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ANALYSE ASYMPTOTIQUE EN ÉLECTROPHYSIOLOGIE CARDIAQUE. APPLICATIONS À LA
MODÉLISATION ET À L’ASSIMILATION DE DONNÉES.

Resumé :

Cette thèse est dédiée au développement d’outils mathématiques innovants qui ont pour
but d’améliorer la modélisation de l’électrophysiologie cardiaque.

Une présentation approfondie du modèle bidomaine – un système d’équations de
réaction-diffusion – à domaine fixé est proposée en s’appuyant sur la littérature. De plus,
nous donnons une justification mathématique du processus d’homogénéisation à l’aide la
convergence «2-scale». Une étude de l’impact des déformations mécaniques dans les lois de
conservation à l’aide de la théorie des mélanges est ensuite faite.

Comme les techniques d’imagerie actuelles ne fournissent globalement que des surfaces
pour les oreillettes cardiaques dont l’épaisseur est très faible, une réduction dimensionnelle
du modèle bidomaine dans une couche mince à une formulation posée sur la surface associée
est étudiée. L’enjeu est aussi crucial en termes d’efficacité de calcul. À l’aide de techniques
développées pour les modèles de coques, une analyse asymptotique des termes de diffusion
est faite sous des hypothèses de gradient d’anisotropie fort à travers l’épaisseur, situation
rencontrée dans les oreillettes. Des simulations 2D-3D illustrent les résultats. Puis, une mo-
délisation complète du cœur – avec le modèle asymptotique pour les oreillettes et le modèle
volumique pour les ventricules – permet la simulation de cycles complets d’électrocardio-
gramme. De plus, les méthodes développées dans l’analyse asymptotique sont utilisées pour
obtenir des résultats de convergence forte pour les modèles de coque-3D.

Enfin, dans la perspective de «personnaliser» les modèles, une méthode d’estimation des
modèles d’électrophysiologie est proposée. Les données médicales intégrées dans notre mo-
dèle – au moyen d’un filtre d’état de type Luenberger spécialement conçu – sont les cartes
d’activation électrique. Ces problématiques apparaissent dans d’autres domaines où les mo-
dèles (de réaction-diffusion) et les données (position du front) sont très similaires, comme
la propagation de feux ou la croissance tumorale.

Mots-clés : Analyse asymptotique ; Couches minces ; Modélisation ; Assimilation de don-
nées ; Électrophysiologie cardiaque





ASYMPTOTIC ANALYSIS IN CARDIAC ELECTROPHYSIOLOGY. APPLICATIONS IN
MODELING AND IN DATA ASSIMILATION.

Abstract:

This thesis aims at developing innovative mathematical tools to improve cardiac electro-
physiological modeling.

A detailed presentation of the bidomain model – a system of reaction-diffusion equa-
tions – with a fixed domain is given based on the literature. Furthermore, we mathematically
justify the homogenization process using the 2-scale convergence. Then, a study of the im-
pact of the mechanical deformations in the conservation laws is performed using the mixture
theory.

As the atria walls are very thin and generally appear as thick surfaces in medical imaging,
a dimensional reduction of the bidomain model in a thin domain to a surface-based formu-
lation is studied. The challenge is also crucial in terms of computational efficiency. Following
similar strategies used in shell mechanical modeling, an asymptotic analysis of the diffusion
terms is done with assumptions of strong anisotropy through the thickness, as observed in
the atria. Simulations in 2D and 3D illustrate these results. Then, a complete modeling of
the heart – with the asymptotic model for the atria and the volume model for the ventricles –
allow the simulation of full electrocardiogram cycles. Furthermore, the methods developed
in the asymptotic analysis are used to obtain strong convergence results for the 3D-shell
models.

Finally, a specific data assimilation method is proposed in order to «personalize» the elec-
trophysiological models. The medical data assimilated in the model – using a Luenberger-like
state filter specially designed – are the maps of electrical activation. The proposed methods
can be used in other application fields where models (reaction-diffusion) and data (front
position) are very similar, as for fire propagation or tumor growth.

Keywords: Asymptotic analysis; Thin domains; Modeling; Data assimilation; Cardiac elec-
trophysiology
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Introduction

Cette thèse s’inscrit dans un vaste et ambitieux projet de modélisation du cœur humain
entrepris par les équipes M⌅DISIM (anciennement MACS) et REO chez Inria depuis une
dizaine d’années environ. Ma thèse s’est effectuée sous la direction de Dominique Chapelle,
M⌅DISIM et Jean-Frédéric Gerbeau, REO. La dernière année, j’ai aussi été encadrée par
Philippe Moireau, M⌅DISIM. Ma thèse a été financée par Inria sur une bourse CORDI-S.

Contexte de la thèse

L’objectif de cette thèse est de développer des outils mathématiques performants afin
d’améliorer la modélisation des phénomènes électriques ayant lieu dans le cœur humain.
Ainsi, cette thèse mélange plusieurs disciplines et communautés scientifiques que sont la
médecine, la biologie et les mathématiques. La médecine est devenue un champ d’applica-
tion très présent dans le domaine des mathématiques appliquées. De nombreuses simula-
tions de systèmes biologiques variés sont aujourd’hui proposées aux médecins avec l’idée
que ces simulations – adaptées le plus possible à chaque patient – aident les médecins dans
leur diagnostic ainsi que dans leur stratégie thérapeutique. L’objectif n’est pas de remplacer
les médecins mais de mettre à leur disposition de nouveaux outils innovants qui puissent
les aider à planifier une opération, à conseiller ainsi qu’à optimiser les traitements et aussi
bien sûr à établir un diagnostic rapidement et de façon non invasive de préférence. Trou-
ver des modèles mathématiques qui permettent une première compréhension de systèmes
– même très complexes – est la première étape vers cet objectif. En plus de leur intérêt des-
criptif, ces modèles – et les méthodes mathématiques développées autour d’eux – peuvent
être utilisés dans des situations médicales très diverses. Depuis longtemps, par exemple, ils
permettent d’anticiper des événements médicaux. En effet, en épidémiologie des maladies
transmissibles, ils peuvent prévoir une épidémie ainsi que sa période d’incubation, comme
celle de l’infection par le VIH [3]. Par la suite, ils ont aussi été utilisés dans la modélisation de
situations cliniques variées, comme par exemple la prédiction de la rupture d’un anévrisme
cérébral [60] ou le taux de survie après un cancer [59].

Dans cette thèse nous nous sommes intéressés à la modélisation de l’électrophysiologie
cardiaque qui étudie les phénomènes électrochimiques qui se produisent dans le tissu car-
diaque. Il y a un réel enjeu économique et sociétal autour des maladies cardio-vasculaires
(MCV) qui sont une des principales causes de mortalité en Europe [52], étant à l’origine de
47% des décès en Europe (40% dans l’Union Européenne). Les MCV ont aussi un coût écono-
mique majeur estimé à près de 196 milliards d’euros par an dans l’Union Européenne. Dans
la plupart des pays européens, les chiffres s’améliorent. Cependant, certains facteurs favori-
sant ces maladies continuent d’augmenter, comme par exemple le tabagisme, les mauvaises
habitudes alimentaires ou encore le manque d’activité physique. Ces facteurs sont communs
à d’autres pays développés ou en voie de développement qui connaissent donc les mêmes
problématiques [25, 41]. Un nombre important de phénomènes physiques complexes a lieu
dans le cœur, ce qui est en fait un véritable trésor pour la modélisation. Cet organe a pour
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rôle d’assurer la circulation du sang en le pompant par des contractions rythmées. Une onde
électrique, mesurée par les cardiologues à l’aide d’un électrocardiogramme, est à l’origine de
chacun de ses battements. Les cellules cardiaques qui sont impactées par cette onde de dépo-
larisation répondent en se contractant. L’analyse mathématique des phénomènes biologiques
qui ont lieu dans le cœur couplent alors trois domaines d’étude : l’électrophysiologie, la mé-
canique tissulaire ainsi que la mécanique des fluides. Afin d’obtenir une simulation complète
du cœur, une étude approfondie de ces 3 phénomènes est nécessaire ainsi qu’une étude de
leur impact les uns sur les autres. La littérature à ce sujet est abondante. Nous pouvons citer
par exemple les travaux pionniers de Peskin [56] en 1977 et plus récemment Watanabe et
al. [68] sur la modélisation de l’écoulement du sang dans le cœur avec un couplage fluide-
structure. Des méthodes complexes d’interaction fluide-structure pour l’écoulement sanguin
en général ont été développées comme par exemple dans [22] où un couplage de l’équation
de Navier-Stokes incompressible sur la partie fluide avec des équations mécaniques régis-
sant la dynamique de la structure est proposé. En ce qui concerne la mécanique cardiaque,
nous pouvons citer les travaux de [32] (côté mécanique du solide) et [57] (côté fluide) à
qui nous devons les premières contributions majeures. Plus récemment, un modèle électro-
mécanique du cœur a été proposé par [64]. Dans cette étude, la loi de comportement du
matériau est décomposée en une partie passive (propriétés visco-élastiques du myocarde) et
une partie active (réactive à l’activation électrique). Des premiers modèles cellulaires appa-
raissent dès le début des années 50 avec les travaux de Hodgkin et Huxley [30, 31] (prix
Nobel de médecine en 1963) qui proposent la première modélisation du potentiel d’action
pour l’axone géant. Ces travaux seront ensuite appliqués en électrophysiologie cardiaque
par Noble [53] et de nombreux modèles de plus en plus complexes suivront. Nous pouvons
citer entre autres le modèle Luo-Rudy [44] adapté aux ventricules, les deux chambres in-
férieures du cœur et le modèle Courtemanche-Ramirez-Nattel [18] pour les oreillettes, les
deux chambres supérieures du cœur. Se couplant à ces modèles de l’échelle cellulaire re-
présentés par des équations différentielles ordinaires (EDOs), des modèles de propagation
du signal dans le tissu se sont développés. Ces équations aux dérivées partielles (EDPs) qui
modélisent la propagation de l’onde électrique sont basées sur des modèles de réaction dif-
fusion comme le très classique modèle bidomaine proposé par Tung en 1978 [65]. Une fois
ces modèles bien établis, la communauté mathématique de l’analyse numérique s’est inté-
ressée de près à ces modèles d’électrophysiologie. On peut citer par exemple les travaux
précurseurs de Colli-Franzone à partir de 1979 [15, 14] ainsi que ceux de Panfilov et Winfree
[55] en 1985. Comme on pourra le constater dans la suite, la littérature autour des études
d’existence, d’unicité ainsi que sur le développement de schémas numériques adaptés est
abondante. Comme de nombreuses pathologies cardio-vasculaires sont dues à des troubles
électro-physiologiques qui perturbent le rythme cardiaque, l’étude de cette dernière est un
véritable enjeu. De nombreux progrès ont été faits que ce soit au niveau de la modélisation et
de l’étude mathématique et numérique des EDOs et des EDPs qui apparaissent. Cependant,
nous ne sommes pas encore en mesure de produire des simulations – dans un temps rai-
sonnable et adaptées à chaque patient – pouvant aider les médecins par exemple dans leur
diagnostic ainsi qu’à prédire les effets d’un traitement. Cette thèse apporte des contributions
sur ce sujet et permet de se rapprocher de cet objectif.
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Objectifs de la thèse et enjeux théoriques

