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USummary 
 

This HDR manuscript principally describes the research activities in which I have been 
involved since my appointment in August 2003 to my current laboratory, the Optoelectronics for 
Embedded Systems Group of the Laboratory for Analysis and Architecture Systems (LAAS-
OSE). Before detailing these activities, I have also added a brief description of research work 
carried out during my PhD. This has been willingly added to this manuscript to demonstrate the 
evolution of my research activities over the past decade. 
 

Chapter 1 is a very brief introduction to my early career as a researcher in optics and fiber 
optics, basically describing work carried out on ruby crystal fiber-based sensors for harsh 
environments during my PhD at the University of Glasgow. Results show that c-axis ruby crystal 
fibers are uniquely sensitive to temperature effects while being insensitive to high levels of 
strains. 
 

Chapter 2 concerns an extrinsic-type fiber Fabry-Perot (EFFPI) interferometer which I 
initially developed during my post-doctoral fellowship at the Ecole des Mines de Nantes where I 
was responsible for setting up and leading the fiber optic sensing branch of the Instrumentation 
and Sensor Group. The proof-of-concept of the fiber interferometer was demonstrated before my 
departure to ENSEEIHT–INPT in Toulouse where I continue to work on its improvement at my 
current laboratory, LAAS–OSE, for metrology purposes. The initial polarization-based EFFPI 
which was developed earlier is thus described in the first half of Chapter 2 where a quadrature 
signal pair is obtained, hence the optical dual-cavity nature of the instrument. This is followed by 
its evolution into a modulation-based instrument, in the second half of the chapter, where, 
effectively, the introduction of a double-modulation scheme to the laser drive current enables a 
quadrature pair as well as the capability for detecting displacement amplitudes smaller than λ/4 
to be achieved. This latter sensor has been conceived for applications in optical metrology and, 
more specifically, in geophysics under the ANR RISKNAT-sponsored LINES project. Three 
optical fiber-based geophysics instruments have been developed during the course of this project, 
namely, an EFFPI-based long baseline tiltmeter (or hydrostatic leveling system, HLS), an 
EFFPI-based borehole tiltmeter and an EFFPI-based seismometer. The modulation-based EFFPI 
is currently undergoing further development as a key component of the HLS for accelerator 
alignment at the CERN. A TRL 7 (technology readiness level) maturity state is envisaged at the 
outcome of this project. The final ambitions are to attain TRL 8 and TRL 9 before production 
and commercialization of the instrument for geophysics and industrial applications. 
 

Chapter 3 describes the second research activity which I lead at LAAS-OSE. This 
essentially involves the development of a novel technique for interrogating fiber Bragg grating-
based (FBG) strain sensors based on optical feedback or self-mixing interferometry. The 
reflections off an FBG are retro-injected into the cavity of a laser diode, perturbing the internal 
fields. These result in a series of sawtooth fringes being detected by an internal photodiode and 
which are a function of the strength as well as frequency of the external strains applied on the 
FBG. This sensor has been demonstrated for dynamic strain measurements under a cantilever 
set-up. Further, a proof-of-concept is also experimentally demonstrated for extending the 
dynamic strain measurement range by 50% of the current limit via a low-frequency modulation 
scheme to the laser diode current. 
 

Chapter 4 is a summary of all the administrative tasks throughout my research career. It is 
organized around my supervision of PhD students including post-doctoral fellows, the various 
research projects that I have led and a selected list of my publications. Included is also a short 
discussion on the perspectives for leading further research as well as my services to my research 



community. I have also summarized my teaching duties and, to conclude this manuscript, my 
Curriculum Vitae is enclosed for perusal. 

 



URésumé 
 

 Ce manuscrit d'Habilitation décrit les principales activités de recherche que je mène au 
sein du groupe Optoélectronique pour les Systèmes Embarqués du LAAS depuis 2003. Par 
ailleurs, j'ai volontairement inclus une brève description de mes travaux de thèse avec pour 
objectif de montrer l'évolution de ma recherche. 

 
Le chapitre 1 résume donc le début de ma carrière dans le domaine de la recherche sur 

l'optique et les fibres optiques. Il porte essentiellement sur le développement des capteurs à fibres 
optiques à base de fibres cristallines de rubis pour des environnements hostiles à savoir 
température très élevée et déformations mécaniques très importantes. Il est à noter que ces 
capteurs sont insensibles aux dernières perturbations, et par conséquence, ne mesurent que la 
grandeur physique ciblée (c'est-à-dire température). 

 
Le chapitre 2 contient deux parties principales et porte sur le développement initial de 

l'interféromètre fibré de Fabry-Pérot extrinsèque (EFFPI). Ce premier dispositif est basé sur le 
principe de la décomposition du mode fondamental injecté dans l'interféromètre résultant ainsi 
en deux signaux intrinsèques interférométriques déphasés de π/2 ou en quadrature, d'où l'EFFPI 
à double-cavité optiques. Malgré une très large bande passante puisqu'aucune modulation n'est 
appliquée sur le courant du laser utilisé, l'EFFPI à double-cavité se montre sensible au niveau de 
son état de polarisation lors des perturbations induites (variations de température et vibrations 
parasites). Pour éliminer ces sensibilités, un EFFPI à modulation est développé, comme décrit 
dans la deuxième partie du chapitre. Ce travail est effectué dans le cadre d'un projet ANR qui a 
pour objectif de développer des nouveaux instruments pour les applications géophysiques. En 
effet, une double modulation du courant de la diode laser est appliquée, ce qui équivaut une 
modulation sur la longueur d'onde du laser. Ainsi, nous obtenons une condition de quadrature où 
l'amplitude du déplacement ainsi que sa direction peuvent être précisément déterminées sans 
aucune ambiguïté. Par ailleurs, grâce a cette double modulation, l'EFFPI est aussi capable de 
mesurer des déplacements équivalents inférieurs à λ/4 (<327.50 nm pour λ =1310 nm). Trois 
instruments opto-géophysiques ont ainsi été développés à savoir un inclinomètre longue base à 
fibre optique, un inclinomètre de forage à fibre optique et un sismomètre à fibre optique. 

 
Une autre de mes activités de recherche concerne le développement de nouvelles 

techniques d'interrogation pour les fibres à réseaux de Bragg sous déformations mécaniques. Ces 
travaux sont décrits dans le chapitre 3 où le phénomène de rétro-injection optique (plus connu 
sous le nom de "self-mixing") est exploité pour réaliser des capteurs de contraintes (déformations 
mécaniques) avec une bonne précision. Le faisceau laser réfléchi par le réseau de Bragg est 
rétro-injecté dans la cavité laser provoquant des franges d'interférence sous forme de dents-de-
scie. Ainsi, en présence d'une perturbation mécanique, ces franges dites de self-mixing sont 
fonction de la déformation mécanique induite dans le réseau. La faisabilité de cette technique 
d'interrogation est amplement démontrée. Par ailleurs, en modulant le courant du laser, nous 
avons pu augmenter la plage dynamique de mesure de ~50%. 

 
Enfin, le chapitre 4 résume toutes les tâches administratives et de responsabilités au niveau 

de ma recherche : l'encadrement des thèses et de chercheurs postdoctoraux, les projets de 
recherche et de contrats accordés ainsi qu'une liste de mes publications (sélectionnées) au cours 
de ces dernières années. J'ai aussi inclus une discussion sur les perspectives envisagées et 
envisageables sur mes activités de recherche. Pour terminer, j'ai joint un curriculum vitae 
démontrant mon parcours professionnel dans le domaine de la recherche scientifique. 
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Chapter 1 -  Single-crystal fibers for sensing applications 

1.1 17BIntroduction 

Most fiber optic sensing systems employ conventional glass fibers as sensing elements, 
which can often constrain the measurement of certain parameters of interest such as temperature, 
strain, stress and bending, to a lower range due to the intrinsic physical properties of glasses. 
These limitations, especially in the domain of fiber optic temperature sensing, have led to the 
search for more robust and stable systems based on other high temperature materials. Generally, 
most glass-based systems are limited to temperatures below ~700 K, with the exception of fused-
silica fibers which can be used intermittently up to 1300 K. For applications where temperatures 
higher than 1300 K are to be measured, these “conventional” fibers cannot be used. Suitable 
replacements must thus be found for this important temperature region. 

Single-crystal fibers (SCFs), or “whiskers” as commonly known, on the other hand possess 
both mechanical and optical proprieties which are unavailable in glass fibers. Although the 
majority of SCFs produced to date have mainly been employed in the domains of solid-state 
lasers and amplifiers, guided-wave non-linear optics, optical parametric devices, etc, their 
application in fiber sensing schemes have recently been attracting interest, particularly for 
metrology in hostile environments. SCFs fabricated from sapphire (Al2O3), yttria (Y2O3), yttria-
stabilized zirconia (Y2O3-ZrO2 or YSZ) and neodymium-doped yttrium aluminum garnet (Nd: 
Y3Al5O12 or Nd:YAG) exhibit near-theoretical strength, very high melting temperature 
(≥2000°C), very high optical damage threshold and chemical inertness. 

Most early sensors were either intrinsic or extrinsic fiber Fabry-Perot interference devices 
for temperature and strain measurements [1,2].  The fluorescence emission, consisting of both 
lifetime decay and wavelength shift, of appropriately doped SCFs has also been investigated for 
temperature and strain dependencies. Fluorescence characteristics are attractive as they are 
relatively independent of power fluctuations of the pump source (usually a laser diode). 

The synthesis of SCFs employed in this work is carried out by the laser heated pedestal 
growth technique due to its versatility. Both undoped and doped sapphire-based SCFs with 
lengths of 20 to more than 200 mm have been produced. 

1.2 18BLaser-heated pedestal growth of SCFs 

Laser-heated pedestal growth or LHPG is a non-contact growth method which couples 
homogeneity and high melting capacity from its heat source, the laser. Hence, axially symmetric 
heating of the source rod and large temperature gradients can easily be obtained together with 
little or no impurity contamination during fiber growth. As schematically illustrated in Fig. 1.1, 
by proportionally controlling the upward feeding speed, Vfeed, of the source rod of diameter D 
into the laser focus and the pulling rate, Vpull, of an oriented seed crystal fiber of diameter d using 
mass conservation, 

     
2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

d

D

V

V

feed

pull       (1.1) 

an SCF of good optical quality can be obtained. Stable fiber growth, as shown in Fig. 1.2, is 
achieved via software control. 

Typical pull rates are from 1–8 mm/min although an optimum reduction ratio of ~3 is used 
here [3] as larger values may result in growth instability and larger diameter fluctuations. Hence 
using a pull rate of 1 mm/min, SCFs with diameters ranging from 22.5–170 µm are grown. 
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Fig. 1.1. Schematic of LHPG Fig. 1.2. Image of crystal fiber growth in process 

The complete LHPG system is schematically illustrated in Fig. 1.3 where the heat source is 
a stabilized Synrad, Inc. Series 48 CO2 laser emitting at 10.6 µm with 28W of power. A viewing 
system is integrated into the system to facilitate the alignment of the source rod and seed fiber 
and, more importantly, to monitor the molten zone from orthogonal directions. 

The software control of the growth system thus ensures closed-loop control of both the pull 
and feed motors as well as the laser power to limit fiber diameter variations to <1%, considered 
sufficient for sensing applications. 

  
Fig. 1.3. Schematic of LHPG station 

Throughout the course of this work, almost all the fibers grown are based on Al2O3 hosts, 
typical examples of which are shown in Figs. 1.4. Further, no vacuum or inert gases are required. 

   
Fig. 1.4(a). a-axis 

Al2O3 SCF 
Fig. 1.4(b). c-axis 

ruby SCF 
Fig. 1.4(c). 

Er3++Yb3+: Al2O3 
SCF 

Fig. 4(d). YSZ SCF Fig. 4(e). SCF end 
taper 

1.3 19BRuby SCFs for fluorescence-based high temperature and strain sensing 

Ruby (Cr3+: Al2O3), a precious gem stone, is also a well-known crystalline laser material 
which was used by Maiman to demonstrate the first successful laser operation in the pulsed 
mode [4]. Continuous laser emission from ruby, in fiber form, was later demonstrated by Burrus 
and Stone [5] with Cr3+ concentration as low as 0.02 wt.%. Subsequently, several studies have 
been carried out into the fluorescence characteristics of ruby crystals and their dependence on 
external physical influences, especially that of temperature [6,7] and physical deformations [8,9]. 
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The earliest exploitation of ruby fluorescence characteristics for potential temperature sensing 
involved monitoring the intensity variation of the ruby R-lines (at 694.3 and 692.7 nm) and its 
fluorescence lifetime decay as a function of temperature [10,11]. Although the maximum 
temperature investigated was below 200°C, the use of phase-sensitive detection techniques or 
phase-locked detection (PLD) can greatly extend the maximum temperature limit [12]. Note that 
most temperature studies carried out to date have involved small ruby crystals cut from bulk ruby 
laser rods. 

In this work, phase-sensitive lock-in detection and feed-back control of the excitation 
source modulation frequency are employed to increase the signal-to-noise ratio of the detected 
decay signal. The basic problem of cross-sensitivity in a ruby SCF sensor is also investigated. 

1.3.1 21BAbsorption and fluorescence spectra of ruby SCFs 

Ruby is formed by incorporating Cr3+ ions into an Al2O3 host lattice at sites with a 
threefold axis of symmetry by substitutionally replacing the Al3+ ions [13,14], resulting in the 
Cr3+ ion being subjected to a trigonally-distorted octahedral crystal field which splits the 3d3 
energy levels of the ion. The combination of a distorted field linked with an even-parity energy 
term and spin-orbit coupling [19] leads the lowest-lying excited 2E state to split into the Ε and 
2Α states with an energy gap of ~29 cm-1. This manifests itself as the Ε → 4A2 transition for the 
R1 line (694.3 nm) and the 2Α → 4A2 transition for the slightly weaker R2 line (692.9 nm). 

The absorption spectrum of a c-axis ruby fiber produced by LHPG is shown in Fig. 1.5 
against that of a reference ruby rod and has been measured using unpolarized light from a 
stabilized Tungsten-Halogen lamp. 
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Fig. 1.5. Ruby SCF absorption spectrum compared to that of 

ruby laser rod 
Fig. 1.6. Emission spectra from ruby SCF and its bulk 

counterpart 

As seen, the strong interaction of Cr3+ ions with the sapphire crystal field leads to a wide 
absorption spectrum in the fiber, ranging from ~350 nm to ~700 nm, with two absorption peaks 
centered at approximately 410 nm and 550 nm. The fluorescence emission from the same fiber, 
excited using a 514.5 nm Spectra Physics 2060-10S Ar+ ion laser, is shown in Fig. 1.6. Two 
sharp R-lines typical of ruby (R1 at 694.3 nm and R2 at 692.9 nm) are emitted, corresponding to 
that of the ruby laser rod. 

1.3.2 22BTemperature dependence of ruby SCF fluorescence 

1.3.2.1 38BLifetime decay 

 



 

4 

The temperature-dependent fluorescence lifetime decay from both the radiative 2E → 4A2 
and nonradiative 4T2 → 4A2 transitions in ruby fibers can be predicted using a simplified 
configurational coordinate (SCC) model, as illustrated in Fig. 1.7. 
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Fig. 1.7. Simplified configurational coordinate (SCC) model for Cr3+ 

interactions in ionic crystal hosts 

Then, assuming a quasi-thermodynamic equilibrium in the 4T2 and 2E states, the rate 
change in their total population can be given by 

   
( ) ( ) ( )
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where τq is the nonradiative decay rate (or thermal quenching rate) and ΔEq the energy gap 
between the 4T2 and 4A2 states. ΔE, k and T represent the energy gap between 4T2 and 2E, 
Boltzman’s constant and temperature, respectively, τs and τi being the lifetimes of 2E and 4T2. By 
integrating (1.2), the fluorescence lifetime, τ, can be found as 
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kTE

S qee
e

Δ+Δ−Δ−

Δ−

++
+

=
βα

ττ
/

/

1
31     (1.3) 

with α = τs/τi and β = τs/τq. Thus with an appropriate choice of fit parameters, relatively good 
accuracy can be obtained when predicting the fluorescence lifetime for temperature sensing 
applications [7]. 

The experimental set-up for monitoring the temperature-induced fluorescence lifetime 
variation is illustrated in Fig. 1.8. The ruby SCF employed (Cr3+ concentration ~0.1 wt.%) has a 
nominal diameter of ~167 μm (maximum variation <2%) and a total length of ~75 mm. One end 
is tapered for better reflection of the fluorescence signal. A 200 μm core silica fiber (Thorlabs 
FVP-200-PF) is used to transmit the chopped excitation beam from an Ar+ laser to the target 
ruby SCF, both of which are butt-coupled together in a tapered silica capillary (see inset) and 
then secured together by high-temperature ceramic adhesives (Fortafix AL/CS). The reflected 
fluorescence signal is next directed to a 10 MHz Hamamatsu C5460 avalanche photodiode 
(APD) after the fiber coupler. Further, a narrow bandpass optical interference filter centered at 
694 nm (FWHM =±2 nm) placed in front of the APD separates the desired fluorescence signal 
from the excitation source. A high-speed (100 MHz) FEMTO voltage amplifier is used to match 
signal levels to be coupled into a 500 MHz HP digitizing oscilloscope. 

Preliminary tests performed to characterize the bandwidth of the entire detection circuit 
without the ruby fiber using a squarewave-modulated signal from the Ar+ laser result in a curve-
fitted lifetime of τsystem ~7.4 μs, which is also taken as the measurement limit in this experiment. 
For temperature characterization, the ruby SCF is inserted into the middle of a CARBOLITE 
Eurotherm furnace (quoted stability ±1 K and maximum temperature 1473 K) while high-
temperature ceramic wool is used to plug both ends of the heating chamber to maintain a 
stabilized temperature at the set level and to hold the sensor probe so that no contact occurs 
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between the fiber and the internal furnace wall. A type “K” thermocouple is also inserted into the 
heating chamber to serve as reference. 

Ar+ laser at 514.5 nm

Monochromator

Beam
expander

MO X20

MO X20

APD

1 x 2 Fibre
optic couplerFocusing lens

Interference filter
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Optical
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500 MHz Digital
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10 to 100 MHz High
speed amplifier

Standard FC
mechanical connector

and fibre coupler

Stabilised oven with
temperature control

High temperature
ceramic wool plugs

at both ends of oven

Ruby fibre butt-
coupled to silica
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Tapered silica
sleeve

High temperature
resistant ceramic

adhesive

 
Fig. 1.8. Experimental set-up for ruby SCF fluorescence lifetime measurement as a function of temperature 

The least-squares curve-fitting technique is used to determine the averaged fluorescence 
lifetime of the sensor taken at 50 K intervals via the following expression 

     ( ) ( ) CeItI t
O += − τ/      (1.4) 

where I(t) is the decaying fluorescence intensity at time t, IO the intensity at t =0, τ the lifetime 
decay and C a constant due to any dc offset in the detected signal. Figure 1.9 illustrates the 
lifetime decay of the ruby SCF at room temperature (292 K) together with the curve-fitting 
statistics: r2 indicates the confidence and στ the standard deviation of the curve-fitting achieved. 
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Fig. 1.9. Fluorescence lifetime decay of ruby SCF at 292 K 

Very good fits have been achieved up to 773 K where the r2 parameter is ~100%. Further, 
στ is found to be significantly low at ~0.5 μs and the error associated with this deviation is 
~0.32%. The curve-fitting accuracy beyond this temperature is then affected by the low intensity 
of the decay signal. The maximum deviation of the lifetime limited the resolution of temperature 
measurements and is also the resolution limit of the sensor system. This is found to be ~4.6% at 
923 K, translating into an error of ~40 K. The average precision from 292 K to 773 K is ~ 2.4 K. 
Below 673 K, a precision of better than 1 K is obtained. Hence, temperature changes of less than 
1 K can be accurately detected, implying the possibility of high-resolution measurement coupled 
to effective and simple detection and signal processing. The SCC model in (1.3) is next used to 
fit the experimental lifetime data as a function of temperature in Table I. 

The fitted curve for temperatures up to 923 K is shown in Fig. 1.10, demonstrating the 
good coherence of the experimental data to the SCC model except at high temperatures, where, 
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due to the low signal intensities, relatively large errors are committed. An approximation of the 
sensitivity of the model is shown in Fig. 1.11, where the sensitivity curve is observed to increase 
to a negative maximum at ~400 K before decreasing again rapidly to a minimum at 923 K. 

Table I 
Fitted parameters for the SCC model. 

τs / ms ΔE / cm-1 α β ΔEq / cm-1 

3.617 1637.4 197.6 2.818 x 106 4888.26 
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Fig. 1.10. Curve-fitting using SCC model for 292 K to 923 K Fig. 1.11. Calculated sensitivity curve for SCC model 

The SCC model also enables accurate comparison of the fluorescence lifetime 
characteristics of the ruby SCFs with theory, taking into consideration the rapid nonradiative 
transition and thermal quenching rates within a relatively large temperature range. Hence, 
relatively long lifetimes (~2–3 ms) are measured at low temperatures while beyond 600 K, when 
nonradiative transition and thermal quenching become dominant, the fluorescence lifetime falls 
rapidly below 1 ms, resulting in increasing errors being obtained. These errors limit the 
resolution and accuracy achievable when employing the SCC model as a calibration curve. 
However, comparison with published data [7,15] shows that reasonably good agreement has 
been achieved for predicting temperature-induced lifetime decay. 

It is seen that the lifetime decays monotonically with temperature and no ambiguities at 
different temperatures are observed. At ~673 K, the beginning of a change in the gradient of the 
lifetime-temperature curve is also observed as well as large discrepancies beyond 823 K. 
Moreover, the flattening of the lifetime between 873 K and 923 K occurs very close to the 
detectable limit of the sensing system, resulting in considerable inaccuracies and, thus, large 
errors at these two temperatures (1.98 % and 4.62 %, respectively). Another important factor 
contributing to this disparity is the choice of the optical filter used. Centered at 694 nm, 
corresponding to the ruby peak fluorescence wavelength, the ±2 nm FWHM bandwidth isolates 
the sideband phonon energies associated with ruby emission characteristics which are highly 
temperature-dependent. Hence, the sensitivity curve (Fig. 1.11) reflects a sensitivity amplitude 
reaching a maximum value at ~673 K, followed by a decrease towards the minimum with 
increasing temperature. On the other hand, the negative sensitivity is due to the drop in the 
lifetime rate with temperature. 

