
HAL Id: tel-01070436
https://theses.hal.science/tel-01070436

Submitted on 1 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning on the response of logical signaling networks
with answer set programming

Santiago Videla

To cite this version:
Santiago Videla. Reasoning on the response of logical signaling networks with answer set programming.
Bioinformatics [q-bio.QM]. Université de Rennes; Universität Postdam (Allemagne), 2014. English.
�NNT : 2014REN1S035�. �tel-01070436�

https://theses.hal.science/tel-01070436
https://hal.archives-ouvertes.fr

ANNÉE 2014

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

En Cotutelle Internationale avec

Universität Potsdam, Allemagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1
Mention Informatique

École doctorale Matisse

présentée par

Santiago VIDELA

préparée à l’unité de recherche: UMR 6074 IRISA

Institut de Recherche en Informatique et Systèmes Aléatoires

Composante Universitaire: IFSIC

Reasoning on the response of

logical signaling networks with

Answer Set Programming

Thèse soutenue à Rennes
le 07/07/2014
devant le jury composé de:

Gregory BATT

Chargé de Recherche, Inria Rocquencourt / rapporteur

Mireille DUCASSE

Professeure, INSA de Rennes / examinatrice

Christine FROIDEVAUX

Professeure, Université Paris Sud / rapporteur

Torsten SCHAUB

Professeur, Université de Potsdam / co-directeur de thèse

Joachim SELBIG

Professeur, Université de Potsdam / examinateur

Anne SIEGEL

Directrice de Recherche, CNRS IRISA / directrice de thèse

Denis THIEFFRY

Professeur, ENS Paris / examinateur

Acknowledgements
First of all, I would like to thank Anne Siegel and Torsten Schaub, my two thesis advisors. Both

Anne and Torsten, have trusted on me from the very beginning and without even knowing me.

In fact, I must admit that at first I was rather scared of having two directors. Instead, nowadays

I am convinced that this turned out to be the most valuable aspect during my experience as

a doctoral student. Of course, this was only possible thanks to their constant goodwill for

helping me to walk this path. Thus, once again: thank you very much!.

Special thanks goes for Carito Guziolowski and Julio Saez-Rodriguez who have played a crucial

role during the whole thesis. Both were main contributors of the work presented in this thesis

and help me to find challenging and relevant questions. Also, I thank to Federica Eduati,

Jacques Nicolas, Martin Gebser, Roland Kaminski, Sven Thiele, and Thomas Cokelaer for

their very valuable contributions. In addition, I would like to thank Alejandro Maass and

all his research team for receiving me so kindly at the University of Chili. As well, I thank

Alexander Bockmayr, Axel von Kamp, David Gilbert, Heike Siebert, Regina Samaga, and Steffen

Klamt who I had the opportunity to meet and visit at their research groups for very interesting

discussions.

I thank Gregory Batt, Mireille Ducasse, Christine Froidevaux, Joachim Selbig, and Denis

Thieffry for having accepted to be members of the thesis committee, and for their time and

interest in my work. I would like to acknowledge support from the the project ANR-10-BLANC-

0218.

Big thanks to all my friends and colleagues in both Rennes and Potsdam who have made these

last three years a very comfortable and enjoyable time. Finally, I of course thank to all my

family and friends back in Argentina who have been always present despite the long distance.

Rennes, July 7th 2014 S. V.

iii

Abstract
Deciphering the functioning of the so-called biological networks is one of the central tasks in

systems biology. In particular, signal transduction networks are crucial for the understanding

of the cellular response to external and internal perturbations. Notably, such networks are

involved in biomedical processes and their control has a crucial impact on drug target identi-

fication and diagnosis. Importantly, in order to cope with the complexity of these networks,

mathematical and computational modeling is required. Hence, the development of such mod-

eling approaches is a major goal in the field. On the one hand, mathematical or quantitative

approaches permit fine-grained analysis but are usually restricted to relatively small networks.

On the other hand, computational or qualitative modeling allows for addressing large net-

works by relying on more abstract representations. Among various qualitative approaches,

logic-based models are relatively simple yet able to capture interesting and relevant behaviors

in the cell as several authors have shown during the last decade. In this context, researchers

typically aim at modeling a given biological system by means of one logical model only. Af-

terwards, dynamical and structural analysis are conducted over the model. However, due to

several factors, such as limited observability or the uncertainty in experimental measurements,

it has been shown that the model is often non-identifiable. Hence, biological insights and

novel hypotheses resulting from these analyses are likely to be incomplete, incorrect, or biased

by methodological decisions.

In this thesis we propose a computational modeling framework in order to achieve more

robust discoveries in the context of logical signaling networks. More precisely, we focus on

modeling the response of logical signaling networks by means of automated reasoning using

Answer Set Programming (ASP). ASP provides a declarative language for modeling various

knowledge representation and reasoning problems. The basic idea of ASP is to express a

problem in a logical format so that the models of its representation, the so-called answer

sets, provide the solutions to the original problem. Moreover, available ASP solvers provide

several reasoning modes for assessing the multitude of answer sets, among them, regular and

projective enumeration, intersection and union, and multi-criteria optimization. Therefore,

leveraging its rich modeling language and its highly efficient solving capacities, we use ASP to

address three challenging problems in the context of logical signaling networks.

First we address the problem consisting of learning from an interaction graph and experimen-

tal observations, (Boolean) logical networks describing the immediate-early response of the

system. Nowadays, for certain biological systems, a graph of causal interactions describing

a large-scale signaling network can be retrieved from public databases [Guziolowski et al.,

v

Abstract

2012] or by means of statistical methods and experimental data [Sachs et al., 2005]. However,

functional relationships in signaling networks cannot be captured by means of graph the-

ory only [Klamt et al., 2006b]. In this context, authors in [Saez-Rodriguez et al., 2009] have

proposed a method to learn from an interaction graph and phosphorylation activities at a

pseudo-steady state, Boolean logic models of immediate-early response fitting experimental

data. Originally, a genetic algorithm implementation was proposed to solve the underlying op-

timization problem, and a software was provided, CellNOpt [Terfve et al., 2012]. Nonetheless,

stochastic search methods cannot characterize the models precisely: they are intrinsically

unable not just to provide a complete set of solutions, but also to guarantee that an optimal

solution is found. Some variations of our problem were addressed using a mathematical

programming approach [Mitsos et al., 2009, Sharan and Karp, 2013]. Despite their success

to overcome some shortcomings of the genetic algorithm, such as performance and global

optimality, the enumeration of all (nearly) optimal solutions was not considered. Combining

both, multi-criteria optimization and enumeration provided by ASP, we are able to find all

logic models explaining the experimental data equally well.

More generally, the inference of Boolean networks from time-series gene expression data

has been addressed by several authors under different hypotheses and methods [Liang et al.,

1998, Akutsu et al., 2000, Ideker et al., 2000, Lähdesmäki et al., 2003]. Recently, some of these

methods have been compared in [Berestovsky and Nakhleh, 2013]. Nonetheless, overall, our

work presents some significant differences. To start with, all of them are focused on gene

regulatory networks and gene expression time-series data, whereas we work on signaling

transduction networks and phosphorylation activities at a pseudo-steady state. Further, they

work only with Boolean experimental observations which would correspond to adopt a binary

discretization scheme in our framework. Moreover, except for the so-called Best-Fit Extension

Problem [Lähdesmäki et al., 2003], they look for Boolean networks fully consistent with the

time-series Boolean data. Meanwhile, herein we consider an objective function which de-

scribes the goodness of the model based on the numerical data that is subsequently optimized.

Finally, all these contributions focus on a “local” inference in the following sense. They aim at

learning the Boolean function for each node based on (local) input-output behaviors for such

node. In contrast, our learning is based on (global) behaviors over the input-output layers in a

network containing non-controllable/non-observable species.

Importantly, in contrast to the standard approach of modeling a signaling network by means

of one logical model only, we show that there may be several thousands of feasible models.

This fact motivates the second problem we address in this thesis which consists of finding

an optimal experimental design in order to discriminate among all feasible logical networks.

Broadly speaking, experimental design for model discrimination consists of finding an input

that maximize the difference of the outputs of the rival models. In this context, we aim at

finding the minimum number of experimental conditions allowing us to discriminate between

every pair of input-output behaviors. Moreover, we adopt a criterion proposed before in

the context of mathematical modeling in [Mélykúti et al., 2010]. Therein, authors argue that

in principle, maximizing the difference between the outputs of two different models would

ensure that even a noisy measurement has a good chance of discriminating between them.

vi

Abstract

Therefore, we adapt this idea to the context of our Boolean logic models and logical input-

output behaviors. Also, we consider the minimization of the experiments’ complexity in

terms of the number of stimuli and inhibitions. Again, relying on multi-criteria optimization

capacities of ASP, we can suggest the next round of experiments in order to refine the models

at hand.

Most of the previous work on experimental design have been based on (semi-) quantita-

tive modeling [Kremling et al., 2004, Vatcheva et al., 2005, Mélykúti et al., 2010, Stegmaier

et al., 2013, Busetto et al., 2013]. Thus, in the context of computational modeling, existing

approaches to experimental design are less established. It is worth noting that, in general,

computational models provide certain predictive power which can be used to generate testable

hypotheses and drive the experiments. Nevertheless, herein we refer to the specific problem

consisting of automatically propose new experiments allowing to discriminate models at

hand. To date, such a question has been addressed under various modeling hypotheses and

methods [Ideker et al., 2000, Yeang et al., 2005, Barrett and Palsson, 2006, Szczurek et al., 2008,

Sparkes et al., 2010]. Yet, their usefulness in practice remains an open question. Of special

interest for us is the approach presented in [Sharan and Karp, 2013]. Therein, authors have

addressed slight variations of our learning problem by means of mathematical programming.

In addition, they sketched an algorithm for finding the most informative experiment to dis-

criminate rival Boolean models but no implementation was provided. Nonetheless, compared

to all aforecited contributions, our work presents certain differences and similarities. Except

for [Szczurek et al., 2008], previous approaches aim at selecting exactly one experiment at

each iteration. Therefore, only after the proposed experiment has been carried out in the

laboratory and models have been (partially) discriminated, another experiment can be de-

signed. In contrast, but similarly to [Szczurek et al., 2008], we aim at finding the smallest

number of experiments to optimally discriminate all models at once. Furthermore, motivated

by [Mélykúti et al., 2010], a distinct feature of our work is the criterion for optimality based

on maximizing the sum of pairwise (output) differences. In general, previous methods have

adopted an information-theoretic approach where the main design criterion is given by means

of the so-called Shannon entropy [Shannon, 1948].

In principle, iterating over the loop of modeling and experimentation will yield more accurate

logical models. Yet, there may be several models which cannot be discriminated using the

available experimental capacities. In which case, instead of selecting a single model, we

aim at reasoning over all of them. Thus, this leads to the third problem which consists of

finding all minimal intervention strategies in order to control the biological system. That

is, inclusion-minimal sets of activations and inhibitions forcing a set of target species into a

desired steady state under various scenarios for all logical networks. Unfortunately, dedicated

algorithms introduced in [Samaga et al., 2010] are computationally demanding due to the

highly combinatorial mechanisms in logical networks. Therefore, they are limited to compute

small intervention sets and fail to scale over large-scale networks. Importantly, in general,

multiple interventions (or mutations) are necessary to cope with robustness and cellular

complexity [Stelling et al., 2004]. Moreover, identified interventions should fulfill the desired

goals in every feasible logical network. Concretely, the aforementioned limitations make

vii

Abstract

it hard to prove that the identified solutions are biologically robust to small variations of

the system or its environment. Therefore, by reasoning over several sets of feasible logical

networks we expect to find small yet robust intervention strategies.

More broadly, the problem of identifying “key-players” in logical signaling networks has been

recently addressed in [Li et al., 2006, Abdi et al., 2008, Wang and Albert, 2011, Layek et al.,

2011]. In contrast to our work, these contributions have rather focused on predicting what

would happen if certain molecules fail. To that end, authors in [Li et al., 2006, Abdi et al., 2008,

Layek et al., 2011] rely on digital circuits fault diagnosis engineering to identify the vulnerable

molecules that play crucial roles in the dysfunction of signaling networks. In that context, a

high vulnerability suggests that with high probability, the signaling network does not operate

correctly if that particular molecule is dysfunctional (“stuck-at-0” or “stuck-at-1” in digital

circuits terminology). It is worth noting that, due to computational limitations, in general

authors have restricted their studies to small number of simultaneous faults. The approach

presented in [Wang and Albert, 2011] does not relies on digital circuits but rather on standard

graph theory. Therein, authors proposed two connectivity measures based either on the

shortest paths, or on the so-called “elementary signaling modes”. Then, using such measures

their method provides a ranking of the nodes by the effects of their loss on the connectivity

between the network’s inputs and outputs. Importantly, despite the specific problem settings

and computational approaches in these contributions, all of them have considered a single

logical network describing the system. Notably, interventions allowing for accomplish certain

goals in a given network are very likely to fail in another network which may describe the

system equally well. Therefore, being able to address the same question but considering an

ensemble of feasible models leads to more robust strategies.

We illustrate our approach to each of the aforementioned problems using real-world signaling

pathways in human liver cells and publicly available experimental data. Interestingly, the

computational performance is significantly improved with respect to dedicated algorithms

to solve the same problems. But more importantly, the exhaustive nature of ASP allows us to

find feasible solutions that were missing when using the existing methods. Also, thanks to

its rich modeling language and efficient solving, ASP allows for reasoning over an ensemble

of logical networks in order to achieve more robust discoveries. Altogether, the contribution

of this thesis is on three different axes. On the modeling side, the proposed framework

provides an unified computational modeling approach for reasoning on logical signaling

networks. On the computational side, this thesis illustrates the potential of ASP to address

hard combinatorial search and optimization problems related to qualitative modeling of

biological systems. Finally, on the implementation side, we have presented a software package

providing an interface to the ASP-based solutions in order to ease the accessibility for systems

biologists, as well as the integration with available tools for simulation and analysis of logical

models.

To conclude, the work presented in this thesis has raised several interesting questions for

future research. In particular, our work have opened the way to an exhaustive characterization

of feasible logical models for a given system. Now, we need to develop a proper modeling

framework to interpret and take advantage of such a characterization. This must be necessarily

viii

Abstract

driven by available experimental technology allowing us to either confirm or refute generated

hypotheses. For instance, phospho-proteomics assays like the one used for learning are

performed over a population of cells and thus, it is unclear how to interpret the multitude

of logical networks and their input-output behaviors. Given the existence of several logical

input-output behaviors gathering different internal mechanisms, we need to elucidate if such

mechanisms are a mere artifact of logical networks, or if they actually represent molecular

mechanisms which in turn appear more or less often within each cell or at a population scale.

Furthermore, despite the intrinsic uncertainty in biological systems, it is still rather hard to

assess the amount of noise in measurements and how this impacts on our mathematical

or computational models. This raises the question of identifiability and to what extent new

experiments are able to yield more refined logical models. Thus, the method for experimental

design requires to be validated and could help to tackle this issue. Finally, we find particularly

interesting to explore further our approach for finding intervention strategies by reasoning

over an ensemble of logical networks. In principle, such an approach allows systems biologists

to draw insights under uncertainty and non-identifiability. Nonetheless, we need to elucidate

whether such an ensemble of networks describes alternative pathways within a single cell or

at the population scale. Overall, we look forward for experimental validation of our methods

and findings. Notably, these questions comprise integrative modeling approaches considering

multiple levels and time-scales of causation which pose very challenging goals. Towards this

end, the development of hybrid reasoning systems leveraging the expressiveness of several

technologies and modeling approaches appears as a very promising track for future research

in computer science.

Key words: systems biology, logical signaling networks, answer set programming

ix

Résumé
Décrypter le fonctionnement des réseaux biologiques est l’une des missions centrales de

la biologie des systèmes. En particulier, les réseaux de signalisation sont essentiels pour la

compréhension de la réponse cellulaire à des perturbations externes et internes. Notamment,

ces réseaux sont impliqués en santé humaine et leur contrôle a un impact sur l’identification

et la caractérisation de cibles de médicaments. Pour affronter la complexité de ces réseaux,

modélisations mathématiques et informatiques sont nécessaires. D’une part, les approches

mathématiques ou quantitatives permettent une analyse fine mais sont généralement limitées

à des réseaux relativement petits. D’autre part, la modélisation informatique ou qualitative

permet de traiter de grands réseaux, en s’appuyant sur d’autres représentations abstraites.

Parmi les différentes approches qualitatives, les modéles logiques sont relativement simples,

mais en mesure de capturer des comportements intéressants et pertinents dans la cellule. Dans

ce cadre, les chercheurs essaient généralement de modéliser un système biologique particulier,

en utilisant un seul modèle logique. Ensuite, des analyses dynamiques et structurales sont

menées sur ce modèle. Toutefois, en raison de plusieurs facteurs, tels que l’observabilité

limitée ou de l’incertitude dans les mesures expérimentales, il a été montré qu’un tel modèle

est en pratique non identifiable dans de nombreux cas. En effet, les connaissances biologiques

et les hypothèses découlant de ces analyses sont susceptibles d’être incomplètes, erronées,

ou biaisées par des décisions prises au moment de l’identification ou de la construction du

modèle.

Dans cette thèse, nous proposons un cadre de modélisation informatique afin d’obtenir des

découvertes plus robustes dans le cadre de réseaux de signalisation modélisés sous forme lo-

gique. Plus précisément, nous nous concentrons sur la modélisation de la réponse des réseaux

logiques au moyen du raisonnement automatisé à l’aide de Programmation par Ensembles-

Réponses (Answer Set Programming, ASP). De manière générale, ASP fournit un langage

déclaratif pour la modélisation de divers problèmes de représentation des connaissances

et de raisonnement. L’idée de base de ASP est d’exprimer un problème sous la forme d’un

programme logique de sorte que les modèles de sa représentation, les answer sets (ensembles-

réponses), fournissent les solutions au problème initial. En outre, différents solveurs dispo-

nibles pour ASP offrent plusieurs modes de raisonnement pour l’évaluation de la multitude

de réponses : énumération régulière et projective, intersection, union, et optimisation multi-

critères. Par conséquent, en s’appuyant sur la richesse de son langage de modélisation et de

ses capacités de résolution très efficaces, nous utilisons ASP pour répondre à trois problèmes

difficiles dans le contexte des réseaux logiques de signalisation.

xi

Résumé

Premièrement, nous abordons le problème consistant à apprendre, à partir d’un graphe d’in-

teraction et d’observations expérimentales, les réseaux booléens qui décrivent la réponse

immédiate du système. Aujourd’hui, pour certains systèmes biologiques, un graphe des inter-

actions causales qui décrivent un réseau de signalisation à grande échelle peut être extrait

de bases de données publiques [Guziolowski et al., 2012] ou être appris à l’aide de méthodes

statistiques et de données expérimentales [Sachs et al., 2005]. Cependant, les relations fonc-

tionnelles dans les réseaux de signalisation ne peuvent pas être capturées seulement à l’aide

d’analyse de graphes [Klamt et al., 2006b]. Dans ce contexte, les auteurs de [Saez-Rodriguez

et al., 2009] ont proposé une méthode pour apprendre, à partir d’un graphe d’interaction et

des activités de phosphorylation mesurées à un état pseudo-stationnaire de la cellule, les mo-

dèles logiques booléens de la réponse précoce compatible avec les données expérimentales. A

l’origine, un algorithme génétique a été proposé pour résoudre le problème d’optimisation

sous-jacent, et un logiciel a été fourni : CellNOpt [Terfve et al., 2012]. Cependant, les méthodes

de recherche stochastiques ne peuvent pas caractériser les modèles intégralement : ces ap-

proches sont intrinsèquement incapables non seulement de fournir un ensemble complet de

solutions, mais aussi de garantir qu’une solution optimale a été trouvée. Certaines variations

de ce problème ont été abordées avec une approche de programmation linéaire [Mitsos et al.,

2009, Sharan and Karp, 2013]. En dépit de leur succès à surmonter certaines insuffisances des

algorithmes génétiques, comme la performance et la preuve de l’optimalité globale, l’énu-

mération de toutes les solutions optimales (ou presque optimales) n’a pas été étudiée dans

ces travaux. En combinant à la fois l’optimisation multi-critères et l’énumération fournie par

ASP, nous montrons dans cette thèse qu’il est possible d’énumérer tous les modèles logiques

expliquant les données expérimentales de manière sous-optimale.

Plus généralement, l’inférence de réseaux booléens à partir de données de séries temporelles

d’expression génique a été abordée par plusieurs auteurs sous différentes hypothèses [Liang

et al., 1998, Akutsu et al., 2000, Ideker et al., 2000, Lähdesmäki et al., 2003]. Récemment,

certaines de ces méthodes ont été comparées dans [Berestovsky and Nakhleh, 2013]. Cepen-

dant, globalement, notre travail présente des différences significatives. Pour commencer,

les références précédentes sont toutes concentrées sur les réseaux de régulation de gènes

et des données de séries temporelles d’expression génique, tandis que nous travaillons sur

la signalisation des réseaux de transduction et à l’aide de mesures d’activités de phospho-

rylation à un état pseudo-stationnaire. En outre, les approches d’apprentissage de réseaux

fonctionnent uniquement avec des observations expérimentales booléennes, ce qui corres-

pondrait à adopter un schéma de discrétisation binaire dans notre cadre. De plus, sauf pour

le Best-Fit Extension problem [Lähdesmäki et al., 2003], les recherches consistent à identifier

des réseaux booléens entièrement compatibles avec les données booléennes. Au lieu de cela,

nous considérons ici une fonction objectif qui décrit la correction du modèle basée sur des

données quantitatives. C’est cette fonction objectif numérique qui est ensuite optimisée.

Enfin, toutes les contributions mentionnées ci-dessus portent sur une inférence “locale” dans

le sens suivant : elles visent à l’apprentissage de la fonction booléenne pour chaque noeud sur

la base des comportements entrées-sorties (locales) pour un tel noeud. En revanche, notre

méthode d’apprentissage est basée sur les comportements (globaux) d’entrée-sortie dans un

xii

Résumé

réseau contenant des espèces non-controlables ou non-observables.

A la différence des approches classiques de modélisation d’un réseau de signalisation par un

modèle logique seulement, on montre ainsi qu’il peut y avoir plusieurs milliers de modèles

qui expliquent tous de manière sous-optimale les données entrées-sorties. Ce fait motive le

deuxième problème que nous abordons dans cette thèse qui consiste à trouver un plan d’expé-

rience optimal afin de discriminer les réseaux logiques possibles. D’une manière générale, le

plan expérimental pour discriminer une famille de modèles consiste à trouver une entrée qui

maximise la différence des sorties des modèles concurrents. Dans ce contexte, nous nous effor-

çons de trouver le nombre minimum de conditions expérimentales permettant de discriminer

chaque paire de comportements entrée-sortie. En outre, nous adoptons un critère introduit

dans une approche de modélisation quantitative [Mélykúti et al., 2010]. Dans ce travail, les

auteurs font valoir que, en principe, en maximisant la différence entre les sorties de deux

modèles différents, on garantit que même une mesure bruitée a une bonne chance de faire

la distinction entre eux. Nous adaptons cette idée dans le contexte de nos modèles logiques

booléens et les comportements logiques entrées-sorties. Aussi, nous cherchons à minimiser la

complexité des expériences en termes de nombre de stimuli et d’inhibitions. Encore une fois,

en s’appuyant sur les capacités d’optimisation multi-critères de l’ASP, nous pouvons identifier

la meilleure série d’expériences afin d’affiner la famille de modèles disponibles à un moment

donné.

La plupart des travaux antérieurs sur la conception de plans expérimentaux reposent sur des

modélisations (semi-) quantitatives [Kremling et al., 2004, Vatcheva et al., 2005, Mélykúti et al.,

2010, Stegmaier et al., 2013, Busetto et al., 2013]. Dans le contexte de la modélisation symbo-

lique, les approches existantes sont moins établies. Il est intéressant de noter que, en général,

les modèles formels s’appuient sur des fonctions de prédiction qui peuvent être utilisées pour

générer des hypothèses testables et réaliser les expériences. Quand même, nous nous référons

ici au problème spécifique consistant à proposer automatiquement de nouvelles expériences

qui permettent de discriminer une famille de modèles. À ce jour, cette question a été abordée

sous différentes hypothèses de modélisation et avec différentes méthodes [Ideker et al., 2000,

Yeang et al., 2005, Barrett and Palsson, 2006, Szczurek et al., 2008, Sparkes et al., 2010]. Pourtant,

leur application pratique reste une question ouverte. Une approche particulièrement intéres-

sante est celle présentée dans [Sharan and Karp, 2013]. Dans ce travail, les auteurs ont étudié

une variante de notre problème d’apprentissage par le biais de la programmation linéaire.

Aussi, ils ont esquissé un algorithme pour trouver l’expérience la plus informative permettant

de discriminer des modèles booléens rivaux. Cependant, aucune application n’a été fournie.

Dans l’ensemble, par rapport à toutes les contributions cités précédemment, notre travail se

positionne comme suit. Sauf pour [Szczurek et al., 2008], les approches précédentes visent à

sélectionner exactement une expérience à chaque itération. Par conséquent, c’est seulement

après que l’expérience proposée a été effectuée dans le laboratoire et que les modèles ont

été (partiellement) discriminés, qu’une une autre expérience peut être conçue. En revanche,

mais de façon similaire à [Szczurek et al., 2008], nous nous efforçons de trouver d’un seul coup

le plus petit nombre d’expériences pour discriminer de manière optimale tous les modèles

à la fois. De plus, motivé par [Mélykúti et al., 2010], une caractéristique de notre travail est

xiii

Résumé

l’emploi d’un critère d’optimalité basé sur la maximisation de la somme des différences deux

à deux. En général, les méthodes précédentes ont adopté une approche basé sur la théorie

de l’information où le critère principal est donné au moyen de ce qu’on appelle l’entropie de

Shannon [Shannon, 1948].

En principe, l’itération sur la boucle de modélisation et d’expérimentation donnera des mo-

dèles logiques plus précis et réduira la taille de la famille de modèles compatibles. Cependant,

il peut y avoir à la fin plusieurs modèles qui ne peuvent être discriminés à l’aide des capacités

expérimentales disponibles. Dans ce cas, au lieu de sélectionner un seul modèle, nous visons

à raisonner sur le comportement de l’ensemble d’entre eux. Ainsi, ceci nous conduit à étudier

un troisième problème qui consiste à trouver l’ensemble des stratégies d’intervention mini-

male afin de contrôler la réponse du système biologique. Plus précisément, nous cherchons à

déterminer les ensembles d’activations et inhibitions forçant un ensemble d’espèces cibles

à parvenir à un état d’équilibre attendu, dans le cadre de différents scénarios, et ceci pour

tous les réseaux logiques d’une famille donnée. Malheureusement, les algorithmes dédiés

introduits dans [Samaga et al., 2010] sont gourmands en calculs, en raison des mécanismes

hautement combinatoires dans les réseaux logiques. Par conséquent, ces algorithmes sont

limités à calculer de petits ensembles d’intervention et ne passent pas à l’échelle sur des

réseaux de grande taille. Il faut noter que, en général, plusieurs interventions (ou mutations)

sont nécessaires pour faire face à la robustesse et à la complexité cellulaire [Stelling et al.,

2004]. Par ailleurs, les interventions identifiées doivent permettre au système de réaliser les

objectifs attendus dans chaque réseau logique possible. Du fait de ces limitations, il est difficile

de prouver que les solutions identifiées sont biologiquement robustes vis-à-vis de petites

variations du système ou de son environnement. Par contre, en raisonnant sur une famille de

réseaux logiques, nous espérons trouver des stratégies d’intervention robustes.

Plus généralement, le problème de l’identification des acteurs-clé dans les réseaux logiques

de signalisation a été abordé dans [Li et al., 2006, Abdi et al., 2008, Wang and Albert, 2011,

Layek et al., 2011]. Contrairement à notre travail, ces contributions ont plutôt mis l’accent

sur la prédiction de ce qui se passerait si certaines molécules ne se comportaient pas comme

attendu. À cette fin, les auteurs de [Li et al., 2006, Abdi et al., 2008, Layek et al., 2011] s’appuient

sur le diagnostic de fautes dans des circuits pour identifier les molécules vulnérables qui jouent

un rôle crucial dans le dysfonctionnement des réseaux de signalisation. Dans ce contexte,

une grande vulnérabilité suggère que, avec une forte probabilité, le réseau de signalisation ne

fonctionne pas correctement si cette molécule particulière est dysfonctionnelle (“stuck-at-

0” ou “stuck-at-1” en terminologie des circuits digitaux). Il est intéressant de noter que, en

raison des limites de calcul, en général, les auteurs ont limité leurs études à de petits nombres

de défauts simultanés. L’approche présentée dans [Wang and Albert, 2011] ne s’appuie pas

sur des circuits digitaux, mais plutôt sur la théorie des graphes. Dans ce travail, les auteurs

ont proposé deux mesures de connectivité basées sur les chemins les plus courts, ou sur les

dénommés elementary signaling modes. Puis, en utilisant ces mesures, leur méthode fournit

un classement des noeuds via les effets de la perte de connectivité entre les entrées et les

sorties du réseau. Il faut noter que, malgré les réglages spécifiques pour chaque problème et

les approches informatiques de ces contributions, tous ont considéré un seul réseau logique

xiv

Résumé

pour décrire le système. Or, comme nous l’avons mentionné plus haut, nous avons montré

qu’il peut exister une famille de modèles importante qui peuvent tous expliquer aussi bien

les données expérimentales. Les interventions qui permettent de réaliser certains objectifs à

l’aide d’un réseau donné sont susceptibles d’échouer dans une autre réseau qui peut décrire le

système tout aussi bien. Être capable, comme nous le faisons, de répondre à la même question

sur le calcul des interventions permettant de forcer une réponse attendue, mais pour une

famille de modèles, conduit finalement à des stratégies plus robustes.

Nous illustrons les approches répondant à chacun des problèmes mentionnés ci-dessus, en

considérant un exemple de voies de signalisation dans des cellules hépatiques humaines et des

données expérimentales disponibles publiquement. Dans tous les cas, les performances de

calcul sont significativement améliorées par rapport à des algorithmes dédiés pour résoudre

les mêmes problèmes. Mais encore plus important, la nature exhaustive d’ASP nous permet

d’énumérer toutes les solutions admissibles qui pouvaient être omises lors de l’utilisation des

méthodes existantes. Aussi, grâce à la richesse de son langage de modélisation et ses méthodes

de résolution efficaces, ASP permet de raisonner sur un ensemble de réseaux logiques pour

réaliser des découvertes plus robustes.

Au final, la contribution de cette thèse concerne trois axes différents. Du côté de la modé-

lisation, le cadre proposé introduit une approche de modélisation formelle unifiée pour le

raisonnement sur les réseaux logiques de signalisation. Sur le plan informatique, cette thèse

illustre le potentiel d’ASP pour traiter des problèmes combinatoires difficiles de recherche et

d’optimisation liés à la modélisation qualitative des systèmes biologiques. Enfin, du côté appli-

catif, nous avons conçu un logiciel fournissant une interface qui rend transparente l’utilisation

d’ASP par des utilisateurs biologistes ou modélisateurs, et peut être intégré dans d’autres outils

disponibles pour la simulation et l’analyse des modèles logiques.

Pour finir, le travail présenté dans cette thèse a soulevé plusieurs questions intéressantes

pour de futures recherches. En particulier, nos travaux ont ouvert la voie à une caractérisation

exhaustive des modèles logiques possibles pour un système donné. Maintenant, nous devons

développer un cadre de modélisation approprié pour interpréter et tirer partie de cette ca-

ractérisation. Ce cadre de modélisation doit être nécessairement guidé par les technologies

expérimentales disponibles, qui nous permettent de confirmer ou d’infirmer les hypothèses

générées. Par exemple, les essais phospho-protéomiques comme celui utilisé pour l’apprentis-

sage de réseaux sont réalisés sur une population de cellules. On ne sait donc pas comment

interpréter la multitude de réseaux logiques et leurs comportements d’entrée-sortie au niveau

d’une cellule individuelle. Etant donné l’existence de plusieurs comportements d’entrée-sortie

logiques qui correspondent à différents mécanismes internes, nous devons élucider si ces mé-

canismes sont un simple artefact des modélisations logiques, ou s’ils représentent réellement

les mécanismes moléculaires variables qui à leur tour apparaissent plus ou moins souvent au

sein de chaque cellule ou à une échelle de la population. De plus, en dépit de l’incertitude

intrinsèque dans les systèmes biologiques, il est encore assez difficile d’évaluer la quantité de

bruit dans les mesures et comment cela influe sur nos modèles mathématiques ou formels.

Cela soulève la question de l’identifiabilité et dans quelle mesure les nouvelles expériences

peuvent permettre de construire des modèles logiques plus fins. La méthode de conception

xv

Résumé

de plans expérimentaux que nous proposons nécessite d’être validée et pourrait représenter

un premier pas dans cette direction. Enfin, il serait particulièrement intéressant d’explorer

plus notre approche permettant de trouver des stratégies d’intervention en raisonnant sur

un ensemble de réseaux logiques. En principe, une telle approche devrait permettre de tirer

des enseignements sur l’incertitude et la non-identifiabilité des systèmes étudiés. Cependant,

nous devons à nouveau élucider si une telle famille de réseaux décrit des voies alternatives au

sein d’une seule cellule ou à l’échelle de la population. Enfin, toutes ces questions s’intègrent

dans un cadre de modélisation intégratif qui se positionne à différentes échelles de temps et

de causalité. À cette fin, le développement de systèmes de raisonnement hybrides tirant parti

de l’expressivité de plusieurs technologies et approches de modélisation apparaît comme une

piste très prometteuse pour de futures recherches en informatique.

Mots clefs : biologie des systèmes, réseaux de signalisation logiques, answer set programming

xvi

Contents
Acknowledgements iii

List of Figures xxiii

List of Tables xxv

List of Listings xxvii

1 Introduction 1

1.1 Systems biology and signaling networks . 1

1.2 Computational modeling and methods . 3

1.3 Original contribution . 10

1.4 Organization of the thesis . 10

2 Generic framework for reasoning on the response of logical networks 13

2.1 Preliminaries . 13

2.1.1 Propositional logic and mathematical notation 13

2.2 Characterizing the response of logical networks 14

2.2.1 Logical networks and interaction graphs 14

2.2.2 Characterizing the response of the system 15

2.2.3 Logical networks and their response with Answer Set Programming . . . 18

2.3 Conclusion . 20

3 Learning Boolean logic models of immediate-early response 21

3.1 Introduction . 21

3.2 Problem . 23

3.2.1 Prior knowledge network and phospho-proteomics dataset 23

3.2.2 Boolean input-output predictions . 25

3.2.3 Learning Boolean logic models . 26

3.3 Learning Boolean logic models with Answer Set Programming 29

3.3.1 Instance . 30

3.3.2 Encoding . 31

3.3.3 Solving . 34

3.4 Finding input-output behaviors with Answer Set Programming 35

3.4.1 Instance . 35

xvii

Contents

3.4.2 Encoding . 35

3.4.3 Solving . 36

3.5 Empirical evaluation . 38

3.5.1 Real-world problem instance . 38

3.5.2 Optimal Boolean logic models. 40

3.5.3 Enumeration of (nearly) optimal Boolean logic models. 40

3.5.4 Analyzing logical input-output behaviors. 42

3.5.5 Comparing with a meta-heuristic approach. 43

3.6 Conclusion . 43

4 Experimental design for discrimination of input-output behaviors 45

4.1 Introduction . 45

4.2 Problem . 47

4.2.1 Logical input-output behaviors and search space of experiments 47

4.2.2 Experimental design . 49

4.3 Experimental design with Answer Set Programming 51

4.3.1 Instance . 51

4.3.2 Encoding . 52

4.3.3 Solving . 55

4.4 Empirical evaluation . 55

4.4.1 Real-world problem instance . 55

4.4.2 Optimal experimental designs . 57

4.4.3 Analyzing experimental designs . 58

4.5 Conclusion . 58

5 Minimal intervention strategies 61

5.1 Introduction . 61

5.2 Problem . 63

5.2.1 Intervention scenarios and strategies . 63

5.2.2 Enumeration of minimal (bounded) intervention strategies 64

5.3 Minimal intervention strategies with Answer Set Programming 65

5.3.1 Instance . 65

5.3.2 Encoding . 66

5.3.3 Solving . 69

5.4 Empirical evaluation . 69

5.4.1 Real-world problem instance . 69

5.4.2 Minimal intervention strategies . 70

5.4.3 Towards small yet robust intervention strategies 72

5.4.4 Comparing with a dedicated algorithm . 73

5.5 Conclusion . 74

xviii

Contents

6 Software toolbox: caspo 77

6.1 Introduction . 77

6.2 Software design . 79

6.2.1 High-level software design . 79

6.2.2 Generic workflow for subcommands . 81

6.3 Usage . 82

6.3.1 Usage for end-users . 82

6.3.2 Usage for developers . 90

6.4 Conclusion . 91

7 Conclusion and prospective 93

7.1 Contribution . 93

7.2 Discussion and prospective . 94

A Proofs 97

A.1 Data discretization schemes . 97

A.2 Correctness of ASP encodings . 99

A.2.1 Basic ASP representation . 100

A.2.2 Extended ASP representations . 106

Bibliography 119

Curriculum Vitae 121

xix

List of Figures

2.1 Graphical representation for logical networks and interaction graphs. Vertices represent

biological entities and the interactions among them are represented as follows. Pos-

itive interactions are represented by an arrow (→) whereas negative interactions are

represented by a T-shape (�). 15

3.1 Learning Boolean logic models of immediate-early response. The green and red edges

correspond to activations and inhibitions, respectively. Green nodes represent ligands

that can be experimentally stimulated (VS). Red nodes represent species that can be

inhibited or knocked out (VK). Blue nodes represent species that can be measured (VR).

White nodes are neither measured, nor manipulated (VU). 24

3.2 Prior knowledge network (V ,E ,σ) describing signaling pathways in human liver cells.

It contains 31 nodes (V) describing biological species: 7 stimuli (VS), 7 inhibitors (VK),

15 readouts (VR) and 6 neither controlled nor observed (VU). Furthermore, 53 signed

directed edges (E) describing activatory and inhibitory causal interactions yield 130

possible (signed) directed hyperedges. 38

3.3 Distribution of Boolean logic models found for each tolerance according to their MSEs

(Θmse). When 10% of tolerance is considered, two MSEs, viz. 0.0519 and 0.0542, gather

63% of the 5306 Boolean logic models. 41

3.4 Logical input-output behaviors for 10% of tolerance. Behaviors are ordered (from left to

right) first according to their MSE (colors), and then according to the number of models

they gather (bars). The 2 most common behaviors describe the response of 1062 and

880 Boolean logic models having MSEs 0.0542 and 0.0519 respectively. 42

3.5 Core predictions versus number of input-output behaviors for each tolerance. 43

4.1 Representative Boolean logic models (V ,φ1), (V ,φ2), and (V ,φ3) for 3 different logical

input-output behaviors. The correspoinding mappings are: φ1 = {d �→ a ∨¬c,e �→
b ∨ c, f �→ d ∧ e, g �→ e ∧¬c},φ2 = {d �→ a ∨ b,e �→ b ∨ c, f �→ d ∧ e, g �→ e ∧¬c}, and

φ3 = {d �→ a,e �→ b ∨c, f �→ d ∧e, g �→ e ∧¬c}. 48

xxi

List of Figures

4.2 Optimal experimental design to discriminate between 91 input-output behav-

iors. (a) Description of each experimental condition. Black squares indicate the

presence of the corresponding stimulus (green header) or inhibitor (red header).

(b) Each column describes the number of pairs of behaviors (out of
�91

2

�

= 4095)

discriminated by each experimental condition. (c) Number of pairwise dif-

ferences by readouts with each experimental condition. (d) Overall pairwise

differences with each experimental condition. 59

5.1 Alternative logical networks (V ,φ1), (V ,φ2), (V ,φ3), (V ,φ4), and (V ,φ5) describing a given

system equally well. The correspoinding mappings are: φ1 = {d �→ a ∨¬c,e �→ b ∨c, f �→
d ∧ e, g �→ e ∧¬c},φ2 = {d �→ a ∨ (b ∧¬c),e �→ b ∨ c, f �→ d ∧ e, g �→ e ∧¬c}, φ3 = {d �→
a,e �→ b∨c, f �→ d ∧e, g �→ e ∧¬c}, φ4 = {d �→ a∨b,e �→ b∨c, f �→ d ∧e, g �→ e ∧¬c}, and

φ5 = {d �→ a ∨b ∨¬c,e �→ b ∨c, f �→ d ∧e, g �→ e ∧¬c}. 63

5.2 Frequency of single interventions. Vertical bars describe the frequency of each

single intervention among all minimal intervention strategies with respect to

different sets of logical networks. All interventions occur in less than 50% of the

strategies yet, some interventions are clearly more frequent than others. Pairs of

families M16 and M144 (blue bars), M2150 and M2306 (red bars), and M3524 and

M5306 (green bars), have the same strategies and thus we plot them together. . 72

5.3 Robust intervention strategies. We plot the 14 intervention strategies found with

respect to M16 and M144. Each path from the node “SCENARIOS CONSTRAINTS”

to the node “SCENARIOS GOALS”, describes a different strategy where species

are intervened according the their coloring: red for inhibitions and green for

activations. Out of the 14 strategies only 6, the ones highlighted with stronger

red, are conserved among all logical networks in M5306. 74

6.1 Pipeline for reasoning on the response of logical signaling networks using caspo.

At first, all (nearly) optimal Boolean logic models are learned by confronting

prior knowledge on causal interactions with a phosphorylation dataset. Then,

supported by insights from experts and various validation methods, we can

decide if the ensemble of Boolean models needs further refinements. In such a

case, optimal experiments can be designed in order to discriminate the set of

behaviors at hand. By combining the previous dataset with the new observations,

the learning is performed again yielding a new ensemble of models. After several

iterations, the “high-quality” ensemble of logical networks can be used to find

(robust) intervention strategies and generate novel hypotheses. 78

xxii

List of Figures

6.2 High-level software design. Modules of caspo are divided into three different lay-

ers. First layer comprises the console module which implements functionalities

related to the usage of caspo from the command-line. Entry-points for caspo

subcommands are implemented here. Second layer comprises various modules

which implement different sections of the pipeline for automated reasoning,

namely, learn for learning Boolean logic models (Chapter 3), design for designing

new experiments (Chapter 4), control for finding intervention strategies (Chap-

ter 5), analyze for identifying input-output behaviors (Chapter 3), and visualize

for basic visualization features. Third layer comprises the core module which

implements “low-level” functionalities for the whole software. Main external

dependecies are shown as well. 80

6.3 Workflow for caspo subcommands. For clarity, we distinguish three execution

levels. First, the command-line (end-user) level where input and output files

are handled. Second, the subcommands (application) level where input data is

converted to logic facts, combined with a specific logic program, and given to

the next level for launching ASP tools. Normally, some kind of “business logic”

is implemented at this level, for instance, the identification of input-output

behaviors using Algorithm 1 (Section 3.4.3), or first find the optimum and then

enumerate solutions within certain tolerance. Third, the ASP solving (external)

level where ASP tools are executed using system calls and the resulting answer

sets are loaded into memory as python objects, which in turn are provided to

the application level for further analysis. 82

6.4 Visualization provided by caspo. (a) Toy prior knowledge network (pkn.dot).

(b) Logical networks (V ,φi) as (signed) directed hypergraphs (network-i.dot).

