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Elaboration de la Silice Magnétique Colloidale Pour Application
en Biologie Moléculaire : Extraction des Acides Nucléiques
Ahmad BITAR
RESUME

Le diagnostic moléculaire est un diagnostic basé sur 1’analyse des acides nucléiques
nécessite incontestablement la préparation d’échantillon. Cette préparation a pour objectif
d’extraire des acides nucléiques d’un milieu généralement trés complexe, de les purifier, de
les concentrer voir les transporter dans des microsystemes utilisés comme outils de
diagnostic. Aujourd’hui, ’utilisation de nouvelles technologies et en particulier 1’utilisation
de supports solides ont permis de palier & un grand nombre de problémes comparé aux
méthodes conventionnelles. L’évolution de ces supports solides en particules colloidales a
permis de répondre a la demande des nouvelles technologies en apportant, une grande surface
spécifique, une séparation rapide suite au caractére magnétique, un transport simple dans les
microsystémes et une chimie de surface modulable pour une bonne extraction de 1’analyte
recherchée.

Ainsi, I’objet de cette étude est la syntheése de la silice magnétique submicronique en
taille pour I’extraction des acides nucléiques. La synthése de la silice magnétique a été
conduite en trois étapes. Dans un premier temps, la synthése de ferrofluide organique a été
réalisée par coprécipitation des chlorures ferriques et ferreux en basic avant transfert en
milieu organique. La deuxiéme étape a été la préparation d’émulsions magnétiques stables,
fortement magnétiques (pour une séparation rapide) et de taille relativement homogene et
reproductible. Le ferrofluide préparé organique préparé a €té émulsionné pour préparer une
émulsion huile dans 1’eau (O/W) en utilisant un tensioactif anionique. L’émulsion magnétique
a ¢té ensuite encapsulée par une écorce de silice via le procédé sol-gel. Le procédé
d’encapsulation a été optimisé€ via une étude systématique et par une caractérisation physico-
chimie et colloidale compléte de particules. La caractérisation morphologique des particules
obtenues a montré une structure cceur magnétique et une écorce de silice parfaitement
homogene.

Ces particules de silice magnétique ont été utilisées pour étudier 1’adsorption des
acides nucléiques (fragment d’ADN) en fonction du pH et de la salinité. Les résultats
montrent une bonne capacité d’adsorption des acides nucléiques et également un bon
relargage. Ce résultat encourageant montre que ces particules peuvent €tre utilisées dans le
diagnostic moléculaire ou [D’extraction, la purification et la concentration des acides

nucléiques sont trés recherchées.
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Preparation of Colloidal Silica Magnetic Particles for Molecular
Biology Application: Nucleic Acids Extraction
Ahmad BITAR
ABSTRACT

Currently, the genetics and DNA-based applications are developing very vast. All these
applications such as gene therapy, diagnosis and PCR (polymerase chain reaction) require a
previous step, which is the isolation and purification of genetic materials from their
compartment. Taking care that the extraction method should produce the DNA in high
purification state and in good conditions. The DNA extraction and purification are well
known from long time ago, but these methods are time and organic solvents consuming.
Nowadays, new nanotechnology-based techniques allow establishing rapid, efficient,
environment respecting and cheaper isolation methods for DNA extraction.

Silica-coated magnetic emulsions as a form of core-shell were successfully
synthesized for magnetic separation of DNA. Magnetic core is the separation tool and silica
shell is the DNA capturer and releaser part.

The silica-coated magnetic emulsions synthesis was carried out in three steps. Starting
from the organic ferrofluid synthesis by the coprecipitation of ferrous and ferric chlorides in
aqueous ammonium hydroxide solution. The iron oxide nanoparticles were coated with oleic
acid layer and redispersed in octane. Second step consisted of preparation of magnetic
emulsion. The obtained ferrofluids used as oil to prepare oil in water emulsion (O/W) and
SDS was used as surfactant. Then, the magnetic emulsion particles, the magnetic droplets,
were coated with silica shell using the sol-gel process. The encapsulation was performed
using TEOS as silica precursor and its hydrolysis was catalyzed by ammonium hydroxide.
Particles characterization showed that the performed synthesis produced perfect core-shell
particles.

These particles have been used to study the DNA binding in different conditions of
pH, ionic strength and DNA concentration in solution. Results show good fixation and release
of DNA molecules by the silica magnetic particles. In addition to the extraction results, the
colloidal stability and speed separation of silica-coated magnetic particles, these particles can

be recommended as strong DNA separation tools.
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Abréviations

AEAPS
AFM
AMPS
APS
APTES
APTMS
BPEA
BSA
DLS
DMF
DNA
DVB
EDTA
EPTES
ETR
FiTC
FTIR
GC
GOx
GPS
HRP
HTEM

Igepal ®CO-520

Kcps
KPS
ME
MFH
MICR
MMS
MNP
MPS
MSCs
NP-5
NPs
PDADMAC
PEG
PFCs
pKa
PL
PMMA
PPY
PS
PSS
PVP
QDs
RM
RMI
RNA
SA
SDS

Atomic force microscopy
3-(2-aminoethylamino) propylmethyldimethoxysilane
Ammonium Persulfate

3-aminopropyl triethoxysilane
3-aminopropyl trimethoxysilane
2-(2-bromopropionyloxy) ethyl acrylate
Bovine serum albumin

Dynamic Light Scattering

N, N-dimethylformamide
Deoxyribonucleic acid

Divinylbenzene

Ethylene diamine tetra acetic acid
N-(-ethylenamine) propylamine triethoxylsilane
Engineered Transferrin Receptor
Fluorescein Isothiocyanate

Fourier Transform Infrared

Gas Chromatography

Glucose Oxidase

3-glycidoxypropyl trimethoxysilane
Horse radish peroxidase
High-Resolution Transmission Electron Microscopy
Polyoxyethylene (5) nonylphenyl ether
Kilo counts per second

Potassium Persulfate

Magnetic Emulsion

Magnetic Fluid Hyperthermia

Magnetic Ink Character Recognition
Magnetic Microspheres

Magnetic Nanoparticle
3-(trimethoxysilyl) propyl methacrylate
Mesenchymal Stem Cells

Poly(ethylene glycol) nonylphenyl ether
Nanoparticles
Poly(diallyldimethylammonium chloride)
Poly(ethylene glycol)

Perfluorocarbons

Acid Dissociation Constant
Photoluminescence

Poly Methyl Methacrylate

Polypyrrole

Polystyrene

Poly (sodium 4-styrenesulfonate)
Polyvinylpyrrolidone

Quantum Dots

Reverse Microemulsion

Resonance Magnetic Imaging
Ribonucleic Acid

Succinic Anhydride

Sodium Dodecyl Sulfate
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SEM
SI-ATRP
Si-ME
SiNPs
SIP
SPION
TE
TEM
TEOS
TGA
THPC
TMOS
uv
XRD
XPS

Scanning Electron Microscopy

Surface Initiated Atom Transfer Radical Polymerization
Silica-coated Magnetic Emulsion

Silica Nanoparticles

Surface Initiated Polymerization
Superparamagnetic Iron Oxide Nanoparticles
Tris-HCI-EDTA buffer

Transmission Electron Microscopy

Tetraethyl Orthosilicate

Thermogravimetric Analysis

Tetrakis (hydroxymethyl) phosphonium chloride
Tetramethylorthosilicate

Ultraviolet

X-ray Diffraction

X-ray Photoelectron Spectroscopy
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I. INTRODUCTION GENERALE

Le diagnostic médical a pour but de déceler dans un prélévement biologique (sang,
sérum, crachats, extrait cellulaire, etc.) la présence d’un analyte (ARN, ADN, urée,
cholestérol, hormone, virus, bactéries etc.). Pour ce faire, la méthode généralement utilisée est
basée sur la capture spécifique qui consiste a immobiliser sur un support solide une molécule
biologique (antigéne, anticorps, oligonucléotide etc.) capable de fixer spécifiquement
I’analyte recherché. Les principales exigences pour la conception de tests de diagnostic
performant repose sur la spécificité, la sensibilité, la rapidité et le colt. Pour y répondre, un
large éventail de particules a été utilis¢é comme support solide de biomolécules. En effet, ces
colloides offrent des avantages grace a I’importante surface spécifique disponible, une
fonctionnalisation variable et une séparation rapide (centrifugation, filtration, aimantation).
Toutefois, jusqu'a présent, ce type de supports présente un inconvénient majeur en raison de
leur surface incompatible avec l'activité enzymatique et pouvant induire de fortes interactions
non-spécifiques, surtout dans le cas des échantillons biologiques complexes. La concurrence
scientifique dans le domaine existe mais elle est principalement focalisée sur l'utilisation des
techniques d'extraction en plusieurs étapes et non automatisable ce qui limite leurs succes.
L'utilisation de particules dans le diagnostic biomédical en général et I'enrichissement
d'échantillons commence a étre exploitée ce qui induit une concurrence non seulement dans
I'¢laboration de supports magnétiques particulaires, mais €¢galement les applications qu'il en
découle. En effet, des avancés technologiques ont été réalisées dans le domaine de la capture
générique des acides nucléiques totaux. Il est a présent possible d'extraire, purifier,
concentrer, amplifier et détecter les acides nucléiques de milieux complexes. En revanche, il
est pratiquement impossible d’automatiser ce procédé sans faire appel aux particules
magnétiques pour remplacer les techniques conventionnelles (extraction au phénol-
chloroforme suivie d’une précipitation a I’éthanol).

Il est a noter que le succés d'un test dans le diagnostic biomédical réside non
seulement dans 1'élaboration d'outils de détection performants mais aussi dans la préparation
des échantillons nécessitant impérativement un prétraitement. Dans le cas de tests basés sur la
détection d'acides nucléiques, ce prétraitement consiste a libérer le matériel nucléique dans le
milieu, le capturer et le purifier avant de pouvoir mettre en ceuvre les étapes d'amplification et
de détection. Ainsi, l'utilisation de particules de la silice magnétiques permettra non
seulement d'augmenter la sensibilit¢ de certains tests, mais aussi d'envisager leur
automatisation ou leur intégration dans des microsystemes ou la rapidité de séparation
magnétiques sous l'action d'un champ magnétique extérieur est un atout incontournable. Le

développement de telles particules magnétiques nécessite la mise au point d'émulsions
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magnétiques submicroniques et parfaitement caractérisées. L'efficacité de la capture des
acides nucléiques, sera examinée en utilisant des échantillons modeles.

Aujourd’hui, le développement de la nanotechnologie, surtout dans le demain
biomédical, a permis I'utilisation de nano et microparticules comme supports de biomolécules
pour applications diagnostics et thérapeutiques : in vivo comme les agents de contraste ', le
traitement de cancer” et la délivrance de molécules actives® et in vitro pour comme supports
pour I’extraction, la purification, la concentration de biomolécules ou tout simplement comme
outil de détection dans le cas de diagnostic”.

La silice particulaire et colloidale est capable de présenter des interactions avec les
macromolécules biologiques comme les acide nucléiques’ et les protéines®. Ces interactions
peuvent étres réversibles dans des conditions du pH et de la salinit¢ du milieu. Les particules
de silice sont largement utilisées comme supports solides pour la séparation de biomolécules’
°. Les interactions impliquées dans I’adsorption des acides nucléiques ne sont pas trés
¢lucidées et ne peuvent étres uniquement de type électrostatique suite a [’utilisation de
quantités de sel trés importantes (NaCl 4M ou MgCl, 0,2M). 11 est a noter que I’ADN et la
silice sont chargés négativement et pour favoriser I’adsorption de I’ADN il est nécessaire de
réduire la porté des interactions répulsives et de favoriser par la méme occasion la
précipitation de I’ADN sur la silice et pour ce faire la forte salinité est indispensable. La
quantité d’ADN adsorbé dépend donc du pH capable d’affect la charge de surface de la silice
et la salinité du milieu d’adsorption'®. Ainsi, plusieurs formes et tailles de nano et micro
particules de silice ont été synthétisées et utiliser pour réaliser I’isolation et la purification des
acides nucléiques'""'>. Le développement de nouvelles technologies et en particulier les
nanotechnologies a permis de moduler la surface des particules, d’apporter des spécificités via
le greffage de polymeéres sur des particules primaires, modification chimique simple en
utilisant une chimie classique et plus généralement via encapsulation de particules semences.

Généralement, I’encapsulation est une méthode trés connue et trés utilisée pour la
modification des surfaces des particules. L’encapsulation peut étre réalisée soit par

polymérisation sur semence par un procédé de type sol-gel. Le Sol-Gel'?

est un procéd¢ tres
efficace et largement utilis€ pour encapsuler les nano et microstructures par une écorce de
silice. Le principe de cette méthode est basé sur I’hydrolyse d’un agent précurseur
I’orthosilicate de tétraéthyle (TEOS) en présence d’un catalyseur acide ou basique, comme
I’hydroxyde d’ammonium. Le TEOS hydrolysé se condense pour former un polymére non
organique, compos¢ de dioxyde de silice SiO,. La forme et le type de la couche SiO, varient

selon le catalyseur utilisé'* et la quantité de TEOS ajoutée’.
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Les particules encapsulées par une écorce de silice sont largement utilisées dans des
applications diverses et variées. En effet, la présence de la silice a la surface des particules
semences présente des avantages supplémentaires par exemple protéger les coeurs encapsulés,
améliorer la stabilité colloidale, augmenter la biocompatibilité, et la fonctionnalisation de la
surface. Les nanoparticules d’oxyde de fer sont les particules les plus étudiées et encapsulées
par une écorce de silice ce qui permet I’obtention de morphologie coeur-écorce. Les particules
composites formées posseédent des propriétés magnétiques d’oxyde de fer composant le coeur
et les propriétés de surface induites par la silice. Ces composites sont largement synthétisées
et utilisées pour des applications biomédicales comme 1’imagerie par résonance magnétique

1718 " dans les

(IRM)', I’extraction des acides nucléiques'®, I’immobilisation des protéines
biosenseurs'” et la libération de molécules actives™ et dans la biologie moléculaire®.
L’objectif de la thése :

L’objectif principal de cette thése est d’élaborer des particules de silice magnétiques
submicronique en taille pour 1’extraction et la purification des acides nucléiques et utilisable
dans le microsystéme et les bio-nanotechnologies. Le cahier des charges imposé par les
applications bio-nanotechnologies doit réponde aux exigences suivantes:

- des particules de silice magnétique de taille submicronique

- magnétique et super-paramagnétique

- bonne teneur en charge magnétique

- bonne stabilité colloidale

- bonne stabilité chimique (pas de dégradation dans le temps)

- faible sédimentation

- bonne écorce de silice protectrice

- bonne adsorption des acides nucléiques

- bon rendement de purification des acides nucléiques

Pour répondre aux critéres généralement imposés par le diagnostic in vitro, nous proposons
I’¢laboration de la silice magnétique en utilisant des émulsions magnétiques comme
semences. Les émulsions magnétiques seront formulées apres la préparation de ferrofluide
organique stable et super-paramagnétique a base d’oxyde de fer. Cet oxyde de fer sera préparé
par nanoprécipitation des sels ferreux et ferriques.

Afin de préparer des émulsions magnétiques sensibles au champ magnétique, la taille
doit étre impérativement supérieure a 100 nm et de préférence proche de 300 nm pour une
séparation rapide sous ’action d’un simple champ magnétique. Ces émulsions magnétiques
doivent présenter une bonne stabilité colloide (ni coalescence et crémage). Ces émulsions une

fois parfaitement caractérisées seront encapsulées par une écorce de silice. L’encapsulation
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sera réalisée en utilisant le procédé sol-gel. Lors de cette encapsulation une attention
particuliere sera dédiée a la morphologie des particules composites, la composition chimique
et les propriétés colloidales. Une fois parfaitement caractérisées, les particules composites
seront utilisées par la suite pour [’adsorption et la désorption des acides nucléiques.
L’ensemble des résultats obtenus sont présentés dans ce manuscrit de thése compose d’un
premier chapitre consacré a 1’état de 1’art sur la synthése des ferrofluides aqueux et organique,
la formulation des émulsions magnétiques, le procédé sol-gel et son utilisation pour
I’encapsulation des particules semences et en fin les applications biomédicales des particules
encapsulées par une écorce de silice.

Le deuxieme chapitre est concerné a la partie expérimentale portant sur la synthese des
ferrofluides organiques, la formulation d’émulsions magnétiques et 1’encapsulation de ces
émulsions par couche externe de silice. L’ensemble des dispersions ¢élaborées a été
caractérisé.

Le troisieme chapitre présente également une étude expérimentale portant sur
I’adsorption et la désorption de I’ADN sur les particules de silice magnétiques synthétisées.
Une ¢étude systématique a été réalisée en examinant 1’effet de pH, la concentration en sel (Na
Cl et MgCl2), la concentration initiale de I’ADN en solution et la cinétique d’adsorption.

Enfin, la thése se termine par une conclusion générale résumant I’ensemble des

résultats obtenus et présente ¢galement quelques perspectives.
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Introduction :

Dans cette partie de notre thése, 1’état de I’art reporté dans la littérature sur les quatre

thémes principaux de la thése a été traité sous forme d’articles de revues.
Le premier article présente les ferrofluides qui sont des colloides stables de nanoparticules
magnétiques, principalement des oxydes de fer, dispersées dans un solvant porteur soit
aqueux soit organique. Les nanoparticules magnétiques ont été synthétisées pour la premicre
fois dans les années 1950. Ensuite, ces nanoparticules ont été utilisées dans des centaines
d’applications diverses et variées. La premicre partie de la bibliographie s’intéresse aux
ferrofluides, leurs méthodes de synthese, leurs propriétés, les applications, industrielles et
biomédicales. Cette étude est complétée par la formulation des émulsions magnétiques en
utilisant les ferrofluides. Les émulsions magnétiques discutées sont soit directes ou inverses.

La deuxiéme revue traite 1’encapsulation par une écorce de silice des différents types
de nano et microparticules. Il est reporté que I’encapsulation se fait par deux méthodes
principales : le sol-gel et la microémulsion inverse. La premicre méthode est basée sur
I’hydrolyse et la polycondensation d’un précurseur de silice (orthosilicate de tétraéthyle ou
TEOS) en présence d’un catalyseur. Et la seconde méthode (la microémulsion inverse) est
fondée sur les mémes principes, mais la technique est différente ou I’hydrolyse et la
polycondensation de TEOS se font dans les gouttelettes de I’émulsion inverse qui contiennent
la particule a encapsuler, le TEOS et le catalyseur. L’article donne également des exemples
sur les particules encapsulées comme des oxydes de fer, I’or, 1’argent, les nanoparticules
photoniques (quantums dots), les particules de latex (polystyréne, le polyméthacrylate) et
d’autres particules. Ensuite, une attention particuliere est portée sur les méthodes de
fonctionnalisation de la couche de silice comme I’utilisation des agents de couplages de la
silice ou le griffage chimique de polyméres. Enfin, les techniques utilisées pour caractériser
ce type de nano et micro structures et leurs propriétés principales.

La troisieme revue présente les applications biomédicales des particules encapsulées
par une écorce de silice. Parmi ces applications, I’immobilisation des protéines, 1’extraction
de I’ADN, Ia libération de genes et de molécules actives, I’imagerie biomédicale in vivo et in
vitro et des applications pharmaceutiques. Grace a ces propriétés uniques la surface de la
silice est devenue trés importante dans le domaine de la nano-biotechnologie. La silice se
caractérise par sa biocompatibilité, morphologie controlée, bonne stabilité chimique. En plus

de ces avantages, la surface de la silice est aisément fonctionnalisable par de nombreux
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procédés et groupes fonctionnels, ce qui augmente considérablement le nombre d’applications

de ces particules hybrides ou composites.
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Résumé :
Les ferrofluides : les méthodes de synthése, propriétés et applications

Les ferrofluides ont ét¢ synthétisés début des années 1960s et tout de suite apres, ces
produits sont devenus indispensables dans un grand nombre d’applications. Cette étude
bibliographique est focalisée sur les ferrofluides magnétiques, les méthodes de la synthese,
leurs propriétés et les applications, et enfin le concept de 1’émulsion magnétique.
Les oxydes de fer ont été synthétisés tout d’abord par la réduction de taille, broyage, ensuite,
d’autres méthodes ont ét¢ employées comme la synthése chimique, la coprécipitation et la
décomposition thermique. Un ferrofluide obtenu doit avoir obligatoirement le
superparamagnétisme, c’est-a-dire que les particules magnétiques ont la propriété magnétique
seulement sous I’effet d’un champ magnétique externe. Cette caractéristique de ferrofluides
est trés outil pour les futures applications dont le domaine industriel comme les peintures
magnétiques, les encres magnétiques et les applications biomédicales comme agents de
contraste pour I’imagerie biomédicales in vivo par la résonance magnétique, la théranostique
(combinant la thérapie et le diagnostic) et les outils de séparation magnétique de
biomolécules.
Les émulsions magnétiques ou les émulsions de ferrofluides ont été¢ développées début des
années 90s comme une nouvelle forme de ferrofluide. Elles se composent généralement de

gouttelettes de ferrofluides organiques dispersées dans la phase continue aqueuse.
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Abstract

Discovery of the magnetic property of magnetic fluid or ferrofluid and its effects on
the other materials open the wide varieties of applications in human daily life. Continually
new applications require different forms of magnetic materials, which have significant
attractions nowadays. This review highlights the ferrofluids synthesis methods; all known
methods are cited whereas size reduction and chemical co-precipitation were detailed. The
industrial and biomedical applications of ferrofluids and particles based on ferrofluids were
discussed. Finally, the new form of ferrofluids represented as magnetic emulsion was
introduced.

