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“Rôle de la protéine associée aux microtubules ATIP3 dans la 

migration cellulaire et la formation de métastases du cancer du sein” 

 

 

Le cancer du sein touche une femme sur huit dans le monde et représente un problème 

majeur de santé publique. Alors que la majorité des tumeurs du sein sont aujourd’hui la 

cible de traitement efficaces, il reste une sous-population de tumeurs (dites triple-

négatives) à fort potentiel métastatique qui ne sont pas accessibles aux thérapies ciblées 

et demeurent de mauvais pronostic. L’élucidation des processus impliqués dans la 

progression tumorale et la formation de métastases reste un challenge majeur dans la 

recherche de nouvelles thérapies contre le cancer du sein de mauvais pronostic.  

ATIP3 (AT2-interacting protein 2), produit du gène candidat suppresseur des tumeurs 

MTUS1 (Microtubule-Associated Tumor Suppressor), a été identifiée par le laboratoire 

comme étant un biomarqueur des tumeurs du sein les plus agressives. En effet, les 

résultats précédents de notre équipe ont montré que l’expression d’ATIP3 est diminuée 

dans 85% des tumeurs de haut grade, 83% des tumeurs triples négatives et dans 62% des 

tumeurs métastatiques. Il a également été montré qu’ATIP3 inhibe la prolifération 

cellulaire in vitro, ainsi que la croissance tumorale in vivo. Au niveau moléculaire, ATIP3 a 

été identifiée comme étant une nouvelle protéine associée aux microtubules (MAP) 

localisée au centrosome, le long de microtubules dans les cellules en interphase, au 

fuseau mitotique pendant la division cellulaire et au pont intercellulaire lors de la 

cytokinèse. La localisation cellulaire d’ATIP3, étroitement associée aux microtubules, 

prend toute son importance du fait du rôle de ce cytosquelette dans la division et 

migration cellulaire, deux étapes essentielles du processus tumoral. 

Mon projet de thèse a pour objectif principal d'évaluer le rôle potentiel d'ATIP3 dans la 

migration cellulaire et la formation de métastases tumorales.  

 

Dans un premier temps, les niveaux d’expression d’ATIP3 ont été analysés dans des séries 

de puces à ADN issues de trois cohortes indépendantes de patientes atteintes d’un cancer 

du sein invasif, et les données ont été comparées avec les caractéristiques cliniques des 

patientes. Ces analyses transcriptomiques ont permis de montrer que l’expression d’ATIP3 

est un marqueur pronostic de la survie des patientes et de façon intéressante, qu’ATIP3 

est un nouvel indicateur de la progression métastatique.  

L’effet d’ATIP3 sur la progression des métastases a alors été évalué dans un modèle de 

bioluminescence in vivo, ce qui a permis de montrer que cette protéine est une molécule 
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anti-métastatique qui réduit la progression, le nombre et la taille des foyers 

métastatiques. La colonisation métastatique inclut la migration des cellules cancéreuses à 

travers la matrice extracellulaire (invasion) et l’endothélium vasculaire (extravasation), 

puis leur prolifération au site secondaire. L’évaluation détaillée de ces étapes a montré 

qu’ATIP3 diminue tous ces processus. En ce qui concerne la migration, une réduction de 

vitesse, de la direction de migration et possiblement de la polarité cellulaire, pourraient 

expliquer les effets inhibiteurs d’ATIP3 sur la migration des cellules.  

Comme de nombreuses études ont démontré que la migration et la polarité cellulaires 

dépendent du cytosquelette de microtubules, je me suis intéressée aux effets d’ATIP3 sur 

la dynamique microtubulaire. Des expériences de vidéomicroscopie ont permis de 

montrer que l’extinction d’ATIP3 augmente la dynamique des microtubules en 

incrémentant les épisodes et la vitesse de croissance et en diminuant le temps passé en 

pause et la fréquence des catastrophes. Ces résultats, couplés à des expériences de 

dépolymérisation et de re-croissance ont permis de conclure qu’ATIP3 est une MAP qui 

stabilise les microtubules et diminue leur dynamique pour contrôler la polarité et la 

migration cellulaires. L’ensemble de ces travaux font l’objet d’une publication parue en 

2013 (Molina et al., Cancer Res 73, 2905). 

Dans une seconde partie de mon travail, je me suis intéressée à la protéine EB1 (End-

Binding 1), protéine majeure des bouts croissants des microtubules qui sert de plate-

forme au recrutement de protéines régulatrices appelées +TIP (plus end tracking protein) 

et qui induit la croissance persistante des microtubules en diminuant la fréquence des 

catastrophes. L’analyse de la séquence d’acides aminés d’ATIP3 a révélé que cette 

protéine possède trois motifs consensus potentiels d’interaction à EB1. En utilisant la 

technique de GST pull-down, l’interaction entre ATIP3 et EB1 a été mise en évidence via 

un domaine appelé CN, qui se trouve dans la partie centrale d’ATIP3. Cette interaction est 

directe et fait intervenir un motif protéique un peu atypique (RPLP) sur la séquence 

d’ATIP3. De façon intéressante, nous avons pu montrer que des mutants de délétion 

dépourvus du domaine (ou du motif) d’interaction à EB1 ne sont plus capables de 

délocaliser EB1 de l’extrémité dynamique des microtubules, indiquant que l’interaction 

entre ATIP3 et EB1 est essentielle aux effets d’ATIP3 sur l’accumulation d’EB1 aux bouts 

plus. 

Dans le but de mieux comprendre la fonctionnalité de l’interaction entre ATIP3 et EB1, 

nous avons recherché la présence de complexes moléculaires à l’intérieur de la cellule. De 

façon étonnante, contrairement à la plupart des protéines interagissant avec EB1, ATIP3 

ne s’accumule pas au bout dynamique et reste plutôt localisée au réseau de microtubules. 

Des expériences de PLA (Proximity Ligation Assay) réalisées à l’aide d’anticorps anti-ATIP 
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et anti-EB1 ont montré que l’interaction se produit majoritairement dans le cytoplasme et 

que les complexes ATIP3/EB1 se retrouvent également associés tout le long du 

microtubule.  

Sur la base de ces résultats, un modèle a été proposé. Dans ce modèle, l’interaction entre 

ATIP3 et EB1 dans le cytosol pourrait réduire la concentration d’EB1 disponible à proximité 

du microtubule, avec pour conséquence de limiter sa diffusion dans le cytosol et de 

réduire sa dynamique d’interaction avec les bouts des microtubules. Selon ce modèle, en 

absence d’ATIP3 les protéines EB1 pourraient diffuser librement dans le cytosol et 

s’accumuler en plus grand nombre à l’extrémité du microtubule, avec pour conséquence 

d’augmenter la dynamique microtubulaire. In fine, l’interaction d’ATIP3 avec EB1 pourrait 

ainsi rendre compte des effets anti-prolifératifs, anti-migratoires et anti-métastatiques 

d’ATIP3. 

L’importance clinique de ce modèle en pathologie humaine a été testée en évaluant les 

niveaux d’expression d’ATIP3 et EB1 dans des tumeurs de patientes atteintes d’un cancer 

du sein invasif. Les résultats extraits de l’analyse par puces à ADN ont montré que les 

niveaux relatifs d’expression des protéines ATIP3 et EB1 ont valeur pronostic de la survie 

des patientes. Ainsi, les patientes atteintes de tumeurs ayant des niveaux élevés d’EB1 et 

bas d’ATIP3 présentent un mauvais pronostic clinique par comparaison avec les tumeurs 

ayant des niveaux faibles d’EB1 et ATIP3. D’après notre modèle, une tumeur avec une 

expression élevée d’EB1 et une faible expression d’ATIP3 présenterait un défaut de 

stabilisation d’EB1 dans le cytosol, avec comme conséquence un nombre élevé de 

molécules d’EB1 libres capables de s’accumuler aux bouts plus des microtubules pour 

favoriser la dynamique des microtubules et la progression tumorale. Cette seconde partie 

de mon étude fait l’objet d’un article actuellement en cours de révision (Velot*, Molina* 

et al., first co-authors) 

Dans une troisième partie de cette thèse, je présente les données préliminaires que j’ai 

obtenues, montrant qu’ATIP3 interagit avec d’autres +TIPs telles MCAK (Mitotic 

Centromere-Associated Kinesin) et APC (Adenomatous Polyposis Coli). MCAK est une 

kinésine qui s’associe aux bouts des MTs via EB1 et est impliquée dans la 

dépolymérisation des microtubules, et le contrôle de la dynamique microtubulaire. La 

protéine APC, quant-à elle, est un partenaire majeur d’EB1 qui s’accumule également aux 

bouts plus des microtubules et est impliquée dans la formation de microtubules stables 

lors de la migration cellulaire. La fonction des complexes d’interaction ATIP3/MCAK et 

ATIP3/APC reste encore à déterminer. 

En conclusion, ces travaux de thèse ont permis d’identifier ATIP3 comme étant une 

nouvelle molécule anti-migratoire et anti-métastatique, qui interagit avec EB1 et régule la 
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dynamique des microtubules. A l’avenir il sera nécessaire de clarifier le mécanisme 

d’action par lequel ATIP3 régule la dynamique des MTs en interphase et pendant la 

mitose, et de déterminer si cette régulation est dépendante de l’interaction d’ATIP3 avec 

EB1, MCAK et APC. De plus, le rôle d’ATIP3 sur la polarité devra être approfondi, en 

analysant l’effet de cette protéine sur la dynamique de l’actine ou l’activation des petites 

protéines G (Rho, Rac et Cdc42). Ces travaux devraient permettre de mieux comprendre 

les mécanismes d’action intracellulaires d’ATIP3 et de déterminer comment la perte 

d’ATIP3 est associée à un processus cancéreux, dans le but à terme d’envisager un 

nouveau traitement personnalisé contre les tumeurs de sein métastatiques ayant perdu 

l’expression d’ATIP3. 
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1. Breast Cancer 

 

1.1. Anatomy of the breast 

Mature female breast is mainly composed by glandular tissue, adipose tissue, blood 

vessels, lymphatic vessels, and nerves, all surrounded by a supportive structure of 

connective tissue (Figure 1) (Hassiotou F & Geddes D, 2013). 

Lobules or mammary glands are structures involved in milk production during pregnancy 

and lactation. Several lobules can group together to form lobes, which organize around 

the nipple in a “wheel spoke” shape. Lobes deposit milk into the collecting ducts that go 

through the breast until it opens at the nipple surface (Cooper AP, 1840; Hassiotou F & 

Geddes D, 2013). 

Surrounding the lobes are the fat pad and the connective tissue which bring support to 

the ducts and lobules. Cooper’s ligaments connect the chest wall muscle and the skin 

overlaying the breast to hold the breast and maintain the structural integrity (Cooper AP, 

1840; Hassiotou F & Geddes D, 2013). 

 

Figure 1.  

Schematic representation of the mammary gland (Modified from Mannello F et al. 2008). 

 

1.2. Histology of the mammary gland 

The mammary gland is a complex structure constituted by different cell types which 

generate a network of branching ducts inside the fibrous collagen- and adipose-rich 
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stromal matrix (Figure 2). This structure includes epithelial and endothelial cells as well as 

fibroblasts and adipocytes (Neville MC & Daniel CW, 1987; Schmeichel KL et al. 1998). 

 

Figure 2 

Low magnification of a normal breast tissue. Shown are the ducts, a lobule and the stroma (Modified from Wilson R, 

2006). 

 

1.2.1. Epithelial cells 

Luminal and myoepithelial cells are the two major epithelial cell types present in the 

mammary gland. Luminal cells isolate and line the ductal lumen and alveoli, forming an 

inner continuous layer. These cells are characterized by their cuboidal shape, basoapical 

polarization and by the presence of apical microvilli (Figure 3) (Schmeichel KL et al. 1998; 

Visvader JE, 2009; Vidi PA et al. 2013; Hassiotou F & Geddes D, 2013). On the other hand, 

myoepithelial cells compose the outer or basal layer. They form a discontinuous line 

behind the luminal cells (Figure 3) and have properties of smooth muscle cells (Hassiotou 

F & Geddes D, 2013). 

The mammary gland is involved in milk production and delivery, and these functions are 

accomplished by epithelial cells. Differentiation of luminal cell into lactocytes allows milk 

production during lactation, and contraction of myoepithelial cells allows the milk flow 

into the ducts (Visvader JE, 2009; Vidi PA et al. 2013; Hassiotou F & Geddes D, 2013). 

Epithelial cells (luminal and myoepithelial) express estrogen (ER), progesterone (PR) and 

androgen (AR) receptors at their surface. It has been reported that these three steroid 

hormones play a key role in the development and function of the mammary gland (Li S et 

al. 2010). 
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Figure 3 

The mammary epithelium. (A) Schematic representation of the epithelium (luminal epithelial cells, myoepithelial cells 

and basal membrane) surrounded by the fibrous and fatty stromal compartment. (B) High magnification of a normal 

breast tissue. Shown are the epithelium and stroma. Panel B is from Wilson R, 2006. 

 

Within the basal layer, bi-potent mammary stem cells (MaSC) can be found. MaSC are 

undifferentiated cells which give rise to progenitors that in turn can differentiate into 

luminal and myoepithelial cells (Figure 4) (Prat A & Perou CM, 2009; Visvader JE, 2009; 

Hassiotou F & Geddes D, 2013). It has been suggested that transformation of MaSC at the 

different stages of differentiation can be the origin of each breast cancer molecular 

subtype (Prat A &Perou CM, 2009; Visvader JE, 2009). This will be discussed in chapter 

1.3.4.1. 
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Figure 4  

Human mammary epithelial hierarchy from the mammary stem cell (MaSC) until the latest differentiation stage into 

myoepithelial and luminal cells (From Prat A & Perou CM, 2009). 

 

1.2.2. The mammary stroma 

The mammary stroma is a highly fibrous and complex structure that is separated from the 

epithelial tissue by the basement membrane (BM). The BM is a special form of 

extracellular matrix (ECM) which is mainly composed of collagen IV and laminins, which 

are synthetized by myoepithelial and stromal cells, and connected by nidogen and 

perlecan (Schmeichel KL et al. 1998; Nelson CM & Bissell MJ, 2006; Rowe RG & Weiss SJ, 

2008; Vidi PA et al. 2013). 

The stroma includes (i) an adipose-rich fat pad which mainly gives support to all the other 

stromal components; (ii) blood and lymphatic vessels that provide immune surveillance, 

lymphatic drainage and accomplish an important function during lactation, delivering 

nutrients and removing of the waste metabolites; and (iii) an extracellular matrix-rich 

environment where epithelial cells grow, differentiate and regress (Schedin P & Hovey RC, 

2010). 

The cellular content of the stroma is mainly composed by endothelial cells, pericytes, 

fibroblasts and leukocytes, which will play an important role during cancer progression 

due to cross-talk and close interactions with tumor cells (for review Pietras K & Ostman A, 
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2010). Nevertheless, the interaction of tumor cells with the stroma will not be described 

here. 

 

1.3. Breast Cancer 

1.3.1. Cancer generalities 

Cancer is the leading cause of death worldwide, accounting for 8,2 million of deaths in 

2012 mainly by lung, liver, stomach, colorectal, breast and esophageal cancer (GLOBOCAN 

2012, IARC). 

Cancer is a complex process which can be divided in three phases: tumor initiation, cancer 

progression and metastasis formation. Hanahan D and Weinberg RA (2011) described the 

hallmarks of cancer as eight biological properties that are acquired during the 

development of human tumors. These include sustaining proliferative signaling, evading 

growth suppressors, evading immune destruction, enabling replicative immortality, 

activating invasion and metastasis, inducing angiogenesis, resisting cell death and 

reprogramming of energy metabolism. Underlying these hallmarks are genomic instability 

and inflammation which favor cancer progression (Figure 5). 

 

Figure 5 

Hallmarks of cancer (From Hanahan D and Weinberg RA, 2011). 
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Tumors can initiate at any part of the body. According to this initial location, cancer can be 

classified in five broad categories: Carcinoma (affects epithelial cells and accounts for 85% 

of all cancers), sarcoma (bone, cartilage, fat, muscle, blood vessels, connective or 

supportive tissue), leukemia (blood-forming tissue as the bone marrow), lymphoma and 

myeloma (cells of the immune system) and central nervous system cancer (brain and 

spinal cord) (National Cancer Institute, NIH). 

Metastasis is a fatal complication of cancer and the leading cause of death by this disease. 

It is a multistep process that includes the spreading from the primary site to another 

organ in the body to form a secondary tumor in a tissue-specific manner. The metastatic 

process will be reviewed in chapter 2. 

 

1.3.2. Breast Cancer Epidemiology 

Breast cancer is the most common diagnosed cancer in woman worldwide, being detected 

in 140 of 184 countries during 2012. In this same year, more than 1,5 million (11,9%) of 

new cases were reported and around 520.000 patients died from this disease (Ferlay J et 

al. 2013). According to the IARC last reports in 2008, breast cancer incidence and mortality 

have increased by 20% and 14%, respectively (Figure 6A, 6B) (GLOBOCAN, 2012). 

Increased incidence was higher in developed countries as compared with less developed 

ones. Nevertheless, mortality rates were higher in less developed countries mostly due to 

the late detection and difficulties to access to treatment (Figure 6A, 6B) (GLOBOCAN, 

2012). 
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Figure 6 

Age-standardized incidence (A) and mortality (B) rates for breast cancer in women worldwide in 2012. Color intensities 

indicate incidence (blue) and mortality (red) rates per 100.000 (From GLOBOCAN 2012). 

 

1.3.3. Breast Cancer Classification 

Until 2003, breast cancer classification relied on histological appearance of breast tumors 

and allowed to distinguish between two major groups: in situ carcinomas and invasive 

breast cancer. 
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In situ carcinoma refers to tumors that do not spread to the surrounding tissue and whose 

proliferation does not rip the basal membrane. This type of carcinoma can be, as well, 

subdivided in two: ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS). 

DCIS is the most frequent type of in situ carcinomas and makes reference to the presence 

of tumoral cells inside the milk duct (Figure 7A). High grade DCIS could turn into invasive 

breast cancer if left untreated. On the other hand, LCIS (also known as lobular neoplasia) 

refers to the presence of abnormal cells inside the breast lobules or milk glands (Figure 

7B). LCIS is considered as a marker of increased risk of developing invasive breast cancer; 

in fact, women with LCIS have an eightfold to tenfold increased risk of invasive breast 

cancer (Portschy PR et al. 2013). 

 

Figure 7 

Schematic representation of (A) Ductal Carcinoma in situ and (B) Lobular Carcinoma in situ. Invasive ductal and lobular 

breast cancers are also represented (From CancerHelp UK, 2012). 

 

Invasive breast carcinoma refers to the group of malignant epithelial tumors able to 

invade adjacent tissues and with the tendency to metastasize to distant sites. Invasive 

breast carcinoma exhibits a heterogeneous range of morphological phenotypes with 

particular prognosis or clinical characteristics. The 2003 World Health Organization (WHO) 

classification recognized 18 histological types of invasive breast cancer. Within these, 
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invasive ductal and lobular carcinomas are the most prevalent (Weigelt B & Reis-Filho JS 

2009). 

Invasive ductal cancer refers to the uncontrolled proliferation and spread of epithelial cells 

lining the ducts (Figure 7A), and is the most common type of breast cancer (70-80%). In 

contrast, invasive lobular carcinoma (Figure 7B) originates from the epithelial cells inside 

the lobules. It is much less frequent than the ductal (around 10-15%) and is often 

diagnosed in both breasts at the same time. 

Some other types of breast cancer which are less frequent and sometimes classified as 

special breast cancer types (given the particular features of tumor cells) are:  

◦ Inflammatory breast cancer (frequency of 1-4%) in which cancer cells block the 

lymph ducts of the breast, causing tissue inflammation. 

◦ Medullary breast cancer (frequency of 5%) which is characterized by cancer cell 

shape. Tumor cells tend to be bigger and tumoral tissue is clearly isolated from the 

normal tissue when analyzed under the microscope. Women with mutation in the 

BRCA1 gene are more prone to develop this type of cancer. 

◦ Mucinous breast cancer (frequency of 2%) is characterized by the presence of 

malignant cells that “float” in pools of mucus. 

◦ Other, very rare types of cancer include: tubular, adenoid cystic, metaplastic, 

angiosarcoma of the breast, lymphoma of the breast, phyllodes and papillary 

breast cancer.  

At the clinical level breast cancer is not only defined by its morphology. The use of 

predictive biomarkers (known as surrogate markers), such as the expression of estrogen 

receptor (ER), progesterone receptor (PR) and the assessment of HER2 status by 

immunohistochemical methods are currently used.  

 

1.3.4. Breast Cancer Molecular Classification 

Over the last decade, microarray-based gene expression studies demonstrated that breast 

cancer is a heterogeneous disease with different molecular characteristics. One of the 

advantages of molecular classification over the morphological-histological classification is 

that the diagnostic criteria to define the different types are less subjective and can be 

shared across different cancer centers in the world (Rakha EA et al. 2010). 

A key study for detailed molecular classification of breast tumors was performed by Perou 

CM et al. (2000). In this report, Perou CM and collaborators redefined breast cancer as a 

complex disease with specific gene expression profiles. Thus, using tumors with different 
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histopathological characteristics, they were able to describe an “intrinsic gene” list that 

allowed the hierarchical clustering of four breast cancer tumor subtypes: luminal, normal 

breast-like, HER2 and basal-like breast cancer (Figure 8).  

Interestingly, the major molecular subgroups identified by large-scale transcriptomic 

approach (luminal, HER2, basal-like) were very close to those previously classified as 

luminal, HER2 and triple-negative, by means of immunohistochemistry. 

 

 

Figure 8 

Cluster analysis of different breast cancer molecular subtypes. Branches are coloured as: Basal-like, orange; HER2, pink; 

normal breast, green; luminal, blue (Modified from Perou et al. 2000). 

 

One year later, the same group showed that the estrogen (ER)-positive group (luminal 

cluster) could be classified into three distinct subgroups: Luminal A, Luminal B and Luminal 

C (Figure 9) (Sorlie T et al. 2001). Nevertheless a few years later, Sorlie T et al. (2003) 

continued the molecular classification studies of breast cancer using an expanded data 

set, and realized that luminal C was not a true subgroup of this disease but belonged to 

the luminal B subtype. 
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Figure 9 

Hierarchical clustering analysis from gene expression patterns of normal breast and cancerous samples. Branches 

correspond to: Basal-like, red; HER2, pink; Normal breast-like, green; Luminal subtype C, light blue; Luminal subtype B, 

orange; Luminal subtype A, dark blue (Modified from Sorlie T et al. 2001). In 2003, Sorlie T and coworkers indicated that 

Luminal C subtype belonged to Luminal B subtype (purple). 

 

In 2011, the four subtypes defined by gene expression profile studies (Luminal A and B, 

HER2 and basal-like) were included in the St Gallen International Expert Consensus. In 

addition, a concordance between these molecular subtypes and immunohistochemical 

surrogate markers was proposed (Goldhirsch A et al. 2011). 

Thus, knowledge acquired using microarray analysis resulted in better understanding of 

the cellular and molecular heterogeneity of breast cancer. Of importance, the 

classification of breast tumors into distinct subtypes, based on the expression of 

molecular biomarkers, allowed more accurate orientation of patient treatment decisions 

and clinical trial design (Reis-Filho JS et al. 2006) (Table 1).  

Table 1.  

Breast Cancer molecular classification characteristics (Modified from Lam SW et al. 2014).  

Molecular 

Subtype 
Prevalence IHC definition Prognosis Treatment 

  ER PR HER2 Ki-67   

Luminal A 50-60 % + + - Low Good Endocrine 

Luminal B 

(HER2 negative) 

15-20 % + + - High Intermediate Endocrine ± 

chemotherapy 

Luminal B 

(HER2 positive) 

6 % + + + Any Intermediate Endocrine + cytotoxic 

+ anti-HER2 therapy 

HER2-amplified 10-15 % - - + Any Poor Chemotherapy + anti-

HER2 therapy 

Basal-like 10-20 % - - - High Poor Chemotherapy 
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1.3.4.1. Breast cancer molecular subtypes origins 

Prat A & Perou CM (2009) suggested that cancer cells may either be generated by 

transformation of normal mammary stem cells (MaSC) or progenitor cells (Figure 10), or 

result from the acquisition of stem cells-like characteristics by cancer cells.  

Lim E et al. (2009) were the first to propose the human mammary epithelial hierarchy 

(Figure 4) as a framework to understand the cellular origins of the various molecular 

subtypes of breast cancer (Figure 10). Epithelial gene expression signatures established for 

the different mammary epithelial populations have revealed that MaSC signature is most 

concordant with the one of the “normal-like” subtype (Lim E et al. 2009; Visvader EJ 

2009). Surprisingly, the expression profile of basal-like cancers shares a striking similarity 

with the luminal progenitor gene signature and not with the MaSC as expected. While the 

luminal cancer subtypes (Luminal A and Luminal B) where closest to mature ductal cells, to 

date correlation of the HER2 subtype with a specific subpopulation has not been clearly 

defined, but it is presumed that they may derive from a cell with luminal origin (Figure 10) 

(Lim E et al. 2009; Visvader JE, 2009; Visvader JE, 2011; Fu N et al. 2014). 

 

Figure 10 

Human breast epithelial hierarchy at the origin of the different cancer subtypes (From Visvader JE, 2009). 

 

1.3.4.2. Luminal subtype 

Luminal subtype is characterized by the presence of luminal epithelial markers and can be 

divided in three groups: luminal A, luminal B/HER2-negative and luminal B/HER2-positive. 

All three subtypes present a characteristic gene expression profile, prognosis and 

response to appropriate treatment (Sorlie T et al. 2001; Langlands FE et al. 2013; 
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Ignatiadis M & Sotiriou C, 2013; Lam SW et al. 2014). According to the histological 

classification, luminal tumors can be invasive or in situ and be classified as ductal, lobular, 

mixed ductal-lobular, mucinous or tubular carcinomas (Schnitt SJ, 2010; Ignatiadis M & 

Sotiriou C, 2013). 

Luminal A is the most common breast cancer subtype, it represents two-thirds of all 

breast cancer cases and it is characterized by the overexpression of genes related with the 

luminal mammary cells, estrogen receptor (ER) and ER transcription factors (Perou et al. 

2000; Sorlie T et al. 2001; Weigelt B et al. 2010; Lam SW et al. 2014). Luminal A breast 

cancer patients have a 5-year survival of 90% and few lymph node dissemination (O’Brien 

KM et al. 2010). 

The luminal B subtype represents 10-30% of breast carcinomas. Unlike luminal A, luminal 

B is associated with the overexpression of proliferation and cell cycle-related genes. 

Patients with Luminal B tumors present a 5-year survival rate of 50% (Sorlie T et al. 2001; 

Reis-Filho JS et al. 2006; Weigelt B et al. 2010; Lam SW et al. 2014). Two subtypes of 

luminal B tumors have been described according to their HER2 status (HER2 positive and 

HER2 negative). Among them, luminal B/HER2 negative is the most frequent (Lam SW et 

al. 2014). 

Clinically, luminal tumor subtypes are treated using endocrine therapy (Table 1). 

Tamoxifen and aromatase inhibitors (such as letrozole, anastrozole and exemestane) are 

the most commonly used therapies (Ignatiadis M & Sotiriou C, 2013). Hormone treatment 

can be used together with chemotherapy or anti-HER2 therapy according to the luminal 

subtype and high risk patients (Table 1) (Lam SW et al. 2014). 

 

1.3.4.3. HER2 subtype 

This subtype comprises tumors expressing low levels of hormone receptors but 

overexpressing the Erb-B2 oncogene that encodes for the Human Epidermal factor 

Receptor 2 (HER2) (Perou et al. 2000). HER2 is a member of the ErbB receptor tyrosine 

kinases (RTKs) family, with no known ligand but with a high kinase catalytic activity (Rexer 

BN & Arteaga CL, 2012; Langlands FE et al. 2013). 

Amplification of HER2 represents approximately 15% of human breast tumors and is 

associated with an increased risk of metastasis (to the brain, lungs and liver) (Kennecke H 

et al. 2010), high relapse rate, short overall survival and poor patient outcome if not 

treated (Sorlie T et al. 2001; Reis-Filho JS et al. 2006; Rexer BN & Arteaga CL, 2012; Lam 

SW et al. 2014). 
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Several therapeutic strategies have been used to treat HER2 breast tumors. Within those, 

the most commonly used are trastuzumab and lapatinib. Trastuzumab (Herceptin) is a 

humanized monoclonal antibody which targets the extracellular domain of the receptor, 

thereby suppressing HER2 activity by disrupting downstream signaling. In contrast, 

lapatinib is a tyrosine kinase inhibitor that blocks HER2 phosphorylation, thereby inhibiting 

PI3K-Akt and MAPK pathways (Rexer BN & Arteaga CL, 2012; Langlands FE et al. 2013). 

 

1.3.4.4. Basal-like subtype and Triple negative breast cancer (TNBC) 

The basal-like subtype is characterized by the very low or negligible expression of ER, PR 

and no amplification of HER2. Due to the absence of these three receptors, basal-like 

tumors are sometimes referred as triple negative breast cancer (TNBC) (Langlands FE et al. 

2013; Lam SW et al. 2014). Nevertheless, while basal-like denomination is based on 

microarray gene expression analysis, TNBC is according to predictive biomarkers 

classification (ER, PR and HER2 negative). 

Basal-like and TNBC subtypes share a number of characteristics. They are high grade, 

invasive ductal carcinomas, with preference to metastasize to viscera (lungs and brain) 

more than to bones (Foulkes WD et al. 2010). Additionally, both breast cancers are 

associated with an adverse prognosis and by the presence of germline BRCA1 mutations 

(Foulkes WD et al. 2010; Lam SW et al. 2014). 

However, clinical, microarray and immunohistochemical analysis have shown that basal-

like and triple negative subtypes are overlapping but not identical, most of the basal-like 

breast cancer being TNBC (around 60%), and most of the TNBC (approximately 80%) being 

of the basal-like subtype (Weigelt B et al. 2010). 

Triple Negative subtype accounts for 15% of breast cancer cases but is responsible for 25% 

of deaths by breast cancer. Due to its clinical heterogeneity, its highly proliferative and 

metastatic capacities, and the absence of targeted therapies, it remains the subtype with 

the worst prognosis. 

Chemotherapy is the main treatment option for these patients. Chemotherapy targets 

cells that proliferate rapidly, and therefore is more effective on TNBC tumors (29% of 

pathological complete response to anthracycline in TNBC patients versus 10% in HER2, 8% 

luminal B and 6% luminal A) (Carey LA et al. 2007). However, just a small subgroup of 

TNBC patients will benefit from this treatment due to development of tumor drug 

resistance and tumor relapse. 
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1.3.5. Chemotherapy as a treatment for breast cancer 

In addition to TNBC, patients diagnosed for hormone-refractory disease, hormone 

receptor-negative disease and metastatic breast cancer are treated using chemotherapies. 

Chemotherapy can be divided in two groups (DNA-targeting compounds and microtubule-

targeting agents) with different mechanism of action (Fumoleau P & Guiu S, 2012). 

Chemotherapeutic drugs can be applied sequentially or in combination with other active 

cytotoxic agents depending on the patient status, its previous treatments and tumor 

characteristics (Morris PG et al. 2009). 

DNA targeting agents include anthracyclines, gemcitabines and capecitabines. These 

agents induce cancer cell apoptosis through the inhibition of DNA synthesis. Doxorubicin 

is an anthracycline commonly used for several types of cancers due to its high efficacy 

against tumors. This chemotherapy drug intercalates between DNA base pairs causing 

deformation of the double helix, stabilization of the topoisomerase II-DNA complex and 

the induction of double strand breaks (Hortobagyi GN, 1997; Morris PG et al. 2009). 

MTAs (Microtubule Targeting Agents) include vinca alkaloids, colchicinoids, eribulin, 

taxanes and epothilones. These cytotoxic drugs inhibit cell proliferation through the 

modulation of mitotic spindle formation and chromosome attachment, which causes 

mitotic arrest and cell death. Recent observations have shown that MTAs can also have 

anti-migratory and anti-angiogenic properties when used at low concentrations (Yang H et 

al. 2010; Fumoleau P & Guiu S, 2012; Pagano A et al. 2012). MTAs mainly target the 

microtubule cytoskeleton and mitotic spindle that will be reviewed in details in chapter 

3.3. 
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2. Breast Cancer Metastasis 

Cancer metastasis, the ability of tumor cells to disseminate and grow at secondary sites, is 

a fatal complication of breast cancer. Approximately 10-15% of women diagnosed with 

breast cancer develop distant metastasis within 3 years after detection of the primary 

tumor (Weigelt B et al. 2005, Scully OJ et al. 2012). 

Several studies have reported that breast cancer cells can metastasize to different distant 

organs, with preference for the lungs, liver and bones (Figure 11) (Weigelt B et al. 2005). 

 

Figure 11 

Most common metastatic sites of breast cancer cells. Lungs, liver and bones are the organs of preference to metastasize 

(From Weigelt B et al. 2005). 

 

2.1. The metastatic process 

Metastasis is a complex multistep process which mainly depends on cancer cell properties 

and tumor microenvironment (Guise T, 2010). Failure to achieve one of the steps of the 

process will stop it (Poste G & Fidler IJ, 1980). 

The metastatic process (Figure 12) starts with the local invasion of the surrounding tissue 

by cancer cells. As the tumor grows, a higher requirement of oxygen and nutrients will 

activate neoangiogenesis, which in turn will contribute to tumor progression. In highly 

aggressive tumors, metastatic cells will detach from the primary tumor, invade the 

surrounding stroma, migrate until they reach the blood or lymphatic vessels in which they 

enter by intravasation (Hunter KW et al. 2008; Guise T, 2010; Scully OJ et al. 2012). 
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Figure 12 

The metastatic process. Metastasis to a secondary organ is the result of several steps that include tumor growth, 

angiogenesis, invasion of the surrounding tissue, intra and extravasation and final colonization of the new tissue (From 

Nahmias C & Rodrigues-Ferreira S. Accepted, Waiting for Copy Editing). 

 

Even if a large number of cells reach the blood flow, most of them stay quiescent or do 

not survive host defense mechanisms and stressful microenvironments, leading to the 

notion that metastasis is an inefficient process (Chambers AF et al. 2002; Hunter KW et al. 

2008; Scully OJ et al. 2012). However, those few circulating tumor cells (CTC) capable to 

arrest and cross the vasculature endothelium, a process termed extravasation, are 

suitable to grow as a metastasis in a distant organ (colonization) (Hunter KW et al. 2008). 

Interestingly, the organ distribution of full-blown metastasis is not random. In 1889 

Stephen Paget proposed that metastatic cancer cells (or seeds) would only colonize organ 

microenvironments (or soils) that were compatible with their growth (Paget S, 1889). In 

this line of thought, metastatic tropism will depend on the viable premetastatic niche 

within the target organ and on the display of the appropriate functions of the metastatic 

cell to effectively colonize the new organ (Reviewed in Gupta GP & Massagué J, 2006). The 

generation of a viable niche has been extensively studied, however this will not be 

detailed here. 

 

2.2. Tumor cell invasion and migration 

Tumor cell invasion, the first step of the metastatic process, refers to the penetration of 

tissue barriers, such as basement membrane and interstitial stroma, by cancer cells. Cell 

invasion is a heterogeneous, adaptive and cyclic process in which the cell adheres, 

degrades the extracellular matrix (ECM) components and changes its shape to produce a 
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morphological asymmetry resulting in a gain of migratory skills (Friedl P & Alexander S, 

2011).  

Cell migration is an essential process of normal cells during embryogenesis, development, 

tissue regeneration and immune-cell trafficking. Even if the migration process is increased 

and deregulated in cancer, tumor cells use mechanisms that are similar to those that 

occur in normal cells during physiological processes to spread within the tissues (Friedl P & 

Wolf K, 2003). 

Two types of cell migration (single and collective) have been described for cancer cells 

(Figure 13). The way cancer cells migrate depends on the tumor type, its differentiation 

stage and the surrounding microenvironment. Thus, epithelial tumor cells (as breast 

cancer cells) are more prone to migrate in a collective manner, while lymphomas, 

leukaemias and most of the solid stromal tumors (such as sarcomas) spread by single cell 

migration (Friedl P & Wolf K, 2003; Yilmaz M. et al. 2007; Vicente-Manzanares M & 

Horwitz AR, 2011; Friedl P & Alexander S, 2011). 

 

Figure 13 

Different types of cell migration. Tumor cells can migrate alone (single mesenchymal or amoeboid cell migration, left 

side) or grouped (collective coordinated or cohort cell migration, right side) (From Yilmaz M. et al. 2007). 
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2.2.1. Collective Cell Migration 

Collective cell migration refers to the movement of a coherent cell group of up to several 

hundred cells. This migration type contributes to numerous normal processes including 

embryological development, development of glands and ducts of mammary tissue, 

formation of blood vessels by endothelial cells, lung formation and wound healing. 

Additionally, it has been described that multicellular structures of cancer epithelial cells 

(such as acini, cords, glands or cell strands) can penetrate the surrounding stroma as 

elongated strands of connected tumor cells (Hegerfeldt Y et al. 2002; Friedl P & Wolf K, 

2003; Friedl P & Gilmour D, 2009; Friedl P et al. 2012). 

Collective migration models stand for a structure where there is a leader cell (or several 

cells) at the migration front and follower cells behind. Considering that leader cells must 

pull the inner and trailing cells behind, collective migration depends on the strongly cell-

cell adhesions provided by cell junctions (Hegerfeldt Y et al. 2002; Friedl P & Wolf K, 2003; 

Friedl P & Gilmour D, 2009; Friedl P et al. 2012). Thus, the leading cell will have one or 

several actin-rich protrusions, that will generate adhesive traction for forward movement, 

and matrix degradation activity to create a zone that guides the group (Wolf K et al. 2007). 

On the other hand, follower cells do not associate with the ECM directly, but will contact 

neighboring cells and intercellular matrix present along cell-cell junctions (Figure 14) 

(Friedl P et al. 2012). 

 

Figure 14 

Collectively migrating cells form two major zones: zone 1, in which a leader cell generates a proteolytic track at the front 

of the migrating group, and zone 2, in which the subsequent cells then widen this track (From Friedl P & Alexander S, 

2011). 
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Various subtypes of collective migration have been stratified according to the degree of 

cell-cell adhesion and the multicellular morphology. In fact, depending on cell-cell 

adhesion, cell-matrix adhesion, proteolysis and the type of tissue encountered, the size 

and shape of a collective invasion structure (and mostly its front) can vary. According to 

this, invading cell groups include strands of one or two cells in diameter, broad compact 

masses and masses that can form luminal structures (Figure 15). 

 

 

 

 

 

 

Figure 15 

Schematic diagram of collective cancer cell migration (Modified from Friedl P et 

al. 2012). 

 

Collective cancer cell migration can be classified in coordinated and cohort migration 

(Figure 13 and Figure 15). Coordinated migration consists in the sheet-like movement of 

tumor cells without detaching from the primary tumor. Contrariwise, cells that migrate in 

cohort detach from the primary site generating nests of migrating cells that can be 

detected at any stage of the metastatic process (Friedl P & Wolf K, 2003). Both subtypes of 

collective migration have been observed in invasive breast epithelial cancers (Friedl P et 

al. 1995; Nabeshima K et al. 1999; Nabeshima K et al. 2000). 

Breast cancer cells can also migrate in a “chain manner” or multicellular streaming. In this 

type of migration, a leader cell directs the migration of a stream of followers through the 

matrix (Friedl P & Wolf K, 2003; Vicente-Manzanares M & Horwitz AR, 2011; Friedl P & 

Alexander S, 2011). It has been reported that chains of tumor cells can align between 

stromal fibers, a characteristic that improves the penetration mechanisms and thus, is 

associated with high metastatic capacity and poor prognosis (Friedl P & Wolf K, 2003; 

Bacac M & Stamenkovic, 2008; Roussos ET et al. 2011). Tumor cells sometimes follow 

nerve trajectories (perineural migration) and cancer-associated fibroblasts (CAFs) (Friedl P 

& Wolf K, 2003; Choi YP et al. 2014). 
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2.2.2. Single Cell Migration 

The single cell migration process includes several steps that imply changes in cell 

morphology and stiffness (Figure 16). First, the cell has to polarize and elongate. A 

pseudopod is then formed, via the extension and ruffling of the leading edge which is 

mainly composed by an actin-rich lamellipodia. After protrusion formation, cell leading 

edge binds to the ECM substrate. Subsequently, cell contracts in order to allow the 

forward movement of the entire body and the trailing edge. Finally, disassembly of 

adhesion contacts at the trailing edge allows cell displacement (Friedl P & Wolf K, 2003). 

 

Figure 16 

Single cell migration involves five molecular steps that change the cell shape, its position, and the tissue structure 

through which it migrates (From Friedl P & Alexander S, 2011). 

 

Two types of single cell migration (mesenchymal and ameboid) have been described 

(Figure 13). Mesenchymal migration is characterized by the presence of fibroblast-like 

shape, increased cell invasiveness, increased cell-stroma interaction and decreased cell 

proliferation. This migration mechanism is dependent on ECM adhesion proteins, as well 

as on the activation of proteins involved in the matrix degradation (reviewed in Yilmaz M. 

et al. 2007, Friedl P & Alexander S, 2011).  

In contrast, in the amoeboid phenotype, cells are more deformable due to weak 

interactions between the cell membrane and the matrix. The absence of mature adhesion 

contacts make these cells faster than mesenchymal migrating cells (10 to 30-fold higher 

velocities). Therefore, more than grip, the amoeboid cells have to adapt their morphology 

to preformed matrix structures in order to glide through (Friedl P & Wolf K, 2003; Yilmaz 

M. et al. 2007). 
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3. Microtubule (MT) Network 

 

The eukaryotic cell cytoskeleton is a network composed of proteinaceous fibers and is 

required for the majority of essential cellular functions such as cell motion, cell division, 

intracellular transport and maintenance of cellular shape. It is a complex and often highly 

dynamic structure built of three major components: microtubules (MT), actin and 

intermediate filaments (IF) (Figure 17). 

 

Figure 17 

Microtubules, actin and intermediate filaments are the principal components of eukaryotic cell cytoskeleton (From 

Tobin & Dusheck, 2001). 

 

Actin cytoskeleton is composed of semi-flexible filaments able to arrange in a variety of 

architectures, generating cellular organizations including branched or cross-linked 

networks in the lamelipodium, parallel bundles in filopodia and anti-parallel structures in 

contractile fibers (Blanchoin L et al. 2014). Intermediate filaments (IF) are assembled from 

a diverse group of fibrous proteins (such as vimentin and keratin) with intermediate size 

between actin and microtubules. IFs are elastic non-polarized fibers, expressed in a cell 

type-specific manner (Yi H & No Ku, 2013). Microtubules (MTs) are the subject of this third 

chapter: its organization, functions and the proteins capable to interact with them in 

order to regulate their dynamics will be described below. 

 

3.1. Microtubule organization 

Microtubules are cylindrical hollow tubes of 25 nm of diameter and variable length. They 

are composed of αβ tubulin heterodimers that are organized head-to-tail to form a 

polarized protofilament. Thirteen of these filaments will interact laterally to subsequently 

form the MT lattice (Figure 18) (Amos L & Klug A, 1974; Brinkley WBR, 1997; Desai A & 

Mitchison TJ, 1997; Valiron O et al. 2001). 
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Figure 18 

Microtubule structure. (A) Representation of the head-to-tail interactions of αβ dimers to form a linear protofilament. 

(B) Thirteen linear protofilaments associate laterally to form a MT polymer. 

 

Each tubulin monomer can be divided into three functional domains: the N-terminal 

domain containing the GTP-binding site, an intermediate domain containing the taxane-

binding site in β-tubulin, and the C-terminal domain which contains the binding surface for 

motor proteins (Figure 19) (Nogales E et al. 1998). 

 

Figure 19 

Ribbon diagram of the tubulin dimer showing α-tubulin with bound GTP (top), and β-tubulin containing GDP and taxane 

(TAX) (bottom). Green arrow indicates the direction of the protofilament and MT axis (Modified from Nogales E et al. 

1998). 
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Even if α- and β-tubulin are similar, there are two unambiguous ways to distinguish them: 

(i) β-tubulin binds to taxanes, and (ii) β-tubulin monomer contains an exchangeable (E) 

GTP site, while the α-tubulin monomer has the non-exchangeable (N) site, always filled 

with GTP (Spiegelman BM et al. 1977; Hyman AA et al. 1992; Valiron O et al. 2001). 

The denomination of E site on β-tubulin monomer owes to the possibility of binding GTP 

or GDP. During or after αβ tubulin dimers addition to the protofilament, GTP hydrolyzes to 

GDP and the latter gets locked in the protofilament during MT growing. After 

depolymerization, the GDP-β tubulin exchanges to GTP in solution (Hyman AA et al. 1992).  

MTs display an intrinsic polarity, generated by the head-to-tail assembly of tubulin dimers, 

with one end growing at three times the rate of the other (Summers K & Kirschner MW, 

1979). The faster growing and more dynamic extremity is termed the plus-end and the 

slower growing extremity, the minus-end (Allen C & Borisy GG, 1974). Experiments using 

GTP-coated fluorescent beads showed that GTP specifically binds to the plus-ends, 

indicating that β-tubulin monomer is exposed toward the plus end, while the α-tubulin 

monomer is directed to the minus end (Mitchison TJ, 1993). This observation was further 

confirmed when beads coated with anti-α-tubulin antibodies were shown to bind the 

minus end of MTs (Fan J et al. 1996). 

