
HAL Id: tel-01070916
https://theses.hal.science/tel-01070916

Submitted on 2 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconnaissance de langages par automates cellulaires
Véronique Terrier

To cite this version:
Véronique Terrier. Reconnaissance de langages par automates cellulaires. Calcul parallèle, distribué
et partagé [cs.DC]. Université de Caen, 2011. �tel-01070916�

https://theses.hal.science/tel-01070916
https://hal.archives-ouvertes.fr

Habilitation à diriger des recherches

présentée le 4 avril 2011 à

L’université de Caen Basse-Normandie

par

Véronique Terrier

Reconnaissance de langages

par automates cellulaires

Rapporteurs

Yuri Gurevich, Microsoft Research / Université du Michigan

Nicolas Ollinger, Université de Provence

Laurent Vuillon, Université de Savoie

Jury

Christian Choffrut, Université Paris Diderot

Marianne Delorme, Université de Lyon

Étienne Grandjean, Université de Caen

Jacques Mazoyer, Université de Lyon

Nicolas Ollinger, Université de Provence

Laurent Vuillon, Université de Savoie

Jean-Baptiste Yunès, Université Paris Diderot

Sommaire

1 Introduction 2

2 Définitions 3

3 Préciser les limites du modèle 7
3.1 Arguments combinatoires . 7
3.2 Relation avec des propriétés de clôture . 10

4 Jouer avec les paramètres 11
4.1 Reconnaissance de langages unidimensionnels par des AC de dimension

quelconque . 12
4.2 Le choix du voisinage . 13

5 Comparer les AC avec d’autres modèles 15
5.1 Automates alternants . 15
5.2 Autres modèles de calcul massivement parallèles 16
5.3 Modèles séquentiels . 17

6 Perspectives 19
6.1 Accélération linéaire en dimension 2 . 19
6.2 Voisinage anarchique . 21
6.3 Langages d’images . 21
6.4 Accélérer les calculs séquentiels . 22

Quelques articles représentatifs 29

1

1 Introduction

Les automates cellulaires (AC) ont été introduits il y a une soixantaine d’années par von
Neumann et Ulam qui cherchaient à définir les caractéristiques d’un système formel apte
au calcul universel et à l’auto-reproduction. Leur utilité a été rapidement reconnue dans
des domaines variés comme la physique et la biologie, pour modéliser des phénomènes
complexes. Avec des travaux initiés par Hedlund, c’est en tant que classe particulière de
systèmes dynamiques discrets qu’ils deviennent objet d’étude [20]. En plus de ces direc-
tions de recherche toujours très actives, les AC se sont vite imposés comme un modèle
incontournable du calcul massivement parallèle. Les premières constructions algorith-
miques ont mis en évidence, sur des diagrammes espace-temps, la richesse combinatoire
et les possibilités remarquables d’organiser et de synchroniser l’information propres à
ces machines parallèles [1, 39, 16]. Cette puissance de calcul a conduit à s’interroger sur
les performances de ces machines et à chercher à mesurer leurs capacités et leurs limites.
C’est ainsi que l’approche reconnaissance de langages a été développée et que l’étude des
classes de complexité des AC a démarré [9, 3, 36, 37].

Mes travaux s’inscrivent dans ce dernier courant de recherche. Je m’intéresse aux ques-
tions de complexité sur les AC, avec une attention particulière aux petites classes de
complexité : calcul en temps réel (i.e. temps minimal) et en temps linéaire ; en ef-
fet, c’est pour ces classes que la puissance de calcul est remarquable par rapport au
mode séquentiel. Avec pour objectif de préciser la puissance de ce modèle et de mieux
comprendre ce qu’est un calcul parallèle, trois tendances majeures se dégagent de mes
recherches : l’étude des limites de ce modèle, la comparaison avec d’autres modèles de
calcul et la question de l’influence de certains paramètres comme la dimension ou le
voisinage sur ses capacités de reconnaissance.

Avant de présenter ces trois points, je vais rappeler quelques définitions.

2

2 Définitions

Une première qualité des AC est que leur structure est homogène et leur description est
simple et bien formalisée.
Un automate cellulaire est un assemblage régulier de machines élémentaires (appelées
cellules). Ces cellules sont disposées uniformément sur une ligne, un plan ou un espace
de dimension quelconque et sont connectées mutuellement de façon locale et homogène.
Elles fonctionnent comme des automates finis tous identiques qui évoluent en parallèle
et de manière synchrone. Initialement, toute cellule est dans un état fixé. Puis à chaque
étape, chacune des cellules met à jour son propre état conformément aux règles de tran-
sition de l’automate et des états reçus des cellules connectées.

Formellement, un automate cellulaire est identifié par un quadruplet (d,Q,V, δ) où :

- d est la dimension de l’espace, les cellules sont alors indexées par Zd,

- Q est l’ensemble fini des états que peuvent prendre les cellules,

- V ⊆ Zd est un ensemble fini ordonné appelé voisinage qui spécifie les liens de
communication,

- δ : QV → Q est la fonction de transition locale.

Si 〈c, t〉 dénote l’état de la cellule c au temps t, alors au temps suivant on a :
〈c, t+ 1〉 = δ (〈c+ v1, t〉, · · · , 〈c+ vn, t〉) où V = {v1, v2, · · · , vn}.

Dépendant du voisinage, le déplacement des informations peut s’effectuer dans toutes les
directions de l’espace comme avec le voisinage de von Neumann {v ∈ Zd : Σ|vi| ≤ 1} et le
voisinage de Moore {v ∈ Zd : max |vi| ≤ 1} ou être restreint sur une ou toutes les direc-
tions comme avec le voisinage unidirectionnel de von Neumann {−v : v ∈ Nk et Σvi ≤ 1}
et le voisinage unidirectionnel de Moore {−v : v ∈ Nk et max vi ≤ 1}.
On parle de communication bidirectionnelle pour les voisinages qui permettent de trans-
mettre l’information partout dans l’espace et de communication unidirectionnelle pour
les voisinages qui n’autorisent le déplacement de l’information que dans un sens pour
chaque direction.

Les AC, grâce à leur plasticité, peuvent opérer sur des mots de dimension quelconque.
D’ordinaire, les données traitées sont unidimensionnelles (des mots standards) ou bidi-
mensionnelles (des images ou figures rectangulaires). Dans la perspective des AC en
tant que reconnaisseurs de langage, il faut préciser d’une part comment les données sont
entrées et d’autre part comment les résultats des calculs sont récupérés.
Par commodité, les symboles des mots d’entrée sont supposés faire partie de l’ensemble
des états de l’automate. Les deux modes d’entrée usuels sont le mode parallèle et le
mode séquentiel. Dans le mode parallèle, tous les symboles de l’entrée sont disposés con-
formément à la structure du mot sur les cellules de l’automate au temps initial. Avec des

3

données unidimensionnelles, le mode séquentiel consiste à choisir une cellule spécifique
qui reçoit successivement les symboles de l’entrée.
Pour déterminer le résultat du calcul, une cellule est distinguée comme cellule de sortie
et deux sous-ensembles d’états sont spécifiés : celui des états d’acceptation et celui des
états de rejet. L’entrée de la cellule de sortie dans un de ces états finaux marque la
terminaison du calcul. À noter que le choix de la cellule de sortie est arbitraire dans le
cas des communications bidirectionnelles, mais, dans le cas des communications unidi-
rectionnelles, cette cellule doit pouvoir accéder à tous les symboles de l’entrée.
Par suite, on dit qu’un AC reconnâıt un langage L, si, sur toute entrée w, la cellule de
sortie entre dans un état d’acceptation si w ∈ L ou dans un état de rejet si w /∈ L à un
certain temps tf ; et pour tout temps t < tf , la cellule de sortie n’est ni dans un état
d’acceptation, ni dans un état de rejet.

On cherche naturellement à mesurer les ressources temps et espace consommées par
le calcul d’un AC. La complexité en temps t : Nk → N d’un AC reconnaissant un langage
de dimension k est la fonction définie par :

t(n1, · · · , nk) = max
w mot de taille
(n1, · · · , nk)

{t : l’AC accepte ou rejette l’entrée w en t étapes}

On s’intéresse tout particulièrement aux petites complexités. En premier, la fonction
temps réel rt(n1, · · · , nk) figure le temps minimal nécessaire à la cellule de sortie pour
recevoir toutes les informations d’une entrée de taille (n1, · · · , nk). Cette fonction dépend
des paramètres de l’AC (sa dimension, son voisinage, son mode d’entrée, la position de
sa sortie) et spécifie la borne inférieure de temps consommé par ce type d’AC. Autre
fonction de petite complexité, la fonction temps linéaire correspond à la fonction temps
réel multipliée par une constante strictement supérieure à 1.
L’espace consommé s : Nk → P(Zd) par un AC de dimension d reconnaissant un langage
de dimension k est la fonction définie par :

s(n1, · · · , nk) =
⋃

w mot de taille
(n1, · · · , nk)

{c : la cellule c participe au calcul de l’AC sur l’entrée w}

Par commodité, on ne considère dans la suite que des AC dont le calcul est borné en
espace minimal. Cet espace minimal dépend des caractéristiques de l’AC et correspond
à l’ensemble des cellules utilisées par les calculs en temps réel sur ce type d’AC.

Associées à un type d’AC, les classes de complexité temps/espace identifient les familles
de langages reconnus par ce type d’AC en espace minimal et en temps inférieur à une
certaine fonction. Vu les variétés d’automates, il est facile de s’égarer dans les multiples
classes de langages qui en dérivent. Dans la suite, les classes de langages bidimensionnels
examinées seront mentionnées avec toutes leurs caractéristiques. Et pour les classes de

4

langages unidimensionnels, on utilisera les notations suivantes.
On distingue quatre types classiques d’AC unidimensionnels opérant sur des langages
unidimensionnels. Selon le mode d’entrée et le voisinage choisis, ils sont notés PCA,
POCA, SCA, SOCA où la première lettre “P” ou “S” figure le mode d’entrée (parallèle
ou séquentiel) et l’occurrence de “O” (comme one-way) indique si le voisinage est uni-
ou bi-directionnel. Leur extension à des réseaux de dimension arbitraire k sont notés
k-PCA, k-POCA, k-SCA, k-SOCA.

Étant donné un type d’automate X ∈ {PCA, POCA, SCA, SOCA, k-PCA, k-POCA,
k-SCA, k-SOCA, ...}, on définit les classes de complexité temps/espace suivantes.

• X(t) : la classe des langages unidimensionnels reconnus en espace minimal et temps
au plus t par des AC de type X.

Les classes les plus significatives sont celles des langages reconnus en temps réel et en
temps linéaire (et a fortiori en espace minimal).

• RX : la classe temps réel des AC de type X.

• LX : la classe temps linéaire des AC de type X.

À l’autre extrémité, la classe des langages reconnus en temps quelconque est notée comme
le type afférent.

• X : la classe des langages reconnus en espace minimal par des AC de type X.

À noter que pour les types d’AC avec communication bidirectionnelle, ces classes de
complexité en espace cöıncident avec celles des machines de Turing. En particulier,
PCA est la classe espace linéaire des machines de Turing déterministes.

Une notion clé est celle de graphes de dépendances. Ces graphes reflètent la structure
spatio-temporelle spécifique à un type d’AC qui opère avec une complexité déterminée
(voir Figure 1). Nombre de simulations et limitations connues pour les classes d’AC se
traduisent géométriquement grâce aux graphes de dépendances. Par nature, un graphe
de dépendances est orienté et sans cycle. Les sommets sont les sites qui participent au
calcul et les arcs figurent les dépendances induites par le voisinage entre les sites.

5

Espace

Temps

(a) RPCA : temps réel, entrée
parallèle, voisinage bidirection-
nel {−1, 0, 1}

Espace

Temps

(b) RPOCA : temps réel, entrée
parallèle, voisinage unidirection-
nel {−1, 0}

Espace

Temps

(c) LPOCA : temps linéaire, entrée
parallèle, voisinage unidirection-
nel {−1, 0}

Temps

(d) 2-RPOCA : espace de dimension 2, temps
réel, entrée parallèle, voisinage unidirection-
nel {(−1, 0), (0,−1), (0, 0)}

Figure 1: Graphes de dépendances

6

3 Préciser les limites du modèle

Notre ignorance est grande lorsqu’il s’agit de séparer les classes de complexité des AC.
En premier, la question de savoir si les AC travaillant en espace linéaire (et temps quel-
conque) sont plus puissants que les AC travaillant en temps réel, reste piteusement sans
réponse. Or une réponse positive à cette question est fortement improbable puisqu’une
des conséquences est l’égalité de P et PSPACE. Mais à l’inverse, on ne sait pas si une
réponse négative implique l’inclusion stricte de P dans PSPACE, ce qui justifierait au
moins les difficultés rencontrées. Et comme pour tous les autres modèles de calcul,
les outils font défaut pour établir des hiérarchies strictes sur les classes de complexité
lorsqu’on ne fait varier qu’une ressource (ici le temps) et en laissant fixe une autre
ressource (ici l’espace).
D’autres questions plus spécifiques aux AC comme celle de déterminer si en dimension 1
les AC avec communication unidirectionnelle ont la même puissance que ceux avec com-
munication bidirectionnelle, sont aussi bien loin d’être résolues.
Pour ne pas s’arrêter sur un constat d’échec, le mieux est de simplifier le problème en
examinant des variantes restreintes d’AC. On dispose alors d’outils combinatoires qui
permettent d’établir des limites à la capacité de reconnaissance de ces AC.

3.1 Arguments combinatoires

Avec des variantes restreintes d’AC, les contraintes structurelles relatives au déplacement
des données empêchent de disposer en temps utile de l’information nécessaire pour
réaliser les calculs. Pour dériver des limites sur les capacités de reconnaissance de ces
variantes, la stratégie est alors directe et consiste, en jouant sur ces contraintes, à ex-
hiber des langages ad hoc. La mise en œuvre de cette stratégie qui dépend du graphe de
communication spécifique, est redéfinie pour chaque variante particulière.
Illustrons la démarche usuelle par un exemple simple. Considérons un AC de dimen-
sion 2 avec entrée parallèle et voisinage de Moore unidirectionnel V = {(0, 0), (−1, 0),
(−1,−1), (0,−1)} et qui opère sur des langages bidimensionnels. La cellule de sortie
est la cellule (0, 0) et pour des entrées carrées de taille (n, n), le temps réel est n − 1.
Conséquence des contraintes sur le flux des données, il n’existe aucune interaction entre
la première et la dernière ligne avant ce temps n− 1. On peut alors identifier un goulot
d’étranglement lorsqu’il ne reste plus que de l’ordre de o(n) étapes pour terminer le
calcul. Observons à cet effet la situation au temps n − 2 en supposant que le calcul se
poursuit encore pendant k étapes (voir Figure 2). Au temps n−2, seul le carré constitué
des cellules (i, j) avec 0 ≤ i, j ≤ k peut influencer la cellule de sortie (0, 0) au cours des
k étapes suivantes. Ce carré se partage en deux selon l’impact respectif de la première
et de la dernière ligne de l’entrée : les k + 1 cellules du bord nord dépendent de la
première mais pas de la dernière ligne et inversement les autres cellules dépendent de la
dernière mais pas de la première ligne. Aussi les n données élémentaires qui composent
la première ligne de l’entrée, se trouvent compressées sur k+1 cellules. En d’autres ter-
mes, une partie significative de l’information est perdue avant que la première et dernière
ligne interagissent si k est de l’ordre de o(n).

7

Au temps n− 2,
les cellules influen-
çant le calcul de
la sortie lors des k
étapes suivantes

zone indépendante de la
dernière ligne de l’entrée

zone indépendante de la
première ligne de l’entrée

n − 1

k

0

n − 1k0

Figure 2: État des lieux au temps n− 2

Il est ensuite facile d’expliciter des langages non reconnus par AC opérant en temps réel
avec voisinage de Moore unidirectionnel. Pour reconnâıtre la famille des images qui ont
même première et même dernière ligne, le calcul nécessite au moins n+O(n) étapes sur
des entrées de taille (n, n). Ou bien, pour le langage majorité (i.e. la famille des images
binaires qui ont plus de 1 que de 0), le calcul nécessite au moins n+O(log n) étapes sur
des entrées de taille (n, n).
Reste alors à mettre en musique la preuve formelle. On utilise alors soit des techniques
algébriques (qui prennent en compte toute une famille d’entrées) soit, de façon plus
élégante, la complexité de Kolmogorov (qui se focalise sur une entrée spécifique de na-
ture “complexe”) [6].

Cole a été le premier à appliquer ces arguments combinatoires aux AC [9]. Il a explicité
des limites sur l’interaction des données dans le cas où le mode d’entrée est séquentiel
et a présenté des langages qui ne sont reconnus par aucun SCA en temps réel. Vu que
ces langages sont reconnus en temps réel par PCA, la capacité de reconnaissance des
RSCA est moindre que celle des RPCA. De même, divers résultats négatifs sont obtenus
portant, entre autres, sur les propriétés de clôture par concaténation ou par miroir. Une
autre proposition importante soulignée par Cole stipule que la capacité de reconnais-
sance des RSCA augmente avec la dimension du réseau.

Dans le cas des voisinages restreints, il est facile d’observer que les RPOCA sur des
langages dont l’alphabet est unaire, sont équivalents aux automates finis et par suite
moins puissants que les RPCA [10]. Lors de mes travaux, j’ai examiné plus en détail les
limites de cette classe de complexité.
Dans une première approche, j’ai tiré partie d’une propriété des RPOCAmise en évidence
par Čulik [11] à savoir que le calcul de n’importe quel mot englobe aussi tous les calculs
des facteurs de ce mot. Cette caractéristique impose certaines contraintes sur la structure
des langages reconnus par les RPOCA. Jouant sur ces contraintes, j’ai exhibé un langage
qui n’est reconnu par aucun RPOCA [45]. Il s’agit du langage suivant : L = L1L1 où
L1 = {w ∈ {0, 1}∗ : w = 1u0u ou w = 1u0y10u avec y ∈ {0, 1}∗ et u > 0}. Du fait que

8

ce langage est à la fois algébrique et carré d’un langage reconnu par RPOCA, j’ai par
la même occasion répondu par la négative à deux questions ouvertes : la classe temps
réel des POCA n’est pas close par concaténation et ne contient pas tous les langages
algébriques.
Dans une seconde approche, j’ai mis en évidence une autre contrainte relative à la propa-
gation de l’information : l’interaction entre le début et la fin des entrées est très restreinte
sur les RPOCA. L’ensemble des mots de la forme uvu fournit ainsi un exemple-type de
langage non reconnu par RPOCA [46]. Par la suite, cette deuxième approche a été
réutilisée par Klein et al [27] pour montrer l’existence d’une hiérarchie infinie (stricte)
entre les classes temps réel et temps linéaire des POCA.

Grâce encore à ces techniques algébriques, j’ai explicité des bornes inférieures sur les
AC de dimension 2 opérant sur des langages bidimensionnels et ceci pour différents
types de voisinage.
À commencer par le voisinage de Moore [50]. J’ai exhibé un langage d’images qui n’est
reconnu en temps réel par aucun AC avec voisinage de Moore. En revanche, ce langage
est reconnu en temps réel avec le voisinage de von Neumann et son image par rotation
à 180o l’est également en temps minimal avec le voisinage de Moore. Conséquence, la
classe temps réel des AC avec voisinage de Moore n’est pas close par rotation à 180o. De
surcrôıt, elle ne contient pas la classe temps réel des AC avec voisinage de von Neumann.
À toutes fins utiles, il faut rappeler que si le voisinage de Moore est plus étendu que
le voisinage de von Neumann et permet à priori une rapidité de traitement accrue, le
temps minimal nécessaire à la cellule de sortie pour connâıtre l’entrée complète, diminue
également. De fait, le temps réel avec voisinage de Moore qui est max(m,n) sur une
entrée de taille (m,n), est inférieur au temps réel avec voisinage de von Neumann qui
est m+ n. Il resterait maintenant à déterminer si tout ce qui est reconnu en temps réel
avec Moore l’est aussi en temps réel avec von Neumann.
Pour les voisinages unidirectionnels V tels que a+b ≥ 0 pour tout (a, b) de V, j’ai présenté
des langages bidimensionnels qui sont reconnus en temps réel aussi bien avec voisinage
de von Neumann que voisinage de Moore mais qui ne le sont même pas en temps linéaire
avec ces voisinages unidirectionnelles V. Enfin j’ai démontré que les classes temps réel
et temps linéaire pour les variantes unidirectionnelles de Moore et von Neumann ne sont
pas closes par rotation [55, 56].

En collaboration avec J. Mazoyer puis J.C. Dubacq, j’ai également obtenu des résultats
de lacune sur la constructibilité des signaux par AC en dimension 1 et en dimen-
sion 2 [49, 51]. Ces résultats, basés aussi sur des techniques combinatoires, ont leur
pendant en terme de reconnaissance de langages. Ainsi le fait qu’un signal constructible
par un AC en dimension 1 soit se déplace à vitesse maximale, soit prend un retard au
moins logarithmique, se traduit par une lacune entre le temps n et le temps n + log n
pour la reconnaissance des langages unaires sur POCA.

9

3.2 Relation avec des propriétés de clôture

Une hypothèse souvent avancée est que le temps réel et le temps linéaire définissent des
classes distinctes. Cette conjecture se montre difficile à prouver aussi il est intéressant de
trouver des parallèles avec d’autres interrogations. Dans le cas de la dimension 1, Ibarra
et Jiang ont ainsi établi un lien entre la capacité de reconnaissance de la classe temps
réel et ses propriétés de clôture : ils ont montré l’équivalence entre la clôture par miroir
de la classe temps réel et l’égalité des classes temps réel et temps linéaire [23]. Traduit
en terme d’AC avec voisinage unidirectionnel, ce critère de clôture conforte l’hypothèse
que les AC en temps linéaire sont plus puissants que les AC en temps réel (voir Annexe
A Section 6.2). Leur résultat s’appuie sur un algorithme très astucieux mais inclut un
détour inutile par des machines séquentielles. Mieux vaut lire la description directe en
terme d’AC de M. Delorme et J. Mazoyer [12].

J’ai étendu cet algorithme au cas de la dimension 2 pour des AC avec voisinage de
von Neumann en prenant comme propriété de clôture la rotation à 180o [53]. Ainsi, avec
le voisinage de von Neumann, les classes temps réel et temps linéaire sont confondues si
et seulement si la classe temps réel est close par rotation à 180o. Par manque d’outils
adaptés, la preuve se limite à des techniques de géométrie élémentaire plutôt fastidieuses.

Dans une nouvelle tentative pour comprendre comment la façon dont l’entrée est fournie
influe sur les capacités de calcul, et avec comme base toujours l’algorithme de Ibarra et
Jiang, j’ai explicité d’autres correspondances en dimension 1 [56]. Premièrement, on a
l’équivalence entre clôture par cycle de la classe temps réel et égalité des classes temps
réel et temps linéaire. Deuxièmement, pour les langages sur un alphabet unaire, on a
le parallèle avec la clôture par concaténation. Par suite, les propriétés de clôture par
miroir et par cycle cöıncident pour la classe temps réel. Mais, tandis qu’il est facile de
vérifier que la classe temps linéaire est close par miroir, rien n’indique qu’elle le soit par
cycle.

10

4 Jouer avec les paramètres

Une approche naturelle pour mieux comprendre les ressorts de ce modèle est de jouer
sur ses paramètres, notamment la dimension du réseau qui définit la répartition des
cellules dans l’espace et le voisinage qui spécifie les interactions au niveau local des cel-
lules. Or augmenter la dimension du réseau ouvre de nouvelles modalités pour entrer les
données et autorise à augmenter également la dimension des données. Aussi, les façons
de spécifier les AC multidimensionnels sont diverses.

Première possibilité, on augmente la dimension de l’espace sans augmenter la dimension
des données. Les modèles ainsi définis restent des reconnaisseurs de langages unidimen-
sionnels. De multiples variantes sont alors envisageables selon le mode d’entrée choisi.
Concernant les premières généralisations proposées dans la littérature, augmenter la
dimension revient implicitement à augmenter l’espace. Ces variantes utilisent sur les
entrées de longueur n une grille multidimensionnelle de taille n en chacune des dimen-
sions. L’espace borné d’un AC de dimension d est ainsi défini comme un réseau de nd

cellules où le mot d’entrée est fourni soit en séquentiel sur une cellule, soit en parallèle
sur une des dimensions. À noter que si l’espace augmente avec la dimension, les com-
plexités temps réel et temps linéaire restent en revanche linéaires en la taille de l’entrée
quelque soit la dimension.

Avec le mode d’entrée parallèle, une autre perspective est de placer l’entrée de façon
compacte. Ainsi pour un AC de dimension d, les mots de longueur n sont arrangés dans
un cube de dimension d et de côté ⌈ d

√
n ⌉. Ce cube délimite l’espace de l’AC, autrement

dit, l’espace utilisé équivaut à la taille de l’entrée quelque soit la dimension. Par contre,
les complexités temps réel et temps linéaire, qui sont de l’ordre de d

√
n, diminuent avec

la dimension. Maintenant, il existe de multiples façons d’arranger de façon compacte
un mot dans un cube de dimension d, d’où il résulte de multiples classes de complexité
spécifiques. L’ennui est qu’aucune n’est plus légitime que les autres. De plus, l’ordre de
placement est en général trop dépendant de la longueur de l’entrée.

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14

a1 a2 a3 a4

a8 a7 a6 a5

a9 a10 a11 a12

a13a14

a1 a2

a3

a4

a5

a6 a7

a8

a9

a10 a11

a12

a13

a14

Figure 3: Divers arrangements d’un mot dans un carré

Pour éviter entre autre ce dernier défaut, une piste proposée par M. Delorme et
J. Mazoyer consiste à utiliser des courbes qui remplissent l’espace (fil d’Archimède, fil
de Hilbert ...). L’automate est alors spécifié avec un paramètre supplémentaire : le fil
qui est mémorisé localement par chaque cellule. Et au temps initial, le mot d’entrée est

11

disposé le long de ce fil.

Deuxième possibilité, on augmente simultanément la dimension de l’espace et la di-
mension des données. C’est dans le cadre de la dimension 2, où les AC opèrent comme
reconnaisseurs de langages d’images, que cette approche est la plus répandue. De fait,
cet intérêt particulier pour la dimension 2 est à la fois encouragé, sur le versant applicatif,
par l’aspect traitement d’images et est également stimulé par les nombreux travaux qui
généralisent la notion de langage rationnel à la dimension 2. Le calcul sur des données
bidimensionnelles engendre des interactions plus riches et le choix du voisinage apparâıt
comme un des paramètres significatifs qui influent sur les capacités de reconnaissance de
tels AC.

4.1 Reconnaissance de langages unidimensionnels par des AC de di-

mension quelconque

Il s’agit ici des variantes d’AC à d dimensions qui sur les entrées de longueur n opèrent
sur un espace de nd cellules. Pour les AC avec mode d’entrée séquentielle et voisinage
bidirectionnel, Cole a montré que la capacité de reconnaissance en temps réel de ces
automates augmente strictement avec la dimension du réseau [9]. La situation n’est
pas si tranchée lorsqu’on examine les autres variantes (AC avec entrée séquentielle et
communication unidirectionnelle ou AC avec entrée parallèle et communication uni ou
bidirectionnelle). Dans [57], j’ai présenté une étude systématique des variantes avec
voisinage de von Neumann unidirectionnel et entrée séquentielle (SOCA) ou entrée par-
allèle (POCA) et de leurs classes de petite complexité. Chose amusante, la hiérarchie
en dimension de ces classes temps réel et temps linéaire s’inscrit entre les classes temps
minimal et temps quelconque (bornés linéairement en espace) de la hiérarchie en temps
des AC de dimension 1. Voir Figure 4.
J’ai ainsi généralisé les résultats d’accélération linéaire, d’inclusion ou d’égalité entre
classes connus dans le cas de la dimension 1 aux dimensions supérieures. Essentiellement,
c’est la géométrie induite par la régularité des graphes de dépendances qui entre en jeu.
En particulier, les simulations sont basées sur des transformations affines qui préservent
les contraintes relatives à la fois au voisinage (les dépendances sont respectées), à la
charge de calcul (l’application linéaire sous-jacente est injective) et aux entrées sorties
(la correspondance est garantie).
Un phénomène particulier se présente pour les propriétés de clôture des RPOCA. À
l’inverse de la dimension 1, les RPOCA de dimension supérieure sont clos par con-
caténation et par étoile de Kleene.

Sans surprise, la question de savoir si, pour ces modèles, augmenter la dimension aug-
mente strictement les capacités de calcul est ouverte. Et les relations entre la hiérarchie
en temps des AC de dimension 1 et cette hiérarchie en dimension sont pour le moins
énigmatiques. Les graphes de dépendances d’un AC de dimension 1 travaillant en temps
nk et d’un AC de dimension k travaillant en temps linéaire ont tous les deux de l’ordre de
nk+1 sites, mais n’ont pas du tout la même structure. Bref, toutes les questions relatives

12

1-LPOCA=1-RSOCA=1-RPCA

1-LSOCA=1-LPCA

(k − 1)-LSOCA
k-RPOCA

k-RSOCAR k-LPOCA=k-RSOCA

k-LSOCA

(k + 1)-RPOCA

1-PCA(nk)

1-PCA(nk+1)

1-POCA=1-SOCA

1-PCA=DSPACE(n)

La hiérarchie en temps

des AC de dimension 1

et espace linéaire

La hiérarchie en dimension

des AC temps réel ou linéaire

et espace de diamètre linéaire

Figure 4: Relations entre diverses classes de langages unidimensionnels.
Aucune inclusion stricte n’est connue entre 1-RPCA et 1-PCA.

aux relations temps et espace restent en suspens.

4.2 Le choix du voisinage

Une des caractéristiques des AC est que la transmission de l’information s’effectue de
manière locale. C’est le voisinage choisi qui définit le schéma de communication et deux
voisinages distincts n’offrent pas systématiquement les mêmes capacités algorithmiques.
Ainsi en dimension 1, le voisinage de premiers voisins {−1, 0, 1} et le voisinage uni-
directionnel {−1, 0} ne déterminent pas les mêmes classes de complexité. En réalité,
tout voisinage (non pathologique) est équivalent à l’un de ces deux voisinages (de pre-
miers voisins ou unidirectionnel) comme le montre V. Poupet par son résultat de di-
chotomie [32].
En dimension supérieure, la structure spatio-temporelle définie par chaque voisinage
devient plus intriquée et les interactions sont plus complexes. Dès la dimension 2,
l’existence de langages d’images reconnus en temps réel avec voisinage de von Neumann
sans l’être avec voisinage de Moore indique que l’état de choses est plus varié qu’en
dimension 1. On a là deux voisinages bidirectionnels dont les classes temps réel sont
distinctes. Dans [54, 55], j’ai examiné plus avant les questions de voisinage en dimen-
sion 2 et leur impact sur les capacités de reconnaissance de langages d’images. Une des
caractéristiques mise en évidence est l’enveloppe convexe qui délimite le voisinage. Pour

13

deux voisinages distincts qui partagent la même enveloppe convexe, tout calcul réalisé
avec l’un peut être également réalisé avec l’autre et ceci sans perte de temps hormis une
phase préliminaire de coût constant. J’ai présenté aussi certains exemples où l’on peut
réduire la taille du voisinage tout en gardant les mêmes capacités de reconnaissance.
J’ai également obtenu des résultats d’accélération linéaire pour une famille large (mais
incomplète) de voisinages.

14

5 Comparer les AC avec d’autres modèles

Une autre approche pour déterminer les avantages apportés par le modèle des AC est
de comparer ses performances avec celles d’autres modèles de calcul.

5.1 Automates alternants

Le calcul alternant qui combine branchement existentiel et branchement universel est de
nature parallèle. On trouve ainsi diverses caractérisations des AC en terme d’automates
finis alternants. Une première correspondance a été mise en évidence par Ito et al [25].
Ils ont montré qu’une variante d’AC (les DOTA) reconnâıt la même famille de langages
bidimensionnels que les automates finis alternants de dimension 2 muni d’une tête de
lecture qui se déplace dans une seule direction sur chacune des deux dimensions.

De manière similaire, j’ai établi que les AC de dimension k avec entrée séquentielle et
voisinage ou bidirectionnel ou unidirectionnel, ont leur équivalent en terme d’automates
alternants. J’ai obtenu les deux résultats suivants. D’une part, les automates itératifs de
dimension k travaillant en temps réel (les k-RSCA) sont équivalents (modulo l’opération
miroir sur les entrées) aux automates finis alternants avec une tête unidirectionnelle, k
compteurs et travaillant en temps réel [52]. D’autre part, les AC de dimension k avec
entrée séquentielle, voisinage unidirectionnel et travaillant en temps réel (les k-RSOCA)
sont équivalents (modulo l’opération miroir) aux automates finis alternants à k+1 têtes
unidirectionnelles [57]. De la sorte, on dispose d’une tête pour chacune des k dimensions
et d’une tête pour le temps. En d’autres termes, lorsque les communications sont unidi-
rectionnelles, le temps qui par essence est unidirectionnel équivaut à une dimension de
l’espace.

Les simulations présentées pour prouver ces deux résultats sont analogues. Elles con-
sistent, par duplication, à transformer le graphe de dépendances de l’AC en arbre de
dépendances. Reste alors à constater que les structures de l’arbre de dépendances de
l’AC et de l’arbre des calculs de l’automate fini alternant sont en fait identiques.

Ces simulations impliquent des AC avec entrée séquentielle. Concernant le mode
d’entrée parallèle, une de ses particularités est comme le note Jacques Mazoyer, qu’il
induit une synchronisation implicite au temps initial. Autrement dit, une description
des AC avec entrée parallèle serait envisageable au moyen d’automates synchronisant
(cf. [22]). À ce propos, il est bien de rappeler le résultat d’Okhotin qui fait intervenir des
grammaires alternantes et propose un lien intéressant avec la hiérarchie de Chomsky.
C’est la caractérisation des RPOCA par des grammaire linéaires conjonctives (i.e. des
grammaires linéaires enrichies d’un opérateur de conjonction) [31].

Mais quels enseignements peut on tirer de ces correspondances avec ces variantes d’auto-
mates finis alternants ? Avoir différentes définitions d’un même objet est toujours
intéressant. Cependant, il faut reconnâıtre que ces automates finis alternants n’apportent
pas vraiment d’éclairage nouveau sur les AC. D’une part, sur le versant algorithmique,

15

les modèles alternants apparaissent plutôt barbares. Imaginer par exemple l’automate
itératif de Fischer [16] (qui reconnâıt en temps réel les mots de longueur premier) sous la
forme d’un automate fini alternant muni d’une tête unidirectionnelle et d’un compteur.
D’autre part, pour l’étude des limites des AC, ces modèles alternants ne fournissent
pas, pour l’instant, de meilleure compréhension des AC. On sait grâce à Cole [9] que
les capacités de reconnaissance des automates itératifs augmentent avec la dimension du
réseau, autrement dit que la hiérarchie des k-RSCA est stricte selon la dimension k. La
redécouverte dans [24] que cette hiérarchie est stricte pour les automates alternants à k
compteurs, ne nous apprend rien de plus. Concernant la hiérarchie des k-RSOCA, savoir
si elle est stricte est une question ouverte (cf. Section 4.1) et se traduit en question tout
aussi ouverte sur la hiérarchie des automates finis alternants avec têtes unidirectionnelles.

5.2 Autres modèles de calcul massivement parallèles

D’autres modèles de calcul massivement parallèles que les automates cellulaires existent!
Les plus classiques : circuits booléens, PRAM et machines de Turing alternantes, susci-
tent une littérature abondante mais difficile d’y trouver référence aux AC. Pourtant des
relations directes apparaissent notamment avec les circuits booléens. En premier, les AC
peuvent être considérés comme un type particulier de circuits booléens. Inversement, le
premier AC universel (en dimension 2) a été construit via une simulation des circuits
booléens [2].

Mais l’aspect complexité est plutôt négligé. Plusieurs relations concernant les classes
de complexité ont bien été établis entre les machines de Turing alternantes et une
catégorie particulière d’AC travaillant sur des réseaux arborescents. Mais ces AC ar-
borescents, contrairement aux AC classique (sur les réseaux Zd), ne sont pas des modèles
réalistes. Ils reconnaissent en temps minimal des problèmes NP-complets.