1.3.2.2 39BR-line shifts 

Another fluorescence characteristic which is affected when ruby is subjected to elevated 
temperature is the spectral shift in the R-lines. Both empirical and theoretical models have been 
employed to fit the R1 and R2 lines with relatively good results and accuracy over a limited 
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temperature range [16-18]. However, the R-line shifts may not vary constantly or uniformly with 
temperature. It is thus highly possible that beyond a certain temperature the R1 and R2 lines 
overlap and it would then be almost impossible to distinguish one from the other. One way to 
overcome this is to use a double-Lorentzian line shape, a Voigt profile which is a combination of 
Gaussian and Lorentzian lineshapes or a simple cubic model to describe the characteristic 
fluorescence curve of ruby. Further, since the two R-lines do not shift together exactly, a double-
Lorentzian line shape could be useful to overcome the overlapping of these two lines at high 
temperatures (~450 K). The general cubic equation adopted here is based on the double 
Lorentzian lineshape, given by 

    ( ) 32 TTTTRi γδβα +++=      (1.5) 
where Ri(T) represents either the R1 or R2 line being studied in units of cm-1, α, β, δ and γ the fit 
parameters (constants). 

For consistency, the same ruby SCF used for lifetime measurements is employed here. The 
experimental set-up differs from the previous experiment by replacing the detection system with 
a monochromator. The reflected fluorescence signal is focused onto the entrance slit of a ½ m 
DIGIKRÖM DK480 monochromator. Signal detection is assured by a conventional Si PIN 
photodiode at the output slit of the monochromator and connected to a Sci-Tech lock-in amplifier 
to increase the signal-to-noise ratio of the measurement system. Lock-in amplification also 
enables very stable detection of the desired signal during monochromator scanning (from 690 to 
697 nm) at ~0.02 nm steps. A dedicated computer program written in LabView coordinates the 
monochromator scanning rate and data acquisition. The experimental repeatability falls within 
the 0.02 nm specified by the scanning steps, except at very high temperatures where the inherent 
noise from the ruby fluorescence becomes relatively high. 
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Fig. 1.12. Fluorescence spectra of ruby SCF at 4 different temperatures 

The shifts of the two R-lines with temperature are plotted in Fig. 1.12 and Fig. 1.13 where 
a sliding data window of ~0.4 nm is employed to smooth the high frequency fluctuations 
observed in order to improve peak detection. The error, obtained by comparing measured and 
smoothed peak values, is within the 0.03 nm imposed by the monochromator resolution, hence, 
the resulting data may be taken as having an accuracy of this value. The shifts in both lines are 
linear and almost uniform up to ~623 K beyond which they are seen to diverge, with R2 shifting 
more than R1. The red shift of R2 is also more obvious and increases more significantly beyond 
~623 K to 823 K, where it overlaps with the main body of the fiber fluorescence. 

At 823 K, only R1 is clearly distinguishable, as shown in Fig. 1.14. The maximum 
temperature investigated is ~973 K, at which point the useful signal is lost in background noise. 
Further, a relatively large increase can be seen from ~623 K. There are therefore two temperature 
regions where the R-line shifts are linear, separated by a sharp but significant increase from 623 
to 673 K (Fig. 1.13) which represents an almost doubling of the shifts for both R-lines. 
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Fig. 1.13. Relative R1 and R2 shifts with temperature Fig. 1.14. Ruby SCF spectrum at 823 K 

Two sets of cubic calibration curves based on (1.5) are used to predict the wavelength 
shifts of the ruby SCF for temperatures up to 623 K (350 °C). The fitted values obtained are 
respectively α = 693.74 nm, β = 0.0023464 nm K-1, δ = is −1.5802 x 10-6 nm K-2 and γ = 7.6748 
x 10-10 nm K-3 for the R1 line; and 692.29 nm, 0.0027091 nm K-1, −2.498 x 10-6 nm K-2 and 
1.4853 x 10-9 nm K-3 for R2. Neglecting the sharp rise in lineshifts between 623 and 673 K, the 
calibration of the R-lines from 673 K to 973 K and 823 K, respectively for R1 and R2, results in 
α = 694.25 nm, β = −3.3161 x 10-4 nm K-1, δ = 3.7492 x 10-6 nm K-2 and γ = −1.8444 x 10-9 nm 
K-3 for R1. For R2, where the largest error occur at the maximum of 823 K, the fitted values of α, 
β, δ and γ are respectively 695.33 nm, −0.005613 nm K-1, 3.9402 x 10-6 nm K-2 and 1.2679 x 10-9 
nm K-3. The measured and calculated values of the lineshifts are plotted in Figs. 1.15(a) and 
1.15(b), showing relatively good agreements. The maximum red shift of the R-lines is ~1.23 nm 
for R1. 
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Fig. 1.15(a). Wavelength coefficient of linear fit (291-623 K). Fig. 1.15(b). Wavelength coefficient of linear fit (673-923 K). 

The temperature-induced shifts of the c-axis ruby fiber have been monitored up to 973 K 
for the stronger R1 line and 823 K for the R2 line. However, a single continuous fit cannot be 
used to describe the wavelength coefficient. Hence, the separate temperature regions have been 
investigated by employing two simple calibration curves based on [17]. The doubling of the 
wavelength shift has not been reported anywhere in published literature, hence, the causes are 
still unknown. The only parameters which have been changed are the laser power and the 
sensitivity of the lock-in amplifier used. At room temperature, no observable changes in the 
position of the R-line have been detected by changing the laser power, while increasing the lock-
in amplifier’s sensitivity by one setting only increases the intensity detected by a factor of 3. 
However, the large increase in the temperature-induced lineshifts can be attributed to the 
domination of the nonradiative decay from the 4T2 state due to thermal quenching as 
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demonstrated by the beginning of a sudden change in gradient in the decay lifetime at ~673 K 
[19]. 

1.3.3 23BStrain dependence of ruby SCF fluorescence 

 The fluorescence characteristics of ruby can also be influenced by stresses applied due to 
high pressure or shockwave loading to its a- or c-crystallographic plane. The excited state 
splitting (Λ) of the lowest excited 2E state due to stress is dependent on the diagonal trigonal 
crystal field parameter, ν, which is strongly dependent on the immediate surrounding of the 
chromium ion, Cr3+ [20]. The α-Al2O3 host lattice is trigonally symmetric and the Cr3+ ions 
substituting for the Al3+ ions alter the energy-level structure of the otherwise free Cr3 ions [21]. 
When unstressed, the level splittings of the Cr3+ ions in Al2O3 form the sharp R-lines 
characteristic of ruby fluorescence. However, applied stresses can change the trigonal field but 
not the symmetry of the host lattice, thus leading to variations of the energy level splittings 
which manifest as R-line shifts under very high isotropic pressure or compressive stress. 

The use of ruby R-lines for precision pressure measurement in a diamond anvil cell (DAC) 
has been performed using a piece of ruby crystal with ~0.05 wt.% Cr3+ up to a maximum 
pressure of 40 kbar [10]. The R-lines have been found to shift linearly with the applied pressure, 
with the R1-shift being of the order of ~ -0.77 cm-1/kbar and that of R2 being ~ -0.84 cm-1/kbar. 
Nevertheless, no line broadening has been observed but under non-hydrostatic conditions (such 
as shockwave loading) line broadening could occur [9,18]. 

1.3.3.1 40BLifetime decay 

The strain-based experimental set-up is shown in Fig. 1.16 where a straining device with a 
1 µm resolution micrometer head is now used to induce uniaxial strains in the ruby SCF. The 
fiber is attached to the movable and fixed translation stages with strong adhesives (Permabond 
F241 + Hardener no. 1) and secured co-linearly with the longitudinal axis of the strain-inducing 
device. 

 
Fig. 1.16. Experimental schematic for ruby SCF fluorescence lifetime strain sensing. 

The reflected fluorescence decay signal, which is too weak to be detected in the reflection 
mode, is here detected directly along the ruby SCF length. A narrow bandpass optical filter 
placed in front of the high-speed Si detector filters all undesired light. The excitation beam is 
modulated via an optical chopper and data averaging performed with the 500 MHz oscilloscope. 
The ruby SCF is oriented along the c-axis with one section grown as sapphire while the gauge 
end of ~12.33 mm is Cr3+ -doped (see inset in Fig. 1.16). 

The ruby fiber is uniaxially strained at 5 μm steps up to a maximum extension of δL ~100 
μm, equivalent to ε (= δL/L) ~8110 με. The lifetime decay of the ruby SCF at 0 με (or δL = 0 
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μm) is 3.43 ms, as shown in Fig. 1.17 while that at 8110 µε is found to be ~3.44 ms (Fig. 1.18). 
The fitting confidence, r2, is better than 0.998 at each strain level. Over the monitored strain 
range, no observable change in the decay rate is thus detected. The strain experiment is repeated 
to verify that no slippage from either the bonding adhesives or the mechanical parts has 
occurred. The ruby SCF is subsequently tested to destruction at ~33500 με. 
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Fig. 1.17. Fitted lifetime decay at ε = 0 µε. Fig. 1.18. Fitted lifetime decay at ε = 8110 µε. 

The fluorescence lifetime decay of the ruby SCF under uniaxial strain loading up to 8110 
µε is plotted in Fig. 1.19, the error bars representing the standard deviation. The lifetime is seen 
to fluctuate between 3.42 and 3.54 ms and is considered as being insensitive to strain influence. 
Both the temperature and strain influences on the lifetime decay plotted in Fig. 1.20 indicate the 
relative insensitivity of the lifetime to applied strains. This thus eliminates the problem of cross-
sensitivity to strains during temperature measurement [22]. 
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Fig. 1.19. Ruby SCF fluorescence lifetime decay versus 

uniaxial tensile strain. 
Fig. 1.20. Strain and temperature dependences of ruby SCF 

fluorescence lifetime. 

1.3.3.2 41BR-line shifts 

The R-line dependence on strain is investigated for the ruby SCF tested above (i.e. before 
its destruction) as illustrated in Fig. 1.21 with a scan step of 0.05 nm. Also, a 0.4 nm sliding 
average digital smoothing is employed to localize the curve peaks. Lock-in techniques and 
computer control enable the R-line shifts to be monitored from 0 to 33500 με, beyond which the 
ruby SCF fractures. The elongation prior to fiber failure is ~240 μm while the gauge length in 
this experiment is ~6 mm thus giving a breaking strain of ~40100 με. 

Each spectrum is averaged over a minimum of 6 scans at each applied strain. At 0 µε, the 
R-lines are respectively 694.3 nm and 692.9 nm. The relative shifts of the two R-lines with 
uniaxial strain are plotted in Fig. 1.22 showing no significant shifts for both R1 and R2. Both R-
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lines demonstrate a very low strain coefficient with ~ -3.62x10-6 nm/με for R1 while for R2, it is 
~ -3.64x10-6 nm/με. 

 
Fig. 1.21. Experimental set-up for R-line shift measurements in transmission mode. 

It is of importance to note that the maximum permissible strain which can be applied 
before any degradation of the F241 adhesive is ~250000 με. The ruby SCF suffers brittle 
fracture at δL ~240 μm for a gauge length of ~6 mm implying a strain limit ~40100 με. This is 
more than 5 times less than that of the adhesive used hence, it can be safely assumed that the 
fiber broke due principally to the physical extension applied. The ruby lineshifts under tensile 
straining is even smaller than those under temperature effects, considering the relative 
insensitivity of the lifetime decay rates to strain. The negative gradients in Fig. 1.22 indicate a 
minute shift towards the blue. Unlike the red shifts observed when subjected to increasing 
temperature, straining of the ruby fiber actually shifts the R-line peaks towards the higher energy 
regions. 
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Fig. 1.22. R-line shifts as a function of uniaxial tensile strain. 

1.4 20BConclusions and Perspectives 

Fiber optic sensors based on doped sapphire (Al2O3) single-crystal fibers (SCFs) have been 
developed in this PhD work for metrology in very harsh environments. The interest in these 
crystal fibers is due in particular to their properties: chemical inertness, very high strength, high 
mechanical resistance to abrasion, very high melting point (>2000°C), wide optical transparency 
(~0.15–5 µm), etc. These SCFs are produced by the laser-heated pedestal growth (LHPG) 
technique with relatively good optical quality. 

Ruby SCFs have been demonstrated for temperature sensing by exploiting their unique 
response: their fluorescence spectra in terms of lifetime decay as well as R-line shifts. Its 
fluorescence lifetime decay is characteristic of the spectral response to temperature and, since it 
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is wavelength-coded, has the unique advantage of being relatively independent of the pump 
power fluctuation. Further, no parasitic fluorescence decay is detected since ruby emits uniquely 
in the 692–694 nm region away from the pump source (~480 nm). Both the fluorescence lifetime 
and R-line shifts have been investigated up to 923 K (or 650°C) and 973 K (700°C) respectively 
with a relatively good precision before extinction of the emitted signal. Further, in both 
investigations, no hysteresis has been detected, demonstrating the robustness of this technique. 
Both fluorescence characteristics are also tested for their strain-induced response up to the 
fracture point and have been found to be relatively insensitive to tensile stress. The principal 
ambition to design a sensor system which is uniquely sensitive to a single physical parameter is 
therefore achieved. Nevertheless, a major inconvenience with these fibers is their high 
transmission losses since SCFs typically have no optical cladding and are hence multimode 
devices. Further, due to their crystalline structure, they are difficult to couple to conventional 
glass fibers, in particular via fusion splicing. The majority of the work on these fibers involves 
their butt coupling to glass fibers for transmission purposes. The technical challenge is therefore 
to implant a cladding layer either by re-growing an already-doped SCF or by using sol-gel 
techniques to obtain a compatible cladding material which is at the same time suitable for the 
targeted applications. 

Although not described in this manuscript, Er3+ and Yb3+ co-doped Al2O3 crystal fibers 
have been investigated for high temperature sensing up to 1423 K (~1150°C) with a precision 
better than 5 K over the entire dynamic range [23]. However, most importantly, simultaneous 
fluorescence and upconversion processes over the 1540 nm and the visible green and red regions, 
respectively, have been observed from rare-earth-doped SCFs produced by LHPG. Their 
emission spectra correspond to the major laser devices in use for emission in the visible (blue, 
red and green) as well as in the telecommunications sector [24-27]. Although employed for 
metrological applications here, further investigation of these devices could be highly worth 
pursuing in the context of solid-state amplifiers with an intrinsic fiber geometry. However, like 
ruby fibers, these RE-doped SCFs exhibit large optical losses and the sensing probes produced 
have to be reliably coupled to glass fibers for remote sensing.  

Potential applications for these SCFs are in the aeronautics, turbo-machine and 
petrochemical sectors where harsh sensing environments are frequently encountered. Towards 
the end of my PhD research, discussions were in progress with Rolls-Royce Plc (UK) to employ 
these sensors for high-temperature mapping of turbine engines. Further work was also launched 
at the same time to investigate the use of sol-gel techniques for developing compatible cladding 
layers to be applied on such fibers. This PhD research was funded by an EPSRC grant of 50 k£. 
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Chapter 2 -  Polarization-based and dual-modulation fiber Fabry-
Perot interferometry 

2.1 13BIntroduction 

This first half of this chapter describes the development of an all-optical dual-cavity 
extrinsic fiber Fabry-Perot interferometer (EFFPI) based on polarization decomposition of the 
fundamental mode for periodic and non-periodic vibration measurements (PhD thesis, Dr. S. 
Pullteap, 2004–2008 [1]). The second half concerns the evolution of the dual-cavity EFFPI into a 
modulation-based EFFPI which has been developed into an instrument for slowly-varying and 
quasi-static displacement measurements with specific focus on applications to geophysics. 

Knowledge of the three important parameters, namely, vibration amplitude, velocity and 
acceleration, associated with mechanical vibration can be usefully exploited to characterize and 
analyze the complete behaviour of important machinery. Vibration also plays a major role in 
various domains and its influences can have potentially dire consequences particularly in the 
aeronautics and aerospace industry, in civil engineering, manufacturing, precision mechatronics 
applications, as well as in the continuously-evolving microelectronics sector [2,3]. Vibration 
analysis not only allows the performance limits of an engineering component to be determined 
but can also be employed for fatigue or damage detection so that preventive maintenance can be 
carried out before the occurrence of critical failure. In geophysics, fiber interferometers are 
particularly well-adapted for monitoring seismic and volcanic activities, earth strains as well as 
exploration of petroleum and other natural resources [4]. 

Fiber optic interferometers (FOIs) exploit the effects of beating between a reference 
optical wave and a sensing wave modulated by a physical parameter to result in a series of 
cosinusoidal fringes that can be detected by a suitable photodetector. The difference in the 
optical path lengths traversed by the two waves then induces an optical phase difference, Δφ, 
which can then be interpreted using [5] 

 ( ) ( )
λ
π

λ
πφ 22

2211 dndnnd
−=

Δ
=Δ   (2.1) 

with n1d1 and n2d2 the optical path lengths, n1 and n2 being the refractive indices of the respective 
medium, and λ the wavelength of the optical source used. 

 The fiber-based Fabry-Perot interferometer (FFPI) is a versatile multiple-beam device 
which has undergone intense development only since the early 1980s [6-8]. Interference is 
generated from the reference and sensing beams propagating within a single fiber arm [9]. As 
schematically shown in Fig. 2.1, an incident beam, Ii, is injected into the interferometric cavity at 
an arbitrary angle. A small percentage is back-reflected as the reference beam at the fiber-air 
interface with reflection R1 while the sensing beam is transmitted into an optical cavity of length 
d, at the end of which can be an adjacent fiber or another reflecting surface with reflectivity R2, 
before being reflected back along the same optical path to a photodetector, as Ir. This then 
describes a reflection-mode FFPI. The sensing beam can also be transmitted as It beyond the 
cavity end as a transmission type FFPI. If R2 is a highly reflective surface (such as a metallic film 
coating at the second fiber end or a mirror in air), then multiple reflections can occur between 
this surface and the reference interface, as illustrated in Fig. 2.1(b). The intensity distribution of 
the reflected (Ir) and/or transmitted (It) interfering beams from the FP cavity results in a set of 
fringes in which the distance between subsequent interference peaks (or valleys) is proportional 
to the distance (cavity length) between the two reflectors. The FFPI is thus extremely sensitive to 
longitudinal perturbations. In addition, due to its multiple reflections, the FP device generally has 
at least twice the sensitivity of other interferometers. In this case, the optical phase difference 
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thus induced will be amplified by the number of reflections, enabling a very high resolution to be 
obtained. 
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Fig. 2.1. Fabry-Perot interference: (a) interferometric cavity with medium of refractive index n and (b) fiber 

equivalent with illustrated multiple reflections from high-reflective surface. 

Two typical FFPI configurations have been exploited in optical metrology (see Fig. 2.3). 
The intrinsic sensor in Fig. 2.2(a) has its optical cavity generally formed by a short fiber length 
abutting the transmission fiber. Both ends are perfectly cleaved and can be coated with a 
reflective film. The main inconvenience is the two fibers becoming detached. The extrinsic fiber 
Fabry-Perot interferometer (EFFPI), in which the probing light is allowed to exit the fiber end as 
shown in Fig. 2.2(b), is less affected by this problem. The sensing fiber serves to transmit the 
incident and reflected lightwaves to and from an optical cavity. 

 
Figure 2.2. Fiber FPI configurations: (a) intrinsic device, and (b) extrinsic FFPI. 

The measurand thus affects only the optical cavity length without modifying the fiber 
properties. Further, since both the reference (Iref) and sensing (Is) beams traverse identical paths 
in the sensing fiber, most common-mode perturbations are reduced. 

2.2 14BPolarization-based dual-cavity extrinsic FFPI (EFFPI) 

This section describes the development of the EFFPI device incorporating a specially-
designed sensing probe for displacement measurements. I initially designed this sensor during 
my post-doctoral research at the Ecole des MINES de Nantes (2001–2003). Further development 
of this device is pursued since my appointment at INPT–ENSEEIHT (Sept. 2003). The operating 
principles of the proposed sensor are first elaborated followed by its experimental validation. 
The all-important polarization behavior of the fiber sensor is next discussed. Important 
parameters such as the sensor's resolution, precision, dynamic range and directional detection are 
also addressed. 
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2.2.1 24BOperating principles and experimental validation 

The EFFPI operates with an external optical cavity formed by the cleaved end of the 
sensing fiber and a reflecting surface whose movement is to be determined. Also, due to the 
generally low reflectivity of the reflective surfaces used, a relatively low finesse (<10) is 
obtained and the EFFPI can be assimilated to a two-beam interferometer [10]. However, as in all 
interferometers, the characteristic cosinusoidal output signal often leads to directional ambiguity 
in fringe motion when the measurands (compressive/tensile stresses, strains, vibration, etc) 
displace in counter directions, unless an additional reference arm or specific signal processing 
coupled to modulation schemes are employed. 

This directional ambiguity can be overcome by introducing a phase lead and lag in the 
interference signal pair (i.e. sine and cosine fringes) via an electronic circuit [11]. Thus, when the 
sensing signal leads the reference signal, the target is seen as moving away from the sensing arm 
and vice versa. Modulating the laser diode drive current to obtain the phase lead and lag 
conditions has also been reported [12] whereby the sensing signal was generated from the drive 
current variation while the reference signal was un-modulated. Other schemes employed a 
homodyne technique to generate two interference signals phase-shifted by π/2 [13]. Heterodyne 
interferometry, more often employed in absolute distance measurements, can also be used [14] in 
which two beams from a single laser with slightly different wavelengths are modulated to obtain 
a 90° phase-shift between the beams. 

In this work, the orthogonality of the fundamental injected mode is employed to obtain two 
sets of interference signals phase-shifted by π/2. The EFFPI undergoes no modulation to the 
laser source current and thus has an almost infinite bandwidth. Simple fringe counting is initially 
adopted for demodulating the interference pair into the desired parameter, the difference from 
other existing interferometers being that the quadrature signals are here generated uniquely 
optically, as demonstrated in Fig. 2.3 and Fig. 2.4. 
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Fig. 2.3. Conventional EFFPI cavity: (a) both Ēy and Ēx components from fundamental mode Ē are in phase, and (b) resulting 
interference fringes associated with Ēy and Ēx (simulated) versus target displacement. 