MT minus-ends are usually capped by centrosomal proteins. From the centrosome or 

MTOC (for MicroTubule Organizing Center), MTs grow out and their plus-ends explore the 

cytoplasmic space, often interact with the cell cortex and work as a search-and-capture 

tool (Mimori-Kiyosue Y & Tsukita S, 2003; Honoré S et al. 2005; Bornens M, 2008). The 

polarity of MTs is important to the function of motor proteins, kinesins and dyneins, which 

use ATP hydrolysis to transport various cargos along MTs (Desai A & Mitchison TJ, 1997).  

MTs within cells can be found in two states: (i) transiently unstable, as the radial array in 

interphase cells, the bipolar spindle during mitosis and meiosis, the parallel array in 

polarized cells and the linear array in neuronal extensions, or (ii) highly stable, like in the 

centrioles, basal bodies and axonemes of cilia and flagella (Brinkley WBR, 1997). 

 

3.2. Microtubule dynamics 

Microtubules are dynamic polymers that cannot be understood in terms of the classical 

polymerization theory of Oosawa F (1970), where subunit exchange at polymerization 

state was limited to the slow association-dissociation of tubulin dimers at MT ends. Rather 

they present a non-equilibrium dynamic behavior which allows the organization and rapid 
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remodeling of the cytoskeleton, allowing MTs to search in the three-dimensional space 

(Kirschner M & Mitchison T, 1986; Holy TE & Leibler S, 1994).  

In order to explain what MT dynamics means, several studies were performed in vitro and 

in vivo. Some of these studies and the important concepts are listed below. 

 

3.2.1. MT dynamics in vitro 

The characterization of the dynamic properties of MTs began when, in 1972, Weisenberg 

RC discovered that pure tubulin self assembles and disassembles in the presence of GTP. 

Later on, observation of continuous incorporation of tubulin into MT, when polymer 

length is constant, led to the concept of treadmilling (Margolis RL & Wilson L, 1978; 

Margolis RL & Wilson L, 1998). Treadmilling is defined as the unidirectional flux of tubulin 

subunits from one polymer end to another. This concept indicates that a treadmilling MT 

might have a constant assembly rate of tubulin subunits at one end, with a balanced loss 

at the opposite end (Margolis RL & Wilson L, 1998). 

A few years later, in 1984, the observation of a population of fixed MTs by Mitchison and 

Kirschner led to the discovery of a new MT dynamic mechanism termed dynamic 

instability (Mitchison T & Kirschner M, 1984). In this process MTs switch between 

continuous phases of polymerization and depolymerization. Soon after, a large number of 

studies using differential interference contrast (DIC) microscopy confirmed this concept 

and dynamic instability became the predominant mechanism to explain MT dynamics 

(Horio T & Hotani H, 1986; Cassimeris LU et al. 1987; Hotani H & Horio T, 1988; Walker RA 

et al. 1988; Gelfand VI & Bershadsky AD, 1991; Erickson HP & O’Brien ET, 1992). 

To date, MT dynamic instability is described as a three-state model that includes MT 

growing, MT pause and MT shrinking (Figure 20). MT growing or polymerization stands for 

the elongation of the lattice in a GTP-tubulin concentration dependent manner. This 

elongation was described by Chrétien D et al. (1995) as the extension of protofilaments 

rather than the helical subunit addition (Figure 20, upper panel).  

During or soon after polymerization, GTP hydrolyzes to GDP, a process not required for 

further polymerization but essential for dynamic instability (Hyman AA et al. 1992; Caplow 

M et al. 1994). In fact, Caplow M and coworkers (1994) showed that the free energy 

released after GTP hydrolysis is store in the MT lattice as a mechanical strain and might 

destabilize the MT network. Unstable GDP-microtubules undergo catastrophe, releasing 

the energy that in turn promotes and maintains rapid depolymerization. Additionally, 

Melki R et al. (1989) provided a model where GTP hydrolysis causes a change in tubulin 

conformation, having GTP-tubulin with a “straight” conformation and GDP-tubulin with a 
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“curved” conformation. Curved protofilaments peel outwards and promote MT 

depolymerization. 

 

 

 

 

Figure 20 

MT dynamics in vitro and in vivo. Microtubules can polymerize (upper panel), stay in pause (middle panel) or 

depolymerize (lower panel). Cryoelectron microscopy pictures are from Chrétien D et al. 1995 (growing), Janosi IM et al. 

2002 (pause) and Warner FD & Satir P, 1973 (shrinking). 
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This unstable “curved” lattice promotes the disassembly of the polymer. During MT 

shrinking, GDP-tubulin is released from the MT end. Cryoelectron microscopy studies 

revealed that depolymerizing ends contain highly curved protofilaments (Figure 20, lower 

panel) (Mandelkow EM & Mandelkow E, 1985; Mandelkow EM et al. 1991; Tran PT et al. 

1997) suggesting that the driving force for MT depolymerization is the curling up of 

protofilament ends. 

Finally, MTs can undergo pause moments, where MTs do not grow nor shrink (Figure 20, 

middle panel). Pauses were described by Keller PJ et al. (2007) as stochastic events that 

were not so commonly seen in vitro (Walker RA et al. 1988; Shelden E & Wadsworth P, 

1993). Chrétien D et al. (1995) described MT pause as the moment when protofilament 

sheets close to form the cylindrical shape of MTs. This process could occur at a variable 

rate and as MTs cannot stay in this close shape for long time, it would finish by the 

induction of depolymerization. 

Four parameters have been proposed to describe MT dynamic instability: growth rate, 

shrinking rate and frequencies of catastrophes (transition from polymerization to 

depolymerization) and rescues (transition from depolymerization to polymerization) 

(Figure 21). 

 

Figure 21 

MT dynamic instability is characterized by continuous cycles of polymerization, where GTP-tubulin is added to the plus 

end of the MT, and depolymerization, where GDP-tubulin is rapidly released from the lattice. Catastrophe and rescue 

transitions are indicated as red arrows. 
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The growth velocity depends on the soluble tubulin concentration, on the rate constant 

for GTP-tubulin association, the temperature and the presence of MAPs. In contrast, the 

shortening rate does not depend on tubulin concentration but it depends on temperature 

and presence of MAPs. The catastrophe (or rescue) frequency is calculated as the number 

of catastrophes (or rescues) observed during the total time the MT spends in growing 

state. Erickson HP and O’Brien ET (1992) showed that in vitro catastrophe frequencies 

were lower than rescue frequencies in both the plus and minus ends. Nevertheless, these 

MT dynamic instability parameters can vary according to tubulin concentration and 

polymerization buffer composition. 

All MT dynamic instability parameters can be visualized and determined on kymographs 

(Smal I et al. 2009). Kymographs are graphical representations of spatial position over 

time (Figure 22). 

 

Figure 22 

Kymograph representation showing different phases of MT dynamic instability. The spatial axis shows a MT visualized 

with mCherry-α-tubulin in red and its growing end stain with EB3-GFP in green (From Akhmanova A & Steinmetz MO, 

2008). 

 

In vitro minus-ends are able to assemble and disassemble pure tubulin and thus exhibit 

dynamic instability as the plus-ends but with slower rate constants (Walker RA et al. 

1988). 

 

3.2.2. MT dynamics in vivo 

Current models of MT dynamics accept both treadmilling and dynamic instability as 

intrinsic properties of MTs that coexist in cells. Treadmilling have been reported in the 

mitotic spindles even if the MT ends are anchored at the spindle poles and kinetochores 

(Rodionov VI & Borisy GG, 1997; Waterman-Storer CM & Salmon ED, 1997; Margolis RL & 

Wilson L, 1998). 
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MT dynamic instability in vivo shares most characteristics with the in vitro model, except 

that cellular MTs have higher assembly rates (up to 10 times faster), more transition 

frequencies (Cassimeris L, 1993) and more frequent pause events (Keller PJ et al. 2007). 

Moreover, MT dynamics in vivo can vary according to regulatory signals (interphase versus 

mitosis) (reviewed in McNally FJ, 1996), cell type (Bré MH et al. 1990; Bass PW et al. 

1991), measured zone inside the same cell (Komarova YA et al. 2002b), and differentiation 

stage (Bulinsky JC & Gundersen GG, 1991). 

The most important function of MTs is their participation in mitosis, as segregation of 

chromosomes towards cell poles during anaphase requires regulated and coordinated 

MTs dynamics. However, MT dynamic instability in living cells also allows MT spatial 

organization, rapid remodeling of the cytoskeleton and cell shape (Figure 23A). 

Additionally, this permits MTs to search and find specific targets (search-capture model) 

and guides MTOC movement (Figure 23B). 

 

Figure 23 

MT dynamic instability allows cytoplasm and cell shape remodeling (A) and interphase centrosome positioning to a 

specific cortical site (B) (From Desai A & Mitchison TJ, 1997). 

 

But MT dynamics not only depends on tubulin polymerization/depolymerization. Dynamic 

instability is also regulated by tubulin post-translational modifications and by microtubule-

associated proteins (MAPs). Of importance, microtubule-targeting agents (MTAs) also act 

by modulating MT dynamic instability parameters. 
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3.3.  Microtubule-targeting agents (MTAs) 

Microtubule-targeting agents constitute a class of chemotherapeutic drugs that target 

microtubules and disrupt the normal function of the mitotic spindle to cause cancer cell 

death by mitotic arrest. Microtubule targeting agents (MTA) can be classified in 

microtubule (MT)-stabilizing and destabilizing drugs according to their effects on MT 

dynamics (Figure 24). 

 

Figure 24 

Effect of Microtubule Targeting Agents (MTAs) on microtubule dynamics. MTAs can destabilize (left side) or stabilize 

(right side) the MTs in order to induce cancer cell apoptosis. 

 

Some representatives of MT-destabilizing agents are the vinca alkaloids, the colchicinoids, 

and eribulin (Figure 24). The vinca alkaloids (vincristine, vinblastine, vinorelbine) prevent 

MT polymerization by binding to β-tubulin subunits, which causes a metaphase arrest. 

These agents also decrease polymerization and depolymerization velocities and increase 

the percentage of time MTs spend in an attenuated or paused phase (Himes RH, 1991; 

Jordan MA et al. 1992; Morris PG et al. 2009; Fojo AT & Adelberg DE, 2010). Vinka 

alcaloids are currently used in clinics, however, an inconvenient reported for these 

cytotoxic agents is the sensitivity to cancer cells resistance pumps (Fumoleau P & Guiu S, 

2012). 

Binding of colchicine to tubulin induces a conformational change in the tubulin that locks 

the colchicine in a complex where it can poorly dissociate. Colchicine depolymerizes MTs, 
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inhibits MT polymerization and increases the time MTs spend in pause state (Reviewed in 

Fojo AT & Adelberg DE, 2010). 

Eribulin is a destabilizer molecule which acts through the suppression of microtubule 

growth (with no effect in the shortening) and sequestration of tubulin into nonproductive 

aggregates. Thus, tubulin retention impedes mitotic spindle formation inducing a mitotic 

blockage (Cortes J et al. 2012; Scarpace SL, 2012).  

The second group of MTAs is the MT-stabilizing agents. MT-stabilizing agents are mainly 

composed by Taxanes and epothilones (Figure 24). Taxanes bind tubulin to inhibit MT 

depolymerization, enhance MT assembly, and thereby bundling and stabilizing MTs 

(Morris PG et al. 2009; Fojo AT & Adelberg DE, 2010; Pagano A et al. 2012). Paclitaxel and 

Docetaxel are widely used for the treatment of metastatic breast cancer. Nevertheless, 

two complications are associated with taxane use: toxicity (neurotoxicity and 

hematopoietic toxicity) and acquired tumor resistance (Morris PG et al. 2009). 

Epothilones treatment is frequently used in taxane-resistant and taxane-insensitive 

tumors. Epothilones and ixabepilones are natural antibiotics that bind to microtubules in 

the taxane-binding site and are involved in tubulin polymerization, MT bundling and the 

inhibition of depolymerization (Morris PG et al. 2009; Fojo AT & Adelberg DE, 2010; 

Pagano A et al. 2012).  

 

Even if these agents are used to impede tumor progression, the risk of treatment 

resistance and patient relapse along with the acute and long-term side effects of the 

chemotherapy, have created an urgent need to understand how endogenous factors 

modulate MT dynamics in order to target them as tools against cancer. 

 

3.4. Microtubule post-translational modifications 

The MT network is composed by sets of dynamic and stable MTs. Stable MTs can 

incorporate several post-translational modifications mostly in the C-terminal tail of both, 

α- and β-tubulin. As these tails are located on the outside of the microtubule, they are 

therefore well positioned to influence interactions with other proteins (Westermann S & 

Weber K, 2003; Verhey KJ & Gaertig J, 2007). 

MT post-translational modifications are conserved throughout evolution and are thought 

to act (individually or in combination) to regulate specific MT based functions (Hammond 

JW et al. 2008). Some of these modifications are described in Table 2 and in Figure 25 and 
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include acetylation, detyrosination, polyglutamylation, polyglycylation and 

phosphorylation.  

Acetylation occurs in lysine 40 of α-tubulin; it is a very common modification that can be 

found on stable MTs in most cell types (Hammond JW et al. 2008). It has been reported 

that acetylated MTs are more resistant to depolymerization by nocodazole but are not 

protected against cold depolymerization (Piperno G et al. 1987). 

Detyrosination involves the removal of the C-terminal tyrosine of α-tubulin in MTs, 

generating a detyrosinated tubulin (also known as Glu-tubulin) which has been observed 

in long-lived MTs (Westermann S & Weber K, 2003; Verhey KJ & Gaertig J, 2007). Removal 

of the preceding glutamate residue in Glu-microtubules results in Δ2-tubulin. This type of 

tubulin is found in neurons and axonemes, where MTs are also highly polyglutamylated 

(Lafanechère L & Job D, 2000) 

Polyglutamylation and polyglycylation are post-translational modifications in which 

glutamate and glycine side chains of variable length are added to glutamate residues in 

the C-terminal tails of both α and β-tubulin. Glycylation is mostly found in axonemes of 

motile cilia and flagella, whereas, glutamylation is present on MTs in neurons, centrioles, 

mitotic spindle and cilia (Westermann S & Weber K, 2003; Verhey KJ & Gaertig J, 2007). 

Tubulin modifications can have different biological roles. For example, decreased MT 

acetylation increases cell motility (Hubbert C et al. 2002); polyglycylation and 

polyglutamylation are important for axonemal structure, ciliary motility and cytokinesis 

(reviewed in Verhey KJ & Gaertig J, 2007); and deregulation in the 

tyrosination/detyrosination cycle result in spindle orientation defects  (Peris L et al. 2006). 
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Figure 25 

Tubulin post-translational modifications. The C-terminal tails of α and β tubulin can be modified by different enzymes in 

order to polyglycylate, detyrosinate, polyglutamylate or acetylate (From Janke C & Bulinski JC, 2011). 

 

Finally, MT modifications are linked to MT dynamics regulation: they work as a readable 

code for the recruitment of MAPs and motor proteins (reviewed in Janke C & Kneussel M, 

2010; Wloga D & Gaertig J, 2010). 
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Table 2 

Tubulin post-translational modifications (Modified from Westermann S & Weber K, 2003; Verhey KJ & Gaertig J, 2007). 

Modification Description Site Proposed Function Comments 

Acetylation 
 

Addition of acetyl 

group 
Lys40 of α-tubulin 

Regulation of cell 

motility, binding of 

MAPs to microtubules 

Marker for 

stable MTs 

Detyrosination 

 

Removal of tyrosine 
C-terminal tail of α-

tubulin 

Crosstalk to 

intermediate filaments; 

differentiation 

Reversible 

∆2 Tubulin 

 

Removal of 

penultimate 

glutamate from 

detyrosinated 

tubulin 

C-terminal tail of α-

tubulin 

Removing tubulin from 

tyrosination cycle; 

marking MTs for 

polyglycilation 

Marker for 

stable MTs 

Polyglutamylation 

 

Addition of one or 

more glutamates as 

a side chain 

C-terminal tail of α- 

and β-tubulin 

Centriole maturation 

and stability; flagellar 

and cilliary motility; 

regulation of 

interaction with MAPs 

Up to 20 side-

chain residues 

Polyglycylation 

 

Addition of one or 

more glycines as a 

side chain 

C-terminal tail of α- 

and β-tubulin 

Essential in 

Tetrehymena for: 

axonemal organization, 

cilliary motility, 

cytokinesis (severing of 

MTs) 

Up to 30-40 

side-chain 

residues 

Phosphorylation 

 

Addition of 

phosphate 

Ser172/441/444 of 

β-tubulin, unknown 

sites of α-tubulin 

Neuronal 

differentiation? 
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3.5. Microtubule-regulating proteins 

MTs are controlled by factors that regulate different parameters of their dynamics. These 

factors can act directly or indirectly through the action of other proteins (Lyle K et al. 

2009a; Lyle K et al. 2009b).  

All MTs regulators are Microtubule-Associated Proteins (MAPs) able to interact with 

tubulin or MTs in vitro or in vivo. A particular group of MAPs that act predominately at the 

MT growing end are the plus-end tracking proteins (+TIPs) that will be reviewed below in 

chapter 3.6. MT-regulating proteins can be classified in two main groups: proteins that 

stabilize MTs and proteins that destabilize them. 

 

3.5.1. Microtubule-stabilizing proteins 

MTs can be stabilized by different ways: by promoting polymerization, by preventing 

catastrophes, by rescuing depolymerizing MTs, by decreasing shrinking velocity, by 

bundling or by capping MTs. According to these characteristics, a large number of proteins 

are able to stabilized MTs and can be grouped in five categories: (i) classical MAPs, (ii) MT 

assembly promoters, (iii) MT stabilizers with mitosis-specific functions, (iv) MT stabilizers 

through cell cortex interaction, and (v) other MT-stabilizing proteins (Lyle K et al. 2009a; 

Lyle K et al. 2009b). 

The first proteins reported as MT stabilizing factors were the classical MAP proteins. The 

MAP family of proteins has been extensively studied and is mainly composed by MAP1 

(MAP1A and MAP1B), MAP2 and Tau (which are highly abundant in neurons) and MAP4 

(non-neuronal cells) (Desai A & Mitchison TJ, 1997). It has been reported that MAP1A, 

MAP1B, MAP2 and Tau are able to (i) reduce catastrophe frequencies, (ii) increase rescue 

frequencies and therefore they are able to (iii) reduce tubulin turnover rates and (iv) 

increase steady state tubulin. Additionally, these proteins can inhibit protofilament 

peeling and thus depolymerization induction (Drechsel DN et al. 1992; Pryer NK et al. 

1992; Dehmelt L & Halpain S, 2005). Contrariwise, MAP4 is able to increase rescue 

frequencies without changing catastrophe frequency (Ookata K et al. 1995). 

The group of MT assembly promoters is mainly composed by MAPs that accumulate at the 

MT growing end, i.e. +TIPs. End-binding proteins (EBs), chTOG, CLIPs proteins and CRMP-2 

are some examples of assembly promoters and are implicated in the promotion of rescue 

frequencies and in accelerating MT polymerization (Lyle K et al. 2009a). This group of 

proteins will be reviewed in detail in chapters 3.6 and 3.7. 

MT stabilization also includes its capping at both ends, the plus-ends and the minus-ends. 

During mitosis, MTs can be captured at spindle poles by NuMA (Nuclear protein that 
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associates with the Mitotic Apparatus), RHAMM (Receptor for Hyaluronan-Mediated 

Motilty), TACC (Transforming Acidic Coiled-Coil) proteins and TPX2 (Targeting Protein for 

Xklp2). All these proteins play a role organizing the MTs at the polar region of the mitotic 

spindle (Gaglio T et al. 1995; Maxwell CA et al. 2003; Fant X et al. 2004; Barros TP et al. 

2005). In addition, proteins that capture MTs at kinetochores near the chromosomes 

includes the kinesin-7 CENP-E (CENtromere-associated Protein E) and NuSAP (Nucleolar 

Spindle-Associated Protein) (Yao X et al. 2000; Putkey FR et al. 2002; Raemaekers T et al. 

2003; Manning AL & Compton DA, 2008), which have a relevant function in chromosome 

alignment at metaphase. Finally, some other MT-stabilizing proteins with mitosis-specific 

functions are Astrin, which localizes at spindle poles and kinetochores of bioriented 

chromosomes and functions to crosslink and stabilize MTs, and HURP (Hepatoma 

UpRegulated Protein), that is located at kinetochores fibers and contributes to 

chromosome alignment (Manning AL & Compton DA, 2008). 

Representatives of the MT stabilizers through cell cortex interaction are APC 

(adenomatous polyposis coli), CLASPs (CLIP-associating protein) and the spectraplakins 

MACF/ACF7 (Microtubule-Actin Crosslinking Factor) which mediate interactions with 

cortical sites, Golgi and actin, respectively. These proteins and some stabilizers involved in 

MT capture will be described in chapter 3.6. 

The last group of MT stabilizers includes some miscellaneous proteins such as CLAMP 

(CaLponin-homology And Microtubule-associated Protein) (Dougherty GW et al. 2005), 

VHL (von Hippel–Lindau) (Hergovich A et al. 2002; Thoma CR et al. 2010), YB-1 (Chernov 

KG et al. 2008), BPAG1 (Bullous Pemphigoid Antigen-1) (Yang Y et al. 1999), the formins 

Dia1 and Dia2 (Palazzo AF et al. 2001b; Gundersen GG et al. 2004; Wen Y et al. 2004; 

Bartolini F & Gundersen GG, 2010), MAP6/STOP (Guillaud L et al. 1998; Bosc C et al. 2003), 

tektins which crosslink and stabilize axoneme MTs in cilia and flagella (Steffen W & Linck 

RW, 1988; Tanaka H et al. 2004; Amos LA, 2008), MURFs (MUscle-specific RING-Finger 

proteins) that stabilize MTs in striated muscle (Spencer JA et al. 2000), Lis1 and 

Doublecortin that stabilize MTs during neuronal migration (Sapir T et al. 1997; Gleeson JG 

et al. 1999; Coquelle FM et al. 2002; Fourniol F et al. 2013), VAPs (Vesicle-Associated 

membrane Protein) that stabilize presynaptic MTs, the kinesin-5 Eg5, the MAP65 and 

DDA3 that are involved in MT bundling by crosslinking antiparallel MTs  (Manning AL & 

Compton DA, 2008; Lyle K et al. 2009b). 

 

3.5.2. Microtubule-destabilizing proteins 

The difference in the catastrophe frequencies between free tubulin and tubulin in living 

cells suggests the presence of factors involved in the depolymerization of MTs. These 
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cellular factors would modulate MT dynamics in vivo, by promoting MT disassembly and 

increasing tubulin turnover. MT-destabilizing proteins include microtubule-associated 

proteins, microtubule-severing proteins and microtubules plus-ends tracking proteins 

(+TIPs). 

It is now clear that the oncoprotein 18 (Op18)/stathmin is a catastrophe inducer, but its 

mechanism of action is still controversial. Some experimental observations stand for a 

hijacker effect of Op18/stathmin over tubulin dimers: as the oncoprotein is able to 

interact with free tubulin dimers it could reduce the available free tubulin concentration 

and thus induce MT depolymerization (Belmont L et al. 1996; Howell B et al. 1999a). Other 

studies suggest that Op18/stathmin may be a catastrophe promoting factor at the plus 

ends by promoting GTP hydrolysis without having an effect on MT growth rate (Howell B 

et al. 1999a; Howell B et al. 1999b). An interesting study showed that it was possible to 

dissociate the tubulin-sequestering and MT catastrophe-promoting activities in vitro by 

controlling the pH at which experiments were performed. At pH 6.8, Op18/stathmin acts 

through tubulin sequestration, and at pH 7.5 it acts as a catastrophe promoter (Howell B 

et al. 1999b). 

Other MT disassembly promoters are the kinesin-8 KIF18A and the kinesins-13 KIF2A, 

KIF2B and KIF2C (MCAK). These kinesins are able to induce conformational changes in 

both the plus-ends and minus-ends that will trigger catastrophe (reviewed in Mayr MI et 

al. 2007 and Ems-McClung SC & Walczak CE, 2010). MCAK is the most studied MT 

depolymerase and will be described in more detail in chapter 3.6. 

The last proteins that induce MT disassembly are the MT-severing proteins katanin, 

spastin and fidgetin. These three proteins are able to cleave the MT lattice, releasing free 

ends that will depolymerize. MT-severing proteins function to control the number and 

length of MTs, which is necessary for the assembly and dynamics of the mitotic spindle 

(McNally FJ et al. 1996; Zhang D et al. 2007). Indeed, katanin severs MTs near the plus-

ends and helps depolymerization of MTs near the chromosome attachment site for 

continued movement of chromosomes towards spindle pole in late anaphase. In contrast, 

spastin and fidgetin sever MTs near the minus-ends to cause active depolymerization and 

to fasten chromosome movement towards the spindle pole (Ghosh DK et al. 2012). 

 

3.6. Microtubule plus-ends tracking proteins (+TIPs) 

Microtubule plus-end tracking proteins (+TIPs) belong to a class of MAPs that accumulate 

at the growing end of the MTs (Schuyler SC & Pellman D, 2001). When fused with a 

fluorescent tag, +TIPs appear as comets at the plus-ends which move throughout the cell 
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as the MTs grow to then disappear when MTs undergo catastrophe (Howard J & Hyman 

AA, 2003).  

Since 1990 when CLIP170, the first MT plus-end tracking protein, was reported (Rickard JE 

& Kreis TE, 1990) a large number of proteins have been identified as +TIPs including 

motor, non-motor, MT polymerases, depolymerases, regulatory and adaptor proteins. 

Although these proteins are functionally diverse and structurally unrelated, they are often 

highly conserved in eukaryotes and associate preferentially with the growing and not the 

shrinking MT end (Mimori-Kiyosue Y et al. 2000; Schuyler SC & Pellman D, 2001; 

Akhmanova A & Steinmetz MO, 2008). 

+TIPs are able to participate in MT dynamics regulation and in the coordination of cell 

architecture through their interaction with different proteins and/or cell structures. 

 

3.6.1. Structural +TIPs classification 

+TIPs are a very heterogeneous group of proteins that differ in structure, function, size 

and plus-end tracking mechanism. Structural classification will be the subject of this part 

of the chapter and includes: End-Binding family of proteins, Cytoskeleton-associated 

proteins Gly-rich (CAP-Gly) proteins, proteins that contain basic and Ser-rich sequence 

(SxIP) and MT motor proteins (Figure 26) (Akhmanova A & Steinmetz MO, 2008). 

 

Figure 26 

Structural classification of plus-end tracking proteins. Four groups of +TIPs have been described according to the 

structural elements that are involved in tracking the MT plus-end (Modified from Akhmanova A & Steinmetz MO, 2008). 
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End-binding (EB) family proteins are small globular dimers that contain highly conserved 

N- and C-terminal domains. The N-terminal domain is responsible for the binding to MTs 

(Hayashi I & Ikura M, 2003) while in the C-terminal region a coiled-coil domain allows the 

dimerization of EB monomers (Honnappa S et al. 2005). EBs are considered as the core of 

+TIP network, as they are able to interact with almost all CAP-Gly and serine-rich proteins. 

The specific details of EB proteins and their interactions will be discussed below (chapter 

3.7). 

 

The cytoskeleton-associated proteins Gly-rich (CAP-Gly) domain is a specialized module of 

approximately 80 residues that is highly conserved in eukaryotes (Riehemann K & Sorg C, 

1993). This domain can be found in single or multiple copies and is involved in protein-

protein interactions, in particular with α-tubulin monomers, dimers, MTs and EB proteins 

by the recognition of a C-terminal EEY sequence motif (Steinmetz MO & Akhmanova A, 

2008). 

CAP-Gly proteins include some +TIPs such as the cytoplasmic linker proteins (CLIPs) and 

the large subunit of the dynactin complex p150
glued

. In these proteins the CAP-Gly domains 

are located in the N-terminal part and will interact with the C-terminal EEY motif on MTs 

and EB proteins (Honnappa S et al. 2006; Ligon LA et al. 2006; Mishima M et al. 2007). 

CLIP170 was the first protein where the interaction between a CAP-Gly domain and MTs 

was shown (Pierre P et al. 1992) and also the first protein for which MT plus-end tracking 

behavior was described (Perez F et al. 1999). CLIP proteins contain two similar CAP-Gly 

domains surrounded by serine and basic residues rich regions in the N-terminal part, 

which contribute to MT interaction (Hoogenraad CC et al. 2000). CLIP170 is involved in MT 

dynamics in interphase and during mitosis (Arnal I et al. 2004; Tanenbaum ME et al. 2006) 

and in the recruitment of the MT minus-end-directed motor dynein to the MT growing 

end (Lomakin AJ et al. 2009). 

 

The largest group of +TIPs are enriched in basic and serine residues. These regions, which 

are predicted to be flexible, often mediate interactions with MTs and EB proteins 

(Steinmetz MO & Akhmanova A, 2008; Kumar P & Wittmann T, 2012). Inside this region 

there is a small 4-residue motif SxIP (Ser-x-Ile-Pro) which is implicated in the targeting of a 

large number of +TIPs to the growing MT end in an EB1-dependent manner. This 
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conserved motif is now considered as a microtubule tip localization signal (MtLS) 

(Honnappa S et al. 2009). 

Representative examples of this group of +TIPs are the adenomatous polyposis coli (APC), 

the mitotic centromere-associated kinesin (MCAK), TIP150, the MT-actin crosslinking 

factor (MACF or ACF7), the stromal interaction molecule 1 (STIM1), the CLIP-associating 

proteins (CLASPs), p140Cap, DDA3, RhoGEF2, Navigators, melanophilin and CDK5RAP2. I 

will review here a few SxIP-containing +TIPs that will be of relevance for this work. 

APC is a highly conserved multidomain tumor suppressor implicated in the regulation of 

the Wnt signaling pathway (Mimori-Kiyosue Y & Tsukita S, 2001). Considering the different 

subcellular localizations of APC (Bienz M, 2002), it has been linked to multiple processes as 

cell migration, cell adhesion, chromosome segregation, spindle assembly, neuronal 

differentiation and apoptosis (Hanson CA & Miller JR, 2005; Aoki K & Taketo MM, 2007). 

Biochemical studies have mapped the EB1-APC interaction to a basic, serine-rich sequence 

of 39 residues in the APC C-terminal domain, termed APCp1 (Honnappa S et al. 2005) 

which contains one SxIP motif that allows tip tracking in living cells through interaction 

with EB1 (Berrueta L et al. 1998; Morrison EE et al. 1998; Mimori-Kiyosue Y et al. 2000). 

MCAK was initially identified as a member of the KinI subfamily of kinesins and was 

classified as a MT depolymerase that induces conformational changes at the MT plus-end 

(Desai A et al. 1999). Later on, the kinesin nomenclature was standardized and MCAK 

(KIF2C) was grouped as a member of the kinesin 13 family along with mammalian KIF2A 

and KIF2B (Lawrence CJ et al. 2004; Moores CA et al. 2006). This family has a particular 

characteristic because rather than walk along MTs (as other kinesins), they use ATP 

hydrolysis to depolymerize MTs from both ends (Desai A et al. 1999; Hunter AW et al. 

2003; Helenius J et al. 2006). MCAK is a homodimeric molecule with a motor domain 

located in the central part of the protein, which is involved in MT depolymerization in vitro 

and in vivo (Maney T et al. 2001; Newton CN et al. 2004; Ogawa T et al. 2004; Moores CA 

et al. 2006). In spite of being a MT depolymerase, MCAK is able to track MT plus-ends in 

living cells (Moore AT et al. 2005) by one-dimensional diffusion (Helenius J et al. 2006) or 

by its association with EB proteins via its basic/serine rich region and the SxIP motif 

located in the N-terminus of the protein (Lee T et al. 2008). 

TIP150 was identified in silico as a +TIP candidate with an EB1-binding domain rich in 

serines, prolines and basic residues. Further experiments showed that it binds EB1 and 

tracks growing MT plus-end via an SxIP motif located in the C-terminal part of the protein. 

TIP150 also binds to MCAK and knockdown experiments suggested that TIP150 could play 

a role in targeting MCAK to the plus-end (Jiang K et al. 2009). Recently, a role has been 
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attributed to TIP150-EB1 interaction in the dynamic regulation of kinetochore MTs and 

chromosome alignment during metaphase (Ward T et al. 2013). 

 

The last group of +TIPs comprises the motor proteins kinesins and dyneins. In eukaryotes, 

these motor proteins are essential partners of MTs during interphase and mitosis, and can 

accumulate at the MT plus-end through the association with other +TIPs (Akhmanova A & 

Steinmetz MO, 2008). 

Kinesins were first described in neurons as plus-end directed motors needed for axonal 

transport (Vale RD et al. 1985). Later studies involved kinesins in the organization of the 

MT cytoskeleton in interphase, directional organelle movement and cell division (Wade 

RH, 2009). 

Cytoplasmic dynein is a large multisubunit complex whose activity in vivo requires the 

dynactin complex (Wade RH, 2009). Dynein has relevant roles in minus-end transport of 

cargoes along the MTs, formation and orientation of the mitotic spindle and MT array, and 

in nuclear positioning (reviewed in Wu X et al. 2006). In mammalian cells, dynein has been 

observed at the MT plus-ends showing comet-like structures that co-localize with EB1 

(Vaughan KT et al. 1999; Kobayashi T & Murayama T, 2009). It has also been proposed 

that dynein is targeted to MT growing ends by dynactin or by LIS1, which both require 

CLIP170 for efficient plus-end accumulation (Akhmanova A & Steinmetz MO, 2008). 

 

3.6.2. Plus-end tracking mechanisms 

+TIPs can target MT growing ends in two ways, either directly by association with tubulin 

or MTs, or indirectly, through other factors (Figure 27). It has been described that some 

+TIPs (e.g. CLIP170, APC) tip track the MT plus-end using different mechanisms (Folker ES 

et al. 2005; Kita K et al. 2006). 

Different plus-end tracking mechanisms can be classified in four groups: end recognition, 

copolymerization, directed transport and hitchhiking (Figure 27). Within these groups a 

sub-classification can be done. Indeed, the end recognition mechanism can be divided 

according to the binding kinetics in slow (treadmilling) and fast exchange, and the directed 

transport can be motor-based or by one-dimensional diffusion. 
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Figure 27 

Mechanisms of MT plus-end tracking. +TIPs can (A) recognize a specific structure at the growing end of the MT (right 

diagram) and get released after tubule closure (left diagram) or (B) can bind the plus-ends by co-polymerization with 

tubulin dimers, by hitchhiking, by lateral diffusion or by kinesin-based transport (Modified from Akhmanova A & 

Steinmetz MO, 2008). 

 

The end recognition model stands for the identification of a specific characteristic in the 

structure of the growing end that is different from the lattice. In accordance, +TIPs could 

recognize the GTP cap, the tubulin sheets, the individual protofilaments or some hidden 

sites at the inner side of MTs (Figure 27A) (Akhmanova A & Steinmetz MO, 2008). Once 

the +TIPs bind the MT plus-ends, its turnover can be slow (treadmilling), meaning that the 

+TIP binds the MT plus-end and only dissociates when the MT lattice becomes mature 

(Carvalho P et al. 2003). Alternatively, +TIPs can be highly dynamic and bind/unbind 

repeatedly the same MT close to its tip, which allows several binding events on a single 

binding site. Some examples are EB1, EB3 and CLIP170 (Bieling P et al. 2008; Dragestein 

KA et al. 2008). 

Besides interacting with MT growing ends, some +TIPs can bind tubulin dimers and 

oligomers and thus, be copolymerized with tubulin. This is the case for mammalian CLIPs, 

which can co-polymerize with tubulin and are then released from the mature lattice 

(Figure 27B) (Diamantopoulos GS et al. 1999; Folker ES et al. 2005). 
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+TIPs can also move along the MT lattice until they reach the growing end in two ways, 

either by associating with motor proteins or by one-dimensional diffusion (Figure 27B). In 

the motor-based transport, growing end movement is driven by a plus-end directed 

kinesin, in an ATP-dependent manner; nevertheless, it should be noted that reaching the 

growing end does not imply an accumulation mechanism per se. That is why +TIP 

accumulation requires that kinesin moves faster that MT polymerization. An example of 

motor-based transport is APC that can be transported to the MT growing end by kinesin 2 

(Jimbo T et al. 2002).  

The MT lattice diffusion, unlike motor transport, implies +TIP targeting to the plus-end 

without energy consumption (Cooper JR & Wordeman L, 2009). This type of movement 

has been reported for some kinesins including Eg5 (Kwok BH et al. 2006) and CENP-E (Kim 

Y et al. 2008) and some MAPs as MCAK (Helenius J et al. 2006) and Tau (Konzack S et al. 

2007). 

Most of the +TIPs accumulate at the plus-end by hitchhiking on EB proteins through CAP-

Gly domains or SxIP motifs (Figure 27B). This indicates that hitchhikers do not interact (or 

less efficiently) with tubulin or MTs and are mostly transported to the growing end. Some 

examples of these hitchhikers +TIPs are MCAK, APC, MACF/ACF7, CLASPs, STIM1 and 

CLIP170 proteins (Carvalho P et al. 2003). Of note, CLIP170 and MCAK can also track MT 

plus-ends autonomously as mentioned before. 

 

3.6.3. +TIPs functions 

Being located at the growing end of the MTs allows +TIPs to control microtubule 

dynamics, the anchoring of MTs to other cellular structures and the transport of 

molecules (Akhmanova A & Steinmetz MO, 2008). 

Even if they can interact and co-localize at the plus-end, +TIPs effects on MT dynamics can 

be different and sometimes opposed. +TIPs can induce MT growth, MT shrinkage or MT 

stabilization. 

Binding of +TIPs to MT plus-ends can cause MT stabilization by the reduction of 

catastrophe frequencies and the promotion of rescues and pauses states. CLIP170 is 

involved in MT stability as it has been described as a rescue factor in mammalian cells 

(Komarova YA et al. 2002a). Similarly, proteins with basic and serine rich regions, such as 

CLASPs, MACF/ACF7 and APC are MT stabilizing factors which act by preventing MT 

catastrophes and promoting rescues and pauses (Mimori-Kiyosue Y et al. 2005; Kita K et 

al. 2006; Akhmanova A & Steinmetz MO, 2008; Al-Bassam J et al. 2010) 
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The kinesin 13 MCAK is considered a potent MT depolymerizer able to induce 

conformational changes in order to bend and peel off tubulin individual protofilaments 

(reviewed in Hunter AW et al. 2003; Moores CA & Milligan RA, 2006 and Ems-McClung SC 

& Walczak CE, 2010). 

EB proteins are able to make MTs more dynamic and promote MT polymerization by 

increasing MT rescue frequencies and decreasing depolymerization and pausing in vivo 

(Nakamura M et al. 2001; Komarova YA et al. 2009). EB1 implication in MT dynamics will 

be reviewed in the next chapter. SLAIN2 can also promote MT polymerization during 

interphase through the interaction with other +TIPs (van der Vaart B et al. 2011). 

Besides regulating MT dynamics, +TIPs have been reported to be involved in the 

attachment of MTs to other cellular structures like the kinetochores or the plasma 

membrane (Gundersen GG et al. 2004; Lansbergen G & Akhmanova A, 2006). This often 

requires the combined effect of several +TIPs. For example, APC together with IQGAP1 

and mDia1 attach MT growing ends to the cell cortex (Watanabe T et al. 2004; Wen Y et 

al. 2004) and CLIP170 also seems to target cortical cell sites in a complex with IQGAP1 

(Fukata M et al. 2002). 

+TIPs can also facilitate MT-intracellular membranes binding. For example STIM1 

participates in the MT growth-dependent extension and remodeling of endoplasmic 

reticulum tubes through the interaction with EB1 (Grigoriev I et al. 2008). Dynamic MT 

plus-ends are also implicated in remodeling of focal adhesions and in the formation of cell 

contacts and gap junctions (Akhmanova A & Steinmetz MO, 2008). 

During mitosis, one of the most important functions of the MT growing ends is to capture 

chromosomes and ensure their correct segregation. Indeed, most of the +TIPs are able to 

localize to mitotic kinetochores where they can mediate the interface between MTs and 

chromosomes. From this position, +TIPs can participate in mitotic spindle assembly, 

spindle orientation and positioning, and MT-kinetochore attachment (Maiato H et al. 

2004a; Maiato H et al. 2004b). For example, CLASPs are essential for the assembly and 

maintenance of the mitotic spindle (Maiato H et al. 2002), whereas MCAK, which localizes 

at the centromeres, is necessary for correct chromosome position at the metaphase plate 

(Walczak CE et al. 2002) and serves as a correction mechanism through the 

depolymerization of MTs when they are incorrectly attached (Ohi R et al. 2003). 

Many +TIPs are present at the spindle pole and the centrosomes (EBs, MCAK, APC, 

CLASPs, dynein) where they can have a role in MT anchoring and nucleation or in the 

stabilization of MT minus-ends (Yan X et al. 2006; Fong KW et al. 2008). +TIPs can also 

crosslink MT and actin cytoskeletons, interact with actin motors and modulate actin 
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dynamics (Kodama A et al. 2003; Wu XS et al. 2005; Moseley JB et al. 2007; Tsvetkov AS et 

al. 2007). 

Finally, +TIPs are involved in cargo transport from the periphery to the minus-end through 

dyneins (Vaughan PS et al. 2002; Lomakin AJ et al. 2009) and in the plus-end transport 

along the MT lattice to organize the array as for the mitotic spindle formation (Goshima G 

et al. 2005). 

 

3.7. End-binding protein 1 

EB1 is the leading member of the family of End Binding proteins. This family also 

comprises EB2 (RP1) and EB3 (EBF3). EB proteins are evolutionary conserved and in 

mammals are encoded by the MAPRE gene family (Su LK & Qi Y, 2001). EB1 and EB3 are 

ubiquitously expressed, but EB3 is especially abundant in the central nervous system 

(Nakagawa H et al. 2000), whereas expression levels of EB2 differ in various cell lines (Su 

LK & Qi Y, 2001). 

EB proteins contain two highly conserved domains connected by a linker sequence (Figure 

28). The N-terminus of the EBs consist of a calponin homology (CH) domain, which is 

necessary and sufficient for binding to MTs and recognizing their growing ends (Hayashi I 

& Ikura M, 2003). The C-terminal domain (EB1c), contains a coiled-coil motif responsible 

for protein dimerization (Su LK & Qi Y, 2001). This motif partially overlaps with the end 

binding homology (EBH) domain, which is involved in the interaction with EB binding 

partners (Akhmanova A & Steinmetz MO, 2008). An acidic tail at the C-terminus contains a 

highly conserved EEY sequence motif, similar to those found in α-tubulin and CLIP170 

(Komarova Y et al. 2005; Honnappa S et al. 2006), that is implicated in the interaction with 

other proteins (Honnappa S et al. 2005; Hayashi I et al. 2005). 



 

 
62 

 

Figure 28 

EB1 protein structure. (A) Schematic representation of EB1. Calponin homology (CH), coiled coil and EB homology (EBH) 

domains are represented. Amino acids are shown on the bottom (Adapted from Buey RM et al. 2011). (B) Structural 

organization of homodimeric end-binding proteins. The structures of the CH and EBH domains are shown. The EEY 

sequence motifs are also shown. Dashed, curved lines show the linker segments (From Akhmanova A & Steinmetz MO, 

2008). 

 

EB1 and EB3 are able to interact with a large number of proteins (Bu W & Su LK, 2003). 

EB2 is also able to interact with some EB1/EB3 partners (Bu W & Su LK, 2003) although 

with lower affinity, mainly due to the presence of fewer acidic residues contained in its C-

terminal tail. The N-terminal region of EB2 is also different from EB1/EB3 proteins and 

contains an extension of approximately 40 amino acids. The residue difference is critical 

for MT binding and reduces EB2 accumulation at the MT plus-ends (Komarova YA et al. 

2009). 

EB1 was initially discovered as an APC-interacting partner by yeast two-hybrid screen (Su 

LK et al. 1995). Later studies published in 1998 showed that EB1 was associated with the 

MTs and often concentrated at their tips (Morrison EE et al. 1998). But it was in 2000 that 

Mimori-Kiyosue Y and collaborators demonstrated, using time-lapse videomicroscopy of 

EB1-GFP construct, that EB1 was localized at the end of growing MTs independently of 

APC. 
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Later after, the “EB1 boom” started and several studies about its structure, its relation 

with MTs and other +TIPs filled the journals pages. After Mimori-Kiyosue Y et al. work in 

2000, the pursuit of how EB1 was able to bind the growing ends of MTs began. Bieling P 

and coworkers (2007) showed, using an in vitro model, that EB1 could track autonomously 

the tip of the MT by fast exchange, meaning that EB1 associates and disassociates from 

the plus-end in a dynamic way. 

Besides binding APC via its C-terminal portion, EB1 also binds to multiple partners 

(through the same domain) and works as a scaffold protein that brings different proteins 

to the MT growing end (Jiang K et al. 2012). EB1 is thus considered as the “key stone” or 

core component of +TIP network. Two major binding regions have been described: the 

EBH domain that is recognized by the SxIP-containing proteins (Honnappa S et al. 2009) 

and the EEY motif which in turn is recognized by the CAP-Gly proteins (Bieling P et al. 