De nombreuses questions se posent encore en modélisation sur la nature et l’impact des
divers mécanismes de couplage entre phénomènes mécaniques et électriques. Nous nous
sommes intéressés ici au modèle bidomaine, un modèle très connu et très utilisé par la com-
munauté. L’étude de l’impact des déformations du cœur par exemple sur la convection des
charges ioniques demande une excellente compréhension de ce modèle. La compréhension
des hypothèses qui sont utilisées pour l’établir sur un domaine supposé fixe est primordiale
afin de vérifier si elles sont toujours acceptables en domaine mobile. C’est une des contribu-
tions de cette thèse qui peut se résumer par :

Étudier l’impact des déformations mécaniques sur les lois de conservation du modèle
bidomaine.

La réduction dimensionnelle d’un modèle décrit par des EDPs dans une couche mince
à une formulation posée sur la surface associée présente des enjeux importants en termes
d’efficacité de calcul et prend un éclairage particulier dans les applications cliniques, avec
par exemple la perspective de réaliser des simulations au cours d’une intervention afin de
guider celle-ci (comme l’ablation par radio-fréquences en cardiologie). Dans ce contexte,
nous souhaitons proposer un modèle surfacique d’électrophysiologie – sous des hypothèses
de gradient d’anisotropie fort à travers l’épaisseur du domaine mince considéré – à l’aide
d’une analyse asymptotique. Cette situation de forte anisotropie dans l’épaisseur malgré des
parois très fines se rencontre dans les oreillettes, les deux chambres supérieures du cœur. Il
s’agit de la principale contribution de cette thèse :

Établir un modèle réduit du modèle bidomaine mathématiquement justifié par une
analyse asymptotique et permettant de prendre en compte des fortes anisotropies

dans l’épaisseur.

Enfin, une personnalisation des modèles d’électrophysiologie sera proposée. Les nom-
breuses données médicales non-invasives qui sont à notre disposition peuvent être utilisées
afin de produire des simulations prédictives d’un patient donné et/ou de retrouver les pa-
ramètres d’un modèle. Les données que nous souhaiterons intégrer dans notre modèle – à
l’aide de méthodes séquentielles développées initialement par Kalman (filtre optimal) [35]
et Luenberger [43] – sont les cartes d’activation électrique. Ces problématiques apparaissent
aussi dans d’autres domaines où les modèles (modèles de réaction-diffusion) et les données
(position du front) sont très similaires. On peut citer par exemple l’étude de propagation de
feux de forêt ou de croissance tumorale. Cette dernière contribution peut se résumer par :

Proposer un estimateur d’état d’un modèle de réaction-diffusion assimilant des
observations de type propagation de front.

Tous ces objectifs sont l’occasion d’utiliser de nombreux outils mathématiques perfor-
mants dont le rôle est de justifier par une analyse mathématique les résultats. Un outil
revient très régulièrement dans cette thèse et sert de fil conducteur à celle-ci. Il s’agit de
l’analyse asymptotique. Elle peut être vue comme un outil de modélisation mathématique
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car elle permet de déduire des modèles plus simples à partir d’autres et de hiérarchiser les
modèles décrivant un phénomène donné. L’analyse asymptotique joue aussi un rôle fonda-
mental dans la réduction du temps de calcul permettant d’utiliser des modèles qui n’ont pas
des temps de simulation prohibitifs mais qui sont justifiés dans un certain cadre à l’aide de
théorèmes de convergence. L’analyse asymptotique est aussi utilisée ici dans le cadre des
problèmes inverses.

Analyse asymptotique

Modélisation

Pour modéliser le signal électrique se propageant dans le cœur, on utilise classiquement
le modèle bidomaine [65, 58], un système d’équations de réaction diffusion couplé à un
modèle ionique cellulaire modélisé par une ou plusieurs équations différentielles. Si nous
considérons le modèle ionique de Mitchell-Schaeffer [46], un modèle phénoménologique très
apprécié pour sa performance et surtout sa simplicité, le modèle bidomaine s’écrit :
8
>>>>>>>>>>>><

>>>>>>>>>>>>:
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⇣
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@Vm

@t
+ Iion(Vm, w)

⌘
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(~~�e · ~rue) · ~n@⌦ = 0, sur @⌦ ⇥ (0, T ),
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(1)
où

Iion(Vm, w) = �w(Vm � Vmin)2(Vmax � Vm)

⌧in(Vmax � Vmin)
+

Vm � Vmin

⌧out(Vmax � Vmin)
, (2)

g(Vm, w) =

8
>><

>>:

w

⌧open
� 1

⌧open(Vmax � Vmin)2
if Vm < Vgate,

w

⌧close
if Vm � Vgate,

(3)

Tous les paramètres seront présentés dans la suite mais on peut rapidement donner quelques
éléments pour la lecture de ces équations. Les deux inconnues sont le potentiel extra-
cellulaire ue et le potentiel transmembranaire Vm = ui � ue où ui est le potentiel intra-
cellulaire. Nous pouvons remarquer qu’il s’agit d’un système réaction-diffusion couplé avec
une ODE qui représente le modèle ionique choisi, ici le modèle de Mitchell-Schaeffer. Ce mo-
dèle ne prend pas en compte les déformations mécaniques du cœur. Pour pouvoir intégrer
l’impact de ces déformations, il faut avoir une vision très précise de la mise en équation du
modèle bidomaine afin de comprendre ce qui doit être adapté.

Nous proposons donc dans cette thèse une étude détaillée des différents phénomènes qui
mènent aux équations bidomaines. Utilisant la littérature abondante sur ce sujet, nous avons
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regroupé l’ensemble des étapes et apporté une justification mathématique à certaines par-
ties. Tout d’abord un modèle microscopique de l’activité électrique peut être écrit [40, 49]
à l’aide des lois de conservation et de l’équation de Nernst-Planck. À l’aide d’une analyse
asymptotique présentée dans [48, 62], une hypothèse d’électroneutralité est validée. Un mo-
dèle bidomaine microscopique couplant les phénomènes intra-cellulaires et extra-cellulaires
– d’où l’origine du nom «bidomaine» – est alors écrit. Pour obtenir le modèle bidomaine,
une homogénéisation est nécessaire et a été initialement présentée dans [51]. La méthode
pour obtenir la convergence n’est pas explicitée mais dans l’appendice de [16], une justifi-
cation formelle est donnée. Cependant des hypothèses sur la cellule semblent nécessaires et
la convergence du terme surfacique n’est pas explicitée. Nous proposons ici une étape sup-
plémentaire vers la justification mathématique complète de l’homogénéisation, un processus
asymptotique, en utilisant la convergence à 2 échelles proposée par [1, 6], et qui permet
d’arriver à un modèle bidomaine macroscopique. En particulier le passage du terme surfa-
cique écrit sur la membrane du domaine à un terme volumique sur tout le cœur est étudié
dans un cas régulier. Une homogénéisation sur un cas d’étude proche a été proposée très
récemment dans [2].

