Axon Morphology Analysis: from Image Processing to Modelling
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The morphological analysis of axonal trees is an important problem in neuroscience. It has been shown that the morphological characteristics of these structures provide information on their functioning and allows the characterization of pathological states. For example, the number and size of branches have a direct impact on the number of partners that a neuron can have. Therefore, it is of great importance to develop methods to analyze their shape and to quantify dierences between structures.

In this thesis we propose a method for the comparison of axonal trees that takes into account both topological and geometrical information. Using this method, which is based on the Elastic Shape Analysis Framework, we can compute the geodesic path between two axons and the mean shape of a population of trees. In addition, we derive a classication scheme based on this metric and compare it with state of the art approaches.

Finally, we propose a 2D discrete stochastic model for the simulation of axonal biogenesis. The model is dened by a third order Markov Chain and considers two main processes: the growth process that models the elongation and shape of the neurites and the bifurcation process that models the generation of branches. The growth process depends, among other variables, on an external attraction eld generated by a chemoattractant molecule secreted by the target area.

Both techniques were validated on a database of real uorescent confocal microscopy images of single neurons within intact adult Drosophila y brains. Both normal neurons and neurons in which certain genes were inactivated have been considered (two mutations).

Results show that the proposed axon comparison method obtains better results that other methods found in the literature, and that the stochastic model parameter values provide information about the axon growth properties of the populations.
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Context

The brain is the most complex biological organ, both in terms of structure and function. Microscopically, it is composed of billions of neurons that interconnect, forming what are known as neural circuits. These neuronal connections are essential to the processing and storage of information.

Neurons communicate with one another by means of two types of protrusions (neurites) called dentrites and axons. Dendrites receive the information arriving to the neuron, while the axons are in charge of transmitting the information to other neighboring cells. While a neuron can have many dendrites, they always posses only one axon. This long lamentous structure is able to connect a neuron to distant parts of the brain or body targeting specic cells.

During the developmental stage of the nervous system, neurons extend their axons in order to form the necessary neural circuits. Growing axons are guided to their target by specialized structures known as growth cones. These structures are present at the axon tip, and are able to sense chemical signals present in their environment. The paths taken by the growth cones depend on these signals, which can be either attractive or repulsive.

Once an axon reaches its destination, it begins to branch in order to connect to multiple targets, all of which will receive the same signals coming from the neuron body (soma). There are dierent branching congurations adapted to dierent connection requirements. Certain axons can have all their branches at the terminal Chapter 1. Introduction part (the part furthest away from the neuron body), while others can have multiple branches that sprout throughout the axon lament.

It is known that certain morphological characteristics are tightly linked to the neuron ability to function properly. For example, the number of branches in an axon is related to the number of connections a neuron can make. Thus, these morphological characteristics are also able to characterize pathological states. It is known that certain neurological diseases such as Fragile X Syndrome or Spinal Muscular Atrophy are related to unusual morphological characteristics of the neurons in the brain. Therefore, the morphological analysis of neurons, and in particular, of axons, is of great importance.

To analyze these morphological characteristics, researchers depend on neuronal images that can be acquired using dierent modalities. One of the most relevant is confocal microscopy. This imaging technique oers several advantages over conventional optical microscopy, and when combined with the uorescence phenomenon, it is capable of obtaining sharp 3D images of thick specimens that would otherwise be impossible to study.

During the course of this thesis we have worked in collaboration with biologists from the Institut de Biologie de Valrose. They have provided us with a large image database of axons taken from neurons of the Drosophila y brain. Both normal and pathological neurons have been considered. The pathological neurons were obtained by mutating certain genes related to neurological diseases in humans. These images will be the subject of study throughout this thesis, and will be used to validate the dierent proposed algorithms.

Given a set of images, they need to be processed in order to extract the information in them. The rst step necessary for their processing is the segmentation.

Currently, there is a wide variety of segmentation methods, each one adapted for different situations. Since none of the reviewed methods obtained satisfactory results on our images, we have proposed a new one.

Once the morphological information has been extracted from the images, we need to analyze it and quantify the dierences between dierent populations of axons.

Dierent approaches have been proposed. Some are based on distance functions that consider topological or geometrical information (or both), while other rely on directly comparing certain morphological features such as length or number of branches. We propose a new approach for the comparison of tree-like structures based on the Elastic Shape Analysis Framework, which we apply to the comparison and classication of dierent populations of axons. Moreover, we propose a method for the computation of the average shape of a populations of trees. The resulting mean shapes provide biologist with a visual way of analyzing the morphological 1.2. Thesis Organization characteristics of a population.

A dierent approach to the morphological analysis problem is to use the segmented neurons as input of an axonal biogenesis model. A model can provide an insight into the underlying processes and natural parameters involved in the axonal morphogenesis. We propose a new discrete stochastic model that considers several biological processes (such as growth and branching). All the parameters involved in the model are estimated from the images. This parameter estimation scheme provides another tool to characterize and classify dierent populations.

The entire morphological analysis process is represented in Figure 1.1. Schematic diagram of the morphological analysis process (images from http://scientopia.org/, http://www.nikoninstruments.com/ and http://www.wadsworth.org/).

Thesis Organization 1.2.1 Main Contributions

To summarize, four main contributions were proposed:

• A segmentation algorithm for confocal microscopy images of axonal trees. The method is based on a multi-step approach that combines lament enhancement, binarization, skeletonization and gap lling algorithms in a pipeline capable of extracting the axons from the images.

• A new distance for comparing tree-like shapes based on the Elastic Shape Analysis Framework. The distance takes into account both topological and geometrical information.

• An iterative algorithm for the computation of the mean shape of a population of trees based on our Elastic Shape Analysis distance.

• A discrete stochastic model for axonal tree biogenesis. The model is dened by a third order Markov Random Chain and considers several biological processes. In particular, the chemoattractant eld to which the growth cones are exposed is modeled.

Manuscript Organization

This manuscript is organized along the published and submitted work on which it is based.

Chapter 2 presents the motivation behind this thesis and briey describes the biological processes involved in the morphology of axonal trees.

Chapter 3 describes the image databases used throughout this thesis to evaluate the dierent proposed algorithms. We also briey present the acquisition process and the subject of study (Drosophilia, commonly called fruit ies).

We continue on Chapter 4 with a description of the necessary steps to perform the morphological analysis of the axonal trees: segmentation, comparison and modeling.

We briey describe dierent methods found in the literature for each of these three steps. Some of these methods will letter be used as a benchmark for comparing our algorithms.

In Chapter 5 we detail our rst contribution that consists on an automatic multi-step algorithm for the segmentation of axonal confocal microscopy images.

The method was rst proposed in [Mottini 2012].

Chapter 6 presents the two main contributions of this thesis that we have proposed in [START_REF] Mottini | [END_REF], Mottini 2014a]. We start by presenting our tree comparison method. Finally, we present a method capable of computing the mean shape of a population of trees. Although the method could potentially be applied to dierent types of trees, we concentrate on the comparison of axonal trees.

Chapter 7 details a discrete stochastic model for the simulation of axonal trees that we have proposed in [Mottini 2014b]. It considers two main processes: the growth process that models the elongation and shape of the neurites and the bifurcation process that models the generation of branches. In this chapter we introduce some of the key biological concepts underlying the axonal growth process.

We start by describing the structure of neurons, with an emphasis on neuronal extensions. The extensions (axons and dendrites) are usually referred to as neurites, and present a specialized structure at their tips called growth cones. These structures are responsible for guiding developing neurites to their targets by sensing chemical signals present in the cellular environment.

An important step in the development of neuronal extensions is the branching step. Branching most frequently starts once the neurites reach their targets, and consists in the bifurcation of the main process into multiple branches. It promotes neuron interconnection, a process mediated by specialized cell junctions called synapses.

Given that the morphology of neuronal trees, and axonal trees in particular, is tightly linked with the number and type of connections a neuron can have, their morphological analysis provides an insight into their functioning and a way of characterizing possible pathological states.

Introduction

The nervous system is composed of hundreds of billions of interconnected neurons, a type of cell specialized in information transmission. Macroscopically, a neuron is Chapter 2. Axonal Biogenesis composed of its cell body (soma) and of its cellular extensions referred to as neurites.

There are two types of extensions: dendrites and axons. In mammals, axons are typically long and thin, with an uniform width, On the other hand, dendrites are short and their width decrease with increased distance from the soma. While there is only one axon per neuron, many dendrites sprout from the soma (see Figure 2.1).

These cellular extensions allow neurons to connect to each other, thus establishing neuronal circuits that play an essential role in transmitting and storing information [Bassell 2000]. Dendrites receive the information arriving to the neuron, while the axons are in charge of transmitting the information to other neighboring cells. The formation of functional neural networks relies on several processes, including axon growth and guidance, arborization of the neurites, recognition of the neuron connection targets and establishment of synaptic connections between them [START_REF] Weiner | [END_REF]].

Axonal Growth

During the development of the nervous system, specialized structures (referred to as growth cones) guide growing axons to their targets.

Growth cones are specialized hand-shaped sensing structures present at the tips of the neurites, which are composed of three parts: the central and peripheral domains and the transition zone [START_REF] Lowery | [END_REF]] (see Figure 2.2). The central domain corresponds to the proximal part of the growth cone (the part closest to the soma).

This region has a dense network of microtubules (MT). Besides their structural role, MT are in charge of transmitting the necessary proteins to the cone [Hirokawa 2010].

Axonal Growth

The peripheral domain lies at the periphery of the growth cone and presents two types of cytoplasmic extensions: the lopodia and the lamellipodia. Filopodia are the guidance sensors, which give growth cones their characteristic hand shape (they are the ngers). In contrast, lamellipodia are located in between lopodia and are rich in F-acting networks.

Finally, the transition zone connects the central and peripheral domains. It presents an arc-shaped actin (a lamentous proteins) network that holds the MT in place [START_REF] Burnette | [END_REF]].

Figure 2.2: Schematic diagram of an growth cone (diagram taken and modied from [START_REF] Lowery | The trip of the tip: understanting the growth cone machinery[END_REF].

The growth cones constantly explore their environment to search for their targets by extending and retracting their protrusions. During the growth phase, a growth cone extends its lopodia. Then, the MT network extends and the central region established itself around the MT, thus allowing the axonal growth.

The path taken by the growth cones depends on chemical signals (guidance cues) present in their environment. These signals can be attractive or repulsive, and control in a non-autonomous way the navigation of the growth cones until they reach their targets [Campbell 2001].

Axonal guidance signals

The growth cones rely on the proteins present on its surface to detect and interpret the extracellular signals produced in the environment. These signals include guidance molecules, which bind to specic receptors in the growth cones and activate specic signaling pathways.

Chapter 2. Axonal Biogenesis Guidance molecules can be attractive or repulsive, and long ranged (diusible)

or short-ranged (surface-bound). Attractive molecules stimulate the growth and reorientation of the cones, while repulsive molecules inhibit growth and can even induce the cone retraction. The cones can be simultaneously stimulated by a combination of both attractive and repulsive molecules. The signals detected at each lopidal tip are integrated to determine the growth cone behavior [Bruckert 2012] and guide it through the developing nervous system until it reaches its target.

Once the axons reach their target, the extension phase stops and the arborization phase begins. This phase produces the axonal branches that will later favor synaptic connections with other neurons.

Axonal Branching

Axons generate branches in order to connect to multiple targets and establish neuronal circuits. The branch formation process can be determined genetically, stimulated by neuron activity or induced by external factors [Bruckert 2012].

There are several branching processes mentioned in the literature, which dier in terms of shape, size and location [Gobson 2011]. The rst type we will consider is arborization. It consists on the formation of secondary branches at the extremity of the axon. These secondary branches can also produce third level branches, thus creating a structure that resembles a tree. Examples of this type of branching are found in retinal ganglion cells [Gobson 2011]. A second type of morphology is generated by simple bifurcation. In this case, two daughter branches that grow away from each other in opposite direction are generated. Some examples are present in dorsal ganglion sensory neurons [Ozaki 1997]. These two branching types involve the division of the growth cone [Gallo 2011]. This division starts with the loss of cytoplasmic extensions (lamellipodia and lopodia) situated at the extremity of the cone and is characterized by cytoskeletal reorganization. This process ends with the formation of independent growth cones that will generate independent branches.

The nal bifurcation case is referred to as collateral formation. This case involves the formation of daughter branches that sprout from the the central part of the axon shaft. These new branches extend orthogonally or obliquely from the main axon and project to targets that are dierent from that of the main axon. Examples of this branching type are present in sensory neurons in the spinal cord [Gobson 2011]. The dierent bifurcation types are schematized in Figure 2.3.

The strategies involved in the guidance and growth of the daughter branches are the same that for the main axon. 

Synaptogenesis

The branching and target recognition processes are followed by the synapse formation stage, which involves the interconnection of neuronal partners at specic locations [START_REF] Colon-Ramos | Synapse formation in developing neural circuits[END_REF].

Synapses are specialized cell junctions that control the information ow between connected neurons. Therefore, their study is critical to understand neuronal circuit activity and regulation.

There are two types of synapses: electrical and chemical synapses. Both types dier considerably in terms of structure and way of functioning. In addition, they both relay information using very dierent mechanisms (see Figure 2.4).

Electrical synapses are specialized intercellular connections between neurons (and other types of cells) that connect the cytoplasm of two neighboring cells. These connections, which are referred to as gap junctions, allow the bidirectional propagation of signals (including electrical stimuli). They provide the fastest method for information propagation between cells, and are known to be important for the synchronization of the electrical activity across networks. 

Neuronal Circuits

When neurons interconnect with one-another, they generate complex networks that process information. These networks are commonly referred to as Neuronal circuits (see Figure 2.5). The correct establishment of the circuits depends on the successful completion of all the developmental steps explained in the previous sections [Lu 2009a].

Dierent morphological characteristics have a direct impact on the way neurons grow and interconnect, and are therefore tightly linked to the circuit anatomical and functional properties [Brown 2008].

For example, the length and number of axon branching points (see Figure 2. 6) are critical parameters as they determine the territory covered by the axonal tree and are thus closely related to the number of partners a given neuron can have. A greater length also implies that the neuron can reach far away targets in the nervous system.

On the other hand, features such as maximum extent among paths in a tree have a functional signicance since the greater the distance along a path, the greater the attenuation of the signal. Moreover, other morphological characteristics such as neurite diameter aects the way action potentials are generated and thus the way the information is processed.

Understanding how these parameters are controlled is a key step for understanding the mechanisms driving neuronal circuit establishment, both in the embryo and in adults during the regeneration process. For example, whereas the number of neurons does not signicantly change in normal aging, some subtle morphological changes do appear in dendrites and axons [Kabaso 2009].

The study of axonal morphology is critical to our understanding of the nervous system and of neurological disorders. This is why throughout this thesis we will concentrate on understanding and characterizing the morphological dierences between normal and pathological tissues.

Conclusions

The nervous system is organized in neural circuits, networks of neurons that interconnect in order to exchange information. The formation of these circuits depends on multiple developmental processes including axon growth and guidance, neurite Once the axons reach their target, they begin to branch in order to connect to multiple targets. There are dierent branching congurations adapted to dierent connection requirements. The actual connection and communication between neurons is done though specialized cell junctions called Synapses.

The morphological analysis of axonal trees is an important problem in neuroscience since it is known that their morphology provides information on their functioning and allows the characterization of pathological states. In particular, the analysis of neuronal axonal topologies allows biologists to study the causes of certain neurological diseases such as Fragile X Syndrome or Spinal Muscular Atrophy. In this chapter we discuss the neuronal images used throughout this thesis.

We start by introducing general concepts regarding the image acquisition process. Confocal microscopy is a technique capable of generating 3D image stacks of specimens at very high resolutions. When combined with Fluorescence imaging, these techniques provide an ecient way of analyzing cellular processes in living systems that would otherwise be impossible to study.

Then, we describe the two databases that will be used to validate the dierent methods proposed in Chapters 5,6 and 7. A special emphasis is put on the image database provided by our collaborators at the Institut de Biologie de Valrose. We describe the used study model (neurons from the the mushroom bodies of Drosophilia) and the general characteristics of the images. 

Introduction

Fluorescence Imaging

The phenomenon of uorescence was rst observed over a century ago. However, the realization that uorescence could be applied for imaging purposes was recognized much later [Andersson-Engels 1997]. When combined with dierent imaging techniques, uorescence provides an excellent technique to study cellular processes in living systems that would otherwise be impossible to study.

Fluorescence is the physical process by which a special molecule (a uorescent molecule) is exited with photons, and some part of this absorbed energy is re-emitted afterwards in the form of light. More precisely, a light source (usually a laser) is used to excite a uorescent molecule. This molecule absorbs the energy, which is used to increase its energy level to an excited state. Since this excited state is unstable, the molecule then relaxes to a lower energy level (see Figure 3.2). The dierence in energy between the two levels is emitted in the form of light. In the context of biological imaging, this emitted light is captures by a microscope and an image is created.

There currently exist many uorescent molecules, each one emitting light in a particular characteristic wavelength that is determined by its physical properties (and not by the wavelength of the absorbed light). The most commonly used molecule is the Green uorescent protein (GFP), which was isolated in 1961 from the jellysh Aequorea Victoria (see Figure 3.2) 3.3. Since the objects of study usually do not uoresce by themselves, the uorescent molecules need to be introduced in the biological structures of interest articially.

There are dierent techniques for accomplishing this. The gene responsible for the orescence can be articially introduced in the cells of interest, either transiently by injection of transfection, or stably via trasgenesis.. Once the gene has been introduced, the cells will synthesize the orescent protein by themselves. 

Image Databases

During this PhD we have worked in collaboration with biologists from the Institut de Biologie de Valrose (IBV). They have provided us with a set of images that we have used to validate the dierent methods described in the following chapters.

In addition, we have also used the public database Neuromorpho for the validation of the methods presented in Chapter 6.

IBV Database

Model of Study

Due to their short life cycle and the simplicity of their genome, Drosophilia ies are ideal subjects for investigating the basic mechanisms underlying neuronal morphology. Mutant ies, with defects on one or several genes, can be use to unveil the causes of dierent pathologies.