2008). 

In 2012, the analysis of a large number of SxIP binding partners of EB1 by Jiang K and 

coworkers led to the outstanding discovery that not all the proteins that interact with EB1 

are tip trackers. Using GST pull-down and mass spectrometry they found that some 

proteins were membrane-associated as AMER2 (plasma membrane) and Syntabulin 

(mitochondria membrane); some were actin-binding proteins (GAS2L1); small GTPases 

(RasL11B); or kinases as MARK1, TTBK1 and TTBK2. Surprisingly, they also found two 

proteins (namely, tastin and DDA3) that in addition to tracking the growing end, were able 

to track shrinking MTs. 

EB1 localizes at the growing ends of MTs in interphase and during mitosis (Figure 29) and 

from this strategic position it has a role in controlling MT dynamics in vitro and in vivo, by 

promoting MT polymerization (Tirnauer JS & Bierer BE, 2000; Vitre B et al. 2008; 

Komarova Y et al. 2009). However, its precise influence on dynamic instability parameters 

(in vitro and in vivo) is still controversial. The first evidence for a role of EB1 in controlling 

MT dynamics, in particular by promoting MT growth, was done studying EB1 yeast 

homologues (Mal3 and Bim1) (Tirnauer JS & Bierer BE, 2000). These results were 

confirmed in Drosophila cells. EB1 was shown to stimulate catastrophes and rescues, 

making MTs more dynamic, while it decreased the time spent pausing (Rogers SL et al. 

2002). Conversely, in Xenopus extracts, it was demonstrated that EB1 stimulated MT 

polymerization, MT rescues and inhibited catastrophes, suggesting a stabilizer role for EB1 

(Tirnauer JS et al. 2002b). Later in 2006, using mouse fibroblasts Kita K and coworkers 

showed that depletion of EB1 promoted MT pausing and decreased the time MT spend in 

growth (Kita K et al. 2006). Finally, using CHO-K1 cells it was shown that EB1 and EB3 
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promote persistent MT growth by suppressing catastrophes, with little effect on MT 

growth rate or rescues (Komarova Y et al. 2009). 

 

Figure 29 

Localization of EB1 (green) in an interphase cell (left panel) and in a mitotic cell (right panel). Red stain corresponds to β-

tubulin (From Akhmanova A & Steinmetz MO, 2008). 

 

EB1 also accumulates at MT plus-ends at the interface between kinetochores and growing 

MTs, suggesting that it could have a role in the dynamic behavior during mitosis (Tirnauer 

JS et al. 2002a; Mimori-Kiyosue Y & Tsukita S, 2003). In addition, it was shown that EB1 

may partially depends on APC interaction to regulate spindle dynamics and chromosome 

alignment (Green RA et al. 2005), and may also be implicated in spindle positioning by the 

stabilization of astral MTs (Toyoshima F & Nishida E, 2007). 

The accumulation and tip tracking characteristics of EB1 at the MT growing end can be 

considered as a useful tool for the measurement of dynamic instability parameters, as 

have been described in different studies (Piehl M & Cassimeris L, 2003; Salaycik KJ et al. 

2005; Long JB et al. 2013; Lowery LA et al. 2013).  

EB1 can also be found localized at other cellular structures such as the centrosomes and 

the cilia, where it may play a role in MT anchorage (Berrueta L et al. 1998; Louie RK et al. 

2004) and primary cilia assembly (Schroder JM et al. 2007). In addition, EB1 together with 

its partners can link MT plus-ends with other structures such as actin (through MACF/ACF7 

(Kodama A et al. 2003)), the cell cortex (through CLASPs (Mimori-Kiyosue Y et al. 2005)), 

melanosomes (through melanophilin and myosin Va (Wu XS et al. 2005)) and the 

endoplasmic reticulum (through STIM1 (Grigoriev I et al. 2008)). 

Overexpression of EB1 has been associated with hepatocellular (Fujii K et al. 2005; Orimo 

T et al. 2008), gastric (Nishigaki R et al. 2005), oesophageal (Wang Y et al. 2005), breast 
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(Dong X et al. 2010) and in early colorectal (Stypula-Cyrus Y et al. 2014) carcinomas. It 

would be interesting to investigate if the oncogenic functions of EB1 are related with its 

effects on MT dynamics and/or with the interaction with other +TIPs. Overexpression of 

EB1 could be implicated in the deregulation of MT-mediated cell activities such as cell 

division and cell migration, which lead to cancer progression. 

 

3.8. Microtubules in cell migration 

The cell cytoskeleton plays an essential role in cell migration. The participation of the actin 

network has been studied extensively (reviewed in Carlier MF & Pantaloni D, 2007), but is 

not the goal of this chapter. This last chapter will rather summarize current knowledge on 

the role of MTs in cell migration. 

According to the cell type, MTs can be dispensable or not for cell migration. For example, 

in small cells as fish keratocytes, hematopoietic cells, T lymphocytes and neutrophils, 

migration is possible even in the absence of MTs. In contrast, in fibroblasts, epithelial cells 

and neurons a disrupted MT network implicates problems in cell adhesion turnover, actin 

dynamics, membrane trafficking and thus directed cell migration (Kaverina I & Straube A, 

2011 and Etienne-Manneville S, 2013). 

MTs act as spatiotemporal coordinators of cell migration due to their involvement in the 

turnover and distribution of adhesion complexes and the localization and activation of 

Rho GTPases. And the most important function of MTs during migration is related to the 

establishment and maintenance of cell polarity to promote a persistent and directed cell 

migration (Gundersen GG & Bulinski JC, 1988; Etienne-Manneville S, 2013). 

Cell polarity accounts for the asymmetrical distribution of signals, molecules and 

arrangement of actin and MT cytoskeletons, in order to distinguish a front (named leading 

edge) that is characterized by the local activation of Cdc42 and Rac GTPases (Ridley AJ et 

al. 2003), and by the presence of a lamellipodial protrusion which indicates the migration 

direction. There is also a rear (known as trailing edge) that is located in the opposite 

direction of the lamellipodium and is characterized by the local activation of RhoA GTPase 

(Figure 30) (reviewed in Watanabe T et al. 2005; Kaverina I & Straube A, 2011 and Etienne-

Manneville S, 2013). 
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Figure 30 

Cell polarity is intrinsic to a migrating cell. Asymmetric distribution of cellular organelles allows the distinction of a 

leading edge (right side) and a trailing edge (left side). N: nucleus, MTOC: centrosome (From Watanabe T et al. 2005). 

 

A key feature of cell polarity is the differential distribution of MT network and MT 

dynamics between the leading and the trailing edge. Even if the lamellipodium is mainly 

composed by actin filaments, some MTs (around a dozen), known as pioneer MTs, can 

enter into the protrusion to contribute to pushing forces, cellular trafficking and signaling 

(Figure 31) (Watanabe T et al. 2005; Etienne-Manneville S, 2013). 

Several studies have reported that different activities occur at the front and at the rear of 

a migrating cell. At the leading edge, MTs are captured and stabilized at cortical and 

adhesion sites (Fukata M et al. 2002; Krylyshkina O et al. 2003; Watanabe T et al. 2004; 

Mimori-Kiyosue Y et al. 2005; Manneville JB et al. 2010). They are post-translationally 

modified (acetylation) enabling the binding of motors that will crosslink the different 

cytoskeleton filaments (Figure 31A) and will transport factors associated with cell 

protrusion (membrane vesicles, membrane-associated signaling molecules such as Rac 

and Cdc42) (Figure 31B) (Etienne-Manneville S, 2013). Of note, +TIP complex formation at 

the cell cortex, such as EB1-APC, EB1-CLASP, EB1-MACF/ACF7, CLIP170-IQGAP, APC-IQGAP 

(Fukata M et al. 2002; Kodama A et al. 2003; Watanabe T et al. 2004; Wen Y et al. 2004; 

Drabek K et al. 2006) and inactivation of Op18/Stathmin at the leading edge (Niethammer 

P et al. 2004; Wittmann T et al. 2004) will lead to MT stabilization. 
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Figure 31 

MT in cell protrusions. MT can bind actin and intermediate filaments through different crosslinkers (A). MTs functions in 

cellular trafficking (B) and signaling (C) are shown (From Etienne-Manneville S, 2013). 

 

MTs also possess signaling properties that will promote cell migration through the 

activation/deactivation of Rho GTPases (Figure 31C) that in turn will impact on actin 

polymerization (reviewed in Watanabe T et al. 2005; Kaverina I & Straube A, 2011 and 

Etienne-Manneville S, 2013). One of the first studies to demonstrate the effect of MTs on 

actin polymerization at the leading edge was performed by Waterman-Storer CM et al. 

(1999). In their study, they showed that MT polymerization activates Rac1 to promote 

protrusion formation in nocodazole washout experiments. Later studies showed that MT 

growth towards the leading edge also activates Asef, a Rac GEF, which interacts with APC 

at the tips of the protrusions to induce membrane ruffles (Kawasaki Y et al. 2000; 
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Kawasaki Y et al. 2003). Some other Rac/Cdc42 effectors (TIAM1, TIAM2/STEF, IQGAP1, 

Trio and GEF H1 ) can be found at the leading edge and interact with either MTs, MAPs or 

+TIPs to induce actin polymerization (reviewed in Watanabe T et al. 2005; Kaverina I & 

Straube A, 2011 and Etienne-Manneville S, 2013). 

On the other hand, at the trailing edge MT are more dynamics, Op18/Stathmin is still 

activated (Niethammer P et al. 2004) which means more catastrophe events (Salaycik KJ et 

al. 2005). Additionally, MT depolymerization induces RhoA activation (Ren XD et al. 1999) 

which is implicated in the maturation and dissociation of adhesion complexes at the 

trailing edge together with the assembly of contractile actin and myosin in the rear part of 

the cell (Watanabe T et al. 2005). 

Various MAPs have been involved in the regulation of cell polarity through their effects on 

MT dynamics, mostly at the leading edge. For example, down-regulation of EB1 results in 

decreased lamellipodium formation, cell velocity and cell directionality in melanoma cells 

(Schober JM et al. 2009). EB1 is also implicated in MT stabilization at the front edge 

together with APC and downstream RhoA and mDia (Wen Y et al. 2004). Additionally, 

CLASPs, CLIP170 and MACF (ACF7) are also able to stabilize MTs and therefore increase 

directional cell migration (Akhmanova A et al. 2001; Kodama A et al. 2003; Drabek K et al. 

2006; Nakano A et al. 2010). 

Besides MT organization, some other characteristics of cell polarity during migration 

include nucleus, centrosome (MTOC) and Golgi repositioning (Figure 32). The position of 

the centrosome is controlled by signaling pathways downstream Cdc42 and by the action 

of dynein and dynactin that will act in MT pulling forces from the plus-end to the minus-

end (Palazzo AF et al. 2001a; Etienne-Manneville S & Hall A, 2001; Tzima E et al. 2003). 

Nuclear positioning depends on cell type and physiological context (Dupin I & Etienne-

Manneville S, 2011) but is mostly driven by actin retrograde flow (Gomes ER et al. 2005). 

Nucleus is pushed toward the rear of the cell, behind the centrosome, and in that way the 

nucleus-centrosome axis is defined parallel to the migration direction. 

Finally, the MTOC positioning affects the localization of the Golgi complex. These two 

cellular organelles are maintained in close proximity by dynein (Sütterlin C & Colanzi A, 

2010) and are involved in MT nucleation. 
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Figure 32 

Cell polarization during migration (From Etienne-Manneville S, 2013). 
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4. ATIP3 a novel therapeutic target against breast cancer 

 

In this last chapter of the manuscript I will present MTUS1, a candidate tumor suppressor 

gene located at chromosome position 8p22, a region frequently lost in a large number of 

human cancers. I will describe MTUS1 gene’s major product ATIP3, its main characteristics 

and functions.  

 

4.1. MTUS1, a candidate tumor suppressor gene 

Before being designated as a Microtubule Tumor Suppressor gene 1 (MTUS1), this gene 

was named GK1 (Kinjo T et al. 2000), MTSG1 (Seibold S et al. 2003), ATIP (Nouet S et al. 

2004) and finally MTUS1 (for mitochondrial tumor suppressor 1) (Di Benedetto M et al. 

2006a). 

GK1 was described for the first time by Kinjo T et al. (2000). Through large-scale 

sequencing of genomic DNA from human chromosome 8p22-p21.3, this group isolated a 

new gene that encoded a 1270 amino-acid protein. In silico analysis revealed that the 

gene product contained putative leucine-zipper domains and a mitochondrial targeting 

motif. Immunofluorescence stain confirmed the co-localization of GK1 with the 

mitochondria. 

Then in 2003, with the aim to identify new molecular regulators of carcinogenesis Seibold 

S et al. reported a new potential tumor suppressor gene located in a position frequently 

lost in several types of human cancers: 8p21.3-22. In their study, immunofluorescence and 

western blot analysis demonstrated a mitochondrial localization of the mature protein, 

and BrdU proliferation assays showed a reduction in the compound incorporation when 

the gene product was expressed. According to the functional data and intracellular 

localization, they named this gene MTSG1: mitochondrial tumor suppressor gene 1. 

One year later, Nouet S et al. (2004) while investigating for new interacting partners of the 

angiotensin II AT2 receptor, using yeast two-hybrid assay, found a new protein that they 

called ATIP (for Angiotensin II AT2 receptor-Interacting Protein). They also found that this 

ATIP protein was a gene product out of four (ATIP1, ATIP2, ATIP3 and ATIP4), generated by 

alternative splicing of the ATIP gene. Interestingly, they showed that all these ATIP 

proteins shared the C-terminal sequence where the AT2 binding domain was present. 

Later studies from the same group (and then confirmed by Yu J et al. 2009) reported the 

exon/intron organization of human MTUS1 (mitochondrial tumor suppressor gene 1) 

(Figure 33) (Di Benedetto M et al. 2006a): MTUS1 comprises 17 coding exons distributed 
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over 112 kb, with three different gene promoters (Yu J et al. 2009), three 5’ UTR 

(untranslated regions) and ATG initiating codons located at exons 8, 1 and 5, that generate 

the three major ATIP transcripts: ATIP1, ATIP3 and ATIP4, respectively. They also 

described that exons 9 to 17 are common to all ATIP members and encode a large and 

highly conserved coiled-coil domain involved in the dimerization of ATIP proteins that is 

now considered as the “ATIP-signature”. 

 

Figure 33 

Structural organization of MTUS1 and MTUS1 gene products (ATIPs) (From Rodrigues-Ferreira S & Nahmias C, 2010). 

 

A number of studies have shown that MTUS1 expression levels are reduced in breast 

(Rodrigues-Ferreira S et al. 2009), pancreas (Seibold S et al. 2003), ovary (Pils D et al. 

2005), colon (Lee S et al. 2006; Zuern C et al. 2010), head-and-neck (Ye H et al. 2007; Ding 

X et al. 2012), bladder (Xiao J et al. 2012; Rogler A et al. 2014) and gastric carcinomas (Li X 

et al. 2014). At the genomic level, a mutational analysis of MTUS1 gene in a series of 51 

primary hepatocellular carcinomas (HCC) and 51 HCC cell lines led to the identification of 

five nucleotide sequence variations (in the exonic sequence) that were absent in non-

tumoral control DNA (Di Benedetto M et al. 2006b). Some of these variations (four) were 

also found (along with nine single-nucleotide sequence variants) in an analysis performed 

in 41 head and neck squamous cell carcinoma cell lines (Ye H et al. 2007). Additionally, in a 

case-control study Frank B et al (2007) showed that deletion of the entire exon 4 of the 

MTUS1 gene was associated with a decreased risk for familial breast cancer. All these data 

together support the notion of MTUS1 as a tumor suppressor gene. 

Genomic sequence comparison reveals the presence of a human paralog MTUS2 

(chromosome position 13q12) which presents similar genomic organization as MTUS1. 

This gene can generate two proteins by alternative splicing (CAZIPa or TIP150 (Jiang K et 
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al. 2009) and CAZIPb) which are structurally similar to ATIP3 and ATIP1, respectively. 

Additionally, CAZIP proteins share their C-terminal portion (coiled-coil domains) and differ 

in the N-terminal part, similar to ATIP proteins (Du Puy L et al. 2009). Amino acid sequence 

comparison of the C-terminal region revealed a 35% identity between coiled-coil domains 

of CAZIPs and ATIPs (Rodrigues-Ferreira S & Nahmias C, 2010). Indeed, this region is highly 

conserved among mammals (86 to 96% amino acid sequence identity between human, 

canine, bovine, murine and rat sequences) (Di Benedetto M et al. 2006a). 

The Xenopus ortholog of MTUS1 encodes for a protein structurally similar to ATIPs 

proteins. ICIS (Inner Centromere kin-I Stimulator) contains two coiled-coil domains, one of 

them located at the C-terminal portion of the protein, which presents 60% identity with 

ATIPs C-terminus (Di Benedetto M et al. 2006a). ICIS has been identified as an inner 

centromere protein which acts as a scaffold protein to bring two depolymerizing kinesins 

(MCAK and KIF2A) at the kinetochore during mitosis in order to ensure proper 

chromosome segregation (Ohi R et al. 2003; Knowlton AL et al. 2009). 

 

4.2. A family of ATIP proteins 

The family of angiotensin II AT2 receptor-interacting proteins is composed by three major 

proteins (ATIP1, ATIP3 and ATIP4) which share the same C-terminus but differ in their N-

terminus and therefore in their length (Figure 33). In 2006, a study performed by Di 

Benedetto M and co-workers analyzed the tissue distribution of each ATIP transcript in a 

large number of human normal tissues by means of real-time quantitative RT-PCR. 

Consistent with the different promoter use, ATIP1, ATIP3 and ATIP4 show different tissue 

distribution in normal human tissues (Figure 34). Of note, two ATIP3 variants (ATIP3a and 

ATIP3b) showing similar tissue distribution have been described and will be presented 

below in more details. 

ATIP3 is the major transcript expressed in almost all tissues, except for the brain. In 

contrast, ATIP1 is mainly expressed in central nervous system tissues, in female 

reproductive tissues (placenta, breast, ovary and uterus), thyroid and heart. Finally, ATIP4 

mRNA is exclusively detected in the brain and most specifically in the cerebellum and the 

fetal brain. 
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Figure 34 

Quantitative RT-PCR of total ATIP transcripts in human normal tissues (From Di Benedetto M et al. 2006). 

 

ATIP1 was the first characterized member of ATIP proteins. The 5’ UTR and initiating 

codon of ATIP1 are contained in exon 8 (the only N-terminal exon of ATIP1 protein). The 

first 40 amino acids of exon 8 also contain a mitochondrial targeting signal (Seibold S et al. 

2003). To date, ATIP1 is the only ATIP member in which it has been shown an interaction 

with AT2 receptor in eukaryotic cells (Nouet S et al. 2004; Wruck CJ et al. 2005; Li JM et al. 

2007). ATIP1 interacts with AT2 in the absence of ligand angiotensin II and is involved in 

AT2R activation and in the transport of the receptor to the cell membrane (Wruck CJ et al. 

2005). Additionally, ATIP1-AT2 interaction contributes to AT2 effects on neuron 

differentiation (Li JM et al. 2007), vascular remodeling (Fujita T et al. 2009), vascular 

senescence (Min LJ et al. 2012) and adipose function (Jing F et al. 2013) (Figure 35).  
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Figure 35 

A family of multifunctional ATIP proteins with diverse subcellular locations (From Rodrigues-Ferreira S & Nahmias C, 

2010). 

 

ATIP3 is the major and the longest MTUS1 gene product. It includes three alternative 

splice variants: ATIP2, ATIP3a and ATIP3b. ATIP3a is characterized by the presence of 

exons 1, 2, 4, 6 and 7. Of these, exon 1 contains the initiating codon, exon 4 contains a 

polyproline-rich motif (PRPLP) that usually participate in interaction with both SH3 and 

WW domains (but to date it has not been demonstrated for ATIP3), exon 6 contains a 

second polyproline-rich motif (PPKP) and is always joined to exon 7 that harbors a nuclear 

localization signal (Di Benedetto M et al. 2006a). 

On the other hand, ATIP3b differs from ATIP3a by the absence of exon 4 indicating that 

these two proteins may interact with distinct intracellular partners and exhibit different 

cellular functions. Finally, and although ATIP2 contains the same exons that ATIP3a, it also 

uses exon 3 that contains an in-frame stop codon that potentially translates a truncated 

protein that does not contain the coiled-coil region (Di Benedetto M et al. 2006a). ATIP2 is 

hardly expressed in normal tissues (Figure 34), suggesting that its expression may be 

regulated by a mechanism of nonsense-mediated decay. 
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Up to now, cDNA cloning and functional characterization of ATIP4 have not been 

undertaken. Nevertheless, due to its restricted expression in the brain and the presence of 

a membrane spanning domain located in exon 5, it may be possible that ATIP4 mediates 

AT2R functions in the brain (Di Benedetto M et al. 2006a; Rodrigues-Ferreira S et al. 2013). 

 

4.3. ATIP3, A TIP top protein down-regulated in Breast Carcinoma 

While several studies have demonstrated down-regulation of MTUS1 gene in various 

types of cancers, Rodrigues-Ferreira S et al (2009) were the first to provide evidence that 

ATIP3, and not ATIP1 or ATIP4, was the major MTUS1 gene product whose expression is 

decreased in human breast cancer as compared to normal tissue. 

Indeed, Affymetrix DNA array conducted in a series of 151 invasive ductal breast 

carcinomas, further validated by real-time RT-PCR analysis using specific primers for 

different ATIP variants, revealed that MTUS1, and more specifically ATIP3, is down-

regulated in 85% of high grade tumors (grade III); in 83% of triple negative breast cancer, 

as well as in 62% of metastatic tumors (Figure 36) (Rodrigues-Ferreira S et al. 2009).  

 

Figure 36 

ATIP3 down-regulation in invasive breast carcinoma. MTUS1 levels are decreased in high histological grade (A), triple 

negative (TN) (B) and metastatic tumors (C). Real-time RT-PCR using ATIP3 specific primers indicate that this is the 

MTUS1 transcript down-regulated in breast cancer (D) (From Rodrigues-Ferreira S et al. 2009). 

 

At the functional level, different in vitro experiments (clonogenicity, MTT and BrdU assays) 

showed that re-expression of ATIP3 into ATIP3-deficient breast cancer cells lines (MCF7 

and MDA-MB-231) reduces cell proliferation whereas ATIP3-silencing in ATIP3-positive 

MDA-MB-468 cells leads to increased cell proliferation. Interestingly, time-lapse 

videomicroscopy of HeLa-H2B stable clones expressing ATIP3 revealed that decreased cell 

proliferation was due to an extension of the time spent in mitosis. Indeed, time 
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measurements of all mitosis phases indicated that ATIP3 expressing cells spent more time 

in metaphase than cells lacking the protein (Figure 37) (Rodrigues-Ferreira S et al. 2009). 

 

 

Figure 37 

ATIP3 delays mitosis (A) and more specifically delays the time to achieve metaphase (B) (From Rodrigues-Ferreira S et al. 

2009). 

 

On the other hand, in vivo experiments showed that ATIP3 also reduces tumor growth 

(incidence and size) after subcutaneous injection of MCF7 breast cancer cells expressing or 

not ATIP3 into immunodeficient mice (Rodrigues-Ferreira S et al. 2009). All these results 

indicate that ATIP3 is a novel biomarker for breast tumor of poor prognosis and an 

interesting therapeutic target for aggressive breast cancer. 

 

4.4. ATIP3 is a novel Microtubule-associated protein 

At the molecular level, ATIP3 decorates the microtubule (MT) cytoskeleton and the 

microtubule organizing center (MTOC) in interphase, the mitotic spindle during cell 

division and the intercellular bridge during cytokinesis (Figure 38). Co-sedimentation 

assays on cells expressing GFP or GFP-ATIP3 confirmed that ATIP3, and not GFP, 

associated with microtubules (Rodrigues-Ferreira S et al. 2009). 

Due to its association to MTs, in 2010 the nomenclature committee of the National Center 

for Biotechnology Information (NCBI) changed the name of MTUS1 gene to Microtubule-

associated TUmor Suppressor 1. 
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Figure 38 

ATIP3 associates with microtubules during interphase and mitosis (From Rodrigues-Ferreira S et al. 2009). Scale Bar, 10 

µm 

 

Overexpression of GFP-ATIP3 in a large number of cell lines (SKMES, HeLa, RPE1, MDA-

MB-231 and MCF7) led to the formation of bundles, suggesting that ATIP3 may induce MT 

stabilization. 

 

4.5. A functional family of Microtubule-Associated Proteins in cancer 

As state by Kaverina I and Straube A (2011) “the loss of microtubule-associated proteins 

and subsequent alteration of interphase microtubule dynamics stimulate uncontrolled 

motility in cancer cells that is associated with invasiveness and poor prognosis in cancer 

patients.” 

Additionally, a large number of studies have shown that loss of microtubule-associated 

proteins cause the stabilization of microtubule-kinetochore attachment errors during 

mitosis which will result in chromosome mis-segregation, aneuploidy and chromosomal 

instability (CIN) (Reviewed in Thompson SL et al. 2010). 

Besides ATIP3, a number of MAPs have been reported to display tumor suppressor 

functions, suggesting the existence of a functional superfamily of “Microtubule-Associated 

Tumor Suppressor Proteins (MATSP)” (Table 3). At the molecular level, these MATSPs can 

either stabilize or promote MT assembly. Representatives of this group of proteins are the 

RAS Association domain Family 1A (RASSF1A), the von Hippel–Lindau (VHL), the 

neurofibromatosis 2 (NF2) protein Merlin, the cylindromatosis tumor suppressor CYLD, 

the Adenomatous Polyposis Coli (APC), the Breast Cancer 1 (BRCA1), the leucine zipper 

putative tumor suppressor 1 (LZTS1) and the Fragile Histidine Triad (Fhit).  
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Table 3 

“Microtubule-Associated Tumor Suppressor proteins” (MATSP) characteristics. 

Protein 

Name 
Related-Cancer Inactivated by 

Subcellular 

localization 
Effect on MT References 

CYLD 

Skin appendages tumors or 

cylindromas, familial trichoepithelioma 

and Brooke-Spiegler syndrome 

Gene mutations 
MT network 

Midbody 

- Stabilization: 

- Promotes MT assembly and decreases 

depolymerization velocity 

- Promotes stability of astral MTs 

Bignell GR et al. 2000; Stegmeier F et al. 2007; Gao J et al. 

2008; Steinmetz MO & Akhmanova A, 2008; Massoumi R, 

2011 ; Li D et al. 2014; Yang Y et al. 2014 

Merlin 

Tumors in central and peripheral 

nervous system, colorectal cancer, 

melanoma and renal carcinoma 

Gene mutations 

and protein 

inactivation by 

phosphorylation 

MT network 

Mitotic Spindle 

- Stabilization: 

- Decreases tubulin turnover, growth and 

shrinkage rates, catastrophe frequencies 

- Inhibits GTP hydrolysis  

Xu HM & Gutmann DH, 1998; Muranen T et al. 2007; Cooper 

J & Giancotti FG, 2014; Smole Z et al. 2014 

RASSF1A Several carcinomas and solid tumors 
Promoter 

hypermethylation 

MT network 

Mitotic Spindle 

MTOC 

- Stabilization: 

- Decreases catastrophes, MT polymerization 

and depolymerization rates 

- Increases rescue frequency, pause events 

and MT lifetime 

- Bundles MTs  

- Decreases MT outgrowth towards cell cortex 

- Protect from depolymerization 

Liu L et al. 2003; Rong R et al. 2004; Dallol A et al. 2004; 

Dallol A et al. 2005; Richter AM et al. 2009 ; Arnette C et al. 

2014 

VHL 
Haemanglioblastomas and clear-cell 

RCC 

Gene mutations 

and promoter 

hypermethylation 

MT network 

Mitotic Spindle 

Primary cilia 

- Stabilization: 

- Blocks tubulin turnover, inhibits GTP activity, 

inhibits catastrophes, increases rescue 

frequency 

- Protect from depolymerization 

Hergovich A et al. 2002; Lolkema MP et al. 2004; Nyhan MJ 

et al. 2008; Thoma CR et al. 2009; Thoma CR et al. 2010; 

Haddad NM et al. 2013 

APC 
Sporadic Colorectal and familial 

adenomatous polyposis 
Gene mutations 

MT network/ 

MT growing end 

- Stabilization: 

- Protects from depolymerization 

- Interacts with other +TIPs (EB1, Amer2, 

KIF17, IQGAP and mDia) 

Nagase H & Nakamura Y, 1993; Munemitsu S et al. 1994; 

Smith KJ et al. 1994; Su LK et al. 1995; Polakis P, 1997; 

Mimori-Kiyosue Y et al. 2000; Goss KH & Groden J, 2000; 

Zumbrunn J et al. 2001; Nakamura M et al. 2001; Watanabe 

T et al. 2004; Wen Y et al. 2004; Jaulin F & Kreitzer G, 2010; 

Pfister AS et al. 2012 

BRCA1 
Breast, ovarian, gastric, non-small cell 

lung cancer 
Gene mutations 

MTOC 

Mitotic Spindle*  

Spindle Poles* 

Midbody* 

- Stabilization: 

- Decreases MT outgrowth towards cell cortex 

- Decreases growth and shrinkage rates, and 

MT dynamicity 

Hsu LC & White RL, 1998; Russell PA et al. 2000; Lotti LV et 

al. 2002; Lynch HT et al. 2008; Rosell R et al. 2009; Wei J et 

al. 2011; Foulkes WD & Shuen AY, 2013; Sung M & 

Giannakakou P, 2014 

LZTS1 

Gastric, ovarian, breast, lung, oral 

squamous cell carcinomas, bladder, 

prostate, esophageal cancers, uveal 

melanoma and kidney 

Gene mutations 

and promoter 

hypermethylation 

MT network 
- MT assembly dependent on MAP (mitogen-

activated protein) 2 

Ishii H et al. 1999; Ishii H et al. 2001; Vecchione A et al. 2001; 

Vecchione A et al. 2002; Ono K et al. 2003; Nonaka D et al. 

2005; Onken MD et al. 2008 ; Chen L et al. 2009; Califano D 

et al. 2010 

Fhit 
Ovarian, prostate, non-small cell lung 

cancer and primary breast cancer 

Promoter 

hypermethylation 
MT network - MT assembly 

Chaudhuri AR et al. 1999; Yang Q et al. 2002 ; Wali A, 2006; 

Wali A, 2010 

* Reported only in one paper Lotti LV et al. 2002
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A large number of studies have reported the inactivation, down-regulation or mutation of 

the genes encoding for these MAPs in several solid tumors (Table 3 for references). Of 

note, two of these proteins (APC and BRCA1) have been extensively studied and to date 

are considered masterpieces in the colorectal and breast/ovary cancer field, respectively. 

Six tumor suppressors have been shown to stabilize MTs either in vitro or in cell-based 

assays. For most of these proteins, few studies are available to explain the mechanism of 

MT stabilization.  

CYLD decorates the MT network to stabilize MTs by promoting their assembly and 

decreasing MT depolymerization velocity. This protein also decorates the midbody (known 

to be composed of stable MTs) and the astral MTs highlighting its role during mitosis 

(Stegmeier F et al. 2007; Gao J et al. 2008; Steinmetz MO & Akhmanova A, 2008; Li D et al. 

2014; Yang Y et al. 2014).  

Merlin has been described as a protein that binds MTs, anchors the actin cytoskeleton, 

controls cell proliferation, cell adhesion and epithelial polarization (Xu HM & Gutmann DH, 

1998; Muranen T et al. 2007). Its effects on MT dynamic instability parameters include 

decrease on tubulin turnover, as well as reduction of growth and shrinkage rates and 

catastrophe frequencies. These effects together with the inhibition of GTP hydrolysis 

make of this protein as a potent MT stabilizer (Muranen T et al. 2007; Smole Z et al. 2014). 

RASSF1A associates with interphase MTs, mitotic spindle and the MTOC. It bundles and 

stabilizes MTs through the reduction of catastrophes and MT polymerization and 

depolymerization rates. RASSF1A also increases the rescue frequencies, the percentage of 

time spent in pause and MT lifetime. Additionally, reduces MT regrowth and protects MTs 

from induced depolymerization (Liu L et al. 2003; Rong R et al. 2004; Dallol A et al. 2004; 

Arnette C et al. 2014). At the functional level, RASSF1A reduces cell migration, cell polarity 

and prevents CIN (Rong R et al. 2004; Dallol A et al. 2005; Arnette C et al. 2014). 

VHL accomplishes important roles in the renal epithelium. It has been described as a MAP 

that binds MTs in interphase and mitosis and associates with the primary cilia. It 

stabilization effects include inhibition of tubulin turnover and GTP activity, decrease of 

catastrophes, increase of the rescue frequency, as well as protection from 

depolymerization (Hergovich A et al. 2002; Lolkema MP et al. 2004; Thoma CR et al. 2010). 

Similar as RASSF1A, VHL prevents cell migration, CIN and spindle misorientation (Thoma 

CR et al. 2009). 

APC has been involved in a large number of functions as cell proliferation and survival 

preventing CIN and spindle misorientation, and in the promotion of cell migration (Polakis 

P, 1997; Watanabe T et al. 2004; Wen Y et al. 2004; Pfister AS et al. 2012). APC binds 
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directly the MTs or indirectly via EB1 (Munemitsu S et al. 1994; Smith KJ et al. 1994; Su LK 

et al. 1995; Mimori-Kiyosue Y et al. 2000; Zumbrunn J et al. 2001; Nakamura M et al. 

2001). APC is able to stabilize MTs mostly through the interaction with other +TIPs such as 

IQGAP (Watanabe T et al. 2004), mDia and EB1 (Wen Y et al. 2004), KIF17 (Jaulin F & 

Kreitzer G, 2010) and Amer2 (Pfister AS et al. 2012).  

BRCA1 has been shown to stabilize MTs but its mechanism remains controversial. Unlike 

the other MATSPs, BRCA1 does not localize at the MT lattice and rather regulates MT 

stability from the MTOC (Lotti LV et al. 2002; Sung M & Giannakakou P, 2014). BRCA1 

decreases MT outgrowth towards the cell cortex, as well as growth and shrinkage rates 

(Lotti LV et al. 2002; Sung M & Giannakakou P, 2014). 

Other members of the MATSPs family have been shown to promote MT assembly. LZTS1 

and Fhit are reported as MAPs that bind assembled MTs and tubulin, and function to 

promote MT assembly (Chaudhuri AR et al. 1999; Ishii H et al. 2001). Nevertheless, the 

mechanism of action has not been elucidated for any of the two proteins. 

 

It may be interesting to investigate if members of the MATSP superfamily can interact 

with each other and function in a concerted and cooperative way to regulate 

tumorigenesis. Interestingly, van der Weyden L and coworkers (2008) showed that 

cooperation between inactivation of RASSF1A and APC results in accelerated intestinal 

tumorigenesis, through the interfering of β-catenin pathway. It would now be of interest 

to evaluate whether these tumor suppressors may also coordinately regulate cancer 

progression by a mechanism involving their effects on MT dynamics.  

Finally, ATIP3 being part of the functional superfamily of MATSP, the question can be 

raised of whether ATIP3 may regulate some parameters of MT dynamic instability and/or 

cooperate with other members of the superfamily to exert its tumor suppressor effects. 

Based on these observations, my PhD project aims at elucidating the effects of ATIP3 on 

the regulation of MT dynamic instability, with possible consequences on cancer cell 

migration, and metastasis (Article 1). Additionally, the search for ATIP3 interacting 

partners that may contribute to the effects of ATIP3 on dynamic instability and/or cell 

migration shall constitute the second objective of this work (Article 2 and Unpublished 

results). 
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ARTICLE 1: 

ATIP3, a Novel Prognostic Marker of Breast Cancer Patient Survival, 

Limits Cancer Cell Migration and Slows Metastatic Progression by 

Regulating Microtubule Dynamics 
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Previous data from the laboratory identified a new microtubule-associate protein named 

ATIP3, encode by the candidate tumor suppressor gene MTUS1, whose expression is 

down-regulated in 48% of invasive breast carcinoma and 62% of metastatic tumors. 

Additionally, that ATIP3 re-expression at normal levels in breast cancer cell lines 

significantly reduced cancer cell proliferation in vitro and tumor growth in vivo. 

Based on these results, the aim of the first part of my PhD work, which was published in 

the Cancer Research Journal, was to elucidate whether ATIP3 was involved on breast 

cancer metastasis, and if ATIP3 may represent a new biomarker for breast cancer 

metastasis. As mentioned in the introduction cancer metastasis is a multistep process that 

involves cancer cell migration and invasion, followed by extravasation and colonization. 

Thus, we wonder how does ATIP3 could alter the metastatic process and through which 

mechanism. 

Using the DNA microarray data from three independent cohorts (Institut Curie, Institut 

Gustave Roussy and the Kaplan-Meier plotter database) of breast cancer patients with 

known clinical data, the prognostic value of ATIP3 as a marker for metastatic progression 

and overall survival was evaluated. Comparison of MTUS1 probeset intensities with 

clinicopathologic data of the patients showed that low expression levels of ATIP3 

significantly decrease the overall probability of survival and the relapse-free survival of 

breast cancer patients when compared with patients expressing normal levels of ATIP3. 

Additionally, when compared the percentage of patients with metastatic disease surviving 

after 5 years, those expressing low levels of ATIP3 had a reduced survival percentage than 

the ATIP3-normal expression group. Of note, this difference (and overall survival 

difference) was no longer found in non-metastatic patients. These results suggest that 

ATIP3 is an important prognostic marker of clinical outcome for patients with metastatic 

disease. 

Given the association of low ATIP3 and metastatic patients’ outcome, the effects of ATIP3 

on metastatic progression were then evaluated. Using an in vivo experimental mouse 

model of metastasis, D3H2LN highly invasive breast cancer GFP and GFP-ATIP3 stable 

clones (expressing luciferase) were injected intracardiacally into nude mice to elucidate 

the late steps of the metastatic process. The metastatic dissemination was followed by 

intravital bioluminescence imaging every 2 days during 24 days. Quantification of photon 

number/s showed that mice injected with GFP-ATIP3-expressing cells presented a delay in 

metastasis time course, a decrease in the number of metastasis per mouse and a 

reduction in the number of large metastatic foci (at the end of the experiment) when 

compared with GFP-expressing mice. Altogether these data indicate a strong effect of 
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ATIP3 in the metastatic progression and suggest a role for this protein in metastatic 

growth and colonization in vivo. 

To investigate the effect of ATIP3 on the colonization step, extravasation, invasion and 

migration experiments were performed using Boyden chambers. Different conditions 

were tested, where the upper chambers were either plated with HCMEC/D3 cells or 

coated with collagen I or no coated, before D3H2LN GFP and GFP-ATIP3 stable clones 

were seeded above. Re-expression of ATIP3 revealed a markedly reduction in migration 

(included the transendothelial migration or extravasation). These results were confirmed 

using MDA-MB-468 cells that express endogenous levels of ATIP3. Migratory behavior was 

increased followed ATIP3 down-regulation, suggesting that loss of ATIP3 allows the 

acquisition of a promigratory phenotype that may be more prone to develop distant 

metastasis.  

Directional migration was then evaluated through a wound-healing experiment in ATIP3-

expressing cells in which ATIP3-specific siRNAs were transfected. In accordance with 

Boyden chamber results, silencing of ATIP3 increased directional cell migration. These 

results were confirmed using breast cancer (D3H2LN and MCF7) stable clones expressing 

GFP or GFP-ATIP3. Indeed, expression of ATIP3 significantly reduced wound closure. 

Wound-healing time-lapse videomicroscopy using D3H2LN GFP and GFP-ATIP3 stable 

clones was performed to follow the migration process. Cell tracking analysis revealed that 

ATIP3 expression impairs cancer cell velocity and directionality, effects that explain the 

reduction of cell migration induced by ATIP3. 

It has been shown that ATIP3 is a microtubule-associated protein (MAP) that reduces cell 

proliferation and migration, suggesting that the effect of ATIP3 on essential cell process is 

due to the possible regulation of microtubule (MT) dynamic instability parameters. 

Nocodazole incubation at 37°C during 1h and nocodazole washout experiments were 

performed to analyze the effect of ATIP3 on MT depolymerization and MT regrowth, 

respectively. Results shown that in ATIP3-expressing cells, nocodazole (1µmol/L) 

incubation did not depolymerize all the MTs. Of note, anti-acetylated tubulin staining 

revealed that the remaining MTs were stable MTs which were post-translationally 

modified. On the other hand, ATIP3-silencing induces a high decrease on MT density and 

few stable acetylated MTs remained, indicating that ATIP3 stabilizes MTs and protects 

them from depolymerization. The same experiment was performed in MCF7 breast cancer 

cell line stably expressing GFP and GFP-ATIP3 and incubated with nocodazole (10 µmol/L). 

ATIP3 re-expression in MCF7 breast cancer cell line increases stable MTs, while GFP-

expressing cells did not. 
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RPE1 cells were used to evaluate the effect of ATIP3 in MT regrowth. GFP and GFP-ATIP3 

were transiently transfected for 24h and MTs were depolymerized with nocodazole 

(10µmol/L) at 4°C. Nocodazole washout showed that ATIP3 expression significantly 

delayed MT regrowth, strongly suggesting an effect of ATIP3 in MT dynamics. 

EB1 accumulation at the MT plus-ends was then used as an indicator of MT dynamics. 

RPE1 cells were transiently transfected for 24h with mCherry-ATIP3 construct and stained 

with an anti-EB1 antibody. Immunofluorescence images indicated that ATIP3 expression 

lead to a significant reduction of EB1 comet size that was not associated with a reduction 

of EB1 expression. Similar results were obtained in ATIP3-expressing HeLa cells 

transfected with ATIP3-specific siRNA. Silencing of the protein resulted in a significant 

increment of EB1 comet size and fluorescence intensity at the MT growing ends that was 

not the case for control siRNA transfected cells. These results indicate that loss of ATIP3 

may increase MT dynamics. 

Soon after, the role of ATIP3 on MT dynamic instability parameters was elucidated by TIRF 

time-lapse videomicroscopy using EB1-GFP as plus-end marker. HeLa cells were co-

transfected with siRNAs (control or ATIP3-specific) and EB1-GFP during 48h. Tracking 

results revealed that loss of ATIP3 leads to an increase of MT growth episodes and growth 

rate, and a decrease of the time spent in pause and catastrophe frequency. These results 

confirm the role of ATIP3 in MT dynamic instability. 

We then hypothesize that MT stabilization and decreased growth could impair MT correct 

anchoring at the cell cortex during migration. To test this hypothesis, D3H2LN cells 

transiently transfected with GFP or GFP-ATIP3 were grown until confluence before being 

scratched and kept at 37°C for 90 minutes. In GFP-expressing cells, MT were radially 

organized toward the cell periphery with the MT plus-ends close to the cell margin; 

instead, in ATIP3-expressing cells MTs bend before reaching the cell edge and 

consequently MT plus-end did not anchor the cell cortex. This difference in MT 

polarization was traduced in a defect of cell polarity in ATIP3-positive cells in respect with 

GFP cells. This indicates that ATIP3 impairs MT dynamics, MT polarization and therefore 

cell polarity and cell migration. 

Cleavage of ATIP3 into three domains (D1, D2 and D3) allows the characterization of the 

full length protein. Transfection of GFP-D1, GFP-D2 and GFP-D3 into RPE1 cells followed by 

immunostaining using anti-GFP, anti-tubulin and anti-EB1 antibodies was performed. 

Immunofluorescence images shown that the central D2 was the only able to associate to 

MTs and to impair EB1 comet accumulation at the plus-ends. Interestingly, D2 also retain 

the functional properties of the full-length protein, reducing cell proliferation and cell 

migration and directionality. Thus, D2 recapitulates the functional characteristics of ATIP3. 



 

 
88 

To conclude, in this study ATIP3 was identified as an important indicator of metastatic 

progression that regulates early (tumor growth) and late (colonization) stages of cancer 

development through its ability to regulate MT dynamics. Additionally, the functional 

domain of the protein was characterized, and termed D2, which is of highly importance 

for the future targeted therapeutic approaches against breast tumors that have lost ATIP3 

expression. 
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Tumor and Stem Cell Biology

ATIP3, a Novel Prognostic Marker of Breast Cancer Patient

Survival, Limits Cancer Cell Migration and Slows Metastatic

Progression by Regulating Microtubule Dynamics

Angie Molina1,2,3, Lauriane Velot1,2,3, Lydia Ghouinem1,2,3, Mohamed Abdelkarim4,7,

Benjamin Pierre Bouchet10, Anny-Claude Luissint1,2,3, Im�ene Bouhlel1,2,3, Marina Morel1,2,3,

El�ene Sapharikas1,2,3, Anne Di Tommaso1,2,3, St ephane Honor e8, Diane Braguer8, Nad�ege Gruel5,

Anne Vincent-Salomon5, Olivier Delattre5, Brigitte Sigal-Zafrani5, Fabrice Andr e9, Benoit Terris1,2,3,6,

Anna Akhmanova10, M elanie Di Benedetto4,7, Clara Nahmias1,2,3, and Sylvie Rodrigues-Ferreira1,2,3

Abstract

Metastasis, a fatal complication of breast cancer, does not fully benefit from available therapies. In this

study, we investigated whether ATIP3, the major product of 8p22MTUS1 gene, may be a novel biomarker and

therapeutic target for metastatic breast tumors. We show that ATIP3 is a prognostic marker for overall

survival among patients with breast cancer. Notably, among metastatic tumors, low ATIP3 levels associate

with decreased survival of the patients. By using a well-defined experimental mouse model of cancer

metastasis, we show that ATIP3 expression delays the time-course of metastatic progression and limits the

number and size of metastases in vivo. In functional studies, ATIP3 silencing increases breast cancer cell

migration, whereas ATIP3 expression significantly reduces cell motility and directionality. We report here

that ATIP3 is a potent microtubule-stabilizing protein whose depletion increases microtubule dynamics. Our

data support the notion that by decreasing microtubule dynamics, ATIP3 controls the ability of microtubule

tips to reach the cell cortex during migration, a mechanism that may account for reduced cancer cell motility

and metastasis. Of interest, we identify a functional ATIP3 domain that associates with microtubules and

recapitulates the effects of ATIP3 on microtubule dynamics, cell proliferation, and migration. Our study is a

major step toward the development of new personalized treatments against metastatic breast tumors that

have lost ATIP3 expression. Cancer Res; 73(9); 2905–15.  2013 AACR.

