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Résumé

Dans le contexte de la simulation numérique des structures avec caractéristiques fines

(micro-fractures, petits défauts ou phénomènes à une échelle fine), le besoin d’appliquer

modèles fins est toujours en antithèse avec les temps de calcul souhaitables pour la pra-

tique de l’ingénieur. Pour réduire ces temps de calcul, les techniques multi-échelles per-

mettent de coupler un modèle fin appliqué seulement où nécessaire à un modèle grossier

appliqué au reste de la structure. Techniques de couplage multi-échelles sont aujourd’hui

disponibles aussi en dynamique transitoire. Dans ce contexte, l’utilisation d’un schéma

d’intégration en temps explicite requiert l’application d’une discrétisation en temps en

function de taille de maillage et modèle de matériau. Le couplage multi-échelles doit

donc être appliqué en espace et en temps.

Parmi les méthodes les plus avancées, la méthode de décomposition de domaines

permet de découpler le domaine du problème en plusieurs sous-domaines et d’appliquer

différents pas de temps sur les différents sous-domaines. En revanche, en présence de

phénomènes évolutifs, typiques de la dynamique transitoire comme dans le cas de délami-

nage pour les composites stratifiés sous impact, une adaptabilité dynamique est nécessaire

et exige une stratégie de re-maillage et une re-définition des sous-domaines. Une telle

stratégie est considérée comme intrusive pour la mise en œuvre dans logiciels commerci-

aux pour lanalyse à éléments finis.

Dans ce travail, les bases d’une approche faiblement intrusive, appelée méthode de

substitution, sont proposées. La méthode s’appuie sur une formulation globale-locale,

conçue de telle manière que une analyse globale grossière est appliquée à la totalité du

domaine et corrigée par une analyse locale fine définie seulement où nécessaire. De cette

manière, la stratégie d’adaptation peut être entraı̂née par l’activation ou la désactivation de

taches locales complètement superposées au domaine global. Le prix de calcul à payer est

que la méthode est “localement” itérative. La vérification de la méthode de substitution est

conduite par rapport à la méthode de décomposition de domaines, en parallel à un étude

de la stabilité du couplage multi-pas de temps. L’amélioration de l’efficacité du processus

itératif est ensuite discutée. L’efficacité et la robustesse de la nouvelle procédure sont

démontrées à travers des exemples de complexité croissante. De cette façon, la possibilité

de prendre en compte des défauts et des lois de comportements non-linéaires avec endom-

magement, ainsi que l’adaptation évolutive de l’échelle locale pour le cas du délaminage

dans les matériaux composites, est également décrite. Enfin, la mise en œuvre de la

méthode au sein du code commercial Abaqus/Explicit est abordée.
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Introduction

In the design and certification process of the aircrafts, it is appropriate to carry out qual-

itative and then quantitative vulnerability analyses. This approach ensures the aircraft

configuration to be optimized in order to reduce vulnerability and thus maximize sur-

vivability. Vulnerability analyses include crash, emergency landing, explosion or impact.

The aircraft structures subjected to these test cases are various and complex and engineers

are used to deal with several challenges of structural dynamics.

The increasing use of composite materials in the vulnerable components of the air-

craft gives rise to additional situations to deal with. Indeed, the same safety levels of

metallic structures must be attained in the composite ones. In particular, composite lami-

nated materials are prone to extensive damage phenomena, such as delamination or matrix

cracking, when submitted to impact loads.

The necessity to perform virtual testing in transient dynamics, e.g. for impact prob-

lems on composites for predicting the extension of damage in the structure, becomes

essential for the engineering workflows. To be reliable, such virtual testing should prefer-

ably employ a fine modeling scheme, the so-called meso-scale model, with solid dis-

cretization of each ply and use of cohesive interfaces. However, the computational cost

associated with such modeling scheme for large structures would be prohibitively high

in engineering practice, as the precise study of damage and failure response requires the

consideration of phenomena encompassing multiple scales both in space and time.

Nowadays, large composite structures are modeled for impact simulations with multi-

layered shell elements, the so-called macro-scale model, which plies’ stiffness is governed

by a damage law. Once almost all the plies are completely damaged, the shell element

is eliminated, in order to reproduce structural cracks or perforations with acceptable ac-

curacy. Such kind of macro-scale model is not capable of simulating the delamination

mechanism and the associated inter-ply damage.

A so-called pseudo-meso-scale model is then employed and calibrated when the test

case experience involves diffused delamination. In such model, described for instance in

Figure 1, some multi-layered shell elements are stacked and some finer cohesive interfaces

are inserted between them. Important parameters of the calibration are the number and

the position of the cohesive interfaces. The number of degrees of freedom in Figure 1 is

so reduced with respect to the detailed meso-scale model, but not so much to be generally

applied to large structures.

Nonetheless, as stated in the model validation in [Heimbs et al., 2014] for high-

velocity impacts on a composite flat panel, a detailed meso-scale model is preferable
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Figure 1: Pseudo-meso-scale model used in simple industrial test cases.

for predicting the delamination with acceptable accuracy and robustness. From the above

mentioned paper, Figure 2 shows the experimental results obtained impacting a stratified

composite with a stacking sequence of 17 plies for a nominal thickness of 2.125 mm with

a glass projectile of diameter φ = 25 mm and mass m = 21 g at different velocities. Mi-

crographs are taken at representative positions directly under the impact point in order to

analyze the number and extension of delamination interfaces (red lines) and matrix cracks

(blue lines). It is shown that the damage configuration is different for each impact velocity

and for different pre-loads: only a detailed meso-scale model with 16 cohesive interfaces

is capable to represent the correct delamination process for all the test cases.

(a) impact velocity: 54 m/s

(b) impact velocity: 70 m/s

(c) impact velocity: 84 m/s

Figure 2: Composite panel impacted by a glass projectile [Heimbs et al., 2014].

The necessity to develop a multi-scale technique bridging the macro- and meso-scales

then represents a new challenge for the virtual testing of laminated composites in transient

dynamics.

The aim of this work is to develop an operational multi-scale coupling methodology,
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in order to use a meso-scale model for simulating the delamination propagation, but lim-

iting its zone of action only where needed, using a macro-scale model in the rest of the

structure. Based on the size of the structure, such strategy should be able to optimize the

use of the detailed model and to decrease the computational costs.

On the other hand, industrial groups tend to perform analogous sets of numerical sim-

ulations with a unique generic Finite Element software package, exploiting the existing

variety of engineering tools. In this scenario, the development of a multi-scale method-

ology has to deal with a new issue: the intrusivity of the insertion of a given method

within an existing commercial software. For this purpose, a global-local iterative solver

was introduced by [Whitcomb, 1991] to couple a coarse and homogeneous global model

applied to the overall structure, with a detailed local model, e.g. with the presence of

defects. Inspired to this approach, a non-intrusive global-local coupling technique is de-

scribed in [Gendre et al., 2009] and [Gendre et al., 2011] for a nonlinear static application:

Abaqus/Standard, utilized as global linear elastic analysis, has been locally coupled with

a research code, used to reproduce localized nonlinear behaviors. Another example of

non-intrusive coupling is described in [Plews et al., 2012], in which a thermal shock com-

putation is coupled with a Finite Element analysis platform. Other applications are de-

voted to fracture problems solved with local patches as in [Kerfriden et al., 2012], [Gupta

et al., 2012] or [Passieux et al., 2013]. At last, a non-intrusive application to shell-to-

solid coupling and to the treatement of defects in the refined solid model is presented in

[Guguin et al., 2014].

The need to couple multiple scales is strongly connected to the need of a methodology

suitable for the engineering workflows, meaning that the solving procedure must be com-

patible with the existing features of the commercial software. Furthermore, the majority

of the technologies enumerated above are applied to static or quasi-static problems. The

extension of such methodologies to transient dynamics is not straightforward, because the

issues and algorithmic strategies are highly different.

Impact analyses and, more generally, transient dynamic problems are usually per-

formed with explicit solution schemes (e.g. Abaqus/Explicit). In this field, today’s

technologies allow the engineers to couple macro- and meso-scale models, e.g. employ-

ing non-uniform meshes and Subcycling techniques as in [Belytschko et al., 1979] and

[Daniel, 2003] or Domain Decomposition-based coupling methods as in [Gravouil and

Combescure, 2001] and following works. These techniques are based on the a priori sub-

division and calibration of the models topology, as for instance in [Chantrait et al., 2014]

for an implicit-explicit macro-meso-scale coupling in low-energy impact applications. In

highly transient dynamics, the a priori subdomains partitioning hinders the automatiza-

tion of the design process, because it forces to a pre-definition of the zones covered by

the meso-scale model, i.e. of all the zones covered by the delamination process during the

analysis.

Let’s consider, for instance, Figure 3: it shows a tire debris impact analysis. An ini-

tially deformed panel is impacted by a tire debris. The composite panel is modeled with

a pseudo-meso-scale model composed of 2 plies and 1 cohesive interface. The boundary

conditions are imposed along the blue and gray extremities of the panel and the delamina-
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tion process is monitored in the gray impacted zone (red color denotes a complete dam-

age, blue color denotes absence of damage). Numerical results show a quick movement

of the delamination process zone (intermediate colors between red and blue), traversing

almost the whole monitored patch. Nevertheless, the delamination process zone is always

localized to a very limited portion of the domain.

(a) composite and tire debris models

(b) 64% of the analysis (c) 70% of the analysis (d) 100% of the analysis

Figure 3: Initially deformed composite panel impacted by a tire debris and delamination

(at the bottom) over the gray zone of the structure (at the top).

Thus, an evolutive delamination process requires the use of re-meshing strategies in

order to adapt the models’ topology to the process zone position and limit the size of

the meso-scale model domain. Nevertheless, a mesh generation during a dynamic anal-

ysis, when possible and stable, could be considered to be an inefficient and intrusive

implementation. A new methodology allowing the model adaptation is so desirable. A

submodeling-like two-way coupling technique seems to be more suitable for the scope,

because it allows one to apply the macro-scale model to the overall structure (as global

analysis) and to overlap the meso-scale model over the zones of interest (as local analy-

sis) via specific pre-defined activation criteria. The dynamic conditions that connect the

spatial scale to the temporal one give rise to additional challenges.

Outline

This work describes the development and implementation of the proposed Finite Ele-

ment weakly-intrusive coupling method for the simulation of impact tests on composite
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structures. Firstly, a bibliographic research is presented, focused on advantages and is-

sues of existing technologies, from the explicit dynamics properties to the recent coupling

methodologies. Some of the most recent coupling technologies have been deeply investi-

gated with the implementation in Matlab prototypes, in order to understand potentialities

and issues and also to collect reference results. Then, a new methodology is introduced

with studies of accuracy, stability and efficiency through Matlab prototypes and verifi-

cations in comparison with the reference coupling methods. Finally, the implementation

of the methodology inside the existing commercial software Abaqus is described and the

related features are discussed.

Besides the present Introduction, the manuscript is organized according to the fol-

lowing scheme:

• Part 1 presents the context and the existing technologies:

– Chapter 1 introduces the advanced methodologies in the field of transient dy-

namics. Starting from a generic initial-boundary value problem formulation,

the main time integration techniques are presented, specifying the explicit time

integration scheme, its properties and related resolution strategy. The main

coupling schemes in the field of explicit dynamics are then enumerated and

formulated, focusing on advantages and disadvantages. The existing capabil-

ities inside the commercial software Abaqus are summarized. Motivations of

the further developments and implementations are discussed.

– Chapter 2 focuses the attention on the evolution of the non-overlapping Do-

main Decomposition method for transient dynamics. Details of the algorithms

are given and related results are preliminarily analyzed and kept as reference

for the following developments. The advantages and disadvantages of the al-

gorithm [Gravouil and Combescure, 2001] put in evidence and compared with

the energy-preserving algorithm proposed in [Prakash and Hjelmstad, 2004]

and reformulated in [Mahjoubi et al., 2009].

• Part 2 presents the development and implementation of the new substitution-based

methodology, built upon the considerations related to the bibliographic study.

– Chapter 3 introduces the formulation of the substitution-based coupling strat-

egy. The methodology is presented and verified in comparison with the energy-

preserving Domain Decomposition algorithm. A convergence study refining

the time steps is illustrated and the stability of the methodology is analyzed ap-

plying the energy method described in [Hughes and Liu, 1978b]. The remarks

given in [Prakash and Hjelmstad, 2004] are analogously applied in order to

obtain an energy-preserving substitution-based coupling method.

– Chapter 4 is devoted to the improvement of the iterative scheme as a result

of time integration properties, in order to meet the efficiency targets required

by the industrial application. The possibility to treat defects and nonlinear

A weakly-intrusive multi-scale Substitution method in explicit dynamics



6 Introduction

damage behaviors is verified and an evolution-adaptive application is also de-

scribed.

At the end, Conclusions and prospects close the manuscript with an overall summary of

the work and a list of potential future developments.
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Chapter 1

Transient dynamics and existing Finite

Element methodologies

This Chapter introduces the Finite Element methodologies in

the field of transient dynamics. An explicit time integration

scheme is considered, exploring its properties and resolution

strategies. The advantages and disadvantages of the

multi-scale coupling schemes are evinced. The existing

coupling techniques inside the commercial software Abaqus

are presented. Motivations of the further developments and

implementations are discussed.
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1 Introduction

In this chapter, starting from the strong form of the initial-boundary value problems for

dynamic analysis, the most common time integration techniques are presented. Among

the Newmark’s time integration schemes, introduced in [Newmark, 1959], the Central

Difference scheme is highlighted as the preferable technique for the industrial goal of the

present work, because leading to characteristics particularly suitable to transient dynam-

ics. Alternative interesting schemes are also underlined, even if not considered in further

developments.

Advanced multi-scale coupling techniques are then described. Such techniques aim

at partitioning the overall domain in different scale models and discretizations, in func-

tion of the different refinement needs. Domain Decomposition methods are introduced

with the explicit dynamic formulation and classified as non-overlapping and overlapping

techniques.

Last, but not least, the existing coupling techniques inside the commercial software

Abaqus are evaluated, in order to recognize eventual missing bricks for the industrial goal

achievement.

2 Initial-boundary value problem

For the sake of simplicity, a generic initial-boundary value problem for dynamic analysis

of structures is considered here, which is a case sufficient to introduce the main concepts

that will be used in the thesis. This is not the case when considering contact or impact

problems, in which formulation has to be adopted according for instance to [Wriggers

and Simo, 1985] for nonlinear contact, to [Wriggers et al., 1990] or [Oancea and Laursen,

1997] for frictional effects, to [Wriggers, 2002] for a wide description of computational

procedures.

The initial-boundary value problem for dynamics of structures, defining the spatial

domain Ω⊂RN , in the strong form reads:

ρü = div(σ)+ fbody in Ω× [tin, tend]

u = u over ∂Ωu× [tin, tend]

σ ·n = fsurf over ∂Ω f × [tin, tend]

{u, u̇}= {u0,v0} in Ω|tin

(1.1)

where ρ is the density of the material, σ is the stress tensor, fbody indicates the body

forces, fsurf is the impact surface load, symbols · and × indicate scalar and vector prod-

ucts, respectively, n is the unit normal to the boundary ∂Ω f , u0 and v0 are the initial

displacement and velocity, respectively. The times tin and tend denote the initial and the

final instants, respectively. The stress tensor σ is related to the strain tensor ε(u) by a

material constitutive law.

The first equation of System (1.1) represents the momentum balance in terms of the

displacements u(x, t), x being the position in the domain Ω and t being the time varying
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in [tin, tend]. The second and the third ones denote essential and natural boundary condi-

tions, respectively. The fourth one denotes initial conditions. The prescribed boundary

displacements are applied to the boundary ∂Ωu and the prescribed tractions are applied to

the boundary ∂Ω f . The union between ∂Ωu and ∂Ω f constitutes the entire boundary of

the problem ∂Ω, so that ∂Ω f ∪∂Ωu ≡ ∂Ω and ∂Ω f ∩∂Ωu ≡ /0.

The problem introduced in System (1.1) is rewritten in the weak formulation as find

u(x, t) such that:∫
Ω
(ρü ·δu+σ(u) : ε(δu)) dΩ =

∫
Ω

fbody ·δu dΩ+
∫

∂Ω f

fsurf ·δu dΓ

∀δu = 0 over ∂Ωu× [tin, tend]

(1.2)

where the symbol : indicates a scalar product between two tensors of order 2.

A displacement-based Finite Element method (see [Hughes, 1987], [Bathe, 1996] or

[Zienkiewicz and Taylor, 2000] for basics) is employed in order to numerically integrate

in space the weak formulation of the problem in Equation (1.2) via the mesh Ωh, so that:

u(x, t) = φ(x) ·U(t) (1.3)

where φ(x) denotes the Finite Elements space discretization and U indicates the displace-

ments parameters varying in time.

The following system of Ordinary Differential Equations written in the matrix notation

is obtained:
MÜ+Fint(U) = Fext in Ωh× [tin, tend]

U = U over ∂Ωu× [tin, tend]

{U, U̇}= {U0,V0} in Ωh|tin
(1.4)

where M is the consistent mass matrix, Fext and Fint are the external and internal force

vectors, respectively, U0 and V0 are the initial nodal displacements and velocities, respec-

tively.

3 Time integration

System (1.4) is then numerically integrated in time with a discretization of the time do-

main [tin, tend]. For the sake of simplicity, a constant time stepping is used, so that [tin, tend]
is partitioned in N time steps ∆t of the same size, with tend− tin = N∆t.

For the given mesh Ωh at a generic time tn ∈ [tin, tend], nodal displacements, velocities

and accelerations are respectively defined as:

nU = U(tn); nV = U̇(tn); nA = Ü(tn). (1.5)

The nodal velocities at the time instant tn+1 are obtained adding the integral of the

second temporal derivative of the nodal displacements over the time interval [tn, tn+1] to

the nodal velocities at the time instant tn, so that:

n+1V = nV+
∫ tn+1

tn
Ü dt. (1.6)
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By analogy, the nodal displacements at the time tn+1 are obtained with the integral of

the first temporal derivative of the nodal displacements over the time interval [tn, tn+1].
This last is then integrated by parts in order to obtain an integral of the second temporal

derivative of the nodal displacements, so that:

n+1U = nU+ nV∆t +
∫ tn+1

tn
(tn+1− t)Ü dt (1.7)

with ∆t = tn+1− tn.

Following Newmark’s integration scheme introduced in [Newmark, 1959] on the basis

of the Taylor’s expansion, the two time integrations of the second derivative of displace-

ments are defined with the use of two parameters γ ∈ [0,1] and β ∈ [0,1/2] as:

∫ tn+1

tn
Ü dt = nA(1− γ)∆t + n+1Aγ∆t +U(iii)

(

1

2
− γ

)

∆t2 +O
(

U(iv)∆t3
)

(1.8)

where superscripts (iii) and (iv) denote the third and fourth derivatives in time, respec-

tively, and:

∫ tn+1

tn
(tn+1− t)Ü dt =nA

(

1

2
−β

)

∆t2 + n+1Aβ∆t2+

+U(iii)

(

1

6
−β

)

∆t3 +O
(

U(iv)∆t4
)

.

(1.9)

Truncating Equation (1.8) to an error O
(

U(iii)∆t2
)

for the approximation of Equa-

tion (1.6), the nodal velocities are so updated with:

n+1V = nV+ nA(1− γ)∆t + n+1Aγ∆t (1.10)

and truncating Equation (1.9) to an error O
(

U(iii)∆t3
)

for the approximation of Equa-

tion (1.7), the nodal displacements are updated with:

n+1U = nU+ nV∆t + nA

(

1

2
−β

)

∆t2 + n+1Aβ∆t2. (1.11)

Note that, choosing γ = 1/2, the third term on the right-hand side of Equation (1.8)

vanishes and the error of the velocities’ approximation remains O
(

U(iv)∆t3
)

.

Remark 1 In this scenario, the Newmark’s integration schemes are based on the approx-

imation of the displacement and velocity fields in function of the unknown accelerations.

Note that the same schemes can be reformulated expressing velocity and acceleration

fields in function of the unknown displacements if β 6= 0 or expressing displacement and

acceleration fields in function of the unknown velocities if γ 6= 0.
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So, integrating System (1.4) in time and using the approximations in Equations (1.10)

and (1.11), one obtains N systems of algebraic equations, so that ∀n ∈ {0, . . . ,N−1}:

M n+1A+Fint(n+1U) = n+1Fext in Ωh|tn+1

n+1U = nU+ nV∆t + nA
(

1
2
−β

)

∆t2 + n+1Aβ∆t2 in Ωh|tn+1

n+1V = nV+ nA(1− γ)∆t + n+1Aγ∆t in Ωh|tn+1

n+1U = U over ∂Ωu|tn+1

{0U,0V}= {U0,V0} in Ωh|tin

(1.12)

Varying the two parameters γ and β, System (1.12) requires different resolution strate-

gies and denotes different properties. If the parameter β = 0, internal forces at the current

time tn+1 are function of quantities computed in the previous time tn only and the scheme

is called explicit. On the contrary, if β > 0, internal forces at the current time tn+1 are

function of the unknown current accelerations n+1A and the scheme is called implicit.

The main resolution schemes are reported in Table 1.1.

scheme type γ β accuracy order

Purely Explicit explicit 0 0 1

Central Difference explicit 1/2 0 2

Fox-Goodwin implicit 1/2 1/12 2

Linear Acceleration implicit 1/2 1/6 2

Average Acceleration implicit 1/2 1/4 2

Table 1.1: Newmark’s time integration schemes.

The parameter γ = 1/2 guarantees a second-order accuracy. In the undamped case,

the stability is unconditioned if 2β≥ γ≥ 1/2 or it is conditioned to:

ωh∆t ≤ 1
√

γ/2−β
(1.13)

for all the eigenfrequencies ωh in the system, if γ≥ 1/2 and β < γ/2.

Remark 2 For efficiency reasons, two types of scheme are mainly used: the explicit

schemes that are conditionally stable, as the Central Difference scheme in Table 1.1, and

the implicit schemes that are unconditionally stable, allowing the use of large time steps,

like the Average Acceleration scheme in Table 1.1. Because of this, the Fox-Goodwin

and Linear Acceleration schemes in Table 1.1, which are both implicit and conditionally

stable, are not usually employed.

Remark 3 The Central Difference scheme is also equivalent to the Verlet Velocity algo-

rithm [Swope et al., 1982], a derivation of the Verlet integration scheme [Verlet, 1967]

developed for molecular dynamics.
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Remark 4 When only the low mode response is of interest, as stated in [Hilber et al.,

1977], it is advantageous for an algorithm to possess numerical dissipation, in order to

damp out the spurious participation of the higher modes. The Newmark family allows

to control the amount of dissipation fixing β =
(

γ+ 1
2

)2
/4 and increasing γ > 1/2. In

this way, the critical time step is increased but the second-order accuracy is lost. Other

families of time integration methods, such as Houbolt’s method [Houbolt, 1950] or Wilson

θ-method [Bathe and Wilson, 1973], possess superior dissipative properties, with the

downside of affecting the accuracy of the solution. The HHT algorithm is so introduced

as an alternative in [Hilber et al., 1977] providing the Newmark’s formulation with a

parameter α exploited to calibrate the numerical dissipation:

M n+1A+Fint(n+αU) = n+1Fext (1.14)

with n+αU = (1+α)n+1U−α nU and α ∈ [−1/3,0].

3.1 Central Difference scheme

Following the Newmark’s notation of the Central Difference scheme with γ = 1/2 and

β = 0, System (1.12) reads ∀n ∈ {0, . . . ,N−1}:

M n+1A = n+1Fext−Fint(n+1U) in Ωh|tn+1

n+1U = nU+ nV∆t + nA∆t2

2
in Ωh|tn+1

n+1V = nV+ nA∆t
2
+ n+1A∆t

2
in Ωh|tn+1

n+1U = U over ∂Ωu|tn+1

{0U,0V}= {U0,V0} in Ωh|tin

(1.15)

where M is the lumped mass matrix, that is preferable to the consistent one M because

it increases the stable time step and because it leads to an efficient resolution of Sys-

tem (1.15), in which the single degrees of freedom are computed solving single inde-

pendent equations. Such system of independent equations can be then solved with high

performance architectures and shared-memory multi-processing loops. As listed in Sec-

tion 7.3.2 of [Hughes, 1987], the lumped mass matrix M can be obtained using:

• the nodal quadrature rules;

• the row-sum technique;

• the Hinton-Rock-Zienkiewicz (HRZ) technique: only the diagonal terms of the con-

sistent mass matrix M are computed and then scaled so as to preserve the total

element mass.

Each one of the mentioned technique presents advantages and disadvantages, as sum-

marized in Table 1.2. Nodal quadrature rules and the row-sum technique applied to high-

order elements determine negative or zero values at certain nodes. On the other hand,
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lumping technique disadvantages examples

nodal quadrature

axis nodes of the

negative or axisymmetric elements

zero values corner nodes

of the Serendipity

row-sum
negative or 8-node quadrilateral

zero values element

HRZ
weak mathematical

/
support

Table 1.2: Mass lumping techniques specified in [Hughes, 1987].

the HRZ technique avoids such values but has not been so far supported by mathematical

proofs.

Nevertheless, the applications to simple elements like linear triangles or bi-linear

quadrilaterals produce similar (if not identical) lumped mass matrices M, without neg-

ative or zero values. The Abaqus/Explicit element library, for instance, offers only linear

shape functions with reduced integration. In the Matlab prototypes of this work, the row-

sum technique is adopted, as well as the choice to use bi-linear quadrilateral elements.

Furthermore, in case of contact and wave-propagation problems, e.g. impact prob-

lems, the Central Difference scheme is generally the preferable direct integration pro-

cedure, also because the current nodal displacements n+1U depend on nodal quantities

computed in the previous time step at tn, the current configuration does not change with

the algebraic computations of the unknown accelerations n+1A and the nonlinearities, as

in contact problems, do not require iterative computations of the solution.

On the other hand, the explicit time integration schemes are conditionally stable. As

stated in Equation (1.13), the time step choice is governed by the eigenfrequencies of the

problem. So, a stable time step ∆tstable for an undamped problem is estimated as:

∆tstable ≤
2

ωmax
(1.16)

where ωmax is the maximum eigenfrequency of the spatial discretization Ωh. It can be

demonstrated that:

ωmax ≤max
el
{ωel} (1.17)

and ωel are the eigenfrequencies of the individual elements “el” of the mesh Ωh.

Only undamped systems are considered in this work. Even if common sense would

suggest one to think differently, viscous damping reduces the stable time step, so that:

∆tstable ≤
2

ωmax

(

√

1+ζ2−ζ

)

(1.18)

where ωmax is again the maximum eigenfrequency of the undamped system and ζ is the

fraction of critical damping in the highest mode.
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Analytical expressions for bounding the maximum eigenfrequency ωmax were given

in [Flanagan and Belytschko, 1985] for the case of reduced-integration quadrilateral and

hexahedral elements with undistorted or distorted shapes.

Furthermore, a physical interpretation of the stability limit was introduced as Courant-

Friedrichs-Lewy (CFL) condition [Courant et al., 1967], which prescribes that the stable

time step ∆tstable must be smaller than the time required by a dilatational stress wave (that

is always bigger than an eventual shear wave) to traverse the smallest element of the given

mesh Ωh:

∆tstable ≤
Lel

c
(1.19)

where Lel is the characteristic length of the element and c is the wave propagation speed.

The characteristic length is differently estimated depending on the element technol-

ogy. Some examples are summarized in table 1.3 from the LS-Dyna theoretical manual

[Hallquist, 1998], where the estimations are defined considering the efficiency of their

calculation.

element technology characterist length Lel

2-node truss and beam length

3-node triangle and 4-node tetrahedron minimum altitude

4-node quadrilateral and 8-node hexaedron Vel/Ael,max
1

Table 1.3: Characteristic length estimations for the main element technologies.

For elastic materials with constant bulk modulus, Young’s modulus E, Poisson’s co-

efficient ν and density ρ, the dilatational wave propagation speeds are summarized in

table 1.4 in relation to the main model assumptions.

model assumption dilatational wave speed c

truss and beam
√

E/ρ

plane stress and shell
√

E/(ρ(1−ν)2)

solid and plane strain
√

(E(1−ν))/(ρ(1+ν)(1−2ν))

Table 1.4: Wave speeds with the main model assumptions.

For the sake of simplicity, in the majority of the analyses of this work, a constant time

step is chosen a priori, verifying at the beginning of the analysis:

∆t ≤ 0.8
Vel

Ael,maxc
(1.20)

because of the choice of quadrilateral bi-linear elements.

1Vel is the volume of the element “el”, Ael,max = maxi{Ai,facet} is the biggest facet area of the element

“el”.
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So, considering a constant time step ∆t, the solution at each time tn+1 is computed in

four sequential steps:

1. update of displacements: n+1U = nU+ nV∆t + nA∆t2

2

2. update of mid-step velocities: n+ 1
2 V = nV+ nA∆t

2

3. accelerations resolution: M n+1A = n+1Fext− n+1Fint

4. update of velocities: n+1V = n+ 1
2 V+ n+1A∆t

2

(1.21)

where the internal forces n+1Fint are computed in function of displacements n+1U and the

eventual viscous forces could be computed in function of mid-step velocities n+ 1
2 V.

Remark 5 Note that the extension of the 4-step solution sequence (1.21) to an adaptive

time step scheme as in [Hibbitt and Karlsson, 1979] is straightforward: the time step

should be chosen before the step 1 and ∆tn remains fixed in the sequence. Nonetheless,

the velocities n+1V in step 4 are computed only for output purposes and the explicit com-

mercial codes are used to reduce the 4-step solution sequence (1.21) to a 3-step solution

sequence, replacing the step 4 velocity definition in the first 2 steps of the following se-

quence. In this case, the use of an adaptive time step scheme involves two time step

quantities ∆tave and ∆tn as follows:

1. update of displacements: n+1U = nU+ n− 1
2 V∆tn + nA∆tn∆tave

2. update of mid-step velocities: n+ 1
2 V = n− 1

2 V+ nA∆tave

3. accelerations resolution: M n+1A = n+1Fext− n+1Fint

(1.22)

where ∆tave = (∆tn−1 +∆tn)/2 as defined in the time line in Figure 1.1.

