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Part I

Front Matter

1 Introduction

1.1 What is special about neutrino cosmology?

In order to apply for the “Habilitation à diriger des recherches”, I was expected to present a compilation
of my work on a given topic. I hesitated between my main three lines of research:

1. Cosmological Inflation: Can we understand the quantum-to-classical transition of perturbations?
What are the signatures of multiple inflation? Can we reconstruct the scalar potential, detect
features in the primordial spectrum, and bound isocurvature modes?

2. Dark Matter Cosmology: Is dark matter cold or warm, made of particles or a scalar field,
decaying or annihilating, totally decoupled or slightly interacting?

3. Neutrino Cosmology: What are the possible signatures of neutrinos in cosmology? How can we
measure neutrino-related parameters?

I actually like very much all these topics, opening windows on particle physics. The interplay between
cosmology and particle physics always sounded fascinating to me. The third topic is however the one to
which I devoted more times, and through which I am best known in the community. Indeed, I feel that
working on this topic was, in a way, the safest investment that I could make.

Indeed, we know that cosmology will give us access to at least one neutrino-related parameter: the total
neutrino mass Mν . Thanks to neutrino oscillation experiments, this mass is known to be equal to or larger
than 0.06 eV. We have very strong reasons to believe that there is a cosmic neutrino background in the
universe, thanks to measurements of the so-called effective neutrino number Neff . Current data exclude
Neff = 0 at the ten-sigma level, and confirm that Neff is at least equal to three (the value corresponding to
the standard model of neutrino decoupling in the early universe, for three families of neutrinos). Finally,
cosmic neutrinos with a mass of 0.06 eV are expected to affect cosmological observables at the five per cent
level, and future surveys will measure these observables with per cent precision. Hence, neutrinos can be
expected to play the same role in modern cosmology as the Higgs boson at the LHC: we have very strong
reasons to believe that we will detect their mass. Even a null detection would have crucial consequences: it
would be in such contradiction with theoretical expectations that it would signal the discovery of physics
beyond the standard model. In addition, since the cosmic neutrino background exists, many non-minimal
assumptions concerning neutrino physics and early universe physics can be tested (deviations from the
standard model of neutrino decoupling, large leptonic asymmetry, non-standard neutrino interactions,
existence of sterile neutrinos, etc.)

For these reasons, the study of neutrinos is one of the most rewarding topics for cosmologists. New
constraints are immediately important and concretely applicable to model-building in particle physics.
We wish that the same will become true for other topics. We hope to understand when and how inflation
took place. We are ready to do everything possible for learning something on the nature of dark energy
(or the origin of the cosmological constant) from future observations. As far as the nature of dark matter
is concerned, it would be fantastic if cosmological data was measuring something more than just the
relic density. We have ideas for probing phase transitions in the early universe, understanding the role
of cosmological magnetic fields, testing the invariance of fundamental constants. But in none of these
directions we can be sure that future data will tell us something new. As far as neutrinos are concerned,
we know that the measurement of the neutrino mass scale can happen at any time from now, and that
in at most ten years, it will be detected. If ever the effect of neutrino masses on cosmological observables
remained invisible, some radical departure from the standard model of cosmology and/or particle physics
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would have to be invoked (decay of active neutrinos at late times, non-standard neutrino interactions,
etc.)

Neutrino cosmology is an interdisciplinary topic in which it is important to take into account results
from laboratory experiments, neutrino telescopes and cosmological observations. The complementarity
between these different techniques is remarkable. Some parameters like the total neutrino mass are much
easier to access with cosmology: the next generation of tritium decay experiments will still not compete
with the current generation of cosmological observations. On the other hand, laboratory experiments have
access to mixing angles, CP violating phases, or the fact that neutrino have a Dirac or Majorana mass
term, while cosmology is essentially insensitive to these properties. To summarise the situation, neutrinos
are such elusive particles that they can only be understood by confronting very different techniques.
Laboratory experiments rely on huge, ultra-sensitive detectors. Neutrino telescopes take advantage of the
high energy of neutrinos produced by cosmic rays. Cosmology gains from the fact that the number density
of neutrinos produced in the early universe is amazingly large, with still 336 neutrinos per centimetre
cube today. Neutrinos are actually the most abundant particles in the universe.

1.2 Outline of this manuscript

In section 1.3, I present the list of my publications directly related to neutrino cosmology.

Section 2 summarises and explains the structure of these publications. I did not want to write here
one more review on neutrino cosmology: it would have overlapped with my previous review articles, and
with some chapters of the book “Neutrino Cosmology”, presented this manuscript in section 3.1, pages
25-179. For that reason, I kept section 2 as concise as possible, and wrote it in an informal
and personal style. For each sub-topic, I present my papers in chronological order, like a little story,
insisting on what was the status of the topic when I started, what was new in my papers, what was my
role, when I was scooped, etc. I don’t present a self-contained summary of physical concepts, since they
are all defined and developed in the papers included in Part II. I hope that with such a choice, section 2
is not too heavy to digest.

In Part II, sections 3-5, I present the most representative publications within the list of section 1.3.
The papers are grouped by theme, following the same structure as the discussion in section 2. Section
3 contains papers focused mainly on theoretical aspects, explaining in details the effect of neutrinos on
cosmological observables. Section 4 is devoted to detectability issues, and presents sensitivity forecasts
for future experiments. Papers deriving new bounds on neutrino physics from cosmological observations
are grouped in section 5.

1.3 List of publications directly related to neutrino cosmology

• “Cosmological implications of a relic neutrino asymmetry”
J. Lesgourgues and S. Pastor.
hep-ph/9904411
Phys. Rev. D 60, 103521 (1999)

Presented in section 3.2, pages 181-194

• “Cosmological measurement of neutrino mass in the presence of leptonic asymmetry”
J. Lesgourgues, S. Pastor and S. Prunet.
hep-ph/9912363
Phys. Rev. D 62, 023001 (2000)

• “Remarks on the Boomerang results, the baryon density, and the leptonic asymmetry”
J. Lesgourgues and M. Peloso.
astro-ph/0004412
Phys. Rev. D 62, 081301 (2000)

• “The Lepton asymmetry: The Last chance for a critical-density cosmology?”
J. Lesgourgues and A. R. Liddle.
astro-ph/0105361
Mon. Not. Roy. Astron. Soc. 327, 1307 (2001)
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• “Constraining the window on sterile neutrinos as warm dark matter”
S. H. Hansen, J. Lesgourgues, S. Pastor and J. Silk.
astro-ph/0106108
Mon. Not. Roy. Astron. Soc. 333, 544 (2002)

• “Measuring the cosmological background of relativistic particles with WMAP”
P. Crotty, J. Lesgourgues and S. Pastor.
astro-ph/0302337
Phys. Rev. D 67, 123005 (2003)

• “Current cosmological bounds on neutrino masses and relativistic relics”
P. Crotty, J. Lesgourgues and S. Pastor.
hep-ph/0402049
Phys. Rev. D 69, 123007 (2004)

Presented in section 5.1, pages 285-297

• “Probing neutrino masses with future galaxy redshift surveys”
J. Lesgourgues, S. Pastor and L. Perotto.
hep-ph/0403296
Phys. Rev. D 70, 045016 (2004)

Presented in section 4.1, pages 219-232

• “Constraining warm dark matter candidates including sterile neutrinos and light grav-
itinos with WMAP and the Lyman-alpha forest”
M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese and A. Riotto.
astro-ph/0501562
Phys. Rev. D 71, 063534 (2005)

• “Probing neutrino masses with cmb lensing extraction”
J. Lesgourgues, L. Perotto, S. Pastor and M. Piat.
astro-ph/0511735
Phys. Rev. D 73, 045021 (2006)

Presented in section 4.2, pages 233-245

• “Massive neutrinos and cosmology”
J. Lesgourgues and S. Pastor.
astro-ph/0603494
Phys. Rept. 429, 307 (2006)

• “Can sterile neutrinos be ruled out as warm dark matter candidates?”
M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese and A. Riotto.
astro-ph/0605706
Phys. Rev. Lett. 97, 071301 (2006)

Presented in section 5.5, pages 343-346

• “Probing cosmological parameters with the CMB: Forecasts from full Monte Carlo
simulations”
L. Perotto, J. Lesgourgues, S. Hannestad, H. Tu and Y. Y. Y. Wong.
astro-ph/0606227
JCAP 0610, 013 (2006)

• “Physics at a future Neutrino Factory and super-beam facility”
A. Bandyopadhyay et al. [ISS Physics Working Group Collaboration].
arXiv:0710.4947 [hep-ph]
Rept. Prog. Phys. 72, 106201 (2009)

• “Constraining neutrino masses with the ISW-galaxy correlation function”
J. Lesgourgues, W. Valkenburg and E. Gaztanaga.
arXiv:0710.5525 [astro-ph]
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Phys. Rev. D 77, 063505 (2008)

Presented in section 4.3, pages 247-256

• “Using BBN in cosmological parameter extraction from CMB: A Forecast for PLANCK”
J. Hamann, J. Lesgourgues and G. Mangano.
arXiv:0712.2826 [astro-ph]
JCAP 0803, 004 (2008)

• “Lyman-alpha constraints on warm and on warm-plus-cold dark matter models”
A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel.
arXiv:0812.0010 [astro-ph]
JCAP 0905, 012 (2009)

• “Cosmological constraints on a light non-thermal sterile neutrino”
M. A. Acero and J. Lesgourgues.
arXiv:0812.2249 [astro-ph]
Phys. Rev. D 79, 045026 (2009)

Presented in section 5.2, pages 299-316

• “Realistic sterile neutrino dark matter with keV mass does not contradict cosmological
bounds”
A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel.
arXiv:0812.3256 [hep-ph]
Phys. Rev. Lett. 102, 201304 (2009)

Presented in section 5.6, pages 347-350

• “Non-linear Power Spectrum including Massive Neutrinos: the Time-RG Flow Ap-
proach”
J. Lesgourgues, S. Matarrese, M. Pietroni and A. Riotto.
arXiv:0901.4550 [astro-ph.CO]
JCAP 0906, 017 (2009)

• “Model independent constraints on mass-varying neutrino scenarios”
U. Franca, M. Lattanzi, J. Lesgourgues and S. Pastor.
arXiv:0908.0534 [astro-ph.CO]
Phys. Rev. D 80, 083506 (2009)

• “Cosmological parameters from large scale structure - geometric versus shape infor-
mation”
J. Hamann, S. Hannestad, J. Lesgourgues, C. Rampf and Y. Y. Y. Wong.
arXiv:1003.3999 [astro-ph.CO]
JCAP 1007, 022 (2010)

• “The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes”
D. Blas, J. Lesgourgues and T. Tram.
arXiv:1104.2933 [astro-ph.CO]
JCAP 1107, 034 (2011)

• “The Cosmic Linear Anisotropy Solving System (CLASS) IV: efficient implementation
of non-cold relics”
J. Lesgourgues and T. Tram.
arXiv:1104.2935 [astro-ph.CO]
JCAP 1109, 032 (2011)

Presented in section 3.3, pages 195-218

• “Cosmological lepton asymmetry with a nonzero mixing angle θ13”
E. Castorina, U. Franca, M. Lattanzi, J. Lesgourgues, G. Mangano, A. Melchiorri and S. Pastor.
arXiv:1204.2510 [astro-ph.CO]
Phys. Rev. D 86, 023517 (2012)

Presented in section 5.3, pages 317-327
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• “Neutrino masses and cosmological parameters from a Euclid-like survey: Markov
Chain Monte Carlo forecasts including theoretical errors”
B. Audren, J. Lesgourgues, S. Bird, M. G. Haehnelt and M. Viel.
arXiv:1210.2194 [astro-ph.CO]
JCAP 1301, 026 (2013)

Presented in section 4.4, pages 257-283

• “Neutrino mass from Cosmology”
J. Lesgourgues and S. Pastor.
arXiv:1212.6154 [hep-ph]
Adv. High Energy Phys. 2012, 608515 (2012)

• “Neutrino cosmology”
J. Lesgourgues, G. Mangano, R. Miele, S. Pastor
Cambridge University Press, 400 pages, April 2013
http://www.cambridge.org/gb/knowledge/isbn/item6947425/

Presented in section 3.1, pages 25-179 (only chapters 5 and 6)

• “Planck 2013 results. XVI. Cosmological parameters”
P. A. R. Ade et al. [Planck Collaboration].
arXiv:1303.5076 [astro-ph.CO].
In press.

Presented in section 5.4, pages 329-342 (only sections 6.3 and 6.4)
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2 Summary and structure of my publications on neutrino cos-
mology

When I started woking on neutrino cosmology, this field was still in its infancy. Cosmologists knew that
neutrino masses slow down structure formation in the universe, and that for this reason, most dark matter
must be cold. However, actual constraints on the total neutrino mass were extremely weak. As far as
non-standard neutrino properties are concerned, there were no bounds at all (on the leptonic asymmetry,
on non-standard interactions, on sterile neutrinos, etc.)

In 1998, the Super Kamiokande experiment discovered neutrino flavour oscillations. It then became
clear that the neutrino sector had some rich phenomenology, with many uncertainties and several pa-
rameters to be measured. Because of the weak neutrino interaction rate, it appeared that cosmological
surveys were one of the few relevant tools for measuring some of these parameters. This fascinating topic,
at the interface between cosmology and particle physics, became my primary field of research precisely
on that year.

2.1 Investigations on the fundamental role of neutrinos in cosmology

2.1.1 Impact of neutrino asymmetry on the CMB and LSS

The matter-antimatter asymmetry in the baryon sector, or baryon asymmetry, is known to be very small
in our universe, of the order of 10−9. This small number plays a key role in our understanding of baryo-
genesis. The matter-antimatter asymmetry in the uncharged lepton sector (often called for simplicity
the lepton asymmetry) is much less constrained (unless one refers to very specific models of baryogenesis
through leptogenesis). In principle, the quantity (nν −nν̄)/(nν +nν̄) could even be of order one for each
family of neutrinos. A large asymmetry can be generated in various ways (resonant oscillations with
sterile neutrinos, Affleck-Dine mechanism) without conflicting with our basic understanding of the early
universe. During epochs when oscillations between cosmic neutrinos can be neglected, and assuming that
cosmic neutrinos have a Fermi-Dirac distribution (because they were in thermal equilibrium until decou-
pling), a convenient parameter for characterising the lepton asymmetry of each family i is ξi = µi/T ,
where µi is the chemical potential and T is the neutrino temperature. As soon as neutrino oscillations
in the cosmic neutrino background become negligible, this parameter is conserved for each family. An
increasing asymmetry implies an increasing total density of neutrinos, explaining why a large asymmetry
is often called a “neutrino degeneracy”.

The role of a large lepton asymmetry on Big Bang Nucleosynthesis (BBN) has been thoroughly
investigated in the 1970’s, allowing people to infer limits on the chemical potentials from the observation
of light element abundances. It was shown that BBN cannot exclude a large lepton asymmetry, provided
that the chemical potential in the electron sector and in the µ, τ sector are related in a precise way:
indeed, a cancellation between two antagonist effects associated respectively to µe and (µe+µν +µτ ) can
then lead to roughly the same amount of primordial Helium and Deuterium as if all chemical potentials
were negligible. BBN models with large leptonic asymmetries are called “degenerate BBN” models.

The role of a large lepton asymmetry on the Cosmic Microwave Background (CMB) and Large Scale
Structure (LSS) spectra was calculated much later. Together with Sergio Pastor, who did his first post-
doc at SISSA exactly at the same time as me, we wrote the third paper on this topic: “Cosmological
implications of a relic neutrino asymmetry”, Phys. Rev. D 1999 (presented in section 3.2, pages
181-194). A first paper had discussed only the case of degenerate massless neutrinos. We started to
modify the public code cmbfast in order to incorporate a chemical potential in the neutrino phase-
space distribution. We were scooped by a second paper, that was however obtaining an incorrect CMB
spectrum, due to incomplete modifications of the same code. Hence our paper was the first one featuring
the correct calculation, and showing the impact on the CMB and LSS spectra of light active neutrinos
with a large asymmetry.

Note that in the limit of massless neutrinos, increasing the lepton asymmetry is equivalent to increas-
ing the effective neutrino number Neff accounting for the total density of ultra-relativistic relics in the
universe. Our work was not trivial in the sense that we studied the more realistic case of active neutrinos
with a small mass. In that case, in order to compute the correct CMB and LSS spectra, a neutrino
phase-space distribution function with non-zero chemical potential needs to be implemented explicitly in
the Boltzmann code. We also provided in the paper a physical explanation of our numerical results.
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2.1.2 Impact of neutrino mass on the CMB and LSS

During my first years of research in the field, the physical explanation for the signature of neutrino masses
on the CMB and LSS power spectra was not very clear in the mind of most people.

As far as the matter power spectrum is concerned, it was well-known since Bond, Efstathiou and Silk
(1980) that neutrino masses produce a step-like suppression on small scales. The maximum suppression
was known to be of the order of ∆P/P = −8fν , thanks to a first-order fit of numerical results performed
by Hu and Eisenstein in 1998 (a fit of the full matter power spectrum was presented on the same year
by Novosyadlyj, Durrer and Lukash). The literature was also containing a few attempts to explain this
result on the basis of purely analytical solutions, but they were misleading or incorrect.

Concerning the CMB spectrum, the following reasoning could be found in several papers: if neutrinos
have a mass smaller than about 0.6 eV, they are still relativistic at the time of photon decoupling; then,
the CMB does not know about this mass, and it has no impact on the CMB spectrum. This reasoning
is wrong, as will be explained in the next sections.

Impact on LSS. After collaborating on a several projects related to various aspects of neutrino
cosmology, Sergio Pastor and myself decided to write the review “Massive neutrinos and cosmology”,
Phys. Rept. 2006. I was in charge of the CMB and LSS chapters, and I wanted to explain the effect of
neutrino masses in a better way than previous papers. In the review, after recalling the analytic results
of Bond, Efstathiou and Silk concerning the scale-dependent growth factor of CDM induced by neutrino
masses, I showed how to calculate the suppression factor analytically. Actually, my derivation was only
semi-analytic, because one intermediate step had to be matched to simulations. However the result was
doing a correct prediction for the suppression factor, corresponding roughly to ∆P/P = −8fν in the limit
of degenerate neutrinos with fν < 0.05, but remaining much closer to exact numerical results for larger
fν and/or when the mass is split differently among neutrino families. I revisited the same issue six years
later, when writing the book “Neutrino cosmology” (Cambridge University Press, 2013, partially
reproduced in section 3.1, pages 25-179) in collaboration with G. Mangano, G. Miele and S. Pastor. In
chapter 6 on Large Scale Structure, I presented a more complicated but entirely analytic derivation of an
accurate formula for the suppression factor (in pages 297-305 of the book, or 129-137 of this manuscript).
Note that obtaining accurate analytical formulas is not important for the purpose of making use of them,
because numerical results are anyway quick and easy to obtain with a Boltzmann code. These results
are more important as a conceptual proof that we understand fully the effect of neutrino masses on the
matter power spectrum, as well as the way it depends on the splitting of the total mass between different
species. In summary, I believe that the discussion presented in the Physics Reports and in Chapter 6
of the book clarified the understanding of the role of neutrino masses in structure formation within the
community.

Impact on the CMB. On the same two occasions, I tried to clarify the effect of neutrino masses on
the CMB. In the Physics Report, we showed that the claim concerning the null impact of small neutrino
masses (mν < 0.6 eV) on the CMB is wrong for at least two reasons. (i) First, provided that neutrinos
are non-relativistic today (i.e. mν > 6 × 10−4 eV), the cosmological background evolution is sensitive
to their mass, since neutrinos behave like radiation in the past, and like non-relativistic matter at late
times. Depending on which cosmological parameters are kept fixed when the neutrino mass varies, this
modified background evolution affects either the time of equality between matter and radiation, or that
of equality between matter and a cosmological constant, or the angular scale of the sound horizon at
recombination, or the angular scale of the Silk damping length. (ii) The second reason is that CMB
anisotropies are weakly lensed by large scale structure. The neutrino mass (even if smaller than 0.6 eV)
affects the matter power spectrum, and hence also on the observable CMB spectrum.

In summary, in the reasoning presented in our Physics Reports, the conclusion was that the effect of
neutrino masses on the CMB cannot be summarised in one sentence, because effect (i) depends on which
cosmological parameters one decides to keep fixed while varying mν . The important point is that for
whatever choice, there is always a non-zero effect (even at the level of the unlensed CMB spectrum), due
to the variation of at least one characteristic time or scale.

However, there is an even clearer way to understand the role of neutrino masses, that I first pointed
out in chapter 5 of our book on “Neutrino Cosmology” (Cambridge University Press, 2013,
in pages 262-266 of the book, or 94-98 of this manuscript). The point is the following. Among the
characteristic times and scales mentioned above, three have a very distinct and well-constrained effect on
the CMB: the time of equality between matter and radiation, the angular scale of the sound horizon at
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recombination, and the angular scale of the Silk damping length. Instead, the time of equality between
matter and a cosmological constant is loosely constrained, because it only affects very large angular
scales, through the Late Integrated Sachs-Wolfe (LISW) effect, for which cosmic variance is large. Hence,
when discussing the effect of neutrino masses on the CMB, it is useful to vary mν while keeping fixed the
first three quantities, in order to see whether there is a residual effect, on top of a trivial modification of
the LISW effect for multipoles l < 50. In other words, if one varies the neutrino mass while adjusting
other cosmological parameters in order to fix the time of equality, the peak scale and the Silk damping
scale, one can “neutralise” the effect of the neutrino mass on the CMB induced at the level of the
background evolution (appart from an irrelevant LISW effect), and isolate the effect induced at the level
of cosmological perturbations, caused by the gravitational coupling between neutrinos and photons.

In 2012, I followed exactly this approach when writing chapter 5 of the book, and to my surprise, the
plot showing the variation of the CMB temperature spectrum under this transformation revealed a very
characteristic impact of neutrino masses (see Figure 5.6, page 265 of the book, 97 of this manuscript).
The mass creates a small depression in the CTTl ’s for multipoles in the range 20 < l < 200. The precise
amplitude and position of this depression depends on the value of individual neutrino masses (rather
than on the total one). This dip can be interpreted physically as a consequence of the Early Integrated
Sachs-Wolfe (EISW) effect. When neutrinos become non-relativistic after photon decoupling, they have
a characteristic effect on the evolution of metric fluctuations on intermediate scales. Since the observed
temperature of CMB photons depends on the time derivative of metric fluctuations along the line of
sight, the effect induced by the mass is visible in the final CMB spectra. This effect was always implicitly
included in previous numerical calculations of the CMB spectrum. But it had never been identified
and discussed physically. What particularly impressed me is that I remember discussions with Alexei
Starobinsky several years ago, in which he said that there should be such an effect, and that nobody ever
discussed it. Hence my numerical results confirmed a thought of Alexei, coming from his outstanding
physical intuition. I still have in project to write an analytic paper that would better explain this effect,
in collaboration with him.

Another paper arrived independently to the same conclusion, by Hou et al. (arXiv:1212.6267). When
this paper came out, our book was still in production stage with the editor. Fortunately, we were not
scooped by this paper, because while the book was being processed, we wrote a short review in which our
main new results were summarised, including this discussion of the neutrino-induced feature (“Neutrino
mass from Cosmology”, Adv. High Energy Phys. 2012). By chance, this review appeared one
week before the preprint of Hou et al.

There is now wide agreement that the dip that we identified explains the sensitivity of the WMAP
data to neutrino masses. WMAP is not very sensitive to lensing due to its poor angular resolution, and
still it give a constraint Mν < 1.3 eV (95% CL), or mν < 0.43 eV for each family. When using Planck
data alone, the neutrino mass constraint comes from both lensing and the EISW effect. In the future,
one may expect that the constraint from lensing will be stronger than that from the EISW effect.

Impact of the mass splitting. Another interesting question is: do the CMB and LSS spectra depend
only on the total neutrino mass Mν =

∑
imνi, that controls the neutrino density today (ων ∝ Mν), or

is it also sensitive to individual masses, or in other words, to the splitting of the total mass between
different species?

Individual masses are actually expected to play a role, because they control the time of the non-
relativistic transition for each species, and the free-streaming scale associated with each of them. A
simple reasoning shows that the mass splitting should hence affect the position of the step-like feature in
the matter power spectrum, and to a lesser extent, the amplitude of the step. It should also affect the
CMB through the detail of the EISW-induced depression in the Cl’s. Until 2004, these effects had never
been computed, because the two Boltzmann codes available at that time (cmbfast and camb) included
a single family of massive neutrinos. For the paper “Probing neutrino masses with future galaxy
redshift surveys”, Phys. Rev. D 2004, presented in section 4.1, pages 219-232, I modified cmbfast
in order to simulate several massive species at the same time. We showed that the difference between
the CMB and matter power spectra of several models with the same total mass Mν but different mass
splittings (equal mass, mass concentrated in one species, realistic normal hierarchy, realistic inverted
hierarchy scenarii). The difference was found to be very small, but matching physical expectations.

Apart from the papers and review articles mentioned above, I have developed these results in several
review articles and conference proceedings, including a few sections in “Physics at a future Neutrino
Factory and super-beam facility”, Rept. Prog. Phys. 2009.
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2.1.3 Impact of neutrino density (and higher momenta) on the CMB and LSS

I also worked on the role of the density of neutrinos (and/or of other ultra-relativistic relics) on cosmo-
logical observables, and on the degeneracy between its effect and that of other cosmological parameters.
The parameter playing a key role in this case is the effective neutrino number Neff , i.e. the density of
radiation beyond the contribution of photons, normalised to the contribution of one standard neutrino
in the instantaneous decoupling limit. Indeed:

• In any cosmological model in which the mass of neutrinos (and of possible other light relics) is negli-
gible, the equations governing cosmological perturbations can all be integrated over the momentum
of these species, and Neff is the only parameter accounting for the density of neutrinos and extra
relics. In particular, Neff will encode the effect of a non-standard temperature, a chemical potential
and possible non-thermal distorsions for each family of active neutrinos and possibly of light sterile
neutrinos.

• Instead, when neutrinos or other relics have a sizeable mass, the momentum of massive species
cannot be integrated out. In that case, Neff can still be defined at early times, when all species
are relativistic. However, the observable CMB and LSS spectra will depend on a combination of
Neff , of the masses, and possibly of other parameters describing chemical potentials, non-thermal
distorsions, etc.

We presented a discussion of the degeneracy between the total neutrino mass and Neff for a few simple
models in “Current cosmological bounds on neutrino masses and relativistic relics”, Phys.
Rev. D 2004, presented in section 5.1 of this manuscript, pages 285-297. We were scooped by a paper
by Hannestd and Raffaelt on the same topic, that appeared slightly before ours, but we gave more details
on the physical explanation of the degeneracy, and both papers are usually acknowledged when one refers
to this well-known degeneracy. Actually, this degeneracy was problematic a few years ago, when the data
had large error bars, but with the precision level of Planck, the two effects of Neff and Mν can be clearly
separated.

The role of Neff in the CMB and matter power spectra has given rise to some confusions. Just
like for the neutrino mass, the discussions presented in the literature until recently concluded that the
effect of Neff depends very much on which parameters are kept fixed. We illustrated this in our Physics
Report. These discussions were not incorrect, but they could be pushed further. A paper by Hou et al.,
arXiv:1104.2333 (different from the one mentionned in section 2.1.2), was very useful in that respect. For
the first time, these authors decided to study the effect of Neff when all characteristic redshifts in the
cosmological background evolution are kept fixed. This can be done by increasing the radiation, matter
and cosmological constant densities in exactly the same proportion. The result is quite illuminating: all
“background effects” of Neff are “neutralised”, excepted an increase in the Silk damping length affecting
very large l’s. On top of that, additional effects of Neff induced at the level of perturbations (i.e. by the
gravitational coupling between neutrinos and light species) appear clearly. The latter effects had been
studied earlier by Bashinksy and Seljak (astro-ph/0310198) and dubbed “neutrino drag” effects. They
result in a small shift in the amplitude and position of the peaks.

In chapter 6 of the book “Neutrino cosmology” (Cambridge University Press, 2013, pages
255-262 of the book, or 87-94 of this manuscript), I wrote an updated discussion of these various effects,
taking advantage of the point of view promoted by Hou et al., and extending it to the discussion of the
effect of Neff on the matter power spectrum. This discussion shows in particular that Neff can be probed
through the scale of BAO oscillations, provided that the latter are measured with high accuracy.

We just mentioned that for massive species, the momentum dependence of the phase-space distribution
f(p) cannot be integrated out in the set of equations governing the evolution of cosmological perturba-
tions. Hence the results may depend on all details in f(p). Since the properties of a distribution can be
reconstructed from the set of its momenta, an ≡

∫
pnf(p)dp, it is interesting to investigate whether the

cosmological data can probe independently several momenta. In minimal models with massive neutrinos
(or extra light relics with a thermal distribution), everything can be described in terms of two inde-
pendent momenta, encoding respectively the value of the density before the non-relativistic transition
(parametrised by Neff), and the value of the density at later times (ρi = mini). For more complicated
scenarii featuring non-thermal corrections, the number of independent momenta can be arbitrarily large.

To illustrate this problem, in “Do observations prove that cosmological neutrinos are ther-
mally distributed?”, Phys. Rev. D 2005, we studied the case of active neutrinos produced in two
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stages: at early times from thermal equilibrium (when T ≥ 1 MeV), and at late time from the decay of
an hypothetical unstable relic. This model leads to non-thermal distorsions, and we used it to show the
effect of higher momenta in the distribution, for fixed mass and fixed Neff . We showed that these effects
are very small (at least at the level of linear perturbations), making it difficult to measure more than
three independent momenta, even with future high-precision data.

2.1.4 Impact of sterile neutrinos

The idea of sterile neutrinos, insensitive to weak interactions but sharing their mass mixing matrix with
active neutrinos, has been introduced early on by Sciama. In presence of N sterile neutrinos, the number
of neutrino mass eigenstates is 3 + N instead of just 3. To be rigorous, one should only call “sterile
neutrinos” the flavour eigenstates that are gauge singlets. By extension, the expression often refers to the
mass eigenstates that are dominated by sterile components. This is why people often refer to the decay
of sterile neutrinos: the probability of such a decay is always small, because in reality, it is triggered by
the decay of the small active component of a such a mass eigenstate. In the past fifteen years, sterile
neutrinos have often been invoked in two contexts: light sterile neutrinos with a mass in the eV range,
and heavy sterile neutrinos with a mass in the keV range. These two cases are interesting because they
may provide, respectively, an explanation to anomalies in short baseline neutrino oscillation experiments
(LSND, MiniBoone, reactor experiments), and an interesting dark matter candidate that would be an
alternative to the WIMP paradigm.

In papers like “Cosmological constraints on a light non-thermal sterile neutrino”, Phys.
Rev. D 2009, presented in section 5.2, pages 299-316, and “Lyman-alpha constraints on warm and
on warm-plus-cold dark matter models”, JCAP 20009, we calculated and discussed the matter
power spectrum of models with light or heavy sterile neutrinos. In the former paper, we showed that for
sterile neutrinos produced through non-resonant oscillations with active neutrinos, the quantity really
constrained by the data is the ratio of average momentum over mass, controlled by T/m. In the latter
paper, together with the numerical calculation of the matter power spectrum, I presented an analytic
estimate of the steplike suppression induced in the matter power spectrum by heavy sterile neutrinos
becoming non-relativistic during radiation domination.

2.1.5 Progress on the side of numerical calculations

Analytic approaches are nice for understanding physically the effect of parameters. When it comes
to constraining models with cosmological data, or perform sensitivity forecasts, people use numerical
codes simulating the evolution of linear perturbations and computing the observable spectrum of CMB
anisotropies and matter density fluctuations. Since the main equation of evolution integrated by these
codes is the Boltzmann equation of photons, they are called Boltzmann codes. I started my PhD precisely
at the time at which the first efficient Boltzmann code, cmbfast (Seljak and Zaldarriaga 1996), was made
publicly available. In many occasions, I modified this code in order to incorporate new effects related
to neutrino cosmology (neutrino chemical potential, different masses, etc.) Later on, another Boltzmann
code, camb (Challinor and Lewis 2001), took the leadership, because it was faster and more accurate. I
worked a lot with camb e.g. to implement warm dark matter (e.g. heavy sterile neutrinos), mass-varying
neutrinos (see the next sections), etc.

At some point, I became convinced that even better codes could be written, achieving better speed,
flexibility, user-friendliness, and covering more general cases. One of the leaders of the Planck team,
François Bouchet, encouraged me to go in that direction, in order to establish the validity of Planck
results on a more robust ground than just trusting a single code (namely, camb). I then started to
develop the Cosmic Linear Anisotropy Solving System (class, http://class-code.net). The code was
released in April 2011. Both camb and class have been used for the official analysis of Planck data
released in March 2013 and later. The comparison of the results of the two codes has also benefited to
the speed and accuracy of camb, and triggered general progress in the field of cosmological Boltzmann
codes.

The code class does not only feature an independent rewriting of other codes. In order to make it
efficient, we found some new physical approximations and new algorithms. As far as neutrinos are con-
cerned, in collaboration with Thomas Tram, we implemented a new scheme for sampling the momentum
space of neutrinos. This approach, described in “The Cosmic Linear Anisotropy Solving System
(CLASS) IV: efficient implementation of non-cold relics”, JCAP 2011, and presented in section
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3.3, pages 195-218, is based on an adaptative quadrature scheme. For a general phase-space distribution
function passed by the user, the code automatically finds the optimal discretisation of momentum space
that will lead to a given precision for a minimum amount of computing time. If the phase-space distri-
bution is modified by the user (e.g. to feature a chemical potential or non-thermal distorsions), the code
will immediately recalculate a new optimal sampling at a given precision level. This approach allows to
make the code much faster in presence of massive neutrinos. A simplified version of our approach has
been implemented in camb by Antony Lewis.

We also derived and tested a new approximation scheme allowing to replace the collisionless Boltz-
mann equation describing massless neutrino perturbations by a much simpler pair of equations describ-
ing an imperfect fluid with shear viscosity. This approximation, described in “The Cosmic Linear
Anisotropy Solving System (CLASS) II: Approximation schemes”, JCAP 2011, is switched
on automatically by the code in a range of time and scales such that it leads to a negligible error. This new
approximation scheme is called the “ultra-relativistic fluid approximation” in the code. In the previously
mentioned CLASS IV paper, we extended it to massive neutrinos.

Finally, class incorporates a wide range of possibilities for modelling the active/sterile neutrino
sector. Unlike in camb, the user can pass in input several types of analytic phase-space distributions
associated to different temperatures, chemical potentials, normalisation factors or masses; the input can
also consist in a set of tabulated values for the phase-space distribution function. The number of distinct
neutrino-like species (called generically “non-cold dark matter species” in the code) is arbitrary. In that
sense, class is a dedicated numerical tool for neutrino cosmology. The code is more and more diffused
and used throughout the CMB and LSS community.

2.2 Sensitivity of future cosmological data

Both observers and theorists are usually very interested in sensitivity forecasts of future experiments to
cosmological parameters. For observers, this provides a guideline for designing and planning experiments.
For theorists, it is useful to know which physical assumptions can be tested observationally, and on which
time scale.

2.2.1 CMB and Galaxy surveys

A simple way to make forecasts is to compute the so-called Fisher matrix, accounting for the curvature of
a likelihood associated to a given set of experiments, in the vicinity of the model assumed to be the best
fit to the data. I first learnt how to implement and use the Fisher matrix machinery in “Cosmological
measurement of neutrino mass in the presence of leptonic asymmetry”, Phys. Rev. D 2000.
This paper was following my first work on the cosmological effects of a leptonic asymmetry. We forecasted
the precision with which the combination of the Planck and SDSS data sets would enable to reconstruct
the neutrino mass, if the leptonic asymmetry turned out to be large (an assumption which is now ruled
out).

In “Probing neutrino masses with future galaxy redshift surveys”, Phys. Rev. D 2004,
presented in section 4.1, pages 219-232, we extended Fisher matrix forecasts to several combination of
CMB and LSS experiments. We showed in particular how the sensitivity to neutrino masses depends on
the volume of a given galaxy redshift survey, and we proved that the best surveys planned on the long term
would be able to detect even the minimal allowed total neutrino mass (of the order of Mν ∼ 0.06 eV). The
conclusions of this paper still apply. We also showed that the most optimistic combination of experiments
would never reach such a sensitivity that one could discriminate between the Normal Hierarchy and
Inverted Hierarchy model, for a given total mass of e.g. Mν ∼ 0.1 eV. This was the first forecast addressing
this issue. Our pessimistic conclusion on this particular point has been reconsidered in forecasts based
on a new futuristic observational technique, that of 21cm surveys, which might be able to remove such a
degeneracy, although this is still not quite clear.

In “Do observations prove that cosmological neutrinos are thermally distributed?”, Phys.
Rev. D 2005, we considered the case of neutrinos with non-thermal corrections, and investigated the
sensitivity of future CMB and LSS experiments to such corrections. We concluded that future cosmo-
logical data could at best measure independently three momenta of the phase-space distribution (this is
enough for concluding that non-thermal corrections exist, but not for characterising them precisely).

Finally, in “Using BBN in cosmological parameter extraction from CMB: A Forecast
for PLANCK”, JCAP 2008, we showed that in order to extract the correct value of cosmological



2.2 Sensitivity of future cosmological data 17

parameters from Planck data, it is crucial to make correct assumptions concerning the primordial Helium
fraction YHe. We showed that one can either consider this abundance as an extra free cosmological
parameter, or infer it from (ωb, Neff) under the assumption that the standard BBN model applies. Instead,
the method used until that point (and still used in the WMAP analysis), consisting in fixing arbitrarily
YHe to 0.24, could significantly bias Planck results for other parameters. Our analysis has met consensus
and has been adopted in the baseline analysis of Planck data by the whole collaboration.

2.2.2 CMB lensing

The CMB fluctuations observed on the last scattering surface are affected by weak gravitational lensing by
neighbouring large scale structures. The spectra of CMB anisotropies inferred directly from CMB maps
are called the “lensed power spectra”. Using the fact that lensing introduces particular types of correla-
tions between CMB multipoles, that would vanish in the case of a gaussian CMB with zero lensing effects,
Hu and Okamoto introduced in 2000 a technique called “lensing extraction with quadratic estimators”,
allowing to reconstruct the map of lenses, and to compute the power spectrum of the lensing poten-
tial. With very precise CMB observations, this technique could even allow to reconstruct the unlensed
CMB map, and to compute the unlensed spectrum. In complement, in Phys.Rev. D71 (2005) 103514
[astro-ph/0412551], I showed that for cosmological models with non-zero primordial non-gaussianity, this
technique can still be used. The reason is that weak lensing and primordial non-gaussianity introduce
very different types of correlations in the sky.

Thanks to lensing extraction, CMB experiments can be used to measure the matter power spectrum
in the redshift range 1 < z < 3 (the lensing potential gets significant contributions from structures up
to z ∼ 3), and hence to constrain the total neutrino mass through its effect on LSS (on top of its effect
on the CMB). This was first pointed out in a forecast by Kaplinghat et al. (astro-ph/0303344) showing
that Planck and a post-Planck CMB satellite would be much more sensitive to neutrino masses than
previously expected. Then, in “Probing neutrino masses with cmb lensing extraction”, Phys.
Rev. D 2006, presented in section 4.2, pages 233-245, we pushed this analysis further, and studied the
sensitivity to the total neutrino mass of several future CMB experiments, considering more assumptions
on the underlying cosmological model, and on the level of foreground contamination of CMB maps. We
released our code FutureCMB for doing such forecasts; it has been used by many authors. Moreover,
the most sophisticated part of this code (in charge of computing the theoretical limit up to which lensing
extraction can be performed) has no equivalent in the community, and is used in every work involving
CMB lensing extraction.

Shortly after, we published in “Probing cosmological parameters with the CMB: Forecasts
from full Monte Carlo simulations”, JCAP 2006, the best possible forecast that we could make of
the Planck sensitivity to cosmological parameters, including the total neutrino mass. This analysis differed
from previous ones in essentially two ways: it included lensing extraction, with realistic assumptions
concerning the error on this process; and it was based on a Monte Carlo Markhov Chain (MCMC)
analysis of mock data, instead of a simple Fisher matrix analysis. MCMC forecasts are more robust than
Fisher matrix forecasts, and make no assumption on the shape of the likelihood with respect to model
parameters. For all these reasons, this work became the most cited Planck forecast paper. A few years
later, we were pleased to check that the error bars obtained in the real Planck data analysis (with and
without lensing extraction) match our predictions fairly well.

2.2.3 Cross-correlation between CMB and LSS

CMB maps are affected by the gravitational redshifting/blueshifting of CMB photons going through
gravitational potential wells at late time: this is called the Late Integrated Sachs-Wolfe (LISW) effect.
This effect is generated by the time derivative of the gravitational potential along the line-of-sight. In a
purely matter-dominated universe, this derivative vanishes on large scales as long as linear perturbation
theory is valid. Indeed, in that case, matter fluctuation grow exactly like the scale factor, δ ∝ a. The
Poisson equation then implies that the gravitational potential φ is constant. In a universe with Λ or
dark energy domination at late times, matter fluctuations grow at a slower rate, and metric fluctuations
decay, inducing a non-zero LISW effect. The same gravitational potential distribution responsible for
this LISW effect can be inferred from the distribution of matter on large scales. Hence, the LISW effect
is responsible for a statistical correlation between CMB maps and LSS maps. Measuring this correlation
probes the presence of Λ or dark energy. This technique has already been applied successfully, although
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with large error bars.

We know that neutrino masses also slow down the formation of structure. During matter domination,
one has δ ∝ a1−ε, where ε is a small number related to the total neutrino mass. Hence, massive neutrinos
give an extra contribution to the LISW effect, starting at a higher redshift. This had never been considered
before our paper “Constraining neutrino masses with the ISW-galaxy correlation function”,
Phys. Rev. D 2007, presented in section 4.3, pages 247-256. In this work, we calculed (both analytically
and numerically) the neutrino-induced LISW effect, and showed to which extent it could be reconstructed
by cross-correlating the CMB and LSS data at high redshift. Our results show that this technique,
applied to future LSS experiments such as LSST or Euclid (in combination with Planck), will have some
sensitivity to neutrino masses. It will be less sensitive than just measuring neutrino masses from the
step-like suppression induced in the LSS spectrum alone, but it may still be useful because it will provide
independent evidence on the total neutrino mass, with a different dependence on systematic effects.

2.2.4 Role of non-linear corrections

In section 2.1.2, we discussed the impact of neutrino masses on the matter power spectrum within
the theory of linear cosmological perturbations. LSS observations do probe the linear matter power
spectrum on very large scale (up to some bias factor), but on smaller scales, they are sensitive to the non-
linear evolution of matter perturbations, caused by gravitational collapse. Predicting the matter power
spectrum on non-linear scales is technically difficult, and in presence of neutrino masses the difficulty is
even larger. In N-body simulations, it is only since a few years that people are able to include neutrinos
with a small realistic mass. N-body simulations are computationally very heavy, and for parameter
extraction from future data, it would be much more convenient to have a fast way to calculate the non-
linear power spectrum analytically, at least on mildly non-linear scales. Such approaches are currently
being developed. They are usually inspired from renormalisation techniques in quantum field theory. In
“Non-linear Power Spectrum including Massive Neutrinos: the Time-RG Flow Approach”,
JCAP 2009, we generalised one of these techniques (called the Time Renormalisation Group approach)
to models with massive neutrinos.

A big step for unveiling the neutrino mass will be taken by the Euclid satellite. Euclid will produce
a galaxy survey and a weak lensing survey that will be large and accurate enough to detect the total
neutrino mass, even if it has the minimal value predicted by oscillation experiments, Mν ∼ 0.06 eV.
However, the significance with which such a mass will be measured is still debated. This has to do with
the difficulty to make precise predictions on non-linear scales, for which one should take into account not
only the non-linear evolution of total matter perturbations, but also non-linear biasing and redshift space
distorsions. In forecasts, people usually include data only on linear scales, up to a cut-off wavenumber kNL.
This scale is not obvious to calculate, since in reality non-linear corrections affect the power spectrum in
a very progressive way as a function of k. In “Neutrino masses and cosmological parameters from
a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors”,
JCAP 2013, presented in section 4.4, pages 257-283, we introduced a new way to do forecasts. We
implemented in the experimental likelihood that we use to fit mock Euclid data a theoretical error,
depending on redshift z and on wavenumber k. This error is supposed to account for uncertainties in the
prediction of non-linear corrections. It leads to a forecast which is very conservative and robust, while at
the same time one does not throw way all the information above kNL, since the presence of the theoretical
error allows to include data up to higher k’s. In addition, our work is one of the first Euclid forecasts
based on an MCMC analysis of mock data, rather than an approximate Fisher matrix approach. I am a
member of the Euclid theory group, and this forecast is part of the effort for preparing the optimal way
to analyse the future data.

2.3 Model comparison with the data

In cosmology, bounds on model parameters are often derived by theorists (like myself) rather than by
observers. Indeed, parameter estimation from cosmological data requires some very specific and non-
trivial numerical tools, and a wide knowledge of cosmological parameters and models. There is almost
no limit to the number of alternative cosmological scenarios than one can consider and compare to the
data. Observers have to deal with complicated problems related to the raw data analysis, and have time
to publish only basic analyses of their data for the simplest cosmological models.
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I derived many new bounds on cosmological parameters (including neutrino-related parameters), using
three different tools for parameter extraction. When I started working in the field, there was no public
code available for doing parameter extraction from the data. In 2002, with my post-doc Patrick Crotty,
we developed our own parameter extraction code (using cmbfast and performing likelihood interpolation
in a grid in parameter space). My papers between 2002 and 2004 are based on this code. Then, I started
to use the public codes CosmoMC and camb of Antony Lewis et al., modifying them for the purpose
of each new paper. My publications from 2005 to 2010 are based on these codes. Finally, my students
and postdocs B. Audren, T. Tram, D. Blas and myself released class, and the associated parameter
extraction code Monte Python. Since 2011, all my papers are based on these public codes, developed
by my group but used by a growing fraction of the community.

2.3.1 Standard active neutrinos

I published constraints on the parameters related to active neutrinos (mass, number density, chemical
potential, etc.) after the major data releases of the last fifteen years:

• The data of the first Boomerang ballon, release in 2000, showed an anomalous third CMB peak,
that could be interpreted in terms of a large leptonic asymmetry. We were the first to propose
this explanation (just 4 days after the data release) in “Remarks on the Boomerang results,
the baryon density, and the leptonic asymmetry”, Phys. Rev. D 2000. One year later,
in “The Lepton asymmetry: The Last chance for a critical-density cosmology?”, Mon.
Not. Roy. Astron. Soc. 2001, we showed that when taking into account other recent cosmological
data sets, this explanation started to be very constrained. Later on, it was understood that the
third peak anomaly in Boomerang data was due to systematic errors.

• After the first WMAP release, we worked hard in order to be the first to publish constraints on
the radiation density parameter Neff , that had not been considered by the WMAP collaboration
itself. Our paper “Measuring the cosmological background of relativistic particles with
WMAP”, Phys. Rev. D 2003, was put on-line one week only after the data release. This
was the last major cosmological data release in which Neff bounds were not published by the
collaboration itself... Soon after, we published joint bounds on Neff and on the total neutrino mass
in “Current cosmological bounds on neutrino masses and relativistic relics”, Phys. Rev.
D 2004, presented in section 5.1, pages 285-297, stressing that there was a degeneracy between
these parameters (which is not true anymore with Planck accuracy).

• We analysed the sensitivity of new SDSS galaxy redshift data to neutrino masses in “Cosmological
parameters from large scale structure - geometric versus shape information”, JCAP
2010, with a new approach showing how much information is contained in the baryonic oscillation
features compared to the smooth overall shape of the matter power spectrum.

• I spend a majority of my research time in 2012-2013 working on the analysis of the Planck satellite
data. I played a major role in the writing of the neutrino sections in the main cosmology paper,
“Planck 2013 results. XVI. Cosmological parameters”, arXiv:1303.5076 [astro-ph.CO].
In this work, we published unprecedentedly strong and robust constraints on neutrino mass and
density. The neutrino section (and its companion BBN section) are presented in section 5.4 of this
manuscript, pages 329-342.

Also, before the Planck release, we derived in “Cosmological lepton asymmetry with a nonzero
mixing angle θ13”, Phys. Rev. D 2012, presented in section 5.3, pages 317-327, the strongest limit
ever found on the neutrino asymmetry and chemical potentials. This progress was triggered mainly not
by WMAP data, but by new data on the particle physics side, especially the measurement of the mixing
angle θ13 by the RENO and Daya Bay experiments. The existence of such large mixing proves that
neutrino oscillations in the early universe were very efficient, and tended to equalise the phase-space
distribution function of the three mass eigenstates. As a result, the degeneracy between the parameters
µe and (µe +µν +µτ ) known to exist in the “degenerate BBN scenario” cannot work, and measurements
of the primordial deuterium abondance provide very strong bounds on the initial chemical potential of
all three flavour eigenstates.
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2.3.2 Non-standard active neutrinos

Standard active neutrinos are assumed to be fully decoupled below a temperature of 1 MeV. This as-
sumption can be relaxed in several ways. I have already explored some of them, but much more work
remains to be done in this field.

A relic particle with a lifetime of the same order of magnitude as the age of the universe could decay
and produce extra neutrinos below T ∼ 1 MeV. Since the newly produced neutrinos could not thermalise,
this scenario would induce non-thermal corrections in the neutrino phase-space distribution. As already
mentioned in some of the previous sections, we considered this case in “Do observations prove that
cosmological neutrinos are thermally distributed?”, Phys. Rev. D 2005. Besides a discussion
of the underlying model and a forecast of future experimental sensitivity to its parameters, we showed
that the cosmological data available at that time were not in favour of such non-thermal distorsions.

Neutrino masses could be induced by a coupling term between neutrinos and a scalar field. If this
field plays the role of dark energy, its vacuum expectation value generates an effective neutrino mass.
In this class of models, the neutrino mass depends on time and location. This idea has given rise to a
very large number of publication. In “Model independent constraints on mass-varying neutrino
scenarios”, Phys. Rev. D 2009, we updated constraints on this scenario with recent cosmological
data, and obtained very strong bounds. It should however be noted that our paper was relying on
the assumption that the formation of non-linear neutrino clumps, that may result from the fifth force
generated by the coupling with a light scalar field, would contradict observations. This assumption is not
necessarily valid (but is very difficult to test).

2.3.3 Light sterile neutrinos

The possibility of active-sterile neutrino oscillations is very intriguing, especially given the few anomalies
claimed to exist in LSND, MiniBoone and reactor data. Although far from being conclusive, these
anomalies suggest that there might be at least one sterile neutrino with a mass of the order of one eV.
The cosmological signature of such sterile neutrinos depends on their production mechanism (since they
do not necessarily thermalise). With a PhD student, I confronted various assumptions to existing data
in “Cosmological constraints on a light non-thermal sterile neutrino”, Phys. Rev. D 2009,
presented in section 5.2, pages 299-316. This analysis was updated in the Planck paper “Planck 2013
results. XVI. Cosmological parameters”, arXiv:1303.5076 [astro-ph.CO], pages 329-342, in
section 6.3.3., for which I was a leading author. Using Planck alone, it is not possible to exclude any
kind of sterile neutrinos with a mass in the eV range, but joint constraints from particle physics and
cosmology are now putting this scenario under considerable tension.

2.3.4 Heavy sterile neutrinos

Heavy sterile neutrinos with a mass in the keV range are very interesting dark matter candidates for
two reasons: first, their existence and their production are easy to motivate in simple extensions of the
standard model of particle physics; second, they can leave distinct signatures, since they would be warm
and decaying dark matter particles.

In “Constraining the window on sterile neutrinos as warm dark matter”, Mon. Not. Roy.
Astron. Soc. 2002, we showed that sterile neutrinos produced through non-resonant oscillations with
active neutrinos can in principle be completely ruled out. Indeed, the analysis of Lyman-alpha forests
in quasar spectra provides information on structure formation at small scales and high redshift. Warm
dark matter tends to slow down structure formation on small scales. Hence, Lyman-alpha data have the
potential to rule out warm dark matter with a large velocity dispersion, i.e., with a small mass. On the
other hand, if dark matter is made of sterile neutrinos and if their mass is too large, we should see their
decay line in X-ray observations of galactic and sub-galactic halos. In this MNRAS paper, we showed
that the window on the mass of non-resonantly-produced sterile neutrino dark matter could be closed
soon, when bounds from Lyman-alpha and X-ray data would cross each other.

I then collaborated with Lyman-alpha experts (in particular, Matteo Viel) in order to improve lower
bounds on the warm dark matter mass (for different warm dark matter candidates, including a sterile
neutrino). As Lyman-alpha data was improving, we published updated bounds first in “Constraining
warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP
and the Lyman-alpha forest”, Phys. Rev. D 2005, and then in “Can sterile neutrinos be ruled
out as warm dark matter candidates?”, Phys. Rev. Lett. 2006, presented in section 5.5, pages
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343-346. These works did achieve the goal of closing the window on the mass of non-resonantly-produced
sterile neutrino dark matter.

A few years later, we extended our analysis to the more general case of cosmological models with a
mixture of cold and warm dark matter: “Lyman-alpha constraints on warm and on warm-plus-
cold dark matter models”, JCAP 2009. Our motivation was twofold. The less natural motivation
comes from the fact that, in principle, several dark matter particles could co-exist in the universe, with
different masses and velocity dispersions. Hence there could be at the same time a cold component
and a warm component. However, the most natural motivation comes from sterile neutrinos produced
through resonant oscillations with active neutrinos. In that case, it was shown by Laine & Shaposhnikov
(2008) that the phase-space distribution of sterile neutrinos is very peculiar, with a strong enhancement
of low-momentum particles. Then, one would have a single dark matter particle in the universe, but this
single species would behave effectively like the superposition of a cold component and a warm component.
In “Realistic sterile neutrino dark matter with keV mass does not contradict cosmological
bounds”, Phys. Rev. Lett. 2009, presented in section 5.6, pages 347-350, we explicitly considered
a model of this type, and showed that mass bounds from Lyman-alpha data are much weaker in this
case than for non-resonantly produced sterile neutrinos. The conclusion is that resonantly produced
sterile neutrinos are still valid dark matter candidates. This category of models could still be excluded
or discovered in the near future thanks to better X-ray observations.
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5

Neutrinos in the cosmic microwave
background epoch

The statistical properties of CMB temperature and polarization anisotropy maps
encode very precise information on the history and composition of our universe.
They depend primarily on the behaviour of inhomogeneities in the photon and
baryon medium until photon decoupling, which feels all other species in two ways:
through their impact on the cosmological background evolution, and via their
contribution to the local gravitational forces. This is why neutrinos play an indirect
yet important role in the physics of CMB anisotropies, and why present (and
future) data on these observables give us quite remarkable pieces of information
on neutrino properties.

To understand this point quantitatively, we need to follow photon decoupling at
a much more detailed level than in Section 2.4.1. This is the subject of Section 5.1,
where we overview the main features of CMB physics, of cosmological pertur-
bation equations, the different contributions to the spectrum of CMB temperature
anisotropies, and the effect of each cosmological parameter on the CMB spectrum.
Neutrinos will appear on stage in Section 5.2, where we focus on the evolution
of their perturbations until photon decoupling, and in Section 5.3, where we infer
the effect of neutrino abundance, masses and properties on CMB anisotropies.
Finally, Section 5.4 is a brief summary of recent constraints on neutrino properties,
exploiting CMB data alone.

In the following pages, physical quantities are written as the sums of their spatial
averages, denoted by an overline, and their fluctuations in real or Fourier space.
For instance, the density of a given species i will read ρi(η, �x) = ρi(η) + δρi(η, �x),
where η stands for conformal time and �x for comoving coordinate. To simplify
the notation, we will use the same symbol for the perturbation in real space (e.g.,
δρi(η, �x)) and in Fourier space (δρi(η, �k)).

198
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5.1 Cosmic microwave background anisotropies

5.1.1 Overview

CMB physics mainly depends on the behaviour of three species until recombina-
tion: baryons, electrons and, of course, photons.

Baryons and electrons remain strongly coupled throughout recombination via
Coulomb scattering. Electric neutrality ensures that their density contrasts δρB/ρB

and δρe/ρe are equal to each other, everywhere in the perturbed universe. They
can be considered as a single fluid, whose energy density is dominated by baryons,
because they are considerably more massive. For convenience, in the context of
CMB physics, the tightly coupled baryon–electron medium is often referred as
“baryons” only.

Photons and electrons interact through Compton scattering, which becomes inef-
ficient around the time of recombination, as we saw in Section 2.4.1. At much higher
redshift, the tightly coupled photon–baryon(–electron) plasma can be described as
a single fluid. This approximation is accurate enough to understand the basics of
acoustic oscillations, as we shall do in Section 5.1.5. As long as tight coupling
holds, thermal equilibrium imposes a blackbody spectrum locally. Photons can
then be described at each point by their temperature (plus some Stokes parameters
specifying their polarization state). However, an observer at rest with respect to the
coordinate frame but not to the fluid will see a Doppler shift. Hence, in a spherical
harmonic expansion of the local temperature distribution, the perturbation at any
given point is characterized by a monopole and a dipole.

When photons decouple, we could expect a priori that their distribution func-
tion becomes gradually nonthermally distorted, at least at the level of perturba-
tions (we saw in Section 2.4.1 that the background distribution remains of the
Bose–Einstein type). However, as long as photons interact only gravitationally, the
equivalence principle implies that photons of different energy travelling along a
given geodesic are redshifted by the same amount at each point, in such a way
that the distribution of photons along this geodesic can experience a tempera-
ture shift, but no nonthermal distortions. Hence, after decoupling, photons can
be described by a local value of temperature T (η) + δT (η, �x, n̂) (and of Stokes
parameters for polarization), with extra dependence on the direction of propa-
gation n̂, unlike in thermal equilibrium. The same holds for standard decoupled
relativistic neutrinos, described by T ν(η) + δTν(η, �x, n̂). The same arguments can-
not be extended to nonrelativistic neutrinos, for which gravitational interactions
lead to some distortions in their momentum distribution. Such neutrinos will be
described by a more complicated distribution function, depending also on momen-
tum. We will review in Section 5.2.1 the evolution equation for these degrees of
freedom.
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The tightly coupled photon–baryon fluid experiences pressure forces due to
photon pressurePγ = ργ /3. Any inhomogeneity propagates in the form of acoustic
waves. Acoustic oscillations are affected by� the baryon-to-photon ratio ηB (defined in Eq. (2.160)), which controls the effec-

tive pressure and sound speed of the photon–baryon fluid, and� gravitational forces, caused by the self-gravity of the fluid and by gravitational
interactions with other species.

The dispersion relation of these acoustic waves is such that a given perturbation
propagates with only one wavefront, instead of multiple wavefronts as for waves
on a water surface. This means that at a given time, a single correlation length
appears in the spatial temperature distribution of the fluid. This correlation length
is given simply by the distance travelled by a wavefront since some initial time,
called the sound horizon. Because of the expansion of the universe, the value of
the sound horizon at a given conformal time η is almost insensitive to the choice
of initial time ηi , provided that ηi  η: the sound horizon does not depend on the
early cosmological evolution close to the Big Bang, but rather on the late evolution
around the recombination epoch.

After decoupling, free-streaming photons carry information on the local temper-
ature and velocity of the fluid at recombination, near their last scattering point (with
minor distortions acquired after decoupling and called secondary anisotropies). We
will briefly comment on the fact that they also carry extra information encoded in
their polarization state. Hence, to some extent we can reconstruct the map of tem-
perature and polarization fluctuations on the last scattering surface, and extract the
correlation length given by the sound horizon at decoupling, projected along a given
angle. Indeed, the observed angular correlation function of CMB maps contains
one characteristic feature, whose angular scale, shape and amplitude depend on the
details of the photon–baryon plasma, the cosmological background evolution, and
the presence of any other fluid interacting gravitationally with this plasma.

The correlation function can also be computed in multipole space after expanding
CMB maps in spherical harmonics. The angular correlation function is usually
notedC(θ ), and its counterpart in harmonic spaceCl is called the CMB (temperature
or polarization) power spectrum. Strictly speaking, the angular correlation function
C(θ ) and the power spectrumCl contain the same amount of information. However,
the dependence of the Cl power spectrum on the underlying cosmological model
is more transparent and easy to interpret. As in most of the literature, we will focus
on this observable. The power spectrum contains several regularly spaced peaks,
corresponding to the various harmonics of the single characteristic feature in C(θ ).
A large amount of cosmological information is encoded in the amplitude of each
of these peaks.
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5.1.2 Perturbation equations

The linearly perturbed universe can be described by a perturbed metric tensor
gμν + δgμν and a set of dynamical variables for each species that we will review
in this section. Perturbations can be described in several gauges, i.e., using several
possible definitions of equal-time hypersurfaces on which spatial averaging is
performed, all compatible with the assumption of a homogeneous background. We
do not provide details here on the gauge issue, which is well described throughout
the literature (see, e.g., Ma and Bertschinger, 1995). For simplicity, we restrict
the following presentation to the Newtonian gauge in a spatially flat background
spacetime, where the perturbed line element reads

ds2 = a2(η)
[−(1 + 2ψ(η, �x))dη2 + (1 − 2φ(η, �x))d �x2

]
(5.1)

andψ plays the role of the Newtonian gravitational potential on scales much smaller
than the Hubble radius. Any other gauge choice would be equally good, because
truly observable quantities are always gauge-invariant. We will occasionally refer
to the impact of a nonzero spatial curvature, without introducing the full equations
of evolution in that case. The whole system of evolution equations for first-order
cosmological perturbations in a spatially flat background spacetime is presented
in the seminal paper by Ma and Bertschinger (1995). This section contains a
pedagogical summary of this reference, sufficient for the purposes of this book.
It can also be used to make first contact with cosmological perturbations, before
investigating more technical aspects in the original papers.

Energy–momentum vector in the perturbed universe

Let us consider a particle of mass m, of physical momentum pi (defined in 2.18),
and of energy E =

√
p2 +m2. As in Chapter 2, we define y = ap, and similarly

rescale the energy as

ε ≡ a E =
√
y2 + a2m2. (5.2)

We will use circumflexes to denote unit vectors, so that the proper momentum can
be written as �p = p n̂, with components pi = pi = p ni . In the linearly perturbed
universe and in the Newtonian gauge, the components of the comoving energy–
momentum vector Pμ can be shown to be related to metric perturbations and to
(y, ε) through

P0 = −(1 + ψ)ε, Pi = (1 − φ)y ni. (5.3)
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The geodesic equation can be written in terms of the above variables, and gives the
time variation of y for a freely falling particle in the linearly perturbed universe,

dy

dη
= −y φ′ − ε n̂ · �∇ψ, (5.4)

with ′ denoting the derivative with respect to conformal time. The geodesic equation
also gives the variation of the direction of propagation dn̂/dη, accounting for grav-
itational lensing effects. Both dy/dη and dn̂/dη are of order one in perturbations,
because in a homogeneous universe particles would propagate along straight lines
with fixed comoving momentum. A crucial point is that for relativistic particles,
we can use ε = y and rewrite the momentum evolution as

d ln y

dη
= −φ′ − n̂ · �∇ψ. (5.5)

This equation shows that when travelling across metric perturbations, relativistic
decoupled particles experience a relative momentum shift which does not depend
on the momentum itself. Hence, for any relativistic free-streaming species which
attained an equilibrium distribution, the phase-space distribution keeps the func-
tional form of a Fermi–Dirac or Bose–Einstein function, with the temperature now
becoming a function not only of time and space, but also of direction. For these
species, nonthermal distortions can be generated only through nongravitational
couplings. On the other hand, for nonrelativistic decoupled particles, gravitational
interactions do produce nonthermal distortions at the level of perturbations, because
the momentum dependence cannot be eliminated from the r.h.s. of (5.4).

Perturbed stress–energy tensor

It is useful to classify the 10 degrees of freedom of the perturbed stress–energy
tensor δTμν of each species as scalars, vectors and tensors under spatial rotations
(Bardeen, 1980). In fact, in linear perturbation theory, the scalar, vector and tensor
sectors are decoupled from each other. In this book, we will focus only on the
scalar degrees of freedom. Indeed, the vectors describe vorticity, which quickly
decays on all cosmologically interesting scales, at least in the standard picture. The
tensors, briefly mentioned in Section 5.1.8, describe gravitational waves. These
can be excited by inflation and lead to a signature in the CMB, but in our current
understanding, they cannot be observed with a precision sufficient to probe any
neutrino effect.

For every perturbed stress–energy tensor, there are four scalar degrees of free-
dom. They are usually defined as the relative density fluctuation δ ≡ δρ/ρ, a
function θ related to the bulk velocity divergence (or energy flux divergence), the
pressure perturbations δP and a dimensionless potential σ associated to anisotropic
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stress (i.e., anisotropic pressure). These four degrees of freedom are related to δT μ
ν

through

ρ δ = −δT 0
0 (5.6)

(ρ + P ) θ =
∑
i

∂iδT
0
i (5.7)

δP = 1

3

∑
i

δT i
i (5.8)

(ρ + P )∇2σ = −
∑
i,j

(
∂i∂j

1

3
∇2δij

)
δT i

j . (5.9)

The total stress–energy tensor of the multicomponent universe is obtained by
summing over quantitites on the l.h.s. in the above equations (for instance, the
total δT 0

0 is given by −∑i ρiδi , and leads to a total density fluctuation δtot =∑
i ρiδi/ρ tot).
The conservation equation ∇μT

μ
ν = 0 leads to two equations of motion for the

scalar sector, the energy conservation equation and the Euler equation. We see that
two more relations would be needed to close the four-variable system. One of these
relations is often provided by knowledge of the equation of state or, in the case
of fluids with nonadiabatic perturbations, by knowledge of the sound speed. This
makes it possible to replace δP as a function of δ. For a perfect fluid, microscopic
interactions enforce isotropic pressure and the anisotropic stress vanishes, so that
the system is closed. For some classes of imperfect fluids, the anisotropic stress
can still be expressed as a function of other variables. In more general cases, and
in particular for weakly coupled or collisionless species, the stress–energy tensor
and its conservation equations are not sufficient for describing the perturbation
evolution.

We will mainly be interested in species that can be characterized by their phase-
space distribution function f obeying the (perturbed) Boltzmann equation. This
distribution can be decomposed into a background term f0 depending on y and
occasionally on η (as already seen in Section 2.2), plus a perturbation δf (η, �x, �p) or
δf (η, �x, y, n̂), depending explicitly on time and on the full phase-space coordinates.
For such systems, the stress–energy tensor and the scalar degrees of freedom (δ, θ ,
δp, σ ) can be extracted from f0 and δf using the perturbed version of Eq. (2.42),

T μ
ν = g

∫
d3p

(2π )3

PμPν

E
f (η, �x, �p). (5.10)

This relation can be combined with the Boltzmann equation in order to derive the
energy conservation and Euler equations in a different way than from ∇μT

μ
ν = 0.
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Photons

Before decoupling, the dominant photon interaction is Compton scattering off
electrons. CMB physics can be studied in the Thomson limit of Compton scattering,
in which the photon energy is assumed to be much smaller than the electron rest
energy. The evolution is described by the perturbed version of the Boltzmann
equation (2.92). This means that the Liouville operator on the l.h.s. of (2.92) now
includes partial derivatives with respect to each phase-space coordinate xi and pi .
The collisional integral C(fγ (η, �x, �p); fi) on the r.h.s. should be chosen to describe
Thomson scattering, and can be simplified by noticing that Pauli blocking and
stimulated emission play a negligible role in this context (see Section 2.2.1).

We learned from Eq. (5.5) that even when photons decouple, their phase-space
distribution keeps the functional form of a Bose–Einstein distribution, but with a
direction-dependent temperature. We can then write the full photon phase-space
distribution at any time (before, during and after recombination) as

fγ (η, �x, �p) =
[

exp

(
y

a(η) T (η)
{
1 +�γ (η, �x, n̂)

}
)
− 1

]−1

, (5.11)

where �γ ≡ δT /T stands for the relative photon temperature shift. We recall that
after electron–positron annihilation and until today, the product a(η) T (η) remains
constant in time (see Section 2.4.1). In the absence of temperature fluctuations, we
recover the expected background distribution

fγ 0(y) =
[

exp

(
y

a T

)
− 1

]−1

=
[

exp

(
p

T

)
− 1

]−1

. (5.12)

One can replace fγ in the Boltzmann equation, expand it at first order in pertur-
bations and turn it into a linear equation of evolution for �γ . After the Liouville
operator is expanded, d �x/dη can be replaced by n̂ and dy/dη by its expression in
Eq. (5.4). The expression for dn̂/dη is not needed because this vector is contracted
with the spatial gradient of fγ with respect to the direction n̂ and the product
vanishes at first order in perturbations. After some algebra and simplifications, the
Boltzmann equation reduces to

�γ
′ + n̂ · �∇�γ − φ′ + n̂ · �∇ψ = aneσT(�γ 0 −�γ + n̂ · �vB), (5.13)

where ne is the number density of free electrons and σT the Thomson cross section
(both previously defined in Section 2.4.1). �γ 0 is the temperature perturbation
monopole, i.e., the average of �γ over all directions n̂, whereas �vB is the (com-
mon) bulk velocity of baryons and electrons, as these particles are tightly coupled
by Coulomb interactions. Because we are studying scalar perturbations, we only
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need to consider the irrotational part of �vB, which is fully given in terms of its
divergence θB.

The interaction term on the r.h.s. of (5.13) is rather intuitive. In the tightly
coupled limit, Thomson scattering forces �γ to be equal to �γ 0 + n̂ · �vB, i.e., to be
independent of direction apart from a dipole term due to the Doppler effect, or in
other words to the motion of the photon–baryon fluid with respect to an observer
with fixed coordinates. Indeed, in a particular frame comoving with the baryons, �vB

would vanish, and the role of Thomson scattering would be to enforce an isotropic
temperature distribution such that �γ = �γ 0. This is what we expect in a fluid in
thermal equilibrium.

The role of a CMB Boltzmann code such as cmbfast (Seljak and Zaldarriaga,
1996), camb (Lewis et al., 2000), cmbeasy (Doran, 2005) or class (Blas et al.,
2011) is precisely to solve Eq. (5.13) coupled with other equations of evolution
for baryons, dark matter or neutrinos (the latter two being coupled only gravi-
tationally). This linear system of differential equations describes the probability
evolution in the stochastic theory of cosmological perturbations (as we shall see
in more detail in Section 5.1.4). The system can be more conveniently solved in
Fourier space. It is also more practical to reduce the dimensionality of the prob-
lem by expanding �γ (η, �k, n̂) in spherical harmonics. We note that in the Fourier
transform of Eq. (5.13), n̂ enters only through the combination μ ≡ n̂ · k̂, i.e., the
cosine of the angle between the direction of propagation and the wavevector. This
rotational symmetry of the equation around the axis defined by n̂ is a consequence
of the isotropy of the Friedmann background. Moreover, initial conditions respect
the same symmetry, because the temperature of tightly coupled photons can only
depend on direction through a monopole and a dipole oriented along n̂. Hence,
we can consider �γ as a function of (η, �k, μ) only and perform a one-dimensional
Legendre transformation with respect to μ, instead of a two-dimensional transfor-
mation with respect to n̂,

�γ (η, �k, μ) =
∑
l

(−i)l(2l + 1)�γl(η, �k)Pl(μ), (5.14)

where �γ 0(η, �k) is just the Fourier transform of the monopole which already
appeared in Eq. (5.13). After these transformations, the Boltzmann equation leads
to an infinite hierarchy of coupled equations for the multipole moments of �γ :

�γ 0
′ = −k�γ 1 + φ′

�γ 1
′ = k

3

(
�γ 0 − 2�γ 2 + ψ

)+ aneσT

(
θB

3k
−�γ 1

)
(5.15)

�γl
′ = k

(2l + 1)

[
l�γ (l−1) − (l + 1)�γ (l+1)

]− aneσT�γl, ∀ l ≥ 2.
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One can show that the first three momenta are related to the scalar degrees of
freedom introduced in the previous subsection through

δγ = 4�γ 0, θγ = 3k�γ 1, σγ = 2�γ 2. (5.16)

We notice that in the tightly coupled regime, �γ (η, �k, μ) is the sum of an isotropic
term and a Doppler term. This means that all multipoles �γl(η, �k) with l ≥ 2 are
negligible in this limit.

Baryons

Baryons (or, as we mentioned previously, the tightly coupled baryon–electron fluid)
can be described by exactly the same Boltzmann equation as photons, maintaining
their phase space density fB, with a coupling term opposite to the one in the photon
equation. As for photons, it reduces to an equation for the baryon temperature
fluctuation �B. However, further simplifications arise in the limit of nonrelativistic
baryons, because all Legendre momenta �Bl can be neglected apart from the
monopole, related to the density fluctuation δB, and the dipole, which gives the
bulk velocity divergence θB. After some algebra, the full Boltzmann equation
eventually reduces to the energy conservation equation and the Euler equation
sourced by Thomson scattering,

δ′B = −θB + 3φ′

θ ′B = −a′

a
θB + k2ψ + R−1 aneσT(θγ − θB), (5.17)

where we have defined the baryon-to-photon ratio R, rescaled by a factor of 3/4 to
get simpler equations in the following:

R(η) ≡ 3

4

ρB(η)

ργ (η)
. (5.18)

The factor ρB appearing in the denominator in the baryon Boltzmann equation
(5.17) should not be a surprise. The limit ρB →∞ corresponds to an infinite
average baryon mass, i.e., to the limit where no photon carries enough energy
to transfer momentum to the baryon–electron fluid in each Thomson scattering
process. In this case, the coupling term does not affect the bulk velocity of baryons.
Note that in Eqs. (5.17), we neglected any pressure term (i.e., any particle velocity
dispersion) for the baryons. This approximation is valid for the large cosmological
scales in which we are interested in this book. It would be incorrect on scales
smaller than the baryon Jeans length, which is today in the range of galactic scales,
i.e., deep in the nonlinear regime.
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Cold dark matter

Cold dark matter (CDM) is assumed to have decoupled from other species when
already nonrelativistic and well before the CMB formation epoch. Its Boltzmann
equation reduces to the same equations as for baryons but without the coupling
term:

δ′C = −θC + 3φ′

θ ′C = −a′

a
θC + k2ψ. (5.19)

Another way to derive these equations is to write the energy conservation and
Euler equations for a species such that the pressure P , pressure perturbation δP ,
and anisotropic pressure potential σ all vanish.

Neutrinos

Because the impact of neutrinos on the CMB is the main topic of this chapter, we
will present and discuss neutrino equations separately in Section 5.2. In the current
section, we limit our description of CMB physics to the case of a neutrinoless
universe.

Einstein equations

The list of evolution equations introduced up to now would form a closed system
if metric perturbations φ and ψ were known. These functions can be inferred from
the total perturbed stress–energy tensor through Einstein equations. For scalar
perturbations, Einstein equations provide four independent relations which, along
with the previous equations of motion, would lead to a redundant system. The
reason is that through Bianchi identities, Einstein equations imply two equations
of conservation for the scalar part of the total stress–energy tensor. The same
equations could be derived by combining the equations of motion of individual
species. Hence, a practical way to solve the full system in the Newtonian gauge
without redundancy is to use the equation of motion of each species, plus two
Einstein equations playing the role of constraint equations, and providing φ and ψ

at each step as a function of total matter perturbations. The first can be found from
δG0

0 = 8πG δT 0
0 :

k2φ + 3
a′

a

(
φ′ + a′

a
ψ

)
= −4πG a2

∑
i

δρi. (5.20)

Deep inside the Hubble length, this equation gives the Poisson equation, because
for k � a′

a
one gets

− k2

a2
φ = 4πG δρtot. (5.21)
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On the l.h.s., we recognize the Fourier transform of a−2�φ, where � is the Lapla-
cian defined with respect to comoving coordinates, such that a−2� is the physical
Laplacian. The r.h.s. is the usual source term in the Poisson equation (in the context
of general relativity, the energy density fluctuation plays the role of the total mass
density in the Newtonian version of the Poisson equation). To close the system,
we need one more component of the Einstein equations, for instance, the one
corresponding to the anisotropic stress component of the stress–energy tensor:

k2(φ − ψ) = 12πGa2
∑
i

(ρi + pi)σi. (5.22)

We see that as long as the total anisotropic stress can be neglected, the two metric
fluctuations coincide. Strictly speaking, it is the gradient of φ − ψ which vanishes,
but φ = ψ is the only solution of �(φ − ψ) = 0 which is regular everywhere, does
not diverge at infinity, and remains compatible with linear perturbation theory.

5.1.3 Adiabatic and isocurvature modes

The full system of coupled differential equations describing linear perturbations that
we introduced in the last subsection includes two first-order equations for baryons,
two for CDM, and an infinite hierarchy of equations for photons. However, we
should keep in mind that as long as photons are tightly coupled, or for wavelengths
greater than the Hubble scale, all multipoles above l = 0 (the monopole accounting
for local density fluctuations) and l = 1 (the dipole due to the relative motion
between the tightly coupled fluid and the coordinate frame) are negligible. We
have seen in the last section how the coupling term in the Boltzmann equation
enforces such a simplification, which is a natural consequence of the fact that in a
strongly interacting fluid, the kinetics can be entirely described by a bulk velocity.
This reduces the effective number of equations of evolution for photons to two, as
for baryons. When computing the CMB or the large scale structure (LSS) power
spectra, one always chooses initial conditions deep in the super-Hubble and tightly
coupled regime, in which this simplification holds. In summary, on super-Hubble
scales, all perturbations in a universe with three species (photons, baryons, CDM)
can be described by six first-order equations. More generally, for N species, one
would get 2N first-order equations.1

Such a system admits 2N independent initial conditions. Half of them can be
shown to seed decaying modes that we cannot observe today, because the other half
lead to much larger fluctuations. In studying possible mechanisms for the generation

1 We will see in Section 5.2.2, where we introduce the so-called neutrino velocity isocurvature mode, that
collisionless species such as neutrinos constitute a small exception to this rule.
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of initial conditions (inflation, dynamics of spontaneous symmetry breaking, etc.),
one task consists of identifying which combination of the N nondecaying solutions
gets excited. Eventually, in complicated mechanisms in which the generation of
initial conditions arises from a superposition of random processes, more than one
combination can be excited, with or without statistical correlations between the
various initial modes (e.g., in multiple-field inflation).

One particular combination has a particularly simple physical interpretation. In
a perfectly homogeneous universe, the Friedmann law combined with our knowl-
edge of particle physics and thermodynamics allows us to predict the evolution
of homogeneous densities and pressures ρi(t) and P i(t) for each species (here t

stands for whatever definition of time we are adopting in the Friedmann universe).
The simplest realization of an inhomogeneous universe that we can think of is the
following: assume that some mechanism introduces a local time-shift (accounting,
for instance, for inflationary fluctuations: in single-field inflation, the inflaton is the
only clock in the quasi-De Sitter universe, and its fluctuations can be seen as local
shifts with respect to average time). In such a hypothetical universe, densities and
pressures would be described by functions

ρi(t, �x) = ρi(t + δt(�x)) � ρi(t) + ρ̇i(t) δt(�x)

Pi(t, �x) = P i(t + δt(�x)) � P i(t) + Ṗ i(t) δt(�x), (5.23)

where the time-shift function δt(�x) (assumed to be of order one in perturbations)
would be the same for all species. This assumption makes sense and is preserved
by the time evolution, at least on super-Hubble wavelengths, for which different
worldlines can be thought to have independent histories. This singles out a specific
subclass of initial conditions subject to

δρi

ρi + P i

= ρ̇i(t)

ρi + P i

δt(�x) = −3
ȧ(t)

a(t)
δt(�x), (5.24)

which does not depend on the species i (for the last equality, we have used the energy
conservation equation (2.48)). In such a perturbed universe, some remarkable
properties would emerge. First, each species would have an adiabatic sound speed
at least on super-Hubble scales; i.e., the ratio δPi/δρi would be given by

δPi(t, �x)

δρi(t, �x)
= Ṗ i(t)

ρ̇i(t)
≡ c2

a,i(t). (5.25)

In addition, the total perturbations (summed over all species) would also be
described by an effective sound speed:

δP (t, �x) = c2
s (t)δρ(t, �x), with c2

s (t) ≡
∑

i ρ̇i(t)c
2
a,i(t)∑

i ρ̇i(t)
. (5.26)
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This property is not true in the general case. Without assuming Eq. (5.23), we could
write the total pressure perturbation only as a sum over N independent functions
of �x, which could eventually be arranged as

δP (t, �x) =
∑
i

c2
s,i(t)δρi(t, �x)

= c2
s (t)δρ(t, �x) +

∑
i �=j

dij (t)

[
δρi

ρi + P i

− δρj

ρj + P j

]
, (5.27)

where the term between brackets stands for the entropy perturbation δSij of the
fluid i compared to another fluid j (chosen arbitrarily as a reference), and the
coefficients dij (t) correspond to the partial derivatives of total pressure P with
respect to Sij . Hence, any set of perturbations satisfying Eq. (5.23) is such that the
fluctuations of the total effective fluid have adiabatic properties. These solutions of
the perturbation equations are called isentropic or adiabatic modes, whereas any
other solution would feature entropy perturbations.

In order to define actual adiabatic initial conditions, one should impose Eq. (5.23)
and solve the remaining system of differential equations, composed of only two
independent equations. This leads to a basis of two independent initial conditions.
When this basis is chosen appropriately, one of the solutions becomes quickly
negligible with respect to the other one as time evolves. These two solutions
(defined up to an arbitrary normalization constant) are called the decaying and
growing adiabatic modes. Without Eq. (5.23) being imposed, the full system would
have a basis of initial conditions including these two modes plus 2N − 2 entropy
modes. A customary way to fix the basis of nonadiabatic modes consists of picking
up linear combinations such that all perturbations vanish, except for two fluids
with opposite density fluctuations exactly cancelling each other in the expression
of spatial curvature fluctuations (at least, in the asymptotic super-Hubble limit).
These combinations are called isocurvature modes. Any general initial condition
can be decomposed on the basis of solutions formed by one growing adiabatic
mode, (N − 1) growing isocurvature modes, and N decaying modes. Nonadiabatic
modes include CDM isocurvature modes (with entropy perturbations between
CDM and photons), baryon isocurvature modes, plus other modes if there are more
species present in the universe (neutrino isocurvature modes will be mentioned in
Section 5.2.2).

Although the simplest mechanisms for the generation of primordial perturbations
can be formulated as a unique time-shift effect, and lead to adiabatic perturbations,
isocurvature modes might be excited by more complicated mechanisms such as
multiple-field inflation in the early universe, leading to a superposition of several
independent time-shift functions. However, even when some isocurvature modes
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are excited at early times, the assumption that all species were once in thermal
equilibrium implies that they share the same local fluctuations in number density,
i.e., that any entropy perturbation has been erased. Hence, isocurvature modes
should be taken into account only if they are attached to an always decoupled
species. A known exception to this rule applies to particles with a sizeable chemical
potential, as discussed by Malik and Wands, 2009. Even in thermal equilibrium,
such particles can have a chemical potential μ(t, �x), which could in principle
fluctuate spatially, in such a way as to break the adiabaticity condition. This cannot
be the case for the photons, baryons and CDM particles discussed here, but we will
come back to this issue in the case of neutrinos.

In summary, isocurvature modes require some very specific assumptions and
are not expected to be relevant in the simplest cosmological models. Of course,
this conclusion is based on theoretical priors. Ultimately, the data should tell us
whether isocurvature modes are present or not. So far, all CMB and LSS obser-
vations are compatible with purely adiabatic initial conditions, and put strong
limits on the amplitude of isocurvature modes which, if any, should be small
with respect to the dominant adiabatic contribution. Whenever more precise data
become available, these limits will become stronger, or on the contrary we might
discover a tiny isocurvature contribution. In the rest of this book, we will assume
for simplicity that the universe can be described in terms of purely adiabatic initial
conditions.

5.1.4 Power spectra and transfer functions

Power spectrum

The theory of cosmological perturbations is a stochastic theory, whose goal is to
predict the statistical properties of perturbations at some arbitrary time η, given the
statistical properties of perturbations at initial time ηin (inferred from quantum field
theory in the case of inflationary cosmology). The simplest possible assumption
compatible with all observations at the time of writing is that the early universe
features gaussian fluctuations. As long as perturbations remain linear, gaussian-
ity is preserved and all fluctuations can be described entirely by their two-point
correlation function in real or in Fourier space, for instance, 〈A(η, �k)A∗(η, �k′)〉
for an arbitrary quantity A. For a stochastic gaussian field, different wavevectors
are uncorrelated, and the Fourier two-point correlation function is proportional to
the Dirac distribution δ(3)(�k − �k′). The coefficient of proportionality is called the
power spectrum PA. In a statistically isotropic universe such as the Friedmann
universe, the power spectrum can be a function of only the wavenumber k, not of
the direction k̂. Finally, many authors use the notation PA for the power spectrum
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rescaled by a factor k3/(2π2):

PA(k) = k3

2π2
PA(k). (5.28)

The technical reason for this redefinition is that PA(k) represents the contribution
of each logarithmic interval in wavenumber space to the two-point correlation
function in real space.

The goal of the theory of linear cosmological perturbations is to predict the
power spectrum of all quantities at any time, given some primordial power spectrum
accounting for initial conditions, e.g., at the end of inflation.

Transfer functions

Like the power spectrum, the system of linear differential equations for cosmolog-
ical perturbations does not depend on the wavevector direction k̂ in the Friedmann
universe. Hence this system can be solved only once for each wavenumber k,
starting from an arbitrary initial condition. Let us assume, for instance, that we
normalize the solution to �γ 0(ηin, �k) = 1; the power spectrum of �γl at a given
time would then be given by the actual power spectrum of �γ 0 at initial time,
multiplied by the square of such a solution �γl(η, �k).

By convention, in a universe with only adiabatic initial conditions, the initial nor-
malization often refers to a quantity R, called the comoving curvature perturbation.
Indeed, in the comoving gauge (in which equal-time hypersurfaces are orthogonal
at each point to the total velocity of the cosmic fluid), the dimensionless quantity
R represents the local fluctuation of the spatial curvature in comoving units. In the
Newtonian gauge, the curvature perturbation is given by

R = ψ − 1

3

δρtot

ρ tot + P tot
. (5.29)

All equations can be solved starting from the arbitrary initial conditionR(η, �k) = 1.
The power spectrum of a given quantity at time η will then be given by the square
of the solution multiplied by the initial power spectrum of R.

Equivalently, we could say that all equations of evolution can be divided by a
normalizing quantity, namely R(ηin, �k) in the usual case. We can then solve the
system and find the solution for

�γl(η, k) ≡ [�γl(η, �k)/R(ηin, �k)] (5.30)

δB(η, k) ≡ [δB(η, �k)/R(ηin, �k)] (5.31)

and similar rescaled variables for other perturbations. The quantities on the l.h.s.,
depending on k rather than �k, are called transfer functions. Their square multi-
plied by the initial curvature power spectrum gives the power spectrum of the
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corresponding quantity at time η. In the following, any perturbation of pho-
tons, baryons, CDM, etc., written as a function of a wavenumber instead of a
wavevector, will stand for a transfer function normalized with respect to curvature:
f (η, k) ≡ [f (η, �k)/R(ηin, �k)].

Primordial spectrum

The primordial curvature spectrumPR(k) is not a function of time, because comov-
ing curvature is conserved on super-Hubble scales (at least in the absence of isocur-
vature modes). According to the previous definitions, we have

〈R(ηin, �k)R∗(ηin, �k′)〉 = 2π2

k3
PR(k) δ(3)(�k − �k′). (5.32)

This spectrum can be used to express all other spectra at any time; for instance,

〈�γl(η, �k)�∗
γ l(η, �k′)〉 =

2π2

k3
PR(k) [�γl(η, k)]2 δ(3)(�k − �k′) (5.33)

for all η.
Inflation predicts a nearly scale-invariant power spectrum (i.e., a nearly flat

PR(k)), as a consequence of the nearly constant energy density of the universe dur-
ing the inflation stage. At first order, deviations from scale-invariance are accounted
for by a tilt ns close to unity,

PR(k) = As(k/k0)ns−1, (5.34)

where As stands for the primordial spectrum amplitude at the arbitrary pivot scale
k0. Beyond leading order, one could consider the running of the tilt with k, the
running of the running, etc. A detailed study of quantum scalar perturbations
during inflation shows that the tilt running and higher terms in the expansion are
negligible (unless in very specific, nonminimal models), and makes it possible to
relate As and ns to the amplitude and shape of the inflaton potential V (φ) within a
small range of field values �φ, called the observable window of inflation.

5.1.5 Acoustic oscillations

Sound speed

A precise solution of the system of differential equations describing cosmological
perturbations can only be obtained numerically. Many analytic approximations
have been discussed in the literature, at different levels of precision (see, e.g., Hu,
1995). Here, we will remain at the level of a qualitative discussion.

On times and scales for which the baryons and photons can be considered a
single tightly coupled fluid, we can compute the sound speed of perturbations in
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this fluid as

c2
s =

δPγ + δPB

δργ + δρB
. (5.35)

Photons and baryons are then in thermal equilibrium with a temperature T (η, �x).
Relativistic photons satisfy δγ = 4 δT /T and δPγ = δργ /3, whereas for nonrela-
tivistic baryons we can use δb = 3 δT /T and neglect δPB. The sound speed is then
equal to

c2
s =

1

3(1 + R)
, (5.36)

where we recall that R ≡ 3ρB/(4ργ ). This ratio increases like the scale factor. It
remains much smaller than one during radiation domination, and becomes of order
one at the beginning of matter domination, i.e., near the recombination time. Hence,
the sound speed in the fluid remains equal to 1/

√
3 during radiation domination

(or c/
√

3 in physical units), and then drops slowly down to zero. As long as the
sound speed is nonzero, acoustic waves propagate in the fluid with a velocity cs.

Sound horizon

If initial gravitational and pressure forces would compensate for each other exactly
at each point, the tightly coupled fluid would be in equilibrium, with no propa-
gation of acoustic waves. However, primordial perturbations (seeded by inflation,
and/or eventually by some alternative mechanism) drive the system locally out of
equilibrium at the initial time, for both adiabatic and nonadiabatic initial condi-
tions. Starting from such perturbations, acoustic waves propagate causally, within
a distance called the sound horizon. The comoving sound horizon (i.e., the comov-
ing distance travelled by a wavefront since some arbitrary time deep inside the
radiation-dominated regime) is given simply by

rs(η) =
∫ t

tin

cs(t)dt

a(t)
=
∫ η

ηin

cs(η
′)dη′. (5.37)

This quantity is indeed independent of ηin as long as it is much smaller than η.
During radiation domination, rs is equal to the comoving causal horizon η divided
by

√
3.

A driven oscillator

Acoustic waves are density waves in the photon–baryon fluid. They can be repre-
sented by the variable �γ 0(η, k), which remains equal to 1

4δγ (t, k) and 1
3δB(η, k)

as a consequence of thermal equilibrium as long as the tight-coupling approxi-
mation holds. The most naive expectation would be that in Fourier space, this
variable evolves like �γ 0(η, k) ∼ cos[krs(η) + ϕ]. In particular, for krs(η)  1,
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i.e., for wavelengths much larger than the sound horizon, perturbations should still
be frozen.

Such solutions indeed emerge from tight-coupling approximations to the full
differential system, but not in such a trivial form. Indeed, the equation governing
the evolution of �γ 0(η, k) differs form that of a harmonic oscillator for essentially
three reasons:� The sound speed depends on time, so the oscillator equation for �γ 0(η, k) has a

time-dependent mass.� The photon–baryon fluid feels gravitational forces, seeded by its own overden-
sities, and by gravitational interactions with other species (CDM, or neutrinos,
as we will see in the next sections). It is also affected by other general relativity
effects, such as local time dilation. These effects are accounted for by gradi-
ents and time derivatives of metric fluctuations, which act as a driving term in
the oscillator equation for �γ 0(η, k). Because baryons are nonrelativistic, this
driving term also evolves when the baryon-to-photon ratio R increases.� The increasing value of R also changes other properties of the baryon–photon
fluid, such as its inertia.

We can track these different effects in the equation governing the evolution of
�γ 0(η, k) at leading order in the tight-coupling limit, which is easy to obtain from
Eqs. (5.15) and (5.17). In the limit σT →∞, we have already seen that Eq. (5.15)
implies θB = θγ = 3k�γ 1, and �γl = 0 for l ≥ 2. We can combine the second of
Eqs. (5.15) with the second of Eqs. (5.17) to eliminate the interaction term. In the
remaing equation, we use θB = 3k�γ 1, �γ 2 = 0, and we eliminate �γ 1 using the
first of Eqs. (5.15). Finally, we can replace a′

a
R by R′, and 3(1 + R) by c−2

s . We
are left with the second-order differential equation

�γ0
′′ + R′

1 + R
�γ 0

′ + k2c2
s�γ 0 = −k2

3
ψ + R′

1 + R
φ′ + φ′′, (5.38)

where we can clearly identify a baryon-induced damping term R′
1+R�γ 0

′, a pressure
term with time-dependent effective mass k2c2

s�γ 0, and a gravitational driving term
on the r.h.s.

Diffusion damping

On top of these effects, we must take into account the fact that close to recombina-
tion, the tight-coupling approximation breaks down. Random scattering processes
tend to erase perturbations below the photon diffusion length. In a first-order
approximation, this length can be found by treating photon diffusion as a random
walk, in which photons would pick up a completely random direction at each new
interaction with an electron. In this limit, the comoving distance travelled by a
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photon between the early universe and some time η would follow

r2
d (η) ∼

∫ η

ηin

dη �γ r
2
γ , (5.39)

where �γ stands for the interaction rate computed with respect to conformal time,
and rγ for the photon mean free path in comoving space. In our case, we know that
�γ = aneσT. The comoving mean free path (always in natural units) is then given
by rγ = δx = δη = 1/�γ = (aneσT)−1. Finally, we get the expression

r2
d (η) ∼

∫ η

ηin

dη

aneσT
, (5.40)

which does not depend on ηin, provided that η � ηin. A better approximation to rd
can be found for instance in Hu, 1995, but the preceding result is by far sufficient
for understanding the effect of diffusion damping on the CMB spectrum. Photon
diffusion will erase perturbations with a wavelength smaller than λd ≡ a rd , i.e.,
with a wavenumber greater than kd ≡ 2π/rd .

All these driving and damping effects lead to an interesting phenomenology for
acoustic oscillations, that we will summarize below. This discussion is essential
for understanding the impact of cosmological parameters (and later of neutrinos)
on the CMB spectrum. We will distinguish two stages: radiation domination, and
the epoch between radiation/matter equality and decoupling.

Radiation domination: Constant acoustic oscillations

During radiation domination, approximate analytic solutions are easy to obtain.
One can work in the limit where R = 0, cs = 1/

√
3, baryons or cold dark matter

density perturbations are negligible with respect to the photons’ perturbations
and the photon–baryon fluid is tightly coupled. A combination of the 0 − 0 and
i − i components of the Einstein equation then leads to a simple second-order
differential equation. Its two solutions correspond to the growing and decaying
adiabatic modes. Indeed, as long as we neglect all fluids but one (the photons), we
cannot find entropy modes. The growing solution, involving the Bessel function
J3/2(kcsη), has the following asymptotic behaviour:� At wavelengths larger than the sound horizon, all transfer functions are constant

over time,

4�γ 0(η, k) = δγ (η, k) = 4

3
δB(η, k) = −2φ(η, k) = −2ψ(η, k) = −4

3
(5.41)

(given our definition of transfer functions in Section 5.1.4, this means that the
photon perturbations are related to the initial curvature perturbation through
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�γ 0(η, �k) = − 1
3R(η, �k)). In this regime, acoustic waves propagation is negligi-

ble because the comoving sound horizon rs � η/
√

3 is very small with respect
to the comoving wavelength 2π

k
, and the modes are still frozen to their initial

value.� Inside the sound horizon,

4�γ 0(η, k) = δγ = 4

3
δB(η, k) = 4 cos [krs(η)] (5.42)

−2φ(η, k) = −2ψ(η, k) = − 6

(kη)2
cos [krs(η)] . (5.43)

Thus, after entering the sound horizon, the modes of photon density oscillate with
a constant amplitude, whereas metric fluctuations decay with time. Gravitational
forces and time dilation effects then become negligible with respect to pressure
forces. Indeed, by inserting these solutions into Eq. (5.38), we clearly see that for
(kη) � 1, the driving term on the r.h.s. can be neglected with respect to the term
k2c2

s δγ induced by photon pressure. In this limit, Eq. (5.38) reduces to a simple
harmonic oscillator equation δ′′γ + k2

3 δγ = 0. One can also check that the Poisson
equation (5.21) combined with the Friedmann equation gives the correct relation
between the asymptotic solutions (5.42) and (5.43).

From equality to decoupling: Damped acoustic oscillations

Several phenomena make the evolution more complicated from the time of mat-
ter/radiation equality until that of decoupling:

� The growth of the baryon fraction R and the decrease of the sound speed cs affect
the amplitude of the acoustic oscillations.� The growth of R also implies that the photon–baryon fluid couples more and
more to gravity for the same amount of pressure, shifting the zero point of
oscillations in such a way as to increase the fluid density in gravitational potential
wells. We can check this from Eq. (5.38). Neglecting the time variation of φ,
the zero point of temperature oscillations corresponds to k2c2

s�γ 0 = − k2

3 ψ , i.e.,
to �γ 0 = −(1 + R)ψ . Taking the real space counterpart of this relation, we
see that for a gravitational potential well (ψ < 0), the value of the overdensity
δγ = 4�γ 0 > 0 that corresponds to this equilibrium increases with R.� The metric perturbations are now also influenced by the nonrelativistic matter
components (baryons and potentially cold dark matter). So inside the Hubble
radius, φ and ψ do not decay as quickly as during radiation domination. Thus
the gravitational driving term in Eq. (5.38) affects the temperature evolution in
a different way than during radiation domination.
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Figure 5.1 A snapshot of the transfer functions �γ 0(η, k) (thick) and −φ(η, k) =
−ψ(η, k) (thin) at the time of equality (dashed) and decoupling (solid), in a neutri-
noless �CDM universe. The wavenumber axis has been rescaled in each case by
the exact value of rs(η), to show that the phase of the oscillations is determined by
the sound horizon. The negative signs of�γ 0 and−ψ in the long-wavelength limit
comes from the fact that transfer functions have all been normalized with respect
to the curvature perturbation R. A positive curvature perturbation corresponds to
a gravitational potential hill (ψ > 0) and to an underdense region (δγ < 0) with
lower temperature (�γ 0 < 0), and vice versa.

� The baryons and photons cannot be modeled as a single tightly coupled fluid
at wavelengths below the diffusion length of the photon λd . In Fourier space,
scattering processes introduce an exponential cutoff in �γ 0(η, k) shaped like
exp[−(k/kd)2].

To keep our discussion reasonably brief, we do not treat each individual effect
here, but refer the reader to, e.g., Hu, 1995 for more details. The leading effects
are, however, easy to understand. They are illustrated in Fig. 5.1, which shows the
transfer functions �γ 0(η, k) and −ψ(η, k) at the times of equality (dashed curves)
and of decoupling (solid curves). We recall that φ(η, k) is equal to ψ(η, k) as long
as there is no anisotropic stress contribution to the Einstein equations, which is
the case in a neutrinoless universe before photon decoupling (because �γ 2 � 0).
These transfer functions have been solved numerically with the CMB Boltzmann
code class (Blas et al., 2011). The difference between the dashed and solid curves
corresponds precisely to the few effects described earlier.
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At equality, we see that the numerical results agree with the asymptotic solutions
(5.41, 5.42, 5.43), with temperature oscillations roughly symmetric around �γ 0 =
−ψ inside the sound horizon, and of constant amplitude in the large-k limit, in
which metric fluctuations are negligible.

At decoupling, the amplitude of photon oscillations has been reduced
on all subhorizon scales. The zero point of oscillations has been shifted
down with respect to �γ 0 = −ψ , leading to an enhancement of the absolute
value of the first/third/fifth/. . . extremum in �γ 0(η, k) with respect to the sec-
ond/fourth/sixth/. . . extremum. Finally, we can see the exponential damping of
oscillations in the large-k limit. These three crucial effects are controlled respec-
tively by the duration of the transition stage between equality and decoupling, by
the baryon fraction at decoupling and by the value of the diffusion wavenumber kd .

A last feature can be noticed in Figure 5.1: even in the super-Hubble limit k → 0,
one can see a small evolution in the photon and metric transfer functions between
equality and decoupling. The reason is that, although the curvature perturbation
R is a conserved quantity on super-Hubble scales in a universe with adiabatic
initial conditions, density contrasts and metric perturbations are not. At the time of
equality, the equation of state of the universe changes, and all perturbations readjust
to another set of constant values, slightly different from those during radiation
domination. Using Einstein equations, one can show that for super-Hubble scales
and during matter domination the transfer functions are subject to

4�γ 0(η, k) = δγ (η, k) = 4

3
δB(η, k) = −8

3
φ(η, k) = −8

3
ψ(η, k) = −8

5
. (5.44)

The coefficients of the last three terms differ slightly from those in Eq. (5.41),
valid during radiation domination. In Fig. 5.1, the value of each transfer function
at equality and for k → 0 is halfway between Eq. (5.41) and Eq. (5.44), whereas
at decoupling it follows Eq. (5.44). This technical detail was worth mentioning
in order to understand numerical factors in the Sachs–Wolfe formula that will be
introduced in Section 5.1.6.

From decoupling to the current epoch: Gravitational clustering

The evolution of perturbations after decoupling will be discussed in detail in
Chapter 6. To anticipate, we simply mention here that in the ideal case of a purely
matter-dominated universe,φ = ψ is constant over time on all scales (super-Hubble
and sub-Hubble). In the real universe, this is not true:

� Close to radiation domination, because we know that during radiation domination
metric fluctuations quickly decay inside the sound horizon. So, at decoupling,
there is still a residual decay of φ and ψ .
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also leads to a decay of the potentials.� On small scales if there are neutrinos, as we shall see in Chapter 6.

During these stages, nonrelativistic matter components are self-gravitating and
their density contrast grows, leading to structure formation.