Introduction

The occurrence of distant metastasis is a dreadful compli-

cation of breast cancer and a leading cause of death by

malignancy in women worldwide. Metastasis is a multistep

process that involves cancer cell migration and invasion across

the extracellular matrix to reach the blood flow, followed by

extravasation and colonization of secondary organs (1). Among

millions of invasive cancer cells that reach the blood circula-

tion, only few will establish at distant sites and grow as

metastases (2–5). Breast cancer metastases can remain latent

for several years following primary tumor removal, and the

identification ofmolecularmarkers thatmay predict the risk of

metastasis occurrence, and/or progression is of invaluable help

for the follow-up of the patients and choice of therapeutic

options (5, 6). Over the past decade, extensive studies have led

to the classification of breast tumors into distinct molecular

subtypes, allowing subsequent development of efficient tar-

geted treatments for a majority of primary tumors (7–9).

However, available therapies have limited effect on cancer

metastasis and new genetic determinants contributing to

essential steps of the metastatic process need to be

characterized.

Microtubule-targeting drugs such as taxanes are used for

standard first-line treatment of breast cancer metastasis, and

new microtubule-targeting agents, such as epothilones and

eribulin, are under clinical evaluation (10). Microtubules are

polarized and highly dynamic structures that rapidly switch

between periods of polymerization (growth) and depolymer-

ization (shrinkage) at the plus ends, a process termed dynamic
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instability (11–13). The extent and rate of microtubule growth,

as well as transitions between growth and shrinkage, are

parameters of dynamic instability that can be measured by

tracking end-binding proteins at the microtubule plus ends

(13–15). Dynamic instability is essential for the microtubule

plus ends to explore the cytosol and ensure cytoskeleton

reorganization during cell division and migration. Targeting

the expression or activity of metastasis genes that regulate

microtubule dynamics represents a promising option for can-

cer therapy.

ATIP3 is a microtubule-associated protein encoded by 8p22

candidate tumor suppressor gene MTUS1 (16–18). We have

previously shown that ATIP3/MTUS1 levels are significantly

downregulated in 47.7% of invasive breast carcinomas and

62.4% ofmetastatic tumors (19). Restoring ATIP3 expression at

normal levels in breast cancer cells significantly reduces cancer

cell proliferation in vitro and tumor growth in vivo (19).

However, effects of ATIP3 on breast cancer metastasis have

not yet been evaluated.

In this study, we investigated whether ATIP3 may represent

a new biomarker and therapeutic target for breast cancer

metastasis. We present evidence that low ATIP3 levels corre-

late with the decreased probability of survival among patients

with breast cancer metastasis, and that ATIP3 expression into

ATIP3-deficient cancer cells markedly impairs the establish-

ment of metastatic foci in vivo. Loss of ATIP3 increases breast

cancer cell migration and alters microtubule dynamics. We

show that ATIP3 associates with microtubules through a

central basic domain that retains the functional properties of

the full-length protein. Our study thus identifiesATIP3 as a new

promising therapeutic target against metastatic breast tumors

of poor prognosis.

Materials and Methods

Breast tumor samples and gene arrays

Microarray data for a series of 150 infiltrating ductal primary

breast carcinomas and 11 normal breast tissues from the

Institut Curie (Paris, France) and clinical data for the patients

were described elsewhere (19, 20). Gene expression profiles

from an independent cohort of 162 invasive breast carcinomas

were obtained from patients included in the prospective

database of the Institut Gustave Roussy (IGR; Villejuif, France)

between 1984 and 1994. This study was approved by the

Institutional Review Boards of the IGR. Data have been sub-

mitted to the Array Express data repository at the European

Bioinformatics Institute (Saffron Walden, United Kingdon;

http://www.ebi.ac.uk/arrayexpress/) under accession number

E-MTAB-1389. MTUS1 gene expression in a meta-analysis of

2,898 patients with breast cancer with known clinical outcome

was retrieved from Kaplan–Meier plotter database (21, 22).

Cell lines, plasmid constructs, and transfections

Human breast cancer cell linesMDA-MB-468 andMCF7 and

stable clones were described previously (19). MDA-MB-231-

Luc-D3H2LN breast cancer cells (designated D3H2LN)

obtained from Caliper Life Science (Xenogen) were derived

from an in vivo-selected metastatic subclone of MDA-MB-231

cells expressing luciferase and grown as described (23). HeLa

cells were provided by Dr. Mounira Amor-Gueret (Institut

Curie, Orsay, France). RPE-1 [human telomerase reverse tran-

scriptase (h-TERT)-immortalized, retinal pigment epithelial]

cells were from Dr. Franck Perez (Institut Curie, Paris). MRC5-

SV lung fibroblasts were grown in Dr. A. Akhmanova's labo-

ratory as described (24). All cells were used at passages 2 to 20

after thawing and grown as described by the provider. Cells

were routinely authenticated by morphologic observation and

tested for absence of mycoplasma contamination using

MycoAlert Assay detection kit (Lonza).

Plasmid constructs are described in the Supplementary

Methods. Transfections using ATIP3-specific siRNAs (si#1 and

si#2) were conducted as described (19) and verified by immu-

noblotting using anti-MTUS1 polyclonal antibodies (ARP-

44419, Aviva Systems).

Intracardiac experimental mouse model of metastasis

Experimental metastasis was conducted as described

(23, 25, 26) following intracardiac injection of stable

ATIP3-negative [WT (wild-type), GFP] or positive (Cl3, Cl6)

D3H2LN cell clones. All injected cells showed similar via-

bility as measured by Annexin V apoptosis kit (Beckman

Coulter). The experiment was carried out with the approval

of the D�epartement d'Exp�erimentation Animale, Institut

d'H�ematologie, Hopital St-Louis ethical committee, and was

conducted twice (9 mice per group).

Clonogenicity, cell migration, and adhesion assays

Analyses of colony formation, Boyden chambers chemo-

taxis, transendothelial migration, wound healing, and cell

adhesion were conducted as described (23). Time-lapse

videomicroscopy analyses of cell motility are described in

the Supplementary Methods. For cell polarity measure-

ments, transiently transfected D3H2LN were allowed to

migrate for 90 minutes and analyzed using bright field

microscopy. Polarized cells were identified on the basis of

nucleus position and cytoplasm extension at the leading

edge.

Immunostaining, fluorescence microscopy, analysis of

microtubule dynamics

Cells were plated on glass coverslips and transfected for 24

hours (plasmids) or 72 hours (siRNA), fixed in ice-cold

methanol for 5 minutes, and incubated for 1 hour at room

temperature with anti-a-tubulin clone F2C (27), monoclonal

anti-g-tubulin (Sigma), anti-end-binding 1 (EB1; clone 5; BD

Biosciences), or anti-acetylated tubulin (clone 6-11B-1; Sigma).

Secondary antibodies and fluorescence images capture are

described in the Supplementary Methods.

Linescan analyses of a-tubulin and EB1 fluorescence inten-

sity were done (ImageJ) on a 6 mm line along the length of

microtubule tip. At least 10 microtubules per cell in 4 separate

cells were measured. EB1-comet maximal intensity was

obtained by subtracting the intensity value of the EB1-dot

(100 a.u.) to the maximal staining intensity.

Analyses of microtubule stability, regrowth, and microtu-

bule dynamic instability are described in the Supplementary

Methods.
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Statistical analysis

Statistical analyses were done using JMP-7 and GraphPad

Prism softwares. Overall survival (OS) curves were plotted

according to the method of Kaplan–Meier and compared by

the log-rank test. Data in bar graphs (mean þ/ SD) were

analyzed using 2-tail unpaired Student t test. Dot plot analyses

were done using Mann–Whitney test. P < 0.05 was considered

statistically significant.

Results

ATIP3 is a prognostic marker of poor outcome in

metastatic breast cancer

The prognostic value of ATIP3 as a marker for metastatic

progression and OS was evaluated in 3 independent cohorts of

patients with breast cancer. Comparison ofMTUS1 Affymetrix

probeset intensities with clinicopathologic data of the patients

in a panel of 150 invasive breast carcinomas (Supplementary

Table S1) showed that the overall probability of survival is

strongly reduced in patients with tumors expressing low as

compared with normal ATIP3 transcript levels (Fig. 1A and

Supplementary Fig. S1A). Relapse-free survival (RFS) of the

patients was also significantly reduced in low ATIP3-expres-

sing tumors (Supplementary Fig. S1B). Similar results were

obtained by analyzing MTUS1 levels in an independent cohort

of 162 patients with breast cancer (Fig. 1B and Supplementary

Table S2) and in a meta-analysis of 2,898 patients with breast

cancer (Fig. 1C and Supplementary Fig. S1C and S1D). Of note,

correlation between ATIP3 expression and OS of the patients

was independent of the estrogen receptor (ER) status of the

tumor (Fig. 1D).

Tumors were then classified according to their metastatic

properties and MTUS1 probeset intensities were compared

with the probability of patient survival. As shown in Fig. 1E, the

percentage of patients withmetastatic disease surviving after 5

years was markedly reduced when tumors expressed low

ATIP3 (6.25%) compared with normal ATIP3 levels (31.6%),

whereas in patients with nonmetastatic tumors, 5-year sur-

vival (Fig. 1E and Supplementary Fig. S1E) and OS rates (Fig. 1F

and H) were independent of the levels of ATIP3. Within

patients with metastatic disease, OS rates (Fig. 1F and H and

Supplementary Fig. S1E) and survival time (Fig. 1G and I) were

also reducedwhen tumors expressed low levels of ATIP3. Thus,

ATIP3 expression is an important indicator of clinical outcome

for patients with metastatic breast tumors. Correlation

between low ATIP3 levels and reduced survival rates among

patients with advanced breast cancer suggests major effects of

ATIP3 on metastatic progression.

ATIP3 limits breast cancer metastatic colonization in

vivo

In vivo effects of ATIP3 on the metastatic potential of breast

cancer cells were evaluated using a well-defined experimental

mouse model of metastasis monitored by intravital biolumi-

nescence imaging (23, 25, 26). Highly metastatic, ATIP3-neg-

ative, D3H2LN breast cancer cells were transfected with either

GFPorGFP-ATIP3, and independent stable cell clones (Cl3 and

Cl6) expressing moderate levels of ATIP3 were selected (Fig.

2A, left). All cell clones exhibited similar levels of luciferase

activity (Fig. 2A, right). Metastatic cancer cells were injected

intracardiacally into the bloodstream of nude mice to reca-

pitulate the late, rate-limiting, steps of the metastatic process,

and examinemetastatic dissemination to various organs while

avoiding any effect of ATIP3 on primary tumor growth. Four

groups of 18 mice were analyzed in two independent experi-

ments. For each animal, the total number of metastatic foci

and the number of photons/s were quantified every 2 days for

24 days (Supplementary Table S3). As shown in Fig. 2B, the

time-course of metastasis formation was markedly delayed in

mice injected with ATIP3-positive as compared with ATIP3-

negative cell clones. The number of cancer cells growing at

secondary sites increased exponentially from day 17 after

injection of ATIP3-positive clones, as compared with day 10

for mice injected with control cells (Fig. 2B). As shown in Fig.

2C, the number of mice developing metastasis was strongly

diminished upon ATIP3 expression. Importantly, the number

of detectable metastases per mouse was also significantly

reduced at all times in the presence of ATIP3 (Fig. 2D). At day

24, the number of mice invaded with large metastases reached

13 of 18 (72.2%) in the control group as compared with 2 of 18

(11.1%) following injection of ATIP3-positive cells (Fig. 2E and

F), indicating a prominent effect of ATIP3 on cancer cell

growth and colonization at secondary sites. Accordingly, on

day 24, the total number of photons/s per mouse was 50- and

25-fold lower following injection with Cl3 and Cl6 clones,

respectively, compared with WT (Supplementary Fig. S2A).

For ethical reasons, mice had to be sacrificed at day 24,

therefore OS of the two groups of mice could not be quantified.

Furthermore, ex-vivo and histologic analysis of metastatic

nodules (Supplementary Fig. S2B) confirmed that biolumines-

cent signals indeed correspond to metastases of human tumor

cells having infiltrated mouse tissues. Metastases were mainly

detected in the bones, the lungs, and the brain, which are the

most frequent sites of metastatic dissemination of human

breast tumors. No preferential location of metastatic nodules

in ATIP3-positive versus ATIP3-negative cell types could be

observed. Altogether, these results identify ATIP3 as a potent

antimetastatic molecule, and support a role for ATIP3 in

metastatic growth and colonization in vivo.

ATIP3 impairs breast cancer cell proliferation and

migration

Metastatic colonization involves cancer cell migration, inva-

sion through the extracellular matrix, and proliferation at the

secondary site. As expected from our previous studies (19), cell

proliferation was significantly reduced in ATIP3-positive

clones Cl3 and Cl6 as compared with control (Supplementary

Fig. S3A). In addition, Boyden chambers assays of chemotaxis

and invasion revealed more than 90% reduction in the promi-

gratory properties of Cl3 compared with GFP (Fig. 3A). Similar

effects were observed using stably transfected MDA-MB-231

cells (Supplementary Fig. S3B). Conversely, ATIP3 silencing in

metastaticMDA-MB-468 breast cancer cells expressing endog-

enous ATIP3 induced a 2- to 2.5-fold increased chemotactic

migration (Fig. 3B), suggesting that cancer cells having lost

ATIP3 may acquire a promigratory phenotype and may be

more prone to develop distant metastasis.

Antimetastatic Effects of ATIP3 in Breast Cancer
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The ability to migrate through a monolayer of endothelial

cells (transendothelialmigration)was significantly reduced (58

� 16%) in Cl3 compared with control (Fig. 3C). Adhesion of

clones Cl3 and Cl6 to endothelial cells was significantly ele-

vated (3-fold and 2.8-fold, respectively) compared with WT

(Fig. 3D), suggesting that increased tumor-endothelial cell

adhesionmay account for reduced transendothelial migration.

Cell adhesion to collagen I was also increased in Cl3 (1.85-fold)

and Cl6 (1.93-fold) compared with WT (Fig. 3E). Altogether,

these data indicate that ATIP3 concomitantly increases cell

adhesion and limits cell migration.

The consequences of ATIP3-silencing on cancer cell motility

were analyzed in HeLa cells that express endogenous ATIP3

and are well suited for analyses of wound closure. As shown
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Figure 1. Low levels of ATIP3 predict poor outcome amongmetastatic tumors. A, OS curves for patients from the Institut Curie cohort, with tumors expressing

normal (> 0.5) or low (< 0.3) ATIP3 levels, relative to the median value of MTUS1 probeset (212096_s_at) in normal tissues. B, OS curves for patients

from the IGRcohort,with tumors expressingnormalor lowATIP3 levels [inferior or superior to themedian valueofMTUS1probeset (A_23_P347169) intensities

in the 162 tumors analyzed]. C, OS curves for patients with tumors expressing normal to high (gray) or low (black) MTUS1 (212096_s_at) using

Kaplan–Meier plotter. The best performing threshold was used as a cutoff. D, OS curves from patients expressing normal or low ATIP3 as in A,

among ER negative (ER , left) and positive (ERþ, right) tumors. E, percentage of patients remaining alive after 5 years with nonmetastatic ( ) and

metastastic (þ) tumors expressing ATIP3 levels as in A. F, OS curves for patients with nonmetastatic (left) or metastatic (right) tumors expressing

ATIP3 levels as in A. G, OS time (in months) for patients with metastatic tumors expressing ATIP3 levels as in A. Median values are on the right. ", P¼ 0.0119.

H, OS curves as in F for patients from the IGR cohort. Nonmetastatic (left) and metastatic (right) tumors were classified according to ATIP3 levels as in B.

I, OS time (in months) for patients as in G with metastatic tumors classified as in H. Number of patients is under brackets. ", P ¼ 0.0172.
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in Fig. 3F, ATIP3 silencing in HeLa cells increased (1.84- to 2.6-

fold) directional migration. Conversely, stable ATIP3 expres-

sion into D3H2LN (Cl3 and Cl6, Fig. 3G) and MCF7 cells

(Supplementary Fig. S3C) significantly reduced wound closure.

Time-lapsemicroscopy (SupplementaryMovies S1 and S2) and

tracking of D3H2LN-migrating cells further indicated that

stable ATIP3 expression impairs both cancer cell velocity

(0.34 mm/s and 0.55 mm/s for Cl3 and GFP clones, respectively;

ref. Fig. 3H) and directionality (Fig. 3I). Similar results were

obtained (Supplementary Fig. S3D and S3E) by analyzing cell

tracking following transient transfection of GFP or GFP-ATIP3

into D3H2LN cells (Supplementary Movies S3 and S4). Of

note, the number of GFP-ATIP3–positive cells reaching the

wound edge was reduced compared with GFP-expressing

cells. GFP-ATIP3 expressing cells were overtaken by nontrans-

fected cells reaching the border of the wound (Supplementary

Fig. S3F), further confirming the inhibitory effect of ATIP3 on

cancer cell migration.

ATIP3 alters microtubule dynamics

We hypothesized that ATIP3, being closely associated with

microtubules (19),may limit cell proliferation andmigration by

Figure 2. ATIP3 expression slows

metastatic progression in vivo. A,

characterization of stably

transfected D3H2LN cell clones.

Left, immunoblots of nontransfected

(WT) and GFP-ATIP3-expressing

D3H2LN clones (Cl3, Cl6) using anti-

GFP antibodies, reprobed with anti-

a-tubulin (a-tub) antibodies. Right,

measurement of luciferase activity

per cell (n ¼ 3). B, number of

photons/s per mouse (n ¼ 9) at days

6 to 24 following tumor cell

inoculation. C, left, representative

pictures of bioluminescence (5/9

mice) at day 17 following intracardiac

injection. Scale is on the right. Right,

number of mice with at least one

detectable metastasis at day 17.

D, total number of metastastic sites

per mouse at indicated days after

inoculation of control (Ctrl, WT and

GFP, n ¼ 18) and ATIP3 positive

(ATIP3, Cl3 and Cl6, n ¼ 18) cells.
  ,P < 0.01,    ,P < 0.001. E, number

of mice with large metastases at

different times after inoculation as in

D. F, representative pictures (day 24)

as in C.
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regulating microtubule dynamics. We first analyzed the con-

sequences of ATIP3 depletion on the sensitivity of microtu-

bules to nocodazole that prevents repolymerization of dynam-

ic microtubules. Stable microtubules that are not affected by

nocodazole treatment are typically stained by anti-acetylated

tubulin. As shown in Fig. 4A, ATIP3-silenced HeLa cells were

highly sensitive to nocodazole. The number of cells retaining

stable microtubules was decreased by 51%� 10 and 53%� 14

following transfection of siRNA#1 and siRNA#2 compared with

control. Conversely, stable transfection of GFP-ATIP3 into

MCF7 cells significantly increased thenumber of cells retaining

stable, nocodazole-resistant, microtubules as assessed by anti-

acetylated tubulin labeling (Fig. 4B) and immunoblotting (Fig.

4C). ATIP3 expression also significantly delayed microtubule

regrowth following nocodazole washout (Fig. 4D). At 5 min-

utes, microtubule length around the centrosome was reduced

by 57 � 20% in GFP-ATIP3 compared with GFP-transfected

clones, supporting the notion that ATIP3 may impair micro-

tubule dynamics.

The effects of ATIP3 on microtubule dynamic instability

parameters were further analyzed by measuring EB1 protein

accumulation at the microtubule plus tips (13–15, 28, 29) in

RPE-1 epithelial cells and lung fibroblasts (MRC5-SV), which

have a sparse microtubule array and are well suited for
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cancer cell migration. A, Boyden

chamber migration of stable

D3H2LN cell clones across filters

coated (coll) or not (no coll) with

collagen I. Results (percent) are

mean � SEM (n ¼ 3). Right,

representative picture of cells

migrating to the bottom of the well.

B, Boyden chamber assay using

ATIP3-positive (WT and siCtrl) and

ATIP3-negative (si#1 and si#2)

MDA-MB-468 cells. Results are

shown as in A. Top, immunoblots

of MDA-MB-468 cells after siRNA

silencing [anti-MTUS1, reprobed

with anti-a-tubulin (a-tub)

antibodies]. Right, representative

pictures of the lower face of the

filter. C, transendothelial migration,

mean � SEM (n ¼ 3). D and E,

cancer cell adhesion (mean�SEM,

n ¼ 3) to endothelial cells (D) and

collagen (E). F, migration of ATIP3-

positive (siCtrl) and ATIP3-silenced

(si#1, si#2) HeLa cells (n ¼ 3). Left,

representativepictures ofwoundat

times T0 and T22. Right,

quantification (percent) of wound

closure at T22. Results are mean�

SEM (n ¼ 2). Top, immunoblots of

siRNA-transfected HeLa cells as in

B. G, directional migration of

stably transfected D3H2LN clones

(n ¼ 4). Left, representative

pictures of wound at times T0 and

T7. Right, quantification of wound

closure at T4 and T7. Results are

mean � SD (n ¼ 3). H and I, cell

tracking of D3H2LN stable clones

during wound closure. H, cell

velocity scattered dot plot. I,

diagrams of migration trajectories

(12 hours). Number of cells is under

brackets. Directionality coefficient

(Dir) is inside the graph. A, B, F, and

G,magnification,!100. ",P < 0.05;
"", P < 0.001; """, P < 0.0001.
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distinguishing individualmicrotubule tips. As shown in Fig. 5A,

ATIP3 expression in RPE-1 cells led to a significant reduction in

the number and size of EB1 comets that rather appeared as

dots. Decreased accumulation of EB1 at microtubule plus ends

was not associated with decreased EB1 expression (Supple-

mentary Fig. S4A). In ATIP3-depleted HeLa cells, significantly

more EB1 comets of increased length and intensity were

detected compared with control cells (Fig. 5B), suggesting that

ATIP3 silencing increases microtubule dynamics. Time-lapse

total internal reflection fluorescence (TIRF) videomicroscopy

analysis of EB1-GFP comets (Supplementary Movie S5) and

subsequent microtubule-tips tracking indicated that microtu-

bule growth episodes were significantly longer in ATIP3-

silenced HeLa cells compared with control (Fig. 5C). ATIP3

depletion increased microtubule growth rate and decreased

the time spent in pause aswell as the frequency of catastrophes

(Fig. 5C), accounting for increased microtubule dynamics.

Conversely, videomicroscopy of EB3-GFP comets following

expression of mCherry-ATIP3 in MRC5-SV cells (Supplemen-

tary Movie S6), and corresponding kymographs (Supplemen-

tary Fig. S4B), indicated that ATIP3 expression decreases

microtubule dynamics and reduces the rate of microtubule

growth.

Microtubule stabilization and decreased growth rate at

the cell periphery should be responsible for an inhibition of

microtubule targeting and capture at the cell cortex (30). As

shown in Fig. 5D, in migrating D3H2LN cells, microtubules

projected radially toward the cell periphery and microtubule

plus ends were close to the cell edge (mean distance 1.43 �

0.7 mm), whereas in the presence of ATIP3, microtubules

Figure 4. ATIP3 reduces

nocodazole sensitivity and

microtubule outgrowth. A,

immunostaining (anti-a-tubulin

(a-tub) and anti-acetylated tubulin

[Ac-tub antibodies] of ATIP3-positive

(siCtrl) and -negative (si#1) HeLa

cells incubated without (0) or with

1 mmol/L nocodazole (Nz). Right,

immunoblots of HeLa cells after

siRNA silencing (anti-MTUS1,

reprobed with antitubulin

antibodies). Bottom, quantification

(%) of cells retaining stable

microtubules, mean � SEM (n ¼ 3).

B, immunostaining of stable MCF7

clones incubated with or without 10

mmol/L nocodazole, as in A. Right,

quantification as in A,mean�SEM (n

¼ 3). C, immunoblot analysis of

acetylated-tubulin (Ac-tub) and ezrin

content in stably transfected MCF7

clones, either nontreated (!) or

treated with DMSO (D) or increasing

concentrations of nocodazole. Right,

quantification of the ratio between

Ac-tub and ezrin intensity. D,

microtubule regrowth in transiently

transfected RPE-1 cells (n ¼ 4).

Shown is a-tubulin staining at

indicated times after nocodazole

(10 mmol/L) washout. Right,

quantification of microtubule density

at 4 mm around the centrosome,

mean � SD (n ¼ 4 to 10 cells).
", P < 0.05; "", P < 0.001. Scale bar,

10 mm.
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were bended and more than 50% of microtubule tips did not

reach the cell margin (mean distance 2.31� 1.2 mm). Of note,

reduced ability of microtubules to reach the cell cortex in

migrating ATIP3-positive cells was accompanied by a 34%

decrease in cell polarity (Fig. 5E). Taken together, these

results suggest that ATIP3-dependent regulation of micro-

tubule dynamics results in decreased ability of microtubules

to reach the cell cortex, which contributes to reduced cell

polarity and migration.

Microtubule-binding domain D2 recapitulates the

functional effects of ATIP3

The ATIP3 polypeptide was cleaved into 3 fragments des-

ignated D1, D2, and D3 (Fig. 6A), which were fused to GFP and

C

A

B

siCtrl

1s 57 3s 14 4s 71

6s 28 7s 85 9s 42

si #1

1s 57 4s 71 9s 42

12s 56 17s 27 20s 41

25s 12 28s 26 31s 04

N
T

si
C
tr
l
si

#1
si

#2

0.00

0.05

0.10

∗ ∗

D

1
2

EB1

1

2

Ch-ATIP3

- +
0

75

150

ATIP3

***

(21)(46)

M
a
x
im

a
l

In
te

n
s
it

y
 (

a
.u

.)

siCtrl si#1
0

100

200 **

(16)(11)

M
a
x
im

a
l

In
te

n
s
it

y
 (

a
.u

.)

G
ra

y
 l

e
v
e
l

Length (µm)

1

2

α- tub

GFP-ATIP3

GFP ATIP3
0.0

2.5

5.0
***

(30)(40)

M
T

 d
is

ta
n

c
e
 f

ro
m

c
e
ll

 c
o

rt
e
x
 (

µ
m

)

<1 1-2 >2
0

20

40

60 GFP
ATIP3

MT distance
from cell cortex (µm)

N
u

m
b

e
r 

o
f 

M
T

s
 (

%
)

GFP ATIP3
0

30

60

90

*

(30)(33)

P
o

la
ri

ze
d

 c
e
ll

s
 (

%
)

E

α
-t

u
b

GFP GFP-ATIP3

2

2

3

3

G
F

P

NT

1

1

4

4

G
ra

y
 l

e
v
e
l

Length (µm)

2

siCtrl

1

si#1

2

*

*

0

100

200

300

0 2 4

0

100

200

300

0

100

200

300

0 2 4

0

100

200

300

1

1

2

0

10

20 ***
***

M
T

g
ro

w
th

(µ
m

)

0.0

0.5

1.0

***
***

**
***

G
ro

w

T
im

e
-b

a
s
e
d

C
a
ta

s
t.

 f
re

q
. 
(m

in
-1

)

t h
R

a
te

( µ
m

/s
)

0

50

100
***

***

***

**

T
im

e
s

p
e
n

t
in

p
a

u
s

e
(%

)

Figure 5. ATIP3 regulates

microtubule dynamics. A,

immunostaining (anti-EB1, anti-

mCherry antibodies) of RPE-1 cells

transiently transfected with

mCherry-ATIP3 (Ch-ATIP3). Insets,

EB1 comet-like structures in

ATIP3-negative (1) and positive (2)

cells. Distribution of EB1 (black),

a-tubulin (dashed) andATIP3 (gray)

at the microtubule tip (linescans)

and quantification of comets

intensity (scattered dot plot).

Number of comets analyzed is

under brackets. Shown is 1

experiment out of 5. B, EB1

localization in siRNA-silenced

HeLa cells. Insets, EB1 comet-like

structures in ATIP3-positive (1) and

ATIP3-negative (2) cells.

Distribution of EB1 (black) and

a-tubulin (dashed) at the

microtubule tip (linescans).

Quantification of comets intensity

as in A. Shown is 1 experiment out

of 3. C, time-lapse images of

siRNA-silenced HeLa cells

expressing EB1-GFP. Arrowhead

indicates theposition of EB1comet

over time (in seconds). Parameters

of microtubule dynamics (EB1-

GFP comets) in siRNA-transfected

HeLa cells (n ¼ 100 comets) are

shown in scattered dot plot and

histograms. D, immunostaining

[anti-a-tubulin (a-tub) and anti-

GFP] of transfected D3H2LN in

migration. Arrows indicate the

direction of migration. Cell margin

(black line) is visualized by bright

field microscopy. Insets show

microtubule array at the cell border

of ATIP3-negative (1, 2) and

GFP-ATIP3-positive (3, 4) cells.

Right, immunoblots (anti-GFP,

antitubulin) of transiently

transfected D3H2LN cells. Bottom

left, quantification of microtubules

reaching given distance from the

cell cortex in GFP- and GFP-

ATIP3- expressing cells. Bottom

right, mean distance between

microtubules and cell cortex.

Number of microtubules analyzed

is under brackets. E, quantification

(percent) of polarizedD3H2LNcells

during migration. Number of

cells is under brackets. !, P < 0.05;
!!, P < 0.001, !!!, P < 0.0001.

A, B, C, and D, scale bar, 10 mm.
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expressed in RPE-1 cells (Fig. 6B). As shown in Fig. 6C, the GFP-

D1 fusion protein did not associate withmicrotubules and was

rather diffuse in the cytosol. Accordingly, GFP-D1 expression

hadno significant effect on the number, size, or intensity of EB1

comets (Fig. 6D). In contrast, GFP-D2 clearly colocalized with

the microtubule cytoskeleton and centrosome in living cells

(Fig. 6C). As for GFP-ATIP3, GFP-D2 was entirely retrieved in

the pellet fraction in microtubule cosedimentation assays

(Supplementary Fig. S5A). Of interest, upon expression of

GFP-D2, accumulation of EB1 as comet-like structures at the

microtubule plus ends was strongly impaired (Fig. 6E), indi-

cating that expression of theD2domain is sufficient to stabilize

microtubules. Expression of GFP-D3 (Fig. 6C) led to the

formation of large aggregates containing tubulin, probably

due to oligomerization of coiled-coil motifs present in the

C-terminal region of ATIP3 (31). Because of these aggregates,

functional properties of GFP-D3 could not be evaluated

further.

Altogether our results identify D2 as the ATIP3 domain able

to associate with microtubules and suppress their dynamics.

Of importance, the D2 domain also retained the ability of

ATIP3 to inhibit cell proliferation (91.6% inhibition for GFP-D2

and GFP-ATIP3 compared with GFP; ref. Fig. 7A). In wound

healing assays, cells expressing GFP-D2 showed reduced cell

migration and directionality (Fig. 7B). Cell tracking of transient

transfectants (Supplementary Movie S7) indicated that similar

to GFP-ATIP3, GFP-D2–positive cells mostly remained at the

back of the wound and were overtaken by untransfected cells

(Fig. 7C and Supplementary Fig. S5B). Thus, the microtubule-

binding domain D2 is sufficient to recapitulate the functional

features of ATIP3.

Discussion

We report here that ATIP3 is an important prognostic

marker for survival of the patients with breast cancer, inde-

pendently of the ER status of the tumor. Using 3 different

patient cohorts, we show that among metastatic breast

tumors, low ATIP3 levels correlate with reduced probability

for overall survival of the patients, suggesting that ATIP3 may

be an important indicator of metastatic progression.

Figure 6. The D2 region of ATIP3

decorates and stabilizes

microtubules. A, scheme of ATIP3

regions D1, D2, and D3. Amino acid

numbering is according to accession

number NP_001001924. B,

immunoblots (anti-GFP, antitubulin)

of RPE-1 cells transfected (24 hours)

with GFP-D1, GFP-D2, and GFP-D3.

C, immunostaining (anti-GFP,

antitubulin) of RPE-1 cells transiently

transfected as in A. D, anti-EB1

immunostaining of GFP-D1–

transfected RPE-1 cells. Insets show

EB1 comets in GFP-D1-negative (1)

and GFP-D1-positive (2) cells.

Distribution of EB1 (blue), a-tubulin

(pink), and GFP-D1 (green) at the

microtubule tip (linescans) and

quantification of comets intensity

(scattered dot plot). Number of

comets is under brackets. E, GFP-

D2-transfected RPE-1 cells stained

with anti-EB1 antibodies and

analyzed as in D. ���, P < 0.0001.

B, C, and D, scale bar, 10 mm.
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Examination of ATIP3 levels in breast tumors may contribute

to identify a population of patients at high risk of fatal

complication, who should be the subject of careful medical

follow-up.

Using a bioluminescence-based experimental mouse model

for cancer metastasis (23, 25, 26), we showed that restoring

ATIP3 expression into highly metastatic ATIP3-deficient

D3H2LNbreast tumor cells significantly delays the time-course

ofmetastasis and reduces the number of detectablemetastases

per mouse at all times examined. ATIP3 expression in cancer

cells also strongly reduces the size of metastatic foci as well as

the number of mice fully invaded with large metastases. These

observations, together with above mentioned results on

human patients, suggest that ATIP3 may have a prominent

effect on metastatic colonization.

Essential steps of metastatic progression include the ability

of cancer cells to reach a secondary organ and grow in the new

microenvironmental context (3–5). This requires active cell

migration and proliferation, two important biologic processes

that are significantly increased in breast cancer cells following

ATIP3 silencing. By promoting dual effects on cancer cell

proliferation and migration, ATIP3 likely regulates both early

(tumorigenic) and late (metastatic) stages of cancer develop-

ment. Beneficial actions of ATIP3 on a wide range of cancer-

related processes, including invasion, transendothelial migra-

tion, cell migration, and proliferation may explain its potent

anti-metastatic effects in preclinical studies.

Other studies have shown that the MTUS1 gene encoding

ATIP3 is significantly downregulated in various types of can-

cers including from the pancreas (32), ovary (33), head-and-

neck (34, 35), colon (36), and bladder (37). Low MTUS1 levels

were also correlated with reduced overall survival of the

patients with bladder cancer (37) and oral tongue squamous

cell carcinomas (35), highlighting the potential importance

of ATIP3 as a new prognostic marker in a variety of solid

tumors.

At themolecular level, we show that ATIP3 is amicrotubule-

associated protein with potent microtubule-stabilizing effects.

We propose that by stabilizing microtubules, ATIP3 decreases

their dynamics therefore leading to impaired ability of micro-

tubule tips to reach the cell cortex during migration. Micro-

tubule dynamics at the cell cortex is essential for generating a

polarized microtubule array, required for cell polarity and

migration (30). Reduced microtubule dynamics may thus

represent a major mechanism accounting for anti-migratory

and anti-metastatic effects of ATIP3 in breast cancer. Accord-

ingly, loss of ATIP3 leads to increasedmicrotubule growth rate,

less time spent in pause, and decreased frequency of cata-

strophes. Alteration of microtubule dynamics parameters in

ATIP3-depleted cells may explain uncontrolled cancer cell

motility that is associated with increased metastasis and poor

prognosis in patients with ATIP3-negative breast cancer. The

association of ATIP3 with the microtubule lattice involves an

internal basic region designated D2 whose expression is suf-

ficient to recapitulate all effects of the full-length protein on

microtubule stabilization, as well as cell proliferation, motility,

and directional migration. The microtubule-binding D2 region

thus represents the functional domain of ATIP3. Further

characterization of this domain and identification of intracel-

lular interacting partners may help deciphering the molecular

mechanisms by which ATIP3 limits breast cancer cell migra-

tion and hence, metastasis. Our study paves the way to the

design of peptides or small molecules able to mimic the effects

of ATIP3, which is a prerequisite for the development of

targeted therapy. These may be particularly beneficial to the

subset of breast tumors that have lost ATIP3 expression and

are prone to metastasize.
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Figure 7. Microtubule-binding domain D2 is the functional domain of

ATIP3. A, colony formation of GFP-, GFP-ATIP3-, GFP-D2- transfected

MCF7 cells, and quantification (mean � SD, n ¼ 4). Shown is 1

representative experiment out of 3. B, migration trajectories (17 hours)

covered by GFP- (n ¼ 30), GFP-ATIP3- (n ¼ 17), and GFP-D2- (n ¼ 24)

expressing D3H2LN cells. Directionality coefficient (Dir) is inside the

graph. C, aligned dot plots show Euclidean distance covered by

untransfected (!) and transfected cells (þ) cells as indicated. #, P < 0.05;
##, P < 0.001; ###, P < 0.0001.
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Supporting Information Materials and Methods 

 

Plasmids constructs and transfections 

EB1-GFP and EB3-GFP plasmids were described previously (1). mCherry-ATIP3 plasmid was 

obtained by subcloning the full-length cDNA insert (3.8 Kb) of GFP-ATIP3 (2) into the XhoI-

KpnI cloning sites of pmCherry-C1 vector (Clontech, CA, USA). Plasmids encoding GFP-

fused ATIP3 regions D1, D2 and D3 (410, 464 and 396 amino acids, respectively) were 

obtained by PCR-amplification of full-length ATIP3 sequence using specific oligonucleotides : 

5’-CCGCTCGAGCCATGACTGATGATAATTC AGATG-3’ (sense) and  

5’-CGGGGTACCTCATCCAAATGACGAGCCCACCTTTTG-3’ (antisense) for D1;  

5’-CCGCTCGAGGACTGACTTGGGATGCAAATGAT-3’ (sense) and  

5’-CGGGGTACCTCATGCATTAAGAGCTGTAAATAA-3’ (antisense) for D2;  

5’-CCG CTCGAGCAGTTGAAAAGAGCAGGCAAAAG-3’ (sense) and  

5’-CGGGGTACCTCAT CTGGGTGAAATGCTGGG-3’ (antisense) for D3.  

Resulting cDNA insert fragments (1230 bp, 1395 bp and 1188 bp for D1, D2 and D3, 

respectively) were subcloned into the XhoI and KpnI sites of the pEGFP-C1 vector (Clontech, 

CA, USA) so that the first codon of each domain is in frame with the carboxy-terminal end of 

the Green Fluorescent Protein, and entirely sequenced. 

Transient and stable transfections of plasmid constructs were performed as described (2).  

 

 

 



XCELLigence proliferation assay 

For measurement of cell proliferation by XCELLigence technology, D3H2LN cell clones 

(WT, GFP, Cl3 and Cl6) were seeded in quadruplicate (15,000 cells per well) in 100 l 

complete medium on the top of gold electrodes in 96-well E-plates (Roche Diagnostics, 

France). Electrical impedance was monitored every 15 min during 80 hrs by the RTCA 

software (Real-time Cell Analyzer) as described (3, 4).  

 

Histological analysis 

Sections (5 µm) of metastatic organs were cut from formalin-fixed, paraffin-embedded tissue 

blocks, counterstained with hematoxylin-eosin and examined under an inverted microscope. 

 

Time-lapse videomicroscopy of wound healing 

D3H2LN cells were transfected for 14 hrs with appropriate constructs prior to seeding 

(100,000 cells/well) for 7 hrs in each compartment of IBIDI culture insert (Biovalley, France). 

Time-lapse acquisitions were each 5 min (bright field acquisition) and each 30 min (GFP 

acquisition) for at least 13h in a Zeiss Axiovert 200M microscope and 10X objective lens. 

Cell tracking was done using the manual tracking plugin of ImageJ. Cell velocity was 

calculated by a regression analysis of the distance versus time plot. Migratory properties were 

evaluated by measuring the euclidean distance for each cell at time 8h. Cell directionality was 

measured by ImageJ chemotaxis and migration tool plugin (Euclidean distance/Accumulated 

distance). A value of 1 means straight motion and a value of 0 means non-straight motion. 

 

Microtubule stability and regrowth 

For analysis of MT stability, HeLa cells transfected with control or ATIP3-specific siRNAs, 

or stable MCF7 cell clones (2) were treated for 1 hr at 37°C with different doses of 



nocodazole and free tubulin was extracted with PEM (PIPES 80 mM, EGTA 2mM, MgCl2 1 

mM) Triton X100 0.1% buffer solution. Cells were fixed with cold methanol prior to staining 

for 1 hr at room temperature with anti-α-tubulin (clone F2C, a kind gift of Dr Franck Perez, 

Institut Curie, Paris), and anti-acetylated-tubulin (clone 6-11B-1; Sigma) antibodies. Cy2, 

Cy3 and Cy5 conjugated secondary antibodies were from Jackson Laboratories. Fluorescence 

images were captured in a Zeiss Axiovert 200M inverted fluorescence microscope equipped 

with a CCD camera (CoolSNAP HQ, Photometrics) and 100X objective lens. Multi-

dimensional acquisitions were performed using Metamorph 7.1.7 software. 

For analysis of MT regrowth after nocodazole washout, transiently transfected RPE-1 cells 

were treated for 1 hr at 4°C with 10µM of nocodazole, then washed with cold PBS and 

warmed in complete medium to allow MT regrowth for 2, 5 and 15 min prior to fixation in 

cold methanol and staining as described above. Alpha-tubulin fluorescence intensity was 

measured in concentric circles of different diameters (2, 4, 6, 8 µm) around the centrosome 

(stained by anti-γ-tubulin). Values for 2 µm were subtracted from 4, 6 and 8 µm to eliminate 

fluorescence due to MT nucleation.  

 

Live cell imaging and microtubule dynamics 

HeLa cells co-transfected for 48 hrs with (50 nM) siRNA (control or ATIP3-specific) and (2 

µg) EB1-GFP were seeded in 35 mm glass bottom dishes (IBIDI) and analyzed with inverted 

fluorescence microscope using the TIRF module and 60X objective lens. Only cells with low 

levels of EB1-GFP were chosen. Time-lapse series of 1000 images were acquired with a 157 

ms interval using Live Acquisition (TILL Photonics) software. Time-lapse recordings were 

then reduced to 1 frame each 1.57s and ImageJ manual tracking plugin was used for 

measurement. At least 10 MTs per cell in 10 separate cells were tracked for each condition. 

The changes in length of 0.5 µm were considered as a growth phase, and movements of <0.5 



µm were considered as pause events. MT growth rate was calculated by linear regression 

analysis of the lifetime history plots and catastrophe frequency based on time and distance 

were calculated according to the following formula : C 
time-1

: SCatastrophes/Sgrowth + pause duration until 

catastrophe and C 
length-1

: SCatastrophes/Sgrowth length until catastrophe  as described (5).  

 

Microtubule cosedimentation assay 

Microtubule cosedimentation assay was performed as described (2). Briefly, cells were 

incubated for 20 min at 4°C in PEM buffer (100 mM PIPES, pH 6.9, 1 mM MgSO4, 1 mM 

EGTA), scraped and sonicated prior to centrifugation at 15000 rpm for 10 min, 4°C. Clarified 

samples were incubated with Taxol (20 µM) in the presence of GTP (1 mM) and DTT (1 

mM) for 45 min at 37°C and were spun at 70 000 g for 30 min at 30°C through a cushion 

buffer containing 40% glycerol, 20 µM taxol and 1 mM GTP. The supernatant (S) and pellet 

(P) fractions were collected separately and subsequently immunoblotted with anti-GFP 

antibody. Blots were reprobed using anti-alpha-tubulin antibody. 

 

 

 



Legends to Supporting Information Movies 

 

Supporting Information Movie 1. Time-lapse videomicroscopy of wound healing assay 

using GFP-transfected D3H2LN clone 

Stably transfected GFP cells were seeded in IBIDI chambers and wound closure was analyzed 

for 12 hrs by time-lapse videomicroscopy using a wide field Zeiss microscope (10X lens). 

Shown is 1 image every 20 min. 

 

Supporting Information Movie 2. Time-lapse videomicroscopy of wound healing assay 

using GFP-ATIP3-transfected D3H2LN clone (Cl3) 

GFP-ATIP3-expressing stable clone was analyzed as described for movie 1. 

 

Supporting Information Movie 3. Time-lapse videomicroscopy of wound healing assay 

using GFP-transiently transfected D3H2LN cells 

Transiently transfected GFP cells were seeded in IBIDI chambers and wound closure was 

analyzed for 12 hrs by time-lapse videomicroscopy using a Zeiss microscope (10X lens). 

Images were acquired every 5 min (bright field) and every 30 min (GFP filter). Shown is 1 

image every hour. 

