t
.
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Let θ ∈ Θ and f the corresponding regression. Basic algebra (see for example Lemma

1.7 in Tsybakov, 2009) provides, for any two j and k,

1

n

n∑

i=1

ψj(ti)ψk(ti) = δjk,

where δjk stands for Kronecker delta. Hence

‖f‖2Pn
t
=

1

n

n∑

i=1

∑

j,k

θjθkψj(ti)ψk(ti) = ‖θ‖22 = ‖f‖22, (2.15)

where the last equality is Parseval’s. It ensures Condition A3 with D0 = D2 = 1 and

D1 = 0.

The densities N (f(ti), σ
2) of Xi’s are denoted pf ,i, i = 1, . . . , n, and their product p

(n)
f .

The quantity f0jn denotes the truncated version of f0 to its first jn terms in the Fourier

basis.

We have 2K(pf0,i, pf ,i) = V2,0(pf0,i, pf ,i) = σ−2(f0(ti) − f(ti))2 and Vm,0(pf0,i, pf ,i) =

σmσ
m−2|f0(ti) − f(ti)|2 for m ≥ 2, where σm is the (non centred) mth−moment of a

standard Gaussian variable. So using Equation (2.15) we get

2K(p
(n)
f0
, p

(n)
f ) = V2,0(p

(n)
f0
, p

(n)
f ) = nσ−2‖f0 − f‖2Pn

t
= nσ−2‖θ0 − θ‖22

which proves Condition (2.13).

Additionally, both 2K̃(p
(n)
f0jn

, p
(n)
f ) and Ṽ2,0(p

(n)
f0jn

, p
(n)
f ) are upper bounded by nσ−2(2‖f0jn−

f‖2
Pn
t
+‖f0−f0jn‖2Pn

t
). Let θ ∈ An(H1), for a certain H1 > 0. Then, using (2.15) again,

the bound is less than

nσ−2(n−H1 + L0j
−2β
n ) ≤ Cnǫ2n

for H1 > 2β/(2β + 1), which ensures Condition A2.

Ghosal and van der Vaart (2007) state in Section 7.7 that tests satisfying A4 exist with

dn = ‖ · ‖Pn
t
.

Nonlinear AR(1) model

As a nonindependent illustration, we consider the following Markov chain: the nonlinear

autoregression model whose observations Xn = (X1, . . . , Xn) come from a stationary

time series Xt, t ∈ Z, such that

Xi = f(Xi−1) + ξi, i = 1, 2, . . . , n,
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where the function f is unknown and the residuals ξi are standard Gaussian and inde-

pendent of (X1, . . . , Xi−1). We suppose that X0 is drawn in the stationary distribution.

Suppose that regression functions f are in L2(R), and uniformly bounded by a constant

M1 (a bound growing with n could also be considered here). We use Hermite functions

ψ = (ψj)j≥1 as an orthonormal basis of R, such that for all x ∈ R, f(x) = fθ(x) =
∑∞

j=1 θjψj(x). This basis is uniformly bounded (by Cramér’s inequality). Consider

the sieve prior Π in its truncated version (2.3) for θ, with radius r1 a (possibly large)

constant independent of k and n.

We show that Conditions A1-A4 are satisfied, along the lines of Ghosal and van der

Vaart (2007) Sections 4 and 7.4. Denote pθ(y|x) = ϕ(y−fθ(x)) the transition density of

the chain, where ϕ( · ) is the standard normal density distribution, and where reference

measures relative to x and y are denoted respectively by ν and µ. Define r(y) = 1
2(ϕ(y−

M1) +ϕ(y+M1)), and set dν = rdµ. Then Ghosal and van der Vaart (2007) show that

the chain (Xi)1≤i≤n has a unique stationary distribution and prove the existence of tests

satisfying A4 relative to the Hellinger semidistance d whose square is given by

d2(θ,θ′) =

∫ ∫ (√
pθ(y|x)−

√
pθ′(y|x)

)2
dµ(y)dν(x).

They show that d is bounded by ‖ · ‖2 (which proves Condition A3) and that

K(p0, pθ) = V2,0(p0, pθ) . ‖θ0 − θ‖22.

Thus Equation (2.13) holds. Condition A2 follows from inequalities K̃(p0jn , pθ) .
∑jn

j=1 |θ0j − θj | and Ṽ2,0(p0jn , pθ) . ‖θ0jn − θ‖22,jn for θ ∈ Θjn .

2.3 Application to the white noise model

Consider the Gaussian white noise model

dXn(t) = f0(t)dt+
1√
n
dW (t), 0 ≤ t ≤ 1, (2.16)

in which we observe processes Xn(t), where f0 is the unknown function of interest

belonging to L2(0, 1), W (t) is a standard Brownian motion, and n is the sample size.

We assume that f0 lies in a Sobolev ball, Θβ(L0), see (2.11). Brown and Low (1996) show

that this model is asymptotically equivalent to the nonparametric regression (assuming

β > 1/2). It can be written as the equivalent infinite normal mean model using the
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decomposition in a Fourier basis ψ = (ψj)j≥1 of L2(0, 1),

Xn
j = θ0j +

1√
n
ξj , j = 1, 2, . . . (2.17)

where Xn
j =

∫ 1
0 ψj(t) dX

n(t) are the observations, θ0j =
∫ 1
0 ψj(t)f0(t)dt the Fourier

coefficients of f0, and ξj =
∫ 1
0 ψj(t)dW (t) are independent standard Gaussian random

variables. The function f0 and the parameter θ0 are linked through the relation in

L2(0, 1), f0 =
∑∞

j=1 θ0jψj .

In addition to results in concentration, we are interested in comparing the risk of an

estimate f̂n corresponding to basis coefficients θ̂n, under two different losses: the global

L2 loss (if expressed on curves f , or l2 loss if expressed on θ),

RL2

n (θ0) = E
(n)
0

∥∥∥f̂n − f0

∥∥∥
2

2
= E

(n)
0

∞∑

j=1

(
θ̂nj − θ0j

)2
,

and the local loss at point t ∈ [0, 1],

Rloc
n (θ0, t) = E

(n)
0

(
f̂n(t)− f0(t)

)2
= E

(n)
0




∞∑

j=1

aj

(
θ̂nj − θ0j

)



2

,

with aj = ψj(t). Note that the difference between global and local risks expressions

in basis coefficients comes from the parenthesis position with respect to the square:

respectively the sum of squares and the square of a sum.

We show that sieve priors allow to construct adaptive estimate in global risk. However,

the same estimate does not perform as well under the pointwise loss, which illustrates

the result of Cai et al. (2007). We provide a lower bound for the pointwise rate.

2.3.1 Adaptation under global loss

Consider the global l2 loss on θ0. The likelihood ratio is given by

p
(n)
0

p
(n)
θ

(Xn) = exp
(
n〈θ0 − θ, Xn〉 − n

2
‖θ0‖22 +

n

2
‖θ‖22

)
,

where 〈., .〉 denotes the l2 scalar product. We choose here the l2 distance as dn(θ,θ
′) =

∥∥θ − θ′
∥∥
2
. Let us check that Conditions A2 - A4 and Condition (2.13) hold.

The choice of dn ensures Condition A3 with D0 = D2 = 1 and D1 = 0. The test statistic

of θ0 against θ1 associated with the likelihood ratio is φn(θ1) = I(2〈θ1 − θ0, Xn〉 >
‖θ1‖22 − ‖θ0‖22). With Lemma 5 of Ghosal and van der Vaart (2007) we have that
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E
(n)
0 (φn(θ1)) ≤ e−n‖θ1−θ0‖22/4 and E

(n)
θ (1− φn(θ1)) ≤ e−n‖θ1−θ0‖22/4 for θ such that

‖θ − θ1‖2 ≤ ‖θ1 − θ0‖2 /4. It provides a test as in Condition A4 with c1 = ζ = 1/4.

Moreover, following Lemma 6 of Ghosal and van der Vaart (2007) we have

K
(
p
(n)
0 , p

(n)
θ

)
= n ‖θ − θ0‖22 /2 and V2,0

(
p
(n)
0 , p

(n)
θ

)
= n ‖θ − θ0‖22 .

For m ≥ 2, we have

Vm,0

(
p
(n)
0 , p

(n)
θ

)
=

∫
p
(n)
0

∣∣∣log
(
p
(n)
0 /p

(n)
θ

)
−K

(
p
(n)
0 , p

(n)
θ

)∣∣∣
m
dµ

= nm
∫
p
(n)
0 |〈θ0 − θ, Xn − θ0〉|m dµ

≤ nm ‖θ0 − θ‖m2
∫
p
(n)
0 ‖Xn − θ0‖m2 dµ.

The centred mth−moment of the Gaussian variable Xn is proportional to n−m/2, so

Vm,0

(
p
(n)
0 , p

(n)
θ

)
. nm/2 ‖θ0 − θ‖m2 , and Condition (2.13) is satisfied. The same calcula-

tion shows that ConditionA′

2
is satisfied: for all θ ∈ Θjn , K̃

(
p
(n)
0jn
, p

(n)
θ

)
= n

2 ‖θ0jn − θ‖22,jn
and Ṽm,0

(
p
(n)
0jn
, p

(n)
θ

)
. nm/2 ‖θ0jn − θ‖m2,jn .

Conditions A2 - A4 and Condition (2.13) hold, if moreover A4 is satisfied, then by

Proposition 2.6, the procedure is adaptive, which is expressed in the following proposi-

tion.

Proposition 2.8. Under the prior Π defined in Equations (2.14), the global l2 rate of

posterior contraction is optimal adaptive for the Gaussian white noise model, i.e. for M

large enough and β2 ≥ β1 > 1/2

sup
β1≤β≤β2

sup
θ0∈Θβ(L0)

E
(n)
0 Π

(
θ : ‖θ − θ0‖22 ≥M

log n

L(n)
ǫ2n(β)|Xn

)
−→
n→∞

0,

with ǫn(β) = ǫ0

(
logn
n

) β
2β+1

.

The distance here is not bounded, so Corollary 2.3 does not hold. For deriving a risk

rate, we need a more subtle result than Theorem 2.2 that we can obtain when considering

sets Sn,j(M) =
{
θ :M logn

L(n)(j + 1)ǫ2n ≥ ‖θ − θ0‖22 ≥M logn
L(n)jǫ

2
n

}
, j = 1, 2, . . . instead of

Sn(M) =
{
θ : ‖θ − θ0‖22 ≥M logn

L(n)ǫ
2
n

}
. Then the bound of the expected posterior mass

of Sn,j(M) becomes

E
(n)
0 Π(Sn,j(M)|Xn) ≤ c7

(
njǫ2n

)−m/2
(2.18)

for a fixed constant c7. Hence we obtain the following rate of convergence in risk.
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Proposition 2.9. Under Condition (2.13) with m ≥ 5, the expected posterior risk given

θ0 and Π converges at least at the same rate ǫn

RL2

n (θ0) = E
(n)
0 Π

[
‖θ − θ0‖22 |Xn

]
= O

(
ǫ2n
)
,

for any θ0. So the procedure is risk adaptive as well (up to a log(n) term).

Proof. We have

RL2

n (θ0) ≤ E
(n)
0 Π




I(θ /∈ Sn(M)) +

∑

j≥1

I(θ ∈ Sn,j(M))


 ‖θ − θ0‖22 |Xn




≤ M
log n

L(n)
ǫ2n


1 +

∞∑

j=1

(j + 1)E
(n)
0 Π(Sn,j(M)|Xn)


 .

Due to (2.18), the last sum in j converges as soon as m ≥ 5. This is possible in the white

noise setting because the conditions are satisfied whatever m. So RL2

n (θ0) = O
(
ǫ2n
)
.

We have shown that conditional to the existence of a sieve prior for the white noise model

satisfying A5 (cf. Section 2.2.3), the procedure has minimax rates (up to a log(n) term)

both in contraction and in risk. We now study the asymptotic behaviour of the posterior

under the local loss function.

2.3.2 Lower bound under pointwise loss

The previous section derives rates of convergence under the global loss. Here, under

the pointwise loss, we show that the risk deteriorates as a power n factor compared to

the benchmark minimax pointwise risk n−(2β−1)/2β (note the difference with the global

minimax rate n−2β/(2β+1), both given for risks on squares). We use the sieve prior

defined as a conditional Gaussian prior in Equation (2.14). Denote by θ̂n the Bayes

estimate of θ (the posterior mean). Then the following proposition gives a lower bound

on the risk (pointwise square error) under a pointwise loss:

Proposition 2.10. If the point t is such that aj = ψj(t) = 1 for all j (t = 0), then for

all β ≥ q, for all L0 > 0, a lower bound on the risk rate under pointwise loss is given by

sup
θ0∈Θβ(L0)

Rloc
n (θ0, t) & n

− 2β−1
2β+1 / log2 n.

Proof. See the Appendix.
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Figure 2.2: Variation of the exponent of the penalty in a log scale for β between 1/2
and 100; it is maximum for β = (1 +

√
2)/2

Cai et al. (2007) show that a global optimal estimator cannot be pointwise optimal. The

sieve prior leads to an (almost up to a log n term) optimal global risk and Proposition

2.10 shows that the pointwise risk associated to the posterior mean θ̂n is suboptimal

with a power of n penalty, whose exponent is

2β − 1

2β
− 2β − 1

2β + 1
=

2β − 1

2β(2β + 1)
.

The maximal penalty is for β = (1 +
√
2)/2, and it vanishes as β tends to 1/2 and +∞

(see the Figure 2.2). Abramovich et al. (2007a) also derive such a power n penalty on

the maximum local risk of a globally optimal Bayesian estimate, as well as on the reverse

case (maximum global risk of a locally optimal Bayesian estimate).

Remark 2.11. This result is not anecdotal and illustrates the fact that the Bayesian ap-

proach is well suited for loss functions that are related to the Kullback-Leibler divergence

(i.e. often the l2 loss). The pointwise loss does not satisfy this since it corresponds to a

non smooth linear functional of θ. This possible suboptimality of the posterior distribu-

tion of some non smooth functional of the parameter has already been noticed in various

other cases, see for instance Rivoirard and Rousseau (2012b) or Rousseau and Kruijer

(2011). The question of the existence of a fully Bayesian adaptive procedure to estimate

f0(t) =
∑∞

j=1 ajθ0j remains an open question.
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2.4 Technical lemmas and proofs

2.4.1 Technical lemmas

Set Sn(M) = {θ : d2n(θ,θ0) ≥M logn
L(n)ǫ

2
n} and recall that Θkn(Q) = {θ ∈ Θkn : ‖θ‖2,kn ≤

nQ}, Q > 0. We begin with three technical lemmas.

