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The transportation sector has been identied as one of many sources of today's energetic and environmental problems. With constantly increasing numbers of vehicles on the road, non-renewable fossil fuels are becoming scarce and expensive.

In addition, due to the pollutant emissions of internal combustion engines, the transportation sector is a major producer of greenhouse gas emissions. To resolve these problems researcher are looking for technological solutions, such as more ecient components and alternative drive train technologies, on one hand. On the other hand, work is being done to ensure the most ecient utilization of available technological resources. Eco driving is one way to immediately reduce a driver's energy consumption.

In this thesis the potential gains of eco driving for passenger vehicles will be discussed. The main objective of this work is to, rst, identify and compare drive train specic, optimal vehicle operation. Secondly, the eect of real-life constraints on potential gains of eco driving is evaluated. In addition, an approach to integrate mathematical optimization algorithms in an advanced driver assist system for eco driving is proposed.

Physical vehicle models are developed for three representative vehicles: the conventional, electric and power-split hybrid vehicle. Using real-life and standard drive cycles a baseline mission is dened by specifying trip and road constraint.

Applying the dynamic programming algorithms the trajectory optimization problem is solved, minimizing energy consumption for the trip. The eect of trac on potential gains of eco driving is discussed, considering a vehicle following situation.

Integrating emission constraints in the optimization algorithm the environmental advantages of eco driving are discussed. Finally, the developed algorithms were integrated in a driver assist system. Experimental tests on a driving simulator were used to verify the eectiveness of the system, as well as driver acceptance.

ii Résumé Pour résoudre les problèmes environnementaux et énergétiques liés au nombre croissant de véhicules en circulation, deux approches sont envisageables : l'une est technologique et vise à améliorer les composants du véhicule ou son architecture, l'autre est comportementale et cherche à changer la manière d'utiliser les véhicules. Dans ce contexte, l'éco-conduite représente une méthode, applicable immédiatement, permettant à chaque conducteur de réduire sa consommation.

L'objectif de cette thèse est donc l'analyse des gains potentiels de l'éco-conduite pour les diérents types de véhicules existant : thermique, électrique et hybride.

Ainsi, la première partie de ce travail se focalise sur une étude théorique visant à calculer les gains potentiels et à déterminer les règles d'éco-conduite, avant d'aborder dans un second temps une mise en situation plus réaliste et une intégration des algorithmes dans un système d'assistance pour le conducteur.

En s'appuyant sur une modélisation énergétique des diérents types de véhicules, la détermination et la comparaison du fonctionnement optimal se base sur l'optimisation du prol de vitesse pour des trajets connus. La programmation dynamique a été mise enoeuvre pour calculer la trajectoire optimale énergétique en tenant compte de la contrainte temporelle an de ne pas pénaliser l'intérêt d'une conduite économe. Evidemment, l'intégration de l'éco-conduite doit, d'une part, tenir compte du trac à proximité du véhicule et d'autre part, ne pas aboutir à une augmentation des émissions de polluants. Ainsi, en nous appuyant sur des modèles de suivi de véhicules (trac), nous avons montré que les principes d'éco-conduite restent valables et conduisent de toute façon à des gains énergétiques. Concernant les contraintes d'émissions, des résultats expérimentaux nous ont conduit à adapter nos algorithmes pour répondre simultanément aux aspects écologiques et économiques. Enn, les connaissances acquises ont été appliquées à la conception d'un système d'assistance testé sur un simulateur de conduite.
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1 Introduction 1 In this introduction the energetic and environmental problems of the transportation sector today is outlined. An overview on existing advances to solve these problems will be given. With this background the objective and contributions of this thesis work will be dened. Finally, we will present an overview of the thesis content.

Background

The rst passenger vehicle, powered by an internal combustion engine, was developed in 1885 by Karl Benz [START_REF]When will there nally be a vehicle that no longer has to be pulled by horses[END_REF]. The, so-called, Motorwagen can be seen in Figure 1.1. After several vehicles, running on steam or electricity, were introduced, Karl

Benz was the rst to design a vehicle driven only by an internal combustion engine.

However, interest and trust of people in the vehicle came only after Bertha Benz demonstrated the operation of the vehicle with a rst long distance trip. The Motorwagen designed by Karl Benz [START_REF]When will there nally be a vehicle that no longer has to be pulled by horses[END_REF] Since the construction of the rst conventional automobile, the number of vehicles on the roads has been growing steadily. Around 1900 the number of vehicles on the road is estimated to around 8000 worldwide. This value increased to about 200,000,000 in 1970 and about 500,000,000 in 1990. Projections for the year 2030 predict that this number will keep growing to reach 1,200,000,000 [START_REF] Elert | The physics factbook: Number of cars[END_REF].

Initially the automobile vehicle was built in order to transport goods or customers.

Today, people often see the private passenger vehicle as a necessary standard to ensure their freedom and independence. In developed countries, such as western Europe and the United States, the number of vehicles per 1000 people lies at around 500 or more [START_REF]Transportation statistics[END_REF]. For fast developing countries, such as China and India, these numbers are still lower. However, projections show that car ownership rates will be exponentially increasing in these changing countries [START_REF] Eea | Car ownership rates projections[END_REF].

Although the automobile vehicle comes with numerous advantages for the user, it can also be identied as the source of many problems that the transportation sector faces today. Problems in the transportation sector can be classied in two categories. First, there are the energetic problems that are due to the scarcity of non-renewable fossil fuels. Secondly, the environmental issues have to be considered.

From Figure 1.2 we can see that most of the vehicles on the roads in Europe use gasoline or diesel engines for propulsion. Gasoline and diesel fuels are produced from fossil fuels and are therefore considered non-renewable energy sources. In 2010 the International Energy Agency (IEA) declared that the peak of oil production occurred in 2006 [START_REF] Oil | Oil production in the 21st century and peak oil[END_REF]. In Figure 1.3 the liquid fuel production worldwide is presented. It can be seen that the value stagnates after the year 2005 to uctuate

.2: EU vehicle eet by fuel type (2008) [START_REF] Acea | EU eet by fuel type[END_REF] around a maximum value. However, although maximum fuel production has been reached, the consumption of fuels worldwide keeps increasing, partially due to the increasing number of passenger vehicles. With the increasing demand and limited supply, gasoline and diesel prices are increasing. Due to these facts we need to ensure the ecient use of the scarce resources while new, alternative energetic solutions are being investigated. The transportation sector, being a major consumer of scarce fossil fuels, also contributes signicantly to global warming. In the internal combustion engine of conventional vehicles fuels are used in a reaction with air to create energy. As a by-product water vapor, but also pollutants such as particle matter (PM), carbon dioxide (CO2), carbon monoxide (CO), hydro carbons (HC) and nitrogen oxides (NOx), are produced. These are more or less emitted to the environment, where Figure 1.4: Greenhouse gas emission per sector in EU-27 (2007) [START_REF] Eea | Total greenhouse gas emissions by sector in eu-27[END_REF] With these facts in mind it becomes obvious that new fuel ecient solutions need to be identied to make the transportation sector energy ecient and environmentally friendly. In the following we will outline proposed approaches to achieve this.

Chapter 1 Introduction 5

Solutions

In the search for solutions to the problems of the transportation sector, researchers are evaluating options in two areas. On one hand, technological solutions are investigated to improve fuel eciency, consider other energy sources and make vehicle transportation cleaner. A second approach is to develop utilization strategies that ensure the most ecient energy use with existing technological resources.

Technological solutions

Over the last 100 years the basic format of the conventional vehicle drive train has not changed much. But, with technological advances in each drive train component the overall vehicle eciency has been improved. The engine eciency has been increased over the last years with the integration of direct injection, valve control and timing, turbo charging and other technological advances. The fuel consumed in modern vehicle drive trains is reduced due to cylinder shut down or by turning o the engine when idling. In addition, progress in the development of advanced transmissions, such as automatic 6 speed transmissions and continuous variable transmissions, allow the engine to operate in more ecient regions [START_REF]Climate change[END_REF].

While advanced drive train technologies are developed to increase eciency and decrease pollutant emissions of the modern conventional vehicle, other approaches investigate the design of alternative drive train architectures. New vehicle architectures starting on the market include the battery electric, fuel cell electric, and hybrid vehicles. Generally, hybrid vehicles are considered more fuel ecient because the drive train allows us to recover kinetic energy when braking. In addition, due to the presence of a second power source, the engine can be turned o or shifted to a more ecient operating point. With electric vehicles the source of energy is exible. Any energy source can be used to generate the required electricity. This drive train allows us to work with renewable energy sources, such as wind or solar energy.

New alternative drive train technologies are currently rather expensive in comparison with the conventional vehicle. The success of alternative drive trains, such as the hybrid vehicles, is very much related to the development of the fuel price.

This can be seen in Figure 1.5, where the US market share of hybrid vehicles is Chapter 1 Introduction 6 presented together with monthly gasoline prices. It becomes obvious that environmental reasons do not represent a very strong argument for customers. However, once gasoline prices increase the people are interested in more economic solutions.

In addition, regulations and political decisions may have an impact on the market.

Figure 1.5: US hybrid car market share and gasoline prices [5] To increase the sale of alternative, environmentally friendly, vehicles many governments established incentives on their purchase. With this the initial price for the customer is reduced and the time in which the vehicle becomes protable decreases. In Figure 1.6 the projected sales numbers of electric and plug-in hybrid vehicles can be seen for several countries. It is expected that we will see more electric vehicles on the roads in the near future. In the meantime the utilization of today's vehicle technology should be optimized.

Energy ecient utilization

While technological developments are on the way, an ecient utilization of existing vehicles on the roads may be a good way to approach the energetic problems.

Changing the way current vehicles are used can drastically reduce the global energy consumption and have positive eects on the environment. Projected EV sales [START_REF]Eight countries join IEA electric vehicle initiative[END_REF] Studies on intelligent vehicle technologies (ITS) are proposing infrastructure-tovehicle (I2V) and vehicle-to-vehicle (V2V) communication to improve fuel economy [START_REF] Figueiredo | Towards the development of intelligent transportation systems[END_REF]. In an urban environment, where fuel consumption is generally high and pollutant emissions should be avoided to increase air quality, frequent start and stops due to trac lights and trac congestions lead to non-optimal vehicle operation. Information received from the infrastructure or other vehicles can be used to limit these energetic losses. A representative example of ITS is the travolution project implemented by Audi in the city of Ingolstadt [START_REF] Travolution | [END_REF]. Audi optimized the trac light phases in Ingolstadt, but in addition some trac lights were equipped with communication modules. These modules transmit the time of the next green phase to the Audi test vehicle. The driver can therefore be informed of the appropriate vehicle speed in order to avoid having to stop. V2V communication can serve to transmit information about trac jams or accidents. Notied drivers can take alternative route choices and trac congestions can be reduced [START_REF]Connected vehicles -vehicle-to-vehicle (v2v) communications for safety[END_REF]. This approach leads to improvements in fuel consumption, but also to a reduction in urban pollution due to trac.

Another, immediately implementable, method to reduce energy consumption of passenger vehicles is to apply, so-called, eco driving strategies. The eciency of a vehicle is not constant, but changes dependent on vehicle velocity and acceleration.

If a driver minimizes his energy consumption due to an appropriate choice of Chapter 1 Introduction 8 acceleration rates and vehicle speeds this is referred to as eco driving. The concept of eco driving is immediately implementable without any further technological changes. In order to inform the driver of the best vehicle operation several methods have been investigated. In most countries eco driving courses are oered and it has been shown that drivers succeed to improve their fuel economy by 10-15% [START_REF] Wirtschafts Und Sozialstudien | Evaluationen von eco-drive -Ausbildungen im Ueberblick[END_REF].

Other approaches use driver assist systems for eco driving to ensure a long term reduction of fuel consumption.

This thesis can be classied in this last category. In this work the maximum potential gains of eco driving strategies are analyzed and applied in the development of an eective driver assist system for eco driving. In the following the objective and contributions of this work will be outlined.

Thesis contribution

In this work a physical, drive train specic, modeling approach was used in combination with mathematical optimization methods to investigate the maximum potential gains of eco driving. In addition, an approach to implement the developed algorithms in an eective driver assist system for eco driving is presented.

Eco driving rules are often dened very generally and vehicle independent. With complex drive train technologies and alternative drive train vehicles it is important to apply drive train specic operation to achieve maximum gains of eco driving. In this work, detailed models of the vehicle specic drive trains are used to identify best operation. With this approach the here developed algorithms can be applied to simple, mono-source vehicles, such as the conventional or electric vehicle, as well as complex, multi-source drive trains, like the hybrid vehicle. Using drive train specic vehicle models the optimal vehicle functionality can be compared for dierent vehicle congurations.

While many studies use rule based approaches to identify optimal vehicle operation, we here apply mathematical optimization methods to identify the, theoretical, potential of eco driving. This method serves to establish upper limits of eco driving. In addition optimal vehicle operation can be analyzed and used to derive important factors for maximum fuel eciency.

Chapter 1 Introduction

Initially a three dimensional dynamic programming method was used to solve the trajectory optimization problem [START_REF] Mensing | Vehicle trajectory optimization for application in ECO-driving[END_REF]. To reduce the computational eort, a weighting factor was introduced in the cost function in a second approach. In order to satisfy all optimization constraints a nested optimization method, where a two dimensional dynamic programming method is used in combination with advanced root nding methods, was applied [START_REF] Mensing | Trajectory optimisation for eco-driving -an experimentally veried optimisation method[END_REF]. To identify the trade-o between trip time and energy consumption a multi-objective optimization method was implemented to compute the Pareto optimal front [START_REF] Mensing | Single-and multiobjective velocity trajectory optimization for application in eco-driving[END_REF].

The developed algorithm was applied to several dierent drive train vehicles. With this we were able to investigate and compare important factors for eco driving for the conventional, electric [START_REF] Mensing | Vehicle trajectory optimization of electric vehicles for eco driving applications[END_REF] and hybrid vehicle [START_REF] Mensing | Vehicle trajectory optimization for hybrid vehicles taking into account battery state-of-charge[END_REF]. The computation of maximum potential gains of eco driving is necessary to identify upper limits for fuel consumption reductions. However, to approach real world energy consumption values trac constraints have to be taken into account. The developed algorithm was applied to a car following scenario to investigate inuences of trac on potential gains of eco driving [START_REF] Mensing | Trajectory optimization for eco-driving taking into account trac constraints[END_REF].

Although most studies only consider energy consumption, eco driving is generally seen as environmentally friendly behavior. In a case study we investigate the economic and ecologic aspects of energetically optimal vehicle operation. The work shows that it is necessary to take into account environmental constraints in order to consider eco driving to be ecologic. In our work we propose a simple strategy to reduce overall pollutant emissions [START_REF] Mensing | Eco-driving: An economic or ecologic driving style? Transportation Research Part C[END_REF].

The theoretical studies enabled us to analyze potential gains of eco driving and to get a deeper understanding of drive train specic, optimal vehicle operation. We were able to identify vehicle specic factors that are important to ensure energy ecient operation. In the nal part of this thesis work the developed algorithms were used in the development of an eective driver assist system for eco driving that has been tested on a driving simulator.

Thesis overview

The thesis content is separated in six chapters with a general conclusion at the end. In Figure 1.7 a schema is presented to visualize the organization of the thesis.

In the following an overview of each chapter will be given. Chapter 3 Chapter three presents the vehicle modeling. The direct and inverse modeling approach is discussed. Inverse vehicle models for conventional, electric and a representative hybrid vehicle are outlined. In addition the direct vehicle simulation software VEHLIB is introduced. Chapter 4 In chapter four the optimization algorithms, applied to solve the trajectory optimization problem, are detailed. Due to the complexity of the problem, the dynamic programming optimization method was applied. Initially a three dimensional method was used, that was later reduced to a two dimensional dynamic programming method by integration of a weighting factor. To analyze the trade-o between fuel consumption and trip time a multi-objective optimization is presented. Chapter 5 In chapter ve theoretical potential gains of eco driving are discussed.

The trajectory optimization problem is solved for exemplary trips for the conventional, electric and hybrid vehicle. General and real-life drive cycles are used to compute so-called eco cycles, that represent optimal vehicle operation for the corresponding mission. To verify the simulated results, the computed optimal drive cycles were experimentally tested on an engine and Chapter 2 Literature Review 11 chassis test bench. Important, drive train specic factors for eco driving are derived.

Chapter 6 Chapter six deals with the integration of constraints. A case study shows how trac constraints can aect potential gains of eco driving. Trac constraints are integrated for the case of a vehicle following situation to ensure driver safety. A second case study discusses the environmental aspects of eco driving. Ecologic advantages of eco driving are considered with the integration of emission constraints. Fuel consumption and emission measurements show the trade-o between economic and ecologic vehicle operation.

Chapter 7 An approach to integrate the developed algorithms in a driver support system for eco driving is shown in chapter seven. The direct vehicle simulation software VEHLIB was integrated on a stationary driving simulator.

Using the optimization algorithms in combination with the inverse vehicle model an advanced driver support system was developed. The system was experimentally evaluated by several external subjects. Survey questions were used to investigate the driver acceptance of the system. Using simulated fuel consumption and survey results the eciency and eectiveness of the driver support system was evaluated. Chapter 8 In the last chapter a general conclusion of this thesis work can be found. A perspective on future work recommendations is given. Eco driving is a way for a driver to reduce his energy consumption immediately.

With that, by applying the principles of eco driving, a driver can rapidly reduce his impact on the environment. For most people the more interesting aspect of eco driving is the cost advantage. Without extensive costs on development or production of new technologies it represents a way to rapidly reduce the operating cost of a vehicle.

The rst studies on fuel reductions due to driver operation seem to be driven by this mindset. Research on eects of driver behavior on fuel consumption started in the middle of the 1970s in the US. Due to the rst oil crises the oil prices in the Chapter 2 Literature Review 14 US increased by about 50% between 1970 and 1974. As a result the Department of Transportation published two reports in 1976 in which the eectiveness of driver aid devices to improve fuel economy are discussed [START_REF] Hinton | Survey of driver aided devices for improved fuel economy[END_REF], [START_REF] Huntley | Eectiveness of milesper-gallon meters as a means to conserve gasoline in automobiles[END_REF]. Further studies on the eects of driver behavior on fuel consumption were published by Evans in 1976 and 1979 [START_REF] Evans | Multivariate analysis of trac factors related to fuel consumption in urban driving[END_REF][START_REF] Evans | Driver behavior eects on fuel consumption in urban driving[END_REF]. Evans, working for General Motors, stated that in an urban setting with trac, on average, a 1% increase in trip time resulted in a 1.1% improvement in fuel consumption. However, Evans mentions that 'expert' drivers were able to 'skillfully' adjust their speeds, such that fuel was reduced although trip time was not increased. As a nal result Evans concludes that the fuel economy meter, a gauge that indicates instantaneous miles-per-gallon values, is not accurate enough for a driver to minimize his fuel consumption.

After this period and with the second oil crisis in the 1978-1980 research continued on the subject. Several studies [START_REF] Nader | Measurement of the impact of driving technique on fuel consumption : Preliminary results[END_REF] indicate that signicant savings in fuel cost are possible due to changes in driver behavior. The concept of eco driving started to become interesting for companies and transportation eets [START_REF] Runnion | Energy savings in interstate transportation through feedback and reinforcement[END_REF]. Through continuous feedback and reinforcement of eco driving rules the eet drivers from a major textile company were able to reduce the company's total fuel purchases and therefore reduce their expenditures.

In the last years the enforcement of the Kyoto protocol puts countries under pressure to reduce their greenhouse gas emissions. Since the transportation sector is one of the most important contributors to CO2, Methane and NOX emissions, countries are planning to achieve part of their CO2 targets by cutting emissions from vehicle transportation. While the vehicle manufacturers achieved a reduction of 13% in CO2 emissions by 2007 [START_REF]Reducing CO2 emissions: Working together to achieve better results[END_REF] due to the development of new technologies, several European governments are now integrating eco driving into their national reduction strategies. Countries, like The Netherlands, are developing eco driving programs to motivate people to perform eco driving strategies and educate people about eco driving [START_REF]Ecodriving as a policy; highly cost-eective CO2 emission reductions[END_REF]. Some countries integrate education on eco driving principles in the course of the drivers license tests. In general, studies show that, on average, a 10% reduction of fuel consumption is achievable due to eco driving.

Knowing the advantages of eco driving a lot of research on the subject was supported in the last years. In Europe, the European Campaign On improving DRIVing behavior, ENergy eciency and trac safety (ECODRIVEN) was launched in 2006. In the following years projects like the FootLITE project [START_REF] Fairchild | Foot-LITE: using on-board driver feedback systems to encourage safe, ecological and ecient driving: The foot LITE project[END_REF], the ECOW-ILL project [START_REF]ECOWILL the project[END_REF], the eCoMove project [START_REF]eCoMove cooperative mobility systems and services for energy eciency[END_REF] and the FLEAT project [START_REF]FLEAT project[END_REF] [7,[START_REF] Masner | NHTSA-Fuel economy driver interfaces: Develop interface recommendations[END_REF].

Eco driving courses are oered in several countries. In general the results have been very positive and drivers have shown to be able to reduce their energy consumptions [START_REF] Wirtschafts Und Sozialstudien | Evaluationen von eco-drive -Ausbildungen im Ueberblick[END_REF]. Hornungs [START_REF] Wirtschafts Und Sozialstudien | Evaluationen von eco-drive -Ausbildungen im Ueberblick[END_REF] mentions in his work in 2000 that a long term reduction of fuel consumption between 10 -15% was possible. However, in a long term study Beusen [START_REF] Beusen | Using onboard logging devices to study the longer-term impact of an eco-driving course[END_REF] followed the progress of drivers that took eco driving courses. He concludes that, while at rst reducing their energy consumption, drivers fall back to their old driving habits some time after the course. In the work of Wahlberg [START_REF] Wahlberg | Long-term eects of training in economical driving: Fuel consumption, accidents, driver acceleration behavior and technical feedback[END_REF] he monitors drivers that were educated in eco driving rules over 12 months and states that on average only an increase of 2% was measured over the entire period.

It becomes obvious that, without constant reminder, drivers do not intuitively integrate ecient vehicle operation in their driving, even if these drivers do know how to optimize vehicle operation. Due to this, it is assumed that the potential long term savings possible with a driver assist system for eco driving cannot be achieved by a onetime eco driving course.

In Section 2.1 existing eco driving support systems will be discussed. An important part of any eco driving support system is the way the suggested 'optimal' vehicle operation is determined. A support system, which advices a driver of sub-optimal vehicle operation cannot be very eective in optimizing the vehicle operation of a driver. We therefore analyzed existing algorithms used to determine optimal vehicle operation in Section 2.2.

Eco driving support systems

With the aim to reduce energy consumption many companies are developing driver assist systems for eco driving. Some of these systems are developed by the car manufacturer themselves and directly integrated in the vehicle. This way appropriate vehicle parameters can be directly stored in the system. Other systems are developed to be implemented in various vehicle types. With the rise of the smart phone there are now eco driving applications available to be downloaded on portable devices such as a mobile phone or a laptop computer. Generally the existing support systems can be separated into two categories: informative systems and advisory systems. In the following we will present existing systems for each of these two categories.

Informative systems

Informative systems transmit information about several variables of the vehicle to the driver. In contrast to advisory systems, however, no advice about optimal vehicle operation is given. Informative driver assist systems have been implemented

in road vehicles for a long time. The rst informative system in vehicles was the fuel gauge. An analog fuel gauge was used to show how much gasoline was left in the tank. With this the device was indicating cumulative fuel consumption.

In today's vehicles a digital display often shows trip kilometers, kilometers left to drive with the remaining fuel, instantaneous fuel consumption and/or average trip fuel consumption. While most of these systems often stay unused, they can give indications on how vehicle operation inuences fuel consumption. With informative systems the motivated driver has to perform trial and error experiments to identify the vehicle operation that leads to the minimum fuel consumption.

While informative indicators can give a good idea of overall vehicle operation they can often lead to false assumption when looking at instantaneous fuel consumption. Instantaneous energy consumption will generally be higher in acceleration phases or on upward slopes. However, these increases do not indicate bad vehicle operation [START_REF] Hinton | Survey of driver aided devices for improved fuel economy[END_REF][START_REF] Feenstra | TNO report -literature review of in-vehicle support for fuel-ecient driving related to pricing mechanisms[END_REF].

Hybrid vehicles often have more advanced informative systems. Having two power sources and, with that, two energy storage devices, displaying the vehicle states becomes more complex. In hybrid vehicles the dashboard display often shows fuel consumption, battery state of charge, and the ow of energy. In Figure 2.1 the dashboard of a hybrid vehicle, the Ford Smart Gauge, can be seen. This gauge developed in 2010 can be run in two modes: The 'basic' mode just informs the driver of general vehicle parameters while the 'empower' mode is a mode where more advanced information is presented to the driver. When choosing this functionality long term fuel eciency is shown to the driver in the form of leafs growing on the display background. With this the driver knows when his vehicle operation will result in better fuel economy in the manifold dropped below a threshold level [7]. The system was intended to help drivers reduce their fuel consumption by reducing the power they used on acceleration. Other vacuum gauges such as the Pontiac and Ford vacuum gauges are expected to achieve fuel consumption improvements between 6.9 and 24.6% [32]. However Hinton [START_REF] Hinton | Survey of driver aided devices for improved fuel economy[END_REF] points out in his report that the gains in fuel economy very much depend on the drivers motivation.

An 'eco' light indicator was integrated in the 2009 model of the Honda Odyssey.

In this vehicle the variable cylinder management made it possible to turn o two or three of the six cylinders at low power requirements while cruising. The light indicated that cylinders were shut down and therefore fuel consumption was reduced. While trees and green leaves are very popular indicators for ecient operation [7] other vehicle manufactures indicate the eciency level of the vehicle in color scheme on the dashboard [7]. Figure 2.2 shows one of these indicators.

Here the Honda Ecological Assist System can be seen. This system can be found in the 2010 Honda Insight Hybrid. The background color of the speedometer indicates ecologic vehicle operation in green and turns blue when more fuel is consumed due to excessive acceleration and braking.

Advisory systems

Advisory systems are a common way to assist drivers to reduce fuel consumption.

On the contrary to informative systems the advisory support systems give specic advice of how to reduce the vehicle's energy consumption. One of the most important challenges for driver assist systems today is to eectively transmit information to the driver without creating a safety risk because the driver's focus is taken o of the road.

While route indicators such as GPSs often use the auditory way to transmit information to the driver, the most popular way for driver support systems for eco driving is by visually presenting information. The most common advisory support system for eco driving integrated in vehicles today is the gear change indicator.

The indicator is a simple ash that lights up on the control board to suggest an upor down shift. With this system many vehicle manufacturers encourage the driver to operate the engine in an ecient region with the goal to keep fuel consumption low.

It is well known that operating a vehicle at constant speed is more ecient than continuously changing speeds. With this assumption we can count cruise control systems and throttle control systems into the category of eco driving support systems. Studies show small reductions in fuel consumption due to such devices, but other than general eco driving advice systems they can only be used on highways, where the vehicle is operated at constant speed. The devices usually cannot be used below speeds around 40-60km/h [START_REF] Feenstra | TNO report -literature review of in-vehicle support for fuel-ecient driving related to pricing mechanisms[END_REF].

A vehicle's acceleration is commonly assumed to have a strong inuence on fuel consumption. Many driver assist systems therefore indicate the acceleration rate and advice the driver not to exceed a certain limit. In Figure 2.2 such a system can be seen. The Honda Eco Assist system shows a horizontal bar in the middle of the display. When accelerating or braking at high rates the bar stretches to the left and right. The driver is advised not to operate the vehicle such that the bar reaches the gray shaded areas. Due to reduced acceleration and deceleration rates the overall fuel consumption is reduced.

Although most systems interface with the driver by giving visual information some driver support systems use haptic devices to generate advice by force feedback.

One of the rst systems mentioned in the report of the Department of Transportation was such a system. The so-called Accelerite was an acceleration pedal feedback system. When engine vacuum levels were low the pedal increased the resistance to suggest lower acceleration levels to the driver. However, the system can easily be overwritten by pushing harder on the gas pedal. Tested in several trucks the system showed an improvement in fuel economy between 3 and 17%.

Today, implementing a resistance on the acceleration pedal is still a method used when trying to reduce energy consumption. Nissan claimed in 2008 to have developed the world's rst eco pedal [8]. In Figure 2.3 the operating principle of The Nissan Eco Pedal [8] this system can be seen. As in the Accelerite the driver can feel a resistive force when the pedal is pressed too hard. Nissan announces that using the pedal results in 5-10% fuel reduction. The similar approach to restrict the vehicle acceleration is taken by Larson [START_REF] Larsson | The eects of an acceleration advisory tool in vehicles for reduced fuel consumption and emissions[END_REF]. In his research the so-called Active Accelerometer Pedal (AAP) is used to increase safety by reducing acceleration rates. Larson announced that he could not nd a signicant reduction in fuel consumption due to the changes in acceleration. He concludes that acceleration rates are not the only important factor having an impact on fuel consumption.

There are several advanced driver assistance systems on the market today. These dier from the previously mentioned systems, in that they take into account vehicle parameters to determine the appropriate advice to the driver. In the following section a review of existing advanced driver assistance systems (ADAS) that give advice to the driver in real time while driving and systems that use recorded vehicle data to give post trip tips for improvement will be given.

Advanced Driver Assistance Systems (ADAS)

To our knowledge the rst ADAS was developed in 2001 in the Netherlands. In her thesis, M. v.d. Voort describes the development of the so-called FEST (fuel eciency support tool) [START_REF] Van Der | A prototype fuel-eciency support tool[END_REF]. In her work, v. d. Voort uses a state machine to determine the optimal vehicle operation that should be transmitted to the driver.

The application uses vehicle parameters, including power characteristics of the engine, gear ratios, and a fuel consumption map of the engine. In addition, measured, real time variables, such as vehicle speed, acceleration, engine speed, clutch developed a driver display that can be seen in Figure 2.4. As seen, the suggestions given to the driver are simple and very specic. In addition to written tips the driver operation is rated in a green, yellow, red color scheme.

In the context of the FootLITE project an advanced driver assistance system has been developed. The FootLITE Eco Driving Support Tool [START_REF] Fairchild | Foot-LITE: using on-board driver feedback systems to encourage safe, ecological and ecient driving: The foot LITE project[END_REF] consists of an LCD display which gives instantaneous feedback to the driver while on the road. The display shows route information, distance to the car in front, speed consistency and speed limits. Trying to optimize the vehicle operation for fuel consumption the system uses the eco driving rules published in the driving guide [START_REF]How to Be A Better Driver: Advanced Driving the Essential Guide[END_REF] by the Institute of Advanced Motorists (IAM) as a basis. Using this rule based strategy the FootLITE system is aiming to increase the eciency of the entire vehicle network. In order to reduce the impact of vehicles on the network, alternative routes and even trip cancellations are suggested [START_REF] Fairchild | Foot-LITE: using on-board driver feedback systems to encourage safe, ecological and ecient driving: The foot LITE project[END_REF].

ADAS for eco driving are also being developed by companies specialized in driver support systems. Vexia1 is a company working on navigational driver assist systems using GPS and radar. Their Econav system is an advanced system that helps drivers to reduce their fuel consumption. The system, that looks like a car's GPS (Figure 2.5), provides the driver with feedback about best speed, gear and acceleration rate for corresponding route segments. For the system to determine Figure 2.5: Vexia Econav system [START_REF] Vexia | Vexia econav[END_REF] optimal operation the driver has to input his vehicle's manufacturer and the model.

Unfortunately no information on the optimization process was found.

Several car manufacturers are now developing their own built-in eco driving assistance systems. These use specic drive train and engine parameters. Porsche 2 is in the process of developing their ACC InnoDrive [START_REF]Acc innodrive[END_REF]. The system, currently still in the testing phase, is using radar data, road grade and route prediction to propose a velocity prole and gear choices to the driver. While Porsche is not necessarily trying to reduce the environmental impact of their vehicles, reducing fuel consumption come as an advantage when looking at long distance racing competition. The Porsche ACC InnoDrive is supposed to reduce fuel consumption by 10% and is implemented in conventional drive trains as well as their electric and hybrid vehicle architectures.

Post-trip support systems

Giving real-time, instantaneous advice to a driver can be dicult due to missing trip information and potential safety risks. Post-trip support systems are therefore a good alternative to advice the driver about ecient driving. There are now several car manufacturers, like Fiat and Nissan, that develop and integrate vehicle specic eco driving support systems in their vehicles.

The Fiat EcoDrive is a post-trip advisory system, that can be used with the Fiat 500 and Fiat Grande Punto models [START_REF] Fiat | [END_REF]. The trip data is transferred by USB With the increasing number of smart phones there are several nomadic applications that can be downloaded to cellular phones. Two sample applications, the GreenMeter [7] and the TripAlyizer [7], are shown in Several other post-trip support systems to reduce energy consumption exist. For companies with vehicle eets eco driving can be a simple way to reduce their operating cost. With this in mind eco driving support systems like the Earthrise Technologies' EcoWay [7] and the GreenRoads-Safety Center [7] were developed for eet applications. 

Conclusion

As previously presented, there are several driver support systems implemented to reduce energy consumption. In Table 2.1 a summary of the discussed representative systems can be seen. The computational eort of the systems was rated as well as their need for advanced inputs from the vehicle or GPS devices. It can be seen that, while informative systems result in small computational eorts and rarely require vehicle input, the advisory systems and in particular advanced driver assist systems require a lot of information in order to function. In addition heavy computing algorithms are commonly applied to treat the information and identify detailed driver advice. In the following we will discuss algorithms used to determine appropriate vehicle operation.

Optimal vehicle operation

There are two dierent ways that can be used to compute fuel reducing vehicle operation. The rst method, here called Rule Based Evaluation, uses rules that can be applied depending on the state of the vehicle. This method is easily implemented in support systems or taught to drivers, but such methods are usually Overview of fuel eciency support systems sub-optimal. A second method is to develop a model of the vehicle and to apply a mathematical trajectory optimization to a specic mission. This method is not simple to be implemented in real time due to the fact that knowledge about the trip has to be provided. However, if a suciently accurate system model is used the result can be considered optimal. In Section 2.2.1 a literature review of rule based evaluation methods is presented. Works on trajectory optimization methods were reviewed in Section 2.2.2.

Rule based evaluation

Basic eco driving rules have been developed and published by several associations [START_REF] Acea | Eco-driving' is easy to apply and has signicant, long-term eects[END_REF] and automobile manufacturers [START_REF]10 eco-driving tips for everyone[END_REF]. These generally state that, in order to drive economically, the driver should:

• Anticipate trac ow

• Maintain a steady speed

• Shift up early

• Check tire pressure frequently

• Avoid extra weight

Mostly eco driving rules such as these are given in a very general way, such that they can be applied by any driver to any type of vehicle. Mostly such rules are developed using common sense and some knowledge about the physics in the system. Anticipating trac ow can reduce energy wasted on accelerations, when the vehicle will need to slow down due to trac in front. Assuming that a conventional vehicle is used, the internal combustion engine achieves its highest eciencies at high torque, low speed operation. Higher gear engagements will therefore result in better overall system eciency. Maintenance of a vehicle reduces energy consumption, but is also a task necessary for a responsible driver to improve safety.

In addition, although it is sometimes not possible, in general it is easy for a driver to minimize the extra weight carried by his vehicle. With this the mass to be displaced is reduced and that will lead to lower energy consumption.