Figure 1.1: Definition of times tn− 1
2 , tn, tn+ 1

2 , tn+1 and time steps ∆tn, ∆tn+1, ∆tave.

3.2 Alternative schemes

The parameters choice of the Central Difference scheme does not introduce any numerical

dissipation. Spurious oscillations can so be detected for highly transient dynamic cases, as

wave propagation problems. The introduction of a non-diagonal damping matrix should
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be then necessary to attenuate or avoid such spurious oscillations, requiring a matrix fac-

torization to solve the system. Other explicit time integration schemes have been formu-

lated for introducing numerical dissipation. For instance, the extension of the same HHT

algorithm (briefly described in Remark 4) has been formulated and studied in [Chung and

Lee, 1994] and [Hulbert and Chung, 1996]. The so-called Tchamwa-Wielgosz scheme

represents another interesting approach, introduced in [Tchamwa et al., 1999] as purely

explicit scheme (with γ = 0) and so only first-order accurate. Comparative studies in [Rio

et al., 2005] have then shown that remaining dissipative explicit schemes are second-order

accurate but often provide less accurate solutions than the Tchamwa-Wielgosz scheme.

So, the research of accurate time integration schemes for wave propagation analysis is

still ongoing. In what follows, two potential strategies are presented.

3.2.1 Two-steps explicit time integration

A two-steps explicit time integration scheme is formulated and shown to be stable and

accurate in [Noh and Bathe, 2013]. Such integration scheme is based on the splitting of

the time step in two sub-steps in order to keep a non-diagonal damping matrix always

on the right-hand side of the solving systems. Five parameters are then introduced to

optimize the stability and accuracy of calculation.

Introducing the non-diagonal viscous damping matrix C and the first parameter p ∈
(0,1) as marker of the position within the time step, the solution in terms of accelerations,

velocities and displacements in the first sub-step reads:

1. update of mid-step displacements: n+pU = nU+ nVp∆t + nAp2 ∆t2

2

2. update of mid-step velocities:
n+p

Ṽ =
(

nV+ nAp∆t
2

)

(1− s)+ nVs

3. accelerations resolution: M n+pA = n+pFext−Fint(n+pU)−C
n+p

Ṽ

4. update of mid-step velocities: n+pV = nV+
(

nA+ n+pA
)

p∆t
2

(1.23)

where s is a second parameter, necessary only in the damped case.

The second sub-step of the scheme then reads:

1. update of displacements: n+1U = n+pU+ n+pV(1− p)∆t + n+pA(1− p)2 ∆t2

2

2. update of velocities:
n+1

Ṽ =
(

n+pV+ n+pA(1− p)∆t
2

)

(1− s)+ n+pVs

3. accelerations resolution: M n+1A = n+1Fext−Fint(n+1U)−C
n+1

Ṽ

4. update of velocities: n+1V = n+pV+ n+pA(1− p)∆t
2
+

+
(

nAq0 +
n+pAq1 +

n+1Aq2

)

(1− p)∆t

(1.24)

where q0, q1 and q2 are additional parameters.

Note that the damping matrix C is always in the right-hand side of the accelerations

resolution.

A weakly-intrusive multi-scale Substitution method in explicit dynamics



Time integration 19

The five parameters are calibrated to obtain a second-order accuracy, so that:

q0 +q1 +q2 =
1

2
, q2 =

1

2
− pq1, s =−1 (1.25)

and to obtain stability, so that:

q1 =
1−2p

2p(1− p)
, 0.5≤ p≤ 2−

√
2. (1.26)

In conclusion, the parameter p is recommended in [Noh and Bathe, 2013] to a value

of 0.54 with further accuracy studies. Indeed, with such parameter value, in the low

frequency response, the period elongation is about 1% and the amplitude decay is about

2.5% when the time step is 20% of the natural period or smaller. Furthermore, for a 2-

dimensional wave propagation problem, the dispersion error is shown to be less than 2%

and the higher frequencies are cut out of the solution.

So, such integration time scheme allows to use a viscous damping matrix C without

affecting the accuracy and the resolution strategies of explicit time schemes via the in-

version of a lumped mass matrix M. On the other hand, 8 operation steps (reducible to

6) are required for the resolution of a single time step, against the 3 operation steps in

Equation (1.22).

3.2.2 Multi-field space-time integration

In contrast to explicit time integration schemes that aim at minimizing the computa-

tional effort for the systems resolution, a multi-fields space-time monolithic discretization

was proposed in [Hulbert and Hughes, 1990], exploiting a Time-Discontinuous Galerkin

method (TDG) in order to consider jumps in the velocity field, as in wave-propagation

problems.

The formulation is based on the integration of the weak formulation of the initial-

boundary value problem in System (1.1) both in space and time as:
∫ tend

tin

∫
Ω
(ρü ·δu̇+σ(u) : ε(δu̇)) dΩdt =

∫ tend

tin

∫
Ω

fbody ·δu̇ dΩdt+

+
∫ tend

tin

∫
∂Ω f

fsurf ·δu̇ dΓdt ∀δu = 0 over ∂Ωu× [tin, tend]
(1.27)

and the displacement solution is monolithically discretized in space and time, so that:

u(x, t) = (φ(x)×ψ(t)) : U (1.28)

where ψ(t) denotes a piecewise-continuous time discretization and U contains the whole

solution in terms of displacements in the overall space-time domain Ω× [tin, tend], such

that U = [0U, . . . ,NU], in which N is the total number of time steps according to the

chosen time discretization. In this way, considering homogeneous boundary conditions

and null initial values, the weak formulation in Equation (1.27) directly returns:
(

K×
(

Q10 +B00
)

+M×
(

Q12 +B11
))

: U=
(

I×Q10
)

: F (1.29)
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where K and M are the stiffness and consistent mass matrices, respectively, I is the iden-

tity matrix, F denotes the external forces history, Qi j denotes the integration of the time

model over the continuous part and Bi j denotes the discontinuous time model, i and j

being in both cases the time derivative orders, such that:

Q10 =
∫ tend

tin

ψ̇×ψ dt, Q12 =
∫ tend

tin

ψ̇× ψ̈ dt,

B00 =ψ(0)×ψ(0)+
N

∑
n=1

(

ψ(tn
+)×ψ(tn

+)−ψ(tn+1
− )×ψ(tn+1

− )
)

,

B11 = ψ̇(0)× ψ̇(0)+
N

∑
n=1

(

ψ̇(tn
+)× ψ̇(tn

+)− ψ̇(tn+1
− )× ψ̇(tn+1

− )
)

.

(1.30)

The extension of such displacement-based formulation in Equation (1.28) to a two-

fields formulation can be advantageous: both displacements and velocities become un-

knowns and different time discretizations ψu(t) and ψv(t) can be considered (e.g. contin-

uous for displacements and piecewise-continuous for velocities). The continuity between

velocities and displacement first derivative is then weakly imposed. So, discretizing with:

u(x, t) = (φ(x)×ψu(t)) : U

v(x, t) = (φ(x)×ψv(t)) : V
(1.31)

the final system becomes:
[

K×
(

Q01
uu +B00

uu

)

−K×Q00
uv

K×Q00
vu M×

(

Q01
vv +B00

vv

)

]

:

[

U

V

]

=

[

0
(

I×Q00
vv

)

: F

]

. (1.32)

The size of the coefficient matrix in Equation (1.32) is significant, multiplying the

number of displacement and velocity degrees of freedom by the number of time steps

in the time discretization. So, advanced reduced order modeling technologies have been

employed in [Boucinha et al., 2013] and [Boucinha et al., 2014] in order to resolve the

expensive monolithic systems with acceptable computational costs. Accuracy gains are

evidenced in both the papers. Figures 1.2, taken from [Boucinha et al., 2013], show the

results of a 2-dimensional example comparing the exact reference solution with:

• displacement-based elements and average accelerations Newmark’ scheme;

• displacement-based elements and quadratic TDG;

• multi-field-based elements and linear time shape functions (TG);

• multi-field-based elements and linear TDG.

Figures 1.2 so highlight a better accuracy of the multi-field TDG approach, where

most of the spurious oscillations are removed.

The extension to nonlinear problems remains however an important research topic for

the robust utilization in industrial cases.
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(a) displacements

(b) velocities

Figure 1.2: Results comparison for a 2-dimensional wave propagation problem taken

from [Boucinha et al., 2013].

3.3 Energy-Momentum integration scheme for large rotations

The initial-boundary value problem has been so far considered assuming the linear elas-

tic formulation presented in Equations (1.1) involving only translational displacements

u(x, t). Out of a more accurate formulation, as stated in [Simo and Tarnow, 1992], tem-

poral and spatial Finite Element discretizations of the continuum dynamics need not, and

in general will not, inherit the conservation of momentum properties and the a-priori es-

timate. For instance, the conservation form of the mid-point rule is an exact momentum

conserving algorithm which does not conserve energy for autonomous Hamiltonian sys-

tems, except for the linear regime.

In [Simo and Tarnow, 1992], a so-called Energy-Momentum (EM) integration scheme

was introduced for geometrical non-linearities of quadratic nature, aiming at preserving

specific features of the continuous system such as conservation of momentum, angular

momentum and energy when the system and the applied forces allow to. The extensions

to nonlinear dynamics of shells and rods were later proposed in [Simo and Tarnow, 1994]

and [Simo et al., 1995], where displacement-based discretizations are used, and in [San-

sour et al., 2002], where a multi-field discretization is treated involving enhanced-strain

Finite Elements (see the theoretical basis of the Enhanced Assumed Strain method for

linear elastic problems in Appendix B).

Defining the kinetic energy Tshell of the shell space as in [Sansour et al., 2002], one

gets:

Tshell =
∫

Γshell

(

ρhu̇ · u̇+
1

12
ρh3ẇ · ẇ

)

dΓ (1.33)

where Γshell is the shell surface, h is the shell thickness, u denotes the displacement field,

computed as difference between current and reference middle surface positions, and w

indicates the difference vector, defined as the difference between current and reference

forward-rotated directors.
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The formulation of the internal energy, considering an elastic material behavior, can

be shortly written as:

Vshell =
∫

Γshell

(

V 1(E0(u,w))+V 2(K(u,w))
)

dΓ (1.34)

where E0 and K are the main strain measures of the shell defined in [Sansour et al., 2002].

As shown in [Simo and Tarnow, 1992], defining the kinematical fields at the nth time

step as:
n+ξu = nu (1−ξ)+ n+1u ξ, n+ξw = nw (1−ξ)+ n+1w ξ, (1.35)

the associated time derivatives as:

n+ξu̇ =
n+1u− nu

∆t
, n+ξẇ =

n+1w− nw

∆t
,

n+ξü =
n+1u̇− nu̇

∆t
, n+ξẅ =

n+1ẇ− nẇ

∆t

(1.36)

and the strain measures as:

n+ξE0 = nE0 (1−ξ)+ n+1E0 ξ, n+ξK = nK (1−ξ)+ n+1K ξ, (1.37)

taking ξ = 1/2, the following equation holds:

nTshell +
n
Vshell +

nF ext = n+1Tshell +
n+1

Vshell +
n+1F ext (1.38)

which means that the conservation of energy is assured and where F ext indicates the

energy associated to a conservative loading.

Further developments presented in [Sansour et al., 2002], show that adding the incom-

patible enhanced strains Ẽ to the strain measure E0 so that:

Vshell =
∫

Γshell

(

V 1(E0(u,w)+ Ẽ)+V 2(K(u,w))
)

dΓ (1.39)

and discretizing:
n+ξ

Ẽ =
n
Ẽ (1−ξ)+

n+1
Ẽ ξ (1.40)

keeping ξ = 1/2, the energy is still conserved.

The extension to general constitutive models was proposed in [Laursen and Meng,

2001], whereas rotational formulations for hyper-elastic models were proposed for rods

and shells in [Pimenta et al., 2008] and [Campello et al., 2011], respectively.

4 Multi-scale coupling strategies in space and time

The need to couple different models and discretizations arises when treating large struc-

tures with localized phenomena, e.g. small details, micro-cracks, defects, highly localized
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loading conditions, structured material and so on. In this case, a refined and specialized

model should be focused on a restricted zone of the overall domain. In the rest of the

domain, not involved in particular phenomena, such as in the case of regular geometry,

smoothly distributed loading and homogeneous material, the model should be as coarse

as possible, in order to save computing time.

Hereafter, the problem in Figure 1.3 will be referred to as the reference problem. It

consists of a sample structure in a domain Ω composed of two parts. The part on the left,

characterized by fine features, requires a fine resolution both in space and time. The part

on the right requires only a coarse resolution both in space and time.

Figure 1.3: Localized cracks and holes in a sample structure.

4.1 Partitioning in time for a given non-uniform mesh

A potential methodology to solve the problem in Figure 1.3 consists in discretizing the

domain with a non-uniform mesh Ωh, for instance pulling together two different uniform

meshes Ωh
1 and Ωh

2, so that Ωh
1 ∪Ωh

2 ≡ Ωh and treating the embedded meshes over the

interface Γh ≡ Ωh
1∩Ωh

2 using a tie constraint. Two different time integration schemes or

time steps are then applied in the two partitions Ωh
1 and Ωh

2 according to the two different

mesh sizes.

For instance, Figure 1.4 shows the partitioning of the overall domain in a fine mesh Ωh
1

composed of 20 quadrilateral elements and a coarse mesh Ωh
2 composed of just 1 quadri-

lateral element. The common nodes between the two regions constitute the interface Γh.

In literature, several works have been devoted to algorithms for coupling implicit

and explicit time integration schemes using the same time scale everywhere. These ap-

proaches are usually referred to as Mixed-Methods in time. On the other hand, several

other works have been exploring the possibility of associating different time scales, de-

veloping a multi-scale approach in time, usually called Subcycling technique.

4.1.1 Mixed-Methods (implicit-explicit couplings)

The possibility to couple explicit and implicit Newmark’s integration schemes with same

time step was proposed in [Hughes and Liu, 1978a] based on an element partition of the
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Figure 1.4: Non-uniform mesh as combination of two uniform meshes.

domain and using the same time step for all the parts, so that a linear elastic problem

could be solved by:

(

M+KIβI∆t2
)

n+1A = n+1Fext+

−KI

(

nU+ nV∆t + nA

(

1

2
−βI

)

∆t2

)

−KE

(

nU+ nV∆t + nA
∆t2

2

)

(1.41)

where the subscripts I and E refer to the implicit and explicit partitions, respectively.

A nodal partitioning of the mesh was then proposed in [Belytschko and Mullen, 1978],

having the system of degrees of freedoms subdivided into explicit and implicit blocks,

with:

M =

[

ME 0

0 MI

]

, K=

[

KE|E KE|I
KI|E KI|I

]

, (1.42)

solving at first the explicit partition:

n+1UE = 2 nUE − n−1UE +M−1
E

(

n+1Fext
E −KE|E

nUE −KE|I
nUI

)

∆t2 (1.43)

and then the implicit one:

(

MI +KI|IβI∆t2
)

n+1AI =
n+1Fext

I −KI|E
n+1UE+

−KI|I
(

nUI +
nVI∆t + nAI (1/2−βI)∆t2

)

.
(1.44)

4.1.2 Subcycling technique

In the Subcycling technique formulated in [Belytschko et al., 1979] for different time

steps, also different coupling schemes were proposed: implicit-implicit, implicit-explicit

and, finally, explicit-explicit couplings. The crucial issue was the time interpolation over

the interface Γh between the partitions. The initial methods used a linear interpolation.

These were shown to be stable for first order systems in [Belytschko et al., 1985]. Further

studies were devoted to nodal partitioning stability in [Smolinski et al., 1988] or to error

estimation in [Zienkiewicz and Xie, 1991].

The extension to second order systems was then proposed in [Daniel, 1997], with

an explicit Subcycling algorithm considering an integer ratio between the time steps and
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proving that the linear interpolation leads to narrow bands of instability. These can be

eliminated either by the addition of artificial viscosity, or by other Subcycling methods,

which are more complex. Stable Subcycling methods for explicit-explicit couplings in

second order systems were also introduced in [Smolinski et al., 1996] and [Daniel, 2003].

In particular, the algorithm in [Daniel, 2003] was based on a so-called partial velocity

algorithm. Considering the domain partition in Figure 1.4 and two different pre-fixed

time steps ∆t1 and ∆t2 in Ωh
1 and Ωh

2, respectively, so that ∆t2 = M∆t1, such algorithm

computed at first the solution at the nth coarse time step with:

M nA2,in =
nFext

2,in−K2,in|2
nU2 in Ωh

2,in

M nA2,Γ = nFext
2,Γ−K2,Γ|2

nU2 +
nFΓ over Γh

n+ 1
2 V2 =

n− 1
2 V2 +

n+1A2∆t2 in Ωh
2

(1.45)

where the subscript “in” denotes the nodes in the partition Ωh
2,in ≡ Ωh

2 \Γh, the subscript

“Γ” indicates the nodes over the interface Γh, nFΓ denotes the forces acting across the

interface Γh and contains zero values at the the nodes in the rest of the domain Ωh
2,in ≡

Ωh
2\Γh, the lumped matrix M is assembled considering the overall domain Ωh≡Ωh

1∪Ωh
2,

the stiffness matrix K is assembled considering the two partitions as completely separated

and velocities are updated as in the 3-step algorithm of Equation (1.22). The solution in

the finer partition Ωh
1 is then computed in the finer time stepping, so that ∀m∈ {1, . . . ,M}:

M mA1,in =
mFext

1,in−K1,in|1
mU1 in Ωh

1,in

M mA1,Γ = mFext
1,Γ−K1,Γ|1

mU1− nFΓ over Γh

m+ 1
2 V1 =

m− 1
2 V1 +

mA1∆t1 in Ωh
1

(1.46)

assuming that the forces across the interface Γh are constant in the finer time stepping.

The displacements at nodes not belonging to the interface Γh are then updated with the

Central Difference scheme in the the normal manner, whereas over the interface Γh:

m+1UΓ = m+1UΓ +
(

m+ 1
2 V1,Γ +

n+ 1
2 V2,Γ

)

∆t1 (1.47)

where the partial velocities are computed with partial accelerations ignoring the interface

forces nFΓ.

Despite the easy extension to adaptive time steps and rotational degrees of freedom

and advantages for a wide range of problems, the Subcycling technique reveals issues of

robustness in contact problems and of efficiency with constraints as ties or fasteners.

4.2 Domain Decomposition method

The Domain Decomposition method provides a way for partitioning a given domain Ω⊂
RN in many subdomains Ωi ⊂ RN solved independently and connected together via

interfacial conditions. In this description, the given domain in Figure 1.3 is divided into

two subdomains Ω1 and Ω2, such that Ω1∪Ω2 ≡Ω.

The Domain Decomposition methods are divided in two classes:
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• the overlapping Domain Decomposition methods, in which the subdomains are par-

tially or completely overlapped so that Ω1∩Ω2 ≡Ω12 ⊂RN ;

• the non-overlapping Domain Decomposition methods, in which the subdomains

are overlapped only across an interface Γ of a lower dimension with respect to the

subdomains, so that Ω1∩Ω2 = Γ⊂RN −1.

The non-overlapping Domain Decomposition methods (see [Gosselet and Rey, 2006]

for an extended overview) are suitable for mechanical interpretations. Basically, the no-

tion of interface Γ can be linked to a set of conservation principles and phenomenological

laws: e.g. the conservation of fluxes imposes the mechanical equilibrium over an inter-

face, or again the contact laws enable the disjunction of subdomains but prohibit interpen-

etration between them, whereas a perfect interface supposes that the displacement field

(or pressure or temperature) is continuous.

In this context, two main methods arose in parallel: the Balancing Domain Decompo-

sition (BDD) [LeTallec et al., 1991] and [Mandel, 1993] and the Finite Element Tearing

and Interconnecting (FETI) [Farhat and Roux, 1991]. The BDD is usually referred to

as primal approach and consists in choosing the interface displacement field as main un-

known and solving iteratively equilibrium and force conditions. On the contrary, the FETI

is a dual approach and consists in privileging the interface force conditions and satisfying

the equilibrium and the displacement interface continuity with an iterative process.

Primal and dual approaches were efficiently extended to highly heterogeneous sys-

tems of equations via cheap substructure-based preconditioners in [Rixen and Farhat,

1999] and [Rixen, 2002] and applying more accurate initial estimations of interface forces

in [Gosselet et al., 2003]. Multi-scale non-overlapping Domain Decomposition methods

were proposed in [Zohdi and Wriggers, 1999] and [Zohdi et al., 2001] for treating ar-

bitrary geometries, loadings and heterogeneous micro-structures, as a way of material

volume-based sub-structuring.

A linear combination of the interface displacement and force fields, so-called mixed

approach, is sometimes preferred to both the methods BDD and FETI. An artificial stiff-

ness parameter is introduced over the interface, so that a null stiffness is equivalent to a

dual approach and an infinite stiffness produces a primal approach. A mono-scale Do-

main Decomposition method was proposed in [Ladevz̀ee, 1985], in which all unknowns

over the interfaces are introduced. The multi-scale version was then presented for static

problems in [Dureisseix and Ladevèze, 1998] and [Ladevèze et al., 2001] and extended to

multiple scales in time in [Ladevèze and Nouy, 2003]. Further recent applications are pro-

posed in [Cresta et al., 2007] and [Hinojosa et al., 2014] for buckling and post-buckling

analyses, respectively, in [Guidault et al., 2007] for fracture problems, in [Kerfriden et al.,

2009] and [Saavedra et al., 2012] for debonding and delamination in laminates, respec-

tively. Mixed approaches also enable to provide a more natural framework to handle

complex interfaces, such as contact and friction, than classical approaches, as proposed

in [Champaney et al., 1997]. An extension to contact dynamics has been more recently

presented in [Odièvre et al., 2010].
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4.2.1 FETI in explicit dynamics

In the FETI approach, extended to transient dynamics in [Farhat et al., 1994], the conti-

nuity and the equilibrium between subdomains is enforced through the use of Lagrange

multipliers λ.

The weak formulation of Problem (1.1), splitting the domain Ω into two subdomains

Ω1 and Ω2, reads in the subdomain Ω1:

∫
Ω1

(ρü1 ·δu1 +σ(u1) : ε(δu1)) dΩ+
∫

Γ
λ ·δ(w1−w2) dΓ =

=
∫

Ω1

fbody ·δu1 dΩ+
∫

∂Ω f

fsurf ·δu1 dΓ ∀δu1 = 0 over ∂Ωu× [tin, tend]
(1.48)

in the subdomain Ω2:

∫
Ω2

(ρü2 ·δu2 +σ(u2) : ε(δu2)) dΩ+
∫

Γ
λ ·δ(w1−w2) dΓ =

=
∫

Ω2

fbody ·δu2 dΩ+
∫

∂Ω f

fsurf ·δu2 dΓ ∀δu2 = 0 over ∂Ωu× [tin, tend]
(1.49)

and over the interface Γ:
∫

Γ
δλ · (w1−w2) dΓ = 0 ∀δλ (1.50)

where w is the kinematic quantity (displacement, velocity or acceleration) to be con-

strained over the interface Γ.

Applying the displacement-based Finite Element spatial discretization with conform-

ing meshes over the interface, so that Γh ≡ Γh
1 ≡ Γh

2, and applying the Central Difference

scheme with same time steps for both the subdomains, Equations (1.48), (1.49) and (1.50)

become ∀n ∈ {0, . . . ,N−1}:

M1
n+1A1 +CT

1
n+1

Λ= n+1Fext
1 − n+1Fint

1 in Ωh
1|tn+1

M2
n+1A2−CT

2
n+1

Λ= n+1Fext
2 − n+1Fint

2 in Ωh
2|tn+1

C1
n+1W1 = C2

n+1W2 over Γh|tn+1

(1.51)

where matrices Ci are Boolean unitary matrices that extract nodal values from the subdo-

mains to the interfaces:

Ci,(dimΓh
i×dimΩh

i )
: Ωh

i 7→ Γh
i i = 1,2 (1.52)

and vectors Wi denote the kinematic quantities to be constrained over the interface Γh.

The notation:
n+1Wi,Γ , Ci

n+1Wi i = 1,2 (1.53)

will be employed in what follows.
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Figure 1.5: Domain Decomposition into two subdomains with conforming meshes.

As stated in [Combescure and Gravouil, 2001] and [Combescure and Gravouil, 2002],

these kinematic quantities are restricted to accelerations Ai or velocities Vi for using ex-

plicit time integration schemes in the couplings.

Figure 1.5 shows an example of spatial discretization with conforming meshes, with

the employment of additional triangle elements to divide the coarse subdomain Ωh
2.

Nevertheless, constraining the subdomains meshes to be conforming across the in-

terface Γh is not desirable. It is possible to adapt the method to be able to apply ar-

bitrary meshes in the subdomains as in in Figure 1.6 via the spatial interpolation of

the Lagrange multipliers over the discretized interfaces. So, System (1.54) becomes

∀n ∈ {0, . . . ,N−1}:

M1
n+1A1 +CT

1
n+1

Λ= n+1Fext
1 − n+1Fint

1 in Ωh
1|tn+1

M2
n+1A2−CT

2 Π1T
h

n+1
Λ= n+1Fext

2 − n+1Fint
2 in Ωh

2|tn+1

n+1W1,Γ = Π1
h

n+1W2,Γ over Γh
1|tn+1

(1.54)

where Π1
h and Π1T

h are the space down-scaling and up-scaling operators, respectively:

Π1
h,(dimΓh

1×dimΓh
2)

: Γh
2 7→ Γh

1,

Π1T
h,(dimΓh

2×dimΓh
1)

: Γh
1 7→ Γh

2.
(1.55)

4.2.2 FETI and Subcycling coupling

Coupling embedded interface meshes as in Figure 1.6 with explicit time integration schemes

naturally leads to coupling multiple time steps. Two different time discretizations impose

the problem to choose which quantities should be interpolated and in which way.

Here, the first subdomain Ωh
1 has a fine uniform mesh and a fine time step ∆t1 =

tm+1− tm, whereas the second one Ωh
2 has a coarse uniform mesh and a coarse time step

∆t2 = tn+1− tn. The ratio between the two time steps is equivalent to the ratio between

the two mesh sizes, so that ∆t2 = M∆t1 and tend− tin = N∆t2. Figure 1.7 shows the time

discretization applied to the two subdomains. The difference between the time steps is
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Figure 1.6: Domain Decomposition into two subdomains with embedded interface

meshes.

usually treated with a linear temporal interpolation operator Π1
t

(

n�,n+1�
)

of quantity

�, so that:
m�= n�

(

1− m

M

)

+ n+1�

(m

M

)

∀m ∈ {0, . . . ,M}. (1.56)

Figure 1.7: Time discretization for the two subdomains with different mesh sizes.

4.2.3 Multi-time-step FETI approach

An algorithm for the resolution of System (1.54) in the case of multiple time steps was

introduced in [Gravouil and Combescure, 2001]. Here, the velocities Vi are selected

as kinematic quantities Wi to be constrained over the interface Γh
1, in order to obtain the

stability properties stated in [Gravouil and Combescure, 2001]. System (1.54) so becomes

∀n ∈ {0, . . . ,N−1}:

M1
m+1A1 +CT

1
m+1

Λ= m+1Fext
1 −m+1Fint

1 in Ωh
1|tm+1 ∀m ∈ {0, . . . ,M−1}

M2
n+1A2−CT

2 Π1T
h

n+1
Λ= n+1Fext

2 − n+1Fint
2 in Ωh

2|tn+1

m+1V1,Γ = Π1
hΠ1

t

(

nV2,Γ,
n+1V2,Γ

)

over Γh
1|tm+1 ∀m ∈ {0, . . . ,M−1}.

(1.57)

The basic idea of the algorithm is to split the kinematical solution of each subdomain

into two terms, respectively denoted as free (or unconstrained) and link (or constrained)

problems. The first one refers to the free motion of each subdomain under the effect of the

external loads and boundary conditions. The second one evaluates the correction to the

first solution, computing the interface forces to be applied for “re-gluing” the subdomains.
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Note that for explicit-explicit couplings, because of the mass lumping, the second solution

concerns only the degrees of freedom of the interface nodes over the interface Γh.

The free problem reads ∀n ∈ {0, . . . ,N−1}:
M1

m+1Afree
1 = m+1Fext

1 −m+1Fint
1 in Ωh

1|tm+1 ∀m ∈ {0, . . . ,M−1}
M2

n+1Afree
2 = n+1Fext

2 − n+1Fint
2 in Ωh

2|tn+1

(1.58)

while the link one ∀n ∈ {0, . . . ,N−1}:
M1,Γ

m+1Alink
1,Γ =−m+1

Λ over Γh
1|tm+1 ∀m ∈ {0, . . . ,M−1}

M2,Γ
n+1Alink

2,Γ = Π1T
h

n+1
Λ over Γh

2|tn+1

(1.59)

and the interface constraint is developed splitting the velocities in free and link terms. The

third equation of System (1.57) becomes ∀n ∈ {0, . . . ,(N−1)}:
m+1Vfree

1,Γ +m+1Vlink
1,Γ = Π1

h
nVfree

2,Γ

(

1− m

M

)

+Π1
h

n+1Vfree
2,Γ

(m

M

)

+

+Π1
h

nVlink
2,Γ

(

1− m

M

)

+Π1
h

n+1Vlink
2,Γ

(m

M

)

over Γh
1|tm+1∀m ∈ {0, . . . ,M−1}

(1.60)

assuming that:

mVfree
2 = nVfree

2

(

1− m

M

)

+ n+1Vfree
2

(m

M

)

mVlink
2,Γ = nVlink

2,Γ

(

1− m

M

)

+ n+1Vlink
2,Γ

(m

M

) (1.61)

and:

m+1Vfree
i = mVi +

mAi
∆ti

2
+m+1Afree

i

∆ti

2
i = 1,2,

m+1Vlink
i,Γ = m+1Alink

i,Γ
∆ti

2
i = 1,2.

