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Abbreviations 

 

AC, anterior commissure 

ANIMAL, automatic nonlinear image matching and anatomical labelling 

BET, brain extraction tool 

CT, computed tomography 

DBS, deep brain stimulation 

Dopa, dopamine 

GPm, medial globus pallidus 

HAC, hierarchical ascendant classification 

ICBM, international consortium brain mapping 

MDRS, Mattis dementia rating scale 

MINC, medical Image NetCDF format 

MNI, Montreal neurological institute 

MRI, magnetic resonance imaging 

PC, posterior commissure 

PD, Parkinson’s disease 

STN, subthalamic stimulation 

SyN, Symmetric Image Normalization technique 

T1w or T2w, weighted-T1 or T2 MRI 

UPDRS III, (motor) part III of the unified Parkinson’s disease rating scale 

VLc, caudal part of the ventro-lateral thalamic nucleus 

 

 

Abréviations 

 

GPm, globus pallidus médial 

IRM, imagerie par résonance magnétique 

NST, noyau subthalamique 

SCP, stimulation cérébrale profonde 

VLc, partie caudale du noyau thalamique ventro-latéral 
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Introduction 

 

 

High frequency Deep Brain Stimulation (DBS) is an effective treatment for patients 

with severe disabled movement disorders refractory to medical treatments. Developed since 

1987 by Pr Benabid at Grenoble [8], DBS targets basal ganglia in the brain to stop the 

invalidating symptoms of the disease, but without stopping disease progression. In basal 

ganglia, three nuclei are most often targeted: the caudal part of the thalamic ventro-lateral 

nucleus (VLc), the medial globus pallidus (GPm), or the subthalamic nucleus (STN). VLc 

stimulation is effective on tremor whatever its origin [51]. The GPm stimulation is effective 

on dystonia, and on akineto-hypertonic and dyskinesias symptoms of Parkinson’s disease 

(PD). STN stimulation is effective on any PD symptoms. Although DBS is effective on motor 

symptoms, it may induce adverse motor, neuropsychological or psychiatric adverse side-

effects as has often been demonstrated in the literature [13,32,88,104]. 

 

 

DBS surgery consists of the accurate implantation of an electrode in the targeted 

nucleus. The quality of results of DBS surgery depends on various factors during the different 

steps of the procedure. Under local anesthesia, a stereotaxic frame is fixed to the patient’s 

head and a stereotaxic 3D image is acquired. The neurosurgeon then targets one or two basal 

ganglia nucleus(ei) defined preoperatively according to strict clinical criteria. In the operative 

room, the patient, weaned off therapeutics since the previous day, is awakened so as to allow 

clinical tests of the effect of the stimulation and to optimise the location of the DBS electrode 

in the targeted nucleus. As demonstrated in the literature [7,8,38,112,113], the quality of the 

clinical improvement, as well as the existence of post operative motor, neuropsychological or 

psychiatric side effects strongly depends on the location of the electrode, and therefore on the 

quality of the surgical planning. 

 

 

The quality of the surgical planning can be improved by developing a multimodal 

database based on anatomical, clinical and electrophysiologial data [27-29,40,41]. This thesis 

examines the different steps in the building and validating of our multimodal database on 
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DBS. The first step was to develop a specific magnetic resonance imaging (MRI) template of 

PD patients’ anatomy, and to validate the basal ganglia segmentation made on this template. 

The second step was to study the outcome of patients with PD stimulated on two targets, the 

STN or the GPm by analysing anatomo-clinical atlases. 

 

 

Presentation of the studies is preceded by a description of the current state of 

knowledge and followed by general conclusions including the future developments.  
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Current state of reflection 

 

 

PD is recognized as one of the most common neurological disorders, affecting 1% of 

people over the age of 60 years. It is the second most prevalent neurodegenerative disorder. 

One of the characteristics of PD is the apoptosis of the dopamine-rich neurons of the 

substantia nigra. Major symptoms are indeed characterized by abnormalities of motor 

functions, several of which predominate, but all do not systematically occur in all individuals. 

These PD-related symptoms can be treated with medical therapy, but when it remains 

ineffective in some cases, DBS surgery [10,53] may be necessary according to strict patient 

inclusion criteria. This iterative procedure, initially approved by the Federal Drug Agency in 

U.S. in 1997 for essential tremor disorders, and in 2002 for PD, has gained much interest over 

the past decade and is now widely used by a large number of neurosurgical departments. The 

DBS anatomical target is based on the relief of symptoms and results of previous 

implantations only. The three major targets chosen by neurosurgeons according to the 

patients’ symptoms are the VLc, the GPm and the STN. Among these three deep brain 

structures, the STN has become the most common target of high-frequency DBS in patients 

with severe motor disabled symptoms and no cognitive impairment [7-9,43,61,107]. 

 

 

Surgical procedure 

During routine DBS surgery, two main stages are involved: pre-operative planning and 

the surgery itself. Pre-operative planning is the process of loading the pre-operative patient’s 

medical images (Computed Tomography and/or MRI), recording them together and proposing 

a 2D and/or 3D visualisation interface to define the target localisation in the Anterior and 

Posterior Commissures (AC-PC) plan. Given contrast and spatial resolution limitations, the 

usual DBS targets are not easily visible on the MR images available to the surgeon, even 

though MRI offers better contrast than other medical imaging techniques [31]. Neurosurgeons 

directly localize the optimal target position on the T2 MR image and choose the trajectory of 

the electrode according to the patient’s anatomical information. During this step, the 

additional help of an atlas may be necessary. In practice, experts manually localize AC-PC 

coordinates, midsagittal points and entry on the MR images of the patient. Finally, 
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coordinates are automatically put in AC-PC space, then computed in a stereotactic coordinates 

system. 

 

 

The surgical procedure is then performed under local anaesthesia. The trajectory 

estimated during planning is implemented with stereotactic frame based or frameless systems 

and used as an initial position that has to be refined. A few causes of discrepancy between 

chosen target and the final implant may appear, such as brain shift [48,85], or patient's 

anatomical variability. An X-ray evaluation is thus performed intra-operatively to confirm the 

initial placement and evaluate potential biases. Electrophysiological explorations are also 

performed to help neurosurgeons refine the placement of active electrode contacts. Similarly, 

neurologists may test the clinical effects with different settings for each contact to reach 

optimum placement. Changing frequency, voltage, stimulated contact and electrode trajectory, 

they reach optimum placement. Lastly, the surgeon anchors the electrode to the skull.  

 

 

Even though STN DBS has demonstrated its efficiency for motor symptoms 

improvement, questions remain concerning contact location providing the greatest motor 

improvement while producing the minimal neuropsychological and psychiatric side effects. 

Indeed, despite satisfactory motor improvements, several studies have reported adverse events 

after DBS surgery affecting cognitive functions, emotion or behaviour [13,32,45,88,104]. In 

particular, Brücke et al. [15], Greenhouse et al. [38], Kühn et al. [54], LHommée et al. [67] or 

Mallet et al. [71] elucidated the role of STN in emotional processing, showing that STN DBS 

leads to behavioral complications. Similarly, Burrows et al. [16] were interested in 

complications of STN DBS around the zona incerta, and York et al. [113] looked at 

neuropsychological complications according to electrode location and trajectory. All these 

results suggest that the STN forms part of a broadly distributed neural network encompassing 

the associative and limbic circuits. Lenglet et al. [66] studied the basal ganglia and thalamic 

connections using high-resolution MR images in 4 healthy subjects and concluded that it was 

possible to delineate the connections between the basal ganglia. As outlined above, one of the 

major challenges in DBS is the identification of the target, which requires additional 

information and knowledge for indirect identification of such small structures during the pre-

operative stage with the support of digital atlases. 
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Atlases 

Brain atlases and atlas-based segmentation techniques have been developed to facilitate 

the accurate targeting of deep brain structures in patients with movement disorders 

[7,20,58,97,103,112]. Some digitized atlases aim at providing information with optimum 

spatial and intensity resolution, to allow better identification of structures, which is impossible 

with usual medical imaging techniques only. Histological atlases were thus created [19,112] 

along with high-resolution MR based atlases [4,59]. Both types of atlas have been 

successfully introduced in the targeting stage of standard DBS procedures. 

 

 

The concept of probabilistic functional atlases, built from a population of previous 

surgical cases, was initially introduced by Nowinski et al. [79-81]. After a process of 

normalization within a common space, effective contacts are linked to preoperative 

electrophysiological recordings and clinical scores acquired during the stages of the procedure. 

Statistical techniques are used to study anatomical or functional variability between patients. 

Response to stimulation, electro-physiological recordings and clinical scores related to motor 

or cognitive evolution are all potential data that can be integrated into such atlases. This 

fusion of clinical and anatomical information allows an understanding of functional 

organization within deep-brain structures that helps in the identification of the optimal therapy 

zone for future patients. Finnis et al. [34] and Guo et al. [40] proposed probabilistic functional 

atlases by integrating intra-operative recordings. D'Haese et al. [27,28] and Pallavaram et al. 

[84,85] proposed a system to automatically predict the optimum target position according to 

atlases built from retrospective studies. More recently, D'Haese et al. [29] proposed a fully 

integrated computer-assisted system called CRAnialVault. The system addresses the issue of 

data administration during the different stages of the therapy. It permits the centralisation of 

various types of data acquired during the procedure and provides data visualisation through 

data processing tools. A preliminary validation process in a clinical context, from planning to 

programming, is described and shows that the system provides genuine assistance to the 

surgical team. Evaluation of DBS electrode implantation involves significant motor and 

neuropsychological follow-up estimated by clinical tests. Resulting clinical scores allow post-

operative evaluation of the decrease in motor disorders and possible clinical side effects. 

Quantitative analysis of these data relative to the actual anatomical area stimulated would 

provide a better understanding of the DBS phenomenon, optimization of targeting and 

consequently better patient outcome.
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Abstract 

 

Purpose. 

  Template-based segmentation techniques have been developed to facilitate the accurate 

targeting of deep brain structures in patients with movement disorders. Three template-based 

brain MRI segmentation techniques were compared to determine the best strategy for 

segmenting the deep brain structures of patients with PD. 

 

Methods. 

  T1-weighted and T2-weighted MR image templates were created by averaging MR images 

of 57 patients with Parkinson’s disease. Twenty-four deep brain structures were manually 

segmented on the templates. To validate the template-based segmentation, 14 of the 24 deep 

brain structures from the templates were manually segmented on 10 MR scans of Parkinson’s 

patients as a gold standard. We compared the manual segmentations with three methods of 

automated segmentation: two registration-based approaches, Automatic Nonlinear Image 

Matching and Anatomical Labelling - (ANIMAL) and Symmetric Image Normalization - 

(SyN), and one patch-label fusion technique. The automated labels were then compared with 

the manual labels using a Dice-kappa metric and center of gravity. A Friedman test was used 

to compare the Dice-kappa values and paired t-tests for the center of gravity.  

 

Results. 

  The Friedman test showed a significant difference between the three methods for both 

thalami (p < 0.05) and not for the subthalamic nuclei. Registration with ANIMAL was better 

than with SyN for the left thalamus, and was better than the patch-based method for the right 

thalamus.  

 

Conclusion. 

  Although template-based approaches are the most used techniques to segment basal ganglia 

by warping onto MR images, we found that the patch-based method provided similar results 

and was less-time consuming. Patch-based method may be preferable for the subthalamic 

nucleus segmentation in patients with Parkinson’s disease.  
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Many movement disorders are related first to PD, with symptoms that include 

essential tremor, rigidity, and akinesia, and less frequently to dystonia that is a syndrome of 

sustained muscle contractions producing writhing movements and abnormal postures, to 

essential tremor or to Tourette syndrome. When pharmaceutical treatments lose effectiveness, 

such disorders may require functional neurosurgery. In such surgeries, deep brain electrodes 

are implanted to inhibit the activity of target structures such as the STN, GPm, and VLc 

[10,51,106]. Following surgery, motor effects and neuropsychological or psychiatric 

secondary side effects of the stimulation may occur depending on the location and trajectory 

of the electrodes [88,106,113]. The patient’s surgical outcome is related to the accuracy of 

nucleus targeting during surgery, and the accuracy of electrode implantation depends on 

different steps such as image preprocessing, intraoperative clinical testing of patients, and 

intraoperative electrophysiological recordings. 

 

Brain atlases and atlas-based segmentation techniques have been developed to 

facilitate the accurate targeting of deep brain structures in patients with movement disorders 

[7,19,20,58]. Recently, several authors have demonstrated improved targeting accuracy by 

using multimodal databases composed of anatomical and functional data [29,40,41]. In these 

studies, basal ganglia segmentations, the coordinates of previously implanted electrodes, and 

functional data (mainly intracerebral electrophysiological recordings) were aligned in a 

common space and overlaid on a MR image template. Although the use of multimodal images 

has been shown to be an effective tool in surgical planning, very few studies have correlated 

clinical postoperative data with anatomical data [40]. 

 

Developing a tool to improve targeting accuracy and the aggregation of anatomical 

and clinical data requires several steps, including the construction of a template to define a 

common stereotactic space, accurate and automated segmentation of target structures on the 

template, registration of the patient’s multimodal image data, and alignment of the patient’s 

image data into a common space for comparison with electrode placement. In this paper, we 

focus on the segmentation step by investigating the accuracy of three methods of segmenting 

the basal ganglia and deep brain structures of patients with PD. The goal of this work was to 

compare these methods and determine which method was enough accurate and clinically 

applicable to obtain segmentation of target structures in further patients with PD waiting for 

DBS.  
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First, we used two segmentation methods that are nonlinear registration-based 

approaches involving a population-specific, anatomically labeled template. This kind of 

approach is widely used and has demonstrated good performance in the segmentation of a 

large variety of structures [22]. In our study, we constructed a population-specific template 

[36], which has been shown to be one of the most effective methods of achieving accurate 

segmentation of subjects with pathology. To achieve automated segmentation, the basal 

ganglia and other deep brain structures useful in the planning of deep brain stimulation were 

first manually delineated on the template, which was then nonlinearly warped onto the 

patient’s MR image. The segmentation of the target structures on the MR image could thus be 

obtained by mapping the template labels through the estimated transformation onto the 

patient’s MR image. We compared two nonlinear algorithms to achieve this task: the well-

known Automatic Nonlinear Image Matching and Anatomical Labelling (ANIMAL) method 

[22] and the more recent Symmetric Image Normalization (SyN) technique [5]. The third 

segmentation method evaluated here was a recently published, patch-based, label fusion 

technique that has demonstrated very good performance for hippocampus and ventricle 

segmentation [25]. We compared the results if the three segmentation methods in terms of 

anatomical similarity with the template segmentation and discussed interest of these methods 

in clinical practice for deep brain stimulation. 

 

 

Materials and methods 

 

Patients 

The template was constructed using T1-weighted (T1w) and T2-weighted (T2w) MR 

images from 57 patients with Parkinson’s disease. The patients (26 females, 31 males; mean 

age (± standard deviation) 58.9 ±8 years; mean disease duration 12.2 ±5 years) underwent 

electrode implantation in the STN, GPm, or VLc according to their disease (Table 1). 
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TABLE 1. Demographic and clinical data for 57 patients with Parkinson’s disease. 

