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ABSTRACT

Inspired by the swapping algebra [L4] and the rank n cross-ratio [L3] introduced by
F. Labourie, we construct a ring equipped with the swapping Poisson structure—the rank
n swapping algebra Zn(P) to characterize the moduli spaces of cross ratios in rank n. We
prove that Zn(P) inherits a Poisson structure form the swapping bracket. To consider the
"cross-ratios" in the fraction ring, by interpreting Zn(P) by a geometric model, we prove
that Zn(P) is an integral domain. Then we consider the ring Bn(P) generated by the
cross ratios in the fraction ring of Zn(P). As an application, for n = 2, 3, we embed in a
Poisson way the ring generated by Fock-Goncharov coordinates for configuration space of
flags in Rn into Bn(P). By studying the discrete integrable system for the configuration
spaceMN,1 of N -twisted polygons in RP1, we asymptotically identify the rank 2 swapping
algebra with the dual of Virasoro algebra on a hypersurface of MN,1. And we find a
discrete bihamiltonian system ofMN,1.

Keywords: Swapping algebra, cross ratio, Poisson structure, Fock-Goncharov algebra,
Virasoro algebra.
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In [L4], F. Labourie introduces the swapping algebra by pair of points on a circle.
He relates, through the cross ratios, the swapping algebra to the Atiyah-Bott-Goldman
symplectic structure on the universal(in genus) Hitchin space and to the Drinfeld-Sokolov
reduction on the space of real opers for all possible ranks. From his point of view, the
swapping algebra is the natural Poisson algebra for all the moduli spaces of cross ratios.
Here, the moduli space of cross ratios refers to the moduli space equipped with a cross
ratio like coordinate system and a cyclic order on points. For example, moduli space
of limit curves for Hitchin component, configuration space of flags, etc. In my thesis,
to characterize the moduli spaces of cross ratios in each rank and the relations between
special functions of the moduli spaces, inspired by the swapping algebra and the rank n
cross ratio, I introduce the rank n swapping algebra, then:

1. for n = 2, 3, we embed in a Poisson way the ring generated by Fock-Goncharov
coordinates, for configuration space of flags(which correspond to X variety) in Rn
into Bn(P).

2. By studying the discrete integrable system for the configuration space MN,1 of N -
twisted polygons in RP1, we asymptotically identify the rank 2 swapping algebra
with the dual of Virasoro algebra on a hypersurface ofMN,1. And we find a discrete
bihamiltonian system ofMN,1.

I will treat the general cases of Case 1 in my upcoming paper. I hope in the future to
obtain results in higher dimensions for Case 2 and find possible discrete bihamiltonian
system ofMN,n.

1.1 Background

1.1.1 Swapping algebra

The swapping algebra is constructed through ordered pairs of points on a circle. Let
P be a cyclic subset of S1, we represent an ordered pair (r, x) of P by the expression rx.
Then we consider the associative commutative ring Z(P) := K[{xy}∀x,y∈P ]/{xx|∀x ∈ P}
over a field K (K = C or R), where {xy}∀x,y∈P are variables. Notably, rx = 0 in Z(P) if
r = x. Then we equip Z(P) with a Poisson bracket defined by F. Labourie in [L4].

Definition 1.1.1. [Swapping bracket] The swapping bracket over Z(P) is defined by
extending the following formula on generators to Z(P) by using Leibniz’s rule:

{rx, sy} = J (r, x, s, y) · ry · sx, (1.1)

where J (r, x, s, y) is the linking number of ry and sx.(See Section 2.1. This is the case
for α = 0 in [L4].)
[Leibniz’s rule]

{rx · sy, tz} = rx{sy, tz}+ sy{rx, tz}. (1.2)

In Section 2.1, we give more details on configurations of points with different linking
numbers.

In [L4], F. Labourie proved that
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Theorem 1.1.2. [F. Labourie [L4]] The swapping bracket is a Poisson bracket.

Definition 1.1.3. [swapping fraction algebra of P] The swapping fraction algebra
of P is the total fraction Q(P) of Z(P) equipped with the induced swapping bracket.

Definition 1.1.4. [multifraction algebra of P] Let x, y, z, t belong to P so that
x 6= t and y 6= z. The cross fraction determined by (x, y, z, t) is the element of Q(P):

[x, y, z, t] :=
xz

xt
· yt
yz
. (1.3)

Let CR(P) = {[x, y, z, t] ∈ Q(P) | ∀x, y, z, t ∈ P, x 6= t, y 6= z} be the set of all the
cross-fractions in Q(P). Let B(P) be the subring of Q(P) generated by CR(P). Then, the
multifraction algebra of P is the ring B(P) equipped with the swapping bracket.

1.1.2 Swapping algebra and the Atiyah-Bott-Goldman symplectic structure

A theorem of F. Labourie [L1] and O. Guichard[Gu1] allows us to consider Hitchin
component as the space of the limit double curves. Let us recall some definitions.

Definition 1.1.5. [Hitchin component [H1]] An n-Fuchsian homomorphism from π1(S)
to PSL(n,R) is a homomorphism ρ = i ◦ ρ0, where ρ0 is a discrete faithful homomorphis-
m with values in PSL(2,R) and i is the irreducible homomorphism from PSL(2,R) to
PSL(n,R). A homomorphism is Hitchin if it may be deformed into an n-Fuchsian ho-
momorphism. The Hitchin component Hn(S) is the space of Hitchin homomorphisms up
to conjugation by PSL(n,R). The Hitchin component and the representations of surface
groups can be defined for surfaces with boundary [L2].

Definition 1.1.6. [Hyperconvex map] A continuous map ξ from a set P to RPn−1 is
hyperconvex if for any pairwise distinct points (x1, ..., xp) with p ≤ n, the following sum is
direct

ξ(x1) + ...+ ξ(xp)

Let ∂∞π1(S) be the boundary at infinity of π1(S). When we fix an uniformisation of
the universal cover of the surface S equipped with a complex structure, ∂∞π1(S) can be
identified with the real projective line RP1 as the boundary of H2.

Definition 1.1.7. [n-hyperconvex] A homomorphism ρ from π1(S) to PSL(n,R) is n-
hyperconvex, if there exists a ρ-equivariant hyperconvex map ξ from ∂∞π1(S) to RPn−1,
namely ξ(γx) = ρ(γ)ξ(x). Such a map is called the limit curve of the homomorphism.

Theorem 1.1.8. [F. Labourie [L1], O. Guichard[Gu1]] A homomorphism ρ from
π1(S) to PSL(n,R) is Hitchin if and only if ρ is n-hyperconvex.

Moreover, by F. Labourie [L1] and O. Guichard[Gu1], If ρ is n-hyperconvex, there
is an unique ρ-equivariant hyperconvex map ξ(ξ∗ resp.) from ∂∞π1(S) to P(Rn)(P(Rn)∗

resp.) such that ξ(x) ∈ ker(ξ∗(y)) ⇔ x = y. Hence ρ ∈ Hn(S) is associated with a limit
double curve (ξ, ξ∗) by Theorem 1.1.8.
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Definition 1.1.9. [Weak cross ratio] The weak cross ratio Bξ,ξ∗ of four different points
x, y, z, t in ∂∞π1(S) is defined to be

Bξ,ξ∗(x, y, z, t) =

〈
ξ̃(x)|ξ̃∗(z)

〉
〈
ξ̃(x)|ξ̃∗(t)

〉
〈
ξ̃(y)|ξ̃∗(t)

〉
〈
ξ̃(y)|ξ̃∗(z)

〉 , (1.4)

which is independent of the lifts ξ̃ of ξ with values in Rn and the lifts ξ̃∗ of ξ∗ with values
in Rn∗.

Let P be a subset of ∂∞π1(S), F. Labourie [L4] define a ring homomorphism I :
B(P) → C∞(Hn(S)) by extending the following formula on generators to the whole ring
B(P):

I

(
xz

xt
· yt
yz

)
(ρ) = Bξ,ξ∗(x, y, z, t). (1.5)

Then the swapping bracket induces a Poisson bracket on the space of weak cross ratios. In
[L4], F. Labourie chooses a vanishing sequence {Γn}∞n=1 of finite index subgroup of π1(S).
Vanishing means: When n is sufficiently large, every geodesic of H/Γn becomes simple and
the intersection of two geodesics becomes either zero or one. He proved that

Theorem 1.1.10. [F. Labourie [L4]] Let {Γn}∞n=1 be a vanishing sequence of π1(S),
Sn = H/Γn. Let P ⊂ ∂∞π(S) be the set of end points of geodesics. Let b0 and b1 be two
elements in B(P). Let {., .}Sn be the Atiyah-Bott-Goldman bracket [AB] [G1] for H(Sn).
Let {., .} be the swapping bracket. Then we have,

lim
n→∞

{I(b0), I(b0)}Sn = I ◦ {b0, b1}. (1.6)

1.1.3 Fock-Goncharov algebra on XPSL(n,R),S

V. V. Fock and A. B. Goncharov introduce X -higher Teichmuller space (XG,S in [FG1]
where G is real split reductive Lie group, S is a compact oriented surface with boundaries.
We suppose S has negative Euler number. Certain finite cover of Hn(S) can be identified
with an open subset of XPSL(n,R),S (see section 2 of [FG1]). Moreover, they give a coordinate
system of XPSL(n,R),S .

Definition 1.1.11. [X -higher Teichmuller space XG,S, Section 2 of [FG1]] Let
G be a reductive group. Let B be the Borel group of G. Let F = G/B be the flag variety of
G. Let T be the finite subset of ∂S, Ŝ = S\T . An element in X -higher Teichmuller space
XG,S is a pair (∇, f) , where ∇ is a flat connection on the G-principal bundle P → S and
f : ∂S\T → G/B is B-reduction flat on ∂S\T , that is to say, for any x ∈ ∂S\T , we choose
a flag f(x) in P |x, such that ∇ translates f(x1) to f(x2) when x1 and x2 are in the same
component of x ∈ ∂S\T .

For the disc D , a finite subset P ⊂ ∂D, XPSL(n,R),D̂ = Confk,n, where Confk,n is the
configuration space of flags (see Definition 3.1.2), it is considered as the building block of
XPSL(n,R),S (See section 7 of [FG1]).
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Given an ideal triangulation T and its n-triangulation Tn(see Chapter 3), V. V. Fock
and A. B. Goncharov associate some vertices In ∪ Jn of Tn with rational functions which
we call the Fock-Goncharov coordinates Xi : XPSL(n,R),S → R for any i belongs to In ∪ Jn.
They define a Poisson bracket which we call the Fock-Goncharov bracket on the function
ring generated by these functions by extending the following formulas to the whole ring.

{Xu, Xw}n = εuw ·Xu ·Xw (1.7)

For any u,w ∈ In ∪ Jn, εuw = 0, 1,−1. The value of εuw depends on the orientation of the
surface. Moreover, they show that

Proposition 1.1.12. [V. V. Fock and A. B. Goncharov [FG1]] The Poisson bracket
{., .}n does not depend on the triangulation that we choose.

1.1.4 Motivation of our study

F. Labourie [L4] have constructed a universal Poisson algebra—swapping algebra for
weak cross ratio functions of Hitchin component. There are rank n weak cross ratio rela-
tions [L3] between these weak cross ratios. So we restrict to rank n swapping algebra to
characterize weak cross ratio function ring pure algebraically. The free K-module Z(P)
becomes into a quotient ring Zn(P) with some relations(see next section), which is not
free any more. To construct rank n swapping algebra, we have to answer two fundamental
questions at the beginning:

1. Is that Zn(P) compatible with the swapping bracket?

2. Is that cross ratios well-defined in the fraction ring of Zn(P), in other words, is that
Zn(P) an integral domain?

Fortunately, the answers to these two fundamental questions are positive by Chapter 2.

For the configuration space of flags which is the building block of the universal cover-
ing(in genus) of Hitchin component, there are the Fock-Goncharov algebra considered by
V. V. Fock and A. B. Goncharov [FG1] and the rank n swapping algebra by considering the
cyclic set P to be cyclically ordered points in each configuration. Since Fock-Goncharov
algebra is a natural Poisson algebra invariant under the cluster transformations, we hope
these two natural Poisson algebras in some sense coincide with each other. In fact, we
embed in a Poisson way the Fock-Goncharov algebra into the rank n swapping algebra in
general, we will show the cases for n = 2, 3 in my thesis. The general case will be shown
in the upcoming paper by the same method.

Discrete integrable system of the configuration spaceMN,n of RPn is considered by
L. Faddeev, A. Yu. Volkov [FV] for n = 1, R. Schwartz, V. Ovsienko and S. Tabachnikov
[SOT] for n = 2 and B. Khsein, F. Soloviev [KS] for n in general. We plan to construct a
Poisson structure on coordinates defined by weak cross ratios onMN,n through the swap-
ping algebra. Then compare this Poisson structure with the Poisson structure considered
by R. Schwartz, V. Ovsienko and S. Tabachnikov [SOT] for n = 2 to show that they are
compatible, where their continuous limit are the natural Lie-Poisson structure and the
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freezing structure [SOT]. This plan is to reply the conjecture mentioned by [SOT]. But
we do not success in finding such a nice swapping Poisson structure. We have only result
for n = 1 shown in the last section. More general case will be considered later on.

1.2 Our Results

1.2.1 Rank n swapping algebra

Inspired by the swapping algebra and the rank n cross-ratio, we introduce the rank n
swapping algebra Zn(P).

Definition 1.2.1. [The rank n swapping ring Zn(P)] For n ≥ 2, let Rn(P) be the
subring of Z(P) generated byD ∈ Zn(P) | D = det

 x1y1 ... x1yn+1

... ... ...
xn+1y1 ... xn+1yn+1

 , ∀x1, ..., xn+1, y1, ..., yn+1 ∈ P

.

Let Zn(P) be the quotient ring Z(P)/Rn(P).

We prove two fundamental Theorems 1.2.2 and 1.2.4 for the rank n swapping algebra
below.

Theorem 1.2.2. For n ≥ 2, Rn(P) is an ideal for the swapping bracket, thus Zn(P)
inherits a Poisson bracket from the swapping bracket.

By the above theorem, we have

Definition 1.2.3. [rank n swapping algebra of P] The rank n swapping algebra of
P is the ring Zn(P) equipped with the swapping bracket.

Theorem 1.2.4. For n ≥ 2 , Zn(P) is an integral domain.

Definition 1.2.5. [Rank n swapping fraction algebra of P] The rank n swapping
fraction algebra of P is the total fraction ring Qn(P) of Zn(P) equipped with the swapping
bracket.

Definition 1.2.6. [rank n multifraction algebra of P] Let x, y, z, t belong to P so
that x 6= t and y 6= z. The cross fraction determined by (x, y, z, t) is the element of Qn(P):

[x, y, z, t] :=
xz

xt
· yt
yz
. (1.8)

Let CRn(P) = {[x, y, z, t] ∈ Qn(P) | ∀x, y, z, t ∈ P, x 6= t, y 6= z} be the set of all the
cross-fractions in Qn(P). Let Bn(P) be the subring of Qn(P) generated by CRn(P).

Then, the rank n multifraction algebra of P is the ring Bn(P) equipped with the swap-
ping bracket.
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1.2.2 The relations between the rank n swapping algebra and the Fock-Goncharov
algebra

Let Dk be a disc with k marked points on the boundary. The configuration space
of flags Confk,n = XPGL(n,R),Dk is the building block of the X -higher Teichmüller space
XPSL(n,R),S (see [FG1] Section 7). We want to study the relation between Fock-Goncharov
algebra and the swapping algebra on Confk,n at the beginning. In fact, the swapping
algebra is very complicated on Confk,n. But when we restrict to the rank n swapping
algebra, the Poisson bracket suddenly becomes canonical. We have our main result, which
says that we embed in a Poisson way the rank n Fock-Goncharov algebra A(Tn) into the
rank n swapping multifraction algebra Bn(P).

Definition 1.2.7. The rank n Fock-Goncharov ring A(Tn) is a ring generated by the triple
ratios and the edge functions(see Definition 3.1.8 and Definition 3.1.9).

Let P = {x1, ..., xk} be the set of marked points of Dk. We construct the swapping
multifraction Bn(P ′) on Confk,n by adding some points with geometric meaning into P.
Then we construct a ring homomorphism θTn : A(Tn) → Bn(P ′) by interpreting the vol-
umes in Fock-Goncharov coordinates by the determinants in Zn(P ′). In my thesis, we only
consider the case for n = 2, 3, where P ′ = P. Then we prove that

Theorem 1.2.8. For n = 2, 3, the ring homomorphism θTn is injective and Poisson.

The general case will be shown in the upcoming paper.

1.2.3 The relation between the rank 2 swapping algebra and the Virasoro algebra

Definition 1.2.9. [Configuration space of N-twisted polygons in RPn] A N -
twisted polygon in RPn is a map f from Z to RPn such that for any k ∈ Z, we have
f(k + N) = Mf · f(k) where Mf belongs to PSLn+1(R). We call Mf the monodromy of
the N -twisted polygon in RPn. We say that f is in general position if for any k ∈ N, the
points {f(k + i− 1)}n+1

i=1 are in general position in RPn.

The configuration space of N -twisted polygons in RPn, denoted byMN,n, is the space
of the N -twisted polygons in general position in RPn up to projective transformations.

We construct a cross ratio coordinate system {Bk}Nk=1 of MN,1. There is a natural
Poisson structure induced from the swapping algebra on the cross ratios. Then we relates
the swapping algebra to the Virasoro algebra onMN,1 as follows.

Definition 1.2.10. [(t1, t2, N)-Virasoro bracket] Let t1, t2 ∈ R and N ∈ N, the
(t1, t2, N)-Virasoro bracket on {Ik}Nk=−N is defined to be:

For p, q = −
[
N−1

2

]
, ...,

[
N
2

]
,

1. when p 6= −q, we have
{Ip, Iq}N,t1,t2 = (p− q) · Ip+q

with the convention Ik+N = Ik;
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2. when p = −q, we have

{Ip, I−p}N,t1,t2 = 2p · I0 + t1 · p3 + t2 · p.

Definition 1.2.11. [Discrete Fourier transformation] Let {Bk}Nk=1 be the cross
ratio coordinates of MN,1. Let B = {B1, ..., BN}. The discrete Fourier transformation F
of B is defined to be

FpB =

N∑
k=1

Bke
− 2pkπi

N . (1.9)

Our main result is

Theorem 1.2.12. Let {Bk}Nk=1 be the cross ratio coordinates ofMN,1 such that

N∑
k=1

Bk = 0.

For k = −
[
N−1

2

]
, ...,

[
N
2

]
,

Vk =
FkB ·N

8πi
.

We have
{Vp, Vq}B2 = {Vp, Vq}N, 8π2

N
,8N

+ o

(
1

N3

)
. (1.10)

We have a similar theorem for lower rank version of the Poisson algebra defined in
[SOT] {·, ·}S1 on (see Section 4.4) onMN,1.

Theorem 1.2.13. Let {Bk}Nk=1 be the cross ratio coordinates ofMN,1 such that

N∑
k=1

Bk = 0.

For k = −
[
N−1

2

]
, ...,

[
N
2

]
,

Wk =
FkB ·N

16πi
.

We have
{Wp,Wq}S1 = {Wp,Wq}N, 8π2

3N
,4−8N

+ o

(
1

N3

)
. (1.11)

Then we observe that

Theorem 1.2.14. For N ≥ 5, {·, ·}B2 and {·, ·}S1 are compatible onMN,1.
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1.3 Summary

1. In chapter 2, we construct and study the rank n swapping multifraction algebra —a
quotient ring equipped with the swapping Poisson structure. In §2.1, we recall the
swapping algebra introduced by F. Labourie. In §2.2, we define the rank n swapping
ring Zn(P) and prove that it is compatible with the swapping bracket. In §2.3, we
prove that Zn(P) is a integral domain. After two fundamental Theorems 2.2.4 and
2.3.7, we construct the rank n swapping multifraction algebra. In §2.4, we study
the relations between the rank n swapping algebra and the weak cross ratios in the
Hitchin component and the configuration space of the flags.

2. In chapter 3, for n = 2, 3, we relate the rank n swapping multifraction algebra to the
rank n Fock–Goncharov algebra on the configuration space of flags Confk,n. In §3.1,
we recall the configuration space of flags which is the building block of XPGL(n,R),S ,
and its coordinates coined by Fock and Goncharov. In §3.2, we embed in a Poisson
way the rank 2 Fock–Goncharov algebra into the rank 2 swapping multifraction
algebra. In §3.3, we embed in a Poisson way the rank 3 Fock–Goncharov algebra into
the rank 3 swapping multifraction algebra. In §3.4, we relate θT2 to θT3 by a Poisson
embedding τ2 and we generalize to τ3.

3. In chapter 4, we relate the rank 2 swapping multifraction algebra to the Virasoro
algebra on a hypersurface of the configuration spaceMN,1 of N twisted polygons in
RP1. In §4.1, we recall the central extension, Virasoro algebra, Hill’s operators and
some of their properties. In §4.2, we recall the configuration spaceMN,n of N -twisted
polygons in RPn. When (N,n+1) = 1, we recall a coordinate system ofMN,n [SOT]
[KS]. In §4.3, we asymptotically identify the rank 2 swapping algebra with the dual
of Virasoro algebra on a hypersurface ofMN,1.. In §4.4, we asymptotically identify
the Schwartz algebra with the dual of Virasoro algebra on a hypersurface ofMN,1..
We prove that swapping bracket is compatible with Schwartz bracket onMN,1.



2. RANK N SWAPPING ALGEBRA
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In this chapter, we construct and study the rank n swapping multifraction algebra —a
ring equipped with the swapping Poisson structure. In §2.1, we recall the swapping algebra
introduced by F. Labourie. In §2.2, we define the rank n swapping ring Zn(P) and prove
that it is compatible with the swapping bracket. In §2.3, to ensure that "cross ratios" are
well-defined in the fraction ring of Zn(P), we prove that Zn(P) is a integral domain. After
two fundamental Theorems 2.2.4 and 2.3.7, we construct the rank n swapping multifraction
algebra. In §2.4, we study the relations between the rank n swapping algebra and the weak
cross ratios in the Hitchin component and the configuration space of flags.

2.1 Swapping algebra

In this section, we recall some definitions about the swapping algebra created by F.
Labourie. Our definitions here are based on Section 2 of [L4].

2.1.1 Linking number of 4 points in the circle

Definition 2.1.1. [linking number] Let (r, x, s, y) be a quadruple of 4 different points
in the interval ]0, 1[. Let σ(4) = −1, 0, 1 whenever 4 < 0,4 = 0,4 > 0 respectively. We
call J (r, x, s, y) the linking number of (r, x, s, y), where

J (r, x, s, y) =
1

2
· (σ(r − x) · σ(r − y) · σ(y − x)− σ(r − x) · σ(r − s) · σ(s− x)) . (2.1)

Fig. 2.1:

If (r, x, s, y) is a quadruple of 4 points in the oriented circle S1, the linking number
of 4 points in the interval S1\o for o /∈ {r, x, s, y} does not depend on the choice of o. So,
J (r, x, s, y) is defined to be the linking number of 4 points in the circle S1. We describe
four cases in Figure 2.1.
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2.1.2 Swapping algebra

Let P be a finite subset of the circle S1 provided with cyclic order. K is a field (C or
R) We represent an ordered pair (r, x) of P by the expression rx.

Definition 2.1.2. [swapping ring of P] The swapping ring of P is the ring Z(P) :=
K[{xy}∀x,y∈P ]/{xx|∀x ∈ P} over K, where {xy}∀x,y∈P are variables with values in K.

Notably, rx = 0 if r = x in Z(P). Then we equip Z(P) with a Poisson bracket defined
by F. Labourie in Section 2 of [L4].

Definition 2.1.3. [swapping bracket] The swapping bracket over Z(P) is defined by
extending the following formula to Z(P) by using Leibniz’s rule and additive rule:

{rx, sy} = J (r, x, s, y) · ry · sx. (2.2)

(Here is the case for α = 0 in Section 2 of [L4].)
Leibniz’s rule:

{rx · sy, tz} = rx{sy, tz}+ sy{rx, tz} (2.3)

for any rx, xy, tz in P.
Additive rule:

{a+ b, c} = {a, c}+ {b, c} (2.4)

For any a, b, c ∈ Z(P).

Theorem 2.1.4. [F. Labourie [L4]] The swapping bracket as above verifies the Jacobi
identity. So the swapping bracket defines a Poisson structure on Z(P).

Definition 2.1.5. [swapping algebra of P] The swapping algebra of P is Z(P) e-
quipped with the swapping bracket.

2.1.3 Swapping fraction algebra, swapping multifraction algebra

Definition 2.1.6. [closed under swapping bracket] For a ring R, if ∀a, b ∈ R, we
have {a, b} ∈ R, then we say that R is closed under swapping bracket. Moreover, we say
that R is equipped with the closed swapping bracket.

Z(P) is a integral domain, let Q(P) be the total fraction of Z(P). By Leibniz’s rule,
since {a, 1

b} = −{a,b}
b2

, the swapping bracket is well defined on Q(P). So we have

Definition 2.1.7. [swapping fraction algebra of P] The swapping fraction algebra
of P is Q(P) equipped with the induced swapping bracket.

Definition 2.1.8. [Cross fraction] Let x, y, z, t belong to P so that x 6= t and y 6= z.
The cross fraction determined by (x, y, z, t) is the element of Q(P):

[x, y, z, t] :=
xz

xt
· yt
yz
. (2.5)

Let CR(P) = {[x, y, z, t] ∈ Q(P) | ∀x, y, z, t ∈ P, x 6= t, y 6= z} be the set of all the
cross-fractions in Q(P).
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Remark 2.1.9. Notice that the cross fractions verify the cross-ratio conditions [L3] :

Symmetry: [a, b, c, d] = [b, a, d, c],

Normalisation: [a, b, c, d] = 0 if and only if a = c or b = d,

Normalisation: [a, b, c, d] = 1 if and only if a = b or c = d,

Cocycle identity: [a, b, c, d] · [a, b, d, e] = [a, b, c, e],

Cocycle identity: [a, b, d, e] · [b, c, d, e] = [a, c, e, f ].

