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Résumé 

Les condensateurs multicouches en céramique (Multilayer Ceramic Capacitors, MLCCs) sont 

des composants passifs clés de l'électronique moderne. Les MLCCs sont constitués d'une 

alternance d'électrodes métalliques et de couches diélectriques de céramique. Les puces 

ultraminces sont composées de mélanges de couches micrométriques métalliques et 

céramiques et d'additifs de céramique de taille nano (pour retarder le frittage de l'électrode et 

réduire au minimum les différences de cinétique de frittage). Un certain nombre de défauts 

tels que des fissures, des délaminations des couches et des discontinuités au sein de 

l'électrode, peuvent survenir dans la fabrication de ces MLCCs ultraminces. Les fissures et la 

délamination se traduisent par un rejet de la puce. Les discontinuités d'électrode (zones non 

couvertes) et l'hétérogénéité dans l'épaisseur génèrent aussi un certain nombre de problèmes, 

notamment la perte de capacité, des courts-circuits, un courant de fuite et au final une moins 

bonne fiabilité. 

Il est généralement reconnu que ces défauts sont liés à une inadéquation entre les cinétiques 

de frittage de l'électrode et de la couche diélectrique au cours du processus de co-frittage des 

MLCCs. Cependant, quand il s'agit de l'origine de ces défauts et de leur évolution pendant le 

processus de frittage, peu de connaissances sont disponibles. Les méthodes conventionnelles 

d‟observation post-frittage souffrent de limitations. Dans ce contexte, de l‟imagerie in-situ 

synchrotron par rayons X et des simulations numériques reposant sur la méthode des 

éléments discrets (DEM) sont utilisées pour explorer l'origine et l'évolution des défauts au 

cours du processus de co-frittage. L‟imagerie par rayons X, y compris de la radiographie 2D 

et 3D par nano tomodensitométrie (X -ray nCT ), permet l'observation in situ non-destructive 

de l‟évolution de la microstructure en 2D et 3D. La DEM, de son côté, peut simuler le frittage 

de MLCCs en tenant compte de la nature particulaire des poudres (granulométrie, 

empilement, etc ). 

Un dispositif expérimental à rayons X (TXM, Transmission X-ray Microscope) avec une 

résolution spatiale de 30 nm au synchrotron APS (Advanced Photon Source, Argonne 

National Laboratory, USA) a été utilisé pour caractériser un volume cylindrique représentatif 

de Ø 20 µm × 20 µm extrait d'une puce 0603 (1,6 mm × 0,8 mm) au nickel (Ni) +  titanate de 
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baryum (BaTiO3, ou BT) avant et après frittage sous argon hydrogéné (2%). La tomographie 

3D de la microstructure montre que les discontinuités de l'électrode finale sont liées à des 

hétérogénéités initiales dans les couches d'électrodes. La radiographie in-situ aux rayons X 

pendant le frittage (vitesse de chauffage de 10 °C/mn, température de maintien à 1200 °C 

pendant 1 heure, puis refroidissement à 15 oC/min) d‟un volume représentatif d'électrode au 

palladium (+ baryum-néodyme-titanate) confirme bien que les discontinuités dans l'électrode 

proviennent de l'hétérogénéité initiale de la poudre, qui est lié à la nature du compactage d'un 

matériau particulaire. La discontinuité se produit à l'étape précoce du cycle de frittage. A ce 

stade, l'électrode métallique commence à fritter tandis que le matériau diélectrique peut être 

considéré comme un substrat inerte qui contraint le frittage de l‟électrode. 

Des études corrélatives utilisant un FIB-SEM (Focused Ion Beam Scanning Electron-

microscopie) en tomographie à haute résolution (5 × 5 × 5 nm3) ont été effectuées sur des 

échantillons MLCC à vert et frittés. Elles confirment que la résolution de la nanotomographie 

X est suffisante pour étudier l‟évolution des hétérogénéités. Cependant la  tomographie par 

FIB permet à la nanotomographie X d‟être réinterprétée avec plus de précision. D'autre part, 

le FIB fournit les paramètres des particules pour les simulations DEM. 

La méthode des éléments discrets (DEM) a été utilisée pour simuler la microstructure du 

système multicouche lors du frittage. Ces simulations fonctionnent à l'échelle des particules 

et permettent donc de reconnaître la nature particulaire des multicouches à un stade précoce 

de frittage. Tout d'abord, le frittage de la matrice de nickel avec inclusions BT a été simulé en 

utilisant le code dp3D (développé à SIMaP/GPM2, Université de Grenoble, France). L‟effet 

retardateur des inclusions de BT sur le frittage de la matrice de nickel a été prédit en faisant 

varier la taille, la quantité et l'homogénéité des inclusions. Nous avons pu montrer que la 

vitesse de densification de la matrice diminue avec l'augmentation la fraction volumique 

d'inclusions et avec la diminution de la taille des inclusions. Pour une fraction volumique 

donnée, et une taille d‟inclusions donnée, une meilleure dispersion des inclusions conduit à 

un retard plus marqué de la densification du frittage de la matrice de nickel. 

Le co-frittage de multicouches de BT/Ni/BT a été simulé en tenant compte des informations 

collectées à partir de la tomographie FIB-SEM à résolution élevée (taille des particules, 

distribution de taille, hétérogénéités, et pores). Le profil de température aussi été reproduit. 

On constate que les discontinuités d'électrodes proviennent des hétérogénéités initiales dans 

le comprimé à vert et se forment au début de frittage sous contrainte. Ces résultats de 
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simulation sont en bonne correspondance avec les observations expérimentales. Une étude 

paramétrique indique que les discontinuités d'électrodes peuvent être minimisées par 

l'homogénéisation de la compacité, par l‟augmentation de l'épaisseur des électrodes et par 

l‟utilisation d‟un chauffage rapide. 

A partir des résultats expérimentaux et  des simulations DEM, une conclusion générale peut 

être avancée: la discontinuité finale provient de l'hétérogénéité initiale dans les couches 

d'électrodes et survient à un stade précoce de frittage lorsque les couches diélectriques 

contraignent les couches d'électrodes. 

Un mécanisme d'évolution des défauts est proposé: après laminage des couches de BT, il 

existe des régions inévitablement hétérogènes dans les électrodes. Pour des températures 

inférieures à 950-1000 °C, la poudre de nickel se densifie sauf dans les zones hétérogènes 

pour lesquels un phénomène de dé-densification a été observé. Pendant cette étape, les 

couches de nickel sous traction. La contrainte de traction dans les sections les plus minces 

induit un flux de matière vers les sections plus épaisses. Ce phénomène intervient jusqu‟à la 

disparition locale des sections les plus minces qui forment ainsi des discontinuités. Lorsque le 

nickel est complètement dense, les électrodes sont soumises à une contrainte de compression 

à haute température (1100 °C) en raison de la densification du BT. La contrainte de 

compression provoque une contraction du nickel dense visqueux, ce qui entraîne un 

gonflement des électrodes et par conséquent une nouvelle augmentation de la discontinuité de 

l'électrode. En parallèle, les additifs BT nanométriques sont rejetés en raison de leur non-

mouillage par le nickel à haute température. Les additifs agrégés (BT) frittent jusqu‟à leur 

éventuel percolation entre deux couches adjacentes de BT. Ceci conduit à l'amélioration de 

l'adhérence mécanique entre les couches de Ni et de BT dans les MLCCs. 

 

Mots clés: Frittage; Condensateur céramique multicouche (MLCC); Méthode des éléments 

discrets; Nano-tomographie 
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Abstract 

Multi-Layer Ceramic Capacitors (MLCCs) are key passive components in modern electronics. 

MLCCs consist of alternating metal electrode and ceramic dielectrics layers. In ultrathin 

MLCC chips, the micrometric layers are composed of submicrometric metal and ceramic 

powders and nano sized ceramic additives (to retard the sintering of electrode and minimize 

the sintering mismatch). A number of defects such as cracks, delamination of layers and 

electrode discontinuity and homogeneity, may arise in the processing of these ultrathin 

MLCCs. The cracks and delamination result in product rejection. Electrode discontinuities 

(uncovered areas) and thickness homogeneity generate a number of problems including 

capacitance loss, electrical short, leakage current and decreased reliability. 

It is generally recognized that these defects are linked to the sintering kinetics mismatch 

between electrode and dielectric materials, during the co-firing (co-sintering) process of 

MLCCs. However, when it comes to the origin of these defects and to their evolution during 

the sintering process, little knowledge is available. Conventional post-sintering and 2-

dimensional (2D) imaging methods suffer limitations. 

In this context, in-situ synchrotron X-ray imaging and Discrete Element Method (DEM) have 

been carried out to explore the origin and the evolution of defects during the co-sintering 

process. X-ray imaging including 2D radiography and 3-dimensional (3D) nano computed 

tomography (X-ray nCT) enable non-destructive in-situ observation of the microstructure 

change in 2D and 3D. In parallel, DEM can simulate the sintering of MLCCs by taking into 

account the powders‟ particulate nature (particle size, packing, etc.) 

Synchrotron (Advanced Photon Source, Argonne National Laboratory, IL, USA) X-ray based 

Transmission X-ray Microscope (TXM) with spatial resolution of 30 nm was used to 

characterize a representative cylindrical volume of Ø 20 µm × 20 µm extracted from a 0603 

(1.6 mm×0.8 mm) case size Nickel (Ni)-electrode Barium Titanate (BaTiO3, or BT)-based 

MLCC before and after sintering under 2H2%+Ar atmosphere. 3D tomographic 

microstructure imaging shows that the final electrode discontinuity is linked to the initial 

heterogeneity in the electrode layers. In situ X-ray radiography of sintering (heating ramp of 

10 oC, holding at 1200 oC for 1 hour, cooling ramp -15 oC) of a Palladium (Pd) electrode 

BNT (Barium-neodymium-titanate) based MLCC representative volume was also carried out. 
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It confirmed that discontinuities in the electrode originate from the initial heterogeneities, 

which are linked to the very particulate nature of the powder material. The discontinuity 

occurs at the early stage of the sintering cycle. At this stage, the electrode starts to sinter 

while the dielectric material may be considered as a constraining substrate.   

Correlative studies using Focused Ion Beam - Scanning Electron Microscope (FIB - SEM) 

tomography were conducted on green and sintered MLCC samples at high resolution (5 × 5 × 

5 nm3). FIB images confirmed that the resolution of the X-ray nCT is sufficient to deal with 

these heterogeneity evolutions. Still, FIB tomography allows the X-ray nCT to be re-

interpreted more accurately. Also, it provides detailed particulate parameters for the DEM 

simulations. 

The DEM was used to simulate the microstructure of a multilayer system during sintering. 

These simulations operate at the particle length scale and thus recognize the particulate nature 

of the multilayers at the early stage of sintering. First, the sintering of Nickel matrix with BT 

inclusions was simulated using the dp3D codes (developed at SIMaP/GPM2, Université de 

Grenoble, France). The retarding effect of BT inclusions on the sintering of Nickel matrix 

was predicted by varying the size, the amount and the homogeneity of inclusions. It is found 

that the densification rate of the matrix decreases with increasing volume fraction of 

inclusions and with decreasing size of inclusions. For a given volume fraction and size of 

inclusions, a better dispersion of the inclusions results in a stronger retardation of the 

densification kinetics of the nickel matrix. 

Co-sintering of BT/Ni/BT multilayers was simulated with DEM by taking into account the 

particulate nature collected from the high resolution FIB nanotomography (FIB-nT) data, 

such as particle size, size distribution, heterogeneities, pores, and geometry. The temperature 

profile was also reproduced in these simulations. It is found that the electrode discontinuities 

originate from the initial heterogeneities in the green compact and form at the early stage of 

sintering under constraint, in good correspondence to the experimental observations. 

Parametric studies suggest that electrode discontinuities can be minimized by homogenizing 

the packing density and thickness of the electrodes and using a fast heating rate. 

Based on both experimental and DEM simulation results, a general conclusion is reached: the 

final discontinuity originates from the initial heterogeneity in the electrode layers and occurs 

at the early stage of sintering when the dielectric layers constrain the electrode layers. 
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A defect evolution mechanism is proposed: after the lamination of BT sheets, there exist 

inevitably heterogeneous regions in the electrodes. Below 950-1000 oC, the nickel powder 

densifies except in heterogeneous zones for which desintering has been observed. At this 

stage, the Ni layers are under tensile stress. Tensile stresses in the thinner sections induce 

matter flow towards the thicker sections until the thinner sections are disrupted and 

discontinuities form. Once nickel is fully dense, electrodes are subjected to compressive 

stress at high temperature (1100 oC) due to BT densification. The compressive stress causes 

contraction of the viscous nickel, resulting in swelling of electrodes and hence a further 

increase in electrode discontinuity. Meanwhile, the nano-sized BT additives are expelled due 

to their unwettability with Ni at high temperature. The aggregated BT additives sinter, 

possibly forming percolation between two adjacent BT layers and enhancing the mechanical 

adhesion between Ni and BT layers in the MLCCs.  

 

Key Words: Sintering; Multilayer Ceramic Capacitor (MLCC); Discrete Element Method; 

Nanotomography 
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Chapter 1 

Introduction 

Capacitors, resistors and inductors are passive components often considered as minor but 

crucial parts in modern electronics. Capacitors can accomplish in electrical circuits numerous 

functions including blocking, coupling and decoupling, alternating-direct current separation, 

filtering and energy storage [1]. In particular, ceramic capacitors are crucial to leading-edge 

semiconductor devices, which cannot operate properly without them. In 2012 the global 

capacitor market reached $17.933 billion USD, including $8.8 billion USD in ceramic 

capacitors. Unit shipments of capacitors totalled an estimated 1.594 trillion pieces worldwide 

[2]. Multi-Layer Ceramic Capacitors (MLCCs), characterized by their high volumetric 

efficiency, high reliability, and excellent high-frequency features, dominate in the ceramic 

capacitor market. In 2008, it accounted for ~90% of the capacitor market in part volume [1]. 

The global MLCC market is forecast to grow at a compound-annual-growth rate of 22.2 % 

over the period 2010-2014 [3]. One of the key factors contributing to this market growth is 

the increasing demand for MLCCs in consumer electronics such as cellular phones, digital 

players and personal computers (PCs). Figure 1.1 shows typical MLCCs mounted on a 

graphic card circuit. 

 

Figure 1. 1 MLCCs mounted on a graphic card circuit [4] 

 



Introduction 

- 2 - 
 

Recently, trends towards miniaturization, higher performance, and lower energy-consumption 

have driven research and development efforts [4]. Miniaturizations of passive components 

used in these pieces of equipment have also been accelerated. With hundreds of MLCCs used 

in typical electronic devices (Table 1.1), trillions of pieces of MLCC are demanded by market 

each year [5]. 

Electronic equipment Typical number of MLCCs 

Laptop PC 730 

Cellular Phone 230 

Smart Phone 500 

Digital Camcorder 400 

Car Navigation System 1000 

Digital TV 1000 

Table 1. 1 Number of MLCCs used in electronic devices [6] 

Since the first MLCCs were introduced in the early years of World War II there have been 

two major development trends. One is towards smaller size and higher capacitance, that is 

towards maximizing volumetric efficiency (capacitance per volume) at a rate that exceeds 

Moore‟s Law [7] (Figure 1.2). 

 

Figure 1. 2 Case size trend over the year (Murata’s road map [8]) 
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To keep pace with the miniaturization of modern electronics, the thicknesses of the electrode 

and dielectric layers are increasingly being downsized to meet the shrinking surface mounting 

space in the PCBs (Printed Circuit Boards). Presently, EIA 1 case sizes 0603 and 0402 are 

most common as shown in Figure 1.2. The state-of-the-art case size is EIA01005 (0.4 mm × 

0.2 mm). In a EIA 0402 case size 22 µF MLCC, thickness of dielectric layers is 

approximately 0.3 µm [6]. The smallest available size (0.2 mm × 0.1 mm) of commercial 

MLCCs by Murata still does not have an EIA definition. 

The other important trend is to reduce the production cost. Over the last two decades, the 

noble metal electrode (NME, mainly, palladium/silver) has been gradually replaced by the 

base metal electrode (BME, mainly, copper/nickel) due to the high price of Pd and Ag. 

Nowadays,  the BME-MLCCs account for more than 95% of the MLCC market [9]. 

 

Drawing EIA 
inch code 

Dimensions 
L × W(inch) 

IEC/EN 
metric code 

Dimensions 
L × W(mm) 

 
Dimensions L×W×H of the 

multi-layer ceramic chip 
capacitors 

01005 0.016 × 0.0079 0402 0.4 × 0.2 
015015 0.016 × 0.016 0404 0.4 × 0.4 
0201 0.024 × 0.012 0603 0.6 × 0.3 
0202 0.02 × 0.02 0505 0.5 × 0.5 
0302 0.03 ×  0.02 0805 0.8× 0.5 
0303 0.3× 0.03 0808 0.8 × 0.8 
0504 0.05 × 0.04 1310 1.3 × 1.0 
0402 0.039 × 0.020 1005 1.0 × 0.5 
0603 0.063 × 0.031 1608 1.6 × 0.8 
0805 0.079 × 0.049 2012 2.0 × 1.25 
1008 0.098 × 0.079 2520 2.5 × 2.0 
1111 0.11 ×  0.11 2828 2.8 × 2.8 
1206 0.126 × 0.063 3216 6.2 × 1.6 
1210 0.126 × 0.10 3225 6.2 × 2.5 
1410 0.14 × 0.10 3625 3.6 × 2.5 
1515 0.15× 0.15 3838 3.81 × 3.81 
1806 0.18 × 0.063 4516 6.5 × 1.6 
1808 0.18 × 0.079 4520 6.5 × 2.0 
1812 0.18 × 0.13 4532 6.5 × 6.2 
1825 0.18 x 0.25 4564 6.5 × 6.4 
2010 0.20 × 0.098 5025 5.0 × 2.5 
2020 0.20 × 0.20 5050 5.08 × 5.08 

Table 1. 2 EIA code table 

                                                           
1 Metric codes define the dimensions of MLCC chips: 0402 stands for (0.4 mm × 0.2 mm) for example, (0402 is 
01005 in inch code), see Table 1.2. The EIA code is used for the MLCCs in this thesis. 

http://en.wikipedia.org/wiki/File:MLCC-Abmessungen-WIKI.png
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1.1 Basics of Multi-Layer Ceramic Capacitors (MLCCs) 

1.1.1 Structure  

A MLCC is a monolithic block of ceramic consisting of two sets of offset, interweaved 

(“interdigitated”) planar electrodes that extend to two opposite surfaces of the ceramic 

dielectric (Fig. 1.3). The capacitance C (unit, farad, F) of a MLCC is given by：  

( 1)e
r o

e

A N
C

d
                                                            (1.3) 

Where İ0 is the vacuum permittivity (unit F·m-1), İr the relative permittivity of the dielectrics 

(dimensionless), eN  the number of inner electrodes, A the capacitive area of the electrodes, 

and ed  the thickness of the dielectrics. 

 

The area A is increased by stacking many electrodes in parallel.  This construction allows for 

very thin inter-planar space ed  between opposing electrodes. For a given case size, ed  is 

equal to the chip thickness H divided by eN . Thus the capacitance C is proportional, for a 

given chip thickness, to 2
eN . 

 

Figure 1.3 Cut-away view of a MLCC chip (adapted from Kishi [4]) 

 

1.1.2 Materials 

a) Ceramic Dielectric Materials[1]  

Ceramic dielectrics cover a broad range of properties, from steatite with an İr value of 6 to 

complex ferroelectric compositions with İr higher than 20,000. Commercial ceramic 

dielectrics can be categorized into three classes: 
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Class I dielectrics usually include low- and medium- permittivity ceramics with dissipation 

factors (loss tangent2) < 0.003. Relative permittivity İr covers a range of 15-500 with stable 

temperature coefficients of permittivity that lies between +100 and -2,000 ppm/°C.  

 

For example, a P3K capacitor has a -1,500 ppm/°C change in capacitance and a tolerance of ±

250 ppm/°C, and a C0G capacitor has zero temperature coefficient and a ±30 ppm/°C 

tolerance. 

 

Significant 
figure of 
temperature 
coefficient of 
permittivity 
(ppm/C) 

Symbol Multiplier  
applied to 
significant 
 figure 

Symbol Tolerance of 
temperature. 
coefficient (ppm) 

Symbol 

0 
0.3 
0.8 
0.9 
1.0 
1.5 
2.2 
6.3 
4.7 
5.6 
7.5 

C 
B 
L 
A 
M 
P 
R 
S 
T 
V 
U 

-1 
-10 
-100 

-1,000 
-10,000 

1 
10 
100 

1,000 
10,000 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

30 
60 
120 
250 
500 
1,000 
2,500 

G 
H 
J 
K 
L 
M 
N 

Table 1. 3 Class I EIA specification codes for Class I dielectrics 

 

Class II//III dielectrics consist of high-permittivity ceramics based on ferroelectrics. They 

have İr values between 2,000 and 20,000 and properties that depend more on temperature, 

field strength and frequency than Class I dielectrics. Their dissipation factors are generally 

less than 0.03 but may exceed this level in some temperature ranges and in many cases 

become much higher when high AC fields are applied. Their main importance lies in their 

high volumetric efficiency (Table 1.4). 

 

 

 

                                                           
2  The loss tangent is a parameter of a dielectric material that quantifies its inherent dissipation of 
electromagnetic energy 
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EIA Code Temperature range/oC EIA Code Capacitance change/% 
X5 -55 to +125 D ±6.3 
X7 -55 to +150 E ±4.7 
X8 -30 to +85 F ±7.5 
Y5 +10 to +85 P ±10 
Z5  R ±15 

  S ±22 
  T +22 to -33 
  U +22 to -56 
  V +22 to -82 

Table 1. 4 Coding for temperature range and capacitance variation for Class II/III 

Capacitors (codes D-R: Class II; Codes S-V: Class III) 

For instance, a Z5U capacitor will operate from +10 °C to +85 °C with a capacitance change 

of at most +22% to -56%. An X7R capacitor will operate from -55 °C to +125 °C with a 

capacitance change of at most ±15%. 

 

Class IV dielectrics have a conductive phase that effectively decreases the thickness of 

dielectric layers in capacitors by at least an order of magnitude. Very simple structures such 

as small discs and tubes having two parallel electrodes can achieve capacitances of over 1 mF. 

Their disadvantages are low working voltages in range of 2-25V and high losses. They 

mainly apply in “barrier layer” capacitors that are now very little used and considered as 

outdated.  

 Barium Titanate [5]  

Emblematic for class II/III dielectrics, barium titanate (BaTiO3, or BT) was discovered 

simultaneously in several countries during World War II. Due to the presence of 

ferroelectricity, BT features high permittivity (maximum İr >10,000) that was orders of 

magnitude greater than other existing dielectrics at that time. The technological importance of 

BT was recognized immediately, and extensive efforts were devoted to tune its dielectric 

properties. Nowadays, BT is still the base material for ceramic dielectrics. BT has a 

perovskite crystal structure as shown in Figure 1.4. 
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Figure 1. 4 Perovskite crystal structure of BaTiO3 (from Perditax [10]) 

 

Three phase transitions take place in BT when cooled from high temperature (Fig. 1.5): cubic 

to tetragonal at ~120 °C, tetragonal to orthorhombic at 0 °C, and orthorhombic to 

rhombohedral at -90 °C. The temperature induced phase transitions cause dramatic drifts in 

dielectric constants. Thus, pure BT cannot be used directly since the dielectric in the 

capacitors should have little temperature dependency. Manufacturers typically use solid 

solutions of BT. with dopants based on Sr, Ca, Zr, Sn and rare earths. Dopants broaden the 

dielectric constant peaks of the doped BT. 

 

Figure 1. 5 Phase transformation of BaTiO3 (after Pan [5]) 

http://commons.wikimedia.org/wiki/User:Perditax
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b) Electrode metals 

The electrode material is supposed to lead to a conductive and continuous film that does not 

diffuse into, or react with the ceramic dielectric during sintering. This requires the use of non-

oxidizing metals or alloys with high melting points. There are two material systems used 

today to make ceramic capacitors: Noble Metal Electrode (NME) and Base Metal Electrode 

(BME). 

 

 NME 

The NME is the older technology and uses Pd/Pd-Ag electrodes, Ag termination, and Ni and 

Sn plating. Palladium reduces during heating to allow film formation, and its surface oxidizes 

during cooling (below 870 °C). This causes it to bond to the ceramic. For cost reduction, 

increasing amounts of silver are added to the electrode alloys to replace palladium. This also 

allows the melting point of the alloy to be lowered. The development of lower firing 

formulations allows the use of more silver, which results in electrode cost savings.  

 

 BME 

The BME is of a newer technology and uses Ni electrode, Ni or Cu termination, and Ni and 

Sn plating. The use of Ni electrodes reduces further the cost of electrode, but the requirement 

for a low oxygen partial pressure (to keep the metal from oxidizing) during firing causes 

significant changes in ceramic composition and processing. Base-metal-electrode MLCCs 

have accounted for >95% of global MLCC market for their high volumetric efficiency and 

low cost [9]. 

  

Metals Melting point(°C) Resistivity(mΩ) Firing  atmosphere Price ratio 

Ag 961 1.62 Air 3 

Cu 1080 1.72 Reducing 1 

Ni 1453 6.9 Reducing 1 

Pd 1552 10.4 Air 80 

Table 1. 5 Physical properties and price ratio of various electrodes [4] 
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1.1.3 Manufacturing of MLLCs 

The processes used in the manufacture of MLCCs require a high degree of sophistication to 

insure high-yield, large-scale and low-cost production. The typical procedure of MLCCs 

fabrication is shown in Figure 1.6.  

 

Figure 1. 6 A schematic of the MLCC fabrication process (adapted from Pan [5]) 

 Ceramic slurry making [11] 

The ceramic slurry is made by mixing predetermined proportions of powder in a solvent, 

dispersing agent, binder (polyvinylbutyral, PVB), plasticizer and other additives using 

dispersing apparatus such as a bead mill, ball mill, attriter, paint shaker or sand mill to yield a 

homogeneous ceramic slurry. 

 Tape casting 

The slurry is cast on a film carrier by tape casting (doctor blading). The slip is carried by a 

conveyor belt into a drying oven to produce the dry ceramic tape. This tape is then cut into 

pieces, so called sheets. A proper dispersion of the powder in the slip is necessary to secure a 

maximum packing in the dried slip.  

 Screen printing 

The electrode ink is made by mixing a submicron metal powder, solvents and ceramic 
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additives. The ink is deposited on the green ceramic sheets according to the electrode patterns 

using a screen printing process. Poor printing quality may cause significant yield loss. Proper 

dispersion of metal particles helps to provide a homogeneous film. This is required to 

minimize the amount of metal that gives a continuous fired film.  

 Stacking and lamination 

The patterned sheets are stacked and laminated to form a solid bar. The pressure, temperature 

and dwelling time are important parameters and have to be optimized in accordance with to 

the material system. 

 Dicing 

The bar is cut into separate parts (capacitors). The parts are now in a “green” state. In general, 

the yield decreases with increasing volume of capacitor and depends on the aspect ratio of the 

component.  

  Binder burn out 

The binder burn-out or bake-out (BBO) process is to remove the organics from the chips 

before firing. This process usually requires the longest time and often causes a large amount 

of product rejection. Voids or pores arise when the generation of gaseous products exceeds 

some critical pressure within the body. The heating profiles need to be adjusted according to 

specific capacitor geometry and size. This step must be performed gradually since excessive 

initial heating rates result in rapid gas generation. Therefore, it is necessary to control the 

heating rates and the atmosphere.  

