N
N

N

HAL

open science

Analyse de modeles géométriques d’assemblages pour les
structures et les enrichir avec des informations

fonctionnelles
Ahmad Shahwan

» To cite this version:

Ahmad Shahwan. Analyse de modeles géométriques d’assemblages pour les structures et les enrichir
avec des informations fonctionnelles. Autre [cs.OH]. Université de Grenoble, 2014. Francais. NNT':

2014GRENMO023 . tel-01071650

HAL Id: tel-01071650
https://theses.hal.science/tel-01071650
Submitted on 6 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-01071650
https://hal.archives-ouvertes.fr

UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE LUNIVERSITE DE GRENOBLE

Spécialité : Mathématiques et Informatique

Arrété ministériel : 7 ao(t 2006

Présentée par

Ahmad SHAHWAN

Thése dirigée par Jean-Claude LEON
et codirigée par Gilles Foucault

préparée au sein G-SCOP, Grenoble-INP
et de MSTII

Processing Geometric Models

of Assemblies to Structure and
Enrich them with Functional
Information

These soutenue publiquement le 29 aoult 2014,
devant le jury composé de :

M., John GERO
Professor, University of North Carolina, USA, Rapporteur

M., Marc DANIEL

Professeur, Université Aix-Marseille, Rapporteur

Mme, Marie-Christine ROUSSET
Professeur, Université Joseph Fourier, Examinateur

M., Jean-Philippe PERNOT

Professeur, Arts et Métiers ParisTech, Examinateur
M., Jean-Claude LEON

Professeur, Grenoble-INP, Directeur de thése

M., Gilles FOUCAULT
Maitre de Conférences, Université Joseph Fourier, Co-Directeur de these







Processing Geometric Models of Assemblies

to Structure and Enrich them with
Functional Information

Traitement de modeles géométriques
d’assemblages afin de les structurer et de les
enrichir avec des informations fonctionnelles






iii

abstract

The digital mock-up (DMU) of a product has taken a central position
in the product development process (PDP). It provides the geometric
reference of the product assembly, as it defines the shape of each in-
dividual component, as well as the way components are put together.
However, observations show that this geometric model is no more than
a conventional representation of what the real product is. Addition-
ally, and because of its pivotal role, the DMU is more and more re-
quired to provide information beyond mere geometry to be used in dif-
ferent stages of the PDP. An increasingly urging demand is functional
information at different levels of the geometric representation of the
assembly. This information is shown to be essential in phases such as
geometric pre-processing for finite element analysis (FEA) purposes.
In this work, an automated method is put forward that enriches a
geometric model, which is the product DMU, with function informa-
tion needed for FEA preparations. To this end, the initial geometry
is restructured at different levels according to functional annotation
needs. Prevailing industrial practices and representation conventions
are taken into account in order to functionally interpret the pure geo-
metric model that provides a starting point to the proposed method.

résumé

La maquette numérique d’un produit occupe une position centrale
dans le processus de développement de produits. Elle est utilisée comme
représentations de référence des produits, en définissant la forme géo-
métrique de chaque composant, ainsi que les représentations sim-
plifiées des liaisons entre composants. Toutefois, les observations montr-
ent que ce modeéle géométrique n’est qu'une représentation simplifiée
du produit réel. De plus, et grace a son role clé, la maquette numérique
est de plus en plus utilisée pour structurer les informations non-géo-
métriques qui sont ensuite utilisées dans diverses étapes du processus
de développement de produits. Une exigence importante est d’accéder
aux informations fonctionnelles a différents niveaux de la représen-
tations géométrique d’un assemblage. Ces informations fonctionnelles
s’averent essentielles pour préparer des analyses éléments finis. Dans
ce travail, nous proposons une méthode automatisée afin d’enrichir
le modele géométrique extrait d’'une maquette numérique avec les in-
formations fonctionnelles nécessaires pour la préparation d’un modele
de simulation par éléments finis. Les pratiques industrielles et les re-
présentations géométriques simplifiées sont prises en compte lors de
I'interprétation d’'un modele purement géométrique qui constitue le
point de départ de la méthode proposée.
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Introduction

When designing an artifact that is identified by its functionality, it is a
common practice to decompose the artifact in question into components,
each satisfying a well-defined set of functions that, put together, lead to the
satisfaction of the desired functionality of the designed artifact.

In the industrial context, components happen to be physical objects, de-
fined by their shapes and materials that decide their physical properties and
behaviors. In order for an object to deliver a precise function, its shape has
to be carefully engineered. The 3D shape of the object dictates its interac-
tions with its environment, i.e., its neighboring components, its neighboring
products or a neighboring human being. These interactions define its behav-
ior, thus its functionality.

Because of this pivotal importance of components shapes to deliver their
functions, tools were provided and conventions established to enable the
production and communication of shape design models as part of the product
development process (PDP). This emphasis is a natural outcome of a shape-
oriented design process. Design intentions, however, are not clearly reflected
in design models, in spite of their clear presence in engineers’ minds during
the design process. In fact, no robust tools or agreed-upon conventions exist
to link a particular design with its rationale.

This observation used to be less pronounced at the time blueprints were
used to define design models. Blueprints are 2D drawings that aim at un-
ambiguously defining the shape of an object. They have been in use for
so long that conventions converged toward globally understood agreements,
and standards were put to govern such conventions [16, 183]. Nevertheless,
the advent of Computer Aided Design (CAD) systems in early 80s soon
provided designers with another geometric dimension that would remark-
ably influence industrial standards and conventions. 3D solid modelers pre-
vailed as a natural choice for product design, engineers shifted to producing
3D models instead of traditional technical drawings, and mechanical com-
ponents became dominantly represented as 3D objects in today’s models.
This gave birth to the concept of digital mock-up (DMU), which gathered
the representation of components of a product assembly in one geometric
model.

Efforts were paid to centralize the product knowledge in one place, and
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the DMU was suggested as a natural candidate as it geometrically defines the
product. In spite of attempts to homogenize and standardize the represen-
tations of non-geometric knowledge [12], defined standards are still poorly
implemented in industrial practices because commercial software products
are far from exploiting these standards. In fact, an industrial DMU, as cur-
rently available, is no more than a conventional geometric representation of
a product assembly. A DMU can at best contain loose textual annotations,
which may be interpreted within an organization or a working group, if at
all interpretable. This is partially because a textual annotation does not
relate precisely to a geometric subset of a component or an assembly.

The need of design intentions, however, remained paramount, if the DMU
is to be fully exploited in the PDP, and utilized beyond Computer Aided
Manufacturing (CAM) applications. In fact, this knowledge is still being
mined from geometric models of a product to feed applications such as ge-
ometric pre-processing of assembly models for simulation purposes. This is
particularly the case of mechanical simulations where the structural behav-
ior is a key issue that is commonly addressed using numerical methods such
as the Finite Element Model (FEM). However, and due to conventional
representations of functional and technological information in the DMU,
the model preparation task for FEM is still mainly manual and resource
intensive. This is particularly true for complex products like aircraft struc-
tures [1].

The user-intensive functional annotation of a DMU introduces a bot-
tleneck into today’s highly automated PDP. In order to accelerate product
development, an automated method should be established that enables the
extraction of relevant functional information out of pure geometric repre-
sentation of product assembly. Function is a key concept for designers and
engineers that closely relates to the design activity and, hence, to the so-
called design intent [107]. Consequently, it is highly important to provide
engineers and designers with this functional information tightly connected
with 3D component models, so that they can efficiently process them dur-
ing the PDP. Furthermore, the desired approach should take into account
mainstream industrial practices and conventions when interpreting geomet-
ric models.

In this work, the focus is placed on the application to structural be-
havior of a product or, more precisely, of an assembly of components. The
proposed method is an enrichment process that mainly aims at a seamless
integration with geometric preprocessors for finite element (FE) simulation
purposes, even though other applications can also be envisaged. In order for
this method to provide an adequate input to finite element analysis (FEA)
applications functional annotations and component denominations should
be made in tight connection to precise geometric entities that they describe.
To this end, geometry processing and reasoning mechanisms applied to me-
chanical behaviors are set up to adequately structure geometric models of
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assemblies.

In the rest of this document, Chapter 1 provides an introductory presen-
tation of industrial concepts that relate to our work. It particularly presents
what can be expected from an industrial DMU nowadays. Literature and
work related to the proposed method is reviewed and analyzed in Chapter 2.
Chapter 3 sheds more light on the motivation of our work, and the role that
the proposed method plays in an efficient PDP. Chapter 4 defines concepts
and terminology that are used across this document and upon which the
proposed method is founded. It also provides an overview of this method
before later chapters develop further on each stage.

Chapter 5 develops in more details the geometric analysis of the input
model, which is the pure geometric model of a DMU. This chapter shows
how interactions between components are reconstituted on a geometric basis
and how functional interpretations can be assigned to each of them. At this
stage, the shape — function relationship cannot be unambiguously recovered.

Chapter 6 then provides the means to functionally interpret those inter-
actions in an unambiguous way, through a qualitative behavioral analysis of
the model. This is algorithmic approach achieved through the tight depen-
dencies between shape, function and behavior that produce a unique relation
between shape and function for the interactions between components. The
concept of reference states is then used to synthesize some component be-
havior through their interactions in order to reject irrelevant configurations,
thus removing ambiguities. Further qualitative behavioral information is
derived too.

Chapter 7 completes the functional picture of the assembly using domain
specific rules and taking the functional interpretation beyond the interac-
tion level, toward the functional unit level, using the effective relationship
between shape and function at the interface level and the newly derived be-
havioral information at the component and component cluster levels. It is
an inference-based reasoning approach that can be adapted to the conven-
tional representations of assemblies and meet the current practices observed
in industry.

Once the input model is geometrically restructured, and functionally
annotated, it is made available as input for FEA preprocessors. Chapter 8
shows results of the application of the proposed method on examples vary-
ing from illustrative models to industrial scale DMUs. The same chapter
also shows how the method successfully lends hand to a template-based ge-
ometric preprocessor, generating simulation models that correspond to the
simulation objectives. Chapter 9 concludes this document, exploring poten-
tials of future work to extend the proposed method and its application.






Chapter 1

Digital Mock-Up and the
Polymorphic Representation

of Assemblies

DMUs constitute a starting point to our research. Thus, it is indis-
pensable to present basic concepts and definitions that are central
to this work before detailing our approach. Those concepts are
presented from different viewpoints according to the literature and
to industrial practices, before an adaption of these concepts to our
context is underlined. An analysis of a DMU content also shows
how it can refer not only to a single representation of an assembly
but to a polymorphic one.

1.1 Introduction

In this chapter we provide a general understanding of a DMU, a concept
which is central to our research. Then, we formally define this concept as
it applies to the current work. To this end, we first present closely related
notions that pave the way to the conceptualization of a DMU. We also show
what kind of information it holds, and how this information is represented.

Sections 1.2 and 1.3 demonstrate and distinguish two concepts: the prod-
uct model and product prototypes. Though these terminologies are used in-
terchangeably across literature, we clearly make the distinction according to
our understanding, and to the context of this work. Then, the concept of
DMU is analyzed in the following sections to address its representation from
a geometric point of view as well as from a more technological point of view
through the concept of assembly. This leads to the analysis of the effective
content of an assembly and its relationship with a DMU. Subsequently, the
generation of Finite Element Analyses from a DMU is outlined to illustrate
into which extent a DMU can contribute to define a Finite Element Model.
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This finally leads to the concept of polymorphism of an assembly.

1.2 Product model

In the context of product development, manufacturing processes of this prod-
uct must be precisely defined, so that the resulting product matches its ini-
tial requirements, i.e., the product meets designers’ and users’ expectations.
To this end, models are used to define the product in enough details as the
outcome of an unambiguous and overall manufacturing process.

Models consist of documents and schemes that describe the product, of-
ten visually. They often use common languages and annotations to refer
to resources (materials, quantities, etc.) and processes (parameters, dimen-
sions, units, etc.). Those annotations should be standardized, or at least
agreed upon among people involved in the production process. Otherwise a
model can be misinterpreted.

Definition 1.1 (Product model). A product model is a document, or a set
of documents, that uniquely define the manufacturing process of a product
in compliance with its specifications [43, 140].

In this sense, models can be viewed as cookbooks showing how to produce
instances of the product that conform to the same specifications. Models
are closely related the production process for the following reasons:

e To persistently capture the know-how of the production process. In the
absence of such documentations, the manufacturing knowledge is only
present in engineers’ minds, making this process highly dependent on
the availability of experts. Models capture this knowledge and reduce
the risk associated with such dependency;

o To formally define the manufacturing process, leaving no room for am-
biguity and multiple interpretations. This formality allows for the re-
production of identical instances of the same ‘pattern’, avoiding unde-
sirable surprises due to miscommunication or improvisation of incom-
plete specifications. Otherwise, divergence in the final product may
drift it away form initial requirements;

o To allow tracking of and easy adaption to requirements. A product
(or its prototype, as shown in Section 1.3) still may fail to fulfill the
desired requirement. In this case, the product should be re-engineered.
The existence of a model allows engineers to perform more easily mod-
ifications that can be directly mapped to the product characteristics
to be amended. Another case when the product, thus its model, is to
be re-engineered is when the requirements evolve, which is likely to
happen in almost all industries.
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Figure 1.1: Examples of partial product model: (a) architectural blueprints;
(b) software diagram.

Product models existed quite early in different engineering domains such
as architecture, mechanics, electrics, electronics, and computer software,
among others. These models were not digital until a couple of decades ago.
Depending on the discipline, some subsets of these models can be referred to
as technical drawings, blueprints, draftings, diagrams, etc. Figure 1.1 shows
examples of such models in different disciplines and applications.

As pointed out earlier, the current concept of product model focuses
essentially on manufacturing issues and does neither incorporate properties
that ensure the consistency between its set of documents and the product
obtained nor cover some parts of the product design process.

Product model in the field of mechanical engineering

When it comes to mechanical engineering, product models were traditionally
referred to as technical drawings or drafting. In fact, those are 2D drawings
that represents either a projection of the product onto a given plane accord-
ing to a given orientation (usually perpendicular to the plane and aligned
with a reference direction) and/or a cross section into the product compo-
nents(s) [70]. These drawings form a part of the product model.

As Figure 1.2 shows, precise annotations are used to augment those draw-
ings with complementary information such as Geometric Dimensioning and
Tolerancing (GD&T), some of which cannot be geometrically represented
on a sheet. Such information is mandatory to allow people manufacturing
the product [124]. This figure shows in red, shaft/housing tolerancing and
dimensioning symbols explained further in Appendix A. Projection, cross-
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Table 1.1: Geometric tolerancing reference chart as per ASME Y14.5 — 1982.
—] straightness planarity [O] cicularity
cylindricity line profile surface profile
perpendicularity angularity parallelism
=] symmetry position concentricity

sectioning and annotations follow agreed-upon conventions that make the
model as unambiguous as possible to a knowledgeable reader. Table 1.1
show standard dimensioning and tolerancing symbols as defined by ASME
Y14.5 — 1982 [183].

1.3 Product prototype

It is preferable that design defects be outlined as early as possible in the
product live cycle. More specifically, it is of high advantage that a short-
coming be reported before a real instance of a product is manufactured and
machined. This is due to the high cost of machining and other manufactur-
ing processes. If compliance tests are to be run directly on the real product,
without any previous test on some sort of a “dummy” version of it, a con-
siderable risk is involved since the product is likely to be re-engineered. The
manufacturing and machining costs can be nearly doubled at each iteration.

To this end, a prototype, close enough in its behaviors to the real prod-
uct but with reduced production costs, is produced first. Then, different
tests are run against this prototype to assess its conformity to different re-
quirements and detect potential deficiencies. Whenever such shortcomings
are revealed, the product model is adapted accordingly, generating a new
prototype. Then, the process is repeated until the prototype is validated by
all tests. This can be seen as an iterative process of modeling, prototyping,
and evaluation. Subsequently, the product is progressively refined through
multiple iterations.

Definition 1.2 (Product prototype). A product prototype is a dummy rep-
resentation of a real product, that is meant to emulate it in one or more
aspects. It is used to assess or predict certain behaviors and/or interac-
tions [160, 184].

Prototypes can emulate the product functionally, aesthetically, physi-
cally, ergonomically, etc. depending on the intended assessment planned on
the prototype. Prototypes are vital in an efficient production process for
the following reasons:

e To allow early recognition of deficiencies. The earlier the deficiencies
are detected, the lower the amendment cost is, since fewer stages are
wasted and redone;
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Figure 1.2: Blueprint of a mechanical product, showing a cross-section (top)

and a projection (bottom).

of the cross-section.

annotations.
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o To allow testing on life-critical products. Some highly critical indus-
tries, such as aeronautics, tolerate little or no failure once the product
is put to operation. Errors can be fatal at this stage. Thus, prototypes
allowing virtual tests on the product are necessary in such cases;

o To help decision making. Studies show that decisions taken at early
stages of a design process are highly expensive [47, 180]. However,
oftentimes product behavior and the impact that it may entail cannot
be precisely predicted at those stages. Prototypes enables engineers to
do a sort of what-if analyses, and benefit form their feedbacks before
taking a final decision about the product design.

More recently, product prototypes evolved toward digital or virtual ones,
which reduces further a product development process and can be achieved
using digital simulations.

It is worth noticing that tests run against prototypes do not replace
quality and compliance tests that should be run on the real product. Prod-
uct prototypes are just mock-ups, they emulate the products behavior to a
certain extent, but not exactly.

Prototypes are used in different engineering disciplines. In architecture
and interior design scaled-down prototypes are used to give a global per-
spective of the structure before it is actually implemented (see Figure 1.3a).
Architecture prototypes are often used for aesthetic and ergonomic assess-
ments.

In software engineering, incomplete versions of the software that fulfill
certain requirements are implemented first to satisfy unit tests. Unit testing
is in the core of software engineering best practices to avoid bulk debugging.
Usually, one module of the software is tested at a time, with the rest replaced
by mock modules.

Product prototype in the field of mechanical engineering

Approximate replicas of a mechanical product may be built to assess its
ease of use, functionality, structural behavior, and so on. Those replicas are
prototypes that are very similar to the designed product (see Figure 1.3a).

However, a product and its prototype differ in how and from what each
is made. Materials of the real product are usually costly, thus prototypes are
built out of cheaper materials that have similar physical properties according
to the intended tests. Moreover, the manufacturing and machining processes
of the real product are often expensive as well, partially due to the choice
for materials. Then, prototypes are crafted using different methods that
reduce costs, keeping the final shapes as close as possible to the original
design [160].

Figure 1.4 shows a prototype of a hand navigator [49]. The prototype is
made of thermoplastic powder shaped by means of selective heat sintering.
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Figure 1.3: Examples of product prototypes: (a) Architectural scale proto-
type of the interior of a building; (b) Full-size car prototype.

Though the resulting object is perfectly fitted for concept proofing, machin-
ing techniques and materials are not suitable for mass production, once the
product is approved.

Despite their minimized cost, prototypes are often wasteful and non-
reusable (apart in some discipline, like software engineering, where proto-
types can later be integrated in an operational product). This makes the
manufacturing process redundant: one manufacturing process at least for
prototyping, and then another one for real production. It would be highly
advantageous if some test could be directly run against the models them-
selves, without the need to create a prototype.

1.4 Product digital mock-up

Sections 1.2 and 1.3 introduced product model and product prototype as
historically two separate concepts. However, technological advances in in-
formation systems allowed engineers to merge those concepts into a single
one, introducing little by little what become known as DMU in the domain
of mechanical engineering.

1.4.1 Computerized product models

With the introduction of information technology and its applications, en-
gineering and production disciplines tended to make the most out of its
possibilities. One obvious application was modeling. Engineers and de-
signers soon got convinced to use computers instead of drafting tables to
materialize their designs. This gave way to CAD systems, who were based
on advances in computer-based geometric modelers. Geometric modelers
were first two-dimensional, and offered little advantage over classical draft-
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Figure 1.4: Hand navigator prototype (Chardonnet & Léon [49]).

ing, apart their ease of use. Soon, those modelers started to address 3D
solid modeling and integrated complementary facilities such as parametric
and feature-based modeling [121, 54]. Digital product models became easier
to produce and to interpret.

With the advent of Model-Based Definition (MDB) paradigm [140, 43],
these models were soon imported into the downstream manufacturing pro-
cess, to allow what is now called CAM. CAD models contained information
not only understandable by expert engineers, but also by machine tools to
automatically configure some of the product manufacturing processes.

An important revolution in the field of CAD was the introduction of
3D modelers, thanks to the fast-paced advancement of computer graph-
ics. This gave the designers a better perception of their work, even tough
incomplete. 3D models now allow engineers to perform basic prototyp-
ing, at least from an aesthetic point of view, with categories of shapes
as prescribed by CAD systems. Indeed, each CAD software enables the
generation of component/product shape within a range prescribed by its
algorithms. As a result, CAD software can detect some geometric incon-
sistencies, e.g., self-intersections, invalid topologies, interferences, etc. (see
Section 1.5.1 for a discussion on geometric validity of a DMU), when a com-
ponent shape/product falls outside the range of shapes it can describe.

Product models have become more than mere patterns that used to
dictate how the product should be manufactured. The line that separated
models from prototypes got thinner as more and more product assessments
can be readily conducted on the models themselves.

1.4.2 Digital mock-ups as models and prototypes at a time

Computerized product models that also played the role of prototypes are
commonly called digital mock-ups (DMUs). They mainly contain the 3D
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geometric model of a product, but are not restricted to that. As product
models they also incorporate supplementary information about material and
other technological parameters.

The goal of DMUs is not limited to manufacturing only. Now that they
provide detailed geometry alongside material physical properties, different
physical simulations can be set up, taking advantage of increasing compu-
tational capabilities rather than generating physical prototypes.

DMUs can be seen as the result of advances in geometric modeling soft-
ware and CAx systems. They directly support manufacturing processes,
fulfilling the role of product referential models, as well as the basis of sim-
ulation mock-ups, and serving as product digital prototypes [177]. By the
late 90s, a DMU was seen as a realistic computer simulation of a product,
with the capability of all required functions from design engineering, man-
ufacturing, product service, up to maintenance and product recycling [57].
From this perspective, the DMU stems from the merge of product model
and product prototype.

Product geometry is a key information around which the DMU is or-
ganized. Figure 1.5 shows an example of a DMU of a centrifugal pump as
visualized by its 3D representation. Other types of information, essential
for manufacturing and prototyping purposes are also present in the DMU,
and will be discussed in more details in Section 1.7.

In this sense, the DMU works as a repository of the engineering knowl-
edge about a product that can be used throughout its life cycle [47]. Thus,
DMUs are seen as the backbone of the product development process in to-
days industries [64].

Figure 1.6 shows how the generation of technical drawings can be partly
automated using the 3D geometry of CAD models out of the product DMU.
Then, GD&T can be carried out by engineers to add technological data.

1.5 Geometric models and modeling methods

Often CAD systems consider a DMU as a set of components, that may also
be called parts, assembled together to directly form the 3D representation of
a product, or to form modules (sub-assemblies) that in turn are assembled
into a product. Section 1.6 explains different methods and viewpoints about
component assembly. In this section we are more concerned about how a
component is represented geometrically in a CAD system.

Geometric modelers are as important to CAD systems as the product
geometric model is to DMUs. The geometric modeling process is highly
influenced by the category of geometric model attached to a CAD system.
Often, engineers choose to represent a component as a volume; a three-
dimensional manifold [131] that divides the 3D-euclidean space into three
sets: its interior C, its boundary 0C, and its exterior ~C. Then, the ge-
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hydraulic casing

two elastic rings

Figure 1.5: A DMU geometry of a centrifugal pump, showing different parts
using colors. For a better understanding of the product shape, the DMU is
sectioned by a vertical plane.

ometric model commonly used in CAD systems is of type boundary repre-
sentation (B-Rep) [119, 120]. In this case, the material of a component is
described by the topological closure of its interior ¢l(C'), which is the union
of its interior and its boundary cl(C) = C' U 9C [120].

1.5.1 Geometric validity and the quality of a DMU

As digital geometric representations of a product, a DMU may contain un-
realistic, or unrealizable, configurations. An example configuration that is
frequently encountered in industrial models is the volumetric interference
between two solids. This configuration can lead to several interpretations:

a. It might be a by-product of an imprecise design and it is therefore
incorrect;

b. It might also be a deliberate artifact to reflect some conventional mean-
ing and, in this case, it has no impact on the correctness of the DMU.
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Figure 1.6: Automated generation of a technical drawing from a DMU that
contribute to the definition of a product model.
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Figure 1.7: A cross section of a threaded link between a screw and a nut
represented as a simple interference in a 3D assembly geometric model. The
sub-figure at the right shows how the cross section may look like in a real
product, and the technological parameters it may have conveyed. H: height
of the thread; P: pitch; d: minor diameter of external thread; D: minor
diameter of internal thread; A: nominal diameter.

Figure 1.7 shows an example where a threaded link is represented as
such an interference, which falls into the interpretation of type b.

Furthermore, some geometric modelers let a user create non-manifold
configurations (see Figure 1.8). Some of these configurations are useful to
produce a simplified representation of the real object that is needed to per-
form mechanical simulations using the finite element method (see Figure 1.8¢c
and Section 1.9). Those configurations, however, are not physically realiz-
able [131].

These unrealistic or unrealizable geometric arrangements put a question
about the quality of DMU. One may ask what geometry to consider as
valid, and what to reject or disallow, knowing that these configurations
cannot be filtered out by the algorithms of a geometric modeler. In fact, the
answer to this question highly depends on conventions being followed by the
users or engineers because there is no representation standard that is used
in geometric modelers to discard such arrangements. However, studying
industrial models showed that there exists a general consensus in the domain
of mechanical engineering that geometric degeneracies such as non-manifold
configurations (see Figure 1.8a, b) should be avoided in a DMU, as they
are often misleading as for how to be interpreted. Meanwhile, volumetric
intersections are largely accepted, as they convey a particular meaning.
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(a) (b) ()

Figure 1.8: (a), (b), (c) Geometric models with highlighted non-manifold
configurations. (c) is an example of simplified representation that can be
used for a mechanical simulation.

Manifold or not, digital geometric models defining products in CAD
systems have their boundary represented either with faceted models, i.e.,
piecewise linear surfaces, or with piecewise smooth surfaces. Here, the first
category is named discrete geometric models and the second one analytic
geometric models.

1.5.2 Discrete geometric models

Discrete geometric models consist of a finite set of geometric elements topo-
logically connected to each other to define the boundary of a shape. These
elements are manifolds that can be either one, two, or three-dimensional.

The very basic geometric element is a vertex: a point lying in 1D, 2D or
3D-space, this is a zero-dimensional manifold.

Two vertices connect to each other defining a line segment or edge that is
a one-dimensional manifold. An aggregation of edges on the same plane can
form a piecewise 1D curve. If every vertex of this aggregation is topologically
connected with at most two edges per connection! the curve is indeed a one-
dimensional manifold.

A 1D closed? manifold and planar curve with no self-intersection bounds
a discrete planar area or face, i.e., a two-dimensional geometric entity. An
aggregation of faces connected to each other forms a faceted 2D surface.
If every edge of this aggregation is topologically connected with at most
two faces, while the connection between faces happens uniquely at their
boundary, i.e., at the edge level, the surface is a two-dimensional manifold.

A 2D closed® manifold surface with no self-intersections bounds a solid,

! Connection between edges happens at their boundary, i.e., either of their vertices.

2A closed curve is a curve in which a connection happens at every vertex of each of its
edges.

3A closed surface is a surface in which a connection happens at every edge of each of
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(a)

Figure 1.9: Geometric models of a teapot: (a) discrete model (triangular
surface mesh); (b) analytical model (composite free-form shape obtained
from a set of surface patches).

a three-dimensional geometric entity. Solids can be aggregated to form more
complex ones. If this aggregation is topologically connected in a way that
connection happens uniquely at face level the resulting solid is manifold.

Discretized models are also called meshes. Meshed objects used in a
product development process to describe a solid are represented in one of
two ways:

Surface meshes
Using a discrete closed surface to define the boundary between the in-
terior and the exterior of the object. Those surfaces are decomposed of
faces, as mention before. Faces can have an arbitrary number of edges
each, however, surfaces are usually built out of triangles and/or quad-
rangles. These models are also called polygon meshes. Figures 1.9a
and 1.10b show examples of surface triangular meshes;

Volume meshes
Using a set of connected simple volumes, such as tetrahedrons and/or
hexahedrons. These models are also called polyhedron meshes. Fig-
ure 1.10c shows a cut in a tetrahedral volumetric mesh of a fan blade
foot.

Discrete geometric representations are simple. However, they are not
suitable for the up-stream design phases of a PDP for the following reasons:

e They are approximate representations that imprecisely capture the
designed concept, as they fail to accurately define smooth curves and
surfaces that are mandatory for manufacturing processes. Powerful
shape modeling algorithms are not available in CAD systems;

its faces.
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(c) (d)

Figure 1.10: Geometric models of a mechanical part (foot of a fan blade):
(a) complete B-Rep analytical model; (b) complete discrete model; (c) a cut
into a volume mesh showing tetrahedrons internal to (b); (d) a section into
a surface mesh showing that the triangles lie on the surface of the solid.
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e Meshes are scale dependent, their level of details, i.e., their rough-
ness, cannot be adjusted to obtain smoother shapes once the model is
generated;

e The roughness of these models hinder their utilization for machining
purposes in the down-stream process, where smooth realizable surfaces
are expected unless the roughness is lower than that of the manufac-
tured surface. This constraint however requires a too large amount of
storage to be used for complex products.

As a result, geometric modelers of CAD systems are rarely discrete,
although discrete models can be generated from analytical ones for applica-
tions in finite element simulations (see Section 1.9) and prototyping.

1.5.3 Analytical geometric models

Analytical geometric models use the same concepts defined for discrete mod-
els to describe the topology of their B-Rep model, i.e., vertices, edges, and
faces. However, this topological representation is associated with geometric
models such that edges need not be linear, and faces need not be planar any-
more in these models. This allows for a concise yet precise representation
of smooth piecewise curves and piecewise surfaces.

While vertices still represent points in the euclidean space, an edge is only
partially defined by its two endpoints, since it is also characterized by the
curve on which it lies. To this end, curves are represented mathematically,
either as canonical geometric shapes such as lines and conic sections, or as
parametric equations such as B-splines and Bézier curves.

The same principle applies to faces which are characterized by the surface
they lie upon, beyond their boundary edges. Carrier surfaces are also repre-
sented mathematically, either as canonical surfaces such as planes, spheres,
cylinders, cones, or tori, or as parametric equations such as B-spline or
Bézier surfaces, or as implicit surfaces.

Just as in discrete models, two vertices connect to each other forming
and edge, a set of edges forms a composite curve, either manifold or not*.
A closed manifold composite curve defines the boundary of a face, faces
are aggregated to form composite surfaces, again they may or may not be
manifold®. A closed, orientable surface, without self-intersection, defines a
solid C' while forming its boundary 9C.

Analytical geometric models are faithful to the original geometry that
a designer had in mind since they are accurate representations of a real
object. They are scalable with no information loss. Those properties make

4Manifold composite curves connect at most two edges at each of their vertices.
5Manifold surfaces connect at most two faces at each of their edges, while edges are
free to be decomposed into smaller ones
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Figure 1.11: An example of CSG tree where leaves are geometric primitives,
U is a Boolean union, N is a Boolean intersection, and — is a Boolean
difference.

it easier for geometric models to provide a reference for processes located
down-stream with respect to the design process.

CAD systems use analytical representations of objects because of these
favorable properties [120, 121]. Geometric modelers represent analytical
models in one of following ways:

Generative methods

Where the object is defined by the process of its generation. One such
method is the Constructive Solid Geometry (CSG) whereby an object
is represented as a tree whose root is the geometric object and its
leaves are elementary geometric entities, i.e., primitives or geometric
objects generated by other generative methods, and internal nodes
are geometric Boolean operations, i.e., union, intersection, differences.
Other generative methods are sweeping, rotation, extrusion, etc. that
generate 3D entities out of 2D sketches.

These models are useful to describe products because they keep track
of a history of their modeling process and because they allow easy
modifications. Geometry modifications are frequent during a product
development process, hence the long lasting interest of CAD systems
in history trees. Figure 1.11 shows an example of a CSG tree and
corresponding geometric shape at each step of its construction;

Descriptive methods
Such as B-Rep, where the object is defined by its boundary. This
object is represented by a set of closed, oriented, non-intersecting sur-
faces that forms a multiply connected volume. These models keep no
track of the construction process, however their data size is smaller
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than that of their CSG counterparts. Figure 1.9 shows an example of
a teapot analytically represented by its boundary.

However, B-Rep models are automatically generated from any CSG
description: each CSG boolean operation has a corresponding B-Rep
transformation that represent the results in the B-Rep description.
Actually, hybrid model are used in the DMU context where different B-
Rep representations are linked: the CAD B-Rep model is the “exact”
representation of the geometry, the visualization model is a 3D mesh
approximating surfaces of the CAD model for user interaction, while
FE mesh model is used for physical simulation using the finite element
method.

Parametric and feature based methods

Which add geometric parameters and shape feature semantics to the
primitives of CSG representation and its resulting B-Rep model. Feature-
based and parametric model represents the history of the geometry
construction process with a tree where leaves are parameterized shape
features having shape characteristics and often functionnal and/or
manufacturing significance: holes, chamfers, pads, pockets, blends,
fastners, etc. Features associate properties and parameters to a set of
topological and geometrical entities of the B-Rep model and a CSG
primitive shape:

e geometric properties (dimensions such as hole diameter, 2D sketches,
extrusion direction, revolution axis, sweeping curve, blending radii,
etc.);

e application-specific properties (machining tool parameters, tool-
path, weld beads, threading parameters, glued surfaces).

Many feature descriptions have a significance for several applications,
e.g. arevolution cut can have a functional meaning (location of a bolted
joint), a manufacturing meaning (drilling process), an assembly pro-
cess meaning (fastening process), or a simulation meaning (definition
of boundary conditions for FEA simulation). Unfortunately, manufac-
turing and functionnal properties are often missing in feature-based
models due to various reasons: the time required to describe functions
with features is often too long, manufacturing and functional features
available in STEP ISO-10303 standard [7] and implemented in com-
mercial software cover a small part of configurations.

1.6 DMU as an assembly

Products functionalities are satisfied by mechanical components that are
assembled together to function consistently with respect to each others.
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Vehicle Vehicle

| Frame | | Body |
| Structure | |Powertrain|
| Chassis | |Powertrain|
| Body || Chassis || Gearbox || Engine | | Gearbox | | Engine |

(a) (b)

Figure 1.12: Two possible simple structures of a car DMU: (a) Assembly
tree organized as per function; (b) Assembly tree organized as per order of
mounting.

The DMU reflects this grouping by representing the product as an assembly
of parts, each representing one mechanical components. This grouping can
occur at different levels to form a tree structure, as components are gathered
in sub-assemblies.

1.6.1 DMU structure

This multi-level organization gives the assembly a tree-like structure for
which the root is the product, nodes are sub-assemblies, and leaves are com-
ponents. We note that if generative methods are used to model components,
the latter are also represented in a tree-like structure in CAD systems, with
leaves being the geometric primitives and nodes geometric construction op-
erations (see Section 1.5.3).

The hierarchical organization of a DMU using an assembly tree structure
is not intrinsic to a product, rather it depends on the criterion used to set up
the tree structure, e.g., functional, organizational, or assemblability. This
criterion is user-defined and the tree structure is defined interactively by the
user.

Functional criteria Components may be grouped according to their func-
tional contribution to the product. In this case, sub-assemblies repre-
sent functional modules. For example, a car assembly may consist in
a structure and a powertrain. While powertrain can be decomposed
into engine, gearbox, driveshaft, differential, and suspension (see Fig-
ure 1.12a). Each of these denominations represent a functional group-
ing, a unit that satisfies a specific function of a car®. Functional mod-
ules in their turn consist of components interacting to fulfill a function.

5The decomposition is simplified from what a real car assembly is.
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Figure 1.13 shows a snapshot of a commercial CAD software (CA-
TIA V5) showing the tree structure of the DMU of a centrifugal
pump shown on Figure 1.5. Sub-assemblies are organized according to
their functional properties. The tree expands the casing sub-assembly
(Carter_pompe_centrifuge) having as function to contain the fluid,
inside which it expands the volute housing part (Volute_pompe) having
as function to drive the centrifugal movement of the fluid.

Organizational criteria Sub-assemblies arrangement may also reflect cri-
teria based on manufacturing and organizational choices rather than
internal functional coherence. For instance, if different components of
the product are designed and/or manufactured in different companies,
those parts are likely to be separated in a sub-assembly, even though
they do not constitute a valid functional unit on their own. Figure 1.14
shows how the aircraft structure of an Airbus A380 is divided into sub-
assemblies, each being manufactured at a different facility, possibly in
a different country.

Assemblability criteria Another aspect that can be encoded in a digital
assembly structure is the mounting sequence of components alongside
the assembly line. In this case, a sub-assembly represents a set of
elements, i.e., components or other sub-assemblies, that are put up
together at once. The depth of hierarchy represents the order in which
installation occurs. For instance, while chassis and powertrain are
two different sub-assemblies of a car, powertrain itself is decomposed
into engine and gearbor whose components are mounted separately,
and at an earlier stage than the assembly of the powerengine (see
Figure 1.12b).

It is worth mentioning that no matter what criterion is used to organize
a DMU structure, this knowledge is still partial and unreliable. This is
not only the subsequence of lack of norms and standards, but also because
the strict tree-like structure is incapable of representing certain semantic
groupings such as functional clusters where overlapping sets may occur,
or kinematic chains where cyclic graphs are expected rather than a tree
structure.

1.6.2 Components’ positioning

In real configurations, components are positioned relatively to each others
through contacts and other assembly techniques, e.g., clamping and welding.
In a DMU, however, the product is represented as a geometric model, and its
components as digital solids (see Section 1.5). Contacts lose their physical
meaning, welding and gluing are rarely represented, and some other unreal-
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Figure 1.13: A snapshot from a commercial CAD software (CATIA V5)
showing a DMU as its geometric representation (see Figure 1.5), alongside
its tree-structure.
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Figure 1.14: Airbus A380 airframe sub-assemblies, not organized according
to their functions (cockpit, cabin, wings, tail, etc.) but according to the
place were they are built (courtesy EADS).

istic geometric configurations, such as interferences, may also take part in a
DMU (see Section 1.5.1).

Therefore, relative positioning should be represented in different means
to convey this attachment. A set of welded or glued parts forming a single
component, for instance, are usually represented as separate components
since they are manufactured separately prior to the welding or gluing pro-
cess. In this case, a simple contact that would represent the welding or
gluing zone in a DMU is not enough to assert that components are fixed in
position with respect to each others.

This first observation shows that pure geometric information to assess
connection between components is ambiguous. Further, this ambiguity is
often not removed in a DMU because the complementary information needed
does not exist in the DMU. It is up to engineer to interpret the DMU and
derive to correct contact information.

Now, concentrating on the purely geometric information related to the
spatial position of components; let us carry on the analysis of a DMU con-
tent. Figure 1.16 shows a model of an internal combustion engine, with a
section cut in the combustion chamber showing how the piston (the green
object) fits in the cylinder of the chamber. It also shows how the piston
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links to the crankshaft (the blue object) through multiple pivot links.
Different ways can be used to represent components’ positioning and
orientation, depending on what to expect from the DMU.