5.1.6 Temperature anisotropies

Temperature power spectrum

Temperature anisotropies on the last scattering surface can be expanded in spherical
harmonics as

δT

T
(n̂) =

∑
lm

almYlm(n̂). (5.45)

The temperature anisotropy seen in a direction n̂ is a property of photons traveling
along the direction−n̂. Hence δT

T
(n̂) coincides with the function�γ (η, �x,−n̂) stud-

ied in Section 5.1.2, computed today (η = η0) and at the position of the observer,
which we can choose to be the origin for simplicity (�x = �o). Each alm can be
extracted from the sky map,

alm = (−1)l
∫

dn̂ Y ∗
lm(n̂)�γ (η0, �o, n̂), (5.46)

where we performed a change of variable n̂ → −n̂ inside the integral and used
Ylm(−n̂) = (−1)lYlm(n̂). The function�γ (η, �x, n̂) can be expanded in Fourier space
and in Legendre multipoles, as in Section 5.1.2. After some simple algebra, the
expression for the alm’s reduces to

alm = (−i)l
∫

d3k

2π2
Ylm(k̂)�γl(η0, �k). (5.47)

Given that there is a linear relation between multipoles alm and Fourier modes
�γl(η0, �k), it is clear that� as long as we assume that first-order cosmological perturbations are gaussian,

the alm’s are also gaussian distributed, and their statistics is fully described by
two-point correlation functions 〈alma∗l′m′ 〉;� because different Fourier modes of a gaussian random field are uncorrelated,
〈�γl(η, �k)�γl(η, �k′)∗〉 ∝ δ(3)(�k − �k′), different multipoles are also uncorrelated,
〈alma∗l′m′ 〉 ∝ δll′δmm′ ;� the isotropy of the universe, implying an isotropic power spectrum in Fourier
space (depending on k but not on k̂), also implies an isotropic harmonic spectrum
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(depending on l but not m), denoted as

Cl = 〈alma∗lm〉, ∀m. (5.48)

The harmonic power spectrum Cl is precisely the quantity that we want to compute
for a given cosmological model and to compare with observations. As a matter of
principle, the true harmonic power spectrum in our universe cannot be extracted
from observations, because we observe only one realization of the underlying
theory describing its evolution, in a finite fraction of our past light cone. However,
using an assumption of ergodicity, we can build an estimator of the true power
spectrum, taking advantage of the fact that all multipoles with a given l should
have the same variance Cl . For an ideal all-sky experiment providing multipoles
aobs
lm , the best estimator reads

Cobs
l = 1

2l + 1

∑
−l≤m≤l

∣∣aobs
lm

∣∣2 . (5.49)

Note that for a realistic experiment affected by partial sky coverage, anisotropic
foregrounds and instrumental noise, building optimal estimators becomes a non-
trivial task.

This estimator is expected to deviate randomly from the unknown underlying
spectrum. The average deviation for a given l can easily be computed for an ideal
full-sky experiment. The estimator Cobs

l is obtained by averaging over (2l + 1)
independent gaussian numbers centered at zero, each with variance Cl . Hence, it
obeys a χ2 distribution with (2l + 1) degrees of freedom, a mean equal to Cl and a
variance

√
2/(2l + 1)Cl (note that this distribution is asymmetric around its peak,

especially at low l). As expected, the variance decreases with increasing l, because
for high multipoles we can average over more independent realizations of the same
stochastic process. This random deviation, playing the role of a theoretical error, is
called cosmic variance.

Brute-force calculation of the temperature anisotropy spectrum

A brute-force approach to computing the temperature anisotropy spectrum up to
some multipole lmax consists of integrating all equations with at least lmax multi-
poles in the photon equations Eq. (5.15), between some initial time (at which all
wavenumbers of interest are on super-Hubble scales) and today. Using Eq. (5.48),
(5.47), (5.33) and the relation of orthogonality of spherical harmonics, we find that
the temperature spectrum is given as a function of the photon transfer function
(evaluated today) and of the curvature primordial spectrum by

Cl = 1

2π2

∫
dk

k
[�γl(η0, k)]2PR(k). (5.50)
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A technical issue comes from the fact that the hierarchy of coupled photon equations
is infinite. Any given numerical algorithm can only integrate over a finite number
of multipoles, and the truncation in l-space may cause a reflection of power down
to lower multipoles. Let us briefly discuss how to avoid such problems.

As discussed in Sections 5.1.2 and 5.1.3, before photon decoupling, only the first
two photon multipoles are important. After that time, higher and higher multipoles
are populated. An approximate free-streaming solution (neglecting the gravita-
tional coupling of photons, i.e., neglecting the sourcing of photon perturbations by
metric perturbations) reads�γl(η, k) ∝ jl(kη), where jl(x) denote spherical Bessel
functions. These functions peak near x = l + 1

2 , and feature damped oscillations
for x > l. This gives a rough idea of the shape of the actual solution. In particular,
it shows that at a given time η and as a function of l, �γl(η, k) peaks around
l ∼ kη, whereas multipoles with l � kη are vanishingly small. This can be under-
stood geometrically: at time η, the observer sees photons emitted on his own last
scattering surface, at a comoving radius r = (η − ηLS) away from him (assuming
no spatial curvature). As soon as η � ηLS, we can approximate r by η. Fourier
modes of comoving wavelength 2π/k on this surface are seen by the observer
under an angle θ = 2π/(kr) in the small-angle approximation. This means that the
angular separation between a maximum and a minimum is θ = π/(kr), and that
in multipole space the contribution peaks near l ∼ π/θ ∼ kr ∼ kη. Hence, for a
brute-force calculation of the anisotropy spectrum today and until multipole lmax,
one should choose a maximum value of k on the order of kmax ∼ lmax/η0. A typical
choice in numerical codes is kmax = 2lmax/η0. This ensures that even today and
for the largest wavenumbers, the transfer function �γl(η, k) has vanishingly small
multipoles for l > lmax, so that a truncation at lmax is harmless.

This brute-force approach is extremely time-consuming, because it relies on the
integration of thousands of coupled equations for each wavenumber. In addition,
it does not shed much light on the underlying physics. In the next section, we
will introduce the alternative line-of-sight approach. This method provides a much
more intuitive expression for the various contributions to each Cl , and speeds up
Boltzmann codes in a spectacular way.

Line-of-sight integral

Let us consider photons travelling along a given geodesic, between one point on
the last scattering surface and a CMB detector. This geodesic is not a straight line,
because of gravitational lensing effects caused by intervening matter fluctuations.
However, changes in the direction of propagation of photons are only important
for second-order perturbation theory. Because in this chapter we limit ourselves to
first-order perturbations, we can approximate each photon geodesic as a straight
line. This means that a bunch of photons reaching us today from a direction −n̂
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has been traveling since decoupling in a constant direction n̂. Their comoving
coordinate at time η was �x = −rn̂ = −(η0 − η)n̂, because relativistic particles
travel toward us with an evolution of the radial coordinate r given by dr = −dη in
natural units. Any function F(η, �x, n̂) evolves along such a trajectory according to
the total derivative

dF
dη

= F ′ + d �x
dη

· �∇F = F ′ + n̂ · �∇F, (5.51)

where we used the straight-line approximation dn̂/dη = 0. We wish to integrate
the Boltzmann equation over the photon trajectory and relate the temperature
fluctuation observed today to the one on the last scattering surface. For this purpose,
it is necessary to consider the function F(η, �x, n̂) ≡ �γ (η, �x, n̂) + ψ(η, �x), where
�γ is the photon temperature perturbation andψ one of the two metric perturbations
(both introduced in Section 5.1.2). The total derivative of this sum is

d

dη
(�γ + ψ) = �γ

′ + ψ ′ + n̂ · �∇(�γ + ψ). (5.52)

We can use the Boltzmann equation (5.13) and write the r.h.s. as

d

dη
(�γ + ψ) = aneσT (�γ 0 −�γ + n̂ · �vB) + ψ ′ + φ′. (5.53)

We want to put all the terms involving �γ (η, �x, n̂) inside a total derivative, in order
to integrate it along the line of sight. This is possible after introducing the integral
of the scattering rate along the line of sight,

τ (η) ≡
∫ η0

η

dη aneσT, (5.54)

called the optical depth. The visibility function g(η) ≡ −τ (η)′e−τ (η) can be inter-
preted as the probability of a photon reaching us today having experienced its
last scattering at time η. The decoupling time ηLS can actually be defined as the
maximum of this function. Note that ne scales like a−3 between electron–positron
annihilation and recombination, and remains very small after that time. As a con-
sequence, τ (η) is huge for η  ηrec and tiny for η � ηrec, expressing the transition
from an opaque to a transparent universe taking place around recombination. We
can now take Eq. (5.53), replace aneσT = −τ ′, multiply both sides by e−τ , and
rearrange the terms as

d

dη

[
e−τ (�γ + ψ)

] = g
(
�γ 0 + ψ + n̂ · �vB

)+ e−τ (φ′ + ψ ′). (5.55)

We finally integrate this relation along the line of sight, beween some arbitrary
initial time ηin chosen well before photon decoupling, and the present time η0. We
can use the fact that in the limit ηin  ηLS, the exponential e−τ (ηin) is vanishingly
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small, whereas e−τ (η0) equals one by definition. We obtain

�γ (η0, �o, n̂) = −ψ(η0, �o) +
∫ η0

ηin

dη
{
g
(
�γ 0 + ψ + n̂ · �vB

)+ e−τ (φ′ + ψ ′)
}
.

(5.56)

The quantity on the l.h.s. is the temperature fluctuation for photons crossing the
origin today in a direction n̂. Hence, it represents the temperature anisotropy seen by
the observer in the direction −n̂. The first term on the right is the metric fluctuation
today at the observer’s location, causing a local blueshifting of incoming photons
if we live in a potential well. Because this term is isotropic, a CMB experiment
could not distinguish between this contribution and a shift in the average photon
temperature, typically of the order of [ψ(η0, �o) × T ] ∼ 10−5T . This effect is tiny,
so from now on we will neglect the term ψ(η0, �o) in Eq. (5.56). The remaining
terms in the integral show that in a given direction and for a given recombination
history, the observed temperature anisotropy depends entirely on two quantities,
namely� the sum (�γ 0 + ψ + n̂ · �vB) along the portion of the line-of-sight where the

visibility function is not negligible, i.e., around the time of decoupling (and also
close to us, if the universe gets reionized at low redshift);� the sum (φ′ + ψ ′) along the portion of the line of sight where e−τ is not negligible,
i.e., between decoupling and today.

Because for η  ηLS, the two functions g(η) and e−τ (η) are negligible, the result
of the integral in Eq. (5.56) does not depend on the value of ηin. This equation is
therefore often written in the limit ηin = 0.

Equation (5.56) proves that the knowledge of all photon multipoles �γl(η, �x, n̂)
with l > 1 is not directly needed for computing CMB anisotropies. This suggests
that the whole CMB anisotropy spectrum could be obtained with a much more
economical method than the brute–force approach described previously. Indeed,
the approach that we summarized here in real space can be transposed into Fourier
space, as pointed out by Zaldarriaga and Harari, 1995. Starting from the Fourier-
expanded version of the Boltzmann equation (5.13), we can put all terms involving
�γ (η, �k, μ) inside a total time derivative, integrate along the line of sight, perform
an integration by parts in order to put all the μ-dependence in a factor eikμ(η−η0),
expand this factor in Legendre space using spherical Bessel functions, and obtain
the following exact expression for the photon transfer function:

�γl(η0, k) =
∫ η0

ηin

dη
{
g
(
�γ 0 + ψ

)+ (gk−2θB
)′ + e−τ (φ′ + ψ ′)

}
jl[k (η0 − η)],

(5.57)
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where we omit the argument (η, k) of the four transfer functions (φ, ψ , �γ 0, θb)
standing on the r.h.s. The quantity between curly brackets is called the temperature
source function, usually denoted by ST(η, k). The temperature anisotropy spectrum
then follows from Eq. (5.50).

Equations (5.57) and (5.50) show that to compute the temperature spectrum up
to some arbitrary multipole lmax, a Boltzmann code needs only to find the evolution
of the four quantities (φ, ψ , �γ 0, θB). Of course, to use Einstein equations, it
is necessary to include a few more variables, namely the density, velocity and
shear perturbation of each species. Including higher-temperature multipoles �γ l

with l > 2 in the differential equations remains necessary to avoid some artificial
reflection of power caused by the truncation in l-space. But the truncation scheme
should be designed only for accurately computing the first few multipoles. A nice
scheme was proposed by Ma and Bertschinger, 1995 in the context of brute-force
calculations. Because free-streaming photons approximately follow �γl(η, k) ∝
jl(kη) in the limit of negligible gravitational interactions, the recurrence relation
statisfied by spherical Bessel functions can be used to extrapolate the behaviour
of a multipole �γ (l+1) given that of multipoles �γl and �γ (l−1). This offers a way
to smoothly truncate the hierarchy at a given l, limiting the reflection of power
with respect to setting �γ (l+1) brutally to zero. With such a scheme, a truncation
of the Boltzmann hierarchy at an lmax γ of a few tens will introduce a very small
error into the solution for multipoles l = 0, 1, 2. The power of the line-of-sight
approach is summarized by the fact that a truncation at lmax γ = O(10) is sufficient
for computing the Cl’s up to lmax = O(103).

However, the value of lmax still determines the maximum wavenumber kmax ∼
lmax/η0 at which the source function needs to be evaluated, because this wavenum-
ber carries information about perturbations on the last scattering surface seen today
under an angle θ ∼ π/lmax. The reduction of the number of differential equations
takes place in multipole space, not in wavenumber space. But the factor [lmax γ / lmax]
makes it possible to gain a few orders of magnitude in computation time over the
brute-force approach.

The line-of-sight approach was implemented for the first time in the Boltzmann
code cmbfast by Seljak and Zaldarriaga, 1996, and is used by all other modern
codes.

Sachs–Wolfe, Doppler and integrated Sachs–Wolfe contributions

One can understand physically the few terms contributing to the observed CMB
anisotropies in Eq. (5.56):

1. As first shown by Sachs and Wolfe, 1967, the most obvious contribution to
the observed temperature fluctuation in one direction is given by the intrinsic
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temperature fluctuation on the last scattering surface in the same direction, cor-
rected by a gravitational shift (photons coming from a gravitational potential
well [resp. hill] on the last scattering surface are redshifted [resp. blueshifted]
when they leave this surface, and are seen with a lower [resp. higher] tem-
perature). The Sachs–Wolfe contribution (SW) can be defined as the part of
temperature anisotropies sourced by the term g(�γ 0 + ψ) in Eq. (5.56). The
last scattering surface can really be thought of as a surface rather than a thick
shell in the instantaneous decoupling limit, i.e., in the ideal situation in which
the mean free path of photons would go from zero to infinity at η = ηLS. In
this limit, one can replace the visibility function g(η) with the Dirac delta func-
tion δ(η − ηLS), which has the correct normalization. Indeed, one can easily
check from the definition of g that

∫
dη g(η) = 1. One can then integrate the

Sachs–Wolfe term in Eq. (5.56) and find a contribution

�SW
γ (η0, �o, n̂) � �γ 0(ηLS, �xLS, n̂) + ψ(ηLS, �xLS), (5.58)

where �xLS ≡ (ηLS − η0)n̂ is the comoving coordinate at the time of decoupling
of a photon hitting us today from the direction−n̂. We know from Eq. (5.44) that
for small values of k (corresponding to super-Hubble scales) and during matter
domination, there is a relation �γ 0 = −2/3ψ . This means that in a CMB map
smeared over small-scale fluctuations, the SW contribution to the temperature
anisotropy in one direction is given by

�SW,smoothed
γ (η0, �o, n̂) � 1

3
ψ(ηLS, �xLS) � −1

2
�γ 0(ηLS, �xLS, n̂), (5.59)

i.e., that hot regions in the observed anisotropy map correspond to cold regions
on the last scattering surface, and vice versa. The reason is that photons leaving a
hot, overdense region lose a lot of energy when climbing out of the gravitational
potential well. Stated differently, the gravitational redshift effect wins against
the intrinsic temperature contribution.

2. Photons are emitted from a tightly coupled baryon–electron fluid, with a differ-
ent peculiar velocity at each point on the last scattering surface. This velocity,
projected along the line of sight, induces a Doppler shift in the photon wave-
lenght. The Doppler contribution is the one sourced by the term gn̂ · �vB in
Eq. (5.56). In the instantaneous decoupling limit, this term simply gives the
familiar Doppler formula

�Doppler
γ (η0, �o, n̂) � n̂ · �vB(ηLS, �xLS). (5.60)

3. Along the line of sight, photons are continuously redshifted or blueshifted by
metric fluctuations. The Boltzmann equation itself shows that the temperature
changes because of gradients in the gravitational potential ψ , and because of
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time variations in the metric fluctuation φ. Physically, the first effect accounts for
the gain or loss of energy of photons feeling gravitational forces, and the second
effect represents a local correction to the average time dilation, responsible
for cosmological redshift in an expanding universe. If the gravitational potential
were static, the first effect would be conservative; i.e., the integral of the gradient
over the line of sight would give the difference between ψ at the point of last
scattering and at the observer’s location. We already discussed this contribution:
the value of ψ at last scattering is included in the Sachs–Wolfe term, and the
value at the observer’s location appears in Eq. (5.56) and has been shown to
be negligible. However, for a time-varying gravitational potential, the gradient
does not coincide any more with the total derivative along the line of sight, and
photons pick up a cumulative temperature shift accounted for by the integral of
ψ ′ along the line of sight. Similarly, the cumulative effect of local time dilation
is accounted for by the integral of φ′. These two effects form the so-called
integrated Sachs–Wolfe contribution (ISW), encoded in the term e−τ (φ′ + ψ ′)
in Eq. (5.56). In the instantaneous decoupling limit, we can replace e−τ by the
Heaviside function H (η − ηLS) and obtain

�ISW
γ (η0, �o, n̂) �

∫ η0

ηLS

dη(φ′ + ψ ′). (5.61)

The features of the cosmic microwave background spectrum: Sachs–Wolfe
plateau, acoustic peaks and damping tail

We discussed the various terms appearing in Eq. (5.56), which give the contribution
to the temperature anisotropy observed in a given direction. We should now use
this decomposition to understand the shape of the temperature power spectrum Cl

in multipole space.
The temperature spectrum is given by Eqs. (5.57) and (5.50), i.e., by the line-of-

sight integral of the source function ST(η, k), followed by a convolution with the
primordial power spectrum. The source function contains the three generic terms
identified in the previous subsection: a Sachs–Wolfe contribution g(�γ 0 + ψ),
a Doppler contribution (gk−2θB)′, and an integrated Sachs–Wolfe contribution
e−τ (φ′ + ψ ′). Figure 5.2 shows the contribution of each of these three terms to the
full temperature spectrum.

Using the facts that the visibility function is very peaked around recombination,
that the spherical Bessel function jl(x) is peaked near x ∼ l and that the primordial
spectrumPR is nearly scale-independent, it is easy to derive mathematically a result
that can easily be understood geometrically, namely that the SW contribution to
the temperature spectrum Cl multiplied by l2 is qualitatively similar to the square
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Figure 5.2 For a �CDM neutrinoless universe, the spectrum of CMB temperature
anisotropies obtained numerically from the full temperature source function, or
from individual contributions explained in the text: Sachs–Wolfe term (SW),
integrated Sachs–Wolfe term (ISW) and Doppler term. Note that the full spectrum
is not exactly given by the sum of the other three because of correlations between
the terms.

of the SW transfer function in Fourier space,

l2Cl ∝
[
�γ (ηLS, k) + ψ(ηLS, k)

]2
k=l/(η0−ηLS) , (5.62)

where in the relation between k and l, we assume a flat universe for simplicity.
The reason is that anisotropy multipoles at a given l are created mainly by Fourier
modes of wavelength λ ∼ 2πa(ηLS)/k on the last scattering surface seen today
under an angle θ = λ/dA(ηLS) ∼ 2π/l (note the factor of 2: for a given multipole,
π/l gives the angle between a maximum and a minimum, corresponding to half a
wavelength of the perturbation on the surface). In a spatially flat universe, we have
dA(ηLS) = a(ηLS)(η0 − ηLS), whereas in a spatially nonflat universe, this expression
should be changed accordingly, using (2.83). This gives 2π/l ∼ 2π/[k(η0 − ηLS)].

This is only an approximate result, because in reality a given wavenumber
contributes to an ensemble of multipoles, with the maximum contribution cor-
responding to the preceding relation. However, this picture gives a rather good
understanding of the shape of the SW contribution in Fig. 5.2, which is indeed very
similar to the square of the sum of �γ (ηLS, k) and ψ(ηLS, k) plotted in Figure 5.1.
On small l’s, the flat asymptote of the SW spectrum, called the Sachs–Wolfe plateau,
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corresponds to large wavelengths still above the sound horizon at decoupling, which
are frozen. On larger l’s, we recognize the acoustic peaks already discussed in Sec-
tion 5.1.5. The first is given by the correlation length on the last scattering surface,
corresponding to the sound horizon at decoupling. Secondary peaks represent har-
monics of the same feature, and are modulated by all the effects due to baryons,
gravitational effects and diffusion damping mentioned in Section 5.1.5. We see
clearly in Figure 5.2 the enhancement of odd peaks with respect to even peaks,
which one would also see by taking the square of [�γ 0 + ψ] in Fig. 5.1, explained
by the shift in the zero point of oscillations given by �γ 0 = −(1 + R)ψ . Finally,
we see how diffusion damping affects secondary peaks: the suppression, accounted
for by a factor of exp[−(k/kD)2] in Fourier space, is well represented by a factor
exp[−(l/ lD)2] in multipole space, with ld ∼ kd(η0 − ηLS). Diffusion damping of
CMB fluctuations is often called Silk damping, although the famous work of Silk
(1968) refers primarily to the damping of baryon density perturbations, occurring
roughly at the same epoch.

We can carry on a similar discussion for the Doppler term, despite its slightly
more complicated geometrical structure, because this term comes from the projec-
tion of a gradient along the line of sight. This explains the derivative in the Doppler
source function (gθB)′/k2. Still, this term is sourced by θB and θ ′B mutiplied by
functions very peaked near η = ηLS, and the contribution of the Doppler term to
the Cl’s is set by the value of the transfer function θB(η, k) and its time deriva-
tive at the time of decoupling. This contribution is negligible on the scale of the
Sachs–Wolfe plateau, because outside the sound horizon perturbations are frozen,
and the photon–baryon fluid velocity remains very low. Inside the sound horizon,
θB and θ ′B exhibit the same oscillatory patterns as �γ 0, but with a phase shifted
by respectively π/2 and π , as for any oscillator. This explains the shape of the
Doppler contribution in Fig. 5.2.

Finally, the ISW contribution would vanish if between decoupling and today,
the universe was a perfect matter-dominated universe. In this case, as mentioned in
Section 5.1.5 and to be proved in Section 6.1.1, the metric perturbations would be
static everywhere and at any time, φ′ = ψ ′. The ISW contribution picks up nonzero
contributions:

� First, because at the time of decoupling, the universe is still near the beginning of
matter domination, and metric fluctuations, which were quickly decaying inside
the Hubble radius during radiation domination, did not completely freeze out.
The residual time variation of φ andψ generates an early integrated Sachs–Wolfe
effect (EISW).� Second, because at late times, when the cosmological constant � (or more
generally dark energy) changes the universe’s expansion-rate behaviour, metric
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fluctuations start decaying again. This late integrated Sachs–Wolfe (LISW) effect
could be considered a secondary rather than a primary anisotropy, in the sense
that it is not related to cosmological perturbations near the last scattering sur-
face, but to gravitational interactions between free-streaming CMB photons and
neighbouring galaxy clusters.

These two distinct contributions can easily be identified in the ISW curve of Fig. 5.2.
The EISW effect cannot affect modes which are still outside the sound horizon at
decoupling, for which no time evolution can occur, so that the EISW is negligible
for l  100. For modes inside the sound horizon, the EISW contribution to l2Cl

tends to decrease as a function of l, as a consequence of the factor k−2 in the
Doppler term of the source function. Therefore, in Fig. 5.2, the EISW contribution
is the one peaking around l ∼ 200, enhancing the first acoustic peak in the total
Cl’s. The LISW effect is present on all scales, because dark energy domination
produces a decay of metric fluctuations at all wavelengths. Because this effect also
decreases with l for the same reason, it peaks at l = 2, and is only visible in Fig. 5.2
for l ≤ 30. This term tilts the Sachs–Wolfe plateau in the total spectrum.

Shape and parameter dependence of the temperature spectrum

To conclude this section, it is worthwhile to summarize the dependence of the CMB
temperature spectrum on the various effects discussed so far, and to relate them to
the free cosmological parameters of a neutrinoless minimal �CDM model.

Let us first recall the relevant effects affecting the CMB temperature spectrum
for each multipole range:� For l  100, the spectrum receives a SW contribution from modes which are

still above the sound horizon at decoupling, leading to a Sachs–Wolfe plateau
that depends on the primordial spectrum amplitude and tilt ns . It also depends
upon a LISW contribution which is related to the duration of � or dark energy
domination and tends to tilt the Sachs–Wolfe plateau.� For l ≥ 100, the spectrum exhibits a series of acoustic peaks corrected by sub-
dominant Doppler peaks, corresponding to the fundamental mode and harmonic
decomposition of the correlation length ds(ηLS) on the last scattering surface.
These peaks are modulated by various effects: their amplitude is globally sup-
pressed during the transition era between equality and decoupling; odd peaks
are enhanced with respect to even peaks when the baryon content of the universe
increases; the first peak is further enhanced by the EISW effect; finally, diffusion
damping causes an exponential suppression at high l.

There is one last effect to be taken into account in the minimal�CDM model, which
we did not discuss previously because it is caused by astrophysical phenomena after
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photon decoupling. When the first stars form (typically around redshift 10), the
universe is believed to be partially reionized by starlight. A small fraction of CMB
photons can then be rescattered by free electrons. This effect is negligible for modes
entering into the Hubble scale very recently (at z  10), but for all other modes it
results in a scale-independent suppression of the CMB spectrum, accounted for by
a factor exp[−τreion], where τreion is the optical depth of reionization, measured to
be on the order of ∼ 0.1. Hence, reionization produces a steplike supression in the
Cl’s, with a step location around lstep ∼ 40 (corresponding to modes crossing the
Hubble radius near z ∼ 10). For l � lstep, the effect of reionization is completely
parameterized by τreion, whereas around lstep the shape of the step could depend
on the details of the reionization history, which is poorly constrained by current
data.

We can now relate these effects more explicitly to the free parameters of a
neutrinoless minimal �CDM model, whereas neutrino effects will be introduced
later in Section 5.3. This model has six free parameters:� The primordial spectrum amplitude As and tilt ns.� The baryon density ωB = �Bh

2.� The total nonrelativistic matter density ωM = (�B +�C)h2.� Either the cosmological constant density fraction �� or the Hubble parameter
today, H0 = 100h km s−1Mpc−1. Because we are assuming the universe to be
spatially flat, for fixed ωM, there is a one-to-one correspondence between values
of �� and of h = √

ωM/(1 −��).� The optical depth to reionization τreion.

We consider ωγ = �γh
2 as a fixed parameter, because the CMB temperature today

is accurately measured. In this model, the redshift of equality between radiation
and matter is set by ωM, because the radiation density ωR = �Rh

2 is fixed by the
measurement of the CMB temperature today. The redshift of equality between
matter and � depends only on ��.

The degrees of freedom controlling the shape of the CMB temperature spectrum
are as follows:

(C1) The peak location, which depends on the angle θ = ds(ηLS)/dA(ηLS). The
sound horizon at decoupling, ds(ηLS), depends on the expansion history
and sound speed in the photon–baryon fluid until decoupling. It is affected
by changes in ωB (setting the baryon-to-photon ratio in the sound speed
expression) and ωM (setting the redshift of equality between matter and
radiation). The angular diameter distance at decoupling, dA(ηLS), depends
on the expansion history after decoupling, i.e., on �� or h (controlling the
time of equality between matter and � and the critical density today).
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(C2) The contrast between odd and even peaks depends on (ωB/ωγ ) (with ωγ

fixed by the CMB temperature today), i.e., on the balance between gravity
and pressure in the tightly coupled photon–baryon fluid before decoupling.

(C3) The amplitude of all peaks further depends on the amount of expansion
between equality and decoupling. Because the redshift of decoupling is
almost fixed by the thermodynamics, this amount mainly depends on the
redshift of equality, i.e., on (ωM/ωR). A larger ωM means that equality took
place earlier. All peaks are then smaller, because the amplitude of acoustic
oscillations decreased during a longer stage. The first peak is additionally
supressed by a smaller EISW effect: at decoupling, metric fluctuations were
closer to their constant asymptotic value. Conversely, a smaller ωM leads to
higher peaks, especially the first one.

(C4) The envelope of the secondary peaks in the large-l limit depends on the angle
θ = π/ld = λd(ηLS)/dA(ηLS). The diffusion length λd is controlled by the
expansion history and recombination history before decoupling. Because the
integrand in Eq. (5.40) is increasing very rapidly with time before recom-
bination (when ne drops to nearly zero), λd depends essentially on the free
electron density ne at decoupling, which is fixed by ωB in the minimal
�CDM model, and on the conformal time at decoupling ηLS: the integral
in Eq. (5.40) has a negligible dependence on the expansion and electron
fraction at the time of equality and before. Therefore, λd depends essentially
on ωB and ωM, whereas we know that dA(ηLS) depends on ωM and �� or h.

(C5) The global amplitude of the Cl’s is proportional to the amplitude As of the
primordial spectrum, as can be checked from Eq. (5.50).

(C6) The global tilt of the Cl’s depends trivially on the tilt ns of the primordial
spectrum, through the convolution in Eq. (5.50) (in the approximation of
Eq. (5.62) in which a given k contributes essentially to a given l, this is even
more obvious).

(C7) The slope of the Sachs–Wolfe plateau is controlled not only by the tilt
ns, but also by the LISW effect, which enhances the first few multipoles.
The amplitude of the LISW depends on the duration of the �-dominated
stage, i.e., on the time of equality between matter and �, fixed by the ratio
(��/�M) (in terms of the parameter basis discussed above, this ratio is
given by ��/(1 −��)). A larger �� implies a longer � domination and
an enhanced LISW effect.

(C8) The global amplitude of the spectrum at l � 40 relative to the one at l < 40
depends on τreion. This effect is not degenerate with that of the time of
equality, which also suppresses the peaks, but starting from a higher l and
not in a constant way; it is not degenerate either with the effect of As,
provided that the spectrum is observed also for l ≤ 40.
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For simplicity, we have been assuming that the recombination redshift was fixed.
In fact, the free electron density ne(z) and the redshift of recombination zLS have a
small dependence at least on the baryon density and on the primordial helium frac-
tion Yp. Hence these parameters can slightly affect the sound horizon at decoupling,
the duration of the transition era and the photon diffusion length, with some addi-
tional impact on the CMB through the effects (C1), (C3) and (C4). However, the
CMB is much more sensitive to ωB through the relative amplitude of the peaks than
through its small impact on zLS, and the effect of Yp is negligible when this param-
eter is varied within the range indicated by measurements of primordial element
abundances or by standard BBN. Therefore, for most purposes, the recombination
history and redshift of decoupling can indeed be considered as fixed.

This enumeration shows eight distinct ways to alter the shape of the temperature
spectrum, controlled by only six parameters. So in principle, the measurement
of the CMB temperature spectrum alone should give independent constraints on
each parameter of the minimal �CDM model. To some extent, this is already the
case with WMAP temperature results (Komatsu et al., 2011). In practice, however,
cosmic variance and instrumental noise lead to large error bars on the Cl’s for the
smallest and largest multipole values, leading to partial parameter degeneracies
and to a degradation of some of the constraints. For instance, in the minimal
�CDM case, �� and τreion are poorly constrained by the CMB temperature alone,
because effects (C7) and (C8) can be constrained only through measurements at low
l, plagued by cosmic variance. Degeneracies can be reduced by combining CMB
temperature data with polarization information, or with other types of cosmological
observations, or by performing more accurate measurements: this is the goal of the
Planck satellite, which will make very accurate observations up to scales where
primary anisotropies are anyway suppressed by diffusion damping (l ∼ 2500).

5.1.7 Polarization anisotropies

The cross section of Thomson scattering depends on photon polarization: more
precisely, on the orientation of the polarization vector relative to the scattering
plane. However, in the tight-coupling regime, the photon polarization remains
isotropically distributed at any point. Indeed, in the frame comoving with the
tightly coupled photon–baryon(–electron) fluid, all quantities can only be isotropic
because of the high interaction rate.

Around the time of recombination, such an isotropy disappears. The photons
experience their last interactions in regions of space where anisotropies are growing.
The quadrupolar component �γ 2 (η, �x) of these anisotropies is responsible for a net
polarization of scattered photons. Hence, polarization patterns appear on the last
scattering surface and are strongly correlated with temperature patterns.
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The observable polarization map is a vector field on a sphere, rather than a scalar
field like temperature. Hence, it can be decomposed into two modes: a gradient
field and a curl field, or by analogy with electromagnetism, an E-polarization and
a B-polarization component. It is possible to define the harmonic power spectrum
of the E and B modes, as well as three cross-correlation spectra for the products
TE, TB and EB. Parity invariance implies that only the first cross-correlation term
is nonzero after last scattering. The TB and EB cross-correlation spectra can be
generated only at the level of secondary anisotropies, in particular, through the weak
lensing of the last scattering surface. Moreover, as long as the total stress–energy
tensor in the universe contains only scalar perturbations (following the definition
of Section 5.1.2), no B modes can be excited.

The calculation of the spectra CEE
l and CTE

l in a universe containing only scalar
perturbations can be carried on along the same line as for temperature anisotropies.
The photon polarization is described by a new degree of freedom, whose evolution
is described by the Boltzmann equation. In the previous section, we neglected
polarization in the scattering term and obtained a simplified equation governing the
evolution of temperature anisotropies �γ (η, n̂, �x). The full Boltzmann equation
leads to two hierarchies of equations for temperature and polarization multipoles.
The two sets of equations are coupled, but the impact of polarization terms in the
evolution of temperature anisotropies is rather small, so that our previous discussion
of temperature anisotropies remains valid to a very good approximation. As for
temperature, one can define a source function for E-mode polarization and express
the polarization anisotropy as the integral of this source along the line of sight.

For brevity, we do not provide explicit expressions for polarization anisotropies
here, because the neutrino effect on polarization is not qualitatively different from
that on temperature (discussed in Section 5.3). Measuring the CMB polarization
spectrum and TE cross spectrum helps in removing parameter degeneracies in the
�CDM model, because some physical effects have intrinsically different conse-
quences in the polarization sector. For instance, reionization imprints a distinct
effect on CEE

l . Because the neutrino effect is qualitatively similar for temperature
and polarization, and because current CMB experiments measure the temperature
spectrum with much higher accuracy, we will not make any other references to
polarization anisotropies in the rest of this book.

5.1.8 Tensor perturbations

As mentioned in Section 5.1.2, Bardeen (1980) classified metric and stress–energy
tensor perturbations according to their behaviour under spatial rotations: scalar,
vector and tensor modes. At first order in perturbation theory, these sectors are
decoupled and can be studied independently.
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Until this point our discussion has addressed only scalar perturbations. Vector
perturbations accounting for vorticity tend to decay after their possible excitation by
nonlinear phenomena such as phase transitions or topological defects. In standard
cosmology, they do not make any sizable contribution to CMB anisotropies. Tensor
perturbations are fundamentally different from scalars and vectors, because they
describe two propagating degrees of freedom (called the polarization states of the
graviton in the context of quantum gravity, or the polarization states of gravitational
waves at the classical level). For scalar and vector modes, metric perturbations are
responding only to excitations in the stress–energy tensor of matter, whereas for
tensor modes, the two polarization states can be excited by quantum effects during
inflation. Starobinsky (1979) found that very generically, after a stage of inflation,
primordial gravitational waves are generated with a nearly scale-invariant power
spectrum, whose amplitude depends on the square of the Hubble parameter when
observable wavelengths cross the Hubble scale during inflation.

Gravitational waves are coupled to all species having non-negligible tensor
degrees of freedom in their perturbed stress–energy tensor δTμν . These degrees of
freedom are contained in the nondiagonal part of the spatial stress tensor δTij . They
vanish to a very good approximation for cold dark matter because of its very small
velocity dispersion, as well as for baryons and tightly coupled photons, because
interactions enforce a diagonal stress tensor accounting for isotropic pressure.
Hence, the only species efficiently coupled with gravitational waves are photons
after decoupling and collisionless species before their nonrelativistic transition
(namely, in the minimal �CDM scenario, neutrinos).

Extra gravitational waves can be generated after inflation by nonlinear phenom-
ena such as phase transitions and topological defects. In the minimal cosmological
scenario, it is assumed that the former can impact only small scales, comparable
to the Hubble radius during the transition and cannot affect CMB anisotropies,
whereas topological defects (if any) do not contribute significantly to total large-
scale perturbations. Hence we only need to consider primordial gravitational waves
from inflation, which are known to contribute to temperature anisotropies on
large angular scales (typically l < 150) and to E-type and B-type polarization
anisotropies on all scales.

The influence of neutrinos on tensor CMB anisotropies was studied analytically
by Weinberg, 2004 and implemented by Lewis in the Boltzmann code camb.2 We
will see in Section 5.3 that the influence of neutrinos on scalar CMB anisotropies
can only be significant for modes crossing the horizon during radiation domination
or at the beginning of matter domination, i.e., on small scales. This is also true for
their influence on tensor anisotropies.

2 See http://cosmologist.info/notes/CAMB.pdf, Section XVI.
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Even if we assume that inflation took place at high energy and produced a
detectable amount of primordial gravitational waves, small-scale temperature and
E-polarization anisotropies are largely dominated by scalar contributions. For
B-polarization, there is no scalar contamination to primordial anisotropies, but
on small scales gravitational lensing effects generate a leak from E-type to B-type
polarization, in such a way that the contribution of tensor perturbations to the
spectrum CBB

l is also subdominant.
Hence tensor modes could only be detected in the CMB on large scales, on

which the impact of neutrinos must be negligible. For this reason, we choose not
to discuss tensor perturbations in the following.

5.2 Neutrino perturbations

Having presented in Section 5.1 the basics of linear cosmological perturbation
theory in the absence of neutrinos, we now focus on the specific evolution of
neutrino perturbations.

5.2.1 Perturbation equations

In this book, we are mainly interested in the description of the three standard active
neutrinos. We present here the formalism describing the cosmological perturbations
of such neutrinos in the massless limit, as well as in the more realistic massive case.
Massless neutrino equations can safely be employed for collisionless particles
which are still relativistic today, i.e., in the case of ordinary neutrinos, when their
mass mν is smaller than Tν,0 � 1.68 × 10−4 eV, which might be the case for
only one neutrino mass state given experimental results on flavour oscillations (see
Chapter 1). We will also occasionally consider more exotic cases such as neutrinos
with high chemical potentials, large nonthermal distortions, light or heavy sterile
neutrinos. We will see that all these cases can still be described by one of the two
sets of equations introduced hereafter. Only neutrinos with nonstandard interactions
require a different set of equations, which would depend very much on the type of
interactions. This exotic assumption will only be mentioned briefly at the end of
this chapter.

Massless neutrinos and other relativistic relics

When studying the impact of massless neutrinos on the CMB, we need only
to consider fully decoupled neutrinos. Indeed, the details of neutrino decoupling
would only impact cosmological perturbations which are already inside the Hubble
length when T ∼ MeV. Such scales are not observable. In the CMB spectrum, they
have been suppressed by diffusion damping and are masked anyway by foreground



3.1 Neutrinos, CMB and LSS, chapters 5 and 6 of “Neutrino Cosmology”, CUP 2013 69

5.2 Neutrino perturbations 237

contamination in real data sets. In the large-scale structure spectrum, a strong
nonlinear evolution has erased all memory of the early linear evolution on such
small scales.

We have seen in Sections 2.4.2 and 4.1 that standard active neutrinos have
a frozen background distribution function fν0(y) of the Fermi–Dirac type (with
negligible mass and chemical potential),

fν0(y) =
(
e

y

a T ν + 1
)−1

, (5.63)

with a constant product a T ν after neutrino decoupling. Nonthermal distortions of
this distribution due to entropy release at the e± annihilation stage are very small,
on the level of a few percent at most, and can be completely neglected in our
discussion because all present (and forthcoming) data are completely blind to such
a small effect. This means that the neutrino equation of evolution can be derived
following the same steps as for photons, with just a sign difference in f accounting
for Fermi–Dirac statistics (but this makes no difference in the final equations), and
of course assuming no interaction. Hence, we could write an equation of evolution
for the neutrino temperature perturbation �ν which would be strictly identical to
Eqs. (5.13) or (5.15) for �γ in the collisionless limit σT = 0.

We can remain at a more general level and assume that we simply deal with any
kind of decoupled relativistic particles, with an arbitrary background distribution
function fν0(y). The absence of an explicit time dependence in this distribution is
appropriate if the species is indeed decoupled. This covers the case of massless
neutrinos with chemical potentials or a nonthermal distribution, as well as any
other decoupled relativistic relic. The way to simplify the Boltzmann equation in
this case is not to parameterize fν explicitly in terms of temperature fluctuations,
as in Eq. (5.11), but to introduce the momentum average of the perturbation of the
distribution function relative to the background value

Fν(�x, n̂, η) =
∫
y2dy y[fν(�x, y, n̂, η) − fν0(y)]∫

y2dy yfν0(y)
. (5.64)

By plugging into the above formula the phase space distribution of thermal relics
with a negligible chemical potential, one can easily show that this quantity exactly
coincides with the temperature perturbation �ν multiplied by four. If we take the
Boltzmann equation (2.92) in the collisionless limit (sometimes called the Vlasov
equation), integrate the Liouville operator over momentum and simplify it using the
same steps as for photons in Section 5.1.2 (always at order one in perturbations),
we obtain an equation of motion for Fν ,

F ′
ν + n̂ · �∇Fν − 4φ′ + 4n̂ · �∇ψ = 0. (5.65)
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We can expand this equation in Fourier space, and as for photons, notice that the
isotropy of the background implies that the equation is axially symmetric around
n̂. Moreover, Fν follows the same symmetry at initial time. In fact, before neutrino
decoupling, neutrino perturbations can only depend on direction through a Doppler-
induced dipole along the axis defined by n̂, and after decoupling, this remains true
for all modes above the Hubble radius, for causality reasons. So the symmetry
is preserved throughout the evolution, and the Fourier transform of Fν(�x, n̂, η)
depends only on the arguments Fν(�k, μ, η), with μ = k̂ · n̂. This function follows

F ′
ν + ikμFν − 4φ′ − ikμ4ψ = 0. (5.66)

Expanding this equation in Legendre polynomials,

Fν(�k, μ, η) =
∑
l

(−i)l(2l + 1)Fνl(�k, η)Pl(μ), (5.67)

we get an infinite hierarchy of equations:

Fν0
′ = −kFν1 + 4φ′

Fν1
′ = k

3
(Fν0 − 2Fν2 + 4ψ) (5.68)

Fνl
′ = k

(2l + 1)

[
lFν(l−1) − (l + 1)Fν(l+1)

]
, ∀ l ≥ 2.

The relation between the first multipoles of Fν and the perturbations δν , θν , σν can
be derived from Eq. (5.10):

δν = Fν0, θν = 3

4
kFν1, σν = 1

2
Fν2. (5.69)

One can check that the first two equations in (5.68) coincide with the general
continuity and Euler equations for a species with equation of state P/ρ = 1/3, a
sound speed c2

s = δP/δρ = 1/3, and some unspecified anisotropic pressure.

Massive neutrinos

Massive neutrinos should be described by a set of equations interpolating from
CDM equations in the large mass limit to massless neutrino equations in the small
mass limit. We can assume that at the time at which we impose initial conditions,
neutrinos are already decoupled but still relativistic, with a given background
distribution fν0(y). We know that for standard active neutrinos fν0(y) is given by
Eq. (5.63), but because we are also interested in sterile neutrinos and nonstandard
active neutrinos, we keep the discussion at a more general level and assume only
that fν0(y) has no explicit time dependence after neutrino decoupling.
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The difference between massive and massless neutrinos appears when the terms
d �x/dη and dy/dη are replaced in the Liouville operator. For nonrelativistic par-
ticles, these terms are given respectively by yn̂/ε and by Eq. (5.4), and depend
explicitly on the mass through the energy ε. In that case, the collisionless Boltzmann
equation cannot be simplified by integrating over momentum. The physical expla-
nation is that for nonrelativistic particles, gravitational interactions induce a relative
momentum shift depending on the momentum itself, i.e., some nonthermal distor-
tions of the perturbed phase-space distribution. The Boltzmann equation can still be
simplified to some extent by introducing the relative fluctuation of the phase-space
distribution,

#ν(η, �x, y, n̂) = fν(η, �x, y, n̂)

fν0(η, y)
− 1, (5.70)

expressed at first order in perturbations.
As long as neutrinos remain relativistic, the quantity#ν(η, �x, y, n̂) can be related

to the variables introduced previously for massless neutrinos. In the case of standard
neutrinos with a Fermi–Dirac distribution, we can write the perturbed distribution in
the particular form fν(η, �x, y, n̂) = fν0(y/[aT ν{1 +�ν(η, �x, n̂)}]) with constant
aT ν and make a Taylor expansion at first order in �ν to find

#ν(η, �x, y, n̂) = −�ν(η, �x, n̂)
d ln fν0(y)

d ln y
. (5.71)

In the general case, #ν can be identified in the relativistic limit with

#ν(η, �x, y, n̂) = −1

4
Fν(η, �x, n̂)

d ln fν0(y)

d ln y
. (5.72)

Equations (5.71) and (5.72) are no longer valid when the particles become nonrel-
ativistic and gravitational interactions introduce nonthermal distortions.

If we take the Boltzmann equation (2.92) in the collisionless limit, replace
fν(η, �x, y, n̂) as a function of #ν(η, �x, y, n̂) and simplify the Liouville operator
using the same steps as for photons and massless neutrinos (always at order one in
perturbations), we obtain an equation of motion for #ν :

# ′
ν +

y

ε
n̂ · �∇#ν + d ln fν0

d ln y

[
φ′ − ε

y
n̂ · �∇ψ

]
= 0. (5.73)

In the relativistic limit, the ratio (y/ε) is equal to unity, and using Eq. (5.72), we
immediately recover the massless neutrino Boltzmann equation. As for photons
and massless neutrinos, one can transform Eq. (5.73) to Fourier space, make use
of the axial symmetry around n̂, expand #ν in Legendre polynomials and obtain
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an infinite hierarchy of equations:

#ν0
′ = −yk

ε
#ν1 − φ′ d ln fν0

d ln y

#ν1
′ = yk

3ε
(#ν0 − 2#ν2) − εk

3y
ψ
d ln fν0

d ln y
(5.74)

#νl
′ = yk

(2l + 1)ε

[
l#ν(l−1) − (l + 1)#ν(l+1)

]
, ∀ l ≥ 2.

Finally, using Eq. (5.10), one can show that the usual four scalar degrees of freedom
of the perturbed stress–energy tensor can be obtained by integrating #ν l=0,1,2 over
momentum:

δρν = ρνδν = 4πa−4
∫

y2dy ε fν0(y)#0 (5.75)

δPν = 4π

3
a−4

∫
y2dy

y2

ε
fν0(y)#0 (5.76)

(ρν + P ν)θν = 4πa−4
∫

y2dy ε fν0(y)#1 (5.77)

(ρν + P ν)σν = 4πa−4
∫

y2dy
y2

ε
fν0(y)#2. (5.78)

By integrating the first two equations (5.74) over momentum y, one can recover the
general continuity and Euler equations, this time with no exact analytic expression
for Pν/ρν , and no exact relation between δρν , δPν and σν . For details on this
procedure, see Shoji and Komatsu, 2010; Lesgourgues and Tram, 2011.

Deep in the nonrelativistic limit, the ratio (y/ε) goes asymptotically to zero. In
that case, the integrand of δPν is suppressed by a factor of (y/ε)2 with respect to
that of δρν ; i.e., δPν/δρν is of order (T ν/mν)2 and pressure perturbations can be
neglected. The same is true for the ratios P ν/ρν and σν/δν . Thus, the continuity
and Euler equations for nonrelativistic neutrinos become identical to those for cold
dark matter.

5.2.2 Neutrino isocurvature modes

The number of independent initial conditions for the whole system of cosmolog-
ical perturbations is equal to the number of first-order equations describing their
evolution of super-Hubble wavelengths. We know that there are two first-order
equations for baryons, two for CDM, and also two for photons, despite the infi-
nite hierarchy of Legendre momenta in the Boltzmann equation for photons. As
explained in Section 5.1.3, the reason is that as long as photons are tightly coupled,
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all multipoles above l = 0 (the monopole acounting for local density fluctuations)
and l = 1 (the dipole due to the relative motion between the tightly coupled fluid
and the coordinate frame) are negligible, as clearly seen from the interaction terms
in Eq. (5.15), in the limit of an infinite interaction rate.

A similar simplification holds for each distinct neutrino species at leading order
in the long-wavelength approximation. As long as neutrinos are in thermal equi-
librium, they have vanishing multipoles for l > 1, for the same reasons as for
photons. After decoupling occurs, these multipoles remain suppressed by a factor
(kη)l on super-Hubble wavelengths, as can be checked from Eq. (5.68). Because
F ′
νl is sourced by kFν(l−1), higher multipoles are suppressed by increasing pow-

ers of (kη). Physically, this is a simple consequence of causality. It takes some
amount of time for high multipoles to grow from zero to a significant value. For a
given wavelength, this happens after Hubble crossing, i.e., after entering the causal
horizon (computed starting from some initial time after the end of inflation).

Thus, as long as we neglect multipoles l > 1 when fixing initial conditions on
super-Hubble scales, we can say that all perturbations in a universe with N species
can be described by 2N equations, leading to 2N independent solutions: one
growing adiabatic mode, (N − 1) isocurvature growing modes and N decaying
modes. Moreover, if we choose this initial time so that all neutrino species are
relativistic, they can all be described by the same pair of equations (the first two
of Eqs. (5.74) in the limit Fν2 = 0), and they count as only one species. We see
that in the minimal �CDM model, including the usual three neutrino species, one
has N = 4, because the counting runs over photons, baryons, CDM and generic
relativistic neutrinos.

This picture has been refined by the analysis of Bucher et al., 2000, who pointed
out that if we search for the solutions of a system with one more equation (that for
the evolution of the neutrino anisotropic stress σν = Fν2/2), then there is one more
isocurvature growing mode, corresponding to an initial excitation of the neutrino
flux divergence θν , compensated for by an opposite excitation of θγ in order to
keep a diagonal stress–energy tensor in the limit (kη) → 0. In other words, if we
allow an initial excitation of θν , then all multipoles Fνl with l ≥ 1 are larger by
one power of (kη), and one should keep the l = 2 equation in order to derive a
consistent solution at leading order. This new solution has been called the neutrino
isocurvature velocity mode (NIV). The previously found neutrino isocurvature
mode was then renamed the neutrino isocurvature density mode (NID). However,
no plausible mechanism leading to an excitation of the NIV mode has been proposed
so far.

This logic cannot be pushed to higher order. The next step would consist
of searching for a solution with an initial excitation of the neutrino anisotropic
stress, compensated for by an opposite excitation of the photon anisotropic stress.
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However, σγ must remain very small due to Thomson scattering, as well as σν until
neutrino decoupling.

We already mentioned that even if some isocurvature modes are excited in
the primoridal universe, thermal equilibrium forces species to share the same
local fluctuations in number density, and erases any entropy perturbation. Hence,
isocurvature modes should be taken into account only if they are attached to
an ever-decoupled species, whereas neutrinos are coupled until T ∼ 1 MeV.
This argument could in principle be avoided in two cases: if the universe
reheats at very low temperature and neutrinos never reach thermal equilibrium,
or if they are thermal relics with high chemical potentials, corresponding to
a large lepton asymmetry. The chemical potentials μνi (t, �x) could in princi-
ple fluctuate spatially in such a way as to violate the adiabaticity condition.
One can show that under such assumptions, the NID mode can be excited
(Malik and Wands, 2009).

In summary, the NIV mode sounds very unlikely to be produced in the early
universe, and the NID mode would require a complicated mechanism implying
large lepton asymmetries. Moreover, none of these modes is favoured by current
data (Castro et al., 2009). For these reasons, we will not consider isocurvature
modes in the following.

5.2.3 Adiabatic mode in the presence of neutrinos

We explained in Section 5.1.3 that adiabatic initial conditions have a simple mean-
ing on super-Hubble scales. They correspond to a perturbed universe described
at each point by the background evolution, with a local time-shift function
t !−→ t + δt(�x) (or the same using conformal time η). We showed that this leads
to a universal relation (5.24) giving for the neutrino density transfer function

δν(η, k) = δγ (η, k). (5.79)

On super-Hubble scales, the Einstein 0–0 equation (5.20) relates ψ to the total
density perturbation in the universe, coming from photons and neutrinos during
radiation domination. Because photons and neutrinos share the same density con-
trast, the relation δγ = −2ψ found in the neutrinoless case is still valid in the
presence of neutrinos. Hence the curvature perturbation R, given by Eq. (5.29), is
also related to δγ in the same way. All these quantities are still constant over time
for adiabatic initial conditions. Higher neutrino momenta θν/k and σν vanish in the
η → 0 limit, because they contribute to the nondiagonal part of the stress–energy
tensor, whereas the background stress–energy tensor is diagonal. The leading con-
tribution to θν/k (resp. σν) in the Newtonian gauge is of order one (resp. two) in a
(kη) expansion (Ma and Bertschinger, 1995). The coefficients of these terms and
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of higher-order terms can be computed analytically by solving the full system of
equations in the super-Hubble limit. Higher-order terms are generally included in
the initial condition equations implemented in Boltzmann codes.

However, the relation φ = ψ is not valid any more. One can check from
Eq. (5.22) (using the Friedmann equation) that a total anisotropic stress propor-
tional to η2 implies a constant offset between the two metric perturbations. The
growing adiabatic solution of the full system of equations is such that

φ − ψ = 2

5
Rνψ (5.80)

with

Rν ≡ ρν

ργ + ρν

=
7
8

(
4
11

)4/3
Neff

1 + 7
8

(
4
11

)4/3
Neff

= 0.2271Neff

1 + 0.2271Neff
, (5.81)

where we use the definition of the effective neutrino number in (2.198). In sum-
mary, in the presence of neutrinos, the relation (5.41) between density and metric
perturbations during radiation domination and on super-Hubble scales becomes

4�γ 0(η, k) = δγ (η, k) = δν(η, k) = 4

3
δB(η, k)

= −2

(
1 + 2

5
Rν

)
φ(η, k) = −2ψ(η, k) = −4

3
. (5.82)

The presence of the factorRν in this relation gives the confusing impression that the
leading-order solution for density perturbations on super-Hubble scales is affected
by the neutrino anisotropic stress, responsible for the constant offset between φ

and ψ . This would contradict the general interpretation of the adiabatic mode: if
adiabatic perturbations are equivalent to a local time-shift of background quantities,
the neutrino anisotropic stress should be irrelevant on super-Hubble scales, because
it contributes only to the vanishing nondiagonal part of the stress–energy tensor. In
fact, there is no contradiction, because the shift of φ by a constant amount 2

5Rνψ

has no observable consequences. All equations of evolution depend on the metric
through the time-dilation term φ′ and the gravitational force k2ψ . The derivative
φ′ is not affected by the offset, and its leading contribution is of order (kη). We
conclude that the neutrino anisotropic stress (and more generally the presence of
neutrinos) changes the evolution of all densities only at next-to-leading order in
a (kη) expansion. The fact that metric perturbations themselves are affected at
leading order is a kind of gauge artifact. In other gauges, it is clear that Rν plays
no role in metric perturbations at leading order.

This technical discussion will become important when the effect of neutrinos
on the CMB and large-scale structure power spectra is discussed: we will use the
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fact that the presence of neutrinos has no impact on other species on super-Hubble
scales. This result was illustrated here during radiation domination, but it remains
true during matter domination.

5.2.4 Free-streaming length

After their decoupling, neutrinos free-stream, or in other words, evolve like freely
falling particles. Because the universe is expanding, free-streaming is not relevant
on all scales at a given time. We can introduce two quantities describing the scale
above which neutrino free-streaming can be ignored:

1. a dynamical quantity, the free-streaming scale λfs (or kfs in comoving Fourier
space), showing on which scales free-streaming can be neglected in the equations
of evolution at any given time;

2. an integrated quantity, the free-streaming horizon dfs (or rfs in comoving space),
giving the average distance travelled by neutrinos between the early universe
and a given time, and hence showing which scales could be affected at all by
neutrino free-streaming at this time.

The first quantity could be defined as the product of the average neutrino velocity cν
by the Hubble time tH ≡ 1/H , but most authors prefer to define the free-streaming
length by analogy with the Jeans length:

λfs(η) = a(η)
2π

kfs
≡ 2π

√
2

3

cν(η)

H (η)
. (5.83)

In the Jeans case, the quantity cν should be replaced by the sound speed cs of a
given fluid. The justification of the prefactor 2π

√
2/3 for the Jeans length is that

for a fluid i with constant sound speed dominating the expansion of the universe,
the continuity, Euler, Friedmann and Poisson equations can be combined into the
following equation of evolution on sub-Hubble scales:

δ′′i +
a′

a
δ′i +

(
k2 − 3a2H 2

2c2
s

)
c2

s δi = 0. (5.84)

The effective mass (k2 − k2
J )c2

s changes sign when k is equal to the Jeans wavenum-
ber. Hence the Jeans length represents the scale below which pressure forbids
gravitational collapse in the fluid. By analogy, the free-streaming length is the
scale below which collisionless particles cannot remain confined in gravitational
potential wells, because of their velocity dispersion.

The second quantity is defined like any other comoving horizon scale:

dfs(η) = a(η) rfs(η) ≡ a(η)
∫ η

ηin

cν(η) dη. (5.85)
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We recall that neutrinos travel along geodesics with on average dx = cν dt/a =
cν dη, and provided that ηin is chosen after the end of inflation (which makes
perfect sense, because neutrinos were produced by reheating after that time), dfs(η)
is independent of ηin as long as ηin  η.

Relativistic neutrinos

If neutrinos are still relativistic today, their velocity is given at all times by cν =
c = 1, and we find

λfs = 2π

√
2

3
H−1, dfs = aη; (5.86)

i.e., the free-streaming scale is given by the Hubble radius times a numerical factor,
and the free-streaming horizon is equal to the particle horizon. Both quantities
are very close to each other. During radiation domination aη = H−1, and during
matter domination aη = 2H−1.

Neutrinos becoming nonrelativistic during matter domination

Neutrinos become nonrelativistic when their average momentum 〈p〉 falls below
their mass mν . For a relativistic Fermi–Dirac distribution with negligible chemical
potential, the average momentum is given as a function of the temperature by
〈p〉 = 3.15 Tν . We will denote the temperature of ordinary active neutrinos in the
instantaneous decoupling limit as

T a
ν ≡ (4/11)1/3T . (5.87)

The active neutrino temperature today, T a
ν 0, can easily be inferred from the known

value of the CMB temperature, T0. Ordinary neutrinos with Tν � T a
ν become

nonrelativistic during matter or � domination if their mass is in the range
from

3.15 (4/11)1/3T0 = 5.28 × 10−4 eV (5.88)

to approximately

(1 + zeq) 5.28 × 10−4 eV � 1.5 eV (5.89)

(because current observations indicate that the redshift of equality is close to
zeq = 2900). More generally, the redshift of the transition is given by

znr =
(

mν

5.28 × 10−4 eV

)(
T a
ν

Tν

)
− 1. (5.90)
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After the nonrelativistic transition, the velocity dispersion (also called thermal
velocity)

cν = 〈p〉
mν

= 3.15
Tν

mν

= 158 (1 + z)

(
T a
ν

Tν

)(
1 eV

mν

)
km s−1 (5.91)

scales like cν ∝ a−1 ∝ η−2. Hence, during matter domination, the free-streaming
length of nonrelativistic neutrinos increases like η while the comoving free-
streaming length decreases like η−1. The free-streaming length and wavenumber
are given by

λfs = 8.10 (1 + z)
H0

H (z)

(
Tν

T a
ν

)(
1 eV

mν

)
h−1Mpc (5.92)

kfs = 0.776 (1 + z)−2H (z)

H0

(
Tν

T a
ν

)( mν

1 eV

)
hMpc−1 (5.93)

with H (z)2 = H 2
0 [�� +�k(1 + z)2 +�M(1 + z)3] during matter and � domina-

tion; see (2.61). In the second equation and in the rest of this section we also assume
that the scale factor today is fixed to one.

At the time of the transition, the free-streaming wavenumber passes through a
minimum usually denoted knr. An approximation to knr is found by simply plugging
Eq. (5.90) into Eq. (5.93),

knr ≡ kfs(ηnr) � 0.0178�1/2
M

(
T a
ν

Tν

)1/2 ( mν

1 eV

)1/2
hMpc−1, (5.94)

assuming that the transition takes place during matter domination, when
H (z)/H0 � �

1/2
M (1 + z)3/2. Note that sometimes knr is simply defined as the

wavenumber such that knr = aH at the time of the nonrelativistic transition. With
respect to the definition adopted previously, there is only a factor

√
3/2 of differ-

ence.
The comoving free-streaming horizon is equal to η in the relativistic regime.

After that time, in the approximation in which cν would switch from 1 to (ηnr/η)2

at η = ηnr, it is given by

rfs(η > ηnr) � ηnr (2 − ηnr/η) �
√

3

2

4

knr

(
1 − 1

2

[
1 + z

1 + znr

]1/2
)
, (5.95)

where we used the expression η = 2/(aH ) ∝ a1/2 valid during matter domina-
tion. Taking a recent � or curvature-dominated stage into account would change
the result by a very small amount at late times. For z  znr, the comoving free-
streaming horizon rfs remains very close to the minimum comoving free-streaming
scale (2π/knr) (they differ at most by 28%). Strictly speaking, the comoving
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free-streaming horizon is the right quantity to be computed if one wishes to know
above which comoving scale free-streaming can be neglected. However, in most
of the literature this role is attributed to (2π/knr), which makes no difference in
practice, at least for particles becoming nonrelativistic after the time of equality
between matter and radiation.

Neutrinos becoming nonrelativistic during radiation domination

Most of this book is focused on ordinary active neutrinos with sub-eV mass.
Occasionally we will refer to heavy sterile neutrinos with mass in the keV range.
In this case the redshift of the nonrelativistic transition, still given by Eq. (5.90) in
the case of a thermal momentum distribution, falls within the radiation-dominated
era. After that time, the neutrino velocity cν (still subject to Eq. (5.91)) evolves
like cν ∝ a−1 ∝ η−1. At the same time H = 1/aη ∝ η−2. Hence, during radiation
domination, the free-streaming length of nonrelativistic neutrinos increases like
λfs ∝ η, while the comoving free-streaming length remains constant. After the
time of equality between radiation and matter, we have just seen that the free-
streaming length decreases. Hence, it reaches its maximum between ηnr and ηeq.
The free-streaming length and wavenumber are still given by (5.92) and (5.93)
with now H (z)2 = H 2

0 [�� +�k(1 + z)2 +�M(1 + z)3 +�R(1 + z)4]. Hence the
minimum value of kfs is given by

knr ≡ kfs(ηnr) � 0.776�1/2
R

(
T a
ν

Tν

)( mν

1 eV

)
hMpc−1 (5.96)

and differs from its counterpart (5.94) for neutrinos with sub-eV mass.
In the approximation in which cν would switch from 1 to (ηnr/η) at η = ηnr, and

to (ηnrηeq/η
2) at η = ηeq, the comoving free-streaming horizon reads

rfs(η > ηeq) � ηnr
(
2 + ln(ηeq/ηnr) − ηeq/η

)
(5.97)

�
√

3

2

2

knr

(
1 + 1

2
log

(
1 + znr

1 + zeq

)
− 1

2

(
1 + z

1 + zeq

)2
)
,

where we used the expression η = 1/(aH ) ∝ a during radiation domination and
η = 2/(aH ) ∝ a1/2 during matter domination (taking a recent � or curvature-
dominated stage into account would change the result by a very small amount
at late times). The last term is usually negligible, but the second term, with the
logarithm, can be important for heavy particles becoming nonrelativistic at high
redshift. In this case, rfs can be significantly larger than (2π/knr), and the latter
does not give a good approximation of the scale below which free-streaming can
be neglected. We see that the difference between the two comes from the stage
between ηnr and ηeq, during which the comoving free-streaming scale is constant
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while the comoving free-streaming horizon grows logarithmically (Boyarsky et al.,
2009d).

5.2.5 Linear evolution of neutrino perturbations

Relativistic regime

If relativistic neutrinos were not coupled gravitationally, the equation of motion
for perturbations in Fourier space (5.66) would be solved by simple plane
waves, Fν(η, k, μ) ∝ exp(−ikμη). Because the Legendre coefficients of plane
waves are spherical Bessel functions, the solution in multipole space would read
Fνl(η, k) ∝ jl(kη). This explains why the last of Eqs. (5.68) coincides exactly with
the recurrence relation of spherical Bessel functions. In the super-Hubble limit,
we see that Fν0 = δν would be constant whereas other multipoles would grow like
(kη)l: this is indeed the correct behaviour expected for the growing adiabatic mode
in the Newtonian gauge.

In the actual equation of evolution, the first few multipoles Fνl are sourced by
metric perturbations. More precisely, in the Newtonian gauge, the evolution of the
monopole is sourced by a time-dilation term involving φ′, whereas the evolution
of the dipole is driven by the gradient of the gravitational potential ψ . The full
solution is found to be qualitatively similar to that of the homogenous equation,
although the amplitude and phase of the multipoles are slightly modified by the
coupling with metric perturbations.

Spherical Bessel functions jl(x) grow as a function of x until x � l + 1
2 , and

then feature damped oscillations. For neutrinos, this means that as time evolves,
power is transferred from small to large multipoles. In the super-Hubble limit,
all the power is in Fν0 = δν . At Hubble crossing, it is transferred to l = 1, then
to l = 2, etc. A given multipole reaches its maximum close to η ∼ l/k. This can
be understood geometrically. At time η, the observer sees neutrinos emitted on
his own neutrino last scattering surface, i.e., on a sphere centered on him and of
comoving radius r = (η − ηνLS), where ηνLS is the neutrino decoupling time. At
typical times of interest (close to photon decoupling), η � ηνLS and the radius of
the sphere can be approximated as r = η. Fourier modes of comoving wavelength
2π/k on the sphere are seen by the observer under an angle θ = 2π/(kr) in the
small-angle approximation. This means that in multipole space the contribution of
a given wavenumber peaks near l ∼ 2π/θ ∼ kr ∼ kη.

Nonrelativistic regime

When neutrinos become nonrelativistic, the stress part of their stress–energy tensor
becomes negligible. We saw explicitly in Eq. (2.47) that in the limit 〈E〉 ∼ m �
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〈p〉, the pressure P becomes much smaller than the energy density ρ. As shown
at the end of Section 5.2.1, the ratios δpν/δρν and σν/δρν become tiny for the
same reasons. Massive neutrinos can then be followed by exploiting the first two of
Eqs. (5.74) only. By integrating these equations over momentum in the limit y  ε,
one could show that they are asymptotically equivalent to the CDM equations of
evolution (5.19).

5.2.6 Practical implementation and approximations

As for photons, a technical issue comes from the fact that the hierarchy of coupled
neutrino equations is infinite. A given numerical code can integrate only a finite
number of equations, but a truncation of the hierarchy at some multipole lmax ν may
cause a reflection of power from lmax ν down to lower multipoles. Let us briefly
discuss how to avoid such problems.

Brute-force integration

Because at a given time and for a given wavenumber, massless neutrino perturba-
tions are populated until l ∼ kη, the most secure way to avoid any reflection of
power for a given mode k would be to truncate the neutrino equations well above
l = kη0, where η0 is the conformal age of the universe. For instance, a sharp trun-
cation at lmax ν = 2kη0 gives accurate results. In the case of massive neutrinos, all
multipoles with l ≥ 2 decay after ηnr, so the truncation only needs to be performed
at lmax ν > kηnr.

These schemes are accurate but heavy. We have seen in Section 5.1.6 that
for computing the CMB spectrum until lmax, we must compute the evolution of
perturbations up to a wavenumber kmax ∼ lmax/η0, even when using the line-of-
sight approach. So, for massless neutrinos, the truncation should be implemented
at lmax ν ∼ 2lmax at least for the largest wavenumbers. This implies that thousands
of equations must be integrated for many wavenumbers. For massive neutrinos, the
number of multipoles can be reduced by a factor of (ηnr/η0), but on the other hand
the Boltzmann equation Eq. (5.74) must be integrated for a discrete set of momenta
y. In both cases the computation time is prohibitive.

Usual truncation scheme

In reality, we need to get accurate solutions for only the first three multipoles
l = 0, 1, 2, i.e., for (δν , θν , σν), because these are the only quantities appearing
in the linearized Einstein equations. So the goal of a given truncation scheme is
to avoid the reflection of power at lmax ν contaminating the multipoles l = 0, 1, 2
significantly. Hence the situation for neutrinos is identical to that for photons in the
line-of-sight approach.
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The truncation formula proposed by (Ma and Bertschinger, 1995) for photons
and mentioned in Section 5.1.6 can be applied to neutrinos too, because it only
assumes that high multipoles satisfy the same recurrence relation as the spherical
Bessel function jl(kη). For massless neutrinos this gives

Fν [lmax ν+1] = (2lmax ν + 1)

kη
Fν lmax ν − Fν [lmax ν−1], (5.98)

whereas for massive neutrinos

#ν [lmax ν+1] = (2lmax ν + 1)ε

ykη
#ν lmax ν −#ν [lmax ν−1]. (5.99)

With such a scheme and for both massless and massive neutrinos, lmax ν can be
reduced typically to 20 or less, depending on the required precision. This approach is
the one most commonly implemented in Boltzmann codes and leads to a reasonable
computational time. Even with such a gain, neutrinos are still the species described
by the largest number of equations in a Boltzmann code. For this reason, several
approximation schemes have been devised.

Implicit solutions

The truncation formula of Ma and Bertschinger, 1995 would be exact if gravitational
source terms in the Boltzmann equation could be neglected. By applying Green’s
method, it is possible to derive an exact implicit solution for Eq. (5.66) including
these terms (Shoji and Komatsu, 2010; Blas et al., 2011). For massless neutrinos,
the solution for the transfer function Fν(k, μ, η) is

Fν(k, μ, η) = Fν(k, μ, ηin)e−ikμη +
∫ η

ηin

e−ikμ(η−η̃)4[φ′(k, η̃) + ikμψ(k, η̃)]dη̃.

(5.100)

For adiabatic modes, the initial condition is given by Fν(k, μ, ηin) = δν(k, ηin) =
δγ (k, ηin), plus higher-order terms in (kη). To write this solution in Legendre space,
it is necessary to integrate the term [ikμψ] by parts so that the integral depends
on μ only through the factor e−ikμ(η−η̃), and then to expand the exponential in
spherical Bessel functions (see Blas et al., 2011 for a synchronous gauge version
of this calculation). The same steps are described by Shoji and Komatsu, 2010 for
the massive neutrino equation.

These formal solutions are not immediately useful, because metric fluctuations
cannot be considered an external source term. In other words, their evolution
depends on the neutrino fluctuation evolution and cannot be computed in advance
before integrating Eq. (5.100). However, these solutions can be useful for deriving
or justifying several approximation schemes.
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Imperfect fluid approximations

Usually, imperfect fluid equations describe weakly coupled species, such that the
mean free path of particles exceeds the typical scale on which macroscopic quanti-
ties (defined by coarse grain) experience spatial fluctuations. One might think that
the case of decoupled neutrinos is very different, because they are collisionless and
cannot be considered a fluid at all. However, in a cosmological context, an imper-
fect fluid approach could be applied to neutrino perturbations expanded in Fourier
space. Indeed, for wavelengths larger than the Hubble radius (or more precisely
than the free-streaming scale), the propagation of neutrinos can be neglected. In this
limit, the neutrino perturbation equations are equivalent to perfect fluid equations.
We have already seen that with adiabatic initial conditions, neutrino density fluctu-
ations are identical to photon density fluctuations on super-Hubble scales, although
neutrinos are collisionless and photons are tightly coupled at high redshift. Around
the time of Hubble crossing, the mean free path (which can be identified with the
free-streaming horizon) is still not much bigger than the characteristic length in the
Friedmann universe, namely the Hubble radius: thus, an imperfect fluid approxi-
mation may in principle give good results. Later, for modes well inside the horizon,
it is obvious that the free-streaming horizon cannot be considered small anymore,
and so there is no reason for an imperfect fluid approximation to work. However,
in this limit, the gravitational back-reaction of neutrinos on photons, baryons and
CDM is very small (as we shall see in Sections 5.3.3 and 6.1.4). So we do not
need neutrino perturbation approximations to be very precise, unless we want to
understand the clustering properties of the neutrinos themselves.

In general, a theory of imperfect fluids involves equations for shear viscosity,
bulk viscosity, heat conduction, entropy flux, etc. These possibilities have not
all been investigated in detail in the context of neutrino cosmology, but several
people have proposed an approximate evolution equation for shear viscosity, i.e.,
for the anisotropic stress σν , on top of the continuity and Euler equations. In other
words, the Boltzmann hierarchy (5.68) or (5.74) could be closed at l = 2 (and
integrated over momentum in the case of massive neutrinos), using some particular
approximation. This can be very efficient because it reduces the number of neutrino
equations to three for each wavenumber.

An imperfect fluid approximation could be used at any time or could be sub-
stituted into the full equations only inside the Hubble radius, when kη exceeds
some threshold value [kη]fluid (Blas et al., 2011; Lesgourgues and Tram, 2011).
The advantage of the second case is that an error in the neutrino sector would
have a moderate impact on other quantities, because the gravitational coupling
between neutrinos and other species is relevant mainly around Hubble cross-
ing. This approach is also efficient because at the time when the approximation
is switched, only modes up to l ∼ [kη]fluid are populated. So before using the
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approximation, we can truncate the hierarchy with Eq. (5.98) or (5.99) at a lower
lmax ν ∼ [kη]fluid.

The first concrete fluid approximation was proposed by Hu, 1998. The idea is to
use a shear equation of the form

σ ′
ν = −3

a′

a

c2
eff

w
σν + 8

3

c2
vis

1 + w
θν (5.101)

with two given coefficients ceff (the effective sound speed) and cvis (the effective
viscosity speed). Hu proposes to replace the first coefficient with the adiabatic sound
speed (c2

eff = P̄ ′/ρ̄ ′), and c2
vis with the equation of state parameter w = P̄ /ρ̄. For

relativistic neutrinos, these different factors reduce to c2
eff = c2

vis = w = 1/3. Also,
during radiation domination, a′/a can be replaced with 1/η. In these two limits,
the above equation becomes equivalent to the shear equation in Eq. (5.68) when
the usual truncation scheme is applied at lmax ν = 2 (so F3 is replaced as a function
of σν and θν using Eq. (5.98)).

More accurate alternatives have been discussed in the literature. Shoji and
Komatsu (2010) start from the implicit exact solution for massive neutrinos, and
assume a sharp truncation at l = 3 (#3 = 0). Blas et al. (2011) start from the
implicit exact solution for massless neutrinos, and infer a shear evolution equation
by keeping only the leading terms inside the Hubble radius, when (kη) � 1. Les-
gourgues and Tram (2011) generalize the latter approach to massive neutrinos. The
merits of these different schemes are discussed in these works. It appears that
the accuracy of imperfect fluid approximations can be largely sufficient for fitting
the CMB and LSS spectrum in future experiments.

Other approximations

The most computationally expensive part in a Boltzmann code is usually the
integration of massive neutrino equations, because the Legendre momenta #l of
the perturbed phase space distribution must be followed for several discrete values
of momentum y (and even if the number of momenta can be kept small thanks to a
quadrature approach; see Lesgourgues and Tram, 2011). We have seen in Eq. (5.72)
that as long as neutrinos are relativistic, the y dependence of #l is known and given
by [d ln fν0(y)/d ln y]. Deviations from this form can be captured by a Taylor
expansion in the parameter √

ε2 − y2

y
= am

y
, (5.102)

which grows from zero to one in the relativistic regime, and from one to infinity in
the nonrelativistic one. Then the transfer function #l(η, k, y) can be written in the
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form

#l(η, k, y) = −1

4

d ln fν0(y)

d ln y

[∑
i

(
am

y

)i

#̃l(η, k)(i)

]
. (5.103)

Howlett et al. (2012) used the exact equation of motion for #l to show that� #̃(0)
l reduces to Fν , as expected from the relativistic limit of Eq. (5.72);� #̃(1)
l vanishes;� #̃(2)
l is subject to a hierarchy of equations, like that for Fν but with different

coefficients;� higher-order terms can be neglected for the purpose of computing CMB
anisotropies, even if good precision is required.

In this scheme, the full massive neutrino equations are replaced with those for
massless neutrinos, plus a duplicate set of equations for #̃(2)

l . This approach is not
as fast as fluid approximations, but it is simpler, robust, and easy to generalize to
higher order.

5.3 Effects of neutrinos on primary cosmic microwave
background anisotropies

5.3.1 How can decoupled species affect the cosmic microwave background?

It is always difficult to discuss the impact of a given species (neutrinos, CDM,
early dark energy, etc.) on the CMB, because several effects mix with each other,
and it is sometimes impossible to separate them clearly. However, we can make a
general classification of these effects, which will help us to understand the effect
of massless or massive neutrinos in the next subsections.

Species coupled only gravitationally with the photon–baryon(–electron) fluid
can only impact the CMB through the Friedmann equation, or through the recom-
bination history, or finally, through the linearized Einstein equations via metric
perturbations. Hence, it is useful to adopt a classification in terms of background
and perturbation effects.

(a) Background effects are encoded in a modified evolution of the scale factor
a(η), or possibly of the free electron fraction Xe(η). We can notice already
that neutrinos have no impact on the recombination history, and only affect
a(η) (during radiation domination in the case of massless neutrinos, and also
slightly during matter and � domination in the case of massive neutrinos).
In Section 5.1, we showed that the spectrum of CMB anisotropies in the
minimal �CDM model depends on a small number of effects or “degrees
of freedom”, each of them being related to characteristic scales (sound
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horizon, diffusion length, angular diameter distance), to characteristic times
(equality between radiation and matter, equality between matter and �),
to the primordial spectrum and to density ratios (e.g., the balance between
pressure and gravity in the tightly coupled photon–baryon fluid relates to
ωB, or more precisely to ωB/ωγ , with ωγ fixed by the measurement of the
CMB temperature today). The list of these effects is presented at the end
of Section 5.1.6 with labels (C1)–(C8). In the following sections, we will
relate the impact of neutrinos to variations of these characteristic scales,
times and ratios. We will also see that the background effects of a given
species depend on which particular set of other parameters is kept fixed
when the density of this species is increased; sometimes these background
effects can be completely absorbed by tuning other parameters at the same
time. For this reason, background effects can be thought to be “indirect”
and difficult (or sometimes even impossible) to probe with observations. We
will provide a detailed discussion of these issues in the next subsections.

(b) Perturbation effects can instead be considered as “direct”. The presence
of a decoupled species can modify the evolution of metric fluctuations,
and back-reacts on the perturbations of the photon–baryon fluid. In the next
subsections, we will do our best to cancel the background effect of neutrinos
(by tuning other parameters) in order to single out their direct perturbation
effect. Let us discuss separately perturbation effects occuring before and
after photon decoupling:

(b.1) Before decoupling, a key observation is that the impact of a species coupled
only gravitationally to photons and baryons can only be important around
the time of sound horizon crossing for that species. Indeed, on super-Hubble
scales, the growing adiabatic mode is subject to universal relations between
δγ , δB and the curvature perturbation R, not affected by the presence of
other species: we checked this explicitly for neutrinos in Section 5.2.3. In the
opposite limit, well inside the sound horizon, we have seen in Section 5.1.5
that metric fluctuations have decayed. Once |φ| and |ψ | are much smaller
than |�γ |, there can be no gravitational feedback on photon fluctuations
in Eq. (5.38), and neutrinos or other decoupled species cannot be relevant.
Hence, the only region in which the effect of neutrinos on primary CMB
anisotropies should be discussed is that of sound horizon crossing before
photon decoupling.

(b.2) Soon after decoupling, a given species can impact the CMB via the early ISW
effect. We mentioned earlier that the EISW is negligible on small scales, and
peaks for wavenumbers crossing the Hubble scale roughly around the time
of decoupling. In the space (k, η), this region is close to the one described in
(b.1) and extends it to higher η and slightly smaller k. The EISW depends on
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the time variation of (φ + ψ) at a given wavenumber after decoupling. As
briefly mentioned at the very end of Section 5.1.5 and shown in Chapter 6,
this variation would vanish in a fully matter-dominated universe. Changing
the neutrino abundance or mass implies that we play with the fraction of
total matter which does not cluster like CDM (because neither relativistic
neutrinos nor nonrelativistic neutrinos cluster below their free-streaming
scale). Hence, neutrinos can play a crucial role in the determination of the
time needed for (φ + ψ) to reach a nearly constant asymptotic value after
decoupling, and of the amplitude of the EISW. This effect is distinct from the
global enhancement of the EISW caused by a delay in the time of equality
between radiation and matter, which we would classify as a background
effect.

(b.3) At low redshift, massless neutrinos cannot play a role in the late ISW effect,
because their density is completely negligible, but massive neutrinos can,
because below their free-streaming scale they do not cluster like CDM
and introduce a very small but nonzero derivative (φ′ + ψ ′). This effect
is distinct from that of a change in the time of equality between matter
and �, which would be classified as a background effect. Because it is
related to secondary anisotropies imprinted in the recent universe, we will
discuss it in Section 6.3.1 of the next chapter (and find that it is almost
negligible).

5.3.2 Effects of massless neutrinos

A single free parameter, the effective neutrino number

We know that all relativistic collisionless species are described by the same equa-
tions (5.68) integrated over momentum, including all neutrinos and relics such that
m  〈p〉 (at least until today), with or without chemical potentials and/or non-
thermal distortions. All these cases are encoded in one single parameter, the total
density of such species today (which can be scaled back to the past, because for
relativistic species ρR ∝ a−4). This density can be specified, e.g., by giving the total
radiation density ωR (including photons and extra relics), or the fractional radiation
density �R, or the effective neutrino number Neff defined in (2.198). In this section
we choose to use Neff as a free parameter. The neutrinoless �CDM model dis-
cussed in section 5.1 corresponds to Neff = 0, whereas the actual minimal �CDM
model including the usual three families of active neutrinos (with masses assumed
to be negligible) assumes Neff = 3.046, as explained in Section 4.1. Here, Neff will
be considered as a seventh free parameter on top of the six �CDM parameters
(As, ns, ωB, ωM, �� or h = √

ωM/(1 −��), τreion) defined in Section 5.1.6.
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Figure 5.3 Spectrum of CMB temperature anisotropies for a neutrinoless
model (middle curve) a model with Neff = 3.046 and identical parameters
(As, ns, ωB, ωM,��, τreion) (top curve) and a model with Neff = 3.046 and the
same redshift of equality between radiation and matter and between matter and
� (lower curve; see the text for details). The difference between the middle and
lower curves can be attributed entirely to neutrino perturbation effects, plus a shift
in the diffusion damping scale.

Background effects

We start by comparing two models with Neff = 0 and Neff = 3.046, sharing iden-
tical values of (As, ns, ωB, ωM, ��, τreion). We will see later that the choice to keep
these parameters fixed is not very illuminating, and we will take a second approach
in the next paragraphs.

The middle and top curves in Fig. 5.3 show the temperature spectrum of these
two models. The difference can be explained by the sum of some perturbation
effects (that we will described later separately), plus the following background
effects:

1. A different redshift of equality (described as effect (C3) at the end of Sec-
tion 5.1.6). Indeed, in the presence of relativistic relics, this redshift is given
by

zeq = ωM

ωγ

[
1 + 7

8

(
4
11

)4/3
Neff

] = ωM

ωγ [1 + 0.2271Neff]
. (5.104)
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Because ωγ is fixed by the measurement of the CMB temperature today, known
up to four digits, this formula has two free parameters, ωM and Neff . Increasing
Neff with ωM fixed implies a shorter stage between equality and decoupling,
leading to higher peaks (especially the first one), as explained in Section 5.1.6.

2. A different peak scale (effect (C1), related to the ratio ds(ηLS)/dA(ηLS) or
rs(ηLS)/rA(ηLS)). The comoving sound horizon at decoupling depends on the
expansion history before ηLS, and in particular on the time of equality. A later
equality implies a smaller sound horizon at decoupling, so all peaks are shifted
to higher l’s. The comoving angular diameter distance rA(ηLS), depending only
on the expansion history after ηLS, is the same in these two models.

3. A tiny change in the diffusion scale (effect (C4), related to the ratio
dd(ηLS)/dA(ηLS) or rd(ηLS)/rA(ηLS)). Both rs(ηLS) and rd(ηLS) are given by
integrals running from η = 0 to ηLS, respectively Eq. (5.37) and Eq. (5.40). How-
ever, the integrand of Eq. (5.40) increases more quickly with time, roughly as a2.
Hence rD(ηLS) depends only on the expansion and thermal history immediately
before decoupling and is affected by a change in zeq only by a negligible amount.
This explains why in Figure 5.3, the secondary peaks of the middle and upper
curves share roughly the same envelope exp[−(l/ lD)2]. However, the third and
higher peaks of the model with Neff = 3.046 moved to larger l in such a way as
to fall inside the diffusion damping region: hence their amplitude is suppressed,
even if effect (C3) alone would have the opposite effect.

Other effects (C2), (C5), (C6), (C7), (C8) are controlled by the parameters
(As, ns, ωB, ��, τreion) and are the same in the two models.

In the previous comparison, the direct perturbation effect of neutrinos was
masked by the large impact of the change in the time of equality. To make a
more useful comparison, we should vary Neff not with other cosmological param-
eters fixed, but with the quantities governing the effects (C1)–(C8) unchanged, if
this is possible. This approach was taken previously by (Bashinsky and Seljak,
2004) and summarized by (Hou et al., 2011).

In increasing the effective neutrino number from zero to Neff , we enhance the
radiation density by a factor

α ≡ (1 + 0.2271Neff). (5.105)

If we simultaneously increase the matter density ωM by the same amount, the
redshift of equality between radiation and matter will not vary, and effect (C3) will
be the same for the two models. If this is done by enhancing the CDM density
with fixed ωB, effect (C2) will also remain constant. We should keep �� fixed in
order to maintain the same redshift of equality between matter and �, and leave
effect (C7) unaffected. Finally, As, ns, τreion should also be left invariant, in order
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to preserve (C5), (C6), (C8). We must now check if the remaining effects (C1) and
(C4) are affected by such a transformation or not. In summary:� We increase ωR and ωM by the same amount α, while keeping �� fixed.� Hence the reduced Hubble parameter h = √

ωM/(1 −��) increases by
√
α.� This implies that ω� also increases by α, so the three densities ρR(z), ρM(z) and

ρ�(z) are rescaled by the same amount. Indeed, the proper way to keep the two
redshifts of equality fixed is to multiply all densities by the same factor. The
Friedmann equation shows that the Hubble parameter as a function of redshift,
H (z), is rescaled by

√
α.� The functions η(z), rs(z), rA(z), obtained by integrating over dη (or equivalently,

after a change of variable, over dz/H ), are all rescaled by α−1/2.� The square of the function rD(z) is obtained by integrating over (dη/ane), or
equivalently over (zdz/neH ). Because the reionization history controlled by the
parameter Xe(z) is unaffected by the transformation, rD(z)2 is also rescaled by
α−1/2.

We conclude that effect (C1) is unaffected by this transformation: both rs(ηLS)
and rA(ηLS) have been rescaled by the same factor, with a constant ratio.3 Instead,
effect (C4) has been changed, because rD decreases by α−1/4, whereas the ratio
rD(ηLS)/rA(ηLS) increases by α1/4. So in the second model, diffusion damping
occurs at larger angles, i.e., at smaller l’s.

We conclude that the difference between the original model and the rescaled
model should only be attributed to diffusion damping and to neutrino perturbation
effects. This is illustrated in Fig. 5.3. The lower curve has been obtained by
rescaling all densities as described. The peaks of the Neff = 0 and Neff = 3.046
models now have roughly the same location and shape, with, however, an overall
amplitude suppression (resulting from neutrino free-streaming, as developed in the
next subsection) and a smaller damping tail.

Our goal was to increase Neff without affecting effects (C1)–(C8), in order
to eliminate background effects and to isolate the direct gravitational effect of
neutrinos. This was not fully achieved by the previous transformation, because
effect (C8) varied. However, in the framework of the minimal �CDM model
with free Neff , (C1) and (C8) cannot be kept fixed simultaneously. Because ωM is
determined by the redshift of equality and ωB by the baryon-to-photon ratio, we

3 One could go further and show that in the equation of evolution for the tightly coupled photon–baryon fluid,
a rescaling of H (z) with fixed R(z) can be completely eliminated. At the same time as H (z) is rescaled by√
α, all wavenumbers should be rescaled by the same factor. But because dA is rescaled by the inverse of√
α, after a projection in harmonic space, the spectrum Cl is left invariant. Hence, as long as tight coupling

holds, the transformation discussed here leaves the CMB invariant. Differences can show up only beyond the
tight-coupling approximation, i.e., at the level of diffusion damping, or through the gravitational back-reaction
of other species mediated by metric fluctuations.
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Figure 5.4 CMB temperature spectrum for models with Neff = 3.046 divided by
the spectrum of a model with Neff = 0. The lower curve corresponds to the case
in which the two models share the same redshift of equality between radiation and
matter and between matter and � (so it is the ratio of the lower and middle curves
in Figure 5.3). The upper curve is obtained by additional tuning of the primordial
helium fraction Yp, in such a way as to keep the diffusion damping scale rd/rA
constant. Hence the upper curve illustrates the effect of neutrinos at the level of
perturbations only.

can adjust effects (C1) and (C8) only by playing with h. But rs is proportional to
h−1 whereas rd is proportional to h−1/2, so both effects cannot be compensated for
at the same time. However, we could try to change the recombination history. As
noticed by Bashinsky and Seljak, 2004, this is a useful way to gain further insight
into the effect of relativistic neutrinos.

In Fig. 5.4, the lower curve shows the spectrum of the previous model with
Neff = 3.046 divided by that of the neutrinoless model. This ratio can be described
as a steplike suppression with superimposed oscillations, plus a rapid decrease for
l > 700. We suspect that this rapid decrease is due to diffusion damping, i.e., to the
shifting of the envelope exp[−(l/ lD)2] to a smaller lD in the Neff = 3.046 model.
This can be checked by decreasing the primordial helium fraction Yp defined in
(2.157) in the model with neutrinos. Indeed, changing this parameter leads to a
rescaling of ne at the redshifts of interest, leaving all other characteristic times and
scales fixed, apart from a very small change in the decoupling time ηLS which turns
out to be negligible. In order to increase rD and keep the same ratio rd(ηLS)/rA(ηLS)
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as in the neutrinoless model, we need to decrease Yp to unrealistically small values,
around Yp = 0.02. In a real data analysis, the primordial helium fraction is given
either by the prediction of standard Big Bang nucleosynthesis (to about 0.25, with
a weak dependence on ωB), or by direct measurements of primordial element
abundances. Values significantly smaller than 0.24 would conflict with both BBN
predictions and direct observations, but the exercise performed here should be
regarded as purely formal. The spectrum of the model with Neff = 3.046 and low
helium fraction, divided by that of the original neutrinoless model, is shown in
Fig. 5.4 (upper curve). As expected, the exponential suppression at l > 700 has
now been removed. The remaining features can be attributed to the direct effect of
neutrinos at the level of perturbations.

Perturbation effects

As discussed at the beginning of Section 5.3, the direct effect of neutrino perturba-
tions on the CMB can be important when a given mode crosses the sound horizon,
and acoustic oscillations are driven by metric fluctuations (i.e., by the term on the
r.h.s. of Eq. (5.38)). Metric fluctuations quickly decay inside the sound horizon, and
their time variation tends to boost temperature fluctuations until φ and ψ become
negligible with respect to �γ (more details on the effect of the driving term can be
found, e.g., in Hu, 1995). After that stage, we have seen that oscillations go on with
a constant amplitude during the radiation-dominated stage, or with a decreasing
amplitude after the time of equality, caused by the increasing baryon fraction and
by diffusion damping on small scales.

In the presence of free-streaming neutrinos, we expect metric fluctuations to
be smaller for wavelengths inside the free-streaming scale (which coincides with
the Hubble radius for relativistic neutrinos), because neutrinos cannot cluster on
those scales. During radiation domination, neutrinos account for a large fraction
of total matter, so they can reduce metric fluctuations by a significant amount.
Hence, neutrinos reduce the boosting of temperature fluctuations during the driven
oscillation stage. At the end, we observe smaller CMB anisotropies for all scales
entering the sound horizon before decoupling, and especially during radiation
domination.

An analytic approximation of the impact of neutrinos on the driving term was
derived by Hu and Sugiyama, 1996, leading to the conclusion that the oscillation
amplitude inside the sound horizon is reduced by (1 + 4/15Rν)−1 with respect to
a neutrinoless model. So we expect the CMB peaks to be reduced by

�Cl

Cl

=
(

1 + 4

15
Rν

)−2

=
(

1 + 4

15
×
[

0.2271Neff

1 + 0.2271Neff

])−2

. (5.106)
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For the two models that we compared in Figs. 5.3 and 5.4, this formula predicts
19% suppression between Neff = 0 and Neff = 3.046, in rather good agreement
with the average value of the upper curve in 5.4 for the largest values of l. Notice
that for intermediate values corresponding to the first two peaks, the effect is only
partial because the modes entered the sound horizon at the beginning of matter
domination. For a small variation of Neff around three, Eq. (5.106) corresponds to
a variation of the Cl’s in the region of acoustic oscillations given by

�Cl

Cl

= −0.072 �Neff. (5.107)

A more detailed analysis was presented later by (Bashinsky and Seljak, 2004). This
work concludes with a reduction of the amplitude with respect to the neutrinoless
case by

�Cl

Cl

= (
1 − 0.2683Rν +O(R2

ν )
)2
, (5.108)

found to be in very good agreement with Eq. (5.106). The same reference also shows
that in real space, neutrinos (traveling at the speed of light) tend to pull temperature
perturbations (propagating at a lower velocity cs ∼ c/

√
3) out of gravitational

potential wells. In Fourier space, this “neutrino drag” effect tends to shift the phase
of oscillations in such a way that acoustic peaks are seen on larger scales, i.e.,
for smaller values of l. The analytic approximation of Bashinsky and Seljak, 2004
predicts a shift with respect to the neutrinoless case by

�lpeak = −rA(ηLS)

rs(ηLS)

(
0.1912πRν +O(R2

ν )
)
. (5.109)

This approximation does not work as well as that for the amplitude of the peaks.
For instance, it would correspond to a shift �lpeak � 20 between the middle and
lower curves of Fig 5.3, whereas the actual shift is closer to 10. The phase shift
also explains the oscillatory pattern of the curves in Fig. 5.4.

Note that in the two models that we are comparing,ωC is different. Like neutrinos,
CDM couples gravitationally with the photon–baryon fluid. So one could argue that
the effects observed here are a superposition of gravitational effects due to both
neutrinos and CDM. However, during radiation domination, the CDM density
is negligible. So the perturbation effects of an enhanced CDM component are
subleading for modes entering the sound horizon during radiation domination.
This explains why the analytic prediction for the neutrino effect in Eq. (5.106) is a
very good approximation to the full numerical result shown in Fig. 5.4.

So far, we have discussed only effects occuring before decoupling, through the
driving term in the photon–baryon oscillator equation. As mentioned in the previous
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subsection, neutrinos can also induce a difference in the EISW effect. However,
this effect is subleading, as shown by the dashed curve in Fig. 5.4, in which we
removed the whole ISW contribution to each spectrum before taking the ratio. For
the sake of brevity, we will not discuss the details of this tiny correction.

5.3.3 Effects of massive neutrinos

A mode-dependent situation

Whereas a single parameter Neff catches all possible effects of massless neutrinos
(or more generally collisionless ultrarelativistic relics), massive neutrino effects are
described by more parameters, especially if one goes beyond the minimal picture.
The two parameters Neff (describing the neutrino abundance in the early universe,
when they are still ultrarelativistic) and ων (the total density of neutrinos today,
dominated by the contribution of at least two nonrelativistic mass eigenstates) are
certainly playing a key role. However, in the perturbation equation for neutrinos, it
is not possible to integrate quantities in momentum space in order to obtain reduced
equations as for massless neutrinos, and it is not possible to factor out the total
neutrino mass. In principle, individual masses could play a role, as well as any
modification of the phase-space distribution function due, for instance, to chemical
potentials or nonthermal distortions. In the following, we will assume for simplicity
that all neutrinos have the same mass (as in the degenerate limit of the normal and
inverted hierarchy scenarios) and share the same Fermi–Dirac distribution function
(which is almost true in the minimal scenario, because nonthermal distortions
imprinted around the time of electron–positron annihilation are extremely small,
as discussed in Section 4.2.3). At the end of this section we will briefly discuss
the effect of different individual masses and see that for standard active neutrinos,
only the total mass Mν is detectable in practice.

We saw in Section 5.2.4 that active neutrinos with a mass mν < 1.5 eV become
nonrelativistic after the time of equality between matter and radiation. We can
safely restrict our discussion to this case. We will see later that heavier active
neutrinos would strongly contradict current cosmological bounds.

Background effects

We have seen in Section 5.3.2 that the most relevant way to study the impact of a
given parameter on the CMB spectra is to vary it while keeping fixed at the same
time all characteristic times, scales and density ratios, which control the physical
effects (C1)–(C8) described at the end of Section 5.1.6. A particularly important
quantity is the redshift of equality between matter and radiation. Because we
assumed that mν < 1.5 eV, we should count neutrinos as radiation at that time, so
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zeq is given by

zeq = ωB + ωC

ωγ [1 + 0.2271Neff]
, (5.110)

where the neutrinos are counted in theNeff factor. The comparison between different
masses should be performed at fixed (ωB + ωC), or better at fixed ωB and ωC in
order to keep a fixed ratio (ωB/ωγ ) (and not affect (C2) or (C3)). This means
that the total nonrelativistic matter density today, ωM = ωB + ωC + ων , should be
increased at the same time as the neutrino mass.

Two models with different neutrino masses but sharing the same values of
(As, ns, ωB, ωC, τreion) are strictly equivalent until the time of the nonrelativistic
transition at redshift znr ∝ mν . After that time, neutrinos dilute like ρν ∝ a−3

instead of a−4 and play the role of extra nonrelativistic matter. Therefore, the mass
has an impact on the expansion history H (z) at z < znr, on the comoving angular
diameter distance to recombination rA(ηLS), and on the redshift of equality between
matter and the cosmological constant z�. Only if neutrinos are nonrelativistic at
decoupling, i.e., roughly for mν ≥ 0.6 eV (see Eq. (5.90)) does their mass also
impact the comoving sound horizon rs(ηLS) and the damping scale rD(ηLS) at
decoupling.

By tuning h and �, still related through h = √
ωM/(1 −��), we have the

possibility of keeping constant one of the two quantities dA(ηLS) or z�, but not both
simultaneously. Because the scales of the peak and of the damping tail (controlled
by rA(ηLS) through effects (C1) and (C7)) are much better constrained by the data
than the slope of the Sachs–Wolfe plateau (controlled by z� through (C7)), the
most interesting comparison is achieved by keeping dA(ηLS) fixed. For masses
much smaller than 0.6 eV, this will lead to the same peak scale and damping tail.
For masses close to 0.6 eV or higher, rs(ηLS) and rd(ηLS) are also affected, but we
can always tune h to keep the same peak scale, at the expense of a small change in
the diffusion damping scale.

In summary, we can increase mν with a constant redshift of equality and peak
scale. The effects (C1)–(C8) then remain unaffected with the exception of

1. the LISW effect (C7), due to a shift in z�;
2. eventually the diffusion damping effect (C4), but only for neutrinos already

nonrelativistic at decoupling, i.e., with mν ≥ 0.6 eV.

Differences in the CMB spectra beyond those two effects should be attributed to
the direct gravitational impact of massive neutrinos at the perturbation level.

We compare in Fig. 5.5 three spectra obtained with the same values of
(As, ns, ωB, ωC, τreion) and three active neutrinos with a common massmν = Mν/3,
with either Mν = 0 eV, 3 × 0.3 eV or 3 × 0.6 eV. The two massive models
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Figure 5.5 Spectrum of CMB temperature anisotropies for a massless neutrino
model (highest curve for l ≤ 100), a model with three degenerate neutrinos of total
massMν = 3 × 0.3 eV (middle curve for l ≤ 100), and one withMν = 3 × 0.6 eV
(lowest curve for l ≤ 100). In all cases the redshift of equality between radiation
and matter and the scale of the peaks has been kept constant.

correspond to a nonrelativistic transition at respectively znr = 570 or znr = 1100.
When increasing the mass, we decrease h in order to keep the same peak scale. The
ratios of the two massive cases divided by the massless case are shown in Fig. 5.6.

The difference due to the LISW is the most obvious one, leading to different
slopes for l < 20 in Fig. 5.5, and to the sharp decrease for the same multipoles in
Fig. 5.6. Models with a higher mass have a smaller h, a smaller ��, and hence a
smaller LISW effect. The small shift in the damping scale is seen better in Fig. 5.6
in the form of a rise at l > 500, especially for the model with nonrelativistic
neutrinos at decoupling, as expected. Remaining differences in the range 20 < l <

500 should be attributed to direct perturbation effects induced by neutrino masses.

Perturbation effects

We expect perturbation effects to be caused either by the gravitational driving of
the photon–baryon oscillator equation before decoupling (effect described as (b.1))
at the beginning of Section 5.3), or by the neutrino mass impact on the evolution of
(φ + ψ) after decoupling, i.e., by the EISW effect (described as (b.2)). To separate
these two effects, we show in Fig. 5.6 the difference between the ratios obtained
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Figure 5.6 CMB temperature spectrum for models with eitherMν = 3 × 0.3 eV or
Mν = 3 × 0.6 eV divided by the spectrum of a model with three massless neutrinos
sharing the same (standard) temperature. From left to right, the differences can
be attributed to the LISW effect, EISW effect, gravitationally driven oscillations
effect and diffusion damping, as explained in the text. To separate better the impact
of the LISW plus EISW effect, the thin lines show the result of the comparison
when the full ISW contribution is removed from each spectrum.

with the full temperature spectra (solid curves) and with the spectra without the
ISW contribution (dashed curves).

The largest effect in the range 20 < l < 500 is caused by the EISW: it leads
to a depletion of the spectrum for 20 < l < 200. This depletion is also visible in
Fig. 5.5. Its amplitude is roughly given by

�Cl

Cl

�
( mν

10 eV

)
, (5.111)

i.e., 3% for mν = Mν/3 = 0.3 eV. Its location is also related to the neutrino mass,
because this effect is caused by the fact that for wavenumbers k < knr neutri-
nos behave as a clustering component, whereas in the absence of neutrino mass
they would behave as a free-streaming component like photons. Hence (φ + ψ)
experiences less decay for these modes: we are closer to the limit of a fully matter-
dominated universe for which (φ + ψ) would remain constant at horizon crossing.
This implies a smaller EISW effect for k < knr, visible in the CMB spectra above a
given angle. The magnitude of this effect scales with the ratio (ρR/ρM) at the time
when k = knr crosses the horizon, so it decreases with the neutrino mass.
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A smaller effect related to the evolution prior to recombination is visible in the
curves without ISW in the range 30 < l < 500. For the model with relativistic
neutrinos at decoupling, Mν = 3 × 0.3 eV, this effect remains below the percent
level. For the model with Mν = 3 × 0.6 eV, we see a 3% depletion of the spectrum
around l ∼ 100, caused by the fact that the last wavenumbers approaching the
sound horizon just before decoupling do not see free-streaming neutrinos, and do
not experience the full boosting effect already mentioned in the case of massless
neutrinos.