Lemma 2.12. If Conditions A3 and A4 hold, then there exists a test φn such that for

M large enough, there exists a constant c2 such that

E
(n)
0 (φn) ≤ e

−c2M
logn
L(n)

nǫ2n and E
(n)
θ (1− φn) ≤ e

−c2M
logn
L(n)

nǫ2n ,

for all θ ∈ Sn(M) ∩Θkn(Q).

Proof. Set rn =
(√

M logn
L(n)

ζǫn

D0k
D1
n

)1/D2

. The set Sn(M) ∩Θkn(Q) is compact relative to

the l2 norm. Let a covering of this set by l2 balls of radius rn and centre θ(i). Its number

of elements is ηn . (CnQ/rn)
kn . exp(Ckn log n) . exp(C logn

L(n)nǫ
2
n) due to relation (2.5).

For each centre θ(i) ∈ Sn(M)∩Θkn(Q), there exists a test φn(θ
(i)) satisfying Condition

A4. We define the test φn = maxi φn(θ
(i)) which satisfies

E
(n)
0 (φn) ≤ ηne

−c1M
logn
L(n)

nǫ2n ≤ e
C logn

L(n)
nǫ2n−c1M

logn
L(n)

nǫ2n ≤ e
−c2M

logn
L(n)

nǫ2n ,

for M large enough and a constant c2.

Here, Condition A3 allows to switch from the coverage in term of the l2 distance to a

covering expressed in term of dn: each θ ∈ Sn(M) ∩ Θkn(Q) which lies in a l2 ball of

centre θ(i) and of radius rn in the covering of size ηn also lies in a dn ball of adequate

radius

dn(θ,θ
(i)) ≤ D0k

D1
n ‖θ − θ(i)‖D2

2 ≤ D0k
D1
n rD2

n = ζǫn

√
M

log n

L(n)
.
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Then there exists a constant c2 (the minimum with the previous one)

sup
θ∈Sn(M)∩Θkn (Q)

E
(n)
θ (1− φn) ≤ e

−c2M
logn
L(n)

nǫ2
,

hence the result follows.

Lemma 2.13. Under Condition A5, for any constant c6 > 0, there exist positive con-

stants Q, C and M0 such that

Π(Θc
kn(Q)) ≤ Ce−c6nǫ2n , (2.19)

where M0 is introduced in the definition (2.5) of kn, and Θc
kn
(Q), the complementary of

Θkn(Q), is taken in Θ.

Proof. Θc
kn
(Q) is written by Θc

kn
(Q) = {θ ∈ Θ : ‖θ‖2,kn > nQ or ∃j > kn s.t. θj 6= 0},

so its prior mass is less than π(k > kn) +
∑

k≤kn
πkΠk(θ ∈ Θk : ‖θ‖2,k > nQ), where

the last sum is less than Πkn(θ ∈ Θkn : ‖θ‖2,kn > nQ) because its terms are increasing.

The prior mass of sieves that exceed kn is controlled by Equation (2.6). We have

π (k ≥ kn) ≤
∑

j≥kn

e−bjL(j) ≤
∑

j≥kn

e−bjL(kn) ≤ Ce−bknL(kn).

Since L is a slow varying function, we have knL(kn) & jn log(n) & nǫ2n. Hence π (k ≥ kn) ≤
Ce−c6nǫ2n for a constant c6 as large as needed since it is determined by constant M0 in

Equation (2.5).

Then by the second part of Condition (2.7), Πkn (θ ∈ Θkn : ‖θ‖2,kn > nQ) is less than

∫

‖θ‖2,kn>nQ

kn∏

j=1

g(θj/τj)/τjdθj ,

≤ (G3n
H2)kn

∫

‖θ‖2,kn>nQ

exp(−G4

kn∑

j=1

|θj |α/ταj ) dθi, (2.20)

by using the lower bound on the τj ’s of Equation (2.9).

If α ≥ 2, then applying Hölder inequality, one obtains

n2Q ≤ ‖θ‖22,kn ≤ ‖θ‖2α,knk1−2/α
n ,

which leads to

‖θ‖αα,kn ≥ k1−α/2
n nQα.
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If α < 2, then a classical result states that the lα norm ‖ . ‖α is larger than the l2 norm

‖ . ‖2, i.e.
‖θ‖αα,kn ≥ ‖θ‖α2,kn ≥ nQα.

Eventually the upper bound τ0 on the τj ’s of Equation (2.8) provides

kn∑

j=1

|θj |α /ταj ≥ τ−α
0 nQαmin(k1−α/2

n , 1).

The integral in the right-hand side of (2.20) is bounded by

exp(−G4

2
‖θ‖α2,kn/τα0 )

∫

Θkn

exp(−G4

2

kn∑

j=1

|θj |α/ταj ) dθi.

The last integral is bounded by Ckn , so

Πkn

(
θ ∈ Θkn : ‖θ‖2,kn > nQ

)
≤ Ckn logn exp(−G4

2
τ−α
0 nQαmin(k1−α/2

n , 1)).

The right-hand side of the last inequality can be made smaller than Ce−c6nǫ2n for any

constant C and c6 provided that Q is chosen large enough. This entails result (2.19).

In the truncated case (2.3), we note that if
∑kn

j=1 |θj | ≤ r1, then
∑kn

j=1 θ
2
j ≤ r21, so that

for n large enough, Π(Θc
kn
(Q)) = π(k ≥ kn), and the rest of the proof is similar.

Lemma 2.14. Under Conditions A1, A2 and A5, there exists c4 > 0 such that

Π(Bn(m)) ≥ e−c4nǫ2n .

Proof. Let θ ∈ An(H1). For n large enough, Conditions A1 and A2 imply that

K(p
(n)
0 , p

(n)
θ ) ≤ K(p

(n)
0 , p

(n)
0jn

) + K̃(p
(n)
0jn
, p

(n)
θ ) ≤ 2nǫ2n,

and

Vm,0(p
(n)
0 , p

(n)
θ ) =

∫
p
(n)
0

∣∣∣log(p(n)0 /p
(n)
0jn

)−K(p
(n)
0 , p

(n)
0jn

)+

log(p
(n)
0jn
/p

(n)
θ )−

∫
p
(n)
0 log(p

(n)
0jn
/p

(n)
θ )dµ

∣∣∣∣
m

dµ

≤ 2m(Vm,0(p
(n)
0 , p

(n)
0jn

) + Ṽm,0(p
(n)
0jn
, p

(n)
θ )) ≤ 2m+1

(
nǫ2n
)m

2 ,
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which yieldsAn(H1) ⊂ Bn(m) so that a lower bound for Π(Bn(m)) is given by Π(An(H1)).

Note that for H0 > H1, then

An(H0) ⊂ An(H1) ⊂ Bn(m). (2.21)

We have

Π(An(H1)) =

∞∑

k=1

π(k)Πk(An(H1)) ≥ π(jn)Πjn(An(H1)).

By the first part of Condition (2.6) we have

π(jn) ≥ e−jnL(jn) ≥ e−
c4
2
nǫ2n , (2.22)

for c4 large enough. Now by the first part of Condition (2.7) and by Condition (2.8)

Πjn(An(H1)) =

∫

‖θ−θ0jn‖2,jn≤n−H1

jn∏

j=1

g(θj/τj)/τjdθj (2.23)

≥ (G1/τ0)
jn

∫

‖θ−θ0jn‖2,jn≤n−H1

exp(−G2

jn∑

j=1

|θj |α/ταj )dθj .

We can bound above τ−α
j by nαH2 by Equation (2.9) as j ≤ jn ≤ kn. We write |θj |α ≤

2α (|θ0j |α + |θj − θ0j |α). First, Equation (2.10) gives

jn∑

j=1

|θ0j |α /ταj ≤ Cjn log n.

Then, if α ≥ 2
jn∑

j=1

|θj − θ0j |α ≤ ‖θ − θ0jn‖α2,jn ≤ n−αH1 ,

and if α < 2 then Hölder’s inequality provides

jn∑

j=1

|θj − θ0j |α ≤ ‖θ − θ0jn‖α2,jn j
1−α/2
n ≤ n−αH1j1−α/2

n .

In both cases we have

jn∑

j=1

|θj |α /ταj ≤ 2α(Cjn log n+ nα(H2−H1)j1−α/2
n ),

so choosing H2 ≤ H1 ensures to bound the latter by jn log n. Last, the integral of the

ball in dimension jn, centered around θ0jn , and of radius n−H1 , is at least equal to

e−Cjn logn, for some given positive constant C.
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Noting that jn = ⌊j0nǫ2n/ log(n)⌋ and choosing H1 large enough, which is possible by

Equation (2.21), ensures the existence of c4 > 0 such that Πjn(An(H1)) ≥ e−
c4
2
nǫ2n .

Combining this with (2.22) allows to conclude.

In the truncated case (2.3), we can first choose r1 larger than 2
∑jn

j=1 |θ0j |. If θ ∈ An(H1),

then
∑jn

j=1 |θj | ≤
∑jn

j=1(|θj − θ0j | + |θ0j |) ≤ √
jnn

−H1 + r1/2 ≤ r1 for n and H1 large

enough. So the expression of integral (2.23) is still valid.

2.4.2 Proof of Theorem 2.2

Proof. (of Theorem 2.2)

Express the quantity of interest Π (Sn(M)|Xn) in terms of Nn, Ñn and Dn defined as

follows

∫
Sn(M)∩Θkn (Q) p

(n)
θ /p

(n)
θ0
dΠ(θ) +

∫
Sn(M)∩Θc

kn
(Q) p

(n)
θ /p

(n)
θ0
dΠ(θ)

∫
Θ p

(n)
θ /p

(n)
θ0
dΠ(θ)

:=
Nn + Ñn

Dn
.

Denote ρn(c3) = exp(−(c3 + 1)nǫ2n)Π(Bn(m)) for c3 > 0. Introduce φn the test statistic

of Lemma 2.12, and take the expectation of the posterior mass of Sn(M) as follows

E
(n)
0

(
Nn + Ñn

Dn
(φn + 1− φn) (I(Dn ≤ ρn(c3)) + I(Dn > ρn(c3)))

)

≤ E
(n)
0 (φn) + E

(n)
0

(
Nn + Ñn

Dn
(1− φn) (I(Dn ≤ ρn(c3)) + I(Dn > ρn(c3)))

)

≤ E
(n)
0 (φn) + p

(n)
0 (Dn ≤ ρn(c3)) +

E
(n)
0 (Nn (1− φn)) + E

(n)
0 (Ñn)

ρn(c3)
. (2.24)

Lemma 10 in Ghosal and van der Vaart (2007) gives p
(n)
0 (Dn ≤ ρn(c3)) .

(
nǫ2n
)−m/2

for every c3 > 0.

Fubini’s theorem entails that E
(n)
0 (Nn(1− φn)) ≤ supSn(M)∩Θkn (Q) E

(n)
θ (1− φn). Along

with E
(n)
0 (φn), it is upper bounded in Lemma 2.12 by e

−c2M
logn
L(n)

nǫ2n .

Lemma 2.13 implies that E
(n)
0 (Ñn) ≤ Π(Θc

kn
(Q)) ≤ e−c6nǫ2n and Lemma 2.14 yields

Πn(Bn(m)) ≥ e−c4nǫ2n . Constants c3 and c4 are fixed, so we can choose M , M0 and

Q large enough for c6 to be sufficiently large (see proof of Lemma 2.13), such that

min(M logn
L(n)c2, c6) > c3 + c4 + 1. It implies that the third term in Equation (2.24) is

bounded above by e−c5nǫ2n for some positive c5. Finally,

E
(n)
0 Π(Sn(M)|Xn) = O

((
nǫ2n
)−m/2

)
−→
n→∞

0,
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since nǫ2n −→
n→∞

∞.

2.4.3 Proof of Proposition 2.10

The proof of the lower bound in the local risk case uses the next lemma, whose proof

follows from Cauchy-Schwarz’ inequality.

Lemma 2.15. If E(B2
n) = o(E(A2

n)), then E((An +Bn)
2) = E(A2

n)(1 + o(1)).

Proof. (of Proposition 2.10)

The coordinates of θ̂n are θ̂nj = Π(θj |Xn) =
∑∞

k=1 π(k|Xn)θ̃nj(k), with θ̃nj(k) =

τ2j /(τ
2
j + 1

n)X
n
j if k ≥ j, and θ̃nj(k) = 0 otherwise (see Zhao, 2000).

Denote uj(X
n) =

∑
k≥j π(k|Xn) = π(k ≥ j|Xn), so that θ̂nj = uj(X

n)τ2j /(τ
2
j + 1

n)X
n
j .

Denote Kn = n1/(2β+1) and Jn = n1/2β . Most of the posterior mass on k is concentrated

before Kn, in the sense that there exists a constant c such that

E
(n)
0 (uKn(X

n)) . exp (−cKn) . (2.25)

This follows from the exponential inequality

P
(n)
θ0

[uKn(X
n) > exp(−cKn)] . exp(−cKn),

which is obtained by classic arguments in line with Theorem 2.2: writing the posterior

quantity uKn(X
n) as a ratio Nn/Dn, and then using Fubini’s theorem, Chebyshev’s

inequality and an upper bound on π(k > Kn).

Due to Relation (2.17), we split in three the sum in the risk

Rloc
n (θ0, t) = E

(n)
0

( ∞∑

i=1

ai[(1− ui(X
n)

τ2i
τ2i +

1
n

)θ0i − ui(X
n)

τ2i
τ2i +

1
n

ξi√
n
]

)2

by centring the stochastic term Xn
i and writing 1− ui(X

n)
τ2i

τ2i +
1
n

= 1
n

1
τ2i +

1
n

+
τ2i

τ2i +
1
n

(1−
ui(X

n)). The idea of the proof is to show that there is a leading term in the sum, and

to apply Lemma 2.15.
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Let R1 =
(∑∞

i=1 ai
1

nτ2i +1
θ0i

)2
, R2 = E

(n)
0

(∑∞
i=1 ai

τ2i
τ2i +

1
n

(1− ui(X
n))θ0i

)2
and R3 =

E
(n)
0

(∑∞
i=1 ai

τ2i
τ2i +

1
n

ui(X
n) ξi√

n

)2
. By using Cauchy-Schwarz’ inequality

R1 =

( ∞∑

i=1

ai
1

nτ2i +1
θ0i

)2

=

( ∞∑

i=1

ai
i−β

nτ2i +1
θ0ii

β

)2

. L0

∞∑

i=1

i−2β

(ni−2q+1)2
,

because the ai’s are bounded. If 2β − 4q > 1, then we can write

R1 .
1

n2

∞∑

i=1

i−2β+4q .
1

n2
,

and if 2β − 4q ≤ 1, then comparing to an integral provides

R1 .

∫ ∞

1

x−2β

(nx−2q+1)2
dx

.
(
n1/2q

)1−2β
∫ ∞

n−1/2q

y−2β

(y−2q+1)2
dy

. n
− 2β−1

2q . n
− 2β−1

2β ,

where the last inequality holds because q is chosen such that q ≤ β. Then R1 =

O(n−(2β−1)/2β).