Kinematic links

For kinematic simulation purposes, where animations of the mecha-
nism are to be generated, kinematic connections define relative posi-
tions between objects, leaving some degrees of freedom (DoF). Simple
connections, also referred to as lower pair connections are classified
into prismatic, cylindric, screw, planar, and spheric connections [83].
In the example of the internal combustion chamber, a sliding pivot
joint between the piston and the cylinder, which is a cylindric connec-
tion, aligns both axes leaving two DoF': rotation around and translation
along the common axis”. The connection between the connecting rod
and the crankshaft is defined by a pivot link that allows only a rota-
tion around their common axis B. Figure 1.15 shows the kinematic
diagram of the mechanism of a slider-crank.

Geometric constraints

Manufacturing models give more importance to how components are
located with respect to each other, rather than what relative motions
they exhibit. Thus, relative positions of components can be defined
through geometric constraints such as coincidence, concentricity, co-
axiality, distance, etc. These constrains usually leave the object sta-
tionary, i.e., with zero DoF. Constraints that are not defined by the
designer are assumed by the modeler, usually in terms of linear and
angular distances, leading to a static representation of the product.

In the example of the combustion chamber shown in Figure 1.16 a
coaxiality constraint is defined between the piston and the internal
cylinder of the chamber. The distance between the piston and the
back end of the chamber is either defined or assumed.

Absolute positioning
Another way to create the scene of an assembly is to directly posi-
tion and align objects according to a global coordinate system defined
assembly-wise. This is usually achieved using an affine transformation
matrix per object.

The latest approach is the simplest, though it has many disadvantages:

e Setting the parameters of transformation matrices during design is
cumbersome. Designers usually define their concepts by means of kine-
matic or geometric constraints;

"Rotation is eliminated when considering other connections in the mechanism.
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Figure 1.15: A drawing of a slider-crank mechanism (left) and its corre-
sponding kinematic diagram (right): (0) Chamber; (1) Piston; (2) Connect-
ing rod; (3) Crankshaft. A, B and C are points locating the rotation axes
of the crankshaft, connecting rod, and piston, respectively.

e Editing of the assembly model is more complicated, since constraints
propagation should be considered manually now and the consistency
of the assembly model is harder to achieve;

e Kinematic links are indicators of relative motion properties between
components. This information is lost when fixing components in place
in an absolute manner.

Nevertheless, standardized formats describing components and assem-
blies across CAD software, such as STEP [7], still use absolute positioning
of assembly components, as it is globally recognized by all geometric mod-
elers. Geometric modelers, in their turn, allow the exportation of models
in such formats, even though native models usually use one of the first two
methods, or a combination of them to position and align components.

While kinematic links explicitly characterize the relative motion be-
tween components using rotations axes and sliding directions, geometric
constraints are meant to fix components in place, generating an instanta-
neous representation of the product at a given moment in time. Another dis-
tinctive difference between these two methods is that geometric constraints,
as per definition, must refer to explicit geometric entities of components, un-
like kinematic links, such as helical motion, where certain attributes, such
as pitch, can be provided as a parameter, independently from any geometric
support. Other kinematic links, e.g., pivot link, do not need to refer to geo-
metric entities of the components, e.g., the cylindrical surfaces of the pivot
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link, which means that the existence of a pivot link does not mean that the
corresponding components are geometrically consistent, i.e. of same diam-
eter. Considering that a product is subjected to numerous modifications
during its design process, this shows that kinematic links alone are not a
reliable source of data to ensure that a DMU is consistent with respect to
the relative position of its components.

Moreover, geometric constraints are of minor significance to design in-
tentions, since designer may use misleading geometric alignments for the
sake of ease of use. An example would be the alignment of the piston with
the chamber in Figure 1.16. One may assume that the contact between
the surface S, of the piston and the internal one S, of the chamber could
be inferred thanks to a coaxiality constraint, plus an additional diameter
check. However, this conclusion is not always achievable as the user-defined
positioning can be obtained by aligning, say, the axis A, of S, to the axis
of any given external cylindric or conic surface, S,y or S¢, respectively, of
the chamber, leading to the same exact geometric configuration. Kinematic
links in turn bear an inherent sense in the context of motion simulation and
analysis. They are, however, often disconnected from boundary geometric
elements. For instance, if kinematic links are used in the example of the
combustion engine, the piston can be linked to the chamber by means of a
sliding pivot link. To establish this link, cylinder axes A, and A. should be
used. Such a link makes no reference to concrete geometric entities such as
boundary surfaces S, and S, (thus no reference to contact zones) and leads
to no avail when geometric interactions detection is sought.

As a conclusion, this renders reasoning based on geometric constraints or
kinematic links an unreliable approach. Globally, none of the three methods
to position components in an assembly is, alone, sufficient to ensure the
geometric consistency of an assembly model.

1.7 Other information associated to a DMU

So far a DMU is regarded as a set of geometric objects (components) grouped
together in a hierarchical structure (sub-assemblies). This representation in-
corporates geometric information about the product, plus some kinematic
properties as seen in Section 1.6.2. However, and in order to efficiently par-
ticipate to the PDP, the DMU has to integrate other information about the
product and its components rather than its geometry, kinematic links, and
assembly structure. This information adds up to the geometry of compo-
nents, but is not part of it.

One reason that this “extra” information is needed is the fact that the
geometry of the product is often simplified in a DMU (see Figure 1.17),
thus differing from the shape of physical components. Standards as well as
companies’ practices suggest to compensate this loss of information due to
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Figure 1.16: A DMU of an internal combustion engine. A section cut in
its combustion chamber shows the piston (in green), and the crankshaft (in
blue).

geometric simplification by other means of auxiliary annotations. Figure 1.7
shows an example of information lost due to such a simplification. The
ISO standard SETP AP214 [12], for instance, provides annotations such as
thread, where geometric properties such as major diameter, minor diameter,
pitch, number of threads and hand can be expressed explicitly [69]. This
allows the threaded part of a screw or a nut to be geometrically simplified,
e.g., as cylindric surface.

Another kind of such necessary annotations in the context of a PDP is
important information that cannot be represented geometrically. An exam-
ple is component material and its physical properties. Though it relates in
more than a way to geometry, kinematic knowledge about the product also
falls into this category, since relative motion holds more information than
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(a) (b)

Figure 1.17: Screw and nut (a) in real configuration, (b) as simplified geo-
metric model.

instantaneous shape snapshots.

Integrating materials and their properties in the DMU is necessary to
enable the generation of detailed bills of materials (BOM), which design
office communicates to other departments such as purchase department [74].
BOM contains detailed information about required parts and material to
enable the manufacturing of a product [165]. This information is used to
prepare orders and manage inventory.

A close look at industrial practices shows that this information is scat-
tered around the DMU in a non-standardized manner, making the task of
exploiting such knowledge a challenging one. Iyer et al. [90] show that mod-
ern Product Lifecycle Management (PLM) systems provide the DMU with
a context that allows annotations such as keywords and part name, etc.
Authors, however, show that these annotations are not robust, and of lit-
tle use for information retrieval. They attribute this inadequacy to reasons
among which are the non-unified conventions among design personnel, and
the change of industrial context with time.

1.8 Application of DMU

DMUs are computerized models that engineers use to communicate their
designs to the manufacturing as well as other company departments. Their
obvious application then is to provide the pattern upon which the product
is to be built.

However, they contain enough information that allows engineers to use
them at other stages all along a PDP.

In the previous section we saw that a DMUs contains supplementary
annotations that allow the generation of reports, such as BOM, necessary
for inventory and purchase management.

Another important application of DMUs is the generation of simulation
models. Since they closely represent product geometry as well as other phys-
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ical properties, DMUs are good candidate to extract simulation models out
of them. Extracted models differ according to the goal of the simulation, we
can recognize structural simulation models, thermal simulation models, fluid
simulation models, among many others. A prominent simulation method in
todays PDP is the finite element method, Section 1.9 sheds more light on
this method. Auxiliary annotations, particularly kinematic connections be-
tween components, contribute to a special type of simulations that are based
on the content of a DMU, this is Virtual Reality (VR) simulations.

Some VR simulations have their applications in high risk environments
when testing and training is too dangerous to be performed in real environ-
ments. In such cases, a DMU can be used to generate a simulation model
where the desired tasks can be conducted in a completely virtual setup.

As demonstrated in Section 1.6 DMUs also provide a structure that
group components into subassemblies that are then grouped themselves into
an assembly representing a functional product. In this context, DMUs play
also an important role in the assembly /disassembly planning process of PDP.

Considering its diverse applications, a DMU shows a prominent presence
at different stages of todays PDP.

1.9 Basic principles of finite element analyses

The finite element method has shown its merits in different simulation ap-
plications. In this section we introduce, in a nutshell, the basic concepts of
finite element analysis (FEA).

1.9.1 Numerical approximations of physical phenomena

FEA is a numerical method in which certain physical behavioral phenom-
ena are studied and analyzed using numerical approximations of real objects
called FEMs. A FEM contains a discrete representation of objects’ mate-
rials in space, achieved using one-, two-, or tree-dimensional meshes (see
Section 1.5.2). Information about material physical properties are assigned
to the mesh at the element level. An element can be an edge, a polygon or
a polyhedron.

Figure 1.18 shows an example of the results of a FEA on a pump casing
to study heat conduction.

FEA simulations are in the heart of modern PDPs and product validation
practices. The FEM is prominent in most of behavioral studies of a product
prototype.

The process of FEA consists in three general steps:

pre-processing In this phase, the FEM is generated. This can be done
from scratch, building the mesh model at first, then assigning it phys-
ical attributes. Nevertheless, in today’s industries the CAD model,
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Figure 1.18: A FEM of a pump casing showing the results of a heat conduc-
tion analysis.

which is usually an analytical one (see Section 1.5.3), tends to be in-
tegrated with a mesh to facilitate the propagation of modifications
between these models. Then, the mesh acquired is in turn enriched
with material properties, in order to obtain the FEM. This process
is not as straightforward as it may seem, since many factors affect
the quality of the generated model, thus results’ accuracy when an
FE model can be effectively obtained. Such factors are how close the
approximate model, i.e., the meshed shape, is to the original objects;
how many elements does the model have; what are the distribution
and the quality of those elements over the original domains, etc.

analysis Now that the FEM is produced, the simulation problem is solved
by dividing it into simpler ones at the FE level, using differential equa-
tions with boundary conditions. The type of equation used depends
on the desired simulated phenomenon. For instance, while Fuler-
Bernoulli beam equations are used for structural simulations [82], heat
diffusion formulas are applied for thermal behavioral studies [45], and
Navier-Stokes equations for fluid simulations [18]. The solution boils
down to an error function minimization problem, respecting boundary
conditions.
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post-processing The analysis phase comes out with observed variables val-
ues over the meshed domain, i.e. solution fields. Those fields represent
studied changes in physical properties such as displacements, temper-
atures, etc. To provide a global overview of the underling simulation,
those fields can be visualized using color codes, that allow enginners
to better estimate zones of interest.

In this work we are only concerned about the first step; the pre-processing.

1.9.2 Generation of a FEM

Pre-processing has a crucial impact on the efficiency, performance, and ac-
curacy of later steps of FEA. Many choices are made at this stage such
as shape simplifications, mesh element dimension (linear, surface, or vol-
ume) and mesh element shape, e.g., triangular, quadrangular, tetrahedral,
hexahedral, etc.

The resulting FEM highly depends on the observed phenomenon and the
ultimate goals of the FEA. To this end, simulation objectives should be out-
lined first, such objectives can be either structural study, with deformable
bodies, or thermal behavioral analysis, etc. Once objectives are defined,
assumptions about the relevance of geometric areas can be made, leading to
simplification hypotheses characterizing some areas as details with respect
to the simulation objectives. This enables the reduction of models’ com-
plexity through shape transformations [41]. Entire shapes of objects or a
small subset of them can either be simplified (case of dimension-preserving
transformations, e.g., hole removal from a volume that transforms a volume
into a new one), or idealized (case of dimension-reducing transformations,
e.g., replacing a thin and elongated volume with a beam that transforms a
volume into a line).

The shape transformation process generates what we refer to as simu-
lation model, also called mechanical model in the literature [168, 21, 80].
Alike the DMU, the simulation model contains a geometric representation
of the assembly that is dedicated to simulation purposes rather than manu-
facturing ones. Such differences refer to the concept of product view where
the simulation view is distinguished from the design one (see Figure 1.19).
Along with the simplification hypotheses and simulation objectives, the sim-
ulation model provides essential knowledge to generate the required FEM.
Figure 1.19 depicts how, for a given simulation context, geometric transfor-
mations generates a simulation model out of an assembly DMU, whose mesh
is then generated to produce the FEM [41].
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Figure 1.19: A flowchart showing processes and models involved in the
preparation of a DMU for FEA. It locates the simulation model as a re-
sult of the simplification and idealization processes, and as an input of the
FE mesh generation process.

1.10 DMU as polymorphic representation of a prod-
uct

Different applications of a DMU require different types of information, and
different levels of details, particularly when geometric representations are
included in these applications [71].

For instance, while purely volumetric models are recommended for man-
ufacturing and machining applications since they most accurately represent
the real shape of components, reduced-dimension configurations are toler-
ated, even recommended, for simulation-oriented applications where geo-
metric details become a burden and shape simplicity is prioritized over its
accuracy to promote the accuracy of the simulations results.

In the same context, GD&T information is vital for manufacturing de-
partment, while relative motion properties are usually irrelevant at this
stage. However, such kinematic knowledge is essential for rigid body simu-
lations where geometric details such as manufacturing tolerances are mean-
ingless.

This diversity of applications requires the DMU to show different forms,
or views, according to the level of details that the application implies. In
this sense, the DMU acts as a polymorphic representation of the product,
where the shapes of components as well as their associated annotations are
dependent on the nature of the application.
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1.11 Adapted definition of DMU

The concept of DMU has been developed across the literature, and many
works have tried to establish a definition. Those definitions all agree that a
DMU is a digital representation of a product that contains at least its 3D
geometry down to a certain level of details. They also assent that it plays
a major role in the PDP. However, they differ in defining to which extent a
DMU participates to certain stages such as simulation and validation.

Some definitions extend the concept of DMU to the point where it cor-
porates all virtual prototyping, referring to simulation models as part of the
DMU since they are indeed a digital representation of the product [57, 177].

Other works restrict DMUs to models that fit directly the purpose of
design and manufacturing. While simulation models can be generated based
on DMUs, these simulation models are not effectively part of them.

In our work we adopt the following definition.

Definition 1.3 (Digital mock-up). A DMU is a computerized representa-
tion of a product as an assembly of sub-assemblies and components in a
hierarchical structure. It represents product geometry, possibly at different
levels of details. DMUs also contain supplementary information about the
product and its components that is casted in compliance with the intended
application.

This definition puts forward the polymorphic nature of a DMU since
geometry and other associated information are adaptable to the application
in which a model fits.

It is worth mentioning that although the concept of DMU covers a wide
variety of functional, kinematic and technological informations [69], only few
efforts are made to standardize non-geometric data. Therefore, in the scope
of the present work, we are only considering the geometric information that
a DMU holds, where components are positioned absolutely according to a
global (product-wide) coordinate system as it is the case for standardized
formats such as STEP. Other information such as kinematic links, techno-
logical annotations, etc. are not considered because they are ambiguous and
unreliable.

1.12 Conclusions

DMUs accompany PDP and are now much more than manufacturing issues
as analyzed in Sections 1.8 and 1.9, and particularly in Section 1.9.2. Indeed,
DMUs have become focal to modern PDPs as they represent a central data
repository of a product incorporating models as generated by the engineering
design office.
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Further than a product model, DMUs contribute nowadays to the gener-
ation of virtual prototypes that feed numerical simulations to assess product
functionalities (see Section 1.9).

This data repository is organized around a geometric model that forms
the kernel of a DMU (see Sections 1.5 and 1.6.1). However, considering the
geometric interactions between components of a product, as they are repre-
sented in a DMU, Sections 1.5.1 and 1.6.2 have shown that the digital shape
of components may significantly differ from that of physical ones and com-
ponent positioning techniques do not ensure the consistency of an assembly.
Engineers’ know-how refers to various conventions and standards to inter-
pret component shapes as well as their relative positions. These conventions
and standards are not part of the CAD systems used to produce and modify
the geometry of DMUs. In addition, the diversity of processes, e.g. FEA,
assembly simulations, requiring a pre-processed DMU as input leads to the
concept of polymorphism (see Section 1.10).

Complementary information can be attached to components and/or sub-
assemblies (see Section 1.7) or derived from assembly models (see Sec-
tion 1.6.2) but it appears that the robustness and reliability of these infor-
mations do not strengthen a DMU and, in addition, are not easily accessible.
Among all these informations, it is important to mention that functional in-
formation is not explicit in a DMU and consequently, there is no effective
link between any description of a function and some corresponding geometric
entities in a DMU.

In the present work, the focus is placed on the generation of explicit
functional information attached to components and sub-assemblies. The
attachment of such information to geometric entities is of strong interest
since the polymorphism of DMUs is a key requirement to pre-process them
and generate virtual prototypes. Among the virtual prototypes that can
take part to a PDP, the structural behavior of a product is of increasing
importance. Therefore, the shape transformations taking place during the
pre-processing for FEA is of strong interest, especially in the case of assembly
behavior. Relating shapes, i.e., the geometry of assemblies, to component
functions in order to ease the assembly pre-processing for behavioral simula-
tions is a consistent objective addressed here. To this end, further analyses
of prior work that relate shape, function and behavior of a product or, oth-
erwise, address either of these concepts separately is the purpose of the next
chapter.






Chapter 2

Literature Overview

This chapter analyzes existing literature that relates to this work.
Work that founded the conceptual or methodological basis of our
approach is presented in Section 2.2 that studies product function
and Section 2.3 that relates function to shape. Later sections study
prior work that addressed problems of interest to our research. Sec-
tion 2.4 visits works that aimed at the extraction of functional in-
formation out of geometric data, showing the important role that
components interactions play whenever functionality is sought at
the assembly scale. Section 2.5 then studies efforts to define com-
ponents interactions geometrically. The problem of knowledge rep-
resentation and its importance to the DMU is addressed in Sec-
tion 2.6, and works that tackled this problem from different angles
are reviewed. Finally, Section 2.7 examines works dedicated to the
transformation of CAD models to FEA-friendly simulation models,
emphasizing the importance of functional knowledge at this stage.
In the aforementioned sections, we also show why already estab-
lished work failed to provide satisfactory answers to some of the
difficulties observed in the previous chapter and hence, why they
motivate our work.

2.1 Introduction

As mentioned in the introduction of this document, the upcoming chapters
will concentrate on formulating the problematic that motivates this work
(see Chapter 3), before relevant concepts are defined (see Chapter 4) and the
proposed method is detailed (see Chapters 5, 6 and 7). However, and before
proceeding likewise, a review of what state of the art offers is imperative.
The objectives of such a literature review are twofold:

e The major objective of the proposed approach focuses on enriching as-
sembly models with functionally related information, as Chapter 1 has
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shown that the content of a DMU ends up as a simple geometric model
without functional information. It is therefore mandatory to review
concepts such as product and/or component functionality and how
these concepts can be related to geometry, i.e., product and/or com-
ponent shape. To this end, design process studies and corresponding
design methods that advocate the function—behavior—form relation-
ships, a central paradigm to this research, need to be analyzed to
evaluate how a geometric model of an assembly can be related to its
functional information. One of the outcome of this analysis shows the
prominence of geometric interfaces between components;

Works that associate component geometry with functionally related
information such as feature-based approaches, detection of geometric
interfaces between components and knowledge-based approaches are
also studied since they are part of prior approaches that proposed
concepts related to function. Because a particular focus is placed on
the use of functional information in the context of FEA, some key
approaches that relate to FEA of assemblies and geometric interac-
tions between components are also reviewed to better highlight the
challenges in this area. Not only the common denominators with such
works are put forward, but also differences that distinguished the ap-
proach proposed in this document and made it worthwhile. To the
author’s knowledge, none of the existing works addressed and effi-
ciently solved the tackled problem of functional enrichment of DMUs
for FEA purposes.

Such a literature survey prepares the ground for the discussion to come

in the successive chapters, and situates them with respect to existing works.
Section 2.2 starts this review by showing how functionality is seen from
different angles in the domain of mechanical engineering.

2.2 Function formalization

Although the concept of function may initially seem self-explanatory, litera-
ture has different points of view regarding its definition. Deng et al. provide
an overview of different perspectives [62].

Three distinguished standpoints can be identified, from which a function

is seen:

as a raison d’étre. A function is defined by many scholars from a teleo-

logical point of view as the ultimate purpose of a product [60, 29, 46,
84, 136, 163, 172, 178].

An interesting definition to our approach is that of Gero [72] as he
defines function to be the semantics of design.
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as a black box. Others considered function as the relationship between
the input and the output of a system [105, 129].

as a verbal phrase. Function has also been regarded form a performance
perspective as it defines the behavior of a product [174, 172, 77, 85,
167, 162].

Literature suggests modeling functions as verb-object pairs [129, 86],
such as ‘reduce speed’ or ‘transfer torque’.

Many scholars, however, saw functionality from a midpoint perspective
between two or more of the above-mentioned ones. Pahl & Beitz [129]
formalized functionality as a verb-object pair, in which the verb expresses
the function, while the object represents the flow of material, energy, or
signal between the input and the output of a system. Likewise, Qian &
Gero [136] describe a function as the purpose of design, while emphasizing
its strong ties with behavior.

The above-mentioned works viewed functionality independently from
any product state. Without going into the details of the meaning of a
product state, it can be observed that a state can be related to the input
and output of a product. Indeed, a state can be characterized by a set I of
physical input parameters and another set O of physical output parameters
by the product. I and O are subsets of the whole set of input and output
parameters, respectively, that are used to describe all the possible config-
urations the product can reach during its conventional usage. As pointed
out above, input and output parameters of a product are means to define
functions through the couples of input, output parameters that a function
binds. It is clearly the case when authors consider a function as a ‘black
box’, which is a casual standpoint, but also when authors concentrate on a
behavior since its purpose is to take parameters as input and modify them
to produce output parameters, which clearly underlines the concept of state.
When modeling functions through verb-object pairs, the verb expresses also
an action, which refers also to the concept of behavior. Therefore, a state
can be seen as a collection of functions that pertain to the sets I and O of
physical parameters attached to a product.

Therefore, the two concepts are closely related to each other, as the
products deliver different functions at different states. For instance an oper-
ational bike delivers the functionality of transportation, while a dismantled
one has a better mobility which makes it easier for shipment. A broken bike,
however, delivers no particular function at all.

If states and functions are related to each other, it can be observed also
that the proposed definitions of a function do not refer explicitly to the
shapes of the product or some of its components.

In this work function is considered to be the major motivation behind
product design, with strong connection to the product state as part of its
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design. Now that the concept of functionality is well-situated with respect
to different literature viewpoints, the next section will develop on how to
link this concept to product and component forms. To this end, as the
upcoming section will reveal, it is essential to address the behavior of a
functional entity.

2.3 Connections between form, behavior, and func-
tion

The link between form, behavior, and function appeared early, and has
been discussed exhaustively, in the literature of engineering. De Kleer [60]
intuitively defined function as what a device is for, behavior as what a de-
vice does, and structure as what a device is. When applied to mechanical
engineering, and from a design point of view, structure, under this under-
standing, maps to form.

In an effort to formalize the relationship between function, behavior and
structure, Umeda et al. [174] established the Function-Behavior-Structure
(FBS) diagram, with a strong emphasis on a behavioral understanding of
functionality. Structure from the authors’ perspective denotes physical at-
tributes of an object. This can be seen as a generalization of object form.

2.3.1 Behavior to complete the design puzzle

Design is seen by scholars as a goal-oriented activity that aims at satisfying
certain requirement expressing a desired functionality. To this end, the link
between function and form, particularly in the domain of mechanical engi-
neering, is to be established. However, no direct mechanism allows for that
matching. Gero [72] shows how function can be formulated into an ezpected
behavior, and how form can be analyzed to produce its structural behavior.
This reduces the design activity to the process of matching expected and
structural behaviors, either through the evaluation of existing forms or the
synthesis of new ones.

Qian et al. [136] outline the casual relationship between structure and
behavior and between behavior and function that allows a product to meet
its expectations. This relationship is shown to be bidirectional, as function
can be analyzed to infer potentially-multiples behaviors that lead to its
satisfaction, then potentially-multiple structures can also be inferred in what
is referred to as goal achievement paths.

2.3.2 Pairs of interacting interfaces

In Albers et al. [23], the authors do not only emphasize the connection be-
tween product geometry and functional attributes, they also demonstrate
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Figure 2.1: An example of a planetary gear modeled using C&CM [23],
showing interfaces between components of the corresponding assembly.

with concrete examples the correlation between pairs of interfacing geomet-
rical entities, i.e., pairs of surfaces belonging to different components, and
the expected purpose of a product. The corresponding design methodol-
ogy shows, through industrial case studies, how a function is tightly coupled
with the geometric properties of interfaces between neighboring components
that provide the desired, or even undesired, behavior. Figure 2.1 shows an
assembly model using Contact and Channel Model (C&CM) introduced by
Albers & Matthiesen in [24]. The example puts forward the important role
interfaces between components play in a product assembly to achieve the
desired function.

2.3.3 Tools and guidelines to support the design process

The aforementioned approaches have been applied to or are part of design
methodologies to provide engineers with tools to facilitate the creative ac-
tivity of design.

As an example, the work of [22] builds upon the C&CM to develop a
modeling approach as a tool to assist the design process.

Authors in [147] present a theoretical framework that builds upon form-
function mapping to provide guidance to engineers along the design process,
in an effort to automate, or semi-automate, the transition from user require-
ments into a functional artifact. In the latter work, authors address the
relationships between function, behavior and geometry from a top-down'

By top-down, we refer to the path from functional specification, to design attributes,
particularly, components shapes.
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Figure 2.2: A comparison between a traditional conceptual model of part
function (a), and PFM introduced by Roy & Bharadwaj [146] (b).

perspective, as a goal achievement guide to obtain parts geometry from
functional specifications.

Roy & Bharadwaj [146] set up a design approach to connect functions to
3D geometry using a Part Function Model (PFM) illustrated and compared
with traditional models in Figure 2.2. To acquire the proposed model, a
designer should provide a behavioral description of parts using a predefined
vocabulary. Along with geometrical properties of parts contacts, this de-
scription is used to infer functional interactions between components. The
PFM obtained involves functional information down to the level of bound-
ary faces since the behavior model builds upon interfaces between parts, i.e.,
contact surfaces. This work emphasizes the discontinuity between spacial
properties of parts in an assembly model and their function, and advocates
the importance of a behavioral description to connect function and shape
concepts. It, however, requires the user to manually provide such a descrip-
tion before making any judgment about a part functionality.

At the level of complex assemblies with hundreds to thousands of parts,
the amount of complementary data defining a behavioral model becomes too
tedious to add. Kim et al. [103] provide a formalism that augments a DMU
with the design intent of an assembly, particularly the semantics of contacts
between assembly components. This is achieved through the Assembly Rela-
tion Model (ARM) and an XML-based meta-model that refers to geometric
entities in the DMU. Using this formalism, assembly models are annotated
by collaborating designers, based on spacial relationship analysis undertook
by a geometric kernel. Interactions between components are referred to as
joints in the context of assembly design. The nature of interacting form
features between components, then called mating feature, is captured in the
Generic Assembly Relationship Diagram (GARD) as part of the ARM, in
a graph-like manner. Joints in GARD are reduced to global parameters of
welded, glued, bolted and riveted connections that define components posi-
tion with respect to each other. This work is meant to facilitate collaborative
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assembly design and enriches a DMU with information relative to this task.

However, simulation objectives may require a detailed representation of
interfaces functional interactions beyond mere assembly joints. Especially
when the purpose is to assess the stress field distribution in a bolted con-
nection with tens or hundreds of bolts. Additionally, one can observe that
the relationship between shape and function strongly relates to interfaces
between components and, more precisely to contact surfaces, i.e., the real
component relative position. Somehow, this relationship is not robustly ex-
pressed in a DMU, due to the designer’s choices made about component
shapes (see Section 1.5.1 and Section 1.7). Indeed, component shapes are
often simplified in a DMU, which can alter the representation of physical
contacts between components. As a result of the analysis of prior work, none
of them has taken into account this discrepancy, which can be regarded as a
fact creating inconsistencies between functional prescriptions of a designer
and the content of a DMU.

Works examined so far share a common denominator where assemblies
are described as geometric models enriched with technological annotations
that may qualify as functional information reflecting design rationale [107].
They participate to the enrichment of a DMU as a central repository of PDP
activities (see Section 1.7). While each of the unfolded efforts has seen the
DMU from a particular standpoint, none of them satisfactorily considered
the requirements of a seamless generation of simulation models. Observa-
tions showed that the closer the enrichment is to any functional significance,
the higher the lack of information external to CAD environments and the
greater the need of user interactive input during a design process.

As a common observation of all prior works reviewed in this section, they
are all heavily dependent upon designer’s input data, i.e., the consistency
of functional information. Its relationship with 3D geometric models of
components or assemblies are left under the designer control. This is not
tractable for large assemblies and hard to set up even for simple products
with dozens of components.

Although proved bidirectional [136], the function-form relationship is
studied from a purpose-oriented viewpoint by the so-far analyzed works,
i.e., along the path from intended function to a designed form, oftentimes
through physical behavior as a connector. This understanding of the rela-
tionship remains dominant in the literature. The following section, however,
shows work that made use of the bilateral nature of this relationship, exploit-
ing the causal direction, from form to function, to develop some confidence
about product functional properties.
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2.4 Constructive approaches to deduce function

In this section we walk through some of the existing work that aims at the
association of functional properties to different elements of a DMU. The
previous section has already highlighted that shape simplifications of com-
ponents restrict the applicability of approaches strictly based on geometric
contacts between components, which is the common feature of prior work.

2.4.1 Form feature recognition

Efforts have been paid in the field of Feature Recognition (FR) in solid
models as early as 1988 [94]. Zhu & Menq define features, also referred to
as form features or machining features, to be ‘the representations of shape
aspects of a physical product that can be mapped to generic shapes in a given
context and are functionally significant’ [185]. This definition establishes
links between form features and functionality, and makes it of a particular
interest to our research to shed some light on FR-related studies.

Examples of manufacturing features include holes, slots, pockets, and
other shapes that can be obtained by material removal operations using
Computer Numeric Control (CNC) machining systems [81].

In many occasions, literature shed the light on the gap between the
low-level geometric information usually present in CAD models, and the
higher level functional semantics needed by CAM systems. Authors in [121]
promote features as the link between pure geometry and design semantics,
allowing a smooth transaction from CAD to CAM activities. Literature also
surveyed a wide range of techniques that participate to the Computer Aided
Process Planning (CAPP) automation as a link between CAD and CAM,
where FR plays a major role as a communication agent [153, 152, 166].

Authors in [25] address the problem of functional features extraction out
of digital models. They classify existing solutions into human assisted ap-
proaches, feature-based modeling, and automatic feature recognition and ex-
traction. Han et al. [81] in their turn regroup automated FR algorithms into
graph-based techniques, space decomposition approaches, and rule-based ge-
ometric reasoning.

Falcidieno & Giannini [66] suggest a three-stage solution: recognition,
extraction, and organization of features. The proposed system builds a
hierarchical structure of a part shape in accordance with level of details.
The recognition phase builds on the work of Kyprianou [106] that paved the
road of graph-based FR.

A graph representation of the geometric model of an object is gener-
ated in [94], before graph matching techniques are applied to extract form
features, also represented as graphs.

Ames in [26] advocates an expert system approach to recognize applica-
tion-specific features given the product solid model as an input.
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In Date et al. [58], FR is integrated into the process of simplification as
a preliminary step to prepare a meshed model for FE analysis.

A technique to detect and remove blending features is presented in [185].
Even though fillet and round are secondary features as they are of little func-
tional significance (they don’t actually conform to Zhu & Menq’s definition)
their presence may interfere with the detection process of their parent fea-
tures. Authors, thus, present their work as a preliminary treatment of the
geometric model to enhance the recognition of more significant functional
features. Another approach, capable of handling more interacting shape fea-
tures through an iterative method is presented in [175]. In this work form
feature recognition techniques are used to detect features face-sets, and then
a feature is removed before passing to the next iteration, where previously
interfering features can be detected.

In Sunil et al. [164], authors again tackle the problem of features interac-
tion through a hybrid approach for FR that is both graph- and rule-based.

A more exhaustive categorization of efforts paid in the area of FR is given
by Shah et al. [154]. However, fruitful studied categories did not diverge
much from earlier classifications [66, 25, 81]. As a complement, Shah et
al. in [154], address recent work that considered the otherwise overlooked
free-form features [158, 182, 159].

Sridharan & Shah [159] provide a feature classification method to aid the
detection of complex CNC milling features. Figure 2.3 shows an overview of
the proposed taxonomy. The preliminary recognition of features uses a rule-
based approach independently of any geometric restriction, thus, allowing
for the identification of features involving free-form surfaces. At this stage,
features are categorized according to the first level of the taxonomy pre-
sented in Figure 2.3. A finer classification of recognized features then takes
place, to predict feature type more precisely, this time taking into account
geometric properties such as surfaces types (cylindric, ruled, free-form, etc.).
This corresponds to the categorization of features in the second level of the
taxonomy presented in Figure 2.3.

Automatic FR techniques aim at the extraction of functional information
as design intentions given the pure geometric model, thus contributing to
the enrichment of a DMU. They are, however, still limited to a very small
set of simple geometric configurations like holes, pockets, slots, rounds and
fillets. Most of prior work fits into a bottom-up? approach where features
are extracted from low level geometric entities and a detached volume model
is processed as a standalone entity. Whenever product models are referred,
they are generally regarded as a collection of components processed with
loose or no connections at all between them.

2In contrast to top-down scheme, bottom-up is used to refer to the path from exist-
ing design information, such as objects shapes, to a more elaborate knowledge, such as
functionality.
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Figure 2.3: CNC machining feature taxonomy according to [159].

Another common observation regarding features is their sensitivity to
interactions with other features. It means that FR processes can be easily
perturbed when a feature is not precisely matching its definition or, alter-
natively, a feature definition is often simplified to avoid referring to the very
wide diversity of geometric configurations that occur when a given feature
interact with many others. It has also to be observed that feature definitions
are not available in DMUs (see Section 1.7) partly because of the previous
observation and partly due to the fact that features follow definitions target-
ing very specific applications, which justifies their absence in a DMU since
it is regarded as a common repository to feed a large range of product devel-
opment tasks. As a complement, FR approaches as well as feature modeling
ones process strictly standalone components whereas Section 2.3.1 has shown
that functional information requires the geometric interaction between com-
ponents to be precisely characterized. Therefore, functional features must
be addressed at the assembly level, which is the purpose works visited in
the following section.

2.4.2 Functionality as a result of geometric interactions

The strong ties between geometry and functional semantics are again brought
forward by [125] where authors analyze causal kinematic chains of a prod-
uct based on component-to-component kinematic links deduced from their
geometric interfaces.

Authors made simple assumptions about the assembly to semi-automa-
tically infer motion functions:

e Parts having rotational and translational (partial) symmetry proper-
ties enable rotational and translational motion respectively, along their
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Figure 2.4: Mitra et al. [125]. Parts of an assembly with automatically
detected axes of rotation or symmetry (a), and the corresponding interaction
graph (b). Graph edges encode the types of joints.

symmetry axis and direction respectively;

e Levers, belts, and chains have few geometric characteristics that en-
ables to identify them automatically: their 1D structure can be ana-
lyzed with principal components analysis to infer curvilinear and pe-
riodic motion properties;

e Kinematic functions as gears are set manually by the user.

An interaction graph illustrated in Figure 2.4, and representing contacts
between product components and their contact characteristic is used to draw
conclusions. Alongside the reasoning process, reduced user input is solicited
interactively.

Although the work acknowledges exploring components interactions as a
great indicator to functional and technical properties of the product, the pro-
posed semi-automatic approach builds on an already meshed model rather
than a CAD model, limiting its use to demonstrative kinematic simulations
as authors suggest. It should also be noted that the purpose in the above-
mentioned work is component animation rather than an effective enrichment
of an assembly with functional information.

Dixon & Shah [63] provide an expert system for FR that is both graph-
and rule-based. Unlike work presented in Section 2.4.1, emphasis here is
put on assembly feature recognition, as opposed to part feature recognition.
Authors define an assembly feature as ‘an association between two part fea-
tures that are on different parts’. The proposed system involves a learning-
by-example phase in which a user defines assembly features from existing
assembly models. The user interactively provides rules that tie together ge-
ometric and algebraic parameters of the defined feature. The user-defined
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patterns are then used to extract features from an unseen assembly model
where assembly features are to be found. The suggested work uses twist
and wrench matrices [181] to define structural and kinematic properties of
assembly features.

The work is devoted for application such as reverse engineering and re-
engineering of legacy spare parts. Although some of the techniques used
inspired our simulation-aware approach, no particular attention has been
paid to FE application in authors’ work.

The developed system accepts assemblies as B-Rep models. However, it
does not account for shape simplifications encountered in industrial DMUs
(see Section 1.5.1 and Section 1.7). This is a direct implication of the fact
that the system only considers contact interaction between parts to generate
assembly features. Nonetheless, observation shows that functional interfac-
ing can also be represented, in a simplified manner, as volume intersec-
tion, or interference. Finally, this learning-based approach does not refer to
the behavior concept of an assembly or sub-assembly, which could improve
the robustness of this feature-recognition approach and would conform to
the well-established dependency between form-behavior-function (see Sec-
tion 2.3).

Literature studied in this section proved that if any functional informa-
tion is to be learned, this inquiry should start at the components interaction
level. To establish the link between shape and function in the light of the
above-mentioned observations, the input geometric model should first be
analyzed for candidate geometric interactions. The following section looks
at what existing work offers in this regard.

2.5 Geometric analysis to detect interactions

Section 2.3 showed the tight link between shape and function. Function,
however, is an interactive phenomenon, satisfied by the inevitable interaction
of components in a mechanical system [24, 103]. This means that only
shapes in interaction produce functionality. If any functional significance is
to be deduced from shapes, geometric interactions are to be addressed first
to locate their areas, which can influence their function. In this section,
we provide an overview of efforts paid in an attempt to analyze assembly
models to look for geometric information that is relevant to our research.

2.5.1 Geometric interaction detection

Geometric interaction detection often drew the attention of researches from
different domains, particularly robotics and computer graphics because of
its application to collision detection [101, 39, 44, 139].

Lin & Canny [113] provided an efficient technique to determine closest
points between two given 3D objects. The algorithm can make use of an
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approximate initialization, when available, to converge faster to an accurate
solution. This gives it an advantage when considering dynamic environments
such as motion planning and robotics, where closest points between pair of
objects can be computed adaptively with respect to time [44]. The local
convergence nature of this algorithm, however, makes it limited to convex
object shapes.

To account for non-convex objects, Quinlan [138] suggested the division
of the object into sub-components, which in turn are convex themselves. The
problem of finding the closest points, thus the minimal distance, between
two non-convex objects reduces to finding closest points between their sub-
components, then considering the pair with minimum distance. To reduce
the quadratic complexity inherent to this approach, the author suggests
using cheap bounding spheres checks to reduce the number of compared
components.

Works from Agrawala et al. [20] and Mitra et al. [125] have built on
minimal distance detection to efficiently determine geometric interactions
in an assembly, such as contacts and clearances. However, all of the above-
mentioned works considered a discrete geometric model of type polyhedral,
a representation that is not commonly used in industrial DMUs (see Sec-
tion 1.5) and not robust enough to correctly detect unambiguous interactions
between components in complex assemblies. This is exemplified in commer-
cial CAD software like CATIA V5, where interaction detection is simply
displayed and left to user’s interpretation but cannot be used for further
assembly geometry processing.