En réalité, les AC classiques et les autres modèles de calcul massivement parallèles
sont, par leur modalité de communication, de nature différente. Pour les AC, les réseaux
sont à croissance bornée : étant donnée une cellule, le nombre de cellules accessibles en
2t étapes à partir de cette cellule est linéairement proportionnel au nombre de cellules
accessibles en t étapes. En d’autres termes, le taux d’expansion est constant. À l’inverse,
et sans même parler de la majorité des PRAM qui se fichent des questions de communi-
cation, il n’existe pas de telles restrictions sur la propagation de l’information pour les
circuits booléens ou les machines de Turing alternantes (ou les AC arborescents). Le
taux d’expansion peut même être exponentiel.
Avec cette divergence, mimer de manière efficace le comportement de machines à crois-
sance non bornée par des AC n’est pas simple. À ma connaissance, il n’existe qu’un seul
algorithme non trivial à ranger dans cette catégorie. C’est celui de Chang et al [7] et
qui a une conséquence intéressante : toute machine de Turing alternante travaillant en
temps linéaire peut être simulée par un POCA.

L’opération inverse qui consiste à simuler efficacement le comportement des AC avec
d’autres modèles parallèles, est aussi peu explorée. Malgré tout, j’ai construit pour les
AC avec communication unidirectionnelle, une simulation par des circuits booléens [59].

16

À dire vrai, ma préoccupation initiale n’avait pas trait aux circuits booléens mais
touchait aux questions de communication unidirectionnelle versus communication bidi-
rectionnelle. Pour les POCA, l’interaction entre les cellules est limitée : l’ensemble du
calcul sur une cellule dépend bien du calcul réalisé sur sa cellule voisine mais à l’inverse
n’a aucun effet sur lui. Concrètement, les états successifs d’une cellule sont l’image
par une transduction fonctionnelle des états successifs de sa voisine. Autrement dit,
chaque cellule d’un POCA agit comme un transducteur et un POCA qui travaille en
espace n opère comme une succession de n transducteurs. En cherchant à exploiter cette
caractéristique, j’ai déniché un résultat de Ladner et Fischer présentant une simulation
efficace des transducteurs par des circuits booléens : si le transducteur opère sur un mot
de longueur s, la profondeur du circuit qui le mime est en log s [33]. En empilant n
copies du circuit de Ladner et Fischer, on simule alors un POCA qui travaille en espace
n et temps t(n) par un circuit de profondeur n log(t(n)).
Une astuce permet ensuite de compresser localement le circuit initial et apporte une
amélioration qui n’est significative que pour les petites complexités, avec une profondeur
en n(1 + log(t(n)/n)). Même si le gain obtenu par cette compression n’est pas terrible,
on ne connâıt pas, pour le moment, de simulation plus efficace.

5.3 Modèles séquentiels

Les relations entre calcul parallèle et calcul séquentiel sont pour sûr un problème majeur.
Une première question est de savoir si le gain apporté par le parallélisme est toujours
significatif. Si le nombre de cellules impliquées dans un calcul parallèle induit une borne
sur l’accélération maximale espérée d’un calcul séquentiel, il ne garantit en revanche
aucune accélération minimale. Plus avant, l’enjeu pratique est de déterminer des trans-
formations efficaces qui permettent de traduire automatiquement un calcul séquentiel en
un calcul parallèle. Mais cet objectif est difficile à réaliser. Le contraste est grand entre
d’une part, tous les exemples d’AC construits pour résoudre des problèmes spécifiques
et qui illustrent le gain apporté par le parallélisme, et d’autre part, les simulations con-
nues de modèles séquentiels par AC et qui sont absolument inefficientes en regard de
l’accélération obtenue. Ainsi pour la simulation des machines de Turing (modèle de
calcul local comme les AC), on ne connâıt pas actuellement de meilleur résultat que
celui de Smith [36] où une étape de calcul de la machine de Turing est mimée par une
étape de calcul sur l’AC. Aucune accélération n’a non plus été établie pour des variantes
restreintes de machines de Turing.

À ce titre, le résultat de Kosaraju portant sur les automates finis de dimension 2 est
remarquable [28]. Bref rappel, un automate fini de dimension 2 est un automate qui
opère sur des images et où la tête de lecture se déplace selon les 4 directions N, E, S
ou W. Un tel automate sur une image de taille (n,m) peut (sans boucler) effectuer de
l’ordre de (n +m)2 pas. Or la simulation de ces automates finis par AC, proposée par
Kosaraju, permet de réaliser le même traitement en O(n + m) étapes sur AC, ce qui
est une accélération significative. Proprement dit, tout langage d’images reconnu par un
automate fini (déterministe ou non) de dimension 2 est reconnu en temps linéaire par

17

AC de dimension 2. Kosaraju ne fournit cependant dans son article qu’une ébauche de
preuve. Par la suite, Fanny Bouin a établi une version détaillée de cet algorithme [5],
lors d’un stage de recherche que j’encadrais.

M. Delorme et J. Mazoyer ont démontré un résultat voisin concernant les AC de di-
mension 2 équipés d’un fil (cette variante d’AC est décrite dans la Section 4) : tout
langage rationnel est reconnu en temps réel par un AC de dimension 2 avec voisinage
de Moore qu’il soit équipé du fil d’Archimède ou du fil de Hilbert [14]. Et qui dit temps
réel dit accélération optimale. Suivant cette piste et avec l’hypothèse additionnelle que
chaque cellule connaisse initialement sa position relative à la cellule de sortie, j’ai prouvé
que tout langage rationnel est reconnu en temps réel par un AC de dimension 2 avec
voisinage de von Neumann et ceci quelque soit le fil choisi [58]. La construction use d’un
algorithme d’amincissement classique de traitement d’images appliqué au fil.

18

6 Perspectives

Un objectif transverse à quelques unes des pistes de recherche présentées ci-dessous est
de développer des outils algorithmiques pour les AC en dimension 2. De fait, le passage
de la dimension 1 à la dimension 2 implique un saut de complexité substantiel dans la
dynamique des AC. Ainsi, savoir si la fonction globale d’un AC est injective (resp. sur-
jective), est une question décidable dans le cas de la dimension 1 mais indécidable dans
le cas de la dimension 2 [26]. Sur le plan algorithmique, des exemples comme la con-
struction de cercles discrets en temps réel [13] ou la fermeture transitive des graphes [18]
montrent que l’organisation des calculs devient plus compliquée en dimension 2. Les
interactions sont plus riches et les différentes notions développés dans le cadre de la di-
mension 1, comme la notion de signal [16, 9, 49, 15], le calcul avec des grilles [30] ou les
concepts de particules et collisions [35, 34], ne sont pas suffisantes pour capturer toutes
les possibilités de transmettre et combiner l’information. Bref on aimerait identifier les
régularités propres à la géométrie des calculs sur des données bidimensionnelles.

6.1 Accélération linéaire en dimension 2

Par bien des aspects, la situation devient plus délicate lorsqu’on augmente à la fois la
dimension du réseau et la dimension des données. Avec des interactions locales plus
complexes, les calculs sont plus imbriqués. Et la question du voisinage apparâıt alors
comme essentielle. En particulier, on ne sait pas si les résultats d’accélération linéaire
s’appliquent en dimension 2 quelque soit le voisinage. L’algorithme usuel d’accélération
linéaire défini par Beyer [3], utilise une opération préalable de groupage suivie d’une
transformation élémentaire.

x0 xn−1

0

1

n

n + m

l’automate initial

déformation

élémentaire

x0 xn−1

0

1

n

n + m
k

groupage

l’automate accéléré

Figure 5: L’accélération de Beyer

19

Cette approche a un travers : l’opération de groupage nécessite que chaque cellule
connaisse initialement la direction de la cellule de sortie et, dès lors, ne s’applique en di-
mension 2 qu’à certaines classes de voisinages. Or il existe, dans le cas de la dimension 1,
un autre algorithme d’accélération qui évite cette opération initiale de groupage. Cet
algorithme est la combinaison de deux déformations élémentaires et symétriques du di-
agramme espace-temps. Je souhaiterais étudier sa généralisation en dimension 2. Mais

x0 xn−1

0

1

n

n + m

l’automate initial

deux déformations

élémentaires

x0 xn−1

0

1

n

n + m
k

l’automate accéléré

Figure 6: Une autre méthode d’accélération linéaire

quoique l’algorithme en dimension 1 est simple, le passage à la dimension 2 n’est pas
immédiat. Une étape préliminaire serait d’expliciter les déformations valides applicables
aux graphes de dépendances des AC 2D.

vision globale

0

0

1

n

la transformation(
a 1− a

1− a a

)

où a = k+1
2k

0

0

1

n

vision locale

Figure 7: La déformation élémentaire gauche

20

6.2 Voisinage anarchique

Je souhaiterais aussi comprendre en quoi la connaissance locale que chaque cellule a de sa
position et des positions relatives de ses voisines, influe sur les capacités de reconnaissance
des AC. En dimension 1, un résultat dû à Szwerinski dit qu’avec le voisinage de premiers
voisins {−1, 0, 1}, les cellules d’un AC peuvent confondre leur droite et leur gauche sans
perte de temps et souligne ainsi que l’orientation n’a pas d’incidence [38]. Je présume
que les cellules peuvent tout mélanger y compris leur centre. Autrement dit, n’importe
quel AC de dimension 1 se simulerait sans perte de temps par un AC dont la fonction
de transition est indépendante de l’ordre des états du voisinage. Chaque état de cet AC
regrouperait un ensemble (fini!) d’états plausibles. Et l’état final correct serait calculé
en distinguant explicitement les bords gauche et droit des mots d’entrée.

Il serait intéressant de déterminer si le résultat de Szwerinski s’étend ou non à la
dimension supérieure. Est il possible de simuler des AC de dimension 2 par des AC
dont chaque cellule reçoit les informations de ses voisines sans connâıtre leur provenance
respective ? Mais il n’est pas certain que le nombre d’agencements plausibles reste fini
lorsqu’on cherche à reconstruire la structure bidimensionnelle de l’entrée à partir des
données reçues en vrac.

6.3 Langages d’images

Il existe d’autres travaux qui visent également à caractériser les classes de langages
d’images. C’est en premier Blum et Hewitt qui, à la fin des années soixante, ont exploré
la question de la reconnaissance de familles d’images par différents types d’automates
se déplaçant dans le plan [4]. Plus récemment, avec comme objectif de généraliser à
la dimension 2 la notion de langage rationnel, Restivo et Giammarresi ont introduit
différents modèles formels qui caractérisent des classes de langages d’images [17]. La
plupart de ces approches, basées sur des systèmes de tuiles, des expressions régulières,
des formules logiques et divers automates, capturent dans leur version non-déterministes
la même classe de langages d’images, les langages dits reconnaissables. Par contre,
les variantes déterministes ne bénéficient pas des mêmes propriétés de robustesse et
définissent des classes de langages distinctes.

Des relations entre ces modèles et les AC sont connues. Ainsi, E. Grandjean, F. Olive
et G. Richard ont obtenu une caractérisation logique des AC non déterministes opérant
en temps linéaire dont une variante définit également la classe des langages d’images
reconnaissables [19]. Par ailleurs, j’ai établi des liens entre les AC et une variante
déterministe d’automates, les DOTA: les DOTA se simulent en temps réel sur AC aussi
bien avec le voisinage de Moore que celui de von Neumann, en revanche, la rotation à 180◦

du calcul d’un DOTA se simule en temps réel sur AC avec le voisinage de von Neumann
mais pas avec celui de Moore [53]. Expliciter plus avant les liens et les différences entre
les AC et les divers modèles qui généralisent la notion de langage rationnel au cadre
bidimensionnel, aiderait à mieux comprendre les caractéristiques du calcul sur AC en
dimension 2.

À l’instar de la dimension 1 où la reconnaissance de langages unaires est une bonne

21

entrée en matière pour explorer les possibilités algorithmiques des AC linéaires, le cas
spécifique des langages d’images unaires où seule la taille des mots est significative, mérite
d’être regardé. Quelques propriétés ont été abordées dans le mémoire de recherche de
Maxime Leloup [29]. Et je souhaiterais poursuivre l’étude de ces propriétés et exam-
iner la complexité de reconnaissance sur AC des classes de langages d’images unaires
caractérisées par des systèmes de tuiles.

6.4 Accélérer les calculs séquentiels

Il s’agit ici d’un projet commun avec Alex Borello et Gaétan Richard [61]. L’objectif est
de déterminer des simulations efficaces de modèles séquentiels par des AC. Bien entendu,
il n’est pas question d’aborder le problème dans toute sa généralité mais de considérer
juste une version restreinte d’automates finis à plusieurs têtes qualifiés d’“oblivious”. La
particularité de ces automates “oblivious” réside dans le déplacement des têtes qui ne
dépend pas des données mais uniquement de la longueur de l’entrée. Quoique ce modèle
soit élémentaire, Holzer a montré que sa capacité de calcul correspond à la classe de
complexité parallèle NC1 [21].

La simulation envisagée repose sur les observations suivantes. La trajectoire des têtes
est identique sur tous les mots de même longueur, en particulier sur le mot ne contenant
que des a (pour a une lettre de l’alphabet). Les seuls changements de rythme intervien-
nent donc lorsqu’une des têtes atteint l’un des marqueurs gauche ou droit qui bordent
le mot. Ainsi, hormis lorsqu’une tête est à proximité d’un bord, la trajectoire des têtes
admet des comportements périodiques. Et l’idée est que l’AC peut accélérer le calcul
d’un automate “oblivious” en simulant simultanément l’ensemble de ses comportements
périodiques. En bref, l’AC effectue des pré-calculs qui simulent toutes les fragments
périodiques possibles. Ensuite, le point délicat est de recoller les morceaux du calcul,
i.e. les fragments périodiques et non périodiques.

22

Bibliographie

[1] A. J. Atrubin. A one-dimensional real-time iterative multiplier. IEEE Transactions
on Electronic Computers, EC-14(1):394–399, 1965.

[2] E. R. Banks. Information processing and transmission in cellular automata. Tech-
nical Report AITR-233, MIT Artificial Intelligence Laboratory, January 1 1971.

[3] W. T. Beyer. Recognition of topological invariants by iterative arrays. Technical
Report AITR-229, MIT Artificial Intelligence Laboratory, October 1 1969.

[4] M. Blum and C. Hewitt. Automata on two-dimensional tape. In Proc. IEEE
8th Annual Symposium on Switching and Automata Theory, IEEE Symposium on
Switching and Automata Theory, pages 155–160, 1967.

[5] F. Bouin. Simulation en temps linéaire sur automates cellulaires des automates finis
à 2 dimensions. Mémoire de DEA, 2003.

[6] J. Cervelle. Complexité dynamique et algorithmique des automates cellulaires. Ha-
bilitation à diriger des recherches, Université Paris Est, Marne-la-Vallée, Decembre
2007.

[7] J. H. Chang, O. H. Ibarra, and A. Vergis. On the power of one-way communication.
Journal of the ACM, 35(3):697–726, July 1988.

[8] J. H. Chang, O. H. Ibarra, and M. A. Palis. Efficient simulations of simple models of
parallel computation by time-bounded ATMs and space-bounded TMs. Theoretical
Computer Science, 68(1):19–36, October 1989.

[9] S. N. Cole. Real-time computation by n-dimensional iterative arrays of finite-state
machine. IEEE Transactions on Computing, 18:349–365, 1969.

[10] K. Čulik II, J. Gruska, and A. Salomaa. Systolic trellis automata. I. International
Journal Computer Mathematics, 15(3-4):195–212, 1984.

[11] K. Čulik II. Variations of the firing squad problem and applications. Information
Processing Letters, 30(3):153–157, February 1989.

[12] M. Delorme and J. Mazoyer. Reconnaisance de langages sur automates cellulaires.
Research Report 94-46, LIP, ENS Lyon, France, Dec. 1994.

[13] M. Delorme, J. Mazoyer, and L. Tougne. Discrete parabolas and circles on 2D
cellular automata. Theoretical Computer Science, 218(2):347–417, May 1999.

[14] M. Delorme and J. Mazoyer. Reconnaissance parallèle des langages rationnels sur
automates cellulaires plans. Theoretical Computer Science, 281(1–2):251–289, May
2002.

23

[15] M. Delorme and J. Mazoyer. Algorithmic Tools on Cellular Automata. In Handbook
of Natural Computing: Theory, Experiments, and Applications, edited by G. Rozen-
berg, T. Baeck and J. Kok (Springer Verlag (Heidelberg)), à parâıtre: décembre
2010.

[16] P. C. Fischer. Generation of primes by one-dimensional real-time iterative array.
Journal of the ACM, 12:388–394, 1965.

[17] D. Giammarresi and A. Restivo. Two-dimensional languages. In A. Salomaa and
G. Rozenberg, editors, Handbook of Formal Languages, volume 3, Beyond Words,
pages 215–267. Springer-Verlag, Berlin, 1997.

[18] L. J. Guibas, H. T. Kung, and C. D. Thompson. Direct VLSI implementation of
combinatorial algorithms. In Proceedings of the First Caltech Conference on VLSI,
pages 509–525, Pasadena, CA, January 1979. California Institute of Technology.

[19] E. Grandjean, F. Olive and G. Richard. Linear time complexity on cellular au-
tomata. Rédaction en cours.

[20] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical systems.
Mathematical Systems Theory, 3(4):320–375, 1969.

[21] M. Holzer. Multi-head finite automata: data-independent versus data-dependent
computations. Theoretical Computer Science, 286(1):97–116, August 2002.

[22] J. Hromkovič and K. Inoue. A note on realtime one-way synchronized alternating
one-counter automata. Theoretical Computer Science, 108(2):393–400, February
1993.

[23] O. H. Ibarra and T. Jiang. Relating the power of cellular arrays to their closure
properties. Theoretical Computer Science, 57(2-3):225–238, May 1988.

[24] K. Inoue, A. Ito and I. Takanami. A note on real time one-way alternating multi-
counter machines. Theoretical Computer Science 88 (1991) 287-296.

[25] A. Ito, K. Inoue and I. Takanami. Deterministic two-dimensional on-line tessel-
lation acceptors are equivalent to two-way two-dimensional alternating finite au-
tomata through 180◦-degree rotation. Theoretical Computer Science, 66(3):273–287,
26 August 1989.

[26] J. Kari. Reversibility and surjectivity problems of cellular automata. Journal of
Computer and System Sciences, 48(1):149–182, February 1994.

[27] A. Klein and M. Kutrib. Fast one-way cellular automata. Theoretical Computer
Science, 295(1–3):233–250, February 2003.

24

[28] S. R. Kosaraju. Fast parallel processing array algorithms for some graph problems
(preliminary version). In ACM, editor, Conference record of the eleventh annual
ACM Symposium on Theory of Computing: papers presented at the Symposium,
Atlanta, Georgia, April 30–May 2, 1979, pages 231–236, New York, NY, USA,
1979. ACM Press.

[29] M. Leloup. Reconnaissance de langages d’images unaires par automate cellulaire.
Mémoire de Master Recherche, 2007.

[30] J. Mazoyer and J. B. Yunès. Computations on Cellular Automata. In Handbook of
Natural Computing: Theory, Experiments, and Applications, edited by G. Rozen-
berg, T. Baeck and J. Kok (Springer Verlag (Heidelberg)), à parâıtre: décembre
2010.

[31] A. Okhotin. Automaton representation of linear conjunctive languages. In Interna-
tional Conference on Developments in Language Theory (DLT), LNCS, volume 6,
2002.

[32] V. Poupet. Cellular automata: Real-time equivalence between one-dimensional
neighborhoods. In Volker Diekert and Bruno Durand, editors, STACS 2005, 22nd
Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Ger-
many, February 24-26, 2005, Proceedings, volume 3404 of Lecture Notes in Com-
puter Science, pages 133–144. Springer, 2005.

[33] R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of the ACM,
27(4):831–838, October 1980.

[34] N. Ollinger and G. Richard. Automata on the plane vs particles and collisions.
Theoretical Computer Science, 410(27-29):2767 – 2773, 2009.

[35] G. Richard. Systèmes de particules et collisions discrètes dans les automates cellu-
laires. Thèse de doctorat, Université Aix-Marseille, December 2008.

[36] A. R. Smith III. Simple computation-universal cellular spaces. Journal of the ACM,
18(3):339–353, July 1971.

[37] A. R. Smith III. Real-time language recognition by one-dimensional cellular au-
tomata. Journal of Computer and System Science, 6:233–253, 1972.

[38] H. Szwerinski. Symmetrical one-dimensional cellular spaces. Information and Con-
trol, 67(1–3):163–172, October/November/December 1985.

[39] A. Waksman. An optimum solution to the firing squad synchronization problem.
Information and Control, 9(1):66–78, February 1966.

25

Références personnelles

[40] V. Terrier. Décidabilité de la théorie existentielle de N structuré par l’ordre naturel,
la divisibilité, les prédicats puissances et les fonctions puissances. C. R. Acad. Sci.,
Paris, Ser. I 311, No. 12, 749–752 (1990).

[41] V. Terrier. Décidabilité en arithmétiques faibles. Temps réel sur automates cellu-
laires. Thèse de doctorat, Université Claude Bernard, Lyon 1 (1991)

[42] V. Terrier. Signals in linear cellular automata. Proc. Workshop on Cellular Au-
tomata, Centre for Scientific Computing, Espoo Finland, 1991

[43] V. Terrier. Decidability of the existential theory of the set of natural numbers with
order, divisibility, power functions, power predicates, and constants. Proc. Am.
Math. Soc., 114, No. 3, 809-816 (1992).

[44] V. Terrier. Real time recognition with cellular automata: a meaningful example.
Theoretical Informatics and Applications, 27(2):97–120, 1993.

[45] V. Terrier. Language recognizable in real time by cellular automata. Complex
Systems, 8:325–336, 1994.

[46] V. Terrier. On real time one-way cellular array. Theoretical Computer Science,
141(1–2):331–335, April 1995.

[47] V. Terrier. Language not recognizable in real time by one-way cellular automata.
Theoretical Computer Science, 156(1–2):281–287, March 1996.

[48] V. Terrier. A counting equivalence classes method to prove negative results. ”Cel-
lular Automata: a parallel model.”, M. Delorme and J. Mazoyer Eds, Mathematics
and Its Applications, December 1998, Kluwer.Cellular automata, 199–210.

[49] J. Mazoyer and V. Terrier. Signals in one-dimensional cellular automata. Theoretical
Computer Science, 217:53–80, 1999.

[50] V. Terrier. Two-dimensional cellular automata recognizer. Theoretical Computer
Science, 218(2):325–346, May 1999.

[51] J.C. Dubacq and V. Terrier. Signals for cellular automata in dimension 2 or higher.
In LATIN 2002, LNCS 2286:451–464, 2002.

[52] V. Terrier. Characterization of real time iterative array by alternating device. The-
oretical Computer Science, 290(3):2075–2084, 2003.

[53] V. Terrier. Two-dimensional cellular automata and deterministic on-line tessalation
automata. Theoretical Computer Science, 301(1–3):167–186, May 2003.

[54] V. Terrier. Two-dimensional cellular automata and their neighborhoods. Theoretical
Computer Science, 312(2–3):203–222, January 2004.

26

[55] V. Terrier. Cellular automata recognizer with restricted communication. Eugen
Czeizler and Jarkko Kari (Eds.), Proceedings of DMCS’04 Workshop on Discrete
Models for Complex Systems, Turku, Finland 2004, Pages 84-88.

[56] V. Terrier. Closure properties of cellular automata. Theoretical Computer Science,
352(1-3):97–107, 2006.

[57] V. Terrier. Low complexity classes of multidimensional cellular automata. Theoret-
ical Computer Science, 369(1-3):142–156, 2006.

[58] V. Terrier. Two-dimensional cellular automata recognizer equipped with a path. In
Premières Journées Automates Cellulaires, JAC’08, Avril 2008, Pages 174-181.

[59] V. Terrier. Simulation of one-way cellular automata by boolean circuits. Theoretical
Computer Science, 411(1): 266–276, (2010).

[60] V. Terrier. Language recognition by Cellular Automata. In Handbook of Natural
Computing: Theory, Experiments, and Applications, edited by G. Rozenberg, T.
Baeck and J. Kok (Springer Verlag (Heidelberg)), 40 pages, à parâıtre: décembre
2010.

[61] A. Borello, G. Richard and V. Terrier A speed-up of oblivious multi-head finite au-
tomata by cellular automata. STACS 2011, 28nd Annual Symposium on Theoretical
Aspects of Computer Science, Dortmund, March 2011.

27

Résumé

Les automates cellulaires ont été introduits il y a une soixantaine d’années par von
Neumann et Ulam qui cherchaient à définir les caractéristiques d’un système formel apte
au calcul universel et à l’auto-reproduction. Leur utilité a été rapidement reconnue dans
des domaines variés comme la physique et la biologie, pour modéliser des phénomènes
complexes.

En informatique, ils offrent un cadre privilégié pour l’étude du parallélisme massif.
Leur description est simple et bien formalisée. Ils ont a la même puissance de calcul
que les machines de Turing et de plus la richesse algorithmique propre aux machines
parallèles tout en restant un modèle physiquement réaliste.

Dans le cadre unificateur de la reconnaissance de langages, je m’intéresse aux ques-
tions de complexité sur les automates cellulaires, avec une attention particulière aux
petites classes de complexité : calcul en temps réel (i.e. temps minimal) et en temps
linéaire; en effet, c’est pour ces classes que l’apport du parallélisme est remarquable par
rapport au mode séquentiel.

Avec pour objectif de préciser les capacités de ce modèle et de mieux comprendre ce
qu’est un calcul parallèle, trois tendances majeures se dégagent de mes travaux : l’étude
des limites de ce modèle, la comparaison avec d’autres modèles de calcul et la question de
l’influence de certains paramètres comme la dimension ou le voisinage sur ses capacités
de reconnaissance.

Quelques articles représentatifs

1 Language recognition by Cellular Automata

2 Two-dimensional cellular automata recognizer

3 Low complexity classes of multidimensional cellular automata

4 Simulation of one-way cellular automata by boolean circuits

Language recognition by Cellular Automata

Véronique Terrier

GREYC, UMR CNRS 6072, Campus II, Université de Caen, 14032 Caen, France

Summary. Cellular automata are a simple and well-formalized model of massively
parallel computation which is known to be capable of universal computation. Due to
their parallel behavior, cellular automata have rich abilities of information processing
but in return it is not so easy to define their power limitations. A convenient approach
to characterize the computation capacity of cellular automata, is to investigate their
complexity classes. The aim of this chapter is to present the results and questions
about the cellular automata complexity classes and their relationships with other
models of computations.

1 Preliminary

Cellular automata provide an ideal framework for studying massively parallel
computation. Their description is very simple and homogeneous, while, as
emphasized by various examples, they allow us to distribute and synchronize
the information in a very efficient way. Their ability to do fast computation
has soon stimulated complexity issues. And early works have drawn much
attention to cellular automata as language recognizer.

Obviously, cellular automata (CA in short) are of the same computational
power as Turing machines. Hence the major motivation for CA complexity
study is to get finer knowledge on the way parallelism acts and to render
explicit the gain that may be achieved with CA. In particular, a lot of interest
is devoted to their low time complexity classes as they may provide significant
complexity benefits. But, as for the other models of computation, it is not a
simple task to evaluate finely their power and their limitations.

In this chapter, we will review the essential developments on CA in the field
of language recognition. The purpose is to give insight into the performance
of different types of CA, with a major concern with the low time complexity
classes. Of course, it will not be possible to report every outcome in detail
and some choices have been made. First, we will only deal with space bounded
computation. Precisely, due to our interest in fast computation, we will just

2 Véronique Terrier

consider space bound defined as the space consumed by low time computation.
And, despite their interest for general complexity issues, we also choose not to
consider either non deterministic or alternating variants of CA. As a matter of
fact, they are beyond the scope of realistic devices, because even their minimal
time classes contain NP -complete problems. For the same reasons, we shall
ignore CA with tree-like array structures.

The rest of this chapter is organized as follow. Section 2 introduces the
different variants of CA recognizers and their complexity classes. Section 3
reviews the known inclusions and equalities among these complexity classes.
Section 4 recalls the limitations established on the recognition power of CA.
Section 5 relates to the comparison with other models of computation. As a
conclusion, section 6 discusses some of the old open questions which remain
up to now unsolved.

2 Definitions and examples

Basically, a CA is a regular array of cells. These cells range over a finite set
of states and evolve synchronously at discrete time step. At each step, the
new state of each cell is produced by a local transition rule according to the
currents states in its neighborhood. So a CA is completely specified by a tuple
(d, S,N , δ) where d is the dimension of the array of cells indexed by Zd, S is
the finite set of states, the neighborhood N is a finite ordered subset of Zd

and δ is the transition function from S|N | into S.
A cell is denoted by c, c ∈ Zk; a site (c, t) denotes the cell c at time t and

〈c, t〉 denotes its state. And at each step t ≥ 0, the state is updated in this
way: 〈c, t+ 1〉 = δ(〈c+ v1, t〉, · · · , 〈c+ vr, t〉 : N = {v1, · · · ,vr}). Depending
on the neighborhood, the flow of information may go in all directions of the
cellular array as with the von Neumann neighborhood {v ∈ Zk : Σ|vi| ≤ 1}
or with the Moore one {v ∈ Zk : max |vi| ≤ 1} or it may be restricted
to one-way in some directions as with the one-way von Neumann neigh-
borhood {−v : v ∈ Nk and Σvi ≤ 1} or with the one-way Moore one
{−v : v ∈ Nk and max vi ≤ 1}. In the sequel, one-way communication will
refer to such restrictions whereas two-way communication will refer to the
ability to transmit information everywhere in the cellular array.

In order that a CA acts as a language recognizer, we have to specify how
the input is given to the cellular array and how the result of the computation
is obtained.

The input mode. For the sake of simplicity, we assume that Σ the finite alpha-
bet of input letters is a subset of the states set S of the CA. We also consider
CA with a quiescent state λ such that δ(λ, · · · , λ) = λ. We distinguish two
modes to give the input to the array: the parallel one and the sequential one.
In the parallel mode, the whole input is supplied at initial time to the array.

Language recognition by Cellular Automata 3

It implies an implicit synchronization at the beginning of the computation.
All input symbols are fed into a distinct cell and are arranged in such a way
as to keep the input structure. In the sequential mode, a specific cell is chosen
to receive the input. All cells are initially quiescent and the input symbols are
fed serially to the specific cell. When the whole input has been read by this
input cell, an end-marker symbol $ is infinitely fed to it. Because the input
cell takes into account not only its neighborhood but also its received input
symbol, it behaves in a particular way.

The output mode. The advantage of recognition problems is that the output
is of yes/no type. Hence, on a CA, a specific cell is enough to indicate ac-
ceptance of rejection as regards the input. The choice of this output cell is
arbitrary in the case of two-way communication. But, in the case of one-way
communication, it is subject to constraint: the output cell must be able to get
all information of the input.

Language recognition. For the purpose of recognition, two subsets of the states
set S are specified: the set Sacc of accepting states and the set Srej of rejecting
states. A language L is said to be recognized by a CA, if on input w the output
cell enters at some time te an accepting state if w ∈ L or a rejecting state
if w /∈ L; and for all time t < te, the output cell is neither in an accepting
nor a rejecting state. A time complexity T refers to a function relating the
input size to an amount of time steps. A CA recognizer works in time T , if it
accepts or rejects each word w of size s within T (s) steps.

Usually, we simply focus on acceptance. In this case, only the set Sacc of
accepting states is specified. A language L is said to be accepted by a CA, if
on input w the output cell enters an accepting state if and only if w ∈ L. A
CA acceptor works in time T , if it accepts each word w ∈ L of size s within
T (s) steps.

In fact, the notion of acceptance and recognition turns out to be equivalent
for currently time complexities. Indeed, a CA, on an input of size s, is able
to distinguish the output cell at time T (s) when T is any standard time
complexity. Hence, the CA can reject at time T (s) all non accepted words of
size s. So, except just below, we will not differentiate between CA recognizer
and CA acceptor.

Let us give an example of CA recognizer.

Example 1 The majority language which consists of the words over the al-
phabet {a, b} in which there are strictly more a’s than b’s, is recognized by
a one-dimensional CA with parallel input mode and one-way neighborhood
{−1, 0}.

4 Véronique Terrier

The CA is defined in this way.
Σ = {a, b} is the input alphabet,
S = {a, b, A,B, 1, 2, n, x} is the states set,
Sacc = {A} is the set of accepting states,
Srej = {B, x} is the set of rejecting states,
the cell −1 is assumed to remain in a
persistent state ♯,
δ : S ∪ {♯} × S → S is the transition
function displayed on the right.

δ a b A B 1 2 n x

a a b A a n A
b a b B n b B
A a A a n A
B b B n b B
1 1 2 1 2
2 1 2 1 2
n 1 2 n
x A B x x A B x x
♯ 1 2 x x A B x

Since the neighborhood is one-way, the output cell is chosen to be the
rightmost one. The computations on inputs w1 = aaaaabbaaabbabbbbba and
w2 = babbaaabbbba are depicted in Fig. 1. As the input mode is parallel, the
words are supplied at initial time. On each cell, above the diagonal, the length
of the sequence of a’s and A’s or, b’s and B’s, records the difference between
the numbers of a’s and b’s of the input. The input word w1 is accepted since
the output cell n − 1 enters the accepting state A, whereas the input word
w2 is rejected since it enters the rejecting state B. The CA recognizer works
within time complexity T (n) = 2n. As a matter of fact, the cell 0 knows at
time 1 that it is the leftmost one; so by mean of a signal which moves one cell
to the right every two steps, it is simple to mark the output cell n− 1 at time
2n. Thus the status of the words not accepted may be decided at this time
even though the set of rejecting states is not specified. More generally, notice
that, on an input of length n, the output cell is able to know the whole input
at time n− 1 whereas it is able to know that the input is completed at time
n.

Time complexities. Among the time complexities, two functions are of major
interest: the real time and linear time. The real time complexity, denoted by
rt, means that each word is accepted or rejected “as soon as possible”. Here,
we encounter the only slight difference between acceptance and recognition.
For acceptance, the real time complexity corresponds to the minimal time
for the output cell to read the whole input, whereas, for recognition, one
additional unit of time may be required in order that the output cell knows
that the input is completed. In the sequel, we will only deal with real time
acceptance. Practically, the real time complexity is specified by the way the
input is supplied, the choices of the output site and the neighborhood. The
linear time complexity, denoted by lt, is just defined as the real time function
multiplied by any constant strictly greater than 1.

Space bounded computation. In this chapter, we will restrict ourselves to space
bounded computation. During all the computation, only a fixed number of
cells, depending on the size of the input, are active. All other cells remain in
a persistent state ♯ from the start to the end. We may imagine many space
bounds. However, in practice, the bounded space is uniquely defined as the

Language recognition by Cellular Automata 5

���
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
�������

���
���

���
���
���

���
���
���
�������
����
����
��������

����
����

����
����
����

���
���
���
�������
����
����

����
����
����
����
����
����

����
����
����

����
����
����

����
����
����
����
����
����
����

���
���
���
�������

����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

���
���
���
�������

����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���
���
����
����
����
����

����
����
����
����

���
���
���
�������

����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����
����

���
���
���
���
����
����
����
����

���
���
���
���

���
���
���
������

���
���
���
����
����
����
����

���
���
���
���

���
���
���
���
����
����
����
�������

���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����
����

���
���
���
���

���
���
���
���
����
����
����
��������

����
����
����

���
���
���
���

���
���
���
���
����
����
����
�������

���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���
���

���
���
���
���
����
����
����
�������

���
���
���
����
����
����
�������

���
���

���
���
���

����
����
����

����
����
����
����
����
����
��������
����
����
����

����
����
����

����
����
����
���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
������
���
���

���
���
���

����
����
����

����
����
����
��
��
��
��

��
��
��
��

����
����
����

����
����
����

���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���
����
����
����
����

��
��
��
��

��
��
��
��

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����
����

���
���
���
���

���
���
���
�������

����
����
����

���
���
���
���

���
���
���
���
����
����
����
�������

���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���
���
����
����
����
����

���
���
���
���

���
���
���
������

���
���
���
����
����
����
����

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

Time

Time

Cells

0

00

0

n − 1

n − 1n − 1

n − 1

The states

a b

A B x

1 2 n

Fig. 1. Recognition of the majority language.

space required to perform real time computation. It means that the active part
of the array is identical whatever the effective time complexity may be. Then,
in the following, all classes defined in terms of time complexity classes will be
actually both time and space bounded. As a matter of fact, space bounded
and unbounded computation become the same for real time and linear time
complexities. On the other hand, because the space is bounded, the evolution
becomes periodical after a number of steps that is exponential in the size of
the space. That establishes an upper bound on the relevant time complexities.

The dependency graph. In order to reflect the neighborhood constraints on
the sites involved in the computation, we will consider the graph induced
by the dependencies between them. Precisely, a dependency graph is defined
according to a given type of CA, a fixed time complexity and the input size.
It is a directed graph. Its set of vertices consists of the sites which both are
influenced by the input and can have an effect on the output site, in other
words all relevant sites regarding the computation. Its edges are the couples
of sites ((c+ v, t), (c, t+ 1)), for all v belonging to the neighborhood N .

Now the different sorts of CA recognizers will be described in the follow-
ing subsections. Their features are stated by the array dimension, the input
dimension and, in the parallel mode, the way to place the input into the array.