(1.62)

In this way, five sets of unknowns must be computed for each coarse time step, as

summarized in Algorithm 1.

while n≤ N do

1. free coarse solution: second of Equations (1.58);

while m≤M do

2. free fine solution: first of Equations (1.58);

3. interface constraint: Equation (1.60);

4. link fine solution: first of Equations (1.59);

update m← m+1;

end

5. link coarse solution: second of Equations (1.59);

update n← n+1;

end
Algorithm 1: GC algorithm scheme.
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The acceleration solution is then obtained as sum between free and link solutions:

m+1Ai =
m+1Afree

i +m+1Alink
i i = 1,2. (1.63)

More details about the GC algorithm will be given in Chapter 2.

4.2.4 Application of the energy method to the multi-time-step coupling

As pointed out in [Gravouil and Combescure, 2001] and [Mahjoubi et al., 2009], the GC

algorithm imposing the continuity of velocities over the interfaces is a stable algorithm,

because it leads to energy unbalances always dissipative. An algebraic study is con-

ducted in [Gravouil and Combescure, 2001] with the use of the energy method introduced

in [Hughes and Liu, 1978b] for explicit-implicit couplings.

Considering external forces constant in time and defining:

• the variation operators [�] = n+1�− n� and J�K = ∑M−1
m=0

(

m+1�−m�
)

for the

coarse and the fine time stepping, respectively,

• the term related to the kinetic energy as nT = 1
2

nAT
(

M−K∆t2/4
)

nA,

• the term related to the internal energy as nV = 1
2

nVTKnV,

• the term related to the interface energy as nEΓ = 1
∆t
[nVΓ]

T [nΛ]

the energy method states that a given coupling method is stable if:

JnT1K+[nT2]+ JnV1K+[nV2]≤ 0 ∀n ∈ {1, . . . ,N} (1.64)

with:

JnT1K+[nT2]+ JnV1K+[nV2] =
nEΓ = nEΓ1

+ nEΓ2
. (1.65)

Developing the definition of nEΓ, one can write:

nEΓ =
1

∆t1
JnV1,ΓKT Jn

ΛK+
1

∆t2
[nV2,Γ]

T [nΛ]. (1.66)

It is demonstrated then in Section 2 of [Gravouil and Combescure, 2001] that the inequal-

ity in Equation (1.64) is always verified with the GC algorithm and that, in presence of

different time scales in the subdomains, there is always numerical dissipation, due to the

linear interpolation of the interface velocities in time. The calculation of such dissipation

in function of the subcycling parameters (e.g. the ratio between the different time steps

M) was given in [Prakash and Hjelmstad, 2004] and [Mahjoubi et al., 2009].

Based upon the energy method application, further works that aimed at developing

energy-preserving couplings, as the PH algorithm introduced in [Prakash and Hjelm-

stad, 2004] with the generic Newmark’s formulation or the MGC algorithm described in

[Mahjoubi et al., 2011] based on an incremental formulation but extended to other time

integration schemes have been proposed.
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4.2.5 Energy-preserving multi-time-step FETI approach

As asserted in [Prakash and Hjelmstad, 2004], a change in the interfacial constraint is

necessary to avoid numerical dissipation in presence of different time scales. The idea is

to impose the velocity continuity once per coarse time step, defining Lagrange multipliers

in order to verify the condition nEΓ = 0 ∀n ∈ {1, . . . ,N}.
The equilibrium at each fine time step is verified through the definition of the free

unbalanced reaction force mSfree and the link unbalanced reaction force mSlink in function

of the coarse free and link quantities, respectively, linearly interpolated in time.

In contrast to Equation (1.61) in the GC algorithm, the linear interpolation in time is

different for free and link problems:

mAfree
2 = nA2

(

1− m

M

)

+ n+1Afree
2

(m

M

)

mAlink
2 = n+1Alink

2

(m

M

)

.
(1.67)

The free unbalanced reaction force mSfree and the link unbalanced reaction force
mSlink read, respectively:

mSfree = Π1
h

((

nFext
2,Γ− nFint

2,Γ

)(

1− m

M

)

+
(

n+1Fext
2,Γ− n+1Fint

2,Γ

)(m

M

))

+

−Π1
hM2,Γ

(

nA2,Γ

(

1− m

M

)

+ n+1Afree
2,Γ

(m

M

)) (1.68)

and:
mSlink =−Π1

hM2,Γ
n+1Alink

2,Γ

(m

M

)

−m
Λ. (1.69)

The latter, using the Lagrange multipliers definition in Equation (1.59), becomes:

mSlink = n+1
Λ

(m

M

)

−m
Λ. (1.70)

The definitions in Equations (1.68) and (1.69) lead to the following properties:

mSfree +mSlink = 0 ∀m ∈ {1, . . . ,M}, nSfree = nSlink = 0 ∀n ∈ {1, . . . ,N}. (1.71)

Combining Equation (1.70) with the first of Equations (1.71), the Lagrange multipliers

to be applied to the fine subdomain Ωh
1 are:

m
Λ= mSfree + n+1

Λ

(m

M

)

. (1.72)

In this way, the free problem reads ∀n ∈ {0, . . . ,N−1}:

M1
m+1Afree

1 = m+1Fext
1 −m+1F

int,free
1 −CT

1
m+1Sfree in Ωh

1|tm+1 ∀m ∈ {0, . . . ,M−1}
M2

n+1Afree
2 = n+1Fext

2 − n+1Fint
2 in Ωh

2|tn+1

(1.73)
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the link one ∀n ∈ {0, . . . ,N−1}:

M1
m+1Alink

1 =−CT
1

n+1
Λ
(

m
M

)

−m+1F
int,link
1 in Ωh

1|tm+1 ∀m ∈ {0, . . . ,M−1}
M2,Γ

n+1Alink
2,Γ = Π1T

h
n+1

Λ over Γh
2|tn+1

(1.74)

and the interface constraint, in contrast to Equation (1.60) in the GC algorithm, is verified

only at the coarse time step ∀n ∈ {0, . . . ,N−1}:
n+1Vfree

1,Γ + n+1Vlink
1,Γ = Π1

h
n+1Vfree

2,Γ +Π1
h

n+1Vlink
2,Γ over Γh

1|tn+1 . (1.75)

Note that, differently from the GC algorithm, the link problem in Equation (1.74) here

involves all the nodes of the finer subdomain.

It is proven in Section 5 of [Prakash and Hjelmstad, 2004] that such formulation leads

to nEΓ = 0 ∀n ∈ {1, . . . ,N}.
So, the free and link fine problems are solved in two sequential time loops before and

after the interface constraint, respectively, as described in Algorithm 2.

while n≤ N do

1. free coarse solution: second of Equations (1.73);

while m≤M do

2. free fine solution: first of Equations (1.73);

update m← m+1;

end

3. interface constraint: Equation (1.75);

while m≤M do

4. link fine solution: first of Equations (1.74);

update m← m+1;

end

5. link coarse solution: second of Equations (1.74);

update n← n+1;

end
Algorithm 2: PH algorithm scheme.

The GCbis algorithm is equivalent to the PH algorithm, except the computation of

the unbalanced reaction forces mSfree, that are substituted by the first part of the tempo-

ral linear interpolation of the Lagrange multipliers
(

1− m
M

)

Λ
n, so that Equation (1.72)

becomes:
m
Λ= n

Λ

(

1− m

M

)

+ n+1
Λ

(m

M

)

∀m ∈ {1, . . . ,M} (1.76)

that is a simple linear interpolation in time Π1
t

(

n�,n+1�
)

. This change is more practical

and efficient and does not affect the energy-preserving property nEΓ = 0 ∀n ∈ {1, . . . ,N}.
Nonetheless, the extensions of the PH and GCbis algorithms to nonlinear problems and

to adaptive time steps remains computationally expensive.

More details about the GCbis algorithm will be given in Chapter 2.
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4.2.6 Non-overlapping Domain Decomposition methods for dynamic adaptivity

Non-overlapping Domain Decomposition methods constitute an advanced, robust and ef-

ficient technique for multi-scale couplings. Nevertheless, the industrial aim of this work

is oriented towards an automatized evolution of the scales topology in order to follow evo-

lutive mechanisms and optimize the use of a finer scale. Domain Decomposition would

then require the support of a robust re-meshing strategy in order to change the position of

the different subdomains during the analysis. Such implementation is considered to be in-

trusive in commercial software where the meshing strategy is included in a pre-processing

package. However, the associated results have been taken as reference for the develop-

ments in this work.

4.3 Arlequin framework

The Arlequin method is an example of overlapping Domain Decomposition method, de-

scribed for static problems in [BenDhia and Rateau, 2005] after previous works of the

same authors. Two ways of partitioning the overall domain of the problem are possible:

• a completely overlapping method for coupling global and local domains in multi-

model and multi-grid analyses,

• a partially overlapping method for coupling different subdomains positioned in dif-

ferent zones of the overall domain.

The method was extended to couplings between solids and molecular models in [Xiao

and Belytschko, 2004] and [Xu and Belytschko, 2008] and to dynamics couplings in

[Ghanem et al., 2013].

The coupling is based on the utilization of spatial weight functions ηi (for the ki-

netic energy term), αi (for the internal energy term) and ϕi (for the external work term)

in the classical Domain Decomposition weak formulation with two subdomains. In the

subdomain Ω1, one can write:

∫
Ω1

(α1 ρü1 ·δu1 +η1 σ(u1) : ε(δu1)) dΩ+C(λ,δu1) =

=
∫

Ω1

ϕ1 fbody ·δu1 dΩ+
∫

∂Ω f

ϕ1 fsurf ·δu1 dΓ ∀δu1 = 0 over ∂Ωu× [tin, tend]

(1.77)

whereas in the subdomain Ω2:

∫
Ω2

(α2 ρü2 ·δu2 +η2 σ(u2) : ε(δu2)) dΩ−C(λ,δu2) =

=
∫

Ω2

ϕ2 fbody ·δu2 dΩ+
∫

∂Ω f

ϕ2 fsurf ·δu2 dΓ ∀δu2 = 0 over ∂Ωu× [tin, tend]

(1.78)
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and in the overlapped zone Ω12:

C(δλ,w1−w2) = 0 ∀δλ (1.79)

where C(�,�) is the continuity operator and w is the constrained kinetic quantity. The

weight functions are chosen so that ∑i αi = ∑i ηi = ∑i ϕi = 1 is always verified in the

overall domain Ω.

Figure 1.8 shows a potential application of the partially overlapping version of the

Arlequin method and the associated shape of the weight functions varying only in the

horizontal direction.

Figure 1.8: Partially overlapping application of the Arlequin method.

The Lagrange multipliers λ are applied to the overlapped zone Ω1∩Ω2 and are mod-

eled with the mesh Ωh
12 shown in Figure 1.9, in which the explosion of the overlapped

models of Figure 1.8 is illustrated. Note that the displacements fields u1 and u2 are mod-

eled with different meshes, described in Figure 1.9 as Ωh
1 and Ωh

2, respectively.

A coupling between implicit dynamic time integration schemes is performed in [Ghanem

et al., 2013]. In that paper, a displacement continuity is enforced, the choice to impose

same weight functions (e.g. as in Figure 1.8) for the different energy terms is assumed,

so that αi = ηi = ϕi, and three kinds of continuity operator C(�,�) are considered:

• the so-called “L2 coupling”:

C(λ,u1−u2) =
∫

Ω12

λ · (u1−u2) dΩ (1.80)

that leads to an ill-conditioned global stiffness matrix depending on the application;
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Figure 1.9: Meshes for the partially overlapping Arlequin method.

• the so-called “H1 coupling”:

C(λ,u1−u2) =
∫

Ω12

(

λ · (u1−u2)+ l2ε(λ) : ε(u1−u2)
)

dΩ (1.81)

with the introduction of a parameter l homogeneous to a length;

• the so-called “energy-based coupling”:

C(λ,u1−u2) =
∫

Ω12

σ(λ) : ε(u1−u2) dΩ (1.82)

that is the choice for the Arlequin application in [Ghanem et al., 2013].

The numerical integration of the weak formulation leads to a system similar to the

non-overlapping Domain Decomposition one. Here, the non-conform meshes are directly

dealt with in the connectivity matrices Ci, that are not unitary Boolean matrices but full

rectangular matrices, and their numerical integration requires the employment of specific

quadrature techniques because of the differences between the overlapped meshes.

For wave propagation problems, in contrast to non-uniform meshes and non-overlapping

Domain Decomposition methods, the Arlequin method offers the possibility to attenuate

or avoid the wave-reflection due to the different discretizations of the subdomains.

4.3.1 Arlequin framework for dynamic adaptivity

As the non-overlapping Domain Decomposition methods, the partially-overlapping Ar-

lequin method should be coupled with a re-meshing strategy to attain the industrial goal.

Developments of the completely-overlapping Arlequin method could be interesting as

global-local couplings because of the possibility to leave unchanged both global and lo-

cal meshes applied everywhere, playing with the parameters αi in order to activate or

deactivate the model refinement. Nevertheless, the requirement of a detailed fine mesh

everywhere could be costly in terms of memory allocation and the complexity of con-

nectivity matrices Ci and Lagrange multipliers λ definitions could be costly in terms of

computing time.

A weakly-intrusive multi-scale Substitution method in explicit dynamics



Existing coupling techniques inside Abaqus 37

4.4 Global-local approaches and Multi-grid algorithms

The global-local approaches constitute an alternative to the aforementioned coupling

strategies and can be classified as completely overlapping Domain Decomposition meth-

ods. The idea to couple a global linear analysis with given global mesh and a localized

analysis with a refined mesh and the eventual presence of defects was introduced in [Whit-

comb, 1991]. The iterations required by the process were shown to be more advantageous

rather than a monolithic nonlinear analysis with a non-uniform mesh. Furthermore, keep-

ing the global analysis with an unchanged global model is said to be “non-intrusive” for

couplings, avoiding re-meshing or re-formulations during the analysis.

The same philosophy has been followed in the works for coupling research and indus-

trial codes in [Gendre et al., 2009], [Gendre et al., 2011] and [Guguin et al., 2014]. In

those cases, based on a global-local superposition technique and for static problems, the

purpose was to couple in a non-intrusive manner a commercial code applied to the over-

all problem domain as global analysis, with a research code applied only to the zones of

interest with a detailed model. The numerical issues connected to the iterative procedures

and to the stress mapping represented additional research challenges of those works.

The challenges of the present works are deeply different. Transient dynamics solved

with explicit time integration solvers is prone to numerical and operational issues differing

from static problems and the same intrusivity characteristic denotes different issues.

Another class of completely overlapping coupling methods is represented by the Multi-

grid algorithms. Introduced in [Brandt, 1977], [McCormick and Ruge, 1982] and [Parsons

and Hall, 1990], they were employed to enhance the accuracy of the standard iterative

solvers for highly irregular solutions. Applications of Finite Element discretizations to

elliptic problems are also presented in [Fish and Belsky, 1995], [Fish et al., 1996] and

[Fish et al., 1997] for stratified composites or in [Glowinski et al., 2005] with a mathe-

matical study of arbitrary local patch discretizations. An application to crack propagation

in statics has been presented in [Passieux et al., 2013]. Once again, the global analysis is

carried out in the overall structure by means of a linear elastic analysis (potentially with

a commercial software) and a local patch is activated with the use of nonlinear crack pre-

dicting technologies. In that case, a Multi-grid solver has been employed for bridging the

global and local analyses.

5 Existing coupling techniques inside Abaqus

5.1 Impact test example

The impact test case performed in the MAAXIMUS report [Heimbs, 2011] and described

in Figure 1.10 is taken as example for the practical description of the existing coupling

techniques inside Abaqus. A flat panel made of a stratified composite is impacted by a

glass ball.

The interest of the example resides in the possibility to refine the model around the

impacted zone of the panel, keeping a coarse model in the surroundings in order to save
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Figure 1.10: Flat panel in stratified composite impacted by a glass ball.

computing time and to maintain acceptable the levels of accuracy.

The problem data are as follows:

• for the glass impactor ball:

– mass of 18.6 g;

– diameter of 24.4 mm;

– impact velocity of 100 m/s;

• for the composite panel:

– size of the panel L = 1 m;

– thickness of 1.5 mm;

– 12 unidirectional plies governed by a damage law.

The three main coupling techniques integrated in the Abaqus code v6.10 have been

studied: the Submodeling, the Subcycling and the Co-Simulation techniques.

5.2 Submodeling technique

Submodeling is the technique of studying a local part of a model with a refined mesh,

based on the interpolation of the solution from an initial global model onto appropriate

parts of the boundary of the submodel. The method is useful when it is necessary to obtain

an accurate, detailed solution in the local region and the fine discretization of that local

region has negligible effect on the overall solution. The response at the boundary of a

local region is defined by the solution for the global model and it determines the solution
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in the submodel, together with any loads applied to the local region. The technique relies

on the global model defining this submodel boundary response with sufficient accuracy.

With a few restrictions, different element types can be used in the submodel compared

to those used to model the corresponding region in the global model. The material re-

sponse defined for the submodel may even be different from that defined for the global

model. Both the global model and the submodel can have nonlinear responses.

A Submodeling analysis consists of:

• running a global analysis and saving the results in the vicinity of the submodel

boundary;

• defining the total set of driven nodes or driven surfaces in the submodel;

• defining the time variation of the driven variables in the submodel analysis by spec-

ifying the actual nodes and degrees of freedom or element-based surfaces to be

driven in each step;

• running the submodel analysis using the driven variables to drive the solution.

The submodel is run as a separate analysis. The only link between the submodel

and the global model is the transfer of the time-dependent values of the variables to the

relevant driven variables of the submodel.

To summarize, the Submodeling technique can be generally used:

• to study a local part of a model with a refined mesh based on interpolation of the

solution from an initial, relatively coarse, global model;

• to obtain an accurate, detailed solution in a local region when the detailed modeling

of that local region has negligible effect on the overall solution;

• to drive a local part of the model by nodal results, such as displacements, or by the

element stress results from the global mesh;

• to analyze an acoustic model driven by displacements from a structural, global

model when the acoustic fluid has negligible effect on the structural solution;

• for the analysis of a structure driven by acoustic pressures from an acoustic, or

coupled acoustic-structural, global model;

• a combination of explicit and implicit procedures;

• a combination of linear and nonlinear procedures.

Figure 1.11 represents the application of the Submodeling technique. At first, a coarse

global analysis is carried out in the overall structure. Then, a finer local analysis is applied

to the impacted zone, extrapolating from the global solution the displacement boundary

conditions along the red lines. In this way, the effects of the finer solution to the global

response are not considered.
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Figure 1.11: Submodeling technique.

Algorithm 3 summarizes the steps of the sequential Submodeling approach.

while n < N do

global solution;

update n;

end

mapping of global solution history;

definition of local boundary conditions history← global solution;

while m < N ·M do

local solution;

update m;

end
Algorithm 3: Submodeling coupling scheme.

A two-way coupling between the global and local analyses should be preferred. Nev-

ertheless, in contrast to the Domain Decomposition via Co-Simulation, non-conforming

meshes can be employed with Submodeling exploiting the mapping of the global solution

into the local mesh.

5.3 Subcycling technique

The Subcycling technique in Abaqus/Explicit is based on the nodal partitioning originally

introduced in [Belytschko et al., 1979] and described in Section 4.1.2 for the application

of different time steps to the zones of a non-uniform mesh. The Subcycling zones remain

unchanged during the analysis and each Subcycling zone is integrated with its own stable

time step. The subcycle time step sizes are chosen as integer divisors of the time step used

in the master domain. Therefore, all the domains exactly reach the same time points of
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the master domain.

An arbitrary number of Subcycling zones can be defined. However, some modeling

features cannot be split between Subcycling zones. In that case, Abaqus/Explicit auto-

matically merges the Subcycling zones. For instance, Subcycling zones are merged when

general contact is specified over a surface shared by the zones. Then, when Subcycling

zones are merged, the smallest stable time step among the merged zones is used. The

constraint, connector or rigid body can be assigned to the Subcycling zone only if every

node belongs to that Subcycling zone.

Efficient Subcycling requires a proper choice of Subcycling zones. For each Subcy-

cling zone, the time step size should be small compared to the master zone, producing a

large number of subcycles, i.e. the ratio of the stable time step size in the master zone to

the stable time step sizes in the Subcycling zones. In addition to a large number of subcy-

cles, the number of elements in a Subcycling zone should generally be small compared to

the total number of elements in the model for optimal performance benefit. If a majority

of elements in the model are in Subcycling zones, there will not be much performance

benefit.

The Subcycling algorithm used in Abaqus/Explicit provides sufficient accuracy for

most complex dynamic models. However, because of the interpolation used on interface

nodes, Subcycling solutions can introduce a truncation error. This error should not affect

the overall dynamic behavior of the model. Special attention should be given to the inter-

faces when general contact is involved: it is not necessary to define a pair of surfaces that

have the potential for contacting each other within the same zone; however, to minimize

truncation errors, it is highly recommended that a single surface that has the potential for

contacting others is not split across the zones.

Figure 1.12 represents the application of a non-uniform mesh, finer in the impacted

zone. The Subcycling technique is adopted to use two different time steps in the two

partitions. The zone evidenced in red (subcycling zone) is the node partition (defined as

element set) in which the time step is smaller than in the rest of the structure (master

zone).

As described in [Daniel, 2003], the Subcycling algorithm simplified into two parti-

tions, master and subcycling, is summarized in Algorithm 4.
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Figure 1.12: Non-uniform mesh and Subcycling technique.

while n≤ N do

momentum balance at the master nodes;

update velocities n+ 1
2 Vmaster;

while m≤M do

momentum balance at the subcycling nodes;

update mid-step velocities m+ 1
2 Vsubcycling;

update m;

end

update interface displacements averaging the velocities n+ 1
2 Vmaster and

m+ 1
2 Vsubcycling;

end
Algorithm 4: Subcycling scheme.

5.4 Co-Simulation technique

The Co-Simulation technique is a capability for run-time coupling of Abaqus and other

analysis programs: an Abaqus analysis can be coupled to another Abaqus analysis or to a

third-party analysis program to perform multi-physics or multi-model simulations.

Co-Simulation between Abaqus/Standard (implicit solver) and Abaqus/Explicit (ex-

plicit solver) illustrates a multiple domain analysis approach using the algorithm intro-

duced in [Gravouil and Combescure, 2001], originally developed for arbitrary time in-

tegration schemes couplings and specified in Section 4.2.3 as explicit-explicit coupling

application. Each analysis operates on a complementary zone of the domain where it is

expected to provide the more computationally efficient solution. For example, the implicit

solver provides a more efficient solution for light and stiff components, while the explicit
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solver is more efficient for solving complex contact interactions.

The Co-Simulation technique can more generally be used to solve:

• fluid-structure interactions by coupling Abaqus (/Explicit or /Standard) with Com-

putational Fluid Dynamic (CFD) analysis programs;

• conjugate heat transfer problems by coupling Abaqus/Standard with CFD analysis

programs;

• electromagnetic-thermal or electromagnetic-mechanical interactions by coupling

Abaqus with electromagnetic analysis programs;

• multi-physics simulations by coupling Abaqus (/Explicit or /Standard) with third-

party analysis programs;

• Domain Decomposition analyses by coupling Abaqus/Standard to /Explicit.

In a Co-Simulation, the interaction between the domains goes through a common

physical interface region over which data are exchanged in a synchronized manner be-

tween Abaqus and the coupled analysis program.

One domain may affect the response of another domain through one or more of the

following:

• constitutive behavior, such as the yield stress defined as a function of temperature

or stress defined as a function of other solution fields, such as thermal strains or the

piezoelectric effect;

• surface tractions/fluxes, such as a fluid exerting pressure on a structure;

• body forces/fluxes, such as heat generation due to flow of current in a coupled

thermal-electrical simulation;

• contact forces, such as the forces due to contact between separate domains;

• kinematics, such as fluid in contact with a compliant structure where the interface

motion affects the fluid flow.

The coupling between Abaqus and another analysis program is carried out using the

Co-Simulation Engine. In particular, the interaction between the implicit and explicit

models takes place through a common interface region. When the implicit and explicit

meshes differ, the following limitations apply:

• in cases where the stress state near the Co-Simulation interface is significant (ap-

proaching 1% or more) relative to the material stiffness, an appreciable irregular

mesh distortion may be observed if the mesh density adjacent to the Co-Simulation

region differs greatly between the explicit and implicit models;
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• a Co-Simulation region node cannot be a slave node in a tie constraint or a kinematic

coupling constraint.

Stability and accuracy of the Co-Simulation solution may be adversely affected when

the following model features are defined at or near the Co-Simulation region:

• connector elements connected to Co-Simulation region nodes;

• Co-Simulation region nodes that participate in a tie constraint or a kinematic cou-

pling constraint.

Figure 1.13 represents the application of the Domain Decomposition into two sub-

domains, a finer subdomain in the impacted zone using the explicit solver, and a coarse

one consisting of the rest of the structure with the implicit solver. The Co-Simulation

technique connects the two subdomains through the interfacial nodes evidenced in red.

The finer mesh in the explicit subdomain is generated in such a way that the meshes are

conforming through the interface, because the nodes in the Co-Simulation regions cannot

be slave nodes in a tie constraint.

Figure 1.13: Co-Simulation technique.

The GC algorithm introduced in [Gravouil and Combescure, 2001] is integrated in

Abaqus following the Algorithm 5. The Lagrange multipliers are computed in the /Stan-

dard environment at each fine time step because it requires a solver for linear systems,

not available in /Explicit. So, at each fine time step, velocities and masses are sent to

/Standard and the Lagrange multipliers are sent to /Explicit.
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while n < N do

/Standard resolution: free momentum balance;

while m < M do

/Explicit resolution: free momentum balance;

/Explicit sends to /Standard: mass and velocity;

/Standard resolution: Lagrange multipliers;

/Standard sends to /Explicit: Lagrange multipliers;

/Explicit resolution: link correction with Lagrange multipliers;

update m;

end

/Standard resolution: link correction with Lagrange multipliers;

update n;

end
Algorithm 5: Co-Simulation /Standard-/Explicit coupling scheme.

5.5 Comparison between the techniques in [Heimbs, 2011]

Different models have been tested and coupled together:

1. non-uniform meshes using:

(a) a macro-scale: one layered shell element over the thickness of the panel, or

(b) a pseudo-meso-scale: three layered shell elements and two cohesive interfaces

over the thickness of the panel;

2. coupling the two scales as described in Figure 1.14.

Figure 1.14: Coupling macro- and pseudo-meso-scales.

Table 1.5 summarizes some remarks related to the Subcycling, Co-Simulation and

Submodeling techniques in the MAAXIMUS report [Heimbs, 2011]. When coupling

together two macro-scale meshes, the Subcycling technique is the most advantageous

coupling technique in terms of computing cost and accuracy, slightly more convenient

than the monolithic computation with non-uniform mesh and unique time step. An anal-

ogous restricted gain is obtained with the pseudo-meso-scale meshes. On the other hand,
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coupling the macro-scale with the pseudo-meso-scale is remarked as a very interesting

strategy when run with a unique time step, whereas the Subcycling presents some issues,

both in computing time and in accuracy.

model discretization and technique CPU time accuracy

uniform fine mesh 100%

macro non-uniform mesh, unique time step 9.81 % good

(reference 1) non-uniform mesh, Subcycling 8.11 % good

compatible meshes, Co-Simulation 74.24 % good

non-conforming meshes, Submodeling 11.17 % bad

pseudo-meso uniform fine mesh 100%

(reference 2) non-uniform mesh, unique time step 15.87 % good

non-uniform mesh, Subcycling 15.64 % good

coupling
unique time step 4.17 % good

Subcycling 5.07 % bad

Table 1.5: MAAXIMUS-WP3.5 report [Heimbs, 2011], Abaqus v6.10.

Note that the Co-Simulation technique does not offer appreciable results in terms of

computing time, probably because of the employment of the implicit time integration

scheme over an extended surface of the structure. The application of an explicit-explicit

coupling scheme should theoretically give performances similar to the Subcycling tech-

nique.

6 Conclusions

Starting from a genetical initial-boundary value problem, the most common Finite Ele-

ment time integration schemes for dealing with impact problems have been presented,

together with advanced multi-scale coupling techniques.

Special attention has been given to the existing capabilities and coupling strategies

within the commercial software Abaqus.

In the studies, the non-overlapping Domain Decomposition method for multi-scale

coupling developed in [Gravouil and Combescure, 2001] and further works, applied to

Central Difference schemes for the time integration, has risen as a robust and efficient

technique, suitable for the industrial goal if coupled with a re-meshing strategy. Due to

the interest of such approach, it has been implemented and studied, as described in the

what follows.
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Chapter 2

Investigation and implementation of the

Finite Element Tearing and

Interconnecting (FETI) approach

In this Chapter, the implementation of the non-overlapping

Domain Decomposition algorithms is described. The

application to explicit-explicit coupling is reported and

implemented. This investigation aims at studying the

evolution from the GC to the GCbis algorithms focusing on

the stability characteristic.
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1 Introduction

The non-overlapping Domain Decomposition methods emerged in Chapter 1 as robust

and efficient multi-scale coupling technique, even if requiring a re-meshing strategy to

optimize the utilization of finer modeling in case of evolutive phenomena. A deeper

study of the technical aspects of Domain Decomposition method has been so considered,

notably because of difficulties first encountered when trying to develop the Substitution

method.

In particular, the multi-time-step FETI approaches developed in [Gravouil and Combes-

cure, 2001] and the energy-preserving version proposed in [Prakash and Hjelmstad, 2004]

are here presented for explicit-explicit couplings, with details about the algorithms, result-

ing comparisons and remarks. Such methods will be used as reference for the develop-

ments in the thesis.

