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0.2 Notations

a Scalar
a Vector
A Matrix
IM×M M ×M identity matrix
(.)−1 Inverse operator
† Moore-Penrose pseudo inverse operator
(.)∗ Conjugate operator
(.)T Transpose operator
(.)H Hermitian transpose operator
E{.} Expectation operator
< . >T Finite time average operator:

< . >T=
1
T

∫ +T
2

−T
2

(.)dt for continuous signals

< . >T=
1
T

∑+T
2

−T
2

(.) for discrete signals

< . >∞ Infinite time average operator:

< . >∞= lim
T→∞

1
T

∫ +T
2

−T
2

(.)dt for non-probabilistic processes

< . >∞= E{.} for stochastic processes
|.| Absolute value
‖.‖ Vector or matrix Euclidean norm
‖.‖F Frobenius norm
Re(.) Real part
Rank(.) Matrix rank
tr(.) Matrix trace
vec(.) Stacks the columns of a matrix into a vector
diag(.) Stacks the diagonal coefficients of a matrix into a vector
undiag(.) Transforms a vector into a diagonal matrix,

where the vector becomes the diagonal of the matrix
◦ Khatri-Rao product
⊙ Element-wise multiplication
⊕ Direct sum

(̂.) Estimated value
1M×1 (M × 1) vector containing ones
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Chapter 1

Introduction

1.1 Radio astronomy

For a long time, astronomy was limited to optical astronomy, i.e. astronomy
based on observations made with optical telescopes. In the late XIXth cen-
tury, Sir Oliver Lodge [70, 49] had an intuition about radio waves emitted by
extraterrestrial sources, and particularly the sun.

Almost half a century later, radio astronomy was born with Karl Jansky [58].
Jansky, an engineer at Bell Laboratories, was working on a project regarding
radio interference during transatlantic communications when he discovered the
first radio emission from an extraterrestrial source : the Milky Way.

In the spectral sense, two types of cosmic emissions exist in radio astronomy
: continuum emissions and spectral lines:

• Continuum emissions correspond to broa dBand radiation, i.e. radiation
slowly varying over the wavelengths. Their origin is either thermal or non-
thermal. Thermal radiation means that the emission of a cosmic object
depends on its temperature. Non-thermal radiation can be of various
kinds, such as synchrotron radiation (when particles close to the speed of
light cross a magnetic field) for instance.

• Spectral line emissions are narrow band radiation due to quantum state
changes in atomic or molecular components of a cosmic source. They
provide information about the composition of a cosmic source, but also
about its movement and expansion.

In the temporal sense, cosmic signals are either classified as continuous emis-
sions or transients (e.g. pulsars).

1.2 Radio astronomy instrumentation

1.2.1 Single dish radio telescopes

The first single dish radio telescope was built by Grote Reber in 1937. He
conducted the first radio sky survey ever. After World War II, technological
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10 CHAPTER 1. INTRODUCTION

progress allowed astronomers to build much more sensitive radio telescopes,
and radio astronomy started to develop.

Since the intensity of a cosmic source decreases as the inverse squared dis-
tance from the source to the radio telescope, the receivers have to be extremely
sensitive. Current receivers are much more sensitive than communication sys-
tems, and allow sky imaging and accurate cosmic signal processing.

Sky imaging

Sky imaging can be performed with single dish radio telescopes. It consists in
scanning a region of the sky in azimuth and elevation, so that integrated data
recovered from the observation fill a pixel matrix. The resolution achieved by
such an instrument depends on the dish size and on the observed wavelength.

The angular resolution of a single dish radio telescope is given by the Rayleigh
criterion:

sin(θmin) ≈ θmin = 1.22
λ

D
(1.1)

with:

• θmin the minimum angle in radians between two point sources that can be
distinguished by the instrument,

• λ the wavelength in meters at which the observation is made,

• D the aperture diameter in meters of the instrument (diameter of the
dish).

The factor 1.22 is related to the first zero of the diffraction pattern of the
instrument.

This limitation is an issue for low frequency observations. Suppose an obser-
vation is made at frequency f0 = 100 MHz with a D = 100m single dish radio
telescope. The corresponding wavelength at this frequency is:

λ0 =
c

f0
=

c

100× 106
≈ 3m (1.2)

with c the speed of light in vaccum.
The minimum resolution between two point sources is then:

θ0 = 1.22
λ0

D
=

3

100
≈ 2.1◦ (1.3)

The current largest single dish radio telescope is located in Arecibo, Porto
Rico (see Figure 1.1.(a)), with a diameter D = 305m. This radio telescope
allows observations in a 40◦ cone around the local zenith by moving its receiver.
The world’s largest fully steerable radio telescope is the Green Bank telescope,
located in West Virginia, USA (see Figure 1.1.(b)). Its dish is 100m wide.

The Five hundred meter Aperture Spherical Telescope (FAST) is currently
being built in southwest China, and will become the world’s largest single dish
radio telescope, once operational.

The spatial resolution of an instrument, especially at low frequencies, can
be increased with radio telescope arrays.
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(a) (b)

Figure 1.1: (a) Arecibo radio telescope, located in Porto Rico. 305m single dish
radio telescope. (b) Green Bank telescope, located in West Virginia, USA. 100m
fully steerable single dish radio telescope.

1.2.2 Radio telescope arrays

Different kinds of radio telescope arrays exist:

• Phased antenna arrays,

• Single dish radio telescope arrays,

• Arrays of phased antenna arrays,

• Phased Array Feeds (PAF), i.e. phased antenna arrays at the location of
single dish receivers.

A radio telescope array can either work as a single (big) dish radio telescope,
or as an interferometer.

In order to work as a single radio telescope, the signals from each element of
the array are digitally combined in such a way that the global radiation pattern
steers in one particular direction of interest. This process is called beamforming
and is presented in chapter 3. Sky imaging can then also be performed in the
same way as with a single dish radio telescope, i.e. by filling a grid with power
reached in different directions in the sky.

With enough computational power, such systems can also perform simulta-
neous multiple observations (multiple beams).

The spatial resolution achieved with a radio telescope array performing aper-
ture synthesis interferometry becomes:

θmin = 1.22
λ

B
(1.4)

with B the maximum distance between two radio telescopes of the array
(called baseline).

For instance, a technique called Very Long Baseline Interferometry (VLBI)
allows very high resolution observations by combining multiple single dish radio
telescopes located on different places around the world. The synthesized aper-
ture of the equivalent radio telescope can thereby reach the size of a continent.
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Van Cittert - Zernike Theorem

The Van Cittert-Zernike Theorem [110] is a generalization of theWiener-Khinchin
Theorem, stating that the Fourier transform of the autocorrelation function of a
wide-sense stationary random process corresponds to its Power Spectral Density
(PSD).

Suppose one cosmic point source emits an electromagnetic field E(t). This
field is probed by a sensor located at the spatial position defined by the vector
u. If s(u, t) is the centered signal probed by the sensor, the intensity of the
radiation is defined as:

I(u) = E{s(u, t)s∗(u, t)} (1.5)

I(u) is actually the autocorrelation of s(u, t)

The mutual coherence between two locations defined by the spatial vectors
u and v is:

Γ(u,v, τ) = E{s(u, t+
τ

2
)s∗(v, t−

τ

2
)} (1.6)

In other words, the mutual coherence Γ(u,v, τ) is the covariance of signals
probed at locations u and v. The Pearson correlation coefficient is defined as:

γ(u,v, τ) =
Γ(u,v, τ)

I(u)I(v)
(1.7)

and is called the degree of coherence.

In the same way as the autocorrelation function Γ(u,u, τ) is linked to the
Power Spectral Density of s(u, t), the coherence function Γ(u,v, 0) is linked to
an intensity spatial distribution, e.g. the skymap, following the Van Cittert-
Zernike Theorem:

Γ(u,v, 0) =

∫∫
I(l,m)e−i2π(ul+vm)dldm (1.8)

with l and m defining spatial coordinates in the field of view of the instru-
ment. More practical details about Fourier imaging can be found in [12].

An example of an interferometer is the European radio telescope LOFAR,
currently the most sensitive instrument at low frequencies.

The LOw Frequency ARray (LOFAR)

LOFAR [2] is a radio interferometer built by the Netherlands Institute for Radio
Astronomy (ASTRON) [47]. Its core is located in Exloo, The Netherlands, and
is composed of 18 core stations (see Figure 1.2.(a)). 18 remote stations are
also spread over The Netherlands, as well as 8 international stations, located
in France, the United Kingdom, Sweden and Germany. The United Kingdom
- LOFAR international station is shown on Figure 1.2.(b), and the Nançay
observatory with the French LOFAR station is shown on Figure 1.2.(c).

Each station is composed of Low Band Antennas (LBA), with a frequency
bandwidth ∆f = 30 − 80 MHz, and High Band Antennas, with a frequency
bandwidth ∆f = 120 − 240 MHz. The stations perform digital beamforming,
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(a) (b)

(c)

Figure 1.2: (a) LOFAR core, located in Exloo, The Netherlands. (b) LOFAR
international station located in Chilbolton, UK. (c) Nançay observatory, with
the French LOFAR station, the radioheliograph and the Nançay Radio Telescope
(NRT).

Figure 1.3: LOFAR principle. Each station beamforms in the direction of in-
terest. The signals from all the stations are then sent to the central correlator
for further processing.
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and the signals from each station are sent via optical fiber to the central cor-
relator consisting of a Blue Gene/P supercomputer for further processing (see
Figure 1.3).

LOFAR achieves a frequency resolution of δf = 0.76 kHz, with baselines
going from 100m up to 1500km. The stations can also steer 8 independent
directions in the sky (8 simultaneous beams).

Toward the Square Kilometre Array

The Square Kilometre Array (SKA) [3] will become the largest radio telescope
in the world. The instrument will be located in the Australian and South
African deserts and will have a total collecting area of approximately one square
kilometre. Its frequency bandwidth will go from 70 MHz, up to 10 GHz, with
a sensitivity around 50 times higher than any other radio telescope. It will be
composed of antennas and single dish arrays. The radio telescope should be
fully operational in 2021. LOFAR is an SKA pathfinder.

1.3 RFI mitigation for radio astronomy

1.3.1 Radio Frequency Interference

Radio astronomy studies cosmic sources through their radio emissions. Radio
frequencies form the lower part of the electromagnetic spectrum, with frequen-
cies going from 3 kHz up to 300 GHz (wavelength from 100km up to 1mm).
Because of atmospheric considerations (opacity of the atmosphere and iono-
sphere at low frequencies), ground-based radio astronomy is usually limited to
a smaller frequency range going from 30 MHz up to 100 GHz.

As radio astronomy is considered as an official passive radio spectrum user,
some frequency bands of the spectrum are protected and dedicated to radio as-
tronomy. A list of these protected frequencies can be found on the International
Telecommunication Union (ITU) website [1]. These frequencies correspond to
well-known spectral line emissions.

However, astronomers are increasingly interested in observing outside the
protected frequency bands. For instance, the Doppler effect applied to cosmic
sources leads to shift in the frequency of spectral lines. The spectral lines
considered may then be located outside their dedicated bandwidths. Another
example is broad band radiation, such as continuum emissions, which is only in
part taken in account in radio astronomy frequencies protection.

Observing outside the protected frequency bandwidths is a major issue in
radio astronomy. Since the radio spectrum is extensively occupied by active
users, electromagnetic pollution makes it hard to perform observations. Radio
communication signals can be around 50 dB above radio telescope system noise,
or weaker, while cosmic source signals can be up to 60 dB below the noise level
[60, 108].

Radio frequency interference in radio astronomy can be of different kinds.
For instance, the LOFAR low frequency band (30 − 80 MHz) contains 74 dif-
ferent frequency allocations, as many as the LOFAR high frequency bandwidth
(120 − 240 MHz) [75]. Typical examples of frequency allocations are Commu-
nication / Global Positioning System (GPS) satellite downlinks, land / mar-
itime mobile communications, Global System for Mobile (GSM) communica-
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tions, wireless microphones, Digital Audio or Video Broadcasts (DAB/DVB),
medical implants, home automation, paging systems, radars, aviation commu-
nications, etc.

Figure 1.4 shows examples of RFI acquired with a LOFAR LBA station.

Even when observing strictly in the frequency bandwidths dedicated to ra-
dio astronomy, interference can occur. This is due to two main reasons. The
first is the non-respect of required communication systems low and high cutoff
frequencies, leading to spectral sidelobes emissions. Another reason is receivers
non linearities, leading to interference harmonics due to intermodulation prod-
ucts.

Natural phenomena, such as terrestrial lightings, can also interfere with radio
telescopes due to their high sensitivities (as mentioned in [108]).

1.3.2 RFI mitigation techniques

Radio telescopes are usually located at sites with low radio frequency occu-
pation. An electromagnetic environmental study is performed before any site
decision, in order to evaluate the radio pollution impact regarding the instru-
ment observation frequencies (see [8] for example). Radio quiet zones do exist
on the earth but can not be perfectly free of RFI since aerial communications
(satellites, aviation) do not restrict their emissions, or because of reflections
from ground-based emissions.

RFI mitigation is one of the major issues in radio astronomy, as well as in
communications fields. Many studies have been conducted, based on different
approaches.

The first step in interference mitigation is to make it possible to distinguish
the Signal of Interest (SOI, i.e. cosmic sources in radio astronomy) from other
emitted signals (RFI). The criteria, or parameters, used to distinguish the two
types of signals are then exploited in order to remove (or attenuate) the con-
tributions of jammers and recover the SOI as well as possible. RFI mitigation
techniques are however highly dependent on the type of radio telescope and the
type of observation performed.

A polluted radio astronomical subband can easily be processed with well
known signal processing techniques as long as the SOI and the RFI do not
share the Time and Frequency slots. For short and intermittent interference,
the obvious solution is to remove the corrupted time samples before signal in-
tegration and further processing on astronomical data. Thresholding the radio
telescope output, based on power [10, 84, 20], statistical [73, 37] or cyclostation-
ary [82, 102, 22, 7] parameters, then allows a real-time flagging and/or excision
process to be applied. The power strength and duration of the interference can
quickly become an issue with this approach.

The temporal approach cannot be applied in continuous interference scenar-
ios. But the diversity between RFI and SOI can also take place in the frequency
domain. Analog and digital filtering can then be applied in order to filter out
the corrupted frequency bands. Adaptive filtering can either be applied to the
radio telescope raw data [53, 99], associated with a reference antenna [11, 23]
or based on jammers’ properties, such as cyclostationarity [43]. This technique
is restricted to narrow band interference, and cannot be applied to broadband
interference when it covers large parts of the observed astronomical band.
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Figure 1.4: RFI and interference mitigation (orthogonal projection) examples
with LOFAR HBA data. (a) Strong FM signals. (b) Example of RFI mitigation
on the strongest FM signal. (c) Coast communication station signals. (d)
Example of RFI mitigation on the intermittent coast communication station
signal. (e) Strong aviation signal. (f) Example of RFI mitigation on the aviation
signal.
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Time and frequency approaches can also be combined [76]. When inter-
ference and cosmic sources occupy all observed Time-Frequency slots, these
approaches can no longer be applied for RFI mitigation purposes.

The spatial diversity can be exploited with multiple-element radio telescopes.
As SOI and RFI have different directions of arrival, they also have different spa-
tial signatures. Different types of processing based on this difference have been
proposed. The first kind of processing takes into account a reference antenna (or
an antenna sub-array) to track and remove the interference subspace from the
observation data [80, 81, 24]. Another approach, called adaptive beamforming,
consists in designing an antenna array radiation pattern by taking into account
the interference direction of arrival [62, 50, 87, 34]. Other approaches are based
on interference subspace cancellation by building spatial filters. The interference
subspace is estimated according to statistical or cyclostationary [18, 95, 69, 35]
properties.

Finally, another RFI mitigation approach consists in subtracting the inter-
ference contributions instead of projecting or filtering them out. This approach
assumes however a data model based on the additivity and uncorrelation of the
different signals [33, 31, 35].

Further readings about RFI mitigation for radio astronomy can be found in
[68, 19, 38]

1.4 Contributions

This thesis focuses on spatial interference mitigation with phased antenna array
radio telescopes. In this context, the different signals impinging on a radio
telescope (RFI, cosmic sources and system noise) lie in a data vector space, and
RFI and SOI are forced into separate subspaces after processing. One popular
technique consists in applying an orthogonal projector to the data in order to
project out the interference subspace [67]. The problem with the orthogonal
projector is that recovering the subspace of interest (cosmic sources) depends
on its orthogonality with the interference subspace. To address this problem, an
oblique projection is considered. This projection technique no longer depends
on the orthogonality between subspaces, and is presented in section 3.3.2.

Another approach for RFI mitigation with multi-element radio telescopes is
interference subspace subtraction. After estimating the interference subspace,
its contribution is subtracted from the classical covariance matrix. The inter-
ference subspace is defined by a basis, made of the different jammers’ spatial
signatures. But subtracting this subspace from the classical covariance matrix
also requires estimating the jammers’ powers. A closed form solution of this
estimate, once the interference spatial signatures have been estimated, is given
in section 3.4.

The accuracy of interference spatial signatures estimation is an important
parameter for spatial filtering. Based on (non-)whiteness assumptions, a time-
lagged covariance is introduced in section 4.1.3. This covariance matrix allows a
more accurate estimation of the interference subspace than the technique based
on the classical covariance matrix, especially for weak interference.

Using multiple covariance matrices has also been considered, as can be seen
in section 4.2. Three techniques are presented (Mean covariance matrix diago-
nalization, section 4.2.1, Joint SVD of time-lagged covariance matrices, section
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4.2.2 and Joint-diagonalization, section 4.2.3).
Finally, an RFI mitigation algorithm has been implemented on the French

station of the radio telescope demonstrator EMBRACE and is presented in
section 5.3. This algorithm involves an RFI subspace estimation based on a
classical covariance matrix and an oblique projector. Preliminary results are
given in this section. Different techniques presented in this thesis have also
been tested on LOFAR data, and are presented in section 5.2.
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1.6 Thesis outline

Chapter 2 states a general data model for phased antenna array radio telescopes.
This chapter starts with a single antenna data model, that is then extended to
a vectorized data model. The latter leads to the definition of spatial signatures
of signals impinging the array. Finally, a classical covariance data model is
given. Several assumptions are made concerning either RFI, cosmic sources or
the system noise. Some particular statistical properties of these signals are also
considered, leading to particular types of covariance matrices.

Chapter 3 starts by presenting four popular beamforming techniques. Three
of them are adaptive beamforming techniques. The second part of this chap-
ter deals with projection-based spatial filtering techniques. Two projectors are
considered : the orthogonal and the oblique projector. Their performances in
terms of RFI attenuation and SOI gain are compared to the performances of the
beamforming techniques, regarding different data model parameters, in the con-
clusion of the section. Finally, an interference subspace subtraction technique
is presented in the last part of the chapter. This technique is applied to the
classical covariance matrix once the interference subspace has been estimated.

Chapter 4 concerns interference subspace estimation. Different approaches
are considered, based on the classical covariance matrix, cyclic or conjugate
cyclic covariance matrix and the time-lagged covariance matrix. The second
part of the chapter presents multiple covariance matrices approaches, that im-
prove the accuracy of the statistical information recovered with the previous
techniques. All these techniques are compared through simulations. In a third
section, two popular high resolution interference spatial signature estimation
techniques are presented. However, they require a perfect antenna array cali-
bration.

Chapter 5 starts with an overview of the interference mitigation techniques
presented in this thesis, applied to corrupted LOFAR Low and High Band An-
tenna data. The performances of these techniques are qualitatively discussed.
In the second part of this chapter, an RFI mitigation algorithm implementa-
tion is presented. The RFI mitigation algorithm has been implemented on the
French station of the radio telescope demonstrator EMBRACE. Some prelimi-
nary results are shown and discussed.

The performances of the techniques presented in this thesis are compared
through simulations, either on simulated data or on real data acquired with
LOFAR and EMBRACE.
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Chapter 2

Data model

In this chapter, we model the data provided by an antenna array radio telescope.
The model is additive, and takes into account the cosmic sources, the system
noise and the interference contributions. In order to simplify the model, and ex-
ploit all the information available, different assumptions concerning the signals
are presented. Depending on the type of observation, the type of radio tele-
scope, and its location (close to fixed jammers for instance), these assumptions
remain valid or not.

The different data models derived in this chapter will then be used for sim-
ulations and the comparison of interference mitigation techniques that are later
applied to measured data.

2.1 General data model

Consider an antenna array radio telescope made of M antenna elements. Each
antenna receives a signal that can be written as a finite sum of the contributions
of all the sources located in the field of view of the antenna array. These sources
are of various kinds : cosmic sources, i.e. natural signals emitted by cosmic
objects, or man-made sources defined by various parameters (e.g. modulation
parameters, power or polarization). Man-made sources will be referred to as
Radio Frequency Interference (RFI) in the following.

We will assume that all these sources are point sources. This assumption
is mainly due to a compromise between the distance between the source and
the instrument and the resolution of the instrument itself. Projected onto a
hypothetical sphere centered at an arbitrary antenna of the array, called celestial
sphere, these sources are spatially described by a set of two spherical coordinates
θ and φ, respectively named polar and azimuth angles (their radial coordinates
being the celestial sphere radius).

Define xk(t), k = 1..M , as the output signal of the kth antenna element at
time t. xk(t) is then expressed in complex baseband form as:

21
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xk(t) =

Ns∑

n=1

asn,k
(t, θsn , φsn)sn(t− τn,k) + nk(t)

=

Nc∑

n=1

acn,k
(t, θcn , φcn)cn(t− τcn,k

) +

Nr∑

n=1

arn,k
(t, θrn , φrn)rn(t− τrn,k

) + nk(t)

(2.1)

with:

• sn(t), n = 1 . . . Ns the nth signal impinging the antenna array at time t.
The number of signals Ns is such that Ns = Nc +Nr, with Ns, resp. Nr,
the number of cosmic source signals, resp. interference signals, impinging
the radio telescope.

• asn,k
(t, θsn , φsn) the system gain between the kth antenna and the direc-

tion (θsn , φsn) on the celestial sphere at time t.

• cn(t), n = 1 . . . Nc (resp. rn(t), n = 1 . . . Nr) the nth cosmic (resp. RFI)
source signal at time t.

• acn,k
(t, θcn , φcn) (resp. arn,k

(t, θrn , φrn)) the system gain related to the

kth antenna and the direction (θcn , φcn) (resp. (θrn , φrn)) on the celestial
sphere at time t.

• nk(t) the system noise contribution on the kth antenna.

The time shifts τn,k, τcn,k
and τrn,k

correspond to the signals electromagnetic

wave propagation delay between the kth antenna considered and an arbitrary
reference antenna of the array.

2.2 Assumptions

2.2.1 Narrowband assumption

The narrow band assumption can be expressed in two domains : the frequency
domain and the spatial domain. Suppose the narrowband assumption holds
in the frequency domain. Then, by definition, the frequency bandwidth ∆f ,
centered at a frequency f0, of any signal s(t) impinging the array is much smaller
than f0:

∆f

f0
≪ 1

Being narrowband, the signal s(t) received at the kth antenna (sk(t)) can be
defined as a product between a band-limited baseband signal, b(t), and a carrier
signal at frequency f0:

sk(t) = b(t)ej2πf0t (2.2)

The spatial narrow band assumption concerns the electromagnetic wave
propagation of the sources through the antenna array [109]. We define the wave
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propagation delay between two antennas k and l of the array as τkl = τl − τk,
where τk is the wave propagation delay between the signal source considered
and the kth antenna. τkl depends on the relative orientation and distance from
the source to the two antennas. Considering the antennas k and l as the most
distant antenna pair of the antenna array, the spatial narrowband assumption
is then expressed by:

∆f ≪ (2πτkl)
−1 (2.3)

The signal sl(t) received at the lth antenna is by nature a time delayed
version of sk(t):

sl(t) = sk(t− τkl) (2.4)

= b(t− τkl)e
j2πf0(t−τkl) (2.5)

= b(t− τkl)e
−j2πf0τklej2πf0t (2.6)

We now apply the inverse Fourier Transform and its translation property to
b(t) and b(t− τij). If B(f) is the Fourier Transform of b(t), we have:

b(t) =

∫ + 1
2
∆f

− 1
2
∆f

B(f)ej2πftdf (2.7)

b(t− τij) =

∫ + 1
2
∆f

− 1
2
∆f

B(f)e−j2πfτijej2πftdf (2.8)

Using the assumption made in Equation 2.3 on Equation 2.8, we have:

b(t) ∼ b(t− τij) (2.9)

Hence, working at the frequency f0 at the output of the antenna array radio
telescope, the propagation delay of a narrowband source wave between two
antennas k and l of the array is expressed as a signal phase shift. Its closed-form
expression, according to Equation 2.6, is e−j2πf0τkl . In other words, the envelope
fluctuations of the narrowband signals are neglected. Only the influence of the
geometric delay on the carrier is considered. This influence is expressed as signal
phase shifts.

The data model expressed in equation 2.1 can now be rewritten as:

xk(t) =

Nc∑

n=1

acn,k
(t, θcn , φcn)cn(t) +

Nr∑

n=1

arn,k
(t, θrn , φrn)rn(t) + nk(t) (2.10)

where the signals complex gains acn,k
(t, θcn , φcn) and arn,k

(t, θrn , φrn) absorb
the phase shifts induced by the wave propagation through the antenna array.