Let B(P) be the subring of Q(P) generated by CR(P).

Proposition 2.1.10. B(P) is closed under swapping bracket.

Proof. By Leibniz’s rule, ∀c1, ..., cn, d1, ..., dm ∈ Z(P)

{c1 · · · cn, d1 · · · dm}
c1 · · · cn · d1 · · · dm

=

n,m∑
i,j=1

{ci, dj}
ci · dj

, (2.6)

we have only to show that for any two elements xz
xt ·

yt
yz and uw

us ·
vs
vw in CR(P), where x 6= t,

y 6= z, u 6= s, v 6= w, then {xzxt ·
yt
yz ,

uw
us ·

vs
vw} ∈ B(P). Let e1 = xz, e2 = 1

xt , e3 = yt,
e4 = 1

yz , h1 = uw, h2 = 1
us , h3 = vs, h4 = 1

vw . By the definition of the swapping bracket
{e1,h1}
e1·h1 ∈ CR(P). Then by the Leibniz’s rule, we deduce that for any e, h ∈ Z(P),

{e, 1
h}

e/h
= −{e, h}

e · h
.

So for any i, j = 1, 2, 3, 4, we have {ei,hj}ei·hj ∈ CR(P). e1e2e3e4 and h1h2h3h4 are also in
CR(P), so

{e1e2e3e4, h1h2h3h4} =
4∑

i,j=1

{ei, hj}
ei · hj

· (e1e2e3e4h1h2h3h4) ∈ B(P).

Finally, we conclude that B(P) is closed under swapping.

Definition 2.1.11. [swapping multifraction algebra of P] The swapping multi-
fraction algebra of P is B(P) equipped with the swapping bracket.

2.2 Rank n swapping algebra

In this section, we define the rank n swapping ring Zn(P), then we prove one of our
fundamental theorems, says that Zn(P) is compatible with the swapping bracket.
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2.2.1 The rank n swapping ring Zn(P)

In spirit of rank n cross-ratio in [L3] defined by F. Labourie, combining with the
definition of the swapping ring above, we define the rank n swapping ring as follows.

Notation 2.2.1. Let

∆((x1, ..., xn+1), (y1, ..., yn+1)) = det

 x1y1 ... x1yn+1

... ... ...
xn+1y1 ... xn+1yn+1

 .

Definition 2.2.2. [The rank n swapping ring Zn(P)] For n ≥ 2, let Rn(P) be the
ideal of Z(P) generated by
{D ∈ Z(P) | D = ∆((x1, ..., xn+1), (y1, ..., yn+1)), ∀x1, ..., xn+1, y1, ..., yn+1 ∈ P }.

The rank n swapping ring Zn(P) is the quotient ring Z(P)/Rn(P).

Remark 2.2.3. Decomposing the determinant D in first row, we have by induction that

R2(P) ⊇ R3(P) ⊇ ... ⊇ Rn(P). (2.7)

2.2.2 Swapping bracket over Zn(P)

Our main result is

Theorem 2.2.4. For n ≥ 2, Rn(P) is an ideal for the swapping bracket, thus Zn(P)
inherits a Poisson bracket from the swapping bracket.

Proof. The above theorem is equivalent to say ∀h ∈ Rn(P), ∀f ∈ Z(P) , we have {f, h} ∈
Rn(P) where n ≥ 2. By Leibniz’s rule of the swapping bracket, it suffices to consider
f = ab ∈ Z(P), h = ∆((x1, ..., xn+1), (y1, ..., yn+1)).

Lemma 2.2.5. Let n ≥ 2. Let x1, ..., xn+1(y1, ..., yn+1 resp.) different from each other in
P, a, b belong to P. Then {ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} belongs to Rn(P).

In particular, x1, ..., xl, y1, ..., yk are (strictly) on the right side of
−→
ab and xl+1, ..., xm, yk+1, ..., yp

are on the left side of
−→
ab as in Figure 2.2. Let

∆R =
l∑

d=1

xdb ·∆((x1, ..., xd−1, a, xd+1, ..., xn+1), (y1, ..., yn+1))

−
k∑
d=1

ayd ·∆((x1, ..., xn+1), (y1, ..., yd−1, b, yd+1, ..., yn+1)),

(2.8)

∆L =

m∑
d=l+1

xdb ·∆((x1, ..., xd−1, a, xd+1, ..., xn+1), (y1, ..., yn+1))

−
p∑

d=k+1

ayd ·∆((x1, ..., xn+1), (y1, ..., yd−1, b, yd+1, ..., yn+1)).

(2.9)

we obtain that
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Fig. 2.2:

1. when a does not belong to {x1, ..., xn+1} and b does not belong to {y1, ..., yn+1}, m =
p = n+ 1, we have

{ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} = ∆R = −∆L; (2.10)

2. when a coincides with xn+1, b does not belong to {y1, ..., yn+1}, m = n, p = n + 1,
we have

{ab,∆((x1, ..., xn+1), (y1, ..., yn+1))}

=
1

2
· ab ·∆((x1, ..., xn+1), (y1, ..., yn+1)) + ∆R

= −1

2
· ab ·∆((x1, ..., xn+1), (y1, ..., yn+1))−∆L;

(2.11)

3. when a does not belong to {x1, ..., xn+1}, b coincides with yn+1, m = n + 1, p = n,
we have

{ab,∆((x1, ..., xn+1), (y1, ..., yn+1))}

= −1

2
· ab ·∆((x1, ..., xn+1), (y1, ..., yn+1)) + ∆R

=
1

2
· ab ·∆((x1, ..., xn+1), (y1, ..., yn+1))−∆L.

(2.12)

4. when a coincides with some xn+1 and b coincides with some yn+1, m = p = n, we
have

{ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} = ∆R = −∆L; (2.13)

Proof. We suppose that x1, x2, ..., xn+1 (resp. y1, y2, ..., yn+1) cyclically ordered on the
circle with anticlockwise orientation.

We assoicate to (x1, ..., xn+1, y1, ..., yn+1) the oriented complete bipartite graphKn+1,n+1

with the vertex sets X = (x1, x2, ..., xn+1) and Y = (y1, y2, ..., yn+1) in P, so that every
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vertex in X is adjacent to every vertex in Y by an arrow from xi to yj , but there are no
arrows within X or Y . Let Γ be the set of all the subgraphs of Kn+1,n+1 so that every
vertex appear on exactly one edge.

Notation 2.2.6. Let γ be a oriented graph, let E(γ) be the set of all the arrows in γ, for
any e in E(γ), e = −−−→e+e− where e+(e−) is said to be the origin (end respectively) of e. If
e = −−→xiyj, we denote xiyj in Z(P) by e without loss of ambiguity.

For any γ in Γ, we have exactly one σ in the permutation group of n+1 elements Sn+1,
such that, for any e in γ, we have xil = e+, yjl = e−, σ(il) = jl; for any σ in Sn+1, we have
exactly one γ in Γ, such that for any e in γ, we have xil = e+, yjl = e−, σ(il) = jl. For
example, the subgraph γ0 with the arrows {−−→xiyi}n+1

i=1 corresponds to I ∈ Sn. We identify
the set Γ with the group Sn+1 of permutations of {1, ..., n+ 1}. We have

∆((x1, ..., xn+1), (y1, ..., yn+1)) =
∑
σ∈Sn

(−1)sign(σ)
n+1∏
i=1

xiyσ(i). (2.14)

Then ∆((x1, ..., xn+1), (y1, ..., yn+1)) can be written as the sum over Γ:

∆((x1, ..., xn+1), (y1, ..., yn+1)) =
∑
σ∈Γ

(−1)sign(σ)
∏
e∈σ

e+e−, (2.15)

where sign(σ) is the sign of the permutation in Sn+1. By Leibniz’s rule, we have

{ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} =
∑
σ∈Γ

(−1)sign(σ)
∑
e∈σ

((∏
e′∈σ

e′

)
· {ab, e}

e

)
. (2.16)

Notation 2.2.7. The arrow
−→
ab seperates S1 into disjoint unions

{a} ∪ {b} ∪ I ∪ J,

where I is on the left side of
−→
ab. Let

d(a, b) := ]I ∩ {x1, ..., xn+1, y1, ..., yn+1}.

If a point u in S1 does not coincide with any one of {x1, ..., xn+1, y1, ..., yn+1}, we say
that u is in general position.

We say that a point u(different from v) is next to v if {x1, ..., xn+1, y1, ..., yn+1}\{u, v}
is included in the component of S1\{u, v} which is on the left side of −→vu.

Notice that every element of {x1, ..., xn+1, y1, ..., yn+1} appear only once in
∏n+1
i=1 xiyσ(i).

We prove the lemma by induction on d(a, b). The following calculations are all based on
the combinatorial model described above and the formula 2.16.

We start our induction with d(a, b) = 0, then there is no vertex of {x1, ..., xn+1, y1,
..., yn+1} on the left side of ab.
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Fig. 2.3:

1. If a does not coincide with any xi and b does not coincide with any yj , then for any
xs , yt, we have {ab, xsyt} = 0. By the formula 2.16, we have

{ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} = 0 ∈ Rn(P).

2. If a coincides with some xi and b does not coincide with any yj as in Figure 2.3, then
for each σ ∈ Γ, each e ∈ E(σ) , we have {ab, e} = 0 except for the arrow e in σ so
that e+ = xi, J (a, b, e+, e−) = −1

2 . So {ab, e} = −1
2 · ab · e. Hence in this case, By

the formula 2.16, we deduce that

{ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} = −1

2
ab·∆((x1, ..., xn+1), (y1, ..., yn+1)) ∈ Rn(P).

3. If a does not coincide with any xi, b coincides with some yj . Similarly as Case 2, we
have

{ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} =
1

2
ab ·∆((x1, ..., xn+1), (y1, ..., yn+1)) ∈ Rn(P).

4. If a coincides with some xi, b coincides with some yj . By the formula 2.16, we have

{ab,∆((x1, ..., xn+1), (y1, ..., yn+1))}

=
∑

σ∈Γ such that ab∈σ
(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
{ab, e}
e

)

+
∑

σ∈Γ such that ab/∈σ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
{ab, e}
e

)
.

(2.17)

For σ ∈ Γ such that ab ∈ σ, for any e ∈ σ, we have J (a, b, e+, e−) = 0. So the first
part of the right hand side of the equation is zero.
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For the second part of the right hand side of the equation, for each σ such that
ab /∈ σ, we have

∑
e∈σ

(∏
e′∈σ

e′

)
{ab, e}
e

=
∑
e∈σ

(∏
e′∈σ

e′

)
(J (a, b, xi, yσ(i)) + J (a, b, xσ−1(j), yj)) · ab

=
∑
e∈σ

(∏
e′∈σ

e′

)(
−1

2
+

1

2

)
· ab = 0 ∈ Rn(P).

(2.18)

So the lemma is valid for d(a, b) = 0.

Fig. 2.4:

We suppose that the lemma is true for d(a, b) = k ≥ 0. When
−→
ab is the dotted arrow as

in Figure 2.4 with d(a, b) = k + 1, we prove that {ab,∆(x1, ..., xn+1, y1, ..., yn+1)} belongs
to Rn(P) as follows.

1. If xs is the next to the point b as in Figure 2.4.

(a) If b is in general position. Let b′ be a point in general position next to xs on
the other side of −→axs as in Figure 2.4. Since there are d vertices on the left side
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of
−→
ab′, by hypothesis and the formula 2.16, we have

{ab′,∆(x1, ..., xn+1, y1, ..., yn+1)} =
∑
σ∈Γ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
{ab′, e}

e

)

=
∑
σ∈Γ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
J (a, b′, e+, e−) · ae− · e+b

′

e

)
∈ Rn(P).

(2.19)
Since the right hand side of the above formula is a polynomial in ab′, x1b

′, ...,
xn+1b

′, we denote the right hand side of the formula by P (ab′, x1b
′, ..., xn+1b

′).
When we replace ab′, x1b

′, ..., xn+1b
′ by ab, x1b, ..., xn+1b in P (ab′, x1b

′, ..., xn+1b
′),

we obtain that

P (ab, x1b, ..., xn+1b) =
∑
σ∈Γ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
J (a, b′, e+, e−).ae−.e+b

e

)
.

Still, we have P (ab, x1b, ..., xn+1b) belongs to Rn(P). Then, by the formula 2.19,
we have

{ab,∆(x1, ..., xn+1, y1, ..., yn+1)} − P (ab, x1b, ..., xn+1b)

=
∑
σ∈Γ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
(J (a, b, e+, e−)− J (a, b′, e+, e−)).ae−.e+b

e

)

=
∑
σ∈Γ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
(J (b′, b, e+, e−)).ae−.e+b

e

)
.

(2.20)
For a is in any position, we always have:
For any σ in Γ, e in σ such that e+ 6= xs,

J (b′, b, e+, e−) = 0;

For any σ in Γ, e in σ such that e+ = xs,

J (b′, b, e+, e−) = −1.

Then we have

∑
σ∈Γ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
(J (b′, b, e+, e−)).ae−.e+b

e

)

=
∑
σ∈Γ

(−1)sign(σ)

(∏
e′∈σ

e′

)
(−1).ayσ(s) · xsb

xsyσ(s)

= −xsb ·∆((x1, ..., xs−1, a, xs+1, ..., xn+1), (y1, ..., yn+1)) ∈ Rn(P).

(2.21)

So {ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} belongs to Rn(P) in this case.
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(b) If b coincides with xi for some i. Let b′′ be a point in general position next to b
as in Figure 2.4. By the result of the case (1a), we have

{ab′′,∆((x1, ..., xn+1), (y1, ..., yn+1))} ∈ Rn(P).

Since {ab′′,∆((x1, ..., xn+1), (y1, ..., yn+1))} is a polynomial in ab′′, x1b
′′, ..., xn+1b

′′,
we denote it by C(ab′′, x1b

′′, ..., xn+1b
′′). When ab′′, x1b

′′, ..., xn+1b
′′ is replaced

by ab, x1b, ..., xn+1b in C(ab′′, x1b
′′, ..., xn+1b

′′), we still have C(ab, x1b, ..., xn+1b)
belongs to Rn(P). By the similar argument, we have

{ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} − C(ab, x1b, ..., xn+1b)

=
∑
σ∈Γ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
(J (a, b, e+, e−)− J (a, b′′, e+, e−)).ae−.e+b

e

)

=
∑
σ∈Γ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
J (b′′, b, e+, e−).ae−.e+b

e

)
.

(2.22)
For a is in any position, we always have:
For any σ in Γ, e in σ such that e+ 6= xi,

J (b′′, b, e+, e−) = 0;

For any σ in Γ, e in σ such that e+ = xi,

J (b′′, b, e+, e−) = −1

2
.

By the above formula, we have

∑
σ∈Γ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
(J (b′′, b, e+, e−)).ae−.e+b

e

)

=
∑
σ∈Γ

(−1)sign(σ)

(∏
e′∈σ

e′

)
(−1

2).ayσ(s).xib

xiyσ(s)

= 0.

(2.23)

So {ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} belongs to Rn(P) in this case.

(c) If b coincides with yi for some i. Let b′′ be a point in general position next to b
as in Figure 2.4. Without loss of ambiguity, we mention that this b′′ is not the
same as the case (b). By the result of the case (1a), we have

{ab′′,∆((x1, ..., xn+1), (y1, ..., yn+1))} ∈ Rn(P).

Since {ab′′,∆((x1, ..., xn+1), (y1, ..., yn+1))} is a polynomial in ab′′, x1b
′′, ..., xn+1b

′′,
we denote it by D(ab′′, x1b

′′, ..., xn+1b
′′). When ab′′, x1b

′′, ..., xn+1b
′′ is replaced

by ab, x1b, ..., xn+1b inD(ab′′, x1b
′′, ..., xn+1b

′′), we still haveD(ab, x1b, ..., xn+1b)
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belongs to Rn(P). By the similar argument, we have

{ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} −D(ab, x1b, ..., xn+1b)

=
∑
σ∈Γ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
(J (a, b, e+, e−)− J (a, b′′, e+, e−)).ae−.e+b

e

)

=
∑
σ∈Γ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
J (b′′, b, e+, e−).ae−.e+b

e

)
.

(2.24)
For a is in any position, we always have :
For any σ in Γ, e in σ such that e− 6= yi,

J (b′′, b, e+, e−) = 0;

For any σ in Γ, e in σ such that e− = yi,

J (b′′, b, e+, e−) =
1

2
.

Then we have∑
σ∈Γ

(−1)sign(σ)

(∑
e∈σ

(∏
e′∈σ

e′

)
(J (b′′, b, e+, e−)).ae−.e+b

e

)

=
∑
σ∈Γ

(−1)sign(σ)

(∏
e′∈σ

e′

)
(1

2).ayi.xσ−1(i)b

xσ−1(i)yi

=
1

2
ayi ·∆((x1, ..., xn+1), (y1, ..., yi−1, b, yi+1, ..., yn+1)).

(2.25)

So {ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} belongs to Rn(P) in this case.
(d) For b coincides with certain point x such that x = xi = yj , combining the cases

(b) and (c), we have {ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} belongs to Rn(P).

2. If xs is replaced by certain yt as in Figure 2.4. We have {ab,∆((x1, ..., xn+1),

(y1, ..., yn+1))} belongs to Rn(P) by the similar arguments.

3. If xs is replaced by certain x such that x = xs = yt as in Figure 2.4. We have
{ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} belongs to Rn(P) by combining the above two
cases.

We conclude that {ab,∆((x1, ..., xn+1), (y1, ..., yn+1))} in Rn(P) for any ∆((x1, ...,
xn+1), (y1, ..., yn+1)) in Rn(P) and any ab in Z(P).

Lemma 2.2.8. For any a, b, x1, ..., xn+1, y1, ..., yn+1 ∈ P, we have

n+1∑
i=1

ayi ·∆((x1, ..., xn+1), (y1, ..., yi−1, b, yi+1, ..., yn+1))

=

n+1∑
i=1

xib ·∆((x1, ..., xi−1, a, xi+1, ..., xn+1), (y1, ..., yn+1)).

(2.26)
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Proof. We develop the left hand side of Equation 2.26 in the column of b, we have

n+1∑
i=1

ayi ·∆((x1, ..., xn+1), (y1, ..., yi−1, b, yi+1, ..., yn+1))

=
n+1∑
i=1

n+1∑
j=1

ayi · xjb ·∆((x1, ..., xj−1, xj+1, ..., xn+1), (y1, ..., yi−1, yi+1, ..., yn+1)).

(2.27)

We develop the right hand side of Equation 2.26 in the row of a, we have

n+1∑
i=1

xib ·∆((x1, ..., xi−1, a, xi+1, ..., xn+1), (y1, ..., yn+1)

=
n+1∑
i=1

n+1∑
j=1

xib · ayj ·∆((x1, ..., xi−1, xi+1, ..., xn+1), (y1, ..., yj−1, yj+1, ..., yn+1)).

(2.28)

Compare Equation 2.27 with Equation 2.28, we conclude that

n+1∑
i=1

ayi ·∆((x1, ..., xn+1), (y1, ..., yi−1, b, yi+1, ..., yn+1))

=
n+1∑
i=1

xib ·∆((x1, ..., xi−1, a, xi+1, ..., xn+1), (y1, ..., yn+1)).

(2.29)

Formulas 2.10 2.11 2.12 are proved by our induction procedures and the lemma above.

Fig. 2.5:

Remark 2.2.9. 1. For example, as in Figure 2.5, we have

{xz,∆((x, z, y), (z, x, t))} = yz ·∆((x, z, x), (z, x, t)) = 0. (2.30)
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2. It is easy to notice that a coincides with some yj and b coincides with some xi can
be combined into generic case. But the triviality of these cases are not due to the
linking number, but due to the definition that xx = 0 in Z(P).

Finally, we conclude that the swapping bracket over Zn(P) is well defined for n ≥
2.

Definition 2.2.10. [rank n swapping algebra of P] The rank n swapping algebra
of P is the ring Zn(P) equipped with the swapping bracket.

2.3 Zn(P) is an integral domain

In this section, the field K is R or C. We want to know that if the cross fractions are
well-defined in the fraction ring of Zn(P). To this end, we prove that Zn(P) is an integral
domain through a geometry model considered by H. Weyl [W1] and C. De Concini and C.
Procesi [CP].

2.3.1 A geometry model for Zn(P)

Let us introduce a geometry model essentially associated to the weak cross ratios. Let
Mp be the configuration space of p vectors in Kn and p co-vectors in Kn∗. Here we denote
ai = (ai,l)

n
l=1, bi = (bi,l)

n
l=1. Let K[Mp] be the polynomial ring generated by coordinates

functions on Mp = (Kn ×Kn∗)p.

Notation 2.3.1. We define the product between a vector ai in Kn and a co-vector bj in
Kn∗ by

〈ai|bj〉 := bj(ai) =
n∑
k=1

ai,l · bj,l. (2.31)

Let GL(n,K) acts naturally on the vectors and the covectors by g ◦ai := g ·ai, g ◦bj :=
(g−1)T · bj where T is the transpose of the matrix. It induces a GL(n,K) action on K[Mp],
defined by:

• For any g ∈ GL(n,K), a, b ∈ K[Mp], we have g ◦ (a+ b) = g ◦ a+ g ◦ b;

• For any g ∈ GL(n,K), a, b ∈ K[Mp], we have g ◦ (a · b) = (g ◦ a) · (g ◦ b).

Then K[Mp] is a GL(n,K)-module, since for any g, g1, g2 ∈ GL(n,K), a, b ∈ K[Mp],
we have:

g ◦ (a+ b) = g ◦ a+ g ◦ b,

(g1 + g2) ◦ a = g1 ◦ a+ g2 ◦ a,

(g1 · g2) ◦ a = g1 ◦ (g2 ◦ a).

We denote the GL(n,K) invariant ring of K[Mp] by K[Mp]
GL(n,K).

Let BnK be the subring of K[Mp] generated by {〈ai|bj〉}pi=1,j=1.
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Since 〈ai|bj〉 ∈ K[Mp] is invariant under GL(n,K), we have BnK ⊆ K[Mp]
GL(n,K).

Moreover

Theorem 2.3.2. [C. De Concini and C. Procesi [CP] 1] BnK = K[Mp]
GL(n,K).

Since K[Mp] is an integral domain, we have

Corollary 2.3.3. [C. De Concini and C. Procesi [CP]] The subring BnK is an integral
domain.

H. Weyl describe BnK as a quotient ring.

Theorem 2.3.4. [H. Weyl [W1]] The relations in BnK are generated by R = {f ∈

BnK | f = det

 〈ai1 |bj1〉 ...
〈
ai1 |bjn+1

〉
... ... ...〈
ain+1 |bj1

〉
...

〈
ain+1 |ajn+1

〉
 ,∀ik, jl = 1, ..., p}.

Remark 2.3.5. In other words, let W be the polynomial ring K[{xi,j}pi,j=1], r = {f ∈

W | f = det

 xi1,j1 ... xi1,jn+1

... ... ...
xin+1,j1 ... xin+1,jn+1

 , ∀ik, jl = 1, ..., p}, let T be the ideal of W gen-

erated by r, then we have BnK ∼= W/T .

Let us recall that Zn(P) = Z(P)/Rn(P) is the rank n swapping ring where P =
{x1, ..., xp}. When we identify ai with xi on the left and bi with xi on the right of the pairs
of points in Zn(P), we obtain the main result of this section

Theorem 2.3.6. Let Zn(P) be the rank n swapping ring. Let SnK be the ideal of BnK
generated by {〈ai|bi〉}pi=1, then BnK/SnK ∼= Zn(P).

2.3.2 Proof of the main theorem

Our main result is

Theorem 2.3.7. For n > 1, Zn(P) is an integral domain.

Proof. Consider these GL(n,K)-modules: Let L be the ideal ofK[Mp] generated by ({〈ai|bi〉}pi=1),
let Kp be the quotient ring K[{ai,l, bi,l}p,ni,l=1]/L, let SnK be the ideal of BnK generated by
{〈ai|bi〉}pi=1.

There is an exact sequence of GL(n,K)-modules:

0→ L→ K[Mp]→ Kp → 0. (2.32)

By Lie group cohomology[CE], the exact sequence above induces the long exact sequence :

0→ LGL(n,K) → K[Mp]
GL(n,K) → KGL(n,K)

p → H1(GL(n,K), L)→ .... (2.33)

1 Thanks for the reference provided by J. B. Bost.



2. Rank n swapping algebra 33

Proposition 2.3.8. Let S be the finite subset {〈ai|bi〉}pi=1. Let K be R or C. Then

(K[Mp] · S)GL(n,K) = K[Mp]
GL(n,K) · S.

Remark 2.3.9. For K = C, this lemma can be proved by Weyl’s unitary trick. But for
K = R, this lemma depends on Corollary 2.3.12.

Proof. We prove the proposition in three steps. Firstly, we prove the proposition when we
substitute U(n) for GL(n,K); secondly, by Corollary 2.3.12, we prove the proposition for
GL(n,C); finally, by Corollary 2.3.12, we prove the proposition for GL(n,R).

1. Let
U(n) = {g ∈ GL(n,C) | g · ḡT = I}.

Let us prove that
(C[Mp] · S)U(n) = C[Mp]

U(n) · S.

Of course, we have
(C[Mp] · S)U(n) ⊇ C[Mp]

U(n) · S.

