
HAL Id: tel-01073363
https://theses.hal.science/tel-01073363

Submitted on 9 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On entity resolution in probabilistic data
Naser Ayat

To cite this version:
Naser Ayat. On entity resolution in probabilistic data. Databases [cs.DB]. Universiteit van Amster-
dam, 2014. English. �NNT : �. �tel-01073363�

https://theses.hal.science/tel-01073363
https://hal.archives-ouvertes.fr

Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)
http://hdl.handle.net/11245/2.150632

File ID uvapub:150632
Filename Thesis
Version final

SOURCE (OR PART OF THE FOLLOWING SOURCE):
Type PhD thesis
Title On entity resolution in probabilistic data
Author S.N. Ayat
Faculty FNWI
Year 2014

FULL BIBLIOGRAPHIC DETAILS:
 http://hdl.handle.net/11245/1.431076

Copyright

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or
copyright holder(s), other than for strictly personal, individual use.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
(pagedate: 2014-09-19)

http://hdl.handle.net/11245/2.150632
http://hdl.handle.net/11245/1.431076
http://dare.uva.nl

O
n

E
ntity

R
esolution

in
P

robabilistic
D

ata
N

aser
A

yat

On Entity Resolution in Probabilistic Data

Naser Ayat

On Entity Resolution

in Probabilistic Data

Naser Ayat

On Entity Resolution

in Probabilistic Data

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.dr. D.C. van den Boom

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Agnietenkapel
op dinsdag 30 september 2014, te 12.00 uur

door

Seyed Naser Ayat

geboren te Esfahan, Iran

Promotors: prof. dr. H. Afsarmanesh
prof. dr. P. Valduriez

Copromotor: dr. R. Akbarinia

Overige leden: prof. dr. P.W. Adriaans
prof. dr. P.M.A. Sloot
prof. dr. A.P.J.M. Siebes
prof. dr. M.T. Bubak
prof. dr. ir. F.C.A Groen

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

SIKS Dissertation Series No. 2014-32
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

Copyright c© 2014 by Naser Ayat

Printed by: GVO printers & designers.

ISBN: 978 90 6464 812 0

to Aylar, and my parents

iii

Contents

1 Introduction 1
1.1 Uncertain Data . 1
1.2 Entity Resolution . 2
1.3 Entity Resolution for Probabilistic Data 4
1.4 Research Questions . 5
1.5 Roadmap . 7

2 Background and Related Work 9
2.1 Uncertain Data Models . 9

2.1.1 Possible Worlds Semantics 9
2.1.2 X-relation Data Model . 11

2.2 Entity Resolution . 12
2.2.1 Matching Methods . 14
2.2.2 Scalability Issues . 24
2.2.3 Entity Resolution for Probabilistic Data 26
2.2.4 Conclusion . 29

3 Entity Resolution for Probabilistic Data 31
3.1 Introduction . 31
3.2 Problem Definition . 33

3.2.1 Data Model . 33
3.2.2 Context-Free and Context-Sensitive Similarity Functions . 33
3.2.3 Problem Statement . 34

3.3 Context-Free Entity Resolution 36
3.3.1 CFA Algorithm . 36
3.3.2 Improving CFA Algorithm 38

3.4 Context-sensitive Entity Resolution 41
3.4.1 Monte Carlo Algorithm . 42
3.4.2 Parallel MC . 42

v

3.4.3 CB Similarity Function . 43
3.5 Performance Evaluation . 48

3.5.1 Experimental setup . 48
3.5.2 Results . 51

3.6 Analysis against related work . 54
3.7 Conclusion . 55

4 Entity Resolution for Distributed Probabilistic Data 57
4.1 Introduction . 57
4.2 Problem definition . 59
4.3 Distributed Computation of Most-probable Matching-pair 59

4.3.1 Algorithm Overview . 60
4.3.2 Extract the Essential-set 61
4.3.3 Merge-and-Backward Essential-Sets 66
4.3.4 MPMP Computation and Data Retrieval 67

4.4 FD Example . 68
4.5 Analysis of Communication Cost 69

4.5.1 Distributed System Model 69
4.5.2 Forward Messages . 71
4.5.3 Backward Messages . 72
4.5.4 Retrieve Messages . 73

4.6 Performance Evaluation . 73
4.6.1 Experimental and Simulation Setup 74
4.6.2 Response Time . 77
4.6.3 Communication Cost . 79
4.6.4 Case Study on Real Data 81

4.7 Analysis against related Work . 82
4.8 Conclusion . 83

5 Entity Resolution for Probabilistic Data Using Entropy Reduc-
tion 85
5.1 Introduction . 85
5.2 Problem Definition . 87

5.2.1 Data Model . 87
5.2.2 Entropy in Probabilistic Databases 87
5.2.3 Entity Resolution Over Probabilistic Database 88
5.2.4 Problem Statement . 89

5.3 ERPD Using Entropy . 90
5.3.1 Computing Entropy in X-relations 90
5.3.2 Merge Function . 92
5.3.3 ME Algorithm . 96
5.3.4 Time Complexity . 97
5.3.5 Multi-Alternative X-relation Case 98

vi

5.4 Performance Evaluation . 99
5.4.1 Experimental Setup . 99
5.4.2 Performance Results . 102

5.5 Analysis against related Work . 107
5.6 Conclusion . 108

6 Pay-As-You-Go Data Integration Using Functional Dependen-
cies 109
6.1 Introduction . 109
6.2 Problem Definition . 111
6.3 System Architecture . 113
6.4 Schema Matching . 114

6.4.1 Distance Function . 114
6.4.2 Schema Matching Algorithm 120
6.4.3 Adding Data Sources Incrementally 121
6.4.4 Execution Cost Analysis 122

6.5 Performance Evaluation . 123
6.5.1 Experimental Setup . 123
6.5.2 Results . 124

6.6 Analysis against related Work . 127
6.7 Conclusion . 127

7 Conclusion 129
7.1 Answers to Research Questions 129
7.2 Future Work . 132

A Uncertain Data Models 133
A.1 Incomplete Relational Models . 133

A.1.1 Codd tables . 133
A.1.2 C-tables . 134

A.2 Fuzzy Relational Models . 135
A.2.1 Fuzzy Set . 136
A.2.2 Fuzzy Relations . 136

A.3 Probabilistic Relational Models 138
A.4 Probabilistic Graphical Models 139

B The Courses Dataset 143

C Author’s publications 147

Bibliography 149

Abstract 161

vii

Samenvatting 165

Acknowledgments 169

SIKS Dissertation Series 171

viii

Chapter 1

Introduction

1.1 Uncertain Data

There are many applications that produce uncertain data. Untrusted sources,
imprecise measuring instruments, and uncertain methods, are some reasons that
cause uncertainty in data. Let us provide some examples of uncertain data which
arise in different real-life applications.

• Uncertainty inherent in data. There are many data sources that are
inherently uncertain, such as scientific measurements, sensor readings, lo-
cation data from GPS, and RFID data.

• Data integration. An important step in automatically integrating a num-
ber of structured data sources is to decide which schema elements have
the same semantics, i.e. schema matching. However, the result of schema
matching is also itself often uncertain. For instance, a schema matching
approach outputs “phone” and “phone-no” as matching, while mentioning
that they have a 90% chance to have the same semantics.

• Information extraction. The process of extracting information from un-
structured data sources, e.g. web, is an uncertain process, meaning that
extracted information are typically associated with probability values indi-
cating the likelihood that the extracted information is correct. Consider,
for instance, an extractor which decides with 0.95 confidence that Bob lives
in Amsterdam.

• Optical Character Recognition (OCR). The aim of OCR is to recog-
nize the text within handwritten or typewritten scanned documents. The
output of OCR is often uncertain. For instance, an OCR method, which
cannot recognize, with certainty, the ’o’ character in the word “Ford”, may
produce the set {(“Ford” : 0.8), (“F0rd” : 0.2)} as output, meaning that

1

2 Chapter 1. Introduction

each of the two output words may represent the original scanned word with
the associated probability.

Broadly speaking, there are two approaches in dealing with uncertain data:
1) ignoring it, and 2) managing it. While the former approach results in loss of
information which is contained in uncertain data, in recent years, we have been
witnessing much interest in the latter approach. As shown in the above examples,
most real-life applications tend to quantify data uncertainty with probability
values, referred to as probabilistic data. We also deal with probabilistic data in
this thesis.

1.2 Entity Resolution

Entity Resolution1 (ER) is the process of identifying duplicate tuples, refereing
to the tuples that represent the same real-world entity. The ER problem arises
in many real-life applications, such as data integration. Consider, for instance,
that the large company A acquires another large company B. It is quite likely
that A and B share many customers. On the other hand, it is not reasonable to
expect a person, who is the customer of both companies, to be represented by
identical tuples in the databases of the two companies. For example, consider
tuple tA “ p“Thomas Michaelis”, “45, Main street”q in A’s database and tuple
tB “ p“T. Michaelis”, “45, Main st., 1951”q in B’s database, both representing
the same customer.

In the above example, it is clear for humans that tA and tB refer to the same
person. However, it is not reasonable to expect the humans to solve the ER
problem on large datasets, since every tuple in the dataset should be compared
against all other tuples in the same dataset, giving the ER process an Opn2q

complexity. On the other hand, computational power exists on computers to
deal easily with the ER problem on large datasets, although they lack the human
intelligence, which greatly simplifies the identification of duplicate tuples.

The applications of ER are indeed widespread. For instance, a news aggre-
gation website, such as Google News, automatically gathers news from different
sources on the internet. In such websites, identifying the news that refer to the
same story is crucial, because otherwise a story is presented to the user over
and over again. Another example is comparison shopping websites, such as the
Kieskeurig.nl, which aim at presenting the lowest price for any user-specified prod-
uct. Comparison shopping websites usually aggregate their product items from a
number of vendors. Identifying product items that refer to the same product is
an inevitable task in such websites.

1The ER problem has been referred by various names in the literature, such as record match-
ing, reference matching, merge/purge, object identification, reference reconciliation, and others.

1.2. Entity Resolution 3

Due to its diverse applications, the ER problem has a number of different
problem definitions. The three main ER problem definitions, denoted by identity
resolution, deduplication, and record linkage, are defined as follows.

1.2.1. Definition. Identity resolution. Given database D and tuple e R D, the
identity resolution problem is to find tuple t P D, where e and t represent the
same real-world entity. Typically, it is assumed that D is clean, i.e. does not
contain duplicate tuples.

1.2.2. Definition. Deduplication. Given database D, the deduplication prob-
lem is to cluster D’s tuples into a number of clusters, where each cluster contains
only duplicate tuples that represent the same real-world entity. Once deduplica-
tion is done, duplicate tuples in each cluster are merged into a single tuple. In a
variation, duplicate tuples are kept in their original form, but the knowledge that
which tuples are duplicates of the same entity, is added to the database.

1.2.3. Definition. Record linkage. Given D and D1 databases, the record link-
age problem is to find tuple pairs pt, t1q, where t P D and t1 P D1 represent the
same real-world entity. It is typically assumed that there are no duplicate tuples
in the same database.

Each of the above variations of the ER problem happens in a particular setting.
As an example setting in which the identity resolution arises, consider aggregating
product items from a number of vendors in a comparison shopping website, where
each product item is matched against a product catalog to identify which product
item represents which product. The deduplication variation mostly arises when
integrating not-necessarily-clean databases, which is in contrast to record linkage
variation which arises when integrating databases, each of which is clean by itself.

The aim of deduplication is to improve the quality of the database and, as
a result, the quality of the queries over it. It is clear that identifying duplicate
tuples and considering them in processing the queries significantly improves the
quality of aggregate queries. Consider, for instance, the result of a COUNT query
over a database with duplicate tuples and its clean version. It is clear that the
former yields an erroneous result since each qualifying entity is counted as many
times as its duplicate tuples appear in the database, while it should be counted
only once.

The query result improvement is not limited to aggregate queries, because
non-aggregate queries are also benefited from the aggregated knowledge, resulted
from merging the duplicate tuples. For instance, consider the aggregated knowl-
edge that John McPherson is a database researcher who works for IBM, resulted
from identifying and merging duplicate tuples (“John McPherson”, “Database
researcher”, K) and (“J. McPherson”, K, IBM), where symbol K denotes the null
value.

4 Chapter 1. Introduction

1.3 Entity Resolution for Probabilistic Data

The ER problem is important for both deterministic (ordinary) and probabilistic
databases, i.e. databases in which there is a probability value associated to the
tuples or their attributes. The deterministic case has been widely investigated, so
in this thesis we focus on ER in probabilistic databases. There are many applica-
tions that need to match a probabilistic entity against a probabilistic database,
i.e. identity resolution over probabilistic data. Let us provide an example of such
applications from the internet monitoring domain.

1.3.1. Example. Automatic detection of malicious internet users. Malicious in-
ternet users often use free e-mail service providers, such as Yahoo! Mail and
Gmail, to exchange e-mails. The reason is that most of the free e-mail service
providers collect minimum information from their users and do not even vali-
date the provided information, which thus allows malicious internet users to hide
their real identity. In order to reveal the identity of malicious internet users, an
internet monitoring system is used to automatically gather intelligence about in-
ternet users and monitor their e-mails. The system can be composed of two main
components: 1) user profiling component, and 2) e-mail monitoring component,
where the former can be deployed on both internet service providers (ISPs) and
mail servers, and the latter only on mail servers. The user profiling component,
which is deployed on ISPs, builds for each user an internet profile, e.g. using
his online public profiles such as Facebook and LinkedIn profiles, weblog posts,
tweets, and his internet browsed contents. The user’s internet profile may include
attributes such as education, job, ethnicity, height, weight, fake name, hobbies, etc.
The user profiling component uses information extraction tools to automatically
extract user’s profile from her on internet data. Since the output of information
extraction tools is often uncertain, each extracted user’s internet profile is thus
an uncertain entity, which might be represented using a number of tuples each
associated with a probability value indicating its likelihood of truth. Thus, a
probabilistic database containing uncertain profiles of ISP’s users is maintained
at each ISP. An instance of the user profiling component is deployed at each
mail server, where an uncertain internet profile is built for each user using his
exchanged e-mails on the mail server. The e-mail monitoring component, which
is deployed on each mail server, automatically searches each e-mail for certain
suspicious keywords, and if the e-mail contains them, matches the uncertain in-
ternet profile of the sender of the e-mail against the uncertain profiles of ISPs’
users to find the person who most probably is the sender of the e-mail, i.e. the
suspect.

The above example motivates the need for dealing with the identity resolu-
tion problem in probabilistic data. However, identity resolution is not the only
variation of the ER problem that arises in probabilistic data. When integrating a

1.4. Research Questions 5

number of probabilistic data sources, it is quite likely that multiple probabilistic
tuples represent the same real-world entity, i.e. arising of the need for the ER’s
deduplication variation in probabilistic data.

1.4 Research Questions

The goal of this thesis is to deal with the ER problem over probabilistic data. In
general, we investigate the following:

How can we effectively and efficiently deal with the entity resolution
problem in probabilistic data (called ERPD)?

To answer the above general question, we consider different variations of the
ER problem over probabilistic data, which results in a number of more specific re-
search questions. We first consider the ER’s identity resolution problem variation
in probabilistic data.

In identity resolution over deterministic data, the aim is to match the most
similar tuple in the database to the given tuple. However, in matching proba-
bilistic entities, e.g. matching uncertain user profiles in Example 1.3.1, the aim
is not clear, since we have to deal with two concepts: most similar and most
probable, at the same time. This leads us to the first research question that we
address in this thesis:

1. How to match a probabilistic entity against a set of probabilistic entities,
while considering both their similarity and probability? In other words,
what are the semantics of identity resolution problem over probabilistic
data?

We answer this question in Chapter 3 by defining the semantics of the identity
resolution problem over probabilistic data, using the possible worlds semantics of
uncertain data, which treats a probabilistic database as a probability distribution
over a set of deterministic database instances, each of which is called a possible
world. The number of possible worlds of a probabilistic database might easily be
exponential, which thus makes the computation of the defined semantics imprac-
tical. This leads us to our second research question in this thesis:

2. How can we efficiently deal with the identity resolution problem over prob-
abilistic data?

This question is also answered in Chapter 3, where it is assumed that the
probabilistic data is stored in a centralized database. The relaxation of this
assumption leads us to the third research question that we address in this thesis:

6 Chapter 1. Introduction

3. How can we efficiently deal with the identity resolution problem over prob-
abilistic data in distributed systems?

This question is investigated in Chapter 4, where we propose a fully distributed
algorithm that efficiently deals with the identity resolution problem over proba-
bilistic data in distributed systems.

Let us now consider the ER’s deduplication problem variation in probabilistic
data. Similar to deterministic data, the aim of deduplication in probabilistic
data is to improve the quality of the database. On the other hand, same as in
information theory, where the amount of uncertainty in a random variable can be
used to represent its quality, the amount of uncertainty in a probabilistic database
represents its quality, meaning that the more uncertain the database, the lower
its quality. This leads us to the fourth research question that we address in this
thesis:

4. Does deduplication necessarily improve the quality of a probabilistic
database? If not, then how can we improve the quality of a probabilistic
database through deduplication?

We answer this question in Chapter 5, where we propose a method for improving
the quality of a probabilistic database through deduplication.

In many applications that the ER problem arises, data resides in a number of
heterogenous data sources. Consider, for instance, the identity resolution problem
in Example 1.3.1, where a more realistic assumption is that mail servers and ISPs
are allowed to freely choose a user profiling software. In such a case, it is quite
likely that user profiles are represented in heterogenous schemas, which thus,
makes the matching of heterogeneous schemas, referred to by schema matching,
an inevitable step in matching the user profiles. On the other hand, while effective
dealing with the schema matching problem is crucial for dealing with the ER
problem, it requires human knowledge, which is in contradiction to the fully
automated setting of most of the applications in which the ER problem arises.This
leads us to the fifth research question that we address in this thesis:

5. How effectively can we deal with the schema matching problem in a fully
automated setting?

We answer this question in Chapter 6. In order to make our approach generic,
we deal with schema matching as one of the main problems that has to be dealt
with in a typical data integration system. Thus, in Chapter 6, we aim at building
a data integration system in the pay-as-you-go setting in which the system is set
up with an acceptable quality in a complete automatic setting and the quality is
improved when needed.

1.5. Roadmap 7

1.5 Roadmap

The rest of this thesis is structured as follows.
Chapter 2 provides preliminary definitions and concepts that are used through-

out the rest of the thesis. We first present the uncertain data models, and then
review the related work on entity resolution.

In Chapter 3, we deal with the identity resolution problem over probabilistic
data. We first define the semantics of identity resolution problem in probabilistic
data, and we then deal with the problem of efficient computation of the defined
semantics, and speeding up the proposed algorithms.

Chapter 4 deals with the identity resolution problem over distributed prob-
abilistic data. We aim at proposing a fully distributed algorithm for computing
the semantics of the identity resolution problem, as defined in Chapter 3, in a
distributed system. Our primary goal, in the proposed algorithm, is to minimize
the bandwidth usage.

In Chapter 5, we deal with deduplication problem over probabilistic data with
the aim of improving the quality of probabilistic data. We use the amount of
uncertainty in a probabilistic database as a quality metric and aim at minimizing
it, which thus maximizes its quality.

Chapter 6 aims at building a data integration system in a fully automated set-
ting. The main problem that is dealt with in this chapter is the schema matching
problem, which arises in many applications that need to deal with the entity res-
olution problem. The possibility of using functional dependencies for matching
the schema elements is investigated in this chapter.

Finally, Chapter 7 concludes and gives some research directions for future
work.

Chapter 2

Background and Related Work

In this chapter, we provide background on uncertain data models, and review
related work on entity resolution, which are closely related to this dissertation.
Related work on a few other relevant areas appear later in their relevant chapters.

2.1 Uncertain Data Models

As discussed in Chapter 1, uncertain data are common in many real-life applica-
tions. Managing such data has been receiving much attention in many application
domains during the past few years. We have been witnessing an increasing num-
ber of proposals dealing with different problems such as querying, indexing, and
mining uncertain data. An integral ingredient of such proposals is the uncertain
data model.

In this section, we first describe the possible worlds semantics, which is an
important concept on which the uncertain data models are built. We then discuss
the x-relation data model [10], which is the model that we use throughout the
thesis. For a brief survey of other uncertain data models, the interested reader is
referred to Appendix A.

2.1.1 Possible Worlds Semantics

In the possible worlds semantics, an uncertain database represents a number
of deterministic possible database instances each of which is called a possible
world. Each possible world may be associated with a probability of existence.
Throughout this thesis, we denote the set of possible worlds of an uncertain
database D by PW pDq.

To illustrate, Figure 2.1(a) shows the uncertain database D, which stores the
name and price of five products, collected automatically from web using some
schema matching techniques. Due to the uncertainty which arises in data ex-
traction from the web, D is not certain about the prices of products b and d,

9

10 Chapter 2. Background and Related Work

thus these values are shown with a probability distribution over a set of values.
As a result, D represents four possible worlds, each shown together with their
probability of existence in Figure 2.1(b).

p-name price ($)

t1 a 25

t2 b tp10 : 0.4q, p20 : 0.6qu

t3 c 15

t4 d tp25 : 0.2q, p35 : 0.8qu

t5 e 30

(a)

p-name price

t1 a 25

t2 b 10

t3 c 15

t4 d 25

t5 e 30

w1 : 0.08

p-name price

t1 a 25

t2 b 10

t3 c 15

t4 d 35

t5 e 30

w2 : 0.32

p-name price

t1 a 25

t2 b 20

t3 c 15

t4 d 25

t5 e 30

w3 : 0.12

p-name price

t1 a 25

t2 b 20

t3 c 15

t4 d 35

t5 e 30

w4 : 0.48
(b)

SELECT p-name FROM D
WHERE price ă 20

(c)

p-name probability

t2 b 0.08` 0.32 “ 0.4

t3 c 0.08` 0.32` 0.12` 0.48 “ 1.0

(d)

Figure 2.1: a) Uncertain database D, b) Possible worlds of D, c) Query Q, d)
The result of evaluating Q on D

A common approach in uncertain data management literature is to use the
possible worlds semantics to extend the well-known concepts in deterministic
data to their corresponding concepts in uncertain data. For instance, using the
possible worlds semantics, the semantics of querying an uncertain database is
defined as: 1) applying the query to each possible world, and 2) obtaining the
probability of each result by summing up the probabilities of the possible worlds
which contain that result. To illustrate, consider evaluating the query Q, shown
in Figure 2.1(c), on the uncertain database D, shown in Figure 2.1(a). The
result is shown in Figure 1.d, where attribute probability shows the probability
of belonging each tuple to the query result. For example, the value of attribute
probability for tuple t2 is obtained by adding the probabilities of possible worlds
w1 and w2, where t2 is part of the query result.

2.1. Uncertain Data Models 11

In Chapter 3, we use the possible worlds semantics to define the semantics of
entity resolution in uncertain data.

The number of possible worlds of an uncertain database can be exponential to
the database size, making it impractical to represent an uncertain database with
the set of its possible worlds. Uncertain data models are proposed to overcome
with this problem by compactly representing a large number of possible worlds.
For instance in Figure 2.1, the uncertain database in Figure 2.1(a) is the compact
representation of the four possible worlds which are shown in Figure 2.1(b).

There are two important concepts related to the uncertain data models, i.e.
completeness and closure. An uncertain data model that can represent any set
of possible worlds is said to be complete. On the other hand, an uncertain data
model is closed under a given operation if the result of applying that operation
on any database in the model can also be represented by the model. Although
complete models provide the maximum expressiveness, they can be more com-
plex than needed by the application. In general, closure is more important than
completeness, because if a model is sufficient for representing application’s data,
and it is closed under the operations which is needed by the application, then its
completeness is of no matter.

A number of uncertain data models have been proposed in the literature, each
of which is suitable for modeling uncertainty in a particular application domain
(see Appendix A for a brief survey). We next discuss the x-relation, which is the
uncertain data model that we use in the thesis.

2.1.2 X-relation Data Model

X-relation [10] is a recently proposed uncertain data model that has been ex-
tensively used in the literature, e.g. [145, 11, 39, 141, 42, 52], for representing
uncertainty in a variety of application domains such as sensor networks, scientific
data management, and spatial databases. In this model, a probabilistic database
D consists of a number of x-tuples. Each x-tuple consists of a number of tuples,
called alternatives, each associated with a probability value showing its likelihood
of occurrence. The sum of the probability values of the x-tuple’s alternatives is
less than or equal to one. The occurrence of alternatives is mutually exclusive.
The x-tuples within the database are disjoint and can occur independently of
each other.

To illustrate, Figure 2.2 shows an example database D in the x-relation model,
and its possible worlds. D consists of two x-tuples x1 and x2, where x1 consists
of two alternatives t1 and t2, and x2 consists of only one alternative t3. The
x-relation’s assumptions, i.e. mutual exclusion of alternatives and independence
of x-tuples, greatly simplify the computation of possible worlds’ probabilities.
For instance, the probability of the possible world W3, denoted by P pW3q, is
computed as the joint probability of two independent probabilistic events: among
the alternatives of x1, t2 occurs; and none of the alternatives of x2 occur. Thus,

12 Chapter 2. Background and Related Work

as shown in Figure 2.2(b), P pW3q is equal to P pt2q ˆ p1 ´ P pt3qq “ 0.24. Notice
that the probability that none of the alternatives of an x-tuple, say x, occur is
equal to 1´

ř

tPx P ptq.
In this thesis, we distinguish between two types of x-relations: single and multi

alternative. In the single-alternative x-relation, each x-tuple consists of only one
alternative, and in the multi-alternative x-relation, there could be more than one
alternative for an x-tuple.

x-tuple t P ptq

x1

t1 0.6

t2 0.3

x2 t3 0.2

(a)

wi wi members P pwiq

w1 H p1´ P pt1q ´ P pt2qq ˆ p1´ P pt3qq “ 0.08

w2 tt1u P pt1q ˆ p1´ P pt3qq “ 0.48

w3 tt2u P pt2q ˆ p1´ P pt3qq “ 0.24

w4 tt3u p1´ P pt1q ´ P pt2qq ˆ P pt3q “ 0.02

w5 tt1, t3u P pt1q ˆ P pt3q “ 0.12

w6 tt2, t3u P pt2q ˆ P pt3q “ 0.06

(b)

Figure 2.2: a) An example probabilistic database D in the x-relation model, b)
Possible worlds of D

2.2 Entity Resolution

A typical entity resolution (ER) process usually includes the following three
phases:

• Data preparation: deals with the heterogeneity in the data coming from
different sources.

• Matching: finds the duplicate tuples, i.e. the tuples that refer to the same
real-world entity.

• Merging: merges the duplicate tuples into a merged tuple.

The aim of data preparation phase is to provide a coherent view of the data
that are gathered from different sources, which can possibly be heterogenous. The

2.2. Entity Resolution 13

data preparation phase is often categorized under the three tasks of Extraction,
Transformation, and Loading, which are called ETL for short.

During the extraction task, data are extracted from a diverse set of data
sources which may range from web tables to files in a specific scientific proprietary
format to regular relational tables. The transformation task then deals with the
heterogeneity in the extracted data at the schema and data levels. At the schema
level, schema matching techniques are used to find the data items that have the
same semantics but are described under different attributes (or a combination
of attributes) in different sources. Consider, for instance, tel and phone which
both refer to the phone number of a person; or address and the combination of
number, street, and city which both refer to an individual’s address. At the data
level, the transformation task deals with the heterogeneity problems as much as
possible to provide a standardized view of the data. Some of such problems are
as follows:

• Known typographical errors or variations: e.g. “behavior” and “behaviour”.

• Using different representation formats: e.g. mm/dd/yy and yy/mm/dd for-
mats for dates.

• Using different naming conventions: e.g. “Andrew S. Tanenbaum” and
“Tanenbaum, Andrew S.”.

• Using abbreviations and nicknames: e.g. “Oracle Corporation” and “Oracle
Co.”.

The last step of ETL is loading in which the prepared data is loaded into the
database. The efficient implementation of data preparation phase can greatly
speed up the entity resolution process.

One may expect identical duplicate tuples as the result of the data preparation
phase. However, in practice, the data preparation phase results in non-identical
duplicate tuples, which are challenging to find. The matching phase of the ER
process aims at finding such tuples.

The merging phase of the ER process merges the duplicate tuples, found by
the matching phase, into a single tuple. This phase lets the database to gather
all of its information about one entity, which is scattered among different tuples,
in a single tuple. This not only improves the quality of data in the database but
also may benefit the matching phase itself, as shown by Benjelloun et al. in the
Swoosh proposal [25], where early merging of duplicate tuples is used to improve
the performance of the matching phase.

In the merging phase, an important challenge is merging duplicate tuples with
conflicting attribute values. We distinguish between two types of conflicts: the
conflicts that can be resolved by the merge function (i.e. resolvable), and those
that cannot be resolved by the merge function (i.e. non-resolvable). Resolvable

14 Chapter 2. Background and Related Work

conflicts may occur in cases where the duplicate tuples agree on the value of an at-
tribute but they use different naming conventions for representing the attribute,
e.g. consider “VLDB” and “very large databases” as two conflicting attribute
values. Resolvable conflicts may even occur in cases that the duplicate tuples
disagree on the value of an attribute, but the merge function resolves the con-
flict by combining the conflicting values. For instance, consider two conflicting
attribute values 30 and 35 representing the age of a person, and a merge function
that resolves this conflict by taking the average of these values.

A variety of techniques, referred to by canonicalization techniques, are used to
compute the attribute values of the merged tuple using those of the duplicate tu-
ples. The used techniques differ greatly based on the attribute data type and the
application context. For instance, a technique is to use the longest name among
the names in duplicate tuples, e.g. choosing “Andrew Stuart Tanenbaum” among
the names in set {“Andrew S. Tanenbaum”, “A. S. Tanenbaum”, “Andrew Stuart
Tanenbaum”}. Another technique is to majority voting for choosing the repre-
sentative value among a number of inconsistent categorical values. For example,
if 2 out 3 attribute values say that a person is retired, then he is considered as
retired. Keeping all duplicate tuples’ values in a set-valued attribute is another
canonicalization technique. The canonicalization techniques, however, may lose
the correct information and decrease the quality of the data in the database.

A number of recently proposed ER approaches, e.g. [12, 75] do not merge
the duplicate tuples, but instead they keep them in the database and associate
with each of them a probability value indicating the likelihood that the tuple
represents the real-world entity. The probabilistic query evaluation techniques
are then used for answering the queries over the resulted probabilistic database.

In the rest of this section, we first describe the matching techniques. We
then discuss methods for speeding up the ER process. Then, we discuss ER for
probabilistic data.

2.2.1 Matching Methods

An large body of literature on ER has been devoted to ER’s matching phase.
The matching proposals can be broadly divided into attribute and tuple matching
techniques. In this section, we first provide an overview on matching approaches
and the metrics used for evaluating their effectiveness. Then, we describe tech-
niques for matching the individual attribute values, which provide the basis for
matching the tuples. We then review the proposals that deal with the matching
problem at the tuple level.

Overview

In matching phase, the decision that whether or not two tuples are duplicate tu-
ples is called a match decision. We can distinguish between two types of matching

2.2. Entity Resolution 15

proposals, i.e. pairwise and collective. In pairwise matching, match decision for
every two tuple is made independently from the other tuples, but match decisions
are made jointly for a set of tuples in collective matching proposals. Matching
proposals that use clustering algorithms, and those that use generative models,
e.g. [28, 111], are examples of collective approaches.

A simple pairwise matching approach is to consider two tuples as matching if
their similarity is higher than a certain threshold, where the similarity is measured
using one of the metrics for measuring the similarity between tuples, some of which
are described in Section 2.2.1. A variation of this technique uses two thresholds
µ1 and µ2, where µ1 ă µ2, to mark two tuples as matching if their similarity is
higher than µ2; as possible-match if it is between µ1 and µ2; and as non-match,
otherwise. The possible-matches then are manually examined by human experts
to determine whether they are matches or not.

An important shortcoming of pairwise matching is that it may result in in-
consistent match decisions. Consider, for instance, the matching of tuples t1, t2,
and t3, where t1 is matched with t2, and t2 is matched with t3, but t1 and t3 are
not matched together. Some pairwise matching proposals deal with this prob-
lem by adding the additional matches that result from transitive closure. The
transitive closure operation, however, is very computationally expensive in some
applications, as shown in [116].

To evaluate the performance of a matching proposal, we can consider the
matching problem as a classification problem and use the precision, recall, and F1
metrics, which are frequently used to evaluate the performance of the classification
algorithms. To illustrate these metrics, let M denote the set of tuple pairs that
are matched together by the matching proposal, and Mtrue is the set of tuple pairs
that are true matches. Then, precision is the fraction of correctly matched tuple
pairs to all pairs in M ; recall is the fraction of correctly matched tuple pairs to
all pairs in Mtrue; and F1 is the harmonic mean of precision and recall, i.e.

P “
|M XMtrue|

|M |
; R “

|M XMtrue|

|Mtrue|
; and F1 “

2.P.R

P `R

where P and R respectively denote precision and recall. In collective match-
ing proposals, we can also use the metrics which are specifically designed for
evaluating the performance of clustering algorithms. Purity, normalized mutual
information, and rand index are examples of such metrics.

Attribute Matching

Typographical variations in string data are the most common source of mismatch
between duplicate tuples. As a result, the ER’s matching phase mostly relies
on string matching techniques to find the duplicate tuples. A number of string
matching techniques have been proposed in the literature, each of which is suitable

16 Chapter 2. Background and Related Work

for particular types of string errors or variations. While errors might occur in non-
string data as well, the research on matching non-string data is still in its infancy
[61].

In this section, we review some of the string matching proposals in duplicate
detection context. We also discuss the matching of non-string data. The matching
methods are presented either in the form of a similarity or distance metric, either
of which can easily be converted to the other one.

Character-Based Metrics

The character-based metrics are best suited for handling typographical errors in
string data. We here review the following character-based metrics:

• Edit distance

• Jaro

• Q-grams

The edit distance between two strings s1 and s2 is the minimum number of
edit operations that should be performed on s1 to convert it into s2, where the
edit operations are as follows: 1) insert, i.e. inserting a character into the string,
2) delete, i.e. deleting a character from the string, and 3) replace, i.e. replacing a
character with another character.

Depending on the cost which is associated to each edit operation, different
variations of edit distance have been proposed. In its simplest form, the cost of
all operations are equal to one. In such a case, the edit distance is usually called
the Levenshtein distance [85]. The Levenshtein distance can also be defined using
the following recursive formula:

Lps1, s2, i, jq “ min

$

’

’

&

’

’

%

Lps1, s2, i´ 1, j ´ 1q if s1ris “ s2rjs
Lps1, s2, i´ 1, j ´ 1q ` 1 if s1ris is replaced with s2rjs
Lps1, s2, i, j ´ 1q ` 1 if s2rjs is inserted into s1

Lps1, s2, i´ 1, jq ` 1 if s1ris is deleted from s1

where Lps1, s2, i, jq is the Levenshtein distance between the first i characters of
string s1 and the first j characters of string s2. This definition together with using
dynamic programming methods enable us to efficiently compute the Levenshtein
distance in Op|s1| . |s2|q time.

The Needleman-Wunsch distance [98] is another variation of edit distance
which defines different costs for each character replacement, insert, and delete
operations. Ristad et al. [113] proposed a method for automatically determining
Needleman-Wunsch’s costs from a set of equivalent strings written in different
variations.

2.2. Entity Resolution 17

Another variation of edit distance is the Smith-Waterman distance [120] in
which the cost of edit operations at the beginning and the end of the string are
more than that of in the middle of the string. This metric can better match the
strings that use different titles for names or use the same title in different loca-
tions. Consider, for instance, the three strings “Prof. Andrew S. Tanenbaum”,
“Andrew S. Tanenbaum, Prof.”, and “Mr. Andrew S. Tanenbaum”, which are
matched using the Smith-Waterman metric within a short distance.

The affine gap distance [135] is yet another variation of edit distance, which is
suitable for matching the shortened or truncated strings, e.g. “A. S. Tanenbaum”
and “Andrew Stuart Tanenbaum”. This metric extends the edit operations with
two new operations open gap and extend gap, where the cost of extending the gap
is usually less than that of opening the gap.

The Jaro metric [80] is another effective character-based similarity metric,
which is primarily used for matching short strings such as first and last names.
The Jaro similarity value of two strings is defined based on the common characters
of the two strings. To illustrate, let s1 “ a1 . . . am and s2 “ b1 . . . bn be two given
strings. Then, a character ai in s1 is in common with s2 if there exists a character
bj in s2 such that ai “ bj and |i´ j| ď 1

2
minp|s1| , |s2|q. Let s11 “ a11 . . . a

1
k be the

characters in s1 that are in common with s2, and similarly s12 “ b11 . . . b
1
l be that of

s2. Let the number of transpositions, say t, be the number of positions in which
s11ris ‰ s12ris. The Jaro similarity value then is defined as:

Jarops1, s2q “
1

3

ˆ

|s11|

|s1|
`
|s12|

|s2|
`
|s11| ´ t{2

|s11|

˙

.

The Jaro-Winkler similarity metric [139] is a variant of the Jaro metric in
which more emphasis is put on matching the first few characters of the two
strings. This metric is defined as follows:

Jaro-Winklerps1, s2q “ Jarops1, s2q `
1

10
max pLCP , 4q .p1´ Jarops1, s2qq,

where LCP is the length of the longest common prefix of s1 and s2.
Another family of metrics use groups of characters, denoted by q-grams [127,

126], for matching the strings. Given a string s, the q-grams of s, denoted by
q-gramspsq, are substrings of length q, which are obtained by moving a sliding
window of size q over s. For instance, the 2-grams of string “computer” are as
follows: “co”, “om”, “mp”, “pu”, “ut”, “te”, “er”. The idea behind q-grams is
that dupliate strings have a large number of q-grams in common. The metrics
that use q-grams lie somewhere in between of character-based and token-based
metrics, which we explain next, and the only reason that we categorize these
metrics under character-based metrics is that, in contrast to token-based metrics,
q-grams often have no meaning.

Q-grams are used in a variety of ways for measuring the similarity between
strings. For instance, dice coefficient metric [34] uses the number of shared q-
grams between two strings and the total number of their q-grams for defining the

18 Chapter 2. Background and Related Work

similarity value. More precisely, the dice coefficient of two strings s1 and s2 is
defines as:

diceps1, s2q “
2. |q-gramsps1q X q-gramsps2q|

|q-gramsps1q| ` |q-gramsps2q|
.

As another example of metrics which use q-grams, one may represent the strings
as vectors of q-grams, and uses the cosine of the angle between vectors for mea-
suring the similarity between the strings. A major shortcoming of metrics that
do not consider the location of q-grams in the strings is that they may assign a
high similarity value to non-duplicate strings. Consider, for instance, two non-
duplicate strings “xanex” and “nexan” with the same set of 2-grams, i.e. set
t“xa2, “an2, “ne2, “ex2u, where measuring the similarity of these strings using
dice coefficient results in the maximum similarity value, i.e. one. To deal with
this problem, some approaches, e.g. [123, 68, 67], augment q-grams with their
locations in the strings.

Token-Based Metrics

Character-based metrics mostly deal with typographical errors in duplicate strings.
Another common source of difference in duplicate strings is the reordering of
words in them, which occurs due to using different naming conventions, e.g. “An-
drew S. Tanenbaum” and “Tanenbaum, Andrew S.”. This problem cannot be
dealt with character-based metrics. As a result, token-based metrics have been
proposed to deal with this problem. These metrics represent each string as a bag
of tokens, i.e. words, and use a variety of techniques to compute their similarity.
We here review some important token-based metrics.

A simple, yet effective, token-based metric is Jaccard similarity metric in
which the similarity between two string s1 and s2 is defined as follows:

Jaccardps1, s2q “
|S1 X S2|

|S1 Y S2|
,

where S1 and S2 respectively are the set of words in s1 and s2.
An important metric, which is widely used in information retrieval community,

is TF-IDF similarity metric [49]. TF-IDF represents each string s as a vector
V “ pv1, . . . , vnq whose ith element, i.e. vi, represents the ith word in the corpus,
say wi, and is equal to:

vi “ logptfpwiq ` 1q. log idfpwiq (2.1)

where tfpwiq is the number of times that word wi appears in string s, and idfpwiq
is n

ni
, where n is the total number of strings in the corpus, and ni is the number of

strings in the corpus that contain word wi. TF-IDF then normalizes each vector
into unit vector by dividing it by its l2 norm, i.e. its weight, and computes the
dot product of two vectors, which is equal to the cosine of the angle between

2.2. Entity Resolution 19

them, as the similarity of the strings that the vectors represent. More precisely,
the TF-IDF similarity between strings s and s1 is defined as:

TF-IDFps, s1q “

řn
i“1 vi.v

1
i

b

řn
i“1 v

2

i .
b

řn
i“1 v

12

i

.

In the TF-IDF metric, the similarity is affected only by words that appear
in both s and s1, and the metric is in favor of the words that are rare in the
corpus, and appear a large number of times either in s or s1, meaning that having
such words in the two strings results in higher similarity value between them. For
instance, in a corpus of university names, matching rare words such as “Stanford”
and “Amsterdam” are of more importance than matching frequent words such as
“university” and “of”. The TF-IDF works can effectively match duplicate strings
having different ordering of words. Moreover, this metric is not sensitive to the
introduction of frequent words in duplicate words. For instance, the similarity
between strings “Andrew Tanenbaum” and “Tanenbaum, Andrew” is equal to
one, and the similarity between string “Mr. Andrew Tanenbaum” and these
strings is very close to one.

An important shortcoming of the TF-IDF metric is that it cannot capture
the typographical errors in the input strings. For instance, the two duplicate
strings “University of Amsterdam” and “Amstrdam Universty” are assigned a
zero similarity value by the TF-IDF metric. To deal with this problem, Bilenko
et al. [31] proposed the SoftTF-IDF metric. In the SoftTF-IDF metric, the
similarity is affected by the words that appear in both strings and also the words
in the two strings that are similar. To illustrate, let f be a similarity metric that
works well on short strings, e.g. Jaro-Winkler metric, and µ in range p0..1s be
a threshold. Let similarps, s1q be the set of words w P s so that there exists
a word w1 in s1, where fpw,w1q ą µ, and for each word w in similarps, s1q, let
simpwq “ maxw1Ps1fpw,w

1q. Also, let us extend vi in equation (2.1) to vpwi, sq to
clearly show its relevance to word wi and string s. Then, the similarity of s and
s1 according to SoftTF-IDF is defined as:

SoftTF-IDFps, s1q “

ř

wPsimilarps,s1q

vpw, sq.vpw, s1q.simpwq

c

ř

wPsimilarps,s1q

vpw, sq2.
c

ř

wPsimilarps,s1q

vpw, s1q2

Setting µ to one in the above equation results in the same similarity values as the
TF-IDF metric.

Using q-grams as tokens, instead of words, in the TF-IDF metric is another
method that has been proposed to deal with the TF-IDF problem of typographical
errors in the strings [69].

20 Chapter 2. Background and Related Work

Metrics for Non-String Data

Non-string data ranges from simple data such as numbers and dates to complex
data such as images, audios, and videos. While matching complex data is often
the subject of a whole field of research, e.g. matching images in computer vi-
sion field, the proposed methods for matching simple non-string data are rather
primitive. One common method for matching simple non-string data is to treat
them as strings and use string matching techniques. Other matching methods
are limited to simple techniques such as using maximum absolute or relative dif-
ference for numbers, and converting dates to days and using maximum absolute
difference, e.g. within 20 days of each other.

Effectiveness of Different Metrics

As we discussed above, there exist a large number of attribute value matching
metrics in literature, which confirms the fact that there is no single metric that
fits all datasets and all types of errors in data. However, some metrics have
been shown to perform better than the other metrics, on average, over different
datasets.

As shown in [31, 50], Monge-Elkan [96, 97], which is a tuned version of affine
gap metric, Jaro-Winkler, and SoftTF-IDF metrics have the best performance.
The Monge-Elkan metric has the best average performance among character-
based metrics. This method, however, does not scale well. Jaro-Winkler is the
best performer for matching the names, and SoftTF-IDF has the best average
performance among all metrics.

Tuple Matching

In this section, we present the methods that deal with the matching problem at
the tuple level. These approaches can broadly be divided into three categories:

• Distance-based: approaches that use a generic distance (or similarity)
metric to match tuples.

• Machine learning based: approaches that need training data to match
tuples.

• Rule-based: approaches that rely on matching rules, which are specified
with the involvement of human experts, to match tuples.

In general, learning-based and rule-based approaches outperform distance-
based proposals in terms of accuracy. However, distance-based approaches are
more practical since they neither need training data nor human expertise. In the
rest of this section, we present tuple matching techniques in these categories in
different subsections.

2.2. Entity Resolution 21

Distance-Based Approaches

The main component of distance-based approaches is a metric for measuring the
distance (or similarity) between tuples. In this section, we discuss some of the
approaches for implementing such metrics.

One approach is to treat each tuple as a long attribute, and use one of the
attribute value matching metrics to match the tuples. This approach however ig-
nores the tuple structure, and may yield incorrect matching results. For instance,
in TF-IDF metric, a certain word may be rare in the values of one attribute, but
common in the other one. Thus, considering all attributes together may result in
the vectors that incorrectly reflect the rarity of words within individual attribute
values.

To consider the tuple structure, an approach is to use the appropriate metrics
to measure the similarity between individual attribute values, and then compute
the weighted similarity as the similarity between tuples. The advantage of this
approach is that we can adjust the relative importance of each attribute by vary-
ing its weight. However, the weights are challenging to compute and cannot be
changed dynamically, but should be fixed a priori. To overcome these drawbacks,
some approaches do not use fixed weights, but compute variable weights dynam-
ically. For instance, FlexiTF-IDF [81], a variation of TF-IDF, normalizes the
TF-IDF vector representation of the attribute values using a joint normalization
factor to implement a dynamic weighting scheme. To illustrate, without loss of
generality, let t be a tuple on schema pa, bq, and vectors Va and Vb be the TF-IDF
representation of t’s attribute values. Instead of normalizing each vector by di-
viding it by its l2 norm, as does the TF-IDF, the FlexiTF-IDF normalizes vectors
Va and Vb by dividing them by

a

}Va}2 ` }Vb}2, where }Va} and }Vb} are the l2
norms of Va and Vb, respectively.

In Chapter 3, we introduce CB, a distance-based similarity metric that needs
neither statically specified nor dynamically computed attribute weights, but in-
stead relies on the rarity of individual attribute values in the database.

Ranked-list-merging [71] is another proposal that deals with measuring the
distance between tuples. The idea is that, to find the best matches for a tuple, we
can rank database tuples based on their similarity with the given tuple based on
only one attribute, where the similarity is measured by an appropriate similarity
metric. Repeating this process for all attributes results in m ranked lists of
database tuples, where m is the number of attributes. This proposal then aims
at assigning final ranks to tuples to minimize the distance between the final
assigned ranks and the ranks that are assigned by individual attributes, where
the distance between different ranks is measured by the footrule distance [56].
The ranked-list-merging proposal deals with this problem by providing efficient
solutions for identifying the top-k matching tuples.

An important problem of distance-based pairwise approaches is choosing the
appropriate distance threshold. Chaudhuri et al. [38] proposed a method to deal

22 Chapter 2. Background and Related Work

with this problem. They observed that a fixed threshold value for all entities,
i.e. sets of duplicate tuples, is not the right choice, and different entities need
different threshold values. They identified two properties of duplicate tuples, i.e.
compact set, and sparse neighborhood properties. Intuitively, these properties
say that duplicate tuples that represent the same entity are closer to each other
than to the other tuples, and their local neighborhood is sparse. Chaudhuri et
al. exploited these properties to propose a variable thresholding scheme which
outperforms approaches that rely on a fixed threshold value for all entities.

Machine Learning-Based Approaches

Most of the learning-based approaches model the tuple matching problem as a
classification problem in which the tuple pairs are assigned to one of the two
match and non-match classes, denoted by M and N , respectively. In a variation,
a third possible-match class is also considered. Then, the tuple pairs that are
assigned to the possible-match class are further investigated by human experts
to be assigned to their real classes.

