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gravité/théorie de Yang-Mills, constitue le point de départ de ce travail de thèse.

En effet, dans cette thèse nous nous sommes intéressés à une version généralisée de la correspondance AdS/CFT, concernant la théorie des super-cordes de type IIA sur un espace-temps produit entre anti de Sitter à deux dimensions et la sphère de dimensions huit. Cette théorie rend compte de la dynamique de N D0-branes coïncidentes, et sa théorie de Yang-Mills duale n'est pas invariante conforme. Cette dualité est intéressante car d'une part, dans sa version à basse énergie, elle met en jeu, du côté de la gravité, la théorie de supergravité maximale à deux dimensions avec groupe de jauge SO(9). D'autre part, la théorie de Yang-Mills duale n'est rien d'autre que le modèle de matrice BFSS, proposé comme une formulation de la théorie M sous-jacente aux cinq théories des super-cordes.

Dans un premier temps, avec mon directeur de thèse le professeur Henning Samtleben, nous avons construit la théorie de supergravité maximale à deux dimensions avec groupe de jauge SO(9). En effet, cette construction n'avait jamais été réalisée et ce résultat est venu compléter le tableau des supergravités maximales jaugées décrivant la dynamique effective de l'ensemble des Dp-branes impliquées dans la correspondance AdS/CFT, ainsi que sa généralisation aux cas non-conformes. Par ailleurs ce travail est intéressant du point de vue de la supergravité, car il constitue une première déformation non-triviale de la supergravité maximale à deux dimensions, reconnue pour ses propriétés de symétrie étendue, organisée par une algèbre de Kac-Moody exceptionnelle.

Le deuxième résultat de cette thèse renoue le lien entre la supergravité maximale jaugée à deux dimensions et son origine dans la théorie des cordes de type IIA. Dans ce cadre, il a été montré qu'un sous-secteur de la supergravité à deux dimensions pouvait être élevé à dix dimensions dans la supergravité maximale de type IIA, reconnue comme une version basse énergie de la super-corde de type IIA. Cette inclusion à dix dimensions est cohérente, elle permet ainsi de plonger plusieurs solutions des équations du mouvement, de deux dimensions à dix. Dès lors, on peut remonter à onze dimensions, le nombre maximum où l'on peut écrire une théorie de supergravité, et où celle-ci est unique. Ce travail effectué avec le professeur Henning Samtleben et le professeur Andrés Anabalón Dupuy de l'Université Adolfo Ibáñez du Chili, constitue le deuxième volet de ma thèse.

Enfin, avec les professeurs Henning Samtleben et Dimitrios Tsimpis de l'IPNL Université Lyon 1, nous avons étudié d'un point de vue holographique, des excitations autour de solutions super-symétriques de la supergravité maximale SO(9) à deux dimensions, et nous en avons extrait des informations sur des fonctions de corrélation dans les modèles matriciels duaux. Ceci résume le troisième volet de ma thèse et conclut l'exposé de l'ensemble des résultats que nous avons obtenus.

Résumé de la thèse

À la fin des années 1990, Juan Maldacena a fait une découverte majeure qui a révolutionné le domaine de la théorie des cordes. Il s'agit d'une correspondance ou plutôt d'une équivalence entre une théorie de la gravité et une théorie semblable à celle des interactions fortes. Cette correspondance établit un pont entre deux domaines de la physique des hautes énergies, en apparence très différents : la gravité quantique d'une part et les modèles de Yang-Mills de la théorie quantique des champs.

Enfin, elle a émergé de deux éléments pionniers. Le premier concerne le travail de Gerard 't Hooft, en 1973, sur la limite d'un grand nombre de couleurs des modèles de Yang-Mills, et leur ressemblance avec les modèles de résonance duale construits par Gabriele Veneziano dans son approche de l'interaction forte. Ces modèles préfigurent les premières théories des cordes proposées par Yoichiro Nambu, Holger Bech Nielsen et Leonard Susskind au début des années 1970.

Le deuxième élément clef repose sur la découverte en 1995 par Joseph Polchinski d'objets dynamiques étendus, appelés branes de Dirichlet ou D-Branes, pouvant être décrits par une théorie des super-cordes. En particulier, la donnée de N D3-branes coïncidentes, décrites par la théorie des cordes de type IIB, sert de cadre pour la découverte de Maldacena. Dans ce contexte, en 1998, une équivalence a pu être établie entre la dynamique des cordes super-symétriques de type IIB sur un espace-temps anti de Sitter (AdS) et une théorie de Yang-Mills super-conforme (sCFT) avec groupe de jauge SU(N). Plus précisément, on peut penser la théorie des cordes contenant l'interaction gravitationnelle, comme vivant à l'intérieur de l'espace-temps anti de Sitter, et la théorie des champs de Yang-Mills (semblable à la théorie de l'interaction forte) comme résidant au bord de l'espace anti de Sitter. Dans cette configuration, la correspondance apparait comme holographique, dans le sens où toute l'information d'un objet se trouvant à l'intérieur d'un espace peut être encodée dans la surface constituant la bordure de cet espace.

Pour mieux comprendre la facette gravitationnelle ou anti de Sitter de cette correspondance AdS/CFT, il faut pouvoir décrire la théorie des super-cordes de type IIB sur un état fondamental assez compliqué : un espace-temps produit entre anti de Sitter à cinq dimensions et une sphère de dimension cinq.

Heureusement, il existe un régime de la correspondance qui est plus faible, mais plus simple à manipuler. Il s'agit de la limite à basses énergies de la théorie des cordes. Dans cette limite, la théorie effective décrivant les super-cordes est une théorie de supergravité maximale qui de plus possède comme groupe de jauge SO [START_REF] Wess | Supergauge Transformations in Four-Dimensions[END_REF], provenant du groupe des isométries de la sphère à cinq dimensions. Cette idée, de rechercher la théorie effective de supergravité maximale pertinente pour l'étude d'une correspondance de type

Contents Introduction

Supergravity is a wide and fascinating domain of investigation. It stands at the crossroads of General Relativity and Particle Physics, and was first designed for unifying all known fundamental interactions, at the quantum level. It includes a new symmetry, which was not present in Particle Physics: supersymmetry.

This symmetry acts differently, on a new type of coordinates, but when acting twice it surprisingly reproduces a spacetime symmetry. Therefore, its algebraic structure triggered great interest from Mathematics, and an important work was dedicated to Lie superalgebras and their representations. From the physics perspective, supersymmetry turned out to be one of the very restricted possibilities to extend the symmetries of the Standard Model of Particle Physics [START_REF] Coleman | All Possible Symmetries of the S Matrix[END_REF] [START_REF] Haag | All Possible Generators of Supersymmetries of the s Matrix[END_REF]. If the supersymmetry is promoted to a local one (gauged), which means that any transformation can act independently on each point of spacetime and leave the action (or the equations of motion) invariant, then the theory is automatically invariant under general coordinate transformations (diffeomorphisms). Consequently, a field theory invariant under local supersymmetry can describe gravity. Reciprocally, if a theory of gravity contains supersymmetry, it is automatically realized locally. Therefore, a field theory with local supersymmetry is named: supergravity (see [START_REF] Salam | Supergravities in Diverse Dimensions[END_REF] for a detailed review).

These theories have been intensively studied, because they were candidate for a quantum theory of gravity. However, such a perspective was later abandoned, because most of them were non-renormalizable (ill-defined) and because the field met another important one: String theory. Indeed, it was demonstrated that particular supergravity theories in ten dimensions described the low-energy effective dynamics of supersymmetric strings. This generated new interests in the maximally supersymmetric theories of gravity and their possible deformations. In this context, deformations were studied by promoting global symmetry groups to local ones. Among them, maximal supergravities with local symmetry (gauge) group SO(n), coming from the isometry groups of spheres, were involved in the revolutionary proposal of Maldacena [START_REF] Maldacena | The Large N limit of superconformal field theories and supergravity[END_REF]: the gauge/gravity correspondence called AdS/CFT and its extensions.

This chapter aims to provide a brief review of the birth of maximal gauged supergravities, their importance for String theory and our contribution to this field.

Supersymmetry was born in 1971 from the suggestion of Gol'fand and Likhtman that the Poincaré algebra could be non-trivially extended to a super-algebra containing fermionic conserved charges [START_REF] Golfand | Extension of the Algebra of Poincare Group Generators and Violation of p Invariance[END_REF]. It has the structure of a Z 2 -graded Lie algebra mixing with the bosonic spacetime symmetries : The fermionic supercharges are constant spinors whose number is denoted by N . When N > 1, the supersymmetric theory is called extended. Eventually, the irreducible representations of the superalgebra account for the (super) particles.

The most popular quantum field theory including supersymmetry in four dimensions was constructed three years later by Wess and Zumino [START_REF] Wess | Supergauge Transformations in Four-Dimensions[END_REF]. In 1974 again, the N = 1, D = 4 Wess-Zumino model was extended to include internal symmetries, and the framework of superfields was developed to construct supersymmetric field theories in four dimensions [START_REF] Salam | Supergauge Transformations[END_REF].

At that time, two elegant features filled the community with enthusiasm. Firstly, the field theoretical divergences appeared to be softer when global supersymmetry is included [START_REF] Zumino | Supersymmetry and the Vacuum[END_REF]. For instance, the Wess-Zumino model was shown to be renormalizable [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF].

Secondly, Haag, Lopuszański and Sohnius classified all the possible conformal and Poincaré superalgebras compatible with the Quantum Field Theory assumptions in four dimensions [START_REF] Haag | All Possible Generators of Supersymmetries of the s Matrix[END_REF]. This generalized the famous no-go theorem of Coleman and Mandula [START_REF] Coleman | All Possible Symmetries of the S Matrix[END_REF] and opened the path to the study of the superalgebras and their representations [START_REF] Salam | Unitary Representations of Supergauge Symmetries[END_REF] [11] [START_REF] Strathdee | Extended Poincare Supersymmetry[END_REF]. A consequence of this work states that any particle has a super-partner of the same mass, and their spins must differ by 1/2. Furthermore, in any supersymmetric quantum field theory, there must be an equal number of bosonic and fermionic degrees of freedom. As an illustration, a supersymmetric extension of the Strandard Model would contain the following particle content [START_REF] Ellis | Beyond the standard model for hill walkers[END_REF] Particle Spin Spartner Spin quark: q 1 2 squark: q 0 lepton: l Higgs: H 0 higgsino: H

1 2
Table 1.1: Particles in the Standard Model and their supersymmetric partners.

However, no superpartner particle has been discovered at the scales of energy investigated, therefore supersymmetry must be broken. Fortunately, spontaneous supersymmetry breaking mechanisms have been elaborated, for example in [START_REF] Fayet | Spontaneously Broken Supergauge Symmetries and Goldstone Spinors[END_REF].

Later, it was shown that the three gauge coupling constants of the standard model do not converge to the same value when the energy grows, whereas they do meet each other at an energy of 10 16 GeV if supersymmetry is included, see Figure 1.1 and [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF], [START_REF] Ellis | Probing the desert using gauge coupling unification[END_REF], [START_REF] Langacker | Implications of precision electroweak experiments for M t , ρ 0 , sin 2 θ W and grand unification[END_REF] and [START_REF] Giunti | Running coupling constants and grand unification models[END_REF] for details.

This may be a clue that supersymmetry is the right framework for unifying the fundamental interactions.

Supergravity The last known fundamental force: gravity, is maybe the most intriguing one, but it has been excluded from the previous discussion. Indeed, only globally supersymmetric quantum field theories were considered. Actually, finding a quantum description of gravity is one of the most difficult challenge of Theoretical Physics. It would thereby allow for a complete understanding of the early universe and the black holes.

However, as we saw before, when supersymmetry is gauged, gravity is described. The idea has soon been put in practice, when in 1976, Freedman, Ferrara, van Nieuwenhuizen Figure 1.1: Two-loop renormalization group evolution of the inverse gauge couplings α -1 in the Standard Model (dashed lines) and in the Minimal Supersymmetric Standard Model (solid lines). The sparticle masses are treated as a common threshold varied between 500 GeV and 1.5 TeV. [START_REF] Martin | A supersymmetry primer[END_REF] [20], and independently Deser and Zumino [START_REF] Deser | Consistent Supergravity[END_REF], constructed the first N = 1 supergravity in four dimensions. It is a theory of pure gravity (General relativity) extended by supersymmetry. It thus describes a spin two graviton and its superpartner: a spin 3/2 fermion called gravitino [START_REF] Rarita | On a theory of particles with half integral spin[END_REF], [START_REF] Velo | Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential[END_REF].

Coupling to matter was then realized [START_REF] Ferrara | Matter Couplings in Supergravity Theory[END_REF] as well as increasing the number of supersymmetries [START_REF] Ferrara | Consistent Supergravity with Complex Spin 3/2 Gauge Fields[END_REF]. Actually, Nahm already noticed that the number of charges generating supersymmetry is bounded from the top if the interacting theory is to be restricted to spins lower than two. Namely, the total number of real components of the supersymmetry generators Q should not exceed 32

N × dim R Q ≤ 32 .
(1.0.2) This is a necessary requirement since no consistent interaction is known for spins s ≥ 5/2 [START_REF] Grisaru | Supergravity and the S Matrix[END_REF] [27] [28] [START_REF] Aragone | Consistency Problems of Hypergravity[END_REF]. The bound is lowered to 16 real components for globally supersymmetric field theories (without gravity) where the maximal spin involved is equal to one. Eventually, a general Yang-Mills-matter-supergravity system with N = 1 local supersymmetry and arbitrary gauge group G was constructed in [START_REF] Cremmer | Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect[END_REF], paving the way to phenomenological applications.

Nevertheless, the lack of renormalizability property forbade to establish the supergravities at the quantum level. Therefore, the investigation was directed towards extended supergravities, provided that supersymmetry can be further broken [START_REF] Cremmer | Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect[END_REF]. Indeed, the more supercharges are present, the softer are field theoretical divergences. For instance, maximal supergravity in four dimensions might be finite [START_REF] Stelle | Finite after all?[END_REF]. This N = 8 , D = 4 supergravity [START_REF] Cremmer | The N=8 Supergravity Theory. 1. The Lagrangian[END_REF] [33] was built by dimensional reduction of the unique supergravity in eleven dimensions, discovered in 1978 by Cremmer, Julia and Scherk [START_REF] Cremmer | Supergravity Theory in Eleven-Dimensions[END_REF].

Eleven dimensional spacetime is particular for supergravity, since, according to the Nahm bound on supercharges, supergravities can only be constructed in D ≤ 11. This is why eleven dimensional supergravity is called "maximal". Besides, Witten showed that eleven is the minimum number of dimensions if the Standard Model gauge group SU (3) × SU (2) × U (1) is to be recovered in four dimensions by dimensional reductions [START_REF] Witten | Search for a Realistic Kaluza-Klein Theory[END_REF]. Therefore, several questions arose whether a unique (higher dimensional) theory had been found and could lead to the Standard Model in some limit while providing on another hand a quantum description of gravity. This renewed also the interest for Kaluza-Klein ideas of compactifying dimensions on such small scales that they are hidden from the current experiments [36]. The simplest and most widely studied example, is the reduction of eleven-dimensional supergravity on tori. It leads directly to maximal supergravities in lower dimensions. The massless sector of the non-chiral N = 2 , D = 10 (named Type IIA) supergravity was thus constructed [START_REF] Huq | Kaluza-Klein Supergravity in Ten-dimensions[END_REF]. Not all maximal supergravities can be generated from the eleven-dimensional one, so is the case of the chiral N = 2 , D = 10 (Type IIB) supergravity [START_REF] Schwarz | Symmetries and Transformations of Chiral N=2 D=10 Supergravity[END_REF], [START_REF] Schwarz | Covariant Field Equations of Chiral N=2 D=10 Supergravity[END_REF] and [START_REF] Howe | The Complete N=2, D=10 Supergravity[END_REF]. Furthermore, the maximal supergravities obtained from the eleven dimensional one or the type IIB, by Kaluza-Klein reduction on tori, do not have a non-abelian gauge group. They are called "ungauged" maximal supergravities. The only known way to further deform these theories while preserving supersymmetry is done by gauging global symmetries. A general framework for accomplishing this task has been developed in [START_REF] De Wit | On Lagrangians and gaugings of maximal supergravities[END_REF]. Let us note that the compactification on more complicated manifold leads to low-dimensional theories whose gauge group contains the isometry group of the compactifying space and thus may be non-abelian. For example, the reduction of elevendimensional or type IIB supergravities on n-dimensional spheres gives rise to maximal supergravities with gauge group SO(n + 1) corresponding to the isometry group of the sphere. Nonetheless, it is hard to perform the reduction explicitly, even if the consistency has been demonstrated for several cases [START_REF] De Wit | The Consistency of the S 7 Truncation in D = 11 Supergravity[END_REF] [START_REF] Cvetic | Consistent Kaluza-Klein sphere reductions[END_REF].

Despite the appealing properties of eleven-dimensional supergravity, it was soon realized that it could not stand for a unifying quantum field theory of all fundamental interactions. Indeed, the supergravity was plagued by severe problems: above all, Kaluza-Klein reduction of eleven-dimensional supergravity does not lead to a chiral theory in four dimensions [START_REF] Witten | Search for a Realistic Kaluza-Klein Theory[END_REF], thus the Standard Model of Particle Physics cannot be reproduced. Moreover it contains gravitational anomalies [START_REF] Alvarez-Gaume | Gravitational Anomalies[END_REF] (where by anomaly we mean a classical symmetry that does not hold at the quantum level, see [START_REF] Alvarez-Gaume | The Structure of Gauge and Gravitational Anomalies[END_REF], [START_REF] Alvarez-Gaume | An introduction to anomalies[END_REF] and [START_REF] Bertlmann | Anomalies in quantum field theory[END_REF] for more details) and the dimensionally reduced theory might not be renormalizable. The search for anomaly cancellation in a possibly unique high dimensional chiral theory is what brought the community to a major result which deeply transformed the motivations for understanding supergravities.

This started from the discovery that the chiral type IIB supergravity is anomaly free [START_REF] Alvarez-Gaume | Gravitational Anomalies[END_REF]. Then, Green and Schwarz showed that in ten dimensions, the N = 1 Einstein-Yang-Mills supergravity is also anomaly free, provided that the Yang-Mills gauge group is chosen to be SO [START_REF] Cremmer | The N=8 Supergravity Theory. 1. The Lagrangian[END_REF] or E 8 × E 8 [START_REF] Green | Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory[END_REF]. For the SO(32) group, the anomaly cancellation implied to add new higher-derivative terms that precisely match the low-energy expansion of a string theory: the Heterotic type SO [START_REF] Cremmer | The N=8 Supergravity Theory. 1. The Lagrangian[END_REF] supersymmetric string. Following this work, the Heterotic type E 8 ×E 8 superstring theory was built [START_REF] Gross | The Heterotic String[END_REF], and it was fully recognized that the type I, IIA, IIB, Heterotic SO [START_REF] Cremmer | The N=8 Supergravity Theory. 1. The Lagrangian[END_REF] and Heterotic E 8 × E 8 supergravities in ten dimensions are low-energy limits of supersymmetric string theories. As a consequence, supergravity can be thought of as an effective description of more fundamental objects: elementary strings. In addition, the discovery of the heterotic superstrings made conceivable the connection with the Standard Model [START_REF] Candelas | Vacuum Configurations for Superstrings[END_REF] and thus triggered great enthusiasm.

String theory and the AdS/CFT correspondence The first theory of relativistic strings was considered way before the birth of supergravity. It begins in 1968 with the construction of dual resonance models by Gabriele Veneziano [START_REF] Veneziano | Construction of a crossing -symmetric, Regge behaved amplitude for linearly rising trajectories[END_REF], in an attempt to understand the Strong interaction. Later overcome by the more predictive Quantum Chromo Dynamics [START_REF] Gell-Mann | The Eightfold Way: A Theory of strong interaction symmetry[END_REF] [START_REF] Gell-Mann | Symmetries of baryons and mesons[END_REF], the beauty of the Veneziano model prevented it from disappearing, and it was soon realized that relativistic strings, whose vibrating modes represent elementary particles, were actually described [START_REF] Nambu | Dual model of hadrons[END_REF] [55] [START_REF] Koba | Generalized veneziano model for n particles, trajectories with signature[END_REF]. Eventually, Schwarz, Scherk [START_REF] Scherk | Dual Models for Nonhadrons[END_REF] and Toneya [START_REF] Yoneya | Connection of Dual Models to Electrodynamics and Gravidynamics[END_REF] understood that a relativistic theory of strings could contain gravitons, the mediating particle of the gravitational interaction. Thus, from a model of the strong interaction it became a theory of quantum gravity. Indeed, strings generalize point particles because they are one-dimensionally extended, and this simple fact remarkably allows for a quantum description that is prevented from divergences [START_REF] Green | Superstring Theory[END_REF].

The coupling to fermions was done in a theory that incorporates, as a key ingredient, supersymmetry [START_REF] Green | Supersymmetrical String Theories[END_REF] [START_REF] Green | Superstring Interactions[END_REF]. The supersymmetric string theories are required to live in ten dimensions by consistency, and an important work including the study of anomalies enabled to draw the picture of all possible superstrings. There are only five of them, known as: Type I, IIA and IIB, Heterotic SO [START_REF] Cremmer | The N=8 Supergravity Theory. 1. The Lagrangian[END_REF] and Heterotic E 8 × E 8 . Furthermore, Witten realized that due to the dualities relating each others [START_REF] Schwarz | Duality symmetric actions[END_REF] [63] [START_REF] Strominger | Mirror symmetry is T duality[END_REF] , they may come from a unique eleven-dimensional theory: the so-called M-theory [START_REF] Horava | Heterotic and type I string dynamics from eleven-dimensions[END_REF], whose low-energy limit is eleven-dimensional supergravity. This revived the idea of a unifying quantum theory underlying all elementary interactions, and gave to the field new motivations.

Finally, one may wonder whether more (spatially) extended relativistic objects can be considered, such as membranes or volumes moving through spacetime, and whether they could be linked with String theory. The idea has first been put in practice by Dirac [START_REF] Dirac | An Extensible model of the electron[END_REF], still it is very hard in general to formulate a quantum theory for p-dimensional extended objects with p > 1. Fortunately, such objects, called p-branes arise as particular solutions (solitons) of supergravities. For example, eleven-dimensional supergravity admits a 2brane and a 5-brane solution. Several other branes can be derived from type IIA and IIB supergravities. Since, the supergravities are low-energy limit of superstring theories, nonperturbative p-brane solutions are present in String theory. In Table 1.2 are referenced the possible supersymmetric branes of M-theory and type IIA and IIB superstrings [START_REF] West | Introduction to strings and branes[END_REF], with the names they have been given, for 0 ≤ p ≤ 8 . The cases p = 0 and p = 1 correspond respectively to a point-like and a one dimensional object. In particular, F1 stands for the type IIA and IIB (Fundamental) strings. Branes are intrinsically non-perturbative objects, however some of them can be viewed as sub-manifolds of spacetime, parametrized by the end-points of open strings. Said differently, by imposing particular boundary conditions on open strings, the Dirichlet condition, their end points can be attached to some hypersurfaces of spacetime. In turn, the hypersurface is interpreted as a brane, called D-brane. Following this interpretation [START_REF] Dai | New Connections Between String Theories[END_REF], [START_REF] Leigh | Dirac-Born-Infeld Action from Dirichlet Sigma Model[END_REF], Polchinski demonstrated that the complicated dynamics of the D-branes could be simply described by the interactions of open strings using string perturbation theory [START_REF] Polchinski | Dirichlet Branes and Ramond-Ramond charges[END_REF]. Thus, the dynamics of the D-branes became manageable . This deep result led to an extraordinary discovery which motivates many of the investigation in String theory today: The AdS/CFT correspondence.

The idea came from the observation that a stack of N coinciding parallel D3-branes has a world volume theory that possesses a U (N ) Yang-Mills symmetry. On the other hand, as we saw before, the D-brane admits a string theory description. Consequently, the same object, a D-brane, could be described by two different theories: a gauge theory on one side, and a theory of quantum gravity on the other one. In this context, Maldacena proposed in 1998, a correspondence between a particular Yang-Mills gauge theory and a string theory. Namely, he conjectured that the N = 4, D = 4 super-conformal Yang-Mills theory with gauge group SU (N ) is equivalent, in the large N limit, to type IIB string theory on the spacetime background AdS 5 × S 5 . The gauge theory would live on the boundary of AdS spacetime, providing all the information about string (or supergravity) excitations propagating in the bulk. As a result, this correspondence is often named Holography. Maldacena's conjecture [START_REF] Maldacena | The Large N limit of superconformal field theories and supergravity[END_REF], offers a new dimension to 't Hooft first intuition [START_REF] Hooft | A Planar Diagram Theory for Strong Interactions[END_REF] and had huge consequences because it connects two different domains of High energy physics: quantum gravity and Yang-Mills theory. Soon, a precise framework has been developed, allowing for concrete tests, [START_REF] Witten | Anti-de Sitter space and holography[END_REF] [73] and a generalization to the non-conformal case was considered [START_REF] Itzhaki | Supergravity and the large N limit of theories with sixteen supercharges[END_REF].

The same idea can be applied to a general stack of N coinciding and parallel Dpbranes, whose description is provided by either type IIA or IIB superstring theory on an AdS p+2 × S 8-p background [START_REF] Boonstra | The domain wall / QFT correspondence[END_REF]. The corresponding SU (N ) super-Yang-Mills theory is not conformal invariant for p = 3. Computations are more easily done in the supergravity low-energy approximation of superstrings, to which Maldacena's conjecture extends. All effective supergravities on AdS p+2 × S 8-p have been constructed so far, except for p = 0. They are the maximal supergravities in (p+2) dimensions, with gauge group SO(8-p+1) coming from the reduction over the S 8-p spheres. Having at hand the supergravity enables to explore deeply the gauge theory side by applying holographic techniques. Since for p = 0, the corresponding gauge theory is the BFSS Matrix model proposed as a formulation of M-theory [START_REF] Banks | M theory as a matrix model: A Conjecture[END_REF], its full characterization through holography would be of great interest.

The construction of the maximal SO(9) gauged supergravity in two dimensions was among the objectives of our thesis. It is the first non-trivial supersymmetry preserving deformation of the two-dimensional maximal supergravity, and it is not only interesting from the gravity/gauge correspondence point of view, but also for the mathematical structure of its symmetries, organized in an exceptional Kac-Moody algebra.

Outline of the thesis To this end, we will begin with the presentation of essential features about maximal supergravities, in chapter 2. Our interests lie in the eleven, three and two-dimensional maximal supergravities. As a key ingredient for going from eleven to two dimensions, the Kaluza-Klein method of dimensional reduction will be described. Then, we will explain how to gauge a global symmetry in maximal supergravity, using the embedding tensor formalism. This method is extremely useful to determine the possible gaugings consistent with supersymmetry and provides a concrete way to do it. In chapter 3, the ungauged N = 16, D = 2 maximal supergravity is derived from dimensional reduction of three and eleven-dimensional maximal supergravities. Thus, two on-shell equivalent formulations of the theory are obtained, and each one reveals interesting insights in the maximal two-dimensional supergravity. However, only one frame allows for the consistent SO(9) gauging. The main result of the chapter is the explicit construction of the SO(9) gauged maximal supergravity in two dimensions and is presented in full details. Finally, applications are considered, such as supersymmetric solutions of the BPS equations. Chapter 4 aims at reconciling the two-dimensional theory with its higher dimensional origins. Hence, an explicit framework is established to uplift a sub-sector of the SO(9) gauged maximal supergravity, from two dimensions to the ten-dimensional type IIA supergravity and then to eleven dimensions. The sub-sector corresponds to a U (1) 4 Cartan truncation of the bosonic theory and the full non-linear Kaluza-Klein ansatz is constructed. Then, the truncation is demonstrated to be consistent by computing all the ten-dimensional equations of motion. Eventually, interesting two-dimensional solutions, such as a half-supersymmetric domain-wall, are embedded in ten and eleven dimensions. To conclude, an extension of the uplift to the case of non-vanishing axions is envisaged.

In chapter 5, holographic techniques, devised for the non-conformal cases of the gaugegravity correspondence [START_REF] Kanitscheider | Precision holography for non-conformal branes[END_REF] will be applied. Thus, after recalling important features about the AdS/CFT correspondence, we will focus on the BFSS model holography. Hence, correlation functions will be computed from the gravity side, by studying excitations around (half-BPS) backgrounds of the SO(9) gauged supergravity. To this end, the holographic renormalization techniques developed in [START_REF] Skenderis | Lecture notes on holographic renormalization[END_REF] will be presented and put in practice. Previous results about BFSS holography will be recovered [START_REF] Matsuo | Linear responses of D0-branes via gauge/gravity correspondence[END_REF] [80] as well as new insights in the matrix model holography. Finally, the BMN model, arising as a deformation of the BFSS matrix theory, will be studied. In particular, one and two-points correlation functions will be computed from the gravity side by examining gravity and scalar excitations around a SO(3) × SO(6) preserving half-supersymmetric background.

Some of the results presented here were already published in [START_REF] Ortiz | SO(9) supergravity in two dimensions[END_REF], [START_REF] Anabalon | Rotating D0-branes and consistent truncations of supergravity[END_REF]. Other results are work in progress [START_REF] Ortiz | Matrix model holography[END_REF].

Chapter 2

Maximal Supergravities and its Gauging

Introduction

Since its discovery in 1998, The AdS/CFT correspondence conjectured in [START_REF] Maldacena | The Large N limit of superconformal field theories and supergravity[END_REF] has led to a tremendous number of work and applications. It is based on the properties of a stack of N coinciding parallel D3-branes, in the large N limit, which is described by type IIB superstring theory on an AdS 5 ×S 5 background. The isometry group of the AdS spacetime acts as the SO(2, 4) conformal group on the four-dimensional AdS boundary. Then, the type IIB string theory on AdS 5 is thought to be equivalent to a conformal N = 4, D = 4 Super Yang-Mills theory living on the AdS boundary. Eventually, the equivalence extends to the supergravity regime of string theory.

This conjecture has been generalized to Dp-branes of type IIA or IIB superstrings, for {p = 0, 1, 2, 4, 5, 6} in [START_REF] Boonstra | The domain wall / QFT correspondence[END_REF] [START_REF] Itzhaki | Supergravity and the large N limit of theories with sixteen supercharges[END_REF]. However, in this (p = 3) cases, the near-horizon limit of the brane leads to an AdS p+2 × S 8-p spacetime coupled to a non-trivial dilaton. The presence of the dilaton breaks the scale invariance of the AdS isometry group and it gets reduced to the Poincaré group. Thus, the quantum field theory (QFT) living on the boundary is no longer conformal invariant but still is a maximally supersymmetric Yang-Mills theory in (p+1) dimensions. Eventually, because AdS spacetimes with linear dilaton are conformally equivalent to domain-wall (DW) spacetimes [START_REF] Lu | Domain walls from anti-de Sitter space-time[END_REF], the correspondence is named after DW/QFT in this context.

After compactification on the S 8-p spheres, the low-energy effective theories that describe the relevant superstring theories on the (warped) AdS p+2 background, are SO(9-p) gauged maximal supergravities in (p + 2) dimensions [START_REF] Boonstra | The domain wall / QFT correspondence[END_REF], where the gauge group comes from the isometries of the spheres. This theories have often been studied well before the AdS/CFT correspondence, in the view of classifying all the possible deformations of maximal supergravities, see Table 2.1. For example, in four dimensions, the SO(8) gauged maximal supergravity was first constructed in [START_REF] De Wit | N=8 Supergravity[END_REF]. It corresponds to the reduction of eleven-dimensional supergravity on the seven sphere S 7 and from the brane point of view, it accounts for the M2-brane dynamics. The last remaining supergravity in this picture was the SO(9) gauged maximal supergravity in two dimensions. Its construction was indeed difficult because of the very large symmetry structure of the ungauged theory. Indeed, unlike the higher dimensions, the theory has an infinite dimensional symmetry group: the exceptional Lie group E 9 . Thus, an SO(9) subgroup needed to be selected inside E 9 , and promoted to a local group of symmetry compatible with maximal supersymmetry. The task was huge and the result came in essentially three steps. Firstly, the Table 2.1: Gauge/Gravity correspondence maximal ungauged supergravity was constructed and its infinite dimensional symmetries were identified [START_REF] Nicolai | The Structure of N = 16 Supergravity in Two-dimensions[END_REF]. Then, all the possible gaugings compatible with supersymmetry were determined group theoretically [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF]. Finally, the SO(9) gauged maximal supergravity in two dimension has been explicitly constructed in [START_REF] Ortiz | SO(9) supergravity in two dimensions[END_REF] and it constitutes the first result of this thesis. Preparing this discussion, is the goal of the present chapter. Therefore we will present the maximal supergravities in eleven and three dimensions, because they will originate two formulations of the ungauged maximal supergravity in two dimensions, that will be important for understanding the SO(9) gauging. As a key ingredient for dimensional reduction, the Kaluza-Klein torus reduction will be presented as well as the enhancement of symmetries which explains why the target space differs in the two formulations. The ungauged supergravities being discussed, we will study the embedding tensor formalism an explain how a maximal supergravity can be gauged while preserving supersymmetry.

Maximal Ungauged Supergravities

Maximal ungauged supergravites can all be obtained by Kaluza-Klein reduction of eleven-dimensional or type IIB supergravity, on tori. Here we present the most important of them for our thesis work.

The N = 1, D = 11 Supergravity

As explained in the Introduction, the eleven-dimensional supergravity is a very particular one. Indeed, eleven dimensions arises as the maximal number of dimensions for formulating a supergravity theory since if D > 11, there is no possibility of matching bosonic and fermionic degrees of freedom in a field theory containing spins less than 2 (s ≤ 2). Were it possible to construct such a theory in D > 11, then by dimensional reduction the resulting four dimensional theory would be a N > 8, D = 4 supergravity violating the upper bound of supersymmetries. This is why N = 1 in D = 11 and the supergravity is maximal. Moreover, the eleven-dimensional supergravity constructed in [START_REF] Cremmer | Supergravity Theory in Eleven-Dimensions[END_REF] is unique. These are certainly among the reasons why the N = 1, D = 11 supergravity occupies such an important place in the landscape of maximal supergravities. The next subsections will be devoted to a detailed presentation of this theory.

Field content of the N = 1, D = 11 supergravity

As an eleven dimensional gravity theory, the bosonic sector contains the metric g µν . The (quantum) excitations of this gravitational field belong to the traceless symmetric tensor representation of the little group SO [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF]. Thus it represents 11 (11 -3) 2 = 44 bosonic on-shell degrees of freedom.

(2.2.1)

The supersymmetry partner of the metric is a Majorana spinor gravitino Ψ µ and transforms as a γ-traceless (γ µ Ψ µ = 0) vector-spinor under the little group. This amounts to (11 -3) 2 [START_REF] Cremmer | Supergravity Theory in Eleven-Dimensions[END_REF] that the field content of the D = 11 maximal supergravity should be : the metric g µν , the 3-form gauge field A µνρ and the Majorana vector-spinor Ψ µ .