In the following, all the signals impinging the antenna array will be consid-
ered as narrowband. This condition holds because of the nature of the sources
or because of a sub-band filtering pre-processing at the entrance of the system.
Henceforth, the signals’ frequency dependence will be neglected, and the signals
expressed in base band. Radio telescope receivers usually process narrow band
signals by applying a frequency downshift onto the received signals.
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2.2.2 Near/far field assumption

Any change in a (cosmic or RFI) source location would induce a structure
change in its space-time signature. If a source s(t) is moving toward or away
from the radio telescope while keeping its angular coordinates (θs, φs) constant,
i.e. only its radial coordinate changes, the radius of its spherical or cylindrical
(e.g. for long line antennas) wavefront at the radio telescope changes. The
far field assumption applies when its spatial signature structure change can be
neglected. In other words, the source is considered as being far enough from
the radio telescope for its wavefront at the antenna array to be approximated as
being flat. If D is the antenna array diameter, λ the emitted signal wavelength
and d the distance between the source and the antenna array, then the far field
assumption holds if [105]:

d >
2D2

λ
(2.11)

This assumption is mostly important for sky imaging and beamforming ap-
plications. Section 2.3.3 shows the influence of the far field assumption on spatial
signature structures.

2.2.3 Signal model

System noise

The system noise term nk(t) in Equation 2.1 is itself a sum of the contributions
of different noise components, e.g. cosmic background noise, atmospheric noise,
receiver noise... Applying the Central Limit Theorem on signals that can already
be considered as centered, temporally independent and identically distributed
(i.i.d.) with complex Gaussian distribution, this noise term is also centered,
i.i.d. with Gaussian distribution.

The noise contributions are temporally stationary over short time intervals.
The non-stationary contributions are due to slowly varying physical effects (e.g.
night / day cycles...). One aim of the calibration process consists in compen-
sating these non-stationary contributions. However, at a short time scale, the
system noise can be considered as stationary. For longer time scales, calibration
is necessary to keep this noise stationary.

Cosmic sources

The radio frequency emissions of cosmic sources are due to underlying stochastic
processes happening within objects themselves or during their interactions with
their near-environment. Therefore, applying again the Central Limit Theorem,
cosmic source signals are assumed to be centered, temporally i.i.d. with complex
Gaussian distribution [105].

Except for some specific types of sources, such as pulsars for instance, their
signals are stationary. However, from an earth local point of view, these signals
are no longer stationary. Slowly varying changes in the atmosphere and in the
interstellar medium make their statistics vary.

But again, at a short observation scale, cosmic source signals are assumed
to be stationary. Their resulting spectra are either wide band (e.g. continuum
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emissions), or narrow band peaks corresponding to red-shifted (Doppler) ab-
sorption and/or emission spectral lines. Moreover, as was said earlier, all the
cosmic sources are assumed to be statistically independent of each other.

Radio frequency interference

Interference is a generic term that depends on the application. Basically, inter-
ference is all kinds of signals that corrupt the signal of interest (SOI). Radio
frequency interference for radio astronomy can be of various kinds. Impul-
sive thunderstorm emissions, wind turbine amplitude modulation signals and
overhead power line emissions are typical RFI examples. However, most of
the interference signals encountered in radio astronomy are due to man-made
wireless applications, e.g. Global Positioning System (GPS) satellites, Digital
Audio Broadcasting (DAB), amateur radio, paging systems, cell phones, home
automation, etc. We will focus in this thesis on man-made modulated signals.
We chose three different signal properties to model RFI : centered narrowband
Gaussian stationary, Second Order (SO) non-circular and SO cyclostationary
(see section 2.4.2).

2.3 Algebraic model

2.3.1 Vectorized data model

The data model defined in Equation 2.1 can also be expressed in the following
vector form:

x(t) = Ac · c(t) +Ar · r(t) + n(t) (2.12)

where:

• x(t) = [x1(t) · · ·xM (t)]T is the M × 1 phased antenna array output data
vector at time t,

• c(t) = [c1(t) · · · cNc
(t)]T is the Nc × 1 cosmic sources signal vector at time

t,

• Ac = [ac1(t, θc1 , φc1) · · · acNc
(t, θcNc

, φcNc
)] is the M ×Nc cosmic sources

space-time signature vectors matrix, with:

• acn(t, θcn , φcn) = [acn,1
(t, θcn , φcn) · · · acn,M

(t, θcn , φcn)]
T the space-time

signature vector corresponding to the nth cosmic source,

• r(t) = [r1(t) · · · rNr
(t)]T is the Nr × 1 RFI signal vector at time t,

• Ar = [ar1(t, θr1 , φr1) · · · arNr
(t, θrNr

, φrNr
)] is the M ×Nr RFI space-time

signature vectors matrix, with:

• arn(t, θrn , φrn) = [arn,1
(t, θrn , φrn) · · · arn,M

(t, θrn , φrn)]
T the space-time

signature vector corresponding to the nth RFI,

• n(t) = [n1(t) · · ·nM (t)]T is the M × 1 system noise vector at time t.
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2.3.2 Covariance matrix data model

The astronomical information coming from cosmic sources is provided by their
signal’s second order statistics [105]. Antenna array radio telescopes either pro-
vide them as a beamformed power over time, or as an integrated array covariance
matrix. The covariance matrix of the vectorized data model defined in Equation
2.12 is expressed by:

R(t, τ) = E{x(t+
τ

2
) · xH(t−

τ

2
)} (2.13)

Assuming independence between RFI, cosmic sources and system noise, i.e.

E{cn(t+
τ

2
)rm

∗(t−
τ

2
)} = 0, ∀ τ, n ∈ [1 . . . Nc],m ∈ [1 . . . Nr]

E{cn(t+
τ

2
)nm

∗(t−
τ

2
)} = 0, ∀ τ, n ∈ [1 . . . Nc],m ∈ [1 . . .M ]

E{rn(t+
τ

2
)nm

∗(t−
τ

2
)} = 0, ∀ τ, n ∈ [1 . . . Nr],m ∈ [1 . . .M ]

the covariance matrix R(t, τ) can be written as:

R(t, τ) = Ac ·Rc(t, τ) ·Ac
H +Ar ·Rr(t, τ) ·Ar

H +Rn(t, τ) (2.14)

with:

• Rc(t, τ) = E{c(t+ τ
2 )c

H(t− τ
2 )}

• Rr(t, τ) = E{r(t+ τ
2 )r

H(t− τ
2 )}

• Rn(t, τ) = E{n(t+ τ
2 )n

H(t− τ
2 )}

Multipath effects and noise coupling aspects have been investigated respec-
tively in appendices A and B.

2.3.3 Calibration and spatial signature vector structure

Far field sources

Cosmic sources are usually considered as being far field [63]. As long as the
antenna array is perfectly calibrated, their spatial signature vectors are pre-
dictable as soon as their location and trajectory are known. The structure of
these vectors is based on a dot product between the source direction, given by
its angular coordinates, and the antenna array baseline coordinates [90].

Let (θs, φs) be the spherical coordinates of the source s at time t and fre-
quency f0 impinging an M -antenna array radio telescope. The spatial signature
vector of s, as(θs, φs), also known as steering vector, is then expressed as:

as(θs, φs) = ej2π
f0
c
C

T
arraydθs,φs (2.15)

with:

• c the speed of light in vacuum,
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• Carray a 3×M matrix containing in its columns the cartesian coordinates
of each antenna of the array. These coordinates are either given relative
to a reference antenna or to an arbitrary point in space,

• dθs,φs
a 3×1 cartesian vector pointing the direction (θs, φs) on the celestial

sphere.

Without calibration, complex gains on each antenna of a phased antenna
array radio telescope might not be equal. The spatial signature vector is then
modeled as follows:

as(θs, φs) = a · ej2πr (2.16)

with a and r two M × 1 arbitrary (but fixed) uniformly distributed random
vectors. In the following, we will consider a = 1M×1, neglecting any amplifica-
tion difference between antenna elements.

A calibration step is therefore required before any observation for the radio
telescope to provide exploitable astronomical data [104].

There are two kinds of uncalibration. The first one, concerning the antenna’s
directivity and the ionospheric and atmospheric disturbances, is direction de-
pendent. The second one concerns the receiver’s signal processing path, and is
direction independent.

Considering the antenna array uncalibrated, its covariance matrix is ex-
pressed as:

R(t, τ) = G(Ac ·Rc(t, τ) ·Ac
H +Ar ·Rr(t, τ) ·Ar

H)GH +Rn(t, τ) (2.17)

where G is a M×M diagonal matrix defined by G = diag(g1, . . . , gM ), with
gk, the relative complex gain associated with the kth antenna of the array.

With a perfectly calibrated antenna array, the gain matrix G is such that:

G = IM×M (2.18)

In the following, the assumption 2.18 will be considered as true. The antenna
array spatial distribution will not be taken into account, i.e. the sources spatial
signature will be considered as arbitrary, but fixed, random complex-valued
vectors, and complex antenna gains are distributed into them. The spatial
signature vector structures considered will therefore follow the equation 2.16.

Near field sources

A near-field signal impinging the array does not meet the condition expressed
in Equation 2.11. In this case, its wavefront cannot be considered as being
flat when reaching the antenna array. The relative phase difference distribution
can however still be predicted by knowing the exact source location relative to
the array location and structure by applying basic solid geometry. However,
without loss of generality, the source’s spatial signature will also be considered
as being arbitrary, but fixed, random complex valued vectors.
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2.4 RFI properties

2.4.1 Non-circularity

The non-circularity property of a signal is based on the random complex variable
theory [79]. This circularity property says that the statistics of the two random
complex variables z and zejθ are the same for any rotation over an angle θ ∈
[0 . . . 2π]. For example, let us consider the SO statistics of a complex variable.
These statistics are defined by both the covariance function (Equation 2.19) and
the conjugate covariance function (Equation 2.20) expressed by:

Γz(t, τ) = E{z(t+
τ

2
)z∗(t−

τ

2
)} (2.19)

Γ̃z(t, τ) = E{z(t+
τ

2
)z(t−

τ

2
)} (2.20)

The variable z is said SO circular if both the covariance and conjugate co-
variance functions of z and zejθ are equal for any θ ∈ [0 . . . 2π]. The covariance
functions of z and zejθ are equal for any θ. Concerning the conjugate covariance
function, we have:

Γ̃zejθ(t, τ) = E{(z(t+
τ

2
)ejθ)(z(t−

τ

2
)ejθ)} (2.21)

= E{z(t+
τ

2
)z(t−

τ

2
)ej2θ} (2.22)

= Γ̃z(t, τ)e
j2θ (2.23)

Therefore, the only condition for z to be circular is Γ̃z(t, τ) = 0. A non-
circular complex variable is then a variable z such that Γ̃z(t, τ) 6= 0. In a
multidimensional way, an SO non-circular complex vector z is a vector such
that:

R̃z(t, τ) = E{z(t+
τ

2
)zT (t−

τ

2
)} 6= 0, ∀{t, τ} ∈ R

2 (2.24)

R̃z(t, τ) is called the conjugated covariance matrix. Contrary to cosmic
sources and system noise, some modulated RFI such as Amplitude Modulated
or Binary Phase Shift Keying modulated signals, present the non-circularity
property.

2.4.2 Second order cyclostationarity

Consider an SO stationary complex process z(t). By definition, its autocovari-
ance function is time independent:

Γz(t, τ) = Γz(τ) (2.25)

Some non stationary processes exhibit a periodicity in their covariance func-
tion:

Γz(t+ T0, τ) = Γz(t, τ), T0 ∈ R
∗ (2.26)
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These kinds of processes are said to be wide sense SO cylostationary [42,
44, 86]. Being periodic with a period T0, also called the cyclic period, their
covariance function admits the following Fourier decomposition:

Γz(t, τ) =
+∞∑

n=−∞

γαn
(τ)ej2π

n
T0

t, n ∈ N (2.27)

with

γαn
(τ) =

1

T0

∫ +
T0
2

−
T0
2

Γz(t, τ)e
−j2π n

T0
tdt (2.28)

=
〈
z(t+

τ

2
)z∗(t−

τ

2
)e−j2π n

T0
t
〉
∞

(2.29)

γαn
(τ) is called the cyclic covariance function of z at cyclic frequency αn =

n
T0
. Since z is a complex process, it also admits a conjugate cyclic covariance

function defined by:

γ̃αn
(τ) =

1

T0

∫ +
T0
2

−
T0
2

Γ̃z(t, τ)e
−j2π n

T0
tdt (2.30)

=
〈
z(t+

τ

2
)z(t−

τ

2
)e−j2π n

T0
t
〉
∞

(2.31)

with Γ̃z(t, τ) as expressed in Equation 2.20. Henceforth, SO cyclostationary
processes with a cyclic frequency α will be denoted α-cyclostationary processes.
When the only cyclic frequency of a process is α = 0, this process is stationary.

Cyclic and conjugated cyclic covariance functions can easily be generalized to
multidimensional SO α-cyclostationary processes. If z(t) is a random complex
vector with SO α-cyclostationary entries, its cyclic correlation matrix is defined
by:

Rα
z (τ) = E{z(t+

τ

2
)
(
zH(t−

τ

2
)⊙ (e−j2παt.1T )

)
} (2.32)

In the same way, the conjugate cyclic correlation matrix of z(t) is defined
by:

R̃α
z (τ) = E{z(t+

τ

2
)
(
zT (t−

τ

2
)⊙ (e−j2παt.1T )

)
} (2.33)

Consider now the data model described in Equation 2.12, but with only one
single α-cyclostationary interference rcyc(t) (with α 6= 0). The model becomes:

x(t) = arcyc
rcyc(t) +Ac · c(t) + n(t) (2.34)

(In order to simplify the equations, we have omitted the three parameters
(t, θ, φ) of the interference spatial signature)

Using the linearity of the average operator, the cyclic correlation matrix of
x(t) can be written as:

Rα
x(τ) = Rα

rcyc
(τ) +Rα

c (τ) +Rα
n(τ) (2.35)
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AM BPSK M-PSK M-QAM
Cyclic frequencies (α) none n

Tsym

n
Tsym

n
Tsym

Conjugated cyclic frequencies (α̃) 2f0 2f0 +
n

Tsym
none none

Table 2.1: Cyclic and conjugated cyclic frequencies for AM, BPSK, M-PSK
and M-QAM modulated signals. f0 corresponds to the modulated signal carrier
frequency, and Tsym to its symbol duration period. n is an integer.

Cosmic sources and the system noise are assumed to be stationary signals
[105], and therefore do not admit any cyclic power for α 6= 0. We have:

Rα
x(τ) = Rα

rcyc
(τ) = γαrcyc

(τ).arcyc
aHrcyc

(2.36)

with γαrcyc
the cyclic covariance function of rcyc(t).

Some SO cyclostationary modulated signals also present conjugated cyclic
frequencies. In the same way, the stationary contributions of the data model
will no longer contribute to the conjugated cyclic covariance matrix:

R̃α
x(τ) =

〈
x(t+

τ

2
)
(
xT (t−

τ

2
)⊙ (e−j2παt.1T )

)〉
∞

(2.37)

= γ̃αrcyc
(τ).arcyc

aHrcyc
(2.38)

When the conjugate cyclic frequency α = 0, the conjugate covariance ma-
trix expressed in equation 2.37 corresponds to the conjugate covariance matrix
expressed in equation 2.24. A non-circular signal can therefore also be seen as
a cyclostationary signal with, at least, one conjugate cyclic frequency : α = 0.

The Table 2.1 shows the cyclic and conjugated cyclic frequencies correspond-
ing to Amplitude Modulated (AM), Binary Phase Shift Keying (BPSK), M-
Phase Shift Keying (M-PSK) and M-Quadrature Amplitude Modulation (M-
QAM) signals [40, 41].

Figure 2.1 shows the Power spectral Density, the cyclic power spectrum and
the conjugated cyclic power spectrum of a simulated Binary Phase Shift Keying
modulated signal. The peaks that can be seen on spectra 2.1.(b) and 2.1.(c)
correspond to the modulation’s cyclic and conjugated cyclic frequencies.

2.5 Conclusions on the data model

Understanding the data is an important step for any signal processing. Con-
cerning interference mitigation for phased antenna array radio telescopes, three
kind of signals are recovered at the system output:

• The cosmic sources, or signals of interest. These signals usually have low
power and can most of the time be modeled as white stationary processes
with Normal distribution over a short time scale. Pulsing sources also
exist, and the approach will then be completely different (see [6] for more
details).

• The system noise. System noise is always present in the data. The system
is here understood in the broad sense, i.e. taking into account cosmic noise,
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Figure 2.1: Cyclostationary properties of the BPSK modulation. (a) Power
Spectral Density of a simulated BPSK modulated signal (reduced carrier fre-
quency f0 = 0.16 (reduced frequency) and symbol duration period Tsym = 16
samples). (b) Cyclic power spectrum. (c) Conjugate cyclic power spectrum.
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the electronic noise, thermal noise, analog to digital conversion noise, etc.
Applying the Central Limit Theorem, this noise is commonly modeled as
a white stationary Gaussian process. Unlike cosmic sources, the system
noise is also considered as spatially white.

• Radio Frequency Interference. RFI are signals impinging the antenna
array without being of interest. Different sources can emit interfering
signals, especially telecommunication devices. These signals have high
power, and their modeling depends on their nature : natural (cosmic or
due to natural phenomena) or man-made signals.

The full data model is an additive model. The phased antenna array out-
put therefore contains contributions from cosmic sources, system noise, and,
depending on the frequency bandwidth of interest, in certain cases the observa-
tion time, radio frequency interference.

Figure 2.2 shows a data Power Spectral Density and Time-Frequency repre-
sentation of an acquisition made with a LOFAR High Band Antenna over 150ms
and 100 MHz frequency bandwidth. Interference is not present over the whole
bandwidth, but its power is far stronger than that of cosmic sources, which are
not visible at all on this figure (requiring a longer integration time). The strong
interference located around 170 MHz corresponds to a pager system emitting
in the Netherlands. As an example, Figure 2.3 shows the cyclic and conjugated
cyclic power spectra of this interference. Different cyclic frequencies define the
modulation scheme of the interference, and can be used in order to estimate this
interference spatial signature and mitigate it, as will be seen in the following
chapters.

Modifying the radio telescope correlator input data, the antenna array co-
variance model can be generalized in order to take into account the different
RFI properties seen in this chapter:

R(t, τ, α) = E{yα(t−
τ

2
)y−α(t+

τ

2
)H} (2.39)

where yα(t) = x(t)e−jπαt.



2.5. CONCLUSIONS ON THE DATA MODEL 33

100 120 140 160 180 200
−20

0

20

40

60

80

100

120

Frequency (MHz)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

dB
)

(a)

Time (s)

F
re

qu
en

cy
 (

M
H

z)

 

 

0 0.05 0.1 0.15

100

110

120

130

140

150

160

170

180

190

200

P
ow

er
 (

dB
)

−20

0

20

40

60

80

100

(b)

Figure 2.2: 150ms data acquired with a single LOFAR High Band Antenna in the
Netherlands. A strong pager signal can be seen at 170 MHz. (a) Power Spectral
Density of an acquisition made with a single LOFAR antenna over 100 MHz
frequency bandwidth. (b) Time-Frequency representation of the acquisition.
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Figure 2.3: Cyclostationary properties of a pager system signal acquired with
a LOFAR High Band Antenna. (a) Power Spectral Density. (b) Cyclic spec-
trum. (c) Conjugated cyclic spectrum. The spectral lines seen on (b) and (c)
correspond to the pager cyclic frequencies.



Chapter 3

Spatial filtering

3.1 Introduction

The major advantage of phased antenna arrays is their ability to steer a direction-
of-interest electronically by coherently summing the signals coming from each
antenna. This operation is called ’beamforming’. However, the corresponding
radiation pattern presents sidelobes (see figure 3.1 for instance). Even if the
sidelobe gains are small compared to the main lobe gain, a strong interference
impinging the array through these lobes will corrupt the data.

RFI entering via side lobes are not the only way in which data for a phased
antenna radio telescope can be corrupted. Depending on its main lobe width,
flying transmitters such as in satellites or airplanes can also impinge the array
through the main lobe steering a source of interest. A third source of radio
telescope data corruption is intermodulation products, i.e. strong interference
polluting other frequency bands than the one of interest might also corrupt the
observation when the array receiver presents non-linearities.

RFI mitigation for radio astronomy is not only a matter of cancelling the
interfering signals. More importantly for astronomers, the cosmic signal of in-
terest has to remain as far as possible intact.

Currently, the RFI mitigation strategy used for most antenna array radio
telescopes is called ’flagging’. The idea behind this technique is to monitor
the spectrum during an observation and simply excise the corrupted frequency
subbands at corrupted time-slots. This process can be done automatically in
real time, as well as manually with offline post processing tools. For instance, the
European radio telescope LOFAR provides a post-correlation RFI classification
tool based on combinatorial thresholding [77].

Flagging techniques do not exploit all the information provided by the system
: spatial information, in particular, is not taken into account. Spatial filtering
techniques have been developed for several decades to avoid interference imping-
ing telecommunication and radar antenna array systems [64]. Spatial filtering
is also extensively used in the field of microphone array systems [15].

In radio astronomy, antenna arrays are used either for beamforming appli-
cations, i.e. used as a sensitive and electronically steerable single antenna radio
telescope, or for radio interferometry applications, i.e. correlating the antenna
array output in order to create wide-field-of-view radio images. Depending on

35
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Figure 3.1: Directivity diagram of a 10-antenna Uniform Linear Array (ULA),
with λ

2 spacing, beamforming in the direction 90◦. The main lobe is centered
at 90◦ with unitary maximum gain.
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Figure 3.2: Antenna array radio telescope system. Signals acquired by antennas
are pre-processed (subband filtering and frequency shifting), then correlated.
Spatial RFI filtering can be applied either before or after the correlation process.

the use of the radio telescopes, spatial filtering techniques are preferably used
before the correlation process, for example during the tracking of a cosmic source
of interest, or after correlation, for example before imaging the radio sky. Figure
3.2 shows where these processes can take place in an antenna array system.

The spatial filtering technique (or techniques) chosen depend on different
parameters, such as the type of observation, the expected performances, and
also the available computational power.

The aim of this chapter is to present and compare spatial filtering techniques
that can be used for radio astronomy. We will consider the following narrow
band data model based on the one given in Equation 2.12:

x(t) = acc(t) +Ar · r(t) + n(t) (3.1)

The signal c(t) is here the cosmic signal-of-interest. The signal spatial sig-
natures are here considered as being known. The following chapter presents
techniques allowing their estimation. We omit here the source spatial signa-
ture vectors time-dependence (t) and spatial-dependence (φ, θ) for the sake of
notation simplicity.

The different techniques presented in this chapter can be applied either be-
fore or after the correlation process. However, the post-correlation approach is
generally preferred since in most observational systems an observation covari-
ance matrix is produced by default.

3.2 Beamforming

The idea of beamforming is to form a linear combination of the outputs of each
antenna of the array [97, 98]. Weights applied to the antenna array output
are chosen according to the direction of the source-of-interest (c(t)), but also
the desired attenuations in the directions of corrupting sources (r(t)) [52]. We
present in this section four popular beamforming techniques. The first of them,
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the delay and sum beamformer, only takes the source-of-interest direction into
account. It is a so-called data-independent beamformer since no information
about its environment is injected in its calculation.

3.2.1 Classical delay and sum beamforming

Knowing the source-of-interest location, defined by ac, the basic idea of the
delay and sum beamformer is to build the Moore-Penrose inverse of this vector,
and apply it to the antenna array output vector:

c̃(t) = (aHc ac)
−1aHc x(t) (3.2)

where c̃(t) is the estimate of the source-of-interest signal. This kind of beam-
former is the optimal solution in the least-squares sense in a single source envi-
ronment. Applied to the data model defined in Equation 3.1, we have:

c̃(t) =
1

‖ac‖2

(
‖ac‖

2c(t) +

Nr∑

n=1

aHc arnrn(t) + aHc n(t)

)
(3.3)

with aHc ac = ‖ac‖
2. The resulting noise contribution is a linear combination

of each antenna’s noise term. The attenuation factor for the interference signals
rn(t) can be seen as dot products between the signal-of-interest steering vector
and the interference steering vector:

aHc arn = ‖ac‖.‖arn‖. cos(θac,arn
) (3.4)

where θac,arn
is the angle between the two vectors ac and arn in the M-

dimensional antenna array data vector space. Depending on the value of this
angle, the attenuation factor varies between −‖ac‖.‖arn‖ and +‖ac‖.‖arn‖. In
the event of non-orthogonality between these pairs of vectors (ac and arn with
n = 1..Nr), a remaining interference signal contribution cannot be avoided after
processing.

As an example, figure 3.3 shows the directivity pattern obtained with a delay
and sum beamformer while steering at the direction highlighted by the green
line on the figure. The beamformer has here been applied to a uniform linear
array made of 10 antennas with a spacing corresponding to half the observed
wavelength. The nulls in the pattern (maximum rejection) are located at angles
where the respective steering vector is orthogonal with the beamforming vector.
The maximum gain is obtained in the direction of interest.

This beamformer is the easiest to implement, since it does not require any
further calculation to implement it. Its performances can however be improved
by using an apodization window [51]. In the same way as when designing a
Finite Impulse Reponse digital filter, applying an apodization window to the
beamformer coefficients (that are usually of equal magnitude) helps control the
main lobe width and the side lobes gain and thus obtain the desired spatial
response. Figure 3.4 shows the modified directivity pattern after applying a
Gaussian window (figure 3.4.(a)) to the previous beamformer (figure 3.3). The
side lobe gains are lower after apodization, but the main lobe width is larger,
potentially allowing more interference to impinge the array through this lobe.