In particular, we work with neurons from the mushroom bodies (also called Kenyon cells). The neurons present in this region of the brain have been thoroughly studied before. Many techniques exist to modify their genes, making them a good model [Bruckert 2012]. The mushroom bodies are composed of two symmetrical stalks referred to as peduncles, which branch into district lobes [Crittenden 1998] (see Figure 3.4). 

Images

The biologist have uorescently labeled single γ neurons within intact adult Drosophila y brains, and have acquired 3D uorescent confocal microscopy images of their axonal trees. Both normal neurons and neurons in which the function of the imp (mutant type 1) or prolin (mutant type 2) genes was inactivated were imaged. imp encodes a conserved RNA binding protein controlling subcellular mRNA transport and local protein synthesis, and is essential for axonal remodeling [Medioni 2014]. prolin encodes a regulator of the actin cytoskeleton involved in axonal pathnding [START_REF] Wills | [END_REF]]. Mutations in these two conserved genes have been linked to neurological pathologies [Donnelly 2011, C.H. Wu 2012].

The database is composed of 61 images: 20 normal, 24 type 1 mutant and 17 type 2 mutant. Each 3D image stack has a resolution of 0.093967 × 0.093967 × 0.814067 µm and two channels. The morphology of single axonal trees is visible in the rst channel, while the morphology of the overall neuronal structure in which axons are developing is visible in the second channel (see Figure 3.6).

All the axonal trees were manually segmented by an experienced biologist using Neuromantic 4.2.5 (see Figure 3.7). This is a very time consuming task. Therefore, we will propose an automatic segmentation method that will be presented in Chapter 5.

As we can appreciate in Figure 3.8, each population of axons sometimes present a distinctive morphological signature that dierentiates them from the others. Normal axons are long and present several long branches and sub branches. On the other hand, mutant type 1 neurons are short and have few branches, and mutant type 2 axons are short but present many short branches and sub branches.

However, as we can appreciate in Figure 3.9, this is not always the case. There is a considerable variability in each population, and it is sometimes dicult to tell to which population an axonal tree belongs to. Understanding if and how the populations are morphologically dierent will be studied in Chapters 6 and 7.

Neuromorpho Database

Neuromorpho [Ascoli 2007] is an open neuron reconstruction database available online at neuromorpho.org. It contains contributions from over 100 laboratories worldwide and is composed of over 10.000 reconstructions. Moreover, it consists on reconstructions from over 12 dierent species (from salamander to human), 16 main brain regions, and 30 cell types. This makes is the largest open database of neuron reconstructions.

This database provides the scientic community with a mutual benchmark on which to evaluate dierent algorithms. 

Conclusions

Confocal microscopy is a technique capable of generating sharp high resolution 3D images. When combined with uorescent techniques, it provides a way to study cellular processes in living systems that would otherwise be impossible to study with conventional imaging techniques. During the course of this PhD we have worked with two sets of images.

The rst set of images was provided by biologists of the Institut de Biologie de Valrose (Nice, France). They have used uorophores to label single neurons from a specic region of the Drosophila y brain. This particular region has been widely studied in the past. Then, a confocal microscope was used to acquired 3D images of them. Each image stack consists of two channels. The rst channel presents the morphology of single axonal trees, while the second channel presents the morphology of the brain structure where the neurons develop. Both normal neurons and neurons in which certain genes were inactivated have been imaged. The mutated genes have been linked to neurological diseases in humans. 

Chapter 4. Axon Morphology Analysis: from Image Processing to Modelling

Segmentation is the rst step necessary for the morphological analysis of axonal topologies. Given the nature of the neuronal images (large size, low signal to noise ratio, etc), this step presents many diculties.

The tracings obtained in the segmentation stage can be compared to one another using a variety of methods. This allows us to identify morphological characteristics of dierent populations of neurons. In addition, the tracings can be used as input to simulation methods that estimate their parameters from them. These simulation methods can help us, among other things, to understand the biological processes involved in neuronal formation.

We describe dierent methods found in the literature for each of these three topics, and discuss their advantages and disadvantages.

Introduction

The properties of neuronal cells are controlled in part by their intrinsic gene expression program and in part by neuron-neuron interactions. It is manifested by a precise morphology as well as adapted distribution and number of synapses. In this work we concentrate on the most visible of these factors: neuronal morphology. Morphological properties can include general characteristics such as length and number of bifurcations, and more complex characteristics such as shape. Each of these features has an impact on the behavior of individual neurons and on their ability to inter connect and create neural networks.

Given a set of neuronal images, the rst step necessary for the morphological analysis of the neurons is the segmentation of the images. Thus, we obtain a simpler representation of the neuronal topology that synthesizes the most relevant characteristics. Over the past decades, much progress has been done in this eld. Many dierent algorithms and software packages can be found in the literature, and new methods appear each year. However, for the moment, we do not have techniques that can be applied to any type of neuronal images. In this chapter we briey review some of the currently available techniques.

Once we have obtained the tracings, one needs to analyze their shape and to quantitatively compare their morphology. Several approaches have been proposed over the years. Dierent methods will be discussed in this chapter, with a special emphasis put on TED and Path2Path. These two methods will be used in Chapter 6 to evaluate the performance of our method.

Finally, a dierent yet related problem is the modeling and simulation of neuronal development. These techniques provide a way of investigating the underlying processes and natural parameters (i.e. axonal elasticity) involved in the neuronal formation. The models can work on dierent scales (from sub to macro cellular) and consider dierent biological processes depending on their complexity and focus.

Several solutions exist for the generation of realistic individual neuronal morphologies, as well as methods for the generation of full neuronal circuits. Three of such models will be briey explained in this chapter.

Segmentation

The automated extraction of axons from biological images is a key problem in the eld of neuron image analysis. This is put into evidence by the proposal of the At present, the most common segmentation approach is manual tracing. The process of manually segmenting neuronal structures (even in the case when the user is aided by a computer application) can take, depending on the size of the images and complexity of the structures, up to several days. Moreover, given the recent advancements in the acquisition process, biologists nowadays posses large image databases. The manual processing of these images is thus unfeasible.

To tackle this challenge, many dierent methods for the automatic or semiautomatic segmentation of neuronal structures have been proposed. These algorithms provide dierent levels of automation, and are based on dierent techniques.

Some are designed to work on 3D image stacks, while others are restricted to 2D projections.

In this section we will describe three algorithms that exemplify dierent classes of algorithms. We start with V3D-Neuron [Peng 2010], a semi automatic graph-based algorithm. We then describe the algorithm proposed by Zhang et al. [Zhang 2008].

This method exemplies a family of algorithms specically designed to work on images containing multiple non branching axons. Finally, we describe Tree2Tree [START_REF] Basu | [END_REF]] and Wearne et al. [START_REF] Wearne | [END_REF]]. Like many others, these two methods propose a multi-step approach that consists on the binarization of the image, the skeletonization of the binary objects, the gap lling of the skeleton segments and a nal post processing step. We have also chosen this segmentation approach for the method proposed in Chapter 5.

Chapter 4. Axon Morphology Analysis: from Image Processing to Modelling

In addition, several computer applications have been developed for the processing of such images. These applications, which include dierent extraction algorithms, provide manual or semi-automatic modes of operation along with friendly graphical user interfaces (GUI). Two of these applications will be discussed in this section.

A more comprehensive review of dierent segmentation methods and tools can be found in [Donohue 2011].

V3D-Neuron

Peng et al. [Peng 2010] developed a graph-augmented deformable model to reconstruct the 3D structure of neurons. The method requires the user to mark the root and end nodes. Then, the algorithm searches for the optimum path connecting the markers.

The rst step of the algorithm is to create a graph G = (V, E), where V is the set of all nodes and E the collection of edges between them. Each image voxel v corresponds to a node of the graph. The nodes associated to neighboring voxels are connected with undirected edges e, whose weights are dened as the product of the euclidean distance between them and a second term that depends on the image intensity at the points:

e(v 0 , v 1 ) = v o -v 1 g I (v 0 ) + g I (v 1 ) 2 g I (v) = exp(λ(1 -I(v)/I max ) 2 ) (4.1)
where I(v) corresponds to the intensity of the image at point v, I max is the maximum intensity of the image and λ is a parameter of the algorithm.

The authors then use Dijkstra's algorithm to nd the optimum shortest path P between each end node and the root node (all previously selected by the user).

Given the way that the g I (v) was dened, the least cost path between a pair of nodes will the one that passes through the brightest voxels with the least overall distance.

The nal step consists on using the optimum paths to initialize the control points of a deformable curve C, which is further rened and smoothed using At the end of the process, the nal neuron tracing will be generated by connecting the nodes of each optimum path (one per end point).

This method presents promising results, but the need for manual selection of end points is an important shortcoming, specially when analyzing large databases of images.

Dynamic Programming -Watershed

In [Zhang 2008], the authors propose a semi-automatic extraction algorithm for microscopy images of axons. The authors combine Dynamic Programming (DP)

searching (an optimization procedure designed to eciently search for the global optimum of an energy function) with marker controlled watershed segmentation to solve the segmentation problem.

The process starts with the user manually selecting a set of seed points, one point for each axon in the rst slice. The method then behaves as a tracking algorithm.

For each seed point, the algorithm dynamically searches for optimum paths for the candidate point from its neighboring pixels. To improve the computational eciency of the algorithm, only the neighbors within a small search region on next slice are considered. Then, a cost is assigned to each of the voxels in the search region. This cost is calculated using a function that depends on the derivatives of the image at the given points.

The points with the minimum cost value are used as markers for the watershed method, which is applied to segment the dierent axons in the current slice. The centroids of the segmented regions are used as the detected centerline points (the seeds of the following slice) and a new searching process is applied starting from these points. This process continues until the last slice is reached.

The method is based of certain assumptions, the most relevant for us being that all the axons start at the rst slice and no new axons appear during the rest of the slices (no branching or merging of axons). As we saw in Chapter 3, our data is composed of images containing a single axonal trees that usually present several branches and sub branches. Thus, this method is not appropriate for the processing of our images.

Tree2Tree

Tree2Tree [START_REF] Basu | [END_REF]] is a fully automatic (does not require the manual selection of a starting seed point) neuron segmentation algorithm for 2D images. It consists on several consecutive steps, and its output is the centerline of the tree with nodes Chapter 4. Axon Morphology Analysis: from Image Processing to Modelling placed at a user dened resolution.

The rst step is the binarization of the image, which is performed using a non global method to adapt to brightness changes in the image. The resulting binary components are then skeletonized using a classical algorithm.

These skeleton segments are usually disconnected. Thus, the authors propose a graph based gap lling method. First, a distance between neighboring segments is dened, which depends on the angle and euclidean distance between them. Then, a graph G is constructed, where each segment is a node and the weight of each edge is the distance between them. Two nodes are connected only if they are one of the k (a parameter of the method) nearest neighbors of each other. Finally, an optimum connectivity tree M is constructed from the global graph G such that the sum of the edges over the entire tree is minimum.

To obtain the nal segmentation, the nodes of M are connected using cubic splines.

The fact that the method is restricted to 2D data limits its usefulness since a 2D analysis does not give crucial information about the axon morphometry and topology. In particular, the lengths and bifurcation points in the 2D projection might be dierent to the original 3D image.

NeuronStudio

This algorithm [START_REF] Wearne | [END_REF]] is another example that follows the multi-step segmentation approach. Unlike Tree2Tree, this algorithm requires the user to select an initial seed point that is used in the binarization step to indicate to the algorithm which of the (potentially) found binary objects is the neuronal structure.

The binarization step is followed by a topology and geometry-preserving 3D skeletonization step [Rodriguez 2003]. Finally, the skeleton is processed to remove loops and eliminate unwanted spurious branches (prunning).

This algorithm is integrated in the NeuronStudio software package, a free program designed for the manual, and semi automatic reconstruction of neuronal structures from confocal and multi-photon images.

Neuromantic and FeatureJ

Neuromatic is a free application for the manual or semi-automatic reconstruction of neurons from single images or image stacks. It is being developed primarily by Darren Myatt at the University of Reading. The software has two modes of operation, manual and semi-automatic.

In the manual mode, nodes are added to the reconstruction one at a time by the user. Consecutive nodes are automatically connected by a straight line. Carrying on this procedure results in the entire neurite being segmented.

In the semi-automatic mode, the software assists the user in the segmentation procedure. The user needs to select an initial point, and then trace the axon with the mouse. The software will automatically try to detect the lament and add nodes to it (similar to the Magnetic Lasso tool of Adobe's Photoshop). The detection is based on a particle lter algorithm that tracks small segments of lament along space.

Because the software requires heavy user interaction (even in the semi-automatic mode), it would not be practical to use on a large database of images. The software supports gray-scale images of up to ve-dimensions (5D), and includes several functions such as the computation of the Hessian, the derivative and the Laplacian. In particular, in [START_REF] Grider | [END_REF]], the authors apply the Hessian function for the quantication of axons in microscopy images. This function enables one to compute, for all image elements (pixels/voxels), the eigenvalues of the Hessian, which can be used to discriminate locally between plate-like, line-like, and blob-like Chapter 4. Axon Morphology Analysis: from Image Processing to Modelling image structures.

After testing this application, we determined that it was not suited to our needs.

It is not appropriate for high-throughput analysis of images since the user has to select manually which function to apply (Laplacian, Hessian, derivative, etc) and the values of the involved parameters. This has to be done for each individual image, and one image at a time. Moreover, when the Hessian plug-in is applied to our images (see 3), the results are hollow disconnected axons (and noise). These resulting images cannot be used for nding the branching points. Although this appears to contradict the results presented in [START_REF] Grider | [END_REF]], this is due to the fact that the authors apply the software to a dierent type of images (where there are hundreds of thin axon segments). 

Conclusions

The segmentation of neuronal images is a very challenging problem. Given the diverse nature of the neuronal images (dierent imaging modalities, dierent structures, etc), multiple reconstruction strategies can be found in the literature. Each of these techniques is adapted to a particular type of images. In this section we have reviewed several techniques. Only two of them are applicable to our type of images (V3D and NeuronStudio), but their performance is not optimal. Therefore, in Chapter 5 we will propose a new segmentation algorithm better adapted to our problem. Both V3D and NeuronStudio will serve as benchmark for comparison with our method.

Classication

The comparison and classication of neuronal morpholigies is an important problem in neuroscience. Tracings computed with dierent segmentation algorithms can be compared to evaluate their performance. Additionally, by comparing the tracings of dierent populations of neuronal structures, biologists can gain an insight into the functional properties of dierent populations.

A variety of methods can be found in the literature, each one with its own advantages and disadvantages. In this section we will describe ve approaches, and discuss their advantages and disadvantages.

TED

TED [Tai 1979, Selkow 1977, Zhang 1996] is a metric between labeled trees based on the tree-edit distance. Under this approach, the dierence between two trees is measured by counting the number of nodes that must be added/removed/relabeled from one tree in order to transform it into the other. Adding node n to node m will make it its child node. Removing a node n will delete n and make its children become the children of the parent node. Finally, relabeling a node simply involves changing its label (for example, from n to m).

A cost γ(o) ≥ 0 is assigned to each operation o. Moreover, we can dene sequences of operations S = {o i }. The total cost of a sequence S is the sum of the costs of each of its elements:

γ(S) = i γ(o i ) (4.2)
Given two trees T 1 and T 2 with nodes T 1 = {t 1 (1), ..., t 1 (n)} and T 2 = {t 2 (1), ..., t 2 (m)}, the distance between the two is dened as the minimum cost of all the operation sequences that transform one tree into the other:

D T ED (T 1 , T 2 ) = min S i :S i (T 1 )=T 2 (γ(S i )) (4.3)
This metric has already been successfully applied to neuronal morphology analysis [Heumann 2009] as well as to the analysis of other branching structures.

One of the main disadvantages of this purely topological method is that double mistakes (an extra branch and a missing one) extending from the same node are ignored (see Figure 4.3). Moreover, the geometry of the curves between nodes is not taken into account. 

Path2Path

Path2Path (P2P) was proposed in [START_REF] Basu | [END_REF]] as a quantitative neuron comparison method which takes into account both topological and geometrical information. It is based on nding the minimum deformation energy between two trees, which depends on the L 1 norm between the curves that make up the trees and on two other functions that encode the topological information of the tree.

Let us consider a neuronal tree N with n terminals (end points). N can be decomposed into n paths that start in the root node (which is centered at the origin) and end in each terminal. Paths are constructed such that they do not have multiple crossings with each other. Thus, N = {f i }, where each path is a Figure 4.4). The authors then dene the path concurrence C f i of a path f i as the piecewise constant

continuous function f i : [0, 1] → R 3 with f i (0) = [0, 0, 0] (see
integer function C f i : [0, 1] → N.
The path concurrence of a point in a path is dened as the number of paths that contain this point.

To take into consideration the number of levels a particular point is separated from the root, the authors introduce the concept of hierarchy. The hierarchy H f i of a point in a path f i is dened as the number of times other concurrent paths leave f i as one travels down from the origin to this point following path f i . Formally,

H f i : [0, 1] → N is a piecewise constant integer function.
These three functions are combined into a triplet (f i , C f i , H f i ) that assigns an unique structural signature to each path f i in N . Moreover, the path deformation energy P f i ,g j that transforms the triplet

= + + (0,0,0) N 1 f 2 f 3 3 2 1 t C 3 3 2 1 t H 3 f
(f i , C f i , H f i ) into the triplet (g j , C g j , H g j )
is dened as:

P f i ,g j = 1 0 | C f i (t) -C g j (t) || f i (t) -g j (t) | λ + H f i (t)H g j (t) dt (4.4)
where λ is a parameter of the algorithm. Finally, given two neuronal trees N = {f 1 , ..., f n } and M = {g 1 , ..., g m } (with m ≥ n), the distance between them is denes as:

D P ath2P ath (N, M ) = min σ 1 n i P f i ,σ(f i )) (4.5)
where σ is a matching operator between both neurons that assigns each path of N to a path in M . It should be noted that the trees are aligned before the calculation of the distance by nding the optimum rotation (in the least squared sense) between them around the origin.

Path2Path combines topological and geometrical information but has a few 50 Chapter 4. Axon Morphology Analysis: from Image Processing to Modelling shortcomings. For example, the proximal part of the trees has a much larger inuence on the distance than the distal part. Finally, the L1 norm is not easy to interpret, as opposed to metrics based on shape spaces, which embed stretching and bending forces necessary to transform one curve into another.