The learning-based approaches can be divided into three categorizes based
on their required amount of training data, which is in the form of tuple pairs
prelabeled as match or non-match. These categories include supervised, which
needs a considerable amount of training data, semi-supervised, which uses only a
few training data, and unsupervised, which works with no training data.

One of the early learning-based approaches is that of Fellegi and Sunter [62].
They adapted the Naive Bayes classification method for the tuple matching task.
In their proposed approach, a comparison vector Vρ “ pv1, . . . , vmq is associated
to each tuple pair ρ “ pt, t1q, where 0 ď vi ď 1 is the level of agreement between
the ith attribute value of t and t1, and the tuple pair’s class label, denoted by
classpρq, is computed as follows:

classpρq “ arg max
cPtM,Nu

P pcq
ź

P pvi | cq

The probabilities P pcq and P pvi | cq in the above equation can be either computed
using training data or estimated, as does Winkler [138] by using the expectation
maximization method [54], when no training data is available.

A variety of supervised classification algorithms have been adapted for the
tuple matching task, e.g. decision trees [46], support vector machines [30, 45],
conditional random fields [73, 93, 57], and ensemble of classifiers [41]. The effec-
tiveness of these approaches heavily depends on the training set with which the
classifier is trained. Generating a suitable training set however is a challenging
task because most of the tuple pairs are easily classifiable non-matches, and the
close non-match tuples with subtle differences, which can train a highly accurate
classifier, are very hard to find. To deal with this problem, some tuple matching
approaches, e.g. [114, 124, 14, 24, 133, 91], use the active learning method [51].

2.2. Entity Resolution 23

The basic idea in active learning is that the learning algorithm actively partic-
ipates in the task of choosing the subset of unlabeled data whose labeling and
inclusion in the training set most likely improves the accuracy of the learning
algorithm.

Another solution to the hard task of generating large amount of appropriate
training data is to use semi-supervised or unsupervised learning approaches. For
instance, Verykios et al. [131] proposed a tuple matching approach that uses only
a few labeled data. This approach uses the attribute value matching techniques
to compute a comparison vector for each tuple pair, and then the AutoClass [40]
method is used to cluster the comparison vectors into a set of clusters. The basic
assumption is that a cluster contains similar comparison vectors that hopefully
belong to the same match or non-match class. Thus, by knowing the label of only
a few vectors in a cluster, it is possible to determine the class label of all vectors
in the cluster. Verykios et al. has shown that their approach works effectively
using only a minimal number of labeled data.

There are learning-based tuple matching approaches that work in an unsu-
pervised setting. Bhattacharya and Getoor [28] adapted the Latent Dirichlet
allocation model [33] for the tuple matching task. In this approach, attribute val-
ues are modeled using latent variables which then are used to build a generative
model which is used for matching the tuples by inference on groups of values that
commonly occur together. Ravikumar and Cohen [111] also used latent variables
to propose a generative model for the tuple matching task. In their proposed
model, each element of the tuple pair’s comparison vector is modeled using a
binary latent variable which shows whether the corresponding attributes of the
two tuples match or not.

Rule-Based Approaches

The core of rule-based approaches is a set of rules that specify under which
conditions two tuples match. The set of rules differs between datasets and often
is determined by human experts with the help of a declarative language. As an
example of such rules, consider the following rule, which matches persons in an
employee database:

simpt1.name, t2.nameq ě 0.9^ t1.byear “ t2.byear ùñ Matchpt1, t2q,

where sim is an attribute value matching metric, and byear represents the per-
son’s birth year.

Although it has been shown that rule-based approaches can effectively be used
for the tuple matching task [76, 134, 88, 64], heavy reliance on human expertise
makes them impractical for real-life databases. As a result, a combination of
learning-based and rule-based approaches is used in practice. In this model,
training data is used to learn a set of rules which then are manually validated
and refined by human experts.

24 Chapter 2. Background and Related Work

Usability of Matching Methods in ERPD

We now discuss the usability of different matching methods, presented in this
section, in the approaches that we present in this thesis for dealing with the ER
problem in probabilistic data (called ERPD).

Our approach for dealing with the identity resolution problem (see Definition
1.2.1) in probabilistic data, presented in Chapter 3, can use any distance-based
tuple matching metric for computing the similarity between tuples. Our approach
however differs for different types of similarity metrics based on whether the
similarity between two tuples depends on the other tuples in the database or
not. Most of the existing similarity metrics of the former type (called context-
sensitive), i.e. where the similarity of two tuples depends on the other tuples in
the database, perform poorly when used within our proposed approach for the
identity resolution problem in probabilistic data. To overcome this shortcoming,
we propose a new similarity metric in Section 3.4.3, called CB, with the following
features:

• By working at the attribute level, rather than at the word or q-gram level,
CB significantly reduces the number of rather costly string comparison oper-
ations which thus makes it very efficient compared to other context-sensitive
similarity metrics.

• In contrast to most of the tuple matching methods that work at the attribute
level, CB does not need the specification of weights for representing the
relative importance of individual attributes.

Our approach for dealing with the deduplication problem (see Definition 1.2.2)
in probabilistic data, presented in Chapter 5, is generic, meaning that it can work
with any matching method for deterministic data, including the ones that are
discussed in this section.

2.2.2 Scalability Issues

The ER process is prohibitively expensive even for medium-sized databases. Iden-
tifying duplicate tuples, using a pairwise matching technique, on a database of size
n, is of Opn2q, since each tuple needs to be compared against all other n´1 tuples
in the database. The situation is worse in collective approaches since they rely
on learning based methods, which do not scale well, as we discussed in previous
section. In this section, we review some techniques for increasing the efficiency
of ER proposals, which thus make them scalable for real-life databases.

Blocking is one of the early techniques for increasing the efficiency of ER
methods. The idea of blocking is to divide the database into a number of blocks
and only compare tuple pairs that reside within the same block, assuming that
tuples from different blocks are unlikely to match. For example, one may use the

2.2. Entity Resolution 25

city attribute to partition a database of restaurants to a number of blocks, with
the reasonable assumption that restaurants from different cities do not match.
Blocks may overlap with each other, and usually are computed using one or
multiple simple blocking attributes, e.g. city in the above example.

Blocking reduces the quadratic time complexity of pairwise ER techniques to
Opb.nq, where b ! n is the average number of tuples in a block. This increased
efficiency comes with the cost of possible decrease in the accuracy of the ER
method. Such possible accuracy decrease occurs due to missing duplicate tuples
that may fall into different blocks, which, for instance, happens due to noisy or
null values in the blocking attributes of the tuples.

While traditional blocking techniques, e.g. [99, 137, 29, 95, 70] process each
block separately, recently, Whang et al. [136] have proposed a blocking method in
which the matching decisions are communicated between blocks. The idea behind
this approach is that when two tuples match and are merged in a block, the newly
created merged tuple may match with the tuples in other blocks. Thus, as shown
by Whang et al., communicating the merged tuple to other blocks increases the
accuracy of ER, and even may increase the efficiency by avoiding unnecessary
comparisons in other blocks.

Another approach for increasing the efficiency of ER is the use of canopies
[92]. The idea is to use a cheap distance metric to quickly divide the tuples into
a number of overlapping clusters, called canopies, and then use an exact, and
thus more expensive, distance metric to perform a pairwise comparison on all
tuples that have at least one canopy in common. For example, one might use
the proportion of common q-grams of two strings as a cheap distance metric for
computing canopies, and the edit distance between the strings, with tuned cost
for the edit operations, as the more expensive metric. It has been shown that
canopies outperform the traditional blocking methods in terms of both efficiency
and accuracy [23].

In order to increase the accuracy, Rastogi et al. [110] have proposed a method
in which match decisions are communicated between canopies. They run an
instance of the matcher separately on each canopy, and when a match decision
is made in a canopy, they pass the decision to other canopies, and rerun the
matcher on them using the new communicated match decision. This process
continues until no new matches is found on each canopy. Rastogi et al. have
shown that the time complexity of their approach is of Opk2.fpkq.cq, where k is
the maximum size of a canopy; fpkq is the spent time on a canopy of size k; and
c is the number of canopies. The important advantages of this approach are the
followings: 1) it can use a broad class of existing matchers; and 2) it is easily
parallelizable using the MapReduce framework.

Achieving scalability in dealing with the ERPD problem is more challenging
since we have to deal with an exponential number of possible worlds of probabilis-
tic data. Our proposed approaches for dealing with the ERPD problem however
are scalable, as shown through computational complexity analysis, and experi-

26 Chapter 2. Background and Related Work

mentation. Moreover, we believe that our CB similarity function, presented in
Chapter 3, can act as a cheap similarity metric in the blocking methods that,
as explained above, aim at improving the efficiency of ER in deterministic data.
Elaborating on this idea however remains as a possible direction for future re-
search (see Section 7.2).

2.2.3 Entity Resolution for Probabilistic Data

While the ER problem has been well studied in the literature for deterministic
data, only a few proposals have addressed the problem of ER in probabilistic data
(ERPD). In this section, we review these proposals.

Matching X-tuples

Panse et al. [103] have proposed a method for matching x-tuples in the x-relation
probabilistic data model. In their proposed method, two x-tuples are matched if
their expected similarity is above a certain specified threshold, where the expected
similarity between two x-tuples is computed by combining the similarity and the
probability of their alternatives. More precisely, the expected similarity between
x-tuples x and x1 is defined as follows:

Simexppx, x
1
q “

ÿ

tPx

ÿ

t1Px1

pptq

ppxq
.
ppt1q

ppx1q
.Simpt, t1q,

where ppxq “
ř

tPx pptq, and similarly for ppx1q.
By ignoring the probability distribution of possible worlds, which is the com-

mon drawback of expected values, this proposal may result in unreliable ranking
of x-tuples.

Another drawback is that single-alternative and multi-alternative x-tuples
are treated differently because probabilities are ignored completely for single-
alternative x-tuples.

To overcome these shortcomings, we propose a new approach for matching
tuples and x-tuples in the x-relation data model in Chapter 3.

Merging X-tuples

[102] is a proposal by Panse et al. that addresses the merging of x-tuples in an
extended version of the x-relation model, where each x-tuple is associated with
a probability value indicating its membership degree to the database. In order
to merge two x-tuples, they assign a weight to each x-tuple, where sum of the
weights is equal to one; multiply the probability of each tuple by the weight of the
x-tuple to which it belongs; unify the tuples of the two x-tuples into the merged
x-tuple; and combine the identical tuples by adding their probabilities.

2.2. Entity Resolution 27

x-tuple t name age phone-no p(t) p(x)

x

t1 John 35 5256662 0.25

0.8t2 John 30 5256662 0.45

t3 John K 7895226 0.3

(a)

x-tuple t name age phone-no p(t) ppx1q

x1
t1 John 35 5256662 0.4

0.5t2 John 30 5256662 0.35

t4 John 32 K 0.25

(b)

x-tuple t name age phone-no p(t)

xd x1

t1 John 35 5256662 0.25ˆ 0.8` 0.4ˆ 0.2 “ 0.28

t2 John 30 5256662 0.45ˆ 0.8` 0.35ˆ 0.2 “ 0.43

t3 John K 7895226 0.3ˆ 0.8 “ 0.24

t4 John 32 K 0.25ˆ 0.2 “ 0.05

(c)

Figure 2.3: Panse et al.’s approach for merging x-tuples

As an example, consider merging two x-tuples x and x1 shown in Figures 2.3(a)
and 2.3(b), respectively. Assigning weights 0.6 and 0.4 respectively to x and x1,
the resulted merged x-tuple, denoted by x d x1, is shown in Figure 2.3(c). The
membership probability of x d x1 is not shown in the Figure since it depends
on the interpretation of relationship between source relations, to which x and x1

belong, and the destination relation of the xd x1.

The important drawback of this proposal is that it does not merge tuples that
are mergeable1 but not identical (i.e. tuples with null values), e.g. tuples t3 and
t4 in Figure 2.3. Thus, the whole data that the database has about an entity, is
not aggregated in one tuple, which thus adversely affects the quality of the query
results over the database. Our merge function, proposed in Chapter 5, does not
suffer from this shortcoming.

Deduplication in Probabilistic Data

Koosh [94] is a proposal for dealing with the ER problem, more specifically dedu-
plication definition (see Definition 1.2.2), over the x-relation data model. Koosh
takes a pairwise approach for matching the tuples using a generic match function.

1Two tuples are mergeable if their attribute values do not conflict with each other. Consider,
for instance, two tuples t1 “ p“A. S. Tanenbaum”,Kq and t2 “ pK, “Vrije Universiteit”q.

28 Chapter 2. Background and Related Work

A generic merge function is then used to merge the matched tuples into a tuple.
Koosh is built on the assumption that the confidence of match function in

matching two tuples affects the probability of the resulted merged tuple. For
instance, consider three tuples t1, t2, and t3 all having equal probabilities, and
suppose that the match function is 80% sure that t1 and t2 are a match, and 40%
sure that t2 and t3 are a match. Then, the tuple resulted from merging t1 and t2
gets higher probability than that of merging t2 and t3.

The above assumption makes the order in which the tuples are merged impor-
tant. As a result, it is required to consider different orders for merging the tuples,
which thus makes the ERPD (Entity Resolution in Probabilistic Data) problem
computationally more expensive than ER over deterministic data.

Besides dealing with the ERPD problem, where match and merge functions
are generic, Koosh has a number of more efficient variations, which are applicable
to match and merge functions with specific properties.

One of improvements is achieved by introducing the concept of domination.
Tuple t is said to be dominated by tuple t1, if t1 contains all of the attribute values
of t, and its probability is equal or higher than that of t. The match and merge
functions are said to have the domination property if the dominated tuples do
not participate in the generation of non-dominated tuples. In such a case, Koosh
removes dominated tuples as soon as they are generated in the ER process. Early
removal of dominated tuples improves the efficiency of the ER process.

The threshold property is another property, which is used to improve the
efficiency of Koosh. The threshold property holds if a tuple whose probability is
less than µ cannot participate in the generation of a tuple whose probability is
greater than µ, where µ is a user-specified threshold. In the match and merge
functions, for which the threshold property holds, the below-threshold tuples are
removed as soon as they are generated in the ER process. This improves the
efficiency of the ER process.

Koosh removes a duplicate tuple t from the database only when there is an-
other tuple that contains all data as t and has a higher probability than t. This
causes that Koosh often keeps the original duplicate tuples together with the
merged tuple in the cleaned database without adjusting their probabilities and
establishing a mutual exclusion relation between them. Thus, the amount of data
quality improvement by Koosh may not be noticeable.

The second shortcoming is that Koosh requires that the outcome of the merge
function be one tuple. In merging tuples with conflicting attribute values, this
requirement makes the merge function to either discard one of the values or keep
both values in the attribute. In the former case, the information is lost by the
merge function, and in the latter case, matching the merged tuple with other
tuples is hard to be done since the merged tuple represents several tuples not
one.

The third shortcoming is that Koosh just deals with the ER problem in single-
alternative x-relations, and does not consider multi-alternative x-relations.

2.2. Entity Resolution 29

Our proposal, presented in Chapter 5, deals with the deduplication problem in
the x-relation data model, while overcoming the shortcomings of Koosh method.

2.2.4 Conclusion

In this chapter, we reviewed the main approaches for dealing with the ER problem
both in deterministic and probabilistic data.

The only proposed approach in the literature [103] for matching x-tuples in the
x-relation probabilistic data model, which is the model on which we focus in this
thesis, is based on expected values which has two main drawbacks: 1) it may result
in unreliable matching of x-tuples due to ignoring the probability distribution of
possible worlds; and 2) it treats single-alternative and multi-alternative x-tuples
differently because probabilities are ignored completely for single-alternative x-
tuples. In the next chapter, we propose a new approach for matching x-tuples in
the x-relation data model. Our approach avoids the above mentioned problems.
In Chapter 4, we extend our model and algorithms for distributed systems.

The only proposal [102] for merging x-tuples in the x-relation data model
does not merge tuples with null values, which results in not aggregating the
whole data about an entity into one tuple. Moreover, the amount of data quality
improvement, which is achieved by the only proposal [94] for dealing with the
deduplication problem in the x-relation data model, may not be noticeable, which
is in contrast to the aim of deduplication. In Chapter 5, we propose a new
approach for the deduplication problem in the x-relation data model, which does
not suffer from the above shortcomings.

Finally, in Chapter 6, we propose an approach for automatic schema matching,
which arises in many applications that need to deal with the entity resolution
problem.

Chapter 3

Entity Resolution for Probabilistic
Data1

3.1 Introduction

As discussed in Chapter 1, the entity resolution (ER) problem is defined dif-
ferently in the literature. In this chapter, we focus on the identity resolution
definition of the ER problem (see Definition 1.2.1).

The ER problem arises in many applications that have to deal with probabilis-
tic data. Before proceeding, let us first motivate the need for ER in probabilistic
data (which we call ERPD), with an example from anti-criminal security domain.

3.1.1. Example. Suspect detection in anti-crime police database. The anti-
crime police is faced with many crimes every year. It spends a lot of time and
money gathering data about every crime from different sources such as witnesses,
interrogations, and informants. Nevertheless, some of the gathered data are not
certain, for some reasons, Such as the fact that the police cannot completely trust
informants and/or witnesses. To represent this uncertainty, probability values can
be attached to the data to show their likelihood of truth, according to the confi-
dence in the sources. These probabilistic data are used to find possible suspects,
and can also greatly speed up the investigation process. In a very simplified form,
the police maintains a single relation Suspects that contains data about suspects.
In this relation, each individual suspect is represented using an entity that con-
sists of a number of alternative tuples each associated with a probability value,
showing its likelihood of truth. When a crime occurs, detectives gather data
about the perpetrator, and the gathered data can be represented in the form of
an uncertain entity, say e. To get more information about the perpetrator rep-
resented by e, detectives are interested in answer to the following query: find in
the uncertain Suspects database, the person who is most probably the same person
as e. Notice that if there is more than one perpetrator, the police can represent

1The material of this chapter has been partially published in [17] and [21].

31

32 Chapter 3. Entity Resolution for Probabilistic Data

each one using an uncertain entity and repeat the process for each entity as far
as needed.

Existing ER approaches are not appropriate for answering the above query
since they match tuples only based on their similarity and completely ignore their
probabilities.

Inspired by the literature on uncertain data management, in this chapter we
adopt the well-known possible worlds semantics of uncertain data for defining the
semantics of the ERPD problem and propose efficient algorithms for computing
it. Developing an efficient solution for the ERPD problem however is challenging,
particularly due to the following reasons. First, we must take into account two
parameters for matching the entities: the similarity and the probability values.
Second, due to the uncertainty in the entity, we may find different similarity values
between the entity and the tuples of the database. Third, in the case of context-
sensitive similarity functions (see the definition in Section 3.2.2), the similarity
of two entities may be different in different possible worlds. A näıve solution for
ERPD involves enumerating all possible worlds of the uncertain entity and the
database. However, this solution is exponential to the number of tuples of the
database.

In this chapter, we address the ERPD problem and propose a complete solu-
tion for it. Our contributions are summarized as follows:

• We adapt the possible worlds semantics of probabilistic data to define the
problem of ERPD based on both similarity and probability of tuples.

• We propose a PTIME algorithm for the ERPD problem. This algorithm
is applicable to a large class of the similarity functions, i.e. context-free
functions. For the rest of similarity functions (i.e. context-sensitive), we
propose a Monte Carlo approximation algorithm.

• We deal with the problem of high response time of existing context-sensitive
similarity functions, which makes them very inefficient for the Monte Carlo
algorithm. We propose a new efficient context-sensitive similarity function
that is very appropriate for the Monte Carlo algorithm.

• We propose a parallel version of our Monte Carlo algorithm using the
MapReduce framework.

We have conducted an extensive experimental study to evaluate our approach for
ERPD over both real and synthetic datasets. The results show the effectiveness
of our algorithms. To the best of our knowledge, this is the first study of the
ERPD problem that adopts the possible world semantics and develops efficient
algorithms for it.

The rest of the chapter is organized as follows. In Section 3.2, we present our
data model, and define the problem we address. In Section 3.3, we propose our

3.2. Problem Definition 33

solution to the ERPD problem for context-free similarity functions. In Section 3.4,
we propose our solution for dealing with the ERPD problem when the similarity
function is context-sensitive. In Section 3.5, we report the performance evaluation
of our techniques over synthesis and real data sets. Section 3.6 discusses analysis
against related work, and Section 3.7 concludes.

3.2 Problem Definition

In this section, we first give our assumptions regarding the data model, and then
define the problem that we have addressed.

3.2.1 Data Model

For representing an uncertain database, we use the x-relation probabilistic data
model [10] in which each uncertain entity is represented with an x-tuple (see the
definition in Section 2.1.2).

We denote an uncertain database by D, the set of its possible worlds by
PW pDq, and the set of all tuples in D by D. We also define the set of possi-
ble worlds for an uncertain entity e and an uncertain database D, denoted by
PW pe,Dq, as follows:

PW pe,Dq “ tw | w “ ttu ˆ v, t P e, v P PW pDqu .

Notice that in each possible world w P PW pe,Dq only one alternative of the
uncertain entity e is valid.

3.2.2 Context-Free and Context-Sensitive Similarity Func-
tions

The entity resolution approach strongly depends on the given similarity function.
The similarity functions in the literature can be categorized into two classes:
context-free and context-sensitive. In a context-free similarity function, the sim-
ilarity value of two tuples only depends on their attribute values. Jaro-Winkler
[139], Monge-Elkan [96, 97] and Levenshtein [85] are examples of context-free sim-
ilarity functions. On the other hand, in a context-sensitive similarity function,
the similarity value of two tuples depends on the attribute values of the two tuples
and also on the relation to which they belong. This means that the similarity
of two tuples may change when the other tuples of the relation change. TF-IDF
[49] and Ranked-List-Merging [71] are examples of context-sensitive similarity
functions.

34 Chapter 3. Entity Resolution for Probabilistic Data

3.2.3 Problem Statement

While the ER problem is semantically clear in deterministic data, its semantics is
not clear in probabilistic data since we have to take similarity and probability into
consideration. In this section, we use the possible worlds semantics for defining
the semantics of the ERPD problem.

The interaction between the concepts of most similar and most probable makes
different definitions possible. The followings are two of the main definitions:

• Find the most similar tuple in the most probable world.

• Find the tuple that has the highest probability to be the most similar in all
possible worlds.

In our approach, we deal with the second definition since it takes into account
all possible worlds for finding the most similar tuple to the given entity.

Let us first consider the case where the entity e has a single alternative. In
this case, the probability that a tuple t P D be the most similar to e, say Pmspptq,
is equal to the cumulative probability of the possible worlds in which t is the most
similar tuple to e. We denote the tuple with maximum Pmsp as the most-probable
matching tuple for entity e.

In the case where the entity e has multiple alternatives, the most-probable
matching tuple needs to be extended by the alternative of e with which it is the
most-probable matching tuple, say pair pt, t1q, t P e, t1 P D. We refer to this pair
as most-probable matching pair and we use the first element of the pair for tuple
in entity e and the second element for a tuple in D. In addition to the most-
probable matching pair concept, uncertain data enables us to define another new
concept, which does not make sense in deterministic data: most-probable matching
entity. The most-probable matching entity e is an entity in D that has the highest
probability of being most similar to e. Also to avoid repetition, we refer to the
two concepts of the most-probable matching pair and the most-probable matching
entity as most-probable matches. Let us first intuitively explain these concepts
using an example.

3.2.1. Example. Consider the entity e and the Suspects database in the Figures
3.1(a) and 3.1(b), respectively. Let Sim be a similarity function that ranks all
possible tuple pairs of e and Suspects as they appear in Figure 3.1(c). Figure
3.1(d) shows the eight possible worlds of PW pe, Suspectsq, the probability of each
world, and the most similar pair (MSP) in each world. The result of computing
Pmsp for all pairs is shown in Figure 3.1(e). For instance, pair pte,1, t2,1q is MSP in
w3 and w4, thus, the cumulative probability that pte,1, t2,1q is the most similar pair
(denoted as Pmsp), is the sum of the probabilities of w3 and w4. We observe that
pair pte,2, t2,1q is the most-probable matching pair since it has the maximum Pmsp

among all other pairs. Figure 3.1(f) shows the result of computing Pmsp for all

3.2. Problem Definition 35

entity tuple Age Height Weight Eye color P

e
te,1 35-40 175-180 90+ Gray 0.4

te,2 25-30 185-190 - Blue 0.5

(a)

entity tuple Name Age Height Weight Gender Eye color P

e1
t1,1 N1 38 178 70 M Gray 0.6

t1,2 N1 36 168 80 M Hazel 0.4

e2 t2,1 N2 36 180 75 F Blue 0.4

(b)

Pair Rank

pte,1, t2,1q 1

pte,1, t1,1q 2

pte,2, t2,1q 3

pte,2, t1,2q 4

pte,1, t1,2q 5

pte,2, t1,1q 6

(c)

w PW(e, Suspects) msp(w) P(w)

w1 tpte,1, t1,1qu pte,1, t1,1q 0.4ˆ 0.36 “ 0.144

w2 tpte,1, t1,2qu pte,1, t1,2q 0.4ˆ 0.24 “ 0.096

w3 tpte,1, t1,1q, pte,1, t2,1qu pte,1, t2,1q 0.4ˆ 0.24 “ 0.096

w4 tpte,1, t1,2q, pte,1, t2,1qu pte,1, t2,1q 0.4ˆ 0.16 “ 0.064

w5 tpte,2, t1,1qu pte,2, t1,1q 0.5ˆ 0.36 “ 0.18

w6 tpte,2, t1,2qu pte,2, t1,2q 0.5ˆ 0.24 “ 0.12

w7 tpte,2, t1,1q, pte,2, t2,1qu pte,2, t2,1q 0.5ˆ 0.24 “ 0.12

w8 tpte,2, t1,2q, pte,2, t2,1qu pte,2, t2,1q 0.5ˆ 0.16 “ 0.08

(d)

Pair Pmsp

pte,2, t2,1q P(w7)+P(w8) = 0.2

pte,2, t1,1q P(w5) = 0.18

pte,1, t2,1q P(w3)+P(w4) = 0.16

pte,1, t1,1q P(w1) = 0.144

pte,2, t1,2q P(w6) = 0.12

pte,1, t1,2q P(w2) = 0.096

(e)

Entity Pmsp

e1 P(w1)+P(w2)+P(w5)+P(w6) = 0.54

e2 P(w3)+P(w4)+P(w7)+P(w8) = 0.36

(f)

Figure 3.1: a) Uncertain entity e, b) Uncertain database Suspects, c) Tuple pairs
ranked based on their similarity, d) Possible worlds set of e and Suspects, MSP in
each world, e) All pairs and their probability to be MSP (Pmsp), f) Entities and
their Pmsp

entities in the Suspects database. This figure shows that e1 is the most-probable
matching entity for entity e since it has the maximum Pmsp among all entities in
the database.

We now formally define the concept of most-probable matches.

3.2.2. Definition. Most-probable matches. Let D be an uncertain database on
schema SD. Let e be an uncertain entity on schema Se, and Se Ď SD. Let
w P PW pe,Dq be a possible world and P pwq be the probability that w occurs.
Let Sim be a similarity function for computing the similarity between tuples. Let
the most similar pair in a world w, denoted as msppwq, be the pair that has the

36 Chapter 3. Entity Resolution for Probabilistic Data

maximum similarity value among the pairs in w according to similarity function
Sim. Let ρ be a tuple pair in e ˆD. Let Pmsppρq be the aggregated probability
indicating that pair ρ is the most similar pair in PW pe,Dq, i.e.:

Pmsppρq “
ÿ

wPPW pe,Dq^ρ“MSPpwq

P pwq

Then, we define the most-probable matching pair of e and D, MPMP(e, D),
as:

MPMPpe,Dq “ arg max
ρPeˆD

Pmsppρq,

and the most-probable matching entity of e and D, MPME(e, D), as:

MPMEpe,Dq “ arg max
eiPD

ÿ

ρ“pt,t1qPeˆD,t1Pei

Pmsppρq.

MPMP(e, D) and MPME(e, D) together are called most-probable matches.

Given uncertain entity e, uncertain database D, and similarity function Sim,
our goal is to efficiently find the most-probable matches. In Sections 3.3 and 3.4,
we present our approach for finding the most-probable matches, respectively, for
the context-free and context-sensitive similarity functions.

3.3 Context-Free Entity Resolution

A straightforward solution for entity resolution over probabilistic data is to enu-
merate all possible worlds of the given entity and the database, i.e. PW pe,Dq,
cumulate for each match the probability of the possible worlds where the match is
the most similar, and finally return the match that has the highest probability to
be the most similar. However, this approach does not scale due to the exponential
number of possible worlds.

In this section, we consider the class of context free similarity functions for
the ERPD problem, and propose an efficient algorithm, called CFA, for dealing
with this problem. Then, we present two improved versions of our algorithm.

3.3.1 CFA Algorithm

In the case of context-free similarity function, the similarity score of a tuple pair
remains constant in all possible worlds where the tuple pair appears. We rely on
this fact to efficiently compute the most-probable matches without enumerating
the possible worlds set PW pe,Dq.

Let S be the set of all tuple pairs, i.e. S “ e ˆD, and ρ “ pt, tiq be a tuple
pair in S. Since alternative tuples of e are mutually exclusive, there is no possible

3.3. Context-Free Entity Resolution 37

world in PW pe,Dq containing the pair ρ together with pair ρ1 “ pt1, tjq, where
ρ1 P S, and t ‰ t1. Thus, to compute Pmsppρq, we just have to consider the subset
of tuple pairs in S which have t as their first elements, i.e. set ttu ˆD. We use
this fact to compute Pmsppρq.

Let t be an alternative tuple of the entity e, and L “ tt1, . . . , tnu be the list
of D tuples sorted based on their similarity with t in descending order. Let pt, tiq
be a tuple pair where ti is the tuple which lies in the ith index of the sorted list
L. We can calculate Pmsppt, tiq as the intersection of two independent events: t
occurs; and among the tuples t1 to ti, only the ti occurs. Considering x-tuple
correlations in calculating the probability of the latter event, we can calculate
Pmsppt, tiq as:

Pmsppt, tiq “ P ptq ˆ P ptiq ˆ
ź

xPXi

p1´ P pxqq (3.1)

where P is the occurrence probability of a tuple or x-tuple, and Xi is the set of
x-tuples formed by considering x-tuple correlations between the tuples t1 to ti´1

while the x-tuple containing ti, if any, is omitted from it. Using Equation (3.1),
our CFA algorithm computes Pmsp of all tuple pairs in set S and then uses Pmsps
to compute the most-probable matches.

Algorithm 1 describes the details of our approach for computing the most-
probable matches. This algorithm takes as input an uncertain x-relation database
D, uncertain x-tuple entity e, and context-free similarity function Sim. Steps
4-11 are repeated for every alternative t of e. Step 4 computes the similarity
score of t to every tuple of D; sorts the tuples based on their similarity scores;
and stores the result in list L. For each tuple Lris in list L, steps 6-9 compute
Pmsppt, Lrisq. Using Equation (3.1), we know that Pmsppt, Lrisq is the intersection
of two independent events: t occurs; and among tuples Lr1s to Lris only the Lris
occurs. For computing the probability of the latter event, the correlated tuples
have to be grouped together. This is done by steps 6-8. Step 6 puts the tuples
Lr1s to Lris in the set T and step 7 obtains the intersection of every x-tuple in D
with the members of T . The resulted set, i.e. X, contains the tuples of T grouped
into a number of x-tuples. Step 8 finds the x-tuple in X that includes tuple Lris
and removes it from X. Using Equation (3.1), Step 9 computes the Pmsp of the
pair pt, Lrisq. When the algorithm finishes computing the Pmsp of all pairs, step
13 finds the most-probable matches. This step finds the most-probable matching
pair by finding the record in set R with the maximum value for the Pmsp field. The
most-probable matching entity can be computed by aggregating the Pmsp field for
every entity ei P D and then finding the entity with maximum aggregated Pmsp

value.

Let us analyze the execution time of CFA algorithm. Let n be the number
of tuples involved in D, and m be the number of alternatives of e. Step 4 takes
Opnq time for computing the similarity scores and Opn ˆ log nq for sorting the
scores. An efficient implementation of steps 6-10 takes Opi `Nq time, where N

38 Chapter 3. Entity Resolution for Probabilistic Data

Algorithm 1 : CFA algorithm for context-free entity resolution

Input:
- D : Uncertain database
- e : Uncertain entity
- Sim : Context-free similarity function

Output: Most-probable matches
1: define list L
2: define set R and RÐH

3: for all t P e do
4: sort D tuples based on Simpt, tiq, ti P D, in descending order and store the result in L
5: for all i P r1.. |L|s do
6: T Ð tLr1s, . . . , Lrisu

7: X Ð tx | x “ x1 X T, x1 P D, x ‰ Hu
8: X Ð X ´ tx | x P X,xX Lris ‰ Hu

9: Pmsp Ð P pLrisq ˆ P ptq ˆ
ś

xPX

ˆ

1´
ř

tPx
P ptq

˙

10: add record pt, Lris, Pmspq to set R
11: end for
12: end for
13: find the most-probable matches using set R and return them

is the number of x-tuples in D. Thus, steps 5-11 take
n
ř

i“1

Opi`Nq time, which is

Opn2q since N ď n. Therefore, steps 4-11 are done in Opn2q. Since these steps are
repeated m times (i.e. the number of alternatives of e), steps 3-12 take Opmˆn2q

time. Step 13 takes Opmˆnq time, which is dominated by Opmˆn2q. Thus, the
total execution cost of the algorithm is Opmˆ n2q.

3.3.2 Improving CFA Algorithm

In this section, we address improving the efficiency of the CFA algorithm by
computing Pmsp of a subset of pairs in the set e ˆD. We consider two versions
of the CFA algorithm as follows:

• CFA-MPMP: that only computes MPMPpe,Dq, i.e. the most-probable
matching pair.

• CFA-MPME: that only computes MPMEpe,Dq, i.e. the most-probable
matching entity.

As we will show in Section 3.5, the number of visited pairs in CFA-MPMP
and CFA-MPME algorithms is significantly less than that of the CFA algorithm.
As a result, to further speedup these algorithms, we do not sort pairs based on
their similarity scores in Step 4 of Algorithm 1, but instead we implement an
iterator interface to incrementally provide next pair with the highest score, when
it is needed by the algorithm.

3.3. Context-Free Entity Resolution 39

CFA-MPMP Algorithm

Consider the sorted list L in the CFA algorithm. The core idea in improving
CFA is that after computing Pmsppt, Lrisq, we compute an upper bound on the
Pmsp values of the pairs that come after Lris in the list L. If the computed upper
bound is smaller than the maximum Pmsp value which has been computed so far,
then we stop processing the list L. The following lemma computes such upper
bound.

3.3.1. Lemma. Let t be an alternative of the uncertain entity e. Let L with size
n be the list of D tuples sorted based on their similarity with t in descending order.
Then:

@i P r1..ns, Pmsppt, Lrisq ď P ptq ´
ÿ

jPr1..i´1s

Pmsppt, Lrjsq (3.2)

Proof. We first show that:
ÿ

jPr1..ns

Pmsppt, Lrjsq “ P ptq. (3.3)

Let Wt be the subset of possible worlds that contain tuple pairs in the from of
pt, Lrjsq, j P r1..ns, i.e. Wt “ tw | w “ ttu ˆ v, v P PW pDqu. We have:

LHS(3.3) “
ÿ

wPWt

P pwq “
ÿ

vPPW pDq

P ptq ˆ P pvq

“ P ptq ˆ
ÿ

vPPW pDq

P pvq “ P ptq “ RHS(3.3).

Thus, P ptq is an upper bound on Pmsppt, Lrisq. However, to obtain a tighter
upper bound on Pmsppt, Lrisq, we can deduct the probability of possible worlds in
which a tuple pair other than pt, Lrisq is the most similar pair. This means that
P ptq´Pmsppt, Lrjsq, j ‰ i, is an upper bound on Pmsppt, Lrisq, and so is RHS(3.2).
l

3.3.2. Corollary. Let t be an alternative of the uncertain entity e. Let L with
size n be the list of D tuples sorted based on their similarity with t in descending
order. Then:

@i P r1..ns, @j P ri..ns, Pmsppt, Lrjsq ď P ptq ´
ÿ

kPr1..i´1s

Pmsppt, Lrksq

Corollary 3.3.2 implies that the computed upper bound on Pmsppt, Lrisq in
Lemma 3.3.1 is also an upper bound on the Pmsp value of the pairs that come
after Lris in the list L. Using Corollary 3.3.2, the CFA-MPMP algorithm can
stop early in visiting the pairs of the list L. Let us illustrate the CFA-MPMP
algorithm using an example.

40 Chapter 3. Entity Resolution for Probabilistic Data

entity tuple P

e
te,1 0.8

te,2 0.1

(a) e

entity tuple P

e1 t1,1 0.9

e2
t2,1 0.5

t2,2 0.1

e3

t3,1 0.6

t3,2 0.3

t3,3 0.1

e4
t4,1 0.7

t4,2 0.2

(b) D

t Pmsppte,1, tq upper bound

t2,2 0.08 0.72

t4,1 0.504 0.216

t1,1 - -

t3,2 - -

t3,3 - -

t2,1 - -

t4,2 - -

t3,1 - -

(c) List L

Figure 3.2: a) An uncertain entity e, b) A database D, c) List L, Pmsp, and upper
bound values

3.3.3. Example. Consider uncertain entity e and uncertain database D shown
in Figures 3.2(a) and 3.2(b), respectively. Let Sim be a context-free similarity
function. Let L, shown in Figure 3.2(c), be the list of D’s tuples sorted based on
their similarity with te,1, where the similarity scores are computed using Sim.

After visiting the first tuple in L, the value of Pmsppte,1, t2,2q is computed as
the probability of the event that te,1 and t2,2 occur, thus, Pmsppte,1, t2,2q is equal
to P pte,1q ˆ P pt2,2q “ 0.08. The upper bound is equal to P pte,1q ´ Pmsppte,1, t2,2q
which is equal to 0.072. This is an upper bound on the Pmsp values that we obtain
if we continue processing list L, and since the computed upper bound is greater
than the yet computed maximum Pmsp value, i.e. 0.08, we continue processing
the list.

After visiting the second tuple in L, the value of Pmsppte,1, t4,1q is computed as
the probability of the event that te,1 and t4,1 occur but t2,2 does not occur, which
is equal to P pte,1q ˆ P pt4,1q ˆ p1´ P pt2,2qq “ 0.504. The upper bound is equal to
P pte,1q ´Pmsppte,1, t2,2q ´Pmsppte,1, t4,1q which is equal to 0.216. At this point, we
stop processing the list since the computed upper bound is already less than the
so far computed maximum Pmsp value, i.e. 0.504.

It is not necessary to consider the tuple pairs whose first element is te,2 because
the upper bound on their Pmsp values is P pte,2q “ 0.1, which is less than the so far
computed maximum Pmsp . Thus, Pmsppte,1, t4,1q is maximum among all pairs, and
hence, is MPMP pe,Dq. Notice that we only process two pairs out of the whole
16 pairs for computing MPMP pe,Dq. Thus, we gain a very good improvement,
compared to the basic version of the CFA algorithm.

CFA-MPME Algorithm

We know that the sum of the Pmsp values of all pairs is a constant. Therefore, we
use this fact to stop early in the CFA algorithm when the probability of the so
far computed most-probable matching entity, say entity emax P D, is high enough

3.4. Context-sensitive Entity Resolution 41

that none of the other entities in the database can obtain such probability. Such
condition holds when even if all of the uncomputed Pmsp values goes to each of
the competitors of emax , the probability of that competitor is still less than that of
emax . The following lemma defines the condition for stopping early in computing
MPME using the CFA algorithm.

3.3.4. Lemma. Let V be the set of pairs that we have computed their Pmsp values
so far. Let ei be an entity in D and Paggpeiq be its so far computed aggregated
probability to be MPME, i.e.

Paggpeiq “
ÿ

pt,t1qPV,t1Pei

Pmsppt, t
1
q.

Let emax be the entity with maximum Pagg value. Then:

@ei P D,ei ‰ emax, Paggpeiq `

˜

ÿ

tPe

P ptq ´
ÿ

ρPV

Pmsppρq

¸

ă (3.4)

Paggpemaxq ñ emax “MPMEpe,Dq.

Proof. We know that sum of the Pmsp of all pairs is equal to sum of the proba-
bilities of e’s alternatives, i.e.

ř

ρPeˆD Pmsppρq “
ř

tPe P ptq.

Thus, the term
´

ř

tPe P ptq ´
ř

ρPV Pmsppρq
¯

in LHS(3.4) is equal to the sum of

the uncomputed Pmsp values, and LHS(3.4) means that even by adding this value
to each of the entities in the database other than emax, their probability to be
MPME is still less than that of emax. As a result, based on Definition 3.2.2, it is
clear that if the condition in LHS(3.4) holds, emax is equal to MPME pe,Dq. l

We check the stop condition after computing Pmsp in Step 9 of Algorithm 1,
and the algorithm ends if the condition holds.

As an example consider uncertain entity e and uncertain database D shown in
Figures 3.2(a) and 3.2(b) respectively. The sum of the probabilities of e’s alter-
natives is equal to 0.9. After visiting the first two pairs of list L, shown in Figure
3.2(c), and computing Pmsppte,1, t2,2q and Pmsppte,1, t4,1q, we have: Paggpe1q “ 0,
Paggpe2q “ 0.08, Paggpe3q “ 0, and Paggpe4q “ 0.504. The sum of so far com-
puted Pmsps is equal to 0.584 and the sum of non-computed Pmsps is equal to
0.9´0.584 “ 0.316. The entity e4 is MPME since even if all non-computed Pmsps
are from an entity other than e4, its Pagg is still less than that of e4.

3.4 Context-sensitive Entity Resolution

In this section, we focus on context-sensitive similarity functions for the ERPD
problem, and present a Monte Carlo approach for approximating the most-probable
matches. Then, we propose two solutions for improving the performance of the
Monte Carlo algorithm.

42 Chapter 3. Entity Resolution for Probabilistic Data

3.4.1 Monte Carlo Algorithm

When the similarity function is context-sensitive, the similarity between two tu-
ples may change when the contents of the database changes. For instance, when
using TF-IDF, adding or removing tuples to/from database, may change the fre-
quency of the terms in the database, which in turn changes the similarity score
of two tuples. This means that the similarity of two tuples in different possible
worlds does not remain constant. Therefore, we cannot use the CFA algorithm
for computing most-probable matches.

In the absence of an efficient exact algorithm for ERPD in the case of context-
sensitive similarity functions, we use the randomized algorithm Monte Carlo (MC)
for approximating the answer. The MC algorithm repeatedly chooses at random a
possible world and an alternative of the uncertain entity, and computes the tuple
pair that is the most similar to the chosen entity alternative. For each pair ρ “
pt, t1q, the probability Pmsppρq of being the most similar match, is approximated
by P 1msppρq, which is the fraction of times that t was the most similar to t1 in
the sampled possible worlds. The MC algorithm guarantees that after sampling

M possible worlds, P 1msppρq is in the interval
”

Pmsppρq ´
zδ?
M
, Pmsppρq `

zδ?
M

ı

with

the confidence 1´δ, where P t´z ď Np0, 1q ď zu “ 1´δ, Np0, 1q is the standard
normal distribution, and δ is the deviation of the distribution.

Notice that the probabilities of the individual possible worlds are taken into
account in the way that a high probable possible world is chosen with a higher
likelihood, than a less probable world.

3.4.2 Parallel MC

In this subsection, we propose a parallel version of our MC algorithm, denoted
as MC-MapReduce, which we have developed using the MapReduce framework.
Let us briefly introduce MapReduce that is a framework for parallel processing
of large datasets in two phases : map and reduce. In the map phase, the system
partitions the input dataset into a set of disjoint units (denoted as input splits)
which are assigned to workers, known as mappers. In parallel, each mapper scans
its input split and applies a user-specified map function to each record in the
input split. The output of the user’s map function is a set of xkey, valuey pairs
which are collected for MapReduce’s reduce phase. In the reduce phase, the key-
value pairs are grouped by key and are distributed to a series of workers, called
reducers. Each reducer then applies a user-specified reduce function to all the
values for a key and outputs a final value for the key. The collection of final
values from all of the reducers is the final output of MapReduce.

Given an uncertain entity e, an uncertain database D, and M as the number
of iterations in the MC algorithm, the idea of our MC-MapReduce algorithm
is to ask M mappers to do one iteration of the MC algorithm in parallel, then
collect the results of mappers in the reduce phase, and compute the most-probable

3.4. Context-sensitive Entity Resolution 43

matches.
MC-MapReduce algorithm works as follows. It gets e, D, and the required

parameters of the MC algorithm (e.g. δ and ε) as input, and computes M as the
number of possible worlds that it should sample to obtain the desired confidence.
Then, MC-MapReduce assigns M mappers to do the map function.

Algorithm 2 shows the pseudo code of the map function. Steps 1-2 generate
an alternative of e, say t, and a possible world of D, say w, at random. Step 3
computes the most-similar tuple of w to t, say tmax. Steps 4-6 return the key-
value pair xpt, tmaxq, 1y as the output of the map function; meaning that the pair
pt, tmaxq has been the most-similar pair in one possible world.

The MapReduce framework receives all generated pairs and sends all pairs
with the same key to one reducer. Algorithm 3 shows the pseudo code of the
reduce function. This algorithm gets pt, t1q as key and the set of values V , which
contains a set of 1 values, as input. Then, it simply counts the number of members
of V and generates the final key-value pair xpt, t1q, |V |y as the output of the reduce
function.

Algorithm 4 shows the steps which are performed by MC-MapReduce after
all mappers and reducers finish their task. This algorithm gets all key-value pairs
xpt, t1q, vy as input. Then, it approximates Pmsp of tuple pair pt, t1q by dividing
the number of times that it has been the most-similar pair, i.e. v, by M , i.e. the
sum of occurrence of all tuple pairs. Using these probabilities, MC-MapReduce
approximately computes the most-probable matches.

3.4.3 CB Similarity Function

Most of the context-sensitive similarity functions in the literature need to com-
pute some statistical features of the data, e.g. the rarity of words, to setup the
similarity function. Such similarity functions mostly work at the word or q-gram
level, meaning that they need to perform a lot of rather costly string comparison
operations during the setup, which result in the low efficiency of these functions.
In many applications, spending a significant amount of time for setting up the
similarity function is reasonable since we setup the function once and use it many
times. However, this is not the case for our MC algorithm because for each se-
lected possible world, we have to spend a significant time to setup the similarity
function which is used only once, i.e. for the selected possible world.

To improve the efficiency of the MC algorithm, we propose a new context-
sensitive similarity function, called CB (Community Based), that significantly
reduces the number of string comparison operations by working at the attribute
level rather than at the word or q-gram level. An important feature of CB, in
contrast to most other matching methods that work at the attribute level, is
that it does not need the specification of weights for representing the relative
importance of individual attributes. As we will show in Section 3.5, our simi-
larity function significantly outperforms the baseline context-sensitive similarity

44 Chapter 3. Entity Resolution for Probabilistic Data

Algorithm 2 Map function

Input:
- xe,Dy, where e is an uncertain entity, and D is an uncertain database
- context-sensitive similarity function Sim

1: generate an alternative t of e at random
2: generate a possible world w of D at random

3: tmax Ð arg maxt1Pw Simpt, t1q

4: key Ð pt, tmaxq

5: valueÐ 1
6: Emit xkey, valuey

Algorithm 3 Reduce function

Input:
- key pt, t1q, where t P e, t1 P D

- value set V

1: key Ð pt, t1q

2: valueÐ |V |

3: Emit xkey, valuey

Algorithm 4 Finalize

Input: set S of key-value pairs xpt, t1q, vy
Output: most-probable matches

1: M Ð
ř

xpt,t1q,vyPS

v

2: for all pair xpt, t1q, vy P S do

3: Ppt,t1q Ð v{M

4: end for
5: compute most-probable matches using P

functions in terms of response time, while offering good performance according
to success-rate and F1 metrics.