For k = 2, 3, denote Rk(bn, cn) the partial sum of Rk from j = bn to cn. Then R2(1, Jn)

is the larger term in the decomposition, and is treated at the end of the section. The

upper part R2(Jn,∞) is easily bounded by

R2(Jn,∞) .

( ∞∑

i=Jn

|θ0i| iβi−β

)2

. J−2β+1
n = O

(
n
− 2β−1

2β

)
.

We splitR3(1, Jn) in two partsR3,1(1, Jn) andR3,2(1, Jn) by writing ui(X
n) = uJn(X

n)+

π(i ≤ k < Jn|Xn) for all i ≤ Jn:

nR3(1, Jn) . E
(n)
0




Jn∑

j=1

π(j|Xn)

j∑

i=1

ai
τ2i

τ2i +
1
n

ξi




2

+E
(n)
0

(
uJn(X

n)

Jn∑

i=1

ai
τ2i

τ2i +
1
n

ξi

)2

:= R3,1(1, Jn) +R3,2(1, Jn).
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Let Γjn(X
n) =

∑j
i=1 ai

τ2i
τ2i +

1
n

ξi. We have
∑Jn

j=1 π(j|Xn) ≤ 1 so we can apply Jensen’s

inequality,

R3,1(1, Jn) ≤ E
(n)
0




Jn∑

j=1

π(j|Xn)Γjn(X
n)2




≤ E
(n)
0 max

j≤Jn

{
Γjn(X

n)2
}
.

Noting that (Γjn(X
n))1≤j≤Jn

is a martingale, we get using Doob’s inequality

R3,1(1, Jn) ≤ E
(n)
0 ΓJnn(X

n)2 =

Jn∑

i=1

(
ai

τ2i
τ2i +

1
n

)2
. Jn.

The second term R3,2(1, Jn) can be upper bounded in the same way as for R3(Jn,∞) in

Equation (2.26) below by noting that

R3,2(1, Jn) . E
(n)
0


uJn(Xn)2

( ∞∑

i=Kn

τ2i
τ2i +

1
n

|ξi|
)2

 .

For the upper part R3(Jn,∞), we use the bound (2.25) on E
(n)
0 (uKn(X

n)),

nR3(Jn,∞) . E
(n)
0

( ∞∑

i=Kn

τ2i
τ2i +

1
n

ui(X
n) |ξi|

)2

. E
(n)
0


uKn(X

n)2

( ∞∑

i=Kn

τ2i
τ2i +

1
n

|ξi|
)2

 (2.26)

.
[
E
(n)
0 uKn(X

n)4
]1/2


E(n)

0

( ∞∑

i=Kn

τ2i
τ2i +

1
n

|ξi|
)4


1/2

.
[
E
(n)
0 uKn(X

n)
]1/2



( ∞∑

i=Kn

τ2i
τ2i +

1
n

)4


1/2

. e−c2Kn/2n1/q,

where we bound the different moments of |ξi| by a unique constant and then use
∑∞

i=Kn
τ2i /(τ

2
i + 1

n) = O(n1/2q). Then R3 = O(n−(2β−1)/2β).

To sum up, R2(1, Jn) is the only remaining term. We build an example where it is of

greater order than n−(2β−1)/2β . Let θ0 be defined by its coordinates θ0i = i−β−1/2 (log(i+ 1))−1

such that the series
∑

i θ
2
0ii

2β converge, so θ0 belongs to the Sobolev ball of smoothness

β. It is assumed that ai = ψi(t) = 1, so all terms in the sum R2(1, Jn) are positive,
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hence

R2(1, Jn) ≥
1

4
E
(n)
0

(
Jn∑

i=Kn

(1− ui(X
n))θ0i

)2

,

noting that for i ≤ Jn, we have nτ2i ≥ n1−q/β ≥ 1 because q ≤ β and n ≥ 1, so

τ2i /(τ
2
i + 1

n) ≥ 1/2. Moreover, ui(X
n) decreases with i, so

R2(1, Jn) ≥
1

4
E
(n)
0

(
(1− uKn(X

n))2
)
(

Jn∑

i=Kn

θ0i

)2

,

where E
(n)
0

(
(1− uKn(X

n))2
)
is lower bounded by a positive constant for n large enough.

Comparing the series
∑Jn

i=Kn
θ0i to an integral shows that it is bounded from below by

K
−β+1/2
n / log n. We obtain by using Lemma 2.15 that Rloc

n (θ0, t) = R2(1, Jn)(1+o(1)) &

n
− 2β−1

2β+1 /log2 n, which ends the proof.





Chapter 3

Bayesian nonparametric

dependent models for the study

of diversity for species data

On introduit dans ce chapitre un modèle bayésien non-paramétrique pour étudier de

manière probabiliste des données d’espèces par site, c’est à dire des données de popula-

tion pour lesquelles les individus observés par site par site appartiennent à différentes

espèces. Ces données peuvent être représentées par une matrice constituée du nombre

d’occurrences de chaque espèce sur chaque site. Notre but est d’étudier l’impact de fac-

teurs, ou variables explicatives, additionnels, tels que des variables environnementales,

sur la structure des données, et en particulier sur la diversité. A cet effet, on introduit

de la dépendance a priori selon les variables explicatives, et on montre que cela améliore

l’inférence a posteriori. On utilise une version dépendante de la distribution GEM, qui

représente la distribution des poids du processus de Dirichlet, de la même manière que

sont dfinis les processus de Dirichlet dépendants. La loi a priori est définie à partir

de la construction stick-breaking, dans laquelle on obtient les poids en transformant un

processus gaussien, et la dépendance découle de la fonction de variance-covariance de

ce dernier. On explicite des propriétés de distribution du modèle, telle que sa fonction

de probabilité de partition échangeable jointe. On décrit un algorithme de Monte-Carlo

par châıne de Markov pour l’échantillonnage a posteriori, ainsi que l’échantillonnage de

la loi prédictive pour des facteurs inobservés. Les deux algorithmes sont illustrés sur les

données simulées et sur des données d’expériences réalisées par des prélèvements dans

le sol en Antarctique.
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Abstract

We introduce a dependent Bayesian nonparametric model for the probabilistic modelling

of species-by-site data, i.e. population data where observations at different sites are

classified in distinct species. These data can be represented as a frequency matrix

giving the number of times each species is observed in each site. Our aim is to study the

impact of additional factors (covariates), for instance environmental factors, on the data

structure, and in particular on the diversity. To that purpose, we introduce dependence

a priori across the covariates, and show that it improves posterior inference. We use a

dependent version of the GEM distribution, which is the distribution of the weights of the

Dirichlet process, in the same lines as the Dependent Dirichlet process is defined. The

prior is thus defined via the stick-breaking construction, where the weights are obtained

by transforming a Gaussian process, and the dependence stems from the covariance

function of the latter. Some distributional properties of the model are derived, such

as its joint exchangeable partition probability function. A Markov chain Monte Carlo

algorithm for posterior sampling is described, along with the sampling scheme of the

predictive distribution for unobserved factors. Both samplers are illustrated on simulated

data and on a real data set obtained in experiments conducted in Antarctica soil.

Keywords: Bayesian nonparametrics, Dependent model, Gaussian processes, GEM dis-

tribution, Stick-breaking representation.

3.1 Introduction

In this paper we define a dependent random probability measure for the study of species

given by sites. Random probability measures are widely used, for instance in Bayesian
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nonparametrics as prior distributions on measures, and are also of interest as species

sampling models. Their dependent extensions, with respect to a factor, or a covariate,

like time, position, etc, have been more and more studied recently, roughly under three

possible constructions. First some are based on the Chinese Restaurant process, for

instance Caron et al. (2006), and are oriented towards in-line data collection and fast

implementation in that case. Then others use completely random measures, for example

Lijoi et al. (2013a,b), whose analytical tractability allows to study their distributional

properties. Eventually, many strategies make use of the stick-breaking representation

after the seminal paper MacEachern (1999), for instance (Dunson et al., 2007, Dunson

and Park, 2008, Chung and Dunson, 2009, Griffin and Steel, 2006).

As we can see, applications vary, and are mainly tailored by the type of construction.

When it comes to the study of species observed by site, the literature is scarce. It is often

useful to consider the influence of environmental and soil factors that can influence the

abundance patterns. An obstacle in the field of species sampling stems from the need to

track species across the factor when individuals are not the same. Arises the question

which is tackled in the present work, namely

How to model species proportions at different sites, indexed by a covariate,

for example an environmental factor, and be able to interpret the impact of

the latter on the population, for example on its diversity, or on particular

species?

We define a dependent version of the GEM distribution (which is the distribution of

the weights in a Dirichlet process) for modelling relative proportions. Dependence is

introduced via (the covariance function of) Gaussian processes, which allow to define

dependent Beta random variable by inverse cumulative distribution functions transforms.

The effect of the factor is measured in terms of population indices like diversity, which

is a notion of interest in species data.

The appropriateness of the model is assessed by the study of some of its distributional

properties. The exchangeable partition probability function of the model is given for

the simple bivariate case. The prior dependence induced at the diversity level is also

examined.

The running application used throughout the paper concerns an ecotoxicological data set

of abundance data of microbes known as Operational Taxonomic Units (OTUs, or mi-

crobes, see Schloss and Handelsman, 2005) measured at different sites in Antarctica soil.

The covariate that is used is one of the important environmental insults in the Antarctic

region, namely fuel spills as measured by Total Petroleum Hydrocarbon (TPH). As an
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indication of the structure of the data, Figure 3.1 shows three diversity indices computed

on this data set according to the contaminant.

The rest of the paper is organized as follows. Section 3.2 discusses diversity measures

that are used in order to characterise a species population, and their estimation. Sec-

tion 4.3 reviews classical models in Bayesian nonparametrics and proposes a dependent

GEM model for species-by-site count data, whose posterior sampling is developed in Sec-

tion 3.4. Some of its distributional properties are studied in Section 3.5. Applications to

simulated and real data obtained from the Antarctica soil biodiversity study are given

in Section 3.6.

3.2 Diversity

In studies oriented towards species sampling and abundance measures, diversity is often

a notion of interest. The question of measuring diversity arises in many fields, eg ecology

as in the present study, but also biology, engineering or probability theory. There are

numerous ways to study the diversity of a population divided into groups, or species.

Diversity is sometimes described as the crude measure of the number of observed species

in a sample. This is also called species richness, and was studied with a Bayesian

approach by Hill (1979), Boender and Kan (1987), and later in a Bayesian nonparametric

setting by Gnedin and Pitman (2006) in the case of α–Gibbs type priors. Diversity is

also defined as an index which measures the proximity of a discrete distribution with

the uniform distribution. For a discussion between different diversity indices, see for

example Cerquetti (2012).

One such index that is predominant in ecology and which will be retained here is the

Shannon index HShan. For a discrete probability distribution p, one defines

HShan(p) = −
∑

j

pj log pj . (3.1)

Other diversity indices include the Simpson index

HSimp(p) = 1−
∑

j

p2j , (3.2)

and the generalized diversity index which was proposed by Good (1953) in the form of

HGood,α,β(p) = −
∑

j

pαj log
β pj , (3.3)

for non-negative integer values of α and β.
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Figure 3.1: Empirical diversity indices for the data set of Section 3.6.2, indexed
by a contaminant factor called TPH. From left to right : Shannon, Simpson (minus 1)
and Good indices, for α and β parameters as indicated. The x-axis represents the TPH

contaminant.

Diversity estimation has been a problem for a long time. Consider a sample Yi in a

discrete distribution p = (p1, p2, . . .) such that P(Yi = j) = pj . The most straightforward

estimator is obtained by plugging-in the empirical distribution. Denote by nj the number

of observations equal to j, and by N the total number of observations. Then p̂emp =

(p̂emp
1 , p̂emp

2 , . . .) where p̂emp
j = nj/N . For instance for the Shannon index

ĤShan
emp = −

∑

j

p̂emp
j log p̂emp

j . (3.4)

Figure 3.1 shows the empirical Shannon index estimator (3.4) and analogous estima-

tors for the Simpson and Good indices computed on the ecotoxicological data set of

Section 3.6.2 for varying values of the covariate. The empirical estimator is also the

maximum likelihood estimator in the multinomial model. It is known that it is a biased

estimator (see eg Gill and Joanes, 1979), with a bias of −(J − 1)/(2N) in the case of

a population of size N with a finite number of species J . It also exhibits the following

undesirable property with small sample sizes: if in a sample of a population with J

species, all the individuals belong to the same species, then Ĥemp = 0.

Gill and Joanes (1979) examine a Bayes estimate which avoids that problem. They use a

Dirichlet prior distribution on p, with parameter α = (α, . . . , α), such that the posterior

mean of the pj ’s are p̂
B
j =

nj+α
N+αJ . They deduce a diversity estimate by plug–in

ĤB = −
∑

j

p̂Bj log p̂Bj . (3.5)
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It can be seen that the α parameter smoothes, or flattens, the estimation of the pj ’s by

preventing them to be 0.

In our work we also adopt a Bayesian approach, but unlike Gill and Joanes (1979),

we use Markov chain Monte Calro (thereafter MCMC) to sample directly the posterior

distribution of the index and hence do not need to resort to a plug–in estimator. More-

over, our diversity estimation problem does not consist of a pointwise estimate, but a

multivariate estimate with as many entries as the number of sites indexed by a covari-

ate X. In order to construct better estimates of the diversity than unrelated ones as

in Figure 3.1, we now turn to define a nonparametric Bayes prior on p that allows to

model the dependence of the data with the covariate X across different population, and

still retains the desirable flattening property of (3.5).

3.3 Models

3.3.1 Sampling model

We describe here the notation and sampling process of covariate dependent species-by-

site count data. Each unique covariate value is indexed by i and is denoted by Xi. Recall

that is may correspond to a single site or to a collection of sites with the same covariate

value. For the sake of simplicity, we may still speak of site i. Individual observations at

site i are taxa, or species, indexed by natural numbers j = 1, 2, . . .. The total number of

observed species is denoted by J . No hypothesis is made on the unknown total number

of species in the population of interest, which might be infinite. Observe (Xi,Y
Ni
i )i=1,...,I

where YNi
i = (Yn,i)n=1,...,Ni are observations at site i with total abundance (number of

observations) Ni and factor value Xi. Species j abundance at site i is denoted by Nij ,

i.e. the number of times when Yn,i) = j with respect to n index. Relative abundance

satisfy
∑

j Nij = Ni.