 

target side number of patients mean age 

(years) 

sex mean disease 

duration (years) 

VLc 1 bilateral 

4 left/ 2 right 

7 65.1 3 F, 4M 12.4 

GPm  24 bilateral 24 60.2 12 F, 12 M 12.6 

STN 26 bilateral 26 56.1 11 F, 15 M 11.7 

Total  57 58.9 26 F, 31 M 12.2 

VLc: caudal part of the thalamic ventral lateral nucleus; GPm: medial globus pallidus; STN: 

subthalamic nucleus; M: male; F: female 

 

Before imaging, a Leksell stereotactic frame (Elekta Instruments AB, Stockholm, 

Sweden) was rigidly fixed on the patient’s head. All MR images were acquired on a Philips 

Achieva 3Tesla scanner (Philips Medical Systems, Best, The Netherlands) using a transmit-

and-receive head coil. After intravenous injection of gadolinium (0.2 ml/kg), the T1w data 

were acquired with a three-dimensional (3D) axial fast field echo sequence (TR = 9.8 ms, 

TE = 4.6 ms, flip angle = 8°, 256 mm field of view, 219 continuous slices, 1 mm thickness, 

256×256 matrix upsampled to voxel size of 0.5×0.5×1 mm). For 42 of the 57 patients, a T2w 

coronal turbo spin echo sequence was acquired (TR = 3,035 ms, TE = 80 ms, flip 

angle = 90 °, 36 continuous slices, 1 mm thickness, 256×256 matrix upsampled to voxel size 

of 0.5×0.5×1 mm). The T2w image volume was centered on the thalamus. The study was 

approved by the local research ethics committee, and informed consent was obtained from all 

participants. 

Construction of the Parkinson’s templates 

We used the procedure detailed by Fonov et al. [36] to construct multispectral, multi-

subject, unbiased nonlinear average Parkinson’s disease templates. The 57 T1w images were 

used to create the T1w Parkinson’s template (PD_T1_57), and the 42 T2w images from the 

same subjects were used to create the T2w Parkinson’s template (PD_T2_42), using the steps 

described below. All images were converted to the Medical Image NetCDF (MINC) format 

[77], the format used at our institute for image processing. 
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The following preprocessing steps were applied to all MR scans prior to constructing the 

template: (1) the program N3 was used to correct for image intensity nonuniformity [99]; (2) 

inter-subject linear image intensity normalization was achieved using linear histogram scaling 

to the International Consortium Brain Mapping (ICBM152) template [36] following the 

technique of Nyul et al. [82]; (3) intra-subject inter-modality volume registration of T2w and 

T1w MR images was achieved with a rigid-body transformation (i.e., only 3 translations and 

3 rotations) and a mutual-information cost function [110] implemented in the mritoself tool 

from the MINC mni_autoreg software package [21]; (4) inter-subject spatial alignment to the 

Talairach-like ICBM152 stereotactic space was achieved with a linear (nine parameter) 

transformation estimated with mritotal; and (5) a patient-specific brain mask was created by 

applying Brain Extraction Tool (BET) from the Oxford centre of Functional MRI of the brain 

Functional Software Library (FSL) to the T1w data [100]. Then, the T1w and T2w data for all 

subjects were intensity normalized and spatially aligned within the ICBM152 stereotactic 

space. 

 

After preprocessing, the average high-signal-to-noise T1w and T2w templates were 

created using an iterative unbiased method [36] (see Figure 1). At each iteration, all T1w 

datasets are nonlinearly registered to an intermediate target and then averaged together on a 

voxel-by-voxel basis. The inverse of the average nonlinear transformation is applied to the 

intermediate template to remove any potential spatial bias. This procedure is repeated multiple 

times in a hierarchical fashion, gradually increasing the resolution of the nonlinear 

transformations, with number of iterations estimated empirically to achieve good results from 

a similar dataset. The result is an unbiased, high-contrast, highly detailed T1w average MR 

image template. Nonlinear registrations were obtained with the ANIMAL procedure [22], 

chosen because of our extensive experience with this technique. Following the unbiased non-

linear registration, the transformations estimated on the T1w data were applied to the patient’s 

corresponding T2w data to create the unbiased T2w average template. The templates 

(PD_T1_57 and PD_T2_42) enable visualization of deep brain structures such as amygdala or 

hippocampus and basal ganglia structures such as subthalamic nucleus or thalamus. These 

structures have either T1w contrast or T2w contrast, or are visible in both modalities, and can 

be manually segmented on each slice of the PD_T1_57 and/or PD_T2_42 templates.  
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Figure 1. Parkinson’s templates obtained from 57 T1w and 42 T2w average MR images of 

patients with Parkinson’s disease. From left to right: Axial, coronal, coronal and sagittal slices 

of the T1w (top) and T2w (bottom) templates. 

 

 

Manual segmentation 

Manual segmentation of the template was achieved using the MNI Display software 

(Montreal Neurological Institute, Canada, www.bic.mni.mcgill.ca/ServicesSoftware) by the 

first author, Claire Haegelen. Segmentation consisted of manual delineations of 24 structures 

bilaterally on each slice of the PD_T1_57 and PD_T2_42 templates. The Display software 

allows the user to paint the structure in any chosen slice (e.g., transverse) with simultaneous 

update in the other two views (e.g., coronal and sagittal), enabling consistent segmentation in 

3D while viewing either template. The 24 structures were identified with the help of 

anatomical atlases [69,97,103]. The structures were defined bilaterally and included the 

amygdala, hippocampus, caudate nucleus, putamen, GPm and lateral globus pallidus, 

thalamus, medial and lateral geniculate bodies, red nucleus, substantia nigra, and STN (see 

Figure 2). All the structures were visible on the PD_T2_42 template. While a rapid 36-slice 

T2w image, centered on the thalamus was acquired on the morning of the PD surgery, it did 

not permit to identify for segmentation the entire caudate nucleus, amygdala and hippocampus. 

For this reason, these structures were segmented on the PD_T1_57 template where they were 

visible. Display allows both T1w and T1w images to be visible simultaneously to ensure label 

consistency. It took 120 hours to manual segment the structures on the templates. 
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Figure 2. Anterior (top left), lateral left (top right), posterior (bottom left) and superior 

(bottom right) 3D views of the manual segmentation of the Parkinson’s templates. The 

painted structures included bilateral amygdala (brown), hippocampus (white), putamen (dark 

blue), GPm (yellow), lateral globus pallidus (dark pink), caudate nucleus (light pink), thalami 

(light blue), substantia nigra (dark violet), STN (dark green), red nucleus (light violet), and 

medial geniculate body (light green).  

 

 

To validate the automated template-based segmentation procedure, a gold standard 

labelling of patient data was required. Fourteen bilateral structures were manually painted on 

the T1w and T2w images of 10 patients with Parkinson’s disease. The images used were a 

subset of those used for the Parkinson’s templates after N3 nonuniformity correction [99]. 

Using the Display program, the structures labelled included the amygdala, hippocampus, 

putamen, thalamus, red nucleus, substantia nigra, and STN (see Figure 3). As for the template, 

the amygdala and hippocampus were segmented on the patients T1w image, and the 

remaining structures on the T2w image. We chose these nine structures for their different 

sizes: large (e.g., thalamus and hippocampus), intermediate (e.g., amygdala and putamen), and 

small (e.g., red nucleus, substantia nigra, and STN). The five remaining structures (caudate 

nucleus, GPm and lateral globus pallidus, medial and lateral geniculate bodies) were not 

identified on the patient scans.  

 

To measure the quality of the manual segmentation used as a gold standard, two experts 

(Claire Haegelen and Louis Collins) segmented the putamen, subthalamic nucleus and 
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substantia nigra, on both the left and right sides, on the MRI of one patient.  These 

segmentations were used to estimate the intra- and inter-rater variability in structure 

segmentation.  

 

 

 

Figure 3. Screenshot of a patient’s manual painting using ITKsnap. Axial (top left), sagittal 

(top right), and coronal (bottom right) slices of MR image and 3D (bottom left) view of the 

following bilateral painted structures: amygdala (brown), hippocampus (white), putamen 

(dark blue), thalami (light blue), substantia nigra (dark violet), STN (dark green), and red 

nucleus (light violet).  

 

 

Registration with ANIMAL and SyN 

As described earlier, the registration-based segmentation procedure maps the labels from 

the PD_T1_57 template onto the MR image using the nonlinear registration transformation 

that aligns the template and patient MR image data. The template’s labels, customized to the 

anatomy of each patient, can then be compared with the gold standard labels described above. 

Two methods of inter-subject nonlinear registration were evaluated: ANIMAL [22] and SyN 

[5]. So, as not to bias the comparison between the two methods, only the T1w modality was 

used to drive the non-linear registration.  Furthermore, the PD_T1_57 template was more 

appropriate for the whole-brain registration since the PD_T2_42 only covered part of the 

brain.  
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Linear and nonlinear transformations were calculated between the PD_57_T1 template 

and each patient’s T1w image with both ANIMAL and SyN, resulting in two spatial warping 

transformations. Then, the template’s labels were mapped through each of the two 

transformations onto the patient’s T1w image to achieve two automatic structure 

segmentations: one for ANIMAL and one for SyN (see Figure 4). 

 

 

 

Figure 4. Generation of labels by ANIMAL registration, SyN registration and patch-based 

method. All labels are shown on axial (top row), parasagittal (second row), and coronal (third 

row) slices of a T1w map and on a 3D reconstruction (bottom row). Labelled structures: 

bilateral amygdala (brown), hippocampus (white), putamen (dark blue), thalami (light blue), 

substantia nigra (dark violet), STN (dark green), and red nuclei (light violet). 
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Patch-based segmentation method 

In addition to the registration-based methods, we also evaluated a novel patch-based 

method using anatomical information derived from manual segmentations by experts, as 

described in detail in Coupe et al. [25]. This method required only linear registration into the 

MNI space of the involved images (i.e., subject under study and the training templates) as 

well as a denoising step with the 3D blockwise nonlocal means filter [114]. In brief, for each 

voxel in the MR image that needs to be segmented, the neighbourhood of the voxel is 

compared with similar neighbourhoods in previously labelled MR image datasets that serve as 

a library of templates. A weight, proportional to the neighbourhood similarity between the 

image and the templates, is computed and used as a label voting mechanism to achieve 

segmentation. In this manner, anatomically similar neighbourhoods from one or more 

templates in the library can contribute to the labelling of the patient’s MR image. Here, the 

gold standard labels are used to define the template library, and experiments are completed in 

a leave-one-out fashion (i.e., the patient being tested is removed from the template library, 

and the remaining patients form the library). 

 

For each patient, the patch-based method was used to obtain the same labels as those 

identified manually for the gold standard. We first processed the method on the T1w images 

of the 10 patients, but the substantia nigra, red nuclei, and STN were only visualized on the 

T2w sequences. For these six labels, the patch-based method was applied to the T2w images 

using the T2w data from the gold standard template library. Finally, the eight labels obtained 

from the T1w patch-based procedure and those obtained from the T2w patch-based procedure 

were combined to complete the patch-based segmentation for each patient. Figure 4 presents a 

view of the different labels obtained with the patch-based method. 

 

Quality of fit metrics 

Finally, the automatic labels obtained with either ANIMAL, SyN, or the patch-based 

method were compared with the manual labels of the gold standard using two metrics: the 

Dice’s kappa similarity coefficient (kappa) [30] because this metric is well established in the 

literature for comparison between two segmentations and a center of gravity metric because 

this will yield a more intuitive estimate of the potential targeting error. We did not estimate a 

Hausdorf distance or edge-based/border-based distances because these can be too variable, as 

they are driven by extreme outlier values. The kappa was measured as follows: 

K=2* (V(M ∩ A) )/(V(M)+V(A) ) 



 

- 24 - 
 

 

where M is the set of manually labeled voxels, A is the set of automatically labeled voxels, ∩ 

is the set intersection operator, and V(•) is the volume operator. K takes on a value between 0 

and 1.0, with 1.0 indicating perfect agreement. Before the kappa metric is used to evaluate the 

automated methods, it was first used to estimate intra- and inter-rater variability of manual 

structure segmentation to establish a baseline for comparison. 

 

The center of gravity was estimated for each segmented structure obtained with the 3 

methods, the ANIMAL and SyN registrations and the patch-based method. The Euclidean co-

ordinates of the center of gravity were used to estimate a distance between the automatic 

segmentations and their respective gold standard. A paired-t test was used to compare the 

distances obtained with ANIMAL and SyN and with the patch-based method. A p-value of 

less than 0.05 was deemed significant. We also computed the center-of-gravity values 

between the repeated manual segmentations of the two experts, to estimate inter-rater 

variability. 

 

Data analysis 

The resulting kappa values were not Gaussian distributed; therefore, a nonparametric 

Friedman test for paired data was used to compare the kappa values obtained with ANIMAL 

and SyN and with the patch-based method. A p-value of less than 0.05 was deemed 

significant. When a significant difference was detected by the Friedman test, a nonparametric 

post-hoc multicomparison test was used to determine which pair of methods was significantly 

different. 
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Results 

 

The results of intra- and inter-rater variability of manual segmentation are presented in 

Table 2. The results of the center-of-gravity values between the deep brain structures obtained 

with 2 registration methods and the patch-based method are presented in Table 3.  

 

 

TABLE 2. Mean kappa values for comparison of segmentation of three cerebral 

structures by two experts, each segmentation made three times on the same patient with 

Parkinson’s disease. 

 

 Inter-rater Expert 1 Expert 2 

 Mean SD Mean SD Mean SD 

Putamen 0,77 0,04 0,83 0,03 0,84 0,02 

SN 0,68 0,02 0,80 0,03 0,79 0,02 

STN 0,55 0,08 0,71 0,07 0,74 0,02 

SN, substantia nigra; STN, subthalamic nucleus; SD, standard deviation. 

 

 

 

TABLE 3. Mean distances and standard deviation (in mm) between the center of gravity 

positions between manually segmented deep brain structures, and the automatically 

segmented labels from the 3 different methods: ANIMAL, SyN and the patch-based 

method. 

 Distance 

 Mean SD 

ANIMAL 1.51 0.88 

SyN 1.48 0.92 

Patch-Based Method 1.29 0.76 

SD, standard deviation. 
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The paired-t test showed a significant difference between the SyN registration and 

patch-based method (p = 0.01) and the ANIMAL registration and patch-based method (p = 

0.002). There was no difference between ANIMAL and SyN registration methods in terms of 

distances (p = 0.13). The mean distances measured between the repeated segmentations of the 

two experts were 0.82 (standard deviation (SD) 0.49) and 0.96 (SD 0.36) for respectively 

Claire Haegelen and Louis Collins. These mean distances were not significantly different (p = 

0.15).  

 

The kappa index values obtained with the three methods are presented in Table 4 and Figure 5. 

ANIMAL and SyN-based method: The median kappa values computed between the 

labels obtained with ANIMAL and the manual labels were greater than 0.73 for the bilateral 

thalami, putamen, amygdala, hippocampus and red nuclei, and between 0.62 and 0.67 for the 

bilateral substantia nigra and subthalamic nuclei (Fig. 5). 

Patch-based method: The median kappa values computed between the labels obtained 

with the patch-based method and the manual labels were greater than 0.76 for the bilateral 

thalami, putamen, amygdala, hippocampus, and red nuclei, and between 0.62 and 0.70 for the 

bilateral substantia nigra and subthalamic nuclei (Fig. 5).  

The Friedman test showed a significant difference between the three methods for the 

left amygdala (p = 0.014), left red nucleus (p = 0.045), and left (p = 0.045) and right thalamus 

(p = 0.001) (Fig. 6). For the left amygdala, the patch-based segmentation method was better 

than with ANIMAL. For the left red nucleus and left thalamus, registration with ANIMAL 

was better than with SyN. For the right thalamus, registration with ANIMAL was better than 

the patch-based method. 
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TABLE 4. Dice-kappa values for three methods of segmentation of 14 cerebral structures in 10 patients with Parkinson’s disease. 
 