The eleven dimensional Lagrangian

In this section, we review the eleven dimensional action constructed in [START_REF] Cremmer | Supergravity Theory in Eleven-Dimensions[END_REF] and present it (see [START_REF] Freedman | Supergravity[END_REF] and [START_REF] West | Introduction to supersymmetry and supergravity[END_REF] for reviews).

S 11 = 1 2κ 2 11 d 11 x e 11 R(Ω(e, Ψ)) - 1 48 F µ 1 ...µ 4 F µ 1 ...µ 4 -Ψµ γ µνρ D ν 1 2 (Ω + Ω) Ψ ρ - 1 192 Ψµ 1 γ µ 1 ...µ 6 Ψ µ 2 + 12 Ψµ 3 γ µ 4 µ 5 Ψ µ 6 F µ 3 ...µ 6 + Fµ 3 ...µ 6 - 1 (12) 4 µ 1 ...µ 11 F µ 1 ...µ 4 F µ 5 ...µ 8 A µ 9 µ 10 µ 11 , (2.2.4) 
in Minkowskian signature (-1,1,. . . ,1) with field strength and supercovariant field strength

F µ 1 ...µ 4 = 4 ∂ [µ 1 A µ 2 µ 3 µ 4 ] , and Fµ 1 ...µ 4 = F µ 1 ...µ 4 + 3 Ψ[µ 1 γ µ 2 µ 3 Ψ µ 4 ] (2.2.5) 
and

Ω µab = Ωµab + 1 8 Ψν γ µab νλ Ψ λ , Ωµab = Ω (0)
µab (e 11 ) -

1 4 Ψµ γ b Ψ a -Ψµ γ a Ψ b + Ψb γ µ Ψ a . (2.2.6)
Here, the [µ 1 . . . µ 4 ] means completely anti-symmetric in those indices with weight one, and Ω (0)

µab (e 11 ) stands for the torsion-less spin connection associated with the eleven dimensional vielbein e 11 µ a . Moreover, the covariant derivative D(Ω) is defined by

D µ (Ω)Ψ ν = ∂ µ + 1 4 Ω µ ab γ ab Ψ ν and [D µ , D ν ] = 1 4 R µν ab γ ab , (2.2.7)
were R µν ab is the curvature tensor of the connection D(Ω) and R(Ω) is the Ricci scalar. (2.2.9)

Supersymmetry

The Lagrangian (2.2.4) is invariant under the local supersymmetry transformations

δ e 11µ a = 1 2 ¯ γ a Ψ µ , δ A µ 1 µ 2 µ 3 = - 3 2 ¯ γ [µ 1 µ 2 Ψ µ 3 ] , δ Ψ µ = D µ Ω + 1 2(12) 2 γ µ ν 1 ...ν 4 -8 δ ν 1 µ γ ν 2 ν 3 ν 4 Fν 1 ...ν 4 . (2.2.10)
The commutator of two supersymmetry transformations closes on local symmetries of the theory, provided that the field equations are satisfied. The resulting local symmetries are: a general coordinate transformation (gct), plus a field dependent local Lorentz, supersymmetry and 3-form gauge transformations.

δ Q ( 1 ) , δ Q ( 2 ) = δ gct ξ µ + δ L λ ab + δ Q 3 + δ A θ µν (2.2.11)
The parameters are given by

ξ µ = 1 2 ¯ 2 γ µ 1 , λ ab = -ξ µ Ωab µ + 1 2(12) 2 ¯ 1 γ abµνρσ Fµνρσ + 24 γ µν F abµν 2 , 3 = -ξ µ Ψ µ , θ µν = -ξ ρ A ρµν + 1 2 ¯ 1 γ µν 2 .
(2.2.12)

The spinors bilinears on the right hand side of λ ab deserve some comments. They come from the global eleven dimensional supersymmetry algebra of the theory. The fermionic charges are represented by Majorana spinors Q α with 32 real components and their commutator is given by

{Q α , Q β } = γ a C -1 αβ P a + γ ab C -1 αβ Z ab + γ abcde C -1 αβ Z abcde , (2.2.13)
where C is the charge conjugation matrix defined by

γ a T = -Cγ a C -1 . (2.2.14)
Using the fact that Γ (5) can be related to Γ (6) in eleven dimensions, notice that the bilinears ¯ 1 Γ (2) 2 and ¯ 1 Γ (5) 2 come from the central charges terms of the global supersymmetry algebra where the corresponding central charges are Z ab and Z abcde . For a general review on this issue, one may look at [START_REF] West | Introduction to supersymmetry and supergravity[END_REF] and [START_REF] West | Introduction to strings and branes[END_REF]. The structure of the theory (2.2.4) is highly constrained by supersymmetry since for example, no free parameter appears inside the Lagrangian.

Low-dimensional effective theories

The eleven-dimensional supergravity (SUGRA 11 ) can be used to generate lower dimensional supergravities by dimensional reduction. In particular, toroidal compactification leads to D < 11 extended supergravity theories with 32 real supersymmetries, and global symmetry group GL(11

-D) R q with q = 1 6 (11 -D)(10 -D)(9 -D) . (2.2.15)
The scalar sector is thus described by a non-linear σ-model with target space GL(11-D) SO(11-D) R q .

Toroidal compactification

Let us recall precisely the Kaluza-Klein reduction of eleven dimensional supergravity on an arbitrary torus. In the following, we will focus on the bosonic sector. The dimensionally reduced theory will live on a D-dimensional spacetime according to the splitting

M 11 = M D × T p , 1 ≤ D ≤ 10 , p ≡ 11 -D . (2.2.16)
The coordinates on M D are denoted by x µ , (µ = 0, . . . , D -1) and the coordinates on T 11-D are denoted by y m (m = 1, . . . , 11-D). This decomposition is allowed by assuming the existence of a set of p mutually commuting Killing vector fields on M D [START_REF] Coquereaux | Riemannian geometry, fiber bundles, Kaluza-Klein theories and all that[END_REF]. An ansatz for the eleven-dimensional vielbein is

E M A = e µ α ρ 1 p A µ m V m a 0 ρ 1 p V m a (2.2.17)
where the local Lorentz invariance is used to set the e m α coefficients to zero. Following the Kaluza-Klein condition, no dependence on the internal coordinates is assumed. Furthermore, the vielbein ρ 1 p V m a on the internal space has been decomposed into

• its determinant part: ρ(x) which can be interpreted as a scalar field named the "dilaton".

• the determinant one matrix V m a which represents SL(p, R)-valued scalar fields.

Therefore, the eleven-dimensional vielbein gives rise to: a vielbein, plus scalar fields and vector fields.

E M A T p -----→ { e µ α , ρ , V m a , A µ m } . (2.2.18)
The Kaluza-Klein ansatz enables us to give the line element and thus the metric

ds 2 = (e µ α η αβ e ν β ) dx µ dx ν + ρ 2 p dy m + A µ m dx µ (V m a δ ab V n b ) dy n + A ν n dx ν = g µν dx µ dx ν + ρ 2 p M mn dy m + A µ m dx µ dy n + A ν n dx ν , (2.2.19) with M ≡ VV T . (2.2.20)
The Einstein-Hilbert L EH = e 11 R (11) Lagrangian becomes

L (D) EH = e D ρ R (D) - 1 4 e D ρ 1+ 2 p M mn F m µν F n µν - 1 4 e D ρ tr (M -1 ∂ µ M )(M -1 ∂ µ M ) + p -1 p e D ρ (ρ -1 ∂ µ ρ)(ρ -1 ∂ µ ρ) . (2.2.21)
When D = 2, by applying a Weyl rescaling

g µν -→ ρ -2 D-2 g µν , (2.2.22)
the Einstein-Hilbert term can be rescaled to go to the Einstein frame (see Appendix A for details about Weyl rescaling). We will not make explicit the reduction of the threeform kinetic and F F A term since our main interest lies in the symmetry structure of the dimensionally reduced theory. Let us mention however the lower-dimensional fields originating from the three-form. In flat indices, the three-form decomposes into ijk are generated.

A BCD T p -----→ { A (3) αβγ , A (2) 
αβ c , A (1) 
α bc , A (0) 

Symmetries

The symmetries of the eleven-dimensional supergravity have implications for the reduced theory. They indeed translate into particular symmetries which are detailed now.

Diffeomorphisms

The eleven-dimensional general coordinate transformations (diffeomorphisms)

δx M = -ξ M (x) (2.2.24)
transforms the fields according to

δ ξ e M A = ξ P ∂ P e M A + ∂ M ξ P e P A , δ ξ A M N P = ξ Q ∂ Q (A M N P ) + 3 ∂ [M ξ Q A N P ]Q . (2.2.25)
Notice that the three-form is written in world (curved) space indices. After dimensional reduction, the Kaluza-Klein condition imposes that none of the fields shall depend on the internal coordinates y m . This is also true for the variation of fields under a general coordinate transformation. Therefore, the parameterizing functions ξ M are submitted to the constraints

∂ m ξ µ = 0 , ∂ m ∂ µ ξ k = 0 , ∂ m ∂ n ξ k = 0 . (2.2.26)
These equations are solved by

ξ µ = ξ µ (x ν ) , ξ m = y n C n m + ξ m (x ν ) , (2.2.27) 
where C n m are constant M p (R) matrices. Thus in D dimensions the diffeomorphisms split into

• δx µ = -ξ µ (x ν ) : diffeomorphism in D dimensions, • δy m = -ξ m (x ν ) : local R p invariance, • δy m = -y n C n m : global GL(p, R) invariance.
The local R p invariance generates gauge transformations of the Kaluza-Klein vectors descending from the metric 

δA µ m = ∂ µ ξ m . ( 2 
δV m a = Λ m k V k a , δA µ m = -A µ k Λ k m , etc. ( 2 
θ α ≡ e µ α (x) dx µ , g = g µν dx µ ⊗ dx ν = η αβ θ α ⊗ θ β . (2.2.32)
However, there are many non-coordinate bases that can be chosen this way, each of which is related to the other by local Lorentz transformation

e µ α (x) -→ e µ α (x) = e µ β (x) Λ β α (x) . (2.2.33) 
After Kaluza-Klein reduction, this local symmetry splits into

• local Lorentz invariance in D-dimensions.

• local SO(p) invariance acting on the scalar fields

V V m a -→ V m a = V m b K(x) b a , K(x) ∈ SO(p) . ( 2 

.2.34)

Remember that the lower-dimensional fields and parameters only depend on the Ddimensional coordinates. The latter symmetry is also manifest through the fact that the metric depends on M ≡ VV T . It enables to reduce the degrees of freedom carried by the scalar fields

V d.o.f = dim SL(p, R) -dim SO(p) , (2.2.35) 
and by defining the equivalence relation 

V ∼ V iff V = V • K , K ∈ SO(p) , ( 2 
J µ ≡ V -1 ∂ µ V = P µ + Q µ , P T µ ≡ P µ , Q T µ ≡ -Q µ , (2.2.37) 
an divide it into an so(p)-valued vector Q µ which belongs to the "'compact"' (with respect to the Cartan-Killing form) subalgebra of sl(p, R) and a vector P µ which belongs to the non-compact subspace of sl(p, R). Then, under an infinitesimal so(p) transformation, the fields transforms as

δQ µ = ∂ µ k + [Q µ , k] , δP µ = [P µ , k] , k(x) ∈ so(p) . (2.2.38)
Consequently, the Q µ field transforms as a so(p) connection which enables to define the SO(p) coset covariant derivative

D µ = ∂ µ + Q µ . (2.2.39)
Moreover, the kinetic term for the Lagrangian can be written 

tr (M -1 ∂ µ M )(M -1 ∂ µ M ) =
µνi , A

µij } . Let us focus on the axionic scalars

A (0)
ijk . The assumption of internal coordinate independence translates into

∂ m δA npq = 0 = 3 ∂ m ∂ [n λ pq] (2.2.42)
which is solved by

λ mn = c mnp (x µ ) y p , c mnp = c [mnp] . (2.2.43) 
Furthermore, given a gauge transformation parametrized by c mnp , the following equality

∂ m δA µpq = 0 = 3 ∂ m ∂ [µ c pq]r y r = ∂ m ∂ µ c pqr y r = ∂ µ c pqm (2.2.44)
shows that the parameters c mnp are constant. Consequently, the eleven-dimensional gauge transformation yields an R q global shift symmetry on the axions

δA mnp = c mnp , (2.2.45) 
with

q = 11 -D 3 = 1 6 (11 -D)(10 -D)(9 -D) . (2.2.46)
The q different R symmetries commute with each other but do not with the GL(p, R) ones. This is due to the fact that the gauge potentials with one or more internal indices are charged under GL(p, R), because of the eleven-dimensional diffeomorphisms. The commutator of two transformations (that can be checked on the axions) is given by [START_REF] Cremmer | Dualization of dualities. 1[END_REF] [

δ c , δ Λ ] = δ c , c mnp ≡ 3 Λ [m k c np]k . (2.2.47)
Consequently, the theory is now invariant under semi-direct product GL(p, R) R q . Notice for example that the toroidal Kaluza-Klein reduction of eleven-dimensional supergravity leads to

• a global GL(8, R) R 56 symmetry in three-dimensions.

• a global GL(9, R) R 84 symmetry in two dimensions.

Dualisation

The previous symmetry structure may extend to a bigger non-compact one. The underlying mechanism is called enhancement and it relies on the dualisation of the p-forms of the supergravity. By dualisation we mean an on-shell relation between p-form potentials A (p) with associated field strength F (p+1) ≡ dA (p) and additional "dual" D -p -2-forms B (D-p-2) with associated field strength G (D-p-1) ≡ dB (D-p-2) . The duality equation can be schematically written * F (p+1) = scalar prefactor G (D-p-1) + Chern-Simons contributions + fermions .

(2.2.48) It is a first order equation that can be derived from the action. When all the forms are dualized into lowest possible degree, the GL(11 -D) R q global symmetry enlarges to an E 11-D symmetry [START_REF] Cremmer | Dualization of dualities. 1[END_REF] [START_REF] Lambert | Coset symmetries in dimensionally reduced bosonic string theory[END_REF]. It is a non-trivial mechanism, because, for 6 ≤ D ≤ 8 , GL(11 -D) R q is a subgroup of E 11-D , for D = 9 they coincide and for D ∈ {5 , 4 , 3}, the semi-direct product is not contained in E 11-D since R q ∈ {R 20 , R 35 , R 56 } whereas the maximal abelian subgroups of {E 6 , E 7 , E 8 } are isomorphic to {R 16 , R 27 , R 36 }. Hence, the scalar sector of the dualized theory is described by a sigma model on the symmetric space E In our conventions:

E 1 ≡ R , E 2 ≡ GL(2, R) , E 3 ≡ SL(3, R) × SL(2, R) , E 4 ≡ SL(5, R) , E 5 ≡ O(5, 5 
) , E 6,7,8 ≡ exceptional Lie groups .

(2.2.49)

For example, after dualisation of all forms to the lowest possible degree, the toroidal dimensional reduction of SUGRA 11 to four dimensions leads to N = 8 , D = 4 supergravity with global symmetry group E (7,7) (the real non-compact form of the Lie group E 7 ) , as shown in [START_REF] Cremmer | The SO(8) Supergravity[END_REF]. If we go to three dimensions the resulting theory is the N = 16 , D = 3 supergravity with global symmetry group E (8,8) [START_REF] Marcus | Three-Dimensional Supergravity Theories[END_REF] and in two dimensions, the N = 16 , D = 2 supergravity has an infinite number of symmetries realized on-shell and described by the affine Kac-Moody group E (9,9) [START_REF] Nicolai | The Structure of N = 16 Supergravity in Two-dimensions[END_REF].

Let us mention that the (D -2)-forms are dual to scalars, since this will be important for the three-dimensional supergravity. Let us illustrate, how it works in this case. The duality is realized by imposing the Bianchi identity of the field strengths associated with the D -2-forms, at the level of the Lagrangian

dF (D-1) = 0 , F (D-1) = dA (D-2) . (2.2.50)
This is done by introducing the "dual" scalar field φ which plays the role of a Lagrange multiplier. Thus a new term is added to the Lagrangian

L Bianchi = φ dF (D-1) . (2.2.51)
It can be integrated by part and because there are no more terms in the Lagrangian that contains derivatives on F (d-1) , the field strength will satisfy an algebraic equation of motion solved by F (D-1) ∼ (scalars) * (dφ + . . . ) .

(2.2.52)

Plugging it back to the Lagrangian leads to a kinetic term for the "dual" scalars plus additional couplings and no more D -2 forms. In three dimensions, this mechanism is responsible for the enhancement of the symmetries leading to the scalar target space E (8,8) /SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF].

In the following, we will focus on the three-dimensional maximal supergravity as a starting point for building the N = 16, D = 2 supergravity. The construction of these two theories will be reviewed, preparing the ground for the SO(9) gauged maximal supergravity in two dimensions.

2.2.3

The N = 16, D = 3 Supergravity Maximal supergravity in three dimensions is interesting in several aspects. While pure extended supergravity is topological [START_REF] Achucarro | Extended Supergravities in d = (2+1) as Chern-Simons Theories[END_REF], the coupling to matter leads to a unique target space E (8,8) /SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF] for N = 16, where SO( 16) is also the R-symmetry group of the theory [START_REF] Marcus | Three-Dimensional Supergravity Theories[END_REF]. The occurrence of the maximal exceptional Lie group E [START_REF] Zumino | Supersymmetry and the Vacuum[END_REF][START_REF] Zumino | Supersymmetry and the Vacuum[END_REF] is a manifestation of the extremely rich symmetry structure of the theory. Then, deformations can be considered through the gauging of global symmetries. This is important in the AdS/CFT context since maximal gauged supergravities can admit AdS 3 ground states which are dual to CFTs in two dimensions. A very detailed classification of gauged N = 16, D = 3 supergravities can be found in [START_REF] Nicolai | Maximal gauged supergravity in three-dimensions[END_REF], [START_REF] De Wit | Gauged locally supersymmetric D = 3 nonlinear sigma models[END_REF] and [START_REF] De Wit | Gauged supergravities in three-dimensions: A Panoramic overview[END_REF]. This section is devoted to the presentation of the maximal ungauged theory. The issue of gauging symmetries will be treated afterwards, as an application of the embedding tensor formalism.

Field content

The N = 16 supergravity multiplet contains

• the "dreibeins" e µ α .

• Its superpartners, the 16 gravitino fields ψ µ I . They transform as a vector under SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF].

• 128 scalar fields V belonging to the non-compact coset E (8,8) /SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF] • 128 Majorana spinors χ Ȧ transforming in one of the two inequivalent real spinor representation of SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF].

The ungauged maximal supergravity can be derived from eleven dimensions by reduction on the eight torus T 8 , however in this case the scalar target space is GL(8, R) R where the indices I, J = 1 , . . . , 16 label the vector representation of SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF]. Then, the commutation relations of the E [START_REF] Zumino | Supersymmetry and the Vacuum[END_REF][START_REF] Zumino | Supersymmetry and the Vacuum[END_REF] generators are given by

X IJ , X KL = δ IL X JK + δ JK X IL -δ IK X JL -δ JL X IK , X IJ , Y A = - 1 2 Γ IJ AB Y B , Y A , Y B = 1 4 Γ IJ AB X IJ . (2.2.55)
where Γ IJ AB is the anti-symmetric product of two SO( 16) Γ-matrices defined by

Γ I A ȦΓ J ȦB = δ IJ AB + Γ IJ AB . (2.2.56)
The scalar fields V are described by elements of the non-compact coset space E (8,8) /SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF] with linearly realized global symmetry acting (for example) on the left and local SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF] invariance acting on the right 16) .

V -→ Λ V K(x) , Λ ∈ E (8,8) , K(x) ∈ SO(
(2.2.57)

As seen before, the local coset symmetry is insured by a "composite" SO( 16) gauge field Q µ obtained from the e (8,8) Lie algebra decomposition

V -1 ∂ µ V = Q µ + P µ = 1 2 Q IJ µ X IJ + P A µ Y A . (2.2.58) 
The scalar fields parametrizing V account for the bosonic degrees of freedom of the theory. The corresponding number is given by: dim E 8 -dim SO(16) = 248 -120 = 128. Let us mention that the local SO(16) symmetry can be fixed so that V is generated by the non compact generators Y transforming in the spinor representation of SO( 16),

V = exp b A Y A (2.2.59)
with some parameterizing fields b A . This choice would correspond to the so called "unitary gauge". Maybe one of the first discussion of the higher-dimensional origin of cosetspace formulations of the scalar sector was done in [START_REF] Julia | Group Disintegrations[END_REF] while the E 8(8) /SO(16) threedimensional case is treated in [START_REF] Cremmer | Higher dimensional origin of D = 3 coset symmetries[END_REF].

To conclude, let us summarize the field content

{e µ α , Ψ µ I , V , χ Ȧ} , (2.2.60) 
and write down a Lagrangian for the theory.

The Lagrangian

The Lagrangian of N = 16 , D = 3 Supergravity will be given up to quadratic order in fermions, but the quartic terms can be found in [START_REF] Marcus | Three-Dimensional Supergravity Theories[END_REF].

L 3D = - 1 4 eR + 1 2 µνρ ΨI µ D ν Ψ I ρ + 1 4 e P A µ P µ A - i 2 e χ Ȧγ µ D µ χ Ȧ - 1 2 e χ Ȧγ ρ γ µ Ψ I ρ Γ I A ȦP A µ + . . . . (2.2.61)
The dots indicate higher order fermionic terms. We recognize in the Lagrangian: the Einstein-Hilbert term, plus the kinetic terms for the gravitino, the scalar fields and the matter fermions. Finally, the last term represents a Fermion coupling where P A µ has been defined in (2.2.58). The spacetime gamma matrices conventions are the following:

• The metric signature is (+ --).

• The spacetime gamma matrices are represented in terms of the Pauli matrices γ 0 = σ 2 , γ 1 = i σ 3 and γ 2 = i σ 1 , so that γ µνρ = -i µνρ with 012 = 1 .

(2.2.62)

• The spinor adjoint is defined by χ ≡ χ t i γ 0 .

(2.2.63)

Then, the covariant derivatives are given by

D µ Ψ I ν = ∂ µ + 1 4 ω µ αβ γ αβ Ψ I ν + Q IJ µ Ψ J ν , D µ χ Ȧ = ∂ µ + 1 4 ω µ αβ γ αβ χ Ȧ + 1 4 Q IJ µ Γ IJ Ȧ Ḃ χ Ḃ . (2.2.64)

Supersymmetry

The Lagrangian (2.2.61) is invariant under the linearized supersymmetry transformations

δ e µ α = i ¯ I γ α Ψ I µ , V -1 δ V = χ Ȧ I Γ I A ȦY A , δ Ψ I µ = D µ I , δ χ Ȧ = i 2 γ µ I Γ I A ȦP A µ , (2.2.65) 
up to higher order fermionic terms that have been checked in [START_REF] Marcus | Three-Dimensional Supergravity Theories[END_REF] and [START_REF] Nicolai | Compact and noncompact gauged maximal supergravities in three-dimensions[END_REF]. The commutator of two local supersymmetry transformations leads to local symmetry transformations composed of: a general coordinate, local Lorentz, local SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF] and local supersymmetry transformations

δ Q ( 1 ) , δ Q ( 2 ) = δ gct ξ + δ L λ + δ Q 3 + δ SO(16) K (2.2.66)
with parameters

ξ µ = i ¯ I 2 γ µ I 1 , I 3 = -ξ µ ψ I µ , λ αβ = -ξ µ ω µ αβ , K IJ = - 1 2 ξ µ Q IJ µ . (2.2.67)
Now that the ungauged maximal supergravity in three dimensions has been presented, the path is open to its dimensional reduction. This is the way we will get the N = 16 , D = 2 supergravity and it is discussed in the next section.

2.2.4

The N = 16 , D = 2 Supergravity

The two-dimensional theory shares a lot of interesting properties. Maybe the most important one is the fact that the non-compact E [START_REF] Zumino | Supersymmetry and the Vacuum[END_REF][START_REF] Zumino | Supersymmetry and the Vacuum[END_REF] group of global symmetries enlarges to its infinite dimensional affine extension E [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF][START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF] , realized on-shell on the scalar sector. This is a consequence of the presence of an infinite set of independent on-shell duality equations that can be generated recursively [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF]. This symmetry structure has been analyzed in [START_REF] Nicolai | The Structure of N = 16 Supergravity in Two-dimensions[END_REF] and [START_REF] Nicolai | Integrability and canonical structure of d = 2, N=16 supergravity[END_REF] and in particular, it leads to the integrability of the classical theory [START_REF] Nicolai | The Integrability of N = 16 Supergravity[END_REF].

Our starting point will be the derivation of the theory from dimensional reduction of maximal supergravity in three dimensions.

Dimensional reduction

In the following, we will compactify the spacetime of N = 16 , D = 3 supergravity on a circle where µ , α ∈ {0, 1}. Since we are interested only in the massless modes, no dependence on the third coordinate x 2 will be assumed. Consequently, the three-dimensional vielbein reduces as in (2.2.17) with p = 1, the gravitino splits into

M 3 = M 2 × S 1 . ( 2 
Ψ I a = ψ I α , ψ I 2 in flat indices , (2.2.70) 
and {V , χ Ȧ} remain the same. Even if the irreducible spinors in two dimensions are Majorana-Weyl, we will write them as two-components Majorana spinors. Moreover, the two-dimensional gamma matrices are built from the three-dimensional ones

γ 0 = σ 2 , γ 1 = i σ 3 (2.2.71)
with a γ 3 ≡ -i γ 2 = σ 1 defined so that

γ α γ β = η αβ + αβ γ 3 , 01 ≡ 1 . (2.2.72)
Now we are in position to reduce the three-dimensional Lagrangian to two dimensions. Let us recall the Lagrangian,

L 3D = - 1 4 e 3 R + 1 2 mnp ΨI m D n Ψ I p + 1 4 e 3 P A m P m A - i 2 e 3 χ Ȧγ m D m χ Ȧ - 1 2 e 3 χ Ȧγ p γ m Ψ I p Γ I A ȦP A m . (2.2.73)
The easiest part comes from the scalar fields. Indeed, ∂ 2V = 0 , so

P 2 = 0 = Q 2 . Then, 1 4 
e 3 P A m P m A = 1 4 e 2 ρ P A µ P µ A . (2.2.74)
Let us focus on the last term. Its reduction is straightforward

- 1 2 e 3 χ Ȧγ p γ m Ψ I p Γ I A ȦP A m = - i 2 e 2 ρ χ Ȧγ 3 γ µ ψ I 2 Γ I A ȦP A µ - 1 2 e 2 ρ χ Ȧγ ρ γ µ ψ I ρ Γ I A ȦP A µ (2.2.75)
where we have used the fact that γ 2 = i γ 3 . After that, the computations are more technical because the spin connection is involved. Let us begin with the kinetic term for the fermion χ: We will choose the second option since the two-dimensional Ricci scalar can be obtained straightforwardly from the anholonomic coefficients. Consequently, we find

χ Ȧγ m D m χ Ȧ = χ Ȧγ 2D 2χ Ȧ + χ Ȧγ µ D µ χ Ȧ (2.2.76) with χ Ȧγ 2D 2χ Ȧ = 1 4 χ Ȧγ 2 ω 2ab γ ab χ Ȧ = 1 4 χ Ȧγ 2 ω 2αβ γ αβ χ Ȧ - 1 2 χ Ȧω 22β γ β χ Ȧ , = i 4 ω 2αβ αβ χ Ȧ χ Ȧ , (2.2 
ω 2αβ = 1 2 ρ e α µ e β ν F µν , with F µν ≡ 2∂ [µ A ν] . (2.2.82) Thus, χ Ȧγ 2D 2χ Ȧ = i 8 ρ µν F µν χ Ȧ χ Ȧ . (2.2.83)
Now the kinetic term for the gravitino can be reduced. After integrating by part, this term decomposes into

mnp ΨI m D n Ψ I p = 2 µν2 ψI 2 D µ ψ I ν -µν 2 ψµ D 2ψ ν = µν2 2 ψI 2 D µ ψ I ν - 1 4 ψI µ ω 2αβ γ αβ ψ I ν - 1 2 ψI µ ω 22α γ 2 γ α ψ I ν . (2.2.84)
Knowing the spin connection

ω 22α = -e µ α ρ -1 ∂ µ ρ , (2.2.85) we get mnp ΨI m D n Ψ I p = µν2 2 ψI 2 D µ ψ I ν - 1 8 ψI µ γ 3 ψ I ν σλ F σλ + i 2 ψI µ γ 3 γ σ ψ I ν ρ -1 ∂ σ ρ . (2.2.86)
Eventually, the expression can be simplified by considerations on the Levi-Civita symbol µν 2 = e 3 e α µ e β ν αβ2 = -e 3 e -1 2 µν = -ρ µν , ( αβ2 = -αβ with our conventions) and also

µν σλ = -2 δ [µ σ δ ν] λ , γ 3 γ µ = e 2 µν γ ν . (2.2.87)
This leads to

mnp ΨI m D n Ψ I p = -2ρ µν ψI 2 D µ ψ I ν - 1 4 ρ ψI µ γ 3 ψ I ν F µν + i e 2 ψI µ γ ν ψ I ν ∂ µ ρ . (2.2.88) so finally 1 2 mnp ΨI m D n Ψ I p = -ρ µν ψI 2 D µ ψ I ν - 1 8 ρ ψI µ γ 3 ψ I ν F µν - i 2 e 2 ψI ν γ ν ψ I µ ∂ µ ρ . (2.2.89)
Let us conclude this analysis by computing the Ricci scalar in two dimensions. It is given in terms of the anholonomic coefficients of (2.2.80) by

R (3) = - 1 4 Ω abc Ω abc -2Ω abc Ω cab -4Ω ca a Ω c b b (2.2.90)
see [START_REF] Huq | Kaluza-Klein Supergravity in Ten-dimensions[END_REF] for example. Thus,

R (3) = R (2) + 1 4 ρ 2 F µν F µν (2.2.91)
Consequently, the two-dimensional Lagrangian is given by

L 2D = - 1 4 e 2 ρ R (2) - 1 16 e 2 ρ 3 F µν F µν -ρ µν ψI 2 D µ ψ I ν - 1 8 ρ ψI µ γ 3 ψ I ν F µν - i 2 e 2 ψI ν γ ν ψ I µ ∂ µ ρ + 1 4 e 2 ρ P A µ P µ A - i 2 e 2 ρ χ Ȧγ µ D µ χ Ȧ + 1 16 e 2 ρ 2 µν F µν χ Ȧ χ Ȧ - i 2 e 2 ρ χ Ȧγ 3 γ µ ψ I 2 Γ I A ȦP A µ - 1 2 e 2 ρ χ Ȧγ ρ γ µ ψ I ρ Γ I A ȦP A µ . (2.2.92)
This is the result obtained by Kaluza-Klein reduction of the N = 16, D = 3 supergravity on a circle, when only massless terms have been kept. This Lagrangian deserves some comments that are collected in the next section.

The Lagrangian

In two dimensions the vector field A µ is auxiliary, so its equation of motion can be used to integrate it at the level of the Lagrangian. By doing so, quartic terms in fermions are generated together with a scalar term proportional to the constant of integration. Since in the following, we will only work up to quadratic order in fermions and we will stick to the undeformed Lagrangian, we can just drop out the vector fields by setting A µ = 0. Therefore, the two dimensional Lagrangian is given by

L 2D = - 1 4 e 2 ρ R (2) + 1 4 e 2 ρ P A µ P µ A -ρ µν ψI 2 D µ ψ I ν - i 2 e 2 ψI ν γ ν ψ I µ ∂ µ ρ (2.2.93) - i 2 e 2 ρ χ Ȧγ µ D µ χ Ȧ - i 2 e 2 ρ χ Ȧγ 3 γ µ ψ I 2 Γ I A ȦP A µ - 1 2 e 2 ρ χ Ȧγ ν γ µ ψ I ν Γ I A ȦP A µ .
The field content is composed of

• the zweibein e µ α
• its superpartner the gravitino ψ I µ : a two-dimensional Majorana vector-spinor, transforming in the 16 vector representation of SO( 16) .

• There is also the dilaton field ρ

• and its superpartner: the dilatino ψ I 2 which is a Majorana spinor also transforming in the 16 of SO( 16) .

• the 128 bosonic degrees of freedom are again mediated by group valued matrices V which belong to the coset space

E (8,8)
SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF] .

• The corresponding 128 superpartner are Majorana fermions χ Ȧ that transform in the 128 c conjugate spinor representation of SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF] .

Now it remains to check that maximal supersymmetry is preserved.

Supersymmetry

Indeed, by examining the reduction of (2.2.65), one can show that the Lagrangian is invariant (up to total derivatives and quartic terms in fermions) under the following supersymmetry transformations

δ e µ α = i ¯ I γ α ψ I µ , δ ψ I µ = D µ I , δ ρ = -ρ ¯ I γ 3 ψ I 2 , δ ψ I 2 = - i 2 γ 3 γ µ I ρ -1 ∂ µ ρ , V -1 δ V = ¯ K Γ K A Ȧχ ȦY A , δ χ Ȧ = i 2 Γ I A Ȧγ µ I P A µ . (2.2.94) 
The commutator of two supersymmetry transformations closes again on

δ Q ( 1 ) , δ Q ( 2 ) = δ gct ξ + δ L λ + δ Q 3 + δ SO(16) K (2.2.95)
with parameters

ξ µ = i ¯ I 2 γ µ I 1 , I 3 = -ξ µ ψ I µ , λ αβ = -ξ µ ω µ αβ , K IJ = - 1 2 ξ µ Q IJ µ . (2.2.96)
Now that we have the N = 16 , D = 2 supergravity action, let us review the basics of gauging a subgroup of the global symmetry group with the embedding tensor formalism.

Gauging Maximal Supergravities

As we saw in Section 2.2.2, the scalar fields of maximal supergravities parametrize a symmetric space G/H, where G is a non-compact group, and H (or K(G)) denotes its maximal compact subgroup. The different groups for 2 ≤ D ≤ 10 are collected in Table 2.2. So far, all gauge symmetries considered were abelian. However, for previously mentioned reasons, we may want to introduce a non abelian gauge group while preserving supersymmetry. This is precisely the point of the embedding tensor formalism. In this scheme, a subgroup G 0 of G is selected and promoted to a local symmetry of the supergravity. More precisely, this formalism aims at encoding all the possible deformations of the ungauged supergravity into a so-called "embedding" tensor. After that, the classification is done group-theoretically. In the following, we will present the general framework developed in [START_REF] Nicolai | Maximal gauged supergravity in three-dimensions[END_REF], [START_REF] Nicolai | Compact and noncompact gauged maximal supergravities in three-dimensions[END_REF], [START_REF] De Wit | On Lagrangians and gaugings of maximal supergravities[END_REF], [START_REF] De Wit | The Maximal D=5 supergravities[END_REF], [START_REF] De Wit | Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems[END_REF] and [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF] for maximal supergravities, and reviewed in [START_REF] Samtleben | Lectures on Gauged Supergravity and Flux Compactifications[END_REF] and [START_REF] Weidner | Gauged supergravities in various spacetime dimensions[END_REF]. Finally, we will describe the main ingredients that will be employed to get the SO(9) gauged maximal supergravity in two dimensions.