We now prove that (C[Mp] · S)U(n) ⊆ C[Mp]
U(n) · S. Let dg be a Haar measure

on U(n). Let x belongs to (C[Mp] · S)U(n). we represent x by
∑k

l=1 tl · sl where
tl ∈ C[Mp] and sl ∈ S. Since S ⊆ C[Mp]

GL(n,C) ⊆ C[Mp]
U(n), for any g ∈ U(n),

g ◦ sl = sl. Thus we have

x = g ◦ x =

k∑
l=1

(g ◦ tl) · (g ◦ sl) =

k∑
l=1

(g ◦ tl) · sl.

So

g ◦ x =

∫
U(n)

k∑
l=1

(g ◦ tl) · sl dg =
k∑
l=1

(∫
U(n)

g ◦ tl dg

)
· sl. (2.34)

Let
bl =

∫
U(n)

g ◦ tl dg.

For any g1 in U(n), we have

g1 ◦ bl =

∫
U(n)

g1 ◦ (g ◦ tl) dg =

∫
U(n)

((g1 · g) ◦ tl) dg

=

∫
U(n)

((g1 · g) ◦ tl) d (g1 · g) = bl.

(2.35)

So bl belongs to C[Mp]
U(n), hence x belongs to C[Mp]

U(n) · S. Therefore, we have

(C[Mp] · S)U(n) ⊆ C[Mp]
U(n) · S.

We conclude that
(C[Mp] · S)U(n) = C[Mp]

U(n) · S.
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2. Secondly, let us prove that

(C[Mp] · S)GL(n,C) = C[Mp]
GL(n,C) · S.

Let g be the Lie algebra of the Lie group G. Let s be a subset of g. Let V be a
subset of C[Mp]. Let

V s = {a ∈ V | d

dt

∣∣∣∣
t=0

exp(t · h) ◦ a = 0 ∀h ∈ s }.

Since for the groups U(n) and GL(n,C) , the exponential map is surjective, for any
subset V of C[Mp], we have

V U(n) = V u(n)

and
V GL(n,C) = V gl(n,C).

To prove that
V gl(n,C) = V u(n),

since
V gl(n,C) = V u(n)+i·u(n) = V u(n) ∩ V i·u(n),

we only have to prove that
V u(n) = V i·u(n).

Lemma 2.3.10. For any u ∈ gl(n,C), any v ∈ C[Mp], we have

d

dt

∣∣∣∣
t=0

(exp (t · i · u) ◦ (v)) = i · d

dt

∣∣∣∣
t=0

(exp (t · u) ◦ (v)) . (2.36)

Proof. Let ai1,j1 ···ais,jsbk1,l1 ···bkt,lt be a monomial in C[Mp], where i1, ..., is, k1, ..., kt ∈
{1, ..., p}, j1, ..., js, l1, ..., lt ∈ {1, ..., n}. Then, for any u ∈ gl(n,C), we have

d

dt

∣∣∣∣
t=0

(exp (t · u) ◦ (ai1,j1 · · · ais,js · bk1,l1 · · · bkt,lt))

=
s∑

m=1

((
d

dt

∣∣∣∣
t=0

exp (t · u) ◦ aim,jm
)
· ai1,j1 · · · aim−1,jm−1 · aim+1,jm+1 · · · ais,js · bk1,l1 · · · bkt,lt

)

+

t∑
d=1

((
d

dt

∣∣∣∣
t=0

exp
(
−t · uT

)
◦ bid,jd

)
· ai1,j1 · · · ais,js · bk1,l1 · · · bkd−1,ld−1

· bkd+1,ld+1
· · · bkt,lt

)

=
s∑

m=1

(
(u ◦ aim,jm) · ai1,j1 · · · aim−1,jm−1 · aim+1,jm+1 · · · ais,js · bk1,l1 · · · bkt,lt

)
−

t∑
d=1

((
uT ◦ bid,jd

)
· ai1,j1 · · · ais,js · bk1,l1 · · · bkd−1,ld−1

· bkd+1,ld+1
· · · bkt,lt

)
.

(2.37)
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Replacing u by i · u in the above formula, we have

d

dt

∣∣∣∣
t=0

(exp (t · i · u) ◦ (ai1,j1 · · · ais,js · bk1,l1 · · · bkt,lt))

= i · d

dt

∣∣∣∣
t=0

(exp (t · u) ◦ (ai1,j1 · · · ais,js · bk1,l1 · · · bkt,lt)) .
(2.38)

Since for any v1, ..., vr ∈ C[Mp], any λ1, ..., λr ∈ C and any h ∈ gl(n,C), we have

d

dt

∣∣∣∣
t=0

(exp (t · h) ◦ (λ1 · v1 + ...+ λr · vr)) =

r∑
k=1

λr ·
d

dt

∣∣∣∣
t=0

(exp (t · h) ◦ (vk)) ,

we obtain that for any v ∈ C[Mp],

d

dt

∣∣∣∣
t=0

(exp (t · i · u) ◦ (v)) = i · d

dt

∣∣∣∣
t=0

(exp (t · u) ◦ (v)) . (2.39)

Remark 2.3.11. This lemma largely depends on the group action of GL(n,K) on
K[Mp], see Notation 2.3.1.

Corollary 2.3.12. Let V be a subset of C[Mp]. Let g be a linear Lie algebra. Then

V g = V i·g.

Proof. If v ∈ V g, then
d

dt

∣∣∣∣
t=0

(exp (t · u) ◦ (v)) = 0

for any u ∈ g. By Lemma 2.3.10, we have

d

dt

∣∣∣∣
t=0

(exp (t · i · u) ◦ (v)) = 0

for any u ∈ g. So v ∈ V i·g. Hence, we have V g ⊆ V i·g. Similarly, we have V g ⊇ V ig.
We conclude that

V g = V i·g.

By Corollary 2.3.12, we obtain that

V u(n) = V i·u(n),

thus we have
V gl(n,C) = V u(n).

Hence

(C[Mp] · S)GL(n,C) = (C[Mp] · S)gl(n,C) = (C[Mp] · S)u(n) = (C[Mp] · S)U(n)

= C[Mp]
U(n) · S = C[Mp]

u(n) · S = C[Mp]
gl(n,C) · S = C[Mp]

GL(n,C) · S.
(2.40)

We conclude that
(C[Mp] · S)GL(n,C) = C[Mp]

GL(n,C) · S.
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3. Finally, let us prove that

(R[Mp] · S)GL(n,R) = R[Mp]
GL(n,R) · S.

Of course, we have

(R[Mp] · S)GL(n,R) ⊇ R[Mp]
GL(n,R) · S.

To prove that
(R[Mp] · S)GL(n,R) ⊆ R[Mp]

GL(n,R) · S,

firstly, we have
(R[Mp] · S)GL(n,R) ⊆ (R[Mp] · S)gl(n,R). (2.41)

By Corollary 2.3.12, we have

(R[Mp] ·S)gl(n,R) = (R[Mp] ·S)gl(n,R)+i·gl(n,R) = (R[Mp] ·S)gl(n,C) = (R[Mp] ·S)GL(n,C).
(2.42)

On the other hand, by case 2, we have

(C[Mp] · S)GL(n,C) = C[Mp]
GL(n,C) · S = BC · S.

When we restrict to the polynomials with real coefficients of the above equation, we
have

(R[Mp] · S)GL(n,C) = BR · S = R[Mp]
GL(n,R) · S. (2.43)

By Equations 2.41,2.43, 2.42, we obtain that

(R[Mp] · S)GL(n,R) ⊆ R[Mp]
GL(n,R) · S.

We conclude that
(R[Mp] · S)GL(n,R) = R[Mp]

GL(n,R) · S.

Finally, we conclude that

(K[Mp] · S)GL(n,K) = K[Mp]
GL(n,K) · S

for K = R or C.

Lemma 2.3.13. There is a ring homomorphism θ : BnK/SnK → K
GL(n,K)
p induced from

the exact sequence:

0→ LGL(n,K) → K[Mp]
GL(n,K) → KGL(n,K)

p → H1(GL(n,K), L)→ .... (2.44)

is injective.

Proof. We haveK[Mp]
GL(n,K) = BnK. By Proposition 2.3.8, we have LGL(n,K) = (K[Mp]({〈ai|bi〉}pi=1))GL(n,K) =

BnK({〈ai|bi〉}pi=1)) = SnK. So the exact sequence becomes into:

0→ SnK → BnK → KGL(n,K)
p → H1(GL(n,K), L)→ ... (2.45)

So there is an injective ring homomorphism θ from BnK/SnK to KGL(n,K)
p .
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Proposition 2.3.14. Kp is an integral domain.

Proof. We proof the theorem by induction on the number of the vectors p. When p = 1,
K1 = K[{a1,k, b1,k}nk=1]/({

∑n
k=1 a1,k · b1,k}).

Lemma 2.3.15. For n > 1,
∑n

k=1 a1,k.b1,k is an irreducible polynomial in the integral
domain K[{a1,k, b1,k}nk=1].

Proof. Let us define the degree of a monomial in K[{a1,k, b1,k}nk=1] to be the sum of the
degrees in all the variables. Let the degree of a polynomial f in K[{a1,k, b1,k}nk=1] be the
maximal degree of the monomials in f , denoted by deg(f). Suppose that

∑n
k=1 a1,k.b1,k is

a reducible polynomial in K[{a1,k, b1,k}nk=1], we have

n∑
k=1

a1,k.b1,k = g · h,

where g, h ∈ K[{a1,k, b1,k}nk=1], deg(g) > 0 and deg(h) > 0. Since K[{a1,k, b1,k}nk=1] is a
integral domain, 2 = deg(gh) = deg(g)+deg(h), so we have deg(g) = deg(h) = 1. Suppose
that

g = c+ λ1 · x1 + ...+ λr · xr,

h = d+ µ1 · y1 + ...+ µs · ys,

where λ1, ..., λr, µ1, ..., µs are non zero elements in K, x1, ..., xr (y1, ..., ys resp.) are different
elements in {a1,k, b1,k}nk=1. Since there is no square in g · h, we have

{x1, ..., xr} ∩ {y1, ..., ys} = ∅

and
r · s = n.

Since there are 2n variables in g · h, we have

r + s = 2n.

Then r · s ≥ 2n− 1. Since n > 1, we obtain that

r · s ≥ 2n− 1 > n = r · s,

which is a contradiction. We conclude that
∑n

k=1 a1,k.b1,k is an irreducible polynomial in
K[{a1,k, b1,k}nk=1].

Since K[{a1,k, b1,k}nk=1] is an integral domain and
∑n

k=1 a1,k.b1,k is an irreducible poly-
nomial by Lemma 2.3.15, we obtain that K1 is an integral domain. Suppose that the
theorem is true for p = m ≥ 1. When p = m+ 1,

Km+1 = K[{ai,k, bi,k}m+1,n
i,k=1 ]/({

n∑
k=1

ai,k.bi,k}m+1
i=1 ) = Km[{am+1,k, bm+1,k}nk=1]/({

n∑
k=1

am+1,k·bm+1,k}),

(2.46)
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we have Km[{am+1,k, bm+1,k}nk=1] is an integral domain.
∑n

k=1 am+1,k · bm+1,k is an irre-
ducible polynomial over Km[{am+1,k, bm+1,k}nk=1]. Since am+1,k, bm+1,k(k = 1, ..., n) are
not variable that appear in Km, so

∑n
k=1 am+1,k · bm+1,k is an irreducible polynomial over

Km[{am+1,k, bm+1,k}nk=1], so Km+1 is an integral domain.

We conclude that Kp is an integral domain for any p ≥ 1.

By Proposition 2.3.14,Kp is an integral domain, we deduce thatKGL(n,K)
p is an integral

domain. By Lemma 2.3.13, there is an injective ring homomorphism θ from BnK/SnK to
K

GL(n,K)
p , BnK/SnK is an integral domain. Moreover, by Theorem 2.3.6 Zn(P) ∼= BnK/SnK,

finally, we conclude that Zn(P) is an integral domain.

Remark 2.3.16. Z1(P) is not a integral domain, since

D = xy.yz = det

(
xy xz
yy yz

)
is zero in Z1(P), but we have xy and yz are not zero in Z1(P) whenever x 6= y, y 6= z .

Remark 2.3.17. We observe that this geometry model has other important usage than
the theorem above. It is easy to see that the stability condition of the images of enough
finite points of the limit double curve is related to the hyper-convexity property of the rep-
resentation of surface group. We shall interpret some algebraic geometry property by some
dynamic property related to Zn(P) in the future.

2.3.3 Rank n swapping fraction algebra of P

Definition 2.3.18. The rank n swapping fraction ring Qn(P) is the total fraction ring of
Zn(P).

Similar to Q(P), we have the swapping bracket is well defined on Qn(P).

Definition 2.3.19. The rank n swapping fraction algebra of P is the ring Qn(P) equipped
with the closed swapping bracket.

2.3.4 Rank n swapping multifraction algebra of P

Let CRn(P) = { [x, y, z, t] = xz
xt ·

yt
yz ∈ Qn(P)

∣∣∣ ∀x, y, z, t ∈ P, x 6= t, y 6= z} be the
set of all the cross-ratios in Qn(P).

Definition 2.3.20. The rank n swapping multifraction ring Bn(P) is the subring of Qn(P)
generated by CRn(P).

Similar to Proposition 2.1.10, we have

Proposition 2.3.21. Bn(P) is closed under swapping bracket.

Definition 2.3.22. The rank n swapping multifraction algebra of P is the ring Bn(P)
equipped with the closed swapping bracket.
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2.4 The rank n swapping algebra and the weak cross ratios

In this section, let P be a subset of ∂∞π1(S) where S is a surface of negative Euler
class with boundaries. We associate the rank n swapping algebra with the rank n cross
ratios, similar to the ring homomorphism in [L4], but up to Rn(P).

2.4.1 The weak cross ratios

A theorem of F. Labourie [L1] and O. Guichard[Gu1] help us to consider Hitchin
component as the space of the double limit curves {(ξ, ξ∗)}. Let us recall some definitions.

Definition 2.4.1. [Hitchin component] An n-Fuchsian homomorphism from π1(S) to
PSL(n,R) is a homomorphism ρ = i◦ρ0, where ρ0 is a discrete faithful homomorphism with
values in PSL(2,R) and i is the irreducible homomorphism from PSL(2,R) to PSL(n,R).
A homomorphism is Hitchin if it may be deformed into an n-Fuchsian homomorphism.
Hitchin component Hn(S) is the space of Hitchin homomorphisms up to adjoint action of
PSL(n,R).

Definition 2.4.2. [Hyperconvex map] A continuous map ξ from a set P to RPn−1 is
hyperconvex if for any pairwise distinct points (x1, ..., xp) with p ≤ n, the following sum is
direct

ξ(x1) + ...+ ξ(xp).

Let ∂∞π1(S) be the boundary at infinity of π1(S). When we fix an uniformisation of
the universal cover of the surface S equipped with a complex structure, ∂∞π1(S) can be
identified with the real projective line RP1 as the boundary of H2.

Definition 2.4.3. [n-hyperconvex] A homomorphism ρ from π1(S) to PSL(n,R) is
n-hyperconvex, if there exists a ρ-equivariant hyperconvex map ξ from ∂∞π1(S) to RPn−1,
namely ξ(γx) = ρ(γ)ξ(x). Such a map is called the limit curve of the homomorphism.

Theorem 2.4.4. [F. Labourie [L1], O. Guichard[Gu1]] Every homomorphism ρ from
π1(S) to PSL(n,R) is Hitchin if and only if ρ is n-hyperconvex.

If ρ is n-hyperconvex, there is uniquely another ρ-equivariant hyperconvex map ξ∗

from ∂∞π1(S) to P(Rn)∗ such that ξ(x) ∈ ker(ξ∗(y)) ⇔ x = y. Hence ρ ∈ Hn(S) is
associated with a double limit curve (ξ, ξ∗) by Theorem 2.4.4.

Definition 2.4.5. [Weak cross ratio] Let (ξ, ξ∗) be a double limit curve. Let ξ̃(ξ̃∗
resp.) be the lifts of ξ(ξ∗ resp.) with values in Rn(Rn∗ resp.). The weak cross ratio Bξ,ξ∗
of 4 different points x, y, z, t in ∂∞π1(S) is defined to be

Bξ,ξ∗(x, y, z, t) =

〈
ξ̃(x)

∣∣∣ ξ̃∗(z)〉〈
ξ̃(x)

∣∣∣ ξ̃∗(t)〉 ·
〈
ξ̃(y)

∣∣∣ ξ̃∗(t)〉〈
ξ̃(y)

∣∣∣ ξ̃∗(z)〉 , (2.47)

which is independent of the lifts ξ̃ with values in Rn and ξ̃∗ with values in Rn∗.
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F. Labourie [L4] define a ring homomorphism I : B(P)→ C∞(Hn(S)) such that

I

(
xz

xt
· yt
yz

)
(ρ) = Bξ,ξ∗(x, y, z, t) (2.48)

for all xz
xt ·

yt
yz ∈ CR(P). Since CR(P) generates B(P) over R, the map above shall be

extended to the whole ring B(P).

Since there is the swapping bracket on B(P), the ring homomorphism I induces a
Poisson bracket {·, ·}I on I(B(P)).

Definition 2.4.6. For any α, β ∈ B(P), the Poisson bracket {·, ·}I on I(B(P)) is

{I(α), I(β)}I := I({α, β}). (2.49)

Definition 2.4.7. For n > 1, let i′n : CRn(P)→ C∞(Hn(S)) be the map such that for any
xz
xt ·

yt
yz ∈ CRn(P):

i′n

(
xz

xt
· yt
yz

)
(ρ) = Bξ,ξ∗(x, y, z, t), (2.50)

where ρ is associated with the double limit curve (ξ, ξ∗).

Proposition 2.4.8. For n > 1, the map i′n extends to a ring homomorphism in : Bn(P)→
C∞(Hn(S)) where in|CRn(P) = i′n.

Proof. Let j be the natural surjective ring projection from B(P) to Bn(P). We define a
map in as follows: for any Qn in Bn(P), let Q(α1, ..., αl) be one of its representative in
B(P), where α1, ..., αl belong to CR(P), Q is a rational function, such that

Qn = j(Q(α1, ..., αl)) = Q(j(α1), ..., j(αl)),

let
in(Qn) := I(Q(α1, ..., αl)).

We have to prove that in is a well defined ring homomorphism. By our definition, we only
have to prove that if Qn equals to zero in Bn(P), then I(Q(α1, ..., αl)) equals to zero in
C∞(Hn(S)) which does not depend on the choice of the representative in B(P). To this
end, we identify the rank n cross ratio conditions with the generators in Rn(P) after we
introduce some notations in the next section.

2.4.2 Rank n cross ratio

Definition 2.4.9. [Cross ratio [L3]] A cross ratio on ∂∞π1(S) is a Hölder function
B defined on ∂∞π1(S)4∗ = {(a, b, c, d) ∈ ∂∞π1(S)4 |x 6= t, y 6= z} invariant under the
diagonal action of π1(S) and which satisfies :

Symmetry: B(a, b, c, d) = B(b, a, d, c),

Normalisation: B(a, b, c, d) = 0 if and only if a = c or b = d,

Normalisation: B((a, b, c, d) = 1 if and only if a = b or c = d,

Cocycle identity: B(a, b, c, d) · B(a, b, d, e) = B(a, b, c, e),

Cocycle identity: B(a, b, d, e) · B(b, c, d, e) = B(a, c, d, e).
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Definition 2.4.10. [Rank n cross ratio [L3]] For every integer p, let Kp be the set of

(u, v) = ((v0, ..., vp), (u0, ..., up)) (2.51)

where ui, vi ∈ ∂∞π1(S), such that uj 6= ui 6= u0 and vj 6= vi 6= v0 whenever j > i > 0. Let
B be a cross ratio and let χpB be the map from Kp to R defined by

χpB =
p

det
i,j>0

(B(ui, vj , u0, v0)). (2.52)

The cross ratio B has rank n if

1. χnB(u, v) 6= 0 for all (u, v) ∈ Kn,

2. χn+1
B (u, v) = 0 for all (u, v) ∈ Kn+1.

Of course, the weak cross ratio associate with the double limit curve (ξ, ξ∗) is a rank
n cross ratio.

Lemma 2.4.11. Let
(u, v) = ((v0, ..., vn+1), (u0, ..., un+1)) (2.53)

where ui, vi ∈ ∂∞π1(S), such that u0 6= v0 are different from all the {ui, vi}n+1
i=1 . Let B be

a rank n cross ratio. Let (ξ, ξ∗) be the double limit curve associate to B. Let ξ̃(ξ̃∗ resp.) be
the lifts of ξ(ξ∗ resp.) with values in Rn(Rn∗ resp.), then χn+1

B = detn+1
i,j=1(B(ui, vj , u0, v0))

is zero is equivalent to say detn+1
i,j=1

(〈
ξ̃(ui)

∣∣∣ ξ̃∗(vj)〉) is zero.

Proof. We multiple
〈
ξ̃(ui)

∣∣∣ ξ̃∗(v0)
〉
in rows and 1

〈 ξ̃(u0)|ξ̃∗(vj)〉 in columns in χn+1
B , we obtain

χn+1
B =

1〈
ξ̃(u0)

∣∣∣ ξ̃∗(v0)
〉n+1 .

n+1∏
j=1

(〈
ξ̃(u0)

∣∣∣ ξ̃∗(vj)〉) . n+1∏
i=1

1〈
ξ̃(ui)

∣∣∣ ξ̃∗(v0)
〉 ·

n+1
det
i,j=1

(〈
ξ̃(ui)

∣∣∣ ξ̃∗(vj)〉) .
(2.54)

Since u0 6= v0 are different from all the {ui, vi}n+1
i=1 ,

〈
ξ̃(ui)

∣∣∣ ξ̃∗(vj)〉 6= 0,
〈
ξ̃(u0)

∣∣∣ ξ̃∗(vj)〉 6=
0,
〈
ξ̃(ui)

∣∣∣ ξ̃∗(v0)
〉
6= 0. By the formula above, we conclude that χn+1

B = 0 is equivalent to

say detn+1
i,j=1

(〈
ξ̃(ui)

∣∣∣ ξ̃∗(vj)〉) = 0.

We continue to prove Proposition 2.4.8.

Since Qn equals to zero in Bn(P), for any representative Q(α1, ..., αl), we suppose
Q(α1, ..., αl) equals to P ′/Q′ in B(P) where P ′ and Q′ belong to Z(P), we have P ′ belongs
to Rn(P). Since I identifies x on the left of the ordered pairs in Z(P) with ξ̃(x) and x
on the right with ξ̃∗(x), then I(P ′/Q′) equals to the sum of products with a factor of the
type detn+1

i,j=1

(〈
ξ̃(ui)

∣∣∣ ξ̃∗(vj)〉). By Lemma 2.4.11, I(Q(α1, ..., αl)) equals to zero.

We conclude that for n > 1, in is well defined and in|CRn(P) = i′n.
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The ring homomorphism in is not injective, F. Labourie conjectures that

Conjecture 2.4.12. For n > 2, ker(in) equals to the ideal generated by {xzxt
yt
yz − γ ◦

xz
xt

yt
yz | ∀γ ∈ π1(S)}.

2.4.3 Injectivity

The ring homomorphism in is not injective at least due to the fact that xz
xt ·

yt
yz − γ ◦(

xz
xt ·

yt
yz

)
= 0, now we consider a discrete version of in where the corresponding π1(S) is

identity.

Let us recall that Zn(P) = Z(P)/Rn(P) is the rank n swapping ring where P =
{x1, ..., xp}. Recall that Mp is the configuration space of p vectors ai in Kn and p co-
vectors bi in Kn∗. When we identify xi on the left with ai and xi on the right with bi, we
induce a map jn from CRn(P) to C∞(Mp):

jn

(
xixk
xixl

· xjxl
xjxk

)
(f) =

〈ai|bk〉
〈ai|bl〉

· 〈aj |bl〉
〈aj |bk〉

(2.55)

where f = (a1, ..., ap, b1, ..., bp) ∈Mp.

Similar as Proposition 2.4.8, we have

Proposition 2.4.13. For n > 1, the map jn extends to a ring homomorphism kn :
Bn(P)→ C∞(Mp). where kn|CRn(P) = jn.

Moreover, the isomorphism between BnK/SnK and Zn(P) induce the isomorphism
between kn(Bn(P)) and Bn(P).

Proposition 2.4.14. For n > 1, there exists a ring homomorphism ln from kn(Bn(P)) to
Bn(P) such that

ln ◦ kn = IdBn(P).

Corollary 2.4.15. For n > 1, kn is injective.
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In this chapter, we relate the rank n swapping multifraction algebra to the rank n
Fock–Goncharov algebra on the configuration space of flags Confk,n for n = 2, 3. This is
one of the reason that we consider the quotient ring Zn(P) and the rank in the last chapter.
In §3.1, we recall the configuration space of flags which is the building block of XPGL(n,R),S ,
and its coordinates coined by Fock and Goncharov [FG1]. In §3.2, we embed in a Poisson
way the rank 2 Fock–Goncharov algebra into the rank 2 swapping multifraction algebra.
In §3.3, we embed in a Poisson way the rank 3 Fock–Goncharov algebra into the rank 3
swapping multifraction algebra. In §3.4, we relate θT2 to θT3 by a Poisson embedding τ2

and we generalize to τ3.

3.1 Configuration space of flags and its coordinates

3.1.1 Configuration space of flags

Definition 3.1.1. [Flag] A flag X in Rn is a family (X1, ..., Xn−1) so that Xk is a k-
dimensional vector space in Rn, Xk ⊂ Xk+1. A base of a flag X is a basis x1, , , xn of Rn
so that x̂k is generated by {x1, ..., xk}.
We denote the space of all the flags in R by Fn.

Definition 3.1.2. [Configuration space of flags] Let (F,G,H) be a triple of flags
in Rn. We call (F,G,H) are in general position if for all triples of the positive numbers
(m, l, p) with m+ l + p = n, the sum Fm +Gl +Hp = Rn is direct.