One way to determine appropriate rules for vehicle operation is to look at the losses and operation principle of each component in the vehicle drive train. With this certain rules, like ecient gear shifting, can be xed. However, using this approach, the vehicle's mission is not taken into account. A second method to determine important eco driving factors is to analyze experimental data and determine for which vehicle operation the fuel consumption was reduced.

Ericsson [START_REF] Eva | Independent driving pattern factors and their inuence on fueluse and exhaust emission factors[END_REF] used this approach in her work. In her study driving data from several cars circulating in a city was collected. Measuring several variables she could identify parameters such as acceleration with strong power demand, late gear shifting, time spend in a certain velocity range, time spend in some engine speed range, stops, speed oscillations and so on. She concludes her work with the specication of ve most important factors for fuel consumption and emissions.

Based on Ericsson's work Saint Pierre [START_REF] Saint | Caracterisation de l'ecoconduite et construction d'un indicateur dynamique pour vehicules thermiques[END_REF] used a statistical analysis to determine an eco factor using experimentally measured driving data. With this factor the eciency of the vehicle operation can be rated.

It is assumed that, due to the lack of a priori trip information most advanced driver assist systems apply a rule based method to compute the appropriate driver advice. In her thesis, van der Voort [START_REF] Voort | Design and evaluation of a new fuel-eciency support tool[END_REF], applied a rule based method in the FEST driver support system. In the FEST several vehicle states, such as 'deceleration phase' or 'cruising', are specied. The state the vehicle is currently in is determined using present information but also some history of the vehicle variables.

Appropriate vehicle operations were pre-dened for each state. When the vehicle state is determined the current vehicle operation is compared to the optimal vehicle operation. With this van der Voort uses a state machine approach to apply a rule based evaluation method in real time.

While rule based methods are more simple to be implemented they can only determine sub-optimal vehicle operation. Even if the instantaneous optimal vehicle operation is determined, a globally optimal result is not achievable since the vehicle's mission is not taken into account. Implementing this method in a driver support system the maximum potential gains of eco driving cannot be reached since the advice presented to the driver is already sub-optimal.
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Trajectory optimization

In the literature, trajectory optimization problems are very common. There are several areas of research that apply and develop mathematical methods to determine the, with respect to some objective, optimal trajectory. In robotics trajectory optimization problems are important for energy conversation and safety. Rocket scientists use trajectory optimization to determine the correct trajectory to send rockets into the orbit. In our work we will conne our review on trajectory optimization problems on the eld of ground transportation. Work on road vehicle trajectory optimization will be discussed in Section 2.2.3. In addition, relevant work on railroad vehicle optimization is presented in Section 2.2.4.

Road vehicles

The idea to optimize the velocity prole of a road vehicle in order to save fuel was rst investigated by Schwarzkopf in 1977 [START_REF] Schwarzkopf | Control of highway vehicles for minimum fuel consumption over varying terrain[END_REF]. Schwarzkopf used a polynomial model of the vehicle to calculate fuel consumption for a given vehicle state.

With this simplied cost function he used the Pontryagin's maximum principle, a method based on the calculus of variation, to minimize the fuel. Two scenarios were considered. First the energy to accelerate to a desired cruising speed was minimized. In a second problem the vehicle operation was optimized when driving over a hilly road. In Schwarzkopf's work the problem was stated with initial and nal conditions in distance, velocity and time. The goal of the study was to develop and/or verify empirical driving tips given at the time. The results showed that using such an optimization algorithm, appropriate vehicle operation can be identied and theoretically fuel can be reduced. Useful tips given by the author for implementation in real life driving include:

• Reduce speed before downhill section and increase speed on downhill [START_REF] Schwarzkopf | Control of highway vehicles for minimum fuel consumption over varying terrain[END_REF] In the middle of the 90th century another US researcher, Hooker [START_REF] Hooker | Optimal control of automobiles for fuel economy[END_REF][START_REF] Hooker | Optimal driving for single-vehicle fuel economy[END_REF], published his work on velocity prole optimization. While Schwarzkopf used a simple vehicle model, Hooker used experimental data to describe the energy consumption. From his previous experimental studies he integrated vehicle data to derive accurate fuel models dependent on the vehicle velocity and acceleration rate. In his paper [START_REF] Hooker | Optimal control of automobiles for fuel economy[END_REF] he considers four dierent optimization problems. The problem of nding the optimal cruising speed for a vehicle on a constant grade, the optimal way to accelerate a vehicle to a typical cruising speed, the optimal way to drive a block between two stop signs and the optimal way to drive over hills with a desired average speed.

In his analysis Hooker uses the Dynamic Programming Algorithm to solve the optimization problems in a 3 dimensional approach, where time is placed in the xaxis and velocity and position can be chosen as states at each time step. However, linked by the vehicle's dynamic equations, time, position and velocity are not three independent variables. Hooker therefore chose the velocity of the vehicle as the state at some time and uses nearest neighbor interpolation to x the distance to the predened grid. In his work, Hooker found the optimal velocity proles for 15 previously experimentally identied cars. Comparing fuel economy versus trip time he states that there is an unique optimal driving prole for time and fuel.

Covering a distance in shorter time results in higher fuel economy due to high acceleration rates, while a longer travel time results in more losses due to engine idling. In comparing the vehicles he used, he found that optimal cruising speeds • deceleration without shut-o engine (zero engine power)

• emergency deceleration without shut-o engine (zero engine power)

• emergency deceleration braking

• constant velocity running

• full-throttle acceleration Emergency deceleration phases are never utilized if the nal velocity is not significantly less than the initial velocity.

All research in this eld up to the year 2003 considered vehicles with internal combustion engines as power source. In 2003 a paper published by Guzzella, Sciaretta and van Balen [START_REF] Sciarretta | Fuel optimal trajectories of a fuel cell vehicle[END_REF] rst considers the problem of nding the fuel optimal trajectory for a fuel cell powered vehicle. Applying numerical optimization methods the optimal velocity prole is found for a trip over a route with xed average speed and for a cyclic route problem.

The dynamic programming optimization method was also applied to the fuel optimal routing problem over a complex terrain by Tsao [START_REF] Tsao | Trajectory generation for vehicle moving with constraints on a complex terrain[END_REF]. In Tsao's work the fuel consumption is optimized in a time independent way, while considering the grade angle of a complex terrain without road system. In his paper he includes fuel levels as a constraint in his optimization. There are specied points on the grid dened to be refueling stations. The algorithm Tsao developed rst evaluates if the vehicle has enough fuel on board in order to perform the fuel optimal route. If the vehicle would run out of fuel the route is recomputed with an obligatory stop at a fueling station within reach. The concept is illustrated in Figure 2.9, where Figure 2.9: Complex terrain with fueling stations by Tsao [START_REF] Tsao | Trajectory generation for vehicle moving with constraints on a complex terrain[END_REF] the left graph shows the solution when the amount of fuel on board is not considered. The right graph presents the solution when the amount of fuel is considered and the fuel in the tank was not sucient to perform the trip. In this solution the route is altered and the vehicle stops at a fueling station, here shown as a dot. This optimization problem can become interesting when looking at electric vehicles, where the autonomy is one of the concerns of people. In 2008 velocity prole optimization was applied to the route of a city bus. Using the predened longitudinal prole of city buses the publication by Nouveliere [START_REF] Nouveliere | Fuel consumption optimization for a city bus[END_REF] investigates fuel economy improvements in optimizing the velocity trajectory of a bus. Using the dynamic programming optimization approach the optimal velocity prole is found for all states in speed and distance in advance. Since a driver can not accurately follow the desired optimal velocity prole the current actual state in velocity and distance is used to update the desired optimal velocity trajectory from the precomputed result.

In the last ten years there has been a lot of research in the area of adaptive With the scarcity of fossil fuel hybrid vehicles have become more and more common. In 2010 Keulen published his work to show that velocity trajectory optimization can improve fuel economy of hybrid electric trucks [START_REF] Thijs Van Keulen | Optimal energy management in hybrid electric trucks using route information[END_REF][START_REF] Thijs Van Keulen | Velocity trajectory optimization in hybrid electric trucks[END_REF]. In his papers

Keulen uses previous research studies to dene the general shape of the optimal velocity prole. In Figure 2.10 the shape of the optimal prole used in Keulen's work can be seen. Using a predened prole he reduces the optimization process to the search of 4 parameters, the constant velocity v cr , the electric machine use during coasting P em , the velocity v d where maximum power deceleration starts and the end velocity v e which equals the start velocity v s of the next cyclic section. He solves the optimization using a nonlinear optimization based on Matlab's 'fmincon' command. While a lot of research has been done on energy management strategies for hybrid vehicles not many studies were published on the trajectory optimization problem for hybrid vehicles. In literature no work was found where a pure trajectory optimization problem for a manufactured hybrid vehicle is discussed. Like in Keulen's work, all studies treating hybrid vehicles approach the problem as one overall optimization where energy management is optimized together with the velocity prole. However, hybrid vehicles sold today already have a control strategy for energy management implemented. It is therefore necessary for the application in an eco driving support system to separate optimal operation of the vehicle from energy management in the drive train.

When studying trajectory optimization for road vehicles it can be helpful to investigate how trajectory optimization problems for railroad vehicles were resolved.

With new drive trains, such as the hybrid and electric vehicle, the ability to recover energy will play a role in the process of nding the optimal operation. Therefore it can be interesting to look at studies treating railroad vehicles, since electric energy Figure 2.10: Predened velocity prole by Keulen [START_REF] Thijs Van Keulen | Optimal energy management in hybrid electric trucks using route information[END_REF] recovery has been a subject for some time in this eld. With a lot of literature available on railroad vehicle optimization the following section only gives a brief overview of some interesting applications.

Railroad vehicles

Research on possible improvements in energy consumption for trains has started in 1968, when Ichikawa [START_REF] Ichikawa | Application of optimization theory of bounded state variable problems to the optimization of train[END_REF] Principle to solve the problem. Golovitcher nds that optimal control has to be a combination of 5 states, namely: FB (full braking), PB (partial braking), C (coast), PP (partial power), FP (full power). Howlett [START_REF] Howlett | Local energy minimization in optimal train control[END_REF][START_REF] Howlett | Optimal strategies for the control of a train[END_REF] on the other hand identies the optimal control for a track without slope to consist of the sequence power, hold, coast, brake. Dependent on the desired nal time the length of the coast phase changes. In Figure 2.11 various optimal velocity trajectories to drive Figure 2.12: 3 dimensional Dynamic Programming by Miyatake [START_REF] Miyatake | Optimization of train speed prole for minimum energy consumption[END_REF] a distance of 10000m for desired nal times can be seen. In red here the velocity prole chosen if time is supposed to be minimized.

While both of their initial works were on trains without energy regeneration after 1990 their simulations included energy recuperation of the electric locomotive.

Since 2004 Miyatake [START_REF] Miyatake | Optimization of train speed prole for minimum energy consumption[END_REF][START_REF] Ko | Application of dynamic programming to the optimization of the running prole of a train[END_REF] published several papers on optimization of velocity proles of trains. In his analysis he uses a dynamic programming approach in a three dimensional way, as seen in Figure 2.12. This gave him more freedom to introduce constraint and his work shows that several factors, e. g. the internal resistance of the capacitor, have eects on the results. ciple is applied in cases where the considered problem is rather simple. When complex, detailed models of the system are used and various constraints are to be integrated, commonly the dynamic programming method is applied. The computational cost is therefore higher, but the method allows us to easily integrate complex constraints.

Conclusion

We can conclude from this literature review that eco driving represents a good way to reduce energy consumption for the transportation sector. However, eective driver support systems are necessary to guide and remind the driver about the optimal operation of the vehicle.

It has been shown that there are several informative and advisory driver support systems that can be used to reduce energy consumption. While most systems transmit information using the visual way, there are some approaches where advice is given the auditory way or with the use of haptic devices. Advanced driver assist systems that use detailed vehicle and trip information to transmit computed best vehicle operation to the driver, have been investigated. More complex systems are able to give detailed information to the driver, but, to do so, they need to be provided with more specic information. A major diculty with ADAS systems seems the design of an appropriate human machine interface (HMI), which is critical for the eectiveness of the system. A second important aspect of an ADAS system is the evaluation of best vehicle operation. is not trivial to be used with complex cost functions and problems with constraints.

With this approach it is often dicult to capture all loss phenomena of the system.

To complement existing studies this thesis work investigates three main areas.

First, we want to determine potential gains of eco driving by identifying drive train specic optimal vehicle operation. Secondly, we will evaluate the eects of constraints on potential gains and optimal vehicle operation. Finally this work proposes a way to integrate numerical optimization algorithms in the development of an eective driver support system.

Eco driving is well known to reduce fuel consumption for conventional vehicles.

While the operation of the traditional car might be somewhat intuitive for a driver, the ecient operation of new technology drive trains can be a challenge. Inte- While most work on eco driving assumes optimal conditions this thesis shows an approach to determine more realistic vehicle operation by integration of constraints. Initially maximum potential gains are identied considering trip and road constraints, such as speed limits. This can help to identify an upper limit for possible fuel savings. However, it does not give realistic approximations of realistically reachable consumption. In this work we will evaluate the eects of trac on potential fuel savings due to eco driving.

grating
Another constraint that should be considered when eco driving strategies are computed are environmental constraints. While most work presents eco driving as a solution to environmental problems in the transportation sector, emission constraints were never integrated. With this thesis we aim to evaluate economic and ecologic aspects of eco driving. An approach to integrate emission constraints in eco driving optimization algorithms is proposed.

Our literature review showed that several driver support systems for eco driving exist. While the algorithms integrated in advisory systems are usually simple, we can nd many works on trajectory optimization for road vehicles. In our work we want to combine the theoretical work with an implementation in a handy advanced driver assist system. With the development of a practical human machine interface we present an approach to integrate complex optimization algorithms in a driver support system.

To summarize, the original contributions of this work are:

• Potential gains of eco-driving are determined with use of physical vehicle models (conventional, electric and hybrid vehicle) at required level of detail 

Direct and inverse modeling

To simulate dynamic systems there are two dierent modeling approaches that can be applied. Using direct modeling the system is modeled with its natural input, following the energetic ow, to the output. Inverse modeling is what we call a model, where the inputs and outputs of the system are inverted. This means that we assume an output, back-calculate component operation opposed to the energy ow, to identify the required input.

Figure 3.1 shows the dierence between the two modeling approaches for the specic case of a road vehicle. In the upper graph the direct modeling method can be seen. The driver species the inputs to the system, which are accelerator pedal, brake pedal, possibly clutch and gear, and auxiliary use. With these inputs the drive train operation can be computed, and the drive torque propelling the vehicle is determined. The output of the model is a resulting vehicle speed and acceleration.

In the inverse modeling approach a desired vehicle operation is specied as input.

The chassis and drive train component operation is back calculated to identify the necessary power output from each component. In a conventional vehicle, for An advantage of inverse modeling is to eliminate the human driver in the computation process. Component operation can be computed for an exact vehicle operation without uncertainties due to the human driver behavior (driver feedback that enables a specied prole to be tracked). However, in order to uniquely specify system operation it is often necessary to make several hypotheses on some control variables. For the conventional vehicle a driver usually species acceleration, friction braking, clutch and gear selection. In the process of inversion the necessary engine and brake inputs are easily identied. In our approach hypotheses were dened in order to specify clutch and gear operation. Since the goal of this study is to determine energy ecient vehicle operation, the engaged gear was specied such that fuel consumption was minimized. The clutch was assumed to be fully engaged, unless the shaft output speed dropped below idle. In this case minimum engine speed was dened to be engine idling speed, and the clutch is slipping.

The electric vehicle seems to be the simplest of the three drive train systems for inversion. Since no gear box and clutch exist in the drive train, it is unnecessary to make hypotheses. The electric motor and mechanical brake operations can be determined given the vehicle operation. In the case of the hybrid vehicle the operation of several power sources have to be computed, given vehicle operation. Although the driver only species acceleration and braking the inversion process of this vehicle drive train is not trivial. The operation of the vehicle is usually determined by the electronic control unit (ECU), which uses the driver inputs as well as battery state of charge. In a model inversion we need to assume that battery state-of-charge is known downstream from the ECU at the drive train output. This is necessary to identify the correct power split and to compute the appropriate component operation. The inverted hybrid vehicle model is presented in detail in Section 3.5.

Another input that is common for all vehicle drive trains is the auxiliary power, which depends on the driver's use of vehicle accessories, such as radio, lights, and others. In our work a constant auxiliary output power was specied in the inversion process:

P aux = 300W (3.1) 
In Figure 3.2 a generalized schematic of a vehicle's drive train can be seen. We can see that, generally, the driver input is used in the drive train to determine component operation. The drive train then transmits the drive torque to the wheels, where it is used to propel the vehicle chassis through the road contact. In the following a general model of a vehicle chassis will be constructed. The detailed, inversion based model of the drive train for each vehicle type will be discussed in Sections 3.3-3.5.

Vehicle chassis modeling

Constructing an inversion based chassis model, the goal is to determine the necessary drive train output torque T drive as a function of specied vehicle speed v and acceleration a. In the following we will proceed to construct a direct chassis model which will be inverted.

Dynamics of chassis

The motion of the chassis is a result of the forces acting on it. In our work only longitudinal forces are considered in order to determine the vehicle's longitudinal motion. Using Newton's second law we can write

M vehx a x = F x (3.2) = F drive -F res (3.3) 
where M vehx = M veh is a lumped parameter representing the mass that is to be accelerated, a x = a species the vehicle's longitudinal acceleration and F x the sum of forces along the longitudinal axis. The drive force F drive , generated by the vehicle's drive train, is used to propel the vehicle and to overcome the resistance forces F res , that are generally opposing the direction of motion. In this energetic model no slipping of the wheel, on the contact patch between road and tire, is considered. With this hypothesis we can dene a relationship between vehicle motion and wheel rotational speed ω wheel using the tire radius R tire :

ω wheel = v R tire (3.4) ωwheel = a R tire (3.5)
The inertia to be accelerated can be described by a lumped parameter, considering vehicle weight and wheel inertias: 

J veh = M veh R 2 tire + 2J tire (3.6)
J veh ωwheel = T drive -F res R tire (3.7)
where T drive species the drive train output torque, which is positive in the acceleration phase and negative when braking. Inverting Equation 3.7 and assuming that there is no slipping between the tire and the road (Equation 3.4-3.5) the drive torque required for a given vehicle speed and acceleration can be determined by

T drive = f (v, a) (3.8) = J veh a R tire + F res (v)R tire (3.9)
where the resistance forces F res depend on the vehicle speed and can be computed as a sum of rolling resistance, aerodynamic drag and road grade.

Resistance forces

In Figure 3.3 a vehicle chassis driving on a non-at road can be seen. The schema shows the resistance forces due to rolling resistance, aerodynamic drag and road grade on the chassis.

Rolling resistance is a force that exists due to the deformation process of the tire between the vehicle and the road. Although it depends on many parameters, such as the tire pressure, tire wearing and road quality, it is generally approximated by

F roll = C r M veh gcos(α) (3.10)
with C r , the coecient of rolling resistance, which is dependent on vehicle load and wheel radius. g represents the gravitational constant and M veh the vehicle's mass including the chassis, drive train, engine and passengers. On a non-at road the road grade α has to be taken into account in the computation of rolling resistance because the downward force due to gravity is not orthogonal to the road surface.

The rolling resistance is independent of the vehicle operation and can therefore not be inuenced by the driver throughout a trip. However, it is obvious that it changes with the vehicle's load. Reducing vehicle weight will reduce the energy needed to overcome rolling resistance. The vehicle's weight, however, inuences the maximum force that can be transmitted by the wheels to the vehicle.

The aerodynamic drag is a force that manufacturers are often trying to reduce with aerodynamic vehicle designs. The aerodynamic drag is dependent on air density ρ, the vehicle's drag coecient C d , and the vehicle's frontal surface A. Given the vehicle speed the force can be computed by

F aero = 1 2 ρC d Av 2 (3.11)
In Figure 3.4 the power due to aerodynamic drag for various speeds can be seen for dierent vehicles [START_REF] Bosch | Bosch Automotive Handbook[END_REF]. Dependent on the vehicle's shape the drag coecient changes. In this graph four dierent types of chassis are plotted for comparison.

For example the aerodynamic drag coecient of a Hummer H2 truck lies at 0.57, while a station wagon, like the Audi A5, only has a drag coecient of 0.33. A very aerodynamic vehicle, like the Volkswagen XL1 can have an aerodynamic drag coecient of 0.19 [START_REF]Wikipedia-The free encyclopedia[END_REF]. Changing the shape of the vehicle, automotive engineers can improve the drag coecient and therefore reduce energy consumption of the vehicle. However, much larger savings in energy can be made by reducing the vehicle's operating speed. From Figure 3.4 it can be seen that aerodynamic drag grows quadratically with speed. Particularly at high speeds it becomes obvious that by a small reduction in vehicle velocity large amounts in energy can be saved.

When driving on hilly roads the force due to road grade has to be taken into account when modeling the vehicle chassis. When driving on a road with slope α road the resistance force due to grade is calculated by 

F grade = M veh gsin(α road ) (3.12)
Naturally the grade resistance force acts as an accelerating force on downhill roads and slows the vehicle down on uphill sections. In order to reduce overall energy consumption for a trip it is expected that reducing vehicle speed on uphill sections and accelerating on the downhill parts and therefore converting the potential energy in kinetic energy, would be optimal.

Conventional vehicle

In this thesis gains of eco driving for passenger vehicles are discussed. A small conventional passenger vehicle was therefore chosen for modeling and testing. In 

ω eng = max(ω eng-idle , ω wheel * R F D * R G (i gear )) (3.13)
where ω eng-idle species the engine idle speed and R F D and R G (i gear ) dene the ratio of the nal drive and the selected gear. Power losses exist in the clutch when the clutch plate is slipping. Simulating the eciency of the nal drive η F D and the selected gear η G(igear) , the drive train output torque can be translated to the engine output shaft by:

T driveeng = T drive R F D η ψ F D R G (i gear )η ψ G (i gear ) (3.14)
Here η G and η F D are the eciencies of the gear ratio R G and nal drive reduction ratio R F D . The eciency of the dierential is assumed to be constant with respect to speed and torque. A unique eciency η G (i gear ) for each gear is xed. Each gear's eciency is assumed to stay constant for the entire range of operating speed and torque. The parameters ψ depends on the energy ow and is dened by

ψ = 1 if T drive is positive -1 if T drive is negative
The dynamics of the internal combustion engine can be described with

J eng ωeng = T eng -T driveeng -T aux (3.15)
The load torque due to the auxiliaries is simply determined by T aux = Paux ωeng . Inverting Equation 3.15 the engine torque can be computed as a function of wheel torque

T eng = T drive R F D η ψ F D R G (i gear )η ψ G (i gear ) + P aux ω eng + J eng ωeng (3.16)
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Engine modeling

The engine that was integrated in the Peugeot 308 passenger vehicle is the, by Peugeot and BMW developed, EP6 engine. It is a 1.6L gasoline engine that can provide a maximum torque of 160Nm at 4250rpm and reaches its maximum output power of 88kW at 6000rpm. The engine is modeled using an engine consumption map, which was previously identied experimentally on an engine test bench. A graph of the engine specic fuel consumption can be seen in Figure 3.7. In this graph the upper, blue line shows the maximum torque that the engine can provide for a given speed. When injection is cut and the vehicle is 'driving' the engine, the engine output torque is negative. The engine minimum torque is shown as a blue dashed line. In conventional vehicles the driver can inuence the point of operation of the engine with the gear choice. While hybrid vehicles or continuous variable transmissions can push the engine operating point to its optimal, the manual 5-speed transmission gives only a discreet choice of engine operations. Operating a vehicle in the appropriate gear gives the driver an immediate way to reduce fuel consumption.
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In Figure 3.7 the engine operating point for gear 2 to 4 were plotted for a vehicle speed of 50km/h and an acceleration of 0.2m/s2 . It can be seen that if the driver chooses to operate the vehicle in 2nd gear the engine consumes around 400g of fuel per kWh. However, when a higher gear is engaged the fuel consumption of the vehicle for the same velocity and acceleration is lower. In third gear only about 350g and in 4th and 5th less than 300g per kWh is needed. To eliminate driver input for gear choice, we assume in this work that an eco driver will always want to choose the most ecient gear. After calculating the fuel consumption for all ve gears the optimal gear, which means the one with minimal fuel consumption, is therefore chosen. With this the instantaneous fuel consumption of a conventional vehicle can be computed as a function of vehicle speed and acceleration by

ṁfuel = min igear ṁfuel (T eng (i gear ), ω eng (i gear )) (3.17) = f (v, a) (3.18) 

Electric vehicle

In the last years electric vehicles have become more and more popular. There are now several car manufacturers that have electric vehicles on the market. The electric vehicle has gained in popularity due to its exibility in energy source. While conventional vehicles commonly only use non-renewable fossil fuels the electricity used as energy source in this drive train can be generated from several dierent, renewable or non-renewable, sources.

The electric vehicle presented here is a test vehicle used at the IFSTTAR laboratory. The electric Mega City produced by AIXAM 2 can be seen in Figure 3.8.

The vehicle is a small vehicle with a weight of 750kg. Identifying the appropriate rolling resistance coecient and drag coecient the vehicle's chassis can be modeled as described in Section 3.2. Given the vehicle operation in speed and acceleration the drive train torque is computed. In the following the model for the electric drive train is derived.

Chapter Given the vehicle's wheel speed ω wheel and the drive torque at the wheels T drive , the operation of the electric motor output shaft is computed by

ω EM = ω wheel R F D (3.19)
Figure 3.9: The Electric Vehicle Drive Train

T drive EM = T drive R F D η ψ F D (3.20) 
where η F D denes the eciency of the dierential with ratio R F D . ψ is dened by

ψ = 1 if T drive is positive -1 if T drive is negative
The dynamics of the electric machine can be described by

J EM ωEM = T drive -T drive EM (3.21)
where J EM denes the inertia of the electric motor. Without any further assumptions we can now invert the vehicle model, using Equation 3.19-3.21, to compute the torque of the electric motor as a function of drive torque necessary for a specied vehicle operation.

T EM = T drive R F D η ψ F D -J EM ωwheel R F D (3.22)
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Modeling of electric components

The eciency of the electric motor and the converter are simulated combined, with an experimentally identied loss map. The eciency of the motor/converter unit in dependency of operating speed and torque can be seen in Figure 3.10. The upper and lower blue lines mark the maximum and minimum torque envelope. It can be seen that the functionality of this electric drive unit is very dierent to that of an internal combustion engine. While an engine cannot provide torque at low speed and in fact will turn o if speed drops too low below idle, the electric motor can provide its maximum torque at low speeds. In comparison, the gasoline engine, where the eciency lies below 34%, the electric motor can reach up to almost 80%. While the thermal engine reaches high eciencies at high torque, low speed ranges, the electric motor operation is optimized in the higher speed area.

Using a loss look-up table, the power losses of the electric motor P lossEM can be computed as a function of torque and speed using interpolation methods. The driver is assumed to consume constant auxiliary power dened by P aux . The demanded battery output power can now be calculated by:

P battout = T EM ω EM + P lossEM + P aux (3.23)
The battery is modeled with a simple electric circuit, as presented in 

P battout = V OCV I batt -I 2 batt R (3.24) = U batt I batt (3.25)
where U batt is the battery output voltage and I batt is the battery current. The battery power used can then be computed by

P batt = V OCV I batt (3.26)
Given the faradaic eciency (η f ar ) and the nominal capacity of the battery C ah , the instantaneous consumption of battery charge ∆SOC can be computed by

∆SOC = -η f ar I batt /3600∆t C ah /100 (3.27)
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Given the vehicle velocity and acceleration, Equations 3.4-3.12 together with Equations 3.19-3.26 can be used to calculate the instantaneous power output from the battery for the specic electric vehicle:

P batt = f (v, a) (3.28) 
In the electric drive train the operation of the electric motor/generator is reversible.

With this the kinetic energy of the vehicle can be used to charge the battery when braking. Some electric vehicles use so-called regenerative brake pedals. In such vehicles the electric generator is used to apply a negative torque on the wheels when braking. Due to safety restrictions it is not allowed to replace the entire friction brake system with electric, regenerative braking. Therefore, using a regenerative brake pedal, implies that a control strategy is implemented to specify mechanical and electric braking. A simpler approach, where no regenerative brake pedal is used is therefore often implemented. While using the brake pedal only for mechanical friction braking, these vehicles simulate an electric 'engine braking' as in conventional vehicles. When taking the foot o of the accelerator pedal a load is simulated by applying a negative torque on the wheels through the electric generator. In the here considered electric vehicle a constant electric braking torque of 17Nm is applied when the vehicle is in coasting. With this, the vehicle has a low deceleration rate which is used to recover energy. However, once the driver steps on the brake pedal the friction brake is applied and energy is lost in heat.

The exibility in energy source and the ability to recover kinetic energy are advantages of the electric drive trains in comparison with the conventional vehicles, where the combustion process is not reversible. However, driving an electric vehicle also comes with disadvantages. First of all, obviously energy is still necessary to operate the vehicle. And while the number of vehicles is growing and researchers are searching for alternative, renewable energy sources, the amount of energy used to drive electric vehicles should not be neglected and/or wasted. Nevertheless, the major disadvantage of the electric vehicle is its autonomy and charging time.

A simple comparison: In general a passenger vehicle has a fuel tank of abound 50L. Gasoline fuel weighs around 720g per L. A compact passenger car can usually be driven on about 6-7L/100km. With this a conventional car has a range of 700-800km per tank that initially weighs 36kg and can be relled at any of numerous gas stations in a few minutes.
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For the case of an electric vehicle recent technologies are using lithium ion batteries, which can have an energy density of up to 200Wh/kg. The Renault Zoe 3 electric vehicle is a small passenger car that has recently been released. While the vehicle's range on the standard test cycle (NEDC) is 210km, Renault announces a range of 100-150km dependent on utilization [START_REF]Renault zoe the electric supermini for everyday use[END_REF] for the 22kWh lithium ion battery pack. The battery, weighing around 300kg, therefore gives the driver a driving range around 5 times smaller than the gasoline vehicle for a weight 6 times the fuel tank. In addition, electric vehicles have to carry the dead weight of an empty battery since its weight is not reduced when discharged. While the range is smaller for the electric vehicle the charging can take anywhere from 1-8h for a full charge.

It can be seen that, when using electric vehicles, energy consumption can become a very important factor. It is therefore important to identify the most ecient operation of the particular vehicle. Eco driving with electric vehicles can minimize energy consumption in order to maximize the vehicle's operating range.

Hybrid Vehicle

The hybrid vehicle has become a popular solution for manufacturers to meet higher fuel consumption and emission standards. By denition, a hybrid vehicle is a vehicle that contains two or more power sources. The solutions on the market today combine the internal combustion engine with an alternative power source like a ywheel, a hydraulic accumulator, an electric battery or a fuel cell.

The ywheel stores energy in the kinetic energy of a mass spinning at high speed.

This energy can be reused to boost the vehicle in the acceleration phase. This system is used in the Formula 1 to improve the vehicle performance [START_REF] Williams | Williams hybrid power[END_REF]. When the alternative power is provided by a hydraulic system the energy recovered is stored in the compressed gas of an accumulator. The hydraulic hybrid solution is commonly used on heavy applications such as refuse trucks [START_REF] Gannon | Hydraulic hybrid eets hit the streets[END_REF] or delivery vans [START_REF] Epa | Clean automotive technology; world's rst full hydraulic hybrid in a delivery truck[END_REF] due to the high power and low energy density of the hydraulic system.

However, the solution can also be implemented in passenger vehicles [START_REF] Psa Peugeot | Hybrid air, une solution innovante full hybrid essence[END_REF].

For passenger vehicle applications the most popular solution is the battery electric vehicle. While there are still many disadvantage due to cost, weight and power 3 Renault Zoe Electric Vehicle http://www.renault-ze.com output of the battery the chemical energy storage seems to be the appropriate solution for small passenger vehicles. The algorithm presented in this thesis can be applied to any hybrid vehicle system but since this work focuses on passenger vehicle applications we will only consider electric hybrid vehicles in the following.

Hybrid vehicles reduce fuel consumption due to their ability to recover kinetic energy when braking. In addition, the alternative power source can be used to move the engine operating point to a more ecient region, which therefore improves system eciency. In a hybrid vehicle drive train, the power from the implemented sources is combined to generate the torque output at the wheel. Existing hybrid drive train congurations can be separated in three classes. In Section 3.5.1 a short review of the three hybrid architectures is presented. In this work the Toyota Prius hybrid vehicle will be used as an example of a hybrid vehicle. The construction of the drive train model is presented in Section 3.5.2.

Hybrid vehicle drive trains

Existing hybrid drive train vehicles are designed in parallel, series or power split conguration. In Figure 3.12 and 3.13 an electric hybrid drive train in each of the three congurations can be seen.

The rst graph in Figure 3.12 shows a drive train in series conguration. In the series drive train the mechanical power from the engine is transformed to electricity by an electric generator. The electricity is then used to either charge the battery or run the electric motor that is connected to the wheels. In a series conguration there is no mechanical connection from the ICE to the wheels. All the power used to propel the vehicle is transmitted through the electric path. With this approach Figure 3.13: The Prius power split hybrid drive train the engine operating point is entirely decoupled from the wheel operation. The ICE can therefore be run at the most optimal operating point to achieve maximum eciency. However, in this drive train the eciency of the electric motor/generator system is critical for overall system eciency. In addition vehicle performance is dependent on the performance of the electric components. This often results in either a low power system or a large, heavy battery system.

In Figure 3.12 the second graph shows the hybrid drive train in parallel conguration. In a parallel hybrid conguration the engine is coupled with the mechanical shaft to the wheel. The engine can therefore transmit power directly to the wheels.

An electric motor/generator is connected to the output shaft and contributes to the drive torque. With this conguration the engine operating point is not entirely decoupled from the wheels. With the electric machine the engine can only be assisted in torque, while the speed stays proportional to the wheel speed. All power is transmitted through the mechanical shaft, which has a very high eciency.

The third hybrid conguration, seen in Figure 3.13, is the power-split conguration. This conguration, often also referred to as parallel-series drive train, combines the advantages of the parallel and series conguration. In the powersplit drive train the engine operating point can be controlled to its optimal. But, if needed, all power can be transmitted from the engine to the wheels through the very ecient mechanical shaft. However, with the advantages of this drive train comes a system that is very complex and hard to control. For power-split Figure 3.14: Toyota Prius hybrid vehicles the control strategy is a critical factor that is important to achieve optimal system eciency.

The Toyota Prius was one of the rst hybrid vehicles on the market and still is one of the most common hybrid passenger vehicles on the road today. With its complex power-split drive train it will therefore be used in this work as representative hybrid passenger vehicle. In the following the drive train model will be presented and the control strategy, implemented by Toyota, is simulated.

Toyota Prius hybrid vehicle

The Toyota Prius II Hybrid Vehicle can be seen in Figure 3.14. The vehicle is a compact passenger car with a mass of 1360kg, which includes the battery and all other drive train components. As mentioned above, the vehicle is congured as a power-split hybrid drive train. A detailed schematic of the drive train components can be found in Figure 3.13.