D G H 10 O(1, 1) (IIA) SL(2) (IIB) -(IIA) SO(2) (IIB) 9 GL(2) SO(2) 8 SL(2) × SL(3) SO(2) × SO(3) 7 SL(5) SO(5) 6 SO(5, 5) SO(5) × SO(5) 5 E (6,6) U Sp(8) 4 E (7,7) SU (8) 3 E (8,8) SO(16) 2 E (9,9) K(E 9 )
Table 2.2: Maximal supergravities symmetric spaces

The Embedding Tensor formalism

Covariantization

Let us focus on the ungauged maximal supergravity in 2 ≤ D ≤ 9 dimensions. Given a subgroup G 0 of the global symmetry group G, our goal is to promote it to a gauge group of the theory. The theory is by construction G 0 globally invariant, but giving local dependence on the group parameters will break the invariance because the derivatives no longer transform covariantly. Thus, the first step in the gauging process consist in introducing covariant derivatives with respect to the group G 0 . This is done formally according to

∂ µ -→ D µ ≡ ∂ µ -g A µ M X M . (2.3.1) 

Here

• g is the gauge coupling,

• A µ M represents the set of n v vector fields available in the supergravity,

• t α is a given set of generators of the Lie algebra g of G,

• Θ M α is the embedding tensor which selects a family of n v elements X M of g

X M ≡ Θ M α t α ∈ g , (2.3.2) 
that will generate the gauge group G 0 . In this sense, the embedding tensor can be seen as a constant (n v × dimG) matrix whose rank is equal to the dimension of the gauge group G 0 . As a consequence, the dimension of the gauge group must satisfy dimG 0 ≤ n v . In particular the family {X M } may be a spanning set of g 0 but not a linearly independent one.

Because, the vector fields transform in some representation of G

δ Λ A M µ = -Λ α (t α ) N M A N µ , M , N = 1, . . . , n v (2.3.3)
imposed by supersymmetry and listed in Table 2.3, we get a manifestly G-covariant formalism which is broken only when the embedding tensor takes a particular value. Moreover, the embedding tensor transforms as the tensor product of two representations: the dual of the representation R v in which the vector fields transform, from the left, and the adjoint representation of G, from the right In general, this tensor product decomposes into several irreducible representations of G to which Θ may belong. Nonetheless, consistency relations constrain the possible representations of the embedding tensor. These constraints do not depend on the selected gauge group G 0 at this stage. They come from the general requirement of the theory to

Θ M α : R v * ⊗ R adj . (2.3.4) D G Scalars Vectors 8 SL(2) × SL(3) (3 -1, 1) + (1, 8 -3) (2, 3') 7 SL ( 
• be covariant under the yet arbitrary gauge group G 0 ,

• remain supersymmetric after covariantization of the action.

In the following sections we will explain the origin of the constraints and then apply this formalism to the maximal supergravity in three dimensions. This will open the path to the SO(9) gauging of the maximal supergravity in two dimensions which will be discussed in details in the next chapter.

Constraints

The Quadratic constraint Now that covariant derivatives have been introduced, an ansatz for local gauge transformations under G 0 can be formulated from the global G invariance

δ Λ V = Λ α t α • V , δ Λ A M µ = -Λ α t α N M A N µ , (2.3. 

5) . . . other fields charged under G ,

with Λ α = constant , and α = 1, . . . , dimG. Then, by substituting

Λ α t α -→ Λ M (x) X M (2.3.6)
with a local parameter Λ M (x) and M = 1, . . . , n v , and introducing covariant derivatives in the action, local gauge invariance under G 0 can be imposed by

δ Λ V = g Λ M X M • V , δ Λ A M µ = ∂ µ Λ M + g A N µ X N P M Λ P = D µ Λ M , (2.3.7) . . . other fields . with X N P M ≡ Θ N α (t α ) P M .
However we see that the covariance of quantities such as

δ Λ D µ V = g Λ M X M • D µ V (2.3.8)
requires that Θ is invariant under the gauge group G 0

0 ! = δ P Θ M α . (2.3.9)
More generally, the consistency of the gauged theory demands the invariance of Θ under the action of the gauge group. This translates into a quadratic constraint on the embedding tensor 0

! = δ P Θ M α = Θ P β δ β Θ M α = Θ P β (t β ) M N Θ N α + Θ P β f βγ α Θ M γ (2.3.10)
where f αβ γ are the structure constants associated to the generators of G,

t α , t β = f αβ γ t γ . (2.3.11)
When contracted with a generator t α , the quadratic constraint implies the closure of the generators X M into a subalgebra of g

X M , X N = -X M N P X P . (2.3.12)
The deformed tensor gauge algebra Furthermore, the proper covariantization of the field strengths and the higher p-forms set another problem that can be fixed in the embedding tensor formalism. It deals with the deformation of the tensor gauge algebra that is needed to account for the fact that the standard non abelian field strength

F M µν = ∂ µ A M ν -∂ ν A M µ + g X [N P ] M A N µ A P ν . (2.3.13) 
is not in general a covariant object. Indeed,

δ Λ F M µν = -gΛ P X P Q M F Q µν + 2g X (P Q) M Λ P F Q µν -A P [µ δA Q ν] (2.3.14)
where the last term is anomalous. As a result, the field strengths need to be deformed in Θ, by the addition of a 2-form. For a detailed account of the deformed tensor gauge algebra, see [START_REF] Samtleben | Lectures on Gauged Supergravity and Flux Compactifications[END_REF] and [START_REF] De Wit | Gauged maximal supergravities and hierarchies of nonAbelian vector-tensor systems[END_REF]. However, in three dimensions, we will not focus on this issue since in the gauging process, the vector fields will enter the action via a Chern-Simons term [103] [107]. There, the gauge invariance of the CS term translates into a quadratic constraint on the embedding tensor. For a complete discussion on this topic, see [START_REF] De Wit | Gauged supergravities in three-dimensions: A Panoramic overview[END_REF]. Finally in two dimensions, the tensor hierarchy is rather trivial because there are no p-forms for p > 2.

Moreover, the field strength that will enter the two-dimensional gauged action will be contracted with the embedding tensor, thus, the resulting term will be covariant provided that the quadratic constraint is satisfied.

Supersymmetry and the Linear constraint The supersymmetry variation of the vector fields generates terms coupled to fermionic currents that have not been taken into account yet. These contributions violate supersymmetry, but they can be canceled by following a Noether procedure [START_REF] De Wit | N=8 Supergravity[END_REF]. It consist in

• adding fermionic mass terms

L ferm-mass ∼ g f (scalars) f (2.3.15)
to the Lagrangian which are linear in the deformation parameter Θ, in order to compensate the previous contributions.

• Introducing additional linear in Θ terms, the so-called fermion-shift, in the fermionic supersymmetry transformations in order to compensate the new contributions from the variation of the fermion mass terms

δ f ∼ b + g (. . . ) . (2.3.16)
• Adding a scalar potential to the Lagrangian which is quadratic in Θ and aims at canceling all the contributions of order g 2 .

L pot ∼ g 2 bb .

(2.3.17)

No further contributions of order g n with n ≥ 3 can appear, so the procedure stops here.

Let us focus on the fermion mass terms. They take the schematic form

L ferm-mass = g ψi A ij ψ j + χA B Ai ψ i + χA C AB χ B + h.c. (2.3.18)
where ψ i and χ A denote the gravitini and spin-1/2 fermions which live in some representation of H labeled by i and A. Remember that H stands for the maximal compact subgroup of G in the coset space construction G/H, and it is also the R-symmetry group of the supersymmetric theory, because we are dealing with maximal supergravities. Thus, A ij , B Ai and C AB are tensors, depending on the scalar fields, which transform in the tensor product of some representations of H. However, they are proportional to the embedding tensor Θ since it is the deformation parameter of the gauge theory. To take into account this dependence, let us define the T-tensor :

T N β ≡ Θ M α V M N V α β , (2.3.19)
as the embedding tensor multiplied from the left and right by the scalar group matrix V evaluated in the fundamental and adjoint representation of G respectively. Now this tensor lives in the same G-representation than Θ, and it can be decomposed into irreducible part under H. These H-irreducible representations

T M α H --→ A ij , B Ai , C AB (2.3.20)
precisely correspond to the fermionic mass tensors and to the fermion shifts

δ ψ i = δ ψ i g=0 -g A ij j , δ χ A = δ χ A g=0 -g B Ai i . (2.3.21)
They must match the tensor product of the H-representation of ψ i and χ A in the mass terms ψi

ψ j , ψi χ A , χA χ B . (2.3.22)
This results in a linear constraint on the embedding tensor Θ, imposed by supersymmetry requirements. Furthermore, the commutator of two covariant derivatives is now proportional to the embedding tensor

D µ , D ν = -g F M µν X M . (2.3.23)
Hence, for instance, by varying the kinetic term for the gravitino, supersymmetry violating terms of the form

1 F Θ (¯ ψ) (2.3.24)
1 The spacetime and internal indices have been dropped for simplicity.

are generated. Fortunately, these contributions can be canceled by introducing a covariant topological term into the Lagrangian L top , as we will see for the N = 16, D = 3 supergravity, but it imposes also a linear constraint on the embedding tensor. This linear constraint projects out irreducible G-representations in Θ, that are not allowed by supersymmetry

P l Θ = 0 . (2.3.25)
Finally, the consistent cancellation of all supersymmetry variations in order g2 implies quadratic algebraic identities. Nevertheless, all these identities can be viewed as a consequence of the quadratic constraint (2.3.10) on the embedding tensor. At this stage, the possibility to consistently gauge the theory relies only on the resolution of the linear and quadratic constraints on the embedding tensor.

Strategy The consistent gauging is constructed as follows:

• First, supersymmetry imposes a linear constraint on the embedding tensor (2.3.25).

It enables to select allowed and forbidden irreducible G-representations in the tensor product R v * ⊗R adj to which the embedding tensor belongs. A classification has been done in [START_REF] Weidner | Gauged supergravities in various spacetime dimensions[END_REF] for maximal supergravities 2 in 2 ≤ D ≤ 8 . It is reproduced in Table 2.4.

• Secondly, solve the quadratic constraint, coming from consistency of the covariance under the gauge group G 0 , to fully determine the embedding tensor and solve all the algebraic identities imposed by supersymmetry.

• Finally, select a gauging group among all the possible consistent gaugings provided by the embedding tensor. 

D G R adj ⊗ R v * = Allowed ⊕ Forbidden 8 SL(2) × SL(3) (3, 1) ⊕ (1, 8) ⊗ (2, 3') = (2, 3') ⊕ (2, 6) ⊕ (2, 3') ⊕ (2, 15') ⊕ (4, 3 
248 ⊗ 248 = 1 ⊕ 3875 ⊕ 248 ⊕ 27000 ⊕ 30380 2 E (9,9) R adj ⊗ R v * = R v * ⊕ rest
Table 2.4: Tensor product representations for 2 ≤ D ≤ 8

In the following section, the embedding tensor formalism is illustrated on the gauging of N = 16, D = 3 maximal supergravities, with particular emphasis on the linear and quadratic constraints.

Gauging the N = 16, D = 3 supergravity

Gauging maximal supergravity in three dimensions is somewhat different than in higher dimensions, because no vector field enters the Lagrangian when the scalar coset space is described by E (8,8) /SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF]. Indeed, if the theory was to be obtained by Kaluza-Klein reduction from D = 11 supergravity on an 8-torus, all the vector fields would need to be dualized into scalars in order to make the global E [START_REF] Zumino | Supersymmetry and the Vacuum[END_REF][START_REF] Zumino | Supersymmetry and the Vacuum[END_REF] symmetry manifest. This feature will be also encountered in two dimensions where no vector fields can propagate. Actually, gauging the N = 16, D = 3 maximal supergravity exemplifies the last step before understanding the gauging of maximal supergravity in two dimensions. This is why it will be described in this section, as an illustration of the embedding tensor formalism.

Nevertheless, if there are no vector fields, one may wonder how to use the embedding tensor formalism. Fortunately there is a way to introduce vector fields in the threedimensional theory so that they do not carry additional physical degrees of freedom. This is done by means of a Chern-Simons term [START_REF] De Wit | Gauged supergravities in three-dimensions: A Panoramic overview[END_REF].

The embedding tensor

The embedding tensor transforms in the tensor product of the dual representation of the vector fields, labeled by indices M = 1, . . . , n v , and the adjoint representation of E [START_REF] Zumino | Supersymmetry and the Vacuum[END_REF][START_REF] Zumino | Supersymmetry and the Vacuum[END_REF] whose generators are denoted by t α .

Θ -→ Θ M α . (2.3.26)
However, since the number of vector fields involved in the gauging is for the moment arbitrary but less than the dimension of the global symmetry group

n v ≤ dimE (8,8) , (2.3.27) 
we can label them with the adjoint representation indices, keeping in mind that the embedding tensor will act as a projector on the gauge subalgebra

A µ α Θ αβ t β ≡ A µ M X M . (2.3.28) 
Then, following [START_REF] Nicolai | Maximal gauged supergravity in three-dimensions[END_REF], and as we saw before, we define the G 0 ⊂ E (8,8) covariant derivative by

D µ ≡ ∂ µ + g A µ M X M . (2.3.29)
The gauge invariant Lagrangian result from (2.2.61) after introducing covariant derivatives

L (0) = - 1 4 eR + 1 2 µνρ Ψ I µ D ν Ψ I ρ + 1 4 e P A µ P µ A (2.3.30) - i 2 e χ Ȧγ µ D µ χ Ȧ - 1 2 e χ Ȧγ ρ γ µ Ψ I ρ Γ I A ȦP A µ
where the covariant scalar current is given by

V -1 D µ V ≡ V -1 ∂ µ V + g A µ M V -1 X M V = P µ A Y A + 1 2 Q IJ µ X IJ . (2.3.31)
Nonetheless, the supersymmetry variation of terms involving the commutator of two covariant derivatives leads to supersymmetry violating terms proportional to the field strength

F µν M = ∂ µ A ν M -∂ ν A µ M + g X [N P ] M A µ N A ν P , (2.3.32)
where X N P M are the "structure constants" of the gauge group defined in (2.3.7). These contributions are precisely canceled by a Chern-Simons term for the vector fields

L (1) CS = - 1 4 g µνρ A µ M Θ M Q ∂ ν A ρ Q + 1 3 g X N P Q A ν N A ρ P , (2.3.33) 
provided that

• the embedding tensor Θ αβ is symmetric [START_REF] De Wit | Gauged locally supersymmetric D = 3 nonlinear sigma models[END_REF] ,

• under local supersymmetry the vector fields transform as [START_REF] Koepsell | An Exceptional geometry for D = 11 supergravity?[END_REF] δ

A µ M = -2V M IJ ¯ I Ψ I µ + iΓ I A ȦV M A ¯ I γ µ χ Ȧ . (2.3.34)
The Chern-Simons term also enables to introduce vector fields without changing the number of propagating degrees of freedom. The fact that the embedding tensor is symmetric restricts its possible content. Indeed, as an E [START_REF] Zumino | Supersymmetry and the Vacuum[END_REF][START_REF] Zumino | Supersymmetry and the Vacuum[END_REF] tensor it decomposes into Θ :

248 ⊗ sym 248 = 1 ⊕ 3875 ⊕ 27000 . (2.3.35)
Among these irreducible parts, some are allowed and other are forbidden by supersymmetry. In order to derive them, let us analyze the Noether procedure applied to the three-dimensional Lagrangian.

Additional terms and identities

As we saw before, from the supersymmetry variation of the covariant Lagrangian L (0) , contributions linear in g (or Θ) appear from the variation of the vector fields. Apart from the supersymmetry violating terms canceled by the variation of the Chern-Simons Lagrangian, other contributions occurs which are coupled to Noether terms. These supersymmetry violating terms are canceled by the following fermionic mass terms

L (1) ferm-mass = ge 1 2 A IJ 1 Ψ I µ γ µν Ψ J ν + iA I Ȧ 2 χ Ȧγ µ Ψ I µ + 1 2 A Ȧ Ḃ 3 χ Ȧχ Ḃ (2.3.36)
together with the fermion shift

δ Ψ I µ = D µ I + i g A IJ 1 γ µ J , δ χ Ȧ = i 2 γ µ I Γ I A ȦP A µ + g A I Ȧ 2 I .
(2.3.37)

For example, notice that A IJ 1 in the fermion shift enables to cancel the order g spinorial variation of the first fermion mass term, by varying the kinetic Rarita-Schwinger term in L (0) . Eventually, the addition of a scalar potential of quadratic order in g, will end the Noether procedure and provide the framework to get a gauge invariant maximal supersymmetric theory

L (2) pot = 1 8 g 2 e A IJ 1 A IJ 1 - 1 2 A I Ȧ 2 A I Ȧ 2 .
(2.3.38)

Local supersymmetry of the resulting Lagrangian

L gauged = L (0) + L (1) CS + L (1) ferm-mass + L (2) pot (2.3.39)
imposes linear and quadratic identities on the tensors

{A IJ 1 , A I Ȧ 2 , A Ȧ Ḃ 3 }, like for example Γ [I A ȦA J] Ȧ 2 = V γ IJ Θ γδ V δ A , D µ A IJ 1 = P A µ Γ (I A ȦA J) Ȧ 2 , 3A IJ 1 A J Ȧ 2 -A I Ȧ 2 A Ȧ Ḃ 3 = 1 16 Γ I A ȦΓ J A Ḃ 3A JK 1 A K Ḃ 2 -A J Ċ 2 A Ḃ Ċ 3 , (2.3.40)
see [START_REF] Nicolai | Maximal gauged supergravity in three-dimensions[END_REF] for a more general account. These identities translate into identities on the

T tensor 3 T αβ ≡ V γ α V δ β Θ γδ (2.3.41)
which imply a linear and quadratic constraint on Θ. In the following, the constraints will be discussed and a non trivial solution for Θ and the fermionic mass tensor

{A IJ 1 , A I Ȧ 2 , A Ȧ Ḃ
3 } will be presented.

The linear and quadratic constraints

Owing to the SO( 16) index structure of the fermions, and their commutation properties

χ Ȧχ Ḃ = χ Ḃ χ Ȧ , Ψ I µ γ µν Ψ J ν = -Ψ J ν γ µν Ψ I µ = Ψ J ν γ νµ Ψ I µ , (2.3.42) 
the fermionic mass tensors that enter the Lagrangian can be decomposed into the following irreducible representations of SO( 16) 

A IJ 1 : 16 ⊗ s 16 = 1 ⊕ 135 , A I Ȧ 2 : 16 ⊗ 128 = 128 ⊕ 1920 , (2.3 
A IJ 1 = -θ δ IJ - 1 7 V α IK V β KJ Θ 3875 αβ , A I Ȧ 2 = - 1 7 Γ J A ȦV α IJ V β A Θ 3875 αβ , (2.3 
.47)

A IJ 3 = -θ δ IJ - 1 7 V α IK V β KJ Θ 3875 αβ .
As a result, the linear constraint (2.3.45) fully determines the possible gaugings of the N = 16, D = 3 maximal supergravity. Every gauge group embodied in the embedding tensor (2.3.46) defines a consistent gauged maximal supergravity in three dimensions. They are all detailed in [START_REF] Nicolai | Maximal gauged supergravity in three-dimensions[END_REF] and [START_REF] De Wit | Gauged locally supersymmetric D = 3 nonlinear sigma models[END_REF].

Summary

Maximal supergravities, dimensional reduction and gauging were at the core of this chapter. Starting from the eleven dimensional supergravity, we studied the structure of the three and two-dimensional ungauged maximal supergravities. The embedding tensor of the general gaugings of maximal supergravity were presented and illustrated in three dimensions.

The next chapter focuses on the explicit SO(9) gauging of N = 16, D = 2 maximal supergravity. As explained before, it is of first importance for the DW/QFT correspondence.

Chapter 3 SO(9) supergravity in two dimensions

Introduction

This chapter is devoted to the construction of maximal supergravity in two dimensions, with gauge group SO [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF]. By this, we intend to fill the gap in the effective supergravities available for the DW/QFT correspondence in various dimensions, see Table 2.1. The nontrivial deformation is performed from the ungauged theory in two dimensions, thus it will be our starting point.

Two-dimensional ungauged maximal supergravity has many interesting features. One of them is the symmetry structure underlying the theory. Indeed, if we look at the bosonic sector of the theory, all the degrees of freedom reside within the scalar sector (since in two dimensions the vector fields do not propagate), and their dynamics is described by a dilaton-coupled non-linear sigma model with target space E (8,8) /SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF], directly inherited from maximal supergravity in three dimensions. The bosonic Lagrangian can be found by reducing the bosonic sector of N = 16 , D = 3 Supergravity on a circle:

L 0 = - e 4 ρ R (2) -tr(P µ P µ ) . (3.1.1)
The theory admits E [START_REF] Zumino | Supersymmetry and the Vacuum[END_REF][START_REF] Zumino | Supersymmetry and the Vacuum[END_REF] as a global symmetry group of isometries of the target space. In addition, the integrability structure of the reduction of four-dimensional Einstein gravity to two dimensions extends to maximal supergravity [START_REF] Nicolai | Integrability and canonical structure of d = 2, N=16 supergravity[END_REF]. As a result, the theory admits an infinite number of conserved charges that generates an infinite dimensional global group of symmetry realized on-shell: E (9,9) , the centrally extended affine extension of E [START_REF] Zumino | Supersymmetry and the Vacuum[END_REF][START_REF] Zumino | Supersymmetry and the Vacuum[END_REF] .

The group acts on an infinite tower of scalar fields, related by first order on-shell duality equations. Integrating step by step the duality equations, all the scalar fields can be determined in terms of the "physical" fields parametrizing the bosonic Lagrangian [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF]. This symmetry structure enables to formulate the theory in different off-shell inequivalent frames. More specifically, in two dimensions, the different off-shell formulations of maximal supergravity are described by σ-models with different target-space geometry and Wess-Zumino term, related by T-duality. Within the E (9,9) picture, different formulations correspond to choose particular sets of physical scalar fields from the infinite tower of available scalars. The first formulation of the theory we will use, is the one obtained from the Kaluza-Klein reduction of the N = 16, D = 3 supergravity on a circle. In this "frame", the scalar target space is E (8,8) /SO [START_REF] Amaldi | Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP[END_REF], hence it will be called: the "E 8 " frame. Moreover, the theory can also be derived from the torus reduction of eleven-dimensional supergravity. The resulting ungauged maximal supergravity in two dimensions has a scalar sector described by the coset space R × SL (9) SO(9) R 84 . Therefore, this formulation will be named: the "SL(9)" frame. There are two inequivalent embeddings of SO( 9) into E (9,9) 16) but only one leads to a consistent supergravity [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF]: it corresponds to the SL(9) frame. In the following section we first recall the formulation of the N = 16 , D = 2 supergravity in the E (8,8) frame. The field content, the Lagrangian and the supersymmetry transformations will be given. Then we will describe the theory in the SL(9) frame. Its bosonic sector coming from dimensional reduction of eleven-dimensional supergravity will be presented. Moreover the fermion coupling and the supersymmetry transformations will be given and finally, the symmetry structure will be discussed. The most compact formulation of maximal supergravity in two dimensions is obtained by dimensional reduction of the maximal three-dimensional theory [START_REF] Marcus | Three-Dimensional Supergravity Theories[END_REF] on a circle. Since it has been presented in the previous chapter, we will just recall the main features.

N = 16 , D = 2 GL(9) R 84 N = 16 , D = 2 E (8,8) /SO(
Dualities E (9,9) Dualities N = 16 , D = 3 GL(8) R 56 N = 16 , D = 3 E (8,8) /SO(16) N = 1 , D = 11 T 9 T 8 S 1
The Lagrangian of N = 16 , D = 2 supergravity in the E [START_REF] Zumino | Supersymmetry and the Vacuum[END_REF][START_REF] Zumino | Supersymmetry and the Vacuum[END_REF] frame is given by

e -1 L 0 = - 1 4 ρR (2) + 1 4 ρ P µA P A µ -ρ e -1 ε µν ψI 2 D µ ψ I ν - i 2 (∂ µ ρ) ψI ν γ ν ψ I µ - i 2 ρ χ Ȧγ µ D µ χ Ȧ - 1 2 ρ χ Ȧγ ν γ µ ψ I ν Γ I A ȦP A µ - i 2 ρ χ Ȧγ 3 γ µ ψ I 2 Γ I A ȦP A µ . (3.2.1)
E 8 [START_REF] Zumino | Supersymmetry and the Vacuum[END_REF] acts by left multiplication on the matrices V and gives rise to the algebra-valued (conserved) Noether current

J µ ≡ ρ P A µ (V Y A V -1 ) ∈ e 8(8) . (3.2.2)
In general dimensions, we saw that p-forms are dual to (D -p -2)-forms. Therefore, in two dimensions, the duality relates scalars. In particular, the current (3.2.2) can be employed to define a dual scalar field Y by

∂ µ Y = e ε µν J ν . (3.2.3)
Then, Schwarz integrability condition holds provided the current is conserved.

0 = ε µν ∂ µ ∂ ν Y = ε µν ∂ µ (e ε νσ J σ ) = ε µν ε νσ ∂ µ (eJ σ ) = δ µ σ ∂ µ (eJ σ ) = ∂ µ (eJ µ ) = e ∇ µ J µ (3.2.4)
More generally, one can prove the existence of an infinite tower of dual scalar fields Y m , due to the integrability structure of the two-dimensional equations of motion [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF],

∂ ± Y 2 = (±ρρ + 1 2 ρ 2 )VP ± V -1 + 1 2 [Y, ∂ ± Y ] , ∂ ± Y 3 = (∓ 1 2 ρ 3 ∓ ρρ 2 -ρ 2 ρ)VP ± V -1 + [Y, ∂ ± Y 2 ] - 1 6 [Y, [Y, ∂ ± Y ]] , ∂ ± Y 4 = . . . (3.2.5)
where x ± = (x 0 ± x 1 )/ √ 2 and the fermionic contribution have been neglected. Although a finite set of scalar fields enters the action, it is just a subset of an infinite tower of scalars defined on-shell. The off-shell fields transform under E [START_REF] Zumino | Supersymmetry and the Vacuum[END_REF][START_REF] Zumino | Supersymmetry and the Vacuum[END_REF] , but the full tower organizes into a representation of the infinite dimensional E (9,9) , which is the actual symmetry group of the theory, and is realized only on-shell [START_REF] Nicolai | Integrability and canonical structure of d = 2, N=16 supergravity[END_REF]. This symmetry structure is characteristic of two dimensions and will play an important role in the general gauging.

Reduction from 11D: The SL(9) frame

The formulation of N = 16 , D = 2 supergravity which will turn out to be relevant for the gauging of SO( 9) is obtained by direct dimensional reduction of the eleven-dimensional theory [START_REF] Cremmer | Supergravity Theory in Eleven-Dimensions[END_REF], on a nine-dimensional torus T 9 . As we saw in Section 2.2.2, the theory exhibits a GL(9) R 84 global symmetry group, and the scalar target space is GL (9) SO(9) R 84 . Let us present the Kaluza-Klein ansatz that will be relevant for our construction.

Kaluza-Klein reduction

First, we split the eleven-dimensional coordinates according to x M → (x µ , y m ) with {µ = 1, 2} and {m = 1, . . . , 9}. Then, we start with the compactification ansatz of (2.2.17) for the vielbein, and the three-form is written in curved indices

A M N K = 0 , 0 , A µ mn + A µ l φ lmn , φ mnk . (3.2.6)
Here, we have chosen to define the lower-dimensional components of A M N K with internal indices upstairs. It is a a pure convention. Thus, the Kaluza-Klein vector has its internal indice below and the internal vielbein involves the matrix V -1 . Then, as discussed previously, V ∈ SL(9) and ρ is a dilaton field. They both come from the torus vielbein. A µ k is the Kaluza-Klein vector and it transforms in the 9 of SL [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF]. For what concerns the three-form, it splits into: a vector field in the 36 of SL(9), A µ mn = A µ [mn] . Plus axions φ klm = φ [klm] in the 84 of SL [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF]. In the reduction ansatz, fields of the form B µν k = B [µν] k would have not contributed to the lower-dimensional action and a parameter of the form C µνρ = C [µνρ] would have been identically zero in two dimensions.

A Weyl rescaling is performed on the bosonic lower-dimensional Lagrangian, see Appendix A, e µ α -→ ρ s e µ α .

(3.2.7)

This leaves the possibility to eliminate the kinetic term for the dilaton by a clever choice of s.

e -1 L 2d = - 1 4 ρR (2) + 1 4 ρ P µ ab P ab µ + 1 12 ρ 1/3 ϕ µ abc ϕ abc µ - s 2 + 2 9 ρ -1 ∂ µ ρ ∂ µ ρ + 1 648 e -1 ε µν ε klmnpqrst φ klm ∂ µ φ npq ∂ ν φ rst - 1 16 ρ 11/9-2s M -1kl F µν k F µν l - 1 8 ρ 5/9-2s F µν kl + φ klp F µν p M km M ln (F µν mn + φ mnq F µν q ) (3.2.8)
where, M = VV T . Moreover, we have introduced the currents 1

ϕ abc µ ≡ V [klm] abc ∂ µ φ klm . (3.2.9) 
Here, and in the following we use the notation

V [klm] abc ≡ V [k a V l b V m] c
, for the group-valued SL(9) matrix evaluated on tensor products. We chose to eliminate the kinetic term for the dilaton in (3.2.8), for simplicity. This selects s = -4/9. Then, since the vector fields in two dimensions do not carry any propagating degrees of freedom, we can eliminate them from the Lagrangian by using their equation of motion. These equations can always be integrated in two dimensions since

D µ F µν = 0 implies F µν = constant . (3.2.10)
In our case, the first-order equations are

M -1kl F µν l + 2 ρ -2/3 φ kmn M mp M nq (F µν pq + φ pqr F µν r ) = e ε µν ρ -19/9 θ k , M km M ln (F µν mn + φ mnp F µν p ) = e ε µν ρ -13/9 θkl , (3.2.11) 
with integration constants θ l and θmn = θ[mn] . Keeping non-zero values for this constants will lead to massive deformation of the two-dimensional supergravity. These deformations are treated on the same footing as gaugings in the embedding tensor formalism, therefore at the level of the ungauged theory, they will not be relevant for us. This is why we will set θ l = 0 = θmn . Consequently, the field strengths vanish and we can set the vector fields to zero. As a result, the bosonic Lagrangian is given by

e -1 L 2d = - 1 4 ρR (2) + 1 4 ρ P µ ab P ab µ + 1 12 ρ 1/3 ϕ µ abc ϕ abc µ + 1 648 e -1 ε µν ε klmnpqrst φ klm ∂ µ φ npq ∂ ν φ rst . (3.2.12)
It is a dilaton-gravity coupled non-linear σ-model with target space SL (9) SO( 9)

R 84 and topological term.

Full Lagrangian

The fermions come from the reduction of the eleven-dimensional gravitino Ψ M . When going from eleven to two dimensions, the vector and spinor representations of the Lorentz group SO(1, 10) split into vector and spinor representations of SO(1, 1) and SO( 9)

11 ⊗ 32 -→ (2 ⊕ 9 vector ) ⊗ (2 ⊗ 16 spinor ) .
(3.2.13)

Thus, Ψ M gives rise to: a two-dimensional gravitino ψ I µ transforming in the 16 (spinor representation) of SO(9), and a vector spinor of SO( 9), named χ aI . Because the tensor product of the vector and spinor representations of SO(9) splits into

9 ⊗ 16 = 16 ⊕ 128 , (3.2.14) 
a traceless condition with respect to the SO(9) Γ-matrices is assumed. This enables to select the irreducible 128:

Γ a IJ χ aJ ≡ 0 . (3.2.15) 
The remaining trace part contributes to the last two-dimensional spinor: the dilatino ψ I 2 which transforms in the 16 of SO( 9). The fermionic content may be summarized as follows

Ψ M T 9 --→ {ψ I µ , χ aI , ψ I 2 } . (3.2.16)
Accordingly, the covariant derivatives on fermions are defined by

D µ ψ I ν = ∂ µ ψ I ν + 1 4 ω µ αβ γ αβ ψ I ν + 1 4 Q ab µ Γ ab IJ ψ J ν , D µ χ aI = ∂ µ χ aI + 1 4 ω µ αβ γ αβ χ aI + Q ab µ χ bI + 1 4 Q bc µ Γ bc IJ χ aJ , (3.2.17) 
with the SO(9) connection Q ab µ from (2.2.37). Eventually, the full Lagrangian is obtained by imposing supersymmetry, rather than performing the dimensional reduction of the fermionic sector. We have then completely determined the supersymmetry transformations by imposing the on-shell closure of the supersymmetry algebra.

δ e µ α = i ¯ I γ α ψ I µ , δ ψ I µ = D µ I - 1 24 ρ -1/3 Γ abc IJ 1 3 γ µ γ ν + γ ν γ µ γ 3 J ϕ abc ν , δ ρ = -ρ ¯ I γ 3 ψ I 2 , δ ψ I 2 = - i 2 γ 3 γ µ I ρ -1 ∂ µ ρ , (3.2.18) δ V i a = ¯ I Γ (a IJ χ b)J V i b , δ χ aI = i 2 Γ b IJ γ µ J P (ab) µ - i 6 ρ -1/3 δ ab Γ cd IJ - 1 6 Γ abcd IJ γ 3 γ µ J ϕ bcd µ , δ φ ijk = 3 2 ρ 1/3 V -1 abc [ijk] Γ ab IJ ¯ I γ 3 χ cJ + 1 6 ρ 1/3 V -1 [ijk] abc Γ abc IJ ¯ I ψ J 2 .
Thus, the full Lagrangian with the kinetic terms for the fermions and the Noether couplings were found by hand, after lengthy calculations

e -1 L 0 = - 1 4 ρR (2) + 1 4 ρ P µ ab P ab µ + 1 12 ρ 1/3 ϕ µ abc ϕ abc µ + 1 648 e -1 ε µν ε klmnpqrst φ klm ∂ µ φ npq ∂ ν φ rst -ρe -1 ε µν ψI 2 D µ ψ I ν - i 2 ψI ν γ ν ψ I µ ∂ µ ρ - i 2 ρ χaI γ µ D µ χ aI - 1 2 ρ χaI γ ν γ µ ψ J ν Γ b IJ P ab µ - i 2 ρ χaI γ 3 γ µ ψ J 2 Γ b IJ P ab µ - 1 4 ρ 2/3 χaI γ 3 γ ν γ µ ψ J ν Γ bc IJ ϕ abc µ - i 12 ρ 2/3 χaI γ µ ψ J 2 Γ bc IJ ϕ abc µ + i 54 ρ 2/3 ψI 2 γ 3 γ µ ψ J 2 Γ abc IJ ϕ abc µ + 1 24 ρ 2/3 ψI 2 γ µ γ ν - 1 3 γ ν γ µ ψ J ν Γ abc IJ ϕ abc µ + i 2 ρ 2/3 χaI γ 3 γ µ χ bJ Γ c IJ ϕ abc µ - i 24 ρ 2/3 χaI γ 3 γ µ χ aJ Γ bcd IJ ϕ bcd µ . (3.2.19)
The Lagrangian is invariant with respect to (3.2.18). Notice also that supersymmetry does not require a scalar potential, as was expected from dimensional reduction on the torus.