  Firing 

The firing (sintering) of green parts is conducted in kilns with slowly moving conveyor belts. 

The temperature profile is crucial to the characteristics of the capacitors. Time dependent 

changes in firing conditions and variations due to location of the parts in the kiln must be 

minimized.  

 Wet tumbling 

During this process, sharp corners of MLCCs are rounded to minimize potential breakage 

during handling. Also, this rounding of corners is helpful to obtain good coverage of 

termination ink. 

 Termination and curing 
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Fired chips are terminated in the electrode pick-up regions with a conductive ink. Then the 

ink cures in the range of 650-800 oC. The termination provides the external layer with 

electrical and mechanical connection to the capacitor. The conductive ink is made of metal 

powder, solvents and glass frit in a mixer.  

 Plating 

The termination is coated with a nickel layer and a tin layer using an electroplating process. 

The nickel serves as a barrier layer between the tin plating and the termination. The tin is to 

protect the nickel from oxidizing. 

 Testing 

The parts are tested and sorted according to their correct capacitance tolerances. The parts 

can be packaged on tape and reel after this process. 

1.1.4 Challenges for miniaturization of MLCCs 

As Eq. (1.1) indicates, increase in volumetric efficiency of MLCC can be achieved by 

increasing the number of dielectric layers and decreasing the layer thickness. Today, a Class 

II capacitor could have up to 1000 submicrometric layers. The innovative efforts in MLCC 

technology has resulted in an exponential increase of capacitance in recent years (see Figure 

1.7). With the thinning of dielectric layers, tape-casting technology becomes problematic for 

the development of next generation MLCCs. Conventional processing of tape casting/screen 

printing has reached its technological limit at 0.8-1.0 ȝm. MLCC manufacturers tend to 

reduce the BT grain size in order to pack more grains across the thickness of the dielectric 

layer. However, due to size effects, smaller grains lead to lower permittivity and thus to lower 

capacitance [12-15]. Many efforts have gone to the development of novel core-shell ceramic 

dielectrics with higher dielectric constant and smaller grain size [16-21]. The core-shell grain 

features a core region, pure tetragonal structure BT surrounded by a pseudocubic shell which 

contains other additive elements [22-24].  



Introduction 

- 12 - 
 

 

Figure 1. 7.The electrode and dielectric thickness evolution [25]  

 

In the meanwhile, thinning of electrode also goes with the thinning of dielectrics to reduce 

the case size of the chips and the consumption of electrode materials. However, when the 

thickness of electrodes approaches 1.0 ȝm or less, significant discontinuities of electrode 

build up after the firing process (see Fig. 1.8). The electrode coverage loss results in a direct 

decrease in the overlapping area (A) in Eq.(1.1). An average discontinuity of 15% causes 

around 20% capacitance loss. Inversely, this means that, for a given capacitance, the volume 

of MLCC could have further downsized by 20% if one was able to get rid of this 

discontinuity. Furthermore, the effects of microstructural heterogeneities are much more 

significant when thinning electrodes. In particular, the local electric field is disturbed at 

electrode discontinuities and roughness [26-29]. Thus, controlling of the connectivity and 

smoothness of the electrode in ultrathin MLCC is of much interest to enhance the capacitance, 

the performance and the reliability of MLCCs. 
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Figure 1. 8 SEM image of the cross-section of a sintered 0603 type 22 µF MLCC (provided 

by Samsung Electro-Mechanics). Surface was treated with Focused Ion Beam. 

 

1.2 Motivation 

It has been reported that defects in electrode layers are related to different processing phases. 

Gas release from inappropriately controlled BBO [30] results in residual pores which act as 

initial defects. To achieve thinner electrode layers, it is necessary to reduce the electrode 

paste attachment during the printing process. However, a reduction in the paste attachment 

results in a decreased coverage rate of the metal electrode following the firing process [31]. 

Moreover, the sintering shrinkage mismatch [32] between the electrode and dielectric layers 

also leads to other defects, such as delamination, cracks, and warpage [30, 31, 33-35]. 

 

Takahashi [36] and Sugimura [31] et al. found that the addition of BT particles into the Ni 

paste results in a higher coverage ratio of nickel film on BT sheets due to reduced sintering 

mismatch. Accordingly, Kang et al. [37] have shown that an additional amount BT particle 

into the nickel paste decreases the shrinkage of the composite electrode.   

 

Weil et al.[38] studied the sintering of nickel film on BT sheets and found that instabilities of 

Ni film were formed as a series of interconnected or discrete nickel islands separated by 
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patches of exposed BT substrate surfaces. This is due to a dewetting effect and becomes 

significant when the nickel layer thickness is sub-micronmetric.  

 

Polotai et al. [28, 29, 39] proposed that thin (~10 nm) liquid (Ni, Ba, Ti) alloy layer formed at 

Ni/BT interfaces during sintering of ultrathin MLCCs. The presence of the high-temperature 

interfacial liquid film modifies the interfacial free energy and provides a fast kinetic pathway 

for mass transport, which leads to the enhanced Ni grain growth and degradation of the 

electrode layers. By using a fast heating scheme this liquid alloy could be suppressed and 

Yoon et al. [26] observed higher linear connectivity (93%) of electrode by using high heating 

rates of 3600 oC/h. Addition of refractory elements (Cr, Pt) into the nickel paste further limits 

the formation of interfacial liquid alloy layer and improves the Ni electrode continuity [40]. 

These authors also suggest that the residual carbon [41] due to incomplete removal of the 

binder plays a role in the formation of this liquid phase. 

 

To date, the investigations were mainly based on 2-dimensional (2D) information from 

sectioned surfaces using optical microscopy (OM) or Scanning Electron Microscopy (SEM) 

[26, 42]. First, the final microstructures cannot reveal correctly the origin and historic 

evolution of the defects. Second, 2D evaluation such as the linear electrode coverage is 

sometimes not sufficient to quantify defects and layer thickness shrinkage. Furthermore, 

inappropriate handling during sample preparation can be problematic and add some artifacts. 

Samantaray et al. [27] demonstrated Focused Ion Beam - Scanning Electron Microscope 

(FIB-SEM) based 3-dimensional (3D) tomography characterization on the 3D morphology of 

electrode in sintered MLCC sample for the first time. To refine the understanding of 

mechanisms that are responsible for the defects initiation and evolution during the co-firing 

of the MLCCs, we need some superior, non-destructive, 3D and quantifiable characterization 

techniques. 

 

In parallel to 3D observations, simulation of the sintering process at the pertinent length scale 

(particle length scale) should provide information that can relate the defect origin and 

evolution to structural parameters (particle size, particle packing, layer thickness, temperature 

profile, etc.)  

 



Introduction 

- 15 - 
 

1.3 Objectives and Organization of the Dissertation  

In this thesis, the aim is to better understand the origin of the electrode defects and the defect 

evolution mechanism during the co-firing process. This understanding will be built on the 

sintering phenomena at the particle length scale in 3D by using state-of-the-art nano-

tomography techniques and discrete element simulations. The dissertation is organized as 

follows: 

 

Chapter 2: This chapter presents a background study. The co-firing process of the MLCCs is 

revisited and the possible scenarios that might result in defects development are considered. 

Co-sintering or constrained sintering of composites and multilayers is reviewed. 

 

Chapter 3: This chapter describes the characteristics of the starting electrode and dielectric 

powders (Ni and BT, respectively) including their compositions, particle size distribution and 

sintering kinetics using X-ray diffraction (XRD), SEM and dilatometry. 

 

Chapter 4: In this chapter, the application of the state-of-the-art synchrotron based X-ray 

nano- computed tomography (nCT) is introduced. The microstructure of a Ni-MLCC sample 

is characterized using X-ray nCT and quantifications of microstructure evolution have been 

carried out before and after sintering. An in-situ x-ray radiographic observation on sintering 

of a Pd-MLCC sample is also presented and discussed. 

 

Chapter 5: In this chapter, correlative studies on the sintering of Ni-MLCCs have been 

carried out using high-resolution Focused Ion Beam (FIB)-SEM nanotomography. FIB-SEM 

reconstruction of Ni-MLCC samples have been conducted to enhance the resolution available 

in X-ray nanotomography. 

 

Chapter 6: In this chapter, the applications of discrete elements method to the sintering is 

introduced and reviewed. The effect of the ceramic additives on the sintering kinetics of the 

electrode paste materials is investigated using DEM simulation. Simulation parameters 

include the size, and the volume fraction and the dispersion degree of the additives. 

 

Chapter 7: Free sintering of single electrode and co-sintering sandwiched BT/Ni/BT layers 

are simulated using DEM. The defects origin and evolution of the electrode are investigated. 
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Comparison between the experiments and simulation limitations are commented. The effect 

of microstructure and process parameters, such as the thickness of the electrode layers, the 

green packing density, the arrangement of the particles, and the heating ramp have been 

investigated. 

 

Chapter 8: This chapter summarizes the findings from the experiments and DEM 

simulations. A defect evolution mechanism is put forward. Finally, recommendations are 

proposed to improve the manufacturing of MLCCs with less electrode discontinuity. 
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Chapter 2 

Co-firing of Multilayer Ceramic Capacitors 

Microstructural control in ultrathin MLCCs is nowadays one of the main challenges for 

maintaining an increase in volumetric efficiency of capacitance. To help solve this problem, 

understanding the impact of the firing process on the microstructure of materials (compact of 

metallic and dielectrics powder) is of the greatest importance. During the firing process of 

MLCC parts, complex phenomena take place, including chemical reaction, and 

microstructural evolution. In this chapter, we attempt to understand this firing process by 

considering the fundamentals of the sintering mechanisms in the firing process. Starting from 

an introduction to the sintering, the literature on co-sintering of composite and layered 

systems is revisited to find potential solutions. 

2.1 Sintering 

Generally, the term firing has been used when the processes occurring during the heating 

stage are very complex, as in many traditional ceramics produced from clay-based materials. 

In less complex cases, the term sintering has been used [43]. Sintering is a processing 

technique used to produce dense or density-controlled materials and products from metal 

and/or ceramic powders by applying thermal energy [44]. This sintering process is associated 

with a reduction of the free energy of the system. The sources that cause this reduction of the 

free energy are usually referred to as the driving forces for sintering. There are three possible 

driving forces: (i) the curvature of the particle surfaces; (ii) an external pressure, and (iii) a 

chemical reaction. 

 

When an external stress and a chemical reaction are not involved, surface curvature provides 

the driving force for sintering. Considering one mole of powder consisting of N spherical 

particles with a radius R. 

m
3 3

3 3
=

4 4
mM V

N
R R    (2.1) 

Where ρ is the density of the particles, M the molecular mass, and Vm the molar volume. The 

surface area of the powder is 
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2
A

3
=4 mV

S R N
R

     (2.2) 

If Ȗsv is the specific surface energy of the particles, then the surface free energy associated 

with the system of particles is 

3 s m
s s A

V
E S

R

      (2.3) 

Es represents the reduction in surface free energy of the system if a fully dense body were to 

be achieved finally. It implies powder with high surface energy (as for metals) or fine particle 

size is prone to sintering more rapidly. External pressure and chemical reaction are not in the 

scope of current study of sintering of MLCCs and not detailed here (see Ref. [44]). 

 

Sintering of crystalline materials is usually categorized into two types: solid state sintering 

and liquid phase sintering. Solid state sintering occurs when the powder compact is densified 

fully in the solid state at the sintering temperature. Liquid phase sintering occurs when the 

powder compact is densified during sintering in the presence of a liquid phase. Normally, this 

liquid phase is formed due to the sintering temperature exceeding melting point of one 

material. If it is not specified, sintering in this thesis refers to solid state sintering. 

2. 1.1 Mechanisms of sintering 

Sintering of polycrystalline materials occurs by transport of matter along definite paths (bulk, 

lattice, grain boundary, and surface) that define the mechanisms of sintering. Matter is 

transported from higher chemical potential regions (the source) to lower chemical potential 

regions (the sink). As schematized in Figure 2.1, there are six typical mechanisms of sintering 

in polycrystalline materials. They all lead to bonding and neck growth (a) between particles 

(with radius of R). They can also be generally categorized as densifying and nondensifying 

mechanisms.  

 

a) Nondensifying mechanisms include surface diffusion, volume (lattice) diffusion from 

the particle surfaces to the neck, and vapor transport (mechanisms 1, 2, and 3) which 

lead to neck coarsening without densification. The nondensifying mechanisms cannot 

simply be ignored because they reduce the curvature of the neck surface (i.e., 

sintering potential, activation energy). 
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b) Densifying mechanisms include grain boundary diffusion and lattice diffusion from 

the grain boundary to the pore (mechanisms 4 and 5) which permits neck growth as 

well as densification (common in polycrystalline ceramics) and plastic flow by 

dislocation motion (mechanism 6, common in the sintering of metal powders).  

R

a

 

Figure 2. 1 Six mechanisms for the sintering of crystalline particles: (1) surface diffusion, (2) 

volume diffusion from the surface, (3) evaporation/condensation transport, (4) grain 

boundary diffusion from the grain boundary, (5) volume diffusion from the grain boundary, 

and (6) plastic flow by dislocation motion (after Rahaman [43]). 

 

2.1.2 Sintering stages 

The curves in the Figure 2.2 shows the relative density against the sintering time in a typical 

sintering. Sintering is usually subdivided into three sequential stages referred to as: (1) the 

initial stage, (2) the intermediate stage, and (3) the final stage. 
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Figure 2. 2 Shrinkage during a typical sintering (after Kang [44].)  

1) The initial stage: this stage features a rapid inter-particle neck growth (Fig. 2.3) by 

diffusion, vapor transport, plastic flow, or viscous flow. Large initial differences in 

surface curvature characterize this stage, and densification accompanies neck growth 

for the densifying mechanisms. It is assumed to last until the normalized neck radius3 

has reached a value of 0.4-0.5. This corresponds to a linear shrinkage of around 3% 

when the densifying mechanisms dominate, for a packing with an initial green density 

of 0.5-0.6. 

2) The intermediate stage: this stage begins when pores have reached their equilibrium 

shapes as governed by the surface and interfacial tensions. Densification is assumed 

to result from pores simply shrinking to reduce their cross section. Finally, the pores 

become unstable and pinch off, resulting in isolated pores. The intermediate stage 

normally covers the major part of the sintering process, and it comes to an end when 

the density is ~0.9.  

3) The final stage: the final stage begins when the pores pinch off and become isolated at 

the grain corners. With continuous shrinking of pores, relative density of 0.90-0.95 is 

achievable. Fully dense final state has been achieved in the sintering of several real 

powder systems when all the pores vanish (Fig. 2.3).  

                                                           
3 Defined as the ratio of neck to particle radius 
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Figure 2. 3 The three stages of sintering and microstructure (after Tanaka [45]) 

2.2 Constrained sintering 

The term constrained sintering is commonly used to refer to sintering in which a geometrical 

constraint is present, as shown in Figure 2.4. Conversely, a system in which the constraint is 

absent is referred to as free or unconstrained system. The constraint may be inherent to the 

sintering system: for example, a second rigid phase (particles, platelets or whiskers) is 

incorporated intentionally into the matrix to obtained tunable functionality and improve the 

mechanical properties. A common feature of such inhomogeneities is that they often lead to 

different local densification, referred to as differential densification. Due to sintering 

shrinkage mismatch, some regions will be constrained by others. Even in a single-phase 

material system, the presence of agglomerates or inhomogeneous powder packing in the 

green bodies also provides constraining conditions (Fig. 2.4(a)). The inhomogeneities can 

also be density variations (green-density gradients) through a single-phase porous media (Fig. 

2.4(b)). 

 

Adherent films/coatings on a rigid substrate are required in some important applications, such 

as corrosion resistance coating, thermal barrier coating, insulating and optical coatings. 

Coatings made by deposition of particles, sol-gel or consolidated agglomerates need further 

densification. When a thin ceramic film is sintered on a rigid substrate, it is placed under 

biaxial tension and the densification can only occur in vertical direction (thickness direction) 

(Fig. 2.4(c)). 

 

Multilayered ceramics are widely used and being developed in electronics, information, 

medical and energy. Excellent examples include Low/High Temperature Co-fired Ceramics, 

Solid Oxide Fuel Cells, and piezoelectric multilayer actuators. When these multilayered 
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structures are co-fired, the different layers intend to shrink at different rates and constrain 

each other, giving rise to internal compatibility stresses (Fig. 2.4(d)). 

 

In the four types of co-sintering, two or more materials with different inherent densification 

behaviors are in physical contact. The difference in the densification behavior originates from 

the chemical nature or physical characteristics (e.g., particle size, green density) that control 

the densification behavior. The internal stresses induced have the potential to hinder 

densification and lead to defects and/or distortion in the fired bodies.  

 

In this section, focus will be concentrated on sintering with inclusions and co-sintering of 

multilayers. An example of density-induced constrained sintering can be found in Ref. [46]. 

 

Figure 2. 4 Schematic illustrations of structures that will undergo differential densification (a) 

Sintering of composite materials in which a porous matrix densifies around rigid inclusions; 

(b) a porous material that has a gradient in density; (c) a thin film densifying on a rigid 

(nondensifying) substrate; (d) Layered structures of two or more types of materials that 

densify at different rates (after Green [47]) 
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2.2.1 Sintering with inclusions (agglomerates) 

The presence of inert and rigid inclusions results in drastic reduction in the densification rates 

of both polycrystalline ceramic matrix composites [48-51] and metal matrix composites [31, 

37, 52, 53]. Hence, due to inhomogeneous or random distribution of the inclusions, 

differential densification takes place during sintering. This sintering shrinkage mismatch 

results in stresses concentration at the interfaces. Theoretically, when stresses exceed the 

strength of the materials, crack, delamination will develop, resulting in detrimental failure or 

loss of functionality (Fig. 2.5). 

Fast

Slow
(a) (b)

 

Figure 2. 5 Two types of interface flaws produced by the tensile stress when one region 

(shaded) sinters slower than the other: (a) radial cracks; (b) circumferential cracks 

(reproduced after Raj [48]) 

 

Different models have been proposed to describe the sintering behavior of such mixtures and 

have been reviewed by Bordia and Scherer [54-56]. These theoretical models and simulations 

operate under the following conditions: (i) the matrix is homogeneous and isotropic [57], and 

may be treated as a continuous linear viscoelastic body [48], (ii) the inclusions are inert rigid 

spherical particles that are homogeneously distributed in the matrix [58]. 

 The Rule of Mixtures 

The rule of mixtures assumes the densification of the composite to be a weighted average of 

the independent densification rates of the matrix and of the inclusions; that is, it assumes that 

in the composite, each phase densifies in the same way as it would independently by itself. If, 

for example, we consider the linear densification rate , defined as one-third the volumetric 

densification rate 1/ρ(dρ/dt), then according to the rule of mixtures: 
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(1 ) (1 )free free

c m i i i m i             (2.4) 

where c is the composite densification rate, free

m  is the densification rate of the free matrix, 

and i  (=0) is the densification rate of the inclusions. According to Eq.(2.4), the ratio 

/ free

c m  varies linearly as (1 )i . 

 

This model is considered limited and inadequate to describe the sintering behavior of the 

composites because the assumptions are too simplistic. 

 Scherer’s Model [55, 57] 

Scherer proposed the Composite Sphere (CS) model to deal with sintering with well-

dispersed inclusions. In the CS model, a core/cladding structure is used to represent the 

porous matrix in which the core represents the inclusion and the cladding represents the 

matrix (Fig. 2.6(a)). When the inclusion is much larger than the matrix particle size, justified 

in most practical composites, the matrix can be considered as a continuum. In doing this, 

phenomenological constitutive equations can be used for matrix. 

Spherical  rigid inclusion

Volume element in 
the sintering matrix

(a) (b)

Composite Sphere Model

 

Figure 2. 6 (a) the composite sphere model; (b) the stress components in a volume element at 

a distance r in the sintering matrix. The sphere has vi (volume fraction) of inclusions with 

radius value a and outer radius b (adapted from [55, 57]) 

 

A shrinking cladding (matrix) around a core (inclusion) gives rise to compressive stresses 

within the core and a compressive radial stress and tangential tensile stresses within the 

cladding (Fig. 2.6(b)). The mean hydrostatic stress in the matrix is: 
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According to Eq.(2.5), the mean hydrostatic stress m  is uniform in the matrix and it is 

independent of the radius and shape of the inclusions. Since i  is compressive, m  is tensile, 

opposing to the compressive sintering stress. m  is often called a backstress. 

 

The linear densification rate in the matrix is given by: 

1
[ ( )]

1
m i

m i

m m i

v

K K v

        (2.6) 

Where   is the sintering potential. It is also the compressive hydrostatic stress that causes 

densification of an unconstrained sintering material [54]. mK  is the densification or bulk 

viscosity. The backstress m  opposes   so it reduces the densification rate of the matrix. 

The tensile hoop stress m may influence the growth of radial cracks in the matrix. 

 

2.2.2 Constrained sintering of film and multilayers 

A common feature in sintering of these coatings and multilayers is that different components 

densify at different rates. Different stress states develop in the layers in analogy to the 

thermal expansion mismatch. The stresses in turn interact and modify the densification 

behavior of different layers. For instance, in-plane tensile stresses develop in the coating due 

to the constraint imposed from the substrate. This stress lowers the densification rate of the 

constrained film relative to that of a freely sintered one [59].  

 

 Sintering of thin films 

Bordia and Raj [60] studied the sintering of thin ceramic films on rigid substrates and 

presented a model using phenomenological descriptions of the densification and shear 

properties. Scherer and Garino [61] and Hsueh [62] performed similar analyses. Assuming 

the densifying film is linear viscous, by analogy with Hooke‟s law, the sintering rate along 

the orthogonal x, y, and z directions can be written as: 
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   (2.7) 

If the film is totally constrained in the xy plane, then 0x y    and the film stress, f , is 

easily derived from Eq.(2.7) as: 

1
p f

f

p

E        (2.8) 

The strain rate in the non-constrained direction, z , also follows and it depends only on υp and 

the unconstrained strain rate: 

1

1
p

z f

p

  
         (2.9) 

  Sintering of laminates 

In absence of external forces, the integrals of forces and bending moments along the 

thickness direction z should be equal to zero for a multilayer in mechanical equilibrium. Cai 

et. al. [63] considered a symmetric laminate consisting of alternating layers of two sintering 

materials. Applying the infinite plate solution to materials that densify by linear viscous 

sintering, it was shown that the equi-biaxial stresses that arise in the layers are given by: 

'
1 1

1
1 pE

mn
      (2.8) 

'
11

'
2 2

,        p

p

Et
m n

t E
     (2.9) 

Where t is the layer thickness, 1 2     the strain rate difference between the layers, 

' / (1 )p p pE E v   for plates and '
p pE E for beams and the subscripts refer to layer 1 or 2. 

The above solution is obtained by setting the strain rates in the two layers equal to each other 

and maintaining a force balance for the compensating tensile and compressive stresses in the 

two layers.  

 

When the stress is higher than the strength of materials, a variety of defects and shape 

distortions can be generated, including warpages [64-70], cracks [71] and delamination [72] 
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as shown in Figure 2.7. Besides, anisotropic pore orientation develops during constrained 

sintering of layers [73, 74].  

 

Figure 2. 7 A schematic of defects induced by constrained sintering of layers [75] 

 

In addition, when the thickness of polycrystalline film or thin layer is less than the critical 

value (in which case, the single grains cross the layer), they may become unstable under an 

interfacial energy equilibrium disturbance [76] and break up into discontinuous islands [38], 

thereby uncovering the substrate [31]. This instability is driven by capillarity (surface tension) 

due to the thermodynamic requirement of minimization of the interfacial energy. A necessary 

condition is that the film/substrate interface has a higher specific energy than the substrate 

surface. Miller et al. [77] analyzed the breakup phenomena of an Y2O3-stabilized ZrO2 film 

(8 mol% Y2O3) that was prepared by spin coating. By evaluating the total energy of the 

surfaces and interfaces to determine its minimum value as a function of the configuration of 

the film, an equilibrium configuration diagram was calculated (Fig. 2.8). The diagram can be 

divided into three regions, showing the conditions for the completely covered substrate, the 

uncovered substrate and the partially connected film (with the grain boundary just 

intercepting the substrate). 
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Figure 2. 8 An equilibrium configuration diagram for the sintering of a thin film with 

thickness of a and grain size of G (dihedral angle φ= 1β0 o) ( after Miller [77]) 

2.3 Co-firing of MLCCs  

Firing is a key and complex stage in the manufacture of MLCCs. In this stage of the 

fabrication route, the green chips are loaded into continuous kilns and fired on zirconia slabs. 

The multilayer capacitors with noble metal electrodes (NME), such as pure Pd, Ag-Pd and 

pure Ag inner electrodes are fired in air since they exhibit excellent oxidation resistance. 

Conversely, firing of MLCCs with Ni, Cu electrode is conducted in moist reducing 

atmosphere (0.1-0.01%H2/Ar-H2O) to control the oxygen partial pressure pO2 during the 

firing process. Time dependent changes in firing conditions, as well as variations caused by 

location of the parts in the kiln, must be minimized. A second binder burn-out (bake-out) 

(BBO) is applied to completely deplete the organics. After the sintering step the products are 

re-oxidized at a lower temperature of 1000 °C in a higher pO2 atmosphere consisting of moist 

Ar to recover resistivity. Figure 2.9 shows a typical firing profile for Ni-MLCCs.  
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Figure 2. 9 A typical firing cycle for the Ni-MLCCs 

 

Nano-sized BT particles are added to the nickel paste (see Fig. 2.10) to reduce the sintering 

shrinkage mismatch between nickel and BT layers during the firing process. The onset 

sintering temperature for Ni electrode material is 400-600 oC, and the onset sintering 

temperature for BT is 900-1000 oC [29]. Thus, we are expecting the following sintering 

scenarios: 

I. During the heating ramp and the second BBO, the Ni particles in the electrode sinter 

while the sintering of BT has not started yet. In presence of BT additive nanoparticles, 

the sintering kinetics of Ni particles is expected to be modified.  

II. During the early stage of sintering of Ni particles, the particles at the interfaces 

interact with the BT particles through viscous friction. This interaction should hinder 

the rearrangement of the Ni particles.  

III. At high temperature (>1000 oC), sintering of Ni and BT co-exists. This has been 

referred to as co-sintering due to the different sintering strain rates encountered in the 

different layers. In addition, different stress states develop in the layers. This in-plane 

stress state plays an important role in the anisotropy development. 
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Figure 2. 10 FIB treated cross-sections of 0603 size 22 µF Ni-MLCC (Samsung Electro-

Mechanics, Inc.) (a) before firing; (b) after firing 

 

2.4 Conclusion  

We have attempted in this chapter to relate the sintering sciences and the practical firing 

processes employed in the MLCC industry. Based on this review, we conclude that in order 

to understand defect evolution during the co-firing process of MLCCs, the sintering behavior 

and the microstructure evolution must be better analyzed. This may be undertaken by 

studying in more details the co-sintering of Ni/BT composite material and of Ni/BT  

multilayers. 

 

The general aim of this thesis is to describe the use of novel tools (tomography and numerical 

simulations) that may help in attaining this goal. 

.
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Chapter 3  

Material characterization and sintering 

behaviour study 

The aim of this chapter is to characterize the materials involved in this work, including the 

starting Nickel (Ni) powder and the BaTiO3 (BT) dielectrics powder. The Ni-electrode BT 

based MLCC chips were also characterized. The microstructures of these materials were 

characterized using Scanning Electron Microscope (SEM) and their sintering behavior were 

characterized by dilatometry. 