(c) Union of all logical networks where the thickness of hyperedges correspond

to their frequencies (networks-union.dot). (d) All inclusion-minimal interven-

tion strategies (strategies.dot). 90

xxiii

List of Tables
2.1 Truth tables for classical (Boolean) logic. 13

2.2 Truth tables for Kleene’s logic. 14

2.3 Exemplary iterated application of Ω(V ,φ|C) for (V ,φ) in Figure 2.1a, clamping assignment

C = {i1 �→ t , i2 �→ f , g �→ f } and initial assignment A with either A = Au or A = A f 17

3.1 Enumeration of (nearly) optimal Boolean logic models. We report for each tolerance

T , the number of Boolean logic models found M , the CPU time used by the ASP solver

tenum , the range of MSEs Θmsek
and Θmse , the range of sizes Θsi ze , the number of logical

input-output behaviors B and the CPU time used by the script implementing Algorithm 1. 41

4.1 Fixpoints F
j

i
forΩ(V ,φ j |Ci

) reachable from A f with j = 1,2,3 and i = 1,2. Logical networks

(V ,φ j) are shown in Figure 4.1 whereas C1 = {b �→ t } and C2 = {b �→ t ,c �→ t }. 49

4.2 Input-output discrimination over the search space of experiments C (3,2). We report

for each set of input-output behaviors Bm from Table 3.1, the minimum number of

experimental conditions required to discriminate between every pair of behaviors (ε),

the time for finding such a minimum (tε), the maximum number of pairwise differences

(Θdiff), the mean and standard deviation pairwise differences (µdiff and σdiff), the mini-

mum number of stimuli (ΘVS), the minimum number of inhibitors (ΘVK), and the time

for finding an optimum experimental condition (topt). Also, in parentheses, we report

overall CPU time for the 8 threads. 58

5.1 Enumeration of all inclusion-minimal intervention strategies up to a given size

k = 2,3,4,5, or unbounded (∞). For each set of logical networks (Mi), we report

the number of intervention strategies (I) and the CPU time (tenum). Also, in

parentheses, we report the time strictly during solving. 71

xxv

List of Listings
2.1 Logical networks representation as logical facts 18

2.2 Clamping assignment as logical facts . 18

2.3 Clamped and free variables . 19

2.4 Positive propagation common to two- and three-valued logics 19

2.5 Negative propagation for two-valued logic (with default negation) 19

2.6 Negative propagation for three-valued logic (with explicit proof) 19

3.1 Toy example input instance (toy.lp) . 30

3.2 Logic program for learning Boolean logic models (learning.lp) 31

3.3 Learning an optimum Boolean logic model . 34

3.4 Enumeration of all (nearly) optimal Boolean logic models 35

3.5 Logic program for finding input-output behaviors (behaviors.lp) 36

3.6 Learning all optimal Boolean logic models . 39

4.1 Toy example input instance (toy.lp) . 51

4.2 Logic program for finding an optimal experimenal design (design.lp) 52

4.3 Finding an optimum experimental design . 55

4.4 Finding an optimal experimental design to discriminate 4 behaviors 56

5.1 Toy example problem instance (toy.lp) . 66

5.2 Logic program for finding intervention strategies (control.lp) 66

5.3 Enumeration of all minimal intervention strategies 69

5.4 Enumeration of all minimal intervention strategies wrt 2306 logical networks . 70

6.1 Help message for caspo. 82

6.2 Help message for learn subcommand . 83

6.3 Running learn subcommand . 84

6.4 Help message for analyze subcommand . 85

6.5 Running analyze subcommand . 86

6.6 Help message for design subcommand . 86

6.7 Running design subcommand . 87

6.8 Help message for control subcommand . 87

6.9 Running control subcommand . 88

6.10 Running analyze subcommand (again) . 88

6.11 Help message for visualize subcommand . 89

6.12 Running visualize subcommand . 90

xxvii

1 Introduction

1.1 Systems biology and signaling networks

Systems biology

Systems biology is an interdisciplinary field aiming at the investigation and understanding of

biology at a system and multi-scale level [Ideker et al., 2001, Kitano, 2002]. After biological

entities have been identified in a specific environment, it remains to elucidate how they

interact with each other in order to carry out a particular biological function. Thus, rather

than focusing on the components themselves, one is interested on the nature of the links

that connect them and the functionalities arising from such interactions. Notably, advances

on high-throughput experimental technologies have been one of the main driving forces of

systems biology. Such technologies have allowed biologists to study biological systems as

a whole rather than as individual components. Nevertheless, the “reductionist” approach

of molecular biology has been fundamental for the construction of the large catalogues of

biological entities available nowadays. In fact, some authors have considered systems biology

not as a new field of research but instead, as an approach to biomedical research combining

“reductionist” and “integrationist” techniques [Kohl et al., 2010].

As it is often the case, the application of novel technologies has led to profound conceptual and

philosophical changes in biology. From the early days of molecular biology, there exists the idea

that the DNA sequence dictates most of cell actions, as the instructions in a computer program.

Recently, together with the advent of systems biology, such a mechanistic understanding has

been strongly revisited. Instead, an informatic perspective on the role of the genome has been

established. From this point of view, the focus is on what the cell does with and to its genome

products rather than on what the genome directs the cell to execute [Shapiro, 2009]. Then, for

any biological system one can envision at least a three-way interaction between DNA products,

the environment and the phenotype [Kohl et al., 2010]. In this scheme, the group of entities

mediating between such interactions are the so-called biological networks. Deciphering the

functioning of these complex networks is the central task of systems biology. Importantly,

in order to cope with the increasing complexity of large-scale networks, mathematical and

1

Chapter 1. Introduction

computational modeling is required. Hence, the development of such modeling approaches

is a major goal in the field.

From the early millennium, many efforts have been made to develop relevant formalisms

and modeling frameworks to take into account the specificities of complex biological systems.

Among them, one can distinguish between mathematical and computational modeling ap-

proaches [Fisher and Henzinger, 2007]. Essentially, mathematical (or quantitative) models are

based on denotational semantics, that is, models are specified by mathematical equations

describing how certain quantities change over time [Aldridge et al., 2006]. On the other hand,

computational (or qualitative) models are based on operational semantics, that is, models

are specified in terms of a sequence of steps describing how the states of an abstract ma-

chine relate to each other (not necessarily deterministically) [Melham, 2013]. Notably, each

type of models provides a different level of abstraction enabling to address different kinds

of questions. In fact, hybrid modeling precisely aims at exploiting the best of both worlds

whenever possible [Henzinger, 1996]. In any case, it is clear that intuition is not enough

to face the complexity of large-scale biological systems. Thus, systematic and elaborated

methodological tools are required by (systems) biologists. Moreover, the development of

such modeling frameworks is leading to a hypothesis-driven research in biology [Ideker et al.,

2001, Kitano, 2002]. At first, due to the lack of information, multiple hypotheses are usually

generated from prior knowledge and either mathematical, computational or hybrid modeling.

Next, decision-making methods can be used to suggest new experiments in order to reduce

ambiguous hypotheses [Kreutz and Timmer, 2009]. Finally, new experimental data is pro-

duced to test the generated hypotheses, the models are refined, and the loop is started over

again. Interestingly, to some extent, this iterative process could be automatized allowing an

autonomous scientific discovery [Sparkes et al., 2010].

Signaling networks

Among the biological networks mediating between genes, the environment and the phenotype,

signal transduction networks are crucial for the understanding of the response to external and

internal perturbations [Gomperts et al., 2009]. To be more precise, signal transduction occurs

when an extracellular signaling molecule binds to a specific cell surface receptor protein. Such

a binding causes a conformational change in the receptor that initiates a sequence of reactions

leading to a specific cellular response such as growth, survival, apoptosis (cell death), and

migration. Post-translational modifications, notably protein phosphorylation, play a key role

in signaling. Importantly, signaling networks are involved in biomedical processes and their

control has a crucial impact on drug target identification and diagnosis. Unfortunately, little is

known still about the exact chaining and composition of signaling events within these net-

works in specific cells and specific conditions. For example, in cancer cells, signaling networks

frequently become compromised, leading to abnormal behaviors and responses to external

stimuli [Hanahan and Weinberg, 2011]. Thus, many current and emerging cancer treatments

are designed to block nodes in signaling networks, thereby altering signaling cascades [Gom-

2

1.2. Computational modeling and methods

perts et al., 2009, Hainaut and Plymoth, 2012, Csermely et al., 2013]. Researchers expect that,

advancing our understanding of how these networks are deregulated across specific environ-

ments will ultimately lead to more effective treatment strategies for patients. In fact, there

is emerging experimental evidence that the combinatorics of interactions between cellular

components in signaling networks is a primary mechanism for generating highly specialized

biological systems [Papin et al., 2005]. In this context, phosphorylation assays are a recent

form of high-throughput data providing information about protein-activity modifications

in a specific cell type upon various combinatorial perturbations [Alexopoulos et al., 2010].

Therefore, moving beyond causal and canonical interactions towards mechanistic and special-

ized descriptions of signaling networks is a major challenge in systems biology. Importantly,

cellular signaling networks operate over a wide range of timescales (from fractions of a seconds

to hours). Thus, taking this into account often leads to significant simplifications [Papin et al.,

2005, Macnamara et al., 2012].

Finally, we conclude this brief introduction to systems biology and signaling networks by

noting that biological functionality is multilevel [Noble, 2010]. That is, signaling networks

by no means could function in isolation from metabolic and regulatory processes. Hence,

integrative modeling approaches considering these multiple levels of causation pose indeed a

long-term goal in the field.

1.2 Computational modeling and methods

Computational modeling

The simplest abstraction to describe signaling networks is by means of standard graph theory.

Nodes in the graph typically describe biological species whereas signed and directed edges

represent causal relations among them (activatory or inhibitory effects). Nowadays, there

exist public repositories such as Pathways Commons [Cerami et al., 2011], Pathways Interac-

tion Database [Schaefer et al., 2009], and KEGG [Kanehisa et al., 2010] that contain curated

knowledge about intracellular causal molecular interactions found in different cell types and

species. Thus, on the one hand, one can query such databases in order to retrieve canonical

cellular signaling networks [Guziolowski et al., 2012]. On the other hand, in order to build

context-specific causal interaction graphs, machine learning was applied for the automated

inference from experimental observations relying on Bayesian networks [Sachs et al., 2005,

Needham et al., 2007]. Next, several graph-theoretical concepts can be used to understand

structural properties of the biological system under study. However, functional relationships

in signaling networks cannot be captured by means of graph theory only [Klamt et al., 2006b].

If two proteins modeled by nodes a and b have a positive effect on a third one c, this would

be described in a graph by edges a → c, b → c. Nevertheless, it is unclear whether a or b can

independently activate c, or if both are required. Therefore, due to the lack of mechanistic

information, causal interaction graphs have null or very limited prediction power.

3

Chapter 1. Introduction

In order to qualitatively describe functional relations between species, numerous discrete

dynamical systems approaches have been proposed. Among them, logic-based models have

become very popular in the last few years [Réka and Wang, 2008, Morris et al., 2010, Wang et al.,

2012, Saadatpour and Réka, 2013]. Generally speaking, species in the system are described

by propositional variables and their relationships are captured by means of propositional

formulas. Then, such a set of formulas determines the evolution of the system over discrete

time steps. That is, the future state of each variables is determined by the current states of other

variables through its corresponding formula. In this context, Boolean networks [Kauffman,

1969] provide a modeling approach able to capture interesting and relevant behaviors in the

cell despite their simplicity [Bornholdt, 2008]. Notably, this simplicity is due to the high level

of abstraction and synchronous update scheme in Boolean networks. That is, one needs

to assume that all species in the system update their (discrete) state at the same time. In

particular, this leads to deterministic dynamical behaviors. Nonetheless, it has been shown

that, to some extent, the (early) response in signaling networks can be appropriately modeled

with Boolean networks [Saez-Rodriguez et al., 2007, Samaga et al., 2009, Saez-Rodriguez et al.,

2011]. In order to overcome some shortcomings in (synchronous) Boolean networks, more

elaborate logical frameworks have been proposed. For instance, asynchronous automata

networks [Thomas, 1973, 1991], and probabilistic Boolean networks [Shmulevich et al., 2002a]

are often able to capture more complex (non-deterministic) dynamical behaviors [Shmulevich

et al., 2002b, Sánchez et al., 2008, Calzone et al., 2010]. However, in order to capture such

behaviors in large-scale networks, the computational cost is often significantly high due to the

combinatorial explosion of possible states at simulation.

More broadly, other computational formalisms have been proposed to describe complex

dynamical systems by incorporating (semi-) quantitative information, for instance, piecewise-

linear models [de Jong et al., 2004], Petri nets [Chaouiya, 2007], π-calculus [Regev et al., 2001],

and rule-based modeling [Hlavacek et al., 2006]. Piecewise-linear models rely on class of

piecewise-linear differential equations to provide a coarse-grained description tailored to

qualitative simulation. Although related to asynchronous automata networks, piecewise-linear

models account for larger generality whereas their base mathematical formalism, namely, dif-

ferential equations, facilitate the integration of quantitative data towards pure mathematical

models. Petri nets provide a very intuitive (graphical) framework to represent production and

consumption effects like in metabolic networks but, signaling events are not so easily modeled

with standard settings. In fact, several extensions have been defined to increase the expres-

sivity of standard Petri nets, such as stochastic, coloured, and continuous Petri nets [Heiner

and Gilbert, 2011]. The π-calculus is an abstract process language developed for specifying

concurrent computational systems [Milner, 1999]. In our context, the key idea is to model

a biological system as a network of communicating processes (molecular species) through

specific channels (binding sites). Furthermore, the so-called stochastic π-calculus [Priami

et al., 2000] has been proposed to describe more accurate dynamical behaviors. Finally, in

contrast to the aforementioned general purpose modeling frameworks, rule-based modeling

relies on domain-specific languages to model biochemical networks [Hlavacek et al., 2006,

4

1.2. Computational modeling and methods

Calzone et al., 2006, Danos and Laneve, 2003]. Similarly to π-calculus, it allows modelers to

take into account physicochemical parameters that capture details about proteins and their

interactions at the level of binding sites. Notably, as one considers more proteins and binding

sites, the number of possible protein complexes and combinations of protein modifications

tends to increase exponentially [Papin et al., 2005]. Therefore, the explicit writing of all possible

chemical reactions for signaling networks with more than a few proteins is out of reach. In

fact, the main motivation for rule-based modeling is to provide a symbolic representation to

face this combinatorial complexity, whereas various implementations allow to automatically

generate a computational model to be executed.

Current challenges in logic-based modeling

In this thesis, we are interested in logic-based models, particularly Boolean networks and slight

variations thereof. We note that, such modeling approach is among the simplest computa-

tional abstractions (after causal interaction graphs). Nevertheless, initially simple logic-models

have been refined in an iterative fashion by adding layers of complexity yielding more precise

descriptions [Wittmann et al., 2009, Samaga and Klamt, 2013]. This is especially useful in the

case of poorly understood biological systems where kinetic information is scarce and hard to

obtain at early stages of modeling. Thus, despite their high level of abstraction, logic-based

models are well-suited to guide exploratory research where more detailed modeling frame-

works are hard to adopt due to the lack of information. In this context, it is important to note

that a large majority of the authors working with such kinds of models rely on ad-hoc methods

to build them. In most cases, models are constructed manually based on information ex-

tracted from literature, experimental data, and human-expert knowledge. Notably, the manual

identification of logic rules underlying the system being studied is often hard, error-prone,

and time consuming. In this context, researchers typically aim at modeling a given biological

system by means of one logical network only. Afterwards, dynamical and structural analysis

(often computationally demanding) are conducted over the model, for instance, the identi-

fication of key-players [Abdi et al., 2008, Samaga et al., 2010, Wang and Albert, 2011, Layek

et al., 2011] or logical steady states [Christensen et al., 2009, Saadatpour et al., 2011, Mendoza

et al., 1999]. However, due to several factors, such as limited observability or the uncertainty

in experimental measurements, the model is often non-identifiable. Hence, biological insights

and novel hypotheses resulting from these analyses are likely to be incomplete, incorrect, or

biased by methodological decisions. Therefore, automated learning of logic-based models is

required in order to achieve unbiased and more robust discoveries.

Reverse engineering in systems biology consists of building mathematical and computational

models of biological systems based on the available knowledge and experimental data. To-

wards the construction of predictive models, one can convert the generic prior knowledge

(for example, canonical cell signaling networks) into a quantitative or qualitative model (for

instance, a set of differential equations or a set of logic rules) that can be simulated or exe-

cuted. Next, if enough experimental data is available, the model can be fitted to it in order to

5

Chapter 1. Introduction

obtain the most plausible models for certain environmental conditions or specific cell type.

This is normally achieved by defining an objective fitness function to be optimized [Banga,

2008]. Optimization over quantitative modeling leads to continuous optimization problems.

On the other hand, reverse engineering considering qualitative models typically give rise

to combinatorial (discrete) optimization problems. Notably, this subject represents a very

active area of research as illustrated by the successive “DREAM” challenges [Stolovitzky et al.,

2007]. Importantly, methods for reverse engineering of biological systems are highly depen-

dent on available (amount of) data, prior knowledge and modeling hypotheses. For instance,

an inference method from gene expression data collected by DNA microarrays, may not be

applicable to biochemical data like phosphorylation assays collected using xMAP Luminex

technology. In particular, reverse engineering of logical models for signaling networks by

confronting prior knowledge on causal interactions with phosphorylation activities has been

first addressed in [Saez-Rodriguez et al., 2009]. Therein, authors have shown that the model is

non-identifiable as soon as we consider the experimental error from measurements. Hence,

rather than looking for the optimum logical model, one aims at finding (nearly) optimal mod-

els within certain tolerance. Interestingly, in the context of mathematical modeling, authors

in [Chen et al., 2009] have elaborated upon the same argument. Clearly, an exhaustive enu-

meration of (nearly) optimal solutions would allow for identifying admissible logical models

without any methodological bias. Furthermore, all subsequent analysis will certainly profit

from having such a complete characterization of feasible models. That is, being able to ad-

dress a given problem but considering an ensemble of logical models may lead to more robust

solutions. In fact, this is in line with recent work showing that an ensemble of models often

yields more robust predictions than each model in isolation [Kuepfer et al., 2007, Marbach

et al., 2012]. Importantly, existing approaches, namely stochastic search and mathematical

programming, are not well-suited to cope with this question in an exhaustive manner. Hence,

there is an increasing demand of more powerful computational methods in order to achieve

robust discoveries in the context of logic-based modeling.

Computational methods

Regardless of the modeling approach and specific biological question, numerous computa-

tional methods have been proposed to solve the underlying search and optimization problems.

On the one hand, we find dedicated algorithms implementations either looking at exact

solutions or by means of stochastic local search [Hoos and Stützle, 2005]. For instance, Cell-

NetAnalyzer [Klamt et al., 2006a] implements various graph algorithms for structural and

functional analysis of signaling networks whereas CellNOpt [Terfve et al., 2012] relies on a

genetic algorithm for training logical models to experimental observations. By their algorith-

mic nature, such dedicated solutions allow for having control on how the problem is solved.

However, in order to address large-scale problems, a significant amount of effort is needed for

the development and maintenance of such algorithms. Also, it is often the case that, as soon

as we introduce a slight modification in the problem specification, it is rather hard to adapt

such dedicated algorithms to it. On the other hand, several problem solving technologies exist

6

1.2. Computational modeling and methods

which allow us to provide a specification, in some kind of machine-readable format, of what

the problem is but without giving an algorithm to solve it. Afterwards, a general purpose solver

is able to extract and (efficiently) traverse the search space looking for solutions. Popular

methods found in the literature include, (mixed) integer linear programming ((M)ILP) [Mitsos

et al., 2009, Sharan and Karp, 2013], model checking by means of temporal logic [Chabrier and

Fages, 2003, Batt et al., 2005], satisfiability testing (SAT) [Dubrova and Teslenko, 2011, Guo

et al., 2014], and constraint logic programing (CLP) [Soliman, 2011, Gay et al., 2011].1 While

each of these computational methods has proven to be very useful for solving challenging

problems, in general, they provide different kinds of complementary features. Furthermore,

in general, the performance of each solver is subject to specific parameters (search heuristics)

and problems.

In what follows we introduce Answer Set Programming (ASP), the computational method

adopted in this thesis. But before, let us highlight two distinct features compared to aforemen-

tioned methods. Firstly, ASP provides a fully declarative and executable modeling language.

This is in contrast with other general solving technologies, such as (M)ILP and SAT, where the

user is responsible of converting the problem specification (e.g., mathematical inequalities or

Boolean formulas) and input data into the machine-readable format accepted by the solver.

Typically, this is done ad hoc by means of some imperative programming language yielding

an overhead to the solving process. Secondly, ASP provides several built-in reasoning modes,

such as search, enumeration, and multi-objective optimization, among others. Notably, each

of the previously mentioned methods (and extensions thereof) provides some but not all such

functionalities. Thus, in order to achieve such automated reasoning modes, one needs to

develop dedicated algorithms on top of the solver yielding again, an overhead to the process.

Answer Set Programming at a glance

Answer Set Programming (ASP; [Baral, 2003, Gebser et al., 2012a]) provides a declarative

framework for modeling combinatorial problems in Knowledge Representation and Reasoning.

The unique pairing of declarativeness and performance in state-of-the-art ASP solvers allows

for concentrating on an actual problem, rather than a smart way of implementing it. The basic

idea of ASP is to express a problem in a logical format so that the models of its representation

provide the solutions to the original problem. Problems are expressed as logic programs and

the resulting models are referred to as answer sets. Although determining whether a program

has an answer set is the fundamental decision problem in ASP, more reasoning modes are

needed for covering the variety of reasoning problems encountered in applications. Hence,

a modern ASP solver, like clasp [Gebser et al., 2012b] supports several reasoning modes for

assessing the multitude of answer sets, among them, regular and projective enumeration,

intersection and union, and multi-criteria optimization. As well, these reasoning modes can

be combined, for instance, for computing the intersection of all optimal models. This is

accomplished in several steps. At first, a logic program with first-order variables is turned

1Note that aforecited works are only some, among many, examples of such methods applied in the field.

7

Chapter 1. Introduction

into a propositional logic program by means of efficient database techniques. This is in turn

passed to a solver computing the answer sets of the resulting program by using advanced

Boolean constraint technology. For optimization, a solver like clasp uses usually branch-and-

bound algorithms but other choices, like computing unsatisfiable cores, are provided as well.

The enumeration of all optimal models is done via the option ––opt–mode=optN. At first an

optimal model is determined along with its optimum value. This computation has itself two

distinct phases. First, an optimal model candidate must be found and second, it must be

shown that there is no better candidate; the latter amounts to a proof of unsatisfiability and is

often rather demanding (because of its exhaustive nature). Then, all models possessing the

optimum score are enumerated. Notice that this way one can enumerate all (strictly) optimal

solutions. Nonetheless, we are often interested in (nearly) optimal answer sets as well. For

a concrete example on how we address this in practice, we refer the reader to the encoding

provided in Listing 3.2 and its solving in Listing 3.4.

Our encodings are written in the input language of gringo 4 series. Such a language implements

most of the so-called ASP-Core-2 standard.2 In what follows, we introduce its basic syntax and

we refer the reader to the available documentation for more details. An atom is a predicate

symbol followed by a sequence of terms (e.g. p(a,b),q(X,f(a,b))). A term is a constant (e.g.

c, 42) or a function symbol followed by a sequence of terms (e.g. f(a,b), g(X,10)) where

uppercase letters denote first-order variables. Then, a rule is of the form

h:- b1, . . . ,bn .

where h (head) is an atom and any b j (body) is a literal of the form a or not a for an atom a

where the connective not corresponds to default negation. The connectives :- and , can be

read as if and and, respectively. Furthermore, a rule without body is a fact, whereas a rule

without head is an integrity constraint. A logic program consists of a set of rules, each of which

is terminated by a period. An atom preceded with default negation, not, is satisfied unless the

atom is found to be true. In ASP, the semantics of a logic program is given by the stable models

semantics [Gelfond and Lifschitz, 1988]. Intuitively, the head of a rule has to be true whenever

all its body literals are true. This semantics requires that each true atom must also have some

derivation, that is, an atom cannot be true if there is no rule deriving it. This implies that only

atoms appearing in some head can appear in answer sets.

We end this quick introduction by three language constructs particularly interesting for our

encodings. First, the so called choice rule of the form,

{h1; . . . ;hm}:- b1, . . . ,bn .

allows us to express choices over subsets of atoms. Any subset of its head atoms can be

included in an answer set, provided the body literals are satisfied. Note that using a choice

rule one can easily generate an exponential search space of candidate solutions. Second, a

2http://www.mat.unical.it/aspcomp2013/ASPStandardization

8

1.2. Computational modeling and methods

conditional literal is of the form

l : l1, . . . , ln

The purpose of this language construct is to govern the instantiation of the literal l through

the literals l1, . . . , ln . In this respect, the conditional literal above can be regarded as the list of

elements in the set {l | l1, . . . , ln}. Finally, for solving (multi-criteria) optimization problems,

ASP allows for expressing (multiple) cost functions in terms of a weighted sum of elements

subject to minimization and/or maximization. Such objective functions are expressed in

gringo 4 in terms of (several) optimization statements of the form

#opt{w1@l1, t11 , . . . , tm1 : b1, . . . ,bn1 ; . . . ; wk @lk , t1k
, . . . , tmk

: b1k
, . . . ,bnk

}.

where #opt ∈ {“#mi ni mi ze",“#maxi mi ze"}, wi , li , t1i
, . . . , tmi

are terms and b1i
, . . . ,bni

are

literals for k ≥ 0,1 ≤ i ≤ k,mi ≥ 0 and ni ≥ 0. Furthermore, wi and li stand for an integer weight

and priority level. Priorities allow for representing lexicographically ordered optimization

objectives, greater levels being more significant than smaller ones.

Answer Set Programming for systems biology. Our work contributes to a growing list of

ASP applications in systems biology. Almost a decade ago, Baral et al. have proposed apply-

ing knowledge representation and reasoning methodologies to the problem of representing

and reasoning about signaling networks [Baral et al., 2004]. More recently, several authors

have addressed the question of pruning or identification of biological networks using ASP.

Durzinsky et al. have studied the problem consisting of reconstructing all possible networks

consistent with experimental time series data [Durzinsky et al., 2011]. Gebser et al. have ad-

dressed the problem consisting of detecting inconsistencies and repairing in large biological

networks [Gebser et al., 2011b, 2010]. Fayruzov et al. have used ASP to represent the dynamics

in Boolean networks and find their attractors [Fayruzov et al., 2011]. Ray et al. have integrated

numerical and logical information in order to find the most likely states of a biological system

under various constraints [Ray et al., 2012]. Furthermore, Ray et al. have used an ASP system

to propose revisions to metabolic networks [Ray et al., 2010]. Papatheodorou et al. have used

ASP to integrate RNA expression with signaling pathway information and infer how mutations

affect ageing [Papatheodorou et al., 2012]. Finally, Schaub and Thiele have first investigated

the metabolic network expansion problem with ASP [Schaub and Thiele, 2009] and recently,

their work has been extendend and applied in a real-case study by Collet et al. [Collet et al.,

2013].

Altogether, this series of contributions illustrates the potential of ASP to address combinatorial

search and optimization problems appearing in the field. Nonetheless, its strictly discrete

nature poses interesting challenges for future work towards hybrid reasoning system allowing

for qualitative and quantitative modeling.

9

Chapter 1. Introduction

1.3 Original contribution

The contribution of this thesis is on three different axes. Firstly, on the modeling axis we

introduce a novel mathematical framework for characterizing and reasoning on the response

of logical signaling networks. Secondly, on the methodological axis we contribute to a growing

list of successful applications of Answer Set Programming in systems biology. Thirdly, on the

implementation axis we present a software providing a complete pipeline for automated rea-

soning on the response of logical signaling networks. More precisely, the main contributions

of this thesis are:

• a mathematical framework for reasoning on the response of logical signaling networks

relying on propositional logic and fixpoint semantics together with a basic ASP repre-

sentation (Chapter 2)

• an ASP formulation to address the problem consisting of learning from an interaction

graph and experimental data, (Boolean) logical networks describing the immediate-

early response of the system (Chapter 3)

• a proposal for finding optimal experimental designs to discriminate between rival logical

models. Furthermore, an ASP formulation to solve this problem is provided (Chapter 4)

• an ASP formulation to address the problem consisting of finding all inclusion-minimal

intervention strategies for an ensemble of feasible logical networks (Chapter 5)

• a software toolbox providing an interface to the ASP-based solutions for each of the

problems mentioned above (Chapter 6)

A first approach to the subject presented in Chapter 3 was published in [Videla et al., 2012], and

an extended version is under revision for a special issue of the journal Theoretical Computer

Science. Nonetheless, results presented in Chapter 3 are mostly based on the work published

in [Guziolowski et al., 2013]. Therein, we have also provided an informal description for the

problem addressed in Chapter 4 which has been properly developed in this thesis. The work

in Chapter 5 is an unpublished extension of the paper presented in [Kaminski et al., 2013].

Finally, the software described in Chapter 6 was introduced first in [Guziolowski et al., 2013]

but the version presented in this thesis contains several improvements and new features.

1.4 Organization of the thesis

The dissertation is organized in seven chapters, including the introduction and the conclusion.

In Chapter 2 we provide a precise definition of logical networks, their graphical representation

and related mathematical notions used throughout this thesis. Next, we introduce a mathe-

matical characterization of the response in logical networks based on a single-step operator

and fixpoint semantics. Based on this mathematical characterization, we introduce a generic

10

1.4. Organization of the thesis

representation using ASP. Interestingly, such a representation is relatively simple yet flexible

enough to be extended and adapted for specific applications as we illustrate in the subsequent

chapters. In Chapter 3 we address the problem consisting of learning from an interaction

graph and phosphorylation activities at a pseudo-steady state, (Boolean) logical networks

describing the immediate-early response of the system. We provide a characterization of

this problem using the notions introduced in Chapter 2 and adapting our ASP representation

accordingly. Also, we show that there are multiple (possibly many) logical networks compatible

with the experimental observations. In particular, this leads to logical input-output predic-

tions suffering a significant level of uncertainty. Thus, in Chapter 4 we introduce a method to

suggest new experiments for discrimination of input-output behaviors and generate models

providing more reliable predictions. We provide a characterization of this problem using the

notions introduced in previous chapters and adapting our ASP representation accordingly.

In Chapter 5 we address the problem consisting of finding inclusion-minimal intervention

strategies in logical signaling networks. Towards this end, we revisit and extend a previous

definition of this problem using the notions introduced in Chapter 2, and adapting our ASP

representation. In Chapter 6 we present a software package providing an interface to the

ASP-based solutions detailed in previous chapters. We describe its high-level design, main

features, and usage. Finally, in Chapter 7 we discuss the strengths and weaknesses of our

modeling and computational methods. Furthermore, we conclude with prospective lines of

research and future directions to explore questions raised by our work.

11

2 Generic framework for reasoning on

the response of logical networks

Here we provide a precise definition of logical networks, their graphical representation and

related mathematical notions used throughout this thesis. Next, following the investigations

of [Inoue, 2011] we introduce a mathematical characterization of the response in logical net-

works based on a single-step operator and fixpoint semantics. Based on this mathematical

characterization, we introduce a generic representation using Answer Set Programming. In-

terestingly, such a representation is relatively simple yet flexible enough to be extended and

adapted for specific applications as we illustrate in the subsequent chapters.

2.1 Preliminaries

2.1.1 Propositional logic and mathematical notation

Given a finite set V of propositional variables, we form propositional formulas from V with

the connectives ⊥, �, ¬, ∨, and ∧ in the standard way. Further, we consider (partial) truth

assignments over V mapping formulas to truth values {t , f ,u} according to Kleene’s seman-

tics [Kleene, 1950]. Clearly, two-valued assignments are restricted to range {t , f } according

to classical (Boolean) logic semantics. We recall the truth tables for classical (Boolean) and

Kleene’s logics in Table 2.1 and Table 2.2, respectively.

Let f : X → Y , be a (partial) function mapping values x ∈ X � ⊆ X to values y ∈ Y . We denote

the set of values x such that f (x) is defined, i.e. X �, with dom(f). We sometimes represent

mappings extensionally as sets, viz. {x �→ f (x) | x ∈ dom(f)}, for checking containment, dif-

Table 2.1: Truth tables for classical (Boolean) logic.

a ∧b
b

t f

a
t t f

f f f

a ∨b
b

t f

a
t t t

f t f

a ¬a

t f

f t

13

Chapter 2. Generic framework for reasoning on the response of logical networks

Table 2.2: Truth tables for Kleene’s logic.

a ∧b
b

t f u

a

t t f u

f f f f

u u f u

a ∨b
b

t f u

a

t t t t

f t f u

u t u u

a ¬a

t f

f t

u u

ference, etc. To avoid conflicts when composing two-valued truth assignments, we define

A ◦B = (A \ B)∪B where B = {v �→ s | v �→ s ∈ B } and t = f , f = t .

2.2 Characterizing the response of logical networks

2.2.1 Logical networks and interaction graphs

Logical networks. A logical network consists of a finite set V of propositional variables and

a (partial) function φ mapping a variable v ∈V to a propositional formula φ(v) over V . The

logical steady states of (V ,φ) are given by truth assignments yielding identical values for v and

φ(v) for all v ∈ dom(φ). Generally speaking, such logical networks can be seen as synchronous

Boolean networks [Kauffman, 1969]. However, since we consider both, two- and three-valued

logics, we refrain from using the term “Boolean”. Without loss of generality, we assume only

formulas in disjunctive normal form. 1 For illustration, let us consider the logical network

consisting of the set V of species variables {i1, i2, a, . . . , g ,o1,o2} along with the function φ

defined as:

φ=







a �→ ¬d

b �→ a ∧ i1

c �→ b ∨e

d �→ c

e �→ ¬i1 ∧ i2

f �→ e ∨ g

g �→ f

o1 �→ c

o2 �→ g







Note that φ leaves the specification of the (input) variables i1 and i2 undefined. Furthermore,

we represent logical networks as (signed) directed hypergraphs as shown in Figure 2.1a. A

(signed) directed hypergraph is defined by a pair (V , H) with vertices V and (signed) directed

hyperedges H ; a (signed) directed hyperedge is a pair (S, t) where S is a finite, non-empty

set of pairs (vi , si) with vi ∈V , si ∈ {1,−1} and t ∈V . 2 Then, we say that the (signed) directed

hypergraph (V , H) represents the logical network (V ,φ) if and only if for every v ∈ dom(φ) and

variable w ∈ V that occurs positively (resp. negatively) in some conjunct ψ of φ(v), there

is a hyperedge (Sψ, v) with (w,1) ∈ Sψ (resp. (w,−1) ∈ Sψ); and vice versa. Following the

example shown in Figure 2.1a, if we consider the mapping φ(e) =¬i1∧i2, we need to verify the

existence of the hyperedge (S¬i1∧i2 ,e) with S¬i1∧i2 = {(i1,−1), (i2,1)}. Similarly, for the mapping

φ(c) = b ∨ e, we need to verify the existence of the hyperedges (Sb ,c) with Sb = {(b,1)} and

(Se ,c) with Se = {(e,1)}.

1Also known as sum-of-products [Klamt et al., 2006b].
2More generally, a directed hyperedge is a pair (S,T) with T ⊆V . We consider the particular case where T is a

singleton. Directed hypergraphs are sometimes referred to as “AND/OR graphs” [Gallo et al., 1993]

14

2.2. Characterizing the response of logical networks

i1 i2

a

b

c

∨
d e

∨
f

g

o1 o2

∧∧

(a) Exemplary logical network represented as
a directed hypergraph. Directed hyperedges
describe logical interactions

i1 i2

a

b

c

d

e

f

g

o1 o2

(b) Interaction graph underlying the logical
network in (a). Directed edges describe causal
interactions.

Figure 2.1: Graphical representation for logical networks and interaction graphs. Vertices represent

biological entities and the interactions among them are represented as follows. Positive interactions

are represented by an arrow (→) whereas negative interactions are represented by a T-shape (�).

Interaction graphs. Next, we introduce the notion of the interaction graph underlying a

logical network (V ,φ). An interaction graph (V ,E ,σ) is a signed and directed graph with

vertices V , directed edges E ⊆ V ×V and signature σ ⊆ E × {1,−1}. Moreover, we say that

Σ(V ,φ) = (V ,E ,σ) is the underlying interaction graph of (V ,φ) if for every edge (v, w) ∈ E with

((v, w),1) ∈σ (resp. ((v, w),−1) ∈σ), the variable v occurs positively (resp. negatively) in the

formula φ(w). Note that there is a one-to-many relation in the sense that the same graph

(V ,E ,σ) corresponds to the underlying interaction graph Σ(V ,φ) for possibly many logical

networks (V ,φ). Now, we can rely on standard notions from graph theory to capture several

concepts on logical networks. Recall that a path in a graph is a sequence of edges connecting a

sequence of vertices. The length of a path is given by the number of edges whereas its sign is

the product of the signs of the traversed edges. Herein, we consider only paths with length

greater than zero. Thus, an edge (v, v) is required in order to consider the existence of a path

from v to v . We say there is a positive (resp. negative) path from v to w in (V ,φ) if and only if

there is a positive (resp. negative) path from v to w in Σ(V ,φ). Furthermore, we say there is a

positive (resp. negative) feedback-loop in (V ,φ) if and only if for some v ∈V there is a positive

(resp. negative) path from v to v in Σ(V ,φ).

2.2.2 Characterizing the response of the system

Clamping variables. Let (V ,φ) be a logical network describing a biological system of interest.

For capturing changes in the environment of such a biological system, for instance, due to

an experimental intervention (over-expression or knock-out), we introduce the notion of

clamping variables in the network for overriding their original specification. Towards this end,

we define a clamping assignment C as a partial two-valued truth assignment over V . Then, we

15

Chapter 2. Generic framework for reasoning on the response of logical networks

define the mapping φ|C as

φ|C (v) =







� if v �→ t ∈C

⊥ if v �→ f ∈C

φ(v) if v ∈ dom(φ) \ dom(C)

yielding the modified logical network (V ,φ|C). Moreover, it is worth noting that dom(φ) ⊆
dom(φ|C). Let us illustrate this with our toy example in Figure 2.1a. Let C be the clamping

assignment defined by {i1 �→ t , i2 �→ f , g �→ f }. Then, φ|C is a complete mapping over V

defined as

φ|C =







i1 �→ �
i2 �→ ⊥

a �→ ¬d

b �→ a ∧ i1

c �→ b ∨e

d �→ c

e �→ ¬i1 ∧ i2

f �→ e ∨ g

g �→ ⊥
o1 �→ c

o2 �→ g







In practice, clamping assignments are usually restricted to a subset of variables X ⊆V . More-

over, certain variables in X may be further restricted to be clamped either to a single truth

value, viz. t or f , or not clamped at all. These restriction will be typically related to context-

specific application settings, for instance, the kind of biological entity described by each

variable and “real-world” experimental limitations over such entity.

Fixpoint semantics. Next, for capturing the synchronous updates in a logical network (V ,φ),

we define the following operator on either two- or three-valued (complete) truth assignments

over V : 3

Ω(V ,φ)(A) = {v �→ A(φ(v)) | v ∈ dom(φ)}∪ {v �→ A(v) | v ∈V \ dom(φ)}.

where A is extended to formulas in the standard way. Notice that the definition above captures

the fact that unmapped variables in φ remain unchanged with respect to the value assigned in

A. Furthermore, for capturing the trajectory of state A we define the iterative variant of Ω(V ,φ)

as

Ω
0
(V ,φ)(A) = A and Ω

j+1
(V ,φ)(A) =Ω(V ,φ)

�

Ω
j

(V ,φ)(A)
�

.

In biological terms, a sequence (Ω
j

(V ,φ)(A)) j∈J captures the signal propagation starting in

state A. In particular, we are interested in the fixpoint of Ω(V ,φ) reachable from certain initial

assignment A. Importantly, the existence of such a fixpoint is not necessarily guaranteed.

In general, it depends on the definition of A and the presence or absence of feedback-loops

in (V ,φ). But in case of existence, such a fixpoint describes a logical steady state which is

interpreted as the response of the biological system described by (V ,φ). To be more precise,

the choice of A is related to how we model the absence of information in the context of either

two- or three-valued logics. Hence, when we consider three-valued logics, we use the initial

3The interested reader may notice the resemblance to single-step operators for logic programs introduced
in [Apt and Emden, 1982] and [Fitting, 1985] for two- and three-valued assignments respectively.

16

2.2. Characterizing the response of logical networks

Table 2.3: Exemplary iterated application of Ω(V ,φ|C) for (V ,φ) in Figure 2.1a, clamping assignment

C = {i1 �→ t , i2 �→ f , g �→ f } and initial assignment A with either A = Au or A = A f .

φ|C (v) � ⊥ ¬d a ∧ i1 b ∨e c ¬i1 ∧ i2 e ∨ g ⊥ c g

v ∈V i1 i2 a b c d e f g o1 o2

3-
va

lu
ed

Ω
0
(V ,φ|C)(Au) u u u u u u u u u u u

Ω
1
(V ,φ|C)(Au) t f u u u u u u f u u

Ω
2
(V ,φ|C)(Au) t f u u u u f u f u f

Ω
3
(V ,φ|C)(Au) t f u u u u f f f u f

Ω
4
(V ,φ|C)(Au) t f u u u u f f f u f

2-
va

lu
ed

Ω
0
(V ,φ|C)(A f) f f f f f f f f f f f

Ω
1
(V ,φ|C)(A f) t f t f f f f f f f f

Ω
2
(V ,φ|C)(A f) t f t t f f f f f f f

Ω
3
(V ,φ|C)(A f) t f t t t f f f f f f

Ω
4
(V ,φ|C)(A f) t f t t t t f f f t f

Ω
5
(V ,φ|C)(A f) t f f t t t f f f t f

Ω
6
(V ,φ|C)(A f) t f f f t t f f f t f

Ω
7
(V ,φ|C)(A f) t f f f f t f f f t f

Ω
8
(V ,φ|C)(A f) t f f f f f f f f f f

Ω
9
(V ,φ|C)(A f) t f t f f f f f f f f

assignment Au = {v �→ u | v ∈V }. Interestingly, in this context a fixpoint is reached regardless

of the presence or absence of feedback-loops in the network. Moreover, such a fixpoint poses

the property that each of its variables is assigned to u unless there is a cause to assign it to

either t or f . On the other hand, when we consider two-valued logics, we use the initial

assignment A f = {v �→ f | v ∈ V }. Unfortunately, in this context, the presence of negative

feedback-loops typically avoids reaching a fixpoint [Remy et al., 2008, Paulevé and Richard,

2012].

Next, let us illustrate the iterated application of Ω(V ,φ|C) for our toy example in the context

of both, two- and three-valued logics. Recall that we have defined φ|C above for clamping

assignment C = {i1 �→ t , i2 �→ f , g �→ f }. The resulting assignments from the computation of

Ω
j

(V ,φ|C)(A) with either A = Au or A = A f are shown in Table 2.3. Notably, when we consider

three-valued logic, Ω3
(V ,φ|C)(Au) =Ω

4
(V ,φ|C)(Au) results in the fixpoint

{i1 �→ t , i2 �→ f , a �→ u,b �→ u,c �→ u,d �→ u,e �→ f , f �→ f , g �→ f ,o1 �→ u,o2 �→ f } .

Meanwhile, under two-valued logic we obtain Ω
1
(V ,φ|C)(A f) =Ω

9
(V ,φ|C)(A f) which leads to an

oscillatory behavior for variables a,b,c,d and o1. Notice that these variables correspond to the

ones assigned to u in the fixpoint reached for Ω3
(V ,φ|C)(Au). In this case, the oscillatory behavior

is induced by the negative feedback-loop over the path a,b,c,d . Thus, one can verify that for

example, if we remove the mapping d �→ c from the definition of φ (leaving d undefined in φ),

17

Chapter 2. Generic framework for reasoning on the response of logical networks

then Ω
4
(V ,φ|C)(A f) would result in the fixpoint

{i1 �→ t , i2 �→ f , a �→ t ,b �→ t ,c �→ t ,d �→ f ,e �→ f , f �→ f , g �→ f ,o1 �→ t ,o2 �→ f } .

In fact, in this thesis whenever we consider a logical network (V ,φ) under two-valued logic, we

enforce that (V ,φ) is free of feedback-loops. Notably as detailed in Chapter 3, although not

capable of capturing dynamical properties, this simplification guarantees the existence of a

fixpoint while it allows us to characterize the so-called immediate-early response in signaling

networks.

2.2.3 Logical networks and their response with Answer Set Programming

Logical networks. Let (V ,φ) be a logical network. We represent the variables V as facts over

the predicate variable/1, namely variable(v) for all v ∈ V . Recall that we assume φ(v)

to be in disjunctive normal form for all v ∈ V . Hence, φ(v) is a set of clauses and a clause

a set of literals. We represent formulas using predicates formula/2, dnf/2, and clause/3.

