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Abstract

Image representation is in the heart of many computer vision algorithms.
Different computer vision tasks (e.g. classification, detection) require discri-
minative image representations to recognize visual categories. In a nutshell,
the bag-of-visual-words image representation is the most successful approach
for object and scene recognition. In this thesis, we mainly revolve around
this model and search for discriminative image representations.
In the first part, we present a novel approach to incorporate spatial infor-
mation in the BoVW method. In this framework, we present a simple and
efficient way to infuse spatial information by taking advantage of the orien-
tation and length of the segments formed by pairs of similar descriptors. We
introduce the notion of soft-similarity to compute intra and inter visual word
spatial relationships. We show experimentally that, our method adds impor-
tant discriminative information to the BoVW method and complementary
to the state-of-the-art method.
Next, we focus on color description in general. Differing from traditional
approaches of invariant description to account for photometric changes, we
propose discriminative color descriptor. We demonstrate that such a color
description automatically learns a certain degree of photometric invariance.
Experiments show that the proposed descriptor outperforms existing photo-
metric invariants. Furthermore, we show that combined with shape descrip-
tor, the proposed color descriptor obtain excellent results on four challenging
data sets.
Finally, we focus on the most accurate color representation i.e. multispectral
reflectance which is an intrinsic property of a surface. Even with the modern
era technological advancement, it is difficult to extract reflectance informa-
tion without sophisticated instruments. To this end, we propose to use the
display of the device as an illuminant while the camera captures images
illuminated by the red, green and blue primaries of the display. Three illu-
minants and three response functions of the camera lead to nine response
values which are used for reflectance estimation. Results show that the ac-
curacy of the spectral reconstruction improves significantly over the spectral
reconstruction based on a single illuminant. We conclude that, multispec-
tral data acquisition is potentially possible with consumer hand-held devices
such as tablets, mobiles, and laptops.
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Résumé

La représentation d’image est au cœur de beaucoup d’algorithmes de
vision par ordinateur. Elle intervient notamment dans des tâches de recon-
naissance de catégories visuelles comme la classification ou la détection d’ob-
jets. Dans ce contexte, la représentation ”sac de mot visuel” (Bag of Visual
Words ou BoVW en anglais) est l’une des méthodes de référence. Dans cette
thèse, nous nous appuyons sur ce modèle pour proposer des représentations
d’image discriminantes.

Dans la première partie, nous présentons une nouvelle approche simple
et efficace pour prendre en compte des informations spatiales dans le modèle
BoVW. Son principe est de considérer l’orientation et la longueur de seg-
ments formés par des paires de descripteurs similaires. Une notion de ”soft-
similarité” est introduite pour définir ces relations intra et inter mots visuels.
Nous montrons expérimentalement que notre méthode ajoute une informa-
tion discriminante importante au modèle BoVW et que cette information
est complémentaire aux méthodes de l’état de l’art.

Ensuite, nous nous focalisons sur la description de l’information couleur.
Contrairement aux approches traditionnelles qui s’appuient sur des descrip-
tions invariantes aux changements d’éclairage, nous proposons un descrip-
teur basé sur le pouvoir discriminant. Nos expérimentations permettent de
conclure que ce descripteur apprends automatiquement un certain degré
d’invariance photométrique tout en surclassant les descripteurs basés sur
cette invariance photométrique. De plus, combiné avec un descripteur de
forme, le descripteur proposé donne des résultats excellents sur quatre jeux
de données particulièrement difficiles.

Enfin, nous nous intéressons à la représentation de la couleur à partir
de la réflectance multispectrale des surfaces observées, information difficile
à extraire sans instruments sophistiqués. Ainsi, nous proposons d’utiliser
l’écran et la caméra d’un appareil portable pour capturer des images éclairées
par les couleurs primaires de l’écran. Trois éclairages et trois réponses de
caméra produisent neuf valeurs pour estimer la réflectance. Les résultats
montrent que la précision de la reconstruction spectrale est meilleure que
celle estimée avec un seul éclairage. Nous concluons que ce type d’acquisition
est possible avec des appareils grand public tels que les tablettes, téléphones
ou ordinateurs portables.
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Chapter 1

Introduction

The thesis, titled ’Machine Perception of Three Dimensional Solids’ by
Lawrence Gilman Roberts was published in 1961 from the Massachusetts
Institute of Technology. It is regarded as the first attempt at the object
recognition problem. More than half a century later, the problem still re-
mains widely unsolved. In fact, the field of object recognition did not see
much success until the rise of machine learning techniques.

Detecting and recognizing objects is thus one of the most important
uses of vision systems in nature, and is consequently highly evolved. In-
deed, humans can recognize more than 30,000 visual categories, and can
detect objects in the span of a few hundred milliseconds. In recent past,
machine based visual recognition has gained significant attention from the
researchers. Automatic understanding of visual content has many applica-
tions, notably, surveillance, robotics, information retrieval, human computer
interaction etc. The reason machine based object recognition is difficult is
due to the large variation in the images. This variation could come from
changes in viewpoint, illumination and scale. Moreover, deformation, oc-
clusion, background clutter also contribute to the difficulty of the problem.
Another major hurdle in object recognition is intra class variations inside a
visual category. For examples, all instances of the visual category ”chair”
have four legs but their shape can vary a lot in function of their design
(Figure 1.1). The human visual system has amazing capabilities of com-
pensating for extreme changes in viewing conditions or intra class variations
due to its ability to use complex prior knowledge acquired from long term
learning. Although in case of computer vision, researchers are nowhere near
human performance in this task, they have made considerable progress in
the past few years.

The introduction of classification algorithms (e.g. support vector ma-
chine) has immensely contributed to the advancement of the category-level
recognition. These algorithms take array of feature vectors characterizing
images and their associated labels as input, to learn a set of classifiers. This
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Figure 1.1: Some instances of the object category ’chair’.

is why, many computer vision methods focus on computing discriminative
vector representation of images. In this context, this thesis proposes spa-
tial and color information aware image representation. The main theme of
the thesis is image representation, however, an important part is dedicated
to image representation applied to category-level classification with bag-of-
visual-words (BoVW) method. Specially, in the first part of the thesis, we
work on the BoVW method to improve it using spatial information. This
is why, we first explain briefly the BoVW method before presenting the
background and motivation of this thesis.

1.1 The bag-of-visual-words method for object recog-
nition

The idea of bag-of-visual-words (BoVW) is inspired by the bag-of-word
method from the textual document processing domain, where documents
are represented as histograms of textual words. In an analogy, distinct
local image patches could be considered as visual words acting as building
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Figure 1.2: A pictorial depiction of the bag-of-visual-words framework.

blocks for natural images. The BoVW is one of the most successful object
recognition method [50, 97]. It can be decomposed into four steps. The
first one is keypoint detection. The goal of this step is to extract local
regions from images. In the second step, features are computed from the
local regions. During this step each local region is represented as a vector.
Next, the obtained feature vectors are then quantized and termed as visual
words. Finally, each image is represented as a histogram of occurrences of
the visual words. This representation is known as the bag-of-visual-words.
Figure 1.2 shows a pictorial depiction of the entire framework.

Although the BoVW method has been very successful in object/scene
recognition, it has some shortcomings. For example, the BoVW represen-
tation is devoid of spatial information. Moreover, the feature quantization
step results in the loss of discriminative power. Also, there are very few
articles to integrate color information into image classification frameworks
in general. Specially, there is a visible lacking of research to obtain better
color description for discriminative tasks (e.g. classification) of the images.
In this thesis, we target to look at discriminative image representation using
spatial and color information.
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1.2 Background and motivation

1.2.1 Spatial information for category-level image classifica-
tion

As said before, one of the main drawbacks of the BoVW method is its
inability to incorporate spatial information. Evidently, the histogram based
representation does only provide frequency information where the spatial
positions of the words are ignored. While frequency of visual features is
important (for example, the visual category ’dog’ is likely to have more
’textured’ features than the category ’bottle’), for objects, spatial relation-
ships among features can bring additional discriminative information. For
example, spatial information can help to represent the global shape of an
object which is not possible to obtain only using the BoVW representation.
To this end, many methods have been proposed in the recent past. One of
the methods, spatial pyramid representation (SPR) [50] has been very suc-
cessful and shown to improve the classification accuracy significantly over
the BoVW representation. SPR, proposed in the year 2006, has received ex-
tensive attention from the computer vision community. It has been cited for
more than 2500 times. The idea of SPR is to divide the image into multiple
sub-images using a simple grid. The division works in different levels where
increase in level leads to finer grids (Figure 1.3). The BoVW representation
is computed for each sub-image extracted from the grid. The final represen-
tation is obtained by a weighted concatenation of the BoVW representations
of all the sub-images where the weights depend on the levels. Higher the
level, finer the grid and higher the weights. Due to the simplicity of SPR
and excellent performance on image classification tasks, it is used by default
in many BoVW works. The success of SPR has led researchers to improve
it in different ways [8, 30]. Nevertheless, these improvements often involve
complex learning steps to learn different strategies to create sub-images or
adapt weights on a validation set. Moreover, spatial pyramid only captures
the global layout of the arrangements of the visual words in the image and
which is by any means not the only spatial information. Having said that, it
is not worthwhile to find a new spatial method to replace the SPR as it per-
forms very well. Rather it is more advantageous to find spatial information
complementary to the SPR and add it to the SPR. Recently, some authors
have worked with this line of thought and obtained improved classification
accuracy [99, 102]. It is worth mentioning that rather than using SPR, one
can easily replace it with any other improved SPR techniques [8, 30] and
then add the additional refined spatial information to further improve the
accuracy.
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Figure 1.3: Spatial Pyramid Representation (SPR): the final histogram is
obtained by concatenating all the histograms from individual regions.

1.2.2 Representation of color information

Color information plays an important role in recognition. The human
visual system(HVS) is particularly good in using color to recognize objects.
HVS is able to quickly segment an image using color information leading
to superior understanding. Color also helps HVS to figure out the salient
part of an image efficiently. Another amazing ability of HVS is color con-
stancy. Color constancy ensures that the perceived color of objects remains
relatively constant under varying illumination conditions. A green apple for
instance, looks green to us at midday, when the main illumination is white
daylight, and also at sunset, when the main illumination is reddish. HVS
has certain degree of invariance to illumination changes while having excel-
lent discriminative power. This balance in invariance and discrimination is
desirable for many computer vision algorithms.
Although color is very important and one of the main cues used by HVS,
efforts to exploit color information for category-level classification is largely
ignored. Recently, Sande et al. [86] have shown that gradient based color
features like SIFT performs well in this regard. On the other hand, Khan
et al. [37, 38] have shown that pure color features used in conjunction with
shape features can outperform gradient based color descriptors. There exist
many different pure color descriptors [86, 87, 92]. Pure color descriptors
directly deal with color components. They are often histograms of invari-
ant color components (e.g. hue). The main objective of these descriptors
remains to obtain invariance with respect to change in viewing conditions.
To derive color invariant models a reflection model [49, 76] is almost always
used. A reflectance model makes several assumptions and thus makes it dif-

5



Chapter 1: Introduction

ficult to generalize on real world settings. Recently, pure color descriptors
have been used extensively for image classification [37, 38, 86]. However, as
none of these descriptors are optimized for discriminative tasks, it is intu-
itive that they do not obtain optimal accuracy for discriminative tasks.
Formation of colors involves a material reflectance, an illumination and an
observer. Reflectance is an intrinsic property of an object. It could be use-
ful in material classification. Reflectance brings more information than tri-
chromatic values and is invariant to viewing conditions. Many vision related
applications could be highly benefited by reflectance based color representa-
tion. However, obtaining reflectance information of a material is technically
difficult. It requires sophisticated instruments (e.g. spectro-photometers)
which are very expensive. This is why multispectral representation of im-
age for computer vision applications is not popular. There exist several
works to facilitate multispectral imaging in low cost settings [70, 78]. How-
ever, many of them still require additional instruments(e.g. filters, light
sources etc). The real challenge lies in finding solutions to multispectral
reflectance acquisition problem with an affordable single device without ad-
ditional equipments. In this thesis, we look at this aspect of color description
as well.

1.3 Objectives and contributions

Above we discussed three aspects of spatial and color representation of
images. This analysis has led us to the following three objectives of the
thesis research.
To Enrich BoVW framework with spatial information: In the first
part of the thesis, we focus on the infusion of spatial information into the
BoVW framework. Spatial information is complex. It could be extracted
from small regions(local) or the entire image(global). Additionally, it might
be absolute or relative. We observe that, each spatial method usually deals
with one particular type of spatial information. Thus, a single spatial
method for BoVW is often not enough to take the maximum advantage
of spatial arrangement of the visual words. However, as different spatial
methods encode different information, they could very well be complemen-
tary to each other. Hence, we propose a new and simple spatial scheme for
BoVW framework that performs well alone and which is complementary to
the state-of-the-art spatial methods. To incorporate this information into
the BoVW framework, we propose to compute spatial relationship among
similar patches inside an image and encode this information into the BoVW
representation. Our idea is motivated by that of [17, 77] where they show
that self-similar patches provide discriminative information. This extension
of the BoVW to integrate spatial information is presented in Chapter 3.
Discriminative Color Descriptors: Pure color descriptors are mostly
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Figure 1.4: Loss of discriminative power due to invariance. On the left an
original RGB image of a color checker under uniform illumination. On the
right, invariance representation of the same image. Note the achromatic
colors are not distinguishable anymore for the invariant image.

designed under the principles of color invariance. Invariance is always ac-
companied with the loss of discriminative power (Figure 1.4). Indeed, if
multiple colors are mapped to a single color, which is what invariance does,
those colors do not remain distinguishable. So, invariant color descriptors
are not well suited for discriminative tasks. To this end, color descriptors
optimized for higher discriminative power could be an interesting idea. In
this direction, we present a method to learn a color descriptor given a classi-
fication problem. However, for generalization, a descriptor could be learned
on a sufficiently large number of images. Although machine learning has
been employed before to learn color invariance [4], to our knowledge, learn-
ing discriminative color descriptors is a new idea. Chapter 4 presents our
proposal on discriminative color description with experimental results on
multiple data sets.
Multi spectral data acquisition using handheld devices: Access to
reflectance image of an object would be helpful for many computer vision
applications. To this end, we propose to use handheld devices(e.g. laptops,
tablets, smart phones) to obtain multispectral data of colored surfaces. Our
method relies upon only the device itself and eliminates the need of any addi-
tional and expensive equipment. Accurate color communication is important
for many industrial applications, to name a few, online shopping industry,
make up industry and paint industry. Precise color communication with the
clients are necessary for these industries. In our work, we enable the end
clients with the power of multispectral reflectance acquisition which would
make many applications plausible whereas they are currently not possible.
We present our proposal regarding this topic in chapter 5.

In the next chapter, we discuss category-level visual recognition. Specifi-
cally, we present a comprehensive step-by-step overview of the BoVW method.
We look at each step of BoVW method and discuss the state-of-the-art in
the field.
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Chapitre 1

Introduction

La thèse intitulée ”Machine Perception of Three Dimensional Solids” de
Lawrence Gilman Roberts a été publiée en 1961 au Massachsetts Institute of
Technology. Elle est considérée comme la première contribution au problème
de la reconnaissance d’objets. Plus d’un demi siècle plus tard, le problème
reste largement ouvert. En fait, le domaine de la reconnaissance d’objet n’a
pas connu de développements importants jusqu’à l’avènement des techniques
d’apprentissage automatique.

Détecter et reconnâıtre des objets est l’une des plus importantes fonc-
tions des systèmes de visions dans la nature et par conséquent elle est
très évoluée. En effet, un homme est capable de reconnâıtre plus de 30000
catégories visuelles, et peut détecter des objets en quelques centaines de
millisecondes. Récemment, la reconnaissance par vision artificielle a par-
ticulièrement retenu l’attention des chercheurs. L’analyse automatique du
contenu visuel est utile dans de nombreuses applications notamment la
surveillance, la robotique, la recherche d’information, l’interaction homme-
machine, etc. La reconnaissance par vision artificielle est une tâche difficile
à cause de l’importante variabilité des images. Cette variabilité peut venir
d’un changement de point de vue, d’éclairement ou d’échelle. De plus, les
déformations, occlusions, inhomogénéités d’arrière plan sont autant de dif-
ficultés supplémentaires. Un autre obstacle majeur en reconnaissance d’ob-
jet concerne les variations intra-classe au sein d’une catégorie visuelle. Par
exemple, toutes les instances de la catégorie visuelle ”chaise” possèdent
quatre pieds, mais leur forme peut varier énormément en fonction de leur de-
sign (Figure 1.1)). Grâce à sa faculté à utiliser les connaissances a priori qu’il
a acquises à partir d’un long apprentissage, le système visuel humain possède
d’étonnantes capacités de compensation des ces changements importants de
point de vue ou de ces variations intra-classe. Bien qu’en vision par ordi-
nateur, les algorithmes soient encore très loin d’atteindre les performances
humaines, la recherche dans ce domaine a fait des progrès considérables ces
dernières années.
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Figure 1.1 – Plusieurs instances de la catégorie ”chaise”.

La mise au point des algorithmes de classification (par exemple les ma-
chines a vecteurs de support) a contribué significativement aux progrès en
reconnaissance de catégories d’images. A partir d’un tableau de vecteurs des-
cripteurs caractérisant l’image et d’un jeu de labels associés, ces algorithmes
apprennent un ensemble de classifieurs. L’une des difficultés en vision par
ordinateur est d’être capable d’extraire des vecteurs descripteurs discrimi-
nants pour la représentation des images. Dans ce contexte, cette thèse se
propose d’étudier des représentations d’image prenant en compte la couleur
et les informations spatiales. Bien que le sujet principal soit la représentation
d’image, une part importante de la thèse est consacrée aux représentations
à partir de sacs de mots visuels (BoVW pour Bag of Visual Words) pour
la classification. Notamment, dans la première partie de cette thèse, nous
travaillons sur l’amélioration de la méthode des sacs de mots visuels par la
prise en compte des informations spatiales. Ainsi, nous présentons d’abord
brièvement cette méthode avant de présenter le contexte et les motivations
de cette thèse.
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Figure 1.2 – Représentation schématique du modèle sac de mots visuels.

1.1 La méthode de sac de mots visuels pour la
reconnaissance d’objets

L’idée des sacs de mots visuels (BoVW pour Bag of Visual Words) est
inspirée des sacs de mots dans le domaine du traitement de documents
textuels. Dans ce domaine, les documents sont représentés par des histo-
grammes doccurrence de mots textuels. Par analogie, de petits motifs locaux
indépendants sur une image peuvent être considérés comme les mots visuels
formant les constituants de base des images naturelles. Les sacs de mots
visuels sont l’une des méthodes de reconnaissance les plus performantes
[50, 97]. Elle peut être décomposée en quatre étapes. La première est la
détection de points d’intérêts. Le but de cette étape est d’extraire des pe-
tites régions (ou motifs) de l’image. Lors de la deuxième étape, des ca-
ractéristiques (ou descripteurs) sont calculé à partir de ces petites régions,
chaque région étant ainsi représentée par un vecteur. Ensuite, ces vecteurs
descripteurs sont quantifiés pour définir les mots visuels. Finalement, chaque
image est représentée comme un histogramme doccurrence des mots visuels.
Cette représentation est connue sous le nom de ”sac de mots visuels” ou bag
of visual words en anglais. La figure 1.2 présente une illustration de cette
représentation.