The fundamental mode injected into the interferometric cavity, with an arbitrary 
polarization, can be decomposed into two orthogonal fields, Ēy and Ēx with an initial phase 
difference of Δφ1. If the cavity medium is homogeneous and the target surface not birefringent, 
then upon reflection off the latter, Δφ1 remains unaltered, hence Ēy and Ēx are not phase-shifted. 
The resulting interference with their respective reference components reflected off the fiber end 
will lead to two sets of interference signals which are in phase, with Δt = 0 (Fig. 2.3(b)) . An 
optical retarder such as a quarterwave plate can, however, be inserted into the cavity to induce a 
relative phase difference of Δφ = Δφ2 - Δφ1 (Δφ2 ≠ Δφ1, in general), as in Fig. 2.4(a). If Δφ is π/2, 
then two sets of interference signals can be obtained whose intensities are 

 θφ Δ++=Δ++= cos2cos2 1 xsxrxsxrxsxrxsxrx IIIIIIIII   (2.2) 
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where Δφ1 is generalized to become Δθ, Ixr and Ixs, and, Iyr and Iys are the reference and sensing 
intensities for both the x and y components, respectively. Equations (2.2) and (2.3) are then the 
quadrature interference pair to be employed to differentiate between phase-leads or phase-lags 
induced by a moving object to determine its directional sense. 
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Fig. 2.4. Optical dual-cavity EFFPI: (a) optically generated π/2 phase shift between Ēy and Ēx, and (b) quadrature 

interference pair (simulated) as a function of target displacement. 

This quadrature point corresponds to a temporal Δt value of ¼ of a fringe period (or Δti = 
¼Ti with i the corresponding fringe number), as shown in Fig. 2.4(b). Then for negative Δt, the 
target moves away from the sensor while positive Δt indicates target movement towards the 
sensing fiber. An optically generated dual-cavity EFFPI sensor in quadrature is thus achieved. 

The experimental validation of the dual-cavity sensor is next carried out using the set-up 
shown in Fig. 2.5. Monochromatic light from a 1310 nm Modulight fiber-pigtailed DFB-type 
laser diode (LD) is injected into the interferometer and guided via a 1x2 fiber coupler (FC) to the 
sensing fiber (SF) end where ~3.6% is back-reflected as the reference wave (RW). This wave is a 
contribution of 2 orthogonal polarization components since the injected mode is slightly 
elliptically-polarized. The remaining light is transmitted as the sensing wave (SW), collimated 
via an anti-reflection coated collimator, traverses an optical retarder oriented at ~45° to its 
polarization direction and upon its return trip after reflection off a micro-prismatic target, results 
in a relative phase shift of π/2. 
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Fig. 2.5(a). Configuration of dual-cavity EFFPI sensor used during 
experimental validation. Fig. 2.5(b). Image of experimental set-up of fiber sensor. 

After reflection off the target surface, SW is re-injected into SF where its phase-shifted 
components combine with their respective reference components, leading to two sets of 
interference signals. These are guided to the output port of FC where a 50/50 polarizing beam-
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splitter decomposes the orthogonal interference signal sets to two respective photodetectors. The 
micro-prismatic target is secured to a mechanical vibrator and excited using a function generator 
at 100 Hz with an amplitude of 500 mV. Two quadrature interference signals from Ēy and Ēx are 
therefore induced, as validated experimentally in Fig. 2.6. A Philtec D63 displacement sensor 
with a sensitivity of 2.786 mV/μm and a quoted precision of 125 nm is employed as reference 
for comparison. The relative temporal difference of the quadrature pair clearly determines the 
directional sense of the target displacement (Δt <0: movement away dual-cavity EFFPI sensor 
and Δt >0: movement towards sensor). Note also that Δt is ¼T at the ith fringe (illustrated by the 
second fringe), confirming that a quadrature condition has been achieved between the 
interference pair.  
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Fig. 2.6. Quadrature interference pair obtained from dual-cavity EFFPI 

sensor together with reference displacement curve. 

This experiment clearly demonstrates the proof-of-concept of the dual-cavity fiber 
interferometer where in-quadrature dual interference cavity operation of the specially-designed 
sensor head has been achieved. The intrinsic resolution of the sensor is limited to λ/2 here. 
Improvements to the sensor resolution and precision will be discussed later when two competing 
interference signal demodulation schemes are implemented. 

2.2.2 25BPolarization-induced influence in dual-cavity EFFPI sensor 

One important criterion to the correct operation of the dual-cavity EFFPI sensor is the state 
of polarization (SOP) of the interfering lightwaves since the device is based on optically 
decomposing the fundamental mode into 2 orthogonal polarization components in quadrature. 
The SOP must be initially known so that the injected lightwave can be manipulated to optimize 
the sensor performance. since under certain conditions, perturbations to the SOP of one or both 
of the Ēy or Ēx fields can lead to complete extinction of one of the interference signals while 
leaving a non-zero fringe visibility in the other component. This phenomenon is commonly 
known as polarization-induced signal fading (PIF). Note that the orthogonal components are of 
dissimilar amplitudes hence an elliptical SOP representation on a polar plot is generally 
obtained. 

The objective here is to demonstrate the sensibility of the dual-cavity EFFPI sensor to PIF 
when only one optical element, i.e. a λ/4 waveplate, is used to obtain quadrature signals and to 
propose a potential solution to reduce its influence. Now, the 2 polarization states in SF can be 
represented by their combined fields as Ēt(i)= Ēr(i)+Ēs(i), with Ēr and Ēs the reference and sensing 
fields, and index i either of the orthogonal components. Here, PIF is induced by introducing 
bends into SF as shown in Fig. 2.8. The sensor SOP is then measured in conjunction with the 
quadrature phase-shifted interference signals. 
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Fig. 2.8. Experimental set-up used to induce polarization-induced stress into sensing fiber by winding fiber 

on 10 cm diameter aluminum mandrel 

Under no bending stress, Figs. 2.9 shows the interference signals to be in quadrature and 
the SOP between the Ēy and Ēx fields remains very slightly elliptical with an orientation of α = 
20°. The visibility of the x component (Vmx) is measured as 31.19% while that of the y 
component (Vmy) is ~25.0%. The ellipticity is defined as e = (1– b2/a2)1/2 with 2a representing the 
major axis of the ellipse and 2b the minor axis of the same ellipse. 
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Fig. 2.9. (a) Quadrature interference pair measured under no bending and (b) its 

corresponding SOP orientation 

SF is next wound 3 turns around an aluminum mandrel and the evolution of the orthogonal 
interference signals measured. As seen in Fig. 2.10(b), the visibility of the y-component 
interference signal is strongly attenuated to ~1.4% rendering it un-exploitable. This PIF 
phenomenon also induces a rotation of the output SOP away from the PBS principal axes where  
α = 10° now, as plotted in Fig. 2.10(a). 
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Fig. 2.10. (a) SOP in polar plot with α = 10° and (b) PIF attenuation of Ēy interference component 

after 3 rounds of bending 

The sensor configuration is thus not resistant to PIF and this can be particularly impractical 
when SF has to be displaced from its original set-up position as the waveplate has to be 
continuously re-orientated to ensure balanced visibilities from the orthogonal components. One 
solution without resorting to polarization-maintaining fiber components is to impose a circular 
SOP in the reflected SW propagating in fiber. Thus, interference from the x and y components 
can continuously take place between SW and RW. 
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To produce the desired circularly-polarized light, polarization-controlling optics consisting, 
in the respective order, of first a λ/4 waveplate followed by a linear polarizer (LP), are inserted 
along the optical path between SF and the target, as shown in Fig. 2.11.  
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Fig. 2.11. Experimental validation of optically-generated dual-cavity EFFPI (a) using passive 

polarization-controlling optics to obtain (b) circular SOP at interferometer output 

RW, which is reflected off the fiber end, exhibits identical an SOP as the injected light 
vector (given by e =0.98). The transmitted beam, on the other hand, has its SOP phase-shifted by 
π/2 before being transformed into a linear polarization after LP. The second passage through LP, 
which also serves to filter parasite polarization transformation of SW after reflection off the 
target, conserves the linear SOP of the returning beam. The λ/4 waveplate, oriented at 45° to the 
optical axis of LP, subsequently transforms this linear SOP into a circularly-polarized state 
(ellipticity ~0) to be re-injected into SF. The beating with the almost linear RW will thus lead to 
a relatively circular SOP being continuously obtained, resulting in two in-quadrature interference 
signals within a single fiber arm, hence the dual-cavity nature of the EFFPI. 

To validate PIF tolerance, the sensor is subjected to bending stress as previously described. 
Figs. 2.12 show the evolution of the interference signals incorporating the novel optical 
configuration in the presence of bending stresses. 
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It is seen that even under strong external perturbations, the output visibilities are only 
slightly attenuated, from 54.43–30.23% (~44% reduction) for Vx and 27.27–16.28% (~40% 
reduction) for Vy, respectively, without suffering complete extinction. The principal implication, 
however, is that the quadrature phase-shift between both components is continuously maintained, 
as evident from Δt being ~1/4T with relatively small quadrature errors. The specially-designed 
optical probe of our sensor, incorporating the polarization-controlling optics, can thus be 
potentially exploited to reduce PIF effects [15]. 

2.2.3 26BDemodulation of dual-cavity EFFPI sensor by modified fringe-counting for 
displacement applications 

Several well-known demodulation techniques for processing interference fringes from 
various fiber interferometers exist. These include automated fringe counting, digital curve-
fitting, linear digital phase-locking, fringe-tracking, and phase-tracking [16-21]. However, 
optical fringe counting remains one of the most practical methods available for measuring beat 
frequency, displacement and optical path difference or phase-shift [22-23]. 

In this work, the original zero-crossing fringe counting method [24-26] is modified and 
adapted to analyze two simultaneous and continuous series of in-quadrature interference signals 
to a pre-determined resolution of λ/64 in a quasi-software based fringe counting scheme [27]. 
Unlike most electronic-based fringe counting schemes, our technique does not suffer from 
oscillator jitter-induced phase nor temporal drifts since the signals are optically phase-shifted. 
The mean amplitude value from the input signal is first identified and the point where the signal 
crosses this mean value located. The mean amplitude is then calculated [28] as Vmean =(Vmax + 
Vmin)/2 with Vmax and Vmin, respectively representing the maximum and minimum amplitudes of 
the interference signal. As illustrated in Fig. 2.13, two zero-crossing points are generated on two 
sides of the fringe and are denoted as Xl (left position point) and Xr (right position point).  
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Fig. 2.13. Principles used in modified zero-crossing method for demodulating 

dual-cavity EFFPI sensor 



 

23 

Two additional points from each position between the lower and upper levels where Vmean 
crosses over are denoted as the over-points (Xlo and Xro) and the lower-points (Xlu and Xru), and 
are used to determine the exact crossing-over points, Xl and Xr, respectively, with 

  ( ) lululo
XX

Xmean
l XXX
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lu +−
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For one set of interference fringe, zero-crossing signals (Zc) are obtained at 4 points (Xl, Xr, 
Xmax and Xmin) in one period with Xmax and Xmin the peak and valley points, respectively. Now, by 
exploiting the quadrature phase-shift between Vy and Vx, zero-crossing signals can be generated 
at 32 points by sub-dividing the amplitude into 8 levels for each interference signal hence, 
leading to an increased resolution of λ/64 as shown in Fig. 2.14. This resolution is considered 
sufficient for the targeted application. 
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Fig. 2.14. 8 levels of zero-crossing signals to achieve λ/64 precision 

The demodulation scheme is implemented using a software program written in MATLAB, 
the flow process of which is illustrated in Fig. 2.15. 

Two sets of zero-crossing signals (Zc) associated with Vy and Vx can thus be integrated 
within the same time length and counted together. The displacement curve for the vibration 
amplitude is then plotted by the program via D = Zcλ/64 where Zc is the total number of 
combined crossing-over points. 
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Fig. 2.15. Block representation of demodulation algorithm  

The demodulation technique is next validated for the dual-cavity EFFPI sensor over a 
controlled displacement of 30.02 µm (given by the reference sensor) at 30 Hz. The processed 
output from the program, shown in Fig. 2.16, gives a total count of Zc = 1468 which computes to 
a displacement of 30.04 µm for a λ/64 step size. A maximum discrepancy of 20 nm (or relative 
difference of 0.07%) is obtained which can be attributed to very slight power and temperature 
variations of the LD source, a slight deviation from normal incidence of SW on the target 
surface, and/or noise from the reference displacement sensor, etc.  
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Fig. 2.16. Modified fringe counting demodulation program for a total count of Zc = 1468 points, 

corresponding to 30.04 µm displacement 
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Further, the displacement amplitudes from both sensors, as plotted in Fig. 2.17, illustrate 
good accuracy obtained using the modified fringe counting technique. Note also that the 
demodulation resolution of λ/64 corresponds to ~20 nm for the DFB-LD emitting at 1310 nm. 

Time (ms)

30.02 µm 
(Reference sensor)

30.04 µm (EFFPI sensor)

Forward Backward 

Resolution     20 nm/step≈
D

is
pl

ac
em

en
t (

µm
)

 

Precision ~20 nm 

 
Fig. 2.17. Displacements measured by EFFPI and reference D63 Philtec sensors over 1 period 

2.2.4 27BDual-cavity EFFPI sensor characteristics and performance 

The accuracy and precision of the EFFPI sensor are next investigated to treat potential error 
sources. An "ideal" dynamic displacement is simulated via d = Acos (2πft), with A its amplitude 
(µm) and f the excitation frequency. Any variations in d will thus be reflected by the evolution of 
the quadrature interference fringes. The sensitivity of the PASCO wave driver is determined to 
be ~7.67 µm/mV over the displacement range investigated. 

Table II summarizes the simulated signals (Dsim), the EFFPI sensor (Ds) and the reference 
sensor (Dref) measurements over a range of ~6–30 µm. Displacement errors are also obtained 
from comparisons between 1) simulation and EFFPI data, 2) reference sensor and EFFPI data, 
and 3) simulation and reference sensor data. A minimum error of 0.07% is obtained between the 
reference sensor and EFFPI data while a maximum error of 1.81% occurs between the simulation 
and reference sensor data. The relative average displacement errors over the displacement range 
from the three different comparisons are found to be 0.76%, 0.57% and 1.14% respectively. No 
noise has been incorporated into the simulated signals while the experimental signals 
(interference pair and reference signal) contained a certain level of noise. The Philtec D63 model 
displacement sensor has a 0.35 mVp-p (peak-to-peak) rms noise amplitude. The EFFPI 
displacement error is relatively independent of the displacement variations but could be induced 
by noise, temperature variations of the LD and/or incidence angle of SW with respect to the 
target surface. 

Table II 
Displacements obtained from 3 demodulated signals and corresponding relative displacement errors 

Dsim 
(µm) 

Ds 
(µm) 

Dref 
(µm) 

Error comparison for 
simulation-EFFPI  

(%) 

Error comparison for 
reference sensor-EFFPI  

(%) 

Error comparison for 
simulation-reference sensor  

(%) 

6.289 

7.906 

11.963 

19.989 

29.724 

6.326 

7.943 

12.048 

20.16 

30.043 

6.300 

7.978 

12.18 

20.33 

30.021 

0.59 

0.47 

0.71 

0.86 

1.07 

0.41 

0.44 

1.08 

0.84 

0.07 

0.17 

0.91 

1.81 

1.71 

1.00 

Further, comparison of the EFFPI data with the reference displacement leads to an 
accuracy of ~48 nm (or relative accuracy of 0.57%) while the precision of the sensor system is 
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~ ± 56 nm (or ± 0.4%) over the same displacement range. These values are deemed acceptable 
for a practical sensor device. 

A major parameter with a direct impact on the sensor's accuracy is temperature variation 
which causes the laser wavelength to vary through an empirical relationship [29]  

    ( ) ( )00
TT

dT
dT T −+=
λλλ      (2.6) 

with λT0 a central wavelength (~1309.636 nm ±1 pm) emitted by the DFB-LD at a characteristic 
temperature T0 (25°C), dλ the wavelength shift with temperature variation dT. The subsequent 
displacements induced by these variations is then D = Zc λ(T)/64 so that errors induced during 
vibration measurements can be estimated through Derror = ZcΔλ(T-T0)/64, with Δλ(T-T0) the 
wavelength difference over a temperature variation. 

The DFB-LD wavelength sensitivity to temperature is measured as ~65 pm/°C for 
increasing temperatures of 10–40°C in 1°C steps , as shown in Fig. 2.18. For decreasing 
temperatures, this is ~56 pm/°C from ~35°C downwards whereas above this temperature, the 
gradient is seen to at least double. This could be due to the inherent thermal inertia which exists 
upon cooling the laser. Nevertheless, the greater value of 65 pm/°C is used here, implying that 
subsequent errors are associated with the maximum possible values with respect to the 
wavelength-temperature gradient. 
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Fig. 2.18. Temperature sensitivity of DFB-LD wavelength with increasing and decreasing temperatures 

To estimate the errors, an equivalent constant displacement of ~6.586 µm is imposed on the 
vibrating target while the DFB-LD temperature is varied from 10 to 40°C in steps of 5 °C. The 
demodulated displacements from the EFFPI sensor, Ds, are carried out in conjunction with the 
reference sensor, Dref and the errors plotted in Fig. 2.19. 

Now, defining the relative displacement variation as ΔDs/Dsavg, where ΔDs = Ds(max)–Ds(min) 
is the difference between the maximum and minimum displacements over the entire range of Ds, 
and Dsavg the mean displacement over the temperature range studied, one obtains ΔDs/Dsavg 
~1.37×10-3 for Ds(min) ~6.585 µm at 10°C and Ds(max) ~6.594 µm at 40°C as shown in Fig. 2.20. 

The potential accuracy of the sensor is estimated as ~1 nm with a maximum error of 
0.121% at 40°C (c.f. reference displacement). This error, although minimal for the displacement 
range studied, can become detrimental to the sensor performance if very large displacements are 
to be measured (i.e. for very large number of fringes). Now, since the displacement measured 
varies as a function of source wavelength which, in turn, is proportional to its temperature, then a 
relative wavelength variation can be found where Δλ/λavg =(1310.69–1308.772nm)/1309.649 nm 
~1.49x10-3 (measured with ±1 pm precision). This value is in good agreement with the relative 
displacement variation determined earlier (1.37x10-3). The wavelength stability over an 8-hr 
period is also found to vary from an initial 1309.637 nm to 1309.641 nm, thus equating to a 
relative variation of less than 0.0004%. The discrepancy observed between the EFFPI sensor and 



 

27 

the Philtec sensor can also be explained by the limited precision of the latter (quoted as 125 nm 
by the manufacturer) whereas the former has been designed with a precision of ~56 nm. 
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Fig. 2.19. Plotted errors induced due to temperature variation 

from 10–40°C 
Fig. 2.20. Measured displacements for temperature 
variation of 10–40°C (vertical bars: absolute errors) 

The final error source studied is that due to the target orientation with respect to the sensing 
beam. The demodulated displacement for a small angle α from perpendicular incidence is then 
given by [30] 

    
αφ

πλ
cos

4
64
1

64 Δ
Δ

==
dnZZD cc      (2.7) 

where the optical phase variation Δφ due to an induced displacement Δd is Δφ=2πnΔd/λcosα. If 
α ≠ 0°, then an apparent displacement is measured instead of the true value due to the cosα term, 
leading to an error. A simple analysis for α = 1° and 2.5° results in displacement errors of 
0.038% and 0.21% respectively. 

Displacements ranging from 6.590 µm to 7.609 µm are measured by the EFFPI sensor for 
an angle variation of 0 – 30° and plotted in Fig. 2.21. As is obvious, the errors incurred in the 
measured displacement, with respect to the true displacement of the vibrating target, are found to 
increase when α increases. This is principally due to the fact that, even for a constant vibration 
amplitude, the optical path length (OPL) “seen” by the sensing beam is increased, manifesting as 
the cosine term in (2.7), thus leading to an increased apparent displacement. Nevertheless, for an 
error of less than 1%, the dual-cavity EFFPI sensor can tolerate a beam misalignment of α ~10°. 
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Fig. 2.21. Apparent displacement measured by dual-cavity EFFPI α variation from 0–30° 

2.2.5 28BApplications to vibration measurements 

The dual-cavity EFFPI sensor incorporating the demodulation technique is next tested 
against dynamic displacements under various excitation waveforms (sinusoidal, triangular, 
square, ramp, and triangular pulse). These are generated by a PASCO Scientific SF-9324 wave 
driver driven by a Tektronix AFG 3252 function generator. The target surface is a micro-
prismatic retro-reflector attached to the vibrating arm of the wave driver. The ensuing 
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interference signals detected by the photodetectors are then recorded by a digital oscilloscope 
before being transferred to a dedicated computer for demodulation. 

Fig. 2.22 plots the displacements, Ds, for sinusoidal and triangular waveforms at 125 Hz 
with excitation amplitudes from 0.1–5 V. Dref is the reference displacement while ΔDimax 
represents the maximum difference in displacements between the two devices. Note that the 
quadrature condition is maintained throughout the experiments, affirming the stability of the 
optically-imposed phase-shift. Each displacement point is measured at least 20 times over a 
range of ~0.7–118.167 µm for the sinusoidal profile and ~0.7–81.65 µm for the triangular 
profile. In the former case, the average error is ~0.77% with respect to the reference data (~0.655 
µm) with an average precision of ~ ± 0.16 µm (or ± 0.34%). 
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Fig. 2.22. Sinusoidal and triangular displacement profiles detected by EFFPI sensor at 125 Hz 

For the triangular excitation, comparison with the reference sensor results in an average 
difference of 0.76% together with an average precision of ~ ± 0.14 µm (or ± 0.40%). Physically, 
this waveform is similar in property to the sinusoidal excitation since it has only one peak and 
one valley over one period, corresponding to the directional changeover of the moving target. 
The target displacement has been detected without any directional ambiguity. 

It is further seen that the sinusoidal excitation induces a larger displacement amplitude than 
the triangular waveform since the bandwidth limit of the wave driver (0.1–1000 Hz) results in 
higher frequency components from non-sinusoidal waveforms being cut off. For the triangular 
excitation, some harmonics have effectively been cut off as its total energy (amplitude) is smaller 
than that of the sinusoidal waveform. The excitation frequency is therefore reduced to 13 Hz for 
the subsequent squarewave, ramp and triangular pulse waveforms. 

The non-sinusoidal displacements measured by the EFFPI sensor are plotted in Figs. 2.23. 
The average error and precision for displacements induced by the squarewave, ramp and 
triangular pulse are, respectively, 0.19% and ±0.17 µm (or ± 0.30% in relative precision), 0.26% 
and ±0.13 µm (or ± 0.36%), and, 0.56% and ±0.15 µm (or ± 0.39%) over the entire dynamic 
range studied. With squarewave excitation, the displacement range is ~0.7–76.73 µm. For ramp 
excitation, the measured displacements extend from 0.7–84.46 µm while the triangular pulse 
induces displacements ranging from 0.7–90.62 µm. These are plotted against the reference 
displacement in Fig. 2.23(d) where the vertical error bars represent the calculated precision. 