Supersymmetry algebra

The supersymmetry algebra closes on diffeomorphisms, local Lorentz transformations and local SO(9) transformations coming from the coset space structure.

[δ ε 1 , δ ε 2 ] = δ gct (ξ) + δ L (λ) + δ SO(9) (K) , with ξ µ = i ¯ I 2 γ µ I 1 , λ αβ = -ξ µ ω µ αβ , K ab = -ξ µ Q µ ab . (3.2.20)
The commutator of two supersymmetries are more easily checked on the bosonic fields,

[δ ε 1 , δ ε 2 ] e α µ = ξ ν ∂ ν e α µ + e α ν ∂ µ ξ ν + (-ξ ν ω ν αβ ) e β µ [δ ε 1 , δ ε 2 ] ρ = ξ µ ∂ µ ρ + quartic fermions [δ ε 1 , δ ε 2 ] V m a = ξ µ ∂ µ V m a + V m b (ξ µ Q ba µ ) + q.f. [δ ε 1 , δ ε 2 ] φ ijk = ξ µ ∂ µ φ ijk + q.f. ξ µ = i εI 2 γ µ I 1 (3.2.21)
We take the occasion to determine the supersymmetry variation of the vector fields A µ k and A µ kl of (3.2.6), by closure of their supersymmetry algebra. Up to a global factor that can be absorbed by rescaling of the vector fields, they are given by

δ A µ k = -2ρ -5/9 ψI µ γ 3 J Γ a IJ + 5i 9 ψI 2 γ µ J Γ a IJ -i χaI γ 3 γ µ I V k a , δ A µ kl =ρ -2/9 ψI µ J Γ ab IJ - 2i 9 ψI 2 γ 3 γ µ J Γ ab IJ -2i χI[a γ µ J Γ b] IJ V -1 [ab] kl -V -1 [abc] klm ϕ abc (δ A µ m ) . (3.2.22)
The supersymmetry algebra closes on-shell provided that their field strength vanish:

F µν k = 0 = F µν kl . (3.2.23)
This is the case owing to the choice, θ l = 0 = θmn . Then, the algebra closes into abelian gauge transformations

[δ ε 1 , δ ε 2 ]A µ k = ∂ µ Λ k , [δ ε 1 , δ ε 2 ]A µ kl = ∂ µ Λ kl , (3.2.24) 
with gauge parameters

Λ k = -2ρ -5/9 ¯ I 1 γ 3 J 2 Γ a IJ V k a , Λ kl = ρ -2/9 ¯ I 1 J 2 Γ ab IJ V -1 [ab] kl + 2 ρ -5/9 ¯ I 1 γ 3 J 2 Γ a IJ V -1 [bc] kl ϕ abc . (3.2.25)
In the following, the global internal bosonic symmetries of the action are analyzed and the associated Noether currents are given.

Noether current

The global SL(9) off-shell symmetry of the Lagrangian (3.2.19) acts by left multiplication on the matrices V m a and by matrix multipication on the scalar fields φ kmn : 

δV m a = Λ m n V n a , δφ klm = -3Λ n [k φ lm]n . ( 3 
(J µ ) k l = ρ V k a P ab µ V -1bl -ρ 1/3 V k a V -1dl ϕ bcd ϕ abc µ - 1 9 δ l k ϕ abc ϕ abc µ + 1 54 eε µν ε abcdef ghi V k a V -1jl ϕ bcj ϕ def ϕ ν ghi + fermions , (3.2.27) 
where in analogy to (3.2.9) we have defined the dressed scalar fields ϕ abc ≡ V [klm] abc φ klm .

As we saw before, a dual scalar Y k l field can be associated to the sl 9 -valued conserved Noether current

∂ µ Y k l = -eε µν (J ν ) k l . (3.2.28)
Fermionic contributions are already included in the current J µ . For later use, we need to determine the supersymmetry variation of Y k l . This could have been done from (3.2.28), but a more straightforward method consist in requiring the closure of the supersymmetry algebra. As a remarkable feature, the supersymmetry variation of the dual field Y k l depends only on the physical fields

δ Y k l = χaI γ 3 J V k b V -1cl 1 6 ρ 1/3 ϕ agh ϕ ef c δ db -δ b[a ϕ gh]c ϕ def Γ def gh IJ -ρ δ a(b Γ c) IJ + 3 2 ρ 2/3 χaI J V -1gl V k [a ϕ bc]g Γ bc IJ + 1 3 ρ 2/3 ψI 2 γ 3 J V -1gl V k a ϕ bcg Γ abc IJ + ψI 2 J 1 2 ρ V -1al V k b Γ ab IJ + 1 54 ρ 1/3 V -1gl V k d ϕ abc ϕ ef g Γ abcdef IJ . (3.2.29)
Then, two supersymmetries closes into diffeomorphisms upon using the duality equation

(3.2.28) [δ 1 , δ 2 ] Y k l = -eε µν ξ µ (J ν ) k l = ξ µ ∂ µ Y k l . (3.2.30)
From the symmetry point of view, the equation (3.2.28), defining the dual potential implies a global symmetry acting by a constant shift

δY k l = Λ k l (3.2.31)
It can be shown that Y k l is just one element of an infinite tower of dual scalar fields, that we discussed in the E 8 frame. The dual fields can be generated recursively by applying on-shell duality equations which have schematically the following form,

∂ µ Y N = e ε µν J(Y 1 , . . . , Y N -1 , off-shell fields) ν N . (3.2.32)
Thus, the on-shell symmetry algebra will be infinite dimensional and will contain in particular the infinite number of shift symmetries acting on the dual scalar fields. In addition to the global SL(9) symmetry, there are other global off-shell symmetries of the action. They correspond to the 84 translations R 84 and act on the 84 scalars φ abc as shifts

δφ klm = Λ klm . (3.2.33)
The associated conserved Noether current define new scalar fields

∂ µ Y kmn = -e ε µν j ν kmn , (3.2.34) 
on which the translations also act as shifts

δY kmn = Λ kmn . (3.2.35)
Finally, the last off-shell global symmetry is the two-dimensional Weyl rescaling

δ κ e µ α = κ e µ α , δ κ ψ I µ = κ 2 ψ I µ , δ κ χ aI = - κ 2 χ aI , δ κ ψ I 2 = - κ 2 ψ I 2 , (3.2.36) 
and the scalar fields are left invariant. The corresponding Noether current is given by

j Weyl µ ≡ ∂ µ ρ + fermions . (3.2.37)
Again, it enables to define a dual scalar field according to

∂ µ ρ = -e ε µν j ν . (3.2.38)
In the next section, the general structure of the symmetries will be described in the view of the consistent gauging of an SO(9) subgroup.

General symmetry structure

The e 9 symmetry algebra As discussed in [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF], the SL(9) frame is better suited than the E 8 one, in order to consistently gauge a SO(9) subgroup. In this frame, the Lagrangian of two-dimensional maximal supergravity has been given (3.2.19), and the Noether currents associated to the different off-shell symmetries have been presented. Nonetheless, we know that the onshell symmetries of the two-dimensional theory extend to the infinite dimensional algebra e 9 = e 8 . Thus, it is interesting to identify the different symmetries, manifest off-shell or on-shell in the SL(9) frame, within the full e 9 algebra. This is done by analyzing the decomposition of the adjoint representation of e 9 under sl 9 .

The sl 9 subalgebra

There are several parts in this decomposition. First, the infinite sum

. . . ⊕ 80 -1 ⊕ (K 0 ⊕ 80 0 ) ⊕ 80 +1 ⊕ . . . (3.2.39)
corresponds to the centrally extended affine subalgebra sl 9 defined by

[ T α,m , T β,n ] = f αβ γ T γ,m+n + m δ m+n η αβ K 0 , [T α m , K 0 ] = 0 , (3.2.40) [ d , T α,m ] = -m T α,m , [ d , K 0 ] = 0 , (3.2.41)
where the T α,0 are the generators of sl 9 , the f αβ γ stand for the structure constants and η αβ is the Cartan-Killing form. Moreover, K 0 is the central element and d is the derivation of sl 9 . All the generators are realized on the fields as we shall explain. For example 80 0 corresponds to the global SL(9) off shell symmetry (3.2.26), 

δV m a = Λ m n V n a , δφ klm = -3Λ n [k φ lm]n . ( 3 
Λ α δ α,-1 V = F (Λ, Y, ρ, ρ, φ) V . (3.2.43)
It is the first example of an infinite family of on-shell symmetries generated by the T α,m , (m < 0) and corresponding to the 80 m , (m < 0) in the e 9 picture. They are called "hidden" symmetries and a compact way to encode them requires the use of a linear system [START_REF] Maison | Are the stationary, axially symmetric Einstein equations completely integrable?[END_REF][START_REF] Julia | Infinite lie algebras in physics[END_REF][START_REF] Nicolai | The Integrability of N = 16 Supergravity[END_REF]. Consequently, the symmetries may be summed up like this . . . shift symmetries 80 +1 :

δY 1k l = Λ (1) k l , off-shell SL(9) symmetries 80 0 : δV m a = Λ (0) m n V n a , δφ klm = -3Λ (0) n [k φ lm]n , hidden symmetries 80 -1 : δV = F (Λ, ρ, Y, ρ, φ) V . . . . ( 3 

.2.44)

Finally the central extension K 0 is realized by the Weyl rescaling (3.2.36) and the derivation d by an on-shell scaling symmetry that acts on the bosonic fields, and scales the Lagrangian,

δ ρ = λ ρ , δ φ klm = λ 3 φ klm , δ L 0 = λ L 0 , δ ρ = λ ρ , δ Y klm = 2λ 3 Y klm , δ Y k l = λ Y k l . (3.2.45)
The whole picture: hidden, off-shell and shift symmetries

In the sl 9 picture of e (9,9) , the sl 9 subalgebra (3.2.41) is completed by an infinite set of generators transforming in the 84 and 84 (its dual with respect to sl 9 ), to get the full Lie algebra e [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF][START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF] . The 84 generators are organized into a grading, under the action of the derivation of sl 9 . For example, the fields φ klm transform under the off-shell R 84 translations, according to (3.2.33). Let us write the generators of this symmetry: T [klm] . It belongs to the 84 of SL [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF]. From (3.2.45), we can deduce the adjoint action of the derivation d on this generator . Finally, it can be shown [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF], that in the sl 9 grading, the charges with respect to d belong to 1 3 Z. In the light of this analysis, a picture of e (9,9) can be schematically drawn 

[ d , T [klm] ] = - 1 3 T [klm] . ( 3 
e (9,9) -→ sl 9 . . . ⊕ 84 -2/3 ⊕ 84 -1/3 hidden symmetries ⊕ (K 0 ⊕ 80 0 ) ⊕ 84 +1/3 off-shell symmetries ⊕ 84 +2/3 ⊕ 80 +1 ⊕ . . .

Vector fields and gauging

The gauging of a SO(9) subgroup is achieved by the embedding tensor formalism. As explained above, this scheme enables to gauge a subgroup of the global symmetries in a way compatible with supersymmetry. The first step deals with the vector fields. Indeed, the embedding tensor realizes the minimal coupling between vector fields and the generators of an SO(9) subgroup of the global symmetries. Then consistency requirement emanating from gauge invariance and supersymmetry must be satisfied. In this section we will first discuss the representation content of the vector fields. Then we will describe the different components of the embedding tensor, and finally we will show which coupling allows the gauging of SO(9).

Vector fields and the embedding tensor in two dimensions

Vector fields

The vector fields of two-dimensional maximal supergravity transform in the basic representation of e (9,9) , i.e. the unique level 1 representation of this affine algebra [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF]. Thus, under sl 9 , the representation of the vector fields decomposes as follows

R vectors → 9 5/9 ⊕ 36 2/9 ⊕ 126 -1/9 ⊕ (9 ⊕ 315 ) -4/9 ⊕ (36 ⊕ 45 ⊕ 720) -7/9 ⊕ . . . . (3.3.1)
The subscripts come from the action of the derivation d of sl 9 , see (3.2.45). For example the vector field A µ k in the 9 carries a charge of 5/9 which can be read from its corresponding kinetic term in the two-dimensional Lagrangian (3.2.8)

- 1 16 ρ 11/9-2s M -1kl F µν k F µν l . (3.3.2)
Because the Lagrangian carries a charge of +1, and the F F term is multiplied by ρ 19/9 , each F should carry a charge of 1 2 ( 19 9 -1) = 5 9 . Moreover, the vector fields A µ mn in the 36 carry a charge of 2 9 because they have the same charge than A µ k φ kmn . It can be seen in the ansatz that we have made for the three-form in the toroidal compactification of eleven dimensional supergravity (3.2.6),

A M N K = 0 , 0 , A µ mn + A µ k φ kmn , φ mnk . (3.3.3)
A µ k and φ kmn carry respectively the charges 5 9 and 1 3 , so the vector fields A µ mn should carry the charge 5 9 -1 3 = 2 9 . The other assignments follow by decreasing the charge in steps of 1 3 .

The embedding tensor

In general, for maximal supergravities, after imposing the linear constraint the following statement holds: the embedding tensor transforms in the representation dual to the (D-1)-forms. ( †)

In two dimensions, this statement is not straightforward because of the infinite dimensional context. This implies an important constraint on Θ M α since the embedding tensor transforms in R v * × R adj , whereas the dual representation of the (2 -1)-forms (the vector fields) is R v * . It turns out that in two dimensions, this conjecture motivated by the higher-dimensional cases, is the expression of the linear constraint [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF]. According to this constraint, the embedding tensor is no longer parametrized by Θ M α but by a tensor Θ M in the R v * of e [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF][START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF] :

Θ M α = η αβ (t β ) M N Θ N . (3.3.4)
As a hint for ( †), let us consider the first components of the representation of the vector fields. The corresponding fields are A µ k and A µ [mn] , belonging respectively to the 9 and 36 of SL [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF]. Then, the equations of motion for the vector fields, once integrated (3.2.11), show that the lowest components of the embedding tensor, θ k and θkl , transform respectively in the representations dual to the ones of the vector fields. It was shown in [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF], that a Θ transforming in R v * , solves the linear constraint. With respect to sl 9 it splits according to

R Θ → 9 -14/9 ⊕ 36 -11/9 ⊕ 126 -8/9 ⊕ (9 ⊕ 315) -5/9 ⊕ (36 ⊕ 45 ⊕ 720 ) -2/9 ⊕ . . . . (3.3.5)
To derive the charges of the component of R Θ under the derivation d, we use the fact that when the subscripts of R vectors and R Θ corresponding to the same row are added, the result is -1. The minus sign is a matter of convention, so let us focus on the absolute value of 1. It originates from the fact that the charge of the Lagrangian under the derivation equals one. As an illustration, consider the vector field A µ k . Its kinetic term (3.2.8) schematically written M F F , scales like the Lagrangian under (3.2.45). However, we saw that the equation of motion for the vector (once integrated), relates the field strength with a component of the embedding tensor (3.2.11), M F = Θ . Therefore, ΘF has a charge of 1 under (3.2.45), as expected above. The couplings between the vector fields and the generators of the internal symmetries are induced by the different components of the embedding tensor. They have been classified in [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF] and are drawn schematically in Figure 3.2. Normally, with an embedding tensor of the general form Θ M α , all the cells would have been filled by an independent component of the embedding tensor. However, when the linear constraint (3.3.4) is satisfied, the different couplings are ensured by an embedding tensor of the form Θ M with components given by (3.3.5). Consequently, the allowed couplings are very restricted and the same component of the embedding tensor is involved for the couplings of the diagonals. The matching is made by ensuring that the sum of the charge of the vector field under the derivation (written in the subscripts), the component of the embedding tensor and the corresponding generator of symmetry, is equal to zero. Thus, in the light of representation theory, the picture shows how the minimal couplings must be done in order to gauge the desired symmetry. For example, the component 36 -11/9 of the embedding tensor is involved in the gauging of the 80 +1 and L 1 on-shell symmetries through the minimal coupling with the vector fields in the 36 2/9 . The same component of the embedding tensor is also involved in the gauging of the 84 +2/3 on-shell symmetry through the minimal coupling with the vector fields in the 9 5/9 .

As an example, let us try to gauge the on-shell L 1 symmetry, acting on the dual dilaton ρ of (3.2.38) as a shift. We learn from Figure 3.2 that the vector fields in the 9 5/9 can be used to achieve a minimal coupling with L 1 , induced by the component 9 -14/9 of the embedding tensor. The vectors fields corresponds to the A µ k of (3.2.8) and the embedding tensor in the 9 -14/9 is parametrized by constants θ k . Thus, covariant derivatives can be introduced and the shift symmetry on ρ is knitted with the gauge transformation of the vector field

δ ρ ≡ g Λ k θ k , D µ ≡ ∂ µ -g A µ k θ k T L 1 , δA µ k ≡ ∂ µ Λ k . (3.3.6)
The first step in the gauging, namely the covariantization, has been achieved. By construction, we known that the gauging is consistent with supersymmetry at the linear order, since the embedding tensor solves the linear constraint. Therefore, the quadratic constraint remains to be solved in order to get a consistent L 1 -gauged maximal supergravity in two dimensions. Now let us focus on the SO(9) gauging. The component of the embedding tensor that will interest us to construct the SO(9) supergravity is θ kl = θ (kl) transforming in the 45 -2/9 from the fifth level of the decomposition (3.3.5). It belongs to the 801 -2/9 = (36 ⊕ 45 ⊕ 720 ) -2/9 described in the Figure 3.2. Thus it induces several couplings including generators of the 80 0 which describes the off-shell SL(9) symmetry. More precisely, we read off that the 45 -2/9 component induces a coupling between the vector fields A µ kl of (3.3.3) in the 36 2/9 and the SL(9) generators of 80 0 . Therefore, the representation theory fixes the coupling

X kl ≡ θ m[k T l] m . (3.3.7)
Here the traceless T k l denote the generators of sl 9 . This coupling is interesting because:

• the X kl generate a cso p,q,r subalgebra of sl 9 where the integers p + q + r = 9 characterize the signature of θ kl [START_REF] De Wit | On Lagrangians and gaugings of maximal supergravities[END_REF]. Consequently, by choosing θ kl ≡ δ kl , a so(9) ∈ sl( 9) is gauged.

• It has been shown in [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF] that the embedding tensor in the 45 -2/9 automatically satisfies its quadratic constraint (2.3.10).

• The couplings induced by an embedding tensor in the 45 -2/9 does not involve the generators of the 84 -1/3 , neither the 84 +1/3 nor the K 0 , because no 45 -2/9 appears respectively in the tensor product of 9 5/9 ⊗84 -1/3 , 126 -1/9 ⊗84 +1/3 and 36 2/9 ⊗1.

As a result, we have at hand a tool that enables to gauge a SO(9) subgroup of the off-shell symmetries of maximal supergravity in two dimensions, formulated in the "SL [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF] frame", such that it is consistent and in particular compatible with supersymmetry. If we were working in the E 8 frame, the consistent SO(9) gauging would have involved couplings with hidden symmetries generators. Thus at the level of the action, a complicated non-local topological term would have been needed to restore supersymmetry [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF]. The fact that in the SL(9) frame, the SO( 9) group (which according to the embedding tensor, can be gauged in a way consistent with supersymmetry) belongs to the off-shell symmetries of the theory, is the reason why the SL(9) frame is better suited than the E 8 frame to perform the gauging. Eventually, there remains to concretely construct the gauged theory. This will be done through the Noether procedure presented in page 33, but it looks like a hard task, since the bosonic field content now involves the 84 fields φ klm which renders the structure of the Lagrangian (3.2.19) more complicated than in the "E 8 frame" (3.2.1).

To conclude, a group theoretical analysis enables us to identify the right couplings for gauging SO(9) among the off-shell symmetries of the maximal two-dimensional supergravity. Knowing the right embedding tensor, one can introduce minimal coupling via covariant derivatives

D µ = ∂ µ -g A µ kl θ mk T l m . (3.3.8)
We may recall here that the SO(9) gauge that we will gauge, shall not be confused with the local SO(9) coset symmetry coming with the SL(9)/SO(9) coset structure. Indeed, in the coset space formulation, the SL(9) group acts globally on the scalar fields V ∈ SL(9)/SO(9) by left multiplication

V k a → Λ k l V l a , Λ ∈ sl(9) . (3.3.9)
We will gauge a SO(9) inside these global symmetries,

V k a → Λ(x) k l V l a , Λ(x) ∈ so(9) gauge . (3.3.10)
On the contrary, the local SO(9) coset acts on the scalar fields V by right multiplication

V k a → V k b K(x) b a , K(x) ∈ so(9) . (3.3.11)
The latter ensures that the σ-model describes the right number of physical degrees of freedom: d.o.f. = 80 -36 = 44. The full construction of the SO(9) gauged Lagrangian and its N = 16 supersymmetry invariance will be detailed in the next section.

SO(9) supergravity: Lagrangian

This section describes the first result of the thesis and maybe the main one. Indeed, the SO(9) gauged maximal supergravity is constructed in full details.

General ansatz

To begin, the first step deals with the covariantization of the two-dimensional Lagrangian (3.2.19), by turning the derivatives into covariant ones

Q [ab] µ + P (ab) µ → Q [ab] µ + P (ab) µ ≡ V -1ak ∂ µ V k b -A µ lm θ mk V l b , ∂ µ φ klm → D µ φ klm ≡ ∂ µ φ klm -3 A µ p[k θ pq φ lm]q , ϕ abc µ → ϕ abc µ ≡ V klm [abc] D µ φ klm , D µ ψ I ν → D µ ψ I ν ≡ ∂ µ ψ I ν + 1 4 ω µ αβ γ αβ ψ I ν + 1 4 Q ab µ Γ ab IJ ψ J ν , D µ χ aI → D µ χ aI ≡ ∂ µ χ aI + 1 4 ω µ αβ γ αβ χ aI + Q ab µ χ bI + 1 4 Q bc µ Γ bc IJ χ aJ . (3.4.1)
By doing so, the Lagrangian (3.2.19) becomes

e -1 L 0 ,cov = - 1 4 ρR (2) + 1 4 ρ P µ ab P ab µ + 1 12 ρ 1/3 ϕ µ abc ϕ abc µ + 1 648 e -1 ε µν ε klmnpqrst φ klm D µ φ npq D ν φ rst -ρe -1 ε µν ψI 2 D µ ψ I ν - i 2 ψI ν γ ν ψ I µ ∂ µ ρ - i 2 ρ χaI γ µ D µ χ aI - 1 2 ρ χaI γ ν γ µ ψ J ν Γ b IJ P ab µ - i 2 ρ χaI γ 3 γ µ ψ J 2 Γ b IJ P ab µ - 1 4 ρ 2/3 χaI γ 3 γ ν γ µ ψ J ν Γ bc IJ ϕ abc µ - i 12 ρ 2/3 χaI γ µ ψ J 2 Γ bc IJ ϕ abc µ + i 54 ρ 2/3 ψI 2 γ 3 γ µ ψ J 2 Γ abc IJ ϕ abc µ + 1 24 ρ 2/3 ψI 2 γ µ γ ν - 1 3 γ ν γ µ ψ J ν Γ abc IJ ϕ abc µ + i 2 ρ 2/3 χaI γ 3 γ µ χ bJ Γ c IJ ϕ abc µ - i 24 ρ 2/3 χaI γ 3 γ µ χ aJ Γ bcd IJ ϕ bcd µ . (3.4.2)
As a result, up to total derivative, the Lagrangian is invariant under the local gauge symmetry

δV m a = Λ(x) nk θ km V n a , δφ klm = -3Λ(x) m[k θ mn φ lm]n , δA kl µ = D µ Λ(x) kl , (3.4.3) 
with the gauge parameter Λ(x) kl = Λ(x) [kl] .

Auxiliary fields

However, the construction should not stop here, or else the vector fields would behave as Lagrange multipliers and would reduce the number of degrees of freedom by generating an additional on-shell constraint on the physical fields. Indeed, taking the variation of the Lagrangian with respect to the gauge field yields, up to total derivative, the following term 0 = δL 0 ,cov δA µ kl ≡ -

e 2 J µ kl . (3.4.4)
In passing, the r.h.s is just the covariantized sl 9 Noether current (3.2.27) projected with θ kl ,

J µ kl ≡ -θ m[k J cov |µ| l] m . ( 3 

.4.5)

A solution to the problem of degrees of freedom would be to add a kinetic term for the vector fields, of the form: L FF ∝ FF with

F µν kl ≡ 2∂ [µ A ν] kl + 2 θ pq A [µ p[k A ν] l]q . ( 3.4.6) 
The equation of motion for the gauge field would give, δL δA µ kl = 0 = D ν F νµ kl -J µ kl .

(3.4.7)

However, the Yang-Mills kinetic term is not natural for the gauging since when the embedding tensor is put to zero, the ungauged theory (3.2.19) is not recovered. Another term that we can imagine to cancel the on-sell current has the following form,

L FY = - 1 4 ε µν F µν kl θ lm Y k m , (3.4.8) 
where the Y k m ∈ sl(9) are auxiliary scalar fields. Then, the equation of motion for the vector fields gives,

δL δA µ kl = 0 = e -1 ε µν θ m[k D |ν| Y l] m -J µ kl . (3.4.9)
This is nothing but the covariantization of the sl(9) duality equation (3.2.28) projected on the gauge subgroup part. If we choose θ kl ∝ δ kl , it will relate the so(9) part of the Noether current with its dual potential. Nevertheless, a scalar potential of order g 2 that depends on Y has to be added, so that the variation of the Lagrangian with respect to the scalar field Y k l does not lead to the cancellation of the gauge field on-shell:

δL 0 ,cov δY k m = 0 = ε µν F µν kl θ lm . (3.4.10)
Consequently, both the A µ kl and Y k l appear as auxiliary fields in the Lagrangian. It happens that the parametrization involving Y is more natural to restore supersymmetry than a Lagrangian without the Y k l fields but with a kinetic term (F µν F µν ) for the gauge fields. These two possible parametrizations will be related to each other and discussed at the end of this chapter. Eventually, the supersymmetry of the Lagrangian will not survive the covariantization. In particular because the supersymmetry variation of the vector fields is not canceled. To provide the most complete candidate for supersymmetry invariance, we are led to follow the Noether procedure described in Section 2.3.1. Thus, new Yukawa-type couplings L Yuk , the so-called fermionic mass terms, are added to the Lagrangian which now reads 

L = L 0,cov - 1 4 ε µν F µν kl θ lm Y k m + L Yuk . ( 3 
δ e µ α = i ¯ I γ α ψ I µ , δ ρ = -ρ ¯ I γ 3 ψ I 2 , δ V i a = ¯ I Γ (a IJ χ b)J V i b , δ φ ijk = 3 2 ρ 1/3 V -1 abc [ijk] Γ ab IJ ¯ I γ 3 χ cJ + 1 6 ρ 1/3 V -1 abc [ijk] Γ abc IJ ¯ I ψ J 2 , (3.4.12) δ A µ kl = ρ -2/9 ψI µ J Γ ab IJ - 2i 9 ψI 2 γ 3 γ µ J Γ ab IJ -2i χI[a γ µ J Γ b] IJ V -1 [ab] kl + 2 ρ -5/9 ψI µ γ 3 J Γ a IJ + 5i 9 ψI 2 γ µ J Γ a IJ -i χaI γ 3 γ µ I V -1 [bc] kl ϕ abc .
Then, let us look for the most general ansatz for the Yukawa-type couplings,

e -1 L Yuk = - 1 2 e -1 ρ ε µν ψI ν ψ J µ B IJ + ψI ν γ 3 ψ J µ BIJ -2i ψI 2 γ ν ψ J µ A IJ + iρ ψI 2 γ µ ψ J µ ÃIJ + iρ χaI γ µ ψ J µ C a IJ -iρ χaI γ 3 γ µ ψ J µ Ca IJ + ρ ψI 2 ψ J 2 D IJ + ρ ψI 2 γ 3 ψ J 2 DIJ + ρ χaI ψ J 2 E a IJ + ρ χaI γ 3 ψ J 2 Ẽa IJ + ρ χaI χ bJ F ab IJ + ρ χaI γ 3 χ bJ F ab IJ , (3.4.13)
Here the A, B, C, D, E, F tensors depend on the scalar fields ρ, V, φ, Y , are proportional to the deformation parameter θ, and have to be determined. We shall call them the "Yukawa tensors" or the "fermionic mass tensors" in accordance with the presentation of page 33. Notice that the spinorial structure implies some symmetry properties and some constraints on these tensors: The introduction of such couplings induces modifications proportional to the fermionic supersymmetry transformations: the so-called fermion shifts.

B (IJ) = D(IJ) = 0 = B[IJ] = D [IJ] , F ab IJ = F ba JI , F ab IJ = -F ba JI , (3.4 
δ ψ I µ = D µ I - 1 24 ρ -1/3 Γ abc IJ γ ν γ µ + 1 3 γ µ γ ν γ 3 J ϕ abc ν + i A IJ + ÃIJ γ 3 γ µ J , δ ψ I 2 = - i 2 ρ -1 (∂ µ ρ) γ 3 γ µ I + B IJ + BIJ γ 3 J , (3.4.16) δ χ aI = i 2 Γ b IJ γ µ J P ab µ - i 6 ρ -1/3 δ ad Γ bc IJ - 1 6 Γ abcd IJ γ 3 γ µ J ϕ bcd µ + C a IJ + Ca IJ γ 3 J ,
This shifts involve the same undetermined tensors in a very constrained way. As a remarkable fact, the tensors B and B which couple to the ψµ ψ ν Yukawa terms, are present in the supersymmetry variation of ψ 2 instead of ψ µ . This is due to the fact that in two dimensions, the Rarita-Schwinger term

-ρ µν ψI 2 D µ ψ I ν (3.4.17)
of (3.4.2) mixes ψ 2 and ψ µ . At the linear order in θ, when we take the supersymmetry variation of the Lagrangian (3.4.22), we first get terms linear in θ coming from L 0,cov :

δ ε L 0,cov = - 1 2 δ ε A µ kl J µ kl + 1 4 ε µν F µν kl θ lm Ξ k m + O(θ) shifts + q.f. (3.4.18)
The supersymmetry violating terms proportional to the field strength come from the fact that the covariant derivatives containing the gauge field, no longer commute

[D µ , D ν ] φ klm = -3 θ pq F µν p[k φ lm]q , D [µ P ab ν] = 1 2 θ kl V m(a V -1 b) k F µν lm . (3.4.19)
It is canceled by imposing the following variation of the auxiliary field

δ Y k l = Ξ k l = χaI γ 3 J V k b V -1cl 1 6 ρ 1/3 ϕ agh ϕ ef c δ db -δ b[a ϕ gh]c ϕ def Γ def gh IJ -ρ δ a(b Γ c) IJ + 3 2 ρ 2/3 χaI J V -1gl V k [a ϕ bc]g Γ bc IJ + 1 3 ρ 2/3 ψI 2 γ 3 J V -1gl V k a ϕ bcg Γ abc IJ + ψI 2 J 1 2 ρ V -1al V k b Γ ab IJ + 1 54 ρ 1/3 V -1gl V k d ϕ abc ϕ ef g Γ abcdef IJ . (3.4.20)
This is exactly the variation (3.2.29) that we have found for the ungauged theory. Moreover, the terms coming from the variation of the vector field and coupled to the Noether current (3.4.5) is to be canceled by the O(θ) variation of L Yuk together with the O(θ) contributions introduced in δ ε L 0,cov by the fermion shifts. The same occurs with the variation -

1 4 ε µν δ ε F µν kl θ lm Y k m . (3.4.21)
All this leads to linear constraints on the Yukawa tensors. Then supersymmetry is restored at the linear level in θ, if and only if there is a solution to these Yukawa linear constraints. As was expected, there appear new supersymmetry contributions of quadratic order in θ. More precisely, they come from the fermion shifts in the supersymmetry variation of L Yuk . As we will see, part of them are canceled by the variation of a scalar potential L pot , quadratic in θ, but the majority give rise to quadratic constraints. Here, these constraints are pure consistency checks and will be detailed below. Thus, the full Lagrangian may now be written

L full = L 0,cov - 1 4 ε µν F µν kl θ lm Y k m + L Yuk + L pot . (3.4.22)
According to the previous analysis, at this point, the supersymmetry only rely on the resolution of linear and quadratic identities among the Yukawa tensors. They will be detailed in the following.

Yukawa tensors

Linear constraints

A close examination of supersymmetry at linear order in θ reveals that all the contributions are proportional to first derivative terms of this kind: ∂ µ ρ, φabc µ , P ab µ and D µ Y k l . The 8 linearly independent terms that we can form with ∂ µ ρ are collected here

ψI µ J ∂ µ ρ , ψI µ γ 3 J ∂ µ ρ , ψI µ γ µν J ∂ ν ρ , ψI µ γ µν γ 3 J ∂ ν ρ , (3.4.23) ψ2 I γ µ J ∂ µ ρ , ψ2 I γ µ γ 3 J ∂ µ ρ , χaI γ µ J ∂ µ ρ , χaI γ µ γ 3 J ∂ µ ρ .
From this sequence, the other linearly independent terms that we can form with φabc µ , P ab µ and D µ Y k l can be deduced easily. Associated to these terms are linear combinations of the Yukawa tensors. By requiring the linearly independent fermionic terms to vanish, all the sets of linear equations on the Yukawa tensors are generated. For example, the term proportional to ψI µ γ µν J ∂ ν ρ comes, on one side, from the fermion shift part

BIJ γ 3 J ∈ δ ψ I 2 , (3.4.24)
in the term in the term

-ρ e -1 ε µν ψI 2 D µ ψ I ν ∈ L 0,cov (3. 
- 1 2 e -1 ρ ε µν ψI ν γ 3 ψ J µ BIJ + iρ ψI 2 γ µ ψ J µ ÃIJ ∈ L Yuk , (3.4.27) 
see (3.4.13). Thus, the contribution reads

δ L 0,cov + L Yuk e -1 ψI µ γ µν J ∂ ν ρ A IJ -BIJ -ρ ∂ BIJ ∂ρ ! = 0 , (3.4.28) 
and we obtain one linear equation on the Yukawa tensors

A IJ -BIJ -ρ ∂ BIJ ∂ρ = 0 . (3.4.29)
The full set of linear equations on the Yukawa tensors is summarized in Appendix B.1.