Bien que la méthode BoVW se soit montrée très performante en re-
connaissance d’objet ou de scène, elle possède certain défauts. Par exemple
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cette représentation ne prend pas en compte les informations spatiales. De
plus, l’étape de quantification des descripteurs produit un perte de caractère
discriminent. D’autre part, il y a très peu de travaux visant à intégrer
l’information couleur dans le cadre de la classification d’image en général.
Plus précisément, il y a un manque notable de recherches visant à obte-
nir de meilleurs descripteurs couleurs pour les tâches discriminantes telles
que la classification d’images. Dans cette thèse, nous visons à proposer des
représentations d’image discriminantes utilisant la couleur et les informa-
tions spatiales.

1.2 Contexte et motivations

1.2.1 Informations spatiales pour la classification d’image

Comme nous l’avons déjà dit, un des plus importants problèmes de
la représentation BoVW est qu’elle nintègre pas d’informations spatiales.
Bien évidemment, une représentation basée sur un histogramme ne contient
qu’une information sur la fréquence sans considérer la position des mots vi-
suels. Bien que cette information fréquentielle soit importante (par exemple
la catégorie visuelle ”chien” aura certainement plus de motifs texturés que
la catégorie ”bouteille”), pour les objets, les relations spatiales entre les
descripteurs peuvent amener une information supplémentaire discriminante.
Par exemple, l’information spatiale peut aider à représenter la forme glo-
bale d’un objet qui n’est pas possible à obtenir en utilisant seulement la
représentation BoVW. Ainsi, beaucoup de méthodes ont été proposés récemment
pour résoudre ce problème. L’une d’elle, la représentation en pyramide spa-
tiale (SPR comme Spatial Pyramid Representation) [50] s’est révélée très
performante en améliorant significativement le taux de classification compa-
rativement à la représentation BoVW. La représentation SPR, proposée en
2006, a retenu particulièrement l’attention de la communauté scientifique en
vision par ordinateur. Elle a été citée dans plus de 2500 publications. L’idée
de la représentation SPR est de découper l’image en plusieurs sous-images
en utilisant une grille simple. La division est effectuée à différents niveaux
de telle manière qu’augmenter d’un niveau correspondent à une grille plus
fine (Figure 1.3). La représentation BoVW est calculée pour chaque sous-
image extraite de la grille. La représentation finale est obtenue par une
concaténation pondérée des représentations BoVW issues de toutes les sous
images. Le poids dépend du niveau de telle façon que les poids les plus forts
sont attribués aux grilles les plus fines. Grâce à la simplicité du modèle
SPR et de ses excellentes performances en classification d’image, il est uti-
lisé par défaut dans beaucoup de travaux sur les sacs de mots. Ce succès
a conduit les chercheurs à améliorer ce modèle dans différentes directions
[8, 30]. Cependant, ces améliorations demandent souvent une étape d’ap-
prentissage complexe pour apprendre différentes stratégies pour créer les
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Figure 1.3 – Représentation en pyramides spatiales (Spatial Pyramid Re-
presentation, SPR) : l’histogramme final est obtenu en concaténant les his-
togrammes issus des différentes régions

sous-images ou pour adapter les poids sur un jeu de validation. De plus,
la représentation SPR ne capture que la disposition globale des mots vi-
suels dans l’image ce qui n’est pas la seule information spatiale intéressante.
Néanmoins, ce n’est pas facile de trouver de nouvelles méthodes spatiales
pour remplacer le modèle SPR car celui-ci est particulièrement performant.
Il est certainement plus avantageux de chercher à extraire une information
spatiale complémentaire et de l’intégrer au modèle SPR. Récemment, plu-
sieurs auteurs ont travaillé dans cette direction et ont pu améliorer les taux
de classification [99, 102]. Notons que, bien entendu, plutôt que d’utiliser
le modèle SPR initial, on peut facilement le remplacer par n’importe quelle
technique dérivée et ajouter ensuite une information spatiale élaborée pour
améliorer encore les résultats.

1.2.2 Représentation de l’information couleur

La couleur joue un rôle important en reconnaissance. Le système visuel
humain (SVH) sait particulièrement bien utiliser la couleur pour reconnaitre
les objets. Il est capable de rapidement segmenter une image conduisant à
une meilleure compréhension de celle-ci. La couleur aide aussi le système
visuel humain pour détecter efficacement les parties saillantes d’une image.
Une autre capacité étonnante du SVH est la constance des couleurs. Le terme
constance des couleurs (en anglais color constancy) signifie que la couleur
des objets est perçue de manière similaire indépendamment des conditions
d’éclairement. Une pomme verte par exemple, apparâıt verte à midi, alors
qu’elle est éclairée en lumière blanche, et apparâıt toujours verte au couché
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de soleil, alors que la lumière est rougeâtre. Le SVH a un certain degré
d’invariance aux changements d’éclairement tout en gardant un excellent
pouvoir discriminant. Cet équilibre entre invariance et pouvoir de discrimi-
nation est souhaitable pour beaucoup d’algorithmes de vision par ordinateur.

Bien que la couleur soit importante et soit l’une des principales ca-
ractéristiques utilisées par le système visuel humain, peu de travaux ont
été menés pour exploiter cette information pour la classification d’images.
Récemment, Sande et al [86] ont montré que les descripteurs couleur basés
sur le gradient tels que ceux dérivés du descripteur SIFT sont performants.
D’un autre coté, Khan et al [37, 38] ont montré que les descripteurs cou-
leur purs combinés avec des descripteurs de forme sont meilleurs que les
descripteurs basés sur le gradient. Il existe beaucoup de descripteurs cou-
leur purs [86, 87, 92]. Ils utilisent directement les composantes couleurs
et sont souvent basés sur des histogrammes de ces composantes couleurs
(par exemple la teinte). Leur principal objectif est d’être invariant par rap-
port aux changements de conditions d’observation. Pour obtenir l’invariance
couleur, un modèle de réflectance [49, 76] est presque toujours proposé. Ce
modèle est généralement basé sur des hypothèses difficilement respectées en
conditions réelles. Bien que de nombreux travaux récents utilisent ces des-
cripteurs couleur purs en classification d’images [37, 38, 86], aucun de ces
descripteurs n’est optimisé vis à vis de son pouvoir discriminant. Il est donc
plus que probable qu’il ne donne pas de résultats optimaux dans ce contexte
de discrimination entre classes.

Le processus de formation des couleurs dépend de la réflectance du
matériau, de l’éclairage et de l’observateur. La réflectance est une pro-
priété intrinsèque de l’objet et peut être utilisée pour la classification des
matériaux. Elle apporte plus d’information qu’un triplet de composantes
couleurs et est invariante par rapport aux conditions d’observation. Beau-
coup d’applications liées à la vision peuvent tirer parti d’une représentation
couleur basée sur la réflectance. Cependant, accéder à cette information
de réflectance d’un matériau est techniquement difficile. Cela demande des
instruments sophistiqués (tels que les spectro-photomètres) qui sont très
couteux. Ainsi, les représentations multispectrales pour les applications de
vision ne sont pas très populaires. Il existe quelques travaux présentant des
dispositifs d’imagerie multispectrale bon marchés [70, 78], mais beaucoup
d’entre eux s’appuient sur des composants particuliers (comme des filtres,
des sources de lumières,...). Le réel enjeu réside dans la recherche de solu-
tions dacquisition multispectrale de réflectance à partir d’un seul système, à
bas cot, ne nécessitant pas d’équipement additionnel. Dans cette thèse, nous
nous intéressons également à cet aspect de la description de la couleur.
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1.3 Objectifs et contributions

Nous avons discuté précédemment de trois aspects liés à la prise en
compte de la couleur et des informations spatiales pour la représentation
d’images. Cette analyse nous a conduits à définir trois objectifs pour notre
travail de thèse.

Enrichir le modèle BoVW avec des informations spatiales : Dans
la première partie de cette thèse, nous nous intéressons à l’ajout d’infor-
mations spatiales dans le modèle sac de mots visuels. Les informations spa-
tiales sont de nature complexe. Elles peuvent être extraites à partir de petites
régions (information locale) ou de l’image entière (information globale). Elles
peuvent aussi être absolues ou relatives. Nous avons constaté que chaque
méthode spatiale considérait généralement un type particulier d’informa-
tion spatiale. Ainsi, une seule méthode spatiale pour le modèle BoVW n’est
généralement pas suffisante pour prendre en compte la disposition spatiale
des mots visuels. Par contre, comme les différents méthodes spatiales en-
codent une information différente, elles peuvent être très complémentaires
les unes des autres. Ainsi, nous proposons une méthode simple et origi-
nale pour enrichir le modèle sac de mots par des informations spatiales.
Cette méthode fonctionne bien seule et est aussi complémentaire aux autres
méthodes de l’état de l’art. Son principe consiste à calculer les relations
spatiales entre les motifs similaires d’une image et à encoder cette informa-
tion dans la représentation BoVW. Notre idée est motivée par les travaux
de [17, 77]qui montrent que les motifs auto-similaires apportent une infor-
mation discriminante. Cette extension du modèle BoVW est présenté au
chapitre 3.

Descripteurs couleur discriminants :
Les descripteurs couleur purs sont principalement conçus sur le prin-

cipe de l’invariance couleur. L’invariance s’accompagne toujours d’une perte
de pouvoir discriminant (Figure 1.4). En effet, si plusieurs couleurs sont
fusionnées en une seule, ce qui est le principe de l’invariance, ces cou-
leurs ne peuvent plus être distinguées. Ainsi, les descripteurs couleur in-
variants ne sont pas bien adaptés pour les tâches de discrimination. Il se-
rait donc intéressant de disposer de descripteurs couleur optimisés par rap-
port à leur pouvoir de discrimination dans une tâche de classification. Nous
proposons donc une méthode pour apprendre un descripteur couleur étant
donné un problème de classification. Pour obtenir de bonnes performances
en généralisation, ce descripteur devra être appris sur un nombre suffisant
d’images. Bien que l’apprentissage automatique ait déjà été utilisé pour ap-
prendre un invariant couleur [4], à notre connaissance, apprendre des des-
cripteurs couleurs discriminants est idée originale. Le chapitre 4 présente
notre proposition de description couleur discriminante avec des résultats
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Figure 1.4 – Loss of discriminative power due to invariance. On the left
an original RGB image of a color checker under uniform illumination. On
the right, invariance representation of the same image. Note the achromatic
colors are not distinguishable anymore for the invariant image.

expérimentaux sur plusieurs jeux de données.

Acquisition de données multispectrales à partir d’un appareil por-
table : L’accès à l’image de réflectance d’un objet est utile pour beaucoup
d’applications de vision par ordinateur. Nous proposons d’utiliser un ap-
pareil portable (ordinateur portable, tablette, smart phone) pour extraire
l’information multispectrale d’une surface colorée. Notre méthode s’appuie
uniquement sur l’appareil portable sans nécessiter d’équipement addition-
nel onéreux. La transmission d’une information couleur précise est impor-
tante pour beaucoup d’applications industrielles comme par exemple le com-
merce en ligne ou l’industrie du maquillage et de la peinture. En permet-
tant à un client d’acquérir et de transmettre simplement une information
de réflectance multispectrale précise, notre méthode ouvre la porte à de
nouvelles applications qui ne sont actuellement pas envisageables. Nous
présentons cette méthode au chapitre 5.
Dans le chapitre suivant, nous nous intéressons à la reconnaissance visuelle
de classes d’images. Plus précisément, nous détaillons toutes les étapes du
modèle sac de mots visuels et nous présentons l’état de l’art actuel de ce
domaine.
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Chapter 2

Category-level Visual
Recognition with the BoVW
method

Résumé : Dans ce chapitre, nous donnons une description détaillée de
la méthode de sac de mots. nous décrivons chaque étape de la méthode et
de discuter de l’état de l’art pour chaque étape.

Abstract : In this chapter, we give a detail description of the BoVW
method. We present a step by step review of the method. State-of-the-art
practices for each step is also discussed.

2.1 Introduction

A category-level visual recognition system relates images in the real
world to a visual category using models which are known a priori. Although
the human visual system performs visual recognition effortlessly and instan-
taneously, for computers, this task is surprisingly challenging. This is due
to the large variation in object poses and photometry which human visual
system can cope with but algorithmic description of these variations on ma-
chines has been very difficult. Category-level image classification includes
recognition of any visual concept including objects and scenes. The object
recognition problem can be defined as a labeling problem based on models
of known objects. Formally, given an image containing one or more objects
of interest (and background) and a set of labels corresponding to a set of
models known to the system, the system should assign correct labels to re-
gions, or a set of regions, in the image.

There exist different approaches to handle the problem of category-level
image classification. Nevertheless, bag-of-visual-words(BoVW) remains the
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Figure 2.1: A intuitive depiction of the bag-of-words approach in text do-
main. The magnified words have the most frequent occurrence in the doc-
uments. Just by examining these words, these two documents could be
classified in categories like ’neuroscience’ or ’international trade’. Image
courtesy of Silvio Savarese.

most successful method to accomplish this task. The idea of BoVW method
originated from the language processing domain, where each document is
represented as a histogram of words. Figure 2.1 shows how two different
textual documents contains words from different semantic meaning and can
help to recognize the category of the document itself.

Inspired by the success of BoVW in the language processing domain,
the scientists in the computer vision domain extended this method to visual
categories [15, 50].

In its simplest form, a bag of visual words is a histogram of quantized
local features. The BoVW method comprises multiple steps. An image is
duly represented as feature vectors and the final step usually employs a ma-
chine learning based classification algorithms (e.g. Random Forest, Support
vector Machine). Each of these steps has been rigorously investigated by the
researchers during the last decade. So, there exist a significant amount of
literature related to each of them. In this chapter, we are going to provide
a detailed overview of each stage of the BoVW pipeline.
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2.2 Dissecting the bag-of-visual-words based clas-
sification pipeline

With very little exceptions, the BoVW method comprises of the following
steps:

– Feature point detection
– Feature extraction
– Vocabulary construction
– Image representation
After the image representation step, different machine learning tech-

niques are used to accomplish respective tasks(classification, detection etc.).
Each of these steps has profound influence on the performance of the BoVW
framework.

2.2.1 Feature point detection

The first stage within the BoVW approach involves detecting key points
or regions in an image which are stable to affine changes. There exist mul-
tiple strategies for selecting regions in an image[63]. These strategies could
be divided into multiple groups. The first group is known as interest point
detectors. These types of detectors are more adapted to the textured scenes.
They rely on finding salient points (such as corners, blobs etc.) in an im-
age. Interest point detectors are often helpful for an object recognition task
as they ignore the homogeneous areas and focus on the object and its sur-
roundings in an image. Several interest point strategies have been proposed
in the literature [63, 67]. Harris corner detector [31] is one of the very first
detectors which is based on the idea of auto-correlation. An extension of
the Harris corner detector, the Harris-Laplace point detector [63] focuses
on locating corners that are scale invariant in an image. The Laplacian
operator is used to find the scale of the corner. Another category of in-
terest point detectors aim at detecting blob like structures in the image.
Laplacian-of-Gaussian(LoG) [54] is a commonly used blob detector where
an image is convolved using a gaussian kernel at certain scales to obtain
a scale space representation. In other works, Lowe [57] uses difference-of-
gaussian for scale invariant detection whereas Bay et al. [5] proposed to use
hessian-laplacian to gain computational speed. Most of the existing interest
point schemes make use of shape saliency as a selection criteria for detection.
Another category focuses on regions rather than interest points. Maximally
Stable Extremal regions (MSER)[61] falls into this category. MSER looks
for connected components in a thresholded image (all pixels above/below a
threshold) so that the region remains stable for a change of the threshold.
MSER is more adapted to structured scenes. Finally, the dense sampling
scheme is another type of interest region detector. Its region detection is not
affected by the image content. Dense sampling is done by applying overlap-
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Figure 2.2: Examples of some popular detectors applied on the same image.
Top-left is the original image, top-right is the SIFT point detector, bottom-
left is the laplacian of gaussian detector and the bottom-right is the dense
detector.

ping grids on an image and considering every part of the image (very often
in multiple scales). It is often advantageous for category-level classification
where homogeneous regions can bring important information (e.g. scene
classification). In figure 2.2, we present feature points detected by three
popular feature point detectors.

2.2.2 Feature extraction

The next stage within the bag-of-words framework involves describing
the extracted regions of an image. All the patches extracted in an image
are normalized to standard size and descriptors are computed for all regions.
Many features such as color, texture, shape have been used to describe visual
information for object recognition. In the next paragraphs, we provide an
overview of the two most commonly used visual cues namely, shape and
color.
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Figure 2.3: An example of SIFT computation. A region in an image is
divided into four quadrants where each of the four quadrants contains 16
samples of the image gradient. The direction of the gradient together with
magnitude samples are combined into a histogram of 8-bins gradient. Con-
sequently, each of the four quadrants has its own histogram. The figure is
taken from [56].

2.2.2.1 Shape feature extraction

The initial image descriptors were gaussian derivative-based and inspired
by the human visual cortex [22, 45]. Soon after, gradient based image de-
scriptors came to the scene and made a significant impact. At present, most
of the image descriptors in use are gradient based [5, 57]. SIFT [57] is the
most notable among the gradient based descriptors. In [62], the authors
show that SIFT outperforms all the other descriptors in classification tasks.
SIFT operates by computing gradients within a region of interest. The local
appearance of the region is described by a gradient orientation histograms.
The region of interest is first divided into a 4×4 grid of cells where each of
the four quadrants has its own edge orientation histogram computed from
the local gradient direction weighed by the magnitude of the gradient. The
SIFT descriptor is highly invariant to changes in scale, illumination, and
orientation. It is also partially invariant to 3D viewpoint change. Each
SIFT key point has 132 dimensions where 128 are spatial orientation bins,
plus the coordinates, rotation and the scale of the key point. Figure 2.3
shows computation of a SIFT descriptor in a region around a feature point
detected by the interest point detectors.

Other than SIFT, there exist several other shape descriptors. Among
them, SURF [5], PCA-SIFT [35], Daisy descriptors [83] are notable.