In CB, we give more importance to more discriminative attributes of tuples
by introducing a novel concept called community. A community C of a relation
D is defined as the subset of all D’s tuples that are similar (i.e. their similarity
is more than a threshold) based on a non-empty subset of D’s attributes. Based
on this definition, each attribute partitions tuples into a number of communities,
and each tuple belongs to a number of communities based on the values of its
attributes. For illustration, consider Figure 3.3(b) which shows a relationD on the
schema SD(gender, city, age-range) for describing people. As an example, let us
take community C1 “ tt3, t4, t5, t6, t7, t8u that represents females and community
C2 “ tt6, t7, t8u that contains all females who live in city ‘A’. Notice that a

3.4. Context-sensitive Entity Resolution 45

Gender City Age-range

t F A 18-40

(a)

ti Gender City Age-range

t1 M B 18-40

t2 M B 0-17

t3 F B 18-40

t4 F B 41-64

t5 F B 41-64

t6 F A 18-40

t7 F A 18-40

t8 F A 41-64

t9 M A 65+

t10 M C 18-40

(b)

ti Cmin(t, ti) Score(t, ti)

t1 {t1,t3,t6,t7,t10} 1´ plog 5{ log 10q “ 0.3

t2 H 0

t3 {t3,t6,t7} 1´ plog 3{ log 10q “ 0.52

t4 {t3,t4,t5,t6,t7,t8} 1´ plog 6{ log 10q “ 0.22

t5 {t3,t4,t5,t6,t7,t8} 1´ plog 6{ log 10q “ 0.22

t6 {t6,t7} 1´ plog 2{ log 10q “ 0.7

t7 {t6,t7} 1´ plog 2{ log 10q “ 0.7

t8 {t6,t7,t8} 1´ plog 3{ log 10q “ 0.52

t9 {t6,t7,t8,t9} 1´ plog 4{ log 10q “ 0.4

t10 {t1,t3,t6,t7,t10} 1´ plog 5{ log 10q “ 0.3

(c)

Figure 3.3: a) An example tuple t, b) An example relation D, c) the similarity of
D tuples to t

tuple that is not involved in a relation can be considered as a member of some
communities of the relation. Take as example the tuple t in Figure 3.3(a), which
can be considered as a member of the above mentioned communities C1 and C2.

In CB, the similarity of two tuples t and t1 depends on the size of the small-
est community, say community Cminpt, t

1q, to which they belong. For instance,
considering Figures 3.3(a) and 3.3(b), Cminpt, t8q “ tt6, t7, t8u and Cminpt, t1q “
tt1, t3, t6, t7, t10u. Notice that Cmin of two tuples is their most discriminative com-
munity. CB defines the similarity between tuples based on Cmin as follows.

3.4.1. Definition. CB similarity function. Let t be a tuple, D a relation, and
ti P D a tuple in D. Let Cminpt, tiq be the smallest community to which t and ti
belong. The similarity score of t to ti, denoted as scorept, tiq, is defined as

scorept, tiq “

#

1´ log|Cminpt,tiq|
log|D|

if |Cminpt, tiq| ‰ 0

0 if |Cminpt, tiq| “ 0

46 Chapter 3. Entity Resolution for Probabilistic Data

According to CB, the smaller the size of the smallest community to which the
two tuples belong, the more similar are the two tuples, and if they do not belong
to any common community, they are not similar at all.

An important property of CB is that the similarity value of two tuples drops
as the number of tuples similar to them grows. In other words, a match between
two tuples on a set of attributes is more significant if there is less number of other
tuples similar to them on those attributes.

Let us now deal with computing the smallest community of two tuples. A
näıve way for computing Cmin of two tuples is to enumerate all communities to
which the two tuples belong, and then return their smallest common community.
However, this approach does not scale well, because the number of communities
to which a tuple belongs is exponential to the number of attributes of the tuple.

Using the following lemma, we propose an efficient method for computing
Cmin of two tuples.

3.4.2. Lemma. Let t be a tuple, D a relation, and ti P D a tuple in D. Suppose f
is a similarity function that computes the similarity between two attribute values.
Let Si be the set of attributes in which t is similar to ti according to the similarity
function f , and Di Ď D be the set of tuples that are similar to t in all attributes
involved in Si. Then, Cminpt, tiq “ Di.

Proof. Let Da Ď D be the set of tuples that are similar to t in the attribute
a P Si. According to the definition of Di we have Di “

Ş

aPSi
Da. We show that

Cminpt, tiq “
č

aPSi

Da. (3.5)

The Da communities, where a P Si, are the only communities to which both
tuples t and ti belong. Thus, the communities which are based on the attributes
that are not in set Si, cannot contribute in RHS(3.5). We prove Equation (3.5)
based on induction on the number of attributes in set Si, i.e. |Si|. The inductive
basis is for |Si| “ 1, when it is easy to observe the correctness of (3.5). By the
inductive hypothesis, we have

Cminpt, tiq “
č

aPSi

Da, (3.6)

where |Si| “ m ´ 1. Let am be the attribute which is added to set Si, and C 1min
be RHS (3.6)

Ş

Dam . It is clear that both tuples t and ti belong to RHS (3.6) and
Dam , thus both of them belong to C 1min. In addition, RHS (3.6) is the smallest
common community of t and ti on attributes |Si| “ m´1. Thus, RHS (3.6)

Ş

Dam

is their smallest common community when we add am to Si. Thus, C 1min “
Cminpt, tiq, where |Si| “ m. l

3.4. Context-sensitive Entity Resolution 47

According to Lemma 3.4.2, for computing Cminpt, tiq it is sufficient to find the
set of attributes in which t and ti are similar, and then return the set of D’s tuples
that are similar to t in those attributes. As an example, Figure 3.3(c) shows Cmin
and similarity of each tuple of relation D to tuple t. Notice that there is no need
for attribute values to be equal, but their similarity should be greater than a
predefined threshold. We may use any string similarity function for obtaining the
similarity of individual attribute values.

CB is context-sensitive since the similarity of two tuples depends not only on
their attribute values, but also on the other tuples of the relation to which they
belong.

Algorithm 5 CB similarity function

Input:
- tuple t
- database D “ tt1, . . . , tnu
- similarity function f

Output: array Scorerns, where Scoreris represents Scorept, tiq
1: define hash table H and H ÐH

2: for all ti P D do
3: compute Si Ď SD as the set of attributes in which ti is similar to t according to f

// let Di Ď D be the set of tuples that are similar to t in all attributes involved in Si

// according to f
4: if H contains key Si then
5: retrieve |Di| as the value for key Si from hash table H
6: else
7: compute Di and store key-value pair xSi, |Di|y in hash table H
8: end if
9: if |Di| ‰ 0 then

10: Scoreris Ð 1´ log|Di|

log|D|

11: else
12: Scoreris Ð 0
13: end if
14: end for

CB Algorithm

Algorithm 5 shows the pseudo code of the CB similarity function. It takes as
input tuple t, a set of tuples D, and similarity function f , which is used for
matching the attribute values. For every tuple in the database, say ti, steps 3-13
compute its similarity score. Step 3 computes the subset Si of attributes in which
t and ti are similar. Steps 4-8 either compute or use the already computed set
Di of tuples that are similar to t in all attributes of Si. The algorithm uses a
hash table for managing the key-value pairs xSi, |Di|y. Steps 9-13 compute the
similarity score based on the size of the set Di.

Notice that for each subset Si of attributes, we compute the set of tuples that
are similar in the attributes of Si, only once. For instance in Figure 3.3(c), once we

48 Chapter 3. Entity Resolution for Probabilistic Data

compute the set of tuples that are similar to tuple t in attribute set tage-rangeu,
we use it for computing both scorept, t1q and scorept, t10q. This greatly reduces
the execution cost of the algorithm.

In order to increase the efficiency of the algorithm, we compute a binary
matrix, say matrix M , where M risrjs stores the result of matching the value
of jth attribute of t with that of ti. This avoids multiple computation of the
matching result of two attribute values.

Cost analysis

Let us analyze the execution time of Algorithm 5. Suppose n be the number of
tuples involved in relation D, and k be the number of attributes that are common
in the schemas of t and D. Let SD be the set of attributes in D’s schema. For
each tuple ti P D, the algorithm computes the set of attributes Si Ď SD in which
ti is similar to t. Then, it finds the set of tuples Di Ď D that are similar to t
in all attributes involved in Si if set Di has not already been computed. In the
worst case, these steps take Opnˆkq. These steps are repeated for computing the
similarity score of each tuple ti P D. Thus, in total the CB algorithm is executed
in Opnˆ k ˆ lq, where l is the number of different Si sets. Since l is bounded by
n, in the worst case, the CB algorithm is executed in Opn2 ˆ kq. However, our
experiments show that l is far less than n. Thus, the average execution time of
this algorithm is much better than its worst case performance.

3.5 Performance Evaluation

In this section, we study the effectiveness of our algorithms through experimen-
tation over synthetic and real datasets. The rest of this section is organized as
follows. We first describe our experimental setup. Then, we study the perfor-
mance of the CFA and MC algorithms. Afterwards, we compare the performance
of our similarity function with competing approaches. Finally, we summarize the
performance results.

3.5.1 Experimental setup

We have implemented our algorithms CFA, CFA-MPME, CFA-MPMP, MC, and
our CB similarity function in Java. We implemented the MapReduce version
of the MC algorithm using Hadoop framework. We compare CB with Jaccard,
Levenshtein, SoftTF-IDF and the soft version of FlexiTF-IDF, which we denote
as Flexi (refer to Section 2.2.1 for definitions). We used the SecondString Java
package2 for implementing these similarity functions. The SoftTF-IDF and Flexi
functions use a similarity function for finding similar tokens inside attributes.

2http://secondstring.sourceforge.net

3.5. Performance Evaluation 49

Also, CB uses a similarity function for finding similar attributes. For this purpose,
we used Jaro-Winkler similarity function for all of these methods and we used
the same similarity threshold for all of them.

Table 3.1: Datasets used in experiments. Source is the place in which the dataset
was originally introduced, k is the number of used attributes, and n is the number
of tuples of the dataset

Name Source k n

Cora [92] 3 1,295

Restaurant [124] 4 864

Census [76] 6 3,000

Synthetic - 5..1, 500 10..2, 000, 000

The benchmark datasets that we use for our experiments are listed in Table
3.1. The Cora, Restaurant, and Census datasets have been frequently used in
the literature to evaluate similarity functions, e.g. [92, 124, 76, 31, 58, 30]. The
duplicate tuples of these datasets have been labeled. The Cora dataset includes
bibliographical information about scientific papers in 12 different attributes from
which we only use author, title, and venue attributes. The Restaurant dataset
includes the name, address, city, and the type attributes of some restaurants. The
Census dataset is census-like data from which we only use the textual attributes,
i.e. first name, middle initial, last name, street, city, and state. In order to be
able to control characteristics of the dataset, we use the Synthetic database which
we generate ourselves.

We use a number of wordlists3 for the attribute values of the Synthetic database.
To generate the database, we use one wordlist, say wordlist W , for each attribute
and distribute the words in that wordlist over that attribute using a Gaussian
distribution with a mean of |W | {2 and a deviation of |W | {6, where |W | is the
size of the wordlist W .

To evaluate the performance of CFA, CFA-MPME, CFA-MPMP, and MC
algorithms, we use a probabilistic version of the Synthetic database. To control
the characteristic of the database, we introduce dx, called the x-degree, as the
maximum number of alternatives in an x-tuple, n as the number of tuples in the
database, and k as the number of attributes in the database. To generate the
database, we first generate non-probabilistic Synthetic database as we explained
above, then we add an attribute named probability to the database and convert
the generated database into a probabilistic database as follows. We generate d
as a uniform random number in r1, dxs, repeatedly pick d tuples at random, and
group them into an x-tuple. The alternative tuples of the generated x-tuple are
supposed to represent the same entity. To emulate this scenario, we randomly

3ftp://ftp.ox.ac.uk/pub/wordlists

50 Chapter 3. Entity Resolution for Probabilistic Data

choose one of the x-tuple’s alternatives as the seed tuple, say t, and for each of the
other d´1 alternatives, say t1, we do the following: we randomly choose tkˆ0.8u

attributes of t1 and change their values with corresponding attribute values of
t. For the probability attribute of the xtuple’s alternatives, we use a discrete
Gaussian distribution4 with a mean of 0 and a deviation of 0.2. We repeat the
process of generating x-tuples until we group all tuples in valid x-tuples. We
use the default value dx “ 10. We generate the uncertain entity needed for
experiments, in the same way that we generate a valid x-tuple and always with
3 alternatives. As a context-free similarity function, we use the Jaro-Winkler
similarity function [139] to evaluate the CFA algorithms. When comparing the
MC algorithm with the näıve approach, we use CB similarity function in the näıve
approach and the MC algorithm. Moreover, to study the performance of different
context-sensitive similarity functions in the MC algorithm, we use SoftTF-IDF,
Flexi, and CB similarity functions. To the best of our knowledge, in the literature
there is no approach for computing most-probable matches other than expanding
the possible worlds, i.e. the näıve approach. Thus, in addition to our algorithms,
we report the performance results of the näıve approach.

Method and performance metrics. We use success-rate and F-measure
(also called F1 score) for comparing the efficiency of different similarity functions.
Our method for measuring the success-rate is described as follows. We repeatedly
pick a tuple t from dataset D. If t has at least one duplicate tuple in D, except
itself, we remove t from D and give the task of finding the most similar tuple in
the dataset to t, to the similarity function. If the similarity function returns the
duplicate tuple of t, we denote the search as a successful search. We repeat this
process for all of the tuples of the dataset. The fraction of times the search is
successful denoted as success-rate of the similarity function for dataset D.

We also perform a self-join on the test datasets to measure the performance of
different similarity functions. The self-join operation over the dataset D returns
all tuple pairs in D, say pt, t1q, t ‰ t1, whose similarity is more than a certain
specified threshold θ. To summarize the test results, we use the maximum F1
score. The F1 score for a threshold is defined as

F1 “
2ˆ precisionˆ recall

precision` recall

where precision is the percentage of returned tuple pairs that are duplicates, and
recall is the percentage of duplicate tuple pairs that are returned by the self-join
operation. The maximum F1 score is simply the maximum value of F1 that is
obtained for different threshold values.

To evaluate the scalability of different similarity functions, we measure their
response time, which is the time that it takes to find the tuple most similar to a

4Indeed, we use a continuous Gaussian distribution with a mean of 0 and a deviation 0.2,
say P pxq, then we divide the range [-0.6..0.6] into d equal ranges, say r1, . . . , rd, and for each
range ri compute the value of P px P riq.

3.5. Performance Evaluation 51

given tuple.
To evaluate the performance of the CFA and MC algorithms, we measure their

response time and compare it with the näıve approach. Moreover, to compare
the performance of the CFA algorithm with its two improved versions (i.e. CFA-
MPME and CFA-MPME), we measure the number of tuple pairs which are visited
by these algorithms.

We conducted our single-machine experiments on a Windows 7 machine with
Intel Xeon 3.3 GHz CPU and 32 GB memory. For the MapReduce implementa-
tion, we used the Sara Hadoop cluster5 which consists of 20 machines each with
Dual core 2.6 GHz CPU and 16 GB memory.

3.5.2 Results

Performance of CFA and MC algorithms

In this section, we study the performance of CFA, CFA-MPME, CFA-MPMP,
and MC algorithms. We use the synthetic database as our test database. In our
experiments, we set the δ parameter of the MC algorithm to 0.1 (see Section 3.4).

0 500 1,000 1,500 2,000
103

104

105

106

n pˆ103q

ti
m

e
(m

s)

Naive

CFA

CFA-MPME

CFA-MPMP

Figure 3.4: Response times of Näıve
and CFA algorithms

0 500 1,000 1,500 2,000

101

103

105

107

n pˆ103q

v
is

it
ed

p
ai

rs

CFA

CFA-MPME

CFA-MPMP

Figure 3.5: The number of visited
pairs vs. n in CFA algorithms

With n increasing up to 2,000,000, Figure 3.4 compares the response time of
the näıve approach with that of CFA, CFA-MPME and CFA-MPMP. This figure
shows that the response time of the näıve approach increases exponentially with
n but that of CFA increases very smoothly.

The performance gain of CFA-MPME and CFA-MPMP over CFA is notice-
able.In order to better compare the performance gain of CFA-MPME and CFA-
MPMP over CFA, Figure 3.5 shows the number of visited tuple pairs in these

5http://www.sara.nl/project/hadoop

52 Chapter 3. Entity Resolution for Probabilistic Data

algorithms. We observe that while CFA-MPMP significantly outperforms CFA,
its number of visited tuple pairs is almost constant and independent from n.
Moreover, although the performance gain of CFA-MPME is far less than that of
CFA-MPMP, it is still noticeable.

We conducted experiments to study the effectiveness of different context-
sensitive similarity functions in the MC algorithm. Figure 3.6 shows the response
times of the näıve approach and two implementations of the MC algorithm, i.e.
on a single machine and on the MapReduce framework, using different similarity
functions. Overall, both on a single machine and using the MapReduce frame-
work, CB significantly outperforms SoftTF-IDF and Flexi. The response times of
SoftTF-IDF and Flexi increases dramatically with increasing n, while that of CB
increases smoothly. Figure 3.6 also shows that the MapReduce implementation
always outperforms the single-machine implementation in SoftTF-IDF and Flexi.
However, in CB, the MapReduce implementation outperforms the single-machine
implementation for n ą 6, 000. This is because the overhead of the MapReduce
framework is more than its gain for small values of n. Notice that the response
times of SoftTF-IDF and Flexi are so close that cannot be differentiated in the
figure.

101 102 103 104
0

500

1,000

1,500

n

ti
m

e
(s

)

Naive

Soft

Flexi

CB

Soft (MR)

Flexi (MR)

CB (MR)

Figure 3.6: Response times of naive
and different implementations of MC

Census Cora Restaurant
0

0.2

0.4

0.6

0.8

1

su
cc

es
s-

ra
te

CB Soft Flexi Jaccard Levenstien

Figure 3.7: Success-rate of similarity
functions over different datasets

Performance of CB

In this section, we compare the performance of the CB similarity function with
other competing similarity functions.

Figures 3.7 and 3.8 respectively compare the success-rate and maximum F1
of CB, SoftTF-IDF, Flexi, Jaccard, and Levenshtein similarity functions over the
Cora, Restaurant, and Census datasets. We observe that CB always performs

3.5. Performance Evaluation 53

a little less than the best similarity function and never is the worst similarity
function.

Figure 3.9 shows the average response time of performing a search for dif-
ferent similarity functions over different datasets. CB outperforms all similarity
functions over all datasets. The performance gain is significant for the context-
sensitive similarity functions (i.e. SoftTF-IDF and Flexi) over all datasets. This
is one of the reasons that SoftTF-IDF and Flexi perform inefficiently in the MC
algorithm.

Census Cora Restaurant
0

0.2

0.4

0.6

0.8

1

m
ax

-F
1

CB Soft Flexi Jaccard Levenstien

Figure 3.8: Max-F1 of similarity func-
tions over different datasets

Synthetic Census Cora Restaurant
100

101

102

103

104

ti
m

e
(m

s)

CB Soft Flexi Jaccard Levenstien

Figure 3.9: Average response time
over different datasets

0 100 200 300 400 500

101

103

105

n pˆ103q

ti
m

e
(m

s)

Response time (Synthetic dataset, k “ 10)

CB

Soft

Flexi

Jaccard

Levenstein

Figure 3.10: Response time of differ-
ent similarity functions vs. n

0 500 1,000 1,500
0

1,000

2,000

3,000

4,000

k

ti
m

e
(s

)

Response time (Synthetic dataset, n “ 3000)

CB

Soft

Flexi

Jaccard

Levenstein

Figure 3.11: Response time of differ-
ent similarity functions vs. k

We also conducted experiments to study how the response time of different

54 Chapter 3. Entity Resolution for Probabilistic Data

similarity functions evolves with increasing n and also k (i.e. the number of
attributes). Figure 3.10 shows the response time of a search over Synthetic dataset
with increasing n up to 500,000 and k set to 10. This figure shows that CB not
only outperforms the other similarity functions but also scales far better than
them with the number of tuples in the dataset. Figure 3.11 shows the response
time over Synthetic dataset with increasing k up to 1,500 and n set to 3,000. This
figure shows that except Jaccard, CB outperforms all other similarity functions.
We also observe that CB scales very well with the number of attributes. Notice
that in these figures, the response times of SoftTF-IDF and Flexi are so close
that cannot be differentiated from each other.

These results reveal another reason for outperformance of CB over other sim-
ilarity functions in the MC algorithm. There are two main reasons for the good
response time of CB compared to the other methods. The first reason is that CB
uses an efficient string similarity function (i.e. Jaro-Winkler in our experiments)
for computing the similarity between individual attribute values. The second
reason is that while all other methods compute the score of tuples one by one,
CB reuses the computed score of a tuple for other tuples that are in the same
situation (i.e. are similar in the same subset of attributes). This greatly improves
the response time.

3.6 Analysis against related work

Beyond the work on entity resolution presented in Chapter 2, nearest neighbor
query processing, and top-k query processing over uncertain data are relevant to
the ERPD problem.

In nearest neighbor query over uncertain data, given an uncertain query object
q and the probability threshold τ , the aim is to find all uncertain objects in the
database whose probability of being the nearest neighbor of q is higher than τ .

Cheng et al. [44] propose an approach for answering nearest neighbor queries
in a moving object environment. They model each moving object in one of the
following general ways: 1) an uncertainty region Uptq, which is a closed region
that the object can only be found there in time t, and 2) an uncertainty den-
sity function fpx, y, tq, which is the probability density function of the object at
location px, yq and time t. In [44], the following four steps are performed for pro-
cessing a nearest neighbor query: 1) Projection: using the last recorded location
of the object, elapsed time, and the speed of the object, the uncertainty region
of each object is computed; 2) Pruning: the lowest maximum distance, say d,
to the query point q is computed and any object whose shortest distance to q is
higher than d is pruned; 3) Bounding: drawing a bounding circle C centered at
query point q with radius d, any portion of an object’s uncertainty region that is
outside C is ignored; and 4) Evaluation: integrating over different values of r, the
probability of object o being the nearest neighbor of query point q is calculated

3.7. Conclusion 55

by computing the probability that o resides within the distance r from q times
the probability that all other objects reside within a larger distance than r from
q.

The nearest neighbor problem is similar to the ERPD problem in the sense
that the qualification of an object, to be in the query result, depends on the
attribute values and probabilities of the other objects in the database. The used
pruning techniques in the nearest neighbor problem, however, are not applicable
to the ERPD problem.

In a top-k query over uncertain data, given the query q, k, and the ranking
function f , the aim is to find k tuples that have the highest probability to be the
top-k tuples in the query result, where the query results are ranked according to
ranking function f .

There have been some proposals dealing with uncertain top-k query processing
(e.g., [52, 121, 142, 112]). The work in [121] extends the semantics of top-k queries
from deterministic to uncertain databases and enumerate the possible worlds
space of the uncertain database to compute the query results. We inspired by the
semantics defined in [121] for defining the new semantics of entity resolution over
probabilistic data. The proposal in [142] avoids enumerating the possible worlds
space by using a dynamic programming approach for efficiently processing top-k
queries on uncertain databases.

The top-k problem is similar to the ERPD problem in the sense that the
qualification of a tuple cannot be computed independently from the other tuples
in the database. Overall, the top-k proposals rely on a ranking function, which
assigns a fixed unique rank to every uncertain tuple in the query result. Our
problem setting, however, is different in both context-free and context-sensitive
similarity cases. In the case of context-free similarity function, we are faced
with multiple alternatives of the given uncertain entity, which results in multiple
similarity scores between the uncertain entity and a tuple in the database. In the
case of using a context-sensitive similarity function, we are not only faced with
multiple similarity scores, but also the rank of a tuple may change in different
possible worlds.

3.7 Conclusion

In this chapter, we considered the problem of Entity Resolution for Probabilistic
Data (ERPD), which is crucial for many applications that process probabilistic
data. We adapted the possible worlds semantics of probabilistic data to define
the novel concepts of most-probable matching pair and most-probable matching
entity as the outcomes of ERPD. Then, we proposed CFA, a PTIME algorithm,
which is applicable to the context-free similarity functions. The CFA algorithm
is not applicable for context-sensitive similarity functions. Thus, we proposed
an approximation algorithm, called MC, based on the Monte-Carlo method for

56 Chapter 3. Entity Resolution for Probabilistic Data

approximating the outcome of ERPD. To speedup the MC algorithm, we proposed
a parallel version of it using the MapReduce framework.

To overcome the high response time of most context-sensitive similarity func-
tions in the literature, which makes them very inefficient for our MC algorithm,
we proposed the novel CB similarity function with the following salient features:

• By working at the attribute level, rather than at the word or q-gram level,
CB significantly reduces the number of rather costly string comparison oper-
ations which thus makes it very efficient compared to other context-sensitive
similarity functions.

• In contrast to most of the tuple matching methods that work at the attribute
level, CB does not need the specification of weights for representing the
relative importance of individual attributes.

We showed the effectiveness of our proposed approaches using extensive ex-
perimentation over both synthetic and real datasets.

Chapter 4

Entity Resolution for Distributed
Probabilistic Data1

4.1 Introduction

As discussed in Chapter 1, the concept of entity resolution (ER) is defined dif-
ferently in different literature. In this chapter, we focus on the ER’s definition
related to identity resolution (see Definition 1.2.1).

In chapters 1 and 3, we discussed the problem of entity resolution over proba-
bilistic data (ERPD), which arises in many applications that deal with probabilis-
tic data. In many of these applications, probabilistic data is distributed among a
number of nodes. Let us give two examples of such applications, one from image
retrieval, and the other from scientific data management domains.

4.1.1. Example. Matching images in facial image databases. For investigation
purposes, consider that the police keeps a database of facial images of all persons
who leave the country. In order to gather such data, suppose that the police has
installed supervenience video cameras in all ports including airports, seaports,
and land border ports. In each port, video cameras capture the video of the
persons who leave the country. A face recognition system is then used to extract
each individual’s facial image from captured videos, and store its feature vector
as a tuple in a local database at the port. However, since the detected face
might be moving in the video, and there is also an inherent uncertainty related
to automated face recognition methods, each feature vector is associated with a
probability value that represents its degree of certainty (e.g. as in [146]). Local
databases are connected through a distributed system, which provides a query
interface at each port for querying the set of all databases. At the same time, when
a witness of a crime scene describes the facial features of a perpetrator, he/she
is usually is not completely certain about some of the features. Therefore, the

1The material of this chapter has been partially published in [22] and [16].

57

58 Chapter 4. ER for Distributed Probabilistic Data

police typically represents such a perpetrator’s face using an uncertain entity, say
e, consisting of a number of alternative feature vectors each of which is associated
with a confidence value. An interesting question for the police is to identify if
this perpetrator has left the country through any port, and thus querying the
distributed database of all ports, in order to find the person who is most probably
the same person as e, where date ą x (i.e. the date of the crime).

4.1.2. Example. Finding astronomical objects in astrophysics data. In astro-
physics, as well as other scientific disciplines, the correlation and integration of
the gathered observational data is the key for gaining new scientific insights. As-
tronomical observatories, distributed all over the world, produce data about sky
surveys, some of which is uncertain [104]. In its simplified form, suppose each
observatory maintains a single uncertain relation called Objects, which contains
data about the observed astronomical objects in its sky surveys. Each object in
such a relation is then represented using a number of alternative tuples, each
with a membership probability, showing its degree of certainty. However, the al-
ternatives are mutually exclusive, meaning that at most one of them can be true.
The uncertainty model, which is used in this example, has been already used in
the database literature for representing astrophysics data [122]. Astrophysics re-
searchers who want to gather information about a particular astronomical object,
supposedly represented by an uncertain entity e, are very interested in querying
the astronomical objects observed in one sky’s region, in all distributed observa-
tories, in order to find the object which is most probably the same object as the
given object e.

A straightforward approach for answering the above two queries is to ask all
distributed nodes to send their data to a central node that can then deal with the
problem of ERPD, by using one of the methods that are presented in Chapter 3.
However, this approach is very expensive and does not scale well, neither with the
size of databases, nor with the number of nodes. Therefore, using a distributed
algorithm for dealing with the ERPD problem over distributed data is inevitable.

In this chapter, we propose the FD (Fully Distributed), which is a decentral-
ized algorithm for dealing with the ERPD problem over distributed data, with
the goal of minimizing the bandwidth usage and reducing the processing time.
To the best of our knowledge, FD is the first proposal that deals with the ERPD
problem over distributed data. It has the following salient features. First, it uses
the novel concepts of Potential and essential-set to prune data at local nodes.
This leads to a significant reduction of bandwidth usage compared to the baseline
approaches. Second, its execution is completely distributed and does not depend
on the existence of any certain node. We have validated FD through both imple-
mentation over a 75-node cluster and simulation. We have used both synthetic
and real-world data in our experiments. The results show very good performance,
in terms of bandwidth usage and response time.

4.2. Problem definition 59

The rest of the chapter is organized as follows. In Section 4.2, we make
precise our assumptions, and formally define the problem. In Section 4.3, we
present FD, and in Section 4.5, we analyze its communication cost. In Section
4.6, we report the performance evaluation of FD through implementation and
simulation. Section 4.7 discusses analysis against related work, and Section 4.8
concludes.

4.2 Problem definition

In this section, we precisely define the problem addressed in the chapter.

For representing an uncertain database, we use the x-relation probabilistic
data model [10] in which each uncertain entity is represented with an x-tuple (see
the definition in Section 2.1.2). We denote an uncertain database by D, the set
of its possible worlds by PW pDq, and the set of all tuples in D by D.

We assume that the uncertain database is fragmented over a number of nodes
in a distributed system. We make no specific assumption about the topology of
the distributed system architecture, which can be very general, e.g. an unstruc-
tured P2P system or a cluster. In the distributed system, each node knows some
other nodes, i.e. its neighbors, to communicate with.

We define the problem of entity resolution for distributed probabilistic data
as follows. Let e be an uncertain entity issued at a query originator p. Let TTL
(Time To Live) determine the maximum hop distance which the user wants the
entity resolution message to travel. Let D be the union of the uncertain databases
that are in the schema of e, and maintained by nodes that can be accessed through
TTL hops from the query originator. Let Sim be a context-free similarity function
(refer to Section 3.2.2 for definition) for computing the similarity between tuples.
Our goal is to find the most probable matching pair of e and D, i.e. MPMP(e,
D) (see Definition 3.2.2), while minimizing the communication cost.

4.3 Distributed Computation of Most-probable

Matching-pair

One possible approach for computing MPMP is to move all relevant data of
nodes to a central node, e.g. the query originator, where MPMP is computed
using a centralized algorithm. However, the problem with this approach is that
the query originator becomes a communication bottleneck, since it must receive
a large amount of data from other nodes. In addition, it becomes a processing
bottleneck, as it must process a large amount of data. In this section, we propose
a fully distributed algorithm called FD, for computing MPMP. Our algorithm
avoids the problems of the centralized approach by : 1) pruning all data that has

60 Chapter 4. ER for Distributed Probabilistic Data

no chance to be MPMP, thus reducing the communication cost significantly; and
2) distributing the processing of MPMP over a large number of nodes.

4.3.1 Algorithm Overview

The FD algorithm starts at the query originator, the node at which a user issues
a query involving an uncertain entity e to be resolved. The query originator
performs some initialization. First, it sets TTL to a value which is either specified
by the user or default, as found sufficient by the system in previous calculations.
Second, it gives e a unique identifier, denoted by eid, which is made of a unique
node-ID and a query counter managed by the query originator. Nodes use eid to
distinguish between new queries and those received before. After initialization, e
is included in a message that is then broadcasted by the query originator to its
reachable neighbors. Next, the entity resolution proceeds in the following phases
done at each node that receives the query:

• Query forward. Each node p that receives the message including e from
a node q performs the following steps. If it is the first time of receiving
the query, then the node p saves the id of q as its parent, else discards the
message and makes a new message including eid and sends it to q to indicate
that the query has been received from another node. Then p decrements
TTL by one, if TTL ą 0, it makes a new message including e, eid, and new
TTL; sends the message to all neighbors except q; and saves the number of
sent messages to the neighbors.

• Extract the essential-set. The core idea of this phase is that for comput-
ing the most probable matching pair, the query originator does not need all
entity-tuple pairs maintained at p, but only a subset of them that we call
essential-set. In this phase, p extracts the essential-set of its local data and
saves it locally until receiving the essential-sets of its neighbors to which it
has sent the query.

• Merge-and-backward essential-sets. In this phase, p unifies its essential-
set with those received from its neighbors into a set of entity-tuple pairs
essentialpq, and sends essentialpq to its parent, the node from which it
received the query.

• MPMP computation and data retrieval. During the first three phases
of the algorithm, the query originator receives a number of merged essential-
sets from its neighbors. It unifies these sets with its local essential-set into
the set essentialunified, and computes MPMP(e, D) and asks the node which
contains the data to return the data content.

In the next subsections, we describe in more details the FD algorithm phases.

4.3. Distributed Computation of MPMP 61

4.3.2 Extract the Essential-set

At each node p, our FD algorithm prunes the data that have no chance to be the
(global) most probable matching pair, i.e. MPMP(e, D). For this, FD needs to
extract the essential-set of each node which we define as follows. Let e be the
given entity. Suppose Dp is the database maintained by p and np is the number of
tuples in Dp. Let Sp be the set of all entity-tuple pairs at p, i.e. Sp “ eˆDp. We
define the essential-set of Sp, denoted by essentialpSpq by using its complement:
essentialcpSpq is a subset of Sp whose members can never be MPMP(e, D).

The alternatives of e are mutually exclusive, thus to find essentialpSpq, it is
sufficient to compute the essential-set for each alternative t P e, and then unify
the essential-sets of all alternatives of e. More precisely, we have:

essentialpSpq “
ď

tPe

essentialpSp,tq,where Sp,t “ ttu ˆDp

Now, we consider an alternative t P e, and explain the process of finding
essentialpSp,tq.

Let Lp “ tpt, tp,1q, . . . , pt, tp,npqu be the list of Sp,t pairs sorted in decreasing
order of the similarities between t and Dp tuples. In other words, we have:

Simpt, tp,1q ą . . . ą Simpt, tp,npq,

where Sim is the given similarity function.
In the FD algorithm, we need to merge entity-tuple pair lists from other nodes

with the pairs in list Lp. Let ρ “ pt, tqq be an entity-tuple pair, from a node other
than p, that should be merged with Lp. The pair ρ may be inserted in any
index of Lp, say index i P r1, np ` 1s, based on the similarity between t and tq.
The question in pruning is whether this pair has any chance to be MPMP pe,Dq
or not. The answer to this question depends on the value of Pmsppρ,Dq, i.e. the
probability that the pair ρ is the most similar pair2 (see Definition 3.2.2 in Section
3.2.3). However, Pmsppρ,Dq depends not only on the pairs that are at node p,
but also on the pairs of other nodes. Thus, we cannot compute the exact value of
Pmsppρ,Dq locally, but we can compute an upper bound on this value. We denote
such upper bound as the Potential of the index i of list Lp. More precisely,

Potentialpiq “ maxPmsppρ,Dq (4.1)

where i P r1..np ` 1s.
For instance, Potentialp1q is the maximum possible (global) value for Pmsp

of the pair that is inserted in the first location of list Lp. The following lemma
computes the Potential of index i of list Lp.

2Notice that Pmsppρ,Dq is the global Pmsp value of pair ρ, while Pmsppρ,Dpq is its local Pmsp

value at node p. Generally, Pmsppρ,Dpq ě Pmsppρ,Dq.

62 Chapter 4. ER for Distributed Probabilistic Data

4.3.1. Lemma. Let i be an index in range r1..np`1s. Let Y be the set of x-tuples
formed by considering correlations between the tuples ttp,1, . . . , tp,i´1u, then

Potential piq “ P ptq ˆ
ź

xPY

p1´ P pxqq.

Proof. Let St “ t ˆD and L “ tpt, t1q, . . . , pt, tnqu be the list of St pairs sorted
based on their similarity in descending order. Let ρ “ pt, tqq resides in the index
j of list L, i.e. Lrjs “ ρ. Using equation (3.1) (refer to Section 3.3, we have

Pmsppρ,Dq “ P ptqq ˆ P ptq ˆ
ź

xPX

p1´ P pxqq (4.2)

where X is the set of x-tuples formed by considering correlations between the
tuples t1 to tj while the x-tuple containing tq is omitted from it. It is clear that
the value of P ptqq which maximizes RHS(4.2) is equal to one. The set of tuples t1
to tj´1 can be partitioned into two sets T1 and T2, where T1 “ ttp,1, . . . , tp,i´1u is
a subset of Dp and T2 is a subset of D´Dp. Let X1 and X2 be the set of x-tuples
formed by considering correlations between the tuples in T1 and T2, respectively.
Since all members of an x-tuple reside within the same node, x-tuple set X in
RHS(4.2) can be partitioned into two disjoint sets X “ X1 and X2, and, setting
P ptqq to one, equation (4.2) can be rewritten as

Pmsppρ,Dq “ P ptq ˆ
ź

xPX1

p1´ P pxqq ˆ
ź

xPX2

p1´ P pxqq (4.3)

Notice that since we set P ptqq to one, no x-tuple can contain it. Set X1 is fixed,
but we can make any assumption about set X2 to maximize RHS(4.3). Each
x-tuple x in set X2 reduces RHS(4.3) by the factor of 1´P pxq, thus, RHS(4.3) is
maximized when X2 “ H. In such case, RHS(4.3) is equal to the asserted value
in the lemma. l

4.3.2. Corollary. Potential is a monotonically decreasing function.

Intuitively, Corollary 4.3.2 says that the higher is the index, the lower is its
potential.

Let local max be the maximum local Pmsp value of pairs in list Lp, i.e.
local max “ maxPmsppρ,Dpq, ρ P Lp. We use local max to define the stop index
of list Lp as the smallest index in r1..np ` 1s where

Potentialpstopq ă local max. (4.4)

The following lemma provides the basis for pruning the pairs in list Lp.

4.3.3. Lemma. Let stop be the stop index of list Lp. Then,

@i P rstop, nps, Lpris ‰ arg max
ρPLp

Pmsppρ,Dq.

4.3. Distributed Computation of MPMP 63

Proof. Let j be the index of a pair in list Lp with maximum local Pmsp value, i.e.
PmsppLprjs,Dpq “ local max. Let i be an index in list Lp, where i P rstop, nps.
Let St “ ttu ˆD and L “ tpt, t1q, . . . , pt, tnqu be the list of St pairs sorted based
on their similarity in descending order. Let j1 and i1 respectively be the index of
pairs Lprjs and Lpris in list L, i.e. Lrj1s “ Lprjs and Lri1s “ Lpris. To prove the
lemma, we show that

PmsppLri
1
s,Dq ă PmsppLrj

1
s,Dq (4.5)

We have

PmsppLri
1
s,Dq “ P ptq ˆ P pti1q ˆ

ź

xPXi1

p1´ P pxqq (4.6)

where Xi1 is the set of x-tuples formed by considering correlations between the
tuples t1 to ti1 while the x-tuple containing ti1 is omitted from it. The set of tuples
t1 to ti1 can be partitioned into two sets Ti1,1 and Ti1,2, where Ti1,1 “ ttp,1, . . . , tp,i´1u

is a subset of Dp and Ti1,2 is a subset of D ´Dp. Let Xi1,1 and Xi1,2 respectively
be the set of x-tuples formed by considering correlations between the tuples in
Ti1,1 and Ti1,2, while the x-tuple containing ti1 is omitted from Xi1,1. Since all
members of an x-tuple reside within the same node, x-tuple set Xi1 in RHS(4.6)
can be partitioned into two disjoint sets Xi1,1 and Xi1,2, and equation (4.6) can
be rewritten as

PmsppLri
1
s,Dq “ P ptq ˆ P pti1q ˆ

ź

xPXi1,1

p1´ P pxqq ˆ
ź

xPXi1,2

p1´ P pxqq (4.7)

Since Lri1s, Lpris, pt, ti1q, and pt, tp,iq refer to the same pair, equation (4.7) can be
written as

PmsppLri
1
s,Dq “ PmsppLpris,Dpq ˆ

ź

xPXi1,2

p1´ P pxqq (4.8)

Using the same notation, we can write PmsppLrj
1s,Dq as

PmsppLrj
1
s,Dq “ PmsppLprjs,Dpq ˆ

ź

xPXj1,2

p1´ P pxqq (4.9)

Based on the definition of stop index, it is clear that stop ą j, thus yielding i ą j.
Thus, i1 ą j1 and we have

p@x P Xj1,2, Dy P Xi1,2 | x Ď yq ñ
ź

yPXi1,2

p1´ P pxqq ď
ź

xPXj1,2

p1´ P pyqq (4.10)

Moreover, we know that

PmsppLprjs,Dpq “ local max ą PmsppLpris,Dpq (4.11)

64 Chapter 4. ER for Distributed Probabilistic Data

Using (4.8), (4.9), (4.10) and (4.11), we have

PmsppLri
1
s,Dq ă PmsppLrj

1
s,Dq (4.12)

Since Lri1s “ Lpris and Lrj1s “ Lprjs, (4.12) implies that

Lpris ‰ arg max
ρPLp

Pmsppρ,Dq.

l

Intuitively, Lemma 4.3.3 says that among all pairs in list Lp, one of the pairs
before the stop index has the maximum global Pmsp value.

4.3.4. Corollary. Let stop be the stop index of list Lp. Then,

@i P rstop, nps, Lpris ‰ MPMPpe,Dq.

Intuitively, Corollary 4.3.4 says that the pair at the stop index and any pair af-
ter it have no chance to be the most probable matching pair. Thus, essentialpSp,tq
is the set of Lp pairs whose index is smaller than the stop index.

Algorithm

Algorithm 6 describes the details of the steps which are performed for finding
essentialpSpq. Steps 3-19 are repeated for every alternative of e, say t, and at
each iteration compute essentialpSp,tq. Step 3 computes set Sp,t and step 4 sorts
its pairs based on the similarity between the pair elements in descending order
according to similarity function Sim, and stores the result in list L. Steps 5-7
compute list T as the second elements of list L and do some initialization. Steps
9-16 are repeated until finding the stop index of L, and in each iteration, they
process the pair at index i of list L. Steps 10-12 compute PmsppLris,Dpq as the
intersection of two independent probabilistic events: t occurs; and among tuples
T r1s to T ris, only T ris occurs. To calculate the probability of the latter event,
step 10 considers correlation among tuples to group tuples T r1s to T ris into the
set of x-tuples Y and step 11 removes the x-tuple containing T ris from Y and
stores the result in x-tuple set X. Steps 13-15 update the current maximum Pmsp

of the pairs which we have processed so far. Steps 16 computes Potentialpi` 1q
using the x-tuple set Y which has already been computed in step 10. Step 17
checks if all pairs in the list L have been processed or i` 1 is the stop index of L.
If the condition holds, then the algorithm stops processing list L, else it continues
by processing the next pair in L. Step 19 adds pairs Lr1s to Lrstop ´ 1s to the
essential-set. Finally, step 21 returns the essential-set.

4.3. Distributed Computation of MPMP 65

Algorithm 6 finding the essential-set
Input:

-Entity e
-Database Dp
-Similarity function Sim

Output: essentialpSpq, where Sp “ eˆDp

1: essential ÐH

2: for all t P e do
3: Sp,t Ð ttu ˆDp

4: LÐ SortpSp,t, Simq
5: T Ð tt1 | pt, t1q P Lu
6: local maxÐ ´1
7: iÐ 0
8: repeat
9: iÐ i` 1

10: Y Ð set of x-tuples involved in tT r1s, . . . , T risu
{{ removing the x-tuple containing T ris

11: X Ð Y ´ tx | x P Y ^ T ris P xu
12: Pmsp Ð P ptq ˆ P pT risq ˆ

ś

xPXp1´ P pxqq
13: if Pmsp ą local max then
14: local maxÐ Pmsp

15: end if
16: Potential Ð P ptq ˆ

ś

xPY p1´ P pxqq
17: until pPotential ă local maxq _ pi “ |L|q
18: stopÐ i` 1
19: essential Ð essential Y tLr1s, . . . , Lrstop´ 1su
20: end for
21: return essential

Example

Let us illustrate the process of extracting essential-set using an example. Consider
the uncertain entity e and the uncertain database Dp (maintained at node p)
shown in Figures 4.1(a) and 4.1(b) respectively. In this example, Dp contains
single-alternative x-tuples, and entity e has only one alternative. The set of
existing entity-tuple pairs in node p, i.e. set Sp, can be computed as Sp “ eˆDp.
To prune Sp, we sort its pairs based on their similarity in descending order. The
resulted list, denoted by L, is shown in Figure 4.1(c).

The Potential of the first location in list L, i.e. Potentialp1q, is equal to the
probability of the event that t occurs, which is equal to P ptq “ 0.8. The Pmsp of
the first entity-tuple pair in L, i.e. pt, tp,3q, is equal to the probability of the event
that t and tp,3 occur, thus, Pmsp ppt, tp,3q,Dpq is equal to P ptq ˆ P ptp,3q “ 0.08.
The Potential of the second location in list L, i.e. Potentialp2q, is equal to the

66 Chapter 4. ER for Distributed Probabilistic Data

t P(t)
t 0.8

(a) e

t P(t)
tp,1 0.4
tp,2 0.7
tp,3 0.1
tp,4 0.2
tp,5 0.9
tp,6 0.8
tp,7 0.7
tp,8 0.9

(b) Dp

i L[i] Pmsp(L[i], Dp) Potential(i)
1 pt, tp,3q 0.08 0.8
2 pt, tp,7q 0.504 0.72
3 pt, tp,8q 0.1944 0.216
4 pt, tp,1q 0.00864 0.0216
5 pt, tp,2q 0.00907 0.01296
6 pt, tp,4q 0.00078 0.00389
7 pt, tp,5q 0.00280 0.00311
8 pt, tp,6q 0.00025 0.00031
9 - - 0.000062

(c) List L

Figure 4.1: An example of uncertain entity e, database Dp, and the pruning
process

probability of the event that t occurs but tp,3 does not occur, which is equal to
P ptqˆp1´P ptp,3qq “ 0.72. This means that the maximum possible value for Pmsp

of an entity-tuple pair which comes in Lr2s is 0.72. Since the Potential is greater
than the current maximum value of Pmsp , i.e. 0.08, we continue processing the
list.

The Pmsp of the second pair in L, i.e. pt, tp,7q, is equal to the probability
of the event that t and tp,7 occur but tp,3 does not occur, which is equal to
P ptqˆP ptp,7qˆp1´P ptp,3qq “ 0.504. The Potential of the third location in list L,
i.e. Potentialp3q, is equal to the probability of the event that t occurs but neither
tp,3 nor tp,7 occurs, which is equal to P ptq ˆ p1´ P ptp,3qq ˆ p1´ P ptp,7qq “ 0.216.
At this point, we stop processing the list since the Potential is less than the
current maximum value of Pmsp , i.e. 0.504. Therefore, the stop index of Lp is 3
and essentialpSpq is equal to tpt, tp,3q, pt, tp,7qu. To provide better intuition, the
Pmsp and Potential values for other pairs are also shown in Figure 4.1(c).

4.3.3 Merge-and-Backward Essential-Sets

After extracting its essential-set, each node p waits for receiving the essential-
sets of its children (the nodes to which p has sent the query). After receiving the
essential-set of its children (or after a default wait time), p merges its essential-set
with those received from its children into a set of entity-tuple pairs essentialpq,
and sends it to its parent.