2 Multi-time-step FETI approach

2.1 Formulation

Separating the solution in free and link terms, the System (1.57) is developed with five sets

of unknowns m+1Afree
1 , m+1Alink

1 , n+1Afree
2 , n+1Alink

2 and m+1
Λ as follows ∀n∈ {0, . . . ,N−

1}:

M1
m+1Afree

1 = m+1Fext
1 −m+1Fint

1 in Ωh
1|tm+1 ∀m ∈ {0, . . . ,M−1}

M1,Γ
m+1Alink

1,Γ =− m+1
Λ over Γh

1|tm+1 ∀m ∈ {0, . . . ,M−1}
M2

n+1Afree
2 = n+1Fext

2 − n+1Fint
2 in Ωh

2|tn+1

M2,Γ
n+1Alink

2,Γ = Π1T
h

n+1
Λ over Γh

2|tn+1

m+1V1,Γ = Π1
h

m+1V2,Γ over Γh
1|tm+1 ∀m ∈ {0, . . . ,M−1}

(2.1)

where, with reference to Section 4.2 of Chapter 1, Ωh
1, Ωh

2 and Γh
1 are defined in Fig-

ure 1.6 and the time domain [tin, tend] is differently discretized for the two subdomains as

described in Figure 1.7.

The resolution strategy of System (2.1) derives from the development of the last equa-

tion using the Central Difference scheme and the free-link variable separation in Equa-

tion (1.61):

m+ 1
2 V1,Γ +

(

m+1Afree
1,Γ +m+1Alink

1,Γ

) ∆t1

2
=

= Π1
h

m+ 1
2 V2,Γ +Π1

h

(

m+1Afree
2,Γ +m+1Alink

2,Γ

) ∆t2

2
.

(2.2)

Then, using the second and the fourth equations in System (2.1), Equation (2.2) is
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expressed in function of Lagrange multipliers m+1
Λ and becomes:

m+ 1
2 V1,Γ +

(

m+1Afree
1,Γ −M−1

1,Γ
m+1

Λ

) ∆t1

2
=

= Π1
h

m+ 1
2 V2,Γ +Π1

h

(

m+1Afree
2,Γ +M−1

2,ΓΠ1T
h

m+1
Λ

) ∆t2

2

(2.3)

that, switching the positions in order to compute the Lagrange multipliers m+1
Λ:

(

∆t1

2
M−1

1,Γ +
∆t2

2
Π1

hM−1
2,ΓΠ1T

h

)

m+1
Λ= m+ 1

2 V1,Γ +
m+1Afree

1,Γ
∆t1

2
+

−Π1
h

m+ 1
2 V2,Γ−Π1

h
m+1Afree

2,Γ
∆t2

2

(2.4)

where the coefficients matrix is the so-called condensation matrix H:

H,
∆t1

2
M−1

1,Γ +
∆t2

2
Π1

hM−1
2,ΓΠ1T

h (2.5)

and, for the notation in the followings:

m+1Vfree
i,Γ , m+ 1

2 Vi,Γ +
m+1Afree

i,Γ
∆ti

2
. (2.6)

So, System (2.1) is solved for every coarse time step ∆t2 in five steps:

1. coarse free solution M2
n+1Afree

2 = n+1Fext
2 − n+1Fint

2

2. fine free solution M1
m+1Afree

1 = m+1Fext
1 −m+1Fint

1

3. interface constraint H m+1
Λ= m+1Vfree

1,Γ −Π1
h

m+1Vfree
2,Γ

4. fine link solution M1,Γ
m+1Alink

1,Γ =− m+1
Λ

5. coarse link solution M2,Γ
n+1Alink

2,Γ = Π1T
h

n+1
Λ

(2.7)

where steps 2, 3 and 4 are re-iterated for m = 0, . . . ,M−1.

Remark 6 The condensation matrix H is a square non-diagonal matrix, which size is

dimH =
(

N dimΓh
1

)

. The extra-diagonal terms come from the down-scaling operation

Π1
h�Π1T

h of the inverted mass matrix of the coarse subdomain through a linear interpola-

tion in space. So, in contrast to the acceleration resolutions, the computation of Lagrange

multipliers requires a solver of linear systems.

The steps of System (2.7) are summarized in Algorithm 6.
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computation of H;

while t2 < tend do

coarse free solution: M2
n+1Afree

2 = n+1Fext
2 − n+1Fint

2 ;

while t1 < t2 +∆t2 do

fine free solution: M1
m+1Afree

1 = m+1Fext
1 −m+1Fint

1 ;

interface constraint: H m+1
Λ= m+1Vfree

1,Γ −Π1
h

m+1Vfree
2,Γ ;

fine link solution: M1,Γ
m+1Alink

1,Γ =− m+1
Λ;

update t1← t1 +∆t1;

end

coarse link solution: M2,Γ
n+1Alink

2,Γ = Π1T
h

n+1
Λ;

update t2← t2 +∆t2;

end
Algorithm 6: GC algorithm.

2.2 Application to assess the coupling properties

The multi-time-step FETI approach is so applied with the GC algorithm in order to an-

alyze the coupling properties due to the interface constraint. The overall domain of the

problem is split in two subdomains as described in Figure 2.1, where the boundary con-

ditions, loads and sizes are recalled.

The problem data are:

• density ρ = 7800 kg/m3;

• Young’s modulus E = 210 ·109 Pa;

• Poisson’s ratio ν = 0.3;

• length L = 30 m;

• height H = 10 m;

• uniform shear load f = 3 ·106 Pa constant in time.

The numerical solution is monitored at four representative points, at the locations

shown in Figure 2.1:

• the location A inside the first subdomain Ω1 in order to observe the fine solution,

• the locations B1 and B2 over the interface Γ at a corresponding position in subdo-

mains Ω1 and Ω2, respectively, in order to exhibit the transmission properties that

characterize the given coupling scheme,

• the location C at the extremity of the structure in the second subdomain Ω2 in order

to observe the global response of the structure.
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Figure 2.1: Boundary conditions, loads, sizes and monitored locations A, B1, B2 and C.

Figure 2.2 shows the spatial and temporal discretizations applied to the two subdo-

mains. The fine subdomain Ωh
1 is discretized with 20 displacement-based 4-node quadri-

lateral elements and an associated time step ∆t1 = 3 · 10−4 s, whereas the coarse subdo-

main Ωh
2 is discretized with only 1 quadrilateral element of the same type and an asso-

ciated time step ∆t2 = 12 · 10−4 s. In this case, the subdomains mesh ratio h2/1, defined

as the ratio of the coarse element length to the fine, corresponds to the time step ratio M,

defined as the ratio of the coarse time step to the fine one, so that h2/1 = M = 4.

(a) spatial discretization with h2/1 = 4

(b) temporal discretization with M = 4

Figure 2.2: Discretization for non-overlapping Domain Decomposition.

Figure 2.3 shows the vertical velocities at the locations B1 (subdomain 1) and B2
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(subdomain 2). According to the interface constraint, the two curves are overlapped in

Figure 2.3(a) and in the shorter interval of Figure 2.3(b). On the contrary, small discrep-

ancies between the curves are visible in Figure 2.3(c): the continuity is exact at the coarse

time instants, whereas a small gap is produced at the beginning of the fine time stepping

and shrinks to the following coarse time instant. Indeed, a perfect continuity over the fine

time steps is not compatible with the Central Difference scheme, because linear velocities

in the fine time stepping imply constant accelerations in the coarse time steps with jumps

at the coarse time instants, in contrast with continuous time integration schemes.

Figure 2.4 shows the vertical accelerations at the locations B1 (subdomain 1) and B2

(subdomain 2). As expected, the accelerations are not continuous along the interface. In

addition, Figure 2.4(b) highlights the shape of the accelerations in the fine subdomain

(blue line) that is source of discrepancy between the velocities in the fine time stepping.
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Figure 2.3: Vertical velocities at the locations B1 and B2.
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Figure 2.4: Vertical accelerations at the locations B1 and B2.
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2.3 Stability assessment with the energy method

The energy method introduced in Section 4.2.4 of Chapter 1 is here applied in order to

study the stability of the GC algorithm. The term nEΓ related to the work of the Lagrange

multipliers and defined in Equation (1.66) as in [Gravouil and Combescure, 2001] is taken

as stability indicator. If the related cumulated curve remains null or negative, the coupling

does not inject energy in the system and remains stable. In particular, a negative value of

the stability indicator shows the amount of numerical dissipation in the coupling.

Hereafter, the stability indicator will be normalized by the term related to the external

forces defined as:
N

∑
n=1

nEext =
N

∑
n=1

1

∆t2
[nV2]

T [nFext
2 ] (2.8)

cumulated at the end of the analysis.

Considering the analysis introduced in Section 2.2, the normalized stability indicator

is shown in Figure 2.5. The negativity of the stability indicator confirms the stability of

the method demonstrated in [Gravouil and Combescure, 2001] and the numerical dissipa-

tion remarked in [Prakash and Hjelmstad, 2004] and [Mahjoubi et al., 2009]. The value

decreases during the analysis reaching values close to 20% of the external forces term.

The amount of numerical dissipation shown by the stability indicator is also confirmed

by the results in Figure 2.4(a) in terms of accelerations: the higher frequencies at the

beginning of the analysis are progressively smoothed out.
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Figure 2.5: Normalized stability indicator.

The stability indicator is then analyzed varying the discretization parameters. Fig-

ure 2.6 shows the mesh refinement applied to the first subdomain Ω1 from Ωh
1 to Ωh′

1 and

Ωh′′
1 with subdomains mesh ratio h2/1 = 8 and h2/1 = 16, respectively.

Figure 2.7 shows the associated refinement of the time step ∆t1, with time steps ratio

M = 8 and M = 16 for meshes Ωh′
1 and Ωh′′

1 , respectively.

Figure 2.8 shows the variation of the stability indicator in function of the different dis-

cretization configurations, varying both the time step ratios M = 4,8,16 and the mesh ra-

tios h2/1 = 4,8,16 simultaneously, keeping unchanged the mesh of the coarse subdomain
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(a) subdomains mesh ratio h2/1 = 4

(b) subdomains mesh ratio h2/1 = 8

(c) subdomains mesh ratio h2/1 = 16

Figure 2.6: Refining the spatial discretization of the fine subdomain Ωh
1.
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Figure 2.7: Temporal discretization related to meshes in Figure 2.6.

Ωh
2 and the related time step ∆t2. The absolute values of the stability indicator decrease

with the refinement of the discretization parameters, especially passing fro h2/1 = M = 4

to h2/1 = M = 8. For this example, one can deduce that a refinement of the mesh reduces

the numerical dissipation.
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Figure 2.8: Stability indicator comparisons varying the discretization parameters M =

h2/1 = 4,8,16 and keeping ∆t2 = 12 ·10−4 s.

Figure 2.9 shows the different curves of the stability indicator in function of different

time step ratios M = 4,8,16, keeping unchanged the meshes Ωh
1 and Ωh

2 and the coarse

time step ∆t2 = 12 ·10−4 s and refining ∆t1. The stability indicator curves are almost cor-

responding, although the bigger values of M are associated with slightly bigger indicator

absolute values.

Figure 2.10 shows the stability indicator curves with the refinement of the time dis-

cretization, holding the meshes Ωh
1 and Ωh

2 and the time step ratios M. Both the time

steps ∆t1 and ∆t2 are simultaneously refined. The absolute values of the stability indicator

decrease with the refinement of the time steps, especially passing from ∆t2 = 8 ·10−4 s to

∆t2 = 4 · 10−4 s. It can be assessed for this example that a refinement of the time steps

reduces the numerical dissipation.

Figures 2.8, 2.9 and 2.10 confirm the results reported in [Prakash and Hjelmstad,
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Figure 2.9: Stability indicator comparisons varying the time steps ratio M = 4,8,16,

keeping h2/1 = 4 and ∆t2 = 12 ·10−4 s.
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Figure 2.10: Stability indicator comparisons varying the the time steps ∆t1 = 3,1.5,0.75 ·
10−4 s and ∆t2 = 12,8,4 ·10−4 s, keeping h2/1 = M = 4.
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2004] and [Mahjoubi et al., 2009]. Numerical dissipation due to the multi-time-step inter-

face constraint grows without control, in contrast to the goal of the HHT algorithm with

a numerical dissipation controlled by the parameter α (see Remark 4).

3 Energy-preserving multi-time-step FETI approach

An energy-preserving coupling method was developed in [Prakash and Hjelmstad, 2004]

in order to avoid the numerical dissipation.

3.1 Formulation

System (1.57) is here redefined as introduced in Section 4.2.5 of Chapter 1, so that ∀n ∈
{0, . . . ,N−1}:

M1
m+1A1 +CT

1

(

m+1Sfree + n+1
Λ
(

m
M

))

= m+1Fext
1 −m+1Fint

1 in Ωh
1|tm+1

∀m ∈ {0, . . . ,M−1}
M2

n+1A2−CT
2 Π1T

h
n+1

Λ= n+1Fext
2 − n+1Fint

2 in Ωh
2|tn+1

n+1V1,Γ = Π1
h

n+1V2,Γ over Γh
1|tn+1

(2.9)

where continuity of velocities is enforced at the coarse time steps and the free unbalanced

reaction forces mSfree are introduced to avoid numerical dissipation.

For the sake of simplicity, the formulation will be described extending the matrix

notation to the resolution of all the independent variables of acceleration, velocity and

displacement during the entire coarse time step. Furthermore, the introduction of the

stiffness matrix K is necessary for this matricial formulation, so that Fint = KU. For a

generic subdomain i:

Mi
m+1Xi =

m+1
F

ext
i −Ni

mXi−Ci
m+1

Λ (2.10)

where:

Mi =







Mi 0 0

−I∆ti
2

I 0

0 0 I






Ni =









Ki
∆t2

i

2
Ki∆ti Ki

−I∆ti
2

−I 0

−I
∆t2

i

2
−I∆ti −I









Xi =







Ai

Vi

Ui







F
ext
i =







Fext
i

0

0







in which I is the identity matrix and, because of the application to two subdomains and

embedded interface meshes:

C1 =





CT
1

0

0



 C2 =





CT
2 Π1T

h

0

0



 .
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For each coarse time step, the resolution of the monolithic system reads:























M1
1
M
C1

N1 M1
2
M
C1

. . .
. . .

...

N1 M1 C1

M2 C2

B1 B2

































































1X1

2X1

...
MX1

n+1X2

n+1
Λ











































=











































1
Fext

1 −N1
nX1−C1

1Sfree

2
Fext

1 −C1
2Sfree

...
M
Fext

1 −C1
MSfree

n+1
Fext

2 −N2
nX2

0











































(2.11)

where:

B1 =
[

0 C1 0
]

B2 =
[

0 Π1
hC2 0

]

and, as in Equation (1.68):

mSfree = Π1
hΠ1

t

(

nFext
2,Γ− nFint

2,Γ,
n+1Fext

2,Γ− n+1Fint
2,Γ

)

−Π1
hM2,ΓΠ1

t

(

nA2,Γ,
n+1Afree

2,Γ

)

(2.12)

with the time down-scaling operator Π1
t (

n�,n+1�) as linear interpolation between n�

and n+1�.

The monolithic System (2.11) is then simplified in:

[

M C

B 0

]

{

n+1
X

n+1
Λ

}

=

{

n+1
F− n+1

S

0

}

(2.13)

where M is a lower triangle matrix with matrices M1, M2 and N1, C is the matrix with

linear interpolation of matrices C1 and C2, B is a Boolean matrix with matrices B1 and

B2, X is the vector of unknowns, n+1
F and n+1

S are the force vectors.

The free-link approach separates the vector of unknowns as X= Xfree+Xlink and Sys-

tem (2.13) is solved in three steps:

1. free solution M
n+1

Xfree = F−S

2. interface constraint H n+1
Λ= B

n+1
Xfree

3. link solution n+1
Xlink =−M−1C

n+1
Λ

(2.14)

where the condensation matrix H is defined as:

H, BY (2.15)

with the matrix Y calculated in order to satisfy:

MY= C (2.16)

and where:

B
n+1

X
free = C1

MVfree
1 +Π1

hC2
n+1Vfree

2 . (2.17)
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Remark 7 The condensation matrix H is a square non-diagonal matrix, whose size is

equivalent to the number of nodes over the interface in the fine subdomain Γh
1 multiplied

by the dimension of the problem. Once again, its size is dimH = N dimΓh
1. Neverthe-

less, the assembly of H requires the calculation of the matrix Y via Equation (2.16),

that is solved column by column with the resolution of the systems MY j = C j, defin-

ing the column counter j = 1, . . .N dimΓh
1 and assembling Y =

[

Y1, . . . ,Y j, . . .
]

and

C =
[

C1, . . . ,C j, . . .
]

. The matrix M is a lower triangle matrix, whose size is given by

dimM = 3N
(

M dimΩh
1 +dimΩh

2

)

where 3 accounts for displacements, velocities and

accelerations. The matrix Y is also exploited in the step 3 of System (2.14).

Algorithm 7 shows in detail the steps of the PH algorithm (underlined in blue the

differences in comparison with the GC algorithm).

resolution of MY= C;

computation of H= BY;

while t2 < tend do

coarse free solution: M2
n+1Afree

2 = n+1Fext
2 − n+1Fint

2 ;

while t
free
1 < t2 +∆t2 do

compute m+1Sfree with Equation (2.12);

fine free solution:

M1
m+1Afree

1 = m+1Fext
1 −m+1F

int,free
1 −CT

1
m+1Sfree;

update tfree
1 ← tfree

1 +∆t1;

end

interface constraint: H n+1
Λ= n+1Vfree

1,Γ −Π1
h

n+1Vfree
2,Γ ;

coarse link solution: M2,Γ
n+1Alink

2,Γ = Π1T
h

n+1
Λ;

while t link
1 < t2 +∆t2 do

fine link solution: M1
m+1Alink

1 =−CT
1

n+1
Λ
(

m
M

)

−m+1F
int,link
1 ;

update t link
1 ← t link

1 +∆t1;

end

update t2← t2 +∆t2;

end
Algorithm 7: PH algorithm.

Note that link solutions of the different subdomains only can be computed in parallel.

As introduced in Section 4.2.5 of Chapter 1, the GCbis algorithm replaces the compu-

tation of the unbalanced free reaction forces mSfree with the first part of the time interpo-
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lation of the Lagrange multipliers
(

1− m
M

)

n
Λ, so that System (2.11) becomes:























M1
1
M
C1

N1 M1
2
M
C1

. . .
. . .

...

N1 M1 C1

M2 C2

B1 B2
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
















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
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
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




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








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2X1
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MX1

n+1X2

n+1
Λ


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




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
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





=











































1
Fext

1 −N1
nX1− M−1

M
C1

n
Λ

2
Fext

1 − M−2
M

C1
n
Λ

...
M
Fext

1
n+1

Fext
2 −N2

nX2

0











































.

(2.18)

This change is more practical and efficient and maintains the energy-preserving char-

acteristic. Algorithm 8 shows the steps of the GCbis algorithm (underlined in blue the

differences in comparison with the PH algorithm).

resolution of MY= C;

computation of H= BY;

while t2 < tend do

coarse free solution: M2
n+1Afree

2 = n+1Fext
2 − n+1Fint

2 ;

while t
free
1 < t2 +∆t2 do

fine free solution:

M1
m+1Afree

1 = m+1Fext
1 −m+1F

int,free
1 −CT

1
n
Λ
(

1− m
M

)

;

update tfree
1 ← tfree

1 +∆t1;

end

interface constraint: H n+1
Λ= n+1Vfree

1,Γ −Π1
h

n+1Vfree
2,Γ ;

coarse link solution: M2,Γ
n+1Alink

2,Γ = Π1T
h

n+1
Λ;

while t link
1 < t2 +∆t2 do

fine link solution: M1
m+1Alink

1 =−CT
1

n+1
Λ
(

m
M

)

−m+1F
int,link
1 ;

update t link
1 ← t link

1 +∆t1;

end

update t2← t2 +∆t2;

end
Algorithm 8: GCbis algorithm.

Note that both the free and link solutions of the different subdomains can be here

computed in parallel.

The extensions of both the PH and GCbis algorithms to nonlinear problems and to

adaptive time steps are computationally expensive, because the assembly of the conden-

sation matrix H should be re-iterated through the costly scheme described in Remark 7.
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3.2 Application to assess the coupling properties

The analysis introduced in Section 2.2 is here resolved with the GCbis algorithm, splitting

the domain into two subdomains and monitoring the four locations A, B1, B2 and C as in

Figure 2.1.

Figure 2.11 shows the vertical velocities at the locations B1 (subdomain 1) and B2

(subdomain 2), considering the discretization in space and time as in Figure 2.2 with

h2/1 = M = 4. According to the interface constraint, the two curves are globally over-

lapped in Figure 2.3(a). On the other hand, Figure 2.3(b) highlights the velocities conti-

nuity at the time instants defined in the coarse time discretization and the discrepancies

in the other time instants defined with the fine time discretization, being the discrepancies

due to the absence of constraint in the fine time stepping.
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Figure 2.11: Vertical velocities at the locations B1 and B2.

Figure 2.12 shows the vertical accelerations at the locations B1 (subdomain 1) and

B2 (subdomain 2). As expected, the accelerations are not continuous. Furthermore the

solution at the point B1 in the fine subdomain oscillates differently from the analogous

solution in Figure 2.4 (GC algorithm).
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Figure 2.12: Vertical accelerations at the locations B1 and B2.
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3.3 Conservation assessment with the energy method

The same stability indicator used in Section 2.3 is employed here in order to verify stabil-

ity and conservation of the coupling algorithm, i.e.:

nEΓ = 0 ∀n ∈ {1, . . . ,N}. (2.19)

Figure 2.13 shows the stability indicators comparing the GC and GCbis algorithms

(the blue and red lines, respectively). In the comparison, the GCbis algorithm is denoted

by a flat line of null value.
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Figure 2.13: Stability indicators comparison of the GC and GCbis algorithms.

Figure 2.14 shows the values of the stability indicator, reducing the time steps and

keeping the discretization ratios fixed to h2/1 = M = 4. The three curves are practically

equal to zero, if one considers the machine precision used for the analysis.
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Figure 2.14: Stability indicator reducing the time steps.

4 Solution comparison between GC and GCbis algorithms

Figures 2.15 show the vertical accelerations at the location B2 comparing the GC and

GCbis algorithms. Figure 2.15(a) evidences the growth of the discrepancies during the
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analysis, due to the growing numerical dissipation of the GC algorithm. Figures 2.15(b-c)

show the solutions of the GC and GCbis algorithms, respectively, at the beginning of the

analysis, reducing the time steps keeping the discretization ratios fixed to M = h2/1 = 4.

Figure 2.15(b), denoting the GC algorithm, shows a slower convergence reducing the time

step values than Figure 2.15(c), denoting the GCbis algorithm.

Figures 2.16 show the same comparison of the vertical accelerations at the location

C at the extremity of the structure. Once again, Figure 2.15(a) evidences the growing

numerical dissipation of the GC algorithm and Figures 2.15(b-c) show the slower conver-

gence of the GC algorithm reducing the time steps, even if the GCbis algorithm denotes

a worse solution with ∆t2 = 12 ·10−4 s.

Figures 2.17 show the same comparison of the vertical accelerations at the location

A inside the fine subdomain. Figure 2.15(a) evidences a high frequency solution of the

GCbis algorithm with ∆t2 = 12 · 10−4 s. Once again, Figures 2.15(b-c) show the slower

convergence of the GC algorithm reducing the time steps. Nevertheless, Figure 2.15(c)

shows that the high frequency of the solution of the GCbis algorithm with ∆t2 = 12 ·10−4 s

is produced by a noised oscillation of the accelerations due to the too coarse time steps.

To conclude, Figures 2.15, 2.16 and 2.17 confirm the faster convergence to the exact

solution of the GCbis algorithm reported in [Prakash and Hjelmstad, 2004] and [Mahjoubi

et al., 2009]. Nevertheless, the GCbis algorithm expresses noisy oscillations with coarse

temporal discretizations.

5 Conclusions

The multi-time-step FETI approach has been studied here for a linear elastic application

in the evolution from the GC to the GCbis algorithms. Results show a faster convergence

of the GCbis algorithm to the exact solution refining the time steps. Furthermore, the

absence of numerical dissipation of the GCbis algorithm highlights its accuracy for long

analyses, as highlighted in Figures 2.15(a) and 2.16(a), where the acceleration solution of

the GC algorithm is damped out, that is why moreover referring to [Mahjoubi et al., 2009],

the GCbis algorithm provides a better accuracy than the GC one. Therefore, the GCbis

algorithm will be taken as reference for the development of the Substitution method.
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Figure 2.15: Vertical accelerations comparison of the GC and GCbis algorithms at the

point B2.
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Figure 2.16: Vertical accelerations comparison of the GC and GCbis algorithms at the

location C.
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Figure 2.17: Vertical accelerations comparison of the GC and GCbis algorithms at the

location A.
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Chapter 3

A weakly-intrusive substitution-based

coupling technique

In this Chapter as in [Bettinotti et al., 2014a], the formulation

of the Substitution method is introduced and verified in

comparison with the Domain Decomposition method. A

stability study is performed and a substitution strategy is

studied for different geometries. The implementation inside

the commercial software Abaqus via the Co-Simulation

technique is described and, after the extension of the

Co-Simulation technique to Domain Decomposition

explicit-explicit couplings, the application to truss test cases

is analyzed.
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1 Introduction

Non-overlapping Domain Decomposition methods constitute an efficient tool for sepa-

rating the overall domain in subdomains with different models, meshes and time steps.

Hereafter, the solution of such methodology, implemented as FETI multi-time-step ap-

proach with the GC and GCbis algorithms respectively in [Gravouil and Combescure,

2001] and [Mahjoubi et al., 2009], is taken as reference for the development and verifi-

cation of a methodology less intrusive for dynamic adaptivity, that will be referred to as

Substitution method.

Introduced in [Bettinotti et al., 2014a], the Substitution method is based on a global-

local coupling formulation, with a local domain completely overlapped to the zone of

interest of the global one. Local analysis patches can be activated or de-activated in

function of global criteria. The global and local analyses are coupled through a kinematic

constraint at the local level and an iterative correction at the global level.

The same 2-dimensional linear elastic case introduced in Chapter 1 and analyzed in

Chapter 2 is here considered for the formulation of the Substitution method. A first set

of analyses is then presented in comparison with the Domain Decomposition GCbis al-

gorithm. The energy method is then applied to assess the stability of the method and

an energy-preserving formulation is presented. As in Domain Decomposition, the exten-

sion of such methodology to deal with nonlinearities and adaptive time stepping can be

computationally costly because of the required re-assembly of the condensation matrix.

New test cases are then considered. The implementation inside the commercial soft-

ware Abaqus is then briefly described, with application to a simple truss test example.

2 Reference problem

To present the method, the reference problem introduced in Section 4 of Chapter 1 is

considered. Considering Figure 1.3, the part on the left will be referred to in what follows

as the local region and denoted by Ωℓ, the part on the right will be referred to as the global

complementary region and denoted by Ωgc, so that Ωℓ∪Ωgc = Ω.

As in Figure 1.4 in Section 4 of Chapter 1, we assume that the problem has been

discretized using a non-uniform mesh of displacement-based quadrilateral elements. The

partitions of the mesh are here redefined as in Figure 3.1: the fine mesh will be referred

to as local mesh Ωh
ℓ and the coarse mesh Ωh

gc will be referred to as global complementary

mesh.

2.1 Interface compatibility and momentum balance

The kinematic compatibility over the interface Γh between the two regions is enforced

at the nodes of the global complementary mesh Ωh
gc. Velocities of the remaining nodes

of the interface Γh in the local mesh Ωh
ℓ are obtained by means of linear interpolation in
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Figure 3.1: Non-uniform mesh of the reference problem.

space of velocities of the nodes of the global complementary mesh Ωh
gc, so that:

U̇ℓ,Γ = Π1
hU̇g,Γ (3.1)

where Π1
h is the spatial down-scaling operator.

In addition to kinematic compatibility, the momentum balance of the interface Γh

should be enforced as well. In order to do so, the interface Γh is considered in what

follows as a massless entity subjected to the actions transmitted by the local and global

complementary meshes Ωh
ℓ and Ωh

gc, respectively, and possibly to point or line loads di-

rectly applied to the interface Γh, as shown in Figure 3.2.

Figure 3.2: Free body diagram of interface between local and global complementary

regions in the reference problem.

The momentum balance of nodes of the global complementary mesh Ωh
gc over the

interface Γh is so written in terms of nodal forces as follows:

Π1T
h Rℓ,Γ +Rgc,Γ +Fext

Γ,Γ = 0 (3.2)

where Π1T
h is the linear spatial up-scaling operator, Rℓ,Γ and Rgc,Γ are the reaction forces

transmitted to the interface Γh by the local and the global complementary regions, respec-

tively, as in Figure 3.3, Fext
Γ,Γ are nodal forces due to possible point or line loads directly

applied on the interface.
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From equilibrium of the local and global complementary regions, one obtains, respec-

tively:

Rℓ,Γ = Fext
ℓ,Γ−Mℓ,ΓÜℓ,Γ−Fint

ℓ,Γ

Rgc,Γ = Fext
gc,Γ−Mgc,ΓÜg,Γ−Fint

gc,Γ

(3.3)

where Mℓ,Γ and Mgc,Γ are the lumped mass matrices, Fint
ℓ,Γ and Fint

gc,Γ are internal force

vectors and Fext
ℓ,Γ and Fext

gc,Γ are the external force vectors accounting for body forces, in the

local and global complementary regions, respectively.

Summarizing, at the level of the interface Γh, the solution of the reference problem is

characterized by:

1. the compatibility of velocities in Equation (3.1), over the interface between local

and global complementary regions;

2. the interface momentum balance in Equation (3.2), where the reaction forces over

the interface, which include inertia terms, are defined by the equilibrium in Equa-

tion (3.3) of the local and global complementary regions.