Dans un second temps, les questions qui se posent en modélisation à propos de l’im-
pact des déformations mécaniques sur les phénomènes électriques ainsi qu’électrochimiques
ayant lieu dans la cellule sont étudiées. L’influence des déformations sur la propagation
de l’onde électrique dans le tissu cardiaque – connue dans la littérature sous le nom de
«mechano-electrical feedback» [50, 37] – est aujourd’hui acceptée. Cependant, à notre
connaissance, les modèles proposés dans la littérature modifient uniquement les lois de com-
portement. Nous prenons en compte dans ce travail les phénomènes mécaniques directement
dans les lois de conservation. Afin d’éviter l’étape d’homogénéisation, précédemment évo-
quée, la théorie des mélanges, dans laquelle on suppose qu’à tout instant toutes les phases
sont présentes à chaque point matériel, est utilisée. Cette théorie des mélanges – où le milieu
considéré n’a pas besoin d’avoir de structure cellulaire – est comparée avec le processus d’ho-
mogénéisation. Des lois de comportement viennent fermer le système. Nous nous sommes
attachés dans ce travail à mettre en évidence les phénomènes prépondérants. Le modèle que
nous proposons s’écrit sous forme variationnelle : 8~v⇤

1
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,
8
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(4)
De nouveaux termes apparaissent, comme par exemple les termes prenant en compte la
vitesse du solide ~vs, et les équations sont écrites sur des domaines mobiles. Une discussion
sur ce nouveau modèle et des simulations numériques dans le cas où le cœur est considéré
comme incompressible sont proposées. Ce travail sera la seule partie dans cette thèse où
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les phénomènes mécaniques seront pris en compte. Dans le reste, le tissu cardiaque sera
considéré comme un tissu non contractile isolé mécaniquement et électriquement du reste
du corps. Bien que ces hypothèses de modélisation puissent paraître restrictives, elles sont
justifiées dans un certain cadre. Ces travaux seront présentés dans le Chapitre 2.

Modèles asymptotiques

Origine du problème de l’utilisation d’un modèle 3D en électrophysiologie atriale Une
grande partie de cette thèse a pour but d’établir un modèle d’électrophysiologie réduit ob-
tenu par une analyse asymptotique, de le valider et de l’utiliser dans des cas réalistes. Les
oreillettes qui forment la partie haute du cœur sont très fines. De plus, elles apparaissent
comme des surfaces dans la plupart des données d’imagerie médicales. Même dans le cas
où un maillage 3D des oreillettes est accessible, les temps de calcul d’un modèle bidomaine
sur ce domaine mince sont prohibitifs. Le contexte asymptotique – permettant de proposer
un modèle dont les équations sont posées sur la surface moyenne – semble alors tout à fait
adapté. La principale difficulté réside dans la forte anisotropie présente à travers l’épaisseur
des oreillettes. Afin de prendre en compte – dans les équations du modèle bidomaine (1) – les
directions privilégiées que sont les fibres musculaires pour le signal électrique, les tenseurs
de diffusion ~~�i,e sont décomposés comme suit

~~�i,e = �ti,e
~~I + (�li,e � �ti,e)~⌧ ⌦ ~⌧, (5)

où le vecteur unitaire ~⌧ est parallèle à la direction locale de la fibre. La propagation du signal
se fait donc pour une partie de façon homogène et pour une autre en suivant les directions
des fibres musculaires qui composent le coeur. Dans les oreillettes, les directions des fibres
ne restent pas constantes dans l’épaisseur. Dans la littérature, les directions principales des
fibres à l’endocarde (surface interne) ainsi qu’à l’épicarde (surface externe) sont données
[29, 28]. Les changements d’orientation des fibres dans les parois des oreillettes sont mal
connus et nous avons fait le choix d’une modélisation par une variation linéaire des fibres
dans l’épaisseur. Une autre hypothèse de modélisation peut être faite comme par exemple
les modèles double-couche proposés par [33, 66, 39] qui semblent bien adaptés aux zones
proches des veines pulmonaires. Notre analyse asymptotique peut s’adapter à une autre hy-
pothèse. Dans notre cas où les fibres sont supposées varier linéairement dans l’épaisseur, un
vecteur ~⌧ de l’épaisseur se décompose sous la forme suivante :

~⌧(⇠1, ⇠2, ⇠3) = ⌧
0

(⇠1, ⇠2) cos

Ç
2✓(⇠1, ⇠2)⇠3

d

å
+ ⌧?

0

(⇠1, ⇠2) sin

Ç
2✓(⇠1, ⇠2)⇠3

d

å
, (6)

où ⌧
0

et ⌧?
0

sont des vecteurs unitaires tels que

• ⌧
0

appartient au plan tangent de la surface en chaque point

• ⌧?
0

est un vecteur unitaire orthogonal à ⌧
0

qui appartient au plan tangent,

et 2✓ correspond à l’angle total de rotation. La Figure 1 illustre cette variation des fibres dans
l’épaisseur des oreillettes.
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FIGURE 1: Rotations des fibres à travers l’épaisseur

Convergences faible et forte du modèle de diffusion Comme la difficulté réside dans
l’anisotropie des tenseurs de diffusion, l’analyse asymptotique a été effectuée seulement sur
le modèle de diffusion. Les préliminaires géométriques qui permettent de considérer un nou-
veau système de coordonnées dans laquelle l’épaisseur correspond à la troisième variable
notée ⇠3 sont donnés. Nous avons suivi les stratégies utilisées en modélisation mécanique
des coques [12, 9]. Nous considérons alors une décomposition de Galerkin du modèle de
diffusion posé sur un sous-espace formé par des variations polynomiales – quadratiques dans
notre cas – dans la variable correspondant à l’épaisseur de la grandeur qui nous intéresse.
Nous définissons " comme le ratio entre l’épaisseur et le diamètre de la surface moyenne.
Pour chaque ", une unique solution au problème posé dans le sous-espace existe et on la
note u" = u"

0

+ ⇠3u"
1

+ (⇠3)2u"
2

. En ne gardant que les premiers termes du développement
asymptotique, nous trouvons un problème limite

�tr · (rul
0

) + (�l � �t) r ·
⇣Ä

I
0

(✓) ⌧
0

⌦ ⌧
0

+ J
0

(✓) ⌧?
0

⌦ ⌧?
0

ä
·rul

0

⌘
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0
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avec I
0

(✓) =
1

2
+

1

4✓
sin(2✓) et J

0

(✓) =
1

2
� 1

4✓
sin(2✓) = 1 � I

0

(✓). Ce problème admet une

unique solution que nous notons ul
0

. La convergence faible ainsi que la convergence forte ont
été prouvées en deux étapes différentes qui sont résumées dans le théorème suivant dont la
preuve est donnée dans le Chapitre 3.

Proposition 1. Les suites (u"
0

, u"
1

) convergent fortement vers (ul
0

, 0) dans H1(S) quand " tend
vers 0. Les suites "u"

1

et "2u"
2

convergent fortement vers 0 dans H1(S) quand " tend vers 0. De
plus "u"

2

converge fortement vers 0 dans L2(S) quand " tend vers 0.

Application pour la convergence forte dans les modèles de coques-3D La preuve de la
Proposition 1 se fait en 2 temps. La démonstration d’une version faible s’inspire fortement
de ce qui est fait dans [12, 9] sur des modèles dits de coques-3D. Cependant, pour montrer
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la convergence forte, de nouvelles méthodes sont introduites. Nous les avons ensuite appli-
quées sur les modèles de coques-3D dont la convergence forte n’avait pas encore été établie.
Dans ce même travail, nous proposons aussi une preuve simplifiée de la convergence faible
pour les modèles de coques. Les preuves sont données dans le Chapitre 4. La formulation
variationnelle des modèles de coques s’écrit : chercher ~U 2 V3D

m tel que

A3D(~U, ~V ) = F 3D(~V ), 8~V 2 V3D. (8)

Les définitions de A3D et F 3D seront données dans la suite. Nous utilisons les mêmes décom-
positions de Galerkin, c’est-à-dire des variations polynomiales quadratiques, et le problème
dans le nouvel espace devient : trouver (~u", ~✓ ", ~% ") 2 V3Ds tel que

A3Ds(~u", ~✓ ", ~% ";~v, ~⌘,~& ) = F 3Ds(~v, ~⌘,~& ), 8(~v, ~⌘,~& ) 2 V3Ds. (9)

Nous isolons les deux premiers termes du développement asymptotique avec lesquels nous
définissons les deux formes linéaires suivantes

A3Ds
m et A3Ds

b .