DIADEM Metric

The DIADEM metric was proposed as a way of quantifying the quality of the segmentation results submitted to the DIADEM Challenge. This metric was specically designed for comparing dierent reconstruction of the same neuron by dierent methods or of the same neuron over time.

Let us consider two tracings of the same axon, one referred to as the gold standard and the other as the test tracing. Each bifurcation and end point is referred to as node. The scoring process begins by taking each node in the gold standard tracing (starting at the root) and matching it against all the nodes within a given distance threshold in the test tracing.

Each test match to the target gold standard node is then checked for proper connectivity based on the path from the target node to an ancestor (a node on the direct path to the root) that matches an ancestor of the target node. The E coecient is used to determine whether the two are good matches or not:

E = L G -L T L G (4.6)
where L G , L T are the lengths of the gold standard and test paths.

Terminal nodes (end points) without a match are marked as misses. If a node match is not found for a target bifurcation, a procedure is used to look for potential continuation matches after all gold standard nodes have already been checked for direct matches.

Once all the nodes in the gold standard have been processed and all the excess nodes have been determined, the total score (distance) between the two tracings is calculated.

The algorithm provides several parameters to modify the behavior of the metric depending on the needs of the user. For example, nodes can be weighted uniformly or by their degree in the tree (second and third level nodes are less important that main nodes).

Feragen et al.

In [START_REF] Feragen | [END_REF], Feragen 2010a, Feragen 2010b] the authors constructed a shape space for rooted tree like shapes and studied dierent metrics on this space. Under this framework, geodesics are dened between trees and used to compute distances.

The resulting distances takes into account both topological and geometrical information of the tree.

Let us consider a tree-like shape in R 2 or R 3 . The authors start by considering the simpler 2D case where trees present a natural edge ordering and then extend their method to the more general 3D setting. 2D trees are referred to as ordered trees.

In this paper, trees are represented as a pair (F, x), where F = (V, E, r) is a rooted planar binary tree that encodes the shape topology and x ∈ e∈E A are the attributes that are used to describe the edge shape. A represents the attribute space dened as (R d ) n , where d is the dimension of the curve representing the edge and n the number of points per edge (see Figure 4.5). In order to simplify the comparison of trees with dierent topologies, all tree like shapes are represented by the same maximal binary tree. This maximal tree is a binary tree large enough to represent the topologies of all the trees in a database. Non existing (collapsed) edges are represented by a sequence of origin points in x. Thus, given a database of trees and the corresponding maximal ordered binary tree F, any attributed tree T can be represented by a point x = (x e ) e∈E in X = e∈E (R d ) n , where x e describes the shape of edge x. X is referred to as the pre-shape space since some trees can be represented by multiple points in X (we will encounter a similar problem in Chapter 6).

= + +

(0,0,0) T + + + This presents certain problems, which are solved by creating a quotient space X = (X, ∼) = {x|x ∈ X} of equivalent classes x. This new space is referred to as the shape space of ordered trees.
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d(x, ȳ) = inf k i=1 d(x i , y i )|x 1 ∈ x, y i ∼ x i+1 , y k ∈ ȳ (4.7)
Two metrics on X are considered:

x -y 1 = e∈E x e -y e
x -y 2 = e∈E x e -y e 2 (4.8)

Both generate metrics d 1,2 on X. This implies that given two trees, there is always a geodesic path between them.

To extend this result to the 3D case, a new quotient space is dened. Unlike in 2D, trees in R 3 have no standard edge order. Thus, one needs to consider all the possible orderings of the same tree. This presents some practical computational problems. The new quotient space X = X/G is dened, where G is the group of all possible reorderings of the trees. Like for X, each of the two considered metrics on X induce metric d 1,2 on X. It can be shown that d1 , d1 corresponds to the TED metric (see 4.3.1) for ordered and unordered trees respectively. On the other hand, metrics d2 , d2 are referred to as QED metric on ordered or unordered trees.

Both metrics present certain advantages and disadvantages. In particular, the use of QED simplies the computation of mean shapes in the shape space. However, it is computationally more expensive than TED.

The authors have applied their method to the study of airway trees from pulmonary CT scans and leaf morphology. This method presents good results and a very strong mathematical foundation but for the moment its application is restricted to small poorly branched trees due to its computational complexity.

Feature Based Classication

There are countless measurable morphological features that can be used to classify populations of neurons. However, considering too many features is counterproductive since it will increase the computational cost of the classication. In addition, redundant or non signicant features will decrease the inuence of more relevant ones. Therefore, choosing a group of key features is not a trivial matter.

Most authors consider that both the length and number of branches of an axon are important features since they are closely related to the spatial extent of the neuron and thus to the number of potential partners they can have. Moreover, the length of the paths in an axon is also functionally relevant since the longer the path, the greater the signal attenuation throughout the axonal tree [Brown 2008].

The overall tree shape is also an important feature to consider when classifying axons. For example, the morphological signatures of pyramidal and moto neurons are quite dierent. This is due to the fact that they have dierent functions in the nervous system. In [Brown 2008] the authors consider twenty features, such as soma surface, number and length of branches and bifurcation angle. These same features were also chosen in [Rong 2011] to implement a neuronal classication and nomenclature method. Overall, these features are able to reasonably characterize the main morphological characteristics of neurons.

To improve the performance of the classication, authors such as [Rong 2011] propose to use PCA to obtain the principal components, thus nding which of the features are more relevant.

Conclusions

In this section we have presented dierent alternatives to the neuronal morphology comparison problem. Some authors have developed distance functions that capture key morphological properties. These distances can take into account only topological information, or also consider the geometry of the curves between the nodes that make up the trees.

An alternative approach consists in directly analyzing a set of key features.

Although the reviewed methods oer interesting approaches and good results, we have decided to propose a new approach specically adapted to our images. This method will be presented in 6, and its performance compared against TED, 54 Chapter 4. Axon Morphology Analysis: from Image Processing to Modelling

Path2Path and the Feature based approach. It will be shown that our method outperforms the other considered methods. Moreover, we propose a method for the computation of the mean shape of a population of trees, which can be used to summarize the morphological characteristics of the considered population.

Modeling

Mathematical modeling aims to make a given process easier to understand, dene and simulate. It is based on identifying key aspects of the process, which are then simplied and formalized in a mathematical way. The use of models can help explain the system underlying processes and make predictions about its functioning. Models usually depend on several parameters that dene their behavior. The estimation of these parameters is an important (and usually complicated) aspect of modeling.

Many methods have been proposed in the eld of neuronal development modeling and simulation. These methods dier with respect to the processes being modeled, the methodology and type of data used for the parameter estimation and the dimension considered (2D, 3D or 4D). In this section we present three of such models.

Segev et al.

In [START_REF] Segev | [END_REF]] the authors introduce a 2D o-lattice model of self wiring neural networks inspired from previous work on the study of patterning of bacterial colonies.

Neurons are represented as being composed of the soma (represented by a xed point on the lattice) and of growing growth cones that form the neurites. Somas and neurites communicate with each other by means of attractive or repulsive signals that determine the networks morphology. The signal concentrations are determined by reaction diusion equations that depend on several parameters.

In the absence of chemical signals, the movement of the growth cones is modeled with a non-uniformed random walk. Given an initial growth direction d 0 , the following direction is chosen from a non uniform probability distribution function P 0 :

d i = d i-1 + P 0 (θ) (4.9)
where θ is the angle between vectors d i , d i-1 . The highest probability is assigned to continue moving forward in the same direction, and the second most probable is to move backwards. In total, the authors consider 12 possible directions, which are measured relative to the last direction of movement.

In the presence of chemical signals, the distribution function P 0 is modied. This model presents an interesting approach. In particular, it models the chemical signals present in the environment. However, the model parameters are not estimated from the data, and it is restricted to the 2D case. This reduces the utility of the model. The algorithm specifying the behavior of each cone is divided into two parts.

First, an initial growth direction is determined. This is achieved by considering a random walk that follows a normal distribution. Then, for each time interval t i , the position of the next point is determined.

Each of the k lopodium detects the concentration of the eld at the current point and creates a vector pointing in the direction of the sensors. The initial growth vector is then modied by adding the concentration vectors at the cone. Since this process can sometimes result in an unrealistic large turning of the direction, a regularization procedure is implemented.
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The model does not consider bifurcations. The behavior of each growth cone is determined independently, and all cones are initially placed in the same starting point (usually the origin in the x-y plane).

Although the model does not present many parameters, none of them are estimated. Instead, the parameters are manually tuned to simulate dierent scenarios and the results are compared to 2D plus time images of growing axons. This is an important shortcoming of the method.

Koene et al.

In [Koene 2009 The model considers no discretization in space. However, the authors consider a time discretization. The growth process starts with a growth cone at the root. Then, for each time interval ∆ t , this cone can elongate, change direction and bifurcate.

Each process is determined by stochastic models, and they are independent from each other.

The model proposes two ways of assigning the elongation rate (distance travelled by a growth cone in a time interval ∆ t ). By default, the model assigns elongation rates by randomly sampling a Gaussian distribution. On the other hand, authors also give the option to calculate the elongation rate by taking into account the number of growth cones (branches) currently present in the neural network. This is done to model the competition for resources between the cones. Therefore, the velocity of the growth cone is calculated with the following equation:

v(t) = v 0 n(t) -F (4.10)
where F is a parameter that controls the strength of the competition between the cones.

For each time t i , a growth cone can either continue to elongate in the same direction or turn. The probability to change direction in time t i is given by the turn probability P d (t i ), which depends on a parameter of the model (turns per micrometer). For each instant t i the turn probability is calculated and compared with a random number taken from a uniform distribution. If the random number is smaller than P d , there is a change in direction. The new direction of growth 4.4. Modeling 57 is calculated by doing the weighted average of the previous directions and nally adding a random deviation to the resulting vector:

d = k W k u k + r (4.11)
where W k are the weights (more weight is assigned to closer segments), u k are the previous directions and r is a random rotation drawn from a uniform distribution.

The bifurcation of a growth cone is controlled by a time dependent branching probability that depends on three terms: a baseline branching rate (approximated by an exponential function), a term that makes the probability depend on the number of existing branches and a nal term making the probability depend on the position of the cone (with respect to the root). Each term depends on various parameters that need to be estimated or imputed by the user.

This model is very complex, and the results provided by the authors show that it is able to produce realistic morphologies. However, the model disregards the chemical attraction eld present in the cellular medium. Moreover, given that the model is designed to work on 4D, one needs to use bi-photon time sequences of developing neurons to estimate the involved parameters. The automatic segmentation of this type of images (which is needed for the parameters estimation) is a very complex subject.

Conclusions

Segmented neurons can serve as an input into neuronal development models. These models can provide an insight into the underlying processes and natural parameters involved in the neuronal growth. The dierent models proposed in the literature vary in complexity and scale.

Two of the reviewed models consider the chemical attraction eld that aects the growth cone behavior and that we consider is an important process to model.

However, none of the reviewed methods estimate this external attraction eld form the data.

In Chapter 7 we will propose a new model for the simulation of axonal biogenesis that considers an external attraction eld, and all the involved parameters (including those dening the attraction eld) are estimated from 3D confocal microscopy images.

Conclusions

The functioning of the nervous system is closely related to the morphological properties of the neurons that constitute neuronal circuits. Key aspects of neuronal morphology alter the way neurons connect and interact with each other. To analyze these morphological characteristics, researchers usually depend on neuronal images (such as the ones described in Chapter 3) that need to be processed.

The typical analysis starts with the segmentation of the images in order to obtain a compact representation of the morphology. This is followed by a morphological comparison step. Reconstructions can further be used as a basis on which to build bio-models capable of providing morphological realism.

For the dierent addressed topics, we have summarized some selected works in the state of the art that represent the main approaches presented in the literature.

We have determined that there exist a wide variety of methods, each one adapted to a dierent specic problem. However, none were well suited for our problem.

Therefore, in the following chapters we will propose new methods for each of the three considered steps: segmentation, morphology comparison and axonal biogenesis modeling. These methods will be compared against other state of the art algorithms presented in this chapter.

Chapter 5

Axon Extraction Contents 

Introduction

As we have seen before, in order to perform morphological analyses, biologist rely on dierent imaging techniques capable of capturing cellular and subcellular structures.

One of the most important image modalities is confocal microscopy, an imaging technique capable of generating 3D image stacks of thick specimens at very high resolutions.

Biologists have labeled single neurons within intact adult Drosophila y brains and used a confocal microscope to acquired 3D images of their axonal trees. Both normal neurons and neurons in which certain genes related to neurological diseases in humans were inactivated have been imaged (see Figure 5.1). As we have seen in Chapter 4, there are currently many methods for axon extraction in the literature. Some, such as [Zhang 2008, Wang 2007] concentrate on, given a 3D image stack containing many axons (sometimes overlapping each other), segmenting each individual axon. In most cases these images contain many nonbifurcating axons, and their objective is to segment each of them. Since the axons overlap on occasions, the authors have to resort to strategies that lead to overcomplicated and computationally heavy algorithms. Moreover, many of these methods require the user to manually select the center of each axon in the rst slice of the stack.

A dierent family of methods (i.e, [Peng 2010]) requires the user to mark the root and end nodes. Then, the algorithm searches for the optimum path connecting the markers. This is not suited for automatically analyzing large databases of images,
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which is necessary if one intends to statistically compare dierent populations of axons.

Other methods such as [START_REF] Basu | [END_REF]] are limited to 2D images. This restricts their usefulness since a 2D analysis omits crucial information on the axon's morphometry and topology. In particular, the lengths and bifurcation points in the 2D projection might be dierent from the original 3D image. In addition, several computer applications (such as Neuromantic1 and FeatureJ2 ) have been developed for the processing of this particular type of images (or similar ones). These applications, which include dierent extraction algorithms, provide manual or semi-automatic modes of operation along with friendly graphical user interfaces (GUI). These, however, require time consuming manual (or semi-automatic) tracing of the axon, obtain unacceptable results in our images and/or are restricted to the 2D case.

In this chapter we propose a solution that combines algorithms for lament enhancement, binarization, skeletonization and gap lling in a pipeline capable of extracting axons from confocal microscopy images containing a single labelled neuron (we do not consider the more challenging case of multiple labelled neurons that intertwine and synapse). Furthermore, this method is designed to work on 3D image stacks.

Axon extraction algorithm

Our method applies several consecutive steps for extracting the axons: Filament Enhancement, Binarization, Skeletonization and Gap Filling (see Figure 5.2).

Filament Enhancement

Binarization Skeletonization Gap Filling 

Filament Enhancement

The rst step of the pipeline is lament enhancement. This is done with a multiscale ltering of the images based on Gabor functions. Due to the low resolution of our images in the axis perpendicular to the sections, we chose to perform this step of the process in 2D work on each slice independently. However, the analysis that follows can easily be extended to the 3D case. Classical Gabor functions are dened as follows (see Figure 5.3):

G(x, y) = cos x 1 π √ 2λσ g exp - x 2 1 + γ 2 y 2 1 2σ 2 g (5.1)
where x 1 = x cos(θ) + y sin(θ) and y 1 = x sin(θ) -y cos(θ). The parameters θ, λ, σ g and γ represent the orientation, wavelength, scale and aspect ratio respectively. These functions have been widely used to characterize textures before [Grigorescu 2002], and by adapting the scale parameter σ g can also provide an ecient way of characterizing local structures. If we consider the image I(x, y), then the ltered image H is dened as H = G * I . A high value of H at a point (x, y)

for a given θ is evidence of local structure (axon) for that direction and position.

Based on the previous G lter, we propose some modications to improve the results. First, to avoid false positives on big edges in the image, we consider two Gabor lters each associated to a dierent side of the lament (left and right) (see Figure 5.4): Finally, the lament enhancement lter is given by:

G + (x, y) =    cos x 1 π √ 2λσg exp - x 2 1 +γ 2 y 2 1 2σ 2 g if x 1 ≥ 0 0 otherwise (5.2) G -(x, y) =    cos x 1 π √ 2λσg exp - x 2 1 +γ 2 y 2 1 2σ 2 g if x 1 < 0 0 otherwise (5.3)
F = min( Ψ - * I , Ψ + * I ) (5.4) 
where:

Ψ -(x, y) =    η - -G -(x, y) if G -(x, y) < 0 η + -G -(x, y) if G -(x, y) ≥ 0 (5.5) Ψ + (x, y) =    η - + G + (x, y) if G + (x, y) < 0 η + + G + (x, y) if G + (x, y) ≥ 0 (5.6)
The constants η - -, η + -, η - + and η + + are obtained by the normalization of the two lters to eliminate their dependency to the absolute intensity of the image:

   R 2 Ψ -,+ (x, y)dxdy = 0 R 2 max(0, Ψ -,+ (x, y))dxdy = 1 (5.7)
The remaining parameters involved in the lters are set by imposing certain conditions. First, we impose that the lter value is equal to zero at the edge of the lament, which means that we have:

πn 2 √ 2σ g λ = π 2 (5.8)
where n is the width (in pixels) of the laments we want to detect. Then, given that the function exp (-x 2 ) is decreasing and starts to be close to zero for x = 2, we impose: πx √ 2σ g λ = 3π 2 (5.9)

Finally, we impose a ratio 3 between the length and the width of the lter, which gives:

2γ √ 2σ g = 2
(5.10) Thus, we obtain:

         λ = 4 3 σ g = 3n 4 √ 2 γ = 1 3 (5.11)
To perform a multiscale analysis of the images, the parameter n is varied between the expected widths of the axons. Given the size of the laments in our images, we have determined that a good set of values is to vary n from 4 to 10. We also run the lter for dierent θ to test for laments in all directions. In practice, we do this by discretizing the [0, π) interval into 16 equal intervals.

We have compared our approach with two other lament enhancement lters found in the literature [Frangi 1998, Wilkinson 2001], which are reviewed briey in the following section.

Frangi et al.

The method is based on the fact that the main direction of a lament can be found by using the eigenvectors of the second order derivative matrix (Hessian matrix)

computed from the values of the image at the point.