A configuration of flags (F1, ..., Fk)(k ≥ 3) in Rn is in general position if any three of
them is in general position.

Let the configuration space of flags Confk,n to be the ordered sets of flags (X1, ..., Xk)
in general position up to projective transformations.

3.1.2 Triangulation

Definition 3.1.3. [Ideal triangulation] Let S be a connected oriented topological sur-
face of finite type and genus g with boundaries or punctures and marked points. We assume
that S has negative Euler number. We denote by S the surface obtained from S by filling in
the punctures. Let B be the union of the punctures and the marked points on the boundaries.

An arc in S is the image in S of a closed interval, whose interior is homeomorphically
embedded in S \B and whose endpoints are on B. An arc in S is said to be essential if it
is not homotopic (relative to B) to a point in S.

An ideal triangulation of S is a maximal collection of disjoint essential arcs that are
pairwise non-homotopic.

Let Dk(k ≥ 3) be a disk with k marked points B = {x1, ..., xk} on the boundary S1.
Let B be the marked points ordered cyclically on S1. Let x1...xk be the convex k-gon
with the edges x1x2, x2x3..., xkx1. Then the ideal triangulation T of (Dk, B) is same as a
triangulation of x1...xk. Later on, we draw a convex polygon to represent Dk.
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Definition 3.1.4. [n-triangulation] Given a triangulation T , we define the n-triangulation
Tn of T to be: for each interior triangle(no edge of the triangle is on the boundary of T )
of T , we subdivide this triangle into n2 triangles as in Figure 3.1. Let

Fig. 3.1:

In = {n− 1 vertices of Tn on each edge of T which is not the edge of the k − gon} ,
(3.1)

as A,B,C,E, F,G in Figure 3.1. Let

Jn =

{
(n− 2)(n− 1)

2
vertices of Tn in the interior of each triangle of T

}
, (3.2)

as D in Figure 3.1.

If rs is an edge of a triangle rst of T , the inner vertex u of rs in In is described by a
pair of positive numbers (x, y) where x+ y = n and

x : y =
dist(u, st)

dist(r, st)
:
dist(u, rt)

dist(s, rt)
.

As in Figure 3.1, A is described by (2, 1) on the edge x5x1.

If abc is a triangle of T , the inner vertex v of abc in Jn is described by a triple of
positive numbers (m, l, p) where m+ l + p = n and

m : l : p =
dist(v, bc)

dist(a, bc)
:
dist(v, ac)

dist(b, ac)
:
dist(v, ab)

dist(c, ab)
.

As in Figure 3.1, D is described by (1, 1, 1) in the triangle x1x3x5.

we will assign to each vertex of In an edge function and each vertex of Jn an triple
ratio in the next section.
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3.1.3 Fock–Goncharov coordinates

In [FG1],V. V. Fock and A. B. Goncharov introduce the higher Teichmuller space
(XG,S ,AG′,S) where G is real semi-simple Lie group, G′ is Langlands dual of G, S is a
compact oriented surface with boundaries. We suppose S has negative Euler number.
They relate (XG,S ,AG′,S) to the cluster orbi-ensemble(a generalization of cluster algebra)
(Xh(G,S),Ah(G′,S)). These algebraic structure has geometric meaning, since certain finite
cover of the Penner’s decorated Teichmüller space can be identified with a open subset of
ASL(2,R),S [P1], certain finite cover of the Hitchin component Hn(S) can be identified with
a open set of XPGL(n,R),S . More precisely, they give a special coordinate system for the
spaces ASL(n,K),S and XPGL(n,K),S for any field K and the Hitchin component corresponds
to the positive part of the space XPGL(n,R),S .

Definition 3.1.5. [X -higher Teichmuller space XG,S] Let G be a reductive group.
Let B be the Borel group of G. Let F = G/B be the flag variety of G. Let T be the finite
subset of ∂S, Ŝ = S\T . An element in XG,S is a pair (∇, f) , where ∇ is a flat connection
on the G-principal bundle P → S and f : ∂S\T → G/B is B-reduction flat on ∂S\T , that
is to say, for any x ∈ ∂S\T , we choose a flag f(x) in P |x, such that ∇ translates f(x1) to
f(x2) when x1 and x2 are in the same component of x ∈ ∂S\T .

Remark 3.1.6. For the disc D with a finite subset P ⊂ ∂D, XPGL(n,R),D̂ = Confk,n,
where Confk,n is the configuration space of flags, it is the building block of XPGL(n,R),S(see
Section 7.8 of [FG1]).

The edge functions and the triple ratios are functions on XPGL(n,R),S defined by Fock
and Goncharov in [FG1]. We give some notations on the flags before we define the edge
functions and the triple ratios.

Notation 3.1.7. Let {f i}ni=1 be a base of a flag F in Rn. For k = 1, , , n, let

f̂k := f1 ∧ ... ∧ fk, (3.3)

and by convention f̂0 = 1.

Definition 3.1.8. [(m, l, p)-triple ratio] For m, l, p > 0, the (m, l, p)-triple ratio of the
triple of flags (F,G,H) in RPn−1 is

Tm,l,p(G,F,H) :=
Ω
(
f̂m+1 ∧ ĝl ∧ ĥp−1

)
· Ω
(
f̂m−1 ∧ ĝl+1 ∧ ĥp

)
· Ω
(
f̂m ∧ ĝl−1 ∧ ĥp+1

)
Ω
(
f̂m+1 ∧ ĝl−1 ∧ ĥp

)
· Ω
(
f̂m ∧ ĝl+1 ∧ ĥp−1

)
· Ω
(
f̂m−1 ∧ ĝl ∧ ĥp+1

) ,
(3.4)

where Ω is the volume form on Rn, {f i}ni=1, {gi}ni=1, {hi}ni=1 are bases of F , G, H respec-
tively.

This triple ratio does not depend on the bases that we choose for the flags since each
of {f̂m−1, f̂m, f̂m+1, ĝl−1ĝl, ĝl+1, ĥp−1, ĥp, ĥp+1} appears once in the numerator , once in
the denominator of the right hand side of the definition.
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Definition 3.1.9. [(i, n−i)-edge function] For 0 < i < n and a quadruple (Y, T, Z,X) ∈
F4
n in general position, The (i, n− i)-edge function of the edge zx is

Bi(Y, T, Z,X) =
Ω
(
x̂i ∧ ẑn−i−1 ∧ t1

)
· Ω
(
x̂i−1 ∧ ẑn−i ∧ y1

)
Ω (x̂i ∧ ẑn−i−1 ∧ y1) · Ω (x̂i−1 ∧ ẑn−i ∧ t1)

. (3.5)

By the same reason, this edge function does not depend on the bases that we choose
for the flags.

Remark 3.1.10. Attention, we define the edge function as the minus of the original defi-
nition of the edge function in [FG1].

By definition, we have

Proposition 3.1.11.

Bi(T, Y, Z,X) =
1

Bi(Y, T, Z,X)
(3.6)

Bi(Y, T,X,Z) =
1

Bn−i(Y, T, Z,X)
(3.7)

Since
Ω(g · v1, ..., g · vn) = det g · Ω(v1, ..., vn),

we have

Proposition 3.1.12. The triple ratios and the edge functions are invariant by projective
translations.

Fock–Goncharov coordinate for the space XPGL(n,R),S is constructed as follows. Given
an ideal triangulation T and its n-triangulation Tn of the topological surface S of negative
Euler class with boundaries. Let rs be an edge of T , let rsf and rsg be the triangles
of T , with the flags (F,G,R, S)(corresponding to (f, g, r, s)) in general position, for each
element t of In on rs associated to (i, n − i), we assign to t an (i, n − i)-edge function;
Let abc be an triangle of T , with the flags (A,B,C)(corresponding to (a, b, c)) in general
position, for each element v of Jn in the interior of abc associated to (m, l, p), we assign to
v a (m, l, p)-triple ratio.

Theorem 3.1.13. [V. V . Fock, A. B. Goncharov [FG1]] Given an ideal triangu-
lation T and its n-triangulation Tn of the topological surface S of negative Euler class
with boundaries, the triple ratios and the edge functions are algebraic independent. These
functions give us a coordinate system of XPGL(n,R),S.

Using Theorem 3.1.13 for the case S = Dk, we have

Corollary 3.1.14. All the edge functions and triple ratios for a triangulation T of the
k-gon x1...xk and its n-triangulation Tn are algebraic independent. These functions give
us a coordinate system of Confk,n.
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3.2 Fock–Goncharov and swapping algebras for Confk,2

3.2.1 Rank n Fock–Goncharov algebra on Confk,n

Definition 3.2.1. [Rank n Fock–Goncharov ring] For a disk with k marked points
Dk, let P = {x1, ..., xk} be the set of marked points, let T be an ideal triangulation of Dk,
let Tn be its n-triangulation. Let Xv be the edge function corresponding to v in In, let Xu

be the triple ratio corresponding to u in Jn. The rank n Fock–Goncharov ring is the ring
generated by the edge functions and the triple ratios over K(K = R or C).

We denote the rank n Fock–Goncharov ring by A(Tn) or K[{Xv}v∈In∪Jn ].

Definition 3.2.2. [Rank n Fock–Goncharov bracket [FG1], see [FG2] for a simple
version]

The Rank n Fock–Goncharov bracket is defined by extending the following formula for
the generators to A(Tn).

{Xu, Xw}n = εuw ·Xu ·Xw (3.8)

Where εuw = (arrows from u to w) - (arrows form w to u).

For each triangle of T and its n-triangulation, we have the arrows described as in
Figure 3.1.

Theorem 3.2.3. [V. V . Fock, A. B. Goncharov [FG1]] The rank n Fock–Goncharov
bracket verifies Jacobi identity, so the rank n Fock–Goncharov ring equipped with a rank n
Fock–Goncharov bracket is a Poisson algebra.

Definition 3.2.4. [Rank n Fock–Goncharov algebra] The rank n Fock–Goncharov
algebra of Tn is the ring A(Tn) equipped with the rank n Fock–Goncharov bracket.

3.2.2 Relations between Fock–Goncharov and swapping algebras for Confk,2

For a disk with k marked points on the boundary Dk, let P = {x1, ..., xk} be the set
of marked points, we construct the rank 2 swapping multifraction algebra B2(P) as in the
chapter 2. Let T be a triangulation of x1...xk and T2 its 2-triangulation, let A(T2) be the
rank 2 Fock–Goncharov algebra. We show that A(T2) embed in a Poisson way into B2(P)
by a natural ring monomorphism which relates volume forms to ordered pairs of marked
points.

Definition 3.2.5. We define a ring homomorphism θT2 by extending the following map
defined on the generators to A(T2):

θT2 : A(T2)→ B2(P)

X =
Ω
(
ŷ1 ∧ ẑ1

)
Ω
(
t̂1 ∧ ẑ1

) · Ω
(
t̂1 ∧ x̂1

)
Ω (ŷ1 ∧ x̂1)

θT2(X) :=
yz

tz
· tx
yx

(3.9)

where x, y, z, t are in S1 as in Figure 3.2.
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Fig. 3.2:

Remark 3.2.6. By Theorem 3.1.14, there is no algebraic relation between these edge func-
tions, hence θT2 is well defined.

Proposition 3.2.7. The ring homomorphism θT2 is injective.

Proof. Let k2 be the ring homomorphism from B2(P) to C∞(Confk,n) defined in Proposition
2.4.13. By the definition, we have k2 ◦ θT2 is an identity map on the generators of A(T2).
Since k2 and θT2 are ring homomorphism, k2◦θT2 is an identity map on A(T2). We conclude
that θT2 is injective.

Remark 3.2.8. The ring homomorphism θT2 is not surjective, for instance, in Figure
3.2, zy

xy ·
xt
zt /∈ θT2(A(T2)). But any generator of B2(P) belongs to Im(θT ′2) for some ideal

triangulation T ′2.

3.2.3 Main theorem

We embed in a Poisson way the rank 2 Fock–Goncharov algebra into the rank 2
multifraction algebra for Confk,2 by the following theorem.

Theorem 3.2.9. The ring monomorphism θT2 is Poisson.

Proof. We associate each edge function with a lozenge and an edge. By symmetry, we have
the following possible cases for two graphs associated to edge functions as in Figure 3.3:

1. Trivial cases: Two graphs associate with two edge functions can be separated by a
line in the disk.

2. Two graphs associated to two edge functions have one common point.
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Fig. 3.3:

3. Two graphs associated to two edge functions have two common points.

4. Two graphs associated to two edge functions have three common points.

We prove the theorem for all the cases as follows.

1. Trivial case

Fig. 3.4:

As in Figure 3.3.1, two graphs associate with two edge functions can be separated
by a line in the disk.
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Let α, β, γ, θ, y, z, t, x be cyclically ordered [α, β, γ, θ, y, z, t, x] as in Figure 3.4. Let

θT2(ε) =
βγ

θγ
· θα
βα

and
θT2(e) =

yz

tz
· tx
yx
,

we have to verify that

Proposition 3.2.10.

{θT2(ε), θT2(e)} = θT2({ε, e}2) = 0.

Proof. The linking number between the ordered pair of points of {α, β, γ, θ} and the
ordered pair of points of {x, y, z, t} is always zero, thus we have{

βγ

θγ
· θα
βα

,
yz

tz
· tx
yx

}
= 0.

Since
θT2({ε, e}2) = 0,

we conclude that
{θT2(ε), θT2(e)} = θT2({ε, e}2) = 0.

2. One common point

As in Figure 3.3.2, the cases that two graphs associated to two edge functions have
one common point. By symmetry, we have to check the following three cases:

(a) Let x, β, γ, θ, y, z, t be cyclically ordered [x, β, γ, θ, y, z, t] as in Figure 3.5. Let

θT2(ε) =
βγ

θγ
· θx
βx

and
θT2(e) =

yz

tz
· tx
yx
,

we have to verify that

Proposition 3.2.11.

{θT2(ε), θT2(e)} = θT2({ε, e}2) = 0.
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Fig. 3.5:

Proof. When the swapping bracket between the factors of θT2(ε) and θT2(e)
is not zero, two of the factors have common point x on left side(right side
respectively). We have{

βγ
θγ ·

θx
βx ,

yz
tz ·

tx
yx

}
βγ
θγ ·

θx
βx ·

yz
tz ·

tx
yx

=
{θx, tx}
θx · tx

− {θx, yx}
θx · yx

− {βx, tx}
βx · tx

+
{βx, yx}
βx · yx

=
1

2
− 1

2
− 1

2
+

1

2
= 0.

(3.10)

Since
θT2({ε, e}2) = 0,

we conclude that
{θT2(ε), θT2(e)} = θT2({ε, e}2) = 0.

(b) Let x, β, γ, θ, y, z, t be cyclically ordered [x, β, γ, θ, y, z, t] as in Figure 3.6. Let

θT2(ε) =
γθ

xθ
· xβ
γβ

and
θT2(e) =

yz

tz
· tx
yx
,

we have to verify that
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Fig. 3.6:

Proposition 3.2.12.

{θT2(ε), θT2(e)} = θT2({ε, e}2) = 0.

Proof. When the swapping bracket between the factors of θT2(ε) and θT2(e)
is not zero, two of the factors have common point x on left side(right side
respectively). We have {

γθ
xθ ·

xβ
γβ ,

yz
tz ·

tx
yx

}
γθ
xθ ·

xβ
γβ ·

yz
tz ·

tx
yx

= 0. (3.11)

Since
θT2({ε, e}2) = 0,

we conclude that
{θT2(ε), θT2(e)} = θT2({ε, e}2) = 0.

(c) Let x, β, γ, θ, y, z, t be cyclically ordered [x, β, γ, θ, y, z, t] as in Figure 3.7. Let

θT2(ε) =
γθ

xθ
· xβ
γβ

and
θT2(e) =

xy

zy
· zt
xt
,

we have to verify that
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Fig. 3.7:

Proposition 3.2.13.

{θT2(ε), θT2(e)} = θT2({ε, e}2) = 0.

Proof. When the swapping bracket between the factors of θT2(ε) and θT2(e)
is not zero, two of the factors have common point x on left side(right side
respectively). We have{

γθ
xθ ·

xβ
γβ ,

xy
zy ·

zt
xt

}
γθ
xθ ·

xβ
γβ ·

xy
zy ·

zt
xt

=
{xβ, xy}
xβ · xy

− {xβ, xt}
xβ · xt

− {xθ, xy}
xθ · xy

+
{xβ, xt}
xβ · xt

=
1

2
− 1

2
− 1

2
+

1

2
= 0.

(3.12)

Since
θT2({ε, e}2) = 0,

we conclude that
{θT2(ε), θT2(e)} = θT2({ε, e}2) = 0.

3. Two common points

As in Figure 3.3.3, the cases that two graphs associated to two edge functions have
two common points. By symmetry, we have to check the following two cases:
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Fig. 3.8:

(a) Let x, β, γ, y, z, t be cyclically ordered [x, β, γ, y, z, t] as in Figure 3.8. Let

θT2(ε) =
βγ

yγ
· yx
βx

and
θT2(e) =

yz

tz
· tx
yx
,

we have to verify that

Proposition 3.2.14.

{θT2(ε), θT2(e)} = θT2({ε, e}2) = 0.

Proof. When the swapping bracket between the factors of θT2(ε) and θT2(e) is
not zero, two of the factors have common point x or y on left side(right side
respectively). We have{

βγ
yγ ·

yx
βx ,

yz
tz ·

tx
yx

}
βγ
yγ ·

yx
βx ·

yz
tz ·

tx
yx

= −{yγ, yz}
yγ · yz

+
{yγ, yx}
yγ · yx

+
{yx, yz}
yx · yz

+
{yx, tx}
yx · tx

− {βx, tx}
βx · tx

+
{βx, yx}
βx · yx

= −
(
−1

2

)
+

(
−1

2

)
+

(
−1

2

)
+

1

2
− 1

2
+

1

2

= 0.
(3.13)

Since
θT2({ε, e}2) = 0,



3. Fock-Goncharov algebra and swapping algebra 56

we conclude that
{θT2(ε), θT2(e)} = θT2({ε, e}2) = 0.

(b) Let x, β, γ, y, z, t be cyclically ordered [x, β, γ, y, z, t] as in Figure 3.9. Let

Fig. 3.9:

θT2(ε) =
γy

xy
· xβ
γβ

and
θT2(e) =

yz

tz
· tx
yx
,

we have to verify that

Proposition 3.2.15.

{θT2(ε), θT2(e)} = θT2({ε, e}2) = 0.

Proof. When the swapping bracket between the factors of θT2(ε) and θT2(e) is
not zero, two of the factors have common point x or y on left side(right side
respectively). We have{

γy
xy ·

xβ
γβ ,

yz
tz ·

tx
yx

}
γy
xy ·

xβ
γβ ·

yz
tz ·

tx
yx

= −{yγ, yz}
yγ · yz

+
{yγ, yx}
yγ · yx

+
{yx, yz}
yx · yz

+
{yx, tx}
yx · tx

− {βx, tx}
βx · tx

+
{βx, yx}
βx · yx

= 0.
(3.14)
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Since
θT2({ε, e}2) = 0,

we conclude that
{θT2(ε), θT2(e)} = θT2({ε, e}2) = 0.

4. Three common points

As in Figure 3.3.4, the cases that two graphs associated to two edge functions have
three common points. By symmetry, we have to check the following case.

Let x, β, y, z, t be cyclically ordered [x, β, y, z, t] as in Figure 3.10. Let

Fig. 3.10:

θT2(ε) =
βy

zy
· zx
βx

and
θT2(e) =

yz

tz
· tx
yx
,

we have to verify that

Proposition 3.2.16.

{θT2(ε), θT2(e)} = θT2({ε, e}2).

Proof. When the swapping bracket between the factors of θT2(ε) and θT2(e) is not
zero, two of the factors have common point x or y or z on left side(right side respec-
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tively). We have {
βy
zy ·

zx
βx ,

yz
tz ·

tx
yx

}
βy
zy ·

zx
βx ·

yz
tz ·

tx
yx

=
{zx, tx}
zx · tx

− {zx, yx}
zx · yx

− {βx, tx}
βx · tx

+
{βx, yx}
βx · yx

=
1

2
−
(
−1

2

)
− 1

2
+

1

2

= 1.

(3.15)

Since
θT2({ε, e}2) = θT2(ε · e),

we conclude that
{θT2(ε), θT2(e)} = θT2({ε, e}2).

Finally, we conclude that θ is a Poisson homomorphism.

3.3 Fock–Goncharov and swapping algebras for Confk,3

For a disk with k marked points Dk, let P = {x1, ..., xk} be the set of marked points,
we have the rank 3 swapping multifraction algebra B3(P). Given Dk an ideal triangulation
T and its 3-triangulation T3, we have the rank 3 Fock–Goncharov ring A(T3). In fact,
A(T3) is related to B3(P) by a natural Poisson ring monomorphism which relates volume
forms to ordered pairs of points.

3.3.1 Fock–Goncharov algebra for Confk,3

Let us recall the edge functions and the triple ratios of F3. By Definitions 3.1.8 3.1.9,
we have

Definition 3.3.1. [The edge function and the triple ratio of F3] Let Ω be the
volume form on R3. Let the triple ratio of the three flags F,G,H in R3 be

T(G,F,H) =
Ω
(
ĝ1 ∧ f̂2

)
Ω
(
f̂1 ∧ ĥ2

)
Ω
(
ĥ1 ∧ ĝ2

)
Ω
(
f̂1 ∧ ĝ2

)
Ω
(
ĥ1 ∧ f̂2

)
Ω
(
ĝ1 ∧ ĥ2

) . (3.16)

Let the edge functions of the flags Y, T, Z,X in R3 be

B1(Y, T, Z,X) =
Ω
(
ŷ1 ∧ ẑ2

)
Ω
(
t̂1 ∧ ẑ2

) · Ω
(
t̂1 ∧ x̂1 ∧ ẑ1

)
Ω (ŷ1 ∧ x̂1 ∧ ẑ1)

, (3.17)

B2(Y, T, Z,X) =
1

B1(Y, T,X,Z)
=

Ω
(
t̂1 ∧ x̂2

)
Ω (ŷ1 ∧ x̂2)

·
Ω
(
ŷ1 ∧ x̂1 ∧ ẑ1

)
Ω
(
t̂1 ∧ x̂1 ∧ ẑ1

) (3.18)
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3.3.2 Relations between Fock–Goncharov and swapping for Confk,3

Fig. 3.11:

Lemma 3.3.2. Let x, z, y, u, s, v ∈ P, x, z, y(u, s, v) are different from each other, we have

∆ ((x, z, y), (u, s, v)) 6= 0. (3.19)

in Z3(P).

Proof. Let us recall the geometric model for Z3(P). Each point x corresponds to vector
x1 in K3 and covector x2 in K3∗. By Theorem 2.3.6, we have B3K/S3K ∼= Z3(P). This
isomorphism is realized by identifying x on the left hand side with vector x1 and x on the
right hand side with covector x2. Thus ∆ ((x, z, y), (u, s, v)) 6= 0 ∈ Z3(P) corresponds to
say that

det

 〈x1|u2〉 〈x1|s2〉 〈x1|v2〉
〈z1|u2〉 〈z1|s2〉 〈z1|v2〉
〈y1|u2〉 〈y1|s2〉 〈y1|v2〉

 ∈ B3K/S3K.

is not always zero. Actually,

det

 〈x1|u2〉 〈x1|s2〉 〈x1|v2〉
〈z1|u2〉 〈z1|s2〉 〈z1|v2〉
〈y1|u2〉 〈y1|s2〉 〈y1|v2〉


is interpreted as volume form of x1, z1, y1 with the dual base of u2, s2, v2. Let x1, z1, y1 and
u2, s2, v2 are both in general position in R3. We obtain that

det

 〈x1|u2〉 〈x1|s2〉 〈x1|v2〉
〈z1|u2〉 〈z1|s2〉 〈z1|v2〉
〈y1|u2〉 〈y1|s2〉 〈y1|v2〉

 ∈ B3K/S3K.
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is not always zero. We conclude that

∆ ((x, z, y), (u, s, v)) 6= 0.

in Z3(P).

Lemma 3.3.3. Let x, y, z, t, u, s, v, w ∈ P, x, z, y(u, s, v, w) are different from each other,
we have

∆ ((x, z, t), (u, s, v))

∆ ((x, z, y), (u, s, v))
=

∆ ((x, z, t), (u, s, w))

∆ ((x, z, y), (u, s, w))
. (3.20)

Proof. Consider the matrix

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 =


xu xs xv xw
zu zs zv zw
yu ys yv yw
tu ts tv tw

 . (3.21)

The adjugate of A is

A? =


A11 −A21 A31 −A41

−A12 A22 −A32 A42

A13 −A23 A33 −A43

−A14 A24 −A34 A44

 . (3.22)

Where Aij equals the determinant of the matrix without the ith row and the jth colomn
of A.
We have already

detA = 0,

then
A? ·A = 04×4. (3.23)

A, A? and A? ·A correspond to linear endomorphisms of K4 f ,g and g ◦ f respectively. By
Equation 3.23, the rank of g ◦ f(the dimension of the image of g ◦ f) is 0. By the above
lemma, we have

∆ ((x, z, y), (u, s, v)) 6= 0. (3.24)

Thus, the rank of f is at least 3. Therefore, we have the rank of g is at most 1 (If not so,
we will get the rank of g ◦ f is not 0). We conclude that

A34 ·A43 −A33 ·A44 = 0. (3.25)

This is same to say

∆ ((x, z, t), (u, s, v))

∆ ((x, z, y), (u, s, v))
=

∆ ((x, z, t), (u, s, w))

∆ ((x, z, y), (u, s, w))
.