La première est de degré 1 dans l’épaisseur et la deuxième de degré 3. Les termes pairs
s’annulent lors de l’intégration. Contrairement au cas du modèle de diffusion, la semi-norme
k · km construite à partir du premier terme A3Ds

m n’est pas nécessairement une norme, c’est-
à-dire que des éléments non nuls peuvent l’annuler. Le cas où k · km n’est pas une norme
correspond à de la «flexion pure non-inhibée». Un espace V3Ds

0b complet pour la norme k · kb
(construite à partir de A3Ds

b ), dans lequel les éléments qui annulent la semi-norme k · km
sont contenus, est construit. Avec des hypothèses de modélisation sur le terme source, le
problème limite dans le cas non-inhibé est défini par : trouver ~u0, ~✓ 0, ~% 0 2 V3Ds

0b ,

A3Ds
b (~u0, ~✓ 0, ~% 0;~v, ~⌘,~& ) = G3Ds(~v ), 8(~v, ~⌘,~& ) 2 V3Ds

0b , (10)

où G3Ds = "2F 3Ds. La preuve du théorème de convergence forte qui suit est donnée dans
cette thèse.

Proposition 2. La solution (~u", ~✓ ", ~% ") du problème (9) converge fortement vers (~u0, ~✓ 0, ~% 0)
solution de (10) quand " tend vers 0. De plus, la suite 1

"k~u", ~✓ "km tend vers 0.

Le second cas correspond à une situation de «flexion pure inhibée» et avec G3Ds = F 3Ds

le problème limite devient

A3Ds
m (~um, ~✓m;~v, ~⌘ ) = G3Ds(~v ), 8(~v, ~⌘ ) 2 V3Ds

m . (11)

Sous certaines hypothèses, le résultat suivant a été démontré

Proposition 3. La suite
Ä
~u", ~✓ "

ä
converge fortement quand " tend vers 0 vers (~um, ~✓m) la

solution de (11). De plus, la suite "k~u", ~✓ ", ~% "kb tend vers 0.
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Modèle asymptotique bidomaine Nous revenons à présent à l’électrophysiologie car-
diaque. Utilisant la Proposition 1, nous sommes en mesure de proposer un modèle bidomaine
asymptotique dont les équations sont posées sur la surface moyenne du domaine d’étude.
Sous forme variationnelle, ce modèle s’écrit : pour tout t > 0, on cherche Vm(·, t) 2 H1(S),
ue(·, t) 2 H1(S) et w(·, t) 2 L1(S) tels que

R
S ue dS = 0 vérifiant
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pour tout �, 2 H1(S) tels que
R
S  dS = 0. Les tenseurs surfaciques sont définis par

� i,e = �ti,e I + (�li,e � �ti,e)(I0(✓)⌧0 ⌦ ⌧
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2
� 1

4✓
sin(2✓).

Nous pouvons remarquer que le cas ✓ = 0 correspond à l’absence de variation des fibres
dans l’épaisseur est nulle, et toute la partie anisotrope des tenseurs surfaciques est alors
portée par ⌧

0

. Plus ✓ est important, plus la direction orthogonale à la direction moyenne
des fibres intervient. Des comparaisons de simulation par éléments finis entre ce modèle
bidomaine asymptotique et le modèle bidomaine classique sont réalisées dans des cas de
forte anisotropie dans l’épaisseur. Les résultats obtenus sont excellents, avec moins de 2%
d’erreur en norme l2. De plus, les temps de simulation sont très réduits avec le modèle
asymptotique (432 min. avec un modèle 3D pour 26 min. avec un modèle surfacique pour
1500 ms de simulation – i.e. 2 cycles cardiaques – avec 15,000 pas de temps). Ces résultats
sont aussi présentés dans le Chapitre 4.

Afin de valider ce modèle surfacique, nous avons proposé des simulations réalistes d’élec-
trophysiologie atriale. À partir du Zygote1 – un modèle de cœur basé sur des données anato-
miques réelles – et en utilisant les logiciels de maillage 3-matic2 et Yams [24], un maillage
surfacique valide pour des calculs de type éléments finis des deux oreillettes a été obtenu. En
utilisant la littérature [29, 28], des directions de fibres réalistes ont été identifiées et pres-
crites. Nous avons ensuite implémenté le modèle ionique complexe car spécialement adapté
pour les oreillettes, développé par Courtemanche, Ramirez et Nattel [18], pour le coupler
au modèle bidomaine surfacique. La simulation obtenue est très réaliste et peut être réalisée
– grâce à ces temps de simulation raisonnables (3-4 minutes pour un cycle cardiaque) – dans
le cadre d’une consultation médicale par exemple. Ces résultats validés par des cardiologues
sont présentés dans le Chapitre 5. Ils sont comparés avec des simulations 3D trouvées dans
la littérature [20, 26, 38].

1
www.3dscience.com

2
www.materialise.com

www.3dscience.com
www.materialise.com
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Un électrocardiogramme est un examen médical non invasif qui donne une représen-
tation graphique de l’activité électrique du cœur en mesurant le potentiel par différentes
électrodes posées sur la surface du corps [67]. La simulation d’électrocardiogrammes est un
véritable enjeu puisque c’est l’outil médical le plus utilisé par les médecins pour la détection
de pathologies cardiaque. L’article [7] est le point de départ de ce travail. Des simulations
du complexe QRST d’un électrocardiogramme correspondant à la dépolarisation et à la re-
polarisation des ventricules sont données dans cet article. Notre objectif est d’obtenir des
simulations d’électrocardiogrammes complets c’est-à-dire qui prennent aussi en compte les
oreillettes. Nous avons pour cela proposé un modèle bidomaine couplé, avec une partie volu-
mique pour les ventricules et une partie asymptotique pour les oreillettes dans le Chapitre 6.
Ce modèle a été couplé avec deux modèles ioniques complexes. Sur la surface des oreillettes,
le modèle physiologique présenté par Courtemanche, Ramirez et Nattel [18] est utilisé. Dans
la partie ventriculaire, le «Minimal model for human Ventricular action potentials», un modèle
phénoménologique efficace, est appliqué (voir [8]) alors que pour les simulations de [7] le
modèle plus simple de Mitchell-Schaeffer [46] a été utilisé. Ces modèles complexes nous
permettent de proposer des électrocardiogrammes très réalistes dans des cas sains et pa-
thologiques. Ce travail a été effectué en collaboration avec E. Schenone (doctorante dans
l’équipe REO chez Inria).

Assimilation de données

Ces modèles complexes doivent alors être adaptés à chaque état physiologique afin de
produire des simulations prédictives d’un patient donné. Dans cette optique, on peut s’ap-
puyer naturellement sur les nombreuses données médicales disponibles, en particulier les
cartes d’activation électrique d’un patient, [61]. Ces cartes donnent la position des fronts de
dépolarisation à différents instants. Dans cette dernière partie, nous proposons d’assimiler
ces données médicales à l’aide d’un observateur [43], fondé sur un modèle bidomaine et
corrigeant sa dynamique en fonction des écarts aux mesures observées. Pour des questions
de simplicité – la théorie reste cependant valide pour le modèle bidomaine – mais aussi de
généralisation, nous considérons dans cette partie le modèle de réaction diffusion suivant

8
><

>:

@tu � ~r · (~~� · ~ru) = kf(u), B ⇥ (0, T ),

(~~� · ~ru) · ~n = 0, @B ⇥ (0, T ),
u(~x, 0) = u

0

(~x), B.

(13)

Il peut par exemple s’agir d’un modèle monodomaine, un cas simplifié du modèle bidomaine
avec u = Vm. Nous avons pris cette notation plus générale car ces travaux peuvent être utili-
sés dans d’autres domaines – comme par exemple les feux de forêt ou encore les propagations
de tumeur – où des modèles similaires sont utilisés [4, 23]. Des données de même type sont
disponibles – comme par exemple la position d’un feu de forêt à différents instants – et des
méthodes d’assimilation existent dans la littérature [45, 63] basées sur des filtres de type
Kalman non linéaires qui permettent de prédire la position du feu. L’idée ici est de proposer
un observateur de type Luenberger [43] afin de contrer le grand défaut des filtres de type
Kalman [35, 34, 21, 47] : des temps de simulations qui sont prohibitifs dès que la dimension
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de l’espace où ils sont appliqués est grande.

Les cartes d’activation sont des données de type ensembles de niveaux. Or des level sets
similaires apparaissent naturellement en traitement d’images, notamment dans la détection
d’objets (i.e. la segmentation) où l’on résout une équation dite eikonale caractérisant l’évo-
lution du contour de l’objet poursuivant celui qui est observé [69, 54]. Or par une analyse
asymptotique exploitant la «raideur» du front, le modèle bidomaine peut être lui-même relié
à une équation eikonale [36]. La méthode consiste à se placer dans un nouveau système
de coordonnées dans lequel la première direction ⇠

1

correspond à la direction normale au
front. À l’aide d’une analyse asymptotique dans les autres coordonnées, l’équation eikonale
de courbure est obtenue :

@t�u = |~r�u|
⇣
�~r ·

⇣ ~r�u

|~r�u|
⌘

+
p
�k c

0

⌘
, B ⇥ (0, T ), (14)

où �u est une ligne de niveau associée à u. Elle est définie telle que

�u > 0 si u > cth, �u < 0 si u < cth et �u = 0 si u = cth,

où cth est la valeur du potentiel à partir de laquelle une zone est considérée comme dépola-
risée.