1. Introduction

The magnetization or the magnetic susceptibility is a value, positive or negative,
indicates the magnetization degree of a material under the effect of magnetic field.
Furthermore, the material response to a magnetic field is depending on its state, that means
there is difference between the reaction bulk and nanoparticles under the magnetic filed
effect. Nanoparticles with a radius below 150A" belong to “single domain particle”, which
mean that the particle is in a state of uniform magnetization at any magnetic field." Moreover,
both particles shape and size found to be greatly considerable factors when discussing the
magnetic properties of particles.” Consequently, the nanoparticles also have paramagnetism
property that they possess magnetism properties when, and only when, they are under the
effect of magnetic field. Iron oxide nanoparticles are found to have superparamagnetic

properties, which allow using these nanoparticles for wide range of applications.
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A magnetic fluid, or known as ferrofluid, belongs to colloidal suspensions family and consists
of stable colloidal fine nanoparticles in a carrier liquid. The magnetization properties are
related to the nanoparticles, which are essentially consisting of iron oxides. But metallic
particles, at nanometric size, possess a long-range magnetostatic attraction, thus they toward
to the agglomeration and sedimentation. Therefore, the particles size should be less than 10
nm and a stabilizing agent is required to enhance the stability colloidal by reducing the
attractive forces and raising the repulsive forces. The oleic acid is widely used as a stabilizing
agent and many carrier liquids are employed in order to achieve a stable ferrofluid.
Nowadays, ferrofluids are commercially available to satisfy the different applications in
several fields such as magnetic inks,”* paints® and biomedical applications.’
This review highlights the ferrofluids synthesis methods, the two most important: size
reduction and chemical coprecipitation, and will cite the applications based on ferrofluids.
Industrial applications, which include, magnetic recording media, magnetic inks and sealing
by ferrofluids. And the newly adapted biomedical applications in vivo and in vitro such as
RMI contrast agents, cells separation and nucleic acids extraction.
2. Synthesis methods

A magnetic fluid or ferrofluid is a colloid of fine ferromagnetic particles dispersed in
liquid carrier and they can’t be prepared by melting the ferromagnetic metals such as iron,
cobalt and nickel, because the ferromagnetic materials lose their strong magnetic properties
when heated above Curie temperature. Moreover, for all known ferromagnetic materials this
temperature is always below the melting points.” Therefore, to prepare a good and useful
ferrofluid it was necessary to synthesize fine ferromagnetic particles, coated them by an
adsorption stabilizer layer and dispersed them in a suitable liquid. There are several methods
used to produce ferromagnetic nanoparticles e.g., size reduction, chemical synthesis
(coprecipitation and thermal decomposition methods), electro-decomposition techniques,
evaporation of metal in liquid, and carrier liquid exchange.’ Size reduction is the first
method used and chemical synthesis is frequently used to prepare ferromagnetic nanoparticles
so these two methods will be described in details.
2.1. Size reduction

First of all, the preparation process was via grinding the permanent magnets and
ferromagnetic metals for more than 20 days in presence of oleic acid and organic solvent
(heptane).'® Thus, obtained particles were at an average size from 50 to 200 A” and it was the
first time that such suspension considered as an apparently magnetically responsive continues

liquid. Despite the long and hard work needed by this technique it was widely used to
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synthesize ferrofluids. Rosensweig and coworkers used Papell’s grinding method to prepare
the ferrofluids and they extensively studied their physical,'’ thermal'? and hydrodynamic'* "
properties. Throughout the later years, the size reduction (grinding) method was using to
prepare stable ferrofluids. Kaiser et al'® published his work on the preparation and the
properties of stable ferrofluid prepared by the same technique, in this paper they cited the
most important works used grinding to prepare ferrofluids. Research and development in
ferrofluids field are drastically attracted the researchers and the industry that was clear from
the number of published papers and patents, whereas between the period of 1986 and 1990
more than 1000 patents and 1900 papers were published.'’
2.2. Chemical synthesis

Due to the considerable interesting of ferrofluids and their wide applications it was
necessary to improve the synthesis methods. Thus, the chemical synthesis, include
precipitation from salt solution and thermal decomposition of metal carbonyls, were good,
fast, easy, cheap and controlled ways for ferrofluids production. Although, practically they
consist of two steps: first one is the nanoparticles preparation and the second is the dispersion
in liquid carrier.
The chemical coprecipitation method is most conventional method to prepare ferrofluid
magnetic nanoparticles. Generally, all these procedures begin with a mixture of FeCl; and
FeCl, solution in water and then coprecipitation is performed by the addition of base,
typically ammonium or sodium hydroxide. The reaction can be summarized as follow:

2FeCl; +FeCl, +8NH4OH—Fe;04 +4H,0+8NH4Cl

This process involves two stages: 1) a short burst of nucleation when the concentration of the
species reaches critical supersaturation and ii) a slow growth of the nuclei by diffusion of the
solutes to the surface of the crystal. In order to produce monodisperse MNPs, the nucleation
should be avoided during the period of growth'®. The method is affected by different
parameters like the type and concentration of salts (e.g., chlorides, sulfates, nitrates),
temperature, pH and the addition rate of ammonia'®*>'. According to thermodynamics of this
reaction, the precipitation of Fe;O4 should be completed at pH between 8 and 14 with a
stoichiometric ratio of Fe’'to Fe*" of 2:1 under inert atmosphere at room temperature or at
elevated temperature. Usually, ferromagnetic particles produced by this technique have an
average size below 20 nm and they are composed of mixture of y-Fe,O3; and Fe;O4 depending
on the reaction conditions™.
First preparation of magnetic fluids by coprecipitation of ferric and ferrous salts in aqueous

solution was did by Reimers et al,> the reaction ratio fixed at 2:1 (FeCls:FeCl,) and NH,OH
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28% used to precipitate the iron oxide nanoparticles. After the coprecipitation in a basic
medium, the ferrofluids were subjected to surfactant-stabilized for colloidal stability. Fatty
acid derivatives are most often used to stabilize these iron oxide nanoparticles either in
organic or aqueous medium. Oleic acid is the most common dispersant agent used as non
water-soluble adsorption layer, thus oleic acid-coated nanoparticles can be easily and highly
dispersed in organic solvent.** The carboxyl groups at the chain end of oleic acid bind onto
the nanoparticles surface, at pH alkaline, and the aliphatic chain form the hydrophobic layer
that help the nanoparticles to disperse in non polar solvent.

On the other hand, ferrofluids attracted developers to use them in hydrophilic media that

needed to coat the ferromagnetic nanoparticles by ionic layer. Massart et al,>*®

prepared
aqueous ferrofluids without surfactants in acidic medium, nitric acid is used to have ionic iron
oxide nanoparticles. It has found that the size of precipitated particles can be controlled by
adding the citrate ions to the reaction medium.?’ These ions, at a specific ratio, can control the
particles size by inhibiting the growth process so raising the number of nucleation. Moreover,
sodium dodecyl sulfate (SDS) was played the same role to control the particles size.” It was
also reported that the addition of chelating organic anion (carboxylate or hydroxy carboxylate
ions, e.g., citric, gluconic or oleic acid or polymer surface complexing agents (dextran,
carboxydextran, poly(vinyl alcohol) or starch), stabilizer and/or reducing agents, during the
formation of magnetite can help to control the size of nanoparticle.'®"” The chelation of
organic ions on the magnetic particle surface either prevents nucleation and then leads to
larger particle or inhibits the growth of crystal nuclei, leading to small nanoparticle.

Although the coprecipitation process is a simple and cost-effective method that can produce a
high yield of the magnetic ferrofluid and the reaction temperature, and time are lower than
other methods, e.g., thermal decomposition and hydrothermal, the particles prepared tend to
be polydisperse. The control of particle size distribution is quite limited because only kinetic
factors affect the crystal growth.

To obtain highly monodispersed magnetic nanoparticles with a narrow size distribution, the
thermal decomposition is required. Generally, the thermal decomposition of organometallic
compounds followed by oxidation in high-boiling organic solvents containing stabilizing
surfactant can lead to high-quality monodispersed magnetic nanoparticles, which usually
required relatively higher temperatures and a complicated operation.'”*" The organometallic
compounds include Fe(cup); (cup = N-nitrosophenyldroxylamine),’’ Fe(acac); (acac =
acetylacetonate),”” or Fe(CO)s.> Monodisperse y-Fe,O3 nanocrystallites with size of 4-16 nm

were prepared by thermal decomposition of Fe(CO)s in the presence of oleic acid at 100 °C by
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controlling the experimental parameters.” The resulting iron nanoparticles were transferred to
monodispersed y-Fe,O3; nanocrystallites by controlled oxidation by using trimethylamine
oxide as a mild oxidant. Besides ferrofluid magnetic nanoparticle with control over size and
shape are obtained by the thermal decomposition method, the resulting nanoparticles are
generally only dissolved in nonpolar solvent which is the drawback of this method.

3. Properties

In most of the great interest applications, the particles perform best when the size of the
nanoparticles is below a critical value, which is dependent on the material but is typically
around 10-20 nm. Then each nanoparticle becomes a single magnetic domain and shows
superparamagnetic behavior when the temperature is above the so-called blocking
temperature.”” A single-domain particle is uniformly magnetized, i.e., all the spins align in the
same direction. To synthesize single-domain particle, it is necessary to control the particle
size and prevent its aggregation. The magnetic behavior of aggregated particles considerably
differs from that of individual particle, hence, aggregation results in the uncontrolled and
irreproducible behavior of magnetic material.>* The characteristics of magnetic nanoparticles
are usually displayed as Figure 1. The superparamagnetic material (curve 2) exhibits no
remnant magnetization (M;). The coercive force (the external field required to reduce the
magnetization back to zero) (H.), is zero and its magnetization (M) dependence on the
external magnetic field (H) lacks the hysteresis loop. On contrary, the magnetic dipoles inside
the ferromagnetic material always exist in the absence and presence of an external field and
produce a hysteresis loop (figurel).”> In addition, the particle magnetic moment in a

superparamagnetic state reverses at time shorter than the experimental time scales.

Figure 1 Magnetization curves of (1) ferromagnetic and (2) superparamagnetic materials. Mg
is saturation magnetization, H, is coercive force, H is the applied magnetic field, M is induced

magnetization, M, is remnant magnetization.>
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Generally, the saturation magnetization (Ms) values found in nanostructured materials are
usually smaller than the corresponding bulk phase, provided that no change in ionic
configurations occurs. Accordingly, experimental value for M; in ferromagnetic nanoparticles
have been reported to span the 30-50 emu.g”' range, lower than the bulk magnetic value 90
emu.g" >’ In addition, an important parameter to describe superparamagnetic colloids is the
blocking temperature, a transition point at which the thermal energy is comparable to the
magnetic anisotropy energy or the energy barrier for spin reorientation. Below blocking
temperature, the anisotropy of the particle blocks the free movement of the moment. Above
the blocking temperature, the moment is free to align in an applied magnetic field and appears
superparamagnetic. For instant, Hyeon et al’® reported the blocking temperatures of the
monodisperse y-Fe,Os; nanocrystallites obtained by the thermal decomposition method
depending on their particle diameter. The blocking temperatures of the y-Fe,O;
nanocrystallites with particle diameter of 4, 13 and 16 nm were found to be 25, 185 and 290
K, respectively. Mehdaoui et al’® synthesized ferromagnetic 16 and 11 nm Fe(0) nanoparticles
of cubic shape. The M; of bulk iron were 200 + 10 and 178 = 9 Am® kg™ at 300K for particle
diameter of 16 and 11 nm, respectively, just below the bulk value. Their coercive field Hc at
300K are 16 and 5mT, respectively. Under a fast switching magnetic field, magnetic

nanoparticle can be generated thermal energy.’®*

The frictions caused by the physical
rotation of nanoparticles, Brownian relaxation, and magnetization reversal within
nanoparticle, Neel relaxation lead to the loss of magnetic energy and generation of thermal
energy. The power released by the nanoparticles is assessed by their specific adsorption rate
(SAR). Increase in SARs above 1W.g" could be beneficial for several aspects of the
hyperthermia applications.”® The SAR measured on 16 and 11 nm nanocubes was 1690 + 160
and 1320 + 140W.g"' at 300kHz and 66mT, respectively. Although very large SARs on
ferromagnetic nanoparticles were obtained, the efficiency of magnetic nanocubes for
hyperthermia applications was limited due to the presence of magnetic interactions.
4. Application

The ferrofluids and their synthesis techniques were the focus of attention of scientists
soon after the first synthesis in 1960s. Few years later, tell 1980s, all published papers and

10,13,15,16,23,25,26,39—41

patents took about the ferrofluids synthesis and properties. Thus, the real

applications of ferrofluids started in 1980s including magnetic inks*, paints for recording

4 . 44 . . . . . 4 .
taps,” sealing,”® and more recently in biomedical applications* such as in resonance

46,47 37,48,49

magnetic imaging (RMI)™"', therapeutic agents for cancer treatment and bioseparation.

4.1. Industrial applications
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The magnetic properties of ferrofluids were widely applied in data saving field, tapes

. . . . . .4
for audio and video recording, magnetic cards, computer storage and informatics.*°

1- .. 4
>3 then magnetic inks™* and

Primarily, magnetic pigments were produced using iron oxide
paints were prepared from these pigments. The strong point in using magnetic inks that the
magnetic characters can be recognized digitally, magnetic ink character recognition (MICR)
is a technology adapted to read this type of characters.”” Consequently, using this technique
provides a high secure environment of work especially for banking and magnetic cards uses.
Moreover, save time and efforts to transfer information into digital form.

Recording media are mainly based on magnetic films techniques’®, which are produced from
magnetic fluids, to record and play back the information. Furthermore, the informatics
developments nowadays need high capacity of storage and speed of data transfer, thus
developing the magnetic recording media is drastically raised last years.”” >’

Sealing and bearing by use of ferrofluids was invented by Furumura et al.** It was depending
on the filing of engraved grooves on the surface of cylindrical magnet by ferrofluid, which
will be retained in the gab between the magnet and rotary shaft. Then, this use of ferrofluids
was commonly and extensively studied.® > This technique is widely applied in industrial
pump, vacuum systems and computer hard disk drives.”> And more recently ferrofluids are

. . . C g . 66 . . .
applied as valves in microfluidics devices, = herein an organic ferrofluid was used to generate

up to 5 kPa in a device composed of a pump and two valves as shown in figure 1.
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Figure 1: pumping system used ferrofluid and permanent magnets as a pump and valves.®

4.2. Biomedical applications

The nanotechnology is drastically developed in the last decade and it is widely applied
in biomedical fields, especially for diagnosis and hyperthermia. On the other hand, the
techniques of molecular biology are well known and developed. Thus the association between
the nanotechnology and the molecular biology created high preferment nanostructures that
show promotion characteristics such as rapidity, specificity and sensibility.
Ferrofluids in their industrial form aren’t tolerant to be in contact with biological systems due

to the cytotoxicity of magnetic fluids.®’” Therefore, coating methods were applied to modify

68-70 71-73

the nanoparticles surfaces, for example with dextran or albumin, so these techniques

expanded the use borders of magnetic fluids in biomedical domain.
Invivo:

For diagnosis, as MRI contrast agen‘csmf78

which need special attention for the synthesis to
reduce the nanoparticles toxicity to the lowest level possible. In addition to the cytotoxicity
elimination, the coating aid for the surface functionalization, since the MRI contrast agents
should have a specific target, which it recognized by an antibody fixed onto the particle

surface.” These types of particles are generally used to detect the cancer cells by MRL*
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Weissleder et al’® reported for the first time transgene expression in vivo by MRI. Magnetic
nanoparticles were synthesized and coated with dextran and transferrin and engineered
transferrin receptor (ETR) was the studied gene that its overexpression accompanied with
more uptakes of nanoparticles by cells.

In vitro:
Magnetic fluids or ferrofluids are characterized by their speed response to the magnetic field
and this property satisfies the exigency of separation and extraction tools makers. Early,
biomolecules extraction and separation, based on the classical methods, was too difficult and
long in addition to the high quantities needed of organic solvents. Nowadays, magnetic fluids
provide numerous types of micro and nanostructures as and magnetic responsive solid
supports to create biomolecules extraction and separation tools®'. Initially magnetic particles
were used in immunology for immunoassay as solid supports for enzymes®* and antibodies.*
Therapeutic Applications
For clinical therapeutic or the using of magnetic fluids as cancer treatment by magnetic fluid
hyperthermia (MFH), is the one innovative application of this ferrofluid in medicine. The
cancer cell treatment by MFH is achieved through magnetic field modulated cell membrane
damage. Upon exposure to the alternating external magnetic field, the magnetic nanoparticles

- - 37,48
continuously emit heat.””

The therapeutic effect came from two mechanisms, the
compromised integrity of the cell membrane and promoted apoptosis, in contrast to the more
common magnetothermal effect, which requires a high-frequency oscillating magnetic field
(52 kA.m™) to achieve high magnetic saturation. For practical therapeutic applications with
minimized side effects, it is critically important to obtain optimum heating efficiency to reach
the desired hyperthermia temperature at 41-46 °C during a few hours. It was reported the use
of such magnetic nanoparticles (ZnosMnge)-Fe,O4 with high specific loss power in cancer
cell studies achieved 84.4% HeLa cells dead after the application of the AC magnetic field for
10 min. When compare with Feridex, 13.5% of those cells were dead.* The advantages of
using nanometer size magnetic ferrofluid for cancer cell treatment could be tumor penetration
depth.
Cells and bacteria separation

This technique was used to create submicron magnetic structures that can adsorb and desorb
the biomolecules, cells, bacteria and virus’'. The idea in these types of particles is that their
interaction status with the target molecules is sensitive to the environmental conditions such
as pH, salinity and temperature. Superparamagnetic particles based on ferrofluids are

prepared and biotinylated for specific cells sorting,** likewise Sestier et al® prepared
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magnetic particles coupled with enzymes or antibodies and measured the particles
electrophoretic mobility by laser-Doppler velocimetry, as a technique to follow the charge
surface modifications. Bacteria also can be captured and magnetic separated using
functionalized magnetic particles,*® herein, FePt nanoparticles were prepared and the
vancomycin (Van), spectrum antibiotic, was attached to the nanoparticles surface. Van can
bind to the terminal peptide D-Ala-D-Ala on the cell wall of Gram-positive bacterium via
hydrogen bonds. Figure 2 illustrates the bacteria mechanism separation using Van-coated

magnetic nanoparticles.
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Figure 2: capture and separation of bacteria by interaction with Van surface functionalized
magnetic nanoparticles.*
More recently, Joo et al*’ reported a sensitive method to separate and quantify the pathogen
bacteria, salmonella, using antibody-immobilized magnetic nanoparticles and TiO;
nanocrystals for UV detection.