The vehicle is driven by a 1.5L gasoline engine which operates on a high expansion ratio cycle [START_REF]Evaluation of 2004 toyota prius hybrid electric drive system[END_REF] and therefore achieves eciency values higher than a similar conventional gasoline engine. The power provided by the IC engine is split by the planetary gear set into electrical and mechanical path. The electric generator The vehicle chassis can be modeled similar to the conventional and electric vehicle chassis, using Equations 3.4-3.12 with experimentally identied aerodynamic drag and rolling resistance coecients. As with the conventional and electric drive train, it is assumed that the eciency η F D of the nal drive reduction R F D is constant with respect to torque and speed. The electric motor/generator (EM1) is connected to the output shaft and is therefore always turning with a speed proportional to the wheel speed. Given the wheel speed and torque the speed and torque of the ring side of the planetary gear can be computed by

ω ring = ω EM 1 = ω wheel R F D (3.29) T ring = T drive -T brakemech R F D η ψ F D -T EM 1 (3.30)
Here, T brakemech represents the mechanical brake torque, which is only non-zero if the minimum negative torque of the two electric motor/generators is exceeded.

In this power split drive train the power from the engine is split by a planetary gear set to the electric generator or the wheel output. A schematic of this gear can be seen in Figure 3.15. The planetary gear set has three inputs: the ring, sun and carrier/planet. In this work the gear set is modeled in a static way. With this assumption the geometry of the planetary gear results in two degrees of freedom in speed, but only one degree of freedom in torque. Hence, if one of the input torques is xed the remaining two can be calculated. The speed and torque relationship of the planetary gear set can be described by:

ω sun = R g ω ring + (1 -R g )ω planet (3.31) T sun = - 1 1 -R g T planet = 1 R g T ring (3.32)
where R g is the ratio parameter, which is calculated by R g = -T R T S with T R = 78, the number of teeth on the ring gear and T S = 30, the number of teeth on the sun gear. Implemented in the Prius vehicle, the sun gear is connected to the electric generator, the planet part is run by the engine and the ring gear is connected to the electric motor and the output shaft.

Given the engine speed (ω eng ) and torque (T eng ) the fuel consumption is calculated using a look-up table, that has been identied in experiments on an engine test bench. The electric motor and generator with their respective inverters are modeled using look-up tables to determine the power losses as a function of motor speed (ω EM 1,EM 2 ) and motor torque (T EM 1,EM 2 ). Given the motor/generator operation and the auxiliary power (P aux ) the battery operation is derived by:

P battout = T EM 1 ω EM 1 + P lossEM 1 + T EM 2 ω EM 2 + P lossEM 2 + P aux (3.33)
The battery is modeled with a simple electric circuit, including voltage source and a resistance, similar to the electric vehicle. The resistance changes with the state-of-charge of the battery. The control strategy is usually drive train specic and has a strong inuence on fuel consumption. In our work we assume that the control strategy of the vehicle is known. It can therefore be simulated but not altered.

P battout = V OCV I batt -I 2 batt R (3.

Prius control strategy

The control strategy implemented in the Prius II has been experimentally identied [START_REF] Vinot | Model simulation, validation and case study of the 2004 THS of toyota prius[END_REF] and will be integrated in the vehicle model. At this point it should be noted that this work does not optimize the energy management of the hybrid vehicle, but rather identies optimal utilization, given vehicle architecture and control strategy.

The Prius II is operated in two modes: the hybrid mode, where the engine provides power to the battery and/or the wheel, and the electric mode, where the engine is turned o and the electric motor satises the entire driver demand. The mode is chosen dependent on vehicle operation, battery state-of-charge and battery management system (BMS). In the following the two modes are discussed in more detail.

Chapter 3 Vehicle Modeling 65

Hybrid mode

The vehicle is operated in hybrid mode given that either the state-of-charge is lower than SOC minhyb or the vehicle speed exceeds maximum electric speed (v vehmaxelec ).

When the vehicle is operated in hybrid mode the engine is turned on and provides the needed power to charge the battery and to propel the vehicle.

The BMS computes the demanded power (P dembatt ) of the battery as a function of battery state-of-charge. The power losses (P loss ) in the system are estimated.

The total power required from the engine is determined by:

P reqeng = P out + P loss -P dembatt (3.36)
The engine speed and torque are chosen, such that the eciency of the engine is maximized along the constant power curve to provide P reqeng . With this the operation of all drive train components can be calculated given the vehicle operation.

Electric mode

In electric mode the engine is turned o and EM1 provides the output power. The operation of the drive train can be calculated using Equations (3.29)- (3.33) and

ω eng = T eng = T EG = 0 (3.37)
The vehicle is operated in electric mode if the battery state-of-charge is greater than the minimum state-of-charge boundary value (SOC minelec (Note:

SOC minhyb = SOC minelec , hysteresis)
) and the vehicle speed does not exceed

v vehmaxelec .
With this simulated control strategy the vehicle operation can uniquely be identied for any vehicle velocity and acceleration. With a complex drive train, like the power-split hybrid vehicle, it is hard to predict fuel optimal operation. Most ecient component operation for electric machines, battery and ICE is easily identied, however optimizing overall system eciency is very dicult. Due to this numerical optimization methods will be used to compute optimal drive train operation and to identify important factors for eco driving for hybrid vehicles.
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Dynamic vehicle simulation with Vehlib

In our approach inversion based modeling is used in the optimization process to identify a vehicle's optimal velocity trajectory without taking into account driver specic inputs. In the inversion process some dynamic phenomenons, such as dynamic gear changes, clutch engagements and the resulting torque interrupts, were omitted to simplify the simulation. In order to verify that the optimization results are realistically implementable a direct vehicle simulation software is used.

The Vehlib simulation software is a tool that was developed by the IFSTTAR laboratory for energetic simulation of drive trains. The software uses the Matlab simulink interface. With Vehlib component operation as well as energy consumption is computed for given drive cycles, which are specied in speed as a function of time. The direct vehicle simulation takes the speed prole as an input and uses a virtual driver to operate the vehicle in a realistic way. In order to follow the desired speed prole we represent the driver by a PID controller.

Due to its modularity the Vehlib library can easily be used to construct any kind of drive train. In Figure 3.17 the model for the conventional P308 vehicle can be seen.

Separating each drive train component comes with the advantage that any other conventional vehicle can easily be simulated simply by replacing the appropriate engine or gear box components. Similarly the electric and hybrid vehicles were simulated using modules of the appropriate electric machines and batteries. Most component models were identied using experimental data, which results in a very realistic loss approximation of the system.

The Vehlib simulation, while primarily used to verify energy consumption for computed velocity proles, was also used in the implementation process of this thesis work. Using the modularity of the software it can easily be adapted to a hardwarein-the-loop setting. The vehicle drive train simulation was used when verifying the vehicle performance on the engine test bench. A more detailed description of this setup will be discussed in Section 5.1.2.

In the scope of this work the Vehlib simulation software was adapted to be used in a driving simulator environment. This enabled us to experimentally test the developed advanced driver assist system for eco driving on the driving simulator.

Changes to the vehicle model and experimental results of these studies can be found in Chapter 7. 

Conclusion

The content of this chapter dealt with the modeling of the three main drive trains considered for optimization in this thesis work. The dierences and importance of inverse and direct model approaches were outlined. The modeling of the vehicle chassis was described. Using an inversion based model approach three dierent drive trains were modeled: the conventional, electric and power-split hybrid vehicle. The constructed models can be used to compute vehicle specic energy consumption for a given vehicle speed and acceleration. The direct Vehlib simulation software was introduced and will serve as a tool to verify and experimentally implement the resulting velocity proles.

Analyzing the physical models of the dierent vehicle drive trains the dependency of system eciency was discussed. It was found that the energy necessary due to the resistance forces acting on the vehicle chassis can be reduced with a smarter choice of vehicle velocity. This is a drive train independent factor that can reduce energy consumption. To identify most ecient system operation the losses in all components have to be taken into account. Inecient components, such as the internal combustion engine, have to be considered. For the hybrid vehicle the control strategy, which varies with battery state-of-charge, has a very strong inuence To achieve good results and accurately dene the best vehicle operation, we applied a mathematical optimization to the problem.

From the literature review in Chapter 2 it can be seen that several previous studies applied optimization methods to solve a trajectory optimization problem.

Chapter 4 Optimization 70 While most studies were searching for the energetically best velocity trajectory [START_REF] Schwarzkopf | Control of highway vehicles for minimum fuel consumption over varying terrain[END_REF][START_REF] Hooker | Optimal driving for single-vehicle fuel economy[END_REF][START_REF] Nouveliere | Fuel consumption optimization for a city bus[END_REF], others computed the time optimal speed prole [6163]. As shown by Stoicescu [START_REF] Stoicescu | On fuel-optimal velocity control of a motor vehicle[END_REF], using the decision variables time, distance and energy, there are several dierent optimization problems that can be dened. The objective of our work is to identify potential gains of eco driving for passenger vehicles. The objective to be considered is therefore limited to the vehicle's energy consumption for a trip.

In this chapter the optimization methods applied to solve the trajectory optimization problem will be outlined. The problem is dened mathematically in Section 4.1, where the cost function and optimization constraints are specied. To guaranty driver acceptability of an eco driving system we keep trip time constant between general driving habits and the energetically optimal velocity trajectory.

Initially, we therefore consider a xed time problem. In Section 4.2 a solution to the single-objective constraint problem is presented applying the dynamic programming method.

Some eco drivers might, however, accept increases in trip time with the goal to further reduce energy consumption. In Section 4.3 a multi-objective optimization problem is studied, where time and energy consumption is considered as cost. An optimization approach is shown, where the dynamic programming method is used to solve the multi-objective optimization problem without integrating a weighting factor. The constructed algorithm was also used to discuss the sensitivity of the optimal speed prole.

Problem denition

A road vehicle's longitudinal motion can be described using two state variables:

the distance d that the vehicle has traveled, and the vehicle's velocity v.

X = x 1 x 2 = x v (4.1)
The motion of the vehicle system is described by the following set of state space equations:
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˙ d v = 0 1 0 0 d v + 0 1 u (4.2)
where the input u is given by the acceleration a, which is a result of some power demanded by the driver. For optimization purposes it is often required to represent the system in discrete time form. Using the two states, distance d and velocity v, and the input variable, acceleration a, the vehicle's motion can be described in discrete time form by:

d i+1 = d i + v i ∆t + 1 2 a i ∆t 2 (4.3) v i+1 = v i + a i ∆t (4.4)
where ∆t represents the time step of the discretization.

Optimization objective

An eco driving driving style is generally assumed to be environmentally friendly.

However, usually the objective is to reduce energy consumption. Conveniently, for conventional vehicles reducing fuel consumption also reduces CO2 emissions. Still, we cannot assume that reducing energy consumption is equivalent to reducing our environmental impact. Since the economic advantage of eco driving is a strong motivator for people to apply it, we will start by dening our objective to be the energy consumption of the vehicle. The objective function is therefore specied by:

Γ 1 = t γ veh (t)dt ≈ n i=1 γ veh i (t i -> t i+1 ) (4.5)
where the value of γ veh depends on the vehicle's acceleration and speed. The continuous cost function is approximated as a discrete sum. In such an approximation the grid choice can be critical to achieve good results. The appropriate grid choice for this application is discussed in Section 4.2.2.
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The measure of γ veh changes with the drive train conguration. The objective function represents fuel consumption for the conventional, but represents electric energy for the electric vehicle.

γ conv veh (t) = ṁfuel i (t i -> t i+1 )∆t i (4.6) γ elec veh (t) = P batt i (t i -> t i+1 )∆t i (4.7)
For the hybrid case the objective takes into account a combination of fuel consumption and battery use. This will be discussed in more detail in Section 5.3.3.

γ hyb veh (t) = ṁfuel i (t i -> t i+1 )∆t i -α∆SOC(∆t i ) (4.8)

Optimization constraints

For real time applications of eco driving in a driver assist system, the optimization constraints have to be identied with the help of positioning systems, navigational systems and/or mapping services. With today's technologies, the driver's position and his route can be dened in advance using a destination input from the user.

With this, many constraints such as distance, speed limits and arrival times can be predened.

In this study the rst step is to identify potential maximum gains of eco driving. In order to discuss the gains of eco driving a baseline, to compare optimal operation to, has to be specied. Here, standard and real-life, experimental, drive cycles were used to represent ordinary driving. In Figure 4.1 a recorded velocity prole from a driver in an urban setting can be seen. In the following this velocity prole is used to dene the optimization constraints.

Trip constraints Initially, the driver's mission has to be dened. Using drive cycle data, as seen in 

d(0) = d 0 d(t f ) = d f (4.9) v(0) = v 0 v(t f ) = v f (4.10) t f = T (4.11)
It is assumed that the time is always initialized to zero. Dening these constraints we assume that the driver starts at some distance at a xed initial speed and arrives at the nal distance with a predened nal speed within some specied trip time. Many eco drivers might be willing to take into account time delays with the goal to reduce the energy consumption. Initially, it is here assumed that time is a xed trip constraint. With this, the driver does not have any disadvantages due to eco driving and gains in fuel consumption, that are solely due to eco driving, can be identied. To discuss the trade-o between fuel and time a multi-objective optimization is considered in Section 4.3.

Road constraints

In order to make a fair comparison between the driver's reallife vehicle operation and the optimal velocity trajectory, road constraints that Chapter 4 Optimization 74 limit the driver's choices, need to be respected. There are multiple possible road constraints. It is here assumed that all limiting constraints on speed, as for example speed constraints due to road curvature, are included in ocial speed limitations.

Due to the fact that speed limit data was not available for the considered drive cycle the limitations were approximated using the driver's velocity prole.

To specify the maximum allowable speeds, the legal speed limits in France were applied. While the lowest legal speed limitation is at 30km/h we used an additional, low speed, speed limit at 15km/h to simulate very slow driving in pedestrian zones or roundabouts. The resulting speed limiting vector can be written as v lim = [15, 30, 50, 70, 90, 110, 130] km/h. Since most drivers generally tend to exceed legal speed limits once in a while, it was assumed that a vehicle operation that exceeded a speed limit up to 3km/h was supposed to be within the lower boundary. The process of identifying the appropriate speed limit for some distance d i can be described in two steps:

• nd index j for which v lim (j -1) + 3 < v(d i ) and v lim (j) + 3 >= v(d i ) • v max (d i ) = v lim (j)
Establishing these rules the maximum velocity was computed as a function of distance. In Figure 4.1 the second plot (dashed blue line) shows the car's velocity as a function of distance. The imposed maximum speed limits can be seen in red (solid line). It is shown that, in addition to maximum speed limitations, the maximum speed limit enforces required stopping distances. If the real life driver had to stop the vehicle due to a stop sign or a red light, the optimal eco driving velocity prole will result in a stop at the same distance. In this study, no stop light timings were taken into account. It was assumed that the eco driver will have to stop at the same distances as the original driver. The computed optimal eco driving prole has to satisfy the following road constraint:

v(d i ) < v max (d i ) (4.12)
Another road specic parameter that is taken into account in this study is road grade. Due to changes in road grade the demand on the vehicle drive train changes for the same vehicle velocity and acceleration. Road grade therefore might have an eect on optimal vehicle operation. In our work road grade is integrated as an Chapter 4 Optimization 75 optimization input, rather than a constraint. The grade resistance force (Equation 3.12) acting on the chassis is determined as a function of road grade, which is a distance dependent variable.

F grade = M veh gsin(α road (d i )) (4.13)
Other constraints In addition to trip and road constraints, trac constraints represent an important factor for eco driving. Especially in an urban setting the trac has a strong inuence on the driver's vehicle operation. While trac is an unpredictable variable, it is important to consider it when talking about realistic gains due to eco driving. In Chapter 6 trac constraints will be introduced and the eect of trac constraints on potential eco driving gains will be discussed.

Eco driving is often considered environmentally friendly. However, in the majority of studies only energy consumption is minimized. Pollutant emissions are a second important factor. The impact of eco driving on emissions will be evaluated in Chapter 6. An approach to integrate environmental constraints will be proposed.

Single-objective optimization

In a rst analysis, we consider the single-objective optimization problem to minimize energy consumption. A variety of optimization methods are available to solve this problem. Heuristic methods as well as deterministic methods can be applied. With heuristic methods, such as for example the genetic algorithm [START_REF] Tian | An eective robot trajectory planning method using a genetic algorithm[END_REF],

the diculty consists in dening an appropriate evolutionary criterion. Heuristic methods might not determine the global minimum and dependent on the initialization parameters, the result can be a local minimum.

The trajectory optimization problem can be solved using deterministic methods like the Pontryagin's minimum principle [START_REF] Hellstroem | Horizon length and fuel equivalents for fuel-optimal look-ahead control[END_REF] or the dynamic programming method [START_REF] Hooker | Optimal driving for single-vehicle fuel economy[END_REF][START_REF] Monastyrsky | Rapid computation of optimal control for vehicles[END_REF]. From the literature review in Chapter 2 it can be seen that these two methods are most commonly chosen to solve trajectory optimization problems for ground transportation. The Pontryagin's minimum principle is based on the concept of Calculus of Variation. This approach has the advantage that the problem can commonly be reduced to an algebraic equation that can be solved in very Chapter 4 Optimization 76 little time. With this method constraints are not easily integrated. For complex problems it often becomes dicult to determine initial conditions that lead to an optimal solution, which satises all optimization constraints. The method is sometimes used in combination with evolutionary algorithms [START_REF] Conway | A survey of methods for the numerical optimization of continuous dynamic systems[END_REF] to determine appropriate initial conditions before solving the problem analytically.

The dynamic programming method is based on Bellman's Principle of Optimality [START_REF] Kirk | Optimal Control Theory: An Introduction[END_REF]. With this method non-linearities and optimization constraints are easily integrated in the optimization process. In general, the method breaks down a complex problem into smaller, simpler sub-problems, which can be solved recursively. The method leads to a functional equation that can easily be solved with the digital computer. If appropriate discretization is applied, dynamic programming generally identies the globally optimal solution. However, the disadvantage of the dynamic programming method is its 'curse of dimensions'. The time of computation grows exponentially with the problem's dimensions. With this, it often takes a lot longer to solve than when applying the Pontryagin's Minimum Principle.

In this work the dynamic programming optimization method was chosen due to the complex cost function of the system and the set of constraints. Using this method enabled us to implement similar optimization procedures for all vehicle types: the conventional, electric and hybrid vehicle. Due to the exibility of the method it was simple to integrate trip, road and any additional constraints that were studied.

In Figure 4.2 a general overview of the treated optimization problems can be seen.

Initially a three dimensional dynamic programming method [START_REF] Mensing | Vehicle trajectory optimization for application in ECO-driving[END_REF] was applied, in order to accommodate all constraints in time, distance and speed. With the goal to reduce computational time the optimization was later reduced to two dimensions by integration of a weighting factor. A nested approach, where the two dimensional dynamic programming method is integrated in combination with a root nding method, was applied to x all constraints in time, distance and speed. Finally, we will introduce a dynamic programming based method to solve the multi-objective problem without weighting factor. With this algorithm, computing the Pareto optimal front, the tradeo between energy consumption and trip time is discussed.

In addition, the method can be used to analyze the sensitivity of fuel consumption to changes in the optimal velocity trajectory. 

Three dimensional dynamic programming

In the dynamic programming optimization the search for the optimal trajectory is simplied using the Bellman principle while searching from the nal state backward in time. The Bellman principle states the following [START_REF] Kirk | Optimal Control Theory: An Introduction[END_REF]: 'An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the rst decision.'

The dynamic programming method generally consists of two parts. In the rst part possible states are searched backwards in time for the optimum while storing the indices. In a second part the optimal path is found by retracing the stored indices from the initial state to the nal.

The problem dened in Section 4.1 is solved while satisfying constraints in three dimensions. Although the system's motion can be described using two states, the three dimensional dynamic programming method was therefore used with the states distance d, velocity v and time t:

X =     x 1 x 2 x 3     =     t d v     (4.14)
Applying the optimization method the rst step is to discretize the state vectors over the desired range. In the following the notation X k,i,j refers to the state 

t(k) d(i) v(j)
X o =     t o d o v o     X f =     t f d f v f     (4.15)
Beginning the search for the optimal trajectory from the nal state the optimal

costs J * [N -1,i,j] = J [N -1,i,j->N,i f ,j f ] and indices I [N -1,i,j]
of the respective trajectories are stored for all possible states at the last time step N -1. The state transition diagram to visualize the process can be seen in Figure 4.3.

If we can dene the cost of J [N -1,i,j] , we can assume that the optimal trajectories for all possible values of i 2 and j 2 at some point in time N -k 1 + 1 are known and their costs to reach the desired nal state are given by J *

[N -k 1 +1,i 2 ,j 2 ]
. The optimal trajectory from some state X [N -k 1 ,i 1 ,j 1 ] to the nal state can then be found by comparing the sum of costs of the state transitions between

X [N -k 1 ,i 1 ,j 1 ] to X [N -k 1 +1,i 2 ,j 2 ] and the optimal cost from X [N -k 1 +1,i 2 ,j 2 ] to X f for all possible [i 2 , j 2 ].
The cost of the optimal trajectory at N -k 1 is given by:

J * [N -k 1 ,i 1 ,j 1 ] = min i 2 ,j 2 (J [N -k 1 ,i 1 ,j 1 ->N -k 1 +1,i 2 ,j 2 ] + J * [N -k 1 +1,i 2 ,j 2 ] ) (4.16) 
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Storing the costs J * [N -k1,i,j] and indices I [N -k1,i,j] for all k 1 , i, and j the optimal cost from X o to X f is found after N iterative steps. In order to nd the sequence of states used to result in the minimum cost the indices are used to retrace the trajectory.

Hooker [START_REF] Hooker | Optimal driving for single-vehicle fuel economy[END_REF] rst proposed in 1988 to apply a three dimensional dynamic programming method to optimize vehicle operation for several predened scenarios. Our approach is based on his work, and as he did, we here used the three dimensions time, distance and speed. Due to the dependencies of these three dimensions a free choice of distance and velocity at each time step is not possible. Choosing the desired vehicle velocity Hooker used interpolation to x the resulting distance, d i , for a given time, t i , and speed, v i , to the grid. In our studies it was found that the dependency of the three dimensions allows us to make an intelligent choice of grid size that makes interpolation unnecessary. The step size of each dimension is determined by the following procedure: optimal paths up to the (i + 1)th step and the initial conditions (at time i). Given these values the resulting system of equations consists of two equations with only one unknown, which is not solvable. Hookers publication [START_REF] Hooker | Optimal driving for single-vehicle fuel economy[END_REF] does not mention any adaptation of his calculation to this fact. In our calculation it was found that leaving the second to last iterative step (at t = 1) free, and independent of the grid, can ensure that all possible, computed trajectories can reach the initial state.

Initially v i is
This process is demonstrated in the following. Expanding Equations (4.3) and (4.4) for two time steps results in the following four equations: 

d i+1 = d i + v i ∆t + 1 2 a i ∆t 2 (4.20) v i+1 = v i + a i ∆t (4.21)
d i+2 = d i+1 + v i+1 ∆t + 1 2 a i+1 ∆t 2 (4.22) v i+2 = v i+1 + a i+1 ∆t ( 
d i+2 = (d i + v i ∆t + 1 2 a i ∆t 2 ) + (v i + a i ∆t)∆t + 1 2 a i+1 ∆t 2 (4.24) v i+2 = (v i + a i ∆t) + a i+1 ∆t (4.25)
With these two equations, which represent the second to last and last time step in the dynamic programming process, the two unknowns a i and a i+1 can be computed with the xed variables d i , v i , d i+2 , v i+2 , and ∆t. Using this concept all possible trajectories can be explored for optimality.
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Two dimensional dynamic programming

When implementing the dynamic programming method to solve an optimization problem the solution is found by strategically searching all possible solutions. The method looks at all possible state values at each step on the time-axis. This is why the computational cost of a three dimensional approach is much higher than that of a two dimensional method. To illustrate this 'curse of dimensions' we will look at an example.

We consider a problem dened in two dimensions, where the time-axis is discretized into N steps and at each step we have to choose from N state values. The dynamic programming method then searches N possible states at each of the N time steps.

The computational cost to nd the solution can be described by

N * N C = N 2 * C,
where C is the computational cost to calculate one edge. However, assuming the problem consists of three dimensions, then at each time step N there are N *N possible states to be investigated. The resulting computational cost becomes

N * N 2 C = N 3 * C.
The problem is solved in exponential time. The computation takes C * N x time, where x is the number of dimensions. Dynamic programming is therefore known as a weak NP (nondeterministic polynomial) complex problem.

In order to reduce computational time the two dimensional dynamic programming method [START_REF] Mensing | Trajectory optimisation for eco-driving -an experimentally veried optimisation method[END_REF] was therefore applied. In this approach the same strategy is implemented simplifying the search for the optimal solution by use of the Bellman principle. However, the search space is reduced to only two variables. Using the two state variables that describe the vehicle's motion, the distance d and velocity v dene the decision space. In Figure 4.4 the problem setup is illustrated.

X = x 1 x 2 = d v (4.26)
A state can be described by X j,i and initial and nal constraints are dened in distance and velocity. As for the three dimensional case, once the optimal costs J *

X 0 = d 0 v 0 X f = d f v f (4.27)
[N -1,i] = J [N -1,i->N,i f ]
for the second to last state are xed the problem can be solved recursively, while incrementing k 1 , by comparing the optimal costs of the possible choices at each step on the x-axis.

J * [N -k 1 ,i 1 ] = min i 2 (J [N -k 1 ,i 1 ->N -k 1 +1,i 2 ] + J * [N -k 1 +1,i 2 ] ) (4.28) 
Storing the costs J * [N -k,i] and indexes I [N -k,i] for all k, and i's the optimal cost from X 0 to X f is found after N iterative steps and the optimal path can be retraced.

With this approach the computational cost is signicantly reduced in comparison to the three dimensional method. But, as seen in the graph, the initial and nal conditions are only set in distance and speed, not in time. To implement a xed nal time a second term was introduced in the cost function of the optimization.

Adding the trip time with a weighting factor β in the objective function, the arrival time of the resulting optimal velocity trajectory can be controlled. The new objective function is specied by:

Γ 2 = d γ veh (d)dt + β∆t(d) ≈ n i=1 γ veh i (t i -> t i+1 )∆t i + β∆t i (4.29)
To compare the results between the three and the two dimensional method a simple trip was optimized for a conventional vehicle. Starting from rest a distance of 300m was covered to arrive at a full stop. For the three dimensional approach Chapter 4 Optimization For a β value of 0.9 the solution of the two dimensional dynamic programming method gave results very close to the three dimensional solution. We therefore compare the respective speed trajectories to analyze the dierences. Figure 4.6 shows the solution using the three dimensional algorithm in red. The vehicle arrives at the destination at exactly 30sec, as specied by the time constraint. The blue speed prole shows the solution using the two dimensional method with a weighting factor of β = 0.9. It can be seen that without time constraint integration, the vehicle reaches the destination in a shorter time and consumes slightly more fuel. From the graph it can be seen that the three and weighted, two dimensional solutions are very similar. 4.6 showed that the two methods give very similar results with respect to energy consumption and velocity trajectory. The variations are assumed to be due to the dierence in grid choice between the three and two dimensional method. The same grid choice is impossible for the two methods due to the fact that, in the three dimensional method the time step is set, however in the two dimensional method it is the distance step that is xed. For the two dimensional method it is necessary to specify the distance step suciently large, with respect to possible velocity changes, to enable the vehicle to accelerate and reach high velocities. The choice of distance and velocity are therefore not independent. While the increment in distance is chosen rather large the grid size of the velocity vector is kept small.

To identify the appropriate grid choice, dierent step sizes and their eect on fuel consumption and computational time were analyzed. The 300m problem was used with a weighting factor β of 0.9. In Table 4.1 the resulting fuel consumption values for dierent grid size combinations can be seen. Fuel consumption values seem to stabilize just above 15g of fuel for this trip. It can be seen that, once grid size becomes too small, the computational cost increases signicantly. For further computations we therefore specied the grid size to ∆ d = 5m and ∆ v = 0.2m/s.

A reduction from three to two dimensional dynamic programming using a weighting factor was rst proposed by Monastyrsky [START_REF] Monastyrsky | Rapid computation of optimal control for vehicles[END_REF]. However, in his work, Monastyrsky never mentioned how to specify an accurate weighting factor β to achieve a desired nal time. To solve the single-objective time constraint problem the weighting factor β has to be identied such that an optimization with cost function Γ 2 results in an optimal velocity prole that satises the time constraint (Equation 4.11).

In a real-time application the factor β could be directly dened by the driver.

With this parameter the signicance of time versus energy consumption for each individual driver can be described. However, to compare trips and compute gains due to eco driving it is important to respect the initial and nal conditions of the mission.

When a β is xed the optimization problem can be solved using the two dimensional dynamic programming method. As a result a velocity prole, which is optimal for some nal time T f , is computed. For a specied vehicle's mission the nal time can then be dened as a function of the weighting factor β:
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T f = f (mission, β) (4.30)
In our work, several methods to identify an appropriate weighting factor for a specied time constraint were considered. Initially a mapping technique was used.

This approach is presented in Section 4.2.2.1. As a second solution we propose in Section 4.2.2.2 to implement a nested technique, using the dynamic programming method in combination with root nding methods. Several root nding methods were discussed for their eciency when applied to the considered problem.

Mapping of weighting factor

Considering a problem where constraints are only dened on the initial and nal state, the weighting factor β can be computed using a pre-calculated mapping function. Assuming that the vehicle starts from rest and stops at the destination, the trip time of the resulting optimal velocity trajectory only depends on the traveled distance, d trav = d f -d 0 , and β. Equation 4.30 can be replaced by

T f = f (d trav , β) (4.31)
Applying a suciently small grid size the expected range of distance and β values is discretized. An optimal velocity prole is calculated for all combinations of possible travel distances and β values using the presented two dimensional dynamic programming method. Storing the nal time values for each distance and β combination, T f can be expressed as a function of distance and β by the use of a look-up table. The shape of T f is presented as a contour in Figure 4. Today it is often assumed that reducing average speed will always reduce energy consumption. With this graph it can be seen that this is not the case. Optimal nal time to minimize fuel consumption will be discussed in more detail in Chapter 5. The steps seen on the contour boundaries are due to the discretization step, which can be further reduced.

The mapping method is a very simple approach to pre-calculate the dened range of distances and arrival times. However, when applied to more realistic problems, where maximum speed limits and/or road grade have to be considered, this approach only gives approximations and no exact solutions. For a theoretical comparison of eco driving potentials this method is not sucient. In Section 4.2.2.2 we will therefore develop a more accurate solution to solve the time constraint single objective optimization problem.

Nested evaluation of weighting factor

Due to the drawbacks of the mapping method a second approach to identify the appropriate weighting factor for a xed time constraint was proposed using a nested evaluation. As previously stated, the arrival time of the optimized velocity prole can be dened as a function of the vehicle's mission, where all trip, road and other constraints have to be satised, and the weighting factor β. Given the desired arrival time t des f for the mission, an error function is dened: Chapter 4 Optimization 88

f error = T f -t des f (4.32)
If, for some given β, the computed optimal velocity prole does not satisfy the predened xed time constraint, the function f error will not be zero. In the proposed nested solution this error function is used to choose a new β. Using the shape of the error function the new weighting factor, when used in the optimization process, should return a velocity prole with a nal time closer to the desired arrival time than the previous evaluation.

Using this method two minimization processes are performed. The rst is using the dynamic programming optimization method to compute the optimal velocity prole given some pre-dened weighting factor. The output of this rst method is a velocity prole with an arrival time that is most likely not equal to the desired nal time. The second process consists of a β-update, where the knowledge of the original beta value and the error between the desired and the resulting trip time are used to generate a new beta value. This identication process of the weighting factor can be dened as a root-nding problem.

Initially a trial and error method was used to identify the desired range of β values. The simplest method to determine a function's root is the bisection method. However, this method is generally considered not very intelligent and slow. We therefore investigated ve dierent root nding methods: the Bisection Method, the Secant Method, the False-Position Method, Ridder's Method and Brent's Method.

In the following we will briey discuss the advantage and disadvantage of each one.

A detailed description of each method can be found in the Appendix. The bisection method is a method applied to nd the root of a continuous function.

Assuming that there exists at least one zero in an interval the root is found by iteratively bisecting the interval. With this method the length of the interval is reduced by one half at each step. Its convergence time is linear and therefore considered slow (depending on the shape of the function f ). Other methods have therefore been developed with the intention of reducing the number of iteration, and therefore computational time.

The Newton Method is a root-nding method commonly used to reduce the number of iterations. With this method the x-intercept is approximated using the slope at a search point. However, when the function's derivative cannot be dened analytically the method cannot be used. The False Position Method and Secant Method are algorithms derived from the Newton Method, and applicable in this case. The approach used is to approximate the slope of the function linearly with two points. A negative aspect of these methods is that they assume the function is approximately linear in the region of interest. The two methods dier only in their choice of which point the new value will replace. The Secant method, while often the faster method, is not guaranteed to converge. A schematic of the Bisection, False Position and Secant Method can be seen in Figure 4.9.

The application of these Newton based methods is usually faster than using the Bisection Method because the search can converge faster than in linear time. However it depends strongly on the shape of the function f and even linear convergence rates are not guaranteed.

In 1979 Ridder [START_REF] Ridders | A new algorithm for computing a single root of a real continuous function[END_REF] developed a method that resolves the issues encountered with the Secant and False Position Method. In his approach, Ridder takes the bent out Chapter 4 Optimization of the function by using an exponential. The algorithms convergence is supposed to be super linear and robust [START_REF] Ridders | A new algorithm for computing a single root of a real continuous function[END_REF].

To combine fast convergence with the guaranty of at least linear convergence Brent developed an algorithm in 1970 on the basis of an approach previously taken by Dekker [START_REF] Brent | An algorithm with guaranteed convergence for nding a zero of a function[END_REF][START_REF] Brent | Algorithms for Minimization Without Derivatives[END_REF]. With his method, Brent ensures that the search converges in at least linear rate but often much faster. To achieve this the method uses a combination of Bisection Method, Secant Method and Inverse Quadratic Interpolation.

Analysis of Computational Cost An analysis of the computational cost of the discussed algorithms is shown to identify the most suitable method for our application. Since the cost function of the vehicle depends strongly on the drive train model, we will here represent the cost in numbers of iterations. It was dened that a maximum error in nal time of 0.5s was acceptable. This seemed sucient since the analyzed drive cycles have nal times between 800 and 2000s.

In Table 4 In comparison with the three dimensional dynamic programming, a reduction to a two dimensional approach leads to a very large gain in computational time. For a 300m mission, driven in 30s, the three dimensional method needed around 250s

to solve the problem. The two dimensional approach, where the cost arrays are calculated in the rst iteration, solved the problem in 1.9s CPU time1 .

Conclusion

In Section 4.2 a solution to the single-objective time constraint trajectory optimization problem was presented. Applying the dynamic programming optimization method a three dimensional approach was used initially. Using a weighting factor a faster, two dimensional solution to the problem is proposed.

For a specied weighting factor the problem can be solved using the two dimensional dynamic programming method. It was shown that for simple problems a mapping method is appropriate to identify the correct weighting factor. If more complex constraints have to be satised a nested method can be used combining the 2 dimensional dynamic programming method with advanced root nding methods. In this study several dierent advanced root nding methods were considered and it was found that the bisection, Ridder's and Brent's method are good choices for the considered error function. All further computations will be using the two dimensional dynamic programming method in combination with Brent's root nding method.
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Multi-objective optimization

The single-objective optimization problem considered in Section 4.2 uses time as a trip constraint that denes a driver's mission. However, many drivers, and in particularly eco drivers, might be exible in their arrival time. Some might consider taking into account some time delays, in order to achieve reductions in their energy consumption. Therefore the trade-o between trip time and energy consumption for a given mission has to be discussed.