2.2.2.2 Color feature extraction

Color is a very important cue for category-level recognition, which can
help increase the discriminative power of an object-recognition system and
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also make it more robust to variations in the lighting and imaging conditions.
However, color information comes with its own set of complexities. The RGB
values of a digital color image do not only depend on the surface color but
also on other factors like scene illumination, viewing geometry and surface
gloss. To facilitate our discussion, we group the existing color descriptors in
different categories described in the following paragraphs.
Gradient based color descriptors: In a recent study [86], Van de Sande
et al. evaluated different color descriptors. They put particular emphasis
on gradient based color descriptors. They employed SIFT on each chan-
nel of color images transformed into different color spaces and normalized
images(e.,g. HSV-SIFT,HueSIFT, OpponnentSIFT, w-SIFT,rg-SIFT etc).
They have shown that gradient based color descriptors perform very good
on category-level recognition tasks. Particularly, opponent color space based
SIFT descriptors outperform all the other color descriptors. Moreover, the
authors have found that the recognition rates provided by the SIFT based
color descriptors are much higher than those with the pure color descrip-
tors(e.g. color statistics, color histograms). This indicates that, to obtain
state-of-the-art accuracy, it is necessary to use shape information along with
the color information to maximize discriminative power.

Invariant color descriptors: Invariant color descriptors are based on
different assumptions on how light and matter interact. The Lambertian
model [49], the dichromatic reflection model [76] and the Kubelka-Munk
model [48] are the most popular surface reflection models. Invariant color de-
scriptors are primarily inspired by the Human Visual System, which is color
constant to some extent. There exist different invariant color descriptors.
Each descriptor is hand designed to be invariant to one or few photometric
changes. For example, color moments [64] is invariant to intensity shift,
rg-histogram is invariant to light intensity change and hue-histogram [92] is
invariant to intensity change and shift. There is always a trade-off between
invariance and discriminative power. This is why, despite of their great the-
oretical background and motivation, invariant color descriptors often fail to
obtain state-of-the-art classification accuracy.

Color names descriptor: Color names involve the assignment of linguistic
color labels to image pixels. The 11 basic color terms of the English language
are black, blue, brown, grey, green, orange, pink, purple, red, white and
yellow [7]. Color names display a certain amount of photometric invariance
because several shades of a color are mapped to the same color name. Van
de Weijer et al. [87] learned color names from labeled images and used it
as a color descriptor for image classification tasks. Along with a degree
of photometric invariance, color names descriptor also allow to encode the
achromatic colors such as black, grey and white, which are impossible to
distinguish from the photometric invariance perspective. This leads the
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color names descriptor to achieve higher discriminative power.
The limitations of color names descriptor are that, it is not optimized to

be discriminative and it is not known how to extend beyond 11 color names
as there is no known ordering after that.

Multispectral Color Representation: Reflectance is an intrinsic prop-
erty of an object and it is the most accurate color description possible for
a given object. Being able to capture multispectral reflectance of a scene
would facilitate extremely precise color description. Human visual system
has the capabilities to understand the intrinsic color of the object regardless
of the viewing conditions. However, in case of computer vision systems, we
are still far from this goal. Almost all the vision related systems are based on
tri-chromatic color models. This is why multispectral color representation
is not popular for category-level classification tasks.

2.2.3 Vocabulary construction

Feature extraction is followed by the visual vocabulary creation step.
This step in BoVW methods is usually known as vector quantization. Gen-
erally, clustering algorithms are used to achieve this task in the descriptor
space. Each cluster representative (typically the centroid) is considered as a
visual word of the visual dictionary. Vocabulary construction could be un-
supervised or supervised. The K-means clustering algorithm [86, 97] is the
most common method to create such visual dictionaries even though other
unsupervised methods such as K-median clustering [9], mean-shift cluster-
ing [34], hierarchical K-means [66], agglomerative clustering [51], radius
based clustering [34], or regular lattice-based strategies [85] have also been
used. One of the common features of these unsupervised methods is that
they optimize an objective function fitting to the data but ignore the class
information. The K-means algorithm minimizes the within-cluster sum of
squares of distances. To create more discriminative visual words, one solu-
tion consists in using supervised approaches. In this context, some methods
have been proposed to create class specific or concept specific multiple dic-
tionaries [20, 72].
The quality of a visual dictionary depends on its size. Generally, improved
results are obtained using larger visual vocabularies [97]. Also, with higher
number of visual words in the vocabulary, the performance difference among
different clustering algorithms slowly disappears. This is why, most of the
recent work in this field employs the K-means algorithm.

2.2.4 Image representation

The next important step of BoVW framework is image representation.
The baseline method is to compute a histogram of visual words (quantized
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local features) and was introduced in [15]. Recent advances replace the hard
quantization of features involved in this method with alternative encodings
that retain more information about the original image features. This has
been done in two ways: (1) by expressing features as combinations of visual
words (e.g., soft quantization [25], local linear encoding [91]), and (2) by
recording the difference between the features and the visual words (e.g.,
Fisher encoding [73], super-vector encoding [106]).
Combining Shape and Color Information: Generally, only shape/texture
descriptors are used for local description for the BoVW framework. How-
ever, color can provide important information. Recently, [86] has shown
that color information added to the shape descriptors can significantly im-
prove classification accuracy. There are two main approaches to combine
color and shape information, namely, early fusion and late fusion. In early
fusion, the shape and color information are combined in the feature level
and before the vocabulary construction step. In late fusion, the shape and
color vocabularies are independently computed and the fusion is done by
concatenating shape and color histograms computed independently. Often,
shape and color information are independently learned from the training
set. Recently, Khan et al. [38] introduced top down color attention based
shape feature modulation to combine color and shape features to obtain
state-of-the-art results.

2.2.5 Image classification

As explained in the previous section, the final image representation is a
vector. Such vectors calculated from all the training images and their class
labels are used as input to a machine learning algorithm for classification.
A Support Vector Machine (SVM) is a learning algorithm typically used for
classification problems . The goal of the SVM is to optimize ”‘generaliza-
tion”’, the ability to correctly classify unseen data. It addresses problems
seen in other learning algorithms such as mistakes due to local minima, over
fitting, and an inconveniently large number of tunable parameters. SVM
maps training data in the ”‘input space”’ into a high dimensional ”‘feature
space”’. It determines a linear decision boundary in the feature space by
constructing the ”‘optimal separating hyperplane”’ distinguishing the classes
with the help of the support vectors (Figure 2.4).

This allows the SVM to achieve a nonlinear (or linear depending on
the type of mapping) boundary in the input space. The type of mapping is
determined by the ’kernel function’ in use. ’Kernel functions’ also potentially
help to avoid difficult computation in the feature space. The ”‘support
vectors”’ are those points in the input space which best define the boundary
between the classes. The non-linear decision function in the original feature
space is shown below:
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Figure 2.4: Classifier learnt using a linear support vector machine.

f(xt) =
∑
i

αiyiK(xi,xt) + b (2.1)

Here, xi refers to the training sample, yi is the corresponding training
label, xt is the test sample and K is the kernel function. Additionally, αi
and b are the parameters learned during training. SVM usually solves binary
classification problems, where it finds a decision boundary to separate two
classes from each other. However, it is possible to extend SVM to solve mul-
ticlass classification problem. It is generally done by dividing a multiclass
problem into multiple binary classification problems. In particular, the most
common technique in practice builds one-versus-rest classifiers (commonly
referred to as ”‘one-versus-all”’ classification) and chooses the class which
classifies the test datum with greatest margin. Another strategy is to build
a set of one-versus-one classifiers, and to choose the class that is selected by
the most classifiers.
Over the last few years variety of different kernels have been proposed for
SVM. For image classification, non-linear kernels like intersection or χ2 have
shown excellent performances. While χ2 performs slightly better than in-
tersection kernel, it requires tuning of an additional parameter and is slower
than the intersection kernel [59]. In this thesis, we have used both kernels
and a one-vs-all approach to multiclass SVM.
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Figure 2.5: The evolution of the Pascal voc object recognition challenge.
The classification accuracy is significantly increasing in a consistent matter
each year.

2.3 Recent developments

In this section, we shortly discuss some of the recent advancement in
category-level recognition. However, it is not remotely possible to do jus-
tice to all the works that has been published over the years attempting
to solve the category-level recognition problem. Most of the recent devel-
opments in the field of category-level recognition is revolving around the
BoVW method. Specially, there has been a lot of efforts to improve the fi-
nal image representation from the local features [12, 73, 107]. The main idea
is to incorporate higher order statistics than a simple visual word counting
scheme. A significant amount of works has been focused on infusing the
lost spatial information in the final BoVW representation [50, 55, 75]. In-
corporating color information into the category-level recognition framework
gained some interest [37, 38, 86]. A few works propose to unsupervised
segmentation of image training sets into foreground and background in or-
der to improve image classification performance [10, 11]. Also, method like
Multiple kernel learning [65, 89] or SVM-KNN [103] has been successful by
improving the learning step after image representation.
At last, we present the data obtained from Pascal VOC object recognition
challenges to get an insight about the progress in this field. Pascal VOC
object recognition challenge is a proper place to look for state-of-the-art
advancement for object recognition as this challenge regularly took place
for eight consecutive years and always involved the same categories of 20
objects collected from flickr photo streams with roughly the same difficulty
level. To understand the evolution, we plot the mean of the maximum aver-
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age precision obtained for each object for each challenge starting from 2008
until 2012. This plot gives a clear idea on the advancement made in the
field of object recognition. The mean average precision rises impressively
from 55.96% to 82.19% inside a time span of 5 years. Most of the teams
in this contest employ the bag-of-visual-words method. To boost the per-
formance the contestants usually apply multiple detectors and descriptors
with advanced encoding techniques, higher order statistics, spatial pyramid
and multiple kernel SVMs. The most recent winner of the challenge dealt
with the problem of intra-class variation by inhomogeneous similarity aware
subclass mining [13, 79].

2.4 Conclusion

In this chapter, we have reviewed the BoVW representation for image
classification and object recognition. As mentioned, to improve classifica-
tion accuracy, many methods have been proposed, using larger vocabularies,
different encoding solutions or combining shape/color cues. However, none
of these methods retain spatial relationship among the visual words in the
image space. This is why, methods like spatial pyramid proposed by [50] is
almost always used for image representation. To this end, this thesis pro-
poses a way to add spatial information in the BoVW method. This method
is presented in chapter 3. In chapter 4, we look at a more general prob-
lem of finding a color descriptor for discriminative task. We experimentally
evaluated our descriptor using the BoVW method. The context of these
problems and related works are discussed in the respective chapters.
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Chapter 3

Spatial Information to
Improve the BoVW Method

Résumé : Ce chapitre présente une nouvelle approche permettant d’ajouter
de l’information spatiale dans la représentation sac-de-mots visuels pour
améliorer la catégorisation ou la classification d’images. En effet, dans la
représentation sac-de-mots traditionnelle, les vecteurs descripteur des im-
ages sont des histogrammes d’occurrences de mots visuels. Cette représentation
est basée sur l’apparence et ne contient aucune information relative à la
disposition des mots visuels dans le plan image 2D. Dans ce contexte, nous
présentons une approche simple et efficace pour prendre en compte l’information
spatiale. Notre approche vise une représentation explicite globale des rela-
tions spatiales entre mots visuels. A cette fin, nous exploitons l’orientation
et la longueur des segments formés par des paires de motifs similaires. La
similarité entre motifs est évaluée de manière souple par une pondération
normale de la distance entre leurs descripteurs (soft similarity). Un his-
togramme normalisé d’angles-distances des paires est calculé, la contribution
de chaque paire étant pondérée par la similarité. Un tel histogramme spatial
est généré pour chaque type de mots visuels et tient compte de toutes les
paires de motifs incluant ce mot visuel. Des expérimentations sur des bases
de données standard connues ont prouvé que notre méthode est compétitive
face aux autres techniques concurrentes. Aussi, il est montré que notre
méthode apporte une information complémentaire à celle fournie par les
pyramides et permet d’améliorer significativement les résultats de classifica-
tion.

Abstract : This chapter presents a novel approach to incorporate spatial
information in the bag-of-visual-words representation for category level and
scene classification. In the traditional bag-of-visual-words method, feature
vectors are histograms of visual words. This representation is appearance
based and does not contain any information regarding the arrangement of
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the visual words in the 2D image space. In this framework, we present a
simple and efficient way to infuse spatial information. Particularly, we are
interested in explicit global relationships among the spatial positions of vi-
sual words. Therefore, we take advantage of the orientation and length of
the segments formed by pairs of similar patches. The similarity between
patches are determined in a soft manner using a normal weighting depend-
ing on the distance among the patches in the descriptor space. An evenly
distributed normalized histogram of angles and distances of the pairs is com-
puted, where pairwise similarity weights are used. For each word type, we
constitute one spatial histogram, which accounts for all pairs of patches in-
volving that word type. Experiments on challenging data sets demonstrate
that our method is competitive with the concurrent ones. We also show that,
our method provides important complementary information to the spatial
pyramid matching and can improve the overall performance. 1

3.1 Introduction

In category level and scene classification, the BoVW method has shown
excellent results in recent years [50, 53]. In this method, an image is repre-
sented as a histogram of quantized local features called visual words. How-
ever, being orderless, histogram representations do not preserve any spatial
information. This is considered to be one of the major drawbacks of this
very successful method.

Different methods have been proposed to incorporate spatial information
into the BoVW representation [44, 50, 55, 75, 96]. Some of these approaches
use spatial context during the vocabulary construction step to incorporate
spatial information [74, 106]. Alternatively, the most popular approaches
model the spatial arrangements of visual words on the 2D image space as an
additional step [44, 46, 50, 82, 96, 100, 101, 102, 105]. These later methods
are more popular as they obtain superior classification accuracies. It is due
to the fact that they are able to capture both local and global relationships
among the visual words.

In this context, the Spatial Pyramid Representation (SPR) [50] is prob-
ably the most notable work. Its principle relies in dividing the image into
a sequence of increasingly coarser grids (eg. 4 by 4, 2 by 2 and 1 by 1)
and computing a local BoVW histogram in each cell. Two images are then
compared using an intersection kernel computed between the two corre-
sponding sets of histograms. The success of SPR has drawn the attention
of many researchers. As a result, several attempts to improve this method
took place after it had been proposed. For example, Bosch et al. [8] have
generalized the intersection kernel with other quasi-linear kernels like chi-

1. A part of this chapter appeared in the proceeding of the British Machine Vision
Conference(BMVC), 2012 [40].
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square and learned weights for each pyramid level rather than using fixed
weights. Another method for weight learning of SPR was proposed in [30].
In another work, fisher vector based global spatial layout modeling [46] has
shown excellent results as well.

Although SPR performs very well, it only captures the information about
approximate global geometric correspondence of the visual words among im-
ages. That is why, many of the recent approaches propose to find features
that are complementary to SPR [40, 99, 102]. In this context, some works
consider relative spatial relationships between visual words as initially pro-
posed by [75]. The principle is to build higher order statistics considering
the occurrence of a given spatial configuration of visual words. Following
the approach proposed by [55, 75], given a specific pair of visual words and
a spatial neighborhood, the co-occurrence information can be encoded as a
spatial histogram. Although this approach cannot perform as good as SPR
when used alone, it was recently shown to provide significant improvement
of the classification accuracy [40, 99, 102].

However, the abundance of visual words in an image makes it compu-
tationally expensive to explicitly model relative spatial relationship among
visual words. Thus, methods like [55, 75] employ vocabulary compression or
feature selection and model only local or semi-local spatial information to
speed up the computation. Nevertheless, Elfiky et al. [19] have shown that
vocabulary compression before spatial information extraction results into
declined classification performance. In another work, Parikh [69] examines
the human vs machine performance on jumbled images and concludes that
existing machine vision techniques are already effective in modeling local
information from images, thus future research efforts should be focused on
more advanced modeling of global information.

Based on these observations, in this work, we propose a way to model
the global and local relative spatial distributions of visual words. We com-
pute pairwise spatial histograms to capture the global distribution of similar
patches. However, to identify similar patches we do not impose any hard
threshold, rather we introduce the notion of soft-similarity between two im-
age patches. Each pair of patches gets a similarity score according to their
distance in the descriptor space. To compute the pairwise spatial histograms,
for a given visual word and all the pairs of patches, we consider those where
at least one of the members belongs to that visual word. Then, we consider
the orientation and length of the segment formed by each pair in the im-
age space and calculate a normalized spatial angle-distance histogram. The
soft-similarity score is used to weight the contribution of each pair to the
spatial histograms.

Note that our method eliminates a number of drawbacks from the pre-
vious approaches by i) adopting a simpler word selection technique that
supports fast exhaustive spatial information extraction ii) enabling infusion
of both local and global spatial information iii) being robust to translation
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that often occurs in object classification context.
The rest of the chapter is organized in the following way: the next section

describes a review of the related works. Section 3.3 presents our approach to
incorporate spatial information into the BoVW representation. Section 3.4
describes the implementation details and section 3.5 presents the results on
different benchmarks and comparisons with several other methods. Section
3.6 concludes the article pointing towards our future works.

3.2 Related works

In the previous section, we have briefly mentioned some works that suc-
cessfully attempted to incorporate spatial information into the BoVW rep-
resentation. In this section, we are going to detail some of those methods.
We are specially going to focus on the methods that model relative layout
of the visual words [55, 75] as our method also models similar information.
Along with them, we discuss some other global methods like SPR [50], fis-
cher vectors [46] and methods that improve SPR infusing additional spatial
information [99, 102]. All the methods described in this section will be
compared in the experimental section.

Correlograms [33] have been widely used in texture classification and
image indexing. Recently, they have been successfully utilized to capture
information on spatial interaction among visual words [75, 105]. Savarese
et al. [75] have employed correlograms to model relationships among the
visual words and achieved improved classification accuracy. This approach
captures the relationship between visual words as a function of distance
in the image and constructs a correlogram matrix. The authors call each
element of this matrix a correlaton and compute histograms of correlatons
as the final representation.

An improvement in the results is shown by an augmentation of the cor-
relaton representation with the regular bag-of-word representation. As cor-
relogram is a function of distances, choices of those distances influence the
spatial information captured and also the classification accuracy. The au-
thors have argued that small and large distances should be considered to
cover the whole image thus take into account both the global and local in-
teraction of the visual words. In this case, efficient algorithms must be used
to cut down computational time. In another work, Liu et al. [55] introduce
an integrated feature selection and spatial information extraction technique
to reduce the number of features and also to speed up the process. The pro-
cess of feature selection and second order feature(e.g. spatial information)
extraction are run alternatively at each iteration of the algorithm. At each
round, feature selection selects one feature, and feature extraction pairs this
feature with each of the previously selected features. As in [75], the final
feature is constructed by the concatenation of the first and second order
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features. Note that all of the previous methods under this category only
deal with local and semi-local information, although global spatial methods
described in the next paragraph very often outperform the local ones.