6 Véronique Terrier

2.1 One-dimensional CA language recognizer.

A one-dimensional CA recognizer is structured as a linear array and operates
on words. The space is assumed linearly bounded: the number of active cells
equals the length of the input. In practice, the active cells are numbered
0, · · · , n−1, for an input of length n. Because the other cells always remain in
the persistent state ♯, one-dimensional CA with two-way communication have
the same computational power as Turing machines working in O(n) space.
Different variants of one-dimensional CA are currently defined. On the one
hand, it depends on the neighborhood which allows either two-way or one-
way communication. Actually, from [41], it is known that there are somewhat
only two kinds of neighborhoods, the two-way one {−1, 0, 1} and the one-
way one {−1, 0}. On the other hand, it depends on the input mode being
either parallel or sequential. Hence four variants of one-dimensional CA are
characterized according to the neighborhood and input mode choices. They are
named PCA, SCA, POCA and SOCA. The first letter “P” or “S” stands for
parallel or sequential input mode and the “O” occurrence makes distinctions
between one-way or two-way communication.

Automata Neighborhood Input mode Output cell

PCA {−1, 0, 1} parallel 0

SCA {−1, 0, 1} sequential 0

POCA {−1, 0} parallel n− 1

SOCA {−1, 0} sequential n− 1

Table 1. The four variants of CA in dimension one.

Different denominations have been used in other papers: SCA and SOCA
are more often called iterative array (IA) and one-way iterative array (OIA);
POCA are also called one-way cellular automata (OCA) or mentioned as trellis
automata.

Let us describe the way to carry out the input in the two modes. In the par-
allel input mode, at initial time 0, the i-th symbol of the input w = x0 · · ·xn−1

of size n, is fed to the cell i: 〈i, 0〉 = xi. In the sequential input mode, all active
cells are initially quiescent (i.e., set to λ). The cell indexed by 0 is chosen to
read the input: it gets the i-th symbol xi of the input w = x0 · · ·xn−1 at time i;
then it gets an end-marker $ at all time t ≥ n. Note that the input cell 0 evolves
according to a particular transition function δinit : (Σ ∪ {$})× S|N | → S, so
〈0, t〉 = δinit(xt, 〈v1, t − 1〉, · · · , 〈vr, t− 1〉) where N = {v1, . . . ,vr} refers to
the neighborhood and xt = $ when t ≥ n.

For the output cell that yields the result, we choose the initial cell 0 in
case of PCA and SCA which use two-way communication. The unique pos-
sibility for POCA and SOCA is the rightmost cell indexed n − 1 since their
neighborhood {−1, 0} is one-way.

The Fig. 2 below shows the customary representation of the four models.

Language recognition by Cellular Automata 7

Time

Cells000

0

0 n − 1n − 1n − 1

n − 1

n − 1
x0x0

x0x0

x1x1

x1x1

x2x2

x2x2

x3x3

x3x3 λλλλλλλλ

$

$

$

$

PCA POCASCA SOCA

Fig. 2. The space-time diagram of the four one-dimensional CA variants.

Some notation is useful in dealing with the various complexity classes of
one-dimensional CA recognizers. For a time complexity function T from N
into N, PCA(T) (resp. SCA(T), POCA(T) and SOCA(T)) will denote the
class of languages recognizable in time T by PCA (resp. SCA, POCA and
SOCA). With some liberty, PCA will refer to the class of languages recog-
nized in unbounded time by PCA; and in the same way, SCA, POCA and
SOCA will indicate the device type as well their corresponding unbounded
time complexity classes.

Particular attention will be devoted to the low time complexity classes,
namely the real time and the linear time. The real time complexity rt(n) is
defined as the earliest time for the output cell to read the whole input of length
n. More precisely, it corresponds to n − 1 in case of PCA, SCA and POCA
and to 2n− 2 in case of SOCA. And lt(n) = τ rt(n), where τ is any constant
strictly greater than 1, gives rise to linear time complexity. In the following,
the classes of language recognized in real time by PCA, SCA, POCA and
SOCA will be denoted RPCA, RSCA, RPOCA and RSOCA. For linear time
complexity, the corresponding classes will be designated by LPCA, LSCA,
LPOCA and LSOCA.

Let us give some examples to illustrate the computation ability of the real
time complexity classes.

Example 2 (Cole [10]) The palindrome language {w ∈ Σ∗ : w = wR} is a
real time SCA language (wR denotes w read backward).

We describe the algorithm in a geometrical way. Its discretization to ob-
tain the corresponding RSCA is straightforward. First of all, the input word
received sequentially on the input cell 0 is sent at maximal speed to the right.
Precisely the symbol xi which is fed on cell c = 0 at time t = i follows the line
Ai of equation t = c+ i with c ≥ 0. Simultaneously, a signal F of speed 1/3
starts from the input cell 0 at initial time and draws the line t = 3c. So the
signals Ai and F intersect on the point (i/2, 3i/2). From this intersection, the
symbol xi carried by Ai goes further along the vertical line Bi : c = i/2 with
t ≥ 3i/2. In this way, the symbols xj and xi meet on the point (i/2, j + i/2)

8 Véronique Terrier

Time

Space

x0

xi

xn−1

xn−1−i

1
2

i
2

0

0

i

n − 1

the signals Ai

the signals Bi

the segment Sn−1

the signal F

Fig. 3. Real time recognition of the palindrome language by a SCA.

where the signals Aj and Bi intersect. In particular, for any integer k, on the
segment Sk : c+ t = k with 0 ≤ c ≤ k/4, which runs at maximal speed to the
left from the signal F to the output cell 0, we may compare all pairs of symbols
{xi, xk−i} with i such that 0 ≤ i ≤ k/2. Now, on an input x0 · · ·xn−1 of length
n, the sequence of comparisons between xi and xn−1−i with 0 ≤ i ≤ (n−1)/2
determines whether the input is a palindrome or not. This sequence of com-
parisons is exactly the one which occurs on the segment Sn−1 : c+ t = n− 1.
Finally, observe that the segment Sn−1 reaches the cell c = 0 at time t = n−1.
In other words the result is obtained in real time.

Example 3 (Cole [10]) The square language {ww : w ∈ Σ∗} is a real time
SCA language.

On the one hand, each input symbol xi is carried along the line Ai of equation
t = c + i with c ≥ 0. On the other hand, first of all, each input symbol
xi is sent at maximal speed to the left, following the signal Bi of equation
t = −c+ i with c ≥ 0. Simultaneously, initialized by the input cell c at time
0, a signal G of equation t = −3c − 1 starts from the point (−1/2, 1/2) and
moves with speed 1/3 to the left. So the signals Bi and G intersect on the
point (−(i + 1)/2, (3i + 1)/2). From this intersection, the symbol xi carried
by Bi goes further along the signal Ci : t = c + 1 + 2i with t ≥ (3i + 1)/2.
Then the signal Ci intersects the initial cell c = 0 on the point (0, 1 + 2i).
From this intersection, the symbol xi follows the signal Di : t = 3c + 1 + 2i.
In this way, for any i, j with i < j, the symbols xi and xj meet at the point
(j−1)/2− i, (3j−1)/2− i) where the signals Di and Aj intersect. Now, on an
input x0 · · ·x2n−1 of even length 2n, the sequence of comparisons between xi

and xn+i with 0 ≤ i < n, determines whether the input is a square word or not.
These comparisons are performed on the points ((n− 1− i)/2, (3n− 1+ i)/2).

Language recognition by Cellular Automata 9

Time

Space0

0

1

1

i

n + i

2n − 1

((n − 1 − i)/2, (3n − 1 + i)/2)

the signals Ai

the signals Bi

the signals Ci

the signals Di

the segment S2n−1

the signal F

the signal G

Fig. 4. Real time recognition of the square language by a SCA.

Hence they occur on the segment S2n−1 : t+c = 2n−1 with 0 ≤ c ≤ (2n−1)/4
which starts from the signal F : t = 3c, moves at maximal speed to the left and
reaches the cell 0 at time 2n− 1. Therefore the result is obtained in minimal
time. With regard to space, note that negative cells are not necessarily active,
since the negative side can be folded on the positive side, i.e., all activity on
the negative cells can be as well performed on the positive side.

Example 4 (Smith [45]) The Dyck language is a real time POCA lan-
guage.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

d : Dyck words

a : proper prefixes of Dyck words

b : proper suffixes of Dyck words

o : other words

Real time computation on
the word aaaaababbaaabbbbaabb

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

Real time computation on
the factor aababbaaabbb

Fig. 5. Recognition of the Dyck language by a RPOCA.

A RPOCA which recognizes the Dyck language over the alphabet {a, b} can
be defined in this way.

10 Véronique Terrier

Σ = {a, b} is the input alphabet,
S = {a, b, d, o} is the set of states,
Sacc = {d} is the set of accepting states
and δ : S2 → S is the transition function
displayed on the right.

δ a b d o

a a d a a
b o b o
d b a
o o b b o

A significant feature of POCA is that the real time computation on an input
w contains the real time computations of all its factors. An illustration is
depicted in Fig. 5.

Example 5 (Culik [11]) The language L = {ai bi+j aj : i, j ∈ N} is a real
time POCA language.

3

bbbbbbbbbbb aaaaa aaaaaaaaaaa aaaaaa
0

2n − 1

n− ini

Time

Firing squad
synchronization
with one general
at each extremityG G

Fig. 6. Real time recognition of the Culik language by POCA.

First, the RPOCA will reject all the words outside the regular language
{ai bj ak : i, j, k ∈ N}. Second, notice that the factors of a word of shape
a∗bna∗ which belong to L are on the one hand the words aibi and biai which
will be simply accepted by the RPOCA and on the other hand the words
aibnan−i. Observe that to accept, in real time, all the factors aibnan−i with
i = 1, · · · , n − 1 of an input of shape a∗bna∗, means that n − 1 consecutive
cells simultaneously enter at time 2n−1 and for the first time in an accepting
state. In other words, a synchronization process is required to recognize this
language. As sketched in Fig. 6, the synchronization can be set up using a
firing squad synchronization process with two generals located respectively
according to the boundary between the a’s and b’s and the boundary between
the b’s and a’s.

Language recognition by Cellular Automata 11

2.2 Multi-dimensional CA language recognizer.

Natural extensions to higher dimensional arrays have been early investigated
in [10, 6, 30]. In this framework, the space increases with the dimension, while
the minimal time complexity remains linearly bounded by the length of the
input word. Precisely, on an input of length n, the space of a d-dimensional
CA recognizer is defined as a d-dimensional array of size n in each dimension.
Hence, a d-CA with two-way neighborhoods, has the same computation ability
as Turing machines working in O(nd) space.

00

00

00

00

11

11

11

11

n − 1n − 1

n − 1n − 1

n − 1n − 1

n − 1n − 1

λ

λ

λ λ λ λ

λλλλ

λ λ λ

λλλ

λ

λ

λ

λ λ λ

λλλ

λ λ λ

λλλλλ

λ

λλ

λλ

λ

λ

λ

λλλ

λ

λλ

λλ

λ

λ

λ

λλλλ

xn−1 · · · x1x0

xn−1 · · · x1x0

x0

x0

x1

x1

xn−1

xn−1

· · ·

· · ·

2− PCA

2− POCA

2− SCA

2− SOCA

Fig. 7. The space array of the four 2-CA variants.

The diversity of neighborhoods also rises with the dimension. In the case of
two-way neighborhoods and sequential input mode, we know from [10] that the
computation ability is preserved even though the neighborhood is restricted
to the von Neumann one: {v ∈ Zd : Σ |vi| ≤ 1}. Whether the same is true
or not for the other variants, is unclear. However, the impact of the neigh-
borhood choice appears less crucial for language recognizers where almost all
cells are initially quiescent than for picture language recognizers which will be
defined below. Hence, as neighborhood issues are currently studied in this last
context, we shall only regard the von Neumann neighborhood and its one-way
counterpart {−v : v ∈ Nd and Σ vi ≤ 1} in the case of a multi-dimensional
CA language recognizer.

For an input of length n, the space area consists of the cells {c : 0 ≤
c1, · · · , cd < n}. The two-dimensional case is depicted in Fig. 7. The cells

12 Véronique Terrier

outside this area remain in a persistent state ♯ during all the computation
and each cell inside the area is assumed to remain quiescent until the step
when it may be affected by the input. In the parallel mode, the input is
supplied on the first dimension of the array: the i-th input symbol of the
input w = x0 · · ·xn−1 is fed to the cell (i, 0, · · · , 0) at time 0. In the sequential
mode, the specific cell which gets the input serially from time 0, is chosen
to be the cell indexed by 0 = (0, · · · , 0). Of course, this input cell evolves
according to a particular transition function δinit which takes into account its
neighborhood and the received input symbol. The choice of the output cell
depends on the neighborhood. One chooses the cell 0 = (0, · · · , 0) with the von
Neumann neighborhood and the opposite corner n − 1 = (n − 1, · · · , n− 1)
with the one-way von Neumann neighborhood.

Analogously to one-dimensional CA recognizer, d − PCA, d − SCA, d −
POCA and d − SOCA denote the four d-dimensional variants according to
whether the input mode is parallel or sequential and whether the neighbor-
hood is the two-way von Neumann one or its one-way counterpart. They are
denominated variously in different papers: k− SCA is named k-dimensional
iterative array in [10]; 2− SOCA is named one-way two-dimensional iterative
array in [6] and OIA in [30]; k− POCA is named k-dimensional one-way mesh
connected array in [7].

The real time function rt(n) which is defined as the minimal time for the
output cell to read the whole input of size n, corresponds to n− 1 in the case
of d−PCA and d−SCA, d(n− 1) in the case of d−POCA and (d+1)(n− 1)
in the case of d− SOCA.

2.3 Two-dimensional CA language recognizer equipped with a
thread.

With the parallel mode in order to save time, we may supply the input word
in a more compact way than the linear one. The difficulty is that there are
many ways to set up the one-dimensional input words into multi-dimensional
arrays. All ways are arbitrary and lead to distinct devices with their own
complexity classes. A proper approach has been proposed by Delorme and

Fig. 8. Archimedean and Hilbert threads.

Mazoyer in [16]. To set up the inputs in a uniform way, they equip the CA

Language recognition by Cellular Automata 13

with a thread along which the inputs are written. Thus the thread is a given
parameter of the CA which is independent of the inputs and their length. It
is defined as an infinite sequence of adjacent positions in the two-dimensional
array without repetition. Fig. 8 depicts the Archimedean and Hilbert threads.
In practice, the device array is provided with an additional layer which codes
the thread. In this layer, each cell records how the thread enters and exits
this cell. At initial time, the input symbols are placed consecutively along the
thread. Then the evolution of each cell depends on both the states and the
thread components of its neighborhood. The output cell is chosen to be the
first cell of the thread. Now, the real time complexity depends on both the
neighborhood and the thread (precisely, its significant part according to the
input length). We shall give no further details on these device types but shall
refer to [16, 17] for complete definitions and examples.

2.4 Two-dimensional CA picture recognizer.

In higher dimension, another point of view is to process multidimensional
data instead of simple strings. Motivated by image processing issues, a lot of
interest has been devoted to picture language recognized by two-dimensional
CA. Another stimulation comes from the developments of picture language
theory [21]. Hence, in the following, we limit our attention to this context, al-
though investigations of arbitrary dimensional CA with arbitrary dimensional
inputs would be fairly instructive.

Let us recall some definitions related to picture languages. A picture p over
an alphabet Σ is defined as a rectangular m× n array of symbols of Σ. The
couple (m, n) refers to the size of the picture and p(c) denotes the symbol
at position c. The set Σ∗∗ denotes the set of all pictures over Σ. A picture
language over Σ is any subset of Σ∗∗.

A two-dimensional CA picture recognizer (in short a PictCA) designates
a CA recognizer which operates on pictures. On PictCA, the input mode is
parallel: at initial time 0 the symbol p(c) of the input picture p is fed to the
cell c. For an input of size (m,n), the bounded space consists of the m × n
cells c = (x, y) with 0 ≤ x < m and 0 ≤ y < n. Outside, the cells remain in a
persistent state ♯ during all the computation.

A priori, the output cell is the cell indexed by (0, 0). The time complexities
T are functions defined from N2 to N. And a PictCA is said to accept a picture
language L in time T if it accepts the pictures p ∈ L of size (m,n) in at
most T (m,n) steps. As usual, real time means “as soon as possible” and is
conditional on the neighborhood. Precisely, the real time function rtN (m,n)
is, for a PictCA with neighborhoodN , the minimal time needed by the output
cell (0, 0) to receive any particular part of a picture input of size(m,n). That
means rtN (m,n) = m + n − 2 when N is the von Neumann neighborhood
and rtN (m,n) = max(m,n) − 1 when N is the Moore neighborhood. The
linear time complexities for PictCA with the neighborhood N are functions
ltN where ltN (m,n) = τ rtN (m,n) and τ is any constant strictly greater than

14 Véronique Terrier

1. In the sequel, the class of all pictures languages recognized by a PictCA
with the neighborhood N in real time (or linear time) will just be named as
the real time (or linear time) PictCA with the neighborhood N .

Various algorithms for pictures have been proposed in the general con-
text of mesh-connected arrays of processors. But, their processing elements
are not necessarily finite-state contrary to CA. And specific examples which
illustrate the possibilities of processing the data on PictCA, are scarce. Any-
way, Beyer [1] and Levialdi [36] have independently exhibited two real time
PictCA with the Moore neighborhood which recognize the set of connected
pictures. The majority language which consists of the pictures over the al-
phabet {0, 1} in which there are more 1’s than 0’s has also been examined.
Savage [44] has shown that it is recognized in linear time by PictCA with
one-way neighborhoods.

3 Positive results and simulation

In this section, we shall examine the main known equalities and inclusions
among CA complexity classes. These positive results are essentially based on
the geometrical characteristics inherited from the regularity of the network
structure. The proofs are established by simulations which widely use the
tools presented in the chapter of Delorme and Mazoyer [18] and exploit the
malleability of the dependency graphs.

3.1 Basic equivalences among the low complexity classes

As an introduction, the figure below gives a general overview of the main
relationships among the complexity classes in dimension one.

RPOCA 6= RSCA
()

RPCA = RSOCA = LPOCA

⊆

LPCA = LSOCA = LSCA

⊆

POCA = SOCA

⊆

PCA = SCA = DSpace(n)

In this section, we only focus on the various equivalences between the low
complexity classes. We shall return to the equality of POCA and SOCA in
Section 3.4, to the incomparability of RPOCA and RSCA and their proper
inclusions in RPCA in Section 4.1. Further discussions will also follow about

Language recognition by Cellular Automata 15

the famous questions whether the inclusions RPCA ⊆ PCA and RPCA ⊆
LPCA are strict in Section 6.1 and in Sections 3.5 and 6.2.

The original proofs of the positive relationships can be found in the follow-
ing papers. The equality LPCA = LSOCA comes from [25] where it was ob-
served that every PCA working in time T (n) can be simulated by SCA in time
n+T (n). The equality LSOCA = LSCA has been noticed in [27]. The equality
LPOCA = RPCA is from [9] and the equality RSOCA = LPOCA from [24].
Further relationships between SOCA and POCA in higher dimension have
been reported in [55], in particular the equality d − RSOCA = d − LPOCA
and the inclusions d − RSOCA ⊆ (d + 1) − RPOCA and d − LSOCA ⊆
(d+ 1)− RSOCA. Let us also notice that restricted to unary languages (i.e.,
languages over a one-letter alphabet), RSCA is as powerful as RPCA.

All these equalities are easily obtained by basic simulations. To construct
such simulations between one device A and another device B, a simple method
consists in exhibiting a transformation which maps the dependency graph of
the initial device A into another directed graph and to verify that this mapped
graph, modulo slight modifications, fits the dependency graph of the device
B.

0,1 1,1 2,1

0,2 1,2

0,0 3,02,01,0

1,0

2,0

0,0

0,0

0,1

0,0 1,0

2,1

2,0 3,0

0,1

0,2

0,1 1,1

1,2

1,1 2,1

0,3

0,2 1,2

1,1

1,0 2,0
0,3

0,0

1,0

2,0

3,0

0,1

1,1

2,1 0,2

1,2

0,3

3,0

The RPCA A
The result of

the transformation g
The RSOCA B

Fig. 9. Simulation of a RPCA A by a RSOCA B.

To illustrate this, let us consider one example: the inclusion of RPCA into
RSOCA. The question is how to simulate the real time computations of a
given PCA A by the real time computations of a SOCA B. The simulation is
essentially based on the following transformation g(c, t) = (t, 2t + c). Hence
we have to verify that g allows one, with slight modifications, to convert a
real time computation of A into a real time computation of B. For that,
we must check that the conditions imposed by the features of the device B

16 Véronique Terrier

are respected, namely the conditions relating to the structure of the array,
the finite memory nature of each cell, the input and output modes and the
neighborhood. First, g(i, 0) = (0, i) guarantees the conversion from the parallel
input mode to the sequential input mode. and g(0, n− 1) = (n− 1, 2(n− 1))
ensures the correspondence between the output sites. Second g maps all sites
of A into sites of B, precisely a site of B is mapped to by at most one site
of A. So a finite memory capacity is enough on each cell of B. Finally, on A
governed by the neighborhood {−1, 0, 1}, the elementary data movements are
(−1, 1), (0, 1), (1, 1). They are converted into the movements (1, 1), (1, 2), (1, 3)
which satisfy the dependencies constraints on B. Effectively, the data are
transmitted through intermediate sites according to the elementary moves
(1, 1) and (0, 1) and that without exceeding the finite memory capacity of
each cell.

An interesting link between one-dimensional devices and two-dimensional
devices equipped with a thread, has been observed in [17]. It states that the
class of languages recognized in real time by a two-dimensional CA with the
Archimedean thread and the Moore neighborhood is strictly contained in the
class of languages recognized in real time by one-dimensional PCA. Although
the minimal time in O(

√
n) for two-dimensional CA with the Archimedean

thread is lower than n the minimal time for PCA, this result is far from
being straightforward. Notably, during the simulation, each cell must recover
its particular position from the output cell and its neighbors in the initial
Archimedean spiral. In fact, it enlightens one on the impact of the way input
data are space-distributed, on the recognition power.

At last, notice that for picture languages recognition, PictCA with the
von Neumann and Moore neighborhoods can simulate each other with a linear
time overhead and so are linear time equivalent. Unfortunately, we ignore finer
inclusions concerning PictCA.

3.2 Linear speed up

When investigating complexity classes, an immediate question concerns linear
acceleration of the running time. For CA, as the recognition time never goes
below real time, a linear speed up corresponds to an acceleration by a constant
factor of the running time beyond real time.

Theorem 1. Let f be a function from N to N and rt be the real time function
for PCA (resp. SCA, POCA or SOCA). For any constant R, a language
recognized in time rt(n) + f(n) by a PCA (resp. SCA, POCA or SOCA) is
also recognized in time rt(n)+ ⌈f(n)/R⌉ by another PCA (resp. SCA, POCA
or SOCA).

In an early work [1], Beyer demonstrated the speed up result for PCA (in-
cluded in the case of dimension two). Because [1] was not widely circulated,

Language recognition by Cellular Automata 17

the same result can be also found in [29] and in more general settings in [37].
A proof for POCA is in [2] and for SCA and SOCA in [25]. A generalization to
SCA in dimension two is given in [30] and to SOCA and POCA in arbitrary
dimension in [55].

Let us now recall the usual methods applied to speed up the computation
in a linear way. The simplest case is when communication is one-way. Because
any two cells are not mutually interdependent, the dependency graph is a
directed graph which is acyclic. This characteristic allows one to speed up
computation easily. Fig. 10 depicts the scheme for dimension one: once the
cell gets the whole input part situated on its left, it can operate R times
faster for any integer constant R. This principle can be generalized to higher
dimension as long as communication is one-way.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

Time

Time

Cells Cells

Input

Input

0

0 0

0

1

1 1

1

n − 1

n − 1 n − 1

n − 1

2n − 2

2n − 2 + R

2n − 2 + 2R

2n − 2 + 3R

n − 1 + R

n − 1 + 2R

n − 1 + 3R

x0

x0

x1

x1

xn−1

xn−1

$

POCASOCA

Group of R sites

Fig. 10. Linear speed up in case of one-way communication.

When communication is two-way and all cells are interdependent, to reduce
the running time requires compacting the space. In grouping cells into fewer
ones, the time to exchange information between cells is reduced and so the
computation can be achieved at a higher rate. The grouping operation differs
according to the input mode.

It is immediate when the input mode is sequential, as all cells have the same
initial quiescent state. Initially we have no difficulty in grouping information
into fewer cells. Then the accelerated computation can take place immediately

18 Véronique Terrier

the distinguished cell has obtained the whole input. Fig. 11 illustrates the sit-
uation in dimension one. The grouping operation is initially accomplished
within each diagonal: for any integer constant R, the sites are grouped to-
gether by R. Once the input is read and the end marker is constantly fed, the
information initially processed by R diagonals can be processed by a simple
one and hence accelerate the computation by a factor R. The fact remains
that the time space diagram is distorted. It involves keeping some redundant
information in each cell but it preserves the data accessibility requirement
while respecting the dependency constraints.

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��

��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��

��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

0 0

00

1

11

n − 1

n − 1n − 1

n − 1 + 3R

n − 1 + 3

(n − 1)/2

Time

Time

Cells

Input

Input

x0x0

x1x1

xn−1xn−1

$$

The initial SCA The accelerated SCA

Group of R sites

Group of R ×R sites

Fig. 11. Linear speed up in case of two-way communication and sequential input
mode.

The case of parallel input mode (and two-way communication) is more
tricky. The input data are initially fed into the array and some time must
be spent grouping them together. In order to avoid losing more time, the
accelerated computation must start as soon as possible. Fig. 12 illustrates the
method for a PCA A. On the one hand, observe that one can construct a
PCA B which simulates R times faster the PCA A provided the input given
to A is fed compacted with a factor R to B. On the other hand, there is a
grouping PCA which turns the initial ungrouped input into a grouped one.
In this way, one can stick the grouping PCA with a twisted variant of the

Language recognition by Cellular Automata 19

accelerated PCA B to obtain the desired PCA. The accelerated computation
starts on each cell as soon as its neighbor cells are grouped.

0

2
1

R

2R

n−1

n+f(n)

0 1 2 n−12R

0

n−2+

n−2+f(n)/R+

R

0 1 2

0 1 2 R n−12R

0

1

2

(n−2)/R

(n+f(n))/R

(n−2)/R

Space of A

Space of B

Time of A Time of B

Space

Time

the twisted PCA B

the grouping PCA

g(c) = τ + (R − 1)c

τ

τ

τ

Fig. 12. Linear speed up in case of two-way communication and parallel input
mode.

In developing such techniques for picture language recognizer, Beyer in [1]
has shown linear speed up result for CA with the von Neumann neighbor-
hood. These techniques work for the Moore neighborhood and similar kinds
of neighborhoods as well (See [53]).

Theorem 2. Let f be a function from N × N to N, N be the von Neumann
or Moore neighborhood and rtN be the corresponding real time function. For
any constant R, a picture language recognized in time rtN (m, n) + f(m,n)
by a PCA with the neighborhood N is also recognized in time rtN (m,n) +
⌈f(m,n)/R⌉ by another PCA with the same neighborhood.

What is disturbing as regards picture language recognition is that some
neighborhoods seem not to admit linear speed up. In the common method,
each cell implicitly knows in which direction to send its content to achieve
the grouping process. This direction corresponds to a shorter path towards
the output cell. But for some neighborhoods, this direction differs according
to the position of the cell into the array and no alternative efficient grouping
process is currently known.

20 Véronique Terrier

3.3 Constant speed up

In addition to the speed up results of the previous Section 3.2, real time
complexity could also be defined modulo a constant. In dimension one, this
property was first observed in [9] and a whole complete generalization has be
done in [41]. Excluding pathological neighborhoods for which the output cell
is not able to read the whole input, we have constant time acceleration for
PCA:

Proposition 1. For any neighborhood N , any function satisfying f(n) ≥
rtN (n) and any constant τ :

PCAN (f(n) + τ) = PCAN (f(n))

An interesting consequence which emphasizes the robustness of one-dimensional
CA model, follows from this speed up (See [41]). The computation ability in
dimension one is somewhat independent of the underlying communication
graph:

Theorem 3. In dimension one, all neighborhoods are real-time equivalent to
either the one-way neighborhood {−1, 0} or the standard one {−1, 0, 1}.

The situation turns out to be less satisfactory in higher dimensions. For
the two classical von Neumann and Moore neighborhoods, the real time com-
plexity can also be defined modulo a constant. But a uniform approach does
not yet exist to deal with various neighborhoods. And in spite of investigations
about arbitrary neighborhoods reported in [14], nothing much is known.

3.4 Equivalence between the parallel and sequential input modes

A result that cannot be ignored says that, if we do not bother with the time
comparison, the parallel and sequential input modes are equivalent. This result
is fairly astonishing in the case of one-way communication. Indeed the parallel
input mode combined with one-way communication induces strong limitations
on the access to the data. As illustrated in Fig. 13, a cell of a POCA has no
access on the input letters applied on its right whereas every cell of a SOCA
has access to the whole input. Moreover, for SOCA, the end marker $ supplied
after the whole input letters provides information on the length of the input.
On the other hand, such knowledge is impossible for POCA. Despite these
outstanding differences, Ibarra and Jiang [24] have shown that SOCA and
POCA accept the same class of languages:

Theorem 4. POCA = SOCA

Due to the advantages of SOCA over POCA, the simulation of a POCA by a
SOCA is straightforward. In contrast, the reverse simulation is considerably
more involved. Let us just present a rough idea of the construction and its
difficulties. To simulate a SOCA by a POCA, the basic idea is to systematically

Language recognition by Cellular Automata 21

x0

x0
xn−1

xn−1

xi

xi

Fig. 13. Influence of the i-th input symbol on a POCA and on a SOCA

generate each possible input, to simulate the SOCA on it and check if it is
actually the real input. For that, the working area is divided in two parts. The
enumeration process takes place in the left part. First the inputs of length 1,
then those of length 2, then those of length 3, etc, are generated in such a
way that they can be obtained serially by the leftmost cell of the right part.
Simultaneously, in the right part, the SOCA is simulated on the successive
generated inputs. Moreover, the successive inputs are compared with the real
input.

The delicate point is that the POCA has no hints about the length of the
real input and has to deal with inputs of all possible lengths. In particular,
the time and the space required to simulate the SOCA on the current input
depends on its length. Also this simulation time induces a delay between the
generation of two inputs. And the demarcation of the two parts of the work-
ing area fluctuates according to the current length of the generated inputs.
Then to distribute and to synchronize the different subcomputations into the
working area entails many of the techniques described in the chapter [18]. A
whole complete description can be found in the original paper [24] and with
a direct construction in [15].

The drawback of this construction is its exponential cost. Indeed whatever
the time complexity of the initial SOCA, the POCA simulates the behavior
of the SOCA on an exponential number of inputs. Additional questions re-
lated to the simulation cost of SOCA by POCA will be discussed in the later
Section 6.2.

3.5 Closure properties

Closure properties are naturally investigated in order to evaluate the com-
putation ability of the different CA classes and to possibly achieve separa-
tion results. Obviously, all deterministic CA classes satisfy the closure under
boolean operations. More attention has been paid to the closure properties
under other language operations as concatenation, reverse or cycle. As you
may recall, the reverse of a language L is LR = {wR : w ∈ L} where wR is the

22 Véronique Terrier

word w written backwards and its cycle is LCy = {vu : uv ∈ L}. The Table 2
below sums up the known results in dimension one (Y stands for yes, N for
no and ? for open).

class reverse closure concatenation closure cycle closure

PCA Y Y Y

POCA Y Y Y

LPCA Y ? ?

RPCA ? ? ?

RSCA N N N

RPOCA Y N N

Table 2. Closure properties in dimension one.

Let us give further precisions about these results and the open questions.
According to the fact that PCA has the same computation power as linear
space Turing machine, it satisfies various closure properties: reverse, concate-
nation, Kleene star, ε-free homomorphism, inverse homomorphism, cycle ...
We know from [8] that the one-way counterparts POCA and SOCA also
share the above closure properties. The proofs make essential use of simi-
lar constructions as the one outlined in the previous Section 3.4 to show that
POCA = SOCA. In Section 4.1, we shall account for the negative closure
properties of the RSCA class and its higher dimension counterparts and then
for the negative closure under concatenation of RPOCA. Curiously enough,
this last result is the opposite in higher dimension: for any dimension d > 1,
d − RPOCA satisfies closure under concatenation as well as closure under
Kleene star [55]. As observed in [9], the closure under reverse of RPOCA fol-
lows from the symmetry of its dependency graph. For the same structural
reason, the result extends to the higher dimensions [55]. The closure under re-
verse of LPCA is an immediate consequence of the linear speed up results [27].

It is not known whether RPCA is closed under reverse or under concatena-
tion. But a striking result due to Ibarra and Jiang [27] relates the property of
RPCA to be closed under reverse and its ability to be as powerful as LPCA.
In a similar way, the cycle closure property of RPCA can be linked to the
equality between RPCA and LPCA [54]. The following theorem gathers these
relationships.

Theorem 5. The following three statements are equivalent:

• RPCA = LPCA
• RPCA is closed under reverse
• RPCA is closed under cycle

Language recognition by Cellular Automata 23

This theorem is very interesting and deserves some explanations. Let us focus
on the equivalence between the ability of RPCA to be as powerful as LPCA
and its reverse closure property. The proof relating to the third statement
makes essential use of similar arguments. As LPCA is closed under reverse,
the equality RPCA = LPCA directly implies the closure under reverse of
RPCA. To show the converse implication is more tricky. How may a closure
property involve speed up of linear time computation? First the assertion
LPCA = RPCA can be restated in the following equivalent statement “Let

c be any constant. If {w♯c2⌈log |w|⌉

: w ∈ L} is a RPCA language then L is
a RPCA language”. The key argument developed in [27] is that the reverse
form of this statement is true.

Lemma 1. Let c be any constant. If {♯c2⌈log |w|⌉

w : w ∈ L} is a RPCA lan-
guage then L is a RPCA language.

The proof of this meaningful lemma is fairly involved. A whole description
can be found in the original paper [27] and with a direct construction in [15].
Now according to this lemma 1 and providing RPCA is closed under reverse,
we get the following chain of implications:

L ∈ LPCA
⇒ L̃ = {w♯c2⌈log |w|⌉

: w ∈ L} ∈ RPCA (straightforward property)

⇒ L̃R = {♯c2⌈log |w|⌉

w : w ∈ LR} ∈ RPCA (reverse closure)
⇒ LR ∈ RPCA (Lemma 1)
⇒ L ∈ RPCA (reverse closure)

An immediate consequence of Theorem 5 is that if RPCA is closed under
reverse or under cycle then it is closed under concatenation [27]. Whether the
converse is true, is still open. We just know a weaker implication also based
on Lemma 1 [54]:

Proposition 2. If RPCA is closed under concatenation then

• LPCA unary languages are RPCA unary languages;
• LPCA is closed under concatenation.

Here let us have a look at closure properties of picture language recognizers.
Up to now the closure properties under concatenation have not been studied.
In the matter of the reverse operation, its counterpart for picture languages is
the 180◦ rotation operation. As in the one-dimensional case, the linear speed
up results entail the closure under rotation of linear time PictCA with the von
Neumann or Moore neighborhood. In contrast, we shall see in Section 4.1 that
real time PictCA with the Moore neighborhood, real time and linear PictCA
with the one-way von Neumann or one-wayMoore neighborhood do not satisfy
closure under rotation. Interestingly, the arguments developed by Ibarra and
Jiang to relate, in dimension one, closure properties to computation ability
can be extended to PictCA recognizer [52]:

24 Véronique Terrier

Proposition 3. Real time PictCA with the von Neumann neighborhood is
closed under rotation if and only if real time and linear time PictCA with the
von Neumann neighborhood are equivalent.

Let us notice at last a nice property pointed out by Szwerinski [47]. In
dimension one, a PCA may confuse right and left without time loss. Formally,
a local transition function δ : S3 → S is said symmetrical if for all r, c, l ∈ S
holds: δ(l, c, r) = δ(r, c, l). So the following proposition, as shown in [47] and in
a more general setting in [32], underlines that the orientation does not matter
for one-dimensional PCA.

Proposition 4. If a language L is recognized in time T by some PCA then L
is recognized in the same time T by another PCA whose transition function
is symmetrical.

4 Limitations

Our purpose in this section will be to present the known limitations on the
recognition power of CA. It makes use of either algebraic arguments or diag-
onalization ones.

4.1 Algebraic arguments

Let us start with a basic negative result. As observed in [12], POCA operating
in real time on languages over a one-letter alphabet are no more powerful than
finite automata:

Proposition 5. The class of unary languages recognized by RPOCA is the
class of regular unary languages.