The simplest method to resolve a multi-objective control problem is to construct one single cost function using weighting factors to combine the dierent objectives.

However, as shown in [START_REF] Guigue | Pareto optimality and multiobjective trajectory planning for a 7-DOF redundant manipulator[END_REF], depending on the shape of the cost function, this approach may not be able to compute all optimal solutions. In this work, the multi-objective optimization problem is solved without the use of weighting factors.

First, we will introduce the multi-objective trajectory optimization problem. Removing Equation 4.11 from the constraints, only trip constraints on initial and nal distance and velocity are specied. No time constraint is xed. Instead two objective functions were dened: the energy consumption, as seen in Equation 4.33, and the arrival time of the optimal velocity prole, as described in Equation 4. [START_REF] Evans | Multivariate analysis of trac factors related to fuel consumption in urban driving[END_REF]. Together with the equations of motion of the system (Equation 4.3 and4.4)

and the trip and road constraints specied in Section 4.1.2 the multi-objective problem is dened. This means that if a point p lies on the Pareto optimal front it satises

γ 21 = d f i=d 0 γ veh i (d i ) (4.33) Γ 22 = d f i=d 0 ∆t i (d i ) (4.
J n (p) < J n (i) (4.35)
for all point i and for at least one objective n. Given a set of points we can compute the Pareto optimal front looking at all possible solutions and then identifying the points that are not Pareto optimal and deleting them. A point q is not Pareto optimal if there exists a point p such that

J n (p) < J n (q) (4.36)
for all cost functions n. With this strategy all points that are not Pareto optimal can be identied and the resuming points create a Pareto optimal front.

There are several methods used to nd the Pareto optimal front given multiple cost functions. A very common one is the genetic algorithm, where evolution rules are dened and used to create generations. After several generations the algorithm is supposed to converge to the optimal solution [START_REF] Liu | Solving constrained optimization problem by a specic-design multiobjective genetic algorithm[END_REF]. Since this algorithm is often not very intuitive and might not converge, we will here use the dynamic programming algorithm [START_REF] Mensing | Single-and multiobjective velocity trajectory optimization for application in eco-driving[END_REF] to nd the Pareto optimal points [START_REF] Guigue | Pareto optimality and multiobjective trajectory planning for a 7-DOF redundant manipulator[END_REF]. In the following the multiobjective dynamic programming optimization is described in more detail.

Multiobjective dynamic programming

In our problem setup each Pareto optimal point corresponds to a velocity prole from some speed

v i 1 at distance d k 1 to some speed v i 2 at d k 2 .
Each trajectory is associated with some cost one (Γ 21 ), here the energy consumed, and some cost two (Γ 22 ), the time of the trip. Similarly to Section 4.2.2, the problem, with constraints in initial and nal distance and velocity, is dened as a two dimensional dynamic programming problem, plotting the distance on the x-axis and the speed on the vertical axis. The geometric setup can be seen in Figure 4.10. In the search for the optimal solution a Pareto optimal set is stored at each state. This means that at each state (each possible velocity v(i) at some distance d(k)) not only one Chapter 4 Optimization 94 optimal trajectory is stored but rather a set of optimal trajectories that make up the Pareto optimal front.

The optimization process follows the same steps as described in Section 4.2.2.

Initially, the possible ranges in both states are discretized and the notation X k,i will refer to the state d(k) v(i)

T

. The initial and nal states are xed by

X o = d o v o X f = d f v f (4.37)
Beginning the search for the optimal trajectory from the nal state the cost array

is initialized at N -1 with J 1 [N -1,j] = J 1 [N -1,j->N,if ] and J 2 [N -1,i] = J 2 [N -1,i->N,i f ] . In the next step the trajectories at d(N -2) from v i 1 to v i 2 for all i 2 's are computed with J 1 [N -2,i 1 ->N -1,i 2 ] and J 2 [N -2,i 1 ->N -1,i 2 ]
. Once these costs have been calculated the Pareto optimal front of trajectories from

[d(N -2) v i 1 ] T to [d(N ) v i f ] T
can be established. All trajectories that are not Pareto optimal are not stored.

Assuming that a Pareto optimal front of points j is stored at some state

X [N -k 1 +1,i 2 ]
we can iteratively compute the Pareto optimal front of X

[N -k 1 ,i 1 ] by calculating J 1 [N -k 1 ,i 1 ] = (J 1 [N -k 1 ,i 1 ->N -k 1 +1,i 2 ] + J 1,j [N -k 1 +1,i 2 ] ) (4.38) 
and

J 2 [N -k 1 ,i 1 ] = (J 2 [N -k 1 ,i 1 ->N -k 1 +1,i 2 ] + J 2,j [N -k 1 +1,i 2 ] ) (4.39) 
at each i 1 for all i 2 and for all j's in the Pareto front at v(i 2 ). Comparing the costs, non-optimal points are deleted and the new front at

X [N -k 1 ,i 1 ] is constructed.
The optimization terminates when the Pareto optimal front of X [1,i 0 ] is found.

Moving backwards in time on the x-axis the sets of Pareto optimal trajectories will get larger and an increasing number of Pareto optimal points appear at each step.

This results in an increase in calculations per step and therefore in computation time, since more trajectories are searched at each distance. However, in order to nd the Pareto front only a certain amount of points are needed. Therefore a truncation method, presented in 4.3.1.1, was used to reduce the number of points in the Pareto front in order to reduce the computational load of the optimization. Storing an entire set of optimal points at every state, it becomes impossible to only store the indices of the optimal path and retracing the velocity prole later.

In order to be able to construct all optimal trajectories in the Pareto optimal front it is necessary to store the optimal speed prole for each trajectory while calculating them. This implies storing multiple velocity trajectories at each state.

The algorithm is therefore not only costly in computational time but also requires a large amount of memory. Due to this fact it is important to use truncation methods with an appropriate maximum number of trajectories that should be maintained throughout the calculation process. The proposed truncation method [START_REF] Zitzler | SPEA2: improving the strength pareto evolutionary algorithm[END_REF] deletes points from a curve while maintaining the shape of the curve visible.

In order to achieve this, points in high density areas are erased.

In this method the distances to the rst, second and third closest points are calculated for each point in the set. The points are then sorted in order of increasing distance to other points. When two points have the same distance to the rst closest point, the distance to the second closest point is taken into consideration.

After deleting the rst in order, the process is repeated, distances are re-calculated and the points are sorted.

This process can be explained with the help of This multi-objective optimization was found suitable for o-line optimization. The approach can be used to identify the relationship between several objectives. However the computation process is costly in calculation time and memory. In the following the algorithms is demonstrated on a simple example.

A simple example

To illustrate the described multi-objective trajectory optimization method a simple mission was chosen. The vehicle operation of a conventional vehicle is optimized for a 300m road section between stop signs. With this mission the constraints on initial and nal states can be xed by

X o = d o v o = 0 0 X f = d f v f = 300 0 (4.40)
No maximum speed constraints are dened for now, only the limitations on acceleration due to the mechanical constraints of the vehicle are taken into account.

The example problem is solved using the xed time dynamic programming optimization method and the multi-objective optimization method. In the following the results and computational time of the two methods are compared. We will briey discuss the trade of between trip time and energy consumption.
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Comparison of the two optimization methods

To discuss and compare the two methods of computation, the optimal solution to the mission was computed using the xed time method for several nal time constraints. Considering the exible time problem, the Pareto optimal front was calculated for two dierent values of truncations. A truncation value of j implies that j points (here j velocity trajectories) were saved at each state. Therefore, not only j trajectories in the nal Pareto optimal set are considered, but rather the amount of points in the front at each state within X f and X o is truncated. With this, we expect that the calculation with higher truncation values will give better results.

With the results in fuel consumption, trip time and computation time the advantages and disadvantages of the two methods can be compared. In Figure 4.12 the results of this study are shown. The plot shows the calculated Pareto optimal front for a truncation number of 10 as green stars. The Pareto front with a truncation value of 30 is represented by blue circles. We can see that the results of the two options fall onto about the same curve. However, the solution with higher truncation value shows a much smoother result.

In addition, plotted as red crosses in Figure 4.12, the solution to the xed time constraint method is presented. It can be seen that the dierences of the two methods are not very signicant. With both methods we can evaluate the optimal velocity trajectory of a given vehicle, for a specied mission. Using the xed time method the trade-o between fuel and time does only become apparent when calculating multiple points. Here, we can see four solutions to the xed time problem with desired nal time T f = [START_REF] Mensing | Vehicle trajectory optimization for application in ECO-driving[END_REF][START_REF] Mensing | Trajectory optimization for eco-driving taking into account trac constraints[END_REF][START_REF] Evans | Driver behavior eects on fuel consumption in urban driving[END_REF][START_REF] Fairchild | Foot-LITE: using on-board driver feedback systems to encourage safe, ecological and ecient driving: The foot LITE project[END_REF]s. The advantage of the multiobjective optimization approach is that it provides several solutions with dierent nal times with only one calculation.

Dynamic programming is an optimization method for which the computational eort grows exponentially with the number of dimensions. In the computation of the Pareto optimal front the three dimensional dynamic programming problem is reduced to two dimensions. However, because it is a multi-objective optimization and, at each state, we search all possible trajectories in the Pareto optimal front, the problem has to evaluate the cost function more than K 2 -times. By using the method of truncation described above the computation time can be reduced to In the following, computational times of the xed time problem, solved using the three dimensional dynamic programming method, are compared to those of the multi-objective method. At this point we have to note that the computation time strongly depends on the grid choice. Larger steps in the grid obviously result in less function evaluations and therefore lower computation time. This is true for both methods. However with large steps in grid optimality cannot be guaranteed.

A well balanced solution has to be found. In Table 4.3 the meshes used to compute the presented results can be seen. As mentioned in Section 4.2.2 it was found that the grid specication for the 3-dimensional dynamic programming method has to be very dierent from that of a 2-dimensional method.

In Table 4.3 the resulting computational times for each method can be seen. For each calculation of the xed time problem a calculation time between 240 and 280s was needed. The dierence in computation time results from the dierence in the nal time constraint. A longer trip time results in a longer evaluation process.

Further, it can be seen that the exible time solution, where the entire Pareto optimal trajectories was calculated in about the same time as a single solution to the xed time problem. With these results it seems that for an analysis of eco driving gains the exible time method is a better choice.

Trade-o between energy consumption and trip time

Using a truncation value of j = 30 the multi-objective dynamic programming method was used to compute 30 Pareto optimal velocity trajectories. The resulting Pareto optimal front can be found in Figure 4.12 in blue. It can be seen that due to the shape of the Pareto front a small compromise in trip time can result in large reductions in fuel consumption. This is especially true in the area where the trip time is short, here between 25s and 35s. A driver exible in his arrival time can signicantly reduce energy consumption in comparison to a driver with xed arrival time.

In Figure 4.13 the velocity trajectories, corresponding to the 30 points in the Pareto front, are plotted in three dimensions with time on the x-axis, fuel on the y-axis and velocity on the z-axis. The drivers consuming more fuel (higher on the y-axis) are driving at higher vehicle speeds, and arrive therefore in less time. The Pareto optimal front is still slightly visible on the right in this graph.

In the following, four of the 30 trajectories were used to analyze the gains. In It can be seen that, a driver operating his vehicle at up to 14m/s will arrive within 28s, but consume 28.6% more fuel than the driver that arrives only 8s after him, driving at a maximum speed of 10m/s. However, it can also be observed from Table 4.4 that, the driver with a trip time of 44s, consuming 11.36g, can only reduce his consumption by about 6% when driving at a slower speed to arrive 8s later. Again, we can see the potential gains for very fast drivers to reduce their energy consumption.

Sensitivity analysis

In this Section we briey want to discuss the sensitivity of the computed optimal velocity prole. The eect of minimal diverges from the optimal speed prole on energy consumption is investigated. To do so, we will use the two dimensional optimization method with a predened weighting factor β. However, similar to the Chapter 4 Optimization 101 multi-objective approach, we will store multiple velocity trajectories at each computational step. With this, not only the optimal velocity trajectory is determined but several, close to optimal, suboptimal velocity proles.

The optimization algorithm works in the following way. Like for the multiobjective optimization, a set of multiple velocity trajectories is stored at each state. A percentage value p subopt is specied to dene the maximum level of sub optimality taken into account. At each step we will then not eliminate all suboptimal trajectories, but all proles that result in a cost higher than the cost of the most ecient trajectory plus p subopt percent. This implies that, if the optimal fuel consumption at a state is given by x then the worst velocity trajectory in the stored set consumes x + p subopt of fuel.

The optimization approach is visualized in Figure 4.15. Similarly to the multiobjective optimization, we store multiple trajectories with costs between the optimal fuel consumption and optimal plus p suboptimal percent. This implies that, at each search, several trajectories have to be evaluated for each possible state. A trajectory is only eliminated from the stored set if its cost is more than p subopt percent more than the optimal. With this, many trajectories have to be stored and considered at each calculation step. The truncation method, presented in Section 4.3.1.1, is therefore used to reduce the density of possible solutions. Using this approach we were able to analyze the sensitivity of energy consumption to trajectory changes for a 300m trip. The calculation was done xing the weighting factor β to 1 and using a truncation number of 50. Specifying p subopt = 5, 50 suboptimal trajectories with cost up to 5% higher than the optimal trajectory were computed. The trajectories are plotted in Figure 4.16. We compare the set of suboptimal trajectories, in blue, to the optimal velocity trajectory, which can be seen in red. It was found that, while the acceleration phase changes drastically, we do not see much change in the stabilized cruising speed. Generally, the cruising speed is kept rather low and constant. None of the suboptimal trajectories show small accelerations or decelerations in the cruising phase. In the acceleration phase however, a variety of dierent rates are used to reach the stabilized speed. The deceleration phase for the dierent trajectories generally uses similar slopes for all the calculated suboptimal trajectories. The envelop surrounding the trajectories is much larger for acceleration and deceleration phase, while at stabilized speeds only a limited choice of velocity is given. It seems that changes to the optimal speed prole in the acceleration phase only have a limited eect on fuel consumption, here up to 5% increase. Stabilized speeds, however, seem to be very important to keep fuel consumption close to optimal.

With this analysis we can conclude that the energy consumption is very sensitive to changes in the stabilized speed phase. However, variations in the acceleration phase seem to have only little impact on fuel consumption. These ndings will later be taken into account in the design of a driver assist system. 

Conclusion

In this chapter the constrained trajectory optimization problem, used to identify optimal vehicle operation, was dened. The equations of motion of the dynamic vehicle system were specied in discrete time form. Using specic drive cycles and real life driving data the driver's mission can be dened. The mission parameters were used to identify trip constraints that were imposed on the initial and nal states. In addition road constraints, such as distance dependent maximum speed limits were xed.

A xed-time single objective problem was considered at rst. Due to the complexity of the cost function and to simplify constraint integration the dynamic programming method was applied. Initially, a three dimensional dynamic programming method was used to solve the problem. To reduce computational time the problem setup was reduced to two dimensions by integrating a weighting factor in the cost function. To solve the xed time problem the two dimensional dynamic programming method was used in a nested process, in combination with root nding methods. Several root nding methods were investigated and it was found that the bisection, Ridder's and Brent's method were appropriate choices to be applied to this problem. The single objective xed-time problem will be used in the following to compute potential gains of eco driving, while satisfying the desired trip time. For further computations the two dimensional dynamic programming method is used in combination with the Brent's root nding method.

To discuss the trade-o between trip time and energy consumption a multiobjective problem, where time is considered as a second cost, is presented. A multi-objective dynamic programming method, that can be used to solve the problem without cost function weighting, is applied to nd the Pareto optimal front that presents the solution to the problem. It was found that the method has a high computational cost due to the computation of several velocity trajectories at each state. In addition a large amount of memory is necessary due to the fact that the entire velocity trajectories are stored throughout the calculation. To solve these issues a truncation method, that allowed us to reduce the number of calculated optimal velocity proles to a desired maximum amount, was used. With this the shape of the Pareto optimal front remains visible while the computation time is reduced. Comparing the multi-objective approach to the three dimensional xed time solution, it was found that the multi-objective dynamic programming method Chapter 5 Potential Gains of Eco Driving 104 represents an ecient algorithm when analyzing multiple optimal trajectories and the trade-o between trip time and energy consumption.

Finally, the developed optimization algorithms were used to identify the eects on fuel consumption when diverging from the optimal velocity prole. A sensitivity analysis showed that, while the acceleration phase is less important for optimality, the appropriate stabilized cruising speed seems very important to keep energy consumption low. concept of eco driving it is important to investigate how high these reductions could be. To compute the upper limit, the maximum theoretical potential gains of eco driving need to be determined. This implies that no unpredictable constraints, such as trac, are considered. In addition the driver is assumed to be perfect, which means that the velocity prole is driven as computed, without delays or other human errors.

In Chapter 3 a simulation model of three dierent vehicle drive trains, the conventional, electric and hybrid vehicle, were constructed. With the optimization method presented in Chapter 4 these models can be used to compute vehicle specic optimal velocity trajectories for given missions. Comparing the optimal velocity prole to the original mission, represented by a standard drive cycle or real-life driving data, the theoretical gains in energy consumption can be evaluated. Applying an optimization algorithm with a physical vehicle model, the optimal, mission dependent, vehicle operation is calculated. With this, vehicle specic, energy ecient operation can be identied. An analysis of the resulting vehicle operation can provide insights on important factors for eco driving.

In this chapter the potential gains of eco driving and drive train specic optimal vehicle operation are discussed. The optimal velocity proles are calculated by use of the two dimensional dynamic programming trajectory optimization method.

Three types of drive trains are considered: the conventional, the electric and the hybrid vehicle. In Table 5.1 an overview of the studied problems is given. Section 5.1 deals with the optimal vehicle operation of the conventional vehicle. Energetically optimal operation of a vehicle with electric drive train is presented in Section 5.2. With the help of real-life driving data, the most ecient operation of a small electric vehicle was computed (Section 5.2.1). A chassis test bench is used to verify the theoretical results and measure the energy consumption for the ideal eco cycles (Section 5.2.2). With the analysis of optimal operation of the electric drive train vehicle, in Section 5. In Section 5.3 the hybrid vehicle is studied. As a representative example, the velocity trajectory of the Toyota Prius, power-split hybrid vehicle was optimized.

For the hybrid vehicle, being a more complex case, the optimization algorithm had to be adapted (Section 5. In the drive train it is important to make the best choice of gear in order to move the engine operating point to a desired region and therefore increase its combustion eciency or decrease pollutant emissions. In addition, it was found that the energy needed to propel the vehicle is related to the driven velocity by the resistance forces. With several parameters to be taken into account it is dicult to select the appropriate vehicle operation for a mission applying simple rules.

In this section a numerical optimization method is applied to compute the energetically best velocity prole for the conventional vehicle for a desired mission.

The ideal velocity prole is calculated for four dierent drive cycles that represent urban, highway and freeway driving. Section 5.1.1 presents a comparison between original driving mission and computed eco driving cycle. In Section 5.1.2 an engine test bench is used to verify the results in an experimental hardware-in-the-loop setting. Finally, an analysis of most ecient vehicle operation is shown in Section 5.1.3 and most important factors for eco driving will be highlighted (Section 5.1.4).

The ideal velocity trajectory

For the case of the conventional vehicle four dierent drive cycles were used for comparison of optimal and general vehicle operation. We expect that gains due to eco driving depend on the situation the vehicle is in. For example, for freeway driving the vehicle operation is usually rather constant and engine eciency is generally high, we therefore expect smaller gains due to eco driving behavior than in an urban setting where a lot of acceleration and deceleration phases are necessary due to frequent stops. We therefore consider drive cycles representing various real life situations.

In Figure 5 The rst graph in Figure 5.1 shows the New European Drive Cycle (NEDC). This is a standard drive cycle used in Europe to compute fuel economy and emission values for conventional vehicles. With its squared shape we suspect that it does not give a good representation of actual driving behavior. Therefore, to simulate general driving behavior three drive cycles were used, which represent real-life driving [START_REF] Andre | Artemis european driving cycles for measuring car pollutant emissions[END_REF]. The HYZURB cycle, shown on the top right in Figure 5.1 presents an urban drive cycle, where the vehicle speed rarely goes above 50km/h. We can see that many short acceleration and deceleration phases are present in this cycle.

A third cycle, called HYZROUT, stands for extra-urban driving. The cycle is shown in the second graph on the left. Here, vehicle speed reaches a maximum of around 100km/h. There are still many acceleration and deceleration phases present, but not as frequent as in the urban setting. The last cycle, HYZAUTO, models freeway driving. In this case the prole has an initial acceleration phase and a nal deceleration phase. Throughout the trip only one stop is shown and the average vehicle speed is rather high.

The described cycles were used to specify trip and road constraints. The nested two dimensional dynamic programming optimization method with a discretization step of ∆d = 5 and ∆v = .2 was then applied to derive the corresponding eco cycles, that resulted in the same driving mission but minimized the vehicle's fuel consumption. The inverse vehicle model constructed in Section 3.3 was used to ensure optimal, fuel ecient gear choices. From the results in Figure 5.2 we can observe that the optimal velocity trajectory uses rather high acceleration rates, increasing the vehicle speed rapidly, to reach a lower cruising speed than used in the original drive cycle. Since the problem was solved as a xed time problem the average velocity of the two cycles stays the same. It can be seen that the vehicle stops are sometimes shifted in time. This is due to the fact that a constraint for a stop was dened in distance. This means Chapter 5 Potential Gains of Eco Driving 111 the vehicle has to stop at a certain distance, but independent of its arrival time at that distance. The idling time is added post-optimization at each stop. This way to integrate the constraint is useful for stop signs. However, for stop light timing this approach might not be the best. In this work we did not include the timing of stops, in future work if the time of stop light phases is known, this could be integrated in the optimization. From the second plots it can be seen that the optimal gear selection is very dierent from the choice taken by the original driver. In general the gears are chosen higher in the eco cycle. It is assumed that this is to improve the engine eciency. An in depth analysis of the vehicle operation is presented in Section 5.1.3, where engine and drive train eciencies will be discussed. To identify the potential gains of eco driving the calculated optimal velocity proles were tested in an experimental setup.

Verication on engine test bench

Hardware-in-the-loop experiments are often used to verify simulated concepts.

With this approach a certain part of the hardware is running in real time, while

Chapter 5 Potential Gains of Eco Driving 112 the rest is simulated on a computer. With this setup algorithms can be tested in a controlled experimental setting. In our case, the calculated drive cycles were tested on an engine test bench, where the engine is running in real time while the rest of the vehicle is simulated. The AVL1 engine test bench consists of an electric machine, that is connected to the engine output shaft, and a controller that regulates the shaft speed. The AVL electric machine simulates the vehicle load on the engine shaft by regulating the shaft to the speed calculated by the vehicle simulation. The fuel is measured by the AVL fuel balance that allows us to measure fuel dynamically throughout the experiment. In Table 5.4 details of the test bench components can be found. The described hardware-in-the-loop setup allowed us to measure the engine's actual fuel consumption and therefore compute the fuel economy of the vehicle for a given cycle.

In a real life implementation of eco driving strategies the driver will never be able to exactly follow the calculated optimal velocity prole. In this experimental ideal, driver. Still, the desired drive cycle will not be followed exactly. This is also due to the fact that it was calculated using an inverse vehicle model where gear changes happen instantaneously. In Figure 5.4 the desired drive cycle input can be seen together with the actual velocity trajectory driven by the virtual vehicle. It can be seen that the used PID controller results in satisfactory tracking of the desired velocity prole. Due to this dierence and non simulated dynamic phenomena there was a slight dierence in fuel consumption between the simulated inverse model and the measured consumption in the dynamic hardware-in-the-loop setting. For the NEDC cycle, seen in Figure 5.4 the simulated fuel consumption was found to be 6.6L/100km. With the measurements we calculated 6.7L/100km.

The dierence seemed to be acceptable for the 11.8km cycle.

Figure 5.4: Velocity trajectory simulated and followed in experiment Each drive cycle was experimentally tested three times to eliminate measurement errors. In Table 5.5 the average fuel economy values can be seen for the four tested cycles. When comparing the original drive cycle to the computed optimal eco drive cycle we found that between 8 and 27 % less fuel was used for the eco cycle. As expected higher gains due to eco driving were detected in urban settings than when driving on the highway. For the highway cycle eco driving showed a potential reduction in fuel consumption of 8%, while the consumption of the real We should remind the reader at this point that the eco driver performs the same mission and therefore covers the same distance in the same time. Changes in energy consumption are solely due to the choice of gear and the selected rates of velocity and acceleration. In Section 5.1.3 the optimal vehicle operation is discussed in detail to investigate the origin of the savings in fuel consumption

Analysis

In order to understand the reasons for the reductions in energy consumption the vehicle operation needs to be analyzed. This will help us gain an understanding of most ecient vehicle operation. Identifying most important factors for eco driving can be helpful to encourage drivers to apply eco driving strategies. Further the knowledge can be applied in the development of driver support systems for eco driving.

For comparison of optimal vehicle operation and original drive cycle the NEDC cycle will be investigated in more detail. Table 5.5 tells us that the fuel consumption was reduced by almost 18% between the baseline and eco cycle. The optimal velocity trajectory of this cycle together with the original cycle are presented in Figure 5.2 on the top left. As previously mentioned the gear was chosen for the eco driving cycle such that the engine operation results in the most ecient combustion process. We can therefore see that the gear choice between the original cycle and the eco cycle are very dierent. Generally, the engaged gear is much higher for the eco cycle. In Figure 5.5 the resulting engine operation for the two tested cycles can be observed. In black (stars) the engine operation of the original NEDC cycle can be seen. For this cycle the engine is used up to a speed of over 3500rpm and the torque of the engine output is mostly lower than half of the maximum available engine torque.

For the eco cycle, plotted as red circles, it is shown that due to the gear selection the engine is running at low speed, up to just over 2500rpm, and high torque.

The engine's maximum torque output is used especially at low engine speeds. In addition when looking at the negative torque range it becomes obvious that the deceleration rates used in the eco cycle are chosen such that engine braking can be used at its maximum. The operating points mostly lie close to the minimum torque line. At this point injection is cut and no fuel is needed to keep the engine running.

With the operation, seen in Figure 5.5 ,the engine eciency was improved from 19% for the original cycle to 24% for the eco drive cycle. When computing efciency values for other major components in the drive train, such as clutch, gear box, and nal drive, it was found that variations in eciency were minimal.

However, a 5% increase in engine eciency can hardly be responsible for an 18% reduction in fuel consumption over the drive cycle. Computing the mechanical energy needed to perform the drive cycle, it was found that, while the standard was found that the energy on acceleration needed for the eco drive cycle is much lower than for the original cycle. Figure 5.8 shows the distribution of acceleration power, which is calculated as a product of mass, acceleration and velocity. Èposaccel

= d dt ( 1 2 mv 2 ) = M v v = M a + v (5.1) 
We can observe that the eco cycle uses higher acceleration power rates. However, it was found that the cumulative power used for acceleration was less for the eco cycle than for the standard cycle. Due to the choice of higher but short acceleration phases at rather low speeds the energy is lower than that for the standard cycle.

Over the entire cycle the optimized velocity trajectory uses 23.2% less energy on positive acceleration.

The third group of bars in Figure 5.6 shows energy lost in friction braking. Using deceleration rates that allow for engine braking results in lower fuel economy. This is because the kinetic energy is then used to run the engine while, when braking with the mechanical friction brake, the energy is lost in heat. In the standard drive cycle the energy lost on friction braking is 36% higher than that of the eco-cycle.

In Figure 5.8 this can be seen in the range of negative acceleration power. The original drive cycle uses much higher power rates for vehicle deceleration. Such high negative rates of output power can only be provided by the friction brake in a conventional vehicle.
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Important factors for conventional vehicle eco driving

From the analysis of the optimal vehicle operation we can conclude that there are several factors that are important to reduce energy consumption for the conventional vehicle. It should be noted that these factors are derived for a desired mission with constraints in distance, velocity and time.

The gear selection in the conventional vehicle is important to improve the combustion eciency in the engine. It was shown that an engine operation at low speed but high torque is best for the examined vehicle drive train. To push the engine operating point into the high torque, low speed region usually the highest possible gears are engaged.

It was shown that, in order to reduce fuel consumption the cruising speed of the vehicle has to be selected as low as possible. With this the energy necessary to overcome the aerodynamic drag is reduced. This seems to be a very important parameters. In order to reduce the cruising speed, rather high acceleration rates are used to acceleration the vehicle rapidly to the desired speed. Loosing time in the acceleration phase would result in higher cruising speeds in order to reach the target within the xed trip time.

The deceleration phase usually consists of a coasting phase, where engine braking is used at its best. This phase uses rather low deceleration rates. However, the second part of the deceleration phase uses hard friction braking to come to a full stop. Here, engine braking is not used to fully decelerate the vehicle because this would result in a long deceleration phase and, in order to respect the average trip velocity, the maximum vehicle speed would have to be selected higher. With the aim to reduce the time used on acceleration and deceleration, rather high rates are used. This then allows us to use lower maximum vehicle speeds while still satisfying the time constraint.

From these results it could be expected that reducing the vehicle speed will always result in lower fuel consumption. With this assumption, simple rules for eco driving could be stated. However, it is not as simple as that. With the vehicle velocity the energy needed to overcome the aerodynamic drag is reduced. The aerodynamic drag force, as stated in Section 3.2, grows quadratically with the vehicle speed.

This implies that, reducing the vehicle's velocity at high speeds, a signicant reduction in energy consumption due to aerodynamic drag can be achieved. For

Chapter 5 Potential Gains of Eco Driving 119 small vehicle velocities this reduction is rather small for the same changes in vehicle speed. Increasing the trip time, the vehicle velocity and acceleration rates are reduced. This results in lower eciencies of the drive train components. Engine eciency is reduced and the clutch is slipping. When average vehicle speed drops below a certain value, we found this to be around 25km/h, the decreasing eciency outweighs the gains in energy due to reductions of aerodynamic drag. Similarly to the studies of Hooker [START_REF] Hooker | Optimal control of automobiles for fuel economy[END_REF] we found that an optimal trip time exists at which fuel consumption is reduced to its minimum. Further increasing the travel time results in losses in the drive train that cannot be compensated for by reductions in resistance forces.

Eect of road grade

In order to identify overall optimal vehicle operation the road prole needs to be taken into account. In our work road grade is directly integrated in the vehicle model, simulating the grade resistance force on the chassis. While we will not investigate the eects of road grade in detail, a simple example will here be used to show that grade is an important factor that cannot be neglected.

As an example a real life driving prole was used. The drive cycle together with the road prole is presented in Figure 5.9. The prole represents a driver that leaves the city of Grenoble at the bottom of the mountain, drives up to the skiing region Chamrousse, and nishes back down in the valley at Grenoble. The road grade of the trip reaches a maximum of 12%. The trip is almost a hundred kilometers long and takes 6929s, which converts to almost 2 hours. The imposed maximum speed constraint derived from the driver's velocity prole can be seen in red in Figure 5.9.

The cycle was used to derive trip and road constraints. The two dimensional dynamic programming method was then applied to identify the optimal speed prole. Two dierent cases were considered for comparison. First, the velocity prole was computed not taking into account road grade. We here assumed the mission was taking place on a at road. In a second calculation the road grade was included in the optimization process. The resulting velocity proles can be seen in Figure 5.10. While it is generally assumed that an increase in vehicle speed in downhill sections leads to more fuel ecient operation we could here not conrm these assumptions. 5.10 it was found that the velocity prole determined with grade used lower speeds prior and after the hill. The zones where the velocity of the cycle calculated with grade exceeds the cycle computed without grade are here highlighted in pink. The green zones mark the parts where the grade optimal speed is inferior. Throughout driving on hills the vehicle speed for the grade optimization trajectory was sometimes higher. However, this occurred on uphill as well as on downhill driving. Using the direct VEHLIB simulation the fuel consumption for both velocity proles over the hilly road was simulated. For the velocity trajectory that was optimized without taking into account road grade, the vehicle consumed 5.06L/100km. Using the grade information as an input a fuel consumption of 4.96L/100km could be achieved. Integrating the road grade in the optimization process the globally optimal velocity prole can be calculated which results in 5% less fuel consumption for the trip.

With this study we can see that road grade is an important criterion to be taken into account when identifying the optimal velocity trajectory for a trip. However, it seems that optimal vehicle operation when driving over hills is not easily identied.

To further analyze the problem dierent up-and downhill situations need to be investigated in future work. 

Electric vehicle

With today's environmental problems the electric vehicle is becoming more and more popular. Due to the dierences in drive train, optimal vehicle operation will not necessarily be the same as for the conventional vehicle. In this section the optimal vehicle operation of a small electric test vehicle, the AIXAM Mega City, is investigated. The goal is to minimize battery power used (P batt ) for an entire trip. The vehicle model described in Section 3.4 is used in combination with the two dimensional dynamic programming method (Section 4.2.2) to compute the eco cycle for a given driving mission.

In Section 5.2.1 the considered drive cycles are presented and corresponding optimal, eco drive cycles are calculated. To verify the simulated potential gains of eco driving, the drive cycles are tested on a chassis test bench (5.2.2). Section 5.2.3 shows an analysis of the identied optimal vehicle operation, comparing general driving to eco driving. A summary of important factors for eco driving for electric drive train vehicles can be found in Section 5. is expected that this is due to the energy that can be saved when reducing the aerodynamic drag forces.

From Table 5.6 we can see that potential gains between 5 -19% can be achieved due to eco driving. In the following, the simulated, theoretically optimal velocity proles are tested in an experimental setup on a chassis test stand. With this the actual energy consumption can be measured for the original and for the computed eco drive cycles.

Verication on chassis test bench

On a chassis dynamometer the vehicle is running in real-time while the driver follows a desired velocity prole. A schematic of the CLEMESSY2 chassis test bench is presented in Figure 5.12. The tested electric vehicle has a front-wheeldrive drive train conguration. The vehicle is therefore placed with the front wheels on the test bench rollers. The two test bench rollers are connected to an electric machine to simulate the resistance and inertial forces of the vehicle.

The electric machine has the ability to output a maximum torque of 3000Nm and can provide up to 132kW. For safety an emergency brake is attached to the dynamometer shaft on the right to bring the rollers to a stop when needed. for the four original and eco drive cycles computed in Wh can be seen in Table 5.6.

The results show that for the four tested cycles a reduction in energy consumption between 5 and 19% was possible. The AIXAM2 cycle shows the smallest gain due to eco driving. This was to be expected, since the cycle represents the rather squared standard cycle and represents a very small driving period. The two reallife driving cycles AIXAM1 and AIXAM3 show the highest potential gains. The In the following the drive cycles will be analyzed in more detail. In Section 5.2.3 the operation of each component in the drive train is investigated in order to gain insights on most important parameters for eco driving of electric vehicles.

Analysis

The AIXAM1 cycle was chosen for comparison between most ecient vehicle operation and original cycle. Since the electric vehicle considered does not contain a gear box the gain of 19.3% in energy consumption has to be uniquely due to vehicle operation. First, the changes in eciencies of drive train components were investigated. It was expected that the optimal vehicle operation results in a more ecient electric motor/generator operation. However, it was found that this was not the case.

In Table 5.7 the eciencies of major drive train components can be observed. For the electric components the motoring and generating phases are listed separately.