In the case of global spatial information, SPR [50] has shown very good
performances on many challenging image datasets. SPR combines aggre-
gated statistics of fixed subregions from different levels of a pyramid. Inter-
estingly, this method is not invariant to global geometric transformations.
Moreover, SPR lacks information about relative positions of visual words and
local spatial patterns. Zhang et al. [102] use different heuristic approaches
with success to infuse additional spatial information into the SPR and Yang
et al. [99] use co-occurrence information to improve it. We conclude the
related works section citing one of our previous work on this very problem.
In [40], we have shown that global spatial orientations of intra-type visual
words are discriminative and significantly improve the classification accu-
racy. Our current proposal could be considered as a step forward of that
work. In this work, we extend the spatial encoding of BoVW to intra and
inter type visual word using the notion of soft-similarity and include spatial
distance with orientation. In the next section, we are going to introduce our
notations with the brief explanation of the BoVW method.

3.3 Encoding distance-orientations information of
similar patches

The principle of our method is to use pairwise spatial histograms to
encode spatial co-occurence of similar word pairs. In this section we first
present original pairwise spatial histograms introduced by Liu et al [55],
then we introduce pairwise spatial histograms of similar patches and finally
our image representation.

3.3.1 Pairwise spatial histograms

In the BoVW method, each image I is represented in terms of image
descriptors [57, 95]:

I = {d1, d2, d3, d4, . . . dN} (3.1)

where di is a vector which is the description of the image patch i and N is
the total number of patches in the image. Typically, K-means unsupervised
clustering is applied on a large set of descriptors obtained from the training
images to compute cluster centers W = {w1, w2, w3, w4 . . . wK} called visual
vocabulary, where K is the predefined number of clusters. Each patch i of
the image is then assigned to a visual word w(di) which corresponds to the
nearest center in the descriptor space. If a soft assignment model or a sparse
coding is used, the corresponding visual word is the one having the highest
weight.
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Figure 3.1: In this figure, each shape represents a different descriptor and
all the descriptors with the same color belongs to one particular visual word.
To encode spatial information, we use the distance and orientation informa-
tion between pairs of patches in the image space (top-left) as well as their
distance in the descriptor space(top-right). We consider inter and intra type
word based on their proximity in the descriptor space. At the bottom, dis-
cretization of the image space used to define spatial histograms. Translating
reference patch Pi (resp. Pj) at the center, the position of patch Pj (resp
Pi) gives the bin number.

In Liu et al [55], a pairwise spatial histogram is defined according to
a discretization of the spatial neighborhood into several bins encoding the
relative spatial position (distance and angle) of two visual words (Figure
3.1). Given a specific pair of patches (Pi, Pj), it is defined as the count of
all occurrences of Pj falling into a specific spatial bin relatively to Pi, the
count being averaged for all instances of Pi.

3.3.2 Motivation of considering similar cues

The number of possible pairs of visual words is potentially very large
and thus, Liu et al proposed to select only discriminative pairs. In [40],
we have proposed another alternative which is to consider only pairs of
identical visual words. The motivation came from the previous works [17, 77]
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Figure 3.2: Discriminative power of spatial distribution of intra type visual
words. Four images from Caltech101 dataset are shown. The black squares
refer to identical visual words across all the images. For the two motorbikes
in the left, the global distribution of the identical visual words is more similar
than the ones in Helicopter or Bugle image.

where the authors have argued that modeling the distribution of similar cues
across an image can give discriminative information about the content of
that image. Figure 3.2 shows an example which gives an intuition to better
understand the idea. In this illustration, we consider patches associated
with the same visual word as similar cues.

3.3.3 Pairwise spatial histograms of similar patches

The notions of similar cues and similar words are not equivalent. If we
consider clusters delimiting visual words in the descriptor space, two cues at
the cluster borders could be very similar being in different clusters. Similar
cues in this context are more related to a small inter-patch distances in the
descriptor space.

Hence, we propose to analyze the spatial positions of the patches which
are situated in proximity in the descriptor space. To avoid the use of a
threshold to identify similar patches (hard similarity), we consider all the
pairs of patches and we weight the contribution of each pair as a decreasing
function g(x) of their distance x in the descriptor space (soft similarity). We
propose to use a gaussian function of standard deviation σ defined by:

g(x) =
1

σ
√
2π

e−
x2

2σ2 (3.2)

This parameter gives us the control to highly weight patches that are in
close proximity in the descriptor space and to ignore the ones which are
far. More information about the choice of this parameter can be found
in section 3.4.2. More formally, we consider the set Sk of all the pairs of
patches where at least one patch in the pair belongs to the visual word wk. A
given pair (Pi, Pj) ∈ Sk is characterized both by a pair of descriptors (di, dj)
and a pair of positions in the image space denoted (pi, pj) (Figure 3.1). A
pairwise spatial histogram of similar patches is then defined considering a
discretization of the image space into M bins with an angle θ ∈ [0, π[ split
into Mθ equal angle bins and the radius r ∈ [0, R] split into Mr radial
bins so that M = MθMr. For example, in the illustration at the bottom
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of figure 3.1, the total number of bins M=45 (Mθ=9 and Mθ=5). The
values of Mθ and Mr will be determined in the experimental section and the
maximum radius R is chosen to be the diagonal of the image, in order to
reduce scale sensitivity.

The bin count H(m) of the spatial histogram of similar pairs Hk corre-
sponding to the visual word wk is then given by:

Hk(m) =
∑

(Pi,Pj)∈Sk

g (|di − dj |2)1bin(m)(pj − pi) (3.3)

where |di − dj |2 is the `2 distance in the descriptor space and 1bin(m) is the
indicator function of bin m such that:{

1bin(m)(v) = 1 if v ∈ bin(m)

1bin(m)(v) = 0 otherwise
(3.4)

Note that, due to symmetric considerations, angle bins are discretized in
the [0, π[ interval. Thus, given a pair of positions (pi, pj) the corresponding
histogram bin is determined taking either pi or pj as reference point which
is equivalent to consider either (pj − pi) or (pi − pj) vectors (figure 3.1). To
evaluate the benefit of using inter-patch distance in the descriptor space, we
will also consider a pairwise spatial histogram defined with identical visual
words. Formally, if S∗k denotes the set of all the pairs of patches for which
both patches belong to visual word wk, the hard pairwise histogram H∗k is
defined as:

H∗k(m) =
∑

(pi,pj)∈S∗
k

1bin(m)(pj − pi) (3.5)

For a visual word wk, equation 3.3 can be used to compute the entire
histogram Hk. We propose the way to combine all Hk resulting from the
different words in section 3.3.4.

3.3.4 Image representation

As explained in the previous section, for each visual word wk, we obtain
one spatial histogram. This histogram encodes spatial information (distance
and orientation) of pairwise similar patches (intra and inter type visual
words), where at least one of the patches belongs to wk. This modularity
facilitates simple way to assemble the spatial histograms and to obtain the
final representation. We define three different representations: the soft pair-
wise similarity angle-distance histogram SPSad derived from the classical
BoVW histogram, SPSad+ its combination whith SPR, and SPS1800

ad + a
more compact version.
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3.3.4.1 Soft Pairwise Similarity angle distance histogram SPSad
representation

To obtain SPSad representation from the classical BoVW histogram, we
use a ’bin replacement’ technique. Bin replacement literally means to replace
each bin of the BoVW frequency histogram with the spatial histogram Hk

associated to wk. The sum of all the bins of the spatial histogram obtained
from one visual word wk is normalized to the number of occurrences of this
word in the whole image. By this way, we keep the frequency information
intact and add the spatial information. The dimensionality of our represen-
tation S = N ×M depends on the vocabulary size(N) and the number of
angle-distance bins of the spatial histogram (M).
On the other hand, if we only consider hard pairwise spatial histograms H∗k
instead of soft pairwise spatial histograms Hk, we obtain a hard pairwise
similarity histogram, denoted as HPSad.

3.3.4.2 Combination of SPSad with SPR

The SPSad representation is complementary to local first order BoVW
representations as SPR, we propose to combine SPSad with SPR. We take
the finest level of a 2-level SPR representation and concatenate it with
SPSad without any weights, we denote this representation as SPSad+. In-
deed, the dimensionality of the SPSad+ representation is the sum of that of
the SPR and the SPSad representation. For a vocabulary size of N and a
2-level SPR, this dimensionality is N × (16 +M), 16 being the total number
of local histograms in a 2-level SPR.

3.3.4.3 Dimensionality reduction

One of the drawbacks of the SPSad+ compared to SPR is the high di-
mensionality of the feature vectors. As compact representation is desirable,
we use feature clustering to obtain a compact representation of the SPSad+
descriptor as shown in Elfiky et al. [19]. In their work, Elfiky et al. [19] em-
ploy divisive information theoretic clustering(DITC) proposed by Dhillon et
al. [18] to compress the SPR representation without significant loss of dis-
criminative information. The DITC algorithm minimizes the within-cluster
Jensen-Shannon divergence while simultaneously maximizing the between-
cluster Jensen-Shannon divergence. We compress our feature vectors down
to 1800 dimensions. We denote this representation as SPS1800

ad +.

3.4 Experimental protocol

In this section, we present the data sets used and the implementational
details. We will evaluate different aspects of the SPSad representation for
image classification.
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Figure 3.3: Some example images from the Caltech101, 15Scene and MSRC-
v2 image data sets.

3.4.1 Image data sets

For this work, we use MSRC-v2, Caltech101 and 15 Scene data sets for
experiments. Figure 3.3 shows some example images from these data sets.

This subsection provides short descriptions of these image data sets.
MSRC-v2: In this data set, there are 591 images that accommodate 23 dif-
ferent categories. All the categories in the images are manually segmented.
Different subsets of these categories have been used by several authors to
derive a classification problem [75, 80].
15Scene: This data set [50, 53, 68] comprises indoor (i.e. office, kitchen,
bedroom etc.) and outdoor (i.e. beach, mountain, tall building etc.) scenes.
Images were collected from different sources predominantly from Internet,
COREL collection and personal photographs. Each category has 200 to 400
images, and the average image size is 300×250 pixels.
Caltech101: The Caltech101 data set [52] has 102 object classes. It is
one of the most diverse object database available. However, this data set
has some limitations. Namely, most images feature relatively little clut-
ter and possess homogeneous backgrounds. In addition, there are very less
variations among the objects of the same category. Despite the limitations,
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this data set is quite a good resource containing a lot of interclass variability.

3.4.2 Implementation Details

For MSRC-v2 data set we use a 15 category problem as used in [55, 75].
We use a filter-bank responses for feature extraction as in [55, 75]. The
training and testing sets are also chosen in accordance with those works for
the sake of comparison. For the other data sets, we follow the experimental
setup consistent with [50]. Thus, we use single scale dense detector and
SIFT descriptor for feature extraction. To be able to compare our results
with other spatial representations, we use the standard BoVW representa-
tion (hard assignment). Thus, for all the data sets, we apply K-means on the
descriptors to construct the vocabularies. Each descriptor is then mapped
to the nearest visual word based on euclidean distance. Support Vector
Machine (SVM) is used to perform the classification tasks. We use the in-
tersection kernel [81] and the one-vs-all rule where multi-class classification
is necessary. The cost parameter C was optimized for all the experiments
using a 10-fold method on the training set. Note that, this representation
does not require any quantization for 2nd order descriptors as opposed to
[75]. So, the output of our algorithm is directly fed into the classification
algorithm.

3.4.3 Parameter tuning

In our approach, three parameters(Mθ,MR and σ) have to be set to com-
pute classification results. We study their influence on this section. In figure
3.4, on the left, we plot the effect of the number of angle bins(Mθ) and dis-
tance bins(MR) on classification accuracy on 15-scene and Caltech101 data
sets for a vocabulary size of 200. A 36 bins (9×4) spatial histogram appears
to be a good compromise for both datasets. Considering finer quantization
does not improve the accuracy significantly, but highly increases feature di-
mension. On the right of figure 3.4, we show the effect of the weighting
parameter σ on accuracy. For a very low σ, not all similar patches are taken
into account and for a higher σ, there are patches which may not be similar
and could be regarded as noise. Whatever the data set, the value σ=0.3
gives the best results and will be used in the following sections. This value
is related to the descriptor in use (SIFT in this case).

3.5 Results

In this section, we first study the performance of our SPSad image rep-
resentation and its HPSad and SPSad+ derivatives on the Caltech101 and
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Figure 3.4: Parameter tuning for SPSad representation. On the top, the
influence of number of bins for Caltech101(left) and 15Scene(right) data
sets and at the bottom, the influence of σ for the same data sets.

15Scene data sets. Next, we compare SPSad with other similar spatial rep-
resentations on the MSRC-2 dataset.

3.5.1 Performance evaluation of SPSad representation

Here, we first analyze the performance for SPSad representation on Cal-
tech101 and 15Scene data sets(The MSRC-2 dataset is used in section 3.5.2
to compare with [55, 75]). We show the classification performance gain for
SPSad over BoVW and HPSad representation and discuss the results. Next,
we compare SPSad+ with SPR and some other spatial descriptors obtained
from combination with SPR.

Table 3.1 shows results on Caltech101 and 15 Scene data sets for 3 dif-
ferent vocabulary sizes. From these results, it is clear that for each data
set the SPSad representation improves the results over BoVW and HPSad
representation for all the vocabulary sizes. For larger dictionaries, spatial
information does not seem to be as effective as in the smaller ones. Indeed,
comparing SPSad over BoVW, for Caltech101 and 15Scene, gains are re-
spectively about 14% and 7% for a vocabulary size of 100 and decrease to
10.25% and 3.3% for a vocabulary size of 1000. This was also observed in
some of the previous works [50, 97, 105].
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Dataset Voc. Size
BoVW HPSad SPSad
µ σ µ σ µ σ

Caltech101
100 39.83% 1.32 53.01% 1.1 53.91% 1.23
200 41.12% 1.06 55.3% 0.9 57.47% 1.00
400 45.56 % 1.54 52.11 % 1.38 57.62 % 1.38
1000 48.08 % 1.42 51.28 % 1.58 58.33 % 1.41

15 Scene Dataset
100 70.83% 0.6 76.11% 0.46 77.96% 0.46
200 72.2% 0.6 77.52% 0.59 79.38% 0.67
400 75.7 % 0.33 78.11 % 0.5 79.58 % 0.8
1000 76.82 % 0.61 77.91 % 0.7 80.11 % 0.56

Table 3.1: Classification accuracy comparison among BoVW representation,
HPSad and SPSad. Mean (µ) and Standard Deviation (σ) over 10 individual
runs are presented.

It is interesting to note that with the increase of vocabulary size both BoVW
and SPSad representation increase even though the gain of SPSad over
BoVW gets smaller. However, HPSad reaches an optimal and decreases
with the increasing vocabulary size. The reason is, for larger dictionaries
intratype words become scarce(one cluster is divided into multiple clusters)
and thus HPSad cannot provide important spatial information. On the
other hand, SPSad should always be able to add spatial information into
the BoVW representation regardless of the state of the vocabulary.

Now, we compare the combination descriptor SPSad+ with SPR and dif-
ferent other approaches [99, 102] that also propose combination descriptors
based on SPR. Along with fundamental similarities with SPSad+, these
methods also use similar setup to us namely, dense sampling as detector,
SIFT as descriptor, K-means for vocabulary construction, same number of
visual words and histogram based representation, thus facilitates fair com-
parison. Table 3.2 shows the comparison among all the mentioned methods
for Caltech101 and 15 Scene datasets. We can see that the global distri-
bution of visual words is complementary to the global correspondence and
our method outperforms SPR and the other methods in all cases. Interest-
ingly, the compact version SPS1800

ad + also outperforms all the other existing
methods under similar setup with a lower feature dimensionality than these
methods.

3.5.2 Comparison between SPSad and other spatial methods

Here, we compare our method with Savarese et al. [75] and Liu et al. [55].
These two works are the most notable among those which concern modeling
spatial relationships among the visual words. They rely on the use of new
features composed of pairs (or higher number) of words having a specific
relative position in order to build spatial histograms. Note that, contrary to
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Methods Caltech101 15 Scene Dataset feature dimensionality

SPR Single Level (L=2) 63.4%* 79.4%* 3200

SPR Entire Pyramid (L=2) 64.6%* 81.1%* 4200

SPSad+ 68.1% 83.7% 11400

SPS1800
ad + 67.5% 83% 1800

PIWAH+ [40] 67.1% 82.5% 5000

Zhang et al. [102] 65.93% 81.5% 9600

Yang et al. [99] X 82.5% Not Clear

Spatial Fisher Vector [47] X 82.0% 268800

Table 3.2: Classification accuracy(%) comparison among SPR , SPSad+
and two other methods for Caltech101 and 15 scene dataset. Results with
* are taken from [50]. a ’X’ means that the result is not present in the
corresponding work.

Criteria of Comparison SPSad Savarese et al. [75] Liu et al. [55]

Accuracy 83.5% 81.1% 83.1%

Global Spatial Association Y N N

2nd Order Feature Quantization N Y N

Pre-processing/Feature Selection Step N Y Y

Table 3.3: Comparison among existing methods on a 15 class problem de-
rived from MSRC-V2 dataset.

our method, the previous approaches do not directly incorporate the spatial
information of pair of similar words. We focus on several criteria to compare
our work with the mentioned ones. The table 3.3 shows the details of the
comparisons on MSRC-v2 dataset for 400 visual words. For this dataset,
SPSad representation provides the best classification results. Our method
also holds different other advantages over the existing methods. For ex-
ample, Liu et al. [55] integrates feature selection and spatial information
extraction to boost recognition rate. However, as the spatial feature extrac-
tion becomes a part of the learning step, the modification in the training
set would lead to recomputation of features and thus making it difficult to
generalize. Let’s also note that, SPSad models only global association and
unlike Savarese et al. [75], does not require a 2nd-order feature quantiza-
tion. As the previous approaches fail to incorporate the spatial information
of similar pairs properly, our approach is complementary to these approaches
as well.