 

Supporting Information Movie 4. Time-lapse videomicroscopy of wound healing assay 

using GFP-ATIP3-transiently transfected D3H2LN cells  

GFP-ATIP3 transient transfectants were analyzed as described for movie 3. 

 

 

 



Supporting Information Movie 5. Time-lapse videomicroscopy of EB1-GFP comets in 

siRNA-silenced HeLa cells 

Cells were co-transfected with EB1-GFP and siRNA (control or ATIP3-specific si#1) for 48 

hrs. EB1 comets were analyzed by time-lapse TIRF microscopy (60X lens). Time-lapse series 

of 1000 images were acquired with a 157 ms interval and shown at 8 frames per second. 

 

Supporting Information Movie 6. Time-lapse videomicroscopy of EB3-GFP comets in 

wild type and mCherry-ATIP3 transfected MRC5 cells 

Cells were transfected for 24 hrs with EB3-GFP-construct without (upper panel) or with 

(lower panel) mCherry-ATIP3 cDNA. EB3-GFP comets were analyzed by time-lapse 

videomicroscopy using a spinning disk microscope (CSU-X1-A1; Yokogawa). On the lower 

panel, movies taken with GFP and mCherry filters are shown on the left and right panels, 

respectively. Time-lapse series of 500 images were acquired with a 100 ms interval and 

shown at 8 frames per second. 

 

Supporting Information Movie 7. Time-lapse videomicroscopy of wound healing assay 

in GFP-D2-transiently transfected D3H2LN cells 

GFP-D2 transient transfectants were analyzed as described for movie 3. 
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Supporting Information Figure S1. Low levels of ATIP3 associate with decreased overall and

relapse-free survival of the patients

(A) Overall survival (OS) curves from patients (n=150) with tumors expressing normal (>0.5, gray

line) or low (<0.3, black line) ATIP3 levels, relative to the median value of Affymetrix MTUS1

probeset intensities in non tumoral tissues. Results shown are from Affymetrix MTUS1 probesets

212093_s_at and 239576_at on the Institut Curie cohort (B) Relapse-free survival (RFS) curves from

patients (n=150) with tumors expressing normal or low ATIP3 levels as in (A) Results shown are frompatients (n=150) with tumors expressing normal or low ATIP3 levels as in (A). Results shown are from

Affymetrix MTUS1 probesets 212096_s_at, 212093_s_at and 239576_at. (C) Overall survival (OS, n=

791) curves from patients with tumors expressing normal to high (grey line) or low (black line)

MTUS1 level using Kaplan-Meier plotter (http://www.kmplot.com). All percentiles between the lower

and the upper quartiles were automatically computed, and the best performing threshold was used as a

cut off. Results shown are from Affymetrix MTUS1 probesets 212093_s_at and 212095_s_at. (D)

Relapse-free survival (RFS, n=2898) curves from patients with tumors expressing normal to high

(grey line) or low (black line) MTUS1 level using Kaplan Meier plotter as in (C) Results shown are(grey line) or low (black line) MTUS1 level using Kaplan-Meier plotter as in (C). Results shown are

from Affymetrix MTUS1 probesets 212096_s_at, 212093_s_at and 212095_s_at. (E) Percentage of

patients remaining alive after 5 years with non metastatic (-) and metastastic (+) tumors expressing

normal (white bar) or low (black bar) levels of ATIP3, based on Affymetrix MTUS1 probesets

212093_s_at and 239756_at as in (A). Number of tumors is indicated below under brackets
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Supporting Information Figure S2. Anti-metastatic effects of ATIP3 in vivo

(A) Total number of photons/sec per mouse at day 24. *p<0.05 as compared to WT, #p<0.05 as

compared to GFP. (B) Histological analysis of metastatic foci at day 24 after H&E coloration.

Magnification x100 (lung) and x400 (brain).
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Supporting Information Figure S3. ATIP3 inhibits breast cancer cell proliferation and migration

(A) Real-time measurement of impedance-based cell proliferation of ATIP3-negative (WT, GFP) and

ATIP3-positive (Cl3, Cl6) D3H2LN cells as measured by the XCELLigence methodology. Shown is

one representative experiment out of 3 performed in quadruplicate. (B) Boyden chamber migration

assay of ATIP3-negative (GFP-transfected) and GFP-ATIP3-positive MDA-MB-231 cell clones. Cell

migration was quantified by densitometry. Results (mean±SD) are expressed as percent of GFP-

transfected cells (n 3) (C) Q antification of o nd clos re (in percent) at time T18 in GFP ATIP3transfected cells (n=3). (C) Quantification of wound closure (in percent) at time T18 in GFP-ATIP3-

expressing MCF-7 clones (HC1, HC6, HC7, described in Rodrigues-Ferreira et al., PLoS One

2009;4:e7239) as compared to ATIP3-negative MCF-7 transfected GFP clone (n=2). (D) Diagrams

representing the migration trajectories covered within 12 hrs by transiently transfected GFP (n=19)

and GFP-ATIP3 (n=19) cells. Directionality coefficient (Dir) is indicated inside the graph. (E)

Scattered dot plot of GFP- (black square) and GFP-ATIP3-expressing (black triangle) cell velocity

(n=19 cells for each condition). (F) Representative pictures of wound closure (times T0 and T12 after

l f th i t) f D3H2LN t i tl t f t d ith GFP d GFP ATIP3 t t Shremoval of the insert) of D3H2LN transiently transfected with GFP and GFP-ATIP3 constructs. Shown

are merge pictures taken in bright field and GFP fluorescence filters. Lower panel : cell tracking of

fluorescent positive cells at time T12. Dashed lines indicate wound border. *p<0.05, **p<0.001.



A

Ch-ATIP3

EB1

B

ezrin

WT Ch-ATIP3

1
0
 s

e
c

1
0
 s

e
c

B

EB3-GFP 2 µmEB3-GFP Merge2 µm

Supporting Information Figure S4. ATIP3 regulates MT dynamics

(A) Western blot analysis of RPE-1 cells either non-transfected (NT) or transfected with mCherry-

ATIP3 (Ch-ATIP3) using anti-EB1 antibody. Blots were probed using anti-cherry and anti-ezrin

antibodies for control of transfection and loading respectively. (B) Kymographs of two microtubules

extracted from supplemental movie 6. EB3-GFP labels MT plus end and allows the quantification of

dynamic parameters on control (WT, left) and mCherry-ATIP3 expressing cells (Ch-ATIP3, right).

Calculated velocity of EB3-GFP comets was 0.5µm/sec for control cells (WT) and 0.2µm/sec for cells

co-transfected with Ch-ATIP3.
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Supporting Information Figure S5. Characterization of ATIP3 domains

(A) Microtubule co-sedimentation assay performed on MCF-7 transfected with GFP, GFP-ATIP3

(ATIP3) or GFP-D2 (D2). Immunoblots were revealed using anti-GFP and reprobed with anti-tubulin(ATIP3) or GFP D2 (D2). Immunoblots were revealed using anti GFP and reprobed with anti tubulin

antibodies. Molecular weights are indicated on the left. L: total cell lysate; S: supernatant; P: pellet.

(B) Representative pictures of wound closure of GFP and GFP-D2 transfected D3H2LN cells at times

T0 and T12 after removal of the insert. Shown are merge pictures taken in bright field and GFP

Molina et al, Supporting Information Fig S5

fluorescence filters. Lower panel: cell tracking of fluorescent positive cells at time T12. Dashed lines

indicate wound border.
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Results from the Cancer Research paper demonstrate that ATIP3 was able to regulate 

microtubule (MT) dynamics to, in turn, control cell polarity and cell migration. Thus, the 

aim of this second submitted article was to investigate how ATIP3 decreases MT dynamic 

instability parameters. 

Analysis of ATIP3 amino acid sequence revealed one SxIP (SAIP) motif in the D3 region and 

two SxIP-like (KNIP and RPLP) motifs in the D2 region, all surrounded by serine and basic 

rich residues. To date SxIP motifs are recognized as one of the EB1 interaction motifs and 

as a Microtubule Tip Localization Signals (MtSL) that confers tip tracking properties. The 

presence of these three motifs suggest that ATIP3 is a novel EB1 interacting partner. 

Cell lysates from MCF7 breast cancer cells transiently transfected with GFP-ATIP3 were 

incubated with GST-EB1 as an affinity matrix for GST-pull-down experiments. Interestingly, 

results indicated that GFP-ATIP3 was able to interact with EB1. Experiments using ATIP3-

expressing HeLa cells confirmed the first result, showing that endogenous ATIP3 was also 

interacting with GST-EB1. Finally, co-immunoprecipitation experiments in MCF7 cells co-

transfected with mCherry-ATIP3, EB1-GFP, EB3-GFP and GFP-EB3 confirmed the 

interaction of ATIP3 with EB1 and revealed that ATIP3 was able to interact with EB3 as 

well. 

To further characterize the interaction, GFP-ATIP3 cell lysates were incubated with GST-

EB1 comprising the C-terminal or the N-terminal region. As for most of the SxIP-containing 

EB1 partners, ATIP3 interacts with the C-terminal domain of EB1. The interacting domain 

of ATIP3 was then investigated by transfecting the D1, D2 and D3 GFP-constructs in MCF7 

cells. Cell lysates were then incubated with GST-EB1 and pull-down experiments were 

performed. Western blot analysis indicate that only the D2 domain was interacting with 

EB1 and more precisely with the C-terminal domain of EB1, eliminating the SAIP domain 

present in D3 region of ATIP3 as involved in the interaction with EB1. 

To investigate which of the two SxIP-like (KNIP and RPLP) motifs of D2 was interacting with 

EB1, D2 deletion mutants (D2C terminal and D2N terminal) were constructed and tagged 

with GFP. Transfection of these constructs on MCF7 cells followed by the incubation of the 

lysates with GST-EB1 was performed. Results showed that only the D2C domain was able 

to interact with EB1. Refining of this D2C domain using shorter deletion mutants allowed 

the identification of a domain, termed CN, capable to interact with EB1. Deletion of the 

CN domain from the full-length protein and the D2 domain (ATIP3delCN and D2delCN) led 

to a marked decrease in EB1 interaction. Additionally, deletion of the RPLP motif from the 

CN domain (CN67delP) also reduces the interaction with EB1.  
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Fluorescent peptides corresponding to a smaller sequence of the CN, termed CN45 

comprising the RPLP motif, and the CC motif that do not interact with EB1, were incubated 

together with GST-EB1. Results revealed that CN interacts directly with EB1. Altogether 

these results indicate that ATIP3 directly interacts with EB1 via an SxIP-like domain, RPLP, 

located in the CN domain. 

To investigate if EB1-interaction may contribute to MT-association, examination of cellular 

localization of D2 deletion mutants was then performed in RPE1 cells stained with anti-

GFP and anti-tubulin antibodies after transient transfection of the different constructs. 

Similar to ATIP3 and D2, D2N, D2C and CN associate with MTs. The CN domain weakly 

interacts with MTs and remains mostly cytosolic. EB1-interacting domain termed CN67 

(which is smaller than the CN but 22 residues longer than CN45) remains completely 

diffuse at the cytosol. Of note, the D2delCN deletion mutant still decorates MT lattice, 

even if the EB1-interacting domain was removed. These results indicate that EB1 

interaction and MT interaction involve two different regions located in the central 

functional domain of ATIP3. 

As mentioned above, the presence of SxIP motif often confers tip tracking properties. 

Transiently transfection of low levels of GFP-ATIP3 in RPE1 cells followed by EB1 staining 

was performed. Immunofluorescence images showed that ATIP3 decorates the MT lattice 

but does not co-localize with EB1 at the MT plus-end. Time-lapse images of MRC5 cells co-

transfected with mCherry-ATIP3 and EB3-GFP were then taken. Analysis of the videos 

confirmed the previous result, in which ATIP3 does not accumulate at the MT growing-

ends, and consequently is not a MT plus-end tracking protein (+TIP). Interestingly, time-

lapse videomicroscopy of MCF7 stably expressing GFP-ATIP3 showed that rather than an 

accumulation at the end of growing MTs, ATIP3 accumulate at the end of shrinking MTs. 

As ATIP3 does not interact with EB1 at the MT growing-end, Proximity Ligation Assay (PLA) 

experiments were design to identify the cellular compartment where the interaction 

occurs. Two conditions were tested. First, transient transfection of full-length and ATIP3 

deletion mutants in RPE1 cells and amplification using anti-GFP and anti-EB1 antibodies, 

and the second condition using ATIP3-expressing HeLa cells, that were amplified using 

anti-MTUS1 and anti-EB1 antibodies to reveal the interaction of endogenous proteins. PLA 

amplification signals (or RCP for rolling circle product) was observed in cells transfected 

with ATIP3, D2, D2C and CN, as well as in the endogenous condition. Transfection of the 

full-length and D2 depleted for the CN domain (ATIP3delCN and D2delCN) showed a 

significant reduction in the PLA amplification signals. 

Detailed analysis of PLA immunofluorescence images showed that the interaction happens 

mostly in the cytosol, which is coherent with the interaction of CN67 domain which is 
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completely cytosolic and interacts with EB1. Interestingly, some PLA signals were also 

detected along MT lattice in ATIP3 and D2 transfection and endogenous ATIP3. Altogether 

these results indicate that ATIP3 interacts with EB1 in intact cells through the CN domain 

mainly in the cytosol and along the MT lattice. 

Cancer Research published results showed that ATIP3 silencing increases MT dynamic 

instability, and that ATIP3 and D2 re-expression limits EB1 accumulation at the MT 

growing end. To investigate the consequence of ATIP3-EB1 interaction on EB1 localization 

at the MT plus-end, D2 deletion mutants were transfected in RPE1 cells and staining of 

GFP, tubulin and EB1 was performed. Observation of the immunofluorescence images 

revealed all the EB1-interacting domains (D2C, CN and CN67) impaired EB1 accumulation 

at the plus-end, whereas domains that do not bind EB1 (CC, D2delCN and CN67delP) had 

no effect on EB1 comet number and length. Delocalization of EB1 in the cells transfected 

with D2, D2C and CN from the MT tip to the lattice and cytosol, were in line with PLA 

results. These data suggest a functional involvement of the EB1-interacting domain of 

ATIP3 in reducing EB1 accumulation at the MT plus-ends. 

Rescue experiments were then design in ATIP3-silenced HeLa cells in which GFP-ATIP3 and 

deletion mutants were re-introduced at endogenous levels and EB1 immunostaining was 

performed. Results showed that GFP-ATIP3 restore ATIP3 knock-down phenotype 

decreasing EB1 comet-like structures. In addition, GFP-D2 and GFP-CN, similar to GFP- 

ATIP3, restore the impaired accumulation of EB1, whereas GFP-D2delCN does not.  

Altogether these results demonstrate that functional ATIP3-EB1 complexes are formed in 

the cytosol and near to the MT lattice. This interaction may contribute to restrain the 

accumulation of EB1 at the MT growing end. Given that EB1 play a key role in regulating 

MT dynamics from the plus-ends, these data may account for decreased MT dynamics in 

the presence of ATIP3. 

The findings reported suggest that altered expression of either ATIP3 or EB1 may modify 

the number of ATIP3-EB1 molecular complexes and subsequent accumulation of EB1 at 

the MT plus ends. In order to investigate the functional relevance of these data in human 

pathology, examination of the prognostic value in respect to ATIP3 and EB1 expression 

levels in breast cancer was evaluated. Using a panel of 150 breast cancer patients with 

known clinico-pathological characteristics, DNA microarray probeset values for MTUS1 

(ATIP3) and MAPRE1 (EB1) genes were compared with overall survival of the patients. 

Hierarchical clustering of these tumors allowed the classification in four groups according 

to the expression levels of both genes: group 1, low expression of both genes; group 2, 

high expression levels of MTUS1 and low of MAPRE1; group 3, low levels of MTUS1 and 

high of MAPRE1; and group 4, very high levels of MTUS1 and low levels of MAPRE1. 
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Overall survival curves indicate that tumors from cluster 3 (low ATIP3-high EB1) are 

associated with significantly reduced overall survival of the patients as compared to all 

other breast tumors analyzed. In addition, the percent of patients surviving after 5 years 

was also markedly decreased in tumors from group 3. These analyses indicate that 

combined information on ATIP3 and EB1 could be considered as a prognostic marker of 

breast cancer progression and clinical outcome. 

To conclude, this work showed that ATIP3 interacts with EB1 and that this interaction may 

regulate MT dynamics and functions at the growing ends. Of relevance, combined 

ATIP3/EB1 may represent a novel prognostic marker that should be taken into account for 

better medical follow up. 

 

  



 
ATIP3 interacts with End Binding protein EB1 to limit its accumulation at the 
microtubule plus ends 
 
 

 

Lauriane VELOT# , Angie MOLINA#1,2,3, Sylvie RODRIGUES-FERREIRA1,2,3, 

Benjamin Pierre BOUCHET4, Marina MOREL1,2, Anne VINCENT-SALOMON5, 

Vanessa BENHAMO5, Fabrice ANDRE3, Diane BRAGUER6,7, Ariel SAVINA8, 

Stéphane HONORE6,7, Clara NAHMIAS*1,2,3 

 

#equal contribution 

* correspondence to : Dr Clara Nahmias, Inserm U981, Institut Gustave Roussy, 

114 rue Edouard Vaillant, 94800 Villejuif. Email : clara.nahmias@inserm.fr 

 
1. Inserm U1016, Université Paris Descartes, 75014 Paris, France. 
2. CNRS UMR8104, Institut Cochin, 75014 Paris France. 
3. Inserm U981, Université Paris Sud, Institut Gustave Roussy Department of 

Molecular Medicine, 94800 Villejuif, France. 
4. Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH 

Utrecht, The Netherlands. 
5. Inserm U934, Department of Biopathology, Institut Curie, 75248 Paris Cedex 

5, France. 
6. Aix Marseille Université, Inserm, CRO2 UMR_S 911, 13385 Marseille, France. 
7. APHM, Hôpital Timone, 13385 Marseille, France. 
8. Scientific Partnerships Roche SAS, Boulogne Billancourt, France. 

 

 

Running title : ATIP3 interacts with EB1 

 

Keywords: Breast cancer / EB1 / microtubule / MTUS1 / Proximity Ligation Assay 

 

Total count : 51234 characters including spaces 

8 Figures, 2 Tables  

5 Expanded View Figures, 2 Expanded View Tables, 6 movies 

 



Abstract  

 

Microtubule-associated protein ATIP3 is the major product of candidate tumor 

suppressor MTUS1 gene down-regulated in breast cancer. We have previously 

reported that ATIP3 is a potent microtubule stabilizer whose depletion increases 

microtubule dynamics, cell proliferation and migration. We show here that ATIP3 

directly interacts with End Binding protein 1 (EB1) via an SxIP-like motif but has no 

tip-tracking properties. Proximity ligation assays reveal that molecular interaction 

between ATIP3 and EB1 takes place in the cytosol and along the microtubule 

lattice in living cells. ATIP3-EB1 interaction is functionally involved in regulating 

EB1 accumulation at the MT plus ends. We propose a novel mechanism by which 

ATIP3-EB1 molecular complexes may locally reduce the effective concentration of 

EB1, thereby limiting EB1 diffusion and access to the MT plus ends. This in turn 

may limit the recruitment of regulatory +TIPs and subsequently decrease MT 

dynamics. Finally, we provide evidence for reduced clinical outcome in breast 

cancer patients with low ATIP3 and high EB1 expression levels, illustrating 

functional relevance of our findings in human pathology.  

  



Introduction 

 

Microtubules (MTs) are highly polarized structures that continuously switch 

between periods of polymerization (growth) and depolymerization (shrinkage) at 

their growing (plus) ends (Mitchison and Kirschner, 1984; Desai and Mitchison, 

1997; Howard and Hyman, 2003). This process, termed MT dynamic instability, 

allows rapid reorganization of the MT cytoskeleton during essential cell functions 

such as cell polarity and migration, mitosis and intracellular transport of proteins 

and organelles. Alterations in MT dynamic instability parameters lead to defects in 

mitotic spindle formation and chromosome segregation and are a major cause of 

cancer initiation and progression. 

MT dynamic instability is tightly regulated by microtubule-associated proteins 

(MAPs) and MT plus end tracking proteins (+TIPs) that accumulate at the MT 

growing ends (Akhmanova and Steinmetz, 2008). End Binding proteins (EB1, 

EB2, EB3) are +TIPs that play a pivotal role in the regulation of MT dynamics. EB1 

and EB3 can autonomously recognize growing MT ends through binding to GTP-

cap structures (Maurer et al., 2011, 2012) and have been shown to control 

persistent MT growth (Komarova et al., 2009). EBs interaction with the plus ends 

is highly dynamic, and rapid exchange of EBs at the MT plus ends requires free 

diffusion and mobility of the cytosolic pool of EB proteins (Dragestein et al., 2008). 

A major function attributed to EBs is their ability to recruit a variety of regulatory 

+TIPs at the growing ends to orchestrate MT dynamics in a coordinated fashion. 

Numerous +TIPs bind to EB1 through a core SxIP motif (Serine - any amino acid – 

Isoleucine - Proline) embedded in an intrinsically unstructured polypeptide region 

rich in basic, proline and serine amino acids (Honnappa et al., 2009; Galjart, 2010, 

Slep 2010; Kumar and Wittmann, 2012; Jiang et al., 2012). Efficient SxIP-EB1 

interaction requires that at least one basic residue, and no acidic residue, is 

present within the 9 amino acids surrounding the SxIP motif (Buey et al., 2012, 

Jiang et al., 2012). Consensus SxIP motifs have been shown to confer both EB1 

binding and tip-tracking properties (Honnappa et al., 2009, Buey et al., 2012). 

Recent high throughput and in silico analyses have identified a broad and 

heterogeneous group of SxIP-containing EB1 partners (Jiang et al., 2012). Most of 

them are localized at the MT plus ends and regulate MT dynamics while others 



may connect MT plus ends with cellular compartments, indicating a diversity of 

functions associated with EB1 interaction (Jiang et al., 2012).  

The ATIP3 protein is a novel MAP whose expression is markedly decreased in 

highly proliferative and metastatic breast tumors (Rodrigues-Ferreira et al., 2009; 

Rodrigues-Ferreira and Nahmias, 2010; Molina et al., 2013). Restoring ATIP3 

expression at normal levels in breast cancer cells significantly reduces cell 

proliferation and migration, as well as tumor growth and metastasis formation in 

experimental animal models (Rodrigues-Ferreira et al., 2009; Molina et al., 2013). 

Our group has recently shown that ATIP3 is a potent MT-stabilizing protein and 

that its depletion increases MT dynamics. Accordingly, expression of ATIP3 in 

breast cancer cells reduces cell migration by decreasing cell polarity and 

directionality, and impairs the ability of MTs to reach the cell cortex as a 

consequence of reduced MT dynamics at the plus ends (Molina et al., 2013). 

However, the molecular mechanisms by which ATIP3 regulates MT dynamic 

instability remain unknown.  

ATIP3 is the major product of MTUS1 gene, a paralog of MTUS2 gene encoding 

TIP150 (Du Puy et al., 2009; Jiang et al., 2009) and the ortholog of Xenopus ICIS 

(Ohi et al., 2003). Of interest, both TIP150 and ICIS localize at MT growing ends 

where they interact with other +TIPs (Jiang et al., 2009, Ohi et al., 2003). 

Structural homology between ATIP3, ICIS and TIP150 (Di Benedetto et al., 2006; 

Rodrigues-Ferreira and Nahmias, 2010) prompted us to investigate whether ATIP3 

may regulate MT dynamics through functional interaction with +TIPs. 

In the present study, we show that ATIP3 directly interacts with EB1 via an SxIP-

like sequence but does not accumulate at the MT plus ends. We provide evidence 

that ATIP3-EB1 molecular complexes are present in the cytosol and along the MT 

lattice in intact cells. Our results support the notion that ATIP3-EB1 interaction 

limits EB1 accumulation at the MT growing ends, which in turn may contribute to 

the regulation of MT dynamics and function. 



Results 

 

ATIP3 interacts with EB1 

Close examination of the ATIP3 amino acid sequence revealed three SxIP or 

SxIP-like motifs, each surrounded by intrinsically unstructured stretches of basic 

and proline/serine residues (Fig.1A). These features are recognized as hallmarks 

of EB1 binding and MT tip-tracking (Akhmanova and Steinmetz 2008; Honnappa 

et al., 2009; Galjart 2010; Jiang et al., 2012), suggesting that ATIP3 may be a 

novel cellular partner of EB1. 

To investigate whether ATIP3 interacts with EB1, we performed pull-down assays 

using Gluthation-S-transferase (GST)-EB1 as an affinity matrix to precipitate GFP-

ATIP3 proteins expressed in cell lysates. Results indicate that GST-EB1 

precipitates GFP-ATIP3 fusion proteins (Fig.1B, 1C) as well as endogenous ATIP3 

expressed in HeLa cells (Fig.1C). ATIP3-EB1 complexes were also detected by 

co-immunoprecipitation using either anti-Cherry or anti-GFP antibodies following 

co-transfection of Cherry-ATIP3 with EB1-GFP (Fig.1D). Cherry-ATIP3 also co-

immunoprecipitated with GFP-EB3 as well as EB3-GFP (Expanded view Fig.E1A) 

indicating that ATIP3 interacts with End Binding proteins (EBs) in intact cells. 

Since EB1 is the leader member of the EB family studied in most cell types, we 

focused here on ATIP3 interaction with EB1. 

To map the domain of EB1 that interacts with ATIP3, we used GST-EB1 deletion 

mutants comprising either the N-terminal (EB1-N) or C-terminal (EB1-C) portion of 

the molecule (Fig.1E). Similar to what observed for other SxIP-containing +TIPs 

(Askham et al., 2002; Komarova et al., 2005; Mimori-Kiyosue et al., 2005, Jiang et 

al., 2009), ATIP3 interacts with the C-terminal portion of EB1 (Fig.1F). ATIP3 also 

binds to EB1 in the presence of microtubule depolymerizing agent nocodazole 

(Fig.1G) indicating that EB1-ATIP3 interaction does not require an intact 

microtubule network.  

To get further insight into the ATIP3-EB1 interaction, ATIP3 was cleaved into three 

distinct domains designated D1, D2 and D3 (see Fig.1A) that were fused to GFP 

and used in GST-EB1 pull-down experiments. As shown in Fig.1H, the central D2 

domain clearly interacts with EB1, whereas the N-terminal (D1) and C-terminal 

(D3) domains of ATIP3 are not retained on GST-EB1 beads. These results 

indicate that the consensus C-terminal SxIP motif (SAIP, position 1249) present in 



the D3 domain of ATIP3 (Fig.1A) is not mainly involved in EB1 interaction. 

Accordingly, an ATIP3 deletion mutant lacking the last 30 amino acids of the 

protein (ATIP3delCTer) was still able to bind EB1 (Expanded View Fig.E1B). 

Furthermore, site-directed mutagenesis of either Ile or Pro residues of the SAIP 

sequence (positions 1251 and 1252) into Asn or Ala, respectively, did not affect 

the EB1-binding properties of ATIP3 (Expanded View Fig.E1B). Altogether these 

results indicate that the central D2 domain is the major EB1-binding domain of 

ATIP3. As for the whole ATIP3 protein, the D2 domain interacts with the C-

terminal part of EB1 and this interaction is not affected by nocodazole treatment 

(Fig.1I).  

As illustrated in Fig.1A, the D2 domain contains two SxIP-related motifs (KNIP and 

RPLP at positions 462 and 780, respectively), in which a basic amino acid is 

present instead of the canonical serine residue. To investigate whether one or 

both of these non-classical motifs may be involved in EB1 binding, we generated 

D2 deletion mutants tagged with GFP (Fig.2A) and analyzed their ability to interact 

with EB1 in GST pull-down assays. As shown in Fig.2B, the C-terminal (D2C) 

fragment containing the RPLP sequence was precipitated by GST-EB1 whereas 

the N-terminal (D2N) fragment containing the KNIP motif remained unbound. Site-

directed mutagenesis of Ile and/or Pro residues (positions 464 and 465) into Asn 

and/or Ala, respectively, in the KNIP sequence of either ATIP3 or D2 fragment did 

not abrogate EB1 binding (Expanded View Fig.E1B), confirming minor involvement 

of the KNIP sequence in EB1 interaction. The presence of an asparagine at 

position +2 and a negatively charged aspartic acid at position +5 of the KNIP 

sequence (see Fig.1A) may account for weak interaction of this motif with EB1. In 

contrast, the sequence surrounding the RPLP motif (see Fig.1A) follows the SxIP-

9AA rule (Jiang et al., 2012), showing three basic and no acidic amino acid within 

the nine residues proximal to the SxIP sequence.  

By refining the analysis of D2C fragments using shorter deletion mutants, we 

identified an EB1-interacting sequence of 112 residues (CN) (Fig.2B) that could be 

further reduced to 67 and 45 amino acids (CN67 and CN45 domains, respectively) 

(Fig.2C, Table I, Expanded view Fig.E1C). The minimal EB1-interacting fragment 

CN45 includes the consensus RPLP motif, has a net positive charge and displays 

significant homology to the EB1-interacting region of TIP150 (Jiang et al., 2009) 

(Expanded View Fig.E1D) as well as high evolutionary conservation (Expanded 



View Fig.E1E). Importantly, deletion of the CN sequence in ATIP3 and D2 

polypeptides (ATIP3delCN and D2delCN) led to a marked decrease in EB1 

interaction (Fig.2D). Deletion of the RPLP sequence (CN67delP mutant) also 

significantly reduced the ability of CN67 to interact with EB1 (Fig.2D), further 

indicating major involvement of this SxIP-like motif in EB1-binding.  

To investigate whether the ATIP3-EB1 interaction is direct, or whether it requires 

the presence of intermediate proteins present in the cell lysate, fluorescent 

peptides corresponding to the sequence of CN45 were synthesized and analyzed 

in GST-EB1 pull-down assays in vitro. The short CC domain that does not bind 

EB1 (Fig. 2A, 2B) was used as a negative control. As shown in Fig.2E, FITC-CN45 

(but not FITC-CC) was specifically retained on GST-EB1 beads, indicating direct 

interaction between CN45 and EB1.  

Altogether, these results demonstrate that ATIP3 directly interacts with EB1 via a 

non-canonical (RPLP) motif present in the C-terminal portion of the D2 domain. 

 

EB1-binding domain is distinct from MT-localization domain 

Our studies have shown that D2 is a positively charged domain whose expression 

is sufficient to recapitulate all functional features of ATIP3, including the ability to 

associate with MTs (Molina et al., 2013). To investigate whether EB1-interaction 

may require or contribute to MT-association, we examined the cellular localization 

of GFP-fused D2 deletion mutants in RPE1 cells, that are well-spread and suited 

for analyzing microtubule arrays and protein localization. Immunofluorescence 

studies (Fig.3) revealed that both N-terminal (D2N) and C-terminal (D2C) portions 

of the D2 domain are co-localized with tubulin at the MT lattice. Shorter deletion 

mutants of D2C (CN and CC fragments) remained mostly cytosolic, suggesting 

that MT localization involves a conformational recognition motif that requires both 

parts of the sequence. Of note, the CN fragment retained weak MT-binding (Fig.3, 

insets). Importantly, the minimal EB1-interacting domain CN67 was diffuse in the 

cytosol whereas the D2delCN deletion mutant, that has lost EB1 binding, still 

decorated the MT lattice (Fig.3, Table I). Thus, EB1 interaction and MT localization 

involve two distinct, although adjacent, regions of ATIP3.  

 

 

 



ATIP3 is not a tip-tracking protein 

The presence of SxIP motifs, also designated MtLS (microtubule tip localisation 

signal), often confers tip-tracking properties to EB1 partners (Honnappa et al., 

2009, Slep, 2010; Buey et al., 2012, Jiang et al., 2012; Kumar and Wittmann, 

2012), leading us to examine whether ATIP3 may accumulate with EB1 at the MT 

plus ends. 

RPE-1 cells were transfected with low levels of GFP-ATIP3 in order to avoid 

extensive MT stabilization and subsequent loss of EB1 comets due to ATIP3 

expression (Molina et al., 2013). As shown in Fig.4A, EB1 comet-like structures 

were still detectable in low GFP-ATIP3-expressing RPE-1 cells. Under these 

conditions, GFP-ATIP3 localized along the MT lattice but did not accumulate at the 

MT plus tips together with endogenous EB1. Time-lapse microscopy analysis of 

co-transfected MRC5 cells (movies 1 to 4; Expanded View Fig.E2) also clearly 

showed distinct patterns of Cherry-ATIP3 and EB3-GFP localization in living cells 

and confirmed that ATIP3 does not accumulate at the MT growing ends close to 

the cell cortex. Thus, ATIP3 is not a +TIP.  

Time-lapse images of MCF-7 cells stably expressing moderate levels of GFP-

ATIP3 (Fig.4B, movies 5 and 6) further confirmed that ATIP3 localizes along the 

MT lattice and is not a tip-tracking protein. They also revealed for the first time that 

ATIP3 accumulates on the plus end of shrinking microtubules in living cells, 

therefore highlighting its back-tracking properties. 

 

ATIP3-EB1 complexes are present in the cytosol  

To identify the cellular compartment in which ATIP3 and EB1 co-localize in vivo, 

we used Proximity Ligation Assay (PLA) technology that allows in situ detection of 

molecular complexes in single cells, at the location where the proteins of interest 

interact (Soderberg et al., 2006; Jarvius et al., 2007). RPE-1 cells were transfected 

with GFP-ATIP3 and molecular proximity between GFP-ATIP3 and endogenous 

EB1 was assessed by PLA using anti-GFP and anti-EB1 primary antibodies 

followed by in situ detection of fluorescent Rolling Circle Products (RCP). As 

shown in Fig.5A, PLA amplification signals were detected in cells transfected with 

GFP-ATIP3 and GFP-D2, but not GFP-D1, indicating that ATIP3 and D2 

specifically interact with EB1 in intact cells. No signal was detected in negative 

control conditions, either following incubation with only one of the two primary 



antibodies (Expanded View Fig.E3A) or in the presence of both antibodies in EB1-

silenced cells (Expanded View Fig.E3B) or in cells transfected with GFP empty 

vector (Expanded View Fig.E3C). Specific PLA signals were also detected in 

Cherry-ATIP3-transfected RPE-1 cells stably expressing EB1-GFP, following 

incubation with both anti-Cherry and anti-GFP antibodies but not with anti-Cherry 

alone (Expanded View Fig.E3D).  

As shown in Fig.5A and 5B, the number of in situ PLA amplification signals was 

markedly reduced in cells transfected with ATIP3delCN and D2delCN deletion 

mutants as compared to full-length ATIP3 and D2 domains. These results 

corroborate our GST-EB1 pull-down assays (see Fig.2D, Table I) and further 

demonstrate the involvement of the CN domain in the formation of EB1-ATIP3 

molecular complexes in intact cells. In line with these results, PLA analyses of D2 

deletion domains revealed in situ molecular complexes of endogenous EB1 with 

GFP-D2C and GFP-CN, but not GFP-D2N and GFP-CC domains (Expanded View 

Fig.E3E).  

In all positive cells, individual bright fluorescent signals specifying protein complex 

formation were distributed throughout the cytosol, indicating cytosolic localization 

of ATIP3-EB1 complexes (Fig.5A). These results are consistent with GST pull-

down experiments performed in the presence of nocodazole (Fig.1G, 1I) indicating 

that interaction of ATIP3 and D2 with EB1 does not require intact MTs. They are 

also consistent with the observation that the minimal EB1-interacting domain 

CN67 has a diffuse localization in the cytosol (Fig.3). Of note, bright PLA signals 

were also detected along MTs in GFP-ATIP3 and GFP-D2-expressing cells 

(insets, Fig.5C), indicating that some ATIP3/EB1 molecular complexes may also 

associate with the MT lattice in vivo.  

We then sought to investigate the presence of endogenous ATIP3/EB1 complexes 

in intact cells. PLA experiments were conducted using rabbit anti-MTUS1 and 

mouse anti-EB1 primary antibodies in HeLa cells that express detectable levels of 

endogenous ATIP3 (Expanded view Fig.E4A). As shown in Fig.5D, RCP signals 

specifying interaction between endogenous ATIP3 and EB1 proteins were 

detected in control conditions, but not following transfection with ATIP3- or EB1-

siRNA. No RCP signal was detected in negative control conditions using only anti-

MTUS1 primary antibodies (Expanded view Fig.E4B). Endogenous ATIP3/EB1 

complexes were located in the cytosol and along the MT lattice (Fig.5D, inset), 



comforting previous results obtained in RPE-1 cells transfected with GFP-ATIP3. 

PLA analysis of several breast cancer cell lines expressing or not ATIP3 

(Expanded View E4C) further indicated endogenous interaction between ATIP3 

and EB1 in ATIP3-positive (MDA-MB-468 and HCC1143) but not ATIP3-negative 

(MDA-MB-231, CAL-120) breast cancer cells (Expanded View Fig.E4D). 

Altogether, these results provide evidence that ATIP3 interacts with EB1 through 

its CN domain and that endogenous ATIP3/EB1 molecular complexes are present 

in the cytosol and along the MT lattice of ATIP3-expressing cells. 

 

ATIP3-EB1 interaction limits EB1 accumulation at the MT plus ends 

Our previous studies have shown that ATIP3 silencing increases MT dynamics 

whereas ATIP3 (and D2 domain) expression limits the accumulation of EB1 

comet-like structures at the MT plus ends (Molina et al., 2013). To investigate the 

consequence of ATIP3-EB1 interaction on EB1 localization at the MT growing 

ends, we analyzed the effects of D2 deletion mutants on the number and size of 

EB1 comet-like structures. As shown in Fig.6A, expression of EB1-interacting 

domains D2C and CN reduced EB1 comet formation to the same extent as D2, 

whereas CC - that does not bind EB1 - had no significant effect on the number or 

length of EB1 comets. In cells expressing D2, D2C and CN, EB1 staining was 

visualized in the cytosol and along MT segments (Fig.6A), in line with previous 

observations that ATIP3/EB1 complexes are present at the vicinity of the MT 

lattice. Of importance, deletion mutants (D2delCN and CN67delP) having lost the 

ability to interact with EB1 were no longer able to reduce EB1 comet number and 

size (Fig.6B, Table I), highlighting the functional involvement of the EB1-interacting 

domain of ATIP3 in reducing EB1 accumulation at the MT growing ends.  

Rescue experiments were performed on ATIP3-silenced HeLa cells in which GFP-

ATIP3 was re-introduced at levels close to endogenous (Expanded view Fig.E5A). 

As shown in Expanded view Fig.E5B, moderate levels of GFP-ATIP3 were 

sufficient to fully restore the ATIP3 knock-down phenotype, and abolish EB1 

comets number and length. We then investigated whether GFP-D2 and deletion 

mutants were also able to rescue the phenotype. Expression levels of GFP-D2, 

GFP-D2delCN and GFP-CN domains were monitored by immunofluorescence 

(Expanded view Fig.E5C) and shown to be comparable to GFP-ATIP3 levels 

previously determined to be close to endogenous. As shown in Expanded Views 



Fig.E5D and Fig.E5E, moderate expression of GFP-D2 and GFP-CN, but not 

GFP-D2delCN constructs in ATIP3-silenced HeLa cells was sufficient to restore 

EB1 comets number and length at levels close to those of wild type cells.  

Altogether, our data indicate that functional ATIP3-EB1 complexes are formed in 

the cytosol and close to the MT lattice in vivo and contribute to restraining the 

accumulation of EB1 at the MT plus ends. Given the pivotal role of EB1 in 

regulating MT plus ends dynamics, our results may account for decreased MT 

dynamics in the presence of ATIP3. 

 

Prognostic value of relative ATIP3 and EB1 levels in breast tumors 

Our results suggest that altered expression of either ATIP3 or EB1 may modify the 

number of ATIP3-EB1 molecular complexes and subsequent accumulation of EB1 

at the MT plus ends, and be deleterious to essential cell functions. To investigate 

the functional relevance of these findings in human pathology, we examined the 

prognostic value of respective ATIP3 and EB1 expression levels in breast cancer, 

a disease in which loss of ATIP3 correlates with tumor aggressiveness 

(Rodrigues-Ferreira et al., 2009) and represents a prognostic biomarker of patient 

survival (Molina et al., 2013). We reasoned that increased levels of EB1 in low 

ATIP3-expressing tumors may result in poor prognosis as compared to low EB1-

expressing tumors. 

In a panel of 150 breast cancer patients with known clinico-pathological 

characteristics, Affymetrix DNA array probeset values for MTUS1 (ATIP3) and 

MAPRE1 (EB1) genes were compared with overall survival of the patients 

(Expanded View Table E1). Unsupervised classification of the tumors was 

performed using intensity values for three MTUS1 (212096_s_at; 212093_s_at; 

239576_at) and two MAPRE1 (200712_s_at ; 200713_s_at) probesets. Results of 

hierarchical clustering (Fig.7A) allowed us to distinguish four groups of tumors 

expressing various levels of ATIP3 and EB1.  

Tumors from clusters 1 and 3 expressed low levels of ATIP3 (median values 473 

and 425, respectively, for probeset 212093_s_at) as compared to those in clusters 

2 and 4 (median values of 692 and 1056, respectively) (Fig.7B). In tumors from 

cluster 3, EB1 levels were significantly increased (median value 1399 for probeset 

200713_s_at) as compared to those in clusters 1, 2 and 4 (median values 812, 

809 and 910, respectively) (Fig.7C) (Table II). 



Kaplan-Meier survival curves (Fig.7D) indicated that tumors from cluster 3 (low 

ATIP3-high EB1) are associated with significantly reduced overall survival of the 

patients as compared to all other breast tumors analyzed. As shown in Fig.7E and 

Table II, the median value for survival times of patients with tumors from cluster 3 

was decreased by a factor of two compared to those from clusters 1, 2 and 4. The 

percent of patients surviving after 5 years was also markedly decreased (36.3%) in 

group 3 tumors as compared to tumors from other groups (60.8%, 71.4% and 

76.2% survival for patients from clusters 1, 2 and 4, respectively) (Fig.7F, Table II).  

Of note, among tumors expressing low ATIP3 levels (clusters 1 and 3), those 

showing high EB1 levels (cluster 3) are of poorer outcome, indicating that 

combined information on ATIP3 and EB1 levels provides a more powerful 

prognostic marker than considering low ATIP3 levels alone. Furthermore, among 

tumors expressing similar levels of EB1 (clusters 1, 2 and 4), those showing high 

ATIP3 levels (clusters 2 and 4) were of better prognosis. 

Altogether, these results illustrate the importance of coordinated ATIP3 and EB1 

expression levels in breast cancer progression and clinical outcome.  



Discussion 

 

Results presented here demonstrate that MT-associated protein ATIP3 directly 

interacts with EB1 and that functional ATIP3-EB1 complexes present in the cytosol 

and at the MT lattice in living cells may regulate the accumulation, and hence the 

function, of EB1 at the MT plus ends. 

ATIP3 interacts with EB1 through an RPLP motif surrounded by a positively 

charged sequence rich in proline and serine/threonine residues. This motif is very 

similar to the previously described consensus SxIP motif conferring EB1 

interaction and tip-tracking properties (Honnappa et al., 2009; Buey et al., 2012, 

Kumar and Wittmann 2012; Jiang et al., 2012). Other EB1 partners such as 

SLAIN2 also present a positively charged arginine residue in place of the 

canonical serine at position +1 of the SxIP-like motif (Van der Vaart et al., 2011), 

suggesting that additional EB1 partners with divergent [S/R-x-I/L-P]-like motifs 

may be identified in the future. ATIP3 also contains a bona-fide SAIP motif in its C-

terminal portion and a SxIP-like (KNIP) motif in its central region. Mutations and 

deletions of corresponding sequences indicate that these motifs are not necessary 

for EB1 binding, however they may contribute to stabilizing the interaction, as 

reported for other EB1-interacting proteins (Jiang et al., 2009; Van der Vaart et al., 

2011).  

The amino acid sequence surrounding the RPLP motif of ATIP3 is conserved in 

different species and is homologous to the EB1-interacting sequence of TIP150 

(Jiang et al., 2009). TIP150, the major product of MTUS2 gene (Jiang et al., 2009; 

Du Puy et al., 2009) and ICIS, the Xenopus ortholog of MTUS1 (Ohi et al., 2003) 

belong to the same superfamily as ATIP3 (Di Benedetto et al., 2006; Rodrigues-

Ferreira and Nahmias, 2010). Both proteins have been shown to interact with 

+TIPs and they localize at the MT plus ends, either at the cell cortex (TIP150) or at 

the kinetochore (ICIS). Our results clearly show that although binding to EB1, 

ATIP3 does not accumulate at the MT plus ends and shows no tip-tracking activity. 

Time-lapse images of GFP-ATIP3 rather indicate that ATIP3 is mainly associated 

along the MT lattice in living cells and displays back-tracking properties.  

The observation that ATIP3 and EB1 do not accumulate together at the MT plus 

ends raises the question of the intracellular location at which ATIP3 and EB1 

interact in intact cells. Results from Proximity Ligation Assays, that highlight 



molecular proximity between two proteins in situ, revealed that endogenous 

ATIP3-EB1 molecular complexes are formed in living cells and are distributed 

throughout the cytosol. Interestingly, in cells expressing ATIP3 or the D2 domain, 

molecular complexes were also detected along the MT lattice, in line with 

immunofluorescence studies showing increased endogenous EB1 staining at the 

MT lattice in cells transfected with MT-associated proteins ATIP3, D2 and D2C but 

not ATIP3delCN and D2delCN that associate with MTs but do not bind EB1.  