A rst approximation of the derivative of an image can be computed by simply subtracting adjacent voxels. This estimator, however, presents a large sensitivity to noise. A more robust approach consists in convolving the image with a Gaussian kernel, thus including more points in the calculation of the derivative. Due to properties of the convolution operation, it can be shown that: Given that the intensity variation along the direction of a lament is minimum, the eigenvector corresponding to the smallest absolute eigenvalue points in its direction. The remaining two eigenvectors form a base for the orthogonal plane.

   I G (x, y, z, σ) = G(x, y, z, σ) * I(x, y, z) I G ij (x, y, z, σ) = ∂ 2 G(x,
Therefore, a point belonging to a lament will present a small λ 1 and λ 2 , λ 3 of large magnitude and equal sign (the sign indicating whether the lament is bright or dark). Consequently, one is interested in voxels whose eigenvalues fulll the following conditions:

               |λ 1 | ≈ 0 |λ 1 | |λ 2 | λ 2 ≈ λ 3
λ 2 , λ 3 < 0 in the presence of light laments (5.14) Then, the authors dene three features that depend on the eigenvalues of the ellipsoids. These features will later be combined into a lament function which measures the likeliness of a voxel to belong to a lament.

Wilkinson et al.

This article proposes morphological lters composed of connected-sets for the extraction of lamentous structures that is shape preserving. Two dierent strategies are proposed and compared: multi-scale ltering and single-step shape ltering using connected set thinning. In particular, the second method obtains comparable results but is more computationally ecient.

Single-step shape ltering can be achieved by thresholding an image using each possible grey level. Then, for each resulting binary image, all the connected com- used as a way of summarizing geometrical and topological properties of a shape (see Figure 5.7). It looses the width information that is not relevant for our application.

We have used the implementation proposed in [Uitert 2007]. This skeletonization algorithm combines the level set method, an euclidean distance eld calculation and fast matching propagation to compute a skeleton that preserve the topological and geometrical properties of the original object. The method is able to automatically discard spurious branches that are smaller than an user dened threshold and remove any potential loops. Moreover, the algorithm presents the advantage of having no user dened parameters (except the minimum branch length). 

Gap Filling

It is very common that, once the skeleton has been extracted, it presents discontinuities (gaps) due to the binarization in a noisy context. Several algorithms exist in the literature to solve this problem. In particular, we chose the method proposed in [START_REF] Risser | [END_REF]]. In this work, the authors propose a tensor voting approach for lling gaps in 3D micro-vascular networks. The algorithm is divided into four steps. The rst step (referred to as segmentation) involves separating the skeleton segments (referred to as a tokens) into 3 categories (see Figure 5.8):

• Island token: segments which are not connected to other segments or only connected from one side, and have a length of less that a given value (referred to as β).

• Segment token: segments which are either connected from both sides to other segments or have one or two free ends and length greater than β.

• Segment-end token : the last pixel of the free segment end for segments of length greater than β.

The second step is the creation of a tensor eld T . It involves assigning to each point of the image a tensor (a 3x3 symmetric non-negative matrix). Each tensor depends on the contribution of all the tokens in the image:

T (i, j, k) = N n=1 T E n (i, j, k) + M m=1 T I m (i, j, k) + Q q=1 T S q (i, j, k) (5.16)
where T E n is the tensor eld created by the n th segment-end token, T I m the one created by the m th island token and T S q the one created by the q th segment token. The calculation of these contributions depends on the type and properties of each token (see Figure 5.9. Let us start by considering the island tokens. Since they do not have any reliable orientation information, we construct the tensor eld around it to be equally strong in any direction, and to depend only on the distance from the token. Therefore, given an island token centered at point C, the tensor generated at point P of the image is given by:

T I = - → cp ⊗ - → cp, - → cp = --→ CP --→ CP exp - --→ CP 2 σ 2 t (5.17)
where σ t is a parameter of the algorithm related to the variation of intensity of the eld with the distance.

Let O be a segment-end token (the end point of segment S), P a point in the image and -→ V the tangent to segment S in O. We then dene vector

-→ W = 2 --→ OP ( --→ OP . - → V ) - - →
V . This vector is the oriented tangent at P to the circle C which contains O and P and which is tangent to V at O. Then, the tensor T E is dened as:

T E = - → w ⊗ - → w , - → w = -→ W -→ W exp - r 2 + cϕ 2 σ 2 t (5.18)
where r is the length of the arc OP of circle C, ϕ its curvature and c a parameter of the algorithm related to the ratio between the distance and the curvature (see Finally, the tensor eld T S associated to a segment token S is dened as follows:

T S = -→ np ⊗ -→ np, -→ np = --→ N P --→ N P exp - ( --→ N P ) 2 σ 2 t (5.19)
where P is a point of the image and N is the closest point of segment S to the point P .

The dierent parameters are set according to the author's recommendations in [START_REF] Risser | [END_REF]]. Both σ t and c were xed for all our experiments and are thus not user dependent. The chosen values were:

   σ t = 10 c = 0.12
(5.20)

The next step consists in generating a scalar vector eld called the saliency map S(i, j, k) (see Figure 5.11). For each point in the image, the value of the eld is calculated in the following way:

S(i, j, k) = λ 1 (i, j, k) -λ 2 (i, j, k) (5.21)
where λ 1,2 (i, j, k) are the two biggest eigenvalues (in absolute value) of the tensor eld T in the point (i, j, k).

The nal step is the reconnection step. The algorithm reconnects the paths along the points with maximum saliency. Starting from each segment end token the algorithms walks the paths of minimum saliency, thus creating paths that connect the dierent tokens in the original image. A path is stopped if it intersects a token or if a minimum saliency (a parameter of the algorithm) is reached. In this latter case, the path is discarded and the algorithm moves on to another segment end token.

Chapter 5. Axon Extraction

In order to improve the speed of the algorithm, a small modication was introduced. The tensor map is not computed for all voxels in the image. Instead, cones of user dened height and radius are generated on each end point. Next, the tensors are computed in these regions (the cones) only if other points belonging to the skeleton fall inside.

At the end of the extraction process, a connected component labeling is performed and only the largest one is kept. This component corresponds to the axon.

Figure 5.11: Original image (left) and corresponding saliency map (right). The gap to be lled is marked in yellow.

Post Processing

On occasions, the skeleton obtained after the gap lling can contain loops. This can occur when branches are joined with one another or with the main axon. We propose to perform a nal post-processing step consisting on re running the skeletonization method described in Section 5.2.2. This will allow us to eliminate any loops and remove any remaining spurious branches. The minimum branch length was set to ten pixels. This value was calculated taking into account the minimum branch length of all the images in the database.

Validation

The proposed method (PM) was validated on a subset of the IBV image database introduced in Chapter 3. A group of 12 3D images, each containing one axonal tree, dierent noise levels and tree complexities were considered. Both normal and mutant axons were considered. The images were manually segmented and NeuronStudio [START_REF] Wearne | [END_REF]]. V3D is available freely in the Vaa3D software (http://www.vaa3d.org/), while NeuronStudio is can be downloaded from the authors website (http://research.mssm.edu/cnic/tools-ns.html). Since the results obtained by NeuronStudio directly on our images were not good enough (see Figure 5.12), we have decided to apply this method on the ltered images instead. This improves NeuronStudio results signicantly.

The parameters of each of the three methods were tuned to maximize their performance. In some cases, this involved changing the parameters from image to image.

To quantitatively measure the quality of the results, we have used the following criteria:

• Directional Hamming Distance (Hamming) [Pont-Tuset 2013]: Given the images I and I , the distance is dened as:

D H (I, I ) = n - R ∈I max R∈I |R ∩ R| (5.22)
where R, R are regions in I, I respectively and n is the number of pixels in the images. If should be noted that this distance is not symmetric.

• Patt's Figure of Merit (FOM) [Chabrier 2004]: given the contours C, C made up of all the lines in images I, I respectively, the criterion is dened as: • Hausdor Distance (Hausdor) [Chabrier 2004]: given the pixel sets P, P belonging to images I, I respectively, the distance is denes as:

F OM (I, I ) = 1 max(|C|, |C | i∈C 1 1 + d 2 (i) ( 5 
H(P, P ) = max(h(P, P ), h(P , P )) (5.24) where h(P, P ) = max t i ∈P min s j ∈P t i -s j and t, s are the pixels in each set.

The value of H(P, P ) can be interpreted as the maximum distance between the pixels in P and P .

• Root Mean Square Error (RMSE): given the pixel sets P, P belonging to images I, I respectively, the criterion is denes as:

RM SE(I, I ) = i∈P d 2 (i) |P | (5.25)
where |.| represents the cardinal function and d(i) is the distance between pixel i of P and the nearest pixel of P . Note that for the Hausdor distance and RMSE criteria, the lower the value the better the segmentation is. The opposite is true for the other two criteria.

Results

Figures 5.13 and 5.14 show the results obtained on each step of the pipeline for images of the data set. The proposed method is able to extract the axons even on images with signicant noise. Figure 5.15 shows in more detail how the gap lling step is able to connect the gaps present in a skeleton. This step is very important since the skeletons usually present discontinuities. However, it is also a delicate step. Sometimes the algorithm can connect laments that should not be connected. This can not only alter the original morphology of the tree, but more importantly, introduce unwanted loops. This loops should be corrected later on in a post-processing stage.

Figure 5.16 compares our results with the manual segmentations for two dierent cases. The gure shows how the axon extracted by our method is very similar to the one segmented by the biologist. However, on occasions they have short branches that are not present in the manual segmentations. This can be solved by increasing the length threshold in the skeleton pruning step.

The quantitative evaluation results are presented in Figures (5.17, 5.18, 5.19, 5.20) and Table 5.1. For the Hamming, FOM and RMSE criteria, our method outperforms V3D and NeuronStudio in all the images. The dierence in performance between our method and the the other two is considerable for FOM and RMSE, but minor for Hamming. On the other hand, the Hausdor criterion shows a more balanced performance between the methods. In some cases (such as in Figure 5.21) our method outperforms V3D. For this image we can see how V3D joined the end points through an incorrect path, thus generating false branches that are not present in the ground truth. This can be due to the fact that this image presents a considerable noise level. In particular, the image presents very bright structures in the top section of the image that the algorithm mistakes for a branch. On the contrary, in less noisy images where the axonal tree is clearly visible (such as in Figure 5.22), V3D obtains a better result. In this case, our results presents some small spurious branches while V3D segmentation is much cleaner and closer to the ground truth. This is to be expected since V3D is using the information input by the user (the end points) when segmenting the image. Finally, NeuronStudio is outperformed by the two other methods in all images except one. This concurs with the results presented in [Peng 2010], where the authors show that V3D obtains a better overall performance than NeuronStudio. In particular, Figure 5.23 presents a comparison between the three methods and the ground truth for one of the images.

Conclusions

An algorithm for the automatic extraction of axons from uorescent confocal microscopy images was proposed. This method relies on several steps to perform the extraction: lament enhancement, binarization, skeletonization and gap lling. Due to the voxel anisotropy of our images, the lament enhancement step is performed on The method performance was tested on 12 3D images of the IBV database and the results quantitatively compared with the ground truth provided by an experienced biologist and with the results obtain by two other segmentation methods (V3D and NeuronStudio). Results show that our method outperforms the other two in most cases, and that the proposed technique has the potential of helping biologists to extract axonal trees from confocal microscope images. This is the rst step necessary if one intends to perform a morphological analysis of axons.

Figure 5.17: Quantitative evaluation: comparison between the proposed method (PM), V3D and NeuronStudio with the manual segmentation using the Hamming criterion (evaluation on each of the 12 considered images) In this chapter we present a tree comparison method based on the Elastic Shape Analysis Framework that takes into account both topological and geometrical information. Moreover, we present a method capable of computing the mean shape of a population of trees. Although the method could potentially be applied to dierent types of trees, we concentrate on the comparison of axonal trees. The performance was tested on the databases presented in Chapter 3. In total, over 200 reconstructions were considered. We have compared the classication performance of our method against three other algorithms: TED, Path2PAth and a feature based approach. Results showed that the proposed method better distinguishes between the populations. In addition, we present the mean shape of each population. These shapes present a more complete picture of the morphological characteristics of each population, compared to the average value of some predened features. Chapter 6. An Elastic Shape Analysis Method for the Comparison and Classication of Trees 

Introduction

Trees are undirected graphs that have no cycles. Given two nodes, there is only one path between them. In particular, if one of the nodes is considered to be the root, it is called a rooted tree. This type of graph has been thoroughly studied since many naturally occurring structures can be described by it.

In the eld of biomedical imaging, some important structures that can be modeled as trees are neurons, blood vessels and lung airways (see Figure 6.1).

As we have discussed before, certain morphological characteristics of these structures are tightly linked with their ability to function properly. In particular, the morphology of neuronal structures is related to their ability to interconnect and to process information. Therefore, it is important to develop frameworks for the analysis of their shapes and to quantify dierences in their structures. By shapes, we not only mean the topological information dening the tree but also the geometry of the edges.

At present, there are a number of methods for the comparison of tree structures. One of the best known metrics is TED [Tai 1979, Selkow 1977, Zhang 1996].

This method is a pure topological metric based on the tree-edit distance between unordered labeled tree-graphs. TED has already been successfully applied to neuronal morphology analysis [Heumann 2009] as well as the analysis of other tree like structures such as RNA secondary structures [START_REF] Zhang | [END_REF]].

A dierent approach was proposed in [Feragen 2010a, Feragen 2010b]. The authors constructed a shape space for rooted tree-like shapes and studied dierent metrics on this space. The reported distance takes into account both topological and geometrical information of the tree. They applied their method to the study of airways from pulmonary CT scans. This method presents good results and a strong mathematical foundation. However, its application is restricted to small poorly 6.2. The Elastic Shape Analysis Framework 87 branched trees due to its computational complexity.

Other methods have been designed for more specic applications. One example is the DIADEM metric [Gillette 2011], which was developed to serve as the evaluation method for the DIADEM Challenge1 . It was specically designed for comparing dierent tracings of the same neuron, and is therefore not adapted to the comparison of trees in a more general setting.

Finally, Basu et al. proposed Path2Path [Basu 2011], a metric that takes into account both topological and geometrical information of trees. The method is based on nding a deformation energy between two trees, which depends on the L 1 norm between the curves that make up the trees..

In this chapter, we present a new method for comparing tree-like shapes. The method takes into account both topological and geometrical information, and is specically designed for analyzing rooted trees that consist of a main curve, branches and sub branches along it. It is based on the Elastic Shape Analysis Framework [Srivastava 2011], which was originally developed for comparing shapes of curves in the Euclidean space. We extend this work by dening a new distance between trees.

Moreover, we propose an iterative algorithm for calculating the mean shape of a populations of trees.

Even though the proposed method could be used for the comparison of dierent types of trees, we concentrate on the comparison and classication of axonal trees.

We have validated our approach on two dierent databases. The rst set consists on 131 reconstruction of four dierent populations of neurons taken from the Neu-roMorpho.org open database (see Chapter 3). The second set is the IBV database presented in Chapter 3, which is composed of 61 (20 normal, 24 type one mutant and 17 type two mutant) real 3D confocal microscopy images manually segmented by an experienced biologist.

We calculate the mean shape of each population and evaluate the classication accuracy of our method. We validate our method against three other algorithms: TED, Path2Path (P2P) and a classication scheme that calculates features from the trees, followed by applying PCA and K-Means.

The Elastic Shape Analysis Framework

Let us consider a set of open curves in R 3 (for example, the main curve and each branch of a tree). Under this framework, each curve β : [0, 1] → R 3 can be repa-88 Chapter 6. An Elastic Shape Analysis Method for the Comparison and Classication of Trees rameterized using its square-root velocity function (SRVF):

q(t) = β(t) β(t) (6.1)
where x is the standard Euclidean norm in R 3 and β(t) is the derivative of β(t).

Curves that have the same shape but dier by rotation/reparameterization result in dierent q functions. We solve this non-unicity problem by considering the quotient space with respect to the group of shape-preserving transformations (translation, scale, rotation and reparameterization. Since q depends on the time derivative of β, the analysis will be independent of the position of the curve (obtaining a translation invariant representation). Moreover, curves can be rescaled to length one in order to impose scale invariance. We then only need to remove the last two remaining shape preserving transformations: rotation and reparameterization.

Let SO(3) be the group of 3 × 3 rotation matrices and Γ be the group of all reparameterizations (set of continuous increasing functions from [0, 1] to [0, 1] such that γ(0) = 0, γ(1) = 1 ). Given a curve β with SRVF q, a rotation O ∈ SO(3) and a reparametrization γ ∈ Γ, the transformed curve can be expressed as:

q = γO(q • γ) (6.2)
We can then dene a curve in a unique way:

[q] = {O(q • γ) γ|O ∈ SO(3), γ ∈ Γ} (6.3)

Each class [q] denes a unique shape and the set of all these equivalence classes is called the shape space S.

By considering the L 2 norm on the tangent spaces of this shape space, the authors force a Riemannian structure on S. This corresponds to assuming that the curves and their derivatives are square integrable. Moreover, this allows the computation of geodesics between points in S, which can be interpreted as the optimal elastic deformation from one curve into the other. The distance between two points in S is dened as the length of the geodesic between them.

Given two curves β 1 , β 2 represented by their corresponding SRVF q 1 , q 2 , the rst step for computing the geodesic between the two is xing q 1 and nding the optimal rotation and parametrization of q 2 such that: q 1 -γO(q 2 • γ) 2 (6.4)

The optimization over rotation can be achieved using singular value decomposition, while the optimization over the reparametrization requires dynamic programming. The geodesic path between q 1 and q * 2 is then given by: 6.5) while the distance between the two curves is given by:

α(τ ) = (1 -τ )q 1 + τ (O * (q 2 , γ * )) ( 
d shape (β 1 , β 2 ) = min γ∈Γ,O∈SO(3) q 1 -O(q2, γ) 2 (6.6)
The classical Elastic Shape Analysis Framework was extended in [Liu 2008] to include additional information in the shape analysis. This is achieved by including an additional function

β c : [0, 1] → R k (
where k is an arbitrary nite dimension)

to the original representation of curve β. As an example, if the method were used for object matching, the curves could represent the shapes of the objects and the additional β c functions represent the locations of certain landmarks on the objects.