Remark 3.3.4. This is the essential step that we use the rank n condition.
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Moreover, by applying Lemma 3.3.3 three times, we have

Corollary 3.3.5. Let x, z, t, y, u, w, v, u1, w1, v1 ∈ P, u,w, v(u1, w1, v1, or x, z, y resp.)
are different from each other. We have

∆ ((x, z, t), (u,w, v))

∆ ((x, z, y), (u,w, v))
=

∆ ((x, z, t), (u1, w1, v1))

∆ ((x, z, y), (u1, w1, v1))
(3.26)

in B3(P).

Notation 3.3.6. Let
T (x, z, y) :=

xz · zy · yx
zx · yz · xy

.

By Corollary 3.3.5, let

E(x, z, t, y) :=
∆ ((x, z, t), (u,w, v))

∆ ((x, z, y), (u,w, v))
.

By Corollary 3.3.5 and Theorem 2.2.4,

Corollary 3.3.7. Let a, b, x, z, t, y, u, w, v ∈ P, u,w, v are different from each other. We
have the value of

{ab,E(x, z, t, y)}

in Q3(P) does not depend on the choice of three different points u,w, v ∈ P.

Definition 3.3.8. We define a ring homomorphism θT3 by extending the following map
defined on the generators to A(T3):

θT3 : A(T3)→ B3(P)

For a triangle xzy of T , the corresponding flags are X,Z, Y , let

θT3(T (X,Z, Y )) = T (x, z, y). (3.27)

For two triangles zyx and zxt of T , the corresponding flags of x, y, z, t are X,Y, Z, T
respectively. Let

θT3(B1(Y, T, Z,X)) =
yz

tz
· E(x, z, t, y), (3.28)

θT3(B2(Y, T, Z,X)) =
tx

yx
· E(x, z, y, t). (3.29)

Remark 3.3.9. Sometimes, to simplify our calculations of certain swapping bracket, we
consider E(x, z, y, t) ∈ Q3(P ′) by adding some points to P.

Let k3 : B3(P) → C∞(Confk,3) be the ring homomorphism defined in Proposition
2.4.13.

Proposition 3.3.10.
k3 ◦ θT3 = IdA(T3).
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Proof.

Notation 3.3.11. For each flag F , we choose a base {fi}ni=1 of a flag F in Rn. For
k = 1, , , n, let

f̂k := f1 ∧ ... ∧ fk. (3.30)

We denote Ω
(
x̂1 ∧ ŷ2

)
by X̂Y for any X,Y in the flag variety F3.

For a triple ratio T (X,Z, Y ), we have

k3 ◦ θT3(T (X,Z, Y ))

= k3

(
xz · zy · yx
zx · yz · xy

)
=
X̂Z · ẐY · Ŷ X
ẐX · Ŷ Z · X̂Y

= T (X,Z, Y ).

(3.31)

Let
E(x, z, t, y) =

∆ ((x, z, t), (z, x, v))

∆ ((x, z, y), (z, x, v))
.

For an edge function B1(Y, T, Z,X), we have

k3 ◦ θT3(B1(Y, T, Z,X))

= k3

(
yz

tz
· ∆ ((x, z, t), (z, x, v))

∆ ((x, z, y), (z, x, v))

)
=
Ŷ Z

T̂Z
·

(
X̂Z.ẐX.T̂V − X̂Z.ẐV .T̂X − X̂V .ẐX.T̂Z
X̂Z.ẐX.Ŷ V − X̂Z.ẐV .Ŷ X − X̂V .ẐX.Ŷ Z

)
.

(3.32)

Let U = (U1, U2) be a flag in R3 where U2 = X1 ∧ Z1. In R3, we have

t̂1 = s0 · x̂1 + s1 · ẑ1 + s2 · ŷ1 (3.33)

where s0, s1, s2 ∈ R. Thus we obtain that

det


X̂U X̂X X̂V X̂Z

ẐU ẐX ẐV ẐZ

Ŷ U Ŷ X Ŷ V Ŷ Z

T̂U T̂X T̂V T̂Z

 = 0. (3.34)

And we have X̂U = ẐU = 0. Then, we decompose Determinant 3.34 in the first column
and we obtain that

T̂U

Ŷ U
=

det

 X̂X X̂V X̂Z

ẐX ẐV ẐZ

T̂X T̂V T̂Z


det

 X̂X X̂V X̂Z

ẐX ẐV ẐZ

Ŷ X Ŷ V Ŷ Z


=
X̂Z.ẐX.T̂V − X̂Z.ẐV .T̂X − X̂V .ẐX.T̂Z
X̂Z.ẐX.Ŷ V − X̂Z.ẐV .Ŷ X − X̂V .ẐX.Ŷ Z

. (3.35)
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So

k3 ◦ θT3(B1(Y, T, Z,X)) =
Ŷ Z

T̂Z
· T̂U
Ŷ U

= B1(Y, T, Z,X). (3.36)

Similarly, we have
k3 ◦ θT3(B2(Y, T, Z,X)) = B2(Y, T, Z,X).

So k3 ◦θT3 is an identity map on all the generators. Since k3 ◦θT3 is a ring homomorphism,
we have k3 ◦ θT3 = IdA(T3).

In particular, we have

Corollary 3.3.12. θT3 is injective.

3.3.3 Main theorem

We embed in a Poisson way the rank 3 Fock–Goncharov algebra into the rank 3
multifraction algebra for Confk,3 by Theorem 3.3.16.

Let us prove some lemmas before we start to prove the main theorem.

Lemma 3.3.13. Let α1, α2, x1, x2, x3 ∈ P. Assume that |J (α1, α2, xi, xj)| 6= 1 for any
i, j = 1, 2, 3, and α1, α2 are in the arc x1x2

_. We calculate {α1α2,x1x2·x2x3·x3x1}
α1α2·x1x2·x2x3·x3x1 in Qn(P).

Up to symmetry, we have seven cases as in Figure 3.12. We have

{α1α2, x1x2 · x2x3 · x3x1}
α1α2 · x1x2 · x2x3 · x3x1

=


1
2 case 1 and case 2

−1
2 case 3 and case 4

0 others

(3.37)

in Qn(P).

Proof. By Leibniz’s rule, we have

{α1α2, x1x2 · x2x3 · x3x1}
α1α2 · x1x2 · x2x3 · x3x1

=
{α1α2, x1x2}
α1α2 · x1x2

+
{α1α2, x2x3}
α1α2 · x2x3

+
{α1α2, x3x1}
α1α2 · x3x1

. (3.38)

In case 1, we have
{α1α2, x1x2}
α1α2 · x1x2

=
1

2
,

{α1α2, x2x3}
α1α2 · x2x3

= 0,

{α1α2, x3x1}
α1α2 · x3x1

= 0.

We obtain that
{α1α2, x1x2 · x2x3 · x3x1}
α1α2 · x1x2 · x2x3 · x3x1

=
1

2
.

We obtain the results for the other cases by the same way.
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Fig. 3.12:

Finally, we conclude that

{α1α2, x1x2 · x2x3 · x3x1}
α1α2 · x1x2 · x2x3 · x3x1

=


1
2 case 1 and case 2

−1
2 case 3 and case 4

0 others

(3.39)

in Qn(P).

As a corollary, we have

Corollary 3.3.14. Let α1, α2, α3, u1, ..., us, v1, ..., vs ∈ P. Let P be a polynomial in vari-
ables u1v1, ..., usvs. Recall that T (α1, α2, α3) = α1α2·α2α3·α3α1

α2α1·α3α2·α1α3
. Assume that |J (αi, αj , ul, vl)| 6=

1 for any i, j = 1, 2, 3, l = 1, ..., s, we have

{T (α1, α2, α3), P (u1v1, ..., usvs)} = 0

in Qn(P).

Proof. In fact, the corollary follows from an observation by Lemma 3.3.13 that

{ulvl, α1α2 · α2α3 · α3α1}
ulvl · α1α2 · α2α3 · α3α1

=
{ulvl, α2α1 · α3α2 · α1α3}
ulvl · α2α1 · α3α2 · α1α3

. (3.40)

Lemma 3.3.15. Let α1, α2, x1, x2, x3, x4, u, v, w ∈ P. Assume that |J (α1, α2, xi, xj)| 6= 1
for any i, j = 1, 2, 3, 4. Let δa;b,c = 1 if a = b or a = c, δa,b = 0 otherwise. Recall that
E(x1, x3, x2, x4) = ∆((x1,x3,x2),(u,v,w))

∆((x1,x3,x4),(u,v,w)) . Then we have

{α1α2, E(x1, x3, x2, x4)}
α1α2 · E(x1, x3, x2, x4)

= J (α1, α2, x2, x4) · δα1;x2,x4

in Qn(P).
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Proof. We prove the lemma by considering all possible positions of α1, α2 in S1:

1. α1, α2 are in the arc x1x2
_,

2. α1, α2 are in the arc x2x3
_,

3. α1, α2 are in the arc x3x4
_,

4. α1, α2 are in the arc x4x1
_.

We prove the case 1, the others are similar. When α1, α2 are different from each other
in the arc x1x2

_. By Lemma 3.3.3, the value of ∆((x1,x3,x2),(u,v,w))
∆((x1,x3,x4),(u,v,w)) does not depend on the

different position of u, v, w. We assume that u, v, w are in the arc x3x4
_ as in Figure.

Fig. 3.13:

1. when α1 is different from x1 and x2, by Equation 2.10, we have

{α1α2,∆ ((x1, x3, x2), (u, v, w))} = 0

and
{α1α2,∆ ((x1, x3, x4), (u, v, w))} = 0.

So by Leibniz’s rule, we have

{α1α2, E(x1, x3, x2, x4)}
α1α2 · E(x1, x3, x2, x4)

= 0. (3.41)

2. when α1 coincides with x1, by Equation 2.10, we have

{α1α2,∆ ((x1, x3, x2), (u, v, w))} = −1

2
· α1α2 ·∆ ((x1, x3, x2), (u, v, w))
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and

{α1α2,∆ ((x1, x3, x4), (u, v, w))} = −1

2
· α1α2 ·∆ ((x1, x3, x4), (u, v, w)) .

So by Leibniz’s rule, we have

{α1α2, E(x1, x3, x2, x4)}
α1α2 · E(x1, x3, x2, x4)

= 0. (3.42)

3. when α1 coincides with x2, by Equation 2.11, we have

{α1α2,∆ ((x1, x3, x2), (u, v, w))} = −1

2
· α1α2 ·∆ ((x1, x3, x2), (u, v, w)) ,

{α1α2,∆ ((x1, x3, x4), (u, v, w))} = 0.

So by Leibniz’s rule, we have

{α1α2, E(x1, x3, x2, x4)}
α1α2 · E(x1, x3, x2, x4)

= −1

2
. (3.43)

We conclude that when α1, α2 are in the arc x1x2
_,

{α1α2, E(x1, x3, x2, x4)}
α1α2 · E(x1, x3, x2, x4)

= J (α1, α2, x2, x4) · δα1;x2,x4 .

in Qn(P).

We obtain the results for the other three cases by the same way.

Finally, we conclude that

{α1α2, E(x1, x3, x2, x4)}
α1α2 · E(x1, x3, x2, x4)

= J (α1, α2, x2, x4) · δα1;x2,x4 .

in Qn(P).

Our main result is

Theorem 3.3.16. The ring homomorphism θT3 is Poisson.

Proof. We associate each edge function with a 4-gons and an edge, each triple ratio with
a triangle. For example, we associate B1(Y, T, Z,X)(or B2(Y, T, Z,X)) with yztx and zx
, we associate T (X,Z, Y ) with xzy. By symmetry, we have the following possible cases as
in Figure 3.14:

1. Trivial cases.

2. Brackets of triple ratios.

3. Brackets of triple ratio and edge function.
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Fig. 3.14:

4. Brackets of edge functions.

We prove the theorem for all the cases as follows.

1. Trivial case

Two graphs associate with two Fock–Goncharov coordinates α, b are separated by
a line in the disk. As in Figure 3.15, there are three cases, in each case, α is the
Fock–Goncharov coordinate on the left and a is the Fock–Goncharov coordinate on
the right.

Fig. 3.15:
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Proposition 3.3.17. For all these cases, we have

{θT3(α), θT3(b)} = θT3 ({α, b}3) .

Proof. For all these cases, we have

{θT3(α), θT3(b)} = 0.

For the Fock–Goncharov bracket, we have

{α, b}3 = 0.

We conclude that
{θT3(α), θT3(b)} = θT3 ({α, b}3) .

2. Brackets of triple ratios Two graphs associate with two triple ratios have at least

Fig. 3.16:

one common point. By symmetry, we have the following two cases as in Figure 3.16.

By Corollary 3.3.14, we obtain that

Corollary 3.3.18. For these two cases, we have

{θT3(τ), θT3(t)} = θT3({τ, t}3) = 0.

3. Brackets of triple ratio and edge function

Two graphs associate with a triple ratio and an edge function have at least one
common point. By symmetry, we have the following four cases as in Figure 3.17.

(a) By Corollary 3.3.14, we have
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Fig. 3.17:

Proposition 3.3.19. For case 1,2,3 in Figure 3.17, we have

{θT3(τ), θT3(e1)} = θT3({τ, e1}3) = 0 (3.44)

and
{θT3(τ), θT3(e2)} = θT3({τ, e2}3) = 0. (3.45)

Fig. 3.18:

(b) As in Figure 3.18, let u ∈ S1. Let x, y, u, z, t be cyclically ordered [x, y, u, z, t]
as in Figure 3.18,

θT3(τ) = θT3(T (X,Z, Y )) = T (y, x, z) =
yx · xz · zy
xy · zx · yz

, (3.46)
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θT3(e2) = θT3(B1(Y, T, Z,X)) =
yz

tz
· E(x, z, t, y), (3.47)

To simplify our calculations, let

E(x, z, t, y) =
∆ ((x, z, t), (z, x, u))

∆ ((x, z, y), (z, x, u))
.

By symmetry, we only have to verify that

Proposition 3.3.20.

{θT3(τ), θT3(e2)} = θT3({τ, e2}3). (3.48)

Proof. By Equation 2.10, we have

{xz, ∆ ((x, z, t), (z, x, u))} = −xu ·∆ ((x, z, t), (z, x, z)) = 0

and

{xz, ∆ ((x, z, y), (z, x, u))} = yz·∆ ((x, z, x), (z, x, u))−xu·∆ ((x, z, y), (z, x, z)) = 0.

We obtain that
{xz, E(x, z, t, y)} = 0. (3.49)

Similarly, we obtain that

{zx, E(x, z, t, y)} = 0. (3.50)

By Leibniz’s rule, we have{
T (y, x, z), yz

tz · E(x, z, t, y)
}

T (y, x, z) · yztz · E(x, z, t, y)

=

{
T (y, x, z), yz

tz

}
T (y, x, z) · yztz

+
{yx, E(x, z, t, y)}
yx · E(x, z, t, y)

− {xy, E(x, z, t, y)}
xy · E(x, z, t, y)

+
{xz, E(x, z, t, y)}
xz · E(x, z, t, y)

− {zx, E(x, z, t, y)}
zx · E(x, z, t, y)

+
{zy, E(x, z, t, y)}
zy · E(x, z, t, y)

− {yz, E(x, z, t, y)}
yz · E(x, z, t, y)

.

(3.51)

By Corollary 3.3.14, we have{
T (y, x, z),

yz

tz

}
= 0.

By Lemma 3.3.15, we have

{yx, E(x, z, t, y)}
yx · E(x, z, t, y)

=
1

2
, (3.52)
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{xy, E(x, z, t, y)}
xy · E(x, z, t, y)

= 0, (3.53)

{zy, E(x, z, t, y)}
zy · E(x, z, t, y)

= 0, (3.54)

{yz, E(x, z, t, y)}
yz · E(x, z, t, y)

= −1

2
. (3.55)

Thus the right hand side of Equation 3.51 equals to

= 0 +
1

2
− 0 + 0− 0 + 0−

(
−1

2

)
= 1.

(3.56)

For the Fock-Goncharov algebra, we have

{τ, e2}3 = τ · e2,

we conclude that
{θT3(τ), θT3(e2)} = θT3({τ, e2}3).

4. Brackets of edge functions

Two graphs associate with two edge functions have at least one common point. By
symmetry, we have the following cases as in Figure 3.14.4.

(a) Let u, ν ∈ S1. Let x, α, ν, β, γ, y, u, z, s be cyclically ordered [x, α, ν, β, γ, y, u, z, s]
as in Figure 3.19,

Fig. 3.19:
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θT3(ε1) = θT3(B2(A,Γ, B,X)) =
γx

αx
· E(x, β, α, γ), (3.57)

θT3(ε2) = θT3(B1(A,Γ, B,X)) =
αβ

γβ
· E(x, β, γ, α), (3.58)

θT3(e1) = θT3(B2(Y, S, Z,X)) =
sx

yx
· E(x, z, y, s), (3.59)

θT3(e2) = θT3(B1(Y, S, Z,X)) =
yz

sz
· E(x, z, s, y). (3.60)

To simplify our calculations, let

E(x, β, α, γ) =
∆ ((x, β, α), (β, x, ν))

∆ ((x, β, γ), (β, x, ν))
,

E(x, z, y, s) =
∆ ((x, z, y), (z, x, u))

∆ ((x, z, s), (z, x, u))
.

By symmetry, we only have to verify that

i.
{θT3(ε1), θT3(e1)} = θT3({ε1, e1}3) = 0.

ii.
{θT3(ε1), θT3(e2)} = θT3({ε1, e2}3) = 0.

iii.
{θT3(ε2), θT3(e2)} = θT3({ε2, e2}3) = 0.

Proposition 3.3.21.

{θT3(ε1), θT3(e1)} = θT3({ε1, e1}3) = 0.

Proof. By Lemma 3.3.15, for any factor S of sx
yx ·

∆((x,z,y),(z,x,u))
∆((x,z,s),(z,x,u))

(S ∈ {sx, yx, xz, xu, zx, zu, yz, yx, yu}), we have

{S, E(x, β, α, γ)} = 0.

Thus we have {
E(x, β, α, γ),

sx

yx
· E(x, z, y, s)

}
= 0 (3.61)

Then by Lemma 3.3.15, we have

{γx, E(x, z, y, s)} = 0, (3.62)

and
{αx, E(x, z, y, s)} = 0. (3.63)
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Thus, by Leibniz’s rule, we have{
γx
αx · E(x, β, α, γ), sx

yx · E(x, z, y, s)
}

γx
αx · E(x, β, α, γ) · sxyx · E(x, z, y, s)

=
{γx, sx}
γx · sx

− {γx, yx}
γx · yx

− {αx, sx}
αx · sx

+
{αx, yx}
αx · yx

+
{γx, E(x, z, y, s)}
γx · E(x, z, y, s)

− {αx, E(x, z, y, s)}
αx · E(x, z, y, s)

+

{
E(x, β, α, γ), sx

yx · E(x, z, y, s)
}

E(x, β, α, γ) · sxyx · E(x, z, y, s)

=
1

2
− 1

2
− 1

2
+

1

2
+ 0− 0 + 0

= 0

(3.64)

Since
θT3({ε1, e1}3) = 0,

we conclude that

{θT3(ε1), θT3(e1)} = θT3({ε1, e1}3) = 0.

Similarly, we have

Proposition 3.3.22.

{θT3(ε1), θT3(e2)} = θT3({ε1, e2}3) = 0.

Proposition 3.3.23.

{θT3(ε2), θT3(e2)} = θT3({ε2, e2}3) = 0.

(b) Let u, ν ∈ S1. Let x, α, β, ν, γ, y, u, z, s be cyclically ordered [x, α, β, ν, γ, y, u, z, s]
as in Figure 3.20,

θT3(ε1) = θT3(B2(B,X,Γ, A)) =
xα

βα
· E(α, γ, β, x), (3.65)

θT ′3(ε2) = θT3(B1(B,X,Γ, A)) =
βγ

xγ
· E(α, γ, x, β), (3.66)

θT3(e1) = θT3(B2(Y, S, Z,X)) =
sx

yx
· E(x, z, y, s), (3.67)

θT3(e2) = θT3(B1(Y, S, Z,X)) =
yz

sz
· E(x, z, s, y). (3.68)

Similarly as Proposition 3.3.21, we have
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Fig. 3.20:

i.
{θT3(ε1), θT3(e1)} = θT3({ε1, e1}3) = 0,

ii.
{θT3(ε1), θT3(e2)} = θT3({ε1, e2}3) = 0,

iii.
{θT3(ε2), θT3(e1)} = θT3({ε2, e1}3) = 0,

iv.
{θT3(ε2), θT3(e2)} = θT3({ε2, e2}3) = 0.

(c) Let u, ν ∈ S1. Let x, α, β, ν, γ, u, y, z, s be cyclically ordered [x, α, β, ν, γ, u, y, z, s]
as in Figure 3.21, let

θT3(ε1) = θT3(B2(B,X,Γ, A)) =
xα

βα
· E(α, γ, β, x), (3.69)

θT ′3(ε2) = θT3(B1(B,X,Γ, A)) =
βγ

xγ
· E(α, γ, x, β), (3.70)

θT3(e1) = θT3(B2(X,Z, Y, S)) =
zs

xs
· E(s, y, x, z), (3.71)

θT3(e2) = θT3(B1(X,Z, Y, S)) =
xy

zy
· E(s, y, z, x). (3.72)

Similarly as Proposition 3.3.21, we have
i.

{θT3(ε1), θT3(e1)} = θT3({ε1, e1}3) = 0,

ii.
{θT3(ε1), θT3(e2)} = θT3({ε1, e2}3) = 0,
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Fig. 3.21:

iii.
{θT3(ε2), θT3(e2)} = θT3({ε2, e2}3) = 0.

(d) Let u, ν ∈ S1. Let x, α, ν, β, y, u, z, s be cyclically ordered [x, α, ν, β, y, u, z, s] as
in Figure 3.22, let

Fig. 3.22:

θT3(ε1) = θT3(B2(A, Y,B,X)) =
yx

αx
· E(x, β, α, y), (3.73)

θT3(ε2) = θT3(B1(A, Y,B,X)) =
αβ

yβ
· E(x, β, y, α), (3.74)



3. Fock-Goncharov algebra and swapping algebra 76

θT3(e1) = θT3(B2(Y, S, Z,X)) =
sx

yx
· E(x, z, y, s), (3.75)

θT3(e2) = θT3(B1(Y, S, Z,X)) =
yz

sz
· E(x, z, s, y). (3.76)

By symmetry, we only have to verify that

i.
{θT3(ε1), θT3(e1)} = θT3({ε1, e1}3) = 0.

ii.
{θT3(ε1), θT3(e2)} = θT3({ε1, e2}3) = 0.

iii.
{θT3(ε2), θT3(e2)} = θT3({ε2, e2}3) = 0.

Proposition 3.3.24.

{θT3(ε1), θT3(e1)} = θT3({ε1, e1}3) = 0.

Proof. To simplify our calculations, let

E(x, β, α, y) =
∆ ((x, β, α), (β, x, ν))

∆ ((x, β, y), (β, x, ν))
.

By Lemma 3.3.15, for any factor S of

∆ ((x, β, α), (β, x, ν)) = xβ · βx · αν − xν · βx · αβ − xβ · αx · βν,

we have
{S, E(x, z, y, s)} = 0.

Thus we have
{∆ ((x, β, α), (β, x, ν)) , E(x, z, y, s)} = 0.

Moreover, by Lemma 3.3.15, for r = x, ν, β, we have

{yr, E(x, z, y, s)}
yr · E(x, z, y, s)

= −1

2
.

Since ∆ (x, β, y), (β, x, ν)) = xβ · βx · yν − xν · βx · yβ − xβ · yx · βν, we have

{∆ ((x, β, y), (β, x, ν)) , E(x, z, y, s)}
∆ ((x, β, y), (β, x, ν)) · E(x, z, y, s)

= −1

2
. (3.77)

By Lemma 3.3.15, we have

{E(x, β, α, y), sx} = 0, (3.78)

{E(x, β, α, y), yx}
E(x, β, α, y) · yx

=
1

2
. (3.79)
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Thus we have{
yx
αx · E(x, β, α, y), sx

yx · E(x, z, y, s)
}

yx
αx · E(x, β, α, y) · sxyx · E(x, z, y, s)

=
{yx, sx}
yx · sx

− {yx, yx}
yx · yx

− {αx, sx}
αx · sx

+
{αx, yx}
αx · yx

+
{yx, E(x, z, y, s)}
yx · E(x, z, y, s)

− {αx, E(x, z, y, s)}
αx · E(x, z, y, s)

+
{E(x, β, α, y), sx}
E(x, β, α, y) · sx

− {E(x, β, α, y), yx}
E(x, β, α, y) · yx

+
{∆ ((x, β, α), (β, x, ν)) , E(x, z, y, s)}

∆ ((x, β, α), (β, x, ν)) · E(x, z, y, s)
− {∆ ((x, β, y), (β, x, ν)) , E(x, z, y, s)}

∆ ((x, β, y), (β, x, ν)) · E(x, z, y, s)

=
1

2
− 0− 1

2
+

1

2
+

(
−1

2

)
− 0 + 0− 1

2
+ 0−

(
−1

2

)
= 0

(3.80)
Since

θT3({ε1, e1}3) = 0,

we conclude that

{θT3(ε1), θT3(e1)} = θT3({ε1, e1}3) = 0.

Similarly, we have

Proposition 3.3.25.

{θT3(ε1), θT3(e2)} = θT3({ε1, e2}3) = 0.

Proposition 3.3.26.

{θT3(ε2), θT3(e2)} = θT3({ε2, e2}3) = 0.