To find an explicit solution, the tensors are decomposed into their SO(9) coset irreducible parts. After some lengthy calculation, it turns out that the set of linear equations provides a unique solution for the Yukawa tensors, in terms of the scalar fields ρ, V k a , φ klm and the auxiliary fields Y k l . The final result is 2

A IJ = 7 9 δ IJ b - 5 9 Γ a IJ b a - 1 9 Γ abcd IJ b abcd , ÃIJ = - 2 9 Γ ab IJ b ab - 4 9 Γ abc IJ b abc , B IJ = -Γ ab IJ b ab -Γ abc IJ b abc , BIJ = δ IJ b + Γ a IJ b a -Γ abcd IJ b abcd , C a IJ = 8 9 δ IJ b a - 1 9 Γ ab IJ b b - 20 9 Γ bcd IJ b abcd + 4 9 Γ abcde IJ b bcde + c ab Γ b IJ , Ca IJ = + 14 9 Γ b IJ b ab - 2 9 Γ abc IJ b bc - 2 3 Γ bc IJ b abc + 1 9 Γ abcd IJ b bcd + c a,bc Γ bc IJ , D IJ = 14 81 δ IJ b - 70 81 Γ a IJ b a - 8 81 Γ abcd IJ b abcd , DIJ = - 22 81 Γ ab IJ b ab + 20 81 Γ abc IJ b abc , E a IJ = - 26 9 Γ b IJ b ab + 1 9 Γ bc IJ b abc - 1 9 c a,bc Γ bc IJ , Ẽa IJ = 19 9 δ IJ b a - 28 9 Γ bcd IJ b abcd - 5 9 c ab Γ b IJ , F ab IJ = - 1 18 δ ab δ IJ b + 1 2 δ ab Γ c IJ b c + 1 2 δ ab Γ cdef IJ b cdef -12 Γ cd IJ b abcd -2 c ab δ IJ , F ab IJ = - 1 2 δ ab Γ cd IJ b cd + 1 2 δ ab Γ cde IJ b cde +2 δ IJ b ab +2 Γ c IJ b abc -2 c c,ab Γ c IJ , (3.4.30) 
and the SO(9) irreducible tensors are given by b

= 1 4 ρ -2/9 T , b a = -ρ -14/9 T cd ϕ abc Y bd - 1 288 ρ -14/9 ε bcdef ghij T kl ϕ kef ϕ lgh ϕ aij ϕ bcd , b ab = - 1 2 ρ -11/9 T d[a Y b]d + 1 144 ρ -11/9 ε abcdef ghi T jk ϕ jcd ϕ kef ϕ ghi , b abc = 1 4 ρ -5/9 T d[a ϕ bc]d , b abcd = - 1 8 ρ -8/9 T ef ϕ e[ab ϕ cd]f , c ab = - 1 2 ρ -2/9 T ab - 1 9 δ ab T , c a,bc = 1 3 ρ -5/9 T da ϕ bcd -T d[b ϕ c]ad , (3.4.31) 
where we have defined

T ab ≡ V -1(kl) ab θ kl , T ≡ T aa , ϕ abc ≡ V [klm] abc φ klm , Y ab ≡ V -1ak V l b Y k l . (3.4.32)
As a non-trivial fact, there are more linear equations in (B.1.1)-(B.1.4), than unknowns. However there is a non-zero solution.

2 For "simplicity" of the expressions we have chosen to give the tensors E a IJ and F ab IJ (and their tilded analogues) in a form which is not yet explicitly projected onto the gamma-traceless part in the corresponding indices, e.g. Γ a IJ E a JK = 0, etc. Nevertheless, in the Lagrangian (3.4.13) all these tensors appear only under projection with the (gamma-traceless) fermions χ aI , i.e. eventually only their gamma-traceless parts contribute to the couplings.

Quadratic constraints

The variation of L Yuk at order θ 2 and proportional to ψI µ γ µ J cannot vanish identically. This motivates the introduction of the new term: L pot . Indeed, the trace part ψI µ γ µ I can be canceled by the variation of the determinant of the metric (δ ε e = -ie ψI µ γ µ I ) times a scalar potential quadratic in the Yukawa tensors, and of the following form

L pot ≡ -eV pot = - 1 16 eρ 2 ÃIJ B IJ -2A IJ BIJ + C a IJ C a IJ + Ca IJ Ca IJ . (3.4.33)
Thus, the scalar potential is entirely determined by supersymmetry. The other quadratic constraints come from the terms proportional to the traceless part of ψI µ γ µ J , and the 5 remaining, linearly independent bilinear terms in fermions

ψI µ γ µ γ 3 J , ψI 2 J , ψI 2 γ 3 J , χaI J , χaI γ 3 J . (3.4.34)
Each of them is associated to a quadratic combination of Yukawa tensors that must vanish identically. This leads to 6 sets of quadratic equations that we have collected in Appendix B.2. They are consistency checks on the solution (3.4.30)-(3.4.31). For example, let us examine the terms proportional to ψI µ γ µ γ 3 J . The fermion shifts in the variation of where in terms of SO( 9), the l.h.s. and r.h.s. of this equation become respectively

- 1 2 e -1 ρ ε µν ψI ν ψ J µ B IJ + ψI ν γ 3 ψ J µ BIJ -2i ψI 2 γ ν ψ J µ A IJ + iρ ψI 2 γ µ ψ J µ ÃIJ + iρ χaI γ µ ψ J µ C a IJ -iρ χaI γ 3 γ µ ψ J µ Ca IJ ∈ L Yuk (3.
(4 + 2ρ∂ρ) (B K(I BJ)K ) = Γ b IJ 80 3 b def b def b - 28 9 b a b ab + 2 9 Γ aef g IJ 8 b ab b bef g -b a b ef g - 40 3 Γ abef g IJ b abc b cef g , C a KI Ca KJ + C a KJ Ca KI = Γ b IJ 80 3 b def b def b - 28 9 b a b ab + 2 9 Γ aef g IJ 8 b ab b bef g -b a b ef g + Γ abef g IJ 8 3 b abc b cef g -8 c c,ab b cef g .
Thus, the quadratic equation reduces to

c f,[ab b cde]f = 2 b f [ab b cde]f , (3.4.40)
which is satisfied by the explicit form (3.4.31). Further computations show that all the quadratic equations collected in Appendix B.2 are identically satisfied!3 This non-trivial fact shows that the θ pq gauging is consistent with supersymmetry. As a remarkable fact, the scalar potential of (3.4.33) now takes a simple quadratic form in terms of the SO(9) coset irreducible tensors It is an eighth order polynomial in the scalars φ klm and when expanded to quadratic order it is given by

V pot = ρ
V pot = 1 8 ρ 5/9 2 tr[M -1 M -1 ] -tr[M -1 ] 2 + 1 4 ρ -1/9 M mp M nq M -1 kl φ mnk φ pql + ρ -13/9 M -1 km M -1 ln + 2 ρ -2/3 φ klp M pq φ qmn Y kl Y mn + O(φ 3 ) . (3.4.42)
The first term corresponds to the standard potential of a sphere reduction [START_REF] Cvetic | Consistent Kaluza-Klein sphere reductions[END_REF], but with a dilaton pre-factor which comes from the warped geometry of the reduction. This allows for a domain wall background that will be derived. To conclude, we have shown that the Lagrangian (3.4.22) with the Yukawa tensors given in (3.4.30) and (3.4.31) is maximally supersymmetric (up to higher fermion terms and total derivatives), under the transformations (3.4.12), (3.4.16) and (3.4.20). This complements the group theoretical analysis of [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF]. Notice however that θ kl never needed to be made explicit in the previous computations. Thus, in principle, θ kl allows for any CSO(p, q, r) consistent gauging, depending on its signature. As we are interested in a SO(9) gauged maximal supergravity, the embedding tensor will be set to θ kl ≡ g δ kl in the following.

Supersymmetry algebra

To end the discussion of the SO(9) gauged maximal supergravity, let us present the closure of the supersymmetry algebra. The analysis is more easily done on the bosonic fields where the commutator of two supersymmetry transformations closes on: general coordinate transformation, local Lorentz transformation, local SO(9) coset and SO [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF] gauge transformations

[δ 1 , δ 2 ] = ξ µ ∂ µ + δ Lorentz ω + δ SO(9)coset Ω + δ SO(9)gauge Λ . (3.4.43)
The parameters are given by

ξ µ = i ¯ I 2 γ µ I 1 , ω αβ = ξ µ ω µ αβ -2 ε αβ ¯ I 2 γ 3 J 1 A IJ -¯ I 2 J 1 ÃIJ , Λ kl = -ξ µ A µ kl -ρ -5/9 V -1 [ab] kl ρ 1/3 ¯ I 2 J 1 Γ ab IJ + 2 ¯ I 2 γ 3 J 1 Γ c IJ ϕ abc , Ω ab = -ξ µ Q ab µ + g Λ kl δ kq V -1q[a V l b] . (3.4.44)
In the following we will compute for every bosonic field, and up to quartic order fermionic terms, the commutator of two supersymmetry transformations, and we will show the closure on the bosonic transformations mentioned above. Sometimes the cancellation of linear combinations of Yukawa tensors are needed. These linear constraints precisely belong to the set of linear equations that were determined by maximal supersymmetry of the Lagrangian and are collected in Appendix B.1.

SuSy algebra on the bosonic fields

Let us begin with the dilaton :

[δ 1 , δ 2 ] ρ = ξ µ ∂ µ ρ -2ρ ¯ I 2 γ 3 J 1 B (IJ) -2ρ ¯ I 2 J 1 B[IJ] + q.f. (3.4.45) = ξ µ ∂ µ ρ + q.f. , (3.4.46) 
provided that

B (IJ) = 0 = B[IJ] .
The vielbein Concerning the vielbein, 

[δ 1 , δ 2 ] e µ α = D µ ξ α - i 18 ρ -1/3 Γ abc (IJ) 2¯ I 2 γ α γ 3 J 1 ϕ abc µ -eε µν ¯ I 2 γ α J 1 ϕ ν abc -2¯ I 2 J 1 A [IJ] e µ α -2¯ I 2 γ 3 J 1 A (IJ) ε α β e µ β + 2¯ I 2 γ 3 J 1 Ã(IJ) e µ α + 2¯ I 2 J 1 Ã[IJ] ε α β e µ β + q.f. = ξ ν ∂ ν e α µ + e α ν ∂ µ ξ ν + ω α β e β µ + q.f. , (3.4 

Let us focus now on the scalar fields

V k a , [δ 1 , δ 2 ] V m a = ξ µ P ab µ V m b + λ (ab) V m b + q.f. , (3.4.48) 
where according to (3.4.1),

ξ µ P ab µ V m b = ξ µ P ba µ V m b = -Q ba µ + V -1 bk ∂ µ V k a -g V -1 bk A µ lp δ pk V l a V m b = V m b -ξ µ Q ba µ + ξ µ ∂ µ V m a + g -ξ µ A µ lp δ pm V l a . (3.4.49)
We have introduced λ (ab) , which can be further simplified according to Appendix B.1

λ (ab) ≡ 2 ¯ I 2 γ 3 J 1 C(a K(I Γ b) J)K -¯ I 2 J 1 C (a K[I Γ b) J]K = 2 ρ -5/9 ¯ I 2 γ 3 J 1 Γ c IJ T d(a ϕ b)cd + ρ -2/9 ¯ I 2 J 1 Γ c(a T b)c . (3.4.50)
We then find that up to quartic order in the fermions, two supersymmetry transformations close on a diffeomorphism, a local SO(9) coset and a SO(9) gauge transformation with parameters given in (3.4.44) [

δ 1 , δ 2 ] V m a = ξ µ ∂ µ V m a + V m b Ω ba + g Λ l m V l a . (3.4.51)
Vector fields Let us mention also the closure of the supersymmetry algebra on the vector fields. When computing the commutator of two supersymmetry transformations, one gets the expected gauge transformation plus additional contributions from fermion shifts

[δ 1 , δ 2 ] A µ kl = D µ Λ kl + 2iρ -2/9 V -1kl [ab] ¯ I 2 γ µ J 1 Z ab IJ -¯ I 2 γ 3 γ µ J 1 Zab IJ . (3.4.52)
Upon using (B.1.1), the tensors Z ab IJ and Zab IJ become

Z ab IJ = 2C [a K(I Γ b] J)K -A K(I - 2 9 BK(I Γ ab J)K -2ρ -1/3 ϕ abc Cc (IJ) + ÃK(I + 5 9 B K(I Γ c J)K = 2C [a K(I Γ b] J)K - 7 9 + ρ∂ ρ BK(I Γ ab J)K -2ρ -1/3 ϕ abc Cc (IJ) - 4 9 + ρ∂ ρ B K(I Γ c J)K = 0 , (3.4.53)
and

Zab IJ = 2 C[a K(I Γ b] J)K + ÃK(I + 2 9 B K(I Γ ab J)K -2ρ -1/3 ϕ abc C c (IJ) -A K(I - 5 9 BK(I Γ c J)K = 2 C[a K(I Γ b] J)K - 7 9 + ρ∂ ρ B K(I Γ ab J)K -2ρ -1/3 ϕ abc C c (IJ) - 4 9 + ρ∂ ρ BK(I Γ c J)K = 4 δ IJ ρ -2/9 b ab -ρ -1/3 ϕ abc b c . (3.4.54)
As a result, the commutator on the vector fields (3.4.52) closes into the standard form

[δ 1 , δ 2 ] A µ kl = D µ Λ kl + ξ ν F νµ kl , (3.4.55)
provided their field strengths satisfy the relation

V kl ab F µν kl = 8 eε µν ρ -2/9 b ab -ρ -1/3 ϕ abc b c + fermions . (3.4.56)
This is precisely the equations of motion obtained by varying the Lagrangian (3.4.22) with respect to the auxiliary field Y k l . Thus, the algebra closes on-shell.

Scalar fields φ ijk After a lengthy computation involving the SO( 9) gamma matrix algebra and the equations (B.1.2), the supersymmetry algebra acting on the 84 scalar fields φ ijk reduces to

[δ 1 , δ 2 ] φ ijk = ξ µ D µ φ ijk + ρ 1/3 V -1 [abc] kl -¯ I 2 J 1 (3 C[a K[I Γ bc] J]K + 1 3 B K[I Γ abc J]K ) + ¯ I 2 γ 3 J 1 (3C [a K(I Γ bc] J)K + 1 3 BK(I Γ abc J)K ) = ξ µ ∂ µ φ ijk + 3g Λ l[i φ jk]l . (3.4.57)
Finally, let us study the auxiliary fields.

Scalars Y kl These scalar fields are defined by the projected subset of the auxiliary fields

Y kl ≡ δ p[l Y k] p .
Closure of the supersymmetry algebra on these fields requires the first-order field equation 

g D µ Y [kl] = -e µν J ν kl . ( 3 
[δ 1 , δ 2 ] Y kl = ξ µ ∂ µ Y kl + 2g Λ [k n Y l]n . (3.4.59)
This yields another check for the supersymmetry transformations of these fields proposed in (3.4.20).

Scalar sector

The equation of motion for the scalar fields V m a is written covariantly so that P ab µ appears directly. It is obtained by varying the Lagrangian with respect to a covariant scalar variation

δ Σ V m a ≡ V m c Σ ac , (3.5.2)
where Σ ab is symmetric and traceless:

D µ ρ P ab µ = V kl ab -1 9 δ ab M kl M mn M pq D µ φ kmp D µ φ lnq -2 ∂V pot ∂Σ ab , (3.5.3)
where

M kl ≡ V k a V l a .
Besides, the equation on the φ klm fields is given by

D µ D µ (N klm,pqr φ pqr ) = 1 36 e -1 ε µν ε klmnpqrst D µ φ npq D ν φ rst -F µν u r φ npq φ stu -6 ∂V pot ∂φ klm , (3.5.4)
with N klm,pqr ≡ ρ 1/3 V (klm) abc V (pqr) abc .

Vector and auxiliary fields

Eventually, the vector fields and auxiliary fields satisfy the first-order equations

V kl ab F µν kl = 8 e ε µν ρ -2/9 b ab -ρ -1/3 ϕ abc b c , (3.5.5) ρ W kl ab P ab µ -ρ -2/3 ϕ bcd ϕ acd µ = e ε µν D ν Y [kl] - 1 54 ε abcdef ghi W kl aj ϕ bcj ϕ def ϕ ν ghi ,
with the scalar tensor W kl ab = δ m[k V l] a V -1bm . Let us discuss the consistency of these first-order equations: as we are in two dimensions, the Bianchi identity associated with the first equation is trivial. However, the second equation leads to a non-trivial second order equation when contracted with a covariant derivative D µ . In particular, it involves the scalar equations of motion. Using (3.5.4) and the first duality equation (3.5.5), we find

-2 W kl ab ∂V pot ∂Σ ab -6 ∂V pot ∂φ mn[k φ l] mn = e -1 ε µν F µν m [k Y l]m = -4 δV pot δY m[k Y l] m (3.5.6) i.e. W kl ab ∂V pot ∂Σ ab + 3 ∂V pot ∂φ mn[k φ l] mn -2 δV pot δY m[k Y l] m = 0 . (3.5.7)
This is nothing but the gauge invariance of the potential, satisfied by construction. Thus, the set of first order and second order bosonic field equations are consistent.

Domain wall solution

The scalar potential exhibits a part (3.4.42) that corresponds to the S 8 sphere reduction of the pure gravity sector, in type IIA supergravity. Nevertheless, the dilaton factor suggests that the ten dimensions ground state corresponds to an AdS 2 × S 8 geometry coupled to a dilaton. This implies that the two-dimensional theory supports a half-supersymmetric domain wall solution instead of a pure AdS geometry [START_REF] Boonstra | The domain wall / QFT correspondence[END_REF][START_REF] Bergshoeff | The Domain walls of gauged maximal supergravities and their M-theory origin[END_REF][START_REF] Bergshoeff | Supersymmetric Domain Walls[END_REF]. In order to find such a solution, we study the Killing spinor equations of the theory obtained by imposing the fermionic supersymmetry transformations (3.4.16) to vanish. As we are looking for a ground state, the Killing spinor equations will be evaluated at the origin of the scalar target space:

V m a = δ a m , φ klm = 0 = Y kl . (3.5.8)
In this truncation, the fermionic supersymmetry transformations reduce to

0 ! = δ ψ I µ = D µ I + 7i 4 g ρ -2/9 γ µ I , 0 ! = δ ψ I 2 = - i 2 ρ -1 (∂ µ ρ) γ 3 γ µ I + 9 4 g ρ -2/9 γ 3 I , 0 ! = δ χ aI = 0 . (3.5.9)
Given the domain wall ansatz for the metric

ds 2 = e 2A(r) dt 2 -dr 2 , (3.5.10)
and assuming a Killing spinor of the form I = f (r) I 0 , the equations (5.3.10) are solved by

f (r) = f 0 r 7/4 , A(r) = A 0 + 7 2 ln r , ρ(r) = (gr) 9/2 . (3.5.11)
Moreover, the constant spinor 0 must satisfy the projection condition

γ 1 I 0 = -i I 0 . (3.5.12)
This implies that the solution is half-supersymmetric and it is straightforward to verify that (3.5.11) is a solution of the equations of motion (3.5.1). Setting the constant A 0 = 0, the metric and associated Ricci scalar are

ds 2 = r 7 dt 2 -dr 2 , R = 35 2 1 r 2 . (3.5.13)
This is a two-dimensional domain wall solution corresponding to the D0-brane near-horizon geometry [START_REF] Boonstra | The domain wall / QFT correspondence[END_REF][START_REF] Bergshoeff | The Domain walls of gauged maximal supergravities and their M-theory origin[END_REF].

Auxiliary fields

Considering the Lagrangian (3.4.22), one may consider the possibility to rewrite it using the equations of motion of the auxiliary fields. In particular, integrating out the Y k l fields will lead to a kinetic term for the vector fields. This reminds us the expression of the ungauged Lagrangian obtained by dimensional reduction of the eleven-dimensional maximal supergravity on a T 9 torus. More explicitly, let us start with the duality equation (3.5.5),

F µν kl = 4ge ε µν ρ -13/9 M -1 kp M -1 lq + 2ρ -2/3 φ klm M mn φ npq Y pq + ge 18 ε µν ρ -13/9 M -1 kp M -1 lq + ρ -2/3 φ klm M mn φ npq ε pqrstuvxy φ zrs φ z tu φ vxy + fermions . (3.5.14)
Invert it in order to express the Y in terms of the field strength

Y kl = - g -1 8 
e -1 ρ 13/9 O -1 kl,pq µν F µν pq + . . . (3.5.15) where the inversion matrix is given by is generated. This expression should be obtained by dimensional reduction of type IIA on a S 8 sphere. As the field strengths are defined by

O kl,pq ≡ M -1 kp M -1 lq + 2 ρ -2/
F µν kl ≡ 2∂ [µ A ν] kl + 2 g δ pq A [µ p[k A ν] l]q , (3.5.18)
the limit g → 0 can be considered and leads to the ungauged theory (3.2.8) involving Maxwell vector fields. Indeed, this result can be seen up to quadratic order in the φ klm fields when the operator O -1 is approximately given by

O -1 kl,pq M kp M lq -2 ρ -2/3 φ rst M kr M ls M tu M pv M qw φ uvw + . . . (3.5.19)
Then, taking the kinetic terms for the vector fields from the Lagrangian (3.2.8), Actually the formulation of the theory which involves Yang-Mills kinetic terms for the vector fields, will be of primary interest to study consistent embeddings in higher dimensions. Indeed, the Kaluza-Klein reduction gives rise to FF terms in the Lagrangian, as we saw in (3.2.8). This will be the starting point of the construction of consistent truncations of type IIA supergravity that will be discussed in the next chapter.

e -1 L FF = - 1 16 ρ 19/9 M -1kl F µν k F µν l - 1 8 ρ 13/9 F µν kl + φ klp F µν p M km M ln (F µν mn + φ mnq F µν q ) (3.

Summary

The construction of the SO(9) gauged maximal supergravity in two dimensions was the central point of this chapter. After recalling the main features of the ungauged theory, the vector field content transforming in the basic representation of e (9,9) was examined. A new difficulty but also a richness arose with the infinite dimensional structure of symmetries. Then, all consistent gaugings were classified by an embedding tensor which allowed to find the minimal coupling for gauging SO [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF]. Explicit computations established the supersymmetry of the theory and showed for example the generation of a scalar potential, accounting for the gauging which was performed for the entire class of SO(p, 9 -p) and CSO(p, q, 9 -p -q) groups. Let us stress that it constitutes a first non-trivial gauging of maximal supergravity in two dimensions. A closer study of the potential shows the existence of a domain wall background. This was confirmed by solving the Killing spinor equations. Then, one may wonder what is the higher dimensional origin of this solution. The next chapter answers this question and provides an explicit embedding in ten and eleven dimensions. Besides, equipped with the domain wall ground state of (3.5.11), one can study fluctuations propagating around it. According to the DW/QFT correspondence, informations about matrix models, such as the BFSS model, can be extracted from the study of the gravity side excitations. Thus, the holography of domain wall solutions allows for a test of the DW/QFT correspondence and may shed a new light on the quantum matrix models. A detailed discussion of this subject will be at the core of the last chapter.

Chapter 4

Consistent truncations of supergravity 4.1 Introduction

The properties of the D3-brane solution of type IIB superstring theory is at the core of the AdS/CFT correspondence [START_REF] Maldacena | The Large N limit of superconformal field theories and supergravity[END_REF]. As discussed earlier, this correspondence actually extends to all the Dp-branes of IIA and IIB superstrings, whose near horizon geometry yields an AdS p+2 × S 8-p spacetime, with a non-vanishing dilaton for p = 3. The lowenergy excitations on the gravity side are expected to be described by effective theories resulting from Kaluza-Klein reduction on the sphere. When restricted to the massless sector, they correspond to maximal SO(9 -p) gauged supergravity in (p + 2) dimensions. These gauged supergravities admit an AdS vacuum solution for p = 3 and domain-walls in the other cases. From this statement comes the generalization of AdS/CFT to the Domain-Wall/QFT correspondence. Accordingly, gravity side excitations are dual to operators on the gauge theory side, and as a remarkable fact, the computation of correlation functions of operators in the dual theory is facilitated when the lower-dimensional supergravity arises as a "consistent truncation". Indeed, then the massless modes of the effective lowerdimensional supergravity are dual to a subset of operators in the gauge theory side which is closed under operator product expansion (OPE). Thus, holography computations can be applied to the lower-dimensional SO(9 -p) gauged supergravity, without taking into account contributions originating from massive Kaluza-Klein modes.

Here, by a consistent truncation we mean that in the full non-linear lower-dimensional theory, non-vanishing solutions for the massless modes can be found, when all the massive Kaluza-Klein modes are put to zero. Then, a non-linear Kaluza-Klein ansatz can be constructed to uplift the massless sector of the lower-dimensional theory into the higherdimensional one. For instance, the Kaluza-Klein reduction on the n-tori T n , are always consistent, since the massless fields are singlet under the U (1) n isometry group of the lower-dimensional theory, whereas the massive fields are not. Thus, massless fields cannot appear as sources in the equations of motion of the massive fields, and the latter can be consistently put to zero. Any attempts to generalize the result to spheres, proves very difficult for an arbitrary field theory, and affordable only for some supergravities [121] [43]. In this sense, maybe the most impressive result is the demonstration that the reduction of eleven-dimensional supergravity on S 7 , once restricted to its massless sector, leads to N = 8, D = 4 maximal supergravity with gauge group SO(8) and is consistent [START_REF] De Wit | The Consistency of the S 7 Truncation in D = 11 Supergravity[END_REF]. In general, the reduction is shown to be consistent, only for some truncations of the massless bosonic sector of the lower-dimensional supergravity. For example, the reduction of type IIB supergravity on S 5 gives rise to the N = 8, D = 5 supergravity with gauge group SO [START_REF] Wess | Supergauge Transformations in Four-Dimensions[END_REF]. However, the consistency of the reduction has been proved only for the truncation to the U (1) 3 Cartan subgroup of SO [START_REF] Wess | Supergauge Transformations in Four-Dimensions[END_REF], where the bosonic sector of the theory contains: three Maxwell vector fields, the metric and scalar singlets under U (1) 3 [START_REF] Cvetic | Embedding AdS black holes in ten-dimensions and eleven-dimensions[END_REF].

Motivated by the DW/QFT correspondence, we aim to show the consistency of a truncation of the SO(9) gauged maximal supergravity in two dimensions. Indeed, it accounts for the low energy dynamics of type IIA supergravity excitations around an AdS 2 × S 8 background (coupled to a dilaton) which stands for the gravity side of the conjecture, in the D0-brane case. To this end, we will first truncate the bosonic sector of the SO(9) supergravity to singlets under the U (1) 4 Cartan subgroup. Then, particular solutions of the truncated theory will be derived. This will help us to establish the non-linear Kaluza-Klein ansatz for embedding the bosonic truncated sector into type IIA supergravity. Hence, all the ten-dimensional bosonic equations of motion (including Einstein' equations) will be solved explicitly, showing that the U (1) 4 truncation is consistent. Finally, applications will be presented such as the uplift to ten and eleven dimensions of particular solutions of the U (1) 4 theory. 

L = - 1 4 eρ R + 1 4 eρ P αβ µ P µ αβ + 1 12 eρ 1/3 V klm [αβγ] V npq [αβγ] D µ φ klm D µ φ npq + 1 648 ε µν ε klmnpqrst φ klm D µ φ npq D ν φ rst - g 4 ε µν F kl µν Y kl -e V pot (V, φ, Y ) . (4.2.1)
Here only 36 auxiliary fields Y kl ≡ Y [kl] are present, and remember that the 36 vector fields enter the covariant derivatives defined by

J αβ µ ≡ V -1αk ∂ µ V k β + gA kl µ V l β ≡ Q [αβ] µ + P (αβ) µ , D µ φ klm ≡ ∂ µ φ klm -3 g A p[k µ φ lm]p . (4.2.2)
The scalar potential is given up to quadratic order in the φ klm by

V pot = g 2 8 ρ 5/9 2 tr[M M ] -(tr M ) 2 + g 2 ρ -13/9 M km M ln Y kl Y mn + O(φ 2 ) , (4.2.3)
where the matrix M is defined by M ≡ (VV T ) -1 . This Lagrangian is left invariant, up to total derivative, by the following local SO(9) gauge transformation

∀Λ ∈ so(9) , δ Λ V m a = Λ kl δ lm V k a , δ Λ φ klm = 3Λ p[k φ lm]p , δ Λ A µ kl = D µ Λ kl , δ Λ Y kl = 2Λ m[k Y l]m . (4.2.4)

Selecting the Cartan subgroup

A Cartan subgroup of SO( 9) is given by the maximal torus SO(2) 4 (or equivalently named U (1) 4 ). It is the group of simultaneous rotations in four pairwise orhtogonal planes of R 9 , the ninth direction being fixed. Let us present a basis of generators of the associated Lie algebra so(2) 4 ⊂ so(9):

T 1 kl ≡ 2δ [k 1 δ l] 2 , T 2 kl ≡ 2δ [k 3 δ l] 4 , T 3 kl ≡ 2δ [k 5 δ l] 6 , T 4 kl ≡ 2δ [k 7 δ l] 8 . (4.2.5)
Then any gauge transformation will be parametrized by four real parameters

Λ kl ≡ Λ a T kl a , Λ ∈ R 4 . (4.2.6)
Thus, the gauge fields become Maxwell fields

A µ kl ≡ A a µ T a kl , δ Λ A a µ = ∂ µ Λ a . (4.2.7)
Following the work of [START_REF] Cvetic | Embedding AdS black holes in ten-dimensions and eleven-dimensions[END_REF] we will restrict to a subsector of the scalar fields where none of them are charged under U (1) 4 . Explicitly, the auxiliary scalars transforming in the adjoint of SO( 9) will reduce to

Y kl ≡ ρ 4 y a T a kl , a = 1, . . . , 4 (4.2.8)
where the factor ρ 4 has been chosen for later computational convenience. Thus, U (1) 4 being abelian, the Y kl are invariant under an U (1) 4 transformation

δ Λ Y kl = 0 . (4.2.9)
Now let us focus on the coset-space scalar fields. The local SO(9) coset symmetry is fixed so that the scalar matrix V is represented by

V = exp (v a h a ) , h 1 ≡ diag (1, 1 
, 0, 0, 0, 0, 0, 0, -2) , h 2 ≡ diag (0, 0, 1, 1, 0, 0, 0, 0, -2) , h 3 ≡ diag (0, 0, 0, 0, 1, 1, 0, 0, -2) , h 4 ≡ diag (0, 0, 0, 0, 0, 0, 1, 1, -2) . (4.2.10)

It is parametrized by four scalar fields v a . Owing to the fixation of the coset space symmetry, the scalars transform trivially under U (1)

4 δ Λ V = [Λ, V] = 0 . (4.2.11)
Finally, from the 84 scalars φ klm , only four are chosen to survive

φ 1 ≡ φ 129 , φ 2 ≡ φ 349 , φ 3 ≡ φ 569 , φ 4 ≡ φ 789 , (4.2.12)
where all other components vanish. These four fields correspond to the axions of dimensional reduction. According to (4.2.4) they also transform trivially under U (1)

4 δ Λ φ klm = 0 . (4.2.13)
Consequently, the bosonic sector of the theory reduces to

• the two-dimensional metric g µν ,

• five dilatons {ρ, v a } and four axions φ a ,

• four auxiliary fields y a and four Maxwell vector fields A a µ .

The additional dilaton ρ indicates the fact that the theory supports a domain wall solution.

We are now prepared to formulate the Lagrangian of the truncated theory.

Truncated Lagrangians

Plugging the U (1) 4 truncation ansatz into the SO(9) bosonic Lagrangian (4.2.1) yields the simpler Lagrangian

L = - 1 4 eρ R + 1 2 eρ a ∂ µ u a ∂ µ u a + 1 2 eρ 1/3 X -1 0 4 a=1 X -2 a (∂ µ φ a ) (∂ µ φ a ) - ρ 8 g ε µν F a µν y a -e V pot , (4.2.14) 
where we have defined

X a ≡ e -2va ≡ e -2 A ab u b , X 0 ≡ (X 1 X 2 X 3 X 4 ) -2 , (4.2.15)
with the matrix

A =     1/6 -1/ √ 2 -1/ √ 6 -1/(2 √ 3) 1/6 0 0 √ 3/2 1/6 0 2/3 -1/(2 √ 3) 1/6 1/ √ 2 -1/ √ 6 -1/(2 √ 3)     , (4.2.16)
and the abelian field strengths

F a µν ≡ 2 ∂ [µ A a ν]
. The potential can be evaluated from its expression (3.4.41). Indeed, the SO(9) irreducible tensors (3.4.31) simplify, and after some computation one finds

V pot = g 2 ρ 5/9 1 8 X 0 2 -8 a<b X a X b -4X 0 a X a + 1 2 ρ -2/3 a X -2 a (X 0 -4X a ) (φ a ) 2 + 2 ρ -4/3 a<b X -2 a X -2 b (φ a ) 2 (φ b ) 2 + 1 8 ρ -2 a X a ρ y a + 8 b =a φ b 2 + 2 ρ -4/3 a<b X -2 a X -2 b (φ a ) 2 (φ b ) 2 + 1 8 ρ -2 a X a ρ y a + 8 b =a φ b 2 + 1 2 ρ -8/3 X -1 0 a ρ y a φ a + 8 a φ a 2 . (4.2.17)
This is an eighth order polynomial expression in the φ a . Under the field redefinition

X a ≡ H a X 0 , φ a ≡ 1 2 ρ 1/3 η a X a X 1/2 0 , a = 1 . . . 4 , (4.2.18) 
it takes the simpler form

V pot = g 2 8 ρ 5/9 H -4/9 0 1 -8 a<b H a H b -4 a H a + a (1 -4H a ) η 2 a + a<b η 2 a η 2 b + a η -2 a (y a H a η a + η 0 ) 2 + η 0 + a y a H a η a 2 . (4.2.19) 
Here

H 0 ≡ H 1 H 2 H 3 H 4 and η 0 ≡ η 1 η 2 η 3 η 4 .

Integrating out the auxiliary fields

Another interesting formulation of the truncated theory is obtained when the auxiliary fields have been integrated out. The equations of motion for the auxiliary scalars y a lead to

y a = - b O -1 ab 1 2 (ge) -1 ρ 4/9 ε µν F b µν + 8 O bb c =b φ c , (4.2.20) 
with the matrix O ab ≡ X a X b (δ ab + η a η b ) ≡ X a X b m ab . It follows exactly from the truncation of (3.5.5). Thus, by replacing y a in the Lagrangian (4.2.14), a two-dimensional Maxwell term is generated together with a linear coupling in the field strengths.

L = - 1 4 eρ R + 1 2 eρ a (∂ µ u a ) (∂ µ u a ) + 1 2 eρ 1/3 H 2/3 0 a H -2 a (∂ µ φ a ) (∂ µ φ a ) - e 16 ρ 13/9 H 4/9 0 a,b H -1 a H -1 b m -1 ab F µν a F µνb + g 8 ρ η 0 a,b ε µν F µν a H -1 a η -1 b (1 + η 2 b ) m -1 ab -e V pot , (4.2.21) 
where the modified scalar potential is given by

V pot = g 2 8 ρ 5/9 H -4/9 0 1 -8 a<b H a H b -4 a H a + 9 η 2 0 1 + a η 2 a + a (1 -4H a ) η 2 a + a<b η 2 a η 2 b . (4.2.22) 
In this formulation, the H a will be called dilatons and the φ a scalars will be named axions.

Dilaton sector

Owing to the complicated structure of the potential when the axions are present, our work will be restricted to the subsector of vanishing axions: φ a ≡ 0. This so-called dilaton sector is parametrized by the two-dimensional fields {g µν , X a , ρ, A a µ }. Hence, our goal is to embed the dilaton sector into ten dimensions, with a suitable non-linear Kaluza-Klein ansatz.