As previously reported (Molina et al., 2013), the number and length of EB1 comet-

like structures, that are characteristic of EB1 accumulation at the MT growing 

ends, are strongly reduced in cells expressing ATIP3 and D2. We report here that 

loss of EB1 comets correlates with the presence of EB1-interacting domain but is 

not related with MT-association. Of importance, the effect of ATIP3 and D2 

domains on EB1 comet formation is lost in cells expressing D2delCN and 

CN67delP deletion mutants that are unable to bind EB1, therefore indicating that 

the ATIP3-EB1 interaction is functionally involved in reducing EB1 accumulation at 

the MT plus ends.  

Based on our data, we propose the model shown in Fig.8. In control cells 

expressing ATIP3, ATIP3/EB1 complexes are formed in the cytosol and retained 

at close vicinity of the MT lattice, therefore locally reducing the ‘efficient 

concentration’ of cytosolic EB1 available to exchange at MT plus-ends. In ATIP3-

deficient cells, more cytosolic EB1 is totally free to exchange and accumulate at 

MT plus-ends, leading to increased MT persistent growth and recruitment of 

regulatory +TIPs, thereby increasing MT dynamic instability. This in turn might 

account for the increase in proliferation and migration reported in ATIP3-depleted 

cells (Rodrigues-Ferreira et al., 2009; Molina et al., 2013). 

According to this model, EB1 localization and function at the MT plus ends should 

be tightly regulated by the relative expression levels of ATIP3 and EB1. We 

challenged our hypothesis in the context of human breast cancer, as we have 

previously reported that loss of ATIP3 in breast tumors is associated with poor 

prognosis (Molina et al., 2013). Using a panel of 150 breast cancer patients, we 

provide evidence that relative levels of ATIP3 and EB1 in tumors are related with 

clinical outcome. Among breast tumors with low levels of ATIP3, those showing 

elevated EB1 levels are associated with significantly reduced overall survival of 

the patients, probably reflecting higher proportion of free EB1 molecules that do 



not interact with ATIP3. This in turn may increase EB1 accumulation at the MT 

plus ends and subsequent increase in MT dynamics, and may account for 

increased tumor growth and metastasis in ATIP3-deficient breast tumors. 

Conversely, among tumors expressing similar levels of EB1, those showing high 

levels of ATIP3 were associated with better clinical outcome, possibly due to 

increased formation of ATIP3/EB1 molecular complexes and cytosolic 

sequestration of EB1. Of note, other groups have reported the poor prognostic 

value of elevated EB1 expression in hepatocellular carcinoma (Orimo et al., 2008), 

breast cancer (Dong et al., 2010) and colorectal cancer (Sugihara et al., 2012), 

raising the interest to investigate combined EB1/ATIP3 expression levels in these 

tumor samples. 

Altogether, these results extend our knowledge of EB1 interaction with cellular 

partners, and depict a novel way to indirectly regulate MT functions at the growing 

ends through cytosolic interaction of EBs with the ATIP3 protein. A similar 

mechanism of EB1 sequestration in the cytosol by the MAP1B protein has recently 

been described in developing neurons (Tortosa et al., 2013), suggesting that these 

findings may be extended to other EB1-interacting MAPs acting in diverse 

physiopathological situations. Our studies also bring a major milestone in the field 

of breast cancer, being the first to provide a link between combined ATIP3/EB1 

expression levels in tumors and clinical outcome of the patients. We propose that 

coordinated expression of these two proteins in breast tumors represents a novel 

prognostic marker that should be taken into account for better handling of the 

patients and choice of future therapeutic options. 

 



Materials and Methods 

 

Cell lines 

Human breast cancer cell line MCF-7 and stable MCF-7 cell line (clone HC7) 

expressing endogenous levels of GFP-ATIP3, SV-MRC5 lung fibroblasts, as well 

as HeLa and RPE-1 (h-TERT-immortalized, retinal pigment epithelial) cells were 

described previously (Rodrigues-Ferreira et al., 2009; Molina et al., 2013). RPE-1 

cells stably expressing EB1-GFP were a kind gift of Dr Matthieu Piel (Institut Curie, 

Paris, France). All cells were used at passages 2 to 20 after thawing and grown as 

described (Molina et al., 2013). Cells were routinely authenticated by morphologic 

observation and tested for absence of mycoplasma contamination using MycoAlert 

Assay detection kit (Lonza, France). 

 

Plasmids constructs and transfections 

Plasmids encoding GFP-ATIP3, Cherry-ATIP3 and domains GFP-D1, GFP-D2, 

GFP-D3 were described elsewhere (Molina et al., 2013). GFP-fused D2 

subdomains (D2N, D2C, CN, CC, CN67 and CN45) were obtained by PCR-

amplification of full-length ATIP3 sequence as described (Molina et al., 2013) 

using specific oligonucleotides shown in Expanded View Table E2A. Deletion 

mutants (GFP-ATIP3delCN, GFP-D2delCN, and GFP-CN67delP) were obtained 

by Site-Directed Mutagenesis according to the Quick Change kit (Stratagene) 

using oligonucleotides shown in Expanded View Table E2B. Procaryotic 

expression vectors encoding GST-EB1, GST-EB1-C, and GST-EB1-N were kind 

gifts of Dr Anna Akhmanova (Utrecht University, The Netherlands). EB1-GFP 

construct was kindly provided by Dr Franck Perez (Institut Curie, Paris, France). 

EB3-GFP and GFP-EB3 expression constructs were described by Stepanova et 

al. (2003).  

Plasmids were transiently transfected into MCF-7, RPE-1 or HeLa cells for 24h 

using Turbofect (Fermentas GMBH, St Leon Rot, Germany), X-tremeGENE DNA 

(Roche, Mannheim, Germany) or Dreamfect (Oz-Bioscience, Marseille, France) 

transfection reagents as described by the manufacturer. ATIP3-specific siRNAs 

were described previously (Rodrigues-Ferreira et al., 2009). EB1-specific siRNA 

(on-target plus smart pool, NM_012325) and scrambled siRNA used as a control, 

were purchased from Dharmacon (ThermoFisher Scientific) and Qiagen SAS, 



respectively. All siRNAs (50 nM) were transfected using lipofectamine 2000 

(Invitrogen) and silencing efficiency was evaluated by immunoblotting using rabbit 

anti-MTUS1 polyclonal antibodies (ARP44419; Aviva Systems Biology, San Diego, 

CA, USA) and rat anti-EB1 (clone KT51; Santa Cruz). For rescue experiments, 

HeLa cells were transfected with specific ATIP3-siRNA (sens strand UGG CAG 

AGG UUU AAG GUU A) that targets the 5’ untranslated sequence of ATIP3 and 

allows expression of wild type ATIP3 coding sequence. 

 

GST pull-down assays and immunoprecipitations 

Production and purification of GST fusion proteins (GST-EB1, GST-EB1-C, and 

GST-EB1-N) on gluthatione-agarose beads were performed as described 

(Komarova et al., 2005). Transfected MCF-7 cell lysates or endogenous proteins 

from HeLa cells were retained on the beads for 1h at room temperature as 

described (Grigoriev et al., 2008). GST pull-down were analyzed by Western 

blotting using polyclonal anti-MTUS1 antibodies diluted 1:1000 or monoclonal anti-

GFP antibodies (clone 7.1/13.1, Roche (Mannheim, Germany), diluted 1:3000) as 

indicated. 

For in vitro interaction, chemically synthesized peptides (CN45 and CC) coupled to 

FITC were purchased from GL Biochem (Shanghai, China). Sequences of FITC-

CN45 and FITC-CC correspond to amino acids 755-799 and 816-874 of ATIP3 

(accession number NP_001001924), respectively. Purified peptides (10 or 15µg) 

were incubated for 1 hr at room temperature with GST- or GST-EB1 fusion 

proteins in 50mM HEPES containing 150mM NaCl, 0.01% Triton X100 (pH 7.4) 

then washed in the same buffer. Interaction was assessed by FITC fluorescence 

measurement using Fusion Universal Microplate Analyzer (Packard BioScience 

Company, Excitation 485nm Fluorescein and Emission 525-530 nm) and with 

Typhoon™ system (Amersham Biosciences) following 15% SDS-PAGE.  

For immunoprecipitation, MCF-7 cells were transfected with appropriate plasmid 

constructs and cell lysates were incubated for 2 hrs at 4°C with 4µg of mouse 

monoclonal anti-GFP (Roche), or mouse monoclonal anti-Cherry (Clonetech) 

antibodies prior to incubation with G protein-sepharose beads. Bound proteins 

were detected by Western blotting using rabbit anti-MTUS1 antibodies (Aviva 

Systems Biology) or rabbit anti-GFP (Roche) as described before. 

 



Immunofluorescence  

RPE-1 cells were plated on glass coverslips, transfected for 24 hrs with 

appropriate plasmids, then fixed with ice-cold methanol and incubated as 

described (Molina et al., 2013) with human anti-alpha-tubulin clone F2C (Nizak et 

al., 2003), rat anti-EB1 (clone KT51; Santa Cruz) or mouse anti-GFP (Roche).  

Linescan analyses of alpha-tubulin and EB1 fluorescence intensity were 

performed on a 5 µm line along the length of MT plus end as described (Molina et 

al., 2013). For quantification of comet number, 5 different areas of at least 5 single 

cells were analyzed. 

 

Live cell imaging 

SV-MRC5 co-transfected for 24h with mcherry-ATIP3 and EB3-GFP were imaged 

by spinning disc confocal microscopy on a Nikon Ti-E (Nikon) with perfect focus 

system (PFS, Nikon) equipped with a Plan APO VC 60x 1.40 N.A. oil objective, a 

Yokogawa motorized CSU-X1-A1 confocal head, a Photometrics Evolve 512 

EMCCD camera (Roper Scientific) and controlled with MetaMorph 7.5 software 

(Molecular Devices). For simultaneous excitation of GFP and mCherry we used 

491nm 50mW Calypso (Cobolt) and 561nm 50mW Jive (Cobolt) lasers together 

with a DV2 beam splitter (MAG Biosystems, Roper) equipped with a dichroic filter 

565dcxr (Chroma) and a HQ630/50m emission filter (Chroma). To keep cells at 

37°C we used a stage top incubator (model INUG2E-ZILCS, Tokai Hit). Images 

were acquired in a stream mode at 500 ms exposure. Movies are played at 15 

frames per second.   

For backtracking experiments, GFP-ATIP3 stable MCF-7 clones were imaged on a 

Nikon Eclipse Ti-E with the PFS, equipped with a Nikon CFI Apo TIRF 100X 1.49 

N.A. oil objective (Nikon), a TIRF-E motorized TIRF illuminator modified by Roper 

Scientific France/PICT-IBiSA, Institut Curie, a stage top incubator (model INUG2E-

ZILCS, Tokai Hit) set at 37°C, a Photometrics Evolve 512 EMCCD camera and 

controlled with MetaMorph 7.7 software. For excitation of GFP we used a Cobolt 

Calypso 491 nm (100 mW) laser and green fluorescent light was collected via a 

ET-GFP filter set (Chroma). Images were acquired in a stream mode at 100 ms 

exposure. Movies are played at 30 frames per second.  



Timelapse inset images were denoised using the ImageJ Safir Filter plugin 

(Kervrann and Boulanger, 2006). Four iterations and a patch size of 1 were used 

as parameters of the denoising process.   

 

Proximity Ligation Assay 

In situ PLA detection was carried out using DUOLINK II In Situ Far Red kit (Sigma-

Aldrich, St Louis, USA). RPE-1 cells were plated on glass coverslips at 100,000 

cells per well, transfected for 24 hrs with indicated plasmids, then fixed with ice-

cold methanol and incubated for 1h at room temperature with rabbit anti-GFP 

(Roche, 1:10000) and mouse anti-EB1 (clone 5, BD Bioscience, 1:1000) 

antibodies diluted in PBS-0.2% BSA as a blocking solution. For detection of 

endogenous ATIP3/EB1 interaction, HeLa cells were either left untreated or 

transfected with 50 nM appropriate siRNA as indicated, then fixed in ice-cold 

methanol and incubated for 1hr at room temperature with rabbit anti-MTUS1 

(Aviva, 1:300) and mouse anti-EB1 (clone 5, BD Bioscience, 1:1000) antibodies in 

PBS-0.2% BSA. Following one wash in PBS with gentle shaking, cells were 

incubated with Duolink PLA Probes anti-mouse PLUS and anti-rabbit MINUS (1:5 

dilution in PBS-BSA 0.2%) for 1h at 37°C in a humidified chamber, and then 

processed for ligation and rolling circle amplification (RCA) in the presence of cy5-

labeled oligonucleotide probe according to manufacturer’s protocol. Specificity of 

DUOLINK signals was assessed using only one of each primary antibody in the 

presence of both Duolink PLA probes and labeled oligonucleotide. For imaging, 

coverslips were stained with DAPI (1µg/mL) and analyzed by fluorescence 

microscopy (objective 100X, Zeiss Axiovert 200M inverted fluorescence 

microscope equipped with a CCD camera (CoolSNAP HQ, Photometrics)). Multi-

dimensional acquisitions were performed using Metamorph 7.1.7 software. For 

quantification of RCP number, 5 different areas of at least 6 single cells were 

analyzed.  

 

Breast tumor samples and gene arrays 

Affymetrix microarray data for a series of 150 infiltrating breast carcinomas from 

the Institut Curie (Paris, France) and clinical data for the patients were described 

elsewhere (Rodrigues-Ferreira et al., 2009, Molina et al., 2013).  



Heat map and hierarchical clustering were performed on MTUS1 (212093_s_at; 

212096_s_at; 239576_at) and MAPRE1 (200712_s_at; 200713_s_at) probesets, 

using JMP7 software. Four main clusters were isolated and the relative expression 

of MTUS1 and MAPRE1 genes in each cluster was evaluated using JMP7 and 

GraphPad Prism6 softwares. One tumor sample did not fit into any of the 4 

clusters identified and was therefore eliminated from our study, that was further 

conducted on 149 tumors.  

 

Statistical analysis 

Statistical analyses were done using GraphPad Prism softwares. Overall survival 

(OS) curves were plotted according to the method of Kaplan–Meier and compared 

by the log-rank test. Data in bar graphs (mean +/- SD) and dot plots were analyzed 

using two-tail unpaired t-test. p<0.05 was considered statistically significant.  
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Figure legends 

 

Figure 1. ATIP3 interacts with EB1 

(A). Schematic representation of ATIP3 protein and domains (D1, D2, D3) 

showing microtubule (MT)-binding domain (in grey) and coiled-coil (CC) motifs (in 

blue). Positions of KNIP, RPLP and SAIP motifs (residues 462, 780 and 1249, 

respectively) are shown in red. Amino acid numbering is from Accession number 

NP_001001924. Lower panel: ATIP3 amino acid sequence surrounding each 

motif. Basic residues are indicated in red. Acidic residues (blue) are bold and 

underlined. SxIP and SxIP-like motifs are boxed.  

 

(B). GST pull-down analysis showing specific interaction between GFP-ATIP3 

expressed in MCF-7 cell lysates and purified GST–EB1 agarose beads. Blots were 

probed with anti-GFP antibodies. Polypeptides corresponding to GFP-ATIP3 and 

GFP are indicated on the right. A star indicates cleavage product of GFP-ATIP3.  

 

(C). Purified GST-EB1 beads were used to precipitate GFP-ATIP3 (210 KDa) and 

endogenous ATIP3 (180 KDa) expressed in HeLa cells. Blots were probed with 

anti-ATIP (MTUS1) antibodies.  

 

(D). Co-immunoprecipitation of Cherry-ATIP3 (Ch-ATIP3) and/or EB1-GFP 

transfected in MCF-7 cells, using anti-GFP or anti-Cherry (Ch) antibodies as 

indicated below. Western blots were probed with anti-GFP and anti-ATIP 

antibodies to reveal EB1-GFP (55 KDa) and Ch-ATIP3 (210 KDa), as indicated on 

the right. IgH: Immunoglobulin heavy chain.  

 

(E). Schematic drawing of EB1 deletion mutants. Amino acid positions at domain 

boundaries are indicated.  

 

(F). Pull-down analysis of MCF-7 cell lysates expressing GFP-ATIP3 using 

indicated purified GST-fusion proteins. Blots were probed using anti-GFP 

antibodies.  

 



(G). MCF-7 cell lysates expressing GFP-ATIP3 were treated or not (Ctrl) with 10 

µm nocodazole (Nz) for 1 hr at 4°C, then incubated with GST-EB1 beads as in B.  

 

(H). GST-EB1 pull-down assays on MCF-7 cell lysates expressing GFP-D1, GFP-

D2 or GFP-D3, performed as in B.  

 

(I). GST pull-down assays on MCF-7 cell lysates expressing GFP-D2, performed 

as in F and G. 

 

 

Figure 2. Minimal interacting domain of ATIP3 

(A). Schematic drawing of deletion mutants and their ability to bind EB1 (+) or not 

(-).  

(B). Pull-down analysis of GFP-D2 domain and GFP-fused deletion mutants (D2N, 

D2C, CN, CC) using GST or GST-EB1 agarose beads, as indicated in Fig.1B. 

Blots were probed with anti-GFP antibodies. Molecular weights are indicated in 

KDa on the left.  

(C) Pull-down analysis of GFP-fused deletion mutants (D2C, CN67, CN45) as 

indicated in B.  

(D) Pull-down analysis of deletion mutants lacking the CN domain (D2delCN) or 

RPLP motif (CN67delP), as indicated in B.  

(E). In vitro pull-down assay using purified GST (white bars) or GST-EB1 (black 

bars) and 10 or 15µg of synthetic fluorescent peptides (CN45 and CC coupled to 

FITC) as indicated below. Upper panel: fluorescence intensity (arbitrary units) in 

the precipitates was measured using Fusion fluorimeter. Lower panel: samples 

before (input) and after GST pull-down were resolved on 15% SDS-PAGE and 

fluorescent peptides were detected using Typhoon scanner. 

 



Figure 3. Cellular localization of D2 deletion mutants. 

Immunofluorescence imaging of RPE-1 cells expressing GFP-D2 domain and 

GFP-tagged deletion mutants as indicated. Cells were fixed and stained with anti-

GFP (green), anti-alpha-tubulin (red) antibodies and DAPI (blue). Enlarged 

portions of the selected areas are shown in the insets. Red arrowheads show MT-

localization of GFP-fusion proteins. Scale bar, 10µm. 

 

 

Figure 4. ATIP3 is not a +TIP 

(A). RPE-1 cells transfected with low amounts of GFP-ATIP3 were fixed and 

stained with anti-GFP (green) and anti-EB1 (red) antibodies. Insets show that EB1 

comet-like structures at plus ends are not stained by GFP-ATIP3. Magnification 

100X. Scale bar, 10µm.  

 

(B). Time-lapse images of HC7 (MCF-7 cell clone stably expressing GFP-ATIP3 at 

endogenous levels, described in Rodrigues-Ferreira et al., 2009). GFP-ATIP3 

stains the MT lattice and the ends of shrinking MTs (arrowheads) in living cells, 

indicating backtracking properties. Scale bar, 10µm. 

 

Figure 5. In situ interaction between ATIP3 and EB1  

(A). Proximity Ligation Assays were performed in RPE-1 cells transfected with 

GFP-tagged constructs and deletion mutants as indicated on the left. Molecular 

complexes were analyzed using rabbit anti-GFP and mouse anti-EB1 primary 

antibodies and corresponding secondary DUO-LINK antibodies. In situ molecular 

interaction is revealed by red bright signals of rolling circle amplification products 

(RCP) stained with cy5-labeled oligonucleotide probe. Shown are merge pictures 

of GFP (green), RCP (red) and nuclei (DAPI, blue) staining. Scale bar 10µm.  

 

(B). Quantification of the number of RCP signals per square (100 µm2 area). 

Number of squares analyzed is under brackets. *** p<0.0001.  

 

(C). Enlarged portions of selected areas in (A) are shown in the insets. 

Arrowheads illustrate alignment of RCP signals along the MT lattice. 



 

(D). Proximity Ligation Assays revealing in situ molecular interaction between 

endogenous ATIP3 and EB1 in HeLa cells transfected with control siRNA (SiCtrl), 

ATIP3-specific siRNA (siATIP3) or EB1-specific siRNA (siEB1) as indicated. 

Endogenous complexes were analyzed using rabbit anti-MTUS1 and mouse anti-

EB1 primary antibodies and corresponding secondary DUO-LINK antibodies. Cells 

were stained with anti-tubulin F2C antibodies and secondary antibodies 

conjugated to Cy3. Shown are merge pictures of tubulin (green), RCP (red) and 

nuclei (DAPI, blue) staining. Scale bar 10µm. Inset shows enlarged portion of a 

selected area from siCtrl-transfected cell. The arrowhead illustrates alignment of 

RCP signals along the MT lattice.  

(E). Silencing efficiency was assessed by immunoblotting with anti-MTUS1 

(ATIP3) and anti-EB1 antibodies. Blots were reprobed using anti-tubulin antibodies 

for internal control.  

(F). Quantification of the number of RCP signals per square in PLA conditions 

shown in (D) (100 µm2 area). Number of squares analyzed is under brackets. *** 

p<0.0001. 

 

 

Figure 6. Effect of D2 deletion mutants on EB1 comet formation 

Anti-EB1 (green) and anti-tubulin (red) immunostaining of RPE-1 cells transiently 

transfected with GFP-D2 and GFP-tagged domains (A) and GFP-D2 deletion 

mutants (B). Insets show EB1 comet-like structures in enlarged portions of 

selected areas. Red arrowheads illustrate EB1 staining along the MT lattice. Right 

panels show distribution of EB1 (green) and alpha-tubulin (red) at the microtubule 

plus ends (linescans), quantification of comet length (scattered dot plot) and 

number of comets (per 62µm2 area). Number of comets analyzed is under 

brackets. Scale bar, 10µm. *** p<0.0001. 

 

 

Figure 7. Prognostic value of combined ATIP3 and EB1 expression levels in 

breast tumors.  

(A). Heat map and hierarchical clustering of 150 breast tumor samples based on 

the intensities of MTUS1 (212096_s_at; 212093_s_at; 239576_at) and MAPRE1 



(200712_s_at ; 200713_s_at) probesets. Heat map illustrates relative expression 

profiles of MTUS1 and MAPRE1 (column) for each tumor sample (line) in 

continuous color scale from low (green) to high (red) expression. Dendogram of 

the four selected tumor groups is shown on the right. 

(B). Box plot comparison of MTUS1 (ATIP3) intensities (Raw Mas 5) in each of the 

four selected tumor clusters based from dendogram shown in (A). *p<0.05; 

***p<0.0001. 

(C). Box plot comparison of MAPRE1 (EB1) intensities (GCMRA) in each of the 

four selected tumor clusters based from dendogram shown in (A). ***p<0.0001. 

 

(D). Overall survival curves for patients with breast tumors classified into four 

groups based from dendogram shown in (A). p=0.0011 between clusters 3 and 4.  

 

(E). Overall survival (in months) for patients classified according to tumor groups 

shown in (D). Scattered dot plot and median values are shown for each tumor 

cluster. Number of patients is in brackets. *p<0.05; **p<0.001. 

 

(F). Percentage of patients remaining alive after 5 years with tumors classified into 

four groups as in (D). Number of patients is in brackets. 

 

 

Figure 8. Proposed mechanism for regulation of EB1 localization by 

interaction with ATIP3.  

In control cells, ATIP3-EB1 complexes are present in the cytosol and at the vicinity 

of the microtubule lattice and limit the binding of EB1 to MT plus ends. In ATIP3-

deficient cancer cells, free diffusion of cytosolic EB1 results in enhanced 

accumulation of EB1 at the plus ends of MTs and subsequent increase in MT 

dynamics at the growing ends. 

 

 



Table I. Characterization of ATIP3 domains and deletion mutants 

Domain Positions (AA) 
Length  
(AA) 

EB1 
binding

MT 
localization 

Loss of 
EB1 comets

ATIP3 1-1270 1270 + + + 

D2 410-874 465 + + + 

D2N 410-634 225 - + nd 

D2C 705-874 170 + + + 

CN 705-816 112 + +/- + 

CC 817-874 58 - - - 

CN67 743-809 67 + - + 

CN45 755-799 45 + - + 

CN67delP [743-777]+[783-809] 61 - - - 

ATIP3delCN [1-704]+[817-1270] 1158 - + nd 

ATIP3delCC1 [1-816]+[869-1270] 1218 + nd nd 

ATIP3delCC2 [1-867]+[875-1270] 1263 + nd nd 

ATIP3delCTer 1-1240 1240 + nd nd 

D2delCN [410-704]+[817-874] 353 - + - 

D2delCC1 [410-816]+[867-874] 413 + nd nd 

 
AA: amino acids. Positions are according to accession number NP_001001924; nd: 
not determined. 



 

Table II. ATIP3-EB1 expression levels in breast tumor clusters and overall survival of 
the patients. 

For each tumor cluster, shown is : number (nb) of tumors, median values for 
Affymetrix MTUS1 probeset 212093_s_at (raw mas5) and MAPRE1 probeset 
200713_s_at (GCMRA), corresponding expression levels for ATIP3 and EB1, 
median survival in months and percent of patients surviving after 5 years. 
Range values are in parenthesis. L: low; H: high; VH: very high. 
 

 

 

cluster 
nb of 

tumors 

median value 
MTUS1 

(212093_s_at)

median value 
MAPRE1 

(200713_s_at)

Expression 
ATIP3-EB1

median survival 
(months) 

5-y survival 
% patients 

(n) 

1 46 
473,2 

 (166,7 - 740,9)
811,8 

 (515,6 - 1201) L-L 
105,8 

 (4,43 - 180,6) 
60,8%  
(28/46) 

2 49 
692 

 (445,8 - 1321)
809 

 (413 - 1541) H-L 
129,5 

 (17,37 - 174) 
71,4%  
(35/49) 

3 33 
424,9 

 (148,2 - 862,8)
1399 

 (1010- 2539) L-H 
53,7 

 (19,53 - 145,3)
36,3%  
(12/33) 

4 21 
 1057 

 (603,1 - 1518) 
910,2 

 (526,4 - 1596) VH-L 
 126,5 

 (49,27 - 186,1)
76,2%  
(16/21) 
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Expanded View Material and Methods 

 

Human breast cancer cell lines  

Triple-negative breast cancer cell lines expressing (MDA-MB-468) or not (MDA-MB-

231-D3H2LN) endogenous ATIP3 were described previously (Rodrigues-Ferreira et 

al., 2009; Molina et al., 2013). HCC1143 and CAL-120 breast cancer cell lines were a 

kind gift of Dr. S. Alsafadi (Institut Gustave Roussy, Villejuif, France). All cell lines 

were tested for absence of mycoplasma contamination using MycoAlert Assay 

detection kit (Lonza, France), used at passages 2 to 20 after thawing and grown as 

described by the provider.  

 

Proximity Ligation Assay 

In situ PLA detection was carried out using DUOLINK II In Situ Far Red kit (Sigma-

Aldrich, St Louis, USA). RPE-1 cells stably expressing EB1-GFP were transfected for 

24 hrs with Cherry-ATIP3 construct as described in the Materials and Methods. Cells 

were fixed with ice-cold methanol and incubated for 1h at room temperature with 

rabbit anti-Cherry (1:500) and mouse anti-GFP (Roche, 1:200) antibodies diluted in 

PBS-0.2% BSA as a blocking solution. Incubation with PLA probes and RCP analysis 

was performed as described in the Materials and Methods. 
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Legends to Expanded View Figures  

 

Expanded View Figure E1. ATIP3 interacts with EB1 

(A). Co-immunoprecipitation of Cherry-ATIP3 or Cherry and/or indicated constructs 

(EB1-GFP, GFP-EB3, EB3-GFP or GFP) transfected in MCF-7 cells, using anti-GFP 

antibodies. Western blots were probed with anti-GFP and anti-MTUS1 antibodies as 

indicated on the right, to reveal EB1/3-GFP (55 KDa) and Ch-ATIP3 (210 KDa), 

respectively.  

(B). GST pull-down analysis showing interaction between GFP-ATIP3 and GFP-D2 

mutants as indicated and purified GST-EB1 agarose beads. Blots were probed with 

anti-GFP antibodies.  

(C). GST-EB1 pull-down assays as in B, performed on MCF-7 cell lysates expressing 

indicated GFP-ATIP3 or GFP-D2 deletion mutants described in Fig.2A and Table I. 

(D). Amino acid sequence alignment of EB1-binding domains of ATIP3 (CN45) and 

TIP150. Basic residues are highlighted in red and underlined. The SxIP motif (RPLP) 

is boxed. Stars indicate identical residues. Gaps have been introduced to maximize 

homology.  

(E). Amino acid sequence alignment of ATIP3 polypeptides from different species. 

The RPLP motif is boxed and stars indicate conserved residues. Hs, Homo sapiens, 

Bt, Bos taurus, Rn, Rattus norvegicus, Mm, Mus musculus.  

 

 

Expanded View Figure E2. ATIP3 is not a +TIP 

Images from fluorescent microscopy of MRC5 living cells co-transfected with Cherry-

ATIP3 (Ch-ATIP3) and EB3-GFP. Note that EB3 is enriched at the plus ends and 

weakly stains the MT lattice. Inset shows that ATIP3 is along the MT lattice and does 

not accumulate with EB3 at the plus ends. Scale bar 10 µm. 

 

 

Expanded View Figure E3. In situ interaction between ATIP3 and EB1 

(A). Proximity Ligation Assays were performed in RPE-1 cells transfected with GFP-

ATIP3 or GFP-D2 as indicated on the left. Molecular complexes were analyzed using 

rabbit anti-GFP and/or mouse anti-EB1 primary antibodies (as indicated above) and 

corresponding secondary DUO-LINK antibodies. In situ molecular interaction is 
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revealed by red bright signals of rolling circle amplification products (RCP) stained 

with cy5-labeled oligonucleotide probe. Shown are merge pictures of GFP (green), 

RCP (red) and nuclei (DAPI) staining.  

(B). PLA assay in RPE-1 cells transfected with GFP-ATIP3 in the presence or not of 

EB1-specific siRNA as indicated above. Shown are merge pictures as in A.  

(C). PLA assay in RPE-1 cells transfected with GFP and analyzed as in B.  

(D). PLA assay in RPE-1 cells stably expressing EB1-GFP and transfected with 

Cherry-ATIP3. Molecular complexes were analyzed using rabbit anti-Cherry (Ch) 

and/or mouse anti-GFP primary antibodies and corresponding secondary DUO-LINK 

antibodies as indicated on the left. In situ molecular interaction is revealed by red 

bright signals of rolling circle amplification products (RCP) stained with cy5-labeled 

oligonucleotide probe. Shown are merge pictures of Cherry (yellow), RCP (red) and 

nuclei (DAPI) staining.  

(E). PLA assay in RPE-1 cells transfected with GFP-D2C, D2N, CN and CC 

constructs.  

(A-E) Magnification x100. Scale bar 10µm. 

 

 

Expanded View Figure E4. Endogenous interaction between ATIP3 and EB1 

(A). Western blot analysis of endogenous ATIP3 expression in non-tumoral human 

mammary epithelial cells (HMEC), HeLa cells and non-transformed MCF10A cells, 

using anti-MTUS1 antibodies, and reprobed with anti-tubulin antibodies for internal 

control.  

(B). Proximity Ligation Assays performed in non transfected HeLa cells using rabbit 

anti-MTUS1 and mouse anti-EB1 primary antibodies, or anti-MTUS1 antibodies alone 

as negative control. Endogenous molecular interaction is revealed by red bright 

signals of rolling circle amplification products (RCP) stained with cy5-labeled 

oligonucleotide probe. Shown are merge pictures of RCP (red) and nuclei (DAPI, 

blue) staining. Scale bar 10µm. 

(C). Western blot analysis of endogenous ATIP3 expression levels in human breast 

cancer cell lines using anti-MTUS1 antibodies (upper panel) and reprobed with anti-

tubulin antibodies (lower panel).  

(D). PLA assays performed using rabbit anti-MTUS1 and mouse anti-EB1 primary 

antibodies as in (B), showing endogenous ATIP3/EB1 interaction in ATIP3-positive 
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MDA-MB-468 and HCC1143 breast cancer cell lines but not in ATIP3-negative MDA-

MB-231 and CAL-120 cell lines. MDA-MB-231 cells were previously demonstrated to 

be ATIP3-negative (Rodrigues-Ferreira et al., 2009). Shown are merge pictures of 

RCP (red) and nuclei (DAPI, blue) staining. Scale bar 10µm. 

 

 

Expanded View Figure E5. Rescue of ATIP3-silenced phenotype 

(A). Western blot analysis comparing expression of GFP-ATIP3 with that of 

endogenous ATIP3. HeLa cells were either left non-transfected (NT), or transfected 

for 72hrs with ATIP3-specific siRNA and for 24 hrs with plasmids encoding GFP (0.5 

µg) or GFP-ATIP3 (2 µg) as indicated. Blots were probed with anti-MTUS1 antibodies 

to reveal endogenous ATIP3 (180 KDa) and transfected GFP-ATIP3 (210 KDa), and 

then reprobed with anti-tubulin antibodies for internal control. 

(B). ATIP3-silenced HeLa cells were transfected with GFP-ATIP3 plasmid (2 µg) as 

in (A), then labeled with anti-GFP (green) and anti-EB1 (red) antibodies. Insets show 

EB1 comet-like structures in enlarged portions of selected areas (insets 1 and 2 show 

non-transfected and transfected cells, respectively). Right panel : Quantification of 

comet length (scattered dot plot) and number of comets (per 62µm2 area). Fifty 

comets were analyzed for each condition. Scale bar, 10µm. *** p<0.0001. 

(C). ATIP3-silenced HeLa cells were transfected with plasmids encoding GFP-ATIP3 

(2 µg), GFP-D2 (2 µg), GFP-D2delCN (1µg) or GFP-CN (0.5 µg) as indicated. 

Fluorescence intensity of GFP immunostaining indicates similar levels of expression 

for all fusion proteins. Scale bar : 10 µm.  

(D). ATIP3-silenced HeLa cells were transfected for 24 hrs with indicated plasmids in 

conditions of moderate expression as shown in (C), then labelled with anti-GFP 

(green) anti-EB1 (red) antibodies. Insets show EB1 comet-like structures in enlarged 

portions of selected areas as in (B). Scale bar, 10µm. 

(E). Quantification of comet length (scattered dot plot) and number of comets (per 

62µm2 area) in HeLa cells transfected with control siRNA (left) or ATIP3-specific 

siRNA (right panel) then transfected with GFP fusion proteins at levels close to 

endogenous as in (C). Number of comets analyzed is under brackets. *** p<0.0001. 
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Legends to Expanded View Movies 

 

Movies 1 and 2. Time-lapse microscopy of MRC5-SV cells co-transfected with 

Cherry-ATIP3 and EB3-GFP 

EB3-GFP (left) and Cherry-ATIP3 (right) MRC5-SV-coexpressing cells were imaged 

by spinning disk confocal microscopy (60X lens).Time-lapse series of 100 images 

were acquired in a stream mode and shown at 15 frames per second. 

 

Movies 3 and 4. Time-lapse microscopy of MRC5-SV cells co-transfected with 

Cherry-ATIP3 (red) and EB3-GFP (green). Inset. 

Cherry-ATIP3 (red) and EB3-GFP (green) MRC5-SV-coexpressing cells were imaged 

by spinning disk confocal microscopy as for movies 1 and 2. A zone of 1900 µm2 at 

the cell periphery is shown. 

 

Movies 5 and 6. Time-lapse microscopy of MCF-7 cells stably expressing 

moderate levels of GFP-ATIP3. 

Stably transfected GFP-ATIP3 cells were analyzed by time-lapse TIRF microscopy 

(100X lens). Time-lapse series of 500 images were acquired in a stream mode and 

shown at 30 frames per second. 
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Expanded View Table E2. Oligonucleotides used for PCR-amplification of 

ATIP3 domains (A) and site-directed mutagenesis (B). 

 
 
Expanded View Table E2.A 
Name Primers (5’ �  3’) Number Size 

(bp) 
D2 F : CCGCTCGAGGA CTGACTTGGGATGCAAATGAT 

R : CGGGGTACCTCATGCATTAAGAGCTGTAAATAA 
C 206 
C 208 

1395 

D2N F : CCG CTCGAGGACTGACTTGGGATGCAAATGAT 
R : CGGGGTACCTCAAAACAACGCAGAAACGGACCCGGT 

C 206 
C 304 

675 

D2C F : CCGCTCGAGCAACCACCTCAGGTAGGAATATATCC 
R : CGGGGTACCTCATGCATTAAGAGCTGTAAATAA 

C 306 
C 208 

510 

CN F : CCGCTCGAGCAACCACCTCAGGTAGGAATATATCC 
R : CGGCGGGGTACCTCAATTGTTGCTGTAAGTGCTCAGCTC 

C 746 
C 791 

336 

CC F : GGCCCGCTCGAGGATCTGGTAATGCCGCTGTCATC 
R : CGGGGTACCTCATGCATTAAGAGCTGTAAATAA 

C 793 
C 208 

174 

CN67 F : GCCCCGCTCGAGGAAGAAATCCCAGTGCTGATCGAGCC 
R : CGGCGGGGTACCTCACTCACTGTGGGTGCTGGCTATTGA    

C 987 
C 988 

201 

CN45 F : GGCCCGCTCGAGGAAGGATCAGGCGTGTGTCCAG 
R : CGGCGGGGTACCTCAGCTTCCTGTCCTCCGCAGCGC 

C 1022 
C 1023 

135 

F : Forward ; R : Reverse 
 
Expanded View Table E2.B 
Name Primers (5’ �  3’) Number Size 

(bp) 
CN67 
delP 

F : GCACAGTCGTCATGGGTGAATAAATCCAAAGCATCTTTG   
R : CAAAGATGCTTTGGATTTATTCACCCATGACGACTGTGC 

C 1030 
C 1031 

183 

ATIP3 
delCN 

F : GGGCTCTGCTTCAAAAACAACGTCTGGTAATGCCGCTGTC 
R : GACAGCGGCATTACCAGACGTTGTTTTTGAAGCAGAGCCC 

C 928 
C 929 

3474 

ATIP3 
delCC1 

F : AGCTGAGCACTTACAGCAACAATGGTCCTTCGAGA 
R : TCTCGAAGGACCATTGTTGCTGTAAGTGCTCAGCT 

C 724 
C 725 

3654 

ATIP3 
delCC2 

F : GATGAAAACTCCTCCAAAAGTTGAAAAGAGCAGGCAAAAG 
R : CTTTTGCCTGCTCTTTTCAACTTTTGGAGGAGTTTTCATC 

C 91 
C 92 

3789 

ATIP3 
delCTer 

F : CCGCTCGAGCCATGACTGATGATAATTCAGATG 
R : CGGGGTACCTCAACACAGGTCCCCATTGTGCAG 

C 70 
C 209 

3721 

D2 
delCN 

F : GGGCTCTGCTTCAAAAACAACGTCTGGTAATGCCGCTGTC 
R : GACAGCGGCATTACCAGACGTTGTTTTTGAAGCAGAGCCC 

C 928 
C 929 

1059 

D2 
delCC1 

F : AGCTGAGCACTTACAGCAACAATGGTCCTTCGAGA 
R : TCTCGAAGGACCATTGTTGCTGTAAGTGCTCAGCT 

C 724 
C 725 

1239 

F : Forward ; R : Reverse 
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1. New ATIP3 interacting partners 

  

1.1. ATIP3 interacts with MCAK and regulates its localization at the MT 

plus-ends 

As mentioned in the introduction, microtubules are highly dynamic structures whose 

regulation depends (at least in large part) on the plus-end tracking proteins (+TIPs). A 

potent MT destabilizer is the EB1-interacting protein MCAK. MCAK (Mitotic Centromere-

Associated Kinesin) is a MT plus-end tracking kinesin able to change MT plus-end structure 

to induce its depolymerization.  

Our previous results have shown that ATIP3 regulates MT dynamic instability possibly by 

its interaction with EB1. However, whether ATIP3 participates in a complex with other MT 

regulators is an unknown question. Of note, the ATIP3 paralog TIP150, which also interacts 

with EB1, is able to associate with MCAK to form a complex (together with EB1) that will 

accumulate at the MT plus-ends (Jiang K et al. 2009). Additionally, the ATIP3 Xenopus 

ortholog ICIS also associates with MCAK to stimulate its MT-destabilizing activity (Ohi R et 

al. 2003). Given this information we hypothesized that ATIP3 could interact with MCAK to 

regulate MT dynamics. 

In order to define whether ATIP3 interacts with MCAK, co-immunoprecipitation assays 

were performed in ATIP3-deficient MCF7 cells co-transfected with Myc-MCAK 

(Unpublished Figure 1A) and full-length ATIP3. As shown in Unpublished Figure 1B, GFP-

ATIP3 and positive control EB1-GFP, and not GFP, are able to co-precipitate with Myc-

MCAK (lines 1, 2 and 3). To get further insight into the ATIP3-MCAK interaction, ATIP3 

deletion mutants were also tested for an interaction with MCAK. Interestingly, EB1-

interacting domains of ATIP3 (D2, D2C, D2CN) interact with the kinesin (Unpublished 

Figure 1B lines 4, 5 and 6). This indicates that ATIP3 interacts with MCAK via the CN 

domain, which is the same domain of interaction with EB1. 



 

 
98 

 

Unpublished Figure 1. ATIP3 interacts with MCAK. (A) Schematic representation of MCAK protein. EB1 domain (dark 

gray) contains the EB1 binding site; CC domain (gray) the coiled-coil motifs. Amino acids are shown on the top. (B) Co-

immunoprecipitation of Myc-MCAK and GFP, EB1-GFP or GFP-ATIP3 indicated constructs (GFP-ATIP3, GFP-D2, GFP-D2C 

or GFP-D2CN) transfected in MCF7 cells, using anti-Myc antibodies. Western blots were probed with anti-GFP and anti-

Myc antibodies as indicated on the right. Molecular weights are indicated in KDa on the left. (C) GST pull-down analysis 

in HeLa cells non-transfected or transfected with control siRNA (siCtrl), ATIP3-specific siRNA (siATIP #1 and siATIP #2) or 

MCAK-specific siRNA (siMCAK) as indicated, using GST-EB1 agarose beads. Blots were probed with anti-ATIP (MTUS1) 

and anti-MCAK antibodies. (D) Immunostaining (anti-EB1, anti-GFP antibodies) of siRNA-silenced HeLa cells transfected 

with GFP-MCAK or GFP-CLIP170. Insets: EB1, MCAK and CLIP170 comet-like structures in ATIP3-positive (siCtrl) and 

ATIP3-negative (siATIP#1) cells. Distribution of EB1 (red), α-tubulin (blue) and GFP-MCAK or GFP-CLIP170 (green) at the 

MT plus-end (linescan) is shown. Scale Bar, 10 µm. 
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Given that ATIP3 interacts with MCAK and EB1 through the CN domain, and that ATIP3 

and MCAK interact with the C-terminal portion of EB1, two possibilities can be extracted 

from the results concerning the interaction domains. Either, ATIP3, EB1 and MCAK are in 

the same macromolecular complex and cooperate to maintain the interaction or 

conversely ATIP3-EB1, MCAK-EB1 and ATIP3-MCAK interactions are independent and 

compete for the interaction with each other. In order to test a possible competition 

between these proteins, ATIP3-depleted or MCAK-depleted HeLa cells lysates were 

incubated with GST-EB1 and pull-down experiments were performed. Unpublished Figure 

1C shows that silencing of ATIP3 does not alter the interaction of MCAK with EB1; as well 

as MCAK silencing does not change ATIP3 interaction with EB1. Thus, neither ATIP3 nor 

MCAK compete to interact with EB1. 

Previous results indicate that ATIP3 interacts with EB1 and delocalize it from the MT 

growing ends. As ATIP3 also interacts with MCAK, the localization of this +TIP was then 

evaluated by immunofluorescence imaging. HeLa cells co-transfected with control or 

ATIP3-specific siRNAs and GFP-MCAK were then stained with anti-GFP and anti-EB1 

antibodies. Unpublished Figure 1D (top panels) revealed that MCAK does not accumulate 

at the plus-ends and rather it stays diffuse in the cytosol when ATIP3 is expressed. 

Conversely, in ATIP3-silenced cells, MCAK comet-like structures were detected, as wells as 

EB1’s. These results suggest that ATIP3 impairs EB1 and EB1-interacting proteins 

accumulation at the MT growing end. To test this hypothesis, HeLa cells co-transfected 

with siRNAs (control or ATIP3-specific) and GFP-CLIP170 were stained with anti-GFP and 

anti-EB1 antibodies (as for MCAK experiment). Interestingly, unlike EB1 and MCAK, 

CLIP170 accumulates at the plus-end, in a comet-like fashion, independently of ATIP3 

expression (Unpublished Figure 1D, lower panels). Of note, CLIP170 binds EB1 via a CAP-

Gly domain and not via an SxIP motif as MCAK. 

All these data provide evidence that ATIP3 interacts with MCAK via the CN domain. 