 

 

a Values according to the automatic method only on the T2w analysis; l, left; r, right; AG, amygdala; HC, hippocampus; put, putamen; thal, 

thalamus; RN, red nucleus; SN, substantia nigra; STN, subthalamic nucleus

 l_AG r_AG l_HC r_HC l_put r_put l_thal r_thal l_RN r_RN l_SN r_SN l_STN r_STN 

ANIMAL               

Mean 0.760 0.759 0.763 0.743 0.815 0.809 0.864 0.868 0.796 0.793 0.689 0.657 0.641 0.640 

Median 0.773 0.738 0.792 0.760 0.814 0.809 0.854 0.858 0.781 0.774 0.671 0.640 0.624 0.638 

Variance 0.0016 0.0007 0.002 0.0012 0.0012 0.0014 0.0008 0.0007 0.0027 0.002 0.0015 0.0033 0.004 0.006 

 

SyN 
              

Mean 0.776 0.760 0.774 0.760 0.816 0.809 0.854 0.858 0.781 0.782 0.671 0.640 0.626 0.64 

Median 0.776 0.759 0.792 0.771 0.814 0.809 0.854 0.867 0.792 0.782 0.671 0.640 0.624 0.65 

Variance 0.0013 0.0005 0.003 0.0013 0.0009 0.0013 0.0008 0.0008 0.0030 0.0029 0.0009 0.002 0.003 0.006 

 

Patch-based 
              

Mean 0.780 0.739 0.764 0.767 0.825 0.795 0.850 0.828 0.790 0.783 0.696 0.653 0.631 0.575 

Median 0.810 0.761 0.780 0.766 0.822 0.790 0.851 0.819 0.785 0.784 0.704 0.675 0.621 0.626 

Variance 0.008 0.005 0.0002 0.0001 0.005 0.0006 0.0006 0.0008 0.002 a 0.003 a 0.003 a 0.009 a 0.005 a 0.022 a 
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Figure  5. Box plots of the kappa index distribution for ANIMAL registration (top row), SyN 

registration (second row), and patch-based method of segmentation (bottom row). Boxes 

represent the lower quartile, median (red line), and upper quartile of the kappa index 

distribution. Whiskers show the most extreme values within 1.5 times the interquartile range. 

Outliers (red +) are data with values beyond the ends of the whiskers. 

l_AG: left amygdala; r_AG: right amygdala; l_HC: left hippocampus; r_HC: right 

hippocampus; l_PUT: left putamen; r_PUT: right putamen; l_THAL: left thalamus; r_THAL: 

right thalamus; l_RN: left red nucleus; r_RN: right red nucleus; l_SN: left substantia nigra; 

r_SN: right substantia nigra; l_STN: left subthalamic nucleus; r_STN: right subthalamic 

nucleus. 

 

 



 

 

 

- 29 - 

 

 

 

 

Figure 6. Mean kappa index distribution for segmentation of cerebral structures in 10 patients 

with Parkinson’s disease using ANIMAL registration, SyN registration, and patch-based 

method.  * represents a significant difference between two methods according to Friedman 

and post hoc multi-comparison test (see the text in RESULTS for details). 
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Discussion 

 

The template-based segmentation approach is one method that has been developed to 

assist neurosurgeons in the target planning step of deep brain stimulation procedures. For 

example, Bardinet et al. [7] and Chakravarty et al. [19] developed different 3D histological 

atlases that were aligned to a MR image of the same brain obtained after autopsy, and to an 

average MR image, respectively. The template can then be registered to the patient’s MR 

image to delineate deep brain structures like the STN or GPm that will be targeted during 

surgery. We built a high-resolution/high-signal-to-noise ratio template by averaging the 

nonlinearly aligned MR images of many patients with Parkinson’s disease. This process 

allowed us to obtain T1w and T2w templates with a high degree of anatomical detail for deep 

brain structures and the cerebral cortex. In contrast to the atlases of Bardinet et al. [7] and 

Chakravarty et al. [19], we have a direct high-quality visualization of the basal ganglia on the 

PD_T1_57 template and even more so on the PD_T2_42 template for those nuclei that are 

only visible on the T2w images, such as the red nucleus, substantia nigra, and subthalamic 

nucleus (see Figure 1). The segmentation of the basal ganglia and deep brain structures is an 

important step in obtaining their 3D representation and importing them onto the patient’s MR 

image. The manual segmentation of deep brain structures by the first author, Claire Haegelen, 

was found to be easier on the PD_T1_57 and PD_T2_42 templates than on a 3T digitized 

mono-subject template [58] obtained from a normal subject, but this fact was difficult to 

quantify and demonstrate, and beyond the scope of this paper where the goal was to compare 

three segmentation procedures. One of the limits of our study was that the segmentation used 

during methods comparison was performed by only one expert. However, the segmentation 

quality was verified by a second expert, Xavier Morandi and two experts (Claire Heagelen 

and D. Louis Collins) repeatedly segmented three cerebral structures of a patient with 

Parkinson’s disease to estimate intra- and inter-rater reliability (see Table 2). The intra-rater 

segmentation reliability was quite high with values above 0.83 for putamen, around 0.80 for 

substantia nigra, and between 0.71 and 0.74 for the STN. The inter-rater segmentation 

variability was slighty higher than the intra-rater for putamen and SN while significantly 

higher for STN. This suggests that the manual delineation of STN from T1w MR scan is a 

very challenging task due to low contrast and small structure size that limits the possible 

consensus between expert’s segmentations. Moreover, the manual segmentation of putamen, 

SN and STN in patients with Parkinson’s disease is difficult because these patients have a 
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specific pathological loss of neurons of these three structures affecting their MRI visualization. 

In the literature, very few studies have done manual segmentation of basal ganglia from MRI 

or on histological slides [7,19] because of the great anatomical variability and the lack of very 

specific MRI sequences to identify accurately the STN, SN and putamen in patients with basal 

ganglia pathologocial changes like those seen in Parkinson’s disease. In the literature, many 

segmentation methods [23,25,46,89] are first tested on lateral ventricles, hippocampus or 

amygdala, structures for which the boundaries and limits are better defined. In our opinion, 

these facts explain why in our study the STN had higher inter-rater variability compare to 

other reports of automatic segmentation techniques. Considering these manual segmentation 

difficulties, our results should be taken with the caveat that the inter-rater variability is 

relatively high. Nevertheless, the mean distances between centers of gravity were not different 

in the two sets of manual segmentations, and these distances were lower in labels obtained 

with the patch-based method than with the two registration methods. Furthermore, the mean 

Dice Kappa values for inter-rater segmentation are at approximately the same level as the 

mean Dice Kappa values comparing the manual labels and those generated by the three 

automatic techniques. In the future, we will investigate the effect of consensus segmentations 

from multiple experts. 

 

 

To our knowledge, this is the first study to compare different registration approaches 

and the patch-based method to identify deep brain structures in the context of Parkinson’s 

disease. We applied two nonlinear registration-based segmentation tools to MR images, as 

nonlinear registration has been shown to perform better than linear registration for the 

automated identification of subcortical targets [6,12,19]. The accuracy of the automated 

segmentation depends on the accuracy of registration. In Klein et al. [50], the two nonlinear 

tools, ANIMAL and SyN, were assessed based on overlap measures of manually labelled 

anatomical regions, as was done in our study. SyN was one of the methods that reached top 

rank for all label sets [50]. In our case, the two nonlinear registrations were quite similar for 

all the structures, even for the smallest ones, except for the left thalamus and red nucleus, for 

which ANIMAL performed better than SyN. The advantage of this type of segmentation 

approach is that the manual segmentation is performed on a high-contrast image (i.e., the 

template), which facilitates the delineation procedure. However, the difficulty is then in 

registering the template with an individual MR image because of inter-subject variability. A 

linear (or affine) transformation consists in transforming a template into the image space of 
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the patient’s MR data. Although it can account for variations in size, orientation, and position, 

a linear transformation cannot radically alter the shape of the template as is needed to account 

for anatomical differences between the patient’s image and the template. Instead, nonlinear 

transformations are needed to address this issue. By using nonlinear transformations, we 

obtained a more accurate segmentation result; however, the nonlinear registration of the 

template to the patient MR image is time consuming, taking in our case from thirty minutes to 

one hour per patient for ANIMAL and from one to three hours per patient for SyN. 

 

 

Another way to obtain better segmentation accuracy than by registering images to a 

single labelled template is to fuse several labelled images [23]. Fusing the labelled images in 

the training library can be done by nonlinear registration [2,23] or patch comparison [25]. The 

advantage of label fusion approaches is that they can handle inter-subject variability correctly 

by aggregating labels from several images. In this manner, different anatomical patterns can 

be optimally fused to fit the patient’s anatomy. The patch-based label fusion approach 

evaluated here is also less time consuming than nonlinear registration, since it required only 

one minute of processing. 

 

 

The difficulty with the patch-based label fusion approach is that it requires manual 

segmentation of structures on the MR images of several subjects to form the library. Not only 

is this task time consuming, but it is also difficult due to low image contrast, especially in the 

context of Parkinson’s disease where motion artefacts greatly impact the image quality. While 

the overall segmentation quality was similar for the patch-based and registration-based 

methods, there was more variability in the segmentation quality of the patch-based approach 

(see Figure 5 and Table 4). As shown in Coupe et al. [25], the quality of the segmentation of 

patch-based label fusion depends on the number of training templates in the library. During 

our leave-one-out experiment, only nine templates were used to segment the subject under 

study. This number of training templates is small compared with what is suggested in Coupe 

et al. [25] (between 20 and 30). By increasing the number of training templates, the 

segmentation quality is expected to increase and the robustness of the segmentation to 

improve. 
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The kappa metric is often used to compare the agreement between structures in the 

literature [2,19,23,25,89]. The kappa metric depends on the surface-to-volume ratio of the 

structure, with decreasing kappa values in small structures for which the ratio increases. We 

found lower kappa values for the hippocampus than what is reported in Coupe et al. [25] 

(κ = 0.884) and Collins et al. [23] (κ = 0.887), and also for the amygdala, for which Collins et 

al. [23] found (κ = 0.826). As mentioned, this lower segmentation quality may be due to the 

smaller number of training subjects used in our segmentation procedure. It might also be due 

to the low-contrast images of patients with Parkinson’s disease or to the use of a different 

database [23,25]. Patenaude et al. [89] used a Bayesian appearance model approach to provide 

accurate segmentation of 15 subcortical structures on 336 manually labelled T1w MR images. 

They found that the best structures in terms of kappa values were the thalamus and putamen 

with a median kappa as high as 0.85, and the hippocampus with a median kappa between 0.80 

and 0.85, as in our study, though we found lowest kappa values for the same structures. 

Patenaude et al. [89] found that the worst structures in terms of kappa values were the 

amygdala and the nucleus accumbens because, in those cases, the kappa penalized small 

structures or structures with a higher surface-to-volume ratio. We also found lower median 

kappa values for the smallest structures, the STN and substantia nigra, but not for the red 

nucleus. One hypothesis may be that, in patients with Parkinson’s disease, compared with the 

red nucleus, the STN and substantia nigra are more affected by the loss of dopaminergic 

neurons and therefore more difficult to identify with automated segmentation tools. 

 

 

The three methods were relatively equivalent in terms of mean and median kappa 

values, suggesting they perform similarly in producing the automated segmentation of deep 

brain structures. Differences between the three methods were observed only for some of the 

structures, which mean there was, in fact, very little dissimilarity. However, when applied to a 

new patient, the patch-based method is notably more efficient than the other two methods, as 

it avoids the lengthy time-consuming non-linear registration step to achieve segmentation. 

Moreover, considering the resulting high inter-rater variability in our study, the automatic 

segmentation was as variable as another expert rater but was not subject to intra-rater 

variability. The patch-based method probably underestimates the size of the labels because of 

the mean center-of-gravity values between the labels lower than with the two other 

registration methods. The STN deep brain stimulation proved a great efficacy in reducing 

symptoms of Parkinson’s disease [3,76]. The patch-based segmentation method may improve 
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the surgical workflow by quickly and automatically identifying the STN on the preoperative 

MRI data of new patients, thus reducing part of the preoperative planning time in STN 

targeting. In clinical practice, the patch-based method is not yet applicable because it requires 

an engineer. From a point of view of a neurosurgeon, the three methods of segmentation were 

accurate enough to visualize the STN or the thalamus and to be applicable to new patients. 

The limits were the long time consuming step of the ANIMAL and SyN registrations method 

in clinical practice. More work is needed to have a software solution that is usable by the 

clinicians without supervision of the engineers. 

 

 

 

 

Conclusions 

 

We have developed the first step toward a multimodal database on deep brain 

stimulation, specifically, the construction of an MR image template specific to Parkinson’s 

disease, and also evaluated a method of achieving the accurate segmentation of the basal 

ganglia and deep brain structures on patient data. 

 

 

We compared three methods to determine the best strategy for segmenting the basal 

ganglia and deep brain structures on patients’ MR images. We assessed that the intra-rater 

variability between the manual segmentations was lower than the inter-rater variability. 

Although template-based approaches are the most frequently used techniques to warp basal 

ganglia segmentation onto MR images, we found that the patch-based method provides 

similar results and is much less time consuming. 
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Abstract 

 

Purpose. 

  For patients suffering from PD with severe movement disorders, functional surgery may be 

required when medical therapy isn’t effective. In DBS, electrodes are implanted within the 

brain to stimulate deep structures such as STN. The quality of patient surgical outcome is 

generally related to the accuracy of nucleus targeting during surgery.  

 

Methods. 

  In this paper, we focused on identifying optimum sites for STN DBS by studying 

symptomatic motor improvement along with neuropsychological side effects. We described 

successive steps for constructing digital atlases gathering patient’s location of electrode 

contacts automatically segmented from postoperative images, and clinical scores. Three motor 

and five neuropsychological scores were included in the study. Correlations with active 

contact locations were carried out using an adapted hierarchical ascendant classification. Such 

analysis enabled the extraction of representative clusters to determine the optimum site for 

therapeutic STN DBS. For each clinical score, we built an anatomo-clinical atlas representing 

its improvement or deterioration in relation with the anatomical location of electrodes and 

from a population of implanted patients.  

 

Results. 

  To our knowledge, we reported for the first time a discrepancy between a very good motor 

improvement by targeting the postero-superior region of the STN and an inevitable 

deterioration of the categorical and phonemic fluency in the same region.  

 

Conclusion. 

  Such atlases and associated analysis may help better understanding of functional mapping in 

deep structures and may help pre-operative decision-making process and especially targeting. 
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As far as we know, no atlases have yet been proposed for representing the relationships 

between the STN anatomy and a broad panel of pre- and post-operative clinical scores. While 

most of these atlases use a single motor score for modelling the global outcome of the patient, 

e.g. Guo et al. in 2006 [40], we proposed in this paper to extend this research by adding pre- 

and post-operative motor, cognitive and neuropsychological scores of patients with 

Parkinson’s disease and inclusion criteria for subthalamic stimulation. We thus introduce the 

concept of anatomo-clinical atlases and describe the methods for their computation. A high-

resolution mono-subject template, already validated in the context of DBS [58], and a multi-

subject template [42] were tested as common spaces. Three motor and five neuro-

psychological scores were then used to create anatomo-clinical atlases. The correlation was 

carried out using a dedicated non-supervised classification system and enabled the extraction 

of representative clusters to determine the optimum site for therapeutic STN DBS. 

 

 

Materials and Methods 

 

The purpose of this study was to correlate and represent the anatomical position of 

electrode contacts with clinical outcomes in STN DBS. Firstly, a method for automatic 

extraction of electrode contacts for each patient was developed. Secondly, an accurate patient 

images-to-template registration step was studied. Thirdly, the integration of clinical scores 

from a clinical database was used to extract representative anatomo-clinical clusters, through 

non-supervised classification.  