Effect of mass splitting

In principle, the depletion in the CMB power spectrum caused by the EISW
effect depends on the time at which neutrinos become nonrelativistic, i.e., on
individual masses. However, in practice, the mass-splitting effect is too small to
be detectable. The difference between the temperature spectrum for the minimal-
inverted-hierarchy scenario and for a normal-hierarchy scenario with the same
mass (see Section 1.4.1) remains below the level of one per mill for all multipoles,
i.e., beyond the sensitivity level of Planck and even of a next generation of CMB
satellite. We will see in Section 6.1.4 that the effect of mass splitting on large-scale
structure is significantly greater, but still very difficult to observe.

5.3.4 Effects of interacting neutrinos

If neutrinos are not collisionless at temperature T  1 MeV because of some
kind of nonstandard interaction, all the “direct perturbation effects” described
earlier can be modified. For any given interaction between neutrino and other
species, or any self-interaction term, the CMB spectrum can be computed with a
modified Boltzmann code featuring a coupling term in the hierarchy of Boltzmann
equations for neutrinos. This has been studied, for instance, in the case of neutrino
interactions with putative extra light degrees of freedom or with dark matter or in
the mass-varying neutrino (MaVaN) scenario, in which neutrinos are assumed to
be coupled with a scalar field accounting for dark energy. This case will be reported
in Section 6.5.3 of the next chapter, because this scenario affects LSS observables
but not the CMB (such neutrinos would still be relativistic and have negligible
interactions at the epoch of decoupling).

In another simple limiting case, neutrinos would reduce to a perfect or imperfect
fluid because of a nonstandard self-interaction term. In this situation, they could
be subject to fluid equations with some unknown sound speed cs relating pressure
to density perturbations, and eventually (in the case of an imperfect fluid with
shear viscosity) with some unknown viscosity parameter cvis relating the neutrino
anisotropic stress σν to the bulk velocity θν . In such models, neutrinos would not
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free-stream inside the Hubble radius, and their perturbation evolution would be
radically different. The picture presented in Section 5.3.2 and Fig. 5.4 would not
hold any more: such neutrinos would not reduce and shift the CMB peaks like
ordinary neutrinos. We will not discuss this case in further detail because recent
analyses (De Bernardis et al., 2008 or Archidiacono et al., 2011) show that ordinary
collisionless neutrinos provide a better fit to the data than such a self-interacting
neutrino fluid. More detail on this type of analysis is also presented in Section 6.5.3.

5.4 Bounds on neutrinos from primary
cosmic-microwave-background anisotropies

5.4.1 Cosmic microwave background and homogeneous cosmology data sets

The best current constraints on the CMB temperature spectrum for l ≤ 1000 come
from the seven years of observations with the Wilkinson Microwave Anisotropy
Probe satellite (WMAP7, Dunkley et al., 2009). Other experiments probe smaller
angular scales, with the most recent constraints provided by the 2008 observation
campaign of the Atacama Cosmology Telescope (ACT-2008, Dunkley et al., 2011)
and by the South Pole Telescope (SPT, Keisler et al., 2011).

The accuracy of parameter extraction from CMB data is usually bounded by
instrumental errors at high l’s, and by cosmic variance at low l’s. These limitations
lead to a poor determination of parameter combinations along directions of degen-
eracies. For instance, we have seen in Section 5.1.6 that the effect (C7), namely
the late ISW effect, is difficult to measure accurately because of cosmic variance.
Hence, the value of the cosmological constant of the minimal �CDM model can
only be probed through other effects such as (C1) and (C4) for which �� impacts
the data in combination with other parameters such as ωM. In the parameter basis
(ωM, ωB, h, τreion, As, ns) with �� = 1 − ωM/h

2, this leads to a degeneracy in the
space of reconstructed (ωM, h) values, and to a poor determination of these two
parameters from CMB data alone.

Therefore, it is useful to combine CMB data with an external data set. We leave
the discussion of large scale structure observations for the next chapter. We will only
discuss in this section the combination of CMB data with probes of homogeneous
cosmology, i.e., of the expansion history and geometry of the universe. Currently,
the most stringent constraints are derived from

� Direct measurements of the Hubble parameter today, which can be obtained from
various techniques. One of them is based on measuring the slope of the luminosity
distance–redshift relation of nearby Type Ia supernovae (SNIa) at z < 0.1. This
technique is identical to the one used to probe the universe’s acceleration, but
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applied here to objects at smaller redshift. Indeed, the luminosity distance–
redshift relation of nearby supernovae depends mainly on H0, whereas at high
redshift it probes also the spatial curvature and acceleration of the universe, as
we discussed in Chapter 2. For some of these supernovae, the relation between
the absolute magnitude and the time of extinction can be accurately calibrated by
resolving cepheids in the same galaxy and measuring the distance independently.
Using this method, Riess et al. (2009) obtain H0 = 74.2 ± 3.6 km s−1Mpc−1

(68% confidence level). This measurement will be referred to hereafter as “H0”.� Measurements of the angular scale of baryon acoustic oscillations. The origin of
baryonic oscillations in the matter power spectrum will be explained in the next
chapter, in Section 6.1.2. By measuring only the characteristic angular scale of
these oscillations, and comparing them to the scale of acoustic peaks in the CMB,
one essentially probes the angular diameter–redshift relation in the redshift range
where the matter power spectrum is measured (and not the clustering of matter
on large scales, which would fall in the category of LSS data). We will refer
to recent constraints on the angular diameter distance at redshifts z = 0.2 and
z = 0.35 by Percival et al. (2010) as “BAO”. These measurements are useful for
constraining the late-time cosmology and resolving degeneracies, e.g., between
H0 and ωM (they are also sensitive to curvature in non-spatially flat models).� Measurements of the luminosity distance-redshift relation with distant SNIa,
probing simultaneously the Hubble radius and the parameters ruling the expan-
sion law at small redshifts, such as �M = 1 −�� in a flat universe, or the
cosmological constant and curvature in a more general case. Recent data analy-
ses include Hicken et al., 2009; Kessler, 2009; Conley et al., 2011.

The level of systematic errors in SNIa data sets is still under investigation, although
considerable progress is being made in this area. At the moment of writing,
CMB+SNIa constraints are very interesting but still treated with care, whereas
H0 and BAO constraints are considered very robust. We will report below several
constraints based on the combination of CMB with BAO and H0 data.

Other techniques are making fast progress. For instance, Moresco et al. (2012a)
recently used a determination of the Hubble parameterH (z) as a function of redhsift
in the range 0.09 < z < 1.75, based on the observation of the evolution of early-
type galaxies, treated as “cosmic chronometers” (Moresco et al., 2012b). We will
refer to this data set as “OHD” (standing for Observational Hubble Parameter).

5.4.2 Neutrino abundance

We explained in Section 5.3.2 how the abundance of relativistic relics, given in terms
of the effective neutrino number Neff , impacts the CMB temperature spectrum. We
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saw that varying Neff with fixed ωM shifts the time of equality between radiation
and matter, but because this time is very well constrained by the CMB data through
effect (C3) of Section 5.1.6, it is more relevant to study the impact of Neff with
fixed zeq rather than fixed ωM. We showed that Neff can be varied together with ωM

and h in such a way as to keep a constant redshift of equality between radiation
and matter, and between matter and �. This transformation results in a small
variation of the CMB for l ≤ 1000, due to direct perturbation effects, and in a more
radical variation for l > 1000, due to a change in the diffusion damping scale. This
discussion was illustrated by Fig. 5.4, which presents a rather extreme comparison
between two models with Neff = 0 and Neff = 3.046. Small changes on the order
of �Neff ∼ 1 around the standard value Neff � 3 lead to much smaller variations
than on this figure.

Because the small variation of the temperature spectrum for l ≤ 1000 can easily
be mimicked by a change in the primordial spectrum tilt and amplitude, a CMB
experiment precise only in the range 2 < l < 900 such as WMAP cannot measure
Neff accurately alone. Dunkley et al. (2009) reported a bound4 Neff > 2.7 at the
95% confidence level (C.L.) using WMAP 5-year data. Interestingly, WMAP alone
brings indirect evidence for the existence of the cosmological neutrino background:
a model with Neff = 0 degrades the effective χ2 of the data by 8.2 with respect to
a model with Neff = 3. Of course, it is still possible that the neutrino background
predicted by the standard cosmological model is not present, whereas other rela-
tivistic relics would account for this nonzero Neff . The only way to disprove this
assumption would be through a direct measurement of cosmological neutrinos,
which is far beyond current technology, as explained in Chapter 7. However, this
eventuality appears as unlikely as unnecessarily complicated.

Because varying Neff with a constant zeq affects the diffusion damping scale
and the high-l tail of the CMB temperature spectrum, we expect that the inclusion
of more CMB data on small angular scales could resolve the degeneracy and
tighten bounds on Neff . This has been confirmed by data from the ACT and SPT
experiments: WMAP7+ ACT-2008 give Neff = 5.3 ± 1.3 (68% C.L.) (Dunkley
et al., 2011; Hamann, 2011), whereas WMAP7+SPT giveNeff = 3.85 ± 0.62 (68%
C.L.) (Keisler et al., 2011). The standard value Neff = 3.046 is well inside the 95%
C.L. interval.

4 All the bounds reported in this book are Bayesian credible intervals. They stand for the preferred interval for
a given parameter, at a given confidence level, within a given model, with given priors on model parameters
(unless otherwise stated, flat priors), after marginalization over all other parameters. Some different bounds
inspired by the frequentist approach to data fitting are sometimes discussed in the literature. As a rule of thumb,
one should keep in mind that all different definitions of parameter bounds tend to match each other when a
parameter is really measured by a given data set, whereas they may differ significantly for parameters that are
not required by the data and can only be bounded from above or below by the data. In that case the bounds are
only valid under some precise assumptions and should be regarded as indicative only.
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Because Neff participates in parameter degeneracy together with ωM and h

(along which zeq remains constant, as explained in Section 5.3.2), any external
data set bringing information on these other two parameters makes it possible to
tighten the bounds on Neff . Komatsu et al. (2011) found that the combination of
WMAP7+BAO+H0 leads to Neff = 4.34+0.86

−0.88 (68% C.L.), a result well compatible
with the standard value.

Finally, the combination of WMAP7+ACT-2008+BAO+H0 givesNeff = 4.56 ±
0.75 (68% C.L.), that of WMAP7+SPT+BAO+H0 gives Neff = 3.86 ± 0.42 (68%
C.L.), and WMAP7+SPT+H0+OHD givesNeff = 3.5 ± 0.3 (68% C.L.). Currently,
these are the most stringent bounds onNeff not involving LSS data (and we shall see
in Section 6.5.2 that current LSS data do not bring significant improvements for the
determination of this particular parameter). They show a marginal preference for
extra relativistic degrees of freedom, because the standard value 3.046 sits roughly
at the lower end of the 95% C.L. credible interval. However, no robust conclusion
can be drawn at the moment. Indeed, this marginal preference for Neff > 3 could
be due to� Yet unknown systematic errors in the high-l CMB data sets.� Underestimated systematic errors in the BAO+H0 data sets, shifting the results

along the valley of degeneracy in (Neff, ωM, h) space. For instance, if future
determinations of H0 prefer lower values than today (closer to 70 km s−1Mpc−1

or slightly below), the marginal evidence for an excess of radiation will
disappear.� The fact that we are not fitting the correct model to the data, and we are missing
the impact of extra physics and parameters. For instance, when the primordial
helium fraction is left as a free parameter, there is a degeneracy between Neff

and Yp such that the WMAP7+SPT bound enlarges to Neff = 3.4 ± 1.0 (68%
C.L.) (Keisler et al., 2011). However, if the WMAP7+SPT data are not affected
by systematics, lowering Neff to 3.046 requires a high helium fraction in slight
tension with direct measurement of the helium abundance (Nollett and Holder,
2011), or in strong tension with standard BBN predictions for Yp, given the
allowed range for ωB indicated by CMB data. Bounds on Neff also become
weaker when other degrees of freedom are introduced into the fitted model, such
as free neutrino masses, a dark energy component with an arbitrary equation
of state instead of a cosmological constant, a spatial curvature, or a significant
amount of primordial gravitational waves.

In conclusion, CMB data combined with homogeneous cosmology data are
able to establish the existence of a relativistic relic background, with a density
compatible to standard predictions for the neutrino background at the 95% C.L.
Despite some marginal evidence, there is no reason at the moment to claim an
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excess which, if confirmed, could be explained in several different ways, related
to neutrino physics (light sterile neutrinos, leptonic asymmetry, nonthermal dis-
torsions due to new particles decaying into neutrinos) or not (other light or mass-
less relics, early dark energy, energy density of a gravitational wave background,
modifications to the Friedmann equation due to extensions of Einstein gravity,
etc.).

Future CMB experiments will allow a more accurate determination of Neff .
Using data from the Planck satellite alone (Perotto et al., 2006), the 1σ error bar
(equivalent to half of the 68% C.L. allowed range) is expected to shrink down to
σ (Neff) ∼ 0.46, without using CMB lensing extraction techniques mentioned in
the next chapter. Major progress will be achieved by combining future CMB data
with other probes of large-scale structure, as we shall see in Section 6.5.2.

5.4.3 Neutrino masses

We have seen in Section 5.3.3 that CMB experiments can hardly resolve the
splitting of the total neutrino mass Mν =

∑
i mνi between different families. Most

constraints discussed so far in the literature refer to three degenerate neutrinos with
mass mν = Mν/3. The corresponding bounds on Mν apply in fact to all scenarios
with three light neutrinos. We will discuss the case of extra light species separately,
together with LSS bounds, in Section 6.5.2. We do not address in this chapter
bounds on heavy sterile neutrinos, with masses in the keV range, falling into the
category of warm dark matter (WDM). Such relics have no impact on CMB physics,
and can only be probed with LSS experiments, as explained in Chapter 6.

For three light degenerate neutrinos, we explained in Section 5.3.3 that if the
neutrino mass is increased while (ωB, ωC) are kept fixed and h is decreased to
keep the peak scale constant, then the CMB temperature spectrum varies by a very
small amount, with the most pronounced effects being on angular scales l < 20
(LISW effect) and 20 < l < 500 (EISW effect). This discussion was illustrated by
Fig. 5.6.

WMAP data alone can constrain the total neutrino mass, with an upper bound
Mν < 1.3 eV (95% C.L.) for the minimal �CDM model with massive neutrinos
(seven free parameters). Because the leading effects appear for l < 500, adding
small-scale CMB data from ACT-2008 or SPT does not bring about significant
improvements.

However, this transformation (corresponding to a direction of degeneracy in
parameter space) requires h to decrease when Mν increases, in order to keep a con-
stant peak scale. Any additional constraint on h does help reduce this degeneracy.
Indeed, the bound from WMAP7+BAO+H0 is significantly stronger:Mν < 0.58 eV
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(95% C.L.), whereas the combination WMAP7+OHD+H0 gives5 Mν < 0.48 eV
(95% C.L.).

These mass bounds appear to be very robust from the point of view of the
data being used. However, as usual, they can be relaxed by introducing other
physical ingredients and free parameters into the model. One parameter known to
be slightly degenerate with Mν is the number of light/massless species Neff . Hence
mass bounds must be investigated separately when allowing for the presence of
extra massless or light relics. The same is true with other ingredients such as an
arbitrary dark energy equation of state, a spatial curvature, or a significant amount
of primordial gravitational waves. All these cases have been considered, but in
combination with LSS data, so we will report the corresponding mass bounds in
Chapter 6.

The expected sensitivity of the Planck satellite alone to neutrino masses is
σ (Mν) ∼ 0.2 eV for a minimal model with seven parameters, not using CMB
lensing extraction techniques mentioned in the next chapter. Much better bounds
can be obtained using CMB lensing extraction and other LSS observations, as we
shall see in Section 6.5.1.

5 Here we assume that for this particular data set, the 95% C.L. bound is equal to twice the 68% C.L. bound,
which seems to be the case, judging from Fig. 8 of Moresco et al., 2012a.
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6

Recent times: neutrinos and structure formation

There are several ways to observe the large-scale structure of our universe on
different scales and redshifts. This structure is even more sensitive to the neutrino
abundance, mass spectrum and properties than CMB anisotropies, and offers several
opportunities to measure neutrino parameters. If the universe can be described by
general relativity and does not feature significant dark energy perturbations, all
observables related to large-scale structure can be inferred from the matter power
spectrum P (η, k) defined through

〈δM(η, �k)δ∗M(η, �k′)〉 = P (η, k) δ(3)(�k − �k′). (6.1)

Here δM is the relative density perturbation of nonrelativistic matter components.
In a �CDM universe with CDM, baryons and nonrelativistic neutrinos, δM can be
decomposed as

δM = δρM/ρ̄M =
( ∑
i=B,C,ν

ρ̄iδi

)/( ∑
i=B,C,ν

ρ̄i

)
. (6.2)

In this chapter, for simplicity, we will often use the same letter to denote a function of
conformal time η, or of the corresponding redshift z, or finally of the corresponding
scale factor a. For instance, we will write indifferently P (η, k), P (z, k) or P (a, k).

As we shall see in Section 6.4, galaxy or cluster redshift surveys probe P (η, k)
modulo a light-to-mass bias factor (or function). Instead, observations of weak
lensing and of the late integrated Sachs–Wolfe contribution to the CMB probe the
power spectrum of metric fluctuations, on scales smaller than the Hubble radius.
The latter can be related to P (η, k) using the Poisson equation

k2φ = k2ψ = −4πGa2ρ̄MδM (6.3)

(during matter and� domination, we can ignore the photon and neutrino anisotropic
stresses, implying φ = ψ , and in the gravitational source term

∑
i ρ̄iδi we can

273
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ignore the subdominant contribution of relativistic species). Finally, Lyman-α
observations probe the one-dimensional matter power spectrum, related to the
three-dimensional one by a simple convolution.

Because the matter power spectrum is so crucial, we will devote the first two
sections of this chapter to the computation and parameter dependence of P (η, k).
Fluctuations on a sufficiently large scale and/or at sufficiently large redshift can
be described by linear theory. Observations of P (η, k) in the linear regime store
a maximum amount of information concerning cosmological parameters, and are
less affected by theoretical errors, bias and non-gaussianity issues. Section 6.1
will be entirely devoted to the properties of the linear matter power spectrum,
and in particular to the impact of neutrinos on this quantity. However, it is also
important to compute neutrino effects on the nonlinear power spectrum, either
because some observational methods probe only the mildly nonlinear regime, or
in order to increase the amount of information extracted from a given data set
covering both linear and nonlinear scales, or finally because some specific neutrino
effects show up only in the nonlinear region (for instance, for heavy sterile neu-
trinos). We will review nonlinear issues in Section 6.2. Then we will come back
to CMB fluctuations, and explain in Section 6.3 how secondary anisotropies are
influenced by neutrino properties at small redshift. We will give a brief summary
of current and future techniques for measuring the matter power spectrum in Sec-
tion 6.4. Finally, we will present observational constraints on neutrino parameters in
Section 6.5.

6.1 Linear matter power spectrum

The computation of the linear matter power spectrum is as subtle as that of the CMB
temperature spectrum. In this section, we will review this topic in a simple and
qualitative way, insisting on the physical issues that are important for understanding
the possible impact of neutrinos on P (η, k).

Because the matter power spectrum of a �CDM model (with eventually rel-
ativistic or nonrelativistic neutrinos) depends on the evolution of the three den-
sity fluctuations δC, δB, δν , the relative abundances of the underlying compo-
nents are important. They can be parameterized by the CDM, baryon and neutrino
fractions

fC ≡ ρ̄C

ρ̄C + ρ̄B + ρ̄ν
, fB ≡ ρ̄B

ρ̄C + ρ̄B + ρ̄ν
, fν ≡ ρ̄ν

ρ̄C + ρ̄B + ρ̄ν
(6.4)

subject to fC + fB + fν = 1. Because CDM and baryons are nonrelativistic during
the CMB and structure formation epochs, fB/fC can always be regarded as constant.
The neutrino fraction fν becomes asymptotically constant after the nonrelativistic
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transition of neutrino species. If one neutrino species is much heavier than the
others, fν becomes roughly constant as soon as this species becomes nonrelativistic,
because lighter species represent a negligible fraction of fν . If several species have
masses of the same order of magnitude, fν can have a nontrivial evolution with
various steps before reaching its constant asymptote.

To introduce technical difficulties one after another, we will first summarize in
Section 6.1.1 the properties of the matter power spectrum in a universe containing
no neutrinos (fν = 0) and a negligible baryon fraction (fB  1). In this limit,
CDM does not experience gravitational feedback from baryons and neutrinos, and
simple solutions can be derived. We will then discuss the impact of baryons in
Section 6.1.2, of relativistic relics such as massless neutrinos in Section 6.1.3, of
hot dark matter such as light neutrinos in Section 6.1.4, and of warm dark matter
such as heavy sterile neutrinos in Section 6.1.5.

6.1.1 Neutrinoless universe with cold dark matter

Equation of evolution for cold dark matter

Baryons always play a crucial role in the dynamics of the tightly coupled photon–
baryon fluid, but if fB  fC, they play a negligible role with respect to CDM for
linear structure formation. In a neutrinoless universe, the only significant contribu-
tion to the matter power spectrum then comes from CDM perturbations, so we only
need to follow the evolution of δC(η, k). On super-Hubble scales and for adiabatic
initial conditions, we know from Eqs. (5.24), (5.41) and (5.44) that δC is constant
and related to metric fluctuations through

δC(η, k) = −3

2
φ(η, k) = −3

2
ψ(η, k) = −1 (η < ηeq) (6.5)

δC(η, k) = −2φ(η, k) = −2ψ(η, k) = −6

5
(η > ηeq) (6.6)

(these relations apply to transfer functions normalized to R(ηini, �k) = 1, as
explained in Section 5.1.4). On sub-Hubble scales, we expect δC to grow because
of gravitational collapse. The growth rate could potentially depend on� The expansion rate: faster expansion implies less efficient gravitational interac-

tions, because all physical distances between two bodies increase with the scale
factor. In typical equations of evolution, this effect is accounted by a “Hubble
friction” term.� Gravitational interactions with other species (in the present case, only with
photons, because we assumed baryons to be negligible in terms of density and
gravitational back-reaction, and neutrinos to be absent).
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The equation of evolution for δC is obtained by combining the continuity and Euler
equations (5.19) into

δC
′′ + a′

a
δC

′ = −k2ψ + 3φ′′ + 3
a′

a
φ′. (6.7)

The second term on the left-hand side accounts for Hubble friction. The first term
on the right-hand side represents the gravitational attraction force (generated by
CDM itself and all other species if relevant), whereas the next two terms are related
to dilation, i.e., to local variations of the expansion rate.

Modes crossing the Hubble scale during matter domination

Equation (6.7) is easy to solve after the time of equality between matter and radi-
ation. First, we notice that only collisionless relativistic particles (only decoupled
photons in a neutrinoless universe) can contribute to the total anisotropic stress
σ . Because the density of photons is subdominant after radiation-to-matter equal-
ity, anisotropic stress can be neglected, and the Einstein equation (5.22) implies
φ = ψ . Next, because cold dark matter is a pressureless self-gravitating fluid in
this regime, it will not experience acoustic oscillations, and both δC and φ must be
smooth over a Hubble time scale, rather than oscillating with a pulsation of order
k. So the time derivatives of φ on the right-hand side should be negligible with
respect to k2ψ = k2φ. The latter quantity is given inside the Hubble radius by the
Poisson equation (5.21)

k2φ = k2ψ = −4πGa2ρ̄CδC. (6.8)

Finally, the equation of evolution for CDM inside the Hubble radius and after
equality can be approximated as

δC
′′ + a′

a
δC

′ − 4πGa2ρ̄CδC = 0. (6.9)

During matter domination, the scale factor evolves like a ∝ η2 and the Friedmann
equation gives

4πGa2ρ̄C � 4πGa2ρ̄tot = 3

2

(
a′

a

)2

. (6.10)

Then equation (6.9) becomes

δC
′′ + 2

η
δC

′ − 6

η2
δC = 0 (6.11)

and has two trivial solutions. The growing mode, δC ∝ η2 ∝ a, gives the famous
growth rate of structures during matter domination in the linear regime. During �

domination, one should replace (a′/a) using the Friedmann law in the presence of
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both ρ̄C and ρ̄�. The solution is a hypergeometric function and is the same for each
k modulo an arbitrary constant of integration, because the equation of evolution is
k-independent. We will not write this solution explicitly but will incorporate it into
a function g(a;�M) defined as

g(a;�M) = aM δC(a, k)

a δC(aM, k)
, (6.12)

where aM is the scale factor at some arbitrary time deep inside the matter-dominated
regime, when δC ∝ a. This definition is convenient because it allows us to write
the growing mode for δC as

δC(a, k) ∝ a g(a;�M) (6.13)

during both matter and � domination, with g(a;�M) = 1 deep inside the matter-
dominated regime. Hence g stands for the correction to the linear growth factor of
δC induced by the cosmological constant. By enhancing the universe’s expansion
and the Hubble friction term, � tends to slow down structure formation; hence g

decreases monotonically from one to zero. A simple approximation for g today
(Kofman et al., 1993) reads

g(a0;�M) � (�M)0.2/
[
1 + 0.003(��/�M)4/3

]
(6.14)

with �� = 1 −�M, because we restrict the discussion to a spatially flat universe.
For modes crossing the Hubble scale during matter domination, it is easy to

match the super-Hubble solution of Eq. (6.6) to this sub-Hubble solution. This
can be done either by solving Eqs. (5.20) and (6.7) simultaneously during matter
domination, or even more simply by using the Einstein equation δGi

i = δT i
i :(

2
a′′

a
−
(
a′

a

)2
)
ψ + k2

3
(φ − ψ) + φ′′ + a′

a
(ψ ′ + 2φ′) = 4πGa2 δp. (6.15)

Deep inside the matter-dominated era, this equation simplifies considerably,
because� With a negligible contribution of relativistic species and of � to the Friedmann

equation, the scale factor evolves as a ∝ η2, and the factor in front ofψ vanishes.� Because the density of photons is subdominant, anisotropic stress can be
neglected during matter domination, and the Einstein equation (5.22) implies
φ = ψ . Hence the second term in Eq. (6.15) can be neglected.� Similarly, the total pressure term on the right-hand side of Eq. (6.15) receives
only contributions from relativistic particles (photons in a neutrinoless universe),
which are subdominant during the matter era: at leading order we can neglect
this term also.
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Hence, to a first approximation, the equation governing the evolution of φ = ψ

during the matter era is

φ′′ + 6

η
φ′ = 0. (6.16)

The solutions are combinations of a constant mode and of a decaying mode φ ∝
η−5. After equality, the decaying mode quickly becomes negligible, and metric
fluctuations are constant in time on all scales. It is always surprising to see that when
structures form, the gravitational potential is constant even inside the Hubble radius.
This results from a cancellation between the effects of gravitational clustering and
of cosmological expansion during matter domination.

We can now come back to Eq. (6.7) with a constant source term on the right-hand
side, and write the most general solution,

δC = D
g
C +

Dd
C

η
− k2η2

6
ψ, (6.17)

where Dg
C and Dd

C are two constants of integration depending on �k. These constants
can be found explicitly by matching with the super-Hubble limit given in Eq. (6.6).
Neglecting the decaying mode proportional to Dd

C, we find that the result for the
transfer function of CDM perturbations reads

δC(η, k) = −6

5
− k2η2

10
. (6.18)

If we want an expression depending on a rather than η, we can use the two relations

k2η2 = 4k2

a2H 2
and

H 2

H 2
0

= �M

(
a

a0

)−3

, (6.19)

both valid during matter domination, even if they involve �M, the fractional matter
density today, and H0, the Hubble rate today. In combination with Eq. (6.18), these
relations give

δC(a, k) = −6

5
− 2

5
�−1

M

k2

a2
0H

2
0

· a
a0

(6.20)

during matter domination. Finally, a matching with the solution a g(a;�M) valid
during both matter and � domination shows that the CDM transfer function
reads

δC(a, k) = −6

5
− 2

5
�−1

M

k2

a2
0H

2
0

· a g(a;�M)

a0
(6.21)
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at any time between equality and today, and for any wavenumber k crossing
the Hubble scale during matter domination. The square of this transfer function
multiplied by the primordial spectrum (defined in Section 5.1.4) gives the matter
power spectrum for all modes k < keq with

keq ≡ aeqHeq. (6.22)

Moreover, we can only measure the matter power spectrum on scales that are
sub-Hubble today, so we can assume k � a0H0 and neglect the constant term in
Eq. (6.21). Finally, the large-wavelength branch of the power spectrum is

P (a, k) = δC(a, k)2PR(k) (6.23)

= 2π2

k3

(
2

5
�−1

M

k2

a2
0H

2
0

· a g(a;�M)

a0

)2

PR(k) , (a0H0 < k < keq).

Modes crossing the Hubble scale during radiation domination

We have achieved only half of the task of this section: we have not yet discussed
the evolution of scales crossing the Hubble radius during radiation domination.
This involves subtle issues related to the way to treat Eq. (6.7) for η ≤ ηeq. One
could assume naively that because CDM does not dominate the expansion during
radiation domination, the Poisson equation

k2ψ = −4πGa2
(
ρ̄γ δγ + ρ̄CδC

)
(6.24)

can be simplified by neglecting the CDM contribution. In that case, ψ could be
inferred from the oscillatory evolution of the self-gravitating photon fluid, and
could be plugged into the right-hand side of Eq. (6.7) as an external source term.
This approach is, however, incorrect. CDM fluctuations can be neglected in the
Poisson equation only as long as∣∣∣∣δC

δγ

∣∣∣∣ < ρ̄γ

ρ̄C
= aeq

a
. (6.25)

The term on the right-hand side of this inequality is greater than one during radiation
domination but decreases with expansion. The term on the left-hand side starts from
(3/4) on super-Hubble scales (see Eq. (5.24)), and grows on sub-Hubble scales,
because CDM is pressureless and experiences gravitational clustering (we will see
later at what rate this growth takes place). Hence, inevitably, the CDM contribution
to the Poisson equation becomes dominant well inside the Hubble radius. In this
regime, it is the CDM component rather than the relativistic one that behaves like
a self-gravitating fluid. Tightly coupled photons actually decouple from gravity in
this limit: we have already seen in Section 5.1.5 that pressure forces take over from
gravitational forces in the photon equation of evolution (5.38). Hence, deep inside
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the Hubble scale and during radiation domination, CDM is already governed by
the same equation as during matter domination, namely Eq. (6.9).

The most subtle issue consists of solving the CDM equation of motion just after
Hubble crossing, when both photons and CDM are contributing to the Poisson
equation. The literature offers various analytic approaches for studying this regime.
It is possible to solve the coupled equations of motion simultaneously for tightly
coupled photons and CDM perturbations. After a few approximations, one is led
to analytic solutions of a rather complicated form (involving the cosine integral).
A much simpler approach has been used since the work of Mészáros (1974),
although Weinberg (2002) was the first to establish it on firm mathematical ground.
Weinberg pointed out that the solution of the full system describing the evolution
of (δγ , δC, φ, ψ) can be decomposed into fast modes (oscillating with a pulsation
on the order of k or kcs) and slow modes (only evolving over a Hubble time scale).
Power counting arguments show that for fast modes, δC is always subdominant in
the Poisson equation, whereas for slow modes, it is δγ that is subdominant.1 This
nontrivial result implies that fast modes can be inferred from the photon equation
of motion and Einstein equations with δC set to zero, and vice-versa for slow
modes. In other words, the gravitational back reaction of one species on the other
species can be neglected. At the end of the calculation, the full solution for metric
fluctuations is given by the sum of all modes, i.e., by the superposition of damped
acoustic oscillations with zero mean value (for fast modes) and a smooth function
shifting the zero-point of the oscillations (for slow modes), accounting for CDM
gravitational clustering.

As long as we are interested in the CDM evolution, we need to bother only
about slow modes, and we can employ the very same equation as in other regimes,
namely Eq. (6.9). This equation can be combined with the Friedmann equation
sourced by the sum of ρ̄R = ρ̄γ and ρ̄M = ρ̄C,(

a′

a

)2

= 8πG

3
a2(ρ̄M + ρ̄R). (6.26)

After introducing the parameterization

ρ̄M = ρ̄eq(a/aeq)−3, ρ̄R = ρ̄eq(a/aeq)−4, y ≡ a/aeq (6.27)

and changing variables from η to y, one obtains a simple second-order equation
for δC involving only y, called the Mészáros equation,

y(1 + y)
d2δC

dy2
+
(

1 + 3y

2

)
dδC

dy
− 3

2
δC = 0, (6.28)

1 The proof presented in Weinberg (2002) applies to equations in the synchronous gauge, but on sub-Hubble
scales the synchronous and Newtonian gauges lead to the same equations and solutions.
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with two exact analytical solutions first derived by (Mészáros, 1974; Groth and Pee-
bles, 1975; see also Weinberg, 2008), which we do not write here for conciseness. It
is sufficient for the rest of the discussion to admit that the fastest-growing solution is
proportional to ln(y) deep inside radiation domination, and to y deep inside matter
domination. During radiation domination, the transfer function δC(a, k) properly
normalized to adiabatic initial conditions has a sub-Hubble limit

δC(a, k) −→ α + β ln

(
k

aH

)
(η  ηeq, k � aH ), (6.29)

where α and β are two numerical coefficients independent of k. We see that
CDM clusters much more slowly during radiation domination than during matter
domination (because δC grows logarithmically rather than linearly with the scale
factor), as a consequence of the different expansion law. This is a key result
for understanding structure formation. In total, for a qualitative understanding of
the matter power spectrum, it is sufficient to approximate the growth of CDM
perturbations during radiation domination with Eq. (6.29) evaluated at the time of
equality, i.e., when aH = aeqHeq ≡ keq, and to perform a crude matching with the
sub-Hubble solution during matter and � domination, i.e., with the second term in
Eq. (6.21). This means that during the matter- and �-dominated stages, the CDM
transfer function is

δC(a, k) = (
α + β ln(k/keq)

) a g(a;�M)

aeq
. (6.30)

To homogenize this result with its counterpart of Eq. (6.23) for modes k < keq, we
notice that at equality

H 2
eq

H 2
0

= �R(a0/aeq)4 +�M(a0/aeq)3 = 2�M(a0/aeq)3, (6.31)

from which we infer

a

aeq
= a a2

eqH
2
eq

2�Ma
3
0H

2
0

= a k2
eq

2�Ma
3
0H

2
0

. (6.32)

Finally, following the same steps as in Eq. (6.23), the matter power spectrum of
modes crossing the Hubble scale during radiation domination is

P (a, k) = 2π2

k3

(
1

2
�−1

M

k2
eq

a2
0H

2
0

· a g(a;�M)

a0

[
α + β ln

(
k

keq

)])2

PR(k). (6.33)
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Figure 6.1 Matter power spectrum for two neutrinoless �CDM models with the
same primordial spectrum and �M, but different baryon-to-CDM ratios ωB/ωC.
The difference between the two curves clearly shows the baryon effects described
in the text (suppression of power for k ≥ keq and imprint of small acoustic
oscillations).

Matter power spectrum in practical units

In summary, the two asymptotes of the matter power spectrum (6.23, 6.33) read

P (a, k) =
(
a g(a;�M)

a0

)2
kPR(k)(
�Ma

2
0H

2
0

)2 ×

⎧⎪⎨
⎪⎩

8π2

25 (a0H0 < k < keq)

k4
eq

2k4

(
α+β ln

(
k
keq

))2
(k > keq).

(6.34)

For a scale-invariant power spectrum (a constant PR), the matter power spectrum
scales like k on large scales, and like k−3 ln(k)2 on small scales. This behavior is
indeed well reproduced by numerical results (see for instance Fig. 6.1, where the
upper curve corresponds to a neutrinoless �CDM model with negligible baryon
fraction). An analytic approximation to the matter power spectrum in the interme-
diate range k ∼ keq can be obtained from the full solution of the Mészáros equation
(see, e.g., Weinberg, 2008). Accurate fits to the numerical results have also been
derived by Eisenstein and Hu, 1998. The fact that the spectrum of a �CDM
model with negligible baryon fraction is smooth instead of keeping track of acous-
tic oscillations is counterintuitive; it is a consequence of the absence of efficient
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gravitational back reaction of photons over CDM during radiation domination, as
already explained after Eq. (6.25).

The matter power spectrum is usually expressed as a function of k in units of
h/Mpc. It is worth coming back on this choice. Although comoving wavenumbers
do not represent physical quantities, the ratio a0/k is a physical distance that can be
expressed in units of megaparsecs (because 2πa0/k is the current wavelength of the
comoving Fourier mode k). However, the evolution of cosmological perturbations
inside the Hubble radius depends primarily on how far inside the Hubble radius is
a given Fourier mode, i.e., on the dimensionless ratio k/(aH ). Hence it is useful
to plot the power spectrum as a function of the dimensionless number k/(a0H0).
A different choice for the value of H0 will then leave the overall shape of the
power spectrum P (a, k/(a0H0)) invariant (if all other relevant characteristic times
or scales do not change simultaneously). However, by definition of the reduced
Hubble parameter and in units such that c = 1, we have H0 = h/3000 Mpc−1.
Hence

k

a0H0
= 3000

[
k/a0

1hMpc−1

]
. (6.35)

Thus it is equivalent to plot the spectrum as a function of k/(a0H0) or of

k̃ ≡
[

k/a0

1hMpc−1

]
. (6.36)

Because astrophysicists often use the implicit assumption that a0 = 1 in plots
involving comoving wavenumbers, the matter power spectrum is usually displayed
as a function of k in units of h/Mpc along the horizontal axis, i.e., as a function
of k̃. We must reexpress our results for P as a function of k̃ if we want to comply
with standard conventions and remove a trivial dependency on H0.

The same discussion holds for the units of the power spectrum itself. In
Eq. (6.34), the quantities k−1 and (a0H0) are comoving scales. Other quantities
such as �M, (a/a0), g(a;�M) or PR are dimensionless. So P represents a cube
comoving scale, and a3

0P has the dimension of the cube of physical length. The
quantity left invariant by a change of H0 is then the ratio of a3

0P to the cube of the
Hubble radius today, i.e., the dimensionless number a3

0H
3
0 P . Because

a3
0H

3
0 P = 3000−3

[
a3

0P

1h−3Mpc3

]
, (6.37)

plotting a3
0H

3
0 P is equivalent to plotting

P̃ ≡
[

a3
0P

1h−3Mpc3

]
. (6.38)
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This explains why plots usually show P in units of h−3Mpc3, with an implicit
assumption that a0 = 1. The expression for P̃ as a function of k̃ can easily be
obtained from Eq. (6.34):

P̃ (a, k̃) = N
(
a g(a;�M)

a0 �M

)2

k̃PR(k̃) ×

⎧⎪⎨
⎪⎩

8π2

25 (k̃ < k̃eq)

k̃4
eq

2k̃4

(
α + β ln

(
k̃

k̃eq

))2
(k̃ > k̃eq)

(6.39)

with

N ≡
(

1hMpc−1

H0

)4

= 30004. (6.40)

As expected, the rescaled power spectrum does not depend explicitly on the value
of H0. Apart from the primordial power spectrum, it actually depends on only
two free parameters: �M and k̃eq (we recall that α and β are uniquely fixed by
the solution of the Mészáros equation with adiabatic initial conditions). Indeed,
�M (equal to (1 −��)) governs the time of equality between matter and �, and
the amount of perturbation damping during � domination, encoded in g(a;�M),
whereas k̃eq defines the scale of the transition between the two asymptotes, or in
other words the scale of the peak in the matter power spectrum. The �M factor in
the denominator just comes from the fact that we expressed the power spectrum as
a function of a/a0 rather than conformal time, and the coefficient of proportionality
between a/a0 and η2 during matter domination depends on the matter density in
the universe, i.e., on �MH

2
0 (as can be checked from Eq. (6.19)).

6.1.2 Neutrinoless universe with cold dark matter and baryons

Because current observations favour a value of the baryon fraction close to fB ∼
0.2, the results of the previous section do not provide a realistic description of
linear structures in the universe. Let us follow the same steps as in Section 6.1.1
and identify the changes brought about by the presence of baryons.

Baryon drag epoch

An important characteristic time for structure formation is that of baryon decou-
pling, which does not coincide exactly with that of photon decoupling. In Sec-
tion 5.1.6, we defined the photon decoupling time ηLS as the maximum of the
photon visibility function, i.e., the most likely time for the last scattering of pho-
tons. To understand structure formation, we should compute the time at which
baryons are effectively released by the photons and start to cluster like free-falling
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nonrelativistic particles. The baryon interaction term on the r.h.s. of Eq. (5.17)
(often called the baryon drag term, because it describes how baryons tend to drag
photons towards gravitational potential wells) corresponds to an interaction rate
R−1aneσT, from which we can define the drag depth (see, e.g., Hu and Sugiyama,
1996),

τdr(η) ≡
∫ η0

η

dη R−1aneσT. (6.41)

The drag depth is similar to the photon optical depth of Eq. (5.54) with an addi-
tional R−1 factor. It goes from infinity in the tightly coupled limit to zero in the
decoupled limit. The characteristic time ηdr at which baryon drag stops being effi-
cient, defined through τdr(ηdr) = 1, is usually called the baryon drag time (a slightly
misleading terminology, because it marks the end of drag effects). Because in real-
istic models recombination takes place at the beginning of matter domination with
R = 3ρ̄B/4ρ̄γ < 1, the release of baryons takes place soon after photon decoupling
(in terms of redshifts, zdr < zLS). We mentioned in Section 5.1.6 that the value zLS,
fixed by the recombination history, has a very mild dependence on the few param-
eters affecting the free electron fraction evolution ne(z), such as ωB, the primordial
helium fraction YP, and eventually Neff . For realistic parameter values, zLS varies
by such small amounts that it can usually be considered a fixed number. Instead zdr

has a strong dependence on ωB due to the factor R appearing in the definition of
τdr. Baryons are released earlier if the baryon density is increased.

We have seen in Section 5.1.5 that in the tight-coupling regime η  ηdr, baryons
track photons with δB = 3

4δγ . At recombination and until ηdr, baryon fluctuations on
scales smaller than the photon and baryon mean free paths are erased by diffusion
effects. This mechanism is called Silk damping (Silk, 1968). After the baryon drag
epoch, baryon fluctuations evolve according to the same equation as any other
colisionless species, identical to Eq. (6.7) for CDM:

δB
′′ + a′

a
δB

′ = −k2ψ + 3φ′′ + 3
a′

a
φ′. (6.42)

Modes crossing the Hubble scale after the baryon drag epoch

As in Section 6.1.1, we first discuss the evolution of perturbations on large scales –
more precisely, on comoving scales crossing the Hubble radius after the baryon
drag epoch. For such modes, the CDM and baryon density perturbations are equal
to each other at any time, because they start from the same initial conditions (5.41),
(5.44) and they are subject to the same equation of evolution (6.7), (6.42) during
and after Hubble crossing. The total matter perturbation is then equal to

δM = (1 − fB)δC + fBδB = δC = δB. (6.43)
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The three quantitites δC, δB and δM evolve exactly like δC in a universe with fB  1,
and the power spectrum is still given by the large-scale asymptote of Eq. (6.39),
independent of fB.

Modes crossing the Hubble scale before the baryon drag epoch

Before the baryon drag time, the behavior of baryon fluctuations δB = 3
4δγ = 3�γ 0

can be inferred from that of photon fluctuations, already studied in Section 5.1.5.
Baryons experience acoustic oscillations, with a boost after horizon crossing due
to gravitational driving forces, a constant amplitude during radiation domination
deep inside the Hubble length, a decreasing amplitude with a shift of the zero point
of oscillations at the beginning of matter domination, and finally, an exponential
suppression on small scales during recombination due to Silk damping.

To understand the evolution of CDM, the arguments of Weinberg, 2002 con-
cerning fast and slow modes can still be applied. Soon after Hubble crossing and
for slow modes, δB and δγ are negligible with respect to δC. For fast modes, the
contrary is true. Hence, the evolution of δC is still given by Eq. (6.9). Because
ρ̄C = ρ̄M − ρ̄B, this equation can be written as

δC
′′ + a′

a
δC

′ − 4πGρ̄M(1 − fB)δC = 0 (6.44)

and can be put in the Mészáros form following the same steps as in (6.26) and
(6.27), but with now an extra factor (1 − fB),

y(1 + y)
d2δC

dy2
+
(

1 + 3y

2

)
dδC

dy
− 3

2
(1 − fB)δC = 0. (6.45)

We see that the impact of baryons consists of reducing the gravitational force term,
for a fixed Hubble friction term. By shifting the balance between gravitational
attraction and background expansion, baryons reduce the growth rate of CDM.
This is confirmed by the solution of the equation, during both radiation and matter
domination. For instance, using the Friedmann equation, it is easy to show that
deep inside matter domination, the fastest-growing solution of Eq. (6.45) is

δC ∝ a1− 3
5fB . (6.46)

In summary, CDM perturbations reach the baryon drag epoch with a reduced
amplitude with respect to the fB = 0 limit. Modes entering earlier in the Hubble
radius are subject to a reduced growth rate for a longer time, so δC(ηdr, k) is
negatively tilted with respect to the fB = 0 limit, with less and less power at large
k. The suppression of δC(ηdr, k) tends to saturate in the large k limit, because in the
early radiation-dominated regime, the impact of baryons is very small.
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At the baryon drag time, it is obvious that |δB|  |δC| for wavenumbers well
inside the Hubble radius. Indeed, baryon fluctuations have been oscillating together
with photons and have been further suppressed by Silk damping. Meanwhile, CDM
fluctuations have been growing because of gravitational clustering.

The evolution of baryons after the drag time is governed by Eq. (6.42), which
has a simple solution during matter domination in the limit of constant metric
fluctuations,

δB = D
g
B +

Dd
B

η
− k2η2

6
ψ. (6.47)

We see that baryon perturbations reach asymptotically the same value as those
of CDM, given by −(k2η2ψ)/6. This is not surprising, because both species are
nonrelativistic and fall into the same potential wells. Because they start from a
much smaller value, the matching of this solution with that for η ≤ ηdr leads to
coefficients Dg

B and Dd
B such that Dg

B +Dd
B/ηdr is negative. The time needed for

baryon fluctuations to reach the same value as CDM fluctuations is greater for
smaller scales, because in the large-k limit the ratio |δB/δC| is smaller at ηdr.
However, on all cosmological scales of interest in this book (i.e., scales which are
still in the linear or midly nonlinear regime today), baryon and CDM fluctuations
become equal to each other at a redshift varying between zdr ∼ 1000 for large
scales and z ∼ 100 for small scales. After that time, we can follow a single variable
δM = fBδB + (1 − fB)δC, whose evolution follows

δM
′′ + a′

a
δM

′ − 4πGρ̄MδM = 0. (6.48)

This equation is again identical to the one governing the CDM evolution in a
universe with fB � 0. In fact, it describes the exact evolution of δM at any time
after baryon drag, even when |δB| < |δC| (as can be shown using Eqs. (5.21), (6.7)
and (6.42)). Therefore, instead of following separately δB and δC between baryon
drag and the time at which δB = δC, it is sufficient to perform a matching at η = ηdr

between the solutions δB(η, k), δC(η, k) for η ≤ ηdr and the solution of the above
equation for η ≥ ηdr. A priori, the matching process should give the coefficient
of the growing mode of δM (growing linearly with a during matter domination)
as a linear combination of the four numbers δC(ηdr, k), δC(ηdr, k)′, δB(ηdr, k)′ and
δB(ηdr, k)′.

This matching has been studied in detail by Hu and Sugiyama, 1996 and Eisen-
stein and Hu, 1998. The leading term turns out to be the first one, and also the last
one if fB is not too small. The fact that the contribution of δC(ηdr, k)′ is negligible
comes from the fact that δC(η, k) is slowly varying before the matching. Instead,
baryon fluctuations are quickly evolving before the baryon drag time, and their
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time derivative at ηdr plays a crucial role in the subsequent evolution of baryon
fluctuations.

We know that the transfer function δC(ηdr, k) is smoothly increasing with k

(see Eq. (6.30)), whereas δB(ηdr, k) is oscillating and quickly decreasing with
k (because of combined effects of acoustic oscillations and Silk damping). The
derivative δB(ηdr, k)′ is also oscillating and decreasing with k, with a phase shifted
by π/2. Hence in the large k limit, the contribution of baryons to the growing mode
of δM is negligible, and the result of the matching is as simple as

δM(ηdr, k) �
[

ρ̄C

ρ̄C + ρ̄B

]
δC(ηdr, k). (6.49)

The factor between brackets is simply equal to fC = 1 − fB in the present case, but
more generally, if other species such as massive neutrinos were present, it would
be given by (1 + ωB/ωC)−1.

In the large-k limit, baryon fluctuations do not contribute directly to the final
matter power spectrum, but the amplitude of total matter fluctuations is suppressed
by a factor fC with respect to that of CDM fluctuations at η = ηdr. This accounts
for the reduced growth rate of δC (see Eq. (6.46)) between baryon drag and the time
at which δB = δC.

In the limit fB  1, the CDM transfer function during matter and � domination
(for modes crossing the Hubble radius during radiation domination) was given by
Eq. (6.30). The previous discussion suggests that baryon effects can be accounted
for by modifying this result in the following way:

δC(a, k) =
[
α
(
ωB
ωC

)+ β
(
ωB
ωC

)
ln

(
k

keq

)
+ γ (k) sin[krs(ηdr)]

]
a g(a;�M)

aeq
.

(6.50)

The coefficients α and β are now functions of the baryon-to-CDM fraction, where
this dependence accounts for the reduced growth of CDM perturbations during
radiation and matter domination, until the time at which δB = δC. The extra contri-
bution from baryon perturbations, significant only on intermediate scales crossing
the Hubble radius at the end of radiation domination, oscillates like sin[krs(ηdr)]
because it comes from the derivative of δB or�γ,0, which oscillate like cos[krs(ηdr)].
The envelope of these oscillations is given by a function γ (k) decreasing with k.
We did not write explicitly the dependence of γ on parameters such as the baryon
density and the Silk damping scale.

In summary, the presence of a significant baryon fraction affects the shape of the
matter power spectrum on small scales. The expression (6.39) for P̃ (a, k̃) should
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be replaced in the k̃ � k̃eq limit by

P̃ (a, k̃) = N
(
a g(a;�M)

a0�
0
M

)2

k̃PR(k̃) (6.51)

× k̃4
eq

4k̃4

(
α

(
ωB

ωC

)
+ β

(
ωB

ωC

)
ln

(
k

keq

)
+ γ (k) sin[krs(ηdr)]

)2

.

The baryon impact is illustrated in Fig. 6.1.

Spectrum shape and evolution as a function of cosmological parameters

We can now review the effect of cosmological parameters on the matter power
spectrum in a neutrinoless �CDM universe, in the same way as in Section 5.1.6 for
the CMB temperature spectrum. We introduced in Eq. (6.38) the quantity P̃ (a, k̃)
referring to the matter power spectrum expressed in units of h−3Mpc3, as a function
of the scale factor and of Fourier wavenumbers expressed in units of hMpc−1. When
evaluated today, P̃ (a0, k̃) depends on

(P1) The scale k̃eq, which determines the location of the maximum in the matter
power spectrum. Following equations (6.35, 6.36), this scale is given by
the dimensionless ratio [aeqHeq]/[a0H0] divided by a factor of 3000. Using
Eq. (6.31), is easy to show that this ratio is equal to [2�M(1 + zeq)]1/2.

(P2) The baryon-to-CDM fraction (ωB/ωC), which alters the shape of the large-
scale asymptote. When this fraction increases, the spectrum is suppressed for
k̃ ≥ k̃eq, accounting for a reduction in the growth rate of CDM perturbations
as long as |δB|  |δC|, but on intermediate scales some small baryon acoustic
oscillations (BAO’s) inherited from the baryon density fluctuations prior to
the baryon drag epoch are imprinted.

(P3) The phase of the BAO’s depends on the sound horizon at the drag epoch
rs(ηdr), and the decrease of the oscillation amplitude with k (more difficult to
observe precisely) depends on the Silk damping scale rd(ηdr). Both parame-
ters depend strongly on ωB. Note that the scale of BAO oscillations differs
from that of CMB oscillations not only due to the difference between rs(ηLS)
and rs(ηdr), but also due to a phase shift by π/2.

(P4) The overall amplitude of the matter spectrum depends on both �M (given by
(1 −��), because we are dealing with spatially flat �CDM models) and on
the primordial spectrum amplitude As (defined in Eq. (5.34)).

(P5) The overall tilt of the matter spectrum depends on that of the primodial
spectrum ns (also defined in Eq. (5.34)).

As a function of time, the matter power spectrum of a neutrinoless universe has
a fixed shape (as long as we do not reach such high redshifts that on small scales
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δB �= δC). It evolves with the scale factor like [a g(a;�M)]2, or as a function of
redshift like

P̃ (z, k̃) = (1 + z)−2g(z;�M)−2. (6.52)

Prior to � domination, when g(z;�M) � 1, the product (1 + z)2P̃ (z, k̃) is inde-
pendent of redshift.

6.1.3 Impact of massless neutrinos

We have seen in Section 5.3.2 that the impact of massless neutrinos or any rela-
tivistic relics on the evolution of linear cosmological perturbations can be parame-
terized by a single degree of freedom, the effective neutrino number Neff (defined
in Eq. (2.198)), irrespective of the details of the phase-space distribution function.
Following the same logic as in Section 5.3.1, we notice that a variation in Neff can
potentially affect the matter power spectrum through

(a) Background effects: Enhancing the radiation density can change some char-
acteristic times and scales that control the matter power spectrum. According
to the results of the previous section, for a fixed primordial spectrum PR(k̃),
the matter power spectrum is affected by four effects (P1)–(P4) depending
mainly on (�M, zeq, ωB/ωC, ωB). The variation of these four parameters with
Neff depends on which quantities are chosen to be fixed when Neff varies, as
we shall see later.

(b) Perturbation effects: Neutrino perturbations can have a direct impact on matter
perturbations due to the gravitational coupling between neutrinos, CDM and
baryons. As explained in Section 5.3.1, this coupling can only be important
during radiation domination and immediately after Hubble crossing; other-
wise relativistic neutrino fluctuations are too small to back-react on matter
perturbations.2

We can already guess that direct perturbation effects are small. Indeed, we
know from Section 5.2.5 that the perturbations δν(η, k) = Fν0(η, k) of free-
streaming relativistic particles oscillate after Hubble crossing with a pulsation
k. Hence, in Weinberg’s decomposition of the full solution in fast modes
and slow modes (see Section 6.1.1), neutrinos couple only with fast modes.
Therefore, before the baryon drag epoch, neutrino perturbations cannot have a
significant back-reaction on CDM perturbations, which are described entirely
in terms of slow modes. The Mészáros equation (6.28) (or (6.45) if the baryon
fraction is not negligible) still applies to scenarios with relativistic relics, with
no further modification.

2 This category of effect was called (b.1) in Section 5.3.1. Effects called (b.2) and (b.3) are specific to photons
and are irrelevant for the matter power spectrum calculation.
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Fast modes (describing photon and baryon oscillations) are instead affected
by the presence of neutrino perturbations. We actually summarized the corre-
sponding effects in Section 5.3.2. The gravitational feedback of free-streaming
neutrinos just after horizon crossing reduces the amplitude of acoustic oscil-
lations in the coupled photon–baryon fluid and slightly shifts the oscillation
phase (Hu, 1995; Bashinsky and Seljak, 2004). These effects are imprinted in
baryon fluctuations δB(η, k) prior to the baryon drag time, and in BAO features
in the total matter power spectrum after that time.

In summary, we expect direct effects of neutrino perturbations to show up
only in the amplitude and phase of baryon acoustic oscillations.

To check this with numerical results, we would like to vary Neff and cancel all
background effects, in order to isolate direct neutrino perturbation effects. This is
impossible, because background effects depend on (�M, zeq,ωB/ωC,ωB): if we keep
these four quantities fixed, then Neff is also fixed through Eq. (5.104) (assuming of
course that ωγ is also fixed by the measurement of the CMB temperature):

zeq = ωM

ωγ [1 + 0.2271Neff]
=⇒ [1 + 0.2271Neff] = ωB(1 + ωC/ωB)

zeq ωγ

.

(6.53)

However, if we vary Neff while keeping only (�M, zeq, ωB/ωC) fixed, we expect
the fraction of the matter power spectrum inherited from CDM perturbations (i.e.,
from slow modes during radiation domination) to be unaffected. In the following
subsections, we will see how the spectrum changes if we vary Neff while keeping
fixed either (�M, zeq, ωB/ωC) or (�M, zeq, ωB). The second option is also relevant,
because LSS data are usually used in combination with CMB data, which tend
to fix accurately ωB (in fact, the ratio ωB/ωγ ) rather than ωB/ωC, as explained in
Section 5.1.6.

Varying Neff with fixed redshifts of equality and baryon-to-cold
dark matter ratio

Fixing (�M, zeq, ωB/ωC), i.e., the two redshifts of equality (between radiation and
matter, and between matter and �) and the baryon-to-CDM ratio, can be achieved
by multiplying the radiation density, matter density and squared Hubble parameter
by the same factor. For instance, to compare a neutrinoless model with a model of
given Neff , we can perform the transformation

(ωC, ωB, h) −→ (αωC, αωB,
√
αh) (6.54)

with α = [1 + 0.2271Neff]. This leaves the three quantities (�M, zeq, ωB/ωC)
invariant. We have done a similar transformation in Section 5.3.2 in order to identify
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Figure 6.2 Matter power spectrum for a neutrinoless model (dotted line), a model
with Neff = 3.046 and the same redshifts of equality and baryon-to-CDM ratio
(solid line) and a model with Neff = 3.046 and the same redshifts of equality
and baryon density (dashed line). The difference between the middle and lower
curves (a shift in BAO scales and amplitude) is due to a combination of neutrino
perturbation effects and a different baryon density ωB, affecting the baryon drag
time and hence the sound horizon at that time.

neutrino perturbation effects on the CMB. The difference was that in Section 5.3.2,
the matter density ωM = ωC + ωB was increased with a fixed baryon density. In
the present case, our goal is to leave effects (P1), (P2), (P4) of Section 6.1.2 unaf-
fected (as well as (P5), because the primordial spectrum is unchanged). The only
expected modifications to the matter power spectrum come from (P3), because ωB

has changed, and from direct neutrino perturbation effects. However, these two
effects can alter only the phase and amplitude of BAO’s. We show in Fig. 6.2 that
this is indeed the case. The BAO phase shift is mainly due to the fact that the
model with a higher Neff has a high baryon density ωB, so baryons are released
earlier with a low value of the sound horizon rs(ηdr). It follows that the BAO peaks
are shifted to slightly smaller scales (larger wavenumbers). The phase shift due to
neutrino drag is of opposite sign, but of smaller amplitude.

Varying Neff with fixed redshifts of equality and baryon density

Fixing ωB/ωC was useful for illustrative purposes, but in practice the CMB tends
to fix ωB with very good precision, and LSS data are used to resolve remaining
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Figure 6.3 Matter power spectrum for models with Neff = 3.046 divided by the
spectrum of a model with Neff = 0. The lower curve corresponds to the case in
which the two models share the same redshifts of equality and baryon-to-CDM
ratio, whereas in the upper one they have the same redshifts of equality and baryon
density.

parameter degeneracies. If we now perform the transformation

(ωC, ωB, h) −→ ([αωC + (α − 1)ωB], ωB,
√
αh), (6.55)

still with α = [1 + 0.2271Neff], the two redshifts of equality are still left invariant,
but the baryon-to-CDM ratio decreases. This is exactly the same transformation
as in Section 5.3.2. We now expect the matter power spectrum to be modified
by effect (P2) and by small neutrino perturbation effects. This is confirmed by
Fig. 6.2: the low baryon-to-CDM ratio results in a high amplitude on small scales;
the BAO amplitude is damped both by the smaller baryon fraction and by neutrino
perturbation effects; the small phase shift in BAOs due to neutrino drag is hardly
visible in Fig. 6.2 but appears in Fig. 6.3 when we take the ratio of the two
spectra.

6.1.4 Impact of hot dark matter

We will now scrutinize the effect of neutrino masses on the linear matter power
spectrum. As we will see later, cosmological bounds are such that we can restrict
the discussion to the case of neutrinos with mν ≤ 1.5 eV. Hence we assume that
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neutrinos become nonrelativistic after the time of equality between radiation and
matter (see Eq. (5.90)).

Evolution of neutrino perturbations

The effect of neutrinos on the matter power spectrum presents many similarities
to that of baryons (studied in Section 6.1.2), with an analogy between the baryon
drag time and the nonrelativistic transition time. Before the nonrelativistic tran-
sition, neutrinos free-stream below the wavelength λfs defined in Section 5.2.4,
i.e., roughly on all sub-Hubble scales. Their density δν(η, k) is strongly suppressed
with respect to that of nonrelativistic species, because pressure forces are much
stronger than gravitational forces and prevent gravitational collapse. After the non-
relativistic transition, we have seen at the end of Section 5.2 that the equation
of state w = P̄ν/ρ̄ν , the sound speed δpν/δρν and the anistropic-stress-to-density
ratio δν/σν decay proportionally to a−2. Their order of magnitude is given roughly
by c2

ν , i.e., by (T̄ν/mν)2; (see Eq. (5.91)).
If all these ratios vanished, neutrinos would be described by the same equation

as CDM and decoupled baryons:

δν
′′ + a′

a
δν

′ = −k2ψ + 3φ′′ + 3
a′

a
φ′. (6.56)

However, pressure perturbations and shear viscosity cannot be completely
neglected and continue to play a role in the equation of motion on sub-Hubble
scales. Like decoupled baryons, neutrinos fall in the same gravitational potential
wells as any other nonrelativistic species, and tend to an equilibrium solution, but
because of pressure and shear, this solution differs from that for baryons (Ringwald
and Wong, 2004):

δν ∼ (kfs/k)2δB = (kfs/k)2δC. (6.57)

However, the growth rate of δν(η, k) between the nonrelativistic transition and the
time at which equilibrium is reached is much lower than for baryons, because
of pressure forces and viscosity. A detailed study of this evolution shows that
today, δν = δC holds only for wavenumbers k ≤ knr. For larger wavenumbers
the ratio δν(η0, k)/δC(η0, k) decreases slowly as a function of k, as illustrated in
Figure 6.4.

Impact on the total matter power spectrum

This has important consequences for the total matter power spectrum:� For modes k < knr, the matter power spectrum of a �CDM model with massive
neutrinos is the same as that of a massless model (if the two models share the
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Figure 6.4 Matter power spectrum at redshift zero for a �CDM model with three
degenerate massive neutrino species (mν = 0.3 eV), compared to the individual
power spectrum of CDM, baryon and neutrino density perturbations. In this model
knr is equal to 5.1 × 10−3h/Mpc (see Eq. (5.94)). For wavenumbers k > knr, neu-
trino perturbations remain smaller than CDM and baryon perturbations, because
of their low growth rate after the nonrelativistic transition.

same �M and primordial power spectrum). Indeed, before the Hubble radius
is crossed, all perturbations are subject to the usual universal relations given
by Eq. (5.24) for adiabatic initial conditions. After Hubble crossing, if k < knr,
neutrino free-streaming can be neglected: massive neutrinos share the same evo-
lution as CDM and fall into the same potential wells, with δν quickly reaching the
asymptotic value of Eq. (6.57). Hence all quantitites evolve exactly as described
in Section 5.24, with neutrinos being counted as part of the cold dark matter
component. Because the matter power spectrum depends only on �M and PR(k)
for wavenumbers k < keq, and because knr < keq, two models with different
neutrino masses but the same total matter fraction and primordial spectrum are
indistinguishable on those scales.� for k � knr, we can use the fact that at low redshift and for the cosmological
scales of interest in this book, |δν |  |δC| = |δB|. If we expand the total matter
fluctuation as

δM = fCδC + fBδB + fνδν (6.58)
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(with fC + fB + fν = 1), we see that the matter power spectrum is given by

P (η, k) � (fC + fB)2PC(η, k) = (1 − fν)2PC(η, k), (6.59)

where PC(η, k) is the CDM power spectrum

〈δC(η, �k)δ∗C(η, �k′)〉 = PC(η, k) δ(3)(�k − �k′). (6.60)

So we can understand the impact of neutrino masses on those scales by simply
studying the evolution of δC. We know that after Hubble crossing and before the
baryon drag epoch, this evolution is described by Eq. (6.9):

δ′′C +
a′

a
δ′C = 4πGρ̄CδC. (6.61)

The term on the right-hand side is derived from the Poisson equation. It does
not involve photon, relativistic neutrino and baryon perturbations for the reasons
developed in Sections 6.1.1, 6.1.2 and 6.1.3: we are dealing with the slow
mode part of the solution, whereas other perturbations are either negligible or
contributing to fast modes. The right-hand side cannot involve nonrelativistic
neutrino perturbations either, because after the nonrelativistic transition |δν | 
|δC| for wavenumbers k � knr.

After the baryon drag epoch, we have seen in Section 6.1.2 that there is a
simple equation of evolution (6.48) for the weighted average between δC and
δB. We cannot denote this average δM any more because total matter now also
includes neutrinos. We should rather denote it as δCB ≡ (fCδC + fBδB)/(fC +
fB), subject to the equation of evolution

δ′′CB +
a′

a
δ′CB − 4πG(ρ̄C + ρ̄B)δCB = 0. (6.62)

Again, neutrino perturbations do not appear in this equation, for the same reasons
as in Eq. (6.9). The conclusion is that neutrino masses can affect the evolution of
δC and δCB only through the magnitude of the expansion rate (a′/a) relative to the
density of clustering species ρ̄C or (ρ̄C + ρ̄B). The background density of massive
neutrinos ρ̄ν contributes to the expansion rate through the Friedmann equation,
but not to the density of clustering species. Hence massive neutrinos enhance
the Hubble friction term relative to the self-clustering term in the preceding
equations. This leads to a reduction of the growth rate of δC and δCB, which will
be discussed below in more detail.� In the intermediate region (k slightly larger than knr), neutrino perturbations,
although smaller than CDM perturbations, are not completely negligible, at least
at small redshift. Hence there is a smooth transition between the region where
neutrino masses have no effect, and that in which they have a maximal effect.
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Figure 6.5 Steplike suppression of the matter power spectrum due to neutrino
mass. The power spectrum of a �CDM model with two massless and one massive
species has been divided by that of a massless model, for several values of mν

between 0.05 eV and 0.50 eV, spaced by 0.05 eV. All spectra have the same
primordial power spectrum and the same parameters (�M, ωM, ωB).

In summary, neutrino masses produce a smooth steplike suppression of the matter
power spectrum on scales k > knr. This step is shown in Fig. 6.5 for various masses.
In the next subsection, we show how to estimate the suppression factor analytically
as a function of neutrino masses in the small-scale limit.

Suppression factor for k � knr

Several approaches to estimating the neutrino mass impact on small scales analyt-
ically or semianalytically have been discussed in the literature. A very accurate (but
also very technical) discussion has been presented in Hu and Eisenstein, 1998 (see
also Holtzman, 1989; Pogosian and Starobinsky, 1995; Ma, 1996; Novosyadlyj
et al., 1998). For conciseness, we prefer to follow here the simple approach of
Lesgourgues and Pastor, 2006 (although with a more precise and elaborate discus-
sion of matching issues). An even simpler discussion was presented in Tegmark
(2005), at a very sketchy level.

Our goal is to estimate the ratio of the matter power spectrum with neutrino
masses (with a given neutrino fraction fν) to that with massless neutrinos (fν = 0),
in the large-wavenumber limit k � knr. Equation (6.59) shows that this ratio can
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be formulated in terms of CDM transfer functions

P (η, k)fν /P (η, k)0 = (1 − fν)2
[
δ
fν
C (η, k)/δ0

C(η, k)
]2
. (6.63)

We need to specify which parameters should be kept fixed in the comparison.
The two models should of course have the same �M and the same primordial
spectrum, in order to have the same large-scale limit. Following the logic of similar
discussions in Section 5.3, we would like ideally to cancel any difference in the
background evolution of the two models by playing with other parameters than
neutrino masses. This is obviously impossible, because the background density of
each massive species ρ̄νi (a) has a nontrivial evolution, switching from ρ̄νi ∝ a−4

to ρ̄νi ∝ a−3 around a = anr(mνi ). However, if we fix ωM to the same value in
the two models, the background evolution H (a) is identical at least for a � anr

(more precisely, in the case of neutrinos with nondegenerate masses, after the
nonrelativistic transition of the heaviest neutrinos, when the total neutrino density
ρ̄ν scales at least approximately like a−3). A fixed ωM can easily be achieved by
compensating for the increase of ων by a decrease of ωB, ωC or both. We will
discuss different choices in the following.

In summary, we wish to compare a reference massless �CDM model that we
call R, with parameters (ωR

C, ωR
B, ωR

M) such that

ωR
M = ωR

C + ωR
B , (6.64)

to a massive �CDM model that we call M, with parameters (ωM
C , ωM

B , ωM
ν , ωM

M)
such that

ωM
M = ωM

C + ωM
B + ωM

ν

ωM
M = ωR

M

ωM
ν = fν ω

R
M

ωM
C + ωM

B = (1 − fν)ωR
M. (6.65)

Our approach consists of approximating the background evolution of the massive
model, in order to use known results for the massless case. Figure 6.6 shows an
example of background evolution for two models M1 and M3 with the same fν
and two different mass splittings, compared with their common reference model R
with the same ωM. As a first approximation, we could try to compute the evolution
of δC(η, k) in a given model M, assuming the background expansion of model R.
This background approximation would lead to the correct density in the relativistic
and nonrelativistic limits, but it would be very crude and would make the transition
much smoother than it is in reality, with an overestimate of the expansion rate close
to the transition, as can be seen in Fig. 6.6. Moreover, the error would increase
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Figure 6.6 Background evolution for two models M1 and M3 with the same fν
and two different mass splittings, compared with their common reference model
R with the same ωM. To see the difference between the various models clearly,
we plot the squared expansion rate H 2 multiplied by (a/a0)3: this ratio is constant
deep inside the matter-dominated regime and after the nonrelativistic transition of
neutrinos. For each model, we show the scale factor at equality and, if relevant,
at the time of the nonrelativistic transition for massive neutrinos. Finally, we
show another background evolution discussed in the text and used for deriving an
approximate analytic formula for the small-scale suppression factor, as well as the
scale factor a∗ at which we perform a matching between two classes of solutions
in this approximation scheme.

in the small-fν limit, which is the most interesting one given current bounds on
neutrino masses. Indeed, in this limit, the expansion rate in model M remains lower
than that in model R for a longer time.

We will discuss a different approximation based on the fact that the neutrinos we
are considering become nonrelativistic after the time of equality. Hence, before the
nonrelativistic transition, the massive model is practically equivalent to a massless
model M̃ with the same CDM and baryon density parameters (ωM

C , ωM
B ). The times

of equality in models R and M or M̃ differ by a factor

ωM
C + ωM

B

ωR
C + ωR

B

= (1 − fν), (6.66)

with equality taking place later in the model M or M̃. When approaching the
neutrino nonrelativistic transition, the background evolution of M and M̃ starts to
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differ, but we can choose to go on approximating the massive model with model M̃
until the total density in M̃ reaches the true density of M during matter domination.
After that time, we neglect the photon density and consider that the total matter
density scales like a−3 until � domination. In other words, we approximate the
true background evolution of M with that of the massless model M̃, matched at
a given time to a radiationless model with the right matter and � densities. Such
an approximation tends to underestimate the expansion rate at times close to the
nonrelativistic transition, as can be seen from the lower curve in Fig. 6.6. However,
the decisive advantage of this scheme is that it becomes exact in the small-fν limit.
Also, we will see that it leads to simple analytical predictions. The error made on the
expansion rate is larger when at least one neutrino species becomes nonrelativistic
close to equality, i.e., in the large-fν limit, and for a fixed fν , when the mass is
concentrated in a single species. This can be seen in Fig. 6.6 by comparing the M1

and M3 curves with the curve corresponding to our approximation: the M1 curve is
further away from the approximation. In this plot, in order to enhance the difference
between the various curves, we choose a large total mass (0.9 eV), already in tension
with current data. For smaller masses the approximation becomes very good.

To ensure the continuity of H (a), the matching between perturbations in the M̃
model and in the radiationless model should be performed at a scale factor aM

∗ such
that3

ωM̃
M

(
aM
∗
a0

)−3

+ ωM̃
R

(
aM
∗
a0

)−4

= ωR
M

(
aM
∗
a0

)−3

, (6.67)

i.e., for

a0

aM∗
= fν ω

R
M

ωγ (1 + 0.2271Neff)
. (6.68)

The Mészáros equation (modified in the presence of baryons; see Eq. (6.45)) gives
the evolution of δC as a function of y = a/aeq, and depends only on ρ̄C/(ρ̄C + ρ̄B).
If the baryon-to-CDM density ratio is the same in models M̃ and R, i.e., if

ωM
C = (1 − fν)ωR

C (6.69)

ωM
B = (1 − fν)ωR

B , (6.70)

then all perturbations are identical in the two models M̃ and R for a ≤ aM
∗ , modulo

a shift in time

δM̃
C (a, k) = δR

C ((1 − fν)a, k) . (6.71)

3 The calculation of the suppression factor presented in Lesgourgues and Pastor (2006) is identical to the present
one, except for a different (semiempirical) choice for the matching time, aM∗ = anr/

√
1 − fν , not compatible

with a continuous H (a).
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After a = aM
∗ , because we assume that the total background density scales exactly

like a−3 until � domination, the relevant equations of evolution (Eq. (6.9) before
baryon drag or (6.62) after baryon drag) can be approximated during the rest of the
matter-dominated stage as

δ′′C +
2

η
δ′C −

6

η2
(1 − fν)δC = 0 for η ≤ ηdr (6.72)

δ′′CB +
2

η
δ′CB −

6

η2
(1 − fν)δCB = 0 for η ≥ ηdr. (6.73)

These equations have two exact solutions proportional to η2p± ∝ ap± with

p± = −1 +√
1 + 24(1 − fν)

4
. (6.74)

For fν  1, these exponents read

p+ � 1 − (3/5)fν +O(f 2
ν ), (6.75)

p− � −(3/2) + (3/5)fν +O(f 2
ν ). (6.76)

Current bounds on neutrino masses are such that terms of order f 2
ν can safely

be neglected, so from now on we will use these first-order expressions for p±.
We see that they have opposite signs and correspond respectively to growing
and decaying modes. When the cosmological constant starts to play a role, we
know that the coefficient of Eqs. (6.72), (6.73) change, and that in the absence
of massive neutrinos the growing mode would be given by [a g(a;�M)] (with the
function g defined in Section 6.1.1). Numerical simulations confirm that in a very
good approximation, the solutions with massive neutrinos can be approximated as
[a g(a;�M)]p± .

We should now perform a matching between the solution δM̃
C (a, k) for a ≤ aM

∗
and a linear combination of the two solutions [a g(a;�M)]p± for a ≥ aM

∗ . We will
assume for simplicity that the matching selects a pure growing mode, such that the
density perturbation just after the matching reads

δM
C (a, k) =

[
a

aM∗

]p+
δM̃

C

(
aM
∗ , k

)
. (6.77)

At late times, taking into account the effect of baryon drag and of � domination,
the perturbations read

δM
CB(a, k) = δM

C (a, k) = F (ωB/ωC)

[
a g(a;�M)

aM∗

]p+
δM̃

C

(
aM
∗ , k

)
, (6.78)

where the function F is equal to one if the matching at aM
∗ takes place after the

baryon drag epoch, or to (1 + ωB/ωC)−1 in the opposite situation (see Eq. (6.49)).
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Using the equivalence between the models M̃ and R summarized by Eq. (6.71), we
can rewrite this equality as

δM
CB(a, k) = F (ωB/ωC)

[
a g(a;�M)

aM∗

]p+
δR

C

(
(1 − fν)aM

∗ , k
)
. (6.79)

To find the suppression factor, we should finally relate the CDM density perturba-
tion at aR

∗ ≡ (1 − fν)aM
∗ to the matter density perturbation today in the reference

model. We can follow the same steps as in the massive model, i.e., match the
solution at a ≤ aR

∗ with a linear combination of the two solutions [a g(a;�M)]p±

for a ≥ aR
∗ , with now p+ = 3/5 and p− = −3/2 in the massless case. Also, we

need to be consistent with previous assumptions concerning the derivative of the
solution at the time of matching. By selecting the growing mode in the previous
matching, we explicitly assumed that in the model M̃,

d

da
δM̃

C (a, k) = [1 − (3/5)fν] δM̃
C (a, k) (6.80)

at a = aM
∗ . Then the exact correspondence between models M̃ and R, summarized

by Eq. (6.71), implies that

d

da
δR

C (a, k) = [1 − (3/5)fν] δR
C (a, k) (6.81)

at a = aR
∗ . A matching with the two solutions a3/5, a−3/2 in the subsequent matter-

dominated stage gives the coefficients of the growing and decaying modes:

δR
C (a, k) =

[(
1 − 6

25
fν

)(
a

aR∗

)
+ 6

25
fν

(
a

aR∗

)−3/2
]
δR

C

(
aR
∗ , k

)
. (6.82)

At late times, we should keep only the growing mode and take into account baryon
drag and � domination,

δR
M(a, k) = F (ωB/ωC)

(
1 − 6

25
fν

)[
a g(a;�M)

aR∗

]
δR

C

(
aR
∗ , k

)
, (6.83)

where F (ωB/ωC) is the same as in Eq. (6.79), because the two models M and R
share the same baryon-to-CDM fraction. We now take the ratio of Eq. (6.79) and
Eq. (6.83) and find the relation

δM
CB(a, k) =

(
1 − 6

25
fν

)−1
aR
∗

aM∗

[
a g(a;�M)

aM∗

]−(3/5)fν

δR
M (a, k) . (6.84)
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We can use (aR
∗ /a

M
∗ ) = (1 − fν) and take the square of this equality to obtain a

relation between the matter power spectra of the two models (using Eq. (6.63)),

Pfν(a, k) = (1 − fν)4

(1 − (6/25)fν)2

[
a g(a;�M)

aM∗

]−(6/5)fν

P 0(a, k) . (6.85)

We can finally replace aM
∗ by its explicit expression (6.68) and write our final result

as

P (a, k)fν

P (a, k)0
= (1 − fν)4

(1 − (6/25)fν)2

[
a g(a;�M)

a0
· fν ωM

ωγ (1 + 0.2271Neff)

]−(6/5)fν

.

(6.86)
We recall that in this equation Neff should be summed over all neutrinos (massive
and massless). This result could also be expressed as a function of the scale factor
at equality, in either the massless or the massive model. For instance, if a0

eq denotes
the redshift of equality in the massless model,

P (a, k)fν

P (a, k)0
= (1 − fν)4

(1 − (6/25)fν)2

[
a g(a;�M)

a0
eq

fν

]−(6/5)fν

. (6.87)

In the derivation of this result, we made four approximations:� We used p+ � 1 − (3/5)fν : this approximation leads to negligible errors for
realistic models with fν ≤ 0.1.� We assumed that solutions for δM

C (η, k) during � domination are given by
(a g(a;�M))p± instead of solving the full equation of evolution. However, this
approximation is excellent for the growing mode, and the solution for the decay-
ing mode is anyway irrelevant at late times.� In the massive model, we approximated the background evolution in such a way
that (a′/a) near the transition was underestimated, especially when the highest
neutrino mass was large and the transition took place close to equality. More
expansion implies a slower growth of perturbations in the massive model, i.e., a
reduction of the suppression factor.� In the massive model M, we assumed in the matching process that only the
growing mode proportional to a1−(3/5)fν was excited. If we assume that a small
fraction of δM

c goes to the decaying mode, both δM
c and δR

c are affected, but the
total effect is a reduction of the suppression factor.

We see that the first two approximations have a negligible impact, whereas the last
two go in the same direction, and we expect Eq. (6.86) to slightly overestimate the
suppression factor. It can be shown that the worst approximation is actually the
third one; this is important for understanding the difference between the degenerate
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Figure 6.7 Suppression factor P (η, k)fν /P (η, k)0 computed today for k =
10h/Mpc, as a function of the total neutrino fraction fν . The result depends
on the mass splitting but is always contained between the two displayed curves
corresponding to a single massive neutrino or three degenerate neutrinos, i.e., to
the maximal and minimal values of the heaviest mass that can be involved for each
value of fν . We show for comparison the analytic approximation of Eq. (6.86) as
well as the well-known linear approximation (1 − 8fν). On the left, the compar-
ison was performed with fixed values of ωM and (ωB/ωC), as explicitly assumed
when deriving the analytical formula. On the right, we kept ωM and ωB fixed (with
the increase in ων compensated for by a decrease in ωC), and we compare with
the same approximations.

and single-mass scenarios, and more generally for the discussion of mass splitting
effects in the next subsection.

These expectations are confirmed by Fig. 6.7 (left plot). For the case of degen-
erate masses, the analytic prediction is accurate by better than 1%, whereas for a
single massive species the error can reach 3% (at least for fν ≤ 0.12, i.e., through-
out the range compatible with current data). Indeed, we have seen earlier that our
approximation for the background evolution of the massive model gets worse when
the time of nonrelativistic transition of at least one species gets closer to the time of
equality. So, in the single mass case, the underestimation of the suppression factor
is greater.

For a given neutrino fraction fν , i.e., a total mass Mν , there are an infinity
of models corresponding to different ways to split Mν between several species.
However, the heaviest individual mass is always inside the range defined by the
previous two cases, i.e., between the degenerate case (mν = Mν/Nν) and the single-
massive-neutrino case (mν = Mν). Because it is mainly the heaviest mass that
determines the time at which our background approximation becomes not so good
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and produces an error, the two models displayed in Fig. 6.7 can be seen as limiting
cases, and the discrepancy between the analytic formula and the numerical results
cannot be larger than for the single-mass model. We will come back to mass
splitting issues in more detail in the next subsection.

In Fig. 6.7 (left plot), we also show the famous linear approximation of (Hu
et al., 1998) to the suppression factor,

P (a, k)fν

P (a, k)0
� 1 − 8fν. (6.88)

This fit is accurate at the 2% level for fν ≤ 0.05, but departs significantly from the
numerical solution for a larger neutrino fraction.

In Fig. 6.7, the numerical estimate of the suppression factor was done at the
scale k = 10h/Mpc. Of course, on such a small scale, real matter perturbations
are strongly nonlinear today. However, on this scale, the ratio P (a, k)fν /P (a, k)0

has reached its asymptotic value up to very good accuracy: we checked that the
factor inferred from k = 100h/Mpc agrees to better than 1% with that computed
at k = 10h/Mpc. This is not the case on larger scales: the factor computed at
k = 1h/Mpc is as much as 2% larger (but, coincidentally, it is in even better
agreement with the analytical prediction of Eq. (6.86)).

We performed all this exercise assuming that the baryon-to-CDM fraction is the
same in the massive model and in the reference model. In practice, however, it is
useful to consider the effect of neutrino masses when the baryon fraction ωB is
fixed, because this parameter is accurately determined by CMB observations. If
we go along the same lines of reasoning fixing ωR

B = ωM
B , then we should assume

that the ratio ωB/ωC is larger in model M than in model R. Hence the matter
power spectrum of M will be suppressed both by neutrino masses as described
previously, and (to a smaller extent) by an increase in the baryon fraction, with
the consequences described in Section 6.1.2. In this case, the suppression factor is
smaller, as can be checked in the right plot of Fig. 6.7. The discrepancy between
the analytic prediction of Eq. (6.86) and numerical results increases up to about 6%
(for realistic values of ωB and ωC). In that case, the linear fit of Eq. (6.88) remains
very accurate for fν ≤ 0.01, but in the range fν ∈ [0.01 0.05] the error can reach
3%. A linear fit (1 − 8.5fν) would be better in that case.

Mass splitting

The effect of neutrino masses on the matter power spectrum does not depend only
on the total mass Mν =

∑
i mνi for essentially two reasons:

1. The scale at which a given neutrino mass mνi starts to have an impact on the
matter power spectrum depends on knr ∝ m

1/2
νi (see Eq. (5.94)). If there is a single
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Figure 6.8 (Left) Evolution of the total neutrino energy density as a function of
the scale factor for models where the same total mass Mν = 0.12 eV is distributed
among the three species in various ways: only one massive eigenstate (1), two
degenerate massive states (2), normal hierarchy (NH), inverted hierarchy (IH). All
curves are normalized to the case with three degenerate massive states. (Right)
Comparison of the matter power spectrum obtained for the same models, divided
each time by that with three degenerate massive states. Differences in the mass
splitting affect the position and amplitude of the break in the power spectrum.
(Reprinted from Lesgourgues and Pastor, 2006, with permission from Elsevier.)

mass in the problem, as in scenarios with N massive neutrinos and (Nν −N)
massless ones, the steplike suppression starts at a smaller wavenumber k if the
mass is smaller, i.e., if Mν is distributed equally among all species. If there are
several masses, the location and shape of the step are rather model-dependent:
we will illustrate this below and compare the most relevant cases, namely
the normal hierarchy (NH) and inverted hierarchy (IH) scenarios preferred by
neutrino oscillation experiments.

2. We have seen in the previous subsection that the amplitude of the step is con-
trolled mainly by fν , i.e., by Mν , but with an additional dependence on the
detailed background evolution close to the nonrelativistic transition(s). The
case of degenerate masses is very close to the analytic approximation of the last
section, because neutrinos remain relativistic for a maximum amount of time for
a given Mν , because no mass is larger than Mν/Nν . For any other mass splitting,
the background density is enhanced for a limited amount of time with respect
to the degenerate scenario. This was illustrated in Fig. 6.6 for the single-mass
scenario, and more examples are given in Fig. 6.8 (left plot). Any temporary
enhancement of the background density leads to slower growth of CDM and
baryon fluctuations for a little while, and to a stronger steplike suppression.
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These differences are of course very small for a fixed total mass. The maximum
discrepancy can be observed in the comparison of the degenerate and single-mass
scenarios, on small scales where the neutrino mass effect is maximum, and at
z = 0. We see in Fig. 6.7 that even in this case the effect is only on the order of 3%.
The discrepancy between realistic scenarios (NH and IH), on scales close enough
to the linear regime to enable precise observations with an ideal instrument (i.e.,
k not too large and/or z not too small), is much smaller and typically below the
percent level. It is therefore unlikely that these effects can be probed at a good
significance level in the future, but because the most ambitious forecasts suggest
that discrimination is marginally possible (Pritchard and Pierpaoli, 2008; Jimenez
et al., 2010), we will describe them in more detail.

In Fig. 6.8, we compare the total neutrino density evolution ρν(a) and the current
matter power spectrum P (a0, k) of five models with the same total mass Mν =
0.12 eV: one, two, three degenerate massive species (with two, one, zero massless
species); three massive species with normal hierarchy; and three massive species
with inverted hierarchy. All curves are normalized to the case of three degenerate
species. For the NH and IH scenario, squared mass differences were chosen in the
range probed by experimental data, leading to (m1,m2,m3) = (3.03, 3.15, 5.82) ×
10−2eV in the NH case, and (m1,m2,m3) = (5.11, 5.18, 1.71) × 10−2eV in the IH
case.

The model with a single massive species features the highest mass and the earliest
nonrelativistic transition. In this model, the background density is significantly
enhanced with respect to the degenerate model when the scale factor is in the range
between anr(Mν) and anr(Mν/Nν). Hence the step starts at a larger wavenumber
knr(Mν), but goes deeper. So the spectra of the two models must cross each other
at some point, and their ratio has the bumpy shape seen in Fig. 6.8 (right plot). The
same arguments explain the difference between the two-masses scenario and the
degenerate case.

The NH and IH scenarios are more similar to the degenerate case, because
they feature three masses. The heaviest mass is roughly the same in the two
cases, 0.0582 eV versus 0.0518 eV in our example. In the IH scenario, however,
two neutrinos become nonrelativistic almost at the same time. There is a short
period during which the NH scenario has one nonrelativistic neutrino with mν =
0.0582 eV, whereas the IH scenario has two of them with a summed mass of
0.0511 + 0.0518 = 0.1029 eV. Hence the total density is enhanced for a short
amount of time in the IH case, with slower growth of CDM perturbations: this
explains why the amplitude of the spectrum on scales k � knr is a bit smaller in the
IH scenario. For intermediate wavenumbers crossing the Hubble scale when the
universe contains two relativistic species in the NH case, or one relativistic species
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Figure 6.9 Ratio of matter power spectra for pairs of models with three massive
neutrinos, subject to either the normal or the inverted hierarchy scenario, but with
a common total mass for each pair: from bottom to top on the right, Mν = 0.100,
0.115 or 0.130 eV. Squared mass differences were fixed to δm2 = 7.6 × 10−5eV
and �m2 = ±2.4 × 10−3eV. The first total mass is very close to the minimum
allowed value for the inverted hierarchy given these differences, Mν = 0.0994 eV.
(Reprinted from Lesgourgues and Tram, 2011, with permission from IOP.)

in the IH case, however, the IH spectrum is less affected by neutrino free-streaming
and appears to be enhanced.

The previous comparison is useful for pedagogical purposes, but in practice it is
more useful to look at differences between the NH and IH cases for given values
of the total mass. These differences are shown in Fig. 6.9. When the total mass
increases, the two models become closer to the degenerate case and more similar to
each other. For smaller masses, the effects discussed in the previous paragraph are
clearly identified. Also, the IH model with the smallest total mass has its large-scale
amplitude reduced by 0.01%. This effect, too small to be observable, is related to
the presence of a very light neutrino in this model, just finishing its nonrelativistic
transition today. Its nonnegligible pressure slightly affects metric perturbations at
large wavelengths.

Because the power spectrum of realistic neutrino mass scenarios depart from
the degenerate model by only a fraction of percent for a given fν , the analytic
formula (6.86) is very accurate for these scenarios (to better than 1%, at least for
fν ≤ 0.12).
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Scale-dependent growth factor

We saw in Eq. (6.52) that in the absence of neutrino masses, the power spectrum
evolves as a function of redshift (or of the scale factor) as [g(z;�M)/(1 + z)]2 (or
[a g(a;�M)]2) on all scales. The linear growth factor is defined (up to a normal-
ization factor) as the time-dependent part of the square root of the matter power
spectrum. This means that in absence of neutrino masses, the linear growth factor
is independent of k and proportional to [g(z,�M)/(1 + z)].

We know that the power spectrum on large scales k < knr is unaffected by
neutrino masses (as long as �M is kept fixed). On small scales k � knr, we must
instead take into account a correction factor very well approximated by Eq. (6.86).
This approximation is valid at least in the redshift range in which we can observe
large-scale structure (in this range, fν can be considered as independent of time).
Taking this correction into account, the small-scale matter power spectrum grows
proportionally to [g(z;�M)/(1 + z)]2−(6/5)fν ; i.e., the linear growth factor evolves
like

[g(z;�M)/(1 + z)]1−(3/5)fν , (k � knr). (6.89)

On intermediate scales such that k is not much bigger than knr, the linear growth
factor interpolates smoothly from [g(z;�M)/(1 + z)] to Eq. (6.89). An analytic
approximation for intermediate scales can be found (e.g., in Hu and Eisenstein,
1998). Hence a crucial effect of neutrino masses is to render the linear growth factor
scale-dependent. This can be formulated differently by saying that for a given total
neutrino mass Mν , the steplike suppression of the matter power spectrum is less
pronounced at high redshift, as illustrated in Fig. 6.10. This observation is important
for the detection of neutrino masses with LSS observations: by comparing the
matter power spectrum at different redshifts, it is possible in principle to observe
the redshift dependence of neutrino mass effects, on top of their wavenumber
dependence.

Impact of the phase-space distribution function

We have seen in Section 4.1 that ordinary active neutrinos are expected to acquire
small flavour-dependent nonthermal corrections at decoupling. These are, however,
too small to be detectable with cosmological observables. At the level of precision
reachable by current and future experiments, the phase-space distribution of ordi-
nary active neutrinos can be approximated as a Fermi–Dirac distribution, with a
temperature slightly enhanced with respect to T a

ν ≡ (4/11)1/3Tγ in such way that
the three active species lead to an effective neutrino number equal to Neff = 3.046
instead of 3 (as can be inferred from Eq. (4.21) and Table 4.1).
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Figure 6.10 Shape distortion of the matter power spectrum P (k, z) at different
redshifts. Upper solid curves: The power spectra are divided by [a g(a;�M)]2 =
[g(z)/(1 + z)]2, which accounts for the evolution on large scales. From top to bot-
tom, the curves correspond to z = 10, 8, 6, 5, 4, 3, 2, 1, 0. Lower dashed curves:
The power spectra are divided instead by [a g(a;�M)]2−6/5 fν = [g(z)/(1 +
z)]2−6/5 fν , which approximates the power spectrum evolution on small scales.
From top to bottom, the curves correspond to z = 0, 1, 2, 3, 4, 5, 6, 8, 10. All cos-
mological parameters are kept fixed and the neutrino density fraction is fν = 0.1.
(Reprinted from Lesgourgues and Pastor, 2006, with permission from Elsevier.)

In some extensions of the minimal cosmological model, it is necessary to com-
pute the matter power spectrum in the presence of hot relics with a different
phase-space distribution. First, active neutrinos may feature a large leptonic asym-
metry described by chemical potentials, as discussed in Section 4.2.4. Under some
even more radical assumptions, active neutrinos could also acquire large nonther-
mal distortions, e.g., through the decay of an unstable particle into neutrinos after
neutrino decoupling (Cuoco et al., 2005); see Section 4.4.3 . It has also been sug-
gested that under very unusual assumptions, neutrinos could follow Bose–Einstein
statistics (Dolgov et al., 2005). Additional hot relics could also have a tempera-
ture different from that of active neutrinos, a chemical potential, a Bose–Einstein
distribution or a nonthermal distribution.

Among all these possibilities, we can distinguish two situations with different
consequences for cosmological perturbations. Hot relics may have

(a) A Fermi–Dirac distribution with arbitrary temperature, or a rescaled Fermi–
Dirac distribution (e.g., for sterile neutrinos being populated by nonresonant
oscillations with active neutrinos). These relics lead to the same signature
as ordinary active neutrinos, with simply a different correspondence between
the parameters describing the relic properties (mass, temperature, rescaling
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factor) and those describing effects in the matter power spectrum (knr and
fν = ων/ωM).

(b) Another distribution. In that case they lead to the same signature as ordinary
active neutrinos in the small- and large-scale limits, but to a different step shape
on intermediate scales (for k slightly larger than knr).

Indeed, for case (a), let us consider some hot relics called “x” with a Fermi–Dirac
distribution, possibly rescaled by a number χ , an arbitrary temperature Tx and two
internal degrees of freedom (as for one pair (νi, ν̄i)). After a change of variable
from y to ỹ = (T a

ν /Tx)y and m̃x = (T a
ν /Tx)mx, the perturbation equations (5.74–

5.78) for x are exactly identical to those of thermal relics with temperature T a
ν ,

except for a global factor χ (Tx/T
a
ν )4 in the expression for density and pressure.

Hence a rescaling of the phase-space distribution is mathematically equivalent to
a change of temperature. These two effects cannot be distinguished at the level
of linear perturbations. Before their nonrelativistic transition, such particles would
contribute to the radiation density as

�Neff = χ (Tx/T
a
ν )4, (6.90)

whereas today their density would be given by

ωx = χ

(
Tx

T a
ν

)3
mx

94.1eV
. (6.91)

Their average velocity would be subject to Eq. (5.91) with Tν = Tx, leading to

knr ≡ kfs(ηnr) � 0.0178�1/2
M

(
T a
ν

Tx

)1/2 ( mx

1 eV

)1/2
hMpc−1. (6.92)

These particles would affect the matter power spectrum both through a change
in the radiation density, parameterized by �Neff and described in Section 6.1.3,
and through a steplike suppression, parameterized by fx = ωx/ωM and knr and
described previously in this subsection.

For case (b), the effects of chemical potentials, of different statistics or of
nonthermal distortions should be studied case by case. In the relativistic regime,
any nonthermal distortion is equivalent to a change in Neff , as mentioned in Sec-
tion 5.3.2. But in the nonrelativistic regime, all details in the distribution can be
important, because the equation of motion for neutrinos cannot be integrated over
momentum. We know that hot relics do not affect the largest scales, and that in
the small-scale limit the matter power spectrum depends only on the CDM and
baryon evolution, with no impact of the gravitational back reaction of neutrinos
even in the radiation-dominated stage (see Section 6.1.3). So the phase-space dis-
tribution of hot dark matter is irrelevant in this limit for a given value of the HDM
density fraction. But on intermediate scales (k slightly larger than knr), the matter
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power spectrum receives contributions from each nonrelativistic component: CDM,
baryons and neutrinos. In this range, nontrivial phase-space distributions can leave
a distinct signature, through modification of the shape of the neutrino power spec-
trum. The steplike suppression in the total matter power spectrum can then be
sharper or smoother. This is illustrated in Hannestad et al., 2005, for the case of a
Bose–Einstein versus Fermi–Dirac statistics, and in Lesgourgues and Pastor, 1999,
for active neutrinos with chemical potentials.

Instead of studying each subcase of (b) separately, one could try to constrain the
phase-space distribution with a model-independent approach. For instance, an arbi-
trary distribution can be described by the infinite series of its statistical moments.
Observations can be used to provide model-independent constraints at least on the
first few moments. The analysis of Cuoco et al., 2005 shows that due to parame-
ter degeneracies (between neutrino and cosmological parameters), it is difficult to
constrain more than the mass and the first two moments of a given species, related
respectively to their density-to-mass ratio ων/mν and their contribution to Neff .
However, this conclusion is based on the use of linear observables only (CMB and
linear matter power spectrum). The nonlinear evolution could potentially enhance
the impact of differences in higher momenta.

6.1.5 Impact of warm dark matter

Qualitative behavior of warm dark matter perturbations

If their mass and velocity dispersion fall into an appropriate range, dark matter
particles may become nonrelativistic deep inside the radiation-dominated epoch,
and preserve the shape of the CDM matter power spectrum down to cluster or galaxy
scales, but not further. Such a dark matter component is called warm dark matter
(WDM). For example, heavy sterile neutrinos could play the role of WDM. As for
hot dark matter, the impact of WDM on the matter spectrum depends on its phase-
space distribution function. There is a wide variety of equally plausible scenarios
for the production of WDM particles, leading to either thermal or nonthermal
distributions. For instance, the case of resonantly or nonresonantly produced sterile
neutrinos was already mentioned in Section 4.2.5.

Because WDM particles become nonrelativistic during radiation domination,
their free-streaming scale remains almost constant between the time of their nonrel-
ativistic transition and of radiation-to-matter equality, as explained in Section 5.2.4.
For wavenumbers much smaller than knr (defined in Eq. (5.96)), the evolution of
cosmological perturbations is unaffected by the warm nature of dark matter par-
ticles, and equivalent to that in a scenario with an equivalent amount of CDM.
The explanation is the same as for HDM in Section 6.1.4: on large scales, before
horizon crossing, nonrelativistic matter perturbations obey a universal solution for
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adiabatic initial conditions, whereas after horizon crossing, the WDM sound speed
and anisotropic stress can be neglected, and density fluctuations are subject to the
same equation (6.9) as CDM.

For smaller scales, during the relativistic regime, the WDM mass is negligible
and perturbations are subject to the same equations as ultrarelativistic relics. We
know from Section 5.2.5 that in this regime, density fluctuations are strongly
suppressed on sub-Hubble scales. After the time of the nonrelativistic transition,
they start to grow under the effect of gravitational collapse, but at a rate reduced
with respect to CDM, due to the fact that pressure and anisotropic stress decay
slowly and still play a role in the equations. Hence the WDM power spectrum is
suppressed with respect to that of CDM for all small scales with k > knr. The shape
of the WDM power spectrum can be studied semianalytically (Boyanovsky and
Wu, 2011) or numerically with Boltzmann codes.

We discussed in Section 5.2.4 the difference between the maximum comov-
ing free-streaming scale [2π/knr] and the comoving free-streaming horizon rfs.
We showed that for HDM particles becoming nonrelativistic after radiation dom-
ination, these two quantitites are very close to each other, whereas for WDM
particles becoming relativistic during radiation domination, they represent two dis-
tinct scales, given by different combinations of parameters (see Eqs. (5.96) and
(5.97)). We saw that the difference comes from the fact that between ηnr and ηeq:
the former remains constant, whereas the latter grows logarithmically. Analytical
and numerical approaches confirm that the characteristic scale below which the
WDM spectrum differs from the CDM one is given by the free-streaming horizon.
This matches physical expectations: the suppression of the WDM spectrum with
respect to the CDM one is caused by diffusion damping in a medium of collision-
less particles, and the diffusion length of an average WDM particle between the
early universe and a given time is indeed given by the free-streaming horizon.

Pure warm dark matter

We first consider the case in which all dark matter in the universe is warm. In
particular, the �WDM scenario shares the same cosmological parameters and
physical ingredients as the �CDM scenario, except that cold particles are replaced
by warm particles with a nonnegligible velocity dispersion. The power spectrum
of this model can be parameterized as

P�WDM(η, k) = P�CDM(η, k)T (η, k)2, (6.93)

where P�CDM is the spectrum of a model with an equivalent amount of CDM,
and T (η, k) is a transfer function accounting for the effect of WDM velocities. The
previous discussion suggests that T (η, k) = 1 for krfs(η) < 1, whereas T (η, k) < 1
for krfs(η) > 1.
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The shape of the transfer function depends on the WDM phase-space distribu-
tion. The two most studied cases in the literature are those of� a thermal WDM relic with a Fermi–Dirac distribution and an unknown temper-

ature Tx,� or a nonthermal relic with a rescaled Fermi–Dirac distribution, the same temper-
ature Tx = Tν as active neutrinos, and some unknown rescaling factor χ .