This result has been strengthened in [4]: it requires at least an amount of
n+ logn time to recognize non regular unary languages on POCA.

An interesting consequence of Proposition 5, observed in [9], derives from
the existence of non regular unary languages which are recognized by RSCA
and therefore by RPCA. For instance, the languages {12n : n ∈ N} and
{1p : p is a prime} belong to RSCA (See [9, 20] and the chapter of Mazoyer
and Yunès [38]). It yields the following relationships.

Corollary 1. • RPOCA (RPCA
• RSCA * RPOCA

Let us now concentrate on elaborate techniques to obtain lower bounds.
These techniques have been introduced by Hartmanis and Stearns [23] for
real time Turing machines and adapted to real time SCA by Cole [10]. Using
counting arguments, they exploit limits on interaction between data.

Language recognition by Cellular Automata 25

����������������������

0 k

|z| − 1

|z|+ k − 1

z

u

h(z)

Cells

Time Input

Fig. 14. Real time computation of a SCA on some input w = zu.

The method for real time SCA.

Let us recall the method used in [10] to get negative results on RSCA. As
illustrated in Fig. 14, a characteristic of the real time SCA computation on a
given input w is the following one. The suffix of arbitrary length k of w only
has an impact on the computation during the k last steps. In particular, the
first part z and the suffix u of length k of the input w = zu interact on a
number of cells independent of the length of z. Hence significant information
on z may be lost before the k last steps of the computation. Precisely, consider
the configuration of the SCA at time |z| − 1 when the last symbol of z is fed.
At this time, the useful part consists of the k+1 first sites which may influence
the result of the computation obtained on the output cell, k steps after. Let
h(z) denote the sequence of states of length k+1 of this useful part. Thus the
result of the computation of the RSCA on the input zu is completely specified
by h(z) and u. That sets an upper bound on the number of distinct behaviors
and thus implies the following condition on the structure of RSCA languages.

Proposition 6. Let L be a language over some alphabet Σ. Let X be a finite
subset of Σ∗ and let k be the maximal length of the words in this set X.
Consider, for each word z ∈ Σ∗, the indicator function pz from X into {0, 1}
defined as:

pz(u) =

{
1 if zu ∈ L
0 otherwise

If the language L is recognized in real time by some SCA then the number of
distinct functions |{pz : z ∈ Σ∗}| is of order at most 2O(k).

26 Véronique Terrier

Proof. Suppose that L is recognized by some RSCA A. For any words z, z′ ∈
Σ∗, observe that if h(z) = h(z′) then for all u ∈ X either zu and z′u are both
accepted or both rejected by A. Indeed the words u in X have length at most
k and h(z), as defined above, consists of the information accessible to the k
last steps. Hence if h(z) = h(z′) then pz = pz′ . Now notice that every h(z) is
a word of length k + 1 on the finite set of states of A. Therefore, the number
of distinct functions pz does not exceed the number of distinct sequences h(z)
which is of order 2O(k). ⊓⊔

We shall now give a couple of examples.

Example 6 L = {x1♯x2♯ · · ·xt♯x : x1, x2, · · · , xt, x ∈ {0, 1}∗ and x = xj

for some j with 1 ≤ j ≤ t} is not a real time SCA language.

Proof. Set X = {0, 1}k. Associate to each subset A of X , the word zA =
x1♯x2♯ · · ·xt♯ where x1, x2, · · · , xt is some enumeration of the words in A.
Namely, zA is defined in such a way that zAu ∈ L if and only if u ∈ A. Thus,
if A and B are two distinct subsets of X then pzA 6= pzB . So the number of

functions |{pz : z ∈ Σ∗}| is at least 22k , the number of subsets ofX . Therefore,
according to Proposition 6, L is not a RSCA language. ⊓⊔

The following example differs from the previous one in that its complexity
is in regard of the number of functions pz .

Example 7 L = {01a101b101a201b2 · · · 01at01bt01a01b : a1, b1, · · · , at, bt ≥
0 and a = aj , b = bj for some j with 1 ≤ j ≤ t} is not a real time SCA
language.

Proof. Set X = {01a01b : a, b ≥ 0 and a+b+2 ≤ k}. Associate to each subset
A of X , the word zA = x1 · · ·xt where x1, · · · , xt is some enumeration of the
words in A. As zA is defined, zAu ∈ L if and only if u ∈ A. Thus, if A and
B are two distinct subsets of X then pzA 6= pzB . So the number of functions
|{pz : z ∈ Σ∗}| is at least 2k(k−1), the number of subsets of X . Hence L is not
a RSCA language. ⊓⊔

Several other languages are known not to belong to RSCA. Among them
the languages which have been shown not real time recognizable by multi-
tape Turing machines in [23, 43], are also not real time recognizable by SCA.
Indeed both devices share the same features on data accessibility which are ex-
ploited to get limitations. Actually, all these languages are RPCA languages.
As a consequence, RSCA is less powerful than RPCA. Furthermore, specific
examples exhibited in [23, 43, 10, 19, 35] yield several negative properties. A
representative one is the language of words which end with a palindrome of
length at least 3: L = {w ∈ Σ∗ : w = uv, v = vR, |v| > 2}. Yet L is linear
context free and belongs to RPOCA, furthermore the reverse of L and the
palindrome language belong to RSCA. Therefore RSCA contains neither all

Language recognition by Cellular Automata 27

linear context free languages nor RPOCA languages and is not closed un-
der reversal and under concatenation. The following corollary summarizes the
various results obtained.

Corollary 2. • RSCA is strictly contained in RPCA.
• RSCA and RPOCA are incomparable.
• RSCA is not closed under reversal, concatenation, Kleene closure, sequen-

tial mapping, nor the operations of taking derivatives and quotients.
• RSCA does not contain all deterministic linear context free languages.

One further noteworthy result of Cole in [10] is that the power of real time
SCA increases with the dimension of the space.

Proposition 7. For any dimension d, d− RSCA ((d+ 1)− RSCA.

Proof. The number of cells which influence the k last steps of any d−RSCA
computation increases polynomially with the dimension d. Precisely, the coun-
terpart of h(z) in dimension d, is a d-dimensional word of diameter O(k) and

volume O(kd). Hence the number of distinct words h(z) is in 2O(kd). Further-
more, the condition stated in Proposition 6 can be rewritten in this way: “If
the language L is recognized in real time by some d−SCA then the number of

distinct functions |{pz : z ∈ Σ∗}| is of order at most 2O(kd).” As a consequence
the language presented in Example 6 is not a d − RSCA language whatever
the dimension d may be. On the other hand, the language given in Example 7
is not a 1−RSCA language but it may be, and in fact is a 2−RSCA language.
Of course, languages with the same kind of structure as the one of Example 7
can be built to separate d− RSCA and (d+ 1)− RSCA. ⊓⊔

The method for real time POCA.

Let us now look at the case of RPOCA. A first characteristic noticed in [11] is
that the real time computation on an input w contains the real time computa-
tions of all its factors. Recall the Example 4 in Section 2: the RPOCA which
tests whether an input is a Dyck word, processes together all its factors. So the
evolution on an input of size n decides the memberships of n(n+1)/2 words.
This constraint has been exploited in [48] to get a non RPOCA language.

A second characteristic of RPOCA computation noticed in [49] is the fol-
lowing one. As depicted in Fig. 15, on an input w, its prefixes u and suffixes v
only interact during the |uv|− 1 last steps. More precisely, on input w = uzv,
consider at time |z| the useful part which consists of the |uv| sites which may
have an impact on the result obtained |uv|−1 steps after. This part subdivides
into the first |u| sites named hz(u) and the last |v| sites named h′

z(v). Note
that the result of the computation on uzv is completely specified by hz(u) and
h′
z(v). Furthermore, according to the first characteristic, the results of all the

factors which contained z are determined by hz(u) and h′
z(v). On the other

hand, hz(u) is not influenced by the suffix v as well as h′
z(v) by the prefix

28 Véronique Terrier

�����
�����
�����
�����

������������������������

������
������
������
������

hz(u) h′

z(v)

u vz

rz(u) lz(u)

0

0

|z|

|uzv| − 1

|uzv| − 1Cells

Time

Input

Fig. 15. Real time computation of a POCA on some input uzv.

u. Hence, intuitively the information exchange between u and v takes place
when significant information about z may be lost. This situation gives rise to
the following condition on the structure of RPOCA languages.

Proposition 8. Let L be a language over some alphabet Σ. Let X, Y be two
sets of words on Σ. Denote the set of all suffixes of words in X by Suff(X)
and the set of all prefixes of words in Y by Pref(Y). Consider, for each word
z ∈ Σ∗, the indicator function pz defined as:

pz : Suff(X)× Pref(Y) → {0, 1}
(u, v) 7→

{
1 if uzv ∈ L
0 otherwise

If L is recognized in real time by some POCA then the number of distinct
functions |{pz : z ∈ Σ∗}| is of order at most 2O(|Suff(X)|+|Pref(Y)|).

Proof. Suppose that L is recognized by some RPOCA A. Denote S the set
of states of A. Consider the two functions lz from Suff(X) into S and rz
from Pref(Y) into S defined in this following way. To every u in Suff(X), lz
associates the state entered at time |z| by the leftmost cell involved in the real
time computation of A on input uz. Symmetrically, to every v in Pref(Y),
rz associates the state entered at time |z| by the rightmost cell involved in
the real time computation of A on input zv. Observe that hz(u), as defined

Language recognition by Cellular Automata 29

above, is the sequence of rz(x) where x ranges over the set of all suffixes
of u: hz(u1u2 · · ·uk) = rz(u1u2 · · ·uk)rz(u2 · · ·uk) · · · rz(uk). In a symmetric
way, h′

z(v) is the sequence of lz(y) where y ranges over the set of all prefixes
of v: h′

z(v1 · · · vk−1vk) = lz(v1) · · · lz(v1 · · · vk−1)lz(v1v2 · · · vk). Therefore, if
rz = rz′ and lz = lz′ , then for all u ∈ Suff(X) and v ∈ Pref(Y) either uzv and
uz′v are both accepted or both rejected by A. In other words, if rz = rz′ and
lz = lz′ then pz = pz′ . Therefore, the number of distinct functions pz does not
exceed the product of the number of distinct functions rz with the number of
distinct functions lz which is in 2O(|Suff(X)|+|Pref(Y)|). ⊓⊔

Example 8 L = {x♯x1$y1♯x2$y2♯ · · · ♯xt$yt♯y : x1, y1, x2, y2 · · · , xt, yt, x, y ∈
{0, 1}∗ and x = xj , y = yj for some j with 1 ≤ j ≤ t} is not a real time
POCA language.

Proof. Set X = Y = {0, 1}k. Associate to each subset A of Suff(X)×Pref(Y),
the word zA = ♯x1$y1♯x2$y2♯ · · · ♯xt$yt♯ where (x1, y1), · · · , (xt, yt) is some
enumeration of the words in A. By construction, x zA y ∈ L if and only if
(x, y) ∈ A. Thus, if A,B are two distinct subsets of Suff(X) × Pref(Y) then
pzA 6= pzB . Therefore, the number of distinct functions |{pz : z ∈ Σ∗}| is at

least 22
2k

the number of subsets of Suff(X) × Pref(Y). It is of greater order

than 2O(|Suff(X)|+|Pref(Y)|) = 2O(2k). ⊓⊔

Example 9 Let consider the linear context free language L1 = {w : w = 1u0u

or w = 1u0y10u with y ∈ {0, 1}∗ and u > 0}. The context free language
L = L1 · L1 is not a real time POCA language.

Proof. Fix some integer k. Set X = {1k} and Y = {0k}. Associate to
each subset A of Suff(X) × Pref(Y), the word zA = 0i11j1 · · · 0it1jt where
(1i1 , 0j1), · · · , (1it , 0jt) is some enumeration of the words in A. As zA is de-
fined, 1uzA 0v ∈ L if and only if (1u, 0v) ∈ A. Thus, if A,B are two distinct
subsets of Suff(X) × Pref(Y) then pzA 6= pzB . Therefore, the number of dis-

tinct functions |{pz : z ∈ Σ∗}| is at least 2(k+1)2 the number of subsets of
Suff(X) × Pref(Y). It is of greater order than 2O(|Suff(X)|+|Pref(Y)|) = 2O(k).
We conclude according to Proposition 8 that L is not a RPOCA language.
⊓⊔

Since linear context free languages are RPOCA languages, an immediate
consequence of Example 9 is that RPOCA is not closed under concatena-
tion and does not contain all context free languages. With further results
obtained in [34], the following corollary gives us the main negative properties
of RPOCA.

Corollary 3. • The class of real time POCA languages is not closed under
concatenation, Kleene closure, ε-free homomorphisms.

• The class of real time POCA languages does not contain all context free
languages.

30 Véronique Terrier

Furthermore, as shown in [3, 34], the previous arguments combined with
padding techniques lead to an infinite hierarchy of separated classes between
real time SCA and linear time SCA as well as another one between real time
POCA and linear time POCA. For the sake of Proposition 9 below, the defi-
nition of Fischer’s constructibility can be found in the chapter of Delorme and
Mazoyer [18]. At least, the next function T can be viewed as a “reasonable”
function of asymptotic order at most n.

Proposition 9. • Let T , T ′ be two functions from N to N such that the in-
verse of T is Fischer constructible and T ′ ∈ o(T).
We have the strict inclusion SCA(n+ T ′(n)) (SCA(n+ T (n)).

• Let T, T ′ be two functions from N to N such that the inverse of T is Fis-
cher constructible and T ′ log(T ′) ∈ o(T).
We have the strict inclusion POCA(n+ T ′(n)) (POCA(n+ T (n)).

Similarly, such algebraic techniques may be applied to exhibit limits on the
computation ability of picture language recognizers. In this way, weakness of
real time computation with the Moore neighborhood has been observed in [50].
Precisely, there exists a picture language which is real time recognizable by
no PictCA with the Moore neighborhood. Furthermore, this picture language
is real time recognizable by a PictCA with the von Neumann neighborhood
and its corresponding language obtained by rotation of 180o is accepted in
real time with both the von Neumann and Moore neighborhoods.

In the same vein, restricted communication has been shown to reduce the
computational power of low complexity picture classes [54]. Precisely, there
exists a language recognized in real time by PictCA with both the von Neu-
mann and Moore neighborhoods but not recognized in linear time with any
one-way neighborhoods N such that a+ b ≥ 0 for every (a, b) in N . Further-
more, the corresponding language obtained by rotation of 180o is recognized
by PictCA with one-way neighborhoods N1 = {(0, 0), (0, 1), (1, 0)}, N2 =
{(0, 0), (0, 1), (1, 0), (1, 1)} or N3 = {(0, 0), (0, 1), (1, 0), (1, 1), (−1, 1), (1,−1)}.

The various consequences are summarized in the following proposition.

Proposition 10. • Real time PictCA with the Moore neighborhood does not
contain real time PictCA with the von Neumann neighborhood.

• Real time PictCA with the Moore neighborhood is not closed under rota-
tion.

• Real time PictCA with the Moore and von Neumann neighborhoods are not
contained in linear time PictCA with a one-way neighborhood N where
a+ b ≥ 0 for all (a, b) ∈ N .

• Real time and linear time PictCA with the one-way neighborhoods N1, N2

and N3 are not closed under rotation.

As emphasized by Cervelle and Formenti in [5], we can as well make use
of Kolmogorov complexity to derive these results. This alternative approach

Language recognition by Cellular Automata 31

expresses in a more direct manner the fact that significant information is lost.
Here, we shall not recall the formal definition of Kolmogorov complexity, but
just give an example to illustrate the method. The reader is referred to [5] for
comprehensive definitions and for an example involving POCA device.

A basic example is the language not belonging to RSCA which was pre-
sented in Example 6: L = {x1♯x2♯ · · · ♯xt♯x : x1, x2, · · · , xt, x ∈ {0, 1}∗ and x =
xj for some j with 1 ≤ j ≤ t}. Contrary to the algebraic method, we will not
take into account all possible evolutions, but just focus on a “complex” one.
Let us fix ω some Kolmogorov random number of length 2k. Consider some
bijection val between X = {0, 1}k and {0, · · · , 2k − 1} which codes each word
of X by a distinct integer below 2k, for instance val(a0 · · · ak−1) =

∑
ai2

i.
Consider the set Aω = {x ∈ X : the symbol of rank val(x) in ω is a 1} and
zω = x1♯ · · ·xt♯ where x1, · · · , xt is some enumeration of the words in Aω .
Now if L is recognized in real time by some SCA A then we can reconstruct
ω from the description of A, the description of the bijection val and the se-
quence of states h(zω). Indeed, from A and h(zω), we can decide, for each
x ∈ X , whether zωx is in L or not, and so whether the symbol of rank val(x)
in ω is a 1 or a 0. The respective lengths of these descriptions are in O(1) for
A, in O(log k) for val and in O(k) for h(zω) and their sum is less than the 2k

bits of the word ω. Hence it leads to a contradiction on the incompressibility
of ω.

Undoubtedly, algebraic arguments and also Kolmogorov complexity are
powerful tools to establish limits on the computation ability of restricted de-
vices with low complexity. But we have to admit that many questions on the
power of these devices are left open. For instance, the same arguments are
exploited to prove that some languages do not belong to real time Turing ma-
chines nor RSCA. Does it mean that real time SCA are no more powerful than
real time Turing machines? Moreover, most of the witness languages which
enable us to derive negative properties, are usually built in an ad hoc man-
ner. Then we fail to determine the status of more “natural” languages like,
for RPOCA, the majority language {w ∈ {0, 1}∗ : w has more 1’s than 0’s} or
the square language {ww : w ∈ {0, 1}∗}.

4.2 Diagonalization arguments

In computational complexity, many separation results use diagonalization
techniques. Diagonalization also works to separate CA classes but essentially
in an indirect way via the Turing machines. It consists in exhibiting efficient
simulations of CA by Turing machines which allow us to translate Turing ma-
chine results into CA results. In this regard, Goldschlager [22] has shown that
whatever its dimension may be, a CA which works in time T can be simulated
by a Turing machine in space T .

Fact 1 For any dimension d and any complexity function T , d− PCA(T) ⊆
DSpace(T).

32 Véronique Terrier

Indeed, due to the regularity of the dependency graphs, the simulation which
consists of a depth first search of these graphs of height T , can be performed
in space T by a Turing machine. In addition, this result holds as well as for CA
as picture recognizer. As a consequence, for CA in dimension 2 and higher,
separation follows from the Turing machine space hierarchy. In particular, for
language and picture recognition, in dimension greater than 1, CA working
in linear time are strictly less powerful than CA working in unrestricted time
and that within the same bounded space.

In the case of restricted communication, a better simulation has been ob-
tained for POCA as language recognizer [7].

Fact 2 For any dimension d, d− POCA ⊆ DSpace(n2−1/d).

It allows us to show that, in dimension 2 and higher, restricted communica-
tion reduces the language recognition ability. Precisely, there is a language
accepted by a 2− PCA that cannot be accepted by any d− POCA whatever
the dimension d. Yet the question is still open in the case of PictCA.

5 Comparison with other models

In this section, we shall compare CA with other computational models. Such
investigations may help to identify significant features of CA.

5.1 Sequential models

In order to determine to what extent the use of parallelism provides significant
advantages, one of our major concerns is the relationship between parallel and
sequential computation.

First, efficient simulations of CA by sequential devices permits us to render
explicit limitations on the CA computation ability. Notably, as seen in the
previous section, the simulations which connect CA time complexities with
Turing space complexities, entail separation results for CA. But to relate the
CA time with the Turing time, there seems to be no better simulation than the
trivial one which states that the work of a CA performed within time T and
space S can be done by a Turing machine within time T ×S and space S. For
the other representative sequential model, the random access machine, a lower
overhead has been obtained in [26]. By the way of a precomputation phase, it
has been shown that any d − POCA working in time T (n) can be simulated

by a unit cost random access machine in time ndT (n)/ log1+1/d T (n).
Conversely, the simulation of sequential devices by CA is a great challenge.

What gain may be achieved with CA? As regards specific sequential problems,
the CA computation power is manifest. For instance, it has been observed
in [28] that real time POCA contains a language which is P-complete and

Language recognition by Cellular Automata 33

in [8] that the language QBF of true quantified boolean formulas which is
PSpace-complete, is in POCA.

But when we try to get general simulations, we come up against the deli-
cate question of whether parallel algorithms are always faster than sequential
ones. Indeed, there is no guarantee that efficient parallelization is always pos-
sible. Or there might exist a faster CA for each singular sequential solution
whereas no general simulation exists. Besides, let us recall Fischer’s algorithm
to recognize the set {1p : p is a prime} [20] and Cole’s and Culik’s ones seen in
section 2. They suggest that clever strategies in parallel are stupid in sequen-
tial and vice versa. Then when the conception of efficient parallel algorithms
makes use of radically different techniques from the sequential ones, automatic
parallelization appears highly improbable.

Hence without surprise, the known simulation of Turing machines by CA
provides no parallel speed up. As viewed in the chapter of Ollinger [40], the
early construction of Smith in [46] mimics one step of computation on a Turing
machine (with an arbitrary number of tapes) in one step on a CA (with
unbounded space). Furthermore, no effective simulations have been proposed
even for restricted variants. For instance, we do not know whether any finite
automata with k heads can be simulated on CA in less than O(nk) steps which
is the sequential time complexity. And we wonder whether one-way multihead
finite automata whose sequential time complexity is linear, may be simulated
in real time on CA.

In contrast to this great ignorance, the result of Kosaraju is notewor-
thy [33].

Proposition 11. Any picture language recognized by a 4-way finite automata
can be recognized in linear time by a PictCA.

Unfortunately, a complete proof has never been published. Let us just outline
the basic idea. The key point is to code the behavior of the finite automaton
on a block of size n×n by a directed graph. A vertex of such a graph is a cou-
ple (q, n) where q is an automaton state and n a boundary node of the block.
Then the directed graph records for each couple of vertices ((q1, n1), (q2, n2)),
if, when the automaton enters in state q1 at boundary node n1, it exits in
state q2 at boundary node n2. The trick is that the space to record the ad-
jacency matrix of this graph is of the same order as the corresponding block.
Furthermore, the adjacency matrix of a block of size 2i × 2i can be effec-
tively computed from the four adjacency matrices of the four sub-blocks of
size 2i−1 × 2i−1. To this end, the four adjacency matrices are reorganized in
one, the transitive closure is computed and then the new non-boundary nodes
are eliminated. Now using this procedure recursively, the adjacency matrix of
the whole initial pattern can be computed and that in linear time.

34 Véronique Terrier

5.2 Alternating automata and alternating grammars

The correspondence between CA and alternating finite automata was first
pointed out by Ito et al. In [31], they showed the equivalence between a par-
ticular variant of two dimensional CA and a restricted type of two dimensional
alternating finite automata. In [51, 55], alternating analogs of real time CA
with sequential input mode have been given as follows.

Proposition 12. • Real time d−SCA are equivalent through reverse to real
time one-way alternating finite automata with d counters.

• Real time d−SOCA are equivalent through reverse to one-way alternating
finite automata with d+ 1 heads.

Similarly, for CA with parallel input mode which implicitly induces a syn-
chronization at initial time, we might search a characterization in terms of
one-way synchronized finite automata. Yet, these equivalences are somewhat
unsatisfying in the sense that the corresponding types of alternating finite au-
tomata provide no further information about the computation power of CA.
Moreover writing algorithms is more intuitive for CA than for alternating
devices.

Introducing the notion of alternating grammar in [39], Okhotin has ex-
hibited a characterization of RPOCA which gives some insight on the rela-
tionship between CA and the Chomsky hierarchy. First let us briefly present
the alternating grammars. An alternating grammar is a grammar enhanced
with a conjunctive operation denoted by &. Each production is of the form
α → α1 & · · · &αk where α, α1, · · · , αk are strings over a set of variables
and terminals. Such a production denotes that the language generated by
α is the intersection of the languages generated by α1, · · · , αk. Analogously
to linear context free grammar, a linear conjunctive grammar is defined
as an alternating grammar with the restrictions that for every production
α → α1 & · · · &αk, α is a symbol and no αi has more than one instance of
variable.

From an algorithm given in [45], it was already known that POCA are able
to recognize in real time every linear context free languages. Finally, as shown
in [39], to extend linear context free grammar with the conjunctive operation
&, leads to a complete characterization of RPOCA.

Proposition 13. The languages recognized in real time by POCA are pre-
cisely the languages generated by linear conjunctive grammar.

5.3 Other massively parallel models

There exist other massively parallel computational models than the CA one.
Among them, boolean circuits, parallel random access machines (PRAM) and
alternating Turing machines attract great attention. Curiously enough, CA
and these parallel models seem not to recognize the existence of each other.

Language recognition by Cellular Automata 35

Actually the way in which they modelize parallelism, differs on several essen-
tial points. On CA, the network structure is homogeneous and the interactions
are uniform and local. Furthermore, the d-dimensional array structures usu-
ally considered, have a constant expansion rate: from a given cell, the number
of cells accessible in 2t steps is linearly related to the number of cells acces-
sible in t steps. In contrast, constraints on the network structures of uniform
boolean circuits are rather weak. Besides most of the PRAM variants neglect
the communication issue that is the bottleneck in physical machines. Another
point of discord is the parallel computation thesis which states that parallel
time is polynomially equivalent to sequential space. This relationship satisfied
by boolean circuits, PRAM and alternating Turing machines, seems not to
apply to CA whose network is structured as a d-dimensional array.

Hence, despite their common concern about massively parallel computa-
tion, very little is known about their links. At least, it has been proved in [8]
that POCA can simulate linear time bounded alternating Turing machine. As
a consequence, remark also that POCA contains NSpace(

√
n).

6 Questions

Central questions about CA as language recognizer, have emerged from the
very beginning and up to now remain without answer. To end this chapter,
we shall go back over some emblematic ones.

6.1 The linear time versus linear space question

The first important issue concerning the recognition power of CA is whether,
for one-dimensional space bounded CA, minimal time is less powerful than
unrestricted time [45]. According to the intuition that more time gives more
power, the equality RPCA = PCA between minimal time and unrestricted
time CA seems very unlikely. But we fail to separate these classes. Actually,
this flaw in knowledge is not specific to parallel computation when we think

on similar questions in the computational complexity theory such that L
?
= P

or P
?
= PSpace and more generally when we wonder how do time and space

relate.
As a matter of fact, the equality RPCA = PCA would imply the equality

P = PSpace since RPCA is included in P and some PSpace-complete language
belongs to PCA. More precisely, using padding techniques, we know from [42]
that if RPCA = PCA (in other words, if PCA(f) = DSpace(f) for f(n) =
n) then for every space constructible function f : PCA(f) = DTime(f2) =
DSpace(f).

The common difficulty in establishing strict hierarchies lies in the fact that
the amount of only one resource (here time) is varying while the amount of

36 Véronique Terrier

a second resource (here space) remains fixed. In that case, classical diagonal-
ization arguments are of no help. And algebraic techniques only work for low
level complexity classes.

6.2 The influence of the input mode

When the communication is two-way, the input mode, either parallel or se-
quential, does not have a great impact on the recognition time. Indeed, in this
case whatever the input mode may be, we are free to re-arrange the input
in various ways into the space-time diagram within linear time. So PCA and
SCA are time-wise equivalent up to linear time complexity.

The situation is not so simple when the communication is one-way. In this
case, there exists a strong restriction for parallel input mode on the access to
the input. The key point is that the i-th cell of a POCA can only access to
the first i symbols of the input whereas every cell of a SOCA has access to
the whole input within linear time. Despite this restriction, POCA and SOCA
are equivalent. But taking time into account would make the difference. On
the one hand, SOCA simulates POCA without time overhead. On the other
hand, the only known algorithm to simulate a SOCA by a POCA is based on
a brute-force strategy with an exponential cost even when the SOCA works
in linear time (cf. Section 3.4).

Now we may wonder whether there exist less costly simulations by POCA
for linear time or polynomial time SOCA. This question echoes another fa-
mous one: does RPCA equal LPCA? Indeed RPCA, RSOCA and LPOCA
are equivalent and also LPCA and LSOCA are equivalent. Thus the question
whether RPCA is as powerful as LPCA is the same one as whether LPOCA
can simulate LSOCA or not. Further, recall the result of Ibarra and Jiang
which relates this question to the closure properties under reverse and un-
der cycle of RPCA (cf. Section 3.5). This result can be restated in this way:
LPOCA is as powerful as LSOCA if and only if LPOCA is closed under re-
verse. Currently, the only idea to recognize, on a POCA, the reverse or the
cycle of a language recognized by a LPOCA, is the same one that for the
simulation of a SOCA by a POCA: the exhaustive strategy which consists
in systematically generating all possible inputs. In other words, we encounter
the same obstacle: an exponential cost which is far from the expected linear
cost.

Of course it reinforces the belief that LPCA is strictly more powerful than
RPCA. Moreover, a close look at the method used by Ibarra and Jiang to
link recognition ability and closure properties suggests that the result could
be generalized in the following similar way. For POCA, the amount of time
sufficient to simulate an arbitrary SOCA of complexity f equals the amount of
time sufficient to recognize the reverse (or the cycle) of an arbitrary language
accepted in time f by a POCA. The common difficulty is to make explicit
the impact of the manner in which the input is supplied in case of one-way
communication.

Language recognition by Cellular Automata 37

6.3 The neighborhood influence

Another major issue is the impact of the underlying communication graph
on the computation ability. First of all, the difference between one-way com-
munication and two-way communication is not well understood. We do not
know whether POCA is as powerful as PCA. In fact a strict inclusion be-
tween POCA and PCA would separate linear time and linear space CA. But
also, as it was stressed in [24], it would improve Savitch’s theorem. Indeed,
NSpace(

√
n) ⊆ POCA ⊆ PCA = DSpace(n). Hence to distinguish POCA and

PCA would distinguish NSpace(
√
n) and DSpace(n). On the other hand, we

are far from claiming the equality of POCA and PCA since we do not even
know whether POCA is able to simulate PCA working in quasi-linear time.

However, in dimension higher than one, one-way communication sets lim-
its on the language recognition ability. There exists a language accepted by
some 2 − PCA which is accepted by no d − POCA, whatever the dimension
d may be (cf. Section 4.2). Curiously enough, we fail to get such a result
in the case of picture language recognition. The question whether the inclu-
sion between PictCA with one-way neighborhoods and PictCA with two-way
neighborhoods is proper or not, is still open, like in dimension one.

In many aspects, the situation becomes much more complicated for com-
putation on picture languages. Contrary to dimension one where all neighbor-
hoods are real time equivalent to either the one-way neighborhood {−1, 0}
or the two-way neighborhood {−1, 0, 1}, the recognition ability of PictCA
appears more widely influenced by the choice of the neighborhood. For in-
stance, there exists a picture language recognized in real time with the von
Neumann neighborhood which is not recognized in real time with the Moore
neighborhood. On the other hand, it is an open question whether all picture
languages recognized in real time with the Moore neighborhood are also rec-
ognized in real time with the von Neumann neighborhood. More generally,
we ignore the precise relationships between the various neighborhoods. And
worse, some neighborhoods seem not to admit linear speed up. Actually, the
rules which lie behind the communication properties are not simple to grasp.
One difficulty is the question of orientation in the two dimensional underly-
ing communication graph. Notably, Szwerinski’s property which states that a
one dimensional PCA may confuse right and left without time loss and em-
phasizes that the orientation does not matter in dimension one, seems not to
apply to PictCA. And one factor which might discriminate between the var-
ious neighborhoods, would be whether each cell of the array somehow knows
the direction towards the output cell.

References

1. W. T. Beyer. Recognition of topological invariants by iterative arrays. Technical
Report AITR-229, MIT Artificial Intelligence Laboratory, October 1 1969.

38 Véronique Terrier

2. W. Bucher and K. Čulik II. On real time and linear time cellular automata.
RAIRO Informatique Théorique et Applications/Theoretical Informatics and
Applications, 81:307–325, 1984.

3. T. Buchholz, A. Klein, and M. Kutrib. Iterative arrays with small time bounds.
In Mogens Nielsen and Branislav Rovan, editors, MFCS, volume 1893 of Lecture
Notes in Computer Science, pages 243–252. Springer, 2000.

4. T. Buchholz and M. Kutrib. On time computability of functions in one-way
cellular automata. Acta Informatica, 35(4):329–352, 1998.

5. J. Cervelle and E. Formenti. Algorithmic Complexity and Cellular Automata.
In Robert A. Meyers, editor, Encyclopedia of Complexity and System Science.
Springer-Verlag, 2009.

6. J. H. Chang, O. H. Ibarra, and M. A. Palis. Parallel parsing on a one-way
array of finite state machines. IEEE Transactions on Computers, C-36(1):64–
75, January 1987.

7. J. H. Chang, O. H. Ibarra, and M. A. Palis. Efficient simulations of simple mod-
els of parallel computation by time-bounded ATMs and space-bounded TMs.
Theoretical Computer Science, 68(1):19–36, October 1989.

8. J. H. Chang, O. H. Ibarra, and A. Vergis. On the power of one-way communi-
cation. Journal of the ACM, 35(3):697–726, July 1988.

9. C. Choffrut and K. Culik II. On real-time cellular automata and trellis au-
tomata. Acta Informatica, 21(4):393–407, November 1984.

10. S. N. Cole. Real-time computation by n-dimensional iterative arrays of finite-
state machine. IEEE Transactions on Computing, 18:349–365, 1969.

11. K. Culik II. Variations of the firing squad problem and applications. Information
Processing Letters, 30(3):153–157, February 1989.

12. K. Culik II, J. Gruska, and A. Salomaa. Systolic trellis automata. I. Interna-
tional Journal Computer Mathematics, 15(3-4):195–212, 1984.

13. K. Culik II, J. Gruska, and A. Salomaa. Systolic trellis automata. II. Interna-
tional Journal Computer Mathematics, 16(1):3–22, 1984.

14. M. Delacourt and V. Poupet. Real time language recognition on 2D cellular au-
tomata: Dealing with non-convex neighborhoods. In Ludek Kucera and Antońın
Kucera, editors, Mathematical Foundations of Computer Science 2007, volume
4708 of Lecture Notes in Computer Science, pages 298–309, 2007.

15. M. Delorme and J. Mazoyer. Reconnaisance de langages sur automates cellu-
laires. Research Report 94-46, LIP, ENS Lyon, France, Dec. 1994.

16. M. Delorme and J. Mazoyer. Reconnaissance parallèle des langages rationnels
sur automates cellulaires plans. [Parallel recognition of rational languages on
plane cellular automata] Selected papers in honour of Maurice Nivat. Theoretical
Computer Science, 281(1-2):251–289, June 2002.

17. M. Delorme and J. Mazoyer. Real-time recognition of languages on an two-
dimensional Archimedean thread. Theoretical Computer Science, 322(2):335–
354, August 2004.

18. M. Delorme and J. Mazoyer. Algorithmic tools on Cellular Automata. In This
Book.

19. C. R. Dyer. One-way bounded cellular automata. Information and Control,
44(3):261–281, March 1980.

20. P. C. Fischer. Generation of primes by one-dimensional real-time iterative array.
Journal of the ACM, 12:388–394, 1965.

Language recognition by Cellular Automata 39

21. D. Giammarresi and A. Restivo. Two-Dimensional Languages. in G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, vol. 3, pp. 215-267,
Springer-Verlag, 1997.

22. L. M. Goldschlager. A universal interconnection pattern for parallel computers.
Journal of the ACM, 29(4):1073–1086, 1982.

23. J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms.
Trans. Amer. Math. Soc. (AMS), 117:285–306, 1965.

24. O. H. Ibarra and T. Jiang. On one-way cellular arrays. SIAM Journal on
Computing, 16(6):1135–1154, December 1987.

25. O. H. Ibarra, M. A. Palis, and S. M. Kim. Some results concerning linear itera-
tive (systolic) arrays. Journal of Parallel and Distributed Computing, 2(2):182–
218, May 1985.

26. O. H. Ibarra and M. A. Palis. On efficient simulations of systolic arrays of
random-access machines. SIAM Journal on Computing, 16(2):367–377, April
1987.

27. O. H. Ibarra and T. Jiang. Relating the power of cellular arrays to their closure
properties. Theoretical Computer Science, 57(2-3):225–238, May 1988.

28. O. H. Ibarra and S. M. Kim. Characterizations and computational complexity of
systolic trellis automata. Theoretical Computer Science, 29(1-2):123–153, March
1984.

29. O. H. Ibarra, S. M. Kim, and S. Moran. Sequential machine characterizations
of trellis and cellular automata and applications. SIAM Journal on Computing,
14(2):426–447, 1985.

30. O. H. Ibarra and M. A. Palis. Two-dimensional iterative arrays: characteriza-
tions and applications. Theoretical Computer Science, 57(1):47–86, April 1988.