In [START_REF] Liu | [END_REF]] it is used for protein structure alignment, where β represents the backbone geometry and β c encodes the secondary structure of a protein.

The two components are combined to form a new curve:

β(t) = β s b.β c ∈ R 3+k (6.7)
where b > 0 is a control parameter that weights the inuence of the additional function in the matching process. The remaining steps are done in the same way as before but with the new curve β (although special precaution not to rotate the β c component are required when eliminating the rotation transformation).

Extension to Trees

In this section, we extend the Elastic Shape Framework to dene a distance between trees.

Let us consider two trees T 1 and T 2 , each consisting of a main curve and several Angles φ 1 and φ 2 are dened with respect to the main branch, while φ 3 is dened with respect to T (2) (its mother branch). A similar convention is taken for θ. In this example, the angle θ 2 associated to branch T (2) is measured with respect to branch T (1), while θ 4 is measured with respect to T (3) (the rst branch depending from its mother branch). branch of its mother branch (see Figure 6.2).

We start by dening the matching function M such that M : (0, 1, 2, ...n) × (0, 1, ...., m), where n and m are the number of branches in T 1 and T 2 , respectively. This function matches the branches of the two trees as follows:

M (i, j) =    1 if i matches j 0 otherwise (6.8)
M (i, 0) = 1 and M (0, j) = 1 means i/j is assigned to nothing. In these cases we say we kill the branch. The distance between matched branches and between a branch and zero will be calculated dierently, using Equations (6.12) and (6.14) (please refer to the example at the end of this section for additional clarication).

To improve the computational eciency of the algorithm, we do not allow the matching of branches that are far away from each other. The maximum allowed separation between matched branches is a parameter of the algorithm, which was T1 T2 T3 T4 Figure 6.4: Four synthetic images (T 1 to T 4 ), each containing a simple tree with a main curve and some branches and sub branches.

set to forty percent of the length of the mother branch. Other constraints are also included, such as not allowing the crossed matching of branches (e.g, matching branches 1 and 2 of T 1 to branches 2 and 1 of T 2 ).

We then dene a branch function C which indicates, for a given time t c , how many branches remain after β(t c ) (see Figure 6.3). We only take into account branches that have a match in the other tree. Therefore, the C function depends on M . C functions are dened for both trees and included as the fourth component of curves β 1 , β 2 . This allows us to take into account the dierence of position of matched branches in the distance between trees.

Finally, we dene recursively the distance between two trees T 1 , T 2 as:

D(T 1 , T 2 ) = min M [d((β 1 (t), C1(t, M )), (β 2 (t), C2(t, M )))+ + (i,j) α i,j M (i, j)D(T 1 (i), T 2 (j))] (6.9)
where β k is the main curve of tree k, C k its branch function, M is the matching function, α i,j a weight parameter and D(T 1 (i), T 2 (j)) is the distance between the matched branches (sub trees) of the two trees.

The rst term of the distance embeds geometrical information on the main Chapter 6. An Elastic Shape Analysis Method for the Comparison and Classication of Trees branch by matching segments between branching points. Topological information is taken into account through the C function. The parameter b in Equation (6.7) weights the two characteristics. Sub branches are taken into account in a recursive manner in the second term. Note that the coecients weight the dierent order of sub branches with respect to the main branch. Moreover, α i,j controls how non matched branches (M (i, 0) = 1 or M (0, j) = 1) are penalized. Typically, α i,j equals a 1 if i = 0, j = 0 and it equals a 2 otherwise.

The distance between the two main curves is dened as:

d(((β 1 (t), C1(t, M )), (β 2 (t), C2(t, M ))) = d length (β 1 (t), β 2 (t))+ +w 1 d shape (β 1 (t), C1(t, M )), (β 2 (t), C2(t, M ))) (6.10)
where d length is dened as:

d length (β 1 (t), β 2 (t)) = length(β 1 (t)) -length(β 2 (t)) length(β 1 (t)) + length(β 2 (t)) (6.11)
and d shape is dened by Equation ( 6.6), using the C functions as the fourth components of the curves. The parameter w 1 controls the weight between the two terms.

In addition, the distance between two matched branches is dened as:

D(T 1 (i), T 2 (j)) = d length (β i (t), β j (t))+ w 1 d shape (((β i (t), Ci(t, M )), (β j (t), Cj(t, M ))) +w 2 d φ (φ i , φ j ) + w 3 d θ (θ i , θ j ) (6.12)
where d length and d shape are dened in the same way as for the main curve, and the two remaining terms as:

d φ (φ 1 , φ 2 ) = φ 1 -φ 2 /π d θ (θ 1 , θ 2 ) = θ 1 -θ 2 /2π (6.13)
Once again, the parameters w i control the weight between the terms.

Finally, we dene a cost for non matched branches as follows:

D(T 1 (i), 0) = w kill (6.14)
where w kill is a parameter of the algorithm.

The geodesic dened in Equation ( 6.5) is adapted to simple curves. To dene the geodesic between trees, we consider that the transformations between matched To illustrate how the dierent parameters can inuence the matching of the branches and the nal results, let us consider a set of simple synthetic images (see Figure 6.4). Let us rst consider trees T 1 and T 2 . If the parameters are chosen in a given way, similar branches and sub branches should match each other, that is,

T 1 (i) should match T 2 (i).
In this case, the sub branch of branch T 1 (1) will have no match (it would be matched to 0, thus being "killed"). However, if we tune the parameters in a dierent way, this result could change signicantly. For example, if the cost of killing a branch is relatively small compared to transforming one branch into another, we would be in a scenario where all the branches of T 1 are killed and all the branches of T 2 are being born (all branches matched to 0). On the other hand, if we consider trees T 3 and T 4 , we can illustrate the eect of w 3 on the matching.

For a set of parameters where w 3 is relatively small with respect to the other terms, one would expect T 3(2) to match T 4(2). However, if we increase the weight of d θ in the total distance, the matching of these two branches becomes too expensive as it requires the rotation of branch T 3(2) by π. In this case, the method would match both branches to 0.

Finally, let us take T 1 and T 2 from Figure 6.4 to explain step by step how the distance between both trees would be computed. The algorithm works recursively, starting from level 0 until it reaches the last level. In this particular example, the last level is 2. Let us start at level 0, which is the level of the main axons. There are 6 possible combinations at this level (6 possible M ) for the following level's branches, which are:

[(1,1),(2,2)], [(1,2),(2,0)],[(1,0),(2,1)], [(1,0),(2,0)], [(1,0),(2,2)]
and [(1,1),(2,0)]. Let us take as an example combination [(1,1),(2,2)]. This combination implies that the rst level branches 1 and 2 of each tree will be paired. Given this M , we compute the C function of each main axon and use Equation ( 6.10) to nd the distance between the main axons (the distance will depend on C and on the parameter b used to weight its inuence) (see Figure 6.5). We then take the Chapter 6. An Elastic Shape Analysis Method for the Comparison and Classication of Trees rst set of paired level one branches (branches 1). Each branch is actually a sub tree. In particular, branch 1 of T 1 has one sub branch and branch 1 from T 2 has no sub branches. We then repeat the process recursively for these sub trees. We can now proceed to the second set of paired level one branches (branch 2). Once again we repeat the process for these sub trees. Since each sub tree has two sub branches each, we will have 6 possible combinations at this level. For each combination we repeat the process as we have done for the previous sub trees. The whole process is repeated for each of the 6 possible combinations at level zero. Thus, 6 distances will be found. The total distance between both trees will be the minimum of the 6.

Solving the Optimal Branch Matching Problem

As explained before, to calculate the distance D(T 1 , T 2 ) between two trees it is necessary to nd the optimum matching M between their branches (see Equation (6.9) ). Although this can easily be achieved by computing the distance for all the possible matchings for simple images, it becomes computationally unfeasible for real images. Therefore, more ecient strategies need to be considered.

A rst approach is to express our branch matching problem as an assignment problem. For an extensive review of the dierent variants of the assignment problem and the algorithms for solving them, the reader can refer to [Pentico 2007].

The classic assignment problem can be formalized as follows: given n agents, n tasks, and knowing the cost of assigning each agent to each task, solving the assignment problem consists of nding the one-to-one matching between agent and tasks that minimizes the total cost. The classic example is, having n workers and n tasks and knowing how much time it takes each worker to complete each task, assigning each worker to a task as to minimize the total time needed to complete all tasks. The assignment problem is usually express in matrix form (see Figure 6.6) and the matrix is referred to as Cost Matrix.

Many dierent algorithms for solving this problem can be found in the literature, the classical one being the Hungarian Algorithm. This iterative method was rst proposed by H.W. Kuhn over 50 years ago [Kuhn 1955]. It is based on the property that, given a cost matrix, we can construct a new matrix with the same optimal solution by adding or subtracting a number from all the cells of a row or column of the original matrix. The algorithm requires the cost matrix to be squared, and it presents a O(n 4 ) complexity.

Although this method can be used to solve the branch matching problem in algorithms such as [START_REF] Basu | [END_REF]], it is not directly applicable to our matching problem since we include several constraints on the matching (no cross matching allowed, some branches can have no match, etc).

To embed these constraints we have considered Murty's ranked assignment algorithm [Murty 1968]. Given a cost matrix, this method allows us to nd the K best solutions ordered from best to worst. The best solution S 0 can be found using the Hungarian algorithm. The subsequent solutions S i are found by solving a succession of assignment problems that are generated using S 0 and the cost matrix in a process called partitioning. We can therefore compute several ranked solutions until we nd one that fullls all the constraints on the matchings.

In particular, we have used the method proposed in [Pedersen 2008] since it presents a much better performance than the classical implementations. This work proposes a variant of the classic ranking algorithm that uses a new reoptimization technique for nding the optimal assignment for each partition. It presents a complexity of O(Kn 3 ), where K is the number of solutions found. To use this algorithm, the rst step is expressing the matching problem in matrix form. To simplify the explanation, we assume none of the trees have sub branches. However, the explanation can be extended to arbitrarily complex tree structures.

We start by assuming we have two trees T 1 and T 2 with m and n branches respectively. We construct a m by n matrix, where the component (i, j) contains the distance (cost) between branch i and j. If two branches are too far apart and we do not want to allow a matching that pairs them, we assign ∞ to that cell.

Moreover, n extra auxiliary rows and m extra columns are added to the cost matrix to take into account the killing of branches. We assign the distance of killing each branch in these cells. To limit the number of equivalent combinations, we set to innity all but one of the cells in the killing rows/columns. In addition, all cells in the section of the matrix corresponding to matches between the auxiliary rows and Chapter 6. An Elastic Shape Analysis Method for the Comparison and Classication of Trees columns are set to 0. In this way we do not change the nal total cost, and all rows and columns will have a match. Figure 6.7 presents an example of a cost matrix for calculating the optimum matching between two trees (for m = 2 and n = 3).

As mentioned before, the optimum solutions that do not fulll the no-crossedmatching condition are discarded. Finally, we need to address one last problem.

Since the distance between the two main curves takes into account the C functions of the two curves, it also depends on the matching of the branches (see equation (6.9) ). It is not possible to include this dependency in the cost matrix. Therefore, the optimum match given by the optimization algorithm (after ltering for crossed matches) might not give the global minimum of the distance. This is specially true for a large value of b (see equation (6.7) ).

To solve this problem, we compute the rst valid optimum solution of the cost matrix and we nd the total distance between the trees for this matching. This distance will be considered as the initial guess of the global minimum. We then compute the total distance for the following optimal solutions of the cost matrix. If the new total distance is smaller than our previous guess of the global minimum, we update it. We continue this process until we nd a solution of the cost matrix which is larger that the current minimum total distance. Since the distance between the main curves can never be smaller than zero, we know that none of the remaining solutions of the cost matrix will be able to obtain a smaller total distance.

Although this method provides the global minimum, it becomes very time con-6.4. Solving the Optimal Branch Matching Problem 97 suming when dealing with trees with many branches. We propose instead to compute an approximated solution using the Dynamic Time Warp framework (DTW) [Kruskal 1983].

This algorithm measures the dierence between two signals by stretching and compressing sections of the sequences (non linear matching) in such a way as to minimize the distance between them. It it widely used in speech recognition [Sakoe 1978] and in other elds of the signal processing community. More formally, given two sig-

nals I = [i 1 , i 2 , ..., i n ] and J = [j 1 , j 2 , ..., j m ], a path is dened as P = [p 1 , p 2 , ..p K ]
(where p x = [i q , j r ]). Then, if we dene a distance measure d : R × R → R + , the DTW algorithm will nd the optimum path P min , such that the total timenormalized distance between the two signals D(I, J) is minimized. This total distance is dened as: 6.15) where w l = (i l -i l-1 ) + (j l -j l-1 ) and d(p l ) the distance between the corresponding matched i, j.

D(I, J) = 1 n + m min P l=K l=1 d(p l ).w l ( 
The rst step of the algorithm is to construct a cost matrix. This matrix contains all the pairwise distances between the two signals (see Figure 6.9). Given the cost matrix, the algorithm nds the path that minimizes the total distance between the two signals. This path is generally referred to as the warping function.

Since the number of possible paths grows exponentially with the size of the cost matrix, the following restrictions are imposed on the warping function to make the computation more ecient:

• Boundary condition: The rst and last points of both signals always match (the path starts at the top left and ends at the bottom right of the cost matrix).

• Monotonic condition: The path does not turn back on itself. This condition will be used later to assure that the optimum matching between branches will fulll the no-crossed-matching condition.

• Continuity condition: The path does not jump in time. Both i and j can only increase by 1 on each step along the path. This condition will later be relaxed to adapt the DTW framework to our problem.

The next step is to construct an auxiliary m × n matrix g. This matrix will be used to nd the optimum path. The matrix is initiated by setting g(1, 1) = d(1, 1). Then, the remaining values are calculated using the following rule:

g(i, j) = min          g(i, j -1) + d(i, j) g(i -1, j -1) + d(i, j) g(i -1, j) + d(i, j) (6.16)
The Slope and Warping window conditions can be imposed at this point. Finally, the optimum path can be traced back, starting from g(m, n), passing trough the points of minimum g and nishing at g(1, 1).

The DTW framework does not directly apply to our problem as some branches are not matched (killed). Therefore, the framework was adapted to solve the op-timum branch-matching problem between two trees. Let us consider two trees T 1 and T 2 with m and n branches each. Once again, for the sake of simplicity, we assume they do not have sub branches and that m ≥ n. We start by building the cost matrix. Instead of having a row per point of signal J and a column per point of signal I, like in the classical DTW framework, we rst generate a m × n matrix.

Each row and column will represent a branch of a tree. Since DTW forces paths to start at (1, 1) and nish at (m, n), this would force us to always match the rst and last branches together. To avoid this, we include two auxiliary rows and columns in the cost matrix (the rst and last row/column).

To allow the algorithm to nd combinations where branches are killed (assigned to zero), we alternate n auxiliary rows between the original m. A path passing through one of these cells implies that the corresponding column will be matched to zero (killed). Thus, we assign to cell (h, j) the cost of killing branch j. Moreover, cell (i, j) will contain the distance between branches i and j minus the cost of killing branch i, and the nal cell (m + n + 2, n + 2) will contain the total cost of killing all the m branches in T 1 . In this way, we take into account the eect of killing a branch, while the algorithm is calculating the optimum path.

Finally, we need to relax the continuity constraint to avoid, for example, having multiple matches for one branch. In the classical DTW framework, paths are forced to be continuous in both i and j. When constructing the auxiliary g(i, j) matrix, we take into account the values of [g(i, j -1), g(i -1, j -1), g(i -1, j)]. When working with branches, this would allow branches in T 2 to match multiple branches of T 1 .

Moreover, only neighboring branches could match (for example, branch 2 could not match branch 7). To correct this behavior we change the continuity constraint and the way of creating the g matrix as follows:

g(i, j) = min 1≤k<j [g(i -1, k)] + d(i, j) (6.17) 
In this way, the path will be continuous in j (columns) but not in i (rows).

Lets us consider a concrete example. Let us assume we have two trees (T a , T b )

with two branches each (m = n = 2). The costs of matching the dierent branches are summarized in Table 6.1. In this simple example it is easy to see that the optimum solution is the one matching branches 1 a to 2 b and 2 a and 1 b to zero, with a total cost of 32. Given that the distance between the main curves of the two trees also depends 100 Chapter 6. An Elastic Shape Analysis Method for the Comparison and Classication of Trees 6.1 (left). Panel right shows, in dierent colors, the search area for each column, starting from (m, n). The black circles show the location of the minimum value for each search area. The optimum path will pass through these points as shown in green in the panel left.

on the matching, the optimum solution of the cost matrix does not correspond to the global optimum solution. To improve the obtained approximation, we propose to add a term in the cost matrix that penalizes the matching of branches that are far form each other. This improves the obtained approximation. After performing tests, we determined that the dierence on the average intra and inter class distance for the normal and the type 1 mutant populations is only 5%, with respect to the distances using the ranked assigned optimization method.

Using the DTW approach, the computation of the distance between two trees from the database (see Section 7.4) only takes on average a few seconds. This computational time is comparable with the one presented by the other reviewed methods.
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Mean Shape

The denition and calculation of the mean tree is the rst step necessary for the statistical analysis of a population. Although this is trivial when working in Euclidean spaces, it presents several diculties in more general manifolds. Commonly, the mean m of a set of points x i in a space S is dened as:

m = arg min x∈S n i=1 d(x, x i ) 2 (6.18)
where d is a metric in space S. Note that this denition requires a proper metric denition on the manifold.

In [Laborde 2011] the authors have found the minimizer for this equation to compute the mean of a collection of simple curves. The calculation is done using an iterated gradient approach. This methodology however is not directly applicable to our manifold of trees. Instead, we propose an iterative algorithm. At each iteration, the quantity dened in Equation ( 6.18) decreases, thus guarantying the convergence.

It should be noted that we do not have unicity of the minimizer. The algorithm provides one possible solution.