The latter case is motivated by the possibility that WDM consists of sterile neu-
trinos, populated by nonresonant interactions with active neutrinos. This model is
often called DW after the work of Dodelson and Widrow (1994). We already dis-
cussed such distribution functions for light HDM particles in the previous section.
Following the same lines, it is easy to show through a change of variable that a DW
model with mass, temperature and rescaling factor (mx, Tν, χ ) is described by the
same equations as a thermal model with mass and temperature

(mth, Tth) = (χ1/4mx, χ
1/4Tν). (6.94)

Following Eq. (6.91), the common WDM density of these two equivalent models
is given by

ωx = χ

(
Tν

T a
ν

)3
mx

94.1eV
=
(
Tth

T a
ν

)3
mth

94.1eV
. (6.95)

The first equality can be used to eliminate χ from Eq. (6.94) and find another useful
relation between the equivalent mass of the DW and thermal models:

mx = 4.43 keV

(
Tν

T a
ν

)(
0.25(0.7)2

ωx

)1/3 ( mth

1 keV

)4/3
. (6.96)

The numerical study of these two degenerate cases by Bode et al., 2001 (updated by
Viel et al., 2005) shows that the transfer function T (k, η) is nearly independent of
time within the redshift range where the matter power spectrum can be observed,
and decays asymptotically like T (k) ∝ k−10 in the large-k limit. The transition
between the two asymptotes is well accounted for by the expression

T (k) = [
1 + (k/kbreak)p

]−10/p
(6.97)

with p = 2.24. The value of kbreak was obtained as a function of the WDM mass-
to-temperature ratio and of other cosmological parameters by fitting Eq. (6.97) to
numerical results in a range of plausible parameter values:

kbreak = 1

0.24
X0.83

(
ωx

0.25.(0.7)2

)0.16

Mpc−1 with X ≡ mx/Tx

1 keV/T a
ν

. (6.98)
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This relation can be applied indifferently to DW and thermal WDM models, because
two equivalent models share the same ratio mth/Tth = mx/Tν . Physically, this
ratio represents the WDM velocity dispersion up to a numerical factor (we are
dealing here with Fermi–Dirac-shaped distributions, with cx = 3.15 Tx/mx, as in
Eq. (5.91)). The reason for which kbreak depends on both the velocity dispersion and
the warm dark matter density is precisely that this scale is determined by the free-
streaming horizon, rather than the maximum free-streaming scale. Equation (5.97)
only gives a crude analytic approximation for rfs, based on a simplification of the
expansion law a(t) and of the velocity evolution cx(a). Still, this approximation
is sufficient to explain the parametric dependence of Eq. (6.98). Indeed, if we
combine Eq. (5.97) (with the last term neglected for z  zeq) with Eq. (5.96), and
replace (1 + zeq) with (ωx + ωB)/ωR, we get

rfs = 3.16 × 10−3

ωR X

[
1 + 1

2
ln

(
ωR X

5.28 × 10−7(ωx + ωB)

)]
Mpc. (6.99)

Replacing ωR with its fixed value and ωB with its observed value, one can check
that this expression is well fitted by

rfs ∝ X−1(X/ωx)0.16 = X0.84ω−0.16
x , (6.100)

at least within the range of phenomenologically interesting values of X. This
explains the parametric dependence of the fitting formula (6.98) for kbreak. The
WDM transfer function can in fact be written as

T (k) = [
1 + β(krfs)

p
]−10/p

, (6.101)

where β is a numerical factor. An analytic study of the WDM perturbation evolution
by Boyanovsky and Wu, 2011 leads to an approximate expression for T (k) very
close to the fitting formula (6.97).

For other nonthermal distributions, results can be derived case by case. By com-
puting the velocity dispersion cx and the density ωx of a nonthermal WDM species
and applying the previous formulas blindly, one may obtain totally inaccurate pre-
dictions. For instance, typical WDM distributions for resonantly produced sterile
neutrinos (Shi and Fuller, 1999; Laine and Shaposhnikov, 2008) lead to a very
different power spectrum than in the thermal or DW case. The reason is that a sig-
nificant fraction of such WDM particles have a very low velocity and fall into the
CDM category. Hence the impact of such a model on the matter power spectrum is
closer to that of a mixture of CDM and thermal WDM, briefly reviewed in the next
subsection, as illustrated in Boyarsky et al., 2009c. Other examples are discussed
by Boyanovsky and Wu, 2011.
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Mixture of warm dark matter and cold dark matter

Mixed cold plus warm dark matter models are relevant not only to scenarios where
two different particles with very different mass and velocity dispersion contribute
to the matter density in the universe but also as an approximation to the case
of a unique dark matter particle with a nonthermal distribution (enhanced in the
small momentum limit with respect to a thermal distribution), as mentioned in the
previous paragraph.

This case is qualitatively similar to the mixed hot plus cold dark matter one,
i.e., to a �CDM model with massive neutrinos. For scales such that krfs ≤ 1, the
warm nature of some of the dark matter particles does not play a role, and the
model is equivalent to a �CDM model with the same total dark matter density.
For smaller scales, WDM density perturbations are suppressed with respect to δC

for the reasons explained at the beginning of Section 6.1.5. One can show that for
krfs > 1 one still has |δw| < |δC| today (as is the case for the density perturbation
of massive neutrinos for k > knr). In the small-wavelength limit, the matter power
spectrum of a mixed model with a warm fraction fw ≡ ωw/ωM is suppressed for
two reasons:� the total matter power spectrum comes from the CDM component only and is

reduced by a factor of (1 − fw)2, in the same way as with HDM (see Eq. (6.59));� CDM perturbations δC grow at a lower rate because in the usual equation of
evolution (6.7), WDM contributes to the Hubble friction term, again as is the
case with HDM.

Hence the mixed �CWDM power spectrum is steplike suppressed with respect
to the �CDM one, with just a different scale, shape and amplitude than for light
massive neutrinos. The suppression factor in the small-scale limit can be estimated
as a function of fw following the same lines as in Section 6.1.4. The only difference
is that WDM particles are already nonrelativistic at the approach of radiation-
to-matter equality. Boyarsky et al. (2009d) provide an approximation for this
factor,

P�WDM(η0, k)

P�CDM(η0, k)
−→ (1 − fw)2

(
a0 g(a0)

aeq

)− 3
2fw

� 1 − 14fw +O(f 2
w), (6.102)

which is clearly different from its counterpart for mixed �CHDM models in
Eqs. (6.87) and (6.88). The full numerical �CWDM power spectrum is presented
in the same reference.

We do not discuss here the case of mixed �WHDM or �CWHDM models,
which are similar to the previously discussed cases but with an additional steplike
suppression because of the hot relics.
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6.2 Nonlinear matter power spectrum

The theory of linear cosmological perturbations presented in Sections 5.1, 5.2 and
6.1 cannot describe matter fluctuations in our universe at small redshift and on
small scales. A given comoving Fourier mode k enters into the nonlinear regime
when the variance of matter fluctuations integrated in spheres of comoving radius
2π/k becomes of the same order as the average matter density. The power spectrum
of the �CDM model leads to hierarchical structure formation, with smaller scales
entering earlier into the nonlinear regime.

Thanks to galaxy, cluster and weak lensing surveys, we can observe matter
fluctuations on scales significantly larger than the nonlinear scale, but we can
compare only observed power spectra with linear predictions up to that scale.
The amount of information extracted from a given data set would increase if the
comparison could be pushed to smaller scales, under the condition that theoretical
errors remain smaller than instrumental errors. This provides a strong motivation
for computing power spectra on mildly or even strongly nonlinear scales.

For instance, in measurements of the three-dimensional matter power spectrum
P (k), the number of independent modes in the survey scales as the cube of kmax,
the maximum wavenumber at which we trust theoretical predictions and that we
decide to include in theoretical fits of the data. Naively, this seems to imply that
the error bar on cosmological parameters decreases as k

3/2
max. In fact, the amount

of information contained in the matter power spectrum tends to saturate at large
kmax, because deep inside the nonlinear regime, the nonlinear spectrum Pnl(z, k)
loses sensitivity to early linear perturbations and to the underlying cosmology.
However, it remains true that modelling the nonlinear spectrum is a key ingredient
for improving the sensitivity of LSS observations to neutrino parameters.

6.2.1 N-body simulations

Nonlinear structure formation can be simulated with N-body codes. In this
approach, cold dark matter (as well as eventually baryons and other dark mat-
ter species) is represented as a set of N-body particles, with typical mass on the
order of a million solar masses or more, not to be confused with fundamental
particles. These particles are initially distributed inside a box in such a way that
the power spectrum of the smoothed distribution coincides with the linear power
spectrum P (zini, k) of a given cosmological model. After this step, they need to
be evolved only under gravitational interactions. In current N-body codes, the
expansion of the universe is taken into account through a Hubble friction term
in the particle equation of motion, but gravitational interactions are computed in
the nonrelativistic limit, using the Poisson equation. Indeed, during matter and �
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domination, simulated particles are nonrelativistic, implying metric fluctuations
much smaller than one (because φ ∼ (v/c)2). N-body simulations are performed
in boxes in comoving space with periodic boundary conditions. Their comoving
spatial resolution scales like the volume of the box divided by the number of
particles N .

N-body algorithms

Because gravity is a long-range interaction, the motion of one particle depends on
the force exercised by all other particles. A brute-force calculation would imply
the computation of N(N − 1) forces between pairs of particles, which becomes
impossible for millions of particles. Various clever approximations have been
discussed and tested in N-body codes.

First, the so-called tree method consists of replacing the force exercised by many
particles located in a given region with the force exercised by a unique particle,
located at the center of this region and of equivalent mass. Such an approximation
does not introduce significant errors provided that this region is far enough from
the point at which we want to evaluate the force, and not too dense. The simulation
box is divided into large cells, each of them split into smaller subcells, and so on.
When evaluating the force on a given particle, a sophisticated algorithm chooses
the most appropriate cell size to be used in different regions, with larger cells in
remote underdense regions, and smaller cells in nearby overdense regions. Instead
of evaluating (N − 1) forces from all other particles, the code typically needs to
evaluate logN forces from variable-size cells. Hence, with the tree method, the
simulation time scales like N logN .

The particle-mesh (PM) method consists of replacing the true particle distribu-
tion at each new time step with a collection of other pointlike particles located at
the nodes of a regular grid. The value of the mass placed at each node is obtained
by interpolating the underlying particle distribution, in such a way that the two
distributions smoothed over a distance larger than the grid size are identical. The
new particle distribution can be represented as a mass distribution function ρ(�xi) in
discrete space, which is easy to expand in Fourier space. The gravitational potential
ψ(�k) is then trivially inferred from the Poisson equation and transformed back to
real space. Its gradient gives the gravitational force at each point and is used to
evolve the set of true particles over one time step. This approach is very fast even
with respect to the tree method, but it mistreats gravitational interactions on scales
comparable to the grid size or smaller.

The TreePM method is a hybrid approach in which long-range forces are calcu-
lated with the PM method, and short-range forces with the tree method. The two
approaches are matched smoothly around a scale corresponding to a few PM grid
cells. Some state-of-the-art codes such as gadget (Springel, 2005) are based on
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the TreePM approach. There are other powerful methods and codes on the market,
but we do not mention them here, because the following discussion of neutrino
implementations in N-body codes refers mainly to TreePM methods.

Hot dark matter particles

The first difference between cold and hot particles in anN-body simulation appears
at the level of the initial spatial distribution, because these species are subject to
different linear power spectra featuring either a cutoff or a steplike suppression on
small scales. When two different species coexist, distinct sets of N-body particles
must be used for each component, and the initial spatial distribution of each species
must reflect its own linear power spectrum. For instance, when simulating a�CDM
model with massive neutrinos, it is necessary to introduce cold particles with
a steplike suppressed spectrum and hot particles with a spectrum with a different
slope on small scales, as illustrated in Fig. 6.4. Moreover, it is crucial to compute the
linear power spectrum at the correct initial redshift with a linear Boltzmann code,
because for mixed models the linear spectra have a nontrivial redshift dependence
(and a scale-dependent growth factor). For instance, we have seen in Section 6.1.4
that for fixed neutrino masses, the steplike suppression in the CDM power spectrum
is smaller at high redshift than today. Note that the distributions of the two species
must be statistically correlated: in a universe with adiabatic initial conditions,
overdensities in one species coincide with overdensities in another species, even if
the power spectra are different.

This first step raises no particular difficulties. There exist various algorithms
for drawing initial particle distributions under the constraint of a given arbitrary
power spectrum. These codes are based either on the Zel’dovich approximation
(ZA), consistent with first-order perturbation theory, or on second-order Lagrangian
perturbation theory (2LPT) for more precise settings. They are not difficult to
generalize to the case of several correlated species with distinct spectra.

Second, the initial velocity distribution of N-body particles should reflect the
phase-space distribution of fundamental particles in a given HDM model. For
cold particles, previously mentioned algorithms (ZA or 2LPT) assign initially to
each particle a peculiar velocity consistent with the local gravitational flow, whose
divergence is related to the scalar degree of freedom θC of linear perturbation
theory. This peculiar velocity is often called the Zel’dovich velocity. For hot parti-
cles, after assigning Zel’dovich velocities (corresponding to the bulk motion inside
the gravitational potential), it is necessary to add random velocities reflecting the
phase-space distribution f0(y). Because N-body codes rely on Newtonian gravity,
the starting redshift should be chosen in such way that particles are initially nonrela-
tivistic, so the momentum appearing in the phase-space distribution can be replaced
by p = mv (or y = amv). Hence, for particles with a thermal distribution, typical
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velocities are of the order of v ∼ [〈p〉/m] ∼ [T/m]. Even in the nonrelativis-
tic regime, typical thermal velocities can be significantly higher than Zel’dovich
velocities at the initial time. Later, they decrease as the inverse of the scale factor
because of the universe’s expansion, which is consistently taken into account by
the simulation.

The presence of large thermal velocities raises computational difficulties for
two reasons. A priori, the integration time step should scale like the inverse of
typical velocities in order to resolve particle trajectories with good accuracy. If
thermal velocities are higher than Zel’dovich velocities by one or two orders of
magnitude, the simulation will be slowed down in the same proportions with
respect to a CDM simulation. Second, HDM particles should fill a large volume
in phase space. The phase-space volume of cold particles is null, because they are
not given any velocity dispersion: initially, they have a unique possible velocity
at each point, corresponding to the Zel’dovich velocity. Instead, in the ideal case,
hot particles with a thermal velocity higher than the Zel’dovich velocity should
have a nearly isotropic velocity distribution in each point, like the true distribution
of underlying fundamental particles. In practice, one needs to introduce more hot
particles than cold particles in the simulation to obtain consistent results down to a
given resolution scale; otherwise the sampling of phase space is not sufficient, and
shot noise quickly dominates the evolution, leading to incorrect predictions for the
nonlinear power spectrum.

Despite the large CPU time and memory cost of such simulations, consistent
results have been obtained by various groups for mixed �CHDM models (Brand-
byge et al., 2008; Viel et al., 2010; Bird et al., 2012). These works show that because
neutrinos experience less clustering than CDM on small scales, their short-range
gravitational interactions can be neglected. Hence, in the TreePM code gadget, the
tree part can be evaluated only for CDM particles, whereas the mesh part includes
both species. It has also been shown that to follow CDM clustering correctly, it is
sufficient to set the integration time step to the same value as in a pure CDM simu-
lation. The main limitation of these simulations comes from memory requirements,
in that many neutrino particles are needed to keep shot noise at an acceptable level.
Because shot noise is directly related to the phase-space volume of the particles,
i.e., to the magnitude of thermal velocities (compared to Zel’dovich velocities),
simulations become more difficult for faster particles, i.e., lighter neutrinos. The
starting redshift zini should decrease with the neutrino mass, in order to have low
enough thermal velocities when initial conditions are set. But for small masses, zini

may have to be pushed to values at which CDM particles are already in the nonlin-
ear regime, so their initial conditions cannot be set correctly. This problem can be
alleviated by making use of the 2LPT algorithm. So far, simulations with cold plus
hot particles have been carried successfully with three degenerate neutrino species
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of total mass Mν = 3mν ≥ 0.15 eV. These simulations converge to a maximum
wavenumber on the order of k ∼ 10h/Mpc.

Alternative approaches for hot dark matter

To study the small-scale nonlinear clustering of a given HDM species, it is unavoid-
able to model this species with N-body particles, and run heavy simulations. How-
ever, to study the nonlinear clustering of CDM and compute the total nonlinear
matter power spectrum in mixed �CHDM models, it is possible to use several
types of approximation. Mistreating neutrinos on small scales is not necessarily
an issue, because we expect δν  δC on those scales. For instance, instead of
introducing hot particles from the beginning, one can describe neutrinos as a fluid
discretized on a grid, following linear equations solved by an external Boltzmann
code (Brandbyge and Hannestad, 2009), until some late time at which they are con-
verted into particles, when their thermal velocities are sufficiently small (Brand-
byge and Hannestad, 2010). Alternatively, one can postulate some approximate
fluid equations for the neutrino component (similar in spirit to those discussed in
Section 5.2.5) and treat neutrinos with the same numerical machinery as the bary-
onic component, i.e., with a smoothed-particle hydrodynamics (SPH) approach,
less time-consuming than a pure N-body approach (Hannestad et al., 2012b). The
accuracy of these approximate methods is still being discussed and investigated
(Bird et al., 2012).

Results for �CDM models with massive neutrinos

A consistent picture is emerging from all recent �CHDM simulations. We know
from Section 6.1.4 that at the linear level, the massive-to-massless power spectrum
ratio Pfν (z, k)/P 0(z, k) has the shape of a smooth step, departing from one above
the wavenumber knr, and reaching a plateau roughly between k = 1h/Mpc and
10h/Mpc, depending on neutrino masses. The amplitude of the step for fixed
(�M, ωM, ωB/ωC) is well approximated by Eq. (6.86) or Eq. (6.87), and remains
close to (1 − 8fν) for fν ≤ 0.05 and at z = 0.

The same ratio computed from the nonlinear results of N-body simulations has
the shape of a spoon (Brandbyge et al., 2008; Viel et al., 2010; Bird et al., 2012;
Hannestad et al., 2012b). The results of Bird et al., 2012 for three massive species
of total mass Mν = 0.6 eV are shown in Fig. 6.11. At z = 0, the ratio reproduces
linear results up to a scale on the order of k ∼ 0.1h/Mpc; then it keeps decreasing
until reaching a dip, and finally it goes up at least to the scale at which simulation
errors blow up. At redshift zero, the scale of the dip is on the order of k = 1h/Mpc,
and the maximal suppression at this scale is close to (1 − 10fν). At redshift z > 0,
the same features are observed, but shifted to smaller scales.
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Figure 6.11 Spoon-shaped suppression of the matter power spectrum due to neu-
trino masses. The solid lines show the power spectrum of a �CDM model with
three massive species of total mass Mν = 0.6 eV, divided by that of a massless
model with the same parameters (�M, ωM). Baryons have been neglected in these
simulations. In each plot, the two solid lines correspond to two different N -body
simulations with different resolution scales. The step-shaped dashed line shows
the linear predictions, studied in Section 6.1.4, whereas the spoon-shaped dashed
curve shows the outcome of the fitting formula halofit, recalibrated in order
to incorporate massive neutrino effects. (Reprinted from Bird et al., 2012, with
permission from Elsevier.)

The spoon shape is easy to understand qualitatively. In the presence of massive
neutrinos and for a fixed total matter density ωM, CDM perturbations grow more
slowly on scales k � knr, at least in the linear theory. Hence, they enter a bit later
into the nonlinear regime. The enhancement of the linear power spectrum due to
nonlinear clustering is then a bit smaller in the massive case, and this effect adds
up to the suppression already observed at the linear level. This explains why the
ratio falls to (1 − 10fν) instead of (1 − 8fν) at redshift zero. On smaller scales,
another effect takes over. It is well known that deep inside the nonlinear regime, the
matter power spectrum gradually loses memory of initial conditions and becomes
insensitive, e.g., to the details of the growth rate of CDM perturbations in the linear
regime. So, in the large k limit, the ratio between the power spectrum of a massive
and a massless model should reach one asymptotically. At redshift z > 0, the same
features can be identified at larger wavenumbers, because the scale of nonlinearity
is smaller.

Bird et al. (2012) have used the results of N-body simulations to re-calibrate the
nonlinear power spectrum fitting formula halofit (Smith et al., 2003) in the case
of �CHDM models with three degenerate neutrinos of arbitrary mass. Brandbyge
et al. (2010) focused on the impact of massive neutrinos on smaller scales and
computed the neutrino density profile in galactic halos, as well as the halo mass
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function (number of halos as a function of their mass) in the presence of massive
neutrinos.

Warm dark matter particles

In principle, all previous remarks concerning the implementation of HDM particles
in N-body simulations may apply to WDM particles. However, the latter case is
simpler, because for phenomenologically interesting WDM masses and phase-
space distributions, the velocity dispersion of particles at the beginning of a typical
N-body simulation (i.e., for 10 < z < 100) are lower than the Zel’dovitch velocities
(Boyarsky et al., 2009d). This means that thermal velocities can be safely neglected
in most cases, and that WDM particles are equivalent to CDM particles with an
initially different power spectrum, featuring a cutoff for krfs > 1, as explained in
Section 6.1.5. However, to resolve the same scales, it is necessary to introduce a
larger number of particles in the WDM case (see, e.g., Wang and White, 2007;
Lovell et al., 2012). Also, simulations of mixed �CWDM models can be carried
out with a single type of particles, initially following the linear power spectrum of
the cold plus warm components.

Several recent simulations of �WDM and �CWDM have been carried out in
different contexts, for instance, on mildly nonlinear scales, in order to fit data
from Lyman-α absorption in quasar spectra, or on strongly nonlinear scales for
studying galaxy halo profiles and galaxy satellite abundances. See, e.g., Macciò
and Fontanot, 2009; Dunstan et al., 2011; Polisensky and Ricotti, 2011; Schneider
et al., 2011; Lovell et al., 2012; Macciò et al., 2012a,b; Viel et al., 2012.

6.2.2 Analytic approaches

Several analytic approaches have been proposed to deal with the computation of
the nonlinear power spectrum on mildly nonlinear scales, with the goal of avoiding
tedious numerical simulations. Many (but not all) of these methods try to solve the
nonlinear continuity and Euler equations of dust (i.e., of cold particles),

δ′ + �∇ · [(1 + δ)�v] = 0

�v′ +H �v + (�v · �∇)�v = −�∇φ, (6.103)

where the gravitational potential φ is given by the Poisson equation. These equa-
tions are valid in the single-flow approximation: they neglect shell crossing between
various flows of CDM particles, which inevitably appear when modes enter in the
deeply nonlinear regime. Such techniques include one-loop calculations, renor-
malized perturbation theory, and renormalization group methods. Some of these
methods have been extended in order to account for a neutrino component: Wong
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(2008) and Saito et al. (2009) studied one-loop perturbation theory, whereas Les-
gourgues et al. (2009) used the time renormalization group method. These works
treat neutrinos as a linearly evolving species, coupled gravitationally to CDM and
baryons, that are subject to the preceding nonlinear equations. The results correctly
reproduce the departure from linear theory, although in a very limited range of
scales (roughly until k � 0.2h/Mpc for z > 2, or until k � 0.15h/Mpc at z = 1).
In the future, new approaches may lead to significant progress in this field.

6.3 Impact of neutrinos on secondary cosmic microwave
background anisotropies

We have studied in Chapter 5 the impact of neutrinos on primary CMB anisotropy,
defined as the contribution to CMB maps of physical phenomena taking place
until the epoch of recombination. Secondary anisotropy, caused by the rescattering
or the deflection of CMB photons in the recent universe, can also be sensitive
to neutrinos – interestingly, when those are already nonrelativistic. In Chapter 5,
we mentioned two sources of secondary anisotropy: the late integrated Sachs–
Wolfe (LISW) effect, and the reionization of the universe due to star formation.
Without giving a list of all sources of secondary anisotropy, we will briefly review
in this section the two secondary effects currently identified as the most relevant
for constraining neutrinos: the LISW effect, and CMB weak lensing.

6.3.1 Late integrated Sachs–Wolfe effect

We have seen in Section 5.1.6 that CMB temperature anisotropies pick up an
integrated Sachs–Wolfe (ISW) contribution,

δT

T
(n̂) =

∫ η0

ηLS

dη (φ′ + ψ ′), (6.104)

where the integral runs along each line of sight. We know from Section 6.1.1 that
in the minimal �CDM model (without massive neutrinos) and deep inside the
matter-dominated regime, the two Newtonian gauge metric fluctuations φ and ψ

are equal to each other and independent of time. Hence the ISW contribution can
be separated into an early and a late term. The second one reads

δT

T
(n̂)

∣∣∣∣
LISW

= 2
∫ η0

ηM

dη φ′, (6.105)

where ηM is some arbitrary time deep inside the matter-dominated regime. Inside
the Hubble radius, the metric fluctuation φ can be related to the total density
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fluctuation using the Friedmann and Poisson equations:

φ(η, k) = −3

2

a2H 2

k2
δM(η, k). (6.106)

Under the matter-dominated regime, the product [a2H 2] evolves like η−2, whereas
matter perturbation grows linearly with the scale factor, i.e., like η2. We see that
indeed φ is constant, at least in a first approximation. When we approach �

domination, ρ̄� starts to play a role in the Friedmann equation, and both [a2H 2] and
δM start to evolve differently. Then a net integrated Sachs–Wolfe effect accumulates
along each line of sight.

In the presence of massive neutrinos, we have seen that the solution for δM(η, k)
and hence for φ′(η, k) is not affected at large scales such that k  knr. At smaller
scales, δM(η, k) grows at a lower rate, as (a g(a;�M))1−(3/5)fν instead of a g(a;�M)
(see Eq. (6.76)). Hence, φ experiences some extra damping during all stages:
it decays like a−(3/5)fν during matter domination, and like a more complicated
function during � domination. For realistic neutrino masses, fν is much smaller
than one, and this extra damping is very small, but because this effect accumulates
over a long duration, it can be important at small redshift.

A subtle point is that neutrino mass has two opposite effects on the LISW
contribution. On one hand, in presence of neutrino mass, metric fluctuations are
slightly erased on small scales, because of neutrino free-streaming, and the LISW
effect tends to be suppressed. On the other hand, φ decreases a bit more quickly
because of neutrino masses, so in absolute value φ′ is enhanced. The competition
between these two effects has been described with numerical solutions and analytic
approximations by Lesgourgues et al., 2008.

The LISW contribution is difficult to observe, because CMB maps mix primary
and secondary anisotropy. A change in the LISW contribution to the first few mul-
tipoles l ≤ 10 can affect the slope of the plateau in the CMB spectrum significantly,
but these are the scales on which cosmic variance is very large. For higher multi-
poles the LISW signal is overseeded by primary anisotropies. As explained earlier,
the neutrino mass effect is expected to be maximal on small scales. Hence, in
practice, the CMB temperature spectrum is insensitive to LISW-induced neutrino
mass effects.

However, the LISW contribution can be disentangled from the primary
anisotropies by cross-correlating CMB and large-scale structure maps. Various
techniques offer the possibility of reconstructing the matter distribution in shells
centered on us. For instance, by observing galaxies in all directions and in a given
redshift bin (centered on a value zi), one can infer the map of matter fluctuations in
a shell of radius ri(zi), modulo a bias factor. With such a map δGi

(n̂), one can com-
pute a harmonic power spectrumC

GiGi

l , using the same expansion and definitions as
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Figure 6.12 Matter autocorrelation spectrumC
GiGi

l and matter–temperature cross-
correlation spectrum C

TGi

l for a model with massive neutrinos, divided by the
same quantitites for a model with massless neutrinos. Matter fluctuations have
been evaluated in four shells centered on redshift zi ∈ {0.1, 1, 2, 3}. The massive
model has a HDM density fraction fν = 0.1 due to three degenerate neutrino
species with mass mν = 0.41 eV each. As in Fig. 6.5, the massless and massive
models share the same values of (�M, ωM, ωB). (Reprinted with permission from
Lesgourgues et al., 2008. Copyright 2008 by the American Physical Society.)

for CMB maps (see Section 5.1.6). If the redshift bin is narrow, the map represents
matter fluctuations in a thin shell, and the spectrum C

GiGi

l is directly related to the
matter power spectrum P (zi, k) with a one-to-one correspondence

k = a(ηi) l

dA(ηi)
(6.107)

in the small-angle limit.
The cross-correlation spectrum C

TGi

l of the temperature and density maps would
vanish in the absence of secondary anisotropy; however, the LISW contribution
depends on the same structures and gravitational potential distribution as the density
map. Therefore, the cross correlation makes it possible to extract the LISW signal
in a given redshift bin, given by Eq. (6.105), with the integral running only inside
the bin. Because the LISW part depends on φ′, which can be related to δ′M through
the Poisson equation, the cross-correlation spectrumC

TGi

l depends on bothP (zi, k)
and its derivative with respect to time or redshift.

Figure 6.12 illustrates the impact of neutrino masses on the autocorrelation
and cross-correlation spectra C

GiGi

l and C
TGi

l in four redshift bins centered on
zi ∈ {0.1, 1, 2, 3}. The autocorrelation spectrum is suppressed by neutrino masses
at small angles (large l’s) in the same way as the matter power spectrum. The scale
of the step is constant in Fourier space (we know that it is given by knr). But in
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angular or harmonic space, this scale is seen under a larger angle (smaller l) at
smaller redshift.

Because of these two opposite effects, the effect of neutrino masses on the cross-
correlation spectrum is not so trivial. For zi = 0.1, the cross-correlation spectrum
follows almost the same steplike suppression as the autocorrelation spectrum.
The step is, however, slightly balanced by the fact that in the massive case, time
derivatives of metric fluctuations decrease faster. This second effect actually takes
over on small angular scales and at high redshift. In this limit, the LISW effect
is negligible with massless neutrinos (because metric fluctuations are static) but
not with massive neutrinos (because metric fluctuations decay like φ ∝ a−(3/5)fν ):
neutrino masses enhance the cross-correlation spectrum. Lesgourgues et al. (2008)
showed that for realistic experiments, these effects could be detectable in the future,
but with such error bars that this method does not offer such a sensitive probe of
neutrino masses as, e.g., galaxy or CMB weak lensing.

6.3.2 Cosmic microwave background lensing

Another source of secondary anisotropies comes from the weak gravitational lens-
ing of the last scattering surface caused by large-scale structure (reviewed by Lewis
and Challinor, 2006). The trajectories of CMB photons are slightly deflected by
matter fluctuations localized at redshifts z ≤ 3. At leading order in perturbations,
CMB lensing can be described entirely in terms of a two-dimensional deflection
field d̂(n̂). The deflection field represents the difference between the direction n̂ in
which photons have been emitted from the last scattering surface, and the direction
n̂+ d̂(n̂) in which they are actually observed. It is given by the gradient of a lens-
ing potential ϕ, related to the Newtonian metric perturbations φ and ψ through a
convolution along the line of sight

ϕ(n̂) = −
∫ η0

ηLS

dη
χ (ηLS) − χ (η)

χ (η)χ (ηLS)
(φ + ψ)(η,�x=r(η)n̂), (6.108)

where χ (η) is the comoving distance defined in Eq. (2.67) (in a flat universe χ (η) =
r(η) = (η0 − η)). During matter domination, we can relate φ = ψ to matter density
fluctuations through the Friedmann and Poisson equation (6.106). Therefore, the
harmonic power spectrum C

ϕϕ
l of a given map ϕ(n̂) can be inferred from the

matter power spectrum P (z, k), convolved in redhsift space with a given kernel. As
expected, in the presence of neutrino masses, the lensing spectrum features steplike
suppression on small scales, illustrated in Fig. 6.13.

It is not obvious how to infer the lensing power spectrum from observa-
tions, because we can observe CMB anisotropies only after lensing effects take
place. The deflection field can, however, be extracted statistically, by studying the
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Figure 6.13 CMB lensing spectrum C
ϕϕ
l for a model with massive neutrinos,

divided by the same quantity for a model with massless neutrinos. The massive
model has a hot dark matter density fraction fν = 0.073 due to three degenerate
neutrino species with mass mν = 0.3 eV each. As in Fig. 6.5, the massless and
massive models share the same values of (�M, ωM, ωB).

nongaussianity and nontrivial correlations induced by weak lensing in temperature
and polarization maps. Okamoto and Hu (2003) and Hirata and Seljak (2003) have
discussed various estimators of the lensing power spectrum, which can be seen as
nonlinear transformations of CMB maps that make it possible to estimate Cϕϕ

l with
an error bar given by the spectrum of primary anisotropy and of instrumental noise.
Other estimators can be used to reconstruct the lensing deflection map ϕ(n̂) or the
delensed CMB anisotropy maps. Current and future CMB experiments are able to
detect the lensing power spectrum with a good signal-to-noise ratio. Thanks to this
technique, the CMB offers an opportunity to probe the effect of neutrino masses
on the growth of structure at small redshift z ≤ 3, with a better sensitivity than
through the previously discussed LISW effect.

6.4 Observing the large-scale structure

The matter power spectrum can be probed with various techniques on different
scales and at different redshifts. In this section, we give a very brief summary of
the methods used (or expected to be used in the future) for constraining neutrino
parameters, without entering into any technical detail.
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6.4.1 Galaxy and cluster power spectrum

Galaxy maps (or, similarly, cluster maps) can be smoothed over small scales and
Fourier transformed in order to provide a power spectrum. Relating such a spectrum
to the total matter power spectrum discussed in Sections 6.1 and 6.2 is a tricky
exercise for several reasons:

� Galaxies are not perfect tracers of the total dark matter: there is no reason for
the relative density perturbation in observed galaxies δG(η, �x) to be equal to the
total matter density perturbation δM(η, �x). In Fourier space, the relation between
galaxy clustering and total matter clustering can be parameterized with a light-to-
mass bias function b(η, k) ≡ δG(η, k)/δM(η, k). Fortunately, several arguments
based on numerical simulations, analytical modeling of galaxy formation or
comparisons between various data sets show that on linear scales, the bias is
independent of k, so that we can relate the power spectrum of galaxies to that of
total matter:

PG(η, k) = b2(η)P (η, k). (6.109)

However, the numerical value of the bias factor depends both on time and on the
type of galaxies selected in a given data set, because this parameter is related to the
way in which galaxies form inside gravitational potential wells. Different galaxy
surveys may select different types of galaxies, with different median redshifts,
corresponding to specific average bias values. When theoretical predictions are
fitted to a given galaxy power spectrum PG(η, k), it is customary to leave the
bias as a free parameter and to marginalize the posterior parameter probability
over it. Hence, data on the galaxy power spectrum probe the shape of the matter
power spectrum, but not its overall amplitude. Eventually, some prior on the bias
can be inferred from higher-order statistics or from simulations.� For each object, a given survey measures the sky coordinates (i.e., two angles
(θ, φ)) and the redshift. Hence, actual galaxy maps are obtained in redshift space
(θ, φ, z), rather than in spherical comoving coordinates (θ, φ, r). To measure the
three-dimensional Fourier spectrum P (k), it is necessary to convert redshifts into
comoving distances. Assuming a fiducial cosmology, one can perform such a
conversion using Eqs. (2.8), (2.67). These relations take into account the average
Hubble flow, but not the peculiar velocities of individual objects, induced by
coherent motions of galaxies inside potential wells, that affect each redshift
through the Doppler effect. Hence, this operation introduces an error on the
power spectrum (or in other words, a k-dependent bias) known as the redshift-
space distortion. This distortion remains negligible for scales in the linear regime,
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corresponding to sufficiently small Fourier modes of the velocity field, and
becomes important on nonlinear scales.� We have seen in Section 6.2 that on small scales, it is not a trivial exercise to model
nonlinear corrections to the linear power spectrum with sufficient accuracy.

In summary, fitting a theoretical linear power spectrum to some real data set is
not too difficult on large (linear) scales provided that the linear bias is marginal-
ized over, whereas on small (nonlinear) scales it is necessary to model nonlinear
biasing, redshift-space distortions and nonlinear corrections. Moreover, on small
scales, the nonlinear evolution alters the (a priori gaussian) statistics of primordial
perturbations. In principle, this should also be taken into account in the expression
for the data likelihood.

These complications can be avoided by limiting theoretical fits to very large
scales, but then a lot of information contained in the data is not used. It is a major
challenge to push the comparison to smaller scales without introducing systematic
errors larger than the statistical errors of the data set. Swanson et al. (2010) illustrate
how uncertainties in the modeling of nonlinear corrections, nonlinear biasing and
redshift space distortions affect the sensitivity of galaxy surveys to neutrino mass
measurements.

In the following, we will show bounds on the shape of P (z, k) derived from
three recent data sets: the halo power spectrum of the Large Red Galaxy (denoted
later as Gal-LRG), measured by Reid et al., 2010a, the spectrum of the MegaZ
catalogue (Gal-MegaZ), used by Thomas et al., 2010 and the WiggleZ Dark Energy
Survey (Gal-WiggleZ), used by Riemer-Sørensen et al., 2012. The first two data
sets are actually extracted from the same big survey, the Sloan Digital Sky Survey
(SDSS). Technical details on the different methods and underlying assumptions
can be found in these references.

For sufficiently deep galaxy surveys, it is possible to separate galaxies into
redshift bins and compute different correlation functions at different redshifts.
This technique, called tomography, can be very useful for constraining the scale-
dependent growth factor induced by neutrino masses. In that case, the data can
be reduced to a set of two-dimension power spectra in different shells, instead
of a three-dimensional power spectrum with a given median redshift. For a given
shell, corresponding to a given redshift bin, the density in each direction δG(n̂) can
be expanded in spherical harmonics. It is then possible to estimate the harmonic
power spectrum CGG

l in each redshift bin, using the same definition as for the
CMB power spectrum (see Section 5.1.6). We already saw such a quantity in Sec-
tion 6.3.1. Recently, such a tomographic analysis was used by Xia et al., 2012 for
constraining neutrinos, using galaxies from the Canada–France–Hawaii-Telescope
Legacy Survey (CFHTLS), split into three redshift bins covering the ranges
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0.5 < z < 0.6, 0.6 < z < 0.8 and 0.8 < z < 1.0 (this data set will be denoted as
Gal-CFHTLS).

Several galaxy surveys with better sensitivity and larger volume are about to
release data or have been planned over the next decades, including the Baryon
Oscillation Spectroscopic Survey4 (BOSS), the Dark Energy Survey5 (DES), the
Large Synoptic Survey Telescope6 (LSST) and the Euclid satellite.7 Also, Wang
et al., 2005 pointed out that in the future, accurate measurements could be inferred
from cluster surveys. Because clusters are more luminous than galaxies, they can be
mapped up to higher redshift. One advantage of gathering high-redshift data is that
they can be used to probe the same comoving scale at a time when perturbations
are closer to the linear regime.

6.4.2 Cluster mass function

Instead of probing the matter power spectrum P (z, k) directly from the spatial
distribution of objects, it is possible to constrain integrated quantities of the type∫
dk P (k)W (k), whereW (k) stands for a given window function. One such quantity

is related to the histogram of cluster masses. If the mass of a significant number of
galaxy clusters within a given redshift bin is known, this histogram gives an estimate
of the so-called cluster mass function, dn(M, z)/dM , with dn being the number
of clusters of redshift approximately equal to z, and with a mass in the range
[M,M + dM]. This function is related to σ 2(M, z), the variance of the density
in spheres enclosing a mass M , itself derived from the convolution of the power
spectrum P (z, k) with an appropriate window function. Although one should in
principle compute dn(M, z)/dM for each theoretical model and compare it to the
raw data, it is customary to reduce observational constraints to a single bound on
a combination of the two cosmological parameters to which this method is mostly
sensitive. The first parameter, called σ8, is related to the amplitude of the linear
power spectrum today on typical cluster scales. Its square gives the variance of
the density in spheres of radius R = 8h−1Mpc. This parameter is obtained by
convolving P (z, k) with a given window function at z = 0. The second parameter
is �M: it specifies both the fraction of the total energy density in the universe in
the form of clustering matter, and the linear growth factor g(z;�M) (neglecting
massive neutrino effects). Approximate constraints from cluster abundances take
the form of a measurement of σ8�

α
M, where α is an exponent depending on the

details of the catalogue and of the method (in particular, on how the clusters have
been selected).

4 cosmology.lbl.gov/BOSS/. 5 www.darkenergysurvey.org/.
6 www.lsst.org/. 7 sci.esa.int/euclid.
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In the following we will refer to bounds derived from cluster abundances probed
by X-ray observations from the ROSAT survey, presented by Mantz et al., 2010
(denoted later as Clus-ROSAT), and by optical observations from the MaxBCG
catalogue, presented by Reid et al., 2010b (denoted later as Clus-MaxBCG). Cluster
abundances are also probed by weak lensing observations, but current bounds on
the total neutrino mass from this method do not compete with the ones mentioned
(Kristiansen et al., 2007).

6.4.3 Galaxy weak lensing

The images of observed galaxies are distorted by gravitational lensing effects,
caused by density fluctuations along the line of sight. One of these effects is called
cosmic shear. It corresponds to the squeezing of an image in one direction in the sky,
and its stretching in the orthogonal direction. Because such distortions are coherent
over the angular size of the lensing potential wells responsible for lensing, they
tend to align the apparent major axis of galaxies slightly in a given patch of the sky.
Hence the average cosmic shear in a given direction can be estimated statistically
by averaging over major axis orientations.

Let us consider a catalogue of galaxy images, and assume that the number density
of galaxies per redshift g(z) is roughly isotropic. Assuming a fiducial cosmology,
one can infer from g(z) the density of galaxies with respect to comoving radius,
g(r). The galaxy catalogue can be divided into small solid angles or pixels. Because
the intrinsic orientation of apparent galaxy major axes is randomly distributed (at
least to a good approximation), the average orientation in each pixel gives an
estimate of the average cosmic shear in the direction of the pixel, up to a shot noise
term which decreases when the number of galaxies per pixel increases.

The distortion of a source galaxy sitting at coordinates (θ, φ, rs), corresponding
to the direction of observation n̂ = (θ, φ), is related to the metric fluctuations φ

and ψ integrated along the line of sight and weighted by a given kernel,

ϕ(n̂; rs) = −
∫ η0

ηs

dη
χ (ηs) − χ (η)

χ (η)χ (ηs)
(φ + ψ)(η,�x=r(η)n̂), (6.110)

where χ (η) and r(η) are respectively the comoving distance and radial coordinate
of an object seen at time η. This expression for the lensing potential ϕ is identical
to the one presented in Section 6.3.2 for CMB lensing, although the source is now
located at an arbitrary point rather than on the last scattering surface. Because
observations probe the metric fluctuations at sub-Hubble distances, we can identify
φ and ψ with the gravitational potential. For an ensemble of galaxies distributed
according to the selection function g(rs), the average observed cosmic shear is
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given by the average lensing potential

ϕ(n̂; g) =
∫ rmax

s
0 drs g(rs)φ(n̂; rs)∫ rmax

s
0 drs g(rs)

. (6.111)

The analysis of a catalogue of images leads to a map of the lensing potential ϕ(n̂; g),
which can be expanded in spherical harmonics. It is then possible to measure the
harmonic lensing power spectrum C

ϕϕ
l , using the same definition as for the CMB

power spectrum (see Section 5.1.6), and to compare it with theoretical predictions.
After equation (6.110) is expanded in spherical harmonics, it is easy to show that
the theoretical lensing spectrum C

ϕϕ
l is given by the convolution of P (z, k) with an

appropriate kernel. Typically, Cϕϕ
l depends on the average matter power spectrum

P (z, k) over a redshift range 0 ≤ z ≤ ze, where ze is the redshift of an object located
at half the distance to the source (i.e., at the Einstein radius), and over a wavenumber
range corresponding to the size of objects located at the same redshifts and seen
under an angle θ = π/l. Hence, the small-scale suppression ofP (z, k) as a function
of k due to neutrino masses is visible in the lensing spectrum C

ϕϕ
l in the large l

limit. However, the step in P (k) (or the spoon shape of Fig. 6.11, if we take into
account nonlinear corrections) is smoothed by the various integrals leading to Cϕϕ

l .
Still, the advantage of cosmic shear observations is that they are directly related to
the density power spectrum P (k): they make it possible to measure cosmological
parameters without any assumption on the light-to-mass bias function b(k).

If the number of source galaxies is sufficient, it is possible to split the catalogue
in several redshift bins i, described by selection functions gi(r) such that g(r) =∑

i gi(r), and to measure the lensing spectrum C
ϕiϕi
l in each redshift bin. Because

sources in each bin are sensitive to the gravitational potential integrated up to
a different comoving radius r and a different conformal times η = η0 − r , this
tomographic approach makes possible a three-dimensional reconstruction of the
gravitational potential in our past-line cone and is sensitive to the variation of
the power spectrum with redshift. As for galaxy redshift surveys, cosmic shear
tomography is particularly useful for measuring neutrino masses, because it can
probe the scale-dependent growth factor induced by neutrino masses, over an
extended range of redshifts.

Current cosmic shear surveys make it possible to put bounds on neutrino param-
eters: we will refer later to results from the CFHTLS presented by Tereno et al.,
2009 and denoted as WL-CFHTLS. Spectacular improvements are expected from
future cosmic shear surveys like Pan-STARRS,8 or the DES, LSST and the Euclid
surveys already mentioned in Section 6.4.1.

8 pan-starrs.ifa.hawaii.edu/.
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6.4.4 Cosmic microwave background lensing

We have already described CMB lensing in Section 5.1.6. This technique leads to
another lensing spectrum C

ϕϕ
l which is complementary to the one inferred from

tomographic weak lensing surveys. This spectrum can be seen as coming from an
ultimate redshift bin corresponding to sources with a radial coordinate rs = rLS,
lensed mainly by structures up to z ∼ 3. The CMB lensing spectrum in a small
region of the sky has been estimated by the South Pole Telescope9 (SPT), but with
too large error bars to give interesting constraints on neutrinos. In the next section,
we will mention the expected sensitivity of CMB lensing observations by Planck10

and several ground-based instruments.

6.4.5 Lyman alpha forests

The most luminous and distant compact objects that we can observe are quasars.
Some of the photons emitted by quasars interact along the line of sight. In particular,
a fraction of photons are absorbed at the Lyman alpha wavelength by hydrogen
atoms located in the interstellar galactic medium (IGM). The absorbed fraction in
a given point of the photon trajectory is proportional to the local density of neutral
hydrogen. Because photons are continuously redshifted, absorption at a given point
is seen by the observer as a depletion of the spectrum at a given frequency. Hence,
inside a limited range called the Lyman alpha forest, the frequency dependence of
quasar spectra is a tracer of the spatial fluctuations of the hydrogen density along
the line of sight. Lyman alpha forests in quasar spectra offer an opportunity to
reconstruct the hydrogen density fluctuation along several lines of sight in a given
redshift range. After Fourier expanding each spectrum and averaging over many
spectra, one gets an estimate of the so-called flux power spectrum PF(z, k).

If this spectrum were probing only linear scales, we could assume that hydrogen
fluctuations are equal to total baryon fluctuations, which in turn are equal to total
matter fluctuations after the baryon drag epoch. In that case, the flux power spectrum
would be directly related to the linear one-dimensional matter power spectrum
P1D(k), which is related to the usual three-dimensional P (k) through a simple
integral. Unfortunately, the flux power spectrum does not probe linear scales,
but mildly nonlinear scales. In order to relate PF(z, k) to P (k), it is necessary to
perform N-body simulations with a hydrodynamic treatment of baryons, accounting
for the complicated thermodynamic evolution of the IGM (which depends on star
formation). Also, a limitation of this technique comes from the fact that the emitted
quasar spectra already have a nontrivial frequency dependence, and that photons

9 pole.uchicago.edu/. 10 www.rssd.esa.int/planck/.
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are affected by several other effects than Lyman alpha absorption along the line
of sight. Nevertheless, a careful modeling of all relevant effects makes it possible
to obtain interesting constraints. The fact that Lyman alpha forests probe mildly
nonlinear scales rather than strongly nonlinear ones is of course crucial for keeping
systematic errors under control. Lyman alpha observations typically constrain the
matter power spectrum in the wavenumber range 0.3 < k < 3h/Mpc and in the
redshift range 2 < z < 5.

In the next section we will mention neutrino bounds inferred from quasar spectra
obtained by the SDSS and presented in Viel et al., 2010, denoted as Lyα-SDSS.

6.4.6 21-cm surveys

Instead of mapping the distribution of hydrogen atoms through the absorption
rate of photons traveling from quasars, it should be possible to observe directly
the photons emitted by these atoms at a wavelength λ = 21 cm, when they flip
from one hyperfine level to the other. While travelling towards the observer, these
photons are redshifted, and they are seen with a wavelength indicating the position
of the emitting atoms in redshift space.

Recent theoretical progress in this field shows that using this technique, future
dedicated experiments should be able to map hydrogen and hence baryonic fluctu-
ations at very high redshift (typically 6 < z < 12) and to probe the matter power
spectrum deep inside the matter-dominated regime on linear scales (Pritchard and
Loeb, 2011). This field is still in its infancy, and the forecasts presented in the next
section have to be taken with care, because of the difficulty of making a realistic
estimate of systematic errors in future data sets.

6.5 Large-scale structure bounds on neutrino properties

6.5.1 Active neutrino masses

Current bounds

Using LSS observations in combination with CMB data offers an opportunity to
observe (or to bound) the steplike suppression of the matter power spectrum in the
presence of neutrino masses, explained in Section 6.1.4 and illustrated in Fig. 6.5.
The use of CMB data is crucial to constrain parameters such as the baryon density,
the primordial spectrum amplitude, the tilt and a combination ofωM and h. Without
such constraints, there would be too much freedom in the matter power spectrum
fitted to LSS data for identification of a smooth steplike suppression.

Current data sets are far from reaching the sensitivity required to probe the mass
splitting of the total mass Mν =

∑
i mνi between different species, whose effect is
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Table 6.1 95% CL upper bounds on the total neutrino mass Mν in eV, for various
combinations of CMB, homogeneous cosmology and LSS data sets

Data Reference w = −1 w �= −1

WMAP7+Gal-LRG+H0 (Komatsu et al., 2011) 0.44 0.76
WMAP5+Gal-MegaZ+BAO+SNIa (Thomas et al., 2010) 0.325 0.491
WMAP5+Gal-MegaZ+BAO+SNIa+H0 (Thomas et al., 2010) 0.281 0.471
WMAP7+Gal-WiggleZ (Riemer-Sørensen et al., 2012) 0.60 –
WMAP7+Gal-WiggleZ+BAO+H0 (Riemer-Sørensen et al., 2012) 0.29 –
WMAP7+Gal-CFHTLS (Xia et al., 2012) 0.64(0.44) –
WMAP7+Gal-CFHTLS+H0 (Xia et al., 2012) 0.41(0.29) –
WMAP5+BAO+SNIa+Clus-ROSAT (Mantz et al., 2010) 0.33 0.43
WMAP5+H0+Clus-MaxBCG (Reid et al., 2010b) 0.40 0.47
WMAP5+BAO+SNIa+WL-CFHTLS (Tereno et al., 2009) 0.53 –

Note: The first seven lines refer to galaxy power spectrum measurements, the next two lines to
cluster mass function measurements and the last line to a weak lensing survey. The acronyms
of CMB and homogeneous cosmology data are introduced in Section 5.4.1, those of LSS data
in Sections 6.4.1, 6.4.2 and 6.4.3. Bounds in the first column assume a minimal�CDM model
with massive neutrinos (seven parameters). In the last column, the cosmological constant
was replaced with a dark energy component with arbitrary equation-of-state parameter w
(eight parameters).

described in Section 6.1.4. The constraints mentioned in the following have been
derived in the case of three degenerate neutrinos with mass mν = Mν/3, but they
roughly apply to the total mass of any scenario. Also, the bounds shown in the first
column of Table 6.1 have been obtained under the assumption of a minimal �CDM
model with massive neutrinos, featuring seven free parameters. More conservative
bounds are sometimes derived for basic extensions of this model, with one or
two more parameters. The constraints do not change significantly on assuming,
for instance, a primordial spectrum with a running of the tilt [d ln ns/d ln k] or a
significant contribution to the CMB from primordial gravitationnal waves (Reid
et al., 2010b). Parameters known to be slightly degenerate with neutrino masses and
leading to weaker bounds are w, the equation-of-state parameter of a dark energy
component (substituting the cosmological constant), andNeff . The degeneracy with
w, explained in Hannestad, 2005a, is illustrated by the last column in Table 6.1. The
degeneracy with Neff , explained in Hannestad and Raffelt, 2004 or Crotty et al.,
2004, will be discussed in Subsection 6.5.2.

We summarize in Table 6.1 the main constraints on Mν at the time of writing,
obtained from combinations of CMB plus homogeneous cosmology data (see Sec-
tion 5.4.1), galaxy power spectrum data (see Section 6.4.1) and cluster abundance
data (see Section 6.4.2). In the case of the Gal-WiggleZ, Gal-CFHTLS and WL-
CFHTLS data, bounds were presented for only the seven-parameter model. For the



3.1 Neutrinos, CMB and LSS, chapters 5 and 6 of “Neutrino Cosmology”, CUP 2013 169

6.5 Large-scale structure bounds on neutrino properties 337

Gal-CFHTLS case, the first bounds correspond to a conservative analysis limited
to scales for which nonlinear corrections are small and well under control, whereas
the bounds in parentheses rely on including slightly smaller scales.

Including Lyman alpha data is a delicate issue. It requires extensive N-body
simulations with a hydrodynamic treatment of baryons and of the thermody-
namics of the IGM (see Section 6.2), as well as extra HDM particles (see Sec-
tion 6.4.5). On has to keep under control systematic errors coming both from
uncertainties on the flux power spectrum, and from the fact that simulations can
be performed for only a limited number of models and must be extrapolated
to other models following some particular scheme. A few bounds in the litera-
ture were derived without including HDM particles in simulations, or with data
sets probably affected by large systematic errors (because these data indicated a
global power spectrum amplitude significantly larger than the one derived from
CMB data). A conservative analysis based on Ly-α-SDSS data was presented
by Viel et al., 2010. In this case, neutrinos were included as HDM particles in
N-body simulations, and the data were marginalized over a global normalization
factor. This analysis gives a bound Mν < 0.9 eV (95% CL) from Ly-α-SDSS data
alone.

In conclusion, the combination of available data sets to date indicates that the
total neutrino mass is below 0.3 eV at the 95%CL (0.5 eV if we allow for dark
energy with arbitrary w). This means that the degenerate scenario in which all
neutrinos share roughly the same mass is almost excluded. The data are about to
probe the region in which masses are different from each other, and are ranked
according to the NH or IH scenario (see Section 1.4.1). Other recent summaries
of existing bounds have recently been presented (González-Garcı́a et al., 2010;
Hannestad, 2010; Reid et al., 2010b; Abazajian et al., 2011; Komatsu et al., 2011;
Wong, 2011).

Future bounds

In the very near future, significant improvements in the neutrino mass bounds will
be triggered by the Planck CMB satellite and the Baryon Oscillation Spectroscopic
Survey (BOSS). The forecasts presented in Perotto et al., 2006 predict a neutrino
mass sensitivity of σ (Mν) ∼ 0.1 eV from Planck alone, using the lensing extraction
technique of Okamoto and Hu, 2003. This would be twice as good as without
lensing extraction. Sekiguchi et al. (2010) find that the combination of Planck
(with lensing extraction) with BAO-scale information from BOSS could lower the
error to σ (Mν) ∼ 0.06 eV. Gratton et al. (2008) find that adding Lyman alpha
data from BOSS should lead to comparable sensitivities, and even better results
might be expected from the addition of galaxy power spectrum data from the same
survey.
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With better tomographic data (for either galaxy clustering or cosmic shear), it
will become possible to probe the scale dependence of the growth factor induced
by neutrino masses (or in other words, the fact that the steplike suppression has an
amplitude increasing with time, as illustrated in Fig. 6.10) and to reach spectacular
sensitivites. We present below the typical sensitivity expected for a collection of
planned surveys (not all approved). These numbers should be taken with care,
because forecasts are based on an idealization of each experiment, as well as on
several assumptions such as the underlying cosmological model, or even the fiducial
value of the neutrino mass itself.

Lahav et al. (2009) find that the measurement of the galactic harmonic power
spectrum in seven redshift bins by the Dark Energy Survey (DES) should lead
to a sensitivity of σ (Mν) ∼ 0.06 eV when combined with Planck data (without
lensing extraction). Similar bounds were found by Namikawa et al., 2010 for
another combination of comparable experiments. This shows that at the hori-
zon of 2014 or 2015, a total neutrino mass close to Mν � 0.1 eV could be
marginally detected at the 2σ level by cosmological observations. Because this
value coincides with the lowest possible total mass in the inverted hierarchy sce-
nario, the latter could start to be marginally ruled out in case the data still prefer
Mν = 0.

Kitching et al. (2008) find that the sensitivity of cosmic shear data from a
satellite experiment comparable to Euclid would shrink to σ (Mν) ∼ 0.03 eV in
combination with Planck (without lensing extraction). The forecast of Carbone
et al., 2011, based on galaxy clustering data also from Euclid (completed at small
redhsift by similar data from BOSS), gives comparable numbers. Constraints based
on the ground-based Large Synoptic Survey Telescope should be slightly weaker
(Hannestad et al., 2006). Hence, in the early 2020s, we expect that a combina-
tion of cosmological data sets could detect the total neutrino mass of the normal
hierachy scenario, Mν � 0.05 eV, at the 2σ level. If the total mass is instead
close to Mν � 0.1 eV, it will be detected at the 4σ level. However, in that case,
available experiments will not have enough sensitivity to make the difference
between an inverted and a normal hierarchy scenario with the same Mν : the mass-
splitting effects illustrated in Figure 6.9 are too small to be detected by such surveys
(Lesgourgues et al., 2004).

Even more progress could be provided by 21-cm surveys (see Section 6.4.6).
It is difficult to make reliable predictions for this technique, given the number
of unanswered questions needing to be addressed first. Pritchard and Pierpaoli
(2008) find a sensitivity of σ (Mν) ∼ 0.075 eV for the combination of Planck with
the Square Kilometer Array (SKA) project, or σ (Mν) ∼ 0.0075 eV with the Fast
Fourier Transform Telescope (FFTT). However, they show that such impressive
experiments would still fail in discriminating between the NH and IH scenarios
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(of course, such a question would still be around only if the detected total mass is
not smaller than 0.1 eV).

An eventual post-Planck CMB satellite or post-Euclid survey would also have a
great potential. Lesgourgues et al. (2006) find that a CMB satellite of the next gen-
eration could get σ (Mν) ∼ 0.03 eV alone, thanks to a very precise reconstruction
of the CMB lensing potential. Wang et al. (2005) discuss the potential of cluster
surveys. Finally, Jimenez et al. (2010) show how far the characteristics of a hypo-
thetical galaxy or cosmic shear survey should be pushed to discriminate between
two allowed NH and IH scenarios with the same total mass.

6.5.2 Neutrino abundance and light sterile neutrinos

The relevance of LSS observations for measuring the effective neutrino numberNeff

was stressed in Section 6.1.3. Let us recall that the matter power spectrum has a very
small dependence on Neff when this parameter is varied while (�M, zeq, ωB/ωC)
are kept fixed: only the scale of BAOs is affected by such a transformation (see
Fig. 6.2, solid versus dashed curve). However, both CMB and BAO data fix ωB/ωγ ,
not ωB/ωC. The matter power spectrum amplitude and slope do change on small
scales when Neff is varied while (�M, zeq, ωB) are kept fixed (see Fig. 6.2, solid
versus dotted curve). Hence, a measurement of the matter power spectrum with a
good resolution of the BAO scale and/or in combination with CMB data is sensitive
to Neff .

Bounds on Neff for negligible neutrino masses

Let us first discuss the bounds on Neff obtained under the assumption that all
neutrinos (or other possible light relics) have negligible masses with respect to the
sensitivity of current experiments (i.e., with respect to 0.1 eV). In that case, the
minimal model to be fitted to the data has seven free parameters. For such a model,
Reid et al. (2010b) find Neff = 4.16+0.76

−0.77 (68% CL) for WMAP7+H0+Gal-LRG,
and Neff = 3.77+0.67

−0.76 (68% CL) for WMAP5+H0+Clus-MaxBCG (for the meaning
of these acronyms, see Sections 5.4.1, 6.4.1 and 6.4.2). Using the most recent
galaxy power spectrum data, Xia et al. (2012) find Neff = 3.98+1.04

−0.51 (68% CL) for
WMAP7+H0+Gal-CFHTLS.

By comparing these numbers with those presented in Section 5.4.2 for various
combinations of CMB and homogeneous cosmology data sets, we see that current
LSS experiments do not play an important role in bounding Neff . The best comple-
mentary data sets to WMAP are still small-scale CMB data (from SPT and ACT),
Hubble parameter data (referred as H0 or OHD in Section 5.4.2), or BAO-scale
data. Hence we refer the reader to Section 5.4.2 for a detailed discussion of current
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bounds on Neff , on how much they depend on the underlying model, and on their
possible implications.

In the future, the sensitivity of LSS experiments to Neff will increase signifi-
cantly. Perotto et al. (2006) find that using lensing extraction, Planck can lower
the error bar from σ (Neff) ∼ 0.5 to σ (Neff) ∼ 0.3. Kitching et al. (2008) find that
the combination of cosmic shear data from a satellite experiment comparable to
Euclid would give σ (Neff) ∼ 0.1 when combined with Planck. The forecast of Car-
bone et al. (2011) based on galaxy clustering data also from Euclid (completed at
small redshift with similar data from BOSS and combined again with Planck) gives
σ (Neff) ∼ 0.09. Such a sensitivity would still not be sufficient to test the details of
neutrino decoupling in the standard scenario, leading to Neff = 3.046, but it could
exclude at high significance the assumption of extra light relics, unless their density
is very much suppressed with respect to that of active neutrinos.

Bounds on Neff in the presence of active/sterile neutrino masses

If we allow simultaneously for extra light degrees of freedom and small masses
(for active neutrinos and/or for these extra relics), observational bounds become
rather model-dependent. Indeed, the effect of the corresponding parameters can
be degenerate, to a limited extent (Crotty et al., 2004; Hannestad and Raffelt,
2004). Furthermore, mass-splitting issues can become relevant in this case. We
saw in Section 6.5 that in a minimal scenario with Neff � 3 and a given total
mass Mν ≥ 0.1 eV, the difference between NH and IH is almost impossible to
detect. However, in a scenario with Nν > 3, there are a priori no oscillation data
constraining the difference between active and sterile neutrino masses, so we could
equally well assume that the total mass resides mainly in one sterile species, or
is split equally between all species. With high enough values of Neff and Mν ,
these two assumptions lead to significant differences in the matter power spectrum
(qualitatively similar to those illustrated in Fig. 6.8), and each of them should be
studied separately.

For instance, Hamann et al. (2010) investigated several cases, including that of
three massless active neutrinos plus Ns degenerate neutrinos of mass ms each. For
the data combination WMAP7 + ACBAR + BICEP + QuAD + H0 + Gal-LRG,
they find

3.046 < Neff < 6.15, ms < 0.66 eV (95%C.L.). (6.112)

When they assume instead three degenerate active neutrinos of mass mν each, plus
Ns massless sterile neutrinos, they find for the same data

3.10 < Neff < 6.80, mν < 0.42 eV (95%C.L.). (6.113)
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Finally, Giusarma et al. (2011) assumed a third scenario with three degenerate
active neutrinos, each with mass mν , plus Ns degenerate neutrinos of mass ms

each. For the data combination WMAP7+H0+Gal-LRG they quote the bound

3.26 < Neff < 7.66, mν < 0.36 eV, ms < 0.70 eV (95%C.L.). (6.114)

The bounds for sterile neutrinos are larger because ms can correspond to fewer than
three species, whereas mν is always shared among three species. These bounds are
already outdated (especially by SPT), but they illustrate the difference between
various cases. For each of these cases, the correlations between Neff and masses
(illustrated by contour plots which can be found in these references) show that
bounds on Neff and on masses are both relaxed with respect to simpler models with
either the masses fixed to zero, or Neff fixed to 3.046. The weakening of the joint
bounds can reach a factor of 2 in some cases.

Giusarma et al. (2012) showed that the bounds on such models are rather robust,
even when more general cosmological models with extra parameters are assumed.
Hamann et al. (2011) presented an update and a more detailed discussion of some
of these cases.

Concerning future joint bounds on Neff and Mν , the combination of Euclid
lensing data and Planck data would give σ (Mν) ∼ 0.14 eV and σ (Neff) ∼ 0.12,
assuming that all species are degenerate in mass (Debono et al., 2010). Giusarma
et al. (2011) present similar forecasts in a few other cases.

Properties of possible extra relativistic relics

In all these studies, extra relics are assumed to share the same Fermi–Dirac distri-
bution and the same temperature as active neutrinos. In the case of sterile neutrinos,
this is motivated by the assumption of a large mixing angle between active and ster-
ile neutrinos. With such assumptions, the difference Neff − 3.046 can be directly
interpreted as the number of extra species. Note that the main motivation for light
sterile neutrinos comes from anomalies in LSND, MiniBoone and nuclear reactor
data (see Section 1.4.1). These anomalies provide very marginal evidence for ster-
ile neutrinos with a mass of order eV. The cases Neff � 4 or 5 and Mν ∼ 1 eV are
already excluded by the bounds we have just reported (see Hamann et al., 2011
for more details), not even speaking of BBN bounds discussed in Section 4.4.1.
Therefore, possible eV-mass sterile neutrinos should have a suppressed nonther-
mal distribution (and/or a lower temperature than active neutrinos). However, this
is unlikely, because they are expected at the same time to have a large mixing
angle.

If extra relics are assumed to have a different temperature or to be nonther-
mally distributed, bounds on (Neff − 3.046) cannot be immediately interpreted as
the number of extra species. We discussed different phase-space distributions in
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Section 6.1.4, and considered two cases (a) and (b). In case (a), i.e., relics with
a rescaled Fermi–Dirac distribution or just a different temperature, the previous
upper bounds can be translated into bounds on the rescaling factor χ or on the
temperature Ts. This can be done by equating (�Neff , ωs, knr) in the thermal and
nonthermal cases, because these are the three quantities really probed by observa-
tions. This situation is discussed in the analysis of (Acero and Lesgourgues, 2009).
In case (b), i.e., for any other phase-space distribution function, a specific analysis
is needed for each particular model.

Finally, the previous bounds assume that extra massless or light relics are colli-
sionless, and free-stream on small scales like ordinary neutrinos. Some nonstandard
interaction may change the clustering properties of these relics without affect-
ing their background evolution. Archidiacono et al. (2011) address this issue by
introducing more freedom in the perturbation equations of massless relics. They
promote two coefficients in Eq. (5.68) to the rank of free parameters. One of
these coefficients is simply the sound speed ceff relating pressure perturbations to
density perturbations. The other relates the shear σ to the bulk velocity θ and is
called the viscosity speed. Ordinary collisionless species are described by setting
(c2

eff, c
2
vis) = (1/3, 1/3), whereas self-interacting particles could be described by

lower values. The case (c2
eff, c

2
vis) = (1/3, 0) is that of a relativistic perfect fluid.

In this limit the Boltzmann hierarchy reduces to a simple pair of equations, the
continuity and Euler equations.11 Archidiacono et al. (2011) fit such a model to the
data combination WMAP7+ACT-2008+SPT+H0+Gal-LRG and find that observa-
tions prefer a standard value of the sound speed, but leave the viscosity speed
unconstrained. In other words, if extra ultrarelativistic relics are present, we do not
know whether they are collisionless or not.

6.5.3 Nonstandard properties of active neutrinos

Let us now assume that the universe contains the three ordinary neutrino species,
possibly with nonstandard properties, and no other massless or light relics.

The simplest deviation from the standard picture would consist of a large lep-
tonic asymmetry leading to significant chemical potentials in the Fermi–Dirac
distribution of each species. If neutrino masses are considered negligible given the
sensitivity of the data, the effect of chemical potentials is entirely described by an
enhancement of Neff , which can be computed following Eq. (4.51). The previous

11 Other works have addressed this problem with different parameterizations. Some of them are problematic
because the standard case of collisionless species is not one particular point in the space of free model
parameters. In particular, this happens when the Boltzmann hierarchy is truncated at l = 2 with a given value
of cvis, as in the imperfect fluid approximation (Hu, 1998). In that case, taking c2

vis = 1/3 only provides a crude
approximation to the actual behavior of collisionless species.
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bounds on Neff can be then translated into bounds on the chemical potentials, with
no information on the splitting of the leptonic asymmetry between different species.
If neutrino masses are taken into account, a specific analysis is required, as in Les-
gourgues and Pastor, 1999, with in principle two free parameters per species (mass
and chemical potential). Extra distortions are introduced by neutrino oscillations
until the BBN epoch, as explained in Section 4.4.2. We do not report results for
this case, because leptonic asymmetries are still constrained more strongly by a
combination of BBN and oscillation data than by CMB and LSS observations, as
discussed by Castorina et al., 2012. Current constraints on these asymmetries are
summarized by the results of Mangano et al., 2012 described in Section 4.4.2. In
the future, the increasing sensitivity of CMB and LSS data to neutrino masses and
abundances will provide even better limits on the leptonic asymetry.

Besides, the phase-space distribution of active neutrinos could be distorted,
e.g., by the decay of a particle into neutrinos after neutrino decoupling (Cuoco
et al., 2005). It could also depart from Fermi–Dirac statistics under very unusual
assumptions (Dolgov et al., 2005). As long as neutrino masses can be neglected,
these scenarios can be probed through their impact on Neff . If masses are assumed
to be significant, such cases also require specific studies. The range of possible
nonstandard assumptions is so wide that we do not present explicit observational
bounds in this book. Particular examples of such analyses can be found, e.g., in
Cuoco et al., 2005 or Hannestad et al., 2005.

Neutrinos could also be coupled with other species. Many nonstandard particle
physics models leading to neutrino interactions have been presented in the literature
(see Section 4.4.3). Cosmological bounds on these models can be obtained case by
case, or through some more or less generic parameterization. Hereafter we briefly
summarize some of the approaches that have been followed so far.

One can simply assume that neutrinos experience self-interactions preventing
them from streaming freely. In the massless neutrino limit, this assumption would
simply lead to a reduction of the neutrino anisotropic stress. Trotta and Melchiorri
(2005) and De Bernardis et al. (2008) proposed to parameterize this effect through
a viscosity speed cvis accounting for the relation between the neutrino anisotropic
stress σν and the bulk velocity θν . The limit cvis = 0 is that of strongly self-
interacting massless neutrinos, behaving as a perfect relativistic fluid. The case
c2

vis = 1/3 corresponds to an imperfect fluid whose evolution closely mimicks (but
not perfectly) that of ordinary collisionless neutrinos, as shown in Hu, 1998. Fitting
such a model to data shows that the case of a perfect relativistic fluid is strongly
disfavoured with respect to ordinary free-streaming neutrinos. However, this con-
clusion is mainly driven by CMB data. So it is not excluded that neutrinos free-
stream normally until recombination, and experience later some self-interactions
driving their effective viscosity speed to zero (Basbøll et al., 2009).
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Several authors studied the case in which some (or all) of the neutrinos are tightly
coupled to a new scalar particle. In that case the perturbations of the whole neutrino–
scalar fluid can be described with one continuity and one Euler equation, just like
the photon–baryon fluid in the tightly coupled limit. This would be equivalent
to the previous approach in the limit c2

vis = 0 if the neutrino and scalar particles
were ultrarelativistic. These models have a richer phenomenology when scalar and
neutrino masses are taken into account. For instance, most neutrinos could decay
into bosons in the early universe, so that no effects from neutrino masses could
ever be observed in LSS data (Beacom et al., 2004). Less extreme cases have
been investigated by Hannestad, 2005b; Bell et al., 2006. Current constraints on
these models are still very weak, and dominated by the fact that CMB observations
confirm the presence of ultrarelativistic free-streaming neutrinos around the time
of photon decoupling. A positive detection of neutrino mass effects in LSS data
would prove that neutrinos free-stream until today and rule out most of these
models. Models where neutrinos are coupled to dark matter with mass in the MeV
range have been studied in Mangano et al., 2006b; Serra et al., 2010. In this case,
too, the bounds on the typical parameter of these scenario, the interaction cross
section, are quite loose.

Finally let us mention the mass-varying neutrino (MaVaN) scenarios. In these,
neutrinos are coupled to a scalar field with a dynamical vacuum expectation value,
in such a way that the effective neutrino mass would depend on the field value. In this
case, the neutrino evolution remains standard until the time of the nonrelativistic
transition. After that time, the coupling term becomes important and triggers a
nontrivial evolution both in the scalar field and in the neutrino sector, so that the
average neutrino mass varies with time. The effective mass can either increase or
decrease in the recent universe, depending on the model. The linear perturbation
equations of neutrinos and of the scalar field can be integrated using a dedicated
Boltzmann code, which yields the corresponding CMB and LSS power spectra. If
the coupling is not very small (i.e., if the neutrino mass variation is significant),
perturbations grow very quickly on large scales, signalling an instability in the
model. Assuming that this instability is incompatible with the data, França et al.
(2009) derived some strong bounds from current CMB and LSS observations.
Instead, Mota et al. (2008) pointed out that unstable perturbations might back-react
on the background evolution without conflicting observations. This possibility is
currently being investigated with nonlinear simulations (Ayaita et al., 2012).

6.5.4 Heavy sterile neutrinos (warm dark matter)

We have seen in Section 6.1.5 that WDM particles becoming nonrelativistic during
radiation domination are indistinguishable from CDM particles on large scales.
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Both CMB observations and LSS data limited to linear scales are perfectly com-
patible with a �CDM model. They show no evidence for a depletion of the matter
power spectrum on small scales that would be imprinted below the free-streaming
horizon in the presence of WDM.

So any possible evidence for WDM must be searched for in LSS data on small
scales. Although small-scale galaxy clustering or weak lensing data are in principle
sensitive to WDM masses, they are available today at small redshifts for which the
scale of nonlinearity is relatively large. This raises several difficulties. First, we
know that nonlinear corrections, redshift space distortions and nonlinear biasing
are difficult to compute on nonlinear scales. Second, the nonlinear evolution tends
to mask the effect of WDM. Indeed, a transfer of power from larger to smaller
scales tends to move the break in the matter power spectrum to smaller scales, and
to make it smoother. In other words, if we go deeper inside the nonlinear regime, we
must search for WDM signatures at even smaller scales. For these reasons, given
the sensitivity of current data and the status of nonlinear simulations, the most
stringent cosmological bounds on WDM are those derived from Lyman alpha forest
data. Indeed, this technique probes mildly nonlinear scales at very high redshift
(2 < z < 4). On Lyman alpha scales and at z = 3, the WDM-induced break could
be clearly visible, whereas on the same scale and at z � 1 it could have been
essentially erased. Still, Lyman alpha data must be used in combination with CMB
and eventually other LSS data sets to measure all of the parameters of the �WDM
model. To fit theoretical WDM models to Lyman alpha data, performing specific
hydrodynamical simulations with WDM particles is unavoidable. Implementing
WDM particles in simulations is much simpler than for HDM particles, as explained
in Section 6.2.1.

We presented an explicit form for the break in the matter power spectrum in
Eq. (6.97). This formula corresponds either to a thermal WDM distribution or
to a rescaled Fermi–Dirac distribution. We know that the latter case is a good
approximation to scenarios in which heavy sterile neutrinos are populated by
nonresonant oscillations with active neutrinos, the Dodelson–Widrow scenario.
A fit to Lyman alpha and other cosmological data gives a lower bound on the
parameter kbreak of Eq. (6.97), i.e., on the ratiomx/Tx. This bound can be formulated
as a lower limit for the mass of DW sterile neutrinos mDW by assuming Tx � T a

ν

and mx = mDW. It can also be translated into a bound on the mass of a thermal
WDM particle (see Eq. (6.94) and the following relations). Using a combination of
WMAP5, extra small-scale CMB data, SNIa, H0, Gal-LRG and Ly-α-SDSS data
sets,12 Boyarsky et al. (2009d) obtained a bound mDW > 12 keV (95%CL).

12 For the meaning of these acronyms, see Sections 5.4.1 and 6.4.
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�CWDM models in which WDM particles (either thermal or DW) would coexist
with CDM particles in the universe can be described with two parameters on top
of the usual six �CDM parameters: the WDM fraction fw = ωw/(ωC + ωw) and
the velocity dispersion parameter mx/Tx (or directly the mass mDW if Tx � T a

ν is
assumed). As mentioned in Section 6.1.5, the power spectrum of such models is
steplike suppressed (at the level of linear theory). The step amplitude and location
are controlled by the two WDM parameters. The possible existence of a step is
much less constrained by the data than that of a break. For the same combination of
data sets, Boyarsky et al. (2009d) derived some joint bound in (fw,mDW) parameter
space. For fw < 0.35, it appears that any mass is compatible with the data. For
larger fractions, the bound increases gradually and reaches the previous value when
fw = 1.

We mentioned in Section 6.1.5 that the DW model and thermal model are just
two out of many possibilities for the WDM phase-space distribution. For instance,
for sterile neutrinos populated by resonant oscillations, the phase-space distribution
leads roughly to the same cosmological signature as in a mixed warm plus cold
model. Using this similarity, Boyarsky et al. (2009c) showed that for resonantly
produced sterile neutrinos the bound is much weaker than in the DW model, so
that a mass of 2 keV is still well compatible with the data.

Lyman alpha bounds on sterile neutrino masses are complementary to vari-
ous astrophysical bounds. First, the WDM characteristics can be probed by the
small-scale structure of the universe: halo profiles, number of satellite galaxies,
morphology of the galactic center, etc. These indications are, however, subject to
huge uncertainties, and although several arguments tend to favour WDM (see, e.g.,
Lovell et al., 2012), they must be taken with care. Second, if sterile neutrinos are
too heavy, or if their mixing angle with active neutrinos is too large, a neutrino
decay line should be clearly visible in galaxy halos using X-ray observations.
More precisely, it is possible for a sterile neutrino to decay into a photon and an
active neutrino via a 1-loop process, with branching ratio 27α/(8π ) ≈ 1/128. The
radiative decay width (Pal and Wolfenstein, 1982) is

�(νs → γ νa) = 9α

2048π4
G2

F sin2 2θ m5
s �

1

1.5 × 1032 s

sin2 2θ

10−10

[ ms

keV

]5
(6.115)

in the case of Dirac neutrinos (for Majorana neutrinos the rate gets an extra factor
of two). Even if sterile neutrinos are required to be cosmologically stable, a very
small fraction of them will decay following this channel. Because the radiative
decay is a two-body process, the signal is a monochromatic flux of X-rays with
energy Eγ � ms/2. Emitted photons may be observed by X-ray instruments such
as the XMM-Newton, Chandra X-ray, and Suzaku observatories, especially in the
direction of dark matter halos (Abazajian et al., 2001; Dolgov and Hansen, 2002;
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Feng, 2010; Boyarsky et al., 2006). Null results exclude the upper right region of
Fig. 4.7. Future X-ray observations may extend sensitivities to the entire range of
parameters plotted in Fig. 4.7 (Abazajian, 2009; den Herder et al., 2009).

Hence X-ray bounds on the sterile neutrino mass depend on the mixing angle.
The relic density ωDW of DW sterile neutrinos can also be inferred from the
mass and mixing angle. Joint constraints from cosmological and X-ray data in
(mDW, ωDW) parameter space are incompatible with each other: the DW scenario
is now excluded with a good confidence level (see, e.g., Boyarsky et al., 2008).
In the case of resonant production, cosmological bounds are much weaker, and
a large allowed window remains open (Boyarsky et al., 2009c), as illustrated
in Fig. 4.7.
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Cosmological implications of a Relic Neutrino Asymmetry
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We consider some consequences of the presence of a cosmological lepton asymmetry in the form
of neutrinos. A relic neutrino degeneracy enhances the contribution of massive neutrinos to the
present energy density of the Universe, and modifies the power spectrum of radiation and matter.
Comparing with current observations of cosmic microwave background anisotropies and large scale
structure, we derive some constraints on the neutrino degeneracy and on the spectral index in the
case of a flat Universe with a cosmological constant.

I. INTRODUCTION

It is generally assumed that our Universe contains an approximately equal amount of leptons and antileptons. The
lepton asymmetry would be of the same order as the baryon asymmetry, which is very small as required by Big Bang
Nucleosynthesis (BBN) considerations. The existence of a large lepton asymmetry is restricted to be in the form of
neutrinos from the requirement of universal electric neutrality, and the possibility of a large neutrino asymmetry is
still open. From a particle physics point of view, a lepton asymmetry can be generated by an Affleck-Dine mechanism
[1] without producing a large baryon asymmetry (see ref. [2] for a recent model), or even by active-sterile neutrino
oscillations after the electroweak phase transition (but in this last case, it might not be of order unity) [3]. This lepton
asymmetry can postpone symmetry restoration in non-supersymmetric or supersymmetric models [4] (note that this
is also true for other charges [5]).
In this paper we study some cosmological implications of relic degenerate neutrinos1. We do not consider any

specific model for generating such an asymmetry, and just assume that it was created well before neutrinos decouple
from the rest of the plasma. An asymmetry of order one or larger can have crucial effects on the global evolution of
the Universe. Among other effects, it changes the decoupling temperature of neutrinos, the primordial production of
light elements at BBN, the time of equality between radiation and matter, or the contribution of relic neutrinos to
the present energy density of the Universe. The latter changes affect the evolution of perturbations in the Universe.
We focus on the anisotropies of the Cosmic Microwave Background (CMB), and on the distribution of Large Scale
Structure (LSS). We calculate the power spectrum of both quantities, in the case of massless degenerate neutrinos,
and also for neutrinos with a mass of 0.07 eV, as suggested to explain the experimental evidence of atmospheric
neutrino oscillations at Super-Kamiokande [6]. The cosmological implications of neutrinos with such a small mass are
known to be very small, but we will see that this conclusion is modified if a large neutrino degeneracy exists. We also
include in our analysis the possibility that the dominant contribution to the present energy density in the Universe
is due to a cosmological constant: ΩΛ ∼ 0.6 − 0.7, keeping the Universe flat (Ω0 + ΩΛ = 1), as suggested by recent
observations (see [7] and references therein).
The effect of neutrino degeneracy on the LSS power spectrum was studied in ref. [8], as a way of improving the

agreement with observations of mixed dark matter models with eV neutrinos, in the case of high values of the Hubble
parameter. Also, Adams & Sarkar [9] calculated the CMB anisotropies and the matter power spectrum, and compared
them with observations in the ΩΛ = 0 case for massless degenerate neutrinos. More recently, Kinney & Riotto [10]
also calculated the CMB anisotropies for massless degenerate neutrinos in the ΩΛ = 0.7 case.
This paper is organized as follows. In section II, we calculate the contribution of massive degenerate neutrinos

to the present energy density of the Universe. In section III, we explain how to calculate the power spectra, with
the help of the code cmbfast [11]. In section IV, we discuss the effect of the degeneracy on CMB anisotropies and
the matter power spectrum, both for massless neutrinos and mν = 0.07 eV. Finally, in section V, we derive some

∗E-mail: lesgour@sissa.it
†E-mail: pastor@sissa.it
1Here, by degeneracy, we mean that there exists a large neutrino-antineutrino asymmetry, or vice versa, and not a degeneracy

in the mass sense.
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constraints on the neutrino degeneracy from CMB and LSS data, in the particular case of a flat Universe with an
arbitrary cosmological constant and for standard values of other cosmological parameters.

II. ENERGY DENSITY OF MASSIVE DEGENERATE NEUTRINOS

The energy density of one species of massive degenerate neutrinos and antineutrinos, described by the distribution
functions fν and fν̄ , is (here and throughout the paper we use h̄ = c = kB = 1 units)

ρν + ρν̄ =

∫
d3~p

(2π)3
Eν(fν(p) + fν̄(p)) =

1

2π2

∫ ∞

0

dp p2
√
p2 +m2

ν(fν(p) + fν̄(p)) , (1)

valid at any moment. Here p is the magnitude of the 3-momentum and mν is the neutrino mass.
When the early Universe was hot enough, the neutrinos were in equilibrium with the rest of the plasma via the

weak interactions. In that case the distribution functions fν and fν̄ changed with the Universe expansion, keeping
the form of a Fermi-Dirac distribution,

fν(p) =
1

exp

(
p

Tν
− µ

Tν

)
+ 1

fν̄(p) =
1

exp

(
p

Tν
+

µ

Tν

)
+ 1

(2)

Here µ is the neutrino chemical potential, which is nonzero if a neutrino-antineutrino asymmetry has been previously
produced. Later the neutrinos decoupled when they were still relativistic2, and from that moment the neutrino
momenta just changed according to the cosmological redshift. If a is the expansion factor of the Universe, the
neutrino momentum decreases keeping ap constant. At the same time the neutrino degeneracy parameter ξ ≡ µ/Tν

is conserved, with a value equal to that at the moment of decoupling. Therefore one can still calculate the energy
density of neutrinos now from eq. (1) and eq. (2), replacing µ/Tν by ξ and p/Tν by p/(yνT0), where T0 ≃ 2.726 K and
yν is the present ratio of neutrino and photon temperatures, which is not unity because once decoupled the neutrinos
did not share the entropy transfer to photons from the successive particle annihilations that occurred in the early
Universe. In the standard case, the massless non-degenerate neutrinos decoupled just before the electron-positron
pairs annihilated to photons, from which one gets the standard factor yν = (4/11)1/3.
In the presence of a significant neutrino degeneracy ξ the decoupling temperature T (ξ) is higher than in the

standard case [12,13]. The reaction rate Γ of the weak processes, that keep the neutrinos in equilibrium with the
other species, is reduced because some of the initial or final neutrino states will be occupied. The authors of ref. [13]
used the Boltzmann equation to calculate Γ for the process νd+ ν̄d ↔ e++e− (here νd denotes degenerate neutrinos),
including the corresponding Fermi blocking factors. It was found that the neutrino decoupling temperature is Tdec(ξ) ≈
0.2ξ2/3 exp(ξ/3) MeV (for νµ or ντ ). Therefore if ξ is large enough, the degenerate neutrinos decouple before the
temperature of the Universe drops below the different mass thresholds, and are not heated by the particle-antiparticle
annihilations. The ratio of neutrino and photon temperatures is thus reduced accordingly.
The present contribution of these degenerate neutrinos to the energy density of the Universe can be parametrized

as ρν = 104h2Ων eV cm−3, where Ων is the neutrino energy density in units of the critical density ρc = 3H2M2
P /8π,

MP = 1.22 × 1019 GeV is the Planck mass and H = 100h Km s−1 Mpc−1 is the Hubble parameter. The value of
ρν can be calculated as a function of the neutrino mass and the neutrino degeneracy ξ, or equivalently the present
neutrino asymmetry Lν defined as the following ratio of number densities

Lν ≡ nν − nν̄

nγ
=

1

12ζ(3)
y3ν [ξ

3 + π2ξ] (3)

We show3 in figures 1 and 2 the contours in the (mν , Lν) and (mν , ξ) planes that correspond to some particular values
of h2Ων . One can see from the figures that there are two limits: massive non-degenerate neutrinos and massless
degenerate neutrinos. The first case corresponds to the vertical lines, when one recovers the well-known bound on
the neutrino mass mν <∼ 46 eV for h2Ων = 0.5. On the other hand, for very light neutrinos, the horizontal lines
set a maximum value on the neutrino degeneracy, that would correspond to a present neutrino chemical potential

2Unless the neutrino mass is comparable to the decoupling temperature, O(mν) ∼ MeV.
3Here we assume ξ > 0, but the results are also valid for ξ < 0 provided that ξ and Lν are understood as moduli.
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µ0 <∼ 7.4 × 10−3 eV, also for h2Ων = 0.5. In the intermediate region of the figures the neutrino energy density is
ρν ≃ mνnν(ξ) and the contours follow roughly the relations

Lν

(mν

eV

)
≃ 24.2h2Ων

(π2ξ + ξ3)
(mν

eV

)
≃ 350

y3ν
h2Ων (4)

A similar calculation has been recently performed in reference [14]. However the difference between neutrino and
photon temperatures was not properly taken into account for large ξ. It was argued that, since the number density
of highly degenerate neutrinos is larger than in the non-degenerate case, the neutrinos would have been longer in
thermal contact with e+e−, therefore sharing with photons the entropy release. However this is not the case [13] as
we discussed before.
The presence of a neutrino degeneracy can modify the outcome of Big Bang Nucleosynthesis (for a review see [15]).

First a larger neutrino energy density increases the expansion rate of the Universe, thus enhancing the primordial
abundance of 4He. This is valid for a nonzero ξ of any neutrino flavor. In addition if the degenerate neutrinos are of
electron type, they have a direct influence over the weak processes that interconvert neutrons and protons. This last
effect depends on the sign of ξνe . Both effects may be simultaneously important and it could be possible in principle
to explain the observed primordial abundances with a large baryon density, ΩBh

2 ≈ 1 [12,13]. However this possibility
is ruled out by the fact that in that case our Universe would have been radiation dominated during a longer period
and the observed large-scale structure would be difficult to explain. From BBN one gets the following constraint [13]

− 0.06 <∼ ξνe <∼ 1.1 (5)

while a sufficiently long matter dominated epoch requires

|ξνµ,ντ | <∼ 6.9 (6)

This estimate from [13] agrees with our analysis in section V. Assuming that the degenerate neutrinos are νµ or ντ ,
this places a limit on the degeneracy as shown by the horizontal line in figures 1 and 2.

III. POWER SPECTRA CALCULATION

We compute the power spectra of CMB anisotropies and large-scale structure using the Boltzmann code cmbfast
by Seljak & Zaldarriaga [11], adapted to the case of one family of degenerate neutrinos (ν, ν̄), with mass mν and
degeneracy parameter ξ. Let us first review the required modifications. We use the notations of Ma & Bertschinger
[16], and for all issues not specific to our case, we refer the reader to this review.
Background quantities can be rewritten in terms of two dimensionless parameters (M , Q)

M =
mν

Tν0
=

mν(eV)

8.6170× 10−5 × (4/11)1/3 T0(K)
, Q =

a p

Tν0
(7)

(we are assuming yν = (4/11)1/3, and therefore ξ ≤ 12 [13]; the scale factor is defined so that a = 1 today). For Super-
Kamiokande neutrinos with mν = 0.07 eV, M ≃ 417. We then get for the mean density, pressure and phase-space
distributions

ρ̄ν + ρ̄ν̄ =
T 4
ν

2π2

∫
Q2dQ

√
Q2 + a2M2 (fν(Q) + fν̄(Q)) ,

P̄ν + P̄ν̄ =
T 4
ν

6π2

∫
Q2dQ

Q2

√
Q2 + a2M2

(fν(Q) + fν̄(Q)) , (8)

fν(Q) =
1

eQ−ξ + 1
, fν̄(Q) =

1

eQ+ξ + 1
.

In the case of massive degenerate neutrinos, these integrals must be calculated for each value of the scale factor, and
also at the beginning of the code in order to find Ων today. On the other hand, for massless neutrinos, there is an
exact analytic solution

3
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ρ̄ν + ρ̄ν̄ = 3(P̄ν + P̄ν̄) =
7

8

π2

15
T 4
ν

[
1 +

30

7

(
ξ

π

)2

+
15

7

(
ξ

π

)4
]
. (9)

So, if we define an effective number of massless neutrino families Neff ≡ 3 + 30/7(ξ/π)2 + 15/7(ξ/π)4, the mean
density and pressure for all neutrinos will be given by these ones for one massless non-degenerate family, multiplied
by Neff .
Let us now consider perturbed quantities. We define Ψν and Ψν̄ , the perturbations of the phase space distribution

for ν and ν̄, through

δfν(~x,Q, n̂, τ) = fν(Q)Ψν(~x,Q, n̂, τ) ,

δfν̄(~x,Q, n̂, τ) = fν̄(Q)Ψν̄(~x,Q, n̂, τ) (10)

(n̂ is the momentum direction: ~p ≡ pn̂). For our purpose, which is to integrate the linearized Einstein equations, it
can be shown that only the following linear combination is relevant

Ψ ≡ fνΨν + fν̄Ψν̄

fν + fν̄
. (11)

Using the Boltzmann equations for Ψν and Ψν̄ , it is straightforward to show that the evolution of Ψ (in Fourier space
and in the synchronous gauge, see [16], eq. (40)) obeys

∂Ψ

∂τ
+ i

Q√
Q2 + a2M2

(~k.n̂)Ψ +
d ln(fν + fν̄)

d lnQ

[
η̇ − ḣ+ 6η̇

2
(k̂.n̂)2

]
= 0 . (12)

This equation depends on ξ only through the last term, which is the gravitational source term.
In the case ξ = 0, the quantity (d ln(fν)/d lnQ) has a simple interpretation: it is the Q-dependence of a planckian

perturbation of the phase space distribution. In other words, a shift of the blackbody temperature ∆T/T (~x, n̂, τ)
corresponds to a perturbation

Ψ(~x,Q, n̂, τ) = −∆T

T
(~x, n̂, τ)

d ln(fν)

d lnQ
. (13)

Since the gravitational source term in the Boltzmann equation is proportional to this quantity, the planckian shape
is unaltered for massless neutrinos, and also for massive neutrinos when they are still relativistic (indeed, when
Q2 ≫ a2M2, the Q-dependence of the Boltzmann equation (12) vanishes in the second term, and remains only in the
third term). When ξ 6= 0, the source term in eq. (12) is proportional to

d ln(fν + fν̄)

d lnQ
= − Q(1 + chξ chQ)

(chξ + e−Q)(chξ + chQ)
. (14)

When neutrinos are still relativistic, Ψ is proportional to this quantity, even if it cannot be simply interpreted in
terms of blackbody temperature perturbations.
We can now specify all the changes required in cmbfast, first in the case of massive degenerate neutrinos. As usual,

Ψ can be expanded in a Legendre series: Ψ =
∑∞

l=0(−i)l(2l + 1)ΨlPl. It is easy to show that for each multipole
Ψl, the evolution equation and the initial condition are both identical to those of the non-degenerate case, provided
that we replace (d ln(fν)/d lnQ) by eq. (14). So, in summary, one only needs to modify the homogeneous phase-
space distribution, its logarithmic derivative with respect to Q, and the initial calculation of Ων . Also, in order to
obtain a good precision in the CMB anisotropy spectra, one must set l = 5 for the number of multipoles Ψl to be
time-integrated. For transfer functions, the value l = 25 proposed by the code is sufficient.
In the case of massless degenerate neutrinos, the situation is even simpler. The Q-dependence of the Boltzmann

equation can be integrated away, just like in the non-degenerate case. For this purpose, we must introduce the
Q-independent variable Fν

Fν(~k, n̂, τ) ≡
∫
Q3dQ(fν + fν̄)Ψ∫
Q3dQ(fν + fν̄)

≡
∞∑

l=0

(−i)l(2l+ 1)FνlPl, (15)

and integrate by part the last term in equation (12). The multipoles Fνl are exactly identical for degenerate and
non-degenerate massless neutrinos, because they share the same evolution equations and initial conditions. So, the
effect of ξ arises only through the background quantities in eq. (8) and is completely described by introducing an
effective number of massless neutrinos.
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IV. RESULTS

First, as a consistency check, we compute CMB anisotropies and transfer functions for different values of ξ, choosing
a very small mass mν ≤ 0.001 eV. We check that the results match exactly those obtained with the unmodified version
of cmbfast, when the appropriate effective neutrino number Neff is specified.
The effect of ξ and mν on the CMB anisotropy spectrum can be seen in figure 3. We choose a set of cosmological

parameters (h = 0.65, Ωb = 0.05, ΩΛ = 0.70, ΩCDM = 1 − Ωb − Ων − ΩΛ, Qrms−ps = 18 µK, flat primordial
spectrum, no reionization, no tensor contribution), and we vary ξ from 0 to 5, both in the case of massless degenerate
neutrinos (solid lines) and degenerate neutrinos with mν = 0.07 eV (dashed lines). Let us first comment the massless
case. The main effect of ξ is to boost the amplitude of the first peak4. Indeed, increasing the energy density of
radiation delays matter-radiation equality, which is known to boost the acoustic peaks [17] (the same explanation
holds for the effect of ΩΛ in flat models). For the same reason, all peaks are shifted to higher multipoles, by a factor
((1+aeq/a∗)1/2− (aeq/a∗)1/2)−1 [17] (aeq is the scale factor at equality, and increases with ξ, while the recombination
scale factor a∗ is almost independent of the radiation energy density). Secondary peaks are then more affected by
diffusion damping at large l, and their amplitude can decrease with ξ.
In the case of degenerate neutrinos with mν = 0.07 eV, the results are quite similar in first approximation. Indeed,

the effects described previously depend on the energy density of neutrinos at equality. At that time, they are still
relativistic, and identical to massless neutrinos with equal degeneracy parameter. However, with a large degeneracy,
Ων today becomes significant: for ξ = 5, one has Ων = 0.028, i.e. the same order of magnitude as Ωb. Since we
are studying flat models, Ων = 0.028 must be compensated by less baryons, cold dark matter (CDM) or ΩΛ. In our
example, Ωb and ΩΛ are fixed, while ΩCDM slightly decreases. This explains the small enhancement of the first peak
compared to the massless case. Even if this effect is indirect, it is nevertheless detectable in principle (even if one does
not impose the flatness condition, the effect of Ων will be visible through a modification of the curvature). In figure 3,
for ξ = 0, the first peak maximum is enhanced by only 0.37%, while for ξ = 5, there is an increase of 3.4%, detectable
by the future satellite missions MAP and Planck, unless there are large parameter degeneracies. It is well-known that
such degeneracies are generally removed when CMB and LSS data are combined for parameter extraction [18].
We plot in figure 4 the power spectrum P (k) for the same models as in figure 3, normalized on large scales to

COBE. The effect of both parameters ξ and mν is now to suppress the power on small scales. Indeed, increasing ξ
postpones matter-radiation equality, allowing less growth for fluctuations crossing the Hubble radius during radiation
domination. Adding a small mass affects the recent evolution of fluctuations, and has now a direct effect: when the
degenerate neutrinos become non-relativistic, their free-streaming suppresses growth of fluctuations for scales within
the Hubble radius. For non-degenerate neutrinos, this effect is known to reduce power on those scales by a relative
amount ∆P/P ∼ 8Ων/Ω0 [19] (we introduced Ω0 = 1−ΩΛ). So, even with mν = 0.07 eV and ξ = 0, it is significant,
especially at low Ω0. In the models of figure 4, P (k) decreases by ∼ 5 %, in agreement with the theoretical prediction
(Ων = 1.8×10−3, Ω0 = 0.3). However, at ξ = 5 (i.e. Ων = 0.028), this effect is even larger: P (k) decreases by a factor
2.2, instead of an expected 1.7. This effect is likely related to the phase-space distribution of neutrinos with a chemical
potential: their average momentum is shifted to larger values, making the free-streaming suppression mechanism even
more efficient.
Let us compare our results with those of previous works. The effect of ξ on the CMB for massless neutrinos and

ΩΛ = 0 is the same as that one found in [9]. We also agree with the revised results in [10].

V. COMPARISON WITH OBSERVATIONS

Since the degeneracy increases dramatically the amplitude of the first CMB peak, we expect large ξ values to be
disfavored in the case of cosmological models known to predict a fairly high peak. On the other hand, a high ξ is
likely to be allowed (or even favored) for models that predict systematically a low peak, unless a large scalar spectral
index n ≥ 1.2 (blue tilt) is invoked. For instance, the degeneracy is likely to be favored by: (i) a large contribution
of tensor perturbations; (ii) a significant effect from reionization; (iii) a low baryon density; (iv) a large h (h ≥ 0.7);
(v) flat models with ΩΛ ≤ 0.6; etc. For such models, the peak amplitude can be boosted by ξ, keeping n close to
one, which is more natural from the point of view of inflation. However, a careful case-by-case analysis is required,

4In fact, this is not true for very large values of ξ. In such cases, recombination can take place still at the end of radiation
domination, and anisotropies are suppressed. For our choice of cosmological parameters, this happens for ξ >∼ 7, but in such a
case the location of the first peak is l >∼ 450, and the matter power spectrum is strongly suppressed.
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since the effects of ξ and n on CMB and LSS spectra are far from being equivalent. Our goal here is not to explore
systematically all possibilities, but to briefly illustrate how ξ can be constrained by current observations for flat models
with different values of ΩΛ. Recent results from supernovae [20], combined with CMB constraints, favor flat models
with ΩΛ ∼ 0.6− 0.7 [7].
We choose a flat model with h = 0.65, Ωb = 0.05, Qrms−ps = 18 µK, no reionization and no tensor contribution,

and look for the allowed region in the space of free parameters (ΩΛ, ξ, n). The allowed region will not be defined using
a maximum likelihood analysis, but with the more conservative technique called “concordance” by Wang et al. [21],
which consists in taking the intersection of regions allowed by each experiment.
For simplicity, we take into account only a few constraints on the matter power spectrum, known to be representative

of the large amount of available data: the value of σ8 (the variance of mass fluctuations in a sphere of radius
R = 8h−1Mpc) given for flat models in [22], at 95 % confidence level (CL)5; a χ2 comparison with the STROMLO-
APM redshift survey [24], at scales well within the linear regime, also with 95 % CL6; and finally, the constraint on
bulk velocity at R = 50h−1 Mpc [25], taking into account the cosmic variance. Except for the updated σ8 constraint,
we use exactly the same experimental tests as in [26], and refer the reader to this paper for details. For CMB data,
we perform a χ2 analysis based on 19 experimental points and window functions, taking into account the Saskatoon
calibration uncertainty, in the way suggested by [27]. The list of data that we use is given in [26], and again allowed
regions correspond to 95 % CL7. We do not take into account the most recent experiments, for which window functions
are still unpublished; they are anyway in good agreement with the data considered here.
We plot in figure 5 the LSS and CMB allowed regions in (ξ, n) parameter space, corresponding to ΩΛ = 0, 0.5, 0.6, 0.7.

For ΩΛ = 0.5 − 0.7, the LSS window just comes out of σ8 limits. For ΩΛ = 0, the lower LSS constraint is from σ8,
and the upper one from APM data. In the case of degenerate neutrinos with mν = 0.07 eV, the windows are slightly
shifted at large ξ, since, as we saw, the effect of ξ is enhanced (dotted lines on the figure). The CMB allowed regions
do not show this distinction, given the smallness of the effect and the imprecision of the data. One can immediately
see that LSS and CMB constraints on n are shifted in opposite direction with ξ: indeed, the effects of ξ and n both
produce a higher CMB peak, while to a certain extent they compensate each other in P (k). So, for ΩΛ = 0.7, a case
in which a power spectrum normalized to both COBE and σ8 yields a too high peak8, a neutrino degeneracy can only
make things worst. On the other hand, for ΩΛ = 0.5− 0.6, a good agreement is found up to ξ ≃ 3.
Let us finally consider the ΩΛ = 0 case in which, after COBE normalization of the power spectrum, there is a

well known discrepancy between the amplitude required by σ8 and the shape probed by redshift surveys: these two
constraints favor different values of n. We find that the neutrino degeneracy can solve this problem with ξ >∼ 3.5;
however, the allowed window is cut at ξ ≃ 6 by CMB data, and we are left with an interesting region in which Ω0 = 1
models are viable. This result is consistent with [9]. However, current evidences for a low Ω0 Universe [20,28] are
independent of the constraints used here, so there are not many motivations at the moment to consider this window
seriously.