We found that the electric machine's eciency values improved slightly for the generating phase, but decreased a little for the motoring phase. Similarly the eciency of the battery was not found to change signicantly. It can therefore be does not utilize a regenerative brake pedal. Only deceleration rates up to a xed torque can be used to recover electric energy. Deceleration rates exceeding this limit are realized by the use of the mechanical friction brake. For the original drive cycle, using higher deceleration rates, more energy is lost in heat due to friction braking than with the optimal velocity trajectory. Even when the regenerative braking capability is used the component operation results in losses. A certain amount of recovered energy is therefore lost on the way and never reaches the 

Important factors for electric vehicle eco driving

From the analysis it was found that for urban and extra-urban missions the eciency of drive train components has little inuence on the energy consumption of an electric vehicle. The choice of acceleration rates, operating speeds and deceleration rates are most important for eco driving.

Similarly to the conventional vehicle, the losses due to aerodynamic drag grow with increasing vehicle speed. To reduce the energy needed to overcome aerodynamic forces, vehicle speeds have to be kept as low as possible. High acceleration rates are therefore used to accelerate the vehicle in a short time to the desired cruising speed.

In the braking phase, vehicle specic deceleration rates should be used. Drive train specic deceleration rates can ensure that the maximum possible amount of energy is regenerated using the reversible electric components.

As for the conventional vehicle, driving an electric vehicle an energetically optimal arrival time exists. The eciency of the electric motor, presented in Section 3.4.1, decreases with its operating speed. Running the motor at speeds close to zero results in very low eciencies. Using the electric machine in generator mode at low speed we sometimes even draw current from the battery, although the drive train should be operated in charging mode. This is due to very high losses in this mode of operation. Running the vehicle at low speeds it was found that losses, Chapter 5 Potential Gains of Eco Driving 128 such as the ones in the electric motor/generator, outbalanced the improvements in energy consumption due to reductions in aerodynamic forces. In comparison to the conventional drive train discussed previously, however, this speed was found to be below 20km/h for the simulated electric drive train.

Hybrid vehicle

The third type of vehicle treated in this work is the hybrid drive train vehicle.

Containing two or more power sources, this vehicle architecture presents a more complex case than the conventional and electric vehicle. Since vehicle functionality of the hybrid vehicle is not at all intuitive it is important to use numerical optimization methods to identify the optimal vehicle operation. With this we hope to be able to specify eco driving factors for hybrid vehicles. 

Hybrid vehicle optimization

The applied dynamic programming optimization method, used in the standard way, computes the optimal solution by searching from the nal state backwards Chapter 5 Potential Gains of Eco Driving 129 on the time-axis to the initial state. However, this implies that the cost of some edge on the graph only depends on its initial and nal state. For the conventional vehicle drive train this is true. The operating cost of the vehicle only depends on the initial and nal distance and speed at each step. For the electric vehicle a simplied model was constructed, such that the energy consumption of the vehicle does not depend on the battery state-of-charge. This is a justied simplication since the losses in the battery only vary minimally with changes in SOC.

However, for the case of the hybrid vehicle, the vehicle operation strongly depends on the battery state (3.5). Dependent on the battery SOC the engine can be turned o, or used to propel the vehicle. This means that the cost of vehicle operation will vary signicantly with the battery state-of-charge. Therefore the cost of vehicle operation depends not only on initial and nal states, but also on the previous vehicle operation, which is used to compute the current SOC. Starting the optimization process from the nal state in distance the SOC of the vehicle is not known. However the SOC is known at the initial distance at initial time.

To adapt the optimization method to the vehicle model, we therefore used the dynamic programming approach while computing the optimal trajectory from the initial state, keeping track of the current battery state, to the nal state. This variation of the method was tested on the conventional and electric drive train vehicles. The results of the forward and backward dynamic programming method are identical. For the optimization of the Prius vehicle this method can be used to optimize the drive train operation taking into account battery SOC variations.

The two dimensional optimization process can be described by the following steps:

• Initialize optimal costs at k 1 = 2: J * [2,i] = J [1,i 0 ->2,i]
• Increment k 1 and nd the optimal cost at each state by comparing

J * [k 1 ,i 2 ] = min i 1 (J [k 1 -1,i 1 ->k 1 ,i 2 ] + J * [k 1 -1,i 1 ]
) while storing the optimal indices

• Compute the optimal trajectory by retracing the stored indices

The control strategy applied to a hybrid drive train represents a key aspect of the vehicle, which has a strong inuence on the vehicle's fuel economy. In addition, the energy management strategy in hybrid vehicles makes sure that battery charge never exceeds a certain upper limit or drops below a specied lower boundary. With this in mind, we initially assumed that the battery charge level is Chapter 5 Potential Gains of Eco Driving 130 controlled by Toyota's energy management strategy. However, rst optimization results showed that only considering fuel consumption when optimizing the vehicle's operation over a drive cycle is not sucient. The optimization algorithm seems to make the best instantaneous choice of vehicle operation, however, without taking into account the eect this operation has on future computational steps.

As an example, if the vehicle is at a low battery level the vehicle's velocity is decreased to avoid turning on the internal combustion engine. At this point deceleration might not be optimal, but since all-electric mode is considered of no cost at this point the lower vehicle speed is chosen. This, instantaneous optimal operation, leads to a high battery depletion and later, possibly inecient charging.

It was concluded that, although the control strategy balances the battery charge, to optimize the vehicle trajectory we still need to consider the total instantaneous energy consumption in the objective function. A weighted cost function that combines fuel consumption and battery use, is therefore proposed:

γ hyb veh (t) = ṁfuel i (t i -> t i+1 )∆t -α∆SOC(∆t i ) (5.2)
With this cost function the changes in energy in the battery are taken into account as well as fuel consumption. Charging the battery will result in a positive change in SOC. An increased charge in the battery can later be used to propel the vehicle.

It should therefore have a positive eect on the cost. A discharge will show in a negative change in SOC. A discharged battery needs to be re-charged later, and more fuel will therefore be used later. This operation needs to be weighted negatively. With this analysis we chose to subtract the cost of battery use from the cost due to fuel consumption. The required weighting factor α will therefore take on a positive value. However, an exact value for α is not easily specied.

In Section 5.3.3 the appropriate value for α will be investigated for a specic driving mission. Before comparing the optimization results for dierent velocity trajectories the 'consumption' of a hybrid vehicle needs to be dened. Section There are several approaches to solve this problem. A rating procedure of fuel economy was rst published in 1999 by the Society of Automotive Engineers (SAE).

Their standard SAE J 1711 presents a 'recommended practice for measuring the exhaust emissions and fuel economy of hybrid-electric vehicles' [START_REF] And | Hybrid Powertrain Steering Committee. Recommended practice for measuring the exhaust emissions and fuel economy of hybrid-electric vehicles[END_REF]. For an overall use of electric energy smaller than 1% of the energy consumed in fuel, the SAE guidelines claim that the energy consumption of the battery is negligible. This implies that only fuel consumption has to be considered if the following equation holds:

|electric energy| energy in f uel <= 1% (5.3)
If the dierence between consumed electric energy and fuel consumption is to large one way to reduce this dierence is to test the vehicle over a longer distance.

Due to the control strategy, implemented to keep battery charge around a target value, the battery charge should stay balanced over very long trips. Running a drive cycle multiple times should therefore lead to a continuous increase in fuel consumption, but not in the change of nal battery charge. For this procedure it is necessary to start the test at some battery charge within the limitation boundaries of the control strategy. A disadvantage of this procedure is the (experimental or computational) cost.

In 2002 an additional SAE guideline was released [START_REF] And | Hybrid Powertrain Steering Committee. Recommended practice for measuring fuel economy and emissions of hybridelectric and conventional heavy duty vehicles[END_REF]. It presents a method that is applicable if the change in battery charge is less than 5% of the fuel consumption.

The approach uses linear interpolation to approximate the fuel economy of a hybrid With this the control strategy will operate in charge depleting mode and fuel consumption will be low. The ∆SOC will be small or negative for the cycle. In Here, less fuel was used for the same battery discharge. This method will be used in the following to evaluate the optimized velocity proles. The results are presented in Figure 5.17 and 5.18. The graphs show the changes in battery charge over the cycle on the x-axis and the fuel consumed on the y-axis. for an α value of zero the ∆SOC value is further reduced, but fuel consumption is increased. In this case, less energy is recovered in the battery while more fuel was consumed. This leads to the conclusion that overall more energy must have been consumed.

The ideal velocity trajectory

In Figure 5.18 the same solution points were plotted. However, while Figure 5.17 showed the dependency on initial SOC value, we can here see the solution points plotted dependent on the weighting factor α. This graph can be used to compare the energy eciency of the optimization results using the method proposed by SAE. For each α value the optimal velocity trajectory was computed The three velocity trajectories show clearly the eect of a non-appropriate weighting factor in the cost function. When battery use was weighted to high, here seen as the black velocity trajectory, the optimal velocity trajectory shows oscillations.

The vehicle is never operated at constant speed. It is either accelerated, with high power demand, or regenerative braking is used. To operate the vehicle in charging mode at all times the vehicle speed is used to force the control strategy to demand battery charging. The energy management in the Prius hybrid vehicle is constructed such that, when high power demands occur, the engine is turned on.

The engine output is used to satisfy the wheel demand and/or charge the battery. At high acceleration rates the battery is therefore rarely discharged. When the vehicle is decelerated the electric system is always in regenerative mode and the kinetic energy is used to increase battery charge levels. The velocity trajectory results in high fuel uses, but also in a high nal battery charge. However, due to When battery operation is not taken into account, it seems that electric energy is freely used at inappropriate times and the internal combustion engine is only turned on when necessary. With this the battery is used in depleting mode. Nevertheless, the engine has to be used at some point, when sucient electric energy is not available. In Figure 5.19 the blue prole represents the solution to the optimization where α was set to zero. The engine is mostly turned o. When the battery's discharge reaches levels close to the control boundaries the vehicle's speed is reduced such that the engine does not have to be started. This operation can be seen at t = 85 -100s and at t = 130s in Figure 5. [START_REF] Eea | Car ownership rates projections[END_REF]. With this, the vehicle can stay in electric mode, which results in zero cost. This vehicle use does not result in globally optimal operation. While nal fuel levels are rather low, the battery is discharged and will eventually have to be recharged. Low α values might be applicable to the case of a plug-in hybrid vehicle, where battery charge depletion is normal at the end of a trip.

The energetically optimal velocity trajectory can be computed with a weighting factor of around three. The green velocity prole in Figure 5. [START_REF] Eea | Car ownership rates projections[END_REF] We found that, while the eciencies of the electric components increased slightly for the eco cycle, the engine eciency was reduced by a small amount. Nonetheless, we can assume that a major reduction in energy consumption is not due to small increases in component eciencies in the drive train. The chassis operation was therefore investigated. Similarly to the electric and conventional vehicle, it was established that, as a result of intelligent choice of acceleration and velocity rates, the energy necessary to overcome resistance forces and to accelerate the vehicle's inertia was reduced. Likewise, it seems that the rate of deceleration is critical in order to regenerate a maximum amount of energy. In Figure 5.20 bar graphs are used to illustrate the energy consumption of the Prius over the original and the optimal drive cycle in motoring and in deceleration phase.

In the rst graph the energy needed to overcome resistance forces, which includes rolling resistance and aerodynamic drag, can be seen in blue. The energy used to accelerate the vehicle's mass is shown in the stacked graph in green. It was found that the sum of energy is a lot higher for the original cycle than for the eco cycle.

This leads to higher overall energy consumption of the original cycle. Investigating the deceleration phase, it was found that, with the applied deceleration rates, less energy was available for recovery for the eco drive cycle. However, from the second graph in Figure 5.20 it can be seen that for the original cycle the deceleration phase was not adapted to the vehicle architecture. Hence, the percentage of kinetic energy regenerated and actually used to charge the battery is lower. In the original drive cycle a small percentage of energy is lost in friction braking, while the eco cycle uses almost never the mechanical brake. The eco cycle recovered 74.3% of the energy available for regeneration, while the original cycle was able to regenerate only 68.7%.

With this analysis it was concluded that, for the hybrid vehicle discussed, the losses in the drive train due to varying eciencies are not as important for eco driving as the losses due to increasing resistance forces and acceleration power. In order to reduce energy consumption the vehicle speed should be kept as low as possible to reduce energy spent on resistance forces, and particularly to overcome the aerodynamic drag forces. High acceleration rates were used over short times in order to reduce the energy needed to accelerate the vehicle's mass. Although hybrid vehicles have the ability to regenerate kinetic energy, frequent acceleration and decelerations result in an increase of energy consumption. for each drive train type. An overview of potential gains identied for dierent vehicle architectures can be seen in Table 5.9.

The conventional vehicle operation was optimized for four drive cycles, representing a standard cycle, urban, extra-urban and freeway driving. For verication the resulting optimal velocity proles were tested in a hardware-in-the-loop setting on an engine test bench. The measurements showed that applying ideal vehicle operation can reduce fuel consumption up to 27 % for an urban setting. Analyzing the velocity prole we established that, while component eciency has increased only slightly, the energy needed to drive the eco cycle was much lower than that used for the original missions. It was found that low stabilized vehicle speeds, and rather short, but high acceleration rates lead to decreases in energy consumption due to reductions in resistance forces and inertial acceleration forces. In the deceleration phase engine braking can result in better fuel economy because fuel consumption on engine idling is reduced.

Operation of the electric AIXAM Mega City vehicle was optimized for four adapted drive cycles. With these, real-life and standard drive cycles were simulated, without exceeding the vehicle's maximum speed of 65km/h. The energy consumption of the vehicle over the specied original and eco cycles was measured in an experimental setup. Testing the vehicle on a chassis test bench a real-life driver was used to follow the drive cycles. It was found that for electric vehicle's eco driving presents an important potential to reduce energy consumption. Especially for real-life drive cycles gains in consumption of up to 19% were identied. The simulation results show that drive train component eciency is generally not a critical factor for globally ideal vehicle operation. Appropriate choices of vehicle velocity and acceleration resulted in decreases of the overall energy consumption. This is due to the reduction in resistance forces and energy spend on acceleration and deceleration phases. The use of accurate deceleration rates is important in order to maximize energy regeneration. Hence, vehicle specic modeling is necessary.

To optimize the more complex, hybrid vehicle operation the dynamic programming method was applied in a non-classic way. Using a forward facing optimization allowed us to take into account battery state dependent drive train functionalities.

A new objective function was dened such that fuel consumption and battery use were considered in the optimization process. The factor α was introduced to construct a weighted cost function. To compare the energy consumption of dierent trips, when nal battery SOC is not identical to the initial, a linear interpolation method was applied as suggested by SAE. We computed optimal vehicle operation for an extra-urban, real-life, drive cycle. The mission was optimized, considering various α-weighting factors, for three dierent initial battery charge levels. From the results it can be seen that eco driving has high potentials even for fuel ecient hybrid vehicles. However, the appropriate weight between fuel consumption and battery use is critical for good results. For the simulated real-life drive cycle a reduction in energy consumption of about 17% was calculated. While the optimal velocity prole showed slight increases in eciency of the electric drive train components, it seems that a major reduction in energy consumption is achived due to the choice of velocity and acceleration rates. Low, stabilized velocities are ideally used in combination with short high acceleration rates. In the deceleration phase the regenerative capacity of the vehicle drive train has to be taken into account to optimize kinetic energy recovery.

An overview of optimal vehicle operation for the studied vehicle drive trains can be seen in Up to this point ideal velocity trajectories were discussed. The trajectory optimization problem solved in Chapter 5 considered only drive train specic limitations and trip or road dependent constraints. This chapter deals with the integration of more complex constraints. We will here study the inuence of trac limitations and emission constraints on potential gains of eco driving.
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Trac is an unpredictable variable when optimizing vehicle operation for a desired trip. However, in the development of driver assist systems it is also one of the most important parameters that have to be taken into account. Neglecting a vehicle's trac environment could result in advice that leads to safety risks for the driver.

While energy consumption is the objective to be optimized, we do not want to trade-o driver safety in order to reduce consumption. In Section 6.1 the eect of trac on fuel consumption gains in an urban setting is analyzed. Since secondary vehicle behavior is hard to predict, experimental data was used to compute fuel optimal and safe vehicle operation for a conventional test vehicle.

Eco driving strategies are often applied due to their economic advantages. For eco driving to also show ecologic advantages the emissions of the energetically optimal velocity proles have to be investigated. Section 6.2 presents an approach to integrate environmental constraints in the trajectory optimization process. Using hardware-in-the-loop experimentations on an engine test bench the pollutant gas emissions were measured for the fuel optimal drive cycles. From initial experimental results optimization constraints for emissions were derived. Economically and ecologically optimal vehicle operation is discussed in Section 6.2.4.2.

Eco driving with trac constraints

Driver safety should be the most important criterion in the development of a driver assist system. Advice given by a support system should never have a negative eect on the driver's safety. When computing potential energetic gains of eco driving, we therefore need to take into account trac constraints. Yet, to our knowledge, there is no work in literature that treats the dependency of eco driving strategies on trac constraints. In the context of this thesis work studies investigated potential gains due to eco driving in an urban setting where trac inuences the vehicle operation [START_REF] Mensing | Trajectory optimization for eco-driving taking into account trac constraints[END_REF]. A vehicle following situation is considered.

Experimental data was used to specify the vehicle's mission. Section 6.1.1 lays out the format of experimental data. Vehicle and trip parameters are specied.

The optimization constraints are dened in Section 6.1.2. Various vehicle following criteria, like the total-time-to-collision (TTC), the time-inter-vehicular (TIV) and the safe distance to brake, are discussed. A brief description of the adapted optimization process is given in Section 6.1.3. For comparison the optimal velocity Chapter 6 Constraint integration: Trac and Emissions The unconstrained velocity prole can be compared to a velocity trajectory that is adapted to the trac surrounding the vehicle.

Trip specication

A vehicle following situation is illustrated in Figure 6.1. The schematic shows a vehicle x which is following vehicle y. Vehicle y is often referred to as 'preceding vehicle' or 'vehicle in front'. In our case the goal is to optimize the vehicle operation of vehicle x without safety risks due to the presence of vehicle y.

To dene baseline energy consumption a real-life drive cycle was used. A Renault Clio test vehicle equipped with speed sensors, radar and camera was used to record a real-life drive cycle with a corresponding trac situation. With this setup the vehicle speed (v x ) of the test vehicle as well as relative speed (∆v xy ) and acceleration (a y ) of the preceding vehicle were stored.

Integrating the vehicle speed (v x ) the distance of the test vehicle (d x ) can be found as a function of time.

d x = t v x (t)∆t (6.1) 
When given the relative speed of the preceding vehicle (∆v xy ) the distance (d y )

and the velocity (v y ) can be calculated as a function of time:

v y = v x + ∆v xy (6.2) 
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d y = t v y (t)∆t (6.3) 
With these computations we can assume that the distance, velocity and acceleration of vehicle x, the test vehicle, and vehicle y, the preceding vehicle, are known. be observed. Inconsistencies in trac result in periods where no vehicle is being followed. At other times, often at stop lights where the vehicle is at rest or at low speeds, the distance between the vehicle x and y is very small. At periods where no preceding vehicle was identied by the sensors the distance to the vehicle in front was xed to a very large value (here 100m), such that this cannot have an inuence on optimal vehicle operation. It can be seen in Figure 6.2 that at certain times the vehicle following distance for the used real-life driver was very small. It was found, that in an urban setting sucient safety distances are often not respected, especially in acceleration and deceleration phases.

The drive train of the Renault Clio can be modeled similarly to the Peugeot 308 conventional drive train presented in Section 3.3. The vehicle is a small passenger vehicle with a mass of 1020kg. The power is transmitted through the mechanical shaft and a 5-speed manual transmission to the engine. The vehicle is propelled by a 1.5L diesel engine that can achieve a maximum combustion eciency of 40%.
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In the following the experimentally recorded vehicle data is used to identify potential gains due to eco driving while satisfying established safety criteria.

Optimization constraints

Previously only trip and road constraints were considered in the trajectory optimization. To derive trip and road constraints the experimental data, shown in Figure 6.2, can be used, applying the procedure described in Section 4.1.2.

Constraints are specied on the initial and nal states. In addition we dened maximum speed limits as a function of distance. Further, we will here integrate trac constraints considering a vehicle following situation. It is assumed that the vehicle in front cannot be passed, and the vehicle speed therefore has to be adapted. Hence, constraints on vehicle velocity and distance have to be specied to ensure safe vehicle following. Three factors for safe vehicle following are investigated: the safe braking distance, the time-inter-vehicular (TIV) and the time-to-collision (TTC).

Although it is not often used in rules for safe vehicle following, the safe braking distance seems a rather intuitive way to specify a good following distance. To compute the safe braking distance the maximum deceleration rates of vehicles x and y are estimated by a minx = a miny = -g = -9.81m/s 2 , which was identied as an appropriate value for the maximum braking capacity of passenger vehicles [START_REF] Kanaris | Spacing and capacity evaluations for dierent AHS concepts[END_REF].

If, for some reason, vehicle y brakes at its maximum deceleration rate the safe distance is dened by the distance that is needed for vehicle x to come to a full stop without colliding with vehicle y. This distance includes the driver's reaction time. A realistic reaction time, T react , for a driver can be specied by 1s. The time to decelerate vehicle x and y from the current speed to a full stop is then dened by ∆t y = -v y a miny (6.4)

∆t x = -v x a minx (6.5) 
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d x = v x T react + v x ∆t x + 0.5 a minx ∆t 2 x (6.7)
The safe distance (d saf ebr ) to avoid collision when braking is then given by the dierence of the two distances. Theoretically the safe distance can be zero or negative when vehicle y is faster than vehicle x. In real life the minimum distance between two vehicles necessary for safe vehicle following is always the distance the vehicle covers in the reaction time. The minimum is therefore set to the distance driven during reaction time.

d saf ebr = max(v x T react , d x -d y ) (6.8) 
To illustrate the shape of this distance, it has been plotted for dierent vehicle speeds v x and v y in a 3D graph. The surface is shown on the top left in Figure 6.3.

Chapter 6 Constraint integration: Trac and Emissions 149 A measure often used by drivers in real-life driving on highways is the time-intervehicular (TIV). The French highway code [START_REF] Brackstone | Driver headway: How close is too close on a motorway? Ergonomics[END_REF] species the minimum allowable TIV to be 2s. Instantaneously, this measure does only take into account the own vehicle speed and neglects the speed of the vehicle in front. The minimum safe distance (d T IV ) between two vehicles using the TIV is calculated by:

d T IV = v x T IV (6.9) 
A TIV of 2s is often recommended. This time window takes into account the drivers reaction time of about 1s, which then leaves him 1s to slow down his vehicle. The shape of the distance computed using a TIV of 2s can be seen in Figure 6.3 in the bottom left graph. It can be seen that the shape is independent of the v y speed.

A third criterion, often used for implementation in collision warning devices, is the time-to-collision (TTC) [START_REF] Balas | Constant time to collision platoons[END_REF]. Assuming that the vehicle speeds stay unchanged this parameter species the time it will take until the two vehicles collide. The TTC is calculated using the following equation:

T T C = (d y -d x ) (v x -v y ) (6.10) 
If a desired TTC is specied, the minimum allowable distance can be derived. It can be seen that doubling the TTC from 2s to 4s results in much larger allowable minimum distances between the two vehicles.

From Figure 6.3 it can be seen that the shape of the minimum allowable following distance for the considered criteria is very dierent. The TIV criterion is independent of the speed of the preceding vehicle. However, for the safe braking distance and the TTC factors the safe following distance is increasing when the speed of vehicle x is much larger than that of vehicle y. To compare the characteristics As previously noted the TIV parameter, here represented by the green line (points), is a v y independent function and therefore does not change shape throughout the four graphs. For low preceding vehicle speed it seems that this parameters can be categorized as a high risk vehicle following criterion since it species the lowest minimum following distance. The graph shows clearly the dierence between a TTC of 2s, plotted in light blue (squares), and a TTC of 4s, drawn in dark blue (crosses). While the higher TTC represents very safe driving, a TTC of 2s represents the most risky vehicle following distance for the four computed preceding vehicle speeds. The safe braking distance seems to represent a medium risk vehicle following criterion. However for high v y the safe-braking-distance parameter recommends very high distances between the two vehicles.

Any of the three criteria can be integrated in the proposed algorithm. For urban driving we want to discuss a low and a high risk vehicle following case. It seems Chapter 6 Constraint integration: Trac and Emissions 151 that for vehicle speeds in the urban range this can be done using a TTC of 2s for a risky driver and a TTC of 4s for a cautious driver. From experimental data the distance of the preceding vehicle, d y , is given. Fixing the TTC value, the minimum allowable distance between the two vehicles, d T T C , can be computed using the two vehicle speeds, v x and v y . Therefore, we dene the optimization constraint on the distance d x :

d y (t) -d x (t) > d T T C (6.11)

Optimization Method

The trajectory optimization problem can be dened as presented in Section 4.1.

For optimization purposes the motion of the system is specied in discrete form.

The objective of the optimization is to minimize fuel consumption of the tested conventional vehicle for a given mission, while trip, road and trac constraints are respected. The optimal velocity prole is identied using a nested optimization algorithm, where a two dimensional dynamic programming method is used in combination with advanced root nding methods. The trajectory optimization was presented in detail in Section 4.2.2.

There are two ways to integrate the considered trac constraints: as a constraint on time or as a constraint on distance. The two dimensional method chosen for optimization uses the axis distance and velocity. In this work we therefore integrate the trac constraint as a limitation on the distance of the vehicle. However, time still plays an important role, since the distance of the preceding vehicle is dened as a function of time. It is therefore necessary to keep track of the time at which the test vehicle passes a certain distance. Computing the optimal velocity trajectory backward on the x-axis, it is not possible to specify the time the vehicle passes at a certain distance. Similarly to the optimization strategy applied to the hybrid vehicle (Section 5.3.1) we therefore applied the dynamic programming algorithm in a non-standard way, computing the optimal trajectory in a forward facing way.

With this method the optimal trajectory is identied starting from the initial distance, calculating forward in distance, and therefore time.

Searching for the best solution from the initial to the nal state, we can keep track of the time at which the vehicle passes a certain distance. Given the experimental Chapter 6 Constraint integration: Trac and Emissions 152 data, distance and velocity of the preceding vehicle are known as functions of time.

Given the operating time of the optimal velocity trajectory at some distance the possible choices of vehicle speeds can be constraint. With this, at time t, for some distance d certain choices of velocity are not allowed in order to satisfy the trac constraint.

Results

The urban real-life drive cycle, seen in Figure 6.2, was used to dene a driver's mission and the surrounding trac constraints. Applying the optimization algorithm the ideal velocity prole was computed with and without trac constraints.

For comparison a high risk driver scenario (TTC=2s) was imagined as well as a cautious driver (TTC=4s).

Figure 6.5 shows the resulting vehicle operation. The rst graph shows the original drive cycle in red and the unconstrained optimal velocity prole in green (dashed).

In the second graph the trac constrained solutions can be seen together with the original drive cycle. A high risk driver, respecting a TTC constraint of 2s, is represented by the dark blue (dashed) curve. The light blue (dashed) line shows the ideal vehicle operation for a cautious driver.

The resulting velocity trajectories show that ideal, unconstrained vehicle operation uses short, hard acceleration phases and low constant speeds. Variations in vehicle speeds are rare because any acceleration and deceleration phase results in a waste of energy. The constrained velocity trajectories show more variations in vehicle velocity. When a preceding vehicle is present the recommended ideal vehicle speed is reduced to ensure safe operation. In Figure 6.5 an example of such a situation is given at t = 60s. The unconstrained optimization solution shows constant vehicle speed while the trac constrained velocity prole reduces the operating speed, similarly to the original driver, to avoid a collision. However, reducing the vehicle speed results in a lower average trip velocity. To compensate for sections, where lower vehicle speed is recommended due to trac, the constrained ideal velocity prole uses higher maximum speeds to satisfy the xed time constraint.

In the second plot of Figure 6.5 it can be seen that these phenomenons are stronger when low risk driving is considered. More frequent variations and higher maximum speeds are present in the velocity prole computed with a TTC of 4s than for the one calculated with a TTC of 2s.

Chapter 6 Constraint integration: Trac and Emissions 153 Figure 6.5: Optimal Velocity Trajectory

All computed ideal velocity proles result in the same mission. From Figure 6.5 it can be seen that trip constraints in initial, nal state and arrival time were satised. Before comparing energy consumption for the identied drive cycles the road and trac constraints need to be veried. The left graph in Figure 6.6 shows the optimal velocity trajectories as a function of distance. The distance dependent maximum speed limit can be seen in red. The calculated ideal velocity proles never exceed the maximum velocity limitations and road constraints are therefore respected.

To verify the trac constraint integration the TTC-values throughout the cycles were computed. For comparison Figure 6.6 shows the resulting TTC values in the right graph. To evaluate the eect of the constraint, the TTC values are plotted for the trac constraints eco cycles as well as the unconstrained ideal velocity prole. The purple and red lines show the TTC limitations of 2s and 4s. In green the TTC operating points of the optimal eco-cycle without trac constraints can be seen. It is shown that the cycle does not respect any safety constraint and the TTC values drop well below the boundary lines. Multiple negative TTC values can be observed for this cycle. From Equation 6.10 it can be concluded that in this case either the distance of vehicle x is greater than that of vehicle y, or the velocity of vehicle x is smaller than the velocity of vehicle y. The points, where vehicle x Chapter 6 Constraint integration: Trac and Emissions 154 Figure 6.6: Road and trac constraints of ideal velocity trajectories is following vehicle y but the speed of vehicle x is smaller than that of vehicle y, are not plotted in this graph. The points were deleted because they do not show any importance in TTC, since no collision is possible in this case. Therefore, since the remaining points correspond to the rst case, we can conclude that with the choice of this velocity trajectory a collision would already have happened.

In dark blue the TTC values of the optimal vehicle operation with TTC=2s is plotted. We see that the TTC values never drop below the 2s boundary. The light blue TTC values, which represent the optimal operation with TTC=4s, never show a TTC lower than 4s. Due to the restriction of trac the optimization of the trajectories for these two cases is limited. Vehicle speeds were adapted to those of the preceding vehicle. Due to the forced change of the velocity prole an increase in fuel consumption is expected.

To compare the gains of eco-driving with and without trac constraints, the fuel consumption was calculated for the computed cycles. In Table 6.1 the fuel used for each of the cycles can be seen. The fuel consumption was computed applying an optimal gear for the eco cycles as for the original cycle. To drive the originally specied drive cycle the vehicle consumed 97.36g of fuel. Without trac constraints this number can be improved to 64.10g for the same mission. Not considering the preceding vehicles the driver can theoretically arrive at his destination in the same time while consuming 34% less fuel. Applying safety distances to integrate trac constraints the optimal fuel consumption has increased to 69.62g for a TTC of 2s and to 82.3g for a TTC of 4s. In total, an optimal velocity trajectory resulted in a gain of only 15% when trac constraints were integrated with a TTC of 4s. The decreases in optimal fuel consumption are due to increased velocity uctuations and higher vehicle velocities.

Note: When we computed TTC-values for the original cycle, as performed by the driver, it was found that the real-life TTC-values uctuate a lot. Some very small TTC-values, close to zero, were found. The driver's natural vehicle operation resulted in situation close to collisions. It is assumed that these were times when the driver was overtaking the preceding vehicle.

Conclusion

Considering a vehicle following situation, the eects of trac on potential fuel consumption gains of eco driving were discussed. Experimental data from a radar equipped vehicle was used to specify a real-life vehicle mission and its surrounding trac situation. Several safe vehicle following criteria were discussed and compared in their minimum allowed inter vehicular distance. It was found that dependent on test vehicle speed and velocity of preceding vehicle the criteria can result in very dierent constraints. For the presented studies the time-to-collision factor was implemented. It can be used to represent a high risk and a low risk driver.

Using the adapted, non-classical dynamic programming optimization method the ideal velocity trajectory was identied for an urban trip. The best velocity prole was computed with and without trac constraints. For the constrained optimization it was found that the resulting ideal velocity prole had frequent acceleration and deceleration phases due to the fact that vehicle speed had to be adapted to the trac. The optimal velocity uctuated more, and due to time constraints higher maximum cruising speeds had to be used in order to achieve the same resulting average speeds for the trip.
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We can conclude that it is important to consider trac constraints in the investigation of maximum potential gains of eco driving. Due to the constrained vehicle velocity the gains of eco driving are reduced. However, an important fact that we need to point out is that safe eco driving did not result in increasing fuel consumption. In order to gain more knowledge about eects of eco drivers in trac situations more studies are necessary on various trac situations. We can conclude that it is important to take into account trac constraints in the development of driver assist systems in order to ensure driver safety. An approach to do so will be presented in Chapter 7.

Eco driving with environmental constraints

Eco driving is generally considered to be environmentally friendly due to the reduction in fuel consumption and therefore CO2 emission. With the rising fuel prices the interest in eco driving lies for most drivers in the cost reduction. In literature a lot of work on energy and fuel ecient eco-driving can be found, but only one study was found where emission values are considered when discussing eco driving. Johansson [START_REF] Johansson | Impact of eco driving on emissions[END_REF] measured fuel consumption and emission values for 16 test drivers that were educated on eco-driving. In his study Johansson found that due to more time spent in high throttle engine operation some emission values increased.

In this work the trade-o between fuel consumption and pollutant emission is discussed. Economic, fuel optimal, and ecologic, fuel and emission reducing, vehicle operations are compared. Using hardware-in-the-loop testing the fuel and emission values of the computed, optimal drive cycles were measured. A simple method is proposed to integrate fuel and emission optimal gear operation in a dynamic Chapter 6 Constraint integration: Trac and Emissions 157 setting. It will be shown that eco driving can be applied in a way such that it represents economic and ecologic advantages.

In the following the optimization problem, integrating environmental constraints, is discussed. Section 6.2.2 gives a detailed description of the experimental setup.

We will rst investigate economic, and therefore cost and fuel reducing, vehicle operation in Section 6.2.3. Using the experimental results, an approach to integrate environmental constraints is presented in Section 6.2.4. Ecologic vehicle operation is analyzed and the trade-o between fuel consumption and environmental constraints is elaborated.

Optimization

The operation of a conventional vehicle is to be optimized for economic and ecologic operation. As representative compact passenger vehicle the Peugeot 308 vehicle will be used to demonstrate the algorithm. A detailed drive train model of the conventional vehicle, including engine parameters, can be found in Section 3.3.

The vehicle is simulated using an inverse model, such that fuel consumption can be computed as a function of instantaneous vehicle speed and acceleration.

Emissions are a very important factor to be reduced for environmental reasons.

In addition, exhaust emissions should be decreased in an urban setting in order to improve air quality and therefore our health. We will thus analyze a drive cycle that represents real-life urban driving behavior. The original velocity prole together with the driver's gear selection can be seen in Figure 6.7 in blue. The shown mission was used to deduce trip and road constraints, which were to be respected by the optimized velocity trajectory.

In the setup of the optimization problem we can now dene two objective functions.

A rst cost function is used when economic vehicle operation is computed. In this case overall fuel consumption is minimized. The cost function can be computed as a sum of instantaneous fuel rates, derived using the presented non-linear vehicle model (Equation 3.18):

Γ veh 1 = γ f uel (t)dt (6.12) 
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Γ veh 1 = n i=1 ṁfuel i (t i -> t i+1 )∆t i (6.13)
When ecologic vehicle operation is to be calculated, fuel consumption as well as emission values have to be taken into account. The cost function can then be expressed as a weighted function with the two objectives: Pollutant emission and fuel.