This inconvenience was addressed, and tackled in the work of Iacob et
al. [89], where a contact detection algorithm is provided based on analytical
Non-Uniform Rational B-Spline (NURBS) surfaces. Detected contacts be-
tween components in a DMU are then used for assembly/disassembly plan-
ing, and in VR application. Due to its particular application, this method
paid no effort to detect interaction zones. Such a geometric knowledge,
however, is a key element for processing DMU for FEA purposes.

The recent work of Jourdes et al. [95], in the framework of ROMMA
project [1], solves the problem of the detection of precise contact zones in
a highly efficient manner, making use of discretized techniques that exploit
the Graphics Processing Unit (GPU) computational power. Despite its use
of internal discrete models to communicate with the GPU, the proposed
algorithm still inputs, and efficiently produces, analytical NURBS surfaces.
This work, however, did not address interference zones detection.

2.5.2 Importance of a unique geometric representation

In the domain of shape recognition, certain criteria have been identified to
ensure relevant comparisons between shape descriptions. One property of
shape synthesis methods has been outlined that allow shape search and 3D
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pattern detection. This is representation uniqueness [122, 126, 90].

Uniqueness implies a one-to-one relationship between a shape and its
descriptor using a given representation [90]. This means that using an ap-
propriate representation, an object can be geometrically described in only
one way. Two different descriptions mean that the underling objects are ge-
ometrically distinct. Uniqueness in this sense also implies invariance [126],
that is if two object have the same shape, they must have the same geometric
description under their descriptor.

Uniqueness is a mandatory property to enable the judgment of whether
or not two descriptors represent the same shape. Work as early as [122]
shed light on this requirement when retrieval of relevant information out of
a geometric model is considered.

Commercial CAD systems, however, do not account for shape unique-
ness. In fact, a given object, such as a simple cylinder, may be represented
through different ways and different number of faces and edges even when
using the same geometric modeler, as Section 5.2.2 shows. In order to enable
a robust geometric interaction analysis, this inconvenience is to be addressed
first, which is the topic of Section 5.2.2.

Today’s industries regard the DMU as the product knowledge repository.
They expect it to tie the product geometric model with related information,
such as functionality, in a formally structured manner. Works in this direc-
tion join our endeavor to enrich the dmu with functional knowledge. Similar
efforts are thus summarized in the upcoming section.

2.6 CAD and knowledge representation

CAD systems are meant to provide a PDP with tools that spare the designers
the burden of repetitive tasks, allowing them to concentrate on creativity
and core expertise. They are the evolution of drafting tools, that use ever-
growing computing capacities and interactive techniques.

Design activities are becoming more and more knowledge-greedy. The
availability of relevant information is taking a major part in an efficient PDP.
Designers reportedly spend up to 60% of their production time searching
for the right information [108]. Ullman [171] argues that knowledge reuse is
involved in more than 75% of design activities.

CAD systems are, thus, more and more required to equip designers with
needed engineering knowledge. However, observations show that this knowl-
edge is still scattered around the DMU in a non-structured manner. Most of
this knowledge comes in a free text format (see Section 1.7), which is neither
reliable nor robust.

Section 2.6.2 studies research that tackled this problem by means of
general knowledge management tools applying paradigms of the Semantic
Web. Section 2.6.3 looks through prior work that utilized an approach
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more specific to engineering knowledge. We first make a distinction between
knowledge at the domain of discourse level, and knowledge at the current
instance level in Section 2.6.1.

2.6.1 Domain knowledge and model knowledge

In fact, shortly after CAD systems were introduced and commercialized
they were suggested to provide active feedback to the designer, to enhance
the engineering process with decision support systems, embedded in their
working environment. Those systems made use of engineering knowledge
about both the domain and the particular product under development.

In the context of a PDP, we identify knowledge about the underlying do-
main, such as aerospace and automotive industries, or software development,
which we refer to as domain knowledge. Another type of knowledge that can
be distinguished is the knowledge about a particular product or instance of
this product, e.g., car engine, aircraft, or piece of software. We refer to such
knowledge as model knowledge. This distinction is purely pragmatic since it
allows domain knowledge to represent global expertise independently from
any information about a particular case. Model knowledge, however, only
makes sense in the context of domain knowledge.

2.6.2 Ontologies as an assembly knowledge storehouse

The concept of ontologies as it applies to computer science is closely re-
lated to the Semantic Web [35]. The Semantic Web is seen by World Wide
Web Consortium (W3C) as the Web of data, as compared to the Web of
documents that we know. It enable machines to interact and connect to
each other in the same way human beings do through the Web. To this
end, a common machine interpretable language, or vocabulary, should exist.
Ontologies are the Semantic Web vocabulary [5]. At their simplest under-
standing, they define concepts and relationships between them in a machine
understandable language.

Because of their established formalism and their ability to intuitively
model the facts we know about a given domain of discourse, ontologies are
widely used as knowledge repositories. For a particular domain, knowledge
is represented as a set of objects, referred to as individuals, that are grouped
in classes that are called concepts. Classes are organized in a hierarchical
manner to reflect the generalization relationships between sets of objects.
Individuals are connected with relationships that are called roles in the con-
text of ontologies. Individuals, concepts and roles are identified by means of
agreed-upon human readable vocabularies. Gruber [76] describes an ontolgy
as a commitment to these vocabularies between participants to an Artificial
Intelligence (AI) system.

Knowledge captured by an ontology is classified in two categories:
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1. The terminological box, or TBox, where general concepts and rules
are expressed. This typically maps to the domain knowledge;

2. The assertional box, or ABox, where information about instances and
their relationships are maintained. The ABox typically maps to the
model knowledge.

It is important to note that while ontologies formally define the common
language necessary for knowledge sharing, they leave the choice open for how
this language is represented and communicated. Gruber [76] distinguishes
three needs to allow knowledge sharing:

e A common representation language format;
e A common agent communication protocol;

e And a common specification of the content of shared knowledge.

An ontology fulfills the last requirement, while the first two items are
considered to be implementation details rather than conceptualization prob-
lems. The use of an ontology in the Semantic Web compares to the use of a
given language, e.g., English, French, or Arabic, in the Web where vocabu-
lary and their semantics are well defined and understood by people speaking
the language.

A variety of solutions already exist to represent ontologies in a common
format. Names include Resource Description Framework Scheme (RDF-S),
Ontology Interchange Language (OIL) and Web Ontology Language (OWL)
family [14] including variants like OWL Lite, OWL DL and OWL Full. This
compares to the use of HITML in the Web to represent documents. Proto-
cols do also exist to allow exchange of facts and queries using ontologies,
examples are SPARQL Protocol and RDF Query Language (SPARQL), DL
Implementation Group (DIG) [15] and Simple Semantic Web Architecture
and Protocol (SSWAP). This compares to the use of HT'TP to communicate
requests and responses on the Web.

Ontologies are often used in different engineering disciplines to capture
knowledge. Liang & Paredis [112] provide a port ontology as an unambigu-
ous semantic structure that combines form, function and behavior as design
information characterizing subsystems interactions in a given mechatronic
product. This ontology, however, makes no connection between these three
design aspects. In Rahmani & Thompson [142], the authors build upon
the previous work and show how to represent functional interfaces between
product subsystems in machine-interpretable manner using a three-layered
ontology (two layers for domain knowledge and one layer of model knowl-
edge). They also provide necessary means to verify functional compatibil-
ity between system components through their functional interfaces, thereby
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called ports. In fact, this work is general and applies to different disciplines
beside mechanical engineering.

These two works join and extend a heritage of literature in an effort
to aid the design process in providing relevant information in a globally
understood basis.

Kitamura & Mizoguchi [104] suggest a semantic framework to enable
conceptual engineering knowledge sharing about functionality. This frame-
work is implemented in terms of layered ontologies where concepts of each
layer builds upon those of the layer above. To guarantee the generality and
wide coverage of their approach, the authors emphasize the distinction be-
tween what a function is and the way it is achieved. This is reflected in a
distinctive conceptualization in two separate layers; functional concept on-
tology and functional way knowledge, respectively. For example, ‘welding’ is
more than a function, under the proposed framework, as it implies ‘fusion’
as a way of satisfying the function ‘unification’. This function, however, can
be satisfied by other means such as ‘fastening’. Authors promote their on-
tological framework as an agreement about a common vocabulary to allow
designers and engineers to share knowledge.

In the continuity of their work [103] presented in Section 2.3.3, Kim
et al. [102] developed the AsD ontology to capture design intentions in a
heterogeneous collaborative assembly design environment. Authors do not
only use advances in the domain of knowledge representation to formally
represent ARM presented in [103] using ontologies, they also use inferences
to obtain new facts that are not implicitly available in the initial model.
Inferred facts, however, dwelt in the domain of consistency checks, joins
types, and relative DoF. Figure 2.5 shows an overall structure of the pro-
posed system and its connections to other modules to deliver assistance to
engineers during the assembly design process. This figure shows how an
inference engine is used to extract implicit knowledge, then assistance is
provided mainly through querying, using a semantic search engine.

All the previously cited approaches share a common perspective since
they address the design assistance in a top-down manner where functional
information has to be related to 3D component models or to their interfaces
by an engineer. Consequently, this information may be incomplete if an
engineer fails to perform some connections during the design process. Few
authors have taken advantage of inference mechanisms to automate the con-
nections or check the consistency of the overall design data. Indeed, setting
up connections between component geometry and functional informations
raises the question of the meaning of this connection. It is essentially a log-
ical connection between data, e.g., functional ones, and an instance of 3D
component and it is not clear whether this connection should target a subset
of the component and what should be the appropriate geometric entities. If
a designer had to query this functional model to highlight a geometric area
over the boundaries of components, these approaches cannot process such
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Figure 2.5: Assembly design information sharing framework as proposed by
Kim et al. [102].

query, showing that the proposed connections are not adequate to process 3D
components for FEA preparation. Combining this observation with the top-
down feature of these approaches we infer that processing a DMU containing
essentially geometric models of components (see Section 1.6 and Section 1.7)
in a bottom-up manner, cannot be automated with these approaches because
the connections between geometric and functional informations are missing.

Barbau et al. [32] cover a large spectrum of product description with
an ontology, referred to as OntoSTEP, incorporating both geometry and
structure of a DMU as available through STEP APs [8, 12], the Core
Product Model (CPM) introduced in [67] and the Open Assembly Model
(OAM) introduced in [34]. A tool was developed to translate an EXPRESS
scheme [13], the scheme that governs STEP files syntax, into an OWL DL
ontology, defining its TBox. A STEP file can then be imported into the
same ontology, using the same tool, to define an ABox. The tool was im-
plemented in terms of a plug-in to the ontology editor Protégé [3]. Authors
thus define a mapping between EXPRESS primitives (entities, instances and
attributes) and those of OWL (classes, individuals and properties, respec-
tively) to enable the import of a TBox. They also implement a syntactic
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analyzer that parses the STEP file to create the corresponding ABox of a
given model. The work aims at establishing a semantic layer on top of an
EXPRESS description. Aligning these semantics with functions and design
intents expressed in models such as CPM and OAM allows reasoning and
extraction of implicit knowledge. The authors use Description Logic (DL)
reasoner Pellet [156]. In spite of a relative success, authors showed that not
all EXPRESS language constructs can be expressed using OWL DL. Ex-
amples are functions, entity constraints and attribute calculations that may
require complex algorithms beyond the expressiveness of DL, the logic upon
which OWL DL is built. Authors conclude that not all aspects of STEP
can be rigorously reflected through ontologies alone, leading to limitations
on reasoning power.

These approaches are meant to accompany the design process, and to
lend it the necessary tools for modeling and verification, including means to
represent knowledge about system components interactions as major actors
to such a process. Some of the work analyzed provided means to extract
technical or functional implied intention from an existing model through in-
ferences. This information, however, did not go further than interface-wise
descriptions of assembly links and kinematic connections. Inferences are
also used to align geometric models to functional ones. However, the latter
were explicitly provided and reasoners were rarely used to merge knowledge
stemming from different models. Even as knowledge capturers, proposed
ontologies fail short to encapsulate functional knowledge thoroughly enough
to the point that satisfies FEA requirements (see Section 1.9) with precise
geometric information about interfaces between components as well as func-
tional information about these areas.

2.6.3 Knowledge-based engineering approaches

Engineering knowledge is spread out in different places and forms along
a PDP. This includes experts’ minds, worksheets, CAD models, company
codes, databases, flowcharts, implicit and explicit conventions and rules of
thumb, etc. Knowledge Based Engineering (KBE) aims at gathering all such
knowledge in one place, and make it accessible to actors of the PDP at any
stage.

KBE can be seen as a specific type of experts system as applied to
engineering field. They combine geometric modeling, configuration manage-
ment, and knowledge management into one rule-based system [115].

Domain knowledge is collected and stored into a knowledge management
module, then rules derived from this knowledge are applied to CAD models
in a parametric-modeling-like manner. This knowledge also governs other
engineering and manufacturing aspects rather than geometry through the
configuration management module.

In this sense, KBE extends traditional CAD systems. DMUs are enriched
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with information that is persistent, relevant, meaningful, and reusable. This
knowledge is then analyzed and used to provide the designer with decision
making tools and advisory modules. This is meant to save development time,
and allow a designer to focus on innovative aspects rather than mundane
tasks.

The way knowledge is organized in a KBE system enables also the re-
usability of pre-existing components or sub-systems, remarkably reducing
the cost of products modifications or upgrade. This is particularly useful
in industries where the design activity is of an adaptive nature; that is
products are rarely redesigned from scratch, but models are often adapted
to emerging needs. In this case, KBE aims at capturing the design intent
in the model itself, allowing for easier modification and avoiding reverse
engineering efforts to guess what engineers had in mind when the model
was first created [37].

KBE has its roots back in the late 80s [37, 176]. Many successful ap-
plications reaped its fruits in the beginning of the century. Chapman &
Pinfold [48] show one application in the domain of automotive industry, ap-
plying a standard KBE system in a highly dynamic design environment. In
the aerospace industry, La Rocca & van Tooren [145] tell a success story
fitting KBE to multi-disciplinary design to enable automatic generation of
FE analysis models. Emberey et al. show another application of KBE in
the domain of aeronautics [65].

Considering KBE early high potentials, it seems that this approach
didn’t yet meet its expectations, despite numerous success stories. This
led people to rethink the utility of such investment. Others tried to criticize
KBE, studying both failure and success case-studies, and drawing conclu-
sions about where did the applications of KBE go wrong [176].

One argument about the shortcomings of KBE is the lack of explicit
methodologies. Although such frameworks exist (MOKA [161], KOMPRES-
SA [115], KNOMAD [56] and DEE [144]), applications usually don’t commit
themselves to any, and tend to be case-based. Verhagen et al. [176] note that
more than 80% of KBE applications do not fit in a particular framework, nor
do they follow any well-defined methodology. This poor modeling contra-
dicts with KBE basic assumptions and leads to significant loss of knowledge.

Another problem is the lack of a semantic link between identified for-
mulae, rules and models on one side, and real-life engineering expertise and
understandings on another. This reduces collected knowledge to mere data
that still miss the context of application. This contextual gap appears at the
level of knowledge collection, as well as knowledge representation. Knowl-
edge representation models are still unable to capture the link between one
engineering element and its scope of validity. This shortcoming strongly hin-
der re-usability, one of major advantages of KBE, making initial overhead
of KBE systems unnecessarily costly.

The lack of quantitative means to assess the ‘success’ of a KBE system
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is another major inconvenience. A KBE implementation should be com-
pared to its traditional counterpart to truly justify the use of such initially
costly approach. Although some work shows serious comparative studies to
advocate KBE use [65, 55], this doesn’t apply for the majority of related
work [176].

Quantitative measures are also strongly needed to assess the suitability
of KBE to a particular project or application. A primary reason that made
people drift away from investing in KBE is the failure of inadequate appli-
cations that were motivated by early success of such technology. In such
situations, extra-cost was often not justified by the little gain, because of
the nature of the application in hand [37].

Looking more precisely at the reasons that restrict the extensive use
of KBE systems, the connections between technological parameters and
geometric entities is similar to the connections observed in Section 2.6.2.
Consequently, the connections set up are applicable to a fairly small set of
configurations, i.e., when shape modifications are performed the new con-
figurations are no longer compatible with the technological parameters they
are connected to. This happens because these connections address geomet-
ric areas of 3D components that are not precisely reflecting the meaning of
their associated technological parameters.

The need of robust connections between geometric elements, down to the
level of geometric interaction zones, and functional knowledge in terms of
agreed-upon semantics is emphasized when considering application such as
FEA. The following section walks through recent approaches in this domain.

2.7 From CAD to FEA

Section 1.9 introduced the finite element method, and how it contributes
to the whole PDP. In this section we analyze efforts paid to automate or
semi-automate the generation of the FEM.

2.7.1 Pre-processing at the core of the FEM

Haghighi & Kang [79] describe pre-processing as the most time-consuming
and expertise-intensive task in the behavioral simulation process. They also
argue that expertise and knowledge invested at this stage have a direct im-
plication on the accuracy of analysis results. The error-prone and resource-
intensive nature of this task often makes it the bottle-neck in the PDP. Jones
et al. [92] attribute the high cost of preprocessing to the many non-trivial
subtasks it involves, such as geometry processing, mesh quality control, and
the assignment of physical properties to mesh elements.
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2.7.2 Direct geometric approaches

As pointed out by Thakur et al. [166], most of prior work related to the
geometric transformations applied to components to generate a FE model
from a B-Rep CAD model, are purely geometric transformations, i.e., the
component shape is modified using criteria of morphological type. In Makem
et al. [117], a component is subjected to a segmentation process into mani-
fold models to enable the generation of a semi-structured mesh is proposed.
The hybrid mesh of structured and unstructured zones allows for efficient
anisotropic structural simulations. Few contributions take into account FE
sizes to modulate the geometric transformations applied [109]. Quadros et
al. [137] use de-featuring techniques to reduce model complexity. They there-
fore generate an intermediate discrete model, keeping backward links to the
original CAD model to allow information flow such as boundary condition
attributes.

In the present context, the focus is placed on assemblies as a repre-
sentation of a DMU. There, few research works have addressed the FEA
preparation of assemblies. Specific operators have been provided to compute
contact zones between components. These operators fall into two categories
depending on whether the geometric model used to describe the components
is an analytical B-Rep model or a discretized mesh.

In case of B-Rep CAD models, Clark et al. [52] have developed a specific
operator to compute the imprint of a component onto another one and use
the corresponding imprint to subdivide the boundary of each component
so that they share a common geometric area that reflects the contact area
between the components. As a result, this common area can be used to
generate conformal FE meshes in this area, which greatly improves the FE
mesh generation process of an assembly model. In case of meshed or faceted
CAD models, several approaches have been proposed [50, 114] to compute
the common areas between components representing their contact areas and
to process FE meshes generated on a component basis so that their common
area can be identified and their FE meshes in that region can be modified to
produce a conformal mesh. Obviously, these approaches are of great interest
to process assembly models for FEA. However, those referring to a faceted
model are not robust since the operators are rather sensitive to discretized
representation they use as input. More precisely, it becomes difficult to make
a distinction between a discretized representation of two cylinders in contact
with each other along a cylindrical surface and a discretized representation
of two interfering cylinders as it can happen in a DMU with screws and nuts.
For this reason, this approach is not suited in the present context. Regarding
Clark’s approach, it has been addressed using Boolean type operators inside
a specific CAD software and it is restricted to contact configurations. As
a result, it is not generic compared to Jourdes’s [95] approach that uses a
STEP file as input and projection-type operators that can adapt to accuracy
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of relative position of each component.

All these approaches, however, did not show any connection to the func-
tional attributes of a geometric interaction between components, leaving an
open question of how adequate those adaptations are with respect to a given
simulation process under prescribed simulation objectives. In the context of
the ROMMA [1] project, work has focused on assembly processing for FEA
and has highlighted the need to specifically process the interfaces between
components since they are directly related to the simulation objectives.

Work studied in the context of CAD-to-FEA transformations showed
that assembly models are rarely considered as a whole, instead, components
models are processed and transferred between the two domains individu-
ally. Methods that accounted for interaction between components are also
uncommon in the literature, and those who did, only considered geometric
contacts as functional interaction indicators, leaving prevailing industrial
conventions, such as volumetric interferences, uninterpreted. This is a natu-
ral consequence of the shortage we pointed out in Section 2.4. This shortage
reflects the need for a concrete approach that translates product geome-
try to simulation-relevant functional properties, while taking into account
mainstream industrial practices, and the integrity of an assembly model.

2.8 Conclusions

In this chapter, concepts such as functionality and the relationship be-
tween function, behavior and form are considered from literature standpoint.
These three concepts are inter-related, which means that adding functional
information to a purely geometric model of a system should refer, somehow,
to the behavior of this system. In addition to these three concepts, the
concept of state, though not mentioned in the relationships between func-
tion, behavior and form, can be related to function. In later chapters, these
concepts will be revisited, extended, or narrowed down to a more specific
context or definition.

Examining work that compares to ours, in terms of problem tackled,
showed that though it is possible to recognize some basic manufacturing
features by merely considering local geometric properties of components,
the detection of more complicated functional properties, such as these re-
quired for simulation preprocessing, requires that the geometric model be
regarded from a wider angle, that also covers the interaction between differ-
ent components. In addition, the feature recognition approaches essentially
concentrate on standalone components which prevent them from addressing
functional issues since their interfaces with other components are not taken
into account.

Knowledge repositories and reasoning methods used in the context of
a DMU are also examined, to determine that, although ontologies showed
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Figure 2.6: A demonstration of the work of Clark et al. [52]. (a) A non-
conformal mesh of an assembly of two components. (b) Components imprint
onto the each other represents the contact zone, a shared mesh is generated
at this region. (c) A conformal mesh of the same assembly, where the mesh
of the rest of each volume is generated after the mesh of the shared surface
(the imprint).
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promising abilities to faithfully represent engineering knowledge, and to rea-
son upon it to a certain extent, they are still inadequate for the type of
reasoning that requires heavy calculations or complex algorithms, as it is
the case in 3D geometry processing. This is a strong requirement to be able
to process complex industrial assemblies.

In spite of its potentials, little efforts have been paid to exploit the
Semantic Web reasoning capabilities to extract new functional knowledge
from merely geometric one to the level where the former can be used in
the preparation of a model for FEA purposes. Alternatively, the use of
engineering-specific approaches such as KBE enables flexible adaption to
reasoning needs. However, such approaches still miss the semantic connec-
tion to design rationale, and come at a yet unjustified high cost with a
very limited capability to adapt to product variants and even more to an
acceptable range of products. At the origin of this limitation stands the
structure of the geometric model supporting the KBE application and how
it is connected to knowledge representation.

Attempts to automate the preprocessing of a FEA showed that only few
works made the necessary connection to the functional properties of compo-
nents and their interfaces. These approaches are still needed for automated
function enrichment of DMUs and must produce an accurate geometric rep-
resentation of the interface areas between components to be useful for FEA
preparation.






Chapter 3

From Geometry to
Functional Semantics: Needs
and Objectives

This chapter sets the objectives of our work, shedding the light on
the prominence of functional knowledge, and on the importance of
its inference at different levels of the DMU structure, while mini-
mizing user’s interactions. We also show the applications and impli-
cations such an inference have on the acceleration and enhancement
of a PDP, particularly in the context of FEA preparation.

This chapter is organized as follows: Section 3.1 presents the
need for automatic and intelligent preparation tools to adapt DMU
data to FE simulations, Section 3.2 shows that geometric assump-
tions are made about the DMU, reflecting a variety of industrial
conventions. These conventions are to be taken into account if the
shape of a DMU is to be interpreted for FE simulation applications.
In Section 3.3, efficient methods for timely preparations of simula-
tion models are shown to require an enrichment of the DMU con-
tent to incorporate critical functional knowledge, while preserving
connections between functional and geometric entities. Section 3.4
enumerate three different levels at which this functional enrichment
of a DMU content must take place, namely, the component inter-
face level, the component level, and the group of components level.

3.1 Taking 3D models beyond manufacturing pur-
poses

With the development of 3D modeling techniques, industrial blueprints,
their 2D counterparts, have become less prevalent across the production
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process. This technical leap enabled the utilization of a reference model,
now referred to as a DMU, at different stages of a PDP, especially as an
entry point to simulation processes (see Section 1.4.2). However, this advent
also came at a cost: technological and functional information are scattered
around the DMU in a disorganized manner (see Section 1.7), the abstrac-
tion of assembly geometry stopped being standardized (see Section 1.5.1)
and thus, became unreliable, unlike the way it used to be with 2D technical
drawings.

This technological and functional knowledge remains a core requirement
for the use of a DMU in product development tasks such as finite element
analyses and simulations [42]. Huge manual efforts are being paid by engi-
neers on daily basis to reconstitute such information [108].

Geometric modelers, as part of CAD software products, provide tools for
intuitive authoring and manipulation of DMUs. These substantial advan-
tages over two-dimensional drawings provoked a tremendous change in the
field of geometric modeling. As a result, traditional blueprints gave way to
3D models in today’s design offices. In this section, we outline the potential
that a DMU has to actively participate to the leverage of the PDP.

As a central component to a PDP, its DMUs allows engineers to de-
sign components shapes and position them before the product is actually
manufactured and put to operation. Section 1.4 explains the focal role the
DMU plays in a PDP with the increasing tendency in today’s industries to
relate different tasks to the DMU content, all along the PDP. Reciprocally,
there is also a tendency to adapt the DMU content to the PDP require-
ments. A DMU shows its capacity to contain further information rather
than pure geometry. Examples are component materials and their proper-
ties, kinematic connections between components, geometric constraints and
functional zones to name only few (see Section 1.7).

Considering this viewpoint, a DMU can do better than barely providing
references for manufacturing, since it is, indeed, communicated all across a
PDP. One can expect DMUs to serve as entry points for simulation pur-
poses, e.g., allowing the generation of digital product prototypes. It would
be convenient if the same model, i.e. the DMU, could be enriched with nec-
essary knowledge for subsequent stages of the PDP, that would definitely
accelerate preparation processes, e.g. FEA ones and others [64].

Nonetheless, DMUs, the way they are designed, are subjected to man-
ufacturing requirements. This is mainly because designers oftentimes have
this consideration in mind while they’re also bounded by the solid modeler
capabilities when creating 3D models [102]. For this reason, the DMU is
not promptly ready to play its polymorphic role in the PDP, in a reference
to this concept set at Section 1.10. In fact, to process a DMU for FEA,
geometric transformations are still required to adapt it to simulation re-
quirements. Section 2.7.1 pointed out that this high skill demanding task
still poses a problem to the efficiency of a PDP, and that automating it as
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much as possible gets in the way of timely simulations.

Most of today’s vendors ship their industrial CAD systems with mod-
ules such as kinematics simulation, FE simulation for structural, thermal,
and flow analyses. These modules provide tools for additional tasks of a
PDP rather than mere geometric modeling during the design process. How-
ever, the lack of automated and intelligent adaptation methods hinders the
utilization of these FE analysis modules.

Some sort of intelligence is thus required in order to adapt a DMU for
development phases other than manufacturing along a PDP. Section 2.7
however, showed the shortage in the state of the art of an robust approach
that functionally interprets the geometry of a DMU as an assembly of inter-
acting components, down to the level of interacting surfaces, while taking
into account dominant industrial conventional representation of such inter-
actions (see Sections 1.5.1 and 1.7). Such an approach would faithfully
bridge the gap between CAD offerings and FEA needs.

A major objective of the proposed approach stands in exploiting the
DMU content for simulation purposes. This content must be processed in a
bottom-up manner since a DMU content reduces to robust information only
for mere geometric models of components. Section 2.6 has shown that top-
down approaches don’t bring a tight connection between 3D models and the
technological, functional data associated to components and assemblies, and
they have not emerged in commercial CAD systems. More precisely, this
objective addresses the generation of a simulation model (as introduced in
Section 1.9.2) that is suitable for timely and accurate FEA under prescribed
simulation objectives.

3.2 Differences between digital and real shapes

The geometric model of each component in a DMU is meant to provide a
precise product model to enable its manufacture, as mentioned earlier in
Section 1.4. Inaccurate digital models are therefore little tolerated, as such
inaccuracy puts the manufacturing process at stake. However, particular
geometric configurations, e.g. helical threads and involute gear profile, are
not used as input of manufacturing processes. Also, modeling such surfaces
and volumes as carbon copies of real shapes is a tedious and inefficient task
that is of little or no interest to the PDP. In fact, the geometric accuracy of
such features has no impact on the manufacturing process of the components
due to at least one of the following reasons:

e Components such as threaded bolts, nuts, and profiled gears are of-
ten imported as third-party components [4] that comply to specific
standards’;

!Naturally, precise detailed geometry of complex surfaces such as threads and gear teeth
on molded plastic components may be however important when manufactured in-house.
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Figure 3.1: Two engaged spur gears: (a) representation of real surfaces,
showing involute profiles, and a simple contact between two gears; (b) sim-
plified representation as simple cylinders, leading to an unrealistic interfer-
ence.

e The machining of profiled gears, threads, spline profile, etc. can be a
generative process that is prescribed by tooling parameters set later in
a PDP than the design stage. Consequently, at design and simulation
stages in a PDP, these shapes need not be accurate.

Other examples can be easily observed in industrial DMUs since these dif-
ferences between digital and real shapes is current practice.

Consequently, and for the sake of efficiency, complicated surfaces that are
part of imported components, or that comply to predefined implicit or ex-
plicit standards are often simplified. For instance, threads and gear profiles
are modeled as simple cylindric surfaces as shows Figure 3.1. This simpli-
fies the geometric modeling task, while preserving technical informations for
manufacturing.

Those simplifications, however, imply an interpretation from the engi-
neers. For instance, both a brake disc and a gear may be represented as a
simple cylinder after geometric simplification. Hence, the mechanical com-
ponent has to be studied in its environment to clarify its nature, i.e., the
component must be analyzed along with its interaction with neighboring
components (see Figure 3.1). It is also worth observing that, as a conse-
quence of these simplifications, the geometric interactions between neigh-
boring digital components is not limited to contacts or clearances, as it is
the case between real components. Indeed, digital models of components
may exhibit volume interference (see Figure 3.1) while still conventionally
representing a consistent configuration of their real counterpart.

In addition to geometric simplifications, another inconvenience about
geometric models of a DMU is the way geometric interactions are handled.
We have seen in Section 1.6.2 that geometric constraints such as contact and
coaxiality may be deliberately dropped and replaced by absolute positioning,
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for the sake of conciseness or re-usability. Even when positioning constraints
are kept, they are still incomplete to infer geometric interactions between
components, as previously established in Section 1.6.2. For instance, the
simple fact that two cylindric surfaces are coaxial does not necessarily mean
that corresponding faces are in contact, at play, or having an interference.

These shape differences and representation shortcomings render the judg-
ment about functional intentions of elements of a DMU a non-trivial task,
even to a knowledgeable eye. This implies the incorporation of different
industrial conventions into the knowledge base of an expert system, if any
meaningful functional information is to be extracted. It is a second objective
of the proposed approach to structure the knowledge related to component
and assembly representation so that it can be processed reliably and effec-
tively connected with 3D shapes of components and assemblies.

3.3 Enabling semi-automatic pre-processing

To speed up a PDP, aeronautical, automotive and other industries face
increasing needs in setting up timely FE simulations of large sub-structures
of their products. The challenge is not only to study standalone components
but also to simulate the structural behavior of large assemblies containing up
to thousands of components [1, 41]. DMUs are widely used during a PDP as
the virtual geometric product model (see Section 1.4.2). This model contains
a detailed 3D representation of the whole product structure available for
simulation purposes. To prepare large sub-structure models for simulation
(such as wings or aircraft fuselage structures); the DMU offers a complete
geometric model as an input (even though not necessarily a faithful one, as
seen in Section 3.2). However, speeding up the simulation model generation
(see Figure 1.19) strongly relies on reducing the time required to perform the
geometric transformations needed to adapt the DMU to FE requirements in
the context of the pre-processing step discussed in Section 1.9.2.

3.3.1 Pre-processing tasks

Currently, due to the need of geometric transformations required to adapt
the shape of a DMU to simulation objectives (see Section 1.9), the corre-
sponding adaption of CAD models to generate FE models still requires time
and specific skills because there is a lack of automation of these transfor-
mations. The time required to generate FE models often prevents engineers
from using structural analyses during early stages of a PDP. Several au-
thors proposed approaches to automate shape transformations required for
a standalone component (see Section 2.7). However, very few research work
addresses assembly models where similar configurations are duplicated many
times, e.g., contact areas, bolted assembly joint FE models. Consequently,
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Figure 3.2: Examples of aeronautical DMUs with a variety of bolted junc-
tions [42].

DMU of aeronautical structures are particularly complex to transform due
to their large number of joints incorporating bolts or rivets (see Figure 3.2).

Domain decomposition and shape transformations mentioned in Sec-
tion 1.9.2 are examples of interactive and error-prone processes that an
engineer must perform tediously to enable efficient FE simulations. Within
the available resources and time frames planned in an industrial PDP, engi-
neers are bounded to simulate small models rather than complete assembly
structures. It is an objective of the proposed approach to contribute to
speed up and automate the shape transformations of assembly models for
FE simulations.

3.3.2 Pre-processing automation requirements

It can be observed that repetitive tasks originate from similar configurations
like bolted junctions and, more generally, interfaces between components.
Similar tasks relate to shape similarities as well as behavioral similarities
since the shape transformations performed fit into the same simulations ob-
jectives for a given FE simulation model. As pointed out in Section 2.3,
shape, behavior and function are independent concepts and shape and be-
havior similarities can refer to function similarity, i.e., similar shapes behav-
ing similarly and contribute to similar functions. Indeed, it is the case when
referring to bolted junctions where the underlying function is the ‘assembly
of components using bolts’. This analysis shows that functions are good can-
didates to complement shapes when they have associated interfaces, whereas
feature recognition, purely based on component geometry, do not enable a
direct connection to component function (see Section 2.4).

Here, the targeted FEA preparation aims at producing a quantitative
behavioral analysis of an assembly, e.g., the computation of stress, strain,
and displacement fields. Therefore, there is no such behavioral information
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available to combine with shape information that can help derive functional
information about components in addition to their shape. However, if there
is no quantitative behavioral information available for components, it is pos-
sible to refer to the design rationale where design solutions emerge from a
qualitative assessment of components at the early design stages. Similarly,
qualitative behavior assessment is common engineers’ practice when analyz-
ing a mechanism from either blueprints or DMUs.

To this end, the above-mentioned principle is a path to another major
objective of the proposed approach to automate FEA preparation processes.
Indications about components functions, functional groups, and functional
interactions can be gained from assembly geometry processing and behav-
ioral information. These indications must be coupled with the product ge-
ometry, not only at the component and group of components level, but also
at the joints interface level, particularly in connection with functional inter-
actions. This may imply a functional restructuring of components geometry
to highlight interaction zones. The following section sheds more light on this
issue.

3.4 Bridging the gap with functional knowledge

Despite attempts of geometric modelers vendors, as well as efforts paid by
data exchange standardization committees, industrial practices in the field
of knowledge representation and communication are still far from being stan-
dardized, as shown in Sections 1.7 and 2.6.

3D modelers still fall short of providing a unified method to maintain
technical and functional properties alongside geometric models of compo-
nents and assemblies. Figure 1.2 shows precise technical annotations of
dimensioning and tolerancing which are standardized for a shaft-housing
connection (see Appendix A). Nevertheless, in a platform-independent 3D
representation of a product, such as a STEP file [7], this knowledge is lost as
both shaft and housing are represented with their nominal diameter, with
no further information about dimensional tolerances. Figure 3.3 depicts an
example of a 3D model showing a piston fit in a cylinder sleeve. This fit
should be loose in order for the crank-piston mechanism to work properly.
However, both parts of the fit are represented with the same nominal diam-
eter, leaving the fit nature ambiguous.

Even when standards provide auxiliary annotations that may actually
hold functional information (as Section 1.7 showed), observations reveal that
current CAD modelers do not make use of these facilities, stripping their
native models of all information but mere geometry when exporting them
in a standardized format [69].

From this perspective, it seems that the evolution from blueprints to 3D
digital models and the facilities that 3D modelers offer have come at the cost
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Figure 3.3: A 3D geometric model of a crank/piston mechanism. The piston
and its cylindric sleeve are represented with the same nominal diameter of
60mm.

of the loss of reliability of any other information rather than approximate
geometry. The bound between form, behavior and function that was seen
in Section 2.3, is not available in modern DMUs.

Another observation to be outlined in this context is the lack of the
thoroughness of these functional and technological annotations in 3D mod-
els, even when they do exist as Sections 1.6.2 and 2.6.2 showed. Many
applications, in particular structural simulations, require the association of
functional information down to the level of geometric interaction zones, e.g.,
contact surfaces between components. Those information are still not avail-
able in a DMU in a satisfactory manner that allows their involvement in
the FEA preparation process, or any other application that would fit into a
PDP and use assembly models.

Although DMU representations leave room for unconstrained textual
annotations, that designer may utilize at different geometric levels, i.e., sur-
faces, solids, etc., to augment the model with functional and technological
information, these annotations are too loose to provide any viable knowl-
edge, as shown in Section 1.7. In fact, the best that we can expect from these
annotations is to be coherent enterprise-wise. Reaching this cohesion how-
ever, requires engineers time and energy that compare to those needed for
the manual pre-processing tasks outlined in Section 3.3.1. Method depen-
dent on such a cohesion [32, 148] have therefore failed to provide a reliable
connection to functional properties down to the level of component bound-
aries.

In the proposed approach, its purpose is to minimize the human inter-



BRIDGING THE GAP WITH FUNCTIONAL KNOWLEDGE 69

vention during the FEA pre-processing stage, integrating domain knowledge
in an inference system that enriches a pure geometric model with tech-
nological and functional information necessary for its adaption under the
user-specified simulation objectives. This work contributes to a collabora-
tive effort in the framework of the ROMMA project [1] to reduce the FEM
preparation time to adapt CAD assembly models derived from DMUs into
FE models.

In order to enable the semantic enrichment of a DMU that is required by
state of the art FEA preparation approaches, the broken function-behavior-
shape link should be mended. This recovery happens at three levels, as
follows.

The functional interface level
Function is a result of interactions between components at their inter-
face level. FEA applications need to know what functions are fulfilled
by a component with regard to its neighboring components, in order
to represent these functional interactions geometrically in a simpli-
fied manner, and decide what hypotheses can be made in the light of
simulation objectives.

A mature approach to functionally supplement the DMU for FEA
applications should thus consider the labeling of functional interfaces
between components in an assembly. This leverage also requires the
isolation of these interfaces as geometrically independent entities, to
allow clearly interpretable labeling. Such labeling will be preformed
on the basis of reference configurations between components referred
to as ‘conventional interfaces’. Conventional interfaces and functional
interfaces are introduced in more details in Chapter 4 to produce a
taxonomy of functional interfaces as an explicit basis from which rea-
soning mechanisms will take place. To efficiently support the FEA
preparation process, these interfaces need to located accurately over
the boundary of DMU components. This objective is addressed in
Chapter 5.

The functional unit level
Each component in an assembly plays one major well-defined func-
tional role within its functional group or groups. Before enabling ge-
ometric simplifications, this role should be outlined as it orients the
content of suggested transformations.