3.6 Conclusion

In this chapter, we proposed a new method to model global spatial dis-
tribution of visual words and improved the standard BoVW representation.
This method exploits spatial orientations and distances of all pairs of similar
descriptors in the image. The evaluation was made on an image classifica-
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tion task, using an extensive set of standard data sets. Experiments confirm
that our model outperforms the standard BoVW approach and the existing
spatial methods on all the data sets. Compared to the global correspon-
dence methods as SPR, our model brings complementary information. In
this case, we outperform all of the methods that do the same. One inter-
esting future direction could be to extend our method to advanced BoVW
encoding techniques [73, 98]. Spatial information provided by multiple cues
e.g. color and shape, is also promising as a future direction.
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Chapter 4

Discriminative Color
Descriptors

Résumé : La description couleur représente un réel challenge à cause
de la variabilité importante des valeurs RVB fortement influencées par les
ombrages, la spécularité, les changements de couleur de l’éclairage ou en-
core les changements de point de vue. Traditionnellement, cette tche est
abordée en partant de modèles physiques et en en déduisant des invariants.
L’inconvénient d’une telle approche est que des couleurs initialement distin-
guables dans l’espace couleur sont projetées en un même point de l’espace
photométrique invariant et ne peuvent plus être distinguées. Ce résultat con-
duit à une chute du pouvoir discriminant de la description couleur. Dans
ce chapitre, nous présentons une approche de description couleur basée sur
la théorie de l’information. Nous regroupons les valeurs de couleurs en
exploitant leur pouvoir discriminant étant donné un problème de classifica-
tion. Ce regroupement (clustering) a pour objectif explicite de minimiser
la chute d’information mutuelle de la représentation finale. Nous montrons
qu’une telle description couleur permet d’apprendre automatiquement un
certain degré d’invariance photométrique. Nous montrons également qu’une
représentation couleur universelle, établie à partir d’autres bases de données
que celle traitée, permet d’aboutir à des résultats compétitifs par rapport à
l’état de l’art. Les résultats expérimentaux démontrent que le descripteur
couleur proposé obtient des performances supérieures à celles obtenues par
des invariants photométriques de l’état de l’art. De plus, il est établi que
combiné avec des descripteurs de forme, notre descripteur couleur fournit
d’excellents résultats sur quatre bases de données bien connues, PASCAL
VOC 2007, Flowers-102, Stanford dogs-120 and Birds-200.

Abstract : Color description is a challenging task because of large vari-
ations in RGB values which occur due to scene accidental events, such as
shadows, shading, specularities, illuminant color changes, and changes in
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viewing geometry. Traditionally, this challenge has been addressed by cap-
turing the variations in physics-based models, and deriving invariants for
the undesired variations. The drawback of this approach is that sets of dis-
tinguishable colors in the original color space are mapped to the same value
in the photometric invariant space. This results in a drop of discriminative
power of the color description. In this chapter we take an information the-
oretic approach to color description. We cluster color values together based
on their discriminative power in a classification problem. The clustering has
the explicit objective to minimize the drop of mutual information of the final
representation. We show that such a color description automatically learns
a certain degree of photometric invariance. We also show that a universal
color representation, which is based on other data sets than the one at hand,
can obtain competing performance. Experiments show that the proposed
descriptor outperforms existing photometric invariants. Furthermore, we
show that combined with shape description these color descriptors obtain
excellent results on four challenging data sets, namely, PASCAL VOC 2007,
Flowers-102, Stanford dogs-120 and Birds-200. 1

4.1 Introduction

The description of color is an important problem for a wide range of
computer vision applications. In many of these applications the BoVW
image representation is used. In such representations, color next to shape,
was found to be an important cue [39, 86]. In this chapter, we propose a
new method to learn discriminative color descriptors.

Color description is difficult due to the many scene accidental events
which influence its measurement. These events include shadows, illuminant
changes, variations in scene geometry and viewpoint, and acquisition de-
vice specifications. This has sparked an extensive literature on photometric
invariance which aims to describe color invariants with respect to some of
these variations [27]. Based on reflection models [76] or assumptions on the
illumination [21], invariance with respect to shadow, shading, specularities
and illuminant color can be obtained. However, photometric invariance is
gained at the cost of discriminative power. Therefore, in designing color rep-
resentations, it is important to weight the gains of photometric invariance
against the loss in discriminative power.

We propose to learn color descriptors which have optimal discrimina-
tive power for a specific classification problem. The problem of learning
a color descriptor is equal to finding a partition of the color space. Our
approach relies on the Divisive Information-Theoretic Clustering (DITC)
algorithm proposed by Dhillon et al.[18] to learn this partition. We adapt

1. The content of this chapter appeared in the proceeding of the Computer Vision and
Pattern Recognition(CVPR), 2013 [42].
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this algorithm to ensure that the final clusters are smooth and connected.
Considering all the values in the L*a*b* cube, we aim to join values in this
L*a*b* cube driven by the discriminative power of the final representation,
the latter being measured using information theory. We distinguish two vari-
ations. Firstly, the specific color descriptor which is optimized for a single
data set. Secondly, a universal color descriptor which is trained on multiple
data sets, thereby representing a wide range of real-world data sets. The
advantage of universality is that users can run the learned mapping for an
unknown data set without the effort of learning a data set specific color rep-
resentation. In experimental results we will show that these discriminative
color descriptors outperform purely photometric color descriptors, and that
combined with shape description they can obtain state of the art results on
several data sets.

4.2 Background and motivations

In this section, we discuss the background and motivation of this work.
We start with a review of photometric invariance based color descriptors.
Next, we present the classical problem of invariance vs discriminative power
in case of color from an information theoretic point of view. Finally, we
present the color names descriptor - which is the state-of-the-art color de-
scriptor. We conclude this section summarizing our motivations.

4.2.1 Photometric invariance based color descriptors

Representing color information is very challenging as it varies largely de-
pending on the viewing conditions (illumination, geometry etc.). The study
of photometrically invariant color descriptors starts from color formation
models. Formation of color depends on three different parameters, namely,
illuminant, surface reflectance and spectral sensitivities of sensor. Let s(x, λ)
denote the spectral power distribution (SPD) of the light source that illumi-
nates a surface at a spatial position x which has reflectance r(x, λ). If the
camera is having spectral sensitivities cn(λ) (n = R,G,B for a tri-chromatic
system), its responses are each obtained by integrating over the visible spec-
trum:

ρn = mb(x)

(∫
vis
r(x, λ)s(x, λ)cn(λ)dλ

)
(4.1)

where mb is geometric dependence of the reflectance properties. Equa-
tion 4.1 is commonly known as a Lambertian model [49]. This model predicts
that the pixel values for a single colored object lie on a line passing through
the origin of the RGB cube. This assumption holds to some extent in case of
matte surfaces (e.g. chalk, paper). However, for material surfaces with spec-
ularities a.k.a glossy surfaces, it does not hold. To this end, Shafer proposed
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the dichromatic reflection model(DRM) [76] which is a better assumption
for matte and glossy color formation:

ρn = mb(x)

(∫
vis
r(x, λ)s(x, λ)cn(λ)dλ

)
+mi(x)

(∫
vis
s(x, λ)cn(λ)dλ

)
(4.2)

DRM dictates that, the sum of a diffused and a specular component
forms the actual color. In Equation 4.2 mb(x) and mi(x) denotes the con-
tribution of the diffused and the specular component respectively. These
parameters depend on the viewing angle, direction of incident illuminant
and surface orientation. Note that, if mi = 0 in Equation 4.2, we obtain
Equation 4.1.
Color features are based on these color formation models. Next, we are go-
ing to describe some color descriptors based on the understanding of color
formation.

4.2.1.1 rg-histogram

It could be shown from equation 4.1 that, r = ρR
ρR+ρG+ρB

and g =
ρG

ρR+ρG+ρB
become invariant to change in illumination intensity and thus in

the variation of shadow and shading. The rg-components provide some in-
variance under the lambertian assumption(equation 4.1). Uniformly quan-
tized histogram of such a normalized image could be made and then used
as an intensity invariant color descriptor.

4.2.1.2 Hue-histogram

Under the assumption of DRM, it could be shown that hue is invariant
to surface orientation, illumination direction and illumination intensity (al-
though not to illumination color). However, in the HSV color space, Van
de Weijer et al. [93] have shown that the certainty of the hue is inversely
proportional to the saturation. Therefore, the hue histogram is made more
robust by weighing each sample of the hue by its saturation. There exist
multiple versions of hue-histogram descriptors in the literature [86, 92].

4.2.2 Photometric invariance versus discriminative power

Color feature design has been mainly motivated from photometric invari-
ance perspective [24, 26, 92]. It is based on the observation that colors in
the world are dependent on scene incidental events such as scene geometry,
varying illumination, shadows, and specularities. To obtain invariance with
respect to these effects, photometric invariant features can be derived.

But one could wonder what the cost of photometric invariance is. Map-
ping multiple RGB values to the same photometric invariance will poten-
tially lead to a drop in discriminative power. This aspect of photometric
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Figure 4.1: Invariance of rg-normalized image and hue. The rg-normalized
image is invariant to shadow and shading but not to specularities. Hue
is comparatively more invariant to specularities. Note the uncertainity in
the hue when saturation is low(achromatic colors on the objects and the
background).

invariance has received relatively little attention. Stability and noise sensi-
tivity were measured by Stokman et al. [28]. Geusebroek et al. [26] showed
that with increasing invariances fewer Munsell patches 2 could be distin-
guished. Here we will analyze the drop in discriminative power in a more
principled way by means of information theory.

We discretize our initial color space intom color wordsW = {w1, ..., wm}.
In our case m is equal to m = 10 × 20 × 20 = 4000 of equally spaced grid
points in the L*a*b* cube. Consider we have a data set with l classes
C = {c1, ..., cl}. These classes are represented by histograms over the color
words. The discriminative power of the color words W on the problem of
distinguishing the classes C can be computed by the mutual information:

I (C,W ) =
∑
i

∑
t

p (ci, wt) log
p (ci, wt)

p (ci) p (wt)
(4.3)

where the joint distribution p (ci, wt) and the priors p (ci) and p (wt) can be
measured empirically from the data set.

The mutual information measures the information that the words W
contain about the classes C. Now consider we divide the words W into
k clusters WC = {W1, ...,Wk} which are invariant with respect to some
physical variation. Each cluster Wj represents a set of words. Then Dhillon

2. The Munsell color system is a color space that specifies colors based on three color
dimensions: hue, value (lightness), and chroma. It was created by Professor Albert H.
Munsell.

49



Chapter 4: Discriminative Color Descriptors

Figure 4.2: Graph showing the drop in mutual information for the flower
data set caused by grouping bins with equal chromatic values (a and b).
From the graph it can be seen that the drop of mutual information is largest
for low saturated points, especially with low and high lightness (L).

et al.[18] proved that the drop of mutual information caused by clustering
a word wt to cluster Wj (in our case based on photometric invariance) is
equal to:

∆i = πtKL (p (C|wt) , p (C|Wj)) (4.4)

where the Kullback-Leibler (KL) divergence is given by:

KL (p1, p2) =
∑
x∈X

p1 (x) log
p1 (x)

p2 (x)
(4.5)

and πt = p (wt) is the word prior.
The above Equation 4.4 provides a way to assess for each color value

the drop in discriminative power ∆i which is caused by imposing photomet-
ric invariance. In Figure 4.2 we plot the drop in mutual information which
occurs when we look at a photometric invariant representation with respect
to luminance. This is simply obtained by defining clusters as the set of bins
of equal (a, b) values, computing the p(C|Wj) of each cluster, and comput-
ing ∆i with Equation 4.4. We plot the drop in mutual information as a
function of lightness L and saturation sat =

√
(a2 + b2). The plot is based
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on the Flower data set [65] but similar results were observed for other data
sets. The plot tells a clear story: the largest loss of discriminative power is
occurring for achromatic (or low saturated) colors as is clear from the ridge
at sat = 0. Even though these achromatic colors cannot be distinguished
from a photometric invariance point of view (since they can be generated
from each other by viewpoint or shadow variations), this analysis shows that
they contain discriminative power. This leads us to investigate an alterna-
tive approach to color feature computations based on discriminative power
presented in section 4.3. Some aspects of the proposed descriptor is similar
to the color names descriptor [87]. So, in the next subsection, we discuss
the color names descriptors, which is the state-of-the-art color descriptor.

4.2.3 The color names descriptor

We have discussed the color names descriptor in brief in section 2.2.2.2.
Color names are linguistic labels humans use to communicate the colors in
the world. Examples of color names are ’red’, ’black’, ’turquoise’ etc. Van de
Weijer et al. [87] have proposed a method to automatically learn the eleven
basic color names of the English language from Google images. The color
names descriptor [87] CN is defined as a vector containing the probability
of a color name given an image region R.

CN = {p (cn1 | R) , p (cn2 | R) , . . . , p (cn11 | R)} (4.6)

with

p (cni | R) =
1

P

∑
x∈R

p (cni | f (x)) (4.7)

where cni is the i-th color name, x are the spatial coordinates of the P
pixels in region R, f(x) is the color values (e.g. {L∗, a∗, b∗}) at the position
x and p (cni | f) is the probability of a color name given a pixel value.
The probabilities p (cni | f) are computed from a set of images collected
from Google. To learn color names, 100 images per color name are used.
To counter the problem of noisy retrieved images, PLSA approach is used
by [87]. To describe a local patch with this descriptor, the average of
all the pixels are computed and then represented with a 11D color names
vector(Figure 4.3).

In the original work [87], the authors use a soft assignment of color
names such that each tri-chromatic color is assigned to 11 probability val-
ues. Each value is the probability of a particular color name to be associated
with that tri-chromatic color. However, one can only consider the highest
probability component such that each tri-chromatic color is associated with
a single color name. This way a partition of the color space into eleven
regions could be obtained. Then, an eleven dimensions local color descrip-
tor can be deduced simply by counting the occurrence of each color name
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Figure 4.3: Three examples of color name descriptors calculated from 3 local
patches of an image from the Flower102 data set. The highest probability
color name very often dominates the distribution.

over a local neighborhood. Analyzing the clusters of RGB values which are
appointed to a color name (let us consider ’red’ for example), we note that
these clusters possess a certain amount of photometric invariance. Multiple
shades of red are all mapped to the same color name ’red’. For example, if
we place a ’red’ surface under different natural light sources with different
color temperatures, all the variations of that surface color are expected to be
members of the ’red’ cluster. However, when moving towards darker ’reds’,
at a certain point the values will be mapped to the color name ’black’ in-
stead, and the photometric invariance breaks down. Recently, color names
were found to compare favorably against photometric invariant descriptions
on several computer vision applications, such as image classification [39] and
object detection [36]. These results show that focus on photometric invari-
ance which is at the basis of many color descriptors might not be optimal.
They further suggest that discarding discriminative power of the color rep-
resentation will deteriorate final results. In Figure 4.4 three such clusters
for ’red’, ’white’ and ’yellow’ colors are shown.

It is intuitive that, learning additional color names would give more dis-
criminative power to the descriptor. However, color linguists and psychol-
ogists have argued that after the 11 basic color names, there is no known
ordering to extend from these set of colors. This is why, increasing the num-
ber of colors from 11, in the color names descriptors is an open problem.

4.2.4 Remarks and conclusion

The primary motivation of our work is driven by the observation that
the existing color descriptors are fundamentally designed for invariance and
not optimized to be discriminative. Color descriptors could be obtained
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Figure 4.4: Red, white and yellow color clusters are shown. These clus-
ters were obtained from the original work [87]. Note the compactness and
smoothness of the clusters which are essential to obtain photometric invari-
ance.

in the form of clusters in the color space as in the color names descriptor.
However, just like the photometrically invariant descriptors, the color names
descriptor is also not optimized for discriminative power. So, we set our
goal to compute clusters in the color space, which are discriminative given
a set of labeled training images. To achieve this goal, in the next section
we outline our approach of discriminative color feature computation, which
clusters color values together based on discriminative power on a training
data set. The expectation is that discriminative clustering will automatically
lead to a certain amount of photometric invariance by clustering values
of similar hue together. However, as explained in section 4.2.2, clustering
similar hues together results into significant drop in discriminitive power
around the achromatic axis. So, in that region, we expect additional clusters
to arise using our approach, to reduce the drop in discriminative power
caused by the clustering.

4.3 Discriminative color representations

In this section we discuss our discriminative approach to color repre-
sentation learning. We first explain divisive information-theoretic feature
clustering (DITC) proposed by Dhillon et al.[18]. Next, we adapt the algo-
rithm to find connected clusters in L*a*b* space.

4.3.1 The DITC algorithm

The DITC algorithm provides a way to cluster features into a smaller
set of clusters, where each cluster contains a number of features from the
original set. The clustering is performed in such a way as to minimize the
decrease of mutual information (Equation 4.3) of the new and more compact
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representation. The total drop of mutual information caused by clustering
the words, using Equation 4.4, is equal to

∆I =
∑
j

∑
wt∈Wj

πtKL (p (C|wt) , p (C|Wj)). (4.8)

Hence the clusters Wj which we seek are those which minimize the KL di-
vergence between all words and their assigned cluster (weighted by the word
prior). In our case the words represent L*a*b* bins of the color histogram.
This color space is used because of its perceptual uniformity. Minimizing
Equation 4.8 is equal to joining bins from the L*a*b* histogram in such a
way as to minimize the ∆I. L*a*b* bins which have similar p (C|wt) are
joined together.

An EM like algorithm is used to optimize the objective function 4.8. The
algorithm alternates between two steps.

1. Compute the cluster means with

p (C|Wj) =
∑

wt∈Wj

πt∑
wt∈W

πt
p (C|wt) . (4.9)

2. Assign each word to the nearest cluster according to

w∗t = arg min
j
KL (p (C|wt) , p (C|Wj)) . (4.10)

The new cluster index for word wt is given by w∗t .

The algorithm is repeated until convergence. For more details we refer to
[18].

The DITC algorithm has been studied in the context of joining color and
shape features into so-called Portmanteau Vocabularies by Khan et al. [37].
In this work, we use the DITC algorithm for a different purpose, namely to
automatically learn discriminative color features. In addition, we propose
two adaptations to the DITC algorithm.

4.3.2 Learning compact color representations

The original DITC clustering algorithm does not take into account the
position in the L*a*b* space of the words. As a consequence, the algorithm
can join non-connected bins. It is known that photometric variations result
in connected trajectories [88]. Therefore when learning photometric invari-
ants we expect them to be connected. In addition, connectivity has several
conceptual advantages: it allows for comparison to photometric invariance,
comparison with color names (CN), semantic interpretation (human color
names are connected in the L*a*b* space), and comparison with human per-
ception (e.g. MacAdam Ellipses). Therefore we propose to adapt the DITC
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algorithm to ensure that the clusters are connected in the L*a*b* space. As
a second adaptation we enforce smoothness of the clusters which prevents
them from over fitting to the data. Both objectives can be translated into
an additional energy term which can be added to the objective function of
Equation 4.8.

Let wt be the cluster number assigned to word wt, and Wwt is the cluster
to which wt is assigned, then the cost of choosing a certain cluster assignment
according to Equation4.8 is equal to

ψIt (wt) = πtKL (p (C|wt) , p (C|Wwt)) . (4.11)

In this standard objective function, the relation of the words is not taken into
account, and the final clusters WC can — and most likely will — contain
words which are not connected in color space. We enforce connectivity
by introducing a cost for not being connected to the principal component
of the cluster. The principal component Pj of a cluster Wj is defined as
the connected component with the highest prior mass (the component for
which the sum of the priors of its words is largest). Words which are not
connected to the principal component of the cluster will have an additional
cost for taking on this cluster assignment. We identify words connected to
the principal component by P ′j and they are computed with a morphological
dilation with a 26-connected structuring element b:

P ′j = Pj ⊕ b. (4.12)

This type of dilation is justified because we use equi-quantized bins on a
uniform L*a*b* color space. After this dilation P ′j contains all words con-
nected to the principal component of cluster j. We add a penalty term to
all the color bins which are not part of P ′j according to

ψCt (wt) = αC ·
(
1− f t (wt)

)
Where f t(wt) = 1 if wt ⊂ P ′wt

(4.13)

With a sufficiently high choice of the constant αC , this energy will eliminate
non-connected assignments, and result in a final clustering of the features
into connected clusters. We present a toy example to understand this step
in Figure 4.5.