(e) Let u, ν ∈ S1. Let x, α, β, ν, y, u, z, s be cyclically ordered [x, α, β, ν, y, u, z, s] as
in Figure 3.23, let

θT3(ε1) = θT3(B2(B,X, Y,A)) =
xα

βα
· E(α, y, β, x), (3.81)

θT ′3(e2) = θT3(B1(B,X, Y,A)) =
βy

xy
· E(α, y, x, β), (3.82)

θT3(e1) = θT3(B2(Y, S, Z,X)) =
sx

yx
· E(x, z, y, s), (3.83)

θT3(e2) = θT3(B1(Y, S, Z,X)) =
yz

sz
· E(x, z, s, y). (3.84)

By symmetry, we only have to verify that
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Fig. 3.23:

i.
{θT3(ε1), θT3(e1)} = θT3({ε1, e1}3) = 0,

ii.
{θT3(ε1), θT3(e2)} = θT3({ε1, e2}3) = 0.

Proposition 3.3.27.

{θT3(ε1), θT3(e1)} = θT3({ε1, e1}3) = 0.

Proof. To simplify our calculations, let

E(α, y, β, x) =
∆ ((α, y, β), (y, α, ν))

∆ ((α, y, x), (y, α, ν))
.

By Equation 3.77, we obtain that

{∆ ((α, y, β), (y, α, ν)) , E(x, z, y, s)}
(∆ ((α, y, β), (y, α, ν))) · E(x, z, y, s)

= −1

2
, (3.85)

{∆ ((α, y, x), (y, α, ν)) , E(x, z, y, s)}
(∆ ((α, y, x), (y, α, ν))) · E(x, z, y, s)

= −1

2
. (3.86)

Thus we have

{E(α, y, β, x), E(x, z, y, s)}
E(α, y, β, x) · E(x, z, y, s)

=

{
∆((α,y,β),(y,α,ν))
∆((α,y,x),(y,α,ν)) , E(x, z, y, s)

}
∆((α,y,β),(y,α,ν))
∆((α,y,x),(y,α,ν)) · E(x, z, y, s)

=

(
−1

2

)
−
(
−1

2

)
= 0.

(3.87)
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By Lemma 3.3.15, we obtain that

{xα, E(x, z, y, s)} = 0 (3.88)

{βα, E(x, z, y, s)} = 0 (3.89)

{E(α, y, β, x), sx} = 0 (3.90)

{E(α, y, β, x), yx} = 0 (3.91)

Thus we have{
xα
βα · E(α, y, β, x), sx

yx · E(x, z, y, s)
}

xα
βα · E(α, y, β, x) · sxyx · E(x, z, y, s)

=
{xα, sx}
xα · sx

− {xα, yx}
xα · yx

− {βα, sx}
βα · sx

+
{βα, yx}
βα · yx

+
{xα, E(x, z, y, s)}
xα · E(x, z, y, s)

− {βα, E(x, z, y, s)}
βα · E(x, z, y, s)

+
{E(α, y, β, x), sx}
α, y, β, x) · sx

− {E(α, y, β, x), yx}
α, y, β, x) · yx

+
{E(α, y, β, x), E(x, z, y, s)}
E(α, y, β, x) · E(x, z, y, s)

= 0− 0− 0 + 0 + 0− 0 + 0− 0 + 0

= 0.
(3.92)

Since
θT3({ε1, e1}3) = 0,

we conclude that

{θT3(ε1), θT3(e1)} = θT3({ε1, e1}3) = 0.

Similarly, we have

Proposition 3.3.28.

{θT3(ε1), θT3(e2)} = θT3({ε1, e2}3) = 0.

(f) Let w, v ∈ S1. Let x,m,w, y, v, z, t be cyclically ordered [x,m,w, y, v, z, t] as in
Figure 3.24. We have

θT3(K) = θT3(B2(Y, T, Z,X)) =
tx

yx
· E(x, z, y, t), (3.93)

θT3(L) = θT3(B1(Y, T, Z,X)) =
yz

tz
· E(x, z, t, y), (3.94)

θT3(A) = θT3(B2(M,Z, Y,X)) =
zx

mx
· E(x, y,m, z), (3.95)

θT3(B) = θT3(B1(M,Z, Y,X)) =
my

zy
· E(x, y, z,m). (3.96)

By symmetry, we only have to verify that
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Fig. 3.24:

i.
{θT3(K), θT3(A)} = θT3({K, A}3) = −θT3(K) · θT3(A),

ii.
{θT3(K), θT3(B)} = θT3({K, B}3) = 0,

iii.
{θT3(L), θT3(B)} = θT3({L, B}3) = 0,

We start with a lemma.

Lemma 3.3.29.
{E(x, y,m, z), E(x, z, y, t)} = 0. (3.97)

Proof. To simplify our calculations, let

E(x, y,m, z) =
∆ ((x, y,m), (y, x, w))

∆ ((x, y, z), (y, x, w))
.

By Equation 3.77, we have

{∆ ((x, y,m), (y, x, w)) , E(x, z, y, t)}
∆ ((x, y,m), (y, x, w)) · E(x, z, y, t)

= −1

2
.

By Equation 3.50, we have

{zx, E(x, z, y, t)} = 0. (3.98)

By Lemma 3.3.3, let

E(x, z, y, t) =
∆ ((x, z, y), (v1, v2, v3))

∆ ((x, z, t), (v1, v2, v3))
,
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where v1, v2, v3 are in the interior of the arc zt_. By Equation 2.11, we have

{zw, ∆ ((x, z, y), (v1, v2, v3))}

=
1

2
· zw ·∆ ((x, z, y), (v1, v2, v3))− yw ·∆ ((x, z, z), (v1, v2, v3))

=
1

2
· zw ·∆ ((x, z, y), (v1, v2, v3))

(3.99)

and

{zw, ∆ ((x, z, t), (v1, v2, v3))} =
1

2
· zw ·∆ ((x, z, y), (v1, v2, v3)) , (3.100)

so
{zw, E(x, z, y, t)}
zw · E(x, z, y, t)

=
1

2
− 1

2
= 0. (3.101)

We calculate five terms of type {a, b}a·b by using Lemma 3.3.15 as in table below:

a \ b E(x, z, y, t)

xy 0

yx −1/2

zw

xw 0

zy 0

zx

yw −1/2

.

Since ∆ ((x, z, y), (y, x, w)) = xy · zx · yw + xw · zy · yx− xy · zw · yx, we have

{∆ ((x, y, z), (y, x, w)) , E(x, z, y, t)}
∆ ((x, y, z), (y, x, w)) · E(x, z, y, t)

= −1

2
(3.102)

Thus we have
{E(x, y,m, z), E(x, z, y, t)}
E(x, y,m, z) · E(x, z, y, t)

=

(
−1

2

)
−
(
−1

2

)
= 0.

(3.103)

We conclude that
{E(x, y,m, z), E(x, z, y, t)} = 0.

Proposition 3.3.30.
{θT3(K), θT3(A)}
θT3(K) · θT3(A)

= −1.
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Proof. We have{
tx
yx · E(x, z, y, t), zx

mx · E(x, y,m, z)
}

tx
yx · E(x, z, y, t) · zxmx · E(x, y,m, z)

=
{tx, zx}
tx · zx

− {tx, mx}
tx ·mx

− {yx, zx}
yx · zx

+
{yx, mx}
yx ·mx

+
{tx, E(x, y,m, z)}
tx · E(x, y,m, z)

− {yx, E(x, y,m, z)}
yx · E(x, y,m, z)

+
{E(x, z, y, t), zx}
E(x, z, y, t) · zx

− {E(x, z, y, t), mx}
E(x, z, y, t) ·mx

+
{E(x, z, y, t), E(x, y,m, z)}
E(x, z, y, t) · E(x, y,m, z)

.

(3.104)

By Lemma 3.3.15, we have

{tx, E(x, y,m, z)} = 0, (3.105)

{E(x, z, y, t), mx} = 0. (3.106)

By Equation 3.50, we have

{yx, E(x, y,m, z)} = 0, (3.107)

{E(x, z, y, t), zx} = 0. (3.108)

Together with Lemma 3.3.29, the right hand side of Equation 3.104 equals to

=

(
−1

2

)
−
(
−1

2

)
− 1

2
+

(
−1

2

)
+ 0− 0 + 0− 0 + 0

= −1.

(3.109)

We conclude that
{θT3(K), θT3(A)}
θT3(K) · θT3(A)

= −1.

Proposition 3.3.31.
{θT3(K), θT3(B)} = 0.
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Proof. We have{
tx
yx · E(x, z, y, t), my

zy · E(x, y, z,m)
}

tx
yx · E(x, z, y, t) · myzy · E(x, y, z,m)

=
{tx, my}
tx ·my

− {tx, zy}
tx · zy

− {yx, my}
yx ·my

+
{yx, zy}
yx · zy

+
{tx, E(x, y, z,m)}
tx · E(x, y, z,m)

− {yx, E(x, y, z,m)}
yx · E(x, y, z,m)

+
{E(x, z, y, t), my}
E(x, z, y, t) ·my

− {E(x, z, y, t), zy}
E(x, z, y, t) · zy

+
{E(x, z, y, t), E(x, y, z,m)}
E(x, z, y, t) · E(x, y, z,m)

.

(3.110)

By Lemma 3.3.15, we have

{tx, E(x, y, z,m)} = 0, (3.111)

{E(x, z, y, t), my} = 0, (3.112)

{E(x, z, y, t), zy} = 0. (3.113)

By Equation 3.50, we have

{yx, E(x, y, z,m)} = 0. (3.114)

With Lemma 3.3.29, the right hand side of Equation 3.110 equals to

= 0− 0− 0 + 0 + 0− 0 + 0− 0 + 0

= 0

(3.115)

We conclude that
{θT3(K), θT3(B)} = 0.

Proposition 3.3.32.
{θT3(L), θT3(B)} = 0.

Proof. We have{
yz
tz · E(x, z, t, y), my

zy · E(x, y, z,m)
}

yz
tz · E(x, z, t, y) · myzy · E(x, y, z,m)

=
{yz, my}
yz ·my

− {yz, zy}
yz · zy

− {tz, my}
tz ·my

+
{tz, zy}
tz · zy

+
{yz, E(x, y, z,m)}
yz · E(x, y, z,m)

− {tz, E(x, y, z,m)}
tz · E(x, y, z,m)

+
{E(x, z, t, y), my}
E(x, z, t, y) ·my

− {E(x, z, t, y), zy}
E(x, z, t, y) · zy

+
{E(x, z, t, y), E(x, y, z,m)}
E(x, z, t, y) · E(x, y, z,m)

.

(3.116)
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By Lemma 3.3.15, we have

{yz, E(x, y, z,m)} = 0, (3.117)

{tz, E(x, y, z,m)} = 0, (3.118)

{E(x, z, t, y), my} = 0, (3.119)

{E(x, z, t, y), zy} = 0. (3.120)

Together with Lemma 3.3.29, the right hand side of Equation 3.116 equals to

= 0− 0− 0 + 0 + 0− 0 + 0− 0 + 0

= 0

(3.121)

We conclude that
{θT3(L), θT3(B)} = 0.

(g) Let w, v ∈ S1. Let x,m,w, y, v, z, t be cyclically ordered [x,m,w, y, v, z, t] as in
Figure 3.24. We have

θT3(K) = θT3(B2(Y, T, Z,X)) =
tx

yx
· E(x, z, y, t), (3.122)

θT3(L) = θT3(B1(Y, T, Z,X)) =
yz

tz
· E(x, z, t, y), (3.123)

Proposition 3.3.33.
{θT3(K), θT3(L)} = 0.

Proof. To simplify our calculations, let

E(x, z, y, t) =
1

E(x, z, t, y)
=

∆ ((x, z, y), (z, x, v))

∆ ((x, z, y), (z, x, v))
.

We have {
tx
yx · E(x, z, y, t), yz

tz · E(x, z, t, y)
}

tx
yx · E(x, z, y, t) · yztz · E(x, z, t, y)

=
{tx, yz}
tx · yz

− {tx, tz}
tx · tz

− {yx, yz}
yx · yz

+
{yx, tz}
yx · tz

+
{tx, E(x, z, t, y)}
tx · E(x, z, t, y)

+
{yx, E(x, z, t, y)}
yx · E(x, z, t, y)

+
{E(x, z, y, t), yz}
E(x, z, y, t) · yz

− {E(x, z, y, t), tz}
E(x, z, y, t) · tz

.

(3.124)

We calculate four terms of type {a, b}a·b by using Lemma 3.3.15 as in the table
below:
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a \ b yz tz ∆((x,z,t),(z,x,v))
∆((x,z,y),(z,x,v))

tx 1/2

yx 1/2
∆((x,z,y),(z,x,v))
∆((x,z,t),(z,x,v)) −1/2 −1/2

.

Thus the right hand side of Equation 3.124 equals to

= 0−
(

1

2

)
−
(
−1

2

)
+ 0 +

1

2
− 1

2
+

(
−1

2

)
−
(
−1

2

)
+ 0

= 0.

(3.125)

Since
θT3({K, L}3) = 0,

we conclude that
{θT3(K), θT3(L)}
θT3(K) · θT3(L)

= 0.

We conclude that the monomorphism θT3 is Poisson.

3.4 Poisson embedding

For a disk with k(k ≥ 3) marked points on the boundary, given an ideal triangulation
T and its n-triangulation Tn for n ≥ 2. We have the Fock–Goncharov rings {A(Tn)}n=2,
We consider the relations among {A(T2),A(T3), ...}. In fact, A(Tk) is naturally Poisson
embedded in A(Tk+1) for k = 2, 3. Hence, A(T2) is Poisson embedded in A(Tk) for all
k = 3, 4.

3.4.1 Poisson embedding τ2

Definition 3.4.1. We consider a ring homomorphism τ2 from A(T2) to A(T3) by extending
the following map on generators for each triangle of T to A(T2):

τ2(A) = A′B′,

τ2(B) = C ′D′,

τ2(C) = E′F ′.

Proposition 3.4.2. The ring homomorphism τ2 is injective.

Proof. If τ2(P (α1, ..., αm)) = P (τ2(α1), ..., τ2(αm)) = 0, where P (α1, ..., αm) is a polynomi-
al of the edge functions (α1, ..., αm) in A(T2). Let τ2(αi) = βiγi for i = 1, ...,m. By observ-
ing that β1, γ1, ..., βm, γm are different from each other. Since there is no algebraic relation
among {β1, γ1, ..., βm, γm}. So, there is no algebraic relation among {τ2(α1), ..., τ2(αm)}.
We have P (α1, ..., αm) = 0. We conclude that τ2 is injective.
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Fig. 3.25:

Proposition 3.4.3. The ring homomorphism τ2 is Poisson.

Proof. By symmetry, we only have to verify that if

{τ2(A), τ2(C)}3 = τ2 ◦ {A,C}2.

The notations are shown in Figure 3.25, We have

{τ2(A), τ2(C)}3 = {A′B′, E′F ′}3 = A′B′E′F ′ = τ2(A)τ2(C) = τ2(AC) = τ2 ◦ {A,C}2.

Let i be the natural embedding from B2(P) to B3(P).

Proposition 3.4.4. The following diagram of ring homomorphisms commutes:

A(T2)
τ2−−−−→ A(T3)yθT2 yθT3

B2(P)
i−−−−→ B3(P)

Which means that θT3 ◦ τ2 = i ◦ θT2 .

Proof. By definitions of these ring homomorphisms, we only have to check one generator
of A(T2). By Formula 3.28, 3.29, we have

θT3 ◦ τ2

(
Ω
(
ŷ1 ∧ ẑ1

)
Ω
(
t̂1 ∧ ẑ1

) · Ω
(
t̂1 ∧ x̂1

)
Ω (ŷ1 ∧ x̂1)

)
=
yz

tz
· tx
yx
,
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i ◦ θT2

(
Ω
(
ŷ1 ∧ ẑ1

)
Ω
(
t̂1 ∧ ẑ1

) · Ω
(
t̂1 ∧ x̂1

)
Ω (ŷ1 ∧ x̂1)

)
= i

(
yz

tz
· tx
yx

)
=
yz

tz
· tx
yx
.

We conclude that θT3 ◦ τ2 = i ◦ θT2 .

3.4.2 Poisson embedding τ3

Definition 3.4.5. We consider a ring homomorphism τ3 from A(T3) to A(T4) by extending
the following map on generators for each xyz and xzt of T to A(Tn):

τ3(Bi,3−i(Y, T, Z,X))) = Bi+1,3−i(Y, T, Z,X))Bi,4−i(Y, T, Z,X)),

τ3(T1,1,1(X,Z, Y )) = T2,1,1(X,Z, Y ) · T1,2,1(X,Z, Y ) · T1,1,2(X,Z, Y ).

Proposition 3.4.6. The ring homomorphism τ3 is injective.

Proof. As in Proposition 3.4.1, to proof τ3 is injective, we have to proof the algebraic
independence of {τ3(B1,2(Y, T, Z,X))), τ3(B2,1(Y, T, Z,X))), τ3(T1,1,1(X,Z, Y )), ...}. Since
the Fock–Goncharov coordinates {B1,3(Y, T, Z,X)), B2,2(Y, T, Z,X)), B3,1(Y, T, Z,X)),
T2,1,1(X,Z, Y ), T1,2,1(X,Z, Y ), T1,1,2(X,Z, Y )...} are algebraic independent. With

τ3(B1,2(Y, T, Z,X))) = B2,2(Y, T, Z,X))B1,3(Y, T, Z,X)),

τ3(B2,1(Y, T, Z,X))) = B3,1(Y, T, Z,X))B2,2(Y, T, Z,X)),

τ3(T1,1,1(X,Z, Y )) = T2,1,1(X,Z, Y ) · T1,2,1(X,Z, Y ) · T1,1,2(X,Z, Y ),

we have that {τ3(B1,2(Y, T, Z,X))), τ3(B2,1(Y, T, Z,X))), τ3(T1,1,1(X,Z, Y )), ...} are alge-
braic independent. We conclude that τ3 is injective.

Proposition 3.4.7. The ring homomorphism τ3 is Poisson.

Proof. By symmetry, as in Figure 3.26, we only have to verify

{τ3(A), τ3(F )}4 = τ3 ◦ {A,F}3,

{τ3(G), τ3(A)}4 = τ3 ◦ {G,A}3,
{τ3(B), τ3(G)}4 = τ3 ◦ {B,G}3,
{τ3(A), τ3(E)}4 = τ3 ◦ {A,E}3 = 0,

{τ3(A), τ3(D)}4 = τ3 ◦ {A,D}3 = 0.

By calculations, we have

{τ3(A), τ3(F )}4 = {A′B′, I ′H ′}4 = A′B′I ′H ′ = τ3 ◦ {A,F}3,

{τ3(G), τ3(A)}4 = {J ′K ′L′, A′B′}4 = J ′K ′L′A′B′ = τ3 ◦ {G,A}3,
{τ3(B), τ3(G)}4 = {B′C ′, J ′K ′L′}4 = B′C ′J ′K ′L′ = τ3 ◦ {B,G}3,

{τ3(A), τ3(E)}4 = 0,

{τ3(A), τ3(D)}4 = 0.

We conclude that τ3 is Poisson.

Corollary 3.4.8. The ring homomorphism τ2 ◦ τ3 is a Poisson embedding.
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Fig. 3.26:



4. SWAPPING ALGEBRA AND THE DISCRETE VERSION OF THE SPACE
OF OPERS
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In this chapter, we relate the rank 2 swapping multifraction algebra to the Virasoro
algebra on a hypersurface of the configuration spaceMN,1 of N twisted polygons in RP1.
In §4.1, we recall the central extension, Virasoro algebra, Hill’s operators and some of their
properties. In §4.2, we recall the configuration spaceMN,n of N -twisted polygons in RPn.
When (N,n + 1) = 1, we recall a coordinate system of MN,n [SOT] [KS]. In §4.3, we
asymptotically identify the rank 2 swapping algebra with the dual of Virasoro algebra on
a hypersurface ofMN,1. In §4.4, we asymptotically identify the Schwartz algebra with the
dual of Virasoro algebra on a hypersurface of MN,1. We prove that swapping bracket is
compatible with Schwartz bracket onMN,1.

4.1 Virasoro algebra and Hill’s operators

This section is for the purpose of self-contained, which is not original. we recall the
definition of central extension, Virasoro algebra, Hill’s operators and some well known
facts. We refer to [KW] , [OT] and [S1] for further details.

4.1.1 Central extension

Let g be a Lie algebra, let n be a vector space.

Definition 4.1.1. [2-cocycle] The map ω : g × g → n is a 2-cocycle if ω is bilinear,
antisymmetric and satisfies the cocycle identity

ω([X,Y ], Z) + ω([Z,X], Y ) + ω([Y, Z], X) = 0. (4.1)

Definition 4.1.2. [2-coboundary] A 2-cocycle ω on g with values in n is called a 2-
coboundary if there exists a linear map α : g→ n such that

ω(X,Y ) = α([X,Y ])

for all X,Y ∈ g.

Proposition 4.1.3. [Chapter 1 Section 3.1 in [KW]] Let ω : g× g→ n be a bilinear
2-form. Let

ĝ := g
⊕

n

be a vector space equipped with the following bracket:

[(X,u), (Y, v)] = ([X,Y ], ω(X,Y )). (4.2)

Then ĝ is a Lie algebra if and only if ω is a 2-cocycle.

Definition 4.1.4. [central extension] A central extension defined by a 2-cocycle ω :
g× g→ n of a Lie algebra g by a vector space n is a Lie algebra ĝ whose underlying vector
space ĝ = g

⊕
n is equipped with the following Lie bracket:

[(X,u), (Y, v)] = ([X,Y ], ω(X,Y )). (4.3)



4. Swapping algebra and the discrete version of the space of opers 91

One can easily see that the central extension defined by a 2-coboundary becomes the
trivial extension by the zero cocycle after the change of coordinates (X,u)→ (X,u−α(X)).
Moreover, we have the following proposition.

Proposition 4.1.5. [Chapter 1 Proposition 3.4 in [KW]] There is a one-to-one
correspondence between equivalence classes of central extensions of g by n and the elements
of H2(g, n).

4.1.2 Virasoro algebra

We denote d
dθ by ∂θ.

Definition 4.1.6. [Lie algebra Vect(S1)] Let Vect(S1) be the space of all the smooth
vector fields on S1. After fixing a coordinate θ on the circle S1, any smooth vector field on
S1 can be written as f(θ)∂θ, where f is a smooth function on S1. Under this identification,
the Lie bracket of two elements f(θ)∂θ, g(θ)∂θ in Vect(S1) is given by

[f(θ)∂θ, g(θ)∂θ] = (f ′(θ)g(θ)− g′(θ)f(θ))∂θ. (4.4)

where f ′(θ) denotes the derivative in θ of the function f(θ). The Lie algebra Vect(S1) is
the vector space Vect(S1) equipped with the Lie bracket defined above.

Since f(θ) is smooth in S1, we have the Fourier coefficient decomposition

f(θ) =

∞∑
k=−∞

fke
ikθ,

where fj ∈ C.

Definition 4.1.7. [Witt algebra] Let Lk := ieikθ∂θ. The Witt algebra Witt is the Lie
subalgebra of Vect(S1)

⊗
C generated by {Lk}∞k=−∞. The restriction of the Lie bracket is

the Witt bracket given by
[Lm, Ln] = (m− n)Lm+n. (4.5)

for any m,n ∈ Z.

Definition 4.1.8. [Virasoro algebra] The map ωGF : Witt×Witt→ R given by

ω (f(θ)∂θ, g(θ)∂θ) =

∫
S1

f ′(θ)g′′(θ)dθ (4.6)

is a nontrivial 2-cocycle on Witt, called the Gelfand–Fuchs cocycle. The corresponding
central extension of Witt is called the Virasoro algebra and is denoted by vir.

Proposition 4.1.9. [Chapter 2 Proposition 2.3 in [KW]] Let ω be a 2-cocycle of
Witt. Let δa,b = 1 if a = b, δa,b = 0 if a 6= b . Then there are two constants c1, c2 such that

ω(Ln, Lm) = (c1 · n3 + c2 · n) · δn,−m. (4.7)

When c1 = 0, ω is a 2-coboundary.

Remark 4.1.10. For Gelfand-Fuchs 2-cocycle, we have

ωGF (Ln, Lm) = i · n3 · δn,−m. (4.8)
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4.1.3 Hill’s operators

Definition 4.1.11. [Hill’s operator and Hill’s equation] Let a ∈ R. Let H(t) ∈
C2(R,R) with H(s) = H(s+1) for any s ∈ R. Then the Hill’s operator defined by (H(S), a)

is a map a d2

ds2
+H(s) from C2(R,R) to C0(R,R). When

a · d2X(s)

ds2
+H(s) ·X(s) = 0

for any s ∈ R, we say X(s) ∈ C2(R,R) is a solution of the Hill’s equation ad2X(s)
ds2

+H(s) ·
X(s) = 0.

We can also consider H as a function belongs to C2(S1,R). By definition, the dual
space of Vect(S1) is the space of the quadratic differential

Ω⊗2 :=
{
H(θ)(dθ)2 | H(θ) ∈ C2(S1,R)

}
.

The dual space of vir is

vir∗ :=
{

(H(θ)(dθ)2, a) | H(θ) ∈ C2(S1,R), a ∈ R
}

We identify vir∗ with the space of Hill’s operators{
a

d2

dθ2
+H(θ) | H(θ) ∈ C2(S1,R), a ∈ R

}
.

Later on, we consider the hyperplane
{
− d2

dθ2
+H(θ) | H(θ) ∈ C2(S1,R)

}
.

Definition 4.1.12. [Schwarzian derivative] Let u ∈ C2(R,R). Then the Schwarzian
derivative of u is

S(u) :=
u′u′′′ − 3

2 (u′′)2

(u′)2 (4.9)

Proposition 4.1.13. [Chapter 1 Section 1.2 in [OT]] Let us fix x, x1, x2, x3, x4 ∈ R.
Let [a : b : c : d] := a−c

a−d ·
b−d
b−c . The Schwarzian derivative S(u)(x) satisfies for all small ε

[u(x+ x1ε) : u(x+ x2ε) : u(x+ x3ε) : u(x+ x4ε)] = [x1 : x2 : x3 : x4]− 2 S(u)(x)ε2 +O(ε3).
(4.10)

There is a well known result which relates the Hill’s operator to the Schwarzian deriva-
tive.