In order to minimize network traffic, nodes do not bubble up the data items
of entity-tuple pairs (which could be large), but only some needed information
about them. The information that is put in the sent essential-set for each entity-
tuple pair pti, tjq, ti P e, tj P Dq, is a vector pi, a, j, x, s, pq where i is the index
of ti in e, a is the address of node q which owns tj, j is the index of tuple tj in
the database Dq maintained by q, x is the x-tuple to which tj belongs, s is the
similarity score between ti and tj, and p is the probability of tuple tj.

4.3. Distributed Computation of MPMP 67

4.3.4 MPMP Computation and Data Retrieval

When the query originator receives its children’s essential-sets, it merges them
with its local essential-set into the set essentialunified. Theorem 4.3.5 shows that
essentialunified contains all entity-tuple pairs which are needed for computing
MPMP(e, D).

4.3.5. Theorem. The entity-tuple pairs in set essentialunified are sufficient for
computing MPMP(e, D).

Proof. Let S be the set of all entity-tuple pairs at nodes which receive the
query, i.e. S “ e ˆ D. We show that we do not need any entity-tuple pair
ρ “ pt, t1q, ρ P S ´ essentialunified for computing MPMP(e, D).

Let L be the list of pairs in set essentialunified which have alternative t P e
as their first element, and sorted based on their similarity in descending order.
Let stopp be the stop index of a node, say node p, which comes before the stop
indices of other nodes in list L. Using Lemma 4.3.3, pairs which come at or after
stopp in L, cannot be the pair of L with maximum Pmsp . Thus, the pair of L with
maximum Pmsp lies in the range r1..stopp ´ 1s. Now, we show that there is no
entity-tuple pair ρ “ pt, t1q, ρ P S ´ essentialunified, which may come before stop
in list L, and thus, is needed for computing the pair of L with maximum Pmsp .
Pair ρ is either maintained at node p or at a node other than p, say q. In the
former case, ρ comes after stopp in list L since stopp is the stop index of node p.
Also in the latter case, ρ comes after stopp in list L since ρ comes after the stop
index of q which itself comes after stopp in list L. Thus, using the pairs Lr1s to
Lrstop´1s, we can compute the pair with maximum Pmsp and thereby MPMP(e,
D). l

Algorithm 7 shows the detailed steps which the query originator performs to
compute MPMP(e, D). Notice that:

• current max does not represent the maximum value of Pmsp of the pairs
in one list, i.e. related to alternative t P e, but the current maximum Pmsp

value of the pairs which we have visited so far. Thus, we reset it only once
in the beginning of the algorithm.

• We use Potential to stop early in visiting the pairs of list L. Notice that we
may discard a list of pairs altogether because the maximum possible Pmsp

of the pairs in that list (i.e. Potentialp1q) is less than the current maximum
Pmsp value that we got so far.

• Since the set St consists of a number of sorted lists, the sort function in
step 8 uses the sort-merge algorithm to merge these sorted lists.

68 Chapter 4. ER for Distributed Probabilistic Data

Algorithm 7 computing MPMP(e, D)

Input: Set of entity-tuple pairs essentialunified
Output: MPMP(e, D)

1: current maxÐ ´1
2: for all t P e do
3: Potential Ð P ptq
4: St Ð tpt, t1q | pt, t1q P essentialunifiedu
5: lengthÐ |St|
6: iÐ 1
7: while pPotential ą current maxq ^ pi ď lengthq do
8: LÐ Sort St pairs based on their similarity
9: T Ð tt1 | pt, t1q P Lu

10: Y Ð set of x-tuples involved in tT r1s, . . . , T risu
11: X Ð Y ´ tx | x P Y ^ T ris P xu
12: Pmsp Ð P ptq ˆ P pT risq ˆ

ś

xPXp1´ P pxqq
13: if Pmsp ą current max then
14: current maxÐ Pmsp

15: MPMP Ð Lris
16: end if
17: Potential Ð P ptq ˆ

ś

xPY p1´ P pxqq
18: iÐ i` 1
19: end while
20: end for
21: return MPMP

Using Algorithm 7, the query originator computes MPMP(e, D) and asks the
node which contains it to return the data content which is then returned to the
user.

In the next section, we provide an example of all phases of the FD algorithm.

4.4 FD Example

In this section, we illustrate the FD algorithm with an example.
Consider a network consisting of three nodes o, q, and p as shown in Figure

4.2(a) and let these nodes respectively contain DO, Dq, and Dp single-alternative
databases which are shown in Figures 4.2(c), 4.2(d), and 4.2(e), respectively.
Suppose that the user submits entity e, shown in Figure 4.2(b), to the node
o, then FD performs the following phases for computing MPMP(e, D), where
D “ DO YDq YDp:

1. In the “query forward” phase, node o forwards e to node q, and node q
forwards e to node p.

4.5. Analysis of Communication Cost 69

2. In the “extract the essential-set” phase, each node extracts its essential-set
as shown in Figures 4.2(h), 4.2(g), and 4.2(f). In the figures, we abbreviate
Potential as Po. Also, the pairs that are transferred to the essential-set,
are shown in bold, and since FD stops at the stop index, the values of Pmsp

and Potential for the pairs after the stop index are not shown. Notice that
the stop index of list Lq if equal to |Lq| ` 1, thus all pairs in this list are
transferred into the essential-set.

3. In the “merge-and-backward essential-sets” phase, node p sends its essential
set, i.e. essentialpSpq, to node q. Then, q merges the received set with its
own essential set, i.e. essentialpSqq, into set essentialpq (shown in Figure
4.2(i)), and sends it to node o.

4. In the “MPMP computation and data retrieval” phase, node o merges its
essential set, i.e. essentialO, with the received set from q, i.e. essentialpq,
into set essentialunified whose members are shown in Figure 4.2(j). Then,
node o computes the MPMP as shown in Figure 4.2(j). The computed
MPMP is equal to pt, tp,4q, thus node o asks node p for the data of the tuple
tp,4.

4.5 Analysis of Communication Cost

In this section, we analyze the communication cost of FD, and as we will see,
it is relatively low. We measure the communication cost in terms of number of
messages and number of bytes which should be transferred over the network in
order to execute a query by our algorithm. The messages transferred can be clas-
sified as: (1) forward messages, for forwarding the query to nodes; (2) backward
messages, for returning the essential-sets from nodes to the query originator; (3)
retrieve message, to request and retrieve the MPMP. Let us first formalize the
distributed system model that we use in our analysis.

4.5.1 Distributed System Model

Let P be the set of the nodes in the distributed system. Let Q be an entity
resolution query at the query originator po, i.e. the node at which the query is
issued. Let PQ Ď P be a set containing the query originator and all nodes that
receive Q. We model the nodes in PQ and the links between them by a graph
GpPQ, Eq where PQ is the set of vertices in G and E is the set of the edges. There
is an edge p ´ q in E if and only if there is a link between the nodes p and q in
the distributed system. Two nodes are called neighbor, if and only if there is an
edge between them in G. The number of neighbors of each node p P PQ is called
the degree of p and is denoted by dppq.

70 Chapter 4. ER for Distributed Probabilistic Data

o q p

(a) network

t P(t)

t 0.3

(b) e

t P(t)

tO,1 0.6

tO,2 0.4

tO,3 0.3

tO,4 0.7

tO,5 0.3

tO,6 0.5

(c) DO

t P(t)

tq,1 0.2

tq,2 0.1

tq,3 0.2

tq,4 0.2

tq,5 0.1

tq,6 0.1

(d) Dq

t P(t)

tp,1 0.2

tp,2 0.9

tp,3 0.8

tp,4 0.8

tp,5 0.7

tp,6 0.9

(e) Dp

Pair Pmsp Po

pt, tO,5q 0.09 0.3

pt, tO,2q 0.084 0.21

pt, tO,1q 0.08 0.13

pt, tO,4q - 0.05

pt, tO,3q - -

pt, tO,6q - -

(f) LO

Pair Pmsp Po

pt, tq,3q 0.06 0.3

pt, tq,6q 0.02 0.24

pt, tq,4q 0.04 0.22

pt, tq,1q 0.03 0.17

pt, tq,5q 0.01 0.14

pt, tq,2q 0.01 0.12

- - 0.11

(g) Lq

Pair Pmsp Po

pt, tp,4q 0.24 0.3

pt, tp,6q - 0.06

pt, tp,1q - -

pt, tp,5q - -

pt, tp,3q - -

pt, tp,2q - -

(h) Lp

123Pair456

pt, tq,3q

pt, tp,4q

pt, tq,6q

pt, tq,4q

pt, tq,1q

pt, tq,5q

pt, tq,2q

(i) essentialpq

Pair Pmsp Po

pt, tq,3q 0.06 0.3

pt, tp,4q 0.19 0.24

pt, tO,5q - 0.05

pt, tq,6q - -

pt, tq,4q - -

pt, tO,2q - -

pt, tq,1q - -

pt, tq,5q - -

pt, tq,2q - -

pt, tO,1q - -

(j) essentialunified

Figure 4.2: Illustration of different phases of the FD algorithm using a simple
example

A peer p P PQ may receive Q from some of its neighbors. The first node, say
q, from which p receives Q, is the parent of p in G, so p is a child of q. A node
may have some neighbors that are neither its parent nor its children.

4.5. Analysis of Communication Cost 71

4.5.2 Forward Messages

Forward messages are the messages that we use to forward Q to the nodes. Ac-
cording to the basic design of our algorithm, each node in PQ sends Q to all its
neighbors except its parent. Let po denote the query originator. Let GpPQ, Eq
be a graph representing the distributed network, such that PQ is the set of nodes
and E is the set of links between the nodes. With our FD algorithm, each node
p P tPQ´tpouu, sends Q to dppq´1 nodes, where dppq is the degree of p in G. The
query originator sends Q to all of its neighbors, in other words to dppoq nodes.
Then, the sum of all forward messages mfw can be computed as

mfw “ dppoq `
ÿ

pPtPQ´tpouu

pdppq ´ 1q

We can write mfw as follows:

mfw “

¨

˝

ÿ

pPtPQu

pdppq ´ 1q

˛

‚` 1 “

¨

˝

ÿ

pPtPQu

dppq

˛

‚´ |PQ| ` 1 (4.13)

We use the average degree of the graph G, denoted by dpGq, to simplify (4.13).
dpGq is defined as the average degree of nodes in G and can be computed as

dpGq “

ř

pPPQ
dppq

|PQ|

Substituting dpGq in (4.13), we have

mfw “ pdpGq ´ 1q ˆ |PQ| ` 1

From the above discussion, we can derive the following Lemma.

4.5.1. Lemma. The number of forward messages in the FD algorithm is pdpGq´
1q ˆ |PQ| ` 1.

Proof. Implied by the above discussion. l

In our underlying applications, e.g. astronomy application, the average degree
of nodes is low, that is each node is usually connected to a small number of other
nodes. Thus, the total number of forward messages is not very high compared to
the number of nodes. For example, if the average degree of the system is 4, i.e.
dpGq “ 4, then we have mfw “ 3ˆ |PQ| ` 1.

Let bt be the average size of a tuple in Q in bytes, and |Q| be the number
of alternative tuples of Q. Then, the total size of data transferred by forward
messages, denoted by bfw, can be computed as ppdpGq ´ 1q ˆ |PQ| ` 1q ˆ |Q| ˆ bt.

72 Chapter 4. ER for Distributed Probabilistic Data

4.5.3 Backward Messages

In the Merge-and-Backward phase, each node in PQ, except the query originator,
sends its merged essential-set to its parent. Therefore, the number of backward
messages, denoted by mbw, is mbw “ |PQ| ´ 1.

In the query forward phase of the algorithm, nodes in PQ are arranged in a
tree, called query-tree, with the query originator as its root. For our modeling,
we assume that the query-tree is a k-ary tree (i.e. k “ dpGq) in which the root
has k children and all intermediate nodes has exactly k ´ 1 children. Moreover,
we assume that all leaves are at the same level. These assumptions, however,
are mostly for illustration purposes. In practice, nodes are organized in arbitrary
tree topologies.

Let h be the height of the tree, with the root at level l “ 0. The total number
of nodes, i.e. |PQ|, can be computed as |PQ| “ p

řh
l“2pk ´ 1qlq ` k ` 1.

Let Splq be the total size of data transferred in the Merge-and-Backward phase
by each node which resides in the level l of the query-tree. Let bes be the average
size of the essential-set of a node. In the Merge-and-Backward phase, each node
at level h of the query-tree, i.e. leaf nodes, sends its essential-set to its parent.
Thus, Sphq “ bes. Also, each intermediate node at level l, l ‰ 0, of the query-tree
receives exactly k ´ 1 essential-sets from its children which reside at level l ` 1;
merges them with its essential-set; and send the merged essential-set to its parent.
Thus, for each intermediate node we have Splq “ pk´ 1qˆSpl` 1q` bes; thereby
yielding the following recurrence relation for Splq:

Splq “

#

pk ´ 1q ˆ Spl ` 1q ` bes for 0 ă l ă h

bes for l “ h

By solving this recurrence relation, we have

Splq “
1´ pk ´ 1qh´l`1

1´ pk ´ 1q
(4.14)

Since there are exactly k ˆ pk ´ 1ql´1 nodes at level l, 0 ă l ď h, thus the
total data transfer of the Merge-and-Backward phase, denoted by bbw, can be
computed as:

bbw “
h
ÿ

l“1

pk ˆ pk ´ 1ql´1
ˆ Splqq

By substituting k “ dpGq and Splq from (4.14) into the above equation, bbw can
be written as

bbw “
bes ˆ dpGq ˆ

´

1` phˆ pdpGq ´ 2q ´ 1q ˆ pdpGq ´ 1qh
¯

p2´ dpGqq2

4.6. Performance Evaluation 73

Let bpa be the size of an entity-tuple pair in bytes, and η be the average
number of entity-tuple pairs of the essential-set which have the same alternative
of Q as their first element. Then, bes, i.e. the average size of the essential-set in
each node, can be computed as bes “ |Q| ˆ η ˆ bpa.

In Section 4.6, we show that η is very small and almost independent from the
number of tuples which are maintained at a node. However, η is dependent to
the correlation between the probability of the tuples and their similarity to Q’s
alternatives.

Let us show with an example that bbw is not significant. Consider that 10,000
nodes receive Q (including the query originator), thus |PQ| “ 10, 000. Assume
that dpGq “ 4. Thus, the height of the query-tree, i.e. h, is equal to 8. Our
experiments show that η is about 2.2 when similarity and probability are not
correlated. Consider Q has two alternative tuples. Since the actual data contents
of the entity-tuple pair pti, tjq is not transferred during the Merge-and-Backward
phase, we set bpa to 23, i.e. 1 bytes for i, 4 bytes for j, 6 bytes for the address of
the node in which tj is maintained, 4 bytes for the x-tuple to which tj belongs,
4 bytes for the similarity score of ti to tj, and 4 bytes for the probability of tj.
As a result, bbw is less than 10 megabytes for a distributed system that contains
10,000 nodes.

4.5.4 Retrieve Messages

By retrieve messages, we mean the message sent by the query originator to request
the MPMP and the message sent by the node owning the MPMP to return it.
Therefore, the number of retrieve messages, denoted by mrt, is mrt “ 2. The
total size of data transferred by these messages, denoted by brt, can be computed
as brt “ mrt ˆ bt, where bt is the average size of a tuple.

4.6 Performance Evaluation

We evaluated the performance of FD through implementation and simulation.
The implementation over a 75-node cluster was useful to validate our algorithm
in a realistic experimental environment. The simulation allowed us to study the
performance of our algorithm under various conditions.

The rest of this section is organized as follows. In section 4.6.1, we describe
our experimental and simulation setup, and the algorithms used for comparison.
In section 4.6.2, we evaluate the response time of FD. Section 4.6.3 presents the
evaluation of communication cost based on the bandwidth usage and the number
of exchanged messages among nodes. In Section 4.6.4, we present the result of
applying FD on real data.

74 Chapter 4. ER for Distributed Probabilistic Data

4.6.1 Experimental and Simulation Setup

In our implementation and simulation, we compare FD with two baseline algo-
rithms. The first algorithm is a centralized algorithm which we call FC (Fully
Centralized). With FC, all nodes that receive the query send their data to the
query originator where the most probable matching pair is computed using a cen-
tralized algorithm. The details of the centralized processing by FC can be found
in Chapter 3. The second comparing algorithm is denoted by SCC (Score Con-
fidence Centralized). In SCC, every node q receiving uncertain entity e (as the
query) extracts a list containing the information of all of its pairs, and sends the
extracted list directly to the query originator for centralized processing. More
precisely, the information that is put in the sent list for each entity-tuple pair
pti, tjq P e ˆDq, is a vector pi, a, j, x, s, pq where i is the index of ti in e, a is the
address of node q which owns tj, j is the index of tuple tj in the database Dq

maintained by q, x is the x-tuple to which tj belongs, s is the similarity score
between ti and tj, and p is the probability of tuple tj.

We implemented FD, FC, and SCC in Java, and tested them using a cluster
of 75 nodes connected by a 1-Gbps network. Each node of cluster has a dual-
quad-core 2.4 GHz processor and 24 GB memory. We make each node act as a
node in the distributed system described in Section 4.5.1. We determined the
node neighbors using the topologies generated by the BRITE universal topology
generator [2]. Thus, each node only is allowed to communicate with the nodes
that are its neighbors in the topology generated by BRITE.

To study the scalability of FD far beyond 75 nodes and to play with various
performance parameters, we implemented a simulator using the PeerSim simu-
lation kernel [5] and the Java programming language. We use the event driven
engine of PeerSim to be able to simulate the delay in sending messages and also
the bandwidth of nodes. We assign a random delay, denoted by latency, to com-
munication ports to simulate the delay for sending a message between two nodes
in a real distributed system. Also, we assign an upstream and a downstream
bandwidth to each node. To simulate a node, we use a PeerSim’s node that
performs all tasks that must be done by a node for executing FD, FC, and SCC
algorithms. We implemented each of the three algorithms as a protocol in Peer-
Sim. We used PeerSim’s WireKOut topology generator that randomly selects k
neighbors for each node in the network. We used undirected links between nodes
and set k to 10.

The experimental and simulation parameters are listed in Table 4.1. Notice
that bandwidth and latency parameters are used only in our simulation. Unless
otherwise specified, we use the values in this table for our tests. Each node has
a table Rpdata, sim, pq in which attribute data is a random real number with
normal distribution with a mean of 1 KB (Kilobytes) and a variance of 16 KB,
sim is a random real number in the interval [0..1] with normal distribution with a
mean of 0.5 and a variance of 0.04, p is a random real number in the interval (0..1]

4.6. Performance Evaluation 75

Table 4.1: Parameters
Parameter Values

data: tuple’s data items size Gaussian random, Mean = 1 KB, Variance = 16 KB
sim: similarity score Gaussian random, Mean = 0.5, Variance = 0.04
p: probability Gaussian random, Mean = 0.4, Variance = 0.04
N : number of tuples at each node Uniform random integer in range r4500..5500s
dx: x-tuple’s average alternatives 3 for R table and 2 for the query
Cor : correlation between sim and p 0
Upstream bandwidth Gaussian random, Mean = 56 Kbps, Variance = 32 Kbps
Downstream bandwidth 8 ˆ Upstream bandwidth
Latency Gaussian random, Mean = 200 ms, Variance = 100 ms
Number of nodes 10,000
TTL: Time To Live 100

with normal distribution with a mean of 0.4 and a variance of 0.04. Attribute
data represents the data item that is returned back to the user as the result of
the query and its value simulates the size of the data item. Attribute sim is
used for computing the similarity between the tuple and the tuples in the query,
and attribute p is the confidence value of the tuple. We introduce a number of
parameters to control the characteristics of the R table. The number of tuples in
R is denoted by N. The average number of alternatives that an x-tuple can have is
denoted by dx. The correlation between sim and p is denoted by Cor. To generate
each tuple in R, we use a normal distribution for generating attribute data, and
a bivariate normal distribution with a given correlation for generating sim and
p attributes. We repeat this process to generate N different tuples. Then, we
generate d as a uniform random integer in r1, 2ˆ dx ´ 1s, and repeatedly pick d
tuples at random and group them into an x-tuple; if their confidence values add
up to more than 1, we relinquish them and take another set of tuples until we
form a valid x-tuple. We repeat this process until we group all tuples in valid
x-tuples. We generate the query needed for experiments, in the same way that we
generated a valid x-tuple. As Table 4.1 shows, we use the following default values
for N, dx, and Cor unless otherwise specified. N is a random number, uniformly
distributed over all nodes, which is greater than 4500 and less than 5500. We use
the default value dx “ 3 for the database and dx “ 2 for the query, and we use
the default value Cor “ 0.

For our implementation, we generate the R table and the query in the same
way as our simulation, except for the data item size which is no longer simulated
by a real number but with an array containing data.

Unless otherwise specified, we use the following values for the other simulation
parameters. The upstream bandwidth of nodes is a random number with normal
distribution with a mean of 56 Kbps (Kilobits per second) and a variance of 32
Kbps. The downstream bandwidth of each node is set to a value equal to 8 times
of its upstream bandwidth. The latency for sending messages between any two
nodes is also a random number with normal distribution with a mean of 200
milliseconds and a variance of 100 milliseconds.

76 Chapter 4. ER for Distributed Probabilistic Data

Running the simulator on a machine with 16 GB of memory, allows us to
perform tests up to 10,000 nodes, after which the simulation data no longer fit in
RAM and makes our tests difficult. This is quite sufficient for our tests. Therefore,
the number of nodes of the system is set to be 10,000, unless otherwise specified.

In all of our tests, we set TTL to a high value, i.e. 100, to be sure that all
nodes receive the query although the maximum hop-distance to other nodes from
the query originator is much less than 100 with the topology that we use for our
distributed system.

We repeat each simulation 10 times with the same query but with a different
random number seed and average the outcomes.

2 4 6 8
102

103

104

105

N (ˆ1000)

re
sp

on
se

ti
m

e
(m

s)

FC

SCC

FD

Figure 4.3: Response time vs. number
of tuples (on cluster)

0 1 2 3 4 5
101

102

103

104

105

106

N (ˆ1000)

re
sp

on
se

ti
m

e
(s

ec
)

FC

SCC

FD (cor:-0.8)

FD (cor:0)

FD (cor:+0.8)

Figure 4.4: Response time vs. number
of tuples

0 20 40 60 80
102

103

104

105

number of nodes

re
sp

on
se

ti
m

e
(m

s)

FC

SCC

FD

Figure 4.5: Response time vs. number
of nodes (on cluster)

0 2 4 6 8 10

101

103

105

number of nodes (ˆ1000)

re
sp

on
se

ti
m

e
(s

ec
)

FC

SCC

FD (cor:-0.8)

FD (cor:0)

FD (cor:+0.8)

Figure 4.6: Response time versus
number of nodes

4.6. Performance Evaluation 77

4.6.2 Response Time

Scale up

In this section we study the response time of distributed entity resolution by
varying the number of tuples, i.e. N , and the number of nodes. The response
time is the time elapsed from submitting the query to a node to sending the result
of the query to the user. The response time includes local processing time and
data transfer time. To study the effect of different correlations between similarity
and confidence values, we ran experiments using three different correlations, i.e.
negative, zero, and positive correlations.

We used our implementation over the cluster to study how the response time
increases with increasing the number of tuples in each node. Using implementa-
tion over the cluster, Figure 4.3 shows the response times of FD, FC, and SCC
with N increasing up to 8,000. Using simulation, Figure 4.4 shows the response
times of the three algorithms with N increasing up to 5,000 and the other simu-
lation parameters set as in Table 4.1.

While FD significantly outperforms the other two algorithms, its response
time is affected only very little with increasing N . As we expected, the negative
correlation between similarity and confidence increases the response time since
it increases the size of the essential-set at each node, and this increases the re-
sponse time. Using independent random variables for similarity and confidence,
i.e. zero correlation, decreases the response time and the positive correlation
even decreases it more. Different correlations between similarity and confidence
do not have any impact on FC and SCC algorithms, since they always send the
whole database or the extracted similarity-confidence pairs of the whole database
respectively.

We also used our implementation over the cluster to study the effect of the
number of nodes on response time. Using implementation over the cluster, Figure
4.5 shows the response times of FD, FC, and SCC with the number of nodes
increasing up to 75 and the other experimental parameters set as in Table 4.1.
Using simulation, Figure 4.6 shows the response times of the three algorithms with
the number of nodes increasing up to 10,000 and the other simulation parameters
set as in Table 4.1. FD always significantly outperforms the other two algorithms
and the performance difference increases significantly in the favor of FD as the
number of nodes increases. These figures show excellent scale up of FD since
response time logarithmically increases with increasing the number of nodes. We
also observe that negative correlation between similarity and confidence increases
the response time, but zero and positive correlations decrease the response time.
Also, the performance difference between different correlations increases as the
number of nodes increases.

The experimental results correspond with the simulation results. However, the
response time of implementation over the cluster is better than that of simulation

78 Chapter 4. ER for Distributed Probabilistic Data

because the cluster has a high-speed network.

To sum up, the reason of excellent scalability of FD versus both the database
size and the number of nodes is its distributed execution. In FC and SCC algo-
rithms, a central node, i.e. the query originator, is responsible for query execution,
and this makes them inefficient.

Effect of Latency and Bandwidth

In this section, we study the effect of latency and bandwidth on response time. In
the previous simulation tests the latency and upstream bandwidth were normally
distributed random numbers with mean values of 200 ms and 56 Kbps respectively.
In this test, we vary the mean values of the latency and bandwidth and study
their effects on response time. For both experiments on bandwidth and latency,
we set both N and the number of nodes to 5,000 and other simulation parameters
set as in Table 4.1.

Figure 4.7 shows how response time decreases with increasing bandwidth.
Increasing the bandwidth has strong, similar effect on all three algorithms. FD
outperforms the other two algorithms for all tested bandwidths.

0 2 4 6 8

101

103

105

107

average bandwidth (Mbps)

re
sp

o
n

se
ti

m
e

(s
ec

)

FC

SCC

FD

Figure 4.7: Effect of average band-
width on response time

0 2 4 6 8 10
101

102

103

104

105

106

average latency (sec)

re
sp

on
se

ti
m

e
(s

ec
)

FC

SCC

FD

Figure 4.8: Effect of average latency
on response time

Figure 4.8 shows how response time evolves with increasing latency. Latency
has little effect on the FC and SCC algorithms, because in these algorithms the
nodes return their results directly to the query originator, and do not bubble
up the results. Although FD outperforms the other algorithms for all the tested
values, high latency, e.g. more than 500 ms, has strong impact on it and increases
its response time much. However, below 500 ms, latency does not have much effect
on FD’s response time.

4.6. Performance Evaluation 79

4.6.3 Communication Cost

In this section, we study the communication cost of FD. We measure the com-
munication cost in terms of the number of bytes, which should be transferred on
the network for processing a query Q. We also measure the number of exchanged
messages during the execution of an algorithms. To study the effect of differ-
ent similarity-confidence correlations, we ran experiments using three different
correlations, i.e. negative, zero, and positive correlations.

Figure 4.9 shows how communication cost evolves with the number of tuples
in each node increasing up to 5,000 and the other simulation parameters set as
in Table 4.1. This figure shows that FD significantly outperforms the other two
algorithms. Moreover, while increasing N has strong effect on FC and SCC algo-
rithms, it has a very little effect on FD. Also as in scalability experiments, negative
correlation between similarity and confidence values increases the communication
cost, and zero or positive correlation decreases it.

0 1 2 3 4 5

101

102

103

104

105

N (ˆ1000)

co
m

m
u

n
ic

at
io

n
co

st
(M

B
)

FC

SCC

FD (cor:-0.8)

FD (cor:0)

FD (cor:+0.8)

Figure 4.9: Effect of number of tuples
on communication cost

0 1 2 3 4 5
0

50

100

150

200

N (ˆ1000)

n
u

m
b

er
of

m
es

sa
ge

s
(ˆ

10
00

)

FC

SCC

FD (cor:´0.8)

FD (cor:0)

FD (cor:+0.8)

Figure 4.10: Number of exchanged
messages vs. number of tuples

Figure 4.10 shows the number of messages exchanged during the execution
of the three algorithms with the number of tuples in each node increasing up
to 5,000 and the other simulation parameters set as in Table 4.1. This figure
shows that the database size has no effect on the number of exchanged messages.
Although FD exchanges more messages than the other two algorithms, since the
sizes of these messages are much smaller than the sizes of the messages produced
by the other two algorithms, FD’s communication cost is significantly smaller
than theirs.

Figure 4.10 also shows that different similarity-confidence correlations has no
effect on the number of exchanged messages in FD.

We ran experiments to compare the average size of the essential-set with the
number of entity-tuple pairs which exist at a node. To measure the average

80 Chapter 4. ER for Distributed Probabilistic Data

essential-set size, we calculated the sum of the essential-set of all nodes and
divided it by the number of nodes. In these experiments, we used uncertain
entities with exactly 2 alternatives for the query. Figure 4.11 shows how the
average size of the essential-set (in number of entity-tuple pairs) changes with
the number of entity-tuple pairs in each node (i.e. 2ˆN) increasing up to 10,000
and the other simulation parameters set as in Table 4.1. This Figure shows that
the correlation between similarity and confidence has a strong effect on the size
of the essential-set. The average size of the essential-set is almost constant for
positive and zero correlations, i.e. 2 and 4.4 pairs respectively, but the essential-
set size increases from 19.8 to 32.4 pairs for the negative correlation. These
observations indicate that the size of the essential-set is very small and almost
independent from the number of entity-tuple pairs which exist at the nodes. This
means that our pruning algorithm performs quite effectively.

0.2 2 10 20 30 40 50 60 80 100
0

20

40

number of pairs in each node (ˆ100)

es
se

n
ti

a
l-

se
t

si
ze

(p
ai

rs
)

FD (cor:´0.8)

FD (cor:0)

FD (cor:+0.8)

Figure 4.11: Essential-set size vs.
number of pairs in each node

0 2 4 6 8 10

100

102

104

number of nodes (ˆ1000)

co
m

m
u

n
ic

at
io

n
co

st
(M

B
)

FC

SCC

FD (cor:´0.8)

FD (cor:0)

FD (cor:+0.8)

Figure 4.12: Effect of the number of
nodes on the communication cost

We also ran experiments to study the effect of the number of nodes on commu-
nication cost. Figure 4.12 shows the communication costs of the three algorithms
with the number of nodes increasing up to 10,000 and the other simulation pa-
rameters set as in Table 4.1. As this figure shows, FD significantly outperforms
the other two algorithms and the performance difference increases significantly in
the favor of FD as the number of nodes increases. Again as we expect, negative
correlation between similarity and confidence increases the communication cost,
but zero and positive correlations decrease the communication cost.

Figure 4.13 shows the number of messages exchanged during the execution
of the three algorithms with the number of nodes increasing up to 10,000 and
the other simulation parameters set as in Table 4.1. This figure shows that
increasing the number of nodes increases the number of messages in the three
algorithms. The number of exchanged messages in FD is higher than the other two
algorithms but, as we discussed earlier because of the small size of these messages,

4.6. Performance Evaluation 81

FD significantly outperforms the other algorithms based on communication cost.
Again as we expect, different similarity-confidence correlations has no effect on
the number of exchanged messages in FD.

4.6.4 Case Study on Real Data

In this section, we report the result of applying the three algorithms on real data.
As real-world database, we used a facial image database which we extracted

from video. We downloaded 900 videos tagged with the keyword “wedding cere-
mony” from YouTube3, and used 2 fps sampling method and the pittpatt software
[6] to extract 5010 distinct facial images each associated with a confidence value,
from the videos. Then, we used SIFT method [89] and the bag of words model
[87] with a codebook of 250 visual words to represent each facial image with a
vector containing 250 real numbers in range r0..1s each associated with a confi-
dence value. We used the cosine similarity metric for measuring the similarity
between vectors.

0 2 4 6 8 10
102

103

104

105

106

number of nodes (ˆ1000)

n
u

m
b

er
of

m
es

sa
g
es

(ˆ
10

00
)

FC

SCC

FD (cor:´0.8)

FD (cor:0)

FD (cor:+0.8)

Figure 4.13: Effect of number of nodes
on the number of exchanged messages

100 200 300 400 500
100

101

102

103

N

re
sp

on
se

ti
m

e
(s

ec
)

FC

SCC

FD

Figure 4.14: Response time vs. num-
ber of tuples (real data)

We set the number of nodes to 10; k to 5; and the other network parameters
as in Table 4.1. In each experiment, we randomly selected one of the vectors as
the query, and equally distributed N randomly selected vectors among the nodes
in the network.

Figures 4.14 and 4.15, respectively, show how response time and communica-
tion cost increase with N increasing up to 5,000. With increasing N up to 5,000,
Figure 4.16 compares the average size of the essential-set with the total number
of pairs in each node. As we expected, the result of applying the algorithms on
real data confirms the result we observe on synthetic data.

3http://www.youtube.com

82 Chapter 4. ER for Distributed Probabilistic Data

100 200 300 400 500
10´1

100

101

102

N

co
m

m
u

n
ic

at
io

n
co

st
(M

B
)

FC

SCC

FD

Figure 4.15: Communication cost vs.
number of tuples (real data)

0.5 1 2 3 4 5
100

101

102

103

Npˆ100q

p
a
ir

s

FD All pairs (SCC)

Figure 4.16: Essential-set size and all
pairs in each node (real data)

4.7 Analysis against related Work

Beyond the work on entity resolution presented in Chapter 2, nearest neighbor
and top-k queries over distributed uncertain data are also relevant to our research.

To the best of our knowledge, the existing nearest neighbor proposals, e.g.
[44, 82, 125, 143], need the uncertain data to be stored in a centralized database,
and thus cannot deal with the problem in distributed setting.

Recently, there have been some proposals dealing with the problem of top-k
query processing for distributed uncertain data [140, 86]. In [140], the authors
present a top-k query processing system for a wireless sensor network in which
sensor nodes are grouped into clusters, where cluster heads are selected to perform
localized data processing and to report aggregated results to the base station.
Cluster heads use a user-specified probability threshold to find a rank boundary
for pruning data gathered from sensors, before reporting to the base station. In
[86], the authors present a proposal for ranking queries for distributed uncertain
data. They use the concept of expected score and approximate it to reduce the
communication cost and also processing time.

Our work nevertheless differs from these two above proposals because our
problem definition is completely different. We look for an entity-tuple pair with
the maximum probability of being the most similar pair, while [140] looks for
tuples which have a probability higher than a user-specified threshold to be in
the query result, and [86] is a proposal for approximating the expected score of
the query results and then ranking them.

4.8. Conclusion 83

4.8 Conclusion

In this chapter, we proposed FD, a decentralized algorithm for dealing with the
entity resolution problem over distributed probabilistic data, with the goal of
minimizing the bandwidth usage. FD uses the novel concepts of potential and
essential-set to prune data at local nodes. This leads to a significant reduction
in bandwidth usage and response time compared to the baseline approaches. FD
requires no global information, and does not depend on the existence of certain
nodes.

We validated the performance of FD through implementation over a 75-node
cluster and simulation using a simulator which we implemented using the PeerSim
simulation kernel and the Java programming language. The experimental and
simulation results show that response time of FD increases logarithmically with
increasing the number of nodes. The experiments and simulations also show that
FD’s response time is almost independent from the size of the database in nodes.
The results also show the excellent performance of FD, in terms of communication
cost, compared with the two baseline algorithms, i.e. FC, and SCC.

Chapter 5

Entity Resolution for Probabilistic Data
Using Entropy Reduction1

5.1 Introduction

One of the aspects associated with the entity resolution (ER) problem (as dis-
cussed in Chapter 1) is the deduplication. In this chapter, we deal with the
deduplication definition of the ER problem (see Definition 1.2.2).

The ER problem arises in many applications that need to deal with proba-
bilistic data. Let us provide an example of such applications from the anti-crime
domain.

5.1.1. Example. ER on police’s criminal records. The anti-crime police is faced
with many new crimes every year. It spends lots of time and money gathering data
about every crime from different sources such as witnesses, interrogations, police’s
informants, and reconstruction of the crime scene. Most of the gathered data are
however not certain. For instance, the police cannot completely trust informants
and witnesses, or is not sure about the information gathered by reconstructing
the crime scene. Thus, the confidence values can be attached to the gathered and
stored data to show their likelihood of truth, according to the confidence on the
sources. These probabilistic data can in turn help to speed up the investigation
process, in solving the open cases, and in finding suspects in later crimes. In
a simplified form, the police maintains a single relation Criminals that contains
data about all criminals. In this relation, each individual criminal is represented
by an entity that consists of a number of alternative tuples, each associated with
a probability value showing its likelihood of truth. It happens quite often that a
criminal participates in several crimes. Such a criminal is then represented with
multiple entities in the Criminals relation. Being able to find and merge such
entities, which in fact refer to the same criminal, helps the police in obtaining

1The material of this chapter has been partially published in [20].

85

86 Chapter 5. ERPD Using Entropy Reduction

more information about the criminals and can greatly speedup the investigation
process.

In information theory, the amount of uncertainty in a random variable repre-
sents its quality. This means that the more uncertain the random variable, the
less predictable its outcome, and thus the lower its quality. Also, in a probabilis-
tic database, the amount of uncertainty in the database represents its quality,
meaning that the more uncertain the database, the lower its quality and thus
the quality of the query results over it. For better intuition, consider a tuple
t with existence probability pptq. If pptq is close to zero (or one), we can say
with high probability that t does not exist (or exists) in the database, meaning
that we have minimum uncertainty about t. On the other hand, if pptq is close
to 0.5, the probability that t exists and the probability that t does not exist in
the database are almost the same, meaning that we have maximum uncertainty
about t. Entropy is a well known metric for measuring the amount of uncertainty
in a random variable [119], since the entropy of a random variable increases with
its uncertainty. For instance, the entropy of tuple t where pptq is close to zero or
one, is close to zero (i.e. minimum uncertainty) and the entropy of t where pptq
is close to 0.5, is close to one (i.e. maximum uncertainty).

In this chapter, we use entropy as a quality metric for measuring the quality of
a probabilistic database. The aim of ER is to improve the quality of the database
and thus to improve the quality of the query results over the database. Thus,
in the ER process, we take the entropy reduction as a powerful tool for deciding
about the probabilistic tuples that should be merged.

To deal with the problem of ER over probabilistic data (denoted by ERPD)
using entropy, we need a solution that efficiently: 1) computes the entropy in
probabilistic databases; 2) merges probabilistic tuples that should be merged; and
3) produces a cleaned database with (near) minimum entropy. In this chapter, we
propose such a solution. To the best of our knowledge, this is the first proposed
solution for efficient ER over probabilistic databases using entropy reduction. Our
contributions are summarized as follows:

• We model the ERPD problem as an entropy minimization problem.

• We propose an efficient technique for computing the entropy of a proba-
bilistic database in the x-relation model [10].

• We propose a merge function, denoted by CAF, for merging probabilistic
tuples and entities (i.e. x-tuples in the x-relation model).

• We propose an efficient algorithm, denoted by ME, that uses our proposed
merge function to deal with the ERPD problem by producing a cleaned
database with (near) minimum entropy.

5.2. Problem Definition 87

We also evaluate the performance of our approach through experimentation
over both real-world and synthetic data. The results show that our approach is
scalable in both the number of tuples in the database and the average number of
duplicate tuples per entity. The experimental results also show that our proposed
approach can significantly reduce the uncertainty of the database and improve the
quality of the results of queries over it. Our algorithm significantly outperforms
the best existing algorithms for ERPD by factors up to 144.

The rest of this chapter is structured as follows. In Section 5.2, we provide
some background on the probabilistic data model that we use and entropy in
probabilistic databases, and then we precisely define the problem addressed in
this chapter. Section 5.3 presents an efficient method for computing the entropy
of a probabilistic database in the x-relation model, the CAF merge function, and
the ME algorithm. In Section 5.4, we evaluate the performance of our approach
over both synthetic and real-world databases. In Section 5.5, we analyze our
approach against related work, and Section 5.6 concludes the chapter.

5.2 Problem Definition

In this section, we first describe the probabilistic data model that we adopt.
Then, we define entropy in probabilistic databases. Finally, we formally state the
problem which we address.

5.2.1 Data Model

For representing an uncertain database, we use the x-relation probabilistic data
model in which each uncertain entity is represented with an x-tuple (see the
definition in Section 2.1.2). Figure 5.1(a) shows an example database D in the
x-relation model. This database consists of two x-tuples x1 and x2, where x1

consists of two alternatives t1 and t2, and x2 consists of only one alternative t3.
We denote an uncertain database by D, the set of its possible worlds by

PW pDq, and the set of all tuples in D by D.
We assume that the sum of the probabilities of all alternatives of an x-tuple,

say sump, is equal to 1. If sump is less than 1, we conceptually add a null tuple,
denoted by tK, with probability 1´ sump to the x-tuple. This tuple is only used
for completeness in proofs and does not exist physically. For instance, in Figure
5.1(a), the probability of the null tuple of x1 is 0.1 and that of x2 is 0.8.

5.2.2 Entropy in Probabilistic Databases

In information theory, entropy is a measure of the uncertainty associated with a
random variable [119]. It is usually used for quantifying the expected uncertainty
(or quality) of communicated information. In this chapter, we use entropy to

88 Chapter 5. ERPD Using Entropy Reduction

x-tuple t pptq

x1

t1 0.6

t2 0.3

x2 t3 0.2

(a)

w w members ppwq

w1 H p1´ ppt1q ´ ppt2qq.p1´ ppt3qq “ 0.08

w2 tt1u ppt1q.p1´ ppt3qq “ 0.48

w3 tt2u ppt2q.p1´ ppt3qq “ 0.24

w4 tt3u p1´ ppt1q ´ ppt2qq.ppt3q “ 0.02

w5 tt1, t3u ppt1q.ppt3q “ 0.12

w6 tt2, t3u ppt2q.ppt3q “ 0.06

(b)

Figure 5.1: a) An example probabilistic database D in the x-relation model, b)
Possible worlds of D

measure the expected uncertainty in a probabilistic database. For this, we con-
sider the probabilistic database as a set of probabilistic deterministic database
instances (i.e. the possible worlds of the probabilistic database). Below, we for-
mally define the entropy of a probabilistic database.

5.2.1. Definition. Entropy of a probabilistic database. Let D be a probabilistic
database, PW pDq be the possible worlds of D, and ppwq be the probability of a
possible world w. The entropy of D is defined as

entropypDq “ ´
ÿ

wPPW pDq

ppwq. log ppwq. (5.1)

Notice that the base of the log function is 2. As an example, consider the prob-
abilistic database D and its possible worlds in Figure 5.1. Then, using equation
(5.1), entropypDq is 2.02.

5.2.3 Entity Resolution Over Probabilistic Database

Like in deterministic databases, the ER problem in probabilistic databases con-
tains two main phases: 1) duplicate detection; 2) merging duplicates. Since the
probabilities of tuples are irrelevant in detecting the duplicate tuples, we can
ignore them and use one of the existing proposals for duplicate detection over
deterministic data.

However, the merging phase of ERPD is different from that of ER, because the
merge function in ERPD should adjust the probabilities of the tuples to satisfy
the constraints of the probabilistic data model. For instance, consider two non-
resolvable conflicting2 duplicate tuples t1 and t2 with probabilities 0.8 and 0.3
respectively, in the x-relation model. These tuples cannot be merged into a single

2See the definition in Section 2.2.

5.2. Problem Definition 89

tuple, thus, the merge function decides to put them in an x-tuple and return it
as the result of the merge. However, the sum of the probabilities of t1 and t2 is
more than 1, thus, the merge function should adjust ppt1q and ppt2q to satisfy the
constraint ppt1q ` ppt2q ď 1 before putting them in the output x-tuple.

The way that the merge function merges the duplicate tuples and adjusts the
tuples probabilities greatly depends on the application domain and the interpre-
tation of the probabilities. To enable using custom merge functions, we consider
the merge function as a black-box which accepts two x-tuples as input and merges
them into an output x-tuple.

In this chapter, we distinguish between the merge function and the merge
phase of ERPD, where the merge phase is the process that chooses the x-tuples
to be merged and calls the merge function to merge them.

In the x-relation model, since the duplicate tuples are in fact different repre-
sentations or beliefs about the same real-world entity, it is reasonable to expect a
mutual exclusion relation between them in the cleaned database. Thus, ideally,
the merge phase returns an x-tuple as the result of merging the duplicate tuples
of an entity.

However, there are situations where merging all duplicate tuples of an entity
into an x-tuple increases the entropy, which is in contrast to the aim of ERPD.
For instance, consider an entity which has two duplicate tuples t1 and t2 with
non-resolvable conflicts, where ppt1q “ ppt2q “ 0.9, and a merge function which
adjusts ppt1q and ppt2q to 0.47 and returns the x-tuple tt1, t2u as the result of the
merge. Now, while the entropy of the original tuples is about 0.94, the entropy of
the resulted x-tuple is about 1.24, which shows an increase of 0.3 in the entropy.

To avoid such situations, we have to relax the assumption of merging all
duplicate tuples of an entity into an x-tuple. Thus, the merge phase may merge
the duplicate tuples in different combinations. For example, suppose M is a merge
function, and t1, t2, and t3 are three duplicate tuples. Let ttiu denote the x-tuple
with the single alternative ti, and ti d tj denote the tuple resulted from merging
ti and tj. The merge phase may then produce the following results:

1. tt1u, tt2u, tt3u

2. tt1 d t2u, tt3u

3. tt1 d t3u, tt2u

4. tt2 d t3u, tt1u

5. tpt1 d t2q d t3u

5.2.4 Problem Statement

In this chapter, we aim at merging the x-tuples while minimizing the entropy.
Since we define the entropy as a measure of uncertainty in probabilistic databases,

90 Chapter 5. ERPD Using Entropy Reduction

we expect that the result of the merge phase be a database with minimum un-
certainty, thus with high quality.

We then define the ERPD problem as an entropy minimization problem where
given a probabilistic database, we should produce a cleaned database with mini-
mum entropy. Below, we formally define the ERPD problem.

5.2.2. Definition. ERPD problem. Let D be an x-relation from the tuple do-
main D. Let E “ tE1, . . . , Emu be a partitioning of D tuples, where each partition
is believed to contain duplicate tuples representing the same real-world entity.
Let M be a merge function that merges two x-tuples into an output x-tuple. Let
Ci “ tCi,1, . . . , Ci,ku be a partitioning of Ei tuples, where Ei P E. Let xi,j be the
x-tuple resulted from merging all tuples in Ci,j P Ci, using the merge function M ,

and Xi “
Ťk
j“1 xi,j. Let Dc “

Ťm
i“1Xi. Then, we define the entropy minimized

cleaned database Dcmin as

Dcmin “ arg min
Dc

entropypDcq.

The ERPD problem is to find Dcmin.

A näıve solution for the above problem is to enumerate all possible partition-
ings for each set Ei of duplicate tuples and find the one with minimum entropy.
However, this solution is inefficient because the number of different partitionings
to be examined is exponential to the number of duplicate tuples in each set Ei.
Given an x-relation D, our aim in this chapter is to efficiently find Dcmin.

5.3 ERPD Using Entropy

In this section, we propose our solution for the ERPD problem based on entropy
minimization. We first describe our approach for computing the entropy of a prob-
abilistic x-relation database. Then, we deal with merging probabilistic entities,
using a merge function, called CAF. Then, by using CAF, we propose an algo-
rithm that can efficiently approximate the entropy minimized cleaned database
with a controlled error bound. Finally, we analyze this algorithm’s complexity.

5.3.1 Computing Entropy in X-relations

In our ER technique, we need to compute the entropy of probabilistic databases.
By Definition 5.2.1 (in Section 5.2.2), we defined the entropy of a probabilistic
database based on the probability of its possible worlds. However, the difficulty
with a direct utilization of this definition is that we have to enumerate all possible
worlds, which can be exponentially large.

Fortunately, if the probabilistic database is in the x-relation model, we can
efficiently compute the entropy. By the following lemma, we propose the basis
for efficient computation of entropy in x-relations.