Nucleic acids extraction and separation
The extraction of nucleic acids (DNA and RNA) based on magnetic particles realized for the
first time by Uhlen,* whereas the streptavidin-biotin technology was used to prepare the
magnetic beads, which were used to separate DNA and RNA. Furthermore, magnetic fluids
need a surface treatment step for nucleic acids extraction® that the interaction between the
particles and the nucleic acids is typically electrostatic thus the particles surface should have
an opposite charge to the DNA and RNA molecules.
Silica nanoparticles, as separation tools, are well known that they can reversibly
adsorb/desorb DNA.” This property of silica is used to create silica-coated magnetic particles
and apply them for extraction and separation of nucleic acids.”’*® In addition, an another

treatment for magnetic particles to be suitable for nucleic acids separation is based on the
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polymerization; the magnetic fluids were coated by a polymer shell and magnetic latex*°'*

was used to extract DNA and RNA.'" % Moreover, magnetic latex based on ferrofluids used
also for proteins separation in vitro'®"'%
5. Magnetic emulsion

Magnetic emulsions are like all other normal emulsions, oil in water (o/w) or water in
oil (w/0), excepting that in a magnetic emulsion the ferrofluids are used as the emulsified
phase. Thus the magnetic emulsion is an organic ferrofluid in water (off/w) or an aqueous
ferrofluid in oil (aff/o). This preparation was first reported by Bibette,'” here a direct
emulsion w/o was prepared using organic ferrofluid as emulsified phase and SDS as
surfactant.
Montagne et al'®''" also prepared stable oil-in-water (O/W) magnetic emulsions by the
emulsification of an organic ferrofluid in a water solution containing nonionic surfactants.
Following the coprecipitation methods, y-Fe,O3 nanoparticle with a diameter of 7 nm was
obtained and then coated with oleic acid layer dispersed in octane medium to perform a
ferrofluid. This magnetic fluid was then emulsified in a water solution containing nonionic
surfactants in order to obtain stable ferrofluid droplets. By controlled shearing and size sorting

under a magnetic field, magnetic droplets with an average diameter of 260 £ 10 nm were

obtained (Figure 3).

Figure 3: Transmission Electron Microscopy (TEM) image of ferrofluid droplets.'"

Ramirez et al''"!'!?

successfully prepared water ferrofluid emulsions by using miniemulsion
process. First of all, the hydrophobic magnetic particles with a diameter of 20 nm were

obtained by a coprecipitation process of Fe*” and Fe’” with a molar ratio of 3:2 in ammonium
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solution using oleic acid as a stabilizer. The hydrophobic magnetic particles could be easily
dispersed in octane. In the next step, the hydrophobic magnetic particles in octane were
reformulated to stable water-based ferrofluids. For that, a miniemulsion process was carried
out to produce magnetite/octane-in-water dispersions. Stable aqueous miniemulsion with
droplets consisting of the magnetite/octane dispersions were obtained by using sodium
dodecyl sulfate (SDS) as surfactant. After evaporation of octane, a water-based ferrofluid
consisting of oleic acid coated aggregated magnetite dispersed in water phase was obtained.
The magnetic aggregates must have a surfactant double layer, the first layer is oleic acid,
which provides a hydrophobicity of the particles for later encapsulation, and the second layer
being SDS promotes the stabilization in water. Figure 4 shows schematic representation of the

magnetic ferrofluid preparation using miniemulsion process and TEM image of magnetic

aggregate.
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Figure 4: Schematic representation of the preparation of magnetic ferrofluid with water-based
system using miniemulsion process (A), TEM image of magnetite aggregates obtained after a
miniemulsion process in water (B).''""!!?
The size of these aggregates depends on both the oleic acid (introduced in the first step) and
the SDS concentration and can be adjusted to be between 40 and 200 nm, Figure 4B.
Similarly, Xu et al''? prepared water-based ferrofluid by using miniemulsion technique. This
miniemulsion was composed of oleic acid-magnetite nanoparticle aggregations in octane
droplets stabilized by SDS with a typical hydrodynamic diameter of 123 nm.
6. Conclusion

Magnetic fluids or ferrofluids are a stable dispersion of magnetic nanoparticles in a
liquid, organic or aqueous, carrier. They were born in early 1960s by grinding the magnet for
very long time, more than twenty days, then these products drastically studied and developed.

Due to their widespread of ferrofluids new synthesis methods were suggested for more rapid

and industrial production. Chemical coprecipitation is considered as the most used method to
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synthesize the ferrofluids and the obtained nanoparticles satisfied wide rang applications.
With average of diameter varied from 3 to 20 nm, superparamagnetic properties and high
colloidal stability in aqueous and organic carriers.

Ferrofluids are widely used in industry such as in magnetic recording media, they highly
answered to the increasing requirements of big bites. Furthermore, they used in magnetic
paints and inks that provided high-speed reading, treatment and archiving the information. As
well as in the biomedical applications, ferrofluids fit the use in vivo for MRI contrast agents
and thermotherapy. In addition they were used in vitro, especially for magnetic separation and
extraction. More recently, a new form of ferrofluids is presented in literature under the form
of emulsions. They called ferrofluids emulsion or magnetic emulsions, which have a

significant attraction in the applications of future.
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Résumé

Les nanoparticules encapsulées par la silice : préparation et applications

Le procédé de sol-gel a été développé initialement pour préparer des particules de
silice et en particulier de la silice colloidale. Ce procédé relativement simple et en une étape a
été étendu par la suite a ’encapsulation de particules inorganiques. Par conséquent, plusieurs
types de particules comme les particules composites et les particules hybrides ont été
préparées et utilisées dans des applications diverses et variables. Récemment, 1’encapsulation
sol-gel via I’émulsion inverse a été utilisée pour préparer de particules a morphologie
contrdlée cceur-écorce. Les particules composites ou hybrides peuvent étre ¢laborées par
encapsulation sol-gel soit directement soit via I’émulsion inverse. Cette encapsulation a
généralement pour but :

- protéger les ceeurs encapsulés et maintenir une bonne stabilité chimique;

- améliorer la biocompatibilité ;

- Fonctionnalisation de surface modulable
La fonctionnalisation est la deuxieme étape importante opérée aprés ’encapsulation pour
rendre les particules applicables. Cette action peut €tre résumé par la fixation (principalement
chimique) de groupes fonctionnels amine, carboxylique, thiol, aldéhyde... a la surface des
particules, pour I’immobilisation des anticorps, des antigénes et d’autres molécules. La
fonctionnalisation peut-étre ¢galement introduite par greffage de polyméres ou par
polymérisation sur semences.
Les particules composites ou hybrides fonctionnalisées utilisées dans le biomédical sont
principalement évaluées pour I’extraction et la purification des biomolécules et en particulier
les acides nucléiques, comme support d’entité¢ protéiques, dans I’imagerie biomédicale, voir
dans certains applications in vivo. Enfin, nous pouvons dire que la méthode d’encapsulation

par la silice est tres pratique et améliore largement les propriétés des particules encapsulées.
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Silica-Coated Nanoparticles: From Preparation to Applications
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Abstract

Nowadays, nanotechnology is drastically developing and significant research efforts
were devoted to prepare well-defined and surface functionalized nanostructures for various
applications. Therefore, silica coating is an excellent method used to product core shell
nanostructures, which modify the nanoparticles surface nature.

Several kinds of nanoparticles can be modified by silica that include gold, silver, zinc,
platinum, iron oxide, latex nanoparticles and other organic nanoparticles. The silica shell
plays multiple roles whose are protection, functionalization, biocompatibility and colloidal
stability. In this review, silica-coated nanoparticles, their preparation methods, especially, sol-
gel and reverse microemulsion, properties and characterization were discussed. Finally, the
bio-nanotechnology applications such as nucleic acids separation and detection, proteins and
enzymes immobilization, caner therapy and bioimaging were discussed.

1. Introduction

Functionalized nanoparticles applications have received special attention nowadays,

principally in biomedical domain. These applications are represented in imaging agents',

6, bio-sensor designing’ and bio-

genes delivery’, drug delivery’, cell labeling>
macromolecules separation®. And due to their unique properties like size, physical and

functional surfaces, nanoparticles offer countless advantages in nanoscience. Very small

particle reaches easily to its target, e.g., on or into the cell. In addition, metal nanoparticles
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such as gold, silver, platinum and iron oxide have high densities that allow being facile
distinguished, this property open roads for various applications. And so that, nanoparticles
surface considered the key of their use as supports, carriers and detectors.

Composite nanoparticles that consist of more than one material are widely reported in
literature. For this type of nanoparticles, the preparation is based on merge of two or more
compounds during the synthesis. The needed final form of the composite nanoparticles is
depending on the aim of their preparation. Therefore, they are represented generally in the
form of nanospheres or nanocapsules and silica is extensively used in research to produce
nanocapsules or core-shell nanoparticles.

Using silica to encapsulate nanoparticles is related to its properties and advantages:

(1) High protection for encapsulated nanoparticles.

(2) Silica is biocompatible that permit to reduce the toxicity of encapsulated nanoparticles.

(3) Silica surface is highly active and can be easily functionalized by many functional groups
such as amine, carboxyl, vinyl and thiol.

(4) Enhance the colloidal stability.

(5) Easy and low cost production.

Silica encapsulation is applied for several inorganic and organic nanoparticles, which showed
higher performance in comparison to non-modified ones. And for more performance,
additional steps of synthesis were applied to functionalize the silica shell such as adsorption,
grafting and in-situ polymerization.

In this review, the two most important synthesis methods used to prepare silica shell,
sol-gel process’ and reverse microemulsion'®, will be described. Then, variety of inorganic
nanoparticles such as iron oxide, gold, silver, quantum dots, titanium and zinc, which used as
solid cores for silica shell preparation, will be discussed. The review also will discuss some

organic template, used as a core supporter for silica shell, like polystyrene latex,

53



poly(methacrylic acid) latex and organic pigments. Therefore, this review will give a general
overview of the techniques and strategies used to characterize the core-shell nanoparticles
followed by a brief discussion of their properties and some biomedical applications.
2. Sol-gel Process

Sol-gel reactions, as a method to prepare ceramic particles and inorganic glass shells,
have been extensively studied for decades. From the first application of this reaction by
Stober et al’, thousands of articles have been published describing the synthesis, properties,
characterization and the applications of sol-gel products. Stober prepared monodisperse silica
particles and in a range of controllable size from 0.05pum to 2um. Now it is well known that
the Sol-Gel process is consist of two steps, the first step is the hydrolysis of a silica alkoxide
and the second is a polycondensation reaction. The two steps of sol-gel reaction can be
described as follows:
- Hydrolysis:
(OR); — Si—OR + H,O % (OR); —Si— OH + R - OH
R=alkyl group
- Polycondensation:
(OR); = Si—OH+HO -8i—(OR)s o> (OR);—Si—-0-S8i-(OR); + H,0
And the following reaction summarizes the complete Sol-Gel process of full-condensed silica:
Si(OR), + 2H,0 QH orH's  §i0, + 4R — OH

The most common silica precursor, which used in sol-gel process, is tetraethyl
Orthosilicate (TEOS) and this is due to two important properties of TEOS; first that it can be
easily purified by using standard techniques, second that its reaction is slow and
controllable''. As all chemical reactions, many factors influence the kinetic of the hydrolysis
and condensation in the sol-gel process, which include temperature, water/silane ratio,

catalyst and the nature of solvent'’. Cihlar"® studied the effect of pH and catalyst on the
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hydrolysis and polycondensation of TEOS. It was found that the hydrolysis depends on pH of
solution and not on the chemical nature of catalyst. In addition, minimum rate of catalysis was
found at pH around 7. While, a high rate of hydrolysis was found by both catalysts acid and
base. Finally, the condensation took place by both acid and base catalysts but it was faster by
strong acids.

Sol-gel process were applied in several syntheses like as in preparation of
polymer/silica hybrid materials'? and silica-coated nanoparticles which, include silver, gold,
iron oxide, zinc and titanium. Nanoparticles exhibit great properties that differ from their bulk
materials. They are used in various domains especially in pharmaceutical and biomaterial
synthesis. One of the most important methods of nanoparticles treatment is the encapsulation
to be functionalized later. The sol-gel process is applied to prepare a silica shell onto large
number of nanoparticles used for biomaterials synthesis. The silica shells added an additional
property to these particles (the core). That leads to core-shell structure which, have different
properties, par example, silica-coated iron oxide nanoparticles can be used as contrast agents
for MRI and functionalized shell for cancer cells detection.

3. Reverse Microemulsion (RM)

Reverse microemulsion is one of important methods used to prepare core/shell
nanoparticles. Therefore, this approach, water in oil emulsion, is applied to encapsulate
particles by a silica shell. Generally, it is suitable to encapsulate aqueous nanoparticles.

First, RM is used to prepare nanoparticles and there are two approaches to do this. The
first, by mixing two emulsions, one is containing the nanoparticle precursor and the other is
containing the precipitate agent. In the second, the precursor and the precipitate agent are
mixed directly in one emulsion, in which the precipitation reaction takes place. Thus, the
nanoparticles (already prepared), the precursor and the precipitate agent are introduced in the

droplets of RM, so the precipitate reaction will take place inside the droplet but outside the
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nanoparticle forming core-shell nanoparticles. Figure 1 shows the structure of one droplet of
water in oil, containing the nanoparticle, the precursor and the precipitate agent. Over time,
the precursor precipitate and coat the nanoparticle in the aqueous phase forming core shell

nanoparticle.

Oil Phase Oil Phase

Nanoparticle

"‘\ 0
Aqueous Phase

+Precursor
+Precipitate Agent

Nanoparticle

Aqueous Phase
P

Created shell

Surfactant Surfactant

Figure 1: schematic representation of core shell nanoparticle preparation by RM.

RM is considered a very efficient coating technique that can be used without surface
activation step'?, which is necessary in another coating techniques.
4. Silica-Coated Inorganic Nanoparticles

Nowadays, inorganic nanoparticles are important composition of biomaterials and bio-
nanotechnology. Usually, they are presented as colloid and suspension forms that need high
precautions to deal with. First and most important obstacle appears throughout the preparation
of nanoparticles is the stability. Secondly, using inorganic nanoparticles for in vivo or in vitro
applications must be strictly controlled. Therefore, to improve the colloidal stability and the
biological applications of nanoparticles, the particles surface should be targeted.

Silica coating is a well-known method used to enhance the stability colloidal, reduce
the toxicity, protect the core materials and formulate the surface for further functionalization.
Iron oxide, gold, silver, quantum dots, zinc, titanium, cobalt and others are used in
nanotechnology for medical and pharmaceutical applications. Thus, as an enhancement step

these materials have been coated by silica shell.
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4.1. Iron Oxide Nanoparticles

Iron oxide nanoparticles in general and especially magnetic nanoparticles are widely
used during the last ten years to prepare colloids for bio-applications. Magnetic
nanostructures, due to their remarkable properties such as superparamagnetism, high field
irreversibility and high saturation field, have attracted increasing interest in various fields,
especially in biomedicine and bioengineering'® such as nucleic acids separation'®'”'® drug

20,21,22

. 19 . . . . . 23 . .24
delivery ~, protein and biomacromolecules adsorption , vaccine carrier™, cell isolation

and MRI contrast agentszs’26

. However, these magnetic nanoparticles should be separated in
nonmagnetic matrix to avoid aggregation, reduce contact with other surfaces in specific
applications, endow them better acceptance in bio-environmental and add more functionality
to these particles. Silica encapsulation is an ideal approach to provide all features required for
perfect utilization of magnetic nanoparticles.

Deng et al.'® prepared silica-coated magnetic nanoparticles via sol-gel process. They
found that ethanol is good alcohol to have regular shape and morphology of silica shell.
Moreover, the volume ratio of alcohol/water and the amount of catalyst (ammonia aqueous)
and TEOS have important role in this synthesis. Shi et al.”’ synthesized silica-coated elliptical
hematite particles by controlling the reduction time and obtained particles have two uniform
layers of silica, about 55 and 30 nm. The magnetization measurements were shown, per gram
of a-Fe O3 for the core, with thin shell and thick shell of 1.48, 0.96 and 0.43 emu/g

respectively. Narita et al.*®

used the reverse micelles to prepare silica-coated iron oxide
nanoparticles. Iron oxide nanoparticles have been prepared via co-precipitation of FeCl; and
FeCl, in aqueous ammonium hydroxide solution then these nanoparticles were coated with
oleic acid. Secondly, iron oxide nanoparticles dispersion was added to (Igepal® CO-520)

cyclohexane solution, all together were sonicated for five minutes then TEOS was added to

the mixture at once and the reaction was kept at room temperature. In this work, they
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controlled the thickness of silica shell via controlling the pH and reaction time, figure 2.
Finally, silica-coated iron oxide nanoparticles were treated with a silane-coupling agent

containing imidazolium cationic moiety to prevent their aggregation.

504

B
S
PU—Y
JE—

=
=
=

A pH11
o pH 10
m pH S

Diameter (nm)

204

.
thickness of silica layer (nm)

o 1M 2 30 40 s 80 70 0 10 22 30 4 50 6 70
Time (hours) time (hours)

Figure 2: (a) silica-coated magnetic nanoparticles diameter evolution as a function of time and (b) silica shell

thickness as a function of time.

Hong et al.® synthesized silica-coated Fe;O4 nanoparticles. Fe;O4 nanoparticles were
prepared via co-precipitation of Fe’" and Fe*" with ammonium hydroxide and then these
nanoparticles were reacted with sodium citrate and sol-gel reaction was applied to encapsulate
these nanoparticles with silica shell. Oleic acid was grafted on the surface of silica-coated
Fe;O4 nanoparticles and then a final layer of poly(ethylene glycol) was added to these
nanoparticles. Ferreira et al.*® prepared silica-coated magnetite nanoparticles. First, magnetite
nanoparticles have been prepared via FeCl; and Na,SO; precipitation in a solution of
ammonium hydroxide and then these nanoparticles have been coated with silica via Stober
method using TEOS as a source of silica. Measured size is 31.5 nm for magnetite and 43.3
nm for silica-coated magnetite and the oxidation state of magnetite was conserved after silica
coating. Kralj et al.*' synthesized amino and carboxyl functionalized silica-coated magnetic
nanoparticles. Precipitation from aqueous solution of Fe’™ and Fe*” was used to synthesize
maghemite nanoparticles and a citric acid solution was added to the synthesized nanoparticles

to prevent their aggregation. A layer of 1 nm thickness of silica was coated the magnetic
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nanoparticles via TEOS hydrolysis in an alkaline catalyst. A surface functionalization step, by
amino and carboxyl groups, was followed the synthesis, figure 3. 3-(2-aminoethylamino)
propylmethyldimethoxysilane (AMPS) was the amino containing compound grafted on the
surface of silica-coated nanoparticles to functionalize them by amino groups. And two
methods were used to add carboxyl groups using succinic anhydride (SA). 1- Amino
functionalized nanoparticles were re dispersed in N,N-dimethylformamide (DMF) and SA
dissolved in DMF were incubated together under stirring for 20h. 2- SA and AMPS were
reacted to give tow reagents, (AMPS-SA)-1 and (AMPS-SA)-2 which dissolved in ethanol

and incubated with silica-coated nanoparticles at pH 11 and 50°C for 5h under stirring.
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Figure 3: schematic representation of the functionalization of silica-coated magnetic nanoparticles.

Hsich et al.”? prepared polyaniline-coated silica/maghemite nanoparticles. yFe,Os
particles with 10-20 nm of diameter were prepared via reverse micelle method™, these
nanoparticles have been coated with silica shell via modified Stober reaction. Obtained
particles have diameter from 52 to 195 nm and the saturation magnetization of silica/magnetic
nanoparticles decreased by increasing TEOS concentration due to the increase of silica shell

thickness. Finally, in situ polymerization of aniline was applied to coat the silica/magnetic
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nanoparticles. Furthermore, TEOS had an important role in the final particles morphology
because at high TEOS content, a decreasing in polyaniline coating effective was observed.
4.2. Gold Nanoparticles
As iron oxide, colloidal gold nanoparticles have been widely applied in
nanotechnology due to their unique specifications and properties such as quantum size,

3433 Thus, the enhancement of

variant composition and shape-dependent optical properties
colloid gold nanoparticles stability is enormously studied and many stabilization methods
were proposed such as chemical stabilizers, which were applied during nanoparticles
synthesis like citrate group’®, alkanthiols®” and other sulfur legends. Furthermore, polymers
were used to improve the colloidal stability of gold nanoparticles such as polypyrrole (PPY)*®

35,39

and poly(ethylene glycol) (PEG)™™”". Recently, silica encapsulation of nanoparticles is widely
reported in literature to improve the colloidal stability of gold nanoparticles. Selvan et al.*’
synthesized silica-encapsulated gold nanoparticles using tetrakis (hydroxymethyl)
phosphonium chloride (THPC) reduction and a sol-gel process via tetramethylorthosilicate
(TMOS) hydrolysis without any external stabilizing agents. Ghica et al.*' synthesized
paramagnetic silica-coated gold nanoparticles via the reduction of Au (III) chloride salt. First,
gold nanoparticles were prepared with diameter of Snm. Then, AuNPs were coated by silica
shell using Stober method using modified silica precursor, which prepared by coupling 3-
aminopropyltrimethoxysilane and 3-carboxy-proxyl free radical. The average size of obtained
particles was 100 nm and each silica particle contains about 10 AuNPs.