The observation of the triangular excitation inducing the largest displacement relative to 
the squarewave signal, which on the other hand, excites the smallest displacement can be 
attributed to the fact that the total energy of the square signal contains only odd harmonics along 
with the fundamental frequency. Hence, its output energy is lower with respect to the other 2 
waveforms. In all cases, the non-sinusoidal signals result in a smaller excited displacement range 
as compared to the sinusoidally-excited displacement. Nevertheless, the experimental results 
clearly demonstrate the capability of the EFFPI sensor for measuring dynamic displacements 
under various operating conditions with reasonably good precision. 
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Fig. 2.23(a). Squarewave excitation with ΔDimax = 8 nm Fig. 2.23(b). Ramp excitation with ΔDimax = 20 nm 
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Fig. 2.23(d). Displacements detected by EFFPI sensor against reference 

displacement for squarewave, ramp and triangular pulse excitations 

In collaborative work with Tyndall National Institute in Cork, Ireland, the dual-cavity 
EFFPI sensor is used for calibrating the vibration noise level of an acoustic vibrator to align and 
optimize the self-formation of opal photonic nano-crystals during their growth stage [31]. As 
shown in Fig. 2.24(a), this technique enables a tenfold improvement in the crystallographic 
ordering of the nano-crystals in the (111) plane, as compared to other crystallization methods.  
An SEM image of the crystallographic assembly of the opal film is illustrated in Fig. 2.24(b), 
illustrating the excellent quality of the opal nano-film synthesized. 
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Fig. 2.24(a). Dual-cavity EFFPI sensor for calibrating 
vibration noise to apply for opal nano-crystal growth 

Fig. 2.24(b). SEM image of crystallographic orientation of opal 
nano-crystal film in (111) plane 
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2.3 15BDual-modulation EFFPI with double reflection 

The second half of this chapter concerns the evolution of the dual-cavity EFFPI sensor into 
a modulation-based device to overcome polarization instability over the long term. Further, the 
previous sensor is unsuitable for slowly-varying displacements. The modulation-based EFFPI 
sensor has been developed during the LINES (Laser Interferometry for Earth Strains) research 
project under the ANR Natural Risk Program for geophysics and has a patent application 
pending (France, USA, Europe and Japan). The operating principles are first described followed 
by its experimental validation. Various characteristics concerning the performance of the fiber 
device are next elaborated following the description of the demodulation technique employed. 

2.3.1 29BOperating principles of dual-modulation EFFPI sensor 

Unlike the all-optical dual-cavity EFFPI sensor discussed above, the modulation-based 
interferometer employs high-precision electronic modulation to achieve quadrature phase-shift. 
In addition, the sensor can also operate under quasi-static displacement conditions [32]. The 
interference signal at wavelength, λ1, is given in voltage terms as 

   )cos(0 ϕθ ++= mxxx VVV       (2.8) 

with V0x the dc component, Vmx the ac component representing the fringe visibility, θ the optical 
phase induced between the reference and sensing waves (representing sensing cavity length 
variation), and ϕ an arbitrary phase. Since θ is calculated modulo π, directional ambiguities can 
arise [33-35] and can subsequently be overcome by generating another quadrature phase-shifted 
interference signal, Vy, via ϕ so that 

   ( ) ( )θπθ sin2cos 00 myymyyy VVVVV +=++=    (2.9) 

where the terms on the right have the same definitions as in (2.8). The modulation scheme is 
introduced via the experimental set-up shown in Fig. 2.25. 

 
Fig. 2.25. Experimental configuration of dual-modulation EFFPI sensor 

A temperature-stabilized fiber-pigtailed DFB-LD incorporating an optical isolator (ISO) 
illuminates the interferometer via a fiber coupler (FC). A reference wave (RW) of ~3.7% is 
reflected off the FC/PC end of the sensing fiber (SF) while the remaining light is transmitted via 
an AR-coated collimator (C) and back-reflected by a target (T) into SF as the sensing wave (SW). 
T is a front-face reflecting mirror (>90% reflectivity) at a distance d from the SF end. A target 
mirror is used here to avoid any SOP distortion which can occur with polymer-based retro-
reflectors in this "single-cavity" interferometer and implicitly means a strict alignment constraint 
on SW. However, double reflection is obtained due to a combination of high reflectivity from 
SF's ceramic ferrule (CF) and the mirror [32,36], as shown in the inset of Fig. 2.25. This 
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subsequently enables the interferometer resolution to be doubled since the apparent cavity length 
d is now doubled. 

Now, the wavelength amplitude of the first modulation component, f1, to achieve 
quadrature has to satisfy the condition Δλ/λ2 = 1/8nd, with n the refractive index of the sensing 
cavity (~1 in air) and d =25 mm. Also, Δλ =λ2-λ1 with λ1≈λ2 ≅λ (~1311.10 nm at 24°C). The 
wavelength-current response Δλ/ΔI is ~9pm/mA and the corresponding current modulation 
amplitude Δi(t) is ~0.48 mA, translating to an equivalent Δλ of ~4.30 pm. f1 is implemented as a 
squarewave modulation at 25 kHz and has been chosen for its compromise in terms of accuracy 
for geophysics where the phenomena to be monitored are typically in the 10-3–102 Hz range with 
amplitudes of 10-9–10-3 m. 

f1, at 25 kHz, also corresponds to the spectral response limit of the DFB-LD under 
squarewave excitation [37]. The unique photodetector (PD) thus detects a multiplexed signal 
containing the interference pair, as shown in Fig. 2.26(a), which is subsequently demultiplexed 
to obtain Vx and its quadrature component Vy (Fig. 2.26(b)), using a phase demodulation 
technique which will be described below [38]. 

  
Fig. 2.26(a). Multiplexed interference signal Fig. 2.26(b). Demultiplexed Vy and Vx 

The quadrature phase-shift condition induced by f1 is validated experimentally where, for 
an arbitrary displacement (~5 µm), Vy plotted against Vx imperatively traces a perfect circle (i.e. 
with zero quadrature error) on the Lissajous phase diagram, as illustrated in Fig. 2.27. 

 
Fig. 2.27. Lissajous phase diagram for Vy vs Vx in quadrature (circle with zero quadrature phase error) 

Here, one complete trajectory on the phase diagram represents an equivalent displacement 
of λ/4 due to double reflection. 

Now, in the case when T is immobile or displaces very slowly then either no fringes are 
generated or the induced small-amplitude signals might be misinterpreted as intrinsic drifts of the 
sensor system. To overcome this ambiguity, a second modulation, f2, is applied to generate a 
reference set of fringes so that Vy versus Vx traces a bidirectional trajectory of ≥2π on the 
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Lissajous phase diagram with the condition Δλ/λ2=1/2nd. The corresponding current amplitude 
is Δi(t) ~1.94 mA for Δλ ~17.19 pm. Hence, for a stationary T, f2, used simultaneously with f1, 
induces an equivalent displacement of Δd ≥ 327.8 nm. f2 employs a triangular excitation at ~1 
Hz, applied together with f1, as shown in Fig. 2.28 and is selected to enable it to be easily 
distinguished from f1 while 1 Hz is considered sufficiently rapid with respect to the DFB-LD 
power variation. 

Fig. 2.28. Triangular excitation f2 applied in conjunction with f1 for stationary T 

This dual-modulation is implemented for a fixed distance d (25 mm) over which T is 
maintained immobile, as illustrated in Figs. 2.29. 

  
Fig. 2.29(a). Muiltiplexed Vy and Vx for immobile T Fig. 2.29(b). Demultiplexed Vy and Vx in quadrature  

Demodulation takes into account V0x, Vmx, V0y and Vmy from the demultiplexed interference 
signals and displacement calculation then proceeds via incremental phase demodulation. 

  

  
Fig. 2.30. Vy vs Vx for ≥2π trajectory Fig. 2.31. Reference displacement due to dual-modulation 

562 nm 
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The plot of Vy against Vx results in a perfect circle with the phase trajectory corresponding 
to the artificially-induced displacement, as demonstrated experimentally in Fig. 2.30. The total 
phase variation induced by the dual-modulation scheme corresponds to a reference displacement 
of ~562 nm, as plotted in Fig. 2.31. 

2.3.2 30BDemodulation of dual-modulation EFFPI sensor via phase tracking 

This section details the phase tracking demodulation technique which is written in C++ 
and, it is to be strictly noted, has been developed by my colleague, Professor Michel CATTOEN. 
Software demultiplexing after data acquisition is preferred over hardware analogue 
demultiplexing. 

The first modulation, f1, applied at 25 kHz, induces a wavelength variation Δλ to produce 
phase quadrature given by  

  
2

4114
1212

12
π

λλ
λπ

λλ
πθθθ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=−=Δ ndnd     (2.10) 

This is equivalent to having 2 distinctive interference signals, Vy and Vx, at 2 different 
wavelengths. For Δλ relatively small compared to λ1 and λ2, then λ1≈λ2≅λ. Hence, using the 
condition Δλ/λ2=1/8nd, (2.8) and (2.9) can then be re-arranged into 
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The desired phase is next calculated as the arctangent of (2.12) divided by (2.11) and 
adding a π phase shift to give 

    πθ +=
1

22arctan
A
A   for θ : [0,2π]   (2.13) 

modulo 2π. Note that the arctan2 function is used for its added advantage of directly computing 
the signs as well as treating only the real parameters of the input arguments. Due to double 
reflection, d is now modulo λ/4 and calculated incrementally from the phase variation from θn at 
point n to θn+1 at point n+1 as 
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+=

θθ       (2.14) 

where d0 = 0 at θ0 = 0 and Fd = 8πn/λ is the displacement factor. Further, an angular correction, 
otherwise known as phase unwrapping, is provided if the detected phase varies by an angle >π, 
given as 

π2−Δ=Δ  if Δ > 0, else 
π2+Δ=Δ   (2.15) 

with Δ= θn – θn-1. This correction however implies that θ must not vary by π or more between 2 
sampling points since this will lead to errors in determining its positive or negative variation  
(mathematically +3π/2 is equivalent to -π/2). Nevertheless, this condition imposes a limit on the 
maximum velocity of the object which is given by the Nyquist limit to be λ/8 x fs, with fs the 
sampling frequency. 

The demodulation first proceeds by normalizing Vy and Vx via 
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where (Vxmax ; Vxmin) and (Vymax ; Vymin) represent the minimum and maximum amplitudes of Vx 
and Vy respectively. The actual normalization stage is then 

1

0
V

VV
A x

x
−

=  for Ax: [-1,+1] 

3

2

V
VV

A y
y

−
=  for Ay: [-1,+1] 

(2.17) 

An illustrated in Fig. 2.32, two pairs of quadrature interference signals from the EFFPI 
sensor in a differential configuration demodulated to obtain two displacements, dcal1 (~1.105 
µm) and dcal2 (1.097 µm). Note also that the amplitude difference between dcal1 and dcal2 (i.e. 
dcal12) is ~8 nm while the relative difference over the entire duration (~17 mins) is less than 30 
nm. This can be attributed to a very slight dissymmetry between the 2 sensor probes (fiber 
lengths, and misalignment, etc). 

Demultiplexed quadrature signals for sensor 1

Demultiplexed quadrature signals for sensor 2

Demodulated displacement dcal1 in µm

Demodulated displacement dcal2 in µm

Difference: dcal1 – dcal2

Temperature variation (3.9 mV/°C)

Velocity 1 

Velocity 2 

 
Fig. 2.32. Example program for demodulating 2 sensor in differential configuration 

The demodulation program also incorporates functions to correct for quadrature phase 
errors as well as compensate signal amplitude and source power variations incurred during the 
modulation process as described in [1,39,40]. 
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2.3.3 31BDual-modulation EFFPI sensor characteristics and performance 

The laser holder (Thorlabs TCLDM9) employed, incorporating a Peltier cooling stage is 
modified and, together with the DFB-LD are characterized in a precision temperature chamber 
(Spirale3 from CLIMATS). The EFFPI sensor is set up in a differential configuration for 
stationary T so that any apparent displacements due only to temperature-induced wavelength 
shifts are measured, as shown in Figs. 2.33. 

Fig. 2.33(a). Sensor response with TEC deactivated Fig. 2.33(b). Sensor response with TEC activated 

Subsequent measurements result in an apparent displacement coefficient of ~40 nm/°C and 
2.25 µm/°C with and without temperature regulation respectively. By proportional computation, 
the temperature sensitivity of the EFFPI sensor is estimated to be better than 0.017°C translating 
to a displacement error of ~13 nm. 

While PIF is negligible here, possible errors due to angular orientation of the sensor probe 
with respect to the target surface could occur and incur an apparent displacement due to the cos 
α term described previously in Section 2.2.4. Fig. 2.34 plots the variation of the reflected optical 
signal under no vibration against the orientation angle, α. No major decrease in signal amplitude 
is observed over a variation of ±1.0° (i.e. within the -3dB range). Now, when the target is set in 
vibration at constant amplitude, the displacement error measured is <4 nm vis-à-vis normal 
incidence for variations of up to ±0.5° while an error of <8 nm is obtained for a ±1.5° variation 
from the normal. This consequently allows the alignment tolerance to be relaxed significantly 
compared to a typical interferometric system. In addition, the modulation current amplitudes 
required are halved compared to a single-reflection system for identical d, with the advantage of 
limiting further perturbation to the DFB-LD [32]. 
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Fig. 2.34. Measured alignment tolerance of modulation-based EFFPI under double reflection 

A parameter of paramount importance in terms of performance is the sensor's precision. 
This is quantified experimentally from the noise level of the EFFPI sensor for an immobile 
target, as shown in Fig. 2.35. For a 14-bit DAQ system operating at a sampling frequency of fs 
=1 MHz with data saved at 1 kHz over a period of ~17 mins, the subsequent rms displacement is 
~2.2 nm over a 10-3–500 Hz range. This value is also considered as corresponding to the absolute 
precision of the sensor over the investigated bandwidth. The sensor resolution, on the other hand, 
is estimated to be in the order of several tens of pm from the recorded data. 

In the context of geophysics applications, both long-term drifts and the sensitivity of the 
interferometric probe to temperature variations have to be quantified. The fiber sensor is set up 
for differential mode measurement since any common-mode "noises" such as parasitic vibration, 
as well as power, temperature and slight wavelength variations can be reduced. 
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Fig. 2.35. Power spectral density plot for displacement noise level of EFFPI 

A simple stainless steel cage system is employed, as illustrated in Fig. 2.36, enabling 
probes S1 and S2, derived from the same DFB-LD source, to be pointed collinearly at two 
identical stationary mirrors. 

 
Fig. 2.36. Differential EFFPI sensor configuration mounted in cage system 

No discernable displacement excitation is introduced apart from variations of the 
environmental conditions (vibration noise and temperature variations). As previously, fs is 1 
MHz and data are saved at 1 kHz. The small differential drift displacements (~14 nm) as plotted 
in Fig. 2.37 are induced by the thermal expansion of the cage system and associated mechanical 
components employed, and are a direct consequence of slow temperature variations in the 
sensing environment.  

 
Fig. 2.37. Displacements detected by differential EFFPI probes. Inset illustrates relative difference between S1 and S2  

The stability of the sensor system is also demonstrated through the relative difference 
between S1 and S2 where both probes measure almost identical values, with a maximum 
difference of <1 nm as shown in the inset of Fig. 2.37 (min. difference is ~0.14 nm). 
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The differential probes are next subjected to a very slow temperature increase in a precision 
temperature chamber. The subsequent temperature-induced displacements detected by both S1 
and S2 over ~1 hr at 1 kHz are plotted in Fig. 2.38. 

 
Fig. 2.38. Differential displacements for 0.098 °C variation over 1 hr duration (top) and temperature profile (bottom) 

A reference temperature probe (sensitivity ~3.9 mV/°C) is also inserted into the 
temperature chamber and positioned between S1 and S2 at the base of the mirrors to ensure that 
the most accurate image of the temperature is recorded. The displacements detected are an 
identical 25.82 nm for both S1 and S2 for a temperature variation of ~0.1°C over 1 hr. Not 
withstanding these absolute values, both displacement profiles replicate the temperature 
variation, corresponding to the thermal expansion of the metal posts (~25.6 nm) used in the 
experiment, which are of stainless steel grade 410 with a thermal expansion coefficient of ~10.5 
µm/m/°C. The sensitivity and, more importantly, the stability of the EFFPI thus demonstrate its 
suitability for long-term metrology. 

2.3.4 Applications to displacement measurements 

The experimental calibration of the dual-modulation EFFPI sensor is next carried out 
against reference step movements through a Polytech PI PZT stage with a quoted precision of 2 
nm (see Fig. 2.25). The Thorlabs PDA10CS-EC model PD gain is set at 30 dB with an NEP 
(noise equivalent power) of 1.25x10-12 W/√Hz. The subsequent bandwidth is thereby limited to 
~780 kHz but is considered more than sufficient for the current investigation. The DAQ unit is 
an Agilent U2351 USB device with a maximum sampling frequency of 2 MHz and 4 
simultaneous analogue input ports plus 2 digital I/O ports. 

The displacements measured by the fiber sensor against the "reference" PZT movement 
from 0.002–5 µm are plotted in Fig. 2.39.  These are found to be well within the 2 nm precision 
of both devices, i.e. ~2 nm, and demonstrate a very high linear correlation (of almost 1) with the 
PZT. The dashed line plots an ideal displacement ratio of 1 between the 2 measurements, again 
demonstrating the accuracy of the EFFPI sensor where the deviation from true displacement  is 
actually only ~1 nm by considering the vertical error bar at each measurement point. Further, the 
inset shows the relative error between the 2 sensors being in the low nm range. In absolute terms, 
the errors are less than 1.5 nm up to the 2 µm displacement range. Between 2 and 5 µm, the 
discrepancies between the 2 devices are ~19.9 and 46.2 nm, corresponding to errors of ~0.99% 
and 0.92%, respectively. This is attributed to the non-linear response of the reference PZT at 
these displacement points. 
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Fig. 2.39. EFFPI displacements against PZT movement over 0.002–5 µm range. Vertical bars : EFFPI 

precision (~2 nm); Horizontal bars: PZT precision (~2 nm) 

An experimental calibration is also carried out to validate the EFFPI sensor performance 
under dynamic excitation. Fig. 2.40 plots the displacement measured for a squarewave excitation 
at ~5 µm at 10 Hz. The interference signals are recorded at 25 kHz from a sampling frequency of 
1 MHz. 

yV

xV

Dcalp = 5.155 µm

Drefp = 5.153 µm

0.146maxD µmi =Δ

0.0073D µmmean =Δ  
Fig. 2.40. Comparison of EFFPI and PZT displacement amplitudes under squarewave excitation at 10 Hz 

The measured peak-to-peak displacement is ~5.155 µm while that of the reference sensor 
(PZT) is ~5.153 µm. This translates into an error of 2 nm (or ~0.04 %), which is coherent with 
earlier analysis on its performance and serves to validate the EFFPI sensor's precision. 

2.3.5 33BApplications to geophysics 

The need for new instruments in geophysics is motivated by the absence of a series of 
sensitive devices capable of monitoring earth strains within a seismic zone extending from the 
minute to 8 year period, as illustrated in Fig. 2.41. These strains are generally a consequence of 
naturally-occurring events such as earthquakes and volcanic eruptions as well as man-made 
circumstances such as artificial loading of the earth's surface, the examples of which are 
underground gas storage, subterranean mine and tunnel drilling, hydrocarbon exploration via 
ground fracture techniques and underground nuclear tests. The development of the dual-
modulation EFFPI sensor tailored to geophysics instrumentation is thus a complement to existing 
instruments to provide cover for the "unknown zone" where important information can be 
obtained. 
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Fig. 2.41. Instruments currently employed for measuring earth strains with unknown zone 

(STS1 and STS2: 3-axis Streckeisen broadband seismometers; TILT: tiltmeters; STRAIN: strainmeters) 

In the context of the ANR RiskNat project, three distinct novel instruments have been 
developed, namely a fiber optic-based long baseline tiltmeter (ILB-LINES), a fiber-based 
borehole tiltmeter (IF-LINES) and a fiber-based seismometer (SISMO-LINES). These 
instruments are expected to cover an operational zone extending from the low 10-3 to ~200 Hz 
range together with a relatively long operating lifetime (>1 year). 

2.3.5.1 42BFiber optic long baseline tiltmeter (ILB-LINES) 

ILB-LINES is based on a set of hydrostatic communicating vases linked by water tubes, 
the operating principle of which is shown schematically in Fig. 2.42. 

 
Fig. 2.42. Operating principles of long baseline tiltmeter 

The resulting tilt angle induced by any ground movement over a baseline, l, between two 
vases is then given by simple geometry as 

    
l
h

l
dH 2sin ==≈ αα       (2.18) 

Hence, the resolution of the tilt increases proportionally as the baseline. The EFFPI sensor 
is integrated into the all-glass tiltmeter under a differential configuration to reduce common-
mode perturbations, as illustrated schematically in Fig. 2.43(a). Two silvered mirrors are fused 
onto the top end of a rigid silica rod and positioned in the middle of the differential probes as 
shown in Fig. 2.43(b). A reference LVDT sensor with a precision of ~10 nm is also installed in 
the same vase. The entire set-up is calibrated against known variations in liquid levels to locate 
the equilibrium position of the mirrors with respect to the differential probes. 

ILB-LINES is next deployed to the LSBB (Laboratoire Souterrain à Bas Bruit) facilities in 
Rustrel (Vaucluse, South-East France) and has a 150 m baseline along the North-South direction. 
One of the longest in the world, it is also the longest tiltmeter system ever deployed in Europe. 

ILB-LINES has been in operation since March 2012 and, not withstanding a few electricity 
cut-offs, has been used to detect very slow minute ground tilts and various earthquakes. The 
benchmark of a sensor system in geophysics is the ability to measure cyclic earth tides, hence 
enabling one to characterize the device's sensitivity. 
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Fig. 2.43. (a) Schematic of ILB-LINES design and (b) positioning of differential probes, S1 and S2 

The tide amplitudes are of the order of 10-7 radians and are cyclic over 12-hr periods, as 
shown in Fig. 2.44(a). Further, the high quality of the EFFPI sensor measurement is also evident 
from the noise level measured, implying that very small tilt movements can be subsequently 
resolved. The difference in tilt from both EFFPI and LVDT measurements is plotted in Fig. 
2.44(b) and is within the low 10-11 radian range over a 36-hr observation period. 