 

Data 

The study population consisted of 30 patients (14 women and 16 men, mean age: 60 +/- 5 

years) with idiopathic PD who had bilateral STN DBS according to selected inclusion 

[52,61,62]. In particular, one of the inclusion criteria is the improvement of 50% in UPDRS 

III score during the pre-operative levodopa challenge test. All patients had one pre-operative 

3-T T1-weighted MR (Size: 256 x 256 x 182, resolution: 1 mm x 1 mm x 1 mm, Philips 

Medical Systems) and two CT scans (Size: 203 x 203 x 155, resolution: 0.44 mm x 0.44 mm 

x 0.6 mm, in post-operative acquisition and 0.5 mm x 0.5 mm x 0.6 mm in pre-operative 

acquisition, GE Healthcare VCT 64). Pre-operative scans were acquired after attachment to 

the patient's head of a stereotactic Leksell frame, under local anaesthesia. All images were de-



 

 

 

- 39 - 

noised using the Non-local means algorithm [24] and a bias correction algorithm based on 

intensity values [72] was also applied to MR images. This study was part of a larger clinical 

study approved by the local ethical review board. 

 

To assess the global patient outcome, we first chose three motor scores: the UPDRS III 

(Unified Parkinson’s Disease Rating Scale, part III) score [33], the Schwab & England [98] 

scale, and the Hoehn & Yahr [44] scale. For each score, patients were tested without 

medication (Dopa Off) immediately prior to surgery (DBS Off) and three months after it 

under stimulation (DBS On), also without medication. We then selected five 

neuropsychological scores: 

- The categorical and the phonemic verbal fluency tests [18] that determine the ease 

with which patients can produce words. 

- The Stroop test [102] that computes the mental vitality and flexibility 

- The Trail Making Test [92] that determines visual attention and task switching. 

- The Wisconsin Card Sorting Test [78] that estimates the ability to display flexibility in 

the face of changing schedules of reinforcement.  

- The Mattis Dementia Rating Scale (MDRS] [73] that tests global cognitive efficiency.  

 

Contact localization 

For each electrode, the spatial coordinates of the contacts were automatically 

computed from post-operative CT images by modelling the electrode's axis. We developed a 

new segmentation technique based on the hypo-signal artefacts (white artefacts) created on 

CT scans and corresponding to the electrodes. Every CT scan was first simply linearly 

registered to a reference patient CT. On this reference image, a mask was defined including 

the two electrodes and entirely excluding the skull. An intensity threshold was applied in 

order to extract every hypo-signal voxel of both electrodes per patient. Along with a 

connected component approach for retrieving noise, for each slice, the barycentre of extracted 

voxels was computed to model the electrodes' axis. By keeping 10 mm from the tip of the 

electrode, we then performed regression in order to model the area where contacts can finally 

be obtained by applying geometry constraints of electrode 3389 from Medtronic 

NeuroModulation, USA (Figure 1). This automatic procedure was performed for post-

operative CT of each patient and gave us all contact locations. It was validated in Mehri et al. 

[75] and gave us an error of 0.96 ± 0.33mm using a linear regression for the modelling of the 

electrode’s axis. 
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Figure 1. Upper left: Post-operative CT scan of one patient with PD and bilateral STN-DBS. 

Upper right: Segmentation of the patient’s skull, the 2 electrodes and the 8 electrode contacts. 

Below: Electrode's axis, the 4 extracted contacts and the 4 ground truth contacts for the left 

side. 

 

 

Patient to template registration workflow 

Patient contacts were warped into a MR template as a common anatomical space for 

allowing retrospective population statistical analysis. We compared the impact of mono-

subject vs. multi-subject MR high-resolution templates on the patient/template non-linear 
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registration accuracy. In opposition to pure histological templates, MR templates are correctly 

representing the in vivo anatomy of the brain. We also compared two non-linear registration 

methods. 

 

The mono-subject template was created from 15 3T MR acquisitions of a healthy 45 

year-old male, which were processed and averaged. This high-resolution 3T MRI template 

(namely the Jannin15), was constructed and assessed by Lalys et al. [58]. The multi-spectral 

multi-subject, unbiased non-linear average, PD template was made from 57 T1w images of 

patients with PD (namely the PD_T1_57), thus providing a high-resolution / high signal-to-

noise ratio template [42]. This template allows the specific developmentally important age-

ranges and atrophy of PD patients to be taken into account. 

 

The registration workflow was composed of a linear CT to MR patient images 

registration, a global affine MR-to-template registration, a local affine MR-to-template 

registration with a mask on deep structures, and a final non-linear registration. Using this 

procedure the contact positions could be precisely warped into a reference space. We 

compared the accuracy of two non-linear registration algorithms: the demons approach 

(www.itk.org) that was used in our previous studies, and the Advanced Normalization ToolS 

non-linear deformation algorithm used in Symmetric Normalization (SyN) mode that has been 

shown to be highly effective in the context of MR brain imaging registration [50]. 

 

 For both validation studies, we followed a landmark-based validation approach. Ten 

anatomical structures were identified within deep-brain structures (Figure 2) and manually 

identified in the images by an expert. Placement of these landmarks on the one hand on the 

template, and on the other hand on 15 wrapped MR images, allowed us to compute a global 

registration error. Considering that the intra-subject registration between the CT scan and the 

MR image was accurate, we only validated the MR-to-template registration. We first 

compared both templates by keeping the classical linear registration process along with the 

non-linear Demons algorithm. We then compared, using the best template found, both non-

linear registrations (i.e. Demons vs SyN) using a Student t-test. 
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Figure 2. Anatomical landmarks used for the validation study showed on a median sagittal 

(top left), coronal (top right), and two axial slices (bottom) of the PD_T1_57 template. 

1 - Anterior Commissure 

2 - Interthalamic adhesion on the middle of the axial slice 

3 - Posterior Commissure 

4 - Infundibular recesse 

5 - Middle of the mamillar bodies 

6,7 - Left and right internal carotid division into anterior and middle cerebral arteries 

8 - Center of the anterior portion of the optic chiasma 

9,10 - Centers of the left and right red nuclei 

A, anterior; P, posterior; L, left; R, right 

 

 
Anatomo-clinical atlases 

 For all scores and for representing the degree of improvement or worsening of the patient, 

the difference between DBS ON and DBS OFF values was computed. In order to represent all 

improvement or worsening of patients on a similar scale, all clinical scores were statistically 

normalized. On each score, we subtracted the mean and divided by the variance of the 

dedicated score. After normalization, the data closely followed a normal distribution (with 
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mean=0 and standard deviation=1) and were more easily usable for data variation 

comparisons. 

 

 For each score, an atlas was computed as the list of active contact coordinates from all 

patients associated with the corresponding difference value. The active contacts were those at 

three months post-surgery. 3D visualization consisted in displaying the list of points 

represented with a colour code related to the patient clinical scores. Each clinical score can 

therefore create one anatomo-clinical atlas. Due to random errors or missing values in 

reporting scores, the initial clinical score dataset of 30 patients dropped to 23 for the motor 

analysis, but remained at 30 for the neuropsychological analysis.  

 

Non-supervised classification 

After atlas construction, we performed a segmentation step using non-supervised 

techniques. Hierarchical Ascendant Classification (HAC) was used on clinical scores merged 

with coordinates to search homogeneous groups of patients and extract general clinical trends. 

Feature vectors were composed of four features: the value of the x-axis, y-axis, z-axis and the 

score difference value. HAC operates by successively merging pairs of existing clusters, 

where the next pair of clusters to be merged is chosen as the pair with the smallest distance. 

This linkage between clusters a  and b  was performed using the Ward criterion along with 

the weighted Euclidean distance:  
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Results 

 

The registration error was computed for the different combinations of non-linear 

registrations and templates. First, results of Table 1 showed that the new multi-subject 

template was significantly better than the mono-subject one (p = 0.025). The Table 2 showed 

that the new non-linear registration method (SyN) gave best results compared to the Demons 

algorithm (p = 0.05). For the rest of the study, the two new parameters were then conserved, 

providing a global registration error of 0.98 ±0.17 mm. 

 

 

TABLE 1.  Landmark-based validation for the comparison of the Jannin15 vs. 

PD_T1_57 templates on patient to atlas non-linear registration using Demon’s method. 

 

 Mean registration 
error (mm) 

SD (mm) Student’s test 

Jannin15 template + 
Demons non-linear 

registration 

 
1.23 

 
0.12 

 
p = 0.025 

PD_T1_57 template 
+ Demons non-linear 

registration 

 
1.15 

 
0.09 

 

mm, millimeter; SD, standard deviation 

 

 

TABLE 2.  Landmark-based validation for the comparison of the Demons vs. ANTS-SyN 

non-linear registration methods. 

 

 
Mean registration 

error (mm) 
SD (mm) Student’s test 

PD_T1_57 template + 

Demons non-linear 

registration 

1.15 0.09 

 

p = 0.05 

 

PD_T1_57 template + SyN 

non-linear registration 
0.98 0.17  

mm, millimeter; SD, standard deviation 
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Patient's contacts were also warped in the Talairach space for clinical verification. The 

origin of the electrode contact coordinates was the midpoint between the AC and the PC 

points. Three months after surgery, the mean position of the active electrode's contacts was: 

- on the left: 14.33 mm for the lateral direction, 1.79 mm posterior to the midpoint for 

the antero-posterior direction,  and 1 mm under the AC-PC line for the dorso-caudal 

direction; 

- on the right: 14.65 mm for the lateral direction, 1.88 mm posterior to the midpoint for 

the antero-posterior direction, 0.77 mm under the AC-PC line for the dorso-caudal 

direction. 

The mean stimulation parameters used were frequency at 130 Hz, pulse duration for 60 

microseconds for all the patients and a mean voltage of 2.14 ± 0.34 V. 

 

For all following figures, we represent the results in the Talairach space as well as in 

PD_T1_57 template to improve clinical representation and interpretation. For each clinical 

score, clustering was performed for both hemispheres independently. For each clinical score, 

we noticed that the group of patients (clusters) that were extracted for both hemispheres were 

identical. The x-axis represents the left-right direction, the y-axis represents the antero-

posterior direction, and the z-axis represents the caudo-cranial direction. The scale of figures 

is shown in mm. Figure 3 shows a greater improvement of UPDRS III for cluster Blue 

compared to clusters Red and Green ( 610−=p ). Majority of the contacts of the cluster Blue 

were in the postero-superior region of the STN. Hoehn & Yahr and Schwab & England scores 

showed similar results, but with a fuzzy definition of clusters ( 25.10−=p ). 

 

Figure 4 shows a deterioration of the categorical fluency in the posterior region (cluster 

Red), and an improvement in the anterior region (cluster Blue) ( 410−=p ). For the phonemic 

fluency we found a general deterioration for all patients, without apparent separation of 

clusters. STROOP score analysis (Figure 5) indicated score improvement in the postero-

superior region (cluster Red), and deterioration in the antero-inferior region ( 510−=p ) 

(cluster Blue). For the three other neuropsychological scores (Trail Making Test, Wisconsin 

Card Sorting Test, MDRS score), no significant clusters were found ( 210.5 −>p ). Table 3 

summarizes results of the analysis using the different clinical scores.  

 



 

 

 

- 46 - 

 

 

 

Figure 3. UPDRS III analysis, with the cluster display in Talairach coordinates (above), and 

the cluster display in the template space for the left hemisphere with the STN (below).  
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Figure 4. Categorical fluency analysis, with the cluster display in Talairach coordinates 

(above), and the cluster display in the template space for the right hemisphere with the STN 

(below). 
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Figure 5. STROOP analysis, with the cluster display in Talairach coordinates (above), and 

the cluster display in the template space for the right hemisphere with the STN (below). 
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TABLE 3.  Summarization of clusters found for each clinical score, i.e. the number of 

patients per cluster, the dedicated mean clinical score, the clinical signification of the 

mean clinical score and the major STN zone of stimulation of the patients belonging to 

this cluster.  

 

Clinical 

scores 
Cluster 

Number of 

patients 

Mean clinical 

score 

(Post-pre-op) 

Clinical 

signification 

Major STN zone 

of stimulation 

UPDRS III 

Blue 3 -51.5 
Very good 

improvement 

Postero-superior 

region 

Green 11 -23.6 Good improvement 
Superior and 

Posterior regions 

Red 15 -5.4 Stabilisation 
Anterior and 

inferior regions 

Categorical 

fluency 

Blue 11 -9 Improvement Anterior region 

Red 18 3.2 Deterioration Posterior region 

 

Stroop 
Blue 13 -5 Deterioration 

Antero-inferior 

region 

test Red 15 2.6 Improvement 
Postero-superior 

region 

 

Others 

 

No significant cluster found 
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Discussion 

 

This article reports about the construction of anatomo-clinical atlases in patients with 

STN stimulation and severe disabled PD. To our knowledge, we reported for the first time a 

discrepancy between a very good motor improvement by targeting the postero-superior region 

of the STN and an inevitable deterioration of the categorical and phonemic fluency in the 

same region. These results were provided by the use of tools already validated but never used 

together to provide the association of clinical scores with electrode contacts within a 

normalized space in the context of STN DBS.  

 

 

Contact localization and representation 

Many publications advocate the use of post-operative MRI to determine the electrode's 

contact coordinates [90,96] despite the possible adverse effects related to MRI acquisition 

with implanted DBS electrodes [74]. The use of MRI has recently been validated by Lee et al. 

[64] with a study showing that there were no significant discrepancies between the centres of 

electrodes estimated by CT and MRI. In this project, the spatial coordinates of the 4 contacts 

per electrode were automatically computed from post-operative CT images. The automatic 

contact localization algorithm gave us satisfactory results with an average error of 0.96 ±0.33 

mm [75]. This error, even quite low, has to be taken into account in the final cluster analysis. 

Considering the relative small size of the STN and its sub-regions, this bias will still have to 

be minimized using more robust automatic segmentation algorithms. Comparison of electrode 

positions of STN DBS estimated in the immediate post-operative CT with those estimated 6 

months after surgery showed that they may contain some discrepancies [49]. Results also 

indicated that it is often due to the extensive pneumocephalus. Ideally, this bias could be 

reduced by comparing clinical scores evaluated 6 months after the surgery with a post-

operative CT acquired within the same period. 

 

 

We modelled the signal by a point corresponding to the centre of the artefact. For further 

developments, it will be crucial to integrate the influence of stimulation on the surrounding 

biological tissues. Some studies on the modelling of tissues and electrical influence of 

electrodes in the context of DBS have recently been published [17]. Complete DBS modelling 



 

 

 

- 51 - 

would integrate all of these data to provide the highest possible precision. 

 

 

Template and registration workflow 

We compared the impact of mono-subject vs. multi-subject MR high-resolution 

templates on the patient/atlas non-linear registration accuracy. Both templates allowed the 

production of reference images with a high degree of anatomical detail, both for deep-brain 

structures and for the cerebral cortex. The accuracy of the patient images-to-template 

registration is an important step, which may considerably impact the quality of the findings.  

In DBS, major sources of errors are due to the identification of basal ganglia from patient-

specific images. Therefore, during the procedure, we added a local registration involving 

targeted structure (STN), intended to improve basal ganglia registration. Results of the 

template-to-patient registration comparison have shown that the new multi-subject template 

increases the accuracy of a patient-to-template basal ganglia registration. This is explained by 

the fact that the single subject template did not take into account brain atrophy of the patient 

population. The impact of this new template was significant and it has improved not only 

registration quality (0.98 mm) but also retrospective visualization. During the registration 

workflow, intra-subject rigid registration appears to be very effective, especially when native 

acquisitions are subject to a step of reliable pre-processing as we performed in our registration 

procedure. On the contrary, the patient-to-template registration procedure, including linear 

and non-linear registrations steps, was subject to small errors that can explained this 

registration error of 0.98 mm. Similarly to the localization of the electrode contacts, this bias 

has to be taken into account when analysing the final cluster results. 