Nous définissons donc notre observateur d’état du modèle bidomaine de telle sorte
qu’asymptotiquement il corresponde à un observateur de l’équation eikonale résultante,
s’inspirant alors des propriétés de suivi de contours obtenues en traitement d’images.
Nous utilisons des méthodes séquentielles d’assimilation de données, soit de type Kalman
[35, 34, 21, 47] – c’est-à-dire optimal au sens d’un certain critère [5] – ou soit de type Luen-
berger [42, 43]. On suppose alors que la solution cible vérifie le modèle considéré (13) mais
que la condition initiale u

0

= û
0

+⇣u est mal connue, c’est-à-dire que l’on a un a priori û
0

sur
celle-ci mais aussi une incertitude représentée par ⇣u. Cette solution n’est pas connue mais
des données obtenues grâce à des observations sont disponibles. Les données considérées ici
correspondent aux cartes d’activation qui nous donnent la position du contour correspon-
dant à la position du front. À partir du contour à chaque instant, un objet zu(t) est défini
avec une valeur à l’intérieur du contour et une autre à l’extérieur.

La méthode d’assimilation de données que nous utilisons consiste alors à modifier la
dynamique d’un nouveau système vérifié par l’observateur û tel que

û ! u.

La figure 2 expose dans un cas 2D la situation à un instant t. L’objet zu(t) défini à partir
de l’observation du front de la cible u à l’instant t est représenté en rouge. En bleu, il s’agit
de la position du front au même instant de la solution de l’observateur û. L’objectif est de
modifier le modèle vérifié par l’observateur afin que le contour bleu �û converge vers le
contour rouge.
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B

zu(t)
⌦in

û

�û

FIGURE 2: Observation et observateur à un instant t dans un cas 2D

Le modèle vérifié par l’observateur que nous proposons dans cette thèse est
8
>>>><

>>>>:

@tû � ~r · (~~� · ~r û) = kf(û)

+��̂(�û, ~x)↵(|~r û|)
⇣
�
Ä
zu � C

1

(⌦in
û )
ä
2

+
Ä
zu � C

2

(⌦in
û )
ä
2

⌘
, B ⇥ (0, T ),

(~~� · ~r û) · ~n = 0, @B ⇥ (0, T ),
û(~x, 0) = û

0

(~x), B,

(15)

avec ⌦in
û , un espace – évoluant en temps – qui correspond à la zone déjà dépolarisée de

l’observateur à chaque instant. Les fonctions C
1

et C
2

correspondent à la moyenne de l’objet
zu à l’intérieur et à l’extérieur de ⌦in

û :

C
1

(⌦in
û ) =

R
⌦

in
û

zud~x
R
⌦

in
û

d~x
et C

2

(⌦in
û ) =

R
B\⌦in

û
zud~x

R
B\⌦in

û
d~x

.

Ces quantités qui permettent de comparer les deux fronts sont issues de la théorie du traite-
ment d’images [69, 54].

Cet observateur est justifié mathématiquement. À l’aide de la théorie des dérivées de
forme [19, 27], le terme de gain de l’observateur est linéarisé et le théorème suivant est
alors montré.

Proposition 4. Si la raideur du front de l’objet zu est suffisamment élevée (la condition exacte
sera donnée)

��̂(�û, ~x)↵(|~r û|)
⇣
�
Ä
zu � C

1

(⌦in
û )
ä
2

+
Ä
zu � C

2

(⌦in
û )
ä
2

⌘

est un terme stabilisant pour le modèle de l’erreur définie par ũ = u � û.

Cet observateur d’état se couple naturellement avec un observateur paramétrique afin
d’identifier par exemple la vitesse du front électrique à partir des cartes d’activation en uti-
lisant l’estimation conjointe état-paramètre proposé par Chapelle, Moireau et Le Tallec dans



Introduction 13

[13]. Pour l’estimation de paramètres, nous utilisons le filtre de Kalman RoUKF (Reduced-
order Unscented Kalman Filtering) [47]. Des résultats sur données synthétiques réalistes
montrent tout le potentiel de cette approche et nous rapprochent de la personnalisation de
modèles d’électrophysiologie adaptés à des patients. Ce travail sera présenté dans le Cha-
pitre 8.

Organisation de la thèse

Organisation de la thèse

La thèse est décomposée en 4 parties qui contiennent chacune 2 chapitres.

Partie I (Chapitres 1 et 2) - Modélisation cardiaque Le Chapitre 1 donne une brève pré-
sentation du rôle du cœur et de son fonctionnement. L’objectif est de présenter – ainsi que
d’illustrer – en quelques pages toutes les notions physiologiques qui sont nécessaires pour la
lecture de cette thèse.
Le Chapitre 2 présente les modèles disponibles en électrophysiologie. Une analyse très dé-
taillée du modèle bidomaine est donnée en s’appuyant sur la littérature. De plus, nous pro-
posons une justification mathématique du processus d’homogénéisation qui mène au modèle
bidomaine. Dans ce deuxième chapitre, nous avons étudié l’influence des phénomènes méca-
niques directement dans les lois de conservation du modèle bidomaine à l’aide de la théorie
des mélanges alors que la littérature l’étudie uniquement à travers les lois de comportement.

Partie II (Chapitres 3 et 4) - Modèles 3D et surfaciques Le Chapitre 3 prend la forme
d’un article [11] publié dans M3AS avec D. Chapelle et J.-F. Gerbeau et a pour titre :

A surface-based electrophysiology model relying on asymptotic analysis and motivated by
cardiac atria modeling.

Ce chapitre propose – à l’aide d’une analyse asymptotique détaillée – et valide – avec des
comparaisons de simulations 2D et 3D – le modèle bidomaine asymptotique (12). En parti-
culier, la démonstration de la Proposition 1 est établie dans ce chapitre.
Le Chapitre 4 est un article [10] publié dans Journal of Elasticity avec D. Chapelle qui s’inti-
tule :

Strong convergence results for the asymptotic behavior of the 3D-shell model.

Ce chapitre propose les preuves des Propositions 2 et 3. Numerical simulations of full elec-
trocardiograms

Partie III (Chapitres 5 et 6) - Applications du modèle bidomaine surfacique Dans le
Chapitre 5, le modèle surfacique (12) proposé et validé dans le Chapitre 3 est appliqué sur
une anatomie réelle des oreillettes. Ce chapitre a fait l’objet d’un court article [17] publié
dans les actes de la conférence Functional Imaging et Modeling of the Heart 2013 (FIMH) et
qui s’intitule :
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Surface-based electrophysiology modeling and assessment of physiological simulations in atria.

Cet article a été écrit en collaboration avec J.-F. Gerbeau et D. Chapelle ainsi qu’avec deux
cardiologues de l’Hôpital Cardiologique du Haut-Lévêque à Bordeaux, M. Haïssaguerre et
M. Hocini.
Nous proposons dans le Chapitre 6 une méthode pour la simulation numérique d’électrocar-
diogrammes complets. Un modèle bidomaine couplé – pour les oreillettes le modèle surfa-
cique (12) et pour les ventricules le modèle bidomaine classique – est introduit. Couplant ce
modèle complexe avec deux modèles ioniques adaptés, nous obtenons des simulations très
réalistes du cœur complet. Ces simulations sont utilisées afin de produire des électrocardio-
grammes contenant toutes les ondes caractéristiques (PQRST). Ce chapitre prend la forme
d’un article pre-print dont le titre est

Numerical simulations of full electrocardiogram cycles.

Ce travail est en collaboration avec J.-F. Gerbeau et E. Schenone.

Partie IV (Chapitres 7 et 8) - Problèmes inverses Cette dernière partie concerne l’assi-
milation de données sur le modèle de réaction-diffusion (13). Le Chapitre 7 est une brève
introduction des méthodes d’assimilation de données qui existent. L’objectif n’est pas de pro-
poser une présentation complète et mathématiquement justifiée des outils d’assimilation de
données, mais de donner les clés principales ainsi que les références essentielles pour la com-
préhension du chapitre suivant.
Le Chapitre 8 donne l’origine de l’observateur d’état (15) et le justifie mathématiquement
en donnant la preuve de la Proposition 4. Un observateur RoUKF [47] est ajouté sur la dy-
namique des paramètres et des simulations 1D et 2D d’estimation conjointe sont proposées
avec d’excellents résultats. Ce chapitre prend aussi la forme d’un article pre-print intitulé

A joint state and parameter observer for the reaction diffusion model. Application in cardiac
electrophysiology

et a été écrit en collaboration avec D. Chapelle et P. Moireau.

Principales contributions

Articles et conférences

Pour conclure cette introduction, un bilan des articles qui illustrent le travail produit dans
cette thèse dans leur ordre d’apparition est effectué. Des conférences ont aussi été l’occasion
de présenter ces travaux.

Articles publiés et pre-print

• D. Chapelle, A. Collin, et J.-F. Gerbeau. A surface-based electrophysiology model
relying on asymptotic analysis and motivated by cardiac atria modeling. M3AS,
23(14) :2749-2776, 2013.
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• D. Chapelle et A. Collin. Strong convergence results for the asymptotic behavior of the
3D-shell model. Journal of Elasticity, 115(2) :173-192, 2014.