VI. CONCLUSIONS

We have considered some cosmological implications of a large relic neutrino degeneracy. We have shown that
this degeneracy enhances the contribution of massive neutrinos to the present energy density of the Universe. For
instance, neutrinos with a small mass mν ∼ 10−2 eV can contribute significantly to Ω0, provided that there is a large
neutrino-antineutrino asymmetry.
Our main result is the computation of the power spectra of CMB anisotropies and matter density in presence of a

neutrino degeneracy. We found, in agreement with [9], that it boosts the amplitude of the first CMB peak, shifts the
peaks to larger multipoles, and supresses small scale matter fluctuations. These effects follow the increase of neutrino
energy density, that delays matter-radiation equality.
We extended the calculation to the case of massive degenerate neutrinos, and showed the results for a mass of 0.07

eV, as suggested by the Super-Kamiokande experiment. This mass has a small effect on CMB anisotropies. Indeed,

5The Viana & Liddle result [22] is in very good agreement with an independent derivation by Girardi et al. [23].
6This confidence level stands for the goodness-of-fit of the model: when χ2 is greater than some value, the probability that

we find the observed dataset, assuming the model to be valid, is smaller than 5 %. For the APM data, we have 9− 3 degrees
of freedom, and the limiting value is found in numerical tables to be χ2 = 12.5.
7Here we have 19− 3 d.o.f.; the 95 % CL is given by χ2 = 26.
8At least, for the values of the other cosmological parameters considered here. This situation can be easily improved, for

instance, with h = 0.7.
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such light neutrinos are still relativistic at recombination, but in presence of a degeneracy, they can account for a
substantial part of the density today, of order Ων ∼ 10−2. Also, we showed that small scale matter fluctuations are
much more suppressed when the degenerate neutrinos are massive, because free-streaming of non-relativistic neutrinos
is more efficient when their average momentum is boosted by the chemical potential.
We compared our results with observations, in the restricted case of a flat universe with arbitrary (ΩΛ, ξ, n) and

fixed values of other cosmological parameters. We found that for ΩΛ ≃ 0.5 − 0.6, a large degeneracy is allowed, up
to ξ ≃ 3. However, this upper bound is smaller than the value ξ ≃ 4.6 needed to explain the generation of ultra-high
energy cosmic rays by the annihilation of high-energetic neutrinos on relic neutrinos with mass mν = 0.07 eV [29].
We also tried smaller values of ΩΛ, even if they are not favored by combined CMB and supernovae data. It turns out
that a large degeneracy can account for both CMB and LSS constraints even with Ω0 = 1, provided that 3.5 ≤ ξ ≤ 6.
This analysis could be extended to other cosmological models. For instance, the degeneracy is likely to be compatible
with a large contribution of tensor perturbations to large scale CMB anisotropies.
Finally, it turns out that the degeneracy parameter and the mass of degenerate neutrinos have effects within the

level of detectability of future CMB observations and redshift surveys, even with mν ∼ 0.07 eV. However, a careful
analysis should be performed in order to detect possible parameter degeneracy between ξ, mν and other cosmological
parameters.
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FIG. 1. Present energy density of massive degenerate neutrinos as a function of the degeneracy ξ. The curves correspond to
different values of h2Ων and the horizontal line is the upper bound from eq. (6).

FIG. 2. Same as figure 1 for the neutrino asymmetry Lν .

FIG. 3. CMB anisotropy spectrum for different models with one family of degenerate neutrinos. Solid lines account for the
case of massless degenerate neutrinos, and correspond, from bottom to top, to ξ = 0, 3, 5. Dashed lines correspond to degenerate
neutrinos with mass mν = 0.07 eV. Other parameters are fixed to h = 0.65, Ωb = 0.05, ΩΛ = 0.70, ΩCDM = 1−Ωb −Ων −ΩΛ,
Qrms−ps = 18 µK, n = 1. We neglect reionization and tensor contribution.

FIG. 4. Present power spectrum of matter density, for the same parameters as in the previous figure. From top to bottom,
to ξ = 0, 3, 5.

FIG. 5. LSS and CMB constraints in (ξ, n) space, for different choices of ΩΛ: from top left to bottom right,
ΩΛ = 0, 0.5, 0.6, 0.7. The underlying cosmological model is flat, with h = 0.65, Ωb = 0.05, Qrms−ps = 18 µK, no reion-
ization, no tensor contribution. The allowed regions are those where the labels are. For LSS constraints, we can distinguish
between degenerate neutrinos with mν = 0 (solid lines) and mν = 0.07 eV (dotted lines).
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Abstract: We present a new flexible, fast and accurate way to implement massive neutri-

nos, warm dark matter and any other non-cold dark matter relics in Boltzmann codes. For

whatever analytical or numerical form of the phase-space distribution function, the optimal

sampling in momentum space compatible with a given level of accuracy is automatically

found by comparing quadrature methods. The perturbation integration is made even faster

by switching to an approximate viscous fluid description inside the Hubble radius, which

differs from previous approximations discussed in the literature. When adding one massive

neutrino to the minimal cosmological model, CLASS becomes just 1.5 times slower, instead

of about 5 times in other codes (for fixed accuracy requirements). We illustrate the flexibil-

ity of our approach by considering a few examples of standard or non-standard neutrinos,

as well as warm dark matter models.
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1. Introduction

The inclusion of massive, non-cold relics in a Boltzmann code is complicated by the fact

that it is necessary to evolve the perturbation of the distribution function on a momentum

grid. A grid size of N points together with L terms in the expansion of the perturbation

leads to N ·L added equations to the system. In public Boltzmann codes like CMBFAST [1],

CAMB [2] and CMBEASY [3], distributions are sampled evenly with fixed step size and maxi-

mum momentum, adapted to the case of a Fermi-Dirac shaped distribution function f(p).

1



3.3 Implementation of neutrinos in Boltzmann codes, JCAP 1109, 032 (2011) 197

Moreover, the analytic expression for f(p) is hard-coded in many places in those codes,

and implicitly assumed e.g. in the mass to density relation, so that exploring other models

like neutrinos with chemical potentials and flavour oscillations, neutrinos with non-thermal

corrections, extra sterile neutrinos or any kind of warm dark matter candidate requires

non-trivial changes to these codes.

We present here the way in which generic Non-Cold Dark Matter (NCDM) relics are

implemented in the new Boltzmann code CLASS1 (Cosmic Linear Anisotropy Solving Sys-

tem), already presented in a series of companion papers [4, 5, 6]. In order to ensure a

complete flexibility, CLASS assumes an arbitrary number of NCDM species, each with an

arbitrary distribution function fi(p). For each species, this function can be passed by the

user under some (arbitrarily complicated) analytic form in a unique place in the code, or in

a file in the case of non-trivial scenarios that requires a numerical simulation of the freeze-

out process. All other steps (finding a mass-density relation, optimising the momentum

sampling and computing the derivative of fi(p)) are done automatically in order to ensure

maximum flexibility.

In Sec. 2, we present an automatic quadrature method comparison scheme which allows

CLASS to find an optimal momentum sampling, given fi(p) and some accuracy requirement,

and in Sec. 3, we devise a new approximation scheme allowing us to drastically reduce the

computational time for wavelengths inside the Hubble radius. Finally, in Sec. 4 and 5,

we illustrate these methods with several examples based on standard and non-standard

massive neutrinos, and different types of warm dark matter candidates.

2. Optimal momentum sampling

The formalism describing the evolution of any NCDM species is given by the massive

neutrino equations of Ma & Bertschinger [7]. We will follow the notations from this paper

closely, with the exceptions

q ≡ qMB
Tncdm,0

, ǫ ≡ ǫMB
Tncdm,0

=

(
q2 + a2

m2

T 2
ncdm,0

) 1
2

, (2.1)

where Tncdm,0 is the temperature of the non-cold relic today, in the case of a thermal relic.

If the relic is non-thermal, Tncdm,0 is just a scale of the typical physical momentum of the

particles today. Note that the perturbation equations Eq. (2.4) are still the same as in [7],

since they depend only on the ratio q/ǫ which is not affected by this rescaling.

2.1 Perturbations on a grid

We are not interested in the individual momentum components of the perturbation, Ψl,

but only in the perturbed energy density, pressure, energy flux and shear stress of each

1available at http://class-code.net. This paper is based on version v1.1 of the code.

2
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NCDM species, which are integrals over Ψl [7]:

δρncdm = 4π

(
Tncdm,0

a

)4 ∫ ∞

0
f0(q)dqq

2ǫΨ0, (2.2a)

δpncdm =
4π

3

(
Tncdm,0

a

)4 ∫ ∞

0
f0(q)dq

q4

ǫ
Ψ0, (2.2b)

(ρ̄ncdm + p̄ncdm) θncdm = 4πk

(
Tncdm,0

a

)4 ∫ ∞

0
f0(q)dqq

3Ψ1, (2.2c)

(ρ̄ncdm + p̄ncdm)σncdm =
8π

3

(
Tncdm,0

a

)4 ∫ ∞

0
f0(q)dq

q4

ǫ
Ψ2. (2.2d)

In the rest of the article, we will omit all ncdm subscripts, and dots will denote derivatives

with respect to conformal time, τ .

Note that Ψ0 and Ψ1 are gauge-dependent quantities, while higher momenta are not.

The gauge transformation can be derived from the corresponding gauge transformation of

the integrated quantities. The relation between Ψ1 in the conformal Newtonian gauge and

in the synchronous one reads:

Ψ1,Con. = Ψ1,Syn. + αk

[
ǫ

q
+

1

3

q

ǫ

]
, (2.3)

with α ≡ (ḣ + 6η̇)/(2k2), where h and η are the usual scalar metric perturbations in the

synchronous gauge. In the rest of this paper, we will work exclusively in the synchronous

gauge. The evolution of the Ψl’s are governed by the Boltzmann equation as described

in [7], and leads to the following system of equations:

Ψ̇0 = −qk

ǫ
Ψ1 +

ḣ

6

d ln f0
d ln q

, (2.4a)

Ψ̇1 =
qk

3ǫ
(Ψ0 − 2Ψ2) , (2.4b)

Ψ̇2 =
qk

5ǫ
(2Ψ1 − 3Ψ3)−

(
ḣ

15
+

2η̇

5

)
d ln f0
d ln q

, (2.4c)

Ψ̇l≥3 =
qk

(2l + 1) ǫ
(lΨl−1 − (l + 1)Ψl+1) . (2.4d)

We can write the homogeneous part of this set of equations as

Ψ̇ =
qk

ǫ
AΨ ≡ α (τ)AΨ, (2.5)

where A is given by

A =




−1
1
3 −2

3
. . .

. . .
l

2l+1 − l+1
2l+1

. . .
. . .

. . .




(2.6)

3
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The solution can be written in terms of the matrix exponential,

Ψ (τ) = e
∫ τ
τi

dτ ′α(τ ′)A
Ψ (τi) (2.7)

= Ue
∫ τ
τi

dτ ′α(τ ′)D
U−1Ψ (τi) , (2.8)

where A has been diagonalised such that A = UDU−1 and D is a diagonal matrix of

eigenvalues of A. The largest eigenvalue of A (using the complex norm) goes toward ±i for

lmax → ∞, so the largest frequency oscillation in the system is

ωmax ≃ k

∫ τ

τi

dτ ′
(
1 +

M2

q2
a
(
τ ′
)2
)− 1

2

. (2.9)

2.2 Quadrature strategy

There is no coupling between the momentum bins, so our only concern is to perform the

indefinite integrals numerically with sufficient accuracy while using the fewest possible

points. We are interested in the integrals in Eq. (2.2), which are all on the form

I =

∫ ∞

0
dqf0 (q) g (q) , (2.10)

where f0(q) is the phase space distribution and g(q) is some function of q. We will assume

that g(q) is reasonably well described by a polynomial in q, which we checked explicitly for

the functions in Eq. (2.2). Under this assumption, we can determine the accuracy of any

quadrature rule on I by performing the integral

J =

∫ ∞

0
dqf0 (q) t (q) , (2.11)

where t(q) is a test function. Given a set of different quadrature rules for performing the

integral I, the idea is to choose the rule which can compute J to the required accuracy

tol_ncdm using the fewest possible points.

We define a quadrature rule on I to be a set of weights Wi and a set of nodes qi, such

that

I ≃
n∑

i=1

Wig (qi) . (2.12)

Note that the distribution function itself has been absorbed into the weights. The optimal

quadrature rule will depend on both the distribution f0(q) and the accuracy requirement

tol_ncdm, but the specific method used for obtaining the rule is decoupled from the rest

of the code; the output is just two lists of n points, {qi} and {Wi}. CLASS tries up to

three different methods for obtaining the most optimal quadrature rule, each with its own

strength and weaknesses. These are Gauss-Laguerre quadrature, adaptive Gauss-Kronrod

quadrature and a combined scheme. We will now discuss each of them.

4
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2.3 Gauss-Laguerre quadrature

Most of the time, the distribution function will be close to a Fermi-Dirac distribution, and

the integrand is exponentially decaying with q. The Gauss-Laguerre quadrature formula

is well suited for exponentially decaying integrands on the interval (0;∞), so this is an

obvious choice. The rule is

∫ ∞

0
dqe−qh (q) ≃

n∑

i=1

wih (qi) , (2.13)

where the nodes qi are the roots of Ln, the Laguerre polynomial of degree n and the weights

can be calculated from the formula

wi =
qi

(n+ 1)2 [Ln+1 (qi)]
2 . (2.14)

If we put h(q) = eqf0(q)g(q) we obtain the rule

Wi = wie
qif0 (qi) . (2.15)

This rule will be very effective when the ratio f0/e
−q is well described by a polynomial,

but it will converge very slowly if this is not the case.

2.4 Adaptive sampling

When an integrand has structure on scales smaller than the integration interval, an adaptive

integration scheme is often the best choice, since it will subdivide the interval until it

resolves the structure and reach the required accuracy. We will use the 15 point Gauss-

Kronrod quadrature formula as a basis for our adaptive integrator; 7 of the 15 points can

be used to obtain a Gauss quadrature estimate of the integral, and the error estimate on

the 15 point formula is then errest. = 200|G7 −K15|1.5.
The Gauss-Kronrod formula is defined on the open interval (−1, 1), but it can be

rescaled to work on an arbitrary open interval (a, b). We transform the indefinite integral

into a definite integral by the substitution x = (q + 1)−1:

∫ ∞

0
dqf (q) = −

∫ 1

0
dx

dq

dx
f (q (x)) =

∫ 1

0
dxx−2f (q (x)) . (2.16)

This integral can then be solved by the adaptive integrator. If the tolerance requirement is

not met using the first 15 points, the interval is divided in two and the quadrature method

is called recursively on each subinterval.

This method is very efficient when the integrand is smooth. For practical purposes,

this will be the case unless the phase-space distribution is read from a file with sparse

sampling: in this case, the code must interpolate or extrapolate the file values in order to

cover the whole momentum range, and the next method may be more efficient.

5



3.3 Implementation of neutrinos in Boltzmann codes, JCAP 1109, 032 (2011) 201

2.5 Integration over tabulated distributions

If some distribution function is not known analytically, but only on a finitely sampled grid

on (qmin, qmax), we have to interpolate the distribution function within the interval, and we

have to extrapolate the behaviour outside the interval. Inside the interval we use a spline

interpolation, while we assume f(q < qmin) ≡ f(qmin) close to zero. For the tail, we assume

the form f(q) = αe−βq. Requiring the function and its first derivative to be continuous at

the point q = qmax leads to the following equations for α and β:

α = f(qmax)e
βqmax , (2.17)

β = −f(qmax)
−1 df

dq

∣∣∣∣
q=qmax

. (2.18)

In the combined scheme we use the 4 point Gauss-Legendre method on the interval (0, qmin),

adaptive Gauss-Kronrod quadrature on (qmin, qmax) and the 6 point Gauss-Laguerre rule

on the tail (qmax,∞)2. This scheme works well when the integrand is interpolated from

tabulated points.

2.6 Implementation in CLASS

When CLASS initialises the background structure, it will find optimal momentum samplings

for each of the species. More specifically, we start by computing the integral of the distribu-

tion function multiplied by the test function at high accuracy, which gives a reference value

which can be used for comparison. It also creates a binary tree of refinements, from which

we can extract integrals at various levels, where level 1 is the best estimate. We choose the

highest possible level which results in an error which is less than the input tolerance, and

we extract the nodes and weights from that level.

The code will now search for the lowest number of nodes required for computing the

integral with the desired accuracy using Gauss-Laguerre quadrature. The most efficient

method, the method using the lowest number of points, is then chosen. For a distribu-

tion not departing too much from a Fermi-Dirac one, this will usually be Gauss-Laguerre

quadrature.

The scheme suggested here has the benefit, that there is just one tolerance parameter

directly related to how well the integral is approximated, independently of the distribution

function. However, for this to be exactly true, we require the test function to be a suffi-

ciently realistic representation of qnΨl for n = 2, 3, 4 and l = 0, 1, 2 for the perturbations.

We have checked this using different test functions, but in the end we found the polynomial

f(q) = a2q
2 + a3q

3 + a4q
4 to be adequate. The coefficients were chosen such that

an

∫ ∞

0
dq

qn

eq + 1
= 1. (2.19)

When the phase-space distribution function is passed in the form of a file with tabulated

(qj , fj) values, the code compares the three previous methods (still with a common tolerance

2This version of the rule is obtained by a simple substitution.
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parameter) and keeps the best one, which is usually the third one in the case of a poor

sampling of the function, or one of the other two in the opposite case.

Note that higher accuracy is needed for integrating background quantities (density,

pressure, etc.) than perturbed quantities (the Ψl’s). On the other hand, the code spends

a negligible time in the computation of the former, while reducing the number of sampling

points for perturbations is crucial for reducing the total computing time. Hence, CLASS calls

the quadrature optimisation algorithm twice for each NCDM species, with two different

accuracy parameters. The background tolerance is set to a smaller value leading to a finer

sampling.

We conclude this section by noticing that this whole process sounds very sophisticated,

but requires a negligible computing time in CLASS. What really matters is to reduce the

number of discrete momenta in the perturbation equations, and this is indeed accomplished

thanks to the previous steps (as we shall see in Sec. 5).

3. Sub-Hubble Approximation

3.1 Fluid approximation

Various kinds of approximations for massive neutrino perturbations have been discussed

in the past [8, 9, 10]. The approximation discussed here is different and consists in an

extension of the Ultra-relativistic Fluid Approximation presented in [5], applying only to the

regime in which a given mode has entered the Hubble radius. The idea is that after Hubble

crossing, there is an effective decoupling between high multipoles (for which power transfers

from smaller l’s to higher l’s, according to the free-streaming limit) and low multipoles

(just sourced by metric perturbation). Hence, when kτ exceeds some threshold, we can

reduce the maximum number of multipoles from some high lmax down to lmax = 2. We

showed in [5] that this Ultra-relativistic Fluid Approximation (UFA) allows simultaneously

to save computing time (by reducing the number of equations) and to increase precision

(by avoiding artificial reflection of power at some large cut-off value lmax).

In the case of massive neutrinos, we expect the same arguments to hold in the relativis-

tic regime, while in the non-relativistic limit all multipoles with l > 1 decay and the species

behave more and more like a pressureless fluid. Hence, some kind of fluid approximation

is expected to give good results in all cases.

We write the continuity equation and the Euler equation in the usual way. In the

synchronous gauge we have

δ̇ = − (1 + w)

(
θ +

ḣ

2

)
− 3

ȧ

a

(
c2Syn. − w

)
δ, (3.1a)

θ̇ = − ȧ

a

(
1− 3c2g

)
θ +

c2Syn.
1 + w

k2δ − k2σ. (3.1b)

Here, c2g is the adiabatic sound speed, and c2Syn. ≡ δp
δρ is the effective sound speed squared

in the synchronous gauge. The latter can be related to the physical sound speed defined

7
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in the gauge comoving with the fluid, that we denote ceff. The above equations can then

be written as:

δ̇ = − (1 + w)

(
θ +

ḣ

2

)
− 3

ȧ

a

(
c2eff − w

)
δ + 9

(
ȧ

a

)2

(1 + w)
(
c2eff − c2g

) θ

k2
, (3.2a)

θ̇ = − ȧ

a

(
1− 3c2eff

)
θ +

c2eff
1 + w

k2δ − k2σ. (3.2b)

Later on, we will close the system by an evolution equation for the shear σ, but first we will

discuss how to calculate the adiabatic sound speed and how to approximate the effective

sound speed c2eff.

3.2 Sound speeds

The adiabatic sound speed can be expressed as

c2g =
ṗ

ρ̇
= w

ṗ

p

(
ρ̇

ρ

)−1

= −w
ṗ

p

(
ȧ

a

)−1 1

3 (1 + w)

=
w

3 (1 + w)

(
5− p

p

)
, (3.3)

where the quantity p (called the pseudo-pressure inside CLASS) is a higher moment pressure

defined by

p ≡ 4π

3
a−4

∫ ∞

0
f0(q)dq

q6

ǫ3
. (3.4)

With this formulation, we can compute the adiabatic sound speed in a stable and accurate

way, without needing to evaluate the time-derivative of the background pressure ṗ. When

the ncdm species is no longer relativistic, its pressure perturbation δp defined in Eq. (2.2b) is

an independent quantity. Since we do not have an evolution equation for δp, we approximate

c2eff by c2g. This approximation is sometimes as much as a factor 2 wrong as shown on Fig. 1.
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Figure 1: Effective sound speed squared c2eff for a mass of m = 2.0 eV. Left panel: The effective

sound speed plotted together with the adiabatic sound speed squared c2g and the equation of state

parameter w. In the relativistic and the non-relativistic limit we have c2eff = c2g as expected, but

the behaviour of c2eff in between the two limits are non-trivial. Right panel: The ratios c2eff/c
2
g and

c2eff/w. One can see that c2g is a better approximation to c2eff than w, but neither catches the full

evolution.
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3.3 Evolution equation for the shear

Given an ansatz for Ψ3, we can derive a formally correct evolution equation for the shear.

We follow Ma and Bertschinger, and close the system using their suggested recurrence

relation for massive neutrinos3. The truncation law presented in Ma and Bertschinger is

valid for lmax > 3: in this case, all quantities are gauge-invariant. When writing the same

ansatz for lmax = 3, we have to face the issue of the gauge dependence of Ψ1. Asssuming

that the truncation law holds for gauge-invariant quantities, one obtains in the synchronous

gauge:

Ψ3 ≈
5ǫ

qkτ
Ψ2 −

(
Ψ1 + αk

[
ǫ

q
+

1

3

q

ǫ

])
. (3.5)

Throughout this subsection and the next one, one can recover Newtonian gauge equations

by simply taking α = 0. We now differentiate equation (2.2d):

σ̇ +
ȧ

a

(
1− 3c2g

)
σ =

1

ρ+ p

8π

3
a−4

∫ ∞

0
f0(q)dqq

4 ∂

∂τ

(
Ψ2

ǫ

)
. (3.6)

We can compute the right-hand side using Eq. (2.4c) and replace Ψ3 with its approximate

expression from (3.5). After carrying out integrals over momentum, one gets:

σ̇ = −3

(
τ−1 +

ȧ

a

[
2

3
− c2g −

1

3

Σ

σ

])
σ +

2

3

[
Θ+ αk2

w

1 + w

(
3 +

p

p

)]
, (3.7)

where we have borrowed the notation

(ρ+ p)Θ = 4πka−4

∫ ∞

0
f0(q)dqq

3 q
2

ǫ2
Ψ1, (3.8)

(ρ+ p)Σ =
8π

3
a−4

∫ ∞

0
f0(q)dq

q4

ǫ

q2

ǫ2
Ψ2, (3.9)

from [10]. From the definition it is clear that Θ → θ and Σ → σ in the relativistic limit,

and that Θ and Σ become suppressed in the non-relativistic regime compared to θ and

σ. Our differential equation for σ differs from its Newtonian gauge counterpart in [10],

because we have used the recurrence relation to truncate the hierarchy, while Shoji and

Komatsu have used Ψ3 = 0. The evolution equation for the shear can be further simplified

by using Eq. (3.3), leading to:

σ̇ = −3

(
τ−1 +

ȧ

a

[
2

3
− c2g −

1

3

Σ

σ

])
σ +

2

3

[
Θ+ αk2

(
8

w

1 + w
− 3c2g

)]
. (3.10)

3.4 Estimating higher order momenta

One way to close the system governing the fluid approximation is to replace Θ and Σ by the

usual quantities θ and σ multiplied by functions depending only on background quantities

3The recurrence relation in the massless limit is better motivated theoretically, since Ψl ∝ jl (kτ ) when

metric perturbations vanish or satisfy a simple constraint (namely, φ̇+ ψ̇ = 0 in the Newtonian gauge). In

the massive case, the formal solution involves more complicated oscillating functions with arguments going

from ∼ kτ in the massless limit to ∼ (kτ )−1 in the massive limit, as can be checked from eq. (2.9).

9
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(in the same way that we already approximated δp by c2gδρ). More explicitly, our aim is

to write an approximation of the type Σ = 3wσσ, where wσ could be any function of time

going from one third in the relativistic limit to zero in the non-relativistic one. Since θ

and Θ are not gauge-independent, we should search for a similar approximation holding on

their gauge-independent counterpart. In the synchronous gauge, such an approximation

would read [
Θ+ αk2

(
8

w

1 + w
− 3c2g

)]
= 3wθ

[
θ + αk2

]
. (3.11)

However, we will stick to the notations of [8], who introduced a viscosity speed related to

our wθ through

c2vis =
3

4
wθ(1 +w) . (3.12)

With such assumptions, the approximate equation for the shear would read

σ̇ = −3

(
1

τ
+

ȧ

a

[
2

3
− c2g − wσ

])
σ +

4

3

c2vis
1 + w

[
2θ + 2αk2

]
. (3.13)

Since the suppression factor q2/ǫ2 which appears in Eq. (3.8, 3.9) compared to Eq. (2.2c,

2.2d) is also found in the pressure integral compared to the energy density integral, we

may guess that the relative behaviour is similar, i.e. related by w. This leads to a guess

wσ = w and wθ = w which implies c2vis =
3
4w (1 + w). However, the same logic would imply

c2eff = w, which we have shown in Fig. 1 is not exactly true.

Let us investigate a bit how to approximate higher momenta quantities like Θ and Σ.

If we want to approximate Θ for instance, we may assume some functional form of Ψ1(q)

described by a single (time dependent) parameter. We can make the ansatz Ψ1(q/ǫ) ≈
a1n(t)

( q
ǫ

)n
, and then use θ to determine the parameter a1n(t). We then find

Θ ≈ θ

∫∞
0 f0(q)dqq

3 q2

ǫ2

( q
ǫ

)n
∫∞
0 f0(q)dqq3

( q
ǫ

)n . (3.14)

The guess c2vis = 3
4w (1 + w) can be seen to be a special case of this approach having

n = −1. The problem is that the value of n best approximating the behavior of Ψ1 and

other momenta is not the same in the relativistic and non-relativistic limit. In fact our

testing shows that this guess sources σ too much during the relativistic to non-relativistic

transition compared to the exact solution. Instead we got much better results by using

c2vis = 3wc2g, which avoids this excessive sourcing during the transition, while still reducing

to 1/3 in the relativistic limit.

For the ratio Σ/σ, the assumption of a q-independent Ψ2 (i.e. n = 0) yields wσ =

p/(3p), which provides satisfactory results and is adopted in the schemes described below.

We speculate that by pushing these kinds of considerations further, one could find

better approximations for c2eff, c
2
vis and wσ. It is also possible that another independent

equation could be found, and that it would allow a better determination of ceff.

10
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3.5 Implementation in CLASS

For comparison, we have implemented 3 different Non-Cold Dark Matter Fluid Approxi-

mations (NCDMFA) in CLASS which differ only in their respective equation for the shear.

In correspondence with the Ultra-relativistic Fluid Approximation discussed in [5], we have

named the approximations MB, Hu and CLASS: in the relativistic limit, they reduce to their

relativistic counterpart in [5]. In all three approximations we are using Eq. (3.2a) and (3.2b)

as the first two equations with ceff = cg. The respective equations for the shear read

σ̇MB = −3

(
1

τ
+

ȧ

a

[
2

3
− c2g −

1

3

p

p

])
σ +

4

3

c2vis
1 +w

[
2θ + ḣ+ 6η̇

]
, c2vis = 3wc2g , (3.15a)

σ̇Hu = −3
ȧ

a

c2g
w
σ +

4

3

c2vis
1 +w

[
2θ + ḣ+ 6η̇

]
, c2vis = w, (3.15b)

σ̇CLASS = −3

(
1

τ
+

ȧ

a

[
2

3
− c2g −

1

3

p

p

])
σ +

4

3

c2vis
1 +w

[
2θ + ḣ

]
, c2vis = 3wc2g . (3.15c)

The second shear equation, named Hu, corresponds exactly to the prescription of Ref. [8] for

approximating massive neutrinos. The first shear equation, MB, comes directly from (3.13)

with the values of wσ and cvis motivated in the previous subsection. Finally, in [5], we found

that removing the η̇ term leads to slightly better results for the matter power spectrum,

and can be justified using an analytic approximation to the exact equations. By analogy,

we also define in the massive neutrino case a CLASS approximation identical to the MB one

except for the omission of this term.

In Fig. 2 we have tested these three fluid approximations in a model with no massless

neutrinos and 3 degenerate massive neutrinos. The three approximations work very well

as long as the neutrinos are light and become non-relativistic after photon decoupling.

Like in the massless case, the CLASS approximation is slightly better for predicting the

matter power spectrum on small scales, and we set it to be the default method in the code.

When the mass increases, the fluid approximation alters the CMB spectra on small angular

scales (l ≥ 2500), but the error remains tiny (only 0.02% for l = 2750 for three species with

m = 1eV). The effect on the matter power spectrum is stronger: with three 1 eV neutrinos,

the P (k) is wrong by 1 to 3% for k ∈ [0.05; 1]hMpc−1. Hence, we recommend to use the fluid

approximation for any value of the mass when computing CMB anisotropies, and only below

a total mass of one or two eV’s when computing the matter power spectrum. However,

cosmological bounds on neutrino masses strongly disfavour larger values of the total mass.

This means that in most projects, CLASS users can safely use the fluid approximation for

fitting both CMB and large scale structure data.

4. Standard massive neutrinos

We first illustrate our approach with the simple case of standard massive neutrinos with

a Fermi-Dirac distribution. In this case, for each neutrino, the user should provide two

numbers in the input file: the mass m, and the relative temperature T_ncdm ≡ Tν/Tγ

(the ratio of neutrino to the photon temperature). The CLASS input file explanatory.ini

recommends to use the value T_ncdm=0.71599, which is “fudged” in order to provide a

11
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Figure 2: On the left, we have shown the percentage difference in the CT
l for three degenerate

neutrino species with mass m = 0.001eV, m = 0.01eV, m = 0.1eV and m = 1eV respectively, in

runs with/without the fluid approximation. The fluid approximation works very well as long as the

neutrinos are relativistic, so this is what we expect. On the right we have shown the matter power

spectrum for the same masses. Here the agreement is not so good as the mass becomes higher.

mass-to-density ratio m/ων = 93.14 eV in the non-relativistic limit. This number gives a

very good approximation to the actual relic density of active neutrinos, resulting from an

accurate study of neutrino decoupling [11]. However, when comparing the CLASS results
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with those from CAMB, we take T_ncdm=0.7133 in order to recover the mass-to-density ratio

assumed in that code. Finally, if no temperature is entered, the code will default to the

instantaneous decoupling value of (4/11)1/3.

4.1 Agreement with CAMB
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Figure 3: Relative difference between CAMB and CLASS spectra in a model with Ων = 0.02, two

massless neutrinos, and reference accuracy settings. The two codes agree rather well.

In Fig. 3, we compare the CMB and matter power spectrum from CAMB and CLASS

(without the NCDM fluid approximation) for two massless and one massive neutrino with

Ων = 0.02 (corresponding to a mass m ≃ 0.923eV). We used high accuracy settings for

CAMB, described in [6] under the name [CAMB:07]. For CLASS, we used the input file

cl_ref.pre, which corresponds to the setting [CLASS:01] in [6] for parameters not related

to NCDM; for the latter, cl_ref.pre contains the settings described in the first column

of Table 1. For such settings and in absence of massive neutrinos, the two temperature

spectra would agree at the 0.01% level in the range l ∈ [20; 3000]; at the 0.02% level for

polarization in the same range; and at the 0.01% level for the matter power spectrum for

k < 1hMpc−1. With a neutrino mass close to 1 eV, we see in Fig. 3 that the discrepancy is

approximately six times larger than in the massless case. However, it remains very small:

even with massive neutrinos the two codes agree to better than 0.1% for the CMB and

matter power spectra. This is by far sufficient for practical applications.

In a perfect implementation of massless and massive neutrinos in Boltzmann codes, we

expect that in the relativistic limit m ≪ T 0
ν (where T 0

ν is the neutrino temperature today)

the spectra would tend towards those obtained with three massless species (provided that

we are careful enough to keep the same number of relativistic degrees of freedom Neff). We

performed this exercise for both codes, and the results are presented in Fig. 4. It appears

that with a small enough mass, CLASS can get arbitrarily close to the fully relativistic case:
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Figure 4: This is a test of how well CAMB and CLASS recovers the massless limit. We compute a

model with Ων = 1.2 ·10−4 and 3 massive neutrinos with degenerate mass. This setting corresponds

to a neutrino mass of mi = 2.8 · 10−4eV, which is not exactly massless, but it is the best we

can do since the mass parameter can not be set directly in CAMB. Setting the mass parameter in

CLASS to mi = 10−8eV reveals that we are in part seeing the effect of the neutrino going slightly

non-relativistic at late times.

with a mass of 10−8eV, the difference is at most of 0.03% in the Cl’s and 0.05% in the

P (k). This test is another way to validate the accuracy of our implementation.

4.2 Accuracy settings

We now come to the question of defining degraded accuracy settings for computing the

spectra in a fast way, while keeping the accuracy of the results under control. For such

an exercise, we need to define a measure a precision. Like in [6], we will use an effec-

tive χ2 which mimics the sensitivity of a CMB experiment like Planck to temperature

and E-polarisation anisotropies. Taking the runs with accuracy settings cl_ref.pre as

a reference, we decrease the precision for each parameter while keeping the ∆χ2 roughly

below a given limit, chosen to be either 0.1 or 1. This exercise was already performed

in [6] for all parameters not related to NCDM, leading to the definition of two precision

files chi2pl0.1.pre and chi2pl1.pre which are available on the CLASS web site. Here,

we only need to set the NCDM precision parameters in these two files to correct values.

Our results are listed in Table 1, in the second and third columns. They take advantage

of the fluid approximation, and use an extremely small number of momenta (8 or 5 only).

We checked that these settings provide the correct order of magnitude for ∆χ2 within a

wide range of neutrino masses, at least up to 2 eV. This is shown in Table 2 for the two

cases chi2pl0.1.pre and chi2pl1.pre, as well as for the case chi2pl1.pre with the fluid

approximation removed. Around m = 2 eV, the error induced by the fluid approximation

starts increasing significantly: when exploring this region, the user should either turn off

14
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the approximation, or increase the value of the kτ trigger. Given current limits on active

neutrino masses, the interesting mass range to explore is below 2 eV, and in most projects,

the CLASS users can safely employ the default settings of chi2pl0.1.pre and chi2pl1.pre

including the fluid approximation.

These settings are optimised for fitting the CMB spectra only. For the matter power

spectra, the files chi2pl0.1.pre and chi2pl1.pre produce an error of the order of a

few per cents in the range k ∈ [0.05; 1]hMpc−1 (for any neutrino mass and with/without

the fluid approximation). In order to get accurate matter power spectra, it is better

to employ the settings cl_permille.pre, cl_2permille.pre, cl_3permille.pre, which

lead to a precision of 1, 2 or 3 per mille for CTT
l in the range 2 < l < 3000, even in

the presence of neutrino masses. In these files, we fixed the fluid approximation trigger

to a rather larger value in order to get a precision of one permille for the matter power

spectrum for k < 0.2hMpc−1 and m < 2 eV, or a bit worse for mildly non-linear scales

k ∈ [0.2; 1]hMpc−1. The power spectrum accuracy with such settings is indicated in Table 3

for various values of the mass.

cl_ref.pre chi2pl0.1.pre chi2pl1.pre

tol_ncdm_bg 10−10 10−5 10−5

tol_ncdm 10−10 10−4 10−3

l_max_ncdm 51 16 12

fluid approximation none ncdmfa_class ncdmfa_class

kτ trigger – 30 16

number of q (back.) 28 11 11

number of q (pert.) 28 8 5

number of neutrino equations 1428 136→3 65→3

Table 1: Accuracy parameters related to NCDM in the three precision files cl_ref.pre,

chi2pl0.1.pre and chi2pl1.pre. When the fluid approximation is used, the method described in

section 3 is employed, and the switching time is set by the above values of kτ . Below these param-

eters, we indicate the corresponding number of momenta sampled in background quantities and in

perturbation quantities, as well as the number of neutrino perturbation equations integrated over

time, equal to (l max ncdm+1) times the number of sampled momenta when the fluid approximation

is not used, and to three afterwards.

4.3 Performance

The quadrature method reveals to be extremely useful since even with five values of the

momenta, we get accurate results leading to 0.2%-0.3% accuracy on the C ′
ls, 0.1% accuracy

on the P (k) and ∆χ2 ∼ 1. Traditional Boltzmann codes employ 14 momenta in order to

achieve a comparable precision. In the presence of massive neutrinos, the total execution

time of a Boltzmann code is dominated by the integration of the perturbation equations,

which depends on the total number of perturbed variables, itself dominated by the number

of massive neutrino equations. By reducing the number of momenta from 14 to 5, the

quadrature method speeds up the code by more than a factor two. We find that the use of

the fluid approximation leads to an additional 25% speed up for standard accuracy settings
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mass (eV) chi2pl0.1.pre chi2pl1.pre same without approx.

10−3 0.087 0.94 0.90

10−2 0.087 0.93 0.92

0.1 0.092 0.90 0.92

1 0.083 0.96 0.82

2 0.157 1.10 0.93

Table 2: For a CMB instrument with the sensitivity of Planck, χ2 difference between the spectra

obtained with reference accuracy settings and with degraded accuracy settings, for various values

of the neutrino mass (all models have two massless and one massive neutrinos). This shows that

our accuracy settings chi2pl0.1.pre and chi2pl1.pre always lead to an accuracy of roughly

∆χ2 ∼ 0.1 or ∆χ2 ∼ 1 respectively. The last column correspond to the settings of chi2pl1.pre,

but without the fluid approximation.

mass (eV) k < 0.2hMpc−1 k ∈ [0.2; 1]hMpc−1

10−3 0.04% 0.12%

10−2 0.04% 0.12%

0.1 0.05% 0.12%

1 0.06% 0.8%

2 0.2% 1.5%

Table 3: Maximum error induced by any of the cl_permille.pre, cl_2permille.pre or

cl_3permille.pre precision settings on the linear matter power spectrum P (k), for approximately

linear scales k < 0.2hMpc−1 (first column) or mildly non-linear scales k ∈ [0.2; 1]hMpc−1 (second

column), and for various values of the neutrino mass (all models have two massless and one massive

neutrinos). The fluid approximation introduces an error which remains below the per mille level

until k = 0.2hMpc−1 for m < 2 eV, and exceeds this level for larger masses.

(like those in the file chi2pl1.pre). In total, for a single massive neutrino, our method

speeds up the code by a factor 3. This means that instead of being 4.5 times slower in

presence of one massive neutrino, CLASS only becomes 1.5 times slower. We checked these

numbers with various masses and accuracy settings.

4.4 Realistic mass schemes

We have proved in this section that CLASS can be employed in any project requiring high-

precision computations of cosmological observables in presence of massive neutrinos. It is

of course perfectly suited for realistic situations with different neutrino species and masses.

To illustrate this, we display in Figure 5 the ratio of pairs of matter power spectra for

models with three massive neutrinos satisfying constraints from atmospheric/solar oscilla-

tion experiments [12] (∆m2
21 = 7.6 × 10−5eV2, ∆m2

32 = ±2.4 × 10−3eV2). Each pair of

models corresponds to one normal hierarchy and one inverted hierarchy scenario, with the

same total mass Mν , equal to 0.100 eV, 0.115 eV or 0.130 eV. The first total mass is very

close to the minimum allowed value for the inverted hierarchy, Mν ≃ 0.0994 eV. For each

pair or models with a given Mν :
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Figure 5: Ratio of matter power spectra for pairs of models with three massive neutrinos, obeying

either to the normal or inverted hierarchy scenario, but with a common total mass for each pair:

Mν = 0.100 eV, 0.115 eV or 0.130 eV. The various effects observed here are discussed in the text.

• on intermediate scales, the bump reflects the difference in the three free-streaming

scales involved in the two models.

• in the large k limit, the two spectra are offset by 0.03% to 0.22%: it is known that in

this limit, the suppression in the power spectrum induced by neutrino free-streaming

depends mainly on the total mass (through the famous −8fν approximate formula),

but also slightly on the mass splitting (in [13], a more accurate formula gives the

suppression as a function of both the total mass and number of degenerate massive

neutrinos). When Mν increases, the two models are less different from each other

(they go towards a common limit, namely the degenerate mass scenario), and the

discrepancy is less pronounced.
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• in the small k limit, the two spectra are nearly identical. The tiny difference, which

increases when Mν decreases, is due to the fact that in the inverted hierarchy model,

there is a very light neutrino just finishing to complete its non-relativistic transi-

tion today. It therefore has a non-negligible pressure, which slightly affects metric

perturbations on large wavelengths.

Observing the difference between these two models would be extremely challenging, al-

though 21 cm surveys could reach enough sensitivity [14].

5. Beyond standard massive neutrinos

In this section we will illustrate the power and flexibility of the non-cold Dark Matter im-

plementation in CLASS, by implementing different models which have already been studied

elsewhere in the literature.

5.1 Massive neutrinos with large non-thermal corrections

It is plausible that some new physics can introduce non-thermal corrections to an otherwise

thermal Fermi-Dirac distribution function. One might think of using CMB and large scale

structure data to put bounds on such non-thermal corrections, as was described e.g. in [15].

CLASS is ideally suited for playing with such models. As a test case, we take the following

distribution from [15]:

f(q) =
2

(2π)3

[
1

eq + 1
+

Aπ2

q2
√
2πσ

exp

(
−(q − qc)

2

2σ2

)]
, (5.1)

which is the Fermi-Dirac distribution with an added Gaussian peak in the number density.

This distribution could presumably be the result of some particle suddenly decaying into

neutrinos at a late time.

In practise, we only need to change the expression for f(q) in CLASS, which appears in a

unique line (in the function background_ncdm_distribution()). All the rest, like density-

to-mass relation and computation of the logarithmic derivative, is done automatically by

the code. In particular, we do not need to change the accuracy parameters tol_ncdm and

tol_ncdm_bg: the momentum sampling algorithm automatically increases the number of

momenta by a significant amount, in order to keep the same precision. If this was not the

case, the effect of the peak would be underestimated because of under sampling, and the

parameter extraction would then likely be biased.

In Fig. 6, we show the CMB and matter power spectra for this model, relative to a

standard model with three thermally distributed neutrinos. The two models are chosen to

share exactly the same masses and the same initial number of relativistic degrees of freedom

Neff. Nevertheless, they do not have the same non-relativistic neutrino density and average

neutrino momentum; in particular, non-thermal neutrinos in the decay peak become non-

relativistic slightly later. This induces a combination of background and perturbation

effects affecting CMB and matter power spectra in a significant way.
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Figure 6: Cl’s and P (k)’s for a model of 3 degenerate neutrinos with the non-thermal distribu-

tion (5.1) using parameters m = 1.0 eV, A = 0.018, σ = 1.0 and qc = 10.5. This corresponds to

Neff = 3.98486. We have compared this model to a model with degenerate thermal neutrinos with

the same mass and Neff. The signal is due to a combination of background and perturbation effects:

although the mass and the relativistic density are the same, the non-relativistic density and the

average momentum differ significantly in the two models.

5.2 Warm dark matter with thermal-like distribution

There is an infinity of possible warm dark matter models, since the phase-space distribution

of warm dark matter depend on the details of its production mechanism. The most widely

studied model is that of non-resonantly produced warm dark matter with a rescaled Fermi-

Dirac distribution, having the same temperature as that of active neutrinos. This model

is implemented in the default CLASS version: when the user enters a temperature, a mass

and a density Ωncdm (or ωncdm) for the same species, the code knows that the degeneracy

parameter in front of the Fermi-Dirac distribution must be rescaled in order to match these

three constraints simultaneously. The code will also ensure that the perturbations begin

to be integrated when the non-cold species is still relativistic, in order to properly follow

the transition to the non-relativistic regime.

We illustrate this by running a ΛWDM model with a mass of m = 1keV or m = 10keV

and a density Ωncdm = 0.25, with or without the fluid approximation. We compare the

results with those of ΛCDM with Ωcdm = 0.25, in order to show the well-known suppression

effect of WDM in the small-scale limit of the matter power spectrum. It appears that the

fluid approximation works very well in those cases, unless one wants to resolve the details

of the WDM acoustic oscillations on very small scales, first predicted in [16].

5.3 Warm dark matter with non-trivial production mechanism

Non-resonantly produced warm dark matter candidates are severely constrained by Lyman-

α bounds, but such bounds do not apply to other warm particles which could have been
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Figure 7: P (k)’s for a Warm Dark Matter model with m = 1 keV (left) and m = 10 keV (right).

The fluid approximation can be seen to be a very good approximation in this case, though it does

not catch the acoustic oscillations precisely.

produced through more complicated mechanisms (e.g. resonant production), leading to a

non-trivial, model-dependent phase-space distribution function [17]. It is not always easy

to find a good analytic approximation for such a distribution; this is anyway not an issue

for CLASS, since the code can read tabulated values of f(p) from an input file.
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Figure 8: P (k)’s for a Warm Dark Matter model with a non-trivial production mecha-

nism for a mass of m = 2 keV compared to the same model with Cold Dark Matter. Note

that the normalisation of the distribution function is arbitrary; when both m_ncdm and one of

{Omega_ncdm,omega_ncdm} is present for some species, CLASS will normalise the distribution con-

sistently.
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We illustrate this case by taking a particular model for resonantly produced sterile

neutrinos, which distribution was computed numerically by [18] (simulating the details of

sterile neutrino production and freeze-out), and stored in a file with discrete qi, fi values.

Again, we only need to specify the name of this file in the CLASS input file, to enter a value

for the mass and for the density Ωncdm, and the rest is done automatically by the code

(finding the mass-density relation and the correct normalization factor for f(q), defining

the new momentum steps, deriving [d ln f ]/[d ln q] with a good enough accuracy). The

assumed f(q) and the resulting matter power spectrum when the mass is set to m = 2keV

is shown in Fig. 8. By eye, this spectrum seems identical to a thermal-like WDM one, but

the cut-off is in fact much smoother due to an excess of low-momentum particles in this

model (which behave like a small cold dark matter fraction).

6. Conclusions

A large fraction of the activity in cosmology consists in deriving bounds on particle physics

in general, and on the neutrino and dark matter sector in particular. Fitting cosmological

data with non-standard neutrinos or other non-cold relics require non-trivial changes in

existing public Boltzmann codes. Moreover, running parameter extraction codes including

massive neutrinos or more exotic non-cold relics is computationally expensive due to a

significant increase in the number of differential equations to be solved numerically for

each set of cosmological parameters.

The newly released Cosmic Linear Anisotropy Solving System aims at rendering this

task easy and fast. The code provides a very friendly and flexible input file in which users

can specify a lot of non-standard properties for the NCDM sector: masses, temperatures,

chemical potentials, degeneracy parameters, etc. Moreover, the Fermi-Dirac distribution

function is not hard-coded in CLASS; it is just a default choice appearing in one line of

the code, which can be very easily modified. Even when a non-thermal distribution f(q)

does not have a simple analytic expression, the code can be told to read it directly from a

file. After reading this function, CLASS performs a series of steps in a fully automatic way:

finding the mass-density relation, defining an optimal sampling in momentum space with a

sophisticated but fast algorithm, and accurately computing the derivative of f(q), needed

in the perturbation equations.

In this paper, we presented the main two improvements related to the NCDM sector

in CLASS: an adaptive quadrature sampling algorithm, which is useful both for the purpose

of flexibility (the sampling is always adapted to any new distribution function) and speed

(the code sticks to a minimum number of momenta, and hence, of perturbation equations);

and a fluid approximation switched on inside the Hubble radius. We showed that the latter

approximation works very well for realistic active neutrinos (with a total mass smaller than

1− 2eV), and for warm dark matter candidates becoming non-relativistic during radiation

domination. In between these two limits, there is a range in which the accuracy of the

fluid approximation is not well established, and in which the user may need to keep the

approximation off, at the expense of increasing the execution time. However, the range

between a few eV and few keV is usually not relevant in most realistic scenarios.
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The adaptive quadrature sampling algorithm and the fluid approximation both con-

tribute to a reduction in the total execution time of the code by a factor of three for

ordinary neutrinos. This means that when one massive neutrino species is added to the

ΛCDM model, CLASS becomes 1.5 times slower instead of 4.5 times slower like other codes.

Since the code is already quite fast in the the massless case, we conclude that the global

speed up is significant and appreciable when fitting cosmological data.
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4 Sensitivity forecasts

4.1 Future galaxy redshift surveys, PRD 70, 045016 (2004)

ar
X

iv
:h

ep
-p

h/
04

03
29

6v
2 

 6
 A

pr
 2

00
4

LAPTH-1033/04, IFIC/04-11, PCC-0413

Probing neutrino masses with future galaxy redshift surveys

Julien Lesgourgues
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We perform a new study of future sensitivities of galaxy redshift surveys to the free-streaming
effect caused by neutrino masses, adding the information on cosmological parameters from measure-
ments of primary anisotropies of the cosmic microwave background (CMB). Our reference cosmo-
logical scenario has nine parameters and three different neutrino masses, with a hierarchy imposed
by oscillation experiments. Within the present decade, the combination of the Sloan Digital Sky
Survey (SDSS) and CMB data from the PLANCK experiment will have a 2σ detection threshold on
the total neutrino mass close to 0.2 eV. This estimate is robust against the inclusion of extra free pa-
rameters in the reference cosmological model. On a longer term, the next generation of experiments
may reach values of order

∑
mν = 0.1 eV at 2σ, or better if a galaxy redshift survey significantly

larger than SDSS is completed. We also discuss how the small changes on the free-streaming scales
in the normal and inverted hierarchy schemes are translated into the expected errors from future
cosmological data.

PACS numbers: 14.60.Pq, 95.35.+d, 98.80.Es

I. INTRODUCTION

Neutrino physics has provided the first clear indication of particle physics beyond the Standard Model, since we
have experimental evidences for non-zero neutrino masses. Analyses of data from atmospheric and solar neutrino
experiments have shown the allowed regions for the squared mass differences (∆m2

ν) at two different scales. Such
values will be known with better precision in the next years, in particular for the larger atmospheric ∆m2

ν using the
results of future long-baseline oscillation experiments.
However, from oscillation experiments no information can be obtained on the absolute values of neutrino masses,

since the lightest neutrino mass remains unconstrained. Tritium decay experiments tell us that each neutrino mass
cannot be larger than 2.2 eV (95% CL) at present [1], to be improved to ∼0.35 eV with KATRIN [2]. More stringent
bounds exist from experiments searching for neutrinoless double beta decay, that will be improved in the near future
[3], but unfortunately they depend on the details of the neutrino mixing matrix.
Cosmology offers several advantages: the cosmic neutrino background provides an abundant density of relic neu-

trinos with an equal momentum distribution for all flavors (up to 1% corrections), which implies that mixing angles
have no effect. Although neutrinos cannot be the dominant dark matter component, they can still constitute a small,
hot part of the matter density producing an erasure of perturbations at small scales through their free-streaming
effect (for a review, see e.g. [4]). A comparison with data from the large scale structure (LSS) of the Universe is thus
sensitive to neutrino masses, as emphasized in [5].
At present, cosmological data allow us to bound the total neutrino mass to values of

∑
mν

<∼ 0.6 − 1.0 eV
[6, 7, 8, 9, 10, 11, 12], depending on the data and priors used. These ranges already compromise the 4 neutrino
scenarios that could explain the additional large neutrino mass difference required by the LSND results (that also
imply a fourth, sterile neutrino), but is not yet capable of reaching the necessary 0.1 eV range in order to test the
hierarchical 3 neutrino schemes. But such small masses could be detected in the next future when more precise
cosmological data are available, in a parallel effort to those of beta and double beta decay experiments on Earth.
In this paper we analyze the future sensitivities of cosmological data to neutrino masses, extending the pioneering

work [5] and in particular the detailed analysis in [13] (see also [14]), that was more recently updated in [15]. In contrast
to this last work we consider, in addition to ideal Cosmic Microwave Background (CMB) observations limited only
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by cosmic variance, the experimental specifications of satellite missions such as PLANCK and the mission concept
CMBpol (Inflation Probe), as well as ground-based detectors such as ACT or SPTpol, that will extend the PLANCK
data to smaller angular scales. We also increase the number of cosmological parameters of previous analyses, including
also the helium fraction, extra relativistic degrees of freedom, spatial curvature, dark energy with constant equation
of state, or a primordial spectrum with running tilt. Finally, our work is the first one in which it is assumed that
neutrinos have three different masses, in order to compute accurately the free-streaming effect associated to the mass
schemes allowed by oscillation experiments.
Note that throughout this work, we will assume that the LSS power spectrum is measured solely with galaxy

redshift surveys. For complementary constraints based on gravitational lensing, we refer the reader to Refs. [16, 17].
This paper is organized as follows. In Sec. II we review the expected values of neutrino masses and their impact on

Cosmology. We describe future CMB experiments and galaxy surveys in Sec. III and the method to forecast the errors
on cosmological parameters in Sec. IV. Finally, we present our results in Sec. V, with a summary and conclusions in
Sec. VI.

II. NEUTRINO MASSES

Nowadays we have experimental evidences for neutrino oscillations from solar and atmospheric neutrino detectors,
recently also supported from data on neutrinos from artificial sources (Kamland and K2K). Detailed analyses of the
experimental data lead to the following values of the mass squared differences (best fit values ± 3σ ranges)

∆m2
atm = ∆m2

32 = (2.6+1.1
−1.2)× 10−3 eV2

∆m2
sun = ∆m2

21 = (6.9+2.6
−1.5)× 10−5 eV2 (1)

taken from [18]. These ranges are only slightly different in other recent analyses, see e.g. [19, 20], while a lower
∆m2

atm seems required by new Super-Kamiokande data and 3-dimensional atmospheric fluxes. The errors in the
above equation will be significantly reduced with new data from Kamland in the case of ∆m2

21, and with data from
future long-baseline oscillation experiments such as MINOS, ICARUS and OPERA, which will give the atmospheric
∆m2 with 10% accuracy (reduced to 5% with the superbeam proposal JPARC-SK) [21]. Current data also provide
the allowed ranges of the neutrino mixing angles θ12 and θ23, and an upper bound on θ13.
Indications for a third, heavier ∆m2

ν exist from the LSND experiment [22], implying a fourth (sterile) neutrino.
Such a mass is already being tested by present cosmological data, although not ruled out yet [7, 8, 11, 12], and the
LSND results will be checked by the ongoing experiment MiniBoone. Here we choose not to include such a large ∆m2

ν

and consider only the values in Eq. 1.
The three neutrino masses that lead to the values in Eq. 1 can be accommodated in two different neutrino schemes,

named normal (m3 > m2 > m1) and inverted (m2 > m1 > m3) hierarchy, as shown in Fig. 1, that we will denote
NH and IH. At present we have no indication of which scheme is the correct one. However, it has been suggested
that some information could be extracted from future data from Supernova neutrinos, very large baseline oscillation
experiments, or neutrinoless double beta decay searches if the effective mν is below some threshold (for reviews, see
e.g. [23, 24]). In general, determining the type of mass spectrum depends on the precision with which the other mixing
parameters would be measured.
Relic neutrinos were created in the Early Universe and decoupled from the rest of the plasma when the temperature

dropped below ∼ 1 MeV, when they were ultra-relativistic. After decoupling all neutrino flavors kept a Fermi-Dirac
spectrum, only distorted at percent level during the process of electron-positron annihilations into photons [25, 26].
It is well-known that massive neutrinos could account for a significant fraction of the total energy density of the
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FIG. 2: Neutrino masses as a function of the total mass in the two schemes for the best-fit values of ∆m2 in Eq. 1. The
vertical line marks the smallest value of

∑
mν in the inverted scenario.

Universe today, being their contribution directly proportional to the number density. For vanishing neutrino chemical
potentials, the total neutrino contribution to the critical density is given by

Ων =

∑
mν

93.2 eV
h−2 , (2)

where h is the Hubble constant in units of 100 km s−1 Mpc−1 and
∑

mν runs over all neutrino mass states. For fixed
neutrino masses, Ων would be enhanced if neutrinos decoupled with a significant chemical potential (or equivalently,
for large relic neutrino asymmetries), but this possibility is now ruled out [27].
Therefore cosmology is at first order sensitive to the total neutrino mass

∑
mν = m1 + m2 + m3 (for the 3

neutrino schemes that we consider), but blind to the neutrino mixing angles or possible CP violating phases. This
fact differentiates cosmology from terrestrial experiments such as beta decay and neutrinoless double beta decay,
which are sensitive to

∑
i |Uei|2m2

i and |∑i U
2
eimi|, respectively, where U is the 3× 3 mixing matrix that relates the

weak and mass bases.
It is interesting to see how the total mass is distributed among the neutrino states for the two different schemes

described above. They are plotted in Fig. 2. For a total mass above ∼ 0.2− 0.3 eV the two schemes are similar and
correspond to a degenerate scenario where each mass is

∑
mν/3. However, for smaller masses the number of neutrino

states with relevant masses is 2 (1) in the inverted (normal) hierarchy.
The effect of neutrino masses on cosmological observables has been usually considered equivalent for fixed

∑
mν

(or Ωνh
2). However, many papers noted in the past that this is not the case and could potentially lead to differences,

i.e. the neutrino mass spectrum should be incorporated if the sensitivity to neutrino masses is good enough (see, for
instance the comments in [15, 16, 28]). As an example, we note that in the mid-1990s it was shown that for CHDM
models with the same total neutrino mass (of order some eVs), those with two degenerate massive neutrinos fitted
better the data than those with only one (see e.g. [29]).
Fixed the total neutrino mass, a different distribution among the 3 states (m1,m2,m3) causes a slight modification

of the transit from a relativistic to a non-relativistic behavior. This can be seen in Fig. 3, where the evolution of
the neutrino energy density is plotted for several cases with the same total neutrino mass, equally shared by 1,2 or
3 neutrino states, as well as the realistic NH and IH schemes (taking the best-fit values of ∆m2). Therefore, the
evolution of background quantities is not completely independent of the mass splitting. However, the main difference
appears at the level of perturbations. Indeed, in the case of non-degenerate massive neutrinos, various free-streaming
scales are imprinted in the matter power spectrum P (k). This is illustrated in Fig. 4, where we compare P (k) in the
same cases as in Fig. 3. These results were obtained with our modified version of the public code CMBFAST [30] (see
section V for details).
We have recently summarized the effects of massive neutrinos on cosmological observables in [12]. Here we simply

remind that only neutrinos with masses close to the recombination temperature (Tdec ∼ 0.3 eV) leave an imprint on
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the CMB angular spectra, while neutrinos with smaller masses have almost the same effect as massless neutrinos. On
the other hand, the dominant effect is the one induced by free-streaming on the matter power spectrum. Therefore,
the usual strategy is to combine CMB and LSS measurements, where the former roughly fix most of the cosmological
parameters, while the latter is more sensitive to neutrino masses.

III. FUTURE CMB AND LSS DATA

In this section we briefly describe the experimental projects, planned or in development, that will provide data on
the CMB anisotropy spectrum or on the distribution of LSS.
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A. CMB experiments

The quality of the first-year data from the Wilkinson Microwave Anisotropy Probe (WMAP) [6], complemented by
the results of other experiments at smaller angular scales such as ACBAR, CBI or VSA [31, 32, 33], has shown the
importance of CMB data as a probe of cosmological parameters. The CMB experiments measure the temperature
fluctuations in the sky that can be expanded in spherical harmonics,

∆T

T
(θ, φ) =

∑

l,m

almYlm(θ, φ) . (3)

If the underlying perturbations are Gaussian, all information is encoded in the angular power spectrum Cl ≡ 〈|alm|2〉.
In addition the CMB experiments can be sensitive to polarization anisotropies, that are expressed in terms of the
angular spectra of the E and B modes of polarization, as well as the temperature polarization cross-correlation (TE)
spectrum.
After WMAP, the next satellite mission will be PLANCK1, to be launched in 2007, whose experimental parameters

are listed in Table I. After a couple of years, it will provide CMB data more precise than that of WMAP, in particular
concerning polarization. We also consider the CMBpol or Inflation Probe mission concept, presented in the framework
of NASA’s Beyond Einstein Program2. This experiment would have better sensitivity than the limit imposed by cosmic
variance (up to l ∼ 2300 for E-polarization, even beyond for temperature).
In parallel to the satellite missions, there will be ground-based experiments that will measure the CMB at smaller

angular scales with significantly smaller sky coverage but good sensitivities, such as SPTpol3 (in construction), ACT4

(funded in January 2004), or QUaD [34] (in construction). As an example, we consider SPTpol with the characteristics
listed in Table I.
The observed power spectrum can be decomposed into primary anisotropies, gravitational lensing distortions, and

foreground contamination. The central frequencies of CMB detectors are usually chosen in order to minimize the
foreground contribution. In addition, by combining various frequencies, future experiments will have the power to
separate efficiently the CMB blackbody from the various foregrounds contributions, even on small angular scales where
the latter start to be significant. It is possible to build models for the foregrounds and to predict their impact on
parameter extraction [34, 35, 36]; this approach is rather model-dependent, since the level of many foreground signals
has not yet been measured experimentally. Here, we will not enter into such details. When dealing with PLANCK, we
will employ only three frequency channels from the high frequency instrument (HFI), making the (usual) simplifying
assumption that other channels will be used for measuring the various foregrounds, and for cleaning accurately the
primary signal. We will do similar assumptions for SPTpol and CMBpol. We will also speculate on the results of
an “ideal CMB experiment” limited only by cosmic variance. Then, we will limit ourselves to lmax = 2500 both
for temperature and polarization, which assumes an efficient method for foreground subtraction – in particular of
point-like sources and dust – but remains realistic (as indicated by Fig. 7 in [35]). For the two satellite experiments,
we assume a sky coverage of fsky = 0.65, which represents a conservative estimate of the data fraction that will be
included in the analysis in order to avoid galactic foregrounds. For the “ideal CMB experiment”, we adopt the more
optimistic value fsky = 1, assuming that all galactic foregrounds can be subtracted (see e.g. the component separation
method described in [37]).
The issue of gravitational lensing distortion is subtle and potentially very interesting. Since lensing is induced

by large scale structure, mainly on linear scales, this effect can be accurately predicted for a given matter power
spectrum. Therefore, if the gravitational distortion of the CMB maps could be measured directly, there would be an
opportunity to extract the matter power spectrum (and the underlying cosmological parameters) independently from
redshift surveys. A way of doing this is described in [38, 39, 40], and has been already applied to future neutrino
mass extraction by [17]. Here, we do not incorporate this method, and assume that the matter power spectrum is
measured only with redshift surveys, leaving a combined analysis for the future. Therefore, throughout the analysis,
we will employ the unlensed CMB power spectra5. For the T, E and TE modes, lensing distortions are subdominant.
In contrast, for the B mode, lensing is expected to dominate over the primary anisotropies at least on small angular
scales. The angle above which lensing is subdominant crucially depends on the tensor-to-scalar ratio, an inflationary

1 http://www.rssd.esa.int/index.php?project=PLANCK
2 http://universe.gsfc.nasa.gov/program/inflation.html
3 http://astro.uchicago.edu/spt/
4 http://www.hep.upenn.edu/∼angelica/act/act.html
5 Note that including lensing corrections is technically easy with CMBFAST. However, this would introduce some correlations among
different modes and scales that would artificially lower the predicted errors on each cosmological parameters [17, 38].
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Experiment fsky ν θb ∆T ∆P

PLANCK 0.65 100 9.5’ 6.8 10.9
143 7.1’ 6.0 11.4
217 5.0’ 13.1 26.7

SPTpol 0.1 217 0.9’ 12 17
CMBpol 0.65 217 3.0’ 1 1.4

TABLE I: Experimental parameters of CMB projects: here θb measures the width of the beam, ∆T,P are the sensitivities per
pixel in µK, ν is the center frequency of the channels in GHz and fsky the observed fraction of the sky. For the PLANCK 100
GHz channel, the value of ∆P takes into account the recent design with eight polarized bolometers.

parameter which order of magnitude is still unknown. So, we follow a conservative approach and not take the B mode
into account. This amounts in assuming that the gravitational wave background generated by inflation is small, so
that the B mode gives no information on primary anisotropies.

B. Galaxy surveys

The existing data on the distribution of galaxies at large scales come from several galaxy surveys, of which the
completed 2dF survey6 and the ongoing Sloan Digital Sky Survey7 (SDSS) are the largest. SDSS will complete
its measurements in 2005. The matter power spectrum P (k) can be reconstructed from the data, which gives an
opportunity to test the free-streaming effect of massive neutrinos. However, the linear power spectrum is found
modulo a biasing factor b2, which reflects the discrepancy between the total matter fluctuations in the Universe, and
those actually seen by the instruments. Here we assume that the bias parameter b is independent of the scale k.
An important point concerning LSS data is the non-linear clustering of the smallest scales. The usual approach

is to discard any information above an effective cut-off wavenumber kmax, while considering results at lower k’s as a
direct estimate of the linear power spectrum. The cut-off value must be chosen with care: if kmax is too small, we
can lose a lot of information, especially concerning the neutrino free-streaming scale. If kmax is too large, we can
underestimate the error on cosmological parameters, first by neglecting any theoretical uncertainty in the quasi-linear
corrections that could be applied to the spectrum, and second by ignoring the non-gaussianity induced by non-linear
evolution [41].
Apart from kmax, the important parameter characterizing the galaxy survey is its effective volume in k space,

defined in [41]. If the number density of objects in the survey n(r) is roughly constant over the survey volume, and
if the observed power spectrum P (k) is bigger than 1/n over the scales of interest (i.e., from the turn-over scale in
P (k) up to kmax), the effective volume is equal to the actual volume of the survey. This is a reasonable approximation
for all the examples that we will consider here. For instance, the SDSS the Bright Red Galaxy (BRG) survey has an
effective volume of roughly Veff ≃ 1 (Gpc/h)3 [13] (which comes from a sky coverage fsky = 0.25 and a radial length
of 1 Gpc h−1).
Beyond SDSS, plans for larger surveys are under discussion. For instance, we can mention the Large Synoptic Survey

Telescope8 (LSST), which in the future could cover the entire sky and at the same time be capable of measuring fainter
objects [42]. LSST is designed mainly for weak lensing observations. In order to map the total matter distribution up
to half the age of the Universe (i.e., up to a redshift z ∼ 0.8 or a radial length l ∼ 2.3 Gpc/h) in a solid angle 30,000
deg2 (fsky ∼ 0.75), it could measure 2 × 108 redshifts up to z = 1.5. Inspired roughly by these numbers, at the end
of this analysis, we will speculate on the possibility to measure the power spectrum in a effective volume as large as
Veff = (4π/3)fskyl

3 ∼ 40 (Gpc/h)3.
The mechanism of structure formation affects larger wavelengths at later times. So, in order to measure the linear

power spectrum on small scales, it would be very useful to build high redshift galaxy surveys. This is one of the main
goals of the Kilo-Aperture Optical Spectrograph (KAOS) proposal9. KAOS could build two catalogs centered around
redshifts z = 1 and z = 3, corresponding roughly to kmax ∼ 0.2 h Mpc−1 and kmax ∼ 0.48 h Mpc−1 respectively,
instead of kmax ∼ 0.1 h Mpc−1 today (conservative values). In both catalogs, the number density would be such that

6 http://www.mso.anu.edu.au/2dFGRS/
7 http://www.sdss.org
8 http://www.lsst.org
9 http://www.noao.edu/kaos
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1/n ∼ P (kmax), and the effective volume of the two samples close to Veff ∼ 0.5 (Gpc/h)3 and Veff ∼ 0.6 (Gpc/h)3

respectively 10. This experiment is designed mainly for measuring the scale of baryonic oscillations, in order to
constrain dark energy. However, we will see that it would be also appropriate for improving constraints on the
neutrino masses.

IV. FORECAST OF FUTURE BOUNDS: FISHER MATRIX ANALYSIS

Since the characteristics of future CMB experiments and galaxy surveys are already known with some precision, it
is possible to assume a “fiducial” model, i.e., a cosmological model that would yield the best fit to the future data,
and employ the Fisher matrix method to forecast the error with which each parameter will be extracted. This method
has been widely used for many cosmological parameters, some of them related to neutrinos. For instance, we can
mention that forecast analyses based on the Fisher matrix have shown that with future data there will be a potential
sensitivity to an effective number of neutrinos of the order ∆Neff ∼ 0.2 [43, 44, 45], a value that is complementary to
and will eventually improve the accuracy of primordial nucleosynthesis results (see e.g. [46, 47]).
Starting with a set of parameters xi describing the fiducial model, one can compute the angular power spectra of

CMB temperature and polarization anisotropies CX
l , where X = T,E, TE. Simultaneously, one can derive the linear

power spectrum of matter fluctuations P (k), expanded in Fourier space. The error δxi on each parameter can be
calculated from the reduced (dimensionless) Fisher matrix Fij , which has two terms. The first one accounts for the
CMB experiment and is computed according to ref. [48]

Fij(CMB) =

lmax∑

l=2

∑

X,Y

∂CX
l

∂ lnxi
Cov−1(CX

l , CY
l )

∂CY
l

∂ lnxj
, (4)

where Cov(CX
l , CY

l ) is the covariance matrix of the estimators of the corresponding CMB spectrum. For instance,
the TT element is given by

Cov(CT
l , C

T
l ) =

2

(2l+ 1)fsky

[
CT

l + (
∑

ch.

ωTB
2
l )

−1

]2

. (5)

Here, the first term arises from cosmic variance, while the second is a function of the experimental parameters summed
over the channels: B2

l = exp(−l(l + 1)θ2b/8 ln 2) is the beam window function (assumed to be Gaussian), θb is the
FWHM of the beam and ωT = (θb∆T )

−2 is the inverse square of the detector noise level (∆T is the sensitivity per
pixel, and the solid angle per pixel can be approximated by θ2b ). For the experiments that we consider here, all these
numbers can be found in Table I. The other terms of the covariance matrix can be found, for instance, in [13].
The second term of the reduced Fisher matrix accounts for the galaxy survey data and is calculated following

Tegmark [41],

Fij(LSS) = 2π

∫ kmax

0

∂ lnPobs(k)

∂ lnxi

∂ lnPobs(k)

∂ lnxj
w(k) d ln k. (6)

Here w(k) = Veff/(2π/k)
3 is the weight function of the galaxy survey and we have approximated the lower limit of the

integral kmin ≃ 0. We defined Pobs(k) ≡ b2P (k), and kmax is the maximal wave number on which linear predictions
are reliable. This expression is only an approximation, since in addition to non-linear clustering it ignores edge effects
and redshift space distortions.
Inverting the total Fisher matrix, one obtains an estimate of the 1-σ error on each parameter, assuming that all

other parameters are unknown

δxi

xi
= (F−1)

1/2
ii . (7)

It is also useful to compute the eigenvectors of the reduced Fisher matrix (i.e., the axes of the likelihood ellipsoid in
the space of relative errors). The error on each eigenvector is given by the inverse square root of the corresponding
eigenvalue. The eigenvectors with large errors indicate directions of parameter degeneracy; those with the smallest
errors are the best constrained combinations of parameters.

10 The characteristics of KAOS are taken from the “Purple Book” available on-line at http://www.noao.edu/kaos .
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FIG. 5: Predicted 2σ error on the total neutrino mass M ≡
∑

mν as a function of M in the fiducial model, using PLANCK
and SDSS (limited to kmax = 0.15 h Mpc−1). The left plot was obtained with the preferred experimental value of ∆m2

atm, and
the right plot with the current 3σ upper bound. In each case, we show the results assuming either NH or IH.

V. RESULTS

We have computed the total Fisher matrix from Eqs. 4 and 6, using various experimental specifications. Throughout
the analysis, our fiducial model is the concordance “flat ΛCDM” scenario, with parameters close to the current best-
fit values and with additional neutrino masses. The nine free parameters with respect to which derivatives are
computed are: Ωmh2 (matter density, including baryons, cold dark matter and neutrinos), Ωbh

2 (baryon density),
ΩΛ (cosmological constant), CT

200 (amplitude of temperature spectrum at multipole 200), ns (scalar tilt), τ (optical
depth to reionization), yHe (fraction of baryonic mass in the form of Helium), M ≡ ∑

mν (total neutrino mass) and
b (unknown bias of the LSS data). The fiducial value of b is irrelevant by construction, and we will try various values
of M , distributed following the NH or IH scheme. Other fiducial values read:

(Ωmh2,Ωbh
2,ΩΛ, C

T
200, ns, τ, yHe) = (0.143, 0.023, 0.70, 0.85, 0.96, 0.11, 0.24).

All derivatives are computed at zero spatial curvature (by varying h appropriately). Note that we use double-sided
derivatives with step 10% for M , 50 % for yHe, 5% for all other parameters. We checked carefully that these steps
are sufficient in order to avoid possible numerical errors caused by the limited precision of the Boltzmann code – in
our case, version 4.5.1 of CMBFAST [30], with option “high precision”. We also checked that with twice larger steps,
the results change only by a negligible amount. These conditions were not a priori obvious for the smallest neutrino
masses studied here, but we increased the precision of the neutrino sector in CMBFAST accordingly. Actually, in order
to study three neutrino species with different masses, we performed significant modifications throughout CMBFAST.
For each mass eigenstate, we integrate some independent background and perturbation equations, decomposed in
15 momentum values, up to multipole l = 7. Finally, we include the small distortions in the neutrino phase-space
distributions caused by non-instantaneous decoupling from the electromagnetic plasma (with QED corrections at
finite temperature) [26], but these last effects are almost negligible in practice.

A. PLANCK+SDSS

We first derive the precision with which the combined PLANCK and SDSS data will constrain the total neutrino
mass in a near future. Experimental specifications for these experiments are given in the previous section, and we
choose to limit SDSS data to the scale kmax = 0.15 h Mpc−1 where non-linear effects are still small. Fig. 5 shows
the predicted 2σ error on M for various fiducial models, assuming different values of M , the two possible schemes for
the mass splitting (either NH or IH), and two different values of ∆m2

atm. The solar mass scale ∆m2
sun is essentially

irrelevant in this analysis, and is kept fixed to the current preferred value of 6.9 × 10−5 eV2. The possible values of
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lnCT
200 ns τ ΩΛ Ωmh2 Ωbh

2 M (eV) YHe ln[b2P (k0)] X

9 parameters 0.005 0.007 0.005 0.01 0.001 0.0002 0.11 0.01 0.007 –
+ X = N r

ν 0.005 0.008 0.005 0.01 0.003 0.0002 0.12 0.01 0.007 0.14
+ X = Ωk 0.005 0.008 0.005 0.01 0.002 0.0002 0.13 0.01 0.007 0.003
+ X = w 0.005 0.008 0.005 0.01 0.002 0.0002 0.14 0.01 0.007 0.05
+ X = α 0.005 0.010 0.005 0.01 0.001 0.0002 0.11 0.02 0.007 0.008

TABLE II: Absolute errors at the 1-σ level for various cosmological models, using PLANCK+SDSS (kmax = 0.15 h Mpc−1).
The first line shows our simplest flat ΛCDM model, described by 9 free parameters with fiducial values CT

200 = 0.85, ns = 0.96,
τ = 0.11, ΩΛ = 0.70, Ωmh2 = 0.143, Ωbh

2 = 0.023, M = 0.3 eV (normal hierarchy), YHe = 0.24. The value chosen for
b2P (k0 = 0.1 h Mpc−1) is irrelevant. The next lines have one additional parameter X: an effective number of neutrinos N r

ν

parametrizing the abundance of extra relativistic relics, with fiducial value 0; a free spatial curvature parametrized by Ωk with
fiducial value 0; a free time-independent equation of state for dark energy parametrized by w with fiducial value −1; a free
scalar tilt running parametrized by α = dns/d ln k with fiducial value 0.

M are of course bounded from below: the minimal value corresponds to the limit in which the lightest neutrino mass
goes to zero, in one of the two NH or IH schemes.
Let us first concentrate on the case in which ∆m2

atm has its current preferred value of 2.6×10−3eV2 (left plot). The
minimal value of M in the NH (resp. IH) case is approximately 0.06 eV (resp. 0.10 eV). However, the 2σ detection
threshold, defined by M = 2σ(M), is around 0.21 eV. We conclude that PLANCK+SDSS will probe mainly the region
were the three neutrinos are quasi-degenerate in mass, with no possibility to distinguish between the two cases. In
absence of clear detection, the 2σ upper bound will be of order 0.2 eV, corresponding to individual masses (0.08, 0.06,
0.06) eV assuming NH, or (0.073, 0.073, 0.053) eV assuming IH. As expected, we find that the 2σ detection threshold
is still 0.21 eV when the calculations are performed with a larger value ∆m2

atm = 3.7×10−3 eV2 (the 3σ upper bound
in Eq. 1), as shown in the right plot of Fig. 5.
It is interesting to study whether this precision is limited mainly by a degeneracy between M and some combination

of other cosmological parameters, or simply by the experimental sensitivity to the individual effect of M . In the first
case, the results could be improved by including priors from other types of experiments on the cosmological parameters;
in the second case, one would have to wait for a new generation of CMB and/or LSS experiments. In order to address
this point, we computed the eigenvectors and eigenvalues of the reduced Fisher matrix. It turns out that for all
our fiducial models, one of the unit eigenvectors points precisely in the direction of M , with coefficient very close to
one in this direction (and, of course, the corresponding eigenvalue matches the error previously obtained for M). We
conclude that M is not affected by a parameter degeneracy, and that independent measurements of other cosmological
parameters would not help very much in constraining neutrino masses. Note that this is not yet the case for current
cosmological bounds on neutrino masses, where the addition of priors on parameters such as the Hubble constant or
ΩΛ leads to more stringent bounds (see e.g. [12]).
The absence of large parameter degeneracies applies to our reference model with nine free parameters. It may not

necessarily be true in the presence of extra parameters describing deviations from the concordance ΛCDM model.
In order to illustrate this point and to test the robustness of our conclusions, we have calculated the error on each
parameter for several extended cosmological scenarios, with extra relativistic degrees of freedom, spatial curvature,
dark energy with varying density but constant equation of state, or a primordial spectrum with running tilt (see Table
II). The neutrino mass bound is found to be quite robust in all these cases, which proves that in none of these models
the effect of M can be mimicked by some other parameter combination.
It is also interesting to study the relative impact of CMB temperature, CMB polarization and LSS data on the

measurement of M . We show in table III the error on each parameter for SDSS alone, PLANCK alone (with or
without polarization), and various combinations of CMB and LSS data, with an explicit dependence on the value of
kmax. The complementarity of PLANCK and SDSS clearly appears. While PLANCK alone would achieve only a 1σ
detection of M = 0.3 eV and SDSS alone would not detect it at all, the combined data would probe this value at the
3σ level. One can check from Table III that PLANCK data on polarization lowers the error on M by approximately
30%. By diagonalizing the “PLANCK (no pol.)+SDSS” Fisher matrix, we checked that without polarization there
would be a significant degeneracy between neutrino mass and optical depth to reionization. Indeed, while reionization
lowers the CMB temperature spectrum keeping the matter power spectrum unchanged, the effect of neutrino free-
streaming is opposite in first approximation (at least on small scales). So, polarization measurements are indirectly
a key ingredient for neutrino mass determination.
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kmax (h/Mpc) lnCT
200 ns τ ΩΛ Ωmh2 Ωbh

2 M (eV) YHe ln[b2P (k0)]

SDSS alone 0.10 – 0.6 – 0.8 0.5 0.1 7.0 – 0.3
0.15 – 0.5 – 0.09 0.4 0.08 1.5 – 0.06
0.20 – 0.1 – 0.05 0.09 0.02 0.5 – 0.01

PLANCK (no pol.) – 0.005 0.02 0.10 0.05 0.006 0.0006 0.42 0.03 –
PLANCK (no pol.) + SDSS 0.10 0.005 0.02 0.08 0.02 0.002 0.0004 0.24 0.02 0.015

0.15 0.005 0.02 0.08 0.01 0.001 0.0003 0.15 0.02 0.008
0.20 0.005 0.01 0.07 0.006 0.0009 0.0003 0.13 0.02 0.005

PLANCK (all) – 0.005 0.008 0.005 0.04 0.004 0.0003 0.30 0.01 –
PLANCK (all) + SDSS 0.10 0.005 0.007 0.005 0.02 0.002 0.0002 0.19 0.01 0.012

0.15 0.005 0.007 0.005 0.01 0.001 0.0002 0.11 0.01 0.007
0.20 0.004 0.007 0.005 0.006 0.0008 0.0002 0.08 0.01 0.005

CMBpol – 0.003 0.003 0.003 0.006 0.0006 0.00008 0.07 0.004 –
CMBpol + SDSS 0.10 0.003 0.003 0.003 0.006 0.0006 0.00008 0.07 0.004 0.011

0.15 0.003 0.003 0.003 0.005 0.0006 0.00007 0.06 0.004 0.006
0.20 0.003 0.003 0.003 0.004 0.0005 0.00007 0.05 0.004 0.004

TABLE III: Absolute errors at the 1-σ level, for various experiments and the same ΛCDM model as in table II (with 9 free
parameters). In particular, the fiducial value of the total neutrino mass is still M = 0.3 eV. When using SDSS, we show the
results for three choices of kmax, the maximal wavenumber on which the data are compared with linear theory predictions:
kmax = 0.10 h Mpc−1 (conservative), 0.15 h Mpc−1 (reasonable), or 0.20 h Mpc−1 (optimistic).

SDSS SDSS+KAOS “hypothetical LSS”

PLANCK 0.21 0.16 0.11
CMBpol 0.13 0.10 0.09
“ideal CMB” 0.10 0.09 0.08

TABLE IV: 2-σ detection threshold (in eV) for various combinations of CMB and LSS experiments (assuming the normal
hierarchy scenario). The “ideal CMB” experiment is limited only by cosmic variance up to multipole l = 2500 and covers 100%
of the sky. The “hypothetical LSS” survey has a volume Veff ≃ 40 (Gpc/h)3 and probes the linear spectrum up to kmax = 0.15 h
Mpc−1 (that would be the case of a large galaxy survey covering 75% of the sky up to z = 0.8).

B. Post-PLANCK experiments

Here we consider whether future CMB and LSS experiments will reach a better sensitivity on the neutrino mass, in
particular at the level of the small values of M expected for the hierarchical normal and inverted schemes. Sensitivities
significantly better than 0.1 eV would mean approaching the absolute minimum of M in the NH case or even ruling
out the IH scenario.
In the previous section, we mentioned a few CMB missions that have been proposed so far in complement to

PLANCK. We will study the impact of a few of them, and of an “ideal CMB experiment” that would be limited only
by cosmic variance up to l = 2500 (both for temperature and polarization). The main difficulty for reaching this goal
would be to subtract accurately small-scale foregrounds, and in particular point-like sources, but even with current
technology such an ideal experiment is conceivable. On the other hand, it is difficult to specify the characteristics of an
ideal LSS experiment, since it will be limited by technological improvements in instrumentation and data processing.
Therefore, we will keep in the analysis a free parameter Veff describing the effective volume of an ideal volume-limited
survey.
We show in Fig. 6 the predicted 2σ error in four cases corresponding to SPTpol (upper left), PLANCK (upper

right), CMBpol (lower left), and our ideal CMB experiment (lower right). The value of 2σ (in eV) is shown with
grey levels, as a function of kmax (horizontal axis) and Veff (vertical axis) in units of Veff(SDSS) = 1 (Gpc/h)3. The
total mass has been fixed to M = 0.11 eV, distributed according to the NH scheme. We learned from the previous
subsection that for higher values of M , the error could be smaller (at most by a factor 2). However, we are now
interested in the range 0.05 eV < M < 0.2 eV, since larger values should be detected by PLANCK+SDSS, and
smaller values are excluded by oscillation experiments. In this range, on can safely interpolate the results obtained at
M = 0.11 eV. In particular, our results for a cosmic-variance limited CMB experiment are in reasonable agreement
with those of [15].
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FIG. 6: The grey regions are the 2σ expected errors on
∑

mν (eV) for a fiducial value of 0.11 eV, as a function of the
parameters of the galaxy survey, where each panel corresponds to a specific CMB experiment. The vertical lines indicate the
cut-off wavenumber kmax for the linear matter power spectrum at the conservative (optimistic) value 0.15(0.2) h Mpc−1. The
thin contours shown are (from bottom to top) for 0.3 and 0.2 eV, while the thick contours correspond to the minimum values
of

∑
mν in the IH (lower lines) and NH (upper lines) schemes, assuming the best-fit (solid) or the 3σ upper bound (dashed)

value of ∆m2
atm.

For SDSS (or for any survey with z < 1) we expect the relevant value of kmax to be around 0.15 h Mpc−1.
However, depending on the overall amplitude of the matter power spectrum (often parametrized by σ8, and still
poorly constrained) and on future improvements in our understanding of non-linear corrections, this value might
appear to be either too optimistic or too pessimistic: this is the reason why it is interesting to leave it as a free
parameter.
One can see that replacing PLANCK by CMBpol would lead to a better sensitivity to the neutrino mass, with a

2σ detection threshold at 0.13 eV instead of 0.21 eV. The expected errors for CMBpol, with and without SDSS data,
can be found in Table III. Adding to SDSS the two KAOS surveys (centered around z = 1 and z = 3) would also
lead to some improvement. For Planck+SDSS+KAOS we get a 2σ detection threshold of M ∼ 0.16 eV, while for
CMBpol+SDSS+KAOS one could reach M ∼ 0.10 eV. These results are summarized in Table IV.
There is still room for improvement beyond this set of experiments. In order to make a precise statement on the

conclusions that could be drawn on the long term, we keep the “ideal CMB experiment” characteristics and fix Veff
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FIG. 7: Predicted 2σ error on
∑

mν as a function of
∑

mν in the fiducial model, using an ideal CMB experiment (limited
only by cosmic variance up to l = 2500, both for temperature and polarization) and a redshift survey covering 75% of the
sky up to z ≃ 0.8 (Veff = 40 (Gpc/h)3), still limited to kmax = 0.15 h Mpc−1. The left plot was obtained with the preferred
experimental value of ∆m2

atm, and the right plot with the current 3σ upper bound. In each case, we show the results assuming
either NH or IH.

to 40 (Gpc/h)3 (in section III, we argued that this could hopefully represent the volume of a survey comparable to
the LSST project), while keeping kmax = 0.15 h Mpc−1. In Fig. 7, we plot the corresponding results in the same way
as we did for PLANCK+SDSS. Assuming the IH scenario, we see that any value of the mass could be detected at the
2σ level. Assuming NH, this is only true at the 1 or 1.5σ level, depending on the value of ∆m2

atm. The 2σ detection
threshold is at 0.08 eV.
Our results show, for the first time, that if the available cosmological data are precise enough, the expected errors

on the neutrino masses depend not only on the sum of neutrino masses, but also on what is assumed for the mass
splitting between the neutrino states. As can be seen from Figs. 5 and 7, the sensitivity on M will be slightly better
in the NH case in the mass region close to the minimum value of the IH scheme. These small differences arise from
the changes in the free-streaming effect that we have described in section II, and obviously disappear for a total mass
in the quasi-degenerate region (above 0.2 eV or so).
In any case, the main contribution of cosmology to the possible discrimination between the neutrino mass schemes

will still be the possibility of ruling out the case in which the masses are quasi-degenerate. Even in our most optimistic
forecast (Fig. 7), if the preferred value of M turns out to be smaller than 0.1 eV, the error bar will still be too large
in order to safely rule out the IH case. We also performed an extended analysis in which, instead of assuming either
normal or inverted hierarchy, we introduced a tenth free parameter accounting for a continuous interpolation of the
mass spectrum between the two scenarios, for fixed M . By computing the error on this parameter, we obtained a
confirmation that the NH and IH scenarios cannot be discriminated directly from the data. However, any analysis of
future, very precise cosmological data must take into account the texture of neutrino masses in order to translate the
corresponding positive signal (or bound) into M .

VI. CONCLUSIONS

In this paper we have analyzed the sensitivities of future CMB and LSS data to the absolute scale of neutrino masses,
taking into account realistic experimental sensitivities and extending the results of previous works [5, 13, 14, 15].
We have considered the values of neutrino masses distributed according to the presently favored three neutrino

mass schemes, that follow either a normal or an inverted hierarchy. As discussed in section II, a different distribution
of the same total neutrino mass leads to small changes in the cosmological evolution of neutrinos, and in particular
in the free-streaming scales (qualitatively discussed, for instance, in [5, 15]). These changes disappear when the total
neutrino mass enters the quasi-degenerate region.
We used the Fisher matrix method to forecast the errors on cosmological parameters that can be extracted from
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future CMB experiment and redshift survey data, assuming a fiducial 9-dimensional cosmological model close to the
currently favored ΛCDM model. Our theoretical CMB and matter power spectra were generated with the standard
Boltzmann code CMBFAST, modified in order to include three neutrino states with different masses.
In particular, for the case of PLANCK and SDSS we found good agreement with the results of [13], with a 2σ-error

on the total neutrino mass of 0.2 eV that will allow us to probe only the quasi-degenerate neutrino mass region.
Better sensitivity will be achieved with the combination CMBpol and SDSS, for which we found 0.12 eV, close to the
minimum value of the total neutrino mass in the inverted hierarchy case. These results correspond to a conservative
value of kmax = 0.15 h Mpc−1, the maximal wavenumber on which the LSS data are compared with the predictions of
linear theory. We also tested how the errors change when including additional cosmological parameters to our fiducial
model. In general, we found that the errors on the neutrino masses are not modified in a significant way.
Our results show that the approach where CMB experiments are only limited by cosmic variance (as in [15]) is

probably too simplistic. However, if a future CMB experiment is capable of getting close to such an ideal limit, then
the combination with data from galaxy redshift surveys larger than SDSS would lead to errors on the total neutrino
mass comparable to the minimum values of the hierarchical scenarios. In such a case, we have shown that there exist
slight differences in the expected errors between the two hierarchical neutrino schemes for the same total neutrino
mass.
In conclusion, we consider that cosmological data can provide valuable information on the absolute scale of neutrino

masses, that nicely complements the present and future projects of beta decay and neutrinoless double beta decay
experiments. This conclusion is reinforced when one takes into account other cosmological probes of neutrino masses,
complementary to the approach of the present paper. We can cite, for instance, studies of the distribution of matter in
the Universe through the distortions of CMB maps caused by gravitational lensing (measured from non-gaussianities in
the CMB maps) [17] and the weak gravitational lensing of background galaxies by intervening matter [16, 49, 50, 51].
It is interesting to note that any information on the absolute neutrino masses from cosmology will be interesting not

only for theoretical neutrino models, but also for connected baryogenesis scenarios which occur through a leptogenesis
process (see e.g. [52, 53, 54]).
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We evaluate the ability of future cosmic microwave background (CMB) experiments to measure
the power spectrum of large scale structure using quadratic estimators of the weak lensing deflection
field. We calculate the sensitivity of upcoming CMB experiments such as BICEP, QUaD, BRAIN,
ClOVER and Planck to the non-zero total neutrino mass Mν indicated by current neutrino os-
cillation data. We find that these experiments greatly benefit from lensing extraction techniques,
improving their one-sigma sensitivity to Mν by a factor of order four. The combination of data
from Planck and the SAMPAN mini-satellite project would lead to σ(Mν) ∼ 0.1 eV, while a value
as small as σ(Mν) ∼ 0.035 eV is within the reach of a space mission based on bolometers with a
passively cooled 3-4 m aperture telescope, representative of the most ambitious projects currently
under investigation. We show that our results are robust not only considering possible difficulties
in subtracting astrophysical foregrounds from the primary CMB signal but also when the minimal
cosmological model (Λ Mixed Dark Matter) is generalized in order to include a possible scalar tilt
running, a constant equation of state parameter for the dark energy and/or extra relativistic degrees
of freedom.

PACS numbers: 14.60.Pq, 95.35.+d, 98.80.Es

I. INTRODUCTION

Nowadays there exist compelling evidences for flavor
neutrino oscillations from a variety of experimental data,
that includes measurements of solar, atmospheric, reac-
tor and accelerator neutrinos (for recent reviews, see e.g.
[1, 2]). The existence of flavor change implies that the
three neutrinos mix and have non-zero masses, but os-
cillation experiments only fix the differences of squared
neutrino masses ∆m2

31 and ∆m2
21, which correspond to

the values relevant for atmospheric (2.4× 10−3 eV2) and
solar (8× 10−5 eV2) neutrinos, respectively.
Non-zero neutrino masses imply that the Cosmic Neu-

trino Background (CNB), the sea of relic neutrinos that
fill the Universe with a number density comparable to
that of photons, influences the cosmological evolution in
a more complicated way than that of a pure relativistic
component. In particular, the contribution of the CNB
to the present energy density of the Universe, measured
in units of its critical value, is

Ων =
ρν
ρc

=
Mν

93.14 h2 eV
(1)

where h is the present value of the Hubble parameter in
units of 100 km s−1 Mpc−1 and Mν ≡ m1 +m2 +m3 is
the total neutrino mass. From the experimental values of

their mass differences, at least two neutrino mass states
are non-relativistic today since both (∆m2

31)
1/2 ∼ 0.05

eV and (∆m2
21)

1/2 ∼ 0.009 eV are larger than the present
neutrino temperature Tν ≃ 1.96 K ≃ 1.7×10−4 eV. Since
the current upper bound on Mν from tritium decay ex-
periments [3] is of the order 6 eV (95% CL), we know that
the neutrinos account for at least 0.5(1)% and at most
50% of the total dark matter density, where the lower
limit corresponds to the minimum of Mν for masses or-
dered according to a normal (inverted) hierarchy, charac-
terized by the sign of ∆m2

31. Thus, although in the first
limit the cosmological effect of neutrino masses would be
quite small, the minimal cosmological scenario is in fact
a Λ Mixed Dark Matter (ΛMDM) model rather than a
plain Λ Cold Dark Matter one.

Considerable efforts are devoted to the determination
of the absolute neutrino mass scale, which, combined
with oscillation data, would fix the value of the light-
est neutrino mass. The future tritium decay experiment
KATRIN [4] is expected to reach a discovery potential
for 0.3− 0.35 eV individual masses, while more stringent
bounds exist from experiments searching for neutrinoless
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double beta decay1. These will be improved in the near
future [6], but unfortunately they depend on the details
of the neutrino mixing matrix. The quest for Mν will
greatly benefit from cosmological observations, which of-
fer the advantage of being independent of the neutrino
mixing parameters since all flavors were equally popu-
lated in the early Universe.

Cosmology is sensitive to the neutrino masses through
essentially two effects. First, the shape of the two-point
correlation function –or power spectrum– of the Cosmic
Microwave Background (CMB) temperature and polar-
ization anisotropies on the one hand, and of the Large
Scale Structure (LSS) mass density on the other, are
both highly sensitive to the abundance of the various
cosmological backgrounds: photons, baryons, cold dark
matter, etc. The CNB is very specific in the sense that
it behaves like a collisionless relativistic medium at the
time of acoustic oscillations before photon decoupling (at
redshifts z > 1000), but like a non-relativistic fluid dur-
ing most of structure formation (at redshifts z < 100, at
least for one of the three neutrino mass states). There-
fore, the CNB affects at least one of the three following
quantities: the redshift of equality between matter and
radiation; the redshift of equality between matter and
dark energy; or the spatial curvature of the Universe.
This effect can be observed in the CMB and LSS power
spectra and its amplitude is at most of the order of (2fν)
per cent [7] (fν is the current fraction of dark matter
density in the form of neutrinos), which corresponds to
only 1% in the limit Mν ∼ 0.05 eV.

Fortunately, neutrino masses produce a second effect
which is typically four times larger: on small scales neu-
trinos do not cluster gravitationally because of their large
velocities. Even today, the typical neutrino velocity of a
non-relativistic eigenstate with mass mν is as large as
v ≃ 150 (1 eV/mν) km s−1. This simple kinematic effect,
called neutrino free-streaming, is extremely important
for the growth of non-relativistic matter perturbations
(CDM and baryons) after photon decoupling. Indeed,
the perturbation growth rate is controlled by the bal-
ance between gravitational clustering and the Universe
expansion. On small scales, free-streaming neutrinos con-
tribute to the total background density ρ̄, but not to the
total perturbation δρ, which shifts the balance in favor
of the Universe expansion, leading to a smaller growth
rate for CDM and baryon perturbations. This effect is
of order (8fν) per cent in the small-scale matter power
spectrum [7, 8, 9].

There are various ways to measure the LSS power spec-
trum. For instance, the galaxy-galaxy correlation func-
tion can be obtained from galaxy redshift surveys, and
the density perturbations in hot intergalactic gas clouds

1 A claim of a positive signal exists [5], which would correspond to
an effective neutrino mass of order 0.1− 0.9 eV. If confirmed, it
would have a profound impact on cosmology.

at redshift z ∼ 2 can be inferred from the Lyman-α forest
region in the spectrum of distant quasars. At present, a
total neutrino mass of 0.4−2 eV is disfavored at 95% CL
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], depending
on the used CMB, LSS and other cosmological data.

However, the most promising idea on the long term
is to study the weak lensing effects induced by neigh-
boring galaxy clusters. A lensing map can be recon-
structed from a statistical analysis, based either on the
ellipticity of remote galaxies or on the non-gaussianity of
the CMB temperature and polarization anisotropy maps.
Weak lensing offers several advantages. Unlike galaxy
redshift surveys, it traces directly the total density per-
turbation and does not involve any light-to-mass bias.
Unlike Lyman-α forests data, it probes a large range of
scales, which is particularly convenient for observing the
step-like suppression of density perturbations induced by
neutrino masses. In addition, weak lensing is sensitive
to high redshifts, for which non-linear corrections appear
only at very small scales. Finally, it enables tomographic
reconstruction: by selecting the redshift of the sources,
it is possible to obtain independent measurements of the
power spectrum at various redshifts, in order to follow the
non-trivial evolution of the spectrum amplitude caused
by neutrino masses and/or by a possible evolution of the
dark energy density. The best lever arm and the highest
redshifts are encoded in the lensing of CMB maps, where
the source is the photon last scattering surface, located at
z ∼ 1100, and the observed CMB patterns are sensitive
to lenses as far as z ∼ 3 [22, 23, 24]. In addition, CMB
lensing observations do not require a devoted experiment:
future CMB experiments designed for precision measure-
ments of the primary CMB anisotropies offer for free an
opportunity to extract lensing information.

The first paper estimating the sensitivity of future
cosmological experiments to small neutrino masses was
based on the measurement of the galaxy-galaxy correla-
tion function [9], an analysis that was updated in Refs.
[25, 26, 27] and more recently in Ref. [28]. The idea that
weak lensing observations (from galaxy ellipticity) were
particularly useful for measuring the neutrino mass was
initially proposed in Ref. [29]. Then, the first analysis
based on CMB lensing extraction was performed in Ref.
[30], showing that an extremely small one-sigma error on
the total neutrino mass –of the order of σ(Mν) ≃ 0.04
eV– was conceivable for a full-sky experiment with a res-
olution of 1 arc-minute and a sensitivity per pixel of 1 µK
for temperature, 1.4 µK for polarization (these numbers
were inspired from preliminary studies for the CMBpol
satellite project). Soon after, Ref. [31] studied the neu-
trino mass sensitivity of future tomographic reconstruc-
tions using, on the one hand, galaxy ellipticities in vari-
ous redshift bins, and on the other CMB lensing, where
CMB plays the role of the last redshift bin. The authors
found that for sufficiently large cosmic shear surveys, it
would not be impossible to reach σ(Mν) ≃ 0.02 eV.

In this paper we want to come back to the prospects
coming from CMB lensing alone, and try to improve the
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pioneering analysis in [30, 31] in several directions. First,
we analyze the potential of several CMB experiments ex-
pected to produce results in the coming years, based on a
realistic description of instrumental sensitivities. Second,
we discuss the robustness of our results by analyzing (i)
the consequences of simplifying assumptions in the con-
struction of the Fisher matrix, (ii) the dependence of the
final results on the accuracy of the foreground subtrac-
tion process, and (iii) the impact of parameter degenera-
cies which can appear when non-minimal cosmological
scenarios are introduced. Finally, we study the sensitiv-
ity of CMB experiments to the way in which the total
neutrino mass is split among the three species.

II. BASIC PRINCIPLES OF CMB LENSING
EXTRACTION

Weak lensing induces a deflection field d, i.e. a map-
ping between the direction of a given point on the last
scattering surface and the direction in which we observe
it. At leading order [32] this deflection field can be writ-
ten as the gradient of a lensing potential, d = ∇φ. The
(curl-free) deflection map and the lensing potential map
can both be expanded in harmonic space

φ(n̂) =
∑

lm

φm
l Y m

l (n̂) , (2)

(dθ ± idϕ)(n̂) = ±i
∑

lm

dm±1
l Y m

l (n̂) , (3)

where n̂ = (θ, φ) is a direction in the sky. There is a sim-
ple relation between the deflection and lensing potential
multipoles

dml = −i
√
l(l + 1)φm

l , (4)

so that the power spectra Cdd
l ≡ 〈dml dm∗

l 〉 and Cφφ
l ≡

〈φm
l φm∗

l 〉 are related through

Cdd
l = l(l+ 1)Cφφ

l . (5)

In standard inflationary cosmology, the unlensed
anisotropies obey Gaussian statistics in excellent approx-
imation [33], and their two-dimensional Fourier modes

are fully described by the power spectra C̃ab
l where a and

b belong to the {T,E,B} basis. Weak lensing correlates
the lensed multipoles [22, 34] according to

〈aml bm
′

l′ 〉CMB = (−1)mδl
′
l δ

m′
m Cab

l +
∑

LM

C(a, b)mm′M
l l′ L φM

L

(6)
where the average holds over different realizations (or
different Hubble patches) of a given cosmological model
with fixed primordial spectrum and background evolu-
tion (i.e. fixed cosmological parameters). In this average,
the lensing potential is also kept fixed by convention,
which makes sense because the CMB anisotropies and

LSS that we observe in our past light-cone are statisti-
cally independent, at least as long as we neglect the inte-
grated Sachs-Wolfe effect. In the above equation, Cab

l is
the lensed power spectrum (which is nearly equal to the
unlensed one, excepted for the B-mode power spectrum
which is dominated, at least on small scales, by the con-
version of E-patterns into B-patterns caused by lensing).