The delay and sum beamformer is not suitable for multiple radio sources
environments since there is no option for attenuating any particular direction
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Figure 3.3: Directivity diagram obtained with a classical delay and sum beam-
former. Computed using a simulated uniform linear antenna array made of 10
antennas with λ

2 spacing. The green line corresponds to the signal of interest
direction.
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Figure 3.4: Directivity diagram obtained with a classical delay and sum beam-
former after apodization. (a) Gaussian apodization window applies to the delay
and sum beamforming vector coefficients. (b) Directivity pattern computed us-
ing a simulated calibrated uniform linear antenna array made of 10 antennas
with λ

2 spacing. The green line corresponds to the signal of interest direction.
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in the field of view of the antenna array. Even with apodizing the beamformer
coefficients, the interference might still be strong enough to saturate the radio
telescope receiver and/or corrupt the data, although data can still be corrupted
without receiver saturation. However, in a non-corrupted environment, the
delay and sum beamformer presents the advantage of being easy to implement
and to update (while tracking a source of interest) and computationally cheap.
These advantages are even more important when the antenna array contains a
large number of antennas. This approach is the one implemented on current
antenna array radio telescopes, either on antenna array stations or at the central
correlation stage.

3.2.2 Multiple Sidelobe Canceller

The Multiple Sidelobe Canceller (MSC) [74, 48] uses two sub-arrays of the an-
tenna array radio telescope. The first one, called primary array, beamforms
in the direction of the source-of-interest. The beamforming technique used can
for example be a classical delay and sum beamformer, but can also be a single
antenna. The idea is to optimize a beamforming weight vector for the sec-
ond sub-array, called auxiliary array, in order to minimize the mean squared
error between the output of these two sub-arrays in the absence of the signal-
of-interest. We call xprim(t) the primary sub-array output and wHxaux(t) the
output of the auxiliary sub-array, with w the beamforming weight vector to be
optimized. The mean squared error between these two sub-arrays is formulated
as:

MSE(w) = E{| xprim(t)−wHxaux(t) |
2} (3.5)

= σ2
xprim

−wHrxauxxprim
−wT rxauxxprim

∗ +wHRauxw (3.6)

with:

• σ2
xprim

the power of the primary sub-array output,

• rxauxxprim
the correlation vector between the beamformed primary sub-

array output and the auxiliary sub-array output vector,

• Raux the auxiliary sub-array output vector correlation matrix.

The function MSE(w) has to be minimal in the absence of the source-of-
interest’s signal. Its derivative function with respect to w is [56]:

∂

∂w
MSE(w) = −rxauxxprim

+Rauxw (3.7)

Nulling this derivative function leads to the statistically optimal MSC beam-
former:

wMSC = R−1
auxrxauxxprim

(3.8)

Even if this beamforming technique requires the absence of the signal-of-
interest, it might still be suitable for radio astronomical applications. The weak
power of cosmic sources makes their contribution to the total output power very
low compared to the system noise and interference signals. Therefore, applying
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Figure 3.5: Directivity pattern obtained with a multiple sidelobe canceller beam-
former. Computed using a simulated uniform linear antenna array made of 10
antennas with λ

2 spacing. One antenna was used as a primary channel, the nine
other antennas were used as the auxiliary sub-array. Covariance matrices calcu-
lated over 32768 samples. SNR = 0 dB. INR = 0 dB. The green line corresponds
to the signal of interest direction, the red line is the RFI direction.

the MSC beamformer on a phased antenna array radio telescope would improve
the observation in a corruptive environment anyway, even with a continuous
weak cosmic source of interest impinging the array.

Figure 3.5 shows an example of a Multiple Sidelobe Canceller directivity
pattern. This pattern was calculated after simulating a white Gaussian signal
of interest (with direction highlighted with a green line) and a white Gaussian
interference (with direction highlighted with a red line), with a 0 dB Signal to
Noise Ratio and a 0 dB interference to noise ratio, impinging a uniform linear
antenna array made of 10 antennas with λ

2 spacing. The covariance matrices
were calculated over n = 32768 samples. One antenna was used here as a
primary channel (instead of a sub-array), and the nine remaining antennas as
the auxiliary sub-array.

As long as cosmic sources can be neglected regarding the interfering signals,
the MSC beamformer automatically rejects the interference direction of arrival.
If the latter condition does not hold, it would be necessary to consider another
kind of spatial filtering.
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3.2.3 Maximum SNR beamformer

The aim of the Maximum Signal-to-Noise Ratio beamformer is to maximize the
signal-to-noise ratio at the output of the antenna array beamformer wmaxSNR.
Both system noise and interference are here considered as a global noise term.
We consider here the data model based on the one expressed in Equation 2.14:

R = σ2
caca

H
c +Rr+n (3.9)

where Rr+n = Ar ·Rr ·Ar
H +Rn. According to this covariance data model,

the Signal-to-Noise Ratio at the output of a beamformer w is defined as:

SNR = σ2
c

wHaca
H
c w

wHRr+nw
(3.10)

The problem of the SNR beamformer is then written as [97]:

ŵmaxSNR = argmax
w

σ2
c

wHaca
H
c w

wHRr+nw
(3.11)

With ŵmaxSNR the estimate of the Maximum SNR beamformer weights
vector.

The solution of this optimization problem is given by the following Gener-
alized Eigenvalue problem:

σ2
caca

H
c wmaxSNR = λmaxSNRRr+nwmaxSNR (3.12)

where wmaxSNR is the eigenvector of the matrix σ2
cRr+n

−1aca
H
c associated

with its larger eigenvalue λmaxSNR, assuming Rr+n is invertible. This assump-
tion usually holds since the system noise covariance matrix is by nature full
rank. Therefore, Rr+n is full rank and invertible.

However, this technique requires an estimate or knowledge of Rr+n and ac.
The vector ac corresponds to the direction of interest (cosmic source of interest
direction). The matrix Rr+n corresponds to the antenna array covariance ma-
trix R when the cosmic source of interest is not located in its field of view or is
weak enough to be neglected. This matrix can therefore be estimated using the
antenna array correlator output if the cosmic source is absent. Techniques to
estimate the interference-only covariance matrix are presented in the following
chapter.

Figure 3.6 shows the directivity pattern obtained with a maximum SNR
beamformer on a uniform linear array made of 10 antennas with λ

2 spacing.
The covariance matrix was simulated using a single interference and a calibrated
uncoupled system noise with a 0 dB interference to noise ratio. The interference
direction is highlighted by a red line on the figure, and the direction of interest
by a green line.

The Maximum Signal-to-Noise Ratio beamformer achieves the best SNR
possible at the output of the antenna array radio telescope. However, this con-
dition only holds if the noise covariance matrix Rr+n is known. Any estimation
error for this matrix would lower the expected performance.
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Figure 3.6: Directivity diagram obtained with a maximum SNR beamformer.
Computed using a simulated uniform linear antenna array made of 10 antennas
with λ

2 spacing. Single interference and calibrated uncoupled system noise (INR
= 0 dB) .The green line corresponds to the signal of interest’s direction, the red
line is the RFI direction.
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3.2.4 LCMV beamformer

The Linearly Constrained Minimum Variance (LCMV) beamformer is a tech-
nique based on the minimization of the antenna array output variance con-
strained to a constant gain g in the direction of the source-of-interest. The
constrained optimization problem is formulated as follows:

wLCMV = argmin
w

wHRw, subject to wHac = g (3.13)

This optimization can be solved using the Lagrange multipliers technique.
Using this technique, the Lagrange function related to this problem becomes:

L(µ,w) = wHRw − µ(wHac − g) (3.14)

with µ the Lagrange multiplier related to the constraint of the problem. The
beamforming vector maximizing this constrained problem is then given by:

wLCMV = g
1

aHc R−1ac
R−1ac (3.15)

When the gain factor g is unitary, this beamformer is also known as the
Minimum Variance Distortionless Response (MVDR) or Capon beamformer.

The LCMV beamformer can also be extended to multiple constraints [96].
For instance, in the case of known static interference, it can be interesting to
add a nulling of the interference direction of arrival as a beamformer constraint.
Consider the (M × Nr + 1) constraint matrix C containing column wise the
steering vector corresponding to the direction of interest (first column) and Nr

steering vectors corresponding to Nr static interference. The constraints of this
beamformer are then described as:

CHwLCMV = g (3.16)

with g a constraints gain vector such that :
(
g 0 · · · 0

)T
. The corre-

sponding LCMV vector wLCMV is then defined by the following expression:

wLCMV = R−1C(CHR−1C)−1g (3.17)

Figure 3.7 is a directivity pattern obtained using a LCMV beamformer. This
beamformer was applied to a uniform linear antenna array made of 10 antennas
with λ

2 spacing. The simulated covariance matrix involves one signal of interest,
with direction highlighted by a green line on the figure, and an interference, with
direction highlighted by a red line. The signal to noise ratio and interference to
noise ratio are both 0 dB.

Even if this beamforming technique seems computationally expensive and
hard to implement, its major advantage is that it does not require any a priori
knowledge concerning the interference and system noise contributions in order to
build it. However, injecting a priori knowledge concerning the jammers locations
is possible with multiple constraints, and can improve its performances as long
as jammers remain static.
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Figure 3.7: Directivity pattern obtained with a LCMV beamformer. Computed
using a simulated uniform linear antenna array made of 10 antennas with λ

2
spacing. One signal of interest, One interference, SNR = 0 dB, INR = 0 dB.
The green line corresponds to the signal of interest direction, the red line is the
RFI direction.
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3.2.5 Conclusions on beamforming techniques

Beamforming has been extensively studied [103, 65, 100], especially for telecom-
munication applications [106]. These techniques are usually based on the signal
of interest properties (like wideband [32] or cyclostationary [27, 26] properties).

In radio astronomy, the signals of interest do not present particular charac-
teristics since cosmic sources can be described as white Gaussian noise signals.
That is the reason why most of the beamforming techniques cannot be applied
to this field. Some radio astronomical beamforming applications can still be
found in the literature [36, 87].

Spatial filtering is not limited to beamforming techniques. The next section
presents other approaches based on projections that use a phased antenna array
covariance matrix.

3.3 Projection techniques

The phased antenna array radio telescope data covariance matrix can be seen,
from a linear algebra point of view, as a linear transform matrix. This ma-
trix generates a vector space called the data vector space. By construction,
this vector space is made of three subspaces known as RFI subspace, cosmic
source subspace and system noise subspace. While the system noise subspace
is considered as spatially white, i.e. uniformly distributed along the data vec-
tor space, the RFI and cosmic source subspaces are defined by sub-basis. The
steering vectors of all interferences (respectively cosmic sources) are seen as an
RFI (respectively cosmic source) subspace basis. However, a subspace basis is
not unique, i.e. different sets of vectors can generate the same subspace. This
topic will be addressed in the following chapter.

The general idea of projection is to extend the kernel of a data covariance
matrix, usually limited by the vector 0, to the interference subspace. This
operation is called nulling the RFI subspace. The consequence on the radio as-
tronomical observation is then the nulling of the power coming from the jammers
directions of arrival.

3.3.1 Orthogonal projection

Concept

Figure 3.8 illustrates an example of a 2-dimensional data vector space in a
noise-free scenario. Both red and black vectors represent the steering vectors
associated with respectively a cosmic source and an RFI source. They therefore
generate the cosmic source and the RFI subspaces. The norm of these vectors
represents the power of each one of these sources.

The underlying concept of interference mitigation using an orthogonal pro-
jector is to project the data vector space onto a subspace that is orthogonal
to the RFI subspace, and parallelly to it [83]. The projected RFI subspace is
completely nulled. The resulting data then contain only the cosmic source con-
tribution. It can clearly be seen on the figure that the recovered cosmic source
power, after projection, is attenuated by a factor depending on the angle be-
tween interference and cosmic source. Geometrically, if σ2

sproj
is the recovered

cosmic source’s power after projection, then:
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Figure 3.8: Illustration of the orthogonal projection applied to a 2-dimensional
data vector space

σ2
sproj

= σ2
s . sin(θac,arn

) (3.18)

with σ2
s the true cosmic source power and θac,arn

the angle between the
cosmic source and interference. Except in the case of orthogonality, the cosmic
source will not be recovered perfectly without attenuation.

Orthogonal projector construction

Consider a finite-dimensional vector space V and two vector subspaces V1 and
V2 so that V can be written as a direct sum V = V1 ⊕ V2. For each vector
x ∈ V , a unique couple (x1,x2) ∈ (V1 × V2) exists so that x = x1 + x2. The
projection p onto V1 and parallel to V2 is a linear transform defined by the
following projection equation:

p(x) = p(x1 + x2) = x1 (3.19)

Moreover, if V1 and V2 are orthogonal, then the transform p is an orthogonal
projection.

A projection has the following properties:

• p(x) = x ↔ x ∈ V1

• Ker p = V2

• Im p = V1

• p is idempotent : p ◦ p = p

Like any linear transform, p can be written in a matrix form P. Any pro-
jection matrix is diagonalizable. In the case of an orthogonal projection, the
matrix is hermitian and therefore admits an orthogonal eigenvalue decomposi-
tion. Its eigenvalues are ’0’ or ’1’. Unitary eigenvectors corresponding to the
’0’ eigenvalues generate the projection kernel subspace, and unitary eigenvectors
corresponding to the ’1’ eigenvalues generate the range subspace. The rank of
a projection matrix is therefore equal to the dimension of its range subspace.
If H is a projection range subspace basis and K a projection kernel subspace
basis, we have:
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{
P ·H = H
P ·K = 0

The orthogonal projector with range generated by the basis matrix H is then
defined by:

P = H(HHH)−1HH (3.20)

The orthogonal projector whose range is the subspace orthogonal to H is
denoted P⊥ and defined by:

P⊥ = I−H(HHH)−1HH (3.21)

Application to antenna array radio telescopes

Without any loss of generality, we consider here the following single interference
data model:

x(t) = arr(t) +Ac · c(t) + n(t) (3.22)

The interference subspace of this data model is here 1-dimensional. The
orthogonal projector projecting data onto the interference subspace is defined
by [5, 89]:

P = ar(a
H
r ar)

−1aHr (3.23)

The orthogonal projector projecting data onto a subspace orthogonal to the
interference subspace, so that both of these subspaces are in a direct sum, is
defined by:

P⊥ = I− ar(a
H
r ar)

−1aHr (3.24)

In the case of a multiple interference scenario, such as the data model defined
in equation 3.1 for example, the interference subspace is multi-dimensional. This
subspace is the generated by the set of independent RFI steering vectors stored
in the matrix Ar. In the same way, the orthogonal projector projecting data
onto a subspace orthogonal to the latter is defined by:

P⊥ = I−Ar(Ar
HAr)

−1Ar
H (3.25)

An orthogonal projector can be applied at either pre or post-correlation
stages on a phased antenna array radio telescope data flow. At the pre-correlation
stage, the available data is the antenna array output data vector x(t). The cor-
rected data vector xclean(t) is then calculated in the following way:

xclean(t) = P⊥x(t) (3.26)

At the post-correlation stage, the available data is the antenna array output
covariance matrix R. The corrected covariance matrix Rclean is then obtained
with:

Rclean = P⊥RP⊥H
(3.27)

= P⊥RP⊥ (3.28)
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Performances and correction

We consider here the following narrowband data model based on a single inter-
ference and a single cosmic source:

x(t) = acc(t) + arr(t) + n(t) (3.29)

The covariance matrix of this data model, assuming the array is calibrated
and the signals mutually independent, is given by:

R = E{xxH} (3.30)

= σ2
cacac

H + σ2
rarar

H + σ2
nI (3.31)

with σ2
c , σ

2
r and σ2

n respectively the powers of the cosmic source signal, the
interference signal and the system noise. We will consider in the following the
signals to be stationary and the covariance matrix only given for a time-lag
τ = 0. Thus, we will omit the time and time-lag dependence in the covariance
data model.

The power reached in the arbitrary direction given by the steering vector w
is:

σ2
w = wHRw (3.32)

σ2
w is obviously corrupted by the interference and the cosmic sources im-

pinging the antenna array through the side lobes generated by the spatial filter
w. We consider now the power σ2

wclean
calculated with the cleaned covariance

matrix given in equation 3.28:

σ2
wclean

= wHRcleanw (3.33)

= wHP⊥RP⊥w (3.34)

= worth
HRworth (3.35)

with worth = P⊥w the orthogonal projection beamforming vector. Expand-
ing this equation, we find out its closed form expression:

σ2
wclean

= σ2
c

(
‖ρac

‖2 − 2 Re(ρ∗ρ∗ac
ρar

) + ‖ρ‖2‖ρar
‖2
)

(3.36)

+ σ2
n

(
1− ‖ρar

‖2
)

(3.37)

with:

• ρ the dot product between ar and ac : ρ = ar
Hac

• ρar
the dot product between w and ar : ρar

= wHar

• ρac
the dot product between w and ac : ρac

= wHac

The interference no longer contributes to the recovered power σ2
wclean

. If
the source of interest is the cosmic source, beamforming in its direction leads
to w = ac. In this case, the cosmic source power is attenuated by a factor
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depending on the dot product between the interference subspace and the cosmic
source subspace:

σ2
acclean

= σ2
c (1− ‖ρ‖2)2 + σ2

n(1− ‖ρ‖2) (3.38)

If these subspaces are orthogonal (this configuration is not likely), we have
ρ = ρar

= 0 and ρac
= ‖ac‖

2. The recovered power σ⊥2
acclean

becomes:

σ⊥2
acclean

= σ2
c + σ2

n (3.39)

The orthogonal projector modifies the cosmic sources subspace. Raza et al.
( [83], see also [93])proposed a correction technique allowing an unbiased esti-
mation of the cosmic source and noise covariance matrix. Based on knowledge
of the orthogonal projection matrix, the modified remaining subspace can then
be corrected.

The correction matrix, applied to the projected covariance matrix Rclean is
based on the projection matrix P⊥ and needs to be invertible. The technique
proposed by Raza et al. therefore uses time-averaged short term projection
matrices. The related issue is the interference subspace estimation error that
increases with the covariance matrix time integration reduction. The projection
matrices might then be inefficient to project the RFI subspace out of the data
vector space. Moreover, the correction technique is computationally expensive
(requiring multiple covariance matrices).

Based on these observations, we propose an oblique projection approach that
does not require any correction to retrieve the signal of interest subspace [54].
This approach requires more a priori information, but presents the important
advantage (in radio astronomy) of not distorting the cosmic source of interest
subspace.

3.3.2 Oblique projection

Concept

Although the orthogonal projection performs deep RFI nulling, the distortion
of the recovered cosmic source subspace remains an issue. This distortion is due
to a data vector space projection onto a subspace depending on the interfer-
ence subspace only, i.e. orthogonal to this subspace, without taking the cosmic
source of interest into account. Figure 3.9 shows the 2-dimensional concept of
an oblique projection. Here again, the black arrow represents the interference
subspace, and the red arrow represents the cosmic source subspace. Their norms
define their respective powers.

The projection is still done parallel to the interference subspace, but this
time onto the cosmic source subspace. As can be seen on the figure, the cos-
mic source subspace is perfectly recovered. This projection is equivalent to an
orthogonal projection in the case of orthogonality between the cosmic source
and the interference subspaces. But this condition is no longer needed with an
oblique projector.

Oblique projection construction

It has been seen in the previous section that the orthogonal projection can be
defined according to either its range subspace or its kernel subspace since both
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Figure 3.9: Illustration of the oblique projection applied to a 2-dimensional data
vector space

subspaces are involved in a direct sum. The oblique projector [13] is based on
the orthogonal projector, taking only its range subspace in account. Keeping the
same notations as before, we saw that H is a matrix defining the range subspace
of the orthogonal projector P. No assumption was made on the orthogonality
of this matrix. We can therefore split this basis matrix into two sub-bases H1

and H2 such that H = H1 ⊕H2, i.e. the subspaces generated by H1 and H2

are involved in a direct sum:

H = [H1 H2] (3.40)

H1 and H2 therefore generate two distinct subspaces of H, but do not have
to be orthogonal. We can now write the expression of the orthogonal projection
whose range subspace is defined by the matrix H:

P = H(HHH)−1HH (3.41)

=
[
H1 H2

] [H1
HH1 H1

HH2

H2
HH1 H2

HH2

]−1 [
H1

H

H2
H

]
(3.42)

Using the following analytic blockwise inversion formula:

[
A B
C D

]−1

=

[
A−1 +A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]

(3.43)
we get the following expression of P:

P = EH1H2
+EH2H1

(3.44)

with:

{
EH1H2

=
[
H1 0

] [
HHH

]−1 [
H
]H

EH2H1
=

[
0 H2

] [
HHH

]−1 [
H
]H

{
EH1H2

= H1(H1
HP⊥

H2
H1)

−1H1
HP⊥

H2

EH2H1
= H2(H2

HP⊥
H1

H2)
−1H2

HP⊥
H1
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with P⊥
H2

= I − H2(H2
HH2)

−1H2
H and P⊥

H1
= I − H1(H1

HH1)
−1H1

H

respectively the orthogonal projectors with range the subspace orthogonal to
H2 and H1. EH1H2

and EH2H1
are obviously idempotent and we have:





EH1H2
H1 = H1

EH1H2
H2 = 0

EH2H1
H1 = 0

EH2H1
H2 = H2

EH1H2
(resp. EH2H1

) is therefore a projection matrix with range H1 (resp.
H2) and kernel H2 (resp. H1). This kind of projection allows the parametriza-
tion of the range and kernel subspaces without requiring orthogonality between
them. Moreover, the kernel subspace of P being orthogonal to H, this subspace
is also part of the kernel subspaces of EH1H2

and EH2H1
.

Applied to an antenna array radio telescope, the oblique projector requires
the definition of a range and a kernel subspace. To fit with the problem, the
interference subspace will be considered as being the projector’s kernel sub-
space, whereas the direction of interest’s steering vector will generate the range
subspace of the projector.

Consider the data model defined in equation 3.22. The kernel subspace to
choose for this data model will be the one generated by the interference steering
vector ar. Suppose the direction-of-interest is defined by the arbitrary steering
vector w. The oblique projector is then defined by:

Ewar
= w(wHP⊥

ar
w)−1wHP⊥

ar
(3.45)

with P⊥
ar

= I− ar(a
H
r ar)

−1ar
H . Again, if the interference subspace is mul-

tidimensional, i.e. the subspace is no longer generated by a single vector ar but
by an interference subspace basis matrix Ar (multiple interference scenario),
the oblique projector is defined by:

Ewar
= w(wHP⊥

Ar
w)−1wHP⊥

Ar
(3.46)

with P⊥
Ar

= I−Ar(Ar
HAr)

−1Ar
H .

Like the orthogonal projector, the oblique projector can be applied either
before or after the correlation process. Applied on a pre-correlation stage, the
received corrected data vector xclean(t) is obtained in the following way:

xclean(t) = Ewar
x(t) (3.47)

At the post-correlation stage, the received cleaned output covariance matrix
is defined by:

Rclean = Ewar
REH

war
(3.48)

The range subspace of the oblique projector can also be multidimensional
and defined by a basis made of several steering vectors corresponding to different
directions of arrival. However, the building of such a projection matrix has to
respect a direct sum between the range and the kernel subspace.
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Performances

The oblique projection matrix is applied in the same way as the orthogonal
projector to the antenna array covariance matrix. Consider the steering vector
w pointing in an arbitrary direction. The data model used is the one defined in
equation 3.29. Applied to its covariance matrix, we have:

σ2
wclean

= wHRcleanw (3.49)

= wHEwar
REH

war
w (3.50)

= wobl
HRwobl (3.51)

with wobl = EH
war

w the oblique projection beamforming vector. With the
same notations as 3.37, the closed form expression of σ2

wclean
for the considered

data model becomes:

σ2
wclean

= σ2
c

1

(1− |ρar
|
2
)2

(
|ρac

|
2
− 2 Re(ρ∗ρ∗ac

ρar
) + |ρ|

2
|ρar

|
2
)

(3.52)

+ σ2
n

1

1− |ρar
|
2 (3.53)

Beamforming the array in the direction of the cosmic source of interest leads
again to w = ac. This time, the recovered power is expressed by:

σ2
acclean

= σ2
c + σ2

n

1

1− |ρ|
2 (3.54)

Reasoning in term of signals contributions recovery, the cosmic source contri-
bution is totally recovered after an oblique projection beamforming. However,
the noise contribution is amplified by a factor depending on the dot product
between the interference and the cosmic source subspaces.

3.3.3 Comparison between oblique and orthogonal projec-
tion beamforming techniques

Table 3.1 summarizes the effect of the spatial filtering methods on SOI, RFI
and noise powers (resp. PSOI , PRFI and Pnoise) using the classic delay-and-sum
beamforming (σ2

class), orthogonal projection beamforming (σ2
orth) and oblique

projection beamforming (σ2
obl), with σ2

s the true SOI power and σ2
r the true

RFI power. According to this table, the oblique projection beamforming ap-
proach is able to recover the power reached in the SOI direction without any
error whereas the orthogonal projection beamforming presents an error whose
magnitude depends on the dot product ρ.

Figure 3.10 shows the relative error of these techniques in a noise-free sce-
nario (i.e. σ2

n = 0). This relative error is defined as

ǫ =
PSOI − σ2

s

σ2
s

(3.55)

The simulation parameters are:
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σ2
class σ2

orth σ2
obl

PSOI σ2
s σ2

s(1− |ρ|
2
)2 σ2

s

PRFI σ2
rρ

2 0 0

Pnoise σ2
n σ2

n(1− |ρ|
2
) σ2

n(1− |ρ|
2
)−1

Table 3.1: SOI, RFI and noise power after classic delay-and-sum beamforming,
orthogonal and oblique projection beamforming.

• 60 randomly distributed antennas array,

• One cosmic source with power −5 dB,

• One interference with Interference to Signal Ratio = +30 dB.