Γ veh 2 = (γ f uel (t) + λγ emission )dt (6.14) 
which corresponds to Applying the two dimensional dynamic programming method in a nested approach, as described in Section 4.2.2, the most ecient speed prole for a considered mission can be identied. We solved the optimization problem, minimizing objective function Γ veh 1 , for the presented urban, real-life drive cycle. Trip constraints in distance, velocity and time were taken into account. In addition, the resulting velocity trajectory does not exceed the dened maximum speed limitations. The identied, fuel optimal, eco cycle can be seen in Figure 6.7 in red (dashed).

Γ veh 2 = n i=1 ṁfuel (t i -> t i+1 )∆t i + λ i Emissions i ∆t i (6.
To measure fuel consumption and emission values for the drive cycles, the velocity proles were tested in an experimental setup on an engine test bench.

Experimental Setup

A hardware-in-the-loop setup was used to test the conventional vehicle for the described drive cycles. In this approach the EP6 gasoline engine is running in real time, while the rest of the vehicle is simulated using the Vehlib software (Section engine test bench consists of an electric machine, that is connected to the engine output shaft, and a controller that regulates the shaft speed. Test bench specic parameters can be found in Table 6.2.

The exhaust gas of the engine is passed through the vehicle's three way catalytic converter (TWC) to reduce the emission of pollutants. To measure the vehicle's exhaust gas emissions the AVL CVS (constant volume sampler) system was used as well as the HORIBA2 emission analyzer. Throughout the drive cycle the diluted gases are stored in the bags of the CVS system and later passed by the HORIBA emission measurement to evaluate emissions over a drive cycle. All measurements were recorded at a frequency of 10Hz.

With the described experimental setup the emission of the gases carbon dioxide (CO2), carbon monoxide (CO), Nitrogen Oxide (NOx) and Hydro Carbons (HC) However, the EPA (U.S. Environmental Protection Agency) has started to view CO2 as an environmental concern because it is a greenhouse gas and therefore contributes to global warming [START_REF]Automobile emissions: An overview EPA[END_REF]. Together with water vapor, CO2 is a product of perfect combustion. In the non-perfect case the amount of CO2 emitted while driving stays approximately proportional to fuel consumption.

CO is produced when incomplete combustion occurs. The carbon in the fuel is only partially oxidized when the engine is running under rich conditions (air/fuel ratio less than 14.7). At this operation, rather than fully oxidizing the carbon to CO2, the gas CO is emitted. CO is a pollutant and reduces the ow of oxygen in the bloodstream. It therefore reduces reaction times, causes dizziness and can be dangerous to people with heart disease.

In high pressure and high temperature conditions in the engine nitrogen and oxygen atoms can react to form various nitrogen oxides. When emitted to the environment and exposed to sunlight the nitrogen oxides can form ozone.

HC, which includes methane (CH4) and non-methane hydro carbons (NMHC), can be a product of the combustion process in the engine if fuel molecules are not burned or only partially burned. In sunlight HC can react with nitrogen oxides to create ozone. HC is also considered a potential cause of cancer. As CO, hydrocarbons can be produced under rich conditions due to the lack of oxygen.

In addition, HC emissions are increased in lean conditions due to engine misres [START_REF] Guzzella | Introduction to Modeling and Control of Internal Combustion Engine Systems[END_REF]. All of the four gases are currently considered pollutants and should be reduced in environmentally friendly driving.
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In our setup the pollution values from the engine are measured downstream from the three way catalytic converter. With this approach the pollutants emitted to the environment are measured. Each test was repeated three times to compensate for emission measurement errors.

Economic vehicle operation

The economically optimal vehicle operation is presented together with the original, real-life, urban drive cycle in Figure 6.7. The rst plot shows the velocity prole and in the second plot the gear selection for the two cycles can be seen. While the driver used rather low gear choices the eco cycle minimized fuel consumption with higher gear engagements. This has an immediate impact on engine operation and therefore fuel consumption and pollutant emissions.

It was found that for fuel ecient vehicle operation it is best to use hard, short acceleration phases to attain the lowest, with the time constraint possible, cruising speed. This leads to low acceleration power and short acceleration time. Reducing the aerodynamic drag loss due to the reductions in average vehicle velocity reduces the overall energy consumption. To satisfy the time constraint each segment ends with a short, rather hard deceleration phase.

Testing the two cycles on the engine test bench the fuel consumption was measured.

It was found that fuel consumption was reduced by 27.8% from 9.0 l/100km for the original cycle to 6.5 l/100km for the eco cycle. The AVL emission measurement system was used to evaluate the gas emission values over the two test cycles. In To identify the source of such high CO and HC emissions the engine operation was compared for the two cycles. In Figure 6.9 the operating points of the engine on the test bench can be seen for the original cycle on the left and the optimized vehicle operation on the right. Due to the high acceleration rates and high gear choices of the eco cycle the engine is operated mostly in very high torque and low speed regions (Figure 6.9 b) while the original cycle uses the low torque and high speed region (Figure 6.9 a). In order to run the engine near maximum torque more fuel has to be injected. The air/fuel ratio is therefore reduced. At this point the engine is operated at rich conditions.

With this analysis it is assumed that the increases in CO and HC emissions come While low speed, high torque operation results usually in more fuel ecient operation, it also increases pollutant emissions. We can see that there exists a trade-o between fuel eciency, and therefore economic vehicle operation, and emission reducing, ecologic, vehicle operation.

Ecologic vehicle operation

In this section we propose an approach to integrate pollutant limiting constraints in the optimization process to ensure environmentally friendly eco driving. Due to its economic and ecologic advantages the resulting velocity prole will be called 

Emission integration

With the analysis in Section 6.2.3 it was shown that exhaust emission is strongly dependent on engine torque. Investigating the economically optimal vehicle operation we can assume that high emission engine operation occurs in the 85% to 100% torque range. We can now dene an objective function Γ veh 2 to optimize the vehicle's trajectory for ecologic operation. To reduce the time the engine is operated in the high torque region the weighting factor λ (Equation 6.15) is used as a constraining parameter. Using the experimental results from Section 6.2.3 to x the values of λ the objective function Γ veh 2 is dened as 4 :

Γ veh 2 = i (γ f uel (t i ) + λ i ) (6.16)
with

λ i =    λ 0 if T eng > χT engmax (ω eng ) 0 if T eng <= χT engmax (ω eng ) (6.17) 
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In our case χ was xed to 0.85. The objective on emissions is hereby integrated as a soft constraint. When lower torque solutions can be used to satisfy all other hard constraints the high torque engine operation is never chosen. However, if, due to xed time constraints, high torque vehicle operation is necessary the engine can be operated in the high emission zone.

Considering cost function Γ veh 2 the environmentally optimal velocity trajectory was computed for the treated urban mission. The velocity prole, resulting in emission optimal vehicle operation, can be seen in Figure 6. [START_REF] Tsao | Trajectory generation for vehicle moving with constraints on a complex terrain[END_REF]. In this graph the original cycle is plotted in blue, while the economic, fuel optimal prole can be seen in red. The ecological, emission optimal velocity trajectory can be seen in green.

Computing the emission optimal vehicle operation we found that the dierences between the eco cycle and the eco 2 driving proles were minimal. However, the derived emission optimal gear choices had drastically changed from the economic operation. This is due to the fact that most engine operating points had to be moved from the high torque, low speed region to a lower torque, higher speed operation.

In the optimization process an inverse modeling approach was used, where gear changes are assumed to occur instantaneously. However, to simulate a cycle's consumption and to measure fuel economy experimentally on the test bench, a direct vehicle model is used, where gear changes take a certain amount of time and torque interrupts exist. Testing the computed ecologically optimal vehicle operation it was found that gear changes are demanded too frequently. The vehicle simulation was not able to follow the specied velocity prole due to frequent upand down shifts in the gear box. We therefore propose a method to select the ecologically optimal gears automatically in a dynamic setting. In our approach the model of the conventional vehicle, derived in Section 3.3, was utilized. The schematic in Figure 6.11 illustrates the process that was implemented. First the range of vehicle velocity (v max ) and vehicle acceleration (a min , a max ) needs to be specied. The vectors v veh with length m and a veh with length n can be dened using some reasonable step size. With the constructed vehicle simulation the optimal gear choice, and therefore the emission optimal vehicle operation, can be computed using the cost function dened in Equation 6.16.

Automatic optimal gear selection

Consequently, matrices of size (m, n) of gear choice, engine speed (ω eng ) and engine torque (T eng ) are computed for all possible vehicle operations (v m , a n ). With this the engine operating points for optimal gear selections for gears 1 through 5 can be identied.

In Figure 6.12 the engine operation in speed and torque are plotted for gears 1 through 4. Since maximum and minimum allowable speeds are derived as functions of torque the gure shows the engine operation with torque on the x-axis and rotational speed on the y-axis. The region of operating points can be used to dene minimum and maximum allowable engine speeds for each gear. The proposed method allows us to select emission optimal gears when testing the cycles with the direct, dynamic vehicle simulation. Implementing this method, we were able to test the computed ecologically optimal drive cycle on the engine test bench to verify fuel consumption and emission values.

Results and comparison

The eco 2 drive cycle derived for the considered urban mission is presented in Figure 6.13. The rst plot shows the velocity prole of the original, eco and eco 2 cycle, while the second graph shows the tested gear selection for the three cycles. As previously stated, we can observe that the velocity prole of the ecologic vehicle operation is approximately equal to that of the fuel optimal operation. However, as seen in the second plot, gear selections are very dierent. While the economically optimal operation engages very high gears to increase engine eciency to its maximum, an ecologic driver would rather choose an intermediate gear. The higher speed and lower torque engine operation should lead to lower pollutant emission values over the cycle. It needs to be pointed out that, optimizing drive train operation for emissions still results in higher gear choices than the original baseline driver had selected. To visualize the data the results were plotted in a bar graph, presented in Figure 6.14. The gure shows fuel consumption and CO and HC emission values for the three tested drive cycles in a normalized graph. In comparison to the original drive cycle, fuel consumption was reduced with both, the eco and the eco 2 cycle.

However, the economic cycle led to a drastic increase in CO and HC emissions, whereas emissions could be reduced to the baseline for the emission optimal vehicle operation.

Fuel optimal vehicle operation achieved a fuel consumption of 6.5L/100km for the considered urban mission. With environmentally friendly eco driving, fuel consumption was still reduced by 26% to 6.7L/100km in comparison with the original cycle (9.0L/100km). The compromise in energy consumption seems to be small From these results it can be assumed that fuel optimal vehicle operation is achieved due to the selected velocity prole. With good choices of velocity and acceleration rates the energy necessary for the trip is reduced. In order to reduce emissions the drive train operation has to be considered. Using the gear box, engine operation can be adjusted such that fewer pollutants are emitted.

Conclusion

Eco driving is a driver behavior that is commonly considered environmentally friendly, while often implemented due to its economic advantages. The presented study shows a comparison of economic, fuel optimal, vehicle operation and ecologic, emission optimal, vehicle operation.

A trajectory optimization problem was presented where an urban real-life drive cycle was optimized for eco driving. Considering two dierent objective functions, the fuel optimal vehicle operation was compared to environmentally friendly driving. A nested approach, combining the dynamic programming method with advanced root nding methods, was used to solve the constrained trajectory optimization problem using an inverse vehicle model. To avoid rapid gear switching a simple method to dynamically integrate the optimal gear selection was proposed for experimental testing. Testing the original, economically optimal and ecologically optimal cycles the fuel consumption and pollutant emissions were measured.

Advanced emission measurement systems were used to evaluate each cycle's CO2, CO, NOx and HC emission values.

The results show that eco driving can not always be considered environmentally friendly. Initial tests showed that fuel optimal vehicle operation resulted in increased emissions of CO and HC, while signicantly reducing fuel consumption and CO2. It can be concluded that it is important to consider emission constraints in the trajectory optimization process. Taking into account a small trade-o in fuel consumption, pollutant emission values can be reduced such that the original baseline values for CO and HC are not exceeded. The ecological drive cycle still achieved a 26% reduction in fuel consumption with respect to the original driver.

Comparing economic and ecologic vehicle operation it was observed that the optimal velocity prole of the two cycles is very similar. Yet, the gear selection is very dierent between fuel optimal and emission optimal vehicle operation. We therefore conclude that energy consumption is reduced by the appropriate choice of velocity and acceleration rates, while the pollutants emitted depend on the drive train operation.

Conclusion

This chapter dealt with constraint integration to evaluate advantages of eco driving in more realistic situations. While previous studies only considered trip and route constraints, we here showed an approach to integrate trac and environmental constraints in the energetic optimization process. With this, potential gains of eco driving can be approximated more realistically.

Considering a vehicle following situation inuences of trac constraints on maximum theoretical gains of eco driving were discussed. It was found that, while potential gains decreased due to trac constraints, eco driving still represents a way to reduce fuel consumption and most importantly does not result in disadvantages for the driver. To get a better idea of advantages and disadvantages of eco driving in high density trac situations further studies of dierent trac scenarios are necessary. In the previous chapters the theoretical, maximum potential gains of eco driving were investigating. An ideal case was assumed, where the vehicle was simulated, however a driver model was not considered. It was assumed that the vehicle operator followed exactly the optimal velocity trajectory. Taking the driver out of the loop is a good way to evaluate potential energy savings and optimal vehicle operation. However, for real life implementations of eco driving strategy the information has to be transmitted to the driver.

Previous studies have shown that educational courses of eco driving show improvements in consumption only for a short time period. In long-term studies it has been found that drivers fall back to their original behavior [START_REF] Beusen | Using onboard logging devices to study the longer-term impact of an eco-driving course[END_REF]. It is therefore necessary to design a driver assist system to educate and remind the driver of optimal vehicle use. In contrast to o-line studies, when developing a driver support system, several driver related factors need to be taken into account. First, driver safety cannot be neglected. In addition, ergonomic aspects need to be considered in the development of a human-machine-interface (HMI). Driver acceptance and understanding is necessary to achieve good results.

In this chapter we propose an approach to integrate the developed trajectory optimization algorithms in an advanced driver assist system (ADAS). With this, we want to not only evaluate theoretical gains of eco driving, but identify realistic advantages in real-life situations. To demonstrate the eectiveness of the ADAS system it was tested in a controlled environment on a driving simulator.

An internal project at the institute IFSTTAR, called VERONESE, units several To realize this project the workload was balanced between the laboratories in the collaboration. How this thesis work integrates in the overall project can be seen in Table 7.1. While the simulator was maintained by the LEPSiS laboratory, specic changes had to be made to test the developed ADAS system. In the development of the HMI of the ADAS, previous studies at LESCOT on a simple rule-based assist system were used as a basis. A survey was conducted on each subject to evaluate driver acceptance and understanding.

In Figure 7.1 the setup used to experimentally test the developed support system can be seen. The simulator hardware, which will be explained in more detail in Section 7. both, the vehicle and the environment will be used in the ADAS algorithm to compute information for the driver. The advice provided by the designed system consists of an educational advice and a continuous advice. The ADAS system will be described in more detail in Section 7.2. The physical driver uses the inputs from the environment, the vehicle and the ADAS system to decide on his vehicle operation, which is transmitted through the pedals and steering wheel.

In Section 7.1 the driving simulator at the IFSTTAR laboratory is presented. A brief outline of the dynamic vehicle simulation, installed on the simulator is given.

The simulator environment is introduced and the setup of the communication network is specied. In Section 7.2 the driver support system is discussed. The implemented algorithm is outlined and the interface, which is used to transmit information to the driver, is presented. Section 7.3 describes the experimental evaluation of the developed ADAS system. First, the experimental setup and the testing routine applied to validate the ADAS's performance is outlined. To conclude this chapter, the results are evaluated with respect to fuel consumption and driver acceptance. Testing driver operations and reactions on a driving simulator has the advantage that the test can be run in a controlled environment. In addition safety risks are no concern, since the vehicle is not actually moving. However, it is dicult to achieve In a detailed model the brake pedal command should be used as an input to the brake system. The pedal command is transformed in a torque applied to the wheels through the hydraulic brake system. To keep the vehicle model simple and focus on major drive train components, the brake force was here specied by multiplying the brake command by a realistic gain. To identify the appropriate gain we assumed that full brake pedal displacement corresponds to maximum possible brake force, which results in maximum deceleration without locking the wheels. The maximum brake force transmitted depends on the friction between the tires and the road and can be computed by

F decelmax = M veh gµ (7.1)
where M veh is the vehicle mass and g is the gravitational acceleration. The tire road friction is specied by the adherence coecient µ, which depends on road surface and condition. In our study, the value of µ was xed to 0.6, which corresponds to an asphalt road surface in dry conditions. The brake torque corresponding to some brake pedal displacement can be identied by interpolating between zero and maximum brake force. The wheel slipping factor is here neglected, the tire to road contact is always perfect.

In order to place the vehicle in the simulated environment the longitudinal and the lateral motion need to be computed by the vehicle model. The VEHLIB software, initially developed to compute energy consumption of drive cycles, only simulates longitudinal vehicle motion. Here, a simple lateral vehicle model is constructed using a bicycle representation of the vehicle, where the two front wheels and the two rear wheels are respectively represented by one central wheel. The so-called 'kinematic model' [START_REF] Rajesh | Vehicle Dynamics and Control[END_REF] is based only on geometric relationships and therefore does not consider the forces that aect the motion. A detailed outline of the model construction can be found in the appendix.

With this the vehicle longitudinal and lateral speed is dened as a function of vehicle speed and wheel angle. Given the steering wheel position the angle of the wheels can be computed with a steering ratio [START_REF] Thomas | Fundamentals of Vehicle Dynamics[END_REF]. Measurements have shown that the ratio can be specied to a value around 16 for passenger vehicles. In our work the steering ratio is specied as a parameter that is xed to 16 for very small speeds, but grows proportionally with the vehicle speed. Due to increasing slip angles the vehicle usually turns less with increased speeds. Since the implemented lateral model does not consider tire slip angles, using a changing steering ratio can lead to more realistic vehicle operation.

The dynamic vehicle model is constructed using the Matlab Simulink software.

A Dspace Microautobox is used to run the simulation in real time. Communication between the vehicle model and the control computer of the simulator is ensured using the CAN protocol. In the following the simulator environment and communication is discussed in more detailed.

Simulator environment and communication

The driving simulator system is made up of several dierent components that are all controlled from a central computer unit. In Figure 7.5 the simulator environment is visualized. A control computer is used to manage the communication To integrate the ADAS system in the simulator network an Ethernet connection was used to communicate information from the control unit to the ADAS algorithm. Using this connection environment and vehicle data can be used to calculate optimal vehicle operation. A VGA cable is used to display the eco driving advice to the driver. In the following the functionality, algorithm and human-machineinterface of the designed advanced driver assist system is presented in more detail.

Advanced Driver Assist System (ADAS)

The here presented ADAS design is based on the optimization algorithms constructed and the knowledge acquired throughout this thesis work (Chapter 3 -6). (gear), engine speed (ω eng ) and engine torque output (T eng ), is given. In addition we assume that the vehicle is equipped with radar and can therefore provide information about possibly existing preceding vehicles. If a vehicle is being followed, it is assumed that relative distance and speed of the preceding vehicle is known. We can therefore calculate preceding vehicle speed (v y ) and preceding vehicle distance (d y ).

In real life, environmental variables can be provided by GPS systems or other road mapping techniques. In our case the simulator central computer transmits the necessary road data to the driver support system. To identify the vehicle placement in the simulator environment the control computer associates each road with a number (road number). Dening the start and end of a road the vehicle position can be dened by the road number and the position on this road (d road ).

Communicating the road number and current road distance , d road , to the support system enables the device to x the vehicle's position in the road environment and, more importantly, on a road segment.

An operator input to the support system is used to classify the driver type. With this input the willingness of the driver to reduce fuel consumption with a trade-o in trip time is specied. This factor directly translates to the weighting factor implemented in the two dimensional dynamic programming optimization. Specifying a driver specic weighting factor between energy consumption and trip time leads to a simplication of the optimization algorithm and therefore computation time.

In our experiment a constant weighting factor was implemented, which enables us to make a comparison of the results. A trade-o value of β = 0.5 was chosen, which represents an average driver type (see Figure 4.8).

Using predened vehicle parameters and environment parameters together with the system inputs the ADAS algorithm generates advice for the driver. Figure 7.6 shows that the support system combines two dierent functionalities. Two optimization algorithms are applied to generate continuous advice and educational advice to support the driver. This system design uses two in-vehicle displays as human-machine-interface to transmit advice to the driver. The physical system can be seen in Figure 7.7. The interface will be discussed in detail in Section 7.2.2. 

ADAS algorithm

To understand the logic of the ADAS system, we rst need to dene a road segment. Figure 7.8 shows a typical road segment. A road segment starts at the point where the vehicle leaves an intersection and ends at the next intersection. In this work a road segment is dened by a segment of the road that lies between two 'intersections', where an 'intersection' can be a stop sign, a stop light, a crossing or a roundabout. Figure 7.8 shows a road segment between an urban intersection and a roundabout. In the initialization process the ADAS system loads a map of all road segments of the planned trip into memory. With this, given the road number and road distance of the vehicle it can easily detect on which segment and at which distance on the segment the vehicle is operated. In this algorithm the parts of a road that lie in between segments, such as intersections or roundabouts, are not considered for optimization. This is due to the fact that driver safety always has to be considered more important than potential fuel savings. In an intersection a driver needs to concentrate on its surroundings and the vehicle maneuvering rather than thinking of fuel eciency. In addition, we believe that fuel consumption gains due to improvements on these parts of a trip are minimal.

With this method we can dene for a vehicle to be on a segment or not on a segment. The driver assist system detects when the vehicle enters a (known)

segment. The goal of the system is to compute the best vehicle operation for the current segment and guide the driver throughout the segment. This is what we call continuous advice. When the driver arrives at the end of a segment the optimal Chapter 7 A Driver Assist System for Eco Driving 184 velocity trajectory corresponding to his speed prole is computed and compared to his driving. With this information the driver can be educated on positive and negative aspects of his recent driving style. To manage the continuous and educational advice taking into account safety aspects a control logic was dened.

Control logic

The logic of the ADAS algorithm is presented in Figure 7.9. The graph shows algorithm components that contribute to the continuous advice evaluation in dark blue, while sections that are used to compute the educational advice are displayed in green. In the control logic the two states, 'on segment' and 'not on segment', are clearly visible.

In contrast to the educational display, that presents advisory information at the end of a sequential line, the continuous display is supplying information to the driver at all times. However, while the continuous display is always 'on', it does not always provide advice on optimal vehicle operation. General information, such as current vehicle speed and gear choice, is presented to the driver at all times. Optimal vehicle speed, on the other hand, is not necessarily shown. The continuous advice display design is discussed in more detail in Section 7.2.2.1.

When the vehicle enters a segment the optimal vehicle operation v opt is computed for the detected segment, taking into account the vehicle's initial state. Most ecient vehicle operation is presented to the driver if the proposed optimal vehicle speed does not interfere with driver safety due to a preceding vehicle. In the case that a vehicle in front is detected and the optimal advice would result in safety risks the information is not shown. A so-called vehicle following state is specied, in which the control logic blocks critical driver advice. No information is presented to the driver until the preceding vehicle leaves, that is the vehicle has turned or accelerated to leave a safe following distance. In this case the optimal velocity trajectory is re-calculated for the segment, taking into account the current initial state. If no further safety risks are detected advice on most ecient vehicle speed can now be presented to the driver.

Continuous driver advice not only concentrates on optimal vehicle speed but also on appropriate gear choice. As we see from Figure 7.9, information on best gear selection is not segment dependent. The most ecient gear choice is continuously calculated using the engine speed and torque. Detailed information about the advice given to the driver can be found in Section 7.2.2.1.

In order to give educational advice after a driven segment the vehicle operation is stored throughout a road segment. In Figure 7.9 the algorithms concerning the educational advice are shown in the bottom right in green. No advice is presented at right turns on green or roundabouts.

In the ADAS algorithm the constructed trajectory optimization techniques developed in this thesis work are applied. In the logic ow, in Figure 7.9, the optimization components are pointed out in red. The pre-segment, continuous gear and post-segment optimization algorithms and resulting driver advice generation will be described in the following section

Optimization and Advice Evaluation

Three optimization algorithms are used to determine best vehicle operation for a specied scenario:

• Pre-segment optimization: approximates best vehicle operation for the segment to be driven speed. When the segment ends with a vehicle going straight through a green light the desired arrival speed was set to the legal speed limit. Within a realistic range it was found that the accurateness of a desired arrival speed was not very important. This is due to the fact that the system's advisory function was turned o at some safety distance from the intersection ending a segment.

To specify road constraints it was assumed that the legal speed limitations are known for each segment. Appropriate maximum speed limits can easily be dened with the placement information of speed limit signs. A variable v max (d road ) denes the maximum speed constraints as a function of road distance. With these hypotheses trip and road constraints can be xed. Using the driver input to dene his individual weighting of fuel consumption and trip time the vehicle specic optimal velocity trajectory is identied as a function of distance (v opt (d road )).

Continuous gear optimization A second optimization that contributes to the functionalities of the continuous driver display is the continuous gear optimization.

Gear advice can be given to the driver at any time, and does not depend on the vehicle position on or o a road segment. The computed gear advice is independent of optimal speed advice. This means that it only depends on the driver's vehicle operation, but is not inuenced by other information presented on the display. As seen in Figure 7.11, the algorithm uses the engine operating point to determine if a gear change is appropriate. The method to identify gear changes has previously been presented in Section 6.2.4.1. Using the vehicle model gear dependent minimum and maximum allowable engine speeds for a requested torque are dened.

With this, when the engine speed moves above the gear specic maximum engine speed an up-shift is recommended. Similarly, if the engine speed drops below the lower engine speed limit, the advice indicates a downshift. To transmit the computed information to the driver an ecient, easy-to-use human-machine-interface was designed.

Human Machine Interface (HMI)

The Human Machine Interface (HMI) used here, is based on a simple rule based approach taken in a study at LESCOT. In previous studies only a single display was used, on which an engine rotational speed was recommended. In our work the interface between the algorithm and the driver consist of two in-vehicle displays.

In Figure 7.7 the installation of the driver assist system in the vehicle is shown.

The continuous display is xed within the driver's vision on the dashboard. Since the display shows a vehicle speed odometer it can replace the vehicle's odometer reading or could be integrated directly in the vehicle's own odometer display. The second, educational display is attached, similarly to navigational devices, in the front between the driver and passenger seat. In this position it is not in the vision of the driver and cannot distract the driver's general vehicle operation. In the following the design of the two interfaces is described.

Continuous display

The continuous display is used to assist a driver in minimizing his energy con- When advice about best vehicle speed is presented to the driver the display is shown as seen in Figure 7.14. On the outside of the vehicle speed odometer circle a zone indicates optimal velocity. This zone starts indication at the current vehicle speed and moves up, presenting optimal acceleration, to stabilize at an appropriate constant speed for the segment. When approaching the end of a segment advice on the best deceleration rate is given while the zone moves to lower vehicle speeds.

In order to minimize his energy consumption a driver is advised to keep vehicle speed in the middle of the indicated zone. The display shows the acceleration factor, stabilized speed factor and deceleration factor on the top. The symbols are organized such that we can image a velocity trajectory. The factor evaluating gear operation is placed at the bottom of the screen. In Figure 7.15 an example of an educational display is presented. We will now brake down the display to discuss the symbols of each factor and their meanings. Similarly to the acceleration phase, triangular symbols were used to indicate too hard deceleration, correct deceleration and deceleration rates below optimal. The respective symbols can be observed in Figure 7.17. In order to facilitate the use of the display a color code was implemented as well as representative symbols.

A green triangular shape was used to represent fuel ecient vehicle operation.

When driver operation exceeded the reference a red symbol was displayed, where the triangular area exceeded the best vehicle operation. When a driver operation was identied inferior to the reference a yellow symbol indicated a triangular area that did not entirely ll the green triangle. With this design we aim to reduce processing time for the operator to understand the indicated information. To point out the gear that was used least ecient an orange circle is displayed.

With this the driver can focus on improvements that result in the maximum gains in energy consumption. 

Experimentation

In this section the experimentation of the ADAS system is described, discussing experimental setup and testing routine. The results will be analyzed in Section 7.3.2.

Experimental setup

To experimentally test the developed driver support system three trips were designed in the simulator environment. A rst trip, P0, represents a journey that takes about 7min and is mainly in an urban environment. P0 is used to train the test person on the simulator and therefore integrates multiple turns, and roundabouts. The trips PI an PII are designed to be similar, but to use dierent road segments. Both journeys take about 20min and consist of a rst extra-urban part, where speed limitations go up to 90km/h, and a second urban part. PI and PII were used to run the baseline test, where fuel consumption without driver assist system is measured, and test with support system. Prior to the test the subject is not informed of the course. Deviation signs at each intersection indicate the direction to be taken. To eliminate the eect of the mission on the fuel reduction the two missions were counterbalanced. This means that half of the subjects were tested for a baseline on PI, while identifying the fuel consumption with the driver assist system on PII. The second group started the test with PII and was using the support system on PI.

Prior to the experimental test two surveys were designed to gather information about the test person and their thoughts on the ADAS system. A rst survey was used to identify personal parameters, such as gender, age, technical and environmental background. In addition the frequency of a person's vehicle use was identied. A second survey was used after the ADAS system was tested to evaluate the driver's acceptance and the understanding of the advice given. In addition, questions on driving eort were asked to identify disturbances due to the system.

The exact questions asked can be found in the appendix.

The system was tested on a group of subjects that was recruited externally of the laboratory. 15 subjects took part on the experimentation. However, due to the diculties of driving on a simulator 3 could not nish the tests and felt sick.

Of the 12 remaining subjects 7 were female and 5 male. Within a realistic range the age of the driver was of no importance since the developed system should be usable for any driver. The oldest person to take part in the experimentation was 57 and the youngest 26 years old. A requirement was that the subject has had the driving license for at least two years.

The testing routine usually took between 1h30 and 2h and went by the following agenda:

• After welcoming the test driver a vision test was taken

• To familiarize with the simulator a training course (P0) was driven

• Baseline test of the driver's vehicle operation on course PI (or PII)

• Survey (QI)

• An introduction to eco driving and the advanced driver assist system is given

• A second training course (P0) is driven to familiarize the driver with the system

• The system is tested on course PII (or PI)

• Survey (QII)

Results

In the following we will analyze the gains in fuel consumption of the 12 tested subjects. The eects of subject specic parameters, like age, gender, environmental concerns and technical understanding, on gains in fuel consumption will be discussed.

Gains in fuel consumption

Overall, the results of the tested driver assist system were very satisfying. On average the 12 subjects were able to reduce their fuel consumption by 11%. A slight dierence in general fuel consumption was detected between PI and PII.

The baseline consumption values of PII were on average 10% lower than the consumption of PI. Counterbalancing was used to detect the eect of mission specic fuel consumption changes. Group A of 6 subjects performed the baseline on PI while the assisted driving was measured on PII. Group B of 6 subjects used PII to evaluate baseline driving and PI for the test with ADAS system. Due to the dierence in mission the gains measured with the driver assist systems of group A were much higher than those measured for group B. Although dierences between the two driving missions existed, in no test case did we measure increases in fuel consumption between the baseline driving and assisted driving. We can therefore be sure that the designed ADAS system has a positive eect on energy consumption.

In Figure 7.20 the gains in fuel consumption are shown per group. We can see that, while group A was able to achieve very high reductions in fuel consumption, group B showed rather small, although not insignicant, improvement in energy consumption. In order to eliminate this eect average fuel consumption of each mission was compared when driven with and without the support system. The bar graph in Figure 7.21 shows that a driver can safe on average 15% due to the ADAS system for mission PI and 5% for mission PII. distractions in the extra-urban driving part, it was possible for drivers to focus more on the ADAS system. Much higher reductions in fuel consumption in extraurban driving were identied than when using the eco driving support system in an urban environment. In Table 7.3 the measured consumption values can be found.

While the ADAS system resulted in a reduction in fuel consumption of 15.25% in an extra-urban environment, the gains due to the system were only 8.74% in city driving.

Chapter analyze the inuence of personal parameters on possible gains in fuel consumption due to an advisory system. Of the subjects tested every single one seemed to be more or less concerned with environmental problems of our planet. All of the subjects indicated that they contribute their part to reduce their environmental impact by using recycling techniques, using public transportation, biking or other environmentally friendly behavior. Some subjects stated that, in their daily vehicle use, they applied economic driving techniques. However, in the evaluation of the test results it was found that the baseline fuel consumption of these subjects was equal (for extra-urban driving) or higher (for urban driving) than those who did not indicate such behavior. It seems that insucient knowledge of people limits their desired minimized fuel consumption without the help of an advisory system.

In the survey the drivers were asked to list several eco driving rules in order of importance. With a choice of 'vehicle speed', 'vehicle acceleration', 'anticipation', 'braking', and 'engine speed', most subjects listed 'anticipation' and 'acceleration' as the most important parameters to reduce energy consumption. In this these it has become clear that due to the aerodynamic drag vehicle speed is the most important parameter to be considered for eco driving when vehicle speeds are above 30km/h. We conclude that people generally need to be informed in more detail about vehicle specic eco driving rules.

The survey results indicated that subjects that possess basic mechanical knowledge achieved lower fuel consumption on the baseline testing. In addition, subjects with frequent vehicle use, here dened by more than 10 000km driven per year and everyday use, seemed to have lower basic fuel consumption. In Table 7 urban and extra-urban environment. With respect to this reference, however, the gain in fuel consumption with the ADAS system was lower than for the subjects without mechanical knowledge and infrequent vehicle use.

In Figure 7.22 the consumption gains for dierent aged subjects can be seen.

Although the small number of subjects is not sucient to draw any conclusions we want to point out that the youngest subjects, with age lower than 30, showed the largest gains due to the use of the eco driving assist system. In the bar graph consumption gains for the entire driving mission can be seen, as well as separated gains for urban and extra-urban driving. In all three categories the youngest subjects seemed most capable to improve their driving behavior with the help of the system. Analyzing the survey responses it was also found that this group was the one that indicated to understand the system the most, showed the lowest eort due to its use with high acceptability. However, this group specied to have no mechanical experience. It seems that a motivated, young user can easily use the system without any mechanical background knowledge.

Driver acceptance and design

Overall it seems that the interface was easily understood. Drivers generally felt that the system's indications were justied and reasonable. From the measured fuel consumption values it seems that driver acceptance is an important factor to ensure the eectiveness of the system. In Table 7.5 the fuel consumption gains for urban and extra-urban driving are shown for drivers that tend to believe in the advantages of the ADAS system. In comparison we can see the gains of people less convinced of the system. The trust in the system seems to be an important requirement for the system to reach its maximum potential. The design of the interface was generally perceived as appropriate. However, several drivers commented on the visibility of the continuous display. While the display was attached to the dashboard it seems that drivers would prefer the system to be directly in the eld of vision, similarly to displays integrated in the vehicle's front screen. Most people indicated that a driver assist system, as the one tested, could be useful. Many subjects would appreciate an ADAS system for eco driving integrated in a purchased vehicle. However, in order to separately buy a driver support system, they would have to be convinced about the advantages it represents for them.