The coefficients C(a, b)mm′M
l l′ L are complicated linear com-

binations of the unlensed power spectra C̃ab
l , C̃aa

l and

C̃bb
l , given in [35].
The quadratic estimator method of Hu & Okamoto

[35, 36, 37] is a way to extract the deflection field map
from the observed temperature and polarization maps.
It amounts essentially in inverting Eq. (6). This is not
the only way to proceed: Hirata & Seljak proposed an it-
erative estimator method [32] which was shown to be op-
timal, but as long as CMB experiments will make noise-
dominated measurements of the B-mode, i.e. at least for
the next decade, the two methods are known to be equiv-
alent in terms of precision. Even for the most precise ex-
perimental project discussed in this work, the quadratic
estimator method would remain nearly optimal (the last
project listed in Table I corresponds roughly to the hy-
pothetical experiment called “C” in Ref. [32]).
By definition, the quadratic estimator d(a, b) is built

from a pair (a, b) of observed temperature or polarization
modes, and its multipoles are given by the quadratic form

d(a, b)ML = N ab
L

∑

ll′mm′

W(a, b)mm′M
l l′ L aml bm

′
l′ , (7)

where the normalization factorN ab
L is defined in such way

that d(a, b) is an unbiased estimator of the deflection field

〈d(a, b)ML 〉CMB =
√
l(l+ 1)φM

L , (8)

and the weighting coefficients W(a, b)mm′M
l L l′ minimize the

variance of d(a, b)ML (which inevitably exceeds the power
spectrum Cdd

L that we want to measure), i.e. minimize
the coefficients a = a′, b = b′ of the covariance matrix

〈d(a, b)ML d(a′, b′)M
′

L′ 〉CMB = (−1)MδL
′

L δM
′

M [Cdd
L +Naba′b′

L ] .
(9)

Here the extra term Naba′b′
L , which can be considered

as noise, derives from the connected and non-connected
pieces of the four-point correlation function 〈aba′b′〉. In
Ref. [35], Okamoto & Hu derive a prescription for the

weighting coefficients W(a, b)mm′M
l L l′ such that the contri-

bution of the connected piece is minimal, while that from
the non-connected piece is negligible in first approxima-
tion [38]. The weighting coefficients are rational func-
tions of the observed power spectra Cab

l , Caa
l and Cbb

l ,
which include contributions from primary anisotropies,
lensing and experimental noise. Therefore, if we assume
a theoretical model and some instrumental characteris-
tics, we can readily estimate the noise Naba′b′

L expected
for a future experiment.
This method works for a given estimator d(a, b)ML un-

der the condition that for at least one of the three power
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spectra (Cab
l , Caa

l , Cbb
l ), the lensing contribution is much

smaller than the primary anisotropy contribution. This
is not the case for the pair ab = BB. Therefore, one
can only build five estimators, for the remaining pairs
ab ∈ {TT,EE, TE, TB,EB}. The question of which one
is the most precise heavily depends on the experimental
characteristics. In addition, it is always possible to build
a minimum variance estimator, i.e. an optimal combi-
nation of the five estimators weighted according to the
five noise terms Naba′b′

l of the experiment under consid-
eration. For the minimum variance estimator, the noise
reads

Ndd
l =

[ ∑

aba′b′

(
Naba′b′

l

)−1
]−1

. (10)

III. FORECASTING ERRORS WITH THE
FISHER MATRIX

For a future experiment with known specifications, it
is possible to assume a cosmological fiducial model that
will fit best the future data, and then to construct the

probability L(~x; ~θ) of the data ~x given the parameters ~θ
of the theoretical model. The error associated with each
parameter θi can be derived from the Fisher matrix

Fij = −
〈
∂2 lnL

∂θi∂θj

〉
, (11)

computed in the vicinity of the best-fit model. Indeed,
after marginalization over all other free parameters, the
one-sigma error (68% confidence limit) on a parameter
θi would be greater or equal to

σ(θi) =
√
(F−1)ii . (12)

In most cases, the forecasted errors depend only mildly on
the exact values of fiducial model parameters; however,
they can vary significantly with the number of free pa-
rameters to be marginalized out, since complicated fidu-
cial models with many physical ingredients are more af-
fected by parameter degeneracies.
It is usually assumed that for a CMB experiment cov-

ering a fraction fsky of the full sky, the probability L of
the data {aml } is gaussian, with varianceCl. If the exper-
iment observes only one mode, for instance temperature,
then Cl is just a number, equal to the sum of the fiducial
model primordial spectrum and of the instrumental noise
power spectrum. If instead several modes are observed,
for instance temperature, E and B polarization, then Cl

is a matrix. Neglecting the lensing effect, we would get

Cl =




C̃TT
l +NTT

l C̃TE
l 0

C̃TE
l C̃EE

l +NEE
l 0

0 0 C̃BB
l +NBB

l


 ,

(13)

where the C̃XX
l ’s represent the power spectra of primary

anisotropies (we recall that for parity reasons C̃TB
l =

C̃EB
l = 0), and the NXX

l ’s are the noise power spec-
tra, which are diagonal because the noise contributing to
one mode is statistically independent of that in another
mode. It can be shown with some algebra that for any
gaussian probability L, the Fisher matrix reads [39]

Fij =
1

2

∑

l

(2l + 1)fskyTrace[C
−1 ∂C

∂θi
C−1 ∂C

∂θj
] . (14)

In fact, due to the lensing effect, the data is not ex-
actly gaussian. However, the difference between the un-
lensed and lensed power spectra for (TT , TE, EE) is
so small that Eq. (14) remains approximately correct,
at least when the B-mode is not included in the covari-
ance matrix of Eq. (13). Beyond this issue, lensing of-
fers the possibility to include an extra piece of informa-
tion: namely, the map of the lensing potential –or equiv-
alently, of the deflection vector– as obtained from e.g.
the quadratic estimators method. Ideally, after lensing
extraction, one would obtain four gaussian independent
variables: the delensed temperature and anisotropy mul-
tipoles (T̃m

l , Ẽm
l , B̃m

l ), and the lensing multipoles dml .
In this paper, we will take a fiducial model with no sig-
nificant amplitude of primordial gravitational waves. In
this case, the delensed B-mode is just noise and can be
omitted from the Fisher matrix computation. Therefore
the data covariance matrix reads

Cl =




C̃TT
l +NTT

l C̃TE
l CTd

l

C̃TE
l C̃EE

l +NEE
l 0

CTd
l 0 Cdd

l +Ndd
l


 ,

(15)
where Cdd

l is the lensing power spectrum, Ndd
l the noise

associated to the lensing extraction method (in our case,
the minimum variance quadratic estimator), and CTd

l the
cross-correlation between the unlensed temperature map
and lensing map. This term does not vanish because of
the late integrated Sachs-Wolfe effect: the temperature
includes some information on the same neighboring clus-
ter distribution as the lensing. Both Cdd

l and CTd
l can

be computed numerically for a given theoretical model
using a public Boltzmann code like camb [40], and then
Ndd

l can be calculated using the procedure of Ref. [35].
This computation can be performed in the full sky: in
this work, we will never employ the flat-sky approxima-
tion. Note that the B-mode does not appear explicitly
in Eq. (15), but actually information from the observed
B-mode is employed in the two estimators d(T,B) and
d(E,B).
Using Eqs. (14) and (15), it is possible to compute a

Fisher matrix and to forecast the error on each cosmo-
logical parameter. Let us discuss the robustness of this
method. There are obviously two caveats which could
lead to underestimating the errors.
First, we assumed in Eq. (15) that the temperature and

polarization maps could be delensed in a perfect way. In-
stead, the delensing process would necessarily leave some
residuals, in the form of extra power and correlations in
the covariance matrix. However, this is not a relevant
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issue, because we are using only the temperature and
E-polarization modes, for which the lensing corrections
are very small: therefore, considering a small residual or
no residual at all makes no difference in practice. We
checked this explicitly in a simple way. For a given the-
oretical model, Boltzmann codes like camb [40] are able
to compute both the lensed and unlensed power spectra.
If the delensing process is totally inefficient, we can say
that unlensed temperature and polarization multipoles
are recovered with an error of variance

ETT
l = |CTT

l − C̃TT
l | , EEE

l = |CEE
l − C̃EE

l | , (16)

that we can treat as additional noise and sum up to the
NTT

l and NEE
l terms in the matrix (15). We checked

numerically that even with such a pessimistic assump-
tion, the final result does not change significantly, which
is not a surprise since Eaa

l ≪ C̃aa
l . We conclude that the

assumption of perfect delensing performed in Eqs. (14)
and (15) is not a problem in practice2.
Second, we assumed a perfect cleaning of all the astro-

physical foregrounds which contribute to the raw CMB
observations. It is true that CMB experiments are op-
erating in various frequency bands, precisely in order to
subtract the foregrounds which frequency dependence is
usually non-planckian. However, we still have a poor
knowledge of many foregrounds, and some of them could
reveal very difficult to remove, introducing extra non-
gaussianity and spoiling the lensing extraction process
[41, 42]. In particular, the question of foreground sub-
traction is related to the maximum l at which we should
stop the sum in the Fisher matrix expression, i.e. to the
smallest angular scale on which we expect to measure
primary temperature and polarization anisotropies. If
we assume a perfect cleaning, this value should be de-
duced from instrumental noise. Beyond some multipoles
(lTmax, l

E
max), the noise terms (NTT

l , NEE
l ) become expo-

nentially large. Thus, in practice, the sum in Eq. (14)
can be stopped at any l larger than both lTmax and lEmax.
However, some foregrounds are expected to be impossi-
ble to subtract on very small angular scales (e.g., radio
sources, dusty galaxies, or polarized synchrotron radia-
tion and dust emission), so for experiments with a very
small instrumental noise, the covariance matrix could be
dominated by foreground residuals at smaller l values
than those where the instrumental noise explodes.
Since we do not have precise enough data at high galac-

tic latitude and on relevant frequencies, it is difficult at

2 Note that replacing C̃TT
l

by CTT
l

in (15) would actually be a mis-
take. Indeed, in this case, the Fisher matrix would include the
derivatives of the lensed power spectra with respect to the cos-
mological parameter. So, the physical effect of each cosmological
parameter on lensing distortions would be counted several times,
not only in ∂Cdd

l
/∂θi but also in ∂Cab

l
/∂θi, with a, b ∈ {T, E}.

This would introduce correlations which would not be taken into
account self-consistently, and the forecasted errors would be ar-
tificially small, as noticed in [30].

the moment to estimate how problematic foreground con-
tamination will be, but it is clear that one should adopt
a very careful attitude when quoting forecasted errors for
future experiments with an excellent angular resolution.
In the next sections, for each experiment and model, we
will derive two results: one optimistic forecast, assum-
ing perfect foreground cleaning up to the scale where the
instrumental noise explodes (or in the case of the most
precise experiments, up to the limit lTmax, l

E
max < 2750

beyond which it is obvious that foreground contamina-
tion will dominate); and one very conservative forecast,
assuming no foreground cleaning at all. In that case, we
take the foreground spectra FTT

l , FEE
l and FTE

l of the
“mid-model” of Ref. [43], computed with the public code
provided by the authors3. This model is not completely
up-to-date, since it is based on the best data available
at the time of publication, and does not include impor-
tant updates like the level of polarized galactic dust ob-
served by Archeops on large angular scales [44]. Also, for
simplicity, it assumes statistically isotropic and Gaussian
foregrounds, with no TB or EB correlations. However
this approach is expected to provide the correct orders of
magnitude, which is sufficient for our purpose. We add
these new terms to the covariance matrix of Eq. (15), as
if they were extra noise power spectra for the TT , EE
and TE pairs. We consistently recompute Ndd

l , still us-
ing the equations in Ref. [35] but with these extra noise
terms included, in order to model the worse possible loss
of precision induce by foregrounds in the lensing extrac-
tion process. We expect that the true error-bar for each
cosmological parameter will be somewhere between our
two optimistic and conservative forecasts.

IV. EXPERIMENTAL SENSITIVITIES

We consider seven CMB experiments which are rep-
resentative of the experimental efforts scheduled for the
next decade. The first two, based in the South Pole,
are complementary: BICEP4 (Background Imaging of
Cosmic Extragalactic Polarization) [45] is designed for
large angular scales, while QUaD5 (QUest at DASI, the
Degree Angular Scale Interferometer) [46] for small an-
gular scales. The second experiment, which is already
collecting data, is composed of the QUEST (Q and U
Extragalactic Sub-mm Telescope) instrument mounted
on the structure of the DASI experiment. A second set
of experiments is scheduled in Antarctica at the French-
italian Concordia station and in the Atacama plateau in
Chile: the BRAIN6 (B-modes Radiation measurement

3 For each experiment, we compute the foreground for each fre-
quency channel, and then compute the minimum variance com-
bination of all components.

4 http://www.astro.caltech.edu/∼lgg/bicep front.html
5 http://www.astro.cf.ac.uk/groups/instrumentation/projects/quad/
6 http://apc-p7.org/APC CS/Experiences/Brain/index.phtml
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from Antarctica with a bolometric INterferometer) [47]
instrument for measuring large scales, and the ClOVER7

(Cl ObserVER) [48] instrument for intermediate scales.
BRAIN and ClOVER are designed for unprecedented
precision measurements of the B-mode for l < 1000.
ClOVER was approved for funding by PPARC in late
2004 and could be operational by 2008. At that time,
the Planck8 satellite [49] should be collecting data:
Planck has already been built and should be launched
in 2007 by the European Space Agency (ESA). Beyond
Planck, at least two space projects are under investiga-
tion: the mini-satellite SAMPAN (SAtellite to Measure
the Polarized ANisotropies) [50] for CNES (Centre Na-
tional d’Etudes Spatiales), and the more ambitious Infla-
tion Probe project for NASA (National Aeronautics and
Space Administration), whose characteristics are not yet
settled. The calculations of Ref. [30] were based on num-
bers inspired from preliminary studies for the CMBpol
satellite project: a resolution of 1 arc-minute and a sen-
sitivity per pixel of 1 µK for temperature, 1.4 µK for
polarization. Here, the experiment that we will call In-
flation Probe is based on one over many possibilities [51]:
a bolometer array with a passively cooled 3-4 m aperture
telescope, with four years of multifrequency observations
and a sensitivity of 2 µK s−1/2 per channel.

We list the expected instrumental performances of each
experiment in Table I. Each instrument includes many
detectors grouped in frequency bands or channels. In
each channel, the detectors have a given spatial resolution
described by the FWHM (Full-Width at Half-Maximum)
θb of the beam. For a given channel, one can estimate
the temperature and polarization sensitivities per pixel of
the combined detectors, ∆T and ∆E = ∆B . The channel
noise power spectrum reads

Naa
l,ν = (θb∆a)

2 exp
[
l(l + 1)θ2b/8 ln 2

]
, (17)

with a ∈ {T,E,B}. The noise from individual channels
can be combined into the global noise of the experiment

Naa
l =

[∑

ν

(Naa
l,ν )

−1

]−1

. (18)

Given this input, the computation of the lensing noise
Ndd

l can be performed numerically following Ref. [35].
In Fig. 1, we show our results for the lensing noise of
each experiment, based on each quadratic estimator and
on the combined minimum variance estimator. In Fig. 2
we gather information on the noise for the TT , EE and
dd power spectra for each experiment. The error-bars
∆Caa

l displayed in Fig. 2 include both cosmic variance
and instrumental noise, and assume a multipole binning

7 http://www-astro.physics.ox.ac.uk/∼act/clover.html
8 http://sci.esa.int/science-e/www/area/index.cfm?fareaid=17
and http://www.planck.fr/

Experiment fsky ν θb ∆T ∆E

BICEP [45] 0.03 100 60’ 0.33 0.47
150 42’ 0.35 0.49

QUaD [52] 0.025 100 6.3’ 3.5 5.0
150 4.2’ 4.6 6.6

BRAIN [47] 0.03 100 50’ 0.23 0.33
150 50’ 0.27 0.38
220 50’ 0.40 0.56

ClOVER [48] 0.018 100 15’ 0.19 0.30
143 15’ 0.25 0.35
217 15’ 0.55 0.76

Planck [53] 0.65 30 33’ 4.4 6.2
44 23’ 6.5 9.2
70 14’ 9.8 13.9
100 9.5’ 6.8 10.9
143 7.1’ 6.0 11.4
217 5.0’ 13.1 26.7
353 5.0’ 40.1 81.2
545 5.0’ 401 ∞
857 5.0’ 18300 ∞

SAMPAN [50] 0.65 100 42’ 0.13 0.18
143 30’ 0.16 0.22
217 20’ 0.26 0.37

Inflation Probe 0.65 70 6.0’ 0.29 0.41
(hypothetical) [51] 100 4.2’ 0.42 0.59

150 2.8’ 0.63 0.88
220 1.9’ 0.92 1.30

TABLE I: Sensitivity parameters of the CMB projects con-
sidered in this work: fsky is the observed fraction of the sky,
ν the center frequency of the channels in GHz, θb the FWHM
(Full-Width at Half-Maximum) in arc-minutes, ∆T the tem-
perature sensitivity per pixel in µK and ∆E = ∆B the po-
larization sensitivity. For all experiments, we assumed one
year of observations, except for the Inflation Probe sensitiv-
ity based on four years.

of width ∆l = 7 until l ∼ 70, and then ∆l ∼ l/10

∆Caa
l =

√
2

(2l + 1)∆l fsky
(Caa

l +Naa
l ) . (19)

The top graphs in Figs. 1 & 2 correspond to the
BICEP+QUaD and BRAIN+ClOVER combinations.
Computing the Fisher matrix for each pair of experiments
is not a trivial task, due to the different sky coverages.
We follow a method which is certainly not optimal, but
has the merit of simplicity. Since in each case, one ex-
periment is optimized for large scales and the other for
smaller scales, we assume that below a given value lc all
multipoles are evaluated from BICEP or BRAIN only,
while for l > lc they are taken from QUaD or ClOVER.
In Eqs. (14, 15), this amounts in considering fsky as a
function of l, and in replacing fsky(l), NTT

l and NEE
l

by their BICEP/BRAIN value for l < lc, or by their
QUaD/ClOVER value for l > lc. The lensing noise Ndd

l
is then computed for the combined experiment, following
the same prescriptions. For each pair of experiments, we
optimized the value of lc numerically by minimizing the
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FIG. 1: For six CMB experiments or combinations of experiments, we show the expected noise power spectrum Ndd
l for the

quadratic estimators d(a, b) built out of pairs ab ∈ {TT,EE, TE,TB,EB}, and for the combined minimum variance estimator
(mv). The thick line shows for comparison the signal power spectrum Cdd

l = 〈dml dm∗
l 〉. The sum of the two curves Ndd

l + Cdd
l

represents the expected variance of a single multipole d(a, b)ml .

forecasted error on the total neutrino mass Mν . In both
cases, we found that l ∼ 300 was optimal. This method
might be less favorable for BRAIN+ClOVER than for
BICEP+QUaD, because the first pair of experiments has
a large overlap in l-space, for which multipoles could be
derived from the two combined datasets.

We find that BICEP+QUaD is able to reconstruct the
lensing multipoles dml in the range 2 < l < 200 with an

impressively small noise power spectrumNdd
l . QUaD has

both an excellent resolution and a very good sensitivity,
and should provide an extremely precise measurement of
T and E modes on small angular scales. Therefore, the
three quadratic estimators d(T, T ), d(E,E) and d(T,E)
are particularly efficient.

The main goal of the BRAIN+ClOVER combined ex-
periment is to improve the determination of the B-mode
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FIG. 2: For the same six CMB experiments or combinations of experiments as in figure 2, we show the expected binned error
on the reconstructed power spectra: from top to bottom, Cdd

l (using the minimum variance quadratic estimator), CTT
l and

CEE
l . The curves represent the power spectra of the fiducial model described in section V.

performed by BICEP+QUaD, especially on large and in-
termediate scales (l < 1000), which are particularly im-
portant for detecting gravity waves from inflation. This
should be achieved with a sensitivity which is even bet-
ter than that of BICEP and QUaD, but at the expense
of a poorer resolution in the case of ClOVER, leading
to large errors for small-scale polarization. In total, this
design is roughly equivalent to that of BICEP+QUaD
in terms of lensing extraction: BRAIN+ClOVER is also

able to reconstruct the lensing multipoles dml in the range
2 < l < 200. The best estimator is now d(E,B), known
to be particularly useful, since E and B are correlated
only due to lensing. In this sense, future lensing deter-
minations by BRAIN+ClOVER and by BICEP+QUaD
can be seen as complementary, and therefore both par-
ticularly interesting.

The Planck satellite has a resolution comparable to
QUaD, but a poorer sensitivity than the last four exper-
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iments. This explains why the lensing noise shown in
Fig. 1 looks a bit disappointing: the signal marginally
exceeds the noise only around l ≃ 40. However, we
should keep in mind that Planck will observe the full
sky (which leads to fsky = 0.65, once the galactic cut
has been taken into account), while BICEP+QUaD or
BRAIN+ClOVER explore only small regions. There-
fore, for a given l, Planck makes many more indepen-
dent measurements of multipoles (Tm

l , Em
l ), and conse-

quently, also of dml . In Fig. 2, one can check that Planck
still makes a more precise determination of the lensing
power spectrum than BICEP+QUaD: both experiments
are able to constrain Cdd

l up to l ∼ 1100, but the satellite
provides smaller errors.
Since Planck is not very sensitive to B-modes, and

BRAIN is limited by its small sky coverage, there will
be room after these two projects for improving B-mode
observations on large angular scales, in view of observing
inflationary gravitational waves. This would be the tar-
get of the SAMPAN mini-satellite project, which would
be a full-sky experiment with excellent sensitivity but
poor resolution. We find that for the minimum vari-
ance estimator, the noise Ndd

l would be at the same level
for Planck and SAMPAN. However, it is interesting to
note that Sampan has a good d(E,B) estimator, while
Planck is better with d(T, T ). Therefore, it sounds par-
ticularly appealing to combine the two full-sky experi-
ments, that is technically equivalent to assuming a super-
experiment with twelve channels (nine from Planck and
three from SAMPAN). The results (in the fifth graphs
of Figs. 1 & 2) show that with such a combination one
could lower the noise Ndd

l by a factor two for the mini-
mum variance estimator, in order to constrain Cdd

l up to
l ∼ 1300.
Finally, the (hypothetical) version of the Inflation

Probe satellite that we consider here has an extremely
ambitious resolution and sensitivity, such that the instru-
mental error would be better than cosmic variance for the
B-mode until l ∼ 1500. For such a precise experiment,
assumptions concerning foreground subtraction play a
crucial role, since it is very likely that foreground resid-
uals will start dominating the observed power spectrum
before instrumental noise. The last graphs in Figs. 1 & 2,
which assume perfect foreground cleaning up to l ∼ 2500,
show that lensing multipoles dml could be recovered up
to to l ∼ 800, while Cdd

l could be constrained up to at
least l ∼ 2500.

V. FUTURE SENSITIVITIES TO NEUTRINO
MASSES

For each experiment, we compute the Fisher matrix
following Eqs. (14, 15), for a ΛMDM fiducial model with
the parameter values as given below, and considering
two possibilities for the number of free parameters that
should be marginalized out.
The first possibility is the minimal alternative on
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FIG. 3: Logarithmic derivatives of the lensing power spec-
trum Cdd

l with respect to each cosmological parameter. The
derivatives with respect to ωb and ωm have been rescaled in
order to fit inside the figure.

the basis of current observations: we marginalize
over eight free parameters, standing for the current
baryon density ωb = Ωb h

2, the current total mat-
ter density ωm = Ωm h2, the current dark energy
density ΩΛ, the total neutrino mass Mν in eV, the
primordial curvature power spectrum amplitude As

and tilt ns, the optical depth to reionization τ and
the primordial helium fraction yHe, to which we as-
sign the values (ωb, ωm,ΩΛ,Mν , ln[10

10As], ns, τ, yHe) =
(0.023, 0.143, 0.70, 0.1, 3.2, 0.96, 0.11, 0.24). We assume
no spatial curvature and tensor contribution. Note
that the reduced Hubble parameter derives from h =√
ωm/(1− ΩΛ).
The second possibility, describing non-minimal phys-

ical assumptions, is to marginalize over three extra pa-
rameters: the scalar tilt running α, which can be non-
negligible in some inflationary models with extreme as-
sumptions; the dark energy equation-of-state parame-
ter w; and finally, extra relativistic degrees of free-
dom which would enhance the total radiation density,
parametrized by the effective number of neutrino species
Neff (for instance, Neff = 4 means that the Universe con-
tains a background of extra relativistic particles with the
same density as one extra massless neutrino species).
In the fiducial model, these parameters take the val-
ues (α,w,Neff) = (0,−1, 3). Our purpose is to find out
whether such extra free parameters open up degeneracy
directions in parameter space, that would worsen the sen-
sitivity to neutrino masses. It has been shown in recent
analyses that these parameter degeneracies indeed ap-
pear with current CMB and LSS data (see [14, 15] for
Neff and [54, 55] for w).
The derivative of the lensing power spectrum Cdd

l with
respect to each of these eleven parameters are shown in
Fig. 3, with the exception of the derivatives with respect
to τ and yHe which are null, and with respect to As which
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Free parameters: 8 parameters of minimal ΛMDM same + {α, w, Neff}
Lensing extraction: no no yes yes no no yes yes
Foreground cleaning: perfect none perfect none perfect none perfect none
QUaD+BICEP 1.3 1.6 0.31 0.36 1.5 1.9 0.36 0.40
BRAIN+ClOVER 1.5 1.8 0.34 0.43 1.7 2.0 0.42 0.51
Planck 0.45 0.49 0.13 0.14 0.51 0.56 0.15 0.15
SAMPAN 0.34 0.40 0.10 0.17 0.37 0.44 0.12 0.18
Planck+SAMPAN 0.32 0.36 0.08 0.10 0.34 0.40 0.10 0.12
Inflation Probe 0.14 0.16 0.032 0.036 0.25 0.26 0.035 0.039

TABLE II: Expected 1-σ error on the total neutrino mass Mν in eV for various CMB experiments or combinations of them.
The first (last) four columns correspond to a ΛMDM model with eight (eleven) free parameters. For each of the two models, the
four columns show the cases with or without lensing extraction, and with two extreme assumptions concerning the foreground
treatment: perfect subtraction or no subtraction at all.

is trivial. All derivatives were computed using the public
Boltzmann code camb [40], enabling the highest accu-
racy options and increasing the accuracy boost parame-
ter to five. Whenever possible, we evaluated double-sided
derivatives, and searched for optimal step sizes such that
the results were not affected by numerical errors (from
the limited precision of the code) nor by contributions
from higher-order derivatives.

We quote the results for the total neutrino mass Mν in
Table II, assuming either eight or eleven free parameters.
For each of the two cases, we compare the forecasted er-
rors with and without lensing extraction, i.e. using either
a 2×2 or a 3×3 data covariance matrix, in order to eval-
uate the impact of the extraction technique. Finally, in
each of the four sub-cases, we quote the results obtained
assuming perfect foreground cleaning or no cleaning at
all, in order to be sure to bracket the true error. Should
we trust more the results based on the eight or eleven
parameter model? This depends on future results from
cosmological observations: in absence of strong observa-
tional motivation for extra parameters, one will probably
prefer to stick to the simplest paradigm; however, the
next years might bring some surprises, like for instance
the detection of a variation in the dark energy density.

Let us comment the results for each experiment. The
combination QUaD+BICEP benefits a lot from lensing
extraction, since the error decreases from approximately
1.5 eV to at least 0.4 eV. These results are found to be
robust against foreground residuals and extra parameter
degeneracies. It is interesting that with QUaD+BICEP
it should soon be possible to reach in a near future –
using CMB only– the same precision that we have today
combining many observations of different types (galaxy-
galaxy correlation function, Lyman-α forests) which are
affected by various systematics. The situation is al-
most the same for BRAIN+ClOVER, which should also
achieve σ(Mν) ∼ 0.4 eV using lensing extraction.

Planck should make a decisive improvement, lower-
ing the error to σ(Mν) ∼ 0.15 eV, in excellent agree-
ment with the results of Ref. [30]. Note that without
lensing extraction the error would be multiplied by three
(by four in the case with extra free parameters). We do

not find a significant difference between the forecasted
errors in the eight and eleven parameter models. SAM-
PAN alone is slightly more efficient than Planck, and
the combination Planck+SAMPAN is the first one to
reach σ(Mν) ∼ 0.1−0.12 eV, even in the pessimistic case
of large foreground residuals and extra free parameters.
Thus these future CMB lensing data could help in break-
ing the parameter degeneracy between Mν and w [54],
that would still be problematic at the level of precision
of Planck (without lensing extraction) combined with
the galaxy-galaxy correlation function extracted from the
Sloan Digital Sky Survey.
Finally, the version of the Inflation Probe satellite that

we consider here is able to reach σ(Mν) = 0.035 eV both
in the eight and eleven parameter cases. Note that when
we take instead the CMBpol specifications of Ref. [30],
we exactly reproduce their forecast σ(Mν) = 0.04 eV (de-
rived for an intermediate case with ten parameters). It
is interesting to see that even with such a precise experi-
ment, the results are robust against foreground contami-
nation, since in absence of any cleaning the forecast error
increases only by 15%.

We show in Fig. 4 the correlation betweenMν and each
free parameter of the eleven-dimensional model, in the
cases of Planck and Inflation Probe, with and without
lensing extraction. In the parameter basis used in this
work, the neutrino mass appears to be mainly degenerate
with ωm, and the lensing extraction process removes most
of this degeneracy.

VI. FUTURE SENSITIVITIES TO THE
NEUTRINO MASS SPLITTING

In principle, the LSS power spectrum is not sensitive
only to the total mass Mν , but also to the way in which
the mass is distributed among the three neutrino states.
The reason is twofold: the amount by which the gravi-
tational collapse of matter perturbation is slowed down
by neutrinos on small scales depends on the time of the
non-relativistic transition for each eigenstate, i.e. on the
individual masses; and the characteristic scales at which
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FIG. 4: 1-σ confidence limits on the pairs (Mν , θi), for each
parameter θi in our eleven-dimensional model. The red solid
(green dashed) contours are those expected for Planck (Infla-
tion Probe). For each case, the smaller (larger) ellipse corre-
sponds to the forecasts with (without) lensing extraction.

the free-streaming effect of each neutrino family is im-
printed in the power spectrum depends on the value of
the wavelengths crossing the Hubble radius at the time
of each non-relativistic transition, i.e. again on the indi-
vidual masses.
The neutrino masses are differently distributed among

the three states in the two possible mass schemes, or hi-
erarchies, as shown e.g. in Fig. 1 of [28]. For a total mass
Mν larger than 0.2− 0.3 eV all neutrino states approxi-
mately share the same mass m0 = Mν/3, in the so-called
degenerate region. Instead, for smaller Mν the splitting
between the individual masses is more visible, and for
the minimum values of Mν one finds that in the Normal
Hierarchy case (NH) there is only one neutrino state with

significant mass, or two degenerate states in the Inverted
Hierarchy case (IH). In general, for a given Mν one can
calculate the difference between the matter power spec-
trum in the two cases, as has been computed numerically
in Ref. [28].
We would like to study whether the lensing power spec-

trum derived from a very precise CMB experiment like
Inflation Probe would be able to discriminate between
the two models. For this purpose, we take the eight pa-
rameter model of section V and complete it with a ninth
parameter: the number of massive neutrinos Nmassive

ν ,
which could be equal to 1, 2 or 3 (the remaining species
are assumed to be exactly massless). In a NH scenario
with Mν > 0.1 eV, the mass of the third neutrino is
not completely negligible: so, we expect the difference
between our simplified scenario with Nmassive

ν = 1 and
that with Nmassive

ν = 2 to be more pronounced than the
difference between realistic NH and IH scenarios (assum-
ing the same total mass Mν in all models). This state-
ment is confirmed by the numerical results of Ref. [28].
So, if we could show that an experiment like Inflation
Probe will be unable to differentiate between the sketchy
Nmassive

ν = 1 and Nmassive
ν = 2 models, we would con-

clude that a fortiori it will not discriminate between the
NH and IH scenarios.
We repeated the computations of section V with

a ninth free parameter Nmassive
ν with fiducial value

Nmassive
ν = 1. Note that the parameter Nmassive

ν should
not be confused with the total effective neutrino num-
ber Neff , which was a free parameter in the last section,
and remains fixed to Neff = 3 in the present one. We
found for Inflation Probe – including lensing extraction
and assuming perfect foreground cleaning– a one-sigma
error σ

(
Nmassive

ν

)
= 2.8. We conclude that the experi-

ments and techniques discussed in the present paper are
far from sufficient for discriminating between the NH and
IH scenarios. In any case, as shown in Ref. [28], future re-
sults on the total neutrino mass from very precise cosmo-
logical data should be interpreted in a slightly different
way for the NH and IH cases.

VII. CONCLUSIONS

We have studied the ability of future CMB experiments
to measure the power spectrum of large scale structure,
using some quadratic estimators of the weak lensing de-
flection field. We inferred the sensitivity of these ex-
periments to the non-zero neutrino masses indicated by
neutrino oscillation data. Our aim was to extend the
pioneering paper by Kaplinghat, Knox & Song [30] by
further investigating several directions.
First, we based our analysis on the following list of

forthcoming CMB experiments (either operational, ap-
proved or still in project): BICEP, QUaD, BRAIN,
ClOVER and Planck, SAMPAN and Inflation Probe,
taking into account their detailed characteristics. We
found that even before Planck, ground-based experi-
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ments should succeed in extracting the lensing map with
good precision, and could then significantly improve the
bounds on neutrino masses. We also found that the
SAMPAN mini-satellite project would be able to reduce
the Planck error σ(Mν) from approximately 0.15 eV to
0.10 eV. Finally, the hypothetical version of Inflation
Probe that we considered would reach a spectacular sen-
sitivity of σ(Mν) ∼ 0.035 eV.
We also tried to discuss two questions raised by the

analysis of Ref. [30]: first, is it really accurate to base the
Fisher matrix computation on perfectly delensed maps on
the one hand, and on the reconstructed lensing map on
the other? Second, is it realistic to estimate the noise
variance of the lensing quadratic estimators without tak-
ing into account any residual foreground contamination?
Our answer to these two questions is positive: we did not
provide an exact treatment of these very technical issues,
but we tried to systematically bracket the results be-
tween two over-optimistic and over-pessimistic assump-
tions, and concluded that the error forecast method of
Ref. [30] is robust.
Finally, we investigated the issue of parameter degen-

eracies involving the neutrino mass, by comparing the
results in a simpler model than that of Ref. [30] with
those in a more complicated one. Our extended cos-
mological model allows for a scalar tilt running, a dark
energy equation of state parameter w 6= −1, and extra
degrees of freedom parametrized by the effective number
of massless neutrinos Neff . These extra parameters were
not chosen randomly. The tilt running was shown to be
slightly degenerate with the neutrino mass in an analy-
sis involving current CMB and LSS data [17]. The same
holds for the equation of state of dark energy [54] and for
the effective number of massless neutrinos [14, 15]. How-
ever, our results indicate that future CMB experiments
will be able to resolve these degeneracies, since we do not
find significant discrepancies between the neutrino mass
errors obtained for our two cosmological models.
Fortunately, CMB lensing extraction should be re-

garded as only one of the most promising tools for mea-

suring the absolute neutrino mass with cosmology. It
could be combined with future data from tomographic
galaxy cosmic shear surveys, which will be very sensitive
to neutrino masses [31]. The cross-correlation of LSS in-
formation with CMB temperature anisotropies could also
reveal very useful for the purpose of measuring Mν [55].
In the method employed in the present paper, the cor-
relation between temperature and lensing (the Td term)
is already taken into account, but it affects the final re-
sults only marginally. More interesting should be the
cross-correlation of future data from large cosmic shear
surveys with that from CMB anisotropies.

In conclusion, our results show that there are good
perspectives to detect non-zero neutrino masses using
future CMB lensing data, since even in the less favor-
able case of the smallest Mν ≃ 0.05 eV in the NH mass
scheme the Inflation Probe experiment alone could make
a marginal detection (between the one and two sigma
levels). Obviously the sensitivity is enhanced for larger
values of Mν , in particular for the mass degenerate and
quasi-degenerate regions but also for the minimum of
Mν ≃ 0.1 eV in the IH case. The information on Mν

from analyses of cosmological data will be complemen-
tary (and vice versa) to the efforts in terrestrial projects
such as tritium beta decay and neutrinoless double beta
decay experiments. Of course any positive result on the
absolute neutrino mass scale will be a very important in-
put for theoretical models of particle physics beyond the
Standard Model.
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Temperature anisotropies in the Cosmic Microwave Background (CMB) are affected by the late
Integrated Sachs-Wolfe (lISW) effect caused by any time-variation of the gravitational potential on
linear scales. Dark energy is not the only source of lISW, since massive neutrinos induce a small
decay of the potential on small scales during both matter and dark energy domination. In this work,
we study the prospect of using the cross-correlation between CMB and galaxy density maps as a tool
for constraining the neutrino mass. On the one hand massive neutrinos reduce the cross-correlation
spectrum because free-streaming slows down structure formation; on the other hand, they enhance
it through their change in the effective linear growth. We show that in the observable range of
scales and redshifts, the first effect dominates, but the second one is not negligible. We carry out
an error forecast analysis by fitting some mock data inspired by the Planck satellite, Dark Energy
Survey (DES) and Large Synoptic Survey Telescope (LSST). The inclusion of the cross-correlation
data from Planck and LSST increases the sensitivity to the neutrino mass mν by 38% (and to the
dark energy equation of state w by 83%) with respect to Planck alone. The correlation between
Planck and DES brings a far less significant improvement. This method is not potentially as good
for detecting mν as the measurement of galaxy, cluster or cosmic shear power spectra, but since it
is independent and affected by different systematics, it remains potentially interesting if the total
neutrino mass is of the order of 0.2 eV; if instead it is close to the lower bound from atmospheric
oscillations, mν ∼ 0.05 eV, we do not expect the ISW-galaxy correlation to be ever sensitive to mν .

PACS numbers: 98.80.Cq

I. INTRODUCTION

As photons pass through a changing gravitational po-
tential well, they experience a redshift or a blueshift, de-
pending on whether the well grows or decays respectively.
Cosmic microwave background (CMB) photons can expe-
rience such variations between the time of last scattering
and their detection now. This effect was first described
by Sachs and Wolfe in 1967 [1], and hence is dubbed
the integrated Sachs-Wolfe effect (ISW). During a Cold
Dark Matter (CDM) and/or baryon dominated era, the
gravitational potential distribution remains frozen, and
the ISW effect has no net effect on the blackbody tem-
perature of CMB photons. This property is crucially re-
lated to the fact that non-relativistic matter (like CDM
and baryons) has a vanishing sound speed, and experi-
ences gravitational clustering on all sub-Hubble scales af-
ter photon decoupling, as described by the Poisson equa-
tion. In such a situation, the universal expansion and the
gravitational contraction compensate each other in such a
way as to maintain a static gravitational potential. How-
ever, when the expansion rate is affected by any type of
matter with a non-vanishing sound speed, e.g. during

∗Electronic address: julien.lesgourgues@lapp.in2p3.fr
†Electronic address: wessel.valkenburg@lapp.in2p3.fr
‡Electronic address: gazta@ieec.uab.es

Dark Energy (DE) domination, the gravitational pertur-
bations decay and the cosmic photon fluid experiences a
blue shift, acquiring extra temperature perturbations re-
lated to the intervening pattern of matter perturbations.
It was first proposed by Crittenden and Turok in 1995 [2]
to cross correlate maps of temperature perturbations in
the CMB with those of matter overdensities in large scale
structures (LSS), in order to measure a possible accelera-
tion of the universe’s expansion. However, the CMB and
LSS data available at that time were not good enough
for such an ambitious goal, and the first strong indica-
tion of a positive acceleration came in 1998 from the side
of type-Ia supernovae [3, 4]. Analyses of the first (2003)
and second (2006) data releases of the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) [5, 6] were the first
to indicate the existence of Dark Energy independent of
acceleration, by means of the location of the second peak
in the CMB power spectrum. Simultaneously, a number
of interesting papers presented the first detections of the
ISW effect by cross-correlating WMAP anisotropy maps
with various LSS data sets [7, 8, 9, 10, 11, 12, 13, 14, 15],
now able to give an independent measure for the accel-
eration of the expansion of the universe.

The domination of Dark Energy is not the only source
of gravitational potential evolution and of a net ISW
effect. On small cosmological scales, as soon as mat-
ter perturbations exceed the linear regime, gravitational
perturbations start to grow and to redshift CMB pho-
tons. This effect, called the Rees-Sciama effect, has



248 4.3 Cross-correlation between CMB and LSS, PRD 77, 063505 (2008)

2

not been significantly detected until now [16]. CMB
photons can also be scattered by gravitational lensing
[17] and by the Sunyaev-Zeldovich (SZ) effect [18] (see
[9, 10, 19] for detections in CMB-LSS cross-correlation
analysis). An other party expected to affect the evolu-
tion of gravitational perturbations –at least by a small
amount– is the background of massive neutrinos. Over
thirty years ago massive neutrinos were proposed as a
Hot Dark Matter (HDM) candidate, and later ruled out
as the dominant dark component, since HDM tends to
wash out small scale overdensities during structure for-
mation [20]. Observed neutrino oscillations however con-
strain neutrinos to have a mass [21, 22]. In addition,
the presence of a Cosmic Neutrino Background (CNB)
is strongly suggested on the one hand by the abundance
of light elements produced during primordial nucleosyn-
thesis [23, 24, 25], and on the other hand by CMB
anisotropies [26, 27, 28, 29, 30, 31, 32, 32, 33, 34]. There-
fore, a small fraction of HDM is expected to coexist with
the dominant CDM component. On small cosmological
scales (for instance, cluster scale), the free-streaming of
massive neutrinos should induce a slow decay of gravita-
tional and matter perturbations [35], acting during both
matter and Dark Energy domination. This effect depends
on the total neutrino mass summed over all neutrino fam-
ilies, mν =

∑
i mi, unlike laboratory experiments based

on tritium decay or neutrinoless double-beta decay, which
probe different combinations: hence, a cosmological de-
termination of the total neutrino mass would bring com-
plementary information to the scheduled particle physics
experiments [37, 38]. The free streaming of massive neu-
trinos has not yet been detected [36], but there are good
prospects to do so in the future, since the smallest total
neutrino mass allowed by data on atmospheric neutrino

oscillations (mν ≥
√
∆m2

atm ∼ 0.05 eV) implies at least
a 5% suppression in the matter/gravitational small-scale
power spectrum [37, 38]. A positive detection –even in
the case of minimal mass– could follow from the analy-
sis of future galaxy/cluster redshift surveys [39, 40, 41],
weak lensing surveys [42, 43], Lyman-α forest analysis,
cluster counts [40], etc. The goal of measuring the neu-
trino mass from cosmology is very ambitious since each
of these methods suffers from its own source of system-
atics (bias issues, modeling of non-linear clustering, ...).
Therefore, a robust detection could only be achieved by
comparing the results from various types of experiments.

The goal of this work is to describe a possible cos-
mological determination of the absolute neutrino mass
scale through the ISW effect induced by neutrino
free-streaming on CMB temperature maps, using as
an observable the cross-correlation function of galaxy-
temperature maps. This possibility was investigated pre-
viously by Ichikawa and Takahashi [44] (and suggested
again recently in [45]). As neutrinos slow down the
growth of structure, we expect the blueshift caused by
an accelerated expansion to be more pronounced if neu-
trinos have a larger mass. On the other hand, the distri-
bution of matter inducing the late ISW effect is smoother

in case of free-streaming by massive neutrinos. These two
antagonist effects should in principle induce some mass-
dependent variations in the galaxy-temperature cross-
correlation function.
In section II of this paper we give an outline of the the-

ory of the ISW-effect in the presence of a neutrino mass.
In section III, we use some mock data with properties
inspired from the Planck satellite, Dark Energy Survey
(DES) and Large Synoptic Survey Telescope (LSST) in
order to show the potential impact of this method in the
future.

II. THE GALAXY-ISW CORRELATION IN THE
PRESENCE OF NEUTRINO MASS

A. Definitions

The observed galaxy overdensity δG in a given direc-
tion n̂ is defined as

δG(n̂) =

∫
dz b(z)φG(z)δm(n̂, z), (1)

where z denotes redshift, b(z) is the redshift dependent
bias function relating the observed galaxy overdensity to
the total matter overdensity, and φG(z) is the galaxy
selection function which can be chosen such that only
galaxies within a certain range of redshift are considered.
The observed CMB temperature map

∆T (n̂) ≡
T (n̂)− T0

T0
(2)

results from various contributions, classified as primary
or secondary anisotropies. By definition, secondary
anisotropies are induced after photon decoupling and can
be correlated to some extent with the surrounding large
scale structure. The ISW component is one of these
terms, and can be obtained by integrating the scalar met-
ric perturbations (or just the Newtonian gravitational
potential on sub-Hubble scales) along each line-of-sight
between the last scattering surface and the observer. If
the gravitational potential is written as a function of di-
rection n̂ and redshift z, the ISW term reads

∆ISW
T (n̂) = −2

∫ zdec

0

dz
dΦ

dz
(n̂, z). (3)

where zdec is the redshift at decouplig. Immediately after
decoupling and before full matter domination, the grav-
itational potential does vary with time: this is known
as the early ISW (eISW) effect, in contrast with the
late ISW (lISW) in which we are presently interested.
The two maps ∆eISW

T , ∆lISW
T can be computed sep-

arately by cutting the above integral in two pieces at
some intermediate redshift z∗ chosen during full matter
domination, when the gravitational potential is static.
Note that in presence of massive neutrinos, the poten-
tial is never really static on small scales, so the quan-
tity ∆lISW

T might not be uniquely defined. Anyway,
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this question is not relevant in practice. The observable
quantity is not the late ISW auto-correlation function
〈∆lISW

T (n̂)∆lISW
T (n̂′)〉, but only its cross-correlationwith

a given survey 〈∆lISW
T (n̂)δG(n̂

′)〉. Then, the redshift dis-
tribution φG(z) selects the range in which the ISW effect
is being probed, and the choice of z∗ becomes irrelevant
provided that z∗ remains larger than the redshift of all
objects in the survey: φG(z∗) ≃ 0.
Assuming that the galaxy-temperature cross-

correlation function arises solely from the late ISW
effect (i.e., assuming that other secondary anisotropies
potentially correlated with LSS can be separated or
have a negligible amplitude, which is a good assumption
on the scales considered hereafter), we can relate the
galaxy-temperature correlation multipoles to the real-
space correlation function 〈∆lISW

T (n̂)δG(n̂
′)〉. In the

Limber approximation (see Appendix), one gets

CTG
l =

3ΩmH2
0

(l+1/2)2
(4)

×
∫ z∗

0

dz b(z)φG(z)H(z)a(z)

[
∂z

P (k, z)

a(z)2

]

k= l+1/2
r(z)

,

where r(z) is the conformal distance up to redshift
z, H0 = 100h km/s/Mpc is the Hubble parameter
today, and the matter power spectrum is defined as

〈δm(~k, z)δm(~k′, z)〉 ≡ P (k, z) δ3(~k − ~k′). Note that we
used the Poisson equation in flat space in order to relate
the gravitational potential Φ to the matter overdensity
δm, and assumed a(0) = 1 by convention. Finally, the
multipoles CTG

l define the angular correlation function
in a Legendre polynomial basis (pl),

wTG(θ) =
∑

l

2l + 1

4π
pl(cos θ)C

TG
l . (5)

Eq.(4) is often written in a form which assumes that
the matter power spectrum is a separable function of
wavenumber and redshift. This applies to the case of
a (flat) ΛCDM universe, for which one can write

P (k, z) = D(Λ; z)2a(z)2P (k, 0) (6)

with ∂zD = 0 during full matter domination and ∂zD >
0 during Λ domination. Figure 1 (left) shows the evolu-
tion of D as a function of z for ΩΛ = 1 − Ωm = 0.69.
In the case of time-varying Dark Energy, the situation is
qualitatively similar, and D just depends on more free
parameters than Λ. In the rest of this paper, we will just
write this function as D(z) for concision.

B. Effect of neutrino masses

In models with massive neutrinos, the spectrum is not
a separable function anymore (in other words, the lin-
ear growth factor is scale-dependent), and Eq.(4) cannot
be further simplified. However, in order to make an-
alytical estimates of the impact of neutrino masses on

CTG
l , it is possible to use some approximate solutions

valid only on the largest and smallest wavelength (see [38]
and [45] for more details). First, for wavelengths larger
than the maximum value of the neutrino free-streaming
scale, reached at the time of the transition to the non-
relativistic regime, the power spectrum P fν is completely
unaffected by neutrino masses, and identical to that in
a massless neutrino model with the same cosmological
parameters (in particular, the same Ωm and h) noted as
P 0:

∀k < knr, P fν (k, z) = [D(z)a(z)]2P fν (k, 0)

with P fν (k, 0) = P 0(k, 0) . (7)

On the other hand, for wavelengths smaller than the the
free-streaming scale today, both the linear growth factor
and the amplitude today are affected by neutrino masses,
approximately like:

∀k > kfs, P fν (k, z) ≃ [D(z)a(z)]2−
6
5 fνP fν (k, 0)

with P fν (k, 0) ≃ [1− 8fν]P
0(k, 0) , (8)

where fν = Ων/Ωm stands for the neutrino density to-
day relative to the total matter density (so Ωm includes
baryons, hot and cold dark matter). Here D(z) is always
the same function, computed either for fν 6= 0 on large
scales, or for fν = 0 on any scale, with a common value
of ΩΛ (or of Dark Energy parameters). The first approx-
imation in Eqs. (8) is very accurate, as shown in Fig. 1
(left) where we compare the precise linear growth factor
obtained numerically with the above solution. The sec-
ond approximation is poorer, but more accurate ones can
be found e.g. in Refs. [38, 45].
Assuming that the galaxy selection function is very

peaked around a median redshift zm, the multipole CGT
l

probes mainly fluctuations around the scale k ∼ l/r(zm).
If l is larger than kfs r(zm), CGT

l is affected by neutrino
masses through the term between brackets in Eq. (4).
Using Eqs. (8), this term varies with fν like:

∂z
P fν (k, z)

a(z)2
≃ [(1 + C(z)fν) (1− 8fν)] ∂z

P 0(k, z)

a(z)2
, (9)

with C(z) =
3

5

(
1

1 + z

D

D′ − 1

)
.

For a typical Dark Energy model, the density fraction
ΩDE becomes negligible for z > 2 [55], and hence the
ratio D′/D is tiny. So, at hight redshift, the net effect
of the neutrino mass is to increase the integrand in CTG

l
like:

∂z
P fν (k, z)

a(z)2
≃

[
3

5

fν(1 − 8fν)

1 + z

D

D′

]
∂z

P 0(k, z)

a(z)2
. (10)

This just reflects the fact that at high redshift, the ISW
effect would be null on all scales for fν = 0, while for
fν > 0 it is still active on small scales. However, for
z < 2, D′/D becomes larger, and for typical values of
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FIG. 1: (Left) Redshift evolution of the small-scale linear

growth factor, defined here as [P (k, z)/P (k, 0)]1/2/a(z) for
k ∼ 10hMpc−1, and obtained numerically with camb for
ΩΛ = 0.69. The lower curve corresponds to fν = 0 and is
exactly equal to the quantity D(z) defined in Eq.(6). The up-
per, solid curve corresponds to fν = 0.1, and is well approx-
imated by the dotted curve, which corresponds to the first
of Eqs.(8). (Right) The function C(z), defined in Eqs.(9),
computed here for ΩΛ = 0.69. Roughly speaking, the effect
of neutrino masses on CTG

l changes of sign when this function
crosses eighth.

ΩDE ∼ 0.7 there is always a redshift below which C(z) is
smaller than eight. Then, the term between brackets in
Eq. (9) is smaller than one, and the net effect of neutrino
masses is to decrease ∂z [P/a

2]. In Fig. 1 (right), we plot
the function C(z) in the case of a cosmological constant
with ΩΛ = 0.69. We see that C ∼ 8 for z ∼ 2; so,
around this redshift and for l > kfs r(zm), the net effect
of neutrino masses on CGT

l changes of sign.

In summary, if zm is small, the expected effect of
neutrino masses on the cross-correlation multipoles CGT

l
consists in a step-like suppression at large l’s, quali-
tatively similar to that observed in the galaxy auto-
correlation multipoles CGG

l . However the suppression
factor is smaller, since the lack of power in the matter
power spectrum caused by neutrino free-streaming is bal-
anced by the excess of ISW effect due to the behavior of
the linear growth factor in presence of massive neutrinos.
When zm increases, the boost related to the ISW effect
is seen more clearly, and ultimately, when zm is chosen
before dark energy domination, the net effect of neutrino
masses is to increase CGT

l at large l.

In order to check and quantify these effects, we com-
puted the cross-correlation multipoles CTG

l (and also for
comparison the auto-correlation multipoles CGG

l ) for two
different cosmological models, sharing the same param-
eters Ωb = 0.053, Ωm = 0.31, ΩΛ = 0.69, h = 0.65,
A ≡ ln[1010k3R2]k=0.01/Mpc = 3.16, ns = 0.95, but
with two different values of the neutrino density frac-
tion fν = Ων/Ωm, equal to 0 or 0.1 (corresponding to
three neutrino species sharing the same mass mν = 0 or
mν ≃ 0.41 eV). We adopted a galaxy selection function
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FIG. 2: Ratio of the cross-correlation multipoles CTG
l and

auto-correlation multipoles CGG
l obtained for two cosmologi-

cal models with neutrino density fractions equal to fν = 0.1
or 0, and the same value of other cosmological parameters
(see the text for details).

of the form

φG(z) =
3

2

z2

z30
exp

[
−
(

z

z0

) 3
2

]
, (11)

peaking near the median redshift zm ≡ 1.4z0. For il-
lustrative purposes, we choose the four values zm =
0.1, 1, 2, 3, although in practice it would be very chal-
lenging to map δG(n̂) for z ≥ 2: presently, available data
with a reasonable signal-to-noise ratio range only from
z ∼ 0.1 to z ∼ 1.5.
In Fig. 2 we plot the ratio of the multipoles CTG

l in the
two models, compared with the same ratio for CGG

l . The
free-streaming of massive neutrinos is responsible for the
step-like suppression of CGG

l , like in the power spectrum
P (k). The value of zm controls the angle under which the
free-streaming scale is seen in the map δG(n̂), and hence
the scale at which the suppression occurs in multipole
space. As expected from the previous discussion, the
neutrino mass effect on CTG

l is similar to that on CGG
l for

small zm < 1, although the suppression factor is slightly
smaller, due to the excess of ISW effect in presence of
massive neutrinos. For zm ≥ 1, the amplification effect
due to this excess has a clear and distinct signature at
l ≥ 100, and for zm ∼ 2 the ratio displayed in Fig. (2)
has a dip around l ∼ 150. Unfortunatly, we will see in
Sec. II C that for l ≥ 100 this effect is masked by primary
CMB anisotropies, which play the role of white noise for
the present purpose.
In Fig. 3, we plot directly the mutipoles CTG

l for the
same two models. The effect of neutrino masses is clearly
visible for all l > 2 at zm = 0.1, while for zm ≥ 1 it is
necessary to reach l ≥ 20 in order to see a difference
(since the maximum free-streaming scale is seen under
a smaller angle at higher redshift). Remembering that
the effect of neutrino masses on large l’s can be split
in two contributions, a matter power suppression and an
excess of ISW, it is clear from the previous discussion that
the latter effect contributes at all redshifts, but its most
obvious manifestation is the fact that CTG

l increases with
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l /2π, for the same cosmological models as
in Fig. 2 (i.e., with three neutrino species sharing the same
mass mν = 0 or mν ≃ 0.41 eV).

fν for large l’s. However, we will see in Sec. II C that only
the region with l ≤ 100 can be probed by observations:
then, the neutrino-induced ISW effect is significant, but
smaller that the opposite suppression effect.
In Fig. 4, we plot the corresponding angular correla-

tion functions wTG(θ). In this representation, the fine-
structure of the high-l multipole spectrum is by construc-
tion averaged out, and it is not possible to see an ampli-
fication at high zm and small θ. The suppression caused
by neutrino masses is visible for zm = 0.1 at θ ≤ 15o,
and for zm ≥ 1 at θ ≤ 2o.
In all these plots, we used only the linear perturba-

tion theory. Doing so, the angular cross-correlation func-
tions depend on the matter power spectrum inside the
linear regime. To prove it, we compute again wTG(θ)
from the non-linear power spectrum obtained by apply-
ing halofit corrections [46] to the linear one. The result,
superimposed in Fig. 4, is indistinguishable from that of
linear theory. This shows that non-linear effects on the
evolution of matter perturbations has much less impact
than that of adding a neutrino mass. This is also true for
the multipoles CTG

l , excepted for the smallest redshifts
and highest l’s (for zm = 0.1, non-linear effects become
important for l > 100).

C. Detectability

For a set of full-sky CMB and LSS experiments measur-
ing the temperature multipoles aTlm (resp. galaxy-density
multipoles aGlm) with a noise spectrum NT

l (resp. NG
l ),

the cross-correlation spectrum CTG
l can be reconstructed

from the estimator

C̃TG
l =

∑l
m=−l a

T∗
lmaGlm

2l+ 1
(12)

with a variance σTG
l given by

(σTG
l )2 =

(CTG
l )2 + (CTT

l +NTT
l )(CGG

l +NGG
l )

2l+ 1
.

(13)
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FIG. 4: Angular cross-correlation function, multiplied by the
average CMB temperature and displayed in units of micro-
Kelvins, for the same cosmological models as in Figs. 2,3.
We also plot the same functions including non-linear (NL)
corrections to the matter power spectrum: they are indistin-
guishable from the linear ones.

Note that the estimator is not Gaussian, especially for
small l’s: so, σTG

l is only an estimate of the true (asym-
metric) error bar on the reconstructed power spectrum.
If the cross-correlation map can be reconstructed only
inside a fraction fsky of the full sky, in first approxima-

tion σTG
l should be multiplied by f

−1/2
sky . The variance is

further reduced by
√
∆l in case of data binning with bin

width (∆l). Note that in this case the covariance matrix
is no longer diagonal, but nevertheless using a diagonal
matrix under these approximations has been shown to
work well, compared to the exact treatment, if we choose
an adequately large binning [47]. In practice, for the
multipole range in which we are interested, the CMB
noise spectrum NTT

l is much smaller than CTT
l for ex-

periments like WMAP and beyond, and can be safely
neglected in the above expression. For a LSS survey con-
sisting in a catalogue of discrete objects (galaxies, clus-
ters, etc.), the noise spectrum is usually dominated by
the shot noise contribution NGG

l ≃ 1/N̄ , where N̄ rep-
resents the mean number of objects per steradian. The
largest ongoing/future surveys (e.g. SDSS) should reach
typically the order of 108 or even 109.
In Fig. 5, we show the typical errorbar that could

be expected from a cross-correlation map with coverage
fsky = 0.65 (corresponding to the usual galactic cut in
CMB maps), using an ambitious LSS survey with surface
density N̄ = 109st−1 in each redshift bin. We assumed
b(z) ∼ 1 for simplicity. These assumptions correspond
essentially to the best measurement that could ever be
done, since for such a high surface density the variance
of the estimator of a single multipole product aT∗

lmaGlm is
not affected by instrumental noise, and reduces to

σTG
lm = CTG

l

√
1 +

CTT
l CGG

l

(CTG
l )2

. (14)

This expression can be interpreted as the product
of the cosmic variance term CTG

l times an enhance-
ment factor depending on the correlation coefficient
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(CTG
l )2/(CTT

l CGG
l ). At large l’s, the late ISW contribu-

tion to the total temperature anisotropy becomes vanish-
ingly small, and the primary anisotropy plays the role of a
large noise term, which cannot be removed. In this limit,
the correlation coefficient is much smaller than one, and
the variance σTG

lm gets correspondingly enhanced. Fig. 5
shows that the spectrum CTG

l can be reconstructed to
some extent only in the range l ≤ 100; beyond, one could
only derive upper bounds. Note that the errorbar for
each bin is roughly of the same order of magnitude as
the effect of neutrino masses when fν varies from 0 to
0.1. In Fig. 5, we also show the error degradation when
fsky is reduced to 0.25 and N̄ to 7× 108st−1 in each red-
shift bin. Finally, in Fig. 6, we plot the corresponding
error bars for wTG(θ). Note that the synthetic error bars
for wTG(θ) are correlated with each other, unlike those
for CTG

l . On small angular scales θ ≤ 1 (where the effect
of neutrino masses is maximal) the 1σ error on wTG(θ)
is of the order of 25%.
We conclude from these estimates that the

temperature-galaxy correlation power spectrum CTG
l

is potentially sensitive to the neutrino mass in the
observable range 10 < l < 100, as well as the angular
correlation function wTG(θ) for θ < 5o at z = 0.5 or
θ < 3o at z = 1. Unfortunately, the enhancement of the
ISW effect due to the impact of massive neutrinos on
the linear growth factor is not directly visible: it would
require precise data at high l and high redshift, for which
the late ISW effect is masked by primordial anisotropies.
The net effect of massive neutrinos on the observable
part of CTG

l and on wTG(θ) is a suppression, caused by
the usual free-streaming effect. However this effect is
non-trivial in the sense that CGG

l and CTG
l depend on

fν through different relations, due to the fact that the
ISW term involves a time-derivative of the gravitational
potential while the galaxy overdensity does not. Hence,
the galaxy-temperature correlation spectrum can bring
some information on neutrino masses which is not
already contained in the sole galaxy auto-correlation
spectrum. In the next section, we will quantify this
statement by performing a parameter extraction from
mock data accounting for future experiments.

III. AN MCMC ANALYSIS OF MOCK DATA

For a given data set consisting in various maps (i.e.
multipoles aXlm) covering a fraction fsky of the full sky
and assumed to obey Gaussian statistics, the likelihood
function L is often approximated as

L ∝ Πl

{
(detCth

l )−1/2 exp

[
−1

2
TraceCobs

l Cth
l

−1
]}(2l+1)fsky

.

(15)

where Cobs
l is the data covariance matrix defined by

[Cobs
l ]XY = 〈aXlmaYlm〉, and Cth

l the assumed theoreti-
cal covariance matrix for a given fit, which contains the

sum of each theoretical power spectrum CXY th
l and of

the instrumental noise power spectra NXY
l , estimated

by modeling the experiment. Of course, the data co-
variance matrix reconstructed from the observed maps is
also composed of signal and noise contributions. Simu-
lating a future experimental data set amounts in com-
puting the noise spectra NXY

l , given some instrumental
specifications, and generating randomly some observed
spectra CXY obs

l , given the theoretical spectra CXY fid
l of

the assumed fiducial model and the noise spectra NXY
l .

However, for the purpose of error forecast, it is sufficient
to replace simply CXY obs

l by the sum CXY fid
l + NXY

l :
this just amounts in averaging over many possible mock
data sets for the same model, and does not change the
reconstructed error on model parameters [48].
For instance, if one wants to estimate future errors for a

CMB experiment, the maps to consider are temperature
and E-polarization: X ∈ {T,E} (here, for simplicity, we
consider models with no gravitational waves and discard
B-polarization). The covariance matrices then read

Cobs
l =

(
CTTfid

l +NTT
l CTEfid

l

CTEfid
l CEEfid

l +NEE
l

)
, (16)

Cth
l =

(
CTT th

l +NTT
l CTEth

l

CTEth
l CEEth

l +NEE
l

)
. (17)

Should one consider the combination of CMB data
with a future galaxy redshift survey decomposed in N
maps associated to N redshift bins, the matrices would
become 2 +N dimensional, with an extra block

[Cl]2+i,2+j = C
GiGj

l + δijN
GiGi

l , i = 1, ..., N, (18)

as well as non-diagonal coefficients [Cl]1,2+i = CTGi

l ac-
counting for the late ISW effect. Note that all non-
diagonal coefficients have no noise term, since the noise
contributions in two different maps are expected to be
statistically uncorrelated at least at first order.
Finally, the option which is most interesting in our

context, is to assume that the galaxy density auto-
correlation maps are not known (or just not considered,
because they could be plagued by some systematic ef-
fects), and that CMB data are only combined with the
cross-correlation data, i.e. with N observed power spec-
tra spectra CTGiobs

l . This is exactly what is being done
in the current literature, in which authors try to get some
new independent bounds on ΩΛ from CMB plus CMB-
LSS cross-correlation data, without employing LSS auto-
correlation maps. In the approximation of Gaussian-
distributed CTGi

l with central value CTGith
l and covari-

ance given by

[Covl]ij ≡
〈(

CTGi

l − 〈CTGi

l 〉
)(

C
TGj

l − 〈CTGj

l 〉
)〉

=
CTGith

l C
TGjth
l + (CTT th

l +NTT
l )(C

GiGjth
l + δijN

GiGi

l )

(2l + 1)fsky
,

(19)
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the likelihood of the cross-correlation data reads

L ∝ Πl (detCovl)
−1/2 exp


−1

2

∑

ij

∆i
l [Covl]

−1
ij ∆j

l




(20)

with ∆i
l ≡ CTGiobs

l −CTGith
l . The total likelihood is then

the product of the CMB and cross-correlation likelihoods.
In this section, we will focus on three ambitious future

experiments: the Planck satellite, to be launched in 2008,
which is expected to make the ultimate measurement
of CMB temperature anisotropies, dominated by cosmic
variance rather than noise up to very high l; the Dark
Energy Survey (DES); and the Large Synoptic Survey
Telescope (LSST), designed primarily for a tomographic
study of cosmic shear, which would provide as a byprod-
uct a very deep and wide galaxy redshift survey (close to
ideal for the purpose of measuring the CMB-LSS cross-
correlation since NGiGi

l < CGiGi

l at least for multipoles
l < 100). For Planck, we computed the noise-noise spec-
tra, NTT

l and NEE
l , like in Ref. [49], with nine frequency

channels. For the DES-like survey, we followed Ref. [50]

and assumed a total number of galaxies of 250 million in
a 5000 square degree area on the sky (or fsky = 0.13),
with an approximate 1-σ error of 0.1 in photometric red-
shifts, divided in four redhsift bins with mean redshifts
zi ∈ {0.3, 0.6, 1, 1.3}, with the same selection functions
as in Ref. [50]. For LSST, we used the same modeling
as in [51], with a net galaxy angular number density of
80 per square arcminute and a coverage of fsky = 0.65.
The galaxies are divided into six redshift bins with mean
redshifts zi ∈ {0.49, 1.14, 1.93, 2.74, 3.54, 4.35}. For each
bin the selection function, estimated bias bi and galaxy
density ni are provided in [51] (Fig. 2, Eq. (16) and Ta-

ble I). The noise spectra NGiGi

l are then simply given by
1/ni.

We used the public code cosmomc [52] to do a Monte-
Carlo Markov Chain (MCMC) analysis, fitting the theo-
retical galaxy-temperature correlation to the mock data.
For this purpose, we have written a module which com-
putes the correlation multipoles following Eq. (4) and the
likelihood of the mock data given each model as described
above.

We then ran our modified version of CosmoMC for
a model with eight parameters: the usual six of mini-
mal ΛCDM (baryon density Ωbh

2, dark matter density
Ωdmh2, angular diameter of the sound horizon at last
scattering θ, optical depth to reionization τ , primordial
spectral index ns, primordial amplitude log[1010As]) plus
the total neutrino mass mν and the equation-of-state pa-
rameter w. Our fiducial model was close to the WMAP
best-fitting model with mν = 0 and w = −1. We consid-
ered three possible combinations of data: Planck alone,
Planck plus its cross-correlation with DES or LSST (but
no information on galaxy auto-correlations), and finally
Planck plus LSST, using all information and including
the correlation. The probability of each parameter is
displayed in Fig. 7 for each of these four cases called re-
spectively CMB (Planck), CMB+GT (Planck+DES or
Planck+LSST) and CMB+GT+GG (Planck+LSST).

Obviously the combination CMB+GT+GG does a
much better job than CMB+GT for constraining all pa-
rameters (and most spectacularly w and mν). This is
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CMB only, the red dashed for CMB+GT with Planck+DES,
the blue dashed for CMB+GT with Planck+LSST, and the
dotted blue for CMB+GT+GG with Planck+LSST (these
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these cases the cosmological model consists in ΛCDM (six
parameter) plus an arbitrary total neutrino mass mν and
equation-of-state parameter w. So, only eight of the above
nine parameters are independent (as a consequence the prior
for ΩΛ is non-flat). The mock data is based on a fiducial
model with mν = 0 and w = −1.

mainly due to the fact that the GT cross-correlation
is partly screened by primary temperature anisotropies,
while the GG signal does not have such an intrinsic noise
contribution. We even try to repeat the CMB+GT+GG
analysis with all CGTi

l correlations set to zero, and found
no noticeable difference, showing that most sensitivity
comes from GG rather than GT terms. However, the
comparison between CMB alone and CMB+GT is still
interesting per se. In fact, we are dealing here with
an idealized situation, but in the future the GG auto-
correlation signal could appear to be plagued by various
systematic effects. In this case, independent information
coming from the cross-correlation signal alone might be
a useful piece of evidence in favor of the preferred model.
Also, if the galaxy bias turns out to be very difficult to
estimate with high enough accuracy, one may adopt the
point of view of using the GG signal to measure bias, and
the CMB+GT signal to estimate the best-fit parameters
in some iterative scheme.
In this prospective, it is interesting to note that the

CMB+GT combination from Planck and LSST increases
significantly the sensitivity of Planck alone mainly for
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FIG. 8: Two-dimensional marginalized likelihood contours
involving mν obtained by fitting some mock data mimick-
ing the properties of Planck, DES and LSST. The solid
black curves accounts for CMB only, the red dashed for
CMB+GT with Planck+DES, the blue dashed for CMB+GT
with Planck+LSST, and the dotted blue for CMB+GT+GG
with Planck+LSST (these combinations are precisely defined
in the text). For each case, the two lines represent the 68%
and 95% confidence levels.

Ωdmh2 (by 30%), w (by 83%) andmν (by 38%). As a con-
sequence, the sensitivity to the related parameter ΩΛ in-
creases by 76%. For our fiducial model with mν = 0, the
95% confidence level upper bound on the total neutrino
mass shrinks from 0.77 eV to 0.54 eV (for another fidu-
cial model with mν > 0 the sensitivity can only be larger
than that, see e.g. [39]). At this level of sensitivity, the
parameter mν is not correlated with ΩΛ or w, as can be
checked by looking at two-dimensional marginalized like-
lihood contours in Figure 8. We conclude that the cross-
correlation signal derived from Planck and LSST would
have some useful sensitivity to both neutrino masses and
dark energy parameters. Instead, the correlation between
Planck and DES does not bring significant new informa-
tion with respect to Planck alone.

Ichikawa and Takahashi [44] performed a similar fore-
cast for Planck and LSST (with slightly different spec-
ifications), using a Fisher matrix analysis rather than
MCMC approach. They find a smaller sensitivity of the
cross-correlation data to neutrino mass than we do, pos-
sibly because of the various approximations entering into
the Fisher matrix approach.
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IV. CONCLUSIONS

We have studied here the possibility to use the cross-
correlation between CMB and galaxy density maps as a
tool for constraining the neutrino mass. On one hand
massive neutrinos reduce the cross-correlation spectrum
because their free-streaming slows down structure forma-
tion; on the other hand, they enhance it because of the
behavior of the linear growth in presence of massive neu-
trinos. Using both analytic approximations and numeri-
cal computations, we showed that in the observable range
of scales and redshifts, the first effect dominates, but the
second one is not negligible. Hence the cross-correlation
between CMB and LSS maps could bring some inde-
pendent information on neutrino masses. We performed
an error forecast analysis by fitting some mock data in-
spired from the Planck satellite, Dark Energy Survey
(DES) and Large Synoptic Survey Telescope (LSST). For
Planck and LSST, the inclusion of the cross-correlation
data increases the sensitivity to mν by 38%, w by 83%
and Ωdmh2 by 30% with respect to the CMB data alone.
With the fiducial model employed in this analysis (based
on eight free parameters) the standard deviation for the
neutrino mass is equal to 0.38 eV for Planck alone and
0.27 eV for Planck plus cross-correlation data. This is far
from being as spectacular as the sensitivity expected from
the measurement of the auto-correlation power spectrum
of future galaxy/cluster redshift surveys or cosmic shear
experiments, for which the predicted standard deviation
is closer to the level of 0.02 eV, leading to a 2σ detection
even in the case of the minimal mass scenario allowed
by current data on neutrino oscillations (see [38] for a
review). However, the method proposed here is indepen-
dent and affected by different systematics. So, it remains
potentially interesting, but only if the neutrino mass is
not much smaller than mν ∼ 0.2 eV.

Acknowledgements

This work was initiated during a very nice and fruit-
ful stay at the Galileo Galilei Institute for Theoretical
Physics, supported by INFN. JL would like to thank
Ofer Lohav for useful exchanges. The project was com-
pleted thanks to the support of the EU 6th Frame-
work Marie Curie Research and Training network “Uni-
verseNet” (MRTN-CT-2006-035863). Numerical simula-
tions were performed on the MUST cluster at LAPP An-
necy (IN2P3/CNRS and Université de Savoie). EG ac-
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Appendix: the Limber approximation

Let us consider some maps X(n̂) expanded in spherical
harmonics

X (n̂) =
∞∑

l=0

l∑

−l

aXlmYlm(n̂) (21)

with

aXlm =

∫
d2nY ∗

lm(n̂)X(n̂). (22)

The two-point correlation function of any two statisti-
cally isotropic quantities X and Y can be expressed in
terms of the power spectrum in multipole space

CXY
l =

〈
aXlmaY ∗

lm

〉
, (23)

or in therms of the angular correlation function in a Leg-
endre polynomial basis (pl)

wXY (θ) =
∑

l

2l + 1

4π
pl(cos θ)C

XY
l . (24)

In the frame of observations, a direction dependent quan-
tity X(n̂) is usually a quantity integrated over the line of
sight, X(n̂) =

∫
drX(~x). The expression for aXlm, (22),

can then easily be transformed to Fourier space. Subse-
quently expanding the plain wave in spherical harmonics
and applying the completeness relation for spherical har-
monics, one arrives at

aXlm = (−i)l
∫

dr
d3k

2π2
X(~k)jl(kr)Y

∗
lm(k̂), (25)

where X(~k) is the Fourier transform of X(~x), jl(r) is

the spherical Bessel function, and k = |~k|. This ex-
pression can be simplified using Limbers approximation,∫
dx f(x)jl(x) ≃

√
π

2l+1

∫
dx f(x)δ(l+ 1

2 − x), leading to

aXlm ≃ (−i)l
√

π

2l+ 1

∫
dr

r

k2dΩk

2π2
X

(
k̂, k

)
Y ∗
lm(k̂), (26)

separating the ~k dependence of X in k̂ and k =
l+

1
2

r .
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Abstract: We present forecasts for the accuracy of determining the parameters of a

minimal cosmological model and the total neutrino mass based on combined mock data for

a future Euclid-like galaxy survey and Planck. We consider two different galaxy surveys: a

spectroscopic redshift survey and a cosmic shear survey. We make use of the Monte Carlo

Markov Chains (MCMC) technique and assume two sets of theoretical errors. The first

error is meant to account for uncertainties in the modelling of the effect of neutrinos on

the non-linear galaxy power spectrum and we assume this error to be fully correlated in

Fourier space. The second error is meant to parametrize the overall residual uncertainties

in modelling the non-linear galaxy power spectrum at small scales, and is conservatively

assumed to be uncorrelated and to increase with the ratio of a given scale to the scale of

non-linearity. It hence increases with wavenumber and decreases with redshift. With these

two assumptions for the errors and assuming further conservatively that the uncorrelated

error rises above 2% at k = 0.4h/Mpc and z = 0.5, we find that a future Euclid-like

cosmic shear/galaxy survey achieves a 1-σ error on Mν close to 32 meV/25 meV, sufficient

for detecting the total neutrino mass with good significance. If the residual uncorrelated

errors indeed rises rapidly towards smaller scales in the non-linear regime as we have

assumed here then the data on non-linear scales does not increase the sensitivity to the

total neutrino mass. Assuming instead a ten times smaller theoretical error with the same

scale dependence, the error on the total neutrino mass decreases moderately from σ(Mν)

= 18 meV to 14 meV when mildly non-linear scales with 0.1h/Mpc < k < 0.6h/Mpc are

included in the analysis of the galaxy survey data.
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1. Motivations

Several ambitious ground-based and space-based galaxy surveys have been planned for the

next decade (e.g. ska1, lsst2), or are about to take place (e.g. des3). One of the most

ambitious approved missions, the Euclid4 satellite [1], is expected to be launched by ESA in

2019. It will combine a galaxy redshift survey with weak lensing observations, measuring

the matter power spectrum and the growth of structure with unprecedented accuracy.

This will offer a unique opportunity to improve measurements of cosmological parameters,

including the neutrino mass, known to slow down structure formation on intermediate and

small scales[2], as well as constraints on dark energy and modified gravity models.

Recent constraints on the total neutrino mass appear to have converged on an upper

limit of about 0.3 eV at the 95% confidence level (e.g. [3, 4, 5, 6, 7, 8, 9]), with the

1http://www.skatelescope.org/
2http://www.lsst.org/lsst/
3http://www.darkenergysurvey.org/
4http://www.euclid-ec.org
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notable exception of Lyman−α forest data, which gives an even lower bound of 0.17eV

[10]. These constraints rely on a combination of data from Cosmic Microwave Background

(CMB) experiments such as WMAP, Baryonic Acoustic Oscillations (BAOs), SuperNovae

(SN) distance moduli, galaxy clustering and cosmic shear (especially from the SDSS5

and CFHTLS6 surveys). Data sets provided by Large Scale Structure (LSS) are partic-

ularly important, since they are able to probe scales and redshifts affected by neutrino

free streaming both in the linear and non-linear regimes. Neutrino oscillation experiments

provide a lower bound of 0.05eV on the total neutrino mass, meaning that the allowed

range is now significantly squeezed by cosmological data, and well within reach of future

planned surveys.

Several forecasts have already been published on the sensitivity of Euclid to cosmo-

logical parameters, with a focus on dark energy, modified gravity, the neutrino mass, or

other extensions of the minimal ΛCDM model (see e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19]).

However reliable forecasts are difficult to obtain; interpreting Euclid data on small (non-

linear) scales will require a more accurate modeling of systematic effects than is currently

achievable. This is true for both non-linear corrections to the matter power spectrum, and

for effects specific to each survey. In the case of the galaxy redshift survey, for instance,

redshift space distortions and scale-dependent bias. In the case of the cosmic shear sur-

vey, noise bias in shape measurements [20]. Some authors have pointed out that without

considerable progress in modeling these effects, the sensitivity to cosmological parameters

might degrade considerably (see e.g. [18]).

Current forecasts tend either to incorporate only linear scales and neglect these sys-

tematics, or to include a small range of mildly non-linear scales and model systematics by

including nuisance parameters which are then marginalized over. Introducing such nuisance

parameters (for instance, in order to describe redshift-space distortions) still assumes that

we can predict the shape of these effects, and reduce them to a simple family of curves.

Hence, this approach is not the most conservative.

On top of this, many forecasts are affected by a methodology issue: apart from two

recent works [19, 21], they are based on a Fisher matrix technique, whose results depend

on the step chosen in the calculation of numerical derivatives of the spectrum with respect

to the parameters (see e.g. [21, 22]).

The present forecast has three objectives:

• First, we wish to use a reliable forecast method for the sensitivity of a Euclid-like

survey to ΛCDM parameters and to the total neutrino mass, based not on Fisher

matrices, but on a parameter extraction from mock data with Markov Chain Monte

Carlo (MCMC). This goal has also been achieved very recently by [19], although with

a different approach for modeling the galaxy redshift survey. To our knowledge, the

present analysis is the first MCMC forecast of a Euclid-like galaxy redshift survey

using as an observable the power spectrum P (k) in wavenumber space.

5http://www.sdss.org/
6http://www.cfht.hawaii.edu/Science/CFHLS/

– 2 –
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• Second, we wish to incorporate non-linear corrections using the most accurate avail-

able fitting formula accounting for neutrino mass effects, namely the version of

halofit [23] presented in Ref. [24]. This formula has been obtained by fitting to a

suite of N-body simulations which incorporate neutrinos as free-streaming dark mat-

ter particles, using the code first presented in Ref. [25]. The error in this formula

specific to the neutrino mass was estimated by Ref. [24] to be Gaussian, with squared

variance

α(k, z) ≡ ∆P (k, z)

P (k, z)
=

ln[1 + k/kσ(z)]

1 + ln[1 + k/kσ(z)]
fν , (1.1)

where fν = ων/ωm and kσ(z) is the non-linear wavenumber as defined and computed

in halofit. We include this in the likelihood as a fully correlated error, as described

in detail in Appendix A, associated to a unique nuisance parameter.

• In order to obtain conservative results while keeping the analysis simple, we will com-

bine this correlated error with a second uncorrelated error. This second uncorrelated

error is assumed to account for extra uncertainties in our approximate modeling of

non-linear corrections, redshift space distortions, scale-dependent bias and other sys-

tematic effects. By assuming an uncorrelated error on each data point, we remain

more conservative than if we marginalized over a small set of nuisance parameters

representing several types of fully correlated errors. Throughout this work, we as-

sumed for convenience that the relative theoretical error on the power spectrum was

given by Eq. (1.1), with fν replaced by a constant factor, by default 0.05. This error

grows smoothly from zero on linear scales up to 5% on deeply non-linear scales. For

a concordance cosmology and at redshift z = 0.5, it reaches 1% near k = 0.1hMpc−1

and 2.3% around k = 0.6hMpc−1. We assume that ten years from now, this will

provide a reasonable description of the total uncertainty coming from all systematic

effects in each of the two surveys. Occasionally, we will consider the effect of dividing

the magnitude of the error by two or ten, to evaluate the effect of better control of

non-linear systematics. We emphasise that the exact form of the uncorrelated error is

obviously just an educated guess and that a different k-dependence will e.g. influence

the assessment of how useful pushing to smaller scales will be. Of course, introducing

a fully uncorrelated error (or alternatively, form filling functions as in [26]) is very

conservative in that it assumes that no modeling of systematics is accurate enough.

In several years from now, it might become realistic to model most systematics with

several types of correlated errors, and to reduce the residual uncorrelated theoretical

error to a smaller level than assumed in this work.

2. Galaxy redshift survey

Throughout this paper, our fiducial model is chosen to be a flat ΛCDM model with three

degenerate massive neutrino species. The fiducial parameter values are taken to be ωb =

0.02258, ωc = 0.1109, As = 2.43 × 10−9 (pivot scale k∗ = 0.05hMpc−1), ns = 0.963,

h = 0.710, zreio = 10.3, mν = 0.07 eV (so Mν = 0.21 eV). For the power spectrum of

the mock data, we could take directly the fiducial power spectrum, or generate a random

– 3 –
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spectrum realization corresponding to the same model. As illustrated in [22], the two

options lead to the same forecast errors, so for simplicity we assume an observed power

spectrum equal to the theoretical power spectrum of the fiducial model.
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Figure 1: Observable spectrum (top) and relative error on this spectrum (bottom), for the first

redshift bin (left) and last redshift bin (right) of a Euclid-like galaxy redshift survey. The quan-

tity displayed in the top is the galaxy power spectrum Pg(kref , µ, z) as a function of the fiducial

wavenumber kref , for fixed redshift and perpendicularly to the line of sight (µ = 0), rescaled by the

inverse squared bias b(z)−2 and by a factor H(z)/DA(z)2: it is therefore a dimensionless quantity.

The upper plots show a comparison between a model with massless neutrinos and our fiducial model

(Mν = 3mν = 0.21 eV). Solid lines are derived from the non-linear matter power spectrum using

the updated halofit version of ref. [24], while dashed lines are derived from the linear power spec-

trum. The lower plots show the part of the relative error coming from observational or theoretical

errors only (cosmic variance is included in the observational error). In these plots, the individual

1-σ error on each data point has been rescaled by the square root of the number of points, in such

a way that the edges of the error bands correspond to a shift between theory and observation lead-

ing to ∆χ2 = 1, when only the observational or theoretical error is incorporated in the likelihood

expression. In these lower plots, we also show for comparison the ratio between a massless model

and a model with the minimum total mass allowed by neutrino experiments, Mν = 0.05 eV.

We fit the mock and Euclid-like spectra using the MCMC code MontePython [27].

MontePython uses the Metropolis-Hastings algorithm like CosmoMC [28], but is in-

terfaced with class [29, 30] instead of camb [31], is written in python, and has extra

functionality; it will soon be released publicly, including the Euclid-like likelihood codes
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used in this work.

Technical details of the assumed likelihood and our analysis are presented in Ap-

pendix A. Let us summarize here the essential points. As in most of the recent Fisher-

matrix-based forecasts, we assume that the reduced data is described by a set of observable

power spectra P obs(kref , µ, z), related to the familiar non-linear matter power spectrum

PNL(k, z) in a non-trivial way in order to take into account redshift space distortions, lin-

ear light-to-mass bias, spectroscopic redshift errors and the Alcock-Paczynsky effect (see

A.1). Of course, this modeling is imperfect: for this reason we introduce a theoretical

error. For instance, we do not take into account galactic feedback [32], assuming that this

contamination can be predicted by simulations up to the level of our residual theoretical

error function. The arguments kref and µ of the observable power spectrum stand respec-

tively for the observed wavenumber assuming the fiducial cosmology, and the cosine of the

angle between the observed wavevector and the line of sight. We assume sixteen redshift

bins with mean redshift ranging from 0.5 to 2, and bin widths of ∆z = 0.1. For a fixed

theoretical model, each observed value of P obs in a bin centered on the point (kref , µ, z)

follows, to a good approximation, a Gaussian distribution with variance

(
∆P obs

)2
=

2(2π)2

k3
refVsurveydµ[dkref/kref ]

(
P th + 1/ng

)2
, (2.1)

where dµ is the size of the bins in µ space, and [dkref/kref ] the size of the logarithmic bins

in wavenumber space (see A.2). The characteristics of the survey are encoded in Vsurvey,

the survey volume, and ng, the comoving number density of galaxies accounting for shot

noise (see A.3). Hence, if for every observed data point the theory and the observation

differed by this amount, the effective χ2 would increase with respect to its minimum value

by the number of data points, namely

N = B
2

dµ

ln(kmax/kmin)

[dkref/kref ]
, (2.2)

where B is the number of redshift bins.

To illustrate this error, in figure 1, we show the relative error bar on the observed

spectrum in the first and last redshift bin, assuming no additional theoretical error. For

the purpose of comparing with the theoretical error introduced below, we do not show

as usual the error corresponding to a one-sigma deviation for each given data point; we

divided each error by
√
N , in such a way that the edge of the error band corresponds to a

deviation between the observed and theoretical spectrum leading to ∆χ2 = 1. Note that

the displayed quantity ±∆P obs/(P obs
√
N) does not depend on the width of the bins in

(kref , µ, z) space, but only on P th, Vsurvey and ng.

We incorporate the theoretical error in the likelihood in the way described in section

A.4. In few words, this error is normalized in such a way that a shift between theory

and observations by a relative amount α (the quantity defined in eq. (1.1)) leads to an

increase of the χ2 by one. This is achieved simply by adding a term N(αP th)2 to the total

error variance. Figure 1 shows the relative theoretical error on the observed spectrum,

normalized in such a way that the edge of the error band corresponds to a deviation
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between the observed and theoretical spectrum leading to ∆χ2 = 1 when the observational

error is switched off. These edges are directly given by ±α.

We see in this figure that our assumption for α leads to an error of 1% at k = 0.1hMpc−1

and 2.5% at k = 0.6hMpc−1 for the first redshift bin centered on z = 0.5. For the last

redshift bin in the galaxy survey, centered on z = 2, non-linear corrections appear on

smaller scales, and the error is only 1% at k = 0.6hMpc−1.

kmax un. co.
104ωb 104ωc 103ns 1011As 103h zreio

3mν = Mν

(h/Mpc) err. err. (meV)

0.1 – – 1.2 6.2 2.8 3.0 4.1 0.38 18

0.1 1/10 – 1.2 6.9 2.8 3.1 4.5 0.39 18

0.1 1/2 – 1.3 9.5 3.2 3.5 6.1 0.39 23

0.1 • – 1.3 11 3.4 3.6 6.7 0.40 25

0.1 • • 1.3 11 3.4 3.6 6.7 0.40 25

0.6 – – 0.86 2.1 0.37 1.2 0.40 0.23 5.9

0.6 1/10 – 1.1 4.8 2.5 2.7 3.0 0.37 14

0.6 1/2 – 1.2 8.6 3.2 3.4 5.7 0.39 22

0.6 • – 1.3 10 3.4 3.6 6.7 0.39 25

0.6 • • 1.3 10 3.4 3.6 6.7 0.39 25

Table 1: Marginalized 1-σ error for each model parameter, in a fit of Planck + Euclid-like galaxy

survey data. The different lines correspond to different choices of kmax, to the inclusion or not of

the global uncorrelated theoretical error (un. err.), divided by ten (1/10), by two (1/2), or full (•),
to that of the specific neutrino-related correlated error (co. err.), and to the use of the non-linear

or linear power spectrum. The models with correlated error have one more nuisance parameter eν
not shown here, with unit 1-σ error.

We performed several forecasts for a combination of Planck data and a Euclid-like

galaxy redshift survey data. It should be stressed that the characteristics of Euclid are

not yet finalized. Our choice for Vsurvey and ng(z̄), detailed in A.3, should be taken as

indicative only. For Planck, we follow the method presented in [22] and do not include

lensing extraction. For the experimental Planck sensitivity, we use the numbers presented

in the Planck Bluebook7. This is a rather conservative model since the sensitivities are

based on 14 months of observations instead of 30.

The differences between our forecasts reside in the maximum wavenumber, equal to

kmax = 0.1 or 0.6hMpc−1, and in various prescription for the theoretical error: no error

at all, the uncorrelated error described above and in A.4 (divided by ten, by two, or full),

or additionally the correlated error accounting for neutrino-mass-related effects (described

in A.5). Since we are using an increasing theoretical error on non-linear scales, we expect

the amount of information contained in the data to saturate above some value of kmax:

this is the reason we can consider such a high value as 0.6hMpc−1. We did not try even

higher values, first because our result would not change, and second because our forecast

7http://www.rssd.esa.int/SA/PLANCK/docs/Bluebook-ESA-SCI(2005)1 V2.pdf, page 4, Table 1.1 (us-

ing only the best three HFI channels: 100, 143 and 217 GHz).
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would become unrealistic: deep in the non-linear regime, the Gaussian assumption for the

likelihood breaks down.

Our results are presented in Table 1. Parameters like ωb and zreio are well determined

by CMB data, and their forecast error depends very mildly on our different assumptions.

For other parameters, the redshift survey plays a crucial role in removing parameter degen-

eracies. In that case, even with kmax = 0.1hMpc−1, including the uncorrelated theoretical

error makes a difference: the parameter sensitivity degrades by up to 70% for h. The 68%

neutrino mass error bar degrades by 40%, from σ(Mν) = 0.018 eV to σ(Mν) = 0.025 eV.

Assuming only this uncorrelated error, the cases kmax=0.1hMpc−1 and kmax=0.6hMpc−1

give almost the same results. Hence, our assumption for the theoretical error magnitude

is such that most of the information is contained on linear scales. Thanks to realistic (or

at least conservative) assumptions for the theoretical error, the results of our forecast are

nearly independent of the cut-off kmax. Without a theoretical error, increasing kmax to

0.6hMpc−1 would lead to a spectacular (but totally unrealistic) decrease of the error bars,

with σ(Mν) = 0.0059 eV.

If we are more optimistic and half the uncorrelated error, the error bars decrease

marginally, as can be seen in the Table (lines starting with “1/2”). The error on the

neutrino mass only decrease by ∼ 10%. Assuming no error at all implies that the spectrum

can be predicted up to the 0.1% level or better on small scales. In comparison, assuming

a precision of one percent is not very different from assuming two percent. With the

halved error, the sensitivity to the neutrino mass increases from σ(Mν) = 0.023eV to

σ(Mν) = 0.022eV when including data in the range from 0.1 to 0.6hMpc−1.

Finally, in a very optimistic forecast with an error ten times smaller, we start to see

how extra information can be extracted from non-linear scales; the error decreases from

σ(Mν) = 0.018 eV to σ(Mν) = 0.014 eV when pushing kmax from 0.1 to 0.6hMpc−1.

The inclusion of an additional correlated error accounting for neutrino-mass-related

systematics has a negligible impact on our results. In our forecast, the uncorrelated and

correlated part of the error have similar amplitudes and the same shape; however the

uncorrelated error allows much more freedom and thus leads significantly more conservative

results: this explains why the correlated error has a comparatively small effect. It should be

stressed that our results depend not only on the assumed error amplitude at a given scale

and redshift, but also on the wavenumber dependence of the error function α. Different

assumptions, with a steeper or smoother step in the error function around the scale of non-

linearity, would lead to different forecasts. In particular, as already mentioned the actual

benefit from pushing to smaller, non-linear scales depends on the assumed k-dependence

of the residual uncorrelated theoretical error.

For the case with kmax = 0.6hMpc−1 and no neutrino-related correlated error, we show

the one and two-dimensional posterior probability on cosmological parameters in figure 2.

We see several pronounced parameter degeneracies. For instance, the neutrino mass is very

correlated with ωc and h. This suggests that further progress could be made by including

extra data sets, such as direct measurements of the Hubble parameter, the cluster mass

function, supernovae luminosity, 21-cm anisotropies, and so on.

Our results are consistent with those of [14, 17], although a direct comparison is
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Figure 2: Marginalized posteriors and two-dimensional probability contours in a fit of Planck

plus a Euclid-like galaxy survey mock data, with kmax = 0.6hMpc−1 and a global uncorrelated

theoretical error (second line starting from the bottom in Table 1).

difficult, since those authors include two extra parameters, w0 and wa, in their forecast.

The results in Table 2.1 of [33], based on the same cosmological model, match our prediction

in the case with no non-linear scales and no theoretical error included. A similar sensitivity

was found by [19] for a Euclid-like photometric redshift survey, referred to as “cg” in their

Table 2. However, this reference presents other results based on even more conservative

assumptions than ours. We assumed that the bias function for each redshift bin could

be determined in advance (up to corrections on non-linear scales contained in our global

theoretical error). This assumption has also been made in most recent forecasts, since both
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N-body simulations and higher-order statistics in the real data allow the prediction of the

redshift-dependent bias of a given population of galaxies, at least on linear scales. Were

this approach found to be unreliable, it would be necessary to marginalize over the linear

bias in each redshift bin, b(zi). Ref. [19] did such a marginalization in the runs called “cgb”

and “cgbl”, with no prior at all on each b(zi). They found roughly the same error bar on ωc
and h than in our forecast with theoretical error, but a much larger error on the neutrino

mass. However, it seems unlikely that at the time when Euclid data will be analyzed, no

information at all will be available on the linear bias of the observed population of galaxies.

3. Cosmic shear survey

For the case of a Euclid-like cosmic shear survey, we stick to the same fiducial model and

methodology as in the previous section. The likelihood is now a function of the observed

lensing power spectrum Cobs ij
l in harmonic space and for each pair ij of redshift bins,

taking into account photometric redshift errors and shot noise (for details, see B.1 and

B.2). We assume experimental sensitivities summarized in B.3, and cut the observations in

five redshift bins covering the range 0 < z < 3.5 (although a negligible amount of galaxies

contribute between 3 and 3.5). We do not take into account intrinsic alignment, assuming

that this contamination can be removed up to the level of our residual theoretical error

function [34, 35].

As explained in detail in B.4, there is a small technical difference between the likeli-

hood of the galaxy survey and the shear survey in the way we incorporate the uncorrelated

theoretical error. For the galaxy survey, the theoretical error was encoded as an extra con-

tribution to the total error variance. This can be justified mathematically by marginalizing

over one nuisance parameter for each data point. The shape of the galaxy survey likelihood

allows for an analytical minimization over each nuisance parameter, in such a way that nui-

sance parameters do not appear explicitly in the final likelihood. We found that no such

scheme is accurate enough in the case of the (chi-square type) shear likelihood. Hence our

likelihood routine performs an explicit minimization over one nuisance parameter per data

point. For simplicity, we assume that the error is uncorrelated between different values of

l, but not between different bins for a given l: this assumption could be relaxed, at the

expense of increasing the computing time.

We fixed lmax = 2000, since beyond this value both the shot noise term and the

theoretical error are large, as shown in figure 3. This figure also shows the relative error on

the observed spectrum in the first and last redshift bins, coming either from observational

errors (including cosmic variance) or from the theoretical error, and using exactly the same

conventions as in the previous section: the edges of each of the two error bands correspond

to a shift between the theory and the observation leading to ∆χ2 = 1 when either the

observational or the theoretical error are included in the likelihood. The lowest redshift

bin incorporates small non-linear scales: this explains why at l = 2000, the theoretical

error reaches 3.5%.

Our results are presented in Table 2 for three cases: no theoretical error, uncorrelated

error only (described in B.4), or additional neutrino-related correlated error (described in
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Figure 3: Observable cosmic shear power spectrum (top) and its relative error (bottom) for the

first redshift bin (left) and last redshift bin (right) of a Euclid-like shear survey. The quantity

displayed above is the lensing auto-correlation spectrum Ciil (dimensionless). The upper plots show

the comparison of a model with massless neutrinos to our fiducial model (Mν = 3mν = 0.21 eV).

Solid lines are derived from the non-linear matter power spectrum using the recent update of

halofit [24], while dotted lines are derived from the linear power spectrum. The lower plots show

the part of the relative error coming from observational or theoretical errors only (cosmic variance is

included in the observational error). In these plots, the individual 1-σ error on each data point has

been rescaled by the square root of the number of points, in such a way that the edges of the error

bands correspond to a shift between theory and observation leading to ∆χ2 = 1, when only the

observational or theoretical error is incorporated in the likelihood expression. In these lower plots,

we also show for comparison the ratio between a massless model and a model with the minimum

total mass allowed by neutrino experiments, Mν = 0.05 eV.

B.5). The impact of the uncorrelated error is again important, but not as pronounced

as in the galaxy power spectrum case, because on small scales the precision of the shear

survey is limited by a significant shot noise contribution. The neutrino mass error degrades

only from σ(Mν) = 0.026 eV to 0.028 eV. For the shear survey we did not perform runs

with a twice or ten times smaller error: the result for σ(Mν) would simply lie between

those two numbers. The impact of the neutrino-related error is small but further degrades

the sensitivity to σ(Mν) = 0.032 eV. While in the absence of theoretical error the galaxy

survey seems more sensitive to the neutrino mass, the performance of the two methods are

roughly identical once the same theoretical error ansatz is included.
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un. co.
104ωb 104ωc 103ns 1011As 103h zreio

3mν = Mν

err. err. (meV)

– – 1.1 3.9 2.4 2.8 4.0 3.7 26

• – 1.2 6.3 2.7 2.9 5.2 3.8 28

• • 1.2 6.6 2.7 3.0 5.3 3.9 32

Table 2: Marginalized 1-σ error for each model parameter, in a fit to Planck + Euclid-like shear

survey data. The different lines correspond to the inclusion or not of the global uncorrelated

theoretical error (un. err.), and of the specific neutrino-related correlated error (co. err.). Our

preferred prediction is given on the last line, and is very close to that of the second line.

The triangle plot of figure 4 shows that the parameter degeneracies are very similar

for the two cases of the galaxy survey and shear survey. Nevertheless, [19] showed that

combining the two data sets (with a proper cross-correlation matrix) leads to sensitivity

improvements. It would be interesting to test this conclusion in presence of theoretical

errors.

Our result are consistent with those of [11], although a direct comparison is difficult,

since these authors include several extra parameters (w0, wa, r, αs) in their forecast. The

predictions of [19] (case “cs” in their Table 2) lie between our results with and without

theoretical errors. This is consistent since on the one hand, these authors use more op-

timistic survey characteristics (d, 〈γ2
rms〉, σph), and on the other hand, we are including

much larger values of l (which is legitimate if our theoretical error is realistic).

4. Conclusions

We have presented forecasts of cosmological parameters by using, in combination with

Planck data, two Euclid-like mock future data sets: a galaxy spectroscopic redshift survey

and a cosmic shear survey. We focused our attention on constraints that can be achieved

on the total neutrino mass by using the data in the linear and non-linear regimes.

In order to do this conservatively we adopt the following improvements with respect to

similar works performed recently in the literature: i) we make use of Markov Chain Monte

Carlo rather than the Fisher Matrix, which results in more reliable error bars, as well

as considering degeneracies between parameters. Ultimately, we found that the posterior

probability is very close to a multivariate Gaussian for the model considered. However, a

Fisher matrix approach could not have confirmed this, and would not have been explicitly

independent of the stepsize in the numerical derivatives. ii) we rely on a modification of

HALOFIT that accounts for massive neutrinos, and predicts the non-linear matter power

spectrum to small scales, based on the results of N-body and hydro simulations. iii) we

conservatively consider errors both on the non-linear observable power at small scales and

on the neutrino induced suppression, and explictly show how to implement these errors in

the likelihood calculation.