The relative errors made with the Delay and Sum beamformer and the Or-
thogonal projector are highly dependent on the dot product between the inter-
ference steering vector and the source of interest steering vectors. The relative
error made with an oblique projector is constant over this dot product range
(from 0 to 1), its value is around 10−14. No matter what the method, the relative
error will always be maximum when the dot product between the interference
and the source of interest subspaces equals 1. In this case, both subspaces are
mingled.

Figure 3.11 depicts maps made with beamforming over the field of view of
a simulated randomly distributed M = 48-antenna array radio telescope. The
interference is +10 dB stronger than the cosmic source, in a noise-free scenario.
Covariance matrices are estimated over 2048 samples. Figure 3.11.(a) and Fig-
ure 3.11.(b) show respectively a skymap without interference and a skymap
corrupted by a strong interference (INR = +10 dB). Figure 3.11.(c) and Fig-
ure 3.11.(d) are respectively the corrupted data after orthogonal and oblique
projection. Figure 3.11.(e) and Figure 3.11.(f) show the relative error between
the data processed by the orthogonal projector and the interference free data,
and between the data processed by the oblique projection beamforming and the
interference free data respectively, over a small area around the cosmic source
of interest.

These simulations show that the oblique projection approach, although more
information is required to build it than for the orthogonal projector approach,
offers less distortion on the recovered power.

Closely related to the projection approach, the interference subspace subtrac-
tion is another spatial filtering approach based on the additive and uncorrelated
radio astronomical data model. With this approach, each interference steering
vector has to be known or estimated. The interference contributions are then
removed one after the other from the data model after estimating their power.

3.4 Interference subspace subtraction

As the interference subspace has to be estimated anyway, another approach con-
sists in subtracting it from the antenna array covariance matrix. Let’s consider
the following covariance data model:



56 CHAPTER 3. SPATIAL FILTERING

0 0.2 0.4 0.6 0.8 1
−20

−15

−10

−5

0

5

Dot product (ρ)

R
el

at
iv

e 
er

ro
r 

(d
B

)

 

 

Delay and Sum beamforming
Orthogonal projection
Oblique projection

Figure 3.10: Relative error of the Delay and Sum beamforming, Orthogonal
and Oblique projection beamforming techniques. M = 60 randomly distributed
antennas, noise-free model, one cosmic source (power = −5 dB), one interference
(Interference to Signal Ratio = +30 dB), averaged over 512 trials.
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Figure 3.11: Example of beamforming imaging with a simulated randomly dis-
tributed M = 48-antenna array radio telescope. Noise-free model, RFI to SOI
ratio = +10 dB, NSamples = 2048. (a) Skymap without interference (in dB).
(b) Skymap corrupted by an interference. The cosmic source is no longer visi-
ble (in dB). (c) Skymap after orthogonal projection (in dB). (d) Skymap after
oblique projection (in dB). (e) Relative error near the cosmic source calculated
between the data processed by orthogonal projection beamforming and the in-
terference free data (linear scale). (f) Relative error near the cosmic source
calculated between the data processed by oblique projection beamforming and
the interference free data (linear scale).
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R =

Nr∑

i=1

σ2
ri
ariari

H +Ac ·Rc ·Ac
H +Rn (3.56)

Subtracting the interference contribution from this data model would allow
one to recover an interference-free data model:

R−

Nr∑

i=1

σ2
ri
ariari

H = Ac ·Rc ·Ac
H +Rn (3.57)

The next chapter presents different techniques to estimate the interference
subspace. In order to apply the interference subspace subtraction technique, it
is also necessary to estimate their individual power. We will first consider the
case Nr = 1. We have then the following data model:

R = σ2
ri
arar

H +Rclean (3.58)

with Rclean the cosmic sources and noise covariance matrix. The idea behind
the subtraction technique is to estimate the right quantity σ2

ri
and use it to

subtract σ2
ri
ârâ

H
r , with âr the estimated interference steering vector, from R.

The squared Frobenius norm of a covariance matrix is equal to the sum of
its squared singular values. Moreover, the sum of a covariance matrix singular
values is equal to the total power received at the antenna array. This quantity
is therefore larger than or equal to zero. Estimating the interference power then
consists in minimizing the following contrast function:

f(ξ, âr) =
∥∥R− ξârâ

H
r

∥∥2
F

(3.59)

The powers of all signals in the data model (interference, cosmic sources and
system noise) being second order statistics, they are positive and the function
f(ξ, âr) admits therefore a global minimum. The interference power estimate
σ̂2
ri

is then given by:

σ̂2
ri

= argmin
ξ

f(ξ, âr) (3.60)

The estimate σ̂2
ri

is easily found by derivating f(ξ, âr):

∂f

∂ξ
(ξ, âr) =

∂

∂ξ

∥∥R− ξârâ
H
r

∥∥2
F

(3.61)

=
∂

∂ξ
tr((R− ξârâ

H
r )(R− ξârâ

H
r )H) (3.62)

=
∂

∂ξ
tr(RRH)− 2ξtr(Rârâ

H
r ) + ξ2tr(ârâ

H
r ârâ

H
r ) (3.63)

= −2tr(Rârâ
H
r ) + 2ξtr(ârâ

H
r ârâ

H
r ) (3.64)

Nulling this derivative leads to the single global minimum, regarding ξ, of
the function f(ξ, âr):
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∂f

∂ξ
(ξ, âr) = 0 (3.65)

⇔ ξ = σ̂2
ri

=
tr(Rârâ

H
r )

tr(ârâHr ârâHr )
(3.66)

Moreover, if the vector âr is built as a unit vector, we have:

σ̂2
ri

= tr(Rârâ
H
r ) (3.67)

Figure 3.12 shows a simulated example involving three weak cosmic sources
(SNR = −5 dB) and one strong interference (INR = 0 dB) (see Figure 3.12.(a)).
The constraint function f(ξ, âr) is shown on Figure 3.12.(b). The interference
power σ2

ri
is then estimated. The red circle on Figure 3.12.(b) points out the

minimum of the function. Using this estimate, a new covariance matrix is built
based on this value and the estimated interference subspace, and subtracted
from the classical covariance matrix. Figure 3.12.c is the skymap obtained after
processing. It is clear that the interference has been mitigated and that the
three cosmic sources are much more visible.

The interference subspace subtraction technique can also be used in a mul-
tiple interference scenario. In this case, the idea is to iteratively estimate one
interference steering vector at a time, and its power using its contrast function
f(ξ, ârn), n = 1 . . . Nr. Once the Nr interference steering vectors and powers
have been estimated, the cleaned covariance matrix is obtained with:

R̂clean = R−

Nr∑

i=1

σ̂2
ri
ârâ

H
r (3.68)

The interference subspace subtraction technique is not suitable for a pre-
correlation real time application, and can only be applied if individual interfer-
ence steering vectors can be estimated. In a single interference scenario, this
technique presents a lower computation cost than the projection techniques.

3.5 Conclusions on spatial filtering

Depending on the antenna array radio telescope use (phased array for single
pixel tracking or interferometer for imaging), many spatial filtering techniques
can be applied. Different criteria have to be taken in account:

• the available computational power,

• the cosmic source of interest and interference power,

• the expected performances (in terms of interference attenuation and signal
of interest recovery),

• the interference subspace estimate quality

The main point of spatial filtering is to recover the signal of interest as much
as possible. Beamforming techniques tend to attenuate particular directions
of arrival (interference directions of arrival) by keeping a constant gain in the



60 CHAPTER 3. SPATIAL FILTERING

x

y

 

 

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

4

6

8

10

12

14

16

(a)

−2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

ξ

f(
ξ)

(b)

x

y

 

 

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

4

6

8

10

12

(c)

Figure 3.12: Interference subspace subtraction. Skymaps given in dB. (a) Sim-
ulated skymap with three weak cosmic sources (SNR = −5 dB) and one strong
interference (INR = 0 dB). (b) Interference subspace subtraction constraint
function depending on ξ. The red circle indicates its global minimum (interfer-
ence power estimate). (c) Skymap made of the estimated interference covariance
matrix subtracted from the classical covariance matrix.
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direction of interest. Projection techniques are based on subspace nulling. It
has been seen in this chapter that the orthogonal projector might distort the
signal of interest subspace, while the oblique projector allows a better recovery
of signals of interest.

The Table 3.2 summarizes the different spatial filters presented in this chap-
ter (MSC, Max SNR, LCMV, Orthogonal and Oblique projection). x(t) corre-
sponds in this table to the antenna array output vector, whereas xclean(t) is the
filtered and beamformed output. The spatial signature of the cosmic source of
interest is ac. For other definitions, please refer to the corresponding sections.

The Figure 3.13 compares the different techniques presented in this chapter.
These techniques are here compared according to their rejection in the direc-
tion of the interference and their gain in the direction of the source of interest.
The performances are given according to the interference to noise ratio (figures
3.13.(a) and 3.13.(b)), the signal lengths over which the different covariance ma-
trices have been estimated (figures 3.13.(c) and 3.13.(d)) and the dot product
between the interference and cosmic source of interest subspaces (figures 3.13.(e)
and 3.13.(f)). For each scenario, the results have been averaged over 256 trials.
The antenna array is a uniform linear 10-antennas array with λ

2 spacing. Both
simulated interference and signal of interest are white Gaussian noises. The
Delay and Sum beamformer is not corrected by any apodization window. Con-
cerning the Multiple Sidelobe Canceller beamformer, the primary channel is an
arbitrary single antenna of the array, and the remaining sub-array is then used
as the auxiliary sub-array. The LCMV beamformer used in these simulations is
the single constraint one (only one constraint concerning the direction of inter-
est). Both interference and cosmic source of interest spatial signatures are here
perfectly known.

Unlike the Delay and Sum beamformer, the other three beamformers pre-
sented in this chapter (Multiple Sidelobe Canceller, Maximum SNR beamformer
and LCMV beamformer) require extra knowledge for their calculation (a pri-
ori knowledge about the signal of interest or the interference and system noise
contributions). Any lack of information or estimation error would lead to much
lower performances than expected. The simulations presented here do not take
these uncertainties into account.

Beamforming techniques based on a covariance matrix are highly sensitive
to the number of samples over which the matrix has been estimated. The De-
lay and Sum beamformer does not show any variation regarding the simulation
parameters. This result was expected since no information about the corrup-
tive environment is taken into account during its construction. The Multiple
Sidelobe Canceller usually performs poorly. Even if its performances asymptot-
ically tend to those of the Maximum SNR beamformer and LCMV beamformer,
this beamformer is not suitable for real time applications. The Maximum SNR
beamformer performances are as good as those of the LCMV beamformer.

Concerning the projection techniques, rejection in the direction of the inter-
ference is in each scenario much better than any beamforming technique, except
for the Oblique projector when the cosmic source subspace tends to be mingled
with the interference subspace. However, the recovery of the cosmic source is
better with the Oblique projector than with the Orthogonal projector since the
gain in its direction is 0 dB in any scenario. The gain in the direction of inter-
est is affected by the dot product between the signal subspaces when using the
Orthogonal projector.
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The interference subspace estimation is crucial for spatial filtering tech-
niques. The weakness of cosmic sources imposes long time data integration in
order for their signals to emerge from the noise level. Any interference filtered
out with a poor interference subspace estimation, regardless of the filtering tech-
nique, will still corrupt the data and make it unusable for further astronomical
processing. The next chapter addresses this problem.
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Definition Output Vector
MSC rxauxxprim

= E{xaux(t)x
∗
prim(t)} xclean(t) = xprim(t)−wH

MSCxaux(t) wMSC = R−1
auxrxauxxprim

Raux = E{xaux(t)x
H
aux(t)}

Max SNR Rc = σ2
caca

H
c xclean(t) = wH

maxSNRx(t) R−1
r+nRcwmaxSNR = λmaxSNRwmaxSNR

Rr+n = Ar ·Rr ·Ar
H +Rn

LCMV R = E{x(t)xH(t)} xclean(t) = wH
LCMVx(t) wLCMV = g 1

aH
c R−1ac

R−1ac

Orthogonal P⊥ = I− ar(a
H
r ar)

−1aHr xclean(t) = wH
P⊥x(t) wP⊥ = P⊥ac

projection
Oblique Eacar

= ac(a
H
c P⊥

Ar
ac)

−1aHc P⊥
Ar

xclean(t) = wH
Eacar

x(t) wEacar
= EHac

projection

Table 3.2: Summary of the different spatial filtering techniques presented in this chapter.
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Figure 3.13: Spatial filtering techniques comparison. The spatial signatures ac
and ar are here perfectly known. The simulated antenna array is a uniform
linear 10-antenna array with λ

2 spacing. Each result was averaged over 256
trials. INR = 10log10(σ

2
r/σ

2
n). SNR = 10log10(σ

2
c/σ

2
n). (a) and (b) Respectively

interference attenuation and direction of interest gain with varying Interference
to Noise Ratio. Signals lengths : 2048 samples, dot product between ac and
ar : ρ = 0.5. (c) and (d) Respectively interference attenuation and direction
of interest gain with varying signal lengths. INR = 0 dB, SNR = 0 dB, dot
product between ac and ar : ρ = 0.5. (e) and (f) Respectively interference
attenuation and direction of interest gain with varying dot product between ac
and ar. Signal lengths : 2048 samples, INR = 0 dB, SNR = 0 dB.



Chapter 4

Interference subspace
estimation

Most of the interference mitigation techniques, as seen in the previous chapter,
require knowledge of the interference subspace. Their performances are highly
correlated with the interference subspace estimation accuracy. Inaccurate esti-
mations lead to astronomical data deterioration.

Each interference being defined by a steering vector, the set of steering vec-
tors of all the interference signals Ar is a basis of the interference subspace.
The whole data vector space can then be considered as a direct sum between
an interference subspace, a cosmic source subspace and a noise subspace.

The previous chapter assumed that all spatial signatures of interference and
cosmic sources were perfectly known. This chapter addresses their estimation.

A basic approach to estimate an interference steering vector would be a
geometrical approach. The majority of jammers have a fixed location, or a
predictable trajectory. The knowledge of the antenna array radio telescope lo-
cation, as well as the jammer location and frequency, gives an accurate steering
vector model of the interference considered. However, using this approach re-
quires a perfectly calibrated antenna array. Any calibration error would also
alter the spatial filtering performances.

Knowing each one of the RFI steering vectors is not required though. There
is no unicity in a subspace basis, and another set of vectors contained in the
initial data vector space, an orthogonal set for instance, can also span the same
subspace as the one generated by Ar.

Depending on the kind of data available (time series, covariance matrices,
cyclic covariance matrices, etc), different techniques of interference subspace
estimation can be chosen. In this chapter we present different techniques, each
one being based on a particular type of covariance matrix, or a set of them.

4.1 Covariance matrices

It was seen in chapter 2 that different aspects of an antenna array radio telescope
data model can lead to different covariance matrices. Even if only the classical
covariance matrix is estimated at a radio telescope correlation stage, this chapter
presents the advantages offered by other types of matrices.

65
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4.1.1 Classical covariance matrix

We consider here the classical antenna array covariance matrix model defined
in Equation 2.14. Without the multipath effect, and neglecting noise coupling,
the matrices Rc, Rr and Rn, respectively the RFI, cosmic source and system
noise covariance matrices, are diagonal. Interference signal powers are usually
stronger than cosmic sources’ powers. Typical Interference to Noise ratios are
located between −70 dB up to +50 dB, whereas cosmic source powers are around
20 dB below the system noise level. Therefore, by neglecting the cosmic source
contribution, this second-order data model can be rewritten as:

R = RRFI +Rn (4.1)

with the interference-only covariance matrix defined by:

RRFI = ArRrAr
H (4.2)

and has, by definition, a rank equal to Nr, the number of interference signals
impinging the antenna array. Due to subband filtering, it is assumed that
Nr ≤ M . Applying an eigenvalue decomposition to RRFI leads to:

RRFI = USUH (4.3)

with S a diagonal matrix containing the eigenvalues of RRFI in its main
diagonal and U a unitary matrix containing the column eigenvectors of RRFI

such that UUH = UHU = I.

The rank of RRFI being Nr, Nr eigenvalues are nonzero and M −Nr eigen-
values equal zero. Assuming these eigenvalues are sorted in decreasing order,
Equation 4.3 has the following structure:

RRFI = USUH

=
(
Ur Un

)(Sr 0
0 0

)(
Ur

H

Un
H

)
(4.4)

The diagonal submatrix Sr has a size Nr × Nr and contains the nonzero
eigenvalues of RRFI in its main diagonal. The column eigenvectors correspond-
ing to these eigenvalues are stored in the M × Nr submatrix Ur. Since RRFI

is hermitian, this vector set is an orthogonal basis of the interference subspace.
Without further assumption, i.e. without orthogonality between the interfer-
ence steering vectors and assuming Nr > 1, there is no direct link between
these vectors and the different interference steering vectors. The M × (M −Nr)
submatrix Un is a basis of the kernel subspace of RRFI .

Consider now the covariance data model expressed in Equation 4.1. Assum-
ing the antenna array is calibrated, Rn is a diagonal matrix containing equal
elements in its main diagonal, i.e. Rn = σ2

nI, with σ2
n the total noise power

received on a single antenna [88, 65].

Any eigenvector of RRFI is also an eigenvector of R : Suppose λi is the
ith nonzero eigenvalue of RRFI , and ui its corresponding eigenvector. Then we
have:
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Rui = (RRFI +Rn)ui

= RRFIui +Rnui

= λiui + σ2
nui

= (λi + σ2
n)ui (4.5)

The eigenvalue decomposition of R can then be written as:

R = USnoisyU
H

=
(
Ur Un

)(Sr + σ2
nINr×Nr

0
0 σ2

nI(M−Nr)×(M−Nr)

)(
Ur

H

Un
H

)
(4.6)

with INr×Nr
and I(M−Nr)×(M−Nr) respectively the Nr ×Nr and the (M −

Nr) × (M − Nr) identity matrices. An interference subspace basis can still be
estimated. This basis will be made of the eigenvectors corresponding to the Nr

non-constant eigenvalues of R.
However, without a noise whitening process, the noise covariance matrix

Rn can practically no longer be considered as diagonal, because of mutual cou-
pling or a finite sample effect for instance, the noise subspace is distorted and
non spatially white. Then, the eigenvalue decomposition cannot highlight an
interference subspace basis anymore. In the same way, if the noise power is
not constant over the antennas, an eigenvalue decomposition of the covariance
matrix might also not highlight an interference subspace since there will not be
constant eigenvalues.

Figure 4.1 depicts for instance the influence of the finite sample effect on the
covariance matrix eigenvalues estimation [20]. In this simulation, 4 interference
signals are assumed to impinge an antenna array made ofM = 20 elements. The
blue asterisks are the eigenvalues of a theoretical covariance matrix. Estimating
this covariance matrix over 128 samples (red asterisks), 1024 samples (green
asterisks) and 65536 samples (magenta asterisks), the matrices Rr and Rn are
no longer diagonal and the retrieved interference and noise subspaces are only
distorted estimates of the real ones.

Moreover, the classic eigenvalue decomposition technique is based on the
assumption that cosmic sources have negligible power. If not, an eigenvalue
decomposition of a covariance matrix estimate will only lead to a signal subspace
basis estimate:

R =
(
Ar Ac

)(Rr 0
0 Rc

)(
Ar

H

Ac
H

)
+Rn (4.7)

The RFI and cosmic sources subspaces would no longer be distinguishable
after applying an eigenvalue decomposition to R since those subspaces are not
orthogonal. Therefore, the signal subspace would contain the contributions from
both interference and cosmic sources. Retrieving an interference subspace basis
estimate would be impossible. Moreover, a spatial filtering based on a signal
subspace estimated through the classic eigenvalue decomposition would in this
case suppress the interference and the cosmic sources.
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Figure 4.1: Classical covariance matrix eigenvalues estimates. Simulated data
model involving 4 white Gaussian interference signals and a white Gaussian
additive noise impinging a 20-element antenna array. Blue : theoretical eigen-
values. Red : eigenvalues estimated over 128 samples. Green : eigenvalues
estimated over 1024 samples. Magenta : eigenvalues estimated over 65536 sam-
ples.



4.1. COVARIANCE MATRICES 69

The INR can also lead to an inaccurate interference spatial signature esti-
mation. The figure 4.2 shows an example of simulated data before and after
projection with an interference subspace estimated with a classical covariance
matrix SVD. The simulated radio telescope is a randomly distributed 48-antenna
array. The data contain one single interference, modeled as a white Gaussian
noise, and calibrated system noise modeled as white Gaussian noise with equal
power on each receiver. The covariance matrix was estimated over 2048 samples.
All skymaps are given in dB.

The figure 4.2.(a) shows a skymap corrupted with a strong interference (INR
= +10 dB). The interference can easily be localized, as it corresponds to the
strongest area on the map (highlighted by a magenta circle). After estimating
the interference mono-dimensional subspace, an orthogonal projector is built
and applied to the data. The resulting skymap can be seen on figure 4.2.(c). The
figure 4.2.(b) shows the skymap corrupted with a much weaker interference (INR
= −10 dB), located in the same area as in the figure 4.2.(a). The interference
power is now lower than the noise power. Estimating the interference subspace
using the strongest singular value of the classical covariance matrix leads to a
wrong estimate. The figure 4.2.(d) shows the recovered data after applying an
orthogonal projection with the interference subspace estimate. The projected
data clearly do not correspond to the interference.

4.1.2 Cyclic covariance matrices

When cosmic sources cannot be neglected, the previous method does not dif-
ferentiate between cosmic source and interference subspaces. Getting rid of
the cosmic source and the system noise contributions improves the interference
subspace estimation. The techniques described here are based on statistical
properties that only interference signals present. As seen in section 2.4.2, most
telecommunication signals are cyclostationary, unlike the system noise and cos-
mic sources (except for some pulsing radio sources). Knowing the cyclic or
conjugate cyclic frequencies, by a priori knowledge or by estimation, leads to
a cyclic covariance matrix calculation. Consider a cyclostationary interference
rα0

(t) at cyclic frequency α0, α0 6= 0, impinging an antenna array:

x(t) = arrα0
(t) +Ac · c(t) + n(t) (4.8)

The α0-cyclic covariance matrix of this data model is defined by:

Rα0 = σα0
r

2arar
H +AcRc

α0Ac
H + σα0

n
2I (4.9)

= σα0
r

2arar
H +Rα0

cosmic︸ ︷︷ ︸
→0

+Rn
α0

︸ ︷︷ ︸
→0

(4.10)

The cosmic sources and the system noise being stationary by nature, their
cyclic contributions for a cyclic frequency α 6= 0 are zero. Applying a singular
value decomposition to Rα0 leads to:

Rα0 ∼ σα0
r

2arar
H (4.11)

= USVH (4.12)
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Figure 4.2: Impact of the INR with the classical covariance matrix SVD. Simu-
lated randomly distributed 48-antenna array radio telescope, 1 RFI, covariance
matrices estimated over 2048 samples. Skymaps are given in dB. (a) INR = +10
dB. (b) INR = −10 dB. (c) INR = +10 dB after orthogonal projection with
interference subspace estimated with the classical covariance matrix SVD. (d)
INR = −10 dB after orthogonal projection with interference subspace estimated
with the classical covariance matrix SVD.
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By construction, the matrix S is a diagonal matrix containing one nonzero
singular value and M−1 zero singular values of Rα0 . By definition, the nonzero
singular value is related to the α0-cyclostationary interference, and its corre-
sponding singular vector is an estimate of the interference steering vector:

u1 = v1 = âr (4.13)

with u1 the first column vector of the matrix U and v1 the first column
vector of the matrix V if the singular values of Rα0 in S are sorted in decreasing
order.

If more than one interference impinge the antenna array, they are unlikely
to share the same cyclic frequency. Therefore, the cyclic covariance calculated
regarding one particular cyclic frequency α0 is more likely a rank-1 matrix. The
advantage of this technique is that interference steering vectors are estimated
one at a time, and it allows the filtering of one particular interference or the
nulling of one particular 1-dimensional subspace of the data vector space.

Figure 4.3.(a) shows a simulated skymap where two pure carrier signals are
impinging an antenna array at the horizon. Their frequencies are respectively
f1 = 0.1 and f2 = 0.25. Figure 4.3.(b) is the conjugate cyclic power spectrum
acquired on a single antenna. Three peaks can clearly be seen at the conjugate
cyclic frequencies α1 = 0.2 (α1 = 2× f1) and α2 = 0.5 (α2 = 2× f2). The third
peak is an intermodulation product effect at cyclic frequency α3 = 0.35 (f1+f2).
Applying a singular value decomposition on both conjugate cyclic covariance
matrices at α1 and α2 allows us to estimate separately the steering vectors (and
therefore the directions of arrival) for each interference independently (figure
4.3.(c) and 4.3.(d)).

If more than one cyclostationary interference share the same cyclic frequency,
then the cyclic covariance matrix calculated at their cyclic frequency will have
a rank greater than one. This rank, given by the amount of nonzero singular
values, indicates the number of cyclostationary interferences impinging the array
and sharing the same cyclic frequency. The singular vectors corresponding to the
non zero singular values of the matrix form then an orthogonal basis spanning
the same subspace as the one generated by the basis made of all the individual
α0-cyclostationary RFI.

The cyclic singular value decomposition technique is an efficient way of es-
timating an interference subspace by attenuating the cosmic source and the
system noise contributions. However, this technique requires knowledge of the
cyclostationary interference cyclic frequencies. If not, it would require estimat-
ing them by calculating a cyclic spectrum based on the antenna array output
data. The technique is also computationally expensive : a cyclic covariance
matrix has to be calculated for each interference at different cyclic frequencies.
However, this issue can be solved by efficiently sharing the central correlator
resources.