The facts formula(v,sφ(v)) map variables v ∈V to their corresponding formulas φ(v), facts

dnf(sφ(v),sψ) associate φ(v) with its clauses ψ ∈φ(v), facts clause(sψ,v,1) associate clause

ψ with its positive literals v ∈ψ∩V , and facts clause(sψ,v,-1) associate clause ψ with its

negative literals ¬v ∈ ψ. Note that each s(·) stands for some arbitrary but unique name in

its respective context here. Listing 2.1 shows the representation of our toy example logical

network in Figure 2.1a.

Listing 2.1: Logical networks representation as logical facts

1 variable(i1). variable(i2). variable(o2). variable(o1). variable(a).

2 variable(b). variable(c). variable(d). variable(e). variable(f).

3 variable(g).

4

5 formula(a,0). formula(b,2). formula(c,1). formula(d,4). formula(e,3).

6 formula(f,6). formula(g,5). formula(o1 ,4). formula(o2 ,7).

7

8 dnf(0,5). dnf(1,6). dnf(1,0). dnf(2,3). dnf(3,7).

9 dnf(4,1). dnf(5,2). dnf(6,4). dnf(6,6). dnf(7,4).

10

11 clause(0,b,1). clause(1,c,1). clause(2,f,1). clause(3,a,1).

12 clause(3,i1 ,1). clause(4,g,1). clause(5,d,-1). clause(6,e,1).

13 clause(7,i2 ,1). clause(7,i1 ,-1).

Clamping variables. The representation of clamping assignments is straightforward. Note

that in the following we use 1 and −1 for truth assignments to t and f , respectively. Let C be a

clamping assignment over V , we represent the assignments in C as facts over the predicate

clamped/2, namely clamped(v,s) with s = 1 if C (v) = t and s =−1 if C (v) = f . The example

clamping assignment C = {i1 �→ t , i2 �→ f , g �→ f } is shown in Listing 2.2.

18

2.2. Characterizing the response of logical networks

Listing 2.2: Clamping assignment as logical facts

14 clamped(i1 ,1). clamped(i2 ,-1). clamped(g,-1).

Furthermore, we introduce two rules deriving predicates eval/2 and free/2. The predicate

eval/2 captures the fact that clamped variables are effectively fixed to the corresponding

evaluation. Finally, we use the predicate free/2 to represent the fact that every variable

not clamped in C , is subject to the corresponding mapping φ(v). Both rules are shown in

Listing 2.3.

Listing 2.3: Clamped and free variables

15 eval(V,S) :- clamped(V,S).

16 free(V,D) :- formula(V,D); dnf(D,_); not clamped(V,_).

Two- and three-valued logics. Next, we describe how we model either two- or three-valued

logics in ASP. In fact, the rule modeling the propagation of (positive) true values is the same

for both logics. Essentially, we exploit the fact that formulas φ(v) are in disjunctive normal

form. Hence, under both logics we derive eval(v,1) if v is not clamped and there exists a

conjunct ψ ∈φ(v) such that all its literals evaluate positively. The rule describing this is shown

in Listing 2.4.

Listing 2.4: Positive propagation common to two- and three-valued logics

17 eval(V,1) :- free(V,D); eval(W,T) : clause(J,W,T); dnf(D,J).

Meanwhile, the propagation of (negative) false values depends on the type of logic under

consideration. On one hand, when we consider two-valued logic, we use the rule shown in

Listing 2.5 to derive eval(v,−1) if it cannot be proved that v evaluates positively, that is, not

eval(v,1).

Listing 2.5: Negative propagation for two-valued logic (with default negation)

18 eval(V,-1) :- variable(V); not eval(V,1).

On the other hand, when we consider three-valued logic, we use the rules shown in Listing 2.6.

Notice that in this case, we derive eval(v,−1) only if it can be proved that all clauses ψ ∈φ(v)

evaluate negatively. A clause φ evaluates negatively if at least one of its literals evaluates

negatively. Clauses evaluating negatively are represented with the predicate eval_clause/2.

Listing 2.6: Negative propagation for three-valued logic (with explicit proof)

18 eval_clause(J,-1) :- clause(J,V,S); eval(V,-S).

19 eval(V,-1) :- free(V,D); eval_clause(J, -1) : dnf(D,J).

19

Chapter 2. Generic framework for reasoning on the response of logical networks

Correctness of the ASP representation. The following two propositions show the correct-

ness of our ASP representation for finding the fixpoint under either two- or three-valued logics,

respectively. We refer the reader to the appendix for detailed proofs. Let us introduce the

used notation first. For a logical network (V ,φ) and clamping assignment C over V , let us

denote with τ((V ,φ),C) the set of logical facts as in Listing 2.1 and Listing 2.2. Furthermore,

for x = 3, . . . ,6 let us denote with Π2.x the set of rules defined in Listing 2.x.

Proposition 2.2.1. Let (V ,φ) be a logical network without feedback-loops and let C be a clamp-

ing assignment over V .

Then, there is an answer set X of τ((V ,φ),C)∪Π2.3∪Π2.4∪Π2.5 such that F = {v �→ t | eval(v,1) ∈
X }∪ {v �→ f | eval(v,-1) ∈ X } if and only if F is the unique fixpoint of Ω(V ,φ|C) reachable from

A f .

Proposition 2.2.2. Let (V ,φ) be a logical network and let C be a clamping assignment over V .

Then, there is an answer set X of τ((V ,φ),C)∪Π2.3 ∪Π2.4 ∪Π2.6 such that such that F = {v �→
t | eval(v,1) ∈ X }∪ {v �→ f | eval(v,-1) ∈ X }∪ {v �→ u | eval(v,1) ∉ X ,eval(v,-1) ∉ X } if

and only if F is the unique fixpoint of Ω(V ,φ|C) reachable from Au .

2.3 Conclusion

In this chapter we have introduced the fundamental mathematical notions used throughout

this thesis. More precisely, we have characterized the response of logical networks under either

two- or three-valued logics based on fixpoint semantics. Furthermore, a representation using

Answer Set Programming which allow for modeling logical networks and perform automated

reasoning on their response has been provided. Notably, such a representation can be easily

elaborated to consider specific application settings. For example, in Chapter 3 we extend our

representation to learn logical networks from a given interaction graph confronting their re-

sponse with experimental observations. Moreover, we consider several clamping assignments

simultaneously instead of only one. In Chapter 4 we elaborate upon our representation in

order to search for clamping assignments leading to different responses among several logical

networks. In that context, the clamping assignments found are interpreted as experiments

which would allow to discriminate the logical networks at hand. Finally, in Chapter 5 we adapt

our representation again aiming at reasoning over a family of logical networks and finding

clamping assignments leading to responses satisfying specific goals. Altogether, this consti-

tutes a generic, flexible, and unified framework for modeling logical networks and perform

automated reasoning on their response.

20

3 Learning Boolean logic models of

immediate-early response

The manual identification of logic rules underlying a biological system is often hard, error-

prone and time consuming. Therefore, automated inference of (Boolean) logical networks

from experimental data is a fundamental question towards the construction of large-scale

predictive models. This chapter addresses the problem consisting of learning from an interac-

tion graph and phosphorylation activities at a pseudo-steady state, (Boolean) logical networks

describing the immediate-early response of the system.

3.1 Introduction

In what follows, we briefly summarize the main biological hypotheses in [Saez-Rodriguez et al.,

2009] providing the foundation for the concept of Boolean logic models of immediate-early

response. Concretely, a Boolean logic model of immediate-early response is a logical network

(V ,φ) as defined in Chapter 2, without feedback-loops and using classical (Boolean) logics.

The main assumption under Boolean logic models as treated in [Saez-Rodriguez et al., 2009] is

the following. The response of a biological system to external perturbations occurs at several

time scales [Papin et al., 2005]. Thus, one can discriminate between fast and slow events.

Under this assumption, at a given time after perturbation, the system reaches a state on

which fast events are relevant, but slow events (such as protein degradation) have a relatively

insignificant effect. In this context, we say that the system has reached a pseudo-steady state

describing the early events or immediate-early response. Qualitatively, these states can be

computed as logical steady states in the Boolean network (V ,φ) [Klamt et al., 2006b]. In fact,

the discrimination between fast and slow events has an important consequence. Since we

focus on fast or early events, it is assumed that oscillation or multi-stability caused by feedback-

loops [Remy et al., 2008, Paulevé and Richard, 2012] cannot happen until the second phase of

signal propagation occurring at a slower time scale. Therefore, feedback-loops are not included

in Boolean logic models of immediate-early response assuming that they will become active

in a late phase [Macnamara et al., 2012]. Notably, it follows that starting from any initial state,

a Boolean logic model of immediate-early response reaches a unique steady state or fixpoint

21

Chapter 3. Learning Boolean logic models of immediate-early response

in polynomial time [Paulevé and Richard, 2012]. Thus, such modeling approach, although

not capable of capturing dynamical properties, provides a relatively simple framework for

input-output predictive models.

Learning Boolean logic models of immediate-early response. Nowadays, for certain bi-

ological systems, a graph of causal interactions describing a large-scale signaling network

can be retrieved from public databases [Guziolowski et al., 2012] or by means of statistical

methods and experimental data [Sachs et al., 2005]. However, functional relationships in

signaling networks cannot be captured by means of graph theory only [Klamt et al., 2006b].

In this context and based on the assumptions described above, authors in [Saez-Rodriguez

et al., 2009] have proposed a method to learn from an interaction graph and phosphorylation

activities at a pseudo-steady state, Boolean logic models of immediate-early response fitting

experimental data. Originally, a genetic algorithm implementation was proposed to solve

the underlying optimization problem, and a software was provided, CellNOpt [Terfve et al.,

2012]. Nonetheless, stochastic search methods cannot characterize the models precisely: they

are intrinsically unable not just to provide a complete set of solutions, but also to guarantee

that an optimal solution is found. Some variations of our problem were addressed using a

mathematical programming approach [Mitsos et al., 2009, Sharan and Karp, 2013]. Despite

their success to overcome some shortcomings of the genetic algorithm, such as performance

and global optimality, the enumeration of all (nearly) optimal solutions was not considered.

More generally, the inference of Boolean networks from time-series gene expression data

has been addressed by several authors under different hypotheses and methods [Liang et al.,

1998, Akutsu et al., 2000, Ideker et al., 2000, Lähdesmäki et al., 2003]. Recently, some of these

methods have been compared in [Berestovsky and Nakhleh, 2013]. Nonetheless, overall, our

work presents some significant differences. To start with, all of them are focused on gene

regulatory networks and gene expression time-series data, whereas we work on signaling

transduction networks and phosphorylation activities at a pseudo-steady state. Further, they

work only with Boolean experimental observations which would correspond to adopt a binary

discretization scheme in our framework. Moreover, except for the so-called Best-Fit Extension

Problem [Lähdesmäki et al., 2003], they look for Boolean networks fully consistent with the

time-series Boolean data. Meanwhile, herein we consider an objective function which de-

scribes the goodness of the model based on the numerical data that is subsequently optimized.

Finally, all these contributions focus on a “local” inference in the following sense. They aim at

learning the Boolean function for each node based on (local) input-output behaviors for such

node. In contrast, our learning is based on (global) behaviors over the input-output layers in a

network containing non-controllable/non-observable species.

In the remainder of this chapter we provide a precise characterization of this problem using

the notions introduced in Chapter 2 and adapting our Answer Set Programming representation

accordingly. Furthermore, we validate our approach using real-world signaling pathways in

human liver cells and publicly available experimental data.

22

3.2. Problem

3.2 Problem

3.2.1 Prior knowledge network and phospho-proteomics dataset

Prior knowledge network. A prior knowledge network is an interaction graph (V ,E ,σ) as

defined in Chapter 2. In addition, we distinguish three special subsets of species in V namely,

the stimuli (VS), the knock-outs (VK) and the readouts (VR). Nodes in VS denote extracellular

ligands that can be stimulated and thus, we assume they have indegree equal to zero. Nodes in

VK denote intracellular species that can be inhibited or knocked-out by various experimental

tools such as small-molecule drugs, antibodies, or RNAi. Finally, nodes in VR denote species

that can be measured by using an antibody. Notably, species in none of these sets, are neither

measured, nor manipulated for the given experimental setup. Let us denote with VU the set

of such nodes. Then, except for VR and VK that may intersect, the sets VS ,VK ,VR and VU are

pairwise mutually disjoint. An early simplification consists on compressing the PKN in order

to collapse most of the nodes in VU . This often results on a significant reduction of the search

space that must be explored during learning. Thus, herein we assume a compressed PKN as

an input and we refer the interested reader to [Saez-Rodriguez et al., 2009] for more details on

this subject.

Phospho-proteomics dataset. Given a PKN (V ,E ,σ), the concept of an experimental condi-

tion over (V ,E ,σ) is captured by a clamping assignment over variables VS ∪VK . Recall that

clamping assignments were defined in Chapter 2 as partial two-valued assignments. To be

more precise, while variables in VS can be clamped to either t or f , variables in VK can only

be clamped to f . Next, if C is an experimental condition and v ∈VS , then C (v) = t (resp. f)

indicates that the stimulus v is present (resp. absent), while if v ∈VK , then C (v) = f indicates

that the species v is inhibited or knocked out. In fact, since extracellular ligands by default are

assumed to be absent, for the sake of simplicity we can omit clampings to f over variables

in VS . Therefore, if C is an experimental condition and v ∈ dom(C) then, either v ∈ VS and

C (v) = t , or v ∈ VK and C (v) = f . Furthremore, the concept of an experimental observation

under an experimental condition C is captured by a partial mapping PC : VR �→ [0,1]. That is,

dom(PC) ⊆VR denotes the set of measured readouts under the experimental condition C . If

v ∈ dom(PC), then PC (v) represents the phosphorylation activity (at a pseudo-steady state) of

the readout v under C . Notably, it is rather critical to choose a time point that is characteristic

for the fast or early events in the biological system under consideration [Macnamara et al.,

2012]. Since phosphorylation assays represents an average across a population of cells, the

phosphorylation activity for each readout is usually normalized to [0,1]. Finally, an experimen-

tal dataset ξ is a finite set of pairs (Ci ,PCi
) with experimental conditions Ci and experimental

observations PCi
. Further, we denote with Nξ the size of ξ given by the number of measured

readouts across all experimental conditions i = 1, . . . ,n, i.e., Nξ =
�n

i=1

�
�dom(PCi

)
�
�.

Let us illustrate the concepts described above with our toy example in Figure 3.1. Consider the

PKN (V ,E ,σ) defined in Figure 3.1a. From the graph coloring, we have VS = {a,b,c}, VK = {d}

23

Chapter 3. Learning Boolean logic models of immediate-early response

a b c

d e

f g

(a) Exemplary interaction graph describing an
imaginary prior knowledge network (PKN).

a b c

d e

f g

(b) Hypergraph expansion describing all plau-
sible logical interactions for the PKN in (a).

a b c

d e

∨

f g

∧ ∧

(c) An arbitrary Boolean logic model (V ,φ) derived from the PKN in (a), i.e. pruning the hypergraph in
(b). Logical interactions in (V ,φ) correspond to the mappingφ= {d �→ a;e �→ b∨c ; f �→ d∧e; g �→ e∧¬c}.

Figure 3.1: Learning Boolean logic models of immediate-early response. The green and red edges

correspond to activations and inhibitions, respectively. Green nodes represent ligands that can be

experimentally stimulated (VS). Red nodes represent species that can be inhibited or knocked out

(VK). Blue nodes represent species that can be measured (VR). White nodes are neither measured, nor

manipulated (VU).

and VR = { f , g }. Furthermore, let ξ = ((C1,PC1), . . . , (C4,PC4)) be an example experimental

dataset over (V ,E ,σ) defined by

C1 = {a �→ t ,c �→ t } PC1 = { f �→ 0.9, g �→ 0.0}

C2 = {a �→ t ,c �→ t ,d �→ f } PC2 = { f �→ 0.1, g �→ 0.9}

C3 = {a �→ t } PC3 = { f �→ 0.0, g �→ 0.1}

C4 = {a �→ t ,b �→ t } PC4 = { f �→ 1.0, g �→ 0.8}.

(3.1)

In words, the experimental conditions C1, . . . ,C4 can be read as follows. In C1, stimuli a and

c are present, stimulus b is absent and d is not inhibited; in C2, stimuli a,b,c are like in

C1 but d is inhibited; in C3, only the stimulus a is present and d is not inhibited; and in

C4, stimuli a and b are present, stimulus c is absent and d is not inhibited. Experimental

observations PC1 , . . . ,PC4 give (normalized) phosphorylation activities for readouts f and g

under the corresponding experimental condition.

24

3.2. Problem

3.2.2 Boolean input-output predictions

Let (V ,E ,σ) be a PKN. Further, let ξ= (Ci ,PCi
) be an experimental dataset over (V ,E ,σ) with

i = 1, . . . ,n. As detailed above, a Boolean logic model of immediate-early response is defined

by a logical network (V ,φ) without feedback-loops and using classical (Boolean) logics. Hence,

now we can define the predictions (output) provided by a Boolean logic model of immediate-

early response with respect to a given set of experimental conditions (input). Towards this end,

we rely on our framework introduced in Chapter 2 and characterize the response of logical

networks using fixpoint semantics. More precisely, for i = 1, . . . ,n let Fi be the fixpoint of

Ω(V ,φ|Ci
) reachable from A f = {v �→ f | v ∈V }. Notice that such a fixpoint always exists given

that (V ,φ) is free of feedback-loops. In words, each Fi describe the logical response (starting

from A f) of (V ,φ) with respect to the experimental condition or clamping assignment Ci .

Next, we define a straightforward transformation from truth values to binary but numerical

values. Such a transformation provides a more convenient notation in order to compare

predictions and phosphorylation activities. The Boolean prediction of (V ,φ) with respect to

the experimental condition Ci is a function πi : V → {0,1} defined as

πi (v) =

�

1 if Fi (v) = t

0 if Fi (v) = f .

As we see below, during learning we aim at explaining the given experimental dataset ξ.

Therefore, we are particularly interested in predictions with respect to the experimental

conditions included in ξ and over the measured variables in each experimental condition.

Nevertheless, predictions with respect to non-performed experimental conditions and/or over

non-observed species can be useful to generate testable hypotheses on the response of the

system.

As an example, consider the Boolean logic model (V ,φ) from Figure 3.1c and the experimental

condition C2 from the dataset given in (3.1). Then, the clamped logical network (V ,φ|C2) is

defined by the mapping

φ|C2 = {a �→�;b �→⊥;c �→�;d �→⊥;e �→ b ∨ c; f �→ d ∧e; g �→ e ∧¬c}.

Next, the fixpoint of Ω(V ,φ|C2) reachable from A f can be computed as detailed in Chapter 2

yielding the assignment F2 defined as

F2 = {a �→ t ,b �→ f ,c �→ t ,d �→ f ,e �→ t , f �→ f , g �→ f }.

Finally, the Boolean prediction for (V ,φ) under the experimental condition C2 is given by

π2 = {a �→ 1,b �→ 0,c �→ 1,d �→ 0,e �→ 1, f �→ 0, g �→ 0}.

25

Chapter 3. Learning Boolean logic models of immediate-early response

3.2.3 Learning Boolean logic models

Search space. We aim at learning Boolean logic models from a PKN and an experimental

dataset. In fact, any learned model has to be supported by some evidence in the prior knowl-

edge. To be more precise, given a PKN (V ,E ,σ) we consider only Boolean logic models (V ,φ)

without feedback-loops and such that, for each variable v ∈ V , if w occurs positively (resp.

negatively) in φ(v) then, there exists an edge (w, v) ∈ E and ((w, v),1) ∈σ (resp. ((w, v),−1) ∈σ).

Towards this end, we consider a pre-processing step where the given PKN is expanded to gen-

erate a (signed) directed hypergraph describing all plausible logical interactions. For each

v ∈V having non-zero indegree, let Pr ed(v) be the set of its (signed) predecessors, namely,

Pr ed(v) = {(u, s) | (u, v) ∈ E , ((u, v), s) ∈σ}. Furthermore, let P (v) be the powerset of Pr ed(v),

namely, 2Pr ed(v). Then, (V , H) is the (signed) directed hypergraph expanded from (V ,E ,σ) with

nodes V and (signed) directed hyperedges H if for each v ∈V , (p, v) ∈ H whenever p ∈P (v).

Next, Boolean logic models must essentially result from pruning (V , H). Additionally, we

impose two constraints related to the fact that our Boolean logic models essentially aim at

providing a framework for input-output predictions.1 Firstly, for any variable u defined in φ

all variables w ∈φ(u) must be reachable from some stimuli variable. That is, we consider only

Boolean logic models (V ,φ) such that for every u ∈ dom(φ) and w ∈ φ(u), either w ∈ VS or

there exist v ∈VS and a path from v to w in the underlying interaction graph Σ(V ,φ). Secondly,

every variable u defined in φ must reach some readout variable. That is, we consider only

Boolean logic models (V ,φ) such that for every u ∈ dom(φ) there exist v ∈VR and a path from

u to v in the underlying interaction graph Σ(V ,φ). Finally, let us denote with M(V ,E ,σ) the search

space of Boolean logic models satisfying the conditions given above: evidence in (V ,E ,σ), no

feedback-loops and reachability from/to stimuli/readouts.

In Figure 3.1 we show an exemplary PKN (Figure 3.1a) and the corresponding expanded

(signed) directed hypergraph (Figure 3.1b). As described in Chapter 2, (signed) directed

hypergraphs can be directly linked to logical networks. Thus, by considering each (signed)

directed hyperedge in Figure 3.1b as either present or absent (and verifying the additional

constraints with respect to feedback-loops and reachability from/to stimuli/readouts), one

can generate the search space of Boolean logic models M(V ,E ,σ).

Lexicographic multi-objective optimization. For a given PKN (V ,E ,σ), there are exponen-

tially many candidate Boolean logic models (V ,φ) having an evidence on it. Therefore, authors

in [Saez-Rodriguez et al., 2009] put forward the idea of training Boolean logic models by

confronting their corresponding Boolean predictions with phosphorylation activities at a

pseudo-steady state. In this context, two natural optimization criteria arise in order to conduct

the learning: (1) model accuracy (biologically meaningful), and (2) model complexity (Oc-

cam’s razor principle). In fact, this is a typical scenario on automatized learning of predictive

models [Freitas, 2004].

1The interested reader may notice the analogy with the elimination of nodes neither controllables nor (leading
to) observables during the compression of the PKN described in [Saez-Rodriguez et al., 2009].

26

3.2. Problem

We now provide the precise formulation for each optimization criteria. Let (V ,E ,σ) be a PKN.

Let ξ = (Ci ,PCi
) be an experimental dataset over (V ,E ,σ) with i = 1, . . . ,n. Let (V ,φ) be a

Boolean logic model having evidence in (V ,E ,σ) and let π1, . . . ,πn be its Boolean predictions

with each πi defined under Ci . Firstly, based on the residual sum of squares (RSS) we define

the residual (Θr ss) of (V ,φ) with respect to ξ as

Θr ss((V ,φ),ξ) =
n�

i=1

�

v∈dom(PCi
)
(PCi

(v)−πi (v))2. (3.2)

Secondly, for a given logical formula φ(v), let us denote its length by |φ(v)|. Then, we define

the size (Θsi ze) of (V ,φ) as

Θsi ze ((V ,φ)) =
�

v∈dom(φ)
|φ(v)|. (3.3)

A popular and relatively simple approach to cope with multi-objective optimization is to

transform it into a single-objective optimization. Towards this end, one usually combines

all criteria by defining a function using free parameters in order to assign different weights

to each criterion. In fact, this is exactly the approach adopted in [Saez-Rodriguez et al.,

2009]. Therein, a single-objective function is defined that balances residual and size using a

parameter α chosen to maximize the predictive power of the model. Moreover, it has been

shown that “predictive power” is best for α < 0.1. However, as detailed in [Freitas, 2004],

this approach suffers from known drawbacks. First, it depends on “magic values” for each

weight often based on intuition or empirically determined. Second, it combines different

scales of measurements that need to be normalized. Third, it combines non-commensurable

criteria producing meaningless quantities. On the other hand, the lexicographic approach

allows us to assign different priorities to different objectives in a qualitative fashion. Notably,

in our context logic models providing high predictive power are significantly more relevant

than the sizes of such models. Thus, the lexicographic approach is very convenient to cope

with the multi-objective nature of our optimization problem. Yet another popular approach

is to look for Pareto optimal models. However, this method will lead to a large number of

models providing either none or very low predictive power. For example, consider the Boolean

logic model (V ,φ) with φ=�, i.e. the empty model. Such a model is trivially consistent with

any input PKN (V ,E ,σ) while it minimizes the objective function size, i.e. Θsi ze ((V ,φ)) = 0.

Therefore, (V ,φ) is Pareto optimal although it does not provide any valuable information.

Similarly, one can show that many other (non-empty) models will be Pareto optimal as well

although they provide very low predictive power. Hence, Pareto optimality is not well suited

for our problem. Notwithstanding, other multi-objective optimization methods (cf. [Marler

and Arora, 2004]) could be investigated in the future. To conclude, our lexicographic multi-

objective optimization consists of minimizing first Θr ss , and then with lower priority Θsi ze :

(V ,φopt) ∈ argmin
(V ,φ)∈M(V ,E ,σ)

(Θr ss((V ,φ),ξ),Θsi ze ((V ,φ))). (3.4)

27

Chapter 3. Learning Boolean logic models of immediate-early response

Enumeration of (nearly) optimal models. Information provided by high-throughput data

is intrinsically uncertain due to experimental errors. Therefore, one is not only interested in op-

timal models but in nearly optimal models as well. In this context, authors in [Saez-Rodriguez

et al., 2009] have considered Boolean logic models minimizing their objective function within

certain tolerance, e.g. 10% of the minimum. Next, they argue that all models found can

explain the data similarly or equally well if one take into account the experimental error.

Notice that, in the aforecited work the optimization is addressed using a genetic algorithm.

Hence, “minimum” refers to the one found during the execution of the algorithm which is not

necessarily the global minimum. Moreover, due to the incompleteness of stochastic search

methods, it is very likely that certain solutions within the allowed tolerance are not found.

In practice, one can execute the genetic algorithm several times in order to overcome this

issue to some extent. Nonetheless, as we have shown in [Guziolowski et al., 2013], a significant

number of models may be missing even after several executions. Similarly but in the context

of quantitative modeling (based on ordinary differential equations) and using a simulated

annealing algorithm, authors in [Chen et al., 2009] have elaborated upon the same argument.

Interestingly, despite the fact that the model appears to be non-identifiable in both contexts,

viz. qualitative and quantitative modeling, biologically relevant insights have been reported in

the two aforecited studies. Notably, minimization over size in (3.4) is based on Occam’s razor

principle. On the one hand, one can consider that larger logic models overfit the available

dataset by introducing excessive complexity [Saez-Rodriguez et al., 2009, Prill et al., 2011].

On the other hand, one can argue that it is actually necessary to consider such “spurious”

links in order to capture cellular robustness and complexity [Stelling et al., 2004]. Therefore,

let (V ,φopt) be a Boolean logical model as defined in (3.4). Then, considering that tolerance

over residual and size may yield biologically relevant models, we are particularly interested in

enumerating all (nearly) optimal Boolean logic models (V ,φ) such that,

Θr ss((V ,φ),ξ) ≤Θr ss((V ,φopt),ξ)+ tr ss Θsi ze ((V ,φ)) ≤Θsi ze ((V ,φopt))+ tsi ze

with tr ss and tsi ze denoting the tolerance over residual and size, respectively.

Logical input-output behaviors. Next, we introduce the notion of logical input-output

behaviors. As we show below, in practice the enumeration of (nearly) optimal models often

leads to a large number of logical networks, namely, (V ,φ j) with j = 1, . . . ,m and m � 1.

Notably, each φ j is a different mapping from variables to propositional formulas. However,

it may happen (and it often happens) that for all v ∈ VR , several logical networks describe

exactly the same response to every possible experimental condition (clamping assignments

over variables VS ∪VK). In such a case, we say that those logical networks describe the

same input-output behavior. To be more precise, recall that we consider a PKN (V ,E ,σ).

Notice that in each experimental condition over (V ,E ,σ), every stimulus v ∈VS and inhibitor

v ∈ VK , can be either clamped or not. Thus, let us denote with C the space of all possible

clamping assignments or experimental conditions Ci over (V ,E ,σ). Notably, the number of

possible clamping assignments is given by |C | = 2|VS |+|VK |. Then, let (V ,φ j), (V ,φ j �) be two

28

3.3. Learning Boolean logic models with Answer Set Programming

(nearly) optimal Boolean logic models. Furthermore, let F
j

i
and F

j �

i
be the fixpoints of Ω(V ,φ j |Ci

)

and Ω(V ,φ j � |Ci
) reachable from A f , respectively. We say that (V ,φ j) and (V ,φ j �) describe the

same logical input-output behavior if and only if F
j

i
(v) = F

j �

i
(v) for all v ∈ VR and Ci ∈ C .

Importantly, this abstraction allows us to group logical networks regardless of their “internal

wirings” and focus on their input-output predictions. In practice, this also facilitates the

analysis and interpretation of results whereas it provides a way to extract robust insights

despite the high variability.

3.3 Learning Boolean logic models with Answer Set Programming

In order to express and solve the multi-objective optimization described in (3.4) by using

ASP, one needs to discretize the function defined in (3.2). A very simple approach converts

numerical data into binary data according to a threshold. Furthermore, we propose a finer

multi-valued discretization scheme. In fact, the only non-integer variables in (3.2) are the

experimental observations PCi
(v). Then, we approximate these values up to 1

10k introducing

a parametrized approximation function δk (e.g. using the floor or closest integer functions).

Next, we define the discrete residual Θr ssk
as

Θr ssk
((V ,φ),ξ) =

n�

i=1

�

v∈dom(PCi
)

�

10kδk (PCi
(v))−10kπi (v)

�2
. (3.5)

The minimizations of Θr ss and Θr ssk
may yield different Boolean logic models. Nonetheless,

one can prove that finding all models minimizing Θr ssk
within a certain tolerance allows us to

find all models minimizing Θr ss as well. To be more precise, one proves the following result.

Proposition 3.3.1. Let (V ,E ,σ) be a PKN. Let ξ be an experimental dataset over (V ,E ,σ) with

size Nξ. Let k ∈N define the discretization scheme. Let us denote with µ and µk , the correspond-

ing minima for Θr ss and Θr ssk
over the space of models M(V ,E ,σ) with respect to ξ:

µ= min
(V ,φ)∈M(V ,E ,σ)

Θr ss((V ,φ),ξ) µk = min
(V ,φ)∈M(V ,E ,σ)

Θr ssk
((V ,φ),ξ).

Then 10−2k
µk converges to µ when k increases, with an exponential speed:

µk = 102k
µ+O(10k).

Moreover, any Boolean logic model minimizing Θr ss , also minimizes Θr ssk
within the following

tolerance tk :

tk = 2

�

Nξ

µk
+

Nξ

µk
.

Notice that µk increases exponentially with k. Furthermore, in practice, µk is significantly

greater than Nξ provided that k ≥ 1. Thus, the tolerance tk is relatively small, for instance 0.1,

i.e. 10% of µk . Next, we aim at enumerating all (nearly) optimal Boolean logic models (V ,φ)

29

Chapter 3. Learning Boolean logic models of immediate-early response

such that,

Θr ssk
((V ,φ),ξ) ≤Θr ssk

((V ,φopt),ξ)+ tr ss Θsi ze ((V ,φ)) ≤Θsi ze ((V ,φopt))+ tsi ze

with tr ss and tsi ze the tolerances over (discrete) residual and size, respectively.

3.3.1 Instance

Let (V ,E ,σ) be a PKN and let (V , H) be the directed hypergraph expanded from it. Recall

that with P (v) we denote the powerset of the signed predecessors of v ∈V , namely, 2Pr ed(v).

We represent the directed hypergraph (V , H) using predicates node/2, hyper/3, and edge/3.

The facts node(v,sP (v)) map nodes v ∈V to their corresponding sets of signed predecessors

P (v), facts hyper(sP (v),sp,l) associate P (v) with its sets p ∈ P (v) where l denotes their

cardinalities, facts edge(sp,v,1) associate the set p with (v,1) ∈ p, and facts edge(sp,v,-1)

associate the set p with (v,−1) ∈ p. Note that each s(·) stands for some arbitrary but unique

name in its respective context here. Facts over predicates stimulus/1, inhibitor/1, and

readout/1 denote nodes in VS , VK , and VR respectively. Next, let ξ= (Ci ,PCi
) be an experi-

mental dataset over (V ,E ,σ) with i = 1, . . . ,n. Recall that each Ci is a clamping assignment

over variables in VS ∪VK . Then, we extend our representation of clamping assignments given

in Chapter 2 in order to consider several experimental conditions simultaneously. Towards

this end, we represent experimental conditions as facts over predicate clamped/3, namely

clamped(i,v,Ci (v)) for all v ∈ dom(Ci) and i = 1, . . . ,n. Finally, let k define the discretization

scheme. We represent discretized experimental observations as facts over predicate obs/3,

namely, obs(i,v,10kδk (PCi
(v))) for all v ∈ dom(PCi

) and i = 1, . . . ,n. We use the predicate

dfactor/1 to denote the discretization factor 10k .

Using the discretization scheme provided by k = 1, Listing 3.1 shows the instance represen-

tation for our toy example. That is, the (signed) directed hypergraph in Figure 3.1b and the

dataset given in (3.1).

Listing 3.1: Toy example input instance (toy.lp)

1 node(e,1). node(d,2). node(g,3).

2 node(f,4). node(a,5). node(b,6). node(c,7).

3

4 hyper (1,1,1). hyper (2,1,1). hyper (1,8,2). hyper (2,13,2).

5 hyper (1,2,1). hyper (2,4,1). hyper (1,9,2). hyper (2,11,2).

6 hyper (1,3,1). hyper (2,5,1). hyper (1,10,2). hyper (2,12,2).

7 hyper (3,5,1). hyper (4,6,1). hyper (3,14,2). hyper (1,16,3).

8 hyper (3,6,1). hyper (4,7,1). hyper (4,15,2). hyper (2,17,3).

9

10 edge(1,b,1). edge(2,c,1). edge(3,g,-1). edge(4,a,1) .

11 edge(5,c,-1). edge(6,e,1). edge(7,d,1). edge(8,b,1) .

12 edge(8,c,1). edge(9,b,1). edge(9,g,-1). edge(10,c,1).

13 edge(10,g,-1). edge(11,a,1). edge(11,b,1). edge(12,a,1).

14 edge(12,c,-1). edge(13,b,1). edge(13,c,-1). edge(14,e,1).

15 edge(14,c,-1). edge(15,d,1). edge(15,e,1). edge(16,b,1).

30

3.3. Learning Boolean logic models with Answer Set Programming

16 edge(16,c,1). edge(16,g,-1). edge(17,a,1). edge(17,b,1).

17 edge(17,c,-1).

18

19 clamped(1,a,1). clamped(1,c,1). obs(1,f,9). obs(1,g,0).

20 clamped(2,a,1). clamped(2,c,1). clamped(2,d,-1). obs(2,f,1). obs(2,g,9).

21 clamped(3,a,1). obs(3,f,0). obs(3,g,1).

22 clamped(4,a,1). clamped(4,b,1). obs(4,f,10). obs(4,g,8).

23

24 stimulus(a). stimulus(b). stimulus(c).

25 inhibitor(d). readout(f). readout(g).

26

27 dfactor (10).

3.3.2 Encoding

Next we describe our encoding for solving the learning of Boolean logic models as described

in the previous section. Our ASP encoding is shown in Listing 3.2.

Listing 3.2: Logic program for learning Boolean logic models (learning.lp)

1 variable(V) :- node(V,_).

2 formula(V,I) :- node(V,I); hyper(I,_,_).

3 {dnf(I,J) : hyper(I,J,N)} :- formula(V,I).

4 clause(J,V,S) :- edge(J,V,S); dnf(_,J).

5

6 path(U,V) :- formula(V,I); dnf(I,J); edge(J,U,_).

7 path(U,V) :- path(U,W); path(W,V).

8 :- path(V,V).

9 :- dnf(I,J); edge(J,V,_); not stimulus(V); not path(U,V) : stimulus(U).

10 :- path(_,V); not readout(V); not path(V,U) : readout(U).

11

12 exp(E) :- clamped(E,_,_).

13 clamped(E,V,-1) :- exp(E); stimulus(V); not clamped(E,V,1).

14 clamped(E,V) :- clamped(E,V,_).

15 free(E,V,I) :- formula(V,I); dnf(I,_); exp(E); not clamped(E,V).

16

17 eval(E,V, S) :- clamped(E,V,S).

18 eval(E,V, 1) :- free(E,V,I); eval(E,W,T) : edge(J,W,T); dnf(I ,J).

19 eval(E,V,-1) :- not eval(E,V,1); exp(E); variable(V).

20

21 rss(D,V, 1, (F-D)**2) :- obs(E,V,D); dfactor(F).

22 rss(D,V,-1, D**2) :- obs(E,V,D).

23

24 #minimize{L@1 , dnf ,I,J : dnf(I,J), hyper(I,J,L)}.

25 #minimize{W@2 , rss ,E,V : obs(E,V,D), eval(E,V,S), rss(D,V,S,W)}.

26

27 :- formula(V,I); hyper(I,J1,N); hyper(I,J2,M); N < M,

28 dnf(I,J1); dnf(I,J2); edge(J2,U,S) : edge(J1,U,S).

29

30 :- formula(V,I); dnf(I,J); edge(J,U,S); edge(J,U,-S).

31

31

Chapter 3. Learning Boolean logic models of immediate-early response

32 #const maxsize = -1.

33 #const maxrss = -1.

34

35 :- maxsize >= 0; maxsize + 1

36 #sum {L,dnf ,I,J : dnf(I,J), hyper(I,J,L)}.

37

38 :- maxrss >= 0; maxrss + 1

39 #sum {W,rss ,E,V : obs(E,V,D), eval(E,V,S), rss(D,V,S,W)}.

40

41 #show formula /2.

42 #show dnf/2.

43 #show clause /3.

Guessing logical networks. Lines 1-4 define rules generating the representation of a logi-

cal network as described in Chapter 2. Line 1 simply projects node names to the predicate

variable/1. In Line 2 every node v ∈ V having non-zero indegree is mapped to a formula

φ(v). Next, in Line 3 each set of signed predecessors p ∈P (v) is interpreted as an abducible

conjunctive clause in φ(v). Then, if p ∈P (v) has been abduced, in Line 4 predicates clause/3

are derived for every signed predecessor in p.2 Let us illustrate this on our toy example. In or-

der to describe the mappings e �→ b∨c and g �→ e∧¬c, one would generate a candidate answer

set with atoms dnf(1,1), dnf(1,2) and dnf(3,14) (from Line 2 we derive formula(e,1)

and formula(g,3)). Note that this also force to have atoms clause(1,b,1), clause(2,c,1),

clause(14,e,1) and clause(14,c,-1). Lines 6-8 eliminate candidate answer sets describ-

ing logic models with feedback-loops. Paths from u to v are represented over predicate path/2

and derived recursively. Thus, the integrity constraint in Line 8 avoids self-reachability in the

Boolean logic models. Next, the constraint in Line 9 ensures that for any variable u defined in φ

all variables w ∈φ(u) are reachable from some stimuli variable. Whereas the constraint in Line

10 guarantees that every variable u defined in φ reaches some readout variable. Notice that at

this point, we have a representation of the search space of Boolean logic models M(V ,E ,σ).

Fixpoint, residuals, and optimization. Lines 12-19 elaborate on the rules Π2.3,Π2.4 and Π2.5

given in Chapter 2 in order to consider several clamping assignments simultaneously and

compute the fixpoint for each of them accordingly. To be more precise, the response under

each experimental condition is represented over predicates eval/3, namely eval(i,v,s)

for experimental condition Ci if variable v is assigned to s. In Lines 21-22 we compute the

possible differences (square of residuals) between Boolean predictions and the correspond-

ing experimental observations. We denote such differences over predicate rss/4, namely

rss(o,v,t,r) for a residual r with respect to the experimental observation o if the Boolean

prediction for v ∈V is the truth value t ∈ {1,−1}. Note that such predicates are independent

from every candidate answer set, that is, they can be deduced during grouding. For our

2Notice that predicates clause/3 are only used for the sake of interpretation. One could simply replace Line 45
at the end of the encoding with #show clause(J,V,S) : edge(J,V,S); dnf(_,J). and remove Line 4.

32

3.3. Learning Boolean logic models with Answer Set Programming

example, due to the experimental condition C2 we have rss(1,f,1,81), rss(1,f,-1,1),

rss(9,g,1,1) and rss(9,g,-1,81). Therefore, if the fixpoint for f under the experimental

condition C2 is 1, the residual would be 81, whereas if the fixpoint is −1, the residual is only 1.

Analogously, but in the opposite way the same holds for g . Next, we describe our lexicographic

multi-objective optimization. In Line 24 we declare with lower priority (@1) the minimization

over the size of logic models (Eq. (3.3)). Meanwhile, in Lines 25 we declare, with higher priority

(@2), the minimization of the residual sum of squares between the Boolean predictions and

experimental observations (Eq. (3.5)).

Symmetry breaking. Lines 27-30 define two relatively simple symmetry-breaking constraints

which are particularly relevant during the enumeration of (nearly) optimal solutions. Es-

sentially, these integrity constraints eliminate answer sets describing “trivially” equivalent

Boolean logic models with respect to their logical input-output behavior. The constraint in

Lines 27-28 eliminate solutions by checking inclusion between conjunctions. For example, for

two variables v and w , the formula v ∨ (v ∧w) is logically equivalent to v and hence, the latter

is preferred. The constraint in Line 30 simply avoids solutions having mappings in the Boolean

logic models of the form v∧¬v . Recall that contradictory causal interactions can be present in

the PKN yielding such a formula. Notably, other logical redundancies could be considered as

well. However, a complete treatment of redundancies would lead to the NP-complete problem

known as minimization of Boolean functions [McCluskey, 1956]

Enumeration. Lines 32-39 define a rather “standard” mechanism in order to enumerate

solutions within given boundaries. Lines 32-33 simply define two constants describing the

boundaries for each optimization criterion which are by default set to −1. Lines 35-36 define

an integrity constraint in order to eliminate solutions describing Boolean logic models (V ,φ)

if maxsize ≥ 0 and maxsize+1 ≤Θsi ze ((V ,φ)). Analogously, Lines 37-39 define an integrity

constraint in order to eliminate solutions describing Boolean logic models (V ,φ) if maxrss ≥ 0

and maxrss+1 ≤Θr ssk
((V ,φ),ξ).

The following result shows the correctness of our ASP representation. We denote with

τ((V ,E ,σ),ξ,k) the set of facts describing the instance as in Listing 3.1, and with Π3.2 the

set of rules given in Listing 3.2.

Proposition 3.3.2. Let (V ,E ,σ) be a PKN. Let ξ = (Ci ,PCi
) be an experimental dataset over

(V ,E ,σ) and let k define the discretization scheme.

Then, there is an answer set X of τ((V ,E ,σ),ξ,k)∪Π3.2 such that

φopt =

�

v �→
�

p∈P (v)

�

�

(w,1)∈p

w

�

∧

�

�

(w,−1)∈p

¬w

� �
�
�
�
�

dnf(sP (v), sp) ∈ X , v ∈V

�

if and only if (V ,φopt) ∈ argmin(V ,φ)∈M(V ,E ,σ)
(Θr ssk

((V ,φ),ξ),Θsi ze ((V ,φ))).

33

Chapter 3. Learning Boolean logic models of immediate-early response

3.3.3 Solving

Optimization. In Listing 3.3 we show the optimum answer set found for the toy instance

described in Listing 3.1.3 In this case, the optimum answer set is the thirteenth answer set

inspected by the solver (Answer: 13). Such answer set describes the Boolean logic model

given in Fig. 3.1c. Furthermore, the values for the optimization criteria are given ordered by

their priorities (Optimization: 88 7). That is, 88 for the discretized residual sum of squares

(Eq. (3.5)), and 7 for the model size (Eq. (3.3)).

Listing 3.3: Learning an optimum Boolean logic model

$ gringo toy.lp learning.lp | clasp --quiet=1

clasp version 3.0.2

Reading from stdin

Solving ...