 

 

Many active contacts are located outside the STN within atlases. This can be partially 

explained by the error induced during the warping step, though other explanations could be 

put forward. First, the electrical stimulation zone is in fact larger than the simple contact 

position, recovering a region wide enough to accept a targeting uncertainty.  It is known, in 

any case, that the field of stimulation can have a spread of up to 2 mm within the brain [17]. 

Secondly, deep-brain tissues and nerves are deeply interconnected and nerves at the periphery 

of structures have an influence on the structure itself. 
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The coordinates of the stimulated contacts were more lateral than those previously 

reported [32,45,53]. One explanation could be that the targeting in our study was based on 3T 

MRI and not on ventriculography as in other centres. The visualisation of the STN on T2 pre-

operative MRI allowed direct targeting instead of probabilistic targeting based on the 

Talairach atlas. The neurosurgeons attempted to place the electrode in the postero-superior 

part of the STN as they knew that it is involved in motor component of the STN [91,105]. 

 

 

Clinical scores 

Each clinical score was used to extract representative clusters. Compared to clustering 

on clinical scores only, adding coordinates allows a better definition of clusters and a better 

understanding of DBS efficiency according to contact locations. Motor and 

neuropsychological scores were analysed to assess the patient outcome [8,9,14]. Other teams 

have also focused on the analysis of clinical scores in the context of STN DBS [39,63]. 

 

 

In our procedure, the main issue was the inability to separate the response to DBS 

stimulation of the right and left contacts. Each test was performed with both activated contacts. 

Separate evaluations would involve many hours without medication and stimulation in order 

to lose previous therapeutic and stimulation effects. In the pre-operative targeting procedure, 

surgeons first localized the optimum target position of one side, and the target position of the 

other side was automatically computed from the definition of the mid-sagittal line. These 

targets were used as an initial position that had to be refined per-operatively. 

 

 

Other variables that could have been taken into account are the different contact 

parameters, i.e. the frequency, pulse duration and voltage. From the 30 patients in our study, 

these parameters did not differ among patients, so we did not include the stimulation 

parameters in the study. Moreover, the standard deviation of the stimulation voltage was low 

and not sufficiently discriminant to be included. 

 

 

Because of their low granularity, values of the Schwab & England and Hoehn & Yahr 

scales turned out to be less representative than UPDRS III. Moreover, our method was more 



 

 

 

- 53 - 

useful for quantitative continuous data than for quantitative discontinuous data. For this 

reason, even though the results of motor scores studies were almost identical, the visualization 

of the atlas containing the UPDRS III provides more information. Using these clinical data, 

the postero-superior region has been found to be the most effective region for motor 

improvement. This follows conclusions of previously published work on the topic [39,63], 

and can be explained by the fact that this part of the STN (usually named the dorso-lateral 

part) is involved in sensory and motor functions [70]. Indeed, a subdivision of the STN into a 

ventromedial associative and a medial limbic (psychology, mood) territories is described in 

the literature. Recent studies [47,60] stated that the motor region was situated in the posterior 

portion of the nucleus. Our results related to motor improvements therefore support this 

hypothesis. Moreover, this subdivision can explain that the antero-inferior (corresponding to 

the limbic territory) region has shown significant neuropsychological side effects such as the 

deterioration of the Stroop score. In Lambert et al., [60], the limbic zone was found to be in 

the anterior portion of the STN. Results on the Stroop score are also quite satisfactory as it 

can be explained by recent discoveries on STN territories. Lastly, our study highlighted at our 

knowledge for the first time, that the categorical fluency was improved in the anterior region 

of the STN, whereas the categorical fluency was worse in its postero-superior region. 

Moreover, the phonemic fluency was worse after STN stimulation whatever the region of the 

STN stimulated. This last result was not surprising as the deterioration of phonemic verbal 

fluency is one of the most observed side effects in STN DBS, though the phenomenon is not 

really understood [95,104]. The deterioration of the phonemic fluency seems to be impossible 

to avoid after STN stimulation and the categorical fluency only improved in the anterior 

region that is not the best region in terms of motor improvement. We can imagine multiple 

sub-regions within the STN where the stimulation may involve these side effects, but the 

extraction of finer spatial clusters would require a larger study population. Our results could 

also demonstrate that the STN is not so well subdivided into three different functional 

territories but the motor, associative and limbic territories are more probably mixed due to 

diffused interneuron’s connection. 

 

 

Lastly, concerning all other neuropsychological scores (Trail Making Test, Wisconsin 

Card Sorting Test, MDRS score), no clusters were clearly defined, resulting in small 

statistical differences. With our current data, no statistical clusters could be extracted from 

these scores yet, either because of the number of patients associated with the different bias of 
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the analysis, or because no significant effects were observed amongst patients for these 

specific clinical scores. 
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Conclusions 

 

In this paper, we focused on identifying optimum sites for STN DBS by studying 

symptomatic motor improvement along with neuropsychological side effects. The concept of 

anatomo-clinical atlases, introduced in this paper, allows the integration, within a single 

coordinate system, of a digitized brain MRI template, previous target coordinates of 

implantations, and various clinical scores. Each clinical score produced one anatomo-clinical 

atlas, associating the degree of improvement or worsening of the patient with its active 

contacts. Additionally, non-supervised classification was performed on scores and coordinates 

to extract clusters for determining optimum electrode contact coordinates. We showed how to 

extract knowledge gained from population data based on the correlation between anatomical 

location of contacts and clinical data.  

 

To our knowledge, we reported for the first time a discrepancy between a very good 

motor improvement by targeting the postero-superior region of the STN and an inevitable 

deterioration of the categorical and phonemic fluency in the same region. The proposed 

anatomo-clinical atlases were created to provide the surgeons with additional assistance for 

better understanding of DBS-related phenomena. It could find its application in pre-operative 

planning [26,101] as well as for post-operative assessment [57]. As targeting is mainly based 

on the surgeon's knowledge and experience, it could serve as an additional source of 

information obtained from retrospective studies for reducing time and predicting motor 

outcome and possible post-operative adverse-effects.  

 

The underlying challenge would be to reduce the intra-operative time required for 

electrode contact adjustment by microelectrode recordings. The actual local anaesthesia 

would be replaced by a general anaesthesia, which would completely alter the surgical routine 

by reducing surgical staff workload, improving patient care and increasing medical safety. 

Alternatively, such atlases also provide an understanding of previous interventions that didn’t 

give satisfactory results. In such cases, active contacts of a new patient can be warped into the 

common space, displayed for post-operative assessment, and inserted into a new analysis for 

updating the atlases. This work yields many flourishing studies in the field, including further 

clinical data such as quality of life or cognitive criteria.
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Abstract 

 

Purpose.  

  The choice between GPm and STN stimulation for PD is still controversial in the literature. 

The goal of this study was to analyse the clinical results and the neuropsychological impacts 

after pallidal medial stimulation by a new method using statistical anatomo-clinical maps. 

 

Methods.   

  We studied 20 patients with PD operated on to implant GPm stimulation, 3 months before 

and 6 months after surgery. We developed a new analysis method based on statistical maps to 

correlate motor and neuropsychological scores with a 3mm zone of stimulation around the 

active electrode contact. All analysis was carried out on a spatially normalized reference 

image, i.e. a specific Parkinson template. We obtained two maps per score, one representing 

the number of patients per voxel, and the second one representing the change in the score with 

a color scale from blue to red.  

 

Results.  

  We obtained five statistical maps representing the UPDRS part III, Mattis Dementia Rating 

Scale (MDRS), phonemic and categorical fluency and Stroop test. Overall, most of the 

patients were stimulated in the postero-ventral part of the GPm. The map concerning the 

UPDRS part III showed most of the patients improved. The MDRS map showed stability in 

the patients. The map concerning phonemic fluency showed a deterioration of the patients 

whatever the zone stimulated. The map on categorical fluency showed either deterioration or 

a slight improvement after GPm stimulation. The Stroop test map showed stability or an 

improvement after GPm stimulation.  

 

Conclusion.  

  GPm stimulation is effective on motor symptoms of PD without inducing new motor and 

neuropsychological side effects. The best region to stimulate was the postero-ventral part of 

the GPm bilaterally, as demonstrated by our statistical maps. We consider it more effective to 

use a more lateral site than previously described in the literature.  
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High frequency DBS is an effective treatment for patients with severe disabled 

movement disorders refractory to medical treatment. For 25 years, STN stimulation has 

proved its efficacy on the triad of Parkinson's symptoms [8,9] notwithstanding its potential 

neuropsychological and psychiatric secondary effects [13,32,38,88,104]. Thus, strict inclusion 

criteriae have been defined for STN DBS, excluding patients with cognitive impairment 

and/or axial symptoms. In our center, we operated on GPm DBS patients with severe disabled 

PD where STN DBS was contraindicated. Rouaud et al [94] proved that GPm DBS was a 

cognitively safe and effective treatment for motor fluctuations and dyskinesias refractory to 

medical treatment, by analyzing clinical results with standard statistical tests. GPm 

stimulation has also proved its efficiency in treatment for severe primary dystonia [106], 

especially when the postero-ventral part of the GPm was stimulated. In electrophysiological 

and animal studies, the postero-ventral part of the GPm is known as its motor part whereas the 

more antero-ventral and mid sections of the GPm had respectively limbic and associative 

functions [86]. The GPm is larger than the STN and a controversy exists in the literature over 

which target in the GPm is effective in treating patients with PD without inducing other motor 

side effects.  

 

Functional atlases introduced by Nowinski et al [79-81] integrate information such as 

position of electrode contacts, stimulation or electrophysiological recordings to determine the 

efficacy zones of DBS. Functional atlases have been developed in a majority of cases for STN 

DBS because of the small size of this nucleus and the difficulty of its direct targeting based on 

MRI contrast, and for better understanding of the secondary neuropsychological side effects 

of the stimulation. We previously described a methodology for the creation of novel 

functional atlases in STN DBS that correlate clinical scores with active electrode contacts in 

order to better understand clinical effects of stimulations according to their specific locations. 

In particular, we showed that targeting the postero-superior region of the STN induced 

discrepancy between a very good motor improvement and a deterioration of the categorical 

and phonemic fluency in the same region [59]. This new analysis method took into account 

only the representation of the stimulated contact but did not model the entire stimulation zone 

of each contact. In this paper we applied functional atlas to GPm DBS improving it by our 

new analysis method so as to better locate the effective stimulation zone in a nucleus bigger 

than the STN. Even if many authors [94,108,109] reported no neuropsychological 

deterioration after GPm DBS, we would like to analyze more accurately the effect of 

stimulation on neuropsychological aspects in different GPm areas. 
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The goal of this study was to create new statistical anatomo-clinical maps, 1) to prove 

the safety and efficacy of the GPm DBS in patients with severe disabled PD and 

contraindicated for STN DBS, and 2) to determine the best target for GPm DBS in 

Parkinson’s disease according to the construction of motor and neuropsychological maps.  

 

 

Materials and Methods 

 

Patients and surgery 

Twenty advanced PD patients, who underwent GPm DBS at our Hospital between 2006 

and 2012, were enrolled in the study. All met the criteria of the United Kingdom Parkinson’s 

Disease Society brain bank for idiopathic PD [37]. The female-to-male ratio was 12-8 with a 

mean age of 62.2 ±7 years and mean disease duration of 12.9 ±5.3 years. STN DBS was 

contraindicated for all patients, due to cognitive impairment (MDRS ≤ 130 or impaired 

executive functions) and/or dopa-resistant axial motor symptoms (dysarthria, freezing, falls) 

at baseline. After a complete description of the study, written informed consent was obtained 

from each participant and the study was conducted in accordance with the Declaration of 

Helsinki. Clinical assessment was performed before (mean 5 ±4.7 months) and after surgery 

(mean 6 ±2 months) and was conducted in accordance with the Core Assessment Program for 

Intracerebral Transplantation (CAPIT) [62] and included the UPDRS III [33], the Hoehn and 

Yahr (H&Y) scale [44] and the Schwab and England (S&E) scale [98]. Neuropsychological 

tests included the MDRS [73] for global cognitive assessment and a battery of tests assessing 

executive functions, including Nelson’s simplified version of the Wisconsin Card Sorting Test 

[78], the Trail Making Test [92], the Stroop test [102], and categorical and literal fluencies 

[18]. 

 

For the UPDRS III score, patients were tested by a neurologist before surgery without 

medication (Dopa Off) and at 6 months after surgery with stimulation (DBS On) and without 

medication. For each neuropsychological score, patients were tested with medication (Dopa 

On) immediately prior to surgery and six months after it under stimulation (DBS On), also 

with medication.  
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A relative score of improvement or deterioration %S can be defined for each score S. 

Given that the patients were not all responding the same way to medication, an average of 

both scores was necessary as follow: 

- for the UPDRS III: 

minmax

%
SS

SS
=S

pre
offdopa

post
onDBSoffdopa

−
− −−−−  

- for the other scores: 

minmax

%
SS

SS
=S

pre
score

post
score

−
−

 

where Sdopa−off−DBS−on
post

and Sdopa−off
pre

 were the values of the post-operative and pre-operative 

scores without medication respectively, Sscore
post

 and Sscore
pre

were the values of the post-

operative and pre-operative neuropsychological scores respectively, 
Smax and Smin  were 

the maximum and minimum on the score scale, respectively.  

 

The surgical procedure consisted first, in attachment to the patient’s head of a stereotactic 

Leksell frame, under local anaesthesia, then the implantation of bilateral quadripolar DBS 

electrodes (3387 Medtronic, Minneapolis, MN, USA) in the postero-ventral part of the two 

GPm in a single operating session [56]. Anti-parkinsonian treatment was stopped the evening 

before surgery. The patient was awake throughout the procedure and the effect of stimulation 

on rigidity was assessed by passive movement of the controlateral wrist. Programmable pulse 

generators (Medtronic) were implanted in the subclavicular region and connected to the 

electrodes. 

 

 

Imaging data and electrode contact localization 

All patients had one pre-operative 3-T T1-weighted MR (1 mm x 1 mm x 1 mm, 

Philips Medical Systems) and two CT scans (0.44 mm x 0.44 mm x 0.6 mm in post-operative 

acquisition and 0.5 mm x 0.5 mm x 0.6 mm in pre-operative acquisition, GE Healthcare VCT 

64). Pre-operative scans were acquired after attachment to the patient's head of a stereotactic 

Leksell frame, under local anaesthesia. All images were de-noised using the non-local means 

algorithm [24] and a bias correction algorithm based on intensity values [72] was also applied 

to MR images. 
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 We assembled information acquired from a population of patients onto one spatially 

normalized reference image (i.e. template). As a common space, we chose a multi-subject MR 

template created from a population of patients with PD (named the Parkinson template), with 

the segmentation of the basal ganglia and deep brain structures validated by a previous study 

[42] (Figure 1). After a preliminary step of automatic electrode contact segmentation based on 

image processing operations, combinations of linear and non-linear registrations allowed each 

stimulated contact to be warped in the Parkinson template. Both the contact segmentation and 

the registration algorithms were already meticulously and successfully validated [59]. Briefly, 

the registration workflow was composed of a linear CT to MRI registration, a global affine 

MR-to-template transformation, a local affine MR-to-template transformation with a mask on 

deep structures, and a final non-linear registration. Using this procedure the contact positions 

could be precisely warped into the MR template (Figure 1). 
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Figure 1. Axial, parasagittal, coronal and 3D views of 1) first row, the Parkinson template 

and the deep brain structure segmentation, 2) second row, a patient MRI with the registration 

of the deep brain structure segmentation on his MRI, and 3) third row, the postoperative CT 

with the registration of the deep brain structure segmentation, showing the location of the 

bilateral implanted electrodes in the GPm.  