Stober method offers the possibility to encapsulate nanoparticles by controlled shell
thickness using different concentrations of TEOS. As studied Liu et al*, they synthesized and
functionalized monodisperse silica-coated gold nanoparticles, figure 4. In this study, TEOS

has been used to encapsulate gold nanoparticles with different silica shell thicknesses, from

35 to 55 nm, according to the used amount of TEOS. Moreover, a silane-coupling agent was
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used to covalently graft carboxylic groups onto the silica shell, 1.8 x 10* carboxylic groups
per silica/gold particle are estimated. Finally, amino-terminated oligonucleotides have been
covalently conjugated with these nanoparticles that used to build probes for fast DNA

colorimetric detection.

Figure 4: silica-coated gold nanoparticles.

Han et al.'* prepared silica-coated gold/silver nanoparticles via reverse
microemulsion. Gold nanoparticles were distributed in water in cyclohexane reverse
microemulsion using (Igepal® CO-520) as dispersant, ammonium hydroxide as catalyst and
TEOS as a source of silica. Obtained particles, after Sh of reaction, have average size of 24
nm and after total consumption of TEOS (15h) particles average size increased to 35 nm.
Further, to add a functional amine group APTES was mixed with TEOS at a molar ratio of
1:15.

4.3. Silver Nanoparticles

Silver nanoparticles were widely utilized for bio-applications that they are well known

as antibacterial agents and nowadays they have a particular interest in nanotechnology™**

and
bioengineering®. Silica coating has been applied on silver nanoparticles, like AuNPs and

magnetic NPs, to improve their stability colloidal and for additional functionality. First, silver

nanoparticles were distributed in silica glass film via the sol-gel process®, this types of
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structure has a non-linear optical properties. Then, silica-coated silver nanoparticles started to
be synthesized and used.

Reverse microemulsion, as well as sol-gel*’, was used to prepare silica-coated silver
nanoparticles via water-in-cyclohexane emulsion®. RM considered being more suitable to
encapsulate silver nanoparticles by silica, because AgNPs don’t have strong affinity for silica
as well as iron oxide NPs. Thus, the encapsulation of AgNPs by sol-gel method requires a
pretreatment of NPs to promote the deposition and adhesion onto the AgNPs surface. Hagura

1* used the RM method, in that, the AgNPs were dispersed in cyclohexane using a

et a
nonionic surfactant: polyoxyethylene (5) nonylphenyl ether (Igepal®CO-520). Then the silica
shell was prepared by hydrolysis and condensation of TEOS, herein, silica shell size was
controllable by controlling the reaction time and the initial TEOS concentration. Silica-coated
AgNPs applied to enhance the fluorescence properties of fluorescein isothiocyanate (FiTC),
so the metallic nanoparticles reduce the self-quenching and increases the fluorescence of dye
when it is in contact with it. Viger et al.>® prepared dye-doped silica shell on Ag
nanoparticles; TEOS and silane coupling agent chemically bound to FiTC were used to

introduce the dye, figure 5.
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Figure 5: schematic representation of synthesis of FiTC-silica-coated silver nanoparticles via reverses

microemulsion (a) and silver core removal by chemical treatment (b).

4.4. Quantum dots

Currently, quantum dots (QDs) similar to all nanoparticles are used in nanotechnology
to create optical nanoscale devices. They were extensively used from 1980s for electronic and
optic applications since these nanoparticles possess unique photochemical and photophysical
properties, stable against photoblanching and can be excited for multicolor emission with a
single light source’'. Furthermore, the nanocomposites silica/QDs were reported in literature
and many synthesis mechanisms were proposed to enhance the useful of QDs, especially in
biology and diagnostic applications.

Yang et al.>? coated quantum dots by silica shell via the reverse microemulsion
method, figure 6. They prepared water (containing QDs and ammonia) in cyclohexane and n-
hexane emulsion by using Triton X-100 as surfactant and then TEOS is introduced under

vigorous magnetic stirring. The obtained particles have size from 45 to 109 nm.
.

. "

L

Figure 6: TEM image of silica-coated quantum dots (CdTe@SiO,), scale corresponds to S0nm.

Finally, amino groups have been grafted on the surface of these fluorescent
nanoparticles. The aim of this silica shell was to increase the photostability of QDs, improve
the stability colloidal, graft amine groups on the surface and decrease the toxicity for further
biomarker preparation based on fluorescent QDs. Other works also reported the QDs/silica

core/shell nanoparticles as a technique to protect the QDs, improve the stability and reduce
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the toxicity for biological applications™**>. Koole et al.”® succeeded to prepare silica shell
on MPA (mercaptopropionic acid)-coated hydrophobic QDs. It was found that the hydrolyzed
TEOS has a strong affinity to the QDs surface and it can replace the hydrophobic amine
legends then QDs can go into the hydrophilic phase of emulsion where silica growth takes
place. Wang et al.”’ prepared silica-coated ZnO nanoparticles via reverse microemulsion.
Obtained particles have size from 35 to 75 nm and the silica shell thickness was between 11
and 25 nm. These kinds of particles can be applied as UV blockers in several products.

Darbandi et al.”® used direct emulsion, cyclohexane in water and poly(ethylene glycol)
nonylphenyl ether (NP-5) as surfactant to prepare highly monodisperse silica-coated single
QD. It was found that at low and too high ammonia concentrations, irregular silica structures
were formed. This was explained that at low ammonia concentrations the monodispersity is
lost and at high ammonia concentrations the microemulsions are destabilized. All other
reaction parameters are investigated and a reaction mechanism is proposed.

4.5. Zinc Nanoparticles

Zinc is another important metal used to prepare nanoparticles for nanotechnology
applications. Mu et al.”>*® prepared silica-coated ZnS\ ZnS:Mn nanoparticles using TEOS as
a silica source. It has been found that the silica layer improves the antioxidation ability and

the thermal stability, figure 7.
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Figure 7: (a) photoluminescence spectra of non-coated ZnS and (b) of silica-coated ZnS nanoparticles
annealed for 2h.

Dong et al®' coated ZnS:Mn nanoparticles by a silica shell, they used the sol-gel in
reverse emulsion technique to perform this core-shell structures, which have quenching of

fluorescence intensity effect in presence of Cu®” ions, figure 8. This property can be used to

design Cu*" detectors since the detection limit as low as 7.3x10” mol.l".
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Figure 8: proposed mechanism of the Cu®" quenching of fluorescence of silica-coated ZnS nanoparticles.

Hagura et al® prepared highly luminescent silica-coated ZnO nanoparticles dispersed
in aqueous medium. Sol-gel process is used, using TEOS as a precursor of silica, to coat ZnO

nanoparticles by a silica layer.
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4.6. Titanium and Other Nanoparticles
TiO, is one of the most important compounds in skin care products®, pigments®*and

1°° coated titanium dioxide (TiO,) and zirconium dioxide

many applications®. Ryan et a
(Zi03) nanoparticles with silica using TMOS as a silica source. The silica-coated colloidal
were stable to aggregation after 90 days. These structures have been used in subsurface
transport experiments. El-Toni et al®’, to avoid the possible photocatalytic decomposition of
cosmetic products by titanium dioxide®, synthesized silica-coated TiO, nanoparticles via
TEOS hydrolysis in ammonium hydroxide solution and at high temperature (120-240C°).

The cobalt also is one of important metal in nanotechnology. Bonini et al® prepared
silica-coated cobalt-ferrite nanoparticles via reverse microemulsion and supersaturated
solution. Obtained particles had radius of 5 nm and shell with thicknesses of 2.5 nm. Other
particles composed of Co and Pt have been coated with silica via TEOS hydrolysis by
Kobayashi et al”’. Silica encapsulation used on other inorganic nanoparticles such as radio-
labeled selenium colloids”, CdTe nanocrystals72, CdS nanoparticles73, rhodium
nanoparticles™, LaCeF5:Tb nanocrystals’, CeO, nanoparticles’®, Pt naoparticles’’, quantum
dots78,79, and Y,0; nanoparticlesgo,gl,gz.

5. Silica-Coated Organic Nanoparticles

Organic nanoparticles are newly at an important comparable with inorganic
nanoparticles, developing drastically for nanotechnology applications. Usually, organic
nanoparticles are made of polymers® such as polystyrene® and poly (methyl methacrylate)™.

Hollow silica particles are produced using sol-gel process applied on polymeric
nanoparticles, which are used as a solid support. First, nanoparticles are prepared by normal

polymerization then encapsulated by a silica shell using sol-gel process. Finally, the polymer

was removed by calcination at high temperature.
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5.1. Polystyrene latex particles

Tissot et al.’®%

prepared silica-coated latex particles via two steps. First, 3-
(trimethoxysilyl) propyl methacrylate (MPS) molecules were incorporated in PS particles to
present OH and OCHj groups at the particles surface. These groups will be the nucleation
points to silica and the second step was the hydrolysis of TEOS on the PS particles surface to

encapsulate them by silica shell. Finally, PS was removed by calcination step at 600 °C to

have hollow silica spheres, figure 9.

Figure 9: hollow silica nanoparticles.

Lu et al.*® used commercial PS beads, which were encapsulated by silica via a
modified Stober method. It has been found that the silica shell, on the particles, which have
positive charge, has an uniform thickness. From these core-shell particles the core was
removed selectively by calcination the sample in the air at 450 °C or by dissolving PS by an
organic solvent like toluene. The obtained particles have a hollow sphere shape. Graf et al.*
proposed general method to encapsulate nanoparticles by a silica shell; they adsorbed PVP on

the particles surface to stabilize the particles, which are redispersed in ethanol. This method
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was applied on gold, silver, cationic and anionic polystyrene nanoparticles. While, without
PVP coating anionic polystyrene particles with silica could not form uniform coating on the

surface®®. Chen et al.”

reported a one step method to prepare monodisperse hollow silica
nanoparticles. PS used as a template to build the silica sphere and the concentration of
ammonium/alcohol medium and temperature have had the basic role to dissolve PS particles.

Zou et al.”'coated poly (styrene-co-4-vinylperridine) nanoparticles with silica shell
using sol-gel process and PVP as a surfactant, which is used to raise the affinity between the
polymer surface and silica. Hollow silica spheres were prepared using the approach of Chen

1% Cao et al.”* coated PS particles with silica shell by using TEOS in ammonium

et a
hydroxide medium, and then CH,Cl, was added to the reaction medium to remove the core.
5.2. Poly methacrylic acid latex particles
Li et al.”” used the sol-gel process to prepare silica nanoparticles, which were used as a
template to synthesize PMAA shell on it. Then, a second sol-gel process was applied to have
Si0,-PMAA-SiO; trilayer hybrid microspheres. Concentric hollow silica microspheres were
obtained after a calcination step in which PMAA layer was removed, figure 10. The same

approach has been applied to produce tetra- and penta-layer hybrid microspheres®. These

microspheres were proposed as micro-reactors for confined reactions.
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Figure 10: synthesis of hollow microsphere multi-layers of silica.

5.3. Organic pigments

The paints, inks and plastic industry are widely depending on organic pigments, which
have many advantages such as color strength, photosensitivity and excellent transparency.
But, some obstacles are facing the applications of organic pigments such as the poor
dispersion ability, limited hiding power and poor weather durability. Yuan et al coated
organic pigment particles with silica shell by two ways:

I-colloidal silica nanoparticles via layer-by-layer technique’, figurell. Two
electrolytes were deposited on the particles surface, poly (diallyldimethylammonium chloride)
(PDADMAC) and poly (sodium 4-styrenesulfonate) (PSS), to have positive charge. Then, the
colloidal silica nanoparticles have been adsorbed on the positive surface of pigment particles.
Coating organic pigment particles by silica improved the UV scattering properties and

enhanced the dispersion ability of organic pigments in water.
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Figure 11: schematic representation of organic pigment encapsulation using silica nanoparticles”.

2%-Sol-gel process: first, the pigment particles surface treated by PDADMAC/PSS,
then a sol-gel process has been applied to coat the pigments by silica shell. Figure 12 shows
the SEM images of natural and silica-coated particles pigment. Also, this coating enhanced

the UV scattering properties of the pigments.
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(b)

Figurel2: SEM images of a) natural pigments particles and silica-coated organic pigment at different

concentration of water, b) H,O = 6.0 mol/l and ¢) H,O = 7.7 mol/l%.
6. Functionalized Silica Shell Nanoparticles

Coating by silica is the intermediate step of silica-coated nanoparticles technology,
which needs one or more additional steps. Silica surface is an appropriate ground to several
modifications. Normal silica surface presents —OH groups and if a silane coupling agent used
during the synthesis, high number of functional groups can be added to the particles surface.
That proposes numerous types of molecules that can interact with the superficial groups to
modify the surface for the further application. In nanotechnology this process is called
“functionalization”, generally, there is two ways to functionalize the nanoparticles: (i) silane

coupling agents and (ii) polymers.
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6.1. Silane coupling agents

This process is a modified Stober reaction that uses TEOS and TEOS derivatives
molecules during the coating reaction. Researchers synthesized the functionalized silica-
coated nanoparticles via two ways:

1-One step reaction: whereas, TEOS and silane coupling agent have been mixed and reacted

simultaneously. Ashtari et al.”’ prepared amino-functionalized silica-coated iron oxide
nanoparticles. N-(-ethylenamine) propylamine triethoxylsilane (EPTES) has been added with
TEOS (3:5 v/v) during polymerization reaction, water in oil reverse microemulsion was used
to perform these nanoparticles, (He et al.'® used the same approach but with different silane
coupling agent, AEAPS). The presence of -NH, functional groups on the particles surface
was proved by fluorescamine test. Liang et al.”® prepared amino-modified silica-coated
magnetic, and silver, nanoparticles. 3-aminopropyl trimethoxy silane (APTMS) was used as a
source of amino functional group in addition to TEOS as a silica precursor. Yoon et al.”
synthesized luminescent silica-coated cobalt ferrite magnetic nanoparticles using (RITC or
FITC)-modified 3-aminopropyltriethoxysilane (APS) and TEOS in ammonium hydroxide

solution. Then, PEG was adsorbed on the particles surface. Therefore, obtained particles have

luminescent silica shell and a superficial layer of PEG, as shown in figure 13.
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Figure 13: schematic representation of MNP-SiO, (RITC)-PEG synthesis procedure and cell behavior in

presence of MNP-SiO, (RITC)-PEG and external magnetic field”.

2-Two steps reaction: whereas, silica shell coated the particles in the first step and an

additional step was recquired to functionalize the core-shell nanoparticles. Park et al'®

synthesized silica-coated magnetic nanoparticles in the first step and in the second step, amino
functional groups have been added via amino-functionalized silane (APTMS, TMPEA and
TMPDT). The second reaction has been done in toluene at 130°C for 7h. Sulek et al'®' used
also the two steps reaction to prepare amino-functionalized silica-coated magnetic

102
1

nanoparticles. Huang et al ™~ synthesized silica-coated magnetic nanoparticles which were

functionalized by —SH groups using MPTMS as a silane coupling agent. Bahadur et al'®
applied an irradiation by microwave to produce silica-coated silver nanoparticles. TEOS was
used as silica source and without any surface-coupling agents like PVP. Functionalization
step performed using Stober process; silica-coated silver nanoparticles were mixed with
APTES in ethanol/water solution for 24h at room temperature. Finally, amino-functionalized

silica-coated silver nanoparticles have been treated with succinic anhydride to have carboxyl-

functionalized silica-coated silver nanoparticles.
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6.2. Polymers

Silica surface shows mechanical and thermal stability and presents reactive silanol
groups, which facilitate the chemical modifications. Thus, coating silica with polymers
promotes a great range of applications for silica nanoparticles and silica-coated nanoparticles,
since this can be done via two ways.

6.2.1. Functionalization of particles by “Grafting to”

First, polymer coating has been applied on the silica particles; Bose et al'® coated
commercial mesoporous silica particles with Siloxane polymer, which was dissolved in
chloroform then different amounts of silica were added to the solution to have several levels
of coating. Adsorbed polymers on silica particles have been investigated by
thermogravimetric and nitrogen adsorption analysis. Hayashi et al'®® prepared silica particles,
which were linked with pyrenyl units on their surfaces. These units have been used to interact
with polymer segments (N, N-dimethylaniline) that can coat the particles surfaces. Synytska et
al'® grafted carboxyl-terminated polystyrene onto silica particles. Initially, silica particles
have been coated with a monolayer of 3-glycidoxypropyl trimethoxysilane (GPS), and then
PS-COOH or FPS-COOH was grafted onto the surface of modified silica particles. Core-
shell\silica-PS particles have been obtained and used as a model surface to study the water
wetting behaviour. Yoon et al”’ prepared silica-coated Co-ferrite nanoparticles and then these
particles have been coated with PEG using PEG-Si(OMe);. Polymer coating increased the
biocompatibility of nanoparticles, which were used for cells separation.

This method is experimentally simple but has some significant limitations. In
particular, it is difficult to achieve high grafting density because of the screening of reactive

surface by already grafted polymers.
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6.2.2. Functionalization of particles by “Grafting from”

This technique, called also surface initiated polymerization (SIP), depends on an
initiator/precursor incorporated in the external layer during particles synthesis or grafted on
the particles surfaces after particles preparation. Huang et al'” used technique called a surface
initiated atom transfer radical polymerization (SI-ATRP), on porous silica particles to coat
them with a polyacrylamide thin film. 1-(trichlorosilyl)-2-[m/p-(chloromethyl) phenyl] ethane
has been used as a surface initiator for polymerization and Cu(bpy).Cl was added to control
the radical population. PAAm-coated silica particles were used to separate proteins by size

108 109
I,

exclusion. Von Werne et a prepared polymer-nanoparticle hybrids using surface-

modified silica nanoparticles and styrene/methyl methacrylate as monomers. Perruchot et al''’
synthesized polymer-grafted silica particles based on polymerization of methacrylate from
modified silica surface at 20°C. First, silica particles have been treated by bromoisobutyrate-
based siloxane in ethanol at 20°C. Then, methacrylate has been polymerized using CuCl:bipy

""" used the same approach, functionalization of silica particles

catalyst system. Mori et a
surface by inimer (initiator-monomer) then polymerize from this surface to produce hyper-
branched polymer-grafted silica particles. They used 2-(2-bromopropionyloxy) ethyl acrylate
(BPEA) as inimer to functionalize the silica particles and pentamethyldiethylenetriamine
(PMDETA) as a monomer. Hyper-branched shells have been obtained by using both
monomers, BPEA and PMDETA, during polymerization.
7. Characterization and Properties

The characterization methods used in the analysis of the chemical composition,
morphology, surface and physical properties of the encapsulated nanoparticles are varied.

This section will highlight on some techniques often used to study and investigation of

nanoparticles. The functionality of encapsulated nanoparticles strongly depends on the surface
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composition and its properties. Therefore, characterization techniques focus on the surface
properties of the nanoparticles to understand the structure-application relationships.

7.1. Composition and chemical structure

Thermal gravimetric analysis (TGA) technique often used to determine the chemical
composition of material by measuring weight loss as a function of temperature. Thus, this
technique is useful to study the composites consist of organic and inorganic material such as
silica shell on organic polymer or the opposite polymer onto silica particles. Miomandre et
al''? prepared polypyrrole-silica core-shell nanocomposites and the TGA investigations
showed a drastic loss of weight, started at 210°C, in the case of homopolymer. Whereas, in
the silica coated polymer case the weight loss is started at 260°C, which gave an evidence that
the polymeric core is protected by an inorganic shell, figure 14. On the other hand, silica

13114 “Figure 15 shows

coated metallic core, silica shell showed an oxidation protector role
that the oxidation stage of pure aluminum is faster than this in the case of silica-coated

aluminum.
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Figure 14: TGA curves of (a) homopolymer, (b) and (c) silica-coated polymer prepared by

. . . . 11
microemulsion medium using SDS as surfactant'".
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Figure 15: TGA curve of pure aluminum and silica-coated aluminium'".