• A. Collin, J.-F. Gerbeau, M. Hocini, M. Haïssaguerre, et D. Chapelle. Surface-based
electrophysiology modeling and assessment of physiological simulations in atria. FIMH
2013, 7945 :352-359, 2013.

• A. Collin, J.-F. Gerbeau, et E. Schenone. Numerical simulations of full electrocardio-
gram cycles. Pre-print.

• D. Chapelle, A. Collin, et P. Moireau. A joint state and parameter observer for the
reaction diffusion model. Application in cardiac electrophysiology. Pre-print.

Conférences

• 41ème Congrès National d’Analyse Numérique – CANUM12. Session poster : «A
surface-based electrophysiology model motivated by cardiac atria modeling and re-
lying on asymptotic considerations» - Prix du meilleur poster.

• V International Symposium on modeling of Physiological Flows - MPF2013. Session
orale : «Atrial electrophysiology study using a surface-based model relying on asymp-
totic analysis».

• 7th International Conference on Functional Imaging et Modeling of the Heart -
FIMH2013. Session poster : «Surface-based electrophysiology modeling and assess-
ment of physiological simulations in atria».

• 42ème Congrès National d’Analyse Numérique – CANUM14. Session orale : «Inverse
problems in cardiac electrophysiology using front observers».

• 4th International Conference on Engineering Frontiers in Pediatric and Congenital
Heart Disease 2014. Session poster (en collaboration avec Elisa Schenone) : «Numeri-
cal simulations of full electrocardiogram cycles».

Développement Logiciel Pour les simulations des Chapitres 2, 3, 5, 6, de nombreuses
contributions (environ 10000 lignes) ont été développées dans la librairie C++ d’éléments
finis FELiScE3 développée chez Inria par les équipes M⌅DISIM et REO. Le modèle bidomaine
classique couplé avec plusieurs modèles ioniques, a été implémenté (en collaboration avec
Elisa Schenone, doctorante de l’équipe REO). Une partie de la version mobile du modèle a été
ajoutée. Les outils nécessaires aux éléments finis curvilignes ont été développés et ont permis
l’implémentation du modèle bidomaine surfacique. Le modèle de Courtemanche-Ramirez-
Nattel a été ajouté afin de proposer les simulations réalistes d’oreillettes. Finalement, l’ajout
de l’observateur d’état permettant de corriger les conditions initiales a complété ce travail.

3
felisce.gforge.inria.fr

felisce.gforge.inria.fr
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Part I

CARDIAC MODELING





Introduction of Part I

The first part of this thesis is decomposed into two chapters. Chapter 1 A brief overview
of the role of the heart and its behavior gives a presentation of the human heart. This
knowledge is necessary in order to understand the complexity of the heart and to determine
the challenges of cardiac modeling, and in particular in the cardiac electrophysiological
framework. This means that the first chapter of this part describes the impact of the electrical
activity in the behavior of the heart and justifies our interest for the improvement of the
modeling of cardiac electrophysiology.

Chapter 2 Mathematical models in cardiac electrophysiology gives a detailed presenta-
tion of a very classical electrophysiological model. The electric wave propagating in the car-
diac tissue can be represented by a nonlinear reaction-diffusion partial differential equation
(PDE), coupled with an ordinary differential equation (ODE) representing cellular activity.
We consider the bidomain model. This model represents the diffusion in the intra- and the
extra-cellular domains hence the name. We start with the model of cellular activity in the
intra- and the extra-cellular domains and we present a mathematical-justified homoge-
nization, an asymptotic process which leads to the equations of the bidomain model. We use
this model in the rest of this thesis. In the second part of this chapter, we study the impact
of the mechanical deformation of the heart on the electrical activity. We use for this part a
mixture theory. We establish the conservation laws: the mass conservation and the principle
of virtual work for the solid and the charge conservation for the ionic species and we also
give the constitutive laws. The last section of the second chapter presents simulations of the
bidomain model using finite elements. Realistic simulations of both ventricles are given with
a fixed domain and also simulations in moving domain in simpler cases are given.





CHAPTER 1
A brief overview of the role of the heart and

its behavior

Abstract The heart contracts regularly and the continuity of its beating is essential to life.
Indeed, an arrest of the heartbeat is one of the most obvious signs of death. These pulses
allow to irrigate organs with oxygenated blood and cannot stop even for a short period.
In fact, some organs cannot survive a brief cessation of heartbeats. This is the case of the
brain which is extremely sensitive to any circulatory abnormality. A deep knowledge of the
behavior of the heart is necessary in order to formulate adapted models and obtain realistic
simulations. These tools can then be provided to doctors for example to predict diseases or
tailoring treatments. We present in this chapter a brief overview of the role of the heart and
its behavior. The heart is a muscle that pumps blood by repeated, rhythmic contractions. A
representation of the heart and of the circulatory system is provided in the first section of
this chapter. More specifically, at each beating of the heart, an electrical wave crosses over
the heart and triggers the muscle contraction. The second section provides a presentation of
this coupled action – electrical and mechanical – which allows the blood circulation during
a cardiac cycle. Cardiac electrophysiology is the study of the electrical wave which precedes
the cardiac contraction. In this thesis we are interested in cardiac electrophysiology (models,
numerical simulations, data assimilation ...). Hence, the last part of this chapter is dedicated
to the electrical function of the heart, in particular we give a presentation of the electrocar-
diograms.
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1.1 The human heart

1.1.1 The heart anatomy

Figure 1.1: Location and orientation of the heart in the thorax

The human heart is an organ which functions as a pump. This pump provides a continu-
ous circulation of the blood through the complete body. The heart is located in the thoracic
cavity between the two lungs. In Figure 1.1, the location and the orientation of the heart in
the thoracic cavity is shown. Its size is about that of a fist, and its weight is about 250�300g.
A protective sac named the pericardium surrounds the heart. The wall of the heart is decom-
posed into three parts: the endocardium (in the interior of the muscle), the myocardium (in
the middle) and the epicardium (in the exterior).

Figure 1.2 gives a detailed representation of the heart. It is composed of four main cham-
bers, the two superior left and right atria and the two inferior left and right ventricles. The
inferior part of the ventricles is named the apex. The atria are very thin compared to the
ventricles. The septum separates the left ventricle from the right ventricle. The orientation of
the heart in the body can vary significantly from one human to another and its major axis is
often defined as the smallest principal inertia axis of the left ventricle.

1.1.2 The circulatory system

Figure 1.3 represents the circulatory system. At each cardiac cycle, the deoxygenated
blood arrives in the right atrium by the vena cava and the right atrium ejects the blood into
the right ventricle after the opening of the tricuspid valve. The right ventricle pumps out
the blood by the pulmonary artery towards the lungs after the opening of the pulmonary
valve. The lungs oxygenate the blood and this oxygenated blood returns to the heart by
the pulmonary vein and arrives in the left atrium. The left atrium ejects the blood into the
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Figure 1.2: Representation of the heart anatomy (adapted from wikipedia) - In blue, the
right atrium and the right ventricle and in red, the left atrium and the left ventricle

left ventricle after the opening of the mitral valve. Then the left ventricle can pump out the
blood towards the whole body by the aorta after the opening of the aortic valve. All these new
notions are also represented in Figure 1.2. As we can see in Figure 1.3, the deoxygenated
blood is classically represented in blue and the oxygenated blood in red. The same colors are
classically used for the representation of the left (which contains the oxygenated blood) and
the right (which contains the deoxygenated blood) parts of the heart. For more information
or more illustrations, see [1].

1.1.3 The muscle fibers

Cardiac muscle has a fiber architecture and we will see in what follows that the fibers ori-
entation is very important in cardiac electrophysiology. Many anatomical studies have been
devoted to describing the ventricular geometric organization of the fibers. It has been shown,
for example in [6], that three different myocardial layers – superficial (subepicardial), mid-
dle, and deep (subendocardial) – have been distinguished. The cardiac muscle fibers of the
ventricles are oriented in a helicoidal shape in these three layers. The position of the atrial
fibers is more complicated to determine because there is a high heterogeneity from one hu-
man to another. Still, main directions have been detected, see [2, 3] for more details.
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Figure 1.3: Circulatory System

1.2 The heart behavior - Presentation of a cardiac cycle

In order to pump the blood, the atria and the ventricles contract at each cardiac cycle. An
electrical signal is at the origin of the contraction. Indeed, at each cardiac beat, an electrical
signal crosses the heart and depolarizes the cardiac cells thus triggering their contraction.

At the cellular scale, we are interested in the action potential, see [5] for more details.
It corresponds to the evolution of the transmembrane potential, the difference between the
extra- and the intra-cellular potentials, in the cell over time. As can be seen in Figure 1.4,
at the beginning, the cell is at the resting potential. Due to a stimulus, the cell becomes
depolarized very quickly. The depolarization is at the origin of the mechanical activity of
the cell. After a plateau phase in which the cell is depolarized and then contracted, the
repolarization of the cell begins. During this phase, the cell is in refractory phase, which
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Figure 1.4: Action potential corresponding to the different states of a cell

means that a new stimulus cannot trigger a new depolarization.