It is instructive to see that with the shape assumed for the uncorrelated theoretical

error, and a conservative assumption on its amplitude (leading to a 2% error at kmax =

0.4h/Mpc and z = 0.5), the sensitivity to cosmological parameter is still satisfactory. The
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Figure 4: Marginalized posteriors and two-dimensional probability contours in a fit of Planck +

Euclid-like shear survey data, with a global uncorrelated error of 5% on non-linear scales (second

model in Table 2).

error bar on the total neutrino mass, of the order of 32 meV (cosmic shear) or 25 meV

(redshift survey), would still allow for a two sigma detection of the total neutrino mass in

the minimal normal hierarchy scenario. However, with this amplitude and k-dependence

of the theoretical error, essentially all the information comes from linear scales. The next

interesting question is to check how much the uncorrelated error should be controlled in

order to start being sensitive to mildly non-linear scales. Assuming a twice smaller error

does not change the parameter sensitivity by a significant amount. Extracting significant

information from non-linear scales requires an error ten times smaller, at the level of 0.2%.
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Here the error on the neutrino mass decreased from σ(Mν) = 18 meV to 14 meV when

adding scales with 0.1 < k < 0.6h/Mpc to the analysis. This shows that it would be

extremely useful to be able to predict the observable power spectrum of a given cosmological

model up to a residual uncorrelated error of the order of 0.1% (resp. 0.2%) at k ∼0.1h/Mpc

(resp. k ∼0.4h/Mpc) and z = 0.5. This will be a major challenge for theoretical and

numerical cosmology in the next decade.
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A. Galaxy redshift survey implementation

A.1 Observed spectrum

Let P obs be the observed/mock/fiducial power spectrum, and P th the spectrum that one

would expect to see given the theoretical model. Each of these quantities relates to the

galaxy spectrum Pg and finally to the total non-linear matter spectrum PNL by taking into

account redshift distortion effects, spectroscopic redshift errors and light-to-mass bias. A

good approximation of such a relation is given by (see e.g. [16, 15]):

P th/obs(kref⊥, kref‖, z) =
DA(z)2

refH(z)

DA(z)2H(z)ref
P th/obs
g (kref⊥, kref‖, z) , (A.1)

P th/obs
g (kref⊥, kref‖, z) = b(z)2

[
1 + β(z, k)

k2
ref‖

k2
ref⊥ + k2

ref‖

]2

P
th/obs
NL (k, z)e−k

2µ2σ2
r , (A.2)

with the definitions

β(k, z) ≡ b(z)−1d ln[P
th/obs
NL (k, z)]1/2

d ln a
=

1

2b(z)

d lnP
th/obs
NL (k, z)

d ln a
, (A.3)

kref⊥ = k⊥H(z)ref/H(z), kref‖ = k‖H(z)ref/H(z), (A.4)

µ ≡ k̂ref .r̂ = kref‖/kref , (A.5)

k2 =

(
(1− µ2)DA(z)2

ref

DA(z)2
+
µ2H(z)2

H(z)2
ref

)
k2

ref . (A.6)

Here b(z) is the bias, assumed to be scale-independent in the range of scales of interest, a

is the scale factor, H(z) is the Hubble parameter, DA(z) the angular diameter distance,

and β(z, k) accounts approximately for redshift space distortions. So we can treat k as a

– 13 –



272 4.4 Euclid satellite and non-linear corrections, JCAP 1301, 026 (2013)

function of the arguments (kref , µ, z) and write

P th/obs(kref , µ, z) =
DA(z)2

refH(z)

DA(z)2H(z)ref
b(z)2

[
1 + β(z, k(kref , µ, z))µ

2
]2×

P
th/obs
NL (k(kref , µ, z), z)e

−k(kref ,µ,z)
2µ2σ2

r (A.7)

A.2 Likelihood

For a narrow redshift bin b centered on z̄, the likelihood reads

Lb = Nb exp

[
−1

2

∫

kmin<kref<kmax

d3~kref

(2π)3
Veff(kref , µ, z̄)

(P obs(kref , µ, z̄)− P th(kref , µ, z̄))
2

2(P th(kref , µ, z̄))2

]

(A.8)

= Nb exp

[
−1

2

∫ 1

−1
dµ

∫ kmax

kmin

k2
refdkref

(2π)2
Veff(kref , µ, z̄)

(P obs(kref , µ, z̄)− P th(kref , µ, z̄))
2

2(P th(kref , µ, z̄))2

]
,

(A.9)

with an effective survey volume given by

Veff(kref , µ, z̄) = Vsurvey(z̄)

[
ng(z̄)P

th
g (kref , µ, z̄)

1 + ng(z̄)P th
g (kref , µ, z̄)

]2

. (A.10)

Later, we will specify the sensitivity of the survey, parameterized by Vsurvey, ng, σr, kmin

and kmax. We skip here the derivation of the Fisher matrix, obtained by differentiating the

above formula twice with respect to the cosmological parameters on which P th depends,

and evaluating this derivative at the maximum likelihood point. We checked that this

calculation gives exactly the formula commonly used in the literature (see e.g. [16, 15]). For

the purpose of the discussion in the next section (and also of the numerical implementation),

we wish to write explicitly the discrete limit of the integrals. We discretize µ in a set of

equally spaced values µi, and l ≡ ln k in a set of equally spaced values lj = ln krefj . The

step sizes are denoted ∆µ and ∆l respectively. We then expand the integral as a sum, and

for simplicity we omit the factors 1/2 that should weight the boundary terms of each of

the two integrals. We introduce the short-cut notations:

Nij ≡ ∆µ∆l
k3

refjVeff(krefj , µi, z)

(2π2)
, (A.11)

P
obs/th
ij ≡ P obs/th(krefj , µi, z), (A.12)

and we get

−2 lnLb =
∑

i,j

(
P obs
ij − P th

ij

)2

2(P th
ij )2/Nij

. (A.13)

This expression is easy to understand from first principles. Let us consider a single variable

δ obeying a Gaussian distribution centered on zero and with variance 〈δ2〉 = P . If we
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observe N independent realization δn of the variable δ, we can build an estimator of the

variance P of δ,

E =
1

N

∑

n

δ2
n. (A.14)

The variance of this estimator can be computed by noticing that each δ2
n follows a χ2

distribution of order one, for which the mean is P and the variance 2P 2. So the sum∑
n δ

2
n has a variance 2NP 2. Finally E has a variance (2NP 2)/N2 = 2P 2/N . Moreover,

E is nearly Gaussian if N is large, as a consequence of the central limit theorem. So the

probability of the data E given the theory P is a Gaussian of mean P and of variance

2P 2/N . In other words,

−2 lnL(E|P ) =
(E − P )2

2P 2/N
. (A.15)

The previous likelihood follows this form for each discrete term. Indeed each term corre-

sponds to the likelihood of the estimator of the power spectrum in a thin shell in Fourier

space. The number of independent measurements, i.e. of independent wavenumbers in

each shell, is given by Nij . The role of E and P is played respectively by P obs
ij and P th

ij .

Such a likelihood was first derived in pioneering papers like [36, 37].

A.3 Survey specifications

We computed this likelihood for values of Vsurvey(z̄), ng(z̄), σr(z̄) inspired from currently

plausible Euclid specifications, which are likely to change over the next years. We divide

the observations into sixteen redshift bins of width ∆z = 0.1, ranging from z̄ = 0.5 to

z̄ = 2.0. For each bin, we assumed:

• a volume per bin Vsurvey(z̄) = 4πfsky[r(z̄)]2(1+ z̄)−3 ∂r(z)
∂z ∆z, where r(z) is the comov-

ing distance up to a comoving object with redshift z, with the explicit assumption

that a0 = 1:

r(z) =

∫ z

0

dz′

H(z′)
. (A.16)

We assume a sky coverage fsky = 0.375.

• a galaxy number density per comoving volume ng(z̄), related to the number of galaxies

per square degree dg(z̄) through

ng(z̄) =
dg(z̄)× 41 253 deg2

4π[r(z̄)]2 ∂r(z)∂z ∆z
. (A.17)

For dg(z̄), we start from the number presented in Table 2 of [38] for the case of a

limiting flux of 3× 10−16erg s−1cm−2. Following the recommendation of that paper,

we divide these numbers by 1.37 in order to get conservative predictions. Finally,

we multiply them by an efficiency factor ε = 0.25 (standing for the redshift success

rate). For instance, for the first redshift bin, this gives dg(z̄) = 9376/1.37 × 0.25 =

1710 deg−2.

• a spectroscopic redshift error σr = ∂r(z)
∂z σz with σz = 0.001(1 + z).
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• a scale-independent linear bias b(z̄). The choice of b(z̄) values affects the final result

less crucially than that of dg(z̄). We could adopt the predictions of [39] inferred

from N-body simulations, but for simplicity, our forecast is performed under the

approximation b(z̄) =
√

1 + z̄. So, we assume in this forecast that the linear bias

will be accurately measured or predicted for each bin, and that deviations from

this prediction (coming from the non-linear evolution) will be known up to the level

described by the theoretical error function.

• kmin can be chosen arbitrarily close to zero without changing the results.

• we tested two values of kmax: 0.1 and 0.6hMpc−1.

A.4 Accounting for a global uncorrelated theoretical error

To present a realistic forecast, one should model all the systematic effects not accounted

for by the previous likelihood formula, such as: theoretical errors in the calculation of the

linear and non-linear power spectrum, scale-dependence of the bias on small scales, residual

shot noise in galaxy counts beyond the contribution already included in the definition of

Veff , residual errors in the modeling of redshift space distortion beyond the above scheme.

On top of these corrections, one may have to take into account the fact that the likelihood

is not Gaussian on strongly non-linear scales. In this paper, we limit ourselves to mildly

non-linear scales k ≤ kmax = 0.6hMpc−1, and assume that non-Gaussianity effects are

sub-dominant to the previously mentioned systematics. We also neglect to marginalize

over residual shot noise in each redshift bin, because Ref. [16, 15] found that this has a

negligible impact.

Understanding these various systematics is a major challenge for the future, which

should be addressed with better simulations and analytical modeling. Here we want to

keep the analysis simple, and model these systematic errors in a simple way, by adding to

the spectrum an uncorrelated theoretical error function. By uncorrelated we mean that

the errors made at different scales are independent from each other, which is the most

conservative possible assumption. In this case, we can introduce an independent Gaussian-

distributed nuisance parameter εij for each data point, and marginalize over it – or rather,

to a very good approximation, minimize over it:

−2 lnLb =
∑

i,j

min
−∞<εij<+∞

[
P obs
ij −

(
P th
ij + εijR

1/2
ij

)]2

2
(
P th
ij + εijR

1/2
ij

)2
/Nij

+ ε2ij , (A.18)

where Rij is the theoretical error variance for a bin in (µ, kref) space centered on (µi, krefj).

As long as the theoretical error is assumed to be small, it is also a valid approximation to

neglect the εij-dependence of the denominator, in order to find a simple analytic solution

for εij , which, injected back in eq. (A.18), gives

−2 lnLb =
∑

i,j

(
P obs
ij − P th

ij

)2

2(P th
ij )2/Nij +Rij

. (A.19)
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In other words, the theoretical error variance simply adds up to the noise variance.

Note that we explicitly checked that it is legitimate to neglect the εij-dependence of the

likelihood denominator when minimizing over εij . We also coded the full likelihood with

explicit minimization over each εij , and found the same results up to very good accuracy.

We choose a numerical value of Rij motivated mainly by the current level of precision

of the halofit algorithm. We assume a relative error on the non-linear power spectrum

of the form

α(k, z) ≡ ∆P th
NL(k, z)

P th
NL(k, z)

=
ln[1 + k/kσ(z)]

1 + ln[1 + k/kσ(z)]
0.05 , (A.20)

where kσ(z) is the scale of non-linearity computed by halofit. This function increases

from zero to 5% around the scale of non-linearity. Using the function k(kref , µ, z̄), this error

can easily be propagated to the theoretical observable spectrum

α(kref , µ, z̄) ≡ α(k(kref , µ, z̄), z̄) =
∆P th(kref , µ, z̄)

P th(kref , µ, z̄)
. (A.21)

In terms of the discretized observable spectrum, the error reads

αij = α(kref j , µi, z̄) . (A.22)

The error variance Rij should be proportional to the power spectrum variance (αijP
th
ij )2.

We also assume that the error makes a constant contribution to each logarithmic interval

in the space where observations are performed, i.e. is of the form

Rij ∝ (αijP
th
ij )2 krefj

dµ dkref
. (A.23)

We normalize the error variance Rij in such a way that a one-sigma theoretical error in

each data point results in increasing the effective χ2 by one unit, namely,

Rij =

[
2B

(
ln
kmax

kmin

)]
(αijP

th
ij )2 krefj

dµ dkref
, (A.24)

where B is the number of bins. The role of the normalization factor between squared

brackets will become clear below. The likelihood becomes (using eq. (A.19) and going back

to the continuous limit)

L = Πb Nb exp


−1

2

∫ 1

−1

dµ

2

∫ kmax

kmin

dkref

kref

(P obs − P th)2

(P th)2
{

(2π)2

k3
refVeff

+ α2B ln kmax
kmin

}


 , (A.25)

where we omitted the argument (kref , µ, z̄b) of the functions P th, P obs, Veff and α. If one

assumes that the observed and theoretical spectra differ by αP th for each (k, µ, z), and that

in the denominator the theoretical error dominates over the observational one (Veff =∞),

then

L = Πb Nb exp

[
−1

2

∫ 1

−1

dµ

2

∫ kmax

kmin

dkref

kref

1

B ln kmax
kmin

]
= (ΠbNb) exp

[
−1

2

]
, (A.26)
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which corresponds to a shift by ∆χ2
eff = 1 with respect to the maximum likelihood L =

ΠbNb.
If we had assumed the error to be fully correlated, instead of increasing the denominator

of the likelihood, we would have replaced P th by P th(1 + εα), multiplied the likelihood by√
1/2π exp[−ε2/2], and marginalized/minimized over ε. Then, the assumption P obs =

P th(1 + α) would correspond to an optimal choice ε = 1 in the large Veff limit, and would

also lead to a shift in ∆χ2
eff by one unit with respect to the assumption P obs = P th. In our

case, we obtain the same shifting while assuming statistically independent errors for each

data point.

Finally, the likelihood can be simplified to

L = ΠbNb exp


−1

2

∫ 1

−1

dµ

2

∫ kmax

kmin

dkref

kref

(
Href

D2
Aref

P obs
g − H

D2
A
P th
g

)2

(2π)2

k3
refVsurvey

(
H
D2

A
P th
g + H

D2
A

1
ng

)2
+
(
α H
D2

A
P th
g

)2
B ln kmax

kmin


 ,

(A.27)

where we omitted the argument z̄b in the functions Vsurvey, DA, H and ng. This is exactly

the relation implemented in our code.

A.5 Accounting for an extra neutrino-related error

The impact of massive neutrinos on non-linear corrections to the power spectrum has been

investigated in [24]. By comparing with N-body simulations including neutrino particles,

the authors of [24] re-calibrated halofit, with a new neutrino mass dependent correction.

This fitting procedure is of course not perfect and adds a systematic error growing with

the neutrino mass. It was found that the leading error can be described with a correction

PNL(k) = P halofit
NL (k)(1 + eνσν(k, z)), σν(k, z) =

ln[1 + k/kσ(z)]

1 + ln[1 + k/kσ(z)]
fν (A.28)

with fν ≡ ων/ωm, and eν is an unknown correction of unit variance, that we will treat as

a Gaussian nuisance parameter. Hence our final definition of the likelihood accounting for

both types of error reads

L = N exp


−1

2

∫ 1

−1

dµ

2

∫ kmax

kmin

dkref

kref

(P obs − [P th(1 + eνσν)])2

[P th(1 + eνσν)]
2
[

(2π)2

k3
refVeff

+ α2B ln kmax
kmin

]




× 1√
2π

exp

[
−1

2
e2
ν

]
, (A.29)

where we omitted the argument (kref , µ, z̄) of the functions P obs, P th, σν , αν and Veff . Note

that the correction proportional to eν should not be added to P obs since we are assuming

for simplicity that the fiducial value of eν in the mock data is zero.
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B. Cosmic shear survey implementation

B.1 Observed spectrum

As in e.g. [16, 15], we define the likelihood of the shear auto or cross-correlation power

spectrum in bins i and j:

Cijl = H4
0

∫ ∞

0

dz

H(z)
Wi(z)Wj(z)PNL

(
k =

l

r(z)
, z

)
. (B.1)

Here, Wi(z) is the window function of the i’th bin. It can be evaluated as a function of

the radial distribution of galaxies in each redshift bin, Di(z), obtained by convolving the

full radial distribution D(z) with the photometric redshift uncertainty function P(z, zph),

multiplied the top-hat window function of each bin:

Wi(z) =
3

2
Ωm(1 + z)Fi(z) (B.2)

Fi(z) =

∫ ∞

0

ni(zs)(r(zs)− r(z))
r(zs)

dzs (B.3)

ni(z) =
Di(z)∫∞

0 Di(z′)dz′
(B.4)

Di(z) =

∫ zmax
i

zmin
i

P(z, zph)D(zph) dzph . (B.5)

The radial distributionD(z) can be arbitrarily normalized, since ni(z) is anyway normalized

to one. We will assume that the photometric redshift uncertainty function is normalized

to
∫∞

0 P(z, zph)dzph = 1, but a different normalization would not impact the final result

for the same reason as for D(z). The noise spectrum contaminating the measurement of

Cijl is given by the diagonal matrix in ij space:

N ij
l = δij〈γ2

rms〉n−1
i , (B.6)

where 〈γ2
rms〉1/2 is the root mean square intrinsic shear (like in the forecasts of the Euclid

Red Book [1], we assume that this quantity is equal to 0.30), and ni is the number of

galaxies per steradian in the i’th bin, given by

ni = 3600 d (180/π)2n̂i , (B.7)

where d is the full number of galaxies per square arcminute in all bins, and n̂i is the fraction

of galaxies in the i’th bin, given by:

n̂i =

∫ zmax
i

zmin
i

D(z)
∫∞

0 D(z)
. (B.8)

We used the survey specifications for D(z), P(z), d and fsky detailed in Appendix B.3.

Using dz/dr = H, we can write the same integrals in a different way (used in other

papers and in our code):

Cijl =
9

16
Ω2
mH

4
0

∫ ∞

0
dr r−2gi(r) gj(r)P

(
k =

l

r
, z(r)

)
(B.9)
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with

gi(r) = 2r(1 + z(r))

∫ ∞

0
drs

ηi(rs)(rs − r)
rs

(B.10)

ηi(r) = H(r)ni(z(r)) (B.11)

and ni(z) is the same as before.

B.2 Likelihood

Let’s assume some theoretical spectra Cth ij
l (here, the spectra of each model that we want

to fit to the data, exploring the space of free cosmological parameters), and some observed

spectra C̃obs ij
l . The matrix C̃

obs
l of element C̃obs ij

l is called the data covariance matrix. It

can be inferred from the observed multipoles aobs i
lm , which are Gaussian distributed with a

variance independent of m in an ideal full-sky experiment, so that

C̃obs ij
l = (2l + 1)−1

l∑

m=−l
[aobs i∗
lm aobs j

lm ] . (B.12)

For a parameter forecast, instead of the covariance matrix of mock data, we can use some

fiducial spectra corrected by the noise spectra of the experiment at hand:

C̃obs ij
l = Cfiducial ij

l +N ij
l . (B.13)

This data covariance matrix should be compared with the theoretical covariance matrix

defined as

C̃th ij
l = Cth ij

l +N ij
l . (B.14)

We define the determinant of these N ×N symmetric matrices:

dth
l = det

(
C̃th ij
l

)
(B.15)

dobs
l = det

(
C̃obs ij
l

)
. (B.16)

The determinants are homogeneous polynomials of order N in the spectra, e.g. for N = 2:

dth
l = C̃th 11

l C̃th 22
l − (C̃th 12

l )2 . (B.17)

The quantity dmix
l can be built starting from dth

l , and replacing one after each other the

theoretical spectra C̃th ij
l by the corresponding C̃obs ij

l , e.g. for N = 2:

dmix
l = C̃obs 11

l C̃th 22
l + C̃th 11

l C̃obs 22
l − 2 C̃th 12

l C̃obs 12
l . (B.18)

So, dmix
l is always linear in the C̃obs ij

l ’s. By construction, when C̃th ij
l = C̃obs ij

l , one has

dmixl = Ndth
l = Ndobs

l . Since in an ideal full-sky experiment, the different multipoles are

uncorrelated in (l,m) space, the likelihood of the observed spectra given the theoretical

spectra is as simple as:

L = N Πlm

{
1

(dth
l )1/2

exp

[
−1

2
aobs †
lm (C̃th

l )−1aobs
lm

]}
, (B.19)
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where aobs
lm =

{
aobs i
lm

}
is the N-dimensional vector of observed multipoles in each bin, C̃th

l is

the theoretical covariance matrix of element Cth ij
l and N is a normalisation factor. After

some simple algebra8, the likelihood simplifies to

L = N Πl

{
1

(dth
l )1/2

exp

[
−(2l + 1)

2

dmixl

dth
l

]}
. (B.20)

The effective chi square

χ2
eff ≡ −2 lnL = −2 lnN +

∑

l

(2l + 1)

(
dmixl

dth
l

+ ln dth
l

)
, (B.21)

reaches its minimum for C̃obs
l = C̃th

l , corresponding to

χ2 min
eff ≡ −2 lnLmax = −2 lnN +

∑

l

(2l + 1)
(
N + ln dobs

l

)
. (B.22)

The χ2 relative to the best-fit model is then equal to

∆χ2
eff ≡ −2 ln

L
Lmax

=
∑

l

(2l + 1)

(
dmixl

dth
l

+ ln
dth
l

dobs
l

−N
)
. (B.23)

Finally, a first-order approximation to account for the limited sky coverage of a given

experiment, consists of increasing the cosmic variance by a factor f
−1/2
sky , equivalent to

postulating:

∆χ2
eff ≡

∑

l

(2l + 1)fsky

(
dmixl

dth
l

+ ln
dth
l

dobs
l

−N
)
. (B.24)

This is precisely the expression used in the code.

B.3 Survey specifications

A given survey is specified by D(z), P(z), d, and finally by the covered faction of the sky

fsky; it can then be decomposed in redshift bins according to some strategy defined by the

user. For a Euclid-like experiment we use the same characteristics as in the Euclid Red

Book [1]:

D(z) = z2 exp[−(z/z0)1.5] for z < zmax = 3.5 (B.25)

with mean redshift zmean = 1.412z0 = 0.9

P(z, zph) =
1√

2πσ2
ph

exp

[
−1

2

(
z − zph

σph

)2
]

(B.26)

with σph = 0.05(1 + z)

d = 30 arcmn−2 (B.27)

fsky = 0.375 . (B.28)

We assume five bins, with the first bin starting at zmin1 = 0, the last one ending at zmaxN =

3.5, and bin edges zmini = zmaxi−1 chosen such that each bin contains the same number of

galaxies, i.e. n̂i = 1/N .
8in particular, using A−1 = adj(A)/ det(A) where adj(A) is the adjugate matrix of A, i.e. the transpose

of the matrix of cofactors of A.
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B.4 Accounting for a global uncorrelated theoretical error

Like for the power spectrum likelihood, taking into account an uncorrelated error on each

data point is equivalent to minimizing over a number L ≡ (lmax − lmin + 1) of nuisance

parameters εl:

∆χ2
eff ≡

lmax∑

l=lmin

min
−∞<ε<+∞

[
(2l + 1)fsky

(
d̃mixl (εl)

d̃th
l (εl)

+ ln
d̃th
l (εl)

dobs
l

−N
)

+ ε2l

]
. (B.29)

Here, d̃th
l (εl) stands for the determinant of the theory covariance matrix shifted by the

theoretical error covariance matrix Rijl :

d̃th
l (εl) = det(C̃th ij

l + εlR
ij
l ). (B.30)

Similarily, d̃mix
l (εl) stands for the sum of N terms, each one being the determinant of a

matrix built from C̃th ij
l + εlR

ij
l , where one column has been replaced by the same column

in the observed covariance matrix. Hence the quantity dmix
l defined just above eq. (B.18)

is identical to d̃mix
l (0).

Note that for simplicity, we consider here uncorrelated errors for each l, but not for

each bin. This approach could easily be generalized to independent bin errors, at the

expense of introducing more nuisance parameters.

In the case of the power spectrum likelihood, we could find an analytical approximation

of the nuisance parameter value minimizing the effective χ2. In the present case, we checked

that simple approximate solutions are not accurate enough. We perform a numerical

minimization over each εl within the likelihood routine, using Newton’s method.

We define our theoretical error covariance matrix Rijl in a similar way as for the power

spectrum likelihood. We start from the power spectrum relative error function α(k, z)

defined in eq.(A.20). The power spectrum error can be propagated to a covariance matrix

error Eijl :

Eijl =
9

16
Ω2
mH

4
0

∫ ∞

0
dr r−2gi(r) gj(r)α

(
k =

l

r
, z(r)

)
P th

(
k =

l

r
, z(r)

)
. (B.31)

The theoretical error matrix Rijl should be proportional to Eijl . We normalize it to

Rijl = L1/2Eijl , (B.32)

in such a way that enforcing a one-sigma theoretical error for each l results in an increase

of the χ2 by one (as would be the case for a fully correlated theoretical error with the

same amplitude). Then, if one assumes that for each l the observed spectra are equal

to the theoretical ones shifted by a one-sigma theoretical error (C̃obs
l = C̃th

l + Eijl ), the

minimization gives (up to a very good approximation) εl = L−1/2, and

∆χ2
eff =

∑

l

[
(2l + 1)fsky (N + 0−N) + L−1

]
= 1. (B.33)
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B.5 Accounting for an extra neutrino-related error

Finally, we account for the correlated error modelling neutrino-related uncertainties by mul-

tiplying the theoretical power spectrum P th(k, z) by a factor (1+eνσν(k, z)), as in equation

(A.28), as well as adding e2
ν to ∆χ2

eff . The nuisance parameter eν is then marginalized over.

Note that the factor (1 + eνσν(k, z)) should not multiply the observed/fiducial spectrum,

as long as we assume a fiducial value of eν equal to zero.
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5 Observational constraints

5.1 Mass and density from first WMAP data, PRD 69, 123007 (2004)
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We combine the most recent observations of large-scale structure (2dF and SDSS galaxy surveys)
and cosmic microwave anisotropies (WMAP and ACBAR) to put constraints on flat cosmological
models where the number of massive neutrinos and of massless relativistic relics are both left arbi-
trary. We discuss the impact of each dataset and of various priors on our bounds. For the standard
case of three thermalized neutrinos, we find

∑
mν < 1.0 (resp. 0.6) eV (at 2σ), using only CMB and

LSS data (resp. including priors from supernovae data and the HST Key Project), a bound that is
quite insensitive to the splitting of the total mass between the three species. When the total number
of neutrinos or relativistic relics Neff is left free, the upper bound on

∑
mν (at 2σ, including all

priors) ranges from 1.0 to 1.5 eV depending on the mass splitting. We provide an explanation of the
parameter degeneracy that allows larger values of the masses when Neff increases. Finally, we show
that the limit on the total neutrino mass is not significantly modified in the presence of primordial
gravitational waves, because current data provide a clear distinction between the corresponding
effects.

I. INTRODUCTION

Neutrino properties are among the most difficult to be probed experimentally, due to the weakness of their inter-
actions. Data from particle accelerators tell us that there are only three flavor neutrinos, while neutrino oscillation
experiments show evidence for non-zero neutrino masses (for a recent review, see e.g. [1]). Recent results strongly
constrain the mass differences of the individual neutrino masses (actually masses squared, ∆m2) and mixing angles,
but no definite conclusion can be drawn neither on the absolute scale of neutrino masses, nor on the existence of
weakly coupled sterile neutrinos. Fortunately, cosmology is quite sensitive to the neutrino sector (see [2] for a review),
and can shed light on these questions, as well as other interesting issues regarding the Early Universe, such as the
process of neutrino decoupling from the primordial plasma.
Currently, the most popular cosmological model is the flat adiabatic ΛCDM scenario, in which the present density of

the Universe is shared between baryons, Cold Dark Matter (CDM) and a cosmological constant Λ. This model makes
rather simplistic assumptions concerning the neutrino sector, consisting only of three ultra-relativistic neutrinos. It
turns out that with a more refined description of the neutrino sector, one finds that only small corrections to the
standard picture are allowed after comparing with current data on Cosmic Microwave Background (CMB) anisotropies
and Large Scale Structure (LSS). However, these small corrections carry enough interesting physical implications to
justify an active research effort, in particular after the first releases of the WMAP and SDSS data. The results
of this effort are not only new cosmological bounds on neutrino properties but also a better understanding of how
the errors depend on (i) the experimental CMB and LSS data, (ii) external priors on the cosmological parameters,
(iii) intrinsic parameter degeneracies in the theory of cosmological perturbations, (iv) assumptions concerning the
underlying cosmological model and parameter space.
We here perform a new analysis using the most recent LSS (2dF, SDSS) and CMB (WMAP, ACBAR) data and

an extended cosmological model with an arbitrary number of massive neutrinos and additional relativistic particles,
parametrized via an effective number of neutrinos (Neff). We extend the recent work of [3] and those that appeared
after the release of WMAP data [4]-[13]. In particular, our underlying model is identical to that of ref. [13], but our
analysis differs since we include an extended set of data (such as the SDSS results and a more updated version of the
2dF ones), a new prior on the matter density from SN-Ia [14] and non-linear corrections to the LSS power spectrum

∗Present address: Department of Neurosurgery, University of Virginia Health System, PO Box 800420, Charlottesville, VA 22908, USA



286 5.1 Mass and density from first WMAP data, PRD 69, 123007 (2004)

2

on scales 0.1 h Mpc−1 < k < 0.2 h Mpc−1. Furthermore, we increase the number of free parameters to ten, in order
to analyze the bounds in the presence of primordial tensor perturbations.
The rest of the paper is organized as follows. After a short summary of the effects of neutrino masses and additional

relativistic particles in Sec. II, we describe our analysis method and dataset in Sec. III. We discuss our results and
compare with previous works in Sec. IV. Finally, we conclude in Sec. V.

II. EFFECTS OF ADDITIONAL RELATIVISTIC PARTICLES AND MASSIVE NEUTRINOS

Non-standard neutrinos and other weakly-interacting light particles leave their imprint on the evolution of the
Universe, both at the level of background quantities and spatial perturbations. Here we describe the main effects of
additional relativistic particles, massive neutrinos and their simultaneous presence.

A. Enhanced relativistic energy density (Neff)

The density of radiation in the Universe is usually assumed to be given by that of photons and of three thermally
decoupled neutrinos. These contributions are of the same order and fix the evolution of the Universe in the radiation-
dominated epoch (RD). Thus, if the three neutrinos did not decouple thermally, or in the presence of sterile neutrinos,
the total density of the Universe during RD (as a function of the photon temperature Tγ) would be significantly
affected, producing a change in the time of equality between radiation and matter, and in the sound horizon at
the time of decoupling. These changes are known to shift the angular scale of the acoustic peaks in the CMB
anisotropy spectrum as well as their amplitude (mainly, through the early integrated Sachs-Wolfe effect). They also
have an impact on the matter power spectrum P (k), because a shorter matter-dominated stage implies less growth
for perturbations inside the Hubble radius. As a consequence, the wave-length corresponding to the maximum in
P (k) will be shifted proportionally to the Hubble scale at the time of equality. Thus, the effect of Neff is mainly to
change the background evolution. However, ultra-relativistic particles also have a smaller effect directly at the level
of perturbations, explained in detail in Ref. [15].
All these effects can be parametrized by a single quantity: the effective number of relativistic degrees of freedom

during RD, defined by the relation

ρr =

[
1 +

7

8

(
4

11

)4/3

Neff

]
π2

15
T 4
γ . (1)

Here, ρr stands for the total energy density of radiation and ργ = (π2/15)T 4
γ is the contribution of photons. The

parameter Neff is defined in such way that if neutrinos decoupled following the instantaneous decoupling approxi-
mation, Neff just gives the number of flavor families. However, Neff could differ from three in the presence of extra
relics (sterile neutrinos, light gravitons, gravitinos, majorons, effects from extra dimensions, etc.) or in the case of
non-thermal decoupling. Actually, in the standard case a careful study of non-instantaneous neutrino decoupling
shows that Neff = 3.04 for three flavor families [16, 17]. Note that Neff is constant only when the neutrinos or the
other relics are ultra-relativistic.
The value of Neff is constrained by Big Bang Nucleosynthesis (BBN) from the comparison with the measured

primordial abundances of light elements. During the BBN epoch the nuclear reactions freeze out at a scale factor
that depends on the expansion rate, which in turn is fixed by the total energy density of radiation. A BBN analysis
shows that Neff = 2.5+1.1

−0.9 (2σ) [11] (see also [18]), which is perfectly compatible with the number of flavor neutrinos.
However, it is interesting to measure Neff independently of BBN (e.g. using CMB and LSS data) for at least two

reasons. First of all, because the number Neff could change between the two epochs [19, 20]. A second reason is
because the standard BBN model might be a good first-order description, but with possible corrections due to spatial
inhomogeneities, leptonic asymmetries, etc., that could be evaluated with an independent measurement of Neff .

B. Massive neutrinos

Neutrinos that possess masses larger or of the same order than the relevant photon temperature have different
effects than a constant Neff . For instance, neutrinos heavier than roughly 10−3 eV are not relativistic today. Neutrino
masses have implications for the evolution of cosmological fluctuations, both at the level of background quantities and
directly on the perturbations.
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It is well-known that massive neutrinos could account for a significant fraction of the total energy density of the
Universe today, unlike relativistic thermal relics (Ωr ∼ 5.6 × 10−6 per neutrino family). For fully non-relativistic
flavor neutrinos, the contribution to the present energy density is directly proportional to the number density. For
vanishing neutrino chemical potentials, the total neutrino contribution to the critical density is given by

Ων =

∑
mν

93.2 eV
h−2 , (2)

where h is the Hubble constant in units of 100 km s−1 Mpc−1 and
∑

mν runs over all neutrino mass states. For fixed
neutrino masses, Ων would be enhanced if neutrinos decoupled with a significant dimensionless chemical potential
ξν ≡ µν/T (or equivalently, for large relic neutrino asymmetries), simply because their number density would increase.
In principle there exist some combinations of pairs (ξ(νe), ξ(νµ,τ )) that pass the BBN test and are not yet ruled out
by the CMB+LSS limits on Neff [21]. However, it was recently shown that the stringent BBN bounds on ξe apply to
all flavors, since flavor neutrino oscillations lead to flavor equilibrium before BBN [22, 23, 24]. The contribution of a
potential relic neutrino asymmetry is limited to such low values that it can be safely ignored.
When the density of the other fluids (photons, CDM, baryons, dark energy) is kept fixed, the sum over the neutrino

masses
∑

mν has a direct repercussion on the geometry of the Universe. If instead the spatial curvature is kept fixed,
the total mass affects the relative contribution ΩX of the other fluids. In any case, this background effect has an
impact on the observable CMB and LSS power spectra. For masses of the order of 1 eV, this signature is rather small,
but can be marginally detectable.
In general, neutrinos tend to stream freely across gravitational potential wells, and to erase density perturbations.

Free-streaming is efficient on a characteristic scale called the Jeans length, corresponding roughly to the distance on
which neutrinos can travel in a Hubble time. For ultra-relativistic neutrinos, the Jeans length is by definition equal to
the Hubble radius c/H , but for non-relativistic ones it grows at a slower rate than c/H (in comoving coordinates, it
even decreases with time during matter domination). Neutrinos with masses smaller than approximately Tdec ∼ 0.3
eV are still relativistic at the time of last scattering, and their direct effect on the CMB perturbations is identical to
that of massless neutrinos. For bigger masses, the decrease of the free-streaming scale is felt by perturbations which
enter inside the Hubble radius before decoupling, which results in a small enhancement of the acoustic peaks with
respect to the massless situation.
In the intermediate mass range from 10−3 eV to 0.3 eV, the transition to the non-relativistic regime takes place

during structure formation, and the matter power spectrum will be directly affected in a mass-dependent way. Wave-
lengths smaller than the current value of the neutrino Jeans length are suppressed by free-streaming. The largest
observable wavelengths, which remain always larger than the neutrino Jeans length, are not affected. Finally, there
is a range of intermediate wavelengths which become smaller than the neutrino Jeans length for some time, and then
encompass it again: these scales smoothly interpolate between the two regimes. The net signature in the matter power
spectrum is a damping of all wavelengths smaller than the Hubble scale at the time of the transition of neutrinos to
a non-relativistic regime [25]

k > knr = 0.026

(
mν Ωm

1 eV

)1/2

h Mpc−1. (3)

where Ωm is the contribution of matter to the critical density. The damping is maximal for wavenumbers bigger than
the current free-streaming wavenumber kFS

k > kFS = 0.63
( mν

1 eV

)
h Mpc−1. (4)

We have summarized both the background and the direct effects of the neutrino masses on the CMB and LSS
perturbations. The total signature is difficult to describe analytically. However, one should remember that for masses
of order 1 eV or less, the dominant effect is the one induced by free-streaming on the matter power spectrum.
Therefore, the usual strategy is to combine CMB and LSS measurements, where the former roughly fix most of the
cosmological parameters, while the latter is sensitive to kFS and provides bounds on the neutrino mass.

C. Combined effects

In a situation with N thermalized massive neutrino species, the cosmological model should include an equal number
of parameters, namely (m1, . . . ,mN ). However, at first order such a model could be described by only two parameters,
N and the sum of all individual masses

∑
i=1,N mi. This choice not only simplifies the problem, but also provides
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the correct contribution of neutrinos to the total energy density both at early times, when all neutrinos are ultra-
relativistic and the radiation density depends only on N , and at a late epoch when at least one neutrino mass is large
compared with the temperature and the density is given in good approximation by the total mass.
However, for a precise description N and

∑
i=1,N mi are not the only relevant parameters. As an example, let us

compare two scenarios with three neutrinos but different mass spectra: a degenerate case with (m0,m0,m0) and a
case with (3m0, ǫ, ǫ), where ǫ ≪ m0. In both scenarios the neutrino density is the same for early and late stages
of the Universe. But at intermediate temperatures of the order m0

<∼ Tν
<∼ 3m0, the energy densities are different.

It is easy to show that the expansion rate is temporarily enhanced in the second scenario, but this will only have a
small signature in the CMB spectrum for m0

>∼ 0.2 eV. On the other hand, the free-streaming wavenumber kFS of the
heaviest neutrino is larger in the second scenario. Thus, in principle we expect more damping and sharper bounds on
the mass in the degenerate case.
Nowadays, after many years of experimental effort, we know that neutrinos must be massive in order to explain the

evidences for flavor oscillations from measurements of atmospheric and solar neutrinos, independently confirmed by
data from the detection of neutrinos from artificial sources at experiments such as K2K and Kamland. These results
lead to specific differences between the individual neutrino masses, at two different scales: ∆m2

atm ≃ 2.5 × 10−3

eV2 and ∆m2
sun ≃ 7 × 10−5 eV2 [1]. But one of the masses remains unconstrained, which reflects the fact that

oscillation experiments can not fix the absolute scale of neutrino masses. It is clear that, considering the present
cosmological data, in order to have a measurable effect the three neutrinos should have roughly the same mass,
following a degenerate scheme (m0,m0,m0), where m0

>∼ 0.2 eV.
On the other hand, the positive results from the LSND experiment point to neutrino oscillations with ∆m2 ∼

O(1 eV2). The less disfavored scenario that could explain the LSND data, together with the results of atmospheric
and solar neutrino experiments, contains 4 neutrinos following a 3+1 scheme where one of them is much heavier than
the others (see for instance [26]) and the fourth neutrino must be sterile. It has been shown [27, 28] that all four
neutrino models lead to a full thermalization of the sterile neutrino before BBN, so they are disfavored by BBN.
However, current CMB and LSS data can not completely rule out this possibility [7, 13].
The most general scenario is that of a cosmological model with Nnr thermally-decoupled massive neutrinos and

extra relativistic degrees of freedom, parametrized by N r not necessarily integer. This model is described by a set of
Nnr+1 parameters: (m1, . . . ,mNnr , N r). However, since such a parameter space is too large for a systematic analysis
we will consider restricted cases described by only two parameters: the total effective neutrino number Neff = N r+Nnr

and the total massM . In order to check the impact of the distribution of the total neutrino mass among the individual
states, we will study two cases:

• the model that we call degenerate has Neff massive neutrinos with the same mass. Let us emphasize that this
is a simplified model where the physical interpretation of non-integer values of Neff is not obvious.

• a second model the we denote 1+r has only one neutrino with a significant mass, while the other Neff−1 species
are ultra-relativistic.

These two models are not chosen arbitrarily. First, the degenerate model includes the standard situation with only
3 flavor neutrinos degenerate in mass, while the 1+r model includes the 3+1 scenario described above. Second, and
most importantly, the degenerate and 1+r models appear as limiting situations of the general case once the parameters
Neff and M have been fixed. Indeed, the former has the smallest possible value of the free-streaming wavenumber,
while the latter has the biggest kFS. For any intermediate model (like, for instance, the third case studied in [13],
with three effectively massless standard neutrinos and Neff − 3 species with equal mass), the observational bounds
deduced from the CMB and LSS observations should lay between those that we get in the degenerate and 1+r limits.

III. METHOD AND DATA USED

The WMAP spectrum and many other cosmological data can be accurately fitted with a six-parameter flat ΛCDM
model [4, 12], described by the Hubble parameter h, the fractional density of matter Ωm = 1−ΩΛ, the baryon density
in dimensionless units ωb = Ωbh

2, the optical depth to reionization τ , and finally, the amplitude and the spectral
tilt of primordial perturbations (As, ns). Most of our calculations correspond to a model with eight parameters: the
six previous ones plus Neff and M , as previously defined for the degenerate and 1+r models. We will also study the
consequences of the presence of a background of primordial gravitational waves, which would contribute to the CMB
anisotropy spectrum. For this case, our parameter space will be ten-dimensional, adding the tensor-to-scalar ratio r
and the tensor tilt nt. In all cases, we use the CMBFAST code [29] to calculate the power spectra.
In order to compare the theoretical cosmological models with current observations, we use a Bayesian grid-based

method described in some previous works (e.g. [5]), instead of the widely used Monte Carlo Markov Chains (MCMC)
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technique employed for instance in [12, 30]. The former has the inconvenient of being considerably slower from the
computational point of view, and the advantage of being very robust if the hypersurfaces with the same likelihood
in parameter space have very complicated shapes (for instance, an elongated and curved banana shape). Also, the
MCMC method cannot deal with likelihood distributions with nearly degenerate local minima; mathematically, the
existence of local minima cannot be disproved, but in practice, using current data and the wide variety of models
discussed in the literature, such a situation never appeared. In order to analyze unusual models with many parameters,
it is safe to use at least once a grid-based method, avoiding surprises that could arise from parameter degeneracies.
However, our analysis always shows quasi-ellipsoidal likelihood contours for various combinations of parameters. Thus
we believe that a MCMC method would give similar results.
For each combination of data set and priors, we plot the Bayesian likelihood of each point in the two-dimensional

space of neutrino parameters (M,Neff) after marginalization over the other free parameters. Actually, for simplicity
we approximate the integration process required for a true marginalization by a maximization of the likelihood over the
remaining parameter space. Integration and maximization are known to be equivalent in the case of a multigaussian
likelihood distribution and we expect the maximization technique to be reasonably accurate in our case, where we
obtained quasi-ellipsoidal contours. We checked this explicitly by computing the marginalized likelihood of each of
the six ΛCDM parameters: our results are very close to those of [4, 12], obtained with a MCMC technique and
marginalized by integration over the likelihood. Of course, our maximization routine needs to compute the likelihood
not only at grid points, but also in between. At a given point in parameter space, this is done by interpolating
quadratically each value of the Cl and P (k) from the nearest neighbors of the grid.
Our CMB data include the 1348 correlated points of the Wilkinson Microwave Anisotropy Probe (WMAP), which

measure the temperature × temperature (TT) [31] and temperature × E-polarization (TE) [32] correlation functions
on the CMB sky. WMAP provides the best available data on multipoles l ≤ 900. For constraining the TT spectrum on
smaller scales, we employ the results of the Arcminute Cosmology Bolometer Array Receiver (ACBAR) experiment [33,
34]. We remove the highest band powers (probing the region l > 1800) which could be contaminated by foregrounds.
The published ACBAR band powers are decorrelated, so it is self-consistent to use only the first 11 points of data.
Our LSS data set consists of 32 correlated points from the 2 degree Field (2dF) galaxy redshift survey [35], covering

the range 0.02 h Mpc−1 < k < 0.15 h Mpc−1, and of 19 decorrelated points from the Sloan Digital Sky Survey (SDSS)
[36] in the range 0.015 h Mpc−1 < k < 0.20 h Mpc−1. In order to compare the smallest wavelengths with the data, it
is necessary to take into account small deviations with respect to the linear power spectrum. Following the analysis
in [12], we compute non-linear corrections for each point in parameter space using the numerical procedure described
in Appendix C of [37]. Since these corrections rely on N-body simulations of a pure CDM Universe they might not be
perfectly optimized for hot plus cold dark matter. However, the models studied here include only a small fraction of
non-relativistic neutrino density. Therefore, at first order the fitting formula of [37] should be reasonably accurate in
our case (and certainly better than introducing no corrections at all). Each redshift survey is expected to constrain
the total matter power spectrum modulo a global normalization factor called the bias b. Unless otherwise stated, all
our results were obtained after marginalizing over the 2dF and SDSS bias, treated like two free parameters.
We will also use a prior on the current value of the Hubble parameter, measured by the Hubble Space Telescope

(HST) Key project [38]: h = 0.72± 0.08 (1σ). Finally, we will impose some constraints on the current density of the
cosmological constant deduced from the redshift dependence of type Ia supernovae luminosity. For a flat universe,
Perlmutter et al. [39] give a conservative bound Ωm = 0.28± 0.14 (1σ) that we denote as the SN99 prior. In addition,
we will calculate the impact of using the more restrictive result Ωm = 0.28± 0.05 (1σ) from the recent work by Tonry
et al. [14], that we label the SN03 prior.

IV. RESULTS AND COMPARISON WITH PREVIOUS WORKS

A. Degeneracies and priors

In order to understand the impact of each data set and prior on the final results, we will introduce them step by
step in the calculation of the likelihood. We will first focus on the degenerate model.
We start using only CMB and LSS data without any prior, apart from the top-hat priors defined implicitly by the

boundaries of our grid. We look for the two-dimensional probability distribution of the neutrino parameters in the
range 0 < M < 2.25 eV and 1 < Neff < 9. We find that most of this parameter space is allowed at 2σ, as shown in
panel (a) of Fig. 1. Actually some of the grid boundaries are reached by the allowed models [55], unlike in the rest of
our analysis where they have no influence on the 2σ allowed regions.
The physical explanation for such loose constraints is well-known: when the density of relativistic relics is left free,
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FIG. 1: Two-dimensional likelihood in (Neff ,M) space, marginalized over the six remaining parameters of the model. We plot
the 1σ (green / dark) and 2σ (yellow / light) allowed regions. Here we used CMB (WMAP & ACBAR) and LSS (2dF & SDSS)
data, adding different external priors as defined in section III: (a) no priors, (b) HST, (c) HST+SN99, (d) HST+SN03.
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and ωm ≡ Ωmh2. Indeed, one can vary these two quantities in the same proportion while keeping fixed zeq, the
redshift of equality between matter and radiation. In order to remove this degeneracy, it is necessary to impose some
priors on h and Ωm. Thus we repeat the same analysis, using now the HST prior. In this case, we obtain a band of
allowed models shown in panel (b) of Fig. 1. This region stretches up to the maximal values of M and Neff in our grid,
so we cannot derive yet limits on these parameters. However, the other grid bounds are now irrelevant, since none
of the models allowed at 2σ ever reaches them. The 1σ preferred region includes models with (M = 0, Neff = 3.04),
showing that there is no evidence for massive neutrinos and/or extra relativistic degrees of freedom. However, it is
interesting to see that large departures from the standard ΛCDM model cannot be excluded.
These results show clearly how difficult is to put bounds on the neutrino mass in presence of an excess of relativistic

relics during RD, and vice versa. For instance, if we assume Neff = 3, we get a 2σ upper bound M < 0.8 eV, while
for Neff = 6 this bound spectacularly increases to M < 2.2 eV. This trend was already observed in [7, 8, 13, 40], and
can be explained as follows. Suppose that we start from the best-fit standard model with (M = 0, Neff = 3), and



5.1 Mass and density from first WMAP data, PRD 69, 123007 (2004) 291

7

0

103

2x103

3x103

4x103

5x103

6x103

 10  100  1000

l(l
+

1)
C

l /
 2

π 
   

(µ
 K

)2

l

 1000

 10000

 0.01  0.1

P
(k

) 
   

(M
pc

/h
)3

k   (h/Mpc)

FIG. 2: Illustration of the main parameter degeneracy affecting our results. For three particular models, we plot on the left
the CMB temperature spectrum (normalized to WMAP) and on the right the matter power spectrum (two of them have been
rescaled by hand for clarity). See the main text for details.

that we increase Neff in such way that the radiation density in the early Universe is multiplied by a factor α. Then,
in order to keep the CMB power spectra roughly constant, we should maintain a fixed value both for zeq and ΩΛ.
This would be achieved with a transformation of the type (ωm, h) −→ (αωm,

√
αh). However, it is well-known that

the shape of the matter power spectrum is given roughly by the parameter Γ = Ωmh, that scales like
√
αΓ with the

previous transformation, meaning that the spectrum will have more power on small scales relatively to large scales.
A neutrino mass can balance this increase through the free-streaming effect. Therefore, models with high values of
Neff are compatible with larger neutrino masses.
We illustrate this parameter degeneracy in Fig. 2, where we show the CMB temperature spectrum (normalized to

WMAP) and the matter power spectrum for three particular models. The first model (red/solid curves) is the best-fit
model for the standard case (M,Neff) = (0, 3). In the second model (green/dashed curves), we have increased the
number of degrees of freedom to Neff = 7 and performed the transformation on (ωm, h) as previously discussed, leaving
both zeq and ΩM invariant. We have also increased ns a little bit. On the CMB figure it is difficult to distinguish
the curves because they perfectly overlap, especially for the best measured scales (those of the first acoustic peak),
while the difference at l < 10 is masked by cosmic variance. But as expected, the shape of the matter power
spectrum is modified, with more power on small scales relatively to large scales. This leaves plenty of room for models
with a significant neutrino mass and free-streaming effect, like the one featured here (blue/dotted curve) which has
(M,Neff) = (2.25 eV, 7).
In order to obtain bounds on the mass, it is necessary to add more restrictive priors. In particular, the supernova

priors should help to better constrain Ωm (around the central value 0.28) and therefore also the shape parameter Γ
(around Ωmh = 0.28 × 0.72 = 0.20). This value of Γ is in very good agreement with the constraint obtained from
LSS data, assuming no neutrino mass: the SDSS power spectrum points to Γ = 0.21±0.03 [36]. Therefore, we expect
the SN prior to restrict the possibility of a large neutrino free-streaming effect and to improve the upper bound on
M . This is what we observe by successively adding the SN99 and SN03 priors in our analysis. The corresponding
contours, shown in panels (c) and (d) of Fig. 1, are the main results of this work. With the SN03 prior, our one-
dimensional bounds on the effective neutrino number (marginalized over M) read 1.6 < Neff < 7.2 at 2σ, in very good
agreement with our previous results 1.4 < Neff < 6.8 [5] obtained without SDSS, no SN priors and fixing M = 0.
The one-dimensional upper bound on the total neutrino mass (marginalized over Neff) is M < 1.1 eV at 2σ. For
comparison, we list the bounds for fixed integer values of Neff are in Table I, for different priors. Since we use more
recent 2dF and SDSS data, as well as more restrictive SN priors, we are not surprised to find stronger bounds than
Hannestad & Raffelt [13].



292 5.1 Mass and density from first WMAP data, PRD 69, 123007 (2004)

8

degenerate 1+r
Neff no priors HST+SN03 no priors HST+SN03
3 1.0 0.6 0.8 0.6
4 1.5 0.8 1.2 0.8
5 2.0 1.0 1.6 1.1
6 – 1.1 1.9 1.4
7 – 1.0 – 1.5

TABLE I: The 2σ upper bound on the total neutrino mass M (eV), after marginalization over the six cosmological parameters
of the flat ΛCDM model, for particular values of Neff . We show the results for two limiting cases of splitting the total mass
between the neutrino states: degenerate (all neutrinos with the same mass) and 1+r (one massive neutrino and the other treated
as relativistic relics). Here we have used the full CMB and LSS data set, either alone (no priors) or combined with the HST
and SN03 priors. For large Neff values and in absence of priors, the upper bound is larger than the maximal value of M in our
grid (2.25 eV).

B. Role of LSS data

So far we have used the LSS data as an indication of the shape of the matter power spectrum, but not its overall
amplitude. This amplitude is difficult to measure, because of possible differences between the two-point correlation
function of luminous galaxies and that of matter, a problem known as the bias uncertainty. The 2dF team has
established that the bias b is almost scale-independent, and derived some constraints either on the redshift distortion
parameter β = Ω0.6

m /b [41] or directly on b [42]. These two results must be employed with great care since the bias
is expected to depend on the mean luminosity and redshift of each particular galaxy sample. In order to use a
self-consistent bias prior, we would need to compute some correction factors for each model (see for instance refs.
[8, 30, 43]). This technically difficult procedure, that relies on many assumptions, is beyond the goal of the present
paper and we prefer to conservatively discard any bias prior, as in [12]. Just for indication, we tried to repeat the
previous analysis with a very naive bias prior. Instead of leaving the 2dF bias as a free parameter, we tried to add
the constraint Ω0.6

m /b2dF = 0.43± 0.07 [41] to our full set of data and priors (which includes all the CMB+LSS data,
the HST prior, and one of our two supernovae priors). As shown in panel (a) of Fig. 3, our results remain unchanged.
This is consistent with the analysis of Elgarøy & Lahav [8], who treat the bias prior in a detailed way and find no
impact on the neutrino mass determination.
Since the LSS data plays a crucial role in constraining the neutrino mass, it is worth comparing the impact of the

2dF and SDSS power spectra. We go back to a data set consisting of CMB+LSS+HST+SN99, and remove either
the SDSS or 2dF spectrum from the analysis. The results, shown in panels (b) and (c) of Fig. 3, should be compared
with the combined analysis previously shown in (c) of Fig. 1. The SDSS power spectrum appears to be much more
conservative, in good agreement with previous papers: the WMAP+SDSS constraint on the neutrino mass for Neff = 3
is as large as M < 1.74 eV [12], while a WMAP+other CMB+2dF analysis gives M < 0.69 eV [4]. Consistently, our
combined analysis gives intermediate results: for Neff = 3 our WMAP+ACBAR+2dF+SDSS bound is M < 0.9 eV.
Our results seem also consistent with the recent analysis in [3], where the corresponding bound M < 0.75 eV was
found including data from both galaxy surveys up to k <∼ 0.15 h Mpc−1.

Note that in order to employ the SDSS data until kmax ≃ 0.20 h Mpc−1, it is crucial to include the non-linear
corrections to the matter power spectrum, in particular for the Neff bounds. The panel (d) of Fig. 1 was obtained
with all the CMB and LSS data, plus the HST and SN99 priors, but in absence of non-linear corrections. A comparison
with Fig. 1c shows that the constraints on Neff are lifted by one unit. This can be easily understood. Fig. 4 shows a
typical power spectrum with and without non-linear corrections. The linear power spectrum has less power on small
scales, i.e. a smaller effective shape parameter Γ. As explained earlier in this section, this can be easily compensated
by an appropriate increase in Neff , ωm and h, while leaving the CMB spectrum almost invariant.

C. Adding tensors

We have discussed so far the dependence of our results under the choice of data set and priors. However, generally
speaking, the bounds on a particular parameter also depend on assumptions concerning the underlying cosmological
model, a simple six-parameter flat ΛCDM model in our case. It is clear that by adding extra physical ingredients
that would compensate the effect of neutrinos, we would relax the bounds on (Neff , M). It is inviable to perform a
systematic study of all the ΛCDM variants proposed in the literature, but one of them deserves a particular interest.
Indeed, the six-parameter ΛCDM relies on the existence of super-horizon cosmological fluctuations at early times,
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FIG. 3: Impact of various assumptions related to the LSS data set. The default model for which we show 1σ (dashed) and
2σ (solid) contours was obtained with WMAP, ACBAR, 2dF, SDSS, plus the HST and SN99 priors. Each panel shows the 1σ
(green / dark) and 2σ (yellow / light) allowed regions (a) when including the 2dF bias prior [41], (b) without the SDSS data,
(c) without the 2dF data, (d) without non-linear corrections.

which strongly suggests that perturbations are of inflationary origin. But inflation also predicts a background of
primordial tensor perturbations: the question is whether these gravitational waves are large enough to contribute to
large-scale CMB anisotropies (fundamentally, this depends on the energy scale of inflation). It is thus important to
see how the neutrino parameter bounds evolve in presence of two extra parameters, the relative amplitude and tilt of
the primordial tensor spectrum (r, nt).
Previous analyses [4, 12] showed that for eight-parameter models (flat ΛCDM + tensors) a significant contribution

of gravitational waves is disfavored. However, one could expect that in a ten-dimensional model (flat ΛCDM +
tensors, with Neff and M), a new parameter degeneracy would show up and relax the various bounds. We performed
such an analysis for our full CMB and LSS data set, adding the HST and SN03 priors. The resulting two-dimensional
likelihood for (Neff , M), marginalized over the other eight parameters, is shown in Fig. 5. It is almost indistinguishable
from that with a vanishing contribution of gravitational waves, which shows that the current data is clearly able to
distinguish between the respective effects of tensors and neutrinos. Thus the cosmological bound on neutrino masses
is robust with respect to tensors. This robustness also holds when including a non-adiabatic, incoherent contribution
to the power spectrum such as those predicted by topological defects, as shown in a very recent work [44].
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FIG. 4: Matter power spectrum for the best-fit model with (M,Neff) = (0, 3) , plotted with and without non-linear corrections.
The difference becomes significant in the region k > 0.15 h Mpc−1 probed by the last two points in the SDSS data set.
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FIG. 5: 1σ (green / dark) and 2σ (yellow / light) allowed regions in (M , Neff ) space, marginalized over the eight other
free parameters of the flat ΛCDM+tensors model. For comparison, we show the contours corresponding to the case with no
gravitational waves. The difference is very small, showing the ability of the data to make a clear difference between the effect
of neutrinos and gravitational waves.

D. Impact of mass splitting

Our aim is to constrain cosmological models with an arbitrary number of massive neutrinos and with extra rela-
tivistic degrees of freedom. However, so far we reduced the analysis to two parameters (M , Neff), with the implicit
assumption that all neutrinos were degenerate in mass. We have not discussed the fact that for a fixed total number
of degrees of freedom Neff and total mass M , the evolution of cosmological perturbations depends on the splitting of
the mass between the different species.
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FIG. 6: 1σ (green / dark) and 2σ (yellow / light) allowed regions in (M , Neff) space for the 1+r model, compared with the
degenerate model (dashed 1σ and solid 2σ contours). Here we have included all CMB and LSS data, plus the HST and SN03
priors.

As explained in section II, for fixed (M , Neff), in some sense the opposite case to the degenerate model is the 1+r
scenario, for which all the mass corresponds to a single neutrino eigenstate, instead of being equally shared. We built
a second grid of 1+r models and analyzed it with our most restrictive set of data (WMAP+ACBAR+2dF+SDSS)
and priors (HST+SN03). We show in Fig. 6 the new allowed regions, compared with the previous ones. In the limit of
small mass and small Neff , the CMB and LSS power spectra are almost identical in the two cases, because the effect
of the mass splitting is second-order with respect to that of the total mass. A priori, this does not guarantee that the
(M , Neff) iso-likelihood contours are asymptotically equal, because we are doing a Bayesian analysis and the contours
are defined with respect to the best-fit model. For instance, in Ref. [13], the best-fit models for the degenerate and
1+r cases correspond to high values of (M , Neff) and are different from each other. This explains why the authors
find different contours in the two cases even in the massless limit. The same occurs in our analysis when we do not
impose any prior. However, when at least the HST prior is taken into account, the best-fit model is very close to
(M,Neff) = (0, 3) and the contours only differ at high values of M and Neff . As expected from the physical discussion
in Sec. II, the model with only one massive neutrino is less constrained: remember that in that case, for a fixed M
the free-streaming wavenumber kFS is larger. Therefore, the damping of the matter power spectrum is less efficient.
The one-dimensional bounds on the effective number of neutrinos (marginalized over M) now reads 1.6 < Neff < 8.5
at 2σ, and the limit on the total neutrino mass (marginalized over Neff) increases to M < 1.5 eV (2σ). The bounds
for fixed integer values of Neff are given in the last column of Table I.

V. CONCLUSIONS

We have calculated cosmological bounds on neutrino masses and relativistic relics (Neff) using the latest data on
CMB (WMAP and ACBAR) and LSS (SDSS and 2dF galaxy surveys) in the framework of an extended flat ΛCDM.
In the cases in which a comparison is possible, our results are in good agreement with those of previous analyses
[3]-[13]. In the well motivated case of three flavor neutrino with degenerate masses, we found an upper limit on the
total masses of M < 1.0 (resp. 0.6) eV using only CMB and LSS data and priors (resp. including priors on h and
ΩΛ). The bound for four thermalized neutrinos with only one of them carrying a significant mass is M < 0.8 − 1.2
eV, depending on the priors used. Therefore, the 4-neutrino solution to the LSND results is not completely ruled out,
but some tension with cosmological data exists, especially if the strong SN03 prior is taken into account.
In the case of arbitrary Neff , our results are summarized in Fig. 1 and listed in Table I. They clearly show the
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existence of a parameter degeneracy between the total neutrino mass and Neff , a trend already observed in previous
works [7, 8, 13, 40] that we have explained in Sec. IV. External priors on h and ΩΛ are found to be of particular
importance for constraining respectively Neff and M .
Since the standard ΛCDM model (with its three effectively massless thermal relics) sits within the 1σ preferred

region, we find no evidence for exotic physics such as out-of-equilibrium neutrino decoupling, non-standard nucle-
osynthesis, extra relativistic relics, a significant amount of hot dark matter, etc. However, large deviations from the
standard case are still compatible with observations: for instance, a model with one neutrino of mass M = 1.5 eV
and eight relativistic degrees of freedom is allowed by CMB and LSS data, even when all priors are included (see Fig.
6). In order to exclude this model, it is necessary to take into account the prediction of standard BBN, which gives
stronger limits on Neff .
The bounds obtained in this paper are based on the observation of cosmological perturbations (CMB and LSS),

combined with constraints on the current expansion and acceleration rates of the Universe (HST and SN priors).
Therefore they are completely independent from the predictions of primordial nucleosynthesis. It is remarkable that
in the space of the two standard BBN free parameters (ωb, Neff), the preferred regions deduced from cosmological
perturbations and from primordial abundances are perfectly compatible with each other, and more or less orthogonal:
indeed, our analysis (with the most restrictive priors) gives 0.0215 < ωb < 0.0235 and 1.6 < Neff < 8.5, while standard
BBN favors 0.017 < ωb < 0.026 and 1.6 < Neff < 3.6 [11] (all these bounds are at the 2σ level).
In order to test their robustness, we have also calculated the bounds on M and Neff in the presence of primordial

tensor perturbations. Our results show that the bounds are practically unchanged, because current cosmological data
is able to distinguish between the respective effects of tensors and neutrinos.
Finally, we have considered the impact of a different splitting of the total neutrino mass among the individual states,

an analysis also recently performed in ref. [13]. We compared the case of complete mass degeneracy (all neutrinos
with the same mass) with that where one neutrino state effectively possesses the whole mass. We found that the
bounds on the degenerate case are more restrictive due to its more efficient free-streaming, in particular for larger
values if Neff . However, for three or four neutrinos the differences between the two cases are not significant.
Our bounds are a clear indication that present cosmological data provide interesting bounds on the neutrino sector,

complementary to those from terrestrial experiments. These include tritium beta decay experiments, which provide
a current upper bound on the total neutrino mass of 6.6 eV at 2σ [45], while the KATRIN experiment [46] is planned
to have an accuracy of the order 0.35 eV. Sub-eV sensitivity to neutrino masses is also expected for experiments
measuring neutrinoless double beta decays [47], but only for Majorana neutrinos and with a dependence on the
details of the mixing matrix.
However, the cosmological bounds should be taken with care, due to their dependence on the data (or priors) used,

and also on the assumption of a particular underlying model. Examples are given by the works [10, 48], where non-zero
neutrino masses are preferred. This warning should not prevent us to be confident on the power of future cosmological
experiments to limit (and eventually detect) neutrino masses and other neutrino properties. For instance, forecast
analyses have shown that with future data there will be potential sensitivities to ∆Neff ∼ 0.2 [15, 49] (eventually
improving BBN results) and neutrino masses of the order 0.1− 0.2 eV with Planck and final SDSS data [50, 51, 52],
or with galaxy and CMB lensing [53, 54].
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Abstract

Although the MiniBooNE experiment has severely restricted the possible ex-
istence of light sterile neutrinos, a few anomalies persist in oscillation data, and
the possibility of extra light species contributing as a subdominant hot (or warm)
component is still interesting. In many models, this species would be in thermal
equilibrium in the early universe and share the same temperature as active neutri-
nos, but this is not necessarily the case. In this work, we fit up-to-date cosmological
data with an extended ΛCDM model, including light relics with a mass typically in
the range 0.1–10 eV. We provide, first, some nearly model-independent constraints
on their current density and velocity dispersion, and second, some constraints on
their mass, assuming that they consist either in early decoupled thermal relics, or in
non-resonantly produced sterile neutrinos. Our results can be used for constraining
most particle-physics-motivated models with three active neutrinos and one extra
light species. For instance, we find that at the 3σ confidence level, a sterile neutrino
with mass ms = 2 eV can be accommodated with the data provided that it is ther-
mally distributed with Ts/T

id
ν . 0.8, or non-resonantly produced with ∆Neff . 0.5.

The bounds become dramatically tighter when the mass increases. For ms . 0.9
eV and at the same confidence level, the data is still compatible with a standard
thermalized neutrino.

1 Introduction

Neutrino oscillation is a well studied phenomenon, confirmed by strong experimental
evidences. Most experimental results are well explained with a three-neutrino oscillation
model, involving two independent and well-measured square-mass differences: ∆m2

sol =
(7.59±0.21)×10−5 eV2 [1] and ∆matm = (2.74+0.44

−0.26)×10−3 eV2 [2]. However, some other
experiments have shown some anomalies which do not fit in this hypothesis (LSND [3],

1
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Gallium experiments [4], MiniBooNE low energy anomaly [5]). These anomalous results
might be due to unknown systematic effects, but all attempts to identify such systematics
have failed until now. Otherwise, they could be interpreted as exotic neutrino physics.

In Ref. [6], the MiniBooNE anomaly was explained through a renormalization of the
absolute neutrino flux and a simultaneous disappearance of electron neutrinos oscillat-
ing into sterile neutrinos (with Pνe→νe = 0.64+0.08

−0.07). The LSND and Gallium radioactive
source experiment [7, 8, 9] anomalies have been studied in Ref. [10], where is it claimed
that all these anomalies could be interpreted as an indication of the presence of, at least,
one sterile neutrino with rather large mass (few eV’s). Ref. [11] also studied the com-
patibility of the Gallium results with the Bugey [12] and Chooz [13] reactor experimental
data, concluding that such a sterile neutrino should have a mass between one and two
eV’s. Finally, the MiniBooNE collaboration performed global fits of MiniBooNE, LSND,
KARMEN2, and Bugey experiments in presence of a fourth sterile neutrino [14] (assuming
no renormalization issue for MiniBooNe unlike Ref. [6]). When all four experiments are
combined, the compatibility between them is found to be very low (4%); however, when
only three of them are included, the compatibility level is usually reasonable (the largest
tension being found between LSND and Bugey). In this analysis, the preferred value of
the sterile neutrino is usually smaller than 1eV, but still of possible cosmological relevance
(for instance, for all four experiments, the best fit corresponds to ∆m2 ∼ 0.2− 0.3 eV2).

These various developments suggest that it is important to scrutinize cosmological
bounds on scenarios with one light sterile neutrino, which could help ruling them out,
given that current bounds on the total neutrino mass assuming just three active neutrinos
are as low as

∑
mν < 0.61eV (using WMAP5, BAO and SN data [15]). This result

cannot be readily applied to the models which we consider here. Indeed, scenarios with
extra neutrinos require a specific cosmological analysis, for the simple reason that besides
affecting the total neutrino mass, additional neutrinos also increase the abundance of
relativistic particles in the early universe.

From the point of view of Cosmology, there have been many works constraining si-
multaneously the sum of neutrino masses and the contribution to the relativistic energy
density component of the Universe, parametrized as the effective number of neutrinos, Neff

(see for example [16, 17, 18, 19, 20, 21]). Most of these works assume either that the heav-
iest neutrino (and hence the most relevant one from the point of view of free-streaming)
has a thermal distribution, sharing the same value of temperature as active neutrinos, or
that all neutrinos are degenerate in mass. However, the results of Refs. [22, 23] can also be
applied to the case of very light active neutrinos plus one heavier, non-necessarily thermal
sterile neutrino, which is the most interesting case for explaining oscillation anomalies. In
terms of physical motivations, it is very likely that the light sterile neutrino required by the
LSND anomaly acquires a thermal distribution in the early universe, through oscillations
with active neutrinos in presence of a large mixing angle [24]. On the other hand, there
are some proposals to avoid these contrains (for a list of some scenarios, see [25]). One of
such possibilities is based on a low reheating temperature (TR) Universe [26, 27, 28, 29],
in which, for a sufficiently low TR, the sterile neutrinos could be non-thermal [30] and its
production would be suppressed [28], such that usual cosmological bounds are evaded. In
fact, in these models, sterile neutrinos are allowed to have a large mass without entering
in conflict with other experimental results, while Tdec . TR . 10MeV (Tdec being the
temperature of the cosmic plasma at neutrino decoupling).

2
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In absence of thermalization, cosmological bounds on the sterile neutrino mass become
potentially weaker. Hence, it is interesting to study the compatibility of recently proposed
scenarios with a light sterile neutrino with the most recent cosmological data, keeping
in mind the possibility of a non-thermal distribution. The goal of this paper is hence
to study the compatibility of cosmological experimental data (WMAP5 plus small-scale
CMB data, SDSS LRG data, SNIa data from SNLS and conservative Lya data from VHS)
with the hypothesis of a sterile neutrino with the characteristics sketched above, i.e., with
a mass roughly of the order of the electron-Volt, and a contribution to Neff smaller than
one.

2 Light sterile neutrino in cosmology: physical ef-

fects and parametrization

If a population of free-streaming particles becomes non-relativistic after photon decou-
pling, its physical effects on the cosmological background and perturbation evolution are
mainly described by three quantities:

1. its contribution to the relativistic density before photon decoupling, which affects
the redshift of radiation/matter equality, usually parametrized by an effective neu-
trino number (standing for the relativistic density of the species divided by that of
one massless neutrino family in the instantaneous decoupling (id) limit):

∆Neff ≡ ρrels

ρν
=

[
1

π2

∫
dp p3f(p)

]
/

[
7

8

π2

15
T id
ν

4
]

(1)

with T id
ν ≡ (4/11)1/3Tγ,

2. its current energy density, which affects (i) the current energy budget of the Universe
(with various consequences for the CMB and LSS spectra, depending on which
other parameters are kept fixed), and (ii) the amplitude reduction in the small-
scale matter power spectrum due to these extra massive free-streaming particles,
parametrized by the dimensionless number ωs:

ωs ≡ Ωsh
2 =

[
m

π2

∫
dp p2f(p)

]
×

[
h2

ρ0c

]
(2)

where ρ0c is the critical density today and h the reduced Hubble parameter,

3. the comoving free-streaming length of these particles when they become non-relativistic,
which controls the scale at which the suppression of small-scale matter fluctuations
occurs. This length can easily be related to the average velocity of the particles
today, 〈vs〉1.

1The minimum comoving free-streaming wavenumber kfs is controlled by Ωm and by the ratio
a(tnr)/〈vs(tnr)〉 evaluated when T = m, i.e. when a(tnr) ∼ 〈vs(t0)〉a(t0). Given that 〈vs(tnr)〉 ∼
〈vs(t0)〉a(t0)/a(tnr), the minimum comoving free-streaming length just depends on 〈vs(t0)〉 and Ωm.

3
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However, for whatever assumption concerning the phase-space distribution function f(p),
the three numbers (∆Neff , ωs, 〈vs〉) satisfy a constraint equation. Indeed, the average
velocity of the particles today (assumed to be in the non-relativistic regime) is given
exactly by

〈vs〉 ≡
∫
p2dp p

m
f(p)∫

p2dp f(p)
=

7

8

π2

15

(
4

11

)4/3
T 4
CMBh

2

ρc

∆Neff

ωs
= 5.618× 10−6∆Neff

ωs
(3)

in units where c = kB = ~ = 1, and taking TCMB = 2.726K. Hence, the three physical
effects described above depend on only two independent parameters.

Reducing the physical impact of any population of massive free-streaming particles to
these three effects (and two independent parameters) is a simplification: two models based
on different non-thermal phase-space distributions f(p) can in principle share the same
numbers (∆Neff , ωs, 〈vs〉) and impact the matter power spectrum differently. Indeed, the
free-streaming effect depends on the details of f(p) (including high statistical momenta
like

∫
dp p4f(p), etc.) However, the conclusions of Ref. [18] indicate that for many

models with non-thermal distorsions, observable effects can indeed be parametrized by
two combinations of (∆Neff , ωs, 〈vs〉) with good accuracy: other independent parameters
would be very difficult to observe2.

Let us compute the three parameters (∆Neff , ωs, 〈vs〉) for simple cases. For one species
of thermalized free-streaming particles with mass ms, sharing the same temperature as
active neutrinos in the instantaneous decoupling limit, one gets:

∆Neff = 1, ωs =
ms

94.05 eV
, 〈vs〉 =

7π4

180ζ(3)

T id
ν

ms
=

0.5283 meV

ms
. (4)

For a light thermal relic with a Fermi-Dirac distribution and a different temperature Ts,
these quantities become

∆Neff =

(
Ts

T id
ν

)4

, ωs =
ms

94.05eV

(
Ts

T id
ν

)3

, 〈vs〉 =
0.5283 meV

ms

(
Ts

T id
ν

)
. (5)

For a non-thermal relic with a free function f(p), there is an infinity of possible models.
A popular one is the Dodelson-Widrow scenario [32] (also referred as the “non-resonant
production scenario”), motivated by early active-sterile neutrino oscillations in the limit
of small mixing angle and zero leptonic asymmetry, which corresponds to the phase-space
distribution

f(p) =
χ

ep/Tν + 1
(6)

where χ is an arbitrary normalization factor. In this case, in the approximation Tν = T id
ν ,

the three “observable” parameters read

∆Neff = χ, ωs =
ms

94.05eV
χ, 〈vs〉 =

0.5283 meV

ms
. (7)

2This conclusion does not apply when the non-thermal distribution f(p) has a sharp peak close to
p = 0. In this case, particles with very small momentum should be counted within the CDM component,
not within the extra massive free-streaming component. Otherwise, one would obtain values of ωs and
〈vs〉 based on an averages between cold and hot/warm particles; then, these parameters would not
capture the correct physical effects (see [31])

4
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Hence, a Dodelson-Widrow (DW) model shares that same “observable” parameters (∆Neff ,
ωs, 〈vs〉) as a thermal model with mthermal

s = mDW
s χ1/4 and Ts = χ1/4Tν . Actually, for

these two models, the degeneracy is exact: it can be shown by a change of variable in
the background and linear perturbation equations that the two models are strictly equiv-
alent from the point of view of cosmological observables [33, 18]. As mentioned before,
in the general case, two models sharing the same (∆Neff , ωs, 〈vs〉) are not always strictly
equivalent, but can be thought to be hardly distinguishable even with future cosmological
data. For instance, the low-temperature reheating model analyzed in [27, 28] leads to a
distribution of the form

f(p) =
χp

ep/Tν + 1
. (8)

This model would in principle deserve a specific analysis, but in good approximation we
can expect that by only exploring the parameter space of thermal models (or equivalently,
of DW models), we will obtain some very generic results, covering in good approximation
most possibilities for the non-thermal distorsions.

3 Analysis

3.1 Data

In the following sections, we will present the results of various runs based on the Boltz-
mann code CAMB [34] and cosmological parameter extraction code CosmoMC [35]. We
modified CAMB in order to implement the proper phase-space distribution f(p) of the
thermal or DW model. For simplicity, we assumed in all runs that the three active neu-
trinos can be described as massless particles. In order to obtain a Bayesian probability
distribution for each cosmological parameters, we ran CosmoMC with flat priors on the
usual set of six parameters ωb, ωdm = ωs + ωcdm, θ, τ , As, ns (see e.g. [36]), plus two
extra parameters describing the sterile neutrino sector, that will be described in the next
sections. We choose the following data set: WMAP5 [37] plus small-scale CMB data
(ACBAR [38], CBI [39], Boomerang [40]), the galaxy power spectrum of the SDSS LRG
[41] with flat prior on Q [42, 43], SNIa data from SNLS [44] and conservative Lyman-α
data from VHS [45]. We do not include more recent Lyman-α data sets, which have much
smaller errorbars, but for which the deconvolution of non-linear effects depends on each
particular cosmological model, and requires specific hydrodynamical simulations.

3.2 General analysis

Our first goal is to obtain simple results with a wide range of applications. Hence, we
should not parametrize the effect of sterile neutrinos with e.g. their mass or temperature:
in that case, our results would strongly depend on underlying assumptions for f(p). It
is clear from section 2 that nearly “universal” results can be obtained by employing
two combinations of the “observable parameters” ∆Neff , ωs and 〈vs〉 (and eventually of
other parameters of the ΛCDM model). Here we choose to vary the current dark matter
density fraction fs = ωs/(ωs + ωcdm) and the current velocity dispersion 〈vs〉. As will be
clear from our results, these two parameters capture the dominant observable effects, and
lead to very clear bounds, since their correlation with other ΛCDM model parameters

5
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is insignificant. Our limits on fs and 〈vs〉 apply exactly to the thermal case and DW
case, and approximately to most other cases (modulo the caveat described in the second
footnote of section 2).

Our parameter space is represented in Figure 1. We adopt a logarithmic scale for 〈vs〉
and display the interesting range

1 km/s < 〈vs〉 < 1000 km/s . (9)

Indeed, with out dataset, particles with smaller velocities would be indistinguishable from
cold dark matter; instead, particles with larger velocities would either have ∆Neff > 1 (a
case beyond the motivations of this work, and anyway very constrained by the data) or
fs < 0.02 (being indistinguishable from extra relativistic degrees of freedom). Assuming
a particular value for ωdm = ωs + ωcdm and for ∆Neff , it is possible to compute the
velocity dispersion 〈vs〉 as a function of fs. Since the CMB and LSS data give precise
constraints on ωdm, regions of equal ∆Neff correspond to thin bands in the (fs, 〈vs〉)
plane. We show these bands in Figure 1 for 10−3 < ∆Neff < 1 under the assumption that
ωdm = 0.11± 0.01, which corresponds roughly to the 95% confidence limits (C.L.) from
all our runs. These iso-∆Neff bands are completely model-independent.

Instead, regions of equal mass can only be plotted for a particular model. In Figure 1,
we show the bands corresponding to m =1 eV and 10 eV, either in the case of early
decoupled thermal relics (blue/dotted lines) or in the DW case (green/dashed lines). For
any given mass, these bands intersect each other in a location corresponding to the case
of one fourth standard neutrino species with ∆Neff = 1.

We ran CosmoMC with top-hat priors on fs (in the physical range [ 0, 1]) and on
log10[〈vs〉/1km/s] (in the range [0, 3] motivated by the previous discussion). Our results
are summarized in Figure 1 (bottom). We see that the upper bound on fs decreases
smoothly as the velocity dispersion increases: when the particles have a larger velocity
dispersion, their free-streaming wavelength is larger, so the step-like suppression in the
power spectrum (which amplitude depends on fs) is more constrained. For 〈vs〉 ∼ 1 km/s,
we find fs . 0.1 at the 2σ C.L., while for 〈vs〉 ∼ 100 km/s, we find fs . 0.06 at the 2σ
C.L. When the velocity dispersion becomes larger than 100 km/s, the upper bound on
fs decreases even faster as a function of 〈vs〉. This is the case of a HDM component with
significant contribution to the number of relativistic d.o.f., for which the observational
bounds derive from a combination of the first and second effects described in section 2:
in this limit, in addition to being sensitive to the free-streaming effect, the data disfavor
a significant increase of the total radiation density corresponding to ∆Neff of order one
or larger.

We should stress that the details of our results depend on the underlying priors. For
instance, one could use a flat prior on 〈vs〉 instead of its logarithm. Running in the range
0 < 〈vs〉 < 1000 km/s with such a prior would give more focus on the large-〈vs〉 allowed
region of Figure 1. However, it would be more interesting to focus on small velocities,
in order to understand how our results can be extended without any discontinuity to the
case of warmer and heavier dark matter. For this purpose, we ran CosmoMC with a
top-hat prior on 0 < 〈vs〉 < 1 km/s, and obtained the results shown in Figure 2. These
results are identical to those published in Reference [46] (figure 7). By gluing figure 1
on top of 2, one can obtain a full coverage of the parameter space of ΛCDM models
completed by one extra (hot or warm) dark matter species. Figure 2 shows the transition

6
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from the region in which this extra species is indistinguishable from cold dark matter
(when 〈vs〉 ≤ 0.1 km/s, the fraction fs is unconstrained) to the region in which it is
warm (for 0.4 ≤ 〈vs〉 ≤ 1 km/s, there is a nearly constant bound fs . 0.1 at the 2-σ
level). Figure 1 shows instead the transition from warm particles to hot particles (with
velocities comparable to those of active neutrinos). The two plots perfectly match each
other along the 〈vs〉 = 1 km/s axis, on which the sterile neutrino fraction is bounded by
fs . 0.1 (2-σ).

3.3 Mass/temperature bounds in the thermal case

We now focus on the particular case of early decoupled thermal relics, with a Fermi-
Dirac distribution and a temperature Ts. These models can be parametrized by the mass
ms and the temperature in units of the neutrino temperature, Ts/T

id
ν . Our parameter

space – and the correspondence with the previous parameters ∆Neff , fs, 〈vs〉 – is shown
in Figure 3. In this analysis, we want to focus again on light sterile neutrinos rather
than WDM; hence we are not interested in velocities smaller than 1 km/s today. We
are not interested either in the case of enhanced particles with ∆Neff > 1. Then, as can
be checked in Figure 3, the ensemble of interesting models can be covered by taking a
top-hat prior on log10(ms/1 eV) in the range [−1, 2], and on Ts/T

id
ν in the range [0, 1].

The likelihood contours obtained for this case are shown in Figure 3 (bottom). They
are consistent with our previous results: when ∆Neff ∼ 10−2 (and hence Ts/T

id
ν ∼ 0.3),

the upper bound on the sterile neutrino fraction is fs < 0.1 at the 2σ C.L.; then this bound
decreases smoothly when Ts increases. For a fourth standard neutrino with Ts = T id

ν , the
2σ C.L. (resp. 3σ C.L.) bound is ms . 0.4 eV (resp. 0.9 eV).

This figure can be conveniently used for model building: for a given value of the
mass, it shows what should be the maximal temperature of the thermal relics in order to
cope with cosmological observations; knowing this information and assuming a particular
extension of the particle physics standard model, one can derive limits on the decoupling
time of the particle. For instance, for a mass of ms = 0.5 eV one gets Ts/T

id
ν . 0.9; for

ms = 1 eV, Ts/T
id
ν . 0.7; while for ms = 5 eV, Ts/T

id
ν . 0.5. This figure can also be

applied to thermally produced axions, like in Refs. [47, 48].

3.4 Mass bounds in the DW case

Finally, for Dodelson-Widrow relics with a distribution function equal to that of stan-
dard neutrinos suppressed by a factor χ (which is equal by definition to ∆Neff), we can
parametrize the ensemble of models by ms and χ. Our parameter space – and the cor-
respondence with fs, 〈vs〉 – is shown in Figure 4. Like in the previous section, we are
not interested in a current velocity dispersion smaller than 1 km/s today. Then, as can
be checked in Figure 4, the ensemble of interesting models can be covered by taking a
top-hat prior on log10(ms/1 eV) in the range [−1, 2]; in this range, values of χ smaller
than 10−2 would correspond to tiny values of fs, i.e. to particles indistinguishable from
massless particles; so, we can take a flat prior on log10(χ) in the range [−2, 0].

The likelihood contours obtained for this case are shown in Figure 4 (bottom). We
are not surprised to find once more an allowed region corresponding to fs . 0.1 at the 2σ
C.L. when ∆Neff = χ ∼ 10−2 is negligible with respect to one, or less when ∆Neff grows
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closer to one. For a fourth standard neutrino with Ts = T id
ν , the two definitions of the

mass (following from the thermal or from the DW cases) are equivalent, and indeed we
find ms . 0.4 eV (2σ C.L.) or ms . 0.9 eV (3σ C.L.) like in section 3.3.

This figure can also be useful for model building: for a given value of the mass, it
shows what should be the maximal value of χ compatible with cosmological observations;
in turn, this information can be used to put bounds on the mixing angle between this
relic and active neutrinos in non-resonant production models à la Dodelson & Widrow.
For instance, for a mass of ms = 1 eV, the 2σ C.L. gives χ . 0.5; for ms = 2 eV, we get
χ . 0.2; while for ms = 5 eV, we get χ . 0.1.

3.5 Comparison with previous work

The ensemble of cosmological models that we are exploring here is not different from that
studied by Dodelson, Melchiorri & Slosar [23] (called later DMS) or by Cirelli & Strumia
[22] (called later CS); the difference between these works and the present analysis consists
in a different choice of parameters, priors, data set, and also methodology in the case of
CS.

For instance, Figure 6a of CS presents constrains in the space (log10∆Neff , log10 ms)
assuming a DW scenario. Hence, their parameter space is identical to the one we used
in section 3.4, excepted for the prior range (which is wider in their case). As far as the
data set is concerned, CS use some CMB and galaxy spectrum measurements which are
slightly obsolete by now; on the other hand, they employ some additional information
derived from BAO experiments, and use SDSS Lyman-α data points that we conserva-
tively excluded from this analysis, since they assume a ΛCDM cosmology. Finally, CS
performed a frequentist analysis, and their bounds are obtained by minimizing the χ2

over extra parameters (while in the present Bayesian analysis, we marginalize over them
given the priors).

In order to compare our results with CS, we performed a run with top-hat priors on
log10 χ = log10(∆Neff) in the range [−3, 1], and on log10(ms/1 eV) in the range [−1, 3]. In
this particular run we compute the 90%, 99% and 99.9% C.L., following CS. Our results
are shown in Figure 5, and are consistent with those of our general analysis.

In spite of the different data set and methodology, the 90% and 99% contours are
found to be in very good agreement with CS in most of the parameter space. The major
difference lies in the small mass region, for which CS get more conservative limits on ∆Neff

than we do, and find a preference for non-zero values of the effective neutrino number
0.5 < ∆Neff < 4 (at the 90% C.L.). This qualitative behavior has been nicely explained
in Refs. [42, 43]. It is due to the non-linear corrections applied to the theoretical linear
power spectrum before comparing it with the observed SDSS and 2dF galaxy power
spectra. The approach used in this work (and in the default version of CosmoMC)
consists in marginalizing over a nuisance parameter Q (describing the scale-dependence
of the bias) with a flat prior. Instead, following Ref. [49], CS impose a gaussian prior on
Q. This results in biasing the results towards larger values of Neff , and finding marginal
evidence for ∆Neff > 0. Of course, this assumption might turn out to be correct; however,
it is argued in Refs. [42, 43] that our knowledge on Q (based essentially on N-body
simulations for some particular cosmological models) is still too uncertain for getting
definite predictions.
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The analysis of DMS is Bayesian, like ours. The authors use top-hat priors on the two
parameters −3 < log10(ms/1 eV) < 1 and 0 < ωs < 1, roughly the same data set as CS,
and employ the distribution function of early decoupled thermal relics. Our results based
on the same priors (but a different data set) are shown in Figure 6, and are consistent
with the previous sections: at the 2σ level, ωs is such that fs . 0.1 for ∆Neff ∼ 10−2;
then, the bound on fs (and therefore on ωs) decreases smoothly when ms decreases (and
therefore 〈vs〉 increases). These results differ significantly from those of DMS, who find
that the upper bound on ωs peaks near m ∼ 0.25 eV and then decreases quickly. We
do not observe such a behavior: our upper bound on ωs increases (not so smoothly, but
still monotonically) when ms increases, in agreement with all previous results in this
paper. This difference is most likely due to the use made by DMS of more aggressive
Lyman-α data from SDSS, of different galaxy power spectrum data, and of a prior on Q,
as in CS. This data set puts stronger limits on a possible suppression of the small scale
power spectrum. Actually, in absence of sterile neutrinos, the same combination of data
is known to produce very strong bounds on neutrino masses, and to prefer ∆Neff slightly
larger than one [49]; in presence of light sterile neutrinos, the results of DMS show that
this data also imposes a strong bound ωs < 0.001 for 1 eV < ms < 10 eV, due to its
sensitivity to the sterile neutrino free-streaming effect. Our large scale structure data set
(conservative Lyman-α data from VHS, SDSS-LRG and flat prior on Q) is not able to
exclude this region.

4 Conclusions

In this work, we studied the compatibility of cosmological experimental data with the
hypothesis of a non-thermal sterile neutrino with a mass in the range 0.1 − 10 eV (or
more), and a contribution to Neff smaller than one. We computed Bayesian confidence
limits on different sets of parameters, adapted to the case of thermal relics (section 3.3), of
non-resonantly produced sterile neutrinos à la Dodelson & Widrow (DW, section 3.4), or
of generic parameters leading to nearly model-independent results (section 3.2). In each
case, we performed a specific parameter extraction from scratch, in order to obtain reliable
results assuming flat priors on the displayed parameters. For simplicity, we assumed that
the masses of the three active neutrinos are negligible with respect to that of the sterile
neutrino.

For a cosmological data set consisting in recent CMB and LSS data, as well as older
but very conservative Lyman-α data, we found the conditional probability e.g. on the
mass of a thermal relic given its temperature, or on the mass of a DW neutrino given its
density suppression factor, etc. These proabilities are such that if the fourth neutrino is a
standard one (with ∆Neff = 1), it should have a mass ms . 0.4 eV (2σ C.L.) or ms . 0.9
eV (3σ C.L.).

At the 3σ C.L., a mass ms = 1 eV can be accommodated with the data provided that
this neutrino is thermally distributed with Ts/T

id
ν . 0.97, or non-resonantly produced

with ∆Neff . 0.9. The bounds become dramatically tighter when the mass increases.
At the same confidence level, a mass of just ms = 2 eV requires either Ts/T

id
ν . 0.8 or

∆Neff . 0.5, while a mass ms = 5 eV requires Ts/T
id
ν . 0.6 or ∆Neff . 0.2.

Our bounds can hopefully be used for constraining particle-physics-motivated models
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with three active and one sterile neutrinos, as those investigated recently in order to
explain possible anomalies in neutrino oscillation data. Many of these models can be
immediately localized in our figures 3 or 4. For sterile neutrinos or other particles which
do not fall in the thermal or DW category, a good approximation consists in computing
their velocity dispersion and localizing the model in our figure 5 3. Future neutrino oscil-
lation experiments are expected to test the self-consistency of the standard three-neutrino
scenario with increasing accuracy. If anomalies and indications for sterile neutrinos tend
to persist, it will be particularly useful to perform joint analysis of oscillation and cos-
mological data, using the lines of this work for the latter part.
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Figure 1: (Top) the parameter space (fs,〈vs〉) chosen in our general analysis. The
thin bands delimited by red/solid lines show regions of equal ∆Neff (assuming ωdm =
0.11±0.01); these bands are fully model-independent. We also show the model-dependent
regions of equal mass, delimited by blue/dotted lines for the case of early decoupled ther-
mal relics, and consisting in horizontal green/dashed lines for Dodelson-Widrow sterile
neutrinos. (Bottom) same with, in addition, the regions allowed at the 68.3% (1σ), 95.4%
(2σ) and 99.7% (3σ) C.L. by our cosmological data set, in a Bayesian analysis with flat
priors on fs and log10〈vs〉 within the displayed range.
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Figure 2: 1σ, 2σ and 3σ contours of the marginalized likelihood for the two parameters
(fs, 〈vs〉), with different priors than in previous figures. As explained in the text, this plot
shows the region where the sterile neutrino is heavy and behaves like warm dark matter,
in complement to Figure 1, which is based on a different range/prior for 〈vs〉 adapted to
the case of a light, hot sterile neutrino.
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allowed at the 68.3% (1σ), 95.4% (2σ) and 99.7% (3σ) C.L. by our cosmological data
set, in a Bayesian analysis with flat priors on log10(ms) and Ts/T

id
ν within the displayed

range.
15



314 5.2 Limits on light sterile neutrinos, PRD 79, 045026 (2009)

 0.01

 0.1

 1

 0.1  1  10  100

χ

ms (eV)

∆Neff=1 (4th std ν)

∆Neff=10-1

∆Neff=10-2

fs =
1

fs =
0.5

fs =
0.2

fs =
0.1

fs =
0.05

fs =
0.02

fs =
0.01

<
v s

>
=

10
 k

m
/s

<
v s

>
=

10
0 

km
/s

<
v s

>
=

10
00

 k
m

/s
DW νs

ONLY

 0.01

 0.1

 1

 0.1  1  10  100

χ

ms (eV)

DW νs

ONLY

 0.01

 0.1

 1

 0.1  1  10  100

χ

ms (eV)

1-σ 2-σ 3-σ

DW νs

ONLY

DW νs

ONLY
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Figure 5: (Top) the parameter space (∆Neff ,ms) used for comparison with Cirelli &
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Figure 6: (Top) the parameter space (ms,ωs) used for comparison with Dodelson, Mel-
chiorri & Slosar in the particular case of thermal relics. The thin bands delimited by
blue/dot-dashed lines show regions of equal fs (assuming ωdm = 0.11 ± 0.01); the ma-
genta/dotted lines correspond to fixed values of the velocity dispersion today; horizontal
red/solid lines to fixed ∆Neff . (Bottom) same with, in addition, the regions allowed at the
68.3% (1σ), 95.4% (2σ) and 99.7% (3σ) C.L. by our cosmological data set, in a Bayesian
analysis with flat priors on log10(ms) and ωs within the displayed range.

18



5 OBSERVATIONAL CONSTRAINTS 317

5.3 Current constraints on the leptonic asymmetry, PRD 86, 023517 (2012)
ar

X
iv

:1
20

4.
25

10
v3

  [
as

tr
o-

ph
.C

O
] 

 2
5 

Ju
n 

20
12

CERN-PH-TH-2012-089, IFIC/12-28, LAPTH-018/12

Cosmological lepton asymmetry with a nonzero mixing angle θ13

Emanuele Castorina,1 Urbano França,2 Massimiliano Lattanzi,3 Julien

Lesgourgues,4,5, 6 Gianpiero Mangano,7 Alessandro Melchiorri,8 and Sergio Pastor2

1SISSA, Via Bonomea 265, 34136, Trieste, Italy
2Instituto de F́ısica Corpuscular (CSIC-Universitat de València), Apdo. 22085, 46071 Valencia, Spain
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While the baryon asymmetry of the Universe is nowadays well measured by cosmological obser-
vations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker.
We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking
into account the effect of flavor oscillations. We present our results for two different values of the
neutrino mixing angle θ13, and show that for large θ13 the limits on the total neutrino asymmetry
become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the
present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, while the
limits on the total neutrino mass from cosmological data are essentially independent of θ13. Finally,
we perform a forecast for COrE, taken as an example of a future CMB experiment, and find that it
could improve the limits on the total lepton asymmetry approximately by up to a factor 6.6.

PACS numbers: 98.80.-k, 14.60.Pq. 26.35.+c, 98.70.Vc, 98.80.Es

I. INTRODUCTION

Quantifying the asymmetry between matter and anti-
matter of the Universe is crucial for understanding some
of the particle physics processes that might have taken
place in the early Universe, at energies much larger than
the ones that can be reached currently in particle acceler-
ators. Probes of the anisotropies of the cosmic microwave
background (CMB) together with other cosmological ob-
servations have measured the cosmological baryon asym-
metry ηb to the percent level thanks to very precise mea-
surements of the baryon density [1]. For the lepton asym-
metries, while they are expected to be of the same order
of the baryonic one due to sphaleron effects that equili-
brate both asymmetries, it could be the case that other
physical processes lead instead to leptonic asymmetries
much larger than ηb (see, e.g., [2–4]), with consequences
for the early Universe phase transitions [5], cosmological
magnetic fields [6], and the dark matter relic density [7–
9]. Neutrino asymmetries are also bound to be nonzero
in the presence of neutrino isocurvature perturbations,
like those generated by curvaton decay [10–12]. Those
large neutrino asymmetries could have been imprinted in
the cosmological data [13, 14], and although the limits
on such asymmetries have been improving over the last
years, current constraints are still many orders of magni-
tude weaker than the baryonic measurement.
On the other hand, thanks to the neutrino oscilla-

tions the initial primordial flavor asymmetries are redis-
tributed among the active neutrinos before the onset of

Big Bang Nucleosynthesis (BBN) [15–17], which makes
the knowledge of the oscillation parameters important
for correctly interpreting the limits on such asymme-
tries. Nowadays all of those parameters are accurately
measured (see e.g. [18, 19]), with the exception of the
mixing angle θ13 that only recently started to be signifi-
cantly constrained. In fact, several neutrino experiments
over the last year gave indications of nonzero values for
sin2 θ13 [20–22], and recently the Daya Bay reactor ex-
periment claimed a measurement of sin2(2θ13) = 0.092±
0.016(stat.)±0.005(syst.) at 68% C.L. [23], excluding a
zero value for θ13 with high significance. The same find-
ing has been also reported by the RENO Collaboration
[24], sin2(2θ13) = 0.113± 0.013(stat.)±0.019(syst.) (68%
C.L.).

Finally, yet another important piece of information for
reconstructing the neutrino asymmetries in the Universe
is the measured value of the relativistic degrees of free-
dom in the early universe, quantified in the so-called
effective number of neutrinos, Neff . In the case of the
three active neutrino flavors with zero asymmetries and
a standard thermal history, its value is the well-known
Neff ≃ 3.046 [25], but the presence of neutrino asymme-
tries can increase that number while still satisfying the
BBN constraints [26]. Interestingly enough, recent CMB
data has consistently given indications of Neff higher
than the standard value: recently the Atacama Cosmol-
ogy Telescope (ACT) [27] and the South Pole Telescope
(SPT) [28, 29] have found evidence for Neff > 3.046 at
95% C. L., making the case for extra relativistic degrees
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of freedom stronger (see also [30]). It should however be
kept in mind that other physical processes, like e.g. the
contribution from the energy density of sterile neutrinos
[31, 32] or of gravitational waves [33], could also lead to
a larger value for Neff .

Some recent papers have analyzed the impact of neu-
trino asymmetries with oscillations on BBN [26, 34, 35],
mainly because data on light element abundances domi-
nate the current limits on the asymmetries. Some studies
using CMB data can be found in the literature (see for
instance [36–38] for limits on the degeneracy parameters
ξν using the WMAP data and [39] for the effect of the
primordial Helium fraction in a Planck forecast), but our
paper improves on that in two directions. First, we used
for our analysis the neutrino spectra in the presence of
asymmetries after taking into account the effect of flavor
oscillations. Second, we checked the robustness of our
results comparing the analysis of CMB and BBN data
with a more complete set of cosmological data, including
in particular supernovae Ia (SNIa) data [40], the mea-
surement of the Hubble constant from the Hubble Space
Telescope (HST) [41], and the Sloan Digital Sky Survey
(SDSS) data on the matter power spectrum[42]. While
current CMB measurements and the other datasets are
not expected to improve significantly the constraints on
the asymmetries, they constrain the sum of the neutrino
masses, giving a more robust and general picture of the
cosmological parameters.

Our goals in this work is twofold: first, we constrain
the neutrino asymmetries and the sum of neutrino masses
for both zero and nonzero values of θ13 using some of the
latest cosmological data to obtain an updated and clear
idea of the limits on them using current data; second,
we perform a forecast of the constraints that could be
achievable with future CMB experiments, taking as an
example the proposed mission COrE1 [43]. Given that
current constraints are basically dominated by the BBN
constraints, we use our forecast to answer the more gen-
eral question of whether future CMB experiments can be
competitive with the BBN bounds.

This paper is organized as follows. Initially, we briefly
review in Sec. II the dynamics of the neutrino asymme-
tries prior to the BBN epoch. With those tools in hand,
we proceed to study in Sec. III the impact on cosmo-
logical observables of the neutrino asymmetries for two
values of the mixing angle θ13 using current cosmologi-
cal data. We then step towards the future and describe
in Sec. IV our forecast for the experiment COrE, where
we study the potential of the future data from lensing of
CMB anisotropies to constrain some of the cosmological
parameters (in particular, neutrino asymmetries and the
sum of the neutrino masses) with great precision. Finally,
in Sec. V we draw our conclusions.

1 http://www.core-mission.org

II. EVOLUTION OF COSMOLOGICAL
NEUTRINOS WITH FLAVOR ASYMMETRIES

The dynamics of the neutrino distribution functions in
the presence of flavor asymmetries and neutrino oscilla-
tions in the early Universe has been discussed in detail
in the literature [26, 34, 35], and here we will only briefly
review its main features and its consequences for the late
cosmology.
We assume that flavor neutrino asymmetries, ηνα , were

produced in the early Universe. At large temperatures
frequent weak interactions keep neutrinos in equilibrium
thus, their energy spectrum follows a Fermi-Dirac distri-
bution with a chemical potential µνα for each neutrino
flavor. If ξα ≡ µνα/T is the degeneracy parameter, the
asymmetry is given by

ηνα ≡ nνα − nν̄α

nγ
=

1

12ζ(3)

[
π2ξα + ξ3α

]
. (1)

Here nνα (nν̄α) denotes the neutrino (antineutrino) num-
ber density, nγ is the photon number density, and ζ(3) =
1.20206.
As usual, we will write the radiation energy density of

the Universe in terms of the parameter Neff , the effective
number of neutrinos, as

ρr = ργ

[
1 +

7

8

(
4

11

)4/3

Neff

]
, (2)

withNeff = 3.046 the value in the standard case with zero
asymmetries and no extra relativistic degrees of freedom
[25]. Assuming that equilibrium holds for the neutrino
distribution functions, the presence of flavor asymmetries
leads to an enhancement

∆Neff =
15

7

∑

α=e,µ,τ

[
2

(
ξα
π

)2

+

(
ξα
π

)4
]

. (3)

Note that a neutrino degeneracy parameter of order
ξα & 0.3 is needed in order to have a value of ∆Neff at
least at the same level of the effect of non-thermal distor-
tions discussed in [25]. This corresponds to ηνα ∼ O(0.1).
On the other hand, the primordial abundance of 4He de-
pends on the presence of an electron neutrino asymmetry
and sets a stringent BBN bound on ηνe which does not
apply to the other flavors, leaving a total neutrino asym-
metry of order unity unconstrained [44, 45]. However,
this conclusion relies on the absence of effective neu-
trino oscillations that would modify the distribution of
the asymmetries among the different flavors before BBN.
The evolution of the neutrino asymmetries in the

epoch before BBN with three-flavor neutrino oscillations
is found by solving the equations of motion for 3 × 3
density matrices of the flavor neutrinos as described in
[46, 47], including time-dependent vacuum and matter
terms, both from background e± and neutrinos, as well
as the collision integrals from neutrino weak interactions.
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TABLE I: Cosmological and neutrino parameters.

Type Symbol Meaning Uniform Prior

Primary Ωbh
2 Baryon density (0.005, 0.1)

Cosmological Ωdmh2 Dark matter densitya (0.01, 0.99)

Parameters τ Optical depth to reionization (0.01, 0.8)

100θs Angular scale of the sound horizon at the last scattering (0.5, 10)

ns Scalar index of the power spectrum (0.5, 1.5)

log
[
1010As

]
Scalar amplitude of the power spectrum b (2.7, 4)

Neutrino m1(eV) Mass of the lightest neutrino c (0, 1)

Parameters ην Total asymmetry at T = 10 MeV (−0.8, 0.8)

ηin
νe Initial electron neutrino asymmetry at T = 10 MeV (−1.2, 1.2)

Derived h Reduced Hubble constantd -

Parameters ∆Neff Enhancement to the standard effective number of neutrinose -
aAlso includes neutrinos.
bat the pivot wavenumber k0 = 0.05 Mpc−1.
cWe assume here normal hierarchy.
dH0 = 100h km s−1 Mpc−1.
eNeff = 3.046.