Figure 3.3: Reaction forces in local and global complementary regions.

3 Substitution method

The substitution-based coupling technique, referred to as Substitution method in the fol-

lowings, aims at keeping a global analysis applied to the overall domain Ω with fixed

topology during the entire analysis and with a coarse mesh Ωh
g, correcting the coarse so-

lution through a local analysis run on a refined model Ωh
ℓ only where needed.

The reference problem in Figure 3.1 is solved by the Substitution method utilizing:

• a global analysis carried out with the coarse mesh Ωh
g in Figure 3.4 constituted of 2

quadrilateral elements covering the entire structure;

• a local analysis carried out with the fine mesh Ωh
ℓ in Figure 3.5 constituted of 20

quadrilateral elements and applied near the boundary conditions in order to attenu-

ate shear locking effects.
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Figure 3.4: Mesh of the whole domain for the global analysis.

Figure 3.5: Mesh of the local region for the refined local analysis.

As described in what follows, conditions analogous to the reference problem in Sec-

tion 2.1 ones are assumed in order to obtain same results in a semi-discrete formulation.

3.1 Interface multi-scale compatibility condition

The global-local compatibility of the velocities as in Equation (3.1) is ensured at the local

level. An iterative scheme is then applied in order to reach equilibrium between the two

analyses.

To formulate such conditions, the global mesh in Figure 3.4 is partitioned in global

substitution and global complementary meshes as defined in Figure 3.6 with Ωh
gs and Ωh

gc,

respectively. The global substitution mesh Ωh
gs, which does not contain fine geometric

details and can be characterized by a simplified material behavior, should be substituted

by the refined local mesh Ωh
ℓ in Figure 3.5.

Additional nodal forces denoted by P, defined in what follows as correction forces,

have to be applied over the global interface Γh
g as described in Figure 3.6 in order to

guarantee that the solution of the global problem is identical over the interface to the

one of the reference problem. Such correction forces are intended to compensate for the

different action exerted by the local mesh Ωh
ℓ and by its global substitution Ωh

gs.

The main problem in the Substitution method is then the determination of the correc-

tion forces P. Knowing those forces, the correct interface velocities can be determined
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Figure 3.6: Definition of the global partition and of the correction forces P.

and applied to the local analysis. If the imposed velocities over the interface Γh
g are the

correct ones, its response would then coincide with the one of the reference problem.

When the local region is replaced by the global substitution region and the correction

forces are added over Γh
g, the global interface momentum balance reads:

Rgs,Γ +Rgc,Γ +P+Fext
Γ,Γ = 0 (3.4)

where:

Rgs,Γ = Fext
gs,Γ−Mgs,ΓÜg,Γ−Fint

gs,Γ. (3.5)

The correction forces P are determined by imposing that the left-hand sides of Equa-

tions (3.2) and (3.4) are equivalent, so that:

Rgs,Γ +Rgc,Γ +P+Fext
Γ,Γ = Π1T

h Rℓ,Γ +Rgc,Γ +Fext
Γ,Γ. (3.6)

Eliminating the values Rgc,Γ and Fext
Γ,Γ, Equation (3.6) becomes:

P = Π1T
h Rℓ,Γ−Rgs,Γ, (3.7)

i.e., using the definition of reaction forces given in Equations (3.3)1 and (3.5):

P = Π1T
h

(

Fext
ℓ,Γ−Mℓ,ΓÜℓ,Γ−Fint

ℓ,Γ

)

−Fext
gs,Γ +Mgs,ΓÜg,Γ +Fint

gs,Γ. (3.8)

Remark 8 Considering the correction and reaction definitions above and knowing that

over the interface:

Mg,Γ = Mgs,Γ +Mgc,Γ, Fint
g,Γ = Fint

gs,Γ +Fint
gc,Γ, Fext

g,Γ = Fext
gs,Γ +Fext

gc,Γ +Fext
Γ,Γ, (3.9)

the global interface momentum balance in Equation (3.4) becomes:

Mg,ΓÜg,Γ +Fint
g,Γ = Fext

g,Γ +P. (3.10)
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3.2 Global time integration with the correction forces

Discretizing the analysis time interval [tin, tend] with an integer number N of pre-fixed

global time steps ∆tg, such that N∆tg = tend−tin, the integration in time of Equation (3.10)

following the Central Difference scheme allows one to write the global interface momen-

tum balance in the global time stepping as:

Mg,Γ
n+1Ag,Γ = n+1Fext

g,Γ− n+1Fint
g,Γ +

n+1P (3.11)

where the correction forces n+1P are:

n+1P = Π1T
h

n+1Rℓ,Γ− n+1Rgs,Γ (3.12)

with the global substitution and local nodal forces n+1Rgs,Γ and n+1Rℓ,Γ respectively de-

fined as:

n+1Rℓ,Γ = n+1Fext
ℓ,Γ−Mℓ,Γ

n+1Aℓ,Γ− n+1Fint
ℓ,Γ,

n+1Rgs,Γ = n+1Fext
gs,Γ−Mgs,Γ

n+1Ag,Γ− n+1Fint
gs,Γ.

(3.13)

From Equations (3.11), (3.12) and (3.13), it is highlighted that the global solution is

function of the local one and vice versa, because the correction forces P are computed in

function of the local solution and the global velocities are imposed over the local interface

Γh
ℓ in the local analysis, so Equation (3.11) is a nonlinear set of algebraic equations that

requires the iterative correction of the global solution in function of the local one over the

local time stepping.

3.3 Iterative scheme: fixed-point algorithm

An iterative fixed-point algorithm is employed to solve Equation (3.11). At the nth global

time step and ith iteration, the global interface momentum balance reads:

Mg,Γ

(

n+1Ag,Γ

)i
= n+1Fext

g,Γ− n+1Fint
g,Γ +

(

n+1P
)i

(3.14)

where the correction forces are defined as:

(

n+1P
)i
= Π1T

h

(

n+1Rℓ,Γ

)i−
(

n+1Rgs,Γ

)i
(3.15)

with:

(

n+1Rℓ,Γ

)i
= n+1Fext

ℓ,Γ−Mℓ,Γ

(

n+1Aℓ,Γ

)i−
(

n+1Fint
ℓ,Γ

)i

(

n+1Rgs,Γ

)i
= n+1Fext

gs,Γ−Mgs,Γ

(

n+1Ag,Γ

)i−1− n+1Fint
gs,Γ

(3.16)

in which the global substitution reaction forces are expressed in function of the previous

iteration i−1, that must be known to be placed in the right-hand side of Equation (3.14).
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Thus, Equation (3.14) can be rewritten by developing the corrective term
(

n+1P
)i

as:

Mg,Γ

(

n+1Ag,Γ

)i
= n+1Fext

g,Γ− n+1Fint
g,Γ +Π1T

h

(

n+1Rℓ,Γ

)i−
(

n+1Rgs,Γ

)i
(3.17)

that, developing the global reaction forces
(

n+1Rgs,Γ

)i
defined in Equation (3.13)2 and

considering the splitting definitions in Equations (3.9), becomes:

Mg,Γ

(

n+1Ag,Γ

)i
= n+1Fext

Γ,Γ+
n+1Fext

gc,Γ−n+1Fint
gc,Γ+Π1T

h

(

n+1Rℓ,Γ

)i
+Mgs,Γ

(

n+1Ag,Γ

)i−1
.

(3.18)

Defining the global complementary reaction forces
(

n+1Rgc

)i
again in function of the

previous iteration i−1:

(

n+1Rgc

)i
= n+1Fext

gc,Γ−Mgc,Γ

(

n+1Ag,Γ

)i−1− n+1Fint
gc,Γ (3.19)

Equation (3.18) becomes:

Mg,Γ

(

n+1Ag,Γ

)i
= Π1T

h

(

n+1Rℓ,Γ

)i
+
(

n+1Rgc,Γ

)i
+ n+1Fext

Γ,Γ +Mg,Γ

(

n+1Ag,Γ

)i−1
(3.20)

that implies for i→+∞:

(

n+1Ag,Γ

)i→
(

n+1Ag,Γ

)i−1 ⇔ Π1T
h

(

n+1Rℓ,Γ

)i
+
(

n+1Rgc,Γ

)i
+n+1Fext

Γ,Γ→ 0 (3.21)

i.e. stagnation of the solution in terms of accelerations implies equilibrium over the inter-

face.

The measure of the convergence of the iterative scheme is then taken as:

e =

∥

∥

∥
Π1T

h

(

n+1Rℓ

)i
+
(

n+1Rgc

)i
+ n+1Fext

Γ,Γ

∥

∥

∥

L2(Γh
g)

∥

∥

NFext
g

∥

∥

L2(∂Ω f )

(3.22)

where ‖�‖L2(�) represents an L2 norm over the surface � and N denotes the final time

counter. For more general purposes, an other type of normalization of the convergence

measure should be considered.

3.4 Time down-scaling operator

Nonlinearities in Equation (3.11) are so due to the dependencies between the global and

local analyses. Indeed, the local analysis is run applying the continuity between global

and local velocities over the interface, as compatibility condition of the reference problem

in Equation (3.1). Nevertheless, the global and local time scales are different and a time

down-scaling operator is necessary from global to local velocities. Two different and

pre-fixed time steps are defined in the global and local analyses such that ∆tg = M∆tℓ, as

illustrated in Figure 3.7.

The integration of Equation (3.1) in time forces one to define a down-scaling time

operator Πt (�) in order to impose the kinematic constraint at the local time steps between

tn and tn+1, so that:

U̇ℓ,Γ|[tin,tend] = Π1
hΠt

(

U̇g,Γ

)

. (3.23)
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Figure 3.7: Time discretization for global and local analyses.

3.4.1 Linear interpolation

As time down-scaling operator of Domain Decomposition GC algorithm, the linear in-

terpolation Π1
t (

n�,n+1�) of velocities is tested for the Substitution method. The local

constraint reads:

U̇ℓ,Γ(s)|[tn,tn+1] =
nVg,Γ (1− s)+ n+1Vg,Γ s (3.24)

with s(t) = (t− tn)/∆tg and s ∈ [0,1]. Considering the local time-stepping with s(tm):

mVℓ,Γ = nVg,Γ

(

1− m

M

)

+ n+1Vg,Γ

(m

M

)

. (3.25)

In the simple example proposed in Figure 3.8, the motion of a point with mass M con-

strained by a spring of stiffness K and perturbed by a force constant in time is described

with the Central Difference scheme as global analysis, whose solution will be denoted

by the subscript “g,◦”. The same motion in terms of velocities is down-scaled to a finer

time scale, such that the time step ratio M = 10, and the Central Difference scheme is

used to calculate displacements and accelerations as local analysis: these variables will

be denoted by the subscript “ℓ,◦”.

Figure 3.8: Spring example for testing the time down-scaling operator, taking a time step

ratio M = 10.

As shown in Figure 3.9, velocities are linearly interpolated and are continuous at each

local time step, whereas accelerations jump between two values in the global time step.

With the linear interpolation in Equation (3.25), one would thus have at each local

time step:
m+1Vℓ,◦−mVℓ,◦ =

(

n+1Vg,◦− nVg,◦
)

/M (3.26)
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Figure 3.9: Velocity constraint as a linear interpolation in time.

which is constant throughout the local analysis in the global time step.

From the Central Difference scheme applied to both the global and local analyses:

m+1Vℓ,◦−mVℓ,◦ =
(

m+1Aℓ,◦+
mAℓ,◦

) ∆tℓ

2

n+1Vg,◦− nVg,◦ =
(

n+1Ag,◦+
nAg,◦

) ∆tg

2

(3.27)

and Equation (3.26) becomes:

(

m+1Aℓ,◦+
mAℓ,◦

) ∆tℓ

2
=
(

n+1Ag,◦+
nAg,◦

) ∆tg

2M
(3.28)

i.e., with the definition of the global time step ∆tg = M∆tℓ:

m+1Aℓ,◦+
mAℓ,◦ =

n+1Ag,◦+
nAg,◦. (3.29)

As a result of the linear interpolation of global velocities, Equation (3.29) is enforced

at each local time step of the entire local analysis. Therefore, assuming homogeneous

initial conditions 0Aℓ,◦ =
0Ag,◦ = 0:

• if M is odd, mAℓ,◦ jumps between nAg,◦ and n+1Ag,◦ with m = 1, . . . ,M,

• if M is even, mAℓ,◦ jumps between 0 and (nAg,◦+ n+1Ag,◦) with m = 1, . . . ,M, as

illustrated in Figure 3.10 with M = 10.

Such jumping behavior leads to unstable and inconsistent results. Therefore, an alter-

native to the linear interpolation of global velocities in the local time stepping has so to

be considered, in order to avoid such numerical outcome.

3.4.2 Cubic Hermitian interpolation

The idea to overcome the preliminary difficulties is so to use more informations from the

global solution in the local constraint.
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Figure 3.10: Resulting accelerations with a linear interpolation of velocity in time and

applying the Central Difference scheme to global and local solutions.

In this way, as an alternative to the linear interpolation Π1
t (

n�,n+1�) in Equation (3.24),

the cubic Hermitian interpolation Π3
t (

n�,n△,n+1�,n+1△) is defined in function of both

global velocities and accelerations, so that:

U̇ℓ,Γ|[tn,tn+1] = Π1
hΠ3

t

(

nVg,Γ,
nAg,Γ,

n+1Vg,Γ,
n+1Ag,Γ

)

(3.30)

that, introducing the intrinsic local time s(t) and 4 cubic polynomials ψi(s), becomes:

U̇ℓ,Γ|[tn,tn+1] = Π1
h

(

nVg,Γψ1(s)+
nAg,Γ∆tgψ2(s)+

n+1Vg,Γψ3(s)+
n+1Ag,Γ∆tgψ4(s)

)

.
(3.31)

The 4 cubic polynomials ψi(s) with i = 1, . . . ,4 are obtained imposing:

ψi(0) = δi1, ψ̇i(0) = δi2, ψi(1) = δi3, ψ̇i(1) = δi4, i = 1, . . .4 (3.32)

where δi j is the Kronecker’s delta, so that:

U̇ℓ,Γ|[tn,tn+1] = Π1
h

nVg,Γ

(

1−3s2 +2s3
)

+Π1
h

nAg,Γ∆tg
(

s−2s2 + s3
)

+

+Π1
h

n+1Vg,Γ

(

3s2−2s3
)

+Π1
h

n+1Ag,Γ∆tg
(

−s2 + s3
)

(3.33)

and considering the local time-stepping:

mVℓ,Γ = Π1
h

nVg,Γ

(

1−3
m2

M2
+2

m3

M3

)

+Π1
h

nAg,Γ∆tg

(

m2

M2
−2

m2

M2
+

m3

M3

)

+

+Π1
h

n+1Vg,Γ

(

3
m2

M2
−2

m3

M3

)

+Π1
h

n+1Ag,Γ∆tg

(

−m2

M2
+

m3

M3

)
(3.34)

For the simple example of Figure 3.8, a continuity at the global time steps between the

global and local velocities and between the global and local accelerations is expressed, as

shown in Figures 4.1.

On the other hand, as it was found out for Domain Decomposition with multi-time-

step coupling, the displacements continuity is not ensured, as highlighted in Figure 3.12.
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Figure 3.11: Velocity constraint as a cubic Hermitian interpolation in time in function of

global velocities and accelerations.

 0.036338

 0.0363382

 0.0363384

 0.0363386

 0.0363388

 0.036339

 0.0363392

 0.0363394

 0.0363396

 0.0363398

 0.03634

 0.00676  0.006765  0.00677  0.006775  0.00678  0.006785  0.00679  0.006795  0.0068

D
is

p
la

ce
m

en
t 

[m
]

Time [s]

global
local

Figure 3.12: Displacements discontinuity with a cubic Hermitian interpolation in time

and applying the Central Difference scheme for global and local solutions.
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3.5 Substitution strategy

Combining the iterative scheme of Equations (3.14), (3.15) and (3.16) in Section 3.3 with

the cubic Hermitian interpolation in Equation (3.34) as time down-scaling operator in

Section 3.4, the Substitution method for the application in Figure 1.3 makes use of:

1. a global analysis in the mesh Ωh
g defined in Figure 3.4, so that ∀n ∈ {0, . . . ,N−1}:

Mg

(

n+1Ag

)i
= n+1Fext

g − n+1Fint
g +CT

g

(

n+1P
)i

(3.35)

where Cg is the Boolean unitary matrix that extracts nodal values from the global

domain to the global interface, so that:

Cg,(dimΓh
g×dimΩh

g)
: Ωh

g 7→ Γh
g (3.36)

and:

Cg
n+1Ag =

n+1Ag,Γ. (3.37)

2. a local analysis in the mesh Ωh
ℓ defined in Figure 3.5, so that ∀n ∈ {0, . . . ,N−1}:

Mℓ

(

m+1Aℓ

)i
= m+1Fext

ℓ −
(

m+1Fint
ℓ

)i

∀m ∈ {0, . . . ,M−1} (3.38)

imposing the continuity of the local velocities with the global ones over the inter-

face Γh
ℓ , so that ∀n ∈ {0, . . . ,N−1}:
(

m+1Vℓ,Γ

)i
= Π1

hΠ3
t

(

nVg,Γ,
nAg,Γ,

(

n+1Vg,Γ

)i
,
(

n+1Ag,Γ

)i
)

∀m ∈ {0, . . . ,M−1}.
(3.39)

3.5.1 Decomposition in pre-computation and correction phases

The resolution procedure of Equation (3.35) is decomposed in two phases:

1. the pre-computation phase: the global problem is solved using the coarse mesh and

coarse time discretization everywhere; their output is computed only once using

information available from the previous time step;

2. the correction phase: new estimates of the correction forces
(

n+1P
)i

over the inter-

face Γh
g are computed by repeated solutions of the local problem, involving the fine

space and time discretizations.

The global decomposition in pre-computation and correction terms so reads:

(

n+1Ag

)i
= n+1Aprec

g +
(

n+1Acorr
g

)i
(3.40)

so that ∀n ∈ {0, . . . ,N−1}:
Mg

n+1A
prec
g = n+1Fext

g − n+1Fint
g in Ωh

g|tn+1

Mg,Γ

(

n+1Acorr
g,Γ

)i

=
(

n+1P
)i

over Γh
g|tn+1

(3.41)
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3.5.2 Steps of the algorithm

The algorithm to solve Equations (3.35) and (3.38) is divided in 3 main steps per each

global time step:

1. global pre-computation phase in the overall mesh Ωh
g, as in classical Finite Element

analysis the solution is computed in function of external and internal forces:

Mg
n+1Aprec

g = n+1Fext
g − n+1Fint

g ; (3.42)

2. global-local iterative correction phase over the global interface Γh
g, substituting the

global substitution mesh Ωh
gs by the local one Ωh

ℓ and applying the correction forces:

(a) local analysis in the refined mesh Ωh
ℓ (initializations i = 1 and

(

n+1Acorr
g,Γ

)1

=

0):

Mℓ

(

m+1Aℓ

)i
= m+1Fext

ℓ −
(

m+1Fint
ℓ

)i

∀m ∈ {0, . . . ,M−1} (3.43)

with boundary conditions over the local interface Γh
ℓ as:

(

m+1Vℓ,Γ

)i
= Π1

hΠ3
t

(

nVg,Γ,
nAg,Γ,

(

n+1Vg,Γ

)i
,
(

n+1Ag,Γ

)i
)

(3.44)

and:
(

n+1Ag,Γ

)i
= n+1A

prec
g,Γ +

(

n+1Acorr
g,Γ

)i
; (3.45)

(b) global correction over the global interface Γh
g:

Mg,Γ

(

n+1Acorr
g,Γ

)i
=
(

n+1P
)i

(3.46)

with:

(

n+1P
)i
= Π1T

h

(

n+1Fext
ℓ,Γ−Mℓ,Γ

(

n+1Aℓ,Γ

)i−
(

n+1Fint
ℓ,Γ

)i
)

+

−n+1Fext
gs,Γ +Mgs,Γ

(

n+1Ag,Γ

)i−1
+ n+1Fint

gs,Γ;

(3.47)

(c) re-iteration for the sub-step (a) until the equilibrium is satisfied, i.e. the con-

vergence measure e in Equation (3.22) is lower than a pre-fixed tolerance e

and update of i to i+1;

3. re-adjustment of the global solution covering the gap between global and local anal-

yses due to the tolerance and the iteration counter difference (the global solution

belongs to the iteration i−1, though the local one belongs to the iteration i):

Mg,Γ
n+1Aresid

g,Γ =−
(

n+1Rgc,Γ

)i−Π1T
h

(

n+1Rℓ,Γ

)i
(3.48)

and:
n+1Ag,Γ = n+1A

prec
g,Γ +

(

n+1Acorr
g,Γ

)i
+ n+1Aresid

g,Γ . (3.49)
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It is important to note that n+1Aresid
g,Γ is a residual term proportional to the pre-fixed

tolerance and n+1Aresid
g,Γ ≪ n+1Acorr

g,Γ if the tolerance is small enough.

Remark 9 Satisfying Equations (3.48) and (3.49) at the step 5 of the algorithm, the so-

lution only depends on the iteration i− 1. Indeed, considering only the corrected accel-

erations and inverting the mass matrix:

(

n+1Acorr
g,Γ

)i
= M−1

g,Γ

(

n+1P
)i
= M−1

g,Γ

(

Π1T
h

(

n+1Rℓ,Γ

)i−
(

n+1Rgs,Γ

)i
)

(3.50)

where the term
(

n+1Rℓ,Γ

)i
depends on the local accelerations

(

n+1Aℓ,Γ

)i
at the iteration i,

whereas the term
(

n+1Rgs,Γ

)i
depends on the global accelerations

(

n+1Ag,Γ

)i−1
at the

iteration i−1. On the other hand the residual accelerations read:

n+1Aresid
g,Γ = M−1

g,Γ

(

−
(

n+1Rgc,Γ

)i−Π1T
h

(

n+1Rℓ,Γ

)i
)

(3.51)

and the sum of corrected and residual accelerations becomes:

(

n+1Acorr
g,Γ

)i
+ n+1Aresid

g,Γ = M−1
g,Γ

(

Π1T
h

(

n+1Rℓ,Γ

)i−
(

n+1Rgs,Γ

)i
)

+

−M−1
g,Γ

(

(

n+1Rgc,Γ

)i
+Π1T

h

(

n+1Rℓ,Γ

)i
)

=

=−M−1
g,Γ

(

Π1T
h

(

n+1Rgs,Γ

)i
+
(

n+1Rgc,Γ

)i
)

.

(3.52)

The flow chart in Algorithm 9 summarizes the procedure steps above.
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while tg < tend do

global pre-computation: Mg
n+1A

prec
g = n+1Fext

g − n+1Fint
g ;

if Substitution is activated then

initialize
(

n+1Ag,Γ

)0← n+1A
prec
g,Γ ;

while e > e do

back in time tℓ← tg;

while tℓ < tg +∆tg do

local computation: Mℓ

(

m+1Aℓ

)i
= m+1Fext

ℓ −
(

m+1Fint
ℓ

)i
;

with:
m+1Vℓ,Γ←Π1

hΠ3
t

(

nVg,Γ,
nAg,Γ,

(

n+1Vg,Γ

)i
,
(

n+1Ag,Γ

)i
)

;

update tℓ← tℓ+∆tℓ;

end

global correction: Mg,Γ

(

n+1Acorr
g,Γ

)i

=
(

n+1P
)i

;

update
(

n+1Ag,Γ

)i← n+1A
prec
g,Γ +

(

n+1Acorr
g,Γ

)i

;

update i← i+1;

compute e;

end

global stabilization: Mg,Γ
n+1Aresid

g,Γ =−
(

n+1Rgc

)i−Π1T
h

(

n+1Rℓ

)i
;

update n+1Ag,Γ← n+1A
prec
g,Γ +

(

n+1Acorr
g,Γ

)i

+ n+1Aresid
g,Γ ;

end

update tg← tg +∆tg;

end
Algorithm 9: Substitution iterative process.

3.6 Application and results analysis

The initial-boundary value problem introduced in System (1.1) is applied to solve the

reference problem described in Figure 3.13 via the Substitution method.

The data of the problem are as follows:

• density ρ = 7800 kg/m3;

• Young’s modulus E = 210 ·109 Pa;

• Poisson’s ratio ν = 0.3;

• length L = 30 m;

• height H = 10 m;
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Figure 3.13: Bondary conditions, loads, sizes and monitored locations of the problem.

• initial time tin = 0 s;

• final time tend = 0.5 s;

• uniform shear load f = 3 ·106 Pa constant in time.

The critical time step bound ∆tcr is estimated with Equation (1.20) in Section 3.1

of Chapter 1, leading to ∆tcr ≃ 13 · 10−4 s for the global analysis. The solution history

is observed at three representative locations of the domain: location A internal to the

local region Ωℓ, location B over the interface Γ between local and global complementary

regions and location C at the extremity of the structure (see Figure 3.13).

The Substitution method is validated by comparison with the Domain Decomposition

GCbis algorithm.

3.6.1 Comparison with Domain Decomposition GCbis algorithm and influence of

the time step size

The analysis is here carried out using pre-fixed time steps close to the critical bound ∆tcr,

so that:

• ∆tg = 12 ·10−4 s for the global analysis and the coarse subdomain,

• ∆tℓ = ∆tg/M = 3 ·10−4 s for the local analysis and the fine subdomain,

with the time step ratio M equal to the global-local mesh ratio hg/ℓ, such that M = hg/ℓ= 4.

A convergence tolerance e = 1% is considered for the comparison.

Figures 3.14 show the results in terms of vertical accelerations at the locations A and

C. The curves perfectly match at the beginning of the analysis until t = 0.05 s, after

which some discrepancies become visible. Nevertheless, it is difficult to assess which

curve denotes the most accurate solution.

Refining the time steps and keeping same time step ratio M and global-local mesh

ratio hg/ℓ such that M = hg/ℓ = 4, a second analysis is run with:
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Figure 3.14: Comparison between Substitution and Domain Decomposition (GCbis) in

terms of vertical accelerations.
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• ∆tg = 4 ·10−4 s for the global analysis and the coarse subdomain;

• ∆tℓ = 1 ·10−4 s for the local analysis and the fine subdomain.

Figures 3.15 show the comparison in terms of vertical accelerations and the curves

of Substitution and Domain Decomposition algorithm match during the whole analysis.

This demonstrates that, refining the time discretization, the solutions of Substitution and

Domain Decomposition converge to the same exact solution.
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Figure 3.15: Comparison between Substitution and Domain Decomposition (GCbis) in

terms of accelerations refining both the time steps.

In particular, Figures 3.16 compare the vertical accelerations of the two methods at

the location C at the beginning of the analysis until t = 0.1 s, considering the refinement

of the global time step with ∆tg = 0.0012 s, 0.0008 s and 0.0004 s and maintaining M =
hg/ℓ = 4. Figure 3.16(a) shows the convergence of the Domain Decomposition GCbis

algorithm toward the exact solution, whereas Figure 3.16(b) shows the convergence of

the Substitution. The results denote that the Substitution is more accurate with a coarse

time step but cumulates a larger phase difference during the analysis.

Further numerical studies should be conducted to assess the accuracy of the Substitu-

tion method in comparison with Domain Decomposition methods.
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Figure 3.16: Vertical acceleration at the location C at the beginning of the analysis refin-

ing the time steps.
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3.6.2 Convergence of the iterative procedure

As introduced in Section 3.3, a fixed-point iterative algorithm is employed to search for

the equilibrium between the global and local analyses. The convergence measure of the

iterative process is chosen to be the equilibrium-based convergence measure e of Equa-

tion (3.22).

The pre-fixed tolerance is reduced to e = 0.01% for this study.

Figure 3.17 shows the convergence rate of the iterative procedure. The convergence

measure is plotted in a logarithmic scale over the iterations at three representative times

of the analysis t1 = tend/3, t2 = tend/2 and t3 = 2tend/3, extending the analysis to tend =
2.5 s. The results show a convergence rate almost constant during the iterative process

and during the analysis.
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Figure 3.17: Convergence rate with e = 0.01% at three time instants: ti =
1+i

6
tend with

i = 1,2,3 and tend = 2.5 s.

Figure 3.18 shows the required number of iterations to get an acceptable error e < e =
1% in a common plot with the vertical displacements at the location B over the interface

Γh
g. The number of iterations varies between 4 and 8 throughout the duration of the anal-

ysis and follows the trend of the displacement solution, because the convergence measure

e is normalized by a term independent of time, while the reaction forces depend on the

configuration of the domain.

Figure 3.19 shows the solution in terms of vertical accelerations at the location B

over the interface Γh
g at the different iterations in a representative time interval between

t = 0.214 s and t = 0.222 s. The red markers denote the solution at the iterations and the

solid blue line indicates the solution at convergence e < e. The acceleration solution at

the iteration 5 is already close to the final outcome.

3.6.3 Stability study

The energy method, introduced in Section 4.2.4 of Chapter 1 for Domain Decomposition

couplings, is used here to test the stability of the Substitution method. In FETI Domain

Decomposition, Lagrange multipliers are applied over the interfaces to ensure kinematic
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Figure 3.18: Displacements and number of iterations with e = 1% during the simulation.
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Figure 3.19: Vertical accelerations at the location B over the iterations.

continuity and equilibrium, without iterations. Conversely, in Substitution, the kinematic

continuity is applied through local boundary conditions and the equilibrium is searched

through an iterative process. Whereas the stability indicator was connected to Lagrange

multipliers in Domain Decomposition, here it is expressed in function of the reaction

forces over the global interface due to the local boundary conditions and the global cor-

rections, so that:

nEΓ =
1

∆tℓ
Π1T

h JnVℓ,ΓKJnRℓ,ΓK+
1

∆tg
[nVgc,Γ] [

nRgc,Γ] . (3.53)

where, as introduced in Section 4.2.4 of Chapter 1, [�] = n+1�− n� is associated to the

global time step and J�K = ∑M−1
m=0

(

m+1�−m�
)

is associated to the local time stepping.