To this end, a fruitful method must classify components into func-
tional classes that deterministically define their functional role. Such
classes, referred to as functional designations are introduced in more
details in Section 4.2.3 and are based on particular spatial setup of
functional interfaces. Indeed, functional designations are the major
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result of the proposed approach. Enriching a component with func-
tional designations from functional interfaces needs a reference to the
behavior of this component (see Section 3.3.2). Indeed, this objec-
tive is addressed using a qualitative reasoning process as described in
Chapter 6 that is followed by a rule-based reasoning (see Chapter 7)
to infer the functional designation of this component. The purpose of
these qualitative analyses and rule-based reasoning is to resolve the
multiple interpretations that derive from the DMU input as pure ge-
ometric model. Through this approach, the objective is to set up a
more generic approach than KBE ones (see Section 2.6.3) that takes
advantage of the functional interface level to tightly link 3D geometry
information to functional one.

The functional group level

In an assembly, a function is satisfied through physical interactions
between a set of its components. Consequently, we can refer to these
functions as internal functions. On a complementary basis, this as-
sembly is characterized by functions with respect to its environment,
i.e., these functions are often referred to as primary, secondary and
constraint functions. Here, the functions referring to the environment
of the assembly fall out of the scope of the present approach.

Efficient methods of geometric preparation for simulation purposes use
such groups of components as patterns that indicate an entry point
to relate geometry to functionality. As an example, Section 3.3.1 has
referred to bolted junctions that designate a group of components that
contain a screw, a nut and some tightened components, at least (see
Figure 3.2). Processing such subsets of an assembly in an efficient
manner connects with functional information when a selection process
matters. Indeed, the first step to prepare a bolted junction for FEA
is the selection of the corresponding components.

Accordingly, a beneficial enrichment of a DMU can organize compo-
nents into functional groups that perform a given function. Those
groups can then be labeled by the type of function they deliver. La-
beled functional groups, referred to as functional clusters are an out-
come of the proposed approach and can efficiently contribute to the
desired component selection process as needed for FEA preparation.
This objective is addressed in Chapter 8 and illustrated through a
template-based selection process.

Figure 3.4 shows how functional annotations apply at the three afore-
mentioned levels on the DMU of a centrifugal pump.
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Figure 3.4: A synthetic, bottom-up approach to collect functional informa-
tions of a product at different levels, based on its geometric representation
provided by its DMU.
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3.5 Conclusion

In this chapter we showed that, in spite of its potentials, the DMU content
as it is represented in today’s industrial examples is not yet ready to enable
its active participation to the preparation process of FEA. On one side, this
is because of the shape differences between the real product and its digital
representation, shown in Section 3.2. On the other side, another obstacle
to the DMU utilization in simulation purposes is the semantic gap, shown
in Sections 3.3 and 3.4, that prevents 3D component geometry from being
connected to functional an technological annotations required for any robust
and efficient geometric transformation.

Section 3.4 showed that those gaps should be bridged at three levels,
namely the functional group, the functional unit, and the functional interface
levels to allow the DMU to play its polymorphic role in the PDP as discussed
in Section 1.10. The same section also showed that this task is currently
being done manually, in a tedious and time-consuming manner. Therefore,
this has introduced the major objective of the proposed approach toward
the automation of tasks during DMU preparation for FEA.

Section 2.7 showed that current efforts in the field are still unable to
feed the functional enrichment required by geometric transformation meth-
ods while taking into account today’s industrial practices and conventions.
Providing a method to automatically fill this need is one of the more precise
objectives set throughout this chapter.

While this chapter has outlined the problems and set the objectives
of the proposed approach, the following one presents starts presenting the
proposed contribution and conceptualize our approach.



Chapter 4

Functional Restructuring
and Annotation of
Components (Geometry

The proposed approach builds upon the relationship between func-
tion, behavior and shape shown in Section 2.3 in order to extract
functional information from pure geometry of components for FEM
preparation purposes as shown in Section 3.4. Reference states and
design rules are introduced to express the behavior of components
through a qualitative reasoning process and to complement the as-
sembly geometric model used as input (see Section 3.3.2). These
facts and rules reflect the domain knowledge, and enable to check
the validity of certain hypotheses that must hold true at a spe-
cific state of the product, such as operational, stand-by or relaxed
states.

Shortly, this bottom-up process starts with the generation of
a graph of interfaces between components. Interfaces are initially
defined geometrically. They are then populated with physical be-
havioral properties suggested by the geometry, producing a number
of possible interpretations. The validation against reference states,
reduces this number to ideally one interpretation per interface.

Once components interfaces are identified functionally, domain
knowledge rules are applied to group the semantics of those in-
terfaces into one functional denomination per component, and to
cluster components into functional groups.

As a first step inside this overall process, the purpose of this
chapter is to define some initial concepts related to component
interfaces, their functional designation and the corresponding tax-
onomy. From these concepts, the above outline of the bottom-up
approach to the functional enrichment of DMUs will be detailed
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into an overall schematic description as a guide to the major steps
that will be detailed in Chapters 5, 6, and 7.

4.1 Qualitative bottom-up approach

Section 2.3 has shown that the link between shape, behavior and function has
been well established in the literature [73, 23, 173]. Design methodologies
have been built upon this link to boost assembly design and collaborative
product development [147, 142], while in another application of this relation-
ship, top-down approaches are suggested to augment DMUs with functional
attributes [146, 103]. These approaches, however, failed to functionally in-
terpret commonplace geometric conventions with respect to FEA needs (see
Section 2.4.2).

The present work proposes a bottom-up approach that takes the pure ge-
ometric representation of an assembly as an input. Elementary facts about
geometric interactions are first collected. Those facts are then used to in-
duce higher level knowledge about components and components groups in a
synthetic manner, as Figure 3.4 shows.

Our approach is purely qualitative in a sense that no numerical values
are used across the analysis process apart from the geometric parameters
of the components, which are the input data. Geometric quantities such as
distances are compared to each others, while no assumption about referential
values or thresholds are made. This also applies to physical quantities which
are described only symbolically with no precise values. This makes our
reasoning universal, and independent of the availability of such quantities.
These characteristics clearly distinguish the proposed approach compared
to KBE (see Section 2.6.3) where quantitative parameter bounds are part
of the KBE to perform dimensioning processes.

This inductive method allows for the inference of technological knowledge
about the product at different levels, starting from components functional
interactions, up to their functional groups. As a prerequisite to simula-
tion preparation tasks, the proposed process is performed after the design
activity, independently of design choices, and as an automated procedure.

In the rest of this chapter, Section 4.2 defines the terminology that is used
in the proposed approach. The goal is to bring precise conceptual frames
that are applied to notions encountered across the rest of this document.
Next, Section 4.3 gives a synthetic description of our method, preparing the
ground for in-depth development in chapters to come.

4.2 Common concepts

Throughout this manuscript we describe the proposed method using a ter-
minology referring to concepts that are central to this research. Here, we
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identify reference concepts contributing to all stages of the functional en-
richment process, and define each as it applies to this approach.

4.2.1 Function as the semantics of design

Functionality is an example of non-geometric knowledge that a DMU still
lacks, i.e., functions are essentially stated with natural language expressions.
In fact, this knowledge becomes paramount when considering the prepara-
tion of a DMU for simulation purposes, as seen in Section 3.3. Section 2.2
examined different perspectives from which a function is seen in the litera-
ture.

In the context of our work, we join scholars that make clear distinction
between function and behavior, while admittedly demonstrating the strong
relationship that ties them [136, 73]. This perspective stands at a cross-road
between teleological and behavioral viewpoints, as discussed in Section 2.2.
Indeed, distinction between behavior and function is an important point in
our approach since qualitative models of behaviors are set up and attached
to components to infer component function. Consequently, this process
relies on an effective distinction between behavior and function—otherwise
the inference mechanism set up would be pointless—and a tight connection
between them so that the qualitative behaviors can be effectively related to
functions with meaningful inferences.

A function applies at different levels of the product structure. An inter-
action between two components delivers precise functionality that adds up
to each component functional contribution. A particular function may be
attributed to a subset of components that forms a group. As an example,
the hydraulic pump illustrated on Figure 3.4 can be assigned a function to
its whole set of components: (1) move of a volume of fluid from the pump
inlet to the pump outlet'. This function is also designated as the primary
function of the product. Considering the group of components featured in
Figure 1.5 that contains the hydraulic casing (orange), the two ball bearings
(dark brown), the two elastic rings (black), this group can be assigned a
function: (2) guide the rotational movement of the shaft (gray). Now, con-
sidering a standalone component (see Figure 3.4 top), the stud (yellow) has
as function: (3) assemble together the hydraulic casing (orange), the pump
housing (gray), the hydraulic flange (brown), and the nut (green).

The function of the product is then satisfied as a result of functional
groups collaboration. A component can be assigned more than one function
and can contribute to several functions through different groups of compo-
nents, e.g., the hydraulic casing (orange) is part of two groups of components
defining functions (1) and (2).

The hydraulic pump is of type centrifugal for incompressible fluid. Therefore, its
function reduces to displacement of a volume of fluid
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Figure 4.1: An example of a spline shaft-housing configuration that satisfies
two functionalities that are axial positioning and power transmistion. A cut
in the housing component is made to show the coupling.

Definition 4.1 (Function). A function is a desired effect that a certain
intentional configuration produces in a determinant manner.

In this sense, the underling configuration is sufficient to produce the ef-
fect, hence, fulfill the function. However, it may or may not be unique, as
some functions can be satisfied by several different means. For example, a
screw-and-nut configuration satisfies the function of tightening a set of com-
ponents. However, the same function can also be satisfied by other means,
such as riveting, or even welding [104]. A screw-and-nut configuration is
thus not necessary to tighten components, although it is sufficient.

In the same context, one configuration may fulfill more that one function,
as it may produce more than one desired effect. An example is a spline
shaft-housing configuration that satisfies both axial positioning and power
transmission as functions (see Figure 4.1).

4.2.2 Functional Interface

Today’s products tend to be modular [30]. Modularity has been established
as an important paradigm in almost all design disciplines. Modular systems
can be easily analyzed, tested, repaired®? and upgraded. They also offer
higher customizability as modules can be replaced to adapt to more specific
requirements.

’In the context of mechanical products, repairing refers to the interchangeability of
components.
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An important aspect of modularity is loose coupling [128]. This means
that each module of the product has only minimal knowledge about the other
modules. System parts know about each others as much as necessary to get
the system operational. In order to reach a loose coupling, a single module
provides a minimal interface that interacts (couples) with other modules to
fulfill the product global functionality, while the actual implementation of
each module functionality is kept internal.

The same concept of interfacing appears in different engineering disci-
plines. In software engineering modularity consists in logically partitioning
the software into different units at different levels, such as software packages
and classes. Those units provide public interfaces describing what kind of
stimuli they respond to. Communication between units is achieved through
stimuli exchange, while internal implementation of each unit is kept private.
In electronics, coupling coefficient refers to the amount of energy transferred
between integrated circuits, and it is recommended to be the lowest possible
in modular designs.

In mechanical engineering, modularity applies at different levels as well.
Its first clear manifestation occurs at the component level, where a single
component is meant to satisfy a very precise functional description. Another
sign of modularity appears at the functional group level, where components
are grouped to fulfill a higher level functional requirement, even though only
partially with respect to the whole product functionality.

To allow the decomposition of high level functions into simpler ones, as
suggested by modularity, mechanical components interact with each other
through interfaces as well. Interactions can either be internal to a prod-
uct or in connection with its environment. In this work we address the
first category of interactions only, and we refer to interfaces that allow this
interaction as functional interfaces (FIs).

A very basic example of a functionality that is fulfilled by FIs —and
is usually kept implicit due to its triviality— is the relative positioning of
components with respect to each others. Component shapes are designed
so that they offer interfaces standing as obstacles to remove some of the
degrees of freedom of some of their neighboring components.

In a real product, FIs are satisfied by functional contacts and plays
(see Figure 4.2 for an example). Functions are defined by the geometric
nature of the interaction between two components, and by their physical
properties [118] (see examples in Section 4.2.5).

Definition 4.2 (Functional Interface). A functional interface (FI) is an
interaction between two neighboring mechanical components that fulfills, or
contributes to the fulfillment of a function.

An FI is characterized by its ability to propagate internal forces, with
respect to the product as a physical system, between components involved
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Figure 4.2: A gear train connection as functional interface, showing the
functional play between gear teeth.

in the interface. A property that enables the FIs to meet its expected
functionality from a dynamic standpoint.

When functionality is viewed from a kinematic standpoint, FIs are char-
acterized by their abilities to restrict relative motion of components involved
in the interface with respect to each others, reducing their respective DoF'.

Examples of Fls are: threaded link, spline link, planar support, adherent
conic support, etc.

4.2.3 Functional Designation

Besides loose coupling at the product level, modularity requires tight cohe-
sion at the module level. That is, individual modules should fulfill one or
more well-defined function each. Loose coupling and tight cohesion happen
in parallel in a highly modular system.

When it applies to mechanical engineering, mechanical components are
considered as modules, and tight cohesion reduces to assigning a number
of precise functions to each component. There is a finite set of functions
that a mechanical component can fulfill, considering an upper bound on the
number of functions per individual component, the number of combinations
is bound as well. However, not all combinations are common, and some,
such as tightening and guidance, are not even possible.

We refer to the comprehensive set of functions that one mechanical com-
ponent may satisfy as the functional designation (FD) of this component.

Definition 4.3 (Functional Designation). A functional designation (FD)
is an equivalence class defined by the binary relation ‘has the same set of
functions as’ that is defined on the set of all mechanical components.

Given C the set of all mechanical components, and F€ = {f1, fo,... fu}
the set of all functions that any given component may satisfy. Let ¢; € C
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and ¢y € C be components and F$ € FC and FS € FC the sets of functions
that they satisfy, in respective order. We state that c¢; has the same set of
functions as cg if and only if IF(%: is equal to Fg:

c1 E(Jg cg < FY =TS, (4.1)

We note that E? is indeed an equivalence relation, as it is reflexive,

symmetric, and transitive. We call E;(c: the functional equivalence relation
on C; the set of all mechanical components.

We note that if IF'(IC =+ Fg, it logically follows from Equation 4.1 that
cl 5_'5(55 co. We thus infer that ¢; # ca, since E(}j is reflexive.

Since an equivalence relation partitions a set into mutually exclusive
equivalence classes [40], FDs, as equivalence classes of E;(E according to Def-
inition 4.3, are indeed mutually exclusive sets.

This means that components having a functional designation Ff are
functionally different from components having a functional designation ]F(QC.
Indeed, ]FéC C FC is unique for a component ¢ € C and it is the identifier of
its equivalence class. This identifier is expressed as a character string that
uniquely characterizes IF'S and can be one of the following®:

1 An expression that relates to one function among the set of functions
covered by FC, e.g., a stop screw. Often, this expression relates to one
major function of the component, its primary function;

2 An expression that uniquely designates Fg in the common language,
e.g., a stud, and implicitly matches FC.

Figure 4.3 shows examples of selected mechanical components and their
respective FDs.

FDs relate to Fls in a way that each set of functions at the component
level (thus an FD) requires a set of functions at the interaction level (thus
at least one FI), i.e. let FC be the FD of ¢, FL is the set of FIs belonging
to c and |FL| > 1. We refer to this one-to-many relation as the functional
breakdown.

Unlike unreliable textual annotations (see Section 2.6), the concept of
FD allows the qualitative reasoning and inference processes to give a com-
ponent a functional identifier that unambiguously define the functionality
of each labeled element. As shown in Section 4.2.6, FDs are organized into
super-classes that contain each others, building a hierarchical functional
classification. However, FDs are mutually exclusive classes at the leaf level,
i.e., a given component can only belong to one FD. This labeling provides as-
sembly components with a brief, yet precise functional description that can
be, once assigned, exploited though out later stages of a functional analysis.

3The two categories highlighted may behave differently according to the language used,
e.g. a ‘shoulder screw’ fall into category 1 in English whereas it is a ‘aze épaulé’ in French.
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Figure 4.3: Functional designations exemplified by instance components of
each (courtesy TraceParts [4]). The label under each instance(s) indicates
the identifier used as functional designation for each equivalence class.
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Geometrically speaking, this mapping restructures the geometry of a
component that belongs to a given FD into interaction zones, each defining
a FI, according to the functional breakdown of this component. Figure 4.4
shows an example of the restructuring of a cap-screw. This means that the
functional breakdown is not a mere logical relation between a FD and FlIs,
there is also a strong connection with the geometric representation of the
component ¢, i.e., the B-Rep of the 3D solid model of ¢ must be decomposed
into areas that match each FI of F.. This connection efficiently sets up a
consistency between the shape of ¢, its Fls, and its function with its FD.
This consistency will be further enforced through the qualitative analysis
and inference processes that will refer to the behavior of ¢, for the first one,
and to the connection between shape, behavior and function, for the second
one (see Chapters 6 and 7).

Also, it should be observed that the concept of FD is generic and not
bounded to any quantitative parameter that may hinder its use for a com-
ponent as it can happen for KBE approaches (see Section 2.6.3).

4.2.4 Functional Cluster

As mentioned earlier in Section 4.2.2; modularity can also apply at a higher
level than individual components. A set of components may tie up together
to deliver a coherent function or set of functions, while loosely interfacing
with other components/groups of components through minimal interfaces.
Those groups also form a module each. In the context of our research we
refer to each such group of components as a functional group.

We refer to the set of functional groups that satisfies one or more par-
ticular functions as a functional cluster (FC).

Compared to the concept of FD where this concept can be stated for
a standalone component ¢ without referring precisely to geometric entities,
it is critical to refer to the geometric interfaces between components when
addressing FCs. Effectively, each function is not only characterized symbol-
ically by its designation, e.g. set screw, but it is also instanciated through
the geometric interfaces it involves between components. Therefore, from
the set FC that symbolically represents all the functions any component can
satisfy, we can derive F¢ = { ff, Fae .} the set of functions ¢ performs where
F¢ is an instance of FC and ff designates the symbolic representation of a
function f; € FC associated with the geometric interfaces needed to describe
fi on c. ff is an instance of f; attached to ¢, an instance of a compo-
nent class characterized by its geometric representation and its geometric
interfaces with other components.

Definition 4.4 (Functional Cluster). A functional cluster (FC) is an equiv-
alence class defined by the binary relation ‘has the same set of functions as’
that is defined on the set of all functional groups, G. A particular instance
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of this equivalence class is g, a set of components. The set of functions of
FC, F9, is achieved by more than one component and it is an instance of
functions performed through some interfaces of components of g. At the
difference of a FD that relates to a single component of a DMU, an FC
addresses more than one component and not necessarily all the interfaces of
each component of this FC, which means that a component of this FC can
be involved into other FCs.

Let C; be the set of components contained in a DMU d, and g C Cy
be a minimal non-empty set of components that together satisfy a set of
functions F9. Each function of Y is associated with one or more interfaces
between components of g. Based on that observation, we refer to g as a
functional group. We observe that:

gl > 1; (4.2)
gcCycC. (4.3)

Given G the set of all functional groups and F& = {fy, fo,..., fn} the
set of functions that any given functional group may satisfy, F¢ C F, where
F designates the set of functions all assemblies can satisfy. Similarly to the
observations mentioned previously about the set of functions associated with
a component through its FD, F9 is the instance of F® for the set g, which
is an instance of a FC. Let ¢; be any component of g and FZ, the set of
functions associated to ¢;, i.e., ng C F9. It has to be observed that ng does
not necessarily contains all the functions attached to all the interfaces of ¢;.

Now, let g1 € G and go € G be functional groups and F9' and F92 the
sets of functions that they satisfy, in respective order. [F9! is associated with
FCG1 C FC, its symbolic counterpart. Likewise, F92 is associated with F&2,
We state that g1 ‘has the same set of functions as’ g if and only if Ff’ equals
IF'(QG':

g1 =7 g2 <= F9 =T, (4.4)

We note that E(}} is indeed an equivalence relation, as it is reflexive,

symmetric, and transitive. We call E(};’ the functional equivalence relation
on G; the set of all functional groups.

It is worth noticing that while FCs are equivalence classes, thus mutually
exclusive, functional groups are not. Functional groups being reduced to a
set of components ¢;,cj, ..., the functions performed by these components
would contain functions attached to several FCs because the set of functions
attached to either of its components may contain functions related to more
than one FC. In fact, functional groups of a given DMU are not equivalence
classes because a component ¢ can belong to two different functional groups,
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Figure 4.5: Examples of three functional groups belonging to the same FC:
disassemblable joint obtained with obstacles and threaded links: (a) Bolted
joint, (b) Stud joint (c) Screw joint.

g1 and go. Indeed, if FZ, C F%, it means that (F% — FY,) # () and this non-
empty set of functions attached to ¢; can be part of some other FC. This
justifies an FC being identified by a set of functions rather than a set of
components.

The identifier of a FC is expressed as a character string that uniquely
characterizes f; = f’(g) and is usually an expression that uniquely desig-
nates f, in the common language and may relate one function of fg,, e.g.,
a disassemblable joint obtained with obstacles and threaded links, and im-
plicitly matches f,. Here also, this identifier can be related to the primary
function of the cluster.

To illustrate more precisely this concept, Figure 1.5 shows a set of com-
ponents: hydraulic casing (orange), the two ball bearings (dark brown), the
two elastic rings (dark blue), this group is assigned a FC whose identifier
can be stated as: guide the rotational movement of a shaft, which refers
to its primary function. Other illustrations of FCs are found in Figure 4.5
where each group refers to the same category of cluster that can be stated as
disassemblable joint obtained with obstacles and threaded links. Indeed, each
cluster is a variant of a technological solution that can be used to tighten
components together using different categories of connectors, namely a bolt
(Figure 4.5a), a stud (Figure 4.5b), or a screw (Figure 4.5¢). In this example
variants originate from the different connectors that belong to different FDs,
respectively (capscrew and nut, stud and nut, capscrew) where each variant
contains a different set of Fls.

Likewise FDs, FCs also relate closely to Fls. For instance, a functional
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Figure 4.6: Examples of Cls as in a bolted joint.

group forming a bolted joint (an FC) can be recognized as the set of com-
ponents that are involved in an internal load propagation cycle generated
by a threaded link and propagated through Fls of types planar or conical
Supports.

FDs in their turn relate to FCs in what we refers to as functional aggre-
gation where the union of functionalities offered by FDs produces a more
general functionality characterized by the FC.

4.2.5 Conventional Interface

The functionality of an interface is decidedly determined by the geometric
configuration of the interaction, and the physical properties of components
materials, as briefly mentioned in Section 4.2.2. For instance a threaded
part of a screw fulfills its function of tightening thanks to the helical shape
of its groove and the friction along the thread that produces irreversitibility.
The inner tube of a tire does it jobs properly as a result of its toroidal shape
and relatively low material stiffness.

Subsequently, geometric interactions between adjacent components re-
veal essential information that guides the identification of functional prop-
erties. Objects interactions in the digital model, however, do not accurately
reflect reality, as previously demonstrated in Section 3.2. In fact, the way
interactions are represented is no more than a convention made by designers,
or prescribed by a company, or a common practice since there is no standard
referring to the 3D representation of components.

We refer to interactions between neighboring components in a DMU as
conventional interfaces (CIs). Physical, and functional properties can be
attached to this concept. However, a CI is initially identified by a geometric
interaction between two components in a DMU. This interaction encapsu-
lates an interaction zone which can be either a contact, an interference, or
a clearance (see Figure 4.6).

Contact A contact between two components C7 and Cy defines one or more
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shared surfaces or shared curves, without any shared volume (see Fig-
ure 4.6). The interaction zone of a contact is defined by this set of
shared surfaces and/or curves, leading to potential non-manifold con-
figurations, i.e. a contact along a surface area connected to a contact
along a line?.

A contact representation is usually realistic in the sense that a contact
in a digital model may reflect the same configuration in the corre-
sponding real product, where C; and Cs are, indeed, touching each
other. However, when a clearance between C7 and Cy becomes small
enough in reality, it may conventionally be reduced to a geometric con-
tact as well. Consequently, a cylindrical contact can be functionally
interpreted either as a loose or a tight fit (see Figure 3.3 for an ex-
ample). In some conventions a contact may represent an idealization
of more complex settings, like threaded links or gears and sprocket
connections.

Contacts provide very valuable information to our reasoning, as they
usually help defining locations where resulting interaction forces can be
transmitted. At the same time they work as motion barriers reducing
components DoF.

Interference An interference defines a shared volume between two compo-

nents C1 and C'3 . Obviously, an interference is a non-realistic represen-
tation in the sense that the two digital shapes of C; and (5 interfering
in a DMU do not represent overlapping volumes of C7 and C5 in a real
product, as this leads to non-physical configurations. Therefore, in-
terferences are often the result of local shape simplifications combined
with rather complex settings of component locations. For instance, en-
gaged spur gears frequently result in cylindrical interference volumes
(see Figure 3.1).

Also, when interferences become small enough, e.g., a shaft diameter
that is slightly greater than its housing diameter to produce a tight fit
between them, it is not represented in the DMU where the two corre-
sponding components have the same diameter and produce a contact.

Due to their idealized nature, interferences are harder to interpret
than contacts; however, they also provide valuable information about
functional attributes of a CI.

Clearance A clearance occurs when a distance between surfaces of two

components C7 and Cs is less than a defined threshold while staying
greater than zero, i.e. C7 does not touch Cs in the area of the corre-

4Though this configuration is not mechanically meaningful, it can be a geometric con-

figuration appearing in a DMU.
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sponding surfaces. The distance value acting as a threshold between
the two components is a matter of design decision.

The interaction zone of a clearance is the set of surfaces of C; and Cs
for which the minimal distance is less than the threshold while staying
strictly positive.

When this minimal distance conveys a functional intention, the clear-
ance is said to be a functional play (see Figure 4.2). As a convention,
when a functional play becomes small enough, it can be represented
as a contact in a DMU.

Definition 4.5 (Conventional Interface). A conventional interface (CI) is a
conceptual entity that represents an interaction between two components in
an assembly. It is identified by the geometric interaction of corresponding
components in a DMU, and augmented with other semantics such as physical
and functional properties.

Given I the set of all CIs in a DMU. We define the binary relation
‘forms’ as (Vc1 € C,i € I) c1Ryi if and only if the component ¢; forms
the conventional interface ¢ with another component co € C. As stated in
the definition of a CI, this interface is defined from two components. If R,
relates one component c; to a CI, ¢, this means that another instance of R
relates co to the same CI, 1.

We also define the binary relation ‘links’ as f; = §R;1.

We note that each CI ‘links’ exactly two components. This can be noted:

(V(i,c) € Ix C;3(z,y) €C?) z#y
N aXpi A yXRpi
AN Rpi = (c=x V c=y).

Since Fls are the result of interactions between components, a CI can
be seen as a potential FI, when the interaction it incorporates conveys a
functional meaning. There exists no direct one-to-one mapping between CI
and FI though. For example a cylindric interference can equally represent
a threaded link as well as a spline link. This is due to the simplified nature
of CIs. In both cases, either helical threads or meshed teeth and grooves
configurations are represented as a simple interference. These ambiguities
will be processed with the qualitative behavior to filter out some of them
(see Chapter 6).

Section 5.4.1 shows how to interpret CIs into their functional counter-
parts, i.e., their corresponding FIs.

4.2.6 Taxonomies

The concepts previously defined in this chapter define equivalence binary
relations, that is they divide the global sets of functions, components in-
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teractions, components, functional groups, and geometric interactions into
mutually exclusive subsets called classes. Examples are:

e Function defines reversible tightening as a class of the global set of all
functions F.

e FI defines threaded link as a class of the global set of all components
interactions Zy.

e FD defines cap-screw as a class of the global set of all components C.

e FC defines bolted joint as a class of the global set of all functional
groups G.

o CI defines complete cylindric interference as a class of the global set
of all geometric interactions Z,.

Those classes, however, can be grouped in their turn into more general
ones, i.e., larger mutually exclusive subsets. This grouping is the result of
sharing some less discriminant semantic properties, e.g., functional or geo-
metrical ones, across multiple primitive equivalent classes. We note that, for
example, reversible tightening is no more that a tightening function which
has a more specific property of being reversible. Thus, reversible tightening
and irreversible tightening can be grouped in a more general function class
called tightening. As a complement, disassemblable joint obtained with ob-
stacles and threaded links is a more specific class that is indirectly related
to the reversible tightening class. In the same spirit, complete cylindric in-
terference and partial cylindric interference are grouped in a more general
geometric interaction class called cylindric interference.

This leads to the structuring of each concept in a hierarchical structure
that reflects this generalization relation. We call each of these hierarchies a
taxonomy.

Definition 4.6 (Taxonomy). A taxonomy is a tree-like structure for which
the root is the concept domain of discourse, and the leaves are equivalence
classes that the concept defines. At each node, the children of the node are
mutually exclusive sets.

A concept domain of discourse is the global set that the concept covers.
That is F for function, Z; for FI, C for FD, 2€ for FC, and Z, for CL

Organizing FD in a hierarchical structure allows the proposed approach
to gradually identify components. For instance, a given component can be
first identified as a fastener at an early stage of the reasoning process, as
it complies to certain rules, this can be refined further by identifying the
component in hand as a screw in later stages. Finally, the component can
be precisely assigned the FD of a cap-screw if certain conditions are met.
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Figure 4.7: A subtree of the taxonomy of FDs.

Figure 4.7 shows a portion of the taxonomy of FDs, showing the path to
cap-screw. It is now important to note that the taxonomy of FDs uniquely
defines the components of a DMU where these FDs are located in the leaves
of the taxonomy. It is effectively the place where the taxonomy associates
a single component to one FD.

The same applies to Cls, where geometric properties of an interface can
be narrowed down in an adaptive manner using the taxonomy of Cls, starting
with detecting whether it is a contact, interference, or clearance® down to
the precise geometric configuration identification of the CI.

Figure 4.8 shows portions of FI taxonomy (left) and CI taxonomy (right),
and the relation between each class expressed at the leaf levels. This relation-
ship links each CI to all FIs that it may conventionally represent according
to observations in industrial DMUs. As the figure depicts, and as shown in
Section 4.2.5, this connection is inherently ambiguous as it relates one CI to
possibly more than one FI. It however defines at the outset how CIs must be
functionally interpreted knowing only their geometric properties (see Sec-
tion 5.4). This ambiguity is reduced on a case-by-case basis, as shown in
Chapter 6.

SWe show later in Chapter 5 that we are only interested in contacts and interferences
in the scope of our research.



90 CHAPTER 4. FUNCTIONAL RESTRUCTURING AND ANNOTATION

Figure 4.8: Taxonomies of Fls (left) and CIs (right). Dotted lines show how
they relate to each other at the leave level (the figure only shows a partial
view of each taxonomy).
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Figure 4.9: Data and process flow diagram of the proposed approach.

4.3 Method walk-through

In this section we define the outlines of our method using the reference
concepts introduced in the previous sections. The method takes as only
input the geometry of product components as represented in a DMU. The
proposed approach treats this model through different stages, as shown in
Figure 4.9, and concludes to deliver a restructuring of the initial geometric
models of components, with coherent technical and functional annotations
at different level of details where the first level is the FD of components.

Next, we briefly present each of these stages to synthesize the overall
process before details are elaborated in a dedicated chapter per stage in the
rest of this document. As depicted on Figure 4.9 the overall scheme is of
type linear and its main stages are as follows.

Extraction of component interfaces

The first step of the process is purely geometric. In this phase geometric in-
teractions between components are detected. A CI is created for each valid
interaction, and it is identified by the geometric nature of the interaction
zone. Cls are also loaded with information about their location and orien-
tation with respect to the whole assembly. Based on the nature of each CI,
the taxonomy of CIs (see Figure 4.8) is populated and a logical connection
is set up between the geometric data structure of this CI and its associated
instance in the taxonomy.

Also, the binary relations between components and Cls are expressed
in a graph structure, which is passed to the next stage together with the
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taxonomy of Cls, as a result of the geometric analysis.

Assignment of functional interpretations

In this stage, a first attempt to functionally interpret Cls is made. This is
performed strictly using the intrinsic geometric properties of each interface.
Generally speaking, more than one functional interpretation is possible per
geometric configuration, hence, more than one possible FI is assigned to each
CI. This process populates the taxonomy of FIs and set up the connections
between this taxonomy and the taxonomy of Cls that has been populated
at the previous step. The connection between the taxonomies conforms to
Figure 4.8. At this stage, all the functional interpretations of the interfaces
between components are expressed and structured to characterize the ambi-
guities living in a DMU that originate from the conventional representations
applied to each of its components.

Generating the instances of the taxonomy of Fls sets a link between
shape and function at the interface level between components. Because the
interfaces are the most elementary areas where components interact, their
functions are elementary and the corresponding set of functions is rather
small and can be enumerated easily. The behavioral phenomenon used to
assign function to each CI is based on the kinematic behavior of the interface,
i.e., the relative movements between the components defining this interface.

Chapter 5 details the detection and initial interpretations of geometric
interactions.

Qualitative behavioral assessment

In order to reduce the number of function interpretations to one per interface
between components, a physical dimension is given to each CI.

Since physical properties of interfaces are not yet available, we generate
assumptions for each possible interpretation, then the goal shifts to refute
some of those assumptions, thus their relative function interpretation. These
physical properties are related to a behavior of the DMU that express a
transition between reference states assigned to the DMU (see Section 2.2
and Section 2.3).

This refutation is made by validating each possible interpretation and
checking its physical plausibility and mechanical meaningfulness against a
set of established reference states. The corresponding process is based on
a qualitative behavior simulation to be independent of physical quantities
that are not available with the DMU and/or not available at the stage of a
product development process where the DMU is used as input.

The output of this stage is a precise functional interpretations of Cls in
terms of their respective Fls.
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Chapter 6 describe the details about the qualitative analysis algorithm
as well as the concept of state.

Assignment of functional denominations

Once functional properties of each interface is identified, i.e., the previous
step has discarded all unnecessary interpretations to keep only one of them
per interface, the functionality of components is investigated based on this
knowledge.

This is done using rules that describe relations between FDs, FCs, and
FIs, in a pattern-matching-like manner. This is the stage where relationships
between shape, behavior and function is used (see Section 2.3). The spa-
tial layout of interfaces combined with their functional behavior obtained
from the previous stage is used to infer the appropriate function of some
components, hence their corresponding FD (see Section 4.2.3).

The result of this stage is components classification into their correspond-
ing FDs, and components clustering into FCs. The component clustering
derives from the taxonomy generated from FCs.

Chapter 7 provides a detailed description of this rule-based reasoning.

Semantically-augmented geometric model

The previously collected knowledge is finally integrated into a semantically-
enriched and restructured geometric model of the DMU components.

The restructuring is the result of the breakdown of model components
into geometric entities that reflect the functional interactions between com-
ponents by means of its CIs (according to the functional breakdown), and
the classification of components belonging to the same functional cluster
into groups (according to the functional aggregation). Additionally, the ge-
ometric decomposition of components can be used to describe precisely the
FDs of components, i.e., the FIs of components involved in the FD of a
component are also connected to each other and related to the FD of this
component.

The semantic enrichment is achieved by the functional annotation of in-
terfaces, components, and groups of components. Based on this enrichment,
advantages can be gained to select components in a DMU in accordance with
their FD and their function and process their neighborhood (see Chapter 8).
This is particularly relevant for the pre-processing of DMUs for FEA.

4.4 Conclusions

This chapter has introduced some reference concepts of the proposed ap-
proach. These concepts outline the knowledge modeling process used through-
out the proposed approach. There, the dependencies between shape, behav-
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ior and function is precisely analyzed to produce efficient mechanisms that
can be used to enrich a purely geometric model of a DMU up to functional
information.

It has to be observed that the proposed approach is not depending upon
a particular morphology of the components that could restrict the range of
DMUs that could be processed. Therefore, the proposed enrichment process
is more generic than KBE approaches (see Section 2.6). Also, the boundary
decomposition of components resulting from the identification of Cls and
their enrichment with functional information to obtain FIs show how this
process can contribute to the definition of functional features and how these
features differ from features encountered in prior work (see Section 2.4).
Here, the dependency between shape, behavior and function brings consis-
tency to the functional information obtained from the enrichment process.

The proposed constructive bottom-up method has been presented syn-
thetically to emphasize its key steps. It has outlined central concepts (see
Section 4.2) and how they contribute to the context of the proposed en-
richment process, before we enumerated the major stages of the proposed
method in Section 4.3, shedding lights on how these concepts interact and
fit into the paradigm of shape - behavior - function dependencies. Intro-
duced concepts are revisited in the upcoming chapters, where we develop
our approach in more details.



Chapter 5

Functional Geometric
Interaction between
Components in a DMU

Product modules interact through precise interfaces, this applies to
all engineering domains as we have shown in Section 4.2.2. When
it comes to mechanical engineering those interfaces are the direct
result of components geometric interaction, where components play
the role of modules in this context. This joins what is referred to
in the literature as form-function relationship and shown in Sec-
tion 2.3.

The first indicator to components functions thus is their geo-
metric interactions. In this chapter we show how to efficiently, yet
precisely detect those interactions of interest as basis of a thorough
functional analysis.

5.1 Functional surfaces

As demonstrated in Section 4.2.2, Fls occur at the geometric interactions
between components in a DMU such as contacts and interferences. This
can theoretically happen between any kind of surfaces at both sides of the
interface, resulting in different possible types of interaction zones.

Observation shows, however, that geometric interaction of interest to our
analysis, that is those who convey a functional meaning, are restricted to a
subset of all possible configurations.

In fact, studying industrial DMUs showed that functional interaction
happens at parts of the components that fall in one of the following two
categories.

e Simple geometric configuration in the real product such as planar con-
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Figure 5.1: Approximate relative rotational position of components in a
spline link; detailed view on the left, global one on the right (courtesy AN-
TECIM).

tacts and cylindric fits. In this case the real geometry is not simplified
in the digital model, and surfaces are represented as they should be
manufactured.

This configuration is quite common. It is preferable as planes, spheres,
and ruled surfaces are relatively easy to machine rather than free form
surfaces.

e Complex repetitive geometric features, like helices and involute teeth.
Such profiles are necessary to insure specific physical behavioral prop-
erties, allowing the fulfillment of particular functions.

A detailed representation of such surfaces potentially leads to inac-
curate relative positioning of components when they are assembled
together (refer to Figure 5.1 for an example). Moreover, the machin-
ing of such profiles are done independently of the digital model, since
whole components are often out-sourced, or features are machined us-
ing particular tools. For these reasons, such detailed configurations are
simplified in the DMU, and reduced to simple contacts or interferences,
as shown in Section 3.2. Figure 1.7 shows how a threaded connection
between a bolt and a nut is represented as a simple interference.

In the lights of the aforementioned observation, we note that only inter-
actions that occur between canonic surfaces in the digital model may hold
functional interpretations, hence, only these interactions are of interest to
our research. This leads to the following hypothesis.

Hypothesis 5.1 (Functional surfaces). In a DMU, FIs are represented using
canonical surfaces that can be either planes, spheres, cones, tori, or cylinders.
We refer to such surfaces as functional surfaces.
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Free form surfaces, such as Bézier patches [151] and NURBS [130], are
still used in product modeling for different reasons, not the least of which
are their precise mathematical representation, intuitive modeling, and their
agronomic and aerodynamic qualities.

Since free form surfaces do exist in a DMU, interaction between them
may indeed occur in an assembly. However, they usually do not connect
components functionally. They may though represent function interactions
with the product environment, such as aerodynamic drag. Nonetheless, such
interaction are out of the scope of our study as external elements such as
gases and fluids are usually not present in a DMU.