We model the relative frequencies or abundances p = (p(Xi))i = (pj(Xi))i, j=1,2,... by

the following. For i = 1 . . . I and n = 1 . . . Ni:

Yn,i |p(Xi), Xi
ind∼

∞∑

j=1

pj(Xi)δj . (3.6)

Note that given the independence assumption in the model in Equation (3.6), it is not

necessary to assume that the covariate values Xi are all distinct. The case Xi = Xj

for i 6= j is equivalent to considering a single covariate Xi which collapses together

observations YNi
i and Y

Nj

j . We also denote by pi the relative frequencies at site i,

pi = (pj(Xi))j=1,2,....
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Remark 3.1. The covariate X is continuous, so in addition to inferring the matrix p,

we are interested in the inference of the whole paths (pj(X), X ∈ X ), or pj(X∗) for a

reasonable covariate value X∗, and for any species j.

Remark 3.2. Note that we want that sub-models close in the covariate space share close

parameters, i.e. that the pj(Xi)’s have dependence through the Xi’s.

The probability of Yn,i is f(Yn,i|pi, Xi) =
∏J

j=1 pj(Xi)
I(Yn,i=j). The likelihood of data at

site i is given by Li(Y
Ni
i |pi, Xi) =

∏J
j=1 pj(Xi)

Nij , so the likelihood of the model is:

L(Y|p, X) =

I∏

i=1

J∏

j=1

pj(Xi)
Nij . (3.7)

Before we turn to the description of our Baysian nonparametric model, let mention

a Bayesian parametric approach to the problem of estimating relative proportions by

Holmes et al. (2012) using Dirichlet multinomial mixtures. A natural limitation to these

techniques is that the number of species has to be fixed. In addition, we are interested

in borrowing information across different sites, which cannot be guaranteed when one

uses such independent priors by site.

3.3.2 Dependent GEM distribution

Modelling dependence in the Bayesian nonparametric has played an important in the

recent literature. Strategies are diverse, and depend on the application in sight. Some

are based on the Chinese Restaurant process, for instance Caron et al. (2006), and are

oriented towards in-line data collection and fast implementation in that case. Others

use completely random measures, for example Lijoi et al. (2013a,b), whose analytical

tractability allows to study their distributional properties. Eventually, many strate-

gies make use of the stick-breaking representation after the seminal paper MacEachern

(1999), for instance (Dunson et al., 2007, Dunson and Park, 2008, Chung and Dunson,

2009, Griffin and Steel, 2006). We also follow this line with the precise motivation of our

research question in mind, that is to say to be able to interpret the impact of a factor on

the population. For this purpose, the stick-breaking construction is well adapted, since

each weight can correspond to a species. This is the reason why we choose to index

species by integers. This choice is discussed in more details in Remark 3.3. We now

describe the GEM distribution, and show how it is extended to incorporate dependence.

A Dirichlet process (DP) is a distribution on probability measures. Its law can be written

as the law of the following random probability measure G, known as the stick-breaking
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representation of the DP. Let M > 0 and G0 be a probability measure on a space Θ:

G =
∞∑

j=1

pjδθj , (3.8)

pj = Vj
∏

l<j

(1− Vl), with Vj
iid∼ Beta(1,M) and θj

iid∼ G0 (3.9)

mutually independently, where δθj stands for the Dirac point mass at θj . We write

G ∼ DP(M,G0). The prior induced on pi = (pj(Xi))j=1,2,... by Equations (3.9) is called

the Griffiths-Engen-McCloskey prior, abbreviated GEM: pi ∼ GEM(M) (see Pitman,

2006).

The motivation for the GEM distribution is explained by Figure 4.4. It shows draws of

(pj)j=1...J in the GEM(M) prior with various precision parameters M and the observed

proportions (pij)j=1...J at different sites i in the real data set under study. The simi-

larity between the graphs is an argument in favour of the use of the GEM(M) prior for

modelling the pi’s.
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j (Site i), j = 1, 2, . . .
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Figure 3.2: Comparison of proportions in raw data and in the prior. Top: pro-
portions pemp

j (Site i) observed in the data at three sites. Bottom: proportions (pj)j
sampled from the Griffiths-Engen-McCloskey distribution. The x-axis represents the

species index j = 1, 2, . . ..
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Remark 3.3. It is important to note that the data in Figure 4.4 are ordered by decreasing

overall abundance, i.e. species j = 1 is the largest species in the whole data set (when all

sites are collapsed together). The variations of sampling across the sites explain why the

species are not strictly ordered when considered site by site. Since the GEM(M) prior

on pi is “stochastically ordered” (see Pitman, 2006), it puts more mass on the larger

species. It makes sense to sort the data in that way and to use a prior with a natural

stochastic order on p since the data under study naturally present large and small species.

Figure 4.4 shows that the population structure in terms of species decrease is similar in

the data and in the prior.

As an aside, we first consider the simple case of I independent GEM models at each site

i of covariate Xi.

for i = 1, . . . , I, p(Xi)
iid∼ GEM(M). (3.10)

This is not a satisfactory modelling since no dependence is incorporated in this way, but

it is interesting for its posterior in closed-form. It is efficient to estimate this model in

term of the V parameters as the prior is conjugate when written in V, although the

parameter of interest remains p. Indeed, using (3.7) and (3.9), the likelihood is

L(Y |V, X) =

I∏

i=1

J∏

j=1

Vj(Xi)
Nij (1− Vj(Xi))

N̄i,j+1 , (3.11)

where N̄i,j+1 =
∑

l>j Nil, and the posterior is Beta:

π(V|Y ) =

I∏

i=1

∞∏

j=1

Be(Vj(Xi)|1 +Nij ,M + N̄i,j+1). (3.12)

In this case it is easy to sample from the posterior. The precision parameter M is

endowed with a Gamma prior distribution Ga(aM , bM ) which leads to the following

posterior conditional

M |V ∼ Ga(aM + J, bM −
J∑

j=1

log(1− Vij)). (3.13)

The model is estimated by a simple Gibbs sampler, which leads to the results shown in

Figure 3.5 on the real data set of Section 3.6.2. A comparison between the posterior

mean and the maximum likelihood estimate of the relative proportions parameters pij

is deferred to Appendix 3.8.2.

We now turn to the dependent GEM in itself. The seminal paper by MacEachern (1999)

extended the classical DP to dependent Dirichlet processes which allow the weights pj

and/or the clusters θj to vary with a predictor X, according to stochastic processes
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pj(X) and θj(X). We use the same construction to extend the GEM distribution to the

following dependent version, abbreviated Dep− GEM(M) :

pj(X) = Vj(X)
∏

l<j

(1− Vl(X)) with Vj(X)
iid∼ Beta(1,M). (3.14)

We use the same model as before, that is Equation (3.6), with the Dep− GEM prior.

The likelihood given in Equation (3.11) is factorized across the species j = 1 . . . J . By

independence in (3.14), the prior is also factorized on V through j: Vj |X iid∼ π(Vj |X),

so the following factorized posterior is obtained:

π(V|Y,X) ∝
∞∏

j=1

π(Vj |X)× Lj(Y |Vj , X), (3.15)

where Lj(Y |Vj , X) =
∏I

i=1 Vj(Xi)
Nij (1−Vj(Xi))

N̄i,j+1 . Note that for j > J , Lj(Y |Vj , X) =

1, so that the posterior updating concerns only J components of observed species. Us-

ing a factorized prior across the species does not prevent the introduction of dependence

across the sites as the Vj(Xi) can be correlated across i in the joint prior π(Vj |X). The

factorized expression of the posterior in Equation (4.8) is convenient as it permits to

sample independently across the species j. It reduces the initial problem of estimation

in dimension I×J to J estimation problems of dimension I, which is more efficient with

respect to the curse of dimensionality.

The construction of the Dep− GEM prior requires to be able to construct a prior on the

vector Vj which is marginally Beta, i.e. which meets the definition in (3.14) for each

V(Xi) and still exhibits dependence across i. We turn in the next section to describe

the construction of a prior on Vj , where the dependence is introduced through Gaussian

processes. The model is illustrated by a graphical representation in Figure 3.3.

Remark 3.4. Since the processes Vj are i.i.d. (across j), we denote by V a generic

Vj.

3.3.3 Dependence through Gaussian processes

This section proposes a construction of a prior on V = (V (X1), . . . , V (XI)) which meets

the Beta marginal requirement of Equation (3.9). It is built by transforming a Gaussian

process (GP) Z on the covariate space X with the inverse cumulative distribution func-

tion (CDF) transform as follows1. Denote by Z ∼ N(0, σ2) a Gaussian random variable,

1We use instead a Gaussian random field if X is multidimensional. This extension is straightforward.
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Covariates

Dep-GEM

Observations

X1 X2 · · · X∗ · · · XI

Z(X1)
V(X1)

Z(X2)
V(X2)

· · ·

Z(X∗)
V(X∗)

· · ·

Z(XI)
V(XI)

Y (X1) Y (X2) · · · · · · Y (XI)

Figure 3.3: Graphical model representation for the Dep− GEM model.
Squares represent observed data, i.e. covariates Xi and observations Y (Xi) =
(Y1(Xi), . . . , YNi

(Xi)), and circles represent parameters for the Dep− GEM model.

by ΦσZ its CDF and by FM a Beta(1,M) CDF. Then:

ΦσZ (Z) ∼ U(0, 1) and V = F−1
M ◦ ΦσZ (Z) ∼ Beta(1,M), (3.16)

with FM (V ) = 1−(1−V )M and F−1
M (U) = 1−(1−U)1/M . Denote by gσ,M = F−1

M ◦ΦσZ .

The Gaussian process Z has Gaussian marginals, hence by applying the transform gσ,M

to the marginals Z(Xi) with the right standard deviation σ, one obtains marginal Beta

random variables V (Xi) ∼ Beta(1,M) which are dependent. The Gaussian process is

used as a prior probability distribution over functions. It is fully specified by a mean

function m and a covariance function K. We choose to use a centred GP, i.e. m = 0.

The covariance function of Z is denoted by K and defined by

K(Xi, Xj) = Cov(Z(Xi),Z(Xj)). (3.17)

We control the overall variance of Z by a positive pre-factor σ2
Z
and write K = σ2

Z
K̃

where K̃ is normalized in the sense that K̃(Xi, Xi) = 1 for all i. We work with the

following covariance functions K̃λ(X1, X2):

Covariance function K̃λ(X1, X2)

Squared Exponential (SE) exp
(
− (X1 −X2)

2/(2λ2)
)

Ornstein-Uhlenbeck (OU) exp
(
− |X1 −X2|/λ

)

Rational Quadratic (RQ)
(
1 + (X1 −X2)

2/(2λ2)
)−1

The Squared Exponential kernel is known to be smooth compared with other popular

choices like the Ornstein-Uhlenbeck covariance function. The parameter λ is called the

length-scale of the process Z. It tunes how far apart two points X1 and X2 have to be
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for the process to change significantly. The shorter λ is, the rougher are the paths of

the process Z. We adopt the same technique as van der Vaart and van Zanten (2009)

who deal with λ by making it random with an inverse Gamma prior distribution (by

using a Gamma distribution on a rescaling factor called a bandwidth). They obtain

adaptive minimax-optimal posterior contraction rates, which indicates that the length-

scale parameter λ correctly adapts to the path smoothness. Gibbs (1997) derived a

covariance function where the length-scale λ(X) is a (positive) function of X. This

case is not studied here, although it could result in interesting behaviour, as noted in

Rasmussen and Williams (2006).

We have a set of I points X = (X1, . . . , XI) in the covariate space X . So instead

of dealing with the whole process Z, we deal with its values at X denoted by Z =

(Z1, . . . , ZI) = (Z(X1), . . . ,Z(XI)). The vector Z is a multivariate Gaussian whose

covariance matrix K(X,λ, σZ) = (σ2
Z
K̃λ(Xi, Xj))ij is a Gram matrix whose entries are

given by Equation (3.17). This prior distribution is

log π(Z|X,λ) = 1

2
Z⊤K−1(X,λ, σZ)Z− 1

2
|K(X,λ, σZ)| −

I

2
log 2π,

or, written in terms of σ2
Z
and K̃λ = (K̃λ(Xi, Xj))ij :

π(Z|σZ, λ,X) ∝ σ−I
Z

|K̃λ|−1/2 exp
(
− Z⊤K̃−1

λ Z

2σ2
Z

)
.

It is convenient to estimate the model in terms of Z, and then to use the transform

V = gσZ,M (Z). Following Remark 3.4, note that Z corresponds to a given species j (and

should be written Zj). The likelihood contribution for species j only is

L(Y |Z, X) = L(Y |g−1
σZ

(V), X) =

I∏

i=1

gσZ,M (Zi)
Nij (1− gσZ,M (Zi))

N̄i,j+1 .

The hyperparameters are the standard deviation σZ, the length-scale λ and the precision

parameter M of the GEM distribution. We use the following hyperpriors:

σ2Z ∼ IG(aZ, bZ), λ ∼ IG(aλ, bλ), and M ∼ Ga(aM , bM ).

In absence of dependence, these are common choices since they are conjugate priors. On

top of conjugacy, recall that the IG for λ also proves to lead to good convergence results.

For the parameters of the hyperpriors, we let aZ = bZ = 1, ηλ = 1, aλ = bλ = 1 and

aM = bM = 1.
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The posterior distribution is then:

π(Z, λ, σZ,M |Y,X) ∝ L(Y |Z, X)π(Z|X,λ, σZ)π(σZ)π(λ)π(M). (3.18)

3.4 Posterior computation and inference

Here, we describe how to design an MCMC algorithm for the model. Up to a transfor-

mation, it is equivalent to sample the parameters in terms of Gaussian vectors Z or Beta

breaks V. We equally denote by π the prior for both parameters. For each of these,

we make use of the factorized form of the posterior in Equation (4.8) in order to break

the posterior sampling into J independent sampling schemes. It remains a multivariate

sampling in terms of the I sites, but avoids a very high dimensional scheme of size J×I.

3.4.1 MCMC algorithm

We use a MCMC algorithm comprising Gibbs and Metropolis-Hastings steps for sam-

pling the posterior distribution of (Z, σZ, λ,M), which proceeds by sequentially updating

each of the parameters Z, σZ, λ and M in its conditional distribution as described in

Algorithm 1. Each conditional is sampled by a Metropolis-Hastings (MH) steps. Denote

by Pθ( · ) the target distribution (full conditional), and by Qθ( · |θ) the proposal for

a generic parameter θ. The variance of the latter proposal, denoted by σ2Qθ
, is tuned

during a burn-in period. A generic Metropolis-Hastings step is described in Algorithm 2.