31. A. Ito, K. Inoue and I. Takanami. Deterministic two-dimensional on-line tes-
sellation acceptors are equivalent to two-way two-dimensional alternating fi-
nite automata through 180◦-degree rotation. Theoretical Computer Science,
66(3):273–287, 26 August 1989.

32. Y. Kobuchi. A note on symmetrical cellular spaces. Information Processing
Letters, 25(6):413–415, 26 July 1987.

33. S. R. Kosaraju. Fast parallel processing array algorithms for some graph prob-
lems (preliminary version). In ACM, editor, Conference record of the eleventh
annual ACM Symposium on Theory of Computing: papers presented at the Sym-
posium, Atlanta, Georgia, April 30–May 2, 1979, pages 231–236, New York, NY,
USA, 1979. ACM Press.

34. A. Klein and M. Kutrib. Fast one-way cellular automata. Theoretical Computer
Science, 295(1–3):233–250, February 2003.

35. M. Kutrib. Automata arrays and context-free languages. InWhere mathematics,
computer science, linguistics and biology meet, pages 139–148. Kluwer Acad.
Publ., Dordrecht, 2001.

36. S. Levialdi. On shrinking binary picture patterns. Communications of the ACM,
15(1):7–10, January 1972.

37. J. Mazoyer and N. Reimen. A linear speed-up theorem for cellular automata.
Theoretical Computer Science, 101(1):59–98, July 1992.

38. J. Mazoyer and J. B. Yunès. Computations on One Dimensional Cellular Au-
tomata. In This Book.

39. A. Okhotin. Automaton representation of linear conjunctive languages. In
International Conference on Developments in Language Theory (DLT), LNCS,
volume 6, 2002.

40 Véronique Terrier

40. N. Ollinger. Computational universality of Cellular Automata In This Book.
41. V. Poupet. Cellular automata: Real-time equivalence between one-dimensional

neighborhoods. In Volker Diekert and Bruno Durand, editors, STACS 2005,
22nd Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart,
Germany, February 24-26, 2005, Proceedings, volume 3404 of Lecture Notes in
Computer Science, pages 133–144. Springer, 2005.

42. V. Poupet. A padding technique on cellular automata to transfer inclusions of
complexity classes. In Volker Diekert, Mikhail V. Volkov, and Andrei Voronkov,
editors, Second International Symposium on Computer Science in Russia, vol-
ume 4649 of Lecture Notes in Computer Science, pages 337–348. Springer, 2007.

43. A. L. Rosenberg. Real-time definable languages. Journal of the ACM, 14(4):645–
662, October 1967.

44. C. Savage. Recognizing majority on a one-way mesh. Information Processing
Letters, 27(5):221–225, April 1988.

45. A. R. Smith III. Real-time language recognition by one-dimensional cellular
automata. Journal of Computer and System Science, 6:233–253, 1972.

46. A. R. Smith III. Simple computation-universal cellular spaces. Journal of the
ACM, 18(3):339–353, July 1971.

47. H. Szwerinski. Symmetrical one-dimensional cellular spaces. Information and
Control, 67(1–3):163–172, October/November/December 1985.

48. V. Terrier. On real time one-way cellular array. Theoretical Computer Science,
141(1–2):331–335, April 1995.

49. V. Terrier. Language not recognizable in real time by one-way cellular automata.
Theoretical Computer Science, 156(1–2):281–285, March 1996.

50. V. Terrier. Two-dimensional cellular automata recognizer. Theoretical Computer
Science, 218(2):325–346, May 1999.

51. V. Terrier. Characterization of real time iterative array by alternating device.
Theoretical Computer Science, 290(3):2075–2084, 2003.

52. V. Terrier. Two-dimensional cellular automata and deterministic on-line tessala-
tion automata. Theoretical Computer Science, 301(1–3):167–186, May 2003.

53. V. Terrier. Two-dimensional cellular automata and their neighborhoods. The-
oretical Computer Science, 312(2–3) 203–222, January 2004.

54. V. Terrier. Closure properties of cellular automata. Theoretical Computer Sci-
ence, 352(1-3):97–107, 2006.

55. V. Terrier. Low complexity classes of multidimensional cellular automata. The-
oretical Computer Science, 369(1-3):142–156, 2006.

ELSEVIER Theoretical Computer Science 218 (1999) 325-346

Theoretical

Computer Science

Two-dimensional cellular automata recognizer

Veronique Terrier *

GREYC, Universit& de Caen, Campus 2. 14032 Caen, France zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract

We are investigating cellular automata on two-dimensional array as language recognizer. Linear

acceleration for Moore and Von Neumann neighborhood is presented. Relationships with one-

dimensional CAs and Turing machines are considered. Some limitations of the power capabilities

of real-time recognition are shown. @ 1999 Published by Elsevier Science B.V. All rights

reserved.

1. Introduction

Cellular automata appear to be a relevant model for massively parallel computa-

tion. To evaluate their computation capability a lot of interest has been devoted to

one-dimensional CAs as language recognizer. In recent years several papers investi-

gate various types of two-dimensional CAs [1,4,5,8]. Here we will investigate some

basic properties of two-dimensional CAs as two-dimensional language recognizer with

parallel input mode and bounded computation. Indeed in a practical point of view two-

dimensional array looks more natural. Clearly on two-dimensional array the behavior

of CAs becomes more complex. For instance with regard to the global properties the

reversibility and smjectivity problems become indecidable in dimension two [6]. About

the language recognition when the input mode is sequential Cole [2] has shown that

the power strictly increases with the dimension of the space. But actually to solve

problems in higher dimensions often consists in extending methods developed for the

dimension one. Here we will generalize techniques used in one-dimensional CAs.

There are several possible definitions of two-dimensional CA recognizers according

to the choice of the neighborhood, the different ways to supply the input and to get the

result. In this paper we will restrict to Moore and Von Neumann neighborhood, with a

parallel input mode where the inputs are supplied in an array rectangular in shape and

with the result of the computation is get on a distinguished cell (more often the upper-

leftmost cell). The definitions are specified in Section 2. In Section 3 we adapt the

* E-mail: veroniqu@info.unicaen.ti.

0304-3975/99/$-see front matter @ 1999 Published by Elsevier Science B.V. All rights reserved

PII: SO304-3975(98)00329-6

326 V. Terrier I Theoretical Computer Science 218 (1999) 325-346

linear speed-up methods known for one-dimensional CAs to two-dimensional CAs. In

particular for Von Neumann neighborhood this generalization leads to a solution where

the grouped cells overlap each other. In Sections 4 and 5 we compare two-dimensional

CAs with one-dimensional CAs and Turing machines. The last section focuses on real-

time computation and its limitation using counting arguments developed before for one-

dimensional CAs. In particular we present a language not real-time recognizable with

Moore neighborhood which is real-time recognizable with Von Neumann neighborhood.

2. Definitions

A two-dimensional cellular automaton is a two-dimensional array of identical finite

automata (cells) indexed by Z2 and working synchronously. Each cell evolves according

its neighborhood at discrete time step. Formally a two-dimensional CA is a 3-tuple

(S,N, 6) where S is the set of states, N = {(xi, yi), . . . , (xk, yk)} c Z2 the neighborhood,

6 : Sk + S the transition function. Denoting ((u, u), t) the state of the cell (u, v) at time

t, we have ((u,~~),~)=~(((u+x,,o+Y,),~- l),...,((u+Xk,V+Xk),t-1)).

The two classic neighborhoods are considered in this paper: the Moore neigh-

borhood where N = {(x, v): [1(x, v)ll oo < l}, the Von Neumann neighborhood where

N={(x,Y): tl(x,r)lli = 1).

Here we are interested in CAs as language recognizer. For that purpose we distin-

guish two subsets of S : C and Saccept; C corresponds to the alphabet of the language

and Sac+ is the subset of accepting states. We specify also a distinguished cell, more

often the cell (1 ,l), which communicates with outside.

In a natural way the two-dimensional languages will be investigated but also to

compare two-dimensional CAs with other one-dimensional models the one-dimensional

languages will be examined. For two-dimensional languages we need the classic defi-

nitions developed for two-dimensional objects. A picture over an alphabet C is a m *n

array of elements of C. The size of the picture is denoted by (m,n). p(i,j), where

1 <i < m and 1 <j <n, denotes the element on line i and column j of the picture p.

Z** denotes the set of all pictures over Z and Cm*” the set of all pictures of size (m,n).

We will consider only parallel input mode: at initial time 0, for 1 d i <n and 1 d j d m,

each element p(i, j) of the input picture p is fed to the cell (i, j). We restrict to bounded

computation, so the other cells remain in a special state # during all the computation.

We say that a CA accepts the picture p in t steps if the distinguished cell enters an ac-

cepting state at time t. Let T be a function from N2 to N. We say that a CA recognizes

the language L in time T if it accepts the pictures p of size (m,n) in time T(m,n). As

in one-dimensional case we define real time as the minimal time needed by the distin-

guished cell to read any particular part of the input. Thus when the distinguished cell

is the cell (l,l), the real time corresponds to the function T(m, n) = max(m, n) - 1

for Moore neighborhood and the function T(m,n) = m + n - 2 for Von Neumann

neighborhood. And for a constant c > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, T(m, n) = cmax(m, n) (resp. c(m + n)) gives

rise to linear time. CAMoore(T(m,n)) (resp. CAw(T(m,n))) will denote the class of

V. Terrier I Theoretical Computer Science 218 (1999) 325-346 321

2-dimensional languages recognized in time T(m,n) by a CA with Moore (resp. Von

Neumann) neighborhood.

For one-dimensional language recognition by two-dimensional CAs the first ambigu-

ity is in the way the input words are fed into two-dimensional array. For our practical

purposes we will consider the words are written in a square in a snakelike order man-

ner. So a word of length n will correspond to a picture of size (r&z], [fil) with the

letters successively written from let? to right and from right to left, and where the last

line is completed with [,/%l’ - 12 blank symbols /?.

For example at . . . ~214 corresponds to the picture

al a2 a3 a4

a8 aI a6 a5

a9 al0 all al2

B P a14 a13

Let f be a function from N to N. We say that a CA recognizes the language L in time

f if it accepts the words w of length n in time f(n). Thus when the distinguished cell

is the cell (1,l), the real time corresponds to the function f(n) = [fi] - 1 for Moore

neighborhood and the function f(n) = 2[fil - 2 for Von Neumann neighborhood.

CA ~~~&f(n)) (resp. CA\r~(f(n))) will denote the class of l-dimensional languages

recognized in time f(n) by a CA with Moore (resp. Von Neumann) neighborhood.

3. Linear acceleration

The linear acceleration known for one-dimensional CAs (cf. [3,7]) which establishes

that a language recognized in time f(n) is also recognized in time n+ [(f(n)-n)/k] for

some k could be generalized to two-dimensional CAs. An initial phase (of max(m,n)

steps for Moore neighborhood and m + n - 1 steps for Von Neumann neighborhood)

will consist in compacting the cells by group of k x k cells. After this phase the

CA could work k times faster for Moore neighborhood and (k + 1)/2 times faster for

Von Neumann neighborhood. So a language recognized in time T(m,n) will be also

recognized in time max(m, n) + [(T(m, n) - max(m, n))/kl with Moore neighborhood

and in time m+n-1+2[(T(m,n)-m-n+l)/(k+l)l with Von Neumann neighborhood.

3.1. The Moore neighborhood case

Let A be a CA which recognizes the language L in time T(m,n). We will build a

CA B which recognizes the language L in time max(m, n) + [(T(m, n) - max(m, n))/kl

for some k. The features of the CA B are as described in [7] for the one-dimensional

case: while computing at the same speed as the initial CA A, the CA B performs

grouping and synchronization to stop it and launch an automaton which runs k times

faster than the initial CA A. The grouping process is performed both on the lines and

the columns. The lines grouping process propagates leftwards and is such that at time

328 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. Terrier / Theoretical Computer Science .?I8 (1999) 3.X-346

A(i,l+n-t+Ci-I-n+t)k,t) A(i,k+n-t+(j-1-n+t)k,t)

m-t+1

m I _

A(l+m-t +(i- 1 -m+t)kj,t)

B(ij,t) =

A(k+m-t +(i-I-m+t)kj,t)

B

A(l+m-t+(i-1-m+t)k, A(l+m-t+(i-1-m+t)

l+n-t+(j-I-n+t)k,t) “’ k+n-t+(i-I-n+t)k

(i&t) = :

A(k+m-t+(i-1-m+t)k, A(k+m-t+(i- 1 -m+t)

I+n-t+(i-1-n+t)k,t) .” k+n-t+(i- 1 -n+t)k

Fig. 1. The grouping process at time t.

t the lines m-t+l,m-t+2,..., m are grouped by k; so to stop it a synchronisation is

required at time m. Symmetrically the columns grouping process propagates upwards

and must be stopped at time n.

We first describe the synchronization processes. Recall that it exists a one- dimen-

sional CA which synchronizes a segment of length n in n-l steps provided the two

extremities be set initially in special states Grea and Gight (see [7]). So on the au-

tomaton B we synchronize each column in order to synchronize all cells at time m

and each line in order to synchronize all cells at time n. For that purpose on each cell

(i,j) one state is devoted to the synchronization of the line i and a second one to the

synchronization of the column j. At time 1 for each cell these two states are set in

the special states Gteft or Ghsht or in a quiescent state according their west, east, north

and south neighbors are in the border state #.

We now describe the grouping process. See Fig. 1. We need the following notations.

A(i, j, t) will denote the state of the cell (i, j) at time t on the initial CA A (in particular

A(i, j, t) is the border state # if i > m or j > n); B(i, j, t) will denote the state of the cell

(i, j) at time t on the CA B.

i if i<m -t and t<m,

Ll,fi(i, t) will represent l+m-t+(i-(l+m-t))k ifi>m-t and t<m,

1 +(i- 1)k if t>m,

j if j<n -t and tdn,

G&i, t> l+n-t+(j-(I+.-t))k ifj>n-tandtdn,

1 +(j- 1)k if t>n,

Lright(i, t) L1e’(i’ t, if i<m -t,

Ldi, t) + k - 1 if i>m - t,

V. Terrier/ Theoretical Computer Science 218 (1999) 325-346 329

and

Cbott,,(j, t) 1 ctOp(jT t, if j<n - t,

C,,(j,t)+k-1 ifj>n-t.

Proposition 1. For any CA A there exists a CA B such that if at time 0 the two

CA A and B are in the same conjiguration then at time t with t <max(m,n), B(i, j, t)

contains the following array of states:

A(htt(i, t>, GopCA t), t) . . . A(hii,hdi, t), ctop(j, t), t)

A(&n(i, 0, &tdj, t), t) . :’
,

. A&ight(i, t>, ~bottom(j~ t), t)

and from time t >max(m, n) the CA B can perform in one step k steps of the CA A.

Proof. At time 1, &ft(i, 1) is i, Leght(i, 1) is i for i <m and i+k- 1 for i = m, Ctop(j, 1)

is j, Cb,,tiOm(j, 1) is j for j < n and j+k- 1 for j = m. Hence we could define a transition

function such that the site (m,n) whose east and south neighbors are in state # enters

A(m,n, 1) # ... #

in state . .

. . .
; the rightmost sites (i, n), with i cm, whose east neighbors

. .

. . . #

are in state # enters in state A(i, n, 1)# . . . #; the lowest sites (m, j), with j <n, whose

A(m,j, 1)

north neighbors are in state # enters in state . ; the other sites evolve as on

the CA A.

At times t dmin(m,n), observe that as Ll&i, t) - 134.&i - 1, t - l), &ight(i, t) +

1 <I%ight(i + 1, t - I), Ctop(j, t) - 1 2 Ctop(j - 1, t - l), Ck?aO,(jy t) + 1 < Cbottodj +

1, t - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1), we have the required information to compute all the states A(u, u, t) with

Lright(i,t)~U~Ll,~(i,t) and ~bottom 1,) (’ t <v<C,,,(j,t) on the site (i,j) at time t. And

as Lright(i,t)=Lright(i+l,t-1)-l, ~l,tt(i,t)=~l,tt(i+l,t-l)-l, Cbottom(j~t)=~b&m

(j + 1, t - 1) - 1, Ctop(j, t) = C,,(j + 1, t - 1) - 1, we are able to localize the relevant

states A(u, u, t) with L&i, t) <u <L+ht(i, t) and C,,(j, t) < u < Cboaom(j, t) among all

the states A(u,u,t) with .&(i- 1,t - l)+ l<u<Lright(i+ 1,t - l)- 1 and Ctop(j-

1,t - 1) + 1 <U<Cboaom(j + l,t - 1) - 1 we may compute.

At times t with min(m,n)< t <max(m,n), for symmetry reasons we can suppose

without loss of generality that m Gn. Observe that as L&i, t) - 12Ll,B(i - 1, t -

11, Light(i, t) + 1 dLight(i + 1, t - l), G,(j, t) - 12 Gop(j - 1, t - l), ~bottom(j~ t) +

1 < CboEom(j + 1, t - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1), we have the required information to compute all the states

A(u,u,t) with Lleft(i,t)QuQLright(i,t) and C,,(j,t)<u<Cbottom(j,t) on the site (i,j)

at time t. And asLrisht(i,t)=Lrisht(i,t-1)-l, Ll,ft(i,t)=Ll,tt(i,t-1)-l, Cb&&,t)=

330 V. Terrier I Theoretical Computer Science 218 (1999) 325-346

Cbottom(j + 1,t - 1) - 1, Ctop(j,t)=Ctop(j + 1,t - 1) - 1, we are able to determine,

provided the synchronization at time m, the new localization of the relevant states.

From the time t >max(m, n),Ll&i, t) - k =Ll,*(i - 1, t - l), &&(i, t) +k =L+ht(i+

Lt- 1), C,,,(j,t)-k=C,,(j- l,t- 1), C hotto&, t) + k = ~bottdj + 1, t - 1). Thus

we have the required information to compute k steps of the CA A in one step on the

CA B. And the synchronization at time max(m,n) allows B to enter a new behavior.

3.2. The Von Neumann neighborhood case

See Figs. 2-5. For Von Neumann neighborhood the grouping process is performed by

compacting not the lines and the columns but the diagonals. Precisely three grouping

processes will interact: from the cell (m, 1) toward the diagonal i =j, the diagonals

i-j=m-t for t=l,... , m will be grouped by k in m steps; from the cell (1, n)

toward the diagonal i = j, the diagonals j - i = n - t for t = 1, . . . , n will be grouped

by k in n steps; from the cell (m,n) toward the diagonal i + j = 2, the diagonals

i+j=m+n-t+l for t=l,..., m+n-1 willbegroupedbykinm+n-1 steps.

In order to compute at the same speed than the initial CA A, the grouping CA B will

pack together only cells of same parity (cells (i,j) with i+j of same parity). Actually

the grouped cells will overlap. We choose also k odd.

To stop these grouping processes, synchronizations will be required at times m,n

and m + n - 1. For that purpose we synchronize each column in order to synchronize

all cells at time m, each line in order to synchronize all cells at time n and in addition

from time m we synchronize each line in order to synchronize all cells at time m+n- 1.

We will now focus on the grouping process of the diagonals i - j = m - t for

t=l,... ,m without dealing with the other grouping processes. This grouping process

is initiated from the cell (m, l), propagates to the Northeast reaching at time t the

diagonal i-j = m - t and stops at time m on the diagonal i = j. At time t the grouping

process works only on the diagonals i - j = G(with tl of same parity than m - t in

shifting k - 1 diagonals of each k-grouped diagonals to the next one of same parity.

To describe more precisely the process we need the following notations. We denote by

A(i, j, t) the state of the cell (i, j) at time t on the initial CA A; we denote by B(i,j, t)

the state of the cell (i, j) at time t on the grouping CA B. G(i, j, t) denotes A(i, j, t)

if i - j < m - t else the sequence of the k sites A(u, v, t) such that u + u = i + j and

i-j+2~f[i-j-(m-t)]J(k-l)du-vdi-j+2~~[i-j-(m-t)]~(k-l)+

2(k - 1); H(i, j, t) denotes the sequence of the k sites A(u, v, t) such that u + u = i + j

andi-j+2~~[i-j-(m-(t+l))]J(k-l)~u-v~i-j+2~~[i-j-(m-(t+

l))](k- 1)+2(k- 1).

Proposition 2. For any CA A there exists a CA B such that ifat time 0 the two CAs

A and B are in the same conjiguration then at times t <m, B(i, j, t) contains A(i, j, t)

ifi-j<m-t, G(i,j,t) ifi-jam-t and i+j+m+t is odd, G(i,j,t), G(i+l,j,t-

l), H(i,j,t- 1) ifi-jam-t and i+j+m+t is even andfrom time tarn, B(i,j,t)

contains the sites A(u,v, t) with u + v= i +j, max(O,(i -j)k - (k - 1))Qu - u<(i -

j)k + k - 1.

V. Terrier I Theoretical Computer Science 218 (1999) 325-346 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(m-l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I l. 1) (1. n-t+11 Cl. n

(m, 1) (m, n-t+l) (m, t) Cm. n)

Fig. 2. Time t-c min(n,m).

Proof. At time 1 on the site (m, 1) whose both west and south neighbors are in border

state # a wave is initiated which spreads at maximal speed to the north and the east.

So this wave proceeds at time t on the cells (i,j) such that i - j 3 rn - t and is able to

discriminate the parity of i + j + m + t. Then in the case of i - j cm - t the behavior of

the CAB is the same one of the CAA. In the case of i-jam-t+1 and i+j+m+t+l

odd, note that G(i, j, t + 1) deals with the same cells as G(i, j, t). And clearly G(u, 0, t)

with (U - i, u - j) d 1 contain all the required states to compute G(i, j, t + 1). In the case

ofi-jam--t+1 andi+j+m+t+l even, fromH(i,j-l,t-l),G(i+l,j-l,t-1)

and H(i + 1, j, t - 1) we can compute on the cell (i,j) at time t + 1 the sites A(u, u, t)

with u+v=i+j and i-j+2+2[i(i-j-(m-t))J(k-l)<u---<iij+2+

332 V. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATerrier I Theoretical Computer Science 218 (1999) 325-346 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(1.1) (1. n)

h -1

b-n, 1) (m, n)

Fig. 3. min(n, m) C time t < max(m, n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2[i(i - j - (m - t))J(k - 1) + 2(k - 1); in addition G(i,j,t) contains the state of the

siteA(u,u,t) with u+v=i+j and u-u=i-j+21i(i-j-(m-t))J(k- 1). So we

get H(i,j,t). Moreover from H(i,j,t) and G(u,u,t) with (U - i,u -j) d 1 we have all

the required states to compute G(i,j, t + 1). Besides G(i + l,j, t - 1) comes from the

south neighbor.

At time m when the synchonization occurs, the process works as before on the cell

(i,j) of odd parity. But on the cells (i,j) of even parity which contain k sites of

the CA A, only (k - 1)/2 (instead k - 1 as before) sites of the CA A are shifted

to the even cells (i - 1,j + 1). Therefore B(i,j,m) contains the sites A(u,u,m) with

V. Terrier1 Theoretical Computer Science 218 (1999) 325-346 333 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(1. m+n-t) (1,n)

(m+n-t,

Fig. 4. max(m,n)<timet<m + n - 1.

u+u=i+j, (i-j)k-(k-l)<u-v<(i-j)k+k-1 ifu-u>OorO<u-u<k-1

if u = v. And after the step m the grouping process stops.

Actually the same process is achieved on the diagonals j - i = n - t for t = 1,. . . , n

from the cell (1, n) toward the diagonal i =j in n steps and on the diagonals i+j = m+

n-t+1 for t=l,... , m + n - 1 from the cell (m, n) toward the diagonal i + j = 2 (cf.

Figs. 2-5). Moreover, a composition (which we do not detail) of the grouping processes

of the diagonals i-j=m-t (t= l,...,m) and i+j=m+n-t+l (t= l,...,m+n-1)

occurs on the sites B(i,j,t) with i-jam-t and i+jam+n-t+l at times t<m, and

another composition of the grouping processes of the diagonals j-i = n-t (t = 1,. . . , n)

334 K Terrier I Theoretical Computer Science 218 (1999) 325-346

b, 1) (m, n)

Fig. 5. time t>m+n- 1

and i+j=m+n-t+l (t= l,..., m+n-1) occurs on the sites B(i,j,t) withj-i>n-t

and i+jam+n--t+l at times t<n.

Consequently, at time m + IZ - 1 B(i,j, t) contains the sites A(u, O, t) such that u + v

and i +j have the same parity, (i -j)k - (k - l)<u - vb(i -j)k + k - 1 and

(i+j-2)k-(k- l)<u+v-2d(i+j-2)k+k- 1. In other words B(i,j,t) contains

the sequence of k2 sites A(1 + (i - 1)k + LX, 1 + (j - 1)k + B,t) with Il(a,P)IIi <k - 1

and a + /3 even. Therefore the site B(i + a, j + p, t) with /l(a, p)II 1 <2 contains the sites

A(1 + (i - 1)k + c1,l + (j - 1)k + p,t) with (II(c(,p)IIi 63k - 1 and a + P even) or

(il(a,fi)\\,<2k- 1 and a+8 odd) in particular the sites&l +(i- l)k+ol,l+(j-

l)k + B,t) with II(~I,B)III <2k. H ence from this time, k + 1 steps of the CA A can be

V. Terrier/ Theorerical Compuier Science 218 (1999) 325-346 335

simulated in 2 steps on the CA B. Actually for any integer s,sk + 1 steps of the CA

A can be simulated in s + 1 steps on the CA B.

Corollary 1. Zf T(m,n)>c(m + n) for any c>l, then CA&T(m,n))=

CA Moore(T(m,n)).

Proof. CA& r(m, n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC CAM,,~~~ (T(m, n)) indeed the Von Neumann neighborhood is

contained in the Moore neighborhood.

CA Moore(T(m, n)) c CAv~(2T(rn, n)) since one step on a Moore CA can be simulated

in two steps on a Von Neumann CA. Let k be an odd integer such that k 3 4c/(c - 1),

it exists since c > 1.

We have

CAv~(2T(m,n)) c CAVN(~ + n + 2)[(2T(m,n) -m - n)/(k + l>l)

according to Section 3.2

c CAm(T(m,n)/c + 4T(m,n)/k) as T(m,n)>c(m + n)

c CAw(T(m,n)) by choice of k.

4. Comparison with one-dimensional CAs

Note that the way the input words are supplied into two-dimensional array will be

determining in the comparison of one- and two-dimensional CAs. Recall that here we

consider the words are written in a square in a snakelike order manner. The following

propositions depend closely on this choice.

4.1. Simulation of a one-dimensional CA by a two-dimensional CA

Proposition 3. Zf the language L is recognized by a one-dimensional CA in time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(n)
then L is recognized by a two-dimensional CA with Von Neumann neighborhood in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

time [J7;1 + f(n).

Proof. As the input words are written in a snakelike order, to identify the relevant

neighborhood of each site of the square is simple. For that purpose each site will be

marked with a state indicating its respective left and right neighbors (NW for the sites

with the left neighbor on the north and the right neighbor on the west, and in the same

way EW, ES, WS, WE, NE) (Fig. 6).

This marking process propagates downwards one line by step in the following way.

At time 1, the site (1,l) whose north and east neighbors are in state #, enters in

state NW; the site (1, Ifi]) whose north and west neighbors are in state #, enters in

state ES; the sites (1, i) with 1 <i < [@I whose north neighbor but not their east or

their west neighbors are in state #, enter in state EW.

336 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. Terrier/ Theoretical Computer Science 218 (1999) 325-346

Fig. 6.

At time i > 1, the sites not marked enter in state WS, WE, NE, NW, EW, ES,

respectively if their north neighbor is in state NW, EW, ES, WS, WE, NE, respectively.

Therefore at time [J;;l all sites are marked.

Parallely at time 1 a synchronization process starts from both ends of each line. So

all cells are synchronized at time [fil. Then from this time the two-dimensional CA

operates as in one-dimensional case.

Corollary 2. If the language L is recognized by a one-dimensional CA in tinze f(n)

then L is recognized by a two-dimensional CA with Von Neumann neighborhood in

time j’(n)/k.

Proof. Indeed in one-dimensional case the minimal time is n, therefore of greater order

than [fil. And according to Section 3.2, we have the desired linear acceleration.

Corollary 3. If the language L is recognized by a one-dimensional CA in time f(n)

then L is recognized by a two-dimensional CA with Moore neighborhood in time

f (n)lk.

4.2. Simulation of a two-dimensional CA by a one-dimensional CA

The following proposition is a special case of a result in [l].

Proposition 4. If the language L is recognized by a two-dimensional CA A (with

Moore or Von Neumann neighborhood) in time f(n) then L is recognized by a

one-dimensional CA B in time 0(,,hif (n)).

Proof. On the two-dimensional CA A an input word of length n is supplied in a

snakelike order as a picture of size ([fil, [fi]). So the initial phase of the simulation

consists in dividing the working area of the one-dimensional CA B in [+,/6’1 segments

V. Terrier I Theoretical Computer Science 218 (I 999) 325-346 331

of length [J;zj so that the ith segment of B corresponds to the ith line of A if i

is odd, the reverse of the ith line of A if i is even. For that purpose we distinguish

the leftmost cells of each segments i.e. the cells 1 + i[fil with i = 0,. . . , r&l - 1.

Precisely we construct a CA which distinguishes the sites (1 + i r&l, (i - 1)2 + i [J&l).

The construction is displayed by the Figs. 7 and 8. In parallel a signal end of line is sent

from the leftmost cell n at time 0, it meets the signal P on the section corresponding

to the diagonal t = c - 1 + ([fil - 1)2. Therefore among the distinguished sites (1 +

i[fil,(i- l)‘+i[fil) we can select the sites on the diagonal t = c- 1 +([,,/Kl - 1)’

i.e. the sites (1 + irfil, (r&l - 1)2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi[fil). F rom these sites vertical signals are

initiated, they mark the cells 1 + i [fil with i = 0,. . . , r&l - 1. During this initial

phase each input bit remains on its cell and a synchronization process is initiated on

the cell 1 at time 0, in this way the cells are synchronized at time 2n - 1. From this

time the simulation of the step k of the CA A will be done at time 2n - 1-t k([+I+ 1)

on the CA B in this following way (cf. Fig. 8):

(1) at time 2n - 1 + k([Jt;l + 1) providing the step k of the CA A is computed the

new states are propagated at maximal speed to the left and to the right;

(2) at the next step 2n+k([,/El + 1) . m order to reverse each segment the digits are

sent at maximal speed to the right, bounce on the rightmost cell of the segment and

return at maximal speed to the left, in parallel a synchronization process is initiated

from both ends of each segment;

(3) in this way at time 2n + k(Ifi + 1) + [fil - 1 the synchronization occurs.

Moreover, the ith cell of the jth segment receives the ith states of the (j - 1)th and

(j + 1)th segments and the (r&i] - i)th state of the jth segment which correspond

to the states of the cells (i,j - l),(i,j),(i,j + 1) (resp. ([fil - i,j - l),([fil -

i,j), ([fil - i, j + 1)) of the CA A if j + k is even (resp. odd).

Thus at the next step 2n- 1 +(k+ 1)([fi] + 1) we know all the required neighborhood

to compute the new states corresponding to the step k + 1 of the CA A.

In fact the computation of the last n - ([Jill - 1)2 cells are performed on the

segment [fil - 1.

5. Comparison with Turing machine

Here as two-dimensional CAs are restricted to bounded computation, two-dimensional

CAs will have the same power than Turing machines bounded in space n. Now we

describe direct simulations.

5.1. Simulation of a Turing machine working in space n by a two-dimensional CA

Proposition 5. If L is recognized by a Turing machine which works in time f(n) and

space n then L is recognized in time [,,IG] + f(n) by a two-dimensional CA.

Proof. The construction of the two-dimensional CA is based on the usual techniques

[9] where the simulated heads cells remain fixed on the site (1,1) and the simulated

tapes are shifted. In order that the simulation is performed in real time, the simulated

V. Terrier / Theoreticul Computer Science 218 (1999) 325-346 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Time

36

v

I Space

repeat the following moves :
- remain one step on the same cell

run at maximal speed to the next signal F

Signals F initialized on the sites (i2 i f I,
2i2 3i +I) intersections of the signal C and
signals D, repeat the following moves :

runs with a slope 2 lo rhe next signal E
runs vertically to the next signal C

Signal P with marks the cell I at times i ’
initialized on the site (1 ,I)
repeats the following moves :
- runs rightwards at maximal speed to Q
- goes to the right cell in one step
- remains one step on the same cell
- returns at maximal speed to the cell I

run at maximal speed to the right

Signal D initialized on the site (3.3)
repeats the following moves :

- goes to the right cell in one step
runs with a slope 2 co rhe next signal C

/ Si nals E initialized on the sites
(i, if I) mtersections of signals P and Q

Fig. 7. Construction of the sites (1 + ik, (i - 1)2 + ik) intersections of the signals C and F.

V Terrier I Theoretical Computer Science 218 (1999) 325-346 339

I6

computation
of the step 2

synchronization

computation
of the step I

synchronization

I I I I

I I

I vertical signals
1

g =_ the sites (I+i dn, (i-l)‘+i dn)

0 the diagonal t = c-l + (dn- I)’

jynchronization

Fig. 8

340 V. Terrier I Theoretical Computer Science 218 (1999) 325-346

squares must be grouped. So an initial phase of [,,/Gl steps is required to group the

columns by two to the left and also to exhibit, as in Section 4.1, the trace of the

simulated tapes. As the Turing machine works in space n, this trace is contained in

the bounded area.

Proposition 5 can also be obtained as a consequence of Proposition 3.

5.2. Simulation of a two-dimensional CA by a Turing machine

Proposition 6. Let L be a one-dimensional language recognized in time f(n) by a

two-dimensional CA then L is recognized in time O(nf (n)) and space n by a Turing

machine with two tapes.

Proof. We construct a Turing machine with two tapes, the second tape with two tracks.

On the CA an input word of length n is supplied in a snakelike order as a picture of

size ([&I, [fil). So the initial phase of the simulation consists in dividing the input

word of length n into [fil blocks of length [Jj n so that the ith block corresponds to

the ith line if i is odd, the reverse of the ith line if i is even. A first scan of the input

permits to compute [J-l n on the second tape. A second scan of the input is required

to mark each i. [fij th letters (for i = 1,. . . , [,,hl) of the input by *.

So the initial phase takes O(n) steps.

Then the simulation of one step of the CA goes as follows. See Fig. 9. On the

first tape the head scans the input one square by step. On the second tape the head

scans [fil squares successively from left to right and from right to left. During the

left-to-right sweeps it records on the first track the odd blocks (red on the first tape)

and during the right-to-left sweeps it records on the second track the even blocks (red

on the first tape).

By this way at the end of the scan of the ith block on the first tape, we have the

ith line on the upper (resp. lower) track, the (i - I)th line on the lower (resp. upper)

track and the head points to the rightmost (resp. leftmost) square if i is even (resp.

odd). So simultaneously the heads will point to the (j+ 1)th elements of the (i - l)th,

ith, (i + 1)th lines; and if in the state the contents of the squares scanned during the

two last steps (the (j - 1)th and the jth elements of the (i - l)th, ith, (i + 1)th lines)

are recorded we know all the relevant information to compute the jth element of the

ith line at the next step of the CA.

Thus simulating one step of the CA requires n + [fil + 1 steps on the TM and the

lines are shifted [Jt;l + 1 squares rightward. Now it is the odd line which are written

in reverse. So the simulation of the next step is made in the same way but in reverse.

6. Real-time recognition

In this section we will exploit methods, developed before in one-dimensional case

[2, lo] which used equivalence classes and counting arguments to show that some

languages are not real time recognizable.

V. Terrier I Theoretical Computer Science 218 (1999) 325-346

the even lines in reverse order

$Li-z,l,t+l)(-‘-l(i, j-2,t+l) (ij-l,t+l) i+lj+l,t) /~--\~[“‘\ (i+2,l,t) i (i+3,l,t) 1 3

1 (i+l,l,t) I___f i+l, j-1,t) (i+lj,t) (i-lj+l,t) /___~i-l,4n,t)l

1 (i,l,t) I___] (i,j-1.0 1 (i&t) 1 (ij+l,t) I___1 (i,+i,t) 1

Fig. 9. Simulation of the line i.

6.1. The Moore neighborhood case

A characteristic of 2-CAs in real time with Moore neighborhood is that on picture of

size (n, n) the input element of the cell (n, n) has only one way (the diagonal) to reach

the distinguished cell(1,l) and then this element interacts with only O(n) elements

among the n2 elements of the input array. This feature allow us to express a relation

of equivalence. Then we will present a language which will be shown by counting

arguments not to be a real time language for CAs with Moore neighborhood. Finally

we will define a CA with Von Neumann neighborhood able to recognize it in real

time.