5.3. ERPD Using Entropy 91

5.3.1. Lemma. Let D “ tx1, . . . , xku be a probabilistic database in the x-relation
model where xi, i P r1..ks denotes the ith x-tuple of D. Then, entropypDq is equal
to

entropypDq “ ´
ÿ

xPD

ÿ

tPx

pptq. log pptq (5.2)

Proof. The proof is by induction on the number of x-tuples in the database.
Basis (D “ txu): considering the fact that PW pDq “ tttu | t P xu and using
(5.1), we have

entropypDq “ ´
ÿ

wPPW pDq

ppwq. log ppwq “ ´
ÿ

tPx

pptq. log pptq “ RHS (5.2)

Inductive step: let us assume that D “ tx1, . . . , xku and entropypDq is equal to
´
ř

xPD
ř

tPx pptq. log pptq, for some k ą 1. We show that equation (5.2) holds for
database D1 “ DYxk`1, where xk`1 is an arbitrary x-tuple. Using (5.1) we have:

entropypD1q “ ´
ÿ

w1PPW pD1q

ppw1q. log ppw1q (5.3)

Since x-tuples occur independently in the x-relation model, we have:

PW pD1q “ tw1 | w1 “ w Y ttu, w P PW pDq, t P xk`1u (5.4)

Rewriting equation (5.3) using equation (5.4) and considering the fact that ppw1q “
ppwq.pptq, we have

entropypD1q “ ´
ÿ

tPxk`1

ÿ

wPPW pDq

ppptq.ppwq. log ppptq.ppwqqq “

´
ÿ

tPxk`1

ÿ

wPPW pDq

pptq.ppwq. log pptq `
ÿ

tPxk`1

ÿ

wPPW pDq

pptq.ppwq. log ppwq “

´
ÿ

tPxk`1

pptq. log pptq.
ÿ

wPPW pDq

ppwq `
ÿ

wPPW pDq

ÿ

tPxk`1

pptq.ppwq. log ppwq “

´
ÿ

tPxk`1

pptq. log pptq.
ÿ

wPPW pDq

ppwq `
ÿ

wPPW pDq

ppwq. log ppwq.
ÿ

tPxk`1

pptq (5.5)

Substituting 1 as the value of
ř

wPPW pDq ppwq and
ř

tPxk`1
pptq in (5.5), we have

entropypD1q “ ´
ÿ

tPxk`1

pptq. log pptq `
ÿ

wPPW pDq

ppwq. log ppwq “

´
ÿ

tPxk`1

pptq. log pptq ` entropypDq

92 Chapter 5. ERPD Using Entropy Reduction

Using induction assumption, we have

entropypD1q “ ´
ÿ

tPxk`1

pptq. log pptq `
ÿ

xPD

ÿ

tPx

pptq. log pptq “

´
ÿ

xPD1

ÿ

tPx

pptq. log pptq “ RHS (5.2).

l

Using Lemma 5.3.1, we can efficiently compute the entropy of a database in
the x-relation model in θpnq time, where n is the number of tuples in the database.

5.3.2 Merge Function

In addition to a method for computing entropy, our ER technique needs a merge
function for merging x-tuples. For this, we first consider the problem of merging
two tuples. Then, we explain the way that a generic merge function merges two
x-tuples, and propose the CAF merge function which has the properties that
enable us to efficiently deal with the ERPD problem.

Merge of Tuples

We consider the value of an attribute in a tuple as the belief of the tuple about
that attribute. Having null, denoted by symbol K, as the value of an attribute
means the tuple has no belief in that attribute. We also consider a tuple as the
intersection of beliefs in its individual attributes. More precisely, consider tuple
t “ pv1, . . . , vnq on schema S “ pA1, . . . , Anq. Let bi be the belief that Ai “ vi.
Then, tuple t can be considered as Xni“1bi.

We define the merge of two tuples, denoted by d, as the intersection of their
beliefs about their individual attributes. From the point of view of merging, we
consider two types of tuples: mergeable and non-mergeable tuples. Two tuples,
say t and t1, are mergeable if they have the same beliefs about all of their individual
attributes. In other words, they do not have attributes with conflicting values. If
two tuples cannot be merged, then we say that they are non-mergeable. Notice
that null values do not conflict with each other and also with other attribute
values. In mergeable tuples, the existence of null values in each of the two tuples
causes the merge result to be not equal to one or both of the tuples. We consider
three main categories for mergeable tuples:

• Mergeable type 1: the merge result is not equal to any of the two tuples.

• Mergeable type 2: the merge result is only equal to one of the two tuples.

• Mergeable type 3: the merge result is equal to both tuples.

5.3. ERPD Using Entropy 93

Notice that tK is mergeable with every tuple and the result of the merge is equal
to that tuple. In other words, tK is the neutral element of d operation.

Let us illustrate the mergeable, non-mergeable, and the three mergeable types
using an example.

5.3.2. Example. Consider tuples t1, . . . , t5 in Figure 5.2(a). t1 is non-mergeable
with the other tuples except t3, since they conflict on the value of the address
attribute. t2, . . . , t5 are mergeable, since they do not conflict on the value of any
attribute. Notice that different representations, e.g. “Thomas Michaelis” and “T.
Michaelis”, are not considered as conflicting values. t2 and t3 are mergeable type
1, since t2 d t3 ‰ t2 ‰ t3. t2 and t4 are mergeable type 2, since t2 d t4 is equal to
t4 but not equal to t2. t4 and t5 are mergeable type 3, since t4 d t5 “ t4 “ t5.

CAF Merge Function

Our ER algorithm, which we present in Section 5.3.3, requires that the merge
function is commutative and associative, to be able to merge x-tuples in any order.
To meet this requirement, we have developed a merge function, denoted as CAF
(i.e. Commutative Associative Function). In addition to being commutative and
associative, our merge function usually reduces the entropy of the probabilistic
database, a feature that makes it ideal for ER using entropy reduction.

Let us explain how CAF merges x-tuples. Suppose W is the possible worlds
set of two x-tuples. Let Wm Ď W , called mergable possible worlds, be the set
of possible worlds which contain mergeable tuples from the two x-tuples. Let
Wc Ď W , called contradictory possible worlds, be the set of possible worlds that
contain tuples that are not mergeable. For merging the two x-tuples, our merge
function should preform the following steps:

1. Merging tuples in Wm possible worlds, and aggregating the probabilities of
the worlds that contain the same merge result.

2. Normalizing the tuples’ probabilities by a normalization factor k.

Any merge function that proceeds the above steps is commutative, but not
necessarily associative. In fact, the value of the normalization factor greatly
affects the associativity of the merge function. In CAF, we set the normalization
factor equal to 1´pH, where pH is the aggregated probability of the contradictory
possible worlds3, i.e. Wc. As shown in [79], the only normalization factor for
which the merge function is associative is 1 ´ pH. Indeed, this normalization
factor normalizes the tuples’ probabilities so that their sum is equal to one. Let
us now formally define the CAF merge function.

3This value is equal to the normalization factor of Dempster’s rule of combination [118].

94 Chapter 5. ERPD Using Entropy Reduction

5.3.3. Definition. CAF merge function. Let x and x1 be two x-tuples. Let
pH “

ř

tdt1“H pptq.ppt
1q, where t P x and t1 P x1. Then, the result of merging x

and x1 by CAF is an x-tuple as follows:

xd x1 “ tt2, ppt2q “

ř

tdt1“t2
pptq.ppt1q

1´ pH
| t P x, t1 P x1, t2 ‰ Hu

For illustration, consider two x-tuples x1 and x2 in Figure 5.2(a). To compute
x1 d x2, CAF merges every alternative of x1 with every alternative of x2. The
resulted tuples are shown in Figure 5.2(b), where each cell in row ti and column
tj shows the result of merging ti with tj and its probability of existence, which is
equal to pptiq.pptjq. The corresponding attribute values of tuples t4, t5, t2d t3, t2d
t4, and t2d t5 are equal but non-identical, thus CAF considers these tuples as one
tuple, say t1, and adds their probabilities together. CAF keeps all distinct tuples
and divides their probabilities by 1 ´ pH, which is equal to 0.72. The resulted
x-tuple is shown in Figure 5.2(c).

x-tuple t name phone address p(t)

x1

t1 Thomas Michaelis 5256661 21 College Blvd. 0.4

t2 Thomas Michaelis K 45, Main street 0.5

x2

t3 T. Michaelis 5256661 K 0.3

t4 T. Michaelis 5256661 45, Main street 0.2

t5 Thomas Michaelis 5256661 45, Main st. 0.2

(a)

d t1 t2 tK

t3 t1 d t3 “ H, 0.12 t2 d t3 “ t1, 0.15 tK d t3 “ t3, 0.03

t4 t1 d t4 “ H, 0.08 t2 d t4 “ t1, 0.1 tK d t4 “ t4 “ t1, 0.02

t5 t1 d t5 “ H, 0.08 t2 d t5 “ t1, 0.1 tK d t5 “ t5 “ t1, 0.02

tK t1 d tK “ t1, 0.12 t2 d tK “ t2, 0.15 tK d tK “ tK, 0.03

(b)

x-tuple t p(t)

x1 d x2

t1 0.12{0.72 “ 0.17

t2 0.15{0.72 “ 0.21

t3 0.03{0.72 “ 0.04

t1 p0.15` 0.1` 0.1` 0.02` 0.02q{0.72 “ 0.54

(c)

Figure 5.2: a) Example of two x-tuples and their alternatives, b) CAF’s approach
in merging the two x-tuples, c) The result of merging by CAF

5.3. ERPD Using Entropy 95

Figure 5.3: Entity reduction for two x-tuples x “ ttu and x1 “ tt1u when t and t1

are: a) Non-mergeable, b) Mergeable type 1, c) Mergeable type 2, d) Mergeable
type 3. Blue, black, and red colors represent entropy reductions with positive,
zero, and negative values respectively.

Entropy Reduction Property

As mentioned previously, an interesting property of the CAF merge function is
that it usually reduces entropy. More precisely, let x and x1 be two x-tuples, then,
usually we observe that:

entropy-reduction-value “ entropypxq ` entropypx1q ´ entropypxd x1q ą 0
(5.6)

We call this property, entropy-reduction property of CAF.

To see the entropy-reduction property of CAF, consider a simple case of merg-
ing two x-tuples, each with only one alternative, i.e. x-tuples x “ ttu and
x1 “ tt1u. We compute the entropy reduction value for a number of points
representing ppptq, ppt1qq for each of the four merge possibilities of t and t1 (i.e.
non-mergeable, and the three mergeable types). The results are shown in Figure
5.3, where the points are colored depending on their entropy reduction value, i.e.
blue, black, and red for positive, zero, and negative, respectively. This figure
shows that merging the x-tuples using CAF may increase entropy only when the
tuples are non-mergeable and both have high existence probabilities (i.e. the red
area in Figure 5.3(a)). This shows that in the case of single alternative x-tuples,
usually CAF reduces entropy. Although visualizing the entropy-reduction prop-
erty for x-tuples with more than one alternative is not possible, we observe this
behavior in our experiments.

The entropy-reduction property of CAF makes it appropriate for being used
in our entity resolution algorithm which we describe in the next subsection.

96 Chapter 5. ERPD Using Entropy Reduction

5.3.3 ME Algorithm

Our entity resolution algorithm, called ME (i.e. Minimized Entropy), greedily
merges x-tuples to generate a database whose entropy is close to the minimal
entropy. ME gets a probabilistic database in the x-relation model as input and
produces its cleaned version as output. Here, for ease of presentation, we assume
that the input database is a single-alternative x-relation. This assumption is
relaxed in Section 5.3.5.

Given a single-alternative x-relation D, ME works as follows:

1. Ignoring the tuples’ probabilities, use an existing duplicate detection method
to partition D into a set E of partitions such that each partition contains
duplicate tuples which are believed to represent the same real-world entity.

2. For each partition Ei in E do steps 3 to 6.

3. Build the set Xi of x-tuples by putting each tuple of Ei in an x-tuple.

4. Let x and x1 be two x-tuples in set Xi for which the entity reduction value
is maximum, say rmax.

5. If rmax ą 0, then remove x and x1 from Xi; add xd x1 to Xi; and goto step
4.

6. Add all of the x-tuples of Xi to database Dc.

7. Return Dc.

In ME, we continuously search the two x-tuples whose merging provides the
maximum entropy reduction with a positive value, remove them, and continue
doing this until no merging with positive entropy reduction exists.

For merging the x-tuples, we use the CAF merge function. Notice that ME can
work with any other merge function that is associative and commutative. How-
ever, using CAF makes the ME algorithm more efficient, because of its entropy-
reduction property.

Let us now illustrate ME using an example.
Example 3. Consider database D in Figure 5.4(a), where the schema of D

contains only one attribute A. Suppose we use a duplicate detection method
that partitions D into two partitions E1 and E2, where E1 “ tt1, t2, t3, t4, t5u and
E2 “ tt6, t7u.

Beginning from partition E1, ME builds set X1 by putting each of the E1’s tu-
ples in one x-tuple, i.e. X1 “ ttt1 : 0.5u, tt2 : 0.9u, tt3 : 0.8u, tt4 : 0.7u, tt5 : 0.6uu,
where the existence probability of each tuple is shown in front of it. To find
two x-tuples with maximum entropy reduction, ME computes the entropy reduc-
tion that results from merging every two x-tuples in X1. Merging tt4 : 0.7u and
tt5 : 0.6u provides the maximum entropy reduction, i.e. 1.32, thus, ME merges

5.3. ERPD Using Entropy 97

t A p(t)

t1 a 0.5

t2 a 0.9

t3 b 0.8

t4 c 0.7

t5 c 0.6

t6 d 0.1

t7 e 0.3

(a) Database D

x-tuple t A p(t)

x1

t1,2 a 0.79

t3 b 0.16

x2 t4,5 c 0.88

x3

t6 d 0.07

t7 e 0.28

(b) Cleaned database Dc

Figure 5.4: a) Probabilistic database D, b) The cleaned database resulted from
applying the ME algorithm to D

them into x-tuple tt4,5 : 0.88u and updates set X1, i.e. X1 “ ttt1 : 0.5u, tt2 :
0.9u, tt3 : 0.8u, tt4,5 : 0.88uu. Then, ME updates entropy reduction values by con-
sidering the merge of newly added x-tuple with other x-tuples. Merging tt1 : 0.5u
and tt2 : 0.9u provides the maximum entropy reduction, i.e. 1.18, thus, ME
merges them into x-tuple tt1,2 : 0.95u and updates set X1, i.e. X1 “ ttt1,2 :
0.95u, tt3 : 0.8u, tt4,5 : 0.88uu. After updating the entropy reduction values, ME
finds that merging tt1,2 : 0.95u and tt3 : 0.8u provides the maximum entropy
reduction, i.e. 0.12, Thus, ME merges them into x-tuple tt1,2 : 0.79, t3 : 0.16u and
updates set X1, i.e. X1 “ ttt1,2 : 0.79, t3 : 0.16u, tt4,5 : 0.88uu. At this stage, the
maximum entropy reduction is equal to ´0.05, thus, ME adds the x-tuples in set
X1 to the cleaned database, i.e. Dc.

Partition E2 contains only two tuples, thus X2 “ ttt6 : 0.1u, tt7 : 0.3uu. The
entropy reduction which is resulted from merging the only two x-tuples in X2

is equal to 0.16. As a result, ME merges the two x-tuples in X2 into x-tuple
tt6 : 0.07, t7 : 0.28u and adds it to the cleaned database.

The cleaned database is shown in Figure 5.4(b). The entropy of D is equal to
5.39 and that of Dc is equal to 2.62, meaning that ME has reduced the entropy by
a factor of 2. In this example, ME obtains the database with minimum entropy.

5.3.4 Time Complexity

In this section, we analyze the time complexity of the ME algorithm. Since the
time complexity of the duplicate detection step of ME depends on the approach
used, we do not consider this step in our analysis.

Let us analyze the time that ME spends for each partition. Let d be the
number of tuples in the partition. In the first stage, ME computes the entropy
reduction value for all 1

2
dpd´1q single-alternative x-tuple pairs in the partition and

98 Chapter 5. ERPD Using Entropy Reduction

it computes each entropy reduction value in Op1q time. For efficient management
of entropy reduction values, ME can use a priority queue. Thus, the first stage of
ME takes Opd2 log dq time. In each of the next stages, ME updates the priority
queue with the entropy reduction values that result from merging the newly
generated x-tuple with the existing x-tuples. In general, at stage i, ME computes
d ´ i ´ 1 entropy reduction values. In worst case, all x-tuples have the same
number of alternatives, i.e. d{pd ´ iq, thus, computing each entropy reduction
value takes Opd2{pd´ iq2q time. Also, inserting each computed entropy reduction
value in the priority queue is of Oplog dq. In worst case, ME merges all x-tuples
into one x-tuple. Thus, the time that ME spends on the whole stages, including
the first stage, can be computed as follows:

T pdq “ Opd2 log dq `
d´2
ÿ

i“1

d2

d´ i
log d “ Opd2 log dq ` d2 log dpHpdq ´ 1´

1

d
q

where Hpdq is the d-th harmonic number which is bounded by log d. Thus, T pdq
is of Opd2plog dq2q.

Let n be the number of tuples in the database and m be the number of
different real-world entities that the tuples represent. In the worst case, all tuples
in the database represent only one real-world entity, i.e. d “ n. Thus, the time
complexity of ME in worst case is of Opn2plog nq2q. On average, we can assume
that partitions contain equal number of tuples, i.e. d “ n{m. Thus, the average
time complexity of ME is of Opn

2

m
plog n

m
q2q.

5.3.5 Multi-Alternative X-relation Case

The algorithm for a multi-alternative x-relation only differs in the duplicate detec-
tion step. After partitioning the database, we may obtain partitions of duplicate
tuples that do not respect the x-tuple correlations, meaning that the alternatives
of an x-tuple may be put in different partitions. Since alternatives of an x-tuple
are different beliefs about the same entity, it is obvious that they should be put
in the same partition. Thus, to respect the x-tuple correlations, we have to com-
bine all partitions that contain different alternatives of an x-tuple. To do so, We
perform the following steps:

1. Let D be a multi-alternative x-relation. Let E be a partitioning of D tuples
where each partition contains duplicate tuples that are believed to represent
the same real-world entity.

2. If E contains two different partitions Ei and Ej, where Dt P Ei ^ Dt
1 P Ej |

t, t1 P x, x P D, then remove Ei and Ej from E; add EiYEj to E; and goto
step 2.

3. Return E

5.4. Performance Evaluation 99

5.4 Performance Evaluation

In this section, we evaluate the performance of our algorithm and its competitors
through experimentation over both synthetic and real-world databases. We first
describe our experimental setup. Then, we evaluate the performance of the al-
gorithms in terms of execution time, entropy reduction, and the quality of query
results.

5.4.1 Experimental Setup

To the best of our knowledge, there is no previous work dealing with the ERPD
problem by entropy reduction. Thus, we compare our work with Koosh [94] which
represents the best approach in the literature for dealing with the ERPD problem
over x-relation databases. In contrast to ME however, Koosh assumes that all
duplicate tuples are mergeable and uses a generic merge function that merges two
duplicate tuples into a merged tuple. In order to compare this proposal with ME,
we use two different merge functions to create two versions of Koosh as follows:

• Koosh-CAF: instead of merging all duplicate tuples into one tuple (as does
Koosh), we use CAF to merge them into one x-tuple.

• Koosh-ˆ: we use the product merge function, where two tuples are merged
into a tuple whose probability is the product of the original tuples. If the
two tuples have conflicting attribute values (i.e. non-mergeable), we put
the attribute value of the tuple with higher probability in the merged tuple.

We implemented ME, Koosh-CAF, and Koosh-ˆ in Java, and tested them
over both synthetic and real-world databases, thus covering all practical cases.
Since these algorithms are not much different over single-alternative and multi-
alternative x-tuples, for simplicity we test them over single-alternative databases.

We use a couple of parameters to control the characteristics of the synthetic
databases in the experiments. The number of tuples in the database is denoted
by n. The average number of duplicate tuples, which represent one entity, is
denoted by de (i.e. entity-degree). The percentage of mergeable duplicate tuples
is denoted by mp.

We implemented two different scenarios for generating the synthetic databases.
In the first scenario, we generate a database, denoted by SDB, without any spe-
cific semantics and use it to evaluate the scalability of our algorithm and also the
amount of entropy reduction which our algorithm achieves. In the SDB database,
each tuple is represented by a vector peid,D, pq, where eid is a positive integer
representing the entity which the tuple represents; D represents the attribute of
the tuple; and p is a probability that the tuple belongs to the database. To gener-
ate the SDB database, we repeatedly generate the duplicate tuples representing
an entity as follows: We first randomly generate a number, say ne, uniformly

100 Chapter 5. ERPD Using Entropy Reduction

Table 5.1: Real-world databases used in our tests
name attributes tuples entities

Cora 12 1295 117

Restaurant 4 864 751

distributed in range r1..2de ´ 1s. Then, we generate ne tuples, all having the
same eid, with the meaning that they represent the same entity. To implement
the scenario where mp percent of duplicate tuples are mergeable, we set the D
attribute of mp ˆ ne tuples of the ne generated tuples to the same value (e.g.
zero) meaning that they are mergeable, and we also set the D attribute of the
other tuples to non-equal numbers, meaning that they are non-mergeable. We
generate p attributes of each tuple as a random number in range (0..1]. We use
the following distributions for generating p: 1) normal with 0.1, 0.5, or 0.9 as
mean and 0.25 as standard deviation and 2) uniform. We repeat this process to
generate other entities in the database.

In the second scenario, we generate a database, denoted by Objects, which
stores the distance of the astronomical objects to the Earth. We use the Obejcts
database to evaluate the quality of the query results before and after applying our
algorithm to the database. Obejcts database is resulted from aggregating several
observatories’ databases, thus each astronomical object is represented by a num-
ber of tuples, i.e. duplicate tuples, each of which has come form one observatory’s
database. As in the SDB database, each tuple in the Objects database is repre-
sented by a vector peid,D, pq but with different semantics for D and p attributes.
The D attribute denotes the measured distance between the astronomical object
and the Earth in light-year. Since error is inevitable in scientific measurements,
we assume that D “ dis ` perror ˆ disq where dis is the actual distance and
error is the percentage of error introduced in measuring the distance. Notice
that error is a real number in (-1..+1). The p attribute denotes how much the
D attribute is close to reality (i.e. dis value). To reflect this assumption, p is set
to 1´ |error|. For instance if dis “ 100 and D “ 120, then p is set to 0.8.

We generate the probabilistic Objects database and its deterministic version,
denoted by Objectsc, as follows: We first generate dis as a random number uni-
formly distributed in range [1..100] and add the vector t = (eid, dis, 1.0) to
Objectsc database. Then, we generate the random number ne that is uniformly
distributed in range r1..2de ´ 1s. We then generate ne tuples all having the same
eid as tuple t meaning that they are all duplicate tuples of t. We use a normal
distribution with 0 as mean and 0.5 as standard deviation to generate error in
each tuple and use this number to compute D and p attributes of the tuple as we
explained above. Then, we add generated tuples to the Objects database. We
repeat this process until generating n tuples for the Objects database.

5.4. Performance Evaluation 101

Table 5.2: Default setting of experimental parameters

Parameter Values

n: number of tuples in the database 200,000

de: average number of duplicate tuples per entity 10

mp: percentage of mergeable duplicate tuples 20%

We also evaluate our algorithm on two real-world databases. Table 5.1 lists
the real-world databases that we use in our experiments. The Cora database [92]
includes bibliographical information about scientific publications with 12 different
attributes. This database includes 1295 tuples that describe 117 distinct publi-
cations (i.e. on average 11.1 duplicate tuples per publication). The Restaurant
database [124] includes the name, address, city, and the type attributes of restau-
rants. This database includes 894 tuples about 751 distinct restaurants (i.e. 1.2
duplicate tuples per restaurant).

These two databases have been frequently used for duplicate detection tasks in
related work, e.g. [92, 124, 12, 15, 27, 72, 60]. In order to convert these databases
to their probabilistic version, we use the same probability distributions as in the
synthetic data. We will show that the probability distributions, which we use
for converting the real-world database to its probabilistic version, do not have a
significant effect on the result of our algorithm.

The default settings of the experimental parameters are listed in Table 5.2. By
default, we set the number of tuples in the database to 200,000, and the average
number of duplicate tuples per entity to 10. When mp is not used as a varying
parameter, we set it to 20%, which is relatively small, in order to evaluate our
algorithm in a context that the majority of the tuples cannot be merged.

In order to evaluate the performance of our approach, we measure the follow-
ing metrics.

1) Execution time. The execution time is the time elapsed from the initiation
to the completion of the algorithm.

2) Entropy. This metric measures the uncertainty degree of the database. We
compare the entropy of the given input database to the entropy of the cleaned
(i.e. deduplicated) database, which is produced by applying our algorithm to the
input database.

3) Query-result-error. This metric measures the percentage of error in the
query results compared to the ground truth, i.e. the query result over the deter-
ministic database. Let us formally define this metric. Let D be a probabilistic
database and Dc be its deterministic version. Let Q be a COUNT query over
D’s schema. Let QpDcq be the result of Q over the database Dc and QpDq be the
expected value of the result of Q over the probabilistic database D. We define

102 Chapter 5. ERPD Using Entropy Reduction

the query-result-error as

query-result-errorpQ,Dq “ QpDcq ´QpDq
QpDcq

ˆ 100.

In our experiments, we use the probabilistic database Objects and its determin-
istic version (i.e. Objectsc) as the test databases. In order to evaluate the effect
of our algorithm on the quality of the query results, we use a COUNT query Q to
compare the query-result-error(Q,Objects) with the query-result-error(Q,cleaned-
Objects), where cleaned-Objects is the database produced by applying our algo-
rithm to the Objects database.

We conducted our experiments on a windows XP machine with Intel Core
i3-2100 CPU (i.e. 3MB Cache and 3.10 GHz) and 4GB memory.

0.2 0.6 1 1.4 1.8 2
0

100

200

300

400

500

n (millions)

q
u

er
y
-r

es
u

lt
-e

rr
or

Objects Koosh-CAF Koosh-ˆ ME

Figure 5.5: Query-result-error vs. n

5 10 30 50 70 90 100
100

101

102

103

104

de

q
u

er
y
-r

es
u

lt
-e

rr
or

Objects Koosh-CAF

Koosh-ˆ ME

Figure 5.6: Query-result-error vs. de

5.4.2 Performance Results

In this section, we report the result of our experiments. We first show the error
bound of our algorithm in approximating the entropy minimized clean database,
i.e. Dcmin.

To study the error bound of our algorithm, we consider a database of d dupli-
cate tuples, and enumerate different partitionings of this database to compute its
Dcmin. Since the number of different partitionings increases exponentially with d,
we can only increase d up to 12. In our experiments, we set mp to 20%, and use
databases with different probability distributions. To obtain more stable results,
we repeat each experiment 10 times and take the average of the results. We ob-
serve that the percentage of error is less than 0.02%, meaning that the error of
our algorithm is quite low. Although we cannot compute Dcmin for larger values
of d, we observe that the entropy of the database resulted from our algorithm for

5.4. Performance Evaluation 103

each entity (i.e. each partition of duplicate tuples) is quite close to zero, i.e. the
minimum entropy.

Evaluating the Quality of the Query Results

We compare the quality of the query results over Objects and the databases which
are produced by applying the algorithms Koosh-CAF, Koosh-ˆ, and ME to the
Objects database (hereafter called Koosh-CAF, Koosh-ˆ, and ME databases for
short), while varying the number of tuples in the database (i.e. n) and the average
number of duplicate tuples per entity (i.e. de). We use the query-result-error
metric for measuring the quality of the query results, and the following query as
the test query: “return the number of astronomical objects whose distance from
the Earth is greater than 50 light-years”.

With n increasing up to 2,000,000, de set to 10, and mp set to 0, Figure 5.5
shows the query-result-error in the query results over the Objects and databases
produced by the three algorithms. We observe that the Koosh-CAF and Koosh-
ˆ databases have the same query-result-error as the Objects database, but the
query-result-error of the ME database is drastically less than that of the Objects
(i.e. about 95%). The reason is that ME combines duplicate tuples, thus yielding
a more accurate estimation for a COUNT query. However, Koosh-CAF and
Koosh-ˆ often keep duplicate tuples in the database without even establishing
mutual exclusion relation between them, thus adversely affecting the estimation
for a COUNT query.

0.5 1 1.5 2
0

10

20

30

n (millions)

ex
ec

u
ti

on
ti

m
e

(s
ec

)

Normal (mean = 0.1)

Normal (mean = 0.5)

Normal (mean = 0.9)

Uniform

Figure 5.7: Execution time of ME vs.
n over normal and uniform databases

0.2 0.6 1 1.4 1.8 2
0

500

1,000

1,500

n (millions)

en
tr

op
y

(K
)

SDB

Koosh-CAF

Koosh-ˆ

ME

Figure 5.8: Entropy vs. n over normal
database with mean “ 0.5

Figure 5.6 shows how the query-result-error in the query results over the
Objects, Koosh-CAF, Koosh-ˆ, and ME databases increases with de increasing
up to 100, n set to 200,000, and mp set to 0. For the same reason as above, we
observe that ME drastically reduces the query-result-error in the query results,

104 Chapter 5. ERPD Using Entropy Reduction

while Koosh-CAF and Koosh-ˆ do not change it. Figures 5.5 and 5.6 also show
that in ME, while the reduction in query-result-error is almost constant with n,
it is linear with de. The reason is that the error in the result of a COUNT query
over a probabilistic database is directly affected by the sum of the probabilities of
the duplicate tuples in each entity, which is linear with de; as a result, increasing
de has a linear effect on the query-result-error over the Objects database. In
the ME database, we combine all duplicate tuples of an entity to a number of
x-tuples. In each x-tuple, the sum of probabilities of the tuples is less than 1 and
the number of x-tuples in the ME database is almost independent from de, thus
query-result-error over the ME database is almost independent from de. Thus,
the reduction in query-result-error is linear in de.

Effect of the Number of Tuples

We evaluated the three algorithms over the SDB database with different distri-
butions of p while varying the number of tuples in the database, i.e. n.

With the number of tuples increasing up to 2,000,000 and the other parameters
set as in Table 5.2, Figure 5.7 shows the execution time of ME. The execution time
is almost linear in n for all distributions. Not surprisingly, increasing the mean
of the normal distribution, decreases the execution time. This observation shows
that our algorithm stops sooner when the database contains more confident tuples.
The reason is that combining high confidence tuples increases entropy, thus our
algorithm stops sooner when the database contains more confident tuples.

0 20 40 60 80 100
0

500

1,000

1,500

de

ex
ec

u
ti

on
ti

m
e

(s
ec

)

Normal (mean = 0.1)

Normal (mean = 0.5)

Normal (mean = 0.9)

Uniform

Figure 5.9: Execution time of ME vs.
de over normal and uniform databases

5 10 30 50 70 90 100
0

500

1,000

1,500

2,000

de

en
tr

op
y

(K
)

SDB Koosh-CAF Koosh-ˆ ME

Figure 5.10: Entropy vs. de over nor-
mal database with mean “ 0.5

With the number of tuples increasing up to 2,000,000 and the other parameters
set as in Table 5.2, Figure 5.8 compares the entropy of the SDB database with
that of the databases produced by Koosh-CAF, Koosh-ˆ, and ME algorithms for
normal SDB database with mean “ 0.5. The other tested normal and uniform

5.4. Performance Evaluation 105

distributions also show the same trend. This figure shows that while entropy
reduction in Koosh-CAF and Koosh-ˆ is not significant, ME significantly reduces
entropy, i.e. about 73%. We also observe that the entropy of the databases are
linear in n in all distributions. However, different distributions do affect the
coefficient in the linear relation between the entropy and n: a very low or high
mean value for p (e.g. 0.1 and 0.9) decreases it, but a value close to 0.5 increases
it.

Effect of the Average Number of Duplicate Tuples per Entity

We studied the performance of the three algorithms over the SDB database with
different distributions of p while varying the average number of duplicate tuples
per entity, i.e. de.

With de increasing up to 100 and the other parameters set as in Table 5.2,
Figure 5.9 shows the results measuring the execution time of ME. Obviously, the
execution time increases with de for all distributions because when the number of
duplicate tuples per entity increases, more tuple pairs are checked to be combined.
However, the increase is smooth so that ME is quite scalable with respect to de.
This figure also shows that the execution time decreases a little with the mean of
p distribution. This is because combining tuples with high probability increases
entropy and thus is avoided by ME.

0 0.2 0.4 0.6 0.8 1
15

20

25

30

mp

ex
ec

u
ti

on
ti

m
e

(s
ec

)

Normal (mean = 0.1)

Normal (mean = 0.5)

Normal (mean = 0.9)

Uniform

Figure 5.11: Execution time of ME vs.
mp over different databases

0 0.2 0.4 0.6 0.8 1
0

500

1,000

1,500

2,000

mp

en
tr

op
y

(K
)

SDB Koosh-CAF Koosh-ˆ ME

Figure 5.12: Entropy vs. mp over nor-
mal database with mean “ 0.5

With de increasing up to 100 and the other parameters set as in Table 5.2,
Figure 5.10 compares the entropy of the SDB database with that of the databases
produced by Koosh-CAF, Koosh-ˆ, and ME algorithms for normal SDB database
with mean “ 0.5. The other tested normal and uniform distributions also show
the same trend. This figure shows that while the entropy of the SDB, Koosh-
CAF, and Koosh-ˆ databases remains constant, the entropy of the ME database

106 Chapter 5. ERPD Using Entropy Reduction

decreases drastically with increasing de, and also the percentage of reduction
increases with de. For instance, we observe that ME achieves 99% reduction in
entropy over the normal SDB database with mean “ 0.5 and de “ 100, meaning
that ME outperforms the other algorithms by a factor of 144. The reason is that
since the number of tuples is fixed, the entropy of the SDB database remains
constant. On the other hand, having a fixed number of tuples and increasing the
number of duplicate tuples per entity means that more tuples have the chance
to merge or form an x-tuple, thus reducing the number of possible worlds and
the entropy of the resulted cleaned database. Thus, the percentage of reduction
increases with de.

Effect of the Percentage of Mergeable Duplicate Tuples

We evaluated the performance of the three algorithms over the SDB database
with different distributions of p while varying the percentage of duplicate tuples
that can be merged together, i.e. mp.

Withmp increasing up to 1 and the other parameters set as in Table 5.2, Figure
5.11 shows the execution times of ME. As we expect, the execution time decreases
with mp for all distributions. The reason is that when mp increases, more tuples
are merged together to form a merged tuple, thus reducing the number of tuple
pairs that need to be checked for being combined by our algorithm. Again for
the same reason, we observe that the execution time decreases a little with the
mean of p distribution.

Normal (0.1) Normal (0.5) Normal (0.9) Uniform
0

0.2

0.4

0.6

0.8

1

1.2

p distribution

en
tr

op
y

(K
)

Cora Koosh-CAF

Koosh-ˆ ME

Figure 5.13: Result of applying the
algorithms to the Cora database

Normal (0.1) Normal (0.5) Normal (0.9) Uniform
0

0.2

0.4

0.6

0.8

p distribution

en
tr

op
y

(K
)

Restaurant Koosh-CAF

Koosh-ˆ ME

Figure 5.14: Result of applying the al-
gorithms to the Restaurant database

With mp increasing up to 1 and the other parameters set as in Table 5.2,
Figure 5.12 compares the entropy of the SDB database with that of the databases
produced by Koosh-CAF, Koosh-ˆ, and ME algorithms for normal SDB database
with mean “ 0.5. We observe the same trend in other tested normal and uniform

5.5. Analysis against related Work 107

distributions. Again, ME outperforms the other algorithms. These figures show
that, while the entropy of the SDB database remains constant, the entropy of
the other databases decreases significantly with increasing mp. For instance, we
observe that ME achieves 99% reduction in entropy over the normal SDB database
with mean “ 0.5 and mp “ 1. The reason for this observation in Koosh-CAF and
ME is that when mp increases, more tuples are merged together. In Koosh-ˆ,
the resulted merged tuples have lower probability than the original tuples, and
this results in discarding the merged tuples. Hence, the entropy of Koosh-ˆ is
always higher than that of Koosh-CAF and ME.

Results on Real Data

Let us report the results of evaluating the three algorithms over the two real-
world databases, i.e. Cora and Restaurant. We use real data in order to cover
all practical cases which happen in real-world, particularly the merge types that
we do not cover in the synthetic data, i.e. merge types 1 and 2 (refer to Section
5.3.2 for definition).

Figure 5.13 compares the entropy of the Cora database with the entropy of the
databases produced by Koosh-CAF, Koosh-ˆ, and ME algorithms over different
distributions of p. We observe that ME signifcantly outperforms the other algo-
rithms. This figure shows that ME significantly reduces the entropy of the Cora
database over all p distributions. For instance, we observe about 91% reduction
in entropy over the normal database with mean “ 0.9.

Figure 5.14 shows the entropy of the Restaurant database with the entropy
of the databases produced by Koosh-CAF, Koosh-ˆ, and ME algorithms over
different distributions of p. This figure shows that all three algorithms equally
reduce the entropy of the Restaurant database over all p distributions. However,
the reduction is much less than that of the Cora database. The reason is that
Cora and Restaurant databases have different number of duplicate tuples per
entity (i.e. on average 11.1 for Cora database and 1.2 for Restaurant database),
and this has a direct effect on the entropy reduction.

5.5 Analysis against related Work

Beyond the work on entity resolution presented in Chapter 2, we identify the
following areas of related work.

In the database literature, entropy has been used as a quality metric for query
results over a probabilistic database [43, 42]. In [43], entropy is used to measure
the quality of the range queries, nearest neighbor queries, AVG and SUM queries
over a probabilistic database which contains a probabilistic attribute, modeled
using a probability density function over an interval. In [42], the authors define
entropy as a quality metric for the query results over a probabilistic database, and

108 Chapter 5. ERPD Using Entropy Reduction

propose a data cleaning algorithm with the goal of optimizing the expected quality
improvement of the query results under a limited budget. Although entropy is
meant to act as a quality metric for any query, the proposal in [42] can efficiently
approximate it only for a particular subclass of queries over an x-relation. Our
work differs from these proposals however in the way that we use entropy as a
quality metric for the probabilistic database, rather than only for query results
over it, and we propose an efficient approach for entity resolution using entropy.

5.6 Conclusion

In this chapter, we considered the problem of Entity Resolution for Probabilistic
Data (ERPD). Using entropy as a quality metric for a probabilistic database,
we proposed an efficient technique for computing the entropy of a probabilistic
database in the x-relation model. We proposed a merge function for merging
x-tuples. Based on our merge function, we proposed ME, a polynomial time
algorithm for dealing with the ERPD problem with the aim of minimizing the
entropy of the cleaned database. Our experimentation results over both real-
world and synthetic data show that ME significantly reduces the entropy of the
tested databases, improves the quality of the query results over tested databases;
and outperforms drastically the best existing algorithms in the literature. They
show that ME can reduce the entropy of the tested probabilistic databases up to
99%, when compared to the best algorithms in the literature.

Chapter 6

Pay-As-You-Go Data Integration Using
Functional Dependencies1

6.1 Introduction

In most of the applications that the entity resolution (ER) problem arises, the
data resides in a number of data sources with heterogenous schemas. Thus, before
dealing with the ER problem, we first have to deal with the schema heterogeneity
problem of data sources. Our aim in this chapter is to deal with this problem by
setting up a data integration system without human intervention.

Data integration systems offer uniform access to a set of autonomous and het-
erogeneous data sources. Sources may range from database tables to web sites,
and their numbers can range from tens to thousands. The main building blocks of
a typical data integration application are the mediated schema definition, schema
matching and schema mapping. The mediated schema is the integrated schema
on which users pose queries. Schema matching is the process of finding associ-
ations between the elements (often attributes or relations) of different schemas,
e.g. one source schema and the mediated schema in the popular Local As View
(LAV) approach [100]. Schema mapping (also referred to as semantic mapping)
is the process of relating the attributes of source schemas to the mediated schema
(sometimes using expressions in a mapping language). The output of schema
matching is used as input to schema mapping algorithms [100, 130].

Setting up a full data integration system with a manually designed mediated
schema requires significant human effort (e.g. by domain experts and database
designers). On the other hand, the applications that we consider in this thesis
need to start with a data integration application in a complete automatic set-
ting for reducing human effort and development time, and putting more effort
into improving it, as needed. This setting is referred to by pay-as-you-go data
integration.

1The material of this chapter has been partially published in [19] and [18].

109

110 Chapter 6. Data Integration Using FDs

The goal of our research is to study how advanced of a starting point can
we build a pay-as-you-go data integration system in a fully automated setting.
Since probabilistic data models have shown to be promising [59, 115], we build
our approach on a probabilistic data model to capture the uncertainty that arises
during the schema matching process. Therefore, we generate a set of Proba-
bilistic Mediated Schemas (PMSs). The idea behind PMSs is to have several
mediated schemas, each one with a probability that indicates the closeness of the
corresponding mediated schema to the ideal mediated schema.

In database literature, the closest related work to ours is that of Sarma et al.
[115] which is based on the PMSs proposed UDI (Uncertain Data Integration),
as an uncertain data integration system. However, UDI may fail to capture some
important attribute correlations, and thereby produce low quality answers. Let
us clarify this by an example, which is the same as the running example in [115].

6.1.1. Example. Consider the following schemas both describing people:
S1pname, hPhone, hAddr, oPhone, oAddrq
S2pname, phone, addressq

In S2, the attribute phone can either be a home phone number or an office phone
number, and the attribute address can either be a home address or an office
address.

A high quality data integration system should capture the correlation between
hPhone and hAddr and also between oPhone and oAddr. Specifically, it must
generate schemas which group the address and hAddr together if phone and
hPhone are grouped together. Similarly it should group the address and oAddr
together if phone and oPhone are grouped together. In other words both of the
following schemas should be generated (we abbreviate hPbone, oPhone, hAddr,
oAddr as hP, oP, hA, and oA respectively):

M1ptname, nameu, tphone, hP u, toP u, taddress, hAu, toAuq
M2ptname, nameu, tphone, oP u, thP u, taddress, oAu, thAuq

UDI does not consider attribute correlations. Thus, UDI may generate M1

and M2 together with many other schemas that do not always respect attribute
correlations. As a results, by producing a large number of schemas which can
easily be exponential, the desirable schemas get a very low probability.

Most attribute correlations are expressed through Functional Dependencies
(FDs), which are defined among them. For example let F1 and F2 be the set of
FDs of S1 and S2 respectively:

F1 “ thPhoneÑ hAddr, oPhoneÑ oAddru
F2 “ tphoneÑ addressu

FDs in F1 and F2 show the correlation between the attributes in S1 and S2,
respectively. For example, hPhone Ñ hAddr indicates that the two attributes
hPhone and hAddr are correlated. Considering the pairs of FDs from different

6.2. Problem Definition 111

sources can help us with extracting these correlations and achieving the goal of
generating mediated schemas that represent these correlations. For example, the
FD pair: phone Ñ address and hPhone Ñ hAddr indicate that if we group
phone and hPhone together, we should also group address and hAddr together,
and similarly oPhone and oAddr.

In this chapter, we take advantage of the background knowledge which is
implied within functional dependencies (FDs), for building a pay-as-you-go data
integration system. The specific contributions of this chapter are the following.

• We propose IFD (Integration based on Functional Dependencies), a data
integration system that takes into account attribute correlations by using
functional dependencies, and captures uncertainty in mediated schemas us-
ing a probabilistic data model. Our system allows integrating a given set of
data sources, as well as incrementally integrating additional sources, with-
out needing to restart the process from scratch.

• We model the schema matching problem as a clustering problem with con-
straints. This allows us to generate mediated schemas using algorithms
designed for the latter problem. In our approach, we build a custom dis-
tance function for representing the knowledge of attribute semantics which
we extract from FDs.

• We propose a new metric (i.e. FD-point) for ranking the generated mediated
schemas in the clustering process, and selecting high quality ones.

• To validate our approach, we have implemented it as well as the baseline
solutions. The performance evaluation results show significant performance
gains of our approach in terms of recall and precision compared to the
baseline approaches. They confirm the importance of FDs in improving the
quality of uncertain mediated schemas.

The rest of the chapter is organized as follows. In Section 6.2, we make our
assumptions precise and define the problem. In Section 6.3, we briefly describe
the architecture of our data integration system. In Section 6.4, we propose our
approach for schema matching. We also analyze the execution cost of our pro-
posed approach. Section 6.5 describes our performance validation. Section 6.6
discusses related work, and Section 6.7 concludes the chapter.

6.2 Problem Definition

In this section, we first give our assumptions and some background about PMSs.
Then, we state the problem addressed in this chapter.

We assume that the functional dependencies between the attributes of sources
are available. This is a reasonable assumption in the applications which we con-
sider, because the data source providers are willing to provide the full database

112 Chapter 6. Data Integration Using FDs

design information, including functional dependencies. However, there are con-
texts, such as the web, for which functional dependencies are not available. For
these applications, we can use one of the existing solutions, e.g. [77, 132], to
derive functional dependencies from data. Second assumption, which we make
for ease of presentation, is that the data model is relational.

Let us formally define some basic concepts, e.g. functional dependencies and
mediated schemas, and then state the problem addressed in this chapter. Let S be
a set of source schemas, say S “ tS1, . . . , Snu, where for each Si, i P r1, ns, Si “
tai,1, . . . , ai,liu, such that ai,1, . . . , ai,li are the attributes of Si. We denote the
set of attributes in Si by attpSiq, and the set of all source attributes as A, i.e.
A “ YiattpSiq. For simplicity, we assume that Si contains a single table. Let F
be the set of functional dependencies of all source schemas, say F “ tF1, . . . , Fnu.
For each Si, i P r1, ns, let Fi be the set of functional dependencies among the
attributes of Si, i.e. attpSiq, where each fdj, fdj P Fi is of the form Lj Ñ Rj

and Lj Ď attpSiq, Rj Ď attpSiq. In every Fi, there is one fd of the form Lp Ñ Rp,
where Rp “ attpSiq, i.e. Lp is the primary key of Si.

We assume one-to-one mappings of source attributes, meaning that each at-
tribute can be matched with at most one attribute. We do this for simplicity
and also because this kind of mapping is more common in practice. For a set of
sources S, we denote M “ tA1, . . . , Amu as a mediated schema, where Ai Ď A,
and for each i, j P r1,ms, i ‰ j ñ Ai X Aj “ H. Each attribute involved in Ai is
called a mediated attribute. Every mediated attribute ideally consists of source
attributes with the same semantics.

Let us formally define the concept of probabilistic mediated schemas (PMSs).
The probabilistic mediated schemas (PMSs) for a set S of source schemas is the
set N “ tpM1, P pM1qq, . . . , pMk, P pMkqqu where

• Mi is a mediated schema for S, where i P r1, ks.

• For each i, j P r1, ks, i ‰ j ñMi ‰Mj, i.e. Mi, Mj are different clusterings
of attpSq.

• P pMiq P p0, 1s.

•
řk
i“1 P pMiq “ 1.

We use the precision, recall, and F-measure of the clustering for measuring
the quality of the generated mediated schemas.

Now, we formally define the problem we address. Suppose we are given a set of
source schemas S, and a set of functional dependencies F and a positive integer
number k as input. Our problem is to efficiently find a set of k probabilistic
mediated schemas that have the highest F-measure.

6.3. System Architecture 113

Query

Attributes

SimilaritySchemas & FDs

Schemas
Schemas

FDs

Distance Function

PMSs PMSs

Result

Results Queries

Reformulated

Queries

Mediated Schema

S1 S2 S3 Sn

……

FD Derivation

Distance Assignment

(distance function)

Attribute Similarity

Computing

Schema Matching

Single Schema

Building

Query

Reformulation

Query Result

Aggregation

Part B
Part A

Figure 6.1: IFD architecture

6.3 System Architecture

The architecture of our data integration system, i.e. IFD, is shown in Figure 6.1.
IFD consists of two main parts: schema matching (part A) and query processing
(part B). The components of schema matching, which operate during the set-up
time of the system, are as follows:

• Attribute similarity computing : this component computes the attribute
name similarity between every two source attributes.