Another technique generally used to study and prove the formation of silica shell is the
FT-IR, a major peak in the range of (1000-1200 cm™) that is attributed to the asymmetric
stretching vibrations of Si-O-Si bonds of silica can be found in the particles. In addition, the
peak at 883cm™ indicates the stretching vibrations of Si-OH bonds, which means that the
condensation reaction is not completed. Kralj et al’', figure 16, used FT-IR to characterize
silica coated magnetic nanoparticles and functionalized with amino and carboxyl groups. The
stretching vibrations of Si-O-Si bonds, indicate the condensation of silica shell, found at (990-
1130 cm™) and a second important peak at 1030 cm™ corresponding to Si-O-Fe stretching

vibrations representing the superficial interactions.
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Figure 16: FT-IR spectra of silica-coated magnetic nanoparticles (NP-Si), amine functionalized NP-Si

(NP-Si-AMPS) and carboxyl functionalized NP-Si (NP-Si-AMPS-SA)’".

Employing FT-IR to study the core-shell particles supplies evidences of all bond
modifications such as bonds formation” or double bonds disappearance. More analysis
techniques were applied to characterize these particles like as X-ray diffraction (XRD)", X-
ray photoelectron spectroscopy (XPS)* and UV-Vis spectroscopy, when the particles or one
of the composites absorb in this range®'.

7.2. Morphology and surface properties

TEM, SEM and AFM are three microscopy techniques to study the morphology of
nanoparticles. Transmission electron microscopy (TEM) is a technique based on a beam of
electrons transmits ultrathin specimen giving information about the general and inner
structure of the particle. Normally, all researchers and nanoparticles developers use TEM to
investigate the morphology of particles. Moreover, new instruments in this field were
developed such as high-resolution transmission electron microscopy (HTEM) and electron
spectroscopy imaging in the transmission electron microscopy (ESI-TEM), figure 17 shows

an example of TEM and HTEM images.
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Figure 17: (a) HTEM image of silica-coated magnetic nanoparticles’ and (b) TEM image of silica-

coated iron oxide nanoparticlesm.

Scanning electron microscopy (SEM) is a useful technique to study the surface details

of the particles since images 3D can be obtained from this technique as shown in figure 18.
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Figure 18: SEM image of streptavidin-coated silica particles (a) biotinylated NPs and (b) unbiotinylated

NPs'!.

Atomic force microscopy (AFM) is the third technique of microscopy, which is
providing the morphological information of the surface, figure 19. In the case of core-shell

particles it is useful to measure the shell thikness''®.
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Figure 19: tree dimensional AFM image of QDs (left) and silica-coated QDs (right)' .

7.3.Methods of size and zeta potential measurements

Dynamic light scattering (DLS) is the most commonly methods used for measuring
the size distribution profile of small particles, few nanometers up to one micron, in solution
(suspensions and colloids). It depends on the laser beam that hits the particle, which in its turn
scatters the light in all directions. The intensity and the direction of scattered light are
depending on the particle size' .

Zeta potential is the index of the colloidal stability, it represents the potential
difference between the dispersion medium and the stationary layer fluid attached to the
dispersed particles. Zeta potential, as a function of pH, for silica-coated nanoparticles is

essential to be determined since the silica shell has a specific zeta profile as a function of pH.

Figure 20 shows curves of zeta potential as a function of pH.
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Figure 20: Zeta potential variation as a function of pH of (a) silver nanoparticles and (e) silica —coated
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silver nanoparticles
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8. Applications of silica-coated particles in life science

Silica coated particles have dual properties one is related to the core and the other is
associated to silica shell. Therefore, their applications are widely expanded in several fields
and especially in biomedical domain such as DNA extraction separation and detection,
proteins adsorption, bioimaging, anti-bacteria, cancer therapy and cell tracker.

8.1. DNA extraction, separation and detection

Gold nanoparticles were widely used for DNA hybridization detection'"'**!%,
consequently, advances in this field were developed. Silica coating is considered as an
important technique for improving the functionality of nanoparticles. Cerruti et al'** showed
that silica coated gold nanoparticles have ten times lower of limit detection than non-coated
gold nanoparticles, this is due to that the silica shell increased particles emissivity. The
nanoparticles were irradiated by laser light at a frequency close to the surface plasmon
resonance of gold and the re-emitted radiation was detected by IR camera. Furthermore, DNA
hybridization detection by functionalized silica shell, which can be easily obtained due to the
high reactivity of silica surface, was realized*’. Gold is one of the best metals used to design
DNA detectors but other materials are used also for this purpose like silver’ and iron

12 DNA extraction and separation using nanoparticles is depending on the

oxide
adsorption/desorption behavior of DNA molecules onto these particles in various
conditions'*°. Silica coated iron oxide nanoparticles, can be separated rapidly under the action
of magnetic champ, are commonly used for DNA extraction tools. Electrostatic DNA
adsorption of the negative charged DNA molecule onto the silica surface positively charged'’
is the separation mechanism of DNA by silica coated magnetic nanoparticles. DNA

adsorption onto the nanoparticles is not specific so the quantity extracted is maximal. Figure

21 shows the DNA detection technique using fluorescent DNA and silica NPs.
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Figure 21: schematic representation of DNA detection by bioconjugated silica NPs. Known DNA are
fixed on solid support and onto the surface of silica NPs, which can be detected by an imaging technique such as
fluorescence. Target DNA will hybrid with capture DNA and probe DNA-NPs will hybrid with target DNA to

show their position'*

8.2. Proteins immobilization

The interaction between proteins and silica surfaces is being extensively studied for
the nanotechnology, biomaterials and biotechnological applications. Proteins and enzymes
adsorption onto the nanoparticles surface is an important step for these applications, however,
the glutaraldehyde method is commonly used to prepare the nanoparticles surface for

127 . . . .
. The interaction nature between proteins and nanoparticles

interaction with proteins
changes according to the aim of nanoparticles and their application. Some applications require
reversible interaction (adsorption/desorption) such as chromatography'®®, proteins
purification®” and proteins controlled release’. Others need permanent interaction like

enzymes immobilization'®! for biosensors and bioanalysis. Cavaliere-Jaricot et al.'*

reported
glucose oxidase (GOx) immobilized onto silica-coated quantum dots for electrochemical and
indirect photoluminescence (PL) analysis of glucose. Silica shell was functionalized by amine
groups, which acted as conjugation points for GOx and QDs core used to study the PL of
glucose oxidation products. The nanoparticles were fixed onto a gold electrode and the

oxidation of glucose onto the modified electrode was proved in the range of 2 to 25 mM

glucose. The idea of PL study depends on the quenching of PL by hydrogen peroxide

83



produced during glucose oxidation but the sensitivity range of PL was from 0.5 to 3 mM
glucose.

8.3. Bioimaging and cell tracer

Diagnosis by bioimaging techniques like MRI and fluorescence is widely used in

recent years especially for cancer and cells detection'”

. MRI technique normally uses
contrast agents such as iron oxide nanoparticles'®', whereas, fluorescence techniques use
fluorophores'**. Nanoparticles role in bioimaging is to provide the solid support for the
contrast agents and fluorophores, since in vivo these agents should be protected from the
immune system and don't show any toxicity. Silica shell offers total protection of
encapsulated materials and adds the tolerance and the biocompatibility in favor of the
biological systems. Photostability was remarkably observed when quantum dots and
fluorescent nanoparticles were coated by silica shell®*'** in addition, all silica coated
nanoparticles showed more acceptance and longer residence in vivo than their non coated
composites. Park et al® prepared magnetic nanoparticles doped in silica, which it is
incorporated with rhodamine B isothiocyanate, MNPs@SiO, (RITIC). Obtained nanoparticles
were biocompatible and suitable for both magnetic resonance and optical imaging and for
labeling human mesenchymal stem cells (MSCs). Silica coated quantum dots nanoparticles
were used to evaluate the uptake and the interaction with cells of other contrast agents like
perfluorocarbons (PFCs), which have unique properties, including their low solubility in
water, fats and lipids, chemical and biological stability and oxygen carrying capacity,"”

figure 22. This method can be used for screening of PFCs compounds to evaluate their uses

and their targets such as macrophages and tumor cells.
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Figure 22: fluorescence microscopy images of stained cells; membrane green and nucleus blue. (a)

Control cell and (b) incubated cells with fluorinated silica-coated quantum dots (0range)134.

8.4. Cancer therapy
Novel technologies are developed recently for cancer treatment based on

6

phototherapy'* and hyperthermia therapy'*®. They are depending on the uptake of

nanoparticles, usually made of metals, by cancer cells and enhancing these nanoparticles by

an external energy source to kill the tumor cells. Tada et al."*’

reported a work on preparation
of silica coated magnetic nanoparticles containing methylene blue, potential photodynamic
therapy drug, into the silica shell. Magnetic core and drug were totally protected by the silica
matrix and tumor cells targeting was easy and specific due to the facile functionalization of
silica surface. The final result of such therapy techniques is tumor cells death via an apoptotic
mechanism provoked by the enhanced nanoparticles with an external energy source. In
another work silica coated manganese oxide nanoparticles toxicity was tested on the HelLa

cells, which survived and a large rate were not affected, moreover, cells also survived when

they were exposed to an electromagnetic field without the nanoparticles. But the combination
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of both, nanoparticles and electromagnetic filed, with HeLa tumor cells killed them via an

apoptosis process' ", figure 23.

Figure 23: HeLa cells stained with Hoechst-33258: (A) HeLa cells, (B) HeLa cells + silica-coated

manganese nanoparticles and (C-G) morphology deformation and apoptotic HeLa cells provoked by the

nanoparticles and electromagnetic field'*®.

Matrin-Saavedra et al.'*’

prepared mesoporous silica coated magnetic microspheres
(MMS) for hyperthermia therapy. The particles biocompatibility was investigated on three
human cell types; A549, Saos-2 and HepG2, cells were treated with MMS for 24 h. An
efficient uptake of MMS in all the tested cell types was observed and MMS showed high
biocompatibility whereas the cells had a viability index over 0,7 when the cells were exposed
of doses up to 4 mg/ml'for 3 days. Low frequency alternating magnetic field (AFM) was
used to induce the magnetic hyperthermia and to test the ability of MMS to enhance thermal
stress and cell death, M1 cells were exposed to AFM for 45 min. in the presence or absence of
MMS. Medium temperature, in presence of AFM and MMS, rose to 50°C after 25 min. and

stay stable to the exposure end, consequently, the cells viability was greatly decreased and

release of LDH into the culture medium was observed.



9. Conclusion

Actually, nanoparticles are widely applied in all research fields and constantly more
and more improvements are needed to meet the drastic increase in application number that use
nanoparticles. Silica coating is one of the most important methods used to modify and
improve the nanoparticles surface. Herein, the principal coating methods were cited in
addition to numerous kinds of inorganic and organic nanoparticles coated by silica shell were
discussed. Moreover, the powerful techniques used to characterize and study the properties of
silica-coated nanoparticles were briefly explained. Finally, some biomedical applications
based on silica-coated nanoparticles such as imaging, DNA detection and separation, proteins
immobilization and cancer therapy were discussed.

The large number of nanoparticles could be encapsulated by silica and the variety of
applications related to the properties of based core and silica shell we can understand the

importance and the utility of silica encapsulation.
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Résumé

Les nanoparticules basées sur la silice pour des applications biomédicales

Les nanoparticules a écorce de silice sont largement utilisées dans le domaine
biomédical car elles sont biocompatibles et leur surface biocompatible peut étre bioactive.
Elles ont été utilisées dans un grand nombre de domaines et des applications multiples ;

1 — extraire, purifier et détecter I’ADN pour la préparation d’échantillon ;
La surface de la silice est reconnue capable d’adsorber et désorber les molécules d’ADN en
fonction de pH et de la salinité de la solution. Ces interactions contrdlables entre la silice et
I’ADN ont permis de concevoir des méthodes d’extraction basées sur des particules de silice
magnétiques.

2 — adsorber et immobiliser de protéines ;
Les particules de silice ont été aussi utilisées pour séparer des protéines et également pour
I’immobilisation, des enzymes et des anticorps soit directement, soit aprés une immobilisation
spécifique dans le but de développer des méthodes de détection et d’analyse enzymatique.

3 — Libération de molécules actives ;
Les particules de silice poreuses ou mésoporeuses peuvent étre élaborées avec une porosité
relativement controlée développant ainsi une grande surface spécifique capable de contenir
des molécules actives principalement hydrophiles. Il est également possible de charger ces
particules avec des molécules actives hydrophobes, mais pour ce faire il est nécessaire
d’induire une modification de la surface interne des pores. Ces particules poreuses chargées
d’actifs peuvent ainsi €tre utiliser la libération et le ciblage.

4 — Agent de contraste pour I’imagerie biomédicale ;
Pour améliorer la biocompatibilité et la stabilit¢ chimique des particules magnétique et
apporter une fonctionnalité de surface, I’encapsulation par une couche de silice des particules
magnétiques (I’oxyde de fer) est incontournable. Les particules résultantes de ce procédé ont
¢té utilisées comme des agents de contraste pour le diagnostic in vivo aprés un greffage
chimique de molécules de reconnaissances pour un ciblage spécifique.

5 — Améliorer les propriétés mécaniques de produits pharmaceutiques.
Les particules de silice sont également utilisées entant qu’aditif ou excipient pour apporter
une nouvelle fonctionnalité ou tout simplement pour améliorer les propriétés mécaniques d’un
médicament. En effet, suite a sa qualité d’absorber 1’eau la silice a été utilisée comme un
expient pour améliorer les caractéristiques physiques de poudres et comprimés

pharmaceutiques.
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In this short review we highlight novel uses of silica-based nanoparticles (NPs) in the biomedical sector.
Silica NPs are widely used in nanotechnology because they are easy to prepare and inexpensive to
produce. Their specific surface characteristics, porosity and capacity for functionalization make them
good tools for biomolecule detection and separation, providing solid media for drug delivery systems
and acting as contrast agent protectors. In addition, they are used as safety and biocompatible
pharmaceutical additives. Here, we focus on novel techniques based on silica NPs for the most important

biomedical applications.

Introduction

Considerable efforts are now being devoted to the design and
fabrication of synthetic nanoscale biomaterial structures capable
of functioning at molecular level in accordance to the combined
rules of biology, chemistry and physics. Generally, nanoscale
materials are defined as solid colloidal particles that include both
nanospheres and nanocapsules. Because of their unique nano
size-dependent characteristics, these materials are starting to
emerge as undoubtedly the most interesting materials to shape
the future of different technologies, and they will have a profound
influence on almost every aspect of our lives. To meet such high
expectations, researchers are trying to develop and employ a
variety of nanomaterials, such as semiconductor quantum dots,
carbon nanotubes, plasmonic nanoparticles (NPs), magnetic NPs
and silica nanoparticles (SiNPs). In comparison to other NPs,
SiNPs may appear mundane at first sight. However, from the
practical viewpoint, this does not appear to be the case. In
nanotechnologies, silica-based NPs have a dominant role because
of their fundamental characteristics, such as size (generally from §
to 1000 nm), unique optical properties, high specific surface area,
low density, adsorption capacity, capacity for encapsulation,
biocompatibility and low toxicity [1]. These features lead to SiNPs

Corresponding author: Elaissari, A. (elaissari@lagep.univ-lyon1.fr)

being widely utilized as an inert solid supporting or entrapping
matrix [2].

Consequently, intensive research has been performed to use
SiNPs in diverse biomedical applications for diagnosing and con-
trolling diseases, identifying and correcting genetic disorders and,
most importantly, increasing longevity. Thus SiNPs offer consid-
erable advantages and have opened new avenues of biomedical
research in numerous leading edge applications, such as biosen-
sors [3], enzyme supporters [4], controlled drug release and deliv-
ery [5] and cellular uptake [6].

In view of the significance of silica-based nanomaterials for
biomedical applications, as highlighted above, we review here
some of the most specific milestones in ongoing research. We
do not consider the environmental aspects of silica NPs. However,
we highlight new widespread applications of silica-based nano-
materials in protein adsorption and separation, nucleic acid detec-
tion and purification, drug and gene delivery, imaging and
pharmaceuticals.

Protein adsorption and separation

Due to their ease and speed of preparation, low cost, high specific
surface area and numerous surface functionalization possibilities,
SiNPs provide promising tools for specific protein adsorption and
separation. The interaction between SiNPs and proteins has been

1359-6446/06/$ - see front matter © 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.drudis.2012.06.014
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studied extensively in the past. For example, studies have focused
on conformational changes [7], the influence of SiNP size on
enzyme activity [8,9] and the orientation of protein adsorption
on SiNPs [10].

Ester-functionalized polypyrrole-SiNPs [11] can be bound cova-
lently with human serum albumin (HSA) protein, and immediate
flocculation is observed after the incubation of HSA functionalized
NPs with anti-HSA. This suggests that we can use these NPs for visual
diagnostic assays and designing biosensors. Taking another direc-
tion, Slowing et al. [12] succeeded in preparing mesoporous silica
nanoparticles (MSNs) to transport cytochrome ¢ through cell mem-
branes. Figure 1 shows a presentation of cytochrome ¢ intracellular

transportation and release by MSNs. Cytochrome ¢ was loaded in
MSNs, which crossed the cell membrane and then released their
contents in the cytoplasm. In addition, the cytochrome c released
was subjected to an activity test, which proved that the cytochrome
¢ released by MSNs can serve as an active enzyme in aqueous
solution. Human cervical cancer cells (HeLa) have been selected
for the intracellular delivery and release of cytochrome c into the
cytoplasm.

Kim et al. [13] prepared dual mode silica-based NPs for specific
binding to his-tagged proteins, isolation/purification, and site-spe-
cific protein labeling with multiple fluorophore species. Figure 2
presents the preparation and the function modes of nitrilotriacetic

Cytochrome ¢

Intracellular controlled release

Drug Discovery Today

Cytochrome ¢ transporting into the cytoplasm using MSNs (particle size is 265-933 nm and pores approximately 5.4 nm). Cytochrome c is loaded outside the cell
membrane and released, under physiological conditions, into the intracellular compartment [12]. Abbreviation: MSNs: mesoporous silica nanoparticles.
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FIGURE 2

Dual-mode functional preparation of modified silica nanoparticles, 23 nm, to isolate his-tagged proteins and tagging with multiple fluorophore. Silica
nanoparticles surface is modified by nickel ions Ni>* for specific interaction with 6x his-tagged proteins [13]. Abbreviation: his: histidine.

acid (NTA)-modified dye-embedded SiNPs. The SiNPs obtained
showed high specific interaction with his-tagged proteins, and
approximately 30 protein units were captured per particle. A similar
work using NTA-polyethylene glycol (PEG)-modified SiNPs was
published [14]. Hiss-GFP and hise-biotin were specifically immobi-
lized on prepared SiNPs. In addition, orientation, areal density and
distance between immobilized proteins and solid substrate are
controllable, auguring well for highly specific biosensors.

New techniques have been used to design SiNPs as solid media
for protein immobilization. Shiomi et al. [15] covalently immobi-
lized the hemoglobin (Hb) on SiNPs and a second layer of silica was
created on the surface. Finally, after removing the Hb template,
SiNPs functionalized for Hb recognition were obtained. Depend-
ing on the type of vinyl-modified SiNP, He et al. [16] were able to
copolymerize functional and cross-linking monomers on the sur-
face of protein imprinted NPs.

Furthermore, silica-coated iron oxide NPs have attracted
increasing attention as new tools for protein binding and separa-
tion [17-19], due to their magnetic properties that provide an easy
and fast method for NP separation. The combination of two
materials makes it possible to enhance the properties of final
products. In the case of silica coated iron oxide NPs, they have
a magnetic core that can be used for fast particle separation by an

external magnetic field, and a silica shell that provides greater
colloidal stability, biocompatibility and a platform for fulfilling a
wide range of functions. Yang et al. [20] reported silica-coated
magnetite NPs using the reverse microemulsion technique [21].
Magnetite-containing spherical NPs were used for bioseparation,
and horseradish peroxidase (HRP) was used as a protein. HRP was
entrapped in the silica pores with entrapment efficiency in the
range of 85-90%, thereby conserving its peroxidatic activity. In
addition, it was demonstrated that the protein HRP resisted leach-
ing from NPs for a period of more than 60 days. These biomole-
cular nanostructures entrapped in silica-coated magnetite NPs
have been suggested for various uses such as enzyme immobiliza-
tion, immunoassays, biosensors and bioseparation.