3.1 Materials 

 Starting powders 

Ni powder and X5R BT powder were provided by Samsung Electro-mechanics (Suwon, 

South Korea). Ni powder (Shoei Chemical, Tokyo, Japan) is made using a PVD (Physical 

vapor deposition) method. X5R type characteristic 99.9% BT powder (NanoAmor, Inc., NM, 

USA) is made using solid state synthesis as the dielectric material. Nickel paste is made by 

mixing 55 vol. % of Ni and nano-sized BT powder at a ratio of 100 : 7 by weight with 41 

vol. % terpineol (C10H18O) and 4 vol. % resin.  

 MLCC manufacture 

For Ni-electrodes MLCC chips, EIA 1206 series (3.2 × 1.6 × 1.6 mm3), and EIA 0603 series 

(1.6 × 0.8 × 0.8 mm3), were fabricated at Samsung Electro-mechanics (Suwon, South Korea). 

Dielectric sheets (2.5-ȝm-thick) were fabricated by tape casting with X5R type BT powder. 

Electrodes (1.2-ȝm-thick) were made with deposition of nickel paste on those sheets using 

screen-printing. Patterned sheets were laminated, isostatically pressed, and finally diced into 

green chips. 

 Preparation of BT and electrode pellets 

Nickel paste was dried first in an oven at 100 oC for 2 hrs, and then the organic binder was 

removed in a muffle furnace with a temperature profile: heating 25-120oC at 3oC/min and 

http://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCwQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPhysical_vapor_deposition&ei=YfK-UeTKG5G1hAehnoGgCg&usg=AFQjCNFq-DetO6tOVvNelExST2i9lNxE1w&bvm=bv.47883778,d.ZG4
http://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCwQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPhysical_vapor_deposition&ei=YfK-UeTKG5G1hAehnoGgCg&usg=AFQjCNFq-DetO6tOVvNelExST2i9lNxE1w&bvm=bv.47883778,d.ZG4
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120-230 oC at 0.3 oC /min, holding for 2 hrs at 230 oC, and cooling 230-25 oC at 3 oC/min. 

The debinded bulk Ni paste was ground into powder in a corundum mortar.  

 

Ni and BT powders were compacted in a closed cylindrical die (inner Ø 8mm) under uniaxial 

pressure of 30 MPa using a P/O/Weber (PW100, Remshalden, Germany) laboratory press.  

3.2 Experiment procedure 

 Particle size measurement  

A LA-950 high performance Laser diffraction Analyzer (Horiba, Kyoto, Japan) was used to 

characterize Ni and BT particle size distribution. The LA-950 uses Mie Scattering (laser 

diffraction) to measure particle size of suspensions or dry powders with a measuring range of 

0.01-3000 µm. In practice, a small amount of powder is dropped into water or alcohol, and 

give the reflective index, and then the size distribution data is gathered [78].  

 Green density 

Green density measurement was conducted by weighting the mass and measuring the volume 

of cylindrical samples. Some parameters are defined as follows: 

Density definition: 
M

V
     (3.1) 

Theoretical or true density: .     (3.2)m
theor

m

M

V
 

 

Apparent density: .     (3.3)appar

envelop

M

V
 

 

Relative density: .

.

    (3.4)apparsolid

envelop theor

V
D

V


   

Percent porosity: 100(1 )    (3.5)porosity D    

Where M is the mass (Kg), mM the molar mass (Kg·mol-1), V is the volume (m3), mV  the 

molar volume (m3·mol-1), solidV  the volume of the solid phase in the porous media, and envelopV  

the overall volume including the volume of the solid phase and pore phase in the porous 

media.  

 

For BT pellet sample, relative density is given as: 
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For composite Ni paste sample, relative density is given as: 

. .

2

/ /
     (3.7)

/ 4

theor theor

Ni BT Ni Ni BT BT
electrode

envelop

V V M M
D

V H

 


     

Where .theor

BT , .theor

Ni are the theoretical density of the BT and Ni; NiM , BTM  are the mass of 

the Ni matrix and the BT additives in the electrode, and  , H  are the diameter and height of 

the samples.  

 Phase determination 

Room temperature X-ray powder diffraction (XRD) was applied to determine the phases of 

starting powders. X-ray diffraction is based on Bragg's law. The general relationship between 

the wavelength of the incident X-rays, angle of incidence and spacing between the crystal 

lattice planes of atoms is known as Bragg's Law, expressed as [79]: 

nȜ = 2dsinș   (3.8) 

Where n (an integer) is the "order" of reflection, Ȝ is the wavelength of the incident X-rays, d 

is the inter-planar space distance of the crystal and ș is the angle of incidence. 

 

Figure 3. 2 A schematic for the Bragg’s scattering [80] 

 

Dry BT and Ni paste samples are analyzed using a Bruker D8 X-ray diffractometer (Billerica, 

MA, USA) with Cu Kα1 X-Ray radiation.  

 Sintering kinetics 

After the removal of binders between 120-230 oC for 30 hrs in air, the samples were sintered 

in a DIL-402E dilatometer (NETZSCH, Germany) in 2%H2/Ar atmosphere at 800, 900 and 

1150 oC for 1 hr, at heating rate of 15 oC/min and cooling rate of 50 oC/min. To investigate 

http://en.wikipedia.org/wiki/Billerica,_Massachusetts
http://en.wikipedia.org/wiki/Billerica,_Massachusetts
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the effects of dwelling time on the electrode evolution, dwelling time was varied (t = 0, 5, 10, 

15, 20, 25, 30, 45 and 60 min). The linear shrinkages were measured in real time. Sintering 

behaviors of pure bulk electrode material and X5R dielectrics were also measured with a 

TOM-AC optical dilatometer (Fraunhofer ISC, Würzburg, Germany) as reference. The 

images were taken every 60 s and an average image calculated within the period of the 60 s 

was saved. Figure 3.2 shows the structure of the TOM-AC optical dilatometer. This optical 

dilatometry enables measurement with resolution of 0.4 µm [81] 

 

Figure 3. 3 TOM-AC optical dilatometer (adapted from user manual of the TOM-AC) 

 Scanning Electron Microscopy 

The starting powder of Ni paste and BT dielectrics, the green MLCC chips, the debinded 

MLCC chips were characterized suing a FEI/Philips XL30 FEG High-resolution scanning 

electron microscope (HR-SEM) (Hillsboro, Oregon, USA). The cross-sections of green and 

the other sintered chips were characterized with an AURIGA 60 Focused Ion Beam-Scanning 

Electron Microscope (FIB-SEM) (Carl Zeiss, Germany). The chips were embedded in cold 

resin (EpoFix, Struers) then ground using SiC sand papers (#240, #600, #800, and #1200) and  

polished with diamond aqueous suspension abrasives (diamond particles size from 6 µm, 3 

µm, 1 µm, and 0.25 µm). The polished cross-sections of the samples were cleaned with 

flowing alcohol and dried quickly with compressed air. The powder samples were prepared 

by dropping a small amount of powder on a conductive tape. Prior to the SEM measurements, 

the BT power sample, cross-section sample were coated with thin gold thin film in an argon 

atmosphere using a sputtering coater (SCD 050, BAL-TEC) at a current of 40 mA for 20 s.  

3.3 Results and discussions 

 Particle size distribution (PSD) 

http://en.wikipedia.org/wiki/Hillsboro,_Oregon
http://en.wikipedia.org/wiki/Oregon
http://en.wikipedia.org/wiki/USA
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Figure 3.3 shows the PSDs of the starting powders (Ni powder and BT powder). Both 

powders follow a lognormal size distribution function. 
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Figure 3. 4 Particle size distributions: (a) Ni powder (b) BT powder 

Table 3.1 shows particle size characteristics of both powders. BT powder has a narrower span, 

defined as (D90-D10)/D50, than Ni powder. 

 

Powder Dmean D10 D50 D90 Span = (D90-D10)/D50 
BT 0.260 0.16 0.23 0.34 0.783 
Ni 0.181 0.088 0.164 0294 1.257 

Table 3.1 particle size of the BT and Ni powder 

In MLCC industry, nano sized BT additives are added into the Ni powders to make the 

electrode paste. Ueyama et al. [31] reported that the largest particle size ratio of ceramic (BT) 

particles/metallic (Ni) particles is 0.155, because it is required that the smaller ceramic 
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particles enter triple bond spots (three spots) among the Ni particles. In this work, the mean 

size of the BT additive nanoparticles for the Ni-MLCC chip is 50 nm. 

 Phase determination 

Figure 3.4 shows the XRD patterns of the starting powders. In Figure 3.4(a), only single 

phase, tetragonal BT (PDF # 05-0626), is detected from BT powder. As shown in Figure 

3.4(b), Ni (PDF # 04-0850) as a major phase and additive BT (PDF #05-0626) as a secondary 

phase are confirmed in the Ni paste.  
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Figure 3. 5 XRD pattern of the starting powders: (a) BT powder; (b) Ni paste (debinded) 

 Green density 

Table 3.2 shows the green density of the compacted pellets of BT sample and Ni paste 

samples for the sintering curve measurements.  

Materials M (g) .theor (g/cm3)  (cm) H (cm) envelopV  
solidV  D  

Dielectric BT 0.5285 6.020 7.77 6.14 148.889 87.791 0.590 

Electrode 

(Ni:BT=10:1) 

Ni 0.6550 8.908 
7.89 6.22 157.434 

73.529 
0.536 

BT 0.0655 6.020 10.880 

Table 3.2 Density of BT and Ni pellets for the sintering curve measurements 
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 Sintering behavior  

Figure 3.5 shows the shrinkage and densification rate of Ni electrode paste and X5R type 

dielectrics powders as a function of time. The densification onset temperature of electrode 

paste was around 450 oC, much sooner than that of the dielectrics, 900-950 oC (Fig. 3.5(a)). It 

can be seen in Figure 3.5(b) that the maximum densification rate of Ni electrode corresponds 

to 900 oC. The densification rate decreases as the temperature increases further. The reason 

for this decrease in densification rate is the coarsening of Ni grains. The densification rate of 

Ni is almost zero when maximum temperature (1150 oC) is reached. In contrast, the 

densification rate of BT peaks at 1150 oC and densification ceases after about 25-30 min 

dwelling time at this maximum temperature.   
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Figure 3. 6 Linear shrinkage of nickel paste and dielectrics 

Figure 3.6 shows the densification behaviors of Ni-MLCC chips sintered with different 

temperature profiles. The densification of all the Ni-MLCC chips starts around 900 oC that is 

the same as the sintering onset temperature of the dielectrics. The densification of the 

electrode (450-950 oC) does not contribute to the macroscopic densification of the chips until 

the dielectrics begin to sinter. All the densification curves are identical until the temperature 

reaches 1150 oC. Sintering in the range of 950-1150 oC accounts for 6-7% shrinkage, that is 

about half of the final shrinkage. The densification leads to a ~12% linear shrinkage after 

holding time of 30 min at 1150 oC. Sintering curves for dwelling time t = 30-60 min are 

identical and longer dwelling times do not contribute to further densification.  
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Figure 3. 7 linear shrinkage of 1206 type MLCCs 

 Microstructures  

Figure 3.7 shows the morphology of the starting BT and Ni powders. The BT particles (Fig. 

3.7(a)) made using solid synthesis are irregular, while Ni powders made using PVD are 

almost spherical. As could be seen in the Ni paste, nano scaled BT additives aggregate 

together. 

Ni

Nano BT additives

(a) (b)

 

Figure 3. 8 Starting powders: (a) X5R type BT powder; (b) debinded Nickel paste 

Figure 3.8 shows the microstructures of the cross-sections of the green chips before the 

binder burnout (BBO). In the ~1 µm-thick electrode, there are about 4-5 layers of Ni particle 

packing on the top of each other (Fig. 3.8(a)). Heterogeneities in Ni packing can be observed 

in the form of pores that are larger than the particles. Particles arrange into well packed 
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regions (or agglomerates) surrounded by low density regions. In this work, we refer to pores 

inside these well-packed agglomerates as intra-agglomerate pores and to pores in between 

agglomerates as inter-agglomerate pores. Some authors use a different wording. Bordia, for 

example, defines intra and inter- pores as intra and inter- granular pores [82]. Figure 3.8(b) 

and (c) show the zoomed Ni packing in the electrode and the BT packing in the dielectric 

layer, respectively. The electrode layer is more porous than the dielectric layer The 

heterogeneities and high porosity in the electrode might be due to the addition of a significant 

amount of organics (40-50 vol.%) which are mixed with powder to enhance the ink 

rheological property such that it is suitable for the screen printing process. Note that the nano 

sized BT additive particles in the electrode are aggregated. This agglomeration appears 

probably during the making and/or the drying of the Ni paste. 

  

Figure 3. 9 Green chips with binders at three different magnifications: (a) 20000 ×; 

(b)12000 × dielectric layer; (c) 12000 × Ni layer 

Figure 3.9 shows the microstructures of the sample after the first BBO process. The cross-

section was prepared using traditional sectioning and polishing. It is observed that a 

substantial fraction of inter-agglomerate pores remain. This may be due to the pulling out of 

the particles during the polishing process. After the removal of the polymeric binders, 



Material characterization and sintering behaviour study 

 

- 40 - 
 

adhesion between nickel particles is degraded. This means that a conventional sectioning 

method can be problematic in studying the defect formation in the electrode. 

 

Figure 3. 10 SEM images of cross-section of debinded sample: (a) SE; (b) BSE 

Figure 3.10(a) shows the fracture surfaces of the green chips after the first BBO process (230 
oC, 34 hrs). Nanocrystalline BT particles dispersed in the nickel matrix can be noticed. They 

are used to increase the onset temperature for sintering and reduce the densification rate of 

electrode layers. After the second BBO (800 oC, 1 hr), which is required to burn-out the 

organics binders completely, nickel powder sintered already, as shown in Figure 3.10(b). No 

significant modification can be observed in the BT powder in the dielectrics layers.  

  

Figure 3. 11 SEM images of the fracture cross-sections of (a) green chip and; 

(b) after bake-out at (800 oC) 

 

Figure 3.11 shows the microstructural evolution at different sintering stages.  

BaTiO3 
BaTiO3 

Ni 
BaTiO3 additives 

Ni 
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Figure 3. 12 Microstructural evolution of chips sintered with different temperature profiles 

Figure 3.11(a) and (b) show polished cross-sections of the green chips after the first (230 oC) 

and second BBO (800 oC). It is very clear that the electrode already densified during the 

second BBO. Clustering of Ni particles occurred and pores were enlarged. When the 

temperature reaches 900 oC, as shown in Figure 3.11(c), some discontinuities of electrode 

form while the particulate nature of BT layers is still recognizable. When the temperature 

increases to 1150 oC, the densification of BT layers is obvious. By increasing dwelling time 
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at 1150 oC (Fig. 3.11(d-h)), the densification of both layers continues. It seems that electrodes 

are fully densified after only 10 min while the densification of BT layer is not completed 

even after 30 min. Hardly any microstructure changes occur for longer dwelling time as 

shown in Figure 3.11(i-l), which correlates well with the absence of further shrinkage at the 

macroscopic scale (Fig. 3.6). 

 Roughness of electrodes 

Roughness is usually measured as a summation of negative and positive deviations from a 

“mean plane” fit over the surface of interest referencing to the standard DIN EN ISO 

4287:1998. Figure 3.12 shows an example of a roughness profile where variations in the y-

direction are depicted as a function of x. 

 

Figure 3. 13  Roughness on the surface of an electrode  

Roughness of the electrode is defined as below in the following relations: 

1
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L x
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   (3.9) 

Where Ra is the arithmetic average surface roughness, or average deviation, Y, of all points 

from a plane fit to the test surface over sampling length, L. 

 

Thickness is measured as the arithmetic average thickness of the (δ/∆x) segments of electrode, 

each of which could be treated as a flat electrode when the ∆x →0.  
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The linear, or 1-dimensional (1D) electrode discontinuity is defined as the ratio of summation 

of the lengths of discontinuous segments to the entire length considered (See Fig. 3.13). 

  
Figure 3. 14 A schematic of discontinuous electrode  

1 2 n
1

0
D

l l l
Discontinuity

l

     (3.11) 

Figure 3.14 shows the thicknesses and the linear electrode discontinuity change as a function 

of holding time. It turned out that the thickness of electrode layer decreases with sintering of 

chips at first (densifying phase), but this trend reversed after the holding temperature last for 

~15 min (densification fulfilled). That means swelling of electrodes was observed from this 

moment. 
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Figure 3. 15 discontinuity and thickness, roughness of electrodes as a function of time 

The thicknesses of electrodes changes as a function of holding time. We observed that the 

thickness of the electrode layer decreases with sintering of chips at first (densifying phase), 

but this trend reverses after a holding temperature of ~15 min (densification fulfilled). This 

corresponds also to a swelling of electrodes. This phenomenon was also found in the work of 

Polotai et al [29]. However, the swelling of electrodes was not discussed in this paper. The 
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evolution of discontinuities with dwelling time follows, like the electrode thickness, a non 

monotonous behavior. A local maximum is observed around 15 min dwelling time. The 

reason for this non-intuitive behavior may be linked to the compressive stresses in the 

electrode at high temperature that temporarily facilitate the recovery of the discontinuity of 

electrode [29]. However, when the densification of BT layers is completed, the compressive 

stresses are released and this recovery disappears. The further decrease in the coverage of 

electrode is considered to be due to the creep of nickel at elevated temperature and this is 

accompanied by swelling and flattening of electrodes. After around 30 min dwelling time, 

densification of BT ceases (although not fully densified). While the wavy electrode deforms 

to fit the dielectric layers, which is comparatively flatter. This makes the electrode swell in 

the thickness direction and the lateral discontinuities become much more severe. 

3.4 Conclusions 

(1) It is observed that some initial extrinsic pores exist in the green MLCC chips, 

especially in the composite electrode layers. However, the presence of these extrinsic 

pores needs confirmation as they may originate from the sample preparation. 

(2) These artifacts could be problematic in the characterization of the initial defect in the 

green chips.  

(3) It is found that after the second bake out procedure, some nickel particles have 

already sintered, and discontinuities form. However, this slight modification does not 

cause the macroscopic shrinkage, since the BT skeleton does not start to sinter yet. 

(4) Measurement of the thickness of the electrode layers is not accurate, because the 

cross-section of the MLCCs is not necessarily perpendicular to the layers. This is a 

motivation to use focused ion beam machining and utilize non-destructive X-ray 

tomography. 
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Chapter 4  

Synchrotron X-ray imaging of the sintering 

of MLCCs 

Since the discovery of X-rays by W. C. Roentgen in 1895, a wide range of applications has 

been developed in X-ray imaging techniques. As a non-destructive detective technique 

(NDT), X-ray imaging, including 2D radiography and 3D tomography, is applied to medicine, 

geosciences [83, 84], life sciences, mineralogy, archeology, and materials sciences [85-93]. It 

was commented on Hounsfield‟s first system for computed X-ray tomography of 1968 that 

led to a Nobel Prize in Physiology or Medicine in 1λ7λ, “It can be no exaggeration to 

maintain that no other method within X-ray diagnostics has, during such a short period of 

time, led to such remarkable advances, with regard to research and number of applications, as 

computer-assisted tomography.” This continues to be true today [94]. Thanks to the advances 

in optics and computer sciences, in-situ and real-time X-ray tomography with nanometric 

spatial resolution is mature as a NDT routine to image an object. 

4.1 Introduction 

4.1.1 X-ray computed tomography 

The technique of X-ray Computed Tomography (CT) invented by Godfrey Hounsfield in 

1972, is based on x-ray radiography used by doctors when they image tissues in a patient‟s 

body. However, rather than taking just one 2D X-ray radiograph, a large number of 

radiographs are taken at serial spatial angles. The series of 2D radiographs can then be 

mathematically reconstructed into a 3D image. This 3D image can be resliced into stacks at 

arbitrary orientation. For interested readers, a history of the X-ray CT can be found in 

Ref.[95]. 
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Figure 4. 1 A schematic diagram of the X-ray image acquisitions [96] 

 

The acquisition of a 2D radiograph is based on the Beer's Law. The intensity of a 

monochromatic X-ray beam travelling through a homogeneous material is: 

0 exp[ ]I I x                                                                         (4.1) 

Where I0 and I are the incident and transmitted X-ray intensities, µ  is the material's linear 

attenuation coefficient (unit m-1) and x is the length of the X-ray path. A high value of the 

constant ȝ corresponds to an efficient absorption of X-rays by the considered material, with 

only a small amount of photons reaching the detector. If there are multiple materials, the 

equation becomes: 

0 exp[ ]i i

i

I I x                                                                      (4.2) 

Where µ i is the attenuation coefficient of the ith material. In a well-calibrated system using a 

monochromatic X-ray source (i.e. synchrotron), this equation can be solved directly. If a 

polychromatic X-ray source is used and as the attenuation coefficient strongly depends on X-

ray energy, the complete solution would require solving the equation over the range of the X-

ray energy (E) spectrum utilized: 

0 ( )exp[ ( ) ]i i

i

I I E E x dE                                                            (4.3) 

There are a number of methods by which the X-ray attenuation data can be converted into an 

image [97]. The classical approach is called "filtered back projection", in which the linear 

data acquired at each angular orientation are convolved with a specially designed filter and 

then back-projected across a pixel field at the same angle. As demonstrated in Figure 4.2, a 

series of images are recorded at successive tilts (Fig. 4.2(a)), and then these images are back 

projected in along their original tilt directions into a three-dimensional object space. The 
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overlap of all of the back-projections will define the reconstructed object (Fig.4.2 (b)). 

However, the mathematics behind is out of scope in this thesis, and can be found in Ref. [97]. 

 

Figure 4. 2 A schematic diagram of tomographic reconstruction using the back-projection 

method [85].  

 

Owing to advances in optics, spatial resolution of 10-50 nm has been achieved recently [98-

101]. Withers [94] shows resolution of X-ray tomography techniques as a function of X-ray 

energy (see Fig. 4.3). Advances in Nano scale X-ray tomography techniques and related 

applications were recently reviewed by Sakdinawat [102].  
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Figure 4. 3 Spatial resolutions achievable with different lenses: calculated resolutions (open 

symbols), measured resolutions (filled symbols); synchrotron source (circle symbol) and lab 

sources (square symbol) (reproduced after Withers [94])  

 

4.1.2 Application to sintering 

As a non-destructive 3D charaterization technique, X-ray CT has superior capabilities over 

traditional optical microscopy, SEM, and other tomography techniques. It has been applied in 

different domains of material sciences recently [103, 104]. With advanced detectors and 

optics at the synchrotron, high-resolution, in-situ, high temperature real-time observation of 

microstructure evolutions becomes available and routine. In-situ X-ray µCT has been utilized  

in the studies on the solidification of alloys [105-108]. In the domain of particulate materials, 

It covers packing and rearrangement of particles in granular materials [109, 110] (also 

coupled with DEM) and porous media [111]. 

 

X-ray CT was first used for the study on the sintering of glass beads by Bernard and 

coworkers in 2001 [112]. The technique was then used by Lame[113, 114], Vagnon [115], 

[116], and Olmos [117, 118] to study the sintering of metallic powder under atmosphere. Xu 

[119] and Niu [120] studied the sintering of ceramic particles with in-situ X-ray CT. Bernard 

and Guillon investigated the constrained sintering of glass films on rigid substrates [121]. Co-

sintering of multilayered systems, i.e., SOFCs, was extensively studied using X-ray CT [122-

127]. 
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4.2 Experiment procedure 

4.2.1 Set-up: Transmission X-ray Microscope 

As a direct analog to the visible light microscope or transmission electron microscope (TEM), 

a Transmission X-ray Microscope (TXM) consists of a capillary condenser lens, an objective 

lens (Fresnel zone plate) and detector system (Fig. 4.4).  

 

Figure 4. 4 A schematic illustration of a TXM imaging system consisting of a condenser lens, 

objective lens, and detector system. Beamstop and pinhole block out the unfocused x-rays 

(After Nelson [128]) 

 

The capillary condenser lens is to focus the X-ray beam generated by the X-ray source onto 

the sample and the objective lens is to magnify the X-ray image passing through the sample 

to form an image on the detector plane. The detector is typically a scintillated camera 

consisting of scintillator screen that converts X-ray beam into visible light, and a fiber-optics 

taper or visible light microscope objective to relay the visible light to a high-resolution 

Charge-Coupled Device (CCD) sensor or a Complementary Metal-Oxide-Semiconductor 

(CMOS) detector. The unique properties of synchrotron radiation lie in its continuous 

spectrum, high flux and brightness, as well as high coherence, which make it an 

indispensable tool in the exploration of matter. Figure 4.4 shows the TXM system setup at the 

Sector 32-IDC at the APS synchrotron (Advanced Photon Source, Argonne National Lab, 

USA), which was used in this work. The X-ray lens typically provides 10-50 times 

magnification while the visible light system in the detector assembly provides an additional 

factor of 2-20 times magnification. That gives a typical total magnification of between 200-

1000 times. For example, the TXM at the APS [129, 130] has an X-ray magnification of 80 

times while the visible light magnification is 10, resulting in an overall 800 times 
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magnification. Thus, to a typical detector pixel size of 10 ȝm corresponds an effective pixel 

size of 12.5 nm in the sample. 

 

Figure 4.5 shows the experimental set up for the X-ray CT data acquisition. The heating unit 

is designed for the in-situ real time X-ray imaging. 

copper housing

cooling water

sample stage
sample holder

zone plate

x-ray beam

CCD sensor
furnace unit

x-ray port

thermocouple

pin hole

 

Figure 4. 5 A schematic for the setup of the TXM at Sector 32-IDC of APS Synchrotron 

 

4.2.2 Sample preparation using FIB milling 

In order to maximize the quality of the reconstruction, the sample should be contained within 

the field of view (FOV = 26 µm) of the TXM at the required magnification during rotation. If 

the region of interest (ROI) is not maintained within the FOV for the full rotation, the 

algorithm must essentially reconstruct an incomplete data set. Ultimately, this increases the 

noise observed in the reconstruction. Furthermore, in tomographic studies of composite 

materials (including porous ones) phase identification is typically achieved by observation of 

the spatial distribution of X-ray absorption. However, if the sample is not maintained within 

the X-ray FOV throughout the rotation, the attenuation due to sample geometry and that due 

to material composition cannot be separated, leading to challenges in reconstructing the 

difference phases within large specimens. Banhart [131] provides further discussion of this 

limitation due to “missing data”. 

 

Commercial 0603 size (1.6 × 0.8 × 0.8 mm3) Ni-MLCC chips and 01005 size (0.4 × 0.2 × 0.2 

mm3) Pd-MLCC chips (Samsung Electro-Mechanics, Suwon, South Korea) were used in our 

study. These green chips were first roughly machined into 60 ȝm cone shape with a special 
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micro drill (see Fig. 4.6). The tip was then milled by a Quanta 3D FEG FIB-SEM (FEI, USA) 

into a 20 ȝm-diameter cylinder of 20 ȝm height (Fig. 4.7). 