However, the elucidation of a macromolecular complex would be necessary to explain if 

the delocalization effect seen for EB1 and MCAK is specific to these proteins or if it is 

rather a consequence of EB1 delocalization. 

 

1.2. ATIP3 interacts with APC 

The importance of stable MTs for cell migration was shown for the first time by Wen Y et 

al. (2004). In this study, they demonstrated that EB1 and APC worked as a capture 

complex to stabilize MT ends near the cell cortex. 



 

 
100 

Given that ATIP3 is a stabilizing MAP, that its expression is related to a higher content of 

acetylated (stable) MTs and a reduction of cell migration, we sought to investigate if the 

effects of ATIP3 were due to a possible complex with APC and EB1, as demonstrated for 

mDia. Thus, to examine if ATIP3 interacts with APC, pull-down experiments were 

performed using GST-APC deletion mutants comprising either the MT and EB1 binding 

domains (APC-EZ), the MT binding domain (APC-basic) or the EB1 binding domain (APC-C) 

(Unpublished Figure 2A). These three fusion proteins were incubated with GFP, GFP-ATIP3 

or GFP-D2 transfected MCF7 cell lysates and GST-pull-down experiments were analyzed by 

western blot. 

As shown in Unpublished Figure 2B, ATIP3 strongly interacts with APC-EZ and weakly with 

APC-C and APC-basic. Similarly, the central D2 domain of ATIP3 was able to interact both 

with APC-EZ and APC-C, and with less affinity to APC-basic. 

Altogether, these results indicate that ATIP3 interacts with APC via its central domain D2, 

which is the functional domain of ATIP3, also involved in EB1 interaction. 

 

Unpublished Figure 2. ATIP3 interacts with APC. (A) Schematic representation of APC proteins and deletion mutants 

APC-EZ, APC-basic and APC-C. Basic domain (gray) contains the MT binding region; EB1 domain (dark gray) EB1 binding 

site. (B) Pull-down analysis of GFP, GFP-ATIP3 and GFP-D2 using GST, GST-APC-C, GST-APC-EZ or GST-APC-basic agarose 

beads. Blots were probed with anti-GFP antibodies. Molecular weights are indicated in KDa on the left. 
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2. ATIP3 role in ciliogenesis 

 

Given that ATIP3 associates with MTs and regulates its dynamics, an interesting question 

that must be addressed is, does ATIP3 has a role in the assembly or in the function of MT-

based structures, such as the primary cilium? 

The primary cilium is an antenna-like structure (composed by stable MTs) which is 

anchored to the cell by the basal body (which develops from a centriole) in a manner that 

is regulated within the cell cycle. This structure works as a sensory organelle which 

receives signals from the environment and transmits them to the nucleus. Few studies 

have investigated the involvement of primary cilia in cancer cells, but most of them have 

associated a decrease in the incidence of primary cilia with multiples types of cancer (Yuan 

K et al. 2010). Recently, Emoto K and coworkers (2014) showed that primary cilia can be 

detected in human pancreatic cell lines and in cancer cells of pancreatic ductal carcinoma 

patients. Interestingly, they correlated the presence of the primary cilia with a higher 

frequency of lymph node metastasis and decreased overall survival, considering the 

presence of primary cilia as a prognostic indicator.  

As ATIP3 stabilizes MTs, we hypothesize that it will decorate the primary cilium, as VHL 

protein. RPE1 cells, which are a suitable model for ciliogenesis, were growth until 

confluence before transfection with GFP, GFP-ATIP3 and GFP-D2 constructs. 

Immunostaining with anti-acetylated tubulin, anti-EB1 and anti-GFP was performed. Wide 

field images revealed that in ATIP3- and D2-expressing cells the incidence of primary cilia 

was markedly reduced (Unpublished Figure 3). Same results were obtained by staining 

another component of the cilium, the GTPase Arl13B, suggesting that ATIP3 could regulate 

the ciliogenesis. 
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Unpublished Figure 3. ATIP3 impairs primary cilia formation. Immunostaining (anti-acetylated tubulin, anti-EB1 and anti-

GFP) of RPE1 cells transiently transfected with GFP, GFP-ATIP3 and GFP-D2. Upper insets, merge, acetylated tubulin and 

EB1; lower insets, merge (acetylated tubulin and GFP) and GFP images near the basal body. Arrows indicate GFP-ATIP3 

and GFP-D2 transfected cells. Scale bar, 10µm. 

 

Whether ATIP3 inhibits or delays ciliogenesis from the basal body, as well it decreases MT 

regrowth from the centrosome, should be investigated. For this aim, a cell model capable 

to assemble cilia and which expresses ATIP3 should be used and transfected with control 

and ATIP3-specific siRNA in order to quantify and compare the number of ciliated cells and 

the size of the cilia in ATIP3-expressing and depleted cells. 
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3. MTUS1 gene mutations in breast cancer 

 

Previous mutational analysis of MTUS1 performed in the laboratory, in a series of 30 

primary breast carcinoma and 10 breast carcinoma cell lines, identified five non-

conservative nucleotide alterations. Amino acid replacements were located on positions 

T186S, M418R, P503R, K644Q and R1003Q. Of note, variations T186S, M418R, P503R, 

K644Q reside in exon 1 and consequently are specific for ATIP3. More precisely, M418R, 

P503R, K644Q are located in D2 (Colasson H and Kheddache S, unpublished results). 

Transfections of GFP-ATIP3 constructs carrying these alterations were performed in RPE1 

and D3H2LN cells in order to analyze EB1 accumulation and wound healing time-lapse 

images, respectively. As shown in Unpublished Table 1, ATIP3-mutations did not differ 

from the wild-type protein in both EB1 accumulation, and migration directionality.  

Unpublished Table 1. Characterization of ATIP amino acid sequence variations. 

Domain MT localization Loss of EB1 comets Directionality coefficient* 

ATIP3 + + 0.39 

T186S + + 0.49 

M418R + + 0.51 

P503R + + 0.55 

K644Q + + 0.49 

R1003Q + + 0.60 

* GFP transfected cells had a coefficient of directionality of 0.85 

 

These results, along with previous data showing that ATIP3 mutations did not alter MT-

association and co-sedimentation, neither the ability to inhibit cell proliferation (Colasson 

H, unpublished results) nor the capacity to interact with EB1 (Velot L, unpublished results), 

suggest that the five alterations may be passenger mutations that are not essential for 

tumoral development. Interestingly, a mutational analysis of MTUS1 gene in 

hepatocellular carcinoma identified five different nucleotide alterations, of which four are 

located in ATIP3 exons (Di Benedetto M et al. 2006b). However, no functional experiments 

were performed to verify the importance of these mutations on cancer progression. 

Further in vitro experiments, as MT dynamics measurements, as well as an extensive 

mutational DNA analysis using different patient cohorts or data bases as the TCGA (the 

cancer genome atlas) would be of relevance to investigate the presence of driver 

mutations implicated in the carcinogenesis process that would confirmed the tumor 

suppressor function of ATIP3.  
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III. CONCLUSIONS 
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Based on previous data from the laboratory showing ATIP3 as a novel Microtubule-

Associated Protein (MAP) which is down-regulated in invasive and metastatic breast 

tumors, and with inhibitory effects on breast cancer cell proliferation in vitro and tumor 

growth in vivo, one of the goals of this thesis was to elucidate whether ATIP3 was involved 

in breast cancer metastasis and if, besides tumor cell proliferation, this tumor suppressor 

was also impairing some other steps of the metastatic process such as invasion, migration, 

extravasation and colonization. 

Using three independent patient cohorts it was possible to demonstrate that ATIP3 is a 

prognostic marker for survival of the patients with breast cancer. Furthermore, we 

showed that ATIP3 may be an indicator of metastatic progression and high risk of fatal 

complication because its low expression correlates with reduced overall survival of 

patients with metastatic disease.  

The role of ATIP3 on breast cancer metastasis was then evaluated by means of a 

bioluminescence-based experimental mouse model for cancer metastasis. Results show 

that restoration of ATIP3 in highly invasive D3H2LN breast tumor cells decreases the 

metastatic colonization (time course and the number and size of metastatic foci). Analysis 

of the different steps of the metastatic process indicate that ATIP3 reduces cell migration 

and transendothelial migration (extravasation), and increases adhesion to endothelial cells 

and to collagen. Analysis of GFP and GFP-ATIP3 migrating stable clones show that the 

tumor suppressor reduces cell velocity and cell directionality during wound-induced 

migration. These data indicate that ATIP3 limits early (growth) and late (dissemination) 

phases of metastasis development. 

As cell migration is a process that somewhat depends on microtubule (MT) network and 

MT dynamics, a second objective of this work was to determine whether ATIP3 may be 

able to modulate MT dynamics, as described for almost all MAPs. Different experimental 

data let to the conclusion that ATIP3 is a stabilizing MAP that increases the acetylation 

content of interphase MTs, preventing MT depolymerization induced by cold or 

nocodazole treatment and reducing MT regrowth after nocodazole washout. Moreover, 

time-lapse analysis of EB1-GFP showed that loss of ATIP3 increases MT dynamic instability 

by increasing MT growth rate and MT growth episodes and decreasing MT time spent in 

pause and MT catastrophe frequency. 

The asymmetric distribution of stable microtubules is suggested to be amongst the initial 

events that occur in response to migration signals. The effect of ATIP3 on MT dynamic 

instability parameters leads to a marked reduction of polarized MTs. Thus, in ATIP3-

deficient cells MTs near the cell cortex were radially organized with their plus-ends 

anchoring at the cell margin, while in ATIP3-expressing cells MT plus-ends do not reach 
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the cell edge, due to MTs bending before reaching the cell cortex. Furthermore, analysis of 

acetylated tubulin (marker of stable MT) indicated that ATIP3 induces a global stabilization 

of MTs that will result in the absence of cell polarization. 

ATIP3 can be divided in three regions according to the isoelectric point of each of these 

parts: D1, the N-terminal part of the protein is characterized by its acidic behavior; D2, the 

central domain of the protein is rich in basic residues; and D3, the C-terminal region, has a 

neutral charge and is involved in protein dimerization due to the presence of four coiled-

coil domains. Experiments conducted in order to identify the functional domain of the full-

length protein revealed that D2, and not D1 or D3, was able to co-sediment with tubulin 

and to localize with MTs after immunofluorescence staining. Besides binding to MTs, 

clonogenicity experiments and wound-healing tests confirmed D2 as the functional 

domain of ATIP3. D2 reduces cell proliferation in vitro and impairs directionality during 

migration, just like ATIP3. This indicates that the central part of the protein (D2) contains 

the MT binding domain and the functional properties of full-length ATIP3. 

Microtubule dynamics are accurately regulated by MAPs. EB1, the core of +TIPs functions, 

has an important role in MT dynamics. Immunostaining images of mCherry-ATIP3 

indicated a reduction of EB1 localization at the MT growing end, that is restored once 

ATIP3 is not expressed. The aim of this part of my thesis was to investigate if ATIP3 

interacts with EB1 to impair its localization at the plus-ends. 

Sequence analysis of the ATIP3 polypeptide reveals three possible EB1 interacting motifs: 

one SxIP (SAIP) located in the C-terminal region of the protein and two SxIP-like (KNIP and 

RPLP) located in the central domain D2. By means of GST pull-down and co-

immunoprecipitation, we showed that ATIP3 interacts with EB1. Detailed analysis of EB1 

interaction domains of ATIP3 show that only the RPLP (located in a region termed CN) 

directly interacts with the C-terminal domain of EB1. 

A large number of studies have shown that SxIP-containing proteins accumulate at the MT 

growing end together with EB1. In spite of evidence suggesting that ATIP3 may be a new 

plus-end tracking protein via EB1 interaction, immunostaining and time-lapse imaging of 

ATIP3 and EB1 demonstrate that ATIP3 does not accumulate at the growing end of the 

MTs. ATIP3 rather remains attached to the MT lattice and surprisingly, tracks shrinking MT 

ends. 

By means of Proximity Ligation Assay (PLA) experiments using endogenous ATIP3 and EB1 

antibodies, the in situ interaction between these two proteins was revealed: they mostly 

interact in the cytosol. Interestingly, some complexes were also detected along the MT 

lattice. This last localization is coherent with immunofluorescence images showing a 
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reduction at plus-end but a partial MT lattice localization of EB1 in ATIP3-expressing cells. 

Subsequent experiments, indicated that that impaired accumulation of EB1 at the MT 

growing end was correlated with the presence of the EB1-interacting domain (CN) and 

was independent of the association with MTs. Together these results indicate that ATIP3 

interacts with EB1 and that it may retain EB1 at the cytosol and MT lattice, decreasing the 

free available cytosolic pool of EB1 that can accumulate at the plus-ends.  

Clinical relevance of this interaction was then evaluated by the analysis of MTUS1 (ATIP3 

gene) and MAPRE1 (EB1 gene) expression levels in a cohort of 150 breast cancer patients, 

followed by the comparison with clinicopathologic data. Results showed that relative 

expression levels of both proteins in breast tumors are related with patient clinical 

outcome. Indeed, among tumors with low levels of ATIP3 and high levels of EB1 a reduced 

overall survival of patients was found. Inversely, a better clinical outcome resulted from 

tumors with low levels of EB1 and high or very high ATIP3 expression levels. These last 

results highlight the importance of coordinated ATIP3 and EB1 expression levels in breast 

cancer progression and clinical outcome. 
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IV. DISCUSSION AND FUTURE 

DIRECTIONS 
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Major achievements in this work include the identification of ATIP3 as a new biomarker of 

metastasis in breast cancer patients and a regulator of MT dynamics which reduces MT 

dynamic instability. Although a remarkable progress has been done in understanding 

ATIP3’s effects in essential cellular functions, there is still much more to explore.  

 

1. ATIP3 decreases MT dynamic instability 

Evidence that ATIP3 reduces EB1 accumulation at the MT growing ends was provided in 

this work. EB1 reduction at the plus-end has been usually recognized as a hallmark of MT 

dynamics reduction. However, future TIRF time-lapse videomicroscopy experiments using 

mCherry-tubulin stable clones transfected with low levels of GFP-ATIP3 (or GFP-D2) and 

GFP-ATIP3delCN (or GFP-D2delCN), which does not interact with EB1, should be 

performed to measure dynamic instability parameters that would elucidate the 

importance of EB1-ATIP3 interaction in MT dynamics. 

How does ATIP3 reduce EB1 accumulation at the MT plus-ends? Reduction may be due to 

(i) EB1 degradation, (ii) post-translational modifications of EB1 that reduces its affinity for 

the plus ends, (iii) reduction of the free available cytoplasmic EB1, (iv) induction of a 

conformational change of the MT dynamic end and (v) suppression of the MT growing 

events.  

To date our data have excluded the hypothesis of EB1 degradation induced by ATIP3. 

Additionally, a conformational change of the MT growing ends by ATIP3 is very unlikely 

given that association with MTs is independent to the reduction of EB1 accumulation 

(concerns different protein binding domains). However it should be interesting to evaluate 

if ATIP3 expression or depletion causes a change in the tubulin-GTP cap (using for example 

anti-GTP-tubulin antibodies (Dimitrov A et al. 2008) or electronic microscopy images of 

the MT plus-ends).  

Thus, EB1 post-translational modifications and cytosolic EB1 retention are the most 

probable hypotheses that may explain EB1 reduction at the MT growing ends by ATIP3. 

Recently, Rovini A and coworkers suggested that alteration of the C-terminal tyrosine of 

EB1 may affect its accumulation at the growing ends, as well as its functions in MT 

dynamic regulation (Rovini A et al. 2013). Additionally, they demonstrated that migration 

was increased in cells containing detyrosinated EB1, suggesting a potential role of EB1 

detyrosination in cancer progression. EB1 tyrosination/detyrosination cycle will be 

evaluated using anti-tyrosinated and anti-detyrosinated EB1 antibodies (Bosson A et al. 

2012).  
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Even if it has not been demonstrated that acetylation of EB1 reduces its accumulation at 

the plus-ends, evaluation of this post-translational modification would be interesting in 

ATIP3-depleted cells given that persistent acetylation of EB1 perturbs chromosome 

alignment in metaphase (Xia P et al. 2012). 

An alternative option is the possible retention of EB1 by ATIP3. Considering that a 

diffusible cytosolic pool of EB1 is necessary to allow the dynamic accumulation at the 

growing end (Dragestein KA et al. 2008), ATIP3 interaction with EB1 may limit its dynamic 

turnover and thus, a reduction of EB1 at the growing end would be observed. In 2003 

Tortosa E and coworkers proposed a model for the classical MAP MAP1B. They showed 

that MAP1B directly interacted with EB3 in the cytosol, reducing its accumulation at the 

MT plus-ends and consequently regulating MT dynamics. In line with this model and due 

to the direct interaction of ATIP3 with EB1, one might think that ATIP3 would retain EB1, 

decreasing the free available pool that can accumulate at the plus-ends. Thus, in ATIP3-

deficient cells, more EB1 would accumulate at the growing end, therefore increasing MT 

dynamics, +TIPs interactions, and consequently cell proliferation and cell migration. 

However, experiments to evaluate this model are necessary. For instance, comparison of 

EB1-GFP turnover dynamics at the plus-ends in ATIP3-expressing and depleted cells could 

be measured through FRAP (Fluorescence Recovery After Photobleaching) 

videomicroscopy experiments. 

Additionally, a comparative and quantitative global proteomic approach (Deracinois B et 

al. 2013) to identify the amount of ATIP3 and EB1 in a normal epithelial cell would be 

important to elucidate if there is enough ATIP3 proteins to retain EB1 in the cell. 

 

2. ATIP3 molecular complexes 

Results from this work showed that ATIP3 interacts with MCAK. Whether this interaction 

requires EB1 is still unknown, but so far it has been elucidated that CN domain of ATIP3 

interacts with C-terminal EB1, as well as with MCAK; and that MCAK interacts with the 

same C-terminal domain of EB1, suggesting a possible macromolecular complex. 

Co-immunoprecipitation assays using ATIP3 and MCAK deletion mutants that do not 

contain the EB1-interacting domain (ATIP3delCN or D2delCN on ATIP3 and MCAK-3E or 

MCAK-NN on MCAK (Honnappa S et al. 2009)), as well as EB1-specific siRNA transfection 

must be performed to revealed if the interaction of ATIP3 with MCAK involves EB1. 

Additionally, if ATIP3, MCAK and EB1 form a complex, should be demonstrated if they are 

cooperating to stabilize the interaction. With this aim, GST-EB1 pull-down experiments 

should be performed using increasing amounts of GFP-ATIP3 or increasing amounts of 
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GFP-MCAK, to elucidate if interaction of MCAK or ATIP3 increases when the concentration 

of the other protein also increases. 

In line with increased EB1 accumulation at the growing ends in ATIP3-depleted cells, 

observation of GFP-MCAK revealed the same effect for this +TIP. The question that arises 

is whether ATIP3 is indirectly impairing the accumulation of all EB1-interacting partners at 

the plus-end. Immunostaining analysis of GFP-CLIP170 revealed that this protein 

accumulates at the plus-ends independently of ATIP3 expression, suggesting that loss of 

ATIP3 does not increase dynamics of all MTs, but just a subset where possibly EB1 and 

MCAK are localized. Of note, CLIP170 contains a CAP-Gly domain that allows to tip-track 

by hitchhiking on EB1, but as well by MT end recognition and/or by copolymerization with 

tubulin. Future experiments analyzing other SxIP-containing proteins that do not interact 

with ATIP3 would help to answer this question and clarify if the effect of ATIP3 on MCAK 

localization is specific or a direct consequence of EB1 delocalization. 

Interaction of ATIP3 with EB1 and MCAK may be involved in MT dynamics regulation given 

that these two proteins have a key role in MT dynamic instability, being EB1 involved in 

the polymerization and MCAK in the depolymerization of MTs. Interestingly, the Xenopus 

ortholog of ATIP3, ICIS also interacts with MCAK to stimulate its MT-depolymerizing 

activity supporting our hypothesis describing a MT regulatory complex. 

ATIP3 also interacts with APC. APC and ATIP3 share a large number of characteristics since 

both are members of the MATSP superfamily of tumor suppressor proteins that bind and 

regulate MT dynamics. In addition, ATIP3 and APC interact with EB1 and MCAK. It has 

been reported that interaction of APC with EB1 plays an important role in cell migration 

(Wen Y et al. 2004), whereas its interaction with MCAK is relevant for cell proliferation 

(Bahmanyar S et al. 2009). 

Weak interaction of ATIP3 with APC was found in the absence of EB1 binding domain 

(APC-basic), suggesting that EB1 may be not required for this interaction but for the 

stabilization. Nevertheless, additional GST pull-down experiments should be performed to 

confirm this hypothesis using EB1-specific siRNA or ATIP3 or D2 deletion mutants lacking 

the CN domain. In addition, further experiments aiming to determine ATIP3 domain of 

interaction with APC should be performed. Deletion of this domain from full-length 

protein must be tested in functional assays, such as cell migration to define if the effect of 

ATIP3 on MT polarity and thus cell polarity and migration are due to its interaction with 

APC. 

Where is the interaction between ATIP3 and APC happening? As APC is an SxIP-containing 

protein, its localization (in ATIP3-expressing and depleted cells) is important to verify 
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whether an accumulation at the MT plus-ends of APC is induced by the loss of ATIP3, as 

observed for EB1 and MCAK. Furthermore, considering that Louie RK et al. (2004) showed 

that APC and EB1 co-localize at the mother centriole, and that ATIP3 also localized at the 

centrosome, super resolution images should be taken to determine the exact position of 

ATIP3 and to define if it co-localizes with EB1 and APC complexes. 

In addition, PLA experiments aiming to identify the in situ localization of ATIP3 and APC 

(and as well ATIP3 and MCAK) should be performed to characterize the interaction 

between these proteins. Finally, and as for MCAK, it should be investigated if ATIP3, APC 

and EB1 form a complex to regulate MT behavior during cell migration. 

 

3. ATIP3 is not a +TIP 

In 2009, Honnappa S and coworkers revealed that some +TIPs contain repeated SxIP 

motifs (such as mammalian CLASP2) and show enhanced affinity for MT growing ends, 

suggesting that multiple SxIP motifs may cooperate to enhance MT tip tracking (Honnappa 

S et al. 2009). Considering that ATIP3 contains three SxIP motifs and that it interacts with 

three +TIPs (EB1, MCAK and APC), this strongly suggest that ATIP3 is a MT plus-end 

interacting protein (+TIP). However, ATIP3 does not track the end of growing MTs but 

instead the MT lattice and the end of shrinking MTs. 

In 2012, Jiang K and coworkers identified some SxIP-containing proteins that interacted 

with EB1 but did not showed tip-tracking behavior. Two interesting proteins were tastin 

and DDA3. By means of time-lapse videomicroscopy, these two proteins were described 

as back-tracking proteins, similar to ATIP3. Nevertheless, nothing is known about the 

mechanism by which these two proteins track depolymerizing MT ends. Backtracking 

proteins have been described in budding yeast (Salmon ED, 2005), Drosophila (Mennella V 

et al. 2005) and in humans (Langford KJ et al. 2006). In Drosophila, KLP59C (KIF2C/MCAK 

ortholog) remains associated with shrinking MTs and perpetuates their depolymerization 

by suppressing rescue. Although the mechanism by which this protein is retained at 

depolymerizing MT ends remains unclear, it has been suggested that differential affinity 

for the MT lattice versus the ends may be involved in KLP59C backtracking behavior (Sharp 

DJ et al. 2005). Of interest, APC was also described as a backtracking protein; however, no 

mechanism of action was associated with this localization (Langford KJ et al. 2006). 

How does ATIP3 track the end of a depolymerizing MT? A possible explanation for ATIP3 

accumulation and tracking of shrinking MTs may be a strong interaction of this protein 

with the MT lattice that will result in the slow dissociation of ATIP3 and the apparent 

accumulation at the depolymerizing end. However, future experiments like FRAP analyses 
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to measure the dynamics of GFP-ATIP3 association/dissociation with tubulin at the MT 

lattice would be interesting to test this hypothesis. 

 

4. ATIP3 impairs cell polarity and cell migration 

Several studies have shown that coupling of MTs at the front edge is relevant to sustain 

cell polarization and involves MTs plus-ends tracking proteins (+TIPs) such as EB1, APC, 

mDia, CLIP170, CLASP1, CLASP2, MACF/ACF7 and IQGAP. As mentioned above ATIP3 

interacts with EB1 and APC, but the role of this interaction on cell migration must be 

evaluated.  

It has been reported that cell polarization through APC includes the activation of Par 

proteins, especially Par6, the atypical PKCζ and GS3Kβ (Etienne-Manneville S et al. 2005). 

Evaluation of the activation of these proteins in ATIP3-expressing and depleted cells will 

allow to elucidate the effect of ATIP3 in the pathways that mediates MT and cell 

polarization. 

Cell polarity mostly depends on actin rearrangement which in turn depends on activation 

of Rho GTPases. In accordance, the relevance of Rho pathway in ATIP3 effects should be 

tested using Rho inhibitors (as the toxin B or the C3 exoenzyme) or Rho Kinases (ROCK) 

inhibitors (like Y-27632). Additionally, actin dynamics in ATIP3-expressing and depleted 

cells during migration can be elucidated by means of TIRF (Total Internal Reflection 

Fluorescence) time-lapse videomicroscopy and will provide some clues to unravel the 

molecular mechanism of ATIP3 in cell polarity. 

Impaired MT polarization results in a defect on cell polarity and subsequent cell migration. 

Tracking of phase contrast time-lapse images revealed an alteration of cell directionality 

that was accompanied with a difference in cell morphology. While highly invasive D3H2LN 

GFP cells formed a clear lamellipodium in the front of the cell near the wound and a 

trailing edge at the rear, ATIP3-positive cells exhibited various protrusions in different 

directions that do not persist over time. This unsustained cell shape during migration 

results in the failure of ATIP3-expressing cells to develop a polarized morphology that is 

instrumental for migration of adherent cells.  

Time-lapse images also revealed a difference in the way GFP- or GFP-ATIP3-expressing 

cells migrate. D3H2LN GFP-expressing cells exhibit a collective cell migration where 

confluence cells remain attached and the cell monolayer moves coordinately to close the 

wound. Conversely, ATIP3-expressing cells do not form a compact monolayer and single 

cells move independently of their neighbors without a direction, confirming the defect on 

cell polarity. The change in morphology observed raises the hypothesis that loss of ATIP3 
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might induce a mesenchymal-epithelial transition (MET), where spindle-shaped cells 

become an array of polarized cells. Even if little is known about the role of MET in cancer 

and metastatic progression, it has been reported that it participates in the establishment 

and the stabilization of distant metastasis by allowing cancerous cells to regain epithelial 

properties and integrate into distant organs (Thiery JP, 2002; Brabletz T et al. 2005). 

This observation should be verified by immunostaining of E-cadherin and N-cadherin, β-

catenin, APC, intermediate filaments and other proteins involved in the transition, in both 

ATIP3-expressing and depleted cells. Additionally, ATIP3 introduction at low levels in cysts 

to evaluate a possible disruption of the structure, loss of polarity, and a switch between 

epithelial to mesenchymal markers would be important. This experiment should be 

performed as well with ATIP3-expressing cells where the protein will be silenced using 

specific siRNAs. 

 

5. Clinical relevance of ATIP3 

At the clinical level, this work allowed the identification of a new prognostic marker of the 

clinical outcome and an indicator of metastatic progression and high risk of fatal 

complication. Interestingly, two independent studies have shown that low expression of 

MTUS1 is associated with low overall survival of patients with bladder cancer (Xiao J et al. 

2012) and oral tongue squamous cell carcinoma (Ding X et al. 2012). The identification of 

ATIP3 as the MTUS1 splice variant down-regulated in these two human cancers will permit 

the extrapolation of our results in human tumors other than breast cancer. Additionally, 

the evaluation of ATIP3 status in those cancers where MTUS1 expression levels have been 

reported as reduced (pancreas, ovary, colon, head-and-neck, bladder and gastric) it would 

be of importance.  

This work provides evidence that the combined evaluation of ATIP3 and EB1 gene 

expression profiles predicts the clinical outcome of breast cancer patients. Reduction of 

EB1 accumulation at the MT growing ends and alteration of its functions will depend on 

the relative expression levels of EB1 and ATIP3. In normal conditions, combined EB1/ATIP3 

levels will maintain the equilibrium between the oncoprotein functions and the tumor 

suppressor functions. In contrast, an increase of EB1 or a decrease of ATIP3 will end in a 

deregulation of the balance, thus tumors with high levels of EB1 or low levels of ATIP3 

may have an increase MT dynamics, tumor growth, tumor metastasis and consequently 

patients would have a worst prognosis. 

It will be interesting to extend this first analysis including more patients’ cohorts or using 

data bases (as the Kaplan-Meier plotter) to confirm the result obtained, and to evaluate 



 

 
119 

the clinical importance of a group that was not present in this first gene expression 

analysis: high levels of both proteins. Furthermore, the evaluation of ATIP3 relative 

expression levels in those human cancers where EB1 has been reported as overexpressed 

(Fujii K et al. 2005; Nishigaki R et al. 2005; Wang Y et al. 2005; Orimo T et al. 2008; 

Stypula-Cyrus Y et al. 2014) will allow to extend the correlation seen in breast cancer. 

Additionally, the implement of PLA experiments (using anti-MTUS1 and anti-EB1 

antibodies in tumor and normal tissue) as clinic test may be of diagnostic value. 

How could we translate these results in an ATIP3 targeted therapy? Different strategies 

(such as nanoparticles, cell-penetrating peptides or CPPs, or injection of naked DNA) have 

been reported as options for a personalized treatment (Bolhassani A et al. 2011; Sanchez 

C et al. 2014; Bu X et al. 2014; Fioretti D et al. 2014). However, given that ATIP3 is a large 

protein (1270 amino acids) is difficult its introduction in cancer cells. Which is why, the 

identification of a functional domain is important. D2 (465 amino acids) seems a good 

candidate as it retains all the full-length functions. Subsequent reduction of this domain 

showed that D2C and CN (170 and 112 amino acids, respectively) retained all of the 

functions tested as the interaction with EB1, the co-localization with MTs (CN with less 

affinity) and impairment of EB1 localization at the MT growing end. Future experiments 

should validate the effect of D2 deletion mutants in cellular processes, such as cell 

proliferation and cell migration, and metastatic progression to determine if these domains 

are fully functional and suitable for further use as a targeted therapy. 

Results from this work allowed the identification of patients with high risk of fatal 

complication. The design and modelization of peptides that mimic the effects of ATIP3 and 

impede the accumulation of EB1 at the plus-ends (CN, par example), should be considered 

as an important therapeutic tool, against tumors that have lost ATIP3 and overexpress 

EB1, that has to be still developed. 
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> Les microtubules, formés de l’assem-

blage dynamique de dimères d’alpha et 

de bêta-tubuline, jouent un rôle essen-

tiel dans l’homéostasie cellulaire. Dans 

les cellules en interphase, le cytosque-

lette de microtubules intervient dans le 

maintien de l’architecture cellulaire, la 

migration et le trafic intracellulaire de 

protéines et d’organites ; en mitose, il se 

réorganise pour former le fuseau mitoti-

que qui permet une répartition correcte 

des chromosomes [1]. La dynamique de 

polymérisation des microtubules, essen-

tielle à leur fonction, est sous le contrôle 

d’un ensemble de protéines agissant de 

concert : les MAP (

) dont l’activité est fine-

ment régulée dans l’espace et le temps 

[1, 2]. Les altérations de la structure 

ou de la régulation des MAP peuvent 

avoir des répercussions considérables 

dans de nombreuses situations physio-

pathologiques, comme c’est le cas par 

exemple pour la protéine APC (

) dans le cancer du 

côlon, ou la protéine Tau dans la maladie 

d’Alzheimer.

ATIP3, un régulateur de mitose 

associé aux microtubules

Notre équipe a récemment mis en évidence 

une nouvelle protéine associée aux micro-

tubules dénommée ATIP3 

 [3], codée par le gène candidat 

suppresseur de tumeurs  (

)1 [4, 

5]. La molécule ATIP3 est localisée au 

centrosome et le long des microtubules 

dans les cellules en interphase. Au cours 

de la division cellulaire, elle s’associe au 

fuseau mitotique à tous les stades de la 

mitose et au pont intercellulaire lors de 

la cytokinèse . En accord avec 

1 Le gène  a initialement été nommé 

, sur la base des résultats de Seibold 

. [11]. En 2010, lorsqu’il s’est avéré qu’ATIP3, ICIS et 

TIP150, produits des gènes  et  sont associés 

aux microtubules [3, 7, 8], le comité de nomenclature de 

la base de données NCBI (

) a renommé  : 

.

cette localisation particulière, nos travaux 

ont montré un effet régulateur d’ATIP3 sur 

la mitose. En effet, ATIP3 freine la proli-

fération cellulaire et prolonge le temps 

de division en maintenant les cellules au 

stade métaphase [3].

L’étude moléculaire de la protéine ATIP3 

revêt un intérêt fondamental quand on 

sait que son expression est diminuée 

dans le cancer du sein, et ce de façon 

d’autant plus marquée que la tumeur est 

plus agressive et de grade histologique 

élevé, métastatique ou du sous-type 

triple négatif, pour lequel il n’existe pas 

à ce jour de thérapie ciblée. Ainsi ATIP3 

constitue un nouveau biomarqueur des 

tumeurs de sein de mauvais pronostic. 

De plus, ses effets antimitotiques 

 et antitumoraux  en font une 

cible privilégiée pour l’élaboration de 

nouvelles thérapies moléculaires contre 

le cancer du sein [3].

Bien que les mécanismes d’action d’ATIP3 

demeurent inconnus à ce jour, des études 

récentes réalisées sur deux protéines (ICIS 

et TIP150) qui lui sont structuralement 

apparentées, ouvrent des perspectives 

intéressantes dans le domaine du cancer. 

La protéine ICIS (codée par le gène ortho-

logue  de Xénope) a été décrite 

comme une nouvelle MAP localisée aux 

Figure 1. Localisation de la protéine ATIP3 aux 

microtubules dans les cellules de carcinome 

pulmonaire SK-MES en interphase (à gauche) 

et en mitose (à droite). L’image d’immuno-

fluorescence est obtenue après immuno-

 marquage de la protéine ATIP3 endogène (en 

vert) et de l’alpha-tubuline (en rouge).
Interphase Mitose

Article disponible sur le site http://www.medecinesciences.org ou http://dx.doi.org/10.1051/medsci/2011273244
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kinétochores [6], structure qui relie les 

centromères aux microtubules lors de 

la mitose . ICIS interagit avec 

la kinésine MCAK (

) et contribue à la 

dépolymérisation des microtubules et 

donc à la dynamique du fuseau mitotique 

essentiel à la ségrégation des chromoso-

mes [6]. Plus récemment, la mise en évi-

dence d’une interaction entre ICIS et une 

autre kinésine 13 (Kif2A) conforte le rôle 

de cette protéine dans la dépolymérisa-

tion des microtubules [7]. D’autre part, 

la protéine TIP150 (produit du gène para-

logue ) a récemment été identifiée 

comme une MAP interagissant avec EB1 

( ) et MCAK aux bouts 

« plus » des microtubules  pour 

favoriser leur dépolymérisation [8]. Ainsi, 

par analogie avec ses homologues ICIS 

et TIP150, on peut avancer l’hypothèse 

d’un rôle d’ATIP3 dans la dynamique des 

microtubules  l’activation de  kinésines 

de la famille MCAK.

Fonctions 

des autres membres de la famille ATIP

Qu’en est-il des autres membres de la 

famille ATIP ? L’épissage alternatif du gène 

génère en effet deux autres pro-

téines - ATIP1 et ATIP4 - identiques à 

ATIP3 dans leur portion carboxy- terminale 

[4, 5, 9] mais dont le lien avec le cytos-

quelette de microtubules n’a pas encore 

été évalué. ATIP1, initialement identifié 

comme partenaire d’interaction du récep-

teur AT2 de l’angiotensine II - ce qui lui a 

d’ailleurs valu son nom d’

- est un acteur privilégié 

des voies de signalisation de ce récepteur, 

impliqué dans l’inhibition de la proliféra-

tion cellulaire, la différenciation  neuronale 

et le remodelage vasculaire [4].

Outre son rôle central dans la signali-

sation de l’AT2, ATIP1 contribue aussi 

à l’adressage du récepteur à la mem-

brane [10]. De façon intéressante, ATIP1 

a été décrite comme étant localisée 

dans les mitochondries [11] ou le Golgi 

[10], deux compartiments cellulaires 

étroitement associés aux microtubu-

les. La colocalisation d’ATIP1 avec ces 

deux organites et ses effets sur le trafic 

intracellulaire du récepteur AT2 suggè-

rent qu’ATIP1 pourrait interagir avec les 

microtubules et s’associer à des moteurs 

moléculaires pour permettre le transport 

intracellulaire d’organites ou de récep-

teurs. Bien que purement spéculative, 

cette hypothèse mérite d’être examinée.

La protéine ATIP4 n’a pas encore été 

isolée à ce jour. Au-delà de son domaine 

d’interaction avec le récepteur AT2, cette 

protéine présente deux caractéristiques 

particulières - la présence d’un domaine 

transmembranaire et un profil d’expres-

sion exclusivement restreint au système 

nerveux central - qui en font un média-

teur potentiel des effets de l’AT2 dans 

le cerveau [4]. On peut noter que les 

400 acides aminés carboxy-terminaux 

d’ATIP4 sont identiques à ceux d’ATIP1 

et ATIP3 et fortement conservés dans les 

séquences des protéines ICIS et TIP150, 

ce qui pose la question de l’association 

potentielle d’ATIP4 avec le cytosque-

lette de microtubules  son domaine 

 carboxy-terminal  intracellulaire.

En conclusion

Les protéines de la famille ATIP ont 

récemment été impliquées dans diverses 

fonctions, allant de la différenciation 

neuronale au remodelage vasculaire et 

à la prolifération tumorale. Cette revue 

pose l’hypothèse selon laquelle ces pro-

téines pourraient, avec leurs analogues 

structuraux ICIS et TIP150, constituer 

une nouvelle superfamille de protéines 

associées aux microtubules. Localisées 

dans différents compartiments intra-

cellulaires, les protéines ATIP pourraient 

contribuer aux fonctions essentielles de 

la cellule (mitose, trafic, signalisation) 

en régulant la dynamique des microtu-

bules. L’étude moléculaire des membres 

de cette superfamille devrait permettre 

de révéler de nouveaux aspects du rôle 

des microtubules aux niveaux cérébral, 

cardiovasculaire et tumoral. ‡

ATIP, a novel superfamily of microtu-

bule-associated proteins

Figure 2. Localisation cellulaire des protéines 

ATIP et de leurs analogues structuraux ICIS 

et TIP150. Schéma représentant l’association 

d’ATIP3, ICIS et TIP150 avec les microtubules 

dans une cellule en interphase (à gauche) ou 

en mitose (stade métaphase, à droite). En 

interphase, ATIP3 (en rose) est localisée tout 

le long des microtubules alors que TIP150 (en 

vert) est exclusivement présente aux extrémi-

tés des microtubules (bout +). ATIP1 (en bleu) 

est localisée au Golgi. Dans une cellule en 

mitose, on retrouve ATIP3 (en rose) le long des 

microtubules du fuseau mitotique et ICIS (en 

jaune) au niveau des kinétochores. Golgi
ATIP1

Interphase Mitose

Microtubules
ATIP3

Bout +
TIP150

Kinétochores
ICIS
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La chromatine et ses dérivés

Depuis son apparition en 1882 [1], le 

terme « chromatine » a changé de défi-

nition à de nombreuses reprises. Ces 

définitions ont toutes eu pour fonction 

de mettre un nom sur un objet dont la 

nature, la structure, les propriétés et les 

fonctions n’ont jamais été parfaitement 

comprises. Par exemple, la dichotomie 

entre euchromatine et hétérochroma-

tine, initialement établie par micros-

copie électronique, désignait l’hétéro-

chromatine comme la fraction compacte 

du matériel nucléaire d’une cellule en 

interphase. La définition actuelle obéit 

aux exigences de la génomique : l’hé-

térochromatine est volontiers définie 

par sa nature répétitive ou l’absence 

d’expression des gènes qui y sont codés. 

Ainsi, chacune des deux définitions 

élude les mécanismes fondamentaux de 

la propriété sur laquelle elle est basée.

Malgré la nature éminemment floue du 

concept de chromatine, la communauté 

scientifique ne fait preuve ni de dogma-

tisme, ni de naïveté quant à son usage. 

Le terme garde son aspect indéfini avant 

tifier . Donnant des résultats 

comparables à ceux de la précipitation 

de la chromatine (ChIP), la technologie 

DamID jouit d’un avantage : elle peut 

être appliquée de façon systématique 

sans recours au développement d’an-

ticorps spécifiques, ce qui permet une 

augmentation conséquente du débit. Les 

cartes de liaison à haute résolution de 

ces 53 protéines nous ont permis de don-

ner le premier aperçu de la chromatine à 

cette échelle dans une cellule eucaryote.

Hétérogénéité et simplicité 

de la chromatine de drosophile

La première surprise de cette étude est 

l’hétérogénéité de la chromatine de 

drosophile. On pourrait s’attendre à une 

répartition plus ou moins uniforme des 

évènements de liaison sur la molécule 

d’ADN. Or, la majeure partie du génome 

est liée par un petit nombre de protéi-

nes très abondantes, telles que l’his-

tone H1, alors qu’une petite fraction du 

génome est liée par un très grand nom-

bre de protéines différentes. La seconde 

surprise est la faible complexité de la 

tout pour des raisons expérimentales. 

Il est clair depuis plus d’une quinzaine 

d’années que la dichotomie naïve entre 

euchromatine et hétérochromatine est 

le fruit de l’inefficacité des méthodes 

utilisées pour interroger les propriétés du 

matériel nucléaire . Il n’est donc 

pas surprenant que les termes chan-

gent à nouveau de sens avec l’essor des 

 analyses  à l’échelle du génome.

Grâce aux technologies récentes, nous 

avons cartographié les sites de liaison 

de 53 protéines de la chromatine sur le 

génome de la drosophile [2]. Pour cela 

nous avons utilisé un modèle uniforme 

de cellules en culture et une méthode 

de cartographie  appelée DamID. 

Le principe de la méthode repose sur 

l’activité de l’enzyme Dam (

). Dam dépose une 

empreinte sur l’ADN, absente des géno-

mes eucaryotes, qui peut être détectée 

par des enzymes de restriction. En fusion-

nant une protéine à Dam, il est possible 

de restreindre la méthylation de l’ADN 

aux sites de liaison de cette protéine 

, ce qui permet ensuite de les iden-
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Abstract

Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further
characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of
secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally
and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis.
We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were
injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination.
Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary
sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number
and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by
promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across
extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-
treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related
to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network
of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or
action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.
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Introduction

The occurrence of distant metastasis is a critical event that limits

the survival of patients with breast cancer. While targeted

molecular therapies have considerably improved the management

of primary breast tumors, these remain poorly effective for the

treatment of distant metastases. The identification of molecular

agents that may contribute to breast cancer cell dissemination is

therefore essential for future development of new anti-metastatic

therapeutic strategies.

Metastasis is an inefficient process. Among the large number of

cancer cells that detach from the primary tumor and invade

adjacent tissues to reach the bloodstream, most remain quiescent

or die in the circulation [1–3]. Only few circulating tumor cells are

able to cross the blood barrier and colonize distant organs to form

micrometastases [3–5]. There is increasing evidence that, in

addition to intrinsic metastasis gene signatures that predict the

ability of tumor cells to colonize distant tissues [6], close

interactions between circulating tumor cells and the host

microenvironment are critical to the establishment of cancer cells

at secondary sites [7–9]. Diffusible molecules such as cytokines or

chemokines (CXCL12, CCL2) play a seminal role in breast cancer

metastasis [10,11]. We reasoned that other small molecules such as

vasoactive peptides, either produced locally or released in the

blood flow, may trigger activating signals contributing in an

autocrine or paracrine manner to cancer cell extravasation,

colonization and metastasis.

Angiotensin II (AngII) is the biologically active peptide of the

renin-angiotensin system (RAS) involved in blood pressure control,

tissue remodeling and angiogenesis as well as in vascular and

inflammatory pathologies. Of interest, major functions attributed

to AngII (inflammation, angiogenesis and migration) are also

related to cancer progression [12,13]. Most components of the

RAS including angiotensinogen, angiotensin converting enzyme
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(ACE) and angiotensin receptors are expressed locally in a wide

variety of tumors, including in breast tumors [13–15]. Local

production of AngII in gastric cancer has been shown to facilitate

tumor progression and lymph node metastasis [16,17]. Further-

more, blockers of the RAS (either ACE inhibitors or angiotensin

receptor blockers ARBs) were shown to efficiently reduce tumor

growth, angiogenesis and metastasis in mouse experimental

models in vivo [12,13,18,19]. However, anti-metastatic properties

of RAS inhibitors were mainly associated with effects on the host

microenvironment, including infiltration of tumor-associated

macrophages or tumor-related angiogenesis [20,21], and to date

there has been no report on potential metastatic effects of AngII

through direct cancer cell activation.

In this study, we aimed to investigate whether AngII may act

directly on tumor cells to modify their metastatic properties. We

demonstrate that pre-treatment of breast cancer cells by AngII

triggers rapid development of metastatic foci at secondary sites in

an experimental mouse model in vivo and potentiates cancer cell

motility and transendothelial migration.