This was done under certain approximations in refs. [15–
17], where it was shown that neutrino oscillations are
indeed effective before the onset of BBN. Therefore, the
total lepton asymmetry is redistributed among the neu-
trino flavors and the BBN bound on ηνe can be translated
into a limit on ην = ηνe +ηνµ +ηντ , unchanged by oscilla-
tions and constant until electron-positron annihilations,
when it decreases due to the increase in the photon num-
ber density.

The temperature at which flavor oscillations become
effective is important not only to establish ηνe at the
onset of BBN, but also to determine whether weak in-
teractions with e+e− can still keep neutrinos in good
thermal contact with the primeval plasma. Oscillations
redistribute the asymmetries among the flavors, but only
if they occur early enough interactions would preserve
Fermi-Dirac spectra for neutrinos, in such a way that the
degeneracies ξα are well defined for each ηνα and the re-
lation in Eq. (3) remains valid. This the case of early
conversions of muon and tau neutrinos, since oscillations
and collisions rapidly equilibrate their asymmetries at
T ≃ 15 MeV [15]. Therefore one can assume the initial
values ηinνµ = ηinντ ≡ ηinνx , leaving as free parameters ηinνe
and the total asymmetry ην = ηinνe + 2ηinνx .

If the initial values of the flavor asymmetries ηinνe and

ηinνx have opposite signs, neutrino conversions will tend
to reduce the asymmetries which in turn will decrease
Neff . But if flavor oscillations take place at temperatures
close to neutrino decoupling this would not hold and an
extra contribution of neutrinos to radiation is expected
with respect to the value in Eq. (3), as emphasized in
[26] and shown in Fig. 1, where the Neff isocontours for
non-zero mixing are compared with those obtained from
the frozen neutrino distributions taking into account the
effect of flavor oscillations [34]. One can see that oscil-
lations efficiently reduce Neff for neutrino asymmetries

with respect to the initial values from Eq. (3).

The evolution of the neutrino and antineutrino distri-
bution functions with non-zero initial asymmetries, from
T = 10 MeV until BBN, has been calculated in [26, 34].
Here we use the final numerical results for these spectra
in a range of values for ηinνe and ην as an input for our anal-
ysis, described in the next Section. Note that an analysis
in terms of the degeneracy parameters ξα as done for in-
stance in [38] is no longer possible. We adopt the best fit
values for the neutrino oscillation parameters quoted in
[18], assuming a normal hierarchy of the neutrino masses,
except for the mixing angle θ13, for which we will adopt
two distinct values: θ13 = 0 and sin2 θ13 = 0.04. The lat-
ter is close to the upper limit placed by the Daya Bay [23]
and RENO [24] experiments on this mixing angle (with
a best-fit value of sin2 θ13 = 0.024 and sin2 θ13 = 0.029,
respectively), and is used as an example to understand
the cosmological implications of a nonzero θ13. Moreover,
since the flavor asymmetries equilibrate for large values
of this mixing angle, the cosmological effects are similar
for sin2 θ13 & 0.02, as in the case of an inverted hierarchy
for a broad range of θ13 values (see, for instance, Fig. 4
of Ref. [35]). As for the case θ13 = 0, though it seems
presently disfavoured with a high statistical significance
after the Daya Bay and RENO results, we have decided
to include it for comparison.

III. COSMOLOGICAL CONSTRAINTS ON
NEUTRINO PARAMETERS

Having set the basic framework for the calculation of
the neutrino distribution functions in the presence of
asymmetries and for different θ13, we can now proceed
to investigate its cosmological effects.

In order to constrain the values of the cosmological
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FIG. 1: Final contribution of neutrinos with primordial asymmetries to the radiation energy density. The isocontours of Neff

on the plane ηin
νe vs. ην , including flavor oscillations, are shown for two values of sin2 θ13: 0 (blue solid curves, left panel) and

0.04 (red solid curves, right panel) and compared to the case with zero mixing (dashed curves). The dotted line corresponds
to ην = ηνx (x = µ, τ ), where one expects oscillations to have negligible effects.

neutrino asymmetries, we compare our results to the ob-
servational data. In particular, we use a modified ver-
sion of the CAMB code2 [48] to evolve the cosmological
perturbations and obtain the CMB and matter power
spectra in the presence of non-zero neutrino asymmetries
in the neutrino distribution functions. We checked that
the spectra computed by our modified CAMB version
are consistent up to high accuracy with those obtained
with CLASS [49], that incorporates the models consid-
ered here in its public version. This version of CAMB
is interfaced with the Markov chain Monte Carlo pack-
age CosmoMC3 [50] that we use to sample the parameter
space and obtain the posterior distributions for the pa-
rameters of interest.

We derive our constraints in the framework of a flat
ΛCDM model with the three standard model neutrinos
and purely adiabatic initial conditions. The parameters
we use are described in Table I as well as the range of
the flat priors used. As can be seen, six of them are
the standard ΛCDM cosmological parameters, and we
add to those three new parameters, namely the mass of
the lightest neutrino mass eigenstate m1 (the other two
masses are calculated using the best fit for ∆m2

21 and
∆m2

31 obtained in [18], assuming normal hierarchy) and
the two neutrino asymmetries we mentioned earlier, ηinνe
and ην . The values of the effective degeneracy parame-
ters ξα after BBN4, needed by CAMB, are pre-calculated

2 http://camb.info/
3 http://cosmologist.info/cosmomc/
4 The neutrino distribution functions can be parameterized by

as a function of the asymmetries (following the method
described in the previous section) over a grid in (ηinνe , ην)
and stored on a table, used for interpolation during the
Monte Carlo run.

A comment on the parameterization is in order. It
is a standard practice in cosmological analyses to pa-
rameterize the neutrino masses via Ωνh

2 or equivalently
fν ≡ Ων/Ωdm, and from that (assuming that neutri-
nos decoupled at equilibrium) derive the sum of neutrino
masses, which are taken to be degenerate. The presence
of lepton asymmetries dramatically changes this simple
scheme. Now the neutrino number density is a compli-
cated function of the η’s obtained from a non-equilibrium
distribution function. When fν is used, any effect related
to the way in which the total neutrino density is shared
among the different mass eigenstates is completely lost.
In that sense, the parameterization used in this paper
looks more physically motivated since energy densities of
neutrinos are constructed from two fundamental quan-
tities, namely their phase space distributions and their
masses.

The most basic dataset that we consider only con-
sists of the WMAP 7-year temperature and polarization
anisotropy data. We will refer to it simply as “WMAP”.
The likelihood is computed using the the WMAP like-
lihood code publicly available at the LAMBDA web-

Fermi-Dirac-like functions with an effective ξα and temperature
Tα [34], which are related to the first two moments of the distri-
bution, the number density and energy density.
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site5. We marginalize over the amplitude of the Sunyaev-
Zel’dovich signal.
In addition to the WMAP data, we also include the

BBN measurement of the 4He mass fraction Yp from the
data collection analysis done in [51], in the form of a
Gaussian prior

Yp = 0.250± 0.003 (1σ) . (4)

Indeed, some authors have recently reported a larger
central value, Yp ∼ 0.257 [52–54], with quite differ-
ent uncertainty determinations. In [55] using a Markov
chain Monte Carlo technique already exploited in [54],
the primordial value of 4He decreased again to Yp =
0.2534± 0.0083, which is compatible at 1σ with (4). We
will not use these results in our analysis, but we will com-
ment on their possible impact in the following. We also
note that in [56] a robust upper bound Yp < 0.2631 (95 %
C.L.) has been derived based on very weak assumptions
on the astrophysical determination of 4He abundance,
namely that the minimum effect of star processing is
to keep constant the helium content of a low-metallicity
gas, rather than increase it, as expected. As we will
show, the measurement of Yp currently dominates the
constraints on the asymmetries: if we were to conserva-
tively allow for larger uncertainties on that measurement,
like for example those reported in [55], our constraints
from present data would correspondingly be weakened.
Moreover, we decided not to use the Deuterium mea-
surements since at the moment they are not competitive
with Helium for constraining the asymmetries (see, e.g.,
Fig. 6 of Ref. [34]), although there are recent claims that
they could place strong constraints on Neff at the level of
∆Neff ≃ ±0.5 [57]. This is a very interesting perspective
but at the moment, Deuterium measurements in different
QSO absorption line systems show a significant disper-
sion, much larger than the quoted errors.
The dataset that uses both WMAP 7-year data and the

determination of the primordial abundance of Helium as
in (4) will be referred to as “WMAP+He”. Measure-
ments of Yp represent the best “leptometer” currently
available, in the sense that they place the most stringent
constraints on lepton asymmetries for a given baryonic
density [58]. The 4He mass fraction depends on the bary-
onic density, the electron neutrino degeneracy parameter
and the effective number of neutrino families. Thus, in
order to consistently implement the above determination
of Yp in our Monte Carlo analysis, we compute ∆Neff

and ξe coming from the distribution functions calculated
with the asymmetries (as explained in the previous sec-
tion) and store them on a table. During the CosmoMC
run, we use this table to obtain by interpolation the val-
ues ∆Neff and ξe corresponding to given values of the
asymmetries (which are the parameters actually used in
the Monte Carlo), and finally to obtain Yp as a function of

5 http://lambda.gsfc.nasa.gov/

∆Neff , ξe and Ωbh
2. Notice that this approach is slightly

less precise than the one used in Refs. [34, 35], where
a full BBN analysis was performed, but this approxima-
tion should suffice for our purposes, especially taking into
account that we will be comparing BBN limits on the
asymmetries with the ones placed by other cosmological
data, that as we shall see are far less constraining. In
any case, we have checked that the agreement between
the interpolation scheme and the full BBN analysis is at
the percent level.

We derive our constraints from parallel chains gener-
ated using the Metropolis-Hastings algorithm. For a sub-
set of the models, we have also generated chains using the
slice sampling method, in order to test the robustness of
our results against a change in the algorithm. We use
the Gelman and Rubin R parameter to evaluate the con-
vergence of the chains, demanding that R − 1 < 0.03.
The one- and two-dimensional posteriors are derived by
marginalizing over the other parameters.

Our results for the cosmological and neutrino param-
eters from the analysis are shown in Table II, while
Fig. 2 shows the marginalized one-dimensional probabil-
ity distributions for the lightest neutrino mass, the initial
electron-neutrino asymmetry, and the total asymmetry,
for the different values of θ13. Notice that the posterior
for ηinνe (middle panel) is still quite large at the edges of

the prior range. This happens also for both the ηinνe and
ην posteriors obtained using only the WMAP data (not
shown in the figure). Since the priors on these parame-
ters do not represent a real physical constraint (as in the
case mν > 0), but just a choice of the range to explore,
we refrain from quoting 95% credible intervals in these
cases, as in order to do this one would need knowledge of
the posterior in all the region where it significantly differs
from zero. However, it is certain that the actual 95% C.I.
includes the one that one would obtain using just part of
the posterior (as long as this contains the peak of the dis-
tribution). If we do this, we obtain constraints that are
anyway much worse than those from BBN. Finally, we
also stress that if a larger experimental determination of
Yp or measurements with larger uncertainities were used,
as those reported in [52–54], BBN would show a prefer-
ence for larger values of Neff as well.

Concerning the neutrino asymmetries, shown in the
middle and right panels of Fig. 2, we notice that while the
initial flavor asymmetries remain highly unconstrained
by current data, the total asymmetry constraint improves
significantly for θ13 6= 0. This result agrees with previ-
ous results from BBN-only studies [34, 35], and it is a
result of the equilibration of flavor asymmetries when
θ13 is large (see, e.g., Fig. 5 of Ref. [34]). When the fla-
vors equilibrate in the presence of a nonzero mixing angle
(sin2 θ13 = 0.04 in our example) the total asymmetry is
distributed almost equally among the different flavors,
leading to a final asymmetry ηfinνe ≈ ηfinνx ≈ ην/3 (where
x = µ, τ). Hence, the fact that the BBN prior requires
ηfinνe ≈ 0 for the correct abundance of primordial Helium
(see Fig. 3) leads to a strong constraint on the constant
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FIG. 2: One-dimensional posterior probability density for m1, η
in
νe , and ην for the WMAP+He dataset.

TABLE II: 95% C.L. constraints on cosmological parameters for the WMAP and WMAP+He datasets.

Parameter WMAP WMAP+He

sin2 θ13 = 0 sin2 θ13 = 0.04 sin2 θ13 = 0 sin2 θ13 = 0.04

100 Ωbh
2 2.20+0.14

−0.12 2.20+0.13
−0.12 2.20 ± 0.12 2.20 ± 0.12

Ωdmh2 0.118 ± 0.016 0.117+0.017
−0.016 0.119 ± 0.017 0.117 ± 0.016

τ 0.085+0.029
−0.026 0.085+0.030

−0.027 0.085+0.030
−0.027 0.085+0.029

−0.027

100θs 1.0387 ± 0.0063 1.0389+0.0069
−0.0063 1.0381+0.054

−0.053 1.0387+0.0053
−0.0054

ns 0.953 ± 0.032 0.953+0.032
−0.033 0.955+0.034

−0.035 0.952+0.031
−0.032

log
[
1010As

]
3.064+0.080

−0.082 3.062+0.080
−0.079 3.068+0.081

−0.078 3.062+0.073
−0.075

m1 (eV) ≤ 0.39 ≤ 0.38 ≤ 0.38 ≤ 0.38

ηin
νe – a – a – a – a

ην – a – a [−0.64; 0.72] [−0.071; 0.054]

h 0.652+0.084
−0.083 0.653+0.081

−0.082 0.656+0.084
−0.081 0.650+0.078

−0.081

∆Neff ≤ 0.32 ≤ 0.16 ≤ 0.43 ≤ 0.03
aThe 95% confidence region is not well-defined in these cases be-

cause the posterior does not vanish at the end of the prior range
(see e.g. the middle panel of Fig. 2). See discussion in the text.

total asymmetry, −0.071 ≤ ην ≤ 0.054 (95% C.L.).
On the other hand, since the constraints come most

from the distortion in the electron neutrino distribution
function, when θ13 = 0 (and therefore there is less mix-
ing) the direct relation between ηfinνe and ην is lost. In
this case, the total asymmetry could still be large, even
if the final electron neutrino asymmetry is small, as sig-
nificantly asymmetries can still be stored on the other
two flavors, leading to a constraint an order of magni-
tude weaker than the previous case, −0.64 ≤ ην ≤ 0.72
(95% C.L.). As expected, this is reflected on the allowed
ranges for ∆Neff , as shown in Fig. 4: while for θ13 = 0 the
∆Neff ≃ 0.5 are still allowed by the data, nonzero values
of this mixing angle reduce the allowed region in the pa-
rameter space by approximately an order of magnitude
in both ∆Neff and ην .
We confirmed in our analysis that the constraints on

the asymmetry are largely dominated by the BBN prior
at present. This is shown in Fig. 5, where we compare
the results of our analysis with a more complete dataset
(which we refer to as ALL) that includes distance mea-
surements of SNIa from the SDSS compilation [40] and
the HST determination of the Hubble constantH0 [41], as
well as data on the power spectrum of the matter density

field, as reconstructed from a sample of Luminous Red
Galaxies of the SDSS Seventh Data Release [42]. This
is due to the fact that other cosmological data constrain
the asymmetries via their effect on increasing Neff , and
currently the errors on the measurement of the effective
number of neutrinos [1, 27–29] are significantly weaker
than our prior on Yp, eq. (4)

6. The fact that bounds on
leptonic asymmetries are dominated by the BBN prior
(i.e. by 4He data) is also confirmed by the similarity of
our bounds on (ην , η

in
νe) with those of [35]. Note that

the limits reported in [35] sound weaker, because they
are frequentist bounds obtained by cutting the parame-

6 On the other hand, these other cosmological data sets have an
impact on other parameters like e.g. the neutrino mass. But
since in this work we are primarily interested in bounding the
asymmetries, we prefer to stick to the robust WMAP+He data
set. In that way, our results are not contaminated by possible
systematic uncertainties in the other data. Actually, the inclu-
sion of all external datasets (in particular, of SNIa together with
H0) reveals a conflict between them, leading to a bimodal pos-
terior probability for Ωdmh2 and to a preference for m1 > 0 at
95% C.L.
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analysis of the WMAP+He dataset. Notice the much stronger
constraint for the nonzero mixing angle due to the faster equi-
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for zero θ13 the data seem to favor Neff around the standard
value Neff = 3.046.

ter probability at ∆χ2 = 6.18, i.e. they represent 95%
bounds on joint two-dimensional parameter probabilities
(in the Gaussian approximation). The one-dimensional
95% confidence limits, corresponding to ∆χ2 = 4, are
smaller and very close to the results of the present paper.
We also checked that using our codes and data sets, we
obtain very similar results when switching from Bayesian
to frequentist confidence limits.
We conclude this section noting that the current con-

straints on the sum of neutrino masses are robust un-
der a scenario with lepton asymmetries, as those extra
degrees-of-freedom do not correlate with the neutrino
mass. On the other hand, to go beyond the BBN limits on
the asymmetries more precise measurements of Neff are
clearly needed, and in the next section we forecast the re-
sults that could be achievable with such an improvement
using COrE as an example of future CMB experiments.
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comparing the WMAP+He and the ALL datasets. As men-
tioned in the text, the constraints on the total asymmetry do
not improve significantly with the inclusion of other cosmolog-
ical datasets, as they are mainly driven by the determination
of the primordial Helium abundance.

IV. FORECAST

Given that the current constraints on the lepton asym-
metries are dominated by their effect on the primordial
production of light elements, one can ask whether future
cosmological experiments can improve over the current
limits imposed by BBN. With that goal in mind, we take
as an example a proposed CMB experiment, COrE (Cos-
mic Origins Explorer) [43], designed to detect the pri-
mordial gravitational waves and measure the CMB grav-
itational lensing deflection power spectrum on all linear
scales to the cosmic variance limit. The latter is of special
interest for this work, as the CMB lensing is expected to
probe with high sensitivity the absolute neutrino masses
and Neff [59].
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We used the package FuturCMB7 in combination with
CAMB and CosmoMC for producing mock CMB data,
and fit it with a likelihood based on the potential sensitiv-
ity of COrE.We include, also in this case, the information
coming from present measurements of the Helium frac-
tion, encoded in the Gaussian prior (4). We consider five
of COrE’s frequency channels, ranging from 105 to 225
GHz, with the specifications given in [43] and reported for
convenience in Table III, and assume an observed frac-
tion fsky = 0.65. We do not consider other channels as
they are likely to be foreground dominated. We take a
maximum multipole ℓmax = 2500. In our analysis, we
have assumed that the uncertainties associated to the
beam and foregrounds have been properly modeled and
removed, so that we can only consider the statistical un-
certainties. Those are optimistic assumptions, as under
realistic conditions systematic uncertainties will certainly
play an important role. In that sense, our results rep-
resent an illustration of what future CMB experiments
could ideally achieve.

Frequency [GHz] θfwhm [arcmin] σT [µK] σP [µK]

105 10.0 0.268 0.463

135 7.8 0.337 0.583

165 6.4 0.417 0.720

195 5.4 0.487 0.841

225 4.7 0.562 0.972

TABLE III: Experimental specifications for COrE [43]. For
each channel, we list the channel frequency in GHz, the
FWHM in arcminutes, the temperature (σT ) and polariza-
tion (σP ) noise per pixel in µK.

We use CMB lensing information in the way described
in [60], assuming that the CMB lensing potential spec-
trum will be extracted from COrE maps with a quadratic
estimator technique.
For the forecast we adopt the fiducial values for the cos-

mological parameters shown in Table IV for both cases
of θ13 discussed previously. The two sets of fiducial val-
ues correspond to the best-fit models of the WMAP+He
dataset for the two values of θ13. In the case of the neu-
trino mass, since the likelihood is essentially flat between
0 and 0.2 eV, we have chosen to take m1 = 0.02 eV. This
is below the expected sensitivity of COrE and should
thus be essentialy equivalent to the case where the light-
est neutrino is massless.
The sensitivities on the neutrino parameters for COrE

are shown in Fig. 6 for the two values of θ13. As expected
for the sum of the neutrino masses, the constraints are
significantly better than the current ones, and could in
principle start probing the minimal values guaranteed by
flavor oscillations [59]. Note that our forecast error for

7 http://lpsc.in2p3.fr/perotto/

TABLE IV: Fiducial values for the cosmological parameters
for the COrE forecast.

Parameter Fiducial Value Fiducial Value

(sin2 θ13 = 0) (sin2 θ13 = 0.04)

Ωbh
2 0.0218 0.0224

Ωdmh2 0.121 0.118

τ 0.0873 0.0865

h 0.709 0.705

ns 0.978 0.968

log
[
1010As

]
3.12 3.08

m1 (eV) 0.02 0.02

ηin
νe 0 0

ην 0 0

TABLE V: 95% confidence intervals for the neutrino param-
eters with COrE.

Parameter sin2 θ13 = 0 sin2 θ13 = 0.04

m1 (eV) < 0.049 < 0.048

ηin
νe [−0.20; 0.20] [−0.25; 0.24]

ην [−0.12; 0.09] [−0.048; 0.030]

m1 differs slightly from the one presented in [43], most
probably because the forecasts in this reference are based
on the Fisher matrix approximation. But our main goal
in this section is to discuss how COrE observations will
help improving the limits on the asymmetries discussed
previously, that are basically dominated by the available
measurements of the 4He abudance. The right panel of
Fig. 6 shows the forecasted posterior probability distri-
bution for ην , and the marginalized constraints for it are
listed in Table V for both values of θ13; in particular, the
vertical lines of the right panel show the 95% C.L. limits
obtained from the full BBN analysis of Ref. [35]. Com-
paring the values from Tables II and V one can see that
an experiment like COrE would improve current 95% lim-
its on the total leptonic asymmetry by nearly a factor 6.6
(θ13 = 0) and 1.6 (sin2 θ13 = 0.04), competitive over the
constraints from 4He abundance only. It should be noted
that the error bars on the primordial abundances are very
difficult to be reduced due to systematic errors on astro-
physical measurements [51], and therefore it is feasible
that CMB experiments will be an important tool in the
future to improve the constraints on the asymmetries.
Notice however that, since the CMB is insensitive to the
sign of the η’s, BBN measurements will still be needed
in order to break this degeneracy.
Finally, in Fig. 7 we show the COrE sensitivity on the

asymmetries in the plane ην vs. ηinνe compared to the
constraints of Sec. III obtained using current data and to
the full BBN analysis of Ref. [35]. Notice that in the case
θ13 = 0 the constraints of the previous section are quite
less constraining than the ones coming from the full BBN
analysis because we are not using deuterium data, known
to be important to close the contours on the asymmetries



5.3 Current constraints on the leptonic asymmetry, PRD 86, 023517 (2012) 325

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.02  0.04  0.06  0.08

R
el

at
iv

e 
P

ro
ba

bi
lit

y

m1 [eV]

COrE Forecast

sin2θ13=0.04

θ13=0

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2  0  0.2  0.4

R
el

at
iv

e 
P

ro
ba

bi
lit

y

ηνe

in

COrE Forecast

sin2θ13=0.04

θ13=0

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

R
el

at
iv

e 
P

ro
ba

bi
lit

y

ην

COrE Forecast

sin2θ13=0.04

θ13=0

FIG. 6: One-dimensional probability distribution function for m1 and ην for COrE forecast. The middle panel shows that an
experiment like COrE could start constrain the initial electron neutrino asymmetry. The vertical lines on the right panel show
the current 95% C.L. limits obtained in the previous section. The errors on the asymmetries are improved by approximately a
factor 6.6 or 1.6 for θ13 = 0 and sin2 θ13 = 0.04, respectively, compared to the results shown in Fig. 2.

-0.5 0.0 0.5

-1.0

-0.5

0.0

0.5

1.0

ΗΝ

ΗΝe
in

Sin
2
Θ13=0

-0.5 0.0 0.5

-1.0

-0.5

0.0

0.5

1.0

ΗΝ

ΗΝe
in

Sin
2
Θ13=0.04

FIG. 7: The 95% C.L. contours on the ην vs. ηin
νe plane from our analysis with current data (WMAP+He dataset, black

dotted) compared to the results of the BBN analysis of Ref. [35] (blue dashed) and with the COrE forecast (red solid).

plane, especially for small values of θ13 [34]. Moreover,
future CMB experiments have the potential to reduce the
allowed region, dominating the errors in this analysis.

In summary, an experiment like COrE is capable of
improving the constraints on the lepton asymmetries by
up to a factor 6.6 on the total and/or flavor asymmetries
depending on the value of the mixing angle θ13. In ad-
dition to that, such an experiment would also constrain
other cosmological parameters (in particular the sum of
the neutrino masses) with significant precision, providing
yet another step towards the goal of accurately measuring
the properties of the Universe.

V. CONCLUSIONS

Understanding the physical processes that took place
in the early Universe is a crucial ingredient for deci-
phering the physics at energies that cannot be currently
probed in terrestrial laboratories. In particular, since the
origin of the matter-antimatter is still an open question
in cosmology, it is important to keep an open mind for
theories that predict large lepton asymmetries. In that
case, constraining total and flavor neutrino asymmetries
using cosmological data is a way to test and constrain
some of the possible particle physics scenarios at epochs
earlier than the BBN.

For that, we initially used current cosmological data
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to constrain not only the asymmetries, but also to un-
derstand the robustness of the cosmological parameters
(and the limits on the sum of the neutrino masses) for
two different values of the mixing angle θ13 to account
for the evidences of a nonzero value for this angle. Our
results confirm the fact that at present the limits on the
cosmological lepton asymmetries are dominated by the
abundance of primordial elements generated during the
BBN, in particular the abundance of 4He, currently the
most sensitive “leptometer” available.
However, future CMB experiments might be able to

compete with BBN data in what concerns constraining
lepton asymmetries, although BBN will always be needed
in order to get information on the sign of the η’s. We
took as an example the future CMB mission COrE, pro-
posed to measure with unprecedent precision the lensing
of CMB anisotropies, and our results indicate that it has
the potential to significantly improve over current con-
straints while, at the same time placing limits on the
sum of the neutrino masses that are of the order of the
neutrino mass differences.
Finally, we notice that for the values of θ13 measured

by the Daya Bay and RENO experiments the limits on
the cosmological lepton asymmetries and on its asso-
ciated effective number of neutrinos are quite strong,
so that lepton asymmetries cannot increase Neff signif-
icantly above 3.4. Under those circumstances, if the cos-
mological data (other than BBN) continues to push for
large values of Neff , new pieces of physics such as sterile
neutrinos will be necessary to explain that excess.
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ABSTRACT

Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temper-
ature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (` >∼ 40) are extremely well described by the standard
spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology,
the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical den-
sities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147±0.00062)×10−2, Ωbh2 = 0.02205±0.00028,
Ωch2 = 0.1199± 0.0027, and ns = 0.9603± 0.0073, respectively (Note that in this abstract we quote 68% errors on measured parameters and 95%
upper limits on other parameters.) For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s−1 Mpc−1, and a high
value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-
redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO)
surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone.
We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of
extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional
astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter
ΛCDM cosmology. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter
content of the Universe. We find an upper limit of r0.002 < 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like
relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the
effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent
agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and
CMB data, the dark energy equation of state parameter is constrained to be w = −1.13+0.13

−0.10. We also use the Planck data to set limits on a possible
variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM
model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum
at low multipoles. The unusual shape of the spectrum in the multipole range 20 <∼ ` <∼ 40 was seen previously in the WMAP data and is a real
feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in
an otherwise self-consistent analysis of the Planck temperature data.

Key words. Cosmology: observations – Cosmology: theory – cosmic microwave background – cosmological parameters 1
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Fig. 25. The Planck+WP+highL data combination (samples; colour-coded by the value of H0) partially breaks the geometric degen-
eracy between Ωm and ΩΛ due to the effect of lensing in the temperature power spectrum. These limits are significantly improved
by the inclusion of the Planck lensing reconstruction (black contours). Combining also with BAO (right; solid blue contours) tightly
constrains the geometry to be nearly flat.

Inflationary models that allow a large number of e-foldings pre-
dict that our Universe should be very accurately spatially flat38.
Nevertheless, by introducing fine tunings it is possible to con-
struct inflation models with observationally interesting open ge-
ometries (e.g., Linde 1995; Bucher et al. 1995; Linde 1999) or
closed geometries (Linde 2003). Even more speculatively, there
has been interest in models with open geometries from consid-
erations of tunnelling events between metastable vacua within
a “string landscape” (Freivogel et al. 2006). Observational lim-
its on spatial curvature therefore offer important additional con-
straints on inflationary models and fundamental physics.

CMB temperature power spectrum measurements suffer
from a well-known “geometrical degeneracy” (Bond et al. 1997;
Zaldarriaga et al. 1997). Models with identical primordial spec-
tra, physical matter densities and angular diameter distance to
the last scattering surface, will have almost identical CMB tem-
perature power spectra. This is a near perfect degeneracy (see
Fig. 25) and is broken only via the integrated Sachs-Wolfe (ISW)
effect on large angular scales and gravitational lensing of the
CMB spectrum (Stompor & Efstathiou 1999). The geometrical
degeneracy can also be broken with the addition of probes of
late time physics, including BAO, Type Ia supernova, and mea-
surement of the Hubble constant (e.g., Spergel et al. 2007).

Recently, the detection of the gravitational lensing of the
CMB by ACT and SPT has been used to break the geomet-
rical degeneracy, by measuring the integrated matter potential
distribution. ACT constrained ΩΛ = 0.61 ± 0.29 (68% CL)
in Sherwin et al. (2011), with the updated analysis in Das et al.
(2013) giving ΩK = −0.031 ± 0.026 (68% CL) (Sievers et al.
2013). The SPT lensing measurements combined with seven
year WMAP temperature spectrum improved this limit to ΩK =
−0.0014 ± 0.017 (68 % CL) (van Engelen et al. 2012).

With Planck we detect gravitational lensing at
about 26σ through the 4-point function (Sect. 5.1 and
Planck Collaboration XVII 2013). This strong detection of
gravitational lensing allows us to constrain the curvature to

38The effective curvature within our Hubble radius should then be of
the order of the amplitude of the curvature fluctuations generated during
inflation, ΩK ∼ O(10−5).

percent level precision using observations of the CMB alone:

100ΩK = −4.2+4.3
−4.8 (95%; Planck+WP+highL); (67a)

100ΩK = −1.0+1.8
−1.9 (95%; Planck+lensing

+ WP+highL). (67b)

These constraints are improved substantially by the addition
of BAO data. We then find

100ΩK = −0.05+0.65
−0.66 (95%; Planck+WP+highL+BAO), (68a)

100ΩK = −0.10+0.62
−0.65 (95%; Planck+lensing+WP

+highL+BAO). (68b)

These limits are consistent with (and slightly tighter than) the
results reported by Hinshaw et al. (2012) from combining the
nine-year WMAP data with high resolution CMB measurements
and BAO data. We find broadly similar results to Eqs. (68a) and
(68b) if the Riess et al. (2011) H0 measurement, or either of the
SNe compilations discussed in Sect. 5.4, are used in place of the
BAO measurements.

In summary, there is no evidence from Planck for any depar-
ture from a spatially flat geometry. The results of Eqs. (68a) and
(68b) suggest that our Universe is spatially flat to an accuracy of
better than a percent.

6.3. Neutrino physics and constraints on relativistic
components

A striking illustration of the interplay between cosmology and
particle physics is the potential of CMB observations to con-
strain the properties of relic neutrinos, and possibly of additional
light relic particles in the Universe (see e.g., Dodelson et al.
1996; Hu et al. 1995; Bashinsky & Seljak 2004; Ichikawa et al.
2005; Lesgourgues & Pastor 2006; Hannestad 2010). In the fol-
lowing subsections, we present Planck constraints on the mass of
ordinary (active) neutrinos assuming no extra relics, on the den-
sity of light relics assuming they all have negligible masses, and
finally on models with both light massive and massless relics.
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6.3.1. Constraints on the total mass of active neutrinos

The detection of solar and atmospheric neutrino oscillations
proves that neutrinos are massive, with at least two species being
non-relativistic today. The measurement of the absolute neutrino
mass scale is a challenge for both experimental particle physics
and observational cosmology. The combination of CMB, large-
scale structure and distance measurements already excludes a
large range of masses compared to beta-decay experiments.
Current limits on the total neutrino mass

∑
mν (summed over the

three neutrino families) from cosmology are rather model depen-
dent and vary strongly with the data combination adopted. The
tightest constraints for flat models with three families of neutri-
nos are typically around 0.3 eV (95% CL; e.g., de Putter et al.
2012). Since

∑
mν must be greater than approximately 0.06 eV

in the normal hierarchy scenario and 0.1 eV in the degener-
ate hierarchy (Gonzalez-Garcia et al. 2012), the allowed neu-
trino mass window is already quite tight and could be closed
further by current or forthcoming observations (Jimenez et al.
2010; Lesgourgues et al. 2013).

Cosmological models, with and without neutrino mass, have
different primary CMB power spectra. For observationally-
relevant masses, neutrinos are still relativistic at recombina-
tion and the unique effects of masses in the primary power
spectra are small. The main effect is around the first acoustic
peak and is due to the early integrated Sachs-Wolfe (ISW) ef-
fect; neutrino masses have an impact here even for a fixed red-
shift of matter–radiation equality (Lesgourgues & Pastor 2012;
Hall & Challinor 2012; Hou et al. 2012; Lesgourgues et al.
2013). To date, this effect has been the dominant one in con-
straining the neutrino mass from CMB data, as demonstrated in
Hou et al. (2012). As we shall see here, the Planck data move
us into a new regime where the dominant effect is from gravi-
tational lensing. Increasing neutrino mass, while adjusting other
parameters to remain in a high-probability region of parameter
space, increases the expansion rate at z >∼ 1 and so suppresses
clustering on scales smaller than the horizon size at the non-
relativistic transition (Kaplinghat et al. 2003; Lesgourgues et al.
2006). The net effect for lensing is a suppression of the CMB
lensing potential and, for orientation, by ` = 1000 the suppres-
sion is around 10% in power for

∑
mν = 0.66 eV.

Here we report constraints assuming three species of degen-
erate massive neutrinos. At the level of sensitivity of Planck, the
effect of mass splittings is negligible, and the degenerate model
can be assumed without loss of generality.

Combining the Planck+WP+highL data, we obtain an upper
limit on the summed neutrino mass of∑

mν < 0.66 eV (95%; Planck+WP+highL). (69)

The posterior distribution is shown by the solid black curve in
Fig. 26. To demonstrate that the dominant effect leading to the
constraint is gravitational lensing, we remove the lensing infor-
mation by marginalizing over AL

39. We see that the posterior
broadens considerably (see the red curve in Fig. 26) to give
∑

mν < 1.08 eV [95%; Planck+WP+highL (AL)], (70)

taking us back close to the value of 1.3 eV (for AL = 1) from
the nine-year WMAP data (Hinshaw et al. 2012), corresponding

39The power spectrum of the temperature anisotropies is predomi-
nantly sensitive to changes in only one mode of the lensing potential
power spectrum (Smith et al. 2006). It follows that marginalizing over
the single parameter AL is nearly equivalent to marginalizing over the
full amplitude and shape information in the lensing power spectrum as
regards constraints from the temperature power spectrum.
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Fig. 26. Marginalized posterior distributions for
∑

mν

in flat models from CMB data. We show results for
Planck+WP+highL without (solid black) and with (red)
marginalization over AL, showing how the posterior is signifi-
cantly broadened by removing the lensing information from the
temperature anisotropy power spectrum. The effect of replacing
the low-` temperature and (WMAP) polarization data with a
τ prior is shown in solid blue (Planck−lowL+highL+τprior)
and of further removing the high-` data in dot-dashed blue
(Planck−lowL+τprior). We also show the result of including
the lensing likelihood with Planck+WP+highL (dashed black)
and Planck−lowL+highL+τprior (dashed blue).

to the limit above which neutrinos become non-relativistic be-
fore recombination. (The resolution of WMAP gives very little
sensitivity to lensing effects.)

As discussed in Sect. 5.1, the Planck+WP+highL data com-
bination has a preference for high AL. Since massive neutrinos
suppress the lensing power (like a low AL) there is a concern
that the same tensions which drive AL high may give artificially
tight constraints on

∑
mν. We can investigate this issue by re-

placing the low-` data with a prior on the optical depth (as in
Sect. 5.1) and removing the high-` data. Posterior distributions
with the τ prior, and additionally without the high-` data, are
shown in Fig. 26 by the solid blue and dot-dashed blue curves,
respectively. The constraint on

∑
mν does not degrade much by

replacing the low-` data with the τ prior only, but the degra-
dation is more severe when the high-` data are also removed:∑

mν < 1.31 eV (95% CL).
Including the lensing likelihood (see Sect. 5.1) has a signif-

icant, but surprising, effect on our results. Adding the lensing
likelihood to the Planck+WP+highL data combination weakens
the limit on

∑
mν,

∑
mν < 0.85 eV (95%; Planck+lensing+WP+highL), (71)

as shown by the dashed black curve in Fig. 26. This is representa-
tive of a general trend that the Planck lensing likelihood favours
larger

∑
mν than the temperature power spectrum. Indeed, if we

use the data combination Planck−lowL+highL+τprior, which
gives a weaker constraint from the temperature power spectrum,
adding lensing gives a best-fit away from zero (

∑
mν = 0.46 eV;

dashed blue curve in Fig. 26). However, the total χ2 at the best-fit
is very close to that for the best-fitting base model (which, recall,
has one massive neutrino of mass 0.06 eV), with the improved fit
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to the lensing data (∆χ2 = −2.35) being cancelled by the poorer
fit to high-` CMB data (∆χ2 = −2.15). There are rather large
shifts in other cosmological parameters between these best-fit
solutions corresponding to shifts along the acoustic-scale degen-
eracy direction for the temperature power spectrum. Note that,
as well as the change in H0 (which falls to compensate the in-
crease in

∑
mν at fixed acoustic scale), ns, ωb and ωc change

significantly keeping the lensed temperature spectrum almost
constant. These latter shifts are similar to those discussed for
AL in Sect. 5.1, with non-zero

∑
mν acting like AL < 1. The

lensing power spectrum Cφφ
`

is lower by 5.4% for the higher-
mass best fit at ` = 400 and larger below ` ≈ 45 (e.g. by
0.6% at ` = 40), which is a similar trend to the residuals from
the best-fit minimal-mass model shown in the bottom panel of
Fig. 12. Planck Collaboration XVII (2013) explores the robust-
ness of the Cφφ

`
estimates to various data cuts and foreground-

cleaning methods. The first (` = 40–85) bandpower is the least
stable to these choices, although the variations are not statis-
tically significant. We have checked that excluding this band-
power does not change the posterior for

∑
mν significantly, as

expected since most of the constraining power on
∑

mν comes
from the bandpowers on smaller scales. At this stage, it is un-
clear what to make of this mild preference for high masses from
the 4-point function compared to the 2-point function. As noted
in Planck Collaboration XVII (2013), the lensing measurements
from ACT (Das et al. 2013) and SPT (van Engelen et al. 2012)
show similar trends to those from Planck where they overlap
in scale. With further Planck data (including polarization), and
forthcoming measurements from the full 2500 deg2 SPT temper-
ature survey, we can expect more definitive results on this issue
in the near future.

Apart from its impact on the early-ISW effect and lensing
potential, the total neutrino mass affects the angular-diameter
distance to last scattering, and can be constrained through the
angular scale of the first acoustic peak. However, this effect is
degenerate with ΩΛ (and so the derived H0) in flat models and
with other late-time parameters such as ΩK and w in more gen-
eral models (Howlett et al. 2012). Late-time geometric measure-
ments help in reducing this “geometric” degeneracy. Increasing
the neutrino masses at fixed θ∗ increases the angular-diameter
distance for 0 ≤ z ≤ z∗ and reduces the expansion rate at low red-
shift (z <∼ 1) but increases it at higher redshift. The spherically-
averaged BAO distance DV(z) therefore increases with increas-
ing neutrino mass at fixed θ∗, and the Hubble constant falls; see
Fig. 8 of Hou et al. (2012). With the BAO data of Sect. 5.2, we
find a significantly lower bound on the neutrino mass:
∑

mν < 0.23 eV (95%; Planck+WP+highL+BAO). (72)

Following the philosophy of this paper, namely to give higher
weight to the BAO data compared to more complex astrophys-
ical data, we quote the result of Eq. (72) in the abstract as our
most reliable limit on the neutrino mass. The ΛCDM model with
minimal neutrino masses was shown in Sect. 5.3 to be in tension
with recent direct measurements of H0 which favour higher val-
ues. Increasing the neutrino mass will only make this tension
worse and drive us to artificially tight constraints on

∑
mν. If we

relax spatial flatness, the CMB geometric degeneracy becomes
three-dimensional in models with massive neutrinos and the con-
straints on

∑
mν weaken considerably to

∑
mν <


0.98 eV (95%; Planck+WP+highL)

0.32 eV (95%; Planck+WP+highL+BAO).
(73)
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Fig. 27. Marginalized posterior distribution of Neff for
Planck+WP+highL (black) and additionally BAO (blue),
the H0 measurement (red), and both BAO and H0 (green).

6.3.2. Constraints on Neff

As discussed in Sect. 2, the density of radiation in the Universe
(besides photons) is usually parameterized by the effective neu-
trino number Neff . This parameter specifies the energy density
when the species are relativistic in terms of the neutrino tem-
perature assuming exactly three flavours and instantaneous de-
coupling. In the Standard Model, Neff = 3.046, due to non-
instantaneous decoupling corrections (Mangano et al. 2005).

However, there has been some mild preference for
Neff > 3.046 from recent CMB anisotropy measurements
(Komatsu et al. 2011; Dunkley et al. 2011; Keisler et al. 2011;
Archidiacono et al. 2011; Hinshaw et al. 2012; Hou et al. 2012).
This is potentially interesting, since an excess could be caused
by a neutrino/anti-neutrino asymmetry, sterile neutrinos, and/or
any other light relics in the Universe. In this subsection we dis-
cuss the constraints on Neff from Planck in scenarios where the
extra relativistic degrees of freedom are effectively massless.

The physics of how Neff is constrained by CMB anisotropies
is explained in Bashinsky & Seljak (2004), Hou et al. (2011)
and Lesgourgues et al. (2013). The main effect is that increasing
the radiation density at fixed θ∗ (to preserve the angular scales of
the acoustic peaks) and fixed zeq (to preserve the early-ISW ef-
fect and so first-peak height) increases the expansion rate before
recombination and reduces the age of the Universe at recombi-
nation. Since the diffusion length scales approximately as the
square root of the age, while the sound horizon varies propor-
tionately with the age, the angular scale of the photon diffusion
length, θD, increases, thereby reducing power in the damping tail
at a given multipole. Combining Planck, WMAP polarization and
the high-` experiments gives

Neff = 3.36+0.68
−0.64 (95%; Planck+WP+highL). (74)

The marginalized posterior distribution is given in Fig. 27 (black
curve). The result in Eq. (74) is consistent with the value of
Neff = 3.046 of the Standard Model, but it is important to
aknowledge that it is difficult to constrain Neff accurately using
CMB temperature measurements alone. Evidently, the nominal
mission data from Planck do not strongly rule out a value as high
as Neff = 4.
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Increasing Neff at fixed θ∗ and zeq necessarily raises the ex-
pansion rate at low redshifts too. Combining CMB with distance
measurements can therefore improve constraints (see Fig. 27) al-
though for the BAO observable rdrag/DV(z) the reduction in both
rdrag and DV(z) with increasing Neff partly cancel. With the BAO
data of Sect. 5.2, the Neff constraint is tightened to

Neff = 3.30+0.54
−0.51 (95%; Planck+WP+highL+BAO). (75)

Our constraints from CMB alone and CMB+BAO are compati-
ble with the standard value Neff = 3.046 at the 1σ level, giving
no evidence for extra relativistic degrees of freedom.

Since Neff is positively correlated with H0, the tension be-
tween the Planck data and direct measurements of H0 in the base
ΛCDM model (Sect. 5.3) can be reduced at the expense of high
Neff . The marginalized constraint is

Neff = 3.62+0.50
−0.48 (95%; Planck+WP+highL+H0). (76)

For this data combination, the χ2 for the best-fitting model al-
lowing Neff to vary is lower by 5.3 than for the base Neff = 3.046
model. The H0 fit is much better, with ∆χ2 = −4.4, but there
is no strong preference either way from the CMB. The low-`
temperature power spectrum does weakly favour the high Neff

model (∆χ2 = −1.4) – since Neff is positively correlated with ns
(see Fig. 24) and increasing ns reduces power on large scales –
as does the rest of the Planck power spectrum (∆χ2 = −1.8).
The high-` experiments mildly disfavour high Neff in our fits
(∆χ2 = 1.9). Further including the BAO data pulls the central
value downwards by around 0.5σ (see Fig. 27):

Neff = 3.52+0.48
−0.45 (95%; Planck+WP+highL+H0+BAO). (77)

The χ2 at the best-fit for this data combination (Neff = 3.48)
is lower by 4.2 than the best-fitting Neff = 3.046 model. While
the high Neff best-fit is preferred by Planck+WP (∆χ2 = −3.1)
and the H0 data (∆χ2 = −3.3 giving an acceptable χ2 = 1.8
for this data point), it is disfavoured by the high-` CMB data
(∆χ2 = 2.0) and slightly by BAO (∆χ2 = 0.5). We conclude
that the tension between direct H0 measurements and the CMB
and BAO data in the base ΛCDM can be relieved at the cost of
additional neutrino-like physics, but there is no strong preference
for this extension from the CMB damping tail.

Throughout this subsection, we have assumed that all the
relativistic components parameterized by Neff consist of ordi-
nary free-streaming relativistic particles. Extra radiation com-
ponents with a different sound speed or viscosity parame-
ter (Hu 1998) can provide a good fit to pre-Planck CMB
data (Archidiacono et al. 2013), but are not investigated in this
paper.

6.3.3. Simultaneous constraints on Neff and either
∑

mν or
meff
ν, sterile

It is interesting to investigate simultaneous contraints on Neff and∑
mν, since extra relics could coexist with neutrinos of size-

able mass, or could themselves have a mass in the eV range.
Joint constraints on Neff and

∑
mν have been explored sev-

eral times in the literature. These two parameters are known
to be partially degenerate when large-scale structure data are
used (Hannestad & Raffelt 2004; Crotty et al. 2004), but their
impact in the CMB is different and does not lead to significant
correlations.

Joint constraints on Neff and
∑

mν are always model-
dependent: they vary strongly with assumptions about how the

total mass is split between different species (and they would also
be different for models in which massive species have chem-
ical potentials or a non-thermal phase-space distribution). We
present here Planck constraints for two different models and de-
scribe the scenarios that motivate them.

First, as in the previous subsection we assume that the three
active neutrinos share a mass mν =

∑
mν/3, and may coexist

with extra massless species contributing to Neff . In this model,
when Neff is greater than 3.046, ∆Neff = Neff − 3.046 gives the
density of extra massless relics with arbitrary phase-space dis-
tribution. When Neff < 3.046, the temperature of the three active
neutrinos is reduced accordingly, and no additional relativistic
species are assumed. In this case, the CMB constraint is

Neff = 3.29+0.67
−0.64∑

mν < 0.60 eV

 (95%; Planck+WP+highL). (78)

These bounds tighten somewhat with the inclusion of BAO data,
as illustrated in Fig. 28; we find

Neff = 3.32+0.54
−0.52∑

mν < 0.28 eV

 (95%; Planck+WP+highL+BAO). (79)

We see that the joint constraints do not differ very much from
the bounds obtained when introducing these parameters sepa-
rately. The physical effects of neutrino masses and extra rela-
tivistic relics are sufficiently different to be resolved separately
at the level of accuracy of Planck.

In the second model, we assume the existence of one mas-
sive sterile neutrino, in addition to the two massless and one
massive active neutrino of the base model. The active neutrino
mass is kept fixed at 0.06 eV. In particle physics, this assump-
tion can be motivated in several ways. For example, there has
recently been renewed interest in models with one light sterile
neutrino in order to explain the MiniBoone anomaly reported
in Aguilar-Arevalo et al. (2012), as well as reactor and Gallium
anomalies (Giunti et al. 2013). The statistical significance of
these results is marginal and they should not be over-interpreted.
However, they do motivate investigating a model with three ac-
tive neutrinos and one heavier sterile neutrino with mass msterile.
If the sterile neutrino were to thermalize with the same tempera-
ture as active neutrinos, this model would have Neff ≈ 4.

Since we wish to be more general, we assume that the ex-
tra eigenstate is either: (i) thermally distributed with an arbi-
trary temperature Ts; or (ii) distributed proportionally to ac-
tive neutrinos with an arbitrary scaling factor χs in which the
scaling factor is a function of the active–sterile neutrino mix-
ing angle. This second case corresponds the Dodelson-Widrow
scenario (Dodelson & Widrow 1994). The two cases are in fact
equivalent for cosmological observables and do not require sep-
arate analyses (Colombi et al. 1996; Lesgourgues et al. 2013).
Sampling the posterior with flat priors on Neff and msterile would
not be efficient, since in the limit of small temperature Ts, or
small scaling factor χs, the mass would be unbounded. Hence we
adopt a flat prior on the “effective sterile neutrino mass” defined
as meff

ν, sterile ≡ (94.1ων, sterile) eV40. In the case of a thermally-
distributed sterile neutrino, this parameter is related to the true
mass via

meff
ν, sterile = (Ts/Tν)3mthermal

sterile = (∆Neff)3/4mthermal
sterile . (80)

40The factor of 94.1 eV here is the usual one in the relation between
physical mass and energy density for non-relativistic neutrinos with
physical temperature Tν.
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Fig. 28. Left: 2D joint posterior distribution between Neff and
∑

mν (the summed mass of the three active neutrinos) in models with
extra massless neutrino-like species. Right: Samples in the Neff–meff

ν, sterile plane, colour-coded by Ωch2, in models with one massive
sterile neutrino family, with effective mass meff

ν, sterile, and the three active neutrinos as in the base ΛCDM model. The physical mass
of the sterile neutrino in the thermal scenario, mthermal

sterile , is constant along the grey dashed lines, with the indicated mass in eV. The
physical mass in the Dodelson-Widrow scenario, mDW

sterile, is constant along the dotted lines (with the value indicated on the adjacent
dashed lines). Note the pile up of points at low values of Neff , caused because the sterile neutrino component behaves like cold dark
matter there, introducing a strong degeneracy between the two components, as described in the text.

Here, recall that Tν = (4/11)1/3Tγ is the active neutrino temper-
ature in the instantaneous-decoupling limit and that the effective
number is defined via the energy density, ∆Neff = (Ts/Tν)4. In
the Dodelson-Widrow case the relation is given by

meff
ν, sterile = χsmDW

sterile , (81)

with ∆Neff = χs. For a thermalized sterile neutrino with temper-
ature Tν (i.e., the temperature the active neutrinos would have if
there were no heating at electron-positron annihilation), corre-
sponding to ∆Neff = 1, the three masses are equal to each other.

Assuming flat priors on Neff and meff
ν, sterile with meff

ν, sterile <

3 eV, we find the results shown in Fig. 28. The physical mass,
mthermal

sterile in the thermal scenario is constant along the dashed lines
in the figure and takes the indicated value in eV. The physical
mass, mDW

sterile, in the Dodelson-Widrow scenario is constant on
the dotted lines. For low Neff the physical mass of the neutrinos
becomes very large, so that they become non-relativistic well be-
fore recombination. In the limit in which the neutrinos become
non-relativistic well before any relevant scales enter the horizon,
they will behave exactly like cold dark matter, and hence are
completely unconstrained within the overall total constraint on
the dark matter density. For intermediate cases where the neutri-
nos become non-relativistic well before recombination they be-
have like warm dark matter. The approach to the massive limit
gives the tail of allowed models with large meff

ν, sterile and low Neff

shown in Fig. 28, with increasing meff
ν, sterile being compensated

by decreased Ωch2 to maintain the total level required to give the
correct shape to the CMB power spectrum.

For low meff
ν, sterile and ∆Neff away from zero the physical neu-

trino mass is very light, and the constraint becomes similar to
the massless case. The different limits are continuously con-
nected, and given the complicated shape seen in Fig. 28 it is
clearly not appropriate to quote fully marginalized parameter
constraints that would depend strongly on the assumed upper
limit on meff

ν, sterile. Instead we restrict attention to the case where

the physical mass is mthermal
sterile < 10 eV, which roughly defines the

region where (for the CMB) the particles are distinct from cold
or warm dark matter. Using the Planck+WP+highL (abbreviated
to CMB below) data combination, this gives the marginalized
one-parameter constraints

Neff < 3.91

meff
ν, sterile < 0.59 eV

 (95%; CMB for mthermal
sterile < 10 eV) . (82)

Combining further with BAO these tighten to

Neff < 3.80

meff
ν, sterile < 0.42 eV

 (95%; CMB+BAO for mthermal
sterile < 10 eV) .

(83)

These bounds are only marginally compatible with a fully ther-
malized sterile neutrino (Neff ≈ 4) with sub-eV mass mthermal

sterile ≈
meff
ν, sterile < 0.5 eV that could explain the oscillation anomalies.

The above contraints are also appropriate for the Dodelson-
Widrow scenario, but for a physical mass cut of mDW

sterile < 20 eV.
The thermal and Dodelson-Widrow scenarios considered

here are representative of a large number of possible models that
have recently been investigated in the literature (Hamann et al.
2011; Diamanti et al. 2012; Archidiacono et al. 2012;
Hannestad et al. 2012).

6.4. Big bang nucleosynthesis

Observations of light elements abundances created during big
bang nucleosynthesis (BBN) provided one of the earliest preci-
sion tests of cosmology and were critical in establishing the ex-
istence of a hot big bang. Up-to-date accounts of nucleosynthe-
sis are given by Iocco et al. (2009) and Steigman (2012). In the
standard BBN model, the abundance of light elements (parame-
terized by YBBN

P ≡ 4nHe/nb for helium-4 and yBBN
DP ≡ 105nD/nH
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for deuterium, where ni is the number density of species i)41 can
be predicted as a function of the baryon density ωb, the number
of relativistic degrees of freedom parameterized by Neff , and of
the lepton asymmetry in the electron neutrino sector. Throughout
this subsection, we assume for simplicity that lepton asymmetry
is too small to play a role at BBN. This is a reasonable assump-
tion, since Planck data cannot improve existing constraints on
the asymmetry42. We also assume that there is no significant en-
tropy increase between BBN and the present day, so that our
CMB constraints on the baryon-to-photon ratio can be used to
compute primordial abundances.

To calculate the dependence of YBBN
P and yBBN

DP on the
parameters ωb and Neff , we use the accurate public code
PArthENoPE (Pisanti et al. 2008), which incorporates values
of nuclear reaction rates, particle masses and fundamental
constants, and an updated estimate of the neutron lifetime
(τn = 880.1 s; Beringer et al. 2012). Experimental uncertain-
ties on each of these quantities lead to a theoretical error for
YBBN

P (ωb,Neff) and yBBN
DP (ωb,Neff). For helium, the error is dom-

inated by the uncertainty in the neutron lifetime, leading to43

σ(YBBN
P ) = 0.0003. For deuterium, the error is dominated by

uncertainties in several nuclear rates, and is estimated to be
σ(yBBN

DP ) = 0.04 (Serpico et al. 2004).
These predictions for the light elements can be confronted

with measurements of their abundances, and also with CMB data
(which is sensitive to ωb, Neff , and YP). We shall see below that
for the base cosmological model with Neff = 3.046 (or even for
an extended scenario with free Neff) the CMB data predict the
primordial abundances, under the assumption of standard BBN,
with smaller uncertainties than those estimated for the measured
abundances. Furthermore, the CMB predictions are consistent
with direct abundance measurements.

6.4.1. Observational data on primordial abundances

The observational constraint on the primordial helium-4 frac-
tion used in this paper is YBBN

P = 0.2534 ± 0.0083 (68% CL)
from the recent data compilation of Aver et al. (2012), based
on spectroscopic observations of the chemical abundances in
metal-poor H ii regions. The error on this measurement is domi-
nated by systematic effects that will be difficult to resolve in the
near future. It is reassuring that the independent and conserva-

41Observations of the primordial abundances are usually reported in
terms of these number ratios. For helium, YBBN

P differs from the mass
fraction YP, used elsewhere in this paper, by 0.5% due to the binding
energy of helium. Since the CMB is only sensitive to YP at the 10%
level, the distinction between definitions based on the mass or number
fraction is ignored when comparing helium constraints from the CMB
with those from observational data on primordial abundances.

42A primordial lepton asymmetry could modify the outcome of BBN
only if it were very large (of the order of 10−3 or bigger). Such a large
asymmetry is not motivated by particle physics, and is strongly con-
strained by BBN. Indeed, by taking into account neutrino oscillations
in the early Universe, which tend to equalize the distribution function
of three neutrino species, Mangano et al. (2012) derived strong bounds
on the lepton asymmetry. CMB data cannot improve these bounds, as
shown by Castorina et al. (2012); an exquisite sensitivity to Neff would
be required. Note that the results of Mangano et al. (2012) assume that
Neff departs from the standard value only due to the lepton asymmetry.
A model with both a large lepton asymmetry and extra relativistic relics
could be constrained by CMB data. However, we will not consider such
a contrived scenario in this paper.

43Serpico et al. (2004) quotes σ(YBBN
P ) = 0.0002, but since that

work, the uncertainty on the neutron lifetime has been re-evaluated,
from σ(τn) = 0.8 s to σ(τn) = 1.1 s (Beringer et al. 2012).

tive method presented in Mangano & Serpico (2011) leads to an
upper bound for YBBN

P that is consistent with the above estimate.
The recent measurement of the proto-Solar helium abundance
by Serenelli & Basu (2010) provides an even more conservative
upper bound, YBBN

P < 0.294 at the 2σ level.
For the primordial abundance of deuterium, data points show

excess scatter above the statistical errors, indicative of system-
atic errors. The compilation presented in Iocco et al. (2009),
based on data accumulated over several years, gives yBBN

DP =
2.87 ± 0.22 (68% CL). Pettini & Cooke (2012) report an accu-
rate deuterium abundance measurement in the z = 3.04984 low-
metallicity damped Lyα system in the spectrum of QSO SDSS
J1419+0829, which they argue is particularly well suited to deu-
terium abundance measurements. These authors find yBBN

DP =
2.535 ± 0.05 (68% CL), a significantly tighter constraint than
that from the Iocco et al. (2009) compilation. The Pettini-Cooke
measurement is, however, a single data point, and it is im-
portant to acquire more observations of similar systems to as-
sess whether their error estimate is consistent with possible
sources of systematic error. We adopt a conservative position
in this paper and compare both the Iocco et al. (2009) and the
Pettini & Cooke (2012) measurements to the CMB predictions

We consider only the 4He and D abundances in this paper.
We do not discuss measurements of 3He abundances since these
provide only an upper bound on the true primordial 3He frac-
tion. Likewise, we do not discuss lithium. There has been a long
standing discrepancy between the low lithium abundances mea-
sured in metal-poor stars in our Galaxy and the predictions of
BBN. At present it is not clear whether this discrepancy is caused
by systematic errors in the abundance measurements, or has an
“astrophysical” solution (e.g., destruction of primordial lithium)
or is caused by new physics (see Fields 2011, for a recent re-
view).

6.4.2. Planck predictions of primordial abundances in
standard BBN

We first restrict ourselves to the base cosmological model, with
no extra relativistic degrees of freedom beyond ordinary neutri-
nos (and a negligible lepton asymmetry), leading to Neff = 3.046
(Mangano et al. 2005). Assuming that standard BBN holds, and
that there is no entropy release after BBN, we can compute
the spectrum of CMB anisotropies using the relation YP(ωb)
given by PArthENoPE. This relation is used as the default
in the grid of models discussed in this paper; we use the
CosmoMC implementation developed by Hamann et al. (2008).
The Planck+WP+highL fits to the base ΛCDM model gives the
following estimate of the baryon density,

ωb = 0.02207 ± 0.00027 (68%; Planck+WP+highL), (84)

as listed in Table 5. In Fig. 29, we show this bound together
with theoretical BBN predictions for YBBN

P (ωb) and yBBN
DP (ωb).

The bound of Eq. (84) leads to the predictions

YBBN
P (ωb) = 0.24725 ± 0.00032, (85a)

yBBN
DP (ωb) = 2.656 ± 0.067, (85b)

where the errors here are 68% and include theoretical errors that
are added in quadrature to those arising from uncertainties in
ωb. (The theoretical error dominates the total error in the case
of YP.)44 For helium, this prediction is in very good agreement

44Note that, throughout this paper, our quoted CMB constraints on
all parameters do not include the theoretical uncertainty in the BBN
relation (where used).
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Fig. 29. Predictions of standard BBN for the primordial abun-
dance of 4He (top) and deuterium (bottom), as a function of
the baryon density. The width of the green stripes corresponds
to 68% uncertainties on nuclear reaction rates. The horizontal
bands show observational bounds on primordial element abun-
dances compiled by various authors, and the red vertical band
shows the Planck+WP+highL bounds on ωb (all with 68% er-
rors). BBN predictions and CMB results assume Neff = 3.046
and no significant lepton asymmetry.

with the data compilation of Aver et al. (2012), with an error that
is 26 times smaller. For deuterium, the CMB+BBN prediction
lies midway between the best-fit values of Iocco et al. (2009)
and Pettini & Cooke (2012), but agrees with both at approxi-
mately the 1σ level. These results strongly support standard
BBN and show that within the framework of the base ΛCDM
model, Planck observations lead to extremely precise predic-
tions of primordial abundances.

6.4.3. Estimating the helium abundance directly from Planck
data

In the CMB analysis, instead of fixing YP to the BBN predic-
tion, YBBN

P (ωb), we can relax any BBN prior and let this pa-
rameter vary freely. The primordial helium fraction has an influ-
ence on the recombination history and affects CMB anisotropies
mainly through the redshift of last scattering and the dif-
fusion damping scale (Hu et al. 1995; Trotta & Hansen 2004;
Ichikawa & Takahashi 2006; Hamann et al. 2008). Extending
the base ΛCDM model by adding YP as a free parameter with
a flat prior in the range [0.1, 0.5], we find

YP = 0.266 ± 0.021 (68%; Planck+WP+highL). (86)

Constraints in the YP–ωb plane are shown in Fig. 30. This figure
shows that the CMB data have some sensitivity to the helium
abundance. In fact, the error on the CMB estimate of YP is only
2.7 times larger than the direct measurements of the primordial
helium abundance by Aver et al. (2012). The CMB estimate of
YP is consistent with the observational measurements adding fur-
ther support in favour of standard BBN.

6.4.4. Extension to the case with extra relativistic relics

We now consider the effects of additional relativistic degrees of
freedom on photons and ordinary neutrinos (obeying the stan-
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Fig. 30. Constraints in the ωb–YP plane from CMB and
abundance measurements. The CMB constraints are for
Planck+WP+highL (red 68% and 95% contours) in ΛCDM
models with YP allowed to vary freely. The horizontal band
shows observational bounds on 4He compiled by Aver et al.
(2012) with 68% errors, while the grey region at the top of
the figure delineates the conservative 95% upper bound inferred
from Solar helium abundance by Serenelli & Basu (2010). The
green stripe shows the predictions of standard BBN for the pri-
mordial abundance of 4He as a function of the baryon density
(with 68% errors on nuclear reaction rates). Both BBN predic-
tions and CMB results assume Neff = 3.046 and no significant
lepton asymmetry.

dard model of neutrino decoupling) by adding Neff as a free pa-
rameter. In the absence of lepton asymmetry, we can predict the
BBN primordial abundances as a function of the two parameters
ωb and Neff .

Figure 31 shows the regions in the ωb–Neff plane preferred
by primordial abundance measurements, and by the CMB data if
the standard BBN picture is correct. The regions allowed by the
abundance measurements are defined by the χ2 statistic

χ2(ωb,Neff) ≡
[
y(ωb,Neff) − yobs

]2

σ2
obs + σ2

theory

, (87)

where y(ωb,Neff) is the BBN prediction for either YBBN
P or yBBN

DP ,
the quantity yobs is the observed abundance, and the two errors
in the denominator are the observational and theoretical uncer-
tainties. Figure 31 shows the edges of the 68% preferred regions
in the ωb–Neff plane, given by χ2 = χ2

min + 2.3.
For the CMB data, we fit a cosmological model with seven

free parameters (the six parameters of the base ΛCDM model,
plus Neff) to the Planck+WP+highL data, assuming that the pri-
mordial helium fraction is fixed by the standard BBN prediction
YBBN

P (ωb,Neff). Figure 31 shows the joint 68% and 95% confi-
dence contours in the ωb–Neff plane. The preferred regions in
this plane from abundance measurements and the CMB agree
remarkably well. The CMB gives approximately three times
smaller error bars than primordial abundance data on both pa-
rameters.
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Fig. 31. Constraints in the ωb–Neff plane from the CMB and
abundance measurements. The blue stripes shows the 68%
confidence regions from measurements of primordial element
abundances assuming standard BBN: 4He bounds compiled
by Aver et al. (2012); and deuterium bounds complied by
Iocco et al. (2009) or measured by Pettini & Cooke (2012). We
show for comparison the 68% and 95% contours inferred from
Planck+WP+highL, when Neff is left as a free parameter in the
CMB analysis (and YP is fixed as a function of ωb and Neff ac-
cording to BBN predictions). These constraints assume no sig-
nificant lepton asymmetry.

We can derive constraints on Neff from primordial element
abundances and CMB data together by combining their likeli-
hoods. The CMB-only confidence interval for Neff is

Neff = 3.36 ± 0.34 (68%; Planck+WP+highL). (88)

When combined with the data reported respectively by
Aver et al. (2012), Iocco et al. (2009), and Pettini & Cooke
(2012), the 68% confidence interval becomes

Neff =



3.41 ± 0.30, YP (Aver et al.),

3.43 ± 0.34, yDP (Iocco et al.),

3.02 ± 0.27, yDP (Pettini and Cooke).

(89)

Since there is no significant tension between CMB and primor-
dial element results, all these bounds are in agreement with the
CMB-only analysis. The small error bar derived from combining
the CMB with the Pettini & Cooke (2012) data point shows that
further deuterium observations combined with Planck data have
the potential to pin down the value of Neff to high precision.

6.4.5. Simultaneous constraints on both Neff and YP

In this subsection, we discuss simultaneous constraints on both
Neff and YP by adding them to the six parameters of the base
ΛCDM model. Both Neff and YP have an impact on the damp-
ing tail of the CMB power spectrum by altering the ratio k−1

D /r∗,
where k−1

D is the photon diffusion length at last scattering and
r∗ is the sound horizon there. There is thus an approximate de-
generacy between these two parameters along which the ratio is
nearly constant. The extent of the degeneracy is limited by the
characteristic phase shift of the acoustic oscillations that arises
due to the free streaming of the neutrinos (Bashinsky & Seljak
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Fig. 32. 2D joint posterior distribution for Neff and YP with both
parameters varying freely, determined from Planck+WP+highL
data. Samples are colour-coded by the value of the angular ra-
tio θD/θ∗, which is constant along the degeneracy direction. The
Neff–YP relation from BBN theory is shown by the dashed curve.
The vertical line shows the standard value Neff = 3.046. The
region with YP > 0.294 is highlighted in grey, delineating the re-
gion that exceeds the 2σ upper limit of the recent measurement
of initial Solar helium abundance (Serenelli & Basu 2010), and
the blue horizontal region is the 68% confidence region from
the Aver et al. (2012) compilation of 4He measurements.

2004). As discussed by Hou et al. (2011), the early ISW effect
also partly breaks the degeneracy, but this is less important than
the effect of the phase shifts.

The joint posterior distribution for Neff and YP from
the Planck+WP+highL likelihood is shown in Fig. 32, with
each MCMC sample colour-coded by the value of the
observationally-relevant angular ratio θD/θ∗ ∝ (kDr∗)−1. The
main constraint on Neff and YP comes from the precise measure-
ment of this ratio by the CMB, leaving the degeneracy along the
constant θD/θ∗ direction. The relation between Neff and YP from
BBN theory is shown in the figure by the dashed curve45. The
standard BBN prediction with Neff = 3.046 is contained within
the 68% confidence region. The grey region is for YP > 0.294
and is the 2σ conservative upper bound on the primordial he-
lium abundance from Serenelli & Basu (2010). Most of the sam-
ples are consistent with this bound. The inferred estimates of Neff

and YP from the Planck+WP+highL data are

Neff = 3.33+0.59
−0.83 (68%; Planck+WP+highL), (90a)

YP = 0.254+0.041
−0.033 (68%; Planck+WP+highL). (90b)

With YP allowed to vary, Neff is no longer tightly constrained
by the value of θD/θ∗. Instead, it is constrained, at least in part,
by the impact that varying Neff has on the phase shifts of the
acoustic oscillations. As discussed in Hou et al. (2012), this ef-
fect explains the observed correlation between Neff and θ∗, which
is shown in Fig. 33. The correlation in the ΛCDM+Neff model
is also plotted in the figure showing that the Neff–YP degeneracy
combines with the phase shifts to generate a larger dispersion in
θ∗ in such models.

45For constant Neff , the variation due to the uncertainty in the baryon
density is too small to be visible, given the thickness of the curve.
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6.5. Dark energy

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
Perhaps the most straightforward explanation is that dark en-
ergy is a cosmological constant. An alternative is dynamical dark
energy (Wetterich 1988; Ratra & Peebles 1988; Caldwell et al.
1998), usually based on a scalar field. In the simplest models,
the field is very light, has a canonical kinetic energy term and
is minimally coupled to gravity. In such models the dark energy
sound speed equals the speed of light and it has zero anisotropic
stress. It thus contributes very little to clustering. We shall only
consider such models in this subsection.

A cosmological constant has an equation of state w ≡ p/ρ =
−1, while scalar field models typically have time varying w with
w ≥ −1. The analysis performed here is based on the “parameter-
ized post-Friedmann” (PPF) framework of Hu & Sawicki (2007)
and Hu (2008) as implemented in camb (Fang et al. 2008b,a) and
discussed earlier in Sect. 2. This allows us to investigate both re-
gions of parameter space in which w < −1 (sometimes referred
to as the “phantom” domain) and models in which w changes
with time.

Figure 34 shows the marginalized posterior distributions for
w for an extension of the base ΛCDM cosmology to models with
constant w. We present results for Planck+WP and in combi-
nation with SNe or BAO data. (Note that adding in the high-`
data from ACT and SPT results in little change to the posteriors
shown in Fig. 34.) As expected, the CMB alone does not strongly
constrain w, due to the two-dimensional geometric degeneracy
in these models. We can break this degeneracy by combining
the CMB data with lower redshift distance measures. Adding in
BAO data tightens the constraints substantially, giving

w = −1.13+0.24
−0.25 (95%; Planck+WP+BAO), (91)

in good agreement with a cosmological constant (w = −1).
Using supernovae data leads to the constraints

w = −1.09 ± 0.17 (95%; Planck+WP+Union2.1), (92a)
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Fig. 34. Marginalized posterior distributions for the dark en-
ergy equation of state parameter w (assumed constant), for
Planck+WP alone (green) and in combination with SNe data
(SNSL in blue and the Union2.1 compilation in red) or BAO
data (black). A flat prior on w from −3 to −0.3 was as-
sumed and, importantly for the CMB-only constraints, the prior
[20, 100] km s−1 Mpc−1 on H0. The dashed grey line indicates
the cosmological constant solution, w = −1.

w = −1.13+0.13
−0.14 (95%; Planck+WP+SNLS), (92b)

The combination with SNLS data favours the phantom domain
(w < −1) at 2σ, while the Union2.1 compilation is more consis-
tent with a cosmological constant.

If instead we combine Planck+WP with the Riess et al.
(2011) measurement of H0, we find

w = −1.24+0.18
−0.19 (95%; Planck+WP+H0), (93)

which is in tension with w = −1 at more than the 2σ level.
The results in Eqs. (91–93) reflect the tensions between the

supplementary data sets and the Planck base ΛCDM cosmology
discussed in Sect. 5. The BAO data are in excellent agreement
with the Planck base ΛCDM model, so there is no significant
preference for w , −1 when combining BAO with Planck. In
contrast, the addition of the H0 measurement, or SNLS SNe data,
to the CMB data favours models with exotic physics in the dark
energy sector. These trends form a consistent theme throughout
this section. The SNLS data favours a lower Ω in the ΛCDM
model than Planck, and hence larger dark energy density today.
The tension can be relieved by making the dark energy fall away
faster in the past than for a cosmological constant, i.e., w < −1.

The constant w models are of limited physical interest. If
w , −1 then it is likely to change with time. To investigate
this we consider the simple linear relation in Eq. (4), w(a) =
w0 + wa(1 − a), which has often been used in the literature
(Chevallier & Polarski 2001; Linder 2003). This parameteriza-
tion approximately captures the low-redshift behaviour of light,
slowly-rolling minimally-coupled scalar fields (as long as they
do not contribute significantly to the total energy density at early
times) and avoids the complexity of scanning a large number of
possible potential shapes and initial conditions. The dynamical
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physics comes almost entirely from the astrophysical data sets.
It is up to the reader to decide how to interpret such results, but it
is simplistic to assume that all astrophysical data sets have accu-
rately quantified estimates of systematic errors. We have there-
fore tended to place greater weight on the CMB and BAO mea-
surements in this paper rather than on more complex astrophys-
ical data.

Our overall conclusion is that the Planck data are remark-
ably consistent with the predictions of the base ΛCDM cosmol-
ogy. However, the mismatch with the temperature spectrum at
low multipoles, evident in Figs. 1 and 39, and the existence of
other “anomalies” at low multipoles, is possibly indicative that
the model is incomplete. The results presented here are based on
a first, and relatively conservative, analysis of the Planck data.
The 2014 data release will use data obtained over the full mis-
sion lifetime of Planck, including polarization data. It remains
to be seen whether these data, together with new astrophysical
data sets and CMB polarization measurements, will offer any
convincing evidence for new physics.
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Appendix A: Comparison of the Planck and
WMAP-9 base ΛCDM cosmologies

The parameters for the base ΛCDM cosmology derived from
Planck differ from those derived from WMAP-9. In this ap-
pendix, we address the question of whether the parameter shifts
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We present constraints on the mass of warm dark matter (WDM) particles from a combined
analysis of the matter power spectrum inferred from the Sloan Digital Sky Survey Lyman-α flux
power spectrum at 2.2 < z < 4.2, cosmic microwave background data, and the galaxy power
spectrum. We obtain a lower limit of mWDM ∼> 10 keV (2σ) if the WDM consists of sterile
neutrinos and mWDM ∼> 2 keV (2σ) for early decoupled thermal relics. If we combine this bound
with the constraint derived from x-ray flux observations in the Coma cluster, we find that the allowed
sterile neutrino mass is ∼ 10 keV (in the standard production scenario). Adding constraints based
on x-ray fluxes from the Andromeda galaxy, we find that dark matter particles cannot be sterile
neutrinos, unless they are produced by a nonstandard mechanism (resonant oscillations, coupling
with the inflaton) or get diluted by some large entropy release.

PACS numbers: 98.80.Cq

Introduction. Warm dark matter (WDM) has been
advocated in order to solve some apparent problems of
standard cold dark matter (CDM) scenarios at small
scales (see [1] and references therein), namely: the excess
of galactic satellites, the cuspy and high density of galac-
tic cores, the large number of galaxies filling voids. More-
over, recent observational results suggest that the shape
of the Milky Way halo is spherical [2] and cannot easily
be reproduced in CDM models. All these problems would
be alleviated if the dark matter (DM) is made of warm
particles, whose effect would be to suppress structures
below the Mpc scale. Detailed studies of the dynamics
of the Fornax dwarf spheroidal galaxy suggest shallower
cores than predicted by numerical simulations of CDM
models and put an upper limit on the mass of a putative
WDM particle [3]. One of the most promising WDM can-
didate is a sterile (right-handed) neutrino with a mass in
the keV range, which could explain the pulsar velocity
kick [4], help in reionizing the universe at high redshift
[5], and emerge from many particle physics models with
grand unification (e.g. [6, 7]). Because of a small, non-
zero mixing angle between active and sterile flavor states,
X-ray flux observations can constrain the abundance and
decay rate of such DM particles. The Lyman-α absorp-
tion caused by neutral hydrogen in the spectra of distant
quasars is a powerful tool for constraining the mass of
a WDM particle since it probes the matter power spec-
trum over a large range of redshifts down to small scales.
In a previous work, [8] used the LUQAS sample of high
resolution quasar absorption spectra to set a lower limit
of 2 keV for the sterile neutrino mass. More recently,
exploiting the small statistical errors and the large red-
shift range of the SDSS Lyman-α forest data, Seljak et
al. [9] found a lower limit of 14 keV. If the latter result is

correct, a large fraction of the sterile neutrino parameter
space can be ruled out (assuming that all the DM is made
of sterile neutrinos); together with constraints from X-ray
fluxes, this discards the possibility that DM consists of
sterile neutrinos produced by non-resonant active-sterile
neutrino oscillations [6] (still, they could be produced by
resonant oscillations caused by a large leptonic asymme-
try in the early Universe [10], or considerably diluted
by some large entropy release [9, 10, 11], or generated
in a radically different manner, e.g. from their coupling
with the inflaton [12]). More recently, some joint anal-
yses of the SDSS flux power spectrum and the WMAP
year three data [13] have been presented in [14, 15] for
standard ΛCDM models. The authors of [14] found some
moderate disagreement between the inferred power spec-
trum amplitudes. Instead, from an independent analysis
of the SDSS data [16], the authors of [15] find good agree-
ment in their joint analysis. Here, we extend the analysis
of [16] to constrain the mass of WDM particles.

Data sets and Method. We use here the SDSS
Lyman-α forest data of McDonald et al. [17], which
consist of 3035 quasar spectra with low resolution (R ∼
2000) and low signal-to-noise spanning a wide range of
redshifts (z = 2.2 − 4.2). The data set differs substan-
tially from the LUQAS and C02 samples used [8], which
contain mainly high resolution, high signal-to-noise spec-
tra at z ∼ 2.5. More precisely, we use the 132 flux power
spectrum measurements PF (k, z) that span 11 redshift
bins and 12 k−wavenumbers in the range 0.00141 < k
(s/km)< 0.01778 (roughly corresponding to scales of 5-
50 comoving Mpc). It is not straightforward to model
the flux power spectrum of the Lyman-α forest for given
cosmological parameters, and accurate numerical simula-
tions are required. McDonald et al. [17] modelled the flux
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power spectrum using a large number of Hydro Particle
Mesh simulations [18], calibrated with a few small-box-
size full hydrodynamical simulations. Here, instead, we
model the flux power spectrum using a Taylor expansion
around a best fitting model: this allows a reasonably ac-
curate prediction of the flux power spectrum for a large
range of parameters, based on a moderate number of full
hydrodynamical simulations [19]. The method has been
first introduced in Ref. [16] and we refer to this work
for further details. The fiducial flux power spectrum has
been extracted from simulations of 60 h−1 comoving Mpc
and 2× 4003 gas and DM particles (gravitational soften-
ing 2.5 h−1 kpc) corrected for box size and resolution
effects. We performed a number of additional hydrody-
namical simulations with a box size of 20 h−1 comoving
Mpc and with 2×2563 gas and DM particles (grav. soft.
1 h−1 kpc) for a WDM model with a sterile neutrino
of mass ms = 1, 4, 6.5 keV, to calculate the flux power
spectrum with respect to changes of the WDM particle
mass. We have checked the convergence of the flux power
spectrum on the scales of interests using additional sim-
ulations with 2 × 2563 gas and DM particles and box
sizes of 10 h−1 Mpc (grav. soft. 0.5 h−1 kpc). We then
used a modified version of the code CosmoMC [20] to
derive the parameter likelihoods from the combination of
the Lyman-α data with Cosmic Microwave Background
(CMB) and galaxy power spectrum data, from WMAP
[13], ACBAR [21], CBI [22], VSA [23] and 2dF [24]. In
total, we used a set of 29 parameters: 7 cosmological
parameters; 1 parameter describing a free light-to-mass
bias for the 2dF galaxy power spectrum; 6 parameters
describing the thermal state of the Intergalactic Medium
(parametrization of the gas temperature-gas density re-
lation T = T0(z)(1 + δ)γ(z)−1 as a broken power law at
z = 3 in the two astrophysical parameters T0(z) and
γ(z)); 2 parameters describing the evolution of the ef-
fective optical depth with redshift (slope and amplitude
at z = 3); 1 parameter which accounts for the contri-
bution of damped Lyman-α systems and 12 parameters
modelling the resolution and the noise properties (see
[25]). We applied moderate priors to the thermal history
to mimic the observed thermal evolution as in [26], but
the final results in terms of sterile neutrino mass are not
affected by this.

Results. We assume the Universe to be flat, with
no tensor or neutrino mass contributions. We further
note that adding CMB and large scale structure data
has very little effect on the results for ms, since the free-
streaming effect of WDM particles is visible only on the
scales probed by the Lyman-α flux power spectrum[36].

In Figure 1 we show the 2-dimensional marginalized
likelihoods for the most important cosmological and as-
trophysical parameters: σ8, ns, Ωm and the effective op-
tical depth amplitude measured at z = 3, τAeff , all plotted
as a function of the parameter (1 keV)/ms. The con-
straints on ms get stronger for the Lyman-α forest data
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FIG. 1: 2-dimensional marginalized likelihoods (68% and
95% confidence limits) for ns, σ8,Ωm and the effective optical
depth at z = 3, using the SDSS data at z ≤ 4.2 (left, green),
z ≤ 3.6 (middle, white) and z ≤ 3.2 (right, blue).

in the highest redshift bins. To demonstrate this we plot
the likelihood contours for data in three different red-
shift ranges: z ≤ 3.2 (blue), z ≤ 3.6 (white) and z ≤ 4.2
(green), which is the whole data set. The constraints
improve by a factor almost 3 (2) for the whole data set
compared to the z ≤ 3.2 (z ≤ 3.6) subsamples. At high
redshifts, the mean flux level is lower and the flux power
spectrum is closer to the linear prediction making the
SDSS data points very sensitive to the free-streaming ef-
fect of WDM [9]. We find no strong degeneracies between
ms and the other parameters, showing that the signature
of a WDM particle in the Lyman-α flux power is very
distinct, and that other considered cosmological and as-
trophysical parameters cannot mimic its effect.
In Figure 2 we show the 1-dimensional marginalized

likelihoods for (1 keV)/ms for several redshift ranges.
The 2σ lower limits for the sterile neutrino mass are: 3.9,
8.3, 8.1, 8.6, 10.3 keV for z ≤ 3.2, 3.4, 3.6, 3.8, 4.2, respec-
tively. The corresponding limits for an early decoupled
thermal relic are: 0.9, 1.7, 1.6, 1.7, 1.9 keV (see [8] for
the correspondence between the two cases). Also shown
(dotted black line) is the constraint obtained in [8] using
the LUQAS and C02 samples [26, 29]. The SDSS data
improve the constraint from the high resolution data at
z ∼ 2.5 by a factor 5. This is mainly due to the extension
to higher redshift where the flux power spectrum is most
sensitive to the effect of WDM. The smaller statistical
errors of the flux power spectrum and the coverage of a
substantial range in redshift help to break some of the
degeneracies between astrophysical and cosmological pa-
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FIG. 2: 1-dimensional marginalized likelihoods for the pa-
rameter (1 keV)/ms for the SDSS Lyman-α data for the red-
shift ranges z ≤ 3.2, 3.6, 3.8, 4.2 and the VHS [26] data.

rameters and also contribute to the improvement. Our
independent analysis confirms the limits found in [9] for
the SDSS Lyman-α data and a small sample of high res-
olution data that also extends to high redshift. Note,
however, that our lower limit for essentially the same
data set is ∼30% smaller (indeed, when using only SDSS
Lyman-α data, Ref. [9] obtains ms > 12 keV (2σ), which
includes a 10% correction caused by the non-thermal mo-
mentum distribution of sterile neutrinos [28]: so, for the
assumption made here, they would get ms > 13 keV).

Discussion. In Figure 3 we summarize a num-
ber of current constraints for sterile neutrinos in the
(ms, sin

22θ) plane, where θ is the vacuum 2 × 2 mix-
ing angle between active and sterile neutrinos [30]. We
show the limits obtained from different types of X-ray
observations: X-ray diffuse background (XRB, orange
curve, [31]); flux from the Coma cluster (blue curve, [32]);
and finally, flux from the Andromeda galaxy (M31) halo
(95% C.L., green dashed curve, [33]). In addition, we
plot the Lyman-α constraints obtained in this work (red
dashed) and in [9] (black dotted). The region which
can explain observed pulsar kicks [4] is shown as the
hatched area. Finally, according to [7], sterile neutrinos
produced from non-resonant oscillations (i.e., in absence
of significant leptonic asymmetry, L = 0) with a den-
sity ΩDM = 0.23± 0.04 should lie between the two black
solid curves (the computation in [7] is based on simpli-
fying assumptions concerning the QCD phase transition;
the effect of hadronic corrections is currently under in-
vestigation [34] and could shift the allowed region in the
(ms, sin

22θ) plane). If all these constraints are correct,
then there is no room for sterile neutrinos as DM candi-
dates in the standard case. Models in which the decay
of massive particles release some entropy and dilutes the
dark matter by a factor S can alleviate the tension be-
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FIG. 3: This plot summarizes some of the parameter space
constraints (at the 95% C.L.) for the sterile neutrino models,
assuming that they constitute the dark matter. Limits are
explained in the text.

tween the Lyman-α and X-ray bounds [11], but a very
large S is needed [9, 10]. As mentioned in the introduc-
tion, the sterile neutrino remains a viable WDM candi-
date for alternative production mechanisms (e.g. reso-
nant oscillations with L 6= 0, or coupling with the infla-
ton). Recently, Ref. [10] questioned the results based on
the LMC and MilkyWay because of uncertainties in mod-
elling the dark matter distribution; and also those based
on detecting emission lines in cluster spectra [32], which
used a fixed phenomenological model for X-ray emission
(not shown in the figure but 30% more constraining than
[31]). If these observational constraints are inaccurate,
then a sterile neutrino mass in the range 9∼< ms (keV)

∼< 11.5 and sin22θ ∼ 2×10−9 would be marginally consis-
tent with the XRB bound and the Lyman-α forest data,
but it is strongly excluded by the robust limit obtained
by Ref. [33] (which is very conservative, since the bound
quoted as 2σ by the authors requires a signal a few times
larger than the background). The corresponding emis-
sion line for such a decaying sterile neutrino would be at
E ∼ 5.5 keV (close to, or possibly contaminated by, the
recently discovered Chromium line [35]). If instead all
X-ray constraints are correct, but the two recent Lyman-
α forest constraints are not accurate, then a mass of
ms ∼ 2 keV is still possible and compatible with the
robust and conservative lower limit from [8]. It would
also satisfy the requirement from the dynamical analy-
sis of the Fornax dwarf galaxies [3]. However, the latter
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possibility appears unlikely. Even if the highest redshift
bins of the SDSS Lyman-α forest data were affected by
not yet considered systematic errors the analysis of the
data with z ≤ 3.2 still gives a lower limit of about ∼ 3.5
keV (see [33]). Appealing to an insufficient resolution
of the hydrodynamical simulations would also not help,
since an increase in resolution could only increase the flux
power spectrum at small scales and raise the lower limits.
We have furthermore checked explicitly that this is not
the case and that other possible effects on the flux power
have a different signature than that of WDM. A poten-
tially big improvement on the quality of the constraints
from Lyman-α forest data could be achieved by an anal-
ysis of a large set of high-redshift, high-resolution data to
extend the measurement of the flux power spectrum at
high redshift to smaller scales. This would, however, also
require accurate modelling of the thermal history and the
contribution of associated metal absorption to the small
scale flux power spectrum.
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Previous fits of sterile neutrino dark matter models to cosmological data assumed a peculiar pro-
duction mechanism, which is not representative of the best-motivated particle physics models given
current data on neutrino oscillations. These analyses ruled out sterile neutrino masses smaller than
8-10 keV. Here we focus on sterile neutrinos produced resonantly. We show that their cosmological
signature can be approximated by that of mixed Cold plus Warm Dark Matter (CWDM). We use
recent results on ΛCWDM models to show that for each mass ≥ 2 keV, there exists at least one
model of sterile neutrino accounting for the totality of dark matter, and consistent with Lyman-α
and other cosmological data. Resonant production occurs in the framework of the νMSM (the ex-
tension of the Standard Model with three right-handed neutrinos). The models we checked to be
allowed correspond to parameter values consistent with neutrino oscillation data, baryogenesis and
all other dark matter bounds.

The sterile neutrino is a very interesting Dark Matter
candidate [1, 2, 3, 4, 5, 6]. The existence of sterile neu-
trinos (right-handed or gauge singlet) is one of the most
simple and natural explanations of the observed flavor
oscillations of active neutrinos. It was observed long ago
that such particles can be produced in the Early Universe
through oscillations with active neutrinos [1]. For any
mass (above ∼ 0.4 keV, which is a universal lower bound
on any fermionic Dark Matter (DM) particle, see [7] and
references therein) sterile neutrinos produced in this way
can end up with a correct relic density [1, 2, 4, 8, 9, 10].

A single right-handed neutrino would be unable to ex-
plain the two observed mass splittings between Standard
Model (SM) neutrinos. Moreover, should this neutrino
play the role of DM, its mixing with active neutrinos
would be too small for explaining the observed flavor os-
cillations [6, 11]. However, in presence of three right-
handed neutrinos (one for each SM flavor), active neu-
trino mass splittings and DM may be explained at the
same time [6]. Moreover, the mass of each sterile neu-
trino can be chosen below the electroweak scale and ad-
ditionally explain the matter-antimatter asymmetry of
the Universe (baryogenesis) [6]. These observations mo-
tivated a lot of recent efforts for developing this model,
called the νMSM [8, 12, 13, 14, 15, 16], and for constrain-
ing sterile neutrino DM [17, 18, 19].

Because of its mixing with flavor neutrinos, this DM
particle has a small probability of decaying into an ac-
tive neutrino and a photon of energy E = ms/2 [20],
producing a monochromatic line in the spectrum of DM
dominated objects. The corresponding photons flux de-
pends on the sterile neutrino massms and mixing angle θ

as F ∼ θ2m5
s. For each value of the mass and of other pa-

rameters in the model (see below), the angle θ is fixed by
the requirement of a correct DM abundance. Combining
this constraint with bounds on decay lines in astrophys-
ical spectra allows to put an upper limit on the mass of
DM sterile neutrinos [3, 5, 17, 18, 19].

Within the νMSM, the relation between ms, θ and the
DM abundance can be affected by the presence of a lep-
ton asymmetry (an excess of leptons over anti-leptons).
In this case, the production of sterile neutrinos may be
of the resonant type [2]. The lepton asymmetry re-
quired for this mechanism to be effective is several or-
ders of magnitude larger than the baryon asymmetry
ηB ∼ 10−10. In many models of baryogenesis (for a re-
view see e.g. [21]), both asymmetries are of the same
order, because they are generated above the electroweak
scale and sphaleron processes equalize them. Instead, in
the νMSM, the lepton asymmetry is generated below the
electroweak scale, when sphaleron processes are not ac-
tive anymore [9]. As a result, it can be as large as the
upper limit imposed by Big Bang Nucleosynthesis (BBN)
and other cosmological constraints (see e.g. [22] and refs.
therein). Such a large lepton asymmetry is consistent
with generic values of the parameters of the νMSM, satis-
fying current data on neutrino oscillations, cosmological
requirements (baryogenesis, BBN constraints) and par-
ticle physics constraints [23]. So, resonant production
(RP) is a natural way of producing sterile neutrino DM
in the νMSM. At the same time, most previous constrains
on sterile neutrino DM assumed non-resonant production
(NRP) [1, 8].

In the NRP case, the comparison of X-ray bounds [17,
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18, 19] with constraints on DM relic abundance [8] gives
an upper bound mnrp

s ≤ 4 keV on the DM sterile neutrino
mass. In the more effective RP scenario, smaller mixing
angles are required and the corresponding bound is much
weaker: mrp

s . 50 keV [10].

The most robust lower bound on the DM mass comes
from the analysis of the phase space density of compact
objects, e.g. dwarf spheroidals of the Milky Way halo.
The universal Gunn-Tremaine bound [24] can be made
stronger if one assumes a particular primordial phase-
space distribution function. For NRP sterile neutrinos,
this leads to mnrp

s > 1.8 keV, while for RP particles the
bound is weaker: mrp

s > 1 keV [7].

An interesting property of sterile neutrino DM with
keV mass is that it falls in the Warm Dark Matter
(WDM) category. Lyman-α (Ly-α) forest observations in
quasar spectra provide strong lower bounds on the mass
of DM sterile neutrinos produced with the NRP mecha-
nism [25, 26, 27]. The analysis of SDSS Ly-α data led to
mnrp

s > 13 keV in Ref. [26], or mnrp
s > 10 keV in [25]. In

[27] these bounds were revisited using the same SDSS Ly-
α data (combined with WMAP5 [28]), but paying special
attention to the interpretation of statistics in the param-
eter extraction, and to possible systematic uncertainties.
It was shown that a conservative (frequentist, 3-σ) lower
bound is mnrp

s > 8 keV. The Ly-α method is still un-
der development, and there is a possibility that some of
the related physical processes are not yet fully under-
stood. However, at this moment, it is difficult to identify
a source of uncertainty that could give rise to system-
atic errors affecting the result by more than 30%. Even
with such an uncertainty, the possibility to have all DM
in the form of NRP sterile neutrinos is ruled out by the
comparison of Ly-α results with X-ray upper bounds [27].

In the RP case, Ly-α bounds have not been derived
yet. However, in Ref. [27], a ΛCWDM model – contain-
ing a mixture of WDM (in the form e.g. of NRP sterile
neutrinos) and Cold Dark Matter (CDM) – was analyzed.
Below we will show that although the phase-space distri-
bution of RP sterile neutrinos does not coincide exactly
with such mixed models, some results can be inferred
from the ΛCWDM analysis. In particular, we will show
that for each mass ≥ 2 keV, there is at least one value of
the lepton asymmetry for which the RP sterile neutrino
model is fully consistent with Ly-α and other cosmolog-
ical data (this value of the lepton asymmetry is natural
within the νMSM).

Spectra of RP sterile neutrino. DM production in
the RP scenario occurs in two stages [2, 10]. In pres-
ence of a lepton asymmetry, the conditions for reso-
nant oscillations (related to the intersection of disper-
sion curves for active and sterile neutrinos) are fulfilled
for temperatures of few hundred MeV. Later, at T ∼
150 (mrp

s /keV)1/3 MeV, non-resonant production takes
place. As a result, the primordial velocity distribution of
sterile neutrinos contains a narrow resonant (cold) com-
ponent and a non-resonant (warm) one. Its exact form
can be computed by taking into account the expansion of
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FIG. 1: Characteristic form of the RP sterile neutrino distri-
bution function for mrp

s = 3keV and various values of the lep-
ton asymmetry parameter L6. The spectrum for L6 = 16 (red
solid line) is shown together with its resonant (dashed) and
non-resonant (dashed-dotted) components. All these spectra
have the same shape for q & 3.

the Universe, the interaction of neutrinos with the con-
tent of the primeval plasma and the changes in the lepton
asymmetry resulting from DM production. In this work,
we used the spectra computed in Ref. [10].

Characteristic forms of the spectra are shown in Fig. 1.
They are expressed as a function of the comoving mo-
mentum q ≡ p/Tν (Tν being the temperature of active
neutrinos), and depend on the lepton asymmetry param-
eter [9] L6 ≡ 106(nνe − nν̄e)/s (s being the entropy den-
sity). In rest of this work, the notation M2L25 would
refer to a model with mrp

s = 2 keV and L6 = 25. The
shape of the non-resonant distribution tail depends on
the mass, but not on L6. For q & 3, the distribution is
identical to a rescaled NRP spectrum [8] with the same
mass (red dashed-dotted line on Fig. 1). We call this
rescaling coefficient the warm component fraction fnrp.
For the few examples shown in Fig. 1, the M3L16 models
corresponds to fnrp ≃ 0.12, M3L10 to fnrp ≃ 0.53 and
M3L25 to fnrp ≃ 0.60. The maximum of q2f(q) for the
NRP component occurs around q ≈ 1.5 − 2. We define
the cold component to be the remaining contribution: its
distribution is given by the difference between the full
spectrum and the rescaled NRP one (red dashed line on
Fig. 1), and peaks around qres ∼ 0.25− 1. Its width and
height depend on L6 and mrp

s .

The DM clustering properties can be characterized
qualitatively by the particle’s free-streaming horizon (see
e.g. [27] for definition), proportional to its average veloc-
ity 〈q〉/m. In the RP case, the dependence of the av-
erage momentum 〈q〉 on mrp

s and L6 is not monotonic.
For a given mass, the RP model departing most from an
NRP model is the one with the smallest 〈q〉 (i.e., with
the most significant cold component). For each mass,
there is indeed a value of L6 minimizing 〈q〉, such that
〈q〉min ≈ 0.3〈q〉nrp (cf. [10]). This minimum corresponds
to lepton asymmetries that are likely to be generated
within the νMSM. For instances, for mrp

s = 2, 3 or
4 keV, the spectra with the smallest average momentum
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are M2L25, M3L16 and M4L12, all having fnrp . 0.2.
For a quantitative analysis, we computed the power

spectrum of matter density perturbations Prp(k, z) for
these models. The standard software (i.e. camb [29]) is
not immediately appropriate for this purpose, as it only
treats massive neutrinos with a Fermi-Dirac primordial
distribution. To adapt it to the problem at hand, we
modified camb so that it could take arbitrary spectra as
input data files. We analyzed the spacing in momentum
space needed in order to obtain precise enough results,
and implemented explicit computations of distribution
momenta in camb. We cross-checked our results by mod-
ifying another linear Boltzmann solver – cmbfast [30],
implementing a treatment of massive neutrinos with ar-
bitrary analytic distribution function.

To separate the influence of primordial velocities on the
evolution of density perturbations from that of cosmolog-
ical parameters, it is convenient to introduce the transfer

function (TF) T (k) ≡
[
Prp(k)/PΛCDM(k)

]1/2
. Figure 2

shows the transfer function of the models M3L16 and
M4L12. The TF becomes smaller than one above the
wave number associated with the free-streaming horizon
today, kfsh ≈ 0.5 (mrp

s /1 keV)hMpc−1 (c.f. [27]). We
see that for a large range of k values above kfsh, roughly
k . 5 kfsh, the transfer function Trp(k) is very close to
TΛCWDM(k) for the same mass and warm component frac-
tion Fwdm = fnrp. On smaller scales, Trp(k) decreases
faster, since the cold component of RP sterile neutrinos
also has a non-negligible free-streaming scale. For all
values of the mass studied in this work, mrp

s ≥ 2 keV,
the discrepancy appears above 5 h/Mpc (vertical line
in Fig. 2), i.e. above the maximum scale in the three-
dimensional power spectrum to which current Ly-α data
are sensitive. Hence, for the purpose of constraining RP
sterile neutrinos with Ly-α data, it is possible to use
the results obtained in the ΛCWDM case. In Ref. [27],
we presented the results of a WMAP5 plus SDSS Ly-α
data analysis for ΛCWDM models with mrp

s ≥ 5 keV.
In Fig.3, we show the Bayesian credible region for the
mass and the warm component fraction, now extended
till mnrp

s = 2 keV [34].

Fig. 2 demonstrates that for the models M3L16 and
M4L12, the function Trp(k) lies above TΛCWDM(k) for
the same masses and Fwdm = 0.2 (at least, in the range
of wave numbers probed by Ly-α data): so, it can only be
in better agreement with cosmological data. We checked
that the same is true for M2L25. However, ΛCWDM
models with mrp

s = 2, 3, 4 keV and Fwdm = 0.2 are within
the 2-σ contour of Fig. 3. We conclude that M2L25,
M3L16 and M4L12 are clearly allowed by the data. For
larger mass (and still minimal 〈q〉), the free-streaming
horizon is smaller, and agreement with observations can
only become easier. Therefore, we see that for each mass
mrp & 2 keV there exists at least one value of the lepton
asymmetry for which RP sterile neutrinos are perfectly
compatible with WMAP5 and SDSS Ly-α data.

Fig. 4 shows the range of masses and mixing angles
consistent with constraints from phase-space density [7]
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FIG. 2: TFs for the models M4L12 (top) and M3L16 (bot-
tom), together with CWDM spectra for the same mass and
Fwdm ≃ 0.15 or 0.2.
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FIG. 3: 1 and 2-σ bounds from WMAP5 and SDSS Ly-α data
on ΛCWDM parameters. Red points correspond to approx-
imations for the models M4L12, M3L16, M2L25. Results to
the left of black vertical lines were already reported in [27].

(left shaded region), from X-rays [17, 19] (upper right
corner, shaded in red) and providing the correct DM
abundance (curves between the lines “NRP” and Lmax

6 :
from top to bottom L6 = 8, 12, 16, 25, 70, 250). The black
dashed line shows approximately the RP models with
minimal 〈q〉 for each mass, i.e., the family of models with
the largest cold component. We have seen that all black
filled circles along this line and with mrp

s ≥ 2 keV are
compatible with Ly-α bounds. In addition, those with
mrp

s ≤ 4 keV are also compatible with X-ray bounds
(this conclusion does not change with the new results of
Ref. [31]). Note that above 4 keV, Ly-α data allows in-
creasingly high WDM fractions, so that agreement with
both Ly-α and X-ray bounds can be maintained with
larger values of L6. This is very clear e.g. for the models
M10L25, M10L16 and M10L12, allowed by X-ray data
(open circles on Fig.4), and consistent with Ly-α data
since for mrp

s = 10 keV, up to 100% of WDM is allowed
at the 2-σ level (c.f. Fig.3).
In conclusion, we showed in this work that sterile neu-

trino DM with mass≥ 2keV is consistent with all existing
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FIG. 4: Region of masses and mixing angles for RP sterile
neutrinos consistent with existing constraints.

constraints. A sterile neutrino with mass ∼ 2 keV is an
interesting WDM candidate, as it may affect structure
formation on galactic scales. This range of masses and
corresponding mixing angles is important for laboratory
and astrophysical searches.

To determine the precise shape of the allowed param-
eter range (which may continue below 2 keV, see Fig. 4),
one should perform specific hydrodynamical simulations
in order to compute the flux power spectrum on a grid
of (mrp

s , L6) values, and compare with Ly-α data. We
leave this for future work.

The νMSM does not require new particles apart from
the three sterile neutrinos. Extensions of this model may
include a scalar field providing Majorana masses to ster-
ile neutrinos via Yukawa couplings [32, 33]. Then, sterile
neutrino DM can also be produced by the decay of this
scalar field, and also contain a cold and a warm compo-
nent. We expect a similar range of masses and mixing
angles to be allowed by Ly-α data. The quantitative
analysis of this model is also left for future work.
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