Algorithm 1 Dep− GEM algo-
rithm

1: Update Z given (σZ, λ,M)

2: Update σZ given (Z, λ,M)

3: Update λ given (Z, σZ,M)

4: Update M given (Z, σZ, λ)

Algorithm 2 MH algorithm

1: Given θ, propose θ′ ∼ Qθ( · |θ)
2: Compute ρθ = Pθ(θ

′)
Pθ(θ)

Qθ(θ|θ′)
Qθ(θ

′ |θ)
3: Accept θ′ wp min(ρθ, 1), otherwise

keep θ

The full conditionals and target distributions are now fully described:

1. Conditional for Z: Metropolis algorithm with Gaussian jumps Z′ ∼ QZ( · |Z) =

NI(Z, σ
2
QZ
K̃λ). To use a covariance matrix proportional on the one of the prior, K̃λ,

leads to improve the convergence of the algorithm compared to an homoscedastic

one. The target distribution is

PZ(Z) ∝ L(Y |Z, X, σZ,M)π(Z|X,K(X,λ, σZ)).
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2. Conditional for σZ: Metropolis-Hastings algorithm with a truncated to 0 Gaus-

sian proposal σZ
′ ∼ QσZ

( · |σZ) = N0-trunc(σZ, σ
2
QσZ

), and target distribution

PσZ
(σZ) ∝ L(Y |Z, X, σZ,M)σ

−I−aZ/2
Z

exp
(
− Z

⊤K̃−1
λ Z−2bZ
2σ2

Z

)
.

3. Conditional for λ: Metropolis-Hastings algorithm with a truncated to 0 Gaus-

sian proposal λ′ ∼ Qλ( · |λ) = N0-trunc(λ, σ
2
Qλ

), and target distribution Pλ(λ) ∝
π(Z|X,K(X,λ, σZ))π(λ).

4. Conditional for M : Metropolis algorithm with a truncated to 0 Gaussian pro-

posal M ′ ∼ QM ( · |M) = N0-trunc(M,σ2QM
), and target distribution PM (M) ∝

MAM−1 exp(−bMM)
∏I

i=1 gσZ,M (Zi)
Nij (1− gσZ,M (Zi))

N̄i,j+1 .

Remark 3.5. The dimensionality of the MCMC algorithm described above equals the

number of covariate (or block of covariates). Large dimensions can be an obstacle to

the use of traditional methods (mainly for matrix inversion). A direction that has not

been investigated could be to replace MCMC algorithms with afster approximations, of

the type of INLA for example, see Rue et al. (2009).

3.4.2 Predictive distribution

Up to now we have considered the vector Z, which is the evaluation of the GP Z at the

observed covariates X. We are now interested in new outputs, called test outputs, Z∗,

associated with (non observed) test covariates X∗. An appealing feature of the use of

GP is the possibility to easily derive the predictive distribution of Z∗, which is achieved

as follows. The joint distribution of the vector outputs (Z,Z∗) according to the prior is

(
Z

Z∗

)
∼ NI+I∗

[
0,

(
K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

)]
, (3.19)

where the covariance matrices K(X,X), K(X,X∗) = K(X∗, X)⊤ and K(X∗, X∗) (resp.

I×I, I×J and J×J matrices) are defined by their entries according to Equation (3.17).

The conditional density of Z∗ given Z given by Rasmussen and Williams (2006) is the

following Gaussian:

Z∗ |X∗, X,Z ∼ NI∗(m∗(Z),K∗), with m∗(Z) = K(X∗, X)K(X,X)−1Z, (3.20)

and K∗ = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗).

The predictive distribution of Z∗ is obtained by integrating out Z in the conditional

distribution (3.20) according to the posterior distribution π(Z|Y,X):

π(Z∗ |X∗, Y ) =

∫
π(Z∗ |X∗, X,Z)π(Z|Y,X)dZ. (3.21)
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From a practical point of view, this is done with no particular computational burden.

Generally speaking, simulation of a predictive distribution of the form of (3.21) is un-

dertaken as follows:

Algorithm 3 Predictive distribution simulation

1: Sample Z from the posterior distribution π(Z|Y,X)

2: Given Z, sample Z∗ from the conditional distribution

π(Z∗ |X∗, X,Z)

Hence when a sample of Z from the posterior distribution π(Z|Y,X) is available, one

obtains a sample from the predictive distribution by sampling in the multivariate normal

distribution (3.20). One matrix, K(X,X), has to be inverted, but that computation is

already done for the MCMC sampler. The variance K∗ of (3.20) is to be computed

once. Then it is efficient to draw a sample of the desired size from the centred normal

N(0,K∗), and then add the means m∗(Z) for Z in the posterior sample. We can obtain

the predictive distribution of any Z∗ associated with any test covariates X∗, hence the

posterior distribution of V∗, and in turn of p∗. This allows prediction in the whole space

X .

3.5 Distributional properties

The purpose of this section is to present some general distributional properties of the

Dep− GEM prior in terms of dependence and predictive rule.

The main trick for the following computations is the conditional independence between

the samples at two sites, Yn
1 = (Y1(x1), . . . , Yn(x1)) and Ym

2 = (Y1(x2), . . . , Ym(x2)),

given the process p ∼ Dep− GEM(M).

First, denote by cM = cM (|x1 − x2|) the dependence factor between the process at two

covariate points x1 and x2 defined by:

cM (|x1 − x2|) = (M + 1)2E(V (x1)V (x2)).

We identify two extreme cases denoted by:

• (I): independence, V (x1) ⊥⊥ V (x2) (eg |x1 − x2| → ∞), then cM = 1.

• (E): equality, x1 = x2, i.e. V (x1) = V (x2) in distribution, then cM = 2(M +

1)/(M + 2) = 1 +M/(M + 2),
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3.5.1 Joint law of the first picks

Proposition 3.6. The joint law for the first picks Y1(x1) and Y1(x2) at two sites of

covariate x1 and x2 is:

P(Y1(x1) = j, Y1(x2) = k) = (M + 1− cM )M |j−k|−1 (M
2 − 1 + cM )(j∧k)−1

(M + 1)j+k
. (3.22)

Proof.

P(Y1(x1) = j, Y1(x2) = k) = E
(
P(Y1(x1) = j, Y1(x2) = k |p(x1),p(x2))

)
,

= E(pj(x1)pk(x2)) by conditional independence.

Suppose without loss of generality that j ≥ k, then the last quantity can be decomposed

into the following product of four groups of terms

E(Vj(x1))
∏

k<l<j

E(V̄l(x1))E(V̄k(x1)Vk(x2))
∏

l<k

E(V̄l(x1)V̄l(x2))

=
1

M + 1

( M

M + 1

)j−k−1( 1

M + 1
− cM

(M + 1)2

) (
1− 2

M + 1
+

cM
(M + 1)2

)k−1
.

which sum up to (3.22).

Equation (3.22) reduces to M2(j−1)/(M + 1)2j in the (I) case, which is the square of

the law of the first pick, P(Y1(x1) = j) = E(pj). Surprisingly, it does not reduce to

M j−1/(M + 1)j in the (E) case, but to M
(M+1)(M+2)j

. In particular, the probability that

both species are the jth one is:

P(Y1(x1) = Y1(x2) = j) = (M + 1− cM )
(M2 − 1 + cM )j−1

M(M + 1)2j
,

thus by summing over all positive j

P(Y1(x1) = Y1(x2)) =
M + 1− cM

M(2M + 2− cM )
. (3.23)

We can see that in the (I) case, Equation (3.23) reduces the probability that two draws

at the same site x1 belong to the same species:

P(Y1(x1) = Y2(x1)) =
1

2M + 1
,

obtained by summing all squares of M j−1/(M + 1)j .
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3.5.2 Joint EPPF

Let two samples Yn
1 = (Y1(x1), . . . , Yn(x1)) and Ym

2 = (Y1(x2), . . . , Ym(x2)) parti-

tion [n] = {1, 2, . . . , n} and [m] = {1, 2, . . . ,m} in Nn
1 = (n1, . . . , nk1) and Nm

2 =

(m1, . . . ,mk2). The following proposition gives the joint EPPF of (Yn
1 ,Y

m
2 ).

Proposition 3.7. Let observations (Yn
1 ,Y

m
2 ) come from a model with Dep− GEM dis-

tribution. The probability distribution of the joint partition of (Yn
1 ,Y

m
2 ) when written

in terms of (Nn
1 ,N

m
2 , k1, k2) is

p(Nn
1 ,N

m
2 , k1, k2) = p(N

m
k2
k1+1

2 , k2 − k1)

k1∏

i=1

Bx1,x2(ni − 1,mi − 1, nk1i+1,m
k2
i+1),

where Bx1,x2(n,m, n
′,m′) = E

[
V (x1)

nV (x2)
m(1 − V (x1))

n′
(1 − V (x2))

m′]
and we use

the generic notation mk
i = mi + · · ·+mk. We denote by N

m
k2
k1+1

2 the partition of mk2
k1+1

observations at x2 unobserved at x1 in k2 − k1 species.

Interestingly, the dependence at the partition level arises only through species that are

shared at both covariates x1 and x2, with the B terms that are moments of dependent

Beta random variables. The contribution of unshared species is their own marginal

EPPF.

Proof. Using expression (1.14) for the EPPF (see Pitman, 1995), one obtains by condi-

tional independence:

P
(
Nn

1 ,N
m
2 , k1, k2

)

= E
[
P
(
Nn

1 ,N
m
2 , k1, k2 |p(x1),p(x2)

)]

= E

[ k1∏

i=1

Vi(x1)
ni−1(1− Vi(x1))

ni+1+···+nk1

k2∏

i=1

Vi(x2)
mi−1(1− Vi(x2))

mi+1+···+nk2

]
.

The B terms come by independence across i for shared species. The remaining part of

the product for the last k2 − k1 terms at x2 boils down to the EPPF for N
m

k2
k1+1

2 .

See for instance Müller et al. (2011), Lijoi et al. (2013a), Kolossiatis et al. (2013), Spory-

sheva and Petrone (2013) for other examples of joint EPPF in the case of different

dependent processes (based on normalized completely random measures).

[!! Develop the link with these results]
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3.5.3 Dependence at the diversity level

We denote a size-biased permutation of p by p̃ = (p̃1, p̃2, . . .). The first element p̃1 is

called the size-biased pick.

The following result is proved by Pitman (2006), as formula (2.23)

E
(∑

f(pj)
)
= E

(∑
f(p̃j)

)
= E

(
f(p̃1)

p̃1

)
. (3.24)

Hence the distribution of p̃1 encodes much information about p. It suffices to compute

the expectation of any transform of the form
∑
f(pj), for example the generalized

diversity index given in Equation (3.3). When it comes to compute its variance, one

need to resort to an extension of this result, as is obtained by Archer et al. (2013)

E
(∑

i 6=j

f(pi, pj)
)
= E

(
f(p̃1, p̃2)

p̃1p̃2
(1− p̃1)

)
. (3.25)

In the case of a GEM(1,M) prior on p, the prior expectation of Simpson diversity H is

found by Cerquetti (2012)

E(H) =
M

1 +M

The result for the Shannon diversity index is given an unpublished work by Cerquetti

E(H) = ψ(M + 1)− ψ(1), (3.26)

where ψ is the digamma function, i.e. the derivative of the log of the gamma function.

Now, we turn to the question of measuring the dependence at the diversity level. We

know that the DDP introduces some dependence across the pj(Xi) in varying Xi. What

dependence is induced in H(Xi)? In order to answer to this question, one needs the

following propositon

Proposition 3.8. Let p be governed by a GEM(M) prior. Denote by p̃1(X1) and p̃1(X2)

the first size-biased pick respectively at X1 and X2. Then for an arbitrary measurable

function f , then the following holds

E
(∑

j

f(pj(X1))
∑

j

f(pj(X2))
)
= E

(f(p̃1(X1))

p̃1(X1)

f(p̃1(X2))

p̃1(X2)

)
. (3.27)
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Proof.

E
(∑

j

f(pj(X1))
∑

j

f(pj(X2))
)

= E
(∑

j

f(pj(X1))

pj(X1)
pj(X1)

∑

j

f(pj(X2))

pj(X2)
pj(X2)

)

= E

[
E
(f(p̃1(X1))

p̃1(X1)
|p(X1)

)
E
(f(p̃1(X2))

p̃1(X2)
|p(X2)

)]

and by independance of the first pick with respect to p at a different covariate location

= E

[
E
(f(p̃1(X1))

p̃1(X1)
|p(X1),p(X2)

)
E
(f(p̃1(X2))

p̃1(X2)
|p(X1),p(X2)

)]

= E

[
f(p̃1(X1))

p̃1(X1)

f(p̃1(X2))

p̃1(X2)

]
.

The following result on the dependence between diversity indices is a direct application

of Proposition 3.8 and Equation (4.7).

Proposition 3.9. The covariance between H(X1) and H(X2) induced by the GEM is

controlled by the distribution of the first couple of beta breaks (V (X1), V (X2)) and the

precision parameter M only

Cov(H(X1), H(X2)) = E(log V1(X1) log V2(X2))− (ψ(M + 1)− ψ(1))2.

[!! Explain and speak about asymptotics in M ]

3.6 Applications to the estimation of diversity

We now apply the model to the estimation of diversity as described in Section 3.2. It is

a one dimensional output for which the fit of the model is easy to assess.

3.6.1 Simulated data

We begin by assessing the model on simulated data. We use a synthetic model where

the true relative proportions depend on a covariate X in the following way:

pj(X) ∝ j−
3+cos(X)

2 , j = 1, . . . , J, J = 50. (3.28)
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We use the six covariate values X = 0, 1, 2, . . . , 5. We sample data of size N = 100,

N = 250 and N = 1000 from the distribution given by Equation (3.28) for each X. Since

there are J species, this correspond to an average abundance respectively of 2, 5 and 20

by species. We run the model described in Section 3.3.3 using three kinds of Gaussian

processes: Ornstein-Uhlenbeck (OU), Squared Exponential (SE) and Rational Quadratic

(RQ), see Section 3.3.3. Algorithm 1 is run for 100 000 iterations with a burn-in of 20 000

iterations. The graphs of Figure 3.4 are estimates of the diversity at observed covariates

(triangles) along with the predictive estimate between observed covariates. The gray

shade indicates a 95% credible interval of the predictive distribution. The color dots

represent the empirical diversity on observations, while the coloured line represents the

diversity for the true distribution. The graphs below show a convergence of the estimates

towards the true diversity as the data size grows. Note that there is not a clear difference

between the series of results for the three Gaussian processes. This can be attributed to

the prior on λ which acts as expected and adapts rightly to the smoothness of the path.