 

Figure 4. 6 Photograph of a microscope adapted drill 

After organics were burnt out between 120 and 230 oC for 30 hrs in air, the Ni-MLCC sample 

was imaged with TXM operating at 8.9 keV before and after sintering (in 5% H2+Ar 

atmosphere at 1100 oC for 2 hrs, heating/cooling at 15 °C/min).  
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ceramic glue
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ω micro drill
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Figure 4. 7 Two-step preparation of sample for X-ray nCT 
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4.2.3 Image acquisition and 3D reconstruction 

An attempt was made to image in-situ the sintering of a cylindrical Ni-MLCC sample on 

beam-lime. To simulate the reducing sintering atmosphere, 2%H2-N2 gas was introduced 

from the top opening, before the heating up of the furnace. The sample was heated from room 

temperature at a heating rate of 15 oC/min until 1150 oC and was sintered for 1 hr at 1150 oC. 

During the sintering, 2D X-ray radiographs were taken every 20 oC increment and every 5 

min during the dwelling time. However, no shrinkage was noticed during this standard 

sintering cycle. This is because with the current facility, the furnace is open for the insertion 

of the sample, which means that the reducing atmosphere (pO2 = 10-11-10-9 atom) normally 

required for the successful sintering of nickel electrodes cannot be guaranteed. It showed that 

the sintering of Ni electrode was significantly modified due to the oxidation of the metal 

particles and no obvious densification was observed during the thermal cycle. A compromise 

is to characterize the sintered Ni-MLCC sample ex-situ. To explore the missing gap during 

the thermal cycle, the sintering of Pd-MLCC chip in air was used to simulate the sintering of 

Ni-MLCC in a reducing atmosphere. Pd exhibits excellent oxidation resistance. Hence, the 

sintering behavior of the Ni electrode in reducing atmosphere is assumed similar to the 

sintering of Pd electrode in the air. Note that the nano-sized ceramic inclusions were not used 

in the Pd electrode.  

For the Ni-MLCC sample, an ex-situ experiment was carried out. A cylindrical Ni-MLCC 

sample was imaged before and after sintering. When the X-ray imaging was being conducted, 

the sample was rotated every 0.25o, each 2D projection image was collected in 2 s from a 

CCD camera with 2048 × 2048 pixels, which corresponds to the FOV of 26 ȝm. The sintering 

was conducted in a tube furnace in 2%H2-N2 reducing atmosphere with heating/cooling rates 

of 15 oC/min and dwelling time of 1 hr. 

For Pd-MLCCs, no specific atmosphere was used during the sintering. In-situ observation of 

sintering of Pd-MLCC was carried out as a reference. The sample was mounted onto a 

movable stage. A FibHeat200-XRD furnace (MHI, OH, USA) with an Ø 6 mm heating 

chamber was driven by a 1693-model DC power supply (BK Precision, CA, USA). The input 

current of the furnace was controlled to obtain the required temperature ramps. A type S 

thermocouple was introduced from the top port. Its tip was located approximately 1 mm away 

from the sample (position controlled by microscopy). The temperature measurement was 

calibrated with Au particles located upon the sample. The melting of Au particles (indicated 
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by the flowing of the material) was observed between the recorded temperatures of 1050 °C 

and 1070 °C (melting point of Au is 1064 °C). The heating unit was water-cooled so that it 

could operate for a long period of time at high temperature (1200 oC) without disturbing the 

alignment of the pin hole and zone plate. The sample was inserted through the opening at the 

bottom of the chamber and the region of interest was positioned in the center of the X-ray 

microscope window. The sample was heated up to 1200 oC at 10 oC/min, held for 60 min at 

this temperature and cooled down to room temperature at 15 oC/min. The sample was aligned 

in rotation and its position was kept all along the experiment to ensure 2D projections quality. 

2D projections were recorded every 50 oC during the heating ramp below 900 oC, and every 

20 oC between 900 and 1200 oC. 

 

3D data acquisition was not possible during sintering because such a measurement takes 20-

30 min (360-720 projections). During that period of time, the microstructure changes rapidly, 

which does not allow any reliable reconstruction with the filtered back projection algorithm. 

Thus, 3D data acquisition was only conducted on the green sample at room temperature. 

Additionally, 3D X-ray data acquisitions were carried out on additional samples that were 

partially sintered at 900 oC and 1100 oC, respectively. These acquisitions allow 2D projection 

data to be re-interpreted more accurately. 

 

3D microstructures were reconstructed using the classical filtered back-projection algorithm 

from the series of 2D projection images with TXMReconstructor software package (Xradia, 

Inc., Pleasanton, CA, USA).  

4.3 Results and discussion 

4.3.1 Ex-situ X-ray CT on Ni-MLCC sample 

Figure 4.8(b) and (c) are typical 2D projection images collected directly from the CCD 

camera before and after sintering, respectively. Figure 4.8(d) and (e) show the reconstructed 

microstructure from 2D images. 
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Figure 4. 8 (a) MLCC sample for X-ray tomography; (b), (c) 2D projection images before 

and after sintering, respectively (the layers are indexed for later use); and (d), (e) 

Reconstructed 3D microstructure before and after sintering, respectively. 

 

The bright areas correspond to the Ni phase and the dark areas correspond to the BT phase 

(as the photon energy was 8.9 keV, above the Ni absorption edge [128]), please see the 

attenuation length 4 of Ni and BT as a function of beam energy (Fig. 4.9). 
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Figure 4. 9 BT and Ni absorption edge 

                                                           
4
 The depth into the material measured along the surface normal where the intensity of x-rays falls to 1/e of its 

value at the surface. 
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3D raw data was filtered using the Edge-Preserving Smoothing Filter, segmented and 

rendered using Avizo software (VGS, France). Figure 4.10 shows 3D rendering of a 

representative volume extracted from reconstructed microstructures. Note that the volumes 

are from the same spot of the same sample before (Fig. 4.10 (a) and (b)) and after (Fig. 4.10 

(c) and (d)) sintering.  

 

Figure 4. 10 Microstructural changes of MLCC sample (Ni in purple, BT in green and pores 

in yellow): (a) multilayer before sintering, (b) pore network before sintering, (c) multilayer 

after sintering, and (d) pores after sintering 

 

In Figure 4.10(a), BT particles in the dielectrics and Ni particles in the electrodes are 

distinguishable. Nano-sized BT additives dispersed in Ni matrix cannot be discriminated into 

individual particles as the size of the contact areas is below the spatial resolution. 

Heterogeneous zones are found in the electrodes, with Ni particles having lower contact 

number and with smaller local density. Figure 4.10(b) shows the pore network in the green 

MLCC chip. Clear discontinuities are found in Ni layers after sintering (Fig. 4.10(c)). These 

discontinuities correspond to very large pores (Fig. 4.10(d)) that reduce the effective 

electrode overlapping area and hence the total capacitance of the capacitor. Isolated pores are 

present within the partially densified BT layer. 
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With benefit of the X-ray nanotomography technique, we have been able to observe the 3D 

morphology of discontinuities in electrodes in an ex-situ test. The exact orientation of layers 

can be tracked and we can correlate the displacement of matter within the sample induced by 

sintering. Figure 4.11 shows the morphology of the inner electrode #2 before and after 

sintering from the top view. The disconnected areas correspond well to the initial 

heterogeneities (#1-8) where Ni particles are less densely packed and have lower 

coordination number. However, the larger porosity in Ni layers near the edge does not result 

in any discontinuity probably due to the proximity of the free boundary.   

 

Figure 4. 11 Morphology of inner electrode #2: (a) initial microstructure and (b) final 

microstructures after sintering, respectively. Microstructures of electrodes #3-4 (not present) 

are similar to that of electrode #2. 

 

Thanks to the 3D tomographic data that is saved as a stack with voxel size of 26 × 26 × 26 

nm3, quantifications of the microstructure and its changes can be implemented using ImageJ 

(NIH, USA) together with specific plugins. For example, the discontinuity rate of the 

electrodes, strains and the density in the BT layers are of great interest for understanding the 

co-sintering of the multilayer system. 

 

Take the electrode #2 for example; its areal (2D) discontinuity is defined as the ratio of the 

discontinuous areas (a1, a2, …, an) to the entire area (A0): 

0

1 2 n
2D

a a a
Discontinuity

A

                                             (4.4) 
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The radial and axial strains in the BT layers are calculated as  

                                 
0

0

ln( / )

ln( / )

r r r

a a a

l l

l l





                                                                             (4.5) 

Where rl and 
al denotes the radial and the axial dimensions of the BT layers images and 0

rl and 

0
al  the reference dimension of the layer measured from the 3D microstructure. 

The relative density of the sintered BT layers is defined as the solid volume ( solidV ) fraction 

over the total volume ( totalV ): 

solid
BT

total

V
D

V
                                                                                      (4.6) 

Figure 4.12(a) shows that the top electrode layer has smaller discontinuity (6%) than inner 

layers (14-16%). Figure 4.12(b) shows the true axial and radial strains of dielectric layers 

after co-sintering. Axial strains (11-14%) are larger than radial strains (5-7%), as it is 

expected from geometrically constrained systems [75]. A smaller anisotropy is observed for 

BT layer #2, which is closer to the top free surface of the specimen. Under free sintering 

conditions shrinkage is expected to be almost isotropic, although structural anisotropy may be 

brought by tape casting and lamination. It is also interesting to observe that the swelling of 

electrodes is about 16% on average along the thickness direction. Figure 4.12(c) presents the 

relative density of the different BT layers, showing a decrease in achieved density as function 

of layer position in the multilayer.  

 

In view of these microstructures and considering the relatively small thermal expansion 

mismatch between Ni and BT (αNi=16.3×10-6 /oC, αBT=11×10-6 /oC [132] ), we propose that 

the electrode discontinuities originate predominantly from the sintering strain mismatch. Ni 

powders sinter at a lower temperature (400-450 oC) than BT powders (950-1000 oC) [29]. 

Due to their larger densification rate at low temperature (<1050-1100 oC), the Ni layers are 

under tensile stresses while the BT layers are almost rigid. The more constraint imposed on 

the Ni layer, the larger the discontinuities. This explains the presence of a smaller 

discontinuity for the top electrode layer, which can almost sinter freely, as compared to the 

inner ones which are under more constraint from adjacent layers. At higher temperature 

(1100 oC) already densified Ni layers are under compressive stress, and they may deform by 

creep [133]. Due to poor wettability between Ni and BT layer [134], the viscous Ni layer 

tends to contract laterally, finally resulting in swelling of the electrodes. Contrasting with Ni 



Synchrotron X-ray imaging of the sintering of MLCCs 

 

- 58 - 
 

layers, dielectric BT layers are under tensile stress, which explains that the shrinkage along 

the thickness direction is larger than in-plane. The top BT layer is only constrained by the 

bottom Ni layer, i.e., to a less degree than other inner BT layers during sintering. This 

explains the higher relative density of the top BT layer in comparison with inner ones. 
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Figure 4. 12 (a) Discontinuity of electrodes; (b) Axial and radial strains in different BT 

layers, irregular top BT layer (#1) was not considered and (c) Relative densities of BT layers 

(The layers are indexed as in Fig. 4.8(c)). 
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4.3.2 In situ X-ray imaging of Pd-MLCC 

Figure 4.13 shows the selected images of the region of interest obtained during the sintering 

cycle. The light grey phase corresponds to the BNT dielectrics while stronger X-ray 

absorption of Pd electrode leads to a dark grey phase. It should be noted that the elliptical 

shape of the projected electrode is due to the incident angle between the X-ray beam and the 

electrode plane. The initial microstructure of the electrodes exhibits some heterogeneities as 

implied by the grey level distribution in the electrode layers shown in Figure 4.13(a). The 

darker grey regions are the high density regions, while the lighter grey regions are the low 

density regions where particles have smaller coordination numbers. Such heterogeneities are 

common in green thin layers, especially when layers are composed of only a few particles 

piled on top of each other. 

 

Figure 4. 13 Microstructural evolutions during sintering of a Pd-MLCC sample. Note that Au 

particles were used both for image alignment in the reconstruction and for calibrating the 

temperature in the furnace. 
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Neither clear microstructural evolution nor densification could be observed below 800 oC. At 

900 oC (Fig. 4.13(b)), the Pd electrode layers appear more inhomogeneous. As Pd particles 

densify, the contrast with neighboring pores is getting stronger due to increased x-ray 

attenuation differences. The darkened regions indicating densified Pd suggest that sintering of 

Pd particles has started already at 900 °C. As sintering proceeds (Fig. 4.13(c-g)), the pores 

evolve into a number of discontinuities in the electrode layer. Fig. 4.13(h-i) indicate that no 

obvious microstructure change occur during the cooling ramp. 

 

Figure 4.14 illustrates the morphology evolution of the electrodes at the different stages by 

3D X-ray nCT.  

 

Figure 4. 14 3D reconstruction and rendering of the electrodes in the Pd-MLCC sample (top 

view): (a) green state; (b) partially sintered at 900 oC; (c) partially sintered at 1100 oC (E1); 

and (d) partially sintered at 1100 oC (E2) 

 

Figure 4.14 (a) shows the morphology of an electrode from the sample tested in situ. Circled 

areas point to the low-density regions. Differential densification takes place in powder 
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compacts of heterogeneous nature [43]. Particles in high-density regions sinter faster than 

those in low-density regions and form clusters. Some particles in the low-density regions de-

sinter and large pores appear (Fig. 4.14 (b)). Finally, pores enlarge and lead to discontinuous 

areas in electrode layers (Figs. 4.14(c) and 4.14(d)). These discontinuities result in 

capacitance loss. 

 

Continuous recording of the 2D radiographs allows radial and axial strains of the electrode 

and dielectrics layers to be calculated directly from dimensional changes. However, the axial 

strain in the electrode is not measured due to the uncertainty in thickness correlated to the 

elliptical projection (due to the incident angle between the X-ray beam and the electrode 

plane). Anisotropic sintering behavior of different layers is shown in Figure 4.15. 
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Figure 4. 15 Radial and axial strains in dielectrics layers, radial strains in electrodes as 

function of time (E1 stands for 1st electrode, E2 for 2nd electrode, D1 for 1st dielectric, and D2 

for 2nd dielectric). 

 

It is found that the radial shrinkage of the top electrode layer (E1, Fig. 4.13(b)) is smaller than 

that of the second layer (E2). This difference cannot be attributed to the initial conditions 

since the two layers should be very much similar. It must be related to differences in 

constraint levels during sintering as already observed on Ni-MLCCs. The top electrode layer 

has only one adjacent dielectric layer on the bottom. This layer acts as a rigid substrate and 
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imposes a geometrical constraint. In contrast, the second electrode is constrained by both 

adjacent layers. This difference has consequences on the radial shrinkage but also more 

significantly on the degree of discontinuity. The discontinuity, defined as percentage of 

uncovered areas over the total electrode area, is smaller in the top electrode layer (~56.1%) 

than in the second electrode layer (~60.4%) as shown in Figure. 4.14(c) and (d). These 

electrode discontinuities are much larger than those in commercial Pd-MLCCs. The reason is 

that in our experiment design the electrodes are not encapsulated in ceramics, thus easily 

swell and expand during sintering (Fig. 4.13). This swelling of electrodes (creep deformation 

without any volume change) leads to a further increase in electrode discontinuity. 

 

In a single dielectric layer, the strain anisotropy is initially negligible. However, as the 

temperature reaches approximately 1000 °C, the axial strain exceeds the radial strain. As 

temperature increases, it is also observed that the dielectric layers sinter faster than the 

electrode layers. This sintering strain-rate mismatch results in in-plane tensile stresses in the 

dielectrics layers. These stresses accelerate the axial shrinkage of the dielectric materials 

through Poisson‟s coupling. A difference of ~0.1 between axial and radial strains is measured 

after the sintering cycle. Both radial and axial strains are nearly equal in the first and second 

dielectric layers, which are sintered under the same constraining conditions.  

 

From the strain measurement and microstructure evolution in the 2D projections, it can be 

concluded that the cooling process does not affect much MLCCs. The thermal contraction 

during cooling has thus a negligible effect on microstructure compared to the sintering 

shrinkage and rules out a possible creep deformation of Pd induced by differential thermal 

contraction. This indicates that discontinuities in the electrodes are primarily linked to the 

sintering strain mismatch during the heating ramp. 

 

We finally propose a possible mechanism for electrode microstructure changes during 

sintering of Ni-MLCCs as schematized in Figure 4.16. After lamination of BT sheets, there 

are heterogeneous regions in the electrodes. Below 950-1000 oC the Ni powder densifies 

except in heterogeneous zones (Fig. 4.16(a)) where de-sintering is observed [71] (Fig. 

4.16(b)). As discussed earlier, at this stage the Ni layers are under tensile stress. The tensile 

stress in the thinner sections induces matter flow towards the thicker sections [76] (Fig. 

4.16(c)) until the thinner sections are disrupted and discontinuities form. Once nickel is fully 
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dense, electrodes are subjected to compressive stress at high temperature (1100 oC) due to BT 

densification (Fig. 4.16(d)). The compressive stress causes contraction of the viscous Ni, 

resulting in swelling of electrodes and hence a further increase in electrode discontinuity (Fig. 

4.16(e)). Meanwhile, the nano-sized BT additives are discarded by Ni due to their 

unwettability with Ni at high temperature. They aggregate and sinter, possibly forming 

percolation between two adjacent BT layers and enhancing the mechanical adhesion between 

Ni and BT layers in the MLCCs.  

 

Figure 4. 16 A schematic of the defect evolution mechanism during sintering 

4.4 Conclusion  

(1) Synchrotron X-ray nano-tomography was for the first time used to study the 

microstructural changes during sintering of single MLCCs. As shown here, this 

unique technique enables 3D visualization of the internal microstructure as well as the 

quantification of features such as strains in three directions for each layer, defect size 

and morphology.  

(2) In-situ X-ray imaging of sintering of Pd-MLCC chips confirmed that the final 

electrode discontinuities originate from the initial heterogeneities through a 

differential densification process.  The formation of discontinuity occurs at the early 

stage of sintering of MLCC when the dielectric layers serve as constraining substrates. 
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(3) However, we show that care must be taken in interpreting results. The sintering 

behavior of the extracted small sample may deviate from that of a real several-

hundred-layer chip. In a sample with very few layers, as used in these nano-

tomographic experiments, external and internal layers are not submitted to the same 

constraints, thus resulting in different discontinuity levels.  
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Chapter 5 

Correlative studies using FIB-SEM 

nanotomography 

It has been demonstrated in Chapter 4 that the X-ray nano computed tomography (nCT) 

enables the comparison of the microstructure change before and after sintering. However, its 

resolution is not sufficient to resolve the submicrometric particle packing or identify the nano 

BT additives. Characterization of this green microstructure at the particle length scale is 

however necessary, because: (i) the initial contact configuration between particles determines 

their sintering behavior and final microstructure; (ii) it provides us with realistic input for the 

DEM numerical simulations. We make use here of the excellent resolution of Focused Ion 

Beam (FIB)/SEM nanotomography (FIB-nT), which is rapidly emerging as a powerful tool to 

characterize the 3D microstructure, grain orientations, and chemical compositions in  

micrometric devices or materials. FIB-nT is utilized here to image green and sintered MLCCs, 

including the very MLCC sample characterized using X-ray nCT. Comparison between the 

two techniques is the scope of the present chapter. 

5.1 Introduction  

Compared with other tomography techniques (see Fig. 5.1), FIB tomography is currently of 

great technological importance because of its high resolution and capability of analyzing a 

comparatively large volume of the material. The typical resolutions (lateral pixels and slicing 

steps) which can be reached by the FIB tomography are from tens of nm down to a few nm, 

depending on the quality of the equipment available. The FIB tomography technique can 

reach better resolution than X-ray tomography and mechanical serial sectioning. Although 

TEM tomography and 3D Atomic Probe have achieved higher resolutions, but the volume 

that these two techniques can probe is limited to 0.1-1 µm3. Hence, the small volume 

investigated may not be representative of the whole sample. 
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Figure 5. 1 Resolution of different tomography techniques (after Holzer [135]) 

Nowadays, the automated acquisition of large image stacks of fine resolutions (below 10 nm) 

using FIB serial sectioning can be accomplished by following standard routines. The latest 

FIB/SEM system is capable of performing multi-channel acquisitions of microstructural 

(BSE, SE), chemical (EDX) [136-138] and crystallographic (EBSD) [139] information with 

different detectors from the same sample. FIB tomography is becoming a versatile method 

and widely applied in materials [137, 138, 140, 141], life [142-144], and geosciences[145, 

146]. A good example of application of FIB tomography is 3D characterization of particulate 

media [140, 147, 148]. This unique technique is still young but developing rapidly. The 

advances in FIB tomography and its applications have recently been review by Kubis [149], 

Munroe [141] and Holzer [135]. 

 Working principle 

Modern FIB/SEM machines are equipped with ion and electron optical columns. These dual-

beam systems are integrated with high precision MEMS (Microelectromechanical Systems) 
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which make them perfect tools for high precision serial sectioning and/or high-resolution 

imaging. As Figure 5.2 shows in a dual-beam FIB-SEM, separated ion gun and electron gun 

integrated in one chamber typically by an angle of 52o (FEI series) or 54o (Carl Zeiss series). 

They can work both independently and synergistically. The ion gun can be utilized in nano-

machining and nano-fabrication. An example of this application is the TEM lamella 

preparation with a lift-out technique [150]. It also may serve as a SEM with the electron 

beam working solely.  

 

Figure 5. 2 Dual beam FIB-SEM system (after Volkert [151]) 

Anyhow, definite advantages of dual-beam FIB-SEM lie in in-situ sectioning and imaging. 

This allows users to conduct fine milling with the ion beam normal to the specimen surface 

and simultaneously image using the electron beam. 

As depicted in Figure 5.3, in a dual-beam FIB-SEM system, the ion beam (y-direction) can 

etch (mill) away material with close to nanometric (within the range of 10 nm) precision and 

the sample can be rotated with a numerically controlled stage; the electron beam interact with 

the ion beam treated surface (x- and y-directions), and signals are collected by different 

detectors. Alternating performance of sectioning and imaging is secured without disturbing 

the sample. The sample is placed at the eucentric point, so that the electron beam that 

interacts with the surface can be scanned with a constant angle without changing sample 

position. During the acquisition of the image stack, the imaging plane is moving in the z-
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direction at a prescribed interval that is either equal or non-equal to the lateral pixels, 

resulting in a stack with isotropic or anisotropic voxels. This sequential sectioning process 

can be automated. 

 

Figure 5. 3 A schematic for the FIB serial sectioning (after Holzer [135] ) 

The entire serial sectioning procedure includes three phases that are described below: (1) 

cube preparation and optimization of parameters, (2) serial sectioning, and (3) data 

processing.  

 (1) Sample preparation 

Before starting the FIB serial sectioning routine, several sectioning and imaging parameters 

that are dependent on each other have to be optimized such as, beam energy, magnification, 

slicing step. Resolution is determined by the scale that should be sufficient for evaluating 

microstructural, chemical, or crystallographic features in the sample. The magnification and 

volume relate to the resolution. Definition of an optimum magnification, the relationship 

between depth penetration of the electron beam and excitation volume of BSE and X-rays 

also must be taken into account. This relationship is illustrated in Figure 5.4 with SiO2 as 

reference materials. 
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Figure 5. 4 Electron material (SiO2) interaction diagram (adapted from Salh [152])  

 

Depending on the beam energy, the size of the BSE interaction volume can influence the 

effective resolution of FIB tomography. For instance, the depth of the BSE excitation at 5 kV 

is larger than 100 nm, which is too large for nano scale investigations. In contrast, at 1 kV the 

BSE excitation depth is in the range of a few nm which makes it a suitable parameter for 

nano scale analysis. By the same reasoning, slicing step size should be in line with this scale. 

For example, serial sectioning at ≥ 5 kV (SEM) with a step size in the 10 nm range will lead 

to a strong oversampling. 

 

In addition, for non-conductive samples a thick conductive coating (carbon, platinum) should 

be deposited beforehand to secure images of good quality by avoiding charging effects. 

Trenches are created to prepare a cube as the volume of interest.  

 

(2) Data acquisition   

In this step, the major concern is the drifting correction in z- direction and xy plane. In order 

to produce a regular stack of images which can directly be transformed into a voxel-based 

data volume, z-step size of milling should have similar scales to the xy pixels (i.e., 

approximately 10 nm). Because the acquisition of hundreds of images can lasts for 20 hours 

or even longer, drifting can become significant. Without correction, the drifting in z- 

direction causes z- distortions (nonevent z- step size) in the reconstructed 3D microstructure. 

The drifting can be compensated by pattern recognition by tracking fiduciary markers [140]. 



 Correlative studies using FIB-SEM nanotomography 

 

- 70 - 
 

However, in modern FIB/SEM systems have become much more stable, and usually after a 

period of stabilization and thermal equilibration drifting becomes very small or even 

negligible. In contrast, drift components in x- and y- directions can be compensated during 

the post processing with image alignment and registration. 

 

In practice, the z-drift correction can be verified by measuring the distance between two lines 

which form a certain angle (Fig. 5.5(a) and (b)). According to geometry, the average z-step 

size is: 

0 0

0

nz d d
z

d n

               (5.1) 

Where n is the number of slices, dn is the distance between the two crossing lines, d0 is the 

initial distance, z0 is the distance from the intersect to the edge. 

 

The x- and y- direction drift causes the images to move out of the field of view. For those 

images within the field of view, due to slight xy- drift, structure in z- direction is not 

continuous. This type of drift can be corrected offline. As shown in Fig. 5.5(a), before slicing, 

two fine paralleled lines that are perpendicular to the surface were made with FIB milling, 

these two points at a constant distance can be used as alignment references. After the 

alignment, two straight lines should be reconstructed. 
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Figure 5. 5 The schematic of drift correction 

In addition to the drift compensation, further corrections are needed because of the tilting 

angle (52◦ for FEI system, 54◦ for Zeiss system) in dual beam systems. 
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Focus correction:  during the serial sectioning, the imaging plane is shifted in z-direction and 

therefore focus tracking is required in order to correct for the increasing working distances. 

When shifting the working distance and imaging under oblique angle, the region of interest is 

shifted out of the field of view. This has to be compensated with automated region tracking.  

Fore-shortening correction: When imaging is conducted at an angle incident to the surface, 

the images are not taken from front view. A tilt-correction must be applied to remove the 

fore-shortening effects of imaging. 

In modern dual beam FIB/SEM systems, all these phenomena are compensated with the 

automated sectioning procedure. In this way, image stacks of high quality can be acquired. 

 

(3) Data processing 

Care should be taken to obtain usable and valuable data from the 3D stacks. Usually, 

depending on the material system to be dealt with, specific treatments should be employed 

correspondingly. Nevertheless, some general procedures of image processing can be 

described as follows: 

- Image alignment registration for 3D-reconstruction 

- Removal of noises and spikes using filters (e.g., median filter)  

- Segmentation of different phases (different materials, pores, etc.) 

- Separation of individual objects for subsequent statistical analysis 

- Visualization of volume, surface or orthotic sections based in 3D grey-scale data 

- Quantitative analysis and statistical measurement of features (i.e., particle/pore size 

distributions, surface area, shape factors) 

 

For interested reader, a standard FIB tomography wizard is available at 

(http://www.vsg3d.com/webinar-3d-fib-tomography-and-reconstruction-materials).  