Notation. See Fig. 10. Let A4 be a 2-CA with Moore neighborhood with (1,1) as

distinguished cell. We consider the behavior of the CA working in real time on input

pictures of size (m, n). We will use the following notations. For any set U c Z* we

denote by Neig(U) the Moore neighborhood of U and Neig’(U) its tth iterate. Let

A be the set {(x,y):ldx<m,ldy<n} andE,=Neigma”(“*“)-‘-‘({(l,l)})flA denote

the set of the cells at step t which can have an effect on the result of the computation,

i.e. which can affect the cell (1,l) at time max(m, n) - 1.

Let R,(U) = Neig’(U) n Et represent the set of cells which contain at time t the

relevant information regarding the input bits supplied at initial time in U.

A portion of picture p on a set U consists in the elements p(i,j) such that (i,j) E 0:

We denote by p $ c the picture resulting of the concatenation of a portion of picture

p on A/U and a portion of picture c on U.

342 V. Terrier I Theoretical Computer Science 218 (1999) 325-346

(m-sl)

InI2

m

(1.11-t)

(u-td

(m,v-t> (m,n>

Fig. IO.

1 j n/2 n . .
I

1

0
u
L.

5

z
da.

0 . . . 0 bin(m-ijf

Fig. 11. The language L.

The relation of equivalence. Note that by definition of R,(U) the states of Neig(R,+t

(U))/R,(U) at time t=O,... ,max(m, n) - 1 are independent of the input bits supplied

in U at time 0. So we could define the following relation of equivalence: two portions

of picture p, pf on A/U are U-equivalent if the two states sequences of the cells

Neig(R,+t (U))/R,(U) at time t = 0,. . , max(m, n) - 2 during the evolution of the CA

on the inputs p and p’ are equal.

Fact 1. If p and p’ are U-equivalent then for all portions of picture c on U, p @ c is

accepted by the CA if and only if pi @c is accepted b_y the CA.

Proof. As the states of R, at time t are function of the states of Neig(R,(U))/R,_I(U)

and the states of Rt_ 1 (U) at time t- 1, if p and p’ are U-equivalent then for all portions

of picture c on U the sequences of states of R,(U) at time t = 1,. . . ,max(m, n) -

1 generated by the CA on the inputs p @ c and p’ @c are equal. In particular, as

R max(m,n)-, (U) = {(1, l)} if p and p’ are U-equivalent then for all portions of picture

c on U we have p@c is accepted by the CA if and only if p’@c is accepted by the

CA.

V. Terrier I Theoretical Computer Science 218 (I 999) 325-346 343

LetL={pE{O,l}**: p is of size (m,n) with m82 (log(n)+2) and n>2 (log(m)+

2) and it exists i, j such that 1 <i <m/2,1 <j <n/2, p(i,j) = 1, p(m, Lzj +

l)= ... = p(m,n-Llog(m-i)]-2)=0,p(m,n-[log(m-i)]-l)... p(m,n-

l)isthebinarynotationofm-i,p([y]+l,n)= ... =p(m-Llog(n-j)J-2,

n) = 0, p(m - llog(n - j)J - 1, n) . . . p(m - 1, n) is the binary notation of

n-j}. See Fig. 11.

Proposition 7. L is not recognizable in real time by 2-CA.9 with Moore neighborhood.

Proof. We consider pictures A of size (n,n) and the set U = {(x,n):x = n - llog(n -

l)] - l,...,n - l}U{(n,y):y=n - llog(n - l)] - l,...,n - l}. Note that the cardi-

nality of Neig(R,(U))/R,_t(U) is lower than 4Llog(n - 1)J + 8. Thus the cardinality

of U:~~Neig(R,(U))/R,-l(U) is lower than (n - 1)(4[log(n - 1)j + 8). So if L is

recognized by a Moore CA in real time whose the number of states is s then there is

at most S(“-t)(4tos(n--1)+s) =2O(“‘%(“))U _ equivalence classes for the portions of picture

on AfU.

At each subset E of {(x, y): 1 Gx, y d n/2} we associate the portion of picture pE on

A/U defined by p~(x, y) = 0 if x > n/2 or y > n/2 and for 1 < x, y < n/2 pE(x, y) = 1 if

(x, y) E E, else p~(x, y) = 0. Observe that for all distinct subsets E, F of {(x, y): 1 < X,

y d n/2} there exists integers x, y such that (x, y) belongs to E/F or F/E. Now consider

the portion of picture c on U such that c(n, n - [log(n - l)] - 1) = . . = c(n, n -

llog(n - i)J - 2) = 0, c(n, n - jlog(n - i)J - 1) . . . c(n, n - 1) is the binary notation of

n-i, c(n-llog(n-l)J-l,n)=...=c(n-[log(n-j)]-2,n)=O, c(n-jlog(n-

j)J - 1, n) . . . c(n - 1, n) is the binary notation of n -j. Thus pi $ c belongs to L if and

only if pF $ c does not belong to L. In other words pE and pF are not equivalent. To

conclude note that the number of subsets of {(x, y): 1 d x, y < n/2} is 2”2!4. Hence it

is of order greater than 2°(“‘os(n)).

Proposition 8. L is recognizable in real time by a 2-CA with Von Neumann neigh-

borhood.

Proof. See Fig. 12. From p(m, 151 + l),. . ., p(m,n - 1) = 0.. .O bin(m - i), if 1 < i d

m/2 we have to select the line i. For that purpose we compute bin(m -k) on the right

of the kth line for all k=m - l,..., 1 in the usual way. We consider that initially all

cells are in a quiescent state /?. The process begins on the cell (m - 1, n - 1) which

can be distinguished at time 2 and enters in state 1. Then the CA evolves according

this rules:

n 1 if s=e=l or (e=O’ and s=O, /I),

wce-+c= 0 if e= 1 and s=O, 0’,

s 0’ if s=l and e=O’, /?.

So the tth bit of bin(m - k) is computed on the cell (k,n - t) at time m - k + t.

Simultaneously from the step 1 the lowest line is sent upward, so the element p(m, t)

344 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. Terrier I Theoretical Computer Science 218 (1999) 325-346

i=4

m= 14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

! i-i-i-l

Fig. 12.

is known by the cell (k, t) at time m - k + 1. In addition we can distinguish the line

1 + [m/2] and the column 1 + jn/2J by sending signals from both ends of each line and

each column. Thus a comparison process can start on each line k with k < n/2 at time

m - k + 1 from the cell (k, n - 1) and propagates to the right until reaching the column

1 + [n/2]. The comparison succeeds on the line u. And from the site (i, 1 + [n/2]) a

signal of selection is sent to the right. Inverting the roles of the lines and the columns

the same process is achieved in order to select the column j. In this way the cell (i,j)

is selected at time m - i + n - j. To sent its content to the cell (1,l) requires i + j - 2

steps, hence this content reaches the cell (1,1) at time m + n - 2.

6.2. The Von Neumann case

Here we will restrict to a particular case where the distinguished cell is the cell

(m, 1) for pictures of size (2m - 1, n). We consider the behavior of a 2-CA with Von

Neumann neighborhood working in real time on input pictures of size (2m - 1, n). We

need the following notations.

Let t be an integer less than n. We denote by A the set {(x, y): 1 < x < 2m -

1, 1 < y < n}, by U the set of t cells {(1, y): n - t < y < n}, by I’ the set of t cells

((2m - 1,~): n - t <y < n}, We focus on the step m - 2. Em_2 =Neig”({(m, l)})=

{(x,y): 1~y,x-y~m-n-l,x+y~m+n+1}denotesthesetofcellsatstep

m - 2 which can have an effect on the result of the computation (i.e. the cell (m, 1) at

time m + n - 2).

V. Terrier1 Theoretical Computer Science 218 (1999) 325-346 345

Neigme2(U) = {(x, y): 1 < x < m- 1,1 d y < n,n-y < m-n+t-2) (resp. NeigmP2

(V)={(x,y):m+l <x<dm-1,l <y<n,x+y>m+n-t+2})representstheset

of cells at time m - 2 depending on the input bits supplied at time 0 in U (resp. V).

Note that at time m - 2, E,,,_2/Neigm-2(U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU V) is independent of the input bits

supplied at initial time in U and V, Neigmu2 (U) is independent of V and Neig . m-2(v)

of U. So we could define the following relation of equivalence: two portions of picture

p, p’ on A/(U U V) are (U, V)-equivalent if

(i) the states at time m - 2 of E,_2/Neig”-2(U U V) of the CA on the inputs p

and p’ are equal;

(ii) for all portions of picture u on U, the states at time m-2 of Em-2 n Neigmw2(U)

of the CA on the inputs p @ u and p’ 6~ u are equal;

(iii) for all portions of picture v on V, the states at time m-2 of Em___2 flNeigmP2(V)

of the CA on the inputs p @ v and p’ @ v are equal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fact 2. The number of (U, V)-equivalence classes of portions of pictures on

A/(U U V) is bounded by 2’cn2’).

Proof. Let s be the number of states of the CA. (i) As the cardinal@ of E,,,_JNeigmP2

(U U V) is n + (n - t)(n - t + 1) there is at most s”~(~-~)(~-~~‘) distinguishable pictures

on E,,_2/Neigm-*(U U V). (ii) Note that Neigmm2(U) n Em_2 is composed first for

i=l ,. . . , t of the (n-t+i/2) sites {(y+m-n+t- 1, y): 1 < y < n-t+(i+l)/2) which

depends on the bits supplied at initial time on the i cells (1, n - t + 1), . . . , (1, n - t + i)

but not on the t-i cells (l,n-t+i+l),..., (l,n), second for 2 < i < j < t and i +j

even of the sites (m - 1 + (j - i)/2,n - t + (i + j)/2) which depend exactly on the

bits supplied at initial time on the j - if 1 cells (1,n - t + i),...,(l,n - t + j). So

the number of distinguishable pictures on Neigmm2 (U) fl Em__2 at time m - 2 is at most

n, Si4j s(~-‘+~~‘~J)~’ . “;;;:;z s’+jpi = 2c(n2’-tt3). (iii) In the same way the number

of distinguishable pictures on Neigmv2 (U) n Em_-2 at time m - 2 is at most 2c(n2’+t3).

Thus the number of (U, V)-equivalence classes is at most 2c(“+(“-‘)(“-‘+‘). 2c(n2’+r3).

2c(n2’+t3) i.e. 20(“21)+

We present now a language not real-time recognizable.

Let a = [log nl, b = [log 2ml and t = [(a + b)/2].

Let L={pE{O,l}**: p is of size (2m - 1, n) and there exist i, j

such that 1 <i<2m - 1,1 <j<n,

p(i,j)=l,p(l,n-t+l)...p(l,n-t+a) is the binary notation of j,

p(l,n-t+a+l)...p(l,n)p(2m-1,n-t+1)...p(2m-1,n)

is the binary notation of i}.

Proposition 9. L is not recognizable in real time by a 2-CA with Von Neumann

neighborhood whose cell (m, 1) is the distinguished cell.

346 Y. Terrier I Theoretical Computer Science 218 (1999) 325-346

Proof. At each subset E of {(x, y): 1 <x < 2m - 1,1 < y < TZ} we associate the portion

of picture PE on A/(U U V) defined by p~(x, y) = 1 if (x, y) E E else p&x, y) = 0. As

a = [log nj and b = [log 2ml all lines and columns could be encoded. Hence for all

distinct subsets E and F of {(x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy): 1 <x<2m - 1,1 < y 6 n}, PE and pi are not

(U, V)-equivalent. Note that as t = (a + b)/2 the number of (U, V)-equivalence classes

for portions of pictures on A/(U U V) is bounded by 2°(n2’U+b”2). In other part, the

number of subsets of {(x, y): 1 < x < n, 1~ y <2m - 1) is 2”(2m-3). Hence, provided

m = 0(26) is of greater order than n = 0(2a), 2”(2m-3) is of order greater than 2°(n2”+b)‘Z).

References

[1] A.C. Achilles, M. Kutrib, T. Worsch, On relations between arrays of processing elements of different

dimensionality, Parcella 96, Akademie Verlag, Berlin, 1996, pp. 13-20.

[2] S.N. Cole, Real-time computation by n-dimensional iterative arrays of finite-state machine, IEEE Trans.

Comput. C-18 (1969) 349-365.

[3] O.H. Ibarra, S.M. Kim, S. Moran, Sequential machine characterization of trellis and cellular automata

and application, SIAM J. Comput. 14 (1985) 426-447.

[4] O.H. Ibarra, M.A. Palis, Two-dimensional iterative arrays: characterizations and applications, Theoret.

Comput. Sci. 56 (1988) 47-86.

[5] K. moue, A. Nakamura, Some properties of two-dimensional on-line tessalation acceptors, Inform. Sci.

13 (1977) 95-121.

[6] J. Kari, Reversibility of 2D cellular automata is undecidable, Physica D 45 (1990) 379-385.

[7] J. Mazoyer, N. Reimen, A linear speed-up theorem for cellular automata, Theoret. Comput. Sci. 101

(1992) 59-98.

[8] Zs. Roka, Simulations between cellular automata on Cayley graphs, Theoret. Comput. Sci. (1999) to

appear.

[9] A.R. Smith, Real-time language recognition by one-dimensional cellular automata, J. ACM 6 (1972)

233-253.

[IO] V. Terrier, Language not recognizable in real time by one-way celular automata, Theoret. Comput. Sci.

156 (1996) 281-287.

Theoretical Computer Science 369 (2006) 142–156

www.elsevier.com/locate/tcs

Low complexity classes of multidimensional cellular automata

Véronique Terrier

GREYC, Campus II, Université de Caen, 14032 Caen, France

Received 9 February 2006; received in revised form 29 June 2006; accepted 16 July 2006

Communicated by Bruno Durand

Abstract

In this paper, multidimensional cellular automaton are considered. We investigate the hierarchy designed by the low complexity

classes when the dimensionality is increased. Whether this hierarchy is strict, is an open problem. However, we compare different

variants and study their closure properties. We present also a correspondence between a main variant of multidimensional real-time

cellular automata and one-way multihead alternating finite automata.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Multidimensional cellular automata; Real-time and linear time classes; Closure properties; One-way multihead alternating finite

automata

1. Introduction

Cellular automaton (CA) is a major model of massively parallel computation. It consists of a regular array of uniformly

interconnected identical finite automata which work synchronously. Famous examples [6,8], where the information is

distributed and synchronized in a very efficient way, illustrate the ability of CA to do fast computation. On the other

hand, the study of the limitations of these machines is not simple. Notably, for one-dimensional CA bounded in linear

space, the basic question whether unrestricted time is more powerful than minimal time, remains unanswered.

By the way, remind that one-dimensional linear space bounded CA working in unrestricted time has the same

computational ability as linear space bounded Turing machine. Here, we will look at the dimensionality of the array as

resource. In this area, Cole has considered k-dimensional iterative arrays (DIAS) (a main restricted variant of CA with

sequential input mode); he has proved that, for real-time (i.e. minimal time) computation, the computing capability

increases as the dimensionality of the iterative arrays increases [5]. Other variants of k-dimensional CA have been

investigated [1–3,9,13]. Here, we will focus on their lower complexity classes, since they can be simulated in linear

space on Turing machine, as proved in [9]. Moreover, refined simulations have been exhibited. In [2], Chang et al.

have shown that multidimensional CA working in linear time can be simulated by linear time bounded alternating

Turing machine. Furthermore, it has been set that linear time bounded alternating Turing machine can be simulated by

one-dimensional one-way CA [3]. And obviously, one-dimensional linear space bounded CA is at least as powerful

as one-dimensional one-way CA. But whether these models have different computational ability, is unknown. In other

words, to use as resource the dimensionality instead of the time, yields another hierarchy between minimal time

and unrestricted time of one-dimensional linear space bounded CA. But, except for k-dimensional real-time iterative

E-mail address: veroniqu@info.unicaen.fr.

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.tcs.2006.07.061

V. Terrier / Theoretical Computer Science 369 (2006) 142–156 143

arrays which do not have the ability to simulate one-dimensional real-time CA, there is no evidence that for low

complexity classes, increasing the dimensionality of the CA allows to increase the computation ability. Here, we will

investigate more finely the low complexity classes of multidimensional CA. Among the numerous variants which can

be defined according to the choice of the neighborhood, we will restrict to a few ones which seems representative

to us.

The paper is organized as follow. Section 2 recalls the definitions and presents different variants of multidimensional

CA. Section 3 deals with speed up results. Section 4 is devoted to comparisons between multidimensional CA types.

In Section 5, closure properties are presented. In Section 6, the equivalence between one-way multihead alternating

finite automata and one of the multidimensional real-time CA types is exhibited.

2. Definitions

A k-dimensional CA is a k-dimensional array of identical finite automata (the cells) indexed by Z
k . In vector notation

each cell is identified to its vector position c = (c1, . . . , ck). The communication links are finite and uniform for every

cell. They are specified by a finite subset of Z
k called the neighborhood. Each cell takes on a value from a finite set, the set

of states. Cells evolve synchronously at discrete time steps according to their neighborhood and to a transition function.

Formally, a k-dimensional CA is a triple (S,V, �) where S is a finite set of states, the neighborhood V = {v1, . . . , vr}

is a finite subset of Z
k and � : S|V | → S is the transition function. A site (c, t) denotes the cell c at time t and 〈c, t〉

denotes its state. So at each step t�0, the state is updated in this way: 〈c, t + 1〉 = �(〈c + v1, t〉, . . . , 〈c + vr , t〉 : V =

{v1, . . . , vr}).

To specify language recognition, we distinguish two subsets of S: the alphabet � of the language and the subset

Sacc of accepting states. We also distinguish a special state of S, designated by the quiescent state ♯. Here, we assume

that the computation is bounded in space: when the input size is n, the cells not in {c : 0�c1, . . . , ck < n} remain

in the quiescent state ♯ during all the computation. Furthermore, for t < 0, all cells in {c : 0�c1, . . . , ck < n}

are in the quiescent state ♯. Each of these cells remains in the quiescent state until the step it may be affected by

the input.

We distinguish two modes to give the input, the parallel one and the sequential one. In parallel input mode, at initial

time 0, the ith input symbol of the input w = x0 . . . xn−1 of size n, is fed to the cell (i, 0, . . . , 0): 〈i, 0, . . . , 0, 0〉 = xi .

In sequential input mode, the input is given sequentially to a specific cell, the input cell indexed by 0 = (0, . . . , 0).

The symbol xi of the input w = x0 . . . xn−1 is gotten by the input cell 0 at time i; at time t�n, the cell 0 gets an

end-marker $. Further, in sequential input mode, the input cell 0 evolves according to a particular transition function

�init : (� ∪ {$}) × S|V | → S, so 〈0, t〉 = �init(xt , 〈v1, t − 1〉, . . . , 〈vr , t − 1〉 : V = {v1, . . . , vr}) (with xt = $

when t�n).

The output cell, which determines the acceptance, depends on the neighborhood. In case of two-way communication,

as with the Von Neumann neighborhood {d ∈ Z
k : �|di |�1} or with the Moore neighborhood {d ∈ Z

k : max |di |�1},

one chooses the cell 0 as the output cell. In case of one-way communication, as with the one-way Von Neumann

neighborhood {−d : d ∈ N
k and �di �1} or with the one-way Moore neighborhood {−d : d ∈ N

k and max di �1},

one chooses the cell n − 1 = (n − 1, . . . , n − 1) as the output cell.

A CA accepts a word w if, on input w, the output cell enters an accepting state at some time t . Let f be a function

from N to N. A CA recognizes a language L in time f , if it accepts exactly the words w ∈ L of length n = |w| at time

f (n). Among these time complexities, the real-time function rt(n) corresponds to the minimal time for the output cell

to read the whole input of size n. The linear time function corresponds to f (n) = � rt (n), where � is a constant strictly

greater than 1.

We will denote the usual one-dimensional CA with parallel input mode by 1-PCA and 1-PCA(f (n)) will refer to

the class of languages recognized in time f (n) by 1-PCA. In the sequel, we will focus on CA with one-way Von

Neumann neighborhood. k-SOCA (resp. k-POCA) will stand for k-dimensional CA with sequential (resp. parallel)

input mode and one-way Von Neumann neighborhood. See Fig. 1 which depicts these devices in case of dimension 2.

Various denominations are used in different papers: here, we adopt the notations of [7]; 2-SOCA is named one way two-

dimensional iterative array (2-DIA) in [1] and OIA in [13]; k-POCA is named k-dimensional one-way mesh connected

array (k-OWMA) in [2].

Further, k-RSOCA (resp. k-LSOCA) will denote the class of languages recognized in real-time (resp. linear time)

by k-SOCA. For parallel input mode, the corresponding classes are designated by k-RPOCA and k-LPOCA.

144 V. Terrier / Theoretical Computer Science 369 (2006) 142–156

0 n-1 0 n-1

n-1

0

1

n-1

0

1

2-SOCA2-POCA

x0

x0

x1

x1

xn-1

xn-1

1 1

Fig. 1. Two-dimensional OCA.

2-RSOCA2-RPOCA

(0,0,0) (n-1,0,0)

(n-1,n-1,3(n-1))

(n-1,n-1,2(n-1))

(n-1,n-1,0) (n-1,n-1,0)

(0,0,0) (n-1,0,0)x1x0 xn-1

x1

x0

xn-1

Fig. 2. Real-time one-way devices.

Note that the result of the computation is gotten, for k-RSOCA, on the output site (n − 1, (k + 1)(n − 1)) and

for k-RPOCA, on the output site (n − 1, k(n − 1)). As it will be verified in the next section, k-OCA admits linear

acceleration. So, without loss of generality, in the sequel, we will assume that the result of the computation is gotten,

for k-LSOCA, on the output site (n − 1, (k + 2)(n − 1)) and for k-LPOCA, on the output site (n − 1, (k + 1)(n − 1))

(Fig. 2).

To get some hints on the properties of these classes, we consider the working area composed of the relevant sites

regarding the computation, that means the sites which both are influenced by the input and can have an effect on the

output site. Note that, the set of sites affected by the input is {(c, t) : t�c2 + · · · + ck} when the input mode is parallel

and {(c, t) : t�c1 + c2 + · · · + ck} when the input mode is sequential. On the other hand the set of sites which can

influence an output site (n − 1, �(n − 1)) is {(c, t) : t�c1 + · · · + ck + (� − k)(n − 1)}. Hence, on an input of size n,

the working area is:

• {(c, t) : 0�c1, . . . , ck < n and c2 + · · · + ck� t�c1 + · · · + ck} for a k-RPOCA;

• {(c, t) : 0�c1, . . . , ck < n and c2 + · · · + ck� t < c1 + · · · + ck + n} for k-LPOCA;

• {(c, t) : 0�c1, . . . , ck < n and c1 + · · · + ck� t < c1 + · · · + ck + n} for k-RSOCA;

• {(c, t) : 0�c1, . . . , ck < n and c1 + · · · + ck� t < c1 + · · · + ck + 2n − 1} for k-LSOCA.

The shape of these working areas can be partly described by the following characteristics: the maximal time h, the

number nball of all the sites, the number nbbeg of the sites that depend on the first symbol x0 (i.e. on the site (0, 0)),

the number nbend of the sites that depend on the last symbol xn−1 (i.e. on the site (0, . . . , n − 1, 0) in case of parallel

input mode and on the site (0, n − 1) in case of sequential input mode), and the number nbint of the sites that depend

V. Terrier / Theoretical Computer Science 369 (2006) 142–156 145

both on x0 and xn−1. The following table gives the asymptotic behavior of these characteristics for the classes that we

will examine.

h nball nbbeg nbend nbint

k-RPOCA �(n) �(nk+1) �(nk) �(nk) �(nk−1)

k-RSOCA �(n) �(nk+1) �(nk+1) �(nk) �(nk)

k-LPOCA �(n) �(nk+1) �(nk+1) �(nk) �(nk)

k-LSOCA �(n) �(nk+1) �(nk+1) �(nk+1) �(nk+1)

In the following, we will verify that, among these classes, one class C1 simulates another one C2 if we can embed

the working areas of CA of type C2 into the working areas of CA of type C1. That will be possible when the order of

each characteristic of C1 is greater or equal to the corresponding one of C2. So the relations k-RSOCA = k-LPOCA,

k-RSOCA ⊆ (k + 1)-RPOCA and (k − 1)-LPOCA ⊆ k-RSOCA will be set. Further, the computation turns out to

be symmetrical for classes whose nbbeg and nbend are of same order. So we will prove that k-RPOCA and k-LSOCA

are closed under reverse. Also, for 1-RPOCA, remark that nbint is constant, besides some limits on the computational

ability of 1-RPOCA have been established using counting arguments [17]. By the way, note that, in the case of the

k-dimensional iterative arrays investigated by Cole [5], nbend is also constant for all k.

To end this section, let us precise that the reverse wR of a word w is the word w written backwards. For a language

L, its reverse is LR = {wR : w ∈ L} and for a class of languages C, its reverse is CR = {LR : L ∈ C}.

3. Linear acceleration

In this section, we consider linear acceleration of the running time up to real-time. Observe that, in case of one-way

communication, any two cells are not mutually interdependent. So the sites of the working area and their dependencies

form a directed graph which is acyclic. This characteristic allows to speed up computation easily. Speed up results

have already been proved for dimension 1 [12]. Fig. 3 depicts the scheme for dimension 1: once the cell gets the whole

input part situated on its left, it can operate R times faster for any integer constant R. The principle can be generalized

to any dimension and any neighborhood with one-way communication. Let us prove it for the one-way Von Neumann

neighborhood, first when the input mode is sequential, second when the input mode is parallel.

Proposition 1. Let f, rt : N → N be two functions where rt(n) = (k + 1)(n − 1) is the real-time complexity for

k-SOCA. If a language L is recognized by a k-SOCA in time rt(n) + f (n) then, for any positive integer R, L is

recognized by a k-SOCA in time rt(n) + ⌈f (n)/R⌉.

Proof. First remark that for any k-SOCA, the working area W = {(c, t) : 0�c1, . . . , ck < n, t�0} associated with

inputs of size n, can be divided into two regions X = {(c, t) ∈ W :
∑

ci + n − 1� t} and Y = {(c, t) ∈ W :
∑

ci +n− 1 < t}. For that, a wave is initiated on the initial cell 0, at time n, when 0 receives a first end-marker $. This

wave spreads at maximal speed and so characterizes the set of sites F = {(c, t) ∈ W : t =
∑

ci + n}. Actually, this

wave marks the first time where cells know they have got the whole input. This wave corresponds to the lower layer of

Y and so allows to divide the working area into X and Y .

Now consider any k-SOCA A which recognizes the language L in time rt(n) + f (n). Let us define the k-SOCA

B which simulates A. On X, B behaves like A. On Y , the computation of A is mapped on B according to the trans-

formation g : Z
k+1 → Z

k+1 defined by

g(c, t) =

(

c,

⌈

(R − 1)(n − 1 +
∑

ci) + t

R

⌉)

.

Let us verify the validity of the transformation. First, as the upper layer of X consists in sites (c, n − 1 +
∑

ci) and

g(c, n−1+
∑

ci) = (c, n−1+
∑

ci), the transition between X and Y is guaranteed. Second, note that g maps R sites

of A into one site of B; that ensures that the computational load on the sites of B remains bounded and can be performed

by cells which have the computational power of a finite state automaton. Third, the elementary data movements on A

146 V. Terrier / Theoretical Computer Science 369 (2006) 142–156

0 n-1 Cells

0

1-SOCA 1-POCA

0

1

n-1

0

1

n-1

2n-2

x1 n-1x0

x0

x1

xn-1

The regions X

Group of R sites

Cellsn-11

x

Time

Time

1

Fig. 3. One-way linear acceleration.

are the data movements induced in one time step by the one-way Von Neumann neighborhood. In other words they are

vectors (�, 1) where � ∈ {0, 1}k and
∑

�i �1. On B, they are mapped into

(�, �) = g(c + �, t + 1) − g(c, t)

=

(

�,

⌈

(R − 1)(n − 1 +
∑

ci +
∑

�i) + t + 1

R

⌉

−

⌈

(R − 1)(n − 1 +
∑

ci) + t

R

⌉)

.

As
∑

�i �1, we have

��

⌈

(R − 1)(n − 1 +
∑

ci) + t

R
+

∑

�i

⌉

−

⌈

(R − 1)(n − 1 +
∑

ci) + t

R

⌉

�
∑

�i .

Thus, on B governed by the one-way Von Neumann neighborhood, the dependencies constraints �1, . . . , �k�0 and
∑

�i �� are fulfilled. Also remark that, as the computational load on the sites, the amount of data to be transmitted is

bounded by a constant. Finally, observe that g(n − 1, rt (n) + f (n)) = (n − 1, rt (n) + ⌈f (n)/R⌉). �

In the same way, the computation on k-POCA can be speeded up.

Proposition 2. Let f, rt : N → N be two functions where rt(n) = k(n − 1) is the real-time complexity for k-POCA.

If a language L is recognized by a k-POCA in time rt(n) + f (n) then, for any positive integer R, L is recognized

by a k-POCA in time rt(n) + ⌈f (n)/R⌉.

Proof. First remark that for any k-POCA, the working area W = {(c, t) : 0�c1, . . . , ck < n, t�0} can be divided into

two regions X = {(c, t) ∈ W :
∑

ci � t} and Y = {(c, t) ∈ W :
∑

ci < t}. For that, a wave is initiated on the initial

cell 0, at time 1, when 0 knows its position as extremity. This wave spreads at maximal speed and so characterizes the

set of sites F = {(c, t) ∈ W : t =
∑

ci + 1}. Actually, this wave marks the first time where the cells know they have

got the whole available part of the input. This wave corresponds to the lower layer of Y and so allows to divide the

working area into X and Y .

Now consider any k-POCA A which recognizes the language L in time rt(n) + f (n). Let us define the k-POCA

B which simulates A. On X, B behaves like A. On Y , the computation of A is mapped on B according to the trans-

formation g : Z
k+1 → Z

k+1 defined by

g(c, t) =

(

c,

⌈

(R − 1)
∑

ci + t

R

⌉)

.

V. Terrier / Theoretical Computer Science 369 (2006) 142–156 147

The same arguments, used in the previous proposition, apply to verify the validity of the transformation. Finally, observe

that g(n − 1, rt (n) + f (n)) = (n − 1, rt (n) + ⌈f (n)/R⌉). �

4. Simulation

In this section, we consider relationships between the real-time and linear time classes of k-OCA. All presented

simulations consist in simple transformations of the working areas.

It has been set that 1-RSOCA and 1-LPOCA define the same class of languages [10]. Let us see that this equivalence

extends to the higher dimensions.

Fact 1. k-RSOCA ⊆ k-LPOCA.

Proof. For any k-RSOCA A, let us define a k-LPOCA B which simulates it. Initially, the k-LPOCA B achieves a

preprocessing phase to mimic the sequential input mode from the parallel input mode. Each symbol xi fed on the cell

(i, 0, . . . , 0) remains on the same cell. In this way, xi which is fed on the site (0, i) of the k-RSOCA A, is known on

the site (i, 0, . . . , 0, i) of the k-LPOCA B.

Further, as viewed in proof of Proposition 2, the k-LPOCA B can characterize the region Y = {(c, t) :
∑

ci < t}.

In Y , the sites of A are mapped according to the linear transformation g : Z
k+1 → Z

k+1 defined by

g(c, t) =
(

t −
∑

ci, c2, . . . , ck, t
)

.

Let us verify that g maps the accepting (resp. non-accepting) computations of the k-RSOCA A into accepting (resp.

non-accepting) computations of a k-LPOCA B. First, note that g(0, i) = (i, 0, . . . , 0, i). So, as xi is known on the

site (i, 0 · · · , 0, i) of B and (i, 0 . . . , 0, i) is positioned on the frontier with Y , the transition is guaranteed. Second, the

injectivity of g guarantees that, on B, the cells can cope the computational load requirement. Third, the elementary

data movements on A are vectors (�, 1) where � ∈ {0, 1}k and
∑

�i �1. On B, they are mapped into (�, �) =

g(c + �, t + 1) − g(c, t) = (1 −
∑

�i, �2, . . . , �k, 1). They satisfy the dependencies constraints: �1, . . . , �k�0 and
∑

�i ��. Finally, g(n − 1, (k + 1)(n − 1)) = (n − 1, (k + 1)(n − 1)) guarantees the correspondence between the

output sites. �

Fact 2. k-LPOCA ⊆ k-RSOCA.

Proof. Let A be any k-LPOCA. Consider the transformation g : Z
k+1 → Z

k+1 defined by

g(c, t) =

(⌈

t − c2 − · · · − ck

2

⌉

, c2, . . . , ck,
∑

ci +

⌈

t − c2 − · · · − ck

2

⌉)

.

Let us verify that g maps the accepting (resp. non-accepting) computations of the k-LPOCA A into accepting (resp.

non-accepting) computations of a k-RSOCA B. First, g(i, 0, . . . , 0) = (0, . . . , 0, i) guarantees the transition from the

parallel input mode into the sequential input mode. Second, note that g maps two sites on one site. That ensures that the

computational load on the sites of the k-RSOCA remains bounded. Third, on A, the elementary data movements (�, 1)

are such that � ∈ {0, 1}k and
∑

�i �1. They are mapped into (�, �) = g(c+�, t+1)−g(c, t) = (�, �2, . . . , �k, �+
∑

�i)

with � = ⌈(t + 1 − c2 − · · · − ck − �2 − · · · − �k)/2⌉ − ⌈(t − c2 − · · · − ck)/2⌉. They satisfy the dependencies

constraints: �1, . . . , �k�0 and
∑

�i ��. Finally, g(n − 1, (k + 1)(n − 1)) = (n − 1, (k + 1)(n − 1)) guarantees the

correspondence between the output sites. �

Corollary 1. k-RSOCA = k-LPOCA.

Remark 1. For dimension 1, it has also been set that 1-RPCA defines the same class of languages as 1-LPOCA and

1-RSOCA [4,10]. At first glance, for higher dimensions k > 1, it seems to be different. Indeed, for k-RPCA with Von

Neumann neighborhood, the number of sites influenced by the rightest input symbol xn−1 is n, for all dimensions k.

148 V. Terrier / Theoretical Computer Science 369 (2006) 142–156

So, when k > 1, we may establish that k-RPCA can be simulated by k-RSOCA but not the converse. On the other hand,

we may exhibit simple transformations to show that k-RPCA with Moore neighborhood is equivalent to k-RSOCA (and

k-LPOCA) with one-way Von Neumann neighborhood. Finally, just recall that Von Neumann and Moore neighborhood

are identical in dimension 1.

Now, we will compare types of different dimensions.

Fact 3. k-RSOCA ⊆ (k + 1)-RPOCA.

Proof. Let L be a language recognized by a k-RSOCA A. Consider the linear transformation g : Z
k+1 → Z

k+2

defined by

g(c, t) =
(

t −
∑

ci, c1, . . . , ck, t
)

.

Let us verify that g maps the accepting (resp. non-accepting) computations of a k-RSOCA into accepting (resp. non-

accepting) computations of a (k + 1)-RPOCA. First, note that g(0, i) = (i, 0, . . . , 0, i). So, as detailed in Fact 1, the

input can be gotten on these sites. Second, the injectivity of g ensures that, on B, the cells can cope the computational

load requirement. Third, in A, the data movements (�, 1) are such that � ∈ {0, 1}k and
∑

�i �1. They are mapped into

(�1, . . . , �k+1, �) = g(�, 1) = (1 −
∑

�i, �1, . . . , �k, 1). They satisfy the dependencies constraints: �1, . . . , �k+1�0

and
∑k+1

i=1 �i ��. Finally, g(n − 1, (k + 1)(n − 1)) = (n − 1, (k + 1)(n − 1)) guarantees the correspondence between

the output sites. �

Fact 4. k-LSOCA ⊆ (k + 1)-RSOCA.

Proof. For any k-LSOCA A, we will define a (k + 1)-RSOCA B which simulates it. As seen in Proposition 1, the

(k + 1)-RSOCA can distinguish the regions X = {(c, t) :
∑

ci + n − 1� t} and Y = {(c, t) :
∑

ci + n − 1 < t}. In

the region X, the sites (c, t) of A such that t�
∑

ci + n − 1 , are simply mapped on the sites (0, c1, . . . , ck, t) of B.

Then, in region Y , the sites (c, t) of A such that t >
∑

ci + n − 1, are mapped according to the affine transformation

g : Z
k+1 → Z

k+2 defined by

g(c, t) =
(

t −
∑

ci − n + 1, c1, . . . , ck, t
)

.

Let us verify the validity of the transformation. First, observe that g(c,
∑

ci + n − 1) = (0, c1, . . . , ck,
∑

ci + n − 1).

So, the transition between the two regions X and Y is guarantied. Second, observe that g corresponds to the linear

transformation of the previous Fact 3 with the translation (−n + 1, 0, . . . , 0). So, in the same way, the load sites

requirements and the dependencies constraints are satisfied. Finally, g(n−1, (k+2)(n−1)) = (n−1, . . . , n−1, (k+2)

(n − 1)) ensures the correspondence between the output sites. �

Restricted to unary languages, 1-RPOCA is not more powerful than finite automaton (which may be considered as

0-RSOCA). For the same reasons, we obtain the following fact.