In addition to studying the model through plots, we now turn to examine numerically

the fit of the Dep− GEM model (with the Squared Exponential GP only) and of the

independent model of Equation (3.10). To this end, we define the sum of squared errors

(SSE) for data Y(N) between the true Shannon index HShan and an estimator Ĥ by

SSE(Y(N)) =
∑

X

(
Ĥ(X,Y(N))−HShan(X)

)2
. (3.29)

For a thorough comparison that accounts for sampling variability, we use the mean

sum of squared errors MSSE = E
(
SSE(Y(N))

)
, where expectation is with respect to the

distribution of Y(N). To that purpose we iterate above estimation 100 times (i.e. draw

data Y(N) from the distribution of Equation (3.28) 100 times for each N), and also

estimate the independent GEM model. For both models we run an MCMC algorithm of

5 000 iterations with a burn-in of 2 000 iterations, from Algorithm 1 for the dependent

model, and from a Gibbs sampler for the second model. This last sampler is based on

the beta posterior of Equation (3.12) conditional on the precision parameter M , and on

the full conditional of M of Equation (3.13). The results are presented in Table 3.1,

and show a global improvement with the Dep− GEM model over the independent GEM

model.
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Data size = 100
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Data size = 1000

0 1 2 3 4 5

0

5

10

15

OU

P
o

s
te

ri
o

r 
d

iv
e

rs
it
y

0 1 2 3 4 5

0

5

10

15

SE

P
o

s
te

ri
o

r 
d

iv
e

rs
it
y

0 1 2 3 4 5

0

5

10

15

RQ
P

o
s
te

ri
o

r 
d

iv
e

rs
it
y

Figure 3.4: Posterior estimation of the Shannon diversity index in the sim-
ulated example (3.28) (100 000 replications). Black triangles are the estimates at
observed covariates, the black curve is the estimated predictive, and the gray shade
represents a 95% credible interval for the predictive distribution. Colour dots represent
the Shannon index in simulated data. Resp. 100, 250 and 1 000 observations were
simulated from (3.28) in the first, second and third line. The x-axis represents the

TPH contaminant.

3.6.2 Microbial data

We now test the model on real microbial data. The data set consists of measurements

of abundance of Operational Taxonomic Units (OTUs, see Schloss and Handelsman,

2005), conducted at sites in Casey, Antarctica. OTU measurements are paired with

a contaminant factor. Although a continuous variable, TPH has the same value for

several sites. When this is the case, we choose to collapse the sites together by adding

the abundances. This data set is studied in more details in Arbel et al. (2013b).
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MSSE

N Dep− GEM ⊥⊥ GEM

100 84.3 91.8

250 32.7 36.3

1000 13.9 15.1

Table 3.1: MSSE between true and estimated Shannon diversity index in
example (3.28) in the Dep− GEM model with Sqaured Exponential GP (first column)
and the independent GEM model (second column), for varying data size N (in rows).
Expectation with the data distribution is computed by averaging over 100 data sets

simulated from example (3.28) (5 000 replications) for each N .

The comparison between the diversity estimated in the independent GEM and in the

Dep− GEM models shows that some smoothing operates in the second case. In the

latter, the diversity is also available as a path in X, not only at observed predictor

values Xi’s, but in the whole space X equal to the real line here.
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Figure 3.5: Comparison between the dependent and independent model
estimations. Left : Dep− GEM model estimates (50 000 replications). Right : GEM
model estimates (50 000 replications). Black triangles: Posterior mean of the Shannon

diversity index. Color dots: Shannon diversity in raw data.

3.7 Discussion

We have presented a Bayesian nonparametric dependent model for species data, based

on the distribution of the weights of a DDP, named Dep− GEM distribution, which is

constructed thanks to Gaussian processes.
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A fundamental advantage of our approach based on the stick-breaking is that it brings

a lot of flexibility when it comes to define the dependence structure. It is indeed de-

fined by the kernel of a Gaussian process, compared to a single parameter in many

approaches. Such a large flexibility can somehow be criticized, however, when we deal

with nonparametric Bayes priors, we think that the more flexibility the better since the

different features can be learnt with increasing data. On the other hand, there are ex-

amples in the literature where the dependence structure is defined with less parameters,

eg Caron et al. (2006). If it is much less flexible, the counterpart advantage is the readily

availability of marginal posterior sampling schemes (see for instance the construction by

Caron et al. (2006) based on the Pólya urn).

In terms of model fit, we have shown that the Dep− GEM model improves estimation

compared to an independent GEM model. This was conducted by computing the mean

sum of squared errors on a simulated example were the fit of the model can be compared

to the true sampling process.

There are computational limitations to the use of this model. The estimation can deal

with large rows data (large number of observations) since the complexity grows linearly

with the number of different observed species J , however the number of unique covariate

values I is the dimensionality of the estimation problem and represents its limiting

factor. As mentioned before, one could consider to use INLA approximations in the case

of prohibitively large I.

The Dep− GEMmodel is tested in the present paper on univariate factors only. An inter-

esting extension concerns multivariate factors, that is to say factors X = (X1, . . . , Xk) ∈
Rk (instead of X = X ∈ R). To that purpose, all the methodology presented in Sec-

tion 4.3 and in Section 3.4 remains valid, but some additional care should be taken

in defining the Gaussian process Zk : Rk → R (instead of Z : R → R) and the

k–dimensional array Zk (instead of the vector Z). Applications are promising, such as

testing joint effects in dynamical models (time × contaminant factors), in spatial models

(position × contaminant factors), etc. This will be the subject of future investigations.

3.8 Appendicies

3.8.1 One-to-one relation between p and V

Note first that there is a one-to-one relation between p and V which allows to estimate

the model in terms of p or of V equivalently. The inverse transform of the stick-breaking
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relation of Equation (3.9) is

Vj =
pj(

1−∑l<j pl

) ,

since
∑

l<j pl +
∏

l<j(1− Vl) = 1.

3.8.2 Posterior mean and maximum likelihood estimates

Here we compare the posterior mean and maximum likelihood estimators of the relative

proportions pij under the independent GEM model of Equation (3.10). In the case of

a fixed precision parameter M , the posterior means of Vij and pij from (3.12) have the

following closed-form expressions:

V̂ B
ij =

1 +Nij

1 +M + N̄i,j
,

where N̄i,j =
∑

l≥j Nil. By independence of the Vij ’s and by using Equations (3.9):

p̂Bij =
1 +Nij

1 +M + N̄i,j

M + N̄i,j

1 +M + N̄i,j−1
· · · M + N̄i,2

1 +M + N̄i,1
,

where N̄i,1 boils down to Ni. We can assess how close the posterior mean p̂ij of pij

is from the maximum likelihood estimate p̂emp
ij = Nij/Ni by the following first order

approximation (based on the hypothesis of large abundances Nij):

p̂Bij =
1 +Nij

1 +M +Ni

j∏

l=2

M + N̄i,l

1 +M + N̄i,l
≈ 1 +Nij

1 +M +Ni

(
1−

j∑

l=2

1

M + N̄i,l

)
,

p̂Bij ≈ p̂emp
ij

(
1 +

1

Nij
− 1 +M

Ni
−

j∑

l=2

1

M + N̄i,l

)
.
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Chapter 4

Ecotoxicological data study of

diversity using a dependent

Bayesian nonparametric model

On étudie dans ce chapitre le modèle bayésien non-paramétrique du Chapitre 3 dans

une perspective plus appliquée, avec comme domaine d’application l’écotoxicologie. Ici,

les espèces sont des microbes, et le facteur est une variable de contamination environ-

nementale importante appelée Hydrocarbure de Pétrole Total. On étudie son impact sur

les données sous des angles différents: en terme de diversité de Shannon, de clustering

(en des groupes de microbes qui réagissent de manière similaire au contaminant), et en

terme de décroissance de la proportion relative des espèces (l’estimation de quantités

appelées IC50, qui correspondent au niveau de contamination pour lequel la proportion

relative est divisée par deux par rapport à la proportion relative à une valeur de contam-

ination de référence). Ce modèle, étudié sur des données microbiennes mesurées dans

le sol en Antarctique, est applicable plus généralement à de nombreux autres problèmes

dans lesquels la structure des données et les questions inférentielles sont similaires.
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Abstract

We study the Bayesian nonparametric model of Chapter 3 from a more applied perspec-

tive, with a focus in the field of ecotoxicology. Here, the species are microbes, and the

factor is an important environmental contaminant called Total Petroleum Hydrocarbon.

Its impact on the data is studied from different points of view: in term of Shannon diver-

sity, of clustering (into groups with similar behaviour with respect to the contaminant),

and of species relative proportion decrease (estimation of a quantity called IC50, the

covariate level for which the relative proportion is divided by 2 compared to the relative

proportion at a given covariate value). The model, which is studied on soil microbial

data collected in Antarctica, is broadly applicable to a range of other problems with the

same data structure and inferential requirements.

keywords Antarctica, Dependent models, Fuel spills, Griffiths-Engen-McCloskey dis-

tribution, Shannon diversity index, Species abundance, Species-by-site data, Soil biodi-

versity, Total Petroleum Hydrocarbon (TPH)

4.1 Introduction

An understanding of the environmental processes that affect ecosystems is of funda-

mental importance for their management and conservation. Ecotoxicology is primarily

concerned with predicting the effects of toxic substances on the biological components

of the ecosystem. This information is critical to the derivation of environmental quality
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guidelines. These include trigger values or contaminant thresholds, which when exceeded

prompt remediation and/or clean-up activities, and remediation targets which define an

acceptable level of ecosystem recovery and restoration, and once reached, enable site

sign off as no longer posing environmental risk. In remote, high latitude environments

such as Antarctica, where field work is logistically difficult and expensive, and where

terrestrial ecosystems are comprised of relatively few species and simple food webs, ap-

propriate modelling tools can be valuable as an alternative to traditional toxicity tests

using local biota to generate sensitivity data to predict effects on the ecosystem.

While ecotoxicological assessments aim to predict the effects of contaminants on an

ecosystem, monitoring and characterizing the state of an entire ecosystem is rarely prac-

ticable. Hence toxicity tests are generally conducted on single species (populations), or

groups of species (communities), as indicators of the overall system state. Community

assessments may provide more representative and relevant information that incorporates

complex interactions between species compared with simple single species tests.

Modelling the responses of species or community to contamination gradients is concep-

tually very similar to the broader goal of modelling species responses to environmental

conditions, which is an area of long-standing study in the ecological sciences. Con-

ventional observational studies have generally dealt with a relatively small number of

species, and the modelling methods have been developed accordingly. Thus, while meth-

ods for single-species modelling are relatively mature and diverse (eg Elith et al., 2006),

community modelling methods are less well established. One approach to community

modelling is to model single species in an independent fashion, and then assemble the in-

dividual model predictions into a composite prediction of the community (eg Ellis et al.,

2011). However, such approaches typically struggle with rare species, which are difficult

to model with confidence because of their sparse observations. Appropriate propagation

of the uncertainty in individual species models into the composite predictions can also

be difficult. An alternative approach, which has become more common in recent years,

is to simultaneously model the response of the community as a whole. This can take

the form of multi-response modelling of multiple species (eg Dunstan et al., 2011, Foster

and Dunstan, 2010, Wang et al., 2012), or modelling of univariate summaries of multi-

species responses, such as species richness or compositional dissimilarity (eg Ferrier and

Guisan, 2006, Ferrier et al., 2007) or rank abundance distributions (Foster and Dunstan,

2010). The development of community modelling methods has, at least in part, been

driven by the emergence of high-throughput microbial and similar studies, which can

provide information on tens of thousands of species simultaneously, many of which can

be extremely sparse.
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Modelling species abundance patterns is crucial in ecology. The species under study

might be diverse, such as microbes (as in this paper), alleles for genes, or animals (eg

birds in MacArthur, 1957), etc. One way of describing these patterns is to model the

relative probabilities pj of each species j. The multinomial-type methodologies for mod-

elling species data are very popular in the ecotoxicological literature (see eg Bohlin et al.,

2009, Fordyce et al., 2011, De’ath, 2012, Holmes et al., 2012) and the genomic literature,

see for example Dunson and Xing (2009) who use a Dirichlet process mixture of product

multinomial distributions. One of the main reasons of the success of the multinomial

specification is its attractiveness as an intuitive modelling of the species relative propor-

tions. The multinomial distribution, which generalizes the binomial distribution when

there are more than two species, is an intuitive framework for species sampling when

the sampling process consists of independent observations of a fixed number of species.

This distribution gives the probability of any observed combination of theses species

conditional to parameters which are the species relative proportions.

It is also particularly successful among ecologists since the species relative proportions

are precisely the parameters of interest when the focus is on ecological indices such as

species richness, diversity, and evenness (the literature on diversity is extensive, see eg

Hill, 1973, Patil and Taillie, 1982, Foster and Dunstan, 2010, Colwell et al., 2012, De’ath,

2012). A model on the relative probabilities p = (p1, p2, . . .) allows inference about most

of these indices. Although we focus on this modelling question in the context of diversity

in ecology, the same question arises in other areas of science such as biology, engineering,

physics, chemistry, economics, health and medicine (see Borges and Roditi, 1998, Havrda

and Charvát, 1967, Kaniadakis et al., 2005), and in more mathematical fields such as

probability theory and mathematics (Donnelly and Grimmett, 1993). Diversity itself

can be defined in a number of ways. Most simply, it refers to a crude measure of the

number of species in a sample (see Hill, 1979, Boender and Kan, 1987). A common

definition of diversity that is predominant in ecology and which will be used here is the

Shannon index defined by

HShan(p) = −
∑

j

pj log pj . (4.1)

Other diversity indices include the Simpson index HSimp(p) = 1−∑j p
2
j and the gener-

alized diversity index which was proposed by Good (1953) in the form of HGood,α,β(p) =

−∑j p
α
j log

β pj for non-negative integer values of α and β. In this study, focus will be

restricted to the Shannon index HShan, although the procedures could be equally applied

to these other measures.

We will describe the approach of Holmes et al. (2012) and present an extension proposed

in Arbel et al. (2013a) based on a Bayesian nonparametric model which incorporates

dependence with respect to a factor. Improvements of the methodology of Holmes et al.
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(2012) mainly consists (i) in allowing for an unknown a priori number of species, thanks

to the nonparametric formulation, and (ii) in accounting for additional factors, typically

contamination, thanks to the dependence in the model. This brings estimates which

are more efficient, both computationally and inferentially, and which allow assessment

of the response of species, for instance in terms of diversity, to contamination.

The dataset under study was collected at Casey station in Antarctica. The data comprise

counts of a large number (of the order of 1 800) species of microbe species (called OTU)

collected at 60 sites, resulting in a very sparse matrix. As is usual practice, the species

were combined into 32 groups and the counts of species aggregated within each of these

groups. Environmental and soil covariates that are likely to influence the abundance

pattern are also available. In the present study, focus is restricted to one of these

covariates, namely Total Petroleum Hydrocarbon (TPH), which is a measure of fuel

spills. This is one of the most important environmental contaminants in Antarctica.