Fig. 2.44(a). Earth tides detected by EFFPI sensor of ILB 
LINES 

Fig. 2.44(b). Difference between LDVT and EFFPI 
measurements over 36 hrs 

The sensitivity of ILB-LINES to minute tilts in the earth's movement is demonstrated in 
Fig. 2.45 during the Sumatra earthquake on 11 April 2012. 

 
Fig. 2.45. Tilt measured by ILB-LINES during M8.7 Sumatra earthquake. 

Zoom shows the difference between LVDT and EFFPI of 0.2% over 9 hr period 

Comparison of both LDVT and EFFPI measurements shows that just before the quake, the 
background noise is resolved to better than 2 x 10-11 rad (see zoom) over a 9-hr period, and their 
difference is <0.2%. At the occurrence of the magnitude 8.7 (M8.7) quake, which translates into 
a 330 nrad tilt amplitude, both measurements are almost identical. A difference of only 8 nrad 
(or ~3%) is observed and may be explained by the LVDT sensor being not compensated for 
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various noise effects (e.g. its temperature sensitivity ~300 nm/°C). Note also that the earthquake 
event is superimposed onto the periodic earth tide oscillations. 

 
Fig. 2.46. Before and after-quake fine details from 

ILB-LINES measurements 
Fig. 2.47. Earth's oscillation modes induced by Sumatra quake from 
ILB-LINES and STS2 (oS: spheroidal modes; oT: Toroidal modes) 

Figure 2.46 demonstrates the capability of ILB-LINES to resolve minute tilt details. Just 
before the quake, both LVDT and EFFPI measurements are identical and constitute the 
background noise of the earth's movement. During the quake, 2 distinctive groups of vibration 
can be observed, corresponding to the primary and secondary quakes respectively, together with 
smaller-amplitude oscillations of earth's movement, illustrating the nrad resolution achieved by 
ILB-LINES. A further comparison is next carried out with the reference wide-bandwidth 
Streckeisen STS2 3-axis seismometer. Both measurements are illustrated in Fig. 2.47. 

Analysis of data from the Sumatra event shows ILB-LINES to be relatively more sensitive 
to the earth's after-quake oscillatory modes via its stronger power spectral density (PSD). In 
addition, towards the low-frequency region (i.e. <0.4 x 10-3 Hz), the ILB-LINES signals are less 
influenced by atmospheric noise compared to those from the STS2. 

GPS measurement

ILB-LINES

ILB Fogale

LILY 2 LILY 1

 
Fig. 2.48. Noise power from both ILB-LINES, FOGALE HLS, LILY borehole tiltmeter from Jewell, Inc & GPS 

A final comparison is carried out with a commercial hydrostatic leveling sensor (HLS) 
from FOGALE, as shown in Fig. 2.48, which illustrates the noise level from each instrument 
over a bandwidth of 10-6–10-2 Hz. The PSD plot clearly shows the superior performance of ILB-
LINES from ~10-5 Hz onwards which is ~10 times better than that of the FOGALE HLS. Also, 
from ~6 x 10-3 Hz onwards, ILB-LINES is almost 100 times better in precision. Two further 
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curves are included for comparison purposes to illustrate that, over the entire bandwidth 
analyzed, ILB-LINES is 100–1000 times better in precision than either LILY (commercial 
borehole tiltmeter from Jewell, Inc) or GPS-based systems. The results obtained demonstrate the 
potential of ILB-LINES to be exploited in an industrial context. 

2.3.5.2 43BFiber optic borehole tiltmeter (IF-LINES) 

IF-LINES is designed to measure displacements in 3 directions along a same plane thus 
providing redundancy on the position with a further advantage of enabling a 2D movement of the 
ground to be reconstructed. IF-LINES is based on a tri-axial measurement of a displacing mass, 
as illustrated schematically in Fig. 2.49. Its pendulum system is an equilateral triangular form 
allowing 3 optical mirrors to be mounted, spaced at 120° apart. The sensing beams are guided to 
these mirrors via a set of right-angle optical reflectors (see Fig. 2.50). 

IF-LINES is designed so that the sum of the 3 displacements, d1 + d2 + d3 =constant thus 
providing redundancy to compensate for atmospheric noises and eliminate system drifts. The 
superstructure of IF-LINES is inserted into a second larger boro-silicate tubing serving as the 
support. Before sealing, a MEMS-based 2-axis positioning system is attached onto the top of the 
former device to enable orienting IF-LINES during down-hole installation. 

 

 
Fig. 2.49. Tri-axial measurement of 

displacement, d1, d2 and d3 in IF-LINES 
Fig. 2.50. Pendulum system used in IF-LINES with reflectors to 

guide sensing beams to target surface 

IF-LINES has also been deployed since March 2012 at the LSBB test site along the N–S 
line and is positioned in a borehole ~1 m deep under ~400 m of rocks at the extreme end of the 
test tunnel. The instrument-ground coupling is ensured by inserting tiny silica spheres between 
the instrument's outer surface and the inner wall of the borehole. For remote sensing, IF-LINES 
is connected via 3 identical 270 m long fibers to the DFB-LD and PDs situated at the tunnel 
entrance. IF-LINES is illustrated in Fig. 2.51 just before its insertion into the borehole. 



 

44 

 
Fig. 2.51. IF-LINES and its insertion into borehole at LSBB test site 

The characteristic response of IF-LINES to earth tides is shown in Fig. 2.52. These have 
amplitudes of 50–130 nm over 12-hr periods and can be measured to nm range resolution as 
illustrated in the bottom figure. The corresponding tilt resolution is ~1 nrad. 

 
Fig. 2.52. IF-LINES earth tide measurements over 10 day period. Bottom 

figure demonstrates instrumental resolution in the nm order 

The tri-axial measurement capability of IF-LINES enables a 2D observation of earth tides, 
as illustrated in Fig. 2.53, whose influence induces the instrument to trace a North–South 
direction superimposed onto which are the earth tides. This corresponds to the geographical 
orientation of the instrument with its first axis pointed due North. 

 
Fig. 2.53. IF-LINES tri-axial displacements from earth tides Fig. 2.54. IF-LINES tri-axial displacements from Argentina 

earthquake on 2 March 2012 

The typical response of IF-LINES to the M6.1 Argentina earthquake on 5 March 2012 is 
next plotted in Fig. 2.54, in which the characteristic N–S "natural" response is slightly shifted 
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towards the N–E direction on the 2D plane. Further, the detected amplitudes are ~180 times that 
induced by earth tides. To validate the earlier hypothesis on 3-axis redundancy, the displacement 
sum is analyzed during a quake event as plotted in Fig. 2.55. 

 
Fig. 2.55. Validation of displacement redundancy on d1, d2 and d3 during Japan earthquake on 29 Feb 2012. 

Top: tri-axial displacements; Bottom: displacement sum 

This event corresponds to the M5.8 Japan earthquake on 29 Feb 2012, lasting ~3.5 mins. 
The before and after-quake characteristics of IF-LINES have been analyzed over 800 secs (~13.3 
mins). The maximum amplitude induced is ~8 µm, as detected by d2. From the redundancy 
calculation, the displacement sum averages out to less than 10 nm in amplitude and is a critical 
parameter to validate the operation of IF-LINES. A further validation means is also carried out in 
comparison with the Jewell LILY borehole tiltmeter over a period of more than 21 days, as 
plotted in Fig. 2.56. 

LILY

IF-LINES

 
Fig. 2.56. Response of N–S components of IF-LINES and LILY to tunnel water precipitation: multiple 

discontinuities from LILY contribute to phase hopping and large offsets 
LILY is installed in a borehole next to IL-LINES and similarly oriented. Both instrument 

outputs are comparable in terms of the displacements induced by the ground tilt along N–S, with 
a correlation factor of ~0.959. The displacements within the rectangle represent a common noise 
level which is identical in both instruments and correspond to minute tilts induced by water 
droplets dripping from the tunnel ceiling. The most obvious difference, however, between IF-
LINES and LILY lies in the multiple discontinuities from the latter instrument leading to 
significant phase hopping and large offsets over the entire duration. 

A final investigation concerns the sensibility of IF-LINES to external parasites such as 
pressure variations which can typically occur in geophysics applications. The test tunnel pressure 
is measured over a 3-week period and plotted in Fig. 2.57 together with the E–W and N–S 
components of both IF-LINES and LILY. 
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Fig. 2.57.  Displacements from E–W and N–S components of IF-LINES and LILY versus 

pressure variation in LSBB test tunnel. 

Both instruments are oriented along the tunnel's principal axis (i.e. N–S direction). Any 
pressure variation will thus induce a tilt movement in this direction. While IF-LINES is 
relatively insensitive to this parasitic disturbance, LILY is clearly affected as reflected by its N–S 
component which highly corresponds to the pressure profile. The E–W components of both IF-
LINES and LILY, on the other hand, are relatively insensitive to pressure variations. 

2.3.5.3 44BFiber optic seismometer (SISMO-LINES) 

SISMO-LINES, whose operating principle is the interrogation of a mobile mass of a 2Hz 
L22 Sercel seismometer with the modulation-based EFFPI, is illustrated in Figs. 2.58. 

Mirror
surface

Collimator (in red)

Toroidal
joint

  
Fig. 2.58(a). Exploded view of SISMO-LINES based on L22 

seismometer with collimator representing EFFPI 
Fig. 2.58(b). SISMO-LINES deployment at LSBB test site 

with 1–3 km fiber for remote sensing 

The L22 device is modified to integrate the optical probe of the EFFPI whose sensing beam 
is guided to an optical mirror secured to the moving mass. The electrical output (inductive 
measurement) from the device is employed as reference for initial calibration purposes. 

The response from SISMO-LINES and the L22 seismometer to random shocks are plotted 
in Fig. 2.59. A difference of <2% in peak-peak velocity is obtained between the 2 instruments 
and is attributed to the mechanical friction between the mobile mass and the inductive rod. Both 
sensors, however, detect the same number of shocks with identical velocity profiles of similar 
amplitudes. Initial requirements specify an operating range of 2–200 Hz but SISMO-LINES can 
be operated up to 5 kHz which is within the specifications of the best seismometer available (the 
Streckeisen STS2 broadband sensor). An analysis of the optical instrumental noise under earth's 
natural movement (i.e., no quake) results in a precision of less than 2 nm over a 2 Hz–5 kHz 
bandwidth (see Fig. 2.60), corresponding to previous estimation for the EFFPI sensor. 
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Fig. 2.59. Comparison of optical and inductive measurements from SISMO-LINES: velocity in µm/s 

Further, over a 5000-sec duration, the displacement resolution achievable is better than 70 
pm (right). Another calibration phase for SISMO-LINES lies in its ability to detect low-
frequency earth-tides, as shown in Fig. 2.61 over an observation period of >270 hrs where their 
cyclic (~12 hrs) profile can clearly be distinguished. 
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Fig. 2.60. Left: spectral analysis of SISMO-LINES noise level for natural vibrations over 0–5 kHz bandwidth (< 2 nm 
precision); Right: 0.6 nm displacement amplitudes with 70 pm resolution over 5000 sec period 

Nevertheless, the detected tide amplitudes (max amplitude ~15 nm) are considerably 
smaller than those from both ILB-LINES and IF-LINES, and can be attributed to the fact that the 
mobile mass axis is not collinear with the ground movement (i.e. not perpendicular). 

 
Fig. 2.61. Earth tides measured by SISMO-LINES over 270 hrs observation period 

The final calibration stage of SISMO-LINES is a comparison with the STS2 seismometer 
during the M8.7 Sumatra quake on 11 Apr 2012 (Figs. 2.62).The accelerations detected by both 
instruments are of highly similar profile and amplitudes throughout the entire quake event (Fig. 
2.62(a)). Both the STS2 and SISMO-LINES are also able to simultaneously detect low-
amplitude rumblings just before the actual quake. 
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Fig. 2.62(a). Acceleration induced by Sumatra earthquake and 

detected by both STS2 and SISMO-LINES 
Fig. 2.62(b). Background earth vibration just before quake 

event: both STS2 and SISMO-LINES are identical 

In addition, SISMO-LINES is able to measure highly-resolved details of the induced 
acceleration just before the quake with respect to the STS2 device, as demonstrated in Fig. 
2.62(b). It is thus comparable to the reference STS2 seismometer while suffering very little or no 
electrical noise, a major advantage of using long optical fibers. In this project, both 1 km and 3 
km fibers are tested successfully. 

2.4 16BConclusions and Perspectives 

Two variants of the EFFPI sensor have been developed and analyzed. These are 
subsequently tested for vibration and displacement measurements with relatively high precision 
and good stability. 

The polarization-based EFFPI is highly suitable for very fast displacement measurements 
as it does not employ any modulation scheme on the laser source. It thus has a very high 
bandwidth, the limit of which is dependent on that of the photodetectors and the temporal 
coherence of the LD employed. In addition, depending on the DFB-LD coherence length, the 
target can be positioned at a relatively long working distance away from the optical probe. 
Although not mentioned in this manuscript, we have worked at a distance of >1.80 m using a 
collimated beam from the DFB-LD and the displacement values obtained are identical to those 
obtained at near field. By exploiting the modified fringe-counting demodulation technique, the 
interferometer has also been demonstrated to be sufficiently robust for tracking displacements of 
various profiles. Further, the use of a polarization-based dual optical cavity enables both the 
displacement amplitudes and direction to be determined with a relatively good precision (λ/64) 
over a large dynamic range. However, the minimum detectable displacement of the sensor is 
ultimately limited to only λ/2. There is, however, a major disadvantage in that the polarization 
stability cannot be guaranteed over the long-term unless the sensing fiber can be isolated from 
environmental perturbation, in particular temperature variations and vibration. Polarization 
control via polarization scrambler or active systems can be used to maintain suitable visibilities 
in the quadrature interference signals. Another possible solution is the use of polarization-
maintaining fibers and components. Although the use of such materials can reduce the cost-
effectiveness of the sensor, this is perhaps a favorable compromise if the "passivity" of the 
sensor system is a priority. In the work on the dual-cavity EFFPI sensor, efforts have been made 
to ensure that polarization state degradation is not produced during experimental measurements. 
In addition, with the experimental set-up employed, there is an unlikelihood of complete 
simultaneous extinction of the quadrature pair. Hence, interference signals are always present for 
the sensor to be exploitable. 
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In terms of application domains, the dual-cavity EFFPI sensor can be employed for high-
speed measurements such as in the study of impacts on materials and shock-waves generated 
after a high-velocity impact, which are short-lived phenomena. Another potential use of this 
sensor is in gravitational wave measurements in which a mass released from a pre-determined 
height is tracked through its trajectory to calculate its gravity profile. This is another ephemeral 
phenomenon lasting several ms. 

The modulation-based EFFPI has been successfully integrated for applications in 
geophysics and 3 fiber-geophysics instruments have been deployed at the LSBB test-site for this 
purpose. The specifications achieved have enabled the system to be coupled to 2 long baseline 
tiltmeters (ILB-LINES), a borehole tiltmeter (IF-LINES) and a seismometer (SISMO-LINES) 
for long-term monitoring of earth tilts as well as seismic activities (since March 2012). The 
instruments developed in the context of the LINES project have equaled or even out-performed 
the current generation of "conventional" instruments employed in geophysics in terms of 
precision, instrumental resolution and sensibility. They are also demonstrated to be highly 
suitable for long-term deployment at natural sites. Although serious technical failures have been 
not been encountered, there are occasional electricity cut-offs which could have affected the 
continuity of the desired measurements. Preventive measures have been planned for such 
moments: use of uninterrupted power supplies to drive the PCs, DAQs, laser driver units and 
detectors. This, however, obviously leads to one major inconvenience in the current crop of 
LINES instruments: that of autonomous operation. It is therefore imperative to modify and 
further develop these instruments, in particular, the EFFPI sensor to operate on 12 or 24 V power 
supplies typically provided by batteries and/or solar cells for fully autonomous operation in 
remote zones (for example the Chilean desert, offshore sites, as well as various petrochemical 
prospection zones). Nonetheless, the modulation-based EFFPI has been terrain-tested for very 
slowly-varying movements. Currently limited to relative displacement measurements, a potential 
evolution would be to orientate the modulation-based EFFPI sensor into an instrument for 
absolute measurements (i.e. distance). This could be carried out by exploiting the synthetic 
wavelength generated during the modulation scheme in conjunction with the inherent double 
wavelengths to obtain approximate distance information using the synthetic wavelength for 
integer fringes which can then be completed with interferometric precision using the latter 
wavelengths for fractional fringes. 

The potential of the instruments has been clearly demonstrated during the course of the 
research project. Note also that 3 patent applications with PCT extension are currently pending 
for the EFFPI sensor, ILB-LINES and IF-LINES, respectively. The next possible stage in R&D 
will be to implement a fully-distributed sensing scheme incorporating these instruments to 
facilitate their deployment in a sensor network. The ambition of such a scheme is to provide 
reliable and very large geographical coverage for natural risk monitoring, prediction and 
prevention. Negotiations are currently ongoing with the CERN to deploy an initial series of 3 
prototype ILB-LINES for accelerator alignment. The future needs of the CERN will concern a 
minimum of 120 ILB-LINES systems and up to ~1000 units upon completion of all the particle 
accelerators. Further, discussions are also ongoing with FOGALE, a major industrial player in 
optical metrology, and ISP System for the technology transfer of the modulation-based EFFPI 
system in terms of future development and its commercial exploitation. 
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Chapter 3 -  Self-mixing interrogation technique for fiber Bragg 
grating strain sensors 

3.1 0BIntroduction 

This chapter is a résumé of the PhD research on developing a novel interrogating technique 
based on the self-mixing effect or optical feedback interferometry for fiber Bragg gratings under 
dynamic strain loading (Dr M. Suleiman, 2005–2008 [1]). 

The ubiquitous fiber Bragg grating (FBG) was initially conceived for optical fiber 
telecommunications since its discovery by Hill et al. back in the late 1970s [2]. The Bragg 
grating structure is formed in the Ge-sensitized core of an optical fiber by UV inscription of a 
periodically modulated refractive index. Designed initially as a narrowband in-fiber optical 
reflector, a Bragg grating reflects a forward propagating lightwave into a counter-propagating 
mode with a centre wavelength exhibiting an extremely narrow spectral width, corresponding to 
the resonant Bragg condition, given by λB = 2neffΛ (where neff is the effective index of the grating 
structure in the core region and Λ represents the grating pitch). The rest of the non-resonant 
propagating wavelengths/modes are transmitted along the fiber after the grating structure. FBGs 
can therefore serve as highly effective fiber-based optical filters whose bandwidth can be tuned 
to specific requirements during the manufacturing process. Although uniform gratings are the 
mane of the FBGs thus produced, tilted (or blazed), chirped and long-period gratings are also 
commercially available. 

FBGs have, however, evolved from a uniquely telecommunications component to find 
wide-ranging applications in metrology and have now become synonymous with structural 
health monitoring (SHM). FBGs, with their many advantages such as their multiplexing 
capability, compact size which allows for embedding in advanced structures and materials, high 
precision and sensitivity, wavelength-encoded operation and their quasi-linear spectral response 
to external influences, are thus suitable in field applications for monitoring infrastructures in 
civil engineering, transportation and, in the gas and oil industry where preventive maintenance 
often leads to extended service lifespan while reducing the dire consequences of failure [3-5]. 
That FBGs are particularly suited to sensing applications is due to its inherent nature as a purely 
wavelength-dependent device, hence any fluctuations and/or drifts in the optical system do not, 
in any significant manner, affect their interrogation since, under most circumstances, only their 
unique wavelength-encoded response is monitored. Any applied perturbations, physical and 
mechanical, which results in changes to the Bragg condition via neff and Λ (due to the thermal-
optic and/or photoelastic coefficients of the fiber material respectively) will therefore induce a 
shift in λB. Hence, sensors employing FBGs to measure physical quantities such as strains, 
bends, deformation, pressure and temperature can be envisaged since these devices are 
particularly sensitive along the axial or longitudinal axis. Most FBG interrogation techniques 
thus involve tracking this measurand-induced shift of λB. Although optical spectrum analyzers 
and monochromators with sufficient spectral resolution are obvious candidates for this purpose, 
they remain laboratory-based instruments, being fragile, cumbersome and costly to use in field 
applications besides having measurement rates that are somewhat limited. The recent FBG 
Interrogator (Micron Optics) is a suitable solution offering multi-channel interrogation capability 
but compromise must be found with respect to the size of the infrastructures to be instrumented 
in terms of cost-effectiveness. Various methods of interrogating FBGs have also been devised 
over the past two decades [4,5-10]. Most of these require some optical filtering using edge filters 
and its variants as well as interferometric wavelength detection although their robustness and 
sensitivity to external environmental factors have to be taken into consideration. Therefore, an 
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alternative technique offering simple, accurate and cost-effective interrogation of FBG-based 
sensors with sufficient robustness to be deployed in the field is highly attractive. 

This work concerns a novel interrogation technique which exploits the self-mixing effect to 
detect dynamic strain variations in an FBG [11,121]. The sensing fiber is simply coupled to a 
fiber pigtailed DFB-type laser diode (DFB-LD) package incorporating an internal photodiode, 
leading to a greatly simplified configuration since the DFB-LD functions as both source and 
detector. The sawthooth-like interference signals typical of cavity optical feedback [13], which 
are obtained due to the optical retro-reflection off the grating structure, allow the Bragg grating 
reflectivity to be determined, from which both the Bragg wavelength shift and, more 
significantly, the embedded strain information, due to the applied mechanical loading, can be 
simultaneously extracted. This scheme thus enables a compact FBG sensor to be constructed to 
provide quasi-interferometric resolution inherent of self-mixing interferometry. 

3.2 1BOperating principles 

The dependence of the FBG reflectivity on induced strains resides on the sensitivity of neff 
and Λ to external disturbances. From coupled-mode theory [14,15], when the forward 
propagating mode reflected off the Bragg grating structure couples into the backward mode, 
resonance is obtained, leading to a reflected wavelength, λB. Thus, when this arises, a fraction of 
the incident optical power (PI) is reflected by the grating (PR) in accordance with the design 
reflectivity, RFBG, as 
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where LFBG is the grating length, which when subjected to external strain perturbation, for 
example, becomes LFBG(εz) and K =(π/λ)Δneff(z) is the coupling coefficient between modes in the 
grating having an index modulation amplitude along the optical axis, Δneff(z). σ represents the 
detuning wave vector and is given by 
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A typical reflected spectrum from an FBG under no loading is shown in Fig. 3.1 for RFBG 
~0.5 at λB ~1309.5 nm. 