5.2 Geometric preparation and rapid detection of
interactions

In this section we describe the very first stage of our method which consist of
the geometric analysis to detect components interfaces and their geometric
properties. First, the nature of the method input as the geometric model of
the product is explained. Before going into details of the optimized detection
algorithm.

5.2.1 Geometric model as global input

As mentioned in Section 4.3, our analysis and reasoning to reveal functional
properties about the product are based solely on the geometric model of this
product, as represented in its DMU.

In the context of our research we opt to use a standardized portable rep-
resentation, that is widely used in industry to communicate product models
between different CAD systems. This is STEP format as standardized by
ISO 10303 [7].

STEP aims to provide a neutral format that represents product data
all along its lifecycle, across different platforms. However, and as shown
in Section 3.4 industrial practices make little use of STEP support of non-
geometric annotations. We are, thus, only concerned about part of the stan-
dard that deals with geometric representation and referred to as AP 203 [8].

STEP is implemented using one of the following methods.

STEP-File Where product data are represented in and ASCII structured
file. This method is defined by ISO 10303-21 [10].

STEP-XML An alternative to the previous method that uses an XML
structured file. Both methods have the advantage of being highly

portable across different platforms. This method is defined by ISO
10303-28 [9].
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(a) (b)

Figure 5.2: Effect of maximal faces and edges generation. Patch boundaries
are marked with black edges. Initial boundary decomposition (a), boundary
decomposition with maximal faces and edges (b) (courtesy ANTECIM).

SDATI An Application Programming Interface (API) that deals with prod-
ucts data, and is defined by ISO 10303-22 [11].

Our methods takes a product DMU represented as a STEP-File for-
matted file, and passes it to the first stage of our approach: the geometric
analysis.

5.2.2 Maximal edges and surfaces

STEP describes components geometric models using a B-Rep format. Un-
fortunately, B-Rep encoding of a geometric object is not unique. That is;
two STEP files may represent the same shape differently. This is due to
the fact that an edge (then called a wire) can be represented as a set of
topologically-connected smaller edges laying on the same curve. The same
applies to faces, where a face can be divided into smaller ones that share
the same surface and are topologically-connected. This phenomenon origi-
nates from component modeling process where functional surfaces are often
broken down into smaller pieces because of the constructive nature of the
process inherent to industrial CAD modelers.

Additionally, geometric modelers are subjected to topological and para-
metric constraints [111]. This prevent the boundary decomposition from
matching the real boundaries of a component. For example, a cylindrical
surface can be represented either with two half cylinders or a single cylindri-
cal patch whose boundary contains a functionally meaningless generatrix,
since it is not a boundary of any surface on the real component (refer to
Figure 5.2).

The removal of such unnecessary geometric elements is mandatory to
obtain a unique geometric representation of a shape. As shown in Sec-
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tion 2.5.2, representation uniqueness is a must when useful information is
to be extracted from a geometric model. As a desirable side effect, the de-
crease of the number of geometric elements boosts the performance of all
subsequent geometric treatments.

To obtain this representation of components boundaries, adjacent faces
(i.e. topologically-connected ones) that belong to the same analytical surface
are merged into one entity; a mazimal face. A maximal face is represented
by its underlying oriented and topologically-connected faces. Edges are also
grouped into mazrimal edges using the same criterion, where adjacent edges
laying on the same analytical curve are merged. A maximal edge is repre-
sented by its underlying oriented and topologically-connected edges. As a
result, a cylindrical face can end up with a boundary described by two closed
edges without vertices. The corresponding data-structure uses hyper-graphs
and was introduced by Foucault et al. [68].

The resulting normalized geometric model with maximal edges and sur-
faces has a minimal number of topological elements (vertices, edges, and
faces).

5.2.3 Geometric interaction detection

Once the geometric model is normalized, it makes way for the detection of
geometrical interaction zones of interest that define CIs. This means the
detection of contacts and interferences that potentially convey a functional
meaning.

Clearances as functional plays

Clearances may imply functional intention as shown in Section 4.2.5, this is,
however, more intricate to detect than contacts and interferences. This is
basically because clearance detection, unlike that of contacts and interfer-
ences, is dependent on a parameter which is the play threshold. The play p
is the minimal distance that two component preserve between their surfaces,
and can be defined as

. . —
p= min min |[ppi]

as shown in Figure 5.3. If the play between two components is less than or

equal to a predefined threshold p < P, components C and Cs are said to

have a clearance.

This dependence on an input parameter is contradictory to our assump-
tion of a purely qualitative reasoning (motivations are explained in Sec-
tion 4.1). Moreover, and in spite of the potential functional implication
of plays, they are of less use to later stages of our analysis, as this poten-
tial functional contribution is not easy to verify. Finally, functional plays
are usually not simplified in any way when preparing a CAD model for
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Figure 5.3: Calculation of the play p between two solids C7 and Cs, where d
is the distance between two given points on the surfaces of 'y and Co, and
¢ is the minimal distance between a given point on Cj and the surface of

Cs.

simulation, that makes their identification irrelevant to the geometric trans-
formation process.

For all these reasons, clearance detection is kept out of the scope of our
implementation, while focus was given to efficient detection of contacts and
interferences.

Early elimination of negatives

A naive approach to the geometric interaction detection is to use boolean
operators—explained hereafter—between pairs of solids of the model at
hand. This can however be enhanced using the early elimination of neg-
atives.

Early elimination of negatives filters out candidate pairs that obviously
have no interaction zones, this is done using bounding boxes technique. A
bounding box of an object C' is a minimal box with edges parallel to the
global coordinate system, which inclusively contains the object C. Each
bounding box is then defined by six values (in 3D): Zymin, Tmaz, Ymins Ymaz,
Zmin, and Zmaz. Bounding boxes interaction check reduces to 6 floating-
point comparisons at most. If the bounding boxes of two components do
not interact geometrically, the two components do not either.
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Boolean operators drawbacks

Boolean operators provide an accurate tool to detect contact and interfer-
ence zones. The intersection between two solids! C; and Cj is computed,
generating a set of geometrically connected shapes S, where

VS1,S2 €S, int(S1) Nint(Sz) 0

A S= CinCy -
SeS

where int(S) = S — 95 is the interior of the solid S.

If S is an empty set, the two solids are said to have no geometric inter-
action. Otherwise, and for each resulting shape .5, if the shape is a volume
(possibly with non-manifold configurations) the two solids are said to be
interfering at S. If the shape is of a lesser dimension (a surface, curve, or
point) the two solids are said to be in contact at S.

Nevertheless, this tool is costly in time and resources. This cost quickly
becomes prohibitive, even for modestly large DMUs. Additionally, even
though the precise interaction zone is obtained as a result of the boolean
operation, geometric parameters are still to be looked for into those resulting
shapes. That means that the cylindric interference between two object, for
instance, is returned as a B-Rep shape, and still needs to be studied to obtain
the axis and diameters of the interaction, the axis being notably required
for further stages of our approach.

Canonical face comparison

To avoid the burden of boolean operators when not needed, a simpler, yet
more efficient, detection technique is utilized, based on the mere comparison
of geometric entity of two neighboring objects. We consider two objects to
be neighbors if they pass the bounding boxes test (i.e. their bounding boxes
interact with one another).

In this sens, bounding boxes are used first to filter out non-adjacent
solids. The remaining ones are then checked pairwise for geometric interac-
tions.

For each pair of solids, maximal faces of one solid that lie on canonic
surfaces are compared against those of the other. We adopt a simple, yet
extensible approach to extract geometric interactions, based on the compar-
ison of the geometric characteristics of canonic surfaces. This comparison
is no more than a secondary filtering of irrelevant interaction candidates
surviving the bounding boxes check. The final detection of interaction zone
is discussed in Section 5.3.

Take two solids C; and Cy whose bounding boxes are in interaction.
Therefore, canonic faces of C7 is to be compared to these of Cy. Let us

Solids here are represented by their closure C' = int(C) U 9C.
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consider a maximal faces F} C 90C7 and F5 C 9C5. We need to compare I
to FQ.

If both F} and Fy are planar, we check whether normals of the two
faces are opposite to each others, and if the difference between the position
vectors of the two faces is orthogonal to the normals. Given 1] and n5 the
normals of F} and F5, and p1 and p3 their respective position vectors, the
above-mentioned check can be stated as follows;

—

’I’L_i . Ny = -1
(Pi—p3) . mx = 0.
In this case the two faces are reported as a potential planar contact.

If Fy is cylindric while F5 is planar, we check whether the axis of the
cylindric face is parallel to the planar surface, and that the distance between
the axis and the plan is equal to the radius of the cylinder. Given aj the unit
vector in the direction of the axis of the cylindric face Fi, ri its radius, 13
the normal of the planar face F5, pi and p3 the respective position vectors
of Fi and F5, the above-mentioned check can be stated as follows;

al ny = 0
(P_i—pa) .onp = T

In this case the two faces are reported as a potential linear contact.

If both F} and Fy are cylindric, we check whether the two axes coincide.
Given a7 and a3 the unit vectors in the directions of axes of F; and Fs
respectively, and pi and p3 their respective position vectors, the above-
mentioned check can be stated as follows;

lai . a3 = 1
|(pi—p3) . a3] = 1.
In this case, and if the radii are equal ;1 = 79 the two faces are reported
as potential cylindric contact. If the radii are not equal, a further test of
surface orientation is done. In this case, if the cylinder with smaller diameter
is oriented inwards, while the other one is oriented outwards, the solids of
the two faces are reported as potentially in cylindric interference?.

It is worth noticing that the above-mentioned criterion only allows for the
detection of cylindric interferences for which the axes of the cylindric faces
at both sides of the interaction coincide. Although, other configurations can
be envisaged where the condition of axes coincidence is relaxed to simple
parallelism. In the latter case, an additional condition on the perpendicular
distance d between the two axes with respect to cylinder radii should be
introduced. More precisely, the distance between axes should be less than

2The inverse case, when the cylinder with smaller diameter is oriented outwards and
the other one is oriented inwards would denote a potential clearance. However, clearances
are not considered in the scope of this work.
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the sum of radii if partial, as well as complete, interferences are considered
d < r1 + rg, and less than the difference of radii if only complete cylindric
interferences are considered d < |r; — ra|. The distance d can be calculated
as follows;

d=|(p1 —p2) — ((p1 — p2) - a1) ail|.

Such a configuration does not reflect an interpretable functional inten-
tion. Nonetheless, it may be encountered in industrial models as a result
of imprecise geometric representation to what otherwise would be a coax-
ial configuration. Even if the detection of such configuration is technically
possible with a minimal cost, it poses, however, a problem of interpretation.
Such a configuration is thus not considered in the actual work, and is left
for future extensions.

Combinations of other canonic faces such as spheres, cones and tori are
also considered and studies, reporting candidates to circular and conic con-
tacts.

Up to this stage, geometric interaction filtering is implemented in the
class BoundingBoxesGID (for Bounding Boxes Geometric Interaction Detec-
tor) in our code. Note however that this class signal all potential candidates,
as discussed above, leaving the final decision to boolean operators, as dis-
cussed in Section 5.3.

A major advantage of this technique is the order of magnitude drop in
execution time it exhibits compared to mere boolean operators, as costly
solid intersection calculation is avoided when not needed.

Furthermore, results obtained by this method readily contain geometric
characteristics of the interaction, such as axes and normals, that are used
to define a local Cartesian coordinate system, as shown in Section 6.3.1.

A drawback of this method is that it only detects interaction between
surfaces that have a simple set of geometric characteristics; i.e. canonic
surfaces. Contacts and interferences that involve free-form surfaces are not
detected using this method, even if the opposite surface is canonic. However,
in the context of this research, this is tolerated, and even favorable, given
that we are only interested in functional surfaces, as shown in Section 5.1.

5.2.4 Local coordinate systems

CIs are shipped with local coordinate systems that are particularly impor-
tant when assigning physical properties to these interfaces. As Chapter 6
will unfold, dynamic and kinematic behaviours of a CI are expressed with
respect to these local coordinate systems.

The choice of a local coordinate system is thus not arbitrary. They are,
in fact, orthogonal right-handed coordinate systems, conventionally defined?
in as much aligment as possible to geometric characteristics of the interface.
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To this end, coordinate axes are defined based on normals and axes
of symmetry whenever available. As an example, for a rectilinear contact
(such as the one between a cylinder and a plane shown in Figure 5.4b), the
z-axis is defined along the surface normal, while the z-axis is defined by
the contact line, the y-axis is then deduced using the right-hand rule, as
the vector product of the - and the z-axes. For planar contacts (shown in
Figure 5.4a), only the z-axis is deterministically defined, while the z- and
y-axes are left to lie on the contact plane. The choice of the coordinate
system origin is also of important significance. In our work, this point is
chosen to be the barycenter of the interaction zone, whether it is a curve,
a surface or a volume. Figure 5.4 shows more examples of Cls geometries
associated with their conventional coordinate systems.

It is important to note that the choice of coordinate system is a matter
of convention. What does really matter here is the coherence between con-
ventions made at this stage, and those considered when assigning physical
properties to the interface. For example, a simple planar contact delimits
object translational motion along its normal, while leaving it free to translate
parallel to its surface. By making a coherent choice of the local coordinate
system, say the one shown on Figure 5.4, one can say that a planar contact
eliminates object translational mobility along the positive direction of the
z-axis of such a contact.

5.2.5 Conventional interface graph

The outcome of this phase is represented as a graph referred to as conven-
tional interface graph (CIG). This is a mathematical model upon which we
build our reasoning in phases to come.

Definition 5.1 (Conventional interface graph). The CIG is a directed graph
G(C,I) that has the set of all components in an assembly C as its nodes,
and the set of their Cls I as its edges.

Initially, edges of the graph (i.e. CIs) contain information only about
the geometric interaction between two nodes (i.e. two components), such as
normals, axes, directions and radii, along with the interface local coordinate
system transformation matrix with respect to the global coordinate system.

Even though some Cls are geometrically and functionally symmetric,
such as those resulting from a simple planar contact, the concept of CI is
still asymmetric in general.

A cylindric contact for instance generates a CI, we can clearly recognize
the outer component from the inner one. This recognition can be made
for many types of geometric configuration. CI asymmetry makes the CIG

3Conventions are made in the scope of this work.
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(a) Planar Contact (b) Rectilinear Contact

(d) Punctual Contact

- -

(e) Conic Contact (f) Cylindric Interference

Figure 5.4: A set of conventional interfaces with their associated coordinate
systems.
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Clg: Conic Contact

B j \

Cl3z: Planar
Contact

Cl2: Planar
Contact

Cl1: Cylindric Interference

Figure 5.5: A cross-section in a partial geometric model model of a capscrew
and a nut tightening up two plates, showing detected Cls.

a directed graph. Even when the geometric nature of the interface makes
no distinction between the two components at each side, one of the two
orientations is assumed to define the edge orientation in the CIG.

We refer to the graph produced by ignoring edge orientations in CIG as
the conventional interface underling undirected graph (CIuG).

Figure 5.5 shows a cross-section in a model of two plates; A and B,
tightened up together by means of a capscrew D and a nut C. It also shows
ClIs between components as represented in the DMU: a cylindric interference
CIibetween C' and D, two planar contacts Cls and Cl3, between B and C
and A and B, respectivly, and a conic contact CI between A and D. This
information is initially unavailable in the input model; which is the DMU.
Figure 5.6 shows the corresponding CIG, where components A, B, C, and
D form the nodes, and interfaces C'Iy, Cls, Cls and C14 form the edges,
after being detected.

While classes Component and ConventionalInterface represent compo-
nents and Cls respectivley, the CIG is represented by the class Conventional-



PRECISE DETECTION OF INTERACTION ZONES

107

(CI1: Cylindric Interferencew ( Clyg: Conic Contact 1
Threaded Link Conic Support
Spline Link Self-locking Fit

( Cl2: Planar Contact 1 ( Cl3: Planar Contact 1

L Planar Support Planar Support J

Figure 5.6: The CIG of the model represented in Figure 5.5, enriched with
functional interpretations, as a set of FIs assigned to each CI. Only relevant
edge orientations (those reflecting asymetric geometric interface) are shown

on the figure.

InterfaceGraph in our implementation.

5.3 Precise detection of interaction zones

The technique discussed in Section 5.2.3 is still approximate, it only filters
out non-interacting canonic faces based on the comparison of the geometric
parameters of their carrying surfaces. Faces that the previous phase reports
are likely to interact, nonetheless, another measure is still needed to ensure
real interaction. For example, two coaxial cylindric faces that share the
same radius are reported as potential cylindric contact, though they may be

afar along the axis and no actual contact takes place.

Moreover, the simple approach developed above fails short to deliver
accurate interaction zones. Even though this shortage can be easily over-
looked for the inference process, precise contact and interference zones are
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still required for FEA purposes, as seen in Section 3.3.2.

A confirmation stage is hence necessary to validate candidates reported
by earlier stages, and to produce precise interaction zones for those that are
indeed valid.

To this end we use boolean operator applied to pairs of maximal surfaces
in case of candidate contacts, and to solids in case of candidate interferences.

In spite of their high cost, as mentioned in Section 5.2.3, boolean oper-
ators are used to obtain precise geometric zone necessary for further FEA
treatment, hence, their cost are justified for positive candidates. Since this
is a final verification phase, only small number of false positives survive the
previous filters compared to the total number of candidates, minimizing the
wasted time computing intersection between non-interacting solids.

Candidates resulting from the canonical face comparison are thus vali-
dated using intersection operators, if the resulting shape is not empty, the
interaction is considered valid, and a CI is created to represent it, adding
an edge to the CIG. The newly created CI is associated to a local Cartesian
coordinate system as shown in Section 6.3.1.

To enable the referencing of precise interaction zones and their annota-
tion with functional semantics, before the model is passed to applications
such as FEA, the geometric model of a component is restructured according
to those interaction zone. This makes the functional breakdown mentioned
in Section 4.2.3 possible as soon as the semantic annotations are available.

The OpenCascade software library [149] is used in our implementation
to conduct boolean operators whenever needed. The class BooleanBBGID, a
subclass of BoundingBoxesGID, implements the final precise detection of in-
teraction zone in our code, overriding the method verifyInteractions(int,
int) that constantly returns true in its superclass.

5.4 Form-functionality mapping

Section 4.2.5 showed how functionality is satisfied as a direct result of ge-
ometric shape and physical material properties of components and their
interfaces [118]. Given exact shape and material properties at both sides of
an CI we can then deterministically deduce the functional role it plays in
an assembly. However, this deduction is not readily possible in the DMU,
because of the following reasons.

Imperfect geometric representation Section 3.2 showed that the DMU
geometrically represents the product through its constituent sub-as-
semblies and components at different levels of details. That means
that many form simplifications may take place, leading to loss of geo-
metric information. Those simplifications are influenced by some sort
of conventions, either internal to one company, or agreed upon for a
specific 3D models provider or library as mentioned in Section 4.2.5.
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Some simplification conventions may become a de facto standard, but
there has never been a well-defined globally-recognized standardization
of such conventions and notions, in contrary with many traditional 2D
blueprints notions, as seen in .

Incomplete material information A DMU may or may not have a BOM
attached to it (see Section 1.7). When a BOM is available, it provides
an indication of physical properties that contributes to the function-
ality of a component or an interface. Once again, this information not
reliable, neither in terms of existence (a DMU is not guaranteed to
have a BOM), nor in terms of meaningfulness (there is no standards
governing what information a BOM should contain, and in which for-
mat).

Because of this incomplete knowledge about shape and material prop-
erties in a DMU, the immediate deduction of functionality is not possible.
However, assumptions can be made despite this incompleteness. Those as-
sumption can then be reduced when the missing knowledge is reconstructed
form existing one.

In this work we only consider pure geometry. We thus assume that
the the BOM is unavailable, or uninterpretable, which is the worse case.
Assumptions about materials physical properties such as stiffness and ad-
herence are discussed is Section 6.2 when reference states are introduced.

5.4.1 Multiple functional interpretation

Considering geometric simplifications conventions observed in the industry,
a limited number of assumptions can be made about the real shape when a
specific geometric configuration is encountered in a DMU.

Section 4.2.5 showed that different Fls, such as threaded links and spline
links can be represented as simple cylindric interference in a DMU. Another
example of the use of the same geometric interface for different functional
meanings is a simple cylindric contact that can refer either to a snug or to
a loose fit (see Figure 3.3).

This allows us to link a given geometric interface, represented by a CI,
to a set of functional interpretations, for each, an assumption is made about
the real shape and physical properties of materials.

Definition 5.2 (Functional interpretation). A function interpretation is the
assignment of one FI to a CI.

The assumption made for each interpretation provides the interface with
a physical dimension, as developed in Section 6.3.1. More than one interpre-
tation can be made per CI (see Figure 4.8), thus more than one independent
physical and behavioral assumption.
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5.5 Conclusions

Our methods takes a pure geometric representation of a product as a set
of solids representing components. In this work we adopt an ISO standard
that represents the geometric model as a STEP-File [10].

The geometric analysis consists of detecting the geometric interaction
between solids, those are contacts and interferences defined in Section 4.2.5.

A preliminary approach would be to use geometric boolean operators,
preceded by early elimination of negatives by means of bounding boxes
checks.

We are particularly interested in those interaction occurring between
faces that are likely to connect components with a functional bound. Ob-
servation shows that those faces happen to lie on canonic surfaces. This ob-
servation allows us to optimize our detection algorithm, adding a secondary,
relatively fast, elimination filter right after the bounding boxes check.

Final validation and generation of interaction zones is still done by means
of boolean operators, calculating intersection between potentially interacting
elements.

This method is able to efficiently detect geometric interactions between
canonic surfaces. The intermediate filtering between bounding boxes check
and boolean operators validation reduces the detection time by orders of
magnitude.

Geometric interactions of interest define Cls that link components to-
gether generating a directed graph called the CIG.

Once Cls are geometrically recognized, they are provided a physical di-
mension through functional interpretations. Functional interpretations are
assumptions about the functional intent of the interface, made in the light
of its geometric properties in the DMU. As a result, each CI is interpreted
into one or more FI. This imprecision is due to the lack of reliable infor-
mation about exact geometry and materials physical properties. Checking
the validity of those assumptions allows for the elimination of irrelevant in-
terpretations. The elimination process is to be discussed in the following
chapter.



Chapter 6

Qualitative Behavioral
Analysis of Components
Functional Interactions

The previous chapter has shown that component FI assignment
can lead to multiple solutions due to shape simplifications between
their real and digital shapes. The corresponding assumptions have
used shape — function dependencies. To reduce the number of FI
per CI to one, which is the real configuration, the purpose is now
to refer to behaviors to filter out FIs. Because the input data is
a purely geometric representation of a DMU, it is proposed to set
up a qualitative approach to describe behaviors where it is pos-
sible to take advantage of the somewhat precise representation of
components while reasoning qualitatively with physical parameters.
Because this approach is qualitative, it is applicable to a wide range
of stages in a PDP, up to early design stages where the physical
parameters related to FIs and, more generally, to components, are
no yet available.

In this chapter, we demonstrate such an approach, defining ref-
erential behavioral states against which the validity of functional
assumptions is checked to narrow down the number of possibilities
to one functional interpretation per CI.

This chapter is organized as follows: the concept of reference
state and energy preserving hypotheses in assembly joints are pre-
sented in Section 6.2, then the qualitative representation of joint
forces and velocity properties is introduced in Section 6.3 through
the concepts of qualitative wrench and twist screws. Finally, the
reasoning scheme to select appropriate functions for each CI, which
is based on static equilibrium and statically indeterminate reference
states, is presented in Section 6.4 and Section 6.5.
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6.1 Behavioral study to bind form to functionality

The previous chapter showed how to build the CIG that reflects our initial
knowledge about the assembly through a graph structure. Even when en-
riched with functional interpretations, this knowledge still shows functional
uncertainty.

Uncertainty in the knowledge base stems from the fact that some Cls
hold more than one functional interpretation, thus, they cannot yet be
mapped to a single FI. To reduce such uncertainty, additional rules and/or
facts are to be taken into consideration, before being able to speculate about
FDs and FCs of components and component groups.

Since the geometric analysis is not sufficient by itself to lead to a decisive
functional resolution, as shown in Section 5.4, the concept of mechanical
behavior, as discussed in Section 2.3.1, is borrowed here to take advantage
of the form—function—behavior dependencies to strengthen the relationship
between geometry and functionality so that efficient decisions can be taken
over Fls to reduce them to one per CI, wherever needed is the assembly
input.

Behavior can cover a wide spectrum of physical phenomena. In the scope
of FE simulations, mechanical properties of components and their interac-
tions, such as reciprocal forces between components taking place at each CI
and force cycles tightening groups of components together are key elements
that can be exploited to define behavioral models. Even though these me-
chanical properties are directly related to boundary conditions required by
FE models, they are also of general interest. For example, reciprocal forces
express whether a component can or cannot move with respect to its neigh-
bors, which is also of interest in configurations of assembly or disassembly
processes. Therefore, the concept of behavior and its qualitative approach
can be seen as a generic tool that can be used to probe a DMU.

6.2 Reference states

Reference states (RSs) reflect rules that apply to the domain of discourse.
In this sense, RSs are domain knowledge, as introduced in Section 2.6.1.

This knowledge may clarify ambiguity by reducing uncertainty in the
knowledge base, e.g., reducing the number of functional interpretations per
CI to ideally one. It also may produce certain new facts, such as the existence
of a functional group that ties some subset of components. A RS is formally
defined as follows.

Definition 6.1 (Reference state). A reference state (RS) is characterized
by a set of input and a set of output physical parameters applied to a
subset of components of a DMU. This subset may cover the whole DMU and
the DMU is processed as given in its input geometric setting. A physical
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behavior, consistent with the input and output parameters set up and a
set of hypotheses is associated with the DMU to express the corresponding
physical phenomenon. This behavior is characterized by a set of equations
that takes as input the set of input parameters characterizing the state and
the geometric configuration of the DMU and produces as output the set of
physical parameters characterizing this state. A reference state can match
any specific state) of the product lifecycle, e.g., assembly process, working
condition.

This definition straightforwardly relates to the notion of function (see
Section 2.2) that can be related to sets of input and output parameters of
a product or sub-system. Here, the purpose is to characterize a RS with
its input parameters, behavior equations, hypotheses and study the output
parameters that will characterize functions at some Cls of some components.
From the characterized functions, it will be possible then to confront them
to the assigned FIs and discard some of them when inconsistencies appear,
i.e., the function expressed by a FI differs from the function derived from
the output of the state behavior.

Indeed, the hypotheses and behavior equations are formed in terms of
rules against which our knowledge about the DMU is checked, reducing
uncertainty by refutation and producing facts by deduction. It has to be
noticed that the principle of qualitative reasoning will explicitly, or implic-
itly, refer to relative physical values between components or products.

Different RSs have been recognized, both static and kinematic. Only
static RSs, namely static equilibrium (see Section 6.4), and static determi-
nacy (see Section 6.5), have been implemented in the scope of this work,
at a first step, even though others are discussed such as kinematic chains.
Initially, all studied RSs consider components as rigid bodies, unless rigid-
ness proves to be impossible, that is, no possible functional interpretation
satisfies this hypothesis.

Hypothesis 6.1 (Rigid bodies). Unless otherwise stated, components ma-
terials are assumed to be of high stiffness such that components are consid-
ered as rigid bodies, i.e., the loading conditions of a component do not alter
its geometry. It is a common hypothesis for manufactured products where
steel and other materials often lead to this hypothesis. It is also a common
hypothesis used to define the boundary conditions of FE models prior to the
use the deformation models expressed through the FE method.

This allows us to safely apply rigid body statics and kinematics through-
out our analysis. This means also that the geometry of the DMU can be
used straightforwardly.

Another common assumption that we make in default of any other clue
is that connections between components of the assembly are ideal, thus
frictionless. This can be generally formalized as follows.
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Hypothesis 6.2 (Conservative systems). Unless otherwise stated, the set
of components of the assembly forms an energy-conservative system. This
hypothesis imply that contacts are frictionless, i.e., there is no tangential
force between contact surfaces between any two components. We assume
the state of contacts is not changing, i.e., a pair of solids having a planar
support remain in contact. If not so, this means that the current RS is no
valid and a switch to a new one must be operated.

This allows us to safely alternate between kinematic and static properties
of interfaces, knowing that no work is done when two components move
as per DoF allowed by an FI, or when internal loads propagate from one
component to another through an FI. Again, this is the default configuration
often used during design processes. Friction, however, can be of function
importance and, it this particular case, lead to specific models as it will
appear later on.

In the scope of this work, we only consider mechanical interactions be-
tween components in a product. This is because the recognition of other
types of interactions, such as electromagnetic ones, require information be-
yond product geometry. Such information is not available in a DMU the
way we consider it as an input to our analysis (see Section 1.11). Indeed,
the objective of the proposed approach is to set up a process as automated
as possible, in a first place. We state the aforementioned assumption as
follows.

Hypothesis 6.3 (Mechanical interactions). In the scope of this study, we
consider forces internal to a product to be purely mechanical and generated
by solid components.

This allows us to ignore forces generated by electromagnetic fields, flu-
ids, ...and to be consistent with the assembly model effectively input, i.e.,
the geometry of each component is known but there is no explicit represen-
tation of fluid and gaz domains in a DMU.

6.3 Qualitative representation of physical proper-
ties

In order to relate geometry to behavior, as a prerequisite to relate geometry
to function, we need first to dress geometry in a DMU with physical prop-
erties. Properties of interest can either originate from statics, such as forces
and torques' or kinematics, such as linear and angular velocities.

As long as functionality is concerned, this dressing should happen at the
component interface level, i.e., the CI level, as it is the place from which

LA torque being the moment of a force vector about a given axis.
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functionality actually emerges. Section 5.4.1 showed how a functional inter-
pretation of a CI connects it to a geometrically possible FI, in the light of
industrial common practices. In fact, physical behavior, such as static and
kinematic properties of an interface, directly relates to function [72, 136],
as shown in Section 2.3.1. Making a functional assumption about a CI,
the way a functional interpretation does, allows us to cast a behavioral —
thus physical—- dimension on the interface, as will be shown in more details
hereafter.

Section 4.1 showed the motivation behind a purely qualitative approach.
All studied physical attributes should thus support this requirement. In this
section, we explain how static and kinematic properties can be expressed as
qualitative values, before they are used to reason upon functional proper-
ties of components. We therefore provide our method with adequate data
structures and their corresponding operations, arithmetics, and inference
algorithms. Here, we promote an algorithmic approach since the concept
of RS, the static and kinematic behaviors, are independent of a domain
knowledge.

6.3.1 Qualitative physical dimension

An FI is given a physical dimension by associating it with a characteristic
wrench screw? W = { ﬂf} representing force and torque applied through
the corresponding FI from one component onto the other one where FI is
defined. This assumption is possible in light of Hypothesis 6.1 and Poinsot’s
theory [132] that states that any system of external force exerted on a rigid
body can be resolved by one force, and a torque on a plane perpendicular
to the force direction.

The abstract class Screw represents a general screw as two vectors (ob-
jects of the class ScrewVector) in our data structure scheme.

Values of force and torque vectors, however, are not scalars, as expected
in a general dual vector, but qualitative symbols. These values decide in
which direction, for a given vector component, a force or a torque may, or
should, propagate. The following is a comprehensive list of nominal values
that is used to this end.

Not Null: indicates that the underling FI propagates internal force/torque
in either orientation along the corresponding axis.

Null: indicates that the underling FI does not propagate any internal force/torque
along the corresponding axis.

Strictly Positive: indicates that the underling FI propagates internal force/torque,
in the positive direction only, along the corresponding axis.

2Refer to Appendix C for details on screws and their representation as dual vectors.
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Table 6.1: Qualitative vector values

Value ‘Symbol ‘Real interval ‘
Not Null ©) | — 00,0[U]0, +00]
Null © [0,0]

Strictly Positive ® 10, +o0]

Strictly Negative o ] — 00, 0[
Arbitrary ® | — 00, +o0f

Strictly Negative: indicates that the underling FI propagates internal
force/torque, in the negative direction only, along the corresponding
axis.

Arbitrary: indicates that the underling FI may or may not propagate in-
ternal force/torque, in either direction, along the corresponding axis.

Each FI is associated to a specific geometric configuration. For instance:

e spline and threaded links, and snug and loose fits, are associated geo-
metrically with a couple of cylinders;

e planar and circular supports can be associated with a couple of planes
and a plane and a torus, respectively;

e a linear support can be associated with a cylinder lying on a plane.

This enables an FI to acquire a local coordinate system, the same way
a CI does (see Figure 5.4). A wrench screw, defined as a dual qualitative
vector of values of Table 6.1, is then expressed in this local coordinate system
and attached to the FI.

As a subclass of Screw, the class RelativeScrew represents qualitative
dual vectors expressed in a local coordinate system in our application.

When a FT is processed, its local coordinate system is aligned with the
local coordinate system of its underlying CI, which is in turn defined under
the global coordinate system of the assembly. This allows the behavior
model to locate the qualitative wrench screw globally with respect to the
DMU.

Wrench and twist screws assigned to a planar support

When a planar support, an FI, is associated with a planar contact, a CI,
through a functional interpretation, the corresponding interface refers to
two components C7 and Cy. Let us consider that ' is chosen as reference
component and CI is characterized by its imprint on its surface. Then, a
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local coordinate system is assumed to have its z-axis coinciding with the
contact plane normal, and its origin O at the barycenter of CI, as shown in
Figure 5.4a. C7 being chosen as reference, we then observe that for an ideal,
frictionless, planar support, as suggested by Hypothesis 6.2, all infinitesimal
external forces that may be exerted by Cy on Cj through CI are normal
to the plane, thus parallel to the z-axis of the interface local coordinate
system. A force can then be expressed in the local coordinate system as
df = (0,0,df,) where df, < 0 is the force per infinitesimal area of CIL.
Hence, the vector representing the sum of these infinitesimal forces is of the
form:

f= (0,0, f.) where f, < 0. (6.1)

To compute the moment vector of f about the origin 0 = (0, 0, 0), w
note that d f produces a moment of the form: di' = (P — O) x df, where
P = (z,y,0) is the position vector where d f applies in CI, and X is the
vector cross product operator.

di =(P-0) xdf,

= (2,9,0)  x(0,0,df.),
(ydfm —x df;,0) ,
= (dty, dt,,0)

We observe then that the sum of these infinitesimal torques about O is
of the form:

t_ixo,ymzo) = (t;,;,ty,()). (6.2)

In fact, Equations 6.1 and 6.2 can be expressed by means of a wrench
screw W; using nominal values of Table 6.1.

W, = (6.3)

ONCONC);
©®®

This physical understanding of a functional interface leads to the same
result if the phenomenon is studied from a pure kinematic perspective. In
the case of planar support, we define FI by its twist screw T that represents
the relative velocity (vs,vy,v.) and relative rotational speed (w,wy,w;)
vectors between Cy and Cy as:

0 | vg
Ti={wv} =4 0 | vy p. (6.4)
w, | 0

This kinematic standpoint can be also regarded from a functional per-
spective since T expresses the relative movements between C and Cy when
their contact is preserved.
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Definition C.2 states that a pair of wrench screw and twist screw is
reciprocal when the virtual work of the wrench on the twist equals zero.
This can be stated as follows:

dwWw =

(W o T)dt
WoeT
{flm}y o @ls) =
Fo+m o =

I
oo ocooco

(6.5)

In the context of this thesis, the component interfaces conform to Hy-
pothesis 6.2 by default. Hence, contacts are frictionless and are neither
power generators nor consumers, meaning that the wrench and twist screws
are reciprocal [133]°.

We thus obtain the following wrench screw of a planar support, that,
along with twist screw T1, satisfies Equation 6.5:

0 |t
W, =<0 |t (6.6)
f-10

Now considering the unilateral geometric configurations of FI, it is nec-
essary to add the condition f, < 0 to Equation 6.6. We then can express
W using qualitative values as shown in Equation 6.3.

Screws applied to cylindric contacts

Another example is a loose fit between C and Cy, which is associated to a
cylindric contact through a functional interpretation. In this case, we define
the local coordinate system to lay its z-axis on the cylinder axis, while the
origin of coordinates O coincides with the same axis at barycentric position
of the CI.

Then, we observe that all infinitesimal external forces are radial, i.e.,
normal to the contact surface on Ci, in an ideal, frictionless support, as
suggested by Hypothesis 6.2. The vector representing the force applied by
Cs on Cy over a cylindric support is then of the form:

—

df = (dfz, dfy,0) (6.7)

where the z-axis coincides with the cylinder axis.
The moment, at point O, of an infinitesimal force df = (df,df,,0)
is given by the equation df = (P — O) x df, where O = (0,0,0) is the

3We actually consider a screw space here, i.e., a space of all screws generated by linear
combinations of one screw of the given form, instead of a single screw, and its reciprocal
screw space. We, however, stick to the term screw in the rest of the document for the
sake of simplicity.
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Flgure 6.1: Vectors of position P(ax1al Q, and radial, R components), force,
F and torque ¢ of a cylindric support, represented in the local coordinate
system of a cylindric contact.

origin of the local coordmate system in use, and P is the position where the
infinitesimal force apphes P can be decomposed into two components; the
axial component @ = (0,0, z), and the radial component & = (x,y,0), w
note that x . dfy, = y . df, since the infinitesimal force applies at P (see
Figure 6.1).

dt

= (B-0) x df.

(G + 1) x df.
Q
= (0
= (0,
= (

l\_/\/

0) x
+§ X
x df + R X df,

0,2) X (dfardfy,0) + (2,4,0) % (dfar df,.0),
0,

—

z) X (dfs,dfy,0) +0,
dty, dt,,0).

The sum of such infinitesimal torques about the origin O, is then of the
form:

t_ixoyymzo) - (tmatzﬁo)- (6.8)

Again, Equations 6.7 and 6.8 can be qualitatively expressed by means of
a wrench screw Wy:

Wa

I
©®®
©®®
=)
N
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From a kinematic standpoint, a loose fit can be defined by its twist screw
as follows:

00
To={0]03%. (6.10)
Wy | Uy

Ts can be also interpreted from a functional perspective where v, and w,
are the output parameters that express the relative movements of Cy with
respect to Cj.

Taking the reciprocal screw of Ty, we obtain the wrench screw of this

FI:
Jo | ta
Wo=qfy|typ- (6.11)
010

Using qualitative values of Table 6.1, we obtain the same wrench screw
as in Equation 6.9, showing that no other condition needs to be added to
describe a loose fit.

Qualitative wrench screws applied to contacts

In an analogous manner, a qualitative wrench screw is assigned to each FI.
Table 6.2 shows examples of FIs, and their associated qualitative wrench
screws deduced using the same reasoning as mentioned above. Screws shown
in the table are to be interpreted in the local coordinate systems of the
corresponding Cls, as shown in Figure 5.4. Here, it is important to note
that not all the FIs conform to Hypothesis 6.2. From a functional point
of view, it is necessary to consider configurations where adherence between
C1 and Cs plays a central role. This can be observed when comparing the
loose fit a the snug fit. Independently, of the materials of C; and Cy and
of the diameter differences between C| and C5, the design principle of this
fitting is to resist to components f, and ¢, under working conditions of
a product. This justifies the content of W and T compared to the loose
fit. This observation is critical since, the qualitative screws of the snug fit
differ from that of the loose fit whereas their CI is identical, i.e., in the
assembly model the conventional representations of these Fls are identical
(see Chapters 4 and 5).