Let us consider a set of trees T i , each one with n i number of branches. To simplify the problem, we only consider trees composed of the main axon and rst level branches (no sub branches). However, the method is easily extendable to trees of arbitrary order. We start by assuming that the mean has m branches, where m is the minimum number of branches in all the trees of the set (m = n min ). We nd the mean main axon using the methodology described in [Laborde 2011] on the set of all the main axons in the population. This algorithm is applicable to the main axons since they are open curves. The mean main axon will remain constant throughout the iterative process. We then initialize the iterative process with an initial estimation of the mean tree, which is composed of the main mean axon and m initial branches b i uniformly distributed on the mean main axon. We nd the optimum matches (optimum in the sense that it minimizes the distance between the two) between the initial mean tree and each tree in the set. Then, for each b i of the initial mean tree, we use the matches found before to create an auxiliary subset B i of branches that best match this b i . Finally, we calculate the new mean tree by replacing each b i by the mean curve of each B i .

Once we have found the new mean branches, we then determine where to place them on the mean main axon. For each subset B i , we nd the mean position of the branches in it. This will give us the position of the mean branch i. We then use these mean positions to construct a mean branching function (see Figure 6.11). The iterative algorithm will consider mean shapes with one, two and three branches, and then choose the one that presents the smallest distance between the mean and the population. Since all the images have equal main curves, the main curves of the three means will be equal to each other and to the main curve of the database. Let us start with the rst mean shape (that will have zero branches). The second mean shape will have one branch (referred to as b m ) and its distance to the database is equal to:

d 1 = K(b m ) + T ransf (b m , b T 2 ) + T ransf (b m , b T 3 ) + K(b T 3 ) (6.20)
Finally, the mean with two branches (referred to as b 1 m and b 2 m ) will have a distance dened as:

d 2 = K(b 1 m ) + K(b 2 m ) + T ransf (b 1 m , b T 2 ) + K(b 2 m ) +T ransf (b 1 m , b T 3 ) + T ransf (b 2 m , b T 3 ) (6.21)
To determine the nal mean shape, we simply choose the one with the minimum distance to the database. However, it is clear that this will depend on the relative weight of killing with respect to transforming. In particular, if the weight of killing is very large, the mean shape will have one branch. On the other hand, the mean will have zero branches for a small killing weight. Chapter 6. An Elastic Shape Analysis Method for the Comparison and Classication of Trees We have calculated the mean trees of each population (presented in Figure 6.15).

The mean shapes of populations allow biologists to visualize the morphological differences between the classes. They give additional information (such as the shape)

and provide a more convenient way of analyzing the populations than studying the average values of the dierent features that characterize axons.

To validate the mean computation and the relevance of the obtained shape for characterizing a population, we have used the mean shapes to classify the images.

For each image in the database, we calculated its distance to each of the four means using the ESA distance. We then assign the sample to the class corresponding to the closest mean tree. The results are shown in Table 6.4. This classication method obtains the best result of all the tested methods, which suggest that the mean trees represent well the populations.

Moreover, we have implemented a 3-fold cross validation scheme to test the per- formance of the classication using the mean shapes and to establish the robustness of the mean computation. We have divided the dataset into three subsets of images by randomly assigning each image to one of the subsets. We then combine two subsets to form the training set, while the remaining subset is the test set. We consider the three possible assignments of subset/test-set. Moreover, we computed the mean shape of the populations on the training set. The four mean shapes were then used to classify the test sets by assigning each sample to the class corresponding to the closest mean tree, and the overall accuracies were calculated. The entire process was repeated 33 times. Therefore, we have calculated 99 overall accuracy values.

Given that we cannot compute the mean tree shape using Path2Path and TED, these methods cannot be trained. Therefore, we need to modify the previous cross validation scheme. For these two methods, the same procedure is followed, except that the computation of the mean shape of each population in the training set is replaced by the computation of the centroid of each population. The centroid is dened as the sample that presents the minimum intra distance to the other samples of the same population. The remaining steps are performed as explained before. In total, 99 overall accuracy values are computed for each method (ESA with mean, Path2Path and TED).

The mean, standard deviation, maximum and minimum values of the overall accuracy on the test sets for each method are presented in Table 6.5. Results show that the proposed methodology produced stable results, and a higher average overall Chapter 6. An Elastic Shape Analysis Method for the Comparison and Classication of Trees 

Results: IBV Database

The same methodology used in Section 6.6.1 was applied for the evaluation on the normal/mutant populations.

As shown in Table 6.6, Path2Path outperforms RTED. This was expected since Path2Path includes both topological and geometrical information. Notably, we obtain the best classication accuracy using the ESA distance. This could be explained by the fact that the ESA distance captures more information about the axonal trees than the other methods. Moreover, despite its simplicity, the feature based classication scheme outperforms both Path2Path and TED. It is however, outperformed by ESA, which obtains an overall accuracy of 73.8% despite the similarity between some individuals of dierent classes (see Figure 3.9).

In addition, the average distance (using ESA) between the mean normal tree and the normal population is 1.32, while the average intra population distance for the same population is 1.94. The same is true for the remaining two populations, where the average distance between the mean mutant type 1 tree is 0.37 and 4.11

for mutant type 2. Both distances are smaller than the average intra population distances (1.00 and 5.67 for mutant type 1 and type 2 respectively). Moreover, the classication results using the mean shapes are presented in Table 6.7. The accuracy of the classication improves signicantly when using the mean shape.

We have calculated the distances between the mean normal tree and both mutant populations and determined that they are larger than the average distance between the normal population and its mean tree (respectively, 1.34 and 5.45 for mutant type 1 and type 2). This shows that both mutant populations are aected, but that the mutant type 1 population is only mildly aected while the mutant type 2 population is severely aected. This concurs with the biologist's assessment of the corresponding mutations.

Finally, the mean shapes of each of the three populations are presented in Figure 6.16. One can notice that the mean normal tree is bigger and presents more branches and sub branches than the mutant type 1. On the other hand, the mutant type 2 mean has a size similar to the mutant type 1 but presents more branches and sub branches. These results concur with our visual assessment of the database.

Conclusions

In this chapter we have presented a method for the comparison of tree-like structures that embeds both geometrical and topological properties. The method is an extension of the Elastic Shape Analysis Framework, which was originally developed for simple curves in the Euclidean space. The distance between two structures is dened as the length of the geodesic between them in a space of tree-like shapes.

In addition, we propose a method for the computation of the mean shape of a population of trees.

We have used our method for the comparison of axon morphology. The performance was tested on two sets of images. The rst set is composed of four dierent populations of neurons from dierent animals and sections of the brain from the

NeuroMorpho.org open database. in total, 131 reconstructions were considered. For the second set of images, we considered all 61 (20 normal, 24 type one mutant and For the evaluation we have implemented a classical unsupervised classication scheme based on K-means. We have compared the results obtained by four methods and concluded that ours (ESA) obtains a better overall performance. Moreover, we have calculated the mean shape of each population and used them for the classication. The results obtained using the mean shapes are signicantly better. The mean shapes appear to correctly characterize the populations. We propose an estimation scheme of the involved parameters from a subset of the IBV image database. In total, 53 images (18 normal, 21 type 1 mutant and 14 type 2 mutant) were used. The model parameters allow us to describe pathological characteristics of the mutated populations.

Introduction

The growth of an axonal tree is determined by dierent biological processes. Many of the mechanisms involved in their morphogenesis are still not completely understood.

Chapter 7. A Markov Chain Model for the Generation of Axonal Trees

Therefore, a simulation framework for the generation of realistic axonal trees could provide an insight into these processes. Besides, if we are able to estimate the model parameters from axons obtained from images, it will provide a framework for characterizing populations.

Several models are currently proposed in the literature, which dier with respect to the biological processes being considered, the methodology and type of data used for the parameter estimation and the dimension considered (2D, 3D or 4D).

In [START_REF] Segev | [END_REF] On the other hand, [Kobayashi 2010] presents a 3D stochastic model of neuronal growth cones (tips of the growing axon) that takes into account the concentration of guidance molecules to determine their behavior. Although this model presents an interesting approach, the authors do not use the model to estimate the attraction eld. Instead, it is an input necessary to simulate the behavior of the axons.

Moreover, they do not consider bifurcations.

Finally, Koene et al. [Koene 2009] propose a very complete model for the generation of 4D (3D and time) neuronal networks that includes both axons and dendrites.

For each neurite growth cone, the model considers the processes of elongation, turning and branching. However, no attraction eld is considered. The authors estimate some of the parameters from real 4D data, and others are set manually based on properties of real neurons.

In this chapter we propose a 2D discrete stochastic model for the simulation of axonal biogenesis. The model is dened by a third order Markov Random Chain.

It considers an external attraction eld, and all the involved parameters (including those dening the attraction eld) are estimated from real data. These estimated parameters are used to characterize populations from in vivo data.

Markov Chains

A discrete stochastic process is a set of random variables {X(t) ∈ S, t ∈ T } with the same state space S, where index t represents time and T = N. Thus, X(t) can be interpreted as the state of the process at time t.

In addition, we introduce the Markov property (sometimes referred to as the memorylessness property), which can by summarized by the following equation:

P (X t = x t |X 0 = x 0 , ..., X t-1 = x t-1 ) = P (X t |X t-1 = x t-1 ) (7.1)
In short, the property states that the conditional probability distribution for the system at the next step depends only on the current state of the system and not on the previous states. If a discrete stochastic process is dened over a countable set S and fullls the Markov property, the process is referred to as a Markov chain.

To fully determine a Markov chain M we need to specify the initial state X 0 (which is usually chosen according to some probability distribution) and the transition probabilities P (i, j) = P i,j = P (X t = j|X t-1 = i) for all i, j ∈ S. This probabilities are usually estimated using dierent methods such as Maximum like- If the state space S is nite, it can be convenient to express the transition probabilities in the form of a matrix P referred to as a stochastic matrix:

P =        P 0,0 P 0,1 • • • P 0,d P 1,0 . . . . . . . . . . . . . . . P d,0 • • • • • • P d,d        (7.
2)

The reader should notice that since the matrix summarizes the transition probabilities of the process, all the entries in P are non negative and the sum of each Trees row is equal to one.

Markov chains have been used extensively in a wide range of elds, such as Queuing theory, speech recognition and Protein modeling.

In some particular applications, it can be useful to build chains with limited memory. In these cases, a special type of chains are used. A Markov chain is said to be of order m (with m ∈ N) if the process satises the following condition:

P (X t = x t |X t-1 = x t-1 , X t-2 = x t-2 , ..., X 0 = x 0 ) = = P (X t = x t |X t-1 = x t-1 , X t-2 = x t-2 , ..., X t-m = x t-m ) (7.3)
This implies that, unlike the normal chains, the future state does depend on the past m states (the system has a memory). This limited dependence on the previous states can have a predictive value, which can be used to improve the results. In return, the number of parameters that need to be estimated grows exponentially with the order m. For example, for a process with n possible states and a memory length of m, the number of parameters to estimate is n m+1 [Saul 1998]. The probabilities involved in this type of chains can also be expressed in matricial form.

Model Description

We consider a discrete stochastic process to model the axonal tree formation that considers growth and bifurcation. The growth process models the elongation and shape of the neurites, and depends on both the internal rigidity of the neurite and on an external attraction eld. On the other hand, the bifurcation process models the generation of branches. Both processes are considered to be independent from each other.

Growth Process

This process models the formation of the neurites on a discrete lattice L ⊂ Z 2 .

The number of points N on a lament (i.e. its length) is determined using a Gaussian distribution function N (µ, σ 2 ), where µ, σ 2 are parameters to be estimated. This choice was made after tting dierent distributions to the lengths observed in our database (see Figure 7.2).

The shape of the path is determined point by point using a third order Markov Chain that depends on several parameters: E a , E b , E c , E d , E e (referred to as elasticities) and ∆ R , ∆ T . The E i parameters are related to the elastic properties of the neurites, while ∆ i represent an external attraction eld generated by a chemo- attractant molecule secreted by the target area.

Given a point n t on a path, the position of the next point on the path (n t+1 ) depends on n t , the two previous points n t-1 , n t-2 and on the external eld in n t ( ∆(n t )

). Two main cases are dened (plus all the possible rotations) depending on the conguration of n t , n t-1 , n t-2 . For each case, the elasticity contribution is dened on Figure 7.3. The attraction eld is given by the vector ∆(n t ) = (∆ R (n t ), ∆ T (n t )).

∆ R is the attraction to the right and ∆ T to the top of the image (see Figure 3.6), which are assumed to be positive. The reader should notice that the probability to go backwards is dened as zero for both congurations. This is due to the fact that the data we use to estimate the 116 Chapter 7. A Markov Chain Model for the Generation of Axonal Trees probabilities is static and represents the mature axons. Therefore, even in the cases when the neurite does retract, we would not be able to see it and thus not be able to estimate these parameters.

To compute the conditional probabilities, we consider the sum of the elasticities and the external eld for each conguration and normalize it. Let us consider the cases presented on Figure 7.3. We then dene the following quantities:

   S 1 = E a + 2E b + ∆ R (n t ) + ∆ T (n t ) S 2 = E c + E d + E e + ∆ R (n t ) + ∆ T (n t ) (7.4)
Then, the conditional probabilities for n t+1 are summarized on Figure 7.4. 

n t-1 n t-2 n t b E a E b E / S 1 Δ T Δ R + ( n t ) S 1 ( n t ) + S 1 n t-1 n t-2 n t d E c E / S 2 Δ T Δ R ( n t ) ( n t ) + S 2 e E / S 2 / S 2 (a) (b)

Bifurcation Process

The bifurcation process is dened by the probability of branching P b . For a given point n t in a path, the probability of a branching event taking place in that point is determined by P b (n t ). We consider this probability as piecewise constant during time.

Branches grow independently of the main axon following the same model.

Parameter Estimation

The model parameters are given by (P b , µ, σ 2 , E a , E b , E c , E d , E e ) and the external eld (∆ x (u, v), ∆ y (u, v)), for (u, v) ∈ L. Trees (see Figure 7.4). This gives forty eight equation in total when we take into account all the possible rotations. If we consider the cases associated to conguration (a) in Figure 7.4, we obtain the following three equations:

         1 Ta = Êa+ ∆R Ŝ1 2 Ta = Êb + ∆T Ŝ1 3 Ta = Êb Ŝ1 (7.7)
where 1,2,3 are the number of times that the congurations given on Figures 7.6 Thus, we obtain the following linear equations:

t-1 n t-2 n t n t+1 n t-1 n t-2 n t n t+1 n t-1 n t-2 n t n t+1 (a) (b) (c) 
        
( 1 Ta -1). Êa + 2. The same reasoning is applied to conguration (b) in Figure 7.4:

                 4 T b = Êd + ∆R Ŝ2 5 T b = ∆T Ŝ2 6 T b = Êe Ŝ2 7 T b = Êc Ŝ2 (7.9)
where 1,2,3,4 are the number of times that the local congurations given on Figures 
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Êe + ∆R + ∆T . We then obtain the following four equations: 

n t-1 n t-2 n t n t+1 n t-1 n t-2 n t n t+1 n t-1 n t-2 n t n t+1 (a) (b) (c) = n t-1 n t-2 n t n t+1 (d)
                 4 T b Êc + ( 4 T b -1) Êd + 4 T b Êe + ( 4 T b -1) ∆R + 4 T b ∆T = 0 5 T b Êc + 5 T b Êd + 5 T b . Êe + 5 T b ∆R + ( 5 T b -1) ∆T = 0 6 T b Êc + 6 T b Êd + ( 6 T b -1) Êe + 6 T b ∆R + 6 T b ∆T = 0 ( 7 T b -1) Êc + 7 T b Êd + 7 T b Êe + 7 T b ∆R + 7 T b ∆T = 0 (7.10)
When we include all the possible rotations we obtain the total system of forty eight equations, which we solve using the Least Mean Squared (LMS) method.

In a real scenario, we would expect the values of the probabilities to change depending on the position of the considered point. This is particularly true for the attraction eld, since the sensitivity to attractive gradients varies along the gradient and gets lower close to the target present at the upper edge of each image (see Section 7.4). Therefore, we calculate the values of the probabilities for each point of a path using a sliding window scheme. The optimum size of the estimation window was calculated by rst using the model to simulate paths with known probabilities, and then running the estimation procedure using dierent sizes of windows and calculating the error between the two. We determined that a good compromise between error of the estimation and size of the window is 1200 points (see Figure 7.8).

Generation of an Axonal Tree

The growth process starts at an initial point (e.g. (0,0) ). Since the Growth Process requires us to know the position of the 2 previous points, we assume them to be in a linear conguration ( e.g. (-1,0) and (-2,0) ). The rst step is to calculate the number of points that the current path will by sampling the Gaussian law. Let us assume it will have N points: [1, 2, ..., N ]. For this, a random number X 1 generated from a Bernoulli distribution of parameter P b (1). If a secondary path occurs, it will be generated independently once we have nished generating the main path.

Finally, we need to determine the position of the next point using the probabilities involved in the growth process. Since the two previous points are aligned with the current one, we are currently in case (a) of Figure 7.4. A random number X 2 is generated using the corresponding probabilities and used to determine the direction of the jump.

The whole process is repeated for the N points. A possible path is shown in Figure 7.9, along with the parameters involved in each point. Once the main path is generated, we follow the same procedure to generate the secondary paths (branches) and sub branches. Each path is generated independently from the rest.

It should be noted that, even though it happens with low probability, loops can occur during the growth process. Given that in real axons loops are impossible to occur, this presents a problem that needs to be solved in the future. 

Validation

For the validation, we have used the IBV image database described in Chapter 3.

Each image stack has two channels, and we have considered three populations of neurons (normal and two types of mutations).

In order to study the attraction eld of the populations, all stacks were registered against the rst image of the normal population. This was performed using the second channel of each images, and the transformations were then used to align the rst channel. Images were registered by rst aligning them with a rigid registration algorithm [Goshtasby 2012], followed by a non linear demons registration step [Thirion 1998].

Rigid-body transformations consist of only rotations and translations. Thus, this type of transformation preserves distances and angles between three points. In the 3D space, they have six degrees of freedom (three for the rotation and three for the translation).

On the other hand, demons registration is a particular algorithm of the nonrigid registration family. Under this approach, each image is viewed as a set of isointensity contours. The main idea is that a regular grid of forces (the deformation eld) deforms an image by pushing the contours in the normal direction. This displacement is calculated from the following equation:

D. F = -(M -F ) (7.11)
where F is the xed image, M the image to be registered and D the displacement between the two images. The previous equation is insucient to specify D locally.