• FD derivation: this component derives functional dependencies from data,
which is an optional component of the system and is only used in the cases
where functional dependencies are not given to the system.

• Distance assignment : this component uses attribute pairs similarity and
functional dependencies for generating the distance function.

114 Chapter 6. Data Integration Using FDs

• Schema matching : this component uses the distance function for generating
a set of probabilistic mediated schemas.

• Single schema building : this component generates one mediated schema for
the user by using the generated probabilistic mediated schemas.

The components of the query processing part is depicted in Part B of Figure
6.1. We include these components in the architecture of our system to provide
a complete picture of a data integration system but our focus is on the schema
matching part (part A). The components of part B which operate at query eval-
uation time are as follows:

• Query reformulation: This component uses the probabilistic mediated schemas
to reformulate the user query posed against the mediated schema to a set
of queries posed over the data sources. Our simplifying assumptions, i.e.
one-to-one mappings and single-table data sources, greatly simplify the way
this component reformulates the user query.

• Query result aggregation: This component combines the results of reformu-
lated queries and assigns a probability to every tuple in the result, based on
both the probabilities of the mediated schemas and the dependency among
data sources.

6.4 Schema Matching

In this section, we present the schema matching part of IFD. To match the
schemas automatically, we cluster the source attributes by putting semantically
equivalent attributes in the same cluster. We use a clustering algorithm that
works based on a distance function, which determines the distance between every
two attributes. Specifically, we use the single-link CAHC (Constrained Agglom-
erative Hierarchical Clustering) algorithm [53]. In the rest of this section, we
first describe our distance function. Then, we describe our approach for schema
matching. We then describe a useful feature of our approach. Finally, we analyze
the execution cost of the proposed algorithms.

6.4.1 Distance Function

Our schema matching algorithm uses a distance function for determining the dis-
tance between source attributes. To assign the distances between the attributes,
we use the attributes’ name similarity as well as some heuristics we introduce
about FDs. In the rest of this section, we first describe our heuristics and then
present the distance function algorithm.

6.4. Schema Matching 115

FD Heuristics

We use heuristic rules related to FDs in order to assign the distance of attributes.
Before describing our heuristics, let us first define Match and Unmatch concepts.
Consider a1 and a2 as two typical attributes. If we want to increase their chance of
being put in the same cluster, we set their distance to MD (i.e. Match Distance)
which is 0 or a number very close to 0. In this case, we say that we matched a1

with a2, and we show this by Matchpa1, a2q. In contrast, if we want to decrease
their chance of being put in the same cluster, then we set their distance to UMD
(i.e. Un-Match Distance) which is 1 or a number very close to 1. In this case, we
say that we unmatched a1 and a2 and we show this by Unmatchpa1, a2q. Now,
Let us use the following example to illustrate the heuristics.

6.4.1. Example. Consider two source schemas, both describing bibliographical
information of scientific papers. In this example, primary keys are underlined; F1

and F2 are the sets of FDs of S1 and S2 respectively:
S1pauthor, title, year, institution, journal, issnq
S2pname, paper title, date, affiliation, journal, serial no, volume, issueq
F1 “ tauthor Ñ institution, journal Ñ issnu
F2 “ tnameÑ affiliation, journal Ñ serial nou

6.4.2. Heuristic. Let Sp and Sq, p ‰ q, be two source schemas. Then,

Matchpap,i, aq,kq ñ unmatchpap,i, aq,lq ^ unmatchpaq,k, ap,jq

where ap,i P attpSpq, ap,j P attpSpqztap,iu, aq,k P attpSqq, aq,l P attpSqqztaq,ku.

Intuitively, this heuristic means that each attribute can be matched with at
most one attribute of the other source.

6.4.3. Heuristic. Let fdp : ap,i Ñ ap,j and fdq : aq,k Ñ aq,l be two FDs, where
fdp P Fp, fdq P Fq, p ‰ q. Then, similaritypap,i, aq,kq ą tL ñ Matchpap,j, aq,lq
where tL is a certain threshold and similarity is a given similarity function.

In this heuristic, We consider the set of facts that the two sources are assumed
to be from the same domain, and both attributes ap,j and aq,l are function-
ally determined by the attributes ap,i, and aq,k respectively, which themselves
have close name similarity. Thus, we heuristically agree that: the probability
of Matchpap,j, aq,lq is higher than that of Matchpap,j, aq,sq and Matchpaq,l, ap,rq,
where aq,s P attpSqqztaq,lu and ap,r P Spztap,ju. Therefore, in such a case we match
ap,j with aq,l to reflect this fact. Note that this heuristic has a general form in
which there are more than one attribute on the sides of the FDs (see Section
6.4.1).

Let us apply heuristic 6.4.3 on Example 6.4.1. We have the FD journal Ñ
issn from S1, and journal Ñ serial no from S2. There is only one attribute

116 Chapter 6. Data Integration Using FDs

at the left side of these FDs, and their name similarity is equal to 1 that is the
maximum similarity value. Thus, we match the issn with the serial no which
appear on the right side of these FDs. Notice that approaches which only rely on
name similarity, probably match issn with issue, which is a wrong decision.

6.4.4. Heuristic. Let PKp and PKq , p ‰ q, be the primary keys of Sp and Sq
respectively. Then,

pDap,i P PKp ,aq,j P PKq | pap,i, aq,jq “ arg max
apPPKp ,aqPPKq

similaritypap, aqqq^

psimilaritypap,i, aq,jq ą tPK q ñMatchpap,i, aq,jq

where tPK is a certain threshold and similarity is a given similarity function.

Let us explain the idea behind heuristic 6.4.4. Since we assume sources are
from the same domain, there are a number of specific attributes which can be
part of the primary key. Although these attributes may have different names in
different sources, it is reasonable to expect that some of these attributes from dif-
ferent sources can be matched together. Obviously, we can set tPK to a value less
than the value we set for tL because typically the probability of finding matching
attributes in the primary key attributes is higher than the other attributes. After
matching ap,i with aq,j, we remove them from PKp and PKq respectively, and
continue this process until the similarity of the pair with the maximum similarity
is less than the threshold tPK or one of the PKp or PKq has no more attributes
to match.

Coming back to Example 6.4.1, it is reasonable to match the attributes:
author, title, and year of S1 with name, paper title, and date of S2 rather than
with other attributes of S2, and vice versa. The attribute pair with the maximum
similarity is ptitle, paper titleq. If we choose a good threshold, we can match these
attributes together. The similarity of other attribute pairs is not high enough to
pass the wisely selected threshold values.

6.4.5. Heuristic. Let PKp and PKq , p ‰ q, be the primary keys of Sp and Sq
respectively. Then,

pDap,i P PKp , aq,j P PKq , fdp P Fp, fdq P Fq |

fdp : ap,i Ñ Rp, fdq : aq,j Ñ Rqq ñMatchpap,i, aq,jq (6.1)

6.4.6. Heuristic. pRHS(6.1)^Rp “ tap,ru ^Rq “ taq,suq ñMatchpap,r, aq,sq

Heuristic 6.4.5 is applicable when we have two attributes in two primary keys
which each of them is the single attribute appearing at the left side of a FD. In this
case, we match these attributes with each other. We also match the attributes
on the right sides of the two FDs if there is only one attribute appearing at the
right side of them (heuristic 6.4.6).

6.4. Schema Matching 117

Using heuristic 6.4.5 for Example 6.4.1, we match author with name which is
a right decision. We do this because of the two FDs: author Ñ institution and
nameÑ affiliation. We also match institution with affiliation which are the
only attributes appearing at the right side of these FDs based on heuristic 6.4.6.

6.4.7. Heuristic. Let PKp and PKq , p ‰ q, be the primary keys of Sp and Sq
respectively. Then,

p@ap,r P PKpztap,iu, Daq,s P PKqztaq,ju |Matchpap,r, aq,sqq^

p|PKp | “ |PKq |q ñMathpap,i, aq,jq

Heuristic 6.4.7 is applicable when all attributes of PKp and PKq have been
matched, and only one attribute is left in each of them. In such case we match
these two attributes with each other hoping that they are semantically the same.
Coming back to Example 6.4.1, there is only one attribute left in each of the
primary keys that we have not yet matched (i.e. year, date) that we can match
using this heuristic.

Distance Function Algorithm

Algorithm 8 describes how we combine the attributes’ name similarity and FD
heuristics to build the distance function. Steps 2-12 of the algorithm apply heuris-
tic 6.4.3. They look for FD pairs from different sources which their left sides match
together and then try to match attribute pairs on the right sides of these FDs. Af-
ter finding such FDs, steps 5-10 repeatedly find the attribute pairs pap, aqq whose
similarity is maximum. If the similarity of ap and aq is more than threshold tR,
their distance is set to MD (Match Distance), and the distances between each
of them and any other source-mates are set to UMD (Unmatch Distance). The
algorithm uses the DoMatch procedure for matching and unmatching attributes.
It gets the attributes which should be matched as parameter, matches them, and
unmatches every one of them with the other ones’ source-mates. Generally, when-
ever the algorithm matches two attributes with each other, it also unmatches the
two of them with the other one’s source-mates because every attribute of a source
can be matched with at most one attribute of every other source. Steps 9 remove
the matched attributes from the list of unmatched attributes.

The IsMatch function, which is used by step 3, takes as parameter the left
sides of two FDs and returns true if they can be matched together, otherwise it
returns false. It first checks whether the input parameters are two sets of the
same size. Then, it finds the attribute pair with maximum name similarity and
treats it as matched pair by removing the attributes from the list of unmatched
attributes if their similarity is more than threshold tL. It repeats the matching
process until there is no more attribute eligible for matching. After the matching
loop is over, the function returns true if all attribute pairs have been matched
together, otherwise it returns false which means the matching process has not

118 Chapter 6. Data Integration Using FDs

Algorithm 8 Distance Function
Input:

- Source schemas S1, . . . , Sn
- tF1, . . . , Fnu the sets of FDs (the FDs related to PK are omitted)
- P “ tPK1 , . . . ,PKnu the set of primary keys of all sources

Output: Distance matrix Drmsrms
1: compute A “ ta1, . . . , amu the set of all source attributes
2: for all FD pair fdi P Fk, fdj P Fl, k ‰ l do {{ heuristic 6.4.3
3: if IsMatchpLi, Ljq then
4: make local copies of fdi, fdj
5: repeat
6: find the attribute pair ap P Ri, aq P Rj with the maximum similarity s
7: if s ą tR then
8: DoMatchpap, aqq
9: Ri Ð Riztapu;Rj Ð Rjztaqu

10: until s ą tR and |Ri| ą 0 and |Rj | ą 0

11: for all pair PKi ,PKj P P , where they are PKs of Si and Sj respectively do
12: make local copies of PKi and PKj

13: for all pair ap P PKi , aq P PKj do
14: if Dfdk P Fi and fdl P Fj such that Lk “ tapu and Ll “ taqu then
15: DoMatchpap, aqq {{ heuristic 6.4.5
16: PKi Ð PKiztapu; PKj Ð PKj ztaqu
17: if (Rk “ tasu and Rl “ tatu) then DoMatchpas, atq {{ heuristic 6.4.6

18: repeat
19: find the attribute pair ap P PKi and aq P PKj with maximum similarity s
20: if s ą tPK then
21: DoMatchpap, aqq {{ heuristic 6.4.4
22: PKi “ PKiztapu; PKj “ PKj ztaqu

23: until s ą tPK and |PKi | ą 0 and |PKj | ą 0
24: if (PKi “ tapu and PKj “ taqu) then DoMatchpap, aqq {{ heuristic 6.4.7

25: for all attribute pair ai, aj P A which Draisrajs has not been computed yet do
26: if (ai, aj P Sk) then Draisrajs Ð UMD {{ heuristic 6.4.2
27: else Draisrajs Ð similaritypai, ajq

28: @ai, aj , ak P A if (Draisraks “ MD and Draksrajs “ UMD) then Draisrajs Ð UMD
29: @ai, aj , ak P A if (Draisraks “ MD and Draksrajs “ MD) then Draisrajs Ð MD
30: @ai, aj P ADraisrajs Ð Drajsrais

been successful. Notice that we do not reflect the matching of attributes of the
left sides of FDs in the distance matrix. The reason is that for these attributes (in
contrast to those on the right side), the matching is done just based on attribute
name similarity and not the knowledge in FDs.

Please notice that we use three different similarity thresholds (i.e. tL, tR, and
tPK) to have more flexibility in the matching. However, we need to set them

6.4. Schema Matching 119

carefully. If we set them to high values, we prevent wrong matching but may
miss some pairs that should have been matched. On the other hand, if we set
thresholds to low values, we increase the number of correctly matched pairs but
also increase the number of wrongly matched pairs. In other words, setting the
threshold values is a trade off between precision and recall. Aside from this, the
inequality between them is important as we explain below. We know that tL is
the similarity threshold for matching attributes at the left sides of FDs. Since the
matching of left sides of FDs is taken as evidence for matching the right sides of
them, tL needs to be chosen carefully. Setting it to low values, results in wrong
matchings. On the other hand, we use tR as similarity threshold for matching
attributes on the right sides of FDs. Since we already have evidence for matching
them, we can be more relaxed in setting tR by setting it to values lower than tL.
The same argument goes for the value of tPK . tPK is the similarity threshold for
matching PK attributes. Since these attributes are a subset of source attributes,
it is reasonable to set tPK to lower values than tL and tR.

In steps 11-24, we apply heuristics 6.4.4, 6.4.5, 6.4.6 and 6.4.7. Steps 13-17
check every attribute pair of two PKs to see if they are the only attributes at the
left sides of two FDs. If yes, then these attributes are matched together. Steps
18-23 find the attribute pair with the maximum name similarity and if it is more
than threshold tPK , the attributes are matched together. The matching process
continues until there is at least one attribute in every PK and the similarity of
the attribute pair with the maximum similarity is more than threshold tPK . If
each of the two PKs has only one attribute left, step 24 matches them together
based on heuristic 6.4.7.

In steps 25-27, we set the distances of attribute pairs which have not been set
yet. Step 26 applies heuristic6.4.2 by setting the distance of the attributes from
the same source to UMD. The distance of other attribute pairs is set to their name
similarity. Steps 28-29 perform a transitive closure over the match and unmatch
constraints. Step 30 deals with the symmetric property of the distance function
to ensure that the returned distance is independent from the order of attributes.

The matching and unmatching decisions made by a distance function should
be consistent with each other. More precisely, a consistent distance function
should not satisfy the following condition:

Dai, aj, ak P A | matchpai, ajq ^matchpaj, akq ^ unmatchpai, akq. (6.2)

The following proposition shows that our distance function is consistent.

6.4.8. Proposition. Algorithm 8 returns a consistent distance function.

Proof. We first show that if inconsistency exists, it is removed by step 32 of
the algorithm, i.e. the first transitive closure rule. Then, we show that order
of applying the transitive closure rules in Algorithm 8 is the only correct order.

120 Chapter 6. Data Integration Using FDs

Let us prove the first part. Suppose steps 1-31 of the algorithm create an in-
consistency so that condition (6.2) satisfies. Then, as the result of step 32 of
the algorithm, either matchpai, ajq changes to unmatchpai, ajq or matchpaj, akq
changes to unmatchpaj, akq. It is clear that the inconsistency between ai, aj, and
ak is removed with either of the changes. Without the loss of generality, we as-
sume that matchpai, ajq changes to unmatchpai, ajq. Then, if there exists al P A,
so that condition (6.2) satisfies for ai, aj, and al as a result of the change, step
32 removes it too. Thus, step 32 removes all of the inconsistencies in the cost of
losing possibly correct match pairs.

Let us prove the second part. Suppose that steps 1-31 of the algorithm cre-
ate an inconsistency so that condition (6.2) satisfies and we change the order
of transitive closure rules. By first applying rule 2, unmatchpai, akq changes to
matchpai, akq. However, we already unmatched ai with ak as the result of match-
ing ai with one of the source-mates of ak, say al. Thus, we have: matchpak, aiq
and matchpai, alq, which results in matchpak, alq by applying rule 2 to them. This
means that we matched two attributes ak and al from the same source. Thus,
changing the order of transitive closure rules does not remove the inconsistency
but propagates it. l

6.4.2 Schema Matching Algorithm

We now describe the schema matching algorithm which works based on the CAHC
clustering method. We use the distance function to compute the distance be-
tween clusters in the CAHC clustering method. Algorithm 9 describes how we
create probabilistic mediated schemas. This algorithm takes as input the source
schemas, distance matrix, and the needed number of mediated schemas (k) which
is specified by the user. Steps 1-2 create the first mediated schema by putting
every attribute in a cluster. The algorithm stores all created mediated schemas
in the set M , and so does for the first created mediated schema in step 3.

Steps 4-11 repeatedly find the two clusters with the minimum distance while
the distance between two clusters is defined as follows: if the clusters have two
attributes from the same source, the distance between them is infinity; otherwise
the minimum distance between two attributes, each from one of the two clusters,
is regarded as the distance between the two clusters. These clusters are merged
together by step 9 if their distance is not equal to infinity, and the newly created
mediated schema is added to M by step 10. We consider the infinity as the
minimum distance between clusters when every two clusters have attributes from
the same source. In such a case, we stop creating the mediated schemas.

To assign a rank to each generated mediated schema, we define FD-point as
the number of matched pairs which has been respected by a mediated schema.
For every created mediated schema, Step 12 computes its FD-point, which is
a metric for measuring the quality of mediated schemas and for selecting only
the high quality ones. Distance matrix recommends some attribute pairs to be

6.4. Schema Matching 121

Algorithm 9 Schema Matching
Input:

- Source schemas S1, . . . , Sn
- Distance matrix Drmsrms
- Number of needed mediated schemas k

Output: A set of probabilistic mediated schemas
1: compute A “ ta1, . . . , amu the set of all source attributes
2: let C be the set of clusters ci such that ci “ taiu, ai P A, i P r1,ms
3: M Ð C
4: repeat
5: find two clusters ci, cj P C having the minimum distance dmin while distance

dij between ci and cj is computed as follows:

6: if (Dak P ci, al P cj , ak, al P Sp) then dij Ð8

7: else dij ÐMinpDraksralsq, ak P ci, al P cj

8: if dmin ‰ 8 then
9: merge ci with cj

10: add the newly added mediated schema to M

11: until dmin ‰ 8
12: for each Ci P M compute the FDpointi as the number of attribute pairs recom-

mended by distance matrix and respected by Ci
13: FDpointmax Ð Max pFDpointiq, Ci PM
14: M Ð tCi | Ci PM,FDpointi “ FDpointmax u

15: if k ă |M | then
16: select k mediated schemas randomly from M
17: assign probability 1

k to every selected mediated schema and return them

18: else assign probability 1
|M | to every Ci PM and return them

put in the same cluster by returning their distance as MD. FD-point is defined
as the number of these recommendations which are respected by the mediated
schema. Steps 13-14 select the mediated schemas with the maximum FD-point.
We call them as eligible mediated schemas. Steps 15-18 return k randomly se-
lected eligible mediated schemas to the user. Since the algorithm has no means for
differentiating between eligible mediated schemas, it assigns equal probabilities
to all returned mediated schemas.

6.4.3 Adding Data Sources Incrementally

IFD starts with a given set of sources and ends up generating several mediated
schemas from these sources. A useful property of IFD is that it allows new sources
to be added to the system on the fly. Let Sn`1 be the source which we want to add.
By comparing Sn`1 with each Si, i P r1..ns, we can compute the distance between
every attribute of Sn`1 and every attribute of Si in the same way that we did

122 Chapter 6. Data Integration Using FDs

for computing the distances between the attributes of S1..Sn. After computing
the distances, we consider every PMS, say Mj, j P r1..ks and for every attribute
ap P Sn`1, we find the closest attribute aq P A and put ap in the same cluster as
that of aq. We repeat this process for every PMS.

This is a useful property of IFD which is needed in the contexts which we
do not have all sources at hand when we start setting up the data integration
application and we need to add them incrementally when they become available.

6.4.4 Execution Cost Analysis

In this section, we study the execution costs of our schema matching and distance
function algorithms.

6.4.9. Theorem. Let m be the number of the attributes of all sources, then
the running time of Algorithm 8 and the schema matching algorithm together
is θpm3q.

Proof. The basis for our schema matching algorithm is the single-link CAHC
(Constrained Agglomerative Hierarchical Clustering) algorithm in which the num-
ber of clusters is determined by the arity of the source with the maximum arity.
Let m be the number of the attributes of all sources. The time complexity of the
single-link AHC algorithm implemented using next-best-merge array (NBM) is
Θpm2q [90].

Let us now analyze the running time of the distance function algorithm. Most
of the algorithm is devoted to matching left and right sides of FDs, or the at-
tributes of PKs. Let c be the arity of the source with the maximum arity, and f
the maximum number of FDs that a source may have, which is a constant. The
number of attributes on the left and right side of a FD is at most equal to the
arity of its source, so its upper bound is c. Thus, matching both sides of two FDs
takes Θpc2q time which is equal to Θp1q because c is a constant. This argument
also holds for matching PKs’ attributes because the algorithm only checks the
FDs of the two sources (which each one at most has f FDs), not the FDs of all
sources.

Let n be the number of sources, then we have at most f ˆ n FDs. The
algorithm checks every FD pair for matching. Thus, it takes fˆnˆpfˆn´1q

2
ˆΘp1q

time for matching FDs which is equal to pn2ˆf 2q. By taking f, i.e. the maximum
number of FDs, as a constant, the complexity is Θpn2q. In the same way, the
time complexity for matching PKs is Θpn2q.

The transitive closure part of the algorithm is done in θpm3q time, where m
is the total number of attributes. The last part of the algorithm that guarantees
symmetric property takes θpm3q. Since the number of attributes is at least the
number of sources, we have m ě n. Thus, the transitive closure of attributes
dominates all other parts of the algorithm and the running time of the algorithm

6.5. Performance Evaluation 123

is θpm3q. As a result, the running time of the schema matching and the distance
function algorithms together is θpm3q. l

6.5 Performance Evaluation

In this section, we study the effectiveness of our data integration solution. In
particular, we show the effect of using functional dependencies on the quality of
generated mediated schemas. We compare our solution with the one presented
in [115] which is the closest to ours. To examine the contribution of using a
probabilistic approach, we compare our approach with two traditional baseline
solutions that do not use probabilistic techniques, i.e. they generate only one
single deterministic mediated schema.

The rest of this section is organized as follows. We first describe our ex-
perimental setup. Then, we compare the performance of our solution with the
competing approaches.

6.5.1 Experimental Setup

We implemented our system (IFD) in Java. We took advantage of Weka 3-7-3
classes [74] for implementing the hierarchical clustering component. We used the
SecondString Java package2 to compute the Jaro Winkler similarity [139] of at-
tribute names in pair-wise attribute comparison. We conducted our experiments
on a Windows XP machine with Intel core 2 GHz CPU and 2GB memory.

In our experiments, we set the number of mediated schemas (denoted as n)
to 1000, which is relatively high, in order to return all eligible mediated schemas.
Our experiments showed similar results when we varied n considerably (e.g. n =
5). The default values for the parameters of our solution are as follows. We set
similarity threshold for PK attributes (tPK) to 0.7, similarity threshold for at-
tributes on the left side of functional dependencies (tL) to 0.9, similarity threshold
for attributes on the right side of functional dependencies (tR) to 0.8, the distance
between attributes being matched (MD) to 0, and the distance between attributes
being unmatched (UMD) to 1.

We evaluated our system using a dataset in the university domain. This
dataset consists of 17 single-table schemas which we designed ourselves. For
having variety in attribute names, we used Google Search with “computer science”
and “course schedule” keywords and picked up the first 17 related results. For
every selected webpage, we designed a single-table schema which could be the
data source of the course schedule information on that webpage and we used
data labels as attribute names of the schema. Also, we created primary key and
functional dependencies for every schema using our knowledge of the domain.
This dataset, denoted by Courses, can be found in Appendix B.

2http://secondstring.sourceforge.net

124 Chapter 6. Data Integration Using FDs

To evaluate the quality of generated mediated schemas, we tested them against
the mediated schema which we created manually. Since each mediated schema
corresponds to a clustering of source attributes, we measured its quality by com-
puting the precision, recall, and F-measure of the clustering. We computed the
metrics for each individual mediated schema, and summed the results weighted
by their respective probabilities.

To the best of our knowledge, the most competing approach to ours (IFD)
is that of Sarma et al. [115] which we denote by UDI as they did. Thus, we
compare our solution with UDI as the most competing probabilistic approach. We
implemented UDI in Java. We used the same tool in our approach for computing
pair-wise attribute similarity as in UDI. Also, we set the parameters edge-weight
threshold and error bar to 0.85 and 0.02 respectively. Since the time complexity
of UDI approach is exponential to the number of uncertain edges, we selected the
above values carefully to let it run.

To examine the performance gain of using a probabilistic technique, we con-
sidered two baseline approaches that create a single mediated schema:

• FD1: creates a deterministic mediated schema as follows. In Algorithm 9,
we count the number of FD recommendations and obtain the maximum pos-
sible FD-point, then we stop at the first schema which gets this maximum
point.

• SingleMed: creates a deterministic mediated schema based on Algorithm
4.1 in [115]. We set frequency threshold to 0 and the edge weight threshold
to 0.85.

Also, to evaluate the contribution of using functional dependencies in the
quality of generated mediated schemas, we considered Algorithm 9 without taking
advantage of the FD recommendations (WFD) and compared it to our approach.

6.5.2 Results

Quality of Mediated Schemas

In this section, we compare the quality of mediated schemas generated by our
approach (IFD) with the ones generated by UDI and other competing approaches.

Figure 6.2 compares the results measuring precision, recall, and F-measure of
IFD, UDI, Single-Med, FD1, and WFD. It shows that IFD obtains better results
than UDI. It improves precision by 23%, recall by 22%, and F-measure by 23%.

Figure 6.2 also shows the contribution of using FD recommendations in the
quality of the results. WFD (Without FD) shows the results of our approach
without using FD recommendations. It is obvious that using these recommenda-
tions has considerable effect on the results.

Furthermore, Figure 6.2 shows the performance gain of using a probabilistic
approach rather than a single deterministic schema approach. FD1 applies all of

6.5. Performance Evaluation 125

Precision Recall F-measure
0

0.2

0.4

0.6

0.8

1
SingleMed

UDI

IFD

FD1

WFD

Figure 6.2: Performance comparison of IFD with competing approaches

the FD recommendations to obtain the mediated schema with the maximum FD-
point, then stops and returns the resulted mediated schema. On the other hand,
IFD does not stop after applying all FD recommendations but since there is no
further FD recommendation, it starts merging clusters based on the similarity of
their attribute pairs. This increases recall considerably, but reduces precision a
little because some pairs are clustered wrongly. Overall, IFD improves F-measure
by 8% compared to FD1. On the other hand, this Figure shows that UDI does
not get such performance gain compared to Single-Med which creates a single
deterministic schema. This happens because UDI cannot select the high quality
schemas among the generated schemas.

Scalability

To investigate the scalability of our approach, we measure the effect of the number
of sources (n) on its execution time. By execution time, we mean the setup time
needed to integrate n data sources. For IFD, the execution time equals to the
execution time of computing distances using Algorithm 8 plus the execution time
of generating mediated schemas using Algorithm 9. For UDI, we only consider
the time needed to generate mediated schemas to be fair in our comparison. For
UDI, the execution time is the time needed to create the mediated schemas.

Figure 6.3 shows how the execution times of IFD and UDI increase with
increasing n up to 17 (the total number of sources in the tested dataset). The
impact of the number of sources on the execution time of IFD is not as high as
that of UDI. While in the beginning, the execution time of UDI is a little lower
than IFD, it dramatically increases eventually. This is because the execution time
of IFD is cubic to the number of the attributes of sources (see Section 6.4.4), but

126 Chapter 6. Data Integration Using FDs

0 5 10 15

101

102

103

104

number of sources

se
tu

p
ti

m
e

(m
s)

UDI

IFD

Figure 6.3: Execution time comparison of IFD and UDI

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

FD-point

F
-m

ea
su

re

Figure 6.4: Effect of FD-point on F-measure in IFD approach

that of UDI is exponential to the number of uncertain edges. This shows that
IFD is much more scalable than UDI.

Effect of FD-point

In this section, we study the effect of FD-point on F-measure. Figure 6.4 shows
how F-measure increases with increasing FD-point up to 680 which is the max-
imum possible value in the tested dataset. The starting point is when we have

6.6. Analysis against related Work 127

one cluster for every attribute. We have not used any recommendation at this
point yet; as a result, FD-point “ 0. Also it is clear that precision “ 1 and
recall “ 0, thus F -measure “ 0. As we begin merging clusters using recom-
mendations, FD-point increases and this increases the F-measure as well. The
increase in FD-point continues until it reaches its maximum possible value in
the tested dataset. We consider all generated mediated schemas with maximum
FD-point value as schemas eligible for being in the result set.

6.6 Analysis against related Work

There has been much work in the area of automatic schema matching during the
last three decades (see [108] for a survey). They studied how to use various clues
to identify the semantics of attributes and match them. An important class of
approaches, which are referred to by constraint matchers, uses the constraints in
schemas to determine the similarity of schema elements. Examples of such con-
straints are data types, value ranges, uniqueness, optionality, relationship types,
and cardinalities. For instance, OntoMatch [26] and DIKE [101] use this type
of matcher. Our approach is different, since we use an uncertain approach for
modeling and generating mediated schemas. Thus, the heuristic rules that we
use as well as the way we decrease the distance of the attributes, is completely
different. In addition, we take advantage of FDs. The proposals in [32] and [84]
also consider the role of FDs in schema matching. However, our heuristic rules
and the way we combine it with attribute similarity is completely different than
these proposals.

The closest work to ours is that of Sarma et al. [115] which we denoted as
UDI in this chapter. UDI creates several mediated schemas with probabilities
attached to them. To do so, it constructs a weighted graph of source attributes
and distinguishes two types of edges: certain and uncertain. Then, a mediated
schema is created for every subset of uncertain edges. Our approach has several
advantages over UDI. The time complexity of UDI’s algorithm for generating me-
diated schemas is exponential to the number of uncertain edges (i.e. attribute
pairs) but that of our algorithm is PTIME (as shown in Section 6.4.4), there-
fore our approach is much better scalable. In addition, the quality of mediated
schemas generated by our approach has shown to be considerably higher than
that of UDI. Furthermore, the mediated schemas generated by our approach are
consistent with all sources, while those of UDI may be inconsistent with some
sources.

6.7 Conclusion

In this chapter, we proposed IFD, a data integration system with the objective
of automatically setting up a data integration application. We established an

128 Chapter 6. Data Integration Using FDs

advanced starting point for pay-as-you-go data integration systems. IFD takes
advantage of the background knowledge implied in FDs for finding attribute cor-
relations and using it for matching the source schemas and generating the medi-
ated schema. We built IFD on a probabilistic data model in order to model the
uncertainty in data integration systems.

We validated the performance of IFD through implementation. We showed
that using FDs can significantly improve the quality of schema matching (by 26%).
We also showed the considerable contribution of using a probabilistic approach
(causing an improve by 10%). Furthermore, we showed that IFD outperforms
UDI, its main competitor, by 23% and has cubic scale up compared to UDI’s
exponential execution cost.

Chapter 7

Conclusion

In this chapter, we first revisit the research questions posed in the introduction
and discuss how we answered them in our research work presented in Chapters
3 to 6. We then discuss a number of possible extensions and future work for the
presented research of this dissertation.

7.1 Answers to Research Questions

The first question posed in the introduction of this thesis was the following.

1. How to match a probabilistic entity against a set of probabilistic entities,
while considering both their similarity and probability? In other words,
what are the semantics of identity resolution problem over probabilistic
data?

We addressed this question in Chapter 3. We adapted the possible worlds
semantics of uncertain data to define the novel concepts of most-probable matching
pair (MPMP) and most-probable matching entity (MPME), together referred to
as most-probable matches.

Chapter 3 also dealt with the second posed question, which was:

2. How can we efficiently deal with the identity resolution problem over prob-
abilistic data?

To propose an efficient solution for computing the most-probable matches,
in Chapter 3 we differentiated between two classes of similarity functions: i.e.
context-free and context-sensitive. For context-free similarity functions, we pro-
posed the CFA algorithm, which simultaneously computes MPMP and MPME
concepts in PTIME. Moreover, we proposed two optimized versions of the CFA al-
gorithm, i.e. CFA-MPMP and CFA-MPME, which respectively compute MPMP

129

130 Chapter 7. Conclusion

and MPME concepts. For context-sensitive similarity functions, we used the
Monte-Carlo approximation algorithm. To speedup the Monte-Carlo algorithm,
we proposed a parallel version of it using the MapReduce framework. Moreover,
to overcome the high response time of most context-sensitive similarity functions
in the literature, which makes them very inefficient for the Monte-Carlo algo-
rithm, we proposed the novel CB similarity function with the following salient
features:

• CB is very efficient compared to other context-sensitive similarity functions
because it significantly reduces the number of rather costly string compar-
ison operations by working at the attribute level, rather than at the word
or q-gram level.

• In contrast to most of the tuple matching methods that work at the attribute
level, CB is self-tuning, meaning that it does not need the specification of
weights for representing the relative importance of individual attributes.

The third posed research question was the following.

3. How can we efficiently deal with the identity resolution problem over prob-
abilistic data in distributed systems?

Chapter 4 deals with this question. In this chapter, we proposed the FD, a
fully distributed algorithm for dealing with the identity resolution problem over
distributed probabilistic data, with the objective of minimizing network traffic.
FD uses the novel concepts of potential and essential-set to prune data at local
nodes. This leads to a significant reduction in network traffic and response time
compared to the baseline approaches. FD requires no global information, and
does not depend on the existence of certain nodes.

Chapter 5 dealt with the fourth posed question, which was:

4. Does deduplication necessarily improve the quality of a probabilistic
database? If not, then how can we improve the quality of a probabilistic
database through deduplication?

In Chapter 5, we used entropy as a quality metric for measuring the quality of a
probabilistic database, where the higher the entropy of a database, the lower is its
quality. We showed that if entropy is not taken into account, deduplication does
not necessarily improve the quality of a probabilistic database. Thus, to guarantee
the quality improvement, we modeled deduplication problem over probabilistic
data as an entropy minimization problem. We then proposed an efficient solution
for the deduplication problem in probabilistic data as follows:

• We proposed an efficient technique for computing the entropy of a proba-
bilistic database in the x-relation probabilistic data model [10].

7.1. Answers to Research Questions 131

• We proposed a merge function for merging x-tuples in the x-relation data
model.

• The properties of our proposed merge function, i.e. commutative and as-
sociative, as well as entropy-reduction properties, enabled us to propose a
PTIME algorithm for dealing with the deduplication problem, and produc-
ing a cleaned database with (near) minimum entropy.

The last research question was:

5. How effectively can we deal with the schema matching problem in a fully
automated setting?

We answered this question in Chapter 6, where we dealt with the schema
matching problem in setting up a fully automated data integration system, de-
noted by the IFD, from a number of heterogenous data sources. IFD has two
important features which allow it to effectively deal with the schema matching
problem. First, IFD is built on a probabilistic data model in order to capture
the uncertainty that arises during the schema matching process. Second, IFD
takes advantage of the background knowledge which is implied in functional de-
pendencies for finding attribute correlations and using it for matching the source
schemas. We showed that it is possible to achieve a fairly high accuracy in deal-
ing with the schema matching problem in a fully automated setting. This lets
us to effectively deal with the entity resolution problem when data resides in
heterogenous data sources.

Having answered the sub-questions, we come back to the main research ques-
tion of this thesis.

How can we, effectively and efficiently, deal with the entity resolution
problem for probabilistic data?

As discussed in Chapter 2, dealing with the entity resolution problem, both
on deterministic and probabilistic data, greatly depends on the used similarity
function. Our proposed methods for the entity resolution problem over prob-
abilistic data is generic, which can thus be applied to any similarity function,
suitable for the application in hand. On the other hand, to efficiently deal with
the entity resolution problem over probabilistic data, we need to avoid enumer-
ating the possible worlds of uncertain data. Our efficient methods heavily rely
on the properties of the x-relation data model, which results in the PTIME time
complexity of all of our proposed techniques, except the Monte-Carlo algorithm
in Section 3.4. Exploiting the properties of other probabilistic data models for
efficient handling of entity resolution problem over them however, remains as a
possible direction for future research.

132 Chapter 7. Conclusion

7.2 Future Work

While this thesis has made a number of contributions to the problem of entity
resolution over probabilistic data, the general problem still is open. This work,
in fact, opens the following directions for future research.

ERPD over other data models. First, as discussed in previous section, while
the defined semantics of the ERPD problem is not specific to any proba-
bilistic data model, we relied on the properties of the x-relation probabilistic
data model for efficient dealing with this problem. Efficient entity resolu-
tion over other probabilistic data models however, or even other uncertain
data models, is one possible direction for future research.

Using CB in blocking methods. Due to its efficiency and effectiveness, we
believe that our CB similarity function presented in Chapter 3, can act as a
cheap similarity metric in the blocking methods, aiming to further improve
the efficiency of ER (see Section 2.2.2). Elaborating on this idea is another
possible direction for future research.

ERPD for special distributed systems. In Chapter 4, we assume a very gen-
eral topology for distributed system. However, in some applications, proba-
bilistic data might be fragmented over a distributed system with a particular
topology, e.g. distributed hash tables. Attacking the ERPD problem in such
distributed systems is a possible future research direction.

Using functional dependencies in other schema matchers. Finally, in Chap-
ter 6, we showed that using the background knowledge implied within func-
tional dependencies alone can significantly improve the quality of schema
matching. On the other hand, there exist many schema matchers in the lit-
erature that use other features, e.g. data types and value ranges, to match
the schemas. Integrating other existing high quality schema matchers with
our schema matching heuristics is another possible direction for future re-
search.

Appendix A

Uncertain Data Models

In this chapter, we review a number of uncertain data models. In the first three
sections, we restrict our attention to the uncertain relational models, then in
Section A.4, we explain some other models.

A.1 Incomplete Relational Models

The early uncertain data models mostly focus on representing incomplete infor-
mation without caring about their possible existence probabilities. As in the
literature, we refer to these models as incomplete data models. The notion of
null values is perhaps the earliest attempt to model the incomplete information
in the relational model. In this section, we begin by applying this way of model-
ing uncertain data, and then we present the more expressive incomplete relational
models.

A.1.1 Codd tables

The aim of Codd tables, proposed by Codd [47, 48], is to model missing informa-
tion in relational tables. The idea is to represent missing attribute values by a
symbol, called null, which is different from all other data values. Let for instance
symbol K denote the null. For illustration, consider the Codd table T , shown in
Figure A.1(a), where the missing age of Mary and John, and Bob’s phone number
are represented using null values.

Codd has adopted the three-valued logic for evaluating the queries over Codd
tables. According to this logic, there are three logical values indicating true,
false, and unknown. Besides the rules of the boolean logic, three-valued logic has
a number of additional rules, which are shown in Figure A.1(b). In the Codd’s
proposed query evaluation semantics, comparing any value (including null itself)
with null results in the unknown logical value. This semantics is currently in
use in most commercial database management systems. However, this approach

133

134 Appendix A. Uncertain Data Models

name age phone-no

t1 Bob 35 K

t2 Mary K 789526

t3 John K 5256661

(a)

^ unknown _ unknown

true unknown true true

false false false unknown

unknown unknown unknown unknown

 unknown = unknown
(b)

Figure A.1: a) Table T : an example Codd table, b) The additional rules in
three-valued logic

may return counter-intuitive results [66]. For example, consider evaluating the
following query over table T , shown in Figure A.1(a):

SELECT * FROM T
WHERE age “ 25 OR age ‰ 25

The query returns t1 as the result, while one might expect all tuples in T as the
query result [66].

Codd tables are very limited in representing incomplete information. They
can only represent the fact that some attribute values are missing, and cannot
represent any other kind of additional information about the missing attribute
values. Consider, for instance, the case that we do not know the ages of Mary
and Bob, but we know that Mary is younger than Bob. We cannot represent this
kind of information using Codd tables. On the other hand, Codd tables are closed
only under selection and projection operations [78]. To overcome the limitations
of Codd tables, c-tables (short for conditional tables) [78] have been proposed.

A.1.2 C-tables

A c-table can represent the uncertainty at both the attribute and tuple level.
At the attribute level, it allows constants and variables as attribute values, and
at the tuple level, a logical expression, indicating the existence condition of the
tuple in the table, is associated with each tuple. A possible world is built by an
instantiation of variables with constants, where each possible world contains the
tuples whose condition are satisfied by the instantiation. For illustration, Figure
A.2 shows a c-table.

A.2. Fuzzy Relational Models 135

name age phone-no condition

t1 Bob 35 x true

t2 Mary y 789526 z ą y

t3 John z 5256661 z ą y ^ z P r30..40s

Figure A.2: An example c-table

A B C

t1 x 1 0

t2 0 y x

t3 y 2 3

(a) e-table

A B C

t1 x 1 0

t2 0 y z

t3 v 2 3

x ‰ z ^ y ‰ 0
(b) i-table

A B C

t1 x 1 0

t2 0 y x

t3 y 2 3

x ‰ 0
(c) g-table

Figure A.3: Examples of e-table, i-table, and g-table

The c-tables model is a complete model, and closed under the whole relational
algebra database language. The query evaluation however is computationally
expensive [9]. Moreover, the use of variables in the model makes it hard for users
to read and reason with it [107, 117]. While the c-tables model is a very powerful
formalism, these shortcomings make it an impractical uncertainty model.

A number of variations of c-tables have been proposed in the literature. The
c-table associated with a global condition has been proposed in [65]. Furthermore,
removing the tuples’ conditions from c-table, Abiteboul et al. [9] has proposed
the following three models: e-table that is a table where only the equality of
variables are allowed; i-table that is a table with a global condition, where the
condition is restricted to a conjunction of inequalities on variables; and g-table
that is a combination of e-table and i-table. For better intuition, Figure A.3
shows examples of these models. To illustrate, repetitive use of variable x in
Figure A.3(a) poses the condition t1.A “ t2.C on the shown e-table. In the i-
table, shown in Figure A.3(b), no variable is used repetitively, which thus shows
no condition is posed by the variables on the table, but the table is associated
with the global condition x ‰ z ^ y ‰ 0. The combination of repetitive use of
variables x and y (representing their equality), and the global condition x ‰ 0 is
shown in the g-table in Figure A.3(c).

A.2 Fuzzy Relational Models

Fuzzy relational models use the fuzzy set theory [144] to represent the uncertainty
in data. In this section, we first briefly present the concept of fuzzy set, and then

136 Appendix A. Uncertain Data Models

explain how it is used to represent uncertainty in the relational model.

A.2.1 Fuzzy Set

In ordinary set theory, the membership of elements in a set are binary values,
meaning that an element either belongs or does not belong to the set. In contrast,
the membership of elements in a fuzzy set is represented by real numbers from
the range [0..1]. More precisely, a fuzzy set F in a universe U is identified by
a membership function ΦF : U Ñ r0..1s, where U is a set of elements, called
universe, and ΦF puq for each u P U denotes the degree of membership of u in the
fuzzy set F .

Fuzzy sets mostly are used to represent the imprecise concepts. For instance,
the high salary concept is an imprecise concept, which might be represented with
the fuzzy set HS, in universe Salaries, with the following membership function:

ΦHS psq “

$

’

&

’

%

0 if s ď 30, 000
1

1`|s´70,000|
if 30, 000 ă s ă 70, 000

1 if s ě 70, 000

where the universe Salaries is the set of integer numbers in range [10,000..100,000].
The fundamental ordinary set operations, i.e. union, intersection, and com-

plement, have fuzzy counterparts defined as follows. Let A and B two fuzzy sets
in the universe U with membership function ΦA and ΦB, respectively. Then, the
membership functions of AYB, AXB, and A1 are defined as

ΦAYBpuq “ maxpΦApuq,ΦBpuqq

ΦAXBpuq “ minpΦApuq,ΦBpuqq

ΦA1puq “ 1´ ΦApuq

Let A1, . . . , An be fuzzy sets in U1, . . . , Un, respectively, and U “ U1ˆ . . .ˆUn.
Then, the cartesian product of A1, . . . , An is defined to be a fuzzy set in universe
U with the following membership function:

ΦA1ˆ...Anpu1, . . . , unq “ minpΦA1pu1q, . . . ,ΦAnpunqq (A.1)

where ui P Ui and Φi is the membership function of fuzzy set Ai.

A.2.2 Fuzzy Relations

A fuzzy relation R on schema SpA1, . . . , Anq is a fuzzy set in universe dompA1qˆ

. . . ˆ dompAnq, where dompAiq is the domain of attribute Ai, which might itself
be an ordinary or a fuzzy set [109]. Similar to ordinary relations, a fuzzy relation
can be represented as a table with an additional attribute Φ which shows the

A.2. Fuzzy Relational Models 137

degree of membership of each tuple to the relation. The Φ attribute, for each
tuple, is determined using the definition of cartesian product for fuzzy sets, i.e.
equation (A.1). The table only contains tuples for which Φ ą 0.

The main purpose of a fuzzy relation is to establish a fuzzy association between
its attributes using a fuzzy proposition, i.e. a proposition whose truth value can
be a number in range [0..1], in contrast to an ordinary proposition whose truth
value is either zero or one. To illustrate, consider the fuzzy relation Likes in Figure
A.4, which establishes a fuzzy association between person and movie attributes
using the fuzzy proposition “person x likes movie y”. According to relation Likes,
the truth value for the fuzzy proposition “Bob likes the Godfather” is 0.8.

person movie Φ

John Heat 0.7

Bob The Godfather 0.8

Mary Inception 0.5

Alice The Truman Show 0.9

Figure A.4: The example fuzzy relation Likes

The domain of attributes in the Likes fuzzy relation are ordinary sets. How-
ever, it is possible to have fuzzy relations of attributes with fuzzy domains. For
instance, consider the fuzzy relation R in Figure A.5 which lists movies that are
popular and have good screenplays. In this relation, the domain of attribute
movie is an ordinary set, but those of popular and good-screenplay are fuzzy sets
with the following membership functions:

Φpopularpxq “
x

10
, x P t1, . . . , 10u

Φgood-screenplaypyq “
´y

5

¯2

, y P t1, . . . , 5u

The fuzzy relationR can be interpreted as the truth value for the fuzzy proposition
“movie m is popular and has a good screenplay”. For example, according to R,
the truth value for the fuzzy proposition “The Godfather is popular and has a
good screenplay” is 0.64.

movie popular good-screenplay Φ

The Godfather 9 4 0.64

Heat 8 3 0.36

In Time 6 4 0.6

Rain Man 8 5 0.8

Figure A.5: The example fuzzy relation R

138 Appendix A. Uncertain Data Models

A large number of other fuzzy data models has been proposed in the literature.
A discussion of these models is however out of the scope of this thesis, and the
interested reader is referred to [36, 37, 35, 128, 129, 105, 106].

A.3 Probabilistic Relational Models

Modeling uncertainty using incomplete data models is not enough for many ap-
plications, where, for instance, we need to represent the likelihood of possible
worlds or the confidence that we have in a piece of information. This need has
been addressed by introducing the probabilistic data models. In these models, an
uncertain database, referred to as probabilistic database, represents a probability
distribution over a set of possible worlds.

ProbView [83] is one of the early probabilistic database systems. In ProbView,
each uncertain attribute is represented using a random variable over a set of finite
values, and independence is assumed between different random variables. For
instance, probabilistic database D, shown in Figure 2.1(a), uses ProbView’s data
model.

Another early probabilistic data model is that of Fuhr et al. [63]. Fuhr’s model
manages uncertainty at the tuple level. In this model, each tuple is associated
with a probability value indicating the likelihood of its occurrence in the database,
and the occurrence of tuples are assumed to be independent from each other. The
Fuhr’s model has been recently extended to the x-relation data model (see Section
2.1.2).

There are probabilistic models which are a direct extension of an incomplete
data model. Consider, for instance, probabilistic c-tables [72], where each variable
is associated with a discrete probability distribution. As another example, world
set decompositions [13] have a probabilistic version in which probabilities can be
attached to components.