At the heart scale, we are interested in the propagation of the electrical signal in the
heart. Figure 1.5 represents the sucessive steps of the cardiac cycle. At the top of the figure,
we have a simplified description of the heart. For each step of the cardiac cycle, the electrical
phenomenon is described at the left and the right represents the consequence of the electrical
activation on the mechanical activity of the heart and how this implies the blood circulation.

1. The cardiac cycle starts with the activation of the natural pacemaker of the heart, the
sinoatrial node (also named sinus node) represented by a yellow star. A wave of exci-
tation spreads out through the atria along specialized conduction channels triggering
the atrial contraction. Due to the contraction of the atria, the blood flows through the
tricuspid/mitral valve to the right/left ventricle.

2. This wave also activates the atrio-ventricular (AV) node represented by a yellow star
which is the only electrical connection between the atria and the ventricles. Otherwise,
the atria and the ventricles are electrically isolated. The atrioventricular node delays
impulses. This delay in the cardiac pulse is very important because it ensures that the
atria have ejected the blood into the ventricles first before the ventricles contract. The
signal follows the Purkinje fibers – a fast conduction channel – also represented in
yellow. When the atria have ejected all the blood, the tricuspid and mitral valves close.

3. The wave spreads throughout the ventricles from the endocardium to the epicardium
triggering the ventricular contraction. It implies the opening of the aortic and pul-
monary valves due to the rise in ventricular pressure and the blood flows to the aorta
and pulmonary artery respectively. During this time, the repolarization of the atria
takes place and it allows atrial relaxation.

4. Close to the end of the ventricular contraction, the ventricular repolarization begins.
As we can see, the direction of the repolarization is inverted compared to the depo-
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Figure 1.5: Cardiac cycle with deoxygenated blood in blue and oxygenated blood in red

larization and starts from the epicardium to the endocardium. The blood comes in the
right and the left atria by the vena cava and the pulmonary veins respectively.

5. The whole heart is at the resting potential. Ventricular relaxation induces a fast de-
crease in pressure that triggers the opening of the tricuspid and mitral valves. Then the
blood enters in the ventricles.

In Figure 1.6 the left ventricular and atrial volumes are represented during a cardiac
cycle. We include the five steps presented in Figure 1.5 and we represent the different phases
of the cardiac cycle.

The importance of the orientation of the muscle fibers for the electrical activity of the
heart is due to the fact that the electrical conductivity is higher along the fiber direction than
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Figure 1.6: Left atrial (purple) and ventricular (red) volumes during a cardiac cycle

across. As we will see in the following chapter, the model that we use is able to take into
account the fibers variation.

1.3 Electrophysiology and Electrocardiograms

The electrocardiogram (ECG) is an external measurement of the electrical activity of the
heart, see [4]. The electrocardiograph – which produces the ECGs – measures the difference
of potential between different positions of the body surface. This allows to obtain a non-
invasive image of the electrophysiological state of the patient. Figure 1.7 represents the first
derivation of the ECG (a classical ECG has twelve derivations) in a healthy case. We can see
in the figure:

• the P wave which represents the atrial depolarization,

• the QRS complex which represents the ventricular depolarization,

• the QT segment which corresponds to the plateau of ventricular action potential,
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• the T wave which represents the ventricular repolarization.

Figure 1.7: First derivation of an ECG during a cardiac cycle

Figure 1.8 gives a rapid physical explanation of the ECG behavior. The first derivation is
the potential difference between the left and the right arms. It means that if the projection of
the propagation vector on the axis left-right is positive, the wave is positive, and inversely. As
previously explained, at each cardiac beat, the sinoatrial node situated in the top of the right
atrium, is the natural pacemaker of the heart and triggers an excitation wave every 750ms.
This wave propagates in the whole atria. As the sinus node is in the right atrium and as
the heart axis is slightly oriented on the right, the P wave is positive for the first derivation.
The only connection between the atria and the ventricles is the atrio-ventricular node which
delays the signal and this implies a non zero PQ segment. Following the rapid conduction
bundle called the Purkinje fibers, most of the ventricular endocardium is depolarized at the
same time. The propagation goes from the left ventricular endocardium to the myocardium
and then the Q wave is negative. Indeed, due to the smaller thickness of the right ventricle,
the right part of the epicardium is yet depolarized. Rapidly the signal propagates in the ven-
tricles from the top to the bottom thus implying this positivity of the R wave. As can be seen
in Figure 1.8, the Q wave corresponds to the end of the ventricular depolarization. During
the ventricular depolarization, the atrial repolarization occurs. There is no wave correspond-
ing to the atrial repolarization because this wave is hidden by the ventricular depolarization.
In few pathological cases, the atrial repolarization is visible due to a desynchronization be-
tween the atria and the ventricles and we know that the atrial repolarization is negative,
see [7]. It means that the repolarization is in the same direction of depolarization as can
be seen in the figure. However, the T wave is positive like the R wave. It means that the
repolarization is in the opposite direction of the depolarization. Indeed, the plateau phase
varies across the thickness of ventricular cardiac tissue as explained in [8].
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CHAPTER 2
Mathematical models in cardiac

electrophysiology

Abstract As explained in the previous chapter, cardiac electrophysiology is the study of the
electrical wave which triggers each contraction of the heart. In this chapter, we are interested
in the modeling of cardiac electrophysiology. Starting with a study of the motion of electric
charges at the cellular scale and proceeding with an homogenization process, we present a
derivation of the bidomain model which is a very classical electrophysiological model. We
also present a study of the impact of the mechanical deformation of the heart on the electrical
wave using the mixture theory. We finish this chapter by a numerical part which presents the
space and time discretization used in this thesis and gives some simulations, in particular a
simulation of a realistic ventricular case.
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Introduction

Cardiac electrophysiology studies the electrical activity of the heart. Knowledge concern-
ing cardiac electrophysiology is necessary for the understanding of the complete behavior of
the organ. At each beat, an electrical wave crosses the heart and triggers the muscle cells
contraction which is at the origin of the heart contraction. The study of this electrical current
requires a thorough understanding of the chemical activity triggering the motion of electric
charges.

There are two modeling scales in cardiac electrophysiology. The microscopic scale aims
at producing a detailed description of the origin of the electric wave in the cells. The macro-
scopic scale describes the propagation of the electrical wave in the heart. One of the most
popular mathematical model in cardiac electrophysiology is the bidomain model, see for ex-
ample [43, 46, 38, 8]. Introduced in the late 70’s [47], the bidomain model is a macroscopic
model coupled with one (or more) ordinary differential equation(s) representing the cel-
lular activity. The bidomain model is based upon the assumption that the cardiac muscle is
segmented into the intra- and extracellular domains – hence its name. Section 2.1 gives a de-
tailed description of the bidomain model using the literature. Following the work of [25, 29],
the microscopic model of cellular activity is presented in Section 2.1.2 and allows to obtain
the microscopic bidomain model (2.12). A homogenization procedure – see for more details
[33, 37, 41] – is used to link the microscopic and macroscopic behaviors and leads to the
equations of the bidomain model presented in (2.34). Section 2.1.4 gives a brief presenta-
tion of the principal models concerning the cellular activity. The literature is abundant on
this subject, see for example [43, 46, 27].

In what follows, we are interested in the effects of the mechanical deformation on the
heart electro-chemical activity. As previously explained, every beat is triggered by an elec-
trical wave traveling across the heart, inducing heart muscle contractions. The influence of
the electrical function of the heart in the cardiac mechanical mechanism has been well in-
vestigated, see for example [44]. It has also been shown in experiments that the stretch
produced by the heart deformation leads to significant electro-physiological changes. The
influence of deformations on the electrical wave propagation in the cardiac tissue – the so-
called mechano-electrical feedback [32, 23] – is becoming an accepted concept. However,
the models given in the literature mainly consider the alteration of the constitutive laws of
the bidomain model caused by the deformation. The objective in Section 2.2 is to suggest
a mechano-electrical model able to take into account the influence of the heart deforma-
tion in the conservation laws. Using the detailed analysis of the equations of the bidomain
model presented in Section 2.1, we rewrite the conservation laws in moving domain in Sec-
tion 2.2.2. Next, in Section 2.2.3, the constitutive laws which complete the model formula-
tion are presented. We summarize the model in (2.64).

We finish with a numerical part in Section 2.3. In this section, a presentation of the
space and time discretizations of the bidomain model is given. We present a simulation in
a realistic case of the ventricle depolarization and repolarization in a fixed domain. We also
give some simulations in moving domain where we suppose that the mesh deformation is
known in time. Hence, the complete coupled model is not considered. The obtained results
are discussed in Section 2.3.5.3.
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Figure 2.1: Intracellular and extracellular regions of the heart

2.1 Bidomain model

This section begins with the heart description used in electrophysiology. We continue
with the model of cellular activity and we finish after a homogenization process by the
presentation of the equations of the bidomain model.