To enforce our second objective of smoothness of the color representation
we introduce a pairwise cost according to

ψ (ws,wt) =

{
0 if ws = wt

αD otherwise
(4.14)

Now consider a certain labeling for all words w = {w1,w2, ...,wm} then the
cost of this labeling can be written to be

E (w) =
∑
t

(
ψIt (wt) + ψCt (wt)

)
+
∑

(s,t)∈ε

ψ (ws,wt) (4.15)
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Figure 4.5: A 2-cluster toy example in 2D to demonstrate the working prin-
ciple of the dilation step of our algorithm. The clusters are color coded i.e.
the red and green regions are different clusters. The left image shows the
previous state of the clusters, note the red part in the vicinity of the green
cluster. The middle image shows the dilation step, where the principal com-
ponents are dilated and for each cluster a penalty term is added to all the
parts not inside the dilated region. The right image shows the current state
of the clusters. Now the non-connected part of the red cluster is a part of
the green cluster (the white border is used for illustration purpose only).

where ε is the set of all connected words s and t.
The two step algorithm(Equation 4.9 and Equation4.10 ) has to be

slightly adapted to minimize this objective function. Step one remains un-
changed and computes the cluster means. In step two, we aim to find w∗

which minimizes Equation 4.15. This can be done with a graph cut algo-
rithm where the nodes are the words (or bins of L*a*b* histogram) and
the vertices connect neighboring nodes. After the optimal assignment w∗ is
found, the algorithm returns to step one until convergence. Like the origi-
nal DITC algorithm, the most expensive step in our proposed version is also
the first step (Equation 4.9) of the algorithm. Thus, the time complexity of
the modified version is O(mlkτ), where m is the number of words, l is the
number of classes, k is the number of desired clusters and τ is number of
iterations needed to reach convergence.

4.3.3 Convergence

Our optimization of the objective function of Equation4.15 is obtained
by iteratively applying the two steps above. However, when we dilate all
clusters (to define the connected bins), it could theoretically happen, that
for some bins which change label, the bin to which they were connected also
changes label. This could lead to unconnected components, and would ac-
tivate the cost defined in Equation4.13, and lead to an increasing objective
function. This could be addressed by changing labels one bin at a time,
but this would be computationally very costly. Practically, we run the iter-
ations until no change in the labeling occurs. For the three data sets (and
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Figure 4.6: Evolution of the objective functions for some image sets until
convergence.

their three combinations) used in this work, we verified that the final color
descriptors were connected. Figure 4.6 shows the evolution of the objective
function for the six runs until convergence.

4.3.4 Photometric invariance of learned clusters

Instead of imposing photometric invariance, as is generally done, we
follow an information theoretic approach which maximizes the discriminative
power of the final representation. The underlying idea being that clustering
color bins based on their discriminative power would automatically learn
a certain degree of photometric invariance. Here, we verify that this has
happened by analyzing the cluster assignments for two images.

We learn a 11-dimensional discriminative color descriptor for the Flower
data set. Next, we apply the descriptor on two images of the data set. The
results are depicted in Figure 4.7. Here, we replace the color of each pixel
by the average color of all the pixels assigned to the same cluster. We can
see that clusters are constructed so that they allow to discriminate flowers
from background and leaves while providing some robustness across some
photometric variations. For example, note that the pixels under the shadows
caused by the wrinkles on the yellow petals are assigned to the same cluster
and the stamen part of the red flower is mapped to one cluster in spite of the
photometric variations in the pixels. Also, the dark pixels that introduce
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Figure 4.7: Examples of cluster assignment on two images from the Flower
data set.

most noises into photometric invariance representation are assigned to a
separate cluster. The photometric invariance can also be observed from the
bottom row of Fig. 4.8 where we see that pixels with similar hue but varying
intensity are grouped together.

4.4 Universal color descriptors

In a seminal work named ’Basic color terms: their universality and evo-
lution’ the linguists Berlin and Kay [7] show the universality of the human
basic color names. With universality they refer to the fact that the basic
color names which are used in different cultures have a similar partition of
the color space: the Arab azraq refers to a similar set of colors as the English
blue. In the context of descriptors, we will use the term universality to refer
to descriptors which are not specific to a single data set. Universality is one
of the more attractive properties of the computational color names [6, 87].
As a consequence of universality, users are not required to learn a new color
representation for ever new data set and can just apply the universal color
representation to their problem.

In the previous section, we showed how to learn discriminative color fea-
tures. Applying the above algorithm to a specific data set results in a color
representation which is data set specific in the sense that it is optimized
to discriminate between the classes of that data set. The same setup can
be used to learn universal color vocabulary by joining several training sets
together to represent the real-world. We learn such a description combining
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Figure 4.8: The clusters of the first and second row are computed from the
Flower102 training set, by the original DITC algorithm and the proposed
method respectively. Note the compactness and smoothness of the color
clusters computed by the proposed method.

the training sets of Flower102, Bird200 and PASCAL 2007 data sets. An
advantage over the existing computational color names [87] is that we are
not limited to eleven color names and can freely choose the desired dimen-
sionality. We make the universal color descriptors available for the settings
with 11, 25, and 50 clusters.

In the experiments we will investigate universal color descriptors, and
compare them to specific color descriptors. We will do so by training the
universal color descriptor from other data sets than the one currently con-
sidered. Universality is expected to result in a drop of performance since
the descriptor cannot adapt to the specificity of the data set. However, if
the drop is small the advantages of a universal representation can outweigh
the drop in performance.

4.5 Experimental results

In the next few subsections, we discuss experimental details and results.
At first, we briefly discuss the experimental setup and the details of discrim-
inative descriptor learning. Then, we compare our proposed color descriptor
with several photometric color descriptors on three image data sets. Next,
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Figure 4.9: Example images from the four data sets used in this work. From
top to bottom: PASCAL 2007, Birds-200, Flowers-102, Dogs-120.

we focus on the universality aspect of our descriptor and compare univer-
sality with specificity. In our final experiments, we combine our descriptor
with shape description and compare results to the state of the art.

4.5.1 Experimental setup

In this section, we briefly discuss the experimental setup used for sec-
tions 4.5.2 and 4.5.3. For these two sections we use a comparatively simpler
framework to reduce the computational time, as our goal is to assess rela-
tive performance. For both sections, we choose three challenging image data
sets, namely, Flower102 [65], Birds200 [94] and PASCAL 2007 (Figure 4.9).
For Flowers and Birds, the colors over the object classes are relatively con-
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stant. However for PASCAL 2007, colors are likely to change significantly
in between samples of the same class (consider e.g. cars). In these exper-
iments, we use a regular dense grid (16 × 16) with 50% overlap to extract
patches from the images. After description of the patches, we employ a
K-means on a random subset of features from the training set to build the
visual vocabulary. We use SVM with an intersection kernel to obtain the
classification score. The training and test set selection is consistent with
the corresponding cited articles for each data set. For section 4.5.4, we use
a different experimental setup which is discussed in the beginning of that
section.

For descriptor learning, for each data set we convert all the training
images from sRGB to L*a*b and construct a 3D histogram quantizing the
L*a*b space by 10× 20× 20, then we convolve these 3D histograms using a
gaussian filter (sigma = 1). They are then used as 4000 dimensional feature
vectors. We adapt the DITC implementation from [19] and use the Graph
Cut implementation from [23]. As discussed in section 4.3.2, there are two
parameters in our descriptor learning, namely, the dilation and smoothness
cost parameters. The dilation cost parameter should be ideally equal to
infinity, so we use a large enough value for that. Empirically we found that
a smoothing cost parameter αD = 10−8 obtained satisfying results on all
data sets, and kept it constant.

We compare the clusters computed with standard DITC to the clusters
computed with our algorithm which enforces connectivity and smoothness
of the clusters. In Figure 4.8, we can clearly see that our method produces
connected and smooth clusters. Note that, non-connected green parts from
the first two clusters are associated to the green cluster when our method
is employed. DITC only concerns discriminative clustering and does not
ensure connected clusters which is undesirable from a colorimetric point of
view.

4.5.2 Discriminative color descriptors

The aim of this work is to arrive at a better color descriptors for object
recognition directly on the discriminative power of the final representations.
We start by comparing our discriminative descriptor(DD) to other pure
color descriptors and the color name descriptor [87]. Note that in several
comparisons color names were found to outperform various other pure color
descriptors [36, 39].

We consider two well known photometric invariants: normalized RGB
(rg histogram) and a hue histogram (HH) 3 and the Color Names(CN) 4 [87].

3. Implementation provided by K. van der Sande at
http://koen.me/research/colordescriptors.

4. As a sanity check we performed a k-means based LAB descriptor. Results were
found to be inferior.
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Method Flower102 Bird200 Pascal2007

rg 38.6% 4.3% 10.6%

HH 32.8% 3.5% 10.1%

CN 40.2% 7.7% 11.6%

DD(11) 43.7% 8.0% 12.2%

DD(25) 47.0% 8.7% 12.6%

Table 4.1: Comparison with photometric invariants.

We compare them against our descriptor with two settings, namely 11 and
25 clusters. Table 4.1 contains the experimental results. For each data set
we show the classification accuracy (or mean average precision for PASCAL
2007). For the case of 11 dimensions (equal to the CN descriptor) our
descriptor obtains improved results on Flower and Bird, but slightly lower
results than color names on PASCAL 2007. We can see from the table that
our descriptor with 25 dimensions outperforms all the other descriptors used
in the experiment. Note, that it is unclear how to increase the dimensionality
of the color name descriptor above the eleven basic color names.

4.5.3 Universality versus specificity

We discussed universality color descriptors because of their ease of use
in section 4.4. In general, there is a growing interest in across-data set
generalization of methods in the community [84]. Here we use again the
three data sets. We follow a leave-one-out approach, where we learn our
descriptor on two data sets and test on the other. We also do data set
specific experiments, where we learn on one data set and test on the same.
In each case, we learn 3 different cluster groups i.e. k = [11, 25, 50] using our
proposed method. We follow similar setup as section in 4.5.2 to represent
images as bag-of-visual-words.

It is evident from Figure 4.10 that for larger k, the difference between
universality and specificity becomes smaller. Also note that, the best results
obtained using our universal descriptor, although not better than the specific
ones, outperform other state-of-the art color descriptors used in experiments
of section 4.5.2. In conclusion, for larger dimensions the drop of performance
due to universality is relatively small, and users could prefer using it, rather
than having to train a new data set specific descriptor.

4.5.4 Discriminative descriptors vs state-of-the-art

We compare our approach with the state-of-the-art approaches in the
literature. The experiments are performed on Birds-200, Flowers-102 and
PASCAL 2007. Additionally, we also show the applicability of our approach
on the challenging Stanford-Dogs 120 data set. For our final experiments,

62



Chapter 4: Discriminative Color Descriptors

Figure 4.10: Universality versus Specificity. The green bar (the left bar of
each plot) is the state-of-the-art pure color descriptor (Color Names).

we followed the standard bag-of-visual-words pipeline. For feature detec-
tion, we use a combination of multi-scale grid with interest point detectors.
For shape we use the SIFT descriptor. A visual vocabulary of 4000 is con-
structed for shape representation. For color, we use a visual vocabulary of
500 words. The vocabularies are constructed using standard K-means and
the histograms are constructed using hard assignment. To represent an im-
age we use the spatial pyramid representation as in [50]. For classification,
we use the non-linear SVM using the χ2 kernel [104]. We also compare our
approach with the ColorSIFT descriptors [86] on the PASCAL VOC 2007,
Birds-200 and Flowers-102 data sets. We use CSIFT descriptor for the PAS-
CAL VOC 2007 data set and OpponentSIFT for the other two data sets. A
visual vocabulary of 4500 is constructed for ColorSIFT descriptors and an
image is represented by spatial pyramids. The results are summarized in
Table 4.2.

On the Birds-200 data set, shape alone provides a classification perfor-
mance of 15.3. Our final result is a combination of late fusion between
discriminative color and shape, shape alone and color alone. On this data
set our discriminative approach achieves the best classification score of 26.7
outperforming the colorSIFT [86] based on the same detected features. The
universal color names result in a slight drop in performance. The other
approaches in Table 4.2 also use a combination of color and shape. The
portmanteau approach employs both color and shape to learn a compact
color-shape vocabulary. The tricos approach [11] uses segmentation tech-
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nique whereas for image representation shape and color with fisher vectors
are employed.

On the Flowers-102 data set, a mean accuracy of 69.0 is obtained. The
incorporation of proposed color approach together with shape leads to 81.3.
The universal color descriptor learned on the PASCAL 2007 and Birds-200
data set results in a slight drop in performance. On this data set again, our
approach provides a comparable results to the state-of-the-art approaches
in literature [10, 11, 37, 65]. On the PASCAL 2007 data set, our frame-
work with shape alone provides a meanAP of 59.9. Adding color with shape
increases the meanAP to 62.0. The universal color descriptor results in
slight deterioration in performance with a meanAP of 61.7. Again on this
data set, our final results are comparable to state-of-the-art results in liter-
ature [12, 39, 86, 107]. The method of [39] uses color attention approach to
combine with color and shape with a meanAP of 58.0. The best reported
results of 64.4 [107] is obtained using a different coding technique. Note
that in this work we use the standard vector quantization with hard assign-
ment. However, our color descriptor can be used in any encoding framework
together with SIFT.

Finally, we have included the challenging Stanford Dogs 120 data set.
This data set is interesting because dog furs only exist in a reduced set
of colors (mainly browns, black and white). Here our approach provides a
classification score of 28.1 compared to 21.1 using shape alone. On this data
set, we use the shape features kindly provided by the authors. The universal
color descriptor (learned from PASCAL, Birds and Flowers data set) results
in a drop in performance to 26.5. From which we can see that for particular
(in a color sense) data sets computing a specific color representation can
still yield a large performance gain. To the best of our knowledge the final
score of 28.1 obtained in this work is the best performance achieved on this
data set in literature [10, 11, 43].

In summary, despite the simplicity of our approach we show that excel-
lent performance can be achieved using a combination of color and shape.
The applicability of proposed approach is apparent on wide range of data
sets from Stanford-Dogs to PASCAL VOC 2007.

4.6 Conclusion

In this chapter, we have proposed a way to design discriminative color
descriptors for image classification. By taking an information theoretic ap-
proach, our descriptor provides a certain degree of photometric invariance
while maximizing the discriminative power. Interestingly, when the descrip-
tor is learned on two data sets and test on a third one, the performances
are close to those obtained when learned and tested on the same data set.
This universal property is very attractive since users are not required to
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Method Birds-200 Flowers-102 Pascal 2007 Dogs-120

Tricos [11] 25.5 85.2 - 26.9
Bicos [10] 23.7 85.5 - 25.7

portmanteau [37] 22.4 73.3 - -
Color Attention [39] - - 58.0 -

MKL [65] - 72.8 - -
LLC [43] - - - 14.5

Fisher [12] - - 61.7 -
Super Vector [107] - - 64.0 -

Shape alone 15.3 69.0 59.9 21.7
ColorSIFT 20.4 77.6 57.4 -

This paper (universal) 26.3 79.4 61.7 26.5
This paper (specific) 26.7 81.3 62.0 28.1

Table 4.2: Comparison of state-of-the-art results with our approach. Note
that our approach provides best results on two data sets. The results in
the upper part of the table are obtained from the corresponding papers,
the results in the bottom part of the table are obtained based on the same
detected features.

learn a new color representation for every new data set and can just apply
the universal color representation to their problem. Finally, we have shown
that our color descriptors provide state-of-the-art results when combined
with shape descriptors. Since the clustering step only exploits the global
distribution of the colors in the images, future works will consist in account-
ing local spatial interactions between the colors during this step in order
to adapt the clusters to local descriptors such as those used in the classical
bag-of-visual-words.
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Chapter 5

Towards Multispectral Data
Acquisition with hand-held
Devices

Résumé : Nous proposons une méthode d’acquisition de données multi-
spectrales à l’aide d’un appareil portable possédant un écran et une caméra
RGB. Le principe est d’utiliser l’écran comme source d’éclairage et la caméra
pour capturer des images éclairées par les couleurs primaires rouge, vert
et bleu de l’écran. La combinaison des trois éclairages et des trois fonc-
tions de réponse de la caméra permet d’obtenir neuf réponses différentes
qui sont utilisées pour l’estimation de la réflectance de la surface éclairée.
Les résultats sont prometteurs et montrent que la précision de la recon-
struction spectrale est améliorée d’un facteur 30% à 40% comparé à celle
obtenue à partir d’un seul éclairage. D’autre part, nous proposons de cal-
culer des fonctions de base adaptées à la combinaison capteur-éclairage en
éliminant la partie de la réflectance qui tombe dans la zone aveugle de cette
combinaison. Nous montrons expérimentalement qu’optimiser l’estimation
de la réflectance sur ces nouvelles fonctions de base permet de réduire sig-
nificativement la variance de l’erreur par rapport à des fonctions de base
indépendantes de la combinaison capteur-éclairage. Nous concluons que
l’acquisition de données multispectrales est potentiellement possible avec
un appareil portable grand public comme une tablette, un téléphone ou
un ordinateur portable, ouvrant ainsi la porte à des applications qui sont
actuellement considérées comme irréalistes.
Abstract : We propose a method to acquire multispectral data with hand-
held devices with front-mounted RGB cameras. We propose to use the
display of the device as an illuminant while the camera captures images
illuminated by the red, green and blue primaries of the display. Three illu-
minants and three response functions of the camera lead to nine response
values which are used for reflectance estimation. Results are promising and
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show that the accuracy of the spectral reconstruction improves in the range
of 30-40% over the spectral reconstruction based on a single illuminant.
Furthermore, we propose to compute sensor-illuminant aware linear basis
by discarding the part of the reflectances that falls in the sensor-illuminant
null-space. We show experimentally that optimizing reflectance estimation
on these new basis functions decreases the RMSE significantly over basis
functions that are independent to sensor-illuminant. We conclude that, mul-
tispectral data acquisition is potentially possible with consumer hand-held
devices such as tablets, mobiles, and laptops, opening up applications which
are currently considered to be unrealistic. 1

5.1 Introduction

The electromagnetic spectrum ranges from radio waves of wavelength
λ > 1m to gamma rays with a λ < 10−12m. The portion of this spectrum
that can be directly observed by the human visual system(HVS) is incred-
ibly small in comparison. The HVS is roughly responsive to light with
wavelengths from 400nm to 700nm. It is this small spectral band, which
defines how we see the world. Multispectral color is a function of these
wavelengths. For many applications CIE tri-value description of color, as
is provided by for example XY Z or L∗a∗b∗ values, is not sufficient and a
multispectral description is desired. These applications vary from consumer
products, such as paint selection, online cloth shopping, cosmetics industry
and to more specialized fields such as in eHeritage and fruit quality assess-
ment. For all these applications multispectral acquisition of color allows
users to disentangle the set of metamers (different multispectral reflectances
which map to the same tri-value), and provides a more precise description
of color.