Fact 5. Restricted to unary languages, k-RSOCA and (k + 1)-RPOCA have the same recognition ability.

Proof. Let A be any (k + 1)-RPOCA whose input alphabet is unary. By definition, the sites {(c1, . . . , ck+1, t) :

c2 + · · · + ck+1 > t} are in quiescent state. As the alphabet is unary, all sites {(i, 0, . . . , 0, 0) : 0� i < n} are in the

same state. So by induction on t , we may show that, for any fixed c2, . . . , ck+1, t , the sites {(i, c2, . . . , ck+1, t) :

t − c2 − · · · − ck+1� i < n} share the same state. In particular, for all time t < (k + 1)(n − 1), both states

〈n − 2, c2, . . . , ck+1, t〉A and 〈n − 1, c2, . . . , ck+1, t〉A are identical. So, observe that we may project the behavior

of the (k + 1)-RPOCA A within the k-RSOCA B such that 〈c2, . . . , ck+1, t〉B = 〈n − 1, c2, . . . , ck+1, t〉A, since the

missing neighbor state being the same as the current state. Finally, note that the output site of B enters the same state

as the output site of A: 〈n − 1, . . . , n − 1, (k + 1)(n − 1)〉B = 〈n − 1, n − 1, . . . , n − 1, (k + 1)(n − 1)〉A. �

V. Terrier / Theoretical Computer Science 369 (2006) 142–156 149

5. Closure properties

In this section, we will consider closure properties of the classes k-RSOCA, k-RPOCA and k-LSOCA. These classes

are obviously closed under boolean operations.

5.1. Closure under reverse

Closure under reverse has already been observed for k-RPOCA in case of dimension 1 and 2 [4,13], as well for

k-LSOCA in case of dimension 1. For the higher dimensions, we will verify in the two next facts that the computation

turns out to be also symmetrical for k-RPOCA and k-LSOCA. On the other hand, we ignore, for any dimension

k, whether k-RSOCA is closed under reverse. Note that a negative answer, for some dimension k, will yield strict

inclusions between k-RPOCA, k-RSOCA and k-LSOCA. Furthermore, it was shown that 1-RSOCA is closed under

reverse if and only if 1-RSOCA is as powerful as 1-LSOCA [11]. We imagine that this result can be generalized for

the higher dimensions, in using similar techniques.

Fact 6. k-RPOCA is closed under reverse.

Proof. Let L be a language recognized by a k-RPOCA C. Consider the affine transformation g : Z
k+1 → Z

k+1 defined

by

g(c, t) =
(

n − 1 + t −
∑

ci, c2, . . . , ck, t
)

.

Let us verify that g maps the accepting (resp. non-accepting) computation of C on any input w = x0 · · · xn−1 into an

accepting (resp. non-accepting) computation of a k-RPOCA D on the input wR = xn−1 · · · x0. First, g(i, 0, . . . , 0) =

(n−1−i, 0, . . . , 0) supports that, onD, the symbol xi of the input wR = xn−1 · · · x0 is fed on the cell (n−1−i, 0, . . . , 0).

Second, the injectivity of g guarantees that, on D, the cells can cope the computational load requirements. Third, in the

working area of C, the data movements are vectors (�, 1) where � ∈ {0, 1}k and
∑

�i �1. On D, they are mapped into

(�, �) = g(c+�, t +1)−g(c, t) = (1−
∑

�i, �2, . . . , �k, 1) which satisfy the dependencies constraints: �1, . . . , �k�0

and
∑

�i ��. Finally, g(n − 1, k(n − 1)) = (n − 1, k(n − 1)) confirms that, on C and D, the results are collected on

the same output site. �

Fact 7. k-LSOCA is closed under reverse.

Proof. Let L be a language recognized by a k-LSOCA A. We will define a k-LSOCA B which recognizes LR .

Initially, the k-LSOCA B achieves a preprocessing phase. Each symbol xi of the input wR = xn−1 . . . x0, fed on the

site (0, n−1− i), is carried according to the following sequence of moves: one step to the neighbor cell in the direction

of (1, 0, . . . , 0) and two steps on the same cell. In particular, xi goes through the sites {(s, 0, . . . , 0, n−1− i +3s −a) :

a = 0, 1, s�0}. Thus xi reaches the line {(b, 0, . . . , 0, n − 1 + b) : b�0} on the site (⌈i/2⌉, 0, . . . , 0, n − 1 + ⌈i/2⌉).

Further, as viewed in Proposition 1, the k-LSOCA B can characterize the region Y = {(c, t) :
∑

ci + n − 1 < t}.

In Y , the sites of A are mapped according to the transformation g : Z
k+1 → Z

k+1 defined by

g(c, t) =

(⌈

t −
∑

ci

2

⌉

, c2, . . . , ck,

⌈

t +
∑

ci

2

⌉

+ n − 1

)

.

Let us verify that the accepting (resp. non-accepting) computation of A on any input w = x0 . . . xn−1 are mapped into

an accepting (resp. non-accepting) computation of the k-RPOCA B on the input wR = xn−1 · · · x0. First, observe that

g(0, . . . , 0, i) = (⌈i/2⌉, 0, . . . , 0, n − 1 + ⌈i/2⌉), and xi is known on this site according to the preprocessing phase.

Second, note that g maps two sites into one site. That guarantees that, on B, the cells can cope the computational load

requirements. Third, in the working area ofA, the data movements are vectors (�, 1) where � ∈ {0, 1}k and
∑

�i �1. On

B, they are mapped into (�, �) = (�, �2, . . . , �k, �+
∑

�i) with � = ⌈(t +1−
∑

ci −
∑

�i)/2⌉−⌈(t −
∑

ci)/2⌉. They

satisfy the dependencies constraints: �1, . . . , �k�0 and
∑

�i ��. Finally,g(n−1, (k+2)(n−1)) = (n−1, (k+2)(n−1))

confirms that, on C and D, the results are collected on the same output site. �

150 V. Terrier / Theoretical Computer Science 369 (2006) 142–156

5.2. Closure under concatenation

The questions of the closure under concatenation of k-RSOCA and k-LSOCA are open. However, as proved in case

of dimension one in [11], the class of unary languages recognizes by k-RSOCA is closed under concatenation. On

other hand, we know that 1-RPOCA is not closed under concatenation [17]. Surprisingly, we will see that k-RPOCA

are closed under concatenation for the higher dimensions.

Fact 8. For any dimension k > 1, if L1 and L2 are recognized by k-RPOCA then X = {uv : u ∈ L1, v ∈ L2 and

|u|� |v|} is recognized by k-RPOCA.

Proof. Recall that, by definition, the sites {(c1, c2, . . . , ck, t) : t < c2 + · · · + ck} are in quiescent state, since they

are not affected by the input. Then a characteristic of k-RPOCA is that the computation on any word w = x0 . . . xn−1

contains the computation of all its subwords xi · · · xj , where 0� i�j < n. In particular, the acceptance of xi · · · xj

is determined on the site (j, j − i, . . . , j − i, k(j − i)). So the proof comes down to construct a k-RPOCA A which

characterizes the set of sites

I = {(j, j − i, . . . , j − i, k(j − i)) : xi · · · xh ∈ L1, xh+1 · · · xj ∈ L2 for some h < (i + j)/2}.

First, A simulates the both k-RPOCA which recognize L1 and L2. In this way, the sets of sites

E = {(b, b − a, . . . , b − a, k(b − a)) : xa · · · xb ∈ L1}

and

F = {(d, d − c, . . . , d − c, k(d − c)) : xc · · · xd ∈ L2}

are characterized. Now, from each site of E , a signal S is initialized; it runs by a sequence of elementary moves

(1, 0, . . . , 0, 1). So this family of signals S goes through the sites {(b + t, b − a, . . . , b − a, k(b − a) + t) : xa · · · xb ∈

L1 and t�0}. Parallelly, a family of signals T starts from the sites (z, 0, . . . , 0) with 0�z < n. Each signal T operates

first an elementary move (1, 0, . . . , 0, 1), then a sequence of moves (2, 1, . . . , 1, k + 1). So this family of signals T

characterizes the sites {(z + 1 + 2s, s, . . . , s, 1 + s(k + 1)) : 0�z < n, s�0}. Then the signals S and T cross each

other on the sites:

G = {(2b − a + 1, b − a, . . . , b − a, (k + 1)(b − a) + 1) : xa · · · xb ∈ L1}.

From each site of G, a signal U is initialized; it runs by a sequence of elementary moves (1, . . . , 1, k). So the family of

signals U goes through the sites {(2b−a+1+t, b−a+t, . . . , b−a+t, (k+1)(b−a)+1+kt) : xa · · · xb ∈ L1 and t�0}.

On the other hand, from each site of F (the set of accepting sites associated to L2), a signal V is initialized; it remains

all the time on the same cell. So this family of signals V goes through the sites {(d, d − c, . . . , d − c, k(d − c) + s) :

xc · · · xd ∈ L2 and s�0}. Then the signals U and V cross each other on the sites:

H = {(d, d − b − 1, . . . , d − b − 1, k(d − b − 1) + b − a + 1) :

xa · · · xb ∈ L1, xb+1 · · · xd ∈ L2 and b < (a + d)/2}.

Finally from each site of H, a signal starts and runs with elementary move (0, 1, . . . , 1, k − 1), it reaches the output

site (d, d − x, . . . , d − x, k(d − x)). From d − b − 1 + t = d − x and k(d − b − 1)+ b − a + 1 + (k − 1)t = k(d − x),

we get t = b − a + 1 and x = a. That means we know on the site (d, d − a, . . . , d − a, k(d − a)) whether

xa . . . xb ∈ L1, xb+1 . . . xd ∈ L2 for b < (a + d)/2. So we have all the required information to characterize the

expected set I = {(d, d − a, . . . , d − a, k(d − a)) : xa · · · xb ∈ L1, xb+1 · · · xd ∈ L2 for some b < (a + d)/2}. �

Corollary 2. For any dimension k > 1, k-RPOCA is closed under concatenation.

Proof. Let L1 and L2 be two languages recognized by k-RPOCA. According to Fact 8,

X = {uv : u ∈ L1, v ∈ L2 and |u|� |v|}

V. Terrier / Theoretical Computer Science 369 (2006) 142–156 151

is recognized by k-RPOCA. Moreover, as k-RPOCA is closed under reverse,

Y = {vu : v ∈ LR
2 , u ∈ LR

1 and |v|� |u|}

as well

YR = {uv : u ∈ L1, v ∈ L2 and |u|� |v|}

are recognized by k-RPOCA. Thus, X ∪ YR = L1L2 is a k-RPOCA language. �

The closure under Kleene star simply derives from the closure under concatenation.

Fact 9. For any dimension k > 1, k-RPOCA is closed under Kleene star.

Proof. According to Fact 8 and Corollary 2, we can characterize, by means of signals, from the sets of sites

E = {(b, b − a, . . . , b − a, k(b − a)) : xa · · · xb ∈ L1}

and

F = {(b, b − a, . . . , b − a, k(b − a)) : xa · · · xb ∈ L2}

the set of sites

I = {(c, c − a, . . . , c − a, k(c − a)) : xa · · · xb ∈ L1 and xb+1 · · · xc ∈ L2}.

Now define recursively the set F as the sites of E and I. Thus, the characterization of F allows to recognize the set

L2 = L1 + L1L2; i.e. L2 = L+
1 . �

Putting Corollary 2, Facts 9 and 5 together, we obtain the following corollary.

Corollary 3. For any positive integer k, the class of unary languages recognized by k-RSOCA is closed under

concatenation and Kleene star.

6. Relationship with alternating device

Relationships between CA and alternating devices are common. By instance, it has been shown that real-time one-

dimensional CA can be simulated by two-dimensional alternating finite automata [14]. It is also known that real-time

k-dimensional iterative arrays are equivalent through reverse to real-time one-way alternating k counter automata [18].

Here, we will be concerned with one-way multihead alternating finite automata. This simple alternating device was

introduced by King [15]; see also [16] for further investigations. Precisely, we will show that k-RSOCA are equivalent

through reverse to one-way alternating finite automata with k + 1 heads. This relationship stresses that k-RSOCA

define significant complexity classes.

6.1. Preliminaries

To begin, we have to recall the definition of one-way multihead alternating finite automata. A one-way alternating

finite automata with k heads (in short 1AFA(k)) is a sextuplet (�, SM, �M, sinit, UM, FM) where � is the input

alphabet, SM is the set of states, �M : SM × (� ∪ {$})k → P(SM × {0, 1}k) is the transition function, sinit ∈ SM
is the initial state, UM ⊂ SM is the set of universal states, SM\UM is the set of existential states and FM ⊂ SM
is the set of accepting states. The input w is delimited with the end-marker $ placed on its right. At initial time, M

starts the computation in the initial state sinit, its k heads reading the first symbol (1 = · · · = 	k = 0). At each

step, M evolves according to the transition function �, the current state s, the symbols a1, . . . , ak scanned by the k

heads. For any (s′, (d1, . . . , dk)) ∈ �(s, (a1, . . . , ak)), the state is updated to s′ and the k heads move of d1, . . . , dk .

152 V. Terrier / Theoretical Computer Science 369 (2006) 142–156

A configuration describes a computation step of M on the input w; it is an element of {0, . . . , n − 1}k × S which

codes the positions of the k heads and the current state. A configuration J is an immediate successor of a configuration

I = ((1, . . . , 	k), s), written I �J , if J = ((1 + d1, . . . , 	k + dk), s
′) and (s′, (d1, . . . , dk)) ∈ �(s, (a1, . . . , ak)).

A configuration is universal (resp. existential) if its state s is universal (resp. existential). A configuration is accepting

if its state s is accepting and the k heads read the end-marker (1 = · · · = 	k = n). The initial configuration is

((0, . . . , 0), sinit).

An accepting computation tree of M on the input w is a labeled tree such that:

1. each node is labeled by a configuration;

2. the root is labeled by the initial configuration;

3. if an internal node is labeled by an universal configuration I whose all successors are {J1, . . . ,Jr}, it has exactly

r children J1, . . . ,Jr ;

4. if an internal node is labeled by an existential configuration I, it has exactly one child J such that I �J ;

5. the leaves are labeled by accepting configurations.

An accepting computation subtree of M on the input w satisfies the same conditions as an accepting computation tree,

except that the root is labeled by any configuration.

A 1AFA M accepts a word w, if there is an accepting computation tree of M on w. The language accepted by M is

the set {w ∈ �∗ : M accepts w}.

For technical reasons, we will use the following fact.

Fact 10. Let L be any language on an alphabet � and $ be any symbol not in �. L is recognized by a k-RSOCA if and

only if {$}L is recognized by a k-RSOCA.

Proof. The only if part is trivial. From a k-RSOCA A which recognizes a language L, we can directly construct a

k-RSOCA B which recognizes {$}L. Indeed provided that the k-RSOCA B sends the input symbols from the cell 0 to

the cell 1, what can be computed on the site (c, t)A can be computed in the same way on the site (c + 1, t + k + 1)B.

Conversely, consider a k-RSOCA C which recognizes {$}L. To construct a k-RSOCA D recognizing L, it suffices

to simulate the missing first symbol $. For that, the sites bordering the working area will have extra work to achieve.

Formally, the state 〈c,
∑

ci + t〉D will consist in the following states of the initial k-SOCA C:

{

〈

c1 + �1, . . . , ck + �k,
∑

(ci + �i) + t + �
〉

C
:

�i = 0, 1 if ci = 1, �i = 1 if ci > 1, � = 0, 1 if t = 0, � = 1 if t > 0

}

.

That may be proved by recurrence on r =
∑

ci + t , but we do not give the details. So 〈n − 1, (k + 1)(n − 1)〉D consists

in 〈n, (k + 1)n〉C and D enters an accepting state on input w iff C enters an accepting state on input $w. �

6.2. k-RSOCA ⊆ 1AFA(k + 1)R

In this paragraph, we will present how to code the evolution of a k-RSOCA by a 1AFA(k + 1) employing one head

for each of the k dimensions and one head for the time.

We will use below the following notations. �
0 = (0, . . . , 0) denotes the vector whose all k + 1 components are null

and �
i = (�i1, . . . , �

i
k+1) denotes the vector whose all components are null except the ith one set to 1 (�ij = 1 if i = j ,

0 otherwise).

Proposition 3. Let L be a language on the alphabet � and A = (�, SA, �init
A , �A, FA, ♯) be a k-RSOCA which

recognizes {$}L. The reverse of L is accepted by the 1AFA(k + 1) M = (�, SM, �M, sinit, UM, FM) where UM =

Sk+1
A , SM = UM ∪ SA ∪ {sinit} ∪ {saccept}, FM = {saccept} and the transition function �M is defined by:

• �M(sinit, (a1, . . . , ak+1)) = {(s, �0) : s ∈ FA}.

• �M(s, ($, . . . , $)) =

{

{(saccept, �
0)} if �init

A ($, ♯) = s,

∅ else.

V. Terrier / Theoretical Computer Science 369 (2006) 142–156 153

• �M(s, ($, . . . , $, a)) = {(s′, �k+1) : �init
A (a, s′) = s}.

• For (a1, . . . , ak) �= ($, . . . , $), �M(s, (a1, . . . , ak+1)) = {((s1, . . . , sk+1), �
0) : �A(s1, . . . , sk+1) = s}.

• �M((s1, . . . , sk+1), (a1, . . . , ak+1)) = {(si, �
i) : 1� i�k + 1 and si �= ♯}.

To prove Proposition 3, we will need the following fact which precises the correspondence between the roots of

accepting computation subtrees of the 1AFA and the states of the SOCA.

Fact 11. Let w = x0 · · · xn−1 be any word on �. Consider the computation of A on the input $w and the computation

of M on the input wR . For s ∈ SA holds ((1, . . . , 	k+1), s) is the root of an accepting computation subtree of M if

and only if s = 〈n − 	1, . . . , n − 	k,
∑k+1

i=1 (n − 	i)〉A.

Proof. The proof is done by induction on the sum
∑k+1

i=1 	i . First, we prove the basis step when
∑

	i = (k + 1)n. In

this case, the positions of the k + 1 heads are n. And ((n, . . . , n), s) is the root of an accepting computation subtree if

and only if it has one successor labeled by the accepting configuration. Hence s = �init
A ($, ♯) = 〈0, 0〉A.

Now consider the inductive step. Let us assume the proposition be true when
∑

	i > r . And let us prove it for
∑

	i = r . We distinguish two cases according to the positions of the first k heads.

Case 1: 	1 = · · · = 	k = n. In this case, ((n, . . . , n, 	k+1), s) is the root of an accepting computation subtree

if and only if it has one successor labeled by ((n, . . . , n, 	k+1 + 1), s′) with �init
A (xn−	k+1

, s′) = s. By hypothesis,

s′ = 〈0, n − 	k+1 − 1〉A. It follows that s = �init
A (xn−	k+1

, 〈0, n − 	k+1 − 1〉A) = 〈0, n − 	k+1〉A.

Case 2: (1, . . . , 	k) �= (n, . . . , n). In this case, the configuration ((1, . . . , 	k+1), s) has one successor labeled

by ((1, . . . , 	k, 	k+1), (s1, . . . , sk+1)) with �A(s1, . . . , sk+1) = s. This universal configuration has the successors

((1, . . . , 	i + 1, . . . , 	k, 	k+1), si) for every i�k such that 	i < n and the successor ((1, . . . , 	k, 	k+1 + 1), sk+1) if

	k+1 < n. By hypothesis, for all i�k, si = (〈n − 	1, . . . , n − 	i − 1, . . . , n − 	k,
∑

(n − 	i) − 1〉A if 	i < n, si = ♯

otherwise, and sk+1 = 〈n − 	1, . . . , n − 	k,
∑

(n − 	i) − 1〉A) if 	k+1 < n, sk+1 = ♯ otherwise. �

From this fact, the proof of Proposition 3 follows immediately:

Proof of Proposition 3. $x0 · · · xn−1 is accepted by A if and only if on input $x0 · · · xn−1, A enters an accepting state

on site (n, (k + 1)n)A. According Fact 11, it is equivalent to the existence of an accepting computation subtree of M
on xn−1 · · · x0 with root ((0, . . . , 0), s) where s ∈ FA. That is equivalent to the existence of an accepting computation

subtree of M on xn−1 · · · x0 whose root ((0, . . . , 0), sinit) has one successor labeled by ((0, . . . , 0), s) with s ∈ FA.

That is equivalent to the fact that M accepts xn−1 · · · x0. �

6.3. 1AFA(k + 1) ⊆ k-RSOCAR

Now we will translate the computation of 1AFA(k + 1) in terms of k-RSOCA.

Proposition 4. Let L be a language which is accepted by a 1AFA(k + 1). Then there exists a k-RSOCA which

recognizes {$}LR .

Proof. Let w = x0 · · · xn−1 be a given word and M = (�, SM, �M, sinit, UM, FM) be any 1AFA(k + 1) which

accepts L. For integers 	1, . . . , 	k+1, with 0�	1, . . . , 	k+1�n, we denote by Q(1, . . . , 	k+1) the set

{s ∈ SM : ((1, . . . , 	k+1), s) is the root of an accepting computation subtree}.

In Fact 14, we will show that there exists a k-RSOCA A which, on input $xn−1 · · · x0, computes the set Q(n −

c1, . . . , n−ck,
∑

ci +n− t) on each site (c, t) when t�n+
∑

ci . In particular, A computes the set Q(0, . . . , 0) on the

output site (n, (k + 1)n). Furthermore, A accepts the input $xn−1 · · · x0 provided the state sinit belongs to Q(0, . . . , 0),

that means whether there exists an accepting computation tree on x0 . . . xn−1. �

It remains to establish Fact 14. First, we will need this technical fact.

154 V. Terrier / Theoretical Computer Science 369 (2006) 142–156

Fact 12. Let M be a 1AFA with k+1 heads. There exists a 1AFA M ′ with k+1 heads which accepts the same language

and such that the k + 1th head 	k+1 has the lowest position during all the computation: 	k+1 = mini=1,...,k+1 	i .

Proof. King has proved that multihead finite automata have the ability to detect coincidence of heads [15]. So we may

assume that when the head 	k+1 meets and will overtake another head, the roles of the two heads are swapped. �

Further, to prove Fact 14, we have to explicit how to construct the k-RSOCA A. The following fact will describe the

move of input symbols in A.

Fact 13. There exists a k-RSOCA such that on input xnxn−1 . . . x0:

1. The sites (c, t), with t� max ci +
∑

ci , can be distinguished.

2. Any cell c receives the k symbols xn−c1 , . . . , xn−ck
, at every time t with t� max ci +

∑

ci .

3. Any cell c receives the symbol xn−t+
∑

ci
, at every time t with

∑

ci � t�n +
∑

ci .

Proof. For each direction d = 1, . . . , k, each input symbol xp, with 0�p�n, will be spread into the working area

according to the following process. A signal Od is initialized on the site (0, 0); it moves in direction d at speed 1
2 ; so

Od visits the sites: {(c, 2cd) : cd �0 and (ci = 0 for i �= d)}. In parallel, each symbol xp, received by the input cell 0

at time n−p, is carried by the following signal Ad,p. This signal Ad,p starts on the site (0, n−p); it moves in direction

d at maximal speed and visits the sites: {(c, cd + n − p) : cd �0 and (ci = 0 for i �= d)}. Then the two signals Od

and Ad,p intersect on the site Pd,p = (c, 2(n − p)) where cd = n − p and ci = 0 for i �= d. From this site Pd,p, the

symbol xp is spread in all directions except the direction d, at maximal speed. So the symbol xp goes through the sites:

Wd,p = {(c, cd +
∑

ci) : cd = n − p and ci �0}. Finally, from each site of Wd,p, xp moves according to the time

axis. So the symbol xp goes through the sites: Vd,p = {(c, cd +
∑

ci + s) : cd = n − p, ci �0 and s�0}.

Now observe that a cell c receives at time t , a signal of type Vd provided t�
∑

ci + cd . Precisely, for any time

t� max ci +
∑

ci , the cell c receives exactly the k input symbols xn−c1 , . . . , xn−ck
carried by signals of type V

(respectively by V1,n−c1 , . . . , Vk,n−ck
). On the other hand, for any time t < max ci +

∑

ci , c receives strictly less than

k signals of type V . Thus the two first points are satisfied.

For the last point, each symbol xp, received by the input cell 0 at time n − p, is carried by the following signal Up.

Up starts on the site (0, n − p) and spreads at maximal speed in all the directions. So the symbol xp goes through the

sites: Up = {(c, (n − p) +
∑

ci) : ci �0}. Now observe that the cell c receives at time t a signal of type U provided

t = n − p +
∑

ci for some p = 0, . . . , n. That means the cell c receives at time t the input symbol xn−t+
∑

ci
when t

is such that
∑

ci � t�n +
∑

ci . �

Finally, let us complete the construction of the simulating k-RSOCA.

Fact 14. Let M be a given 1AFA(k + 1) with input x0 · · · xn−1. There exists a k-RSOCA such that on input

$xn−1 · · · x0, the site (c, t) computes Q(n − c1, . . . , n − ck,
∑

ci + n − t) when t�n +
∑

ci .

Proof. According to Fact 12, we may suppose that the last head 	k+1 has always the last position during all the

computation of M. Thus if 	k+1 > mini=1,...,k 	i , we have Q(1, . . . , 	k+1) = ∅. In other part, each site (c, t) with

t < max ci +
∑

ci must compute Q(n − c1, . . . , n − ck,
∑

ci + n − t) which is the empty set as
∑

ci + n − t >

n − max ci = min(n − ci). Note that such sites can compute the empty set since they can be characterized according

to Fact 13.

Now it remains to verify the proposition for all sites (c, t) with t�n +
∑

ci and t� max ci +
∑

ci . It is done by

recurrence on t . At time t = 0, the only involved cell is the input cell 0. The computed value is FM which is equal to

Q(n, . . . , n). Next we suppose the proposition true up to t and we will prove it for t +1. The site (c, t) knows the values

Q(n− c1 + 1, . . . , n− ck,
∑

ci +n− t), . . . , Q(n− c1, . . . , n− ck + 1,
∑

ci +n− t), Q(n− c1, . . . , n− ck,
∑

ci +

n − t + 1) computed, respectively, on the sites (c1 − 1, . . . , ck, t − 1), . . . , (c1, . . . , ck − 1, t − 1), (c1, . . . , ck, t − 1).

Moreover, according to Fact 13, the site receives the input symbols xn−c1 , . . . , xn−ck
, xn−t+

∑

ci
. So it has all the

required information to compute Q(n − c1, . . . , n − ck,
∑

ci + n − t). �

Corollary 4. For any positive integer k, 1AFA(k + 1) and k-RSOCAR recognize the same class of languages.

V. Terrier / Theoretical Computer Science 369 (2006) 142–156 155

Unfortunately, for 1AFA, the question whether adding heads increases the recognition power is unanswered. And

closure under reverse of 1AFA(k + 1) is also unknown. Nevertheless, this correspondence enlightens the result of [2]

which sets that linear time alternating Turing machine can simulate linear time multidimensional POCA.

Concerning context-free languages (CFL), it has been proved in [1], that CFL ⊂ 2-LSOCA. Actually, this inclusion

can be refined.

Corollary 5. CFL ⊂ 2-RSOCA.

Proof. In [15], King has exhibited relationships between one-way multihead non-deterministic pushdown automata and

one-way multihead alternating finite automata: 1NPDA(k) ⊂ 1AFA(3k). In particular, CFL ⊂ 1AFA(3). Furthermore,

CFL is closed under reverse. �

7. Conclusion

In this paper, we have investigated an other hierarchy between the class of languages recognized in minimal time

and the class of languages recognized in unrestricted time by one-dimensional space bounded CA. This hierarchy was

defined by increasing the dimensionality of the array. We have concentrated on the low complexity classes of two

representative types: the k-SOCA and the k-POCA. Fig. 4 summarizes the inclusion relationships inside
⋃

k-RSOCA.

They have been shown in the previous sections or are inferred from the closure property under reverse of k-RPOCA

and k-LSOCA.

k-LSOCA

k-RSOCAR = 1AFA (k+1)

(k+1)-RPOCA

k-RPOCA

k-LPOCA = k-RSOCA

(k-1)-LSOCA

Fig. 4. Inside
⋃

k k-RSOCA.

∪1 − PCA(nk)
k k

∪k − RSOCA

1 − RPCA = 1 − RSOCA

1 − CA

1 − SOCA

P

Fig. 5. Complexity classes around
⋃

k k-RSOCA.

156 V. Terrier / Theoretical Computer Science 369 (2006) 142–156

And Fig. 5 shows the position of the class
⋃

k-RSOCA relatively to other complexity classes. 1-CA refers to the

class defined by unrestricted time one-dimensional CA which is also the class defined by linear space bounded Turing

machine. 1-SOCA refers to the class defined by unrestricted time one-way one-dimensional CA. And P refers to the

class defined by polynomial time bounded Turing machine. Which of these inclusions are strict, is unknown. We just

know that, at least one of these two inclusions
⋃

1-PCA(nk) ⊆ P and
⋃

1-PCA(nk) ⊆ 1-CA is strict, as P �= 1-CA, and

also, at least one of these two inclusions
⋃

k-RSOCA ⊆ 1-SOCA and
⋃

k-RSOCA ⊆ P is strict, as 1-SOCA �= P.

Besides, the equality between
⋃

1-PCA(nk) and
⋃

k-RSOCA seems unlikely. Indeed, the known simulation of a

2-RSOCA by a 1-CA requires exponential time and the known simulation of a 1-PCA(n2) on a k-SOCA requires more

than linear time. That gives us some supplementary beliefs that, for one-dimensional space bounded CA, minimal time

is less powerful than unrestricted time.

References

[1] J.H. Chang, O.H. Ibarra, M.A. Palis, Parallel parsing on a one-way array of finite state machines, IEEE Trans. Comput. C-36 (1) (1987) 64–75.

[2] J.H. Chang, O.H. Ibarra, M.A. Palis, Efficient simulations of simple models of parallel computation by time-bounded ATMs and space-bounded

TMs, Theoret. Comput. Sci. 68 (1) (1989) 19–36.

[3] J.H. Chang, O.H. Ibarra, A. Vergis, On the power of one-way communication, J. ACM 35 (3) (1988) 697–726.

[4] C. Choffrut, K. Culik II, On real-time cellular automata and trellis automata, Acta Inform. 21 (4) (1984) 393–407.

[5] S.N. Cole, Real-time computation by n-dimensional iterative arrays of finite-state machine, IEEE Trans. Comput. 18 (1969) 349–365.

[6] K. Culik II, Variations of the firing squad problem and applications, Inform. Process. Lett. 30 (3) (1989) 153–157.

[7] M. Delorme, J. Mazoyer, Cellular automata as languages recognizers, in: M. Delorme, J. Mazoyer (Eds.), Cellular Automata: a parallel model.

Mathematics and its Applications, Kluwer, Dordrecht, 1999.

[8] P.C. Fischer, Generation of primes by one-dimensional real-time iterative array, J. ACM 12 (1965) 388–394.

[9] L.M. Goldschlager, A universal interconnection pattern for parallel computers, J. ACM 29 (4) (1982) 1073–1086.

[10] O.H. Ibarra, T. Jiang, On one-way cellular arrays, SIAM J. Comput. 16 (6) (1987) 1135–1154.

[11] O.H. Ibarra, T. Jiang, Relating the power of cellular arrays to their closure properties, Theoret. Comput. Sci. 57 (2–3) (1988) 225–238.

[12] O.H. Ibarra, S.M. Kim, S. Moran, Sequential machine characterizations of trellis and cellular automata and applications, SIAM J. Comput.

14 (2) (1985) 426–447.

[13] O.H. Ibarra, M.A. Palis, Two-dimensional iterative arrays: characterizations and applications, Theoret. Comput. Sci. 57 (1) (1988) 47–86.

[14] A. Ito, K. Inoue, I. Takanami, A relationship between one-dimensional bounded cellular acceptors and two-dimensional alternating finite

automata, Informatik-Skripten 21 (1988) 60–76.

[15] K.N. King, Alternating multihead finite automata, Theoret. Comput. Sci. 61 (2–3) (1988) 149–174.

[16] H. Petersen, Alternation in simple devices, Lecture Notes in Computer Science, Vol. 944, Springer, Berlin, 1995, pp. 315–323.

[17] V. Terrier, On real time one-way cellular array, Theoret. Comput. Sci. 141 (1–2) (1995) 331–335.

[18] V. Terrier, Characterization of real time iterative array by alternating device, Theoret. Comput. Sci. 290 (3) (2003) 2075–2084.

Theoretical Computer Science 411 (2010) 266–276

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Simulation of one-way cellular automata by boolean circuits

Véronique Terrier
GREYC, Campus II, Université de Caen, 14032 Caen, France

a r t i c l e i n f o

Article history:

Received 8 October 2007

Received in revised form 28 September

2009

Accepted 10 October 2009

Communicated by B. Durand

Keywords:

Parallel computation

One-way cellular automata

Boolean circuit

a b s t r a c t

We present a relationship between two major models of parallel computation: the one-
way cellular automata and the boolean circuits. The starting point is the boolean circuit of
small depth designed by Ladner and Fischer to simulate any rational transducer.We extend
this construction to simulate one-way cellular automata by boolean circuits.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Themodels ofmassively parallel computation aremany and various. Among them, boolean circuits and cellular automata
are famous. Simple links between these two models exist. Indeed the graph of communication dependencies of a cellular
automaton is a directed acyclic graph. So a cellular automaton can be viewed as a particular type of boolean circuit.
Conversely, a classic way to construct a universal cellular automaton (in dimension 2) consists in the simulation of a
boolean circuit [7]. Paradoxically, although ‘‘natural’’ relationships exist between these two massively parallel models, the
comparison of their computational abilities is not well known. Here we will investigate this subject.

In this paper, we will focus on one-dimensional cellular automata with the simplest communication pattern. On the line
of cells, the information flow is either two-way or one-way according to the cells are connected to both its left and right
neighbors or simply to its left neighbor.We differentiate two-way cellular automata (CA) when the information flow is two-
way from one-way cellular automata (OCA) when the informationmoves in only one direction. Even if the information flow
is restricted, the recognition ability of OCA has been stressed in several papers [5,3,4,2]. By instance, OCA can accept PSpace-
complete languages, it can simulate any alternating Turingmachine bounded in linear time [5,3]. But the difference between
one-way and two-way communication is not well understood.We do not knowwhether the inclusion between OCA and CA
is strict or not. And even worse, we do not know whether OCA restricted to linear time is less powerful than unrestricted
time CA (both bounded in linear space). However, OCA have characteristics that are not shared by CA. In particular, on an
OCA, the states sequence of the cell c only depends on the initial state of the cell c and on the states sequence of its left cell
c − 1. The computation of this sequence is of a sequential nature. Precisely, the cell c acts as a rational transducer operating
on the states sequence of its left cell c − 1.

Here, we will exploit this ‘‘sequential’’ feature to simulate OCA by boolean circuits. The key starting result due to Ladner
and Fischer is the simulation of any rational transducer by boolean circuits of small depth [6]. The circuit built as a succession
of c such circuits, simulates an OCA working on c cells. The main task will be to evaluate the depth of this circuit.

This paper is organized as follows. Section 2 introduces basic notions. Section 3 recalls the circuit designed by Ladner and
Fischer to simulate any rational transducer. Section 4 shows how to extend this construction to simulate any OCA and gives
an empirical estimation of the depth complexity of the circuit. Section 5 justifies this estimation.

E-mail address: veronique.terrier@info.unicaen.fr.

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.tcs.2009.10.005

V. Terrier / Theoretical Computer Science 411 (2010) 266–276 267

2. Definitions

A boolean circuit with n input bits {x1, . . . , xn} is a directed acyclic graph with labeled nodes. Different types of nodes are
distinguished. The nodes whose input degree is zero are either called input gates if they are labeled by an input value xi or
called constant gates if they are labeled by the constants 0 or 1. There are exactly n input gates, each with a different label xi.
The nodes whose input degree is not zero are referred as the computation gates, they are labeled by a boolean function (And,
Or, Not). In addition, one gate is designated as the output gate. The size of a circuit is the number of its nodes. The depth of a
gate is the length of a longest path connecting this gate to an input gate. The depth of a circuit is the depth of its output gate.