His-rich proteins were also targeted by silica-coated iron oxide
NPs, and nitrilotriacetic acid/Co?*-linked, silica/boron-coated
magnetite NPs [22] were prepared for specific interactions with
6x His-tagged proteins. The modified NPs were approximately
200 nmin size and interacted with two protein models: C-terminal
6x his-tag and an internal 6x his-tag. Another preparation
depended on the adsorption of zinc NPs on silica-coated magnetic
NPs [23]. Bovine serum albumin (BSA) was used as a His-rich
protein that presented reversible adsorption on zinc/silica-coated
magnetic NPs. Thus these structures can be used as purification
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tools for this kind of protein. Nowadays, SiNPs are becoming more
specific regarding their targets. Specific detection and quantifica-
tion of lysozyme by aptamer-functionalized SiNPs [24] has been
achieved, with the concentration of lysozyme detected in the
range of 0-22.5 um.

Nucleic acid detection and purification

Significant information can be obtained from DNA molecules used
for diagnostics, genetic investigations and therapy. DNA extrac-
tion and purification is an important step of DNA manipulation.
Thus the latter has become the foundation of molecular biology,
genetic therapy and genetics. The new techniques developed have
increased the competence, capacity and facility for DNA molecule
separation and purification.

DNA adsorption onto silica surface

In line with this direction, nanotechnology has started to emerge
as one of the most important techniques applied to the field of
genetics. The numerous options for preparing NPs with multi-
functionalized surfaces have enhanced biomedical research
through the employment of silica-based NPs for DNA detection,
separation and purification. The adsorption of DNA onto the
surface of SiNPs is generally controlled by three effects: weak
electrostatic repulsion forces, dehydration and hydrogen bond
formation [25]. For example, the interaction of DNA with silica
surfaces through hydrogen bonds was studied by Raman and
Fourier transform infrared (FTIR) spectroscopy [26]. Through
understanding the nature of such interactions, researchers have
been able to develop silica surfaces for more specific and efficient
interactions. Kneuer et al. [27] synthesized amino-modified SiNPs,
based on the modification of SiNPs with N-(2-aminoethyl)-3-ami-
nopropyltrimethoxysilane (AEAPS) or N-(6-aminohexyl)-3-ami-
nopropyltrimethoxysilane (AHAPS). The average size of particles
was from 10 to 100 nm with a surface charge potential from +7 to
+31mV at pH 7.4. Plasmid DNA was also used to study the
interaction with prepared SiNPs to form a complex protected from
degradation by DNase I. Interestingly, unlike free plasmid DNA,
which is totally degraded by DNase I, the addition of ten parts of
SiNPs almost totally protects the plasmid DNA, with only a small
fraction of supercoiled DNA being transformed into nicked circu-
lar DNA. Furthermore, although 30 parts of SiNPs completely
protects the DNA, it is difficult to separate the latter at this ratio.

SiNP uses for specific DNA detection

SiNPs are also employed to design DNA biosensors through their
functionalization with oligonucleotides by hybridization with
target complementary DNA or RNA probes to attain variable
fluorescent intensity. Hilliard et al. [28] reported the immobiliza-
tion of oligonucleotides onto SiNPs using disulfide-coupling
chemistry. To do this, 60 nm silica particles were obtained and
silanized with 3-mercaptopropyltrimethoxysilane (MPTS), then
oligonucleotide probes were immobilized onto the SiNPs, which
were incubated for DNA hybridization. The fluorescent signal was
observed at an emission wavelength of 520 nm to evaluate the
efficiency of hybridization. In another work, Zhou et al. [29]
developed new core shell nanostructures based on silica/dye-
coated gold NPs, and oligonucleotide signaling probes were also
immobilized. These dye-doped silica-coated gold NPs were used for

labeling in microarray-based detection. Increased sensitivity with
photostable signals was obtained.

In another interesting work, electrochemiluminescence DNA
detection electrodes were developed based on SiNPs and gold [30]
and platinum [31]. Employing SiNPs in this technology has almost
tripled detection sensitivity and has also increased selectivity.
1x 107 moll™! of the target DNA was detected using a
Ru(bpy);**-doped silica NP DNA probe on a platinum electrode
[31), while a detection limit of 1 x 10" mol1~! was achieved
with Ru(bpy);**-doped gold NPs on a gold electrode [32].

SiNPs also have an important role in building and developing a
fast, cost-effective and robust isolation method for DNA extrac-
tion, purification and analysis. Nguyen et al. [33] studied the
kinetics and conformational changes of plasmid DNA adsorption
on silica in monovalent and divalent salts. They found that two
kinds of electrostatic interactions should be considered: interac-
tion between plasmid DNA and the silica surface, and interaction
between subunits of the plasmid DNA that control molecule
conformation. In a monovalent salt solution with Na* ions having
low ionic strength, plasmid DNA takes a non-compact form and
intramolecular electrostatic repulsion is effective. On the contrary,
when increasing ionic strength, the plasmid DNA molecule takes a
more compact form, which means that intramolecular electro-
static repulsion is not effective. In a divalent salt with Ca>* ions
that form complexes with the oxygen atoms of the phosphate
groups of double-strand oligonucleotides [34,35], this interaction
significantly reduces the intramolecular electrostatic repulsion of
the DNA molecule, thus it adopts a highly compact form. Conse-
quently, the attachment coefficient observed in the presence of
300 mm NaCl is 0.01-0.03, and adsorption to silica is reversible. By
contrast, in the presence of 1 mm Ca?* the attachment coefficient
is 0.75-0.87 and adsorption is fast and irreversible.

DNA extraction by silica-coated magnetic NPs

Silica-coated magnetic NPs are commonly used to extract DNA
from biological samples. Due to their fast and easy separation,
magnetic NPs have become preferential tools for biomedical
applications. The magnetic core of such structures endows them
with separation properties while the functional shell is charged to
interact with the nucleic acid molecules. Mesoporous silica and/
or magnetic particles were prepared as adsorbents of DNA mole-
cules [36], but without a functional surface these particles were
not highly specific and DNA load depends on pore size. Non-
porous silica-coated iron oxide NPs were prepared to isolate
plasmid DNA from a bacterial cell lysate [37] and genomic
DNA from plant cells [38]. This depends on the adsorption of
plasmid DNA onthe silica surface under a high salt concentration.
Furthermore, and for more specific interaction between DNA and
silica, functional groups were created onto the particle surface.
Amino-functionalization is one of the applications used in this
field. Kang et al. [39] reported the synthesis of amino-functiona-
lized silica-coated magnetic NPs with an average particle size of
25 nm. The adsorption efficiency of these particles was four to five
times higher compared to silica-coated magnetic NPs in the
presence of 0.7 M NaCl. Through such efforts, human genomic
DNA was successfully separated, using amino-functionalized
silica-coated magnetic NPs, from saliva and blood with high
efficiency and specificity.
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Drugs and gene delivery
SiNPsused as carrier systems for drugs and genes have two different
forms, mesoporous NPs and surface functionalized NPs.

Mesoporous SiNPs for drug delivery applications

Mesoporous SiNPs are used as carrier systems for drug delivery. The
uptake and release mechanism is dependent on the drug being
kept in the pores of NPs, by using additional molecules, for
example, gold NPs [40], as caps to close the pores. This concept
is called gatekeeping [41]. Lai et al. [42] reported the synthesis of
mesoporous SiNPs with chemically removable CdS NP caps as
carrier systems for drug delivery. Figure 3 illustrates the uptake
and release mechanism, CdS NPs have the role of caps that keep
thedruginthepores. Covalentinteraction between the CdSNPs and
the pore surface takes place afterloading the drug inside the pores to
ensure it stays inside them. To release the drug, a disulfide bond-
reducing molecule, such as dithiothreitol (DTT) or mercaptoetha-
nol (ME), is needed to break the covalent bond and open the pores.
These kinds of systems are highly efficient for drug delivery, because
they have efficient stimuli-controlled release, no additional mod-
ifications of the drug needed for loading in the pores and, what is
more, they allow the transfer of a large number of drugs.

Functionalized silica nanoparticles for gene delivery applications
Functionalized silica nanoparticles (FSN) should have two differ-
ent states in two different conditions for use for gene delivery. The
first condition is the gene loading, which requires good affinity
between the genes and NPs. In this condition, the uptake and
storage of the gene molecules by the NPs and the interactive nature
between them depends on electrostatic interaction. DNA mole-
cules are negatively charged, thus researchers try to prepare posi-
tively charged NPs, such as amino groups [27]. The second
condition is gene release. In this case weak interactions are pre-
ferable between the gene and FSN to assist the release of the genes
from the NPs into the target.

Bharali et al. [43] reported in vivo applications of amino-surface
functionalized SiNPs in gene delivery. SiNPs, plasmid DNA-bind-
ing SiNPs and free plasmid were injected into mouse brains.
However, only plasmid DNA-binding SiNPs produced robust gene
expression, which suggests that the gene was very well protected
and transferred into the cell nuclei.

Imaging

SiNPs are used in medical imaging and its applications as contrast
agents have an important auxiliary role. These are used to encap-
sulate contrast agent particles, such as gold [44], silver [45], iron
oxide [46], organic dyes [47] and quantum dots [48]. SiNPs are
generally used and applied in medical imaging because of char-
acteristics such as higher biocompatibility, controllable size and
size distribution, contrast agent protection and a large number of
possible surface functions. Ow et al. [49] prepared highly fluor-
escent silica-coated fluorophore NPs with sizes ranging from 20 to
30 nm. The NPs prepared were photostable and 20 times brighter
than their constituent fluorophores. The outer silica shell provides
an additional choice for targeting specific cells or tissues through
silica surface functionalization. Bakalova et al. [50] reported the
intracellular localization of amino functionalized silica-shelled
quantum dot micelles. These NPs demonstrated good intracellular

delivery due to their small size and highly positively charged
surface. In addition, due to their low cytotoxicity, NPs can be
used as multifunctional tools such as contrast agents and drug/
gene/protein delivery systems. Iron oxide-doped SiNPs are used for
MRI cell labeling [51] and grafting has been performed on silica-
coated dye NPS for constructing dual imaging probes to perform
both fluorescence and MRI functions [52]. Multi-constituent
nanostructures are widely used in imaging techniques, thus
demonstrating the potential of multifunctional particles.

The technique of a core and multilayer shell was applied to
synthesize gold coated and/or silica-coated iron oxide NPs [53] as
bifunctional NPs suitable for both MRI and photothermal therapy.
Lee et al. [54] applied this technique and reported mesoporous
silica-coated dye NPs associated with iron oxide NPs (Fe304-MSN),
with iron oxide as a contrast agent for MRI, the mesoporous silica
shell for drug delivery and dye NPs for fluorescence imaging. These
trifunctional NPs were loaded by an anticancer drug, doxorubicin
(DOX), and tested in two cases: (i) in vitro, on B16-F10 cells, cellular
uptake of NPs was confirmed by both MRI and fluorescence
imaging; (i) in vivo, in this case mice were used to test the
capability of Fe3O4-MSN to accumulate at the tumor site and
deliver a drug. Consequently, Fe304-MSN NPs were accumulated
at the tumor site, which was verified by MRI and orange RITC
fluorescence. In addition, antitumor activity at the tumor site was
also observed, confirming the drug delivery function of the NPs
investigated.

Pharmaceutical applications

Colloidal anhydrous silicon dioxide is generally regarded as an
essentially nontoxic and nonirritant excipient in oral and topical
pharmaceutical products. However, intraperitoneal and subcuta-
neous injections may produce local tissue reactions and/or gran-
ulomas, meaning that it cannot be administered parenterally,
because silica excipients are used for several functionalities, for
example, as adsorbents, anticaking agents, emulsion stabilizers,
glidants, suspending agents, tablet segregates, thermal stabilizers,
and viscosity increasing agents, with a percent ratio varying from
0.1 to 10 [S5].

Silica has a high surface area covered with polar silanol groups,
which is favorable for water adsorption. Gore and Banker [56] used
these properties of silica to stabilize aspirin tablets. They studied
the moisture adsorption properties of silica and its stabilizing
effect for a model aspirin tablet. The experimental results demon-
strated the water adsorption characteristics of silica and their
dependence on surface area and pore size. In addition, 3% silica
was considered as an optimum concentration for maximum sta-
bilization. In another work, silica was added to magnesium stea-
rate [57]. It was noticed that tablet strength was improved but it
was found to induce negative effects on lubrication and did not
improve disintegration. The effect of adding silica as an excipient
on the bioavailability of the drug was investigated, taking amox-
icillin as an example [58]. SiNPs are widely used in pharmaceutical
applications as glidants. Jonat et al. [59] investigated the use of
compacted hydrophilic and hydrophobic SiNPs as pharmaceuti-
cal excipients (glidants). They found that hydrophobic silica is
the most efficient glidant as it only requires gentle mixing con-
ditions to achieve high flowability. By contrast, hydrophilic silica
strongly depends on mixing conditions. However, at low glidant
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FIGURE 3

CdS nanoparticle-capped MSN-based drug delivery system. CdS (2 nm) link to MSN (200 nm) by a disulfide bond that can be chemically reduced to release the

drug from MSN pores (2.3 nm) [42].
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concentrations, all the silica tested maintained good flowability,
even after equilibrating at high humidity levels.

Concluding remarks
SiNPs in biomedical nanotechnology have an ongoing role for
designing advanced tools and systems for in vitro and in vivo
applications. Interaction between silica surfaces and proteins is
applied for specific protein detection and reverse interaction is
used to separate proteins from biologic media. Functionalized
silica NPs have successfully targeted proteins with high specificity
thanks to the many options for functionalization provided by
silica surfaces.

In addition, SiNPs have been widely applied in gene detection
and purification, due to their specific ability to interact with nucleic
acids. Using SiNPs in this field provides many advantages, such as
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Introduction:

Les études expérimentales réalisées dans le cadre de ce travail de recherche ont été
scindées en deux grandes parties : (i) la préparation des émulsions magnétiques et leur
encapsulation par la silice ; et (ii) I’extraction de I’ADN par adsorption sur les particules de
silice magnétique ¢élaborées.

La préparation des émulsions magnétiques commence par la préparation des ferrofluides
aqueux puis organiques via la coprecipitation de FeCl, et FeCl, dans une solution aqueuse de
I’hydroxyde d’ammonium. Les ferrofluides obtenus ont été émulsionnés dans une solution
concentrée de SDS. L’encapsulation par la silice a été réalisée sur les gouttelettes de
ferrofluides d’oxyde de fer par la technique de sol-gel en utilisant le TEOS comme un
précurseur de la silice. Durant les trois étapes de la synthése, les nanoparticules d’oxyde de
fer, les émulsions magnétiques et les émulsions magnétiques encapsulées par la silice ont été
caractérisées et leurs propriétés physico-chimiques ont été examinées.

La seconde étape de cette étude est relative aux interactions entre les acides nucléiques
(ADN) et les particules de silice magnétique en fonction des parametres physico-chimiques.
La surface des particules de silice est couverte de groupements hydroxyle (—-OH) ce qui confer
a ce type de particules une charge négative dans un large domaine du pH (de 2 a 14). L’ADN
est un poly-¢€lectrolyte chargé négativement suite a la présence des groupements phospho-di-
ester ce qui induit des interactions répulsives en présence de la silice. Mais, en ajoutant un sel
(NaCl par exemple), on peut modifier les conditions d’interaction en réduisant la porté de ces
interactions via la diminution de dégrée d’hydratation des acides nucléique. Il est ainsi
possible de contrdler ces interactions en changeant le pH et la salinité du milieu d’adsorption.
Pour étudier I’efficacité de nos particules a adsorber les acides nucléiques, une étude
systématique a été conduite en fonction de la salinité, le pH, temps d’incubation (cinétique
d’adsorption, concentration en ADN etc. La désorption de I’ADN préalablement adsorbé a été
réalisée et les résultats obtenus ont montré que ces particules peuvent €tre utilisées comme
outil d’extraction et de purification rapides des acides nucléiques. Suite au caractere
magnétique de ces particules de silice, la filtration et la centrifugation sont remplacées par une
simple séparation magnétique en utilisant un champ magnétique induit par un aimant
permanant. Un examen rapide d’extraction des acides a partir d’un lysat bactérien a été réalisé
et les résultats montrent une bonne capacité de capture suite a une visualisation sur un gel
d’acrylamide. Ces particules composites peuvent donc étre utilisée dans les microsystémes

basés sur la microfluidique.
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Résumé

Dans cette étude, la formulation des émulsions magnétiques encapsulées par une
¢corce de silice a été réalisée en trois étapes. Tout d’abord, un ferrofluide aqueux a été
préparé et transformé par la suite en ferrofluide organique apres adsorption d’acide oléique.
Le procédé utilisé pour la préparation de ferrofluide est basé sur la coprécipitation des sels
ferreux et ferriques en milieu ammoniacal. Les ferrofluides synthétisés sont caractérisé avant
toute utilisation dans la formulation d’émulsion magnétique. La formulation d’une émulsion
magnétique submicronique en taille et présente une bonne teneur en oxyde de fer pour une
séparation rapide a été réalisée er reproduite. Apres une étude de caractérisation complete de
I’émulsion magnétique formulée, I’encapsulation de cette derniere a été¢ examinée en fonction
de la quantit¢ de TEOS, la nature d’agent stabilisant et également en fonction de la quantité
d’émulsion semence utilisée. Les particules composites préparées au cours de ces étapes ont
¢té¢ caractérisées en termes de morphologie, de composition chimique et propriétés
magnétiques. La tendance des résultats confirme la formation d’une écorce de silice
homogene autour d’un cceur superparamagnétique. La taille des particules composites
synthétisées doit est ajustée pour faciliter la séparation sous I’action d’un champ magnétique.
En effet, plus la taille est petite (inferieure a 100 nm) plus la diffusion Brownien I’emporte sur
la force induite par un aimant externe. Il est également indispensable d’avoir une surface des
particules chargée afin d’éviter une agrégation possible imposées par la force magnétique qui
force les particules a s’aligner tangentiellement aux lignes du champ.

Les particules finales obtenues sont parfaitement stables et présentent une morphologie coeur
magnétique et écorce de silice, une séparation rapide sous 1’action d’un champ magnétique.
En ce qui concerne la taille et la polydispersité, elles restent et dépendent de I’émulsion

formulée.
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Abstract

The magnetic separation, extraction, purification, labeling and detection of
biomolecules and cells are widely applied recently in molecular biology applications. Thus
the synthesis of silica magnetic particles for biomedical applications is developing and these
particles are becoming interesting as micro and nano structures. In this paper, the synthesis of
silica-coated magnetic particles was performed through three steps. (i) An organic ferrofluid
was prepared by the coprecipitation technique, and then, (ii) it is used to prepare the magnetic
emulsion. (iii) The magnetic emulsion was coated by silica shell using the sol-gel process.
The prepared particles during the three steps were characterized in term of morphology,
chemical composition, magnetic properties, size, size distribution and electrokinetic
properties. The results confirmed the formation of superparamagnetic core — silica shell
particles. The particles diameters were found to be around 400nm and the particles respond
rapidly to an external magnetic field.
1. Introduction

Over the last fifty years, magnetic colloids or ferrofluids'™ attracted special attention
for wide range of applications such as magnetic recording tapes’, magnetic inks and paints’,
sealing for stationary shaft® and more recently in biomedical fields’’. In all these applications
iron oxides particles were used under the colloid form as a separated nanoparticle, 5-20nm,
which is suitable for these applications. Whereas, the magnetic-based separation techniques
newly developed for biomagnetic materials extraction, request large particles for fast and
efficient separation. In fact the large magnetic particles can be separated easier and faster than
the small ones, but these particles provoke a fast sedimentation and their specific surface area
is smaller. Thus, the particles size should have most attention during the synthesis and
simultaneous balance between the separation speed and the sedimentation. The preparing of
large magnetic particles (200-500nm) in a coprecipitation process is very difficult in term of
time, energy and formulating. Therefore, the magnetic emulsion (ME) concept was developed

to control the particles “droplets” size. This technique was first presented by Bibette'®, he
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prepared oil-in-water emulsion using an organic ferrofluid as dispersed phase. Furthermore,
Montagne et al'"'? studied and characterized the magnetic emulsions in point of view of
chemical composition, size, electrokinetic properties, stability and morphology. These studies
show that magnetic emulsions are stable and the superparamagnetic behavior is conserved
after the emulsification. Magnetic latex, which is magnetic emulsion coated by a polymer
layer, was synthesized'™'* via seed emulsion polymerization of styrene and DVB
(divinylbenzene) initiated by KPS (potassium persulfate). The obtained particles have a core-
shell form and later used as seed for polymerization to produce functional magnetic latex
suitable for biomedical application'>'®.
Sol-Gel process'’ is an efficient method to prepare silica-coated particles, which are
considered more chemically stable, core protected, biocompatible, easy to produce and
suitable for further functionalization. Therefore, silica coating can substitute the
polymerization process and avoid all problems faced in the polymerization cases such as the
system complexity, time and energy consuming, expensive, using of toxic monomers and
biocompatible polymers are very limited.