Answer: 13

formula(e,1) formula(d,2) formula(g,3) formula(f,4)\

dnf(1,1) dnf(1,2) dnf(2,4) dnf(3,14) dnf(4,15)\

clause(1,b,1) clause(2,c,1) clause(4,a,1)\

clause (14,e,1) clause (14,c,-1) clause (15,d,1) clause (15,e,1)

Optimization: 88 7

OPTIMUM FOUND

Models : 13

Optimum : yes

Optimization : 88 7

Calls : 1

Time : 0.005s (Solving: 0.00 s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Enumeration. Next, the enumeration capabilities of an ASP solver like clasp [Gebser et al.,

2007] can be used to find not only one optimal model but all (nearly) optimal models as

described earlier. Considering tolerance tr ss = 8 (∼ 10% of the optimum residual sum of

squares) and size tolerance tsi ze = 3, we enumerate all models such that

Θr ssk
((V ,φ),ξ) ≤Θr ssk

((V ,φopt),ξ)+ tr ss = 96 Θsi ze ((V ,φ)) ≤Θsi ze ((V ,φopt))+ tsi ze = 10.

In this example, there are 5 (nearly) optimal Boolean logic models as we show in Listing 3.4.4

Interestingly, even for this small example, the symmetry-breaking constraints make a signifi-

cant difference. We note that running the same program but without the symmetry-breaking

constraints, yields 17 Boolean logic models instead of only 5. Notably as we show below, in

real-world problem instances, exploiting these symmetries significantly reduces the number

3Using the option ––quiet=1 only the last (optimum) answer set is printed. Notice that the solver prints all the
atoms in the answer set in a single line but we have (manually) introduced breaklines to improve readability.

4Option ––opt–mode=ignore tells the solver to ignore optimize statements; option –n0 tells the solver to
enumerate all solutions; and option ––quiet avoids printing enumerated solutions.

34

3.4. Finding input-output behaviors with Answer Set Programming

of solutions (without missing any input-output behavior) and hence, it facilitates their post

processing and interpretation.

Listing 3.4: Enumeration of all (nearly) optimal Boolean logic models

$ gringo toy.lp learning.lp -c maxrss =96 -c maxsize =10 |\

clasp --opt -mode=ignore -n0 --quiet

clasp version 3.0.2

Reading from stdin

Solving ...

SATISFIABLE

Models : 5

Calls : 1

Time : 0.002s (Solving: 0.00 s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

3.4 Finding input-output behaviors with Answer Set Programming

Once we have enumerated all (nearly) optimal Boolean logic models with respect to certain

tolerances, we can use ASP in order to identify the logical input-output behaviors they describe.

Towards this end, we have developed a simple algorithm that (using ASP) systematically

compares all pairs of models looking for at least one experimental condition, i.e. a clamping

assignment, generating a different response over the readouts nodes. If such an experimental

condition exists, the solver will return SAT (the logic program is SATISFIABLE), meaning that

the two models at hand have a different input-output behavior. Otherwise, the solver will

return UNSAT (the logic program is UNSATISFIABLE), meaning that they have the same logical

input-output behavior. In what follows we show the ASP representation and the developed

algorithm.

3.4.1 Instance

The representation of the problem instance is a straightforward extension from the one

described in Listing 2.1 in order to describe a pair of logical networks. To be more pre-

cise, instead of having facts over predicates formula/2, we consider facts over predicates

formula/3 as follows. Let (V ,φ j), (V ,φ j �) be two (nearly) optimal Boolean logic models. The

facts formula(j,v,sφ j (v)) (resp. formula(j �,v,sφ j � (v))) map variables v ∈V to their corre-

sponding formulas φ j (v) (resp. φ j �(v)). Meanwhile, facts over predicates variable/1, dnf/2

and clause/3 remain the same as in Listing 2.1.

3.4.2 Encoding

Next we describe our encoding for deciding whether given two Boolean logic models, there

exists at least one experimental condition or clamping assignment generating a different

35

Chapter 3. Learning Boolean logic models of immediate-early response

response over the readout nodes. Our ASP encoding is shown in Listing 3.5.

Listing 3.5: Logic program for finding input-output behaviors (behaviors.lp)

1 {clamped(V, 1)} :- stimulus(V).

2 {clamped(V,-1)} :- inhibitor(V).

3 clamped(V,-1) :- stimulus(V), not clamped(V,1).

4

5 model(M) :- formula(M,_,_).

6 clamped(V) :- clamped(V,_).

7 free(M,V,I) :- formula(M,V,I); not clamped(V).

8

9 eval(M,V, S) :- clamped(V,S); model(M).

10 eval(M,V, 1) :- free(M,V,I); eval(M,W,T) : clause(J,W,T); dnf (I,J).

11 eval(M,V,-1) :- not eval(M,V,1); model(M); variable(V).

12

13 diff :- eval(M1,V,S); eval(M2,V,-S); M1 < M2; readout(V); model(M1;M2).

14

15 :- not diff

Lines 1-3 generate (all) possible clamping assignments or experimental conditions. Next, anal-

ogously to what we have shown in Listing 3.2, Lines 5-11 elaborate on the the rules Π2.3,Π2.4

and Π2.5 given in Chapter 2 in order to consider several logical networks simultaneously

and compute for each of them, the corresponding fixpoint under the abduced clamping

assignment. To be more precise, the response under the abduced clamping assignment is

represented over predicates eval/3, namely eval(j,v,s) for the logical network j if variable

v is assigned to s. Afterwards, Line 13 derives the constant predicate diff if there exists at

least one readout v for which the fixpoints of each logical network do not agree. Notice the use

of M1 < M2 instead of M1 != M2 in oder to avoid a duplicated (symmetric) constraint. Finally,

we use an integrity constraint in Line 15 which forces the solver to exhaustively look for a

clamping assignment allowing for the derivation of diff. See the following section for more

details on how one should use this encoding and interpret its result.

The following result shows the correctness of our ASP representation. We denote with

τ((V ,φ j), (V ,φ j �)) the set of facts describing (V ,φ j) and (V ,φ j �) as detailed above, and with Π3.5

the set of rules given in Listing 3.5.

Proposition 3.4.1. Let (V ,φ j), (V ,φ j �) be two Boolean logic models.

Then, there is an answer set of τ((V ,φ j), (V ,φ j �))∪Π3.5 if and only if there exist Ci ∈C , v ∈VR

such that F
j

i
(v) �= F

j �

i
(v).

3.4.3 Solving

The idea for finding logical input-output behaviors is to compare Boolean logic models by

pairs using the encoding in Listing 3.5. Then, the program given by τ((V ,φ j), (V ,φ j �)) together

with the rules in Listing 3.5, is SATISFIABLE if and only if the constant predicate diff can be

derived, i.e., there exists at least one clamping assignment generating a different response

36

3.4. Finding input-output behaviors with Answer Set Programming

over the readouts. Otherwise, the program is UNSATISFIABLE and hence, we can deduce that

(V ,φ j) and (V ,φ j �) have the same logical input-output behavior. The developed algorithm

(in pseudo-code) implementing this idea is shown in Algorithm 1. We assume an auxiliary

Algorithm 1 Finding input-output behaviors over a set of M Boolean logic models

1: function BEHAVIORS(M : set of Boolean logic models)
2: B ←� � representative models for each logical input-output behavior
3: for (V ,φ j) ∈M do
4: f ound ← F al se

5: for (V ,φ j �) ∈B do
6: if GRINGO-CLASP((V ,φ j), (V ,φ j �)) ==U N S AT then
7: f ound ← T r ue � j and j � have the same logical input-output behavior
8: br eak

9: end if
10: end for
11: if not f ound then
12: B ←B∪ (V ,φ j) � j describes a new logical input-output behavior
13: end if
14: end for
15: return B

16: end function

procedure GRINGO-CLASP, such that GRINGO-CLASP(j , j �) translates (V ,φ j) and (V ,φ j �) into

the set of facts τ((V ,φ j), (V ,φ j �)) and then it executes the grounder and solver combining

τ((V ,φ j), (V ,φ j �)) with the rules from Listing 3.5.5 The algorithm keeps in the (initially empty)

set B, one “representative” Boolean logic model for each of the input-output behaviors found.

Then, for every model (V ,φ j) in the set M of Boolean logic models, the algorithm calls GRINGO-

CLASP((V ,φ j), (V ,φ j �)) for (V ,φ j �) ∈B (representative models of input-output behaviors found

in previous iterations) until GRINGO-CLASP returns U N S AT or until all models in B have been

considered. If for some (V ,φ j �), the call GRINGO-CLASP((V ,φ j), (V ,φ j �)) returns U N S AT , we set

f ound to T r ue and we break the loop. Next, in Line 11 we skip the if block and we continue

with the next model (V ,φ j) ∈M . On the other hand, if GRINGO-CLASP((V ,φ j), (V ,φ j �)) returns

S AT for all (V ,φ j �) ∈ B , we enter in the if block of Line 11 and we add the model (V ,φ j) to the

set representative Boolean logic models B. Following with our example from the previous

section, over the 5 (nearly) optimal Boolean logic models enumerated in Listing 3.4, we found 3

logical input-output behaviors. Furthermore, with a slight modification to the given algorithm,

one can also find that in this example, one behavior is described by exactly one model whereas

the other two behaviors are described by two models each. As we show in our empirical

evaluation, the number of Boolean logic models describing the same input-output behavior

can vary significantly in real-world examples. In fact, this raise the question of whether certain

logical input-output behaviors should be considered as more relevant than others due to the

number of Boolean logic models describing them.

5In fact, we have developed the library pyzcasp (available at http://svidela.github.io/pyzcasp/) provid-
ing this kind of functionality. Moreover, we rely on it in order to implement the software presented in Chapter 6.

37

Chapter 3. Learning Boolean logic models of immediate-early response

����

���

����

�����

���������

����� �����

���� �������

��������� ����� �����

���

���� ������

�����

����

�����

����

����

�����

������

����

���

���

����

��� ����

Figure 3.2: Prior knowledge network (V ,E ,σ) describing signaling pathways in human liver cells. It

contains 31 nodes (V) describing biological species: 7 stimuli (VS), 7 inhibitors (VK), 15 readouts (VR)

and 6 neither controlled nor observed (VU). Furthermore, 53 signed directed edges (E) describing

activatory and inhibitory causal interactions yield 130 possible (signed) directed hyperedges.

3.5 Empirical evaluation

3.5.1 Real-world problem instance

Prior knowledge network. We evaluate our approach using real-world signaling pathways

in human liver cells. The (compressed) PKN (V ,E ,σ), shown in Figure 3.2, was introduced

in [Saez-Rodriguez et al., 2009] and here we use a variation from [Morris et al., 2011]. It contains

31 nodes (V) describing biological species: 7 stimuli (VS), 7 inhibitors (VK), 15 readouts (VR),

and 6 neither controlled nor observed (VU). Notice that VK ∩VR �= �, namely VK ∩VR =

{GSK 3, MEK 12, J N K 12, p38}. Furthermore, 53 signed and directed edges (E), describing

activatory and inhibitory causal interactions, yield 130 possible (signed) directed hyperedges.

Hence, considering each hyperedge as either present or absent, one should inspect 2130

(∼ 1.3×1039) possible Boolean logic models. Notice that after compression, all the outgoing

edges from one stimulus, namely I F N g , have been removed since they did not lead to any

readout node. Also, it is worth noting that another consequence of compression is the presence

of both, a positive and a negative edge from TGF a to r as. For a detailed description of the

compression method, we refer the interested reader to [Saez-Rodriguez et al., 2009].

38

3.5. Empirical evaluation

Phospho-proteomics dataset. We consider a publicly available phospho-proteomics dataset

ξ described in [Alexopoulos et al., 2010]. This dataset contains measurements in HepG2

liver cancer cells characterizing the immediate-early response over the 15 readouts under

64 experimental conditions combining single- stimulus/inhibitor perturbations. That is,

ξ= ((C1,PC1), . . . , (C64,PC64)) where the 64 experimental conditions Ci result from considering

all possible combinations of either 0 or 1 stimulus, combined with either 0 or 1 inhibitor.

Phosphorylation activities PCi
for the 15 readouts were measured using the xMAP technology

(Luminex) at 30 minutes after perturbation and normalized to the range [0,1]. The time-point

characteristic for the immediate-early response, viz. 30 minutes, was chosen based on pre-

liminary experiments (considering several time-points) looking for the largest changes in

protein modification states. The number of measurements or size of the dataset is given by

Nξ = 858. Notice that this does not correspond exactly to 64×15 = 960 due to bad-readouts in

the experiments. Importantly, both Θr ss and Θr ssk
defined respectively in (3.2) and (3.5), are

absolute values which normally increase with Nξ. Thus, in order to provide an better picture

of how well a Boolean logic model fits the available (amount of) observations, in what follows

we report the normalized (discrete) residual sum of squares, i.e., mean squared error (MSE).

Towards this end, for a Boolean logic model (V ,φ) and dataset ξ, let us define Θmse and Θmsek

as

Θmse ((V ,φ),ξ) =
Θr ss((V ,φ),ξ)

Nξ
Θmsek

((V ,φ),ξ) =
Θr ssk

((V ,φ),ξ)

102k Nξ

.

Notably, the range for both functions is the interval [0,1] where lower values indicate a better

fitness to the available data. Notice that Θmsek
can be computed “directly” from the output

provided by the ASP solver whereas Θmse has to be computed in a post-processing step, e.g.

by using any standard scripting programming language.

Problem instance. Next, we consider the problem instance given by the PKN (V ,E ,σ) and

the dataset ξ as described above. Also, we adopt the discretization schemeδk provided by using

the closest integer function and k = 2. That is, we approximate phosphorylation activities up

to 1
102 , e.g. δ2(0.586) = 59. In what follows, we denote with the filename extliver.lp, the set

of logic facts describing the problem instance as illustrated in Listing 3.1 for our toy example.

Listing 3.6: Learning all optimal Boolean logic models

$ gringo extliver.lp learning.lp |\

clasp --conf=jumpy --opt -strategy =4 --opt -mode=optN --quiet

clasp version 3.0.1

Reading from stdin

Solving ...

OPTIMUM FOUND

Models : 18

Optimum : yes

Optimal : 16

Optimization : 427905 28

Calls : 1

39

Chapter 3. Learning Boolean logic models of immediate-early response

Time : 0.170s (Solving: 0.02 s 1st Model: 0.01s Unsat: 0.00s)

CPU Time : 0.080s

3.5.2 Optimal Boolean logic models.

We can identify all optimal Boolean logic models for our real-world case study as shown in

Listing 3.6. The command-line option ––opt–mode=optN asks the solver to find an optimum

solution and then continue looking for all solutions with the same “costs” for each optimization

criterion. In this case, the solver had found 16 Boolean logic models (Optimal: 16) in 0.08

seconds (in total 18 answer sets were inspected (Models: 18)). In fact, for this particular

instance there is no significant difference between finding an optimum solution and finding all

of them. Let us denote with (V ,φi) with i = 1, . . . ,16 the corresponding 16 optimal Boolean logic

models found. Then, from the solver’s output (Optimization : 427905 28), we have that

Θmsek
((V ,φi),ξ) = 0.0499, i.e. 427905×10−4 ×N−1

ξ
, and Θsi ze ((V ,φi)) = 28 for all i = 1, . . . ,16.

Interestingly, in this case Θmse ((V ,φi),ξ) = 0.0499 as well. That is, either using the original

observations (rational numbers) or using the discrete observations (integer numbers), both

MSEs agree in this case.6

3.5.3 Enumeration of (nearly) optimal Boolean logic models.

Next we evaluate the enumeration of (nearly) optimal Boolean logic models as described

before. Let us denote with (V ,φopt) any of the 16 optimal Boolean logic models (V ,φi)

with i = 1, . . . ,16. Our aim here (and more broadly in this thesis) is not to draw biological

conclusions but to illustrate the potential of using the introduced framework based on the

computational power of ASP and the available systems. Therefore, for the sake of such an

illustration in the following we consider tolerances only with respect to the optimum RSS, i.e.,

Θr ssk
((V ,φopt),ξ) = 427905 whereas no tolerance is allowed with respect to the optimum size,

i.e. Θsi ze ((V ,φopt)) = 28. To be more precise, we enumerate all Boolean logic models (V ,φ)

such that

Θr ssk
((V ,φ),ξ) ≤Θr ssk

((V ,φopt),ξ)+ tr ss Θsi ze ((V ,φ)) ≤Θsi ze ((V ,φopt))

with tr ss equal to 0%,2%,4%,6%,8% or 10% of the optimum RSS, i.e. Θr ssk
((V ,φopt),ξ). Impor-

tantly, from the Proposition 3.3.1 we can verify that in this case, considering a tolerance of 10%

with respect to the minimum of Θr ssk
is sufficient to guarantee that all models minimizing Θr ss

are found. Moreover, experimental error in phospho-protein measurements is often estimated

to 10% [Chen et al., 2009, Saez-Rodriguez et al., 2009]. Hence, all Boolean logic models found

in such a range of tolerances could not be distinguished experimentally. Results are shown in

Table 3.1. We also report the identification of logical input-output behaviors. Note the large

difference on computation times for enumeration of Boolean logic models (tenum), and for

6Notably, for computing Θmse , beforehand one must run the solver without using the option ––quiet.

40

3.5. Empirical evaluation

Table 3.1: Enumeration of (nearly) optimal Boolean logic models. We report for each tolerance T , the

number of Boolean logic models found M , the CPU time used by the ASP solver tenum , the range of

MSEs Θmsek
and Θmse , the range of sizes Θsi ze , the number of logical input-output behaviors B and

the CPU time used by the script implementing Algorithm 1.

T M tenum Θmsek
Θmse Θsi ze B ti n−out

0% 16 0.35s 0.0499 0.0499 28 1 0.560s
2% 144 0.32s 0.0499 - 0.0507 0.0499 - 0.0507 27 - 28 4 4.846s
4% 2150 0.68s 0.0499 - 0.0519 0.0499 - 0.0519 25 - 28 31 240s
6% 2306 0.73s 0.0499 - 0.0522 0.0499 - 0.0523 25 - 28 38 785s
8% 3524 0.96s 0.0499 - 0.0539 0.0499 - 0.0539 25 - 28 66 1296s

10% 5306 1.24s 0.0499 - 0.0546 0.0499 - 0.0546 25 - 28 91 2520s

0% 20% 40% 60% 80% 100%

0% 2% 4% 6% 8% 10%

B
o
o
le
a
n
 lo
g
ic
 m
o
d
e
ls

Tolerance

Distribution of Boolean logic models by MSE
0.0499 0.0507 0.051 0.0519 0.0522 0.0523 0.053 0.0531 0.0534 0.0539 0.0542 0.0543 0.0546

Figure 3.3: Distribution of Boolean logic models found for each tolerance according to their MSEs

(Θmse). When 10% of tolerance is considered, two MSEs, viz. 0.0519 and 0.0542, gather 63% of the 5306

Boolean logic models.

identification of logical input-output behaviors (ti n−out). While the ASP solver can enumerate

thousands of models in fractions of a second, identifying their input-output behaviors is still a

rather demanding task as we increase the number of models. Notably, considering tolerances

with respect to both criteria would imply an even larger number of models. This is not actually

an issue for the enumeration but it is certainly an issue for the identification of logical input-

output behaviors. Interestingly, the range of values for MSEs Θmsek
and Θmse do not show

any significant difference. Hence, together with the theoretical result from Proposition 3.3.1,

this suggest that in practice, the information lost due to discretization is negligible. In fact, in

this case the models minimizing Θmse were already identified without considering tolerance.

In Figure 3.3 we illustrate the distribution of Boolean logic models found for each tolerance

according to their MSEs (Θmse). It is worth noting that as we increase the tolerance, more

values for Θmse appear but some are clearly more common than others. For example, when

we consider 10% of tolerance, two values for Θmse , viz. 0.0519 and 0.0542, gather 63% of the

5306 Boolean logic models.

41

Chapter 3. Learning Boolean logic models of immediate-early response

880 Boolean logic models
1062 Boolean logic models

0 200 400 600 800 1000 1200

1 11 21 31 41 51 61 71 81 91

B
o
o
le
a
n
 lo
g
ic
 m
o
d
e
ls

I/O behaviors

Logical input‐output behaviors by MSE and Boolean logic models

0.0499 0.0507 0.051 0.0519 0.0522 0.0523 0.053 0.0531 0.0534 0.0539 0.0542 0.0543 0.0546

Figure 3.4: Logical input-output behaviors for 10% of tolerance. Behaviors are ordered (from left to

right) first according to their MSE (colors), and then according to the number of models they gather

(bars). The 2 most common behaviors describe the response of 1062 and 880 Boolean logic models

having MSEs 0.0542 and 0.0519 respectively.

3.5.4 Analyzing logical input-output behaviors.

In order to further characterize the multitude of Boolean logic models found, one can focus

on their logical input-output behaviors. As an illustration, we concentrate on the 91 behaviors

found when considering 10% of tolerance. In Figure 3.4 we show the 91 input-output behaviors

ordered by MSE and the number of Boolean logic models they gather. Interestingly, among

the 91 logical input-output behaviors, two behaviors are significantly more common than

the rest. Such behaviors result from 20% and 16% of the models respectively whereas all the

others result from at most 7%. Hence, one can argue that they are more relevant to describe

the system’s response. Nevertheless, such a claim requires further biological validation which

is out of the scope for this thesis.

Next, in Figure 3.5 we show for each tolerance, the evolution of “core predictions” versus

the number of input-output behaviors. By “core predictions” we refer to the percentage of

experimental conditions leading to exactly the same response in every logical input-output

behavior. Recall that the total number of experimental conditions is given by the experimental

setup at hand. In our case, since we have 7 stimuli and 7 inhibitors in the PKN (Figure 3.2), one

would consider 214 = 16348 possible experiments (all combinatorial perturbations). However,

by inspecting the Boolean logic models found, it is easy to see that stimulation of I F N g or LPS,

and inhibition of GSK 3, is not informative for the input-output analysis. Hence, with 5 stimuli

and 6 inhibitors, the number of “relevant” experimental conditions is given by 211 = 2048. For

0% of tolerance there is only one behavior and hence, there is 100% of core predictions. Then,

as we increase the tolerance, the number of behaviors increases whereas the core predictions

decreases down to 31%. On the one hand, this approach may provide a way to extract robust

insights despite the high variability. On the other hand, it also provides a metric to asses the

42

3.6. Conclusion

1 4 31 38
66

91 100%
80%

54%
44%

36%
31%

0
20
40
60
80
100

0%
20%
40%
60%
80%
100%

0% 2% 4% 6% 8% 10%

I/
O
 b
e
h
a
v
io
r
s

C
o
r
e
 p
r
e
d
ic
ti
o
n
s

Tolerance

Core predictions from I/O behaviors
Core predictions(left) I/O behaviors (right)

Figure 3.5: Core predictions versus number of input-output behaviors for each tolerance.

level of uncertainty provided by a given set of logical input-output behaviors.

3.5.5 Comparing with a meta-heuristic approach.

In [Guziolowski et al., 2013] we compared our approach with CellNOpt [Terfve et al., 2012],

the existing tool to solve the same problem, but using a genetic algorithm. Stochastic search

methods such as genetic algorithms, are intrinsically unable not just to provide a complete set

of solutions, but also to guarantee that an optimal solution is found. Hence, typically one needs

to combine solutions from multiple runs in order to increase the confidence. However, from

multiple independent runs of CellNOpt (1000 runs with an average of 1000 seconds per run),

only 20% of them have converged to Boolean logic models within the 10% of tolerance over

the optimum, i.e. Θmse ≤ 0.0549. Notably, the 16 optimal models (Θmse = 0.0499) were found

by CellNOpt. Nevertheless, the genetic algorithm has retrieved only 51 out of the 91 logical

input-output behaviors with an evident bias towards the most common ones. Hence, those

behaviors described only by a few logical networks are very unlikely to be found with such

stochastic approaches. Therefore, these results underscore the importance of computational

methods allowing for an exhaustive characterization of feasible models.

3.6 Conclusion

In this chapter we have addressed the problem consisting of learning from an interaction

graph and phosphorylation activities at a pseudo-steady state, (Boolean) logical networks

describing the immediate-early response of the system. This problem has been first described

in [Saez-Rodriguez et al., 2009] and a genetic algorithm implementation was proposed to

solve the underlying optimization problem. To overcome some of the shortcomings intrin-

sic to stochastic search methods, mathematical programming approaches were presented

43

Chapter 3. Learning Boolean logic models of immediate-early response

in [Mitsos et al., 2009, Sharan and Karp, 2013]. However, rather than looking for the optimum

Boolean model, one is interested in finding (nearly) optimal models within certain tolerance.

Importantly, previous methods, namely stochastic search and mathematical programming,

are not able to cope with this question in an exhaustive manner. In this context, we have

characterized the learning problem using the notions introduced in Chapter 2. Next, we have

elaborated upon our basic ASP representation in order describe the underlying lexicographic

multi-objective optimization. Furthermore, we illustrate the strengths of our approach using

a real-world problem instance.

Notably, the efficient enumeration techniques provided by an ASP solver like clasp, allow us to

explore exhaustively the space of feasible solutions in very short time. Therefore, in contrast

with the usual approach of modeling a biological system by means of one Boolean network

only, our work opens the way for exploring exhaustively the family of plausible networks

explaining the available data equally well. Nevertheless, given the ability to enumerate a large

number of Boolean models, the way to select among them arises in order to provide new

insights to biologists. Towards this end, we have introduced the notion of logical behaviors

which allows us to group logical networks regardless of their “internal wirings” and focus on

their input-output predictions. In practice, this facilitates the analysis and interpretation of

results whereas it provides a way to extract robust insights despite the high variability. At the

same time, the existence of several input-output behaviors and the non-uniform distribution

of logical networks among them, pose interesting questions for future work. For instance, in

the next chapter we concentrate on the problem consisting of finding a set of experiments

allowing to discriminate between every pair of logical input-output behaviors.

More generally, we need to develop a mathematical framework for modeling an ensemble of

logical networks and/or their logical behaviors. For instance, all networks could be combined

in order to define a single probabilistic Boolean network [Shmulevich et al., 2002a]. Further-

more, a relatively simple approach would be to define output predictions as a (deterministic)

function of predictions from all input-output behaviors considering the distribution of logical

networks among them. Interestingly, preliminary results have shown that, such predictions fit

the experimental data similarly to each individual input-output behavior. However, it has been

shown recently that an ensemble of models often yields more robust predictions than each

model in isolation [Kuepfer et al., 2007, Marbach et al., 2012]. Hence, the presented approach

in this chapter is a key contribution in order to achieve reliable and unbiased discoveries in

the context of logic-based modeling of signaling networks.

44

4 Experimental design for discrimina-

tion of input-output behaviors

As we have shown in the previous chapter, if the inherent noise is considered during learn-

ing, there are multiple (possibly many) logical networks compatible with the experimental

observations. Notably, this leads to several internal mechanisms for the system under study

but more importantly, to several input-output behaviors as well. Hence, logical input-output

predictions may suffer a significant level of uncertainty. This chapter introduces a method to

suggest new experiments for discrimination of input-output behaviors and generate models

providing more reliable predictions.

4.1 Introduction

Advances on high-throughput technologies have made possible the development of math-

ematical and computational models describing large-scale biological systems. Importantly,

the development of such models allows biologists to test and validate hypotheses, as well

as to predict non-observed behaviors. Nonetheless, it is often the case that several “rival”

models explain the available experimental data equally well. Especially, in the context of

reverse engineering where many (nearly) optimal models may result from an optimization

procedure. For instance, as in the previous chapter where thousands of Boolean logic models

fit the available dataset similarly well when we consider the experimental noise. Moreover, we

have shown that such a large number of models is not only describing alternative mechanisms

(internal wirings), but also different input-output behaviors. Therefore, predictions made

with such models may suffer a significant level of uncertainty since for a given input, there are

several possible system outputs. As mentioned earlier, we can consider several approaches in

order to build an ensemble of models such that for a given input, only one output prediction

is provided. Nonetheless, learning from experimentation is necessarily an iterative process.

Hence, following the loop of hypotesis-driven research in biology [Ideker et al., 2001, Kitano,

2002], we need to look for the next round of experiments in order to refine the models at hand.

Historically, experiments have been designed based on the experience and intuition from

experimentalists. However, since experiments are usually expensive and time-consuming, we

45

Chapter 4. Experimental design for discrimination of input-output behaviors

would like to know which experiments are more likely to bring new insights to the optimization

process. Thus, a proper experimental design enables a maximum informative analysis of the

experimental data. Towards this end, exploiting mathematical or computational models for

designing the following experiments is a natural approach. We refer the reader to [Kreutz and

Timmer, 2009] for a recent review on this subject. Therein, two kinds of “experimental designs”

are described, namely, experimental design for parameter estimation and experimental design

for model discrimination. In the following, we focus on a particular case of the latter.

Experimental design for discrimination of input-output behaviors. Motivated by our re-

sults from the previous chapter, we propose a method for experimental design in order to

discriminate between several input-output behaviors. Broadly speaking, experimental design

for model discrimination consists of finding an input that maximize the difference of the

outputs of the rival models. Importantly, we restrict ourselves to the context of Boolean logic

models of immediate-early response as described in Chapter 3. In this context, we aim at

finding the minimum number of experimental conditions allowing us to discriminate be-

tween every pair of input-output behaviors. Moreover, we adopt a criterion proposed before

in the context of mathematical modeling in [Mélykúti et al., 2010]. Therein, authors argue

that in principle, maximizing the difference between the outputs of two different models

would ensure that even a noisy measurement has a good chance of discriminating between

them. Therefore, we adapt this idea to the context of our Boolean logic models and logical

input-output behaviors. Also, we consider the minimization of the experiments’ complexity in

terms of the number of stimuli and inhibitions.

Most of the previous work on experimental design have been based on (semi-) quantita-

tive modeling [Kremling et al., 2004, Vatcheva et al., 2005, Mélykúti et al., 2010, Stegmaier

et al., 2013, Busetto et al., 2013]. Thus, in the context of computational modeling, existing

approaches to experimental design are less established. It is worth noting that, in general,

computational models provide certain predictive power which can be used to generate testable

hypotheses and drive the experiments. Nevertheless, herein we refer to the specific problem

consisting of automatically propose new experiments allowing to discriminate models at

hand. To date, such a question has been addressed under various modeling hypotheses and

methods [Ideker et al., 2000, Yeang et al., 2005, Barrett and Palsson, 2006, Szczurek et al., 2008,

Sparkes et al., 2010]. Yet, their usefulness in practice remains an open question. Of special

interest for us is the approach presented in [Sharan and Karp, 2013]. Therein, authors have

addressed slight variations of the problem described in Chapter 3 by means of mathematical

programming. In addition, they sketched an algorithm for finding the most informative experi-

ment to discriminate rival Boolean models but no implementation was provided. Nonetheless,

compared to all aforecited contributions, our work presents certain differences and simi-

larities. Except for [Szczurek et al., 2008], previous approaches aim at selecting exactly one

experiment at each iteration. Therefore, only after the proposed experiment has been carried

out in the laboratory and models have been (partially) discriminated, another experiment can

be designed. In contrast, but similarly to [Szczurek et al., 2008], we aim at finding the smallest

46

4.2. Problem

number of experiments to optimally discriminate all models at once. Furthermore, motivated

by [Mélykúti et al., 2010], a distinct feature of our work is the criterion for optimality based

on maximizing the sum of pairwise (output) differences. In general, previous methods have

adopted an information-theoretic approach where the main design criterion is given by means

of the so-called Shannon entropy [Shannon, 1948]. Finally, on the theoretical side, results

regarding the number and complexity of experiments required for the exact identification of a

Boolean genetic network have been reported in [Akutsu et al., 2003].

In the remainder of this chapter we provide a precise characterization of this problem using

the notions introduced in Chapter 2 and adapting our Answer Set Programming representation

accordingly. Furthermore, we validate our approach using realistic problem settings over the

logical input-output behaviors learned in the previous chapter.

4.2 Problem

4.2.1 Logical input-output behaviors and search space of experiments

Logical input-output behaviors. In the following, we consider a given prior knowledge

network (PKN) (V ,E ,σ) and an experimental dataset ξ as defined in Chapter 3. Then, we

assume we can learn from (V ,E ,σ) and ξ, a finite family of (nearly) optimal Boolean logic

models M = ((V ,φ j)) j∈J . Next, using the Algorithm 1 (Section 3.4.3) we can find the set

of logical input-output behaviors B = BEHAVIORS(M). That is, B contains (exactly) one

“representative” Boolean logic model (V ,φ j) ∈M for each input-output behavior found. Now,

let us recall some notation already introduced in previous chapters. We denote with C

the space of all possible clamping assignments or experimental conditions Ci over (V ,E ,σ).

Notice that in principle, i = 1, . . . ,2|VS |+|VK |, i.e. all combinatorial perturbations of stimuli

and knockouts. Furthermore, we use F
j

i
to describe the fixpoint of Ω(V ,φ j |Ci

) reachable from

A f = {v �→ f | v ∈ V }. Notably, since every (V ,φ j) ∈ B describes a different input-output

behavior, it holds that

�

∀(V ,φ j), (V ,φ j �) ∈B, j �= j � :: ∃Ci ∈C , v ∈VR :: F
j

i
(v) �= F

j �

i
(v)

�

.

In words, for every pairs of different models (V ,φ j), (V ,φ j �) ∈ B, there exists at least one

experimental condition Ci and one readout v such that, the corresponding responses in each

model differ on v , i.e. F
j

i
(v) �= F

j �

i
(v). In practice this means that performing the experiment

Ci , one would be able to discriminate between (V ,φ j) and (V ,φ j �). Except in the case when

the measurement on v is around 0.5 and hence, both Boolean predictions would explain the

experimental observation similarly well.

Search space of experiments. As mentioned above, we denote with C the space of all pos-

sible clamping assignments or experimental conditions Ci over (V ,E ,σ). Recall that, if Ci is

an experimental condition and v ∈ dom(Ci) then, either v ∈VS and Ci (v) = t , or v ∈VK and

47

Chapter 4. Experimental design for discrimination of input-output behaviors

a b c

d e

∨∨

f g

1

∧ ∧

a b c

d e

∨∨

f g

2

∧ ∧

a b c

d e

∨

f g

3

∧ ∧

Figure 4.1: Representative Boolean logic models (V ,φ1), (V ,φ2), and (V ,φ3) for 3 different logical

input-output behaviors. The correspoinding mappings are: φ1 = {d �→ a ∨¬c,e �→ b ∨ c, f �→ d ∧e, g �→
e∧¬c},φ2 = {d �→ a∨b,e �→ b∨c, f �→ d∧e, g �→ e∧¬c}, and φ3 = {d �→ a,e �→ b∨c, f �→ d∧e, g �→ e∧¬c}.

Ci (v) = f . In theory, all combinatorial perturbations of stimuli and knockouts are possible.

Thus, one would consider i = 1, . . . ,2|VS |+|VK |. However, in practice, combining more than a

few perturbations in the same experiment may be out of reach for current technology. In this

context, let us denote with |Ci |VS
and |Ci |VK

, the number of stimuli and inhibitors respectively

clamped in Ci . That is, |Ci |VS
= |dom(Ci)∩VS | and |Ci |VK

= |dom(Ci)∩VK |. Next, we consider

a search space of experimental conditions parameterized by integers s and k in order to

restrict ourselves to experiments having at most, s stimuli and k inhibitors, with 0 ≤ s ≤ |VS |

and 0 ≤ k ≤ |VK |. To be more precise, the search space of experiments with at most, s stimuli

and k inhibitors, is defined as C (s,k) =
�

Ci |Ci ∈C , |Ci |VS
≤ s, |Ci |VK

≤ k
�

. Notably, the total

number of experimental conditions or clamping assignments in C (s,k) is given by

s�

i=0

�

|VS |

i

�

×

k�

i=0

�

|VK |

i

�

where
�n

m

�

denotes the binomial coefficient, i.e., n!
m!(n−m)! . Notice that for some pairs of input-

output behaviors in B, there may not exist any experimental condition in C (s,k) yielding a

different response between them. Especially, if either s or k are too small.

Let us illustrate the concepts introduced above with our toy example from Chapter 3. As

mentioned in Section 3.4.3, over the 5 (nearly) optimal Boolean logic models enumerated

in Listing 3.4, we found 3 logical input-output behaviors. In fact, in Figure 4.1 we show one

“representative” Boolean logic model for each behavior. Let us denote these models by (V ,φ j)

with j = 1,2,3. Then, then corresponding mappings are defined as

φ1 = {d �→ a ∨¬c,e �→ b ∨ c, f �→ d ∧e, g �→ e ∧¬c}

φ2 = {d �→ a ∨b,e �→ b ∨c, f �→ d ∧e, g �→ e ∧¬c}

φ3 = {d �→ a,e �→ b ∨c, f �→ d ∧e, g �→ e ∧¬c} .

Furthermore, let us consider two experimental conditions in C (2,1), namely C1 = {b �→ t } and

48

4.2. Problem

Table 4.1: Fixpoints F
j

i
for Ω(V ,φ j |Ci

) reachable from A f with j = 1,2,3 and i = 1,2. Logical networks

(V ,φ j) are shown in Figure 4.1 whereas C1 = {b �→ t } and C2 = {b �→ t ,c �→ t }.

(V ,φ j |C1) (V ,φ j |C2)
a b c d e f g a b c d e f g

(V ,φ1) f t f t t t t f t t f t f f

(V ,φ2) f t f t t t t f t t t t t f

(V ,φ3) f t f f t f t f t t f t f f

C2 = {b �→ t ,c �→ t }. That is, in C1 only b is stimulated whereas in C2 both b and c are stimulated.

In both experimental conditions, a is not stimulated and d is not inhibited. The corresponding

fixpoints F
j

i
for Ω(V ,φ j |Ci

) reachable from A f are shown in Table 4.1. We refrain from giving the

detailed iterations for the sake of brevity. Nonetheless, one can verify that for each (V ,φ j) and

Ci , the assignments F
j

i
given in Table 4.1 satisfy that, for all v ∈ dom(φ j) it holds F

j

i
(φ(v)) =

F
j

i
(v). Furthermore, using C1 and C2 one can discriminate between every pair of input-output

behvaiors, namely, (1,2), (1,3) and (2,3). To be more precise, the output responses for (V ,φ1)

and (V ,φ2) differ on species f under C2 (F 1
2 (f) �= F 2

2 (f)). Between (V ,φ1) and (V ,φ3), the

corresponding fixpoints also differ on species f but under C1 (F 1
1 (f) �= F 3

1 (f)). Finally, the

output responses for (V ,φ2) and (V ,φ3) differ on f under both clamping assignments, C1

(F 2
1 (f) �= F 3

1 (f)) and C2 (F 2
2 (f) �= F 3

2 (f)).

4.2.2 Experimental design

Discriminating among every pair of behaviors. Let B be a finite set of input-output behav-

iors represented by Boolean logic models ((V ,φ j)) j∈J . In most cases, it happens that several

experimental conditions must be considered together in order to discriminate among every

pair of behaviors. Clearly, in practice one would like to perform as few experiments as possible.

Therefore, our first criterion for experimental design consists of finding the minimum number

of experimental conditions Ci ∈C (s,k) with 0 ≤ s ≤ |VS | and 0 ≤ k ≤ |VK |, which allow us to

discriminate among every pair of logical input-output behaviors. To be more precise, we aim

at finding the smallest ε≥ 0 such that there exist an ε-tuple (C1, . . . ,Cε) ∈C1(s,k)×·· ·×Cε(s,k)

satisfying:

�

∀(V ,φ j), (V ,φ j �) ∈B, j �= j � ::
�

∃Ci ∈ {C1, . . . ,Cε}, v ∈VR :: F
j

i
(v) �= F

j �

i
(v)

��

. (4.1)

In what follows, we denote with C
ε(s,k) the set of all ε-tuples (C1, . . . ,Cε) satisfying (4.1).

Maximizing differences over readouts. Once we have identified that ε experimental con-

ditions are sufficient in order to discriminate between all input-output behaviors, the next

question is how to select among all possible (C1, . . . ,Cε) ∈C
ε(s,k). Towards this end, let us de-

note the Boolean logic models in B by (V ,φ1), . . . , (V ,φn). Then, we define the differences (Θdiff)

generated by the experimental conditions (C1, . . . ,Cε) ∈C
ε(s,k) over the logical input-output

49

Chapter 4. Experimental design for discrimination of input-output behaviors

behaviors in B as

Θdiff (B, (C1, . . . ,Cε)) =
n−1�

j=1

n�

j �= j+1

ε�

i=1

�

v∈VR







1 F
j

i
(v) �= F

j �

i
(v)

0 otherwise .
(4.2)

Next, our second criterion for experimental design consists of finding ε-tuples (C1, . . . ,Cε) ∈
C

ε(s,k) such that the function Θdiff is maximized,

(C1, . . . ,Cε) ∈ argmax
(C1,...,Cε)∈C ε(s,k)

�

Θdiff (B, (C1, . . . ,Cε))
�

. (4.3)

Minimizing the complexity of experiments. Intuitively, the complexity or “cost” of an ex-

perimental condition Ci over (V ,E ,σ) can be related to the number of stimuli (|Ci |VS
) and

inhibitors (|Ci |VK
), clamped in Ci . In fact, this intuition has been used before in [Akutsu et al.,

2003] where it has been investigated the number and complexity of experiments required for

the identification of a Boolean gene regulatory network. Moreover, we have already taken this

notion of complexity into account when we restricted ourselves to experimental conditions

in C (s,k) =
�

Ci |Ci ∈C , |Ci |VS
≤ s, |Ci |VK

≤ k
�

. However, the selection of s and k aims at giving

upper bounds to the number of stimuli and inhibitors. Now, we aim at finding the simplest ex-

perimental conditions among all ε-tuples (C1, . . . ,Cε) maximizing Θdiff as in (4.3). Towards this

end, we define two functions over ε-tuples of experimental conditions counting the number

of stimuli (ΘVS
) and inhibitors (ΘVK

) respectively,

ΘVS
((C1, . . . ,Cε)) =

ε�

i=1
|Ci |VS

ΘVK
((C1, . . . ,Cε)) =

ε�

i=1
|Ci |VK

. (4.4)

Next, let us denote with Δ the set of all ε-tuples (C1, . . . ,Cε) maximizing Θdiff as in (4.2). Fi-

nally, we consider two additional optimization criteria in lexicographic order aiming at the

identification of the simplest (C1, . . . ,Cε) ∈Δ,

(C1, . . . ,Cε) ∈ argmin
(C1,...,Cε)∈Δ

�

ΘVS
((C1, . . . ,Cε)) ,ΘVK

((C1, . . . ,Cε))
�

. (4.5)

Notice that we minimize firstΘVS
and then, with lower priorityΘVK

. But this is a rather arbitrary

decision which can be revisited in practice. For instance, if for the system at hand, it is the case

that combining several inhibitors is experimentally more complicated than combining several

ligands. Alternatively, both functions could be combined into a single function, for example,

ΘVS∪VK
=ΘVS

+ΘVK
. In fact, many other criteria could be taken into account. For example, we

could assign a weight to every stimulus and inhibitor in order to describe its price. Thereafter,

we can minimize the required budget for running the suggested experiments. Also, if certain

stimuli and/or inhibitors are not compatible with each other, we could consider additional

constraints in order to avoid such combinations. Nevertheless, these kinds of optimization

criteria and constraints are related to very specific application settings such as, available

technology, experimental tools (ligands, small-molecule drugs, antibodies, etc), budget, and

50

4.3. Experimental design with Answer Set Programming

others. Instead, we aim at capturing generic problem settings which can be adapted to specific

use cases by exploiting the elaboration tolerance of our methods.

Let us illustrate the definitions given above with our toy example from Figure 4.1 and ex-

perimental conditions C1 = {b �→ t } and C2 = {b �→ t ,c �→ t }. As we have shown in Table 4.1,

using C1 and C2 we can discriminate between the three pairs of input-output behaviors.

Hence, the condition given in (4.2) is satisfied for ε = 2 and the 2-tuple (C1,C2). In fact, in

this case, ε = 2 is the minimum number of experiments required in order to satisfy (4.2).