The FBG is highly-sensitive to both longitudinal loading as well as to temperature 
variations. Under strain loading, Λ and neff will be caused to vary due to the elasticity and the 
photoelastic effects of the fiber material, respectively. And in the presence of temperature 
variation, the grating pitch Λ and the effective core refractive index neff will be modified 
accordingly due to the inherent thermal expansion and the thermal-optical effects of the fiber 
material. The combined influences will shift λB as [16,17] 
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where the first term between brackets on the right represents the strain influence and the second 
term the subsequent temperature effects on the FBG. Only strain effects are studied in this work 
since temperature effects are considered to be too rapid to be of any significant influence. Hence, 
for an applied longitudinal strain, εz, at a nominally constant temperature, ΔλB =2(Λ∂neff/∂LFBG + 
neff∂Λ/∂LFBG)ΔLFBG [18], with 
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where Pe =neff
2/2[ρ12 – ν(ρ11+ρ12)] is the strain-optic constant, ρ11 and ρ12 Pockel’s strain-optic 

tensor coefficients of the fiber, and ν Poisson’s ratio of the fiber material. Further, in the 
presence of axial strain εz, the grating pitch length then becomes [19] 

   ( ) ( )zz εε +Λ=Λ 10        (3.5) 
with Λ0 the strain-free pitch. neff also undergoes changes and takes the form 
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Then, (3.2) has to be modified into 
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to take into account the external loading before re-injection into (3.1) for analysis. For 3 different 
values of εz, RFBG can then be observed to shift towards the longer wavelengths with increasing 
axial strains while the peak reflectivity remains relatively constant, as shown in Fig. 3.2. 

λB

λ (nm)1309.501309 λ (nm)1309.501309
Fig. 3.1. RFBG spectrum centered at λB = 1309.50 nm Fig. 3.2. Simulated shifts of λB towards longer wavelength 

via RFBG with 3 different axial strains 

The reflectivity spectra have been obtained analytically using the following parameters: 
LFBG =6 mm, neff =1.441, ρ12 =0.27, ρ11 =0.121, ν =0.17, λB =1309.4 nm, Δneff(z) =0.0001. The 
simulation results (ΔλB ~1 pm/με) are in relatively good agreement with the values from 
published literature (1.04 pm/με). 

Hence, external strains imparted to the grating structure will modulate (3.7) leading to the 
grating reflectivity, RFBG, which is intrinsically associated with a central wavelength, λB, being 
shifted. The displacement of RFBG is thus a function of the strength of the induced strain and is 
exploited in the self-mixing (SM) technique as the optical feedback parameter subject to 
dynamic strain loading [20]. 

Optical feedback occurs when a fraction of the emitted beam is back-reflected into the laser 
cavity by an object along the beam path. This coherent back-reflection, which presents an optical 
phase or the variation thereof depending on the object distance and its reflectivity, mixes with 
the existing electric fields in the laser cavity. For a mobile object, this SM effect then modulates 
the subsequent laser output characteristics to result in a series of sawtooth-type fringes whose 
profile is a function of the characteristic parameter known as the feedback strength, C. Although 
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detrimental in optical telecommunications, this optical feedback has subsequently been 
employed for many sensing applications [21]. The FBG can therefore be used as an external 
resonant cavity to the SM laser as illustrated in Fig. 3.3. 

 
Fig. 3.3. FBG coupled to SM laser for strain sensing and its equivalent cavity 

The external cavity represented by the FBG couples the incident laser power back into the 
laser cavity via a reflectivity, rext, which takes into consideration both RFBG and the roundtrip 
feedback efficiency, η, between the DFB-LD and the FBG, to result in 

   FBGext Rr η=        (3.8) 

Equation (3.8) assumes identical polarization for the emitted and reflected light. The 
external cavity in conjunction with the DFB-LD facets can then be assimilated to an equivalent 
cavity with an effective reflection coefficient of reff =r2[1+ξexp(-j2πυτD)] where ξ =(1–r2

2).rext/r2 
defines the coupling between the DFB-LD and the external FBG target. More importantly for 
SM interferometry, the grating-reflected optical feedback which is re-injected into the DFB-LD 
cavity results in a feedback parameter which is defined as 
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where α is the linewidth enhancement factor, τD the roundtrip time delay from the grating and τd 
the roundtrip time in the laser cavity. Thus under optical feedback, the optical phase change in 
the subsequent DFB-LD emission frequency, υ, is then written in the form [22,23] 

  ( ) ( ) ( )[ ]απυταξτυυπυφ arctan2sin12 2
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with υ0 its emission frequency without feedback. The optical phase under feedback, φF(t), and 
the free-running phase, φ0, can be re-arranged to yield 

  ( ) ( ) ( ) ( )[ ]αφφφ arctansin0 ++= tCtt FF      (3.11) 

The influence of the C parameter thus manifests itself in the optical phase emitted by the 
DFB-LD under optical feedback (or retro-injection) and is an important consideration in 
applications involving SM as it conditions the SM fringes that can be obtained [24,25]. This is 
duly demonstrated in Fig. 3.4 for different values of C under identical target movement. 

For small C, the SM fringes are almost sinusoidal (Fig. 3.4(a)) but there is evidence of a 
sharp gradient. Now, when C increases from 0.9 to 1.5, the sawtooth profile characteristic of SM 
interference is obtained. From C =2.5–6.7, an increasing hysteresis is observed in which the 
fringes become asymmetric dissimilar fringe amplitudes. For very high C (i.e. from 4.6 
onwards), pronounced hysteresis is observed together with subsequent fringe loss on the right 
half-period, as illustrated in Fig. 3.4(e) and 3.4(f)where the lost of an additional fringe on both 
half-periods is observed for C =6.7. Note that the inclination of the sawtooth gradient indicates 
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the direction of the movement while the point of inflection determines the object's directional 
change. Nevertheless, the principal objective of this work being the proof-of-concept of 
exploiting SM interrogation of FBGs under strain loading, the targeted application is restrained 
to only the weak and/or moderate feedback regime (0.1<C<2). 

 
Fig. 3.4. Evolution of SM fringes as a function of C values 

Hence, the detected optical power resulting from SM interference within the DFB-LD 
cavity can be written as [26] 

   ( )FVPP φcos10 +=        (3.12) 
with V a visibility function that may be defined in the usual form as V =(Pmax–Pmin)/(Pmax+Pmin). 

3.3 2BExperimental validation and sensor characteristics under dynamic strain loading 

The experimental validation of the SM interrogation technique consists of directly 
mounting the FBG for strain sensing in a cantilever beam configuration, as shown in Figs. 3.5. 
The DFB-LD without optical isolation functions as both source and detector thus greatly 
simplifying the experimental set-up. The emitted light is transmitted to the FBG (λB =1309.43 
nm) with a measured RFBG of ~17% via a 1x2 fiber coupler. The signal processing algorithm 
reported in [12] is used to describe the behavioural model of this technique and to numerically 
estimate the value of C (~0.95). Hence, we can safely assume to be working within the weak 
feedback regime. The resonant reflection off the Bragg grating structure is retro-injected into the 
DBF-LD cavity on its return trip where it perturbs the existing fields. As a precaution, the 
reflected FBG spectrum is monitored by an ANRITSU MS9710A optical spectrum analyzer 
(OSA) via the second port of the coupler. An integrated photodiode in the DFB-LD package then 
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detects these back-reflected optical signals which are subsequently amplified by an external 
electronic circuit before being transferred to a digital oscilloscope for display and recording. 

The FBG is glued onto a test plate by epoxy adhesive and secured onto a solid metal 
structure to form a cantilever beam set-up. The PASCO Scientific wave vibrator, fixed onto the 
free cantilever end just below the Bragg grating, is used to provide dynamic loading and is 
driven by a function generator at 88 Hz for excitation amplitudes ranging from 180 mV to 926 
mV. For comparison of strain measurements obtained with the SM–FBG sensor, the Philtec D63 
displacement sensor (sensitivity –2.786 mV/µm) is employed to measure the deflection applied 
by the vibrator. The induced strain are then extracted using the strain-bending relationship for a 
cantilever beam 
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with εz the axial strain applied at the point b =20 mm measured on either side from the center of 
the FBG, h =2.5 mm the thickness of the beam under test and df (~0.13 µm) the fiber diameter. 
The distance from a reference fixed support to the loading point is denoted as a (=135 mm) and l 
=300 mm is the distance between the fixed support and the free end while δ max is the cantilever 
deflection incurred. 

Fig. 3.5(a). Experimental schematic for validating SM 
interrogation technique 

Fig. 3.5(b). Positioning of Philtec D63-model reference 
sensor on cantilever beam 

The tension-compression nature of the dynamic strain effects leads to the modification of 
the FBG characteristics (via Λ(εz) and neff). These are translated into modifications of the 
resulting DFB-LD emission characteristics, leading to a series of sawtooth-type optical SM 
interference signals in which the desired strain information are directly embedded. Although the 
wavelength shift induced by the applied strains can classically be determined by using (3.4), the 
induced strains measured by the FBG sensor are calculated using simple fringe counting where 
one complete fringe is equivalent to a variation in the optical path length of λB/2. The resulting 
relationship between the elongation of the FBG, ΔLG, and the number of sawtooth fringes, N, can 
thus simply be written as ΔLG = N⋅λB/2neff. The desired strain information, by definition, can then 
be extracted via 
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where λB =1309.43 nm, LG =25 mm is the total fiber length of the FBG sensor under strain 
loading (i.e. the gauge length). 

 Two typical SM signals (channel 1) are illustrated in Figs. 3.6 for two values of 
mechanical deflections applied (in the form of excitation amplitudes). Channel 3 is the drive 
voltage to the mechanical vibrator while Channel 2 shows the detected voltage signals from the 
reference sensor positioned at the free end of the cantilever beam, whose peak-to-peak amplitude 
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can be converted into deflection for this point. The sawtooth fringes in Fig. 3.6(a) are induced by 
an excitation amplitude of 840 mv. In spite of the relatively important noise level, ~7.5 fringes 
can be observed distinctly and corresponds to a demodulated strain value of 135 με. In Fig. 
3.6(b), the demodulated strain from the detected 8.5 fringes corresponds to ~153 με at 926 mV 
of excitation amplitude. The low amplitude of these signals and the absence of hysteresis, in 
particular, further validate the weak feedback regime under which this work has been performed. 
The peak-to-peak deflections measured by the reference sensor, estimated at ~301 and 332 µm 
respectively, resulted in corresponding induced strains of 126 με and 138 με. The results thus 
confirm the feasibility of our interrogation scheme for FBG-based strain sensors. 

 
Fig. 3.6(a). SM signal from FBG strain sensor with ~7.5 

sawtooth fringes  
Fig. 3.6(b). SM signal from FBG strain sensor with ~8.5 

sawtooth fringes  

The strain response of the SM-interrogated FBG (SM-FBG) sensor over a deflection range 
of 65–332 μm is plotted in parallel to that of the reference sensor in Fig. 3.7, thus corroborating 
the SM-FBG measurements. 

 
Fig. 3.7. Strain response from SM-FBG sensor over 65 – 332 µm deflection range 

A relatively good agreement has been achieved from the SM-FBG strain sensor. At the 
lower strain range, both the reference and SM-FBG strains correlate almost perfectly (with ~4% 
error). However, a relatively large difference of ~11% is obtained at the higher strain end. This 
discrepancy could explained by the various causes: first, the dimensions of mechanical set-up 
(gauge length, a, b and l, etc) should be precisely determined for more accurate calculations of 
both reference and SM-FBG strains; another cause of this large error could be due to the very 
simple fringe-counting demodulation technique, hence, sub-fringes have been inaccurately 
estimated. 

3.4 3BSM-FBG Sensor limits and improvements to sensor performance 

The resolution currently achieved from the SM-FBG strain sensor is ~8 με, corresponding 
to half a fringe. This could be further improved by increasing the gauge length and by adopting a 
better signal processing scheme instead of the current fringe-counting technique. While this 
resolution is lower than those incorporating more involved demodulation techniques, for 
example in [27,28], it is comparable to many existing work and has been considered sufficient in 
this preliminary investigation. The essential limit of our technique is the FWHM of the FBG 
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(~0.14 nm) which corresponds to a measurable strain of 160 με. This can, in part, be resolved by 
using FBGs with larger spectra and/or a more costly tunable laser diode. During the 
measurements, the effects of laser power fluctuations which could ultimately introduce errors in 
the obtained results are also taken into consideration. This fluctuation is important when the 
power varies rapidly. Over an 8-hour period, the laser power does not vary significantly 
(equivalent wavelength variation of ~4 pm from the set point). Hence, this slowly-varying 
parameter is considered negligible in the outcome of the results over the relatively short duration 
of the experiments. 

As mentioned in Section 3.3, the reference sensor detects a deflection of the cantilever 
beam which intrinsically introduces an angle from the perpendicular. As such, the deflection 
measured is not in the normal incidence configuration in which the sensor has to perform. This 
can explain the slight deformation of the reference voltage from the sinusoidal form which 
subsequently induces relatively large errors between the 2 devices. Further, there is a limit to the 
dynamic strain range which can be measured by the current SM-FBG sensor, as discussed above. 
Also, since the gauge length cannot be infinitely increased, a means has to be found to extend the 
dynamic range of our sensor. The previous experiment requires fine adjustment of the passively-
operated or fixed DFB-LD wavelength (λLD) to closely match the FBG peak wavelength. The 
wavelength requirement at the initial stages thus pertains only to an FBG sensor with a dynamic 
range symmetric about the FBG central wavelength and this consequently limits the dynamic 
range when the latter shifts beyond the fixed DFB-LD spectrum. To extend this dynamic range, a 
simple modulation scheme to drive the interrogating λLD across both extreme ends of the 
displacing FBG wavelength under loading is introduced here, thus allowing the dynamic range to 
be improved by a factor of at least half the FBG spectrum width. In order to have a better 
appreciation of the SM-FBG sensor, a further experiment is carried out with a set of 4 strain 
gauges as reference, as illustrated in Figs. 3.8. 

The same DFB-LD is temperature-regulated at room temperature. Temperature regulation 
is also used to provide a coarse adjustment of λLD to correspond to the resonant λB (~1309.91 
nm) of the FBG employed while the source current is driven by a precision LD current driver. In 
addition, a precision function generator is employed to modulate the injection current to the 
DFB-LD to enable scanning λLD across the FBG spectrum and, hence, increase the dynamic 
range capacity of the sensor. 

Fig. 3.8(a). Experimental schematic for strain sensing with 
current modulation 

Fig. 3.8(b). Image of experimental set-up for modulation-
based SM-FBG sensor 

The DFB-LD emission is injected directly via the fiber pigtail into the FBG which has been 
attached with epoxy-based adhesives onto the cantilever beam over a length of ~87 mm, as 
shown in Fig. 3.9. This length is defined as the gauge length, LG, of the FBG strain sensor since 
the fiber material is considered homogeneous. Note that the grating length is LFBG ~8 mm and 
has been inscribed at approximately 30 cm from the input end of the fiber. The same mechanical 
wave generator is used to apply the necessary strain to the FBG by deflecting the cantilever 
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beam. For comparison purposes, four strain gauges are employed and mounted in a full-
Wheatstone bridge configuration at approximately the same position as the FBG, with two 
gauges glued to the top section of the beam and two others onto its bottom section. 

λLD is initially adjusted to approximately match the center of λB which has a FWHM 
spectrum width of δλFBG ≈0.14 nm so that optical feedback can be obtained upon the application 
of strain to the grating structure. Measurements are first carried out with a fixed DFB-LD 
current. Excitation to the mechanical vibrator is then increased at a constant frequency of to ~18 
Hz. The SM fringes are recorded using a 500 MHz digital oscilloscope translating into ~15–130 
με, as given by the reference strain gauge measurement, beyond which no further fringes can be 
observed. 

 
Fig. 3.9. Close-up view of SM-FBG strain sensor with LG ~87 mm 

Before proceeding to extract strain information from the SM fringes, a smoothing 
procedure is applied to the detected raw data from the PD to reduce electronic noise which can 
consequently prevent clear identification of the fringe peaks. The induced strains measured by 
the SM-FBG sensor are then calculated using (3.14) and plotted against the reference strain 
gauge values in Figs. 3.10 over a range of ~15–122 με together with the associated error. Very 
good concordance from the 2 devices is achieved. This is clearly demonstrated by the slope of 
the SM-FGB sensor versus reference sensor plot, with a gradient (or ratio) of ~1.019 instead of 
the ideal ratio of 1. In addition, a maximum error of ~3.55% is committed at ~104 με over the 
entire strain range studied while the minimum error is ~0.09% at 122 με. 

  
Fig. 3.10(a). Measured strains from SM-FBG sensor and strain 

gauges over 15–122 µε range 
Fig. 3.10(b). Relative error plot in % 

There is however an intrinsic limit to the above sensor system where induced strains >130 
με can no longer be measured since no SM fringes are detected. In the current sensor 
configuration, λLD is kept constant during the measurement whereas RFBG (spectral width δλFBG 
~0.14 nm) is continuously displaced about λB under dynamic strain loading. In the optimal case 
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where both extremities of RFBG displace across the fixed λLD, then its 0.14 nm spectral width will 
correspond to a measurable physical strain of ~134.6 με for the SM-FBG sensor. Beyond this 
range, no reflection, and hence no optical feedback is re-injected into the DFB-LD cavity, hence 
the absence of SM fringes in the above experiment. In order to increase the dynamic range of the 
SM-FBG strain sensor, λLD has to be continuously matched to the displacing RFBG to ensure that 
optical feedback is constantly retro-injected into the cavity. 

The modulation scheme subsequently implemented in this work to increase the 
measurement range of the SM-FBG sensor involves scanning the DFB-LD injection current 
above threshold (ILD0 ~7 mA) as illustrated in Figs. 3.11. 

Fig. 3.11(a). Ramp profile current modulation on SM-FBG 
sensor 

Fig. 3.11(b). Equivalent wavelength modulation 

The limit in the scanning range is constrained by the maximum tolerable injection current 
to which the DFB-LD can be subjected (~60 mA). The laser employed has a linear wavelength-
current relationship of ~6 pm/mA over the operating current range above threshold. A very low 
scanning frequency of 10 mHz is used so that the approximation of the variation in λLD remains 
linear and can be justified by considering the equivalent optical phase for a slow modulation 
coefficient, δ(t), which takes the form 
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with ΔLG(t) ≈∂LG(t)+δ(t)⋅LFBG which takes into account the modulation coefficient. Here, ∂LG(t) 
represents the temporal fiber elongation, equivalent to the definition in (3.14). For slow 
modulation frequencies and hence small δ(t), the elongation due to induced strains can then be 
approximated as ΔLG(t) ≈∂LG(t). Under dynamic strain loading, λLD is thus considered to be 
scanned linearly to cover both extremities of the moving RFBG. 

The feasibility of this modulation scheme is experimentally proven here. λLD is initially 
positioned at one extremity of RFBG and, using a ramp excitation, swept across 0.28 nm while the 
vibrator amplitude is simultaneously increased beyond the previous strain limit of 130 με 
defined by δλFBG (~0.14 nm) to ~190 με. The experimental signals obtained from the SM-FBG 
sensor for 190 με are illustrated in Fig. 3.12. 

The reference strain gauges output a dynamic strain of εz =190 με while the SM-FBG 
sensor measures an axial strain of ~200 με, a value which is 1.5 times the previous strain that can 
be technically measured using a fixed DFB-LD current scheme. This corresponds to 
approximately 39 fringes with an error measurement of ~5.26%. The low-frequency current 
modulation scheme applied to the interrogating DFB-LD can thus enable the dynamic range to 
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be equivalently extended from δλFBG to δλFBG + ½δλFBG. One limiting point is that the sensor 
resolution attainable via simple fringe-counting is only ~6 με (corresponding to 1 fringe). 
Further, the maximum error of the present sensor system is of identical order due to potential 
fringe identification difficulties. The sensor performance in terms of resolution and precision 
can, however, be further improved by using a more advanced phase demodulation technique for 
SM interferometry [29,30]. 

 
Fig. 3.12. Extending SM-FBG strain sensing to 190 µstrains under modulation scheme 

3.5 4BConclusion and Perspectives 

Exploiting the self-mixing phenomenon for demodulating Bragg wavelength shifts in an 
FBG device under dynamic strain loading can be highly practical in designing a cost-effective 
and uncomplicated fiber-based strain sensor. The fundamental principles behind this 
interrogation technique have been described and include a combination of two individual 
technologies which have, up to this day, only been employed separately. In addition to the 
theoretical description and supporting simulation, we have experimentally demonstrated the 
feasibility of exploiting SM interferometry to interrogate FBGs under dynamic strain-induced 
perturbations. The strain response has been found to be relatively linear in relation to the 
wavelength shift of a uniform FBG under strain loading and its variation is found to be 
proportional to the optical displacement generated due to the grating elongation. This has been 
competently demonstrated by determining the number of sawtooth fringes detected and 
subsequently calculating the elongation of the fiber grating in order to extract the desired strain 
information. Further, comparison with reference strain values measured by a reference deflection 
sensor corroborates the experimental results thus obtained using the proposed technique. 
Although relatively large discrepancies have been encountered at the high strain ranges, the 
current experimental configuration can be further improved by taking into consideration the 
measured precision of the dimensions of the mechanical parameters employed. The current 
resolution achievable is ~8 με although this is in relation to the gauge length employed. 

In order to extend the dynamic strain range, a modulation scheme is applied to the DFB-LD 
current in which its wavelength is swept across the FBG spectrum under dynamic strain loading. 
This ensures that the previously fixed λLD is never out of range of the displacing FBG spectrum 
δλFBG and subsequently allows the measurement range to be extended by ~50%. In addition, we 
also obtained a slightly improved strain resolution (~6 με) which is suitable for most field 
applications. Another significant advantage in the SM interrogation scheme relates to the 
capability of the FBG strain sensor to directly determine directional movement of dynamically-
changing measurands without any ambiguity where the symmetrically-opposed inclination of the 
sawtooth fringes on either half of each period of the measurements corresponds to the 
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tension/compression exerted on the FBG. Therefore, no further processing techniques are 
necessary to extract both the strain information as well as its direction. 