5.2 Experiments  

5.2.1 Experiment setup  

In this work, a nVision 40 (Figure 5.6) and a AURIGA 60 FIB-SEM (Carl Zeiss, Germany) 

were used to conduct the serial sectional data acquisitions. SE, BSE detectors were used to 

obtain the microstructure features and EDX detector was used to determine the composition. 

http://www.vsg3d.com/webinar-3d-fib-tomography-and-reconstruction-materials
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Figure 5. 6 Configuration of the Nvison 40 FIB/SEM [153] 

5.2.2 Materials and procedures 

 Materials 

Commercial 0603 case size Ni-MLCC chips fabricated at Samsung (See section 3.1) were 

used in this work. The cylindrical Ni-MLCC sample (#1), in the green (g) state (#1-g) and 

after sintering (#1-s) are detailed in Chapter 4. Cross-sections of a green (#2-g) Ni-MLCC 

chip (binder removed) and a sintered (#3) MLCC chip were prepared by traditional 

metallography procedures. Sample #1-s-ct that was saved from the non-destructive X-ray 

nCT characterization was mounted onto conductive paste glued on the sample holder. Details 

of the samples examined are listed in Table 5.1. 

 

The thickness step (z pixel) for ion beam milling was adjusted to be equal to the xy pixels to 

obtain an isotropic voxel. Sample #1-g and sample #2 are for comparison of microstructures 

in the green state between with X-ray nCT and FIB-nT. Sample #1-s and sample #1-s-ct are 

for comparison in the sintered state. Sample #3 is extracted from an entire 0603 MLCC chip 

sintered under the same conditions as the cylindrical sample (#1-g, #1-s-ct) to investigate the 

representativity of the cylindrical sample and possible size effect. The data acquisition on 
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sample #3 was conducted with a larger voxel size (30 × 30 × 30 nm3) so that a larger volume 

can be obtained.  

Sample 
ID 

Heat treatments Methods 
Slice 

number 
Voxel size 
(x,y,z nm) 

Analyzed 
volume(µm3) 

# 1-g @230 oC, 2 hours, air X-ray nCT - 26× 26 × 26 Ø 20 × 20 

# 1-s Heating/cooling:15 oC/min, 
1150 oC, 1hr, N2+2%H2 

X-ray nCT - 26× 26 × 26 Ø 20 × 20 

# 2 @230 oC, 2 hours, air FIB-SEM 
(SE,BSE) 

473 5 × 5× 5 9.8 × 6.6 × 2.3 

# 1-s-ct 
Heating/cooling:15 oC/min, 
@1150 oC, 1hr, N2+2%H2 

FIB-SEM 
(SE,BSE) 

578 5× 5× 5 6.5 × 5.1× 3.4 

# 3 FIB-SEM 
(SE,BSE) 

400 30 × 30 × 30 15.3× 12.0 × 7.6 

Table 5.1 The details of the samples that were analyzed  

 Procedure 

Data acquisition on a green 0603 Ni-MLCC (sample #2) was conducted using the nVision 40 

FIB-SEM at the CMTC, Grenoble INP (Fig. 5.7). 

 

Figure 5. 7 Serial sectioning on the sample #2 

Figure 5.8 shows the serial sectioning of the sample #1-s-ct. Note that the fiduciary marker 

was not used because the pattern recognition feature has not been integrated into this system 

at this moment. 

 

Figure 5. 8 Serial sectioning on the sample # 1-s-ct 
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Data acquisition on sample #3 (Fig. 5.9) was conducted using AURIGA 60 FIB-SEM at IMT, 

University of Jena. The etched cross served as the fiduciary mark for the pattern tacking. Two 

correctional lines were made to verify the final reconstructed microstructure.  

 

Figure 5. 9 Serial sectioning on the sample # 3 

5.2.3 Image processing 

The goal of image processing is: (1) to separate the pores, Ni and BT particles in the green 

and sintered samples and extract the microstructural parameters such as pore size, 

orientations, particle size distribution of Ni and BT particles; (2) to quantify the discontinuity 

and roundness of the electrode.  

 

For this, the following steps have to be followed: 

 Slice alignment  

This pretreatment can be done manually or automated. It consists of image registration and 

shearing correction. 

 

Image registration: each slice is used as the template with respect to which the next slice is 

aligned, so that the alignment proceeds by propagation [154]. In this work, the mapping of 

coordinates takes into consideration of translation and rotation. The new coordinate u is given 

by:  

cos sin

sin cos

 
 

      u u    (5.2) 

Registration can be done using an ImageJ plugin called StackReg [154] or using registration 

module in Avizo. After registration, the stack is as shown in Figure 5.10(d). 
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Shearing correction: a shearing by ș in -y direction would be found, this could be corrected 

by a pre-alignment with the two correlational lines Figure 5.10(c) before the registration, or 

shearing a certain angle -ș using the shearing module under Avizo. 

 

Finally, the stack was cropped into a cube as shown in Figure 5.10(f). It is noted that the pre-

designed straight lines on the surface are kept straight as they should. This means that the 

reconstructed 3D microstructure is quite reliable. 

 

Figure 5. 10 Image pretreatment flow chart 

 Filtering  

(1) Removal of noise  

A 3D median filter was used to remove the noise [155]. Figure 5.11(a) shows the principle of 

the median filter. Pixel with high value (which is assumed as a noise) is replaced by the 

median value in its local neighborhood. In doing this, it preserves edges while removing 

noise. Figure 5.11(b) and (c) show the one slice of the FIB-BSE stack before and after the 

application of the 3D median filter. 
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Figure 5. 11 Removal of noise using 3D median filter: (a) principle of the median filter,(b) a 

slice of FIB BSE stack of green MLCC (sample #2), and (c)after filtering using 3D median 

filter. 

 

(2) Removal of shadowing  

Due to the incident angle between the electron beam and the sample surface, the bottom part 

of the images appears darker. This shadow can be problematic when segmenting images. 

However it can be removed by subtracting the gray gradient. This procedure can be done by 

using an ImageJ filter plugin “fit polynomial”. As shown in Figure 5.12 after this correction, 

there are two sharp peaks in the gray value histogram. The first peak corresponds to the dark-

gray phase BT, while the second one the light-gray phase Ni.  
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Figure 5. 12 (a) an original slice (b) the gray gradient of the slice, (c) resulting image after 

subtraction of the gradient image, (d) histogram of the original image a, (e) histogram of the 

filtered image c, (f) the pore phase separated from the original image, and (g) the pores in 

the image after the filtering 

Figure 5.13 shows the pretreated and corrected processed stacks for samples #2, #1-s-ct and 

#3. 

 

 

Figure 5. 13 3D reconstructed volume for (a) #2, (b) #1-s-ct and (c) #3 
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5.3 Comparison of FIB-nT with X-ray nCT 

5.3.1 Characterization of green microstructures 

Figure 5.14 shows the microstructure of representative volume of 0603 MLCC obtained by 

X-ray nCT (#1-g) (Figure 5.14(a)) and FIB-nT (#2) (Fig. 5.14(b)). As for the microstructure 

obtained with the FIB-nT, the Ni and all BT particles, even the nano scale BT additives in the 

electrode, are discernible. Hence, the FIB-nT is an ideal tool to finely characterize the 

microstructure of the present MLCCs. Conversely, when using X-ray nCT, pore structure is 

distinguishable, but particles cannot be decomposed as the size of their contacting area is 

under resolution. We have demonstrated in Chapter 4 that the porous regions or the 

heterogeneities are associated with the final discontinuities of electrode. In this sense, the 

quality offered by X-ray nCT is sufficient to study the formation of discontinuities. 

 

Figure 5. 14 Microstructures of the green MLCC with X-ray nCT (column a: sample #1-g) 

and FIB-nT (column b: sample #2) 
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5.3.2 Characterization of sintered microstructures 

Figure 5.15 shows the comparison of the microstructures of the final microstructure (sintered) 

with X-ray nCT and FIB-nT. Note that the microstructures originate from the same location 

of the same sample. It can be noticed that the morphology of the discontinuities and of the 

pores are quite consistent with each other. Although X-ray nCT image has good Ni/BT phase 

contrast, pores are still blurry. This X-ray nCT image is preferable for evaluation of the 

electrode morphology. The FIB-SE image exhibits good solid/pore phase contrast. Thus it is 

preferable for pore quantification. The FIB-BSE image has good Ni/BT phase contrast, and 

the Ni grains, entrapped BT additives are discernible. 

 
Figure 5. 15 X-ray nCT (column a) and FIB tomography (SE mode: column b), (BSE mode: 

column c) on the final microstructure 

 

Through these qualitative comparisons, we conclude that X-ray nCT is efficient to 

characterize defects in the MLCCs, while the better resolution of FIB-nT provides more 

information on pore characteristic, grains, and additives. Combining the strengths of the non-

destructive X-ray nCT and the high resolution FIB-nT, correlative studies can be carried out. 

In the following section, the quantitative correlative studies are presented.  
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5.3.3 Evaluation of pore size  

Figure 5.16 shows the pore percolation in the BT layers before and after sintering. In both the 

green and sintered microstructures, the 3D pores are highly percolated, making it 

inappropriate to separate the pores. 

 

Figure 5. 16 Percolation of pores and skeletons: (a) before sintering; (b) after sintering 

 

In 2D, individual pores in sections are generally easy to isolate before characterization. 

Separating the continuous 3D pore space into individual pores is technically feasible; 

however, this depends on the definition of a pore. As Bernard et al. [121] argued, there is no 

intrinsic partition of the 3D pore space and the definition of pore must be related to a physical 

phenomenon.  

 

In this work, the pore size distribution is statistically analyzed from the 2D sections using line 

intercepts (in practice, 1-pixel thick). The segmentation of the pore phases is very decisive to 

the accuracy of the pore size measurement. With the high resolution FIB-nT, the pore/solid 

phase contrast is excellent. We use the porosity measured with FIB tomographic data as a 

benchmark (refer to Table 5.2). When we segment the pores in the microstructure obtained by 

X-ray nCT, first we need to ensure that the porosity is the same as that obtained from the FIB 

tomographic data. Figure 5.17 compares the pore size distributions in the Ni layers and BT 

layers in both green and sintered MLCC chips. 

 

The pore size distribution measurements with X-ray CT and FIB-nT are reasonably in 

agreement with each other in terms of the mode, median, mean and frequency (i.e., they are 

in the same size bin). However, distribution curve for the X-ray nCT is not as smooth as that 
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for the FIB-nT. This is probably due to the differences in dataset quality. The voxel size for 

the CT microstructure is indeed 26 nm, while for FIB tomography microstructure, it is 5 nm. 
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Figure 5. 17 Pore size distribution in the BT (a) and Ni (b) layer obtained with X-ray nCT 

and FIB-nT 

Given the same volume in voxels, the size of the dataset for X-ray -nCT is 1/5 of that for the 

FIB-nT. Nevertheless, we can conclude that the X-ray nCT, as a pore scale analysis tool, is 

sufficient to study pore evolution. 
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In addition, note that the average pore size (160 nm, Ni layer Figure 5.17(b)) is close to the 

average particle size (180 nm, see Figure 3.3(b) in Chapter 3). Most of the pores can be 

referred to as intrinsic pores, which have the same scale of the particles. The fraction of larger 

pores (~800 nm, that is 4-5 times large the particles) remains small. These large pores are 

extrinsic pores, which are considered at the origin of electrode discontinuity (Chapter 4). The 

pores (extrinsic and intrinsic pores) in the sintered BT layers (Fig. 5.17(c)) do not contribute 

to the formation of discontinuities in the BT layer, because the BT layer is thicker. During 

sintering, both types of pores disappear.  

5.4 Particle size distribution (PSD) 

The geometry and packing of the particles are key factors for the final microstructures; hence, 

the evaluation of the particle size distribution (PSD) is of much interest to this study. The 

initial particulate characteristics will be used both to identify possible initial defects and to 

provide input parameters for the DEM simulations. We take the advantage of the high-

resolution FIB tomography to implement this task. 

 

Segmentation and separation are required to quantify the microstructure. 

5.4.1 Segmentation  

Ni and BT particles (including the nano sized BT additives) as well as pores have sharp 

contrast as shown in Figure 5.18(a-b). Following the de-shadowing processing, thresholding 

process was applied to the stack to separate different phases by choosing corresponding 

threshold value (Fig. 5.18(c)). However, due to edge effect, some sharp corners of the BT 

particles were recognized as Ni particles (Fig. 5.18(d)). The median filter is capable of 

eliminating these errors, but as a consequence of this filter some pixels in the real Ni particles 

disappear. In this work, the noise with volume under 150 voxels (an approximate size of 30 

nm) is firstly labeled and eliminated (Fig. 5.18(e)). Some artifacts that were recognized as Ni 

(above 150 voxels) can be removed manually by filling the selected volume with background 

color (Fig. 5.18(f)). The original image is then superimposed with Ni phase (Fig. 5.18(g)) to 

obtain sharper contrast. The BT particles in the dielectric layers and the BT additives in the 

electrode are identified (Fig. 5.18(h)). The remaining phase corresponds to pores (Fig. 

5.18(i)). 
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Figure 5. 18 (a) an original slice, (b) a zoomed in area of the original image, (c) histogram 

of the slice, (d) identification of Ni phase, (e) removal of noises from image d, (f) manual 

removal of the artifacts, (g) imposition of the electrode on the original image, (h) 

identification of the BT phase, and (i) the remaining pore phase 

 

5.4.2 3D watershed segmentation 

Watershed segmentation [156] is usually preferred for separating touching features in an 

image that are mostly convex. 

 

This algorithm simulates the flooding from a set of labeled regions in a 2D or 3D image. It 

expands the regions according to a priority map, until the regions reach the watershed lines. 

The process can be understood as progressive immersion in a landscape (Fig. 5.19). 

 

This algorithm depends on two inputs:  

 

I. Definition of the ultimate points (or, maxima): these maxima are labeled as different 

marker regions that are used as seeds for the flooding. It is like the water trying to 

retrieve the catchment areas. In doing this, there will be as many separated objects as 

markers.  
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II. Definition of Euclidean distance map: a grey image representing the landscape height 

field that controls the flood progression and finally the location of watershed 

separations. These separations are located on the crest lines between valleys of 

landscape, so called watershed (Fig. 5.19).  

 
The curve represents three minima, A, 

B and C and two maxima D and E. The 

set of markers contains only A and C 

A is flooded at the levels 1 and 2, 

but not B. Then it reaches point C. 

C: From the next level 

A and C are flooded until reaching 

point D. D belongs to the 

watershed. But not E 

Figure 5. 19 Definition of watershed in a watershed segmentation algorithm from [157] 

 

5.4.3 Particle size distribution  

Figure 5.20 shows the separation of the Ni particle using the 3D watershed segmentation 

routine in the Avizo Fire packages. 

 

Once the particles are separated, particulate characteristics, such as volume, surface area, 

equivalent diameter, sphericity and centroid can be calculated.  

An equivalent diameter is used to describe the particle size. It is defined as: 

1/3(6 / )d V 
      

 (5.3) 
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Figure 5. 20 Separation of Ni particles using 3D watershed segmentation (Avizo Fire): (a) 

binary stack consisting of connected nickel particles; (b) the Euclidean distance map of the 

binary stack; (c) binary image and watershed lines; (d) separation by subtracting the 

watershed lines from the binary image; (e) deletion of sectioned particles on the borders; (f) 

rendering of the randomly colored particles 

 

Figure 5.21 shows the 3D visualization of the separated Ni packing of the electrode (Fig. 

5.21(a)) and the corresponding PSD for the Ni particles measured by FIB-nT and laser 

scattering (LS)(Fig. 5.21(b)). Figure 5.21(b) demonstrates that the PSDs with laser scattering 

(based on 2D projection) and the FIB-nT are consistent with each other. Because the Ni 

particles are almost spherical, the 2D projection size (LS) is identical to the 3D size (FIB). 

The slight variation may be attributed to the sampling size. For the laser scattering data 
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collection, the sample size is approximately 1000 particles, while for the FIB tomography 

volume, there were about 1500 particles segmented in total.  

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

18

fr
e

q
u

e
n

c
y
 (

%
)

particle size (nm)

 Laser scattering

 FIB tomography

 

 

(a)

(b)

 

Figure 5. 21 Result of the 3D watershed segmentation of Ni particles in the electrode: (a) 3D 

view of separated Ni particles, colors are randomly assigned (BT inclusions not considered); 

(b) PSD measured with FIB-nT and laser scattering.  

 

The same 3D watershed algorithm was applied to separate the BT particles in the dielectrics 

layer as shown in Figure 5.22.  
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Figure 5. 22 3D watershed segmentation for the BT particles in a representative dielectric 

layer: (a) gray level image, (b) binary image, (c) Euclidean distance map, (d) result at 

maxima size= 1 pixel, (e) result at maxima size = 2 pixels, (f) result at maxima size =3 pixels 

 

We have shown here that care should be taken when applying the 3D watershed segmentation 

to the irregular particle systems. As detailed in the principles of the watershed, the maximum 

(ultimate point, calculated from a binary image) acts as a seed that will be used to retrieve the 

catchments. Thus, the number of maxima dictates the final number of separated objects. An 

overestimation of the number of maxima leads to an over segmented image (as shown by the 

arrows in Figure 5.22(d)). This happens when the object exhibits a concave feature. In that 

case, more than one maxima will be found in the volume of object (3D watershed). In another 

extreme case, if the maxima size is too large, contacting particles will be treated as one 
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(under segmentation shown in Figure 5.22(f)). So the option of the maxima size should be 

examined for each segmentation until an acceptable error is found. The ultimate decision for 

minimizing this error is made visually. In this work, the maximum size for the BT particle 

segmentation has been set to 2 pixels. Figure 5.23 shows the separated BT particles and the 

PSD with different maxima size.  
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Figure 5. 23 Result of the 3D watershed segmentation of BT particles in the BT layer: (a) 3D 

view of separated BT particles, colors are assigned randomly;(b) PSD measured with laser 

scattering and FIB-nT (maxima size = 1, 2, 3 pixels) 

 

Figure 5.23 indicates that the 2D projection based on LSA method predicts smaller particles 

size than the FIB-nT method. This is consistent with Kelly et al‟s [158] argument which 

states that, for nonspherical particles, image analysis leads to much larger particle sizes 

compared to laser diffraction. This is because laser diffraction undercounts events generated 
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by larger dimensions (major chord) or rather overestimates the contribution of minor chord 

data.  

 

5.4.4 Particle size distribution in 2D and 3D 

Characterization of particles using FIB-nT is not simple. It cannot be accessed as easily as 

optical microscopy or SEM. In this section, an attempt is to establish the correlation between 

a traditional 2D sectioning measurements (SEM, OM) and 3D measurements (FIB 

tomography). By virtue of the 3D data, cross-sections can be attained by re-slicing the 

volume at an arbitrary angle. So the 2D measurement can be performed very easily by 

following a similar routine. 

 

In this work, the model for unfolding cross-sections of spherical particle as described by 

classical stereology (see Russ‟ book [155]) is employed. The scheme dates back to Wicksell‟s 

work in 1925 [159] and has been refined by Schwartz [160] and Saltykov [161]. The simple 

idea is to use a thin plane to section the mono-size particles to obtain a mapping relation 

between 2D and 3D statistics as depicted in Figure 5.24. 

 

Figure 5. 24 Sectioning a sphere randomly produce a distribution of circle sizes, which can 

be calculated from analytical geometry (after [155]) 

 
The particles are distributed in a certain fashion (e.g., log-normal). We assume that each class 

of particles is mono-sized and can be unfolded using the classical stereology. For a 3D 

measurement, Fi stands for the frequency of the particle falling in the i-th bin. By multiplying 

the unfolding matrix, a fi is obtained for the corresponding frequency of the sectioned size 

that falls in the same bin. In this work, a 24 × 24 (n=24) system matrix is used.  
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(5.3)

 

Figure 5.25 shows the correlations between the PSD of nickel particles in 2D and 3D. The 2D 

sectioning method underestimates the true size. After being corrected with the 24 × 24 system 

matrix, the results are shown as the blue curve in Figure 5.25.
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Figure 5. 25 Correlation between PSDs in 2D and 3D using the unfolding scheme 

 

5.5 Heterogeneities in the green electrode 

Figure 5.26(a) shows the 3D microstructures rendered with Avizo. Figure 5.26(b-d) shows 

the cross-sections of the Ni green electrode in three orthogonal planes. The average relative 

density is D = 0.50. However, local densities deviate from this average volume very much. 

This is because the Ni particles are not homogeneously arranged. As can be seen from the 

cross sections (Fig. 5.26(b-d)), they are either separated by pores or BT additives (not 

displayed in the image). In addition to these heterogeneities, the thickness of the electrode is 

not constant (Fig. 5.26(b)). 
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Figure 5. 26 (a) 3D rendering of the electrode (the electrode plane is xz); (b) xy middle plane 

cross-section; (c) zy middle plane cross-section; (d) xz middle plane cross-section 

 

Figure 5.27 plots the density (areal density in the serial slices) profile probed in x (Fig. 

5.27(a)), y (Fig. 5.27(b)), z (Fig. 5.27(c)) direction. The peaks and valleys imply respectively 

the high density regions and low density regions, which can be referred to as heterogeneities. 

The heterogeneities can be located easily by the peaks and valleys‟ coordinates (in pixel). 

The discrepancy in the local relative density reaches up to 0.25 as shown in Figure 5.27(a).  
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Figure 5. 27 Density profile in x, y, z direction (1 pixel represents 5 nm) 

 

Figure 5.28 shows the particle coordination number map at two reprehensive heterogeneities. 

Slice #40 (xy slice in z direction) has the lowest density while the slice #60 has the highest 

density. The average coordination number in the high density regions is larger than that in the 

low density regions. Consider now the thickness of the electrode that sometimes consists only 

of a few particles. The coordination numbers are computed from 2D cross-sections. Since the 

step size is only 5 nm (1 pixel), we think the 2D coordination map is sufficient to signify the 

spatial heterogeneity.  
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Figure 5. 28 Coordination number map for the xz plane cross-sections  
 

5.6 Porosity 

As reviewed in Chapter 2, size and morphology of pores evolve as sintering proceeds. The 

pores can further play a role in physical and mechanical properties of the functional materials. 

Anisotropic pore development can also give valuable information on the sintering conditions 

(e.g., pressure-assisted, constrained sintering).  

 

In the binary image, solid and pore phase are represented by 1 (black) and 0 (white). By 

counting the white pixels or voxels, pore area (2D) or pore volume (3D) is obtained. The ratio 

of the pore area (volume) to the envelope area (volume) represents the 2D and 3D porosity. 

Table 5.2 presents the 2D and 3D relative density in the three BT layers.  

 

Green density in the BT layers is ~61%; while it is 56% for the electrode (including the 5.4% 

of BT additives). For porous media, in absence of heterogeneities, the 2D density (porosity) 

should be equal to the 3D measurement [162]. Density discrepancy in 2D and 3D for the Ni 

layers is larger than that for the BT layers. This echoes the significant heterogeneities in the 

electrode layers as previously shown in Figure 5.26. 
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 Layer Density(2D) Density(3D) Porosity(3D) 

Electrode 

E1 52.9 51.9 43.6 
E2 54.8 52.7 41.5 
E3 53.7 50.9 43.2 

Avg. 53.8 51.8 42.8 

Additives 

E1 6.2 4.5 - 
E2 6.2 5.8 - 
E3 4.5 5.9 - 

Avg. 5.6 5.4 - 

Dielectrics 

D1 62.4 63.5 36.5 
D2 61.1 59.7 40.3 
D3 59.9 60.8 39.2 

Avg. 61.1 61.3 38.7 
 

Table 5.2 Average 2D and 3D density in different layers 

5.7 Anisotropy 

5.7.1 Pore orientation in BT layer 

Understanding the effect of geometrical constraint during the co-sintering of multilayers 

should help to manage the control of the microstructure. Anisotropy development has been 

reported both in experiments and in numerical simulations on constrained sintering thin films 

on rigid substrates [121, 163]. For the same reason, we evaluate pore orientation based on 2D 

cross-sections. As Figure 5.29(a) and (b) show, pores in the cross-section of the sintered 

sample are well isolated. These pores can be fitted as ellipses that have the same area and 

moments (first and the secondary moment) as the original pores (Fig. 5.29(c)). The major and 

minor axes define the shape of the ellipse. The orientation of pores is defined as the anti-

clockwise angle between the major axis and the x axis. (Fig. 5.29(d)). 
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Figure 5.29 Pore orientations in the 2D cross-section 

 

By using the particle analyzer in ImageJ, a best-fitting algorithm [164] is performed to 

generate equivalent ellipses and to obtain the orientation angle information.  

 
The circularity C is defined as the ratio of A the area of a circle having a perimeter equal to P: 

2

4 A
C

P

    (5.3) 

In practice, particles whose circularity is 1 and aspect ratio is less than 1.05 are not taken into 

account when the statistics is carried out.  

 

Figure 5.30(a) shows the polar plot of the angular frequency as a function of the angle (0-

180o). Note that, the curves for the other half (180-360o) is duplicated symmetrically for 

demonstration.  

 

In the green state (black curve), most of the pores are elongated along ș = 140-160o. In tape 

casting, it has been observed that textured pores elongate along the tape casting direction 

[165] due to the fact that the particles are preferentially orientated along the tape casting 

direction during the die-slot tape casting procedure. It indicates that the tape casting direction 

is along ș = 150o in the selected coordinate system (Fig. 5.30(b)). After sintering, the fraction 

of pores that are oriented along the original tape casting direction increases (red curve). This 

means that pores further elongate along their original orientation during sintering. During 
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sintering, smaller intra-agglomerate pores may pinch off and disappear while larger inter-

agglomerate pores, which are elongated in the tape casting direction, remain.  
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Figure 5. 30 Pore orientation in the xz- plane before and after sintering  

 

To examine the role of initial anisotropy induced by tape casting during sintering, new planes 

were created as shown in Figure 5.30(b). x’y’ plane is considered parallel to the tape casting 

direction; y’z’ plane is perpendicular to the tape casting direction. 

 

Figure 5.31 shows pore orientation statistics in the vertical plane x’y’ before (black curve) 

and after (red curve) sintering. The frequency of the pores that orient along the tape casting is 

initially about 3%. After sintering, the frequency of the pores that orient in the tape casting 

direction increased to 11%. The change is probably caused by the in-plane (x’z’) compressive 

stresses developed during co-sintering of multilayers, on top of the contribution due to the 

disappearance of the intra-agglomerate pores. Before the BT starts to sinter (1000-1050 oC), 

the rapid sintering of Ni layers imposes compressive stresses, which facilitate the 

rearrangement and further sintering of the BT particles. Pores preferentially elongate along 

the direction of the compressive load. This stress induced anisotropy can be analogous to that 

produced during sinter forging, that is, pores preferentially orient along the direction of the 

external load [166]. However, once the dielectric layer really starts to densify, an in-plane 

tensile stress develops, which should lead to pores oriented along the thickness direction as 

observed in alumina films [167]. But co-sintering of YSZ layers [168] revealed that possible 



 Correlative studies using FIB-SEM nanotomography 

 

- 97 - 
 

large pores may evolve as the macroscopic shrinkage of the sintering body (which means 

perpendicular to the compressive loading direction) as evidenced by additional sinter-forging 

experiments on porous bodies containing artificial large pores [82]. 
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Figure 5. 31 Pore orientation in the x’y’ plane before and after sintering 

 

Figure 5. 32 shows the orientation statistics of the pore 2D sections in the y’z’ plane, which is 

also through the thickness but perpendicular to the casting direction. The initial 2D sections 

of the pores are randomly orientated. It is interesting to observe that after sintering this initial 

random distribution tends to orientate along the horizontal direction (parallel to the in-plane 

stresses). The frequency of the 2D pore sections that orient at ș = 0 in y’z’ plane does not 

increase as significantly as that in x’y’ plane (Fig. 5.31). This is supportive evidence that the 

disappearance of the intra-agglomerate pores also contribute to the increase in the pores that 

orient in the stress loading direction.  