There exist two main approaches to multispectral data acquisition. The
first method, and by far the most popular one is based on passing the light
through filters which pass only part of the light. These filters can be a set
of narrow band filters or sophisticated optical filters like AOTFs or LCTFs.
Either by changing the narrow band filters over time or by splitting the light
into different wavelengths, a multispectral measurement is acquired. A vari-
ety of such multispectral cameras exist in the market, and they have as main
advantage that they are very accurate. However, because the acquisition of
multispectral camera is expensive this equipment is only available to a few
specialized laboratories.

A second approach to multispectral imaging is based on statistical learn-
ing [16, 29]. In this case, the multispectral data can be estimated from

1. The content of this chapter is accepted in the International Conference of Image
Processing (ICIP), 2013 [41].
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Figure 5.1: Multispectral data can be obtained with hand-held devices by
using the screen to illuminate the object under various illuminations. The
acquired measurements can be used to reconstruct the spectral reflectance.

relatively fewer number of measurements. Thus, the series of narrow band
filters from the previous approach are replaced by fewer number of broad-
band filters. A variation to this approach exists which is based on the
duality between light sources and filters. However, the field of improving
the spectral resolution by changing the illuminants (instead of the filters)
has received relatively little attention [14, 70]. Park et al. [70] show that
theoretically it is possible to obtain multispectral information from a cam-
era by varying the illuminant. Furthermore, they experimentally show that
in a highly controlled environment with high quality calibrated acquisition
equipment it is possible to obtain multispectral information with a camera.
The main advantage of these methods is that one does no longer require a
multispectral camera (or chromatic filter set) to obtain multispectral images.
The main drawback of this method is that it requires users to illuminate the
scene with various illuminants. Because of the drawback, this approach to
multispectral imaging has attracted relatively little attention. In a similar
work, Chi et al. [14] propose to place the filters in front of the light source
(instead of the lens) to generate multiple illuminations. One advantage of
their approach is to be able to eliminate the effect of ambient light. How-
ever, requirement and selection of additional filters remains a problem in
their approach as well.

In this chapter, we propose to use the screen of the hand-held devices to
display a set of illuminants which can then be observed by a front-mounted
camera. In Figure 5.1 an illustration of the proposed approach is given. The
object with unknown reflectance is held in front of a device comprising a
display and an integrated camera. At the same time that the camera cap-
tures images of the object, the display depicts different colors, and thereby
changes the illumination of the object. This process results in a set of ac-
quisitions of the reflectance under varying illuminants. The output of the
system will be a multispectral signature of the object estimated from these
measurements. The main originality of our approach lies in the functionality
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shift where we use the display of the device as an illumination source. The
observation that for many hand-held devices cameras are mounted alongside
a display makes this an especially convenient solution. This is also true for
laptops with a built-in web cam. Note that this solves the main drawback
of earlier work [14, 70] which was the availability of multiple illuminants.
Wandell and Farrell [90] proposed a method to use a scanner as a colorime-
ter. However, their method remains based on a tri-value input, thereby
limiting the obtainable accuracy. For the spectral estimation, we propose
an improvement on the method of Park et al. [70]. They use the observation
that real-world reflectances can be well-approximated with a low-parameter
linear model [71]. The basis functions for this low-parameter model are typ-
ically derived from the spectra of the Munsell color chips. In this work, we
use basis functions that discard the part of the Munsell reflectances that
falls in the sensor-illuminant null-space. We have shown that the new set of
basis functions improves the accuracy of the spectral reconstruction. In the
next section, we are going to describe the traditional way to multispectral
imaging.

5.2 Multispectral color imaging

The most accurate way to obtain multispectral color is by using mul-
tispectral cameras. Multispectral cameras are sophisticated and expensive
devices only available to specialized laboratories. The most simple multi-
spectral cameras use a color wheel fitted with a set of narrow band color
filters(Figure ??). Color filters are used on image sensors to allow them to
see color as humans do. These color filters are placed on or directly above
the sensor to selectively filter the unwanted wavelengths and pass the desired
ones. The filter wheel rotates and the camera captures one gray scale image
per filter. Typically, 12 to 20 color filters are used but this number can
vary across cameras. These kinds of cameras are used to take multispectral
images of a stationary scene. Note that, to obtain reflectance of colored sur-
face the scene illumination must be known. This is why, a white lambertian
surface is almost always placed in the scene which gives information about
the illumination.

There exist more sophisticated multispectral cameras that uses optical
filters like ATOFs and LCTFs, but they work under the same principal
of measuring multiple narrow bands of light. These type of cameras are
able to provide very accurate measurements but their high cost is a major
obstacle to overcome. This is why, over the years scientists have come up
with techniques to extract multispectral information using fewer number of
measurements with consumer RGB cameras thanks to statistical learning.
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Figure 5.2: On the left: a multispectral camera with color wheels; on the
right: narrow band filters typically used with this kind of multispectral
cameras.

5.3 Multispectral reflectance estimation from RGB
camera responses

For a typical multispectral camera, several measurements are required
to obtain a multispectral image. However, for reflectance estimation from
RGB cameras only a few measurements are taken. For each measurement,
a RGB camera provides 3 responses (i.e. R,G,B), so for T measurements
we have 3T camera responses. Generally, filters are used to obtain multiple
measurements. However, as explained before, one could also take these mea-
surements varying the illumination. The mathematical formulation of the
problem in both cases (varying filters or varying illumination) is identical.
Image formation in a camera can be modeled as

ρmn = Γ

(∫
λ
r(λ)cm(λ)sn(λ)dλ

)
+ εm (5.1)

where, ρmn is the response of the camera. Γ is the camera non-linearity, r(λ)
is the reflectance of a point in the object, cm(λ) : m = 1 . . .M is the spectral
sensitivity of the m-th channel of the camera, M being the total number
of sensors and sn(λ) : n = 1 . . . N is the spectral power distribution (SPD)
of the scene illumination, N being the total number of illuminations. We
denote the total number of measurements as N , where, N = MN . Finally,
εm is the noise of the m-th channel of the camera.

The main challenge is to reconstruct the reflectance r(λ) of the object
from these N measurements obtained from the camera. If we consider sam-
pling the spectra into I discretized λ, by merging the illuminations and the
camera sensors into one matrix F where each column is the product between
one sensor sensitivity and one illuminant SPD, Eq. 5.1 can be rewritten in
matrix form as:

ρ =
(
F Tr

)
+ ε (5.2)

where ρ is the response of all the sensor-illumination pairs given the re-
flectance r. Both ρ and r are column vectors. If RAW images from the
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camera are available, the camera non-linearity factor could be removed.
The goal is to estimate r from the Equation 5.2 when ρ is known (F could
be known or unknown). The problem is known as reflectance estimation
problem. Estimating r from Equation 5.2 leads to an ill posed problem.
So, very often additional constraints are needed to solve the problem. Note
that, in our notations, we have used bold faces for vectors and matrices.

5.3.1 Reflectance estimation

In the following sections, we shortly discuss some popular reflectance es-
timation methods which we will compare in the experimental section. These
methods introduce different constraints to compute the reflectance r from
Equation 5.2. Among a series of successful reflectance estimation algorithms
proposed during the last two decades, one category of methods works under
the principle of learning a mapping between the camera measurement space
and the reflectance space [16, 32]. This type of methods does not require
any statistical a priori information but involves a laborious training phase.
Another category of methods, estimates spectra using statistical a priori
information [29, 70]. This category of methods makes assumptions about
the spectral space and often require the knowledge of the illuminant-sensor
matrix F , however, training phase for these methods are simpler. Methods
from both the categories have shown excellent results in the past. Thus, in
the next section, we present two of the popular methods from each category.

5.3.1.1 Reflectance estimation without statistical a priori infor-
mation

This group of methods estimates the reflectance spectra from the mea-
surements using a collection of reflectance/measurement pairs. Assuming
we have a labeled training set, Str = ((ρ1, r1), . . . , (ρL, rL)) of measure-
ment vectors ρj and corresponding reflectance spectra rj . In matrix form,
we denote the measurement matrix as ρtr = [ρ1,ρ2, . . . ,ρL]T ∈ RL×N and
reflectance matrix as Rtr = [r1, r2, . . . , rL]T ∈ RL×I , N < I. In most of
the cases, Rtr is a set of Munsell spectra. This category of methods can
account for the camera noise directly. Moreover, they do not require the
knowledge of the matrix F in Equation 5.2 as they directly learn a map-
ping from camera responses ρtr to the reflectance Rtr. On the down side,
these methods require the knowledge of camera responses for the training
reflectances to obtain Str, which is often a laborious task.

Direct pseudo-inverse solution: First used by Day et al [16], direct
pseudo-inverse is the simplest reflectance estimation technique existing till
date. It learns a direct linear mapping from camera measurement space to
reflectance space from the camera responses of some known spectra (e.g.
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Munsell Spectra). Then, given new camera measurements ρts from an un-
known material, we can estimate its reflectance rts as:

rts = RT
trρtr(ρ

T
trρtr + γIN )−1ρts (5.3)

where γ is the regularization parameter and IN is an identity matrix of
N ×N dimension.
Kernel Regression: Kernel regression projects the measurements to a
higher dimensional Hilbert space and learns a mapping from this new space
to the spectra space. This allows to realise non-linearities in the mapping.
Equation 5.4 presents the kernel regression for reflectance estimation [32]

rts = RT
tr(Ktr + γIL)−1κρts (5.4)

Here, (Ktr = ρΦ
trρ

Φ
tr
T

and κρts = ρΦ
trρ

Φ
ts), where ρΦ

tr = [Φ(ρ1),Φ(ρ2) . . .Φ(ρL)]T ,
ρΦ
ts = Φ(ρts) and Φ is a function that projects the measurements to a higher

dimensional space. In practice, Ktr and κρts are calculated using a distance
metric and with the true measurements ρtr and ρts. IL is an identity matrix
of L × L dimensions. In Heikkinen et al. [32] the authors show that even
for essentially linear systems non-linear mapping can improve estimation
accuracy over a linear one.

5.3.1.2 Reflectance estimation using a priori information

This category of methods manipulates a priori information to improve
the estimation accuracy. Lawrence Maloney [60] have shown that higher
dimensional spectral reflectance could be represented in a lower dimensional
space without important loss of information. This lower dimensional space
is usually obtained by applying PCA on a large set of natural spectra (e.g.
Munsell spectra). Their work suggests that, all natural spectra only occupy
a sub-space of the higher dimensional spectral space. The spectral estima-
tion method described in this section use this information as statistical a
priori to solve the estimation problem. Moreover, this family of reflectance
estimation algorithms require the knowledge of the camera sensitivity curve,
the illumination spectral power distribution and/or filter responses. How-
ever, they do not require a training set to train the system. We present two
reflectance estimation techniques which fall under this category.
Wiener estimation [29]: This method solves the estimation problem un-
der the assumption of normally distributed data. The covariance matrix
calculated from the Munsell spectra and the sensor-illuminant pair are used
to compute the mapping from camera responses to the reflectance. The
formulation of Wiener estimation is as follows:

rts = ΣRRF (F TΣRRF + γIN )−1ρts (5.5)

where, ΣRR is the covariance matrix calculated from the Munsell spectra.
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Park et al [70]: This method has been discussed briefly in the previous
section. We propose to improve the method of [70] due to the similarity of
their work with ours (multispectral reconstruction from RGB image taken
under varying illuminants). In the next section we detail this method and
propose our modification to improve it.

5.4 Multispectral imaging by varying illumination

In this section, at first we present the spectral estimation method pro-
posed by [70]. Then, we proposed our modification to this method to
improve the accuracy.

5.4.1 Reflectance estimation by optimization of low-parameter
representation [70]

In [70], the author use a led-based customized illumination system to
facilitate fast capture of multispectral data. To reconstruct the reflectance,
they propose to minimize a regularized constrained optimization problem.
They project the sensor-illumination pairs in a low parameter orthogonal
basis function space and optimize basis vector coefficients to minimize the
L2-norm in the measurement space.

Park et al. [70] approximate the reflectance of real-world materials with
a limited number of spectral basis functions according to:

r (λ) ≈
K∑
k=1

σkbk (λ) (5.6)

where σk are scalar coefficients of the k-th basis function bk (λ). These basis
functions can be computed with eigenvector analysis (PCA) of the 1257
Munsell color chips [71]. First four basis vectors computed from Munsell
color chips are shown in figure 5.4.

Equation 5.6 could be writtent in Matrix form as:

r = Bσ (5.7)

where σ is a column vector of the coefficients and B is a matrix whose
columns are the basis functions. Substituting r from Equation 5.7 into
Equation 5.2 and considering we have RAW output from the camera with
limited noise, we can rewrite Equation 5.2 in matrix form as following:

Pσ = ρ; (5.8)

where P = F TB i.e. we assimilate the basis functions B and sensor-
illumiannt sensitivity F together in a single matrix P . When P TP is in-
vertible, we can get a least squares solutions σ = (P TP )−1P Tρ. However,
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Figure 5.3: Sensor-illuminant pairs (D and E) resulted from two camera
sensors of A) Sigma SD-10 and B) Retiga camera and C) RGB primaries of
a DELL E4310 laptop. All the responses are normalized.
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Figure 5.4: The first 4 basis functions calculated from the Munsell color
chips using PCA. In this work, we use the first 8 eigenvvectors.

this least square solution may return some negative values. To prevent that,
a positivity constraint is needed. At this point, the problem in hand can be
formulated as a constrained minimization problem as follows:

argmin
σ+

|Pσ − ρ|, subject to Bσ ≥ 0. (5.9)

In Equation 5.9, the positivity constraint Bσ ≥ 0 ensures that the
reconstructed reflectance would not have negative values. The solution to
the constrained quadratic minimization problem in Equation 5.9 may be
numerically unstable if P has a large condition number. Thus, an addi-
tional constraint is required for a reasonable solution. To this end, Park et
al. [70] propose to add a smoothness constraint since natural spectra tend
to be smooth. This could be done by penalizing large values for the second
derivative of the spectral reflectance with respect to λ:

argmin
σ+
smooth

(∣∣Pσ − ρ
∣∣2 + α

∣∣δ2r (λ)
δλ2

∣∣2
)

subject to: Bσ ≥ 0 (5.10)

where α is the smoothness parameter and δ2r(λ)
δλ2 is the smoothness con-

straint. This constraint helps to obtain reasonable solution if the matrix
P is ill-conditioned. Park et al. [70] propose to solve the optimization
problem presented in Equation 5.10 for spectral reconstruction from camera
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responses. In the next section, we present our proposal to modify Equa-
tion 5.10 with a set of sensor-illuminant aware basis functions to improve
the reconstruction accuracy.

5.4.2 Reconstruction using sensor-illuminant aware basis func-
tions

Differing from the existing methods, where the illuminants are chosen
to optimize spectral resolution, we propose to use the screen of hand-held
devices as the changing illuminant of the scene. As the illuminants we use
the three primaries of the screen in isolation, giving a red, green and a blue
illuminant. In the case of a RGB camera we therefore have a total of nine
measurements: the three camera channels for each of the three illuminants.
Sensor-illumination pairs obtained from two different cameras and a screen
primaries are displayed in Fig. 5.3.
The method proposed by Park et al. [70], constraints the reflectance estima-
tion problem by noting that the spectra of real-world reflectance can be well
approximated by a low-parameter linear model [71]. This linear model is
independent of the sensor system. Here, we investigate adapting the linear
model to the sensors to achieve improved reflectance reconstruction. Since
the approach proposed in [70] is independent of the sensor-illuminant sensi-
tivities F , there is no reason that the resulted basis functions are the best
to reconstruct multispectral data from the given sensor-illuminant pairs.
Moreover, in our case display illuminants and sensor sensitivities are in-
trinsic properties of the hand-held device. Thus, we propose to adapt the
spectral basis to the sensor-illuminant spectra. Considering the reflectance
of the Munsell data set R, we propose to break the Munsell data set into
two parts:

R = RF +R⊥F , (5.11)

where RF is the part of the spectra which is in the illuminant-sensor
space and R⊥F is the part of the Munsell spectra which is perpendicular
or in the null-space of the sensor-illuminant space [3] and for that reason
cannot be observed. The matrix RF can be computed with:

RF = RF (RF )+R, (5.12)

where (RF )+ is the Moore-Penrose pseudo inverse. Equation 5.12 projects
the spectra R into the sensor-illuminant space to discard the part R⊥F

and subsequently back-project the projected values into the spectral space
using a direct-pseudoinverse method. The obtained set of spectra RF is
the part which is not orthogonal to the sensor-illuminant space. Then we
propose to apply a PCA on the RF reflectances rather than on the original
R reflectances. In this way, the resulted basis functions are not disturbed by
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Figure 5.5: Comparative spectral estimation between R,G,B and white illu-
minants.

information that is not visible from the acquisition device given the sensor-
illumination sensitivities. We denote these sensor-illuminant aware basis
functions as B′. Consequently, we denote the matrix P in Equation 5.8
as P ′ when computed from this new basis functions. Finally, in order to
estimate the spectral reflectances from the camera responses ρ, we have the
following minimization problem:

argmin
σ+
smooth

(∣∣P ′σ − ρ
∣∣2 + α

∣∣δ2r (λ)
δλ2

∣∣2
)

subject to: B′σ ≥ 0 (5.13)

Practically, we use the Matlab function quadprog to solve Equation 5.13.

5.5 Experiments

In this section, we present experimental results on both synthetic data
and real camera output. In each case, we compare the improvement of the
estimation accuracy when using three i.e. R, G and B display illuminants
over white i.e. R+G+B (the sum of the three display primaries). We also
compare our method with [70]. We use two different metrics for the com-
parisons, namely, RMSE and CIEDE00 color difference [58].
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Experimental results for Display Illuminant and Sigma SD-10 Camera

Method
ColorChecker 24 ColorChecker 240

White R,G,B White R,G,B
RMSE CIEDE00 RMSE CIEDE00 RMSE CIEDE00 RMSE CIEDE00

Pseudo-inverse 0.041 1.1 0.014 0.25 0.024 0.79 0.0087 0.23

Kernel Regr. 0.037 1.26 0.02 0.46 0.020 0.77 0.012 0.46

Wiener 0.0431 0.97 0.015 0.24 0.024 0.81 0.008 0.22

Park [70] 0.044 2.22 0.023 0.43 0.032 2.99 0.016 0.42

Our Method 0.042 0.91 0.014 0.29 0.025 0.98 0.010 0.34

Experimental results for Display Illuminant and Retiga Camera

Pseudo-inverse 0.039 2.06 0.01 0.27 0.023 1.69 0.008 0.27

Kernel Regr. 0.0436 2.23 0.02 0.46 0.020 0.77 0.012 0.46

Wiener 0.04 1.97 0.012 0.26 0.023 1.67 0.0074 0.25

Park [70] 0.043 3.71 0.023 0.57 0.031 3.25 0.017 0.52

Our Method 0.039 2.26 0.01 0.31 0.024 1.89 0.008 0.32

Table 5.1: Comparison of reflectance estimation accuracy between R,G,B
and white illuminants.