Though this is not detailed for sake of conciseness, a similar analysis
applies to the conical support and self-locking fit where adherence is also of
functional effect though it is combined, in this case, with the apex angle of
the cone. This angle is a geometric parameter that influences the adherence
effect of the conical fit. This could hinder the qualitative approach but the
purpose is not to evaluate a design configuration, it is the analysis a valid
ones. Consequently, a first approach can be the categorization of apex angles
from a functional point of view. In this case, apex angles can be categorized
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efficiently into conical support and self-locking fit using an angle threshold
because this adherence phenomenon varies slowly with respect to the apex
angle and is rather insensitive with respect to the categories of constitutive
materials of 'y and Co. This approach, however, is not the most generic
one. A second one consists in dropping the reference to the apex angle, i.e.,
to geometry and refer to a specific physical behavior. This is the solution
described here at Section 6.5.1.

6.3.2 Algebraic structure of qualitative values

To enable the use of qualitative screws against static equilibrium equations,
certain arithmetic has to be defined on qualitative values represented in Ta-
ble 6.1. Notably, the addition (4) and multiplication (.) operators. The se-
mantics of these operators is defined through interval arithmetic [59], where
each qualitative values represent real intervals as Table 6.1 shows.

Given K and L € [R], a set of real intervals, an interval operator x :
[R]?2 — [R] is defined as the interval extension of the real operator  : R? — R
as follows [59]:

KxL={z3(z,y) € K x L,z =z *y}. (6.12)

To this end, we define addition and multiplication operators on the set
of qualitative values Q = {©,®,6,®,®} as an extension of real addition
and multiplication, by replacing K and L in Equation 6.12 by the interval
each value represents. We obtain the Cayley tables shown in Table 6.3.

Studying addition (4) in Table 6.3, we observe that:

e addition is closed on @, i.e., all table cells are included in the entries;

e addition is associative, i.e., this can be established using Light’s algo-
rithm [97]);

e addition has an identity element ©, i.e., its raw and column match the
entries;

e addition is commutative, i.e., the table is symmetric.

We establish then, that (@, +) is a commutative monoid. Now, studying
product (.) in Table 6.3, we observe that:

e product is closed on @), i.e., all table cells are included in the entries;

e product is associative, i.e., this can be established using Light’s algo-
rithm;

e production is commutative, i.e., the table is symmetric.
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Table 6.2: Different FIs and the CIs they originate from. Each FT is given
a physical dimension using a qualitative wrench screw W and a qualita-
tive twist screw T, defining its static and kinematic behaviors, respectively.
Screws are expressed in the local coordinate system of the corresponding CI

(see Figure 5.4).
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Table 6.3: Addition (+) and production (.) Cayley tables over qualitative

vector values.
EXEEIE

©
©
®
S
®
®

® 00|06
® 000 |
® @ @SN
® 00|06 |
©|0|60|0|o

We establish then that (@,.) is a commutative semi-group [98].

It can be shown, on a case-by-case basis, that product is distributive over
addition, we thus infer that (@, +, .) is a semi-ring [98], which is commutative
with @ as identity.

We also observe that:

VP, €@, p+qg=0 = p=0Aqg=0;
Vp,qe@Q,p.q=0 = p=0Vqg=0.

It follows that (Q,+,.) is a semi-field [98].

Qualitative values and their arithmetic are defined through the class
ScrewValue in our software application. The class also implements multi-
plication between real scalars and qualitative values using interval arithmetic
again. A scalar z is replaced by its singleton interval equivalent [z, z| in this
case.

6.3.3 Coordinate systems alignment

Wrench and twist screws are expressed in the local coordinate systems of
their corresponding FI by means of dual vectors which are referred to as
local dual vectors.

Each local dual vector (an object of class RelativeScrew in our im-
plementation) has its own Cartesian coordinate system in 3D. When dual
vectors are added, subtracted or multiplied, they must be expressed in the
same coordinate system, i.e., same reference frame and same origin. Un-
less all dual vectors share the same coordinate system, a coordinate-system
alignment is thus necessary whenever dual vectors are summed.

Given a dual vector S = {¥|ni} represented in a Cartesian coordinate
system (o, €, €, €2), we represent S as {0”|n'} in a new Cartesian coordinate
system (o, €, €,/ €2'). We note that:

(6.13)
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where (2 is the rotation matrix of ¥ and 7 in the new coordinate system:

-/ = -/ - -/ -

€r -€x € .6y € .€;

Q _ —/ — —/ — —/ —

= ey,.em ey,.ey ey,.ez

€ .6 €€ €..€
If the two local coordinate systems share the same axes, but not the same
origin, it means that the underling wrench or twist screws do not share the
same point of application. Given a dual vector S = {#]m} represented in
a Cartesian coordinate system (o, €z, €;, €2), we represent S as {0’|'} in a

new Cartesian coordinate system (o', €z, €, €2). We note that:

v =17

>/

=1+ XX 7, (6.14)
> - =

where ) is the translation vector starting at o’ and ending at o, A = oo.

Now when neither axes are aligned nor the origin is shared between the
new and the current Cartesian coordinate systems, we first apply Equa-
tion 6.13, then Equation 6.14 to obtain a dual vector expressed in the new
coordinate system.

These operators are implemented by the method changeBasis (gp_Ax2)
of the class RelativeScrew in our software.

6.4 Reference state I: Static equilibrium

Static mechanical equilibrium RS builds on the fundamental law of dynamics
(Newton’s second law), assuming that all components are at rest.

Hypothesis 6.4 (Static equilibrium). Components of an assembly are at
static equilibrium.

This means that mechanical equilibrium equations hold on each compo-
nent. More precisely, components in a DMU should not fall apart either
when the assembly is at rest state or in working conditions. This is equiv-
alent to consider that every component should not be free to move along
any translational movement, which can allow it to fall apart. A component
however, can rotate freely because a rotational movement cannot separate
a component from its assembly. Because of these observations, this RS can
be applied to a very wide range of DMUs.

Those equations extend our knowledge about the DMU that is built on
its pure geometry model so far. They thus allow the qualitative analysis to
proceed with farther reasoning, particularly, the reduction of the number
of FIs. The mechanical system studied is reduced to a standalone com-
ponent and its equilibrium is studied under the actions of its neighboring
components onto it.
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6.4.1 Static equilibrium equations

A rigid body, i.e., an assembly component, is at mechanical equilibrium if
and only if it satisfies the following conditions:

1. The vector sum of all external forces applied to this rigid body is zero;

2. The vector sum of all external torques applied to this rigid body is
zero around any given axis.

Since Cls encapsulate all geometric interactions of a component, all me-
chanical forces are applied through these interfaces. In the light of Hypothe-
sis 6.3, we can thus state that all forces external to a component are applied
through its Cls.

Let I be the set of all Cls of a component C. Given f; the force vector
and #; the torque vector that represent the resultants of external forces
applied to C' [132] through its i*" interface by its i*" neighboring component,
i € Ic. f; and #; are the components of a wrench screw W; = { f;|t:} applied
to C at its i CI, i € I¢, then the static mechanical equilibrium of C is
obtained when all such wrench screws sum up to zero {00}

> _{filiiy = {0)0}. (6.15)
icle

Hence, the goal of the static equilibrium RS, is to check functional in-
terpretations, Fls, associated to each CI against equation 6.15. This means
that more than one wrench screw W;, i.e., more than one FI, may exists per
CI and it is the purpose of the behavior expressed by the static equilibrium
RS to provide the qualitative analysis with output parameters that express
the behavior of C' with respect to this state. Checking a FI ends up verifying
if C' can reach a static equilibrium state.

Summation (addition or subtraction) can only take places on wrench
screws sharing the same coordinate system. In our implementation, sum-
mation of two dual vectors generate a third one expressed under the local
coordinate system of the first operands, where a copy of the second operand
undergo a coordinate system alignment, as explained in Section 6.3.3, be-
fore being summed up. This functionality is implemented by methods
add(Screw) and subtract(Screw) of the class RelativeScrew.

Scaling (multiplication by a scalar) is also defined on qualitative dual
vectors by the method scale(), which accepts either a real scale(float)
or a qualitative value scale(ScrewValue) as a parameter.

6.4.2 Graph search to eliminate irrelevant FIs

An exhaustive search algorithm that returns all valid solutions of a system,
eliminating invalid functional interpretations for each CI, is presented in
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this section. A valid solution is a set of interpretations, that is a set of FlIs,
that satisfy static mechanical equilibrium RS for a given CI. Algorithm 1
sketches the outlines of such an approach.

Algorithm 1 Mechanical analysis
Procedure: analyze
for each component ¢ do
mark ¢ as OPEN
end for
while there is still a component marked as OPEN do
¢ < nextOpenComponent()
initScrew + {(©,©,0)|(©,©,0)}
mark all FIs of all CIs of ¢ as invalid
calculateSum(c, 0,0, initScrew)
for all invalid FIs: fi do
ci < CI of fi
other < opposite component of ci
mark other as OPEN
drop fi from possible interpretations of ci
end for
if Q(c) didn’t change then
mark ¢ as CLOSED
end if
end while
Procedure: calculateSum(c,level,i,base)
if base = {(®,®,®)|(®,®,®)} then
mark all visited FIs as valid
mark all FIs yet to be visited from here as valid
else
if level = |I}| then
if isNullable(base) = true then
mark all visited interpretations as valid
end if
else
ct < level-th element of I
for i = 0 to number of interpretation of ci do
fi < i-th interpretation of ci
screw < base + fi.screw
calculateSum(c, level 4+ 1,1, screw)
end for
end if
end if

This algorithm traverses the CIG through procedure analyze(), visiting
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each node at least once, to study the component equilibrium against Equa-
tion 6.15. All nodes of the CIG are initially marked as open, i.e., they are
still to be visited. Though the RS described at Section 6.4.1 applies to a
unique component, Algorithm 1 traverses the entire assembly model because
the RS is applied individually to each component of a DMU.

The function nextOpenComponent() returns the next component to
visit. This is the open component with maximum certainty. The certainty
of a component ¢ € C is defined as the reciprocal (multiplicative inverse) of
the product of the number of interpretations over functionally-valid FIs of

the component:
-1

Q)= TTN| (6.16)

i€lx

where |i| is the number of functional interpretations of the interface i, i.e.,
the number of associated FIs, and I} is the set of Cls involving ¢ for which
there exists at least one functional interpretation (see Section 6.4.3).

If two components happen to have the same certainty, the one with the
smallest |I%| is chosen. This heuristic picks components with higher entropy,
thus higher potential to introduce new information, therefore enhancing al-
gorithm convergence time.

For the sake of efficiency, certainty is initially calculated and stored
in terms of its reciprocal for each component. Certainty is only updated
component-wise when a functional interpretation reduction occurs to one of
its CI. Comparing certainties reduces to comparing their stored reciprocal,
that are integers.

Component equilibrium is studied through procedure calculateSum().
Before the call to this procedure, all possible functional interpretations are
marked as invalid. Procedure calculateSum() marks an interpretation as
valid if it participates to a solution that satisfies Equation 6.15, as will be
explained shortly. After the call, all interpretations that are still invalid
clearly contradict the mechanical equilibrium RS, thus they are eliminated.

If the call to calculateSum() leads to the elimination of at least one
interpretation, not only the state of the current component is preserved as
open, also the opposite component of the eliminated interpretation interface
is marked as open as well, even if it was closed before. This is because the
removal of one functional interpretation of a CI introduces new knowledge
that may in turn allow for new conclusions if equilibrium equations are
checked again against the involved component.

If no functional interpretation is removed, this means that further rea-
soning on the component is meaningless, since it will lead to the same result
(unless this fact is changed, by reducing the number of interpretations again
through the reasoning on a neighboring component, see the previous para-
graph), and the component then is marked as closed.
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The procedure calculateSum() traverses each FI of component Cls re-
cursively, through a depth first graph search, where each CI represents a level
in the search tree. The search combines solutions at each node and checks
their validity against Equation 6.15 at leaf level. This is done through the
accumulation of wrench screws, where the wrench screw of the currently
visited FI is added to a sum. The sum is eventually checked whether it is
nullable or not; that is, whether or not Equation 6.15 may hold true. A null-
able qualitative dual vector has all its values in Qy = {©®, ®}. As mentioned
at the beginning of Section 6.4 when stating more precisely the concept of
static equilibrium of components used to filter out some Fls, a component
able to rotate only cannot fall apart. Consequently, its strict static equi-
librium equations that end up with: Qo = {®,©} (see Equation 6.15) can
be relaxed into a weaker form: Qo = {©,6,®,®,®}, that authorizes the
component to rotate but not to translate.

If the resulting wrench screw is indeed nullable, all visited functional
interpretations are marked as valid. To enable this backtracking, a record
of visited interpretations is kept. This bookkeeping is not mentioned in the
outlines of Algorithm 1 for the sake of simplicity.

An enhancement is introduced to the algorithm by the early determi-
nation of valid solutions when the sum of wrench screws related to com-
ponent ¢ represents a rigid link, that is, it equals the qualitative dual vec-
tor {(®,0,0)[(®,®,0)} stating that ¢ cannot move with respect to its
neighboring components. In this case, summation will always lead to the
same wrench screw, which is indeed nullable. Therefore, the recursion is
interrupted, and interpretations still to be unfolded from this point, besides
those already visited, are marked as valid, as the algorithm shows. This
enhancement is justified by the fact that a fair amount of components in an
assembly are generating such rigid links, e.g., screws, nuts. Consequently,
their specific processing speeds up the overall treatment of an assembly.

At each iteration in procedure analyze(), calculateSum() is called, after
which either a component is closed or at least one functional interpretation is
dropped. A component can only be reopened at the expense of one dropped
functional interpretation. Since the number of components is bound in a
DMU, and so is the number of functional interpretations, the algorithm
is guaranteed to terminate in finite time, given that calculateSum() does.
Note that the number of functional interpretations is only a theoretical upper
bound to the number of iterations, since only a limited number of functional
interpretations are actually dropped from a given CIG.

Procedure calculateSum() is a breadth-first traversal algorithm, that
runs in O([]; |¢]) time in the worst case. This complexity however, is signif-
icantly reduced by early determination of rigid links.

Algorithm 1 is implemented by the method analyseInterpretations()
of the class ExhaustiveMechanicalAnalyser.
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6.4.3 Local failure of functional interpretation

A component fails to be functionally interpreted when no valid functional
solution is found by Algorithm 1 for that component under assumed hy-
potheses. This occurs either when friction is involved (Hypothesis 6.2 does
not hold) or when the model is not consistent (Hypothesis 6.4 does not hold,
and components are likely to fall apart). In either case, the corresponding
component is signaled to the user as a potential inconsistency. A failure in
case of inconsistency related to the friction hypothesis can effectively occur
when components are touching each other along planar faces in the assem-
bly model and no other information is available. Back to the concept of
conventional representation, this can refer to configurations where the cor-
responding CI is not a FI of type planar support but should be interpreted
as a glued link or a weld. Though this type of FI has not been mentioned
in Chapter 4 and Chapter 5, DMUs often represent welds and glued links as
contact configurations. Processing efficiently these configurations is left for
future work. Similarly, if the failure reflects a assembly model inconsistency,
this is not in the scope of the present approach and is part of future work.

As a result, all functional interpretations of all CIs of the component
are dropped. The set I’ reduces to the empty set in this case, and the
uncertainty of the component is assumed zero.

To avoid a cascading collapse in which a failure to interpret component
ClIs propagates to neighboring components, resulting in a failure to interpret
them as well, an so on across the assembly model, graceful failure measures
are inserted into the algorithm. This is obtained by virtually dropping
defective Cls, introducing I* C I, the set of functionally-yet-valid CIs; that
is the set of Cls for which at least one functional interpretation exists.

This fault tolerant approach prevents a local inconsistency from hinder-
ing reasoning elsewhere across the DMU.

6.4.4 Graph search example

In this section we show a simple example that demonstrates the above-
mentioned algorithm. The same principles also apply on more complex and
complete assembly models.

We build on the example of the capscrew-nut assembly shown in Fig-
ure 5.5. Only the CIG of the model is passed as input to Algorithm 1,
enriched with functional interpretations as shown in Figure 5.6.

Since the model is partial, and for the sake of conciseness, we only demon-
strate here the execution of the algorithm on one component; that is C.
Initially, components C' and D are open. We know that the algorithm picks
component C first, as its certainty,

QC)=(ICL| x [CL) ™ =1/(2x1)=1/2
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is the highest one in the assembly. For example, the certainty of compo-
nent D,
G(D) = (|ICh| x |CL) ™' =1/(2x2)=1/4

is lower than that of C.

Figure 6.2 shows the complete search tree that procedure analyze() of
Algorithm 1 traverses to find valid solutions. The figure shows that at each
level of the tree; that is a functionally-yet-valid CI of the component, two
things happen:

e Firstly, the search tree forks in as many branches as remaining func-
tional interpretations of CI;

e Secondly, and for each branch, the wrench screw of the FI of the
corresponding functional interpretation is added qualitatively to the
wrench screw sum.

At the leaf level, and when no more Cls are to be visited, the wrench
screw sum is checked for ‘nullifiability’. The example shows two paths, the
first one led to the wrench screw {(®, ®,0)|(®,®,®)} produced by the FI
spline link. This solution path is rejected because of the existence of the
strictly negative qualitative value &, that cannot be nullified, contradicting
Hypothesis 6.4. From a technological point of view, this is consistent because
replacing the screw thread by a spline link would let the component D fall
apart, as well as C.

The second solution path led to the wrench screw {(©,©,®)|(®,®,®)}.
This solution is acceptable, as all values of the wrench screw are nullable,
satisfying the mechanical equilibrium RS. Consequently, all functional inter-
pretations along the way to this valid solution are marked as valid. Namely,
CI as a threaded link and Cls as a planar support.

As the functional interpretation of C'I; as a spline link did not appear
in any valid solution, it remains marked as invalid, and thus is eliminated.
Certainty of component C' is then updated to its new value Q(C) = 1, which
ends the algorithm in the present case.

6.5 Reference state II: Static determinacy

The first RS leads to the reduction of the number of functional interfaces,
eliminating geometrically suggested solutions that are mechanically invalid.
This is a first illustration of a qualitative behavior analysis that is coupled to
geometry, i.e., the shape of Cls, and functions, i.e., the FIs associated with
ClIs, to exploit the dependencies between form — function — behavior and
robustly enrich a DMU with functional information at the level of component
interfaces.
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Figure 6.2: The search tree visited by Algorithm 1 in order to check the
static equilibrium validity of FI of CI of component C' shown in Figure 5.5.
The tree shows two paths, one leading to a nullable qualitative dual vector,
i.e., a valid solution, and the other one leads to a non-nullable qualitative
dual vector, i.e., an invalid solution. This leads to the elimination of the
function interpretation binding interface C'I; with the FI spline link.

However, this elimination does not always lead to a one-to-one mapping
between Cls and FlIs, as for some configurations, more than one solution
actually satisfies mechanical equilibrium, thus RS I.

To demonstrate such a configuration, we consider the example of a bolted
assembly shown in Figure 5.5 with a conical head capscrew as component
D on which we now focus. We recall that this functional knowledge about
components, i.e., the ‘component names’, and component groups, i.e., the
concept of bolted assembly, is not yet available at this stage of reasoning.
Section 6.4.4 showed how Algorithm 1 runs on component C' of this bolted
assembly where C' features a ‘planar support’ rather than a conical one,
successfully reducing the number of valid solutions to one, thus setting the
number of FI per CI to exactly one for C. Interfaces C'I; and CIy are said
to be definitively interpreted.
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Figure 6.3: The search tree visited by Algorithm 1 in order to check the
static validity of FIs of Cls of component D shown in Figure 5.5. The
tree shows that all leaves, two in this case, leads to a nullable qualitative
dual vector, thus a statically valid solution. No functional interpretation is
eliminated in this case.

Now, considering the equilibrium of component D in accordance with
Algorithm 1, we first note that only two solutions are left after the elimina-
tion of the interpretation of C'I; as a spline link. The remaining solutions
are:

e Interpreting C'I; as a threaded link, and C'I4 as a conical support;

e Interpreting C'I; as a threaded link, and C'I4 as a self-locking link.

As shown in Figure 6.3, both remaining solutions are indeed statically
valid. The execution of procedure analyze() leads to no reduction in num-
ber of functional interpretations, thus no change in components uncertainty
H (D). Consequently, component D is closed, and will remain this way until
the algorithm converges and returns.
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This uncertainty prevents us form attributing functional properties to
geometric elements in a decisive manner. The problem stems from the exis-
tence of more than one wvalid solution, even though solution are not equally
relevant.

A mechanism should thus be established to evaluable the relevance of a
valid solution. If such a mechanism existed, discouraged, e.g., unnecessarily
costly, solutions can be further rejected in favor of more convenient ones.

6.5.1 Statically indeterminate configurations

A close study of the example illustrated above shows that the two remaining
solutions differ from each other in a discriminant way. Although both of
them are statically valid, as the Algorithm 1 proves, the first solution is
isostatic, or statically determinate, while the second one is hyperstatic, or
statically indeterminate [123]. A statically indeterminate system can be
characterized as follows (see Figure 6.4). This example shows a horizontal
cantilevered beam at point A and its opposite extremity B leans on a rigid
contact. Now, considering the static equilibrium equations of the beam that
reduces to a simple planar problem, it comes, in the reference frame (A, 7, 7):

Jfaz = 0, (6.17)
fay+ fey—F = 0, (6.18)
L
tat Lfpy—5F =0, (6.19)

where the wrench screw at point A is defined by {faz, fay|ta} and with
{0, fBy|0} at point B, L is the length of the beam, and F' is an external
force.

It appears that this equation system is under determined, i.e., there are
three unknowns and two equations. From a mechanical point of view, this
system is said statically indeterminate of order 1. Such a configuration is
classical in strength of materials and the approach commonly used to find
a solution is to refer to the deformation behavior of the beam. Indeed, the
bending behavior of the beam brings one more independent equation that
can be used to solve the system. From a mechanical point of view, it means
that the internal energy of the beam, i.e., its strain energy, contributes to
the wrench screws at the interfaces A and B of the beam.

Now, coming back to the example of Figure 5.5 and the two alternatives
of FIs that can be assigned to the conical contact of D, they differ from each
other by the adherence effect that takes place with the self-locking fit when
the cone apex angle is small (see Section 6.3.1). In this case, the adherence
and compression of the conical component is able to develop an axial force,
opposite to an external one, hence the designation self-locking fit.
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Figure 6.4: An example of statically indeterminate mechanical system with
one parameter.

In the first solution of component D, i.e., conical support, and in the only
solution of component C, each and every interface participates to the equi-
librium of D. Dropping one interface would render the component invalid
statically since the conical support does not incorporate any friction effect.
This makes these solutions statically minimal, or determinate. In contrast,
the second solution of component D, i.e., self-locking fit, is redundant in the
sense that not every interface is strictly necessary to the equilibrium. In
fact, a self-locking link is enough on its own to maintain the component D
along the z-axis. Subsequently, a threaded link acting along the same axis
with the same orientation as the self-locking fit increases the internal energy
of this simple mechanical system while not being strictly necessary to the
static equilibrium of D. This makes this second solution statically redun-
dant, or indeterminate. Geometrically, this second solution is only valid for
small cone apex angles.

Because of this redundancy, statically indeterminate configurations are
avoidably expensive. They are thus uncommon in industrial products if not
strictly necessary, e.g., in Figure 6.4, the rigid contact added at point B re-
duces the displacement of the beam at the point where F is applied compared
to the displacement at the same point if the beam was cantilevered only.
Here, adding the rigid contact increases the stiffness of the beam but adding
this contact requires more components than the solution with a simple can-
tilevered beam, hence this solution is more complex to set up. However, a
designer may resort to deliberately introduce statically indeterminate mech-
anism to convey certain functionality, such as reinforced fastening. This
leads to the following hypothesis.

Hypothesis 6.5 (Static determinacy). Unless functionally justified, stati-
cally indeterminate structures are disfavored in a product assembly.
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Consequently, the self-locking fit of Figure 5.5 is filtered out. It has to
be pointed out that this filtering criterion is generic, hence it is independent
of any threshold value, e.g., the cone apex angle threshold mentioned at
Section 6.3.1.

More generally, Figure 6.5 shows examples of two plates assembled to-
gether by means of fasteners. Their assembly can be achieved through
statically determinate structures, using one or two threaded links (see Fig-
ure 6.5a, b). Fastening can be secured through a statically indeterminate
configuration with an additional locking nut, where static indeterminacy
plays a functional role (see Figure 6.5c). Finally, Figure 6.5d shows a non-
functional statically indeterminate configuration, if the cylindric contact is
to be interpreted as a snug fit. The latter interpretation exhibits functional
inconsistency and should be avoided in industrial products.

Hypothesis 6.5 provides the necessary criterion against which statically
valid solutions that survived RS I can be filtered out.

In fact, statically indeterminate configurations could have been recog-
nized during the evaluation of mechanical equilibrium in Algorithm 1. For
example, a statically indeterminate solution could have been identified while
wrench screws are summed, when a nullable qualitative value, i.e., ©® or ®,
is added to another qualitative value rather than zero ®. Accordingly, un-
desired statically indeterminate solution could have been eliminated since
the first round.

However, some of statically indeterminate configurations constitute the
only possible static solution of a component. In this case, the static indeter-
minate configuration is functional. Such a solution should not be eliminated
when it is unique, however, whenever there is a functional interpretation
conflict, a statically determinate solution prevails.

Consequently, statically indeterminate solution necessity cannot be judged
component-wise. Since if a statically indeterminate solution is found unnec-
essary, as it has a statically determinate alternative for a given component,
all functional interpretations participating to the solution would not be val-
idated, thus are likely to be dropped (unless they participate to one of the
statically determinate solutions). This elimination, however, may affect the
propagation of equilibrium on neighboring components.

The static validity of model should thus be checked independently from
its static determinacy. For this reason, the ‘pruning’ of the solution tree must
occur after reasoning on the RS I is done, where all components playing a role
in a statically indeterminate structure are studied at once. If a solution is
to be eliminated, another statically determinate solution should be ensured
for the whole structure. This analysis shows that RS II can be regarded as
a reference state independent of RS I and must be applied after RS L.

This requires the study of internal forces propagation paths. In fact,
statically indeterminate structures are characterized by a cyclic force prop-
agation along one or more axis, e.g. in case of the example in Figure 6.4,
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Figure 6.5: An assembly of two plates by means of a fastener: (a) A stati-
cally determinate solution, using a capscrew and a nut, with one threaded
link, thus one internal load generator, (b) Another statically determinate so-
lution, using a bolt with two nuts, and two threaded links, thus two internal
load generators, (c¢) A statically indeterminate solution, with one capscrew
and two nuts, the lowest one acting as locking nut. Static indeterminacy
plays a functional role here, which is to reinforce fastening, (d) A statically
indeterminate configuration if the cylindric interface between the capscrew
and the upper plate (light brown) is to be interpreted as a snug fit. Static
indeterminacy is non-functional here, and is considered as an unnecessary
burden.
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the statically indeterminate configuration is characterized by the load cycle
along the ¢ axis. In order to outline indeterminate configurations, internal
force propagation cycles should first be reported.

6.5.2 Force propagation and force propagation graphs

Internal force propagation paths can be formalized through force propaga-
tion graphs (FPGs), which are defined as follows.

Definition 6.2 (Force Propagation Graph). A force propagation graph
(FPG) is a graph I'(D, J) that represents the propagation of internal forces
in a model, along a given direction.

We know that each FPG is a subgraph of the CluG, augmented with
an orientation at each edge according to the conventional positive orienta-
tion of the force propagation direction taken as reference. This is a result
of Hypothesis 6.3 that implies that internal forces only propagate through
CIs, which are CIuG edges. Edge orientation is a matter of convention in
both CIG and FPG. Orientation convention in the CIG (see Section 5.2.5)
becomes meaningless when applied to force propagation, therefore we refer
to the CIuG, the undirected version of CIG, as the super undirected graph
of all FPGs.

In a given assembly model, there are as many FPGs as there are force
propagation directions defined by FIs. Theoretically, a force can propagate
in an assembly in all directions, that is, an infinite number of propagation
directions in 3D space. This is justified when considering that components
are behaving like deformable media, producing stress and strain fields when
subjected to external forces. This leads to an infinite number of potential
force propagation graphs. Here, we refer to Hypothesis 6.1 where compo-
nents are rigid bodies. Consequently, forces follow the directions given by
FIs and because the number of edges in CIuG is bound, there exists an up-
per limit on the number of its subgraphs, thus an upper limit on the number
of FPGs.

Figure 6.6a gives an example of such a load cycle. This load cycle is
initiated by an FI of type threaded link connecting C; and Cy. The direc-
tion assigned to the force cycle is prescribed by the force of this threaded
link. This force is then propagated with static equilibrium equations in that
direction. Considering C; as reference component, its equilibrium equation
determines the force applied by Cs (light brown downward on Figure 6.6a).
Then, moving to component Co, its equilibrium equation determines the
force applied by C5 (green upward on Figure 6.6a). Then, moving to com-
ponent Cs, its equilibrium equation determines the force applied by Cy (red
upward on Figure 6.6a). Finally, moving to component Cy, its equilibrium
equation determines the force applied by C; (gray upward on Figure 6.6a)



138 CHAPTER 6. QUALITATIVE BEHAVIORAL ANALYSIS

Ci
C_. ﬁ
G+
C, /)
Cs A
I—b"

¥
(b)

Figure 6.6: (a) An example of load cycle. C; designates the components
involved in the load cycle. C contains a threaded link that originates the
load cycle. The dotted rectangles represent the external forces applied to the
corresponding component C;. (b) An example of load cycle incorporating a
statically indeterminate configuration. Here, the component C; is subjected
to multiple forces with the same orientation that characterizes its static
indeterminacy.

that is consistent, i.e., opposite, with the force applied by Cy on C; that has
been used initially. This ends the determination of the load cycle.

6.6 Reference state III: Assembly joint with threaded
link as functional cluster

As Chapter 7 will reveal, later stages of our approach build on the orga-
nization of sets of components that participate to the fulfillment of one
functionality in one functional group, and on the labeling of such groups
by their corresponding FCs (see Section 4.2.4). An example is the cluster-
ing of components that are held up together using a tightening mechanism.
The corresponding cluster defines effectively a functional group where the
function can be stated as fastening a set of components, i.e., the tightened
components are a subset of the cluster and the complementary subset de-
scribes the fasteners contributing to this function. If such a fastening process
is accomplished through a threaded link, the functional group can be labeled
as assembly joint with threaded link where assembly joint with threaded link
is a FC designating a set of components held —or joint— together by means
of a threaded component.

In fact, the detection of cyclic internal force propagation, required for
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static determinacy analysis, regroups components that participate to com-
mon functions such as fastening. This enables their clustering into functional
groups of assembly joint with threaded link.

Effectively, the set of components refers to a function. One component,
the fastener, generates a given input parameter, i.e., here it is a force, and the
interaction forces between components propagate through the assembly. The
output parameters are characterized by the corresponding force propagation
cycles and the force parameters at each CI of the cycle. This analysis enables
the definition of a reference state expressing a fastening process. This is
designated as RS III since the behavior observed is based on the action of a
fastener and this action is effectively independent of the criteria governing
RS T and II.

Hypothesis 6.6 (Force propagation). An FI capable of a fastening ac-
tion generates a force through its neighboring components that propagates
through the assembly and ends up producing a cyclic graph.

In case the force propagation mechanism does not produce a cycle it
means that a fastening process may exist but:

e it takes place with objects outside the product, e.g., a vice has a fas-
tening function but this function is performed on an object external
to the product;

e or it indicates an inconsistent design.

In both cases, a user input is mandatory to characterize these configurations
and they fall out of the scope of the proposed approach which concentrates,
in a first place, on the assembly as a standalone set of components.

To achieve the above-mentioned benefits, an algorithm has to be estab-
lished to detect cyclic internal force propagation paths.

6.6.1 Detection of force propagation cycles

In this section we define an algorithm that integrate Hypothesis 6.5 into our
qualitative reasoning to further reduce the number of function interpreta-
tions per CI by the elimination of statically indeterminate solutions, when-
ever another statically determinate solution exists for the studied structure.
As mentioned in the previous section, force propagation cycles are also useful
to identify functional clusters of type assembly joint with threaded link. This
algorithm will be used also in these configurations, whenever a threaded link
is involved in such a cycle.

We are interested in the type of statically indeterminate structures that
involve a FI generating forces internal to an assembly. We refer to those
interfaces as internal load generators. Examples of such Fls are threaded
links and self-locking links. Figure 6.6b gives a example configuration where



140 CHAPTER 6. QUALITATIVE BEHAVIORAL ANALYSIS

the load cycle produces a statically indeterminate loading of component
C1. As observed, components Cy and C5 each apply a force on C; in the
same direction and with the same orientation. This results in a statically
indeterminate configuration of C';. Now, the criterion to identify a stati-
cally indeterminate configuration can be stated as follows. A component
is subjected to statically indeterminate loading in the direction set for the
load propagation process if there exists at least two forces applied to this
component that share the same orientation.

FPGs are not readily separable from their supergraph; the CIuG. This is
because the CIG, thus the CIuG, has no notion of force propagation direction
expressed in a global coordinate system. Although this can be calculated
based on CIs’ associated local coordinate systems and their transformation
matrices in the assembly coordinate system, this exhaustive subgraph gen-
eration is unnecessarily costly.

Alternatively, relevant force propagation subgraphs are generated incre-
mentally, following edges of the CIuG, and starting with an edge that is
indeed an internal load generator.

Procedure findLoadCycles() iterate over all interfaces that qualify as
load generators, and identify the force cycle to which they participate by a
call to function followLoad(). If the original load generator is actually a
threaded link, as decided by function threadedLink(), the identified cycle is
marked as functional group, and labeled as an assembly joint with threaded
link.

Function followLoad() uses a classical breadth-first cycle detection algo-
rithm. The initial call of the function takes an interface ¢ which is guaranteed
to be a load generator by the calling procedure. It also takes the force prop-
agation direction and orientation, represented by its unit vector ¥, which is
an intrinsic property of each load generator. The algorithm applies to the
FPG characterized by the direction y, we refer to this graph as I'y.

Since FPGs are not generated ahead of time, function findReciprocal()
is used to ‘sense’ the CIG edges, and follow those who actually belong to I'y.
Function findReciprocal() is also responsible of the elimination of statically
indeterminate functional interpretations. Static determinacy is evaluated
each time the function is called, according to the direction Y. If at least one
functional interpretation maintain a statically determinate solution, other
static indeterminate functional interpretations are dropped.

Once a cyclic path is detected, the generation of the subgraph; i.e.,
I'y, is stopped, and a candidate functional group is reported to procedure
findLoadCycles(). The breadth first algorithm guarantees that the smallest
cycle is detected for a given internal load generator.

Cases of statically indeterminate configurations are essentially character-
ized when the number of cumulative forces with the same orientation exceeds
one. More general configurations are left for future work and reveal some
design inconsistencies that are not in the scope of the present approach.
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Algorithm 2 Load Cycles Detection

Procedure: findLoadCycles
boltedJoints < ()
for all load generating interfaces ¢ do
mark all components of the assembly as WHITE.
cycle < followLoad(i, )
if threadedLink(i) then
boltedJoints < boltedJoints 4 cycle
end if
end for
Function: followLoad(i,X)
u < right(i)
while true do
mark v as GRAY
for all j in findReciprocal(i,u,Y) do
v < opposite(u, j)
if v is GRAY then
lc + new empty load cycle
while v # u do
add v to lc
backEdge < pred[v]
v <— opposite(v, back Edge)
end while
return lc
else if v is WHITE then
pred[v] < j
followLoad(j, X)
end if
end for
mark u as BLACK
end while
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6.7 Conclusions

In this chapter, concrete methods and data structures are presented to cap-
ture mechanical behaviors at the interface, the component, and the compo-
nent group levels. Each mechanical behavior is then employed to attribute
functional knowledge to geometric elements at each of these levels, in rela-
tion to what was established in the literature, and studied in Section 2.3.

To enable this employment, referential behavioral standards are formal-
ized in terms of RSs, defined in Definition 6.1. RSs add up to the knowledge
base through the formalization of domain knowledge into hypotheses that
are assumed to hold true in the context of a given state of the product (see
Section 6.2).

A qualitative behavioral framework based on nominal physical values is
defined in Section 6.3, to empower the purely qualitative approach promoted
in Section 4.1. This framework casts a physical dimension onto different FIs
in relation with the geometric configurations they interpret, as represented
by their associated CIs. This physical reading of the model allows qualitative
simulation processes to assess the model mechanical and functional validity.

Before any RS is applied to the model, the functional knowledge consists
in what could be induced on pure geometrical basis; that is a number of
functional associations, in terms of FlIs, to each CI, as shown in Section 5.4.1.
However, this number is not always one per interface. The multiple nature
of functional interpretations in the general case introduces uncertainty to
the knowledge base. This half-knowledge needs to be cleared if any reliable
functional conclusion is to be withdrawn to the benefit of applications such
as FE simulation and analysis.

To this end, Section 6.4 presented RS I, that is used to check knowledge
consistency against static equilibrium equations. This leads to the reduction
of uncertainty as statically invalid functional associations of Cls are dropped.
However, examples show that although all statically invalid solutions are
selected out, the number of those remaining; i.e., statically valid, still does
not allow for a single positive functional solution.

RS II presented in Section 6.5 provides the qualitative approach with a
supplementary criterion that takes into account not only solution validity,
but also its quality with respect to its complexity, therefore its cost. Solution
complexity is determined in view of its static determinacy. Unless static
indeterminacy is functional in a solution, it is considered to be unrealistic
in an industrial context, consequently such a solution is eliminated, leading
to a further decrease in the number of Fls per CI.

RS IIT presented in Section 6.6 adds also another criterion that relates
to the fastening function of a group of components. This function interacts
with RS II through the definition of load cycles.

Most importantly, the qualitative approach set up has shown how it
combines with the geometry of Cls to enforce functional information at the
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level of FIs and extend to the components and to groups of components.

Finally, if the number of remaining statically determinate interpreta-
tions per CI still exceeds one, the most ‘probable’ solution would become
a criterion. Probability here is defined by means of solution popularity in
industrial DMUs when more than one survive RS I and RS II. Note that
this measure is only taken as a last resort, in order to force a single FI per
CI. In the studied industrial examples, however, this last filtering was not
needed, hence not used and left for future work like other configurations
where user’s interactions would be needed to process design inconsistencies
or functions involving objects outside the DMUs.

The qualitative approach visited in this chapter allowed for the cleansing
of the function knowledge associated to a DMU, reducing it to only posi-
tive facts about component interfaces and component groups. These facts
actually provide the seeds of more elaborate knowledge, if combined with
inference rules, as the following chapter will develop.






Chapter 7

Rule-based Reasoning to
Derive Functional
Denominations

As for now, only functional interactions were addressed in our qual-
itative analysis to filter out Fls and produce a precise spatial distri-
bution of FIs. These Fls are consistent with the DMU both from
some behavior point of view as well as geometrically. Now, the
DMU is functionally interpreted in a definitive manner at the lev-
els of functional interfaces and functional groups to take advantage
of its form - behavior consistency and derive a consistent function
at the level of each of its components.

However, in order to provide a complete functional description
of a model, functionality at the functional unit level should be
addressed. This chapter deals with annotating components with
their functional denominations, i.e., their FDs.