Next, we can count the number of differences among every pair of behaviors. As detailed

above, we have F 1
2 (f) �= F 2

2 (f),F 1
1 (f) �= F 3

1 (f),F 2
1 (f) �= F 3

1 (f), and F 2
2 (f) �= F 3

2 (f). Therefore,

Θdiff({(V ,φ1), (V ,φ2), (V ,φ3)}, (C1,C2)) = 4. Finally, the complexity of the 2-tuple (C1,C2) is

given by the two functions ΘVS
and ΘVK

. The number of stimuli is given by ΘVS
((C1,C2)) = 3,

whereas the number of inhibitors is given by ΘVK
((C1,C2)) = 0.

4.3 Experimental design with Answer Set Programming

4.3.1 Instance

The representation of the problem instance is essentially the same as in Section 3.4.1 but

applied to several networks instead of only a pair. To be more precise, let B be a finite

set of input-output behaviors represented by Boolean logic models (V ,φ1), . . . , (V ,φn). The

facts formula(j,v,sφ j (v)) map variables v ∈V to their corresponding formulas φ j (v) with

j = 1, . . . ,n. Meanwhile, facts over predicates variable/1, dnf/2 and clause/3 remain the

same as in Listing 2.1. Also, as in Chapter 3, facts over predicates stimulus/1, inhibitor/1,

and readout/1 denote nodes in VS , VK , and VR respectively. Finally, we consider two con-

stants, namely, maxstimuli=s and maxinhibitors=k, in order to represent the search space

of experimental conditions C (s,k). By default, we assign such constants to |VS | and |VK |, re-

spectively. Afterwards, at grounding time, we can use command-line options -c maxstimuli=s

-c maxinhibitors=k in order to overwrite these values with arbitrary s and k.

Listing 4.1 shows the instance representation for our toy example. That is, the three input-

output behaviors represented by the Boolean logic models (V ,φ1), (V ,φ2), and (V ,φ3) shown

in Figure 4.1.

Listing 4.1: Toy example input instance (toy.lp)

1 variable("f"). variable("e"). variable("a"). variable("g").

2 variable("b"). variable("c"). variable("d").

3

4 formula(1,"d" ,1). formula(1,"e" ,0). formula(1,"f" ,3). formula(1,"g" ,2).

5 formula(2,"d" ,4). formula(2,"e" ,0). formula(2,"f" ,3). formula(2,"g" ,2).

6 formula(3,"d" ,5). formula(3,"e" ,0). formula(3,"f" ,3). formula(3,"g" ,2).

7

8 dnf(0,2). dnf(0,0). dnf(1,7). dnf(1,8). dnf(2,14).

9 dnf(3,16). dnf(4,0). dnf(4,7). dnf(5,8). dnf(4,8).

10

51

Chapter 4. Experimental design for discrimination of input-output behaviors

11 clause(0,"b" ,1). clause(2,"c" ,1). clause(7,"c" ,-1). clause(8,"a" ,1).

12 clause (14,"e" ,1). clause (14,"c" ,-1). clause (16,"d" ,1). clause (16,"e" ,1).

13

14 stimulus("a"). stimulus("c"). stimulus("b").

15 readout("g"). readout("f"). inhibitor("d").

16

17 #const maxstimuli = 3.

18 #const maxinhibitors = 1.

4.3.2 Encoding

Next we describe our encoding relying on incremental ASP [Gebser et al., 2008], for finding an

optimal experimental design as described in the previous section. The idea is to consider one

problem instance after another by gradually increasing the number of experimental conditions

such that, if the program is satisfiable at the step ε, then there exists an ε-tuple (C1, . . . ,Cε)

satisfying (4.1). Our ASP encoding is shown in Listing 4.2.

Listing 4.2: Logic program for finding an optimal experimenal design (design.lp)

1 #include <iclingo >.

2 #const imax = 20.

3

4 model(M) :- formula(M,_,_).

5

6 #program cumulative(k).

7

8 {clamped(k,V, 1) : clause(_,V,_), stimulus(V) } maxstimuli.

9 {clamped(k,V,-1) : clause(_,V,_), inhibitor(V)} maxinhibitors.

10 clamped(k,V,-1) :- stimulus(V); not clamped(k,V,1).

11

12 clamped(k,V) :- clamped(k,V,_).

13 free(k,M,V,I) :- formula(M,V,I); not clamped(k,V).

14

15 eval(k,M,V, S) :- clamped(k,V,S); model(M).

16 eval(k,M,V, 1) :- free(k,M,V,I); eval(k,M,W,T) : clause(J,W,T); dnf(I,J).

17 eval(k,M,V,-1) :- not eval(k,M,V,1); model(M); variable(V).

18

19 diff(k,M1,M2) :- diff(k,M1,M2,_).

20 diff(k,M1,M2,V) :- eval(k,M1,V,S); eval(k,M2,V,-S);

21 M1 < M2; readout(V); model(M1;M2).

22

23 #minimize {1@1,clamped ,k,V : clamped(k,V,-1), inhibitor(V)}.

24 #minimize {1@2,clamped ,k,V : clamped(k,V, 1), stimulus(V)}.

25 #maximize {1@3,diff ,k,M1,M2,V : diff(k,M1,M2,V)}.

26

27 #program volatile(k).

28 #external query(k).

29

30 :- not diff(K,M1,M2) : K=1..k; model(M1;M2); M1<M2; query(k).

31

52

4.3. Experimental design with Answer Set Programming

32 #show clamped /3.

33 #show diff /4.

Preliminaries Line 1 declares the required inclusion in order to use incremental solving

embedded in clingo 4. Importantly, the remainder of the encoding must follow a specific

structure in order to work properly. More precisely, we need to define two “subprograms”,

namely, cumulative(k), and volatile(k). To this end, we use the directive #program with

a name, e.g., cumulative, and an optional list of parameters, e.g., (k). Each subprogram

comprise all rules up to the next such directive (or the end of file) and their grounding is

controlled via the embedded script. Line 2 declares the constant imax which is used as

the maximum number of incremental steps to be considered. Recall that, the number of

incremental steps represents the number of experimental conditions. Thus, by default, we

assign it to 20 but we can easily overwrite this value afterwards using the command-line option

-c imax=e. Next, Line 4 defines auxiliary domain predicates model/1, namely, model(j) for

all Boolean logic model (V ,φ j) ∈B.

Experimental conditions, fixpoints, differences, and optimization. Lines 6-25 define the

subprogram cumulative(k). The purpose of this subprogram, is to declare all logic rules

which have to be grounded at every incremental step k. As in Listing 3.2, we represent

experimental conditions using predicates clamped/3. Thus, Lines 8-10 define rules in order

to guess the experimental condition at step k. Note the usage of constants maxstimuli and

maxinhibitors as upper bounds in the corresponding choice rules. Also, we restrict the

choices to experimental conditions clamping a variable v ∈VS ∪VK only if v occurs in some

clause. Otherwise, clamping the variable v does not make any “downstream” difference and

hence, it is not useful in order to discriminate models. For instance, following our toy example,

the experimental conditions C1 = {b �→ t } and C2 = {b �→ t ,c �→ t } are represented by predicates

clamped(1,b,1), clamped(2,b,1), and clamped(2,c,1).1 Lines 12-17 elaborate on the

rules Π2.3,Π2.4 and Π2.5 given in Chapter 2 in order to consider several clamping assignments

and logical networks simultaneously, and compute the fixpoint for each of them accordingly.

To be more precise, the response for each logical network under each experimental condition

is represented over predicates eval/4, namely, eval(i, j,v,s) for a logical network (V ,φ j)

and experimental condition Ci , if the variable v is assigned to s, i.e. F
j

i
(v) = s. Let us illustrate

this with our example. The corresponding predicates eval/4 describing the response over

variables f and g as in Table 4.1 are:

eval(1,1,"f", 1) eval(1,1,"g",1) eval(2,1,"f",-1) eval(2,1,"g",-1)

eval(1,2,"f", 1) eval(1,2,"g",1) eval(2,2,"f", 1) eval(2,2,"g",-1)

eval(1,3,"f",-1) eval(1,3,"g",1) eval(2,3,"f",-1) eval(2,3,"g",-1)

1We note that permutations, e.g., clamped(2,b,1), clamped(1,b,1), and clamped(1,c,1), are allowed in
our encoding, but one can encode additional symmetry-breaking constraints in order to avoid them.

53

Chapter 4. Experimental design for discrimination of input-output behaviors

Then, in Lines 19-21 we derive predicates diff/3 and diff/4 in order to represent differences

among every pair of logical input-output behavior for the experimental conditions under con-

sideration. That is, we derive diff(i, j, j �,v) provided that for some models (V ,φ j), (V ,φ j �)

with j < j �, we have that F
j

i
(v) �= F

j �

i
(v), i.e., eval(i, j,v,s) and eval(i, j �,v,−s). For our ex-

ample, we derive predicates diff(1,1,3,"f"), diff(1,2,3,"f"), diff(2,1,2,"f"), and

diff(2,2,3,"f"). Hence, predicates diff/3, namely, diff(i, j, j �) indicate the existence

of at least one (output) difference between (V ,φ j) and (V ,φ j �) under experimental condition

Ci . Finally, Lines 23-25 declare the three optimization criteria in lexicographic order. Notably,

when grounding and solving cumulative(k) for successive values of k, the solver’s objective

functions are gradually extended accordingly. Lines 23-24 declare the minimization of func-

tions ΘVS
and ΘVK

, as defined in (4.4). Notice the corresponding priority levels, namely @1

and @2, meaning that as defined in (4.5), first we minimize ΘVS
, and then with lower priority

ΘVK
. As discussed earlier, this is a rather arbitrary decision. However, in practice it can be

revisited very easily thanks to the declarativeness of ASP. Finally, Line 25 declares with the

greatest priority, namely, @3, the maximization of the function Θdiff as defined in (4.2).

Discriminating among every pair of input-output behaviors. Lines 27-33 define the sub-

program volatile(k). The purpose of this subprogram, is to declare logic rules specific for

each value of k. Typically, in the form of integrity constraints forcing the incremental solving

to continue until such constraints are satisfied at a given step. Line 28 declares the external

atoms query(k) for every incremental step k. Internally, the incremental solving embedded

in clingo 4 assigns these atoms to either true or false in order to indicate the current step. Then,

in Line 30 we define an integrity constraint in order to eliminate answer sets describing an

ε-tuple (C1, . . . ,Cε) such that (4.1) does not hold. In fact, the body of the integrity constraint

is precisely the negation of the expression given in (4.1). Therefore, the incremental solving

continues until its reach either the maximum number of steps imax, or the step ε such that

there exists an ε-tuple satisfying (4.1).

The following result shows the correctness of our ASP representation. We denote with τ(B, s,k)

the set of facts describing the instance as in Listing 4.1, and with Π4.2 the set of rules given in

Listing 4.2.

Proposition 4.3.1. Let B be a finite set of input-output behaviors represented by Boolean logic

models ((V ,φ j)) j∈J . Let ε, s, and k be three positive integers with s ≤ |VS | and k ≤ |VK |.

Then, there is an answer set X of τ(B, s,k)∪Π4.2 such that Ci = {v �→ t | v ∈VS ,clamped(i , v,1) ∈
X }∪ {v �→ f | v ∈VK ,clamped(i , v,−1) ∈ X } with i = 1, . . . ,ε if and only if,

1. ε is the least number of clamping assignments for which (4.1) holds,

2. and (C1, . . . ,Cε) ∈ argmin(C1,...,Cε)∈Δ
�

ΘVS
((C1, . . . ,Cε)) ,ΘVK

((C1, . . . ,Cε))
�

with Δ= argmax(C1,...,Cε)∈C ε(s,k)

�

Θdiff (B, (C1, . . . ,Cε))
�

and C
ε(s,k) the set of all ε-tuples

(C1, . . . ,Cε) ∈C1(s,k)×·· ·×Cε(s,k) satisfying (4.1).

54

4.4. Empirical evaluation

4.3.3 Solving

In Listing 4.3 we show the optimum answer set for the toy instance described in Listing 4.1.

Such an answer set represents the experimental conditions C1 = {b �→ t } and C2 = {b �→ t ,c �→ t }.

Notice that, we can see the number of steps in the incremental solving by looking at the

number of calls (Calls: 2 or Solving... printed twice). Furthermore, the value for each

optimization criterion is given in the corresponding order (Optimization 8 3 0). Actually,

the grounder performs an internal transformation for maximize statements and hence, the

reported value (8) for the first optimization criterion is not exactly as one would expect. In

order to recover the optimum for Θdiff, we need to count the number of predicates diff/4

in the answer set. Thus, in this case, the optimum value for Θdiff is 4. On the other hand,

minimization statements are treated without any transformation. Therefore, the optimum

value for ΘVS
is 3, whereas the optimum value for ΘVK

is 0, as reported directly by the solver.

Listing 4.3: Finding an optimum experimental design

$ clingo design.lp toy.lp --quiet=1

clingo version 4.3.1

Reading from design.lp ...

Solving ...

Solving ...

Answer: 1

clamped(1,"a" ,-1) clamped(1,"c" ,-1) clamped(1,"b" ,1)\

clamped(2,"a" ,-1) clamped(2,"c" ,1) clamped(2,"b" ,1)\

diff(1,1,3,"f") diff(1,2,3,"f") diff(2,1,2,"f") diff(2,2,3,"f")

Optimization: 8 3 0

OPTIMUM FOUND

Models : 1

Optimum : yes

Optimization : 8 3 0

Calls : 2

Time : 0.009s (Solving: 0.00 s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.010s

4.4 Empirical evaluation

4.4.1 Real-world problem instance

Logical input-output behaviors. In Chapter 3, using real-world signaling pathways in hu-

man liver cells and a publicly available phospho-proteomics dataset, we have shown how we

can learn Boolean logic models and their corresponding logical input-output behaviors. In

particular, in Table 3.1 we have reported, for various levels of tolerance over fitness, the num-

ber of Boolean logic models and the number of input-output behaviors they describe. Recall

that, in regards of the available experimental observations and their intrinsic uncertainty, such

behaviors explain the data equally well. Therefore, now we are interested in identifying an

55

Chapter 4. Experimental design for discrimination of input-output behaviors

optimal experimental design, as described in Section 4.2, in order to discriminate among all

input-output behaviors found for each tolerance, namely, 4 behaviors for 2% tolerance, 31

behaviors for 4% tolerance, 38 behaviors for 6% tolerance, 66 behaviors for 8% tolerance, and

91 behaviors for 10% tolerance.

Search space of experiments. The phospho-proteomics dataset used for learning contains

64 experimental conditions resulting from all possible combinations of either 0 or 1 stimulus,

combined with either 0 or 1 inhibitor. Now, we consider the space of experimental conditions

defined by C (3,2). That is, experiments having 0 to 3 stimuli, combined with 0 to 2 inhibitors.

As explained earlier, on the one hand, this restriction reduces the size of the search space

which is always convenient from the computational point of view. But also, on the other hand,

considering experiments with more stimuli and/or inhibitors, does not appear to be very

relevant in practice since it would not be possible to perform such experiments.

Problem instances. Next, we consider the problem instances given by each set of logical

input-output behaviors listed in Table 3.1. Let us denote with Bm the corresponding set of

m input-output behaviors, namely, B4, B31, B38, B66, and B91. Then, in what follows, we

denote with the filename behaviors-m.lp, the set of logic facts describing each problem

instance Bm as illustrated in Listing 4.1 for our toy example.

Listing 4.4: Finding an optimal experimental design to discriminate 4 behaviors

$ clingo design.lp behaviors -31.lp -c maxstimuli =3 -c maxinhibitors =2\

--quiet=2 --conf=many -t 8

clingo version 4.3.1

Reading from design.lp ...

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Optimization: 28138 12 7

OPTIMUM FOUND

Models : 19

Optimum : yes

Optimization : 28138 12 7

Calls : 5

Time : 119.240s (Solving: 116.15s 1st Model: 0.70s Unsat: 20.08s)

CPU Time : 931.380s

Threads : 8 (Winner: 0)

56

4.4. Empirical evaluation

4.4.2 Optimal experimental designs

In Listing 4.4 we show the solving for the problem instance behaviors-31.lp. In this case, we

find that at least five experimental conditions are required in order to discriminate between

every pair of behaviors. Furthermore, for this problem we exploit the multi-threading capaci-

ties of clingo [Gebser et al., 2012b] using 8 threads: ––conf=many –t 8. It is worth noting that,

each thread uses a different set of pre-configured parameters which allow to traverse the search

space with different heuristics. Actually, for small problem instances, there is no significant

difference in performance if we compare single- and multi-threading solving. Nonetheless, for

larger problem instances, for example behaviors-66.lp and behaviors-91.lp, the proof of

optimality for a candidate answer set is a very demanding task. Hence, using multi-threading

is very convenient for such cases. Note that, when we use multiple threads, the solver reports

the overall CPU time (931.380s) for all threads and the real time (119.240s) for solving. Notably,

in practice and from the user point of view, the real time is more relevant. As already men-

tioned for the toy example, from the solver’s output we can directly read the corresponding

values for ΘVS
and ΘVK

, in this case, 12 and 7 respectively. However, the value for Θdiff has to

be computed counting predicates diff/4 in the optimum answer set. We refrain to show the

complete answer set in Listing 4.4 for the sake of brevity. In this case, the optimum value for

Θdiff is 4412. That is, the designed experiments generate 4412 pairwise output differences over

the 31 input-output behaviors.

In Table 4.2 we report results for all problem instances. As expected, as we consider larger

sets of input-output behaviors, more experiments (ε) are required in order to discriminate

all pairs. Interestingly, the computation time (tε) required to find such a minimum number

of experiments is relatively small for all problem instances. Notice that, at that time the

solver has found an answer set describing a candidate experimental design. Nevertheless, the

computation time required to find an optimal experimental design increases several orders

of magnitude for the largest instance. Approximately 18 hours of real time and 144 hours of

CPU time summing all threads. Notably, for such an instance, the solver considers all possible

sets of 7 experimental conditions among the search space C (3,2), i.e., ∼ 3.8×1015. Thus, in

practice, for even larger problem instances one should use a “reasonable” timeout and take the

last answer set found as an approximation to the optimum. We also report the overall number

of pairwise differences (Θdiff), its mean (µdiff) and standard deviation (σdiff). For example, the

optimal experimental design to discriminate between 38 behaviors, requires 5 experimental

conditions which yield 5957 pairwise differences. Furthermore, the mean number of pairwise

differences is 8.5 and the standard deviation is 4.9. It is worth noting that, in general, the

standard deviation is relatively large. This indicates that certain pairs of behaviors would be

“better” discriminated than others. In principle, if one aims at having a more uniform pairwise

discrimination, an entropy-based design criterion would be more appropriate. However, such

an approach requires numerical computations which are out of scope of our methods but

also, they may compromise exhaustiveness and scalability.

57

Chapter 4. Experimental design for discrimination of input-output behaviors

Table 4.2: Input-output discrimination over the search space of experiments C (3,2). We report for each

set of input-output behaviors Bm from Table 3.1, the minimum number of experimental conditions

required to discriminate between every pair of behaviors (ε), the time for finding such a minimum

(tε), the maximum number of pairwise differences (Θdiff), the mean and standard deviation pairwise

differences (µdiff and σdiff), the minimum number of stimuli (ΘVS), the minimum number of inhibitors

(ΘVK), and the time for finding an optimum experimental condition (topt). Also, in parentheses, we

report overall CPU time for the 8 threads.

Bm ε tε Θdiff µdiff σdiff ΘVS
ΘVK

topt

4 2 0.061s (0.110s) 21 3.5 1.7 3 0 0.061s (0.120s)
31 5 5.297s (20.85s) 4412 9.5 4.9 12 7 146.5s (1150.2s)
38 5 9.329s (41.81s) 5957 8.5 4.9 11 6 152.5s (1187.4s)
66 7 70.52s (397.2s) 23037 10.7 5.0 16 9 ∼ 5h (40h)
91 7 160.1s (1059s) 47232 11.5 5.2 16 9 ∼ 18h (144h)

4.4.3 Analyzing experimental designs

Next, we provide a further analysis of the optimal experimental design found to discrimi-

nate between the 91 input-output behaviors. Analogously, the same analysis can be done

considering the experimental design found for each set of behaviors. In Figure 4.2 we show

the optimal experimental design (Figure 4.2a) and several views of the pairwise differences

generated by each experimental condition (Figures 4.2b, 4.2c, and 4.2d). Interestingly, all ex-

perimental conditions allow to discriminate between a large number of pairs of input-output

behaviors (Figure 4.2b). Notice that, the total number of pairs among 91 behaviors is given by

the binomial coefficient,
�91

2

�

= 4095. Thus, each experimental condition in the optimal design

discriminates between at least, 50% of the behaviors pairs. Next, we look at which specific

readouts we generate differences (Figure 4.2c). On the one hand, for 2 readouts, viz., HSP27

and p53, we generate pairwise differences with all experiments. On the other hand, for all

other readouts, we generate pairwise differences with at most 5 out of the 7 experiments. More-

over, for 4 readouts, viz., AK T , p90RSK , MEK 12, and GSK 3, we generate pairwise differences

with only 1 experimental condition. More precisely, only experiment #3 generates differences

over AK T and GSK 3, and only experiment #1 generates differences for p90RSK and MEK 12.

We note that, such correlations between readouts is explained by the fact that in all logic

models (V ,φ j), AK T is the only regulator of GSK 3, i.e., φ j (GSK 3) = AK T , whereas MEK 12

is the only regulator of p90RSK , i.e., φ j (p90RSK) = MEK 12. Finally, we look at the overall

pairwise differences generated with each experimental condition (Figure 4.2d). Percentages

are computed over the 47232 pairwise differences generated with all experiments.

4.5 Conclusion

In this chapter we have addressed the problem consisting of finding an optimal set of ex-

periments in order to discriminate between several logical input-output behaviors. Various

authors have considered the problem of model discrimination in the context of computational

58

4.5. Conclusion

(a)

0 500 1000 1500 2000 2500 3000 3500 4000

1 2 3 4 5 6 7 P
a
ir
s
 o
f i
n
p
u
t‐
o
u
tp
u
t b
e
h
a
v
io
r
s

Experimental conditions

Pairs of input‐output behaviors discriminated by experiment

(b)

0 2000 4000 6000 8000 10000 12000

IRS1s AKT HSP27 p38 p90RSK MEK12 p53 p70S6 HistH3 JNK12 CREB GSK3 cJUN

P
a
ir
w
is
e
 d
if
fe
r
e
n
c
e
s

Readouts

Pairwise differences by readouts with each experiment
1 2 3 4 5 6 7

(c)

15%
23%

13% 15% 7%
16%

11%

Overall pairwise differences
by experiment

1 2 3 4 5 6 7

(d)

Figure 4.2: Optimal experimental design to discriminate between 91 input-output behaviors.
(a) Description of each experimental condition. Black squares indicate the presence of the
corresponding stimulus (green header) or inhibitor (red header). (b) Each column describes
the number of pairs of behaviors (out of

�91
2

�

= 4095) discriminated by each experimental
condition. (c) Number of pairwise differences by readouts with each experimental condition.
(d) Overall pairwise differences with each experimental condition.

modeling [Ideker et al., 2000, Yeang et al., 2005, Barrett and Palsson, 2006, Szczurek et al.,

2008, Sparkes et al., 2010, Sharan and Karp, 2013]. Nevertheless, their usefulness in practice

remains an open question. In contrast to the relatively popular entropy-based approach, and

motivated by [Mélykúti et al., 2010], our main design criterion aims at maximizing the number

of pairwise (output) differences between rival logical behaviors. Thus, in principle, our work

is complementary to previous approaches to experimental design in the context of logical

models [Ideker et al., 2000, Sharan and Karp, 2013]. Therein, the aim is to suggest the most

informative experiment to discriminate among a set of previously inferred Boolean networks.

Instead, we aim at finding the least set of experiments allowing to discriminate every pair of

logical behaviors. Notably, both approaches share the vision of an iterative process combining

modeling and experimentation for learning accurate logical models.

As in the previous chapter, we have elaborated upon our basic ASP representation (Chapter 2)

in order describe the underlying lexicographic multi-objective optimization. Moreover, in

this case, we have exploited the incremental and multi-threading solving features of the ASP

59

Chapter 4. Experimental design for discrimination of input-output behaviors

solver. This emphasizes the flexibility of ASP as a powerful and general-purpose framework

for problem solving. Furthermore, we illustrated the usage of our approach with the sets of

input-output behaviors learned in Chapter 3 and suggested optimal experiments towards

more accurate logical models of immediate-early response.

Several questions can be investigated in the future. Firstly, we need to develop proper artificial

benchmarks in order to evaluate optimal experimental designs. In fact, the generation of

biologically meaningful networks and datasets, is a key step towards realistic performance

assessment of reverse engineering methods [Marbach et al., 2009]. Secondly, additional

knowledge could be considered. For instance, the number of Boolean logic models for each

input-output behavior was not taken into account. Also, information about preferences

or incompatibilities among stimuli and/or inhibitors could help to prune the search space.

Thirdly, in an iterative process of learning and experimentation, it is not clear which strategy

may yield more predictive models after a few iterations. On the one hand, we could adopt

a “cautious” strategy where we start by identifying a few input-output behaviors for a small

tolerance, e.g. 2%, and in the following iterations, we increase the tolerance as we also increase

the confidence in learned behaviors. On the other hand, with a “brave” strategy, at every

iteration, we should aim at identifying input-output behaviors for a large tolerance, e.g. 10%,

and look for experiments to discriminate among possibly many behaviors. Moreover, yet

another factor to consider is to take into account certain tolerance over model size during

learning which often leads to more input-output behaviors. Altogether, the work presented

in this chapter contributes to the loop of hypothesis-driven research in biology [Ideker et al.,

2001, Kitano, 2002] in the context of logic-based modeling.

60

5 Minimal intervention strategies

In previous chapters we have shown how can we iteratively learn and refine an ensemble of

logical networks describing the cellular response. Next, a major challenge is how to control

it by means of therapeutic interventions. Importantly, progress in this area may have a

crucial impact on bio-medical research, drug target identification and diagnosis. This chapter

addresses the problem consisting of finding minimal intervention strategies in logical signaling

networks. That is, inclusion-minimal sets of activations and inhibitions forcing a set of target

species into a desired steady state under various scenarios.

5.1 Introduction

As mentioned in the seminal paper for systems biology [Kitano, 2002], a major challenge in this

field is how to systematically control the state of the cell. From an application viewpoint, this

means selecting appropriate drugs in order to force the system to reach a state with properties

that were specified a priori. In previous chapters we have shown how can we iteratively learn

and refine an ensemble of logical networks describing the cellular response. In principle,

iterating over such a loop of modeling and experimentation will yield more accurate logical

models. Yet, there may be several networks which cannot be discriminated using the available

experimental capacities. In which case, instead of selecting a single logical network, in this

chapter we aim at reasoning over all of them.

Based on earlier work [Klamt, 2006] on metabolic networks, the notion of minimal intervention

sets for signaling networks was introduced in [Samaga et al., 2010] and dedicated algorithms

were developed to compute them. Intuitively, an “intervention set” represents a set of knock-

ins and knock-outs.1 Examples for knock-ins are mutations leading to constitutively activated

species or a continuous stimulation with external signals, whereas knock-outs may correspond

to gene knock-outs or inhibition of certain species by various experimental tools such as small-

molecule drugs, antibodies, or RNAi. Then, authors in [Samaga et al., 2010], were particularly

1It is worth noting that, our notion of clamping assignments introduced in Chapter 2 was originally motivated
as an abstraction (closer to standard logic terminology) of intervention sets.

61

Chapter 5. Minimal intervention strategies

interested in enumerating all minimal intervention sets leading to a specific steady state

in a given logical signaling network. Notably, advances on this subject may have a crucial

impact on bio-medical research, drug target identification and diagnosis. For instance, one

could ask for possible therapeutic interventions which would induce apoptosis (cell death) in

cancer cells [Layek et al., 2011]. Furthermore, for some human diseases, including cancer, a

single gene does not cause the disorder but instead, the disease may result from the abnormal

behavior of several molecules in different pathways [Abdi et al., 2008]. Thus, the method

presented in this chapter can also be used as a diagnostic tool to identify causes (mutations)

leading to observed cellular responses.

Finding robust minimal intervention strategies. Unfortunately, dedicated algorithms in-

troduced in [Samaga et al., 2010] are computationally demanding due to the highly combinato-

rial mechanisms in logical networks. Therefore, they are limited to compute small intervention

sets and fail to scale over large-scale networks. Importantly, in general, multiple interven-

tions (or mutations) are necessary to cope with robustness and cellular complexity [Stelling

et al., 2004]. Moreover, as we have shown in Chapter 3, if the inherent experimental noise is

considered there are many logical networks compatible with a given dataset of experimental

observations. Thus, identified interventions should fulfill the desired goals in every feasible

logical network. Concretely, the aforementioned limitations make it hard to prove that the

identified solutions are biologically robust to small variations of the system or its environment.

Therefore, by reasoning over several sets of feasible logical networks we expect to find small

yet robust intervention strategies.

More broadly, the problem of identifying “key-players” in logical signaling networks has been

recently addressed in [Li et al., 2006, Abdi et al., 2008, Wang and Albert, 2011, Layek et al.,

2011]. In contrast to our work, these contributions have rather focused on predicting what

would happen if certain molecules fail. To that end, authors in [Li et al., 2006, Abdi et al., 2008,

Layek et al., 2011] rely on digital circuits fault diagnosis engineering to identify the vulnerable

molecules that play crucial roles in the dysfunction of signaling networks. In that context, a

high vulnerability suggests that with high probability, the signaling network does not operate

correctly if that particular molecule is dysfunctional (“stuck-at-0” or “stuck-at-1” in digital

circuits terminology). It is worth noting that, due to computational limitations, in general

authors have restricted their studies to small number of simultaneous faults. The approach

presented in [Wang and Albert, 2011] does not relies on digital circuits but rather on standard

graph theory. Therein, authors proposed two connectivity measures based either on the

shortest paths, or on the so-called “elementary signaling modes”. Then, using such measures

their method provides a ranking of the nodes by the effects of their loss on the connectivity

between the network’s inputs and outputs. Importantly, despite the specific problem settings

and computational approaches in these contributions, all of them have considered a single

logical network describing the system.

In the remaining of this chapter, first we revisit the problem defined in [Samaga et al., 2010]

62

5.2. Problem

a b c

d e

∨∨

f g

1

∧ ∧

a
b

c

d e

∨∨

f g

2

∧ ∧

∧
a b c

d e

∨

f g

3

∧ ∧

a b c

d e

∨∨

f g

4

∧ ∧

a b c

d e

∨∨ ∨

f g

5

∧ ∧

Figure 5.1: Alternative logical networks (V ,φ1), (V ,φ2), (V ,φ3), (V ,φ4), and (V ,φ5) describing a given

system equally well. The correspoinding mappings are: φ1 = {d �→ a ∨¬c,e �→ b ∨c, f �→ d ∧e, g �→ e ∧
¬c},φ2 = {d �→ a∨(b∧¬c),e �→ b∨c, f �→ d∧e, g �→ e∧¬c}, φ3 = {d �→ a,e �→ b∨c, f �→ d∧e, g �→ e∧¬c},

φ4 = {d �→ a∨b,e �→ b∨c, f �→ d∧e, g �→ e∧¬c}, andφ5 = {d �→ a∨b∨¬c,e �→ b∨c, f �→ d∧e, g �→ e∧¬c}.

using the notions introduced in Chapter 2. Then, we adapt our Answer Set Programming

(ASP) representation accordingly. Of special interest is here ASP’s expressive power to address

problems of elevated complexity, in particular, for computing all inclusion-minimal solutions.

Finally, we illustrate our approach using the families of (nearly) optimal logic models learned

in Chapter 3.

5.2 Problem

5.2.1 Intervention scenarios and strategies

Intervention sets, side constraints and goals. Given a logical signaling network, the aim

of an intervention strategy is to identify a set of therapeutic interventions that leads to a

steady state satisfying a given goal under some side constraints. In fact, the concepts of

an intervention (I), goal (G), and side constraints (C) can be captured as partial two-valued

assignments. Moreover, both intervention sets and side constraints are considered clamping

assignments as defined in Section 2. To be more precise, given a logical network (V ,φ), an

intervention scenario is a pair (G ,C) of partial two-value assignments over V where C is

considered also as a clamping assignment, and an intervention set is a clamping assignment I

63

Chapter 5. Minimal intervention strategies

over a set of intervention variables X ⊆V .

Intervention strategies. Let (V ,φ) be a logical network, let (G ,C) be an intervention scenario,

and X ⊆V be a set of intervention variables. An intervention set I over X is an intervention

strategy for (G ,C) with respect to (V ,φ), if for some j ≥ 0, we have that

Ω
j

(V ,φ|C◦I)(Au) =Ω
j+1
(V ,φ|C◦I)(Au) G ⊆Ω

j

(V ,φ|C◦I)(Au)

with Au = {v �→ u | v ∈ V }. In words, Ω
j

(V ,φ|C◦I)(Au) is a steady state of the clamped network

(V ,φ|C◦I) satisfying the goal conditions in G . Notice the composition of C ◦ I indicating that

clampings in the intervention set I overwrite clampings in the side constraints C . Recall that

for two-valued truth assignments A,B we defined the composition of assignments A ◦B =

(A \ B)∪B where B = {v �→ s | v �→ s ∈ B } and t = f , f = t .

Finally, the intervention set problem consists in deciding whether there is an intervention

strategy for an intervention scenario (G ,C) with respect to a logical network (V ,φ).

For illustration, let us consider the toy logical network (V ,φ1) in Figure 5.1 along with the

intervention scenario (G ,C) = ({d �→ f , g �→ f }, {e �→ t }). In this example, the intervention

scenario requires the inhibition of d and g , given that e is stimulated. Next, the intervention

set I = {a �→ f ,c �→ t } where a is inhibited and c is stimulated, satisfies the scenario yielding the

steady state {a �→ f ,b �→ u,c �→ t ,d �→ f ,e �→ t , f �→ f , g �→ f }. Therefore, I is an intervention

strategy for (G ,C) with respect to (V ,φ1). In fact, I is also an intervention strategy for (G ,C) with

respect to (V ,φ2) and (V ,φ3) in Figure 5.1 as well. But now, if we consider the toy logical network

(V ,φ4) in Figure 5.1 along with the same intervention scenario. The previous intervention

set I yields the steady state {a �→ f ,b �→ u,c �→ t ,d �→ u,e �→ t , f �→ f , g �→ f }. Notably, since

φ4(d) = a ∨ b, and b is neither constrained nor intervened, d remains undefined in this

case (see Table 2.2). Similarly, the same happens with respect to (V ,φ5). Therefore, while

the intervention set I = {a �→ f ,c �→ t } is an intervention strategy for (V ,φ1), (V ,φ2), and

(V ,φ3), when we consider either (V ,φ4) or (V ,φ5), the inhibition of d in our intervention

goal is not fulfilled. In this toy example, it is relatively easy to see that the intervention set

I � = {a �→ f ,b �→ f ,c �→ t } is an intervention strategy for (G ,C) with respect to all logical

networks (V ,φi) with i = 1, . . . ,5. Clearly, the same analysis for several intervention scenarios

with respect to thousands of large-scale logical networks is out of reach to do it by hand.

5.2.2 Enumeration of minimal (bounded) intervention strategies

Authors in [Samaga et al., 2010], were particularly interested in enumerating all minimal

(bounded) intervention strategies with respect to a single logical network. However, as we

illustrate in this thesis, and other authors have shown by considering real-world networks

and data [Saez-Rodriguez et al., 2009, Chen et al., 2009], it often happens that the model

is non-identifiable. Therefore, as several logical networks can describe a given biological

64

5.3. Minimal intervention strategies with Answer Set Programming

system equally or similarly well, identified intervention strategies should fulfill all intervention

scenarios in every possible logical network. Importantly, as we have shown with the toy

example above, intervention strategies with respect to a logical network are very likely to fail in

another network which may describe the system similarly well. Notably, this may have a strong

impact on the robustness of identified solutions. In order to overcome this issue, we extend

the problem settings in order to consider an ensemble of logical networks, e.g. resulting from

the enumeration of (nearly) optimal Boolean logic models described in Chapter 3. This way,

we are able to reason over all possible networks without any a priori bias and towards more

robust insights.

Now, let us define further intervention strategies relying on a finite family (V ,φi)i∈N of logical

networks, a finite family (G j ,C j) j∈J of intervention scenarios and k some positive integer.

• A multi-scenario intervention strategy for (G j ,C j) j∈J wrt (V ,φi)i∈N is an intervention

strategy for each (G j ,C j) wrt (V ,φi) for each j ∈ J and i ∈ N .

• A bounded intervention strategy for (G j ,C j) j∈J wrt (V ,φi)i∈N and k is a multi-scenario

intervention strategy for (G j ,C j) j∈J wrt (V ,φi)i∈N of cardinality k � ≤ k.

• A minimal bounded intervention strategy for (G j ,C j) j∈J wrt (V ,φi)i∈N and k is a ⊆-

minimal multi-scenario intervention strategy for (G j ,C j) j∈J wrt (V ,φi)i∈N of cardinality

k � ≤ k.

In what follows, we focus on the enumeration of all minimal (bounded) intervention strategies

for given families of intervention scenarios (G j ,C j) j∈J and logical networks (V ,φi)i∈N .

5.3 Minimal intervention strategies with Answer Set Programming

5.3.1 Instance

Once again, the representation of the problem instance is an extension from the one described

in Listing 2.1 in order to describe a finite family of logical networks and clamping assignments.

To be more precise, instead of having facts over predicates formula/2, we consider facts over

predicates formula/3 as in Chapter 4. Let (V ,φi)i∈N be a finite family of logical networks.

The facts formula(i,v,sφi (v)) map variables v ∈V to their corresponding formulas φi (v) for

each i ∈ N . Meanwhile, facts over predicates variable/1, dnf/2 and clause/3 remain the

same as in Listing 2.1. We use facts over predicate candidate/1 to denote the intervention

variables that can be part of an intervention set. This allows us to control on which variables

interventions are permitted, for example one can exclude interventions over constrained

or goal variables. Next, we represent the family of intervention scenarios (G j ,C j) j∈J using

predicates scenario/1, goal/3, and constrained/3. The facts scenario(j) denote the

scenarios to consider. The facts goal(j,v,s) with s = 1 (resp. s = −1) if G j (v) = t (resp.

G j (v) = f) and constrained(j,v,s) with s = 1 (resp. s = −1) if C j (v) = t (resp. C j (v) = f)

65

Chapter 5. Minimal intervention strategies

denote the respective intervention goals and side constraints in each scenario (G j ,C j). Notice

that both predicates, goal/3 and constrained/3 are a straightforward elaboration upon

predicates clamped/2 given in Listing 2.2.

Listing 5.1 shows the instance representation of our toy example. That is, the five logical net-

works in Figure 5.1 together with the intervention scenario (G1,C1) = ({d �→ f , g �→ f }, {e �→ t }).

Notably, for the sake of understanding, we consider a toy example with a single intervention

scenario. But in general, this instance representation and the logic program given below,

support several scenarios.

Listing 5.1: Toy example problem instance (toy.lp)

1 variable(a). variable(b). variable(c). variable(d).

2 variable(e). variable(f). variable(g).

3

4 formula(1,d,7). formula(1,e,0). formula(1,f,3). formula(1,g,2).

5 formula(2,d,4). formula(2,e,0). formula(2,f,3). formula(2,g,2).

6 formula(3,d,5). formula(3,e,0). formula(3,f,3). formula(3,g,2).

7 formula(4,d,1). formula(4,e,0). formula(4,f,3). formula(4,g,2).

8 formula(5,d,6). formula(5,e,0). formula(5,f,3). formula(5,g,2).

9

10 dnf(5,8). dnf(6,8). dnf(2,14). dnf(0,2). dnf(0,0). dnf(6,7) . dnf(4,9).

11 dnf(7,8). dnf(6,0). dnf(1,8). dnf(1,0). dnf(4,8). dnf (3,16). dnf(7,7).

12

13 clause (16,d,1). clause(0,b,1). clause (14,e,1). clause (16,e,1).

14 clause(9,c,-1). clause(8,a,1). clause(9,b,1). clause(2,c,1).

15 clause(7,c,-1). clause (14,c,-1).

16

17 scenario (1).

18 constrained (1,e,1). goal(1,d,-1). goal(1,g,-1).

19

20 candidate(a). candidate(b). candidate(c). candidate(f).

5.3.2 Encoding

Next we describe our encoding for solving the minimal intervention set problem as described

earlier. Our ASP encoding is shown in Listing 5.2.

Listing 5.2: Logic program for finding intervention strategies (control.lp)

1 goal(T,S) :- goal(_,T,S).

2 goal(T) :- goal(T,_).

3 constrained(Z,E) :- constrained(Z,E,_).

4 constrained(E) :- constrained(_,E).

5 model(M) :- formula(M,_,_).

6

7 satisfy(M,V,W,S) :- formula(M,W,D); dnf(D,C); clause(C,V,S).

8 closure(M,V,T) :- model(M); goal(V,T).

9 closure(M,V,S*T) :- closure(M,W,T); satisfy(M,V,W,S); not goal(V,-S*T).

10 closure(V,T) :- closure(_,V,T).

66

5.3. Minimal intervention strategies with Answer Set Programming

11

12 { intervention(V,S) : closure(V,S) , candidate(V) }.

13 :- intervention(V,1); intervention(V,-1).

14 intervention(V) :- intervention(V,S).

15

16 eval(M,Z,V,S) :- scenario(Z); intervention(V,S); model(M).

17 eval(M,Z,E,S) :- model(M); constrained(Z,E,S);

18 not intervention(E).

19 free(M,Z,V,D) :- formula(M,V,D); scenario(Z);

20 not constrained(Z,V); not intervention(V).

21

22 eval_clause(M,Z,C,-1) :- clause(C,V,S); eval(M,Z,V,-S); model(M).

23

24 eval(M,Z,V, 1) :- free(M,Z,V,D); dnf(D,C);

25 eval(M,Z,W,T) : clause(C,W,T).

26 eval(M,Z,V,-1) :- free(M,Z,V,D); eval_clause(M,Z,C,-1) : dnf(D,C).

27

28 :- goal(Z,T,S); model(M); not eval(M,Z,T,S).

29

30 #const maxsize =0.

31 :- maxsize >0; maxsize + 1 { intervention(X) }.

32

33 #show intervention /2.

Guessing an intervention set. In Lines 1-5 we define auxiliary domain predicates used in the

remainder of the encoding. Lines 7-10 deserve closer attention since they allow us to reduce

significantly the search space of candidate solutions. Note that, each candidate variable could

be intervened positively, negatively, or not intervened. Then, if n is the number of candidate

variables for interventions, this leads to 3n possible intervention sets. We incorporate a

preprocessing step introduced in [Samaga et al., 2010] that prunes variable assignments that

can never be part of an intervention strategy. The idea is to inductively collect all assignments

that, in principle, could be used to support a goal. First we gather all assignments that

make a literal in a clause true and associate it with variable of the associated DNF (Line 7).

Starting from the assignments that can satisfy a goal literal directly (Line 8), we inductively

consider variable assignments (Line 9) that can support the assignments collected so far.

Finally, in Line 10 we project all “relevant” interventions regardless of the logical network.

Let us illustrate this with our toy example. In order to satisfy goal(1,d,-1) with respect

to (V ,φ1), one would never consider to intervene the variable b. Since b does not reach

d in (V ,φ1), an intervention on b is meaningless in order to inactivate d . However, when

we look at (V ,φ2), (V ,φ4), and (V ,φ5), the variable b reaches d positively in those networks.

Hence, a negative intervention on b could help to satisfy goal(1,d,-1) in such cases. Next,

we use a choice rule in Line 12 to generate candidate solutions. For example, one could

generate the intervention set consisting of intervention(a,-1), intervention(b,-1), and

intervention(c,1). We only choose interventions collected in the preprocessing step above.

It is worth noting that, even for such a small problem instance, the search space is reduced

67

Chapter 5. Minimal intervention strategies

significantly. In our example, we have only 4 candidate variables for interventions, namely,

a,b,c, and f . On the one hand, without pruning, we should evaluate 34 = 81 intervention

sets. On the other hand, with the preprocessing, we are able to detect (at grounding time)

that only interventions on a,b, and c are relevant since f does not reach any goal. Moreover,

only a negative intervention is relevant for both a and b. Notably, this leads to 22 × 31 =

12 intervention sets to be evaluated. Next, the integrity constraint in Line 13 eliminates

contradictory interventions, e.g. intervention(c,1) and intervention(c,-1). Whereas

Line 14 simply projects the intervention set to the intervened variables regardless of their

signature.