We will use the following notation in order to describe the data. Let i denote the

measurement index, i ∈ {1, . . . , I}, I =10, Xi the TPH level, j the OTU index, j ∈
{1, . . . , J}, J =32 and Ni,j its abundance. Total OTU j abundance is denoted Nj ,

total OTU abundance for site i is denoted Ni (this ambiguous notation is for the sake

of simplicity), and overall abundance is denoted N . Bold characters denote vectors or

matrices of observations or parameters, eg N i = (Ni1, . . . , NiR), N j = (N1j , . . . , NIj);

N stands for the whole I×J matrix of observations. The same notations with p instead

of N relate to proportions, or average proportions, instead of abundance.

The rest of the paper is organized as follows. Section 4.2 provides a descriptive study

of the data. Section 4.3 defines the Bayesian model for species-by-site count data and

compares it with other models in the literature. Results are given in Section 4.4, dealing

first with the estimation of a univariate output by TPH (OTU diversity), then with

classification (of OTUs in terms of response with TPH patterns) and finally with the

estimation of model patterns (IC50 and IC25).

4.2 Data analysis

In this section we briefly describe the dataset. Data consist of measurements of abun-

dance of Operational Taxonomic Units (OTUs, or microbes, see Schloss and Handelsman,

2005), conducted at sites in Casey, Antarctica.

OTU measurements are paired with covariates mainly of two kinds: first geographical

parameters of the place (latitude, longitude, elevation, slope), transect number, soil

measurements (water, chemical elements concentrations, TPH). The study will focus on
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the effect of TPH level1 (for Total Petroleum Hydrocarbon, a measure of compounds of

hydrocarbons that are found in crude oil) on OTUs abundance. Although a continuous

variable, the same value of TPH was recorded for several sites. Given this, we choose to

collapse the sites together by adding the abundances, which results in the following 10

unique TPH values (expressed in thousands) 0, 1.6, 2.6, 4.3, 5.8, 6.3, 7.6, 10, 15, 22.

We focus on the subset of data where OTUs’ abundance exceeds 40 over all measurements

(32 of them). We have studied other subsets of data with either more of less OTUs,

with no substantial change in the estimation.

We show in Table 4.1 a subsample of the data at the three lowest and three highest TPH

sites for a few OTUs.

Site TPH OTU03964 OTU00527 OTU00396 OTU03930 OTU05279 OTU03882

1 1 0 2 331 197 0 0 0

2 22653 1600 187 73 32 85 1 3

3 22654 2600 384 64 48 198 115 61

8 22645 10000 640 11 8 290 70 97

9 22650 15000 551 17 21 142 227 167

10 22644 22000 379 0 7 226 443 364

Table 4.1: Subsample of the data. The rows are sites, the columns species, and cells
give the count data. The name of the OTU species is given in the header line.

The abundance data is illustrated on Figures 4.1 and 4.2. On Figure 4.1 OTUs are

sorted by decreasing overall abundance. The top part shows total abundance by OTU,

while the bottom part gives the abundance per site, where abundance is expressed in

natural scale on the left, and in log scale on the right. Figure 4.2 shows abundance

Nij site by site, with increasing TPH. Note that the y scales are different across plots.

Colours indicate the TPH level of the corresponding site. It goes from green for the

lowest TPH measure, X = 0, to red for the highest, X = 22× 103.

Although sorted by total abundance, Figure 4.2 indicates that (i) OTUs abundance site

by site does not follow the same sorting, and (ii) the relative proportions are very diverse.

This remark is also supported by the graphs on top of Figure 4.1 were we see that few

OTUs share most of the observations. This leads to look at the number of OTUs which

gather a given proportion of the total abundance at each site. This is illustrated on

Figure 4.3 for a proportion of 90%. This quantity decreases with TPH, which means

that the relative mass of the biggest OTUs increases with TPH. As a consequence, the

1It is expressed in mg/kg, so the TPH measure is per mass unit.
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diversity as measured by this index deteriorates with TPH. The left side of Figure 4.3

illustrates the Shannon diversity index.

Taking account of theses remarks leads to consider the GEM distribution as a good

candidate prior for the distribution of the relative frequencies of OTUs p, as explained

later in Section 4.3.
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Figure 4.1: OTUs abundance. The x-axis represents the species index j = 1, 2, . . ..
Throughout the paper, the colors represent the TPH level, from green (minimum TPH,

X1 = 0) to red (maximum TPH, X10 = 22× 103).

4.3 Bayesian model for species–by–site data

4.3.1 Sampling model

We describe here the notation and sampling process of covariate dependent species-by-

site count data. Each unique covariate value is indexed by i and is denoted by Xi. Recall

that is may correspond to a single site or to a collection of sites with the same covariate

value. For the sake of simplicity, we may still speak of site i. Individual observations at

site i are taxa, or species, indexed by natural numbers j = 1, 2, . . .. The total number of

observed species is denoted by J . No hypothesis is made on the unknown total number
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Figure 4.2: OTUs abundance per site. Each plot represent a site sorted by TPH.
The x-axis represents the species index j = 1, 2, . . ..

of species in the population of interest, which might be infinite. Observe (Xi,Y
Ni
i )i=1,...,I

where YNi
i = (Yn,i)n=1,...,Ni are observations at site i with total abundance (number of

observations) Ni and factor value Xi. Species j abundance at site i is denoted by Nij ,

i.e. the number of times when Yn,i) = j with respect to n index. Relative abundance

satisfy
∑

j Nij = Ni.
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Figure 4.3: Diversity indices. Left : Shannon diversity index HShan. Right : Number
of OTUs with cumulated mass at least 90%, denoted by N0.9. The x-axis represents

the TPH contaminant.

We model the relative frequencies or abundances p = (p(Xi))i = (pj(Xi))i, j=1,2,... by

the following. For i = 1 . . . I and n = 1 . . . Ni:

for i = 1 . . . I, n = 1 . . . Ni, Yn,i |p(Xi)
ind∼

∞∑

j=1

pj(Xi)δj , (4.2)

where p(Xi) = (pj(Xi))j=1...J are the parameters of interest. The point mass δj means

that the probability that observation Yn,i is of species j equals pj(Xi). The probability

of Yn,i is f(Yn,i|p(Xi), Xi) =
∏J

j=1 pj(Xi)
I(Yn,i=j). The likelihood of data at site i is

given by Li(Y
Ni
i |p(Xi), Xi) =

∏J
j=1 pj(Xi)

Nij , so the likelihood of the model is:

L(Y |p, X) =
I∏

i=1

J∏

j=1

pj(Xi)
Nij . (4.3)

Most of the models considered in the literature, such as Holmes et al. (2012), put in-

dependent priors on the by-site vectors p(Xi)’s. The main contribution of this article

is to use a dependent prior on the p(Xi)’s across the sites i. As we are dealing with

continuous covariates X, this approach is arguably more appropriate than discrete prior

specifications on p(Xi) across i.

In Holmes et al. (2012), the total number of species is assumed to be known and denoted

by JT, so in this case, the observational model given in Equation (4.2) is equivalent to

the following multinomial model at the species level:

N i = (Ni1, . . . , NiJT)|X ∼ M(Ni, p1(Xi), . . . , pJT(Xi)). (4.4)
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The assumption of a fixed number of species, JT, and a fixed number of observations by

sites, Ni, is a limitation of this model in applications compared to model (4.2).

The vectors p(Xi) = (p1(Xi), . . . , pJT(Xi)) are first modelled by Holmes et al. (2012)

by the Dirichlet distribution p(Xi) ∼ Dir(p(Xi)|α) with α = (α, . . . , α). It is a natural

choice as it is conjugate to the multinomial model of Equation (4.4), with the following

posterior distribution:

p(Xi)|Ni ∼ Dir(p(Xi)|α+N).

In the simple case where the hyperparameters are fixed, the posterior mean of the

proportions pij has a closed form expression

p̂Bij =
α+Nij

αJT +Ni
,

and the marginal posterior variances are given by

(σ̂Bij)
2 =

(α+Nij)(α(JT − 1) +Ni −Nij)

(αJT +Ni)2(αJT +Ni + 1)
.

As noted above, extra flexibility is provided by Holmes et al. (2012) by considering the

following mixture of Dirichlet distributions:

p(Xi) ∼
K∑

k=1

πkDir(p(Xi)|αk).

This prior is convenient for clustering across sites: each site vector p(Xi) is assumed to

derive from a single component k of the mixture. However, in the case of a continuous

covariate X, it fails to describe a continuous dependence of the prior with respect to X.

There is no clear argument in favour of the use of a mixture: it creates indeed a prior

partition of the covariate space X into an ad hoc number K of sets, each associated with

a mixture component k = 1, . . . ,K. An alternative which is adopted here is to relax

this 0− 1 assumption and extend this idea by building a model which evolves smoothly

with the covariate X: a slight change in Xi induces a slight change in p(Xi).

4.3.2 Dependent GEM distribution

The dependent Bayesian nonparametric model which is used here is defined in detail in

Chapter 3. We summarize here its most important features.

The Dirichlet process (DP) is very popular in Bayesian nonparametric as a prior distri-

bution on probability measures. It was shown by Sethuraman (1994) that its distribution

can be written as the distribution of an infinite mixture of point masses. In our case,
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we want to model the relative probabilities p, hence only the weights of the mixture

are of interest. Their distribution is called the GEM distribution, after Griffiths-Engen-

McCloskey. For taking account of environmental factor like TPH, we favour an extension

of the DP called the dependent Dirichlet process (DDP), first proposed by MacEachern

(1999). We call Dep− GEM the distribution of the weights in the DDP. The full Bayesian

model is

Yn,i |p(Xi), Xi
ind∼

∞∑

j=1

pj(Xi)δj , for i = 1 . . . I, n = 1 . . . Ni

p ∼ Dep− GEM(M). (4.5)

The Dep− GEM distribution in Equation (4.5) implies that the weights pj(Xi) can be

written by

pj(Xi) = Vj(Xi)
∏

l<j

(1− Vl(Xi)) with Vj(Xi)
iid∼ Beta(1,M). (4.6)

This construction of generic probability weights pj ’s is called the stick-breaking for the

following analogy of breaking a stick. Start with a stick of length 1, break it at a random

V1, define p1 = V1 and do the same for the remaining stick of size 1− V1: break it at a

random V2, define p1 = V2(1−V1) and start again for the stick of length (1−V1)(1−V2),
and iterate ad infinitum. The remaining length

∏
l<j(1 − Vl) goes to zero when j goes

to infinity, hence the pj ’s sum to 1.

The parameterM is called the precision parameter of the prior and is now discussed. The

motivation of using this model is explained by Figure 4.4 which shows draws of (pj)j=1...J

from the prior distribution with various precision parameters M . The similarity with

the graphs the empirical OTU frequencies in Figure 4.2 is an argument in favour of the

use of the model: the range of empirical proportions patterns is apparently covered by

the prior samples conditional to a large enough range of values for M . This can be

ensured by the use of a random prior distribution on M .

Figure 4.4 makes it apparent that the precision parameter M controls the level of the

diversity in the prior. For small M , only the first species share most of the weights,

whereas in the limiting case M → ∞, the weights tend to be uniformly distributed.

Cerquetti showed in an unpublished work that the prior expectation of the Shannon

index HShan under the GEM prior is given by

E(HShan) = ψ(M + 1)− ψ(1), (4.7)
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Figure 4.4: Proportions pj sampled from the Griffiths-Engen-McCloskey
distribution. From left to right : precision parameterM = 5, 10, 20 (mind the different

y axis scaling). The x-axis represents the species index j = 1, 2, . . ..

where ψ is the digamma function, a monotonically increasing function (for similar deriva-

tions, see Cerquetti, 2012). This makes clearer the effect of M on the prior diversity,

and is illustrated on Figure 1.2.

The likelihood given in Equation (4.3) is factorized across the species j = 1 . . . J . By

independence in Equation (4.6), it is also the case of the prior induced on V through j

by the Dep− GEM prior, which can thus be written as π(V|X) =
∏∞

j=1 π(Vj |X). Thus

the following factorized posterior is obtained:

π(V|Y,X) ∝
∞∏

j=1

π(Vj |X)× Lj(Y |Vj , X). (4.8)

where Lj(Y |Vj , X) =
∏I

i=1 Vj(Xi)
Nij (1 − Vj(Xi))

N̄i,j+1 . Note that the latter is equal

to 1 for j > J since by definition in this case Nij = N̄i,j+1 = 0. Using a factorized

prior across the species does still allows for dependence across the sites as the Vj(Xi)

can be correlated across i in the joint prior π(Vj |X). The factorized expression of the

posterior in Equation (4.8) is convenient as it permits sampling independently across

the species j. This ameliorates the original problem of estimation of dimension I × J to

J estimation problems in dimension I, which is more efficient with respect to the curse

of dimensionality.

The estimation of the model is described in detail in Chapter 3. The Dep− GEM prior

is constructed with Gaussian processes whose covariance matrices allow a very flexible

modelling of the dependence. Posterior sampling is done by a Gibbs algorithm, with

Metropolis–Hastings step for non-conjugate conditionals. The model allows estimation

of the probability p(X) also for covariate values which are unobserved. This is achieved

by computing the predictive distribution of the Gaussian process. A graphical represen-

tation of the model is given in Figure 3.3 of Chapter 3.
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4.4 Results

4.4.1 Diversity

We begin with studying the diversity which is a one dimensional output for which the

fit of the model is easy to assess.

The comparison between the diversity obtained in the Dep− GEM and in the GEM

models in Figure 4.5 shows that some smoothing operates in the first case. This is also

shown by a numerical comparison in a simulated example in Table 3.1 of Section 3.6.1

by computing mean sum of squared errors.

An addition advantage in the Dep− GEM modelling is that the diversity is available as

a path in X, not only at observed predictor values Xi’s, but in the whole space X equal

to the real line here.
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Figure 4.5: Estimation results.Left : Dep− GEM model estimates (100 000 replica-
tions). Right : GEM model estimates (100 000 replications). Black triangles: Posterior
mean of the Shannon diversity index. Gray band: credible interval of the predictive
estimate for the diversity index. Color dots: Shannon diversity index in raw data. The

x-axis represents the TPH contaminant.

4.4.2 Clustering

The aim of this section is to cluster OTUs with respect to different types of response

to TPH exposure in two groups (typically, increasing / decreasing with TPH). We first

describe the methodology of the clustering, which uses a posterior sample from any

model. Then we compare the clusterings obtained in different models: the Dep− GEM

model introduced in Section 4.3.2 which depends on the TPH, and the GEM model, as

a model that does not depend on a covariate.
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The clustering methodology is based on the following posterior mass for each OTU j

mj = P
(

mean
X<Xmed

pj(X) > mean
X≥Xmed

pj(X) |Y
)
,

where Xmed = 5 800 is the median of the observed covariates X1, . . . , XI . We compare

mj to 1/2 in order to decide of the clustering:

• if mj < 1/2, then OTU j is increasing with TPH: + group,

• if mj > 1/2, then OTU j is decreasing with TPH: − group.