In recent years, a number of probabilistic relational database systems have
been developed. The aim of these database systems is to provide built-in sup-
port for probabilistic data as first-class citizens, and efficient implementation of
uncertain data management concepts and algorithms. These database systems
include MayBMS [3], ORION [4], and Trio [8]. MayBMS has been built on top
of the PostgreSQL and implements the world set decompositions model. ORION
supports both attribute and tuple level uncertainty with arbitrary correlations,
and can represent attributes by both discrete and continuous probability distri-
butions. ORION’s underlying data model is closed under basic relational algebra
operations. Trio implements the x-relation model, and supports data provenance
in order to trace the origin of query results.

A.4. Probabilistic Graphical Models 139

A.4 Probabilistic Graphical Models

Some uncertain data models combine the relational model with a Probabilistic
Graphical Model (PGM for short). In this way, they can capture complex corre-
lations both at tuple and attribute levels, and use well-studied probabilistic rea-
soning techniques for query evaluation over the uncertain database. BayesStore
[1] and PrDB [7] are two examples of these models. In this section, we present
the basics of PGMs.

The aim of a PGM is to efficiently represent and process a joint probability
distribution over a set of random variables. To achieve these goals, PGMs exten-
sively rely on exploiting conditional independencies among random variables to
compactly encode their joint distribution. In general, a PGM is composed of two
components: a graph, and a set functions, also called factors, each over a subset
of random variables. The nodes of the graph are random variables, while there
exist an edge between the variables that directly interact with each other, and
variables with no edge between them are conditionally independent. Depending
on the type of the edges between random variables, we can distinguish between
two classes of PGMs: directed models, also known as Bayesian networks, and
undirected models, also known as Markov networks.

A directed PGM uses a directed acyclic graph to encode three types of depen-
dency between random variables, i.e. dependent, independent, and conditionally
independent. In a directed PGM, each variable is dependent to its parents; con-
nected variables (except through an edge) are conditionally independent; and
disconnected variables are independent. Each variable Xi is associated with a
probability distribution function, denoted by P pXi | parentspXiqq, which shows
the distribution of probabilities for the values of Xi given the values of its parents.
In general, the joint probability distribution that is encoded by a directed PGM
is as follows:

P pX1, . . . , Xnq “

n
ź

i“1

P pXi | parentspXiqq,

where X1, . . . , Xn are random variables.

Let us illustrate directed PGMs using an example from [55]. Figure A.6 shows
a bayesian network for modeling the location, degree, age, experience, and salary
of a person. Typically, location is independent of all other variables. That is why
location is not connected to any other attribute. Age affects experience, and salary
is affected by both experience and degree. Although age affects salary, its effect
is indirect through experience, meaning that for salary we do not need the age
of a person when his experience is known. Figure A.6 also shows the probability
functions, each associated to a variable, and the joint probability distribution
that is modeled by the network.

In the undirected PGM, an undirected graph is used to encode the dependency
between variables. Let G denote the undirected graph over random variables

140 Appendix A. Uncertain Data Models

Location

Degree

Age

Experience

Salary

L P pLq

NY 0.1
CA 0.2
FL 0.4

Other 0.3

D P pDq

BSc 0.6
MSc 0.2
PhD 0.1

Other 0.1

A P pAq

20-30 0.3
30-45 0.5
ą 45 0.2

E A P pE | Aq

0-10 20-30 0.1
0-11 30-45 0.1
0-12 ą 45 0.2
.

S E D P pS | E,Dq

ă $50K 0-10 Other 0.2
.

P pL,D,A,E, Sq “ P pLqP pAqP pDqP pE | AqP pS | D,Eq

Figure A.6: An example Bayesian network (directed PGM)

X1, . . . , Xn, and C the set of complete subgraphs of G. Then, the joint probability
distribution that is encoded by the undirected PGM is as follows:

P pX1, . . . , Xnq “
1

Z

ź

gPC

FgpXgq,

where for each subgraph g P C, Fg is a probability function over the variables in
g, denoted by Xg, and Z “

ř

X

ś

gPC FgpXgq is the normalization constant.
To illustrate, consider the example of undirected PGM in Figure A.7, which

uses the same variables as our directed PGM example. The complete sub-
graphs are tLocationu, tAge,Experienceu, and tDegree, Experience, Salaryu,
and probability functions are defined on the variables in these subgraphs.

The encoded dependencies by an undirected PGM are as follows: Considering
X, Y , and Z as subsets of variables, then, X and Z are conditionally independent
given Y if X is separated from Z by Y , where separation, here, means that
each path from a variable in X to a variable in Z includes a variable from Y .
For instance, Figure A.7 shows that tDegree, Salaryu and Age are conditionally
independent given Experience.

In general, directed PGMs are more intuitive and easier to use than undirected
PGMs.

A.4. Probabilistic Graphical Models 141

Location

Degree

Age

Experience

Salary

F1pLq

F2pA,Eq

F3pD,E, Sq

P pL,D,A,E, Sq “ 1
Z
F1pLqF2pA,EqF3pD,E, Sq

Figure A.7: An example Markov network (undirected PGM)

Appendix B

The Courses Dataset

This chapter contains the specification of the Courses dataset, which is used for
the experiments of Chapter 6.

The Courses dataset contains 17 single-table schemas as follows. Notice that
the primary keys are underlined, and Fi is the set of functional dependencies of
schema Si, where the functional dependencies that are related to the primary
keys are omitted.

S1psemester, course, title, instructor, time, roomq

F1 “ tcourseÑ titleu

S2 “ psemester, course#, call#, name, instructor, days, time, roomq

F2 “ tcourse# Ñ nameu

S3 “ psemester, course, sec#, code#, room#, time, days, units, instructorq

F3 “ tcode# Ñ troom#, time, days, units, instructoruu

S4 “ psemester, course, crn, time, day, instructor, room, units, titleq

F4 “ tcourseÑ tunits, titleuu

S5 “ psemester, course#, course, sched#, days, time, location, instructorq

F5 “ tcourse# Ñ courseu

143

144 Appendix B. The Courses Dataset

S6 “ pterm, coursesubject, coursenumber, sectionID , R,MeetingType, section, days,
time, building, room, instructor, seats-available, seats-limit, coursenameq

F6 “ ttcoursesubject, coursenumberu Ñ coursenameu

S7 “ psemester, year, course-abbr-num, sec-num, avl, enrl-cnt, type, course-title, hr-cr,
time-begin, time-end, days, room, building, special-enrollment, instructorq

F7 “ tcourse-abbr-numÑ ttype, course-title, hr-cruu

S8 “ psemester, course#, ug, coursename, teacher, day, hour, place, commentq

F8 “ tcourse# Ñ coursenameu

S9 “ pterm, course, subject, instructor, time, room, units, gradeq

F9 “ tcourseÑ subjectu

S10 “ psemester, course, title, units, lec{sec, days, begin, end, bldg, room, instructorsq

F10 “ tcourseÑ titleu

S11 “ psemester, dept, course#, course, instructor, day, time, roomq

F11 “ ttdept, course#u Ñ courseu

S12 “ psemester, code, sec, course, time, days, cr, room, instructorq

F12 “ tcodeÑ courseu

S13 “ psemester, coursecode, class, coursename, remark, instructor, time, building,
roomnumber, requiredorelective, numberofstudentsq

F13 “ tcoursecodeÑ coursenameu

S14 “ psemester, course, sec, coursename, days, time, cr, instructorq

F14 “ tcourseÑ coursenameu

145

S15 “ psemester, course#, section#, coursename, cal#, days, times, room, status,
max, now, instructor, creditsq

F15 “ tcourse# Ñ coursenameu

S16 “ psemester, coursenumber, coursetitle, cr, days, time, bldg, room, insr, refq

F16 “ tcoursenumber Ñ coursetitleu

S17 “ pterm, class#, title, location, day, times, instructors, statusq

F17 “ tclass# Ñ titleu

Appendix C

Author’s publications

• N. Ayat, R. Akbarinia, H. Afsarmanesh, and P. Valduriez. Entity resolu-
tion for distributed probabilistic data. Distributed and Parallel Databases
Journal, 31(4): 509-542, 2013.

• N. Ayat, H. Afsarmanesh, R. Akbarinia, and P. Valduriez. Entity resolution
for probabilistic data. Information Sciences Journal, 277: 492-511, 2014.

• N. Ayat, H. Afsarmanesh, R. Akbarinia, and P. Valduriez. Entity resolution
for uncertain data using entropy reduction. Submitted to Computer Journal
(under review), 2013.

• N. Ayat, H. Afsarmanesh, R. Akbarinia, and P. Valduriez. An uncertain
data integration system. In ODBASE, pages 825-842, 2012.

• N. Ayat, H. Afsarmanesh, R. Akbarinia, and P. Valduriez. Entity resolution
for uncertain data. In BDA, pages 135-154, 2012.

• N. Ayat, H. Afsarmanesh, R. Akbarinia, and P. Valduriez. Pay-as-you-go
data integration using functional dependencies. In CD-ARES, pages 375-
389, 2012.

147

Bibliography

[1] BayesStore. http://www.eecs.berkeley.edu/Research/Projects/

Data/102060.html. Accessed: 2013.

[2] BRITE. http://www.cs.bu.edu/brite. Accessed: 2013.

[3] MayBMS. http://www.cs.cornell.edu/database-OLD/maybms. Ac-
cessed: 2013.

[4] ORION. http://orion.cs.purdue.edu. Accessed: 2013.

[5] PeerSim. http://peersim.sourceforge.net. Accessed: 2013.

[6] Pittsburgh Pattern Recognition. http://www.pittpatt.com. Accessed:
2013.

[7] PrDB. http://www.cs.umd.edu/~amol/PrDB. Accessed: 2013.

[8] Trio. http://infolab.stanford.edu/trio. Accessed: 2013.

[9] S. Abiteboul, P. C. Kanellakis, and G. Grahne. On the representation and
querying of sets of possible worlds. Theor. Comput. Sci., 78(1):158–187,
1991.

[10] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar, T. Sug-
ihara, and J. Widom. Trio: A system for data, uncertainty, and lineage. In
VLDB, pages 1151–1154, 2006.

[11] R. Akbarinia, P. Valduriez, and G. Verger. Efficient evaluation of sum
queries over probabilistic data. IEEE Trans. Knowl. Data Eng., 25(4):764–
775, 2013.

[12] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty
databases: A probabilistic approach. In ICDE, page 30, 2006.

149

150 Bibliography

[13] L. Antova, C. Koch, and D. Olteanu. World-set decompositions: Expres-
siveness and efficient algorithms. In ICDT, pages 194–208, 2007.

[14] A. Arasu, M. Götz, and R. Kaushik. On active learning of record matching
packages. In SIGMOD, pages 783–794, 2010.

[15] A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication with constraints
using dedupalog. In ICDE, pages 952–963, 2009.

[16] N. Ayat, H. Afsarmanesh, R. Akbarinia, and P. Valduriez. Entity resolution
for distributed uncertain data. In DBDBD, 2012.

[17] N. Ayat, H. Afsarmanesh, R. Akbarinia, and P. Valduriez. Entity resolution
for uncertain data. In BDA, pages 135–154, 2012.

[18] N. Ayat, H. Afsarmanesh, R. Akbarinia, and P. Valduriez. Pay-as-you-go
data integration using functional dependencies. In CD-ARES, pages 375–
389, 2012.

[19] N. Ayat, H. Afsarmanesh, R. Akbarinia, and P. Valduriez. An uncertain
data integration system. In ODBASE, pages 825–842, 2012.

[20] N. Ayat, H. Afsarmanesh, R. Akbarinia, and P. Valduriez. Entity resolution
for uncertain data using entropy reduction. In under review, 2013.

[21] N. Ayat, H. Afsarmanesh, R. Akbarinia, and P. Valduriez. Entity resolution
for probabilistic data. Information Sciences, 277(1):492–511, 2014.

[22] N. Ayat, R. Akbarinia, H. Afsarmanesh, and P. Valduriez. Entity resolu-
tion for distributed probabilistic data. Distributed and Parallel Databases,
31(4):509–542, 2013.

[23] R. Baxter, P. Christen, and T. Churches. A comparison of fast blocking
methods for record linkage. In ACM SIGKDD, volume 3, pages 25–27, 2003.

[24] K. Bellare, S. Iyengar, A. G. Parameswaran, and V. Rastogi. Active sam-
pling for entity matching. In KDD, pages 1131–1139, 2012.

[25] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and
J. Widom. Swoosh: a generic approach to entity resolution. VLDB J.,
18(1):255–276, 2009.

[26] A. Bhattacharjee and H. M. Jamil. Ontomatch: A monotonically improving
schema matching system for autonomous data integration. In IRI, pages
318–323, 2009.

[27] I. Bhattacharya and L. Getoor. Collective entity resolution in relational
data. IEEE Data Eng. Bull., 29(2):4–12, 2006.

Bibliography 151

[28] I. Bhattacharya and L. Getoor. A latent dirichlet model for unsupervised
entity resolution. In SDM, 2006.

[29] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive blocking: Learning
to scale up record linkage. In ICDM, pages 87–96, 2006.

[30] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable
string similarity measures. In KDD, pages 39–48, 2003.

[31] M. Bilenko, R. J. Mooney, W. W. Cohen, P. D. Ravikumar, and S. E. Fien-
berg. Adaptive name matching in information integration. IEEE Intelligent
Systems, 18(5):16–23, 2003.

[32] J. Biskup and D. W. Embley. Extracting information from heterogeneous
information sources using ontologically specified target views. Inf. Syst.,
28(3):169–212, 2003.

[33] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal
of Machine Learning Research, 3:993–1022, 2003.

[34] C. Brew, D. McKelvie, et al. Word-pair extraction for lexicography. In
NeM-LaP, pages 45–55, 1996.

[35] B. Buckles, F. Petry, and H. Sachar. Design of similarity-based relational
databases. In Fuzzy logic in Knowledge Engineering, pages 3–7, 1986.

[36] B. P. Buckles and F. E. Petry. A fuzzy representation of data for relational
databases. Fuzzy sets and systems, 7(3):213–226, 1982.

[37] B. P. Buckles and F. E. Petry. Uncertainty models in information and
database systems. Journal of Information Science, 11(2):77–87, 1985.

[38] S. Chaudhuri, V. Ganti, and R. Motwani. Robust identification of fuzzy
duplicates. In ICDE, pages 865–876, 2005.

[39] M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei. Probabilistic
reverse nearest neighbor queries on uncertain data. IEEE Trans. Knowl.
Data Eng., 22(4):550–564, 2010.

[40] P. Cheeseman and J. Stutz. Bayesian classification (autoclass): Theory
and results. In Advances in Knowledge Discovery and Data Mining, pages
153–180. 1996.

[41] Z. Chen, D. V. Kalashnikov, and S. Mehrotra. Exploiting context analysis
for combining multiple entity resolution systems. In SIGMOD, pages 207–
218, 2009.

152 Bibliography

[42] R. Cheng, J. Chen, and X. Xie. Cleaning uncertain data with quality
guarantees. PVLDB, 1(1):722–735, 2008.

[43] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic
queries over imprecise data. In SIGMOD, pages 551–562, 2003.

[44] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying imprecise data
in moving object environments. TKDE, 16(9):1112–1127, 2004.

[45] P. Christen. Automatic record linkage using seeded nearest neighbour and
support vector machine classification. In KDD, pages 151–159, 2008.

[46] M. Cochinwala, V. Kurien, G. Lalk, and D. Shasha. Efficient data recon-
ciliation. Inf. Sci., 137(1-4):1–15, 2001.

[47] E. F. Codd. Understanding relations (installment #7). FDT - Bulletin of
ACM SIGMOD, 7(3):23–28, 1975.

[48] E. F. Codd. Extending the database relational model to capture more
meaning. ACM Trans. Database Syst., 4(4):397–434, 1979.

[49] W. W. Cohen. Integration of heterogeneous databases without common
domains using queries based on textual similarity. In SIGMOD.

[50] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A comparison of string
distance metrics for name-matching tasks. In IIWeb, pages 73–78, 2003.

[51] D. A. Cohn, L. E. Atlas, and R. E. Ladner. Improving generalization with
active learning. Machine Learning, 15(2):201–221, 1994.

[52] G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for probabilistic
data and expected ranks. In ICDE, pages 305–316, 2009.

[53] I. Davidson and S. S. Ravi. Using instance-level constraints in agglomerative
hierarchical clustering: theoretical and empirical results. Data Min. Knowl.
Discov., 18(2):257–282, 2009.

[54] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), pages 1–38, 1977.

[55] A. Deshpande, L. Getoor, and P. Sen. Graphical models for uncertain data.
In C. Aggarwal, editor, Managing and Mining Uncertain Data. Springer,
2009.

[56] P. Diaconis and R. L. Graham. Spearman’s footrule as a measure of disarray.
Journal of the Royal Statistical Society. Series B (Methodological), pages
262–268, 1977.

Bibliography 153

[57] P. Domingos. Multi-relational record linkage. In KDD Workshop on Multi-
Relational Data Mining, 2004.

[58] X. Dong, A. Y. Halevy, and J. Madhavan. Reference reconciliation in com-
plex information spaces. In SIGMOD, pages 85–96, 2005.

[59] X. L. Dong, A. Y. Halevy, and C. Yu. Data integration with uncertainty.
VLDB J., 18(2):469–500, 2009.

[60] U. Draisbach and F. Naumann. A generalization of blocking and windowing
algorithms for duplicate detection. In ICDKE, pages 18–24, 2011.

[61] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record
detection: A survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007.

[62] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the
American Statistical Association, 64(328):1183–1210, 1969.

[63] N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration
of information retrieval and database systems. ACM Trans. Inf. Syst.,
15(1):32–66, 1997.

[64] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita. Declar-
ative data cleaning: Language, model, and algorithms. In VLDB, pages
371–380, 2001.

[65] G. Grahne. Dependency satisfaction in databases with incomplete informa-
tion. In VLDB, pages 37–45, 1984.

[66] J. Grant. Null values in a relational data base. Inf. Process. Lett., 6(5):156–
157, 1977.

[67] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
L. Pietarinen, and D. Srivastava. Using q-grams in a dbms for approximate
string processing. IEEE Data Eng. Bull., 24(4):28–34, 2001.

[68] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava. Approximate string joins in a database (almost) for free.
In VLDB, pages 491–500, 2001.

[69] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava. Text joins in an
rdbms for web data integration. In WWW, pages 90–101, 2003.

[70] L. Gu and R. A. Baxter. Adaptive filtering for efficient record linkage. In
SDM, 2004.

[71] S. Guha, N. Koudas, A. Marathe, and D. Srivastava. Merging the results
of approximate match operations. In VLDB, pages 636–647, 2004.

154 Bibliography

[72] R. Gupta and S. Sarawagi. Creating probabilistic databases from informa-
tion extraction models. In VLDB, pages 965–976, 2006.

[73] R. Gupta and S. Sarawagi. Answering table augmentation queries from
unstructured lists on the web. PVLDB, 2(1):289–300, 2009.

[74] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update. SIGKDD Explorations,
11(1):10–18, 2009.

[75] O. Hassanzadeh and R. J. Miller. Creating probabilistic databases from
duplicated data. VLDB J., 18(5):1141–1166, 2009.

[76] M. A. Hernández and S. J. Stolfo. Real-world data is dirty: Data cleansing
and the merge/purge problem. Data Min. Knowl. Discov., 2(1):9–37, 1998.

[77] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. Tane: An effi-
cient algorithm for discovering functional and approximate dependencies.
Comput. J., 42(2):100–111, 1999.

[78] T. Imielinski and W. L. Jr. Incomplete information in relational databases.
J. ACM, 31(4):761–791, 1984.

[79] T. Inagaki. Interdependence between safety-control policy and multiple-
sensor schemes via dempster-shafer theory. IEEE Trans. on Reliability,
40(2):182–188, 1991.

[80] M. A. Jaro. Unimatch: A record linkage system: User’s manual. Technical
report, US Bureau of the Census.

[81] N. Koudas, A. Marathe, and D. Srivastava. Flexible string matching against
large databases in practice. In VLDB, pages 1078–1086, 2004.

[82] H.-P. Kriegel, P. Kunath, and M. Renz. Probabilistic nearest-neighbor
query on uncertain objects. In DASFAA, pages 337–348, 2007.

[83] L. V. S. Lakshmanan, N. Leone, R. B. Ross, and V. S. Subrahmanian.
Probview: A flexible probabilistic database system. ACM Trans. Database
Syst., 22(3):419–469, 1997.

[84] J. A. Larson, S. B. Navathe, and R. Elmasri. A theory of attribute equiv-
alence in databases with application to schema integration. IEEE Trans.
Software Eng., 15(4):449–463, 1989.

[85] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10.

Bibliography 155

[86] F. Li, K. Yi, and J. Jestes. Ranking distributed probabilistic data. In
SIGMOD, pages 361–374, 2009.

[87] F.-F. Li and P. Perona. A bayesian hierarchical model for learning natural
scene categories. In CVPR (2), pages 524–531, 2005.

[88] E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity identifi-
cation in database integration. Inf. Sci., 89(1):1–38, 1996.

[89] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
IJCV, 60(2):91–110, 2004.

[90] C. Manning, P. Raghavan, and H. Schutze. Introduction to information
retrieval, volume 1. Cambridge University Press, 2008.

[91] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller. Human-
powered sorts and joins. PVLDB, 5(1):13–24, 2011.

[92] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In KDD,
pages 169–178, 2000.

[93] A. McCallum and B. Wellner. Conditional models of identity uncertainty
with application to noun coreference. In NIPS, 2004.

[94] D. Menestrina, O. Benjelloun, and H. Garcia-Molina. Generic entity reso-
lution with data confidences. In CleanDB, 2006.

[95] M. Michelson and C. A. Knoblock. Learning blocking schemes for record
linkage. In AAAI, pages 440–445, 2006.

[96] A. E. Monge and C. Elkan. The field matching problem: Algorithms and
applications. In KDD, pages 267–270, 1996.

[97] A. E. Monge and C. Elkan. An efficient domain-independent algorithm for
detecting approximately duplicate database records. In DMKD, pages 0–,
1997.

[98] S. B. Needleman and C. D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Molec-
ular Biology, 48(3):443–453, 1970.

[99] H. B. Newcombe and J. M. Kennedy. Record linkage: making maximum
use of the discriminating power of identifying information. Commun. ACM,
5(11):563–566, Nov. 1962.

[100] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems,
3rd Edition. Springer, 2011.

156 Bibliography

[101] L. Palopoli, G. Terracina, and D. Ursino. Dike: a system supporting the
semi-automatic construction of cooperative information systems from het-
erogeneous databases. Softw., Pract. Exper., 33(9):847–884, 2003.

[102] F. Panse and N. Ritter. Tuple merging in probabilistic databases. In MUD,
pages 113–127, 2010.

[103] F. Panse, M. van Keulen, A. de Keijzer, and N. Ritter. Duplicate detection
in probabilistic data. In ICDE Workshops, pages 179–182, 2010.

[104] L. Peng, Y. Diao, and A. Liu. Optimizing probabilistic query processing on
continuous uncertain data. PVLDB, 4(11):1169–1180, 2011.

[105] H. Prade. Lipski’s approach to incomplete information databases restated
and generalized in the setting of zadeh’s possibility theory. Inf. Syst.,
9(1):27–42, 1984.

[106] H. Prade and C. Testemale. Generalizing database relational algebra for
the treatment of incomplete/uncertain information and vague queries. Inf.
Sci., 34(2):115–143, 1984.

[107] W. C. Purdy. A logic for natural language. Notre Dame Journal of Formal
Logic, 32(3):409–425, 1991.

[108] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema
matching. VLDB J., 10(4):334–350, 2001.

[109] K. V. S. V. N. Raju and A. K. Majumdar. Fuzzy functional dependencies
and lossless join decomposition of fuzzy relational database systems. ACM
Trans. Database Syst., 13(2):129–166, 1988.

[110] V. Rastogi, N. N. Dalvi, and M. N. Garofalakis. Large-scale collective entity
matching. PVLDB, 4(4):208–218, 2011.

[111] P. D. Ravikumar and W. W. Cohen. A hierarchical graphical model for
record linkage. In UAI, pages 454–461, 2004.

[112] C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. In ICDE, pages 886–895, 2007.

[113] E. S. Ristad and P. N. Yianilos. Learning string-edit distance. IEEE Trans.
Pattern Anal. Mach. Intell., 20(5):522–532, 1998.

[114] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active
learning. In KDD, pages 269–278, 2002.

[115] A. D. Sarma, X. Dong, and A. Y. Halevy. Bootstrapping pay-as-you-go
data integration systems. In SIGMOD, pages 861–874, 2008.

Bibliography 157

[116] A. D. Sarma, A. Jain, A. Machanavajjhala, and P. Bohannon. An automatic
blocking mechanism for large-scale de-duplication tasks. In CIKM, pages
1055–1064, 2012.

[117] R. A. Schmidt. Relational grammars for knowledge representation. In
M. Böttner and W. Thümmel, editors, Variable-Free Semantics, volume 3
of Artikulation und Sprache, pages 162–180. secolo Verlag, Osnabrück, Ger-
many, 2000.

[118] G. Shafer. A mathematical theory of evidence. Princeton University Press,
1976.

[119] C. E. Shannon. A mathematical theory of communication. Mobile Com-
puting and Communications Review, 5(1):3–55, 2001.

[120] T. Smith and M. Waterman. Identification of common molecular subse-
quences. J. Molecular Biology, 147:195–197, 1981.

[121] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Top-k query processing in
uncertain databases. In ICDE, pages 896–905, 2007.

[122] D. Suciu, A. Connolly, and B. Howe. Embracing uncertainty in large-scale
computational astrophysics. In MUD, pages 63–77, 2009.

[123] E. Sutinen and J. Tarhio. On using q-gram locations in approximate string
matching. In ESA, pages 327–340, 1995.

[124] S. Tejada, C. A. Knoblock, and S. Minton. Learning object identification
rules for information integration. Inf. Syst., 26(8):607–633, 2001.

[125] G. Trajcevski, R. Tamassia, H. Ding, P. Scheuermann, and I. F. Cruz.
Continuous probabilistic nearest-neighbor queries for uncertain trajectories.
In EDBT, pages 874–885, 2009.

[126] E. Ukkonen. Approximate string matching with q-grams and maximal
matches. Theor. Comput. Sci., 92(1):191–211, 1992.

[127] J. R. Ullmann. A binary n-gram technique for automatic correction of
substitution, deletion, insertion and reversal errors in words. Comput. J.,
20(2):141–147, 1977.

[128] M. Umano. Freedom-0: a fuzzy database system. In Fuzzy information and
decision processes, pages 339–347. North-Holland, Amsterdam, 1982.

[129] M. Umano. Retrieval from fuzzy database by fuzzy relational algebra. In
Fuzzy Information, Knowledge Representation and Decision Analysis, pages
1–6, 1983.

158 Bibliography

[130] O. Unal and H. Afsarmanesh. Semi-automated schema integration with
sasmint. Knowl. Inf. Syst., 23(1):99–128, 2010.

[131] V. S. Verykios, A. K. Elmagarmid, and E. N. Houstis. Automating the
approximate record-matching process. Inf. Sci., 126(1-4):83–98, 2000.

[132] D. Z. Wang, X. L. Dong, A. D. Sarma, M. J. Franklin, and A. Y. Halevy.
Functional dependency generation and applications in pay-as-you-go data
integration systems. In WebDB, 2009.

[133] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing
entity resolution. PVLDB, 5(11):1483–1494, 2012.

[134] Y. R. Wang and S. E. Madnick. The inter-database instance identification
problem in integrating autonomous systems. In ICDE, pages 46–55, 1989.

[135] M. S. Waterman, T. F. Smith, and W. A. Beyer. Some biological sequence
metrics. Advances in Mathematics, 20(3):367–387, 1976.

[136] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-
Molina. Entity resolution with iterative blocking. In SIGMOD, pages 219–
232, 2009.

[137] W. E. Winkler. Approximate string comparator search strategies for very
large administrative lists. Technical report, Statistical Research Division,
US Bureau of the Census.

[138] W. E. Winkler. The state of record linkage and current research problems.
Technical report, Statistical Research Division, US Census Bureau.

[139] W. E. Winkler and Y. Thibaudeau. An application of the fellegi-sunter
model of record linkage to the 1990 us decennial census. Technical report
statistical research report series RR91/09, US Bureau of the Census.

[140] M. Ye, X. Liu, W.-C. Lee, and D. L. Lee. Probabilistic top-k query pro-
cessing in distributed sensor networks. In ICDE, pages 585–588, 2010.

[141] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient processing of top-k
queries in uncertain databases with x-relations. IEEE Trans. Knowl. Data
Eng., 20(12):1669–1682, 2008.

[142] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient processing of top-k
queries in uncertain databases with x-relations. TKDE, 20(12):1669–1682,
2008.

[143] S. M. Yuen, Y. Tao, X. Xiao, J. Pei, and D. Zhang. Superseding nearest
neighbor search on uncertain spatial databases. TKDE, 22(7):1041–1055,
2010.

Bibliography 159

[144] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[145] Q. Zhang, F. Li, and K. Yi. Finding frequent items in probabilistic data.
In SIGMOD, pages 819–832, 2008.

[146] S. K. Zhou, V. Krüger, and R. Chellappa. Probabilistic recognition of
human faces from video. Computer Vision and Image Understanding, 91(1-
2):214–245, 2003.

Abstract

Entity resolution (ER) is the problem of identifying duplicate tuples, which are
the tuples that represent the same real-world entity. There are many real-life
applications in which the ER problem arises. These applications range from news
aggregation websites, identifying the news that cover the same story, in order to
avoid presenting one story several times to the user, to the integration of two
companies’ customer databases in the case of a merger, where identifying the
tuples that refer to the same customer is crucial.

Due to its diverse applications, the ER problem has been formulated in dif-
ferent ways in the literature. The two main ER’s related problem formulations
include: 1) identity resolution, and 2) deduplication. In identity resolution, the
aim is to find duplicate(s) of a given tuple in a given database, while in dedu-
plication, the aim is to find groups of duplicate tuples in a given database, and
merge them in order to increase the quality of the database itself.

The ER problem is however not limited to deterministic (ordinary) databases,
rather it also arises in applications that deal with probabilistic databases, i.e.
databases in which each tuple or attribute value is associated with a probability
value to, for instance, indicate its confidence level. In this thesis, we study the ER
problem in probabilistic databases. More specifically, we address five challenges
described in the following paragraphs.

The first challenge is that in contrast to deterministic data, in probabilistic
data, the semantics of identity resolution problem is not clear. In identity res-
olution over deterministic data, the aim is to match the most similar tuple in
the database to a given tuple. However the aim is not so clear when matching
probabilistic entities, since we have to deal with the two concepts of the most
similar and the most probable, at the same time.

Efficient dealing with the identity resolution problem in probabilistic data
is the second challenge that we address in this thesis. In order to define the
semantics of the identity resolution problem over probabilistic data, we use the
possible worlds semantics of uncertain data, treating a probabilistic database as

161

162 Abstract

the probability distribution over a set of deterministic database instances, each
of which is called a possible world. Each possible world thus, is a deterministic
database which occurs with certain probability. The number of possible worlds of
a probabilistic database might easily be exponential, which thus makes the näıve
computation of the defined semantics impractical.

In many applications that the identity resolution problem arises, probabilistic
data is distributed among a number of nodes. Dealing with the identity reso-
lution problem in distributed probabilistic data, while reducing the amount of
exchanged data among nodes, is quite challenging. Efficient dealing with the
identity resolution problem over probabilistic data in distributed systems is the
third challenge that we address in this thesis.

The fourth challenge is raised by considering the deduplication problem in
probabilistic data. Similar to deterministic data, the aim of deduplication in
probabilistic data is to improve the quality of the database. However, we observe
that deduplication does not necessarily improve the quality of the probabilis-
tic database. Therefore, guaranteeing the quality improvement of probabilistic
databases by a deduplication approach is another challenge that we address in
this thesis.

In many applications where the ER problem arises, data resides in a number
of heterogenous data sources. In such applications, matching the heterogeneous
schemas of data sources, to which we refer as schema matching, is an inevitable
step in dealing with the ER problem. On the other hand, dealing with the schema
matching problem requires human knowledge about the context, which is in con-
trast to the full automated resolution setting, which we propose for applications
in which the ER problem arises. Thus, effective dealing with the schema match-
ing problem in a fully automated setting is the fifth challenge addressed in this
thesis.

The thesis is structured as follows.
In Chapter 1, we elaborate on the motivation of this work, and present the

research questions and contributions of this research.
Chapter 2 provides preliminary definitions and concepts that are used through-

out the thesis. We first present the uncertain data models, and then review the
related work on entity resolution area.

In Chapter 3, we deal with the identity resolution problem over probabilis-
tic data. We adapt the possible worlds semantics of uncertain data to define
the semantics of identity resolution problem in probabilistic data. Our approach
for computing the defined semantics depends of the similarity function, which is
used for computing the similarity between tuples. We differentiate between two
classes of similarity functions, i.e. context-free and context-sensitive. We pro-
pose a PTIME algorithm for context-free similarity functions, and a Monte Carlo
approximation algorithm for the context-sensitive similarity functions. We deal
with the problem of high response time of existing context-sensitive similarity
functions, which makes them very inefficient for the Monte Carlo algorithm, by

Abstract 163

proposing a new efficient context-sensitive similarity function that is very appro-
priate for the Monte Carlo algorithm. We further speed up our proposed Monte
Carlo algorithm by parallelizing it using the MapReduce framework.

Chapter 4 deals with the identity resolution problem over distributed proba-
bilistic data. We propose a fully distributed algorithm for computing the seman-
tics of the identity resolution problem, as defined in Chapter 3, in a distributed
system. Our algorithm prunes data at local nodes, which thus results in sig-
nificant reduction in bandwidth usage and the response time compared to the
baseline approaches. Moreover, it requires no global information, and does not
depend on the existence of certain nodes.

In Chapter 5, we deal with deduplication problem over probabilistic data
with the aim of improving the quality of probabilistic data. We use the amount
of uncertainty, i.e. entropy, of the probabilistic database as a quality metric and
propose an efficient technique for computing it. We then propose a merge function
for merging probabilistic duplicate tuples. Further, we propose an efficient algo-
rithm that uses our proposed merge function and produces a cleaned database
with (near) minimum entropy. This leads to a significant improvement in the
results of the queries which are posed over the database.

Chapter 6 aims at building a data integration system in a fully automated
setting. The main problem that is dealt with in this chapter is the schema
matching problem, which arises in many applications that need to deal with the
entity resolution problem. We propose an algorithm that takes advantage of the
background knowledge implied in functional dependencies for finding attribute
correlations and using it for matching the source schemas. and generating the
mediated schema. Our algorithm is built on a probabilistic data model in order
to model the uncertainty in data integration systems.

Finally, Chapter 7 concludes and gives some research directions for future
work.

Samenvatting

Het identificeren van gedupliceerde tuples in data wordt ook wel het Entity Res-
olution (ER) probleem genoemd. Deze gedupliceerde tuples zijn tuples die het-
zelfde concept representeren. Dit komt voor bij verschillende toepassingen zoals
nieuwsaggregatie websites waar nieuwsberichten die over hetzelfde onderwerp
gaan worden gëıdentificeerd. Hiermee wordt voorkomen dat meerdere berichten
over hetzelfde onderwerp aan de gebruiker worden gepresenteerd. Een andere
toepassing is de migratie van klantgegevens bij een fusie waar het identificeren
van tuples die naar dezelfde klant verwijzen cruciaal is.

Vanwege de diversiteit in toepassingen wordt het ER probleem in de literatuur
op verschillende manieren geformuleerd. De twee meest voorkomende formulerin-
gen zijn identity resolution en deduplication. Het doel in identity resolution is om
duplicaten van een gegeven tuple in een gegeven database te vinden. Het doel
van deduplication is om gedupliceerde tuples in een gegeven database te vinden
en ze samen te voegen om zodoende de kwaliteit van de database te verbeteren.

Het ER probleem beperkt zich echter niet tot (normale) deterministische
databases. Het komt namelijk ook voor in toepassingen met probabilistische
databases. Dit zijn databases waar elk tuple of attribuut wordt geassocieerd met
een kans die bijvoorbeeld een indicatie is voor de betrouwbaarheid. In dit proef-
schrift wordt het ER probleem in probabilistische databases bestudeerd. Hierbij
komen de volgende vijf uitdagingen aan bod.

De eerste uitdaging is dat in tegenstelling tot deterministische data, bij prob-
abilistische data de semantiek van het identity resolution probleem niet duidelijk
is. Bij identity resolution op deterministische data is het doel om het meest
overeenkomende tuple in de database aan een tuple te koppelen. Het doel bij het
koppelen van probabilistische data is niet zo duidelijk omdat naast de notie van
het meest overeenkomende tuple ook de notie van het meest waarschijnlijke tuple
bestaat.

Het op een efficiënte manier omgaan met identity resolution in probabilistis-
che data is de tweede uitdaging die wordt beschreven in dit proefschrift. Om de

165

166 Samenvatting

semantiek van identity resolution op probabilistische data te definiëren maken
we gebruik van possible worlds (mogelijke werelden) semantiek van onzekere
data. Hiermee beschouwen we een probabilistische database als een kansverdeling
over een verzameling van deterministische databases. Elk van deze databases is
een zogenaamde mogelijke wereld. Daarmee is elke mogelijke wereld een deter-
ministische database die bestaat met een bepaalde kans. Het aantal mogelijke
werelden van een probabilistische database kan exponentieel zijn en dit maakt
näıeve berekening van de gedefinieerde semantiek in de praktijk niet haalbaar.

In veel toepassingen waar het probleem van identity resolution zich voordoet
is de probabilistische data verspreid over een aantal nodes. Het op een efficiënte
manier omgaan met gedistribueerde probabilistische data bij het toepassen van
identity resolution is de derde uitdaging die in dit proefschrift wordt beschreven.

De vierde uitdaging is deduplication in probabilistische data. Net als bij de-
terministische data, is het doel van deduplication bij probabilistische data om
de kwaliteit van de database te verbeteren. We stellen echter vast dat het niet
vanzelfsprekend is dat de kwaliteit van de probabilistische database ook daadw-
erkelijk verbetert bij het toepassen van deduplication. Daarom is het garanderen
van een kwaliteitsverbetering van een probabilistische database bij het toepassen
van deduplication een van de uitdagingen die worden beschreven in dit proef-
schrift.

In veel toepassingen van het ER probleem bevindt de data zich in een aantal
heterogene databronnen. Schema matching wordt gebruikt om de schema’s van
heterogene databronnen op elkaar aan te laten sluiten. In deze toepassingen van
het ER probleem is schema matching een onvermijdelijke stap in het oplossen
van het ER probleem. Het omgaan met schema matching vereist menselijke
kennis over de context van de data. Dit is in tegenstelling tot de volledig geau-
tomatiseerde ER die we voorstellen bij toepassingen waar het ER probleem zich
voordoet. Het op een effectieve manier omgaan met schema matching op een
volledig geautomatiseerde manier is daarom de vijfde uitdaging die in dit proef-
schrift wordt beschreven.

De structuur van dit proefschrift is als volgt.
In hoofdstuk 1 beschrijven we de motivatie achter dit onderzoek, de onder-

zoeksvragen die worden beantwoord in dit proefschrift en de bijdragen van dit
onderzoek.

Hoofdstuk 2 bevat de voorlopige definities en concepten die in het gehele proef-
schrift worden gebruikt. We presenteren de onzekere datamodellen en bespreken
de literatuur op het gebied van ER.

In hoofdstuk 3 beschrijven we ER in de context van probabilistische data.
Hierbij wordt de possible worlds semantiek toegepast op onzekere data om op die
manier de semantiek van ER in probabilistische data te definiëren. Deze aanpak
voor het berekenen van de gedefinieerde semantiek is afhankelijk van een similar-
ity functie die wordt gebruikt om de mate van overeenkomst tussen twee tuples
te berekenen. Hierbij maken we onderscheid tussen twee klassen van similarity

Samenvatting 167

functies, de contextvrije en de contextgevoelige functies. Vervolgens introduceren
we een zogenaamd PTIME algoritme voor contextvrije similarity functies en we
gebruiken Monte Carlo benadering voor de contextgevoelige similarity functies.
Bestaande contextgevoelige similarity functies hebben hoge response tijden en dit
maakt deze functies erg inefficiënt bij het toepassen van het Monte Carlo algo-
ritme. In dit hoofdstuk introduceren we een nieuwe en efficiënte contextgevoelige
similarity functie die wel geschikt is voor het Monte Carlo algoritme. Een verdere
optimalisatie wordt bereikt door het paralelliseren van het algoritme door middel
van het MapReduce raamwerk.

Hoofdstuk 4 beschrijft het identity resolution probleem in gedistribueerde
probabilistische data. We introduceren een volledig gedistribueerd algoritme om
de semantiek van het identity resolution probleem, zoals beschreven in hoofd-
stuk 3, te kunnen berekenen. Ons algoritme vereenvoudigt de data op elke node,
waarmee een significante vermindering van de benodigde brandbreedte en re-
sponse tijden wordt gerealiseerd in vergelijking met de standaard aanpak. Een
ander voordeel van dit algoritme is dat het geen globale informatie nodig heeft
en niet afhankelijk is van het bestaan van bepaalde nodes.

Hoofdstuk 5 gaat over het deduplication probleem in probabilistische data
met als doel het verbeteren van de kwaliteit van deze data. We gebruiken de
hoeveelheid onzekerheid, oftewel de entropie, van de probabilistische database
als een kwaliteitsmetriek. Vervolgens introduceren we een efficiënte manier om
deze metriek te berekenen. Ook introduceren we een functie om gedupliceerde
probabilistische tuples samen te voegen. Deze functie wordt gebruikt om een
efficient algoritme te ontwerpen dat een geschoonde database met een zo klein
mogelijke entropie produceert. Dit leidt tot een significante verbetering in de
resultaten van de zoekopdrachten op de database.

Het doel van hoofdstuk 6 is om een volledig geautomatiseerd data integratie
systeem te bouwen. Het grootste probleem dat in dit hoofdstuk wordt aangepakt
is het schema matching probleem. We introduceren een algoritme dat gebruik
maakt van achtergrond kennis die impliciet aanwezig is in de functionele afhanke-
lijkheden. We gebruiken deze kennis voor het vinden van correlaties en gebruiken
dit voor het aansluiten van de bronschema’s en het genereren van een zogenaamd
mediated schema. Het algoritme is gebaseerd op een probabilistisch data model
om zodoende de onzekerheid in data-integratie systemen te kunnen modelleren.

Als laatste worden in hoofdstuk 7 de conclusies beschreven en worden er mo-
gelijkheden voor toekomstig onderzoek besproken.

Acknowledgments

A teacher affects eternity; he can never tell where his influence stops.
H. B. Adams

This work would not have been possible without the help, and support of
many people to whom I wish to express my sincere gratitude.

First and foremost, I owe my deepest gratitude to my great supervisors,
Hamideh Afsarmanesh, Patrick Valduriez, and Reza Akbarinia, for all their help
in my journey towards being an independent researcher. I believe that our easily-
formed collaboration is mostly attributed to your attitude towards doing quality
research. I hope and think that we continue collaborating in the future.

Hamideh, I really enjoyed your support throughout these years. You gave
me a lot of freedom in deciding my research direction, but also guided me when
necessary. Your invaluable comments, and scientific insights helped me a lot in
preparing this work.

Patrick, I really enjoyed your support, stress-free style of collaboration, and
professional guidance. My work has greatly benefited from your constructive
recommendations.

Reza, I learned a lot from you. I really enjoyed our technical discussions, and
your invaluable insights throughout these years. This work would not have been
possible without your help.

I would like to express my great appreciation to Farhad Arbab, for his invalu-
able advices in my first year of PhD studies.

I am very thankful to my committee members, Pieter Adriaans, Peter Sloot,
Arno Siebes, Marian Bubak, and Frans Groen, for agreeing to be on my committee
and critically reading my thesis.

I wish to thank Michel Mandjes, and Guido van ’t Noordende, for their in-
valuable help.

I would like to thank Mattijs Ghijsen, for writing the Samenvatting section,
and Miriam Ghijsen, for her help.

169

170 Acknowledgments

Words cannot express my deep gratitude to my father, Mohammad, and my
mother, Belgheis. They have always supported me in my life, and offered me
unconditional love. Their belief in me has always been my motivation through
the hard times.

A big thanks to my brother, Yaser, and my sister, Saba, for being the persons
on whom I always have been able to count, and their love.

I would like to express my gratitude to my father in-law, Mahmoud, and my
mother in-law, Shahin, for their support, and love. Thanks to my brother and
sisters in laws, Aydin, Somaye, Ooldooz, Aytak and little Arash, for making my
life beautiful, and their warmth.

During research years, I have been fortunate to meet wonderful people in my
professional, and personal life, which I could spend pages to name them, but
singling out some of them would be unfair. Dear colleagues, and friends thank
you all for welcoming me as a friend and helping to shape and develop the ideas
in my thesis.

Last but not least, my thanks go to my lovely wife, Aylar, for the joyful sense
of life that she gave me, and being with me all along.

SIKS Dissertation Series

1998-1 Johan van den Akker (CWI), DEGAS - An
Active, Temporal Database of Autonomous
Objects.

1998-2 Floris Wiesman (UM), Information Retrieval
by Graphically Browsing Meta-Information.

1998-3 Ans Steuten (TUD), A Contribution to the
Linguistic Analysis of Business Conversations
within the Language/Action Perspective.

1998-4 Dennis Breuker (UM), Memory versus Search
in Games.

1998-5 E.W.Oskamp (RUL),
Computerondersteuning bij Straftoemeting.

1999-1 Mark Sloof (VU), Physiology of Quality
Change Modelling; Automated modelling of
Quality Change of Agricultural Products.

1999-2 Rob Potharst (EUR), Classification using
decision trees and neural nets.

1999-3 Don Beal (UM), The Nature of Minimax
Search.

1999-4 Jacques Penders (UM), The practical Art of
Moving Physical Objects.

1999-5 Aldo de Moor (KUB), Empowering
Communities: A Method for the Legitimate
User-Driven Specification of Network Information
Systems.

1999-6 Niek J.E. Wijngaards (VU), Re-design of
compositional systems.

1999-7 David Spelt (UT), Verification support for
object database design.

1999-8 Jacques H.J. Lenting (UM), Informed
Gambling: Conception and Analysis of a
Multi-Agent Mechanism for Discrete Reallocation.

2000-1 Frank Niessink (VU), Perspectives on
Improving Software Maintenance.

2000-2 Koen Holtman (TUE), Prototyping of CMS
Storage Management.

2000-3 Carolien M.T. Metselaar (UVA),
Sociaal-organisatorische gevolgen van

kennistechnologie; een procesbenadering en
actorperspectief.

2000-4 Geert de Haan (VU), ETAG, A Formal
Model of Competence Knowledge for User
Interface Design.

2000-5 Ruud van der Pol (UM), Knowledge-based
Query Formulation in Information Retrieval.

2000-6 Rogier van Eijk (UU), Programming
Languages for Agent Communication.

2000-7 Niels Peek (UU), Decision-theoretic Planning
of Clinical Patient Management.

2000-8 Veerle Coup (EUR), Sensitivity Analyis of
Decision-Theoretic Networks.

2000-9 Florian Waas (CWI), Principles of
Probabilistic Query Optimization.

2000-10 Niels Nes (CWI), Image Database
Management System Design Considerations,
Algorithms and Architecture.

2000-11 Jonas Karlsson (CWI), Scalable Distributed
Data Structures for Database Management.

2001-1 Silja Renooij (UU), Qualitative Approaches
to Quantifying Probabilistic Networks.

2001-2 Koen Hindriks (UU), Agent Programming
Languages: Programming with Mental Models.

2001-3 Maarten van Someren (UvA), Learning as
problem solving.