4.1.3 Time-lagged covariance matrices

Cosmic source and system noise signals are usually assimilated as stochastic pro-
cesses, unlike interference signals [105]. Most of them are constructed following
modulation schemes, and become therefore deterministic processes. A major
difference between stochastic and deterministic processes is the autocorrelation
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Figure 4.3: Cyclic singular value decomposition interference subspace estima-
tion. All figures given in dB. (a) Simulated skymap with two cyclostationary
interferences (48-antenna array, INR1 = 0dB, INR2 = 0dB) (b) Conjugate
cyclic spectrum of acquired data. Three peaks can be seen at α1 = 0.2, α1 = 0.5
and α1 = 0.35. The cyclic power at α3 is an intermodulation product effect.
(c) Interference subspace estimate using a conjugate cyclic covariance matrix
calculated at α1. (d) Interference subspace estimate using a conjugate cyclic
covariance matrix calculated at α2.
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function. The autocorrelation of a white signal is null for any time-lag τ 6= 0,
whereas the autocorrelation of a deterministic process allows retrieval of par-
ticular signal features, such as hidden periodicities or noisiness quantification.
For example, figure 4.4.(c) compares the autocorrelation of a simulated cosmic
source signal (modeled as a white Gaussian noise) in red and a simulated Binary
Phase Shift Keying modulated signal. Information about the interference is still
available for a time-kag τ 6= 0, while the cosmic source autocorrelation is zero.
This effect is also clearly seen on skymaps 4.4.(a) and 4.4.(b), computed using
a zero-sample time-lag and a one-sample time-lag respectively.

Calculating a covariance matrix at the output of an antenna array for any
time-lag τ0 6= 0 asymptotically removes the contribution of cosmic sources and
system noise:

R(t, τ0) = Ac Rc(t, τ0)︸ ︷︷ ︸
→0

Ac
H +ArRr(t, τ0)Ar

H +Rn(t, τ0)︸ ︷︷ ︸
→0

∼ ArRr(t, τ0)Ar
H (4.14)

If the multipath effect is neglected, the matrix Rr(t, τ0) is diagonal and by
applying a singular value decomposition to the covariance matrix R(t, τ0), in
the same way as for the cyclic singular valued decomposition, an RFI subspace
basis could be estimated.

However, determining the dimension of the interference subspace (i.e. the
amount of interference signals impinging the radio telescope) is not trivial with
a time-lag approach. Indeed, the autocovariance function Γr(t, τ) of an interfer-
ence signal r(t) is not necessarily nonzero for any time-lag τ . Therefore, the use
of only one covariance matrix, calculated for a time-lag τ0 6= 0, might not be
enough to estimate the whole interference subspace, depending on the nature of
the interference signals.

4.1.4 Single matrix performance analysis

To compare the performance of the different signature vector estimation tech-
niques, we ran a simulation involving a pure carrier RFI added to white Gaussian
noise (random normalized carrier frequency f0). An array composed of M = 48
antennas was used. The array noise was calibrated in a first scenario, and uncal-
ibrated with 20% noise power fluctuations over antennas in a second scenario.
The estimation techniques are given with regard to the INR when no other (cos-
mic) source impinges the radio telescope, and with regard to the Interference
to Signal Ratio (ISR) when a cosmic source impinges the antenna array at the
same time as an RFI (SNR = 0 dB). During each run, we generated a new
data set (48 antennas × 2048 samples), estimated the signature vector of the
impinging RFI and calculated the dot product between this estimate and the
actual steering vector. In other words, the dot product defines here a measure
of how the estimation matches the true signature vector. The INR and the ISR
of the data vary from −25 dB to +10 dB. All our results were averaged over
100 runs for a fixed INR to provide statistics on signature vector estimation
technique performances.

We calculate for each run a classical covariance matrix R, a conjugate cyclic
covariance matrix Rα0 , with α0 = 2.f0, and a time-lagged covariance matrix
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Figure 4.4: Time-lag approach. Skymaps given in dB. (a) Simulated skymap
containing one cosmic source at the zenith (center of the map) and a Binary
Phase Shift Keying modulated interference located closer to the horizon (48-
antenna array, SNR = 0dB, INR = 0dB). (b) Skymap made out of a one sam-
ple time-lagged covariance matrix. Although the interference power is weaker
on skymap (b) than (a), the interference remains while the cosmic source con-
tribution disappears. (c) Comparison between the interference and the cosmic
source covariance functions.
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R(τ0) with τ0 = 1 sample. The interference spatial signature estimation tech-
nique is based on the SVD of each of these matrices.

The figure 4.5 shows the performance results. As expected, the cyclic and
the time-lag approaches are not sensitive to the antenna array uncalibration
(same results on figures 4.5.(a) and 4.5.(b)). The performance of the classical
covariance matrix diagonalization is lower with an uncalibrated array. However,
with a perfect calibration, its performance is similar to the two other approaches
as long as only one signal impinges the antenna array.

When more than one signal impinge the radio telescope, the classical co-
variance approach requires high INR and ISR to provide an accurate inter-
ference spatial signature estimation. Concerning the cyclic and the time-lag
approaches, their performances are absolutely not perturbed by the presence
of another interference. The dot product between the estimate and the actual
interference spatial signatures reaches ρ = 0.9 with INR ≈ −4 dB with one
single signal impinging the array, while it reaches the same value with ISR +
SNR ≈ −13 + 10 = −3 dB. The INR is therefore a dominant parameter for
these techniques.

The next section addresses the concept of joint matrices approaches. The
main idea behind these approaches is to consider more information than what
is provided by a single covariance matrix.

4.2 Multiple matrices approaches

Covariance matrices provide theoretically all the information required to esti-
mate an interference subspace. However, their estimate can, in practice, lead
to inaccurate estimations. Based on multiple covariance matrices, the tech-
niques presented in this section provide better interference subspace estimates.
Even if the computational cost inevitably increases, the contributions of these
techniques to spatial RFI mitigation has to be seriously considered.

4.2.1 Mean covariance matrix diagonalization

The principle of this technique is to calculate a mean matrix over all the cyclic
and conjugated cyclic covariance matrices. As all these correlation matrices are
biased by the added system noise and by the signal finite length over which
they are estimated, computing a mean matrix will improve correlation matrix
estimation.

Since all these matrices are defined on the same vector space (observation
space), diagonalization of the mean matrix should provide a better estimate of
the RFI spatial signature vector. Two options can be considered : applying an
SVD of a mean cyclic correlation matrix or an EVD of a mean matrix calculated
over cyclic correlation matrices after applying the transformation presented in
equation 4.19 on each of them. It is however important to normalize matrices
before any average calculation step, since cyclic power is not uniformly dis-
tributed over all the cyclic frequencies of a cyclostationary signal. We therefore
divide each cyclic correlation matrix (or transformed cyclic correlation matrix)
by its squared Frobenius Norm.
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Figure 4.5: Performance comparison of single covariance matrix spatial signa-
ture vector estimation techniques (dot product between estimated and gener-
ated signature vectors for different techniques and different INR, its value is
1 for an exact estimation). (a) 48-antenna calibrated array, INR varying, no
cosmic source. (b) 48-antenna uncalibrated array (20% noise power fluctuation
over antennas), INR varying, no cosmic source. (c) 48-antenna calibrated array,
SNR = +10 dB, ISR varying. (d) 48-antenna uncalibrated array (20% noise
power fluctuation over antennas), SNR = +10 dB, ISR varying.
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4.2.2 Joint SVD of time-lagged covariance matrices

To avoid the loss of information using a single time-lagged covariance matrix,
one alternative is to use multiple matrices calculated with different time lags.
The singular value decomposition can be applied to a non-squared matrix. By
stacking these matrices in a single extended covariance matrix, the decompo-
sition might be more accurate since it would take into account much more
information than a single covariance matrix:

Consider R̃(t, τ̃) =
[
R(t, τ0) R(t, τ1) R(t, τ2)

]
, with τ0 6= τ1 6= τ2 6=

0. The left singular vectors of R̃(t, τ̃) are the eigen vectors of the matrix
R̃(t, τ̃)R̃(t, τ̃)H , expressed by:

R̃(t, τ̃)R̃(t, τ̃)H =
[
R(t, τ0)R(t, τ0)

H +R(t, τ1)R(t, τ1)
H +R(t, τ2)R(t, τ2)

H
]

(4.15)
These eigen vectors can therefore be seen as eigen vectors common toR(t, τ0),

R(t, τ1), R(t, τ2). The interference subspace basis estimate given by this ap-
proach will then be more accurate.

Figure 4.6 shows simulations with synthetic data (M = 48 antennas, three
white Gaussian cosmic sources and three BPSK RFI). The INR is −6dB. Conse-
quently, the RFI are barely visible as can be seen on figure 4.6.(a). The expected
RFI subspace is represented on figure 4.6.b). The RFI subspace is estimated
with the proposed approach by using respectively N = 1 and N = 9 different
time-lags (a single sample time-lag and nine covariance matrices calculated from
τ = 1.Ts to τ = 9.Ts, with Ts the sampling period). Figure 4.6.c) and d) show
the RFI subspace estimation (SE) error relative to the expected RFI subspace

(i.e. difference between estimated Âr.Âr

H
and the true Ar.Ar

H). In both sim-
ulations, the RFI subspace can be retrieved but the stacked approach provides
smaller SE errors in the skymap.

As a comparison between the cyclostationary and the time lag approaches,
figure 4.7 again shows simulations with synthetic data similar to figure 4.6. To
obtain sufficient cyclostationary information, the INR was set to 0 dB. The RFI
positions have also changed (see Figure 4.7.a). The ability of the algorithm to
extract one specific RFI subspace is shown on figure 4.7.b). A cyclic frequency
corresponding to the selected RFI is chosen (in our case, 2 times the carrier fre-
quency). The corresponding conjugated cyclic covariance matrix is calculated.
Then, the SVD provides a spatial signature estimation of only the selected RFI.
To define the whole RFI subspace, the previous procedure is applied 3 times for
3 different cyclic frequencies. Figure 4.7.d) shows the RFI SE error relative to
the expected RFI subspace. For comparison, the time lag approach with N = 1
sample time lag is given on figure 4.7.c). With this INR, the cyclic approach
produces a larger SE error than the time-lag approach, but the counterpart is
the capability to extract each individual RFI.

4.2.3 Joint diagonalization

The purpose of this section is to use all the statistical information included
in the different time-lagged correlation matrices by jointly diagonalizing them
in order to improve the interference subspace estimation accuracy. Different
algorithms allowing a joint-diagonalization of a set of matrices can be found
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Figure 4.6: Extended time-lag approach. (a) Simulated skymap with 3 white
Gaussian cosmic sources and 3 BPSK RFI (INR = −6dB). (b) Expected RFI
subspace built with the three real RFI steering vectors. (c) Error skymap be-
tween the expected RFI subspace and the RFI subspace retrieved with the time
lag approach (one sample time lag). (d) Skymap error between the expected
RFI subspace and the RFI subspace retrieved using the extended time lag ap-
proach (one extended covariance matrix made of nine time lagged covariance
matrices, from τ = 1.Ts sample to τ = 9.Ts samples, with Ts the sampling
period)
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Figure 4.7: Comparison between the cyclostationary and the time lag ap-
proaches. (a) Simulated skymap with 3 white Gaussian cosmic sources and
3 BPSK RFI (INR = 0dB). (b) Single interference subspace estimated using
one cyclic covariance matrix calculated at its cyclic frequency. (c) Error skymap
between the expected RFI subspace and the one retrieved using a single sample
time lagged covariance matrix. (d) Error skymap between the expected RFI
subspace and the one retrieved using 3 cyclic covariance matrices calculated
for three different cyclic frequencies corresponding to the three cyclostationary
interferences.
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in the literature [57, 107, 39, 94]. Two joint diagonalization approaches are
presented here : the off function approach and the Alternating Least Squares
approach.

off function approach

The basic idea of joint diagonalization is to find a common transformation ma-
trix that allows the diagonalization of a set of matrices. Most cyclostationary
interferences present more than one cyclic frequency. In order to provide a
better estimate of the RFI signature vector, we suggest applying a joint di-
agonalization to cyclic matrices calculated at different cyclic frequencies, since
all these matrices contain the same spatial information. Finding a joint diago-
nalizer for these matrices should therefore decrease the error made by a single
matrix diagonalization due to the finite length correlation estimation.

In [14], Belouchrani et al. introduce the following off function for an n× n
matrix M with entries Mij :

off(M) =
∑

1≤i6=j≤n

|Mij |
2

(4.16)

By using this function, diagonalizing a matrix consists in finding a matrix
P, with size n× n, such that:

off(PHMP) = 0 (4.17)

The aim of joint diagonalization of a set of N matricesM = {M1,M2...Mk}
is thus to find a matrix P that minimizes the following cost function:

c(M,P) =
N∑

k=1

off(PHMkP) (4.18)

As explained in [14], the optimization algorithm is based on the computation
of Givens rotations. The joint-diagonalizer is then defined as a product of these
rotation matrices [45].

LetM be a set of cyclic correlation matricesRα calculated over several cyclic
and conjugated cyclic frequencies. The cyclic covariance matrices are usually
decomposed following their singular values and vectors. The following property
links the singular value decomposition to the eigen value decomposition.

Rα.RαH = (U.S.VH).(U.S.VH)H

= U.S.VH .V.SH .UH

= U.S.SH .UH

= P.D.PH (4.19)

with Rα = (U.S.VH) (SVD of Rα), P = U and D = S.SH . By applying
this property to all the matrices stored in M, the RFI spatial signature vector
can be estimated by finding a joint diagonalizer of M.

The main advantage of this method is the use of multiple covariance matrices,
thereby improving the estimation of the RFI signature vector. Although this
advantage is important for the estimation accuracy, the implementation cost of
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this method might increase with the chosen optimization algorithm. The next
section will present a simpler multiple matrix technique.

Alternating Least Squares approach

Thanks to a collaboration with the Université de Sud Toulon-Var, the approach
proposed here is based on the use of an iterative Alternating Least Squares
(ALS) algorithm, presented, for example, in [28]. The idea can be expressed
by defining a set of correlation matrices for N time lagged covariance matrices,
using equation 4.14:





R(τ1) ∼= ArRr(τ1)Ar
H

...

R(τN ) ∼= ArRr(τN )Ar
H

(4.20)

Given this set, it is a well-known joint diagonalization problem. The goal is
to recursively estimate Ar and Rr(τi). Following [92], we now briefly describe
the algorithm.

Update of Rr(τi)
The idea is to stack all the columns of the matrices defined in (4.20). Adapted

to our problem, it leads to:

r(τi) = [vec(R(τ1)), . . . , vec(R(τN ))]

dRr(τi) = [diag(Rr(τ1)), . . . , diag(Rr(τN ))]

r(τi) = (Ar
∗ ◦Ar)dRr(τi) (4.21)

We can deduce the set Rr(τi) from (4.21):

Rr(τi) = undiag
(
(Ar

∗ ◦Ar)
†r(τi)

)
(4.22)

Update of Ar

When all the Rr(τi) have been estimated, the next step is to estimate Ar.
By concatenating horizontally all the matrices of the set, we notice that Ar is
postmultiplied by the concatenation of two matrices. It can be written as:

R(τi) = Ar[Rr(τ1)Ar
H , . . . ,Rr(τN )Ar

H ] (4.23)

R(τi) = [R(τ1), . . . ,R(τN )]

Finally, we easily find Ar:

Ar = R(τi)[Rr(τ1)Ar
H , . . . ,Rr(τN )Ar

H ]† (4.24)

These steps are repeated recursively until convergence is reached.
Figure 4.8 shows simulations with synthetic data similar to the previous

section, butN = 9 time-lags are stacked this time. The capacity of the algorithm
to extract one specific RFI subspace is shown in Figure 4.8.a. Figure 4.8.b shows
the RFI SE error relative to the expected whole RFI subspace. For comparison,
the RFI SE error for a time-lag approach with the same set of N = 9 matrices
is given in Figure 4.8.c. The ALS approach provides both a smaller error and
an indivual RFI extraction capability compared to the time-lag approach.
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Figure 4.8: ALS Approach on a set of N = 9 time-lagged covariance matrices.
Skymaps given in dB. (a) Estimated subspace sky map of 1 RFI obtained by
selecting the right conjugated cyclic frequency corresponding to this RFI (here,
2 times its carrier frequency). (b) Sky map of RFI SE error obtained with the
ALS approach. (c) For comparison, sky map of RFI SE error obtained from the
SVD of the same set of matrices.
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4.2.4 Multiple matrices performance analysis

The proposed methods were compared through Monte-Carlo based simulations.
The data model used in these simulations involves one BPSK interference, with
uniformly distributed over [0.1 . . . 1] random normalized carrier frequency f0 and
uniformly distributed over [ 1

50 . . .
1
10 ] baud rate (BR0). The performances were

evaluated according to the INR in a single signal scenario (RFI only) and the
ISR in a 2-signal scenario (white Gaussian noise simulating a cosmic source).

Moreover, the antenna array calibration was also considered by simulating a
perfectly calibrated array and an uncalibrated array with 20% noise fluctuation
over the antennas.

The simulated radio telescope is a randomly distributed 48-antenna array.
The performances, averaged over 100 trials, were evaluated according to the dot
product ρ between the estimated and the actual interference spatial signature
vectors (ρ = 1 corresponds to a perfect estimation).

6 different covariance matrices are estimated at each trial over 2048 samples:

• Rα0 , conjugate cyclic matrix with α0 = 2.f0,

• Rα1 , conjugate cyclic matrix with α1 = 2.f0 + BR0,

• Rα2 , conjugate cyclic matrix with α2 = 2.f0 − BR0,

• R(τ0), time-lagged covariance matrix with τ0 = 1 sample time-lag,

• R(τ1), time-lagged covariance matrix with τ1 = 2 samples time-lag,

• R(τ2), time-lagged covariance matrix with τ2 = 3 samples time-lag

The different estimation techniques (ET) evaluated are:

• ET1 : Diagonalization of Rα0 ,

• ET2 : Diagonalization of R(τ0),

• ET3 : Joint SVD of R(τ0), R(τ1) and R(τ2),

• ET4 : Joint SVD of Rα0 , Rα1 and Rα2 ,

• ET5 : Mean matrix diagonalization of R(τ0), R(τ1) and R(τ2),

• ET6 : Mean matrix diagonalization of Rα0 , Rα1 and Rα2 ,

• ET7 : ALS-based joint-diagonalization of R(τ0), R(τ1) and R(τ2),

• ET8 : ALS-based joint-diagonalization of Rα0 , Rα1 and Rα2

The performance analysis results are given in figure 4.9. The calibration
and the number of sources impinging the antenna array radio telescope do not
affect the performances of the different techniques. This result was expected,
since the covariance matrices chosen for applying the different approaches elimi-
nate other (white or non-cyclostationary or cyclostationary with different cyclic
frequencies) source contributions, as well as the system noise contribution.

The ET 6 and 8, based on conjugate cyclic matrices, have the poorest per-
formances, while ET 7 and 3 give the best. Multiple time-lagged covariance
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Figure 4.9: Performance comparison of multiple covariance matrices spatial sig-
nature vector estimation techniques (dot product between estimated and gen-
erated signature vectors for different techniques and different INR, its value is
1 for an exact estimation). (a) 48-antenna calibrated array, INR varying, no
cosmic source. (b) 48-antenna uncalibrated array (20% noise power fluctuation
over antennas), INR varying, no cosmic source. (c) 48-antenna calibrated array,
SNR = +10 dB, ISR varying. (d) 48-antenna uncalibrated array (20% noise
power fluctuation over antennas), SNR = +10 dB, ISR varying.

matrices remain therefore the best choice for applying a spatial interference
mitigation algorithm on an uncalibrated antenna array radio telescope with an
unknown number of sources when the (non-white) interference spatial signatures
have to be estimated.

The different interference subspace estimation techniques presented previ-
ously are based on the diagonalization, or joint-diagonalization, of a particular
type of covariance matrices. These techniques allow the estimation of an RFI
subspace orthogonal basis, or an RFI steering vector when only one interference
impinges the antenna array. Another set of techniques, known as high resolu-
tion methods, can also be used in order to recover the individual interference
steering vectors. These methods are based on the optimization of a contrast
function allowing the estimation of the interference direction of arrival, and,
by extension, of their steering vectors. Even if they are unsuitable for use on
phased antenna array radio telescopes, mostly because of the highly accurate
calibration requirement, we decided to incorporate in this chapter two popular
high resolution methods : MUSIC and MVDR.
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4.3 Optimization-based techniques

Different interference subspace estimation techniques have been developed in
recent years. They are usually based on estimation of the Signal-Of-Interest’s
direction of arrival. Once this direction has been estimated, a perfectly cal-
ibrated antenna array would lead to the desired interference steering vector
estimation since the relationship between direction of arrival and steering vec-
tor is then bijective. We present here two algorithms, MUSIC and MVDR,
that are based on a contrast function. This contrast function, associated with
an optimization algorithm, enables estimation of the interference direction of
arrival estimation.

4.3.1 MUltiple SIgnal Classification (MUSIC)

The considered antenna array is here assumed to be perfectly calibrated and
the cosmic sources are neglected. As already seen, the interference subspace di-
mension can be estimated by studying the array covariance matrix eigenvalues,
i.e. by estimating the rank of the antenna array covariance matrix in a noise-
less scenario, or the number of dominant (non constant) eigenvalues in a noisy
scenario. The idea of the MUSIC algorithm [85, 55] is to compute a MUSIC
spatial spectrum (or MUSIC skymap) that would highlight the individual Nr

directions of arrival of the Nr impinging interference. By definition of the co-
variance matrix eigenvalue decomposition, the M −Nr eigenvectors associated
with the M −Nr smallest (or constant) eiganvalues generate a noise subspace.
And because of the orthogonality of the decomposition, any arbitrary vector
lying in the signal subspace is orthogonal to this noise subspace.

Consider an arbitrary steering vector a(θ, φ) pointing in a direction defined
by the polar components (θ, φ). The MUSIC skymap is then defined by:

PMUSIC(θ, φ) =
1

∑M

i=Nr+1 |a
H(θ, φ)ei|

2
(4.25)

=
1

‖aH(θ, φ)En‖
2 (4.26)

with:

• ei the ith antenna array covariance matrix eigenvector, considering the
eigenvalues being sorted in a decresaing order.

• En = [eNr+1 . . . eM] a noise subspace basis as estimated with the covari-
ance matrix eigenvalue decomposition.

The contrast function PMUSIC(θ, φ) reaches theoretically an undeterminate
form as soon as the arbitrary steering vector a(θ, φ) is orthogonal to the noise
subspace. However, the antenna array covariance matrix is estimated over a
finite number of samples, and perfect orthogonality between a steering vector
and a subset of its eigenvectors is not likely. This function will still reach a
local maximum as soon as a steering vector points in a direction close to a
signal (interference) direction of arrival. An optimization algorithm, like an ant
colony optimization algorithm for example [59], would then make it possible
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Figure 4.10: MUltiple SIgnal Classification. Skymaps are given in dB. (a) Sim-
ulated skymap with three interferences impinging a 48-antenna array, INR = 0
dB. (b) MUSIC spatial skymap (contrast function) showing three peaks corre-
sponding to the three interference signals directions of arrival.

to estimate the Nr interference signals’ direction of arrival, and therefore their
corresponding steering vector.

Figure 4.10 shows an example of the MUSIC algorithm on simulated data
(48 antenna array, INR = 0 dB). Three interference signals can be seen on
the initial raw skymap (see Figure 4.10.(a)). The MUSIC spatial skymap was
then calculated over all the directions in the sky and can be seen on the Figure
4.10.(b) as a 3-dimensional surface. The three peaks on this figure correspond
to steering vectors close to being orthogonal with the estimated noise subspace.

The performance of this algorithm is directly linked to the Interference-to-
Noise Ratio [4], and therefore the ability to estimate the noise subspace accord-
ing to the observation.

4.3.2 Minimum Variance Distortionless Response (MVDR)

Closely related to the LCMB beamformer seen in section 3.2.4, the idea be-
hind the MVDR algorithm [25] is to minimize a beamformer output energy
while keeping the beamforming vector in a constant position defined by the
polar coordinates (θ, φ). This technique can therefore be seen as a constrained
optimization problem.

We saw in the previous chapter that the classical beamforming output is
written as:

xbeam(t) = wH .x(t) (4.27)

with:

• x(t) the (M × 1) antenna array output vector at time t.

• w an arbitrary (M × 1) beamforming vector.

• xbeam(t) a weighted sum of the antenna array output at time t.
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Minimizing the energy of xbeam(t) is required in order to minimize the noise
and interference contributions in the observed direction. This energy is written
as:

E{|xbeam(t)|
2
} = wHRw (4.28)

with R = E{x(t)xH(t)} the antenna array covariance matrix. It is also im-
portant to keep a fixed gain (usually a unitary gain) in the direction of interest.
Let a(θ, φ) be the steering vector related to the direction of interest given by
(θ, φ). The MVDR algorithm is then defined as:

min
w

wHRw subject to wHa(θ, φ) = 1 (4.29)

This constrained optimization problem can be solved using the Lagrange
multipliers method, in order to minimize the following expression:

L(µ,w) = wHRw − µ(wHa(θ, φ)− 1) (4.30)

The beamforming vector w minimizing this expression is given by:

wmin =
R−1a(θ, φ)

aH(θ, φ)R−1a(θ, φ)
(4.31)

The MVDR contrast function is then defined as the power reached after
beamforming toward the direction (θ, φ) by applying the vector wmin at the
antenna array output:

PMVDR(θ, φ) = wH
min Rwmin (4.32)

=
1

aH(θ, φ)R−1 a(θ, φ)

In the same way as the MUSIC algorithm, the function PMVDR(θ, φ) will
present local maxima as soon as the vector aH(θ, φ) reaches the direction of
arrival of an interference signal. Finding these maxima using an optimization
algorithm will help estimate the interference steering vectors, and therefore an
interference subspace basis.