In this work, we report an organic ferrofluid synthesis by coprecipitation of FeCl; and
FeCl; in basic medium, in which, the nanoparticles were coated with oleic acid and dispersed
in octane. Secondly, the magnetic emulsion was prepared via the emulsification of organic
ferrofluid in sodium dodecyl sulfate (SDS) solution. Finally, magnetic emulsion was coated
by silica shell using sol-gel technique. Obtained particles were characterized by different
techniques and special attention was paid for the characterization of core — shell morphology.
Experimental

1.1. Materials and reagents

Iron (IIT) chloride hexahydrate (FeCls.6H,O), iron (II) chloride tetrahydrate
(FeCl,.4H,0) and sodium dodecyl sulfate (SDS) were purchased from Sigma-Aldrich and
used without purification. NH4OH 25% and ethanol 96% were purchased from VWR Prolabo
and used as received. Polyvinylpyrrolidone (PVP) and tetraethyl orthosilicate (TEOS) were
obtained from Fluka and oleic acid from Aldrich were used as received. Octane and
cyclohexane were obtained from Acros Organics and acetone from Laurylab. Deionized water
was used in all experiments.

1.2. Preparation of ferrofluids

Ferrofluid synthesis via the coprecipitation of iron (III) and (II) salts in aqueous solution of
ammonium hydroxide is previously described''. Shortly, 10.16g iron (IIT) and 3.7g iron (II),

with molar ratio (Fe’")/(Fe*")=2, were dissolved in 80ml water and poured in 250ml glass
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reactor equipped with mechanic stirrer. The solution was stirred for 40min at 250rpm, then
the speed was raised up to 500rpm and 80ml NH4sOH 25% were added drop wise to the
reactor. The stirring continued for 2h to finish the precipitation of iron oxides nanoparticles.
8ml of oleic acid were added drop wise to the reactor and the stirring continued for 15min,
and then dispersed in octane.

1.3. Preparation of magnetic emulsion
The ME was prepared via the emulsification of obtained ferrofluids, which were used as a
dispersed phase in direct emulsion (O/W) and the continue phase was the SDS solution.
According to the preliminary study 9.75ml SDS solution 12% was prepared and 0.25ml
organic ferrofluid (Total Solid, TS=29.5%) was poured carefully onto the internal flacon wall,
without mixing them together, then they were emulsified by ultrasound (Vibra-cell 75042,
BIOBLOCK SCIENTIFIC): amplitude 60% for 3min. obtained emulsion was filtered through
glass wool and kept on rotation agitation for one night. The same procedure was applied to
scale up so 975ml SDS solution of 12% were prepared and 25ml ferrofluide were added as
described above and emulsified by ultrasound: amplitude 90% for 7min. The emulsion was
filtered and kept on rotation agitation for one night.

1.4. Preparation of silica-coated magnetic emulsion
Silica coating was performed by sol-gel process using TEOS as precursor and ammonium
hydroxide as catalyst. Prepared ME (10ml) was separated by magnet and particles (droplets)
were washed by deionized water then again separated and redispersed in 3ml PVP 10% and
the emulsion was kept on rotation agitation for 3h. Then, S5ml of 25% NH4OH were added to
the emulsion and the agitation continued for 15min. 2ml TEOS 50% (in ethanol) were added
to the emulsion and kept on rotation agitation for one night. Si-ME was separated by magnet
and washed one time by deionized water and filtered through glass wool. For encapsulate one
liter of ME the following procedure was performed: the ME was separated by a big magnet
and washed with deionized water. The particles were redispersed in 300ml PVP 10% and
transferred into a one-liter reactor equipped by mechanic stirrer and stirred for 3h at 150rpm.
Then, 500ml NH4OH were poured into the reactor. After 15min 200ml TEOS 50% (in
ethanol) were added to the reactor, slowly and as several batches during 5min, so the stirring
continued over night. Si-ME was separated and washed one time by deionized water and
filtered trough glass wool and redispersed in 500ml water.

1.5. Size and zeta potential measurements
Dynamic light scattering (DLS) technique was used to measure and follow the evaluation of

particles size from iron oxide nanoparticles to Si-ME, core-shell particles. Zetasizers (3000
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HSa and Nano ZS, Malvern) were used to measure the particles size in highly diluted
solution. One drop of particles was highly diluted, the number of kilo counts per second
(Kcps) was adjusted between 100 and 120, and size was measured taking an average of 3
measurements. Zeta potential was measured as a function of pH in ImM NaCl; 100ul of the
cleaned particles dispersion (solids content 2.28%) were diluted with 25ml 1mM NaCl and
the pHs were varied from 3 to 11 then zeta potential measured taking an average of 5
measurements.

1.6. Transmission electron microscopy
Transmission electron microscopy (TEM) images were obtained with a Phillips CM120
electron microscope (CMEABG, University of Claude Bernard Lyon I-France). One drop of
highly diluted particles was placed onto a copper grid (mesh200 and covered with formvar-
carbon) and dried at room temperature before TEM analysis. The analyses were performed
with a field emission gun operating at 100 KV.

1.7. Thermogravimetric analysis (TGA)
Samples were dried at 70°C and obtained powders were analyzed using (TG 209 FI,
NETZSCH), temperature was varied from 20 to 800°C with a heating rate of 10°C/min. The
analyses were performed under a nitrogen atmosphere.

1.8. Infrared spectroscopy
Fourier transform infrared (FTIR) analyses were performed by FTIR spectrophotometer IR
Prestige 21 (Shimadzu, Japan). Samples were cleaned and dried and the spectra were scanned
over the range 4000-400cm™ in the deflection mode.

1.9. Gas chromatography
Octane concentration in emulsions (droplet and solution) was measured by gas
chromatography technique, GC-2010 Plus (Shimadzu, Japan). The octane concentration was
investigated in the SDS solution so the emulsions were prepared and the particles were
separated at different times (0 to 12 days). 100ul solution was mixed with 900ul of
cyclohexane and incubated for one hour. The organic phase was separated and filtered then
analyzed by GC, the octane concentration was calculated from standard calibration curve. The
analyses conditions were: injection temperature 150°C, column temperature 100°C, hold time
6min, pressure 100KPa, total flow 53.8 ml/min, column flow Iml/min, split ratio 50 and
detector temperature 200°C.

1.10. Magnetization
Magnetic measurements were carried out using the Automatic Bench of Magnetic

Measurements (ABMM) at CNRS-IRC Lyon laboratory. All particles were dried and
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magnetization was investigated by varying the magnetic field (H) from -20000 to +20000
Oersted.
2. Results and Discussion

The coprecipitation synthesis method described above to produce organic ferrofluid
leads to a highly stable colloid, oleic acid-coated iron oxide nanoparticles and well dispersed
in octane. Thus, obtained organic ferrofluid was characterized and used for ME preparation.

2.1. Ferrofluid characteristics

Obtained iron oxide particles are in the nanometer scale as conformed from DLS analyses
results. Figure 1 shows the size distribution of the nanoparticles, more than 70% of the

nanoparticles have a diameter smaller than 20nm'®,
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Figure 1: size distribution of iron oxide nanoparticles obtained by DLS.
In addition, TEM analysis was performed to confirm DLS results and this can be seen in
figure 2 that shows the TEM images of ferrofluid nanoparticles. TEM analysis showed that

the nanoparticles are smaller than 10nm, which does not correspond with DLS data. This is
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due to the presence of oleic acid onto the nanoparticles surface, which may, in solution,

. . . . 1
induce the interaction between several nanoparticles to form clusters'”.

Figure 2: TEM micrograph of oleic acid-coated iron oxide nanoparticles.

The ferrofluid composition was investigated by TGA analysis that the ferrofluid was dried
and the powder was heated in nitrogen atmosphere up to 800°C as shown in figure 3. From
100 to 480°C the ferrofluid lost about 31% of their weight, corresponding to the organic part
of ferrofluid”, the oleic acid coating the nanoparticles. Figure3 shows the TGA thermogram
of ferrofluid in which the thermal degradation of oleic acid takes place in two temperature
points, at 250°C related to free oleic acid and at 400°C related to oleic acid interacted with the
nanoparticles''. From figure 3, the peaks at 250 and 400°C, can be concluded that the free

oleic acid represents 35% and attached oleic acid represents 65%.
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Figure 3: TGA Thermogram of organic ferrofluid, obtained under nitrogen.

FTIR technique was used to verify the interaction of oleic acid onto the iron oxide
nanoparticles surface. The adsorption of oleic acid onto the iron oxide nanoparticle was
investigated and proved by FTIR?. F igure 4 shows the spectra of pure oleic acid (blue) and
iron oxide nanoparticles coated by oleic acid (red). In pure oleic acid curve two characteristic
bands appeared at 1710 and 1285cm™, which were attributed to C=0 and C-O stretch
respectively. Whereas, in the blue curve, adsorbed oleic acid, this two bands were absent and
instead of these bands two new bands are present at 1541 and 1639 cm™ can be attributed to

asymmetric stretch v,s(COO-) and symmetric stretch v4,(COO-) respectively'.
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Figure 4: FTIR spectra of pure oleic acid (blue) and oleic acid-coated iron oxide nanoparticles (red).
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2.2. Magnetic emulsion preparation
The magnetic emulsion is direct, oil in water, emulsion except that it contains an organic
ferrofluid instead of the dispersed organic phase. This synthesis based on the emulsification of
organic ferrofluid in water using SDS as surfactant. SDS was dissolved in water, 12%, and the
ferrofluid was poured to the solution, which therefore was emulsified by ultrasound. The
surfactant molecules stabilized the formed ferrofluid droplets and prevented the coalescence
between the new droplets. First of all, droplets were 100% composed of a liquid ferrofluid,
oleic acid-coated iron oxide nanoparticles dispersed in octane. Then, during storage the octane
leaked outside of the droplets, which became solid particles stabilized by the surfactant and
dispersed in water. Leaked octane from droplets formed microemulsion stabilized by the
excess of SDS presented in the solution. Figure 5 shows the octane quantity leaked from the
organic droplets toward the aqueous solution as a function of time. Octane in water emulsion
is not a stable emulsion and needs high surfactant concentration because octane is
hydrophobic and poorly soluble in water. Therefore, the SDS solution used in magnetic
emulsion preparation was highly concentrated (12%) and this medium favor the migration of
octane molecules from the large droplets to the SDS solution as micelles (microemulsion),

which is more stable and has less tension than the emulsion.
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Figure 5: Octane concentration in aqueous phase of magnetic emulsion as a function of time.
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TGA measurements showed that the organic ferrofluid composed of 29.5% iron oxide (oleic
acid — coated) and 70.5% octane and 1ml magnetic emulsion contains 15.5ug (data from GC
technique). Figure 5 shows the octane concentration in aqueous phase (continues phase of
magnetic emulsion) as a function of time. Figure 5 shows that 2.5ug/ml of octane are found in
aqueous phase. 2.5ug/ml represent 16% of total octane presents in magnetic emulsion.

2.3. Silica-coated magnetic emulsion (Si-ME)
Sol-gel reaction was used to prepare (core/shell) Si-ME using TEOS as a silica precursor and
NH4OH as catalyst. Silica shell more stabilized the emulsion, protected the particles and
favored their use for biomedical applications. In addition, additional functionalization can be
easily performed on these particles due to the silica shell, which not affect the
superparamagnetism properties of the magnetic emulsion.
All sol-gel reaction parameters to synthesize core shell magnetic particles were studied and
optimized such as concentration of PVP (stabilizer agent), the incubation time in the presence
of PVP, NH;OH/magnetic emulsion ratio and TEOS concentration.

2.4. Magnetic emulsion and silica-coated magnetic emulsion characterization
The emulsification procedure described above gave spherical solid particles with an average
diameter of 200nm, measured by DLS and confirmed by TEM. Figure 6 shows TEM

micrograph, the size and size distribution of magnetic emulsion particles.
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Figure 6: TEM micrograph, size and size distribution of magnetic emulsion particles.
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Silica — coated magnetic emulsion was characterized by DLS and TEM also and the results
show that the average particles size increased up to 400nm. This means that the silica shell is

about 100nm thickness; figure 7 shows the TEM micrograph and the size distribution of silica

— coated magnetic emulsion particles.
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Figure 7: TEM micrographs, size and size distribution of silica — coated magnetic emulsion particles.

The zeta potential of silica particles has a specific profile as a function of pH represented by
the decrease of zeta potential values with increasing the pH*%. This is due to the presence of
silanol groups (-Si—OH) onto the silica surface.

In water H-OH, OH group toward to be natural (non charged) at pH 7. At pH>7 OH 1is ionized
and is represented as O™ and at pH<7 OH is presented as OH,". In the case of silanol, the
presence of Si atom near the OH group leads to weakness of interaction between O and H so
the OH group could be ionized easier than the OH in water. The surface of silica-coated
particles is totally coated by silanol group so the value of zeta potential of this type of
particles is almost negative even in low pH, and become more negative by increasing pH due
to the ionization of OH to O". Figure 8 represents the zeta potential of silica — coated magnetic

emulsion particles as a function of pH.

125



-20

-40 -

-60

Zeta potential (mV)

-80 1

-100 -

Figure 8: Zeta potential as a function of pH of Si-ME.

@ Silica-coated magnetic emulsion

In addition to the structure and morphology studies the particles were characterized by TGA

to investigate their composition. Figure 9 shows the TGA curves of ME and Si-ME analyzed

under nitrogen atmosphere from 20 to 900°C.
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Figure 9: TGA Thermograms of magnetic emulsion (A) and silica — coated magnetic emulsion (B).
FTIR was used to characterize the particles of organic ferrofluid, silica —coated magnetic
emulsion and magnetic emulsion. The figure 10 shows FTIR spectra scanned from 400 to
4000cm™. The characteristic bands of SDS* appear clearly in the spectrum of ME as
following: 2850, 2918cm™ corresponding to C-H stretch vibration, 1467cm™ related to H-C-H
stretch vibration, 1205 and 1248cm™ corresponding to sulfate asymmetric stretch vibration

and 1087, 970cm™ corresponding to sulfate symmetric stretch vibration.
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Figure 10: FTIR spectra of Organic Ferrofluid, Magnetic submicron emulsion and Silica — Coated Magnetic
emulsion.

It can be seen in figure 10 that most of characteristic bands related to the SDS molecules, on
the surface particles of magnetic emulsion, disappeared and were replaced by three bands at
1077, 796 and 478cm™ corresponding to Si-O, Si-H and Si-O-Si symmetric stretch vibration
respectively.

Ferrofluid, magnetic emulsion and silica-magnetic emulsion all were dried and exposed to a
variation magnetic field from -20000 to +20000 Oersted. The magnetism measurements
(figurel1) show that the ferrofluid is superparamagnetic. In addition, the superparamagnetism
properties are conserved in magnetic emulsion and silica — coated magnetic emulsion
particles.
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Figure 11: the variation of magnetization values as a function of magnetic field of: organic ferrofluid (OFF) e,
magnetic emulsion (ME) ¢ and silica — coated magnetic emulsion (Si-ME) °.

From figure 11 it can be seen that the magnetization was decreased about 50% between
organic ferrofluid and magnetic emulsion. Moreover, in silica — coated magnetic emulsion
particles the magnetization was decreased about 70% due to the thick silica shell. In addition,
the three types of particles are superparamagnetic even after two steps of encapsulation.

3. Conclusion

Silica-coated magnetic emulsion particles were reported starting from the organic ferrofluids
through the magnetic emulsion to the silica-coated magnetic particles. Organic ferrofluids
were synthesized using the coprecipitation of FeCls and FeCl, in aqueous solution of NH,OH

and coating by oleic acid. Resulted iron oxide particles are nanometric in size (5 to 15nm) and
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superparamagnetic. Obtained organic ferrofluids were emulsified in SDS solution to prepare
the magnetic emulsion. TEM, DLS, ATG, magnetization and electrokinetic data showed that
the magnetic emulsion particles are negatively charged spheres of 200nm diameter,
superparamagnetic and contain (maximum) 13ug/ml octane. The magnetic emulsion was
undergone the sol-gel reaction to be coated by a silica shell. TEOS was used as a silica
precursor, ammonium hydroxide as a catalyst and PVP as a stabilizing agent. Particles size
evaluation showed that the silica shell thickness is near of 100nm and the size distribution is
not so narrow, like the magnetic emulsion particles, but the encapsulation was homogenous
on all particles. Encapsulated particles have negative charges that increase in negative as a
function of pH. Finally, the magnetic silica particles are superparamagnetic, composed of

10% organic and 90% inorganic.
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IV. CHAPITRE 3
ETUDES EXPERIMENTALES
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Résumé

L’extraction, la purification et la concentration des acides nucléiques sont de plus en
plus nécessaires pour la réalisation d’un diagnostic moléculaire précoce et en particulier dans
le domaine des maladies infectieuses. Le bon déroulement de ce diagnostic génique nécessite
incontestablement une bonne préparation d’échantillon imposant I’extraction, la purification
et la concentration des acides nucléiques avant toutes analyses. Pour répondre a cet objectif,
les particules magnétiques sont largement utilisées, mais pour une intégration dans un
microsysteme basé sur la microfluidique, il est indispensable d’utiliser des particules
magnétiques submicronique en taille.

La silice magnétique préparée dans le cadre de ce travail de recherche répond en grande partie
au cahier des charges imposé par les applications bionanotechnologiques. L’adsorption des
acides nucléiques sur la silice magnétique ¢élaborée a été examinée principalement en fonction
du pH, la salinité et la concentration en ADN.

En absence d’un milieu fortement salin, la quantit¢ d’ADN adsorbée est tres faible. EN
revanche, 1’utilisation une fore concentration en sel ou un sel bivalent (MgCL,) conduit a une
fore adsorption des acides nucléiques. En ce qui concerne la cinétique d’adsorption, elle est
relativement rapide, un plateau d’adsorption est attend aprés 10 minutes d’incubation. En ce
qui concerne le pH, son effet est négligeable, ceci est probablement dii aux pKa tres acides
des silanols et des phosphdiesters. En ce qui concerne la désorption, elle a été examinée en
réalisant une adsorption dans des conditions optimales et une désorption dans un tampon TE a

pH 7.8. Les résultats montrent que 90% de I’ADN adsorb¢ a ét¢ libéreé.
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Abstract

Nucleic acids extraction and purification for diagnostic, research, and genes delivery
and genes therapy applications is more needed nowadays. Therefore, new tools and
technologies are required to replay to the increasing advances in these fields. Silica-coated
magnetic particles were prepared for DNA extraction via the adsorption/desorption process.
The effect of pH and MgCl, concentration on the DNA adsorption were investigated. MgCl,
largely enhanced the DNA adsorption, which was optimum at pH between 9 and 10. DNA
desorption was performed using TE buffer (pH 7.8). More than 90% of adsorbed DNA was
released from the prepared silica magnetic particles. Finally, DNA was extracted from E-coli
cells lysate using silica magnetic particles.
1. Introduction

Nowadays, magnetic particles are marked as powerful tools in nano and micro fields.
Modified superparamagnetic iron oxide nanoparticles (SPION) are widely used in varieties of
bio-applications such as MRI contrast agents'?, drug delivery™, hyperthermia’, proteins
immobilization,”” biocatalysis and bioseparation®’. A variety of coating methods used to
adapt and functionalize the magnetic particles surface such as polymer'’, chitosan'', amino-
dextran'? and silica'®. The sol-gel technique'* is noted as an effective method to coat the small
particles especially iron oxide nanoparticles'. Silica coating usually used for several reasons:
protecting the core, increase the stability colloidal, reduce the toxicity of materials, provide an
active ground for further functionalization, easy to realize and low cost production.
Nucleic acids, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), in addition to the
proteins are the most important biological macromolecules because they are the origin of life.
DNA is presented in all living species and holds the full genetic information over millions of
years. The rapid development in genetic field leaded to very good understanding of the DNA
molecules and their real roles in encoding, transmitting and expression of genetic information.

Furthermore, diagnostics depend on the DNA investigations are widely familiarized recently.
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But DNA molecules are located in the nucleus in the cell center; thus, initial extraction and
purification steps are required.