Fixpoint per logical network and intervention scenario. Lines 16-26 elaborate on the rules

from Listings 2.3, 2.4 and 2.6 given in Section 2 in order to consider several logical networks

simultaneously and compute the fixpoint for each of them accordingly. To be more precise,

we need to describe which variables are clamped (in all networks) according to the side con-

straints C j in each scenario j and the intervention set I , namely, (V ,φi |C j ◦I). Towards this end,

we use the predicate eval/4, namely eval(i, j,v,s) to represent that in the network (V ,φi)

and intervention scenario (G j ,C j), the variable v is clamped to value s. Following the previous

example, this will generate predicates eval(i,1,e,1), eval(i,1,a,-1), eval(i,1,b,-1),

and eval(i,1,c,1) with i = 1, . . . ,5. The remaining rules are adapted accordingly in order to

compute for each logical network (V ,φi) and intervention scenario (G j ,C j), the correspond-

ing fixpoint of Ω(V ,φi |C j ◦I). For our example, we can see how the positive intervention over

c is propagated as follows. Since the variable d is not intervened, its formula is “free” in all

scenarios and logical networks, namely, free(1,1,d,7), free(2,1,d,4), free(3,1,d,5),

free(4,1,d,1), and free(5,1,d,6). Furthermore, let us illustrate the case for the logi-

cal network (V ,φ5). In such a network, we have φ5(d) = a ∨ b ∨¬c, which in turn is rep-

resented by predicates dnf(6,8), dnf(6,0), dnf(6,7), clause(8,a,1), clause(0,b,1),

and clause(7,c,-1). Then, from the rule in Line 22 we derive for i = 1, . . . ,5, predicates

eval_clause(i,1,8,-1), eval_clause(i,1,0,-1), and eval_clause(i,1,7,-1). Finally,

in Line 26 we can derive predicates eval(i,1,d,-1) with i = 1, . . . ,5.

Goals satisfaction. Line 28 declares an integrity constraint in order to eliminate answer

sets describing intervention sets that do not satisfy all goals in every logical network and

intervention scenario. Notably, following with our example, goal(1,d,-1) is satisfied with

respect to all logical networks. Similarly, goal(1,g,-1) is satisfied as well. Therefore, the

intervention set described by predicates intervention(a,-1), intervention(b,-1), and

intervention(c,1), is an intervention strategy with respect to all networks and interventions

scenarios. Finally, the statements in Line 30 and 31 allows us to optionally bound the problem

by considering only intervention sets up to a given size.

The following result shows the correctness of our ASP representation. We denote with

τ((V ,φi)i∈N , (G j ,C j) j∈J ,k) the set of facts describing the instance as in Listing 5.1, and with

68

5.4. Empirical evaluation

Π5.2 the set of rules given in Listing 5.2.

Proposition 5.3.1. Let (V ,φi)i∈N be a finite family of logical networks. Let (G j ,C j) j∈J be a finite

family of intervention scenarios and k some positive integer.

Then, there is an answer set X of τ((V ,φi)i∈N , (G j ,C j) j∈J ,k) ∪Π5.2 such that I = {v �→ t |

intervention(v,1) ∈ X }∪ {v �→ f | intervention(v,−1) ∈ X } if and only if I is a bounded interven-

tion strategy for (G j ,C j) j∈J wrt (V ,φi)i∈N and k.

5.3.3 Solving

Normally ASP solvers allow for computing cardinality-minimal solutions whereas we are

interested in finding ⊆-minimal solutions. In [Kaminski et al., 2013] we have shown how

one can overcome this limitation by means of meta-programming and disjunctive logic

programs [Gebser et al., 2011a] or by using a specialized solver like hclasp [Gebser et al., 2013].

However, herein we leverage the functionality recently introduced in clasp 3 series which allow

for computing ⊆-minimal solutions out-of-the-box by incorporating the features from hclasp.

Importantly, this requires to use very specific command-line options for clasp. We refer the

reader to clasp’s documentation for more details.

In Listing 5.3 we show the only intervention strategy found for the intervention scenario

(G1,C1) = ({d �→ f , g �→ f }, {e �→ t }) with respect to the five logical networks in Figure 5.1.

Listing 5.3: Enumeration of all minimal intervention strategies

$ gringo control.lp toy.lp |\

clasp --dom -pref =32 --dom -mod=6 --heu=domain -n0

clasp version 3.0.3

Reading from stdin

Solving ...

Answer: 1

intervention(a,-1) intervention(b,-1) intervention(c,1)

SATISFIABLE

Models : 1

Calls : 1

Time : 0.001s (Solving: 0.00 s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

5.4 Empirical evaluation

5.4.1 Real-world problem instance

Logical networks. In previous chapters we have shown how can we learn and refine an

ensemble of logical networks in an iterative fashion. In particular, in Chapter 3, using real-

world signaling pathways in human liver cells and a publicly available phospho-proteomics

dataset, we have learned Boolean logic models for various levels of tolerance over fitness

69

Chapter 5. Minimal intervention strategies

(see Table 3.1). Importantly, in regards of the available experimental observations and their

intrinsic uncertainty, such logical networks explain the data equally well. Thus, in Chapter 4,

we have presented a method in order to find an optimal experimental design to discriminate

all models at hand. In principle, iterating over this loop of modeling and experimentation will

yield more accurate logical models. Nevertheless, there may be several models which cannot

be discriminated using the available experimental capacities. Therefore, instead of selecting a

single model, now we are interested in reasoning over all networks, as described in Section 5.2,

in order to find all minimal intervention strategies for each tolerance, namely, 16 networks

for 0% tolerance, 144 networks for 2% tolerance, 2150 networks for 4%, 2306 networks for 4%,

3524 networks for 8% tolerance, and 5306 networks for 10% tolerance.

Intervention scenario. Recall that we have learned Boolean logic models from the prior

knowledge network in Figure 3.2 describing signaling pathways in human liver cells. In

principle, one could consider as intervention scenarios, any combination of goals and side

constraints over all species in the network. However, in practice we are interested in finding

intervention strategies for biologically relevant scenarios. In this case, we consider a single

intervention scenario given by (G ,C) = ({c JU N �→ f ,C REB �→ f },�). That is, we require to

inactivate both species c JU N and C REB without any side constraints. Note that we choose

this intervention scenario for illustration purpose but at the same time, it is motivated by

biological knowledge about the role these two species play in the signaling pathways under

consideration.

Problem instances. Next, we consider the problem instances given by the intervention

scenario (G ,C) = ({c JU N �→ f ,C REB �→ f },�) with respect to each set of logical networks

listed in Table 3.1. Let us denote with Mi the corresponding set of i logical networks, namely,

M16, M144, M2150, M2306, M3524, and M5306. Then, in what follows, we denote with the

filename networks-i.lp, the set of logic facts describing each problem instance as illustrated

in Listing 5.1. Furthermore, we assume all variables or species, except for c JU N and C REB ,

as candidates to be part of an intervention strategy. Eventually, we could restrict ourselves

to more specific set of candidate variables which would reduce the search space. Finally, for

each problem instance, we consider the enumeration of all inclusion-minimal intervention

strategies, either bounded by the set cardinality k with k = 2,3,4,5, or unbounded.

5.4.2 Minimal intervention strategies

Listing 5.4: Enumeration of all minimal intervention strategies wrt 2306 logical networks

$ clingo control.lp networks -2306. lp -n0 --quiet\

--dom -pref =32 --dom -mod=6 --heu=domain

clingo version 4.4.0

Reading from control.lp ...

Solving ...

SATISFIABLE

70

5.4. Empirical evaluation

Models : 78

Calls : 1

Time : 10.641s (Solving: 1.89s 1st Model: 0.03s Unsat: 0.04s)

CPU Time : 10.640s

In Listing 5.4 we show the solving for the unbounded problem instance networks-2306.lp.

In this case, we find 78 inclusion-minimal intervention strategies satisfying our scenario with

respect to the 2306 logical networks in M2306. It is worth noting the different computation

times reported by the solver in this case. Recall that the process for problem solving with

ASP is divided into grounding and solving. In fact, for these instances, the search space of

possible intervention sets is relatively small compared to other instances reported in the next

section. In this cases, the number of candidate variables to be intervened is only 29. This

would require to evaluate 329 =∼ 6.8×1013 possible intervention sets. However as explained

above, during grounding we can reduce this number significantly. The precise reduction

depends on each set of logical networks but ranges from 2048 to ∼ 106. Notably, these are

rather small instances compared to other cases where the number of possible intervention

sets is ∼ 6×1047. However, the fact that we consider many logical networks simultaneously,

leads to a more demanding grounding. Therefore, for these cases, most of the computation

time is actually during grounding rather than solving. For example, in Listing 5.4 the CPU time

is around 10.5 seconds, whereas only 2 seconds are strictly during search.

Next, in Table 5.1 we report results for all problem instances. For each set of logical net-

works, namely, M16,M144,M2150,M2306,M3524, and M5306, we report the number of inclusion-

minimal intervention strategies up to a given size k = 2,3,4,5, or unbounded (∞). Also, in

order to emphasize the computation time during grounding or solving, we show the total CPU

time reported by clingo but also, in parentheses, the time strictly during solving. As expected,

both grow as we increase the number of logical networks. However, for the largest set of logical

networks, that is M5306, total CPU time is only 27.37 seconds, whereas around 6 seconds are

needed for solving. Interestingly, we have found exactly the same intervention strategies for

M16 and M144, for M2150 and M2306, and for M3524 and M5306. This is supported by results

Table 5.1: Enumeration of all inclusion-minimal intervention strategies up to a given size
k = 2,3,4,5, or unbounded (∞). For each set of logical networks (Mi), we report the number
of intervention strategies (I) and the CPU time (tenum). Also, in parentheses, we report the
time strictly during solving.

≤ 2 ≤ 3 ≤ 4 ≤ 5 ∞
Mi I tenum I tenum I tenum I tenum I tenum

16 7 0.04s (0.001s) 14 0.04s (0.001s) 14 0.03s (0.001s) 14 0.03s (0.001s) 14 0.04s (0.001s)
144 7 0.36s (0.005s) 14 0.36s (0.008s) 14 0.36s (0.008s) 14 0.36s (0.008s) 14 0.36s (0.008s)

2150 1 8.39s (0.239s) 18 9.1s (0.806s) 70 9.86s (1.624s) 78 9.82s (1.648s) 78 9.93s (1.771s)
2306 1 9.44s (0.326s) 18 9.87s (0.945s) 70 10.55s (1.713s) 78 10.54s (1.716s) 78 10.68s (1.884s)
3524 1 14.19s (0.355s) 16 15.3s (1.42s) 56 16.83s (2.877s) 98 17.51s (3.69s) 104 17.91s (4.042s)
5306 1 22.41s (0.757s) 16 23.62s (2.159s) 56 26.33s (4.84s) 98 26.81s (5.356s) 104 27.37s (5.912s)

71

Chapter 5. Minimal intervention strategies

0 0.1 0.2 0.3 0.4 0.5 0.6

m
kk
4=
‐1
p3
8=
‐1
m
ap
3k
1=
‐1
TG
Fa
=‐1

ra
s=
‐1
p9
0R
SK
=‐1
JN
K1
2=
‐1
IL
1a
=‐1
tr
af
6=
‐1
m
sk
12
=‐1
M
EK
12
=‐1
PI
3K
=‐1
TG
Fa
=1

IG
F1
=‐1

AK
T=
1
IG
F1
=1

PI
3K
=1

m
ap
3k
7=
‐1
TN
Fa
=‐1

F
r
e
q
u
e
n
c
y

Interventions

Frequency of interventions among all minimal intervention strategies (MIS)

14 MIS (16/144 networks) 78 MIS (2150/2306 networks) 104 MIS (3524/5306 networks)

Figure 5.2: Frequency of single interventions. Vertical bars describe the frequency of each
single intervention among all minimal intervention strategies with respect to different sets
of logical networks. All interventions occur in less than 50% of the strategies yet, some
interventions are clearly more frequent than others. Pairs of families M16 and M144 (blue
bars), M2150 and M2306 (red bars), and M3524 and M5306 (green bars), have the same strategies
and thus we plot them together.

reported in Chapter 3 where such pairs of families shown similar number of input-output

behaviors (Table 3.1) and MSEs distributions (Figure 3.3).

Now, in order to have a closer look at what interventions are found for each case, in Figure 5.2

we show the frequency of each single intervention among all strategies for the unbounded

case (∞ column in Table 5.1). We note that, all single interventions occur in less than 50% of

the strategies. This suggests that, there is no evident species in order to control the system,

but instead, several combinatorial mechanisms require to combine multiple interventions

together. Nonetheless, some interventions are clearly more frequent than others. But still,

while a given intervention, e.g., MEK 12 �→ f , occurs in almost half of the strategies with

respect to M16 and M144, with respect to larger sets of networks, its frequency drops to 10%.

Analogously, but in the opposite way, the same happens with r as �→ f . Notably, interventions

over certain species are found only when we consider larger sets of logical networks (red and

green bars). In fact, as shown in Table 5.1, while only 14 intervention strategies are found with

respect to M16 and M144, if we consider either M3524 or M5306, we found up to 104 inclusion-

minimal intervention strategies. Therefore, reasoning over a large family of feasible logical

networks allows us to identify alternative intervention strategies. Furthermore, this poses the

question of whether certain strategies are more robust than others and how to identify them.

5.4.3 Towards small yet robust intervention strategies

Nowadays, in signaling networks, more than four or five interventions combining different

stimuli and inhibitors can be considered as a long-term technological perspective. Therefore,

72

5.4. Empirical evaluation

in practice, small intervention strategies are preferred in terms of experimental feasibility.

However, too small strategies are very likely to fail due to robustness and cellular complex-

ity [Stelling et al., 2004]. Hence, we need to find a balance between small (and feasible) yet

robust intervention strategies to control the cell. Our approach to achieve such a challenge

is by reasoning over all feasible logical networks. In Figure 5.3 we show the 14 intervention

strategies found with respect to M16 and M144. Each path from the node “SCENARIOS CON-

STRAINTS” to the node “SCENARIOS GOALS”, describes a different strategy where species are

intervened according to their coloring: red for inhibitions and green for activations. Nonethe-

less, in this case all strategies consist only of inhibitions. For instance, {MEK 12 �→ f , I L1a �→ f }

and {MEK 12 �→ f , J N K 12 �→ f ,msk12 �→ f }, are two different intervention strategies of size

2 and 3 respectively. Now, if we restrict ourselves to logical networks in M16 or M144, these

14 intervention strategies are, in principle, all equally valid. But, if we consider a larger set of

feasible networks, e.g., M5306, we can rule out more than half of these strategies before going

to the laboratory. More precisely, out of the 14 strategies shown in Figure 5.3, only 6, the ones

highlighted with stronger red, are conserved among all logical networks in M5306. That is, the

intervention strategies valid with respect to all Mi are:







{MEK 12 �→ f ,map3k1 �→ f }

{MEK 12 �→ f , J N K 12 �→ f ,msk12 �→ f }

{MEK 12 �→ f , J N K 12 �→ f , p38 �→ f }

{MEK 12 �→ f , J N K 12 �→ f ,mkk4 �→ f }

{p90RSK �→ f , J N K 12 �→ f ,msk12 �→ f }

{p90RSK �→ f ,map3k1 �→ f ,msk12 �→ f }







Intuitively, this way we are able to detect earlier those intervention strategies that are too

specific and do not take into account alternative pathways. Therefore, by reasoning over

several sets of feasible logical networks we may find small yet robust intervention strategies.

Also, it is worth noting that, species msk12, mkk4, and map3k1 are neither measured, nor

manipulated in the dataset used for learning each set of logical networks. Hence, the fact that

we found strategies involving such species suggests the necessity of further experimentations

in order to elucidate their role in the biological system at hand.

5.4.4 Comparing with a dedicated algorithm

In [Kaminski et al., 2013] we have evaluated the performance and scalability of our ASP-based

solution over four real-world and biologically relevant benchmarks. Three of them were used

in [Samaga et al., 2010] and their corresponding (manually curated) logical networks were

recently published [Saez-Rodriguez et al., 2007, Samaga et al., 2009]. Further, the fourth

benchmark consisted of an unpublished logical network provided by Axel von Kamp and

Steffen Klamt. While the authors in [Samaga et al., 2010] restricted their study to a maximum

cardinality of 3, we extended this limitation to a maximum cardinality of 10 or no limit at all.

Importantly, the search space for these problem instances is significantly larger than the ones

73

Chapter 5. Minimal intervention strategies

Figure 5.3: Robust intervention strategies. We plot the 14 intervention strategies found with
respect to M16 and M144. Each path from the node “SCENARIOS CONSTRAINTS” to the node
“SCENARIOS GOALS”, describes a different strategy where species are intervened according
the their coloring: red for inhibitions and green for activations. Out of the 14 strategies only 6,
the ones highlighted with stronger red, are conserved among all logical networks in M5306.

shown above. More precisely, the number of candidate intervention sets to be considered by

the solver range from 1011 to 1047. Nonetheless, experiments have shown that our approach

outperforms the dedicated algorithm in up to four orders of magnitude (for small strategies still

feasible for the algorithm). This was not very surprising since such an algorithm is based on a

standard breadth-first search using additional techniques for search space reduction. More

importantly, using ASP we were able to search for significantly larger intervention strategies or

even solve the unbounded problem despite the very large search space. Similarly to what we

have shown above, if we consider a small number of interventions, the number of solutions is

in the order of tens. But, if a larger number of interventions is allowed, we found hundreds or

even thousands of feasible solutions. Note that, all benchmarks we evaluated in [Kaminski

et al., 2013] consisted of a single and manually curated logical network. Hence, we expect

that our approach for reasoning over several alternative logical networks (as they become

available) can help to rule out solutions and identify robust strategies satisfying intervention

scenarios with respect to all networks.

5.5 Conclusion

In this chapter we have addressed the problem consisting of finding intervention strategies

in logical signaling networks. That is, inclusion-minimal sets of activations and inhibitions

forcing a set of target species into a desired steady state under various scenarios. The identified

interventions can be exploited to control the biological system or interpreted as causes for an

abnormal cellular response (diagnosis).

In this context, dealing with large-scale and (possibly many) alternative networks describ-

ing the same biological system, leads to challenging combinatorial problems that require

advanced solving technologies. In fact, previous work on this subject consists of dedicated

74

5.5. Conclusion

algorithms and special purpose search space reduction techniques for coping with combi-

natorial explosion [Samaga et al., 2010]. More broadly, other authors have elaborated upon

concepts of electronic circuit fault diagnosis engineering [Li et al., 2006, Abdi et al., 2008,

Layek et al., 2011] and standard graph theory [Wang and Albert, 2011], for the identification of

essential components in the network. Importantly, despite the specific problem settings and

computational approaches in these contributions, all of them have considered a single logic

network describing the system. However, as we illustrate in this thesis, due to limited observ-

ability or the uncertainty in experimental measurements, it often happens that a single model

is non-identifiable when we use reverse engineering methods. Thus, identified interventions

(or essential components) should fulfill the desired goals in every feasible logical network.

Notably, this may lead to more complex but also more robust solutions. As mentioned earlier,

large-scale (e.g. > 10) interventions combining different stimuli and inhibitors, can be con-

sidered as a long-term technological perspective. Nevertheless, in general, we did not find

intervention strategies of size bigger than 10. On the one hand, this suggests that extending

the set of interventions may not be interesting for the systems we have considered in our

benchmarks. On the other hand, knowing that a large number of interventions are required

to reach certain state could help to understand (at least theoretically) systems’ robustness

and complexity. Hence, being able to compute both small and large admissible intervention

strategies over an ensemble of feasible logical networks, appears as an interesting and distinct

feature of our approach.

Both computational and biological perspective tracks are open. On the computational side,

despite the successful performance in all benchmarks, a precise estimation of the empirical

complexity appears to be non trivial and very specific to each case. Given a problem instance,

the number of candidate solutions to be considered by the solver can be computed analyti-

cally. However, experiments have shown that this is not the only parameter determining the

empirical complexity. The number of goal variables and their location in the networks, the

number of intervention scenarios, and the number of networks and their structural properties

may have a strong impact on the computational efforts required in practice. On the biological

side, in the light of such a large number of solutions, the way to select among them arises. In

fact, we expect that our approach introduced in [Kaminski et al., 2013] and extended here for

reasoning over several alternative logical networks, will help to rule out solutions and identify

small yet robust intervention strategies. Therefore, the work presented in this chapter is a key

methodological contribution allowing systems biologists to draw robust insights even under

uncertainty.

75

6 Software toolbox: caspo

In practice, problem solving using ASP involves three main steps. First, certain input data

must be converted to logic facts describing the corresponding problem instance. Second,

the problem instance needs to be combined with the specific set of logic rules encoding the

problem to be solved. Third, answer sets returned by the ASP solver must be interpreted

according to the representation used in the encoding. Hence, a software package providing an

interface to the ASP-based solutions detailed in previous chapters would ease the accessibility

for end-users, as well as the integration with available tools for simulation and analysis of

logical models. This chapter presents such a software tool and illustrates its main features.

6.1 Introduction

In practice, interactions graphs, experimental datasets, logical networks, and similar knowl-

edge in systems biology is often (publicly) available in different kinds of formats. Clearly,

converting such a knowledge from their corresponding format to a set of logic facts, e.g.,

Listing 3.1, Listing 4.1, or Listing 5.1, is a tedious and error-prone task if do it by hand. In

fact, this can be easily automated by using any popular scripting language, e.g. python.1

Analogously, the resulting answer sets from the ASP solver can be converted back to “standard”

formats for subsequent analysis with available tools or even visualized in order to facilitate

their interpretations. Notably, over the last few years, many simulation and analysis software

tools for logical models have been developed, among them, ADAM [Hinkelmann et al., 2010],

BoolNet [Mussel et al., 2010], BooleanNet [Albert et al., 2007], Cell Collective [Helikar et al.,

2011], CellNetAnalyzer [Klamt et al., 2006a], CellNOpt [Terfve et al., 2012], ChemChains [He-

likar and Rogers, 2008], GNA [Batt et al., 2012], GINsim [Naldi et al., 2008], SimBoolNet [Zheng

et al., 2010], and SQUAD [Cara et al., 2006]. The underlying methods of these tools are very

heterogeneous, including, ad hoc algorithms, metaheuristics, and symbolic model checking by

means of temporal logic and specialized tools, such as NuSMV [Cimatti et al., 2002]. Moreover,

in general, users and developers of such tools, do not have the expertise to deal with ASP

1http://www.python.org/

77

Chapter 6. Software toolbox: caspo

Figure 6.1: Pipeline for reasoning on the response of logical signaling networks using caspo.
At first, all (nearly) optimal Boolean logic models are learned by confronting prior knowledge
on causal interactions with a phosphorylation dataset. Then, supported by insights from
experts and various validation methods, we can decide if the ensemble of Boolean models
needs further refinements. In such a case, optimal experiments can be designed in order
to discriminate the set of behaviors at hand. By combining the previous dataset with the
new observations, the learning is performed again yielding a new ensemble of models. After
several iterations, the “high-quality” ensemble of logical networks can be used to find (robust)
intervention strategies and generate novel hypotheses.

encodings and systems. Thus, a software package providing an interface to the ASP-based

solutions detailed in previous chapters would ease the accessibility for end-users, as well as

the integration with available tools for simulation and analysis of logical models.

Software toolbox: caspo. In order to encapsulate our ASP-based solutions, we have imple-

mented the python package caspo which is freely available for download.2 More broadly,

caspo is part of BioASP, a collection of python packages leveraging the computational power of

ASP for systems biology.3 The aim of caspo is to implement a pipeline for automated reasoning

on logical signaling networks providing a powerful and easy-to-use software tool for systems

biologists. In Figure 6.1 we show a schematic view of such a pipeline. At first, all (nearly)

optimal Boolean logic models and their corresponding logical input-output behaviors, are

learned as shown in Chapter 3. Then, supported by insights from experts and various valida-

tion methods, we can decide if the ensemble of Boolean models needs further refinements. If

this is the case, we look for an optimal experimental design in order to discriminate the set of

input-output behaviors as presented in Chapter 4. By combining the initial dataset with the

new experimental observations, the learning is performed again yielding a new ensemble of

models. After several iterations of this cycle, a “high-quality” ensemble of logical networks can

be used to find intervention strategies as shown in Chapter 5. Each section of this pipeline is

implemented in caspo by means of subcommands, namely, learn, analyze, design, and control.

Notably, this in line with the loop of hypotesis-driven research in biology [Ideker et al., 2001,

Kitano, 2002]. Moreover, this iterative process could be automatized allowing an autonomous

scientific discovery [Sparkes et al., 2010].

2http://bioasp.github.io/caspo/
3http://bioasp.github.io/

78

6.2. Software design

Except for CellNOpt and BoolNet, all tools mentioned above are mainly focused on the char-

acterization of dynamical properties emerging from the simulation of a single logical model

provided by the user. In the case of CellNOpt, the focus is on the training of logical models

by using metaheuristics, whereas BoolNet includes two algorithms, namely, Best-Fit Exten-

sion [Lähdesmäki et al., 2003] and REVEAL [Liang et al., 1998], for the reconstruction of gene

regulatory Boolean networks from time-series gene expression profiles. In addition, vari-

ous simulation analyses are provided by both packages as well. The tool CellNetAnalyzer

implements the identification of intervention strategies as described in Chapter 5 but with

respect to a single logical network and limited to small strategies (less than 4 interventions).

Furthermore, several tools allow the user to introduce artificial perturbations and simulate

the system’s response. Nevertheless, all tools aim at modeling a given biological system by

means of one logical network only. Next, dynamical and structural analysis (often computa-

tionally demanding) are conducted over the model. In this context, a distinct feature of caspo

is the fact that it aims at having an exhaustive characterization of feasible models. Either

via automated learning, or directly provided by the user. Afterwards, instead of selecting a

single model, the goal is to provide automated reasoning over the ensemble of models at hand.

First to find optimal experimental designs for models discrimination, and second for finding

minimal intervention strategies valid in all networks. Notably, towards this end, caspo strongly

relies on ASP which is another distinct feature from the methodological point of view.

In the remainder of this chapter we present the software tool caspo describing its high-level

design and main features. Furthermore, we illustrate how end-users can easily go through the

pipeline shown in Figure 6.1 by using each of the provided subcommands.

6.2 Software design

6.2.1 High-level software design

Internal modules. The architecture of caspo is shown in Figure 6.2. The design comprises

three different layers of internal modules. A first layer providing the interface with end-users

of the software. Currently this layer has only the console module which implements the entry-

points for caspo subcommands from the command-line. In the future, this layer could be

extended with a module for a graphical user interface. A middle layer comprises various

modules, namely, learn, design, control, analyze, and visualize, each of them implementing

functionalities for the corresponding subcommand. The module learn implements the learn-

ing of Boolean logic models of immediate-early response as described in Chapter 3. The

module design implements the experimental design to discriminate input-output behaviors

as described in Chapter 4. The module control implements the identification of intervention

strategies as described in Chapter 5. The module analyze implements the search of logical

input-output behaviors among a family of Boolean logic models as described in Chapter 3.

Furthermore, relatively simple statistical analysis is provided in this module as well. Finally,

the module visualize implements basic visualization features for logical networks and inter-

79

Chapter 6. Software toolbox: caspo

Figure 6.2: High-level software design. Modules of caspo are divided into three different layers.
First layer comprises the console module which implements functionalities related to the usage
of caspo from the command-line. Entry-points for caspo subcommands are implemented
here. Second layer comprises various modules which implement different sections of the
pipeline for automated reasoning, namely, learn for learning Boolean logic models (Chapter 3),
design for designing new experiments (Chapter 4), control for finding intervention strategies
(Chapter 5), analyze for identifying input-output behaviors (Chapter 3), and visualize for basic
visualization features. Third layer comprises the core module which implements “low-level”
functionalities for the whole software. Main external dependecies are shown as well.

vention strategies. Interestingly, all features implemented by the aforementioned modules

are independent from the command-line usage of caspo. This way, we aim at providing not

only a software for end-users, but also a powerful toolbox to be used by other developers to

build their own software. A third layer, namely, core, implements “low-level” functionalities

common to all other modules in caspo.

External dependencies. In Figure 6.2 we also shown the main external dependencies of

caspo. On the one hand, to build caspo, we rely on relatively standard python packages, such

as, pyparsing4, numpy5, networkx6, and pydot7. Notably, all of them are open-source projects

under different free software licenses. For more details on each package, we refer the reader

to the corresponding website. On the other hand, we highlight the external dependency on

4http://pyparsing.wikispaces.com/
5http://www.numpy.org/
6http://networkx.github.io/
7http://code.google.com/p/pydot/

80

6.2. Software design

the python package pyzcasp8. In fact, pyzcasp was developed within this thesis in order to

build caspo on top of it. However, it was developed in such a way to provide a general purpose

framework to build on top of ASP tools. Therefore, it is not only of interest for caspo or biologi-

cal applications, but for any other project aiming at the integration of python and ASP. Broadly

speaking, the goal of pyzcasp is to provide an abstraction layer over ASP systems. Notably, such

an abstraction allows us to have a clear separation of responsibilities, whereas it facilitates

the maintenance of both, the application, in our case, caspo, and the communication with

third-party ASP tools. In practice, problem solving using ASP involves three main steps. At

first, certain input data, normally stored in different files with different formats, need to be

converted to logic facts describing the corresponding problem instance. Second, the problem

instance needs to be combined with the specific set of logic rules encoding the problem to be

solved. It is worth noting that, sometimes the same problem can be addressed with different

ASP tools which in turn, may accept different input languages and options. Hence, in such

cases, we may need to select, among several encodings for the same problem, the appropriate

encoding for a specific ASP tool. Next, the corresponding ASP tools are executed with the

problem instance and encoding as input. Third, answer sets returned by the ASP solver must

be interpreted according to the representation used in the encoding. Essentially, the package

pyzcasp provides a framework for dealing with these three steps in a robust way within a

python environment. Currently, it supports the usage of most common tools from Potassco:

the Potsdam Answer Set Solving Collection.9 Nevertheless, support for other ASP tools is

planned in the future.

6.2.2 Generic workflow for subcommands

The workflow for main caspo subcommands, namely, learn, analyze, design, and control, is

shown in Figure 6.3. Essentially, each of these subcommands is a particular use case of the

more general workflow for problem solving using ASP as detailed earlier. In all cases, some

input data is provided by the user in one or more files. In general, each subcommand deals with

different file formats, but all of them need to convert the input data to logic facts describing

the corresponding problem instance. Next, the problem instance together with the specific

problem encoding are given to the corresponding ASP tools for solving. Furthermore, in some

cases, very specific parameters are given to the solver in order to obtain right solutions or

improve performance. For instance, in order to enumerate all inclusion-minimal answer sets

as we do it when looking for intervention strategies, the ASP solver clasp must be executed with

parameters ––dom–pref=32 ––dom–mod=6 ––heu=domain –n0 (see Listing 5.3). Once the ASP

solving has finished, the resulting answer sets are loaded into memory as python objects for

further analysis. In the simplest case, solutions are written to output files in standard formats.

However, in some cases, additional “business logic” is implemented for each subcommand.

For instance, the identification of input-output behaviors using Algorithm 1 (Section 3.4.3),

or first find the optimum and then, with a second solver call, enumerate all solutions within

8http://svidela.github.io/pyzcasp/
9http://potassco.sourceforge.net/

81

Chapter 6. Software toolbox: caspo

Figure 6.3: Workflow for caspo subcommands. For clarity, we distinguish three execution levels.
First, the command-line (end-user) level where input and output files are handled. Second,
the subcommands (application) level where input data is converted to logic facts, combined
with a specific logic program, and given to the next level for launching ASP tools. Normally,
some kind of “business logic” is implemented at this level, for instance, the identification
of input-output behaviors using Algorithm 1 (Section 3.4.3), or first find the optimum and
then enumerate solutions within certain tolerance. Third, the ASP solving (external) level
where ASP tools are executed using system calls and the resulting answer sets are loaded into
memory as python objects, which in turn are provided to the application level for further
analysis.

certain tolerance. Altogether, caspo subcommands provide high-level automated reasoning

on logical signaling networks by leveraging the computational power and reasoning modes of

ASP systems.

6.3 Usage

6.3.1 Usage for end-users

In what follows we illustrate how end-users can easily go through the pipeline shown in

Figure 6.1 by using each of the subcommands provided by caspo. To start with, in Listing 6.1

we show how to ask for help on the usage of caspo from the command-line.

Listing 6.1: Help message for caspo.

$ caspo --help

usage: caspo [-h] [--quiet] [--out O] [--version]

{control ,visualize ,design ,learn ,test ,analyze} ...

82

6.3. Usage

Reasoning on the response of logical signaling networks with ASP

optional arguments:

-h, --help show this help message and exit

--quiet do not print anything to standard output

--out O output directory path (Default to ’./out ’)

--version show program ’s version number and exit

caspo subcommands:

for specific help on each subcommand use: caspo {cmd} --help

{control ,visualize ,design ,learn ,test ,analyze}

Learning (nearly) optimal Boolean logic models. The learning of Boolean logic models as

described in Chapter 3 is provided by the subcommand learn. In Listing 6.2 we show the

corresponding help message for this subcommand. In this case, there are three required

arguments, namely, the prior knowledge network (PKN), the phospho-proteomics dataset,

and the characteristic time-point for the immediate-early response. The PKN must given in

the so-called simple interaction format (SIF).10 Typically, lines in a SIF file specify a source

node, an interaction type, and one or more target nodes. In our context, we restrict ourselves

to SIF files where the interaction type is either 1 or −1, and there is only one target node. Hence,

this way we can easily represent the interaction graph describing the PKN at hand. Note that

the SIF file does not provide information about which nodes are stimuli, inhibitors or readouts.

Currently, such information must be extracted from the dataset file which we describe next.

The phospho-proteomics dataset must given in the so-called minimum information for data

analysis in systems biology (MIDAS) format.11 For more details on this file format we refer the

reader to [Saez-Rodriguez et al., 2008]. In essence, a MIDAS file is a comma-separated values

(CSV) file with a simple naming convention in order to identify columns as: (1) experimental

perturbations, (2) time points for data acquisition, or (3) phosphorylation activities describing

the response of the system. Then, each row in the file describes an experimental condition

together with the phosphorylation activities at a certain time-point. Finally, the third required

argument is the characteristic time-point for the immediate-early response. Clearly, the given

time point must be present in the MIDAS file or an exception is raised otherwise. In addition

to the three required arguments, several optional arguments can be provided as shown in

Listing 6.2.

Listing 6.2: Help message for learn subcommand

$ caspo learn --help

usage: caspo learn [-h] [--clingo C] [--fit F] [--size S] [--factor D]

[--discretization T]

pkn midas time

10http://wiki.cytoscape.org/Cytoscape_User_Manual/Network_Formats
11http://www.cellnopt.org/doc/cnodocs/midas.html

83

Chapter 6. Software toolbox: caspo

positional arguments:

pkn prior knowledge network in SIF format

midas experimental dataset in MIDAS file

time time -point to be used in MIDAS

optional arguments:

-h, --help show this help message and exit

--clingo C clingo solver binary (Default to ’clingo ’)

--fit F tolerance over fitness (Default to 0)

--size S tolerance over size (Default to 0)

--factor D discretization over [0,D] (Default to 100)

--discretization T discretization function: round , floor , ceil

(Default to round)

Next, in Listing 6.3 we show the execution of the learn subcommand for our toy example. In

this case, we use ––fit 0.1 ––size 5 in order to enumerate all (nearly) optimal Boolean logic

models with a tolerance of 10% over the fitness and 5 over the size. The only output in this case

is a CSV file, namely, networks.csv describing all logical networks found during enumeration

with ASP. The first row or header of this file contains all possible (signed) directed hyperedges

for the given PKN. It is worth recalling that, we interpret a (signed) directed hyperedge as

the conjunction of its source (signed) nodes acting over the target node. Furthermore, we

interpret several hyperedges with the same target node as the disjunction of the corresponding

conjunctions of their sources nodes. For example, if the PKN contains edges a → c and b � c,

then the header will have columns a = c, !b = c, and a+!b = c. Next, each row in the file

describes a different logical network by specifying which hyperedges are present, and which

ones are absent. Hence, let (V ,φ1) and (V ,φ2) be two logical networks with φ1(c) = a ∨¬b and

φ2(c) = a ∧¬b. Such logical networks are described in networks.csv as:

a = c, !b = c, a+!b = c, . . .

1, 1, 0, . . .

0, 0, 1, . . .
... . . .

Such a matrix representation of logical networks is relatively simple and very easy to share

with third-party software. In fact, some of the following subcommands use this kind of file

format as an input.

Listing 6.3: Running learn subcommand

$ caspo learn pkn.sif dataset.csv 10 --fit 0.1 --size 5

Running caspo learn ...

Wrote out/networks.csv

84

6.3. Usage

Identifying logical input-output behaviors. The identification of logical input-output be-

haviors as described in Chapter 3 is provided by the subcommand analyze. Actually, as we

show below, this subcommand implements various additional features apart from the identifi-

cation of input-output behaviors. In this case, there are no required arguments but instead,

caspo performs all available computations for the given inputs. In particular, in order to

identify logical input-output behaviors among a family Boolean logic models we need to

provide two inputs. Of course, the family of logical networks is required. But also, we need to

provide again the dataset and time point used during learning. There are two reasons for this.

First, as with the SIF file for the PKN, the information about inputs, i.e., stimuli or inhibitors,

and outputs, i.e., readouts, is not given in the networks file. Thus, we use the MIDAS file to

extract such information. Second, some of the additional computations use the experimental

observations in the dataset, e.g., computing MSEs for every logical network. In Listing 6.4 we

show the corresponding help message for this subcommand.

Listing 6.4: Help message for analyze subcommand

$ caspo analyze --help

usage: caspo analyze [-h] [--clingo C] [--networks N] [--midas M T]

[--strategies S]

optional arguments:

-h, --help show this help message and exit

--clingo C clingo solver binary (Default to ’clingo ’)

--networks N logical networks in CSV format

--midas M T experimental dataset in MIDAS file and time -point

--strategies S intervention stratgies in CSV format

Next, in Listing 6.5 we show the execution of the analyze subcommand for our toy example.

Let us briefly describe the output files from this subcommand.

• networks-stats.csv: frequency of each logical interaction and mutually exclusive/in-

clusive pairs.

• networks-mse-len.csv: two additional columns to the input file networks.csv with

the corresponding MSE and size for each network.

• behaviors.csv: exactly one representative logical network for each behavior found.

• behaviors-mse-len.csv: two additional columns to the file behaviors.csv with

the corresponding MSE and number of Boolean logic models for each input-output

behavior.

• variances.csv: the variance for each output prediction over all behaviors.

• core.csv: experimental conditions for which all behaviors agree on the given response.

• summary.txt: a summary as printed in the terminal.

85

Chapter 6. Software toolbox: caspo

Based on the information generated by the analyze subcommand, one could decide whether

additional experiments are required or not. Note that, eventually, one may find an unique

logical input-output behavior. In such a case, there is nothing else to discriminate. However,

this is not necessarily the only criterion to break the loop of learning and experimentation.

In fact, finding an unique input-output behavior seems very unlikely from our experiments.

Hence, when several input-output behaviors exists, we can assess them, for example, by means

of their core predictions and variances.

Listing 6.5: Running analyze subcommand

$ caspo analyze --networks out/networks.csv --midas dataset.csv 10

Running caspo analyze ...

Wrote out/networks -stats.csv

Wrote out/networks -mse -len.csv

Searching input -output behaviors ... \

3 behaviors have been found over 5 logical networks.

Wrote out/behaviors.csv

Wrote out/behaviors -mse -len.csv

Wrote out/variances.csv

Wrote out/core.csv

Wrote out/summary.txt

caspo analytics summary

=======================

Total Boolean logic networks: 5

Total I/O Boolean logic behaviors: 3

Weighted MSE: 0.1100

Core predictions: 87.50%

Finding an optimal experimental design. The optimal experimental design as described in

Chapter 4 is provided by the subcommand design. In Listing 6.6 we show the corresponding

help message for this subcommand. In this case, there are two required arguments, namely, the

representative logical networks for each input-output behavior and the phospho-proteomics

dataset. The representative logical networks must be given in a CSV file as already described.

In particular, after the execution of the analyze subcommand, the output file behaviors.csv

can be used directly as an input here. Again, as explained before, this subcommand requires

the dataset in a MIDAS file in order to extract the information about inputs, i.e., stimuli or

inhibitors, and outputs, i.e., readouts.

Listing 6.6: Help message for design subcommand

$ caspo design --help

usage: caspo design [-h] [--clingo C] [--stimuli S] [--inhibitors I]

[--experiments E]

networks midas

86

6.3. Usage

positional arguments:

networks logical networks in CSV format

midas experimental dataset in MIDAS file

optional arguments:

-h, --help show this help message and exit

--clingo C clingo solver binary (Default to ’clingo ’)

--stimuli S maximum number of stimuli per experiment

--inhibitors I maximum number of inhibitors per experiment

--experiments E maximum number of experiments (Default to 20)

Next, in Listing 6.7 we show the execution of the design subcommand for our toy example. In

this case, we use ––stimuli 3 ––inhibitors 2 in order to restrict the experimental design

to experiments having at most, 3 stimuli and 2 inhibitors. The only output in this case is a

CSV file, namely, opt-design-0.csv describing all experimental conditions in the optimal

experimenal design found with ASP. Columns represent either stimuli or inhibitors, and rows or

lines specify whether the corresponding species is clamped (1) or not (0) in that experimental

condition. Once all suggested experiments are carried out in the laboratory, new experimental

observations are added to the existing dataset. Next, the subcommands learn and analyze

introduced earlier, can be used again for learning a refined family of Boolean logic models

and its corresponding logical input-output behaviors. Notably, this loop can continue until

we find an unique input-output behavior, or we consider that the current ensemble of logic

models is accurate enough.

Listing 6.7: Running design subcommand

$ caspo design out/behaviors.csv dataset.csv --stimuli 3 --inhibitors 2

Running caspo design ...

Wrote out/opt -design -0.csv

Enumerating minimal intervention strategies. The enumeration of all minimal interven-

tion strategies as described in Chapter 5 is provided by the subcommand control. In Listing 6.8

we show the corresponding help message for this subcommand. In this case there are two

required arguments, namely, the family logical networks and the intervention scenarios. The

family of logical networks must be given in a CSV file as already described, e.g. the output file

networks.csv from the learn subcommand. The intervention scenarios must also be given

in a CSV file. As with the MIDAS file, we adopt a simple naming convention in order to identify

columns as side constraints or goals. Then, each row specifies whether the corresponding

species is clamped positively (1), negatively (-1), or not clamped (0) in that intervention

scenario.

Listing 6.8: Help message for control subcommand

$ caspo control --help

87

Chapter 6. Software toolbox: caspo

usage: caspo control [-h] [--size M] [--allow -constraints]

[--allow -goals] [--gringo G] [--clasp C]

networks scenarios

positional arguments:

networks logical networks in CSV format

scenarios intervention scenarios in CSV format

optional arguments:

-h, --help show this help message and exit

--size M maximum size for interventions strategies

(Default to 0 (no limit))

--allow -constraints allow intervention over side constraints

(Default to False)

--allow -goals allow intervention over goals (Default to False)

--gringo G gringo grounder binary (Default to ’gringo ’)

--clasp C clasp solver binary (Default to ’clasp ’)

Next, in Listing 6.9 we show the execution of the control subcommand for our toy example.

The only output in this case is a CSV file, namely, strategies.csv describing all inclusion-

minimal intervention strategies found with ASP. Recall that each intervention strategy guaran-

tees that all scenarios are satisfied in every logical network. The format of this output file is

very simple. Columns represent all variables in the logical networks and rows specify whether

the corresponding species is clamped positively (1), negatively (-1), or not clamped (0) in that

intervention strategy.

Listing 6.9: Running control subcommand

$ caspo control out/networks.csv scenarios.csv

Running caspo control ...