Results

Angiotensin II accelerates the development of
metastases in vivo

An experimental mouse model of cancer metastasis was

developed to investigate the effects of AngII on the metastatic

potential of breast cancer cells in vivo. Highly metastatic human

breast cancer cells D3H2LN (an in vivo-selected subclone of MDA-

MB-231 cells expressing luciferase [22]) were exposed to AngII

(100 nM) for 24 hrs (or vehicle for control group) and injected

intra-cardiacally into the bloodstream of nude mice in order to

recapitulate the late and essential steps of cancer metastasis, i.e.

extravasation and colonization [22,23]. Such strategy allowed us

to evaluate the effects of AngII on cancer cells while avoiding any

direct effect of the peptide on the host microenvironment.

The establishment of tumor micrometastases in various organs

was evaluated every two days by intravital bioluminescent imaging

on anesthetized animals. Fourteen mice injected with AngII-

treated cells were compared to 15 control mice, in two

independent experiments. As shown in Fig. 1A, mice from both

groups showed detectable micrometastases as early as day 7 post-

injection and all of them harbored metastases at day 19,

illustrating high aggressiveness of the D3H2LN cell line. However,

tumor cells exposed to AngII acquired a more aggressive behavior,

showing at least one metastatic site in 50% (7/14) of the animals at

day 7 as compared to 26,7% (4/15) of control mice. At day 9 of

the experiment, 86% (12/14) of the mice that received AngII-

treated cells presented at least one detectable metastatic nodule,

compared to 40% (6/15) for control mice (Fig. 1A). Notably,

AngII pre-treatment not only increased the percentage of mice

with metastasis, but also increased the number of detectable

metastatic foci per mouse (Fig. 1B) as well as the total number of

tumor cells disseminated in the whole body, as assessed by

quantification of bioluminescence (Fig. 1C). Ex-vivo analysis of

bioluminescence in isolated organs (not shown) and subsequent

histological analysis (Fig. 1D) on the last day of the experiment

confirmed the presence of tumor cells in the brain, lung and bone

samples that had been identified as luciferase-positive in the whole

animal.

The most significant differences between AngII-pretreated and

control groups were observed shortly after cell injection, as

illustrated by pictures of 5 representative mice taken at (Fig. 1E).

Indeed, breast cancer cells treated with AngII developed three

times more metastatic foci per mouse at day 9 compared to

control cells (Fig. 1B, Fig. S1A). In agreement, the number of

disseminated cancer cells was significantly increased in the AngII-

treated group as compared to control (median 1.155 and

0.5256106 of photons/s respectively, at day 9 post-injection)

(Fig. 1C, Fig. S1B). Our results thus indicate that invasive

D3H2LN breast cancer cells exposed to AngII show increased

metastatic potential in vivo and are more prone to rapidly establish

at distant organs.

Angiotensin II increases breast cancer cell adhesion and
migration
Metastatic dissemination of circulating cancer cells involves

several sequential steps, among which tumor cell adhesion to the

vascular endothelium, migration across the endothelial barrier and

subsequent invasion across the extracellular matrix to reach a

secondary site. In order to evaluate the consequences of AngII

activation on cancer cell adhesion and migration, the properties of

MDA-MB-231 and D3H2LN breast cancer cells were analyzed in

vitro following pre-treatment with AngII. As shown in Fig. 2A,

AngII stimulation for 24 hrs significantly increased (1.7 fold) the

adhesion of cancer cells to a monolayer of human endothelial cells.

Cancer cell adhesion following AngII stimulation was also

increased (2 fold) when endothelial cells were pre-activated for

24 hrs with pro-inflammatory cytokines (IFNc and TNFa). To

note, short-term exposure (30 min or 6 hrs) of breast cancer cells

to AngII was not sufficient to promote increased adhesion to the

endothelial monolayer (data not shown), suggesting that AngII-

increased cancer cell adhesion may involve transcriptional

regulation of target genes rather than activation of intracellular

trafficking or signaling pathways – that generally occur within

minutes.

We next evaluated the effects of AngII on breast cancer cell

migration. As shown in Fig. 2B, pre-treatment of breast cancer

cells with AngII for 24 hrs significantly increased (1.5 fold) their

ability to migrate in Boyden chamber assays using FCS as

chemoattractant. Similar results were obtained in invasion assays

using filters coated with matrigelH that mimics the extracellular

matrix (Fig. 2C). The pro-migratory effects of AngII on breast

cancer cells were further confirmed in wound healing assays

(Fig. 2D, E) showing significant increase (1.64 fold) in cell

migration and wound closure at 16 hrs following pre-treatment

with AngII. To note, AngII-pre-treatment had no significant effect

on cell proliferation (Fig. S2), ruling out the possibility that

increased cell number may account for increased wound closure.

Finally, exposure of breast cancer cells to AngII induced a 2.7 fold-

increase in trans-endothelial migration, i.e. the ability to migrate

through a monolayer of human endothelial cells (Fig. 2F), which is

a hallmark of cancer cell extravasation in vitro.

Thus, AngII contributes to each step of breast cancer cell

extravasation including tumor cell adhesion to endothelial cells,

motility, invasion and trans-endothelial migration.

Angiotensin II regulates a panel of connected target
genes
To get further insight into the mechanisms by which AngII

increases breast cancer cell migration and metastasis, we searched

for downstream molecular targets that may be regulated following

exposure of MDA-MB-231 cells to AngII for 24 hrs. Comparative

DNA microarray (Affymetrix U133A) studies revealed a panel of

123 differentially expressed genes (more than 1.4-fold, p,0.05).

Among those, 102 genes (63 up-regulated and 39 down-regulated)

were associated with known functions (Tables S1 and S2)

including cell proliferation and apoptosis (32%), cell adhesion

Pro-Metastatic Effects of AngII in Breast Cancer
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and migration (27%) and inflammation (18%) (Table S3).

Accordingly, these genes were found to contribute to intracellular

protein kinase pathways (21%) or small GTPase signaling (17%)

(Table S4). Of interest, a large number of differentially regulated

genes (25%) were also related to cell metabolism, a finding that

opens new areas of investigation regarding the effects of AngII in

cancer cells.

Except for one up-regulated gene (encoding anti-apoptotic

molecule ATAD3A), differential regulation by AngII at 24 hrs did

not exceed a factor of 3 (Table S1), suggesting that AngII may

induce fine-tuned modulation of a wide number of genes involved

in various signaling pathways, rather than strong activation or

inhibition of a restricted set of specific genes. Ingenuity Pathway

Analysis (IPA) software revealed a network of genes centered

around angiotensinogen (AGT), the precursor of AngII (Fig. 3A).

Remarkably, two main groups of regulated genes could be

distinguished, one being related to MAP kinase (MAPK1) a major

effector of cell proliferation and inflammation (comprising

MAPK1, MAP2K7, MKNK2, PAWR, ARHGEF12, IGF1R,

RASGRF1 and DOK1), the other one being connected to matrix

metalloproteases MMP2 and MMP9 (also comprising ICAM1,

ITGB2, BSG, CDKN1, ANAPC10, SMAD2, RASGRF1 and

DOK1), well-known mediators of cell invasion and matrix

remodeling (Fig. 3A). Notably, RASGFR1 and DOK1 belong to

both groups of connected genes.

To note, microarray studies indeed revealed an increase in

MMP2 and MMP9 expression levels in response to AngII

stimulation, although results did not reach significance due to

heterogeneity of probesets hybridization. The pivotal position of

these genes within the network of AngII-regulated targets

prompted us to further investigate their differential expression by

RT-PCR. As shown in Fig. 3B and 3C, AngII dose-dependently

increases the mRNA levels of MMP2 (2-fold) and MMP9 (3-fold)

but not MMP3 nor MMP1 (not shown). Lipopolysaccharide (LPS),

as well-known potent inducer of MMPs expression and activity,

was used as a positive control for AngII efficiency. Dose-dependent

activation of MMP9 enzymatic (gelatinase) activity, reaching a 2-

fold increase at 100 nM AngII, was further confirmed by

zymography analysis (Fig. 3D). Of interest, Intercellular Adhesion

Molecule (ICAM-1), a major player in cell-cell adhesion and trans-

endothelial migration, also stands at the crossroad between AGT,

MMPs and integrins (Fig. 3A). In agreement with gene array

studies showing up-regulation of ICAM-1 mRNA (1.48 fold) by

AngII (Table S1), FACS analyses (Fig. 3E) further confirmed up-

regulation (1.8-fold) of ICAM-1 protein levels at the plasma

Figure 1. AngII increases the time-course, incidence and number of metastases in an experimental model in vivo. (A). Percentage of
mice showing at least one detectable metastasis over time after intracardiac injection of D3H2LN cells treated with AngII (red dotted line, n = 14) or
vehicle (black line, n = 15). (B). Number of metastases per mouse at indicated days. Results are mean +/2 SEM of 15 control (white bar) and 14 AngII-
treated (black bar) groups. (C). Number of photons/s per mouse at indicated days. Results are expressed as in B. (D). Histological analysis of
metastases developing at the brain (left panel), the lung (middle panel) and the bone (right panel), obtained from 3 mm sections of formalin-fixed,
paraffin-embedded tissue blocks stained with hematoxylin/eosin. Arrows indicate tumor cells. Magnification, 200x. (E). Representative pictures of 5
mice taken at day 9 after injection of control cells (upper panel) or AngII-treated cells (lower panel). * p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0035667.g001
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membrane of MDA-MB-231 cells following 24 hrs treatment with

AngII.

Discussion

Pro-metastatic effects of AngII in various experimental models

in vivo have been attributed to its actions on the host

microenvironment [12,13,20,21]. We show here for the first time

that direct exposure of breast cancer cells to AngII contributes to

increased tumor-endothelial cell adhesion, trans-endothelial mi-

gration and motility, and accelerates metastatic progression in an

experimental mouse model in vivo. AngII is a potent vasoactive

peptide that can be both released in the bloodstream and

generated locally by endothelial, stromal and/or cancer cells.

We propose that autocrine or paracrine effects of AngII, either

present in the circulation or in the microenvironment of secondary

tissue, may trigger an activating signal facilitating the dissemina-

tion and establishment of micrometastases in target organs.

Cancer cell extravasation and metastatic colonization are rate-

limiting steps that involve reciprocal interactions between tumor

cells and the host stroma [24]. Extravasation requires cancer-

endothelial cell adhesion and subsequent trans-endothelial migra-

tion. Colonization in turn necessitates remodeling of the

extracellular matrix to invade and adapt to the new microenvi-

ronment [25], as well as activation of pro-survival pathways that

allow maintenance of cancer cells and their growth as microme-

tastases [24,26]. Data presented here provide evidence that AngII

transcriptionally modulates a wide range of coordinated genes that

contribute to cell adhesion/migration and proliferation/survival

through connection to matrix metalloprotease and MAP kinase

pathways, respectively. These observations are in support of the

functional studies reported here and suggest that AngII may

contribute to both extravasation and colonization of metastatic

breast cancer cells.

At the molecular level, previous studies have extensively

documented AngII-mediated regulation of MAP kinase pathways

in various cell types, in relation with mitogenic and anti-apoptotic

effects of the peptide [27]. We show here that AngII up-regulates

MMP2 and MMP9 gene expression and enzymatic activity in

breast cancer cells, in agreement with studies conducted in the

gastric cancer cell line MNK-28 [28]. Notably, we also report here

that AngII up-regulates the expression of Intercellular Adhesion

Molecule ICAM-1 at the mRNA and protein level. ICAM-1 is

well-known to trigger leukocyte adhesion to the endothelium and

Figure 2. AngII increases breast cancer cell adhesion and migration. (A). MDA-MB-231 breast cancer cell adhesion to HCMEC/D3 endothelial
cells monolayer following exposure of cancer cells to AngII (100 nM) for 24 hrs. Results are means +/2 SEM of 7 independent experiments performed
in quadruplicate, and expressed as fold increase of untreated cells (control, Ctrl). *p,0.05. (B, C). Boyden chamber assays of tumor cell migration
across 8 mm-pore filters either non coated (B) or coated with matrigel to mimic cell invasion (C). Results are means +/2 SEM of 3 separate
experiments performed in triplicate, and expressed as fold increase of control. *p,0.05. (D, E). Wound healing assay. Results are from 2 independent
experiments performed in quintuplicate, and expressed as fold increase of wound closure at time 16 hrs (T16) compared to control (vehicle-treated
cells). *p,0.05. (E). Representative pictures of wounds from control and AngII-treated cells (100 nM, 24 hrs) at T0 and T16. Magnification, 100x. (F).
Trans-endothelial migration. Results are mean +/2 SEM of 3 independent experiments performed in triplicate, and expressed as fold increase of
control. *p,0.05.
doi:10.1371/journal.pone.0035667.g002
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subsequent diapedesis, and its expression in endothelial cells has

been shown to be increased by AngII in inflammatory situations

[29]. Our results show for the first time that ICAM-1 is up-

regulated in breast tumor cells in response to AngII treatment.

Relevance of this finding to human disease is supported by a

recent report showing that increased levels of ICAM-1 in breast

tumors are associated with a more aggressive phenotype [30], and

by studies highlighting the importance of vascular cell adhesion

molecules in the establishment of breast cancer cells at the

secondary site [31]. Other genes encoding adhesion molecules

Figure 3. AngII transcriptionally regulates a panel of connected genes. (A). Gene networks differentially regulated by AngII. Up- and down-
regulated genes related to angiotensinogen (AGT) are indicated in red and green, respectively. Filled lines indicate direct interactions, filled and
dashed arrows indicate direct and indirect regulations, respectively. Note two groups of connected genes centered around MAPK1 and MMP2/9,
respectively. (B). RT-PCR analysis of MMP9, MMP2 and MMP3 mRNA expression in MDA-MB-231 cells treated for 24 hrs with increasing doses of AngII
as indicated, or LPS (Lipopolysaccharide, 100 ng/ml) as a positive control. GAPDH amplification was used as internal control. Shown is one out of 3 to
5 independent experiments performed in duplicate. (C). Quantification (Image J software) of PCR amplification of MMP9, MMP2 and MMP3 relative to
GAPDH and normalized to expression levels in cells treated with 1 nM AngII. (D). Gelatin-based zymography analysis of MMP9 activity in conditioned
medium of cells treated as in B. Shown is one representative out of 3 independent experiments (Upper panel). Quantification (ImageJ software) of
results normalized to the quantity of proteins in cell lysate and expressed relative to control (lower panel). (E). FACS analysis of ICAM-1 expression at
the plasma membrane of MDA-MB-231 cells treated with AngII (100 nM) or vehicle for 24 hrs. Results are means +/2 SEM of 3 independent
experiments and expressed as fold-increase of the control. **p,0.01.
doi:10.1371/journal.pone.0035667.g003
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(ITGB2) or metabolic pathways (FUT4) were also significantly up-

regulated by AngII (1.5 and 1.7 fold, respectively) (Table S1). Of

interest, FUT4 encodes fucosyltransferase which is involved in the

synthesis of sialyl-Lewis X, a well-known ligand of selectins

adhesion molecules, suggesting an indirect effect of AngII on the

selectin–selectin ligand axis.

We propose here a model in which direct stimulation of

circulating cancer cells by locally-produced AngII may regulate a

set of genes that ultimately influence the host microenvironment to

facilitate cancer cell extravasation, adaptation to the soil and

subsequent metastatic colonization. This model supports the

notion that targeting AngII production or action using ACE

inhibitors or ARBs, respectively, may represent an interesting

therapeutic option to prevent metastatic progression of invasive

breast tumors. In patients however, the question of whether RAS

blockers may have beneficial effects in cancer remains contradic-

tory [12,13,32–35], a finding that might reflect tumor heteroge-

neity in terms of RAS expression and local levels of AngII

production. Future prospective studies analyzing expression of

RAS components and AngII production in breast cancer may lead

to the identification of a subpopulation of tumors that respond to

ACE inhibitors and/or ARBs. Such agents being largely used in

the clinics as antihypertensive agents with mild side effects may

constitute a major breakthrough for personalized therapy of

metastatic breast tumors.

Materials and Methods

Cell lines
MDA-MB-231-Luc-D3H2LN luciferase-positive breast cancer

cells (referred here as D3H2LN) were obtained from Caliper Life

Science (Xenogen, MA, USA) and grown as described previously

[23]. These cells were derived from a spontaneous lymph node

metastasis of the MDA-MB-231 adenocarcinoma cell line

expressing luciferase, as described [22]. Metastatic MDA-MB-

231 breast tumor cells were obtained and grown as described

previously [36]. Human vascular endothelial HCMEC/D3 cells

were immortalized from brain microcapillaries and grown as

described [37].

Animal studies
Intracardiac experimental mouse model of metastasis in vivo was

conducted as described [22,23]. Briefly, female nude mice of 8–

0 weeks (Janvier, France) were anesthetized by intraperitoneal

injection of 120 mg/kg ketamine and 6 mg/kg xylazine. D3H2LN

cells expressing luciferase were pre-treated with 100 nM AngII

(Sigma, France) or vehicle in serum-free medium for 24 hrs prior

to injection (100.000 cells in 100 ml sterile PBS) into the left

ventricle of the heart by non surgical means. Anesthetized mice

were placed in the IVISTM Imaging System (Xenogen, Caliper

Life Science, MA, USA) and imaged from both dorsal and ventral

views five minutes after intraperitoneal injection of D-luciferin

(Caliper Life Science). A successful intracardiac injection was

indicated on day 0 by systemic bioluminescence distributed

throughout the animal. Only mice with evidence of successful

injection were included in the experiment. Assessment of

subsequent metastasis was monitored by imaging using the

IVISTM Imaging System (Caliper Life Science), every 3–4 days

for up to 24 days on mice anesthetized by exposure to 1–3%

isoflurane. Experiments were carried out with the approval of the

Département d’Expérimentation Animale, Institut d’Hématologie,

Hôpital St-Louis ethical committee, and were performed twice on

7 to 8 mice per group.

For ex-vivo analysis, organs highlighted by bioluminescence in

whole mice were removed surgically after sacrifice of the animals

and rapidly incubated with D-luciferin before imaging using the

IVIS system. For histological analyses, sections (3 mm) of

metastatic organs were cut from formalin-fixed, paraffin-embed-

ded tissue blocks, counterstained with hematoxylin-eosin and

examined under an inverted microscope.

Tumor cell adhesion to endothelial cells and trans-
endothelial migration
For endothelial cell adhesion assay, tumor cells were pre-treated

with AngII (100 nM) or vehicle in serum-free medium for 24 hrs

prior to labeling using green fluorescent cell tracker CMFDA

(Molecular Probes) as recommended by the manufacturer.

Fluorescent tumor cells (100.000/well of 96-well plates) were

added for 30 min at 37uC to a monolayer of human endothelial

cells (HCMEC/D3) either left untreated or pre-treated for 24 hrs

with pro-inflammatory cytokines IFNc (200 U/ml) and TNFa

(100 U/ml). After extensive washing, adherent cells were lysed in

water and tumor cells were quantified in a fluorescent microplate

reader at wavelength 485/530 nm. Experiments were performed

in quadruplicate.

For trans-endothelial migration assay, endothelial HCMEC/D3

cells (20.000/well) were plated on collagen type I-coated Transwell

filters (8 mm pore filter) and grown to confluence. Serum starved

MDA-MB-231 cells (100.000/well) were pre-treated for 24 hrs

with AngII (100 nM) or vehicle prior to labeling with CMFDA cell

tracker as described before. Fluorescent tumor cells were added to

the endothelial monolayer in the presence of chemokine CXCL12

(100 ng/ml) in the lower compartment. After 24 hrs, cells

remaining in the upper chamber were removed with a cotton

swab and tumor cells having migrated through the endothelial

monolayer to the lower face of the filter were lysed with water and

quantified in a fluorescent microplate reader at wavelength 485/

530 nm. Experiments were performed in triplicate.

Cell migration
For Boyden chamber assays of cell migration, MDA-MB-231

cells (200.000/well) were pre-treated for 24 hrs with AngII

(100 nM) or vehicle and were then seeded on the upper chamber

of 8 mm-Transwell filters (Corning, NY, USA) either coated or not

with 10 mg/ml matrigel (BD Biosciences), and allowed to migrate

for 18 hrs in the presence of 10% FCS in the lower compartment.

Cells migrating to the lower face of the filters were fixed in

methanol, stained with crystal violet and counted under an

inverted microscope. Experiments were performed in triplicate.

For wound healing assays, D3H2LN cells were pre-treated for

24 hrs with AngII (100 nM) or vehicle and were then grown to

confluence in 24-well plates before cross-shape wounds were

performed in the monolayer using a sterile 10 ml pipette tip.

Wounds were registered by phase contrast microscopy immedi-

ately after scratching (T0) and after 16 hrs in serum-free medium

(T16), and quantified using ImageJ software (http://rsb.info.nhi.

gov/ij/). For each condition the ratio of wound closure at T16

relative to T0 was calculated.

Gene array studies
Total RNA from MDA-MB-231 cells treated for 24 hrs with

AngII (100 nM) or vehicle, was extracted using Trizol (Invitrogen)

and analyzed with the Affymetrix Human Genome U133 Plus 2.0

Gene Chips (a genome wide array with 54674 probe sets targeting

19418 transcripts) as described [38]. Gene expression levels were

normalized using the GC-RMA algorithm and flags were
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computed using MAS5. Quality assessment of the chips was

performed with affyQCReport R package (R project for Statistical

Computing [http://www.r-project.org/]). Each data set was

derived from triplicates of biologically independent samples and

compared using Student’s t test. To estimate the false discovery

rate the resulting p values were filtered at 5%. Microarray

experiments were performed according to the MIAME consor-

tium guidelines. Data have been submitted to MIAMEarray

express under accession number E-MEXP-3470 and the release

date is 2012-12-05. Data were submitted to Ingenuity Pathway

Analysis (IPA) to model relationships among genes and proteins

and to construct putative pathways and relevant biological

processes (http://www.ingenuity.com).

RT-PCR analysis
Total RNA was extracted from MDA-MB-231 cells treated as

indicated, and cDNA was reverse-transcribed using oligo-dT and

superscript RT (Invitrogen) as recommended by the manufacturer.

PCR amplification (35 cycles, annealing temperature 55uC) was

performed on 25 ng cDNA using oligonucleotide primers as

follows: MMP9-F 59AAG TAC TGG CGA TTC TCT GAG

GG; MMP9-R 59GGC TTT CTC TCG GTA CTG GAA GAC;

MMP2-F 59TTT TCT CGA ATC CAT GAT GG; MMP2-R

59CTG GTG CAG CTC TCA TAT TT; MMP3-F 59CCT

GCT TTG TCC TTT GAT GC; MMP3-R 59TGA GTC AAT

CCC TGG AAA GTC; GAPDH-F 59GGA GAA GGC TGG

GGC; GAPDH-R 59GAT GGC ATG GAC TGT GG.

FACS analysis
MDA-MB-231 cells were treated for 24 hrs with AngII

(100 nM) or vehicle and harvested in 1mM EDTA. Expression

levels of ICAM-1 at the cell membrane were evaluated by FACS

analysis using Cytomics TM FC500 (Beckman Coulter) after

labeling with anti-ICAM-1 antibodies (R&D system).

Gelatin zymography
For analysis of metalloprotease enzymatic activity, conditioned

medium of MDA-MB-231 cells treated for 24 hrs with increasing

concentrations of AngII, or lipopolysaccharide (LPS, 100 ng/ml)

as positive control, were collected and loaded on gelatin (1 mg/

ml)-containing SDS-PAGE run at 4uC (zymography gels) as

described [23]. MMP9 activity was visualised as a clear band at

90 kDa after coomassie blue coloration, and quantified using

ImageJ software.

Statistical analysis
Statistical analyses were conducted using JMP-7 software. Data

in bar graphs (mean +/2 SEM) were analyzed using Student’s t-

test. p,0.05 was considered statistically significant.

Supporting Information

Figure S1 (A). Quantification of the number of metastases per

mouse at day 9. Shown are pooled results from 2 independent

experiments, black squares and black triangles representing

control (n = 15) and AngII-treated (n= 14) mice, respectively.

(B). Quantification of the number of photons/s per mouse at

day 9. Results are expressed as in (A). * p,0.05, ***p,0.001.

(TIF)

Figure S2 MTT assay of D3H2LN cells proliferation

following 24 hrs- pre-treatment with AngII (100 nM) or

vehicle. Shown is one representative experiment out of 3

performed in quadruplicate.

(TIF)

Table S1 Shown are the 63 genes up-regulated by AngII

(100 nM, 24 hrs) by 1.4-fold or more (p,0.05). The genes

are listed in alphabetical order, together with their main

characteristics and known functions (description/ Gene pathway/

function column), differential regulation by AngII (fold column)

and p value. (a): Genes connected to Angiotensinogen pathway

AGT (as illustrated in Figure 3A) are indicated by an asterisk *.

(DOC)

Table S2 Shown are the 39 genes down-regulated by

AngII (100 nM, 24 hrs) by 1.4-fold or more (p,0.05). The

genes are listed in alphabetical order as indicated in Table S1. (a):

Genes connected to Angiotensinogen pathway AGT (as illustrated

in Figure 3A) are indicated by an asterisk *.

(DOC)

Table S3 Genes regulated by AngII are classified

according to their major functions namely Inflamma-

tion, Cell Proliferation and Apoptosis, Adhesion and

Migration, Metabolism. Genes with others functions appear

in the ‘‘others’’ section. Number of genes is indicated under

parenthesis. Up-regulated genes are indicated in bold whereas

down-regulated genes are indicated in standard font.

(DOC)

Table S4 Genes regulated by AngII are organized in

four major pathways related to protein kinase signaling,

small GTPases, Ubiquitin/proteasome and intracellular

traffic. Number of genes is indicated under parenthesis. Up-

regulated genes are indicated in bold whereas down-regulated

genes are indicated in standard font.

(DOC)
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Supplemental Table S1. List of genes up-regulated by AngII in MDA-MB-231 cells. 

Gene 
Symbol(a) 

Gene Name  Description / Gene pathway / Function fold p 
value 

ABCC10 ATP-binding cassette, sub-family C (CFTR/MRP), 
member 10 

Transporter, Drug resistance, Metabolism 1.55 0.035 

AKT1S1 AKT1 substrate 1 (proline-rich) Protein kinase signaling, Apoptosis 2.15 0.025 

ALDH3B1 Aldehyde dehydrogenase 3 family, member B1 Enzyme, Metabolism, Inflammation 1.57 0.021 

ALS2CL ALS2 C-terminal like Exchange factor, Small GTPase signaling, Proliferation, Intracellular 
traffic 

2.02 0.044 

ARFGAP1* ADP-ribosylation factor GTPase activating 
protein 1 

Exchange factor, Small GTPase signaling, Intracellular traffic, Cell 
Adhesion/Migration 

1.60 0.022 

ARHGEF12* Rho guanine nucleotide exchange factor (GEF) 
12 

Exchange factor, Small GTPase signaling, Metabolism, Cell 
Adhesion/Migration 

3.03 0.034 

ARPC4 Actin related protein 2/3 complex, subunit 4 Actin binding protein, Small GTPase signaling, Intracellular traffic 
Cell Adhesion/Migration 

1.51 0.027 

ARRDC1 Arrestin domain containing 1 Arrestin-related trafficking, Cell Adhesion/Migration 1.82 0.041 

ATAD3A ATPase family, AAA domain containing 3A ATP binding protein, Apoptosis 4.55 0.032 

ATXN7L3 Ataxin 7-like 3 Zn finger, Trancriptional regulator, Histone ubiquitination 1.48 0.045 

BSG* Basigin (EMMPRIN) Receptor, Protein kinase signaling, Cell Adhesion/Migration, 
Inflammation, Metabolism 

1.81 0.042 

CARD10 Caspase recruitment domain family, member 10 Guanylate kinase family member, Protein kinase signaling, Cell 
Growth and Apoptosis, Cell Adhesion/Migration 

1.55 0.035 

CDKN1C* Cyclin-dependent kinase inhibitor 1C (p57, 
Kip2) 

Kinase, Proliferation, Actin dynamics, Neuronal differentiation, 
Tumor invasion and metastasis 

1.50 0.017 

CYB5R2 Cytochrome b5 reductase 2 Enzyme, NADH redox activity, Metabolism 1.81 0.015 

DDA1 DET1 and DDB1 associated 1 Autophagy, Ubiquitination, Tumor invasion and Metastasis 1.61 0.048 

DLGAP4 Discs, large (Drosophila) homolog-associated 
protein 4 

Guanylate kinase, Receptor interacting protein 1.44 0.040 

DOK1* Docking protein (downstream of tyrosine kinase 
1) 

Scaffold protein, Receptor tyrosine kinase signaling, Proliferation, 
Cell Adhesion/Migration 

2.06 0.004 

DOLK Dolichol kinase Kinase, Glycosylation, Metabolism 1.55 0.040 

EFNB3 Ephrin-B3 Receptor tyrosine kinase, Small GTPase and Protein kinase 
signaling, Cell Growth and Apoptosis, Cell Adhesion/Migration 

1.43 0.047 

EIF5A Eukaryotic translation initiation factor 5A Translation factor, Cell Growth and Apoptosis, Metabolism, Cell 
Adhesion/Migration 

1.73 0.048 

FBXL19 F-box and leucine-rich repeat protein 19 Enzyme, F-Box protein family, Ubiquitin/Proteasome pathway 2.04 0.037 

FMNL3 Formin-like 3 Actin binding protein, Small GTPase signaling, Cell 
Adhesion/Migration 

1.48 0.049 

FRMD4A FERM domain containing 4A Actin interacting domain, Small GTPase signaling, Actin dynamics, 
Epithelial polarity, Cell Adhesion/Migration 

1.43 0.027 

FUT4 Fucosyltransferase 4 (alpha (1,3), myeloid-
specific) 

Enzyme, Protein kinase signaling, Selectin-related interactions, Cell 
Adhesion/Migration, Inflammation, Metabolism  

1.82 0.043 

GNG7 Guanine nucleotide binding protein (G protein), 
gamma 7 

Protein G gamma subunit, GPCR signalling, Cell Growth 1.62 0.011 

HMG20B High-mobility group 20B Transcription regulator, DNA binding, BRCA2 interaction 1.87 0.018 

ICAM1* Intercellular adhesion molecule 1 Transmembrane cell adhesion molecule, Inflammation, Cell 
Adhesion/Migration 

1.43 0.050 

IGF1R* Insulin-like growth factor 1 receptor 

 

Receptor, Protein kinase signaling, Cell Growth and Apoptosis, 
Inflammation 

1.71 0.050 



IL17RA Interleukin 17 receptor A Receptor, Protein kinase signaling, Inflammation  1.60 0.047 

ITGB2* Integrin, beta 2 (complement component 3 
receptor 3 and 4 subunit) 

Receptor, Small GTPase signaling, Inflammation, Cell 
Adhesion/Migration 

1.50 0.032 

KDELR1* KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum 
protein retention receptor 1 

Receptor/Transporter, Protein kinase signaling, Small GTPase 
signaling, Intracellular traffic, ER stress response 

1.85 0.030 

MAN1B1 Mannosidase, alpha, class 1B, member 1 Enzyme, Metabolism, Intracellular traffic, Proteasome pathway  1.89 0.046 

MAP2K7* Mitogen-activated protein kinase kinase 7 Kinase, Protein kinase signaling, Cell Growth and Apoptosis, 
Inflammation 

 

 

 

 
MAP4K2 Mitogen-activated protein kinase kinase kinase 

kinase 2 
Kinase, Protein kinase signaling, Inflammation 2.20 0.046 

MKNK2* MAP kinase interacting serine/threonine kinase 
2 

Calcium/calmodulin dependent Protein kinase signaling,Translation, 
Metabolism, Cell Proliferation, Inflammation, Proteasome pathway 

1.89 0.022 

MRPS18A Mitochondrial ribosomal protein S18A Mitochondrial, ribosomal, Protein synthesis 1.77 0.040 

MYH11 Myosin, heavy chain 11, smooth muscle Actin binding protein, TGFbeta pathway, Motor activity, Cell 
Proliferation, Cell Adhesion/Migration  

1.66 0.024 

MYO1C* Myosin IC Actin based molecular motor, Cell Proliferation, Intracellular traffic, 
Cell Adhesion/Migration 

1.49 0.036 

NAT8L N-acetyltransferase 8-like (GCN5-related, 
putative) 

Enzyme, Nacetyl methyltransferase superfamily, Membrane-bound 
protein, neuron-specific, Metabolism 

1.74 0.045 

NEK8 NIMA (never in mitosis gene a)- related kinase 
8 

Kinase, Cell Cycle progression, Cell proliferation, Ciliogenesis 1.60 0.042 

OTUD5 OTU domain containing 5 Cysteine protease, Deubiquitinase, Innate immune response, 
Inflammation, Proteasome pathway 

1.55 0.046 

PCGF1 Polycomb group ring finger 1 Transcriptional regulator, Development, Ubiquitin/Proteasome 
pathway 

1.51 0.036 

PCTK1 PCTAIRE protein kinase 1 Cyclin dependent kinase Cdk16, Protein kinase signaling, 
Intracellular traffic, Exocytosis 

1.56 0.029 

PRIC285 Peroxisomal proliferator-activated receptor A 
interacting complex 285 

Zinc finger, Transcription regulator, DNA helicase, Metabolism, 
Inflammation 

1.56 0.004 

PYCR2 Pyrroline-5-carboxylate reductase family, 
member 2 

Enzyme, Metabolism  1.44 0.023 

RAB4B RAB4B, member RAS oncogene family Enzyme, Small GTPase signaling, Intracellular traffic, Glut4 
transport, Metabolism, Motility 

1.56 0.036 

RASGRF1* Ras protein-specific guanine nucleotide-
releasing factor 1 

Exchange factor, Small GTPase signaling, Protein kinase signaling, 
Cell Proliferation, Cell Adhesion/Migration 

2.90 0.001 

SEMA6B Sema domain, transmembrane domain (TM), 
and cytoplasmic domain, (semaphorin) 6B 

Transmembrane receptor, Axon guidance, Cell Adhesion/Migration 2.64 0.005 

SHB Src homology 2 domain containing adaptor 
protein B 

Adaptator protein, Protein kinase and Small GTPase signaling, Cell 
Growth and Apoptosis, Cell Adhesion/Migration, Inflammation 

1.50 0.026 

SIX2 SIX homeobox 2 Transcription factor, Cortisol Secretion, Metabolism 1.48 0.043 

SLC2A4RG SLC2A4 regulator Transcription factor, Glut4 enhancer, Metabolism 1.51 0.039 

SRGAP1 SLIT-ROBO Rho GTPase activating protein 1 Small GTPase signaling, Neuronal Migration 2.03 0.047 

STX10 Syntaxin 10 SNAP receptor activity, Vesicular transport, Intracellular traffic 1.47 0.023 

TBC1D10A TBC1 domain family, member 10A Exchange factor, Small GTPase signaling, Intracellular traffic  1.83 0.020 

THRA Thyroid hormone receptor, alpha  Nuclear hormone receptor, Metabolism 1.51 0.022 

TNFRSF12A* Tumor necrosis factor receptor superfamily, 
member 12A 

Membrane receptor, Protein kinase signaling, Apoptosis, 
Inflammation 

1.86 0.045 

TRAF3IP2 TRAF3 interacting protein 2 TNF receptor pathway, Protein kinase signaling, Apoptosis, 
Inflammation, Proteasome pathway 

1.85 0.034 

TSPAN4 Tetraspanin 4 Transmembrane protein, Cell Growth and Apoptosis, Cell 
Adhesion/Migration 

1.98 0.034 



UBE2M Ubiquitin-conjugating enzyme E2M (UBC12 
homolog) 

Enzyme, Ubiquitin/Proteasome pathway, Cell Proliferation and 
Apoptosis 

1.78 0.032 

UBE2R2 Ubiquitin-conjugating enzyme E2R 2 Enzyme, Ubiquitin/Proteasome pathway, Cell Growth 1.50 0.024 

UBXN11 UBX domain protein 11 Small GTPase signaling, Cell Adhesion/Migration 
Ubiquitin/Proteasome pathway 

1.48 0.015 

VPS37D Vacuolar protein sorting 37 homolog D  Intracellular traffic  2.05 0.047 

WIZ Widely interspaced zinc finger motifs Zinc finger, Nuclear co-repressor, Histone methylation 2.06 0.025 

 

 



Supplemental Table S2. List of genes down-regulated by AngII in MDA-MB-231 cells. 

Gene  

Symbol (a) 

Gene Name Description / Gene pathway / Function fold p 
value 

ANAPC10* Anaphase promoting complex subunit 10 Enzyme, Cell Proliferation and Apoptosis, Ubiquitination  

 

-2.21 0.041 

ARL17 ADP-ribosylation factor-like 17 Metabolism -1.72 0.040 

B4GALT4 UDP-Gal:betaGlcNAc beta 1,4- 
galactosyltransferase, polypeptide 4 

Enzyme, Membrane-bound protein, Metabolism 

 

-1.42 0.038 

BTBD3 BTB (POZ) domain containing 3 Interacts with PlexinB3 -1.42 0.035 

COG5 Component of oligomeric golgi complex 5 Transporter, Intracellular traffic -2.14 0.026 

DOCK5 Dedicator of cytokinesis 5 Exchange factor, Small GTPase signaling, Cell Adhesion/Migration -1.57 0.043 

DYRK2 Dual-specificity tyrosine-(Y)-phosphorylation 
regulated kinase 2 

Kinase, Protein kinase signaling, Cell Proliferation,  -1.69 0.048 

EIF2S3 Eukaryotic translation initiation factor 2, subunit 3 
gamma, 52kDa 

Translation regulator, Protein synthesis, Cell Proliferation -2.08 0.024 

EXOC8 Exocyst complex component 8 Cell Adhesion/Migration, Intracellular traffic -1.52 0.032 

FBXO45 F-box protein 45 Ubiquitination -1.69 0.005 

FGFR1OP2 FGFR1 oncogene partner 2 Cell Proliferation, Cell Differentiation -1.75 0.045 

HCFC2 Host cell factor C2 Transcription regulator, Cell Proliferation -1.86 0.049 

IDH3A Isocitrate dehydrogenase 3 (NAD+) alpha Enzyme, Metabolism  -2.02 0.003 

IRAK3 Interleukin-1 receptor-associated kinase 3 Transmembrane receptor, Protein kinase signaling, Inflammation -1.81 0.037 

KIF1B Kinesin family member 1B Transporter, Intracellular traffic, Cell Adhesion/Migration -2.16 0.040 

KPNA1 Karyopherin alpha 1 (importin alpha 5) Transporter, Intracellular traffic, Inflammation -1.47 0.026 

MAP7D3 MAP7 domain containing 3 Microtubule associated protein 7, Cell Adhesion/Migration -2.51 0.029 

MAPK1* Mitogen-activated protein kinase 1 Kinase, Protein kinase signaling, Transcription regulation, Cell 
Proliferation 

-1.50 0.038 

MITF Microphthalmia-associated transcription factor Transcription factor, Cell differentiation, Cell Proliferation and 
Apoptosis 

-1.47 0.039 

MSRB2 Methionine sulfoxide reductase B2 Transcription regulator, Metabolism -1.76 0.021 

NDUFS1* NADH dehydrogenase (ubiquinone) Fe-S protein 
1, 75kDa (NADH-coenzyme Q reductase) 

Enzyme, Metabolism -1.39 0.013 

OSGEPL1 O-sialoglycoprotein endopeptidase-like 1 Enzyme, Metabolism -1.50 0.032 

PAG1 phosphoprotein associated with glycosphingolipid 
microdomains 1 

Transmembrane protein, Protein kinase signaling, Inflammation -1.66 0.038 

PAWR* PRKC, apoptosis, WT1, regulator Transcription regulator, Cell Proliferation and Apoptosis -1.99 0.011 

PTPN21 Protein tyrosine phosphatase, non-receptor type 
21 

Protein tyrosine phosphatase, Cell Proliferation and Apoptosis, Cell 
Differentiation 

-1.52 0.004 

RALB V-ral simian leukemia viral oncogene homolog B 
(ras related; GTP binding protein) 

Enzyme, Small GTPase signaling, Cell Proliferation and Apoptosis, 
Cell Adhesion/Migration 

-1.50 0.026 

RGS2* Regulator of G-protein signaling 2, 24kDa GTPase activating protein, Small GTPase signaling, Cell Proliferation 
and Apoptosis 

-1.49 0.023 

RNF144B Ring finger protein 144B Enzyme, Ubiquitination, Metabolism -1.46 0.009 



RTTN Rotatin Development  -1.90 0.015 

SFRS3 Splicing factor, arginine/serine-rich 3 Splicing factor, Gene expression -1.81 0.032 

SGMS2 Sphingomyelin synthase 2 Enzyme, Metabolism, Cell Growth and Apoptosis -1.50 0.045 

SLC40A1 Solute carrier family 40 (iron-regulated 
transporter), member 1 

Transporter, Metabolism -1.91 0.023 

SMAD2* SMAD family member 2 Transcription regulator, Cell Proliferation and Apoptosis -2.48 0.006 

SYNE1 Spectrin repeat containing, nuclear envelope 1 Nuclear membrane protein, Cytoskeletal anchoring, Differentiation, 
Cell Adhesion/Migration 

-2.70 0.013 

UBE2H Ubiquitin-conjugating enzyme E2H (UBC8 
homolog, yeast) 

Enzyme, Ubiquitination -1.77 0.025 

ZFP82 Zinc finger protein 82 homolog (mouse) Zinc finger protein,Transcription regulator -1.93 0.001 

ZNF354B Zinc finger protein 354B Zinc finger protein, Transcription regulator -2.36 0.041 

ZNF57 Zinc finger protein 57 Zinc finger protein, Transcription regulator  -2.24 0.022 

ZRANB1 Zinc finger, RAN-binding domain containing 1 Peptidase, Metabolism, Inflammation -1.40 0.034 

 



Supplemental Table S3: Genes regulated by AngII classified according to their functions 
 

 
 

Inflammation  
(18) 

ALDH3B1, BSG, FUT4, ICAM1, IGF1R, IL17RA, IRAK3, 
ITGB2, KPNA1, MAP2K7, MAP4K2, OTUD5, PAG1, 
PRIC285, SHB, TNFRSF12A, TRAF3IP2, ZRANB1 

Cell Proliferation and Apoptosis 
(32) 

AKT1S1, ALS2CL, ANAPC10, ATAD3A, CDKN1C, DOK1, 
DYRK2, EFNB3, EIF2S3, FGFR10P2, GNG7, HCFC2, IGF1R, 
MAPK1, MAP2K7, MITF, MYH11, MYOC1, NEK8, PAWR, 
PTPN21, RALB, RASGRF1, RGS2, SGMS2, SHB, SMAD2, 
TNFRSF12A, TRAF3IP2, TSPAN4, UBE2M, UBE2R2 

Adhesion and Migration 
(27) 

ARFGAP1, ARHGEF12, ARPC4, ARRDC1, BSG, DOK1, 
DOCK5, EXOC8, EFNB3, FMNL3, FRMD4A, FUT4, ICAM1, 
ITGB2, KIF1B, MAP7D3, MYH11, MYOC1, RAB4B, RALB, 
RASGRF1, SEMA6B, SHB, SRGAP1, SYNE1, TSPAN4, 
UBXN11 

Metabolism 
(25) 

ABCC10, ALDH3B1, ARHGEF12, ARL17, B4GALT4, BSG, 
CYBR5, DOLK, EIF5A, FUT4, IDH3A, MSRB2, NATL8, 
NDUFS1, OSGEPL1, PRIC285, PYCR2, RAB4B, RNF144B, 
SGMS2, SIX2, SLC2A4RG, SLC40A1, THRA, ZRANB1  

Others 
(23) 

ATXN7L3, BTBD3, COG5, DDA1, DLGAP4, FBXL19, 
FBX045, HMG20B, KDELR1, MAN1B1, MRPS18A, PCGF1, 
PCTK1, RTTN, SFRS3, STX10, TBC1D10A, UBE2H, 
VPS37D, WIZ, ZFP82, ZNFF354B, ZNF57 



Supplemental Table S4: Genes regulated by AngII classified according to their signaling 
pathways 

 
 

Protein Kinase Signaling  
(21) 

AKTS1, BSG, CARD10, DOK1, DYRK2, EFNB3, FUT4, 
IGF1R, IL17RA, IRAK3, KDELR1, MAPK1, MAP2K7, 
MAP4K2, MKNK2, PAG1, PCTK1, RASGRF1, SHB, 
TNFRSF12A, TRAF3IP2 

Small GTPase Signaling 
(18) 

ALS2CL, ARFGAP1, ARHGEF12, ARPC4, DOCK5, 
EFNB3, FMNL3, FRMD4A, ITGB2, KDELR1, RAB4B, 
RALB, RASGRF1, RGS2, SHB, SRGAP1, TBC1D10A, 
UBXN11 

Ubiquitin/Proteasome 
(13) 

ANAPC10, DDA1, FBXL19, FBXO45, MAN1B1, 
MKNK2, OTUD5, PCGF1, RNF144B, UBE2H, UBE2M, 
UBE2R2, UBXN11 

Intracellular Traffic 
(10) 

COG5, EXOC8, KDELR1, KIF1B, KPNA1, MAN1B1, 
PCTK1, RAB4B, STX10, VPS37D 