Thus, the displacement eld is calculated using an iterative algorithm.
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Moreover, given that each pixel is able to move independently from the others, the reconstruction of the deformation eld is a very ill-posed problem. To regularize the eld, it is periodically convoluted with a Gaussian lter.

We have used the implementation provided by the Insight Segmentation and Registration Toolkit (ITK)(http://www.itk.org/) library to perform both types of registrations.

Due to the fact that the structure in channel 2 was on occasions not well captured in the images, we were forced to only consider a subset of the image database (see Given that all images were registered, we are able to use the estimated parameters to generate two elds for each population, a scalar eld that represents the magnitude of E a /E b and a vector eld that represents the attraction eld ∆. Since we obtain some estimates on a sparse set of points in the x,y plane, we extrapolate the elds using a Gaussian Markov Random Field (see Section 7.4.1).

Due to the ratio between the resolution on the z axis and on the x,y plane, we have considered the maximum intensity projections of the images along the z axis.

Markov Random Fields

Let X i , i = 1, ..., n be a set of random variables taking values in some discrete or continuous state space S, and forming a random vector X = (X 1 , ..., X n ). If we assign each variable to a node of a graph G, we obtain a random eld on graph G.

Usually, the used graphs are regular 2D lattices on the plane. If the random eld fullls the following condition, it is said to be a Markov random eld (MRF):

P (X(s) = x s |X(r) = x r , s = r) = P (X(s) = x s |X(N (s)) = x N (s) ) (7.12) where N (s) is the neighborhood of point s in the graph (in 2D, this could be for example, either a system of 4 or 8 neighbors) (see Figure 7.12). This equation implies that the eld fullls the markovian property [Winkler 2006]. In particular, it can be shown that Markov Chains are 1D MRF. .12: Neighboring system for a eld on graph G that X is a Markov random eld with P (X = x) > 0, ∀x, if and only if P (X = x)

has the form of a Gibbs distribution: 7.13) where Z is the normalizing constant for the density (known as the partition function), T is referred to as the temperature (a scale parameter for the distribution) and U (X) is known as the energy function. This theorem provides a convenient way of writing the density function of a MRF. Dierent models are obtained depending on the formulation chosen for the energy U (for example, the Ising or the Potts models [Besag 1974, Geman 1984]).

P (X) = 1 Z exp -U (X) T ( 
The optimization of these types of models is quite complicated due to the existence of local optima. Thus, special algorithms need to be considered. The two most used methods to sample the model are Gibbs sampler and the Metropolis algorithm. These sampling methods are usually integrated with an annealing schedule, which consists on starting with a high temperature, and then decrease it slowly.

This allows the method to nd the global minimum [Winkler 2006].

MRF are widely used in image processing problems where we need to infer an original unobservable image X from an observed degraded image. Here, a MRF can be used as a prior model. where U is a uniform distribution. We then start an iterative procedure. For each iteration i, we compute the values of X i by sampling a Gaussian distribution: ∀r = D, x i r ∼ N (µ i r , σ 2 i ) (7.16) where µ i r = 1 4 r ∈N (r) x i-1 r is the mean of pixel r four neighbors (N (r)) and σ 2 i = T i 2 is the variance (T i being the temperature of the simulated annealing scheme that decreases at each iteration).

The iterative process continues until the maximum number of iterations has been reached.

The procedure is applied to the E a /E b scalar eld and to the attraction eld.

In the case of the ∆ eld, the norm ρ and angle φ of the vector at each point are converted to x-y coordinates (ρ cos(φ), ρ sin(φ)) and the procedure is then applied to each component separately.

At the end of the regularization process we obtain a smooth eld dened on all the points of the image (see Section 7.4.2).

Results

We have estimated the model parameters for each branch level of each image (main axon, branches and sub branches), and then averaged these values between the images to obtain sets of representative values for each population. We have used these values to generate several axonal trees for each population to visually compare the obtained simulations with the real images (see Figure 7.13). We determined that the real and synthetic images present a similar morphology.

Moreover, to test the parameter ability to characterize the populations, we have used them as features in a classication scheme. We then apply PCA and only retain the principal components that account for 90% of the variance. Finally, K-Means is applied to perform the unsupervised classication. We follow the same procedure with the following eight features: length of main axon, number and total length of branches and sub branches, distance (using the Elastic Shape Analysis Framework) between the main axon and a straight line and the mean and standard deviation of the angles between the branches and their respective mother branches. (quantities not taken into account by our model Table 7.1: Classication Results: Sensitivity for the normal (S-Normal) and mutant (S-Mutant T 1 and T 2 ) populations and overall accuracy (OA) using the model's parameters (MP) and the alternative selected features (F) summarized in Table 7.1. The results show that the model parameters are able to characterize the neuron populations. However, this approach is outperformed by the other set of features.

In addition, we have averaged the second channel of all the registered images to obtain an approximation of the average shape of the overall neuronal structure in which axons are developing (see Figure 7.14). We have then plotted the extrapolated ∆ eld for each population on these three mean images. By qualitatively analyzing the resulting images we have determined that there is no relevant dierence on the eld between the three populations (see Figures 7.15,7.16 and 7.17). We can appreciate that the eld points towards the target area (which is located at the top right corner of the image) and that its norm is stronger at the starting point of the axons (bottom right section) and weaker near the target area.

The same procedure was used to analyze the dierence on the scalar elds for each population (see Figure 7.18). In this case we can detect a signicant dierence between the populations. Given that E a /E b is related to the exibility of the axons, we can determine that the normal axons have a more constant direction throughout its length, followed by mutant type 2 and mutant type 1 (see Figure 7.18).

Conclusions

In this chapter we have proposed a 2D discrete stochastic model for the simulation of axonal trees based on Markov Chains. The model considers several independent processes (elongation, shape and bifurcation) that are determined by several parameters, all of which can be directly estimated from real static images.

We have validated the model on a set of 53 images of the IBV database. Both normal and mutated neurons were considered (18 normal, 21 mutant type 1 and 14 type 2). For each class of neurons, we have estimated the parameters and generated synthetic axonal trees that resemble the real ones. Moreover, results show that the parameter values provide information about the axon growth properties of the populations.

This is a rst approach using a simple model. In the future we intend to extend the model to 3D and to include the growth speed by considering 3D time sequences of developing axons.

Chapter 8. Conclusion and Perspectives by comparing its performance with three other techniques. We showed that our method is better at comparing and classifying the dierent populations of axons.

Finally, we proposed a stochastic model for the generation of axonal trees. This model is dened by a third order Markov Chain and considered several biological processes such as growth and bifurcation. All the parameters (including the chemoattractant attraction eld) were estimated for the dierent populations from the data.

Perspectives

Segmentation

The results presented in Chapter 5 show that the method is able to produce good tracings that closely match the ground truth and that it outperforms two other state of the art segmentation algorithms. However, our validation was limited to only a subset of the IBV database. In the future, we intend to improve the quantitative evaluation of the method by considering the full image database and by comparing our results with additional algorithms. In addition, we need to develop a method for the automatic selection of the parameters used in each step of the segmentation process. Finally, to make this method accessible to the biological community, we should integrate it in an easy-to-use open software (for example, as a Fiji plug-in).

ESA Distance

First of all, we intend to improve the evaluation of the method by including more classes in the classication and by considering more sophisticated classication algorithms such as Support vector machine.

In addition, the proposed method was applied to the analysis of axonal trees, though the method is not specic to this type of structures. Thus, in the future we will apply our method to the analysis of additional structures such as airways and blood vessels.

Moreover, we need to analyze what parameters (or combination of parameters)

better explain the dierences between the populations. This should be done in collaboration with the biologists.

Finally, we plan to formulate statistical models of the populations by considering covariance matrices in the tangent spaces. This will allow us to better characterize the dierences between the populations.

Finally
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  Figure 1.1:Schematic diagram of the morphological analysis process (images from http://scientopia.org/, http://www.nikoninstruments.com/ and http://www.wadsworth.org/).

Figure 2 . 1 :

 21 Figure 2.1: Schematic diagram of a neuron (from http://www.webspace.ship.edu).

Figure 2 . 3 :

 23 Figure 2.3: Schematic diagram of the dierent axonal branching processes: arborization (top), bifurcation (middle) and collateral formation (bottom).

Figure 2 . 4 :

 24 Figure 2.4: Electrical synapses transmit signals directly through the gap junctions, while chemical synapses transmit information indirectly using chemical signals (taken from http://csls-text.c.u-tokyo.ac.jp).

Figure 2. 5 :

 5 Figure 2.5:Population of neurons creating a neural circuit (from http://www.encorbio.com).

Figure 2 . 6 :

 26 Figure2.6: Axonal tree diagram. The main axon is the curve that passes through nodes(a,b,d,h). Branches are dened by nodes (b,c),(d,e,g) and the sub-branch by nodes (e,f). Both nodes b and d are referred to as rst level branching points, while node e is a second level branching point.

  an imaging technique which was pioneered by Marvin Minsky (Harvard University) in 1955. This method creates an image by focusing a light ray sequentially across a specimen and then collecting the returning rays. Unlike classical microscopes, the specimen is illuminated one point at a time, thus avoiding most of the unwanted scattered light that would decrease the quality of the image. Moreover, the returning light passes through a second aperture (pinhole) that lters rays that are not coming directly from the focal point. The remaining light rays are collected and the image is gradually reconstructed. Finally, a three-dimensional (3D) image volume of the specimen is obtained by assembling dierent slices taken along the vertical axis [Semwogerere 2014]. This imaging technique oers several advantages over conventional optical microscopy, the most important being the ability to collect serial optical sections from thick specimens and the elimination of out-of-focus glare. In addition, confocal microscopy outperforms two-photon microscopy in imaging thin isolated structures (such as individual cells or axons) since it uses a shorter excitation wavelength which produces higher optical resolution images. In the biomedical sciences, confocal microscopy is usually used to image xed cells or tissues that have been previously labeled with uorescent dyes [Paddock 2014].

  Figure 3.1: Confocal microscope picture (left) and diagram (right) (from: http://www.nikoninstruments.eu).

Figure 3 . 2 :

 32 Figure 3.2: Diagram summaryzing the Fluorescence phenomenon.

Figure 3

 3 Figure 3.3: Picture of the Aequorea Victoria jellysh (from: http://www.nobelprize.org/ ).

Figure 3 . 4 :

 34 Figure 3.4: Drosophilia brain diagram (top, mushroom bodies in blue) and diagram of the mushroom body lobes (bottom) (from:[Heisenberg 2003] and[Bruckert 2012]). γ, α β and αβ correspond to three sub populations with specic axonal projection patters.

Figure 3 . 5 :

 35 Figure 3.5: Characteristic morphology of each type of axons (γ, αβ and α β ) (from [Bruckert 2012]).

Figure 3 . 6 :

 36 Figure 3.6: Channel 1 (left; GFP staining) and 2 (right; Fasciclin II staining) for a given image (maximum intensity projections).

Figure 3 . 7 :

 37 Figure 3.7: Original confocal microscopy image of an axonal tree (left) and its tracing (right) (maximum intensity projections).

Figure 3 . 8 :

 38 Figure 3.8: Some examples of normal (top), mutant type 1 (middle) and mutant type 2 (bottom) axonal trees. The examples present distinct morphological characteristics depending on the type of neuron (2D projections).

Figure 3 . 9 :

 39 Figure 3.9: Some examples of normal (top), mutant type 1 (middle) and mutant type 2 (bottom) axonal trees that are similar to each other (2D projections).

Figure 3 .

 3 Figure 3.10: Examples of reconstructions of dierent types of neurons from Neuromorpho: Interneuron (top), Medium spiny cell (middle) and Retinotectal (bottom) (visualized with Neuromantic).

Figure 4 . 1 :

 41 Figure 4.1: Screenshot of Neuromatic.

Figure 4 . 2 :

 42 Figure 4.2: Result obtained by FeatureJ on one of our axonal images.

Figure 4 .

 4 Figure 4.3: Double mistakes example for TED. Although both trees are dierent, TED will give a distance equal to zero.

Figure 4 . 4 :

 44 Figure 4.4: Neuron decomposition into paths for Path2Path and construction of the C and H functions for one of the paths.

Figure 4 . 5 :

 45 Figure 4.5: Tree decomposition.

Figure 4 . 6 :

 46 Figure 4.6: Pyramidal cell from the Neocortex of Human (left) and Motoneuron from the Peripheral nervous system of Mouse (right) (taken from neuromorpho.org, Allman and Lu-Lichtman collections).

  linearly with the concentration gradient, and depends on the derivative of the concentration and on several other parameters such as the cones sensitivity to the two signals. The sensitivity of the cones to the chemical signals changes as a function of the neurite length. When the neurite rst sprouts from the soma, it is mainly aected by a repulsive signal emitted from its mother soma. Once the neurites reaches a specic distance (a parameter of the model), its sensitivity to this signal greatly decreases, and its sensitivity to the attractive signals emitted from the other somas increases. As a result, the neurites grow toward a neighboring cell, thus establishing neural networks.To quantitatively compare the model behavior to experimental data, the authors compare the histogram of the number of connections vs. lengths between connected neurons.

4. 4 . 2

 42 Kobayashi et al. [Kobayashi 2010] presents a 3D stochastic model of neuronal growth cones (tips of the growing axon) that takes into account the concentration of guidance molecules to determine their behavior. The model considers that each cone has k lopodia (see Chapter 2) separated by an angle θ. Each folipodium is represented by a unit vector of a given direction. These lopodium act like sensors that can detect the presence of guidance molecules in the extra cellular medium. This molecules are represented by concentration elds that are imputed by the user before the growth process starts. The guidance molecules are assumed to be released from a given point and to diuse into the environment. The concentration follows a normal distribution (with parameters imputed by the user).

Figure 5 .

 5 Figure 5.1: Normal (top) and mutant (bottom) axons (maximum intensity projections).

Figure 5 . 2 :

 52 Figure 5.2: Block diagram of the segmentation process.

Figure 5 .

 5 Figure 5.3: 2D Gabor function for a given set of parameters, space (left) and frecuency (right) domains.

Figure 5 . 4 :

 54 Figure 5.4: G -(left) and G + (right) lters.

  y,z,σ) ∂i∂j * I(x, y, z) i, j = xx, xy, xz, yy, yz, zz(5.12) where G(x, y, z, σ) is the Gaussian function. The second order derivatives can 5is symmetric, the eigenvectors are orthogonal and the eigenvalues are real. Moreover, it can be shown that a spherical neighborhood centered at a given point of the image is mapped by H into an ellipsoid whose axes are along the direction of the eigenvectors (of H) and the corresponding axis semi lengths are the magnitudes of the respective eigenvalues. Thus, this ellipsoid describes the second order structure of the image at a local level. The three eigenvalues will be refereed to as λ i , with |λ 1 | ≤ |λ 2 | ≤ |λ 3 |.

Figure 5 . 5 :

 55 Figure 5.5: Comparison between the Gabor lament enhancer and the methods proposed in [Frangi 1998, Wilkinson 2001]: Top: original image (left) and Gabor ltering (right). Bottom: Frangi et al. (left) and Wilkinson et al. (right) (maximum intensity projections).
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 5657 Figure 5.6: Example of Otsu thresholding: Original image (top left), binary image (top right) and histogram (bottom) (taken from http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html)

Figure 5 .

 5 Figure 5.8: Original image (left) and its segmentation into tokens (right): islands (blue), segments (red) and segment ends (green).

Figure 5 .

 5 Figure 5.9: Tensor elds for the dierent types of tokens: island (left), segment end (middle) and segment (right).

Figure 5 .

 5 Figure 5.10).

Figure 5 .

 5 Figure 5.10: Arc of circle C used for the construction of the tensor eld expressing a segment-end token represented with dotted lines between points O and P (taken from [Risser 2008]).

Figure 5 .

 5 Figure 5.12: Results with NeuronStudio for an image of the database. The algorithm is unable to dierentiate between the axonal tree and the background structures.

  .23) where |.| represents the cardinal function and d(i) is the distance between pixel i of C and the nearest pixel of C.

Figure 5 .

 5 Figure 5.13: Results obtained on each step of the algorithm for one image stack. Top: original image (left) and lament enhancement (right). Bottom: binarization (left) and nal result (right) (maximum intensity projections).

Figure 5 .

 5 Figure 5.14: Results obtained on each step of the algorithm for one image stack. Top: original image (left) and lament enhancement (right). Bottom: binarization (left) and nal result (right) (maximum intensity projections).

Figure 5 .

 5 Figure 5.15: Result before (left) and after (right) the gap lling step (maximum intensity projections). The gray circle marks the gap to be lled.

Figure 5 .

 5 Figure 5.16: Comparison between original image (left), our result (middle) and ground truth (right) for two images (maximum intensity projections).

Figure 5 .Figure 5 .Figure 5 .Figure 5 .

 5555 Figure 5.18: Quantitative evaluation: comparison between the proposed method (PM), V3D and NeuronStudio with the manual segmentation using the FOM criterion (evaluation on each of the 12 considered images)

Figure 5 .

 5 Figure 5.22: Comparison between original image (top left), the ground truth (top right), V3D (bottom left) and our result (bottom right) (maximum intensity projections).

Figure 5 .

 5 Figure 5.23: Comparison between NeuronStudio (top left), the ground truth (top right), V3D (bottom left) and our result (bottom right) (maximum intensity projections).

Figure 6

 6 Figure 6.1: From left to right: Diagram of a rooted tree, neuron, blood vessels and lung airways. Taken from http://neuromorpho.org/, http://www.isi.uu.nl/Research/Databases/DRIVE/ and http://image.diku.dk/exact/index.php
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 62 Figure 6.2: Tree diagrams showing how angles φ and θ are dened for a given branch.Angles φ 1 and φ 2 are dened with respect to the main branch, while φ 3 is dened with respect to T (2) (its mother branch). A similar convention is taken for θ. In this example, the angle θ 2 associated to branch T (2) is measured with respect to branch T (1), while θ 4 is measured with respect to T (3) (the rst branch depending from its mother branch).