Proposition 4.1.14. [Chapter 2 Proposition 2.9 in [KW]] If f, g are two linear
independent solutions of the Hill’s equation for (H(s),−1). Let u = f

g . Let S(u) be the
Schwarzian derivative of u. Then, we have

H(t) = −1

2
· S(u)(t) (4.11)
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4.2 The configuration space of N -twisted polygons in RPn

Discrete integrable system of the configuration spaceMN,n of RPn is considered by
L. Faddeev, A. Yu. Volkov [FV] for n = 1, R. Schwartz, V. Ovsienko and S. Tabachnikov
[SOT] for n = 2 and B. Khsein, F. Soloviev [KS] for n in general. When (N,n+ 1) = 1, a
coordinate system ofMN,n is given in [SOT] and [KS], we recall in our own way.

4.2.1 Configuration space of N -twisted polygons

Definition 4.2.1. [Configuration space of N-twisted polygons in RPn] A N -
twisted polygon in RPn is a map f from Z to RPn such that for any k ∈ Z, we have
f(k + N) = Mf · f(k) where Mf belongs to PSLn+1(R). We call Mf the monodromy of
the N -twisted polygon in RPn. We say that f is in general position if for any k ∈ N, the
points {f(k + i− 1)}n+1

i=1 are in general position in RPn.
The configuration space of N -twisted polygons in RPn, denoted byMN,n, is the space

of the N -twisted polygons in general position in RPn up to projective transformations.

Remark 4.2.2. If f is in general position, the monodromy is determined by f .

We a similar definition for Rn+1 \ {0}.
Definition 4.2.3. [Configuration space of N-twisted polygons in Rn+1 \ {0}] A
N -twisted polygon in Rn+1 \{0} is a map f̂ from Z to Rn+1 \{0} such that for any k ∈ Z,
we have f̂(k+N) = G

f̂
· f̂(k) where G

f̂
belongs to GLn+1(R). We call G

f̂
the monodromy

of the N -twisted polygon in Rn+1 \ {0}. We say that f̂ is in general position if for any
k ∈ N, the points {f̂(k + i− 1)}n+1

i=1 are in general position in Rn+1 \ {0}.

The configuration space of N -twisted polygons in Rn+1 \{0}, denoted by M̂N,n, is the
space of the N -twisted polygons in general position in Rn+1 \ {0} up to linear transforma-
tions.

Remark 4.2.4. 1. There is a natural projection πN from M̂N,n toMN,n given by:

πN (f̂) = f, (4.12)

where f̂ = (..., f̂(1), f̂(2), ...) and f = (..., f(1), f(2), ...) with for any j ∈ Z,

f̂(j) = (X1,j , ..., Xn+1,j) ∈ Rn+1 \ {0}

and
f(j) = [X1,j , ..., Xn+1,j ] ∈ RPn.

2. For n = 2,MN,2 is the configuration space considered by Richard Schwartz, Valentin
Ovsienko and Sergei Tabachnikovin in [SOT]. They constructed a Poisson struc-
ture(discrete version of Gelfand–Dickey second Poisson structure) such that the pen-
tagram map defined in Introduction of [SOT] relative to this Poisson structure is
completely integrable.

3. For n = 1, MN,1 should be thought as a discrete version of the space of the Hill’s
operators. We will construct a Poisson structure onMN,1 from the swapping algebra
in the next section.
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4.2.2 Construction of a coordinate system

The configuration space of N -twisted polygons in RPn is a discrete version of quasi
periodic curves in RPn. In the continuous case, there is a one to one map between quasi
periodic curves without inflection points in RPn up to projective transformations and
generic (n + 1)-th order linear differential operators up to some relations, since a curve
without inflection points in RPn up to projective translations is interpreted as n+1 linearly
independent solutions of one generic (n+1)-th order linear differential operator up to some
relations.

In [SOT], they give the (a, b)-coordinates for MN,2 when (N, 3) = 1. In [KS], they
generalize the (a, b)-coordinates forMN,n without much detail. We recall this coordinate
system in our own way.

For any element
f̂ = (..., f̂(1), f̂(2), ...) ∈ M̂N,n,

where
f̂(j) = (X1,j , ..., Xn+1,j) ∈ Rn+1,

for any k ∈ Z, since {f̂(k−i)}ni=0 are in general position, the n+1 vectors f̂(k−n), ..., f̂(k)

are linearly independent, but the n + 2 vectors f̂(k − n), ..., f̂(k + 1) are not linearly
independent, so there are (ak,k−n, ..., an+1,k−n) ∈ Rn+1 such that

Xi,k+1 = a1,k−nXi,k + a2,k−nXi,k−1 + ...an,k−nXi,k−n+1 + an+1,k−nXi,k−n (4.13)

for i = 1, ..., n+ 1, where

aj,k−n =
det
(
f̂(k − n), ..., f̂(k − j − 1), f̂(k − j), f̂(k + 1), f̂(k + 2− j), ..., f̂(k)

)
det
(
f̂(k − n), ..., f̂(k)

) .

For i = 1, ..., n+ 1, k ∈ Z, ai,k−n is considered as a map from M̂N,n to R.

As we vary k, we get a family of functions {a1,k, ..., an+1,k}∞k=−∞. Since f̂(k + N) =

Gf · f̂(k), we have ai,k = ai,k+N . Thus we have

Proposition 4.2.5. The functions {a1,k, ..., an+1,k}Nk=1 defines a coordinate system of
M̂N,n.

Proof. We have already shown that given an element in M̂N,n, we obtain a set {a1,k, ..., an+1,k}Nk=1.
Given a set {a1,k, ..., an+1,k}Nk=1, we want to get an element in M̂N,n. Since the elements
in M̂N,n is equivalent under GL(n,R), for any element

f̂ = (..., f̂(1), f̂(2), ...) ∈ M̂N,n,

where
f̂(j) = (X1,j , ..., Xn+1,j) ∈ Rn+1,
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we suppose that
(
f̂(0), ..., f̂(n)

)
= In+1,n+1.

Then, given {a1,k, ..., an+1,k}Nk=1, we get {a1,k, ..., an+1,k}∞k=−∞ with ai,k = ai,k+N . We
obtain an element {f̂(i)}∞i=−∞ belongs to M̂N,n through Equations 4.13.

Corollary 4.2.6. dimM̂N,n = (n+ 1) ·N .

Proof. By counting the cardinal of variables in {a1,k, ..., an+1,k}Nk=1, we have dimM̂N,n =
n ·N .

We generalize Proposition 4.1 in [SOT] by using the same method to give a coordinate
system ofMN,n when (N,n+ 1) = 1.

Definition 4.2.7. Let c 6= 0, let π be the natural projection from M̂N,n to MN,n. Let
M̂N,n

c
be the subset of M̂N,n such that for any g ∈ M̂N,n

c
, we have

det (g(k), ..., g(k + n)) = c 6= 0 (4.14)

for any k ∈ Z.

Lemma 4.2.8. For any f ∈MN,n, we have a unique g ∈ M̂N,n
c
such that π(g) = f .

Proof. For any element
f = (..., f(0), f(1), ...) ∈MN,n,

we lift f to
f̂ = (..., f̂(0), f̂(1), ...) ∈ M̂N,n

where
f̂(j) = (X1,j , ..., Xn+1,j) ∈ Rn+1

for any j ∈ Z. The general position property implies that det
(
f̂(k), ..., f̂(k + n)

)
6= 0 for

any k ∈ Z. We rescale g(j) = tj · f̂(j) (where g(j) = (Y1,j , ..., Yn+1,j) for any j ∈ Z) such
that

det (g(k), ..., g(k + n)) = c 6= 0 (4.15)

for any k ∈ Z. We obtain that

tk · · · tk+n =
c

det
(
f̂(k), ..., f̂(k + n)

) (4.16)

for k = 1, ..., N with the convention j + N = j. Since (N,n + 1) = 1, Equations 4.16
have a unique solution. We conclude that there is a unique g belongs to M̂N,n

c
such that

π(g) = f .

When we restrict M̂N,n to the subspace M̂N,n
c
, Equations 4.13 becomes into

Yi,k+1 = b1,k−nYi,k + b2,k−nYi,k−1 + ...bn,k−nYi,k−n+1 + (−1)nYi,k−n. (4.17)

Similarly to Proposition 4.2.5, we have



4. Swapping algebra and the discrete version of the space of opers 96

Lemma 4.2.9. The functions {b1,k, ..., bn,k}Nk=1 defines a coordinate system of M̂N,n
c
.

Combining Lemma 4.2.8 and Lemma 4.2.9, we have

Proposition 4.2.10. When (N,n + 1) = 1, the functions {b1,k, ..., bn,k}Nk=1 defines a
coordinate system ofMN,n.

Corollary 4.2.11. dimMN,n = n ·N .

Proof. By counting the cardinal of variables in {b1,k, ..., bn,k}Nk=1, we have dimMN,n =
n ·N .

Later on, we only consider the case n = 1.

4.3 Large N asymptotic relation between the swapping algebra and the Virasoro
algebra

By considering a cross ratio coordinate system {Bk}Nk=1 ofMN,1, we define a Poisson
structure on R(B1, ..., BN ) through the swapping algebra, which is asymptotic to the dual
of some Poisson algebra generated by Virasoro algebra.

4.3.1 The discrete Hill’s operator and the cross-ratios

Definition 4.3.1. [Discrete Hill’s equation] Let N ≥ 1 be an integer. Given a
periodic sequence {Hk}∞k=−∞ in R where HN+k = Hk for any k ∈ Z. The discrete Hill’s
equation is the difference equation in {Ck}∞k=−∞:

Ck+1 =

(
Hk

N2
+ 2

)
· Ck − Ck−1, (4.18)

for any k belongs to Z.

We define {Hk}∞k=−∞ to be a discrete Hill’s operator, and {Ck}∞k=−∞ as in Equation
4.18 is the solution to the discrete Hill’s equation.

By Proposition 4.2.10, we have

Corollary 4.3.2. Let N be an odd integer. For any f ∈ MN,1, let bk = bk(f) be the
coordinate system ofMN,1. Let

Hk = (bk − 2) ·N2.

Let {Xi}∞i=−∞ and {Yi}∞i=−∞ are two solutions to the Hill’s equation 4.18 with the initial
conditions

X0 = 0, X1 = 1, Y0 = 1, Y1 = 0.

Let
fi =

Xi

Yi
,

let f̂ = {[fi : 1]}∞i=−∞ ∈MN,1, then bk(f̂) = bk(f).
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Remark 4.3.3. Let N be an odd integer. Since Hk is linear to bk, {Hk}Nk=1 is also a
coordinate system ofMN,1.

Notation 4.3.4. Let c1, ..., cn ∈ R, the continued fraction

[c1; c2, ..., cn] := c1 +
1

c2 +
1

. . . +
1

cn

.

Proposition 4.3.5. Let N ≥ 4,

1. for n ≥ 2, we have
fn = [−b1; b2,−b3, ..., (−1)n−1bn−1]; (4.19)

2. for k ≥ 2, we have

b2k+1 = (f3 − f2) · f3 − f2

f3 − f4
· f4 − f5

f4 − f3
· · · · · f2k − f2k+1

f2k − f2k−1
· f2k+2 − f2k

f2k+2 − f2k+1
, (4.20)

and for any k ≥ 1, we have

bk · bk+1 = [fk−1, fk+2, fk+1, fk]. (4.21)

Proof. 1. We prove Formula 4.19 by induction on n. By Formula 4.18, we have Xk+1 =
bkXk − Xk−1 and Yk+1 = bkYk − Yk−1 for any k ∈ Z. Since X0 = 0, X1 = 1, Y0 =
1, Y1 = 0, we have

X2 = b1, X3 = b1b2 + 1, X4 = b1b2b3− b1− b3, Y2 = −1, Y3 = −b2, Y4 = −b2b3 + 1.

Then, we obtain that

f2 = −b1, f3 = −b1 +
1

b2
, f4 = [−b1; b2,−b3, b4].

So Formula 4.19 is true for n = 2, 3, 4. Suppose that for n = k,

fk =
Xk

Yk
=
bk−1Xk−1 −Xk−2

bk−1Yk−1 − Yk−2
= [−b1; b2,−b3, ..., (−1)k−1bk−1]. (4.22)

For n = k + 1

fk+1 =
Xk+1

Yk+1
=
bkXk −Xk−1

bkYk − Yk−1
=
bk−1Xk−1 −Xk−2 − Xk−1

bk

bk−1Yk−1 − Yk−2 − Yk−1

bk

=

(
bk−1 − 1

bk

)
·Xk−1 −Xk−2(

bk−1 − 1
bk

)
· Yk−1 − Yk−2

(4.23)

By substitute bk−1 − 1
bk

for bk−1 in the continued fraction fk, we have

fk+1 =

[
−b1; b2,−b3, ..., (−1)k−1(bk−1 −

1

bk
)

]
= [−b1; b2,−b3, ..., (−1)k−1bk−1, (−1)kbk)].

(4.24)

We conclude that the formula fn = [−b1; b2,−b3, ..., (−1)n−1bn−1] for n ≥ 2.
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2. For any k ≥ 0, we have

Xk+1Yk −XkYk+1 = (bkXk −Xk−1) · Yk −Xk · (bkYk − Yk−1) = XkYk−1 −Xk−1Yk

= ... = X1Y0 −X0Y1 = 1,
(4.25)

fk+1 − fk =
Xk+1

Yk+1
− Xk

Yk
=

1

YkYk+1
, (4.26)

fk+2 − fk =
Xk+2

Yk+2
− Xk

Yk
=
Xk+2Yk −XkYk+2

YkYk+2

=
(bk+1Xk+1 −Xk) · Yk −Xk · (bk+1Yk+1 − Yk)

YkYk+2
=

bk+1

YkYk+1
.

(4.27)

By the above formulas, we conclude that for any k ≥ 2, we have

(f3 − f2) · f3 − f2

f3 − f4
· f4 − f5

f4 − f3
· · · · · f2k − f2k+1

f2k − f2k−1
· f2k+2 − f2k

f2k+2 − f2k+1

=
1

Y2Y3
·

1
Y2Y3

1
Y3Y4

·
1

Y4Y5
1

Y4Y3

· · · · ·
1

Y2kY2k+1

1
Y2kY2k−1

·
b2k+1

Y2k+2Y2k
1

Y2k+2Y2k+1

=
b2k+1

Y 2
2

= b2k+1.

(4.28)

For any k ≥ 1, we have

[fk−1, fk+2, fk+1, fk] =
fk−1 − fk+1

fk−1 − fk
· fk+2 − fk
fk+2 − fk+1

=

−bk
Yk−1Yk+1

1
Yk−1Yk

·
bk+1

Yk+2Yk
1

Yk+2Yk+1

= bkbk+1.

(4.29)

Definition 4.3.6. Since we relate bkbk+1 to a cross ratio [fk−1, fk+2, fk+1, fk], let

Bk := bkbk+1.

By the same argument in [SOT], we have

Corollary 4.3.7. The functions {Bk}Nk=1 defines a coordinate system of MN,1. We call
{Bk}Nk=1 the cross ratio coordinate system.

4.3.2 Relate discrete version with continuous version

By Proposition 4.3.5, we relate the Schwartzian with Bk as follows.
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Proposition 4.3.8. Let H(t) ∈ C2(R,R) with H(s) = H(s+ 1) for any s ∈ R be a Hill’s
operator, let X(t), Y (t) be two linear independent solutions of H(t).

Let N > 4 , let Hk = H(k/N), Xk = X(k/N), Yk = Y (k/N), suppose that

X1

X0
6= Y1

Y0
,

then we have
Hk = −1

2
· S
(
X

Y

(
k

N

))
+ o

(
1

N

)
.

Proof. Let
h := X1Y0 −X0Y1 6= 0.

For any k ≥ 0, we have

Xk+1Yk −XkYk+1 = (bkXk −Xk−1) · Yk −Xk · (bkYk − Yk−1) = XkYk−1 −Xk−1Yk

= ... = X1Y0 −X0Y1 = h,
(4.30)

fk+1 − fk =
Xk+1

Yk+1
− Xk

Yk
=

h

YkYk+1
, (4.31)

fk+2 − fk =
Xk+2

Yk+2
− Xk

Yk
=
Xk+2Yk −XkYk+2

YkYk+2

=
(bk+1Xk+1 −Xk) · Yk −Xk · (bk+1Yk+1 − Yk)

YkYk+2
=

hbk+1

YkYk+1
.

(4.32)

For any k ≥ 1, we have

fk−1 − fk+1

fk−1 − fk
fk+2 − fk
fk+2 − fk+1

=

−hbk
Yk−1Yk+1

h
Yk−1Yk

hbk+1

Yk+2Yk
h

Yk+2Yk+1

= bkbk+1. (4.33)

Then we have

[fk−1 : fk+2 : fk+1 : fk] = bkbk+1

= (2 +Hk+1/N
2)(2 +Hk/N

2)

= [k − 1 : k + 2 : k + 1 : k] +
2(Hk +Hk+1)

N2
+
HkHk+1

N4
.

(4.34)

When N converge to infinity, since H(t) is continuous, we have

Hk+1 = Hk + o

(
1

N

)
.

Comparing with the Schwarzian derivative in Proposition 4.1.13, we have

4Hk = −2 · S
(
X

Y

(
k

N

))
+ o

(
1

N

)
.

We conclude that
Hk = −1

2
· S
(
X

Y

(
k

N

))
+ o

(
1

N

)
.
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4.3.3 Swapping algebra on S1

Definition 4.3.9. Let N ≥ 5 be odd. Let us consider a cyclic ordered set in S1

P := {rk, 1 ≤ k ≤ N | r1 < r2 · · · · · rN < r1...}.

Recall that Bk = [fk−1, fk+2, fk+1, fk]. Let θ′ be a map from {B1, ..., BN} to B2(P) such
that:

θ′(Bk) :=
rk−1rk+1

rk−1rk
· rk+2rk
rk+2rk+1

(4.35)

for k = 1, ..., N with the convention rk = rk+N .

Proposition 4.3.10. Let N ≥ 5 be odd. Then the map θ′ extends to a ring homomorphism
θ : R(B1, ..., BN )→ B2(P).

Proof. For a polynomial P (B1, ..., BN ), let

θ(P (B1, ..., BN )) := P (θ′(B1), ..., θ′(BN )).

To prove that θ is a well defined ring homomorphism, we have only to prove that for any
P (B1, ..., BN ) = 0, we have P (θ′(B1), ..., θ′(BN )) = 0.

Since {bi}Ni=1 give a coordinate system ofMN,1, we have b1, ..., bN are algebraic inde-
pendent. We have b2 = B1

b1
, ..., bN =

BN−1

b1
, so b1, B1, ..., BN−1 are algebraic independent.

Since N is odd, let N = 2m+ 1. We have

b21 =
B1B3 · · ·B2m+1

B2B4 · · ·B2m
.

So B1, ..., B2m+1 are algebraic independent. If

P (B1, ..., B2m+1) = 0,

then
P (X1, ..., X2m+1) = 0

for any variables X1, ..., X2m+1, so

P (θ′(B1), ..., θ′(B2m+1)) = 0.

Proposition 4.3.11. Let N ≥ 5 be odd, let us consider the finite family of elements of
B2(P)

C :=

{
rk−1rk+2 · rkrk+1

rk−1rk+1 · rkrk+2
,
rk+2rk+1 · rk+3rk
rk+2rk · rk+3rk+1

,
rk+2rk+3 · rk+1rk
rk+2rk · rk+1rk+3

}N
k=1

with the convention rk = rk+N . Let 〈C〉 be the subring of B2(P) generated by C. Then for
any i, j = 1, ..., N , we have {θ(Bi),θ(Bj)}θ(Bi)·θ(Bj) belongs to 〈C〉.
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Proof. Since we have the convention rk = rk+N , the index of Bk have the convention
k = k +N . By direct calculation, we obtain that

1. For i = k, j = k + 1, we have

{θ(Bk), θ(Bk+1)}
θ(Bk) · θ(Bk+1)

= −1 +
rk−1rk+2 · rkrk+1

rk−1rk+1 · rkrk+2
+
rk+2rk+1 · rk+3rk
rk+2rk · rk+3rk+1

,
(4.36)

2. For i = k, j = k + 1, we have

{θ(Bk+1), θ(Bk)}
θ(Bk+1) · θ(Bk)

= 1− rk−1rk+2 · rkrk+1

rk−1rk+1 · rkrk+2
− rk+2rk+1 · rk+3rk
rk+2rk · rk+3rk+1

,
(4.37)

3. For i = k, j = k + 2, we have

{θ(Bk), θ(Bk+2)}
θ(Bk) · θ(Bk+2)

=

{
rk−1rk+1

rk−1rk

rk+2rk
rk+2rk+1

,
rk+1rk+3

rk+1rk+2

rk+4rk+2

rk+4rk+3

}
= −rk+2rk+3 · rk+1rk

rk+2rk · rk+1rk+3
.

(4.38)

4. For i = k + 2, j = k, we have

{θ(Bk+2), θ(Bk)}
θ(Bk+2) · θ(Bk)

=
rk+2rk+3 · rk+1rk
rk+2rk · rk+1rk+3

.
(4.39)

5. For all the other cases, we have

{θ(Bi), θ(Bj)}
θ(Bi) · θ(Bj)

= 0.

Definition 4.3.12. Let N ≥ 5 be odd, let D = C ∪
{
rk−1rk+1

rk−1rk

rk+2rk
rk+2rk+1

}N
k=1

with the conven-
tion rk = rk+N . Let R(B1, ..., BN ) be a free fraction ring generated by {B1, ..., BN}. We
define a map η′ : D → R(B1, ..., BN ) by:

η′
(
rk−1rk+1

rk−1rk

rk+2rk
rk+2rk+1

)
= Bk, (4.40)

η′
(
rk−1rk+2 · rkrk+1

rk−1rk+1 · rkrk+2

)
= 1− 1

Bk
, (4.41)

η′
(
rk+2rk+1 · rk+3rk
rk+2rk · rk+3rk+1

)
= 1− 1

Bk+1
, (4.42)

η′
(
rk+2rk+3 · rk+1rk
rk+2rk · rk+1rk+3

)
=

1

Bk+1
, (4.43)

for k = 1, ..., N with the convention rk = rk+N .
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Proposition 4.3.13. The map η′ extends to a well defined ring homomorphism η from
〈D〉 to R(B1, ..., BN ).

Proof. Since
[fk−1 : fk+2 : fk+1 : fk] = Bk,

[fk−1 : fk : fk+2 : fk+1] = 1− 1

Bk
,

[fk+2 : fk+3 : fk+1 : fk] = 1− 1

Bk+1
,

[fk+2 : fk+1 : fk+3 : fk] =
1

Bk+1
.

Let P belongs to 〈D〉, then a represent of P inQ(P) with a factor of T2(P) in the numerator
of P maps to zero in R(B1, ..., BN ).

Proposition 4.3.14. The ring homomorphism θ is injective.

Proof. Of course, we have
η ◦ θ = IR(B1,...,BN ).

We conclude that θ is injective.

Thus allows us to define a swapping bracket on R(B1, ..., BN ).

Definition 4.3.15. Let N ≥ 5 be odd, we define the swapping bracket {·, ·}B2 on R(B1, ..., BN )
by:

{P,Q}B2 := η ({θ(P ), θ(Q)}) (4.44)

for any P,Q ∈ R(B1, ..., BN ).

Proposition 4.3.16. Let N ≥ 5 be odd, with the convention k +N = k, for k = 1, ..., N ,
we have

{Bk, Bk+1}B2 =

(
1− 1

Bk
− 1

Bk+1

)
Bk ·Bk+1, (4.45)

{Bk, Bk−1}B2 = −
(

1− 1

Bk
− 1

Bk−1

)
Bk ·Bk−1, (4.46)

{Bk, Bk+2}B2 = − 1

Bk+1
·Bk ·Bk+2, (4.47)

{Bk, Bk−2}B2 =
1

Bk−1
·Bk ·Bk−2, (4.48)

for the other cases
{Bi, Bj}B2 = 0. (4.49)
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Proof. The results follow from Proposition 4.3.11 and Definition 4.3.15.

Without the restriction forN to be odd, we define the swapping bracket on R(B1, ..., BN )
as follows.

Definition 4.3.17. [Swapping bracket on R(B1, ..., BN )] Let N ≥ 5, we define the
swapping bracket {·, ·}B2 on R(B1, ..., BN ) by extending the following formula on genera-
tors to R(B1, ..., BN ):

with the convention k +N = k, for k = 1, ..., N , we have

{Bk, Bk+1}B2 =

(
1− 1

Bk
− 1

Bk+1

)
Bk ·Bk+1, (4.50)

{Bk, Bk−1}B2 = −
(

1− 1

Bk
− 1

Bk−1

)
Bk ·Bk−1, (4.51)

{Bk, Bk+2}B2 = − 1

Bk+1
·Bk ·Bk+2, (4.52)

{Bk, Bk−2}B2 =
1

Bk−1
·Bk ·Bk−2, (4.53)

for the other cases
{Bi, Bj}B2 = 0. (4.54)

Proposition 4.3.18. For N ≥ 5(odd or even), the swapping bracket {·, ·}B2 on R(B1, ..., BN )
is a Poisson bracket.

Proof. Let

J(Bi, Bj , Bk) := {{Bi, Bj}B2, Bk}B2 + {{Bj , Bk}B2, Bi}B2 + {{Bk, Bi}B2, Bj}B2.
(4.55)

By definition, we have to check that

J(Bi, Bj , Bk) = 0

for any i, j, k = 1, ..., N . Since

J(Bi, Bj , Bk) = −J(Bj , Bi, Bk),

when some indexes coincide, for example i = j, we have

J(Bi, Bi, Bk) = 0.