As for Domain Decomposition in Section 2.3 of Chapter 2, the stability indicator is

normalized by the external force term cumulated at the end of the analysis.

A convergence tolerance e = 1% is considered for this case of study.

The results in terms of stability indicators are shown in Figure 3.20: Figure 3.20(a)

shows the comparison between stability indicators of Domain Decomposition with GC

algorithm and Substitution. Where the red line, indicating the numerical dissipation of
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Domain Decomposition (GC), reaches absolute values around 20% that tend to grow, the

green curve associated to Substitution is approximatively null. Figure 3.20(b) focuses

on the stability indicator of the Substitution method and shows that the values steadily

oscillate around 0.5% but are not dissipative. It is important to note that such oscillations

are not in phase with the global solution. Further studies are necessary to assess the

oscillatory source of the stability indicator.
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Figure 3.20: Stability indicators.

The same analysis is run longer until the time tend = 10 s, with more than 8000 time

steps. Figure 3.21 shows the stability indicator always oscillating around negligible val-

ues.

Further analyses are carried out in order to study the variation of the stability indicator

in function of the discretization parameters as the time steps ∆tg and ∆tℓ, their ratio M and

the global-local mesh ratio hg/ℓ.

Firstly, the meshes and the time step ratio M are conserved and the time steps ∆tg and

∆tℓ are refined, so that three analyses are run with:

1. ∆tg = 12 ·10−4 s and ∆tℓ = ∆tg/M = 3 ·10−4 s with M = 4;

2. ∆tg = 8 ·10−4 s and ∆tℓ = ∆tg/M = 2 ·10−4 s with M = 4;
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Figure 3.21: Stability indicator with longer analysis with tend = 10 s.

3. ∆tg = 4 ·10−4 s and ∆tℓ = ∆tg/M = 1 ·10−4 s with M = 4.

Figure 3.22 shows the decrease of the stability indicator values proportional to the

decrease of the time steps. In every analysis, the values steadily oscillate around a given

value, that is decreasing in function of the time steps.
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Figure 3.22: Stability indicator comparisons decreasing the time steps ∆tg and ∆tℓ and

fixing the time step ratio M = 4.

Then, as illustrated in Figure 3.23, the increase of the time step ratio M is considered

keeping the same global and local meshes, so that three analyses are run with:

1. ∆tg = 12 ·10−4 s and ∆tℓ = ∆tg/M = 3 ·10−4 s with M = 4;

2. ∆tg = 12 ·10−4 s and ∆tℓ = ∆tg/M = 1.5 ·10−4 s with M = 8;

3. ∆tg = 12 ·10−4 s and ∆tℓ = ∆tg/M = 0.75 ·10−4 s with M = 16.

Figure 3.24 shows that the stability indicators of the three solutions follow approxi-

matively the same paths and the values are nearly the same. So, the decrease of the local

time step ∆tℓ alone does not influence the stability of the coupling.
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Figure 3.23: Refinement of the local time step ∆tℓ, fixing the global one ∆tg.
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Figure 3.24: Stability indicator comparisons increasing the time step ratio M, fixing the

global time step ∆tg.
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At last, the meshes illustrated in Figure 3.25 are considered in order to test the influ-

ence of the global-local mesh size ratio hg/ℓ onto the stability indicator. In addition to the

analysis with M = hg/ℓ = 4, two additional analyses with refinement are performed. A

low global time step is chosen. The three analyses are so run with:

1. ∆tg = 4 ·10−4 s and ∆tℓ = ∆tg/M = 1.0 ·10−4 s with M = hg/ℓ = 4;

2. ∆tg = 4 · 10−4 s and ∆tℓ = ∆tg/M = 0.5 · 10−4 s with M = hg/ℓ = 8 and the local

mesh as in Figure 3.25(a);

3. ∆tg = 4 ·10−4 s and ∆tℓ = ∆tg/M = 0.25 ·10−4 s with M = hg/ℓ = 16 and the local

mesh as in Figure 3.25(b).

(a) global-local mesh size ratio hg/ℓ = 8

(b) global-local mesh size ratio hg/ℓ = 16

Figure 3.25: Mesh refinement of the local analysis.

Figure 3.26 shows the results related to the mesh refinement. Once again, the sta-

bility indicator oscillates around the similar values, though a slightly difference phase is

remarked. Furthermore, the sensitivity of the stability indicator is remarked with such

refinement. Indeed, one may observe that increasing the global time step ∆tg the curves

are not easily comparable. Further studies are necessary to define the stability of the

algorithm in function of the global-local interface refinement hg/ℓ.
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Figure 3.26: Stability indicator comparing different time step ratios M and global-local

mesh ratios hg/ℓ.

4 Energy-preserving Substitution method

By analogy with the Domain Decomposition evolution, an alternative energy-preserving

version of the Substitution method is here proposed. A new formulation with Lagrange

multipliers inspired to the remarks in [Prakash and Hjelmstad, 2004] is considered. The

continuity of velocities is enforced only at the global level and the Lagrange multipliers

are linearly interpolated in time over the local time stepping.

4.1 Definition of the new interface constraint

The local momentum balance reads:

Mℓ

(

m+1Aℓ

)i
= m+1Fext

ℓ −m+1Fint
ℓ +CT

ℓ Π1
t

(

n
Λ,

(

n+1
Λ
)i
)

(3.54)

where Cℓ is the Boolean unitary matrix that extracts nodal values from the local domain

to the local interface, so that:

Cℓ,(dimΓh
ℓ×dimΩh

ℓ )
: Ωh

ℓ 7→ Γh
ℓ (3.55)

and:

Cℓ
n+1Aℓ =

n+1Aℓ,Γ (3.56)

and the constraint of velocities at each global time step reads:

(

n+1Vℓ,Γ

)i
= Π1

h

(

n+1Vg,Γ

)i
. (3.57)

As in the case of the energy-preserving multi-time-step FETI approach, the formula-

tion utilizes a monolithic matrix notation comprehending displacements, velocities and

accelerations in the local time stepping between the global times tn and tn+1.
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Defining the local matrices:

Mℓ =







Mℓ 0 0

−I∆tℓ
2

I 0

0 0 I






Nℓ =









Kℓ
∆t2

ℓ
2

Kℓ∆tℓ Kℓ

−I∆tℓ
2

−I 0

−I
∆t2

ℓ
2
−I∆tℓ −I









Xℓ =







Aℓ

Vℓ

Uℓ







F
ext
ℓ =







Fext
ℓ
0

0







Cℓ =





CT
ℓ

0

0



 Bℓ =
[

0 Cℓ 0
]

where Kℓ is the local stiffness matrix. Equations (3.54) and (3.57) at each global time

step are rewritten in a unified way as:

















Mℓ
1
M
Cℓ

Nℓ Mℓ
2
M
Cℓ

. . .
. . .

...

Nℓ Mℓ Cℓ

Bℓ















































1Xℓ
2Xℓ

...
MXℓ

n+1
Λ































=



































1
Fext
ℓ −Nℓ

0Xℓ+
M−1

M
Cℓ

n
Λ

2
Fext
ℓ + M−2

M
Cℓ

n
Λ

...
M
Fext
ℓ

Π1
h

(

n+1Vg,Γ

)i



































(3.58)

that becomes:
[

Mℓ Cℓ

Bℓ 0

]

{

n+1
Xℓ

n+1
Λ

}

=

{

Fℓ

0

}

(3.59)

taking Mℓ as a lower triangular matrix composed of matrices Mℓ and Nℓ, Cℓ as a matrix

containing the linear interpolation of matrices Cℓ, Bℓ as a Boolean matrix which con-

sists of matrix Bℓ, Xℓ is the displacement-velocity-acceleration vector and Fℓ is the force

vector, containing also the first term of the Lagrange multipliers’ linear interpolation.

As for Domain Decomposition, a free-link separation approach is used to decompose

the variable vector Xℓ into Xfree
ℓ +Xlink

ℓ . Lagrange multipliers are so defined as:

Mℓ
n+1

X
link
ℓ = Cℓ

n+1
Λ. (3.60)

System (3.59) can be solved in three steps:

1. resolution of the free problem:

Mℓ
n+1

X
free
ℓ = Fℓ; (3.61)

2. calculation of the Lagrange multipliers with:

MℓY= Cℓ (3.62)

and

Hℓ
n+1

Λ= Bℓ
n+1

X
free
ℓ (3.63)

where Hℓ = BℓY is the condensation matrix and:

Bℓ
n+1

X
free
ℓ = Cℓ

MVfree
ℓ ; (3.64)
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3. resolution of the link problem:

n+1
Xlink = Y n+1

Λ. (3.65)

resolution of MℓYℓ = Cℓ;

computation of Hℓ = BℓYℓ;

while tg < tend do

global pre-computation: Mg
n+1A

prec
g = n+1Fext

g − n+1Fint
g ;

if Substitution is activated then

initialize
(

n+1Ag,Γ

)0← n+1A
prec
g,Γ ;

while e > e do

back in time tℓ← tg;

while t
free
ℓ < tg +∆tg do

local free computation:

Mℓ

(

m+1Afree
ℓ

)i
= m+1Fext

ℓ −
(

m+1F
int,free
ℓ

)i

+Cℓ

(

1− m
M

)

n
Λ;

update tfree
ℓ ← tfree

ℓ +∆tℓ;

end

interface constraint: Hℓ

(

n+1
Λ
)i
=
(

n+1Vg,Γ

)i− n+1Vfree
ℓ,Γ ;

while t link
ℓ < tg +∆tg do

local link computation:

Mℓ

(

m+1Alink
ℓ

)i
=−

(

m+1F
int,free
ℓ

)i

+Cℓ
m
M

(

n+1
Λ
)i

;

update t link
ℓ ← t link

ℓ +∆tℓ;

end

global correction: Mg,Γ

(

n+1Acorr
g,Γ

)i

=
(

n+1P
)i

;

update
(

n+1Ag,Γ

)i← n+1A
prec
g,Γ +

(

n+1Acorr
g,Γ

)i

;

update i← i+1;

compute e;

end

global stabilization: Mg,Γ
n+1Aresid

g,Γ =−
(

n+1Rgc

)i−Π1T
h

(

n+1Rℓ

)i
;

end

update n+1Ag,Γ← n+1A
prec
g,Γ +

(

n+1Acorr
g,Γ

)i

+ n+1Aresid
g,Γ ;

update tg← tg +∆tg;

end
Algorithm 10: Energy-preserving Substitution algorithm.

All the variables of displacement, velocity and acceleration are decomposed in free

variables and link ones. Involving also displacements, the condensation matrix Hℓ is
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composed of non-zero square blocks, also resulting from the stiffness matrix Kℓ contri-

bution. Furthermore, the local analysis is computed in two distinct time loops tfree
ℓ and

t link
ℓ .

The steps described above are summarized in Algorithm 10.

4.2 Application and results analysis

The same problem analyzed in Section 3.6 is here considered.

4.2.1 Comparison with Domain Decomposition GCbis algorithm

For the comparison between energy-preserving Domain Decomposition and Substitution,

the analysis is carried out using time steps close to the critical estimation ∆tcr, such that:

• ∆tg = 12 ·10−4 s for the global analysis and the coarse subdomain,

• ∆tℓ = ∆tg/M = 3 ·10−4 s for the local analysis and the fine subdomain,

with M = hg/ℓ = 4. A pre-fixed tolerance e = 1% is used.

Figures 3.27 show the vertical accelerations at the locations A and C. Even with such

coarse time discretization the solutions perfectly match throughout the analysis. Indeed,

the very same energy-preserving formulation is employed for the velocity constraint def-

inition.

4.2.2 Stability study

The energy method is used to verify the stability of the coupling scheme. The results

shown in Figure 3.28 denote a null stability indicator, considering an analysis with tend =
10 s and so more than 8,000 global time steps. The coupling is shown to be perfectly

conservative, considering the machine precision for running the analysis.

4.3 Conclusions

Although perfectly conservative, the energy-preserving Substitution method is not con-

sidered for further developments. Indeed, as for the energy-preserving Domain Decom-

position methods, the extension of such reformulation to nonlinearities and adaptive time

step could be costly and intrusive, because in that case the condensation matrix Hℓ should

be re-assembled at each global iteration.

5 Example of simplified impact

The study of different geometries and test cases can usually evidence additional issues

or show important characteristics. The impact test case described in Figure 3.29 is ana-

lyzed: for this purpose, a cylindrical body of mass M and velocity vimp impacts a simply
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Figure 3.27: Comparison between energy-preserving Substitution and Domain Decom-

position (GCbis) in terms of vertical accelerations.
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Figure 3.28: Stability indicator with tend = 10 s.
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supported flat panel. The assumption of plane strains is taken in order to reduce the cylin-

drical bending problem to a 2-dimensional one. Kinematic quantities are observed during

the analysis at the locations A and B.

Figure 3.29: Impact test case geometries and monitored locations A and B.

The symmetry of the problem allows to consider the model in Figure 3.30. The hor-

izontal displacements are constrained to zero over the symmetry surface. The impact of

the body is modeled as an equivalent impulse load f (t) applied to the surface Limp for the

short time interval ∆timp so that:

2 f Limp∆timp = M vimp (3.66)

assuming that the impacting body does not rebound and its final velocity is approxima-

tively null.

(a) left side of the domain (b) impact load

Figure 3.30: Impact problem considering the symmetry and simplifying the impact.

Problem data are:

• for the panel:

– density ρ = 7800 kg/m3;

– Young’s modulus E = 210 ·109 Pa;

– Poisson’s ratio ν = 0.3;

– length L = 0.1 m;

– height H = 0.004 m;

• for the impact load:
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– impact time interval ∆timp = 1 ·10−5 s starting since tin;

– impact surface of length 2Limp = 0.01 m;

– maximum value f = 108 Pa.

• initial time tin = 0 s;

• final time tend = 0.001 s;

The Domain Decomposition method is performed as reference analysis with the GCbis

algorithm, decomposing the entire domain in two subdomains as illustrated in Figure 3.31.

The first subdomain Ωh
1 with a coarse mesh composed of 8 quadrilateral elements, the sec-

ond one Ωh
2 with a fine mesh of 40 quadrilateral elements. A finer discretization near the

symmetry surface should attenuate the locking effect and catch the transient behavior of

the impact load.

Figure 3.31: Subdomain meshes for the Domain Decomposition.

The Substitution method is performed with the discretizations shown in Figure 3.32.

The global analysis is applied to the overall domain with a mesh Ωh
g of 10 quadrilateral

elements, whereas the local one is applied only near the symmetry surface with a mesh

Ωh
ℓ equivalent to the fine subdomain Ωh

2. The continuity of velocities and the multi-scale

equilibrium are applied over the three couples of global and local interfaces Γh
g and Γh

ℓ ,

respectively, remarked in Figure 3.32.

Figure 3.32: Global and local meshes for the Substitution.

According to the mesh sizes, two different time steps are chosen, so that:

• ∆tg = 1 ·10−7 s for the global analysis and the coarse subdomain,

• ∆tℓ = ∆tg/M = 0.25 ·10−7 s for the local analysis and the fine subdomain,
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with M = hg/ℓ = 4. A convergence tolerance e = 1% is used.

The numerical results of the Substitution method in comparison with the Domain

Decomposition method are shown in Figures 3.33 and 3.34 for locations A and B, respec-

tively. Both displacement and velocity curves match at both the locations.

Figure 3.35 shows the convergence rate of the iterative procedure at three represen-

tative times of the analysis. The number of iterations required to reach the pre-fixed

tolerance e is relatively high, even close to 40 iterations. The convergence slope varies

during the iterations: from a fast rate for the first 4-5 iterations, it goes down to a slow

one for the remaining iterations before that e < e.

Indeed, the convergence measure e takes into account all the three global-local inter-

faces in which the solution depends on two different sets of time steps: the correction

over the interface at the left between global complementary Ωh
gc and local Ωh

ℓ meshes

depends on a combination of both the global and local time steps ∆tg and ∆tℓ, whereas

over the two interfaces inside the local mesh Ωh
ℓ it only depends on the local time step

∆tℓ. The interfaces are so equally subjected to the kinematic constraint but require dif-

ferent degrees of correction, as the acceleration frequencies inside the local domain and

over the global-local interface between the local mesh Ωh
ℓ and the global complementary

mesh Ωh
gc are different. In particular, the difference between global and local solutions is

more remarkable inside the local domain, where local solution frequencies are sensibly

higher; on the contrary, the acceleration frequencies over the interface between the local

Ωh
ℓ and global complementary Ωh

gc meshes are slower because of the contribution of both

the global and local time steps ∆tg and ∆tℓ.

5.1 Acceleration of the iterative scheme: direct substitution

The convergence rates in Figure 3.35 show that the correction in the middle of the local

analysis requires more iterations than the correction over the interface between the global

complementary mesh Ωh
gc and the local mesh Ωh

ℓ . Nevertheless, the interest into obtain-

ing an accurate correction inside the global substitution mesh Ωh
gs is minor, because the

accurate informations are already contained in the local analysis.

For that reason, a direct substitution is applied inside the global substitution mesh Ωh
gs

in order to accelerate the convergence. The direct substitution consists in replacing the

global solution in terms of velocities by the mapped local one, so that:

n+1Vgs,in =
n+1Vℓ,in

n+1Ags,in =
(

n+1Vℓ,in− nVgs,in

) 2

∆tg
− nAgs,in

(3.67)

where the subscripts “gs,in” and “ℓ,in” denote the interior nodes of the meshes Ωh
gs and

Ωh
ℓ , i.e. Ωh

gs,in = Ωh
gs \Γh

g and Ωh
ℓ,in = Ωh

ℓ \Γh
ℓ .

So, the direct substitution is applied to all the nodes inside the global substitution

mesh Ωh
gs that do not belong to the global complementary mesh Ωh

gc. At those nodes,
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Figure 3.33: Comparison at the location A between Substitution and Domain Decompo-

sition.
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sition.
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6
tend with

i = 1,2,3 and tend = 0.001 s.

the iterative global correction would require more iterations without major benefits to the

coupling accuracy.

Figure 3.36 illustrates the new substitution strategy: the two-way iterative substitution

procedure is applied only to the red nodes over the local interface Γh
ℓ between the local

Ωh
ℓ and the global complementary Ωh

gc meshes, whereas the one-way direct substitution

is applied to the blue nodes inside the global substitution mesh Ωh
gs.

Figure 3.36: Procedure with direct substitution.

Figures 3.37 and 3.38 show the acceptable matching between the Substitution and

Domain Decomposition, also at the location B where the direct substitution is applied.

The gain in terms of number of iterations is shown in Figure 3.39. The approach with

the iterative scheme over all the three interfaces required a number of iterations varying

between 10 and 40, whereas the approach utilizing the direct substitution requires between

5 and 9 iterations.

Nonetheless, such number of iterations remains too high for the industrial application.

Further studies are so dedicated to the improvement of the iterative scheme.

6 Conclusions

To conclude, in this Chapter, the Substitution method has been formulated and studied in

comparison with the Domain Decomposition method. The Substitution could be advanta-

geous because it avoids cutting the topology of the problem. For this reason, it gains the
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Figure 3.37: Comparison at the location A between Substitution and Domain Decompo-

sition.
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Figure 3.38: Comparison at the location B between Substitution and Domain Decompo-

sition.
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Figure 3.39: Gain with the direct substitution approach in terms of number of iterations

during the impact simulation with e = 1%.

characteristic of weakly-intrusive for such dynamic cases with evolutive phenomena that

require a dynamic adaptivity of the local model, keeping the global analysis unchanged

and driving the activation of local patches where necessary.

A cubic Hermitian interpolation has been chosen as time down-scaling operator from

global to local. Although it does not ensure the displacement continuity, it allows the

continuity of velocities and accelerations at the global level.

The stability of the coupling has been studied with the energy method as for the multi-

time-step FETI approaches. An energy-preserving methodology based on the same de-

velopments in Domain Decomposition has been proposed. Nevertheless, the extension

of such methodology to nonlinearities or to adaptive time-stepping is computationally

expensive.

The original algorithm has been preferred and the direct substitution is introduced in

order to reduce the number of iterations in case of local domains overlapping more global

elements. However, the number of iterations remains too elevated to obtain acceptable

performances.

The algorithm taken as starting point for further enhancements is summarized in Al-

gorithm 11. A rearrangement of the steps is employed here in order to avoid the residual

computation of the accelerations n+1Aresid
g,Γ : the global correction is enforced before the

local analysis so that both the global and local solutions are related to iteration i at the end

of each iterative step.
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while tg < tend do

global pre-computation: Mg
n+1A

prec
g = n+1Fext

g − n+1Fint
g ;

if Substitution is activated then

initialize
(

n+1Ag,Γ

)0← n+1A
prec
g,Γ ;

while tℓ < tg +∆tg do

local pre-computation: Mℓ

(

m+1Aℓ

)0
= m+1Fext

ℓ −
(

m+1Fint
ℓ

)0
;

with: m+1Vℓ,Γ←Π1
hΠ3

t

(

nVg,Γ,
nAg,Γ,

(

n+1Vg,Γ

)0
,
(

n+1Ag,Γ

)0
)

;

update tℓ← tℓ+∆tℓ;

end

while e > e do

global correction: Mg,Γ

(

n+1Acorr
g,Γ

)i

=
(

n+1P
)i

;

update
(

n+1Ag,Γ

)i← n+1A
prec
g,Γ +

(

n+1Acorr
g,Γ

)i

;

back in time tℓ← tg;

while tℓ < tg +∆tg do

local computation: Mℓ

(

m+1Aℓ

)i
= m+1Fext

ℓ −
(

m+1Fint
ℓ

)i
;

with:
m+1Vℓ,Γ←Π1

hΠ3
t

(

nVg,Γ,
nAg,Γ,

(

n+1Vg,Γ

)i
,
(

n+1Ag,Γ

)i
)

;

update tℓ← tℓ+∆tℓ;

end

update i← i+1;

compute e;

end

update n+1Vgs,in← n+1Vℓ,in;

update n+1Ags,in←
(

n+1Vℓ,in− nVgs,in

)

2
∆tg
− nAgs,in;

end

update tg← tg +∆tg;

end
Algorithm 11: Iterative substitution algorithm in a dynamic analysis avoiding the

residual addition and involving the direct substitution.
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Chapter 4

Enhancement of the iterative scheme

In this Chapter as in [Bettinotti et al., 2014b], the

enhancement of the iterative procedure is described. Based on

compatibility properties, a new algorithm procedure is

defined. New test cases involving defects and nonlinearities

are presented and an adaptive case is introduced. The

reduction of the required number of iterations is always

evidenced.
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1 Introduction

The Substitution method proposed in Chapter 3 is based on an iterative technique: the

explicit character of the method allows to perform the global computation only once per

global time step, while a repeated solution is required for the small local problems only.

Nevertheless, a desirable goal is to reach convergence with a reduced number of iterations.

To this purpose, we propose here a new iterative algorithm based on a property that

was not noticed at first: the coupling of the cubic Hermitian interpolation in time, enforc-

ing the continuity of velocities, with the application of the Central Difference scheme to

the global and local analyses leads to the equality of accelerations. Such equality allows

one to define an updated mass operator for the interface coupling, significantly enhanc-

ing the convergence rate. The efficiency and robustness of the procedure is demonstrated

through several examples of growing complexity.

2 Time down-scaling operator property

Out of the study of Section 3.4 in Chapter 3, the cubic Hermitian interpolation emerged

as a way of imposing the local velocities obtaining the continuity of both velocities and

accelerations at the global time scale. Recalling Equation (3.33):

U̇ℓ,Γ|[tn,tn+1] = Π1
h

nVg,Γ

(

1−3s2 +2s3
)

+Π1
h

nAg,Γ∆tg
(

s−2s2 + s3
)

+

+Π1
h

n+1Vg,Γ

(

3s2−2s3
)

+Π1
h

n+1Ag,Γ∆tg
(

−s2 + s3
)

.
(4.1)

Nevertheless, when used together with the Central Difference scheme at both the

scales, the cubic Hermitian interpolation of velocities exhibits an additional crucial prop-

erty, which has not been noticed up to this point.

According to the Central Difference scheme, the global velocities at the end of the

time step are expressed in terms of the previous velocities and accelerations as:

n+1Vg,Γ = nVg,Γ +
(

nAg,Γ +
n+1Ag,Γ

) ∆tg

2
. (4.2)

Equation (4.2) shows that the current global velocities n+1Vg,Γ are not an indepen-

dent parameter in Equation (4.1) and can be there replaced in function of the other three

parameters nVg,Γ, nAg,Γ and n+1Ag,Γ. Equation (4.1) so becomes:

U̇ℓ,Γ|[tn,tn+1] = Π1
h

nVg,Γ +Π1
h

nAg,Γ∆tgs+Π1
h

(

n+1Ag,Γ− nAg,Γ

)

∆tgs2/2 (4.3)

which reveals that a quadratic shape is actually enforced to velocities at the local scale,

that in the local time stepping reads:

mVℓ,Γ = Π1
h

nVg,Γ +Π1
h

nAg,Γ∆tg
m

M
+Π1

h

(

n+1Ag,Γ− nAg,Γ

) ∆tg

2

m2

M2
. (4.4)
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Deriving the imposed local velocities in function of time, such that:

Üℓ,Γ|[tn,tn+1] =
1

∆tg

∂U̇ℓ,Γ

∂s

∣

∣

∣

[tn,tn+1]
(4.5)

Equation (4.3) becomes:

Üℓ,Γ|[tn,tn+1] = Π1
h

nAg,Γ +Π1
h

(

n+1Ag,Γ− nAg,Γ

)

s (4.6)

which shows a linear interpolation between nAg,Γ and n+1Ag,Γ, while in the local time

steps reads:

mAℓ,Γ = Π1
h

nAg,Γ

(

1− m

M

)

+Π1
h

n+1Ag,Γ

(m

M

)

. (4.7)

This implies that the local and global accelerations over the interface coincide at each

global time step, i.e.:
MAℓ,Γ = Π1

h
n+1Ag,Γ. (4.8)

Note that this is not the case in Domain Decomposition where continuity is enforced

by assuming the equality of velocities which, in general, does not imply the acceleration’s

equality.

Nevertheless, Equations (4.4) and (4.7) must also satisfy the local Central Difference

scheme, i.e.:

m+1Vℓ,Γ−mVℓ,Γ =
(

mAℓ,Γ +
m+1Aℓ,Γ

) ∆tℓ

2
∀m ∈ {0, . . . ,M−1}. (4.9)

Taking into account the definition of local velocities in Equation (4.4), the velocities

difference in the right-hand side of Equation (4.9) reads:

m+1Vℓ,Γ−mVℓ,Γ = Π1
h

nAg,Γ
∆tg

M
+Π1

h

(

n+1Ag,Γ− nAg,Γ

) ∆tg

2

(2m+1)

M2
. (4.10)

On the other hand, taking into account the definition of accelerations in Equation (4.7),

the accelerations sum at the left-hand side of Equation (4.9) reads:

mAℓ,Γ +
m+1Aℓ,Γ = Π1

h
nAg,Γ

(

2− 2m+1

M

)

+Π1
h

n+1Ag,Γ
2m+1

M
. (4.11)

Substituting the definitions in Equations (4.10) and (4.11) in Equation (4.9), it follows

that:

Π1
h

nAg,Γ
∆tg

M
+Π1

h

(

n+1Ag,Γ− nAg,Γ

) ∆tg

2

(2m+1)

M2
=

=

(

Π1
h

nAg,Γ

(

2− 2m+1

M

)

+Π1
h

n+1Ag,Γ
2m+1

M

)

∆tℓ

2

(4.12)
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that, considering ∆tg = M∆tℓ, is rearranged as:

2Π1
h

nAg,Γ +Π1
h

(

n+1Ag,Γ− nAg,Γ

) 2m+1

M
=

= Π1
h

nAg,Γ

(

2− 2m+1

M

)

+Π1
h

n+1Ag,Γ
2m+1

M

(4.13)

which, being verified ∀m ∈ {0, . . . ,M− 1}, asserts the compatibility of the time down-

scaling operator and the local Central Difference scheme.

The spring application described in Figure 3.8 in Section 3.4 of Chapter 3 is so consid-

ered in order to verify the equality between accelerations. Figure 4.1 recalls the continuity

of velocities at the global level and shows the continuity of accelerations even at the local

level.

 9.523

 9.5231

 9.5232

 9.5233

 9.5234

 9.5235

 9.5236

 9.5237

 9.5238

 9.5239

 9.524

 0.00426  0.004265  0.00427  0.004275  0.00428  0.004285  0.00429  0.004295  0.0043

V
el

o
ci

ty
 [

m
/s

]

Time [s]

global
local

(a) velocities

-100

-50

 0

 50

 100

 0.00426  0.004265  0.00427  0.004275  0.00428  0.004285  0.00429  0.004295  0.0043

A
cc

el
er

at
io

n
 [

m
/s

2
]

Time [s]

global
local

(b) accelerations

Figure 4.1: Kinematic constraint with a cubic Hermitian interpolation in time and apply-

ing the Central Difference scheme for global and local solutions.
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3 Reformulation of the interface multi-scale compatibil-

ity condition

When the local region is replaced by the global substitution region as in Figure 3.6 in

Section 3.1 of Chapter 3, the global interface momentum balance is integrated in time as

in Equation (3.11) and the correction forces n+1P are determined as in Equation (3.12).