Wrote out/strategies.csv

In fact, now we can use the analyze subcommand again with the intervention strategies

as input. Currently, only basic statistical analysis is implemented for intervention strate-

gies. Nonetheless, further analysis may be implemented in the future. The output file

strategies-stats.csv contains the frequency of each single intervention (either positive

or negative), and mutually exclusive/inclusive pairs. Notice that, since we do not use nei-

ther ––networks nor ––midas arguments, the result is different from the previous call to this

subcommand shown in Listing 6.5 Notably, if we use arguments ––networks, ––midas, and

––strategies in the same call, all analyses are performed with such a call.

Listing 6.10: Running analyze subcommand (again)

$ caspo analyze --strategies out/strategies.csv

Running caspo analyze ...

Wrote out/strategies -stats.csv

Wrote out/summary.txt

88

6.3. Usage

caspo analytics summary

=======================

Total intervention strategies: 3

Visualization support. Basic visualization features are provided by the subcommand visu-

alize. In Listing 6.11 we show the corresponding help message for this subcommand. Similarly

to the analyze subcommand, in this case there are no required arguments. The goal of this

subcommand is to provide relatively simple visualization for the outcome from other sub-

commands. More precisely, it is possible to visualize a prior knowledge network in a SIF

file with the corresponding experimental setup given in a MIDAS file. Also, visualization of

logical networks as (signed) directed hypergraphs is provided for either a random sample or

all networks in given CSV file. Moreover, the union (overlapping) of all logical networks is

also provided. Finally, intervention strategies given in a CSV file can be visualized as well. In

all cases, we choose to use DOT files as output format. Such a format is a quite widespread

way of describing graph structures. Importantly, various programs can process a DOT file

and render it in graphical form using several file formats, e.g., PDF, PNG, SVG and PS among

others. Notably, most of such programs are included in the Graphviz package which is freely

available.12

Listing 6.11: Help message for visualize subcommand

$ caspo visualize --help

usage: caspo visualize [-h] [--pkn P] [--midas M] [--networks N]

[--sample R] [--union] [--strategies S]

optional arguments:

-h, --help show this help message and exit

--pkn P prior knowledge network in SIF format

--midas M experimental dataset in MIDAS file

--networks N logical networks in CSV format

--sample R visualize a sample of R logical networks

(Default to all)

--union visualize the union of logical networks

(Default to False)

--strategies S intervention stratgies in CSV format

Next, in Listing 6.12 we show the execution of the visualyze subcommand for our toy exam-

ple. Let us briefly describe the output files from this subcommand which we also shown in

Figure 6.4.

• pkn.dot: PKN with the corresponding experimental setup (Figure 6.4a).

• network-i.dot: every logical network (V ,φi) (Figure 6.4d).

12http://graphviz.org/

89

Chapter 6. Software toolbox: caspo

�

�

�

�

�

�

�

(a) (b)

�

�

�

�

�

�

�

�

�

�

(c)

�

���������������

� �

� �

���������������������

(d)

Figure 6.4: Visualization provided by caspo. (a) Toy prior knowledge network (pkn.dot).
(b) Logical networks (V ,φi) as (signed) directed hypergraphs (network-i.dot). (c) Union
of all logical networks where the thickness of hyperedges correspond to their frequencies
(networks-union.dot). (d) All inclusion-minimal intervention strategies (strategies.dot).

• networks-union.dot: union (overlapping) of all logical networks (Figure 6.4b).

• strategies.dot: all intervention strategies (Figure 6.4c).

Listing 6.12: Running visualize subcommand

$ caspo visualize --pkn pkn.sif --midas dataset.csv \

--networks out/networks.csv --union \

--strategies out/strategies.csv

Wrote out/pkn.dot

Wrote out/network -1.dot to out/network -5.dot

Wrote out/networks -union.dot

Wrote out/strategies.dot

6.3.2 Usage for developers

In the previous section we have detailed how end-users can use caspo without any program-

ming expertise but only by using the available subcommands. Notably, such a level of usability

is fundamental in order to allow (systems) biologists to profit from our software in their daily

research. Nevertheless, it may be the case that one needs to integrate different software tools

in a larger framework. Towards this end, we have developed caspo in such a way that other

developers can access to all its features programmatically. For the sake of brevity, we refrain

from giving a detailed description of all classes and methods available and refer the interested

reader to the publicly available repository where caspo is maintained.13 It is worth noting

that, this allows other software tools to take advantage of the computational power of ASP

at a higher level of abstraction and looking at the solving process as a black-box procedure

managed by caspo. Moreover, the component-based design of caspo aims at providing a

13http://github.com/bioasp/caspo

90

6.4. Conclusion

seamless interface with third-party software. More precisely, it is not only possible to use

caspo programmatically, but also, developers can plug their own components and overwrite

default implementations. Altogether, apart from being an easy-to-use software tool for end-

users, caspo can be used by developers as a toolbox by leveraging the computational power of

ASP for building their own software.

6.4 Conclusion

In this chapter we have presented a software toolbox providing an interface to the ASP-based

solutions detailed in previous chapters. Altogether, our software implements a complete

pipeline for automated reasoning on logical signaling networks providing a powerful and

easy-to-use software tool for systems biologists. Each section of this pipeline is implemented

by means of subcommands, namely, learn, analyze, design, control, and visualize. In fact, using

a toy example, we have illustrated how end-users can easily go through the pipeline using such

subcommands. Moreover, the component-based design of caspo aims at providing a seamless

interface with third-party software. Therefore, apart from being an easy-to-use software for

end-users, caspo can be used by developers as a toolbox by leveraging the computational

power of ASP for their own software.

In this context, the development of standard formats would ease the integration of different

tools by taking advantage of complementary features from each software. Typically, such

tools are developed independently by different research groups around the world. Hence, it is

rather hard to converge towards standards and common practices. In fact, an extension to

the popular systems biology markup language (SMBL) [Hucka et al., 2003] has been recently

proposed as a more appropriate and specific standard for describing logic-based models,

the so-called SBML Qualitative Models (SBML qual) [Chaouiya et al., 2013]. Therefore, in the

future we plan to support both import and export features via SBML qual in caspo. Also, given

the active research and development in the ASP community, we expect to extend and enrich

the implemented pipeline for automated reasoning as soon as new developments come to

light. It is worth noting that, compared to other available software tools, caspo is still in its

infancy. Thus, based on the feedback from users, developers and research community in

general, we hope to continue improving the presented software in order to make it an atractive

and useful alternative for systems biologists in the near future.

91

7 Conclusion and prospective

In previous chapters we have presented a computational modeling approach for the construc-

tion, refinement, and control of logical signaling networks. In what follows we summarize the

main contribution of this thesis and discuss about its novelty and limitations. In particular,

we discuss the strengths and weaknesses of our modeling and computational methods. We

conclude with prospective lines of research and future directions to explore questions raised

by our work.

7.1 Contribution

On the modeling side, we have presented a mathematical framework for reasoning on the

response of logical signaling networks relying on propositional logic and fixpoint semantics.

Despite its relative simplicity, such a framework has proven to be generic and flexible enough

to describe several interesting problems in the field. In particular, we have characterized three

challenging combinatorial optimization problems related to logical signaling networks. In

Chapter 3 we have revisited the problem consisting of learning from an interaction graph and

phosphorylation activities at a pseudo-steady state, (Boolean) logical networks describing

the immediate-early response of the system. Next, in Chapter 4 we have proposed a novel

problem specification for finding optimal experimental designs to discriminate between rival

logical models. Finally, in Chapter 5 we have revisited the problem consisting of finding

intervention strategies in logical signaling networks. Moreover, in order to increase robustness,

we extended this problem for reasoning over several alternative logical networks. Notably,

these three problems (or slight variations thereof) have been previously described by other

authors using different formalisms. In contrast, the proposed framework provides an unified

computational modeling approach for reasoning on logical signaling networks.

On the computational side, we have addressed each of the aforementioned problems by

means of Answer Set Programming (ASP). The distinctive features of ASP have allowed us to

model and solve each problem in a uniform and efficient way. More precisely, in Chapter 2 we

have provided a basic ASP representation to describe logical networks and their response in

93

Chapter 7. Conclusion and prospective

terms of fixpoint semantics. Next, we have benefited from the elaboration tolerance of ASP in

order to adapt such a representation, with relatively little effort, to each specific problem in

subsequent chapters. Interestingly, the computational performance is significantly improved

with respect to state-of-the-art algorithms to solve the same problems. But more importantly,

the exhaustive nature of ASP have allowed us to find feasible solutions that were missing

when using existing methods. Notably, this poses new challenges related to the analysis and

interpretation of possibly many solutions. For instance, in Chapter 3, in the light of a large

number of feasible logical networks, we have introduced the concept of logical input-output

behaviors which allows us to focus on predictions rather than alternative mechanisms. In fact,

the proposal of experimental design presented in Chapter 4 was motivated by the existence of

several input-output behaviors and the necessity to discriminate among them. Yet, there may

be several models which cannot be discriminated using the available experimental settings.

Thus, instead of selecting a single model, in Chapter 5 we aimed at reasoning over all of them

in order to find more robust interventions strategies. Altogether, this thesis illustrates the

potential of ASP to address hard combinatorial search and optimization problems related to

qualitative modeling of biological systems. In fact, our work contributes to a growing list of

ASP applications in systems biology which show its increasing impact on the field.

On the implementation side, in Chapter 6 we have presented a software toolbox providing an

interface to the ASP-based solutions for each of the discussed problems. Essentially, the goal

of such a software is to encapsulate the workflow for problem solving with ASP in our specific

context. To this end, we have used a popular and high-level scripting language such as python.

Notably, this will ease the accessibility for end-users, as well as the integration with available

tools for simulation and analysis of logical models. Altogether, our software implements a

complete pipeline for automated reasoning on logical signaling networks providing a powerful

and easy-to-use software tool for systems biologists.

7.2 Discussion and prospective

Introduced by Stuart Kauffman 45 years ago, Boolean networks are a particular case of dynam-

ical systems used for modeling biology. Notably, due to their binary states and synchronous

updates, Boolean networks are among the simplest and more abstract dynamical systems. On

the one hand, such a crude simplification of biological reality is a limitation in terms of the

kinds of systems we can describe. On the other hand, is precisely because of their simplicity

that Boolean networks are attractive for systems biologists. Typically, in the biological literature

signaling networks are described by biologists as “pathways cartoons”. In fact, such cartoons

are commonly found in pathway databases as well. In this context, while graph-based models

are the natural approach for static analysis, logic-based models, such as Boolean networks

provide a framework still intuitive for biologists but tailored to relatively complex dynamic

analysis. Of course, as soon as biologists gain a deeper understanding of a particular system,

such simplistic models may become obsolete and more elaborate formalisms should come

into play. However, nowadays, the lack of quantitative information at systems level suggests

94

7.2. Discussion and prospective

that, for some time to come, high-level computational abstractions will be crucial for pushing

the boundaries of biological knowledge. Moreover, despite their limitations, such simple and

intuitive modeling frameworks can help to reduce the existing gap between theoretical and

experimental research in systems biology.

We have adopted ASP as our computational method. Notably, like any other method, ASP

has its own strengths and weaknesses. On the one hand, thanks to its origins in the area of

knowledge representation and reasoning, ASP provides a simple yet rich and fully declarative

modeling language. Furthermore, in the last decade, the development of highly efficient

solvers have made of ASP an attractive framework for problem solving, yielding comparable

results to integer linear programming or Boolean constraint solving. In this context, the added

value of ASP is two-fold (at least). First, it provides a high-level executable modeling language.

In practice, this allows for very compact problem representations that can be tested and

refined on-the-fly. Second, modern solvers implement various reasoning modes, such as

enumeration, union and intersection, multi-objective optimization, and combination thereof.

Notably, this allows us to address a multitude of problems with minimal effort or ad hoc

programming overhead. On the other hand, two aspects (at least) of ASP may limit its usage in

systems biology. First, its strictly discrete nature forbids us to take into account numerical or

quantitative information. Sometimes and to some extent, available data can be discretized.

Nonetheless, in general, ASP is rather tailored to combinatorial problems with constraints over

variables with either Boolean, or small domains. Second, the two phases in the process for

problem solving with ASP, namely, grounding and solving, sometimes yield a bottleneck which

requires advanced modeling skills or even makes impossible to solve large-scale instances.

Altogether, taking into account strengths and weaknesses, ASP is a relatively young technology

which has proven to be very useful and efficient to solve numerous challenging problems in

several application domains. Furthermore, the fact that it is an emergent and very active area

of research suggests that, in the years to come, its usage will become more popular in the field

of systems biology.

The work presented in this thesis has raised several interesting questions for future research. In

particular, our work have opened the way to an exhaustive characterization of feasible logical

models for a given system. Now, we need to develop a proper modeling framework to interpret

and take advantage of such a characterization. This must be necessarily driven by available

experimental technology allowing us to either confirm or refute generated hypotheses. For

instance, phospho-proteomics assays like the one used for learning in Chapter 3 are performed

over a population of cells and thus, it is unclear how to interpret the multitude of logical

networks and their input-output behaviors. Given the existence of several logical input-output

behaviors gathering different internal mechanisms, we need to elucidate if such mechanisms

are a mere artifact of logical networks, or if they actually represent molecular mechanisms

which in turn appear more or less often within each cell or at a population scale. Furthermore,

despite the intrinsic uncertainty in biological systems, it is still rather hard to assess the amount

of noise in measurements and how this impacts on our mathematical or computational

models. This raises the question of identifiability and to what extent new experiments are able

95

Chapter 7. Conclusion and prospective

to yield more refined logical models. Thus, the method for experimental design presented

in Chapter 4 requires to be validated and could help to tackle this issue. Finally, we find

particularly interesting to explore further the approach introduced in Chapter 5 for finding

intervention strategies by reasoning over an ensemble of logical networks. Again, this is a key

methodological contribution allowing systems biologists to draw insights under uncertainty

and non-identifiability. Nonetheless, we need to elucidate whether such an ensemble of

networks describes alternative pathways within a single cell or at the population scale. Overall,

we look forward for experimental validation of our methods and findings.

We conclude this thesis by noting that, integrative modeling approaches considering mul-

tiple levels and time-scales of causation pose a very challenging goal in systems biology.

Towards this end, we envision a hybrid modeling framework combining (non-deterministic)

logic-based, stochastic, and continuous approaches. Notably, in order to achieve all these

challenges, we believe that more sophisticated computational methods are needed in or-

der to integrate qualitative and quantitative knowledge in a uniform and robust manner. In

particular, hybrid reasoning systems leveraging the expressiveness of several technologies

and modeling approaches appears as a very promising track for future research in computer

science. In fact, very recent developments in the ASP systems used throughout this thesis

allow for an interplay between declarative logic programming and imperative “traditional”

programming. This opens innumerable possibilities to combine available technologies into a

unified environment for problem solving. Hopefully, advances on this subject will foster the

usage of knowledge representation and reasoning methodologies in systems biology towards

a better understanding of life.

96

A Proofs

A.1 Data discretization schemes

Let (V ,E ,σ) be a PKN. Let ξ= ((Ci ,PCi
))i∈N be an experimental dataset over (V ,E ,σ) with size

Nξ. Let k ∈N define the discretization scheme. Let us denote with µ and µk , the corresponding

minima for Θr ss and Θr ssk
over the space of models M(V ,E ,σ) with respect to ξ:

µ= min
(V ,φ)∈M(V ,E ,σ)

Θr ss((V ,φ),ξ) µk = min
(V ,φ)∈M(V ,E ,σ)

Θr ssk
((V ,φ),ξ).

Then 10−2k
µk converges to µ when k increases, with an exponential speed:

µk = 102k
µ+O(10k).

Moreover, any Boolean logic model minimizing Θr ss , also minimizes Θr ssk
within the following

tolerance tk :

tk = 2

�

Nξ

µk
+

Nξ

µk
.

Proof. Let (V ,φ) be any Boolean logic model having evidence in (V ,E ,σ). Let π1, . . . ,πn be

the n Boolean predictions of (V ,φ) with each πi defined under Ci . The difference Θr ss and

10−2k
Θr ssk

over (V ,φ) with respect to ξ is given by:

�
�
�[Θr ss −10−2k

Θr ssk
]((V ,φ),ξ)

�
�
�=

�
�
�

n�

i=1

�

v∈dom(PCi
)

�

PCi
(v)−πi (v)

�2 −
�

δk (PCi
(v))−πi (v)

�2
�
�
�

For each triplet (PCi
,πi , v) let γi (v) = δk (PCi

(v))−πi (v) and λi (v) = PCi
(v)−δk (PCi

(v)). Hence:

�
�
�[Θr ss −10−2k

Θr ssk
]((V ,φ),ξ)

�
�
� =

�
�
�

n�

i=1

�

v∈dom(PCi
)

�

γi (v)+λi (v)
�2 −γi (v)2

�
�
�

=

�
�
�

n�

i=1

�

v∈dom(PCi
)
λi (v)

�

2γi (v)+λi (v)
�
�
�
�

97

Appendix A. Proofs

Recall that Nξ =
�n

i=1

�
�dom(PCi

)
�
�. From the Cauchy-Schwarz inequality we have that

n�

i=1

�

v∈dom(PCi
)

�
�
�γi (v)

�
�
�≤

�

Nξ

�
�
�
�

n�

i=1

�

v∈dom(PCi
)
γi (v)2 =

�

Nξ

�

10−2kΘr ssk
((V ,φ),ξ).

Notice that from the discretization scheme we have that λi (v) < 10−k for every (i , v). It follows

that:

�
�
�[Θr ss −10−2k

Θr ssk
]((V ,φ),ξ)

�
�
� ≤ 10−k





n�

i=1

�

v∈dom(PCi
)
2
�
�
�γi (v)

�
�
�+

n�

i=1

�

v∈dom(PCi
)

�
�
�λi (v)

�
�
�





≤ 10−k

�

2
�

Nξ

�

10−2kΘr ssk
((V ,φ),ξ)+10−k Nξ

�

.

We deduce that

µ ≤ 10−2k
µk +10−k

�

2
�

Nξ

�

10−2kµk +10−k Nξ

�

(A.1)

≤ 10−2k
µk

�

1+2×10−k

�

Nξ

10−2kµk

+10−2k Nξ

10−2kµk

�

= 10−2k
µk









1+2

�

Nξ

µk
+

Nξ

µk
� �� �

=tk









With a similar reasoning introducing γ�
i
(v) = PCi

(v)−πi (v) instead of γi (v), we have the

following relation.

�
�
�[Θr ss −10−2k

Θr ssk
]((V ,φ),ξ)

�
�
� =

�
�
�

n�

i=1

�

v∈dom(ωi)
λi (v)

�

2γ�i (v)−λi (v)
�
�
�
�

≤ 10−k
�

2
�

Nξ

�

Θr ss((V ,φ),ξ)+10−k Nξ

�

.

Therefore,

µk ≤ 102k
µ+10k

�

2
�

Nξ
�
µ+10−k Nξ

�

≤ 102k
µ+10k

�

2
�

Nξ
�
µ+Nξ

�

� �� �

=B

98

A.2. Correctness of ASP encodings

Introducing this inequality in (A.1), we deduce that:

102k
µ ≤ µk +10k

�

2
�

Nξ

�

10−2kµk +10−k Nξ

�

≤ µk +10k

�

2
�

Nξ

�

µ+10−k B +Nξ

�

≤ µk +10k







2
�

Nξ

�

µ+B +Nξ
� �� �

=C







Altogether, we have that there exists D = max{B ,C }, which is independent from k, such that

�
�
�102k

µ−µk

�
�
�≤ D10k .

A.2 Correctness of ASP encodings

First, let us introduce standard mathematical notation for dealing with logic programs. A

propositional logic program over a set A of ground atoms is a finite set of rules of the form

h ← b1, . . . ,bn .

where h (head) is an atom and any b j (body) is a literal of the form a or ∼ a for an atom a

where the connective ∼ corresponds to default negation. Next, for a rule r , we denote its head

h with head(r) and its body {b1, . . . ,bn} with bod y(r). Furthermore, we denote the positive

literals b j (of the form a) with bod y(r)+ and the negative literals b j (of the form ∼ a) with

bod y(r)−. A set X ⊆ A of ground atoms is a model of a propositional logic program Π, if

head(r) ∈ X whenever bod y(r)+ ⊆ X and bod y(r)−∩X =� for every r ∈Π.

Next, let us recall the formal definition of answer sets. In ASP, the semantics is given by the

stable models semantics [Gelfond and Lifschitz, 1988]. In fact, we view rules with first-order

variables as schemes representing their sets of ground instances. To this end, the reduct, ΠX ,

of logic program Π relative to a set X of atoms is defined by

Π
X
= {(head(r) ← bod y(r)+)θ | r ∈Π, (bod y(r)−θ)∩X =�,θ : var (r) →A }

where var (r) is the set of all variables that occur in a rule r and θ is a ground substitution for

the variables in r . Then, X is an answer set of Π if and only if X is a ⊆-minimal model of ΠX .

Note that ΠX is a positive logic program, i.e., for all rules r ∈Π
X it holds bod y(r)− =�. In fact,

in what follows we rely on an operational characterization for computing the stable model of

99

Appendix A. Proofs

positive programs. For a positive program P and a set of atoms X , we define

TP X = {head(r) | r ∈ P and bod y(r) ⊆ X } .

Iterated applications of TP are written as T
j

P
for j ≥ 0, where

T 0
P X = X and T i+1

P = TP T i
P X for i ≥ 0 .

Then, C n(P) =
�

i≥0 T i
P
� is the smallest fixpoint of TP and defines the stable model of P .

A.2.1 Basic ASP representation

For a logical network (V ,φ) and clamping assignment C over V , let us denote with τ((V ,φ),C)

the set of logical facts as in Listing 2.1 and Listing 2.2. More precisely,

τ((V ,φ),C) = {variable(v). | v ∈V }

∪{formula(v, sφ(v)). | v ∈ dom(φ)}

∪{dnf(sφ(v), sψ). | v ∈ dom(φ),ψ ∈φ(v)}

∪{clause(sψ, w,1). | v ∈ dom(φ),ψ ∈φ(v), w ∈ψ∩V }

∪{clause(sψ, w,−1). | v ∈ dom(φ),ψ ∈φ(v),¬w ∈ψ}

∪{clamped(v,1). | v ∈ dom(C),C (v) = t }

∪{clamped(v,−1). | v ∈ dom(C),C (v) = f }

(A.2)

where each s(·) stands for some arbitrary but unique name in its respective context here.

Classical (Boolean) logic

First, we define ΠA.3 by combining Listings 2.3, 2.4, and 2.5

ΠA.3 =







eval(V ,S) ← clamped(V ,S).

free(V ,D) ← formula(V ,D),dnf(D,_),∼ clamped(V ,_).

eval(V ,1) ← free(V ,D),dnf(D, J),eval(W,T) : clause(J ,W,T).

eval(V ,−1) ← variable(V),∼ eval(V ,1).







(A.3)

and we prove the Proposition 2.2.1.

Let (V ,φ) be a logical network without feedback-loops and let C be a clamping assignment

over V .

Then, there is an answer set X of τ((V ,φ),C)∪ΠA.3 such that F = {v �→ t | eval(v,1) ∈ X }∪ {v �→
f | eval(v,−1) ∈ X } if and only if F is the unique fixpoint of Ω(V ,φ|C) reachable from A f .

Completeness. In what follows we denote Π = τ((V ,φ),C) ∪ΠA.3. Let F = Ω
k
(V ,φ|C)(A f) =

100

A.2. Correctness of ASP encodings

Ω
k+1
(V ,φ|C)(A f) for some k ≥ 0. We consider the following set of atoms X . To start with, the set of

atoms τ((V ,φ),C) is included in X . Also, the set of atoms {free(v, sφ(v)) | v ∈ dom(φ) \ dom(C)}

is included in X . Finally, the set {eval(v,1) | F (v) = t }∪ {eval(v,−1) | F (v) = f } is also included

in X . We need to show that X is a ⊆-minimal model of ΠX . We do so by inspecting each rule

in Π
X .

First, we note that X includes all facts in τ((V ,φ),C). Each of these facts belongs also to

Π
X . Thus, any set Y of atoms excluding at least one of them, cannot be a model of ΠX .

Next, consider the first rule in ΠA.3. Notably, all its grounded instantiations belong to Π
X .

Furthermore, clamped(v, s) ∈ X only if v ∈ dom(C), and either s = 1 and C (v) = t , or s =−1 and

C (v) = f . Notably, if C (v) = t then F (v) = t , whereas if C (v) = f then F (v) = f . Therefore, all

grounded instantiations of the first rule are satisfied by X , and any set excluding from X at least

one atom of the form eval(v, s) with v ∈ dom(C) and s ∈ {1,−1} cannot be a model of ΠX . Next,

consider the second rule in ΠA.3. Its grounded instances belong to Π
X only if clamped(v, s) ∉ X

with v ∈ dom(φ), s ∈ {1,−1}. Since free(v, sφ(v)) ∈ X for all v ∈ dom(φ) \ dom(C), all such rules

are satisfied by X , and any set excluding from X at least one atom over predicate free/2 cannot

be a model of ΠX . Now, let us consider the third rule in ΠA.3. Note that all its grounded

instantiations belong to Π
X . Furthermore, if v ∈ dom(φ) \ dom(C) then, F (v) = t iff there

exists ψ ∈ φ(v) such that F (ψ) = t . Then, F (w) = t for all w ∈ ψ∩V , and F (w) = f for all

¬w ∈ψ. Hence, the set of atoms

{free(v, sφ(v)),dnf(sφ(v), sψ)}

∪{clause(sψ, w,1),eval(w,1) | w ∈ψ∩V }∪ {clause(sψ, w,−1),eval(w,−1) | ¬w ∈ψ}

is included in X . Therefore, all grounded instantiations of the third rule are satisfied by X , and

any set excluding from X at least one atom of the form eval(v,1) with v ∈ dom(φ) \ dom(C)

cannot be a model ofΠX . Finally, for the fourth rule only ground instantiations such eval(v,1) ∉
X with v ∈V are included, which implies F (v) = f . Furthermore, if v ∈V \ dom(C) we have

two cases. If v ∉ dom(φ), all grounded instantiations of the fourth rule are satisfied by X ,

and any set excluding from X at least one atom of the form eval(v,−1) cannot be a model of

Π
X . If v ∈ dom(φ) \ dom(C) then, F (v) = f iff for all ψ ∈φ(v) there exists w such that, either

F (w) = f with w ∈ψ∩V , or F (w) = t with ¬w ∈ψ. Hence, the set X includes either

{free(v, sφ(v)),dnf(sφ(v), sψ),clause(sψ, w,1),eval(w,−1)}

or

{free(v, sφ(v)),dnf(sφ(v), sψ),clause(sψ, w,−1),eval(w,1)} .

Therefore, any set excluding from X at least one atom over the predicate eval/2 cannot be a

model of ΠX .

Hence, we have investigated all rules in Π and shown that their ground instances in Π
X are

satisfied by X . Moreover, we have checked that any set excluding from X at least one atom is

not a model of ΠX . Hence, X is a ⊆-minimal model of ΠX and thus an answer set of Π.

101

Appendix A. Proofs

Soundness. Let X be an answer set of Π= τ((V ,φ),C)∪ΠA.3. Let us briefly describe the reduct

Π
X . Notably, the set of facts τ((V ,φ),C) is included, i.e., τ((V ,φ),C) ⊆Π

X . Ground instances

of first and third rules in ΠA.3 are also included since they are positive. For the second rule,

only ground instantiations such clamped(v, s) ∉ X with v ∈ dom(φ), s ∈ {1,−1} are included.

Similarly, for the fourth rule only ground instantiations such eval(v,1) ∉ X with v ∈ V are

included. Next, by definition, we know that X is a ⊆-minimal model of ΠX . Furthermore,

C n(ΠX) =
�

i≥0 T i
ΠX �= X . In what what follows, let F � =Ω

k
(V ,φ|C)(A f) =Ω

k+1
(V ,φ|C)(A f) for some

k ≥ 0.

Next, for all v ∈ V and j ≥ 2 we show by induction that if eval(v, s) ∈ T
j

ΠX � then, either s = 1

and F �(v) = t , or s =−1 and F �(v) = f . Note that T 0
ΠX �=� and T 1

ΠX �= τ((V ,φ),C).

Case (j = 2). By definition, T 2
ΠX � = TΠX T 1

ΠX � = TΠX τ((V ,φ),C). Then, it is easy to see that

eval(v,1) ∈ T 2
ΠX � iff clamped(v,1) ∈ τ((V ,φ),C). Furthermore, clamped(v,1) ∈ τ((V ,φ),C)

also implies v ∈ dom(C) and C (v) = t . Also, we can see that eval(v,−1) ∈ T 2
ΠX � iff either

clamped(v,−1) ∈ τ((V ,φ),C), or variable(v) ∈ τ((V ,φ),C) and eval(v,1) ∉ X . Moreover, in this

case clamped(v,−1) ∈ τ((V ,φ),C) also implies v ∈ dom(C) and C (v) = f .

Next, if we assume eval(v,1) ∈ T 2
ΠX �, then we have φ|C (v) =�. Therefore, Ωk

(V ,φ|C)(A f)(v) = t for

all k ≥ 1. If we assume eval(v,−1) ∈ T 2
ΠX �, then we have either φ|C (v) =⊥, or v ∈V \ dom(C).

If φ|C (v) =⊥, or v ∉ dom(φ|C) it is easy to see that Ωk
(V ,φ|C)(A f)(v) = f for all k ≥ 1.

For the remaining case, i.e, v ∈ dom(φ) \ dom(C), we provide a rather informal argument due

to the fact that Ω(V ,φ|C) is non-monotonic over two-valued assignments. Thus, it is hard (and

does not worth) to write a precise constructive proof for finding the iterative step for which v

reaches its fixpoint in Ω(V ,φ|C) starting from A f . However, since there are no feedback-loops in

(V ,φ), we know that all variables must reach their fixpoint at some iterative step. Moreover, since

eval(v,1) ∉ X , there must be a set of atoms S ⊆ X such that the body of all instantiations with

respect to v of the third rule in Π2 are false. Furthermore, provided that there are no feedback-

loops in (V ,φ), the derivation of all atoms in S must be independent from the atom eval(v,−1).

Then, it is safe to assume that if eval(w, s) ∈ S, then either s = 1 and F �(w) = t , or s =−1 and

F �(w) = f . Notably, the difficulty to conclude this more precisely is due to the fact that there

may exist eval(w,1) ∈ S such that eval(w,1) ∉ T 2
ΠX �, i.e. eval(w,1) is a consequence in a later

iterative step. Again, due to the absence of feedback-loops which ensures the independence of S

from eval(v,−1), we can capture such atoms in the inductive case below. Finally, it is easy to see

that for all ψ ∈φ(v) we have F �(ψ) = f and thus, F �(v) = f .

Case (j > 2). By definition, T
j+1
ΠX � = TΠX T

j

ΠX �. Thus, if eval(v, s) ∈ T
j+1
ΠX �, either eval(v, s) ∈

T
j

ΠX �, or eval(v, s) is a consequence of T
j

ΠX � by applying rules in Π
X . If eval(v, s) ∈ T

j

ΠX �, by

inductive hypothesis we have, either s = 1 and F �(v) = t , or s =−1 and F �(v) = f . Otherwise, we

only need to consider s = 1 since for all j ≥ 2 it cannot be the case that eval(v,−1) ∈ T
j+1
ΠX � if

102

A.2. Correctness of ASP encodings

eval(v,−1) ∉ T
j

ΠX �. Thus, v ∈ dom(φ) and there must exist ψ ∈φ(v) such that Y ⊆ T
j

ΠX � with

Y = {free(v, sφ(v)),dnf(sφ(v), sψ)}

∪{clause(sψ, w,1),eval(w,1) | w ∈ψ∩V }∪ {clause(sψ, w,−1),eval(w,−1) | ¬w ∈ψ} .

Next, by inductive hypothesis we have F �(w) = t for all w ∈ψ∩V , and F �(w) = f for all ¬w ∈ψ.

Then, we also have F �(ψ) = t . Therefore, provided that φ|C (v) is in disjunctive normal form, we

have F �(φ|C (v)) = F �(v) = t .

Hence, it follows that F � = {v �→ t | eval(v,1) ∈ X }∪ {v �→ f | eval(v,−1) ∈ X } = F is the unique

fixpoint of Ω(V ,φ|C) reachable from A f .

Kleene’s (three-valued) logics

Next, we define ΠA.4 by combining Listings 2.3, 2.4, and 2.6.

ΠA.4 =







eval(V ,S) ← clamped(V ,S).

free(V ,D) ← formula(V ,D),dnf(D,_),∼ clamped(V ,_).

eval_clause(J ,−1) ← clause(J ,V ,S),eval(V ,−S).

eval(V ,1) ← free(V ,D),dnf(D, J),eval(W,T) : clause(J ,W,T).

eval(V ,−1) ← free(V ,D),eval_clause(J ,−1) : dnf(D, J).







(A.4)

and we prove the Proposition 2.2.2.

Let (V ,φ) be a logical network and let C be a clamping assignment over V .

Then, there is an answer set X of τ((V ,φ),C)∪ΠA.4 such that F = {v �→ t | eval(v,1) ∈ X }∪ {v �→
f | eval(v,−1) ∈ X }∪ {v �→ u | eval(v,1) ∉ X ,eval(v,−1) ∉ X } if and only if F is the unique

fixpoint of Ω(V ,φ|C) reachable from Au .

Completeness. In what follows we denote Π = τ((V ,φ),C) ∪ΠA.4. Let F = Ω
k
(V ,φ|C)(Au) =

Ω
k+1
(V ,φ|C)(Au) for some k ≥ 0. We consider the following set of atoms X . To start with, the set of

atoms τ((V ,φ),C) is included in X . Also, the set of atoms {free(v, sφ(v)) | v ∈ dom(φ) \ dom(C)}

is included in X . The set {eval(v,1) | F (v) = t }∪ {eval(v,−1) | F (v) = f } is also included in X .

Furthermore, if v ∈ dom(φ) and F (v) = f , for all ψ ∈φ(v) atoms of the form eval_clause(sψ,−1)

are included in X . We need to show that X is a ⊆-minimal model of ΠX . We do so by inspecting

each rule in Π
X .

First, we note that X includes all facts in τ((V ,φ),C). Each of these facts belongs also to

Π
X . Thus, any set Y of atoms excluding at least one of them, cannot be a model of ΠX .

Next, consider the first rule in ΠA.4. Notably, all its grounded instantiations belong to Π
X .

Furthermore, clamped(v, s) ∈ X only if v ∈ dom(C), and either s = 1 and C (v) = t , or s =−1 and

C (v) = f . Notably, if C (v) = t then F (v) = t , whereas if C (v) = f then F (v) = f . Therefore, all

103

Appendix A. Proofs

grounded instantiations of the first rule are satisfied by X , and any set excluding from X at least

one atom of the form eval(v, s) with v ∈ dom(C) and s ∈ {1,−1} cannot be a model of ΠX . Next,

consider the second rule in ΠA.4. Its grounded instances belong to Π
X only if clamped(v, s) ∉ X

with v ∈ dom(φ), s ∈ {1,−1}. Since free(v, sφ(v)) ∈ X for all v ∈ dom(φ) \ dom(C), all such rules

are satisfied by X , and any set excluding from X at least one atom over predicate free/2 cannot

be a model of ΠX . Next, consider the third rule in ΠA.4. Notably, all its grounded instantiations

belong to Π
X . Recall that eval_clause(sψ,−1) ∈ X only if v ∈ dom(φ) and F (v) = f for all

ψ ∈ φ(v). But, F (v) = f iff for all ψ ∈ φ(v) there exists w such that, either F (w) = f with

w ∈ψ∩V , or F (w) = t with ¬w ∈ψ. Hence, the set X includes either

{clause(sψ, w,1),eval(w,−1)}

or

{clause(sψ, w,−1),eval(w,1)} .

Therefore, any set excluding from X at least one atom over the predicate eval_clause/2 cannot

be a model of ΠX . Now, let us consider the fourth rule in ΠA.4. Note that all its grounded

instantiations belong to Π
X . Furthermore, if v ∈ dom(φ) \ dom(C) then, F (v) = t iff there

exists ψ ∈ φ(v) such that F (ψ) = t . Then, F (w) = t for all w ∈ ψ∩V , and F (w) = f for all

¬w ∈ψ. Hence, the set of atoms

{free(v, sφ(v)),dnf(sφ(v), sψ)}

∪{clause(sψ, w,1),eval(w,1) | w ∈ψ∩V }∪ {clause(sψ, w,−1),eval(w,−1) | ¬w ∈ψ}

is included in X . Therefore, all grounded instantiations of the fourth rule are satisfied by X ,

and any set excluding from X at least one atom of the form eval(v,1) with v ∈ dom(φ)\dom(C)

cannot be a model of ΠX . Finally, for the fifth rule all grounded instantiations belong to Π
X . If

v ∈ dom(φ) \ dom(C) and F (v) = f , then the set of atoms

{free(v, sφ(v))}∪ {eval_clause(sψ,−1),dnf(sφ(v), sψ) |ψ ∈φ(v)}

is included in X . Therefore, all grounded instantiations of the fifth rule are satisfied by X , and

any set excluding from X at least one atom of the form eval(v,−1) with v ∈ dom(φ) \ dom(C)

cannot be a model of ΠX .

Hence, we have investigated all rules in Π and shown that their ground instances in Π
X are

satisfied by X . Moreover, we have checked that any set excluding from X at least one atom is

not a model of ΠX . Hence, X is a ⊆-minimal model of ΠX and thus an answer set of Π.

Soundness. Let X be an answer set of Π= τ((V ,φ),C)∪ΠA.4. Let us briefly describe the reduct

Π
X . Notably, the set of facts τ((V ,φ),C) is included, i.e., τ((V ,φ),C) ⊆Π

X . Ground instances

of all rules in ΠA.4 except the second one are also included since they are positive. For the

second rule, only ground instantiations such clamped(v, s) ∉ X with v ∈ dom(φ), s ∈ {1,−1}

are included. Next, by definition, we know that X is a ⊆-minimal model of ΠX . Furthermore,

104

A.2. Correctness of ASP encodings

C n(ΠX) =
�

i≥0 T i
ΠX �= X .

Next, for all v ∈V and j ≥ 2 we show by induction that if eval(v, s) ∈ T
j

ΠX � then, either s = 1 and

Ω
j−1
(V ,φ|C)(Au)(v) = t , or s = −1 and Ω

j−1
(V ,φ|C)(Au)(v) = f . Otherwise, Ω

j−1
(V ,φ|C)(Au)(v) = u. Note

that T 0
ΠX �=� and T 1

ΠX �= τ((V ,φ),C).

Case (j = 2). By definition, T 2
ΠX � = TΠX T 1

ΠX � = TΠX τ((V ,φ),C). Then, it is easy to see that

eval(v,1) ∈ T 2
ΠX � iff clamped(v,1) ∈ τ((V ,φ),C). Furthermore, clamped(v,1) ∈ τ((V ,φ),C) also

implies v ∈ dom(C) and C (v) = t . Also, we can see that eval(v,−1) ∈ T 2
ΠX � iff clamped(v,−1) ∈

τ((V ,φ),C) Moreover, in this case clamped(v,−1) ∈ τ((V ,φ),C) also implies v ∈ dom(C) and

C (v) = f .

Next, if we assume eval(v,1) ∈ T 2
ΠX �, then we have φ|C (v) =�. Therefore, it is easy to see that

Ω
1
(V ,φ|C)(Au)(v) = t . If we assume eval(v,−1) ∈ T 2

ΠX �, then we have φ|C (v) =⊥. Therefore, again

it is easy to see that Ω1
(V ,φ|C)(Au)(v) = f . Notably, if clamped(v, s) ∉ τ((V ,φ),C) for neither s = 1

nor s =−1, we have v ∉ dom(C). Therefore, we can see that Ω1
(V ,φ|C)(Au)(v) = u.

Case (j > 2). By definition, T
j+1
ΠX �= TΠX T

j

ΠX �. Thus, if eval(v, s) ∈ T
j+1
ΠX �, either eval(v, s) ∈

T
j

ΠX �, or eval(v, s) is a consequence of T
j

ΠX � by applying rules in Π
X . If eval(v, s) ∈ T

j

ΠX �, by

inductive hypothesis and monotonicity of Ω(V ,φ|C) over three-valued logics we have, either s = 1

and Ω
j−1
(V ,φ|C)(Au)(v) =Ω

j

(V ,φ|C)(Au)(v) = t , or s =−1 and Ω
j−1
(V ,φ|C)(Au)(v) =Ω

j

(V ,φ|C)(Au)(v) = f .

Otherwise, free(v, sφ(v)) ∈ T
j

ΠX � and thus, v ∈ dom(φ) \ dom(C).

If s = 1, there must exist ψ ∈φ(v) such that Y ⊆ T
j

ΠX � with

Y = {free(v, sφ(v)),dnf(sφ(v), sψ)}

∪{clause(sψ, w,1),eval(w,1) | w ∈ψ∩V }∪ {clause(sψ, w,−1),eval(w,−1) | ¬w ∈ψ} .

Next, by inductive hypothesis we haveΩ
j−1
(V ,φ|C)(Au)(w) = t for all w ∈ψ∩V , andΩ

j−1
(V ,φ|C)(Au)(w) =

f for all ¬w ∈ψ. Then, we also have Ω
j−1
(V ,φ|C)(Au)(ψ) = t . Therefore, provided that φ|C (v) is in

disjunctive normal form, we have Ω
j

(V ,φ|C)(Au)(φ|C (v)) =Ω
j

(V ,φ|C)(Au)(v) = t .

If s =−1, for all ψ ∈φ(v) we must have eval_clause(sψ,−1) ∈ T
j

ΠX �. Hence, we also have that

there exists w such that, either {clause(sψ, w,1),eval(w,−1)} ⊆ T
j

ΠX � ⊆ X with w ∈ψ∩V , or

{clause(sψ, w,−1),eval(w,1)} ⊆ T
j

ΠX �⊆ X with ¬w ∈ψ. Next, by inductive hypothesis we have

Ω
j−1
(V ,φ|C)(Au)(w) = f for all w ∈ψ∩V , and Ω

j−1
(V ,φ|C)(Au)(w) = t for all ¬w ∈ψ. Then, we also

have Ω
j−1
(V ,φ|C)(Au)(ψ) = f . Therefore, provided that φ|C (v) is in disjunctive normal form, we

have Ω
j

(V ,φ|C)(Au)(φ|C (v)) =Ω
j

(V ,φ|C)(Au)(v) = f .

Finally, if eval(v, s) ∉ T
j+1
ΠX � with s ∈ {1,−1}, by inductive hypothesis and monotonicity of

Ω(V ,φ|C) over three-valued logics we have Ω
j−1
(V ,φ|C)(Au)(v) = u. Furthermore, since eval(v, s) is

neither a consequence of T
j

ΠX � by applying rules in Π
X , based on the previous cases we can see

105

Appendix A. Proofs

that Ω
j

(V ,φ|C)(Au)(v) = u.

Hence, it follows that F = {v �→ t | eval(v,1) ∈ X }∪{v �→ f | eval(v,−1) ∈ X }∪{v �→ u | eval(v,1) ∉
X ,eval(v,−1) ∉ X } is the unique fixpoint of Ω(V ,φ|C) reachable from Au .

A.2.2 Extended ASP representations

In what follows we provide informal arguments to show the correctness of each ASP encod-

ing relying on the proofs given above. In each case, our application-specific encodings are

straightforward elaborations of the rules in ΠA.3 or ΠA.4, plus certain rules or optimization

statements describing the exact corresponding mathematical formulation.

Learning Boolean logic models of immediate-early response

Let (V ,E ,σ) be a PKN. Let ξ = (Ci ,PCi
) be an experimental dataset over (V ,E ,σ) and let k

define the discretization scheme.

Then, there is an answer set X of τ((V ,E ,σ),ξ,k)∪Π3.2 such that

φopt =

�

v �→
�

p∈P (v)

�

�

(w,1)∈p

w

�

∧

�

�

(w,−1)∈p

¬w

� �
�
�
�
�

dnf(sP (v), sp) ∈ X , v ∈V

�

if and only if (V ,φopt) ∈ argmin(V ,φ)∈M(V ,E ,σ)
(Θr ssk

((V ,φ),ξ),Θsi ze ((V ,φ))).