Section 7.1 first illustrates the importance of such functional
information, before Section 7.2 shows that this knowledge is the
extension of the knowledge acquired so far after the application of
domain specific rules, i.e., it takes advantage of the function de-
pendency with respect to behavior and form concepts. Section 7.3
discusses alternative solutions to integrate such domain rules into
our knowledge base. As a strongly related topic, knowledge repre-
sentation is addressed in Section 7.4, before that Section 7.5 gives
an in-depth demonstration of the formal reasoning process. Sec-
tion 7.6 concludes, showing how functional knowledge is saturated
generating the required functionally interpreted DMU model.
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7.1 Knowledge at the functional unit level

The previous chapter showed a qualitative method that used algorithms,
such as graph searches, to extend knowledge or reduce uncertainty about
functional properties of an assembly. This method came out with functional
facts, particularly at the levels of component interactions, that is, at the
functional interface and the functional group levels, in a reference to what
was outlined in Section 3.4. The corresponding algorithms mapped a consis-
tent and qualitative behavior to functional interfaces, uniquely associating
each CI to one FI. As an example of such behavior, this mapping also per-
mitted the clustering of components tightened up together by means of a
threaded link into functional groups referred to as bolted joints. In addi-
tion to the CIG, each behavior extends the DMU structure with a spatial
mapping of the behavior functional meaning.

This algorithmic inference enriched our knowledge about the DMU in
two ways:

e First, reducing ambiguity in statements such as interface i is either
a threaded link or a spline link. This is done through the elimination
of invalid, and unsuitable alternatives (see Section 6.4). For example,
interface C'I; in Figure 5.5 is definitively identified as threaded link.

e Introducing new facts such as stating that interface i participates to an
assembly joint with threaded link. This is done through the detection
of internal load cycles that tighten up components together (see Sec-
tion 6.5). For example, interfaces C'Iy, CIz, C'I3 and C1y in Figure 5.5
are found to take part to the same assembly joint with threaded link.

In this sense, our knowledge base only contains positive facts after the
application of RSs validation. The functional interpretations of geometric
configurations are now unique, and uncertainty is reduced to zero. However,
the functional knowledge about the DMU is still not complete. In fact, we
still know little about functional attributes at the component level; that is,
the functional unit level (see Section 3.4). Section 4.2.3 showed that the
functional role, or roles, that a component plays in an assembly identify
its FD. This information is necessary to meet the functional requirement of
geometric model transformation for simulation purposes because an engineer
is used to refer to a function or a group of functions in a synthetic manner
using a ‘component name’ or a simple expression ‘qualifying a component’.

7.2 Inference rules as domain knowledge

This functional knowledge, however, is not beyond our reach. In fact, posi-
tive facts that emerge from the qualitative study explained in Chapter 6 open
new opportunities for reasoning and provide seeds to express new knowledge.
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To demonstrate this, we take the example of a component X that has
only two FIs. One of them is a planar support, while the other is a threaded
link, and they participate to a functional group LC which has assembly joint
with threaded link as its FC (see Figure 5.5). We can then rationalize that
such a component is indeed a nut, identifying its FD.

It is worth noticing that the newly obtained fact is the result of the ap-
plication of an inference rule inspired by the domain knowledge that states
that ‘a statically valid component having only two functional interfaces: a
planar support and a threaded link by means of an internal thread, and in-
volved in a assembly joint with threaded link, is a nut’. This rule is not
formalized in any RSs.

This type of reasoning can then propagate throughout the assembly
model, building on newly acquired knowledge to generate new facts, until
the knowledge base converges toward saturation. For instance, the applica-
tion of another rule stating that ‘a statically valid component that links to a
nut through a threaded link, and that has another functional interface which
1s a planar support, is a capscrew’, allows us to deduce that the component
D in Figure 5.5 is indeed a capscrew.

The previously mentioned rules can be formally stated by means of First
Order Logic (FOL) as follows:

nut(X) <= component(X) A
threadedLink(Iy) A
planarSupport(Is) A
boltedJoint(LC) A (7.1)
innerForms(X, I) A '
forms(X, I2) A
VI(forms(X,I) = I =L VI=1) A
regroups(B, X)

capscrew(X) <= component(X) A
nut(Y) A
threadedLink(I1) A
planaSupport(Iz) A (7.2)
outer Forms(X,I;) A
forms(Y, 1) A

forms(X, I2)

In this formalization, each of component, threadedLink, planarSupport,
boltedJoint, nut, and capscrew is a unary predicate, while forms, inner-
Forms, outer Forms, and regroups are binary ones.

We note that the variable I in Formula 7.1 is bound. Unlike the other
free variables of the formula that appear in more that one condition of the



148 CHAPTER 7. RULE-BASED REASONING

implication, linking them together, I appears only in one condition. It is
thus universally qualified.

Even though the second rule expressed by Formula 7.2 does not men-
tion components participation to a assembly joint with threaded link in an
explicit manner, this information is implied from the fact that X links to a
nut through a threaded link.

Those rules reflect expertise about the domain of discourse, thus they are
not part of any RS, as they are not hypotheses made in view of a given state
of the product. However, the incorporation of such rules in the knowledge
base is compulsory if functional information of the model is to be explored
sufficiently to meet the objectives of this work (see Section 3.4).

7.3 Reasoning alternatives

A mechanism should thus be established to account for such domain knowl-
edge. One may suggest the formalization of such rules into algorithms in a
similar manner to RSs. This would mean the expression of each rule through
a code path that assesses the satisfaction of its conditions, before applying
its action. However, such an integration at the implementation level leads
to static rules. Each time a new rule is to be introduced, the code must be
amended, and resources must be recompiled.

While hypotheses made through RS are independent of the particular
domain of application, as static validity and determinacy apply to all disci-
plines of mechanical engineering, inference rules are closely related to specific
types of industries and industrial practices. In fact, a list of functional in-
teractions, i.e., FIs and FCs, can be deemed exhaustive and complete with
respect to a given set of conventional representations of components. A list
of their possible combinations to produce FDs becomes more difficult to set
up because new categories of components may appear. Anyhow, such lists
cannot be ensured to include all FIs, FDs used in all mechanical industries
at present time since conventional representations are not standardized at
present (see Sections 1.6 and 3.2). To cope with this heterogeneous con-
figuration, considering also that the proposed approach builds up on con-
ventional representations whose consistency has not been analyzed, it is
important to dynamically adjust inference rules, add new ones, or remove
existing ones.

7.3.1 Dynamic formalization of domain specific rules

It is thus advantageous to enable the dynamic addition and modification of
such rules, in order to tune our reasoning in accordance with specific needs of
the particular domain of application, e.g., aeronautic or automotive indus-
tries. The implementation of inference rules as static, hard-coded execution
paths is thus inadequate for such a requirement.
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The ability to formalize rules in terms of FOL formulas such as For-
mulas 7.1 and 7.2 incites us to make use of this uniformity. If the sought
system can take such formalization as an input, and then use it to pro-
duce new knowledge, rules can be adapted and augmented according to the
particular domain where they apply.

7.3.2 Problem decidability

In fact, algorithms —referred to as deductive systems— exist to treat rules
and facts expressed in FOL, and deduce new knowledge from them [61, 33,
91]. However, FOL is proven to be undecidable [51, 170]. This means that
although FOL deduction can always find the answer in infinite time if the
answer is positive (FOL deduction is complete), and that answers are valid
when they exist (FOL deduction is sound), no algorithm is guaranteed to
find the answer to any given question in an infinite time of execution.

This is in fact the price of high expressiveness of FOL. If a decidable
deductive system is to be found, some logic constructs, thus some logic
expressiveness, is to be sacrificed. Efforts have indeed been paid in this
direction, to come up with fragments of FOL that are decidable. In this
work we are particularly interested in a family of formal logic languages
that is referred to as Description Logic (DL) [28].

In fact, DL is a family of decidable FOL fragments' that allow the fine
tuning of reasoning algorithms complexity as a compromise on the logic
expressive power. Moreover, DL provided the theoretical basis upon which
OWL —the ontology language recommended by W3C— is built. Section 7.4
promotes the use of OWL ontologies as the knowledge base containers in this
work.

Algorithms with controllable complexities are developed to allow effi-
cient reasoning using DL. This led to a variety of reasoners that implement
those algorithms, either for commercial use such as RACER [78], or with
open source licencing agreements such as HermiT [155], Pellet [156] and
FaCT++ [169]. Different reasoners treat different variants of DL. Because
of its simple, yet well-defined formalism, interfacing protocols to communi-
cate facts and queries to reasoners are also established, such as DIG [15].

From the previous analysis and the above-mentioned reasons, the use of
DL to formulate inference rules suggests itself as a natural choice so that
algorithm complexity can be mastered. This is indeed an important point
to stay consistent with the geometric issues addressed in Chapter 5 and
the qualitative reasoning process set up in Chapter 6 so that the overall
DMU enrichment process can be mastered from an algorithmic complexity
standpoint. Section 7.5 will develop in depth on issues related to the formal

!Some DL variants go beyond FOL capabilities, providing operators that require higher
order logic, such as transitive closure of roles or fixpoints [28].
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reasoning employed in our work. Before that, Section 7.4 addresses a closely
related topic, that is knowledge representation.

7.4 DMU knowledge representation

In order to enable the reuse of the acquired functional knowledge about a
DMU at different stages of a PDP, it must be formalized and stored in a
persistent manner. This brings forth the question of how knowledge should
be represented.

Unlike most of other information systems, in an expert system the choice
of method to achieve knowledge persistence is highly related to other choices
about problem solving. This is because the issue of reasoning cannot be
addressed in disregard of that of knowledge representation.

In fact, the way knowledge is represented decides how this knowledge is
made available, in which way it is structured, and what elements it is made
of. Those choices highly influence what kind of reasoning can be made on
that knowledge, and what other information can be driven from. Therefore,
both problems are coupled, and often addressed together in what is referred
to as Knowledge Representation and Reasoning (KRR).

Section 2.6.2 showed that the literature intensively used ontologies to
represent additional non-geometric knowledge about the DMU. Even though
little has been done beyond the representation of facts in the analyzed
works, ontologies, particularly with the powerful semantics of OWL, were
shown to provide solid grounds not only for the representation of functional
knowledge, but also for reasoning on it. Earlier works in the domain of
CAD [127, 157] that concentrated on inference mechanisms was based on
inference engine technologies that was not formalized as DL currently is.
Consequently, there was no reference to the algorithmic complexity of these
processes. Additionally, these approaches were connecting design parame-
ters to geometric models of components in rather loose manner which was
preventing them from referencing the precise and appropriate geometric ar-
eas of components and the integrity of the geometric model was not neces-
sarily preserved, i.e., a solid may be transformed into an object that is no
longer a solid. KBE approaches (see Section 2.6.3) appeared as evolutions
of these early approaches linking geometry and artificial intelligence tech-
niques. KBE concentrates on quantitative approaches to dimension compo-
nents or sub-systems, i.e., it refers to the form — behavior dependency. Here,
the knowledge representation is qualitative and can be expressed symboli-
cally, which is well suited with the use of ontology-based approaches.

In a tight connection to the choice of reasoning formalism, that is DL,
explained in Section 7.3, we opt in this work for representing acquired knowl-
edge in terms of ontologies, and using OWL-DL language. This has the
following advantages:
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e The use of OWL ontologies, as a recommended standardized lan-
guage [5], enables communication channels with other services through
the well-established paradigms of the Semantic Web. Services may
either be providers to which some tasks can be outsourced, e.g., rea-
soners, or consumers that make use of our expert system, e.g., FE
pre-processors;

e OWL has a semantic advantage over its counterparts Resource De-
scription Framework (RDF) and RDF-S which it actually extends with
agreed-upon high-level semantics. This enables the formalization of
fact and rules in a rather intuitive manner;

e OWL-DL offers a good trade-off between expressive OWL-Full with
poor computational properties, and rather efficient, but quite restric-
tive OWL-Lite;

e The use of OWL-DL enables a seamless integration with DL reasoners,
as DL is the formal logic on top of which the language is constructed.

As shown in Section 2.6.2, an ontology has two components. The termi-
nological part, or TBox noted 7, and the assertional part, or ABox noted A.
Both the TBox and the ABox constitute the knowledge base K = (T, A).

The TBox 7T contains concept names and role names, and restrictions
on them. While the ABox A contains axioms, which are individual names
and their instantiations.

7.4.1 Ontology definition through its concepts and roles

The proposed ontology is identified by its Uniform Resource Identifier (URI)?,
and defined by its TBox, as it contains the domain knowledge (see Sec-
tion 2.6.2). ABoxes, containing the model knowledge, are then generated
and stored apart, for each analyzed model. We recall that model knowledge
is only interpretable in the context of domain knowledge, as Section 2.6.1
has shown. Therefore, before the model is treated, the ontology, in terms of
its TBox, is loaded.

All introduced concept and role names have the namespace romma. In
this text, and for the sake of readability, we refer to the concept name
romma: Component as simply : Component, assuming that romma is the default
namespace.

For the sake of clarity, we use the CamelCase notation in our naming
conventions. Names starting with capital letters refer to concept names,
while those starting with small letters indicate role names. Individual names
are written in all caps.

2http://pagesperso.g-scop.grenoble-inp.fr/~shahwana/romma
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The TBox defines functional taxonomies (see Section 4.2.6) through con-
cept hierarchies. The FD taxonomy, which is partially shown in Figure 7.1,
is defined by a concept hierarchy rooted at :Component. FDs are defined at
the leaf level of the hierarchy, such as :Capscrew, :Nut and :LockingNut.
While the root of FI taxonomy is the concept® : Interface, FIs are again de-
fined at the leaf level by concepts such as :PlanarSupport, :ThreadedLink,
and :SpineLink.

FCs are defined as subclasses of the concept :FunctionalCluster. Ex-
amples are :BoltedJoint and :RivetedJoint.

The relationship between components (instances of :Component) and
interfaces (instances of :Interface) is defined through the role :forms,
that relates a component to an interface it forms. This role represents the
binary relation R, defined in Section 4.2.5. The role :1links is defined to
be the inverse role of :forms (an interface links a component). This role
represents the binary relation 3; defined in Section 4.2.5. A restriction is
added to the TBox to ensure that one interface links exactly two components.

The role :forms is specialized into two sub-roles, namely :innerForms
and :outerForms. This is to faithfully represent geometric configurations
where the interface is not symmetric. Examples of asymmetric interfaces are
threaded links, spline links, snug fits, etc. In this case, we distinguish the
outer component that outer-forms the interface, from the inner component
that inner-forms it.

The relationship between components and their functional groups (in-
stances of :FunctionalCluster) is defined through the role :regroups
where a functional group regroups a component. The role :participatesTo
is defined as the the inverse role of :regroups, i.e., a component participates
to a functional group.

The ontology editor Protégé [3] is used in the context of this work to de-
sign the ontology. This framework allows the intuitive authoring of concepts,
roles, and their hierarchies. Moreover, the seamless integration that Protégé
provides with reasoners (embedded support for HermiT and FaCT++ ver-
sion 4) enables an easy check of concepts satisfiability. This permitted the
reporting of inconsistencies as soon as they appeared.

7.4.2 Ontology population with model knowledge

Once the qualitative reasoning demonstrated in Chapter 6 is done, the re-
sulting functionally enriched CIG is translated into an ABox of the above-
mentioned ontology. To this end, the ontology is first loaded. Then the
following steps take place:

e All nodes of the CIG are defined as individuals. For each node, an

3For the sake of conciseness, the terms concept and role are used instead of concept
name and role name, whenever this use is not ambiguous.
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Figure 7.1: Partial graphical representation of romma ontology, showing con-
cept and role names. Solid stroke arrows represent the concept hierarchy
relationship, while dashed stroke arrows represent named object roles. The
rounded rectangle delimits the name space.
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axiom is added stating that the corresponding individual is an instance
of :Component;

e All edges of the CIG are defined as individuals. For each edge, an
axiom is added stating that the corresponding individual is an instance
of the concept representing the FI associated to the underlying edge,
i.e., a sub-concept of :Interface. Please note that as a result of the
qualitative reasoning, each CI, thus each node of the CIG, is associated
to one and only one FI. Indeed, all edges of CIG become instances of
FIs defined as leaves in the taxonomy of interfaces;

e All recognized functional groups are defined as individuals. For each
functional group, an axiom is added stating that the corresponding
individual is an instance of the concept representing the group FC,
i.e., a sub-concept of :FunctionalCluster. An assembly joint with
threaded link (see Section 6.6) defined over a subset of the CIG nodes
is an example of sub-concept of :FunctionalCluster;

e For each edge of the CIG, two axioms are added stating that the
individual representing the interface links two other individuals rep-
resenting the nodes at each extremity of the edge through the role
:1inks or one of its sub-roles;

e For each recognized functional group, as many axioms as its partici-
pating components are created. Each stating that the individual rep-
resenting the recognized functional group relates to the individual rep-
resenting the corresponding component through the role :regroups.
An example is the set of components belonging to an assembly joint
with threaded link.

Now that the acquired knowledge is modeled using an ontology, the
knowledge base is ready to be reasoned upon, generating new facts until
saturation, i.e., until no new facts can be derived. The following section
details this issue.

7.5 Formal reasoning to complete functional knowl-
edge

Section 7.3 showed the merit of using a formal language to represent domain-
specific expert rules. The choice of DL proves ideal for the needs of DMU
functional knowledge. However, DL is a family of languages that vary with
respect to their expressiveness, thus, with respect to their computational
properties [17]. Variants of DL and the linguistic constructs they provide
are visited in Appendix D. In this work, we employ the DL language SHOZQ
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which is supported by OWL-DL, starting version 1.1, in agreement with our
knowledge representation choice (see Section 7.4).

Even though, starting version 1.1, OWL-DL actually supports SROZO-
(D) [88], that is SHOZQ augmented with complex restrictions on roles
and data types constructs. In our work, we do not use these additional
features. Disallowing data types in logical constructs aligns with the purely
qualitative method advocated in Section 4.1 and described in Chapter 6.
Moreover, avoiding the use of such costly constructs and restrictions spares
the reasoning process a remarkable computational overhead [116].

DL family is backed by strong semantics that defines how different con-
structs of a given variant should be interpreted. Appendix D gives more
details about the semantics of DL.

7.5.1 Inference rules in DL

Statements such as those expressed through Formulas 7.1 and 7.2 can be
expressed in DL using General Concept Inclusion (GCI). A GCI in this
sense defines an inference rule that applies across the underlying domain.
Those rules are actually used to identify components FDs.

For example, the aforementioned formulas describing a nut and a cap-
screw are translated into DL as follows in their respective order:

Nut 2 Component M
dinnerForms.ThreadedLink M

.

M

Iforms.PlanarSupport (7.3)
JparticipatesTo.BoltedJoint
=2forms
Capscrew J Component r
JouterForms.(ThreadedLink M Jlinks.Nut) M (7.4)

dforms.PlanarSupport

In connection to what has been argued in Section 4.2.6, the hierarchi-
cal structure of the FD taxonomy allows inferences to gradually identify a
component functional class. A rule can either describe an FD in one state-
ment, or express an intermediate concept only, that leads to the definition
of an FD when another rule is applied. Those intermediate concepts can
be either inner node (nodes at upper level than leaves) in the FD taxon-
omy, or auxiliary concepts introduced to the ontology to allow the reuse of
inference rules, independently of the FD taxonomy. In the latter case, the
intermediate concepts holds no intrinsic functional meaning.

For example, the concept name :BoltReceiver can be used to refer to
female threaded fasteners. It can then be described as follows:
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BoltReceiver I Component r
dinnerForms.ThreadedLink (7.5)
Jforms.PlanarSupport r '

dparticipatesTo.BoltedJoint

The previous description includes any component with a threaded hole
that receives another threaded shaft. The description of a nut can then be
narrowed down as follows:

Nut O BoltReceiver M

=2forms (7.6)

The above-mentioned approach allows us to reuse the concept described
in Formula 7.5 to describe other concepts, without the need of re-writing the
whole statement each time the concept is reused. For example, a : InnerNut
can be described as a :BoltReceiver with further restrictions:

InnerNut ZJ BoltReceiver M
=2forms.PlanarSupport 1 (7.7)
=3forms

This states that a statically valid component (as defined in Chapter 6)
that has only three interfaces: a threaded link, two planar supports, and
that takes part to an assembly joint with threaded link, is an inner nut (see
Figure 7.2). A locking nut can then be defined as a nut, whose neighboring
component is an inner nut.

LockingNut J Nut I (7.8)
Iforms(PlanarSupport 1 Jlinks.InnerNut) '

We note that individual rules are not definitions. This means that each
rule is actually an implication rather than an equivalence. This allows us to
describe a given FD by means of two or more rules. If an individual satisfies
any of those rules, it is identified as belonging to the corresponding FD.
An example is to add another GCI stating that a statically valid component
that forms a threaded link by means of an external thread, and that has at
least one planar or conic support, and that participates to a bolted joint, is
a capscrew, as follows:

Capscrew J Component M
JouterForms.ThreadedLink r
Iforms.(PlanarSupport LI ConicSupport) 1
dparticipatesTo.BoltedJoint

(7.9)
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Figure 7.2: (a) A bolted joint (which is an assembly joint with threaded
link), involving a capscrew, a nut, and a locking nut. According to inference
rules, the nut would be identified as an inner nut. (b) Some of the FIs
involved in the assembly.

By adding such a rule, a capscrew can still be identified, even when it
is not connected with a nut. While the rule stated by Formula 7.9 is still
valid.

It is worth noticing that all of the above-mentioned rules are expressed
using only SHOZQ constructs. They are therefore expressible in OWL-DL.
Again, we use Protégé to define expert rules, checking ontologies consistency
and the satisfiability of concepts at each stage.

During a testing phase, Protégé is also used as a workbench, creating
example ABoxes and using its reasoning capability to assess results com-
pleteness. The real feeding of the ABox axioms of a given model, however,
is done from within our application, and not through Protégé. This will be
developed in more details in Section 7.5.4.

In spite of the soundness of inference rules, expected results cannot be
obtained by the mere instantiation of individuals and their relations as shown
in Section 7.4.2. This is because of two inherent reasoning characteristics of
OWL and DL that are the Unique Name Assumption (UNA) and the Open
World Assumption (OWA). The upcoming two sections develop on these
issues.

7.5.2 The unique name assumption

The Unique Name Assumption (UNA) assumes that distinct terms denote
distinct individuals [135]. OWL, however, does not make this assumption.
In fact, a URI is not required to be unique for a given entity in the Se-
mantic Web philosophy. OWL even has the owl:sameAs property to denote
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individuals identity, even though having two different URI, i.e., names.

Most of DL reasoners thus do not account for this assumption by default.
This prevents making simple judgments, such as those on lower bound cardi-
nality restrictions. For example, even if an individual x is declared to relate
to individuals y and z through the role r in the knowledge base ABox, the
conclusion that x is an instance of >2r cannot be made, in the absence of
further knowledge. This is because names x and y may actually refer to the
same individual.

To work around this issue, the UNA should be made explicitly. This can
be done by means of SHOZQ constructs by defining a singleton for each
individual, i.e., a concept having only one individual, then declaring those
concepts to be mutually disjoint. This is made possible through the nominal
construct of SHOZQ that allows rules to describe a concept by listing its
individuals.

OWL defines the property owl:differentFrom that declares two names
as referring to two distinct individuals. It also offers the owl:Al1Different
construct that declares a mutually distinct individuals. These OWL con-
structs are no more than syntactic shorthands to creating mutually disjoint
singletons. In this work, however, the UNA is made using SHOZQ primi-
tive constructs to guarantee compatibility with the communication protocol
used (see Section 7.5.4).

7.5.3 The open world assumption

The Open World Assumption (OWA) assumes that facts which cannot be
proven to be true remain unknown. This is in contrast to the Closed World
Assumption (CWA), where facts that cannot be proven to be true are as-
sumed false.

Under the OWA, partial knowledge is permitted, and conclusions made
at some point cannot be falsified by the introduction of new facts to the
knowledge base. While under the CWA, knowledge is assumed complete at
each point of the reasoning. This leads to invalidate some conclusions that
are made in absence of certain facts, once those facts are introduced to the
knowledge base [75].

The OWA thus has the advantage of allowing partial knowledge, while
keeping temporal consistency of the knowledge base. The CWA requires
complete knowledge, that might not be available in the context of the Se-
mantic Web services and applications. For this reason, OWL and DL make
the OWA.

This assumption of an open world, however, may hinder reasoning. In
fact, in the absence of some closure measures, inferences such as concept
negation are not possible. The fact that an individual x, cannot be proven
to belong to the concept C, does not mean that it belongs to its complement
=C. In fact, = belongs to neither concepts. The same applies to upper
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bound cardinality restrictions, the fact that an individual z is stated to be
involved only once in a role r does not prove its membership of the concept
<1r, unless another involvement in the same role shows to be impossible.

This problem, however, can be solved by means of some sort of local
closure of the world of discourse. For example, if the individual z is proven
to be an instance of the concept D, while D and C are stated to be disjoint
in the TBox of the knowledge base C C =D, then —C(x) becomes provable
(and we write I |= C(z)). This is because x cannot belong to D and C at
the same time.

To work around this issue in the proposed approach, we allow for local
closure of the knowledge base at the TBox level by defining concepts of
different taxonomies (FI, FD and FC) to be mutually disjoint at each level
of the taxonomy. Moreover, the closure is ensured at the ABox level, and for
each treated model individually, by explicitly stating how many interfaces a
component forms, and how many components a function cluster regroups.
For instance, a component :C (see Figure 5.5) can be stated to have exactly
two interfaces as follows {C} C =2formsT. Again, nominal definition of a
singleton (namely {C}) is used here, as enabled by the nominal construct of
SHOZQ (see Section 7.5.2).

7.5.4 Integration of DL reasoners into application framework

As mentioned earlier in Section 7.3.2, efficient and robust algorithms are
established in order to reason upon DL knowledge bases. The choice of
OWL-DL as ontology language allows us to use these algorithms to saturate
the knowledge base with valid new facts.

DL reasoning algorithms are implemented in terms of reasoners, which
are expert systems that receive the knowledge base as an input, before in-
ference algorithms are run against this knowledge in order to answer user’s
queries.

To allow the communication of facts and rules, as well as queries, a
reasoner provides the software developer with interfaces to client systems.
We distinguish two types of communication channels:

Application level communication. This is done through a well-defined
API, and by means of a software library offered by the reasoner;

Network level communication. This is done through a well-defined net-
work protocol, and by means of server applications offered by the rea-
soner.

The first solution, on the one hand, is suited for standalone software
applications that are characterized by transparent communications with a
minimal overhead. However, and in spite of efforts for standardization [87],
different reasoners still define different APIs. This is partially because of the
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difference of implementation techniques, e.g., programming languages, used
by each reasoner. This disadvantages makes it impractical to switch between
reasoners once the binding is done, hence it becomes tedious to switch from
one reasoner to another to be able to evaluate their performances.

The second solution, on the other hand, goes through standardized com-
munications. A reasoner that provides a network interface implements a
well-defined protocol to this end. This allows the software developer to
use an arbitrary reasoner, with complete abstraction of the implementation
technique at the server and the client sides, as long as both sides implement
and use the same protocol. Moreover, a different reasoner can be used,
even after the interface is built, given that it provides the developer with
a network interface. Following the client-server paradigm, this solution en-
ables the assignment of dedicated reasoning servers for industrial as well as
research applications.

A protocol for DL reasoners network communication actually exists, DL
Implementation Group (DIG) is the de facto DL reasoner network commu-
nication standard [15]. It is used by many of them such as RACER, Pellet,
and FaCT++ to name only a few.

To be able to evaluate the above-mentioned reasoners, we choose to use
the architecture solution of network communication channel, implementing
the DIG interface from a client perspective, to insert formal reasoning pro-
cesses in the proposed approach as shown in Figure 7.3.

To this end, and for a given execution of our application, a connection
to the reasoning server is then made, and a new knowledge base is initial-
ized. The ontology TBox, translated into DIG tell-commands, is read. A
tell-command informs the reasoner about rules (in terms of GCI) and facts
(in terms of axioms). The ontology tell-commands is then submitted to
the reasoner. After the geometric and qualitative analysis demonstrated in
Chapters 5 and 6, the ABox of the knowledge base is also submitted to the
reasoner, again in terms of tell-commands. Once all relevant facts are de-
clared to the reasoner, i.e., the functionally enriched CIG as interpreted in
Section 7.4.2, the individual names are declared unique (see Section 7.5.2)
and the world of discourse is locally closed (see Section 7.5.3) using the rele-
vant rules communicated as tell-commands. The reasoner is then queried by
means of ask-commands about instances belonging to different FD classes.
An ask-command requests the reasoner about a specific piece of information.
The reasoner returns, for each ask-command, a list of individual names that
belong to the requested concept, that is an FD in our case. These lists are
used to annotate corresponding components with their respective FDs. Fig-
ure 7.4 illustrates different stages of this process, showing communication
messages between the proposed application and a dig server in terms of a
sequence diagram.

The above-mentioned scheme is totally independent of the underlying
reasoner implementation. To carry out our experiments, we used both
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Figure 7.3: A diagram showing the architecture of the developed application,
and its interface with the reasoning server. The diagram shows communica-
tion channels between different modules and applications.

FaCT++, a C++ implementation of a SHOZQ(D) reasoner [169], and Pel-
let, a Java implementation of a SROZQ(D) reasoner [156].

To allow the submission of the TBox to the reasoner, the ontology, ex-
pressed in OWL-DL, needs to be translated to DIG tell-commands first.
Even though version 3 of Protégé provided an option to generate the DIG
code corresponding to a given ontology, experiment showed that this code
is broken. Protégé 3 actually communicates a different code when it binds
to a DIG server, a property that was dropped in Protégé 4. For the pur-
pose of this work, the TBox of the OWL ontology is translated manually
to DIG tell-commands, while the rest of ABox tell-commands are formu-
lated inside our application, in accordance with the facts acquired at the
qualitative behavioral analysis stage. In order to complete the functional
knowledge about the model on hand, the application queries the reasoner
about instances belonging to concepts that represent FDs. A query is thus
created per FD. Queries are formulated in terms of ask-commands. This
functionality is implemented by the class DigOntologyHandler in our code.

For each query the application sends, the reasoning server sends back a
set of individual names that belong to the FD in question. Individual names
are then mapped to their corresponding components and components are
annotated with the FD.
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7.6 Conclusions

After their identification at the functional interaction level, functional prop-
erties still need to be identified at the functional unit level. This can be
materialized by assigning relevant FDs to their corresponding components.
Section 7.1 emphasized this need to complete the functional enrichment pro-
cess of the DMU.

Even though this information is still not available when the qualitative
behavioral study, described in Chapter 6, concludes, Section 7.2 showed how
this knowledge can be obtained. The assignment of FDs to their respective
components showed to be the logical entailment of acquired knowledge at
the interaction levels, i.e., the FI and FC levels, coupled with inference rules
that are inspired from a particular domain of application. Indeed, while
the qualitative analysis process refers to a behavior to filter out some FIs,
it brings in a consistent set of dependencies between shapes, behavior and
function at the level of interfaces between components. Section 7.2 showed
how these dependencies at the component interface level could be extended
to the component level through inferences.

Section 7.3 showed that a pre-defined set of such rules cannot be deemed
complete for all mechanical engineering disciplines, thus the need for a dy-
namic adaptation of inference rules to the context in which a given DMU
is defined. This requirement narrowed down the choice of the method to
be used to define inference rules to formal logics that brings such agility.
Although FOL suggested itself as a theoretically grounded solution, its un-
predictable computational behavior made it an inconvenient choice. The
advantage of expressing rules using DL, as a family of formal languages, is
its well-understood computational properties. This is an important point to
produce an application framework that can be mastered from an algorith-
mic complexity standpoint, both at the geometry and knowledge processing
levels.

The choice of rules expression languages was made in close connection to
the choice of knowledge representation shown in Section 7.4, and the choice
of reasoning formalisms developed in Section 7.5. Our OWL-DL ontology
was introduced in Section 7.4.1, before Section 7.4.2 showed how a given
model is instantiated in view of its concepts and roles.

Section 7.5 demonstrated how inference rules can be formalized by means
of DL SHOZQ constructs. Reasoning obstacles and their workarounds were
then explained in Sections 7.5.2 and 7.5.3.

After establishing the reasoning process theoretically, Section 7.5.4 pro-
vided an insight into some implementation issues, such as the use of third
party DL reasoners, and how knowledge, queries, and answers were commu-
nicated back and forth to such reasoners.

This chapter concludes the presentation of our purely qualitative ap-
proach. As a result of such a process, the DMU model is now restructured
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geometrically to allow algorithms to recognize functional interaction zones
(see Chapter 5) and identify some components using their FD. After inter-
actions were recognized geometrically, their behavior was analyzed to rec-
ognize their functional attributes. Interaction zones, identified by Cls, and
interaction groups, identified by components sets, were annotated with their
functional semantics, i.e., their respective FIs and FCs (see Chapter 6). As a
final stage to a complete functional interpretation of the DMU, components
as functional units were annotated with their applicable FD, as part of a
formal reasoning process. Indeed, this overall process describes the adequate
data structure of a functional component as mentioned at Section 7.5.1



Chapter 8

Results and Comparative
Study

In this chapter we evaluate the proposed application of DMU en-
richment with functional information through different use cases,
ranging from simple illustrative examples up to industrial scale
models.

The general application architecture is first visited in Section 8.1.
Section 8.2 walks through and comments the result of a range of ex-
amples. A successful case study of the integration with a template-
based simulation pre-processor is demonstrated in Section 8.3.

8.1 Application architecture

Figure 8.1 shows the major modules of the proposed application. It also
shows modules that the application uses to deliver its output. The sys-
tem comprises three main modules that are the geometric processor seen
in Chapter 5, the qualitative analyzer seen in Chapter 6 and the semantic
annotator seen in Chapter 7. The three modules communicate by means of
the CIG that is enriched with different levels of information according to
the processing stage.

Open Cascade Technology [149] is used in the geometric processor to
read a STEP file and perform primitive geometric and topological opera-
tions where the Cls between components are identified and the CIG is then
generated. The geometric processor is used again in the semantic annotator
to write down the STEP file, now enriched with the Cls between compo-
nents and the functional knowledge about components. At this stage, the
geometric model of each component is structured with all its Cls attached.

As shown in Section 7.5.4, a DIG reasoner is used, such as FaCT++ [169]
or Pellet [156] to apply rules of the ontology defined in Section 7.4.1 onto the
functional knowledge obtained through the qualitative analyzer, generating
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Figure 8.1: Component diagram showing the developed solution as encap-
sulated in package romma, along with external libraries that take part in the
proposed approach.

new facts that relate components with their FDs.

Other software libraries have also been used in the developed application,
such as Xerces-C++ [6] to parse and generate Extensible Markup Language
(XML) strings, and cURL [2] to handle network communications.

The system takes as an input a DMU as represented by its geometry
in a STEP format. In fact, most commercial CAD applications provide an
interface to export CAD models to this format, as it is an ISO standard.
Even tough other information rather than geometry can be encapsulated in
a STEP file, we only consider the geometry and topology of each component
of the DMU. They represent closed B-Rep surfaces forming a volume each
that represents a component.

The final output of the proposed system is again a STEP file. However,
the generated STEP file differs from the read one in two aspects:

e The new geometry of the DMU is restructured according to functional
interaction zones between components, and with respect to the func-
tional breakdown seen in Section 4.2.3. That is, contacts and inter-
ferences are imprinted onto the original surfaces of each component
participating to the interaction, generating new curves, thus new faces
in the geometric model of each component;

e The new STEP file is semantically annotated. This is done in a tight
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relation to the ontology defined in Section 7.4.1. Functional interac-
tion zones are now named after their FIs designators as represented in
the ontology. At this stage, one FI is associated with one CI; More-
over, functionally recognized components are also named according to
their unambiguous FD, as borrowed from the same ontology. The con-
nection to an agreed-upon ontology guarantees the meaningfulness of
this supplementary information in the outcome DMU.

The proposed software can either be used as a command line application,
or as a software library. In both cases, it will need a running DL reasoner
server, supporting the DIG interface, in order to run properly. Documenta-
tion of the software API is available online!.

8.2 Application to industrial examples

The proposed application has been run against different examples to evaluate
its robustness. Tests included primitive DMUs that did not necessarily
convey an industrial meaning, as well as full-scale industrial examples. In
the first case, the system validity to generate coherent results with respect
to the objectives set in Section 3.4 has been evaluated. In the second case,
application scalability has been put to test using industrial use cases.

At first, we consider an illustrative example of a simple DMU. It is
described purely geometrically and can be interpreted as a bolted joint as-
sembly. The assembly consists of three plates fastened together by means
of a capscrew, a nut, and a locking nut. We recall that those denomina-
tions are not available at the outset of the DMU analysis. A cross-section
in the assembly model is shown in Figure 8.2. This figure also shows the
CIG corresponding to the studied DMU, and generated by the geometric
analyzer. RS I analysis is reflected in the elimination of statically invalid
interpretations, namely both spline links Fls in this case. RS II comes then
to filter out FIs leading to unnecessary static indeterminacy. This leads to
the elimination of snug fits and the self-locking fit. Finally, RS III identifies
an internal load cycle. This leads to the labeling of the group of components
that participate to this cycle as an assembly joint with threaded link.

Once functionality is determined at the interaction level, the CIG is
passed to the semantic annotator, which loads the ontology and connects to
the reasoning server. The CIG is then translated into facts, in light of the
ontology concepts and roles as shown in Section 7.4.2. After the reasoner
is fed with available knowledge, it is inquired about FDs of components.
Figure 8.3 shows recognized FDs as a result of the reasoning process. In
addition to the capscrew in green and the nut in blue, the application also
recognized the locking nut, colored in red. In fact, even though both the nut

'http://pagesperso.g-scop.grenoble-inp.fr/“shahwana/StepByStep/
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Figure 8.2: A cross-section in a simple bolted joint example tying up three
plates, along with its corresponding CIG as generated by the geometric
analyzer. Functional interpretations are also reduced to one FI per CI, and
an internal load cycle is recognized as a result of RS qualitative analysis.

and the locking nut have the same shape, they are distinguished based on
their Cls and FIs. The locking nut has two CIs whereas the nut has three.
It has to be noticed that in a standard setting of a bolted joint with a single
nut, this nut has only two CIs. It is because this nut is in contact with
another nut that it functionally becomes a locking nut whereas the nut it is
in contact with is functionally designated as a nut even though it has three
CIs. To enable this distinction, the auxiliary concept of a general nut needs
to be introduced to the ontology. A locking nut is then defined as a general
nut that forms exactly one planar support with another general nut.

This simple example shows how FDs are influenced by Fls as well as
other neighboring components: a complexity that can be handled with the
reasoning mechanisms of the qualitative analysis and the inference mecha-
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Locking Nut

Capscrew

Figure 8.3: A bolted joint assembly showing a recognized capscrew in green,
a recognized nut in blue, and a recognized locking nut in red.

nisms associated with the proposed ontology.

The model of the centrifugal pump, first introduced in Figure 1.5, pro-
vides a more elaborate example. The DMU contains 43 components. The
geometric analysis of this DMU thus generates a CIG with 43 nodes. Model
components, as represented by CIG nodes, are connected through 100 edges,
that is 100 CIs. The CIs identified are of types surface contacts (planar and
cylindrical), cylindrical interferences, linear contact.

Figure 8.4 shows the result of the running of the proposed application
against the centrifugal pump model. This figure shows how the following
FD could be recognized: a capscrew in green, nuts in blue, studs in yellow,
plug screws in cyan and a set screw in magenta.