Lagrangian

For φ a ≡ 0, the Lagrangian (4.2.21) takes the form

L = - 1 4 eρ R + 1 2 eρ a ∂ µ u a ∂ µ u a - 1 16 eρ 13/9 H 4/9 0 a H -2 a F µν a F µν a - 1 8 eg 2 ρ 5/9 H -4/9 0 1 -8 a<b H a H b -4 a H a . (4.2.23) 
It is in accordance with the truncations of the maximal AdS supergravities in (D = 4, 5, 7) described in [START_REF] Cvetic | Embedding AdS black holes in ten-dimensions and eleven-dimensions[END_REF]. Again, the particular behaviour of the fifth dilaton ρ comes from the fact that the theory supports a domain wall solution.

Equations of motion

The equations of motion are more easily solved from the Lagrangian containing the auxiliary fields. For the dilaton sector, the Lagrangian is computed by inserting φ a = 0 in (4.2.14), which leads to

L = - 1 4 eρ R + 1 2 eρ a ∂ µ u a ∂ µ u a - ρ 8 g a ε µν F a µν y a - eg 2 8 ρ 5/9 H -4/9 0 1 -8 a<b H a H b -4 a H a + a (y a H a ) 2 . (4.2.24)
As a result, the equations of motion for the vector field simply state that ρ y a = constant , (

while the equations for the auxiliary fields yield

F a µν = g e ε µν ρ -4/9 H -4/9 0 H 2 a y a . (4.2.26) 
Besides, the scalar field equations are given by

0 = b ρ -1 ∇ µ (ρ ∂ µ u b ) A -1 b a + g 2 ρ -4/9 H -4/9 0 1 + 2 H a b =a H b + H a -2 b H b - 1 2 (y a H a ) 2 (4.2.27)
The traceless part of the Einstein equations writes

ρ -1 ∇ µ ∂ ν ρ + 2 a ∂ µ u a ∂ ν u a = 1 2 g µν ρ -1 ∇ ρ ∂ ρ ρ + 2 a ∂ ρ u a ∂ ρ u a , (4.2.28) 
and a combination of the dilaton and the trace part of the Einstein equations leads to

R = 2 a (∂ µ u a ) (∂ µ u a ) - 5 18 g 2 ρ -4/9 H -4/9 0 1 -8 a<b H a H b -4 a H a - 13 5 a (y a H a ) 2 , ρ -1 ∇ µ ∂ µ ρ = a,b ρ -1 ∇ µ (ρ ∂ µ u b ) A -1 b a + 9 2 g 2 ρ -4/9 H -4/9 0 1 -2 a H a . (4.2.29)

Particular solutions

Assuming that the scalars H a are constant is a natural hypothesis to compute particular solutions. Then, the scalar fields equations can be solved for y a :

(y a ) 2 = 2 H -2 a (1 + H a ) -4 + 4 b H b (H a -1) H 2 a . (4.2.30) 
For definiteness of the previous expression, we recall that the H a being exponential of the real valued fields v a , they cannot equal zero. The other field equations reduce to

F a µν = g e ε µν ρ -4/9 H -4/9 0 H 2 a y a 0 = ρ -1 ∇ µ ∂ ν ρ - 1 2 g µν ρ -1 ∇ σ ∂ σ ρ R = 1 2 g 2 ρ -4/9 H -4/9 0 11 -18 a H a + 16 a<b H a H b ρ -1 ∇ µ ∂ µ ρ = 9 2 g 2 ρ -4/9 H -4/9 0 1 -2 a H a (4.2.31) 
Now two simple cases can be identified :

• the case of vanishing field strengths, i.e. y a = 0. Equations (4.2.30) then imply that all scalar fields are equal

H 1 = H 2 = H 3 = H 4 ≡ H, (recall that H a > 0), with two distinct solutions H = 1 , or H = 1 6 . (4.2.32) 
The first choice (H = 1) together with a domain wall ansatz for the metric

ds 2 = e 2 A(r) dt 2 -dr 2 , (4.2.33) 
describes the half-supersymmetric domain-wall solution

ρ = (gr) 9/2 , A(r) = 7 2 ln r , R = 35 2 1 r 2 , (4.2.34) 
corresponding to the ten-dimensional D0-brane near-horizon geometry. The second choice (H = 1/6) does not lead to a supersymmetric solution.

• the AdS case: imposing a constant dilaton field ρ, equation (4.2.31) implies

a H a = 1 2 , (4.2.35) 
and the remaining equations of motion are solved by a two-dimensional AdS metric

ds 2 = f (r) dt 2 - 1 f (r) dr 2 , f (r) = -C + g 2 1 + 8 a<b H a H b 2 ρ 4/9 H 4/9 0 r 2 , F µν a = 2g ρ -4/9 H 2 a H -1 a -1 H 4/9 0 µν , r AdS = √ 2 ρ 2/9 H 2/9 0 g 1 + 8 a<b H a H b -1/2 = 2 R , (4.2.36) 
where C is an integration constant. We thus obtain a three-parameter family of pure AdS 2 solutions. The Killing spinor equations (5.3.10) show that these solutions break all supersymmetries. While the metric is locally AdS, it resembles the (r-t) section of non-rotating BTZ black hole [START_REF] Banados | The Black hole in three-dimensional space-time[END_REF][START_REF] Banados | Geometry of the (2+1) black hole[END_REF] with C being the mass of the spacetime.

Embedding into type IIA supergravity

Type IIA supergravity comes from dimensional reduction of eleven-dimensional supergravity on a circle. The massless bosonic sector contains: a ten-dimensional vielbein, a vector field and a dilaton descending from the eleven-dimensional vielbein, plus a threeform and a two-form coming from the eleven-dimensional three-form.

D = 11 E M Â A M N P ↓ ↓ D = 10 { E M A , B M , φ } { A M N P , A M N } (4.3.1) 
The theory described by the Lagrangian (4.2.23) will be embedded in the subsector of type IIA where the three-form and two-form are set to zero

A M N P = 0 = A M N . (4.3.2) 
This truncation originates from pure gravity in eleven dimensions. Given the Kaluza-Klein ansatz for the eleven-dimensional vielbein

E M Â = e -φ 6 E M A e 4 3 φ B M 0 e 4 3 φ (4.3.3) 
the eleven-dimensional action reduces to

S 11d = d 11 x - 1 4 e 11 R 11 = d 10 x - 1 4 e 10 R 10 + 1 2 e 10 ∂ φ 2 - e 3φ 16 e 10 F 2 (4.3.4) 
where

F M N ≡ 2 ∂ [M B N ] . (4.3.5) 
Hence, the Lagrangian of type IIA relevant for our study is given by

L = - 1 4 e 10 R 10 + 1 2 e 10 ∂ M φ ∂ M φ - 1 16 e 10 e 3φ F M N F M N , (4.3.6) 
where the signature of the tangent space metric is

η AB = diag (1, -1, . . . , -1) . (4.3.7) 
The associated ten-dimensional equations of motion come from Einstein equations in eleven dimensions (R 11 M N = 0) and are given by

0 = R 10M N - 1 2 g M N R 10 -2 ∂ M φ∂ N φ - 1 2 g M N (∂φ) 2 , (4.3.8) 
+ 1 4 e 3φ 2 F M P F N P - 1 2 g M N F F , (4.3.9) 
0 = ∇∂φ + 3 16 e 3φ F F , (4.3.10) 
0 = ∂ M e 10 e 3φ F M N , (4.3.11) 
plus the Bianchi identity satisfied by the field strength

∂ [M F N P ] = 0 . (4.3.12)
By an embedding of the two-dimensional theory in type IIA we mean that to any solution of the two-dimensional equations of motion derived from the Lagrangian (4.2.23) or equivalently (4.2.24), we can associate a solution of the ten-dimensional field equations (4.3.8) and (4.3.12). If it is possible, the dilaton sector of the U (1) 4 truncated supergravity in two dimensions, will be a consistent truncation of type IIA supergravity.

{g µν , X a , ρ , A a µ } embedding -------→ {g M N , φ , B M } (4.3.13)

Non-linear Kaluza-Klein ansatz

To perform the embedding of the dilaton sector in type IIA supergravity, we construct a non-linear Kaluza-Klein ansatz. It is given by generalizing the AdS reduction ansaetze of [START_REF] Cvetic | Embedding AdS black holes in ten-dimensions and eleven-dimensions[END_REF] to a non-constant dilaton ρ. To make the ansatz explicit, the ten-dimensional coordinates are split into {x M } -→ {x µ , µ a , σ a } with the labels µ = 0, 1, and a = 1, . . . , 4. Therefore, the line element on the eight-dimensional round sphere is given by

ds 2 8 = dµ 0 2 + 4 a=1 dµ a 2 + µ 2 a dσ a 2 , (4.3.14) 
with

µ 2 0 ≡ 1 - a µ 2 a and 0 ≤ µ 2 a ≤ 1 . (4.3.15) 
Then following [START_REF] Cvetic | Embedding AdS black holes in ten-dimensions and eleven-dimensions[END_REF], we perform a diagonal distortion of the sphere by introducing the four scalar fields {X a , a = 1 . . . 4}:

ds 2 8 = X -1 0 dµ 0 2 + 4 a=1 X -1 a dµ a 2 + µ 2 a dσ a 2 , (4.3.16) 
with

X 0 ≡ (X 1 X 2 X 3 X 4 ) -2 and X a = X a (x µ ) . (4.3.17) 
Thus, the metric part of the non-linear Kaluza-Klein ansatz as well as the ten-dimensional dilaton and two-form field strength can be formulated in analogy with the consistent sphere reductions [START_REF] Cvetic | Consistent Kaluza-Klein sphere reductions[END_REF], [START_REF] Cvetic | Consistent sphere reductions and universality of the Coulomb branch in the domain wall / QFT correspondence[END_REF] and [START_REF] Cvetic | Embedding AdS black holes in ten-dimensions and eleven-dimensions[END_REF] 

ds 2 10 = ∆ 7/8 ds 2 2 -g -2 ∆ -1/8 X -1 0 dµ 2 0 + a X -1 a dµ 2 a + µ 2 a (dσ a + g A a ) 2 , (4.3.18) with ∆ 
≡ 4 α=0 X α µ 2 α . (4.3.19) 
If not mentioned, the sums over a will always run from 1 to 4. Notice that on the contrary, the sum over α runs over 0 to 4. The ten-dimensional dilaton and two-form field strength are given by

φ = 1 3 log ∆ -9/8 , (4.3.20) 
F = 2 g 4 α=0 X 2 α µ 2 α -∆X α + g ∆ X 0 ε 2 + 1 2g 2 a X -2 a d(µ 2 a ) ∧ (dσ a + gA a ) ( * 2 F a ) + 1 2g 4 α=0 X -1 α * 2 dX α ∧ d(µ 2 α ) .
These formulae are by themselves a great achievement, and the answer would have been found if we were to neglect the dilaton. Indeed, the ansatz realizes "only" an embedding of the ρ ≡ 1 subsector of the dilaton sector. We have shown that all the ten-dimensional equations of motion are satisfied, provided that the two-dimensional fields {g µν , X a , A a µ } satisfy their own equation of motion, with ρ ≡ 1. However, we are interested in the embedding of the whole dilaton sector, where ρ is non-constant. The generalization of (4.3.18) is a difficult challenge since ρ can enter the ansatz almost everywhere. We have thus proceeded in several steps that we present below.

First: find the embedding for constant ρ = 1 Now we would like to generalize the ansatz (4.3.18) to the case of an arbitrary constant ρ. The ten-dimensional equations of motion must be solved after we have introduced constant ρ factors in (4.3.18). A possible way to achieve this, consist in adding ρ factors in the Kaluza-Klein ansatz, such that the ten-dimensional equations of motion do not change. This is possible by exploiting the symmetries of the equations of motion (4.3.8) and (4.3.12). Indeed, the scaling symmetries

g M N → λ 2 g M N , F M N → λ µ F M N , φ → φ - 2 3 log µ , (4.3.21) 
leave the ten-dimensional equations of motion invariant. Thus, the ansatz (4.3.18) can be modified according to (4.3.21), and will be still an embedding of the ρ ≡ 1 dilaton sub-sector. It is also the case if we rescale the coupling constant g by a constant factor. However, this will break the structure of the S 8 line element in the Kaluza-Klein ansatz. Therefore, a better way to implement the rescaling is to accompany it with a field redefinition of the two-dimensional vector potential

g -→ κ g , A a -→ κ -1 A a . (4.3.22) 
These symmetries modify the ansatz (4.3.18) according to

ds 2 10 = λ 2 ∆ 7/8 ds 2 2 -λ 2 κ -2 g -2 ∆ -1/8 X -1 0 dµ 2 0 + a X -1 a dµ 2 a + µ 2 a (dσ a + g A a ) 2 φ = 1 3 log ∆ -9/8 - 2 3 log µ , (4.3.23) 
F = λµ κ 2 g 4 α=0 X 2 α µ 2 α -∆X α + g ∆ X 0 ε 2 + κ -3 2g 2 a X -2 a d(µ 2 a ) ∧ (dσ a + gA a ) ( * 2 F a ) + κ -1 2g 4 α=0 X -1 α * 2 dX α ∧ d(µ 2 α ) ,
but it is still an embedding of the ρ ≡ 1 dilaton subsector. Now the idea is to substitute {κ, λ, µ} by arbitrary functions of ρ. The simplest ansatz we can imagine is

κ ≡ ρ A , λ ≡ ρ B , µ ≡ ρ C , (4.3.24) 
where ρ is by assumption a constant. Thus, the Kaluza-Klein ansatz is generalized to

ds 2 10 = ρ 2B ∆ 7/8 ds 2 2 -ρ 2(B-A) g -2 ∆ -1/8 X -1 0 dµ 2 0 + a X -1 a dµ 2 a + µ 2 a (dσ a + g A a ) 2 φ = 1 3 log ρ -2C ∆ -9/8 , (4.3.25) 
F = ρ B+C ρ A 2 g 4 α=0 X 2 α µ 2 α -∆X α + g ∆ X 0 ε 2 + ρ -3A 2g 2 a X -2 a d(µ 2 a ) ∧ (dσ a + gA a ) ( * 2 F a ) + ρ -A 2g 4 α=0 X -1 α * 2 dX α ∧ d(µ 2 α ) .
where the coefficients {A, B, C} remain to be determined so that (4.3.25) represents an embedding of the ρ ≡ constant dilaton sector.

Second step: use particular solutions

At this point, we use the particular solutions that were derived before, to determine completely the Kaluza-Klein ansatz (4.3.25). In particular, with the AdS solutions (4.2.36), a family of constant dilaton solutions is at hand. They enable to determine two of the three dilaton powers

B = -7/72 , C = 7/8 . (4.3.26) 
To get the last power A, we try to embed the domain-wall solution (4.2.34). Being a very simple solution, it also provides a consistency check on the possibility to extend the Kaluza-Klein ansatz to the embedding of non-constant dilaton solutions. Notice that with solution (4.2.34) the fields X a = 1 and A a = 0. Thus, the reduction ansatz is given by

ds 2 10 = ρ -7/36 ds 2 2 -g -2 ρ -2A dΩ 2 8 , φ = - 7 12 C log ρ , F = -7ρ A+7/9 g ε 2 , (4.3.27) 
where dΩ 2 8 denotes the line element of the unit 8-sphere. Notice in particular that the Bianchi identity dF = 0 is trivially satisfied since ρ is a function of the two-dimensional coordinates. The embedding of the domain-wall fixes the last dilaton power

A = -2/9 . (4.3.28) 
In the light of the previous results, we are led to the following general claim: The Kaluza-Klein ansatz for the ten dimensional metric

ds 2 10 = ρ -7/36 ∆ 7/8 ds 2 2 -g -2 ρ 1/4 ∆ -1/8 X -1 0 dµ 2 0 + a X -1 a dµ 2 a + µ 2 a (dσ a + g A a ) 2 (4.3.29)
the dilaton and two-form field strength

φ = 1 3 log ρ -7/4 ∆ -9/8 , (4.3.30) 
F = 2 ρ 5/9 g 4 α=0 X 2 α µ 2 α -∆X α + ρ 5/9 g ∆ X 0 ε 2 + ρ 13/9 2g 2 a X -2 a d(µ 2 a ) ∧ (dσ a + gA a ) ( * 2 F a ) + ρ 2g 4 α=0 X -1 α * 2 dX α ∧ d(µ 2 α ) ,
realize an embedding of the whole dilaton sector introduced in page 73.

Last step: perform the complete embedding computation

To prove the previous claim is a hard task, since it implies to solve all the tendimensional equations of motion (4.3.8)-(4.3.12) (including Einstein' equations) with ansatz (4.3.29)-(4.3.30), using the two-dimensional field equations derived from (4.2.23). This is what we have done after lengthy calculations using the software: Mathematica. Thus, the claim is true and we have an explicit embedding of the dilaton sector. Consequently, the Cartan truncation of the SO(9) maximal supergravity in two dimensions, once restricted to the dilaton sector, is consistent.

Applications

Embedding the domain-wall

As an application, we would like to embed the bosonic two-dimensional domain-wall solution (4.2.34) into eleven dimensions. First the "ansatz 10 ": (4.3.29)-(4.3.30) is used to go from 2d to 10d

     ds 2 2 = r 7 dt 2 -dr 2 ρ = (gr) 9/2 X a = 1 ansatz 10 ------→          ds 2 10 = (gr) -7/8 r 7 dt 2 -(dr 2 + r 2 dΩ 2 8 ) φ = - 21 8 ln(gr) 
F = d g 7/2 r 7 dt (4.4.1)
The ten-dimensional metric given by ds 2 10 = (gr) -7/8 r 2 r 5 dt 2 -

dr 2 r 2 -dΩ 2 8 (4.4.2)
describes a warped AdS 2 × S 8 geometry. Furthermore, if we go to the string frame by rescaling the metric (see Appendix A) and redefining the dilaton and the field strength

g s µν ≡ e φ g µν , φ = 2 φ , F ≡ 1 g s F , g s ≡ string coupling constant , (4.4.3) 
the type IIA action associated to the Lagrangian (4.3.6) reads

S IIA = - 1 4 d 10 x e 10 e -2 φ R + 4(∂ φ) 2 + g 2 s 4 F 2 . (4.4.4) 
Following this parametrization, we introduce the D0-brane charge Q and radius r 0 :

Q ≡ l 7 s g s N = r 7 0 , (4.4.5) 
where l s is the string length and N is a positive integer. After performing the redefinition

g → 1 r 0 , t → t r 7/2 0 , (4.4.6) 
the solution (4.4.1) becomes

ds 2 10 = r r 0 7/2 dt 2 - r r 0 -7/2 (dr 2 + r 2 dΩ 2 8 ) φ = - 21 4 ln r r 0 F = d g -1 s r r 0 7 ∧ dt . (4.4.7) 
This corresponds to the limit (r << r 0 ) of

ds 2 10 = 1 + r 0 r 7 -1 2 dt 2 -1 + r 0 r 7 1 2 (dr 2 + r 2 dΩ 2 8 ) , φ = 3 4 ln 1 + r 0 r 7 , B = g -1 s 1 + r 0 r 7 -1 -1 , (4.4.8) with 
F = d B . (4.4.9) 
It describes a probe D0-brane feeling the influence of a stack of N source D0-branes at radial distance r, see [START_REF] Matsuo | Linear responses of D0-branes via gauge/gravity correspondence[END_REF], [START_REF] Youm | Generalized conformal quantum mechanics of D0-brane[END_REF] and [START_REF] Maldacena | Branes probing black holes[END_REF]. Having discussed the ten-dimensional solution (4.4.1), we are now prepared to embed it in eleven dimensions. According to (4.3.3), the eleven dimensional metric is given by 

ds 2 11 = e -
F = d g 7/2 r 7 ∧ dt ansatz 11 -----→ ds 2 11 = -2g -7/2 dtdz -gr -7 dz 2 -dr 2 + r 2 dΩ 2 8 (4.4.11) with, dt dz ≡ 1 2 (dt ⊗ dz + dz ⊗ dt) . (4.4.12) 
After making successively (and from left to right) the change of variables,

t → g 7/2 t , z → -z , x + = t + z √ 2 , (4.4.13) 
r → g -1 r , z → t -z , x -= t -z √ 2 , (4.4.14) 
the eleven dimensional solution takes the simple form

ds 2 11 = 2dx + dx -+ 2(1 -r -7 )(dx -) 2 - 1 g 2 (dr 2 + r 2 dΩ 2 8 ) . (4.4.15) 
This is a pp-wave in eleven dimensions, see [START_REF] Hull | Exact pp Wave Solutions of Eleven-dimensional Supergravity[END_REF] and [START_REF] Gauntlett | Pp-waves in 11 dimensions with extra supersymmetry[END_REF], and [START_REF] Townsend | The M(atrix) model / AdS(2) correspondence[END_REF].

Application to the Rotating D0-brane

The D0-brane solution

The large brane charge limit of the rotating 0-brane [START_REF] Cvetic | Embedding AdS black holes in ten-dimensions and eleven-dimensions[END_REF] yields a ten-dimensional solution of the equations of motion (4.3.8) that falls into the parametrization (4.3.29)-(4.3.30) where the two-dimensional fields are given by

ds 2 2 = (gr) 7 h(r) -7/9 f (r) dt 2 -h(r) 2/9 f (r) -1 dr 2 , A a (r) = 1 -H a (r) l a 2mg 5 dt , ρ(r) = (gr) 9/2 h(r) -1/2 , X a (r) = h(r) -2/9 H a (r) , (4.4.16) 
with free constants g, m, l a , and the functions

h(r) ≡ a H a (r) , H a (r) ≡ 1 + l 2 a r 2 -1 , f (r) ≡ 1 - 2m h(r) r 7 . (4.4.17) 
The ansatz (4.4.16) is a solution of the two-dimensional equations of motion, but according to the Killing spinor equations obtained from the SO(9) supersymmetry variations (3.4.16) in the U (1) 4 truncation, it breaks all supersymmetries. From a two-dimensional point of view, the full metric given in (4.4.16) describes a "domain-wall black hole" whose structure will be understood below through particular cases. The associated curvature approaches (4.2.34) for (r → +∞):

R = 35 2 r 2 + O r -23/9 , (4.4.18) 
whereas at r = 0, it behaves like Case where m = 0 = l a Notice that in the limit (m, l a ) → 0 , the half-supersymmetric domain-wall solution (4.2.34) is recovered.

R = - 7 
Massless case Moreover, it follows that in the massless limit m → 0, with arbitrary angular momenta l a :

ds 2 2 = (gr) 7 h(r) -7/9 dt 2 -h(r) 2/9 dr 2 , A a (r) = 0 , ρ(r) = (gr) 9/2 h(r) -1/2 , X a (r) = h(r) -2/9 H a (r) . (4.4.20) 
This ansatz is also a solution of the two-dimensional BPS equations and preserves half of the supersymmetries.

Non-rotating case Let us study now the case of vanishing momenta l a = 0. The ansatz (4.4.16) reduces to The solution corresponds to a ten-dimensional Schwarzschild black hole [START_REF] Myers | Black Holes in Higher Dimensional Space-Times[END_REF] coupled to a non-constant dilaton. Thus, in the general case where the physical parameters comprising the mass m and four angular momenta l a are non-vanishing, the solution (4.4.16) is called a domain-wall black hole. In the following, the occurrence of singularities will be studied and when it is needed horizons will be characterized.

ds 2 2 = ρ 14/9 f (r) dt 2 -f (r) -1 dr 2 , A a (r) = 0 , ρ(r) = (gr) 9/2 , X a (r) = 1 , ( 4 

Singularity and Horizon in the rotating case

Singularity In this section the possibility for the metric (4.4.16) to be singular is examined. Non-zero angular momenta l a will be considered for simplicity, even if the analysis may be performed in the case where some momenta (but not all) are put to zero. The only contribution in the metric that can lead to a singularity is the function f (r). Indeed, h(r) ≡ a H a (r) where the behavior of the H a (r) is depicted in 

H a (r) = 1 + l 2 a r 2 -1 , H a (r) = 2l 2 a r 3 1 + l 2 a r 2 -2 > 0 ∀ r ∈ ]0, +∞[ , H a (r) ∼ r→0 l -2 a r 2 → r→0 0 , H a (r) ∼ r→+∞ 1 H a (r) ∼ r→0 2r l -2 a → r→0 0 , H a (r) ∼ r→+∞ 2l 2 a r 3 → r→+∞ 0 . (4.4.24) 
So, the behavior of h is deduced from the following computations r h (r)

h(r) 0 +∞ + 0 0 1 1 Figure 4.2: Behavior of h h(r) > 0 , h (r) = 2h(r) r 4 - a H a (r) > 0 , ∀ r ∈ ]0, +∞[ h(r) ∼ r→0 a l -2 a r 8 → r→0 0 , h(r) ∼ r→+∞ 1 . (4.4.25)
On the contrary,

f (r) ≡ 1 - 2m h(r) r 7 , f (r) = 4m h(r) r 8 a H a (r) - 1 2 . (4.4.26)
Since a H a (r) -1 2 is strictly increasing in ]0, +∞[ and starts from a negative value and ends at a positive one, there is exactly one root of f (r) = 0 called r. The behavior of f (r) can then be derived and is summarized in Since h(r) and r depend only on the angular momenta l a , and because the mass m is an independent positive constant, it is possible to choose the mass and the angular momenta so that f (r) = 0 (or f (r) < 0). In this case, f (r) = 0 has exactly one (two) root(s) which can play the role of a singularity. On the contrary, if the physical parameters are chosen so that f (r) > 0 , no singularity occurs. In the following, m and the l a are chosen in such a way that a singularity of the metric is present. The larger root will be named r 0 .

Horizon Unless otherwise mentioned, the discussion will be held in two-dimensional space-time. The Ricci scalar is well defined on ]0, +∞[ but diverge at r = 0. In particular, it is well defined at r = r 0 , as well as the volume form ε 2d = (gr) 7 h(r) -5/9 dt∧ dr . This is why in analogy to higher dimensions, the point r = r 0 will be considered as the "horizon" of the singularity. As a natural question one may wonder what is the behavior of the two-dimensional fields near the horizon. An answer is provided in the next section.

The near-horizon limit

In this section the behavior of the two-dimensional fields near the horizon will be described. To this end, the horizon will be explored by expanding the coordinates according to

r → r 0 + r , t → ρ -7/9 0 h -1/9 0 t , (4.4.31) 
where

ρ 0 ≡ (gr 0 ) 9/2 h -1/2 0 , h 0 ≡ 4 a=1 H a0 , H a0 ≡ 1 + l 2 a r 2 0 -1 . (4.4.32)
Then will be sent to zero. In this way, the two-dimensional volume form remains welldefined while we are taking the limit → 0. The resulting fields describe a near-horizon AdS 2 configuration 

ds 2 = f 0 dt 2 - 1 f 0 dr 2 , F a tr = 2g ρ -4/9 0   H 2 a0 H -1 a0 -1 h 4/9 0   , ( 4 

AdS 2 × M 8 solutions with non-vanishing axions

Looking for particular solutions of the field equations derived from (4.2.14) we restricted our study to the dilaton sector where the axions were put to zero. This led to the construction of a Kaluza-Klein ansatz for the embedding of the two-dimensional theory into type IIA supergravity. In addition, the generalization of the construction to nonvanishing axions would be of primary interest. As seen before, particular solutions of the two-dimensional equations provide important insights for finding the embedding. Thus one may wonder whether it is possible to find two-dimensional solutions with non-vanishing axions.

Owing to the form of the potential (4.2.19), finding a general solution seems difficult. As a natural idea we propose to generalize the AdS 2 solution (4.2.36) to the case of nonvanishing axions. Let us start with an AdS ansatz In summary, the unknown of the problem are {ρ, H a , y a , η a } and they may be determined by the equations

ds 2 2 = f (r) dt 2 - 1 f (r) dr 2 (4.
V pot = 0 , ∂V pot ∂H a = 0 , ∂V pot ∂η a = 0 . (4.5.8)
Actually, the dilaton ρ is not constrained by these equations, so it will be considered as a free parameter and we are left with twelve unknown parameters {H a , y a , η a } and nine equations (4.5.8). Assuming that none of the parameters are zero, the structure of the potential

V pot = g 2 8 ρ 5/9 H -4/9 0 1 -8 a<b H a H b -4 a H a + a (1 -4H a ) η 2 a + a<b η 2 a η 2 b + a η -2 a (y a H a η a + η 0 ) 2 + η 0 + a y a H a η a 2 , (4.5.9) 
can be simplified by making the following change of variables

y i → Y i -1 H -1 i η -1 i η P . (4.5.10)
Then, the potential is given by 

V = H -4/9 0 1 -8 a<b H a H b -4 a H a + a (1 -4H a ) η 2 a + a<b η 2 a η 2 b + η 2 0 a η -2 a Y a2 + a Y a -3 2 , ( 4 
η 2 b + 2η -1 a η 2 0 b =a η -2 b Y b + Y a b Y b -3 4H a = 1 + b =a η 2 b + η -2 a η 2 0 b =a η -2 b Y b + Y a b Y b -3 . (4.5.12)
This leaves us with five equations for eight unknowns. The counting suggest that there are several families of solutions, however the algebraic equations (4.5.8) are too complicated to allow for finding the general explicit solution.

An Explicit solution

As an example we give an explicit solution found by further truncating the system 

H 1 ≡ H 3 , H 2 ≡ H 4 ,

Summary

This chapter was dedicated to the study of the bosonic Cartan truncation of the SO(9) gauged maximal supergravity in two dimensions. It has been shown that the dilaton sub-sector can be consistently embedded in type IIA supergravity. Consequently, an explicit uplift to ten and eleven dimensions is at hand, and it may be used to identify the higher-dimensional origin of particular solutions of the two-dimensional supergravity. As examples we applied the uplift to the near-horizon of the D0-brane, and also to particular AdS 2 solutions. They could be interpreted as limits of the rotating D0-brane solution of type IIA supergravity.

We have already mentioned that the domain-wall solution is important in the DW/QFT correspondence. Indeed, it is the background on the gravity side around which the excitations are encoded into a dual one dimensional quantum field theory. The next chapter deals with the holography of this solution and the computation of correlation functions on the gravity side. The properties of the D3-brane solution in supergravity and superstring theory led Maldacena to postulate a correspondence between type IIB superstring theory on an AdS 5 ×S 5 background and N = 4, D = 4 super Yang-Mills theory, see [START_REF] Petersen | Introduction to the Maldacena conjecture on AdS / CFT[END_REF] and [START_REF] Hoker | Supersymmetric gauge theories and the AdS / CFT correspondence[END_REF] for a review. More precisely, the conjecture states the equivalence between

• Type IIB superstring theory on AdS 5 × S 5 , with string coupling constant g s , where: AdS Then the following identification is done

g s = (g YM ) 2 , L 4 = 4πg s N (α ) 2 , (5.1.2)
where α is the square of the String length: l s = √ α . This conjecture has three forms that differ in strength. Concerning the gravity side: the strongest one relates the full quantum string theory on AdS 5 ×S 5 to the full quantum N = 4, D = 4 super Yang-Mills theory with gauge group SU (N ). The second and weaker one deals with the classical string theory approximation (g s << 1) and is dual to the super Yang-Mills theory in the 't Hooft limit, which corresponds to a topological expansion of planar Feynman diagrams [START_REF] Hooft | A Planar Diagram Theory for Strong Interactions[END_REF]. Finally, on the gravity side, the last and weakest form concerns the classical supergravity approximation (α << 1) and corresponds to the super Yang-Mills theory after taking successively the 't Hooft limit and the large 't Hooft coupling constant limit. In this regime, the Quantum field theory is considered at strong coupling, and perturbation theory is not applicable. The three levels of the conjecture are summarized in Table 5.1.

Symmetries

As a hint for such a correspondence, one may consider that the symmetries of the type IIB theory on AdS 5 × S 5 and the N = 4, D = 4 super Yang-Mills do match. Indeed, let us consider the bosonic global symmetries. Here, the subscript R stands for the R-symmetry group of the supersymmetric theory.

Correlation Functions

Finally, let us mention that according to the correspondence, correlation functions of CFT operators on the gauge side can be generated from the gravity side. More precisely, to every single trace operators O on the SYM side, a boundary field φ (0) can be associated in order to form a generating functional for correlation functions Γ[φ (0) ],

exp -Γ[φ (0) ] ≡ exp ∂H d 4 x φ (0) O .
(5.1.4)

Here, ∂H stands for the boundary of Euclidean AdS 5 , that can be viewed as

H = {(r, x) , r > 0, x ∈ R 4 } , (5.1.5) 
with Poincaré metric given by

ds 2 = 1 r 2 dr 2 + (d x) 2 . (5.1.6)
This generating functional can be computed from an action for type IIB superstring on AdS 5 × S 5 by the following prescription. Let us consider the correspondence in the supergravity approximation for instance. The action is the type IIB supergravity compactified on the five sphere, where all the field are classified with respect to S 5 spherical harmonics. The excitations around the AdS 5 vacuum are described by an effective theory, the maximal SO(6) gauge supergravity in five dimensions [START_REF] Gunaydin | Gauged N=8 Supergravity in Five-Dimensions[END_REF]. Then, the solution of the equations of motion which is not divergent in the interior region (the "bulk") corresponds to a boundary condition φ(r, x) ∼ r→0 r ∆-4 φ (0) ( x) .

(5.1.8)

The associated boundary field is precisely the one that enters the generating functional in (5.1.4). Moreover, and this is a general fact valid for every field of the gravity theory, the generating functional Γ is given by the supergravity action evaluated on-shell

Γ[φ (0) ] = S on-shell [φ (0) ] , (5.1.9) 
where the bulk fields are expressed in terms of the boundary data φ (0) ( x) by means of a boundary-to-bulk propagator. Then, n-points correlation functions are derived formally by functional derivative with respect to the boundary fields,

O( x 1 ) . . . O( x n ) = δ (n) S on-shell δφ (0) ( x 1 ) . . . δφ (0) ( x n ) φ (0) =0
.

(5.1.10)

However, the on-shell action is in general divergent near r = 0 . Consequently, a renormalization scheme is needed. It is achieved by introducing a lower cut-off for r

0 < ≤ r , (5.1.11) 
then the divergences are canceled by adding covariant counter-terms to the on-shell action.

The determination of the boundary-to-bulk propagator and the renormalization of the gravity action are two important difficulties that have been dealt with Witten diagrams [START_REF] Witten | Anti-de Sitter space and holography[END_REF] and Holographic renormalization [START_REF] Skenderis | Lecture notes on holographic renormalization[END_REF].

Domain-wall / QFT correspondence

The AdS/CFT correspondence has soon been extended to the non-conformal case [START_REF] Itzhaki | Supergravity and the large N limit of theories with sixteen supercharges[END_REF], [START_REF] Boonstra | The domain wall / QFT correspondence[END_REF] and [START_REF] Behrndt | On domain wall / QFT dualities in various dimensions[END_REF]. Hence Dp-brane (p = 3) solutions of type IIA and IIB superstrings are considered. In the near-horizon limit, they lead to domain-wall backgrounds instead of AdS ones. Thus, a non-trivial dilaton survives which breaks the conformal invariance of the boundary. Nonetheless, a gravity/gauge theory correspondence can be formulated and Holographic renormalization methods have been developed to compute correlation functions. The following work is dedicated to the holography of the D0-brane solution of type IIA superstring, in the classical supergravity approximation where the effective theory is given by the SO( 9 The gravity theory is conjectured to be dual to a one dimensional quantum field theory: the BFSS Matrix model proposed in [START_REF] Banks | M theory as a matrix model: A Conjecture[END_REF], as was discussed in [START_REF] Youm | Generalized conformal quantum mechanics of D0-brane[END_REF] and [START_REF] Townsend | The M(atrix) model / AdS(2) correspondence[END_REF].