2001-4 Evgueni Smirnov (UM), Conjunctive and
Disjunctive Version Spaces with Instance-Based
Boundary Sets.

2001-5 Jacco van Ossenbruggen (VU), Processing
Structured Hypermedia: A Matter of Style.

2001-6 Martijn van Welie (VU), Task-based User
Interface Design.

2001-7 Bastiaan Schonhage (VU), Diva:
Architectural Perspectives on Information
Visualization.

2001-8 Pascal van Eck (VU), A Compositional

171

172 SIKS Dissertation Series

Semantic Structure for Multi-Agent Systems
Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL), Towards
Distributed Development of Large Object-Oriented
Models, Views of Packages as Classes.

2001-10 Maarten Sierhuis (UvA), Modeling and
Simulating Work Practice BRAHMS: a multiagent
modeling and simulation language for work
practice analysis and design.

2001-11 Tom M. van Engers (VUA), Knowledge
Management: The Role of Mental Models in
Business Systems Design.

2002-01 Nico Lassing (VU), Architecture-Level
Modifiability Analysis.

2002-02 Roelof van Zwol (UT), Modelling and
searching web-based document collections.

2002-03 Henk Ernst Blok (UT), Database
Optimization Aspects for Information Retrieval.

2002-04 Juan Roberto Castelo Valdueza (UU), The
Discrete Acyclic Digraph Markov Model in Data
Mining.

2002-05 Radu Serban (VU), The Private Cyberspace
Modeling Electronic Environments inhabited by
Privacy-concerned Agents.

2002-06 Laurens Mommers (UL), Applied legal
epistemology; Building a knowledge-based ontology
of the legal domain.

2002-07 Peter Boncz (CWI), Monet: A
Next-Generation DBMS Kernel For
Query-Intensive Applications.

2002-08 Jaap Gordijn (VU), Value Based
Requirements Engineering: Exploring Innovative
E-Commerce Ideas.

2002-09 Willem-Jan van den Heuvel(KUB),
Integrating Modern Business Applications with
Objectified Legacy Systems.

2002-10 Brian Sheppard (UM), Towards Perfect
Play of Scrabble.

2002-11 Wouter C.A. Wijngaards (VU), Agent
Based Modelling of Dynamics: Biological and
Organisational Applications.

2002-12 Albrecht Schmidt (Uva), Processing XML in
Database Systems.

2002-13 Hongjing Wu (TUE), A Reference
Architecture for Adaptive Hypermedia
Applications.

2002-14 Wieke de Vries (UU), Agent Interaction:
Abstract Approaches to Modelling, Programming
and Verifying Multi-Agent Systems.

2002-15 Rik Eshuis (UT), Semantics and Verification
of UML Activity Diagrams for Workflow Modelling.

2002-16 Pieter van Langen (VU), The Anatomy of
Design: Foundations, Models and Applications.

2002-17 Stefan Manegold (UVA), Understanding,
Modeling, and Improving Main-Memory Database
Performance.

2003-01 Heiner Stuckenschmidt (VU),

Ontology-Based Information Sharing in Weakly
Structured Environments.

2003-02 Jan Broersen (VU), Modal Action Logics
for Reasoning About Reactive Systems.

2003-03 Martijn Schuemie (TUD),
Human-Computer Interaction and Presence in
Virtual Reality Exposure Therapy.

2003-04 Milan Petkovic (UT), Content-Based Video
Retrieval Supported by Database Technology.

2003-05 Jos Lehmann (UVA), Causation in Artificial
Intelligence and Law - A modelling approach.

2003-06 Boris van Schooten (UT), Development and
specification of virtual environments.

2003-07 Machiel Jansen (UvA), Formal Explorations
of Knowledge Intensive Tasks.

2003-08 Yongping Ran (UM), Repair Based
Scheduling.

2003-09 Rens Kortmann (UM), The resolution of
visually guided behaviour.

2003-10 Andreas Lincke (UvT), Electronic Business
Negotiation: Some experimental studies on the
interaction between medium, innovation context
and culture.

2003-11 Simon Keizer (UT), Reasoning under
Uncertainty in Natural Language Dialogue using
Bayesian Networks.

2003-12 Roeland Ordelman (UT), Dutch speech
recognition in multimedia information retrieval.

2003-13 Jeroen Donkers (UM), Nosce Hostem -
Searching with Opponent Models.

2003-14 Stijn Hoppenbrouwers (KUN), Freezing
Language: Conceptualisation Processes across
ICT-Supported Organisations.

2003-15 Mathijs de Weerdt (TUD), Plan Merging in
Multi-Agent Systems.

2003-16 Menzo Windhouwer (CWI), Feature
Grammar Systems - Incremental Maintenance of
Indexes to Digital Media Warehouses.

2003-17 David Jansen (UT), Extensions of
Statecharts with Probability, Time, and Stochastic
Timing.

2003-18 Levente Kocsis (UM), Learning Search
Decisions.

2004-01 Virginia Dignum (UU), A Model for
Organizational Interaction: Based on Agents,
Founded in Logic.

2004-02 Lai Xu (UvT), Monitoring Multi-party
Contracts for E-business.

2004-03 Perry Groot (VU), A Theoretical and
Empirical Analysis of Approximation in Symbolic
Problem Solving.

2004-04 Chris van Aart (UVA), Organizational
Principles for Multi-Agent Architectures.

2004-05 Viara Popova (EUR), Knowledge discovery
and monotonicity.

2004-06 Bart-Jan Hommes (TUD), The Evaluation

SIKS Dissertation Series 173

of Business Process Modeling Techniques.

2004-07 Elise Boltjes (UM), Voorbeeldig onderwijs;
voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes.

2004-08 Joop Verbeek(UM), Politie en de Nieuwe
Internationale Informatiemarkt, Grensregionale
politile gegevensuitwisseling en digitale expertise.

2004-09 Martin Caminada (VU), For the Sake of the
Argument; explorations into argument-based
reasoning.

2004-10 Suzanne Kabel (UVA), Knowledge-rich
indexing of learning-objects.

2004-11 Michel Klein (VU), Change Management for
Distributed Ontologies.

2004-12 The Duy Bui (UT), Creating emotions and
facial expressions for embodied agents.

2004-13 Wojciech Jamroga (UT), Using Multiple
Models of Reality: On Agents who Know how to
Play.

2004-14 Paul Harrenstein (UU), Logic in Conflict.
Logical Explorations in Strategic Equilibrium.

2004-15 Arno Knobbe (UU), Multi-Relational Data
Mining.

2004-16 Federico Divina (VU), Hybrid Genetic
Relational Search for Inductive Learning.

2004-17 Mark Winands (UM), Informed Search in
Complex Games.

2004-18 Vania Bessa Machado (UvA), Supporting
the Construction of Qualitative Knowledge Models.

2004-19 Thijs Westerveld (UT), Using generative
probabilistic models for multimedia retrieval.

2004-20 Madelon Evers (Nyenrode), Learning from
Design: facilitating multidisciplinary design teams.

2005-01 Floor Verdenius (UVA), Methodological
Aspects of Designing Induction-Based
Applications.

2005-02 Erik van der Werf (UM)), AI techniques for
the game of Go.

2005-03 Franc Grootjen (RUN), A Pragmatic
Approach to the Conceptualisation of Language.

2005-04 Nirvana Meratnia (UT), Towards Database
Support for Moving Object data.

2005-05 Gabriel Infante-Lopez (UVA), Two-Level
Probabilistic Grammars for Natural Language
Parsing.

2005-06 Pieter Spronck (UM), Adaptive Game AI.

2005-07 Flavius Frasincar (TUE), Hypermedia
Presentation Generation for Semantic Web
Information Systems.

2005-08 Richard Vdovjak (TUE), A Model-driven
Approach for Building Distributed Ontology-based
Web Applications.

2005-09 Jeen Broekstra (VU), Storage, Querying
and Inferencing for Semantic Web Languages.

2005-10 Anders Bouwer (UVA), Explaining
Behaviour: Using Qualitative Simulation in

Interactive Learning Environments.

2005-11 Elth Ogston (VU), Agent Based
Matchmaking and Clustering - A Decentralized
Approach to Search.

2005-12 Csaba Boer (EUR), Distributed Simulation
in Industry.

2005-13 Fred Hamburg (UL), Een Computermodel
voor het Ondersteunen van Euthanasiebeslissingen.

2005-14 Borys Omelayenko (VU), Web-Service
configuration on the Semantic Web; Exploring how
semantics meets pragmatics.

2005-15 Tibor Bosse (VU), Analysis of the
Dynamics of Cognitive Processes.

2005-16 Joris Graaumans (UU), Usability of XML
Query Languages.

2005-17 Boris Shishkov (TUD), Software
Specification Based on Re-usable Business
Components.

2005-18 Danielle Sent (UU), Test-selection strategies
for probabilistic networks.

2005-19 Michel van Dartel (UM), Situated
Representation.

2005-20 Cristina Coteanu (UL), Cyber Consumer
Law, State of the Art and Perspectives.

2005-21 Wijnand Derks (UT), Improving
Concurrency and Recovery in Database Systems by
Exploiting Application Semantics.

2006-01 Samuil Angelov (TUE), Foundations of B2B
Electronic Contracting.

2006-02 Cristina Chisalita (VU), Contextual issues
in the design and use of information technology in
organizations.

2006-03 Noor Christoph (UVA), The role of
metacognitive skills in learning to solve problems.

2006-04 Marta Sabou (VU), Building Web Service
Ontologies.

2006-05 Cees Pierik (UU), Validation Techniques for
Object-Oriented Proof Outlines.

2006-06 Ziv Baida (VU), Software-aided Service
Bundling - Intelligent Methods & Tools for
Graphical Service Modeling.

2006-07 Marko Smiljanic (UT), XML schema
matching – balancing efficiency and effectiveness
by means of clustering.

2006-08 Eelco Herder (UT), Forward, Back and
Home Again - Analyzing User Behavior on the
Web.

2006-09 Mohamed Wahdan (UM), Automatic
Formulation of the Auditor’s Opinion.

2006-10 Ronny Siebes (VU), Semantic Routing in
Peer-to-Peer Systems.

2006-11 Joeri van Ruth (UT), Flattening Queries
over Nested Data Types.

2006-12 Bert Bongers (VU), Interactivation -
Towards an e-cology of people, our technological
environment, and the arts.

174 SIKS Dissertation Series

2006-13 Henk-Jan Lebbink (UU), Dialogue and
Decision Games for Information Exchanging
Agents.

2006-14 Johan Hoorn (VU), Software Requirements:
Update, Upgrade, Redesign - towards a Theory of
Requirements Change.

2006-15 Rainer Malik (UU), CONAN: Text Mining
in the Biomedical Domain.

2006-16 Carsten Riggelsen (UU), Approximation
Methods for Efficient Learning of Bayesian
Networks.

2006-17 Stacey Nagata (UU), User Assistance for
Multitasking with Interruptions on a Mobile
Device.

2006-18 Valentin Zhizhkun (UVA), Graph
transformation for Natural Language Processing.

2006-19 Birna van Riemsdijk (UU), Cognitive Agent
Programming: A Semantic Approach.

2006-20 Marina Velikova (UvT), Monotone models
for prediction in data mining.

2006-21 Bas van Gils (RUN), Aptness on the Web.

2006-22 Paul de Vrieze (RUN), Fundaments of
Adaptive Personalisation.

2006-23 Ion Juvina (UU), Development of Cognitive
Model for Navigating on the Web.

2006-24 Laura Hollink (VU), Semantic Annotation
for Retrieval of Visual Resources.

2006-25 Madalina Drugan (UU), Conditional
log-likelihood MDL and Evolutionary MCMC.

2006-26 Vojkan Mihajlovic (UT), Score Region
Algebra: A Flexible Framework for Structured
Information Retrieval.

2006-27 Stefano Bocconi (CWI), Vox Populi:
generating video documentaries from semantically
annotated media repositories.

2006-28 Borkur Sigurbjornsson (UVA), Focused
Information Access using XML Element Retrieval.

2007-01 Kees Leune (UvT), Access Control and
Service-Oriented Architectures.

2007-02 Wouter Teepe (RUG), Reconciling
Information Exchange and Confidentiality: A
Formal Approach.

2007-03 Peter Mika (VU), Social Networks and the
Semantic Web.

2007-04 Jurriaan van Diggelen (UU), Achieving
Semantic Interoperability in Multi-agent Systems:
a dialogue-based approach.

2007-05 Bart Schermer (UL), Software Agents,
Surveillance, and the Right to Privacy: a
Legislative Framework for Agent-enabled
Surveillance.

2007-06 Gilad Mishne (UVA), Applied Text
Analytics for Blogs.

2007-07 Natasa Jovanovic’ (UT), To Whom It May
Concern - Addressee Identification in Face-to-Face

Meetings.

2007-08 Mark Hoogendoorn (VU), Modeling of
Change in Multi-Agent Organizations.

2007-09 David Mobach (VU), Agent-Based
Mediated Service Negotiation.

2007-10 Huib Aldewereld (UU), Autonomy vs.
Conformity: an Institutional Perspective on Norms
and Protocols.

2007-11 Natalia Stash (TUE), Incorporating
Cognitive/Learning Styles in a General-Purpose
Adaptive Hypermedia System.

2007-12 Marcel van Gerven (RUN), Bayesian
Networks for Clinical Decision Support: A
Rational Approach to Dynamic Decision-Making
under Uncertainty.

2007-13 Rutger Rienks (UT), Meetings in Smart
Environments; Implications of Progressing
Technology.

2007-14 Niek Bergboer (UM), Context-Based Image
Analysis.

2007-15 Joyca Lacroix (UM), NIM: a Situated
Computational Memory Model.

2007-16 Davide Grossi (UU), Designing Invisible
Handcuffs. Formal investigations in Institutions
and Organizations for Multi-agent Systems.

2007-17 Theodore Charitos (UU), Reasoning with
Dynamic Networks in Practice.

2007-18 Bart Orriens (UvT), On the development an
management of adaptive business collaborations.

2007-19 David Levy (UM), Intimate relationships
with artificial partners.

2007-20 Slinger Jansen (UU), Customer
Configuration Updating in a Software Supply
Network.

2007-21 Karianne Vermaas (UU), Fast diffusion and
broadening use: A research on residential adoption
and usage of broadband internet in the
Netherlands between 2001 and 2005.

2007-22 Zlatko Zlatev (UT), Goal-oriented design of
value and process models from patterns.

2007-23 Peter Barna (TUE), Specification of
Application Logic in Web Information Systems.

2007-24 Georgina Ramrez Camps (CWI), Structural
Features in XML Retrieval.

2007-25 Joost Schalken (VU), Empirical
Investigations in Software Process Improvement.

2008-01 Katalin Boer-Sorbn (EUR), Agent-Based
Simulation of Financial Markets: A modular,
continuous-time approach.

2008-02 Alexei Sharpanskykh (VU), On
Computer-Aided Methods for Modeling and
Analysis of Organizations.

2008-03 Vera Hollink (UVA), Optimizing
hierarchical menus: a usage-based approach.

2008-04 Ander de Keijzer (UT), Management of
Uncertain Data - towards unattended integration.

SIKS Dissertation Series 175

2008-05 Bela Mutschler (UT), Modeling and
simulating causal dependencies on process-aware
information systems from a cost perspective.

2008-06 Arjen Hommersom (RUN), On the
Application of Formal Methods to Clinical
Guidelines, an Artificial Intelligence Perspective.

2008-07 Peter van Rosmalen (OU), Supporting the
tutor in the design and support of adaptive
e-learning.

2008-08 Janneke Bolt (UU), Bayesian Networks:
Aspects of Approximate Inference.

2008-09 Christof van Nimwegen (UU), The paradox
of the guided user: assistance can be
counter-effective.

2008-10 Wauter Bosma (UT), Discourse oriented
summarization.

2008-11 Vera Kartseva (VU), Designing Controls for
Network Organizations: A Value-Based Approach.

2008-12 Jozsef Farkas (RUN), A Semiotically
Oriented Cognitive Model of Knowledge
Representation.

2008-13 Caterina Carraciolo (UVA), Topic Driven
Access to Scientific Handbooks.

2008-14 Arthur van Bunningen (UT),
Context-Aware Querying; Better Answers with
Less Effort.

2008-15 Martijn van Otterlo (UT), The Logic of
Adaptive Behavior: Knowledge Representation and
Algorithms for the Markov Decision Process
Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU), Embodied agents
from a user’s perspective.

2008-17 Martin Op ’t Land (TUD), Applying
Architecture and Ontology to the Splitting and
Allying of Enterprises.

2008-18 Guido de Croon (UM), Adaptive Active
Vision.

2008-19 Henning Rode (UT), From Document to
Entity Retrieval: Improving Precision and
Performance of Focused Text Search.

2008-20 Rex Arendsen (UVA), Geen bericht, goed
bericht. Een onderzoek naar de effecten van de
introductie van elektronisch berichtenverkeer met
de overheid op de administratieve lasten van
bedrijven.

2008-21 Krisztian Balog (UVA), People Search in
the Enterprise.

2008-22 Henk Koning (UU), Communication of
IT-Architecture.

2008-23 Stefan Visscher (UU), Bayesian network
models for the management of ventilator-associated
pneumonia.

2008-24 Zharko Aleksovski (VU), Using background
knowledge in ontology matching.

2008-25 Geert Jonker (UU), Efficient and Equitable
Exchange in Air Traffic Management Plan Repair

using Spender-signed Currency.

2008-26 Marijn Huijbregts (UT), Segmentation,
Diarization and Speech Transcription: Surprise
Data Unraveled.

2008-27 Hubert Vogten (OU), Design and
Implementation Strategies for IMS Learning
Design.

2008-28 Ildiko Flesch (RUN), On the Use of
Independence Relations in Bayesian Networks.

2008-29 Dennis Reidsma (UT), Annotations and
Subjective Machines - Of Annotators, Embodied
Agents, Users, and Other Humans.

2008-30 Wouter van Atteveldt (VU), Semantic
Network Analysis: Techniques for Extracting,
Representing and Querying Media Content.

2008-31 Loes Braun (UM), Pro-Active Medical
Information Retrieval.

2008-32 Trung H. Bui (UT), Toward Affective
Dialogue Management using Partially Observable
Markov Decision Processes.

2008-33 Frank Terpstra (UVA), Scientific Workflow
Design; theoretical and practical issues.

2008-34 Jeroen de Knijf (UU), Studies in Frequent
Tree Mining.

2008-35 Ben Torben Nielsen (UvT), Dendritic
morphologies: function shapes structure.

2009-01 Rasa Jurgelenaite (RUN), Symmetric
Causal Independence Models.

2009-02 Willem Robert van Hage (VU), Evaluating
Ontology-Alignment Techniques.

2009-03 Hans Stol (UvT), A Framework for
Evidence-based Policy Making Using IT.

2009-04 Josephine Nabukenya (RUN), Improving the
Quality of Organisational Policy Making using
Collaboration Engineering.

2009-05 Sietse Overbeek (RUN), Bridging Supply
and Demand for Knowledge Intensive Tasks -
Based on Knowledge, Cognition, and Quality.

2009-06 Muhammad Subianto (UU), Understanding
Classification.

2009-07 Ronald Poppe (UT), Discriminative
Vision-Based Recovery and Recognition of Human
Motion.

2009-08 Volker Nannen (VU), Evolutionary
Agent-Based Policy Analysis in Dynamic
Environments.

2009-09 Benjamin Kanagwa (RUN), Design,
Discovery and Construction of Service-oriented
Systems.

2009-10 Jan Wielemaker (UVA), Logic programming
for knowledge-intensive interactive applications.

2009-11 Alexander Boer (UVA), Legal Theory,
Sources of Law & the Semantic Web.

2009-12 Peter Massuthe (TUE,
Humboldt-Universitaet zu Berlin), Operating
Guidelines for Services.

176 SIKS Dissertation Series

2009-13 Steven de Jong (UM), Fairness in
Multi-Agent Systems.

2009-14 Maksym Korotkiy (VU), From
ontology-enabled services to service-enabled
ontologies (making ontologies work in e-science
with ONTO-SOA).

2009-15 Rinke Hoekstra (UVA), Ontology
Representation - Design Patterns and Ontologies
that Make Sense.

2009-16 Fritz Reul (UvT), New Architectures in
Computer Chess.

2009-17 Laurens van der Maaten (UvT), Feature
Extraction from Visual Data.

2009-18 Fabian Groffen (CWI), Armada, An
Evolving Database System.

2009-19 Valentin Robu (CWI), Modeling
Preferences, Strategic Reasoning and Collaboration
in Agent-Mediated Electronic Markets.

2009-20 Bob van der Vecht (UU), Adjustable
Autonomy: Controling Influences on Decision
Making.

2009-21 Stijn Vanderlooy (UM), Ranking and
Reliable Classification.

2009-22 Pavel Serdyukov (UT), Search For
Expertise: Going beyond direct evidence.

2009-23 Peter Hofgesang (VU), Modelling Web
Usage in a Changing Environment.

2009-24 Annerieke Heuvelink (VUA), Cognitive
Models for Training Simulations.

2009-25 Alex van Ballegooij (CWI), RAM: Array
Database Management through Relational
Mapping.

2009-26 Fernando Koch (UU), An Agent-Based
Model for the Development of Intelligent Mobile
Services.

2009-27 Christian Glahn (OU), Contextual Support
of social Engagement and Reflection on the Web.

2009-28 Sander Evers (UT), Sensor Data
Management with Probabilistic Models.

2009-29 Stanislav Pokraev (UT), Model-Driven
Semantic Integration of Service-Oriented
Applications.

2009-30 Marcin Zukowski (CWI), Balancing
vectorized query execution with
bandwidth-optimized storage.

2009-31 Sofiya Katrenko (UVA), A Closer Look at
Learning Relations from Text.

2009-32 Rik Farenhorst (VU), and Remco de Boer
(VU).

Architectural Knowledge Management: Supporting
Architects and Auditors 2009-33 Khiet Truong
(UT), How Does Real Affect Affect Affect
Recognition In Speech?.

2009-34 Inge van de Weerd (UU), Advancing in
Software Product Management: An Incremental
Method Engineering Approach.

2009-35 Wouter Koelewijn (UL), Privacy en
Politiegegevens; Over geautomatiseerde normatieve
informatie-uitwisseling.

2009-36 Marco Kalz (OUN), Placement Support for
Learners in Learning Networks.

2009-37 Hendrik Drachsler (OUN), Navigation
Support for Learners in Informal Learning
Networks.

2009-38 Riina Vuorikari (OU), Tags and
self-organisation: a metadata ecology for learning
resources in a multilingual context.

2009-39 Christian Stahl (TUE,
Humboldt-Universitaet zu Berlin), Service
Substitution – A Behavioral Approach Based on
Petri Nets.

2009-40 Stephan Raaijmakers (UvT), Multinomial
Language Learning: Investigations into the
Geometry of Language.

2009-41 Igor Berezhnyy (UvT), Digital Analysis of
Paintings.

2009-42 Toine Bogers (UvT), Recommender Systems
for Social Bookmarking.

2009-43 Virginia Nunes Leal Franqueira (UT),
Finding Multi-step Attacks in Computer Networks
using Heuristic Search and Mobile Ambients.

2009-44 Roberto Santana Tapia (UT), Assessing
Business-IT Alignment in Networked
Organizations.

2009-45 Jilles Vreeken (UU), Making Pattern Mining
Useful.

2009-46 Loredana Afanasiev (UvA), Querying XML:
Benchmarks and Recursion.

2010-01 Matthijs van Leeuwen (UU), Patterns that
Matter.

2010-02 Ingo Wassink (UT), Work flows in Life
Science.

2010-03 Joost Geurts (CWI), A Document
Engineering Model and Processing Framework for
Multimedia documents.

2010-04 Olga Kulyk (UT), Do You Know What I
Know? Situational Awareness of Co-located Teams
in Multidisplay Environments.

2010-05 Claudia Hauff (UT), Predicting the
Effectiveness of Queries and Retrieval Systems.

2010-06 Sander Bakkes (UvT), Rapid Adaptation of
Video Game AI.

2010-07 Wim Fikkert (UT), Gesture interaction at a
Distance.

2010-08 Krzysztof Siewicz (UL), Towards an
Improved Regulatory Framework of Free Software.
Protecting user freedoms in a world of software
communities and eGovernments.

2010-09 Hugo Kielman (UL), A Politiele
gegevensverwerking en Privacy, Naar een effectieve
waarborging.

2010-10 Rebecca Ong (UL), Mobile Communication

SIKS Dissertation Series 177

and Protection of Children.

2010-11 Adriaan Ter Mors (TUD), The world
according to MARP: Multi-Agent Route Planning.

2010-12 Susan van den Braak (UU), Sensemaking
software for crime analysis.

2010-13 Gianluigi Folino (RUN), High Performance
Data Mining using Bio-inspired techniques.

2010-14 Sander van Splunter (VU), Automated Web
Service Reconfiguration.

2010-15 Lianne Bodenstaff (UT), Managing
Dependency Relations in Inter-Organizational
Models.

2010-16 Sicco Verwer (TUD), Efficient Identification
of Timed Automata, theory and practice.

2010-17 Spyros Kotoulas (VU), Scalable Discovery
of Networked Resources: Algorithms,
Infrastructure, Applications.

2010-18 Charlotte Gerritsen (VU), Caught in the
Act: Investigating Crime by Agent-Based
Simulation.

2010-19 Henriette Cramer (UvA), People’s
Responses to Autonomous and Adaptive Systems.

2010-20 Ivo Swartjes (UT), Whose Story Is It
Anyway? How Improv Informs Agency and
Authorship of Emergent Narrative.

2010-21 Harold van Heerde (UT), Privacy-aware
data management by means of data degradation.

2010-22 Michiel Hildebrand (CWI), End-user
Support for Access to

Heterogeneous Linked Data.

2010-23 Bas Steunebrink (UU), The Logical
Structure of Emotions.

2010-24 Dmytro Tykhonov (VU), Designing Generic
and Efficient Negotiation Strategies.

2010-25 Zulfiqar Ali Memon (VU), Modelling
Human-Awareness for Ambient Agents: A Human
Mindreading Perspective.

2010-26 Ying Zhang (CWI), XRPC: Efficient
Distributed Query Processing on Heterogeneous
XQuery Engines.

2010-27 Marten Voulon (UL), Automatisch
contracteren.

2010-28 Arne Koopman (UU), Characteristic
Relational Patterns.

2010-29 Stratos Idreos(CWI), Database Cracking:
Towards Auto-tuning Database Kernels.

2010-30 Marieke van Erp (UvT), Accessing Natural
History - Discoveries in data cleaning, structuring,
and retrieval.

2010-31 Victor de Boer (UVA), Ontology
Enrichment from Heterogeneous Sources on the
Web.

2010-32 Marcel Hiel (UvT), An Adaptive Service
Oriented Architecture: Automatically solving
Interoperability Problems.

2010-33 Robin Aly (UT), Modeling Representation

Uncertainty in Concept-Based Multimedia
Retrieval.

2010-34 Teduh Dirgahayu (UT), Interaction Design
in Service Compositions.

2010-35 Dolf Trieschnigg (UT), Proof of Concept:
Concept-based Biomedical Information Retrieval.

2010-36 Jose Janssen (OU), Paving the Way for
Lifelong Learning; Facilitating competence
development through a learning path specification.

2010-37 Niels Lohmann (TUE), Correctness of
services and their composition.

2010-38 Dirk Fahland (TUE), From Scenarios to
components.

2010-39 Ghazanfar Farooq Siddiqui (VU),
Integrative modeling of emotions in virtual agents.

2010-40 Mark van Assem (VU), Converting and
Integrating Vocabularies for the Semantic Web.

2010-41 Guillaume Chaslot (UM), Monte-Carlo Tree
Search.

2010-42 Sybren de Kinderen (VU), Needs-driven
service bundling in a multi-supplier setting - the
computational e3-service approach.

2010-43 Peter van Kranenburg (UU), A
Computational Approach to Content-Based
Retrieval of Folk Song Melodies.

2010-44 Pieter Bellekens (TUE), An Approach
towards Context-sensitive and User-adapted Access
to Heterogeneous Data Sources, Illustrated in the
Television Domain.

2010-45 Vasilios Andrikopoulos (UvT), A theory and
model for the evolution of software services.

2010-46 Vincent Pijpers (VU), e3alignment:
Exploring Inter-Organizational Business-ICT
Alignment.

2010-47 Chen Li (UT), Mining Process Model
Variants: Challenges, Techniques, Examples.

2010-48 , Withdrawn.

2010-49 Jahn-Takeshi Saito (UM), Solving difficult
game positions.

2010-50 Bouke Huurnink (UVA), Search in
Audiovisual Broadcast Archives.

2010-51 Alia Khairia Amin (CWI), Understanding
and supporting information seeking tasks in
multiple sources.

2010-52 Peter-Paul van Maanen (VU), Adaptive
Support for Human-Computer Teams: Exploring
the Use of Cognitive Models of Trust and
Attention.

2010-53 Edgar Meij (UVA), Combining Concepts
and Language Models for Information Access.

2011-01 Botond Cseke (RUN), Variational
Algorithms for Bayesian Inference in Latent
Gaussian Models.

2011-02 Nick Tinnemeier(UU), Organizing Agent
Organizations. Syntax and Operational Semantics
of an Organization-Oriented Programming
Language.

178 SIKS Dissertation Series

2011-03 Jan Martijn van der Werf (TUE),
Compositional Design and Verification of
Component-Based Information Systems.

2011-04 Hado van Hasselt (UU), Insights in
Reinforcement Learning; Formal analysis and
empirical evaluation of temporal-difference learning
algorithms.

2011-05 Base van der Raadt (VU), Enterprise
Architecture Coming of Age - Increasing the
Performance of an Emerging Discipline.

2011-06 Yiwen Wang (TUE),
Semantically-Enhanced Recommendations in
Cultural Heritage.

2011-07 Yujia Cao (UT), Multimodal Information
Presentation for High Load Human Computer
Interaction.

2011-08 Nieske Vergunst (UU), BDI-based
Generation of Robust Task-Oriented Dialogues.

2011-09 Tim de Jong (OU), Contextualised Mobile
Media for Learning.

2011-10 Bart Bogaert (UvT), Cloud Content
Contention.

2011-11 Dhaval Vyas (UT), Designing for
Awareness: An Experience-focused HCI
Perspective.

2011-12 Carmen Bratosin (TUE), Grid Architecture
for Distributed Process Mining.

2011-13 Xiaoyu Mao (UvT), Airport under Control.
Multiagent Scheduling for Airport Ground
Handling.

2011-14 Milan Lovric (EUR), Behavioral Finance
and Agent-Based Artificial Markets.

2011-15 Marijn Koolen (UvA), The Meaning of
Structure: the Value of Link Evidence for
Information Retrieval.

2011-16 Maarten Schadd (UM), Selective Search in
Games of Different Complexity.

2011-17 Jiyin He (UVA), Exploring Topic Structure:
Coherence, Diversity and Relatedness.

2011-18 Mark Ponsen (UM), Strategic
Decision-Making in complex games.

2011-19 Ellen Rusman (OU), The Mind ’ s Eye on
Personal Profiles.

2011-20 Qing Gu (VU), Guiding service-oriented
software engineering - A view-based approach.

2011-21 Linda Terlouw (TUD), Modularization and
Specification of Service-Oriented Systems.

2011-22 Junte Zhang (UVA), System Evaluation of
Archival Description and Access.

2011-23 Wouter Weerkamp (UVA), Finding People
and their Utterances in Social Media.

2011-24 Herwin van Welbergen (UT), Behavior
Generation for Interpersonal Coordination with
Virtual Humans On Specifying, Scheduling and
Realizing Multimodal Virtual Human Behavior.

2011-25 Syed Waqar ul Qounain Jaffry (VU)),
Analysis and Validation of Models for Trust
Dynamics.

2011-26 Matthijs Aart Pontier (VU), Virtual Agents
for Human Communication - Emotion Regulation
and Involvement-Distance Trade-Offs in Embodied
Conversational Agents and Robots.

2011-27 Aniel Bhulai (VU), Dynamic website
optimization through autonomous management of
design patterns.

2011-28 Rianne Kaptein(UVA), Effective Focused
Retrieval by Exploiting Query Context and
Document Structure.

2011-29 Faisal Kamiran (TUE),
Discrimination-aware Classification.

2011-30 Egon van den Broek (UT), Affective Signal
Processing (ASP): Unraveling the mystery of
emotions.

2011-31 Ludo Waltman (EUR), Computational and
Game-Theoretic Approaches for Modeling
Bounded Rationality.

2011-32 Nees-Jan van Eck (EUR), Methodological
Advances in Bibliometric Mapping of Science.

2011-33 Tom van der Weide (UU), Arguing to
Motivate Decisions.

2011-34 Paolo Turrini (UU), Strategic Reasoning in
Interdependence: Logical and Game-theoretical
Investigations.

2011-35 Maaike Harbers (UU), Explaining Agent
Behavior in Virtual Training.

2011-36 Erik van der Spek (UU), Experiments in
serious game design: a cognitive approach.

2011-37 Adriana Burlutiu (RUN), Machine Learning
for Pairwise Data, Applications for Preference
Learning and Supervised Network Inference.

2011-38 Nyree Lemmens (UM), Bee-inspired
Distributed Optimization.

2011-39 Joost Westra (UU), Organizing Adaptation
using Agents in Serious Games.

2011-40 Viktor Clerc (VU), Architectural Knowledge
Management in Global Software Development.

2011-41 Luan Ibraimi (UT), Cryptographically
Enforced Distributed Data Access Control.

2011-42 Michal Sindlar (UU), Explaining Behavior
through Mental State Attribution.

2011-43 Henk van der Schuur (UU), Process
Improvement through Software Operation
Knowledge.

2011-44 Boris Reuderink (UT), Robust
Brain-Computer Interfaces.

2011-45 Herman Stehouwer (UvT), Statistical
Language Models for Alternative Sequence
Selection.

2011-46 Beibei Hu (TUD), Towards Contextualized
Information Delivery: A Rule-based Architecture
for the Domain of Mobile Police Work.

SIKS Dissertation Series 179

2011-47 Azizi Bin Ab Aziz(VU), Exploring
Computational Models for Intelligent Support of
Persons with Depression.

2011-48 Mark Ter Maat (UT), Response Selection
and Turn-taking for a Sensitive Artificial Listening
Agent.

2011-49 Andreea Niculescu (UT), Conversational
interfaces for task-oriented spoken dialogues:
design aspects influencing interaction quality.

2012-01 Terry Kakeeto (UvT), Relationship
Marketing for SMEs in Uganda.

2012-02 Muhammad Umair(VU), Adaptivity,
emotion, and Rationality in Human and Ambient
Agent Models.

2012-03 Adam Vanya (VU), Supporting Architecture
Evolution by Mining Software Repositories.

2012-04 Jurriaan Souer (UU), Development of
Content Management System-based Web
Applications.

2012-05 Marijn Plomp (UU), Maturing
Interorganisational Information Systems.

2012-06 Wolfgang Reinhardt (OU), Awareness
Support for Knowledge Workers in Research
Networks.

2012-07 Rianne van Lambalgen (VU), When the
Going Gets Tough: Exploring Agent-based Models
of Human Performance under Demanding
Conditions.

2012-08 Gerben de Vries (UVA), Kernel Methods for
Vessel Trajectories.

2012-09 Ricardo Neisse (UT), Trust and Privacy
Management Support for Context-Aware Service
Platforms.

2012-10 David Smits (TUE), Towards a Generic
Distributed Adaptive Hypermedia Environment.

2012-11 J.C.B. Rantham Prabhakara (TUE),
Process Mining in the Large: Preprocessing,
Discovery, and Diagnostics.

2012-12 Kees van der Sluijs (TUE), Model Driven
Design and Data Integration in Semantic Web
Information Systems.

2012-13 Suleman Shahid (UvT), Fun and Face:
Exploring non-verbal expressions of emotion during
playful interactions.

2012-14 Evgeny Knutov(TUE), Generic Adaptation
Framework for Unifying Adaptive Web-based
Systems.

2012-15 Natalie van der Wal (VU), Social Agents.
Agent-Based Modelling of Integrated Internal and
Social Dynamics of Cognitive and Affective
Processes.

2012-16 Fiemke Both (VU), Helping people by
understanding them - Ambient Agents supporting
task execution and depression treatment.

2012-17 Amal Elgammal (UvT), Towards a
Comprehensive Framework for Business Process

Compliance.

2012-18 Eltjo Poort (VU), Improving Solution
Architecting Practices.

2012-19 Helen Schonenberg (TUE), What’s Next?
Operational Support for Business Process
Execution.

2012-20 Ali Bahramisharif (RUN), Covert Visual
Spatial Attention, a Robust Paradigm for
Brain-Computer Interfacing.

2012-21 Roberto Cornacchia (TUD), Querying
Sparse Matrices for Information Retrieval.

2012-22 Thijs Vis (UvT), Intelligence, politie en
veiligheidsdienst: verenigbare grootheden?.

2012-23 Christian Muehl (UT), Toward Affective
Brain-Computer Interfaces: Exploring the
Neurophysiology of Affect during Human Media
Interaction.

2012-24 Laurens van der Werff (UT), Evaluation of
Noisy Transcripts for Spoken Document Retrieval.

2012-25 Silja Eckartz (UT), Managing the Business
Case Development in Inter-Organizational IT
Projects: A Methodology and its Application.

2012-26 Emile de Maat (UVA), Making Sense of
Legal Text.

2012-27 Hayrettin Gurkok (UT), Mind the Sheep!
User Experience Evaluation & Brain-Computer
Interface Games.

2012-28 Nancy Pascall (UvT), Engendering
Technology Empowering Women.

2012-29 Almer Tigelaar (UT), Peer-to-Peer
Information Retrieval.

2012-30 Alina Pommeranz (TUD), Designing
Human-Centered Systems for Reflective Decision
Making.

2012-31 Emily Bagarukayo (RUN), A Learning by
Construction Approach for Higher Order Cognitive
Skills Improvement, Building Capacity and
Infrastructure.

2012-32 Wietske Visser (TUD), Qualitative
multi-criteria preference representation and
reasoning.

2012-33 Rory Sie (OUN), Coalitions in Cooperation
Networks (COCOON).

2012-34 Pavol Jancura (RUN), Evolutionary
analysis in PPI networks and applications.

2012-35 Evert Haasdijk (VU), Never Too Old To
Learn – On-line Evolution of Controllers in Swarm-
and Modular Robotics.

2012-36 Denis Ssebugwawo (RUN), Analysis and
Evaluation of Collaborative Modeling Processes.

2012-37 Agnes Nakakawa (RUN), A Collaboration
Process for Enterprise Architecture Creation.

2012-38 Selmar Smit (VU), Parameter Tuning and
Scientific Testing in Evolutionary Algorithms.

2012-39 Hassan Fatemi (UT), Risk-aware design of
value and coordination networks.

180 SIKS Dissertation Series

2012-40 Agus Gunawan (UvT), Information Access
for SMEs in Indonesia.

2012-41 Sebastian Kelle (OU), Game Design
Patterns for Learning.

2012-42 Dominique Verpoorten (OU), Reflection
Amplifiers in self-regulated Learning.

2012-43 , Withdrawn.

2012-44 Anna Tordai (VU), On Combining
Alignment Techniques.

2012-45 Benedikt Kratz (UvT), A Model and
Language for Business-aware Transactions.

2012-46 Simon Carter (UVA), Exploration and
Exploitation of Multilingual Data for Statistical
Machine Translation.

2012-47 Manos Tsagkias (UVA), Mining Social
Media: Tracking Content and Predicting Behavior.

2012-48 Jorn Bakker (TUE), Handling Abrupt
Changes in Evolving Time-series Data.

2012-49 Michael Kaisers (UM), Learning against
Learning - Evolutionary dynamics of reinforcement
learning algorithms in strategic interactions.

2012-50 Steven van Kervel (TUD), Ontologogy
driven Enterprise Information Systems
Engineering.

2012-51 Jeroen de Jong (TUD), Heuristics in
Dynamic Sceduling; a practical framework with a
case study in elevator dispatching.

2013-01 Viorel Milea (EUR), News Analytics for
Financial Decision Support.

2013-02 Erietta Liarou (CWI), MonetDB/DataCell:
Leveraging the Column-store Database Technology
for Efficient and Scalable Stream Processing.

2013-03 Szymon Klarman (VU), Reasoning with
Contexts in Description Logics.

2013-04 Chetan Yadati(TUD), Coordinating
autonomous planning and scheduling.

2013-05 Dulce Pumareja (UT), Groupware
Requirements Evolutions Patterns.

2013-06 Romulo Goncalves(CWI), The Data
Cyclotron: Juggling Data and Queries for a Data
Warehouse Audience.

2013-07 Giel van Lankveld (UvT), Quantifying
Individual Player Differences.

2013-08 Robbert-Jan Merk(VU), Making enemies:
cognitive modeling for opponent agents in fighter
pilot simulators.

2013-09 Fabio Gori (RUN), Metagenomic Data
Analysis: Computational Methods and
Applications.

2013-10 Jeewanie Jayasinghe Arachchige(UvT), A
Unified Modeling Framework for Service Design.

2013-11 Evangelos Pournaras(TUD), Multi-level
Reconfigurable Self-organization in Overlay
Services.

2013-12 Marian Razavian(VU), Knowledge-driven

Migration to Services.

2013-13 Mohammad Safiri(UT), Service Tailoring:
User-centric creation of integrated IT-based
homecare services to support independent living of
elderly.

2013-14 Jafar Tanha (UVA), Ensemble Approaches
to Semi-Supervised Learning Learning.

2013-15 Daniel Hennes (UM), Multiagent Learning -
Dynamic Games and Applications.

2013-16 Eric Kok (UU), Exploring the practical
benefits of argumentation in multi-agent
deliberation.

2013-17 Koen Kok (VU), The PowerMatcher: Smart
Coordination for the Smart Electricity Grid.

2013-18 Jeroen Janssens (UvT), Outlier Selection
and One-Class Classification.

2013-19 Renze Steenhuizen (TUD), Coordinated
Multi-Agent Planning and Scheduling.

2013-20 Katja Hofmann (UvA), Fast and Reliable
Online Learning to Rank for Information Retrieval.

2013-21 Sander Wubben (UvT), Text-to-text
generation by monolingual machine translation.

2013-22 Tom Claassen (RUN), Causal Discovery and
Logic.

2013-23 Patricio de Alencar Silva(UvT), Value
Activity Monitoring.

2013-24 Haitham Bou Ammar (UM), Automated
Transfer in Reinforcement Learning.

2013-25 Agnieszka Anna Latoszek-Berendsen (UM),
Intention-based Decision Support. A new way of
representing and implementing clinical guidelines
in a Decision Support System.

2013-26 Alireza Zarghami (UT), Architectural
Support for Dynamic Homecare Service
Provisioning.

2013-27 Mohammad Huq (UT), Inference-based
Framework Managing Data Provenance.

2013-28 Frans van der Sluis (UT), When Complexity
becomes Interesting: An Inquiry into the
Information eXperience.

2013-29 Iwan de Kok (UT), Listening Heads.

2013-30 Joyce Nakatumba (TUE), Resource-Aware
Business Process Management: Analysis and
Support.

2013-31 Dinh Khoa Nguyen (UvT), Blueprint Model
and Language for Engineering Cloud Applications.

2013-32 Kamakshi Rajagopal (OUN), Networking
For Learning; The role of Networking in a Lifelong
Learner’s Professional Development.

2013-33 Qi Gao (TUD), User Modeling and
Personalization in the Microblogging Sphere.

2013-34 Kien Tjin-Kam-Jet (UT), Distributed Deep
Web Search.

2013-35 Abdallah El Ali (CWI/UvA), Minimal
Mobile Human Computer Interaction.

2013-36 Than Lam Hoang (TUe), Pattern Mining in

SIKS Dissertation Series 181

Data Streams.

2013-37 Dirk Brner (OUN), Ambient Learning
Displays.

2013-38 Eelco den Heijer (VU), Autonomous
Evolutionary Art.

2013-39 Joop de Jong (TUD), A Method for
Enterprise Ontology based Design of Enterprise
Information Systems.

2013-40 Pim Nijssen (UM), Monte-Carlo Tree
Search for Multi-Player Games.

2013-41 Jochem Liem (UVA), Supporting the
Conceptual Modelling of Dynamic Systems: A
Knowledge Engineering Perspective on Qualitative
Reasoning.

2013-42 Lon Planken (TUD), Algorithms for Simple
Temporal Reasoning.

2013-43 Marc Bron (UVA), Exploration and
Contextualization through Interaction and
Concepts.

2014-01 Nicola Barile (UU), Studies in Learning
Monotone Models from Data.

2014-02 Fiona Tuliyano (RUN), Combining System
Dynamics with a Domain Modeling Method.

2014-03 Sergio Raul Duarte Torres (UT),
Information Retrieval for Children: Search
Behavior and Solutions.

2014-04 Hanna Jochmann-Mannak (UT), Websites
for children: search strategies and interface design -
Three studies on children’s search performance and
evaluation.

2014-05 Jurriaan van Reijsen (UU), Knowledge
Perspectives on Advancing Dynamic Capability.

2014-06 Damian Tamburri (VU), Supporting
Networked Software Development.

2014-07 Arya Adriansyah (TUE), Aligning Observed
and Modeled Behavior.

2014-08 Samur Araujo (TUD), Data Integration over
Distributed and Heterogeneous Data Endpoints.

2014-09 Philip Jackson (UvT), Toward Human-Level
Artificial Intelligence: Representation and
Computation of Meaning in Natural Language.

2014-10 Ivan Salvador Razo Zapata (VU), Service
Value Networks.

2014-11 Janneke van der Zwaan (TUD), An
Empathic Virtual Buddy for Social Support.

2014-12 Willem van Willigen (VU), Look Ma, No
Hands: Aspects of Autonomous Vehicle Control.

2014-13 Arlette van Wissen (VU), Agent-Based
Support for Behavior Change: Models and
Applications in Health and Safety Domains.

2014-14 Yangyang Shi (TUD), Language Models
With Meta-information.

2014-15 Natalya Mogles (VU), Agent-Based
Analysis and Support of Human Functioning in
Complex Socio-Technical Systems: Applications in
Safety and Healthcare.

2014-16 Krystyna Milian (VU), Supporting trial
recruitment and design by automatically
interpreting eligibility criteria.

2014-17 Kathrin Dentler (VU), Computing
healthcare quality indicators automatically:
Secondary Use of Patient Data and Semantic
Interoperability.

2014-18 Mattijs Ghijsen (VU), Methods and Models
for the Design and Study of Dynamic Agent
Organizations.

2014-19 Vincius Ramos (TUE), Adaptive
Hypermedia Courses: Qualitative and Quantitative
Evaluation and Tool Support.

2014-20 Mena Habib (UT), Named Entity
Extraction and Disambiguation for Informal Text:
The Missing Link.

2014-21 Kassidy Clark (TUD), Negotiation and
Monitoring in Open Environments.

2014-22 Marieke Peeters (UT), Personalized
Educational Games - Developing agent-supported
scenario-based training.

2014-23 Eleftherios Sidirourgos (UvA/CWI), Space
Efficient Indexes for the Big Data Era.

2014-24 Davide Ceolin (VU), Trusting
Semi-structured Web Data.

2014-25 Martijn Lappenschaar (RUN), New network
models for the analysis of disease interaction.

2014-26 Tim Baarslag (TUD), What to Bid and
When to Stop.

2014-27 Rui Jorge Almeida (EUR), Conditional
Density Models Integrating Fuzzy and
Probabilistic Representations of Uncertainty.

2014-28 Anna Chmielowiec (VU), Decentralized
k-Clique Matching.

2014-29 Jaap Kabbedijk (UU), Variability in
Multi-Tenant Enterprise Software.

2014-30 Peter de Kock Berenschot (UvT),
Anticipating Criminal Behaviour.

2014-31 Leo van Moergestel (UU), Agent
Technology in Agile Multiparallel Manufacturing
and Product Support.

2014-32 Naser Ayat (UVA), On Entity Resolution in
Probabilistic Data.