Proof. The proof follows from the Proposition 2.2.1. First, we note that rules 1-10 in Π3.2

generate the representation of all logical networks (V ,φ) ∈M(V ,E ,σ). Next, it is easy to extend

Proposition 2.2.1 to consider several clamping assignments Ci . More precisely, let us denote

with Π
� the set of rules 1-19 in Π3.2. Then, we have that for each (V ,φ) ∈ M(V ,E ,σ) there is

an answer set X of τ((V ,E ,σ),ξ,k)∪Π
� such that Fi = {v �→ t | eval(i , v,1) ∈ X }∪ {v �→ f |

eval(i , v,−1) ∈ X } if and only if Fi is the unique fixpoint of Ω(V ,φ|Ci
) reachable from A f . Also,

one can verify that considering the complete set of rules in Π3.2, X must include atoms

of the form rss(o, v,1, (f −d)2) and rss(o, v,−1,d 2) with f = 10k and d = 10kδk (PCi
(v)) for all

i = 1, . . . ,n and v ∈ dom(PCi
). Therefore, we have that rule 25 inΠ3.2 enforces the minimization

of the residual sum of squares between the Boolean predictions and discretized experimental

observations (Eq. (3.5)). Furthermore, with lower priority rule 24, enforces the minimization

over the size of logic models (Eq. (3.3)).

Finding logical input-output behaviors

Let (V ,φ j), (V ,φ j �) be two Boolean logic models.

Then, there is an answer set of τ((V ,φ j), (V ,φ j �))∪Π3.5 if and only if there exist Ci ∈C , v ∈VR

such that F
j

i
(v) �= F

j �

i
(v).

106

A.2. Correctness of ASP encodings

Proof. The proof follows from the Proposition 2.2.1. First, we note that rules 1-3 in Π3.5

generate the representation of all clamping assignments Ci ∈ C . Next, it is easy to extend

Proposition 2.2.1 to consider several logical networks, in this only two. More precisely, we

have that for each Ci ∈ C there is an answer set X of Π= τ((V ,φ j), (V ,φ j �))∪Π3.5 such that

F
j

i
= {v �→ t | eval(j , v,1) ∈ X }∪{v �→ f | eval(j , v,−1) ∈ X } if and only if F

j

i
is the unique fixpoint

of Ω(V ,φ j |Ci
) reachable from A f , and the same holds with j � instead of j . Therefore, it follows

that X is an answer set of Π (in particular, the atom diff is included) iff there exists v ∈ VR

such that F
j

i
(v) �= F

j �

i
(v).

Experimental design

Let B be a finite set of input-output behaviors represented by Boolean logic models ((V ,φ j)) j∈J .

Let ε, s, and k be three positive integers with s ≤ |VS | and k ≤ |VK |.

Then, there is an answer set X of τ(B, s,k)∪Π4.2 such that Ci = {v �→ t | v ∈VS ,clamped(i , v,1) ∈
X }∪ {v �→ f | v ∈VK ,clamped(i , v,−1) ∈ X } with i = 1, . . . ,ε if and only if,

1. ε is the least number of clamping assignments for which (4.1) holds,

2. and (C1, . . . ,Cε) ∈ argmin(C1,...,Cε)∈Δ
�

ΘVS
((C1, . . . ,Cε)) ,ΘVK

((C1, . . . ,Cε))
�

with Δ= argmax(C1,...,Cε)∈C ε(s,k)

�

Θdiff (B, (C1, . . . ,Cε))
�

and C
ε(s,k) the set of all ε-tuples

(C1, . . . ,Cε) ∈C1(s,k)×·· ·×Cε(s,k) satisfying (4.1).

Proof. The proof follows from the Proposition 2.2.1. First, we note that rules 8-10 in Π4.2

generate the representation of all clamping assignments (C1, . . . ,Cε) ∈C1(s,k)×·· ·×Cε(s,k) for

increasing values of ε≥ 1. Next, it is easy to extend Proposition 2.2.1 to consider several logical

networks and clamping assignments. More precisely, let us denote with Π
� the set of rules 1-17

in Π4.2. Then, we have that for each (C1, . . . ,Cε) ∈C1(s,k)×·· ·×Cε(s,k) there is an answer set

X of τ(B, s,k)∪Π
� such that F

j

i
= {v �→ t | eval(i , j , v,1) ∈ X }∪ {v �→ f | eval(i , j , v,−1) ∈ X } if

and only if F
j

i
is the unique fixpoint of Ω(V ,φ j |Ci

) reachable from A f . Also, one can verify that

considering the complete set of rules in Π4.2, such an answer set X exists iff ε is the least integer

such that for all pairs of networks (V ,φ j), (V ,φ j �) with j < j �, there are i ∈ {1, . . . ,ε}, v ∈VR such

that
�

diff(i , j , j �, v),diff(i , j , j �)
�

⊆ X . Therefore, the first condition above is satisfied, whereas

the three optimization statements in rules 23-25 enforce the desired optimality criteria in the

second condition.

Minimal intervention strategies

Let (V ,φi)i∈N be a finite family of logical networks. Let (G j ,C j) j∈J be a finite family of inter-

vention scenarios and k some positive integer.

Then, there is an answer set X of τ((V ,φi)i∈N , (G j ,C j) j∈J ,k)∪Π5.2 such that I = {v �→ t |

intervention(v,1) ∈ X }∪ {v �→ f | intervention(v,−1) ∈ X } if and only if I is a bounded interven-

tion strategy for (G j ,C j) j∈J wrt (V ,φi)i∈N and k.

107

Appendix A. Proofs

Proof. The proof follows from the Proposition 2.2.2. First, we note that rules 1-14 in Π5.2

generate the representation of all “candidate” intervention sets I . Next, it is easy to extend

Proposition 2.2.2 to consider several logical networks (V ,φi)i∈N and clamping assignments

(C j ◦ I) j∈J . More precisely, let us denote with Π
� the set of rules 1-26 in Π5.2. Then, we have that

for each “candidate” intervention set I , there is an answer set X of τ((V ,φi)i∈N , (G j ,C j) j∈J ,k)∪
Π

� such that F i
j
= {v �→ t | eval(i , j , v,1) ∈ X }∪ {v �→ f | eval(i , j , v,−1) ∈ X } if and only if F i

j
is

the unique fixpoint of Ω(V ,φi |C j ◦I) reachable from Au . Also, one can verify that considering

the complete set of rules in Π5.2, such an answer set X exists iff for all (G j) j∈J and i ∈ N , it

hold G j ⊆ F i
j

and |I |≤ k. Therefore, I is a bounded intervention strategy for (G j ,C j) j∈J wrt

(V ,φi)i∈N and k. Moreover, if k ≤ 0 the integrity constraint in rule 31 is not applied and thus, I

is an unbounded intervention strategy.

108

Bibliography

A. Abdi, M. B. Tahoori, and E. S. Emamian. Fault diagnosis engineering of digital circuits can

identify vulnerable molecules in complex cellular pathways. Science Signaling, 1(42), 2008.

T. Akutsu, S. Miyano, and S. Kuhara. Inferring qualitative relations in genetic networks and

metabolic pathways. Bioinformatics, 16(8):727–734, July 2000.

T. Akutsu, S. Kuhara, O. Maruyama, and Satoru S. Miyano. Identification of genetic networks

by strategic gene disruptions and gene overexpressions under a boolean model. Theoretical

Computer Science, 298(1):235–251, March 2003.

I. Albert, J. Thakar, S. Li, R. Zhang, and R. Albert. Boolean network simulations for life scientists.

Source Code for Biology and Medicine, 3(16), December 2007.

B. B. Aldridge, J. M. Burke, D. A. Lauffenburger, and P. Sorger. Physicochemical modelling of

cell signalling pathways. Nature cell biology, 8(11):1195–1203, 2006.

L. G. Alexopoulos, J. Saez-Rodriguez, B. Cosgrove, D. A. Lauffenburger, and P. Sorger. Networks

inferred from biochemical data reveal profound differences in toll-like receptor and in-

flammatory signaling between normal and transformed hepatocytes. Molecular & Cellular

Proteomics, 9(9):1849–1865, 2010.

K. R. Apt and M. H. Van Emden. Contributions to the theory of logic programming. ACM, 29

(3):841–862, July 1982.

J. Banga. Optimization in computational systems biology. BMC systems biology, 2(1):47, 2008.

C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge

University Press, 2003.

C. Baral, K. Chancellor, N. Tran, N. Tran, A. Joy, and M. Berens. A knowledge based approach

for representing and reasoning about signaling networks. In Proceedings of the Twelfth Inter-

national Conference on Intelligent Systems for Molecular Biology/Third European Conference

on Computational Biology (ISMB’04/ECCB’04), pages 15–22, 2004.

C. L. Barrett and B. Ø. Palsson. Iterative reconstruction of transcriptional regulatory networks:

an algorithmic approach. PLoS Computational Biology, 2(5), April 2006.

109

Bibliography

G. Batt, D. Ropers, de H. de Jong, J. Geiselmann, R. Mateescu, M. Page, and D. Schneider.

Validation of qualitative models of genetic regulatory networks by model checking: analysis

of the nutritional stress response in escherichia coli. Bioinformatics, 21(Suppl 1):i19–i28,

May 2005.

G. Batt, B. Besson, P. Ciron, H. de Jong, E. Dumas, J. Geiselmann, R. Monte, P. T. Monteiro,

M. Page, F. Rechenmann, and D. Ropers. Genetic network analyzer: a tool for the qualitative

modeling and simulation of bacterial regulatory networks. Methods in Molecular Biology,

804:439–462, 2012.

N. Berestovsky and L. Nakhleh. An evaluation of methods for inferring boolean networks from

time-series data. PLoS ONE, 8(6):e66031, 2013.

S. Bornholdt. Boolean network models of cellular regulation: prospects and limitations.

Journal of the Royal Society Interface, 5:S85–S94, 2008.

A. G. Busetto, A. Hauser, G. Krummenacher, M. Sunnåker, S. Dimopoulos, C. S. Ong, J. Stelling,

and J. M. Buhmann. Near-optimal experimental design for model selection in systems

biology. Bioinformatics, 29(20):2625–2632, October 2013.

L. Calzone, F. Fages, and S. Soliman. BIOCHAM: an environment for modeling biological

systems and formalizing experimental knowledge. Bioinformatics, 22(14):1805–1807, July

2006.

L. Calzone, L. Tournier, S. Fourquet, D. Thieffry, B. Zhivotovsky, E. Barillot, and A. Zinovyev.

Mathematical modelling of cell-fate decision in response to death receptor engagement.

PLoS Computational Biology, 6(3), February 2010.

A. Di Cara, A. Garg, G. De Micheli, I. Xenarios, and L. Mendoza. Dynamic simulation of

regulatory networks using SQUAD. BMC Bioinformatics, 8(462), December 2006.

E. G. Cerami, B. E. Gross, E. Demir, I. Rodchenkov, Ö. Babur, N. Anwar, N. Schultz, G. D. Bader,

and C. Sander. Pathway commons, a web resource for biological pathway data. Nucleic

Acids Research, 39(Database issue):D685–D690, 2011.

N. Chabrier and F. Fages. Symbolic model checking of biochemical networks. In C. Pirami, edi-

tor, Computational Methods in Systems Biology, pages 149–162. Springer-Verlag, February

2003.

C. Chaouiya. Petri net modelling of biological networks. Briefings in Bioinformatics, 8(4):

210–219, July 2007.

C. Chaouiya, D. Bérenguier, S. M. Keating, A. Naldi, M. P. van Iersel, N. Rodriguez, A. Dräger,

F. Büchel, T. Cokelaer, B. Kowal, B. Wicks, E. Gonçalves, J. Dorier, M. Page, P. T. Monteiro,

A. Von Kamp, I. Xenarios, H. de Jong, M. Hucka, S. Klamt, D. Thieffry, N. Le Novère, J. Saez-

Rodriguez, and T. Helikar. SBML qualitative models: a model representation format and

infrastructure to foster interactions between qualitative modelling formalisms and tools.

BMC systems biology, 7(135), December 2013.

110

Bibliography

W. W. Chen, B. Schoeberl, P. J. Jasper, M. Niepel, U. B. Nielsen, D. A. Lauffenburger, and

P. Sorger. Input-output behavior of ErbB signaling pathways as revealed by a mass action

model trained against dynamic data. Molecular Systems Biology, 5(1), January 2009.

T. S. Christensen, A. P. Oliveira, and J. Nielsen. Reconstruction and logical modeling of glucose

repression signaling pathways in saccharomyces cerevisiae. BMC systems biology, 3(7), 2009.

A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and

A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In E. Brinksma

and K. Larsen, editors, Proceedings of the 14th International Conference on Computer Aided

Verification, Lecture Notes in Computer Science, pages 359–364. Springer-Verlag, 2002.

G. Collet, D. Eveillard, M. Gebser, S. Prigent, T. Schaub, A. Siegel, and S. Thiele. Extending the

metabolic network of Ectocarpus siliculosus using answer set programming. In P. Cabalar

and T. Son, editors, Proceedings of the Twelfth International Conference on Logic Program-

ming and Nonmonotonic Reasoning (LPNMR’13), volume 8148 of Lecture Notes in Artificial

Intelligence, pages 245–256. Springer-Verlag, 2013.

P. Csermely, T. Korcsmáros, H. J. M. Kiss, F. London, and R. Nussinov. Structure and dynam-

ics of molecular networks: a novel paradigm of drug discovery: a comprehensive review.

Pharmacology & therapeutics, 138(3):333–408, 2013.

V. Danos and C. Laneve. Formal molecular biology. Theoretical Computer Science, 325(1):

69–110, December 2003.

H. de Jong, J. Gouzé, C. Hernandez, M. Page, T. Sari, and J. Geiselmann. Qualitative simulation

of genetic regulatory networks using piecewise-linear models. Bulletin of mathematical

biology, 66(2):301–340, March 2004.

E. Dubrova and M. Teslenko. A SAT-based algorithm for finding attractors in synchronous

Boolean networks. IEEE/ACM transactions on computational biology and bioinformatics, 8

(5):1393–1399, August 2011.

M. Durzinsky, W. Marwan, M. Ostrowski, T. Schaub, and A. Wagler. Automatic network recon-

struction using ASP. Theory and Practice of Logic Programming, 11(4-5):749–766, 2011.

T. Fayruzov, J. Janssen, D. Vermeir, C. Cornelis, and M. De Cock. Modelling gene and protein

regulatory networks with answer set programming. International Journal of Data Mining

and Bioinformatics, 5(2):209–229, 2011.

J. Fisher and T. A. Henzinger. Executable cell biology. Nature biotechnology, 25(11):1239–1249,

November 2007.

M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Programming, 2(4):

295–312, 1985.

A. Freitas. A critical review of multi-objective optimization in data mining. ACM SIGKDD

Explorations Newsletter, 6(2):77, December 2004.

111

Bibliography

G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and applications.

Discrete Applied Mathematics, 42(2-3):177–201, 1993.

S. Gay, F. Fages, F. Santini, and S. Soliman. Solving subgraph epimorphism problems using CLP

and SAT. In Proceedings of seventh Workshop on Constraint Based Methods for Bioinformatics

WCB’11, pages 59–66, 2011.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven answer set

solver. In C. Baral, G. Brewka, and J. Schlipf, editors, Proceedings of the Ninth International

Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07), volume 4483

of Lecture Notes in Artificial Intelligence, pages 260–265. Springer-Verlag, 2007.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. Engineering an

incremental ASP solver. In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the

Twenty-fourth International Conference on Logic Programming (ICLP’08), volume 5366 of

Lecture Notes in Computer Science, pages 190–205. Springer-Verlag, 2008.

M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and P. Veber. Repair and

prediction (under inconsistency) in large biological networks with answer set programming.

In F. Lin and U. Sattler, editors, Proceedings of the Twelfth International Conference on

Principles of Knowledge Representation and Reasoning (KR’10), pages 497–507. AAAI Press,

2010.

M. Gebser, R. Kaminski, and T. Schaub. Complex optimization in answer set programming.

Theory and Practice of Logic Programming, 11(4-5):821–839, 2011a.

M. Gebser, T. Schaub, S. Thiele, and P. Veber. Detecting inconsistencies in large biological

networks with answer set programming. Theory and Practice of Logic Programming, 11(2-3):

323–360, 2011b.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Practice. Synthesis

Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers,

2012a.

M. Gebser, B. Kaufmann, and T. Schaub. Multi-threaded ASP solving with clasp. Theory and

Practice of Logic Programming, 12(4-5):525–545, 2012b.

M. Gebser, B. Kaufmann, R. Otero, J. Romero, T. Schaub, and P. Wanko. Domain-specific

heuristics in answer set programming. In M. desJardins and M. Littman, editors, Proceedings

of the Twenty-Seventh National Conference on Artificial Intelligence (AAAI’13), pages 350–356.

AAAI Press, 2013.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. Kowalski

and K. Bowen, editors, Proceedings of the Fifth International Conference and Symposium of

Logic Programming (ICLP’88), pages 1070–1080. MIT Press, 1988.

112

Bibliography

B. D. Gomperts, I. M. Kramer, and P. E. R. Tatham. Signal Transduction. Academic Press, San

Diego, California, 2009.

W. Guo, G. Yang, W. Wu, L. He, and M. Sun. A parallel attractor finding algorithm based on

Boolean satisfiability for genetic regulatory networks. PLoS ONE, 9(4), April 2014.

C. Guziolowski, A. Kittas, F. Dittmann, and N. Grabe. Automatic generation of causal networks

linking growth factor stimuli to functional cell state changes. FEBS Journal, 279(18):3462–

3474, 2012. ISSN 1742-4658.

C. Guziolowski, S. Videla, F. Eduati, S. Thiele, T. Cokelaer, A. Siegel, and J. Saez-Rodriguez.

Exhaustively characterizing feasible logic models of a signaling network using answer set

programming. Bioinformatics, 29(18):2320–2326, 2013.

P. Hainaut and A. Plymoth. Targeting the hallmarks of cancer: towards a rational approach to

next-generation cancer therapy. Current Opinion in Oncology, 25(1):50–51, 2012.

D. Hanahan and R. A. Weinberg. Hallmarks of Cancer: The Next Generation. Cell, 144(5):

646–674, 2011.

M. Heiner and D. Gilbert. How might Petri nets enhance your systems biology toolkit. In L. M.

Kristensen and L. Petrucci, editors, Applications and Theory of Petri nets, volume 6709 of

Lecture Notes in Computer Science, pages 17–37. Springer-Verlag, 2011.

T. Helikar and J. A. Rogers. ChemChains: a platform for simulation and analysis of biochemical

networks aimed to laboratory scientists. BMC systems biology, 3(58), December 2008.

T. Helikar, B. Kowal, S. McClenathan, M. Bruckner, T. Rowley, A. Madrahimov, W. Ben,

M. Shrestha, K. Limbu, and J.A. Rogers. The Cell Collective: toward an open and col-

laborative approach to systems biology. BMC systems biology, 6:96–96, December 2011.

T. A. Henzinger. The theory of hybrid automata. In Proceedings 11th IEEE Symposium on Logic

in Computer Science, pages 278–292, 1996.

F. Hinkelmann, M. Brandon, B. Guang, R. McNeill, G. Blekherman, A. Veliz-Cuba, and

R. Laubenbacher. ADAM: analysis of discrete models of biological systems using com-

puter algebra. BMC Bioinformatics, 12(295), December 2010.

W. S. Hlavacek, J. R. Faeder, M. L. Blinov, R. G. Posner, M. Hucka, and W. Fontana. Rules for

modeling signal-transduction systems. Sci STKE, re6(345), July 2006.

H. H. Hoos and T. Stützle. Stochastic Local Search. Foundations and Applications. Morgan

Kaufmann, January 2005.

M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, G. J. Bornstein,

D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I.

Goryanin, W. J. Hedley, T. C. Hodgman, J-H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger,

A. Kremling, U. Kummer, N. Le Novère, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D.

113

Bibliography

Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro,

T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang. The

systems biology markup language (SBML): a medium for representation and exchange of

biochemical network models. Bioinformatics, 19(4):524–531, February 2003.

T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life: systems biology. Annual

review of genomics and human genetics, 2:343–372, 2001.

T. E. Ideker, V. Thorsson, and R. M. Karp. Discovery of regulatory interactions through pertur-

bation: inference and experimental design. In R. B. Altman, A. K. Dunker, L. Hunter, and

T. E. Klein, editors, Pacific Symposium on Biocomputing, volume 5, pages 305–316, 2000.

K. Inoue. Logic programming for boolean networks. In T. Walsh, editor, Proceedings of the

Twenty-second International Joint Conference on Artificial Intelligence (IJCAI’11), pages

924–930. IJCAI/AAAI, 2011.

R. Kaminski, T. Schaub, A. Siegel, and S. Videla. Minimal intervention strategies in logical sig-

naling networks with answer set programming. Theory and Practice of Logic Programming,

13(4-5):675–690, 2013.

M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, and Mika M. Hirakawa. Kegg for represen-

tation and analysis of molecular networks involving diseases and drugs. Nucleic Acids

Research, 38(Database issue), January 2010.

S. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal

of Theoretical Biology, 22(3):437–467, February 1969.

H. Kitano. Systems biology: a brief overview. Science, 295(5560):1662–1664, 2002.

S. Klamt. Generalized concept of minimal cut sets in biochemical networks. Biosystems, 83

(2-3):233–247, January 2006.

S. Klamt, J. Saez-Rodriguez, and E. Gilles. Structural and functional analysis of cellular net-

works with CellNetAnalyzer. BMC systems biology, 1(2), December 2006a.

S. Klamt, J. Saez-Rodriguez, J. Lindquist, L. Simeoni, and E. Gilles. A methodology for the

structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics,

7(1):56, 2006b.

S. C. Kleene. Introduction to metamathematics. Princeton, NJ, 1950.

P. Kohl, E. J. Crampin, T. A. Quinn, and D. Noble. Systems biology: An approach. Clinical

Pharmacology & Therapeutics, 88(1):25–33, June 2010.

A. Kremling, S. Fischer, K. Gadkar, F. Doyle, T. Sauter, E. Bullinger, F. Allgöwer, and E. Gilles.

A benchmark for methods in reverse engineering and model discrimination: problem

formulation and solutions. Genome Research, 14(9):1773–1785, September 2004.

114

Bibliography

C. Kreutz and J. Timmer. Systems biology: experimental design. FEBS Journal, 276(4):923–942,

January 2009.

L. Kuepfer, M. Peter, U. Sauer, and J. Stelling. Ensemble modeling for analysis of cell signaling

dynamics. Nature biotechnology, 25(9):1001–1006, September 2007.

H. Lähdesmäki, I. Shmulevich, and O. Yli-Harja. On learning gene regulatory networks under

the Boolean network model. Machine learning, 52(1-2):147–167, 2003.

R. Layek, A. Datta, M. Bittner, and E. R. Dougherty. Cancer therapy design based on pathway

logic. Bioinformatics, 27(4):548–555, February 2011.

S. Li, S. M. Assmann, and R. Albert. Predicting essential components of signal transduction

networks: A dynamic model of guard cell abscisic acid signaling. PLoS Biology, 4(10), 2006.

S. Liang, S. Fuhrman, and R. Somogyi. REVEAL, a general reverse engineering algorithm for

inference of genetic network architectures. In R. B. Altman, A. K. Dunker, L. Hunter, and T. E.

Klein, editors, Pacific Symposium on Biocomputing, volume 3, pages 18–29, 1998.

A. Macnamara, C. Terfve, D. Henriques, B. P. Bernabé, and J. Saez-Rodriguez. State-time

spectrum of signal transduction logic models. Physical biology, 9(4), August 2012.

D. Marbach, T. Schaffter, C. Mattiussi, and D. Floreano. Generating realistic in silico gene

networks for performance assessment of reverse engineering methods. Journal of Compu-

tational Biology, 16(2):229–239, February 2009.

D. Marbach, J. Costello, R. Küffner, N. Vega, R. Prill, D. Camacho, K. Allison, M. Kellis, J. Collins,

and G. Stolovitzky. Wisdom of crowds for robust gene network inference. Nature Methods, 9

(8):796–804, July 2012.

R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for engineering.

Structural and Multidisciplinary Optimization, 26(6):369–395, April 2004.

E. J. McCluskey. Minimization of Boolean functions. Bell System Technical Journal, 1956.

T. Melham. Modelling, abstraction, and computation in systems biology: A view from com-

puter science. Progress in Biophysics and Molecular Biology, 111(2-3):129–136, 2013.

B. Mélykúti, E. August, A. Papachristodoulou, and H. El-Samad. Discriminating between rival

biochemical network models: three approaches to optimal experiment design. BMC systems

biology, 4, 2010.

L. Mendoza, D. Thieffry, and E. R. Alvarez-Buylla. Genetic control of flower morphogenesis in

arabidopsis thaliana: a logical analysis. Bioinformatics, 15(7-8):593–606, June 1999.

R. Milner. Communicating and Mobile Systems: The π-calculus. Cambridge University Press,

New York, NY, USA, 1999.

115

Bibliography

A. Mitsos, I. Melas, P. Siminelakis, A. Chairakaki, J. Saez-Rodriguez, and L. G. Alexopoulos.

Identifying drug effects via pathway alterations using an integer linear programming op-

timization formulation on phosphoproteomic data. PLoS Computational Biology, 5(12):

e1000591, September 2009.

M. Morris, J. Saez-Rodriguez, P. Sorger, and D. A. Lauffenburger. Logic-based models for the

analysis of cell signaling networks. Biochemistry, 49(15):3216–3224, 2010.

M. K. Morris, J. Saez-Rodriguez, D. C. Clarke, P. Sorger, and D. A. Lauffenburger. Training

signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative

analysis of liver cell responses to inflammatory stimuli. PLoS Computational Biology, 7(3),

March 2011.

C. Mussel, M. Hopfensitz, and H. A. Kestler. BoolNet–an R package for generation, reconstruc-

tion and analysis of Boolean networks. Bioinformatics, 26(10):1378–1380, May 2010.

A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, and C. Chaouiya. Logical modelling of

regulatory networks with GINsim 2.3. Biosystems, 97(2):134–139, December 2008.

C. J. Needham, J. R. Bradford, A. J. Bulpitt, and D. R. Westhead. A primer on learning in

Bayesian networks for computational biology. PLoS Computational Biology, 3(8), 2007.

D. Noble. Biophysics and systems biology. Philosophical transactions. Series A, Mathematical,

physical, and engineering sciences, 368(1914):1125–1139, March 2010.

I. Papatheodorou, M. Ziehm, D. Wieser, N. Alic, L. Partridge, and J. M. Thornton. Using Answer

Set Programming to integrate RNA expression with signalling pathway information to infer

how mutations affect ageing. PLoS ONE, 7(12), December 2012.

J. A. Papin, T. Hunter, B. Ø. Palsson, and S. Subramaniam. Reconstruction of cellular signalling

networks and analysis of their properties. Nature Reviews Molecular Cell Biology, 6(2):

99–111, February 2005.

L. Paulevé and A. Richard. Static analysis of boolean networks based on interaction graphs: A

survey. Electronic Notes in Theoretical Computer Science, 284:93–104, June 2012.

C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic name-passing

calculus to representation and simulation of molecular processes. Information Processing

Letters, 80(1):25–31, December 2000.

R. J. Prill, J. Saez-Rodriguez, L. G. Alexopoulos, P. K. Sorger, and G. Stolovitzky. Crowdsourcing

network inference: the DREAM predictive signaling network challenge. Sci Signal, 4(189):

mr7, September 2011.

O. Ray, K. Whelan, and R. King. Logic-based steady-state analysis and revision of metabolic

networks with inhibition. In L. Barolli, F. Xhafa, S. Vitabile, and H. Hsu, editors, Proceed-

ings of the Fourth International Conference on Complex, Intelligent and Software Intensive

Systems (CISIS’10), pages 661–666. IEEE Computer Society, 2010.

116

Bibliography

O. Ray, T. Soh, and K. Inoue. Analyzing pathways using asp-based approaches. In K. Horimoto,

M. Nakatsui, and N. Popov, editors, Proceedings of the Fourth International Conference on

Algebraic and Numeric Biology (ANB’10), volume 6479 of Lecture Notes in Computer Science,

pages 167–183. Springer-Verlag, 2012.

A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of biochemical pro-

cesses using the π-calculus process algebra. In R. B. Altman, A. K. Dunker, L. Hunter, and

T. E. Klein, editors, Pacific Symposium on Biocomputing, volume 6, pages 459–470. World

Scientific Press, 2001.

A. Réka and R. Wang. Discrete dynamic modeling of cellular signaling networks. Methods in

Enzymology, 467:281–306, December 2008.

E. Remy, P. Ruet, and D. Thieffry. Graphic requirements for multistability and attractive cycles

in a Boolean dynamical framework. Advances in Applied Mathematics, 41(3):335–350, 2008.

A. Saadatpour and A. Réka. Boolean modeling of biological regulatory networks: A methodol-

ogy tutorial. Methods, 62(1):3–12, 2013.

A. Saadatpour, R. Wang, A. Liao, X. Liu, T. P. Loughran, I. Albert, and R. Albert. Dynamical and

structural analysis of a t cell survival network identifies novel candidate therapeutic targets

for large granular lymphocyte leukemia. PLoS Computational Biology, 7(11), October 2011.

K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. Nolan. Causal protein-signaling

networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005.

J. Saez-Rodriguez, L. Simeoni, J. Lindquist, R. Hemenway, U. Bommhardt, B. Arndt, U. Haus,

R. Weismantel, E. Gilles, S. Klamt, and B. Schraven. A logical model provides insights into t

cell receptor signaling. PLOS Computational Biology, 3(8), August 2007.

J. Saez-Rodriguez, A. Goldsipe, J. Muhlich, L. G. Alexopoulos, B. Millard, D. A. Lauffenburger,

and P. Sorger. Flexible informatics for linking experimental data to mathematical models

via DataRail. Bioinformatics, 24(6):840–847, March 2008.

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt,

and P. Sorger. Discrete logic modelling as a means to link protein signalling networks with

functional analysis of mammalian signal transduction. Molecular Systems Biology, 5(331),

2009.

J. Saez-Rodriguez, L. G. Alexopoulos, M. Zhang, M. Morris, D. A. Lauffenburger, and P. Sorger.

Comparing signaling networks between normal and transformed hepatocytes using discrete

logical models. Cancer Research, 71(16), 2011.

R. Samaga and S. Klamt. Modeling approaches for qualitative and semi-quantitative analysis

of cellular signaling networks. Cell communication and signaling, 11(1):43, 2013.

117

Bibliography

R. Samaga, J. Saez-Rodriguez, L. G. Alexopoulos, P. Sorger, and S. Klamt. The logic of

EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS

Computational Biology, 5(8), August 2009.

R. Samaga, A. Von Kamp, and S. Klamt. Computing combinatorial intervention strategies and

failure modes in signaling networks. Journal of Computational Biology, 17(1):39–53, January

2010.

L. Sánchez, C. Chaouiya, and D. Thieffry. Segmenting the fly embryo: logical analysis of the role

of the segment polarity cross-regulatory module. International journal of developmental

biology, 52(8):1059–1075, 2008.

C. F. Schaefer, K. Anthony, S. Krupa, J. Buchoff, M. Day, T. Hannay, and K. H. Buetow. Pid: the

pathway interaction database. Nucleic Acids Research, 37(Database issue):D674–D679, 2009.

T. Schaub and S. Thiele. Metabolic network expansion with ASP. In P. Hill and D. Warren,

editors, Proceedings of the Twenty-fifth International Conference on Logic Programming

(ICLP’09), volume 5649 of Lecture Notes in Computer Science, pages 312–326. Springer-Verlag,

2009.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,

27(3):379–423, July 1948.

J. A. Shapiro. Revisiting the central dogma in the 21st century. Annals of the New York Academy

of Sciences, 1178:6–28, October 2009.

R. Sharan and R. M. Karp. Reconstructing Boolean models of signaling. Journal of Computa-

tional Biology, 20(3):249–257, March 2013.

I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic Boolean networks: a

rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2):261–274,

January 2002a.

I. Shmulevich, E. R. Dougherty, and W. Zhang. Gene perturbation and intervention in proba-

bilistic Boolean networks. Bioinformatics, 18(10):1319–1331, October 2002b.

S. Soliman. Invariants and other structural properties of biochemical models as a constraint

satisfaction problem. Algorithms for Molecular Biology, 7(15), 2011.

A. Sparkes, W. Aubrey, E. Byrne, A. Clare, M. N. Khan, M. Liakata, M. Markham, J. Rowland, L. N.

Soldatova, K. E. Whelan, M. Young, and R. D. King. Towards robot scientists for autonomous

scientific discovery. Automated Experimentation, 2, January 2010.

J. Stegmaier, D. Skanda, and D. Lebiedz. Robust optimal design of experiments for model

discrimination using an interactive software tool. PLoS ONE, 8(2), 2013.

J. Stelling, U. Sauer, Z. Szallasi, F. Doyle, and J. Doyle. Robustness of cellular functions. Cell,

118(6):675–685, 2004.

118

Bibliography

G. Stolovitzky, D. Monroe, and A. Califano. Dialogue on reverse-engineering assessment

and methods: the dream of high-throughput pathway inference. Annals of the New York

Academy of Sciences, 1115:1–22, December 2007.

E. Szczurek, I. Gat-Viks, J. Tiuryn, and M. Vingron. Elucidating regulatory mechanisms down-

stream of a signaling pathway using informative experiments. Molecular Systems Biology, 5:

287–287, December 2008.

C. D. A. Terfve, T. Cokelaer, D. Henriques, A. Macnamara, E. Gonçalves, M. Morris, M. van

Iersel, D. A. Lauffenburger, and J. Saez-Rodriguez. CellNOptR: a flexible toolkit to train

protein signaling networks to data using multiple logic formalisms. BMC systems biology, 6

(1), October 2012.

R. Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical Biology,

42(3):563–585, November 1973.

R. Thomas. Regulatory networks seen as asynchronous automata: A logical description.

Journal of Theoretical Biology, 153(1):1–23, 1991.

I. Vatcheva, H. de Jong, O. Bernard, and N. J. I. Mars. Experiment selection for the discrim-

ination of semi-quantitative models of dynamical systems. Artificial Intelligence, 170(4):

472–506, December 2005.

S. Videla, C. Guziolowski, F. Eduati, S. Thiele, N. Grabe, J. Saez-Rodriguez, and A. Siegel.

Revisiting the training of logic models of protein signaling networks with ASP. In D. Gilbert

and M. Heiner, editors, Proceedings of the Tenth International Conference on Computational

Methods in Systems Biology (CMSB’12), volume 7605 of Lecture Notes in Computer Science,

pages 342–361. Springer-Verlag, 2012.

R. Wang and R. Albert. Elementary signaling modes predict the essentiality of signal transduc-

tion network components. BMC systems biology, 5:44, 2011.

R. Wang, A. Saadatpour, and R. Albert. Boolean modeling in systems biology: an overview of

methodology and applications. Physical biology, 9(5), September 2012.

D. M. Wittmann, J. Krumsiek, J. Saez-Rodriguez, D. A. Lauffenburger, S. Klamt, and F. J. Theis.

Transforming Boolean models to continuous models: methodology and application to

T-cell receptor signaling. BMC systems biology, 3:98, 2009.

C. Yeang, H. C. Mak, S. McCuine, C. Workman, T. Jaakkola, and T. E. Ideker. Validation and

refinement of gene-regulatory pathways on a network of physical interactions. Genome

biology, 6(7), 2005.

J. Zheng, D. Zhang, P.F. Przytycki, R. Zielinski, J. Capala, and T. M. Przytycka. SimBoolNet–a

Cytoscape plugin for dynamic simulation of signaling networks. Bioinformatics, 26(1):

141–142, January 2010.

119

Santiago Videla

PERSONAL

DETAILS

date of birth: June 14th 1983
place of birth: Buenos Aires, Argentina
email: santiago.videla@gmail.com

EDUCATION - Licenciatura en Ciencias de la Computación (equivalent to MSc) December 2010
Facultad de Matemática, Astronomı́a y F́ısica - Univ. Nacional de Córdoba. Argentina.
GPA: 9.14 / 10
- Analista en Computación (equivalent to BSc) July 2008
Facultad de Matemática, Astronomı́a y F́ısica - Univ. Nacional de Córdoba. Argentina
GPA: 9.08 / 10

RESEARCH

EXPERIENCE

PhD thesis September 2011 - August 2014
University of Rennes 1, France & University of Potsdam, Germany
Reasoning on the response of logical signaling networks with Answer Set

Programming.
Advisor: A. Siegel. Dyliss Team, CNRS - IRISA & Inria Rennes, France.
Co-Advisor: T. Schaub. Knowledge Processing and Information Systems, Potsdam
University, Germany.

MSc thesis April 2010 - December 2010
Universidad Nacional de Córdoba. Argentina.
Design of attenuated vaccines with minor likelihood of revert to virulence.

Advisor: L. Alonso i Alemany. Facultad de Matemática, Astronomı́a y F́ısica, Univer-
sidad Nacional de Córdoba. Argentina.

PUBLICATIONS Schaub T., Siegel A., Videla S. (2014). Reasoning on the response of logical signaling

networks with Answer Set Programming. Luis Fariñas del Cerro and Katsumi Inoue
(Eds.): Logical Modeling of Biological Systems. John Wiley & Sons, Inc., 49-92. DOI:
10.1002/9781119005223.ch2

Videla S., Guziolowski C., Eduati F., Thiele S., Gebser M, Nicolas J., Saez-Rodriguez
J., Schaub T., Siegel A. (2014). Learning Boolean logic models of signaling net-

works with Answer Set Programming. Theoretical Computer Science, in press. DOI:
10.1016/j.tcs.2014.06.022

Kaminski R., Schaub T, Siegel A and Videla S. (2013). Minimal Intervention Strategies

in Logical Signaling Networks with Answer Set Programming. Theory and Practice of
Logic Programming, 13(4-5), 675-690. DOI: 10.1017/S1471068413000422

Guziolowski C. and Videla S. and Eduati F. and Thiele S. and Cokelaer T. and Siegel
A. and Saez-Rodriguez J. (2013). Exhaustively characterizing feasible logic models of a

signaling network using Answer Set Programming. Bioinformatics, 29(18), 2320-2326.
DOI: 10.1093/bioinformatics/btt393

Videla S., Guziolowski C., Eduati F., Thiele S., Grabe N., Saez-Rodriguez J. and Siegel
A. (2012). Revisiting the Training of Logic Models of Protein Signaling Networks with

121

a Formal Approach Based on Answer Set Programming. D. Gilbert and M. Heiner
(Eds.): 10th International Conference on Computational Methods in Systems Biology.
LNCS 7605, pp. 342-361. Springer, Heidelberg. DOI: 10.1007/978-3-642-33636-2 20

AWARDS Best Paper at “The 10th Conference on Computational Methods in Systems Biology,
3-5 October 2012, The Royal Society, London, UK”. Videla S., Guziolowski C., Eduati
F., Thiele S., Grabe N., Saez-Rodriguez J. and Siegel A. Revisiting the Training of

Logic Models of Protein Signaling Networks with a Formal Approach based on Answer

Set Programming.

TEACHING

EXPERIENCE

Answer Set Programming for Systems Biology (graduate seminar) November 2013
Center of Mathematical Modeling, University of Chile, Chile.

Teacher Assistant March 2006 - March 2007 / March 2010 - March 2011
Facultad de Matemática, Astronomı́a y F́ısica - Univ. Nacional de Córdoba. Argentina.

• Introduction to Algorithms

• Algorithms and Data Structures I

INDUSTRY

EXPERIENCE

Software Engineer January 2011 - July 2011
Intel. Web applications development at the Argentina Software Development Center.

• HTML5, Javascript, CSS3

Entrepreneur June 2007 - July 2009
Development of web sites and applications using free software technologies:

• Plone CMS, Zope/Grok, Django, PostgreSQL, ExtJS

Junior Programmer March 2007 - June 2007
Santex America. Development and support of web sites.

• PHP, OsCommerce, MySQL, HTML, CSS, Javascript

ATTENDANCE

TO SCHOOLS

AND SEMINARS

• Summer School in Formal Modeling of Biological Regulatory Networks. June
2013. Île de Porquerolles, France.

• Latin American eScience Workshop 2013. May 2013. São Paulo, Brazil.

• The São Paulo School of Advanced Science on e-Science for Bioenergy Research.
October 2012. Campinas, Brazil.

• 2012 International Summer School in Methods in Bioinformatics. August 2012.
Tarragona, Spain.

• 30th Scientific Annual Meeting of the Argentine Society of Virology. December
2010. Córdoba, Argentina.

• 4th School of Biology and Mathematics. August 2010. Córdoba, Argentina.

• Testing on Web Applications. September 2009. INTI. Córdoba, Argentina.

• Testing as part of the Quality Assurance. May 2009. INTI. Córdoba, Argentina.

122

SOFTWARE

CONTRIBU-

TIONS

Contributions to the Python community (main developer):
• caspo

• pyzcasp

• extdirect.django

• hurry.extjs

• megrok.jinja

REFERENCES • Dr. Anne Siegel (France): anne.siegel@irisa.fr

• Dr. Torsten Schaub (Germany): torsten@cs.uni-potsdam.de

• Dr. Laura Alonso i Alemany (Argentina): alemany@famaf.unc.edu.ar

123

Abstract/Résumé

Abstract: Deciphering the functioning of biological networks is one of the central tasks in

systems biology. In particular, signal transduction networks are crucial for the understanding

of the cellular response to external and internal perturbations. Importantly, in order to cope

with the complexity of these networks, mathematical and computational modeling is required.

We propose a computational modeling framework in order to achieve more robust discoveries

in the context of logical signaling networks. More precisely, we focus on modeling the response

of logical signaling networks by means of automated reasoning using Answer Set Programming

(ASP). ASP provides a declarative language for modeling various knowledge representation

and reasoning problems. Moreover, available ASP solvers provide several reasoning modes for

assessing the multitude of answer sets. Therefore, leveraging its rich modeling language and

its highly efficient solving capacities, we use ASP to address three challenging problems in the

context of logical signaling networks: learning of (Boolean) logical networks, experimental

design, and identification of intervention strategies. Overall, the contribution of this thesis is

three-fold. Firstly, we introduce a mathematical framework for characterizing and reasoning

on the response of logical signaling networks. Secondly, we contribute to a growing list of

successful applications of ASP in systems biology. Thirdly, we present a software providing a

complete pipeline for automated reasoning on the response of logical signaling networks.

Key words: systems biology, logical signaling networks, answer set programming

Résumé : Décrypter le fonctionnement des réseaux biologiques est une des missions centrales

de la biologie des systèmes. En particulier, les réseaux de transduction du signal sont essen-

tiels pour la compréhension de la réponse cellulaire à des perturbations externes ou internes.

Pour faire face à la complexité de ces réseaux, des modélisations aussi bien numériques que

formelles sont nécessaires. Nous proposons un cadre de modélisation formelle, dans le cadre

de réseaux logiques, afin d’obtenir des prédictions robustes sur le comportement et le contrôle

des voies de signalisation. Nous modélisons la réponse des réseaux logiques de signalisation

par du raisonnement automatique à l’aide de Programmation par Ensembles-Réponses (Ans-

wer Set Programming, ASP). ASP fournit un langage déclaratif pour la modélisation de divers

problèmes de représentation des connaissances et de raisonnement. Des solveurs permettent

plusieurs modes de raisonnement pour étudier la multitude d’ensembles réponses. En s’ap-

puyant sur la richesse du langage de modélisation et ses capacités de résolution très efficaces,

nous utilisons ASP pour modéliser et résoudre trois problèmes dans le contexte des réseaux

logiques de signalisation : apprentissage de réseaux booléens, calculs de plan d’expériences, et

identification des contrôleurs. Globalement, la contribution de cette thèse est de trois ordres.

Premièrement, nous introduisons un cadre formel pour la caractérisation et le raisonnement

sur la réponse des réseaux logiques de signalisation. Deuxièmement, nous contribuons à une

liste croissante d’applications réussies d’ASP en biologie des systèmes. Troisièmement, nous

présentons un logiciel fournissant un pipeline complet de raisonnement automatisé sur la

réponse des réseaux logiques de signalisation.

Mots clefs : biologie des systèmes, réseaux de signalisation logiques, answer set programming