Computations of two-points functions on both sides have already been done. We recover these results using Holographic renormalization methods. The second part of the chapter concerns the holography of gravity side excitations that live on a halfsupersymmetric domain-wall background which breaks the SO(9) invariance down to SO(3) × SO [START_REF] Wess | Supergauge Transformations in Four-Dimensions[END_REF]. The dual theory is a quantum Matrix model which shares similarity with the BMN Matrix model [START_REF] Berenstein | Strings in flat space and pp waves from N=4 superYang-Mills[END_REF]. Two-points functions are computed for a large class of scalar excitations. After recalling some useful features about the DW/QFT correspondence, we will turn into Matrix model Holography.

Precision holography for non-conformal branes

There exists a general method based on the non-conformal gravity/gauge correspondence, that enables to compute correlation functions of operators in the BFSS model from the gravity side. It is called "holographic renormalization" and has been developed in [START_REF] Skenderis | Lecture notes on holographic renormalization[END_REF] and applied in [START_REF] Kanitscheider | Precision holography for non-conformal branes[END_REF] for non-conformal branes. We will follow this procedure to compute the two-points correlation functions.

The key ingredient is the supergravity action S SG evaluated on an asymptotically AdS background with a dilaton. The fluctuations of a "bulk" field Φ around the gravity background take some value on the AdS boundary: Φ (0) . This value acts as a source for correlation functions of an associated "boundary" Operator O Φ in the dual QFT. The link between these correlation functions is provided by the postulated equality

Φ| boundary =Φ (0) DΦ exp -S SG [Φ] = exp - ∂AAdS Φ (0) O Φ QFT , (5.1.13) 
where the expectation value is over the QFT path integral. Thus, in the saddle point approximation, the equality becomes

S SG onshell [Φ (0) ] = -Γ QFT [Φ (0) ] , (5.1.14) 
where Γ QFT is the generating function of QFT connected graphs. The on-shell supergravity action shares two characteristics:

• It depends on prescribed boundary conditions of the on-shell fields. This implies to solve a Dirichlet problem associated to the field equations.

• Once evaluated on-shell, the action is in general divergent. To cure this problem, a renormalization process based on the addition of covariant counter-terms will be employed.

Indeed, another key feature of Holographic renormalization is the possibility to expand the bulk field near the boundary with respect to the radial coordinate r. For example, the fact to consider an asymptotically AdS spacetime allows to use a Fefferman-Graham parametrization for the fluctuations around the metric and dilaton background .15) where α is the dilaton power, and the functions g ij (r, x) and κ(r, x) can be expanded near the boundary r = 0 as follows

ds 2 = dr 2 4r 2 + g ij (r, x) dx i dx j r , φ(r, x) = α ln r + κ(r, x) , (5.1 
g ij (r, x) = g ij (0) ( x) + r g ij (1) ( x) + . . . κ(r, x) = κ (0) ( x) + r κ (1) ( x) + . . . (5.1.16)
From the renormalized action, then, correlation functions are computed by functional derivation. For instance, given a classical supergravity action that depends on a scalar, a vector field and a metric Φ , A µ , g µν , the associated one-point functions are given by

O(x) = 1 |g (0) (x)| δS SG ren δΦ (0) (x) , J i (x) = 1 |g (0) (x)| δS SG ren δA i (0) (x) , T ij (x) = 2 |g (0) (x)| δS SG ren δg ij (0) (x) , (5.1.17) 
where the {x i , i = 1, .., D -1} are coordinates of the boundary and {O , J i , T ij } are operators of the QFT. Then, the n-points functions follow by further derivation

O(x 1 ) . . . O(x n ) =   1 |g (0) (x)| δ (n-1) S SG ren δΦ (0) (x 1 ) . . . δΦ (0) (x n )   Φ (0) =0 , A i(0) =0 , g ij(0) =0 .
(5.1.18) In the following, after presenting the gauge theory side of the DW/QFT correspondence we are interested in, Holographic renormalization will be applied to the gravity action. We will start from the two-dimensional supergravity action that supports a domain-wall solution. Then we will derive the action in a frame where the domain-wall solution translates into an AdS metric coupled to a dilaton. In this frame we will perform, the bulk to boundary analysis, going from the renormalization of the on-shell action to the computation of twopoints correlation functions.

BFSS model holography

Gauge theory side: BFSS model

The BFSS model arises from the description of D0-branes. Indeed, it has been proposed in [START_REF] Banks | M theory as a matrix model: A Conjecture[END_REF], that the (N → +∞) limit of a N = 16 supersymmetric matrix quantum mechanics coming from the dimensional reduction of the (N = 1 , D = 1 + 9) supersymmetric U (N ) Yang-Mills to (D = 1 + 0) is equivalent to M-theory. The resulting supersymmetric So the on shell action is given by

S on shell = β 2γ M d 2 x |detg| ∇ e γφ ∂φ + 1 4 ∂M ds √ h e γφ 2 K = 1 2 ∂M ds √ h e γφ β γ n µ ∂ µ φ + K (5.2.15)
where the boundary is located at r = 0. In general, because the integral diverges when r → 0, an infinitesimal parameter will be introduced in order to control the divergences

S on shell = 1 2 ∂AAdS , r= dt √ h e γφ β γ n µ ∂ µ φ + K . ( 5 

.2.16)

This action has to be evaluated on functions that parametrize the fluctuations around the background and that satisfy the equations of motion. This is the point of the next section.

Fluctuations

By fixing the diffeomorphism invariance, the most general fluctuations can be encoded in two functions depending on space-time coordinates :

ds 2 = f (t, r) r dt 2 + 1 4r 2 dr 2 , φ = α ln r + κ(t, r) γ . (5.2.17) 
Moreover, we will consider fluctuations which goes asymptotically to an AdS spacetime (coupled to a dilaton), thus the following near-boundary conditions should hold:

f (t, r) = f (0) (t) + o r→0 (1) , κ(t, r) = κ (0) (t) + o r→0 (1) , (5.2 

.18)

and the fields admit a power expansion in r near r = 0. Then, according to the equations of motion (5.2.11), the functions f (t, r) and κ(t, r) are subject to

0 = - 1 4 f -1 f 2 + 1 2 f -1 f + κ + 1 - β γ 2 κ 2 , 0 = 1 - β γ 2 κκ + κ - 1 2 f f -1 κ , (5.2.19) 0 = 2αγf + r 2f -f -1 f 2 + κ - 1 2 f -1 ḟ κ + 1 - β γ 2 κ 2 -2f 1 -rf -1 f κ , 0 = 4r κ + κ 2 + 8αγ + 2 + 2rf -1 f κ + f -1 κ - 1 2 f -1 ḟ κ + κ 2 + 2f -1 f αγ ,
where every dot means ∂ t and every prime means ∂ r . These are non linear second order partial differential equations. Instead of finding a general solution of these equations, we will focus on the behavior of the parameterizing functions near the boundary r = 0. A first attempt to get an idea of the behavior consists in the study of the linearized equations around the background

f (t, r) = 1 + η(t, r) , κ(t, r) = 0 + κ(t, r) , (5.2.20) 
where η(t, r), κ(t, r) and their derivatives are infinitesimal. The equations of motion become 0

= 1 2 η + κ , 0 = κ , 0 = 2αγ η + 2r η + κ -2κ , 0 = 4rκ + (2 + 8αγ) κ + κ + 2αγ η , (5.2.21) 
and a general solution is provided by

η(t, r) = η (0) (t) + η (5) (t) r -2A r 7/5 , κ(t, r) = κ (0) (t) + A r 7/5 , κ(0) (t) = 9 5 η (5) (t) , (5.2 

.22)

where A is a constant of integration. The solution admits a polynomial part and a noninteger power in r. This will guide us to formulate an asymptotic ansatz when (r → 0) for the solutions of the full non-linear equations

f (t, r) = f (0) (t) + r f (5) (t) + • • • + r σ f (σ) (t) + . . . , κ(t, r) = κ (0) (t) + r κ (5) (t) + • • • + r σ κ (σ) (t) + . . . , (5.2.23) 
where σ stands for the first non-integer power in the r power series expansion. The first coefficient functions {f (0) (t) , κ (0) (t)} will be interpreted as sources for the fluctuations on the boundary and the other ones as responses of the fields in the bulk. The equations of motion (5.2.19) impose several constraints that can be solved iteratively. Two relevant constraints are brought by the cancellation of:

• Terms in r σ-1 0 = 1 - β γ 2 f (0) κ(0) κ (σ) + f (0) κ(σ) - 1 2 κ(0) f (σ) , 0 = 4αγ + 2σ -1 f (0) κ (σ) + αγf (σ) , 0 = -f (0) κ (σ) + αγ + σ -1 f (σ) .
(5.2.24)

The last two equations imply σ = 1 2 -αγ = 7 5 . Then,

0 = f (σ) + 2f (0) κ (σ) , 0 = κ(σ) + 14 9 κ(0) κ (σ) , (5.2 

.25)

• Terms in r 0

0 = 8αγ + 2 f 2 (0) κ (5) + f (0) κ(0) - 1 2 ḟ(0) κ(0) + f (0) κ2 (0) + 2αγf (0) f (5) , 0 = 2αγf (5) + κ(0) - 1 2 f -1 (0) ḟ(0) κ(0) + 1 - β γ 2 κ2 (0) -2f (0) κ (5) , 0 = 1 - β γ 2 f (0) κ(0) κ (5) + f (0) κ(5) - 1 2 f (5) κ(0) , (5.2.26) 
thus,

κ (5) = 5 36 f -1 (0) κ2 (0) , f (5) = 5 9 κ(0) - 1 2 f -1 (0) ḟ(0) κ(0) + 5 18 κ2 (0) . ( 5 

.2.27)

To begin, notice that σ = 7 5 is the first non-integral power which appears in the expansion of the fluctuations. This was expected from the linear analysis. Moreover, all the coefficients including the order r σ are determined in terms of the functions {f (0) , κ (0) }. In this sense one can interpret them as sources for the fluctuations. As will be explained in the next section, it turns out that the renormalized action only involves terms in these expansion up to the order r 7/5 . Higher order terms will disappear in the limit: → 0 . Thus, we are left with the asymptotic ansatz .2.28) for the fluctuations. Now let us renormalize the on-shell action.

f (t, r) = f (0) (t) + rf (5) (t) + r 7/5 f (7) (t) + . . . κ(t, r) = κ (0) (t) + rκ (5) (t) + r 7/5 κ (7) (t) + . . . ( 5 

Renormalization and Correlation functions

Knowing the asymptotic behaviour of the fields near the boundary, the on-shell action (5.2.6) may be evaluated. Let us recall that n µ is a unit vector normal to the boundary

n µ ∂ µ = n ∂ r , n µ n µ = 1 imply n = 2r , (5.2 

.29)

and

h = f (t, r) r dt 2 , K = ∇ µ n µ = -1 + r ∂ r ln f . (5.2.30)
Inserting the expansion (5.2.28) in the action (5.2.6) leads to the different contributions

√ h e γφ = |f (0) | 1/2 e κ (0) -7/5 1 + 1 2 f -1 (0) f (5) + κ (5) + 1 2 f -1 (0) f (7) + κ (7) + o( 7/5 ) , K| r= = -1 + f -1 (0) f (5) + 7 5 f (7) 7/5 + o →0 ( 7/5 ) , n µ ∂ µ φ| r= = 2α + 2 γ κ (5) + 7 5 κ (7) 7/5 + o( 7/5 ) . ( 5 

.2.31)

Notice that the first contribution coming from the determinant of the induced metric times the dilaton involves a global factor of -7/5 . This factor is due to the background, not to the fluctuations

√ h e γφ | r= = r αγ-1 2 |f (t, r)| 1/2 e κ(t,r) | r= = |f (t, r)| 1/2 e κ(t,r) | r= -7/5
(5.2.32) and this is precisely the reason why the power series expansions for the fluctuations need only to be determined up to order r 7/5 . The on-shell action is now expressed as a perturbed expansion in r = up to vanishing orders when goes to zero

S on-shell = 1 2 dt |f (0) | 1/2 e κ (0) -1 + 2αβ γ -7/5 + -1 + 2αβ γ 1 2 f -1 (0) f (5) + -1 + 2αβ γ κ (5) + f -1 (0) f (5) + 2β γ 2 κ (5) -2/5 + -1 + 2αβ γ 1 2 f -1 (0) f (7) + -1 + 2αβ γ κ (7) + 7 5 f -1 (0) f (7) + 7 5 2β γ 2 κ (7)
+ o(1) .

(5.2.33)

The next step deals with adding covariant counter-terms such that the divergent terms vanish.

Renormalization The first counter-term that one can imagine is a cosmological constant

S ct1 = 1 2 dt √ h e γφ 1 - 2αβ γ . ( 5 

.2.34)

This kills the first divergent term in (5.2.33) and adds also higher order contributions that further simplify the expression

S on-shell + S ct1 = 1 2 dt |f (0) | 1/2 e κ (0) f -1 (0) f (5) + 2β γ 2 κ (5) -2/5 + 7 5 f -1 (0) f (7) + 2β γ 2 κ (7) + o(1) . (5.2.35) 
Moreover, f (5) and κ (5) are related to the sources by (5.2.27). This corresponds to the expansion of

∇ t ∂ t φ (r = ) = f -1 (0) γ κ(0) - 1 2 f -1 (0) ḟ(0) κ(0) + o( ) , ∂φ 2 (r = ) = f -1 (0) κ2 (0) γ 2 + o( ) , (5.2.36) 
and leads to a guess for a second counter-term

S ct2 = 1 2 dt √ h e γφ 10 21 ∇ t ∂ t φ - 10 49 ∂φ 2 .
(5.2.37)

The resulting action is now given by

S on-shell + S ct1 + S ct2 = 1 2 dt|f (0) | 1/2 e κ (0) 7 5 f -1 (0) f (7) + 2β γ 2 κ (7) + o(1) (5.2.38)
and contains only finite terms. Eventually, a relation between f (7) and κ (7) is provided by (5.2.25), so the renormalized action takes the form:

S ren ≡ lim →∞ (S on-shell + S ct1 + S ct2 ) = - 7 9 dt|f (0) | 1/2 e κ (0) κ (7) . ( 5 

.2.39)

As a remarkable fact, the renormalized action can either be expressed in terms of the coefficient f [START_REF] Salam | Supergauge Transformations[END_REF] or κ [START_REF] Salam | Supergauge Transformations[END_REF] depending on which substitution is made from (5.2.25),

S ren = 7 18 dt|f (0) | -1/2 e κ (0) f (7) . ( 5 

.2.40)

One-point functions From the renormalized action, one can extract one-point functions by functional derivation.

O κ (t) = 1 |f (0) (t)| 1/2 δS ren δκ (0) (t) = - 7 9 e κ (0) κ (7) , O f (t) = 2 |f (0) (t)| 1/2 δS ren δf -1 (0) (t) = 7 18 
e κ (0) f (7) .

(5.2.41)

In particular, when evaluated on the background Two-points function Due to the relations between f and κ, only the two-points function associated to κ will be given. It is obtained by specifying a relation between the response and the source. Here, such a relation is given by the second equation of (5.2.25)

f (0) = 1 , κ (0) = 0 , ( 5 
κ (7) = A e -14 9 κ (0) (t) , (5.2.45) 
where A is a real constant. However, as pointed out in [START_REF] Skenderis | Lecture notes on holographic renormalization[END_REF], if no exact solution can be found from the non-linear equations of motion, the two-points correlation functions can be computed from exact solutions of the linearized equations of motion. Then, asymptotic conditions in the bulk need to be specified in order to select the physical solution. Here, we know exact solutions at the linearized level (5.2.22) but the physical solution is associated with a non-divergent behavior in the bulk. Therefore, A = 0 in (5.2.22). Consequently, the coefficient κ (7) vanishes and the two-points function reads

O κ (t 1 )O κ (t 2 ) =   1 |f (0) (t)| δ (2) S SG ren δκ (0) (t 1 )δκ (0) (t 2 )   f (0) =1 , κ (0) =0 = 0 . (5.2.46)
This is a rather trivial expression and suggests that the gravity sector in two dimensions is somewhat degenerated. Nonetheless, as a toy example it allowed us to develop the tools of holographic renormalization, and we are now prepared to study more physical example by exciting scalars in the SO(9) theory.

Correlation functions associated to scalar fields

Fluctuations around the scalar sector Two kinds of physical scalar fields are present in the SO(9) supergravity: the 44 coset space scalars encoded in V ∈ SL(9)/SO [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF], and the remaining 84 scalars φ abc . By expanding around the origin of the target space and up to quadratic terms, the Euclidean effective action takes the general form

S = 1 4 d 2 x |g| e γφ R + β (∂φ) 2 + C -e aφ (∂y) 2 -m 2 y 2 . ( 5 

.2.47)

The equations of motion follow 0

= (∇ µ ∂ ν φ) - g µν 2 ∇∂φ - β γ -γ (∂ µ φ) (∂ ν φ) - g µν 2 (∂φ) 2 + e aφ γ ∂ µ y∂ ν y - 1 2 g µν (∂y) 2 , 0 = γ∇∂φ + γ 2 ∂φ 2 -C -m 2 e aφ y 2 , 0 = R -2 β γ ∇∂φ -β (∂φ) 2 + C -1 + a γ e aφ (∂y) 2 -m 2 y 2 , 0 = ∇ µ e (a+γ)φ ∂ µ y + m 2 e (a+γ)φ y .
(5.2.48)

We will consider two types of scalar fluctuations. Firstly the case of fluctuations in the SL(9)/SO(9) coset sector, around the identity matrix V 0 ≡ I 9 . This background value preserves SO [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF]. Since in the effective action for the fluctuations we are only interested in quadratic order terms (kinetic and mass terms), and because the 44 of SO( 9) is irreducible, we can choose a simple representative of the fluctuations. Here, it will be encoded by a matrix:

V = e x I 8×8 0 0 e -8x
(5.2.49)

where x = x(t, r) is a real valued scalar field. By expanding the action up to quadratic order in x, the effective action follows from (5.2.47) with parameters given by

a = 0 , m 2 = 8 5 , y ≡ 6 √ 2 x . (5.2.50) 
Secondly, we will consider fluctuations around the φ abc fields in the 84 of SO [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF]. It is sufficient to excite for example φ [123] , in order to get the mass and the global dilaton factor of these fields. Again, the effective action is described by (5.2.47) with a = 4 7 , m 2 = 12 25 , y ≡ √ 2 φ [123] .

(5.2.51)

Asymptotic expansion

In order to renormalize the two-dimensional effective action we need to know the behavior of the fields near the boundary. Extending the previous parametrization for the fluctuation with the scalar fields {f (t, r) , κ , y(t, r)}

(5.2.52)

we may wonder what is their asymptotic expansion near (r = 0). From the linear analysis applied to the Einstein and dilaton equation we get the same answer as in (5. where the sources are assumed to be : {f (0) (t), κ (0) (t), y (2) (t)}. The constraints deduced from the equations of motion

f (4) = - 5 18 f (0) y 2 (2) , κ (4) = - 1 4 y 2 (2) , f (7) = -2f (0) κ (7) - 80 63 f (0) y (2) y (5) , κ (5) = 5 36 f -1 (0) κ2 (0) , f (5) = 5 9 κ(0) - 1 2 f -1 (0) ḟ(0) κ(0) + 5 18 κ2 (0) , (5.2.61) 
enable to find the covariant counter-terms Therefore, the action on shell is given by

S ct1 = 1 2 dt √ h e γφ 1 - 2αβ γ , S ct2 = 1 2 dt √ h e
S ren = lim →0 (S on-shell + S ct1 + S ct2 + S ct3 ) = dt|f (0) | 1/2 e κ (0) - 22 45 y (2) y (5) - 7 9 κ (7) . (5.2.63) 
This corresponds to the renormalized action (5.2.39) supplemented by a term that accounts for the scalar field.

One-point functions The one-point functions are given by

O κ (t) = 1 |f (0) (t)| 1/2 δS ren δκ (0) (t) = e κ (0) - 22 45 y (2) (t)y (5) (t) - 7 9 κ (7) , O y (t) = 1 |f (0) (t)| 1/2 δS ren δy (2) (t) = - 22 45 e κ (0) y (5) (t) , (5.2.64) 
thus the following identity holds

O κ (t) = y (2) (t) O y (t) - 7 9 e κ (0) κ (7) . ( 5 

.2.65)

Two-points functions The equations of motion imply that all the coefficients are completely determined by the sources except for the following responses: {f (7) (t), κ (7) (t), y (5) (t)}. The near-boundary analysis is insufficient to link these responses to the sources and one has to get closer to an exact solution of the equations of motion to find the desired relation. Actually, it is enough to look for an exact solution of the linearized equations of motion around the background, to find the relation between the undetermined coefficients and the sources. The two-points function associated to the dilaton will not change from the study of the gravity sector, so let us focus on the scalar field. As described in the linear analysis, the scalar fluctuation is a solution of the equation (5.2.54) with parameters (a, m 2 ) = (0, 8 5 ):

r 2 ỹ - 2 5 r ỹ - 1 4 (q 2 r - 8 5 
) ỹ = 0 .

(5.2.66)

This equation (5.2.54) can be written in a more canonical form making the following change of variables and function redefinition r = q √ r , ỹ(q, r) = rλ s(q, r) , λ = 7 5 (1 -3 4 a) .

(5.2.67)

Thus, the equation becomes r2 s + r s -r2 + λ 2 -m 2 s = 0 .

(5.2.68)

In the present case (a, m 2 ) = (0, 8 5 ), so the rescaled function s satisfies r2 s + r s -r2 + 3 5 2 s = 0 .

(5.2.69)

This corresponds to the modified Bessel's equation with parameter 3/5. It admits two linearly independent solutions which may be described by modified Bessel function of the first kind I or the second kind K. For example if we choose to parametrize the solution with Bessel I functions, we get the general form: ỹ(q, r) = q 7/5 r 7/10 (C 1 Bessel I (3/5, q √ r) + C 2 Bessel I (-3/5, q √ r)) .

(5.2.70)

The physical solution must be regular in the bulk which translates into the regularity condition lim r→+∞ y(t, r) = 0 , ∀t .

So the acceptable solution is determined up to a global constant factor ỹ(q, r) = q 7/5 r 7/10 C 1 (Bessel I (3/5, q √ r) -Bessel I (-3/5, q √ r))

= -q 7/5 r 7/10 C 1 Bessel K (3/5, q √ r) , (5.2.72)

where

C 1 ≡ C 1 2 π sin( 3π 5 
) . Consequently, we have now access to an asymptotic expansion near r = 0: ỹ(q, r) = -q 4/5 C 1 Γ( 3 5 ) 2 2/5 r 2/5 + Γ(-3 5 ) 2 8/5 q 6/5 r + 5Γ( 35 ) 2 17/5 q 2 r 7/5 + o r→0 (r 7/5 ) = ỹ2 (q) r 2/5 + ỹ5 (q) r + . . .

(5.2.73)

Notice that the expansion is in agreement with the perturbative ansatz (5.2.60). Moreover it enable us to relate the first two coefficients in the power expansion: ỹ5 (q) ∝ q 6/5 ỹ2 (q) . (5.2.74)

So the two-points function in momentum space is O y (0)O y (q) ∝ q 6/5 , (5.2.75) and the correlation function in time follows to be

O y (t 1 )O y (t 2 ) ∝ TF -1 (q 6/5 )(t 1 -t 2 ) ∝ 1 |t 1 -t 2 | 11/5 .
(5.2.76)

In [START_REF] Hanada | Direct test of the gauge-gravity correspondence for Matrix theory correlation functions[END_REF], correlation functions are also obtained from the gravity side. The exponent of the two-points functions is defined by

O y (t 1 )O y (t 2 ) ∝ 1 |t 1 -t 2 | 2ν+1 .
(5.2.77)

The mass and Myers terms of this BMN quantum mechanics break the global SO(9) symmetry to SO(3) × SO(6) whilst preserving the 16 supercharges of the BFSS model: it is an operator deformation.

From the gravity side, the search of interesting geometries that are dual to the BMN model, has already been investigated directly in type IIA supergravity or in M-theory. Notably, a general class of half BPS, SO(3) × SO(6) preserving solutions has been discussed, as well as their implication for the BMN model [START_REF] Lin | Bubbling AdS space and 1/2 BPS geometries[END_REF] [START_REF] Lin | The Supergravity dual of the BMN matrix model[END_REF]. In the following section we will investigate SO(3) × SO(6) preserving half supersymmetric backgrounds, but we will adopt the effective two-dimensional supergravity point of view. We will find a unique background, however as we will see, it will not correspond to an operator deformation of the BFSS model. Thus, the dual Matrix model will not be described by the BMN model but rather by a vev deformation of the BFSS model [START_REF] Skenderis | Lecture notes on holographic renormalization[END_REF]. Eventually, one-point and twopoints correlation functions will be computed, allowing for a test on the corresponding dual Matrix model.

SO(3) × SO(6) gravity sector

In the full two-dimensional, maximal, SO(9) gauged supergravity we may try to find a supersymmetric background preserving SO(3) × SO(6) symmetry. In two dimensions, a simple ansatz for such a vacuum solution is provided by exciting the SL(9)/SO(9) scalars in a diagonal way and letting the other scalar fields at the origin of the target space: and a function a(x) that is obtained from integrating the first equation of (5.3.7). This confirms that the background preserves sixteen supercharges, i.e. has the same number of supersymmetries as the SO(9) domain wall (3.5.11). Since x is non-vanishing in the bulk, this deformation breaks SO(9) down to SO(3) × SO [START_REF] Wess | Supergauge Transformations in Four-Dimensions[END_REF] . The Ricci scalar of (5. It is well defined on x ∈ [0 , +∞[ in contrast to the metric and the dilaton which are singular at x = 0.

Higher-dimensional interpretation

Although the geometry of this solution may be obscure in this parametrization, its interpretation becomes clearer in eleven dimensions. As before, in order to uplift the solution, we go first from two to ten dimensions using the embedding of SO(9) supergravity in type IIA supergravity [START_REF] Anabalon | Rotating D0-branes and consistent truncations of supergravity[END_REF]. Then we go from ten to eleven by standard techniques.

From two to ten dimensions

Using the Kaluza-Klein ansatz (4.3.29) constructed in [START_REF] Anabalon | Rotating D0-branes and consistent truncations of supergravity[END_REF], the BPS solution (5.3.8) can be uplifted to ten dimensions. Thus, we obtain a solution of type IIA bosonic equations of motion derived from the Lagrangian (4. x (e 3x -1) -9/4 , x(r) = r 2/5 , x i = 0 , ∀i ∈ I .

(5.3.30) Indeed, up to some numerical constants that can be absorbed, the previous metric and dilaton match the background (5.2.9) in the limit (r → 0) :

ds 2 ∼ r→0 dt 2 r + dr 2 4r 2 ρ(t, r) ∼ r→0 r -9/10
(5.3.31)

According to [START_REF] Skenderis | Lecture notes on holographic renormalization[END_REF], in this frame, where the metric is asymptotically AdS, the near boundary behavior of the scalar field x(r) allows to identify whether the dual gauge theory corresponds to an operator deformation or a vev deformation. Here,

x(r) = r 2/5 (5.3.32) corresponds to the behavior of y 2 (t) in (5.2.60). As we saw in the discussion of page 105, y 2 (t) is eventually interpreted as the response and y 5 (t) as the source for the coset space scalar fluctuations. Because here, the background scalar x(r) behaves like the response for the coset space scalar fluctuations in the BFSS model holography, the Matrix model dual to the background (5.3.30) corresponds to a vev deformation of BFSS model [START_REF] Skenderis | Lecture notes on holographic renormalization[END_REF]. As a consequence, the corresponding Matrix model of the SO(3) × SO(6) preserving, half supersymmetric background (5.3.30) is not the BMN model but another deformation of the BFSS model. Still, we can compute correlation functions from the gravity side and try to interpret them in the light of the gauge/gravity correspondence. This is the point of the following work.

On-shell action and renormalization

Again, the effective action (5.3.27) can be evaluated on-shell using the dilaton field equation. This leads to a boundary term located at the horizon of the asymptotically AdS spacetime background (5. evaluated on the background, indicate that a power series expansion in r of the solution should begin with r 2/5 or r. Moreover the on-shell action (5.3.33) evaluated on the background shows that the dilaton and extrinsic curvature terms diverge as (r -7/5 when r → 0). Thus we only need to know an approximating power series expansion in r of the fields, up to order r -7/5 , because all the other orders will vanish during the renormalization process.

|h| n µ ∂ µ ρ ∼ x p(n) (t) r n/5 .

(5.3.37)

The expansion of x p starts at n = 1 because we impose that the fluctuations vanish at the boundary r = 0. The equations of motion constrain the expansions to f p (t, r) = f (4) (t) r 4/5 + f (6) (t) r 6/5 + f (7) (t) r 7/5 , ρ p (t, r) = ρ (4) (t) r 4/5 + ρ (6) (t) r 6/5 + ρ (7) (t) r 7/5 , x p (t, r) = x p(2) (t) r 2/5 + x p(4) (t) r 4/5 + x p(5) (t) r + . . . (5.3.38) where the dots represent terms that will not be relevant in the renormalization procedure. The coefficients are related by In particular some coefficients are left undetermined: x p(2) (t), x p(5) (t) and f (7) (t) or ρ (7) (t). In this sense, x p(2) (t) should be interpreted as a source for the fluctuations and the other coefficients as responses. Eventually, the numerical constants are summarized in the following table: The divergences that occur when we take the limit → 0 are canceled by two counter-terms The first one corresponds to a cosmological constant and the second is a correction to the scalar potential. The first set of numerical constants do not depend on the fluctuation we are dealing with, whereas the second set of constants do. This expression for the renormalized action is in complete analogy with the previous results of section 5.2.2 so one could have guessed it. Nonetheless, it is interesting to see that the renormalization process developped in [START_REF] Skenderis | Lecture notes on holographic renormalization[END_REF] works in each case. In the last step, the coefficients x p(2) (t) and x p(5) (t) should be related in order to find the two-points functions by derivation of the action.

f (4) (t) = a 4 x p(2) (t) 2 , f (6 
S ct1 = 2 

Correlation Functions

Let us focus on the scalar two-points functions. They will be generated by the following action S gen = dt x p(2) (t) x p(5) (t) ∝ dq xp(2) (q) xp(5) (q) , (

where the functions of the momentum q stand for the coefficients of the Fourier transform of x p . Knowing a relation between these two coefficients xp(5) (q) = C p (q) xp(2) (q) , (5. 3.46) and identifying xp(2) (q) as the source, the two-points function will be given by O(0)O(q) ∝ C p (q) . (5.3.47)

In the following subsection the function C p is determined for each scalar perturbation.

Analytics

The path is well defined: one has to solve the equations of motion for the scalar perturbation, linearized on the background (5.3.30). After taking the Fourier transform with respect to time, we are left with an ordinary second order differential equation in the radial coordinate r. There exists a unique solution that is regular in the bulk (i.e. tends to zero as r goes to infinity) and we are interested in the power series expansion of this solution near the horizon r = 0 in order to find the ratio xp(5) (q) xp(2) (q) . (5.3.48)

For computational convenience, we will make the change of variable and field redefinition u = e 3(r 2/5 ) -1 , xp (u) → u 2 xp (u) .

(5.3.49)

Summary

This chapter was devoted to the holography of the non-conformal D0-brane. Through this procedure, two-points correlation functions associated with gravity and scalar sector excitations were computed from the gravity side. They were compared with correlation functions of operators in the dual BFSS Matrix model obtained in previous works. Although a generalization to the BMN model holography was considered, it was shown that the later found half-supersymmetric gravity background preserving SO(3) × SO [START_REF] Wess | Supergauge Transformations in Four-Dimensions[END_REF], does not correspond to this Matrix model, but rather to a vev deformation of the BFSS model. Higher dimensional origin of the background was discussed and Holographic renormalization techniques were applied to compute two-points correlation functions. Finally, a numerical analysis gave some insights about their asymptotic behavior.

Chapter 6 Conclusion

To conclude this thesis work, let us summarize our goals and present outlooks. As an anchor point for the beginning of the thesis we decided to construct the SO(9) gauged maximal supergravity in two dimensions. It was motivated by the AdS/CFT correspondence, since this theory filled the last gap in the list of the effective gravity theories accounting for the holography of the Dp-branes, see Table 2.1. On another hand, the explicit construction put an end to a work started several years ago in [START_REF] Nicolai | Integrability and canonical structure of d = 2, N=16 supergravity[END_REF], which led to the discovery of all possible gaugings of maximal supergravity in three dimensions [START_REF] Nicolai | Maximal gauged supergravity in three-dimensions[END_REF] [START_REF] Nicolai | Compact and noncompact gauged maximal supergravities in three-dimensions[END_REF]. Then, all the consistent gaugings of the two-dimensional maximal supergravity were identified group theoretically [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF]. There "remained" to construct explicitly the SO(9) gauged supergravity, and this constituted the first result of our thesis [START_REF] Ortiz | SO(9) supergravity in two dimensions[END_REF]. To account for it, we began with a general presentation of maximal supegravities in Chapter 2. A particular emphasis was put on the ungauged maximal supergravity in three dimensions and the unique eleven dimensional supergravity since they yield two important formulations of the ungauged maximal supergravity in two dimensions: the E 8 and the SL(9) frames. Then, the general gaugings of maximal supergravity was presented through the embedding tensor formalism. It was applied to the three-dimensional maximal supergravity, paving the way to the more complicated structure of the gaugings in two dimensions.

The explicit construction of the SO(9) gauged N = 16, D = 2 supergravity was described in Chapter 3. The E 8 and the SL(9) frames were obtained by dimensional reduction. The first one leads to the most compact formulation of the ungauged twodimensional maximal supergravity and thus was used to introduce important objects. In particular, we discussed the scalar auxiliary fields associated with Noether currents, and the underlying infinite dimensional symmetry structure of the theory, realized on-shell. The infinite dimensional symmetry group E 9 was analyzed in the SL(9) frame, where in the embedding tensor formalism, the right coupling between vector fields and an SO(9) subgroup of the off-shell symmetries was identified. Then, the vector fields were introduced in the Lagrangian via a coupling with scalar auxiliary fields and proved useful to restore the supersymmetry of the covariantized Lagrangian. Supersymmetry was recovered by following a Noether procedure and led to the introduction of Yukawa couplings and a scalar potential. A unique explicit solution of the linear and quadratic constraints was given, and this ended the construction of the SO(9) gauged maximal supergravity in two dimensions. By integrating out the auxiliary fields, another on-shell equivalent formulation of the theory was found, where a two-dimensional Yang-Mills term is generated. It would correspond to the warped sphere reduction of type IIA supergravity and this motivated our following work on consistent truncations. Moreover, a particular half BPS, CHAPTER 6. CONCLUSION domain wall vacuum solution was found in the two-dimensional theory and this opened the path to holographic applications.