Initially, phenol-chloroform extraction technique is used to extract DNA and RNA from
biological samples. This technique is efficient with high yield of extracted nucleic acids but it
needs time and organic reagents. Then, DNA extraction using glass and glass particles was
developed'®!”. Recently, the interaction between DNA and silica particles was studied'®" and

results proved that silica particles are promising tools for nucleic acids extraction®”?',

purification”” and delivery”**

. Developing silica particles to be used for DNA extraction is
more favorable due to the low cost of raw material, easy to be synthesized, extracted faster
than classical methods and no more organic solvent are needed.
Furthermore, core-shell particles were successfully prepared, which are consisted of silica
shell coated an another material in its core such as gold®*° and magnetic particles®’. The
combination of more than one material in one particle duplicates the role of this particle,
which will have the properties of each part. In the case of silica-coated magnetic particles;
silica surface can be used for DNA adsorption and magnetic core can be used to separate the
particles under the effect of a magnetic field.
The aim of this work is to investigate the DNA adsorption and desorption on silica-coated
magnetic particles, successfully prepared via the encapsulation of magnetic emulsion by sol-
gel process. The effect of pH, salt concentration and DNA concentration in solution on the
adsorption and desorption were investigated. DNA extractions from bacteria by phenol-
chloroform and by silica-coated magnetic particles were performed to compare the efficiency
of our particles with the classical method. Obtained results suggest that silica-coated magnetic
particles could be used in automated DNA extractors.
2. Experimental
2.1. Materials

Silica-coated magnetic emulsions, herring sperm DNA (purchased from Invitrogen),
disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium chloride, EDTA, Tris-
HCI and magnesium chloride (obtained from Sigma Aldrich), E-coli cells lysate (were offered
by Alexandre NOIRIEL, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires,
Université Lyon 1), ethanol, deionized water.

2.2. Silica-coated magnetic emulsion

The synthesis of silica-coated magnetic emulsion (Si-ME) was described in our previous work

(not published). Briefly, a direct emulsion was prepared by emulsification of organic
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ferrofluid, oleic acid-coated iron oxide nanoparticles dispersed in octane, in SDS solution.
Then, the magnetic emulsion was coated by silica shell using the sol-gel process.

2.3. DNA adsorption procedure
Si-ME particles were washed two times by ethanol 70% and two times by deionized water.
The adsorption procedure was performed in 1.5ml Eppendorf tube; the final volume of
adsorption solution was Iml. 100ul of Si-ME (2.28% solid content) were magnetically
separated and the particles were dispersed in adsorption buffer then herring DNA solution
Img/ml was added to the particles dispersion. The totally were incubated in rotation agitation
for 20min at room temperature and then the particles with adsorbed DNA were separated by
magnet. The DNA concentration in supernatants was measured by UV spectrophotometer
(Shimadzu) at 260nm using standard calibration curve. Adsorption solution is composed of
Na,HPOy4, NaH,PO4, MgCl, and Si-ME. Therefore, the adsorption conditions (pH, MgCl, and
DNA concentration in solution) were varied to study the effect of each one without changing
the final adsorption volume of Iml.

2.4. DNA desorption procedure
Si-ME particles with adsorbed DNA were washed with ethanol 70% and redispersed in 1ml
elution buffer (10mM Tris-HCI and ImM EDTA), which were incubated for 10min at gentle
rotation agitation at room temperature. The particles were separated by magnet and the DNA
in solution was measured by UV spectrophotometer at 260nm using standard calibration
curve.

2.5. DNA extraction by Si-ME particles
The adsorption condition of DNA (in E-coli cells lysate) and Si-ME particles were adjusted to
pH 9.5 and MgCl, concentration to SOmM. The Si-ME particles were incubated for 20 min
with the lysate then, they were magnetically separated. The particles, in addition to the DNA
adsorbed onto them, were washed by 70% ethanol. Finally, DNA molecules were eluted by
adding 0.5ml of TE buffer.
3. Results and Discussion

3.1. Silica-coated magnetic emulsion properties

These particles are composed of magnetic core and silica shell. The magnetic core,

~140nm of diameter, is consists of organic ferrofluid (superparamagnetic iron oxide
nanoparticles coated with oleic acid and dispersed in octane). Prepared by the emulsification
of organic ferrofluid in SDS solution using the ultrasound as a power source. Moreover, the

sol-gel process was used to synthesize the silica shell (~50nm thickness). The particles
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surface is covered by silanol groups resulted from the hydrolysis of tetraethyl orthosilicate
(TEOS) according to the following reaction:

(C2Hs50);= Si—(OC,Hs) + H,O = (C,Hs0); = Si—OH + C,HsOH
=Si—OH are located on the surface whereas SiO,, which is resulted from the polycondensation
of hydrolyzed TEOS, formed the shell bulk. Zeta potential measured as a function of pH of
Si-ME particles shows that the particles are negatively charged and increase, in negative, with

increasing of pH. Scheme 1 shows the schematic representation of Si-ME.

OH OH OH
| [
HO-Si-0-8i-0-Si-OH
| Ll

Silica Shell

Scheme 1: schematic representation of Si-ME particle

Si-ME particles, due to the presence of superparamagnetic core inside the particles, have a
superparamagnetic behavior, which warrants the good function as magnetic separation tools.
The figure 1 shows the variation of zeta potential () as a function of pH for the Si-ME
particles, measured in 1mM NaCl. The curve presents three stages; from 3 to 6, { decreased
rapidly with the increasing of pH due to the breaking of hydrogen bonds formed between
water and silanol groups. The second stage is a plateau from 6 to 8 due to the resistance of —
Si-OH groups to the ionization. Finally, the third stage as a rapid decrease of pH from § to 11

due to the ionization of —OH groups and the formation of Si—O".
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Figure 1: Zeta potential of Si-ME particles as a function of pH, in 1 mM NaCl.
3.2. DNA adsorption

DNA separation by silica particles depends on the adsorption of DNA molecules onto the
particles surface at specific conditions such as pH, ionic strength, time and of course the type
of particles surface.
3.2.1. The effect of pH

Duplex DNA molecules are strong polyelectrolyte possessing two univalent negative charges
per base pair at most solution pH, due to the presence of the strong acids, phosphate diesters,
on the backbone of DNA?. Moreover, it was found that structural stability of the duplex
DNA is pH dependent and has a maximum stability near pH 7°°.

Since —OH groups coat the surface of Si-ME particles, as shown in scheme 1, they can exhibit
negative or natural charge at the pH range up to 11. In these conditions the DNA adsorption
onto the silica particles is decreasing with increasing pH, electrostatic repulsion because both
are negatively charged. But in our case, we used magnesium chloride to reduce the
electrostatic repulsion and raise the interaction efficiency between the DNA molecules and Si-
ME particles. Mg”" ion can make a bridge between DNA molecule and silanol group on the
particles surface and this interaction is stronger in high pH than in low pH*’. MgCl, is totally
ionized in water so Mg”" ions are presented in solution at any pH value. Mg”" ions were
chosen because they can be adsorbed easily onto the particles surface and change its charge to

positive, then the adsorption of negatively charged DNA become easier and more effective. In
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addition, the interaction between DNA molecules and Mg”" ions is not so strong and these
ions could be removed by a simple wash by EDTA.

The adsorption of DNA molecules onto the Si-ME particles was studied at five pH values;
4.8, 6, 7.4, 9.2 and 10.6. Moreover, at each pH, five MgCl, concentrations and five DNA
concentrations in solution were investigated. Figure (2) shows the quantity of DNA adsorbed,

mg DNA per g of Si-ME particles, by Si-ME particles as a function of pH for five equilibrium
concentrations DNA and five MgCl,.
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Figure 2: The effect of pH on the DNA adsorption onto the Si-ME particles with variation of the equilibrium
DNA concentrations and the ionic strengths.

As can be shown in figure 2 the maximum amounts of DNA were adsorbed at pH 10.6, while
a minimum adsorption was observed at pH 4.83. These results proved that the Mg®" ions play
as intermediate connectors between DNA molecules and silanol groups.

Then, to investigate the behavior of Si-ME toward DNA molecules in presence of 4M NaCl,
as reported in most papers studying DNA adsorption onto silica surfaces. DNA adsorption
onto Si-ME particles was studied as a function of pH in aqueous NaCl solution (4M). Figure 3
shows the DNA adsorbed onto Si-ME particles as a function of pH.
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Figure 3: DNA adsorption onto Si-ME particles in presence of 4M NaCl as a function of pH.

The DNA adsorption was higher at pH 4 and decreased with increasing pH, which confirmed
previous studies of DNA adsorption onto silica particles in these conditions®' %,

3.2.2. The effect of ionic strength

Si-ME particles and DNA molecules are negatively charged so the DNA adsorption onto the
particles is not favorable. But, by changing the ionic strength of the reaction medium, it can
modify the electrostatic interactions between them, then favorite the DNA adsorption. MgCl,
is widely used in case of DNA extraction that MgCl, helps DNA relaxation®, which rises the
adsorption ability of DNA onto the particles. In addition, MgCl, forms an intermediate layer
between silica surface and DNA molecules, which reduces the repulsing forces between the
DNA and the particles. Furthermore, for future uses of isolated DNA such as polymerase
chain reaction (PCR), MgCl, is necessary to complete this reaction so the presence of MgCl,
doesn’t affect the process. Herein, MgCl, was used for DNA extraction by Si-ME particles
and its concentration was varied from 5 to 500mM. Figure 4 shows five histograms for five
DNA equilibrium concentrations. It can be seen that the adsorbed DNA quantity is important
at 50mM of MgCl, and this quantity was the maximum adsorbed DNA even with more
concentrated MgCl, samples (100 and 500mM). The different colored columns represented

different pH values.
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Figure 4: Histograms of absorbed DNA (mg/g) particles as a function of MgCl, concentrations. Experiments

repeated for five equilibrium DNA concentrations at five pH values.

The saturation of particles ability to adsorb more DNA molecules may be related to that the
O groups exposed to the surface are all saturated by Mg”" ions. In addition, by comparing, in
the same histogram, the adsorbed DNA quantity at different pH values it can be seen that the
adsorption increased at higher pH values. Finally, according to the zeta potential
measurements as a function of pH (figure 1) it is clear that the density of -O” groups increased
at higher pH so there are more sites for more Mg*" ions then more DNA molecules. All these
observations illustrate why we have saturation of adsorption at a given pH value and
augmentation at higher pH.
3.3. DNA desorption

The DNA desorption procedure was performed using TE buffer (10mM Tris-HCI,
ImM EDTA, pH 7,8). The adsorbed DNA molecules onto the Si-ME particles was washed by
70% ethanol to remove all free molecules and salt ions, then the adsorbed DNA eluted with
TE buffer for 10 min at room temperature. The Si-ME particles were separated using magnet
and the UV spectrophotometry, at 260nm, was used to measure DNA concentration in
solution.

In absence of ionic strength and the important role of EDTA to chelate the Mg®" ions,
the repulsion force between DNA molecules and Si-ME particles become sufficient to disturb
the interaction between them and liberate the DNA molecules. Figure 5 shows the adsorbed
DNA quantities (red columns) onto the Si-ME particles and the eluted DNA (blue columns)
from Si-ME particles by TE buffer. The adsorption was done at 100mM MgCl, and at
pH=10.6 desorption was done as described above. Adsorption and desorption values show
that more than 90% of adsorbed DNA molecules are liberated from particles following the

desorption procedure.

147



12 1
9,84
10 1 9,13
7,92
8 .
on 6,45
E
< 6
Z 4,80
[a) 4,00 4,24
4 .
2,03 156
i “ |
0 r
5 10 15 20 25

Equilibrium DNA concentration pg/ml

Figure 5: comparison between quantities of adsorbed DNA (red) and released DNA (blue) mg per gram of Si-
ME particles.

3.4. DNA extraction from bacteria cells lysate

To study the ability of our silica magnetic particles to extract the DNA molecules from
a biologic sample, we used E-coli cells lysate. The particles were incubated with the lysate,
rotation agitation and room temperature, for 20 min at pH 9.5 and 50mM MgCl,. Then, the
particles, with the adsorbed DNA, were separated by a magnetic field and washed by 70%
ethanol. At the end, the adsorbed DNA molecules were eluted using TE buffer as described
above. The degree of purity of extracted DNA was estimated by UV spectrophotometry that
the absorbance Axeo/Azso = 2, this result shows that the extracted DNA is highly pure. Figure
6 shows the image of gel electrophoresis for DNA extracted by Si-ME particles and ordinary
extraction using the kit (Macherey-Nagel "NucleoBond® Xtra Midi").

Figure 6: image of electrophoresis gel of DNA extracted using Si-ME particles (left lane) and DNA extracted by

a commercial kit (middle lane), the right lane represents the molecular weight marker of DNA.
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4. Conclusion

In this paper we reported the silica magnetic particles and using them as DNA extraction
tools. Si-ME particles exhibited a speed responsive to an external magnetic field that permits
to separate them quickly. In addition, the silica shell provided an ideal background for
regulated interaction with DNA molecules. DNA adsorption process was studied in different
conditions of pH, ionic strength and DNA in solution. The highest adsorption was found at
high pH values, 9 and 10, due to the high density of O groups at these conditions. MgCl, was
used to enhance the interaction between DNA molecules and silica magnetic particles, so the
effect of its concentration was investigated and the best adsorption was observed starting from
50mM MgCl,. Then, DNA desorption was studied using TE buffer at pH 7,8 and more than
90% of adsorbed DNA was released. Finally, an assay to extract DNA from a biologic sample
was successfully performed and the obtained DNA was highly pure. These investigations of
adsorption/desorption of DNA onto silica magnetic particles and DNA extraction, strongly
recommend that Si-ME particles are very rapid, safety and useful tools for DNA isolation and

purification.
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V. Conclusion Général, Perspectives

Les particules magnétiques sont utilisées dans des applications nanotechnologiques et
plus particuliérement en bionanotechnologie. Le matériau magnétique le plus utilisé a ce jour
est a base d’oxyde de fer. Dans le domaine biomédical, les nanoparticules d’oxydes de fer, ont
¢été largement utilisées et rapidement développées. En effet, grace a ses propriétés physico-
chimiques, les nanoparticules d’oxydes de fer peuvent s’adapter et étre adapter a de
nombreuses applications biomédicales comme agents de contraste pour I’'IRM, systémes de
libération d’actifs, traitement de tumeurs via I’hyperthermie et comme support de
biomolécules pour le diagnostic in vitro. Le caractére superparamagnétique est une propriété
trés importante des nanoparticules d’oxydes de fer, car ces nanoparticules répondent sous
I’action d’un champ magnétique et ne présentent pas d’aimantation résiduelle. En profitant de
cette propriété, plusieurs applications basées sur les nanoparticules d’oxydes de fer ont été
donc développées.

Dans le cadre de ce travail de recherche, des nanoparticules superparamagnétiques d’oxydes
de fer ont été synthétisées via la coprécipitation de FeCl, et FeCl. en milieu basique. La
surface de ces nanoparticules a ¢été modifiée par adsorption d’acide oléique pour une
meilleure dispersion dans un solvant organique (octane) pour obtenir un ferrofluide organique
stable. Les nanoparticules obtenues dans ’octane sont superparamagnétiques, stables dans
I’octane et ont une taille comprise entre 5 et 10 nm. Ce procédé a été réalis¢ a faible et a
grande échelle (100 mla 1 L).

En ce qui concerne les émulsions magnétiques (huile/eau) ont été préparées en utilisant du
ferrofluide organique (dans I’octane), le SDS comme tensioactif et [’ultrason comme une
source d’énergie. Ces émulsions magnétiques sont composées de gouttelettes stables de
ferrofluide organique dispersées dans 1’eau et stabilisées par le SDS. Le procédé optimisé
permet d’avoir une taille moyenne de particules de I’ordre de 145 nm. La taille moyenne est
en relation directe avec la vitesse ou la puissance des ultrasons utilisés comme dans le cas de
la miniémulsion.

Apres 1’étape de formulation d’émulsions magnétiques stables, 1’étude d’encapsulation a été
conduite en examinant un grand nombre de parametres. L’objet de cette étude été de
I’obtention de particules avec un cceur magnétique et une écore de silice parfaitement
homogene. 11 est a noter que la présence d’une nucléation secondaire perturbe la
reproductibilité et également I’encapsulation parfaite des semences magnétiques utilisées.

Afin d‘éviter cette nucléation perturbante, ’optimisation a été nécessaire. Le procédé
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développé est trés robuste, car I’encapsulation optimisé permet d’avoir une morphologie
cceur-écorce reproductible. Selon les parameétres optimisés, ce procédé permet d’avoir une
écorce de silice d’une épaisseur de 'ordre de 100nm. La taille moyenne des particules
encapsulées dépend fortement de la taille des émulsions semences, mais une taille de 400 nm
a été reproduite sans problémes majeurs.

Les particules de silice ¢laborées ont été évaluées en examinant la possibilité d’adsorber des
acides nucléiques. Cette adsorption a été étudiée via une étude systématique en examinant un
grand nombre de paramétres ; le temps de contact, le pH et la salinité du milieu d’adsorption,
la concentration initiale en acides nucléiques et également la reproductibilité d’un lot de silice
a un autre. Il dégage de cette étude une tendance montrant que 1’adsorption est principalement
favorisée par 1’ajout d’une forte force ionique favorisant ainsi la déshydratation a la fois des
acides nucléiques et la surface de silice ce qui conduit a une adsorption des acides nucléiques.
En ce qui concerne le pH, il semblerait que ce dernier a un effet relativement négligeable suite
aux pKa tres acide des deux groupements chargés engagés dans I’interaction (phosphodiester
pour I’ADN et le silanol pour la silice), mai I’adsorption augmente progressivement avec le
pH et en particulier a pH supérieur a pH9.

La désorption a été étudié dans des conditions fixes par 1’utilisation d’un tampon TE (10 mM
Tris-HCL, ImM EDTA, pH 7.8) généralement pour le stockage et I’analyse des acides
nucléiques. Sans optimisation, plus de 90% de I’ADN adsorbé¢ a été relargé montrant ainsi, la
possibilité¢ d’utiliser ces particules pour I’adsorption, la purification et la concentration des
acides nucléiques. Cependant, il reste a examiner ces particules dans des conditions réelles et
par un laboratoire expert dans le domaine de la biologie moléculaire en utilisant des
¢chantillons complexes proche de la réalité expérimentale.

Perspectives :

Ce travail de synthése de particules de silice magnétiques a permis de montrer la
faisabilité¢ d’¢laborer ce type de particules trés convoités dans la préparation d’échantillons et
dans les bionanotechnologies. Cette synthése a été réalisée en débutant par la préparation de
ferrofluides, formulés par la suite sous forme d’émulsions magnétiques avant encapsulation
par une écorce de silice. Ce travail de recherche d’apparence simple a nécessit¢ de conduire
une étude bibliographique pointue, une bonne maitrise de la synthese de ferrofluides aqueux
et organique, des compétences en formulation, en physicochimie des émulsions directes et en
physico-chimie colloidale. En ce qui concerne le procédé sol-gel, il est relativement simple et
sans difficultés majeures comme largement reporté dans la littérature. Mais, il est a noter le

probléme majeur qui nécessite une attention particuliére est la question de la polydispersité
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des émulsions magnétiques ¢laborées. Pour réduire cette polydispersité, il existe une solution
physique qui consiste a faire un tri magnétique, ce que nous avons totalement refusé de faire
lors de notre étude.

En guise de perspective, une premicre attention doit étre portée a la formulation d’une
émulsion de taille controlée et d’une polydispersité la plus faible possible et sans étape de
fractionnement ou de tri. Ceci nécessitera de développer non seulement une nouvelle
formulation, mais aussi un procédé propre afin de réduire cette polydispersité. Il est
¢galement indispensable de concevoir un systéme permettant de mieux controler la taille.

En ce qui concerne I’encapsulation, malgré la possibilité de faire une séparation magnétique
pour éliminer les particules non magnétiques il est indispensable d’optimiser le procédé afin
d’éviter la formation de la silice secondaire.

En ce qui concerne 1’adsorption des acides nucléiques, il est important et primordial d’évaluer
I’extraction des acides nucléiques en utilisant des échantillons biologiques. Ceci nécessitera
d’établir des collaboration avec biologiste afin de réponse avec pertinence a la capacité
d’extraire, purifier et concentrer les acides nucléiques et d’examiner par la méme occasion la
possibilité d’intégrer ces particules dans les microsystémes dédiés au diagnostic biomédical in
vitro.

Il sera également intéressant d’examiner la possibilité d’utiliser ces particules de silice

magnétiques pour I’extraction d’autres biomolécules autres que les acides nucléiques.

155