Let σs be the permutation of the N indexes such that σ(l) = l + s. The permutation σs
induce a ring automorphism χs of R(B1, ..., BN ) such that

χs(Bl) = Bl+s
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for l = 1, ..., N . Moreover, we have

{χs(Bi), χs(Bj)}B2 = χs({Bi, Bj}B2).

Let τ be the permutation of the N indexes such that

τ(l) = N + 1− l
for l = 1, ..., N . The permutation τ induce a ring automorphism ν of R(B1, ..., BN ) such
that

ν(Bl) = BN+1−l.

Moreover, we have
{ν(Bi), ν(Bj)}B2 = −ν({Bi, Bj}B2).

By the above symmetry, we suppose that

i = 1

and
1 < j < k ≤ N.

Let
l := min{|j − i|, |j − i−N |, |k − j|, |k − j −N |, |i− k|, |i− k −N |}.

We suppose that l = |j − 1|, we have to verify the following cases:

1. When 1 < j − 2 < k − 4 < N − 1, we have

J(B1, Bj , Bk) = 0. (4.56)

2. When j = 2, k = 3, we have

J(B1, B2, B3)

= {{B1, B2}B2, B3}B2 + {{B2, B3}B2, B1}B2 + {{B3, B1}B2, B2}B2

= {B1B2 −B1 −B2, B3}B2 + {B2B3 −B2 −B3, B1}B2 +

{
B1B3

B2
, B2

}
B2

=

(
B1 − 1− B1

B2

)
· {B2, B3}B2 +

(
B3 − 1− B3

B2

)
· {B2, B1}B2

=
{B2, B1}B2 · {B2, B3}B2 + {B3, B2}B2 · {B2, B1}B2

B2
= 0.

(4.57)

3. When j = 2, k = 4 and N > 5, we have

J(B1, B2, B4)

= {{B1, B2}B2, B4}B2 + {{B2, B4}B2, B1}B2 + {{B4, B1}B2, B2}B2

= {B1B2 −B1 −B2, B4}B2 +

{
−B2B4

B3
, B1

}
B2

= (B1 − 1) · {B2, B4}B2 −
B4

B3
· {B2, B1}B2 +

B2B4

B2
3

· {B3, B1}B2

= −(B1 − 1) · B2B4

B3
− B4

B3
· (B1 +B2 −B1B2) +

B2B4

B2
3

· B3B1

B2

= 0.

(4.58)
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4. When j = 2, k = 4 and N = 5, we have

J(B1, B2, B4)

= {{B1, B2}B2, B4}B2 + {{B2, B4}B2, B1}B2 + {{B4, B1}B2, B2}B2

= {B1B2 −B1 −B2, B4}B2 +

{
−B2B4

B3
, B1

}
B2

+

{
−B4B1

B5
, B2

}
B2

= (B1 − 1) · {B2, B4}B2 + (B2 − 1) · {B1, B4}B2 −
B4

B3
· {B2, B1}B2 +

B2B4

B2
3

· {B3, B1}B2

− B2

B3
· {B4, B1}B2 −

B4

B5
· {B1, B2}B2 −

B1

B5
· {B4, B2}B2 +

B4B1

B2
5

· {B5, B2}B2

= (B2 − 1) · {B1, B4}B2 −
B2

B3
· {B4, B1}B2 −

B4

B5
· {B1, B2}B2 −

B1

B5
· {B4, B2}B2

+
B4B1

B2
5

· {B5, B2}B2

= (B2 − 1) · B1B4

B5
+
B2

B3
· B1B4

B5
− B4

B5
· (B1B2 −B1 −B2)− B1

B5
· B4B2

B3
− B4B1

B2
5

· B5B2

B1

= 0
(4.59)

5. When j = 2, 4 < k < N − 1, we have

J(B1, B2, Bk)

= {{B1, B2}B2, Bk}B2 + {{B2, Bk}B2, B1}B2 + {{Bk, B1}B2, B2}B2

= {B1B2 −B1 −B2, Bk}B2

= 0

(4.60)

6. When j = 2, k = N , by the cyclic permutation and the case 2, we have

J(B1, B2, BN ) = 0 (4.61)

7. When j = 3, k = 5 and N > 6, we have

J(B1, B3, B5)

= {{B1, B3}B2, B5}B2 + {{B3, B5}B2, B1}B2 + {{B5, B1}B2, B3}B2

=

{
−B1B3

B2
, B5

}
B2

+

{
−B3B5

B4
, B1

}
B2

=
B1B3B5

B2B4
− B1B3B5

B2B4

= 0

(4.62)
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8. When j = 3, k = 5 and N = 6, we have

J(B1, B3, B5)

= {{B1, B3}B2, B5}B2 + {{B3, B5}B2, B1}B2 + {{B5, B1}B2, B3}B2

=

{
−B1B3

B2
, B5

}
B2

+

{
−B3B5

B4
, B1

}
B2

+

{
−B5B1

B6
, B3

}
B2

= −B3

B2
· {B1, B5}B2 −

B1

B2
· {B3, B5}B2 −

B5

B4
· {B3, B1}B2

− B3

B4
· {B5, B1}B2 −

B1

B6
· {B5, B3}B2 −

B5

B6
· {B1, B3}B2

=
B1B3B5

B2B6
+
B1B3B5

B2B4
− B1B3B5

B2B4
+
B1B3B5

B4B6
− B1B3B5

B4B6
− B1B3B5

B2B6

= 0

(4.63)

9. When j = 3, 5 < k < N − 1, we have

J(B1, B3, Bk)

= {{B1, B3}B2, Bk}B2 + {{B3, Bk}B2, B1}B2 + {{Bk, B1}B2, B3}B2

=

{
−B1B3

B2
, Bk

}
B2

= 0

(4.64)

10. When j = 3, k = N − 1 > 5, by cyclic permutation, we have

χ2(J(B1, B3, BN−1)) = J(B3, B5, B1) = J(B1, B3, B5). (4.65)

By Case 7, we have
J(B1, B3, B5) = 0. (4.66)

Thus we have
J(B1, B3, BN−1) = 0. (4.67)

We conclude that for any i, j, k, we have

J(Bi, Bj , Bk) = 0

4.3.4 Main result

Definition 4.3.19. [(t1, t2, N)-Virasoro bracket] Let t1, t2 ∈ R and N ∈ N, the
(t1, t2, N)-Virasoro bracket on {Ik}Nk=−N is defined to be:

For p, q = −
[
N−1

2

]
, ...,

[
N
2

]
,
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1. when p 6= −q, we have
{Ip, Iq}N,t1,t2 = (p− q) · Ip+q

with the convention Ik+N = Ik;

2. when p = −q, we have

{Ip, I−p}N,t1,t2 = 2p · I0 + t1 · p3 + t2 · p.

Remark 4.3.20. Very specifical values of t1 and t2 correspond to Virasoro algebra. When
t1 is fixed, t2 varies, they correspond to same cohomology class. Different t1 corresponds
to different cohomology class. Virasoro algebra generates all the possible central extension
by Proposition 4.1.9. (t1, t2, N)-Virasoro bracket is asymptotic to the Poisson bracket as-
sociated to the 2-cocycle with c1 = t1, c2 = t2 in Proposition 4.1.9, but it is not a Poisson
bracket.

Definition 4.3.21. [Discrete Fourier transformation] Let {Bk}Nk=1 be the cross
ratio coordinates of MN,1. Let B = {B1, ..., BN}. The discrete Fourier transformation F
of B is defined to be

FpB =

N∑
k=1

Bke
− 2pkπi

N . (4.68)

Our main result of this chapter is

Theorem 4.3.22. Let {Bk}Nk=1 be the cross ratio coordinates ofMN,1 such that

N∑
k=1

Bk = 0.

For k = −
[
N−1

2

]
, ...,

[
N
2

]
,

Vk =
FkB ·N

8πi
.

We have
{Vp, Vq}B2 = {Vp, Vq}N, 8π2

N
,8N

+ o

(
1

N3

)
. (4.69)

Proof. For p, q = −
[
N−1

2

]
, ...,

[
N
2

]
, we have

{FpB,FqB}B2 =

N∑
k=1

(
e
−2pkπi
N · e

−2q(k+1)πi
N − e

−2p(k+1)πi
N · e

−2qkπi
N

)
· (BkBk+1 −Bk −Bk+1)

−
(
e
−2pkπi
N · e

−2q(k+2)πi
N − e

−2p(k+2)πi
N · e

−2qkπi
N

)
· BkBk+2

Bk+1

(4.70)
By

Bk = bkbk+1 = 4 +
2 (Hk +Hk+1)

N2
+
HkHk+1

N4
,
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we have
Bk = 4 +

4Hk

N2
+ o

(
1

N2

)
.

We have the above formula equals to

N∑
k=1

e
−2(p+q)kπi

N ·
[((

1 +
−2qπi

N
+
−2π2q2

N2
+

4π3q3i

3N3
+ o

(
1

N3

))
−
(

1 +
−2pπi

N
+
−2π2 · p2

N2
+

4π3p3i

3N3
+ o

(
1

N3

)))
·
(

8 +
24Hk

N2
+ o

(
1

N2

))
−
((

1 +
−4qπi

N
+
−8π2q2

N2
+

32π3q3i

3N3
+ o

(
1

N3

))
−
(

1 +
−4pπi

N
+
−8π2p2

N2
+

32π3p3i

3N3
+ o

(
1

N3

)))
·
(

4 +
4Hk

N2
+ o

(
1

N2

))]
=

N∑
k=1

e
−2(p+q)kπi

N ·
[

32Hk(p− q)πi
N3

− 16π2(p2 − q2)

N2
+

32π3(p3 − q3)i

N3
+ o

(
1

N3

)]
.

(4.71)
When p 6= −q, since

∑N
k=1 e

−2(p+q)kπi
N = 0, by Bk = 4 + 4Hk

N2 + o( 1
N2 ), the above formula

equals to

N∑
k=1

e
−2(p+q)kπi

N · 8Bk(p− q)πi
N

=
8(p− q)πi

N
· Fp+qB + o

(
1

N3

)
; (4.72)

When p = −q, the above formula equals to

64pπi

N3

N∑
k=1

Hk +
64p3π3i

N2
+ o

(
1

N3

)

=
16pπi

N

N∑
k=1

(Bk − 4) +
64p3π3i

N2
+ o

(
1

N3

)
= −64pπi+

64p3π3i

N2
+ o

(
1

N3

)
.

(4.73)

Since
∑N

k=1Bk = 0, we have V0 = 0.

We obtain that:

for p 6= −q,

{Vp, Vq}B2 = (p− q) · Vp+q + o

(
1

N3

)
;

for p = −q

{Vp, V−p}B2 = 2p · V0 +

(
8π2

N

)
· p3 − 8N · p+ o

(
1

N3

)
.

We conclude that
{Vp, Vq}B2 = {Vp, Vq}N, 8π2

N
,8N

+ o

(
1

N3

)
. (4.74)
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4.4 Schwartz algebra on R(B1, ..., BN) and its relation with swapping algebra

We plan to construct a Poisson structure on coordinates defined by weak cross ratios
on MN,n through the swapping algebra. Then compare this swapping Poisson structure
with the Poisson structure considered by R. Schwartz, V. Ovsienko and S. Tabachnikov
[SOT] for n = 2 to show that they are compatible, where their continuous limit are the
natural Lie-Poisson structure and the freezing structure [SOT]. This plan is to reply the
conjecture mentioned in [SOT]. But we do not success in finding such a nice swapping
Poisson structure. We have only result for n = 1 as shown in this section. More general
case will be considered later on.

4.4.1 Schwartz algebra and its asymptotic phenomenon

The Schwartz algebra appears in [SOT] as a Poisson algebra on the cross ratio coor-
dinate system of MN,2 which is a discrete version of the second Gelfand–Dickey Poisson
structure. Here, we consider the case for RP1 where the bracket is referring to [FV]. We
have the similar result as in Section 4.3.

Definition 4.4.1. [Schwartz bracket on R(B1, ..., BN )] The Schwartz bracket {·, ·}1
on R(B1, ..., BN ) is defined by extending the following formula on generators to the whole
ring:

{Bi, Bi±1}S1 = ±Bi ·Bi±1 (4.75)

For the other cases
{Bi, Bj}S1 = 0 (4.76)

We have similar result as Theorem 4.3.22 for the Schwartz algebra on R(B1, ..., BN ).

Theorem 4.4.2. Let {Bk}Nk=1 be the cross ratio coordinates ofMN,1 such that

N∑
k=1

Bk = 0.

For k = −
[
N−1

2

]
, ...,

[
N
2

]
,

Wk =
FkB ·N

16πi
.

We have
{Wp,Wq}S1 = {Wp,Wq}N, 8π2

3N
,4−8N

+ o

(
1

N3

)
. (4.77)

Proof. For p, q = −
[
N−1

2

]
, ...,

[
N
2

]
, we have

{FpB,FqB}S1 =

N∑
k=1

(
e
−2pkπi
N · e

−2q(k+1)πi
N − e

−2p(k+1)πi
N · e

−2qkπi
N

)
· (BkBk+1) (4.78)

By

Bk = akak+1 = 4 +
2 (Hk +Hk+1)

N2
+
HkHk+1

N4
,
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we have
Bk = 4 +

4Hk

N2
+ o

(
1

N2

)
.

We have the above formula equals to

N∑
k=1

e
−2(p+q)kπi

N ·
((

1 +
−2qπi

N
+
−2π2q2

N2
+

4π3q3i

3N3
+ o

(
1

N3

))
−
(

1 +
−2pπi

N
+
−2π2 · p2

N2
+

4π3p3i

3N3
+ o

(
1

N3

)))
·
(

16 +
32Hk

N2
+ o

(
1

N2

))
=

N∑
k=1

e
−2(p+q)kπi

N ·
[

32πi(p− q)
N

+
32π2(p2 − q2)

N2
− 64π3(p3 − q3)i

3N3
+

64Hk(p− q)πi
N3

+ o

(
1

N3

)]
.

(4.79)
When p 6= −q, since

∑N
k=1 e

−2(p+q)kπi
N = 0, by Bk = 4 + 4Hk

N2 + o( 1
N2 ), the above formula

equals to
N∑
k=1

e
−2(p+q)kπi

N · 16Bk(p− q)πi
N

=
16(p− q)πi

N
· Fp+qB + o(

1

N3
); (4.80)

When p = −q, since
∑N

k=1Bk = 0, the above formula equals to

64pπi

N
+

128pπi

N3

N∑
k=1

Hk −
128p3π3i

3N2
+ o

(
1

N3

)

=
64pπi

N
+

32pπi

N

N∑
k=1

(Bk − 4)− 128p3π3i

3N2
+ o

(
1

N3

)
=

64pπi

N
− 128pπi− 128p3π3i

3N2
+ o

(
1

N3

)
(4.81)

and
W0 = 0.

Thus we have:

1. for p 6= −q

{Wp,Wq}S1 = (p− q) ·Wp+q + o

(
1

N3

)
;

2. for p = −q

{Wp,W−p}S1 = 2p ·W0 + (4− 8N) · p− 8π2

3N
· p3 + o

(
1

N3

)
.

We conclude that

{Wp,Wq}S1 = {Wp,Wq}N, 8π2
3N

,4−8N
+ o

(
1

N3

)
. (4.82)
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4.4.2 Bihamiltonian system

Let us recall the traditional definition of the bihamiltonian system.

Definition 4.4.3. Two Poisson structures {·, ·}a and {·, ·}b on a manifold M are said to
be compatible if and only if for any λ, {·, ·}a + λ{·, ·}b is Poisson on M .
A dynamic system d

dtm = ξ(m) over M is bihamiltonian if its vector field ξ is Hamiltonian
with respect to these two Poisson structure {·, ·}a and {·, ·}b.

Then we define the compatibility on a ring R with two Poisson structures.

Definition 4.4.4. Two Poisson brackets {·, ·}a and {·, ·}b on a ring R are said to be com-
patible if and only if for any λ, {·, ·}a + λ{·, ·}b is Poisson on R.

Proposition 4.4.5. {·, ·}a and {·, ·}b are compatible if and only if for any x, y, z ∈ R, we
have

{{x, y}a, z}b + {{y, z}a, x}b + {{z, x}a, y}b+
+ {{x, y}b, z}a + {{y, z}b, x}a + {{z, x}b, y}a = 0

Proof. Let the bracket
{·, ·}aλb := {·, ·}a + λ{·, ·}b.

The bracket {·, ·}aλb is Poisson if and only if {·, ·}aλb satisfies the Jacobi identity. For any
x, y, z ∈ R, Let

∑
runs over the triplets (x, y, z), (y, z, x), (z, x, y), the Jacobi identity of

{·, ·}aλb equals∑
{{x, y}aλb, z}aλb

=
∑
{{x, y}a + λ{x, y}b, z}aλb

=
∑(

{{x, y}a, z}a + λ ({x, y}b, z}a + {x, y}a, z}b) + λ2{x, y}b, z}b
)

= λ
∑

({x, y}b, z}a + {x, y}a, z}b)

(4.83)

The last equation uses the fact that {·, ·}a and {·, ·}b are Poisson. We conclude that {·, ·}a
and {·, ·}b are compatible if and only if∑

({x, y}b, z}a + {x, y}a, z}b) = 0.

Our main result of this section is

Theorem 4.4.6. For N ≥ 5, {·, ·}B2 and {·, ·}S1 are compatible onMN,1.

Remark 4.4.7. For N = 2, we have also constructed a swapping algebra on MN,2, but
we found that it is not compatible with the Schwartz algebra onMN,2.
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Proof. Let

K(Bi, Bj , Bk) := {{Bi, Bj}B2, Bk}S1 + {{Bj , Bk}B2, Bi}S1 + {{Bk, Bi}B2, Bj}S1

+ {{Bi, Bj}S1, Bk}B2 + {{Bj , Bk}S1, Bi}B2 + {{Bk, Bi}S1, Bj}B2.
(4.84)

By definition, we have to check that

K(Bi, Bj , Bk) = 0

for any i, j, k = 1, ..., N . Since

K(Bi, Bj , Bk) = −K(Bj , Bi, Bk),

when some indexes coincide, for example i = j, we have

K(Bi, Bi, Bk) = 0.

As in the proof of Proposition 4.3.18, let σs be the permutation of the N indexes such that
σ(l) = l + s. The permutation σs induce a ring automorphism χs of R(B1, ..., BN ) such
that

χs(Bl) = Bl+s

for l = 1, ..., N . Moreover, we have

{χs(Bi), χs(Bj)}S1 = χs({Bi, Bj}S1)

and
{χs(Bi), χs(Bj)}B2 = χs({Bi, Bj}B2).

Let τ be the permutation of the N indexes such that

τ(l) = N + 1− l

for l = 1, ..., N . The permutation τ induce a ring automorphism ν of R(B1, ..., BN ) such
that

ν(Bl) = BN+1−l.

Moreover, we have
{ν(Bi), ν(Bj)}S1 = −ν({Bi, Bj}S1),

{ν(Bi), ν(Bj)}B2 = −ν({Bi, Bj}B2).

By the above symmetry, we suppose that

i = 1

and
1 < j < k ≤ N.

Let
l := min{|j − i|, |j − i−N |, |k − j|, |k − j −N |, |i− k|, |i− k −N |}.

We suppose that l = |j − 1|, we have to verify the following cases:
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1. When 1 < j − 1 < k − 2 < N − 1, we have

K(B1, Bi, Bk)

= {{B1, Bj}B2, Bk}S1 + {{Bj , Bk}B2, B1}S1 + {{Bk, B1}B2, Bj}S1

+ {{B1, Bj}S1, Bk}B2 + {{Bj , Bk}S1, B1}B2 + {{Bk, B1}S1, Bj}B2

= {{B1, Bj}B2, Bk}S1 + {{Bj , Bk}B2, B1}S1 + {{Bk, B1}B2, Bj}S1.

(4.85)

Since
{B1, Bj}B2

is a polynomial of B1, ..., Bj , we have

{{B1, Bj}B2, Bk}S1 = 0.

Similarly, we have
{{Bj , Bk}B2, B1}S1 = 0

and
{{Bk, B1}B2, Bj}S1 = 0.

We conclude that
K(B1, Bi, Bk) = 0.

2. When j = 2, k = 3, we have

K(B1, B2, B3)

= {{B1, B2}B2, B3}S1 + {{B2, B3}B2, B1}S1 + {{B3, B1}B2, B2}S1

+ {{B1, B2}S1, B3}B2 + {{B2, B3}S1, B1}B2 + {{B3, B1}S1, B2}B2

= {B1B2 −B1 −B2, B3}S1 + {B2B3 −B2 −B3, B1}S1 + {B3B1

B2
, B2}S1

+ {B1B2, B3}B2 + {B2B3, B1}B2

= (B1 − 1)B2B3 − (B3 − 1)B1B2 +B1(B2B3 −B2 −B3)

− B1B3

B2
B2 − (B1B2 −B1 −B2)B3 +

B3B1

B2
B2

= 0.

(4.86)

3. When j = 2, k = 4 and N > 5, we have

K(B1, B2, B4)

= {{B1, B2}B2, B4}S1 + {{B2, B4}B2, B1}S1 + {{B4, B1}B2, B2}S1

+ {{B1, B2}S1, B4}B2 + {{B2, B4}S1, B1}B2 + {{B4, B1}S1, B2}B2

= {B1B2 −B1 −B2, B4}S1 + {−B2B4

B3
, B1}S1 + {B1B2, B4}B2

=
B1B2B4

B3
− B1B2B4

B3

= 0.

(4.87)
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4. When j = 2, k = 4 and N = 5, we have

K(B1, B2, B4)

= {{B1, B2}B2, B4}S1 + {{B2, B4}B2, B1}S1 + {{B4, B1}B2, B2}S1

+ {{B1, B2}S1, B4}B2 + {{B2, B4}S1, B1}B2 + {{B4, B1}S1, B2}B2

= {B1B2 −B1 −B2, B4}S1 + {−B2B4

B3
, B1}S1 + {−B4B1

B5
, B2}S1

+ {B1B2, B4}B2

=
B1B2B4

B3
− B1B4B2

B5
− B1B2B4

B3
+
B1B4B2

B5

= 0.

(4.88)

4.4.3 Casimir elements

Definition 4.4.8. [Casimir element] An element f of a ring R is called a Casimir
element for the Poisson bracket on the ring R if f Poisson commutes with all other elements
in R.

Proposition 4.4.9. Let N ≥ 5. For N = 2l even, B1B2.....B2l and B1B3.....B2l−1 are
two Casmir elements with respect to the Schwartz bracket on R(B1, ..., BN ); for N = 2l+1
odd, B1B2.....B2l+1 is a Casmir with respect to the Schwartz bracket on R(B1, ..., BN ).

Proof. It is sufficient to prove that the elements Poisson commute with the generators
B1, ..., BN of R(B1, ..., BN ).

1. When N ≥ 5, for any i = 1, ..., N we have

{Bi, B1B2.....BN}1

=
B1B2.....BN

Bi−1
{Bi, Bi−1}1 +

B1B2.....BN
Bi+1

{Bi, Bi+1}1

= −Bi ·B1B2.....BN +Bi ·B1B2.....BN = 0

(4.89)

With the convention that k + N = k. We conclude that B1B2.....BN is a Casmir
element with respect to the Schwartz bracket on R(B1, ..., BN ).

2. When N ≥ 5 even, N = 2l, for any i = 1, ..., l we have

{B2i−1, B1B3.....B2l−1}1 = 0. (4.90)

{B2i, B1B3.....B2l−1}1

=
B1B3.....B2l−1

B2i−1
{B2i, B2i−1}1 +

B1B3.....B2l−1

B2i+1
{B2i, B2i+1}1

= −B2i ·B1B3.....B2l−1 +B2i ·B1B3.....B2l−1 = 0.

(4.91)

With the convention that k + N = k. We conclude that B1B3.....B2l−1 is a Casmir
element with respect to the Schwartz bracket on R(B1, ..., BN ).
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Proposition 4.4.10. Let N ≥ 5. For N = 2l even,

B2B4.....B2l

B1B3.....B2l−1

is a Casmir element with respect to the swapping bracket on R(B1, ..., BN ); for N = 2l+ 1
odd,

B2B4.....B2l

B1B3.....B2l+1

is a Casmir with respect to the swapping bracket on R(B1, ..., BN ).

Proof. It is sufficient to prove that the elements Poisson commute with the generators
B1, ..., BN of R(B1, ..., BN ).

1. When N = 2l even, for any i = 1, ..., l we have{
B2i,

B2B4.....B2l
B1B3.....B2l−1

}
B2

B2i · B2B4.....B2l
B1B3.....B2l−1

=
{B2i, B2i−2}B2

B2iB2i−2
− {B2i, B2i−1}B2

B2iB2i−1
− {B2i, B2i+1}B2

B2iB2i+1
+
{B2i, B2i+2}B2

B2iB2i+2

=
1

B2i−1
− (−1 +

1

B2i
+

1

B2i−1
)− (1− 1

B2i
− 1

B2i+1
) +

(
− 1

B2i+1

)
= 0.

(4.92)

With the convention that k +N = k. Thus we have{
B2i,

B2B4.....B2l

B1B3.....B2l−1

}
B2

= 0. (4.93)

Similarly, we have {
B2i+1,

B2B4.....B2l

B1B3.....B2l−1

}
B2

= 0. (4.94)

We conclude that
B2B4.....B2l

B1B3.....B2l−1

is a Casmir element with respect to the swapping bracket on R(B1, ..., BN ).

2. When N = 2l + 1 odd, Similarly, we have

B2B4.....B2l

B1B3.....B2l+1

is a Casimir element with respect to the swapping bracket on R(B1, ..., BN ).
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