Figure 4.11 shows again simulated data (the same parameters as in the
simulation shown on Figure 4.10, but different interference locations). The
MVDR constraint function is displayed on Figure 4.11.(b).

4.4 Conclusions on interference subspace esti-
mation

The interference subspace estimation is a critical step in spatial filtering. A
wrong estimation leads to data deterioration. A visual example of the impact
of an inaccurate interference subspace estimation on the interference itself is
shown in Figure 4.12.

The accuracy of the recovered interference subspace depends on the following
parameters:
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Figure 4.11: Minimum Variance Distortionless Response. Skymaps are given
in dB. (a) Simulated skymap with three interferences impinging a 48-antenna
array (INR = 0 dB). (b) MVDR constraint function. Three peaks can be found
and represent the directions of arrival of the three impinging interferences.
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Figure 4.12: Impact of interference subspace estimation error on a skymap.
Skymaps are given in dB. (a) Simulated skymap containing one interference. (b)
Zoom on the interference location. (c) Zoom on the interference location after
orthogonal projection based on the true interference steering vector. (d) Zoom
on the interference location after orthogonal projection based on the (badly)
estimated interference steering vector.
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• the type of data available at the antenna array radio telescope output,

• the spatial filtering strategy that has been chosen,

• the computational complexity that remains available on the radio tele-
scope system.

Antenna array radio telescopes usually provide single output in the case of
beamforming, or array covariance matrices in the case of radio interferometry
for sky imaging. The latter are calculated using fast digital correlators. The
cyclostationary approach, consisting in correlating a signal with a frequency
shifted version of itself, as well as the time-lag approach, consisting in correlating
a signal with a time shifted version of itself, requires better resource sharing at
the correlation stage (configuration of the observation parameters).

However, it has been seen in this chapter that approaches based on the
attenuation of the cosmic source and system noise contributions, as well as
multiple covariance matrices approaches, provide much better estimations than
approaches based on a classical covariance matrix. In the event of estimation
uncertainty, and when the number of interferences is much lower than the num-
ber of antennas (i.e. when the interference subspace dimension is much lower
than the data vector space dimension), an alternative would be to reject a bigger
subspace than the one estimated.

Suppose there is one interference impinging an antenna array. Projecting
the interference subspace out of the data vector space (using an orthogonal
or oblique projector), creates a hole in the skymap that has the size of the
antenna array beam. It is however possible to enlarge this hole by projecting
out the estimated interference subspace, as well as its close neighborhood on
the skymap. The Figure 4.13 shows an example of multiple beam projection.
The size of the projected area is parameterized by the neighborhood size and
the number of rejected directions of arrival.

Another approach allowing the enlargement of the antenna array beam is
known as covariance matrix tapering [46], consisting in an apodization of the
covariance matrix.

When interferences remain fixed in the field of view of the antenna array,
their steering vectors remain constant. Another approach allowing an improve-
ment in interference subspace estimation accuracy is subspace tracking [29]. The
basic idea of subspace tracking is to update the interference subspace estimation
each time new information is available at the antenna array output instead of
keeping on re-estimating this subspace over time. However, this approach per-
forms poorly if the interference subspace evolves continuously with time, due to
a jammer move or intermittent jammers for example.

Even if most of the techniques presented in this chapter are based on matri-
ces decompositions, the computational complexity of these techniques is mainly
due to the covariance matrices calculations. Since the dimension of the interfer-
ence subspace is usually low compared to the data vector space dimension (the
interference subspace dimension is related to the number of interferences im-
pinging the antenna array radio telescope over a narrow frequency bandwidth),
methods consisting in retrieving the dominant eigenvalues and eigenvectors of a
matrix for a low computational cost, such as the power method [30], markedly
improve the global computational cost of an interference mitigation algorithm.
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Figure 4.13: Multiple beam projection. Skymaps are given in dB. (a) Orthog-
onal projection based on a single steering vector. (b) Orthogonal projection
based on the same steering vector as (a), by also rejecting 10 other directions
of arrival located in a close neighborhood. (c) and (d) 3-dimensional represen-
tation of the map (a) and (b), respectively. (e) and (f) Global skymaps after
the projection presented in (a) and (b), respectively.



Chapter 5

RFI mitigation
implementation

5.1 Introduction

This chapter presents an RFI mitigation algorithm that is currently being im-
plemented and tested on the radio telescope demonstrator EMBRACE. This
demonstrator is already operational but not yet commissioned to work as a
scientific instrument. Its back end is a LOFAR station back end.

The first part of the chapter presents the techniques discussed in this thesis
applied to LOFAR data. Thanks to the Transient Buffer Board, which allows full
bandwidth antenna waveforms to be recorded on the LOFAR backend, different
approaches have been tested on LOFAR Low and High Band Antenna signals.

The second part of the chapter presents the whole EMBRACE system. In
order to choose the stage at which the proposed algorithm can be implemented,
it is necessary to know the signal path, as well as the type of data and the
computational power available.

Finally, the algorithm based on an oblique projector is presented. Through
simulations applied on real data, the performance of this algorithm is compared
to the expected results.

5.2 LOFAR data processing

The Transient Buffer Board (TBB) is a device located on LOFAR station cab-
inets that allows the recording of full bandwidth antenna waveforms. Two
observations are presented here : one Low Band Antenna observation, particu-
larly a subband of it corrupted by a land mobile, and one High Band Antenna
observation, particularly a subband of it corrupted by a strong pager system.
The same processing was applied to both observations.

5.2.1 LOFAR LBA data

The Low Band Antenna observation (frequency bandwidth = 0−100 MHz) was
made with a Dutch LOFAR station on February 11th, 2010. The observation
was made with a 47-subantenna array. Figure 5.1 presents the observation.
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Figure 5.1: LOFAR Low Band Antenna corrupted observation at 55 MHz. 47
sub antennas array. (a) Power Spectral Density of the observation. The red star
highlights the subband of interest. This subband is corrupted by a land mobile
signal. (b) Power Spectral Density of the subband of interest. The narrow
band peak at 55.41 MHz corresponds to the land mobile. (c) Singular values of
the classical covariance matrix of the observation. The signal subspace seems
to be 1- or 2-dimensional. (d) Skymap of the observation (in dB). The strong
interference is located on the horizon. The other sources correspond to well
known cosmic sources.

Figure 5.1.(a) is the whole Power Spectral Density of the observation. All the
peaks on the spectrum correspond to interference. The subband selected to
apply the processing is highlighted by a red star, at 55 MHz. This frequency
bandwidth is dedicated to land mobile applications in the Netherlands. Figure
5.1.(b) is the Power Spectral Density of the subband of interest. One narrow
peak can be seen on this spectrum. It corresponds to a land mobile signal.
Figure 5.1.(c) shows the singular values of the classical covariance matrix of the
observation. One singular value clearly dominates the others. It corresponds to
the signal subspace, and more precisely the interference subspace. The skymap
on Figure 5.1.(d) shows the interference on the horizon. Two other (well-known)
cosmic sources can be seen in the sky.
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Figure 5.2: Cyclostationary approach. (a) Cyclic spectrum of the observation.
No cyclic frequencies. (b) Conjugate cyclic spectrum of the observation. The
peak on the spectrum corresponds to the interference conjugate cyclic frequency
α0 = 0.25(highlighted by a red star). (c) Singular values of the conjugate cyclic
matrix at α0. (d) Skymap (in dB) made with the conjugate cyclic matrix at α0.

Interference subspace estimation

Figure 5.2 presents the cyclostationary approach applied to the LBA observa-
tion. Figures 5.2.(a) and 5.2.(b) are respectively the cyclic and conjugate cyclic
spectra of the observation. The interference has a conjugate cyclic frequency,
highlighted by a red star on Figure 5.2.(b). Figure 5.2.(c) shows the singular
values of the conjugate cyclic matrix. The signal subspace is 1-dimensional,
since a single singular value dominates the others. The skymap 5.2.(d) is the
skymap built with the conjugate cyclic matrix considered. The skymap seems
saturated, and the interference location is hard to identify.

Figure5.3 is the time-lag approach applied to the observation. Figure 5.3.(a)
is the auto-covariance function of the subband of interest. One peak on this
function, highlighted by a red star, corresponds to a strong auto-correlation
of the signal with itself at time-lag τ0 = 5 samples. Figure 5.3.(b) are the
singular values of the time-lagged covariance matrix. Again, one singular value
dominates the others. It corresponds to the interference subspace (or non-
white signal subspace). Figure 5.3.(c) is the skymap built with the time-lagged
covariance matrix. The interference location can be easily identified. The cosmic
sources, in the sky, are no longer visible. This observation confirms the whiteness
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assumption concerning cosmic sources.

The MUSIC approach has also been considered. Figure 5.4 shows the 4 MU-
SIC functions calculated by respectively considering a 1, 2, 3 and 4-dimensional
signal subspace. Figure 5.4 presents 3 maxima.

The MVDR approach applied to the observation is shown on Figure 5.5.
The sources locations are not easier to identify on this map than on the classical
covariance matrix skymap 5.1.(d).

Spatial filtering

Figure 5.6 is the orthogonal approach applied to the observation. On Fig-
ure 5.6.(a), the orthogonal projector was built with the interference subspace
estimated using the cyclostationary approach, whereas on Figure 5.6.(b), the
projector was built with the interference subspace estimated with the time-lag
approach. The results seem similar. A hole in the map is located at the inter-
ference location.

Figure 5.7 shows the results of the oblique projection approach applied to
the observation. An oblique projector was built for each direction in the sky.
Again, the oblique projector was built either with the interference subspace
estimated with the cyclostationary approach (Figure 5.7.(a)) or with the time-
lag approach (5.7.(b)). The cosmic sources are less widely spread than with the
orthogonal projector. Because of the construction of the oblique projector, a
global maximum of the skymap can be seen at the interference location.

The interference subspace subtraction was applied to the data. Figure 5.8.(a)
shows the interference subspace subtraction function, based on the interference
spatial signature estimated with the cyclostationary approach, with its global
minimum highlighted by a red star. Figure 5.8.(b) is the skymap made by
subtracting the interference subspace covariance matrix from the classical co-
variance matrix. The interference is no longer visible, and the cosmic sources
are still located in the sky.

5.2.2 LOFAR HBA data

The observation considered in this section was made with a Dutch LOFAR High
Band Antenna station (24 antenna tilesets, frequency bandwidth = 100 − 200
MHz) on July 15th, 2010. Figure 5.9.(a) is the Power Spectral Density of the
observation. All the peaks correspond to interference. The interference of inter-
est to apply the different interference mitigation techniques is highlighted by a
red star at 109.28 MHz. This frequency is dedicated to aviation radio navigation
in the Netherlands. Figure 5.9 is the Power Spectral Density of the subband
of interest. Figure 5.9.(c) are the singular values of the classical covariance
matrix. The strong dominant singular value corresponds to the interference.
Figure 5.9.(d) is the skymap of the observation (because of aliasing due to the
observation frequency and antenna array size, the skymaps in this section are
limited to a smaller field of view). The radio navigation system can be clearly
located on the map.
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Figure 5.3: Time-lag approach. (a) Autocovariance function of the observation.
The peak at time-lag τ0 = 5 samples (highlighted by a red star) is the subband
of interest. (b) Singular values of the time-lagged covariance matrix at τ0. (c)
Skymap (in dB) made with the time-lagged covariance matrix at τ0. The cosmic
sources are no longer visible.
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Figure 5.4: MUSIC approach. (a) MUSIC function selecting a 1-dimensional
signal subspace (in dB). (b) MUSIC function selecting a 2-dimensional signal
subspace (in dB). (c) MUSIC function selecting a 3-dimensional signal subspace
(in dB). (d) MUSIC function selecting a 4-dimensional signal subspace (in dB).
The signal subspace seems to be 4-dimensional, even if the sources are not point
sources.
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Figure 5.5: MVDR approach. The skymap (in dB). The sources’ locations are
hard to identify.
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Figure 5.6: Orthogonal projection (skymaps given in dB). (a) Interference sub-
space estimated with the cyclostationary approach. (b) Interference subspace
estimated with the time-lag approach.
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Figure 5.7: Oblique projection (skymaps given in dB). (a) Interference sub-
space estimated with the cyclostationary approach. (b) Interference subspace
estimated with the time-lag approach.
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Figure 5.8: Interference subspace subtraction approach. The interference spa-
tial signature was estimated with the cyclostationary approach. (a) Interference
subspace subtraction function. The point highlighted by a red star corresponds
to the function global minimum. (b) Skymap (in dB) of the interference sub-
space subtracted from the classical covariance matrix.
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Figure 5.9: LOFAR High Band Antenna corrupted observation at 109.28 MHz.
24-antenna array. (a) Power Spectral Density of the observation. The red star
highlights the subband of interest. This subband is corrupted by an aviation
radio navigation system. (b) Power Spectral Density of the subband of interest.
(c) Singular values of the classical covariance matrix of the observation. The
signal subspace seems to be 1-dimensional. (d) Skymap of the observation (in
dB). The radio navigation system corresponds to the strongest point on the
map.
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Figure 5.10: Cyclostationary approach. (a) Cyclic spectrum of the observation.
The peaks on the spectrum correspond to the interference cyclic frequencies.
The cyclic frequency α0 = 0.2574 (highlighted by a red star) was chosen for
the rest of the study. (b) Conjugate cyclic spectrum of the observation. (c)
Singular values of the cyclic matrix at α0. (d) Skymap (in dB) made with the
cyclic matrix at α0.

Interference subspace estimation

Figures 5.10.(a) and 5.10.(b) are respectively the cyclic and conjugate cyclic
spectra of the observation. Between 3 and 5 cyclic frequencies and between
5 and 11 conjugate cyclic frequencies can be identified on these spectra. The
cyclic frequency of interest is highlighted by a red star on Figure 5.10.(a). Figure
5.10.(c) are the singular values of the cyclic matrix. The dominant singular value
corresponds to the cyclic interference. Figure 5.10.(d) is the skymap built with
the cyclic matrix. Some strong points on the map, repeated because of the array
beam shape, could correspond to the interference location.

Figure 5.11.(a) is the autocovariance function of the observation. Its peri-
odicity is due to the interference strength and modulation. The red star on
this Figure highlights the time-lag chosen to perform the interference subspace
estimation (τ0 = 12 samples). Figure 5.11.(b) shows the singular values of the
time-lagged covariance matrix. Again, the dominant singular value corresponds
to the pager signal. Figure 5.11.(c) is the skymap made with the time-lagged
covariance matrix.

The MUSIC approach was also applied, in the same way as with the Low
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Figure 5.11: Time-lag approach. (a) Autocovariance function of the observation.
The peak at time-lag τ0 = 12 samples (highlighted by a red star) is of interest.
(b) Singular values of the time-lagged covariance matrix at τ0. (c) Skymap (in
dB) made with the time-lagged covariance matrix at τ0.
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Figure 5.12: MUSIC approach. (a) MUSIC function selecting a 1-dimensional
signal subspace (in dB). (b) MUSIC function selecting a 2-dimensional signal
subspace (in dB). (c) MUSIC function selecting a 3-dimensional signal subspace
(in dB). (d) MUSIC function selecting a 4-dimensional signal subspace (in dB).

Band Antennas observation, to the classical covariance matrix. The four MU-
SIC functions, shown on Figure 5.12 (respectively selecting a 1, 2, 3 and 4-
dimensional signal subspace), do not show the same source locations. Based
on the previous studies, the signal subspace of the observation seems to be 1-
dimensional. This indicates that Figure 5.12.(a) is the one that shows the right
interference location (highlighted by the strongest area on the map).

The MVDR approach, shown on Figure 5.13 appears to highlight the same
source location as Figure 5.12.(a).

Spatial filtering

The orthogonal approach was applied on these data. Figure 5.14.(a) shows the
result of the orthogonal projector with the interference subspace estimated with
the cyclostationary approach, whereas Figure 5.14.(b) shows the result of the
orthogonal projector applied by estimating the interference subspace with the
time-lag approach. The two results are similar, and a hole in the map can be
seen at the interference location.

Figure 5.15 presents the results of the oblique projector applied to the data
by respectively estimating the interference subspace with the cyclostationary
approach (Figure 5.15.(a)) and with the time-lag approach (Figure 5.15.(b)).
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Figure 5.13: MVDR approach. The skymap (in dB). The locations of the sources
are hard to identify.
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Figure 5.14: Orthogonal projection (skymaps given in dB). (a) Interference sub-
space estimated with the cyclostationary approach. (b) Interference subspace
estimated with the time-lag approach.
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Figure 5.15: Oblique projection (skymaps given in dB). (a) Interference sub-
space estimated with the cyclostationary approach. (b) Interference subspace
estimated with the time-lag approach.
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Figure 5.16: Interference subspace subtraction approach. The interference spa-
tial signature was estimated with the cyclostationary approach. (a) Interference
subspace subtraction function. The point highlighted by a red star corresponds
to the function global minimum. (b) Skymap (in dB) of the interference sub-
space subtracted from the classical covariance matrix.

Again, the results are similar with the two approaches.
The interference subspace subtraction technique is presented on Figure 5.16.

Figure 5.16.(a) shows the interference subtraction function, with the interference
spatial signature estimated with the cyclostationary approach. The red star on
the function corresponds to its global minimum. Figure 5.16.(b) is the skymap
recovered after subtracting the interference covariance matrix from the classical
covariance matrix. This map seems noisy, with no interference contribution.

5.2.3 Conclusions on LOFAR data processing

The processing applied to the LOFAR data seems as efficient on LBA data
as on HBA data, though the results are easier to conclude on with LBA data
because of the wider field-of-view. However, concluding on the impact of these
processing techniques with respect to cosmic sources is a tough task, with no
information concerning the reality of the data.
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Figure 5.17: French EMBRACE station inside its radome, located at the Nançay
observatory. Courtesy of Dr. Stephen Torchinsky.

The results shown on Figures 5.7 and 5.8.(b) seem to match the results
expected from the RFI mitigation algorithms.

5.3 EMBRACE

5.3.1 EMBRACE architecture

Overview

EMBRACE, the Electronic Multi-Beam Radio Astronomy Concept [61, 17, 16,
91], is a European mid frequency aperture array demonstrator for the inter-
national Square Kilometer Array radio telescope. This project is led by the
Netherlands Institute for Radio Astronomy, ASTRON, and several European
institutes contributed to the overall system (France, Italy, Germany).

The demonstrator is designed to work in a frequency bandwidth ranging
from 500 MHz up to 1500 MHz. Two stations currently exist and are located
in Nançay, France, and in Westerbork, The Netherlands. The French station is
shown on Figure 5.17.

The French station comprises 9216 Vivaldi antenna elements (see Figure
5.18), half for each polarization, whereas the Dutch station comprises 20736
elements. Only half of them arecurrently exploited (single polarization). These
antenna elements are phased together, so that the stations are able to simulta-
neously steer two independent directions in the sky.

The beamforming process is split into two sub-processes. An analog beam-
forming is first applied at the antennas output through beamformer chips [21],
then a digital beamforming is applied at the back end stage.
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Figure 5.18: One Vivaldi antenna element of the phased antenna array EM-
BRACE. Courtesy of Dr. Stephen Torchinsky.

Front end

The EMBRACE front end is made of a regular grid antenna array isolated in
a radome, together with radio frequency signal pre-processing boards. The sig-
nal coming out of the antennas is first amplified through Low Noise Amplifiers
(LNA), high-pass filtered, and then enters a beamformer chip. Each beam-
former chip receives 4 antenna signals, and provides two independent outputs
corresponding to two independent directions in the sky chosen by the end-user.
These beamformer chips are located on a hex board. Each hex board hosts 3
beamformer chips. One hex board is shown on Figure 5.19.(a).

The two independent outputs of each beamformer chip are then combined
on a center board grouping together 6 hex boards. These signals are then sent
to the back end through coaxial cables. These coaxial cables also provide the
DC power to the front end, and Ethernet control signals to the beamformer
chips.

Back end

The EMBRACE back end [78] is outside the radome, hosted in a shielded cabi-
net. The analog signals (the two independent beams provided by each tile) are
first converted down to a low frequency before entering a Receiver Control Unit
(RCU) [71]. The Figure 5.19.(b) shows the coaxial cables coming from the tiles
and entering the back end cabinet. After filtering, the signal is digitized and
split into 512 subbands using a polyphase filterbank. Each subband is processed
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independently, and a complex weight is attributed to them in order to perform
digital beamforming.

The EMBRACE back end provides two kind of data : beamlets and crosslets:

• Beamlets correspond to the raw data coming out of the radio telescope
after both analog and digital beamforming have been performed. The two
beamlets (for the two independent beams) are integrated over one second,
and one sample per beam is released every second.

• The crosslets correspond to tileset correlation matrices integrated over
one second. The signals correlated here have not gone through the digital
beamforming stage, only the analog one.

The crosslets are provided either for a single subband with a frequency band-
width ∆f = 195.3 kHz, or over multiple subbands over a frequency bandwidth
∆f ≈ 10 MHz (512 × 195.3 kHz). In the latter case, one subband is processed
each second. After 512s, the whole frequency bandwidth has been processed,
and the process starts over at the beginning of the bandwidth of interest.

For example, Figure 5.20 shows the full power received from EMBRACE
in the full frequency bandwidth mode during a GPS satellite drift scan. The
bandwidth is centered at 1176.45 MHz, and is 99.993 MHz wide. The received
power has been calculated using the squared Frobenius norm of the crosslets
provided each second from the system back end. After 8 minutes and 32 seconds,
the whole frequency bandwidth has been scanned and the system loops back to
restart a new scan over the same bandwidth.

Figure 5.21 shows an observation in the single subband mode. The band-
width considered here is centered at 1176.45 MHz and is 195.3 kHz wide. This
observation is again a GPS satellite drift scan. The power drop is due to the
satellite coming out of the RF beam formed by the antenna array. The samples
provided by the system are integrated over one second, and then released. The
received power has here also been calculated using the squared Frobenius norm
of the crosslets provided each second by the system.

Figure 5.22 shows a summary of the EMBRACE architecture going from the
antenna to the end-user data.

5.4 RFI mitigation algorithm

The aim of the project is to implement a real time RFI mitigation algorithm on
the system, based on an oblique projector.

5.4.1 Strategy

Data model

We first consider the following single narrow band interference data model:

x(t) = ar.r(t) + ac.c(t) + n(t) (5.1)

with:

• x(t) the instantaneous EMBRACE antenna tiles data output,
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(a)

(b)

Figure 5.19: (a) An EMBRACE hex board. This board contains high pass fil-
ters, Low Noise Amplifiers and beamformer chips. The Vivaldi antenna elements
are plugged on it. The board performs the first processing of the signal path
on the antennas’ output. (b) The analog signals coming out of the tiles enter
the EMBRACE back end for filtering, digitization and further signal processing.
Courtesy of Dr. Stephen Torchinsky.
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Figure 5.20: EMBRACE observation in the full frequency bandwidth mode.
The frequency bandwidth of interest is centered at 1176.45 MHz and is 99.993
MHz wide. It corresponds to a GPS satellite drift scan. The radio telescope
analog beam was steered in a fixed direction in the sky while the satellite crossed
it (drift scan). After 8 minutes and 32 seconds (512s), the scan restarts at the
beginning of the observation bandwidth. Each subband signal is integrated over
1 second and released by the back end.
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Figure 5.21: EMBRACE observation in the single subband mode. The subband
of interest is centered at 1176.45 MHz and is 195.3 kHz wide. This observation
is a GPS satellite drift scan. The received power decreases as the satellite exits
the analog beam.



5.4. RFI MITIGATION ALGORITHM 111

Figure 5.22: EMBRACE architecture. The front end is composed of Vivaldi
antenna elements located in a radome. The signals provided by these antennas
are amplified, filtered, beamformed (analog beamforming), combined in tiles
(groups of hex boards) and sent to the back end. The back end, located in
a shielded cabinet combines 4 tiles, converts the signals to a lower frequency,
digitizes, digitally beamforms and processes them. The data provided by the
system are beamlets (beamformer output samples) and crosslets (tileset corre-
lation matrices)
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• ar the steering vector corresponding to the narrow band interference r(t),

• ac the steering vector corresponding to the cosmic source of interest c(t),

• n(t) the instantaneous EMBRACE system noise contribution.

Since EMBRACE is a dense aperture array, the noise vector n(t) of the
latter data model could not be modeled with independent entries. However, the
system architecture is such that the data vector x(t) is not made of the individual
antenna signals, but antennas tileset signals. The tiles are assumed to be distant
enough for the electro magnetic coupling between tiles to be neglected.