The clustering results are summed up in Table 4.2. A comparison to existing ecolog-

ical knowledge about OTUs shows that most of the OTUs within the groupings make

biological sense.

Name Abundance Data DGEM GEM

1 OTU03964 2806 + + +

2 OTU03930 1318 + + +

3 OTU05279 1013 + + +

4 OTU03882 984 + – –

5 OTU03284 815 + – +

6 OTU00527 697 – + +

7 OTU04061 648 – – –

8 OTU03908 398 + + +

9 OTU03906 387 – – –

10 OTU01369 382 – – –

11 OTU05289 360 + + –

12 OTU00396 344 – + +

13 OTU05005 275 – + –

14 OTU02085 241 – + –

15 OTU04082 231 – + +

16 OTU05400 231 – – –

17 OTU01748 229 + – –

18 OTU05308 213 – – +

19 OTU03907 212 – – –
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20 OTU05292 200 + – –

21 OTU00560 188 – – +

22 OTU05403 172 – – –

23 OTU00619 171 – + –

24 OTU05291 150 + – –

25 OTU04854 119 – – –

26 OTU00060 105 – – +

27 OTU00672 102 – – –

28 OTU04855 79 – + –

29 OTU04145 60 – + +

30 OTU04370 53 – – +

31 OTU04856 52 – – –

32 OTU01493 43 – + –

Table 4.2: Clustering of the 32 largest OTUs in 2 groups (+ means increasing
with TPH, – means decreasing with TPH) according to the models (Data: row data,

Dep− GEM: dependent model, GEM: independent model)

4.4.3 Estimation of abundance patterns: IC25 and IC50

We define IC50 as the TPH level for which the OTU relative proportion is divided by

2 compared to its abundance at low TPH level (TPH=0). This holds for the OTU

subgroup with a decreasing pattern with TPH, i.e. tagged by “−” in the Dep− GEM

model column of Table 4.2. There is a range of approaches to estimating IC50. Here we

consider a simple approach that utilises logistic regression.

We make use of the posterior sample (pkj (Xi))ij,k=1...K obtained in the estimation of the

Dep− GEM model. For each OTU j and for k = 1, . . . ,K, we fit the following logistic

regression :

pkj (Xi) = logit(akjXi + bkj + ǫkij),

with Gaussian errors ǫkij . This allows estimating curves X → p̂kj (X) for each OTU j

and for each sample k. As a validation of the clustering procedure of Section 4.4.2,

the regression curves behave accordingly to the group the OTU belong to. Hence, now

focusing on the OTU j decreasing with TPH, we obtain estimated p̂kj (X) curves which
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are decreasing, and one can define a posterior sample of IC50 and IC25 by the TPH values

X solving

p̂kj (X = IC50) =
p̂kj (X = 0)

2
and p̂kj (X = IC25) =

p̂kj (X = 0)

4
.

The posterior distributions of both IC50 and IC25 are illustrated in Figure 4.6 (for the

group with a decreasing pattern). The estimation of IC50 is more precise than the

estimation of IC25 because the latter is concerned with a lighter part of the tail of the

pj(X) curves. These distributions are relevant from an ecological point of view, where

one needs to interpret the effect of soil contamination on the relative proportions of

microbes. However, one limitation of the interpretation of IC50 and IC25 is there strong

sensitivity to the group of OTUs that are accounted for the estimation. Indeed, limiting

the OTUs to the most decreasing with TPH ones drastically reduces the estimates of

IC50 and IC25.
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Figure 4.6: Posterior distributions of IC50 and IC25. The x-axis represents the
TPH contaminant.

4.5 Discussion

In this study we proposed a dependent Bayesian model for taking account of an envi-

ronmental factor in population data problems. We applied it to clustering (Table 4.2)

and to estimating population quantities such as the diversity (Figure 4.5), and IC50

and IC25 (Figure 4.6). Compared with existing methods, this allows incorporating the

dependence with respect to TPH in the inferential procedure.

There are many ways in which this work can be extended. Here we discuss three exam-

ples. First, additional factors to TPH which include other types of environmental factors

about soil composition, geographical factors, etc, could be utilised in the model. The
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steps for this extension are sketched in Section 3.7. Second, one could consider other

approaches to clustering, for instance it would be interesting to compare the inherent

clustering of some Bayesian nonparametric procedures like the Hierarchical Dirichlet

process by Teh et al. (2006). Last, the methodology used for estimating IC50 and IC25

is very sensitive to the group of OTUs on which it is based, and could be compared to

other approaches.

There are several limitations of the approach, both inferential and computational. From

the inference point of view, one can argue that the dependence that we introduce is

fixed in a sense by the a prior dependence structure, and can not be learnt by the

model. Computationally, the model is difficult to estimate on very large data sets, even

if extremely sparse as is the case of the original ecotoxicological data set studied here.

Indeed, the sparsity of the data is not favourable utilised in the posterior computation.

However, in terms of diversity, most of the information is driven by the largest OTUs,

hence working on a subsample of the data is satisfactory in this respect.

This study brings some new elements to the understanding of the effects of contaminants

on ecosystems. The grouping is a valuable information for knowing which OTUs are to be

studied for deriving environmental quality guidelines, while the IC50 and IC25 estimates

allow fixing thresholds in these guidelines.

The range of suitable applications of the model presented here is not limited to ecology.

Census data represents an appealing extension, where species are any categorical variable

indexed by integers (nationality, age, for instance, or pairs of such variables), and the

covariate is any continuous variable, such as time. French renovated census, which is

available annually since 2004, could be the subject of future work.
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Chapter 5

Future directions

Ce chapitre présente des travaux en lien avec la statistique bayésienne non-paramétrique

qui ont été commencés pendant la thèse et seront poursuivis par la suite. Le premier

projet concerne l’estimation adaptative spatiale. On se place dans le cas où la régularité

du paramètre varie dans l’espace de définition de ce dernier. On recherche des lois a pri-

ori qui sont adaptatives optimales dans toutes les régions de l’espace, c’est à dire dont la

loi a posteriori converge avec une vitesse associée à la régularité de la région de l’espace

considérée. Le second projet concerne l’estimation de densité dans un cadre multivarié

dans lequel les variables ou composantes des observations ne sont pas directement com-

parables. Le cas de grandeurs physiques avec des unités de mesure différentes, tel que

l’espace des phases constitué des variables de position et de moment, représentent un

exemple typique. On montre par des simulations que l’estimation de la densité à partir

de mélanges de processus de Dirichlet ont des propriétés d’invariance qui font de ces

mélanges une solution adaptée à ce type de problèmes.
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5.1 Spatially adaptive estimation

Chapter 1 and Chapter 2 have emphasized a growing literature about estimation proce-

dures that deliver adaptive rates of contraction (see eg de Jonge and van Zanten, 2010,

2012, Shen and Ghosal, 2012, Scricciolo, 2012). An additional direction with rather

limited results concerns the so-called local or spatial adaptation of rates of contraction.

We explain what this means.

A well defined adaptation result states according to what criterion adaptation is obtained

(minimax rate of contraction) and in which class of smoothness (leading examples of a

smoothness classes include Hölder, Besov, Sobolev, etc). A smoothness property can

either be local (eg Hölder, Besov) or global (eg Sobolev):

• the Hölder space Hα = Hα(L, [0, 1]), 0 < α ≤ q, which is the collection of all

functions f that have bounded derivatives up to order α0 = ⌊α⌋ = max{z ∈
Z : z < α} and such that the α0-th derivative satisfies the Hölder condition

|f (α0)(x)− f (α0)(y)| ≤ L|x− y|α−α0 , for L > 0 and x, y ∈ [0, 1].

• the Sobolev space Θβ(L0) for univariate problems defined by

Θβ(L0) =



θ :

∞∑

j=1

θ2j j
2β < L0



 , β > 1/2, L0 > 0 (5.1)

with smoothness parameter β and radius L0.

Local or spatial adaptation deals with local smoothness spaces and means that the

posterior distribution adapts to the local rate that is monitored by the local smoothness.

In particular, in regression or density problems, the roughest part of the curve to be

estimated should not affect the rate where the curve is smoother.

An obstacle of such a result of local adaptation is often encountered in the bound

associated to Kullback neighborhoods. Kullback divergence is in essence global, hence

it prevents from using the general methodology of Ghosal et al. (2000).

Recent tools that are promising in the field of local adaptation include locally adaptive

factor processes (Durante et al., 2012) and splines with randomly placed knots (Belitser

and Serra, 2013). Our preliminary investigations are concerned with location-scale mix-

ture priors in the spirit of de Jonge and van Zanten (2010), which are priors Πn on

curves θ : (0, 1) → R defined as the law of the random curve on (0, 1)

θ(x) =
M∑

k=1

Zk
1√
Mσ

p

(
x− k/M

σ

)
,
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where M is a positive integer random variable, Zk, k = 1, . . . ,M are Gaussian random

variables, p : R → R is a kernel with appropriate integrability properties. The prior Πn

leads to interesting results in the following nonparametric regression

Yi = θ0(xi) + ǫi,

with observations Y1, . . . , Yn, unknown regression function θ : (0, 1) → R supposed to be

α−Hölder, with α ∈ (0, 1], known design points x1, . . . , xn ∈ [0, 1], xi = i/n, and i.i.d.

ǫi, centered Gaussian with fixed variance.

5.2 Density estimation sensitivity to data scaling

Authors

• Julyan Arbel (Université Paris-Dauphine, CREST, Paris)

• Bernardo Nipoti (University of Turin, Collegio Carlo Alberto, Moncalieri, Italie)

Status

Comment of the paper Bayesian Nonparametric Inference–Why and How by Müller and

Mitra published in Bayesian Analysis, Volume 8, Issue 2, 2013, pages 326–328, Arbel

and Nipoti (2013).

Müller and Mitra (2013) deal with the flexibility of Bayesian nonparametric models and

show, through some examples, that their use can be advantageous in common inference

problems. As for density estimation, the paper describes the Dirichlet process mixtures

(DPM) model by means of an application to inference on T-cell diversity, where the

observations are counts. The specific nature of the dataset ensures that the scale of

the data is not an issue. Nonetheless this is a ubiquitous concern in density estimation

problems with observations from continuous distributions. Clearly, it is desirable that

the estimates are not significantly affected by a rescaling of the data. A closely related

problem refers to the estimation of multidimensional densities in spaces where different

axes represent quantities with different physical dimensions. There is not a natural way

to define a metric on the product space and scaling constants need to be set in order

to relate units along different axes. This scenario arises, for example, with astronomical

observations consisting of position and velocity of stars (e.g., Ascasibar and Binney,

2005). Although we are not aware of existing BNP literature where this problem is

directly investigated, it is worth mentioning that, as a matter of fact, BNP models have
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been used for density estimation in non–commensurable spaces. For example, both

Müller et al. (1996) and Hanson (2006) analyse the well-known ozone dataset and, by

means of Dirichlet process mixtures and Mixtures of Pólya tree models respectively,

deal with the problem of estimating multivariate densities in, e.g., radiation and ozone

concentration product space. In the next section we illustrate, through a simulation

study, that the flexibility of the DPM model provides a natural answer to the problem

of estimating densities in non–commensurable spaces.

We investigate the performance of location-scale DPM models with multivariate normal

kernels (introduced in Müller et al., 1996) for density estimation through the following

synthetic example. We generate bivariate samples D(n) = (X(n),Y(n)), of size n ∈
{50, 100, 150, 200}, from the mixture of two normals:

1

3
N




0

0


 ,


 1 0.9

0.9 1




+

2

3
N




5

3


 ,


0.7 0

0 0.7




 . (5.2)

The true density f and a scatter plot of 100 observations are shown in Figure 5.1. Then

we consider rescaled data D
(n)
c = (X(n), cY(n)) with varying scale parameter c. We use

a DPM model to estimate f , conditional on each sample D
(n)
c , and we let f̂

(n)
c denote

the estimated predictive distribution. Simulations are done by using the R package

DPpackage (see Jara et al., 2011) (10,000 iterations with a 5,000 burn–in period); the

prior specification we have set is standard and, importantly, does not take into account

the scale of the data. As a first argument in support of the stability of the model with

respect to rescaling, we show in Figure 5.1 the estimates obtained for n = 100 and two

scales, c = 0.1 and c = 10.
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Figure 5.1: (Middle) Contour of the true density f and scatter plot of 100 observa-
tions.

(Left and right) Contour of the estimates f̂
(100)
c for c = 0.1 and c = 10 respectively.

Additionally, for each n and c = 103k, where k ∈ {−2, . . . , 2}, we summarize in Table 5.1

the fit of the estimate by computing the integrated squared error (ISE) for f̂
(n)
c suitably
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rescaled, that is

ISE(D(n)
c ) :=

∫

R2

(
cf̂ (n)c (x, y/c)− f(x, y)

)2
dxdy.

It is apparent from Table 5.1 that the fit of f̂
(n)
c is not heavily affected by the choice of c.

This feature is even more evident when the sample size is large. It is worth stressing that

the estimates we got are pretty stable even when the model is tested on data severely

rescaled (e.g. c = 10−6 and c = 106).

n\c 10−6 10−3 1 103 106

50 4.73 4.77 4.87 5.25 5.24

100 2.29 2.27 2.25 2.68 2.65

150 1.90 1.92 1.93 2.17 2.35

200 1.07 1.07 1.06 1.13 1.17

Table 5.1: 103 × ISE(D
(n)
c ) for varying data size n (in rows) and scale c (in columns).

This toy example suggests that the flexibility of DPM models makes them good candi-

dates for dealing with a whole range of density estimation problems for which there is

not a univocal scaling of the data.

The flexibility suggested here is a motivation for future investigation, such as proving

an invariance property, or characterizing the dependence of estimation with respect to

the scale factor c.
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Chapter 6

Appendix

6.1 Results on the beta distribution

The probability density function of the beta distribution, for 0 ≤ v ≤ 1, and shape

parameters α and β is

f(v;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
vα−1(1− v)β−1.

Let V ∼ Beta(α, β). The kth moment of V is given by

E(V k) =
α(k)

(α+ β)(k)
.

The following quantity is useful when computing the EPPF

E
(
V k(1− V )j

)
=

α(k)β(j)

(α+ β)(k+j)
. (6.1)
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Notations

Common distributions & random probability measures

Beta Beta distribution

Exp Exponential distribution

Ga Gamma distribution

IG Inverse–gamma distribution

Dir Dirichlet distribution

N Gaussian distribution

Unif Uniform distribution

Divergences & metrics

d generic semimetric

h Hellinger metric

KL Kullback Leibler divergence

V Csiszár divergence

Other abbreviations

BNP Bayesian nonparametric

MCMC Markov chain Monte Calro

RPM random probability measure
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