Recalling the equations, the global interface momentum balance reads:

Mg,Γ
n+1Ag,Γ = n+1Fext

g,Γ− n+1Fint
g,Γ +

n+1P (4.14)

where the correction forces read:

n+1P = Π1T
h

n+1Rℓ,Γ− n+1Rgs,Γ. (4.15)

Reporting once again the splitting definitions in Equation (3.9), Equation (4.14) is also

split in global substitution and complementary terms, as:

(Mgs,Γ +Mgc,Γ)
n+1Ag,Γ = n+1Fext

gs,Γ +
n+1Fext

gc,Γ +
n+1P+ n+1Fext

Γ,Γ− n+1Fint
gs,Γ− n+1Fint

gc,Γ.
(4.16)

On the other hand, proposing another time the definitions of the reactions forces
n+1Rℓ,Γ and n+1Rgs,Γ in Equations (3.3) and (3.5), respectively, Equation (4.15) can be

rewritten as:

n+1P = Π1T
h

(

n+1Fext
ℓ,Γ−Mℓ,Γ

n+1Aℓ,Γ− n+1Fint
ℓ,Γ

)

− n+1Fext
gs,Γ +Mgs,Γ

n+1Ag,Γ +
n+1Fint

gs,Γ

(4.17)

and applying the acceleration compatibility property of Equation (4.8) of Section 2, one

obtains the new definition:

n+1P =
(

Mgs,Γ−Π1T
h Mℓ,ΓΠ1

h

)

n+1Ag,Γ− n+1Fext
gs,Γ +

n+1Fint
gs,Γ +Π1T

h

(

n+1Fext
ℓ,Γ− n+1Fint

ℓ,Γ

)

(4.18)

where Π1T
h Mℓ,ΓΠ1

h is the up-scaled term of the local interface mass to the global interface.

Substituting the correction forces definition of Equation (4.18) into the global inter-

face momentum balance of Equation (4.16), one obtains:

(

Π1T
h Mℓ,ΓΠ1

h +Mgc,Γ

)

n+1Ag,Γ = Π1T
h

(

n+1Fext
ℓ,Γ− n+1Fint

ℓ,Γ

)

+

+n+1Fext
gc,Γ− n+1Fint

gc,Γ +
n+1Fext

Γ,Γ

(4.19)

that denotes the momentum balance over the interface of the reference problem consider-

ing that local internal forces constitute a result of the local solution obtained in the fine

time scale.

4 Improved iterative scheme

Some of the terms in Equation (4.19) can be computed only once per global time step,

using informations coming from the global problem or from the solution of the previous
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time step, whereas others have to be computed iteratively. Terms of the first type are used

to define pre-computation values of the acceleration n+1A
prec
g,Γ , so that:

(

Π1T
h Mℓ,ΓΠ1

h +Mgc,Γ

)

n+1A
prec
g,Γ = Π1T

h
n+1Fext

ℓ,Γ +
n+1Fext

gc,Γ− n+1Fint
gc,Γ +

n+1Fext
Γ,Γ (4.20)

while terms of the second type provide iterative correction values of acceleration
(

n+1Acorr
g,Γ

)i

,

that are:

(

Π1T
h Mℓ,ΓΠ1

h +Mgc,Γ

)(

n+1Acorr
g,Γ

)i
=−Π1T

h

(

n+1Fint
ℓ,Γ

)i

. (4.21)

In Equation (4.20), n+1Fint
gc,Γ is function of quantities of the previous step, since in

the Central Difference scheme the nodal displacements are an outcome of the explicit

integration and are computed directly from the known accelerations. In Equation (4.21),
(

n+1Fint
ℓ,Γ

)i

are the updated internal forces of the local problem over the interface Γh
ℓ ,

computed on the basis of the current estimate of acceleration n+1A
prec
g,Γ +

(

n+1Acorr
g,Γ

)i

. At

the end of the pre-computation phase, the local internal forces are initialized assigning

over the interface the pre-computed value n+1A
prec
g,Γ only.

Both Equations (4.20) and (4.21) require the resolution of a linear system with a non-

diagonal coefficients matrix. The terms out of diagonal of such matrix come from the

up-scaling of the local mass matrix to the global interface Γh
g with Π1T

h Mℓ,ΓΠ1
h. Never-

theless, the number of degrees of freedom is associated to the number of nodes over the

global interface, in contrast with the down-scaling operation to the local interface Γh
ℓ in

the condensation matrix of the Domain Decomposition.

As in the fixed-point iterative algorithm described in Section 3.3 of Chapter 3, the

iterative procedure is stopped when a pre-fixed tolerance e on the error on interface equi-

librium at the global level is met, referring to the convergence measure e defined in Equa-

tion (3.22).

Compared to the direct solution of the reference problem, the proposed iterative multi-

scale approach implies at each time step the solution of the overall global problem, which

however has been discretized by means of a coarse mesh and possibly with a simplified

geometry and material behavior. It is therefore expected to be a problem significantly

less expensive than the original one. On the other hand, the local problem, requires an

accurate description of geometry and material behavior and a fine mesh, but concerns a

small part of the problem domain, so that its iterative solution can be carried out with little

computational effort.

The flow chart of the proposed improved procedure is described in Algorithm 12.
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while tg < tend do

global pre-computation: Mg
n+1A

prec
g = n+1Fext

g − n+1Fint
g ;

if Substitution is activated then
global re-pre-computation:
(

Mgc,Γ +Π1T
h Mℓ,ΓΠ1

h

)

n+1A
prec
g,Γ = Π1T

h
n+1Fext

ℓ,Γ+
n+1Fext

gc,Γ− n+1Fint
gc,Γ;

while tℓ < tg +∆tg do
local computation (iteration 0):

Mℓ

(

m+1Aℓ

)0
= m+1Fext

ℓ −m+1Fint
ℓ ;

with: m+1Vℓ,Γ←Π1
hΠ3

t

(

nVg,Γ,
nAg,Γ,

n+1A
prec
g,Γ

)

;

update tℓ← tℓ+∆tℓ;

end

update i← 1;

while e > e do

back in time tℓ← tg;

global correction:
(

Mgc,Γ +Π1T
h Mℓ,ΓΠ1

h

)(

n+1Ag,Γ

)i
=−Π1T

h

(

n+1Fint
ℓ,Γ

)i

;

update
(

n+1Ag,Γ

)i← n+1A
prec
g,Γ +

(

n+1Acorr
g,Γ

)i

;

while tℓ < tg +∆tg do
local computation (iteration i):

Mℓ

(

m+1Aℓ

)i
= m+1Fext

ℓ −m+1Fint
ℓ ;

with: m+1Vℓ,Γ←Π1
hΠ3

t

(

nVg,Γ,
nAg,Γ,

(

n+1Ag,Γ

)i
)

;

update tℓ← tℓ+∆tℓ;

end

update i← i+1;

compute e;

end

update n+1Vgs,in← n+1Vℓ,i;

update n+1Ags,in←
(

n+1Vℓ,i− nVgs,in

)

2
∆tg
− nAgs,in;

end

update tg← tg +∆tg;

end
Algorithm 12: Substitution algorithm with enhanced iterative scheme.

5 Applications

The performance of the proposed algorithm is illustrated by means of three examples:

1. local region consisting of a mesh refinement of the global substitution region;
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2. local region with defects and heterogeneities of various types;

3. model adaptation in order to follow the delamination propagation.

In all cases, the results are compared with the original version of the Substitution

method presented in Chapter 3, in order to comparatively assess the improved conver-

gence properties. The example with heterogeneities is used to show the robustness of the

proposed method both in terms of quality of results when compared to a Domain Decom-

position method and in terms of convergence rate. The last example is a first attempt to

apply the method to a more complex case involving nonlinearities and model adaptation.

The tolerance criteria for the convergence measure e computed in Equation (3.22) is

set at e = 1%. In fact, it was shown in Chapter 3 that with such a tolerance the results

obtained in terms of velocity are in agreement with those obtained by a Domain Decom-

position approach.

5.1 Local mesh refinement

As in Chapter 3, the elastic global model of the structure is discretized by a coarse mesh

of 2 displacement-based 4-node quadrilateral elements. The local model consists of a

refined mesh made of smaller quadrilateral elements of the same type (as in Figure 4.2)

concerning only a limited region of the structure, close to the fixed boundary, in order to

attenuate shear locking effects.

The linear elastic problem data are:

• density ρ = 7800 kg/m3;

• Young’s modulus E = 210 ·109 Pa;

• Poisson’s ratio ν = 0.3;

• length L = 30 m;

• height H = 10 m;

• uniform shear load f = 3 ·106 N/m2 constant in time.

The results in terms of accelerations on time are observed at two representative loca-

tions of the domain (Figure 4.2): the location A at the bottom free corner of the structure

and the location B at the bottom of the interface between the global and local regions.

The time steps at the two scales are chosen so that:

• ∆tg = 8 ·10−4 s in the global analysis;

• ∆tℓ = ∆tg/M = 0.5 ·10−4 s in the local analysis;
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Figure 4.2: Spatial discretization, sizes and monitored locations A and B.
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Figure 4.3: Comparison of the vertical accelerations between the original and enhanced

Substitution methods.
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with M = hg/ℓ = 16.

Figure 4.3 shows time histories of the vertical accelerations at the locations A and B,

obtained with the original and enhanced Substitution methods. It can be observed that the

curves corresponding to the same location are virtually identical.

In Figure 4.4(a), the number of iterations needed to achieve convergence with the orig-

inal algorithm (dashed line) and the enhanced one (solid line) are compared. The number

of iterations required for a given tolerance in the original algorithm ranged between 3 and

8, while the range has always been between 1 and 3 for the enhanced algorithm. The

periodic pattern of the number of iterations is explained by the oscillatory response of

the structure which can be observed in Figure 4.4(b), where the displacements history at

location B is superposed to the plot of the number of iterations per time step. The number

of required iterations is greater when the displacements are larger.
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Figure 4.4: Assessment of convergence property.

The fast convergence of the enhanced algorithm can be appreciated in Figure 4.5,

where convergence of vertical accelerations at location B is shown over a short period

of time between t = 0.214 s and t = 0.222 s. The blue line represents the solution at

convergence, while the square markers denote the solution in the pre-computation phase

(iteration 0), which does not take into account the local internal forces. The improvement
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of precision after the first iteration can be noticed by looking at the circular markers,

which are already very close to the converged solution.
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Figure 4.5: Enhanced approach: evolution with iterations of vertical acceleration at loca-

tion B.

Figure 4.6 allows one to compare the rate of convergence of the two algorithms at

different times. The enhanced method exhibits a higher convergence rate, which does not

change throughout the history of deformation.
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Figure 4.6: Convergence rate of original and enhanced methods at three times: ti =
1+i

6
tend with i = 1,2,3 and tend = 2.5 s.

5.2 Local defects and heterogeneities

One of the potential uses of the Substitution method concerns the analysis of a structure

which is characterized by local small features. To study this type of situation, the in-

troduction of small defects (either holes or stiff inclusions) is considered in the model

just taken previously, shown by the dashed lines which represent defects contours in Fig-

ure 4.7. The location S, which will be subsequently used in the presentation of the results,

has been singled out in Figure 4.7. The Substitution method allows one to use the same
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uniform global model chosen in the previous cases, the defects being introduced at the

local level only.

Figure 4.7: Local region with heterogeneities: definition of location S at which the stress

solution is monitored.

The introduction of holes does not modify the critical time step of the local model.

This is not the case when introducing stiff inclusions, which have been assumed to have a

density value equal to the one of the surrounding material, but a ten times larger Young’s

modulus. For stiff inclusions, this change of material properties leads to a local time step

∆tℓ = ∆tg/M = 0.333 ·10−4 s, with M = 24 > hg/ℓ.

Figure 4.8 shows that the presence of defects, either holes or stiff inclusions, does not

affect the convergence rate. The only minor difference with respect to the homogeneous

case concerns the initial error which has increased since the used global model is less

representative of the real structural behavior.
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Figures 4.9 show the numerical results in terms of vertical velocities at the location B.

The solid blue line is the solution obtained with the proposed algorithm while the red

circles denote the solution obtained by the application of the Domain Decomposition
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Figure 4.9: Vertical velocities at the location B, obtained with Domain Decomposition

with GC algorithm and enhanced Substitution.
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method with GC algorithm. A good agreement is remarked both for holes and for stiff

inclusions.

Now, let σst
x denote the horizontal stress at the location S in the analogous static solu-

tion of the homogeneous problem (i.e. without defects). Figures 4.10(a), for the case with

holes, and 4.10(b), for the case with stiff inclusions, show snapshots of the local domain

displaying the horizontal stress σx at the times when it attains its maximum value. In Fig-

ure 4.10(c), the histories of σx normalized by σst
x at the location S are compared with the

one obtained without heterogeneities. The expected effects of both holes and inclusions

are confirmed in all cases.

5.3 Composite structure with damageable interface

A detailed study of the structural response up to failure often requires taking into account

phenomena which spread over multiple spatial and temporal scales. An interesting po-

tential application of the Substitution method is the treatment of this type of problems by

introducing local refinements in space and time only when and where needed, avoiding

complex implementation issues.

The adaptive introduction of an evolving local region has been considered for the

dynamic simulation of delamination. Two 2-dimensional test cases with plane strain as-

sumption are considered:

• the End Loaded Split (ELS) test case, described in following Section 5.3.1;

• the Mixed-Mode Bending (MMB) test case, described in following Section 5.3.2.

In both the test cases, a meso-scale model is employed in the local analysis, based

on two stacked linear elastic plies discretized by 4-node displacement-based quadrilateral

elements, connected by cohesive interfaces, discretized by 4-node zero-thickness cohesive

elements, conforming with the quadrilateral elements.

The technology used for the cohesive interface and the associated damage law are

described in Appendix A. The damage rate ḋ is expressed as inversely proportional to

the characteristic time of the fracture process τc and with an exponential law function of

the isotropic interface stiffness k0, the interface stress state and the threshold and critical

thermodynamical forces Y0 and Yc, respectively,.

The material data of the problems are:

• for the linear elastic plies:

– density ρ = 1500 kg/m3;

– Young’s modulus E = 140 ·109 Pa;

– Poisson’s ratio ν = 0.4;

• for the cohesive interface:

– characteristic time τc = 20 ·10−5 s;
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(a) stress σx distribution over the local domain at the time t = 0.0616 s

(b) stress σx distribution over the local domain at the time t = 0.0592 s
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Figure 4.10: Effects of heterogeneities on the stress solution.
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– threshold thermodynamical force Y0 = 50 ·103 Pa;

– critical thermodynamical force Yc = 230 ·103 Pa;

– isotropic stiffness k0 = 1012 N/m3.

A macro-scale model is then used in the global coarse analysis. It does not take

into account the composite structure and is assumed to be linear elastic with the same

material data of the plies. Such model consists of 4-node EAS-7 quadrilateral elements,

formulated in Appendix B and whose integration points are 2×2 Gauss points described

in Figure 4.11, featuring a shear stress σxy constant in the element and a normal stress σx

constant along the axis x and linearly varying along the axis y.

Figure 4.11: Coordinates and quadrature points in the quadrilateral element.

The local adaptive model is composed of assembled elementary local units, each one

composed analogously to the reference meso-scale model by 4× 4 displacement-based

quadrilateral elements and 4 cohesive elements located along the cohesive interface. A

new unit is added to the left side of the local region each time that its interface Γh with the

global complementary region moves to the left. The local problem is solved by making

use of the Domain Decomposition method with GC algorithm, according to which every

elementary local unit is treated as a subdomain of the local region and all the units are

analyzed with the same local time step.

The adaptive activation of the local region is governed by a stress criterion in the

global analysis. A new local unit is activated when | σsup
x −σinf

x | /2 > σ, where σ
sup
x is

the σx stress component at the two Gauss points above the cohesive interface, while σinf
x

is the corresponding value at the Gauss points below the interface. The threshold σ has

to be tuned in such a way that the cohesive process zone is entirely contained within the

local region. In the considered example, the interface parameters are such that the process

zone extends over the length of several units, so that new units have to be introduced early

in the analysis. Three different threshold values have been tested:

• σ = 100 ·106 Pa, denoted by act1 as early activation;

• σ = 300 ·106 Pa, denoted by act2 as intermediate activation;

• σ = 500 ·106 Pa, denoted by act3 as delayed activation.
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5.3.1 End Loaded Split test case

As described in Figure 4.12, a structure composed of two linear elastic plies connected by

one cohesive interface is loaded at the top right corner.

Figure 4.12: End Loaded Split (ELS) test case: sizes, monitored location A and coordi-

nates system.

The data of the problem are:

• length L = 1 m;

• height H = 0.1 m;

• concentrated load f = 107 N/m constant in time.

Figure 4.13 describes the uniform mesh Ω
h,meso
r of the reference monolithic analysis.

A corresponding time step ∆tr = 0.5 ·10−6 s is chosen close to the critical estimation.

Figure 4.13: ELS reference model: uniform meso-scale mesh.

Utilizing the Substitution method, the coarse global analysis applied to the whole

structure is coupled with the adaptive meso-scale local region that starts from the right part

of the structure and progressively gets bigger in size in order to follow the delamination

propagation as illustrated in Figure 4.14. While the global coarse mesh remains the same

throughout the analysis, the interface between the global complementary and the local

regions moves to the left as the analysis progresses.

Figure 4.14: ELS Substitution adaptive strategy: fixed global and adaptive local models.

The time is discretized with:
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• ∆tg = 2 ·10−6 s as global time step,

• ∆tℓ = ∆tg/M = 0.5 ·10−6 s as local time step,

with M = hg/ℓ = 4.

The interface Γh, shared by the global substitution and complementary regions, is

identified by the red nodes in Figure 4.15 and is progressively moved to the left; on

the other hand, the blue nodes, inside the local and global complementary regions are

not involved in the iterative process, but they are characterized by direct substitution as

introduced in Section 5.1 of Chapter 3.

Figure 4.15: ELS Substitution coupling strategy: iterative and direct substitution.

Figure 4.16 shows the numerical results in terms of the vertical velocity of point A.

The dashed red line denotes the reference solution. The blue lines indicate the solution

with the adaptive Substitution method: the solid and dashed lines denote respectively the

analysis with early activation (act1) and the analysis with delayed activation (act3). As it

can be derived from the plot, the particular type of loading, inducing normal stresses in

the interface between the plies, activates the structure highest eigenfrequencies due to the

high value of the interface stiffness k0. This aspect is emphasized in the curves relevant

to the Substitution method, due to reflections produced by the interface between the local

and global complementary regions.
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Figure 4.16: ELS test case: comparison of vertical velocities at the location A between

reference and adaptive Substitution method, the latter with two different activation thresh-

olds.
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The better accuracy of the solution plotted with the solid blue line is due to the lower

activation value that increases the size of the local analysis faster. Figure 4.17 shows the

number of activated local subdomains during the analysis. The three different activation

values are compared: the solid line with act1, the dashed line with act2 and the dotted line

with act3. The computational gain in comparison with the reference analysis is constituted

by the number of subdomains that are not activated during the analysis, i.e. the area above

the curves in Figure 4.17. On the other hand, the number of iterations in the Substitution

method plays in favor of the reference analysis, that in this particular case is convenient.
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Figure 4.17: Number of activated local subdomains during the analysis.

The predicted position of the delamination front strongly depends on the adopted ac-

tivation criterion as well, as can be seen in Figure 4.18. Three different delamination

fronts, obtained using the three different activation thresholds, are compared with the ref-

erence solution (solid line): the dashed line corresponds to the activation threshold act1,

the short-dashed line to act2 and the dotted line to act3. In all cases, the cohesive process

zone is always entirely contained in the local region. The Substitution results converge to

the reference one s with the anticipation of the the activation process.
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Figure 4.18: ELS test case: delamination process zone and damage evolution for different

activation thresholds for local region expansion.
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Figure 4.19 shows a sequence of snapshots of the analysis. Starting from a local

region discretized by means of two units at t = 0 s, it progressively increases its size in

order to include the delamination front and process zone tip, arriving at a final size of nine

subdomains at tend = 0.001 s.

Figure 4.19: ELS test case (act3): analysis snapshots at five representative times.

Figure 4.20 shows the convergence rate at three representative times: one can observe

that it is comparable to the one obtained in the previous examples for a purely elastic

material behavior. However, in this case the initial error is higher: this is due to the

fact that the error associated to the global coarse model is higher than in the previous

examples.

The decrease in the number of iterations during the analysis is shown in Figure 4.21:

the original algorithm (dotted line) required around 8 iterations to converge, though the

proposed algorithm converges with 3 iterations maximum.

5.3.2 Mixed-Mode Bending test case

As described in Figure 4.22, a structure composed of two linear elastic plies connected by

one cohesive interface is simply supported and loaded at the middle of the top surface.
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Figure 4.20: ELS test case (act3): convergence rate at three times ti =
1+i

6
tend with i =

1,2,3 and tend = 0.001 s.
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Figure 4.21: ELS test case (act3): gain in terms of number of iterations.

Figure 4.22: Mixed-Mode Bending (MMB) test case: sizes and monitored location.
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The data of the problem are:

• length L = 1 m;

• height H = 0.1 m;

• concentrated load f = 1.25 ·107 N/m constant in time.

Figure 4.23 describes the uniform mesh Ω
h,meso
r of the reference monolithic analysis,

taking a corresponding time step ∆tr = 0.5 ·10−6 s, close to the critical estimation.

Figure 4.23: MMB reference model: uniform meso-scale mesh.

In this case, the Substitution method couples a coarse global analysis of the whole

structure with a local region that starts from the right part of the structure as in Figure 4.24

and is then activated when necessary in order to cover the cohesive interface.

Figure 4.24: MMB Substitution adaptive strategy: fixed global and adaptive local mod-

els.

The time is discretized with:

• ∆tg = 2 ·10−6 s as global time step,

• ∆tℓ = ∆tg/M = 0.5 ·10−6 s as local time step,

with M = hg/ℓ = 4.

Once again, the interface Γh, shared by the boundaries of the global substitution and

complementary regions, is defined by the red nodes as in Figure 4.25 and progressively

moves. The blue nodes, inside the local and global complementary regions are not in-

volved in the iterative process, but they are subject to direct substitution as introduced in

Section 5.1 of Chapter 3.

Figure 4.26 shows the numerical results in terms of the vertical velocity of point A.

The dashed red line denotes the reference solution. The blue lines indicate the solution

with the adaptive Substitution method: the solid and dashed lines denote respectively

early activation (act1) and delayed activation (act3). As it can be exerted from the plot,

the peculiar type of loading, inducing normal stresses in the interface between the plies,
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Figure 4.25: MMB Substitution coupling strategy: iterative and direct substitution.

activates the structure highest eigenfrequencies due to the high value of the interface stiff-

ness k0. This aspect is emphasized in the curves relevant to the Substitution method, due

to reflections produced by the interface between the local and complementary regions.

The same type of spurious high frequency oscillations would have been obtained with

any other Domain Decomposition method to couple the scales.
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Figure 4.26: MMB test case: vertical velocity at the location A between reference and

adaptive Substitution method, with two different activation thresholds.

The predicted position of the delamination front strongly depends as well on the

adopted activation criterion, as can be seen in Figure 4.27, where three different delami-

nation fronts, obtained using the three different activation thresholds, are compared with

the reference solution (solid line): the dashed line corresponds to the activation threshold

act1, the short-dashed line to act2 and the dotted line to act3. In all cases, the cohe-

sive process zone is always entirely contained in the local region and, once again, curves

converge to the reference solution anticipating the activation of the local subdomains.

Figure 4.28 shows a sequence of snapshots of the analysis. Starting from a local region

discretized by means of two units at t = 0 s, it instantaneously covers all the cohesive

interface when needed, arriving at a final size of six subdomains at tend = 0.001 s.

The number of iterations during the analysis using the enhanced iterative algorithm is

shown in Figure 4.29 with at least 3 iterations required to reach the convergence.
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Figure 4.27: MMB test case: delamination process zone and damage evolution for dif-

ferent activation thresholds for local region expansion.

Figure 4.28: MMB test case: analysis snapshots at five representative times.
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Figure 4.29: Number of iterations in the MMB test case.

6 Conclusions

The primary goal of the study in this Chapter has been the one of improving the iterative

scheme of the Substitution method proposed in Chapter 3. This has been achieved thanks

to the properties of combination between Central Difference scheme and cubic Hermitian

interpolation in time. A consistent coefficients matrix has been derived: it allows one

to reduce the number of iterations to a level which is now considered as acceptable for

applications of practical interest.

The delamination problem in Section 5.3 has shown the potential applicability of the

approach to evolutive nonlinear problems and opens the way to interesting future devel-

opments. Nevertheless, the elements used for the global model are quite different from

the ones used in the local region as, for example, their stiffness does not coincide with the

condensed stiffness of the underlying local model.

In the applications for composites, the adaptive refinement procedure activates the

local analysis where delamination could occur and the process zone could be activated.

On the other hand, the local analysis becomes unnecessary when the delamination is

well defined and the process zone has moved away. A useful enhancement would then

consist in the possibility to integrate a de-refinement procedure to the substitution strategy,

deactivating the local region and defining an equivalent macro-scale model in the global

analysis with a weakened constitutive behavior, in the line of what proposed, e.g. in

[Sukumar et al., 2000], [Oliver et al., 2003] and [Armero and Linder, 2009], where a

crack was embedded on top of a given Finite Element model.

Last, but not least, further investigations could interest the research of a time down-

scaling operator alternative to the cubic Hermitian interpolation introduced in Section 3.4

of Chapter 3 and which could be able to ensure the displacements continuity over the

interface as well as continuity of velocities and accelerations. Such property could allow

one to improve stability and accuracy of the coupling scheme and to estimate the local

internal forces in the iterative scheme.
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6.1 Investigation towards weakening procedures

Several techniques could enhance the behavior of the global model in order to approach

the one of the local model. Such enhancement could be employed to reduce the error

in the coupling, e.g. taking account of the defects as in Section 5.2 or of the mode-2

mechanism of composite structures in Section 5.3.

Considering the ELS test case in Section 5.3.1, due to the complexity of the meso-scale

model involving contact over the cohesive elements, a simplified coarsening technique is

here proposed: fixing the Poisson’s ratio ν, an equivalent Young’s modulus Ẽ is iteratively

searched so that, considering the macro- and meso-scale (with linear cohesive interfaces)

models shown in Figure 4.30, the solutions of:

Mü = fext− fint− fbulk (4.22)

at the top right corners are equal at t→+∞, with fbulk as artificial forces for damping out

the oscillations. In this way, the global analysis would be carried out with an equivalent

stiffness that contemplates the refined mesh and the composite structure of the local anal-

ysis. Note that such a priori calculation strongly depends on arbitrary boundary condition

and load choices and is not convenient for general purposes. Nevertheless, these results

could be useful to validate further investigations in more advanced weakened models.

(a) global element (b) local subdomain

Figure 4.30: Models used in the weakening procedure.

Re-performing the analysis in Section 5.3.1 with the new weakened global model, the

new convergence rates are shown in Figure 4.31. The solid red line with squares denotes

the convergence rate of the original algorithm in Chapter 3, the red lines with the rhom-

buses denote the convergence rates of the enhanced algorithm without weakening as in

Section 5.3 and the blue lines indicate the convergence rates of the enhanced algorithm

taking Ẽ = 0.737 ·E in the global analysis, as a result of the weakening procedure assum-

ing linear elastic cohesive interfaces. Blue lines start from a lower position and tend to be

slightly faster.

6.2 Investigation towards de-refinement procedures

The same procedure described in Section 6.1 could be applied to the global model in

the de-refinement of the analysis, as illustrated in Figure 4.32. An equivalent Young’s
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case with or without weakening procedure.

modulus for the macro-scale model is reduced to Ẽ = 0.431 ·E, out of the solutions of

Equation (4.22) considering a meso-scale model in Figure 4.30 without cohesive inter-

faces (because completely damaged). A new region is so defined in the global analysis as

weakened global complementary region Ω̃h
gc.

Note that the constraint choice over the new interface between weakened global com-

plementary Ω̃h
gc and local Ωh

ℓ regions is crucial. The activated mode-2 mechanism in the

local analysis does not allow to constrain all the nodes over the interface with a linear

interpolation in space. Here, only external nodes of the interface are constrained.

Figure 4.32: De-refinement strategy with the coarsening of the meso-scale model to the

macro-scale one.

Figure 4.33 shows a snapshot of the end of the analysis in which the de-refinement is

activated, because all the cohesive elements of the local subdomain at the right-hand side

of the structure are eliminated because of the fill damage.

6.3 Investigation towards the displacements continuity: quintic Her-

mitian interpolation

The quintic Hermitian interpolation Π5
t (

n⊙,n�,n△,n+1⊙,n+1�,n+1△) is here tested in

order to obtain the displacements continuity, using global displacements, velocities and
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Figure 4.33: Snapshot at the end of the analysis with de-refinement at the right side of

the structure.

accelerations in the interpolation, so that:

U̇ℓ,Γ|[tn,tn+1] = Π1
hΠ5

t

(

nUg,Γ,
nVg,Γ,

nAg,Γ,
n+1Ug,Γ,

n+1Vg,Γ,
n+1Ag,Γ

)

(4.23)

that, introducing the intrinsic local time s(t) and 6 quintic polynomials ψi(s), becomes:

U̇ℓ,Γ|[tn,tn+1] = Π1
h

nUg,Γ

∆tg
ψ̇1(s)+Π1

h
nVg,Γψ̇2(s)+Π1

h
nAg,Γ∆tgψ̇3(s)+

+Π1
h

n+1Ug,Γ

∆tg
ψ̇4(s)+Π1

h
n+1Vg,Γψ̇5(s)+Π1

h
n+1Ag,Γ∆tgψ̇6(s).

(4.24)

The 6 quintic polynomials ψi(s) with i = 1, . . . ,6 are obtained imposing:

ψi(0) = δi1, ψ̇i(0) = δi2, ψ̈i(0) = δi3, ψi(1) = δi4, ψ̇i(1) = δi5, ψ̈i(1) = δi6

i = 1, . . .6

(4.25)

so that:

U̇ℓ,Γ|[tn,tn+1] = Π1
h

nUg,Γ

∆tg

(

−30s2 +60s3−30s4
)

+

+Π1
h

nVg,Γ

(

1−18s2 +32s3−15s4
)

+Π1
h

nAg,Γ∆tg
(

s−9s2/2+6s3−5s4/2
)

+

+Π1
h

n+1Ug,Γ

∆tg

(

30s2−60s3 +30s4
)

+Π1
h

n+1Vg,Γ

(

−12s2 +28s3−15s4
)

+

+Π1
h

n+1Ag,Γ∆tg
(

−3s2/2−4s3 +5s4/2
)

.