Conclusion

This chapter dealt with the validation of the thesis work. The developed vehicle models and optimization algorithms were used to design an advanced driver assist system for eco driving. The collaboration with the LEPSiS and LESCOT laboratories allowed us to test the developed ADAS system experimentally. To evaluate the system's eectiveness, it was tested on a driving simulator on external subjects.
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The simulator environment was introduced. To test the vehicle specic optimization algorithms on the driving simulator the VEHLIB direct vehicle simulation was integrated in the simulator environment. The software was adapted to the simulator with the development of a simple braking model. In addition a simplied model of the steering and lateral vehicle motion was implemented. A communication network between vehicle simulation, driving simulator environment and driver assist system was set up.

The ADAS system, that integrates the developed trajectory optimization algorithms in an operating logic that ensures minimum intervention in unsafe driving conditions, was introduced. To advice the driver of fuel optimal vehicle operation the tested ADAS system presents information to the driver on two in-vehicle displays. With this approach the human-machine-interface communicates continuous advice while driving and educational advice when the vehicle is at rest. Testing the ADAS system in an experimental setup on the driving simulator 12 external subject were used to measure the gains in fuel consumption. On average the ADAS system was able to help the driver to reduce fuel consumption by 11%. It was found that higher gains in fuel consumption were achieved in an extra-urban environment than in city driving. In general it seems that personal parameters, such as mechanical knowledge, vehicle use frequency, age and system acceptance, have a strong impact on possible gains in fuel consumption. In addition, it was found that education on fuel minimizing vehicle operation needs to be improved. Overall we conclude that the designed ADAS system was eective and easily usable. To conclude this thesis we will summarize the work and its contributions. A perspective on potential future studies in this area is given.

Conclusion

A literature review has shown that several driver support systems exist to assist the driver to reduce his energy consumption. To identify most ecient vehicle operation several studies on velocity trajectory optimization exist. To complement existing work this thesis identies drive train specic optimal vehicle operation and eects of constraints on potential gains due to eco driving. In addition an approach to integrate numerical optimization algorithm in combination with detailed physical vehicle models in the development of an eective driver assist system.

Three representative vehicle types were used to demonstrate the algorithms developed in this thesis: a conventional passenger vehicle, a small electric vehicle and the Toyota Prius hybrid power split vehicle. In Chapter 3 the advantages and disadvantages of inverse and direct modeling were discussed. A detailed physical model of each drive train has been shown. For optimization purposes the inverse modeling approach was applied. A direct vehicle modeling software VEHLIB was used to verify the vehicle operation and consumption for the computed velocity proles.

For modeling purposes the vehicle chassis and drive train can be separated. While the three considered vehicle's chassis can be modeled in a similar way, their drive train conguration changes. Factors inuencing vehicle operating eciency were discussed. Chassis dependent, and therefore drive train independent, losses include aerodynamic drag and rolling resistance, which depend on vehicle speed.

Drive train specic factors include component operating eciencies and the hybrid vehicle's control strategy. To identify the best vehicle operation the use of numerical optimization methods was proposed.

To identify potential gains of eco driving standard and real world cycles were used to dene a vehicle's mission. Respecting the specied trip and road constraints the aim was to compute corresponding eco cycle for some baseline mission. The trajectory optimization problem is specied in Chapter 4. The continuous optimization problem was approximated with a discrete trajectory optimization. Initially the three dimensional dynamic programming method was applied due to its advantage in constraint integration. To reduce computational time the problem was reduced to a two dimensional setup by integration of the time constraint in a weighted objective function. A nested approach, where two dimensional dynamic programming was combined with advanced root nding methods was shown to given good results in an acceptable time.

A multi-objective optimization method on the basis of dynamic programming was presented to evaluate the trade-o between trip time and fuel consumption. It was found that drivers with critical trip times are able to achieve signicant gains in fuel consumption for small increases in trip time. The multi-objective optimization method was used to analyze the sensitivity of the fuel consumption to divergences from the optimal velocity prole. It was found that a low constant cruising speed is important to keep fuel consumption low. Small changes in the acceleration and deceleration phase result in limited increases in fuel consumption.

Using the developed optimization algorithms potential gains of eco driving in ideal conditions were computed for the three representative vehicle types in Chapter 5.

With this we were able to dene an upper limit for potential gains in energy In general, it was shown that eco driving strategies have high potentials to reduce fuel consumption for the conventional, electric and hybrid vehicle. Higher energetic gains are possible in an urban and extra-urban environment than for freeway driving. Comparing the results we determined that, while component eciency was only showed limited increases, the energy consumption was overall reduced due to more appropriate choices of vehicle velocity and acceleration. At average trip speeds higher than 30km/h it was found that the losses due to aerodynamic drag, which increase rapidly with the vehicle speed, were a dominating factor in the optimization. Vehicle cruising speeds were chosen as low as possible to reduce losses due to aerodynamic drag.

Overall it was found that the acceleration and deceleration phase were chosen drive train dependent, while the stabilized vehicle speed was most dependent on the vehicle's chassis. The eciencies of the drive train components usually resulted in maximum acceleration. This phase is therefore dependent on drive train performance. A lowest possible constant speed was applied in the cruising phase to respect the trip's time constraint. A drive train specic deceleration rate was chosen to maximize energy recovery. However, short deceleration phases were realized with the use of hard braking in the second phase of deceleration. With this deceleration time was minimized and lower cruising speeds could be chosen to result in the required average trip velocity.

In Chapter 6 the integration of additional constraint is presented. To identify realistic gains in fuel consumption in an urban setting the constraints due to trac were considered. Imitating a vehicle following situation necessary safety constraints and their eect on eco driving strategies are discussed. It was shown that with reduced exibility of vehicle operation due to trac the gains achievable Chapter 8 Conclusions 206 with eco driving are limited. However, we found that while it is important to take into account trac to ensure driver safety, eco driving still represents signicant advantages in energy consumption.

In a second case study emission constraint were discussed. Eco driving is generally considered to be environmentally friendly. This study analyzed the economic and ecologic advantages of eco driving. Using hardware-in-the-loop testing the fuel consumption and pollutant emissions were measured on an engine test bench for an urban drive cycle. It was found that CO and HC emissions increased for the computed fuel ecient eco cycle. Eco driving does therefore not necessarily have to be considered ecological. In our work an approach to integrate emissions in the optimization process was proposed. A method to dynamically select emission optimal gears was presented. The measured results show that, with a small trade-o in fuel consumption, the CO and HC emissions can be reduced. It was concluded that eco driving can represent economic and ecologic advantages. However, it is important to consider emission constraints.

An approach to integrate the developed optimization algorithms in a driver assist system was shown in Chapter 7. The design of the advanced driver assist system was presented. A driving simulator was used to test the support system on external subjects. On average the ADAS system was able to help the drivers to reduce fuel consumption by 11%. It was found that higher gains in fuel consumption were achieved in an extra-urban environment than in city driving. With a survey given to the subjects it was evaluated that personal parameters, such as mechanical knowledge, vehicle use frequency, age and system acceptance, have a strong impact on possible gains in fuel consumption. In general it was found that the designed ADAS system was eective and easily usable.

This work shows that, among several other solutions, it is necessary to consider energetic optimization and its application to eco driving in order to help resolve problems in the transportation sector.

Perspectives

Future work on this subject could be envisioned in three areas: First, we envision a simplication of the optimization process. Secondly the algorithm could be generalized by applying it to other vehicle architectures. Finally we see future Le déplacement du véhicule peut être décrit par deux états, la distance et la vitesse du véhicule. La forme discrétisée des équations est donnée par : Généralement l'éco-conduite est considérée comme un comportement respectueux de l'environnement. Toutefois, à notre connaissance, la plupart des études sur
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 1 Figure 1.4 shows greenhouse gas emission per sector in Europe in 2007. We can see that road transportation represents a signicant producer of greenhouse gas emissions.
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 23 to the personal computer. Using a downloaded program the user can track his performance report and progress on mileage and emissions. Nissan introduced their program CARWINGS Eco-Drive[7] in 2007 in Japan. The program is an extension to their existing navigation program and encourages drivers to reduce their energy consumption. The Fiat EcoDrive, as well as the CARWINGS Eco-Drive includes applications where drivers can compare their fuel consumption in common city areas to that of other drivers. Calling on peoples competitive spirit the programs are trying to motivate drivers to reduce their environmental impact.

  Figure 2.6. The GreenMeter (on the left) was developed by Hunter Research Technology. It is an application that can be downloaded on the IPhone. The user has to enter vehicle parameters in the setup process. The device uses the IPhone's internal accelerometer together with the vehicle parameters to determine the vehicle power, engine power and fuel used. The results are shown in stacked bar graphs that indicate how much energy was used on rolling resistance, aerodynamic drag, and acceleration. With this the driver can identify how his operation can inuence the energy needed. Surich Technology's Trip Alyizer consists of an application that was developed to be used on the IPhone 3G version. It uses the 3Gs featured GPS, accelerometerand speakers. Using information on gasoline purchases the system calculates trip eciencies by distributing scores to acceleration, idle time, speed, and time spent at the engine's 'sweet spot'. The application can be used to transmit information to the driver in an auditory way by using the cell phone's speakers.
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 281 Figure 2.8: Fuel versus time trade o by Hooker[START_REF] Hooker | Optimal control of automobiles for fuel economy[END_REF] 

  Velocity trajectory optimization was not always used to minimize fuel. In 2005 a series of three papers were published by Velenis and Tsiotras [6163]. The work investigates velocity trajectory optimization with the goal to minimize time for a certain mission. In their research, the time a vehicle takes to drive a given route with constraints on acceleration and speed is minimized using Pontryagin's Maximum Principle. The algorithm was implemented using the receding horizon method. Test results of this strategy are shown from tests on the Silverstone F1 circuit.
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 3493536 Figure 3.5 the 308 vehicle model from the French manufacturer PSA Peugeot Citroen 1 can be seen. The vehicle has a weight of 1470kg. For modeling purposes the vehicle was separated in two parts: the chassis and the drive train. The chassis can be modeled as presented in Section 3.2, such that the drive train output torque is calculated as a function of vehicle speed and acceleration. In the following the inverse drive train model of the conventional vehicle is outlined.
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  EM2) is connected to the sun gear, while the electric motor (EM1) is turning with the output shaft, which is connected to the ring gear. Both machines are permanent magnet synchronous AC motors. The electric machines are connected by an inverter to the NiMh battery pack. The battery consists of 28, each 7.2V battery cells connected in series. The resulting battery pack has a nominal voltage of 201.6V and a nominal energy rating of 1.3kWh. The inverter contains a boost
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 3 16 shows the resistance for the Prius NiMH batteries in charge and discharge mode. Using experimental data the opencircuit-voltage (V OCV ) and battery resistance (R) are evaluated using interpolation methods. The battery current (I batt ) and battery output voltage (U batt ) can be calculated with the following relationships:
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 41 the trip constraints can be specied. In this graph the rst plot shows the driver's velocity as a function of time, whereas the second plot shows the vehicle speed as a function of distance. There are three variables that describe the driver's mission: distance, time and velocity. The trip constraints are dened by setting boundary values for each of these:
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  7 a). The relationship between the weighting factor and arrival time is clearly visible: decreasing β values result in increased trip time, and also lower energy consumption. For longer missions similar β values result in longer trip times than for shorter missions. The function shown in Figure 4.7 a) can be inverted to compute β values as a function of desired trip time and travel distance.
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 4 7 b) shows β in dependency of nal time and distance. The left boundary of the contour shows the minimum possible time for a given distance. This line depends on the performance of the vehicle. On the other side the slowest trip time for optimal fuel consumption and desired arrival time
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 4 Figure 4.7: a) T res as function of d f and β, b) β as function of d f and desired T res

  Several drive cycles were used to compute the error f error between arrival time of optimized velocity prole for a variety of β values. The values were computed for the New European Drive Cycle (NEDC), which is a standard drive cycle used in Europe to test fuel economy values. In addition three drive cycles were used to simulate urban (HYZURB), highway (HYZROUT) and freeway (HYZAUTO) driving. The shape of the error function can be seen in Figure 4.8. The red line in the graph shows the x-intercept. Each function has a root where it crosses this level. When the root of the mission specic error function is found the singleobjective xed time optimization can be solved.
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 4 Figure 4.9: a) Bisection Method, b)False Position Method, c) Secant Method # of iterations Bisection Secant False-Position Ridder's Brent's NEDC 11 101 150 9 15 HYZURB 13 22 37 13 12 HYZROUT 11 35 81 13 10 HYZAUTO 12 61 150 13 15
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 34 The result of a multi-objective optimization problem is often presented in the form of a Pareto front. A Pareto front is a graph that shows the trade-o between several objectives. The Pareto front is usually a x-dimensional hyperface where x is the number of objectives dened in the optimization problem. For our problem, where two objective functions are specied, the Pareto front can be represented by a curve, hence with two dimensions. A Pareto front is computed by calculating points on this curve, so called Pareto optimal points. The Pareto optimality is Chapter 4 Optimization 93 originally a concept used in economics. A point is Pareto optimal if it is impossible to improve on one of the considered objectives without making another worse.
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 41004144 Figure 4.14 the four selected trajectories can be seen. In this graph the dierences
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First

  we evaluate the ideal velocity trajectory for four vehicle missions (Section 5.1.1). The simulated vehicle operation is then veried in a hardware-in-theloop setting on an engine test bench. Experimental results and fuel consumption measurements can be found in Section 5.1.2. Potential gains of eco driving for dierent missions are computed. In Section 5.1.3 the optimal vehicle operation is analyzed and important factors for eco driving are discussed in Section 5.1.4. 
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 1 2.3, important factor for eco driving with electric Chapter 5 Potential Gains of Eco Overview of studied problems vehicles can be deduced. Recommendations on most ecient driving for electric vehicles are found in Section 5.2.4.
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 3151 . Due to their two power sources, hybrid vehicles are known to achieve lower fuel economy values than conventional vehicles. However, in order to reduce energy consumption, the consumption in both power sources needs to be considered. Appropriate methods to evaluate the energy consumption of the Prius hybrid vehicle for a trip are discussed in Section 5.3.2. The vehicle operation was optimized for a representative real-life driving cycle. The vehicle specic, ideal velocity trajectory is analyzed in Section 5.3.3. Chapter 5 Potential Gains of Eco Driving 108 Conventional vehicle The Peugeot 308 vehicle was presented as an example of a conventional vehicle in Section 3.3. Modeling the drive train components and the vehicle chassis, it has been shown that the operating eciency strongly depends on vehicle velocity and acceleration.
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 551 Figure 5.1: Maximum speed constraints for various drive cycles cycle gain in fuel consumption due to eco driving NEDC 17.9% HYZURB 27.2% HYZROUT 25.1% HYZAUTO 7.9%
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 52 Figure 5.2: Standard drive cycle vs computed eco-driving prole
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 5 Figure 5.3 shows the experimental setup of the engine test bench. Here, the vehicle chassis, drive-shaft and clutch are simulated using the VEHIL software [94]. The Peugeot 308's EP6 internal combustion engine, being the hardware component in the loop, is running in real time. The DSpace MicroAutoBox Controller is used to run the vehicle simulation and command the EP6 engine in real time. The input to the vehicle model is the driver's demand for acceleration or deceleration whichis directly translated into throttle and break command. In the VEHIL software the driver is modeled by a simple PID controller, which ensures that the desired drive cycle is followed as good as possible.
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 555 Figure 5.5: Engine operation of NEDC standard cycle and eco-cycle
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 511 Figure 5.11: Standard drive cycle vs computed eco-driving prole electric vehicle
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 5 Figure 5.11 shows the computed optimal velocity proles in red. Due to the xed time constraint in the optimization the eco cycles arrive at the destination at the same time as the baseline drive cycles. The vehicle has therefore covered the same distance in the same time. As previously seen for the conventional vehicle, the
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 5 14 a comparison of the energy necessary to overcome the resistance forces and to accelerate the vehicle's inertia for the two cycles is shown on the left. The stacked bar graph on the left shows the original cycle, while the right bar represents the eco cycle. It can be seen that, while a small amount is saved due to a reduction in resistance forces, namely the aerodynamic drag and the rolling resistance, a larger amount of energy is saved due to the energy necessary to accelerate the vehicle's mass. It was found that for optimal vehicle operation rather short, high acceleration rates should be used at low speeds, to rapidly reach the lowest possible constant speed necessary to reach the destination in a desired time.

Figure 5 .

 5 Figure 5.14 displays the energy distribution for the deceleration phase on the right. The sections of the stacked bar graphs represent the energy lost on mechanical friction braking, the energy lost on losses in the drive train components while regenerating energy, and energy that is regenerated and used to charge the electric battery. As mentioned in Section 3.4.1, the electric vehicle considered in this study
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 514 Figure 5.14: Energy Consumption in Motoring and Deceleration Phase of AIXAM1

  As a representative hybrid vehicle the well-known Toyota Prius power split hybrid vehicle was used. The vehicle model was constructed in Section 3.5 together with a simulation of the control strategy integrated to manage the vehicle's power split. Due to the complexity of the hybrid vehicle the dynamic programming optimization method cannot be used in its classic way. In the hybrid drive train the power split control strategy uses the battery state-of-charge to determine the vehicle's operation. A computation of the eco cycle in reverse time is therefore not possible. Small changes are needed to adapt the optimization algorithm to the particular case of the hybrid vehicle. These are presented in Section 5.3.1.For a driver of a hybrid vehicle the energy consumption is represented by the fuel used. However, to analyze the energy consumption over a trip the initial and nal battery charge of the vehicle have to be taken into account. In Section 5.3.2 several dierent approaches to compare energy consumption of hybrid vehicles are discussed. Section 5.3.3 shows the results of an optimization of the Prius over an extra-urban drive cycle and the analysis of the ideal velocity prole for hybrid vehicles.
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 3532 2 shows commonly used fuel consumption denitions that can be used for comparison of drive train eciency or to test the eectiveness of implemented energy management strategies. Chapter 5 Potential Gains of Eco Driving 131 The consumption of a hybrid vehicle It is dicult to compare fuel consumption for hybrid vehicles and draw conclusions about fuel economy. For a specied cycle the nal fuel consumption can be very dierent, dependent on initial state-of-charge in the battery. Also, due to the logic in the control strategy the fuel consumption does not only depend on distance driven. Dependent on the level of power demand the battery might be more or less discharged. Comparing the energy consumption of a cycle to another one result, might show low fuel consumption but a signicant discharge in the battery, while another velocity prole resulted in higher fuel consumption and a high nal SOC in the battery. Only using fuel consumption values to determine the trip eciency might lead to false conclusions.
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 515 Figure 5.15: Denition of Fuel Consumption for Hybrid Vehicle

Figure 5 .Figure 5 . 16 :

 5516 Figure 5.15 the computed cycles are shown as yellow diamonds. In our example a third point was computed for verication.

  To investigate potential gains of eco driving for hybrid vehicle we optimized the operation of the Prius hybrid vehicle for a mission that represents real-life, extraurban driving. The tested drive cycle is presented in Figure5.[START_REF] Miyatake | Optimization of train speed prole for minimum energy consumption[END_REF], where vehicle velocity is plotted as a function of time. With their ability to regenerate energy, hybrid vehicles usually have an advantage in urban settings, where the vehicle has to perform a lot of stops. This cycle was chosen for testing because, although vehicle speeds go up to almost 100km/h, there are several acceleration and deceleration phases where the use of the alternative power source will be useful. Using the cycle data, optimization constraints in distance, velocity and time were dened.To solve the xed time constraint optimization the nested optimization method, combining two dimensional dynamic programming with root nding methods, was applied.In order to solve the optimization problem the weighting factor α in Equation5.2 needs to be specied. α represents the trade-o between the electric energy, used from the battery, and the gasoline fuel consumption. To choose an appropriate weighting factor, we need to understand the eect dierent α values have on the Chapter 5 Potential Gains of Eco Driving 134 optimization result. Initial wide range calculations showed that an appropriate value for α needs to be selected at around 3. An array of dierent α values was dened, with a ne grid around the value 3. α = [0, 2, 3, 3.25, 3.5, 3.[START_REF]Wikipedia-The free encyclopedia[END_REF][START_REF] Eea | Total greenhouse gas emissions by sector in eu-27[END_REF] 5,[START_REF]Eight countries join IEA electric vehicle initiative[END_REF] (5.4)With the vehicle model constructed in Section 3.5 and the optimization approach described in Section 5.3.1 it is now possible to compute the optimal velocity prole for the specied extra-urban trip. To compare the optimization results using the linear interpolation method, presented in Section 5.3.2, vehicle operation needs to be evaluated for at least two dierent initial battery charge levels. The trajectory optimization method was therefore solved for each α i for three dierent initial battery charge levels: SOC ini = [40, 50, 60]%.

Figure 5 .

 5 Figure 5.17 illustrates the eect of the weighting factor α on the optimization result. Each plotted curve in this graph represents an initial battery charge level.The points on the curve represent an optimized solution for one of the α factors. To reduce the complexity of the graph the corresponding α values were only labeled for one of the three curves. It can be seen that choosing dierent weights on the electric energy results in very dierent consumption and battery charge levels over the cycle. A high α value, corresponding to the right most solution points on the curve, will lead to a high positive ∆SOC. In this case the battery is charging most of the time, since charging has a reducing eect on the cost. Reducing the weighting factor α the battery charge level at the end of the cycle is lower and fuel consumption is reduced. Less fuel was transformed into electric energy. However,
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 517 Figure 5.17: Fuel consumption versus ∆SOC dependent on initial SOC

Figure 5 .Figure 5 . 18 :

 5518 Figure 5.18 shows that the consumption of the original cycle is much higher than that of some of the optimization results. Using an α factor of 3 or 3.25 the vehicle's fuel consumption can theoretically drop more than 20% for similar nal levels of battery charge. Nevertheless, it can be seen that the α value has to be specied in an appropriate range in order to achieve global energetically optimal vehicle operation. A lower α value, close to zero, results in less battery charging but still increases the overall energy consumption for the trip. A very high choice of the weighting factor can result in unnecessary battery charging and therefore wasted energy in transformation losses.
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 519 Figure 5.19: Eco drive cycles for dierent alpha values

  shows globally Chapter 5 Potential Gains of Eco Driving 138 ecient vehicle use in comparison to the originally driven segment.The entire extra-urban drive cycle and its corresponding optimal eco cycle were tested using the dynamic VEHLIB vehicle simulation. Considering the correct balance of electric and fossil fuel energy the vehicle consumed 4.02 L/100km to perform the trip, while the original drive cycle used 4.83 L/100km. The battery, having an initial SOC value of 50% for both proles, was charged to 64.1% while the original prole resulted in a nal battery charge of 60.3%. With this the overall energy consumption was reduced. To understand most ecient vehicle functionality the operation of each major drive train component was analyzed. In
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 5520 Figure 5.20: Energy Consumption in Motoring and Deceleration Phase of Prius
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 61 Figure 6.1: Vehicle Following Situation

Figure 6 . 2 :

 62 Figure 6.2: Real-life drive cycle with car following

Figure 6 .

 6 Figure 6.2 shows a sample cycle. The plotted drive cycle represents urban driving. The rst plot shows the recorded vehicle speed as a function of time. In the second plot the distance between the test vehicle and the preceding vehicle can
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 632 Figure 6.3: Safe Following Distance Criterion

Figure 6 .

 6 Figure 6.3 shows minimum, safe following distances for a TTC of 2s in the top right graph and for a TTC of 4s in the bottom right graph. When v y is greater than v x the equation does not hold. Theoretically the distance is zero, since no collision will occur if the vehicle in front is driving faster than the vehicle following. Nonetheless, for safe vehicle following, the lower boundary for the minimum allowable distance was chosen to be the distance driven during the time of reaction d react = v x T react .
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 64 Figure 6.4: Safe Following Distance Criterion in Comparison
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 67 Figure 6.7: Original and fuel optimal drive cycle
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 668 Figure 6.8: Engine Test Bench Schematic
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 69 Figure 6.9: Engine Operation of Original Cycle (a) and Eco Cycle (b)
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 610 Figure 6.10: Identication of High Emission Zones

  In simulations of automatic gear boxes the gear changes are often triggered dependent on engine demand (throttle or torque demand) and engine rotational speed (ω eng ). Commonly engine minimum speed as a function of engine demand (ω gearmin (T eng )) and engine maximum speed as a function of engine demand (ω gearmax (T eng )) are dened. With this, when engine Chapter 6 Constraint integration: Trac and Emissions 167 speed drops below engine minimum speed, a down shift is induced. Similarly, if engine speed passes above the engine maximum speed a higher gear is engaged. The functions ω gearmin and ω gearmax can be chosen gear independent or may vary for dierent gears. Dynamic models usually consider the time it takes to disengage and engage a gear. Throughout the gear change a torque interrupt occurs. The time of a gear change was xed in our simulation to 1s.
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 611 Figure 6.11: Calculation of optimal gear for Engine Operation
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 612612 Figure 6.12: Optimal Ecologic Gear Shift

Figure 6 .

 6 Figure 6.13: Original, Economic and Ecologic Drive Cycle

Figure 6 . 14 :

 614 Figure 6.14: Fuel Consumption and Emission Results

  researchers from dierent laboratory groups for the work to increase energy efciency in the transportation sector. Within the scope of this project the LTE (Laboratoire de Transport et Environment), LESCOT (Laboratoire Ergonomie et Sciences Cognitives pour les Transports) and LEPSiS ( Laboratoire Exploitation, Perception, Simulateurs et Simulations) laboratories collaborated to develop, integrate and test the here designed ADAS system. The driving simulator, maintained by the LEPSiS laboratory, allowed us to test the support system in a controlled setting. While the simulator environment does not exactly represent real-life driving, it allows us to test a driver's behavior on similar scenarios.
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 71 Figure 7.1: Schema of experimental setup
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 72 Figure 7.2: Driving Simulator
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 73 Figure 7.3: Inputs and outputs direct vehicle model
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 74 Figure 7.4: Clutch torque transmitted

Figure 7 . 5 :

 75 Figure 7.5: Simulator communication

Figure 7 . 6 :

 76 Figure 7.6: Inputs and outputs of ADAS

Figure 7 .

 7 Figure 7.6 shows a global overview of the driver assist system. The ADAS system input variables include vehicle information, road environment information and driver input. The setup used in this work assumes that access to real time vehicle variables, such as vehicle speed (v veh ), distance driven (d veh ), gear selection
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 7778 Figure 7.7: Installation of HMI

Figure 7 . 11 :

 711 Figure 7.11: Continuous gear optimization

Figure 7 . 12 :

 712 Figure 7.12: POST segment optimization

  sumption throughout a trip. The display continuously shows information unless it considers the advice to interfere with driver safety. An image of the continuous display without advice is presented in Figure7.13. A simple vehicle speed odometer is used as a basis of the system. Similarly to general dashboard devices we use a gauge to indicate current vehicle speed to the driver. In addition, the display includes an indication of current gear selection. The symbol of a manual gear box is shown in the bottom of the display. Within this symbol the engaged gear is indicated by a green point. The continuous display is shown like this if the vehicle cannot be placed on a segment, or a vehicle following situation is detected.

Figure 7 . 13 :

 713 Figure 7.13: Continuous display without advice
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 714715 Figure 7.14: Continuous display with advice
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 7167 Figure 7.16: Acceleration factor symbols
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 717 Figure 7.17: Deceleration factor symbols
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 718 Figure 7.18: Speed factor symbols
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 719 Figure 7.19: Gear factor symbols
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 720 Figure 7.20: Gains in fuel consumption per group
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 721 Figure 7.21: Fuel consumption per mission with and without ADAS
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  consumption. The computed eco cycles were used to compare baseline and energy ecient vehicle operation. Important factors for eco driving were determined. Fuel Chapter 8 Conclusions 205 minimizing vehicle operation of the conventional vehicle was computed for dierent drive cycles, representing urban, extra-urban and freeway driving. The resulting velocity proles were tested in an experimental hardware-in-the-loop setting to measure fuel consumption. Various low speed cycles were used to evaluate energy ecient operation of the small electric vehicle. To verify and measure the energy consumption the cycles were tested on a chassis test bench. Optimizing hybrid vehicle operation it was found that it is important to take into account battery use although the vehicle's control strategy manages the battery level of charge. It was found that choosing an appropriate weighting of battery use and fuel consumption was critical to identify energy ecient vehicle operation.

D. 4

 4 identier et de comparer le fonctionnement optimal des diérents véhicule, nous avons modélisé trois véhicules représentatifs: conventionnel, électrique et hybrides. An de réduire les temps de calcul et intégrer de manière simple les modèles de véhicule dans les algorithmes d'optimisation nos travaux ce sont appuyés sur la modélisation inverse. Les avantages d'une telle modélisation sont expliqués par le schéma en gure 3.1. La simulation directe d'un véhicule se base sur des entrées fournies par un conducteur pour calculer le fonctionnement du véhicule en direction du ux de puissance. La vitesse et l'accélération de la voiture sont déterminées à l'aide des entrées que sont les pédales. On parle de modèle inverse lorsque le fonctionnement des composants dans la chaîne du véhicule est calculé en utilisant la vitesse et l'accélération comme variables données. L'intérêt de cette approche est de retirer le conducteur du calcul. Dans la modélisation inverse le conducteur est supposé idéal, seules certaines hypothèses sur son comportement sont faites. En général tous les véhicules peuvent être séparés en un châssis et un groupe motopropulseur (gure 3.2). Si la chaîne motopropulseur dière suivant le type de véhicule modélisé ici, le modèle du châssis reste un élément commun à toutes les chaînes et il est seulement nécessaire de changer le paramétrage pour chacune des congurations étudiées. An de développer un modèle énergétique du véhicule nous avons spécié deux hypothèses concernant le châssis: • Seul le mouvement longitudinal est considéré • Le contact pneu chaussée est parfait En utilisant ces hypothèses le couple (T drive ) à fournir par la chaîne motopropulseur peut être calculé en fonction de vitesse (v) et de l'accélération (a) du véhicule avec :T drive = f (v, a) (D.1) = J veh a R tire + F res (v)R tire (D.2) Appendix 238 puissance (série-parallèle). Pour illustrer une application des algorithmes d'écoconduite à un véhicule hybride, la Toyota Prius II a été prise comme exemple. Ce véhicule correspond à la conguration hybride la plus complexe : la répartition de puissance. La chaîne de la Prius (gure 3.13) se compose d'une réduction, de deux moteurs électriques, d'un moteur thermique, d'un train épicycloïdal et d'une batterie. La puissance fournie par le moteur thermique est répartie par le train épicycloïdal entre les chaînes mécanique et électrique. Dans une telle chaîne, l'identication du fonctionnement des composants en fonction de la vitesse et de l'accélération du véhicule est dicile. Une stratégie de gestion d'énergie est utilisée pour assurer le fonctionnement le plus ecace de la chaîne. La gestion d'énergie tient compte les entrées du conducteur ainsi que de l'état de charge de la batterie pour décider du fonctionnement de chaque composant. Dans une modélisation inverse de la chaîne du véhicule hybride nous avons supposé que l'état de charge est connu pour calculer le fonctionnement des composants avec la bonne répartition d'énergie. Tenant compte de cette hypothèse nous avons développé un modèle inverse de la Prius, qui est utilisé pour calculer la consommation de carburant et la consommation d'électricité de la batterie en fonction de la vitesse, de l'accélération et de l'état de charge de la batterie. An de vérier les résultats de la simulation, un modèle direct prenant en compte des phénomènes dynamiques plus détaillés, a été utilisé. Le logiciel VEHLIB est un logiciel de simulation énergétique de véhicule qui permet l'identication du fonctionnement des composants, le calcul de la consommation d'énergie pour une trajectoire de vitesse ainsi qu'à des applications en temps réel dans un cadre expérimental. Optimisation Dans le but d'identier la trajectoire optimale pour un véhicule considéré, nous avons appliqué des méthodes d'optimisation de trajectoire pour un trajet connu.