In these perspectives our second and third works may be viewed as applications. To begin, we dealt with the embedding of the two-dimensional supergravity into ten and eleven dimensions. This shed light on the higher dimensional origins of the SO(9) gauged supergravity. Thus we considered a Cartan truncation of the two-dimensional theory and showed that it is consistent. These results [START_REF] Anabalon | Rotating D0-branes and consistent truncations of supergravity[END_REF] were presented in Chapter 4, where the embedding of the dilaton sector was constructed explicitly. As an application, we uplifted the domain-wall solution to ten dimensions, and we recovered the D0-brane. This gave further motivations to possible holographic applications. Hence we went to eleven dimensions and we noticed that the domain-wall corresponded to a well known solution: a pp-wave. Eventually, a generalization of the embedding to non-vanishing axions was envisaged. It constitutes an important outlook, since this would be the next step towards a proof that the full spherical reduction of type IIA is consistent.

The third and last work of our thesis concerns the gravity/gauge correspondence. As described in Chapter 5, we applied holography renormalization techniques [START_REF] Skenderis | Lecture notes on holographic renormalization[END_REF] [77] to study different half supersymmetric backgrounds that are expected to provide informations about dual one-dimensional Matrix models. Thus, we computed correlations functions for operators in the BFSS model, from a gravity side analysis around an SO(9) preserving domain-wall background solution. Then, the procedure was generalized to a half supersymmetric gravity background which breaks SO(9) to SO(3)×SO [START_REF] Wess | Supergauge Transformations in Four-Dimensions[END_REF]. This was motivated by the search for holographic dual of the BMN model. Nevertheless, after a thorough investigation of the half BPS background, we concluded that the dual Matrix model is not the BMN model but a SO(3) × SO(6) preserving, supersymmetric vev deformation of the BFSS model. Still a complete identification of the gauge theory side remains to be done and will be of great interest. Another important outlook would be the computation of the gravity background leading to the holography of the BMN model. These different issues are left to future investigations. where the last two equations should be understood as projected onto their gamma-traceless part in the indices aI. Remarkably, it turns out that all these equations are identically satisfied for the solution (3.4.30), (3.4.31) of the linear relations given in section B.1. This is a confirmation of the prediction of [START_REF] Samtleben | Gauging hidden symmetries in two dimensions[END_REF] discussed in section 3.3.1 above that any embedding tensor of the type θ kl automatically satisfies the relevant quadratic constraints and thus defines a consistent gauged theory compatible with maximal supersymmetry.
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 3 2A K(I B J)K + 2 ÃK(I BJ)K + C quadratic relation 2A K(I B J)K + 2 ÃK(I BJ)K + C a KI Ca KJ + C a KJ Ca KI = 0 . (3.4.38) Eventually, this equation is identically satisfied by the solution (3.4.30) -(3.4.31). Indeed, employing the linear constraints (B.1.1), this relation reduces to (4 + 2ρ∂ρ) (B K(I BJ)K ) = C

2 b a b a + 4 b

 4 ab b ab + 48 b abcd b abcd + c ab c ab + 2 c a,bc c a,bc -14 9 bb -4 b abc b abc . (3.4.41)

  .47) because: Γ abc (IJ) = 0 as a SO(9) gamma matrix, and A [IJ] = 0 = Ã(IJ) according to Appendix B.1.

.4. 58 )

 58 obtained from the Lagrangian(3.4.22) by varying with respect to the vector fields. The commutator of two supersymmetry variations on Y gives

5 . 20 )

 520 and inserting equation (3.2.11) with θ k = 0 leads to L FF = -1 8 e ρ 13/9 F µν kl O -1 kl,mn F µν mn + O(φ 3 ) . (3.5.21)

4. 2 U

 2 (1) 4 truncation of SO(9) supergravity 4.2.1 Bosonic sector of SO(9) supergravity Let us start with the bosonic part of Lagrangian (3.4.22). It describes a dilaton-gravity coupled non-linear sigma model with 128-dimensional target space SL(9) R 84 /SO(9) and Wess-Zumino term

6 r - 34 / 9 a(l a ) 4 / 9 +

 34949 O r -26/9 . (4.4.19)

  all supersymmetry. Once plugged into the ten-dimensional metric of the non-linear Kaluza-Klein ansatz (4.3.29), ds2 10 = ρ(r) -7/36 ρ(r) 14/9 f (r) dt 2 -f (r) -1 dr 2 -r 2 dΩ 2 8 . (4.4.23)

Figure 4 Figure 4 . 1 :

 441 Figure 4.1: Behavior of H a motivated by the following computations

Figure 4

 4 Figure 4.3: Behavior of f

  this system of coordinates, the light cones close up at r = r 0 sincedt dr = ± (gr) 7/2 h(r) 1/2 f (r) -1 -→ r→(r 0 ) + ±∞ . (4.4.30) 
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 519 and constant non-zero dilatons and axions parametrized by {ρ, H a } and {η a } .(4.5.2)In this truncation, the two-dimensional equations of motion are listed below: the vector fields equations imply that the auxiliary fields are constant∂ µ y a = 0. (4.5.3)Moreover, the auxiliary field equation determines the field strengthsµν F a µν = -8ρ -1 g -1 e∂V pot ∂y a . (4.5.4)Then, the dilaton ρ equation determines the AdS radiusR = f (r) = 4ρ -1 ∂V pot ∂y a -5 pot = constant . (4.5.5)Besides, the traceless part of Einstein equations is identically satisfied and the trace part leads to V pot = 0 . (4.5.6)Finally, the scalar fields equations generate other constraints on the potential, since they are supposed to be constant ∂V pot ∂H a

  be integrated for H a ∂V pot ∂η a = 0 = 2η a (1 -4H a ) + 2η a b =a

  .1 The AdS/CFT correspondence

5 and S 5 = S 5 F 5 . ( 5 . 1 . 1 )

 555511 have the same radius L and the self-dual 5-form F 5 has an integer flux over the five-sphere N • N = 4 , D = 4 super Yang-Mills theory with gauge group SU (N ) and Yang-Mills coupling constant g YM .

  Fluctuations around the AdS background are encoded by fields φ satisfying a particular boundary condition. For example, massive scalar fields are shown to couple to CFT operators O ∆ with conformal dimension ∆ given by the largest root of ∆ ∆ -4 = m 2 .(5.1.7)

8 D = 2 SO( 9 ) 5 . 2 :

 82952 ) gauged maximal supergravity in two dimensions. It accounts for the spherical Kaluza-Klein modes of type IIA supergravity on the warped AdS 2 × S 8 spacetime, arising as the near-horizon geometry of the D0-brane. The corresponding two Brane Vacuum configuration Gauged SUGRA D0 AdS 2 × S Table D0 Brane and SO(9) gauged supergravity dimensional vacuum is a domain-wall solution which preserves sixteen supercharges [84]. D = 10 D = 2 SO(9) D0-brane S 8 reduction --------→ Half supersymmetric Domain Wall (5.1.12) Supergravity Super Yang-Mills D = 11 type IIA D = 2 , N = 16 , SO(9) D = 1 , N = 16 , U (N ) pp-wave D0-brane domain wall (1 2 BPS) BFSS model Table 5.3: DW/QFT correspondence and the BFSS model

  2.22), because the scalar field y disappears from these linearized equations since it enters only quadratically. Thus, a first clue for the y asymptotic expansion is provided by the scalar field equation linearized around the AdS backgroundds 2 = dt 2 r + dr 24r2 , e φ = r 21/20 . (5.2.53)

0 != δ ε ψ I 2 = - i 2 (ρ - 1 ∂ 7 2 x (e 3x - 1 )

 022171 2 I 6×6 , φ klm = Y kl = 0 .(5.3.6)In this truncation, the two-dimensional bosonic effective Lagrangian is given by µ x)(∂ µ x) + 3 8 eρ 5/9 e -2x (8 + 12e 3x + e 6x ) .The BPS equations are derived from the supersymmetry variations (39 (e 2x + 2e -x ) γ µ I , µ ρ) γ µ I + 3 4 ρ -2/9 (e 2x + 2e -x ) I , 0 ! = δ ε χ aI ⇔ 0 = (∂ µ x) γ µ I -2i 3 ρ -2/9 (e 2x -e -x ) I . (5.3.7)Apart from the SO(9) invariant solution (3.5.11) for which x = 0, these equations admit a unique non-trivial solution. Part of the diffeomorphisms can be fixed to identify x with the radial coordinate, and we findds 2 2 = f (x) 2 dt 2 -g(x) 2 dx 2 , f(x)= e redefinitions and the scaling symmetry ρ → λ ρ, g µν → λ 4/9 g µν , L → λ L (5.3.9) of the Lagrangian (5.3.7). The associated Killing spinors are given by I (x) = a(x) I 0 , with γ 1 I 0 = -i I 0 , (5.3.10)

- 7 / 36 ∆ 7 /8 ds 2 2 -ρ 1 / 4 ∆ - 1 / 8 ∆ 2 + e x µ 2 dΩ 2 Fe 5 2

 736721418225 e x (1 -µ 2 ) dµ 2 + e -2x (1 -µ 2 ) dΩ 2 = 2ρ 5/9 f 1 (x) + µ 2 f 2 (x) ε 2 -3 2 ρ ( * 2 dx) ∧ d(µ 2 ) . (5.3.12)where,0 ≤ µ 2 ≤ 1 , ∆ ≡ e 2x + µ 2 (e -x -e 2x ) , f 1 (x) ≡ -1 2 e 2x (e 2x + 6e -x ) , f 2 (x) ≡ -1 2 (e -x -e 2x )(4e -x + e 2x ) . 3x -1 5/2 µ 2 dt . (5.3.15)BackgroundLet us consider the half-maximal supersymmetric background (5.3.8). After going to the Euclidean signature and making the Weyl rescaling (5.3.26) and coordinate change (x = r 2/5 ), one recovers the metric of an asymptotically AdS spacetime coupled to a dilatond s 2 = f (r) 2 dt 2 + g(r) 2 dr 2 g(r) = 3 5x -3/2 e x (e 3x -1) -1 , f (r) = e x (e 3x -1) -5/4 , ρ(r) = e 9 2

  µ ρ + ρ K) .(5.3.33) In the following we will treat the different irreducible representations of the scalar fluctuations separately. Here is an ansatz for the fluctuations of the gravity sector,f (t, r) = f b (r) (1 + f p (t, r)) , ρ(t, r) = ρ b (r) (1 + ρ p (t, r)) ,(5.3.34)where f b and ρ b stand for the background (5.3.30) and {f p (t, r), ρ p (t, r)} are supposed to vanish at the horizon. No source is lit on the gravity side, they were studied in the first section. The metric is assumed to remain diagonal by fixing the diffeomorphisms. Here, let us underline the fact that the scalar x(t, r) is now treated as part of the background:x(t, r) = r 2/5 according to(5.3.30). On the contrary, the dynamical scalar fields are described by what we call the fluctuations: x (5,1) , x (1,20) , x[START_REF] Salam | Supergravities in Diverse Dimensions[END_REF][START_REF] Wess | Supergauge Transformations in Four-Dimensions[END_REF] which will be written schematically x p . Their equation of motion, 0 = ∇(ρ ∂x (5,1) ) -2ρ e x (-6 + e 3x )x (5,1) ,0 = ∇(ρ ∂x (1,20) ) + 4ρ (e -2x + 3 2 e x )x (1,20) , 0 = ∇(ρ ∂x 3,6 ) + ρ e -2x (3 + 5e x + 2e 3x )x (3,6) , (5.3.35)

r→0 r - 7 / 5 , 7 n=1f 7 n=1ρ

 7577 |h| ρ K ∼ r→0 r -7/5 .(5.3.36)Under these conditions, we are led to propose the following ansatz for the fluctuationsf p (t, r) = (n) (t) r n/5 , ρ p (t, r) = (n) (t) r n/5 , x p (t, r) = 7 n=1

1 ( 5 . 3 . 40 )

 15340 Now we are able to evaluate the on-shell action and to renormalize the divergences. Let us recall the on-shell action (5.3.33):

9 r= dt |h| (c 1 ρ + c 2 ρ 5 / 9 + c 3 ρ 1 / 9 +

 5919 c 4 ρ -1/3 ) , S ct2 = 2 9 r= dt |h| (x 1 ρ + x 2 ρ 5/9 ) x p (t, ) 2 . (5.3.42) 

c 1 c 2 c 3 c 4 x 1 x 2 x p - 9 2 4 9

 94 (9 a 4 + 4 b 4 ) 2 27 (27 a 6 + a 4 (9 -36 x 4 ) + 4(3 b 6 + b 4 -4x 4 b 4 )) (5.3.43)Consequently, the renormalized action is given byS ren = lim →0 (S on-shell + S ct1 + S ct2 ) ∝ dt x p(2) (t) x p(5)

- 2 / 3 ϕ

 23 agh ϕ ef c δ db -δ b[a ϕ gh]c ϕ def Γ def gh IJ -

Table 1 . 2
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	Theory				Branes			
	M-theory			M2		M5		
	IIA	D0	F1	D2	D4	NS5	D6	D8
	IIB		F1 + D1	D3	NS5 + D5	D7	

: The possible superbranes with p ≤ 8.

  CHAPTER 2. MAXIMAL SUPERGRAVITIES AND ITS GAUGING and a 1 ...a 11 =a 1 ...a 11 where the latter Levi-Civita symbol is defined by a 1 ...a 11 = +1, if a 1 . . . a 11 is an even permutation of 0 . . . 10, -1, if a 1 . . . a 11 is an odd permutation of 0 . . . 10,

		
	 	
	 	0, otherwise.

Finally, µ 1 ...µ 11 ≡ e 11 a 1 ...a 11 e 11a 1 µ 1 . . . e 11a 11 µ 11 (2.2.8)

Table 2 .

 2 

		5)	24 -10	10'
	6	SO(5, 5)	45 -20	16 c
	5	E (6,6)	78 -36	27'
	4	E (7,7)	133 -63	56
	3	E (8,8)	248 -120	248
	2	E (9,9)	R adj (E 9 )	R basic (E 9 )

3: Vectors and Scalars in maximal supergravities in 2 ≤ D ≤ 8

  .2.46) Thus, following the notation of (3.2.41), the generators of the off-shell R 84 translations have a weight of (+1/3) with respect to d. Therefore, in the sl 9 grading of e 9 , we will identify them as 84 +1/3 . The same argument can be made for the generators of the shift symmetries acting on the dual fields Y kmn in(3.2.35). According to (3.2.45), the generators are identified with the 84 +2/3 . Eventually, by taking successive commutators, the generators 84 +1/3 generate a positive half of the Kac-Moody algebra e[START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF][START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF] 

• • • 80-1 84-2/3 84'-1/3 800 84+1/3 84'+2/3 80+1 • • • 95/9 36'2/9 126-1/9 324-4/9 801-7/9 vector fields

  

		8 0 1 3 2 4 -5 / 9 1 2 6 '-8 / 9 3 6 -1 1 / 9 9 '-1 4 / 9
		-2
		/
		9
	• • •	•

  3 φ klm M mn φ npq .

			(3.5.16)
	When (3.5.15) is injected into the Lagrangian (3.4.22), a two-dimensional Yang-Mills term
	of the form		
	L F 2 ∝ eρ 13/9 F µν	kl O -1 kl,mn F µν mn ,	(3.5.17)

  y 1 ≡ y 3 , y 2 ≡ y 4 , η 1 ≡ η 3 , η 2 ≡ η 4 .This is a solution describing an AdS geometry with non vanishing axions. It constitutes a first step towards more general solutions which may help to find the Kaluza-Klein ansatz with non-vanishing axions for the embedding in type IIA supergravity.

												(4.5.13)
	In this truncation, the equations reduce to quadratic equations and allow for the explicit
	solution										
	H 1 = (y 1 ) 2 = 12 6 + 1 128 (43 -5 √ 33 , √ 33) ,		H 2 = (y 2 ) 2 = 2 -1 + 1 (25 + 9 64 √ √ 33 , 33) ,
	(η 1 ) 2 =	1 8	(9 +	√	33) ,		(η 2 ) 2 =	1 16	(1 +	√	33) .	(4.5.14)
	with Ricci scalar given by							
	R =	2 2/3 3 3815 + 759 -205 + 131 √ 33 √	33 8/9	g 2 ρ 4/9 143.27	g 2 ρ 4/9 .	(4.5.15)

Table 5 .

 5 1: The three levels of the AdS/CFT correspondence.• On one hand, the isometry group of AdS 5 × S 5 spacetime is SO(2, 4) × SO(6), and one can show that SO(2, 4) acts on the boundary of AdS 5 as the conformal group on a four dimensional Minkowski spacetime[START_REF] Petersen | Introduction to the Maldacena conjecture on AdS / CFT[END_REF].

	Quantum type IIB Superstring		Quantum N = 4 , D = 4 SYM
	on AdS 5 × S 5 L 4 = 4πg s N (α ) 2	⇔	with gauge group SU (N ) g YM = √ g s
	Classical type IIB Superstring		't Hooft limit of SU (N ) SYM
	g s << 1	⇔	N → ∞, λ = (g YM ) 2 N fixed.
	Weak coupling regime		Topological expansion
	Classical type IIB Supergravity		't Hooft and Large λ limit of SYM
	α << 1	⇔	λ → ∞
	Supergravity approximation		Strong coupling regime
	• On another hand, N = 4 , D = 4 super Yang-Mills has a global superconformal
	SU (2, 2|4) symmetry group, whose maximal bosonic subgroup is isomorphic to
	SO(2, 4) × SO(6) R ∼ SO(2, 4) × SU (4) R .	(5.1.3)

The last line of Table2.4 has been conjectured from the higher dimensional cases, since very few is known about gaugings in this infinite dimensional context. It turns out that the decomposition allows for the SO(9) gauging, which stands for a non-trivial test of the group-theoretical framework.

where the adjoint indices can be further split into [IJ] and A which respectively accounts for the compact X IJ generators of E[START_REF] Zumino | Supersymmetry and the Vacuum[END_REF][START_REF] Zumino | Supersymmetry and the Vacuum[END_REF] and the non-compact Y A ones.

In our conventions for this chapter, we reserve letters a, b, c, . . . from the beginning of the alphabet for 'flat' SO[START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF] indices which are raised and lowered with δ ab . In contrast, the letters k, l, m, . . . indicate SL(9) vector indices which transform under the global SL(9) of the ungauged theory. Both indices run from 1 to 9.

Part of these calculations have been facilitated by use of the computer algebra system Cadabra[117] [118].

The entire picture

The supersymmetry algebra acting on the bosonic fields is summarized below. Up to quartic order in fermions the relations are .4.60) This puts an end to the construction of the SO(9) gauged maximal supergravity in two dimensions. Let us summarize the main features: Vector fields have been introduced in the Lagrangian to impose the SO(9) local symmetry. The degrees of freedom have been balanced by the addition of a F Y term which couples the field strengths to auxiliary fields. Then, supersymmetry has been restored, following the Noether procedure. Thus, new Yukawa couplings L Yuk appeared in the Lagrangian, together with a scalar potential L pot . Finally, the supersymmetry algebra has been checked to complete the picture of the theory. Now, the following section will be devoted to applications. First of all, the equations of motion will be computed and their consistency checked. This will open the path to the study of particular solutions such as a half-supersymmetric domain wall solution, and it will lead to the distinction of different on-shell equivalent formulations of the theory.

SO(9) supergravity: properties

Having at hand the two-dimensional SO(9) gauged maximal supergravity, let us present some properties and applications.

The bosonic field equations

In this section, the bosonic field equations will be discussed and their structure commented.

Gravity sector

We give here the equations of motion for the dilaton and the trace and traceless parts of Einstein' equations. The last equation corresponds to a constraint imposed by the two unimodular degrees of freedom of the two-dimensional metric that can be viewed as Lagrange multipliers.

quantum mechanics is a low energy effective theory that aims at describing the dynamics of D0-branes. The action first obtained in [START_REF] De Wit | The Supermembrane Is Unstable[END_REF] is given by

and is parametrized by

• 16 (N × N ) fermionic super-partners Ψ a,b which transform as spinors under the SO(9) group of transverse rotations

• Vector fields A t that enter the covariant derivative

Now let us focus on the dual gravity theory.

Gravity side: Two-dimensional effective action

The two-dimensional effective action that describes the dynamics of the D0-brane compactified on the eight sphere S 8 , restricted to the metric and dilaton, has been found in [START_REF] Boonstra | The domain wall / QFT correspondence[END_REF], [START_REF] Youm | Generalized conformal quantum mechanics of D0-brane[END_REF]. However, if we take into account all the lowest mass fluctuations around the D0-brane geometry, they are encoded in the full SO(9) gauged supergravity constructed in [START_REF] Ortiz | SO(9) supergravity in two dimensions[END_REF]. These fluctuations will enable us to extract information about BFSS correlation functions through the holographic procedure described above.

To begin, we derive the effective action for the D0-brane dynamics. This action will allow us to describe fluctuations around the gravity sector, so let us start from the SO(9) action (3.4.22) evaluated at the origin of the target space

Let us make a change of variables so that the background metric is pure AdS t → 2 5 g 5/2 t , r → g -1 r -1/5 , g µν → g -2 ρ 4/9 g µν , ρ = e -6 7 φ .

(5.2.4)

The action yields the expression of [126]

where the minus sign in front of the cosmological constant comes from the fact that our signature is (+, -). Since the computation of the two-points function are more easily done in Euclidean signature (+, +), we will work in this signature until the end of the chapter. After a Wick rotation, the action reads

(5.2.6)

On-shell action and Renormalization of the gravity sector

In the following, the formalism of Holographic renormalization developed in [START_REF] Kanitscheider | Precision holography for non-conformal branes[END_REF] and [START_REF] Skenderis | Lecture notes on holographic renormalization[END_REF], will be applied to compute correlation functions associated with the gravity sector. First, the action (5.2.6) will be evaluated on-shell, on a background solution. Then, fluctuations around the background will be considered and the on-shell action will be renormalized to define a generating functional for correlation functions. Hence, one-point and two-points correlation functions will be computed and discussed.

On-shell action

Let us focus on the effective action that describes the pure gravity sector. In order to stick to the literature we will perform a further rescaling of the metric (5.2.9)

In this frame, the background is an AdS spacetime coupled to a dilaton. With these coordinates, the boundary of AdS is located at r = 0. In the next step, fluctuations around the background will be considered such that the geometry remains the one described by an asymptotically AdS metric [START_REF] Skenderis | Lecture notes on holographic renormalization[END_REF]. That is to say, a metric that can be put into the form

(5.2.10)

As before, r is the radial coordinate from the boundary r = 0 of AdS spacetime and the function f (t, r) has a well defined limit when r → 0 . The equations of motion associated to the two-dimensional effective action are given by 0

They respectively stand for: the traceless and trace part of Einstein equations, and the dilaton field equation. Owing to the fact that a global dilaton factor enters the action, the dilaton field equation can be used to straightforwardly evaluate the action on-shell

(5.2.12)

Eventually, the full on-shell action is obtained by introducing a Gibbons-Hawking term which takes into account the boundary of the spacetime background

13)

Here h is the induced metric on the boundary and K is the trace of the extrinsic curvature of the boundary that can be computed from a unit length vector n µ normal to the boundary

This gives a linear differential equation that can be simplified by taking the Fourier transform with respect to time:

For the scalar perturbation x one finds (a, m 2 ) = (0, 8 5 ), and the solution behavior near r = 0 is ỹ(r, q) = r 2/5 (ỹ (0) (q) + r 3/5 ỹ(1) (q) + r ỹ(2) (q) + ...) .

(5.2.55)

However, for the scalar perturbation φ 123 with (5.2.51), the solution admits the following power expansion near r = 0: ỹ(r, q) = r 1/5 (ỹ (0) (q) + r 2/5 ỹ(1) (q) + r ỹ(2) (q) + ...) .

(5.2.56)

This suggests an expansion in r 1/5 for the ansatz of the fluctuations and power series for the y field should start from r 2/5 for the x scalar and from r 1/5 for the φ 123 scalars. Where shall we stop the series? The answer follows from the on-shell action.

Correlation functions for the x field.

Let us start from the on-shell action with a scalar, in the case of an x field perturbation (a, m 2 ) = (0, 8 5 ) ,

(5.2.57)

In this case, the dilaton enters the Lagrangian as a global factor. Consequently, the on-shell action takes a simple form when we use the dilaton field equation:

Again the term √ h e γφ involves a global factor of -7/5 , thus we only need to know the expansions up to the power r 7/5 , because higher power contributions will vanish after taking the limit → 0 in the renormalization procedure. As a result, we are led to assume the following asymptotic ansatz for the fluctuations

The equations of motion constrain this ansatz such that,

So in our case ν = 3 5 . When compared to the correlation functions obtained in [START_REF] Hanada | Direct test of the gauge-gravity correspondence for Matrix theory correlation functions[END_REF], such an exponent corresponds to a supergravity mode with SO(9) total angular momentum l = 5 which comes from the eleven-dimensional metric. According to [START_REF] Hanada | Direct test of the gauge-gravity correspondence for Matrix theory correlation functions[END_REF], on the gauge theory side, the corresponding operators are

where the parenthesis (i 1 . . . i 5 ) means that the product of operators X i is totally symmetry and traceless under contraction of any two indices. This certainly does not correspond to the gravity side scalar perturbations that we study since they do not transform in the same irreducible representation of SO [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF]. However, if we exchange the role of the source and the response, we find

and the correlation function in time is given by

(5.2.80)

According to [START_REF] Hanada | Direct test of the gauge-gravity correspondence for Matrix theory correlation functions[END_REF], such an exponent (ν = -3 5 ) corresponds to a supergravity mode with angular momentum l = 2 originating from the eleven-dimensional metric. On the Matrix theory side, the corresponding operators [START_REF] Hanada | Direct test of the gauge-gravity correspondence for Matrix theory correlation functions[END_REF] are given by

and transform in the 44 of SO [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF]. The representations agree. Moreover, using Monte Carlo calculations, the authors of [START_REF] Hanada | Direct test of the gauge-gravity correspondence for Matrix theory correlation functions[END_REF] showed that the two-points correlation function associated with (5.2.81) matches exactly (5.2.80). The fact that an ambiguity in the source and response was present, is related to the value of the mass square m 2 that we found in (5.2.50) which allows for two admissible scaling dimensions (∆ -≤ ∆ + ), in the sense of [START_REF] Klebanov | AdS / CFT correspondence and symmetry breaking[END_REF].

Correlation functions for the φ 123 field.

In the case of the φ abc perturbation, here we take the example of φ 123 , the action is

Once evaluated on-shell we get

Again, if we assume that (f, κ) admit a power expansion in r with first non zero terms: (f (0) , κ (0) ), then √ he γφ gives a power r -7/5 , and √ he (γ+ 4 7 )φ gives a power r -4/5 . Thus we only need to know the expansions of (f, κ) up to the r 7/5 terms and the expansion of y up to r 4/5 . Eventually, the linear analysis, followed by the study of the full non-linear equations of motion lead to the perturbative ansatz:

.2.84)

Owing to the constraints

satisfied by the different coefficients in the expansions, we are led to introduce the counter terms:

(5.2.86)

Thus, the renormalized action is given by,

To compute the correlation functions we study the equation of motion for the scalar field, linearized around the background. As described in the linear analysis, the scalar fluctuation is a solution of the equation (5.2.54) with parameters (a, m 2 ) = ( 4 7 , 12 25 ): ỹ(q, r) = q 4/5 r 4/10 C 2 Bessel K (2/5, q √ r) .

(5.2.90)

The series expansion near r = 0 is ỹ(q, r) = q 2/5 C 2 Γ( 2 5 ) 2 3/5 r 1/5 + Γ(-2 5 ) 2 7/5 q 4/5 r 3/5 + 5Γ( 2 5 ) 12 2 3/5 q 2 r 6/5 + o r→0 (r 6/5 ) . (5.2.91) Thus, the first two coefficients are related by ỹ3 (q) ∝ q 4/5 ỹ1 (q) , (5.2.92)

and the two-points function is

(5.2.93)

When compared to the correlation functions obtained in [START_REF] Hanada | Direct test of the gauge-gravity correspondence for Matrix theory correlation functions[END_REF], such an exponent (ν = 2 5 ) corresponds to a supergravity mode with angular momentum given by l = 1, which comes from the eleven-dimensional three-form. Here, there is no ambiguity since if we exchange the role of the source and the response, no supergravity mode match in [START_REF] Hanada | Direct test of the gauge-gravity correspondence for Matrix theory correlation functions[END_REF]. On the Matrix theory side, the corresponding operators are given by

and transform in the 84 of SO [START_REF] Iliopoulos | Broken Supergauge Symmetry and Renormalization[END_REF]. Again, Monte Carlo calculations performed in [START_REF] Hanada | Direct test of the gauge-gravity correspondence for Matrix theory correlation functions[END_REF] on the gauge theory side provide two-points correlation functions whose behavior matches exactly (5.2.93).

Deformed BFSS model holography

In this section, we will apply the holography techniques to extend our study to a supersymmetric deformation of the BFSS quantum mechanics. An important model which comes to mind is the BMN model [START_REF] Berenstein | Strings in flat space and pp waves from N=4 superYang-Mills[END_REF]. It was first constructed to describe M-theory plane waves and comes from the eleven-dimensional supermembrane action

• where

• B CBA is the antisymmetric tensor gauge superfield,

• and Π r a = ∂ a Z A E r A is the supervielbein pullback, see [START_REF] Dasgupta | An introduction to the quantum supermembrane[END_REF], [START_REF] Iizuka | Supergravity, supermembrane and M(atrix) model on PP waves[END_REF]. It is obtained when this action is evaluated on the maximally supersymmetric pp-wave background

and further truncated to a Matrix model action by the procedure described in [START_REF] Nicolai | Supermembranes and M(atrix) theory[END_REF].

A deformation of BFSS: the BMN model

Starting from the hypothesis that the gauge theory side is represented by the BMN model, let us introduce it. The action for the BMN model is given by the BFSS term

supplemented by mass and Myers terms [START_REF] Myers | Dielectric branes[END_REF] S mM = dt tr -

(5.3.4) Thus, S BMN ≡ S BFSS + S mM .

(5.3.5)

A 1 is defined such that F = dA 1 . As a result we find an eleven-dimensional metric which solves Einstein's equations in 11d. An explicit and simpler form is given by

µ 2 e 3x e 3x -1 dΩ 2 5 .

(5.3.16)

Eventually, this expression can be considerably simplified by successively performing the coordinate transformations

after which the metric becomes

where H is a harmonic function given by H(r 2 , r 5 ) ≡ 2 1 -F 2 (r 2 , r 5 ) .

(5.

3.19)

Moreover,

,

(5.3.20)

and we have defined

It turns out that H satisfies the Laplace equation ∆H = 0 of Euclidean space E 9 . Consequently the metric represents a pp-wave solution of the eleven-dimensional supergravity [START_REF] Gauntlett | Pp-waves in 11 dimensions with extra supersymmetry[END_REF]. As well as the domain-wall solution (3.5.11), it is a pure gravity solution in eleven dimensions. According to the previous results, a schematic picture of the DW/QFT correspondence is drawn in Table 5.4. Now that a gravity side background has been identified, we are prepared to compute one-point and two-points correlation functions using holographic renormalization techniques. This is the point of the next two sections. As a result, we will get some informations about the dual Matrix model. 

Supergravity

On-shell action and Renormalization

Effective action

In this section we will compute an effective action from the full SO(9) supergravity, that describes scalar fluctuations around the background (5.3.8) and preserves SO(3) × SO [START_REF] Wess | Supergauge Transformations in Four-Dimensions[END_REF]. The scalar fields should be expressed as the background times a perturbation and the action will be given up to quadratic order in the perturbations.

where,

is evaluated on the background solution, and X ∈ sl( 9) can be parametrized by irreducible representations of SO(3) × SO( 6):

The perturbation in the singlet (1, 1) will not be considered in what follows, since its coupling with the background leads to possibly non-trivial linear terms in the action. For simplicity reasons, they will be put to zero. Thus, the Euclidean action is given by

e ρ 5/9 e -2x (8 + 12e 3x + e 6x ) + 1 2 eρ(∂x (5,1) ) 2 + e ρ 5/9 e x (e 3x -6) x 2

(5,1)

Nonetheless, as we saw before the renormalization process is more easily done in a frame where the dilaton enters the action as a global factor. This corresponds to rescaling the metric by

It also generates a kinetic term for the dilaton, and the effective action is

-2 (∂x (5,1) ) 2 -4 e x (e 3x -6) x 2

(5,1)

Setting I ≡ {(5, 1) , (1, 20) , (3, 6)}, the associated equations of motion are

with

The field equations translate into

Any solution admits the following expansion at u = 0

and the ratio

is what we would like to determine.

Numerics

There is a unique solution of these equations that is regular in the bulk, and we would like to determine the ratio (up to a global constant factor) each time for this solution. To begin, let us introduce another function y(q, u) = x(q, u) + 1 3u dx du (q, u) , (5.3.53) which power expansion begins with y(q, u) = α(q) + β(q) u + o u→0 (u 3 ) .

(5.3.54)

For each perturbation, the corresponding equation of motion for y, which is now well defined at u = 0, is solved numerically. In particular, if y 1 and y 2 correspond to the unique solutions with initial conditions

then, the unique solution y s regular at u → ∞ may be written, up to a normalization factor,

First numerical investigation suggest that ln x(5,1) (5) (q) x(5,1) (2) (q) ∼ q→∞ 1.19 ln q , ln x(1,20) (5) (q)

x(1,20) (2) (q) ∼ q→∞ 1.20 ln q .

(5.3.57)

The exponents may be compared with the ratio of q 6/5 obtained in the BFSS holography for the 44 scalar excitations (5.2.79). Accordingly, the sources correspond respectively to {x (5,1) (5) (q), x(1,20) (5) (q)} and the responses to {x (5,1) (2) (q), x [START_REF] Coleman | All Possible Symmetries of the S Matrix[END_REF][START_REF] Freedman | Progress Toward a Theory of Supergravity[END_REF] (2) (q)}. Still, a detailed account of the asymptotic behavior of (5.3.57) and its implications for the two-points correlation functions and the dual gauge theory, is part of a work in progress [START_REF] Ortiz | Matrix model holography[END_REF].

Appendix A

Weyl rescaling

In this chapter, we consider a real differential manifold M of dimension D endowed with a metric g. and the Ricci tensor is given by

A.1 Local Weyl rescaling

The Ricci scalar follows directly D=2 Notice that in two dimensions, the Einstein-Hilbert action is invariant under local Weyl rescaling. Actually, this two-dimensional action is trivial since, the associated equations of motion for the metric are identically satisfied. In fact, the action is proportional to the Euler characteristic of the manifold M , which is a topological invariant. where α is a real constant. Then, In this appendix we list these relations, ordered by their origin. They have been used in the main text in order to find the (unique) solution (3.4.30), (3.4.31) for the Yukawa tensors in terms of the scalar fields.

B.1 Linear relations among the Yukawa tensors

Demanding that all terms linear in space-time derivatives cancel in the supersymmetry variation of (3.4.22) implies a number of relations linear in the Yukawa tensors. The cancellation of terms carrying ∂ µ ρ induces

The cancellation of terms carrying ϕ abc µ induces 0