Figure 6 . 3 :

 63 Figure 6.3: Tree diagrams (left) and their corresponding C functions for a given M (right).

Figure 6 . 5 :

 65 Figure 6.5: Registration between two curves including a simple step C function (blue for C = 1, red for C = 0), b = 0 (left) and b = ∞ (right). If b is big the registration is mostly determined by the C function.

Figure 6 . 6 :

 66 Figure 6.6: Example of an assignment problem expressed as a matrix. The optimal minimum cost solution is marked in colors.

Figure 6 . 7 :

 67 Figure 6.7: Example of an assignment problem expressed as a matrix. We assign innity to the cell (1, 3) to model the fact that both branches are far apart.

Figure 6 . 8 :Figure 6

 686 Figure 6.8: Example of the match between two signals using DTW. The matching is non-linear.

Figure 6 .

 6 Figure 6.10 shows the cost matrix associated to the matching problem along with the optimum path marked in green. The modied DTW algorithm is able to nd this optimal solution.

Figure 6 .

 6 Figure 6.10: Cost matrix and optimum path (green) for the example considered in Table6.1 (left). Panel right shows, in dierent colors, the search area for each column, starting from (m, n). The black circles show the location of the minimum value for each search area. The optimum path will pass through these points as shown in green in the panel left.

Figure 6 .

 6 Figure 6.13: Three synthetic images, each containing one simple tree (T 1 , T 2 and T 3 ).

  If we dene K(b) as the cost of killing branch b and T ransf (b 1 , b 2 ) as the cost of transforming b 1 into b 2 , the mean's distance to the images on the database is equal to d 0 = 0 + K(b T 2 ) + 2K(b T 3 ) (6.19)

Figure 6 .

 6 Figure 6.15: Mean shapes for the four populations taken from NeuroMorpho: granule cell (top left), type I (top right), uniglomerular projection neuron (bottom left) and motoneuron (bottom right); (2D projections). The scale is dierent on each image to simplify the visualization.

Figure 6 .

 6 Figure 6.16: Mean normal (top left), mutant type 1 (top right) and mutant type 2 (bottom) axonal trees (2D projections). The crossing in the normal mean is due to the projection.

Figure 7 . 1 :

 71 Figure 7.1: Example of a Markov chain. Note that the sum of the transition probabilities for each state is always equal to one.

Figure 7 .

 7 Figure 7.2: Histogram of the lengths of the main axons for the normal population, superimposed with the Gaussian that best ts the data.

Figure 7 . 3 :

 73 Figure 7.3: Diagram showing the two possible main congurations and the dierent elasticities considered in each case.

Figure 7 . 4 :

 74 Figure 7.4: Conditional probabilities P (n t+1 |n t , n t-1 , n t-2 ) associated with the cases presented onFigure 7.3 

( a ,

 a b, c) are present along the axon, Ta = 1 + 2 + 3 and Ŝ1 = Êa + 2 Êb + ∆R + ∆T .

  n

Figure 7 . 6 :

 76 Figure 7.6: The 3 possible positions of n t+1 for the conguration present in Figure 7.4 (a).
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  (a, b, c, d) are present on the axon, T b = 4 + 5 + 6 + 7 and Ŝ2 = Êc + Êd +

Figure 7 . 7 :

 77 Figure 7.7: The 4 possible positions of n t+1 for the conguration present in Figure 7.4 (b).

Figure 7 . 8 :

 78 Figure 7.8: Plot of the average error between the estimated and real norm of the ∆ eld for dierent window sizes (expressed in percentage of the real norm).

Figure 7 . 9 :

 79 Figure 7.9: Diagram showing one possible path and the parameters involved in each point.

Figure 7 .

 7 Figure 7.11). In total, 53 images (18 normal, 21 type 1 mutant and 14 type 2 mutant) were used.

Figure 7 .

 7 Figure 7.10: Registration result for a pair of images: reference image (top left), moving image (top right), result after rigid registration (bottom left) and after Demons registration (bottom right).

Figure 7 .

 7 Figure 7.11: Example of an image were the structure present in channel two is not complete (left) and a valid image (right).

  Figure 7.12: Neighboring system for a eld on graph G

  We have used these concepts to extrapolate the ∆ and E a /E b elds. Let us consider X, Y such that:where D is the collection of the estimated eld values on the images and L is the 2D lattice representing the images. Thus, Y contains the estimated data and X7.4. Validation 125is the extrapolated eld we want to nd. We initialize X 0 in the following way: r , ∀r inD x 0 r = α r |α r ∼ U [min(Y ), max(Y )] (7.15)
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	Criterion (Method)	Mean	Standard Deviation
	Hamming (PM)	1.3368e7	3.5523e6
	Hamming (V3D)	1.3369e7	3.5524e6
	Hamming (NeuronStudio) 1.3369e7	3.5524e6
	FOM (PM)	0.34	0.08
	FOM (V3D)	0.09	0.03
	FOM (NeuronStudio)	0.01	0.04
	Hausdor (PM)	154.18	79.19
	Hausdor (V3D)	145.97	107.29
	Hausdor (NeuronStudio)	182.71	91.35
	RMSE (PM)	2.83	0.54
	RMSE (V3D)	4.73	1.20
	RMSE (NeuronStudio)	9.10	1.11

1: Quantitative evaluation: comparison of the proposed method (PM), V3D and NeuronStudio with the manual segmentation using the criteria described in 5.3 (mean and standard deviation)

Table 6 .

 6 1: Costs of matching the dierent branches of T a , T b . The cost of assigning a branch to zero (killing) is equal for all branches. , 2 a , 1 b , 2 b 0 (killing) 10

	Branch	Match	Cost
	1 a	1 b	32
	1 a	2 b	12
	2 a	1 b	20
	2 a	2 b	15
	1 a		

Table 6
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	.3: Sensitivity for the granule cell (S-G), type I (S-TI), uniglomerular projec-
	tion neuron (S-U) and motoneuron (S-M) populations and overall accuracy (OA) for
	ESA, the feature-based classication scheme (FBC), Path2Path (P2P) and RTED.
	Method S-G	S-TI		S-U	S-M	OA
	ESA	100.0% 75.6% 97.5% 80.0% 85.5%
	FBC	0.0%	36.6% 92.5% 47.5% 54.2%
	P2P	40.0%	58.5% 75.0% 30.0% 53.4%
	RTED	0.0%	63.4% 87.5% 17.5% 51.9%
	Table 6.4: Sensitivity for the granule cell (S-G), type I (S-TI), uniglomerular pro-
	jection neuron (S-U) and motoneuron (S-M) populations and overall accuracy (OA)
	for ESA using the mean shape (ESA WM).		
	Method	S-G	S-TI	S-U	S-M	OA
	ESA WM 100.0% 95.1% 100.0% 95.0% 96.9%
	evaluation [Sokolova 2009]:				
	Sensitivity =	True Positive True Positive + False Negative	(6.22)
	Overall accuracy =	Total True Positive Total Number Images	(6.23)
	The classication results are summarized in Table 6.3. Results show that the
	ESA distance outperforms the other methods considerably. Although the remain-
	ing methods obtain a similar overall accuracy, Path2Path obtains a more balanced
	sensitivity between the classes.				

Table 6 .

 6 5: Mean, standard deviation (Std), maximum (Max) and minimum (Min) of the overall accuracy on the test sets for each method (ESA with mean, P2P and TED). Kruskal-Wallis one-way non parametric analysis of the overall accuracy values obtained for each method. This test allows us to test whether the samples originate from the same distribution or not. We have obtained a p = 5.3e -34. Thus, we can conclude that the accuracy dierence between ESA and the other methods is statistically signicant.

	Set	Mean Std	Max	Min
	ESA 95.3% 2.8% 100.0% 84.6%
	P2P 39.8% 9.2% 61.0%	23.3%
	TED 22.7% 8.6% 56.6%	11.1%
	accuracy than the other tested methods.		
	Finally, to statistically compare the performance of ESA (with mean) and the
	other two methods, we performed a		

Table 6 .

 6 

	6: Sensitivity for the normal (S-Normal) and mutant (S-Mutant) popula-
	tions and overall accuracy (OA) for ESA, the feature based classication scheme
	(FBC), Path2Path (P2P) and RTED.		
	Method S-Normal S-Mutant T 1 S-Mutant T 2 OA
	ESA	85.0%	66.7%	70.6%	73.8%
	FBC	90.0%	58.3%	47.1%	65.6%
	P2P	70.0%	79.2%	23.5%	60.7%
	RTED	47.4%	50.0%	47.1%	48.3%
	Table 6.7: Sensitivity for the normal (S-Normal) and mutant (S-Mutant) popula-
	tions and overall accuracy (OA) for ESA using the mean shape (ESA WM).
	Method	S-Normal S-Mutant T 1 S-Mutant T 2 OA
	ESA WM 90.0%	83.3%	70.6%	80.3%
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  the authors introduce a 2D model of self wiring neural networks inspired from previous work on the study of patterning of bacterial colonies. Neurons are represented as being composed of the soma, dendrites and axons. Neurites and somas communicate with each other by means of attractive or repulsive signals that determine the networks morphology.

  ). We have compared both results, which are 126 Chapter 7. A Markov Chain Model for the Generation of Axonal Trees Method S-Normal S-Mutant T 1 S-Mutant T 2 OA

	F	76.5%	90.5%	21.4%	67.3%
	MP	76.5%	57.1%	28.5%	55.8%
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Figure 7.14: Mean second channel image (after registration) for each population: normal (top), mutant type 1 (middle) and mutant type 2 (bottom).

Figure 7.15: Norm (top) and direction (bottom) of the attraction eld for the normal population.

Figure 7.16: Norm (top) and direction (bottom) of the attraction eld for the mutant type 1 population.

Figure 7.17: Norm (top) and direction (bottom) of the attraction eld for the mutant type 2 population.

Figure 7.18: E a /E b scalar eld for the normal (top), mutant type 1 (middle) and mutant type 2 (bottom) populations.
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Chapter 5. Axon Extraction ponents that do not correspond to the searched shape are removed. Identifying a shape criterion capable of distinguishing lament-like objects from all others is the key problem under this methodology. Finally, all the resulting binary images are added again to obtain the nal ltered result,

The authors propose a shape criterion based on the volume V and the moment of inertia I of a connected component C. It is known that the moment of inertia of a volume is minimal for a sphere and increases for elongated objects. Given a connected component C, its moment can be calculated using the following formula: 5.15) where V (C) is the volume of C and x its center.

For a given component C, I(C) scales with the size to the fth power, while the the volume scales with the third power. Therefore the ratio S = I V 5 3 is a purely shape dependent scaling invariant quantity. S presents its minimum for a sphere (0.23) and increases rapidly with elongation.

The authors propose to use S as the shape criterion in the shape ltering scheme, and eliminate every component C with S > t. In this equation, t is a parameter of the algorithm which should be tuned for dierent applications.

Filament Enhancement Filter Comparison

Figure 5.5 shows the results obtained for the dierent lament enhancement lters on an image. Although it is dicult to evaluate quantitatively, it can be appreciated that the proposed technique based on Gabor lters obtains better results for this type of images.

Binarization and Skeletonization

The next step in the extraction process is the binarization of the ltered images. The threshold is automatically computed by decreasing Otsu's threshold [Otsu 1979] by a certain percentage (found empirically for our images). Otsu thresholding is based on nding the threshold that minimizes the weighted within-class variance. This is equivalent to maximizing the between-class variance. The method makes several assumptions, the most important being that the image presents a bimodal histogram (see Figure 5.6).

Afterwards, the binary image is skeletonized. The skeleton of a shape is a thin version of that shape that is equidistant to its boundaries. The skeleton is usually Chapter 6. An Elastic Shape Analysis Method for the Comparison and Classication of Trees .12: Diagram representing the iterative process set to calculate the mean of a population of three trees. Since the trees in the database have between one and two branches, we nd two means (one with one branch and one with two). Finally, we chose the optimum mean as the one presenting the minimum average distance to the trees in the database.

All the processes are repeated for each iteration until the average distance between the mean tree and the population remains unchanged. The process needs to be iterative, since the optimum matching between the mean tree and a particular tree of the population can change when the shapes and positions of the mean branches change.

We repeat this process for m = n min to m = n max . Thus, we nd n max -n min +1 mean trees. Finally, we dene the total mean of the population as the one presenting the minimum average intra distance. The entire process is summarized for a basic example in Figure 6.12.

To illustrate how the dierent parameters can inuence the resulting mean shape, let us consider the set of three simple synthetic images presented in Figure 6.13. All images have the same main curve and both branches of T 3 are equal (but dierent to the branch in T 2 ). The rst branch of T 2 and T 3 are placed on the same point of the main curve. Chapter 6. An Elastic Shape Analysis Method for the Comparison and Classication of Trees 

Validation

For the validation, we have considered the two databases presented in Chapter 3.

The rst set of reconstructions was taken from the NeuroMorpho.Org database [Ascoli 2007]. We have considered four dierent populations of neurons from the central and peripheral nervous system, and from dierent animals: granule cell (Mouse, Hippocampus) [START_REF] Walter | [END_REF]], type I (Agouti, Neocortex) [START_REF] Santiago | S1 to S2 hind and forelimb projections in the agouti somatosensory cortex: axon fragments morphological analysis[END_REF]],

uniglomerular projection neuron (Drosophila, Olfactory bulb) [Jeeris 2007] and motoneuron (Mouse, Peripheral nervous system) [Lu 2009b]. In total, we have considered 131 images (10 granule cell, 41 type I and 40 for each of the remaining two populations) (see Figure 6.14).

The second set consists on the IBV database. We have considered the full database composed of 61 images (20 normal, 24 type 1 mutant and 17 type 2 mutant). Although we could have obtained the reconstruction by segmenting the IBV images with the axon extraction method presented in Chapter 5, small segmentation errors could alter the results of the methods presented in this Chapter. Thus, we have decided to use the biologist's manual reconstructions instead.

We compare our results to these obtained by TED and Path2Path. In addition, we compare our method to an alternative classication scheme. We propose to start by calculating several features that are taken into account in our ESA distance. In total, eight features were used: length of the main axon, number and total length of branches and sub branches, distance (using Equation (6.6) ) between the main axon and a straight line, the mean and standard deviation of the angles between the branches and their respective mother branches. We then apply PCA and only retain the principal components that account for 90% of the variance. Finally, the feature based classication is performed using the K-means algorithm.

The parameters were kept constant for both sets of experiments (see Sections 6.6.1 and 6.6.2), and were chosen manually (found by direct experimentation) to obtain the best overall accuracy in the classication. For the ESA method, the values are summarized in Table 6.2. For Path2Path, λ was set to 85. For TED, the costs of all the operations were set to 1.

Results: Neuromorpho Database

We have compared the performance of the three distances: RTED (an ecient solution for the tree edit distance problem) [START_REF] Pawlik | [END_REF]], Path2Path and ESA with respect to a feature based classication scheme. We have embedded the three distances in the K-means algorithm to classify the populations (see Table 6.6). Since both TED and Path2Path are unable to compute the mean of a given population, we had to modify the classication algorithm. We start with three centroids randomly chosen among the total set of samples. We assign each sample to the cluster whose centroid is closest to it. Finally, we calculate the new centroid of each cluster to be the observation that has the minimum total intra distance (instead of calculating the cluster mean as in K-means). This algorithm allows us to quantify the relevance of the distances by blindly clustering the whole population into four relevant classes.

The sensitivity and overall accuracy were used as performance measures in the Let us consider a set of axonal trees A (where A could be equal to 1), Denote by l a , a ∈ A the length (i.e., number of pixels) of the main branch of axon a. We then have:

where b (a) is the number of branches in a. Moreover, the mean and variance of the probability distribution that determines the length of a path is equal to µ and σ 2 . Therefore, we have the following estimators:

For the remaining parameters, we assume that ∆ is constant. As we will see in section 7.4, ∆ can be approximated as being constant over subsets of L. Notice also that if we consider several axons, they all need to be registered in the same space.

There remains seven parameters. For each conguration of the past (i.e, n t-1 , n t-2 )) we obtain three or four equations depending on which case we are on Chapter 7. A Markov Chain Model for the Generation of Axonal Trees 

Main contributions

In this Ph.D thesis we proposed a set of tools for the morphological analysis of axonal trees that covers the entire analysis process. All of the proposed techniques were evaluated on a large database of images of intact adult Drosophila y brains.

We have considered both normal and mutated neurons. The mutant neurons were obtained by inactivating certain genes related to neurological diseases in humans.

We started by proposing an automatic segmentation algorithm for confocal microscopy images. The segmentation of the images is the rst step necessary to perform the analysis of the neurons. We have compared the performance of our method against two others. Results show that we are able to outperform the other segmentation algorithms is most cases.

Then, we presented a tree comparison method that considers both geometrical and topological properties. The method is an extension of the Elastic Shape Analysis

Framework, which was originally developed for simple curves in the Euclidean space.

In addition, we proposed a method for the computation of the mean shape of a population of trees. The average shape of a population provides biologists with a synthesized view of the morphological characteristics of a population. We used our approach to compare and classify dierent populations of axons, and validated it 

A.2 Organisation de la Thèse

A.2.1 Contributions Principales

Dans cette thèse, nous décrivons quatre contributions principales:

• Un algorithme de segmentation d'images axonales en microscopie confocal.

La méthode combine diérents algorithmes pour rehausser les laments, binariser, squeletiser et boucher les trous a n d'extraire les axones des images.

• Une nouvelle distance pour comparer des arbres fondeée sur la théorie des formes élastiques. La distance considère l'information topologique et géométrique de l'arbre.

• Un algorithme pour le calcul de la forme moyenne d'une population d'arbres à partir de la distance dénie.

• Un modèle stochastique discret de la formation d'arbre axonal. Ce modèle est déni par une chaîne de Markov d'ordre trois qui incorpore plusieurs processus biologiques. En particulier, un champ chimique d'attraction qui inuence les cônes de croissance est considèré.

A.2.2 Organisation du Manuscrit

Ce manuscrit est organisé selon les publications sur lesquelles il est basé.

Le chapitre 2 présente les motivations de cette thèse et décrit les processus biologiques impliqués dans la morphologie axonale. Images . Neural Computation, vol. 20, pages 18991927, 2008. (Cited on pages 41, 43 and 60.)