Oblique projector

Beamforming using a delay and sum beamformer in the direction of the cosmic
source of interest would not remove the interference contribution:

If w is the digital beamforming weights vector applied to the system, we
have:

wHx(t) = ‖ar‖ ‖ac‖ cos(ar,ac).r(t) + ‖ac‖
2
.c(t) +wHn(t) (5.2)

The oblique projector steering the direction of interest corresponding to the
beamforming vector w and nulling the interference direction defined by ar is
expressed as (see section 3.3.2):

Ewar
= w(wHP⊥

ar
w)−1wHP⊥

ar
(5.3)

with P⊥
ar

= I−ar(a
H
r ar)

−1ar
H . The oblique projection beamforming vector

is then defined by:

wH
obl = wHEwar

(5.4)

Applied to the data model, the resulting instantaneous signal becomes:

wH
oblx(t) = ‖ac‖

2
.c(t) +wH

obln(t) (5.5)

Interference subspace estimation

The interference subspace generated by the vector ar has to be estimated in
order to build the oblique projector. Since the only data available at the EM-
BRACE system output is a covariance matrix (crosslet), the Classical Eigen-
Value Decomposition technique (see section 4.1.1) was chosen. As the data
model involves only one interference, the interference subspace is 1-dimensional.
Neglecting the cosmic source (E{r2(t)} >> E{c2(t)}), the dominant eigenvector
of the data covariance matrix is an estimate of the interference steering vector
ar.

The Eigen (or Singular) Value Decomposition computational cost can be
reduced using the power method [30]. This method iteratively estimates the
singular vectors of a matrix one after the other, from the dominant one to
the least relevant one. Figure 5.23 shows the accuracy of the power method
accuracy at estimating a dominant eigen vector with regard to the Interference
to Noise Ratio and the number of iterations of the method. The performances
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Figure 5.23: Power method performance. (a) Power method dominant eigen
vector estimation accuracy. The accuracy is quantified using the dot product
between the estimated eigen vector and the true one. This performance is given
with regard to the INR and the number of iterations of the power method.
(b) Estimation variance with regard to the Interference to Noise Ratio and the
number of iterations of the power method.

are quantified using the normalized dot product between the estimated dominant
eigen vector and the true one.

The power method is a good way of reducing the cost of a singular value
decomposition when only a few singular vectors have to be retrieved. Con-
cerning the EMBRACE system, the implemented algorithm is executed in the
Local Control Unit (LCU), which is responsible among other functions for the
beamforming vector calculations. This LCU is a computer, and has enough
computational power available to perform an eigen value decomposition on a
16× 16 crosslet matrix (16 tilesets for the French EMBRACE station).

5.4.2 Implementation

In order to evaluate the performance expected from an RFI mitigation algorithm
implementation, we set up an experiment in which an interference is generated,
thereby controlling the interfering environment. Figure 5.24.(a) shows the ex-
periment : a home-made antenna has been placed beside the radio telescope.
This antenna emits a pure sine signal at a frequency of 1.176 GHz (see Fig-
ure 5.24.(b), the signal generator connected to the antenna). This home-made
interference is intermittent. At the same time, the radio telescope performs a
GPS satellite drift scan in the full frequency bandwidth mode, with a frequency
bandwidth centered at 1.176 GHz and 10 MHz wide. Figure 5.25 shows the
observation. The first 300 samples correspond to the instrument calibration pro-
cess. Once done, the observation starts with one crosslet per subband released
each second. After 512s, the whole frequency bandwidth has been scanned and
the observation starts over at the beginning of the bandwidth. The samples
highlighted with red dots are located at the home-made interference frequency.
This interference was ’on’ during two observation cycles, and ’off’ during 4 ob-
servation cycles (large peaks when ’on’). Figure 5.26 highlights two spectra
observed when the home-made interference is ’on’ (in blue) and ’off’ (in red).
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(a)

(b)

Figure 5.24: Experiment set up. (a) A home-made antenna is placed beside
the EMBRACE antenna array in order to emit a controlled interference toward
the radio telescope. (b) The antenna shown in (a) is connected to this signal
generator. The signal emitted is a pure sine at 1176.45 MHz.
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Figure 5.25: GPS satellite drift scan with home-made intermittent narrow band
interference.
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Figure 5.26: Highlight on two spectra observed while the home-made interfer-
ence is ’on’ (blue spectrum) and ’off’ (red spectrum).
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Figure 5.27: Singular values of two crosslets provided by the system during
the observation. (a) Two signals are impinging the radio telescope : the GPS
satellite and the home-made interference. The interference subspace is therefore
2-dimensional. (b) Only one interference is impinging the radio telescope (the
home-made interference is ’off’). The interference subspace is 1-dimensional.

This observation no longer respects the initial data model given in section
5.4.1 since, depending on the subband considered, more than one interference
impinge the radio telescope (GPS satellite and home-made interference or other
non-controlled interferences). The interference subspace dimension can be esti-
mated by analyzing the singular values of the crosslets. Figure 5.27 shows the
singular values of two crosslets. Figure 5.27.(a) shows the singular values of
the crosslet corresponding to the second red star on Figure 5.25, whereas the
Figure 5.27.(b) shows the singular values of the crosslet calculated one second
later, i.e. the next subband processed. It is clear that the interference subspace
is 2-dimensional in the first case since 2 singular values dominate the other 14.
In the second case, only one singular value is dominant, and it corresponds to
the GPS satellite.

Figure 5.28 shows all the singular values of all the crosslets provided by the
EMBRACE back end during the observation. Each of them contributes either
to the GPS satellite signal only, the GPS satellite and another interference
(home-made or not), or to the system noise.



5
.4
.

R
F
I
M
IT

IG
A
T
IO

N
A
L
G
O
R
IT

H
M

117

500 1000 1500 2000 2500 3000
50

60

70

80

90

100

110

120

130

Time (s)

S
in

gu
la

r 
va

lu
es

 m
ag

ni
tu

de

Figure 5.28: Singular values of the crosslets released by the EMBRACE back end during the observation.
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The interference subspace dimension cannot, therefore, be a constant param-
eter of the algorithm; it has to be estimated. Figures 5.29 and 5.30 show the
effect on the data after projecting 1 (Figure 5.29) or 2 (Figure 5.30) dimensions
out using the orthogonal and the oblique projector. The direction of interest
chosen for these tests is the center of the analog beam, i.e. w = 1. The green
graphs on both figures are the received power without any processing. The blue
graphs correspond to the data obtained after orthogonal projection using either
a 1- or 2-dimensional interference subspace, and the red graphs correspond to
the same setup with the oblique projector.
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Figure 5.29: Orthogonal and oblique projections projecting a 1-dimensional RFI subspace. In green, the data recovered after beamforming
in the direction of the center of the analog beam. In blue, the same results applying an orthogonal projection. In red, the same results
applying an oblique projection. The interference subspace is estimated using the dominant singular vector of each crosslet.
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Figure 5.30: Orthogonal and oblique projections projecting a 2-dimensional RFI subspace. In green, the data recovered after beamforming
in the direction of the center of the analog beam. In blue, the same results applying an orthogonal projection. In red, the same results
applying an oblique projection. The interference subspace is estimated using the two dominant singular vectors of each crosslet.
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The discontinuities on these graphs are due to the variation, depending on
the subband processed, in the interference subspace dimensionality.

Estimating the number of interfering sources, equivalent to the interference
subspace dimension, is necessary in order to apply accurate processing onto the
data. This problem has been adressed in different ways [9], and the two most
popular techniques for estimating this value are based on information theoretic
criteria : the Minimum Description Length (MDL) and the Akaike Information
Criterion (AIC) [101, 72, 66].

An implementation of the oblique projector for interference mitigation is
suitable for EMBRACE, regarding its back end architecture and computational
power. Although the oblique projector can be implemented at the post cor-
relation stage of the signal path, its construction requires the definition of a
range subspace, i.e. a particular direction of interest. That is the reason why
implementing this projector would be much more efficient in a beamforming
application (at the pre-correlation stage).

It has been seen previously that the interference subspace of an observation
varies, depending on the frequency subband observed and on the interference en-
vironment. Many different ways of estimating this subspace exist, but, according
to the data type provided by the system, the classical eigen value decomposition
applied on a crosslet matrix is the only possible choice. The eigen or singular
values of these matrices allow the interference subspace dimension estimation,
with the MDL criterion for instance, whereas its eigen or singular vectors allow
the estimation of a basis of it.

However, the EMBRACE back end is built in such a way that all the obser-
vation parameters stay constant over the integration time (1 second). Applying
any correction to the digital beamforming vector is therefore impossible in real
time. Building the oblique projector requires a crosslet to be already available.
Since the back end releases one crosslet per second, the oblique projector has
to be built as soon as the latest crosslet has been released and applied to the
beamforming vector at the next observation of the same frequency subband.

Since most of the interferences are moving objects, implementing this algo-
rithm in the full bandwidth observation mode would be useless. The crosslet
provided by the system could be used to build a projection, but this projec-
tor would only be applied 8 minutes and 32 seconds later, i.e. once the whole
frequency bandwidth had been scanned.

The single frequency subband observation mode is a good candidate since
the corrections would be applied within the second after the latest crosslet has
been released.

Figure 5.31 is a graphical representation of the algorithm implemented on
the EMBRACE back end (except the shaded part of the diagram concerning the
RFI subspace dimension estimation). Once the latest crosslet matrix has been
released, the interference subspace is estimated with a singular value decompo-
sition applied to this matrix. The interference subspace estimate is then used
to build an orthogonal projection matrix. With this projection matrix and the
beamforming vector calculated by the system back end, an oblique projector is
built. The beamforming vector is finally multiplied with the oblique projector
to give a corrected beamforming vector. This corrected beamforming vector is
then applied in the same way as the initial beamforming vector to the antenna
array output.

Figure 5.32 shows a simulation with real data of the full algorithm as it runs
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Figure 5.31: RFI mitigation algorithm implementation. The EMBRACE back
end provides a crosslet matrix each second and calculates a digital beamforming
vector to be applied after the analog beamforming stage. The oblique projection
algorithm is based on both data and provides a corrected beamforming vector.
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on the EMBRACE back end. The green graph is the received power while a GPS
satellite is crossing the analog beam of the system. The direction of interest,
defined by the digital beamforming vector, is the analog beam center. The
black graph shows the corrected data, after building an oblique projector. The
interference subspace has been estimated with a crosslet provided by the system
4 seconds before the correction was applied, its dimension was set to N̂r = 2.
In comparison, the red graph shows the corrected data when the interference
subspace is estimated at the same time the correction is applied (as it could be
done offline). The jitter between ≈ 1500 and ≈ 2200s on the corrected signals
corresponds to the time when the satellite reaches the direction of interest. The
algorithm then tries to mitigate and recover the signals coming from the same
direction. No signal can therefore be recovered during this time slot.

The red and black graphs do not show a marked difference out of this time
slot. The interference subspace seems constant enough at a small time scale
(≈ 4s) for the algorithm to be efficient when the corrections are applied after
the interference subspace has been estimated.
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Figure 5.32: RFI mitigation algorithm implementation. In green, the received power while a satellite is crossing the analog beam (digital
beam steering the analog beam center). In red, the received power after oblique projection, interference subspace estimated with the
crosslet on which it has been applied. In black, the received power after oblique projection, interference subspace estimated with a crosslet
calculated 4 seconds before the projector is applied.
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5.5 Conclusions on RFI mitigation implementa-
tion

Different assumptions are made while developing an algorithm. Implementing it
on a real system requires first of all the validation of these assumptions. Without
these validations, the theoretical and real performance of an algorithm cannot
be compared.

The usual assumptions made in spatial filtering applications concern the an-
tenna array calibration and noise coupling, the narrow band property of the sig-
nals impinging the array and, in radio astronomy, the negligible signal strength
of the source of interest (cosmic source).

In a first approach, the aim of the implementation made on the radio tele-
scope EMBRACE was to demonstrate the possibility of incorporating a real
time interference mitigation process into the system signal path. Quantifying
the interference attenuation is also another important point in this project.

When cosmic sources are no longer negligible, the most accurate interference
subspace estimation technique would require a lower level implementation on
the system by, for example, allowing cyclostationary or time-lagged covariance
matrices calculations.

The data provided by EMBRACE are however suitable for an interference
mitigation algorithm. The crosslet matrices contain all the statistical infor-
mation about the sources impinging the array, and particularly the interfer-
ence. Once the interference subspace has been estimated, a beamforming vector
nulling them can be set at the antenna array output.

The algorithm presented in this chapter has been implemented on one beam
of the radio telescope EMBRACE. Different scenarii were selected to evaluate
its performances on the radio telescope by observing simultaneously the same
direction with one corrected beam and another beam without any processing.
The algorithm performance cannot, however, be easily quantified since there is
no comparison possible between processed corrupted data and interference-free
data.
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Chapter 6

Conclusions and Future
work

6.1 Conclusions

This thesis addresses spatial interference mitigation for phased antenna array
radio telescopes.

After building an antenna array data model, based on assumptions regard-
ing the different signals impinging the radio telescope, spatial filtering tech-
niques are introduced. Popular beamforming techniques are briefly discussed,
then projection approaches are presented. The concept shared by both the or-
thogonal and oblique projectors is to project the interference subspace out of
the antenna array data vector space. Figure 3.10 particularly shows that in a
noise-free model, the oblique projector is able to perfectly recover the source
of interest, whereas the performance of the orthogonal projector depends on
the orthogonality between the interference and source of interest subspaces. In
terms of RFI rejection and SOI gain after processing, projection techniques are
preferable to beamforming techniques, as shown on Figure 3.13.

An interference subspace subtraction technique is also introduced. As long
as the different assumptions regarding the data model hold (additive model,
interference spatial signatures perfectly known...), this technique shows good
results.

The signals’ spatial signatures, especially for RFI, are considered as un-
known for two reasons : there is no a priori information about the interfering
environment, and the antenna array is considered as being uncalibrated. In
general, blind approaches are preferred in radio astronomy for these reasons.
Their estimation remains however an important stage of a spatial RFI mitiga-
tion algorithm. Depending on the technique, the estimation can concern the
individual RFI spatial signatures, or the basis spanning the RFI subspace.

RFI subspace estimation is addressed in Chapter 4. Based on RFI statistical
parameters, three covariance matrices are of interest : the classical covariance
matrix, the cyclic and conjugate cyclic covariance matrix, and the time-lagged
covariance matrix. In a first approach, the RFI subspace is estimated based on a
single matrix. In a second approach, multiple covariance matrix techniques are
suggested. Figure 4.9 shows that an ALS-based joint diagonalization applied
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to multiple time-lagged covariance matrices is the most accurate among all the
RFI subspace estimation techniques presented in this thesis.

Finally, real data processing is presented in the last chapter. The first sec-
tion shows results of most of the techniques presented in this thesis applied
offline to LOFAR Low and High Band Antenna data. Results on LBA data are
graphically convincing, especially concerning the time-lag RFI subspace estima-
tion technique (see Figure 5.3) and the oblique projection and RFI subspace
subtraction approaches (see Figures 5.7 and 5.8).

The second section presents an RFI mitigation algorithm implementation.
The implementation was conducted on the radio telescope demonstrator EM-
BRACE. Based on the data available at the system output, the (single) classical
covariance matrix approach was chosen in order to estimate the interference sub-
space. Once estimated, this subpace and a direction of interest were used to
build an oblique projector, and then a corrected beamforming vector. Prelim-
inary tests on GPS satellite drift scans show that the algorithm response is in
accordance with the expected response (see Figure 5.32 for example).

6.2 Future work

In a corrupted radio-environment, the main goal of RFI mitigation for radio
astronomy is to perfectly recover astronomical sources. Most of the interference
mitigation techniques are compared with respect to their RFI attenuation (or
rejection) performance, but not necessarily with respect to their performance in
recovering the Signal-Of-Interest. Generalized performance criteria need how-
ever to be set in this way, since perfectly recovering the signal of interest remains
the main goal.

The data model introduced in this thesis assumes several signal character-
istics. For instance, the system noise is assumed to be uncorrelated. This
assumption no longer holds for dense aperture arrays, when antenna elements
are too close to each other for mutual coupling to be neglected. Whitening can
be applied to antenna array output data, in order to make the noise covariance
matrix diagonal. However, investigating spatial filtering techniques in the case
of non-diagonal noise covariance matrices could improve the practical perfor-
mances of current approaches. Another example concerns the interference mul-
tipath effect. Neglecting this effect leads to assuming that the RFI covariance
matrix is diagonal. Depending on the assumptions made on the data model,
interference subspace estimation based on diagonalization might not provide
accurate enough estimates in the case of RFI multipath. Non-diagonal matrix
transformation, like triangularisation, should also be investigated.

The performance of an RFI mitigation algorithm depends not only on the
spatial filter performance, but also on the interference subspace estimation ac-
curacy. Subspace tracking techniques, for example, would highly improve their
performances. For fixed RFI, the estimation would practically be more accurate
due to a longer integration time compared to techniques based on covariance
matrices released by the system (1 second for EMBRACE). For moving RFI,
interference spatial signature prediction would increase the performance of RFI
mitigation algorithms when applied in real time.

Spatio-temporal filtering techniques have already been studied in different
fields. Applied to radio astronomy, their use could also improve the perfor-
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mances of current spatial filtering approaches, particularly by considering the
frequency dependence of spatial signatures inside an antenna array frequency
subband.
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Chapter 7

Summary in French

7.1 Introduction

La radioastronomie est une science datant des années 1930. Karl Jansky, ingénieur
pour les laboratoires Bell, a été le premier observateurs d’ondes électromagnétiques
provenant de sources cosmiques. Dans son cas, il s’agissait du centre de notre
galaxie, la Voie Lactée. Les émissions dans le domaine radio des sources cos-
miques sont classifiées spectralement en deux grandes catégories:

• Les émissions ’continuum’, qui sont large bande et dont l’origine peut être
thermique ou synchrotron.

• Les lignes spectrales, qui sont des émissions à bande étroite et dépendante
principalement de la composition de l’astre. Le mouvement et l’expansion
de celui-ci, par exemple, peuvent être identifiés au travers de l’analyse du
pic spectral (décalage et largeur).

D’un point de vue temporel, les émissions radio astronomiques sont classifiées
en émissions continues ou transitoires pour les pulsars par exemple.

Les instruments utilisés pour capter ces émissions ayant parcourues des
années lumières se doivent d’être extrêmement sensibles. On distingue deux
types de radiotélescopes:

• Les télescopes paraboliques, dont la résolution est fonction du diamètre
de la parabole et de la longueur d’onde observée.

• Les réseaux d’antennes phasés, dont la résolution est fonction de la ligne
de base maximum (distance maximale entre deux antennes du réseau) et
le longueur d’onde observée.

De plus, d’autres architectures mélangeant les deux types précédent existent,
comme les réseau de radio télescopes paraboliques ou les réseaux d’antennes
phasés substituant les récepteurs de radiotélescopes paraboliques.

Les radiotélescopes de type réseau d’antennes phasés ont deux types de fonc-
tionnement possibles:

• Réseau d’antennes phasés, permettant la formation de faisceaux et donc
de multiples observations simultanées dans de multiples directions dans le
ciel sans mouvement mécanique.
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• Interféromètre (ou synthèse d’ouverture), permettant l’imagerie radio du
ciel suivant le théorème de Van Cittert-Zernike liant la corrélation entre
éléments du réseau à la distribution spatiale de la puissance reçue.

La radioastronomie ne s’étend pas sur tout le domaine radio pour des raisons
d’opacité de l’atmosphère et de l’ionosphère à certaines fréquences. Cependant,
certaines bandes de fréquences sont protégées et destinées à la radioastronomie.
Ces allocations sont historiques et correspondent à des fréquences d’émissions et
d’absorptions (lignes spectrales) d’éléments bien connus. Pour diverses raisons
(e.g. décalage en fréquence des lignes spectrales), les astrophysiciens souhaitent
réaliser des observations en dehors de ces bandes protégées. Légalement, ceci
est autorisé tant que l’utilisation du spectre électromagnétique reste passive, ce
qui est le cas. Cependant les bandes non protégées sont en général allouées à
d’autres utilisateurs actifs (systèmes de télécommunications par exemple). Les
observations astronomiques se retrouvent donc polluées par des interférences
(RFI). En réalité, même les bandes protégées peuvent être polluées par des
utilisateurs actifs non autorisées, par exemple dans le cas de filtres d’émissions
mal dimensionnés ou des produits d’intermodulations faisant apparâıtre des
harmoniques dans ces bandes.

Le traitement d’interférence est donc nécessaire pour la radioastronomie. Le
premier de ces traitements est l’isolation des radiotélescopes dans des régions
du globe à faible densité de population. Mais le silence radio est rarement possi-
ble, du aux fréquentes émissions spatiales et aéronautiques (géo-positionnement,
applications militaires, transpondeurs spatiaux...). Distinguer la source cos-
mique d’intérêt et le signal interférant est une nécessité pour le traitement
d’interférences. La parcimonie dans le plan Temps-Fréquence d’une observa-
tion, lorsqu’elle existe, permet une excision de l’interférence au travers de fil-
tres fréquentiels, ou de masquage temporel pour les événements impulsionnels.
Lorsque la distinction entre signal d’intérêt et interférence n’est pas possible
dans le plan Temps-Fréquence, c’est la diversité spatiale qui peut être ex-
ploitée. Les radiotélescopes paraboliques l’exploitent partiellement puisqu’ils
sont directifs. Cependant, leur lobes secondaires sont fixes et ne permettent pas
d’atténuation adaptative en fonction de la direction du pollueur. En revanche,
les radiotélescopes à réseaux d’antennes phasés sont appropriés pour ce type de
traitement. Les techniques de beamforming adaptatif, ou filtres spatiaux, ont
été largement étudiés par le passé, principalement grâce à l’essor de ce type de
système pour les télécommunications.

C’est dans ce dernier cadre que se situe cette thèse. Après la dérivation d’un
modèle de données pour les radiotélescopes à réseaux d’antennes phasés, les tech-
niques de filtrage spatial sont abordées. Deux techniques, la projection oblique
et la soustraction de sous espace RFI sont introduites. Puisque la mise en œu-
vre d’un filtre spatial nécessite une information liée à l’interférence, un chapitre
est consacré à l’estimation de sous-espace RFI. Notamment, l’exploitation de
paramètres statistiques liés aux RFI est introduite pour produire cette esti-
mation. Un dernier chapitre illustrera les différentes techniques présentées dans
cette thèse au travers de résultats sur des données astronomiques produites par le
radiotélescope Européen LOFAR. De plus, une implémentation d’un algorithme
de traitement d’interférences sur le démonstrateur EMBRACE est également
présentée dans ce chapitre.
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7.2 Modèle de données

Ce chapitre dérive un modèle de données pour les radiotélescopes à réseaux
d’antennes phasés. Le réseau, de distribution spatiale arbitraire, est composé
de M antennes. Chaque antenne possède son propre gain complexe et son
propre terme de bruit (bruit système), et reçoit les contributions de chacune
des Ns sources situées dans le champ de vue du télescope. On suppose Ns =
Nc + Nr, avec Nc le nombre de sources cosmiques et Nr le nombre de sources
d’interférences (voir équation 2.1). Du à la propagation des ondes dans le réseau,
chaque antenne perçoit les mêmes signaux avec un décalage temporel lié à la fois
à la forme du réseau et à la direction d’arrivée de l’onde. Ce décalage temporel
est relatif à un point (de l’espace) de référence, qui peut également être l’une
des antennes du réseau.

La première hypothèse établie est l’hypothèse bande étroite (section 2.2.1).
Chacun des signaux reçu par le réseau d’antennes est supposé occuper une bande
de fréquence suffisamment étroite (par nature ou par filtrage) de façon à ce que
les décalages temporels soient exprimés par des décalage de phase. Une seconde
hypothèse établie dans ce chapitre est l’hypothèse de champ lointain (section
2.2.2). Les sources des ondes électromagnétiques reçues par le télescope sont
supposées suffisamment distantes de celui-ci, de sorte à ce que leur front d’onde
puisse être considéré comme plan.

Le bruit système est constitué d’une somme de multiples termes de bruits
indépendants tout au long de la châıne de traitement. Par application du
Théorème Central Limite, ce bruit est modélisé par un processus centré, blanc,
indépendant et identiquement distribué (iid) avec une distribution Gaussienne
complexe. La non stationnarité de certaines composantes (e.g. cycles jours/nuit)
fait que ce bruit n’est pas stationnaire. Cependant, sur de courtes durées
d’observations (de l’ordre de, ou inférieure à la seconde), ce bruit peut être
modélisé par un processus stationnaire.

Les sources cosmiques émettent naturellement des ondes radio. Ces émissions
sont dues à un grand nombre de phénomènes aléatoires et, de fait, par applica-
tion du Théorème Central Limite, les signaux cosmiques sont modélisés par des
processus centrés, blancs, iid de distribution Gaussienne complexe. Outre cer-
taines sources particulières comme les pulsars, les émissions cosmiques sont sta-
tionnaires. Cependant, de lentes variations atmosphériques et dans le medium
interstellaire causent également de lentes variations dans les statistiques de ces
processus lorsqu’elles atteignent le télescope. A nouveau, sur de courtes durées,
ces variations peuvent être négligées et ces processus sont donc considérés sta-
tionnaires.

Les interférences peuvent être de multiples natures. Le terme interférence en-
globe tout signal n’étant pas le signal d’intérêt. Orages, modulation d’amplitude
dus aux systèmes éoliens ou émissions provenant de lignes haute tension sont
différents exemples d’interférence pour la radioastronomie. Cette thèse s’intéresse
particulièrement aux signaux modulés d’origine humaine.

Hypothèse supplémentaire, toutes les sources (cosmiques ou d’interférence)
sont supposées indépendantes entre elles et indépendantes du bruit système.

La sortie d’un réseau d’antennes phasées s’écrit sous forme vectorielle où
chacune des composantes de ce vecteur de sortie est la sortie de chacune des
antennes du réseau (equation 2.12). Le modèle vectoriel est additif, et chacune
des sources est liée à un vecteur, appelé vecteur de signature spatiale, corre-
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spondant donc aux coefficients complexes décrivant la propagation de leur onde
au travers du réseau (hypothèse bande étroite). Les gains complexe de chacune
des antennes sont également incorporés dans ces vecteurs. De plus, le terme
de bruit système est décrit par un vecteur de bruit où chaque composante est
une variable aléatoire centrée, blanche, iid de distribution Gaussienne et sta-
tionnaire.