The proof-of-concept from this preliminary work thus provides the basic framework for 
carrying out further investigation into a potentially networked or multiplexed sensor system with 
several FBGs simultaneously interrogated using a single wavelength-modulated laser source and 
incorporating a more robust signal processing scheme to demodulate SM fringes the individual 
FBGs. The principal ambition is not to compete with established techniques (for exmple, Micron 
Optics interrogation boxes for multiple FBG sensors) but to achieve quasi-distributed sensing on 
a smaller network scale (of 5–8 FBGs) for monitoring of small civil infrastructures. In addition, 
the problem of cross-sensitivity to both strains and, in particular, temperature has to be 
addressed. This sensitivity can be a major inconvenience under certain sensing environments 
when more than one parameter is present since the resulting λB shifts are due to their combined 
influences. Ambiguities in the measurement of the desired quantity can then arise rendering the 
process of distinguishing the individual influence from the specific parameter(s) difficult. In 
most occurrences, thermal fluctuations are the major problem during measurements (which can 
arise due to source stability, environmental changes, etc). Therefore, if another physical 
parameter other than temperature is to be monitored, then it is essential to separate the combined 
contributions, which under certain conditions remains almost impossible. Existing techniques 
used to compensate temperature influence involve the use of very costly tunable laser sources, 
multiple overlaid Bragg gratings, reference cavities (which also include Bragg grating-based 
cavities), etc. 

Further, there is also intense interest in long-term monitoring of infrastructures where the 
mechanical or physical deformation can be slowly-varying as well as being subject to thermal 
influences. In this case, the possibility of detecting static strains must also be investigated. One 
potential solution is to further develop the modulation-based SM interrogation scheme to 
compensate for temperature effects with the inclusion of one FBG dedicated to temperature 
measurement. Work is also currently ongoing to exploit "exotic" laser diodes with multiple 
emission wavelengths to interrogate multiple FBG strain sensors for quasi-static strain 
measurements in field applications. 
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Chapter 4 -  Research administration 

4.1 5BIntroduction 

This chapter summarizes the research duties and administrative tasks that I have performed 
throughout the course of my research career, from PhD supervision to the various research 
projects that have been awarded. There is also a brief discussion on the various perspectives 
and/or future work based on my current research activities. Note, however, that this is principally 
a summary of the different potential possibilities that have already been described in the three 
preceding chapters. 

I have also included a selected list of publications in Section 4.5 while Section 4.6 
summarizes my services and duties to the fiber sensing research community. This is followed by 
a short description of my teaching duties at ENSEEIHT-INPT. Last, but not least, I have 
included a curriculum vitae which illustrates succinctly my career path in research. 

4.2 6BPhD and Post-Doctoral Supervision 

I have supervised 2 PhD students both of whom have defended their work back in Dec 
2008. I am currently co-supervising 2 PhD students working on fiber optic sensor projects.  

Siegfried CHICOT is currently pursuing his research on the modeling and characterization 
of photonic crystal fibers for biochemical sensing, a novelty subject within my research group 
since Oct 2012 while Laura LE BARBIER is working on developing a self-mixing based fiber 
sensor for measuring very high-velocity impacts and their effects on material behavior. 

I have equally supervised 4 MSc research students on various optical signal processing and 
fiber sensor projects from 2007–2011. 

Last, but not least, I have also supervised 5 post-doctoral research fellows who have 
worked on various projects on fiber sensor research. These are: 

• Dr Yue WANG (Oct 2005–Jun 2006) 
- current employment: unknown, China 

• Dr Mingyi GAO (Oct 2006–Jun 2007) 
- current employment: Researcher, National Institute of Advanced Industrial Science and 

 Technology, Tsukuba, Ibaraki, Japan 

• Dr Maha SULEIMAN (Mar 2009–Sept 2010) 
- current employment: Research Engineer, National Institute for Intense Magnetic Fields, 

 Toulouse, France 

• Dr Olivier CARRAZ (Mar 2011–Sept 2012) 
- current employment: Researcher, European Space Agency, The Netherlands 

• Dr Laurent BOUYERON (Oct 2012–Sept 2013) 
- current employment: Research Engineer, CODECHAMP, Limoges, France 

1) Saroj PULLTEAP (Nov 2004 – Dec 2008): supervisor 

Title: Development of an extrinsic dual-cavity fiber Fabry-Perot interferometer: Applications to 
periodic and non-periodic vibration measurements 

Summary: This PhD research primary concerns the further development and characterization of 
the already-proven dual-cavity extrinsic fiber Fabry-Perot interferometer for periodic and non-
periodic vibration measurements. Improvements are made to the optical components employed 
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in the device to render it more robust and resistant to polarization-induced fading. The principal 
properties of the interferometer have been determined. A modified fringe-counting technique is 
also developed to increase the performance of the sensor. A λ/64 precision has been obtained 
and the sensor has been successfully tested under various vibration profiles. A further 
characteristic of the uniquely optical dual-cavity nature of the interferometer manifests itself in 
its almost infinite bandwidth, hence allowing very fast phenomenon to be measured. Another 
important work in this PhD research concerns the implementation of a phase-tracking 
demodulation scheme to demodulate the quadrature interference pair into displacement 
information. This scheme enables the precision of the sensor to be further improved, 
subsequently leading to better performance. 

PhD Viva: 11 Dec 2008 

Viva panel: Y. Gourinat (ISAE) 
 K. T. V. Grattan (City University London) 
 C. Boisrobert (Univ. Nantes) 
 J.-C. Mollier (ISAE) 
 M. Cattoen (LAAS–OSE) 
 G. Plantier (ESEO) 
 P. Ferdinand (CEA-Saclay) 
 H. C. Seat (LAAS–OSE) 

*Note that Saroj PULLTEAP is today Assistant to the President of Silpakorn University, 
Thailand 

2) Maha SULEIMAN (Apr 2005 – Dec 2008): co-supervisor with T. Bosch (LAAS-OSE) 

Title: FBG-based dynamic strain sensors demodulated by self-mixing interferometry 

Summary: This PhD research seeks to demonstrate the feasibility of exploiting self-mixing 
interferometry as a novel technique to interrogate fiber Bragg gratings subject to dynamic strain 
loading. During strain loading, the back-reflected Bragg wavelength, λB, is caused to displace as 
a function of the loading strength. By optimally positioning the interrogating laser wavelength 
into the Bragg grating spectrum, the variation of λB is then coherently retro-injected into the laser 
cavity to "interfere" with the existing electric fields. The wavelength-dependent reflectivity from 
the Bragg grating is investigated as the principal coupling effect into the cavity and integrated as 
the basic mechanism of the overall C coupling strength within the cavity fields  This interaction 
leads to the emission of a series of sawtooth-type fringes, which is widely recognized as the 
phenomenon of "self-mixing". Demodulation of the detected fringes by simple fringe or phase 
demodulation then enables the desired parameter to be extracted. Although the initial detection 
scheme based on a fixed laser wavelength leads to a limited dynamic strain range corresponding 
to the spectrum width of the FBG, preliminary work has been explored in this thesis on 
improving this measurement range by scanning the interrogating wavelength across and beyond 
the FBG spectrum. An improvement of at least 50% has been demonstrated. 

PhD Viva: 11 Dec 2008 

Viva panel: C. Boisrobert (Univ. Nantes) 
 N. Butterlin (ISIFC) 
 D. Leduc (Univ. Nantes) 
 C. Fontaine (LAAS) 
 P. Ferdinand (CEA-Saclay) 
 J.-C. Mollier (ISAE) 
 T. Bosch (LAAS–OSE) 
 H. C. Seat (LAAS–OSE) 
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3) Siegfried CHICOT (Oct 2012 –): co-supervisor with M. Cattoen & O. Bernal (LAAS-OSE) 

Title: Analysis, modeling and characterization of photonic crystal fibers for fiber optic sensing 
applications 

Summary: This PhD research is principally geared towards the study and modeling of photonic 
crystal fibers (PCFs) via finite element or effective index methods in order to analyze and 
characterize specific properties which can contribute to validating the proposed theoretical 
model. The outcome of these preliminary studies will be exploited in the development of fiber 
sensors based on PCFs for applications in biochemistry in the medical domain, for example, for 
the detection of cancerous protein molecules via chirality measurement. Although PCFs were 
initially designed for fiber optic telecommunications due to their endlessly single mode behavior, 
dispersion compensation ability, very high power density threshold, etc, they are increasingly 
being exploited for metrological applications where the presence of air-holes render these 
devices particularly advantageous such as their potential insensitivity to temperature variations. 
A series of experiments will also be carried out to validate the proof-of-concept of the studied 
technique. 

PhD Viva: Expected end 2015 

Viva panel: NA 

4) Laura LE BARBIER (Dec 2012 –): co-supervisor with T. Bosch (LAAS-OSE) & J. Luc 
(CEA-Gramat) 

Title: Development of an optoelectronic interferometric sensor for the study of material 
dynamics via velocity measurements 

Summary: The research work consist of developing a novel bulk or fiber optical interferometer 
to measure the velocity of materials subjected to shocks (plane shock, isentropic compression, 
etc) in the mm/s to 10 km/s range. The interferometer will be employed in 2D measurements of 
velocity profiles with sufficient spatial and temporal resolution to understand the various 
phenomena under investigation. The principle objective is to obtain and correlate the 
experimental characteristics to optimize numerical simulation codes currently employed in 
material dynamics studies. Spectrograms obtained using time-frequency analysis of interference 
signals will also be investigated to quantify any eventual ejectas (particles) from the resulting 
shocks in order to reverse-calculate the original particle characteristics. An experimental test 
bench will be setup to achieve theses objectives. 

PhD Viva: Expected end 2015 

Viva panel: NA 

4.3 7BResearch Projects and Collaborations 

This section lists the research projects in which I have participated, essentially as Principal 
Investigator (PI). They are listed chronologically without any distinction on the type of projects. 

UInternational, National and Regional Projects 

1. In-situ cure monitoring and post-cure characterisation of advanced fibre-reinforced 
composite materials with optical and fibre sensors 

Objective: Design and development of fiber optic sensors for characterization of 
nanoparticle reinforced composite panels during synthesis and post-fabrication. 

International MERLION program funded by French Ministry of Foreign Affairs (2007–2008) 
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Collaboration: LAAS-OSE – IMRE (Institute of Materials Research and Engineering, 
 Singapore) 

Capacity: PI 
Funding budget: 30k€ 

2. Laser INterferometry for Earth Strain (LINES): Development of fiber interferometric 
sensors for geophysics applications 

Objective:  Design and development of high-resolution high-precision extrinsic fiber Fabry-
Perot interferometer for remote sensing (baseline 120–3000 m) in geophysics: 
long baseline inclinometry, pendulum-based tiltmetry and seismometry for 
natural risk assessment. 

French National Research Agency (ANR) Natural Risks program (2008–2012) 
Collaboration: LAAS-OSE – Institut de Physique du Globe de Paris (IPGP) – Géosciences 

 Montpellier (GM) – Ecole Supérieure d'Electronique de l'Ouest ESEO Angers – Géosciences 
 Azur and 2 industrial partners in support (Total & Schlumberger) 

Capacity: PI for LAAS-OSE 
Funding budget: 550k€ 

3. Microlaboratoires d’Analyses In Situ pour des Observatoires 
Environnementaux (MAISOE): Development of a fiber optic micro-system for in-situ 
detection of methane in hydrothermal fluids 

Objective:  Design and development of fiber optic sensors for undersea detection of 
dissolved methane gas under the "long-term development" program. 

French Regional RTRA STAE Research program (2009–2013) 
Collaboration: LAAS-OSE – LCA – LAAS – CIRIMAT – LEGOS – LGC – GET 
Capacity: PI for LAAS-OSE 
Funding budget: 1.2M€ 

4. Feasibility studies of a fiber optic gravimetric wave detector 
Objective: Feasibility studies of exploiting a laser diode-based fiber Fabry-Perot 

interferometric sensor to develop a novel gravimeter wave detector with 10 
µGal precision 

Geophysics research project funded by CNRS INSU (2013–2014) 
Collaboration: LAAS-OSE – GM 
Capacity: member 
Funding budget: 7k€ 

5. Development of a prototype HLS-LINES for accelerator alignment at the CERN 
Objective:  Development of Long Baseline Inclinometer from LINES project for 

compensation of earth tilt in accelerator alignment at CERN 

Development project funded by SATT TTT (2014–) 
Collaboration: LAAS-OSE – GM – CERN – SATT TTT – SATT AxLR 
Capacity: PI 
Funding budget: ~100k€ 

6. PROfiling METHane Emission in the Baltic sea: Cryptophane as in-sitU chemical 
Sensor 
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Objectives:  PROMETHEUS seeks to further develop the fiber optic-based refractometer for 
dissolved methane detection in subsea zones by improving the current sensor 
architecture and reinforcing its robustness together with better design of 
molecular receptors for methane capture. The final ambition of this project is 
the deployment of a functioning prototype fiber-based CH4 sensor to the Institut 
Océanographique de Warnemünde (IOW)-managed GODESS oceanic platform 
in the Baltic Sea, Germany. 

French National Research Agency (ANR) International program (2014–2017) 
Collaboration: GET OMP – LAAS-OSE – LC ENS Lyon – IOW 
Capacity: PI for LAAS-OSE Group 
Funding budget: 272k€ 
 

ULocal BQR projects 

7. Intelligent signal processing for an embedded system for vibrational analysis by fiber 
optic interferometry 

Objective: Development of signal processing scheme for dual-cavity extrinsic fiber Fabry-
Perot interferometric sensor with applications to vibration analysis. 

Local BQR program funded by INPT (2006–2007) 
Collaboration: LAAS-OSE– IRIT – LAAS-DISCO 
Capacity: PI 
Funding budget: 26k€ 

8. Development of an embedded micro-system exploiting fiber Bragg grating sensors for 
the characterization of composite materials, quality control and intelligent signal 
processing of fiber Bragg gratings 

Objectives: Design and development of embedded fiber Bragg grating strain sensors for 
characterizing composite materials during fabrication, development of 
interrogation and demodulation scheme for fiber Bragg gratings under dynamic 
strain loading. 

2 Local BQR programs funded by INPT (2007–2009) 
Collaboration: LAAS-OSE– LAAS-DISCO – IRIT 
Capacity: PI 
Funding budget: 31k€ 

9. Development of novelty FBG-based sensors and novelty interrogation techniques quasi-
static and dynamic strain detection in structural monitoring of civil infrastructures and 
advanced composite materials 

Objective: Development of novel interrogation technique based on bi and tri-mode lasers for 
fiber Bragg grating strain sensors with applications to structural health monitoring 
of small civil infrastructures 

2 Local BQR International Mobility programs funded by INPT (2010–2011) 
Collaboration: LAAS-OSE – ISRC (Instrumentation and Sensors Research Center, City 

 University London, UK) 
Capacity: PI 
Funding budget: 3.1k€ 

10. Simulation and model optimization and experimental validation of optical and hyper-
frequency waveguides 
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Objective: Conception of mathematical model for behavioral modeling of photonic crystal 
fibers for optical metrology in biochemical environments 

Local BQR program funded by INPT (2013–2014) 
Collaboration: LAAS-OSE – LAPLACE-GRE – IMT  
Capacity: responsible for photonic crystal fibers 
Funding budget: 16k€ 

4.4 8BGeneral Perspectives and Future Work 

As described in Chapter 2, two variants of the EFFPI sensor have been developed for 
vibration and displacement measurements. 

The polarization-based dual-cavity EFFPI possesses a potentially very large bandwidth and 
is thus highly suitable for very fast displacement measurements since no modulation scheme is 
involved. By exploiting the modified fringe-counting demodulation technique, the interferometer 
has also been demonstrated to be sufficiently robust for tracking displacements of various 
profiles. The sensor's minimum detectable displacement, on the other hand, is ultimately limited, 
intrinsically, to only λ/2.  

The dual-cavity EFFPI sensor is currently being adapted for gravitational wave 
measurements with the aim of tracking the free-fall of a mass released from a pre-determined 
height to calculate the gravity profile. The attractiveness of such a system lies in the simplicity 
and geometrical flexibility of an LD-illuminated fiber sensor with interferometric precision. The 
fiber sensor is to be integrated into a vacuum filled free-fall drop mechanical set-up which will 
also incorporate a seismometer for parasitic vibration compensation of the natural ground 
movement. In comparison with a conventional absolute gravitational wave detector which 
requires very stringent alignment procedures, implicating a long preparation time, the EFFPI 
sensor system can be rapidly set-up. More importantly, remote measurements can be achieved, 
allowing the fiber-based gravitational wave detector to be deployed to isolated and hostile sites. 
Amongst the applications targeted, the device is principally designed for monitoring volcanic 
activities before eruption as well as in geodesic measurements for tracking water reserves which 
are becoming a scarce commodity. Another perspective is in the petrochemical sector for 
monitoring oil wells as well as prospection in remote zones where these devices can be installed 
in networks. The EFFPI sensor is undergoing initial testing in feasibility studies for gravitational 
wave detection in collaboration with colleagues from Géosciences Montpellier (supported by a 
CNRS INSU grant). 

Although, the modulation-based EFFPI has been specifically designed for applications in 
geophysics, its application field is, nonetheless, wide-ranging. As a metrological tool, the EFFPI 
sensor is robust and exhibits performance suitable for industrial measurements of thickness 
variation in semiconductor wafers during production. We are currently in negotiation with 
FOGALE for a technology transfer scheme in this application field. We are also in talks with ISP 
System for an eventual technology transfer of the sensor as a high-precision metrological tool. In 
geophysics, the ILB-LINES system is undergoing development into a pre-industrial product with 
the support of SATT TTT (Société d'Accélération du Transfert de Technologies Toulouse Tech 
Transfer). The prototype sensor will be evaluated by the CERN in field trials before being 
exploited for precise alignment of its particle accelerators for nuclear research in a radioactive 
environment. Again, the advantage of remote sensing is cited here as a major advantage where 
the sensor electronics can be installed in an isolated and protected area. Further, another ILB-
LINES system will be developed to cater to needs in the petrochemical industry for oil well and 
underground gas storage monitoring, in collaboration with TIGF (Transport Infrastructures Gaz 
France) 
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The IF-LINES system (borehole tiltmeter) is currently on standby for a technology transfer 
program to Pinnacle, Inc, a subsidiary of Haliburton due to its novelty design and performance 
achieved by interferometric precision with fiber optic sensor probes. 

SISMO-LINES, the fiber-based seismometer, is currently under development into a 3-axis 
seismometer system for subsea applications in both geophysics research and petrol exploration 
(supported by another CNRS INSU grant). One perspective of the modulation-based EFFPI 
sensor is to implement autonomous operation capability in the current system for deployment to 
remote terrains without any power supply. One of the development paths under consideration is 
integrating 12 or 24 V power supplies typically provided by batteries and/or solar cells for fully 
autonomous operation in remote zones (for example the Chilean and sub-Saharan deserts, 
offshore sites and oil fields). 

Another constraint of the current sensor is in its relative displacement measurement 
capacity. Hence, when the system is disrupted due to power cut-off, difficulty will arise in 
assessing the previous position of the measurement before power failure. The measurements will 
thus have to recommence from zero. A potential perspective would be to orientate the 
modulation-based EFFPI sensor for absolute measurements (i.e. distance). A means to the 
evolution towards absolute sensing would be by exploiting the synthetic wavelength generated 
during the modulation scheme to achieve distance measurement capability. In this case, the 
interrogating wavelength will have to be guaranteed to the fm (femtometer) order and a very 
high stability will have to be ensured for long-term sensor operation. Work is currently under 
way to assess the feasibility of an absolute system without incurring heavy expenses. A further 
perspective is to implement the above instruments in a sensor network which can then provide 
large geographical coverage for natural risk monitoring of earthquakes, volcanic eruptions, etc. 

The proof-of-concept in exploiting self-mixing interferometry for interrogating FBGs 
under mechanical loading for strain sensing has been amply demonstrated in Chapter 3. Further, 
the dynamic strain range can be extended by more than 50% by using low-frequency modulation 
of the DFB-LD current to sweep the interrogating wavelength across the FBG spectrum under 
dynamic strain loading. Hence, λLD is never out of range of the displacing FBG spectrum δλFBG. 
Also, a strain resolution of ~6 με is obtained which is suitable for most field applications. 

A future challenge is to develop a multiplexed sensor system for interrogating multiple 
FBGs with a single wavelength-modulated laser source. The fringe counting technique used in 
processing the detected SM fringes limits the precision of the current system and has to be 
replaced by a more robust signal processing scheme to dedicated to demodulating the individual 
FBGs via the detected phase variation. In addition, FBGs are sensitive to both strains and, in 
particular, temperature. This cross-sensitivity is a major inconvenience that has to be 
compensated/eliminated to distinguish the influencing physical parameters so that true 
measurements (strains) can be accurately carried out. One perspective is to extend the scanning 
of the interrogating wavelength so that 2 or more FBGs can be monitored. This will involve the 
use of DBR-based lasers which can afford a larger wavelength excursion compared to the DFB-
LD currently used. Hence, if one FBG is under uniquely thermal influence while the rest subject 
to both influences, then temperature effects can be compensated. Work is also currently ongoing 
to exploit "exotic" laser diodes with multiple emission wavelengths to interrogate multiple FBG 
strain sensors for quasi-static strain measurements in field applications. 

Another long term perspective is the development of metrological systems based on 
photonic crystal fibers (PCFs). Particular emphasis will be placed on biochemical and gas 
sensing applications in the biopharmaceutical and environmental domains. The ultimate ambition 
of this PhD project is to develop a prototype PCF-based gas and biochemical sensor for in-situ 
measurements. 
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PCFs, also commonly known as microstructured, holey or photonic bandgap fibers, can be 
classed into solid-core PCFs, where waveguiding is via modified total internal reflection (similar 
to conventional fibers) due to a periodic modulation of the refractive index (RI) in the cladding 
region and hollow-core PCFs where light is guided along the length of the air hole by the 
photonic bandgap effect, which will only allow certain modes within a spectral bandwidth to be 
propagated. Another property of prominence in index-guided PCFs is their endlessly single-
mode propagation characteristics. The RI in PCFs is represented by an effective index ncleff(λ) 
due to the air hole-silica geometry and can be configured for a specific band of wavelengths 
since ncleff is wavelength dependent. Initial work will essentially concentrate on analyzing the 
evanescent wave penetration depths into the transverse fiber structure since the propagation of 
evanescent fields is, in turn, strongly dependent on ncleff(λ) in the cladding. This research is thus 
concerned with designing PCFs to exhibit strong leakage of the evanescent fields in the presence 
of RI variation, together with identifying ways to enhance their sensitivity to biochemical 
agents/molecules and gases in the context of the ANR PROMETHEUS project on the detection 
of dissolved methane gases in aqueous environments. 