 Correlative studies using FIB-SEM nanotomography 

 

- 98 - 
 

0

1

2

3

4

5

6

0

30

60

90

120

150

180

210

240

270

300

330

0

1

2

3

4

5

6

 

 

 f
re

q
u

e
n

c
y

 (
%

)

 y'z' plane (green)  y'z' plane (sintered)   
 

Figure 5. 32 pore orientation in the y’z’ plane before and after sintering 

 

5.7.2 Density gradient  

Figure 5.33 shows the relative density in the thickness direction. The density is calculated as 

the solid area fraction in the cross section plane. Two obvious findings are presented: 

 

(1) In each single BT layer (D1, D2, and D3), the surface region (interface) is much denser 

than the middle region. It has been observed experimentally by Guillon [73] and Bernard 

[121] and in discrete simulations by Martin and Bordia [163] that in a sintered thin film on a 

rigid substrate, the density at the interface is lower than the inner region of the film. These 

studies also show that pores near the interface are elongated perpendicular to the thickness 

direction.  
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Figure 5. 33 Density profile in the thickness direction (from the surface to the bottom #1-s-ct). 

The density is measured from the 2D slices along the thickness 

The mechanism for the anisotropy development is depicted in Figure 5.34(a). Due to the 

restraining effect of the substrate, tensile stresses develop in the thin film, especially near the 

interface. These tensile stresses hinder the sintering of the film near the interface, thus 

resulting in a lower final density close to the interface. In the meanwhile, due to the restraint 

of the substrate, grain grows preferentially in the thickness direction, resulting in vertical 

oriented pores at the interface. 
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+ +
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Figure 5. 34 Anisotropy in thin film on substrate: (a) Bordia’s model for the constrained 

sintering of thin film ([169]); (b) numerical simulations by Martin and Bordia [163] 

 

In the current study on the co-sintering of BT/Ni/BT multilayers, both Ni and BT layers 

densify but at different densification rates as shown in Figure 5.35. At the early stage of the 

sintering of Ni/BT multilayers (400-1050 oC), the BT layer is placed under compression, as 

the nickel sinters earlier and faster than the BT layers. Thus, compressive stresses may 

facilitate particle rearrangement at the interface. The interface regions sinter faster than the 

inner regions in the BT layers, resulting in a higher density near the interface. Meanwhile, 

these compressive stresses facilitate the necks grow in the load direction, that is, in parallel to 

the BT planes, resulting in horizontally elongated pores. Note that when the temperature 

reaches 1050 oC, the stress state reverses in both layers. However, the anisotropy that initially 

developed at the early stage (before the temperature reaches 1050 oC) plays a decisive role in 

the entire sintering.  

+ +

+

+

+

L

+

L

densifying layer 1

densifying layer 2

+ ++ +

L

 

Figure 5. 35 A model for the co-sintering of multilayers 

 

(2) Average relative density in the BT layers decreases from the top layer (D1) to the bottom 

layer (D3), as explained in Chapter 4; this is due to different constraint levels in different 

layers. 
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5.8 Microstructure evolution of the electrode 

5.8.1 Discontinuity of electrode 

Figure 5.36 shows the FIB reconstructed electrode of the sintered MLCC sample (#1-s-ct) 

that was imaged by X-ray nCT (Chapter 4). In this discontinuous electrode, only the solid 

area can contribute to the capacitance of MLCC. With FIB tomography (BSE), plenty of BT 

particles are observed in the electrode.  

 

Figure 5. 36 An electrode (#2) from the sample #1-s-ct 

 

A further EDX chemical analysis was carried out to confirm the phase of these entrapped 

particles. Figure 5.37 shows the EDX mapping of the cross-section of sample #3. The darker 

spots, entrapped particles (spots 1 and 2) are analyzed with EDX quantitative spot analyses.  
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Figure 5. 37 EDX mapping of the cross-section of the sintered chips (sample #3) 
 

From the EDX mapping, the darker particles are rich in Ba, Ti and O chemicals, the same as 

compositions of BT. Qualitative EDX analysis (Table 5.4) indicates that these darker phases 

are actually entrapped BT additives in the initial Ni matrix. Most of the BT additives are 

excluded by the nickel matrix due to their incompatibility with Ni. These excluded BT 

particles sinter with adjacent BT layers to form percolating bridges. The percolation of BT 

(bridges between electrode layers) can improve the union of the neighboring dielectrics layers 

and the overall mechanical properties of the chips. From the O map, oxygen elements could 

be found in the electrodes. It indicates that the nickel particles absorbed the residual oxygen 

in the Ar+2%H2 mixture. In industry, (0.1-0.01%) H2-Ar-H2O wet gas is utilized so that the 

content of the partial oxygen pressure is controlled within 10-9-10-11 atm. This residual 

oxygen modifies the sintering kinetics of the electrodes and dielectrics. That may also explain 

why the dielectrics are not fully densified. This may alter the final dielectric properties, which 

are, however, not considered in our study. 

Element spot 1 spot 2 

Ba Ti O Ni Ba Ti O Ni 

Atom% 31.12 33.6 36.28 0 38.09 36.93 24.98 0 

Table 5.4 EDX spot analysis on sample #3 

Figure 5.38 shows the BT inclusion particle size change before and after sintering in the 

electrode #2 in sample (#1-2-ct). The PSD distribution usually shifts towards larger particle 

size due to grain coarsening which consumes smaller particles. In our case, while a portion of 
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coarsened particles have been found, the portion of small particles increases and the average 

particle size does not change significantly. This is because the nano BT additive inclusions 

are dispersed in the electrode. Isolated single BT particles are not modified. Only aggregated 

BT particles sinter and form a single larger particle finally. 

 

Figure 5. 38 The PSD evolutions of BT inclusion particles entrapped in the electrode (#2) in 

sample #1-s-ct 

 

5.8.2 Correlation between discontinuity and capacitance 

Figure 5.39 shows two neighboring electrodes, which comprises a unit capacitor. The 

capacitance of a multilayer capacitor as given by Eq.(1.1) is directly proportional to the total 

effective electrode area. 

 

Figure 5. 39 Two reconstructed electrodes and a unit capacitor 
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The discontinuous areas (black areas) in the electrodes lead to a decrease in the effective 

overlapping area, and thus in the capacitance. The effective overlapping area A (white area) 

in the Eq.(1.1) can be calculated by a Boolean ORing operation of the areas of the two 

electrodes. The relative capacitance C is 

0 0C C A A                                                          (5.6) 

Table 5.5 presents the areal (2D) discontinuities of the six electrodes and the relative 

capacitances of the five unit capacitors in the FIB-SEM reconstructed representative volume 

extracted from the sintered MLCC sample (#3).  

 

 

No. discontinuity2D (%) Relative capacitance 
(%) 

1 16.3  
2 22.3 63.6 
3 16.4 66.3 
4 12.3 75.0 
5 9.4 79.8 
6 10.9 81.1 

average 16.3 73.4 
 

Table 5.5 Discontinuity of electrodes (#1-6) measured in 2D and the relative capacitances of 

the five unit capacitors, which are comprised of the neighboring electrodes 

 

Average discontinuity is 16.3%. Notice that the average discontinuity for the electrodes that 

sintered with a smaller cylindrical sample is 12.5%. This size and geometry effect on the final 

electrode discontinuity is detailed in Chapter 4. The average relative capacitance is 26.6% 

compared to a capacitor with continuous electrodes. That means that theoretically, by getting 

rid of these electrode discontinuity, the chips could be downsized by a quarter of their size 

and still have the same capacitance.  

5.9 Conclusion 

High resolution FIB-nT has been utilized to characterize the green MLCC chips (#2-g) and 

sintered MLCC samples. The analysis also included the sample imaged with X-ray nCT (#1-

s-ct) and a sintered MLCC with a real size (#3). It is concluded that: 
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(1) Qualitative and quantitative correlative studies on the microstructures of both the green 

and sintered Ni-MLCC sample have proved that the X-ray nCT spatial resolution is sufficient 

for the current work dealing with heterogeneity evolutions. 

 

(2) FIB-nT enables 3D evaluation of the particulate characteristic including the particle and 

pore size and their distribution. This provides accurate particulate parameters for the discrete 

element simulations. 

  

(3) Heterogeneities in the electrodes have been quantified. Because particles are not 

homogeneously arranged, there are density variations through the electrode layers. In the high 

density regions, the average particle coordination numbers are larger than in the low density 

regions. 

 

(4) Anisotropy has been observed for both pore orientation and density in the BT layers. 

These anisotropic effects are considered to be caused by the compressive stress that develops 

during the heating stage when the Ni electrode sinters faster than the BT layers. The 

compressive stresses near the interface facilitate the sintering of the BT particles, leading to a 

denser region at the interface than in the inner regions. Under this in-plane compressive 

stresses, the BT particles grow preferentially in the loading direction leading to pores that 

orient preferentially parallel to the layers. 
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Chapter 6  

Discrete element simulations of the 

sintering of electrode material 

This chapter presents a numerical approach to simulate the sintering of powders. The Discrete 

Element Method (DEM) is used here specifically to simulate the sintering of a powder in the 

presence of inclusions as this represents well the actual process in MLCCs where Ni powders 

are sintered with BT particles. We take advantage of the fact that DEM simulations work 

explicitly at the particle length scale, which continuum techniques such as Finite Element 

Method cannot. This allows the retarding effect of inclusions to be taken into account, 

together with important effects such as inclusion size and inclusion dispersion. We first 

review the modeling efforts concerning sintering with rigid inclusions. Literature on DEM of 

sintering is reviewed. The general principles of DEM are then briefly described. Finally, the 

modeling of the sintering of composite materials with dp3D code is described. 

6.1 Introduction 

The discrete (or distinct) element method element method (DEM), was first proposed by 

Cundall and Strack [170] in 1979 to study the micromechanics of geomaterials. The DEM 

simulates the behavior of granular materials at the particle-length scale. Over the last decades, 

with advances in computing power and numerical algorithms for nearest neighbor sorting, it 

has become possible to numerically simulate hundreds of thousands of particles with a single 

processor. Today DEM is becoming widely accepted as an effective method for addressing 

engineering problems in granular materials, especially in granular flows [171-174], 

micromechanics [175-177], environmental sciences [178], rock mechanics [179-181], 

pharmaceuticals [182, 183], and powder metallurgy [52, 163, 184-194]. 

6.1.1 DEM  simulation of sintering 

Jagota and Scherer [195, 196] were the first researchers to study sintering with DEM. 

Sintering of mono-sized composites was modeled with DEM simulations by assuming that all 

contacts follow a linear viscous law. Vergina [197] proposed a 3D DEM model that is based 
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on two-particle interactions. This model considered the grain-boundary and lattice diffusion. 

It predicted rationally the structural reorganization effects which occur during the early stage 

of sintering of random and of some crystalline-type packings in which various initial defects 

have been created. Parhami and Mc Meeking [198] used a discrete element model to predict 

the densification of initial stage of sintering through computer simulations, in which every 

particle center is represented by a node and every contact between neighboring particles by a 

discrete element. The velocity of each node is related to external and sintering forces 

governed by grain boundary and surface diffusion, derived from Bouvard and Mc Meeking‟s 

work [199]. Then the motion of each discrete element was determined and was assembled to 

present the behavior of a powder system with 266 particles.  

 

The Parhami-McMeeking model has been taken and practiced by many authors [163, 189, 

200, 201] to consider macroscopic behavior and/or microstructural evolutions aided with 

computer power and numerical schemes. Among these authors, Martin and his co-workers 

investigated the sintering kinetics of metal powder [187], the effect of local heterogeneities 

arising from non-sintering inclusions [52, 117], defects development in film/layers with 

complex geometry [163, 189].  

 

Riedel and Kraft [202, 203] considered the pore evolution‟s influence on the sintering force. 

The sintering force, taking into account the pores characteristics (i.e., coordination number, 

volume fraction), enables prediction of the immediate and final stage of sintering. By 

incorporating Riedel and Kraft model, DEM simulations have been implemented to study the  

rearrangement of particles [188], anisotropy [204] during the sinter-forging by Wonisch et al. 

Wonisch et al.‟s DEM study confirmed that intergranular pores are preferentially orientated 

along the compressive loading axis in accordance with their experimental observations. Taps 

et al. predicted [205] distortion of film due to constrained sintering by a rigid substrate using 

DEM simulations.  

6.1.2 Principle of DEM 

The general principle of DEM is based on the writing of the mechanical equilibrium of a set 

of discrete objects that interact with each other through their contacts. A large majority of the 

simulations based on DEM uses disc-shaped and spherical elements in 2D and 3D 

simulations, respectively. This simplification allows to include as few geometrical parameters 

as possible, i.e., only the relative position of particle centers are tracked to determine particle 
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contacts. The greatest advantage of this assumption is computational simplicity. As a result, 

the computer storage and processing time are significantly reduced and a large-scale 

simulation within a reasonable time becomes possible. However, it should be noted that disks 

and spheres tend to roll or rotate easily, which does not reflect the behavior of real materials 

in case of large shear processes. In the remaining, we will only consider spherical particles. 

Also, we specialize the description of DEM by referring essentially to the dp3D code, which 

has been developed at SIMaP, Université de Grenoble and which be used to simulate 

sintering. 

 

Particles are described by their number i (i = 1, N), their position iX , velocity iV , angular 

velocity iω , radius iR , mass mi and moment of inertia Ii. 

 

In each simulation time step Δt, first the neighbors of every particle are determined. This 

neighborhood is defined by a previously specified interaction radius Rc. Then forces between 

neighboring particles are calculated, depending on a given force law, as described later in 

Section 6.2. The time evolution of the particle positions is governed by Newton‟s equations 

of motion: 

,       (6.1)

                               (6.2)

tot

i i i i i ij i

j i
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i i ij
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d d
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dt dt
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Here, ijF  and ijM denote the inter-particle force and moment from the j-th particle on the i-th 

one (see Fig. 6.1). The first term ijF  includes the contributions of normal force N, tangential 

force T and gravitational force mig. tot

iF denotes the total force acting on the i-th particle and 
tot

iM  the total torque acting on the i-th particle, calculated from the particle-particle torques: 

1
( )

2ij i j ij   T X X F
                      

(6.3) 
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Figure 6. 1 Two-particle contact model 

 

The most widely used method for integrating the equations of motion is the algorithm 

initially adopted by Verlet [206]. Swope et al. [207] proposed a Verlet-equivalent algorithm, 

which stores positions, velocities and accelerations all at the same time t. This velocity- 

Verlet-algorithm uses a group of equations:  

21
( ) ( ) ( ) ( )   (6.4)

2
tot

i i i i

i

t t t t t t
m

    X X V F  

1
( ) ( ) ( ( ) ( ))  (6.5)

2
tot tot

i i i i

i

t t t t t t t
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1
( ) ( ) ( ( ) ( ))  (6.6)

2
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i i i i

i

t t t t M t M t t
I

     ω ω  

This method, which is the standard integrating method in dp3D, has the advantages of 

numerical stability, convenience and simplicity [208].  

 

To obtain a proper integration of the particle movement, the time step must be chosen 

carefully. The time step is determined using the method proposed by Cundall and Strack [170] 

as:  

0

0

2                         (6.7)t

m
t f

K
   
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In analogy with a contact with stiffness K0 and an oscillating mass m0. The safety factor ft is 

less than unity to ensure stability of the calculation, m0 is the smallest particle mass and K0 is 

the maximum contact stiffness, defined by contact equations. The simulation for quasi-static 

deformation can be carried out either using a so-called non viscous damping method [170] or 

by scaling the density of the particles by a factor of ȕ with a typical value of ȕ = 1012 [209].  

 Boundary conditions  

Three types of boundary conditions are typically available in DEM. Note that they can be 

mixed together depending on the application. 

 

I. Rigid Walls  

Rigid walls can be constructed using objects such as planes, spheres, or cylinders. These 

objects have an infinite mass, so their motion is not dictated by the second law of Newton 

(6.1) but only by the imposed conditions set by the user. Walls may represent real process 

conditions such as a die wall in uniaxial close-die compaction.  

 

II.  Free surface 

Particles on surface of the sample only interact with other particles. 

 

III. Periodic boundary 

Periodic conditions are imposed by stating that when a particle protrudes outside the periodic 

cell through a given face, a mirror particle is generated on the opposite face of the periodic 

cell. The mirror particle interacts with other particles on that face (Fig. 6.2). Similarly, when 

the center of a particle lies outside the periodic cell, the particle is translated to the opposite 

face of the cell by a distance equal to the length between the two opposite faces. The relative 

density of the sample is defined as the ratio between the particles volume and the volume of 

the cell. Periodic conditions are well adapted for simulating a Representative Volume 

Element (RVE) far away from any rigid walls. Typically, it may represent a volume of 

powder inside a matrix far from the perturbation of the rigid die wall.  



 Discrete element simulations of the sintering of electrode material  

 

- 112 - 
 

periodic cell face

j

i mirror particle

(a) (b)  

Figure 6. 2 Schematics of (a) wall conditions; (b) periodic conditions 

 

In a typical DEM simulation, macroscopic strains are imposed. Depending on the boundary 

conditions that have been chosen, strains are imposed by moving the objects or by moving 

the boundaries of the periodic cell by the following equation:  

j ij ix x t  
                                   

(6.8) 

Where xi is the location of the object centroid or of the periodic cell, and ij is the imposed 

strain rate. The centers may also be moved according to the same equation (as if they are 

points in a continuum) at the beginning of each time step. This, in general, facilitates the 

convergence toward force equilibrium.  

 

The imposed strains in the simulation result in contacting particles generating contact forces. 

These contact forces produce stresses at the macroscopic scale. The macroscopic stress tensor 

ij may be computed from contact forces by considering a set of particles inside a volume V: 

1
( )      (6.9)ij i i j

contacts
T N l

V
     

Where lj is the branch vector between particles i and j centers.  

 

In DEM of sintering, stress is imposed, instead of strain. This is done by calculating the strain 

rate of the simulation box which needs to be imposed to minimize the error between the 

calculated stress and the required stress. To simulate free sintering a zero (or very small 

compressive stress) should be imposed. 
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6.2 Model description 

In this section, we describe the contact forces, which model particle interactions in an 

electrode layer (Ni and nano BT). In Chapter 3, experiments have shown that electrode 

powders containing both nickel and nano BT particles sinter earlier (400-800 oC) than BT 

powders (950-1050 oC). Using X-ray tomography, we have demonstrated that the 

discontinuities of electrode form at the early stage of sintering while the BT has not started to 

sinter yet. To simulate the sintering process of Ni/BT composite powders below 950°C, we 

make the following simplifying assumptions: 

- All particles are spherical. 

- Particles cannot rotate (we assume that sufficiently large contacts grow fast enough to 

counteract rotations). 

- BT-BT contacts are elastic.  

- Ni-Ni contacts are sintering contacts. 

- Ni-BT contacts are viscous contacts. 

- Coarsening is neglected. 

- Sintering is isothermal.  

- Gravitation is neglected. 

 

To keep some generality to the model description, we define Ni as the matrix particle, and BT 

as the inclusion. Spherical matrix and inclusions particles interact through specific contact 

laws. In such a case, three types of contacts coexist: inclusion-inclusion (ii), matrix-matrix 

(mm), and inclusion-matrix (im) contacts. We define an equivalent radius R*=R1R2/(R1+R2), 

for two particles of radius R1 and R2. 

 

For (ii) contacts between particles with Young‟s modulus E and Poisson‟s ratio Ȟ, the normal 

contact force is elastic with an additional adhesive term given by the Derjaguin-Muller-

Toporov model [210]: 

3
*

2

8
2

3 1
ii

ii

aE
N wR

R
      (6.10) 

Where aii is the elastic contact radius and w is the work of adhesion (twice the surface 

energy). The second term denotes the driving force for agglomeration between small particles. 

Frictional forces Tii = µNii between inclusion particles are also included using Coulomb law 
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(with a friction coefficient set to µ = 0.1). For inclusions, we set E = 130 GPa, Ȟ= 0.25 and w 

= 0.05 J m-2
, typical values for BT polycrystalline ceramics [211]. 

 

We use the model of Parhami and McMeeking for sintering (mm) contacts [198]. It assumes 

that grain boundary and surface diffusion are the major mechanisms of mass transport [163, 

187]. Particles approach each other due to the flux of vacancies from the inner of the grain 

boundary to the triple point (pore). The normal contact force is given by: 

4
*8 1 cos sin

8 2 2
mm

mm s mm

b

a dh
N R a

dt

                                           (6.11) 

Where amm (Fig. 6.3(a)) is the sintering contact radius, h the indentation,  the dihedral angle, 

s the surface energy and b a diffusion parameter related to the grain boundary diffusion 

coefficient: 

0 exp( / )b b b bD Q RT
kT

                                              (6.12) 

with įb the grain boundary thickness, D0b a material constant, Qb the activation energy, Ω the 

atomic volume, R the gas constant and T the temperature. The first term on the right-hand 

side of Eq (6.11) may be considered as a normal viscosity, whereas the second term relates to 

surface tension effects. The same viscosity term was used by Kraft et al. [202] in the normal 

force expression but their tensile term was slightly different. The tangential force Tmm at a 

(mm) contact opposes the tangential component of the relative velocity at the contact, du/dt, 

and is given by: 

2 *2

2
mm

mm

b

a R du
T

dt

                                                           (6.13) 

where Ș is a dimensionless viscous parameter [212]. A value of Ș = 0.1 was used in this study. 

Note that Eq. (6.13) also applies to (im) contacts. The contact radius amm which appears in Eq. 

(6.11) and (6.13) is given by a generalization of Coble‟s law [213] for contacts between non-

monomodal particles, as proposed by Parhami and McMeeking [198] and confirmed 

numerically by Pan [214]: 

2 *4mma R h                                                                (6.14) 

For (im) contacts, we assume that a nearly flat surface, instead of a sintering neck, forms on 

the matrix side at the (im) contact (Fig. 6.3(b)). In support of this assumption, clear interfaces 

between matrix and inclusions are observed in some sintered polycrystalline ceramic or metal 

matrix composites [31, 215]. The normal force is given solely by the viscosity term of Eq. 
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(6.11) and the contact radius aim is derived by conservation of matter (the derivation is 

available in the supplementary material online): 

2 4im ma R h                                                              (6.15) 

Where Rm is the radius of the matrix particle.  
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matrix

matrix
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Figure 6. 3 Contact models: (a) matrix-matrix contact (matrix can be metal or ceramic); and 

(b) inclusion-matrix contact 

 

Note that the inclusion/matrix contact model we propose here is comparable to the case of 

particles sintering on a rigid substrate. In accordance with Ref. [163], Eq.(6.15) is equivalent 

to Eq.(6.14) if the inclusion particle is treated as a flat constraining substrate (when the radius 

of inclusion Ri = ∞). This would indicate that Eq.(6.15) may also apply to polyhedron 

inclusions. Inclusion shape may affect the sintering behavior of the composite, as shown by 

Sudre and Lange et al. [216] although Nakada et al. [217] experimentally found that the 

shape of the inclusions had little effect on the macroscopic densification behavior of ZnO 

matrix with 10 vol% of ZrO2 inclusions. 

6.3 Simulation procedure 

 Generation of packing 

The preparation method consists of several steps: 

(1) Making of a gas of randomly distributed non-overlapping spheres in a periodic 

simulation box. Before a new particle is generated, a potential position will be 

checked. If this particle is not intersecting with any other existing particles, it is 

accepted, otherwise, a new attempt is performed. This routine is repeated until all 

http://www.google.com.hk/url?sa=t&rct=j&q=polyhedron&source=web&cd=1&cad=rja&ved=0CC8QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPolyhedron&ei=74RBUZ-eM8mXhQeg8ICYBg&usg=AFQjCNFqXG06ARa8CIeNARBxJO84GNuT7Q
http://www.google.com.hk/url?sa=t&rct=j&q=polyhedron&source=web&cd=1&cad=rja&ved=0CC8QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPolyhedron&ei=74RBUZ-eM8mXhQeg8ICYBg&usg=AFQjCNFqXG06ARa8CIeNARBxJO84GNuT7Q
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particles are accommodated. This process takes tolerable time to result in a low 

packing fraction of approximately 0.32, with no contact between particles.  

 

(2) Jamming under isostatic equilibrium. In this stage, the loose gas is submitted to a slow 

stress-controlled hydrostatic densification to ensure force equilibration. During this 

preparation stage, friction is not introduced and only elastic contacts appear between 

particles [190]. This preparation stage is stopped when the relative density in the 

simulation box is equal to 0.55. A large external pressure can also be imposed to 

simulate close-die compaction and attain larger green density. 

  

(3) Sintering. In this stage, normal and tangential forces are activated depending on the 

contact (Eqs. (6.10) to (6.13)). Densification is stopped when the macroscopic density 

is 0.85 to ensure that interactions between neighboring contacts remains negligible.  

 Generating of composites with inclusions 

Generation of composites with inclusions can be realized in a similar way; however, matrix 

and inclusion particles will be labeled as different materials. In presence of aggregated 

inclusions, adhesion between inclusions is treated with specific bonding forces, thus ensuring 

the aggregate survival during jamming (Fig. 6.4).  

(a)

(b)

gas of particles packing of particles
jamming

 

Figure 6. 4 Generating of the numerical samples: (a) randomly dispersed; (b) aggregated 

inclusions 
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A series of composite samples consisting of 1000 spherical monosized matrix particles of 180 

nm and various volume fractions of inclusions (5%, 10%, 15% and 20%) were generated. For 

20% volume fraction, the inclusion size was varied (60, 100, 180 and 300 nm, see Fig. 6.5 (a, 

b and c)). Periodic conditions are kept all along the sintering stage. 

 

Figure 6. 5 Numerical microstructure of composites with: 20% of randomly dispersed 300 

nm (a), 100 nm (b), 60 nm (c) inclusions;10% of randomly dispersed 60 nm inclusions (d); 

and 10% of agglomerated 60 nm inclusions (agglomerate sizes are ~ 120 nm (e) and ~300 

nm (f)). 

 

In standard homogeneous samples (Fig. 6.5 (a, b, c and d)), inclusions are randomly 

dispersed in the matrix. In contrast, two other types of samples, with 10% and 20% of 60 nm 

inclusions were also generated to test the effect of an heterogeneous packing of inclusions. 

These samples are initially made of matrix particles randomly mixed with inclusions that are 

clustered together as agglomerates with average diameters of ~120 nm (Fig. 6.5(e)) and ~300 

nm (Fig. 6.5(f)), respectively. All these samples were sintered isothermally at 800 oC. The 

material parameters needed for the Nickel material of the matrix are listed in Table 6.1. 

 

0b bD (m3 s-1) bQ (kJ mol-1) Ω (m3) 
s (J m-2)  (°) 

3.5×10-15 232 1.09×10-29 2.0 146 
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Table 6.1 Material constants of Ni used in Eqs. (6.11), (6.12), and (6.13) [218]. Activation 

energy of Ni is regarded as a fitting parameter. 

6.4 Result and Discussion 

The most obvious effect of introducing inclusions into the matrix is to substitute (mm) 

contacts, which are bound to sinter, by (im) contacts. This effect is stronger as the number of 

inclusions increases. Also, since the inclusion number scales inversely with the cube of 

particle size, smaller inclusions will lead to a larger number of substitutions between (mm) 

and (im) contacts. This effect is demonstrated in Figure 6.6, which shows that starting from 

an average contact number between matrix particles Zmm = 4.4, the green powder loses on 

average one to two (mm) contacts when the inclusion volume fraction increases to 20%. The 

size effect is also clear: while the gain of (im) contacts is only moderate for 180 nm 

inclusions, it is much larger for 60 nm inclusions. This is because smaller inclusion particles 

are much more efficient in decorating the surface of large matrix particles. 
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Figure 6. 6 (mm) and (im) contact numbers in the green packing for various amounts and 

size of inclusions.  