5.5.1 Experimental setup

In our experiments, a DELL Latitude E4310 laptop (13.3 inch screen
size) is used as illuminant. LCD display technology is most commonly used
in all the hand-held devices and laptops likewise. For capturing the image,
we use the Sigma SD-10 camera which allows storing images in RAW format.
We use a separate camera and not a camera mounted on a hand-held device
because RAW shooting is still rare in hand-held devices available now, but
considering the boom in the tablet computers and the mobile phone indus-
try, we believe this to be common within a few years time. Like several other
methods e.g. [29, 70], our proposed modification, requires the knowledge of
sensor-illuminant sensitivities which could be obtained from the manufac-
turer in an ideal situation. In our case, we measure the laptop SPDs using
a Konica Minolta CS-1000a spectroradiometer. The camera response curve
for the sigma SD-10 camera was obtained from [1]. Moreover, for synthetic
experiments, we use an additional camera sensor response curve of a retiga
scientific camera to show the robustness of our method for different sensors.
For kernel regression, we use a gaussian kernel following [32].

5.5.2 Synthetic data

In this section, we use the laptop display illuminant and two camera
response curves. The Munsell color book spectra obtained from [2] are
used for training and two Gretag Macbeth ColorCheckers of 24 and 240
colors are used for testing.

Table 5.1 shows the theoretical limit of the estimation performance for
the given sensor-illuminant pair. We can see from the table that, for each
algorithm, color checker and sensor-illuminant pair, the overall accuracy
improves significantly when R,G,B primaries of the screen is used over the
white (R+G+B). This significant improvement validates that multispectral
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acquisition using hand-held device is a worthwhile proposition.
Comparison among different algorithms shows that, in most of the cases
the regression based methods outperform the other methods. But in a real
world scenario, the regression based methods involve a laborious process of
image capturing as to train the system one must capture the image of all
the train spectra. This is why, regression based methods lacks usability. On
the other hand, [29, 70] and our proposed method require the knowledge of
the sensor-illuminant sensitivities but does not require any other prior tasks
to train the system thus make these methods more usable in the real-world
context. For this reason, we only use these 3 methods in the next section for
the experiments with real-world camera data. Note that, in most cases our
proposed method significantly improve over the baseline method of Park et
al. [70]. In some cases, our method provide best results among all the other
methods including the regression based methods.

5.5.3 Real camera output

Here, we experimentally verify the accuracy of multispectral measure-
ments which are obtained by illuminating materials with the primaries of a
hand-held device.
Image acquisition: In this section, we use only the 24 patch color checker
for reconstruction. LCD display technology is most commonly used in all
the hand-held devices. The intensity (and to some extent the chromaticity)
of an LCD display is sensitive to the angle of viewing. Moreover, because of
this selective directional change of intensity, the illumination non-uniformity
can be prevalent if the display is too close to the object of interest. Also
the proximity of the object and the display screen eventually means the
proximity of the object and the camera and may end up in sensor saturation.
So, care must be taken while capturing images using a hand-held device for
satisfactory results. As a rule of thumb, we hold the device orthogonal with
the line that connects the plane of the display screen and the object plane.
The distance between the device and the object is set to be approximately
three-times the screen size. We assume that the camera and the scene are
static. The effect of ambient light in reconstruction was not taken into
account for this work, so the images are captured in a dark room with
minimal ambient light. Ambient light could be taken into account as is
shown in [14]. The comparison procedure is identical to that of the previous
section. So, we capture 4 images of the color checker illuminated by R,G,B
and the white(R+G+B).
Results: Table 5.2 shows the performance gain if three display primaries are
used as illuminants over just one single light. For all the methods, the gain
over white light is significant. The average RMSE gain on 24 patches varies
from 30% for Park [70] to 40% for our method. CIEDE00 color difference is
also improved significantly in each case. Moreover, our method outperforms
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Figure 5.6: Spectral reflectance obtained by our method for several individ-
ual objects.

both Park et al. [70] and Wiener when R,G,B illuminants are used.
Figure 5.5 shows estimation results for some spectra of the color checker. It
is evident that the use of various illumination helps to improve the spectral
resolution and better estimate the sharp changes in the reflectances than
the white light which provides a poor spectral resolution. As a further
illustration of our method can be used to estimate the spectral reflectances
of every pixel of a scene, which then can be used for relighting or color
constancy. Figure 5.6 shows an example with several estimated reflectances
spectra.

5.6 Application

Our proposed method allows the owner of a hand-held device to obtain
accurate color information. It may not be obvious but accurate color mea-
surement has many applications in everyday life. In this section, we give
some example application to provide some insight in the tremendous poten-
tial of the proposed idea.
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Method
White R,G,B

RMSE CIEDE00 RMSE CIEDE00

Wiener 0.066 7.51 0.039 3.15

Park [70] 0.063 7.4 0.043 2.62

Our Method 0.062 7.4 0.037 2.47

Table 5.2: Reflectance estimation performance comparison between R,G,B
and white illuminants for [70] and the proposed method

Application example 1: Consider an online customer interested in buy-
ing shoes in the same color as her dress. She holds the dress in front of
the hand-held device and the multispectral analysis is performed. With this
information the Internet retailer can now present the customer with match-
ing shoes, as well as with other shoes which are considered to aesthetically
match the color. Note that buying cloths based just on the color sensation
of a single image is dependent on many scene accidental factors and can
easily lead to unsatisfactory purchases.

Application example 2: A second application is in the paint industry.
The customer is consider painting a wall in her kitchen in the same color
as the wall in her living room. Finding the correct paint is known to be an
arduous problem. After making a multispectral acquisition with her hand-
held device and uploading the spectrum to the paint-companies web page,
she could receive a much more precise advice on what paints to buy or how
to mix them.

Application example 3: Another interesting application could be in the
diagnosis of skin diseases. Color is an important clue to understand the
type and severity of many skin diseases including skin cancer. To this end,
multispectral color based diagnosis apps can help a patient to self diagnosis
his/her disease.

5.7 Conclusion

We proposed a method which allows owners of hand-held devices with
front-mounted RGB cameras to acquire multispectral data. Experiments
show that potentially multispectral data acquisition with hand-held devices
can significantly improve compared to taking a single color measurement
under a known white light. In addition, our proposed algorithm improve
reconstruction results on CIEDE00 scores up to 60%. However, current ex-
periments did not include ambient illumination. Considering measurements
in the presence of ambient light is one of the future direction. This work
opens up multispectral data acquisition to all owners of hand-held devices
with front-mounted cameras. The divulgation of this skill from the expert to

82



Chapter 5: Towards Multi. Data Acq. with Hand-held Dev.

virtually everybody can open new applications in a number of fields such as
the online retailing market, eHeritage, material recognition and biometrics.
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Chapter 6

Conclusion and future works

6.1 Contributions

In this thesis, we have worked on spatial and color information aware
image representation. In the chapter 3 and 4, we have proposed new image
representations techniques and analyzed their performances on category-
level classification task using the BoVW method. On the other hand, in
the chapter 5, we proposed an innovative idea to acquire multispectral re-
flectance information of a surface using hand-held devices (smartphones,
laptops, ipads) which could be useful for many computer vision applications.

In the chapter 3, our first contribution was to show that pairwise spatial
relationships between visual words is an important information for category
level recognition. Additionally, we have shown that, this information is com-
plementary to SPR and thus could be combined with this method to improve
the overall accuracy. We have proposed an original spatial encoding tech-
nique denoted Soft Pairwise Similarity angle distance histogram (SPSad)
based on the concept of soft similarity between descriptors. We have shown
that, the distribution of similar interest regions of the images is discrim-
inative and can improve the performance of BoVW method significantly.
We have also shown that, soft similarity is more robust and powerful than
its ’hard’ counterpart. The SSPad approach improved classification accu-
racy up to 16% on caltech101 and 7% on 15Scene data sets over the BoVW
representation. When combined with SPR, the combination descriptor has
shown to perform better than SPR and a group of other similar representa-
tions combined with SPR. In this case, our method improved the accuracy
by 3.5% on Caltech101 and 2.5% on 15Scene data sets over the SPR method.
In the chapter 4, we have proposed a novel approach to color description.
We have proposed to learn the color descriptor from the training set rather
than hand designing it. Our proposed descriptor is designed to be discrimi-
native, contrary to most of the existing color descriptors that are designed
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to be invariant. In our work, we presented specific and generic color descrip-
tor. The specific descriptor is learned from the training images of a data set
and tested on test images of the same data set whereas the generic descrip-
tor work on a cross-data set principle. We have shown that, both specific
and generic version of the descriptor outperform the state-of-the-art color
descriptors on a classification task by as high as 7%. We also compared the
performance of the color descriptor combining with the SIFT descriptor and
compared it with the state-of-the-art results. In this case, our descriptor
outperformed the state-of-the-art results on two out of four data sets and
provided better results than the colorSIFT descriptor in all cases.
In the chapter 5, we looked at the problem of multispectral reflectance
acquisition with hand-held devices, the innovative idea that features a func-
tionality shift of the display of a hand-held device. In this work, the first
contribution was the elimination of sophisticated setup for multispectral
imaging by replacing it with hand-held devices. The second contribution
was the improvement of an existing spectral estimation algorithm using a
set of sensor sensitive basis functions. We have shown that, multispectral
acquisition using hand-held devices is potentially possible and multispec-
tral estimation from multiple measurements taken under R,G,B display pri-
maries of hand-held devices can significantly improve compared to taking
a single color measurement under a known white light. We have presented
experiments on both synthetic data and real camera output. In all cases,
multiple measurement improved accuracy over a single measurement. More-
over, our proposed method performs the best in case of real camera output.
For multiple measurements the RMSE was improved by 65% over a sin-
gle measurement. Moreover, our method improved RMSE by 16% over the
method of [70].

6.2 Future Works

This thesis opens up a number of possibilities as future directions. In
chapter 3, spatial relationships of pairwise visual words for improved BoVW
representation has shown excellent performances. In this work, we use a ba-
sic (k-means and hard assignment) BoVW representation. One of the future
directions could be to extend this work to a more recent BoVW coding tech-
niques like sparse coding [98] or fisher vectors encoding [73]. Additionally,
cross cue (color, shape) spatial relationship is also a promising direction.
The color descriptor learning approach presented in chapter 4 currently does
not take into account the shape descriptors in use, even though color is al-
most always used in conjunction with shape to obtain the state-of-the-art
accuracy. To this end, the discriminative descriptors could be learned with
an additional constraints of shape vocabularies in use. Also, a soft discrim-
inative color description is an interesting idea for future works.
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The work on multispectral acquisition with hand-held device is very promis-
ing. However, the existing approach does not take into account the ambient
light which is essential to increase the usability of the approach. Although,
Chi et al. [14] has proposed a way to take the ambient light into account,
their approach is not directly extendable in our settings due to the limita-
tions of number of illuminants and the low luminance of the display. How-
ever, the most important follow up work should indeed test our approach
on a real hand-held device.
Among all the sensory abilities of human, vision is the most powerful one.
As a matter of fact, vision can contribute to, influence or even replace the
other sensory abilities. So, if intelligent machines are ever to be made, the
computer vision domain has to play a very important role. To this end,
faultless category-level recognition system is an essential need. Although,
we are still far from this goal, the vision community is working hard to put
the pieces of the puzzle together. We feel proud to be able to add our piece
to that puzzle.
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Chapitre 6

Conclusion et perspectives

6.1 Les contributions de ce travail

Au cours de cette thèse, nous avons travaillé sur la représentation d’images
à partir d’information couleur et spatiale. Dans les chapitres 3 et 4, nous
avons proposé de nouvelles représentations et analysé leur performance dans
le domaine de la classification d’images en utilisant les sacs de mots. Par la
suite, dans le chapitre 5, nous nous sommes penchés sur le problème de
l’acquisition de données multi-spectrales à partir de systèmes d’acquisition
bon marché comme les téléphones portables, les ordinateurs portables ou les
tablettes numériques. Nous avons proposé une solution qui trouve de nom-
breuses applications dans le domaine de la vision par ordinateur.

Dans le chapitre 3, notre première contribution a été de montrer que
les relations spatiales entre les mots visuels dans une image sont une infor-
mation importante dans le contexte de la classification d’images. De plus,
nous avons montré que cette information est complémentaire à celle fournie
par les pyramides (SPR). Ce qui nous permet d’associer notre descripteur
aux SPR et ainsi accrôıtre la qualité des résultats de classification. Nous
avons ainsi proposé un descripteur original appelé ”Soft Pairwise Similarity
angle distance histogram” (SPSad) qui pondère la contribution de chaque
paire de motifs par la similarité entre des descripteurs de ces motifs. Nous
avons montré que la distribution spatiale des motifs similaires dans une
image est une information discriminante et peut améliorer significativement
les résultats de classification. De plus, nous avons prouvé que la pondération
de chaque paire par la similarité entre leurs descripteurs (soft similarity) est
plus pertinente et plus robuste que de pondérer équitablement toutes les
paires (hard similarity). En effet, notre descripteur SSPad augmente le taux
de classification de 16% sur la base caltech101 et de 7% sur la base 15Scene
par rapport à la représentation par sac de mots. Lorsque nous l’associons
aux pyramides (SPR), notre descripteur offre de meilleurs résultats que les
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SPR elles-mêmes ainsi que les autres descripteurs de la littérature fondés
sur une combinaison avec les SPR. Dans ce cas, notre approche améliore le
taux de classification de 3.5% sur Caltech101 et de 2.5% sur 15Scene par
rapport aux SPR.

Dans le chapitre 4, nous avons proposé un nouveau descripteur cou-
leur. Pour cela, nous avons décidé d’apprendre ce descripteur plutôt que
de le définir à partir de modèles classiques, comme cela est fait dans la
littérature. En effet, les approches classiques tentent de définir un descrip-
teur couleur qui présente un certain degrés d’insensibilité à certaines varia-
tions radiométriques et photométriques. Dans notre cas, nous avons optimisé
exclusivement le caractère discriminant de notre descripteur, l’invariance
étant une conséquence de cette phase d’apprentissage. Dans cette thèse,
nous avons présenté un descripteur spécifique et un descripteur générique.
Le premier est appris sur les images d’apprentissage d’une base et testé sur
les images de test de cette même base alors que le second est appris et testé
sur des bases différentes. Nous avons constaté que les deux descripteurs per-
mettent d’obtenir de meilleurs résultats que les descripteurs couleur de l’état
de l’art. Nous avons aussi combiné notre descripteur avec les descripteurs
SIFT et montré que nous obtenons de meilleurs résultats que l’état de l’art
sur 2 bases d’images sur 4 et que nous sommes plus performants que les
SIFT-couleur dans tous les cas.

Dans le chapitre 5, nous avons défini une nouvelle approche pour acquérir
des données multi-spectrales à partir de systèmes d’acquisition bon marché.
L’originalité de notre travail réside dans le fait que nous modifions la fonc-
tionnalité des écrans d’affichage de ces systèmes pour qu’ils jouent le rôle de
source de lumière. Dans ces conditions particulière, la source et le capteur
étant des données intrinsèques au système d’acquisition, nous avons défini
un algorithme qui exploite cette connaissance du système pour estimer les
reflectances spectrales des objets observés. Nous avons ainsi montré que l’ac-
quisition de données multi-spectrales peut être réalisée avec des systèmes
d’acquisition grand-public et que l’acquisition exploitant les 3 sources de ces
systèmes est plus performante que l’acquisition sous une unique source de
lumière. Nous avons présenté des résultats sur des données synthétiques et
des données réelles et dans les deux cas, nous avons amélioré les résultats des
approches classiques. Nous avons ainsi montré que l’utilisation des 3 sources
peut améliorer les résultats de 65% (RMSE) par rapport à l’acquisition sous
une seul source et que notre algorithme de reconstruction permet de dimi-
nuer l’erreur de 16% par rapport à la méthode de Park [70].
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6.2 Perspectives

Cette thèse offre de nombreuses perspectives. Dans le chapitre 3, les
relations spatiales entre des motifs similaires ont permis d’améliorer signifi-
cativement les résultats des sacs de mots. Il serait intéressant d’étendre notre
approche à d’autres méthodes de codage comme le ”sparse coding” [98] ou
les ”fisher vectors” [73] qui ont fait leur preuve ces dernières années. De
même, la prise en compte de plusieurs informations comme la couleur et la
forme pour les relations spatiales semble aussi une direction prometteuse.

Le descripteur couleur défini au chapitre 4 et destiné à être associé à
un descripteur de forme, puisque cette association (forme-couleur) permet
toujours d’améliorer les résultats de classification par rapport à la prise ne
compte d’une seule information. Il apparâıt donc opportun d’utiliser l’infor-
mation du descripteur forme auquel sera associé notre descripteur couleur
au cours de la phase d’apprentissage, permettant ainsi de mettre au point
un descripteur le plus complémentaire possible. De plus, tout comme les des-
cripteurs ”Color Names” (CN) reposent sur des probabilités d’appartenance
de chaque pixel à chacun des CN, nous envisageons d’exploiter la probabi-
lité d’appartenance des pixels à chaque ”cluster” couleur défini lors de notre
apprentissage (soft assignment).

Notre travail sur l’acquisition multi-spectrale est très prometteur. Ce-
pendant, l’approche actuelle ne prend pas en compte la lumière qui éclaire
la scène avant d’allumer l’écran du système d’acquisition. Comme l’obscurité
totale n’est pas facile à obtenir, il serait intéressant de prendre en compte
cette composante dans l’algorithme de reconstruction. Chi et al. [14] ont
proposé une méthode pour ajouter cette information mais leur approche
n’est pas applicable directement à notre cadre de travail à cause du faible
nombre d’illuminants et de la faible intensité de l’écran de projection.

Parmi toutes les capacités sensorielles de l’être humain, la vision est
la plus puissante. En effet, la vision peut contribuer, influencer ou même
remplacer les autres capacités. Ainsi, si des machines intelligentes doivent
être réalisées, le domaine de la vision par ordinateur jouera une large part
dans cette conception. Dans ce contexte, les systèmes de reconnaissance ou
de classification infaillibles font partie des besoins essentiels. Même si nous
en sommes encore loin, la communauté travaille dure pour assembler les
pièces du puzzle. Nous sommes fiers d’avoir contribuer à ce travail collectif.
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