Another set of optical properties achievable in PCFs concern their polarization state 
conservation and extremely high birefringence, which is of the order of 0.001 to 0.01 (>102 times 
higher than in standard optical fibers). Consequently, these specifically-designed PCFs can allow 
the propagation of single-mode lightwave without altering the original polarization state. Hence, 
due to this polarization "passivity", the PCF can be used to transmit, without polarization 
transformation, any eventual shift in the polarization state of the reflected lightwave which 
comes into contact with certain biomolecules. This is particularly applicable to enantiomers 
which are mirror images of the same molecule presenting a specific optical rotation with respect 
to its dipole orientation. The chiral nature of certain molecules can be of critical importance 
since, in general, only one enantiomer is biologically safe and beneficial in the synthesis of 
medical drugs. The mirror-image twin, on the other hand, which has opposite chirality, can be 
potentially harmful. Thus probing molecular chirality can have a serious implication in the 
pharmaceutical industry. The role of PCF-based chiral sensors can thus be advantageous since 
they can be exploited for analyzing small sample volumes of the analytes in-situ during 
production. 

4.5 9BPublications 

4.5.1 34BPatent Application 

[1] "Dispositif à fibre optique extrinsèque pour la mesure d'un paramètre physique", M. Cattoën & H. C. Seat, 
FR10 56230, 28/07/2010 (patent pending) 

 UPatent Family (27/07/2011) 

 US 13/810, 453 (patent pending) 

 EP 11738699.5 (patent pending) 

 JP PCT/EP2011/062890 (patent pending) 

4.5.2 35BJournal Papers 

[1] J. H. Sharp, C. W. P. Shi & H. C. Seat, Er-doped sapphire fibre temperature sensors using upconversion 
emission, Measurement + Control, vol. 34, no. 6, pp. 170-171, 2001 

[2] H. C. Seat, J. H. Sharp, Z. Y. Zhang & K. T. V. Grattan, Single-crystal ruby fiber temperature sensor, Sensors 
Actuators A, vol. 101, pp. 24-29, 2002 

[3] H. C. Seat & J. H. Sharp, Er3++Yb3+-codoped Al2O3 crystal fibres for high temperature sensing, Meas. Sci. 
Technol., vol. 14, pp. 279-285, 2003 
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[4] H. C. Seat, E. Ouisse, E. Morteau & V. Métivier, Vibration-displacement measurements based on a 
polarimetric extrinsic fibre Fabry-Pérot interferometer, Meas. Sci. Technol., vol. 14, pp. 710-716, 2003 

[5] H. C. Seat,  A pseudo-dual cavity extrinsic fibre Fabry-Pérot interferometric vibrometer, Sensors Actuators A, 
vol. 110, no. 1-3, pp. 52-60, 2004 

[6] H. C. Seat & J. H. Sharp, Dedicated temperature sensing with c-axis oriented single-crystal ruby (Cr3+:Al2O3) 
fibers : Temperature and strain dependences of R-line fluorescence, Special Joint Issue IEEE Trans. on 
Instrum. Measure. & J. of Lightwave Technol., 53, no. 1, pp. 140-154, 2004 

[7] J. H. Sharp, C. W. P. Shi, I. A. Watson & H. C. Seat, Production and applications of single crystal optical 
fibres, Asian J. Phys., vol. 15, no. 3, pp. 233-242, 2006 

[8] US. PullteapU, H.C. Seat & T. Bosch, Modified fringe counting technique applied to a dual-cavity fiber Fabry-
Perot vibrometer, Opt. Eng., vol. 46, n°11, pp 115603/1-8, 2007 

[9] UM. Suleiman U, H.C. Seat & T. Bosch, Interrogation of fiber Bragg grating dynamic strain sensors by self-
mixing interferometry, IEEE Sensors J., vol. 8, n°7, pp 1317-1323, 2008 

[10] W. Khunsin, A. Amann, G. Kocher-Oberlehner, S. G. Romanov, US. Pullteap U, H. C. Seat, E. P. O'Reilly, R. 
Zentel and C. M. Sotomayor Torres, Noise-assisted crystallization of opal films, Adv. Funct. Mater., vol. 22, 
pp. 1812-1821, 2012 (DOI: 10 1002/adfm.201102605) 

[11] P. Chawah, A. Sourice, G. Plantier, H. C. Seat, F. Boudin, J. Chéry, M. Cattoen, P. Bernard, C. Brunet, S. 
Gaffet, and D. Boyer, Amplitude and phase drift correction of EFPI sensor systems using both adaptive 
Kalman filter and temperature compensation for nanometric displacement estimation, J. Lightwave Technol., 
vol. 30, no. 13, pp. 2195-2202, 2012 

[12] H. C. Seat, P. Chawah, M. Cattoen, A. Sourice, G. Plantier, F. Boudin, J. Chéry, C. Brunet, P. Bernard and 
UM. Suleiman U, Dual-modulation fiber Fabry-Perot interferometer with double reflection for slowly-varying 
displacements, Opt. Lett., vol. 37, no. 14, pp. 2886-2888, 2012 

4.5.3 36BConference Papers (Selected) 

[1] H. C. Seat & J. H. Sharp, Single-crystal fibres for sensor applications in: In-Fibre Bragg Gratings and 
Special Fibres, Half-Day Meeting of the Optical Group of the Institute of Physics (Invited), London (G. B.), 
3, 12 May 1999 

[2] J. H. Sharp, H. C. Seat, Z. Y. Zhang & K. T. V. Grattan, Single-Crystal Ruby Fibres for Fluorescence-Based 
Temperature Sensing, Sensors and their Applications X, N. M. White and A. T. Agousti (Eds.), IOP 
Publishing, ISBN 0-7503-0662-9, 219, Cardiff (UK), 5-8 Sept 1999 

[3] J. H. Sharp & H. C. Seat, Temperature and strain characteristics of ruby fibre fluorescence emission, OFS14, 
Venice (Italy)  Proc. SPIE, vol. 4185, p. 54, 11-13 Oct 2000 

[4] H. C. Seat, UE. OuisseU, V. Métivier & E. Morteau, Demonstration of a dual-cavity extrinsic fibre Fabry-Pérot 
interferometer for vibration-displacement measurements, 5th Int'l Conf. on Vibration Measurements by Laser 
Techniques, Ancona (Italy), Proc. SPIE, vol. 4827, p. 298, 5-6 Nov 2002 

[5] H. C. Seat & J. H. Sharp, Er3++Yb3+-codoped Al2O3 crystal fibres for high temperature sensing, 16th Europ. 
Conf. on Solid-State Transducers, Prague (Czech Rep.), Proc. Eurosensors XVI, vol. 2 (TP38), p. 661, 15-18 
Sept 2002 

[6] V. Métivier, E. Morteau, UE. OuisseU & H. C. Seat, Dual-cavity extrinsic fibre Fabry-Pérot interferometer for 
vibration-displacement measurements, 16th Europ. Conf. on Solid-State Transducers, Prague (Czech Rep.), 
Proc. Eurosensors XVI, vol. 1 (M3A3), p. 383, 15-18 Sept 2002 

[7] H. C. Seat, A non-ambiguous fibre-based vibrometer with potential polarisation-induced fading 
compensation, 4th Top. Meet. on Optoelectronic Distance/Displacement Measurement and Applications, Oulu 
(Finland), Proc. ODIMAP IV, pp. 54-59, 16-18 Jun 2004 

[8] H. C. Seat, An extrinsic fibre optic interferometer with possible signal fading compensation for vibrometric 
applications, IEEE Instrumen. Measure. Technol. Conf., Proc IMTC 2005, vol. 3, pp. 2236-2241, Ottawa 
(Canada), 16-19 May 2005 

[9] H. C. Seat, UY. WangU, T. Bosch & W. Hu, Self-mixing-based demodulation technique for dynamic fiber Bragg 
grating strain sensors, IEEE Instrument. Measure. Technol. Conf. 2006, Proc. IEEE IMTC 2006,, pp. 1-5 , 
Sorrento (Italy), 24-27 Apr 2006 
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[10] US. PullteapU, H.C. Seat & T. Bosch, Reflectance characterisation of a fibre optic interferometer for 
displacement determination in vibration analysis, 5th Top. Meet. on Optoelectronic Distance/Displacement 
Measurement and Applications, Proc. ODIMAP V, pp. 27-32, Madrid (Spain), 2-4 Oct 2006 

[11] US. PullteapU, H.C. Seat & T. Bosch, Temperature and distance dependant errors in a dual cavity fibre Fabry-
Perot interferometer for vibration analysis, IEEE Instrumen. Measure. Technol. Conf. 2007, Proc. IEEE 
IMTC 2007, pp. 1-6, Warsaw (Poland), 1-3 May 2007 

[12] H.C. Seat & US. PullteapU, An extrinsic fiber Fabry-Perot interferometer for dynamic displacement 
measurement, IEEE Int'l Conf. on Mechatronics and Automation 2007, Proc. IEEE ICMA 2007, pp. 3027-
3032, Harbin (China), 5-8 Aug 2007 

[13] H. C. Seat, UM. Suleiman U & T. Bosch, Demodulation of fiber Bragg grating wavelength shifts by optical 
feedback interferometry, Adv. Laser Techniques, Proc. SPIE, vol. 7022, 70220F (published June 2008), DOI 
10.1117/12.803923, Levi (Finland), 3-7 Sept 2007 

[14] US. PullteapU & H. C. Seat, Dynamic displacement measurements with a dual-cavity fiber Fabry-Perot 
interferometer, Int'l Workshop and Conf. on Photonics and Nanotechnology, Proc. SPIE, vol. 6793, 67930A 
(published Mar 2008), DOI 10.1117/12.798958, Pattaya (Thailand), 16-18 Dec 2007 (awarded Third Prize for 
Oral Presentation) 

[15] UM. Suleiman U, H.C. Seat & T. Bosch,  Remote fiber Bragg grating strain sensing by self-mixing 
interferometry, 3rd Int'l Conf. on Information and Communication Technologies: From Theory to 
Applications, Proc. IEEE ICTTA 2008, pp. 1-6, Damascus (Syria), 7-11 Apr 2008 

[16] US. PullteapU, H.C. Seat, M. Cattoen, P. Bernard, J.-C. Lépine, F. Boudin, J. Chéry & T. Bosch, A phase-
tracking fiber interferometer for seismologic applications, IEEE Sensors 2008 Conference,  Proc. of the 7th 
IEEE Conference on Sensors, Lecce (Italie), pp.938-941, 26-29 Oct 2008 

[17] UM. Suleiman U, H. C. Seat & T. Bosch, FBG-based dynamic strain sensors demodulated by self-mixing 
interferometry: Improving strain measurement resolution, IEEE Instrum. and Measure. Technol. Conf. 2009, 
Proc. IEEE IMTC 2009, pp. 332-336, Singapore (Singapore), 5-7 May 2009 

[18] T. B. Pham, H. C. Seat, O. Bernal & UM. SuleimanU, A novel FBG interrogation method for potential structural 
health monitoring applications (Invited Special Session), IEEE Sensors Conf. 2011, Proc. IEEE Sensors 
2011, pp. 1341-1344, Limerick (Ireland), 28-31 Oct 2011 (sponsored by EU COST TD1001 program) 

[19] J. Chery, F. Boudin, M. Cattoen, H. C. Seat, UM. Suleiman U, P. Chawah, G. Plantier, A. Sourice, P. Bernard, C. 
Brunet, S. Gaffet, D. Boyer, High resolution tiltmeters and strainmeters based on exttrinsic fiber Fabry-Perot 
interferometry: the LINES project, AGU Fall Meeting, San Francisco (USA), 5-9 Dec 2011 

[20] C. Boulart, UO. CarrazU, H. C. Seat, V. Chavagnac, Tracking methane in the deep sea: A new in situ chemical 
sensor for deep sea hydrothermal vent exploration, Deep-Sea and Sub-Seafloor Frontier Conference, 
Barcelona (Spain), 11-14 Mar 2012 

[21] J. Chery, F. Boudin, M. Cattoen, H. C. Seat, P. Chawah, G. Plantier, A. Sourice, P. Bernard, C. Brunet, S. 
Gaffet, D. Boyer, A new class of tiltmeters and seismometers based on optic fiber Fabry-Pérot 
interferometry: results and use for active tectonics, WEGENER 2012, Strasbourg (France), 17-20 Sept 2012 

[22] S. Aouba, C. Boulart, UO. CarrazU, Ph. Arguel, M. Aufray, Ph. Behra, O. Bernal, A. Castillo, M. Cattoen, V. 
Chavagnac, B. Dubreuil, J. –P. Dutasta, F. Lozes, P. Gisquet, H. C. Seat, Emerging technologies for in-situ 
dissolved methane measurements, Gordon-like Conference, Anglet (France), 23-28 Sept 2012 

[23] J. Chery, F. Boudin, H. C. Seat, M. Cattoen, P. Chawah, G. Plantier, A. Sourice, P. Bernard, C. Brunet, S. 
Gaffet, D. Boyer, Detecting Aseismic Transient Motion on Faults Using New Optical Tiltmeters and 
Seismometers, AGU Fall Meeting San Francisco (USA), 3-7 Dec 2012 

[24] T. B. Pham, O. Bernal, H. C. Seat, F. Surre & T. Bosch, Self-mixing sensing under strong feedback using 
multimode semiconductor lasers, ThF3-2, CLEO Pacific Rim, Kyto (Japan), 21-23 Jul 2013 

[25] UL. Le BarbierU, J. Luc, H. C. Seat, T. Bosch, Etude du principe de la rétro-injection optique pour la mesure de 
hautes vitesses en dynamique des matériaux, 13th CMOI 2013, Orléans (France), 18-22 Nov 2013 

[26] UL. BouyeronU, A. Lefrançois, J. Luc, H. C. Seat, Modélisation du comportement dynamique d'un capteur à 
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4.5.4 37BInvited Seminars & Miscellaneous 

[1] "Capteurs à Fibres Optiques", "Microlaboratoires d’analyses in situ pour des observatoires 
environnementaux" Workshop, Boussens, France (22-23 Apr 2008) 

[2] Fiber interferometers for seismology and fiber Bragg grating sensors demodulated by optical retro-injection, 
Institute of Materials Research & Engineering (IMRE), Singapore (05 Feb 2009) 

[3] Fiber optic sensors for geophysics and strain measurements, 4th Technical Meeting, COST ACTION 
TD1001, Aston University, United Kingdom, 3-4 May 2012 

[4] "Les espions qui écoutaient la fibre optique", Sciences et Avenir Magazine, pp. 82-84, April 2014 

4.6 10BAdministrative Duties and Service to the Community 

One of my fundamental research duties include reviewing for various journals on fiber 
optic and optical sensors: 

- IEEE J. Quant. Electron. 
- IEEE I&M Magazine 
- IEEE Trans. Instrum. Measurement 
- IEEE Sensors J. 
- Sensors & Actuators A 
- J. Lightwave Technol. 
- Opt. Laser Eng. 
- Opt. Eng. 
- Meas. Sci. and Technol. 
- J. Opt. A 

I have been Scientific Assessor for the Belgian ARC Project proposal entitled "Optical-
fibre-based vibration Sensors for Industrial Measurement and Biomedical Applications 
(SIMBA)". I have been on the PhD Viva panel of Dr Patrick CHAWAH as well as being member 
of the DRT Viva panel of Mr Nicolas PERAUD. I am currently a serving member of the 
ENSEEIHT-INPT evaluation panel for the recruitment of Assist. Profs. under the 61/63 Section. 

I am also currently serving on the Technical Committee board of the IEEE International 
Conference on Photonics and the IEEE International Conference on Sensing Technology. 

I also participate in the COST Action TD1001 program for "Novel & Reliable Optical 
Fibre Sensor Systems for Future Security & Safety Applications" as substitute member 
representing France. Further, in collaboration with Dr F. SURRE of City University, I am 
organizing the Final Technical Meeting of COST TD1001 in conjunction with a Workshop on 
fiber optic sensors for safety and security in autumn 2014. 

4.7 11BTeaching Duties 

Since my appointment to ENSEEIHT-INPT, I have been involved in teaching various 
subjects with a total number of teaching hours varying from 200 – 250 hrs per year. Below is a 
list of subjects I teach, including lectures, tutorials and laboratory classes within the Electronics 
Department: 

• Optoelectronics: ENSEEIHT & Masters Programs 

 - practical laboratory class for 2nd Yr students 
 - design of fiber optic experiments for 2nd Yr students (chromatic dispersion, optical losses 

 in fibers, fiber optic Michelson interferometer): I have been in charge of the 
 Optoelectronics Laboratory class for 2nd Yr students 

 - lectures for MNS Masters students (Photonic Systems) 
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 - lectures for MEMO Masters students (Photodetection) 
 - lectures for M2 ICES Masters students (principles of optics and fiber optic sensors) 
 - design of laboratory work for M2 ICES 

• Analog Electronics: ENSEEIHT 

 - tutorial class in linear electronics for 1st Yr students 

• Digital Electronics: ENSEEIHT  

 - practical laboratory class for 1st Yr students 
 - principles of digital electronics and components, conception of digital circuits 
 - design and validation of digital circuits with VHDL 

• VHDL Digital Electronics Design: ENSEEIHT  

 - practical laboratory class for 2nd Yr students 
 - synthesis and modeling of digital components with VHDL  

• Object-Oriented Programming with MS Visual C++: ENSEEIHT  

 - practical laboratory class for 2nd Yr students 
 - numerical analysis of 1st and 2nd order electronic circuits with objected oriented C++ 

• Supervision of 2nd and 3rd (final) year projects: ENSEEIHT  

 - association of student projects to on going research activites on fiber optic sensors: design 
 and modeling of fiber optic refractometer and EFFPI sensor 

4.8 12BCurriculum Vitae 

48BHan Cheng SEAT  

5 rue Daniel Sorano 
31100 Toulouse 
France 
Tel   : +33.(0)5.34.32.25.61 (work) 
Fax  : +33.(0)5.34.32.25.68 (work) 
Email: HUseat@enseeiht.frUH (work) 

Nationality : Singapore Citizen 
Date of Birth : 5th June 1972 
Residency Status : French Permanent Resident  
 
*Note : Free from further military obligations 
(Military service completed : 2 ½ yrs) 

EMPLOYMENT & WORK EXPERIENCES 
09/2003– Assistant Professor (Faculty Position) 

Optoelectronics for Embedded Systems Group of the Laboratory for Analysis and 
Architecture of Systems (LAAS-OSE), ENSEEIHT–INPT, France 

UResearch 
• Supervision of 1 PhD student and co-supervision of 3PhD students (2004–) 
• Supervision of 5 Post-Doctoral Fellows (2005–2013) 
• Supervision of 4 MSc students (signal processing and fiber optic sensors; (2007–2011) 
• R & D in high-precision, high-resolution fiber optic interferometric techniques 
• PI in MERLION Project, ANR LINES and PROMETHEUS Projects and Regional MAISOE Project 
UTeaching 
• Lectures: optoelectronics , fiber optic sensors at MEng level 
• Tutorials & demonstration labs:  analogue and digital electronics, C++ object-oriented programming, 

VHDL project, semiconductor physics, fiber optic sensors at MEng level 
• Total teaching volume 200–250  hrs/yr 

09/2002–08/2003  Research Engineer 
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 Détecteurs Group, Laboratoire SUBATECH, Ecole des Mines de Nantes (EMN), 
France 

• Design of fiber sensor system for high-energy particle detection (x and soft-γ rays) based on 
scintillating crystals and crystal fibers (collaboration with LOSEC, Glasgow University) 

• R & D in fiber optic interferometric sensors for precision mechatronics 
• Co-supervision of 1 PhD student 

10/2001–08/2002  Post-Doctoral Research Fellow 
 Instrumentation et Capteurs Group, EMN, France 

• Lead R&D in fiber optic interferometric sensors 
• Design of dual-cavity extrinsic fiber Fabry-Perot interferometric (EFFPI) sensor 
• Supervision of 2nd Yr group projects (fiber optic sensing), management of project resources and 

security measures 
• Co-supervision of 1 PhD student 

10/1997–05/2001  PhD Student 
 Laser and Optical Systems Engineering Centre, Glasgow University, UK 

• Fabrication of doped and undoped single-crystal fibers by laser-heated pedestal growth (LHPG) 
• Characterization of crystal fibers for sensing applications in extreme environments 
• Design of thermometric, strain and bend crystal fiber sensing systems 
• Co-supervision of Final Year Undergraduate Projects (BEng. Hon.) + 1 PhD 
• First reported growth of rare-earth doped sapphire crystal fibers by LHPG technique 

UTeaching 
• 2nd and 3rd Yr Dynamics laboratory (software packages: DADS et IDEAS) 
• 3rd Yr LabVIEW Instrumentation laboratory 
• Tutorial classes for 1st and 2nd Yr Thermodynamics 

EDUCATION AND QUALIFICATION 
10/1997–06/2001 PhD in Eng. (pass without correctionsF

1
F) – University of Glasgow (UK), Laser 

and Optical Systems Engineering Centre (LOSEC) 

UTitleU : “Growth and Characterisation of Single-Crystal Fibres for Sensing 
Applications” 

10/1994–07/1996 B.Eng in Mech. Eng. (1st Class Honours) – University of Glasgow (UK) 
 Final Year Project : "Laser Welding of Magnetic Materials" (see 

AWARDS/GRANTS) 

07/1989–05/1992  Diploma in Mech. Eng. – Singapore Polytechnic 

AWARDS & GRANTS 
10/2013 NOVELA Toulouse for Innovation (on modulation-based EFFPI sensor) 

10/2012 Laurier INPT for Patent Application on modulation-based EFFPI sensor 

10/2001 - 08/2002 Post-Doctoral Research Scholarship, "Région des Pays de la Loire", FR 

10/1997 - 09/2000 Overseas Research Scholarship (ORS) Award, Committee of Vice Chancellor 
and Principals (CVCP), UK 

1019/97 - 09/2000 Engineering Faculty Research Scholarship, University of Glasgow 

07/1996 Institution of Mechanical Engineers (IMechE) Best Project Prize 

                                                 
1 PhD Grade in UK : 1) Pass without corrections ; 2) Pass with minor corrections ; 3) Pass with major corrections ; 4) Re-write thesis ; 5) 
Fail 
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IT SKILLS 
• Borland Delphi, Mathcad, MS Visual C++, Matlab, COMSOL (beginner) 
• VHDL 

LANGUAGES 
• English, Chinese Mandarin, French, Malay (notions) 
• Dialects : Teochew, Hokkien, Cantonese 

UFrench :U 06/1997 – Diplôme d’études de la langue française (DELF), Université de Nantes 
 06/2002 – Diplôme approfondi de la langue française (DALF) – EMN 

PROFESSIONAL MEMBERSHIP & MISCELLANEOUS 
• Member SPIE (2007-2011 and 2013–) 
• Leisure: rowing, swimming, reading 