Puisque l’indépendance entre toutes les sources et le bruit système est sup-
posée, le modèle matriciel de covariance des données est également additif (equa-
tion 2.14). Il est donc possible d’identifier une sous-matrice de covariance des
sources cosmiques, une sous-matrice de covariance des RFI et une sous-matrice
du bruit système.

La plupart des signaux de télécommunications étant cyclostationnaires, cette
propriété est introduite en section 2.4.2. Cette propriété est importante puisqu’elle
permet d’isoler les contributions des interférence par rapport aux sources cos-
miques et au bruit système.

7.3 Filtrage spatial

Les techniques classiques de traitement d’interférences en radioastronomie con-
sistent à surveiller un ou plusieurs paramètres statistiques de l’observation, et
détecter puis exciser dans le plan Temps-Fréquence les canaux fréquentiels ou
temporels corrompus. Lorsque interférence et signal d’intérêt partagent les
même canaux, ces traitements deviennent inutiles. L’information spatiale peut
cependant pousser le traitement plus loin en atténuant des directions d’arrivées
correspondant aux RFI. Les réseaux d’antennes phasés ont fait l’objet d’une
attention particulière ces dernières années puisqu’ils permettent de facilement
contrôller la réponse du système de sorte à atténuer certaines directions de visée.
Ce traitement est appelé beamforming, ou formation de faisceaux. Quatre tech-
niques de beamforming sont présentées en section 3.2: beamforming classique,
Multiple Sidelobe Canceller, Maximum SNR et LCMV. Ces techniques font in-
tervenir l’information spatiale des données au travers de la matrice de covariance
du réseau. L’atténuation atteinte avec ce type de traitement est similaire aux
filtres numériques à Réponse Impulsionnelle Finie.

Un autre type de traitement spatial fait intervenir les projections. La première
projection présentée dans ce chapitre est la projection orthogonale (voir section
3.3.1). Le principe de cette technique est de visualiser un espace vectoriel M -
dimensionnel, correspondant à l’espace de l’observation. Cet espace vectoriel
est constitué de plusieurs sous-espaces:

• sous-espace sources cosmiques,

• sous-espace RFI

• sous-espace bruit

Ces sous-espaces ne sont cependant pas nécessairement supplémentaires puisque
le bruit système est spatialement blanc. La projection orthogonale consiste à
projeter les données de l’observation parallèlement au sous-espace RFI, sur un
sous-espace orthogonal et supplémentaire à ce même sous-espace RFI. La contri-
bution des interférences est donc annulée. Cependant, la projection orthogonale
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’déforme’ l’espace vectoriel des observations, excepté le sous-espace orthogonal
au sous-espace RFI (voir illustration 3.8).

Pour corriger cet effet, l’utilisation de la projection oblique pour le traitement
des interférences est introduite en section 3.3.2. Le concept de cette technique
reste le même que la projection orthogonale. La projection se fait toujours
parallèlement au sous-espace RFI, mais sur le sous-espace sources cosmique,
ou plus particulièrement sur le sous-espace correspondant à la source cosmique
d’intérêt (voir illustration 3.9). La construction de ce projecteur nécessite à
la fois une information correspondant au sous espace RFI et une information
correspondant à la source cosmique d’intérêt. De construction plus complexe
que la projection orthogonale, ce projecteur permet toutefois la récupération
de la source cosmique sans biais. Pour le projecteur orthogonal, l’erreur sur
la source après traitement est dépendante du produit scalaire entre la source
cosmique et le sous-espace RFI.

Tant que le modèle de données reste additif et que l’indépendance entre
sources et bruit système est valide, il est également envisageable de considérer
une technique basée sur la soustraction de sous-espace RFI, comme présenté en
section 3.4. Cette technique consiste à annuler la puissance atteinte dans une
direction définie par un vecteur de signature spatial (qui ne correspond donc
pas nécessairement à une réelle direction de visée.) En estimant les signatures
spatiales de chacun des brouilleurs individuellement, cette technique permet leur
annulation du point de vue des données observées.

Ce chapitre présente plusieurs techniques de filtrage spatial basées sur la
connaissance du sous-espace RFI (hormis les techniques de beamforming qui
se basent en général sur la matrice de covariance du réseau en général). Le
sous-espace RFI est supposé connu pour le moment, mais en réalité la première
étape d’un algorithme de traitement spatial d’interférence consiste à l’estimer.
C’est le thème adressé par le chapitre suivant.

7.4 Estimation de sous-espace RFI

La connaissance du sous-espace RFI est nécessaire pour appliquer un traitement
spatial d’interférence. La précision de l’estimation correspond généralement à
la limite de performance d’un tel algorithme.

La première partie de ce chapitre traite de trois différents types de matrices
de covariance et de leur utilisation dans l’estimation de sous-espace RFI.

Le premier type de matrice est la matrice de covariance classique (section
4.1.1). Lorsque les sources cosmiques sont négligeables et la matrice de covari-
ance du bruit est diagonale (couplage entre antennes négligé), une décomposition
en valeurs propres de cette matrice permet d’identifier deux sous-espaces en
somme directe : le sous-espace RFI et un sous-espace bruit. Lorsque le système
est calibré, le bruit système pour chaque antenne est le même. De fait, l’identification
du sous-espace RFI se fait par identification des valeurs propres dominantes (et
non-constantes) de la matrice de covariance. Les vecteurs propres correspondant
à ces valeurs propres forment une base du sous-espace RFI. Cette technique est
simple à mettre en œuvre, mais les hypothèses faites sur le modèle de données
sont trop contraignantes.

La deuxième technique présentée est basée sur une matrice de covariance
cyclique (section 4.1.2). Cette fois, la propriété de cyclostationnarité au sec-
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ond ordre d’une interférence est exploitée pour isoler l’interférence des sources
cosmiques et du bruit système. La matrice calculée ne contient d’information
qu’au sujet des processus α-cyclostationnaires des données observées. Il ne
s’agit que de l’interférence. Idéalement, les valeurs singulières de cette ma-
trice sont non-nulles pour le sous-espace RFI (puissance cyclique à la fréquence
cyclique α) ou nulles. Les vecteurs singuliers correspondant aux valeurs sin-
gulières non-nulles forment donc à nouveau une base du sous RFI dans le cas
d’une seule RFI α-cyclostationnaire, ou uniquement la signature spatiale d’une
RFI α-cyclostationnaire. Cette technique requiert toutefois la connaissance de
la fréquence cyclique de l’interférence considérée (pouvant être obtenue en cal-
culant un spectre cyclique de l’observation), et le calcul de Nr matrices de
covariance cyclique pour Nr RFI de fréquences cycliques différentes.

La troisième technique présentée est basée sur une matrice de covariance clas-
sique décalée de τ 6= 0. La blancheur des sources cosmiques et du bruit système
implique que leur covariance à τ 6= 0 est nulle. Les interférences véhiculent
en général une information, et ne sont donc pas des processus blancs. A nou-
veau, une décomposition en valeur singulière de cette matrice permet d’isoler le
sous-espace RFI des autres sous-espaces (sources cosmiques et bruit système),
et donc de l’estimer de la même manière que pour la matrice de covariance cy-
clique. Cette technique permet d’identifier le sous-espace RFI au complet avec
une seule matrice.

Une deuxième partie de ce chapitre (section 4.2) présente des techniques de
diagonalisation conjointe, permettant donc de faire intervenir plusieurs infor-
mations (par exemple, plusieurs matrices de covariance cyclique calculées pour
différentes fréquences cycliques).

Une troisième partie du chapitre (section 4.3) présente des techniques de
haute résolution. Ces techniques consistent à définir une fonction de con-
traste, puis identifier les différents maxima de cette fonction sur un intervalle de
définition (le champ de vue de l’instrument en général). Ce type de technique
n’est pas adapté à la radioastronomie puisque le coût de calcul de l’optimisation
de telles fonctions est important. De plus, les sous-espaces RFI ne correspondent
pas nécessairement à des directions d’arrivée spatiales (lobes secondaires).

7.5 Implémentation d’un algorithme de traite-
ment d’interférences

Ce chapitre présente les résultats des traitements présentés dans cette thèse, ap-
pliqués à des données acquises avec une station néerlandaise du radiotélescope
Européen LOFAR. Le premier exemple traite une acquisition faite à 55 MHz,
corrompue par une interférence de type communication de véhicule terrestre.
Les cartes du ciels montrent le champ de vue complet de l’instrument. L’interférence
est située à l’horizon. De plus, deux puissantes sources cosmiques sont visibles
à plus haute élévation. L’interférence est cyclostationnaire, comme peut être vu
sur la figure 5.2, et la figure 5.3 montre l’approche décalage temporel (τ) mettant
en évidence la blancheur des sources cosmiques contrairement à l’interférence.
Les approches haute résolution sont également présentées sur les figures 5.4 et
5.5. Respectivement, le projecteur orthogonal et le projecteur oblique, ainsi
que la soustraction de sous-espace RFI sont également présentés sur les figures
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5.6, 5.7 et 5.8. Les mêmes traitements ont ensuite été appliqués à des données
acquises dans une bande de fréquence supérieure (109.28 MHz), corrompues par
un signal d’aviation.

La deuxième partie de ce chapitre (section 5.3) présente une implémentation
d’un algorithme de traitement spatial d’interférences basé sur la diagonalisa-
tion de la matrice de covariance classique pour l’estimation du sous-espace RFI
et sur un projecteur oblique. Cette implémentation a été effectuée sur une
station du démonstrateur EMBRACE, dont la châıne de traitement est simi-
laire à celle d’une station LOFAR bien que les fréquences d’observation diffèrent.
Après une présentation succinte du système, l’algorithme proposé est développé.
L’estimation de sous-espace RFI n’a pu être basée que sur la matrice de covari-
ance classique du réseau car la reconfiguration du système pour incorporer les
aspects cyclostationnaires ou décalage temporel n’était pas possible. Le choix
d’une implémentation temps-réel est dictée par le mode de fonctionnement de
l’instrument (scan de bande de fréquence complète ou scan de canal de fréquence
unique voir figures 5.20 et 5.21). Dans le cas du mode bande de fréquence
complète, la projection ne peut être appliqué aux données que 512 secondes
après avoir estimé le sous-espace RFI. Un traitement offline est donc plus avan-
tageux dans ce cas car le sous-espace RFI est susceptible de grandement évoluer
en 512s. Dans le cas du fonctionnement simple canal fréquentiel, la projection
est appliquée au maximum 4 secondes après l’estimation du sous-espace RFI.
Une implémentation temps-réel est réalisable dans ce cas comme le montre la
figure 5.32.

Le problème de l’estimation automatique de la dimension du sous-espace
RFI n’a cependant pas été abordée. La dimension de ce sous-espace est donc
fixée à 2.

7.6 Conclusion

Cette thèse s’intéresse au traitement spatial des interférences pour les radiotélescopes
à réseaux d’antennes phasés. Après avoir modélisé les données issues d’un
réseau d’antennes partant d’hypothèses faites sur les natures des signaux, le
filtrage spatial est abordé. Les techniques classiques de beamforming ainsi que
les projections orthogonale et oblique sont présentées et comparées. Ces deux
dernières techniques offrent de meilleures réjections que le beamforming (voir
figure 3.13), mais la projection orthogonale atténue également le signal d’intérêt
suivant l’angle entre ce signal et le sous-espace RFI contrairement à la projec-
tion oblique. Une technique basée sur la soustraction du sous-espace RFI est
également présentée et montre de bons résultats. Cependant elle nécessite la
connaissance des vecteurs de signature spatiale de chacun des brouilleurs.

Le sous-espace RFI est inconnu et nécessite une estimation. Certaines tech-
niques présentées dans cette thèse permettent une estimation d’une base de ce
sous-espace, tandis que d’autres permettent l’estimation des vecteurs de signa-
ture spatiale de chacun des brouilleurs individuellement. Les méthodes intro-
duites sont basées sur les paramètres statistiques des interférences permettant
de les distinguer des sources cosmiques et du bruit système afin d’améliorer la
précision de l’estimation.

Enfin, une implémentation d’algorithme de traitement spatial temps-réel des
interférences est proposée en section 5.3.
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Le traitement d’interférences pour la radioastronomie deviendra de plus en
plus important au vue de l’occupation croissante du spectre électromagnétique
par des applications humaines. Diverses pistes peuvent néanmoins être encore
explorée, comme le suivi de sous-espace RFI ou les traitements spatio-temporels.
Les hypothèses faites sur les signaux peuvent également être affinées afin de
prendre en compte le couplage entre les antennes d’un réseau ou les trajets
multiples des interférences.



Appendix A

Multipath effect and rank
analysis

Any emitted electromagnetic wave can be subjected to multiple reflections, and
therefore impinge an antenna array radio telescope multiple times. While re-
ceiving one (or more) signals from an (arbitrary) primary emitter, the array also
receives a time-shifted copy of this signal.

Cosmic sources are uncorrelated by nature (see section 2.2.3). The cos-
mic sources covariance matrix Rc(t, τ) is therefore assumed to be diagonal (i.e.
E{cn(t+

τ
2 )cm

∗(t− τ
2 )} = 0 for i 6= j, ∀τ).

However, RFI signals are easily subjected to multi paths propagations. Con-
sider the following narrowband interference-only data model:

xr(t) =

Nr∑

n=1

(
Mn∑

m=1

arn,m
(t, θrn,m

, φrn,m
)rn(t− τn,m)

)
(A.1)

We have here Nr uncorrelated interference signals impinging the radio tele-
scope. Each interference rn(t), n ∈ [1 . . . Nr], is subjected to Mn− 1 reflections,
and is therefore copiedMn times at the antenna array output as coming fromMn

different directions. τn,m represents here a time delay caused by the path length
difference between an interference signal emitted by a primary emitter and its
copy emitted by any reflective device. The

∑Nr

n=1 Mn ×
∑Nr

n=1 Mn interference
covariance matrix Rr(t, τ) related to this data model is then block-diagonal. Its
coefficients are defined by:

∀τ, n ∈ [1 . . . Nr],m ∈ [1 . . .Mn]

σ2
n,n′,m,m′(τ) = E{rn(t− τn,m +

τ

2
)r∗n′(t− τn′,m′ −

τ

2
)} (A.2)

with σ2
n,n′,m,m′(τ) = 0 for n 6= n′, and σ2

n,n′,m,m′(τ) = Γrn(t, τ−τn,m+τn′,m′)
for n = n′, with Γrn(t, τ) the autocovariance function of rn(t).

For simplicity, suppose we have only one interference r(t) following 2 different
paths. The simplified data model is then expressed by:

xr(t) = ar1(t, θr1 , φr1)r(t) + ar2(t, θr2 , φr2)r(t− τ1,2) (A.3)

with τ1,2 the time delay between the two copies of the signal r(t) due to the
difference in path lengths.
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First, we consider the two path lengths close enough for τ1,2 to be neglected.
The two copies of the signal r(t) are then said to be fully correlated. We have:

xr(t) ∼ (ar1(t, θr1 , φr1) + ar2(t, θr2 , φr2)) r(t) (A.4)

∼ ãr(t, θ̃, φ̃)r(t) (A.5)

The resulting covariance matrix of this model is 2-dimensional since two
signals impinge the antenna array. However, its rank is one since its four coef-
ficients are the same.

Now, lets consider the path lengths different enough for τ1,2 not to be ne-
glected. The two signals are said to be partially correlated.

With r1(t) = r(t) and r2(t) = r(t− τ1,2), we have:

Rr =

[
Γr1(t, 0) Γr1,r2(t, 0)
Γr2,r1(t, 0) Γr2(t, 0)

]
(A.6)

=

[
Γr(t, 0) Γr(t, τ1,2)

Γr(t,−τ1,2) Γr(t− τ1,2, 0)

]
(A.7)

with Γr(t, τ) the autocovariance function of r(t) and Γr1,r2(t, τ) the covari-
ance function of r1(t) and r2(t).

The covariance matrix of this data model is now full-rank.
The rank of the RFI covariance matrix depends then on the number of

interference signals impinging the antenna array, the amount of path each of
them is following and on the kind of multipath effect they are subjected to
(fully or partially correlated).

In a noise-free scenario, the rank of the covariance matrix R(t, τ) is theoret-
ically the sum of the rank of the cosmic sources covariance matrix Rc(t, τ) and
the rank of the interference covariance matrix Rr(t, τ):

Rank(R(t, τ)) = Rank(Rc(t, τ)) + Rank(Rr(t, τ)) (A.8)

However, in practice, the rank ofR(t, τ) also depends on the frequency band-
width over which this matrix has been evaluated and on the signal’s narrow band
properties [109]. Indeed, consider the non-zero-bandwidth signal expressed in
eq.2.2 impinging an antenna array radio telescope. It has been seen in section
2.2.1 that the propagation delay related to a narrow band signal s(t) impinging
an antenna array at an antenna l, and relative to an antenna k, has a frequency
dependence (e−j2πf0τkl). The spatial signature of s(t) is therefore time, fre-
quency and direction dependent. If as(t, f0, θ, φ) is the spatial signature related
to the signal s(t):

x(t) = as(t, f0, θ, φ)s(t) (A.9)

and if the subband of interest is larger than ∆f , then the covariance matrix
of x(t) is defined by:

R(t, τ) = E{s(t+
τ

2
)s∗(t−

τ

2
)}

∫ f0+
∆f
2

f0−
∆f
2

as(t, f, θ, φ)a
H
s (t, f, θ, φ)df (A.10)
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This resulting covariance matrix is clearly full-rank since it can be seen as
an infinite sum of zero-bandwidth signal covariance matrices. The effective rank
of a covariance matrix in a non-zeros-bandwidth case is defined as the amount
of eigenvalues higher than the noise power in a noisy scenario.

On real data, the amount of signals impinging an antenna array radio tele-
scope can therefore not be estimated using a rank analysis of the covariance
matrix. However, other techniques allow this estimation, as will be seen in
Chapter 5.
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Appendix B

Noise coupling model

When the distance dk,l between antennas k and l of an antenna array radio
telescope is large enough (dk,l ≫ λ, with λ the observed signal wavelength), the
noise mutual coupling between the antennas can be neglected. The resulting
noise covariance matrix Rn(t, τ) is then diagonal. Moreover, if the array is
calibrated, Rn(t, τ) is expressed in the following way:

Rn(t, τ) = σ2
nI (B.1)

Unfortunately, the distance between the antennas of an array radio telescope
is not always large enough. The noise mutual coupling can then be seen as a
non-zero noise correlation between two (or more) antennas.

Many array signal processing techniques involving a matrix decomposition
require a diagonal noise covariance matrix, as seen in this thesis. When this
condition is not verified, the following two techniques can be applied to the
radio telescope output covariance matrix R(t, τ) in order to get rid of this
disadvantage [20].

The first technique requires an estimate R̂n(t, τ) of Rn(t, τ). Since the sec-
ond order data model shown in eq.2.14 is additive, a noise covariance estimate
could lead to a noise-free data covariance estimate, Rnf (t, τ), simply by sub-
tracting:

Rnf (t, τ) = R(t, τ)− R̂n(t, τ) (B.2)

However, subtracting the noise covariance matrix estimate from the antenna
array covariance might result in the latter no longer being positive definite,
and the positive definiteness of the covariance matrix is necessary for most of
the interference techniques presented here. The second technique also requires
an estimate of Rn(t, τ). This technique consists in whitening R(t, τ) in the
following way:

Rw(t, τ) = R̂n(t, τ)
− 1

2R(t, τ)(R̂n(t, τ)
− 1

2 )H (B.3)

Applied to the covariance data model in eq.2.14, the noise covariance matrix
of the whitened covariance matrix is now the identity matrix:
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Rw(t, τ) = R̂n(t, τ)
− 1

2 (Ac ·Rc(t, τ)·Ac
H+Ar ·Rr(t, τ)·Ar

H)(R̂n(t, τ)
− 1

2 )H+I
(B.4)

The Figure B.1 shows an example of the structure taken by a noise covariance
matrix on the LOFAR Low Band Antenna array. The Figure B.1.(a) is the
Power Spectral Density of the observation. The green point on this spectrum
corresponds to an interference-free subband (centered at f0 ≈ 46 MHz), whereas
the red point corresponds to a corrupted subband (centered at f1 ≈ 21.7 MHz,
broadcasting frequency bandwidth).

The Figure B.1.(b) is the covariance matrix calculated at f0. Since no inter-
ference impinges the antenna array at this frequency, the covariance matrix is a
good approximation of the noise covariance matrix of the system. Its structure
is diagonal.

The Figure B.1.(c) is the covariance matrix calculated at f1. Since the
considered subband is corrupted by an interference, the covariances between
the antennas of the array are non-zero.

Figure B.2 is the same than Figure B.1, but with an observation made with
the LOFAR High Band Antenna (regular antenna array). The corrupted sub-
band considered here is centered at f0 ≈ 139.6 MHz, corresponding to an avia-
tion or a land mobile signal.

Again, the covariance matrix is diagonal when no interference corrupts the
observed subband.
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Figure B.1: Noise covariance structure example on real LOFAR Low Band
Antenna data. 46-sub-antennas array, 512 subbands, 1024 samples. (a) Power
Spectral Density of a LOFAR (single) Low Band Antenna observation. (b)
Covariance matrix obtained at the frequency highlighted by a green point on
Figure (a). (c) Covariance matrix obtained at the frequency highlighted by a
red point on Figure (a).
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Figure B.2: Noise covariance structure example on real LOFAR High Band
Antenna data. 24-sub-antennas array, 512 subbands, 1024 samples. (a) Power
Spectral Density of a LOFAR (single) High Band Antenna observation. (b)
Covariance matrix obtained at the frequency highlighted by a green point on
Figure (a). (c) Covariance matrix obtained at the frequency highlighted by a
red point on Figure (a).
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Grégory Hellbourg
Traitement spatial des interférences pour les

radiotélescopes de nouvelle génération

La radio astronomie étudie les sources cosmiques au travers de leur rayonnement dans le domaine radio. Les astronomes,
ustilisateurs passifs du spectre électromagnétique, ont à faire face à une pollution radio de plus en plus importante.
Cette thse s’intéresse particulirement aux interférences radio d’origine humaine (RFI), et comment les observations
radio astronomiques peuvent tre réalisées en bandes de fréquences non-protégées.
Les approches classiques consistent à contrller les paramtres statistiques d’une observation. Une fois détectées, les
données polluées sont retirées avant post-traitement.
En plus d’autres avantages techniques par rapport aux radiotélescopes paraboliques classiques, les réseaux d’antennes
offrent une information spatiale lors d’une observation astronomique. La diversité spatiale entre source cosmique d’intért
(SCOI) et RFI peut tre exploitée pour développer des traitements spatiaux d’interférences.
Aprs la formulation d’un modle de données multidimensionnel, une technique de soustraction de sous espace RFI est
introduite. Cette technique consiste à soustraire la contribution des RFI aux données d’une observation.
La projection orthogonal a déjà été considérée auparavant. Cependant, l’orthogonalité requise entre CSOI et RFI pour
retrouver une source d’intéret non biaisée ne peut vraisemblablement pas tre satisfaite. Une approche basée sur une
porjection oblique est introduite afin de pallier à cette condition.
Les techniques de projections sont comparées au techniques classiques de beamforming en termes de réjection de
l’interference et de récupération de la source d’intért.
Le sous-espace RFI est inconnu de manire générale et se doit d’tre estimé. Plusieurs techniques permettant cette
estimation, basées sur des propriétés statistiques des RFI et sources cosmiques, sont également présentées et comparées.
Les différentes techniques ont été appliquées à des données astronomiques délivrées par le radio télescope Européen
LOFAR.
Enfin, une implémentation d’un algorithme de traitement spatial d’interférences sur le démonstrateur EMBRACE est
présenté.
Mots clés : Suppression d’interférences, Réseaux d’antennes, Cycostationarité, Radioastronomie

Radio Frequency Interference spatial processing
for modern radio telescopes

Radio astronomy studies cosmic sources through their radio emissions. As passive users, astronomers have to deal
with an increasingly corrupted radio spectrum. The research presented here focuses on man-made Radio Frequency
Interference (RFI), and how astronomical observations can be performed in non-protected frequency bands.
Traditional approaches consist in monitoring radio telescopes output data through statistical parameters. Once detected,
the corrupted data is removed before further processing.
Besides other technical advantages compared to single dish radio telescopes, antenna arrays provide spatial information
about astronomical observations. The spatial diversity between cosmic sources-of-interest (CSOI) and RFI can be
exploited to develop spatial RFI processing.
After formulating a multidimensional radio astronomical data model, an interference subspace subtraction technique is
introduced. This approach consists in subtracting RFI contributions from antenna array radio telescopes data.
Orthogonal projection applied to astronomical observation vector spaces has already been considered by the past. The
orthogonality between RFI and CSOI subspaces is required to recover the CSOI without bias. In order to avoid this
latter requirement, an oblique projection approach is here proposed.
The projection techniques are compared to classic beamforming techniques in term of interference rejection and CSOI
recovering.
Being usually unknown, the RFI subspace has to be estimated. Several techniques allowing this estimation, based on
statistical properties of RFI and cosmic sources (whiteness and cyclostationarity), are also presented and compared.
The different techniques have been applied to real astronomical data, provided by the European radio telescope LOFAR.
A last section presents an RFI mitigation algorithm implemented on the demonstrator EMBRACE.
Keywords : RFI mitigation, Antenna arrays, Cyclostationarity, Radio astronomy
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