Amygdala (light pink), hippocampus (dark pink), putamen (violet), GPm (orange), lateral 

pallidum (green), caudate nucleus (light blue), thalami (yellow), substantia nigra (grey), STN 

(light orange), red nucleus (red), ventricles (dark blue). 

 

 

Modeling of stimulation 

 Several methods have been proposed to model the electric field during DBS. In Guo et 

al. [40] and D’Haese et al. [29], a 3D Gaussian was simply used to approximate the electric 

field, then improved by the use of an annulus kernel in Pallavaram et al. [84]. For modeling 

the neural response, the activating function was used in Butson et al. [17] who proposed a 

modeling based on finite element model. At our site, mono-polar stimulation is generally 

proposed. Regarding the recent conclusion of Butson et al. [17] on the complexity of correctly 

simulating the stimulation phenomena, we decided to model the electric field using a single 

pre-defined 3D Gaussian. The parameters of the electrodes were: Medtronic® 3387 (4 
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contacts per electrode, 1.27 mm diameter, 1.5mm length) used with a monopolar stimulation 

protocol. In general, only one contact per electrode was stimulated, except for certain GPm 

patients. Based on these parameters and on the quasi-static potential equation, the stimulation 

influence covers approximately a 3 mm-radius sphere around each stimulation contact. 

 

 

Statistical maps 

The idea was to create general maps that could easily be read and interpreted by 

clinicians. Statistical maps should take into account the number of patients, the stimulation 

zone for each patient, as well as all responses to clinical testing of each patient. Therefore, the 

value at a given voxel is an average of clinical scores of patients that have active contacts in 

the same area, weighted by the distance to the active patient contact. Using such a definition 

eliminates the need to define inclusion criteria and the value at a given voxel does not 

represent a probability but a global efficacy score. In order to take into account the statistical 

meaningfulness at a given voxel, we also propose ‘Patient Maps’ indicating the number of 

patients participating in the computation of the final weighted voxel value. At each voxel of a 

‘Statistical Map’ for a given score, the computation of the final value has been made using 

between one to 20 patients. A color code was used to represent how many patients were used 

for a given statistical map. 
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Results 

 

Stimulation contact and parameters 

Given the size of the GPm, 6 patients were stimulated on two contacts, 0 and 1 or 1 and 2 

bilaterally with monopolar stimulation. One patient had contacts 0 and 1 stimulated on the 

right side and contact 0 stimulated on the left side. The 13 other patients had only one contact 

stimulated bilaterally. Six months after surgery, the mean position of the active electrode's 

contacts was calculated by making first, an average of the coordinates in each patient with 

double stimulated contacts, and secondly, an average of all the coordinates in all the patients. 

The mean coordinates of the active contact was: 

- on the left side: 23.9 ±1.9 mm for the lateral direction, 7.9 ±2.3 mm posterior to the 

anterior commissure, and 2.9 ±2.9 mm under the AC-PC line for the dorso-caudal 

direction; 

- on the right side: 23.5 ±2 mm for the lateral direction, 8.1 ±2.4 mm posterior to the 

anterior commissure, 2.77 ±3.5 mm under the AC-PC line for the dorso-caudal 

direction. 

The average stimulation parameters were: 

- on the left side, a voltage of 2.76 ±0.4 V, pulse frequency of 135 ±122 Hz, pulse 

amplitude of 77.3 ±23 µs 

- on the right side, a voltage of 2.76 ±0.4 V, pulse frequency of 133 ±11.8 Hz, pulse 

amplitude of 72.6 ±15.2 µs. 

 

Statistical maps 

We obtained two maps per score, the first one (the 'Statistical Map') representing the 

change of the score per voxel, by a color scale from blue to red, and the second one (the 

'Patient Map') representing the number of patients per voxel used for the final score 

computation. The ‘Patient Map’ was also coded using a color scale from blue (one patient) to 

red (highest number of patients). For instance, a dark red point on the ‘Statistical Map’ would 

represent only one or two patients on the 'Patient Map” whereas another orange voxel zone on 

the ‘Statistical Map’ would represent ten patients on the ‘Patient Map’ and would be more 

representative of the patient group. For the UPDRS III, the color scale was reversed: dark red 

(deterioration) to dark blue (improvement) because of the negativity of the score S%. For the 

other scores, the color scale was dark blue (deterioration) to dark red (improvement).  
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- For the UPDRS III, we obtained a ‘Patient Map’ (Figure 2, bottom row, red points) 

showing most of the patients stimulated in the postero-ventral part of the GPm on the 

right side and in the postero-ventral and more lateral part of the GPm on the left side. 

For these regions, the UPDRS III was represented in blue to orange colors (Figure 2, 

top row), meaning an S% score between -0.2 to -0.12 (Table 1), therefore an 

improvement of the postoperative score.  

 

 

 

TABLE 1. Scores of patients with GPm DBS: details of scores and number of patients 

for ‘Statistical’ and ‘Patient’ maps. 

Scores 
S% 

Total 
Number of 

Patients 

Min-Max 
of the score 

‘Patients 
Map’:  

voxels with a 
maximum 
of patients 

‘Stat Map’:  
Scores at the 

max number of 
patients 

UPDRS III 20 -0.62 / 0.11 7 -0.2 / -0.12 
     

MDRS 20 -0.03 / 0.08 7 0.001 / 0.03 
     

Phonemic Fluency 19 -0.33 / 0.26 6 -0.12 / -0.05 
     

Categorical Fluency 19 -0.5 / 0.23 7 -0.11 / 0.15 
     

Stroop test 20 -0.37 / 0.66 7 0.03 / 0.13 
     
 4th column shows the maximum number of patients in the red zone in the ‘Patients map’.  
The Last column shows the scores in the regions of the ‘Statistical Map’, corresponding to the 
regions of the red points on the ‘Patients Map’. 
MDRS, Mattis dementia rating score; Max, maximum; Min, minimum; Stat Map, Statistical 
map; UPDRS, Unified Parkinson’s Disease Rating Scale. 
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Figure 2. Axial, sagittal and coronal views of the Parkinson template showing the ‘Statistical 

Map’ (top) and the ‘Patients Map’ (bottom) built on UPDRS III analysis in 20 patients with 

GPm DBS at 6 months postoperatively. 

 

 

- For the Hoehn and Yahr and the Schwab and England scales, the ‘Statistical Maps’ 

were relatively homogeneous at 6 months post-operatively, showing a stability of 

these scores compared to the preoperative state. 

 

 

- For the MDRS, most of the patients were stimulated in the same places as for the 

UPDRS III (Figure 3, bottom row).  In these locations, the MDRS did not vary post-

operatively and was represented in blue in the postero-ventral part of the GPm on the 

‘Statistical Map’ (Figure 3, top row). The S% scores were between 0.001 and 0.03 in 

the regions of the ‘Statistical Map’, corresponding to the red points on the ‘Patients 

Map’ (Table 1). 
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Figure 3. Axial, sagittal and coronal views of the Parkinson template showing the ‘Statistical 

Map’ (top) and the ‘Patients Map’ (bottom) built on MDRS analysis in 20 patients with GPm 

DBS at 6 months postoperatively. 

 

 

 

- For the phonemic fluency, we analyzed only 19 patients and the majority of these were 

stimulated in the same places as for the UPDRS III (Figure 4, bottom row). For these 

locations, phonemic fluency was represented in blue on the right side and in orange 

on the left side on the ‘Statistical Maps’ (Figure 4, top row). The S% scores were 

between -0.05 and -0.12 in the regions of the ‘Statistical Map’, corresponding to the 

red points on the ‘Patients Map’ (Table 1). 
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Figure 4. Axial, sagittal and coronal views of the Parkinson template showing the ‘Statistical 

Map’ (top) and the ‘Patients Map’ (bottom) built on phonemic fluency analysis in 20 patients 

with GPm DBS at 6 months postoperatively. 

 

 

 

- For the categorical fluency, we analyzed only 19 patients and most of these were 

stimulated in the same places as for the UPDRS III (Figure 5, bottom row). For these 

locations, categorical fluency was represented in orange-red on the right side and in 

yellow-orange on the left on the ‘Statistical Maps’ (Figure 5, top row). The S% 

scores were between -0.11 and 0.15 in the regions of the ‘Statistical Map’, 

corresponding to the red points on the ‘Patients Map’ (Table 1). 
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Figure 5. Axial, sagittal and coronal views of the Parkinson template showing the ‘Statistical 

Map’ (top) and the ‘Patients Map’ (bottom) built on categorical fluency analysis in 20 

patients with GPm DBS at 6 months postoperatively. 

 

 

- For the Stroop test, most patients were stimulated in the same places as for the UPDRS 

III (Figure 6, bottom row). For these locations, categorical fluency was represented in 

blue on both sides of the ‘Statistical Maps’ (Figure 6, top row). The S% scores were 

between 0.03 and 0.13 in the regions of the ‘Statistical Map’, corresponding to the 

red points on the ‘Patients Map’ (Table 1). 
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Figure 6. Axial, sagittal and coronal views of the Parkinson template showing the ‘Statistical 

Map’ (top) and the ‘Patients Map’ (bottom) built on Stroop test analysis in 20 patients with 

GPm DBS at 6 months postoperatively. 
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Discussion 

 

 

To our knowledge, this article is the first report on the construction of anatomo-clinical 

3D maps in patients with GPm stimulation and severely disabled Parkinson’s disease. We 

observed the motor improvement of such patients by stimulating the postero-ventral part of 

the GPm. The efficacy of GPm stimulation in Parkinson’s disease has often been 

demonstrated in the literature [35,94,108,109]. However the choice between STN and GPm 

DBS is still under debate. In our opinion and in accordance with our experience, these two 

targets should not be chosen in the same patients. Classically, the STN DBS is the appropriate 

DBS for patients without cognitive impairments and/or dopa-resistant axial motor symptoms 

(dysarthria, freezing, and/or falls) whereas the GPm DBS can be proposed to such disabled 

patients when they have also dopa-induced dyskinesias. A limit is a severe cortico-subcortical 

atrophy on preoperative MRI which contra-indicates the surgery. 

 

 

We built the anatomo-clinical 3D maps within a common spatial referential, the 

Parkinson Template, by automatically detecting the contacts of the electrodes on the 

postoperative CT and by using a validated registration tool to obtain a reliable localization of 

the clinical and anatomical data on the Parkinson template. Some limits to our method were 1) 

the use of different registration steps to obtain volume of stimulation on the Parkinson 

template, 2) the estimation of the stimulation volume by a 3mm Gaussian around the 

stimulated contacts and 3) the arbitrary color coding of the S%. Concerning the registration 

tools, we have already published the comparison between 3 registration tools and the 

validation of each tool in terms of registration errors [42,59]. The registration approach used 

in this paper was the most accurate, combined with the use of a multi-subject rather than a 

mono-subject template [59]. Our choice for modeling the neural response to stimulation was 

based on the current state of reflection carried out by Butson et al. [17]. The authors, 

regarding their long time-consuming processing of a stimulation model, proposed an online 

tool easier to use in our case [17]. We need further studies on the modeling of a clinical score 

by color scale to render it more informative for clinicians. Our goal was to use the ‘Statistical 

and Patient Maps’ in clinical practice of DBS, without needing engineer time. Nevertheless, 

the statistical maps remain today a 3D tool more easily readable on a computer than on 2D. 
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We developed these ‘Statistical maps’ into a specific DBS software package (PyDBS) and 

began to use it in clinical practice while waiting for its clinical validation.  

 

 

Concerning the neuropsychological consequences of STN DBS, we have already 

published anatomo-clinical atlases for 30 patients operated on for STN DBS [59]. These first 

anatomo-clinical atlases did not take into account the volume of stimulation and we did not 

have the registration of the atlases on the template to visualize accurately the STN and the 

adjacent structures. We demonstrated a discrepancy between a good motor improvement of 

the STN DBS in the postero-lateral part of the STN and an impairment of the fluencies in the 

same region. Now the ‘Statistical Maps’ provided us with a more accurate and realistic effect 

of the stimulation in the GPm, the lateral pallidum and the adjacent structures. We obtained 

similar results to those previously published in the literature [94] about the motor 

improvement of GPm stimulation patients and a global stability of neuropsychological scores 

after GPm stimulation. More accurately, we observed at 6 months a stability of the MDRS, 

stability and even for some patients slight improvement in the Stroop test, and a degradation 

of phonemic fluency whatever the location in the GPm, whereas categorical fluency showed a 

tendency to decrease or improve according to the patient. This point is important in patients 

with preoperative cognitive impairment. We even showed a slight improvement in the Stroop 

test that could be an interesting therapeutic point in such disabled patients. 

 

 

According to the Talairach atlas [103], our target was 23.9 mm to the left and 23.5 mm 

to the right, 8 mm on average posterior to the anterior commissure and almost 3 mm under the 

AC-PC line. According to Laitinen et al. [55,56] and Schaltenbrand atlas [97], the GPm 

targeting was described as 2 to 3 mm anterior to the mid-commissural point between AC and 

PC, 18 to 22 mm lateral and 6 to 7 mm below the intercommissural line. In our study, the 

average contact was located more laterally perhaps due to a large third ventricle because of 

severe cortico-subcortical atrophy induced by the PD. An article [65] even reported direct 

GPm targeting for 5 PD patients 15.3 mm laterally, 9 mm anterior to the midpoint and 1.4 to 

1.7 mm under the AC-PC line. These authors reported a statistical motor improvement of the 

patients at 6 months but they did not publish either neuropsychological or psychiatric analysis. 

[65]. Their targeting was probably anterior, in the more central part of the GPm, which, in 
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anatomical studies, projects to the centro-median nucleus [83] and the lateral habenular 

nucleus [86,87], both being part of the limbic system. The pallidum is not directly connected 

to the cortex and has its major efferent projections to the motor thalamic nuclei, namely the 

ventral anterior and lateral nuclei, via the ansa lenticularis and lenticular fasciculus. Through 

the indirect pathway of the cortico-striato-pallido-thalamo-cortical motor circuit, the lateral 

pallidum projects to the STN [1,11,87]. By its well-defined and closed afferent and efferent 

connections, the postero-ventral part of the GPm essentially has a sensori-motor role, as does 

the lateral pallidum [93]. Both the sensori-motor territories of the lateral pallidum and GPm 

have a somatotopic organization characterized by a leg region mediodorsal to the arm and 

face regions.  

 

 

Perhaps the GPM stimulation has neuropsychological and psychiatric effects due its 

well separated connections to the motor and limbic circuits of the basal ganglia, and due to its 

quasi-absence of direct cortical connections at the difference with the STN. Pallidotomy 

produced marked motor improvement in PD patients without their experiencing cognitive 

deterioration according to the lesion location [68]. More anterior lesions affecting the limbic 

part of the GPm led to postoperative cognitive deterioration [68], not seen in a meta-analysis 

of patient outcome after GPm stimulation [35,108]. Inside the motor parts of the lateral 

pallidum and GPm, Yelnik et al. [111] described different effects of the stimulation on the 

motor symptoms. They observed that rigidity was improved whatever the site of stimulation 

in the motor pallidum whereas akinesia was improved only by stimulating the lateral pallidum. 