t f i=t 0 (f i=d 0 γ•

 00 m f uel i (∆t i ) + α∆SOC(∆t i )) (D.14) Contrairement aux véhicules mono-source pour lesquels on considère une seule source d'énergie, les véhicules hybrides nécessitent que l'on considère toute l'énergie consommée à chaque instant. C'est pourquoi le carburant (m f uel ) et la décharge (∆SOC) sont inclus dans la fonction de coût de ce type de véhicule. Pour évaluer le niveau d'éco-conduite d'une conduite particulière il est nécessaire de dénir une référence. Pour cela nous avons utilisé des cycles standards et des cycles d'usage réels. Dans la gure 4.1 un cycle d'usage réel d'une conduite urbaine est représenté. A l'aide de ce cycle de conduite le trajet du véhicule peut être déni. An d'identier une trajectoire de vitesse optimale correspondant à un trajet donné, des contraintes de trajet et de route doivent être spéciées. Les contraintes de trajet précisent l'état initial et nal de distance et de vitesse. De plus, la durée du trajet doit être dénie. Cette contrainte est nécessaire pour assurer Appendix 240 l'acceptation des stratégies d'éco-conduite par les utilisateurs. Une comparaison équitable est possible seulement si les contraintes de route qui limitent les choix de vitesse d'un vrai conducteur, sont prises en compte. En conséquence les limitations de vitesse ont été spéciées en fonction de la distance (gure 4.1). La pente est également prise en compte comme paramètre dépendant de la route en fonction de distance. Dans une première approche nous avons étudié le problème d'optimisation monoobjectif. Il existe une grande variété de méthodes d'optimisation qui sont applicables à ce problème. La non-linéarité de la fonction de coût et le besoin d'intégrer facilement des contraintes nous ont poussés à choisir la méthode de la programmation dynamique. Cette méthode d'optimisation est basée sur le Principe d'optimalité de Bellman [86], qui permet de décomposer des problèmes complexes en des sous-problèmes simples, qui peuvent être résolus de manière récursive. Par la suite les problèmes peuvent être facilement résolus avec un calculateur de puissance limitée. Avec une discrétisation appropriée, la méthode identie toujours la solution globalement optimale. L'inconvénient de cette méthode est le temps de calcul, qui peut être très élevé pour des problèmes à plusieurs dimensions.Comme dans les travaux de Hooker[START_REF] Hooker | Optimal driving for single-vehicle fuel economy[END_REF], la méthode de programmation dynamique a été initialement appliquée en trois dimensions : temps, vitesse et distance. Cette approche facilite une intégration des contraintes en temps, vitesse et distance. An de réduire le temps de calcul la méthode a par la suite été réduite à deux dimensions. Pour respecter toutes les contraintes de trajet un facteur de pondération a été introduit dans la fonction de coût :Γ 2 = d γ veh (d) + β∆T (d) = d veh i (d i ) + β∆t i (D.15) Pour un trajet donné un facteur β peut maintenant être associé à une durée de trajet. Dans une application en temps-réel ce paramètre peut être spécié par le conducteur pour dénir un compromis entre le temps d'arrivée et l'énergie consommée. Cependant an de pouvoir comparer les trajectoires de vitesse et identier le gain potentiel d'éco-conduite, une contrainte de temps doit être respectée. Par la suite nous avons étudié les méthodes d'identication d'un facteur de pondération correspondant à une consommation minimale à iso-durée de trajet. Appendix 246 L'intégration de l'éco-conduite en temps réel doit prendre en compte le trac à proximité du véhicule et ne doit pas inuer sur la sécurité du conducteur. An d'évaluer l'impact de la prise en compte du trac, les congurations dans lesquelles il existe potentiellement une voiture devançant le véhicule dont la trajectoire est optimisée ont été mises en place (gure 6.1). Dans une telle situation une distance de sécurité doit être conservée. Nous avons étudié trois paramètres diérents de suivi d'un véhicule en toute sécurité: Distance de freinage sûr : distance nécessaire pour pouvoir freiner quand le conducteur précédant freine au maximum • Time-inter-véhicular (TIV) : le temps séparant les deux véhicules • Time-to-collision (TTC) : le temps avant qu'une collision se produise si les deux véhicules conservent leur vitesse courante Le code de la route français conseille un TIV de 2 s pour les véhicules sur une autoroute. Le TIV est un critère facile à prendre en compte pour le conducteur, néanmoins, il ne prend pas en compte la vitesse du véhicule précédent. La forme de l'évolution des trois paramètres en fonction de la vitesse des deux véhicules est illustrée dans la gure 6.3. An d'étudier les eets du trac sur les gains de l'éco-conduite, nous avons déni deux types de conducteur: un premier à haut risque et un autre à faible risque. Pour spécier la distance de sécurité le critère de TTC a été utilisé, en prenant une valeur de 2 s pour une conduite à haut risque et de 4 s pour une conduite à faible risque. La trajectoire de vitesse optimale correspondant à un trajet urbain a été identiée pour les deux types de conducteur. La consommation de carburant pour chaque cycle est présentée dans le tableau D.3. La consommation de référence a été calculée sans contrainte de trac, elle correspond à un gain potentiel d'éco-conduite de 34 % pour le trajet considéré. Cependant les limitations dues au trac rendent cette trajectoire non réalisable. En prenant en compte le trac un conducteur à haut risque peut réduire sa consommation de 28 % grâce à l'éco-conduite alors qu'un conducteur à faible risque obtient une réduction de 15 % seulement. Alors que la consommation optimale n'est pas accessible en présence de trac, la stratégie d'éco-conduite entraîne toujours une réduction de consommation non négligeable.
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	Symbols Symbols Symbols		xvi xviii	xvii
	i gear η G		selected gear T driveeng drive torque at engine output shaft gear eciency	N m
	I batt λ		battery current T EM electric motor output torque weighting factor between fuel and emissions	A	N m
	J EM µ		inertia of electric machine T EM 1 torque of electric motor EM1 in Prius adherence coecient	kgm	N m
	J eng ρ		engine inertia T EM 2 torque of electric motor EM2 in Prius air density	kgm kg/m	N m
	J tire J veh ṁfuel ω EM ωEM ω EM 1	Symbols tire inertia vehicle inertia, includes vehicle weight and tire inertia instantaneous fuel ow T eng engine torque T engmax maximum engine output torque T f nal time of a computed speed prol rotational speed of electric machine rotational acceleration of electric machine rotational speed of electric motor EM1 in Prius Chapter 1	kgm kgm g/s rad/s rad/s rad/s	N m N m s
	M veh ω EM 2		vehicle mass (drive train components, chassis,...) T IV time inter vehicular rotational speed of electric motor EM2 in Prius	kg rad/s	s
	symbol lumped vehicle mass, includes tire inertia name auxiliary power T planet static torque at planet gear of planetary gear set T react driver reaction time engine rotational speed ω eng-idle engine idle speed M vehx P aux ω eng Introduction	kg W rad/s rad/s	unit N m N m
	a T ring battery power used vehicle acceleration static torque at ring gear of planetary gear set ω gearmax upper limit of engine speed when using dynamic gear P batt	W rad/s	m/s N m
	P battout	a minx battery output power maximum deceleration test vehicle T R teeth on ring gear of planetary gear set changing	W	m/s
	a miny A total power loss in a drive train maximum deceleration preceding vehicle vehicle's frontal surface T sun static torque at sun gear of planetary gear set changing power demanded by the battery management system T T C time to collision ω gearmin lower limit of engine speed when using dynamic gear P loss P dembat Contents	W W rad/s	m/s N m m 2 s
	C ah P lossEM power loss in electric machine nominal capacity of battery T S teeth on sun gear of planetary gear set ω planet rotational speed of planetary gear on planetary gear set rad/s W	Ah
	C d P lossEM 1 power loss in electric machine EM1 vehicle's drag coecient U batt battery output voltage ω ring rotational speed of ring gear on planetary gear set	W rad/s	V
	C r P lossEM 2 power loss in electric machine EM2 coecient of rolling resistance v vehicle speed ω sun rotational speed of sun gear on planetary gear set	W rad/s	m/s
	P out ω wheel		d v 0	vehicle distance drive train output power initial vehicle speed wheel rotational speed	W rad/s	m m/s
	P reqeng ωwheel	d 0 v f	initial vehicle distance required engine power for some vehicle operation in nal vehicle speed wheel rotational acceleration	W rad/s	m m/s
			d f v max Prius	nal vehicle distance maximum speed limit	m m/s
	R		d saf ebr battery resistance safe braking distance v vehmaxelec maximum speed up to which vehicle can be operated in Ω	m m/s
	R F D		d trav nal drive ratio traveled distance electric mode	m
	R g R G	2 Literature Review d T IV safe following distance computed with TIV rule ratio parameter of planetary gear set v x speed of test vehicle d T T C safe following distance specied by TTC gear ratio ∆v xy relative speed between vehicle x and y	m m/s m m/s	13
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	T		F drive specied trip time drive force propeling the vehicle β weighting factor between fuel/electricity and trip time s	N
	T aux		F grade torque on engine shaft due to auxiliaries grade resistance force γ veh vehicle cost, instantaneous optimization objective	N m	N
	F res T brakemech mechanical brake torque resistance forces acting on the vehicle chassis Γ i objective function for optimization	N m	N
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1:

  assumed to be 0. Equations (4.3) and (4.4) can then be reduced to With this denition all resulting distances, d i , for a chosen speed, v i , at time t i fall on the dened grid. This holds true for any other chosen initial value of v i . However, when in our work initial and nal conditions in velocity were often specied to zero. So this seemed to be the most appropriate choice.

	∆d =	1 2	a i ∆t 2	(4.17)
	∆v = a i ∆t	(4.18)
	∆v =	2∆d ∆t 2 ∆t	(4.19)

When we solve equation 4.18 for a i we can replace a i in equation 4.17. Choosing ∆d and ∆t the grid size for ∆v is then found by Due to the fact that the three dimensions (d, v, t) in the dynamic programming computation are dependent, the initial state might not be reachable by all paths within one nal step in the backward calculation process. This becomes obvious looking at the last step where d i , v i , d i+1 , v i+1 , and ∆t are xed by the computed Chapter 4 Optimization
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 4 1: Analysis of grid choice for two dimensional dynamic programming method
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		Bisection Secant False-Position Ridder's Brent's
	NEDC	11	101	150	9	15
	HYZURB	13	22	37	13	12
	HYZROUT	11	35	81	13	10
	HYZAUTO	12	61	150	13	15

: Computational Cost of Root-nding Methods

  .2 the resulting number of iterations can be seen for four dierent drive cycles: the NEDC standard drive cycle, an urban cycle called HYZURB, a highway cycle called HYZROUT and a cycle that represents freeway driving, named HYZAUTO. The results were computed with the use of the Peugeot 308 vehicle model, and applying the 2 dimensional dynamic programming method with a grid size of 5m for distance and 0.2m/s for velocity.It can be seen that, due to the shape of the error function, which is not approximately linear, the Secant and False-Position Methods do not perform very well.The maximum number of iterations was set to 150 in this study and it was found that the False-Position Method did not converge within this range for two of the drive cycles. It can be seen that the Bisection Method is a good choice for the here studied shape of error function. In comparison to the Secant and False-Position Method more advanced root-nding methods, like Ridder's or Brent's Method, perform much better. In general, Ridder's and Brent's methods performed about as good as the Bisection method for the considered error function. The advantage of these methods is that they are applicable to any function and (in most cases) converge faster than the Bisection Method.

	Chapter 4 Optimization	91

Table 4 .

 4 

	Optimization method	∆ t ∆ d ∆ v trunc pts computation	trajectories
						time [sec]	calculated
	3D Fixed time method	2	1	1	-	240-280	1
	2D Flexible time method	-	5	.2	10	155	10
	2D Flexible time method	-	5	.2	30	241	30

3: Grid sizes and computation time for xed and exible time problem some maximum at each iteration. If no truncation is used the number of function evaluations grows with each iterative step.
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	trajectory arrival time [sec] fuel consumed [g]
	1	52	10.68
	2	44	11.36
	3	36	13.33
	4	28	18.66

4: Arrival time and fuel consumption of Pareto optimal trajectories in vehicle speed are visible. The respective arrival times and fuel consumption of the four trajectories are presented in Table 4.4.

Table 5 .

 5 

3: Gains in fuel consumption dashed) in the rst plot. The gear selection for the two cycles is shown in a second plot, where the original driver's gear selection is shown in blue and the optimal gear selection for the eco cycle is drawn in red. A summary of the gains in fuel consumption between the original cycle and corresponding eco cycle can be seen in Table

5

.3. It can be seen that potential gains in fuel consumption lie between 8 and 27%.

Table 5 . 6
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: Energy Consumption in Wh store the battery operation throughout each experiment. The energy consumption

Table 5 .

 5 7: Component eciencyLooking at the energy output at the wheels it was found that, similarly to the case of the conventional vehicle, due to the correct choices of vehicle velocity and acceleration the eco cycle simply requires less energy. Due to lower choices of vehicle speed the resistance forces where reduced. Energy necessary to accelerate the vehicle's inertia was reduced by applying appropriate acceleration rates at low vehicle speeds. In

	Chapter 5 Potential Gains of Eco Driving	126
	assumed that the changes in energy consumption over the drive cycles are not due
	to increases in component eciency.	
	components	original cycle (mo-	eco cycle (motor/gen-
		tor/generator phase)	erator phase)
	Final Drive [%]	94	94
	Electric Motor [%] 70.82/57.14	69.4/59.5
	Battery [%]	92.8/99.31	92.87/99.29

Table 5 .

 5 8 the average eciency of each component in motoring and regenerative phase can be observed.

	components	original cycle (motor/gener-	eco cycle (motor/generator
		ator phase)	phase)
	Final Drive [%] 97	97
	EM1 [%]	86.2/87.2	87.2/89.4
	EM2 [%]	88.1/88.2	90.8/90.7
	Engine [%]	35.1	35.0
	Battery [%]	96.3/91.4	96.7/94.7

Table 5 .
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8: Component eciency
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	9: Overview of potential gains due to eco driving
	5.4 Conclusion

Potential gains of eco driving were discussed for three representative vehicle architectures: the conventional, the electric and a power-split hybrid vehicle drive train. Optimizing drive cycles that simulated dierent vehicle missions, the optimal, vehicle specic, velocity prole was identied taking into account speed limits, stops, time constraints and road grade. Comparing the resulting vehicle operation with general driving, important factors for eco driving were discussed

Table 5 .

 5 [START_REF] Vexia | Vexia econav[END_REF]. In general it can be concluded that, above a certain minimum

	Chapter 6 Constraint integration: Trac and Emissions		142
	drive train	acceleration stabilized speed deceleration	gear shift
	conventional high	low, constant	engine	braking,	highest possi-
				hard	mechanical	ble gear
				braking	
	electric	high	low, constant	electric brake, hard	-
				mechanical braking
	hybrid	high	low, constant	regenerative brak-	-
				ing, rarely friction
				braking	

Table 5 .

 5 10: Overview of optimal vehicle operation speed, increases in drive train component eciencies have negligible eects on overall energy consumption. Using short, high acceleration rates to reach rather low, constant operating speeds seems to result in minimum energy consumption due to reductions in resistance force and inertial acceleration forces. We can therefore dene eco driving factors for acceleration rates and stabilized speed phases drive train independent. In the deceleration phase it is very important to consider drive train specic models in order to maximize energy recovery. Economic vehicle operation . . . . . . . . . . . . . . . . 162 6.2.4 Ecologic vehicle operation . . . . . . . . . . . . . . . . . 164 6.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
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 6 1: Fuel Consumption of Optimal Velocity Trajectories

	Chapter 6 Constraint integration: Trac and Emissions	155
	cycle	constraint fuel consumption [g] gain [%]
	original cycle	driver	97.36	-
	eco-drive cycle	-	64.10	34
	eco-drive cycle TTC=2sec	69.62	28
	eco-drive cycle TTC=4sec	82.30	15

Table 6 .

 6 2: Parameters of Engine Test Bench Equipment can be measured. Because CO2 is a naturally occurring compound and a product of perfect combustion it has not been considered as a pollutant in the past.

	Chapter 6 Constraint integration: Trac and Emissions	161
	Electric machine	AVL APA 102/E
	EM maximum torque	255Nm
	EM speed range	0-10000rpm
	EM force sensor	Z6FC3, 200kg
	EM speed sensor	ROD 426 001B-01024
	Speed sensor on engine shaft	AVL 364C/364X Angle Encoder
	Fuel measurement	AVL Fuel Balance 730
	Continuous emission measurement	HORIBA OBS 2000 PEMS (1Hz)
	Average emission measurement	AVL CVS i60 Exhaust gas dilution system

Table 6 .
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	3 the measured values can be observed. Similarly to fuel consumption, the
	optimal cycle was able to reduce CO2 emissions. However, while fuel consumption
	and CO2 emissions decreased, the measurements show that emission values of CO
	and HC increased signicantly.
	The tested EP6 gasoline engine is certied for the emission norm Euro IV. This
	implies that for the standard test cycles the engine emits less than 1g/km of CO,
	less than 0.08g/km NOx and less than 0.1g/km of HC. To analyze the measured
	emission values these values can be used as a reference. The average NOx values
	seen in Table 6.3 show that the NOx emissions stayed well below the norm for
	both drive cycles. After several measurements no trend was identied for the two

Table 6 .

 6 3: Emission Measurement Original Cycle versus Eco Cycledrive cycles and we therefore concluded that the measured NOx values were too small to show any signicance.In comparison with the Euro IV norm the measured CO emission values were very high. Since engine norms are certied over specied drive cycles it is possible that these limitations are exceeded by non-standard cycles, as here with the urban cycle. While the original, real-life cycle results in two times the legal emission the identied economically optimal cycle produces almost six times as much CO emissions as specied by the European norm. For the HC, the original cycle was able to stay within the limitations of the norm, while the fuel ecient eco cycle exceeds the European limitations for HC emissions.

Table 6 .

 6 4: Emission Measurement Final ResultsTesting the eco 2 drive cycle on the engine test bench the fuel and emission values were measured (Table6.4). The measured NOx values were considered too small to draw any conclusion. Any changes in this range could be a result of measurement errors. As expected, we can see that CO2 emissions are approximately proportional to the measured fuel consumption.

	Emission in g/km CO2	CO	NOx	HC fuel consumption [l/100km]
	Original Cycle	206.96 2.06 0.0055 0.068	9.0
	Eco Cycle	140.96 5.78 0.0046 0.12	6.5
	Eco 2 Cycle	151.51 2.18 0.0025 0.063	6.7
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	Measuring emissions of computed fuel optimal velocity trajectories, it was found
	that eco driving cannot always be considered environmentally friendly. We there-
	fore proposed a simple method to integrate emission constraints in the optimiza-
	tion process. It was shown that, taking into account a minimal trade-o in fuel
	consumption, the pollutant emission values can be reduced. Considering emission constraints it was shown that eco driving can represent economic and ecologic advantages. Chapter 7
	A Driver Assist System for Eco	
	Driving	
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	7.2.2 Human Machine Interface (HMI) . . . . . . . . . . . . . 190
	7.3	

  1, consists of the vehicle and the virtual environment. Inputs from

	task	LEPSiS LESCOT thesis work (LTE)
	simulator	+++		++
	ADAS HMI		++	++
	ADAS algorithm			+++
	ADAS integration	+	++	++
	experimentation		+	+++
	user survey		++	+
	Table 7.1: Contribution of each laboratory

  While the vehicle is covering a detected segment, vehicle distance (d veh ), vehicle speed (v veh ), gear selection, and preceding vehicle information is recorded. When the end of a road segment is detected this information is used to compute the optimal velocity trajectory for the driven segment, taking into account trac. Comparing the best vehicle operation to the actual driving prole, four factors are evaluated to educate the driver on positive and negative aspects of his recent driving style. The display of this advice is discussed in more detail in Section 7.2.2.2. Due to safety risks educational advice is only presented to the driver if vehicle speed is lower than some threshold velocity (v maxdisplay ). In our case educational advice was given at vehicle speeds lower than 5km/h. With this choice educational advice was shown for scenarios such as stop light situations, priority situations in an intersection.

  Of these algorithms, the rst two are applied throughout vehicle use and generate advice for the continuous in-vehicle display (Figure7.7). The post-segment optimization provides advice to the driver on an educational display (Figure7.7).Pre-segment optimization The pre-segment optimization algorithm, visualized in Figure7.10, is applied in two cases. When the vehicle is detected to enter a new segment, or if the vehicle was considered in the 'vehicle following' state and the preceding vehicle had left. The trajectory optimization algorithm is then used to identify the optimal velocity trajectory of the vehicle for the segment to be driven. The two dimensional dynamic programming method is applied to solve the problem. The weighting factor β is dened prior to the trip by the driver. Utilizing the developed trajectory optimization algorithms together with the conventional vehicle model the trip and road constraints need to be dened. Trip constraints are xed specifying initial and nal vehicle states in distance and velocity. Ini-Driver Assist System for Eco Driving 188 vehicle does not have to come to a full stop, such as a roundabout or a right turn on green, a small vehicle speed, around 10km/h, was dened as desired arrival

	Chapter 7 A Driver Assist System for Eco Driving	187
	Figure 7.10: PRE segment optimization
	situation at end of segment	v des (d roadf
	red stop light, left turn on green, stop sign 0
	roundabout, right turn on green	10km/h
	going straight through green light	legal speed limit
	• Continuous gear optimization Table 7.2: Segment nal speed association
	• Post-segment optimization: evaluates the driver's recent vehicle operation

tial conditions are easily dened by the current vehicle distance (d veh ) and speed (v veh ). In order to dene constraints on the nal state, we assume, similarly to the Audi Travolution Project

[START_REF] Travolution | [END_REF]

, that stop light position and phase at vehicle arrival is known. Associating the end of the segment with a desired nal speed (v des (d roadf )) the nal vehicle state can easily be specied by d roadf and v des (d roadf ) (Table

7

.2).

In our case a desired arrival speed was dened for any situation where the vehicle will need to come close to a stop. A corresponding situation could be a stop light that is red, a left turn on green or a stop sign. For arrival scenarios where the Chapter 7 A

  Chapter 7 A Driver Assist System for Eco Driving 189 Post-segment optimization A driver's vehicle operation is evaluated once a segment is driven. To do so, the vehicle operation (v veh (t), dveh(t)) as well as information about preceding vehicles (v y (t),d y (t)) is recorded throughout a segment. A general overview of the post-segment optimization algorithm can be seen in Figure7.12. The recorded vehicle and trac information, together with driver, segment and vehicle inputs, is used to identify the best speed prole for the last road segment. With the stored data the nal time constraint can be xed. The optimal trajectory can therefore be computed with the β specied by the driver, or as a xed time problem identifying an appropriate beta for a given nal time.In our experiments a simple β look-up method, as presented in Section 4.2.2.1, was applied to keep computational time low. In addition, the vehicle model is used to evaluate the best gear selection for the driver's vehicle operation. Using the computed optimal vehicle operation and comparing it to the driver's vehicle operation positive and negative aspects of the driving style are evaluated. Four factors,

corresponding to acceleration phase, constant speed phase, deceleration phase and gear selection, are determined to educate the driver about ways to improve his driving and minimize fuel consumption.
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 7 7 A Driver Assist System for Eco Driving 3: Fuel consumption gains in urban and extra-urban settings 7.3.2.2 Driver inuence on eco driving gain Due to the limited number of tested subjects we need to be cautious about drawing conclusions with respect to personal parameter data. Nonetheless, we want to

	198

Table 7 .

 7 .4 the baseline consumption and gains in fuel consumption for urban and extra-urban driving are listed for dierent categories. It can be seen that people with mechanic knowledge and frequent vehicle users had lower baseline energy consumption in an 4: Baseline fuel consumption versus mechanical knowledge and vehicle use

	parameter	baseline	gain urban	baseline	gain extra-
		urban	[%]	extra-	urban [%]
		[L/100km]		urban	
				[L/100km]	
	w mechanical knowledge 8.10	7.30	6.90	15.86
	wo mechanical knowledge 8.60	10.76	7.13	14.39
	frequent vehicle use	8.00	6.84	6.77	15.35
	infrequent vehicle use	8.93	12.53	7.46	15.03

Table 7 .

 7 Chapter 7 A Driver Assist System for Eco Driving 200 Figure 7.22: Consumption gains for dierent age groups 5: Gains in fuel consumption dependent on system acceptance

	subject group	gain in urban driving	gain in extra-urban
		[%]	driving [%]
	ADAS accepted	9.37	16.78
	ADAS less accepter 8.29	14.15

]Efficacité, Confiance, Utilisation du système

  Choisissez la réponse appropriée pour chaque élément :LimeSurvey -http://enquetes.ifsttar.fr/limesurvey/admin/admin.php?action=showprint...
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	4 [3]Quel(s) symbol(s) n'avez vous pas compris? 6 [5		
	Veuillez écrire votre réponse ici :			
	5 [4toujours	souvent	de temps en temps	pas du tout
	Est-ce que les			
	conseils divulgués			
	vous semblent			
	judicieux			
	Ressentez-vous que			
	le système vous aide			
	à conduire plus			
	économiquement?			
	Pensez-vous qu'il			
	pourrait changer vos			
	habitudes de			
	conduite après une			
	utilisation de longue			
	durée?			
	Pensez-vous que les			
	conseils donnés sont			
	fiables?			
	Pensez-vous avoir			
	suivi les conseils			
	donnés?			
	Pensez-vous avoir			
	conduit			
	économiquement?			
	3 of 6			15/05/2013 14:55

]Evaluation subjective de l'interface du système

  

	Choisissez la réponse appropriée pour chaque élément :			
		plutôt		plutôt pas	pas du tout
	d'accord	d'accord	pas d'avis	d'accord	d'accord
	Le design de				
	l'interface est				
	agréable				
	Les couleurs de				
	l'interface sont				
	adaptées				
	La visibilité générale				
	est bonne				
	La visibilité des				
	differents symboles				
	est bonne				
	La disposition des				
	différents symboles				
	est bonne				
	La visibilité du				
	cadran de				
	compte-tours est				
	bonne				
	Les consignes de				
	changement de				
	rapport sont visibles				
	Les consignes				
	d'accélération et de				
	décleration sont				
	visibles				
	Les consignes de				
	vitesse stabilisée				
	sont visibles				
	7				

[6]Intérêt d'un systèms d'éco-conduite

  Choisissez la réponse appropriée pour chaque élément :LimeSurvey -http://enquetes.ifsttar.fr/limesurvey/admin/admin.php?action=showprint...

	Oui	Plutôt oui	Plutôt non	Non
	Un système de ce			
	type serrait utile afin			
	d'aider à diminuer la			
	consommation			
	Vous êtes prêt à			
	acheter un t el			
	système			
	4 of 6			15/05/2013 14:55

  i+1 = v i + a i ∆t (D.10) An de déterminer la trajectoire optimale pour l'éco-conduite, nous allons minimiser la consommation d'énergie globale pour un trajet. La fonction de coût est approximée par une somme des coûts énergétiques instantanés pour la durée du Le coût énergétique d'un véhicule dépend de son architecture. Dans ce travail nous allons considérer trois véhicules représentatifs: le véhicule conventionnel, le véhicule électrique et le véhicule hybride.

	Appendix				239
	v trajet :		
				t f
	Γ 1 =	γ veh (t) ≈	γ veh i (∆t i )	(D.11)
	t			i=t 0
			t f	
	γ conv veh (t) =		m f uel i (∆t i )	(D.12)
		i=t 0
			t f	
	γ elec veh (t) =		P batt i (∆t i )	(D.13)
		i=t 0
	γ hyb veh (t) =			
		+	1 2	a i ∆t 2	(D.9)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0106/these.pdf © [F. Mensing], [2013], INSA de Lyon, tous droits réservés

Vexia: Spanish brand that develops GPS navigation systems (www.vexia.co.uk/) Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0106/these.pdf © [F. Mensing], [2013], INSA de Lyon, tous droits réservés

Porsche: German car manufacturer (http://www.porsche.com) Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0106/these.pdf © [F. Mensing], [2013], INSA de Lyon, tous droits réservés

PSA Peugeot Citroen http://www.psa-peugeot-citroen.com/ Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0106/these.pdf © [F. Mensing], [2013], INSA de Lyon, tous droits réservés

AIXAM http://www.aixam.com/ Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0106/these.pdf © [F. Mensing], [2013], INSA de Lyon, tous droits réservés

The computations were done with a laptop computer with a i5 Intel Core Processor M520 running at

2.40GHz using 8GB random access memory Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0106/these.pdf © [F. Mensing], [2013], INSA de Lyon, tous droits réservés
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λ 0 = 10000; A number was chosen that, in comparison with the cost of allowable operating points, is innitely big. However, we cannot set the cost at these points to innity since the operation has to be possible if necessary due to a hard time constraint Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0106/these.pdf © [F. Mensing], [2013], INSA de Lyon, tous droits réservés
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f (D.16) En utilisant l'équation D.16, l'identication de β est réduit à un problème de recherche de zéro. Plusieurs méthodes de recherche de zéro et leur application à ce problème ont été étudiées. Une étude comparative des méthodes de Dichotomie, de Secant, de False-Position, de Ridder et de Brent a permis d'identier la méthode de Brent comme la plus adaptée à cette problématique d'optimisation. Par la suite nous avons donc choisit d'appliquer la méthode de programmation dynamique et de l'associé à la méthode de Brent pour le calcul d'une trajectoire optimale d'un parcourt donné avec contrainte de durée. Pour conclure cette étude d'optimisation, un problème multi-objectif a été considéré pour évaluer le compromis entre la consommation d'énergie et la durée du trajet. En se basant sur l'algorithme de programmation dynamique, nous avons pu calculer la frontière de Pareto sans utiliser de facteur de pondération. Une méthode de troncation a été proposée pour réduire le nombre de trajectoires calculées et donc le temps de calcul et l'espace mémoire utilisée. La gure 4.12 représente la frontière de Pareto pour un trajet de 300 mètres, illustrant le compromis entre la durée du trajet et la consommation. La forme de la frontière montre qu'il est possible d'atteindre une réduction signicative de la consommation avec un faible impact sur la durée du trajet. Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0106/these.pdf © [F. Mensing], [2013], INSA de Lyon, tous droits réservés
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Chapter 7 A Driver Assist System for Eco Driving The optimization algorithms work on the basis of detailed physical models and are therefore complex and rather time consuming. In the further progress of this work the detailed optimization results could be used to identify important and unimportant aspects of detailed modeling. Developing simplied optimization without the loss of results can be helpful in the integration process.

In this work three main vehicle architectures were discussed: the conventional, the electric and a representative hybrid vehicle. In order to further analyze vehicle specic operation the algorithm can be applied to other driver trains on the road today or in the near future. The optimal operation of a fuel cell or hydraulic hybrid vehicle could potentially lead to changes in the eco driving velocity prole.

Since the aspect of the ADAS system was only briey aborted in this thesis there remains much work to optimize the system for everyday use. It was found that driver acceptance has a strong inuence on system eectiveness. Ergonomic studies are therefore necessary to evaluate the most appropriate design of the human machine interface. The system should then be tested in real life. Particularly in-vehicle tests in a Prius hybrid vehicle can be interesting to validate the gains in energy consumption.

Appendix A Root nding methods

A.1 Bisection-Search

The bisection method is a method to nd the roots of a continuous function. Given a function f the method is used to approximate the scalar value of x that satises the equation f (x) = 0. Assuming that there exists at least one zero in the interval Repeating the same process the point d would be found next and assigned to be the new upper boundary. With this strategy the zero is approached. Dening a tolerance value ε the iterative process is continued until a value x is found for which f (x) < ε. In our problem the function f is represented by the nal time error function and the found root x is the desired β-value to be used for the xed time constraint optimization.

With this method the length of the interval is reduced by one half at each step, its convergence time is linear and therefore considered slow (depending on the shape of the function f ). Other methods have therefore been developed with the intention of reducing the iteration number, and therefore computational time. 

A.2 Newton Method

The Newton Method is a root-nding method commonly used to reduce the number of iterations. With this method the search for a zero is started with a point a and its function value f (a). Using the slope of the function at point a, f (a), the next point b is xed at the x-intercept of the line with slope f (a) through a. In our application the function f (β) is in fact the error to the chosen nal time t f .

Therefore we can not compute f (β).

There exist two method to solve this problem, which are derived from the Newton Method and can be applied for the case that the function's derivative can not be dened analytically. These are the False Position Method and the Secant Method.

With these methods two points are chosen initially and the slope of the function f is approximated using these two points. A negative aspect of these methods is that they assume the function is approximately linear in the region of interest. The two methods dier only in their choice of which point the new value will replace.

The Secant method, while often the faster method, is not guaranteed to converge.

A schematic of the two methods can be seen in Figure 4.9. In plot b) the False Position Method is shown. Initially the points a and b where chosen such that they enclose the root. The next iterative point is found by the x-intercept of the line through f (a) and f (b). In this example b is then replaced by c such that the root can still be found in the interval [a, b]. With the Secant Method, as seen in graph c), this is not ensured and the next chosen point always replaces the iteratively older point of the previous two. Here the point a is replaced rather than b as in the False Position Method.

Appendix 211

The application of these Newton based methods is usually faster than using the Bisection Search because the search can converge faster than in linear time. However it depends strongly on the shape of the function f and even linear convergence rates are not guaranteed.

A.3 Ridder's Method

In 1979 Ridder ( [START_REF] Ridders | A new algorithm for computing a single root of a real continuous function[END_REF]) developed a method that resolves the issues encountered by the Secant and False Position Method. In his approach Ridder takes the bent out of the function by using an exponential. Given a root lies in the interval 

A.4 Brents Method

To combine fast convergence with the guaranty of at least linear convergence Brent developed an algorithm in 1970 on the basis of an approach previously taken by Dekker( [START_REF] Brent | An algorithm with guaranteed convergence for nding a zero of a function[END_REF][START_REF] Brent | Algorithms for Minimization Without Derivatives[END_REF]). With his method Brent ensures that the search converges at at least linear rate but often much faster. To achieve this the method uses a combination of Bisection Method, Secant Method and Inverse Quadratic Interpolation.

While we approximated the slope of the function f in the Secant Method with two points in this method three points are used. With quadratic interpolation the function f can be approximated by the polynomial y app = k 1 x 2 + k 2 x + k 3 using the three known points. But when solving this function for zero we might get a complex value as a result. Brent's method therefore uses inverse quadratic interpolation to identify an approximate of the function This point is also the rotational center, which is here assumed to be xed. The major assumption made with this model is that the velocity at each wheel points in the direction of the wheel. We therefore assume that the slip angle at each wheel is zero. For small vehicle speeds this can be assumed since lateral tire forces are small. We will later discuss how we adapt this model to higher speeds. The vehicle's heading in the plane is dened by φ and the vehicle's slip angle is represented by the angle β.

A detailed outline of the model construction can be found in [START_REF] Rajesh | Vehicle Dynamics and Control[END_REF]. We dene V to be the vehicle speed, which is computed as an output of the vehicle drive train 

With this the vehicle longitudinal and lateral speed is dened as a function of vehicle speed and wheel angle. Given the steering wheel position the angle of the wheels can be computed with a steering ratio [START_REF] Thomas | Fundamentals of Vehicle Dynamics[END_REF]. Measurements have shown that the ratio can be specied to a value around 16 for passenger vehicles. In our work the steering ratio is specied as a parameter, that is xed to 16 for very small speeds, but grows proportionally with the vehicle speed. Due to increasing slip angles the vehicle usually turns less with increased speeds. Since the implemented lateral model does not consider tire slip angles, using a changing steering ratio can lead to more realistic vehicle operation.

Bonjour, merci de remplir le questionnaire suivant après avoir fini le test préliminaire.

Il y a 19 questions dans ce questionnaire

Concernant la personne 1 [0]Votre numéro de test

Veuillez écrire votre réponse ici :

[1]Sexe

Veuillez sélectionner une seule des propositions suivantes :

Féminin Masculin Choissisez votre sexe.

[2]Votre Age

Veuillez écrire votre réponse ici :

[3]Avez-vous le permis B?

Veuillez sélectionner une seule des propositions suivantes : Oui Non

[4]Avez-vous des problèmes de vision non corrigés ou de santé pouvant gêner à la conduite?

Veuillez sélectionner une seule des propositions suivantes : Dans le cadre de cette thèse nous analyserons les gains potentiels de l'éco-conduite.

Le fonctionnement optimal de diérents types de véhicules sera examiné à l'aide d'algorithmes numériques. Enn, les connaissances acquises à travers la détermination de prols de conduite optimaux seront appliquées à la conception d'un système d'assistance pour l'éco-conduite. • L'identication des gains potentiels de l'éco-conduite en calculant le fonctionnement optimal pour chaque type de véhicule

• L'évaluation des eets de contraintes sur la consommation optimale Le fonctionnement du véhicule étant dépendant de l'état de charge de la batterie, une application de la méthode de programmation classique, qui consiste à rechercher la meilleure solution état par état en commençant par le dernier, n'est pas appropriée. Pour évaluer le cycle éco du véhicule hybride, l'algorithme de programmation dynamique a été appliqué en sens direct (chronologique) en commençant du premier état. Avec cette approche, l'évolution de l'état de charge de la batterie peut être surveillée et le coût de fonctionnement du véhicule peut être calculé en fonction de la vitesse, de l'accélération et de l'état de charge. Nous avons étudié le fonctionnement du moteur thermique et ses émissions de polluants pour identier la cause de l'augmentation des CO et HC dans le cycle optimisé. La gure 6.10 montre qu'une zone de haute densité des émissions existe pour un fonctionnement du moteur à un couple élevé. Pour déterminer la trajectoire de vitesse qui diminue l'impact environnemental du véhicule, une nouvelle fonction de coût a été dénie 1 :

En prenant en compte les résultats précédents, la valeur de χ a été xée à 0,85. L'objectif de cette thèse est donc l'analyse des gains potentiels de l'éco-conduite pour les diérents types de véhicules existant : thermique, électrique et hybride. Ainsi, la première partie de ce travail se focalise sur une étude théorique visant à calculer les gains potentiels et à déterminer les règles d'éco-conduite, avant d'aborder dans un second temps une mise en situation plus réaliste et une intégration des algorithmes dans un système d'assistance pour le conducteur. En s'appuyant sur une modélisation énergétique des diérents types de véhicules, la détermination et la comparaison du fonctionnement optimal se base sur l'optimisation du prol de vitesse pour des trajets connus. La programmation dynamique a été mise enoeuvre pour calculer la trajectoire optimale énergétique en tenant compte de la contrainte temporelle an de ne pas pénaliser l'intérêt d'une conduite économe. Evidemment, l'intégration de l'éco-conduite doit, d'une part, tenir compte du trac à proximité du véhicule et d'autre part, ne pas aboutir à une augmentation des émissions de polluants. Ainsi, en nous appuyant sur des modèles de suivi de véhicules (trac), nous avons montré que les principes d'éco-conduite restent valables et conduisent de toute façon à des gains énergétiques. Concernant les contraintes d'émissions, des résultats expérimentaux nous ont conduit à adapter nos algorithmes pour répondre simultanément aux aspects écologiques et économiques. Enn, les connaissances acquises ont été appliquées à la conception d'un système d'assistance testé sur un simulateur de conduite. 

Cette