 

Although all packings exhibit a net gain in contacts due to densification and rearrangement, 

the initial loss of (mm) contacts due to the presence of inclusions is not recovered during 

sintering. The (mm) contact number depends almost linearly on the relative density, once the 

rearrangement stage is completed (Fig. 6.7(a, b and c)). Figure 6.7(c) demonstrates that when 
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inclusions are introduced as larger agglomerates, their effect on the decrease in (mm) contact 

number is less pronounced. 
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Figure 6. 7 Evolution of (mm) contacts upon densification: (a) effect of inclusion amount, (b) 

of inclusion size, and (c) of the inclusions as agglomerates (agg.) or well dispersed (no agg.) 

Figure 6.8 shows the typical evolutions of the relative indentation for the three types of 

contact in the composite. In accordance with Eqs.(6.(10-15)), the (ii) elastic contact growth is 

negligible, while the (mm) contacts grow faster than the (im) contacts due to the surface 

energy term (Eq. (6.11)) which drives densification.  
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Figure 6. 8 Contact indentation evolution of three types of contacts. 

The reduction in (mm) contact number due to the substitution by (im) contacts results in a 

retardation effect on the macroscopic shrinkage of the composites. This is demonstrated by 
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Figure 6.9(a) which shows the densification rate ( 1 dD

D dt
) against relative density for the 

various packings. As expected, the sintering of the pure matrix is the fastest. The 

densification rate of composites is decreasing with increasing amount of inclusions for a 

given size. We define the retarding factor as the ratio of the matrix and composite 

densification rates for a given relative density D. This factor is approximately 7 at D = 0.70 

when 20% of 60 nm inclusions are introduced. It also shows that a small amount (5%) of 

(small) inclusions is sufficient to have a noticeable retarding effect. Figure 6.9(b) 

demonstrates that densification rates decrease as inclusion size decreases for a given volume 

fraction. For instance, when the particle size ratio of the inclusion to matrix decreases from 

5/3 (Ri = 300 nm) to 1/3 (Ri = 60 nm), the retarding factor increases from 2 to 7 at D = 0.70.  
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Figure 6. 9 Densification rate evolution with relative density: (a) effect of inclusion amount, 

(b) effect of inclusion size, and (c) of inclusions as agglomerates (agg.) or well dispersed (no 

agg.). 

Figure 6.9(c) shows that, for a given volume amount and size of inclusions, the spatial 

distribution homogeneity of the inclusions can also influence the magnitude of the retardation. 

It indicates that the more the inclusions agglomerate, the weaker the retarding effect. This 

may be understood by considering these agglomerates of fine inclusions as larger (and more 

deformable) particles of equivalent size (the same reasoning applies for Fig. 6.9(c)). Note that 

the effect of agglomerates is only discernible when the volume fraction is large (20%). Still, 

the effect of homogeneity is of second order as compared to the effect of volume fraction and 

size in our simulations for which aggregates are very large. 

Experimental data on the retarding effect of inclusions deals essentially with large inclusions 

[50, 215, 217, 219]. For example, Weiser et al. [50] studied the sintering of ZnO/SiC 
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composites containing 0-20% inclusions with size ratio (inclusion to matrix) value of 1-150 

and found a retarding factor of ~2.5 for 20% inclusions. This number compares satisfactorily 

with our simulations, which predict a factor of 2 for 20% of 300 nm inclusions. Still, one 

should be careful when comparing these experimental data for which the inclusion to matrix 

size ratio is much larger than in our simulations. For composites with small inclusions, there 

is a lack of experimental data to quantitatively compare with our simulations. However, 

literature on Ni/BT composites indicates some interesting general trends. Ueyama et al. [220] 

found possible to suppress sintering of the Ni electrode paste film by adding 10 mass % of 

BT particles of 30 nm size while 50 nm particles had a less retarding effect. This result was 

obtained only when the 30 nm particles were well dispersed. On the opposite, Sugimara et 

al.[31], while demonstrating the retarding effect of BT (30-100 nm) on the sintering of Ni 

powder (200 nm), found that agglomerated 30 nm inclusions had a smaller retarding effect 

than well dispersed larger inclusions. These results are in broad agreement with our 

simulations which point to the following general rule: smaller inclusions have a greater 

retarding effect if they are well dispersed. 

6.5 Conclusions 

(1) A matrix/rigid inclusion contact model has been proposed which take size effect into 

account.  

(2) The effects of volume fraction, size and homogeneity of rigid non-sintering inclusions 

on the densification behavior of the matrix have been investigated using discrete 

element simulations at the particle length scale. It is found that the densification rate 

of the matrix decreases with increasing amount of inclusions and with decreasing size 

of inclusions. For a given amount and size of inclusions, a better dispersion of the 

inclusions results in a stronger retardation of densification. 

(3) By controlling the size, volume fraction and dispersion degree of the BT additives in 

the nickel paste, the sintering kinetics can be tailored to reduce the sintering mismatch 

between nickel and BT 
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Chapter 7 

DEM simulation of Ni/BaTiO3 multilayers 

The previous chapter dealt with the simulation, using the DEM codes dp3D, of the sintering 

of a composite electrode material. The sintering of the representative volume element of the 

mixture was conducted under idealistic boundary conditions (periodic conditions), which do 

not reflect the firing conditions of a real MLCC. In this chapter, we seek to implement 

conditions that take into account more realistically the geometry of an MLCC, the 

constraining conditions that characterize MLCC sintering, and the particle size distribution 

obtained from experimental observations. The aim of these simulations is to provide 

information on the evolution of the microstructure in the electrode. In particular, we study the 

initiation and the evolution of discontinuities at the length scale of particles. 

7.1 Model description 

As detailed in Chapter 3, significant discontinuities of electrode (Ni or Pd) have formed 

already at the early stage of co-sintering, before the onset of densification of the dielectric 

layers. When the dielectric material starts to sinter, the electrode layers are almost dense (Fig.  

3.7(f)). At this final stage, it is not possible anymore to consider the Ni (or Pd) layer as a 

collection of individual particles with the characteristics of a particulate system. The DEM 

model is inappropriate to simulate the final stage of electrode sintering. Thus, this chapter 

mainly focuses on the early stage of the co-sintering of Ni/BT multilayers (i.e. temperature 

range of 700-1050 oC). We note that only a small amount (~3%) of shrinkage is observed in 

the BT material at this stage. The BT-BT contacts in the dielectric layers are modeled as 

sintering contacts. That is to say, like Ni-Ni contacts, BT particles also sinter but at a 

negligible rate. This allows to model two different materials which co-sinter at significantly 

different rates. To implement these simulations for Ni-Ni and Ni-BT contacts, the normal 

forces and tangential forces are calculated using the same contact models as in Chapter 6.2. 

For both Ni-Ni contacts and the BT-BT contacts, Eq.(6.11) is used to calculate the normal 

force and Eq.(6.13) for the tangential force. In the presence of nano-sized BT inclusions in 

the electrodes, BT-BT contacts between these nano BT particles are modeled as elastic.  
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7.2  Simulation procedures 

7.2.1 Sample preparation 

 Particle size distributions (PSDs) 

As in the preceding chapter, BT and Ni particles are ideally treated as spheres. The PSDs of 

the BT particles in the dielectric layers and of the Ni particles in the electrode layers are fitted 

as log-normal functions directly from the FIB nano-tomography data (see Chapter 5.3.2). The 

log-normalized particle size ln d  is distributed according to a log-normal function: 

2

0 2
lnln

ln

( ) exp
22

c

d

dA
f d f

d  
              (7.1) 

Where 0f is the offset, A is the area, ln and 2
ln are the expected (or mean) value and 

variance for the log-normal distribution, respectively. The real mean value of particles  can 

be calculated as 2
ln lnexp( / 2)    and the variance is calculated as

2 2 2
ln ln ln(exp( ) 1) exp(2 ( ) )       [221]. 

Representing all particle sizes given by Eq.(7.1) would result in a very large number of 

particles. This would be CPU prohibitive. Instead, we cut off the PSD for small particles by 

simulating only particles larger than dmin. 

For the Ni powder in the electrode and BT powder in the dielectrics, the parameters for the 

fitted PSD functions are listed in Table 7.1: 

Powder 0f  A  ln  cd (nm) mind (nm) 

Ni 0.276 2836.645 0.473 182.96 27 
BT -0.074 3086.47 0.325 274.38 60 

Table 7.1 Fitted parameters of the PSD functions 

For the nano scale BT additives, the exact PSD is not known but the mean additive particle 

size is 50 nm. This value is used in the simulations. 

 Cylindrical samples 

To reduce the CPU simulation time to a tolerable duration, a representative BT/Ni/BT 

sandwich multilayered cylinder with a diameter of Ø = 10 µm was created (Fig.7.1). This 

geometry is close to that of the sample used for the synchrotron nanotomography. BT and Ni 
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particles with lognormal distribution (Eq.(7.2) and Eq.(7.3) respectively) were randomly 

generated using Box-Muller transform [222] and using the parameter given in Table 7.1. 

Green packings with density range of 0.3-0.5 (depending on the green density to be achieved) 

were first generated (see Chapter 6.3 for the routine description). In that initial packing stage, 

interactions between particles are solely elastic. Figure 7.1(a) shows a BT layer. Figure 7.1(b) 

shows a nickel electrode without any BT inclusions. Figure 7.1(c) shows a Ni electrode with 

10 vol. % mono-sized BT inclusions (d = 50 nm) which are homogeneously dispersed (no 

agglomeration). The cylindrical BT and Ni discs were aligned and stacked (Fig. 7.1(d)). 

These stacked multilayers were then hydrostatically jammed together to achieve a green 

density equal to that observed in real MLCC samples.  

 

Figure 7. 1 Numerical samples: (a) BT dielectric layer (b) Ni electrode layer without BT 

additives (c)Ni electrode with 10 vol.% BT additives (d) BT/Ni/BT multilayers 

Table 7.2 lists the initial conditions of the BT dielectric layers and electrode layers including 

the pure Ni electrode and the Ni/BT composite electrode. Except mentioned otherwise, these 

are the standard parameters used in the simulations. 
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Layer Thickness (µm) Particle number Green density 
BT 2.4 9375 0.61 
Ni 1.0 6500 0.50 

Ni/BT 1.0 6500 (Ni):1300(BT) 0.55 

Table 7.2 Standard sample properties for the numerical samples  

7.2.2 Sintering conditions 

All surfaces (top, bottom and lateral) of the cylindrical sample are considered as free surfaces. 

The physical properties of Ni are detailed in Chapter 6.2. In the absence of diffusion data 

specific to Barium Titanate (BT), the sintering properties in the dielectric layer were assumed 

to be the same as those of Alumina (Al2O3) except for the sintering activation energy Qb. 

Specific surface energy s is known to vary moderately from one oxide to the other, and 

remains close to 1.0 J/m2. The volume of the diffusing particles is 8.47 × 10-30. The properties 

used are listed in Table 7.2. Note that, for a given microstructure, it can be shown that time in 

dp3D may be advantageously normalized to 4 /B s bk TR D    [187]. Thus, sintering 

kinetics obtained from one DEM simulation for a given set of material (įbD0b, Qb, Ȗs, Ω, R) 

and process (T) parameters can be used to retrieve the sintering kinetics of another set. By 

correlating sintering kinetics of a BT disc sample (Chapter 3) with DEM simulations of the 

sintering of BT under the same conditions (i.e., PSD, green density and heating ramp and 

temperature), we may fit a suitable activation energy (Qb = 480 KJ/mol). By using the 

material properties of α-Al2O3 in Table 7.2 for all material parameters except the activation 

energy, no physical meaning can be ascribed to the activation energy. It only represents a 

practical manner to model the slow BT sintering kinetics at low temperature.  

δbD0b (m
3
/s) γs (J/m

2
) Ω(m3

) ηNi-BT ηBT-BT 

1.3 × 10-8 1.1 8.47 × 10-30 0.1 1 

Table 7.2 Material properties of BT (adopted from α-Al2O3 [204]) 

Table 7.3 lists the values of the viscous parameter  used in the simulations. Except 

mentioned otherwise (see Chapter 7.6 on the effect of  these are the values used in all 

simulations. A BT-BT contact viscosity value of ȘBT-BT  = 1 is believed acceptable, since the 

irregular shape of BT particles resist significantly the rotations and slides of the BT particles, 

hence the rearrangement of the BT particles can be neglected.  
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7.2.3 Post processing 

 Voxelisation 

The output of a dp3D simulation is a set of pheres defined simply by their coordinates and 

radii. These spheres are truncated due to the densification process which has taken place 

during sintering (Fig. 7.2(a)). To visualize in a more realistic manner the simulated 

microstructures of the sintered samples, necks and grain boundaries need to be taken into 

account. In accordance with Eq. (6.14), the neck size is estimated using Coble‟s law as Figure 

7.2(b) shows.  

2 *
1 24 ( )ca R h h     (7.2) 

Where the ca  is the contact radius, *R is the reduced radius, defined as *R =R1R2/(R1+R2), h 

( = h1+h2 ) is the indentation. The volume redistributed in the triangular torus is equal to the 

overlapped volume. The out surface of the neck is tangential to the two particles with 

curvatures of ρ1 and ρ2. The geometry lengths are given by Eqs. (7.(3-6)). The derivation of 

these values is detailed in Appendix B. 
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To voxelise the sample, the entire sample including the solid volume and porous volume was 

subdivided in voxels with values 1 (solid) and 0 (porosity). The routine is detailed in Ref. 

[193]. This routine assumes that contacts do not interfere with their neighbors. Hence, when 

the sample reaches a high densisty (>0.85-0.90), many triple contacts (or higher coordination 

contacts) exist and the validity of this post-processing process is not any more ensured.  

 Visualization 

The voxelized microstructures can be resliced and visualised using ImageJ or Avizo software 

packages as shown in Figure 7.2(b). Quantification of the real microsturtures can be made 
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from the 3D microstructures. In this study, we focus on the discontinutiy of the electrode, 

defined as the percentage of  uncovered area over the enveloping area. 

 

Figure 7. 2 (a) Definition of Coble Contact radius ac; (b) visualization of two sintered 

particles after the voxelization procedures 

7.3 Free sintering and constrained sintering  

The simulation results of the sintering of a single Ni layer were compared with those of 

BT/Ni/BT layers under the same conditions to understand the main consequences of 

constrained sintering. The DEM simulations started at an initial temperature of 700 oC with a 

heating rate of 1 oC/min. The Ni layer has a 0.50 green density. The sintering was terminated 

at 1050 oC (total time = 21 000 s, approximately 6 hrs). The viscous parameter Ni-Ni was set 

to 0.1. 

Figure 7.3 shows the microstructure (Fig. 7.3(a)) of the green electrode together with the 

microstructures of the electrodes that have been freely sintered (Fig. 7.3(c)) and constrained 

sintered (Fig. 7.3(d)) in the presence of BT layers. For clarity, in that last case the BT layers 

are not shown. Close inspection of Figure 7.3(a) indicates that there are numerous 

heterogeneous zones which exhibit rather large pores. These zones, previously mentioned as 

inter-agglomerate pores (Chapter 3.3), are shown in circled areas in Figure 7.3(a). These 

porous zones are typically larger than the average size of the particles. The packing can be 

subdivided into well packed agglomerates separated by these extrinsic pores. The particles in 
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these well packed agglomerates have higher coordination numbers than the average value. 

Pores between particles within these agglomerates are defined as intra-agglomerate pores.  

After sintering, the Ni electrode sintered freely has densified homogeneously with nearly no 

discernable discontinuity. Conversely, the Ni electrode which has been sintered under 

constraints imposed by the BT layers clearly breaks into discontinuous areas (discontinuity 

content is about 14.5%). Constraints play an important role in the formation of discontinuous 

electrode, and we shall examine in more details in the following sections the mechanisms that 

lead to these discontinuities.  

 

Figure 7. 3 Microstructure evolution of electrode: (a) green microstructure; (b) definition of 

the inter/intra- agglomerate pores; (c) freely sintered electrode; and (d) constrained sintered 

electrode 

 

 Defect evolution mechanisms 

To understand how these defects initiate and evolve, a representative area was selected and 

followed in detail. Particles in the final continuous area were colored differently to easily 
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trace them at different phases of the sintering. As Figure 7.4 demonstrates, particles that 

pertain to these continuous areas were initially closely packed (see the agglomerates in Figure 

7.4(a)). The pores that bound these agglomerates are mostly inter-agglomerate pores and may 

be considered as initial heterogeneities, as shown in the circled areas. In the close packed 

agglomerates (colored areas) which are mainly formed of intra-agglomerate pores, particles 

sinter faster while the initial inter-agglomerate pores enlarge due to the shrinkage of 

agglomerates. 

As sintering proceeds, the contacting particles at the boundaries are detached due to local 

sintering shrinkage mismatch. This contact loss is referred to as de-sintering. The de-sintering 

indicated by the arrows in the Figure 7.4(c) results in the growth of pores (discontinuities). 

On the other hand, intra-agglomerate pores shrink and gradually pinch off and finally 

disappear as shown in the Figure 7.4(d-f). 

 

Figure 7. 4 The microstructure evolution in the magnified area as function of sintering time 

during the heating ramp 
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7.4  Effect of heating ramp 

A standard sample (BT layer and Ni layer see Table 7.2) was sintered at different heating 

rates: 1, 5, 10, 15, 30 and 50 oC/min, starting from 700 oC until 1050 oC. 

Figure 7.5 plots the electrode discontinuity as a function of temperature with different heating 

rates. As sintering proceeds during the heating ramp, the discontinuity increases as sintering 

temperature increases. It is concluded that a fast heating rate results in lower discontinuity. 

For instance, with heating rate increasing from 1 oC/min to 50 oC/min the discontinuity 

decreases from 15.44% to 1.73%. However, it should be clear that according to the 

simulation, the density reached at a given temperature is also lower for a faster heating ramp. 

This is because the value of the heating rate impacts the duration of the ramp during which 

the Ni layer may be considered to sinter under constraint. 
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Figure 7. 5 Electrode discontinuity against the temperature 

 

As Figure 3.5 shows, the Ni electrode (with 10 vol. % BT inclusions) sinters sooner and 

faster than the BT dielectric layer during the heating stage. The sintering shrinkage mismatch 

between electrode and dielectrics, which is built up in this stage, directly contributes to the 

electrode discontinuity. Experimental observations indicate that below the critical 

temperature (1050 oC, @15 oC/min), the electrode is always under tensile stresses. Above this 
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critical temperature, BT layers sinter faster than electrode layers and compressive stresses are 

generated. Using fast heating rate allows the Ni to be only slightly sintered when reaching the 

high temperature domain (above the critical temperature and the dwelling temperature 1150 
oC). In that case, the compressive stresses experienced at higher temperature should facilitate 

the final densification of Ni, resulting in slower growth of discontinuities, or even some 

recovery of the discontinuities. When the Ni approaches completion of sintering, it is still 

viscous and highly deformable. In this stage, compressive stresses will cause lateral 

contraction and a further increase in the discontinuity through a swelling mechanism already 

discussed in Chapter 5. It is not possible to simulate with DEM this last stage. This is because 

DEM operates with interacting particles, which are not suited to simulate a continuum. In any 

case, the discontinuity initiation and development, which is well predicted by DEM during 

the heating stage, will contribute to the final discontinuity.  

Figure 7.6 shows the microstructures (z- axis view.) at the end of the different heating ramps 

running from 700 to 1050 oC.  
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Discon=2.3% Discon=1.7%

Discon=14.6%

 

Figure 7.6 Microstructure and the discontinuity of the electrode sintered at different heating 

rates. The discontinuities of the electrode are 14.55% (at 1 oC/min), 6.44% (at 5 oC/min), 

4.33% (at 10 oC/min), 2.27% (at 15 oC/min), 1.7% (30 oC/min), and 1.13 %( at 50  oC/min). 
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The results of these simulations indicate that the shorter the sample is exposed to sintering 

during the heating stage, the less discontinuity is built up. In the industrial firing process, 

there is a second binder bake-out (BBO) step. For example, the Ni-MLCC chips are held at 

800 oC for 1 hr to remove the organic completely. During this BBO process, the electrode has 

already sintered to some extent (Fig. 3.7). This seems to be detrimental according to the 

simulations. To solve this problem, one possibility would be to apply a fast heating schedule. 

An alternative solution is to adapt the organic system such that it can be burnt out at a lower 

temperature (<400 oC for example) before nickel starts to sinter. 

7.5 Effect of green density 

DEM simulations allow particulate microstructures to be generated at various green densities. 

We take advantage of this feature to study the effect of green density on the evolution of 

discontinuity. The sintering of BT/Ni/BT multilayers consisting of the same two BT layers (D 

= 0.60) and constant thickness electrode with different packing density (D = 0.40, 0.45, 0.50, 

0.55, and 0.60, pure nickel) was simulated at a heating rate of 15 oC/min from 700 to 1050 oC.  

Figure 7.7 plots the electrode discontinuity as a function of heating time for samples with 

different green densities.  
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Figure 7.7 Discontinuity of electrode as functions of heating time 
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Owing to our definition of discontinuity (see Eq.(4.4)), it is found that the initial discontinuity 

is related to the initial green density. Lower green density results in more initial pores or 

heterogeneities. For all green densities, the effect of constrained sintering is to increase 

discontinuity.  

 

Figure 7.8 shows the sintered microstructure of these samples after the heating ramp. It is 

found that within the range of D = 0.40-0.55, the lower the green density, the higher the final 

discontinuity. This is supportive of our early argument: the final discontinuity of electrode 

originates from initial heterogeneity (pores). 
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Figure 7. 8 Microstructure of electrode with different green density (at 15 oC/min) 

 

We also note that when the green density of the Ni layer is large (D0 = 0.60), the 

discontinuity growth rate is somewhat larger than that of more porous green layers although 

they have fewer initial pores (heterogeneities). This is because a denser green body sinters 

faster, owing to the larger number of contacts between particles that increase the total driving 

force for sintering. For the same given heating time, the faster the sintering, the larger the 

shrinkage mismatch, thus leading to a larger discontinuity. 
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7.6 Effect of contact viscosity 

We have seen that the BT layer constrains the sintering of the Ni layer. It is thus important to 

understand the consequence of the interactions at the interfaces between Ni and BT particles. 

The tangential force partly dictates the amplitude of particle rearrangement at the interface 

between Ni and BT. However, we shall see that particle rearrangement in the Ni layers is also 

critical. The following simulations attempt to decouple the effect of rearrangements by 

varying the values of ȘNi-Ni and ȘNi-BT that dictate the amplitude of viscous tangential forces at 

the contact in Eq.(6.13). The exact value of is very difficult to ascertain. Parhami and 

McMeeking [198] and Henrich et al. [188] using the same tangential law, used 0.003 and 0.3 

values, respectively. In any case, the value ofshould be less than unity. The rationale for 

this is that the normal viscosity term in Eq. (6.11) should be of the same order or larger than 

the tangential viscosity term (Eq. (6.13) when the normal and tangential relative velocities are 

of the same order.  

In order to mimic the behavior of the real irregular shaped BT particles, a large viscosity 

coefficient ȘBT-BT = 1 is used in all simulations [163]. For Ni-Ni and Ni-BT contacts, extreme 

values (0 and 1) are used to decouple clearly the effect. A 0.01 value has also been tested for 

ȘNi-Ni to approach more realistic values given in the literature [198].  

ȘNi-Ni ȘNi-BT ȘBT-BT  
0 0 1 
1 0 1 
1 1 1 

0.01 1 1 
0 1 1 

Table 7.3 Contact viscosity between Ni-Ni, Ni-BT, and BT-BT contacts (dimensionless) 

Figure 7.9 plots electrode discontinuity evolution against the sintering time during the heating 

ramps for multilayers with various material viscosities. Both the viscosity between Ni-Ni and 

that between Ni-BT (interface) influence the electrode discontinuity. For a given Ni-BT 

viscosity value (ȘNi-BT = 1), the larger the Ni-Ni viscosity, the larger the electrode 

discontinuity. It is because the viscosity between sintering particles plays an important role in 

the rearrangement of the sintering particles. When particle rearrangement is limited, it is not 

possible for particles to compensate for the BT layer constraint, leading to local tensile 

stresses. Thus, at the location of a local heterogeneity, contacts are broken and the 

heterogeneity is able to grow. 
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More generally, viscosity hinders the rearrangement of sintering particles, while the 

rearrangement of particles has been proved in experiments by Kieback et al. [223] and DEM 

simulations [188, 189] to be able to facilitate the homogeneous sintering of powder. 

Additionally, the viscosity between Ni and BT hinders the interface rearrangement, such that 

a relative rigid interface is maintained during sintering, thus allowing the in-built stresses 

near the interface to be transmitted. This is in accordance with previous DEM simulations on 

the development of cracks in constrained sintering systems [189].  

The variation of ȘNi-BT does not seem to have as much impact on discontinuity as the 

variation of ȘNi-Ni. This is not intuitive since section 7.3, which compared free sintering and 

constrained sintering conditions, demonstrated the importance of the existence of the Ni-BT 

interface. In fact, the interaction that affects mostly the rearrangement of Ni particles at the 

Ni-BT interface is the normal contact force (Eq.(6.11)) that exists between Ni and BT 

particles. Since the interface is not smooth (BT particles are spherical), any tangential or 

normal motion of Ni particles result in a counteracting viscous force opposite to dh/dt. 
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Figure 7. 9 Discontinuity of electrode as functions of heating time for different values of the 

viscous parameter. 

  

From Figure 7.10 showing the microstructures at the end of the heating stage, it is observed 

that on top of the difference in discontinuity in percentage, the pores form at different 

locations in the electrode. This difference is due to the rearrangement of the particles.  
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It has been observed that rearrangement of particles should accelerate the sintering kinetics 

[188]. Thus, the shrinkage mismatch between the electrode and dielectrics should increase 

and a larger discontinuity of electrode could be expected. However, in these simulations, we 

observed the reverse. This is because a constraint is a more crucial requirement for the 

formation of discontinuities and easy rearrangement of the particles at the interface lowers 

the constraint at the interface.  
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Figure 7. 10 Microstructure of electrode with different viscosities (at 15 oC/min) 

7.7  Effect of electrode thickness 

The electrode thickness is an important functional parameter. It has decreased over the years 

in the MLCC industry. Here we investigate its effect on the sintering process. To investigate 

the effect of the electrode thickness on the electrode discontinuity, BT/Ni/BT multilayers 

with electrode having different average thickness were sintered at 15 oC/min from 700 to 

1050 oC. The samples are shown in Figure 7.11. The BT layers have a constant thickness (2.4 

µm) while the thickness of electrode varies: H = 0.2 µm, 0.4 µm, 0.6 µm, 1.0 µm. These 

serial thicknesses correspond to on average 1, 2, 3 and 5 layers of particles packed in the 

electrode layer. 
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Figure 7. 11 Green microstructures of different samples with (a) 0.2 µm (b) 0.4 µm (c) 0.6 

µm (d) 0.8 µm thick electrode (pure nickel) 

Figure 7.12 shows the effect of the initial thickness of the electrode on its final discontinuity 

after sintering.  
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Figure 7. 12 Electrode discontinuity as functions of heating time for various electrode 

thickness  

 

It is observed that the thinner the electrode thickness, the larger the electrode discontinuity. 