The site where the akinesia was worst in the motor GPm was also the site which improved 

dopamine-induced dyskinesia. Their contacts which stimulated the lateral pallidum were those 

dorsal on the electrode and the contacts stimulating the GPm were those ventral. In our study, 

most of the patients were stimulated at the junction between the GPm and the lateral pallidum, 

especially visible on the left side of the ‘Patients maps’. The GPm being larger than the STN, 

GPm stimulation sometimes needs to stimulate two contacts thus potentially mixing motor 

improvements on akinesia, rigidity and dopamine-induced dyskinesia.  
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Conclusions 

 

 

As a conclusion, we developed new statistical anatomo-clinical maps the better to 

visualize the motor and neuropsychological consequences at 6 months of GPm stimulation in 

patients with PD. These maps provided us with the confirmation of the motor improvement of 

GPm stimulation without cognitive impairments. We also proposed a new more lateral 

targeting of the GPm in PD because of the cortico-subcortical atrophy induced by the disease. 

Our goal is to use these ‘Statistical Maps’ prospectively in further patients to improve their 

targeting, thus ensuring a shorter planning step on the day of the surgery as well as better 

outcomes from motor and neuropsychological point of view.  
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Conclusions 

 

The different steps of the construction and validation of a multimodal database was: 

 

- The construction of a multi-subject MRI template specific to patients with Parkinson’s 

disease 

From the Parkinson template, we segmented the basal ganglia and deep brain structures such 

as the hippocampus and the amygdala. We compared three methods of automatic 

segmentation to validate the segmentation of the Parkinson template. We noticed little 

difference between the methods in terms of their accuracy but differences in terms of 

processing time. A novel method named “the patch-based label fusion method” was the 

fastest, but still needed engineer processing and is not usable in clinical practice.  

 

 

- The use of the Parkinson template segmentation in patients 

We analysed the results of two registration tools in terms of registration accuracy and showed 

that the SyN tool [50] was the most accurate. We decided to transform all the patients’ 

imaging data into the Parkinson template using this tool, and in particular the location of the 

electrode contacts in the basal ganglia. This validation step was the second step of the 

construction of our multimodal database to be used it hereafter in clinical practice to obtain 

the segmentation of the basal ganglia in a new patient MRI.  

 

 

- Postoperative results analysis of 30 patients stimulated in the STN 

We built anatomo-clinical atlases of one motor and three neuropsychological scores by using 

a non-supervised statistical tool, a Hierarchical Ascendant Classification. We obtained 

different results in agreement with the data in the literature and a new explanation of 

neuropsychological impairment observed after STN stimulation. We showed a discrepancy 

between good motor improvement when targeting the postero-superior region of the STN and 

inevitable deterioration of categorical and phonemic fluency in the same region. This third 

step was a first approach to correlate anatomical with clinical data without an a priori 

hypothesis.  
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- Postoperative results analysis of 20 patients stimulated in the GPm 

To improve the previous analysis, we built new statistical maps to better take into account 

both the volume of stimulation instead of a point representing the electrode contact, and the 

number of patients receiving a given stimulation volume. We obtained ‘Statistical Maps’ 

representing the postoperative evolution of a score by a color scale, and ‘Patient Maps’ 

defining exactly how many patients were represented in a given voxel. The two maps were 

observed on the basal ganglia segmentation of the Parkinson template. The goal was to build 

maps useful for a neurosurgeon before implantation of a new patient. We demonstrated good 

motor improvement without severe neuropsychological deterioration after GPm stimulation. 

Our targeting was more lateral than those previously described in the literature, probably due 

to the brain atrophy of severely disabled patients.  

 

 

 These studies illustrated the different validation steps of a multimodal database 

construction on Parkinsonian patients before its use it in clinical practice. This allows us to be 

sure of the following steps: 

- Registration of the Parkinson template segmentation on the patients imaging 

- Visualization of the basal ganglia on the patient MRI to optimize its targeting 

- Optimization of new targeting by analysis of postoperative results, whether motor or 

neuropsychological. 
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Study perspectives 

 

1) The purpose is to use the multimodal database in DBS clinical practice 

according to three distinct steps: 

- First, an inclusion step with the preoperative MRI, in which an automatic 

cutaneous and brain segmentation is made as a registration of the Parkinson template 

segmentation on the MRI, and as a manual AC and PC detection on the MRI; 

- Second, a preoperative step with the preoperative CT acquired with the frame, 

in which the frame is automatically recognized and the CT registered to the preoperative 

MRI; 

- Third, a postoperative step, with the postoperative CT, in which the electrode 

contacts are automatically recognized.  

Our purpose is to develop an integrated and fully automated processing pipeline, 

named PyDBS, to be used as a toll to assist accurate targeting and to analyse postoperative 

results. To validate PyDBS, we will need prospective analysis of new implanted patients to 

compare the postoperative clinical results and the differences in the surgical practice such as 

the duration of the surgery. A secondary objective will be a shorter and more comfortable 

surgery time for the patient.  

 

 

2) The purpose of the Statistical Maps is to develop new analysis in other 

diseases:  

- for 10 patients with GPm stimulation for Tourette’s syndrome; 

- for 40 patients with VLc stimulation for PD and/or essential tremor. 

These analyzes will provide us with new clinical information and consequences of the 

DBS in targets less studied than the STN.  

 

 

3) With the segmentation of deep brain structures and of the different thalamic 

nuclei, PyDBS would be applied in DBS in epilepsy, especially in the project of anterior 

thalamic nucleus stimulation in pharmaco-resistant epileptic patients in France.  
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Introduction 

 

 

La stimulation cérébrale profonde (SCP) à haute fréquence est actuellement un 

traitement efficace des patients ayant des mouvements anormaux. Parmi les ganglions de la 

base, la partie caudale du noyau ventral latéral du thalamus (VLc), le globus pallidal médial 

(GPm) et le noyau subthalamique (NST) sont stimulés selon la pathologie à l’origine des 

mouvements anormaux. 

 

L’intervention chirurgicale de SCP comporte quatre temps opératoires. Le premier 

temps comporte la pose d’un cadre de stéréotaxie fixé à la tête du patient sous anesthésie 

locale. Le deuxième temps est la visée millimétrique de la cible sur un scanner et/ou une IRM 

cérébraux tridimensionnels à l’aide d’une station de planning stéréotaxique. Le troisième 

temps est l’implantation de l’électrode de stimulation sous anesthésie locale pour permettre 

l’enregistrement électrophysiologique de la cible et le testing clinique du patient par 

stimulation sur l’électrode. Le quatrième temps est la pose du stimulateur en sous-cutané sous 

anesthésie générale. Les trois premiers temps sont longs et éprouvants pour les patients, 

notamment à cause du sevrage brutal de leurs traitements la veille de l’intervention. 

L’importance de l’amélioration clinique et l’existence d’effets secondaires moteurs, 

neuropsychologiques voire psychiatriques en postopératoire dépendent essentiellement de la 

localisation anatomique de l’électrode de stimulation. 

 

Pour améliorer la précision du ciblage, plusieurs auteurs ont construit des bases de 

données anatomiques, cliniques et fonctionnelles. Dans la littérature, plus la base de données 

est riche en informations multimodales, plus la méthode de ciblage semble précise. Dans 

toutes ces études, aucune donnée clinique, neuropsychologique et psychiatrique n’a été 

incluse. Peu d’études ont corrélées leurs résultats anatomiques aux résultats cliniques. 

 

Le but de cette thèse est la construction d’une base de données multimodales sur la 

SCP pour mieux apprécier les résultats postopératoires. La première étape consiste à avoir un 

espace référentiel commun où tous les contacts stimulés pourront être visualisés et analysés. 

Pour cela, nous voulions avoir une IRM moyennée spécifique de la pathologie étudiée, la 

maladie de Parkinson. Sur cette IRM moyennée appelé template Parkinson, les ganglions de 
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la base et les structures cérébrales profondes comme l’hippocampe, ont été segmentés pour 

mieux les visualiser. Dans un deuxième temps, nous avons étudié 30 patients parkinsoniens 

stimulés dans le NST et analysé leurs résultats à partir d’atlas anatomo-cliniques. Enfin, nous 

avons étudié 20 patients parkinsoniens stimulés dans le GPm et analysé leurs résultats par des 

cartes statistiques afin d’améliorer à la fois l’analyse anatomique et clinique de ces patients.  
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Segmentation automatique des ganglions de la base et 

de structures cérébrales profondes  

à partir d’IRM de patients parkinsoniens 

 

Contexte : Des techniques de segmentation cérébrale à partir de template ont été développées 

pour aider au ciblage des ganglions de la base en stimulation cérébrale profonde dans le cadre 

du traitement chirurgical des mouvements anormaux.  

 

Objectif de l’étude : Nous avons comparé trois méthodes de segmentation cérébrale basées 

sur des templates pour déterminer la meilleure méthode de segmentation des ganglions de la 

base dans la maladie de Parkinson.  

 

Matériels et méthodes : Nous avons d’abord construit un template IRM en séquences T1 et 

T2 en moyennant 57 séquences T1 avec injection de gadolinium et 42 séquences T2 réalisées 

chez des patients parkinsoniens. Sur ce template, 24 structures cérébrales profondes ont été 

segmentées manuellement et de manière bilatérale: noyau caudé, putamen, pallidum médial et 

latéral, NST, noyau rouge, substance noire, thalamus, corps géniculés médial et latéral, 

hippocampe, corps amygdaloïde. Pour valider cette segmentation, 14 des 24 structures du 

template ont été à nouveau manuellement segmentées sur 10 IRM de patients parkinsoniens, 

en choisissant des structures de tailles différentes. Nous avons ensuite comparé ces 

segmentations manuelles par 3 méthodes automatiques de segmentation. Deux méthodes 

consistaient à utiliser un outil de recalage: ANIMAL (automatic nonlinear image matching 

and anatomical labeling) développé par Louis Collins à Montréal, et SyN (symmetric image 

normalization) développé à Los Angeles. La troisième méthode était basée sur la technique de 

fusion à partir de patchs (patch-based label fusion method) développée par Pierrick Coupé à 

Montréal. Cette technique consistait à segmenter des structures cérébrales à partir de librairies 

de segmentations disponibles. Chaque voxel à segmenter était comparé à d’autres déjà 

segmentés sur des IRM d’anatomie comparable. Les structures obtenues automatiquement par 

ces trois méthodes ont été ensuite comparées à celles obtenues manuellement sur les IRM des 

10 patients, en utilisant la comparaison par le taux de Dice-kappa ou coefficient de similarité. 

Les taux de Dice-kappa ont été comparés statistiquement selon un test de Friedman avec un 

seuil de significativité de 0,05. 
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Le centre de gravité de chaque structure a été aussi calculé selon les trois méthodes et les 

coordonnées des centres de gravité pour une structure donnée ont été comparées 

statistiquement par un test apparié de Student, avec un seuil de significativité de 0,05. Nous 

avons aussi estimé la variabilité interindividuelle des segmentations entre Claire Haegelen et 

Louis Collins en comparant les coordonnées des centres de gravité de trois structures 

anatomiques segmentées trois fois de suite par chaque expert: le putamen, la substance noire 

et le NST.  

 

Résultats : Il n’y avait pas de différence entre les segmentations faites par les deux experts. 

En terme de centre de gravité, le test apparié de Student montrait une différence significative 

entre les segmentations automatiques obtenues par ANIMAL et la patch-based method (p = 

0,002) et celles obtenues par SyN et la patch-based method (p = 0,01). Il n’y avait pas de 

différence entre les segmentations automatiques obtenues par ANIMAL et SyN (p = 0,13). 

En ce qui concerne les résultats de taux de Dice-kappa obtenus: 

- Par ANIMAL et SyN: les valeurs médianes étaient comprises entre 0,62 et 0,67 pour 

le NST et la substance noire, et supérieures à 0,73 pour toutes les autres structures. 

- Par la patch-based method: les valeurs médianes étaient comprises entre 0,62 et 0,7 

pour le NST et la substance noire, et supérieures à 0,76 pour toutes les autres 

structures.  

Le test de Friedman a montré une différence significative entre les trois méthodes pour le 

corps amygdaloïde gauche (p = 0,014), le noyau rouge gauche (p = 0,045) et les deux thalami 

(p < 0,05).  

 

Conclusions : Nous avons construit les premières étapes de la création d’une base de données 

multimodales pour la stimulation cérébrale profonde en créant un template spécifique de la 

maladie de Parkinson. Nous avons comparé trois méthodes de segmentation automatique des 

ganglions de la base et de structures profondes cérébrales pour pouvoir l’appliquer à de 

nouvelles données d’imagerie de patients. Même si les méthodes utilisant des outils de 

recalage sont les plus utilisées, la patch-based method a donné des résultats relativement 

similaires en termes de taux de Dice-kappa par rapport à ANIMAL et SyN. La patch-based 

method reste un outil ingénieur-dépendant mais serait à développer en routine clinique vu sa 

performance et son temps très court (10mn) pour acquérir une segmentation automatique des 

ganglions de la base. 
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Atlas anatomo-cliniques sur la stimulation subthalamique  

dans la maladie de Parkinson 

 

Contexte : L’importance de l’amélioration clinique en postopératoire d’une stimulation du 

NST dans la maladie de Parkinson dépend essentiellement de la précision de ciblage pendant 

la chirurgie. Nous avons étudié les résultats moteurs de cette chirurgie et les conséquences 

neuropsychologiques par la création d’atlas anatomo-cliniques à l’aide d’un référentiel IRM 

commun dans lequel les plots stimulés ont été recalés. 

 

Objectif de l’étude : A l’aide d’un outil statistique de fouille de données, le but était la 

corrélation entre la localisation des plots stimulés et les effets moteurs et neurospychologiques 

de la stimulation au sein d’un référentiel commun, un template IRM spécifique de la maladie 

de Parkinson. 

 

Matériels et méthodes : L’étude a inclus de manière rétrospective 30 patients ayant une 

maladie de Parkinson et les critères habituels d’inclusion pour une stimulation du NST. 

Chaque patient a eu une IRM préopératoire en séquence 3D T1 avec injection de gadolinium 

et en séquence 3D T2, un scanner cérébral 3D préopératoire avec le cadre de Leksell et un 

scanner cérébral après implantation des électrodes. Les évaluations cliniques pré- et 

postopératoires à 3 mois incluaient le score d’UPDRS III, les échelles de Schwab et England, 

et de Hoehn et Yahr, ainsi que les scores neuropsychologiques usuels (MDRS, WSCT, TMT, 

Stroop et l’étude des fluences). La détection automatique des plots de chaque électrode a été 

utilisée à partir du scanner postopératoire avec une erreur de 0,96 ±0,33 mm.  

Pour visualiser les plots dans un référentiel commun, nous avons comparé les erreurs 

de recalage obtenues avec 2 outils de recalage, Demons, développé à Rennes et SyN 

développé à Los Angeles, et 2 référentiels IRM, un template construit à partir de 15 IRM du 

même sujet (Jannin15) et le template Parkinson. Les erreurs ont été comparées statistiquement 

par un test de Student, avec un seuil de significativité de 0,05.  

Après normalisation des scores cliniques, nous avons construit des atlas anatomo-

clinques à l’aide d’un outil de Classification Hiérarchique Ascendante en limitant le nombre 

de groupes obtenus à deux ou trois maximum. La validation statistique de cette classification 

sans à priori a été faite par un test d’ANOVA.  
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Résultats : L’erreur de recalage était significativement plus faible avec le template Parkinson 

qu’avec celui Jannin15 (p = 0,025). L’erreur de recalage était aussi significativement plus 

faible avec l’outil SyN qu’avec Demons (p = 0,05). Nous avons donc utilisé le template 

Parkinson avec le recalage des patients dans ce template par SyN pour construire les atlas 

anatomo-cliniques. Selon les scores étudiés, nous avons obtenu les groupes suivants: 

- Pour l’UPDRS III: 3 groupes de patients, le premier groupe très amélioré avec des 

plots en position postéro-supérieure, le deuxième groupe amélioré avec des plots en 

position moyenne, et un troisième groupe moins amélioré avec des plots en position 

inferieure du NST.  