(4.26)

The constraint has been enriched. Nevertheless, compatibility with the Central Dif-

ference scheme in the local analysis is not satisfied. Considering the velocities constraint
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in Equation (4.24), its derivation in time and taking s(tm+1) and s(tm), the local Central

Difference scheme that needs to be satisfied is:

m+1Vℓ,Γ−mVℓ,Γ =
(

m+1Aℓ,Γ +
mAℓ,Γ

) ∆tℓ

2
. (4.27)

The left-hand side of Equation (4.27) becomes:

m+1Vℓ,Γ−mVℓ,Γ = nAg,Γ
∆tg

M
−
(

n+1Ag,Γ− nAg,Γ

) ∆tg

M
·ψlhs

m

ψlhs
m = (2m+1)

9

2M
−
(

3m2 +3m+1
) 10

M2
+
(

4m3 +6m2 +4m+1
) 5

M3

(4.28)

whereas the right-hand side reads:

(

m+1Aℓ,Γ +
mAℓ,Γ

) ∆tℓ

2
= nAg,Γ

∆tg

M
−
(

n+1Ag,Γ− nAg,Γ

) ∆tg

M
·ψrhs

m ,

ψrhs
m = (2m+1)

9

2M
−
(

2m2 +2m+1
) 15

M2
+
(

2m3 +3m2 +3m+1
) 10

M3
.

(4.29)

Equation (4.27) turns out to be not satisfied and, subtracting its right-hand side to the

left-hand one, one obtains:

ψlhs
m −ψrhs

m =
5

M3
(2m−M+1) . (4.30)

For the spring test example of Figure 3.8 in Section 3.4 of Chapter 3, the global and

local quantities are always very close to each other, but not exactly continuous at each

global time step, as shown in Figures 4.34.
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Figure 4.34: Kinematic constraint with a cubic Hermitian interpolation in time and ap-

plying the Central Difference scheme for global and local solutions and M=10.
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Conclusions and prospects

The general topic of the thesis is the extension of non-intrusive coupling techniques, pre-

viously developed in statics, to the case of explicit dynamics. One of the objectives of

these techniques is the capability to locally enrich existing industrial Finite Element mod-

els with no modification of industrial mesh and solver. These methods have recently

gained some attention by industrial groups and are essential features of the ANR pro-

gram ICARE, involving Airbus and EDF, and of other programs, involving SAFRAN. A

particular aim of the method in dynamics would be the possibility to perform adaptive

modeling or mesh refinement without modifying the global mesh; a target being the cou-

pling of a macro-scale model with a meso-scale one in order to deal with propagation of

large delamination.

Nevertheless, the extension of a substitution approach, where a local model is itera-

tively substituted within a global analysis, raised several questions in dynamics. Notably

in the case of explicit dynamics, stability and efficiency issues make the feasibility and

applicability of such approach a priori doubtful. This work has been therefore mainly de-

voted to these two academic aspects: the feasibility of a global-local coupling technique

in explicit dynamics and the applicability for industrial purposes with efficiency targets.

In the field of non-intrusive coupling techniques, the global-local algorithm that has

been implemented as output of this thesis can be more accurately defined as weakly-

intrusive, because the industrial mesh is not modified, but the global solution procedure

needs to be updated inside the industrial code because of efficiency issues.

The coupling technique has been implemented in Matlab prototypes and verified in

comparison with the non-overlapping Domain Decomposition FETI approaches.

A preliminary stability study has been conducted by the application of the energy

method for different time scales. An energy-preserving Substitution method has been

developed, leading nevertheless to computationally expensive procedures in case of non-

linearities and adaptive time stepping.

A particular attention has been then dedicated to the improvement of the iterative

scheme, in order to meet the efficiency targets for industrial applications. For this pur-

pose, the equality between global and local accelerations, coming from the combination

of the Central Difference schemes with the cubic Hermitian interpolation, has allowed

for the use of a new mass operator and a new iterative procedure more performant than

the original one. Examples with localized defects, such as holes or stiff inclusions, and

with nonlinearities have been analyzed, with a first adaptive prototype to follow delami-

nation propagations. The study of such adaptive scheme raised additional difficulties to
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be investigated.

Last, but not least, the implementation inside the commercial software Abaqus for

truss applications has been engaged as a preliminary test of the method inside an ex-

tended code architecture. A brief description of the developments is presented in Ap-

pendix C. Such implementation as two-way coupling submodeling-like capability via the

Co-Simulation technique has been a test for the intrusivity of the model, especially con-

cerning the coupling between different time scales. In particular, the need to go back

in time in order to re-iterate the local analysis has required specific code implementa-

tions. The extension to solid and shell models and to the existing features is necessary for

dealing with industrial problems.

Future developments

In parallel with the extension of the Substitution method inside Abaqus to the solid and

shell models and to the existing capabilities of the software, further research studies in-

volve:

• development of a weakened macro-scale model to represent the delaminated behav-

ior in the global analysis;

• treatment of contact problems: the easier idea consists in simulating the contact

in the global analysis and mapping equivalent nodal forces in the local analysis;

more accurate approaches could involve the computation in the local analysis with

the use of opportune 2-level operators as the ones introduced for static problems in

[Nour-Omid and Wriggers, 1986];

• treatment of non-conforming global-local meshes, considering global-local inter-

faces that are not aligned with the global elements boundaries; special interpolation

functions are for instance proposed in [Biabanaki et al., 2014] considering polygo-

nal elements for large deformations contact problems;

• treatment of wave-reflection over the global-local interface, as for instance in [To

and Li, 2005], and use of artificial dissipative techniques alternative to bulk vis-

cosity techniques, introduced for fluid dynamics in [VonNeumann and Richtmyer,

1950] and [Landshoff, 1955] and usually employed in explicit dynamics of struc-

tures;

• extension of the coupling technique in order to deal with shell formulations in the

global analysis;

• extension of the coupling technique to implicit-explicit couplings as in [Gravouil

and Combescure, 2001] and further works.
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Meso-scale model for the Matlab

prototype

This appendix describes the inter-laminar behavior for

stratified composites implemented for the Matlab prototypes.
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1 Cohesive element technology

The formulation of the stiffness matrix of a 2-dimensional 4-node cohesive element as

developed in [Schellekens and de Borst, 1993a] and [Schellekens and de Borst, 1993b] is

here described. Figure A.1 shows a cohesive element in a global coordinate system {x,y}
with the indexes of the 4 nodes. Note that the nodes 1-3 and 2-4 are perfectly overlapped

together to m1 and m2, respectively, in the reference configuration. Unit vectors n and t

respectively denote the normal and tangential vectors to the middle-line, ξ indicates the

local coordinate along the element.

Figure A.1: Cohesive element notation.

The displacement parameters Ucoh associated to the cohesive element (denoted with

the subscript “coh”) in the global coordinate system are:

Ucoh =
{

U1x, U1y, U2x, U2y, U3x, U3y, U4x, U4y

}T
(A.1)

and the displacement jump parameters ∆Ucoh between adjacent nodes is written as:

∆Ucoh =
{

U3x−U1x, U3y−U1y, U4x−U2x, U4y−U2y

}T
(A.2)

considering the nodal indexes and the directions defined in Figure A.1.

The displacement parameters Ucoh and the displacement jump parameters ∆Ucoh are

then linked by the following expression:

∆Ucoh =ΦUcoh

Φ=
[

−I, I
] (A.3)

where I is the identity matrix.

The linear shape functions Nm1 and Nm2 are taken along the middle-line connecting

m1 and m2, so that:

∆ucoh(x) = Hcoh∆Ucoh

Hcoh =
[

Nm1I, Nm2I
]

.
(A.4)

Using the definition in Equation (A.3), the displacement jump field in Equation (A.4)

becomes:

∆ucoh = HcohΦUcoh. (A.5)
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The local tangential and normal unit vectors t and n are obtained by:

t =
1

J

{

∂x/∂ξ, ∂y/∂ξ
}T

n =
1

J

{

−∂y/∂ξ, ∂x/∂ξ
}T

(A.6)

where:

J =

√

(

∂x

∂ξ

)2

+

(

∂y

∂ξ

)2

. (A.7)

Defining the transformation tensor Θ:

Θ=
[

t, n
]

(A.8)

the local displacement jump parameters ∆Utn are so defined:

∆Utn =ΘHcohΦUcoh (A.9)

and the elastic energy of a cohesive element Vcoh writes:

Vcoh =
1

2

∫
Γcoh

∆UT
tnDcoh∆Utn dL. (A.10)

The tangent stiffness matrix Kcoh is defined for each cohesive element as:

Kcoh =
∫

Γcoh

Φ
T HT

cohΘ
TDcohΘHcohΦJ dξ (A.11)

in which Dcoh denotes the constitutive matrix, that writes:

Dcoh =

[

kt 0

0 kn

]

(A.12)

where kn and kt are the normal and tangential stiffnesses, respectively.

2 Interface contact

The contact between plies is modeled with a simplified penalty-based approach, in which

forces are applied at nodes to contrast inter-penetration. Such forces are computed as:

Fn = kc < ∆Un >− (A.13)

where kc depends on the element size and the penalty scale factor, n is the normal di-

rection to the middle-line of the cohesive element and <�>− denotes the negative part

of �.

For the sake of simplicity, friction is neglected.
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3 Isotropic damage model

Many damage models have been developed for the meso-scale model. An energy-based

damage formulation has been introduced in [Allix and Ladevèze, 1992] and [Allix et al.,

1995] for the inter-laminar damage modeling. The same theoretical developments have

been used in [Ladevèze and LeDantec, 1992] for intra-laminar models. The extension to

high-velocity impact loadings is based on the use of a fracture characteristic time param-

eter introduced in [Ladevèze et al., 2000] and [Allix, 2001] and employed for industrial

applications for instance in [Allix and Blanchard, 2006] and [Guimard et al., 2009].

The isotropic damage model application is so described starting from the definition of

energy:

ED =
1

2

∫
Γ

(

< σn >
2
−

kn
+

< σn >
2
+

kn(1−d)
+

σ2
t

kt(1−d)

)

dL (A.14)

where Γ is the length of the middle-line interface, σn and σt are respectively the normal

and tangential stresses and d is the scalar value representing the isotropic damage.

The thermodynamical forces Yn and Yt are introduced as derivatives of the energy ED

in function of the damage scalar value d, so that:

Yn =
1

2

< σn >
2
+

kn(1−d)2
, Yt =

1

2

σ2
t

kt(1−d)2
. (A.15)

Assuming that the thermodynamical forces are strongly coupled and driven by a

unique equivalent thermodynamical force Y (t), such that:

Y (t) = (Y α
n +(γYt)

α)1/α
(A.16)

where γ and α are material parameters and assuming, for the sake of simplicity, that

γ = α = 1, so that:

Y (t) =
1

2

(

< σn >
2
+

kn(1−d)2
+

σ2
t

kt(1−d)2

)

, (A.17)

the damage evolution law is defined as:

ḋ =
1

τc

(

1− e
−< 1

2

<Y−Y0>+
Yc−Y0

−d>+

)

(A.18)

where d is the damage value, τc is the characteristic time of the fracture process, <�>+

is the positive part of the quantity �, the constant values Y0 and Yc are the threshold and

critical thermodynamical forces, respectively, and Y writes:

Y (t) = sup
τ≤t

Y (τ). (A.19)
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4 Application to mode-2 mechanism

Figure A.2 shows the test case utilized here to present the cohesive interface technology

and the damage model associated. The structure is composed of two stacked bodies with

linear elastic behavior, connected by the cohesive interface at mid-height. The bottom

edge of the structure is clamped, whereas the top edge is constrained to a given velocity

v. The plane strain condition is assumed and a mesh of bilinear quadrilateral elements is

defined. The cohesive elements along the cohesive interface are 10, conforming with the

quadrilateral elements. The stress and damage variables are monitored at the quadrature

point S.

Figure A.2: Structure with cohesive interface at the mid-height.

The problem data are:

• for the linear elastic bodies:

– density ρ = 1500 kg/m3;

– Young’s modulus E = 140 ·109 Pa;

– Poisson’s ratio ν = 0.4;

• for the cohesive interface:
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– characteristic time τc = 20 ·10−6 s;

– threshold thermodynamical force Y0 = 50 ·103 Pa;

– critical thermodynamical force Yc = 230 ·103 Pa;

– interface stiffness kn = kt = k0 = 1012 N/m3;

• length L = 1 m;

• height H = 1 m;

• imposed boundary condition v = {vx,vy}T = {10,0}T m/s over the top edge.

A time step ∆t = 2 ·10−6 s is chosen out of the relations with the mesh size.

Figure A.3 shows the results at the location S in terms of thermodynamical forces

Y (red line) and damage d (blue line). In accordance with the damage law in Equa-

tion (A.18), the damage is activated when Y >Y0 = 50 ·103 Pa and follows an exponential

law.
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Figure A.3: Thermodynamical forces and damage at the location S.

Figure A.4 shows the results at the location S in terms of tangential stresses, whereas

the normal stresses are negligible because of the nature of the boundary conditions. The

damage is initiated when σt ≃ 300 · 106 Pa, in agreement with the definitions in Equa-

tions(A.15).

After the damage initiation, the effective and nominal stresses σeff
t and σnom

t , respec-

tively, follow two different evolutions, in accordance with the definition:

σeff
t =

σnom
t

1−d
. (A.20)
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Figure A.4: Tangential stress history at the location S.
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Appendix B

Macro-scale model for the Matlab

prototype

This appendix describes the formulation and some results of

the Enhanced Assumed Strain method for 2D plane strain

applications. Such developments have been used for the

Matlab prototypes.
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1 Bilinear displacement-based quadrilateral elements

The weak formulation in space of a linear elastic problem with small displacements as-

sumption writes: ∫
Ω
(ρü ·δu+σ : δε) dΩ =

∫
Ω

f ·δu dΩ (B.1)

where σ denotes the stress tensor defined as:

σ = D : ε (B.2)

with the fourth-order tensor D denoting the elastic constitutive law and with the strain

field ε defined as the symmetric part of the displacement gradient:

ε= grads(u) =
1

2

(

grad(u)+gradT (u)
)

. (B.3)

Using a bilinear displacement-based quadrilateral element discretization, the displace-

ment and strain fields in the matrix formulation write:

u = φ ·U = A{NelUel}, ε= grads (φ) ·U = A{BelUel} (B.4)

where A{�} is the assembly operator from elements e to the overall mesh Ωh, Nel and

Bel are matrices containing the bilinear shape functions and the related spatial derivatives,

respectively.

The mass matrix, stiffness matrix and external forces vector are then respectively de-

fined as:

M= A

{∫
Ωel

ρNT
elNel dΩ

}

, K= A

{∫
Ωel

BT
elDBel dΩ

}

, Fext = A

{∫
Ωel

NT
elf dΩ

}

(B.5)

and Equation (B.1) becomes:

δUTMÜ+δUTKU = δUT Fext. (B.6)

With such bilinear shape functions, a parasitic shear strain is numerically produced in

bending problems. This kind of error overvalues the stiffness of the structure as described

in Figure B.1, with the so-called shear locking effect.

In relation to the theoretical bending behavior described in Figure B.2, the strain so-

lution in the quadrilateral partition reads:

εx =−
ϑy

L
, εy =

νϑy

L
, γxy = 0. (B.7)

On the other hand, with displacement-based quadrilateral elements, the behavior in

bending problems is described in Figure B.3 and the strain solution in the quadrilateral

element writes:

εx =−
ϑy

L
, εy = 0, γxy =−

ϑx

L
. (B.8)
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Figure B.1: Bending response in terms of shear stress with the bilinear quadrilateral

elements.

Figure B.2: Theoretical bending behavior neglecting the shear strain.

Figure B.3: Bilinear quadrilateral element bending behavior.
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2 Enhanced Assumed Strain method

The Enhanced Assumed Strain method was formulated in [Simo and Rifai, 1990], with

common bases with the study of the incompatible modes in [Taylor et al., 1976] and then

enriched of numerical options in [Andelfinger and Ramm, 1993]. An artificial correction

is applied to the bilinear quadrilateral element in order to correct the strain and stress

responses for bending problems.

The fundamental assumption is that the strain field is decomposed in compatible

strains ε, which correspond to the displacements of the Finite Elements space, and an

enhancement term ε̃, so that:

ε̂= ε+ ε̃ (B.9)

that, using the definition in Equation (B.3), becomes:

ε̂= grads(u)+ ε̃. (B.10)

Focusing the attention on the internal energy term only, the Hu-Washizu functional of

the linear elastic problem with small displacements assumption writes:

∫
Ω

(

1

2
ε̂ : D : ε̂−σ : ε̂+σ : ε

)

dΩ = 0 (B.11)

where σ is the statically admissible stress field.

Considering the definition in Equation (B.9), Equation (B.11) becomes:

∫
Ω

(

1

2
ε̂ : D : ε̂−σ : ε̃

)

dΩ = 0. (B.12)

The crucial assumption in [Simo and Rifai, 1990] is that the additional strains ε̃ do

not contribute to the energy with statically admissible stresses σ, so that:

∫
Ω
σ : ε̃ dΩ = 0. (B.13)

Equation (B.12) is so reduced to:

∫
Ω

1

2
ε̂ : D : ε̂ dΩ = 0. (B.14)

The only variables to be assumed explicitly in Equation (B.14) are the displacements

u and the additional strains ε̃, according to the definition in Equation (B.10). Whereas

the displacements are modeled with bilinear (or trilinear) shape functions as in Equa-

tion (B.4), many models are presented and compared for the enhancement term ε̃ in

[Andelfinger and Ramm, 1993] for 2- and 3-dimensional examples. Using a common

formulation, for each element e of the mesh Ωh:

ε̃el = M̃elαel (B.15)
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where M̃el is the interpolation matrix for the additional strains and αel is a vector of

internal strain parameters.

In the variational expression in function of parameters U and α, Equation (B.14) for

each element e becomes:

UT
el

∫
Ωel

BT
elDBel dΩ δUel +δUT

el

∫
Ωel

BT
elDM̃el dΩ αel +UT

el

∫
Ωel

BT
elDM̃el dΩ δαel+

+αT
el

∫
Ωel

M̃T
elDM̃el dΩ δαel = 0 ∀δUel,∀δαel

(B.16)

that is solved in the two parameter fields Uel and αel by:

∫
Ωel

BT
elDBel dΩ Uel +

∫
Ωel

BT
elDM̃el dΩ αel = 0 ∀δUel

∫
Ωel

M̃T
elDBel dΩ Uel +

∫
Ωel

M̃T
elDM̃el dΩ αel = 0 ∀δαel.

(B.17)

Integrating also the inertial energy and the external work at the element level, Sys-

tem (B.17) becomes:

MelÜel +KelUel +Lelαel = Fext
el

LT
elUel +Qelαel = 0

(B.18)

where:

Lel =
∫

Ωel

BT
elDM̃el dΩ, Qel =

∫
Ωel

M̃T
elDM̃el dΩ. (B.19)

Condensing the computation of parameters αel, the element problem becomes:

αel =−Q−1
el L

T
elUel

(

Kel−LelQ
−1
el L

T
el

)

Uel = Fext
el

(B.20)

and the stiffness matrix K is corrected and assembled as:

K= A

{

Kel−LelQ
−1
el L

T
el

}

. (B.21)

According to [Andelfinger and Ramm, 1993], the interpolation matrix M̃el can as-

sume different shapes, in function of the number of parameters αel chosen for the strain

enhancement term ε̃. For the 2-dimensional case:

1. EAS-2 with two parameters:

M̃el =





ξ 0

0 η
0 0



 ; (B.22)
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2. EAS-4 bubble [Taylor et al., 1976] with four parameters:

M̃el =





ξ 0 0 0

0 η 0 0

0 0 ξ η



 ; (B.23)

3. EAS-5 (with a good improvement of bending behavior) with five parameters:

M̃el =





ξ 0 0 0 ξη
0 η 0 0 −ξη
0 0 ξ η ξ2 +η2



 ; (B.24)

4. EAS-7 [Andelfinger and Ramm, 1993] with seven parameters:

M̃el =





ξ 0 0 0 ξη 0 0

0 η 0 0 0 ξη 0

0 0 ξ η 0 0 ξη



 . (B.25)

3 Study of the convergence with mesh refinement

The problem displayed in Figure B.4 is used to test the accuracy of the EAS quadrilateral

elements.

Figure B.4: Thin cantilever beam subjected to body forces.

A cantilever beam with plane strain assumption subjected to body forces is analyzed

with different spatial discretizations varying the number of elements throughout the length

L of the domain, value that influences the shape of the elements.

The problem data used in the simulations are:

• density ρ = 7500 kg/m3;

• Young’s modulus E = 210 ·109 Pa;

• Poisson’s ratio ν = 0.3;

• length L = 50 m;

• height H = 0.5 m;

• initial time tin = 0 s;
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• final time tend = 10 s;

• body force g = 9.81 m/s2.

Denoting their aspect-ratio as ar = Le/He:

• 1 element through the length⇒ ar = 100;

• 2 elements through the length⇒ ar = 50;

• 4 elements through the length⇒ ar = 25;

• 10 elements through the length⇒ ar = 10;

• 100 elements through the length⇒ ar = 1.

Remark 10 When the aspect-ratio ar is high, the application of the Selective Mass Scal-

ing technique introduced in [Cocchetti et al., 2012] for the case of 3-dimensional solid-

like shell formulations is desired, in order to increase the critical time step linked to the

small thickness. Such technique is based on the linear transformation of the element de-

grees of freedom, for allowing an artificial mass scaling technique to selectively reduce

the highest structural eigenfrequencies.

A time step close to the critical one is fixed as ∆t = 5 ·10−5 s for all the simulations.

Figure B.5 shows the convergence of the solutions refining the mesh, measured taking

the EAS-7 quadrilateral element with aspect-ratio ar = 1 as reference. The curves show

a remarkable enhancement of the accuracy with the EAS-4 bubble, EAS-5 and EAS-7

elements in comparison with the EAS-2 and the classical displacement-based elements.

The EAS-4 bubble results the most convenient element technology, because requires less

parameters for a similar accuracy to EAS-5 and EAS-7.
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Figure B.5: Convergence refining the mesh.

Results in terms of velocities and displacements are shown in Figure B.6 and denote a

fast convergence to the exact solution refining the spatial discretization, so that the meshes

with 10 elements (ar = 10) or 100 elements (ar = 1) produce almost the same solution in

terms of vertical displacements.
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Figure B.6: Solution at the location A.
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Appendix C

Implementation inside Abaqus

This appendix describes the implementation of the

Substitution method inside the commercial software Abaqus,

implemented in order to test the compatibility of the coupling

technique with the Abaqus code architecture. The application

to truss elements is proposed.
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1 Preliminary discussions and tests

The compatibility of the Substitution method with the existing features has been prelimi-

narily discussed, meaning that fundamental is the possibility to deal with:

• geometric or constitutive nonlinearities and artificial viscous forces for high fre-

quency dissipation: the iterative scheme is not affected because it only influences

the definition of the nodal forces applied to the interface nodes;

• non-conforming meshes with misaligned interfaces to the global elements bound-

aries: the insertion of slave nodes in the global mesh corresponding to the interface

and the numerical integration of the partitions of the element so created can be em-

ployed to define the required nodal forces; further investigations could verify the

feasibility of such implementation or the definition of an equivalent less intrusive

strategy;

• contact problems: the contact is considered only in the global analysis and the

equivalent global forces are mapped onto the local model; this approach is conve-

nient because it allows one to model the impactor and the contact process with the

coarse model: further investigation could interest the treatment of the contact at the

local level in order to increase the accuracy of the results.

2 Co-Simulation technique for Domain Decomposition

implicit-explicit coupling

As introduced in Section 5.4 of Chapter 1, the Co-Simulation can be utilized for Domain

Decomposition implicit-explicit couplings via the GC algorithm. Each subdomain is run

with its own analysis package. In the simplest case with two subdomains, the coarse one

is run with Abaqus/Standard, whereas the finer one with Abaqus/Explicit. The necessary

functionalities are in the Abaqus/Standard environment and include:

• .cpp services for computations and variables manipulations;

• .h objects for variables definition;

• .xml state chart [W3C, 2014] for governing the algorithm flow chart and the data

exchanges.

3 Extension to Domain Decomposition explicit-explicit cou-

pling

At first, the Co-Simulation technique for Domain Decomposition has been extended to

explicit-explicit couplings. Such extension has required the implementation of the func-
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tionalities in the Abaqus/Explicit environment, in which variables and operations are

deeply dissimilar.

The multi-time-step FETI approach formulated in Section 2 of Chapter 2 has been

employed.

The main steps of the explicit-explicit coupling via the Co-Simulation are summarized

in Algorithm 13.

while n < N do

coarse subdomain: solution of free momentum balance;

coarse subdomain sends to fine subdomain: mass and velocity;

while m < M do

fine subdomain: solution of free momentum balance;

service: computation of Lagrange multipliers;

fine subdomain: link correction with Lagrange multipliers;

update m;

end

fine subdomain sends to coarse subdomain: Lagrange multipliers;

coarse subdomain: link correction with Lagrange multipliers;

update n;

end
Algorithm 13: Co-Simulation for /Explicit-/Explicit Domain Decomposition.

4 Substitution via the Co-Simulation technique

The implementation of the Substitution method via the Co-Simulation technique requires

the same type of functionalities of the Domain Decomposition explicit-explicit coupling,

even if the computations, the data exchange and the flow chart are strongly different.

The main steps of the explicit-explicit coupling are summarized in Algorithm 14.
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while n < N do

global analysis: solution of momentum balance as pre-computation;

while i < i do

global sends to local: acceleration and velocity;

back in time;

while m < M do

local analysis: solution of momentum balance;

service: imposition of global solution over the interface;

update m;

end

local sends to global: reaction over the interface;

service: correction of the global solution over the interface;

service: direct substitution in the global substitution region;

end

update n;

end
Algorithm 14: Co-Simulation for /Explicit-/Explicit Substitution.

Note that, for the sake of simplicity, a fixed number of iterations i is considered, so to

avoid the computation of the convergence measure e.

5 Application to truss elements

The domain problem illustrated in Figure C.1 is considered as preliminary test of the

Substitution method inside Abaqus.

(a) spatial domain (b) load in time

Figure C.1: Truss test example: boundary conditions, load and monitored location A.

A bar with uniform cross section is clamped at the left side and pulled at the right side

by a force variable in time. The following data are employed:

• density ρ = 7500 kg/m3;

• Young’s modulus E = 210 ·109 Pa;

• cross section A = 2 m2;
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• length L = 10 m;

• initial time tin = 0 s;

• final time tend = 0.01 s;

• maximum load f = 109 N.

A monolithic analysis is performed for reference results with the non-uniform mesh

Ωh
r displayed in Figure C.2. One truss element covers the left side of the bar, whereas

five truss elements of same length are applied to the right side. A unique time step ∆tr =
1 ·10−4 s is fixed to in the overall domain for all the duration of the analysis.

Figure C.2: Monolithic analysis with non-uniform mesh and uniform time step.

The Domain Decomposition analysis via the Co-Simulation technique is then per-

formed with the two subdomains displayed in Figure C.3. One truss element is used in

the first subdomain Ωh
1 at the left side of the bar, whereas five truss elements of same

length are applied to the second subdomain Ωh
2 on the right side. Two different time steps

are defined to the two subdomains, such that:

• ∆t1 = 5 ·10−4 s in the coarse subdomain Ωh
1;

• ∆t2 = 1 ·10−4 s in the fine subdomain Ωh
2.

The exchanges between the two subdomains are represented by the green bi-directional

arrow, indicating also the interface nodes of the two subdomains.

Figure C.3: Meshes for the Domain Decomposition.

The Substitution analysis via the Co-Simulation technique is finally performed with

the global and local meshes displayed in Figure C.4. The global analysis at the top is

modeled by a uniform global mesh Ωh
g of two truss elements, the second one of them is

overlapped by the uniform local mesh Ωh
ℓ at the bottom constituted by five truss elements.

Similarly to the Domain Decomposition approach, two time steps are used in the two

analyses:

• ∆tg = 5 ·10−4 s in the coarse subdomain Ωh
g;

• ∆tℓ = 1 ·10−4 s in the fine subdomain Ωh
ℓ .
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The exchanges between the two analyses are represented by the red bi-directional arrow

for the iterative substitution algorithm and the blue arrow for the direct substitution algo-

rithm.

Figure C.4: Meshes for the Substitution.

Figures C.5 show the comparison between the three above mentioned analyses in

terms of velocity results at the location A, that is also the interface position for the Do-

main Decomposition and the Substitution methods. All the results are taken in the fine

time scale. The purple lines “mono 6elts” denote the monolithic analysis results with uni-

form time step and are taken as reference curves. The orange lines “gc dom2” denote the

Domain Decomposition analysis results. The blue lines “iter3 loc” denote the Substitu-

tion analysis results, in which the a pre-fixed number of iterations i = 3 has been imposed.

Every iteration, from the first one to the third, is plotted. One can spot the improved ac-

curacy of the iterative scheme after the first iteration and after the second as well: the

path that has been chosen to be accurate enough is represented by the outputs of the third

iterations. In the plot at the top, which show the whole analysis, the curves approximately

follow the same path. In the plot at the bottom, expanding the results between the times

t1 = 2.5 ·10−3 s and t2 = 5.0 ·10−3 s around the stationary points of the velocity results,

the Substitution curve is closer to the reference solution than the Domain Decomposition

one, because of the more accurate constraint at the interface. The gap between Substitu-

tion and reference analyses is due to the time step discrepancies in the coarse zones, that

is finer in the reference outcome.
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(a) entire analysis

(b) expansion around the stationary points between t1 = 2.5 ·10−3 s and t2 = 5 ·10−3 s

Figure C.5: Velocities at the location A.
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