We note that since the capscrew, the studs, and the set screw all have
an outer thread that participates to a threaded link, they are classified as
threaded shafts. However, the distinction between one FD and another is
made in light of components participation to other FIs. A stud for instance
is guaranteed to form only threaded links as FIs. The diversity of FDs
processed in this example demonstrate the interest of ontology structure
and its associated inferences that can be enriched easily to adapt to new
categories of components. This is an efficient complement to the qualitative
analysis module that is generic and builds upon basic mechanical concepts.

The example illustrated in Figure 8.3 showed that even if two compo-
nents share exactly the same shape, they still can be interpreted differently.
It is also worth mentioning that the form of the stand-alone component does
not affect the judgment of its FD. In fact, what does matter is components
interactions, reflected first at the geometric level by their Cls, and then in-
terpreted functionally by means of FIs. For example, a nut is recognized
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Figure 8.4: The example of the centrifugal pump after it has been treated by
the proposed qualitative approach to detect its FD. (a) A semi-transparent
rendering of the DMU, detected Cls of type interference are shown in dark
black. (b) A cross-section cut has been applied to the generated DMU to
show internal parts. Recognized components are a capscrew in green, nuts
in blue, studs in yellow, plug screws in cyan and a set screw in magenta.
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(a) (b)

Figure 8.5: Two different conventional representations of an inner thread
corresponding to a screw thread. (a) The inner thread is represented with
detailed helical shape on the screw, while the outer thread is simplified
as a simple cylinder on the housing. This leads to a complex interference
zone, which highly depends on components relative position. (b) The inner
thread, as well as the outer thread, are represented as cylinders, leading to
a cylindric interference between these two components.

regardless whether it is a cap nut or a simple nut with hole, as long as it
satisfies the nut functionality, as Figure 8.4 shows.

Figure 8.5a shows a different representation of the capscrew of the pump
model, as compared to the one used in the first example, and illustrated
closely in Figure 8.5b. In fact, different representations are due to different
conventions, as discussed in Section 3.2. Our algorithm shows to be general
enough to recognize both conventions, and interpret them correctly, as the
figure shows. In fact, even though the convention illustrated in Figure 8.5a
represents the thread in more details with a helical shape at the capscrew
side, generating a fairly complex geometric interface, the geometric analyzer
of the proposed application reduces it to a simple cylindrical interference to
allow the subsequent qualitative reasoning to take place. The real shape of
its geometric interface is highly dependent on positioning parameters that
are usually relaxed during the designing phase, it has thus to be simpli-
fied before it is mapped to an interpretable CI. Here, the analysis based
on the relative position of cylindrical surfaces is the key property of this
simplification process.

Table 8.1 shows execution time for the example of the centrifugal pump,
run on a machine with an Intel® Core™ 2 Duo processor at 2.40GHz and
4GB of memory. It also shows how execution time varies with respect to
the number of detected FDs that decides the size of the underling ontology;
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Table 8.1: Execution time of the proposed method (in seconds), run against
the example of the centrifugal pump, as a function the number of detected
FDs.

Number of detected FDs 3 4 ) 6
Execution time (seconds) [|15.69 |16.26 |16.34 |16.54

i.e., the number of its rules.

Another example that is used to evaluate the proposed method scalabil-
ity is the root joint example. This structure is a small subset of an aircraft
structure connecting a wing to the aircraft fuselage. It is a use-case set
during the ROMMA project [1] submitted by Airbus as project partner.
Figure 8.6 shows the model of the root joint as an output of the suggested
application. The DMU of the root joint contains 148 components. The
geometric analysis of such a model shows that components connect to each
other through 512 geometric interfaces.

It is worth noticing that the execution time of the geometric processing
and qualitative analysis is negligible when compared to that of the semantic
reasoning, done externally to our application by means of a DL reasoner.
In fact, even though DL reasoning complexities have well-known and un-
derstood bounds, those bounds are shown to be ExpTime-complete in the
general case [27]. Many factors influence the DL reasoning time, among
which the amount of provided facts, that is in our case a function of the
number of components and CIs. Another important factor is the size of
the ontology, which dictates the number of rules taken into account when
the reasoning takes place (see Table 8.1). To alleviate the time complexity
problem while dealing with large-scale industrial models, an ontology can be
simplified to only include rules that define FD that are relevant to the stud-
ied model and phenomenon. Such an adaptive ontology has been applied
to the root joint example to allow reasoning in a timely manner (less than
one minute on a personal computer) while still giving relevant and accurate
results. In the above-mentioned example, the ontology rules were reduced
to only recognize capscrews, nuts, and locking nuts.

It has to be noticed however that the general ontology used efficiently
against the centrifugal example, is also used against a sub-assembly of the
root joint as shown in Figure 8.3, while keeping execution time reasonable
(few seconds). In this case, and instead of reducing the number of rules in an
ontology, the number of facts is decreased by examining only a sub-assembly
of the whole DMU. Similarity and symmetry properties can then be used
to generalize obtained conclusions to the rest of the DMU while keeping
timely execution. Figure 8.7 shows execution time of the proposed method
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Capscrew

Locking Nut

Figure 8.6: An industrial example of a root joint after it has been processed
by the proposed application. Recognized FD in this model are capscrews,
nuts, and locking nuts.

run against the example of root joint, as well as other sub-assemblies of the
same structure. Execution time is plotted as a function of the number of
components in each substructure. Experiments are run on a machine with
an Intel® Core™ 2 Duo processor at 2.40GHz and 4GB of memory.

8.3 Integration with FEA pre-processors

The proposed approach has proved to integrate seamlessly with automatic
FEA pre-processing task [42] as to meet its target. In fact, the output of the
proposed application can be fed to a FEA pre-processor as its input. A pre-
processor that is aware of the ontology we put forward in Section 7.4.1 can
then read the produced functionally enriched DMU, in its STEP format, as
well as the FD of each component, in order to prepare a simulation model,
while taking into account the simulation objectives (see Figure 1.19). Func-
tional information available in the produced model allows the pre-processor
to robustly relate geometry at different levels, i.e., geometric interface, com-
ponent, and component group, to functionality as defined in the ontology.
The pre-processor can then choose the adequate simplifications and/or ide-
alizations to apply on that particular geometric zone in lights of simulation
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Figure 8.7: Execution time of the proposed approach against the example
of root joint and its sub-assemblies, as a function of number of components.

objectives and hypotheses.

Figure 8.8 shows how the template-based approach proposed in [42]
builds on functional annotations provided by the hereby proposed appli-
cation to simplify a bolted joint connection in accordance with simulation
purposes. To allow geometric pre-processing, a set of templates are defined,
to which a set of transformations can be associated, according to simula-
tion objectives. For example, the functional group of bolted joint is first
recognized as it is labeled as a assembly joint with threaded link by the
hereby proposed approach. It is thus matched to a template T. Links are
also established between elements of T and functional group components
and interfaces, based on their FDs and FIs. This is made possible because
the DMU, restructured and functionally enriched through the proposed ap-
proach, is no longer a mere annotation of components but this annotation
relates to the geometric structure of components using their FlIs and load
cycles that completely define each bolted joint. Once components and inter-
faces are matched to template elements, geometric transformations can be
applied and adapted to the screw diameter, the number of plates tightened
together, the type of screw head, the existence or not of locking nuts, i.e.,
the template is largely parameterized and becomes generic. Rather than
selecting individually each component and performing low level geometric
tasks on each component, the engineer can now select components based on
their functional meaning, here the assembly joint with threaded link, which
is very useful in the present case to transform the screws and nuts into
connectors as needed for FEA simulation purposes.

In the illustrated case, and for the sake of structural simulation, the
locking nut was first removed as its functionality was detected as secondary
by the template T. The capscrew and the nut were then merged together,
removing the binding threaded link. Loads are created as normal to the
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Figure 8.8: A template-based simplification of a bolted joint assembly for
FEA simulation purposes [42]. (a) The original sub-assembly model an-
notated with FD and FI as an outcome of the hereby proposed applica-
tion. Since it is recognized as an assembly joint with threaded link, the sub-
assembly is matched with a template T. (b) The locking nut is removed, as
recognized as a secondary FD in the context of assembly joint with threaded
link by T. (c) The removal of the threaded link to merge the screw and the
nut. (d) Domain decomposition takes place around the cylindric support
interaction zone. (e) Screw head transformation extends the range of screws
to flat-headed ones.

planar support, while friction areas are added under the screw head and
the planar support of the nut. Then, the object resulting from the fusion
of the capscrew and the nut is further simplified as a flat-headed fastener.
Finally, the load cycle of each bolted junction gives access to the plates it
tightens and a sub-domain can be created in these plates around the screw
as needed to set frictions areas between the plates and adapt the FE mesh
generation technique in that area. This generates a simulation model that
complies with hypotheses and objectives, and readily allows the generation
of the FEM.

Overall the proposed approach enabled the time reduction in processing
this model from five days to interactively process this DMU as required by an
engineer with the current software tools to one hour with the newly proposed
approach using the template-based operator exploiting the enriched DMU
with the functional information generated by the proposed approach.

8.4 Conclusions

In this chapter the proposed approach has been studied from a pragmatic
standpoint. Developed algorithms and advocated methods have been put to
test with concrete examples to evaluate their validity and scalability.
Results show the merit of a qualitative approach, which generates func-
tional knowledge from a purely geometric model, based on an adaptive set
of domain expert rules, while taking into account mainstream industrial
practices and conventions. They also show potentials of enhancement and



176 CHAPTER 8. RESULTS AND COMPARATIVE STUDY

optimization. The following chapter concludes this work, and presents some
perspectives to extend this work.



Chapter 9

Conclusions and Perspectives

9.1 Conclusions

The proposed approach to structure and enrich DMUs with functional infor-
mation has analyzed, in a first place the effective content of DMUs in terms
of functionally related information available as well as other technological in-
formation that could be processed to meet our objective. Chapter 1 showed
that B-Rep models of components where the generic basis available in any
CAD or FEA software and other technological or functionally-related infor-
mation was sparse and, generally inexistent. The DMU structure, i.e., its
hierarchical description, as well as position constraints or kinematic connec-
tions between components are not intrinsic to a DMU. The DMU structure
may not reflect its kinematic behavior and position constraints or kinematic
connections between components, when available, are not intrinsically re-
lated to the interfaces between these components. Similarly, component
names are not reliable information that can be related somehow to com-
ponent functions. Consequently, the proposed approach has been based on
the B-Rep models of components, positioned in 3D space independently of
each other, as DMU representation that can be reliably used as input for
our enrichment process.

The analysis of prior work (see Chapter 2) has shown that functional
information has been processed mostly through top-down approaches, with
function definitions loosely related to the geometric entities, i.e., faces, edges,
vertices, of components. Strong dependencies, however, between shape —
function — behavior is commonly recognized though not formalized in de-
tails from a geometric point of view. Feature-based approaches on stan-
dalone components have led to numerous applications, however, functional
information has not been fruitfully addressed. Processing assembly models
brought more information about their geometric interfaces but few con-
tributions addressed this level and none of them focused on the enrich-
ment with functional information. Design knowledge modeling and KBE
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approaches added design and functional knowledge to components, essen-
tially through interactive means, KBE approaches being more automatized
but reduced to a narrow application range. Anyhow, the technological or
functional information is loosely connected to the component shape and
does not strongly influence the geometric structure of components. Where
ontology-based approaches have been proposed, reasoning capabilities have
rarely been proposed, KBE ones however extensively use dedicated behav-
iors for very specific applications. The proposed approach is bottom-up to
take advantage of intrinsic and robust data as input, i.e., component shape
and their relative positions. Also, it is tightly related to shape — function
— behavior dependencies, which have not been precisely investigated to the
best of our knowledge. Ontology-based reasoning processes bring a well for-
malized framework with algorithmic complexity characterization that brings
more efficiency compared to the use of ruled-based systems used in the CAD
area in prior work.

From these settings, Chapter 3 pointed out that frequently, a real com-
ponent shape does not match its digital representation. This difference has
to be taken into account since it influences the geometric interfaces between
components, hence the reasoning processes that can be set up from digital
models of components must take into account these differences. Because
the concept of function tightly relates to the concept of interactions be-
tween components, the focus has been placed on the geometric interfaces
between components. The differences between real and digital shapes has
been formalized through the concepts of Cls and FIs and knowledge related
to these interfaces has been structured through appropriate taxonomies (see
Chapter 3 and Chapter 4). Indeed, the differences between real and digital
interfaces between components end up as multiple interpretations that re-
quire a reasoning process to filter them out and generate a DMU enrichment
process that can be automated.

The determination of the geometric interfaces between components is
not a straightforward process, as pointed out in Chapter 5. This chapter
has shown how the accurate definition of imprints of interfaces between com-
ponents can be sped up and obtained. Though digital shapes of components
lead to three categories of interfaces, i.e., contact, clearance and interference,
their analysis has concluded that contacts and interferences are the only in-
trinsic categories that can be used initially to enrich an assembly model
with functional information. This choice is consistent with respect to the
definition of an approach that relies on intrinsic information. The taxon-
omy of FIs connected to the precise geometric description of interfaces over
components is a first setting of the dependency between shape and function.

At this stage, components geometric models are structured as well as the
assembly model through its CIG. All this information and the structured
models can now be used to take advantage of dependencies between shape,
function, and behavior to filter out the multiple interpretations existing at
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some component interfaces. To this end, the concept of reference state has
been introduced that can be associated with a wide range of DMU config-
uration throughout a PDP. Then, several qualitative behaviors have been
described that rely on generic mechanical properties, i.e., static equilibrium
of a component, load propagation cycles, and statically indeterminate config-
urations, and enable to filter out FIs (see Chapter 6). These reference states
are automatically applied and stand for a first reasoning process performed
algorithmically. Therefore, its efficiency can be analyzed and its termina-
tion can be established. These reference states, as well as the FIs cover
only a subset of the possible interfaces between components. Consequently,
the straightforward application of these qualitative behavioral models to an
arbitrary DMU can lead to incomplete results if Cls are not falling into the
proposed taxonomy. In a correct setting, however, the qualitative analysis
produces a unique FI per CI, which strengthens the relationship between
each CI and its corresponding FI. The DMU thus obtained is consistent at
the interface-level and knowledge has been gained at the cluster-level, which
structures further the assembly model.

Finally, the previous results are input in the second step of reasoning,
which is based on a ontological approach. The previous taxonomies of FIs
are associated with a pre-defined, generic taxonomy of FDs to lead to the
assignment of an FD per component. This parameter becomes an identifier
of a component that combines with its FIs and its geometry structured with
the imprints of its Cls and other FlIs of neighboring components as required
by its FD to form the generic information characterizing functionally the
component inside its DMU (see Chapter 7). The FD assignment process
is obtained through a rule-based process. Inferences are expressed using
descriptive logic whose algorithmic complexity is established. Consequently,
the overall process of DMU enrichment is guaranteed to terminate and its
algorithmic complexity can be mastered. The enrichment is now obtained at
component-level as well as component cluster-level. This process is therefore
well suited for industrial DMUs and particularly complex ones as they can
appear in the aircraft industry. The enrichment thus obtained is robust, i.e.,
it is consistent and independent of user’s interactions, since the enrichment
process is automatic.

Chapter 8 has illustrated the results of the proposed approach with var-
ious examples. The DMU functional enrichment thus obtained has been
successfully used in the context of FEA preparation processes. There, it
can be demonstrated how the functional enrichment can contribute to the
component selection process for fasteners and save a fair amount of time.
Also, Chapter 7 and Chapter 6 have shown how they can be extended to
analyze the consistency of a DMU.
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9.2 Perspectives

Applications in Virtual Reality and Motion Planning

Although FEA model preparation is the first major objective behind this
work, applications are not restricted to this and other applications in a PDP
can benefit from the proposed approach. We show how our approach fits
other applications such as virtual and augmented reality and robotic and
motion planning.

VR Applications in PDP

DMU geometric model can be employed in VR applications, where the users
are immersed in a virtual environment and they can manipulate the prod-
uct and simulate its use and ergonomics. In return, virtual and augmented
reality techniques, varying from simple visualization to fully-immersive en-
vironments, can be applied to PDP at different stages such as design and
assembly /disassembly planning and simulations [38, 141, 150].

VR approaches use simplified and approximate physical models to model
interactions between user avatars and other objects, and between objects
themselves, to allow real-time simulation of such an interaction. These
models are good enough to simulate a huge portion of expected interac-
tions. However, and for certain cases, a particular physical model fails to
provide realistic results. An example is contact simulation between rigid
bodies where collision detection algorithms are used to recognize contacts,
and generate appropriate forces. Such methods are usually based on ob-
jects tessellated model (see Section 1.5.2). However, for special cases such
as shaft /bushing connections, simulation based on simple collision detection
algorithms generates an unstable behavior of haptic devices, as simplified
physical hypotheses and object dimensions are not compatible with the con-
ventional representation of components in a PDP. In such a case, when the
shaft approaches the housing, reciprocal forces are generated from the bush-
ing edges that push the shaft away because the shaft and bushing diameters
are either equal or closer to each other than the geometric deviation used
in collision detection algorithms, thus preventing the desired sliding effect
between these components.

Efforts have been paid to account for this inconvenience, where early
work shows how to use objects and agent specific attributes in order to real-
ize motion planning. Levison & Badler use behavioral object knowledge to
build an object-specific reasoner to enable a high-level action planning [110].
Kallmann & Thalmann propose a virtual interactive environment in which
smart objects define how they can be used and interacted with, by means
of a set of possible states, conditions, and instructions [96]. This allow the
adaption of the underlying physical model to the particular action to be per-
formed, avoiding unrealistic effect such as the shaft/bushing phenomenon.
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Jorissen & Lamotte generalize this approach to enable interaction between
all objects and human avatars in a virtual environment [93].

All previously presented approaches require functional annotations of
objects in order to assign them an appropriate behavior and interaction
scheme at the correct location around each object. In the presented works
this knowledge is provided during the design time of objects and virtual
environments, which suffer problems as mentioned in Chapter 2 and Chap-
ter 4.

To allow the application of VR and motion planning to large scale mod-
els, such as a product DMU, the manual functional annotation becomes cum-
bersome (as seen in Section 3.4). Our works proposes an automated method
to boost functional annotations of objects and enable the location of inter-
faces between components as a complement of prior work [89]. Incorporating
usage patterns based on objects functionality enables the application of the
above-mentioned approaches to industrial scale models and environments
because of the tight relationship between geometry, i.e., some local areas
of components, function as assigned through the proposed approach, and
behavior as needed for these simulations. Consequently, dedicated VR sim-
ulation models could be trigged whenever needed for an interaction during
a VR simulation process. The use of appropriate VR component behavior
become transparent for the user, it is interaction-driven.

Contributions to CAD-to-FEA transformations

In their recent work, Boussuge et al. [42] introduced a set of automated
geometric transformations of CAD models in preparation for FEA. The
transformations are based not only on the mere geometry of the model,
but also on supplementary simulation-relevant annotations that go through
functional groups of components down to the geometric zones that delimit
functional interactions between pairs of components. This approach uses
the work presented in this manuscript to structure the geometric model of
components and connect this new structure to such functional annotations.
The categories of components under focus were fasteners. This need to be
extended with a larger range of categories of components to take advantage
of the proposed principle. To this end, the qualitative approach needs to
be extended with new reference states, particularly those that can refer to
kinematics, i.e., relative movements between components. This would enable
the identification of kinematic equivalence classes and their corresponding
components in a DMU.

Reasoning with these additional reference states would open the possi-
bility to set up new inferences to categorize components of type bearing,
gears, couplings, etc.

Even though the scheme described in the manuscript joins KBE in some
aspects, it is however a more robust approach. This is because functional
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designations and functions are generic concepts in our approach. KBE aims
at structuring engineering knowledge and processing it with symbolic rep-
resentations [47, 143] using language based approaches. In this work, the
focus is placed on a robust connection between geometric models and sym-
bolic representations featuring functions, which has not been addressed in
KBE and, therefore, could be used in KBE approaches to extend their range
and improve their robustness when DMUs are modified during a PDP. Ad-
ditionally, KBE approaches as well as CAD-to-FEA transformations show
that the proposed approach can be regarded as a means to analyze and
structure a DMU at various stages of a PDP.

Among these stages, the design process, and even the early stages, can
benefit from the proposed approach to automate the enrichment of a DMU
with functional information in a top-down manner. As pointed out in Chap-
ter 2, many design approaches based on hierarchical decompositions face
difficulties when refining the design downward to detailed geometric config-
urations. These hierarchical decompositions needs evolutions to meet the
graph-based approach that is intrinsic to many mechanisms, as shown by
the CIG, the load cycles, and the complexity of inference processes. The
proposed DMU enrichment process is robust with respect to a range of
conventional representations of components, the influence of these represen-
tations has not been addressed with respect to the enrichment process to
evaluate how it can be further improved or how it is robust to variants of rep-
resentations. Studying these issues would help setting up principles and/or
standards for a more efficient processing of DMUs at many stages of a PDP.
Similarly, studying the robustness of the enrichment process with respect to
variants of representations of components open the possibility to design more
tolerant software environments that would refer to a sketch-based paradigm
though they would stay robust while being more user-friendly.



Appendix A

Fit Tolerancing and
Dimensioning

In mechanical engineering, a fit refers to a mating of two mechanical com-
ponents; on is a containing housing, referred to as the female part, and the
other is a contained shaft, referred to as the male part.

In technical drawing, both shaft and housing have the same nominal
diameter. Tolerancing, however, decides whether it is a snug fit, loose fit, or
nondeterminate fit.

ISO defines how to annotate drawing with such information in a stan-
dardized manner. The tolerance is denoted by a tolerance code that con-
stitutes of a letter followed by a number. The letter defines the deviation
from the nominal dimension as a function of it. Small letters are used to
dimension shafts by defining the maximal deviation es = d;,4: — dnom, While
when used for housings the letter is capitalized defining minimal deviation
El = Dyom — Dpin. For example, the letter H means zero distance from
the nominal diameter for the housing (referential housing), while the letter
h means zero distance from the nominal diameter of the shaft (referential
shaft).

Table A.1 shows tolerance letters for defining maximal and minimal devi-
ation of shaft and housing dimension (respectively) as a function of nominal
dimension.

Tolerance letters are followed by a number, defining tolerance quality.
The number is proportional to the tolerance, thus disproportional to the
manufacturing quality. Table A.2 shows 18 tolerance qualities defined by
ISO as a function of the nominal dimension.

Since the machining the shaft is more precise, shaft tolerance is usually
of higher quality rather than that of the housing. The combination of the
tolerance codes of each of the shaft and the housing decides whether the fit
is sung, loose, or nondeterminate.

Nominal dimensions are expressed in millimeters, after a symbol that
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Table A.1: ISO deviation codes showing deviation of the nominal dimension
in um as a function of nominal dimension (in mm).

Lettre ¢ cd d e ef f fg g h
<3 -60 -34 -20 -14 -10 -6 -4 -2 0
>3 & <6 -70 -46 -30 -20 -14 | -10 | -6 -4 0
>6 & <10 -80 -56 -40 -25 -18 | -13 | -8 -5 0
>10 & <14 -95 - -50 -32 - -16 - -6 0
>14 & <18 -95 - -50 -32 - -16 - -6 0
>18 & <24 -110 - -65 -40 - -20 - -7 0
>24 & <30 -110 - -65 -40 - -20 - -7 0
>30 & <40 -120 - -80 -50 - -25 - -9 0
>40 & <50 -130 - -80 -50 - -25 - -9 0
>50 & <65 -140 - -100 -60 - -30 - -10 | O
>65 & <80 -150 - -100 -60 - -30 - -10 | O
>80 & <100 | -170 - -120 =72 - -36 - -12 110
>100 & <120 | -180 - -120 -72 - -36 - -12 1 0
>120 & <140 | -200 - -145 -85 - -43 - -14 | 0
>140 & <160 | -210 - -145 -85 - -43 - -14 | 0
>160 & <180 | -230 - -145 -85 - -43 - -14 | 0
>180 & <200 | -240 - -170 | -100 - -50 - -15 | 0
>200 & <225 | -260 - -170 | -100 - -50 - -15 1 0
>225 & <250 | -280 - -170 | -100 - -50 - -15 |1 0
>250 & <280 | -300 - -190 | -110 - -56 - -17 | 0
>280 & <315 | -330 - -190 | -110 - -56 - -17 1 0
>315 & < 355 | -360 - -210 | -125 - -62 - -18 | 0
>355 & <400 | -400 - -210 | -125 - -62 - -18 |1 0
>400 & <450 | -440 - -230 | -135 - -68 - 20 | O
>450 & < 500 | -480 - -230 | -135 - -68 - -20 | O
Lettre C CD D E EF F FG G H
<3 +60 | +34 | +20 +14 | 410 | 46 | +4 | +2 | O
>3 & <6 +70 | +46 | +30 +20 | +14 | +10 | 46 | +4 | O
>6 & <10 +80 | +56 | +40 +25 | +18 | +13 | 48 | +5 | O
>10 & <14 495 - +50 +32 - +16 - +6 0
>14 & <18 +95 - +50 +32 - +16 | - +6 | 0
>18 & <24 +110 - +65 +40 - +20 | - +7 10
>24 & <30 +110 - +65 +40 - +20 - +7 0
>30 & <40 +120 - +80 +50 - +25 | - +9 | 0
>40 & <50 +130 - —+80 +50 - +25 | - +9 | 0
>50 & <65 +140 - 4100 | +60 - +30 - +10 | O
>65 & <80 +150 - 4100 | +60 - +30 | - | +10 | O
>80 & <100 | +170 - +120 | +72 - +36 | - | +12 | 0
>100 & <120 | 4180 - +120 | +72 - +36 - +12 | O
>120 & < 140 | 4200 - +145 | +85 - +43 | - | +14 | 0
>140 & <160 | 4210 - +145 | +85 - +43 | - | +14 | 0
>160 & < 180 | +230 - +145 | +85 - +43 - +14 | O
>180 & <200 | 4240 - +170 | 4100 - +50 | - | +15 | O
>200 & <225 | 4260 - +170 | +100 - +50 | - | +15 | 0
>225 & < 250 | 4280 - +170 | 4100 - +50 - +15 | O
>250 & < 280 | 4300 - +190 | +110 - +56 | - | +17 | O
>280 & <315 | 4330 - +190 | +110 - +56 | - | +17 | 0
>315 & <355 | 4360 - +210 | +125 - +62 - +18 | O
>355 & <400 | 4400 - +210 | +125 - +62 | - | +18 | 0
>400 & < 450 | +440 - +230 | +135 - +68 | - | +20 | O
>450 & < 500 | 4480 - +230 | +135 - 468 - +20 | O
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Table A.2: ISO tolerance codes showing tolerance margin in pm as a function
of nominal dimension (in mm).

Quality 01 | 0 1 2 3 4 5 6 7
<3 03105 | 08| 1,2 ] 2 3 1 6 10
>3 & <6 04106 | 1 | 15| 25| 4 5 8 12
> 6 &<10 |04 06| 1 | 15 25| 4 6 9 15
>10 &<18 |05 |08 |12 | 2 3 5 8 11 18
>18 &<30 [06| 1 | 15|25 | 4 6 9 13 21
>30 &<50 [06| 1 | 15|25 4 7 11 16 25
>50 &<80 |08 12| 2 3 5 8 13 19 30
>80 &<120| 1 |15 | 25| 4 6 | 10 15 22 35
>120 &<180 [ 12| 2 [ 35| 5 8 | 12 18 25 40
>180 &<250 | 2 | 3 | 45| 7 | 10 | 14 | 20 29 46
>250 & <315 |25 | 4 6 8 | 12 | 16 | 23 32 52
>315 &<400| 3 | 5 7 9 | 13 | 18 | 25 36 57
>400 & <500 | 4 | 6 8 | 10| 15 | 20 | 27 40 63

Quality 8 1 9 [ 10 ] 11 | 12 | 13 14 15 16
<3 14 | 25 | 40 | 60 | 100 | 140 | 250 | 400 | 600
> 3 & <6 18 | 30 | 48 | 75 | 120 | 180 | 300 | 480 | 750
> 6 &<10 | 22 | 36 | 58 | 90 | 150 | 220 | 360 | 580 | 900
>10 &<18 |27 | 43 | 70 | 110 | 180 | 270 | 430 | 700 | 1100
>18 & <30 |33 | 52 | 8 | 130|210 | 330 | 520 | 840 | 1300
>30 &<50 | 39| 62 | 100 | 160 | 250 | 390 | 620 | 1000 | 1600
>50 & <80 | 46 | 74 | 120 | 190 | 300 | 460 | 740 | 1200 | 1 900
>80 & <120 | 54 | 87 | 140 | 220 | 350 | 540 | 870 | 1400 | 2 200
>120 & <180 | 63 | 100 | 160 | 250 | 400 | 630 | 1000 | 1600 | 2 500
> 180 & <250 | 72 | 115 | 185 | 290 | 460 | 720 | 1150 | 1850 | 2 900
>250 & <315 | 81 | 130 | 210 | 320 | 520 | 810 | 1300 | 2 100 | 3 200
> 315 & <400 | 89 | 140 | 230 | 360 | 570 | 890 | 1400 | 2300 | 3 600
> 400 & <500 | 97 | 155 | 250 | 400 | 630 | 970 | 1550 | 2500 | 4 000

defines the shape of the fit, gfor instance is used for cylindric fits. In the
case of cylindric fit, the nominal dimension is the nominal diameter.

For single parts, the dimension and tolerance is expressed by a sequence
of shape symbol, nominal dimension, tolerance code. For example g50H7
defines a referential housing with 50mm nominal dimension while 213g6
defines a shaft with 13mm nominal dimension.

For assemblies, the symbol and nominal dimension are followed by hous-
ing tolerance, then shaft tolerance codes. For example, in Figure 1.2 g69HS8{7
refers to a cylindric loose fit of 69mm nominal diameter.

Considering Table A.1, it is worth noticing that switching tolerance letter
of assemblies do not change the fit nature. For instance H7f7 defines the
same loose fit as F7h7, and H7p6 defines the same snug fit as P7h6.






Appendix B

Dual Vectors

Dual numbers

Dual numbers [53] are defined in a similar way that complex numbers are.
In analogy to the imaginary number ¢ that is used to define the imaginary
part of a complex number, the dual number ¢ is used to define the dual part
of a dual number. The dual number, however, is defined as non-zero ele-
ment whose powers are zeros, leading to different arithmetics than imaginary
numbers. The dual number is therefor called nilpotent.

General dual number ring

Provided G = {0, 1,¢} with multiplication operator ., where

e #0

g2 =0.
we notice that (G, .) is a semigroup with 1 as identity.

Definition B.1 (General dual number ring). A general dual number ring
is the semigroup ring [98] of the semigroup G over a ring R [99].

A general dual number is then expressed as & = a + b where a,b € R.
Addition and multiplication are extended on dual numbers. Given & =
Tq + €xp and § = y, + €yp Where x4, Ty, Yo, Yo € R, we write:

T4+79 =(xq+vya) +elxp+w)
T—y = (xa - ya) +€(:Eb - yb)
T X :g = (xaya) +E(xayb + xbya)

a ~
division & = = is defined as the solution of the equation ¢ = b x Z.

b
We note that dual scalars are general dual numbers defined over the real
numbers ring (R, +,.).
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Dual vectors

When ring R in Definition B.1 is a vector field, the semigroup ring of G over
R defines a dual vector ring. A dual vector is denoted as @ = ¥ + et where
U, 4 € R.

Dual semifields

Dual numbers can apply not only to rings (and fields) but also to semi-
fields [98].

Definition B.2 (General dual number semi-ring). A general dual number
semiring is the semigroup semiring [98] of the semigroup G over a semifield
(thus a semiring) R [99].

This extends the use of dual numbers to structures where not every
element has a multiplication inverse.



Appendix C

Screw Theory

Mechanical crews

Screw theory [31] studies solid-bodies dynamics and kinematics. In a search
of a mathematical tool that can abstract both concepts while still accounting
for objects geometry, the theory proposes the use of screws, which it defines
as follows.

Definition C.1 (Screw). A screw is an ordered 6-tuple. The first triple rep-
resents a line Euclidean vector associated, and the second triple represents
a free Euclidean vector applied to a point [19].

Each triple represents vector coordinate with respect to a coordinate
system B = {o,¢€;,¢€,,€.}, where o is the origin of coordinates, €3, €; and
€, are orthogonal right-handed unit vectors. The origin o then defines the
point to which the second vector is bound. The screw can then be expressed
as follows.

vl | vs
{vilvz} = of | v}
vi | 03

The carrier line of the first vector is defined by v itself, and a Euclidean
vector ¥ = v X v5 which defines a point on that line.

As mentioned above, screws are abstract mathematical tools. In order
to interpret screws, a context, either dynamic or kinematic, should be given.

Twist about a screw

Chasle theory showed that motion of a rigid body between two position
can be represented by a translation along an axis, and a rotation about the
same axis. The motion of a rigid body can thus be presented by a screw.
In this case, the first triple in the screw represents the angular velocity &;
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its direction represents the rotation axis, while its magnitude represents the
rotation angle per time unit. The second triple represents the linear velocity
at the origin ¢. Such a vector is then referred to as twist, and written as
follows.

Wy | Vg
T = {d|v} = Wy | Uy
Wy | Uy

Wrench on a screw

Poinsot theory showed that the system of external forces acting on a rigid
body can be reduced to a force and a torque on plane perpendicular to this
force. The system of external forces acting on a rigid body can thus be
represented by a screw. In this case, the first triple in the screw represents
the force f The second triple represents the torque at the origin 7. Such
a vector is then referred to as wrench, and written as follows.

. fz | My
W= {f|T7L} = fy my
[z | m.

Co-moment of two screws

The co-moment of two screws A = {di|d3} and B = {by|bs} is defined as
follows:
A®B=adi-by+b - ds.

When one of the screws is a wrench screw W, while the other is a twist
screw T, the co-moment of the two screws define their power.

P = W o T

f-v + m-a.

We can then state that the work done by a wrench screw W to displace
a rigid body body by a twist screw T during a time interval dt equals to

AW = (W © T)dt.

Reciprocal screws

Two screws are said to be mutually reciprocal if their virtual coefficient is
zero [31]. This means that the work done by a wrench on the first screw to
displace a rigid body by a twist about the second one is null over time [134].
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Definition C.2 (Reciprocal screws). A pair of wrench screw W = {f]i}
and twist screw T = {|v} is reciprocal when the virtual work of the wrench
on the twist equals zero.

Screws as dual vectors

Literature suggest the representation of screws, either twists or wrenches,
as dual vectors [36, 100]. Thus, a screw S = {vi|v3} can be written as

S = v + vje.

In the current work we adopt this convention. This allows the direct
application of algebraic properties of dual fields or dual semifields, depending
on the underling structure use: rings or semirings respectively.






Appendix D

Description Logic

Decidability

Description Logic (DL) is a family of formal languages that deals with de-
cidable fragments of FOL [17]. It incorporate different languages that vary
according to their level of expressiveness. In fact, some DL variant go be-
yond FOL capacities and define constructs that requires higher order logics,
they remain however decidable [28]. DL languages exhibit well-understood
computational behaviors.

Logic’s primitives
DL models the world by means of three logical entities.

Individuals that represent objects in the modeled world. Individuals are
comparable to constants in FOL.

Concepts that represent objects sets in the modeled world. Concepts are
comparable to unary predicates in FOL.

Roles that represent objects relations in the modeled world. Roles are
comparable to binary predicates in FOL.

Sets of primitive concepts and roles that identify a given domain are first
defined in a knowledge base. Primitive concepts are referred to as concept
names and primitive roles as role names. Language constructs are used
to extends the number of concepts that can be expressed by the language.
Newly introduced concepts are described using other role names, concept
names and concept descriptions, by means of language constructs. New
roles can also be described the same way, and used in concept descriptions.

The set of constructs allowed in a DL language dictates its expressive-
ness. A kernel set of constructs that is embedded in all DL languages is
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Table D.1: A subset of DL constructs, their OWL equivalents, and their
semantics in terms of interpretations under the domain of discourse A. GCI
and axioms’ equivalents and interpretations are also shown [17, 28, 179].

DL construct ‘ OWL equivalent ‘ Construct semantic ‘

ALC constructs
T owl:Thing A
1 owl:Nothing 0
crmb owl:intersection0f | CND
Cub owl:unionOf cCubD
vr.C owl:allValuesFrom {z,Yy (z,y) er = ye )}
Ir.C owl:someValuesFrom | {z,Jy ((xz,y) erAyeC}
-C owl:complementOf A/C

Other constructs
rep rdfs:subProperty0f | Vz,y ((z,y) €r = (x,y) € p)
r owl:inverseOf {(z,y), (y,x) € r}

GCI
cchDh rdfs:subClassOf cCcD
C=D owl:equivalentClass | C =D
Axioms

C(x) rdf:type xel
r(x,y) T (x,y) er

referred to as ALC. In fact, ALC is a DL language on its own, that is the
simplest among its counterparts.

Table D.1 lists ALC constructs, and their respective equivalents in OWL-
DL.

Language semantics

DL is credited for its well-defined semantics. Semantics of the logic are
defined at the level of linguistic constructs in terms of interpretations. An
interpretation is possible under a domain of discourse A, whenever A # (). It
maps each concept C to a set C € A, and each role r to a relation r € A x A.
Table D.1 shows the interpretation of each of ALC constructs with respect
to a domain of discourse A.

The TBox T of a knowledge base is defined in terms of a finite set of
General Concept Inclusion (GCI). A GCI is a restriction of the type C C D,
where C and D are DL-concepts. A GCI of the type C C D is interpreted as
C C D. A TBox T is interpreted as the conjunction of the interpretations
of all its GCls.

Note that a concept equivalence, written C = D is a syntactic sugar of
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the conjunction of two GCI; C £ D and D C C. If one of the concepts in
C =D is a concept name, the statement is then called a definition.

The ABox A of a knowledge base is defined in terms of a finite set of
axioms. An axiom can be of the type C(x) where C is a concept and z is an
individual. Such an axiom is interpreted as x € C. Alternatively, an axiom
can be of the form r(z,y) where r is a role, and z and y are individuals.
Such an axiom is interpreted as (z,y) € 7. An ABox A is interpreted as the
conjunction of the interpretations of all its axioms.

A knowledge base K = (T,.A) is interpreted as the conjunction of the
interpretations of its TBox and its ABox.

Expressive power

GClIs allow for the expression of domain knowledge in term of rules. They
can be used to represent concepts hierarchy in the modeled world, e.g.
Student C Person that states that all studets are people. They can also
be used to restrict the domain of a role, e.g. dteachs. T C Teacher that states
that only teachers can teach. They can even express more complex rules such
as Jteachs.Math C Teacher M JhasDegree.SientificDiploma that states that in
order to teach math, one has to be a teacher with at least one scientific
degree.

We note that expressiveness of the language is highly dependant on the
allowed structures. For instance, with ALC only we cannot put restrictions
on roles range. To this end new constructs were added to ALC, producing
new DL languages, at the expense of some computational advantages.

For example, the introduction of the inverse role allows the expression
of range restrictions, and much more. Given a role r, an inverse role r~ is
defined and interpreted as 1~ = {(z,y), (y,x) € r}. More constructs are also
defined such as transitive roles, subroles, concrete domains and nominals.

A convention exists to name DL languages by adding a letter to the name
for each introduced construct. To avoid lengthy names, the core language
ALC augmented by transitive roles is abbreviated as S. In this work we are
particularly interested in the language SHOZQ, which supports nominals
O, inverse roles Z, and qualified cardinality restriction Q, besides core con-
structs S. A more expressive language variant, SROZQ [88], is supported
by OWL-DL since version 1.1.
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