Asmodel of computation, we have to consider family of circuits. A circuit family is a sequence C = {C0, C1, . . .} of boolean
circuits where Ci is a circuit with i input variables. A circuit family decides a language L, if for every input w: w ∈ L if and
only if C|w| on input w outputs 1. The depth of the circuit family is a function d from N into N such that d(n) is the depth of
the circuit Cn. And its size is a function z from N into N such that z(n) is the size of the circuit Cn.
A one-way cellular automaton (OCA) is a one-dimensional array of identical finite automata (cells) numbered 1, 2, . . . from
left to right, and working synchronously at discrete time steps. Each cell is only connected to its left neighbor and takes on
a value from a finite set S, the set of states. At each step, the state of each cell is updated according to a transition function δ
involving its own state and the state of its left neighbor. Formally denoting 〈c, t〉 the state of the cell c at time t , we have
〈c, t〉 = δ(〈c − 1, t − 1〉, 〈c, t − 1〉). Because the first cell 1 has no left neighbor, we use a special state ♯ not in S as a border
state: 〈1, t〉 = δ(♯, 〈1, t − 1〉).

As language recognizer, we have to specify two subsets of S: the input alphabet Σ and the set of accepting states Saccept.
The input mode is parallel. At initial time 1, the ith bit of the input word w = x1 · · · xn is fed to the cell i: 〈i, 1〉 = xi. The
output cell where the result of the computation is displayed, is the cell numbered by |w| the size of the input. That is the
first cell which can get all the information of the input w. An OCA accepts a word w, if on input w the output cell enters an
accepting state at some time t . Let f be a function from N into N. An OCA accepts a language L in time f , if it accepts exactly
the words w ∈ L of length |w| at time t ≤ f (|w|).

Let us emphasize how each cell c of an OCA (S, δ) behaves as a finite transducer. This finite transducer is specified in this
way: the set of states, the input alphabet as well as the output alphabet is S, the transition function as well as the output
function is δ and the initial state is 〈c, 1〉 the state of the cell c at initial time 1. On input word 〈c − 1, 1〉 · · · 〈c − 1, t〉,
the cell c starting in state 〈c, 1〉, successively (enters in states and) outputs symbols 〈c, 2〉 · · · 〈c, t + 1〉. Besides, we can
interpret the partial runs of the cell using the maps δu defined as follows. For any u = u1 · · · un ∈ S∗, the map δu : S → S is
obtained by applying the transition function δ on the successive symbols of u: δu(s) = δ(un, δ(un−1, . . . , δ(u2, δ(u1, s)) · · ·)).
Observe that the set of these maps F = {δu : u ∈ S∗} is finite, as S is finite. And since δv ◦ δu = δuv , the set F with
composition forms a finite monoid. Now, the behavior of the OCA (S, δ) can be expressed in terms of these maps δu. See
Fig. 1. Let u = 〈c − 1, t1〉〈c − 1, t1 + 1〉 · · · 〈c − 1, t2 − 1〉 be the states sequence of the cell c − 1 at consecutive steps
t1, t1 + 1, . . . , t2 − 1: we have 〈c, t2〉 = δu(〈c, t1〉).

Fig. 1. The map δu .

As far as we know, only one work has investigated relationships between CA and boolean circuits [1]. Mainly, it is shown
that a CA working in time t , unbounded in space, can be simulated by a circuit family of size t2 and depth t . Moreover the
circuit family is uniform: there is a logarithmic space Turing machine which generates a description of the nth circuit on
input 1n. Let us just recall the idea in the case of OCA although it is the same principle for CA with two-way communication.

Claim 1. An OCA which works in time t can be simulated by a circuit family of depth O(t).

Proof. The sites (c, t) which represent the cells c at times t and their dependencies (i.e. the edges ((c − 1, t − 1), (c, t))
and ((c, t − 1), (c, t))) constitute the communication graph of the OCA. This graph is a directed acyclic graph. So it is easy to
transform the graph into a circuit as follows. Each transition 〈c, t〉 = δ(〈c −1, t −1〉, 〈c, t −1〉) performed on the site (c, t)
can be carried out with a constant size boolean circuit where the inputs are the binary encodings of the states 〈c − 1, t − 1〉,
〈c, t − 1〉 and the output is the binary encoding of the state 〈c, t〉. Moreover, as the communication graph is regular, the
circuit family is uniform. �

268 V. Terrier / Theoretical Computer Science 411 (2010) 266–276

Fig. 2. The Ladner–Fischer circuit.

3. The Ladner–Fischer circuit

In [6], Ladner and Fischer have designed a small boolean circuit to simulate any finite state transducer. This circuit will
be the key component to realize the simulation of OCA by boolean circuits. Precisely, this circuit can simulate the work of
any one cell of an OCA.

Let us have a look at this Ladner–Fischer circuit. See Fig. 2. In the previous section, we have stressed that the behavior
of an OCA (S, δ) can be expressed in terms of maps δu for u ∈ S∗. Precisely the cell c up to time t goes through the
states 〈c, w〉 = δ〈c−1,1〉···〈c−1,w−1〉(〈c, 1〉) for all steps w = 2, . . . t . Actually, to simulate the work of the cell c up to
time t , the Ladner–Fischer circuit will compute the maps δu for all prefixes u of 〈c − 1, 1〉 · · · 〈c − 1, t − 1〉. For that
purpose, using a ‘‘divide and conquer’’ strategy, the circuit computes some intermediate values δv where v are subwords of
〈c−1, 1〉 · · · 〈c−1, t−1〉. In the Ladner–Fischer circuit, each computed value δv , where v = 〈c−1, i〉 · · · 〈c−1, j〉, is carried
out at depth log(j + 1 − i) and width j. Notably, there exists at most one value computed at a given depth d and a given
width w. Furthermore, if we mark every position (d, w) either by ‘1’ or by ‘0’ depending on whether the circuit computes
or not a value at depth d and width w, then the circuit yields the geometry of a binary counter.

Concretely, the depth and the size of the boolean circuit are of the same order than the depth and the size of the
dependency graph. Indeed, the nodes of the dependency graph computes either from a binary representation of a state
s ∈ S a binary representation of δs, either from two binary representations of maps δu and δv a binary representation of
δv ◦ δu or from the binary representations of a map δu and a state s a binary representation of δu(s). As the set of states S and
the set of maps F = {δu : u ∈ S∗} are finite, these types of nodes can be carried out by constant size boolean circuits over
{And,Or,Not}. Hence for any OCA, the calculation of n steps of any cell can be done by a boolean circuit of depth O(log(n)).

As immediate consequence of the result of Ladner and Fischer, we get:

Claim 2. An OCA with time complexity t(n) can be simulated by a circuit family of depth O(n log(t(n))).

Proof. An OCAwhich works in time t(n) acts as a succession of n transducers operating onwords of length at most t(n)+n.
Thus n Ladner–Fischer circuits can be linked up to simulate theOCA. The depth of the resulting circuit is inO(n log(t(n))). �

4. The layered circuit

Now let us improve the above simulation in describing a circuit with smaller depth. Fig. 3 depicts such a circuit. It
simulates the computations of the three first OCA cells on a given input. Their initial states 〈1, 1〉, 〈2, 1〉, 〈3, 1〉 specified
by this input, are available initially at depth 0; and, for convenience, they are set respectively at widths 0, −1, −2. This
circuit can be broken down into three layers, each one simulating one cell.

In respect to the leftmost cell 1, recall that its left neighbor state is considered to be constantly the border state
♯ and so is available initially. Depending on these border states and the initial state 〈1, 1〉, the work of the cell 1
is simulated by the means of the Ladner–Fischer circuit. Concretely, we have a first layer which realizes a binary
counter: at any given width w, the 1s and 0s which mark the existence or the absence of nodes for every depth,
depict the binary writing of w. In addition, the most significant one at every width w, located on the right border,
indexes the output 〈1, w + 1〉.
The computation of the second cell depends on its initial state 〈2, 1〉 and the states sequence (〈1, w〉)w , i.e., the
outputs of the first layer. Note thatwe do not need towait the last output of the first layer to begin the computation
of the states sequence of the second cell. So the ‘‘divide and conquer’’ strategy is adapted in order to exploit the

V. Terrier / Theoretical Computer Science 411 (2010) 266–276 269

Fig. 3. The layered circuit.

outputs of the first layer as soon as available. Now, if we mark again every position (d, w) by a ’1’ or by a ’0’
depending on whether there exits a node at depth d and width w or not, wemay again consider the values writing
in binary on the successivewidths. It isworth observing that these successive values correspond to a binary counter
altered by the first layer. The counter is normally incremented by one except when the length of the first layer is
increased; in this case, the counter passes the half of the current value plus one. Moreover the nodes marked by
the rightmost ones compute the OCA states: the right border outputs at width w the state 〈2, w + 2〉. Notice also
that the depth grows exactly when the values are powers of 2.

The third layer shares the same design. More generally, the ‘‘divide and conquer’’ strategy makes that each layer
behaves exactly like a binary counter altered when the previous one enters a power of 2.

Formally, we denote by f (c, t) the value writing in binary on the counter (i.e., the layer) c at width t . We assume that the
input node encoding the input value 〈c, 1〉 which is available at depth 0, is set at width 1 − c (i.e., negative widths are
admitted). In this way, f (c, t) can be expressed by recurrence as follows.

f (0, t) = 0 for t ≥ 1

f (c, 1 − c) = 1 for c ≥ 1

f (c, t) =

{

1 + f (c, t − 1) if f (c − 1, t) is not a power of 2
1 + ⌊f (c, t − 1)/2⌋ if f (c − 1, t) is a power of 2

for c ≥ 1, t > 1 − c.

The detailed circuit construction is rather technical and will be given in Appendix. In what follows, we just have to
understand some characteristics of the circuit geometry. First, there exists at most one node at a given depth and a
given width. Second, at a given width t , the word formed from the concatenation of the binary writings of the values
f (1, t), f (2, t), . . ., with the significant digits on the right side, depicts the existence or the absence of nodes: the existence
of a node at depth dmatches the occurrence of a one at the position d in theword. More specifically, the rightmost (andmost
significant) one in the binary writings of the counter value f (c, t) matches the node which outputs the OCA cell 〈c, t + c〉.
Notably, any circuit which simulates an OCA processing an input of size n in time t(n), has its output node located on the
right border of the counter n at width t(n) − n. So in order to evaluate the depth of the circuit, the task will be to determine
the positions (i.e., the depths) taken by the rightmost one of the counters. As the circuit nodes are depicted by the successive
words composed, for the successive widths t , of the values f (1, t), . . . , f (c, t), . . ., the rightmost one of any counter c has
the following feature. Its position at a given width t remains the same as its position at the previous width except when
f (c, t) is a power of 2; in this case, its position moves one to the right.

270 V. Terrier / Theoretical Computer Science 411 (2010) 266–276

Fig. 4. A global point of view.

4.1. An empirical estimation of the depth of the circuit

First we present an empirical estimation of the depth from a global point of view. Fig. 4 outlines the circuit with a
large number of counters. Only the rightmost nodes of the counters are marked. For each counter c , these nodes draw a
‘‘continuous’’ line which bounds the counter. We refer to this line as Bc . Moreover, we observe areas demarcated by straight

lines Di of equation y = 2i

i+2
x. Except the noise around the lines Di, the line Bc moves regularly: between Di and Di+1, it

makes one move toward the depth while making 2i moves toward the width. So empirically, the line Bc passes through the
positions {(i + 2)c, 2ic) : i ∈ N}. In particular, as the output node is located on the counter n at width t(n) − n, this node
is on the line Bn at width 2in = t(n) − n and depth (i + 2)n = (log(t(n)/n − 1) + 2) n. Thus at a rough guess, the depth of

the circuit family which simulates an OCA working in time t(n) is in O(n(1 + log t(n)

n
)).

5. An upper bound of the depth of the circuit

Now we have to come back at the local point of view in order to justify the above estimation. In order to get an upper
bound of the depth of the circuit, we have to specify the positions of the right borders of the counters c. Note that (the right
border of) the counter c makes one move to the right every width i that f (c, i) is a power of 2. In other words, the depth of
the counter c is increased by 1 every width i that f (c, i) is a power of 2:

depth(c, t) = |{i : i ≤ t and f (c, i) is a power of 2}| .

But we have no explicit formula for f (c, i) and then no exact expression for depth(c, t). However we observe that the key
values of the counters are the powers of 2. Indeed, not only the depth of the counter c is increased by 1 every width i that
f (c, i) is a power of 2, but also a counter is altered whenever the previous one enters a power of 2.

In practice to evaluate depth(c, t), we will estimate the number of powers of 2 that the counter c enters below width t .
To illustrate how these powers on the successive counters are interlinked, we will make use of diagrams with counters on
the horizontal axis and width on the vertical axis which show at coordinates (c, t) whether f (c, t) is a power of 2 or not
(in Fig. 5, the black and grey squares depict the powers of 2). We will focus more specifically on the first occurrence of each
distinct power of 2 on every counter (the black squares in Fig. 5).

In what follows, we will first observe that the sequence of powers of 2 on any counter c is increasing and that the width
between two consecutive occurrences depends on their exponent. Then in order to estimate the number of powers of 2 with
the same exponent, we will see how these numbers on two successive counters are correlated.

5.1. Local relationships of powers of 2

The following proposition emphasizes some properties relating two consecutive occurrences of powers of 2 on a counter.

V. Terrier / Theoretical Computer Science 411 (2010) 266–276 271

Fig. 5. The powers of 2.

Proposition 1. On the counter c ≥ 1, we consider two consecutive powers of 2: let widths r, s and exponents x, y be such that
r < s, f (c, r) = 2x, f (c, s) = 2y and f (c, t) is not a power of 2 for all t ∈]r, s[. We also consider, when c > 1, the power of
2 which occurs on the counter c − 1, just before width s: let width u and exponent z be such that u ≤ s, f (c − 1, u) = 2z and
f (c − 1, t) is not a power of 2 for all t ∈]u, s[.
We have the following properties:

(P1) On the counter c, the sequence of powers of 2 is increasing: y is either x or x + 1.
(P2) Between two consecutive powers of 2 on the counter c, there is zero or one power of 2 on the counter c − 1. And the distance

between two consecutive powers of 2 is bounded:
– If y = x + 1 then s − r = 2x and f (c − 1, t) is not a power of 2 for all t ∈]r, s[.
– If y = x then 2x−1 < s − r ≤ 2x and there exists a unique t ∈]r, s] such that f (c − 1, t) is a power of 2.

(P3) The current exponent on the counter c − 1 is greater than or equal to the current exponent on the counter c: when c > 1, we
have z ≥ y.

Fig. 6. Properties relating consecutive powers of 2.

Proof. See Fig. 6. The demonstration is done by recurrence on the counters c . It is true for the counter c = 1. Indeed
f (0, t) = 0 and f (1, t) = t . So for each x, there is exactly one occurrence of 2x at width 2x and properties (P1) and (P2) are
simply verified.
For the recurrence step, we distinguish two cases depending on whether there exists or not one power of 2 on the counter
c − 1 between the two consecutive occurrences on the counter c .
Case 1. u ≤ r < s (no occurrence).
In this case, f (c, s) = f (c, r)+s−r . So s−r = 2x, y = x+1 and properties (P1) and (P2) are satisfied. Moreover, consider on
the counter c − 1 the next width v where a power of 2 occurs after width u. We have u ≤ r < s < v. So v − u > s− r = 2x.
Hence, due to the recurrence hypothesis, property (P2) ensures that z ≥ x + 1. Thus property (P3) is satisfied.
Case 2. r < u ≤ s (at least one occurrence).
Letw and z be integers such that f (c −1, w) = 2z is the first power of 2 on the counter c −1 after width r (r < w ≤ u ≤ s).
First remark that w − r ≤ 2x. Otherwise the counter c enters a power of 2 before width s. Second observe that the exponent
z is greater or equal than the current exponent on the counter c: z ≥ x. Indeed, by the use of induction over the width, we
know that the power of 2 which occurs on the counter c − 1 just before width r , has exponent at least x. Furthermore, by

272 V. Terrier / Theoretical Computer Science 411 (2010) 266–276

Fig. 7. Definitions of tci , nb
c
i , α

c
i and βc

i .

hypothesis of recurrence, the sequence of powers of 2 on c − 1 is increasing. So z ≥ x. Also using hypothesis of recurrence,
we get that the next power of 2 on counter c−1 following f (c−1, w) = 2z occurs at widthw′ ≥ w+2z−1 ≥ w+2x−1. Now
note that the counter c is not altered by the counter c−1 until widthw. So f (c, w−1) = f (c, r)+w−1−r = 2x+w−1−r
and f (c, w) = 2x−1 + ⌊(w − 1 − r)/2⌋ + 1. Moreover, as the next power of 2 on the counter c − 1 does not occur
before width w + 2x−1 which is strictly greater than w + 2x−1 − 1 − ⌊(w − 1 − r)/2⌋, we have f (c, s) = 2x for
s = w+2x−1−1−⌊(w−1−r)/2⌋. It follows that s−r = w+2x−1−1−⌊(w−1−r)/2⌋−r = 2x−1+⌈(w−1−r)/2⌉ ≤ 2x.
To sum up y = x ≤ z and s − r ≤ 2x. Hence the three properties are satisfied. �

5.2. At medium level

Now we will pay attention on the successive powers of 2 with the same exponent.

Definition 1. See Fig. 7. For any counters c ≥ 1 and exponent i ≥ 0, we denote by

• tci the least integer t such that f (c, t) = 2i;

• nbci the number of integers t such that f (c, t) = 2i;

• αc
i the number of integers t such that f (c, t) = 2i and t < tc+1

i ;

• βc
i the number of integers t such that f (c, t) = 2i and t ≥ tc+1

i .

We introduce also:

• k(c, t) the current exponent of the counter c at width t , i.e., the exponent i such that tci ≤ t < tci+1.

According to these notations, we have: depth(c, tck − 1) =
∣

∣{t : f (c, t) is a power of 2 and t < tck }
∣

∣ =
∑k−1

i=0 nbc
i . More

generally, depth(c, t) ≤
∑k(c,t)

i=0 nbc
i . So, the strategy to get an asymptotic upper bound of depth(c, t) is twofold. We present

in Proposition 2, an asymptotic upper bound of the number of powers of 2 with exponent at most k:
∑k

i=0 nb
c
i ∈ O(ck); and

in Proposition 3, an upper bound of the current exponent of the counter c at width t: k(c, t) < 1 + log(t/c). That would
imply that depth(c, t) is in O(c(1 + log(t/c))).

5.3. An upper bound of the number of powers of 2 with exponent at most k

In order to estimate the value of
∑k

i=0 nb
c
i , we will take a closer look on the correlations between the powers of 2 on two

successive counters and establish the following Facts 1 and 2.

Fact 1. nbc
i = 1 + βc−1

i + αc−1
i+1 .

Proof. See Fig. 8. By definition, nbc
i is the number of times the counter c enters the value 2i. According to property (P1)

of Proposition 1, the sequence of powers of 2 is increasing. So all of these values 2i occur atwidths in the interval [tci , t
c
i+1−1].

Furthermore, property (P2) of Proposition 1 ensures, on the one hand, that between two consecutive occurrences of 2i there
is exactly one power of 2 on the counter c − 1 and, on the other hand, that between the last occurrence of 2i and the first
occurrence of 2i+1 there is zero power of 2 on the counter c − 1. It means that in the interval [tci , t

c
i+1 − 1] the counter c − 1

enters a power of 2 exactly nbc
i − 1 times. Thus by definitions of αc

i and βc
i , we get nbc

i − 1 = βc−1
i + αc−1

i+1 . �

Fact 2. αc
k ≤ k

Proof. See Fig. 9. By definition,αc
k is the number of times that the counter c has value 2k beforewidth tc+1

k . Let s1, . . . , sa (with

for short a = αc
k) the respectivewidths of these occurrences. Considering also the last a+1occurrences of 2k−1 on the counter

c + 1, we denote by r1, . . . , ra+1 their respective widths. Then r1 < s1 ≤ r2 < s2 ≤ · · · < sa ≤ ra+1, f (c + 1, ri) = 2k−1,
f (c, si) = 2k and si − ri ≤ 2k−1. Now consider for i = 1, . . . , a, the integers vi defined by si − ri = 2k−1 + 1 − vi. Observe
that 1 ≤ vi ≤ 2k−1 whatever i = 1, . . . , a. Then remark that, in the interval [r1 + 1, r2], the only power of 2 on the counter

V. Terrier / Theoretical Computer Science 411 (2010) 266–276 273

Fig. 8. nbc
i = 1 + βc−1

i + αc−1
i+1 .

Fig. 9. An upper bound of αc
k .

c is at width s1. Thus f (c + 1, s1 − 1) = f (c + 1, r1) + s1 − r1 − 1 = 2k−1 + s1 − r1 − 1 = 2k − v1. Moreover f (c + 1, s1) =
2k−1−⌈v1/2⌉+1 and r2−s1 = f (c+1, r2)−f (c+1, s1) = ⌈v1/2⌉−1. Yet s2−s1 = s2−r2+r2−s1 = 2k−1−v2+1+⌈v1/2⌉−1.
Furthermore, s2 − s1 > 2k−1 according to property (P2) of Proposition 1. It follows that v2 < ⌈v1/2⌉ ≤ 2k−2. So inductively
on i > 1, we can show that vi < 2k−i+1. To conclude, recall that vi ≥ 1 whatever i = 1, . . . , αc

k . Thus αc
k ≤ k. �

Let us notice that the bound αc
k ≤ k is not tight, experimentally αc

k is either 1 or 2. Fortunately, this imprecision has no
impact on the asymptotic upper bound of the number of powers of 2 given in the following proposition.

Proposition 2.
∑k

i=0 nb
c
i ∈ O(ck)

Proof. By the use of the previous facts, we get:
∑k

i=1 nb
c
i = k +

∑k
i=1(β

c−1
i + αc−1

i+1) as nbc
i = 1 + βc−1

i + αc−1
i+1 according to Fact 1

= k +
∑k

i=1 nb
c−1
i + αc−1

k+1 − αc−1
1

= k(c − 1) +
∑k

i=1 nb
1
i +

∑c−1
r=1(α

r
k+1 − αr

1)

≤ kc +
∑c−1

r=1(α
r
k+1 − 1) since nb1

i = 1 and αr
1 ≥ 1

≤ 2kc as αr
k+1 ≤ k + 1 according to Fact 2.

Finally a simple recurrence argument can be used to verify that nbc
0 = 2c − 2 if c > 1 and nb1

0 = 1. �

5.4. An upper bound on the current exponent k(c, t)

To state an upper bound on the current exponent of the counter c at width t , we will need the following fact presenting
a lower bound on the minimal width tck when the counter value reaches 2k.

Fact 3. tck ≥ (c + 1)2k−1

Proof. See Fig. 10. First observe that tck ≥ tc−1
k + 2k−1. Indeed, according to property (P3) of Proposition 1, the first

occurrence of 2k on the counter c − 1 occurs before the first occurrence of 2k on the counter c: tc−1
k ≤ tck . And property

(P2) of Proposition 1 ensures that, between these two occurrences, there is one occurrence of 2k−1 on the counter c at width
w such that tc−1

k ≤ w < tck and tck − w = 2k−1. Thus tck − tc−1
k ≥ tck − w = 2k−1 and tck ≥ tc−1

k + 2k−1. It follows that

tck ≥ t1k + (c − 1)2k−1. As t1k = 2k, we get tck ≥ (c + 1)2k−1. �

Proposition 3. The current exponent of the counter c at width t verifies: k(c, t) < 1 + log(t/c).

Proof. Simply note that t ≥ tck(c,t). So from Fact 3, we obtain t ≥ (c + 1)2k(c,t)−1. �

274 V. Terrier / Theoretical Computer Science 411 (2010) 266–276

Fig. 10. An upper bound on the current exponent.

5.5. End of the proof

Putting Propositions 2 and 3 together provides the following asymptotic upper bound on the depth of the circuit.

Corollary 1. depth(c, t) is in O(c(1 + log(t/c))).

Now we may conclude.

Claim 3. An OCA with time complexity t(n) can be simulated by a circuit family of depth O(n(1 + log t(n)

n
)).

Proof. Recall that the output node of the circuit is related to the binary counter n at width t(n) − n. It corresponds to the
most significant one of the binary value f (n, t(n) − n). So its depth is given by depth(n, t(n) − n). Hence the depth of the

circuit is in O(n(1 + log t(n)

n
)) according to Corollary 1. �

6. Conclusion

As corollary of a construction due to Ladner and Fischer, we have noted that an OCA working in bounded space n and
in bounded time t(n) can be simulated by a boolean circuit of depth in O(n log t(n)). Then we have presented a better

simulation of OCA by boolean circuits, the depth obtained is in O(n log t(n)

n
). It gives us a non-trivial relationship between

OCA and boolean circuits in case of small complexities.
However further developments should be expected in the simulation of cellular automata by boolean circuits. Likewise,

we may wonder how the NC complexity classes are related to the CA complexity classes. In brief, we would like to better
understand the relationships of these two major models of massively parallel computation.

Appendix

We will give here the description of the circuit and the complexity of its construction.

A.1 Description of the circuit

To describe the circuit, we will state first the set of nodes, second the set of edges and finally the labels of the nodes.

The set of nodes and their position. The position of each node is specified by a couple (d, w) where d represents its depth
and w its width (which may be negative). Furthermore, there exists at most one node at a given depth and a given width. At
a given width t , the word formed from the concatenation of the binary writings of the values f (1, t), f (2, t), . . ., (with the
significant digits on the right side) codes the existence or the absence of nodes: the existence of a node at depth d matches
the occurrence of a one at the position d in this word. Let us review the different types of nodes. The constant nodes denoted
by γ (0, t, 1) with t ≥ 1 are set at positions (0, t). The input nodes denoted by γ (c, 1− c, 1) with c ≥ 1 are set at positions
(0, 1−c). Regarding the computation nodes, wewill use the following notations. For c ≥ 1 and t ≥ 1−c ,λ(c, t), denotes the
length of the binary writing of f (c, t) and κ(c, t) its number of ones. In other words, when f (c, t) is of shape 2e1 + · · · + 2ek

with e1 > · · · > ek, λ(c, t) = e1 + 1 and κ(c, t) = k. For convenience, we set λ(c, t) = 0 when t < 1 − c. Now, for c ≥ 1,
t > 1 − c and i = 1, . . . , κ(c, t), γ (c, t, i) refers to the computation node matching the ith one in the binary writing of

f (c, t). Its position is
(

∑c−1
r=1 λ(r, t) + 1 + ei, t

)

. In particular, γ (c, t, 1) is the node on the right border of the counter c at

width t . By extension, γ (c, t, κ(c, t) + 1) denotes γ (c − 1, t, 1).

The set of edges. The fan-in of the nodes is 2 and the fan-out is unbounded. Recall that the behavior of any OCA (S, δ) can be
expressed in terms of themaps δu : s ∈ S 7→ δ(u, s) ∈ S for u ∈ S∗. Mainly, as in the design of Ladner–Fischer circuit, a node
of the circuit computes amap δu by composition of twomaps δx and δy get from two antecedents nodes and such that u = xy.
Let us note how the nodes are linked in order to get the required information to perform the compositions. See Fig. 11. In
the backward unrolling of the counter c , the ith one of the binary writing of f (c, t) draws a trace from the width t until the
width s such that f (c, s) has less than i ones in its binary writing (i.e., f (c, s) corresponds to f (c, t)without the κ(c, t)− i+1
less significant digits). Such value s will be denoted by ω(c, t, i). Formally, ω(c, t, i) = max{s : s ≤ t and κ(c, s) = i − 1}

V. Terrier / Theoretical Computer Science 411 (2010) 266–276 275

Fig. 11. The two antecedents of a node.

where i = 2, . . . κ(c, t) + 1. We also set ω(c, t, 1) = 0. We will see later that the map computed on the node γ (c, t, i) is δu
with u = 〈c−1, c−1+ω(c, t, i)〉 · · · 〈c−1, c−1+ t〉. But first let us specify the antecedents of the computation nodes.We
distinguish two cases. If c ≥ 1 and1−c < t ≤ 0, the nodeγ (c, t, 1)has two antecedentsγ (c−1, t, 1) and γ (c, t−1, 1)with
indeed smaller depths. Second, if c ≥ 1, t ≥ 1 and i = 1, . . . , κ(c, t), the node γ (c, t, i) has two antecedents γ (c, t, i + 1)
and γ (c, ω(c, t, i+ 1) − 1, i). Clearly, γ (c, t, i+ 1) has a smaller depth than γ (c, t, i). Regarding γ (c, ω(c, t, i+ 1) − 1, i),
its depth is exactly the depth of γ (c, t, i) minus one. Indeed, the depth of the ith one is not altered while the counter has
more than i ones in its binary writing. So the depth of γ (c, t, i) is the same than the depth of γ (c, ω(c, t, i + 1), i) and is
one more than the depth of γ (c, ω(c, t, i + 1) − 1, i).

The label of the nodes. In order to proceed, we introduce the word u(c, t, i) composed of the successive states of the cell
c − 1 between the steps c − 1 + ω(c, t, i) and c − 1 + t: u(c, t, i) = 〈c − 1, c − 1 + ω(c, t, i)〉 · · · 〈c − 1, c − 1 + t〉.
Furthermore, we verify the following fact.

Fact 4. u(c, t, i) = u(c, ω(c, t, i + 1) − 1, i) u(c, t, i + 1).

Proof. First observe that ω(c, s, i) = ω(c, t, i) for all s such that ω(c, t, i) ≤ s ≤ t . Moreover ω(c, t, i + 1) verifies
ω(c, t, i) < ω(c, t, i+1) ≤ t . Henceω(c, ω(c, t, i+1)−1, i) = ω(c, t, i). It follows that u(c, ω(c, t, i+1)−1, i)u(c, t, i+
1) = u(c, t, i). �

We label the nodes by the result of their computation which is either the state 〈c, c + t〉 for the nodes γ (c, t, 1) or the map
δu(c,t,i) for the nodes γ (c, t, i)when i > 1. Implicitly, the state label smaybe also considered as themap label δs. Let us review
the different types of labels. The constant nodes γ (0, t, 1) are labeled by the border state ♯. The input nodes γ (c, 1−c, 1) are
labeled by the state 〈c, 1〉which is equal to xc the cth bit of the input word. For the computation nodes, we distinguish three
cases. First, in the case c ≥ 1 and 1− c < t ≤ 0, the node γ (c, t, 1), from the labels 〈c −1, c + t −1〉 and 〈c, c + t −1〉 of its
antecedents γ (c−1, t, 1) and γ (c, t−1, 1), computes the transition δ(〈c−1, c+ t−1〉, 〈c, c+ t−1〉) and then outputs the
state 〈c, c + t〉. Second, in the case c ≥ 1, t ≥ 1 and i > 1, the node γ (c, t, i) from the labels δu(c,t,i+1) and δu(c,ω(c,t,i+1)−1,i)

of its antecedents γ (c, t, i + 1) and γ (c, ω(c, t, i + 1) − 1, i) computes the composition δu(c,t,i+1) ◦ δu(c,ω(c,t,i+1)−1,i)

whose result is the map δu(c,t,i) according to Fact 4. Finally, in the case c ≥ 1, t ≥ 1 and i = 1, from the labels
δu(c,t,2) and 〈c, c + ω(c, t, 2) − 1〉 of the antecedents γ (c, t, 2) and γ (c, ω(c, t, 2) − 1, 1), the node γ (c, t, 1) computes
δu(c,t,2)(〈c, c +ω(c, t, 2)−1〉)whose result is 〈c, c + t〉 since u(c, t, 2) = 〈c −1, c −1+ω(c, t, 2)〉 · · · 〈c −1, c −1+ t〉. To
conclude, observe that the three types of computations performed on the nodes can be carried out by constant size boolean
circuits over {And,Or,Not}.

So we have designed a circuit C where every site 〈c, t〉 of the OCA is simulated on the node γ (c, t − c, 1). As a result, we
get the following proposition.

Proposition 4. An OCA working in time t(n) can be simulated by the circuit family C = {C1, C2, . . .} with Cn is the subcircuit of
C where the set of input nodes is {γ (c, 1 − c, 1) : 1 ≤ c ≤ n}, the set of constant nodes is {γ (0, t, 1) : 1 ≤ t ≤ t(n) − n}
and the set of computation nodes is {γ (c, t, i) : 1 ≤ c ≤ n, −c < t ≤ t(n) − n and 1 ≤ i ≤ κ(c, t)}. The output node is
γ (n, t(n) − n, 1). The depth of the circuit family C is of the same order as the depth of γ (n, t(n) − n, 1).

Remark 1. This construction applies as well to simulate any OCAwith sequential inputmode (with such inputmode, the ith
bit of the inputwordw = x1 · · · xn is supplied to the cell 1 at time i). The onlymodification is to take as the set of input nodes
{γ (0, t, 1) : 1 ≤ t ≤ n} and as the set of constant nodes {γ (c, 1 − c, 1) : 1 ≤ c ≤ n} ∪ {γ (0, t, 1) : n < t ≤ t(n) − n}.
This construction works also to simulate any OCA which computes a function. In this case, the set of output nodes will
include all the ones corresponding to the cells which communicate the output on the OCA.

276 V. Terrier / Theoretical Computer Science 411 (2010) 266–276

A.2 Complexity of the circuit construction

To complete the presentation of this circuit family, it remains to evaluate the complexity of its construction. First let
us describe how to set up the family of binary counters by the use of the following finite transducer. The set of states is
S = {0, 1, 1} with 1 as initial state. Σ refers to the input alphabet as well to the output alphabet and is identical to S. The

alphabet symbols code the current digits of the binary counter with the peculiar symbol 1 used to mark the most significant
digit of each counter. The states code the carry values (1 refers to the carry of the most significant digit). The transition
function δ : S ×Σ → S handles the carry propagation and the output function o : S ×Σ → Σ generates the current value.
They are defined by the following tables.

S \ Σ 0 1 1

0 0 0 1

1 0 1 1

1 1 1 1

The transition function δ.

S \ Σ 0 1 1

0 0 1 1

1 1 0 0

1 1 1 1

The output function o.

Moreover, when the finite transducer ends in state 1, it outputs 1. In this way, whatever c ≥ t and t ≥ 1, the transducer
reading the sequence f (1, t) · · · f (c, t) writing in binary with the most significant digit of each f (i, t) coded by 1, outputs
the sequence f (1, t + 1) · · · f (c, t + 1) coded in the same manner.

The following proposition states how ‘‘efficiently’’ the circuit family can be generated.

Proposition 5. Let t(n) be a time constructible function and C = {C1, C2, . . .} be the circuit family which simulates an OCA
working in time t(n). There exists a Turing machine which outputs a representation of Cn on input 1n. The memory size is in
O(log(z(n)) × d(n)) and the time is in O(z(n) × log(z(n))) where z(n) and d(n) are the size and the depth of Cn.

Proof. For 1 ≤ c ≤ n and 1− c < t ≤ 0, it is straightforward to give a tuple representation of the nodes γ (c, t, 1) and their
antecedents. For c ≥ 1 and t > 0, the Turing machine will simulate the finite transducer. The TM starts with the sequence

1
n
. Then it produces successively the sequences f (1, t) · · · f (n, t) writing in binary for t in range 2 to t(n); remark that t(n)

is assumed to be time constructible. Furthermore, attached to the ith one of f (c, t) which marks the node γ (c, t, i), the
TM records the numbering of the nodes γ (c, t, i) and γ (c, ω(c, t, i) − 1, i). Notice that the TM is able to identify the node
γ (c, ω(c, t, i)−1, i) from the shape of f (c, t). In this way, the TM can output a tuple representation of the node γ (c, t, i) and
its antecedents for each occurrence of one. If the size of the circuit is z(n), the TM produces z(n) tuples whose lengths are
in O(log z(n)). Moreover, at each step, the TM stores at most two successive sequences f (1, t) · · · f (c, t) and the numbering
of the nodes attached to the occurrences of the ones. Thus the memory size is in O(log(z(n)) × d(n)) and the time is in
O(z(n) × log(z(n))). �

References

[1] H. Ben-Azza, Automates cellulaires et pavages vus comme des réseaux booléens, Ph.D. Thesis, Université de Lyon I, 1995.
[2] T. Buchholz, M. Kutrib, On time computability of functions in one-way cellular automata, Acta Informatica 35 (4) (1998) 329–352.
[3] J.H. Chang, O.H. Ibarra, A. Vergis, On the power of one-way communication, Journal of the ACM 35 (3) (1988) 697–726.
[4] O.H. Ibarra, T. Jiang, On one-way cellular arrays, SIAM Journal on Computing 16 (6) (1987) 1135–1154.
[5] O.H. Ibarra, M.A. Palis, S.M. Kim, Some results concerning linear iterative (systolic) arrays, Journal of Parallel and Distributed Computing 2 (1985)

182–218.
[6] R.E. Ladner, M.J. Fischer, Parallel prefix computation, Journal of the ACM 27 (4) (1980) 831–838.
[7] N. Ollinger, Universalities in cellular automata; a (short) survey, In: Proceedings of the First Symposium on Cellular Automata ‘‘Journées Automates

Cellulaires’’ — JAC 2008, Uzès : France, 102–118 (2008).