- Pour  la fluence catégorielle: 2 groupes; le premier groupe avec une dégradation de la 

fluence avec des plots en position postérieure, et un deuxième groupe avec une 

amélioration avec des plots en position antérieure du NST.  

- Pour la fluence lexicale: tous les patients étaient aggravés par la stimulation quelle que 

soit la position du plot dans le NST.  

- Pour le test de Stroop: 2 groupes; un premier groupe avec une dégradation 

postopératoire du test de Stroop avec des plots en position antéro-inférieure, et un 

deuxième groupe avec une amélioration postopératoire avec des plots en position 

postéro-supérieure.  

Pour l’analyse des autres scores moteurs et neuropsychologiques, aucun groupe n’a pu être 

créé par l’outil de Classification Hiérarchique Ascendante.  

 

Conclusions : A notre connaissance, c’est la première étude à montrer que la stimulation de 

la région postéro-supérieure du NST a le meilleur effet moteur mais entraine une dégradation 

des fluences lexicale et catégorielle du fait de la localisation du plot. Par contre, les patients 

avaient de meilleures performances au test de Stroop dans cette même région. Ces résultats 

étaient concordants avec la littérature ce qui a permis de valider notre méthode de 

construction des atlas anatomo-cliniques. De telles données anatomo-cliniques ont pour but 

d’être utilisables en pratique clinique pour planifier la stimulation de nouveaux patients dans 

le NST. 
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Construction de cartes anatomo-cliniques statistiques après 

stimulation pallidale médiale dans la maladie de Parkinson 

 

Contexte : Le choix entre une SCP du NST ou du GPm pour traiter des patients 

parkinsoniens à un stade avancé de la maladie de Parkinson est controversé dans la littérature.  

 

Objectif de l’étude : Le but de cette étude était d’analyser les résultats moteurs et 

neuropsychologiques de la stimulation du GPm à l’aide d’une nouvelle méthode statistique et 

de données anatomiques transposées dans un référentiel commun sans à priori clinique.  

  

Matériels et méthodes : L’étude a inclus de manière rétrospective 20 patients ayant une 

maladie de Parkinson et les critères habituels d’inclusion pour une SCP du GPm mais des 

critères d’exclusion pour une SCP du NST. Les évaluations cliniques préopératoires à 3 mois 

et postopératoires à 6 mois incluaient le score d’UPDRS III, les échelles de Schwab et 

England, et de Hoehn et Yahr, ainsi que les scores neuropsychologiques usuels (MDRS, 

WSCT, TMT, Stroop et l’étude des fluences). Nous avons calculé un ratio S% d’amélioration 

ou de détérioration pour chaque score par la soustraction du score postopératoire par celui 

préopératoire, ensuite normalisée par la soustraction du score maximum par le score minimum. 

Si le score s’améliorait après stimulation du GPm, le ratio S% devait être positif sauf pour 

l’UPDRS III.  

Chaque patient a eu une IRM préopératoire en séquence 3D T1 avec injection de gadolinium 

et en séquence 3D T2, un scanner cérébral 3D préopératoire avec le cadre de Leksell et un 

scanner cérébral après implantation des électrodes. Chaque plot d’électrodes a été détecté 

automatiquement puis toutes les données anatomiques ont été recalées dans un référentiel 

commun, le template Parkinson. Nous avons modélisé le champ électrique autour de chaque 

plot stimulé selon les dernières données de la littérature, approximativement 3 mm autour de 

chaque plot. Ainsi une zone de stimulation couvrant plusieurs voxels sur le template 

Parkinson a pu être représentée par score selon une échelle de couleur figurant l’amélioration 

ou la détérioration du score en postopératoire. Ceci était représenté sur la carte ‘Statistique’. 

Pour connaitre le nombre de patients représentés dans un voxel, nous avons obtenu une carte 

‘Patient’.  
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Résultats : Treize patients étaient stimulés sur un seul plot de manière bilatérale, 6 patients 

sur 2 plots par côté et un patient sur un plot à gauche et 2 plots à droite.  

Selon l’atlas de Talairach ayant pour origine la commisssure antéreiure (CA), le plot moyen 

de stimulation était à 23,7 mm latéralement, 8 mm an arrière de CA, et 2,8 mm sous la ligne 

CA-CP. En général, les cartes ‘Patients’ ont montré pour tous les scores une majorité des 

patients stimulés en position postéro-ventrale du GPm, le coté gauche étant stimulé plus 

latéralement que le coté droit, soit à la limite entre le GPm et le pallidum latéral. Les cartes 

‘Statistiques’ ont montré dans la partie postéro-ventrale du GPm: 

- Pour l’UPDRS III: un ratio S% compris entre –0,2 et -0,12. Les patients étaient tous 

améliorés quelle que soit la localisation du plot stimulé.  

- Pour le MDRS: un ratio S% compris entre 0,001 et 0,03. Les patients étaient 

globalement inchangés après stimulation du GPm. 

- Pour la fluence catégorielle: un ratio S% compris entre -0,11 et 0,15. Les patients 

étaient soit légèrement aggravés soit améliorés. 

- Pour la fluence lexicale: un ratio S% compris entre -0,12 et -0,05. Les patients étaient 

aggravés lorsque le plot stimulé était dans la partie postéro-ventrale du GPm.  

- Pour le test de Stroop: un ratio S% compris 0,03 et 0,66. Les patients étaient 

globalement stables ou améliorés.  

 

Conclusions : Nous avons donc mis au point une méthode efficace et visuelle d’appréciation 

du bénéfice postopératoire de la stimulation du GPm. Chez les patients parkinsoniens sévères, 

la stimulation du GPm les améliore du point de vue moteur sans aggravation 

neuropsychologique sauf du point de vue de la fluence lexicale. Les patients pouvaient même 

être légèrement améliorés selon le test de Stroop et la fluence catégorielle.  

Les cartes ‘Statistiques’ et ‘Patients’ ont permis de visualiser la région postéro-

ventrale du GPm comme étant la plus efficace pour ces patients. Notre plot moyen de 

stimulation était d’ailleurs plus latéral que les données de la littérature, faisant probablement 

intervenir la partie motrice du pallidum latéral mais en évitant la partie limbique du pallidum 

médial.  
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Conclusions 

 

 

Les différentes étapes de la construction d’une base de données multimodales ont été les 

suivantes: 

- La construction d’un template IRM à partir de 57 patients parkinsoniens, soit un 

template spécifique de la maladie de Parkinson 

A partir du template parkinson, nous avons segmenté les ganglions de la base et des 

structures cérébrales profondes comme l’hippocampe et le corps amygdaloïde. Nous 

avons comparé trois méthodes de segmentation automatique pour valider la segmentation 

du template Parkinson. Nous avons constaté peu de différences entre ces trois méthodes 

en termes de précision de recalage mais par contre une différence des temps de calcul. 

Une nouvelle méthode appelée ‘patch-based label fusion method’ était la plus rapide mais 

nécessitait d’être appliquée par un ingénieur et non utilisable seulement par un clinicien. 

 

 

- L’utilisation de la segmentation du template Parkinson chez des patients 

Nous avons analysé les résultats de recalage de deux outils en termes de précision de 

recalage. Nous avons montré que l’outil le plus précis était SyN [50]. Nous avons alors 

recalé toutes les données anatomiques des patients sur le template Parkinson, en 

particulier les plots stimulés sur la segmentation des ganglions de la base. Cette étape de 

validation était la deuxième étape de la construction de la base de données multimodales 

pour pouvoir l’utiliser ensuite dans la pratique clinique afin obtenir la segmentation des 

ganglions de la base chez un nouveau patient.  

 

 

- L’analyse post-opératoire de 30 patients stimulés dans le NST 

Nous avons construit des atlas anatomo-cliniques à propos d’un score moteur et de quatre 

scores neuropsychologiques en utilisant un outil statistique non-supervisé, la 

Classification Hiérarchique Ascendante. Nous avons obtenu des résultats en accord avec 

les données de la littérature et une nouvelle explication à la dégradation constatée des 

fluences après une SCP du NST. Nous avons montré une discordance entre la meilleure 

amélioration motrice des patients stimulés dans la région postéro-supérieure du NST et 
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l’inévitable dégradation des fluences, induite par la stimulation de cette région. Cette 

troisième étape était une première approche pour corréler des données anatomiques avec 

celles cliniques sans à priori clinique.  

 

 

- L’analyse post-opératoire de 20 patients stimulés dans le GPm 

Pour améliorer la précédente analyse, nous avons mis au point de nouvelles cartes 

statistiques prenant en compte le volume de stimulation au lieu d’une représentation par 

un point du plot stimulé. Cette nouvelle méthode a aussi pris en compte le nombre de 

patients dans le volume de stimulation. Nous avons ainsi obtenu une carte ‘Statistique’ 

représentant l’évolution postopératoire du score par un code couleur, et une carte 

‘Patient’ pour connaitre le nombre de patient dans un voxel donné. Les deux cartes 

étaient superposées sur la segmentation du template Parkinson. Le but était de construire 

des cartes utiles au neurochirurgien avant une implantation d’un nouveau patient. Nous 

avons démontré l’amélioration motrice des patients après stimulation du GPm sans 

détérioration neuropsychologique. Le plot moyen stimulé dans notre étude avait une 

position plus latérale dans le GPm que celui décrit dans la littérature, probablement à 

cause de l’atrophie cérébrale chez les patients avec une maladie de Parkinson sévère.  

 

 

Ces travaux illustrent les différentes étapes de construction et de validation d’une base 

de données sur la stimulation cérébrale profonde afin de pouvoir l’utiliser en pratique 

clinique. Ceci nous a permis d’être confiants dans les étapes suivantes: 

- le recalage de la segmentation du template Parkinson sur des imageries de patients, 

dans la limite des progrès sans cesse constants dans ce domaine; 

- la visualisation des ganglions de la base sur une IRM de patient afin d’optimiser le 

ciblage; 

- l’optimisation d’une nouvelle procédure d’implantation par l’analyse des précédents 

résultats postopératoires, qu’ils soient moteurs ou neuropsychologiques.  
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Etudes en perspective 
 

 

1) Notre intention est l’utilisation en pratique clinique de la base de données selon trois 

étapes: 

- Premièrement, une étape dite d’inclusion avec l’IRM préopératoire, comportant la 

segmentation automatique de la peau et du cerveau, le recalage automatique de la 

segmentation du template Parkinson sur l’IRM, et enfin la détection manuelle de CA 

et CP sur l’IRM; 

- Deuxièmement, une étape dite préopératoire avec le scanner acquis le matin de 

l’intervention, le patient ayant le cadre stéréotaxique fixé sur la tête. Cette étape  

comporte la reconnaissance automatique du cadre et le recalage du scanner sur l’IRM; 

- Troisièmement, une étape dite postopératoire avec le scanner postopératoire, 

comportant la détection automatique des plots des électrodes. 

Notre but est de développer un pipeline intégré et entièrement automatique, appelé PyDBS, 

qui aidera au ciblage précis et à l’analyse des résultats postopératoires. Pour valider 

PyDBS, nous aurons besoin d’analyses prospectives d’implantation des patients, qui 

seront comparées à celles faites sans PyDBS. La comparaison pourra se faire en termes de 

résultats cliniques postopératoires et du retentissement peropératoire comme la durée de 

l’intervention chirurgicale. Nous espérons que cet outil raccourcisse la phase de planning 

préopératoire le matin de l’intervention et aussi la durée de l’intervention, aboutissant à un 

meilleur confort du patient. 

 

 

2) Le but de créer des cartes ‘Statistiques’ est pour pouvoir les utiliser pour d’autres 

analyses comme: 

-  l’analyse de 10 patients ayant une maladie de Gilles de la Tourette et stimulés dans le 

GPm à Rennes; 

- l’analyse de 40 patients avec un tremblement essentiel et/ou d’origine parkinsonienne 

stimulés dans le VLc.  
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3) Enfin, PyDBS peut être utile pour d’autres pathologies que les mouvements anormaux 

du fait de la segmentation de structures profondes, comme l’hippocampe et le corps 

amygdaloïde. Ainsi PyDBS pourrait être utilisé pour aider au ciblage du noyau 

antérieur du thalamus chez des patients ayant une épilepsie partielle pharmaco-

résistante.  
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Résumé 
 
 La stimulation cérébrale profonde est un traitement efficace pour traiter les symptômes 
parkinsoniens chez les patients en échappement thérapeutique médical. L’intervention 
chirurgicale consiste à positionner au millimètre près une électrode de stimulation dans un 
noyau cérébral profond. La qualité du ciblage peut être améliorée par des bases de données 
multimodales, à la fois anatomiques, cliniques et électrophysiologiques. En premier lieu, nous 
avons créé une IRM moyennée appelée template Parkinson, puis nous avons validé la 
segmentation des 24 structures cérébrales profondes du template. Dans un deuxième temps, 
nous nous sommes intéressés à la meilleure localisation du plot stimulé dans le noyau 
subthalamique (NST) en étudiant les résultats moteur et neuropsychologiques de 30 patients 
parkinsoniens stimulés dans le NST. Pour chaque score clinique, nous avons obtenu un atlas 
anatomo-clinique, associant le degré d’amélioration ou de dégradation du patient avec son 
plot stimulé. Nous avons constaté une discordance entre la meilleure amélioration motrice et 
l’inévitable dégradation des fluences en stimulant dans la région postéro-supérieure du NST. 
Dans un troisième temps, nous avons développé des cartes statistiques anatomo-cliniques 
pour visualiser les conséquences motrices et neuropsychologiques à 6 mois d’une stimulation 
du pallidum médial (GPm) chez 20 patients parkinsoniens. Les patients étaient tous améliorés 
sur le plan moteur sans altération neuropsychologique. La zone où la majorité des patients 
étaient améliorés sur le plan moteur, était la partie postéro-ventrale du GPm, un peu plus 
latéralement que les données de la littérature. Notre but est d’utiliser les cartes statistiques de 
manière prospective chez d’autres patients à opérer, pour raccourcir le temps de ciblage pré-
chirurgical le jour de l’intervention et pour améliorer le résultat postopératoire, tant sur le plan 
moteur que neuropsychologique. 
 
 

Abstract 
 

Deep brain stimulation (DBS) is an effective treatment for patients with severe 
disabled Parkinson’s disease refractory to medical treatments. DBS surgery consists of the 
accurate implantation of an electrode in a deep brain nucleus. The quality of the surgical 
planning can be improved by developing a multimodal database based on anatomical, clinical 
and electrophysiologial data. The first step was to develop a specific magnetic resonance 
imaging (MRI) template of Parkinson’s disease patients’ anatomy, and to validate the 
segmentation of the 24 deep brain structures made on this template. Secondly, we focused on 
identifying optimum sites for subthalamic nucleus (STN) stimulation by studying 
symptomatic motor improvement along with neuropsychological side effects in 30 patients 
with PD. Each clinical score produced one anatomo-clinical atlas, associating the degree of 
improvement or worsening of the patient with its active contacts.We showed a discrepancy 
between a good motor improvement and an invevitable deterioration of the fluencies by 
targeting the postero-superior region of the STN. Finally, we developed new statistical 
anatomo-clinical maps the better to visualize the motor and neuropsychological consequences 
at 6 months of GPm stimulation in 20 patients with PD. These maps provided us with the 
motor improvement of GPm stimulation without cognitive impairments. We also proposed a 
new more lateral targeting of the GPm in PD because of the cortico-subcortical atrophy 
induced by the disease. Our goal is to use these statistical maps prospectively in further 
patients to improve their targeting, thus ensuring a shorter planning step on the day of the 
surgery as well as better outcomes from motor and neuropsychological point of view. 