However, the layer thickness has mostly an effect on the initial heterogeneity value. For 

example, when the electrode consists of a monolayer of particles (H = 0.2 µm), a large initial 

discontinuity content (22.8%) is calculated. 
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Figure 7.13 shows the sintered microstructures at the end of the heating ramps. As sintering 

proceeds, the discontinuity content only increases slightly. It is found that the continuous 

areas are formed by the bonding and sintering of several particles (Fig. 7.13(a)). They do not 

connect with the neighboring continuous areas. In a thin electrode, almost each single particle 

is constrained by the top and bottom layers simultaneously. Hence, the rearrangement of 

particles is almost impossible.  
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Figure 7. 13 Microstructure of electrode with different electrode thickness (at 15 oC/min) 

It is concluded that by increasing the electrode thickness the connectivity of the electrode can 

be enhanced. However, increase in electrode thickness leads to an increase in the overall size 

of the MLCC chips and consumption of electrode materials. This is clearly not an option that 

the MLCC industry can adopt. Still, the electrode thickness should be carefully designed to 

obtain acceptable level of electrode discontinuities. 

7.8  Retarding effect of the inclusions  

To investigate the effect of the inclusions on the electrode discontinuity, sintering of the 

multilayers with pure Ni electrode and Ni/BT composite electrode were compared. Figure 
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7.14(b) shows the composite electrode (D = 0.55) containing 10 vol. % 50 nm mono sized BT 

inclusions. Figure 7.3(a) shows the pure electrode obtained by taking out the BT inclusions 

(D = 0.50). Thus, the two electrodes have the same packing of Ni particles. The sintering was 

conducted from 700 to 1050 oC at a heating rate of 15 oC/min.  

 

Figure 7. 14 Green microstructures of pure Ni electrode (a) and Ni/BT composite electrode 

with 10 vol. % of 50 nm BT inclusions (b) 

 

Figure 7.15 compares microstructures of electrodes after 10 000 s of isothermal sintering at 

1150 oC. Figure 7.15(a) shows the microstructures of the sintered pure Ni electrode with 4.37% 

of discontinuity. Figure 7.15(b) shows the microstructures of the composite electrode with a 

discontinuity of 2.75%. Note that the BT inclusions in composite electrode are not 

represented as part of the electrode, because the inclusions are equivalent to the 

discontinuities which cannot accommodate charges when a MLCC is operating.  
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Figure 7. 15 Microstructures of the sintered pure Ni electrode (a) and the composite 

electrode excluding the BT inclusions 

 

Figure 7.16 plots the discontinuities in the pure Ni and composite electrodes increasing as 

sintering proceeds.   
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Figure 7. 16 Discontinuity as function of sintering time 

 

The two electrodes start from the same initial discontinuity percentage but then the 

discontinuity growth in the composite electrode is slower than that in the pure nickel 

electrode. The discontinuity is attributed to the shrinkage mismatch. The presence of 

inclusions leads to a decrease of the sintering mismatch between electrode and dielectrics, by 

retarding the sintering of Ni particles (while the sintering kinetics of BT layer is not changed).   
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7.9 Co-sintering induced anisotropy 

As detailed in Chapter 5, anisotropic shrinkage behavior was observed in the co-sintering of 

multilayers. In this section, a simplified and perfectly packed multilayer system was sintered 

using DEM to validate the basics of microstructure evolution before considering complex 

multilayers with heterogeneous microstructures. As Figure 7.17 shows BT/Ni/BT multilayers 

consist of symmetrically and crystalline-like packed mono size BT and Ni particles.  

z

r
z r

(a) (b)

Nickel Barium Titan ate

 

Figure 7. 17 Crystalline-like packed BT/Ni/BT multilayers 

 

The initial contact size is 0.1 (normalized by 2R). Initial average green density is D = 0.55 

(Fig. 7.18(a)). Contact laws developed previously for sintering are further used without 

modifications. Several significant results can be highlighted (see Fig. 7.18(b)): 

First, the electrode is continuous and seems to be able to achieve a full densification. This is 

due to the homogenous initial microstructures. This again indicates that initial heterogeneity 

is one of the conditions that lead to electrode discontinuity.  

Second, an obvious anisotropy is found in different layers. The pores in BT layers are 

orientated in parallel to the layer plane while the pores in the Ni layers are orientated 

perpendicular to the layer plane. In the BT layers, the interface regions are denser than the 

inner regions; conversely, in the Ni layers, the interface regions are less dense than the inner 

regions (in Fig. 7.18(b)). Note that density was measured in the middle of the sample as 

indicated by the selected volume in the dashed lined rectangular volume. This anisotropy is in 

qualitative agreement with experimental data (see Chapter 5.3.2) and the same arguments can 

be used to explain this anisotropy. That is, the compressive stresses facilitate the growth of 
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vertical BT-BT contacts; while the tensile stresses hinder the growth of the vertical Ni-Ni 

contacts. Figure 7.19(a) shows the evolution of typical horizontal and vertical Ni-Ni and BT-

BT contacts evolve as a function of time.  

 

Figure 7. 18 Microstructure and density profile: (a) before sintering (b) after sintering 
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Figure 7. 19 The normalized vertical and horizontal contact sizes of the Ni-Ni contacts and 

BT-BT contacts evolve as function of density 

  
It is found that the anisotropy is more pronounced for the Ni-Ni contacts than for BT-BT 

contacts because the Ni sinters earlier and faster. 

Figure 7.20 shows contact size distributions (regardless of the orientation of the contacts) of 

the Ni-Ni contacts and the BT-BT contacts after having achieved different densities. 

Generally, all the distributions are bimodal. The two modes indicate the horizontal and 

vertical (z- direction) contacts. As sintering proceeds, both the vertical and the horizontal 

contacts grow, resulting in the two peaks‟ shift to the right. By referring to the average 

contact size with Figure 7.19(a), the major peak for the Ni-Ni contact distribution indicates 

the horizontal contacts. Also, it is interesting to notice that the population of the horizontal 

contacts increases compared with the population of the vertical contacts. this might be 

because some vertical contacts size decrease at some point (D = 0.73-0.74), due to the de-

sintering of the Ni-Ni under tensile stresses (refer to the blue curve in Fig.7.19(a)). For the 

BT-BT contacts, the major peak represents the horizontal contacts while the minor peak 

represents the vertical contacts. The population of vertical contacts is comparatively smaller 

than that of the horizontal contacts. This is because only a small population of particles,  

which are near the interface (1-2 layers of particles) might be influenced. Note that the 

absolute number of vertical and horizontal contacts is almost unchanged in Ni and BT layers.  
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Figure 7. 20 Contact size evolution during sintering  

7.10 Towards more realistic microstructure: coupling with experiments 

In the aforementioned simulations, the PSDs of BT and Ni simulated particles were those of 

experimental data. The packings were randomly generated and then were isostatically 

compacted to obtain the same green density as measured from experiments. However, we 

have demonstrated that some inter-agglomerate pores which size are several times the 

average particle size, exist before sintering. These inter-agglomerate pores are considered to 

form from the inhomogeneous dispersion of nickel particles and/or the release of the gas due 

to the burning of the binders at the binder burn out process. It may thus be interesting to be 

able to generate numerical microstructures from even more realistic conditions. 

 

Thanks to the high-resolution FIB-nT, all single particles, even the nano sized BT additives, 

can be separated using marker controlled 3D watershed segmentation (see Chapter 5). 

Assuming that particles can be approximated to spheres, a corresponding numerical sample 

can be reproduced by locating particles of equivalent radius (see Eq.(5.3)) at the same 

positions of their centroid. 

 



DEM simulation of Ni/BaTiO3 multilayers 

 

- 146 - 
 

Figure 7.21 shows how the representative cylindrical BT/Ni/BT sandwiched sample (Fig. 

7.21(b)) is duplicated from its real microstructure (Fig. 7.21(a)).  

 

Figure 7. 21 (a) Cylinder sample extracted from FIB-nT; (b) equivalent numerical model; (c) 

initial microstructures of the Ni electrode; (d) equivalent numerical model  

 

Note that the direct processing of nanotomography images into numerical microstructures 

causes abnormal initial inter-particle contacts as shown in the ellipses in Figure 7.22(a). This 

is because real particles have irregular shape. Simple intersecting spheres overestimate the 

size of these contacts. Conversely, some contacts that existed in the real sample disappear 

from the numerical sample. 
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Figure 7. 22 Rearrangement of particles after relaxation process 

 

The sintering behavior of these direct fitted green microstructures with abnormal initial 

contacts can be quite different from the real situation. Thus, an unloading process was 

simulated to release the stresses originating from the abnormal overlapping of particles. After 

a relaxation, reasonable initial relative contact size (0.1) was obtained (Fig. 7.22(b)). Ni 

packing was not rearranged so much due to the almost spherical nature of the Ni particles. In 

that case, the numerical Ni packing replicates correctly the real packing and initial inter-

agglomerate pores. On the other hand, in the BT layers, significant rearrangement of BT 

particles was observed in the BT layers during the relaxation treatment. Since the BT 

particles act primarily as a constraining substrate and do not densify much, we consider that 

the proposed method leads to a realistic microstructure. 

 

Figure 7.23 shows microstructures before and after sintering during the standard heating 

stage. Discontinuous areas in the sintered electrode clearly originate from the initial inter-

agglomerate pores, which can be considered as initial defects. It may also be observed that 

large initial defects lead to significant discontinuities (Fig. 7.23(d)). In any case, the findings 

from these simulations that use numerical microstructures originating from experimental data 

confirm those from the fully numerical processed microstructures.  
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Figure 7. 23 Microstructures of electrode before and after sintering (nano additives of BT 

have been removed for clarity) 

 

7.11 Conclusions 

We have described in this chapter DEM simulations of co-sintering of BT/Ni/BT multilayers 

during the heating stage. This stage is believed to be critical for the initiation of 

discontinuities. The effects of inclusions, heating rate, green density, electrode thickness and 

of the rearrangement of particles have been investigated. The following conclusions can be 

made: 

 

(1) Intrinsic heterogeneities (inter-agglomerate pores) are the origins of discontinuities in the 

electrode. It was shown that a theoretically perfectly homogenous electrode can develop a 

continuous and dense microstructure, even in the presence of the adjacent constraining BT 

layers. However, a heterogeneous electrode can also achieve full densification in the absence 

of external constraints. Therefore, the existence of heterogeneities and the presence of 
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constraining conditions are the necessary conditions for the formation of large electrode 

discontinuities. 

 

(2) Electrode discontinuities can be lessened by the introduction of inclusions, which retard 

the densification of electrode materials.  

 

(3) A fast heating can reduce the formation of the discontinuities as the sintering mismatch 

between electrode and dielectric is reduced. 

 

(4) The electrode thickness should be carefully designed to obtain continuous, homogenous 

layer. A maximal particle size of 1/10 of the average layer thickness seems to be a good 

compromise.  

 

(5) The green density of electrode should be optimized. In general, it is always 

disadvantageous to start with a too porous electrode, since more pores lead to more 

heterogeneities. The electrode should not be too dense so that a fast densification of electrode 

materials is avoided. It is likely that the condition of a too dense green electrode is hardly met 

in real industrial settings. 

 

(6) Particle rearrangement of electrode powders should improve the connectivity of the 

electrode. 
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Chapter 8  

Conclusion and perspectives 

8.1 General conclusions 

Multilayer ceramic capacitors (MLCCs), as the most widely used passive components in the 

electronics devices, face the problem of electrode discontinuity (uncovered ratio of sintered 

electrode) which forms during the co-firing process. This challenge becomes more important 

as the size of the MLCCs steadily decrease due to miniaturization. Ni-electrode BT based 

MLCCs, which account for 95% of the MLCC market, have been considered in this work.  

 

In comparison with conventional post-sintering 2D sectioning methods, nondestructive X-ray 

nano computed tomography (X-ray nCT) was utilized to comprehend the evolution 

mechanism of the electrode discontniuty. Synchrotron X-ray nCT characterization was 

conducted at the Beamline 32-IDC of the Synchrotron Advanced Photon Source (Argonne 

National Laboratory, USA). X-ray nCT characterizations of initial and sintered 

microstructures of a representative cylindrical volume (Ø20 µm × 20 µm) extracted from a 

Ni-MLCC chip using FIB machining indicate that the final discontinuities are linked to the 

initial heterogeneities already present in the green state. In-situ X-ray imaging of the sintering 

of a cylindrical Pd-MLCC sample prepared by the same routine, was carried out to refine the 

missing data taken during in the ex-situ observation of the sintering of the Ni-MLCC sample. 

It is confirmed that the discontinuities of the electrode originate from the initial existing 

heterogeneities, represented by the inter-agglomerate porous and low density regions. These 

discontinuities form during the heating ramp due to the sintering shrinkage mismatch 

between electrodes and dielectrics.  

 

Correlative studies on green and sintered MLCCs (including the one imaged by X-ray nCT) 

were carried out using high resolution (5 × 5 × 5 nm3) FIB-nT.  

These comparisons are very informative and show that: 

(1) The current spatial resolution (30 nm) of the X-ray nCT is sufficient to study pore 

evolution and the formation of electrode discontinuities.  



Conclusion and perspectives  
 

- 152 - 
 

(2) Particulate characteristics, such as particle (pore) size, particle (pore) size distribution 

can be quantitatively analyzed, providing realistic input for the DEM simulations. 

These multi-scale characterizations using X-ray nCT and FIB-nT have shed light on 

comprehension of the anisotropic sintering behavior and microstructure evolutions during the 

co-sintering of multilayered systems. This knowledge is not limited to the MLCCs, and can 

be extended to SOFCs, H/LTTCs, and gas separation membranes, etc. General conclusions 

are: 

(1) Due to the sintering kinetics mismatch, compressive stresses developed near the 

interfacial region on the slowly densifying layer side and facilitate the sintering of 

particles preferentially in the layer plane, resulting in preferential growth of the 

vertical contacts.  

(2) Conversely, on the fast-densifying side, the tensile stresses can hinder the sintering in 

the layer plane, resulting in preferential growth of the horizontal contacts.  

(3) Density gradient was observed due to this anisotropic sintering behavior. In the 

slowly densifying layer, the interface is denser than the inner regions; in the fast-

densifying layer, the interface is less dense than the inner regions. 

As it has been revealed in experiments (Chapter 3 and 4), discontinuities have formed already 

during the heating stage. The Discrete Element Method (DEM) is a powerful tool to study the 

microstructure evolution during this stage. We consider that in the early stage of sintering of 

Ni/BT MLCCs, Ni sinters earlier and faster than BT, and that BT shows negligible shrinkage 

by the end of the heating ramp.  

 

The proposed model was first tested on the Ni/BT composite material. The effects of the size, 

the volume fraction and the dispersion degree (aggregates) of BT additives were investigated. 

The retardation effect of the inclusions on the sintering of a nickel matrix has been 

documented:  

(1) The retardation effect increases as the inclusion size decreases; 

(2) The retardation effect increases as the inclusion volume fraction increases; 

(3) For a given size and a given volume fraction of inclusions, a good dispersion of the 

inclusions can enhance the retardation effect. 
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Sintering kinetics is tuned by controlling the size, the volume fraction (which fits to 

micromechanical previously established) and dispersion degree of the inclusions. 

 

The DEM simulations were also applied to the sintering of BT/Ni/BT multilayers. Particle 

size and size distribution measured from the experiments were used as inputs for the particle 

properties. The comparison of the free sintering of a mono electrode layer with the 

constrained sintering of a sandwiched Ni electrode shows that the presence of constraints is a 

necessary condition for the appearance of discontinuities. However, a second necessary 

condition is the existence of an initial heterogeneity. In a real particulate system, this second 

condition is always met.  

 

The qualitative conclusions that are found from experimental observations and from detailed 

simulations at the particle length scale agree with each other. 

 

It has been demonstrated that the introduction of 10 vol.% BT inclusions into the Ni electrode 

leads to a reduction of electrode discontinuity. A series of DEM simulations on different 

samples and conditions have been carried out to suggest possible ways to optimize 

parameters for producing MLCC chips with lower electrode discontinuity. The following 

conclusions have been achieved: 

(1) Fast heating rates are beneficial to obtain lower electrode discontinuity. During the 

heating stage, the electrodes sinter significantly while the dielectrics hardly densify. 

The shorter the heating ramp, the less sintering mismatch is accumulated and hence 

less discontinuity.   

(2) An optimum green density should be targeted in the electrode. Loose green packing of 

the electrode must be avoided since it can lead to high discontinuity due to higher 

probability of having initial heterogeneity. A too high green density may also lead to a 

larger sintering mismatch, as the coordination number and sintering potential are 

increased. 

(3) The electrode thickness should be carefully designed to obtain electrode with 

acceptable discontinuity level. The constraints are transmitted via the interfaces through 

a few layers of particles. So the thinner the electrode layers are in comparison with the 

particle size, the stronger the effect of the constraint is. 
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(4) The presence of initial heterogeneity contributes significantly on the final 

discontinuity in the electrode. 

8.2 Recommendations 

Based on our findings from both experiments and numerical simulations, we may propose 

some suggestions to manufacturers to improve the MLCC fabrication process. 

 To produce MLCC green chips with homogenous packing in electrode. 

(1) Use of electrode metal powders with narrow particle size distributions should help to 

achieve a homogenous packing in electrode.  

(2) Good dispersion of metal powders and ceramic inclusions should reduce the amount 

of initial heterogeneities. 

(3) Green density of electrode should be optimized. Balance between sintering kinetics 

and initial heterogeneity should be achieved. 

(4) Electrode thickness should be optimized to balance electrode discontinuity and the 

MLCC chip‟s size and consumption of metal. 

(5) Smoothness of the dielectric sheets is important for printing smooth electrodes. 

(6) Binder burn out process should be carefully conducted to release the gas slowly and 

avoid residual pores.  

 To optimize the firing temperature profile  

(1) Reducing the temperature and dwelling time at the second BBO process should 

reduce the discontinuity formation. Binders with lower decomposition temperature 

need to be developed.  

(2) Fast heating rates can be utilized but may lead to potential thermal cracks.  

(3) Dwelling time should be minimized to let the material obtain sufficient mechanical 

and physical properties but not allow the electrode to deform and swell.  

8.3 Research Perspectives 

 2D X-ray imaging and 3D tomography  

X-ray imaging as a non-destructive method is an excellent technique to study the 

microstructure evolutions during sintering. Currently, time-resolved 2D X-ray imaging 
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(radiography) is available at most synchrotron beam lines equipped with CCD (scanning time 

few seconds) or CMOS (scanning time ms) detectors. However, the projected images are 

insufficient for accurate quantification in space. Fast X-ray micro Computed Tomography 

(µCT) with CMOS detectors allows for fast 3D data acquisition with 512 × 512 pixels (ESRF) 

within 10s. This ultrafast X-ray µCT should be qualified as a time resolved tool to study 

sintering at micro-scale. In the current study, nanotomography is required to investigate 

submicron and nano scale powders. However, to date, the only available synchrotron X-ray 

nCT (Sector 32-IDC) with high-temperature measurement capability is located at APS and 

takes 20-30 min for each 3D data acquisition scanning with a CCD detector.  

 

Thus, combination of in-situ 2D imaging and ex-situ X-ray nCT is a compromise. In addition, 

high resolution FIB-nT can be used as a correlative method.  

 Coupling of tomography and DEM simulations 

In the case of a direct coupling, MLCC samples should consist of micro-scale particles, 

which are decomposable with current ultrafast X-ray µCT. The initial microstructure is fitted 

for DEM simulation input. DEM simulations are performed using the same experimental 

conditions and the same materials properties. Finally, the in-situ reconstructed 3D 

microstructure and DEM simulated microstructure can be directly compared and correlated. 

 

In the case of an indirect coupling, in the presence of nano scale particles, the destructive 

FIB-nT is used to obtain the 3D green microstructure and then is transformed to the DEM 

model. The simulation results can be compared with additional sintered MLCC sample. 

 

In both case, the DEM simulations face transformation issue. That is the fitted packing has 

different contact statistics. One ultimate solution is to use irregular shape elements that are 

duplicated from the tomographic data. Another compromise is to introduce an unloading and 

arrangement process. In this sense, the direct comparison is in fact an indirect one. 

 

One possible use of DEM simulation, which does not require extensive experimental input, is 

the optimization of the particle size distribution in the Ni layer (both for Ni and BT additives). 

Simulations may provide an optimum for green density and initial heterogeneity content.  

 Multi-scale modeling  
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In this DEM simulation study, only sintering during the heating stage was modeled. As 

experiment shows, once the sintering temperature of dielectric is reached, the ceramic 

particles start to sinter while the metal electrodes are almost fully dense. At this point, it is 

inappropriate to simulate the continuum electrode materials using DEM simulation. At this 

point, simulations using coupling between FEM (for the Ni layer) and DEM (for the BT layer) 

may lead to new insight in the MLCC process.  
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Appendix A 

Based on clear interfaces at inclusion-matrix contacts observed in sintered metal or ceramic 

matrix composites [52, 215], we assume that unlike the sintering neck formed at the matrix-

matrix contact, a nearly flat surface is formed at the inclusion-matrix contact on the matrix 

particle side (Fig. A1). The outer surface of this plateau is of axial length ρ, which is also 

assumed to be the radius of curvature in the axial direction. The axial length ρ is assumed to 

approximate to indentation h [213].  

 

Figure A.1 inclusion-matrix contact model 

 

The cylindrical plateau V1 and spherical cap V2with height of 2h ( = h+ρ) are calculated as: 

2
1 imV a h                           (A.1) 

2
2

1
(2 ) ( 2 )

3mV h R h      (A.2) 

Using mass conservation, the volumes V1 and V2 are equal, which leads to: 

2 28
4

3im ma R h h  ,       (A.3) 

Neglecting the h2 term (h<<aim) leads to Eq. (6.14). 
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Appendix B  

For sintering contacts, the contact radius a can be estimated using Coble‟s law [213] (see 

Figure B.1). The outer surface of the neck is tangent to the two spheres with radius of ρ1 and 

ρ2. The contact radius is given by: 

 2 1 2
1 2

1 2

4
R R

a h h
R R

           (B.1) 

 

Figure B.1 Contact model by Coble’s Law 

Using simple geometric relations in triangles ΔO1MO1
’ and ΔO2MO2

’: 

2 2 2
1 2 1 1 1( ) ( ) ( )R h a R             (B.2) 

2 2 2
2 1 2 2 2( ) ( ) ( )R h a R           (B.3) 

Solving Eq. (B.2) and Eq. (B.3) leads to; 

2 2
1 2 2

1
1

2
2 2

a R h h

R a
      (B.4) 

2 2
2 1 1

2
2

2
2 2

a R h h

R a
      (B.5) 

Using the Similar Triangles Theorem, we obtain: 

https://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.mathsisfun.com%2Fgeometry%2Ftriangles-similar-theorems.html&ei=17glUpTDIsye0wWBkoH4CA&usg=AFQjCNGwXzifMEEz4LT2Jo19LQsgEPpAIg&bvm=bv.51495398,d.d2k
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2 1 2
2

2 2

( )R h
y

R



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Which is used to obtain the final expression of the neck radius. 
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Appendix C 

According to the Wicksell‟s classic work in 1925 [159], the frequency of particle size from 

the 2D section of mono-sized partilce sample (Fig. C.1) follows: 

2 2
( )

( )

r r
f r

R R r

            (C.1) 

Hence, the accumulative frequency is given by: 

2

2 20 0
( ) ( ) 1 1 ( )

( )

r r rdr r
G r f r dr

RR R r
            (C.2) 

 

Figure C.1 Sectioning a sphere randomly produce a distribution of circle sizes, which can be 

calculated from analytical geometry 

 

For the actual size (3D) distribution of spheres (Fig. C.2(a)), we can assume that spheres 

which are in the same bin size (i.e., Class Ni) are mono sized. The corresponding cross-

sectioned 2D circle size of these spheres belonging to Class Ni will distribute according to Eq. 

(C.1). And the frequency is distributed as Figure C.2(b).  
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Figure C.2 Practice of the sectioning of each class of the spheres 
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This scheme applies to all other classes of particles. Finally, for the 2D sphere size 

distribution that has the same size range and bin size: 

' 1 1
1 1

k k n n

k i k i k i n i nN f N f N f N f N         (C.7) 

For the final frequency disctribution of the 2D sectioned size is the sum of N sets of the 

classic distributions: 
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RESUME 

L'objectif de cette thèse est de comprendre les mécanismes d'évolution de la discontinuité 
dans une électrode lors du frittage de condensateurs céramiques multicouches (multilayer 
ceramic capacitors, MLCCs) en couplant nanotomographie et simulations discrètes. Les 
observations multi-échelles à l'aide de rayons X synchrotron (résolution de 30 nm) en 
tomodensitométrie et le couplage de la microscope électronique à balayage à un faisceau 
d‟ions focalisé (résolution de 5 nm) sur des MLCCs commerciales de Ni- et Pd- ont révélé 
que les discontinuités proviennent d'hétérogénéités initiales d‟empilement (zones poreuses) 
dans l'électrode. Les discontinuités se forment à un stade précoce du frittage de l'électrode. A 
ce stade le frittage de l‟électrode est contraint par les couches diélectriques, qui n'ont pas 
encore commencé à fritter. Les simulations par éléments discrets, ont été effectuées sur le 
frittage d‟un mélange de Ni et de BaTiO3 et sur des multicouches BaTiO3/Ni/BaTiO3. Les 
données d‟entrée de ces simulations ont été obtenues à partir des observations expérimentales 
en nano tomographie. En accord avec les expériences, les simulations montrent que les 
discontinuités proviennent des hétérogénéités initiales et qu‟elles se développent à cause des 
contraintes engendrées par les couches adjacentes. Une étude paramétrique indique que les 
discontinuités d'électrodes peuvent être minimisées par l'homogénéisation de la compacité, 
par l‟augmentation de l'épaisseur des électrodes et par l‟utilisation d‟un chauffage rapide. 

Mots clés: frittage; condensateur céramique multicouche (MLCC); simulations discrètes; 
Nano-tomographie 

 

 

ABSTRACT 
 
The aim of this thesis is to understand the electrode discontinuity evolution mechanism 
during the sintering of multilayer ceramic capacitors (MLCCs) by coupling nanotomography 
observations with discrete simulations. Multi-scale correlative studies using synchrotron X-
ray nano (resolution of 30 nm) computed tomography and Focused Ion Beam nano 
(resolution of 5 nm) tomography on commercial Ni- and Pd-MLCCs revealed that electrode 
discontinuities originate from initial packing heterogeneities (porous regions) in the electrode. 
The discontinuities form at the early stage of the sintering of electrode under the constraints 
from the dielectrics layers which have not started to sinter yet. Discrete element simulations, 
using the particulate characteristics of the packing obtained from nano tomographic data as 
inputs, were carried out on the sintering of BaTiO3 dispersed Ni electrode and 
BaTiO3/Ni/BaTiO3 multilayers. In agreement with experiments, simulations show that 
discontinuities originate from the initial heterogeneities under constraint from adjacent layers. 
Parametric studies suggest that electrode discontinuities can be minimized by homogenizing 
the packing density and increasing the thickness of the electrodes and using a fast heating rate. 
 
Key Words: Sintering; Multilayer Ceramic Capacitor (MLCC); Discrete Element Method; 
Nano-tomography 
 

 