2.1.1 Heart description

As explained in the introduction, the cardiac muscle is decomposed into two parts. We
denote by ⌦ the volume of the heart, ⌦i the intracellular region and ⌦e the extracellular
region. The cells are connected by many gap junctions, see Figure 2.1. Geometrically, ⌦i and
⌦e are two connected domains verifying

⌦̄ = ⌦̄e [ ⌦̄i and ⌦e \ ⌦i = ;.

We suppose that the membrane �m = @⌦e \ @⌦i = @⌦i \ @⌦ is regular and we define ~ni as
the unit normal pointing from ⌦i to ⌦e.

In Section 2.1.2.1 we give the equations that hold in the intracellular and extracellular
regions.

2.1.2 Model of cellular activity

This section is inspired from [25, 29].

2.1.2.1 Ion motion

General model We consider ion motion in an isothermal medium with negligible solvent
flows. Here, this medium corresponds to the cell interior or the extracellular space. We sup-
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pose that we have N ionic species in the system. The individual conservation gives

@ck
@t

+ ~r~x · ~|k = 0, k = 1, 2 . . . N, (2.1)

where ck, ~|k = ck ~vk are the concentration and the flux of k-th ionic species, respectively,
with ~vk the velocity corresponding. The charge density ⇢ = ⇢

0

+ F
PN
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zkck – with F the
Faraday constant – is related to an electrostatic force ~E by the Gauss law of electrostatics
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zkck), (2.2)

with "s the relative permittivity of the medium and "
0

, the permittivity of free space.
In order to determine the flux ~|k = ck~vk of the species k, we want to apply the Nernst-Planck
equation. The Nernst-Planck equation results from Newton’s second law. The forces for each
species k are given by

~FFick
k = �RTq

Fck
~r~x ck, Fick law,

~F frict
k = �µk~vk, friction,
~F elec
k = zkq ~E, electromagnetism,

(2.3)

with R is the gas constant, T the temperature, q the elementary charge and µk the friction
coefficient of the species k. We apply Newton’s second law and we neglect the inertia

~FFick
k + ~F frict

k + ~F elec
k = 0.

We infer
�RTq

Fck
~r~x ck + zkq ~E = µk~vk.

We use it in order to find the flux ~|k = ck~vk of the species k and we find the Nernst-Planck
equation

~|k = �RTq

Fµk

~r~x ck +
zkqck
µk

~E.

This equation becomes

~|k = �Dk

Ä
~r~x ck � Fzkck

RT
~E
ä
, (2.4)

with Dk = RTq
Fµk

, the diffusion coefficient of the species k. The electrostatic force is related to
an electrostatic potential u by ~E = �~r~x u. Using (2.1), (2.4) and (2.2) we finally obtain
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, k = 1, 2 . . . N, drift-diffusion flux
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zkck). Gauss law

(2.5)
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This system of equations is named the Nernst-Planck-Poisson equation.

Assumptions: electroneutrality and negligible diffusion current In order to obtain the
first equations of the microscopic bidomain model, we make some assumptions. The first
assumption is the electroneutrality of the solution away from the cell membranes. We make
a dimensional analysis of (2.5), see [15, 28, 29]. Firstly we normalize the potential by the
thermal voltage RT

F and the concentration by a characteristic concentration denoted by c
0

.
We define ũ, c̃k, ⇢̃0 by

u =
RT

F
ũ, ck = c

0

c̃k and ⇢
0

= Fc
0

⇢̃
0

.

We also define ~̄|k as ~|k = c
0

~̄|k. Let L
0

be the typical length of the system over which the
flux and the potential vary. The constant D

0

is the typical diffusion coefficient for the ionic
species. Given L

0

we define a typical time T
0

by T
0

=
L2
0

D0
, i.e. the diffusion time scale. We

define x = L
0

x̃, t = T
0

t̃, Dk = D
0

D̃k and ~̄|k = D0
L0
~̃|k and we obtain
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= �~r~̃x · ~̃|k, k = 1, 2 . . . N, charge conservation

~̃|k = �D̃k

Ä
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ä
, k = 1, 2 . . . N, drift-diffusion flux
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with

� =
"s"0RT

F 2c
0

L2

0

=
r2d
L2

0

with rd =

 
"s"0RT

F 2c
0

,

the Debye length. The Debye length is the length over which mobile charge carriers screen
out electric fields in an electrolytic solution. It means that the Debye length is the distance
over which significant charge separation can occur. The length over which the electric field
can vary for a given degree of charge separation, and hence over which �x̃ũ can take a large
value, is blocked by the Debye length.

An asymptotic analysis on the parameter � is presented in [28, 40]. When this parameter
is small, we obtain the electroneutrality which holds away from the cell membranes, where
rd ⇡ 1nm and L

0

is of the order of microns or more. Making tend � to zero we obtain the
electroneutrality assumption

⇢̃
0

+
NX

k=1

zk c̃k = 0.

Formally we can obtain this limit by making tend "
0

"s to zero in (2.2). It does not imply that
~r~x · ~E = 0, since (2.2) reduces to �~x u = 0

0

. We infer

NX

k=1

zk
@c̃k
@ t̃

= 0 and
NX

k=1

zk
@ck
@t

= 0.
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We finally obtain
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RT
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= 0. (2.7)

The drift current is larger than the diffusion current and dominates, hence (2.7) becomes
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F 2(zk)2ck

RT
~r~x u

!

= ~r~x · (�~r~x u) = 0, (2.8)

where

� =
F 2

RT

NX

k=1

Dk(zk)
2ck

is the total conductivity.

Application to cardiac electrophysiology We denote by ui and ue, the intracellular and
extracellular potentials respectively with the associated conductivities �i and �e. Using (2.8),
we have ®

~r~x · (�i~r~x ui) = 0, ⌦i,
~r~x · (�e~r~x ue) = 0, ⌦e.

(2.9)

We need to introduce some definitions for the following sections. Then we define ~|i =
��i~r~x ui =

P
k zk~|i,k and ~|e = ��e~r~x ue =

P
k zk~|e,k. The dynamics of the bidomain model

only depend on the transmembrane electrical phenomena. Section 2.1.2.2 describes them.

2.1.2.2 Electrical transmembrane conditions

General model Near the membrane, there is an accumulation of electric charge, whose
thickness is of the order of the Debye length rd. In deriving the electroneutrality condition,
we considered the limit when rd

L tends to zero. In agreement with this limit, we consider
that this electrical charge forms a layer of infinitesimal thickness concentrated on both sides
of the membrane surface, see [29]. The electric current ~| that hits the membrane can be
blocked by the membrane – and then changes the surface charge µ – or can pass through the
membrane with ionic current Itotion measured from ⌦i to ⌦e. The charge conservation gives

8
>>>><

>>>>:

@µi

@t
+ Itotion = ~|i · ~ni,

@µe

@t
� Itotion = �~|e · ~ni

(2.10)

Assumptions In order to obtain the last equations of the bidomain model, we make two as-
sumptions about the surface charge. Any charge accumulation on one side of the membrane
is automatically balanced by a charge on the other side

µi + µe = 0,
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and we suppose that the membrane behaves as a capacitance, i.e. the surface charge is
linearly proportional to the transmembrane potential

µi = CmVm,

where Vm = ui � ue denotes the transmembrane potential and Cm the capacitance per unit
area of the membrane. We obtain

8
<

:
Cm

@Vm

@t
+ Itotion = ~|i · ~ni,

~|i · ~ni = ~|e · ~ni.
(2.11)

2.1.2.3 Microscopic bidomain model

Combining (2.9) and (2.11), the complete microscopic bidomain model is
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

~r~x · (�i~r~x ui) = 0, ⌦i

~r~x · (�e~r~x ue) = 0, ⌦e

�i~r~x ui · ~ni = �e~r~x ue · ~ni, �m

��i~r~x ui · ~ni = Cm
@Vm

@t
+ Itotion, �m.

(2.12)

We define Im = Cm
@Vm

@t
+ Itotion, the current surface density that arrives on the membrane

from ⌦i. We recall that the conductivities �i,e are defined by

�i =
F 2

RT

NX

k=1

Dk(zk)
2ci,k and �e =

F 2

RT

NX

k=1

Dk(zk)
2ce,k.

This implies that if we have more than one species, these conductivities are not constant.
However, for the homogenization process, we assume that they are constant. One perspective
of this work could be to do the homogenization process in a more general case. Note that
this assumption is generally used in the literature, explicitly of implicitly.

2.1.3 Macroscopic model

2.1.3.1 Homogenization

The microscopic model is unusable for the whole heart. At the macroscopic scale, the
heart appears as a continuous material with a fiber-based structure. At this scale, the intra-
cellular and extracellular media are undistinguishable and we consider the single cardiac
domain ⌦. We thus use an homogenization of the microscopic bidomain model in order to
obtain a bidomain model where all the unknowns are defined throughout ⌦. The homoge-
nization process has been investigated and written in collaboration with Sébastien Imperiale
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�Y

Yi

Ye

Figure 2.2: A 3D cell (corresponding to the domain Y )

(researcher in M⌅DISIM team).

A normalization of the system is necessary in order to understand the relative amplitudes
of the different terms involved. Let Lh

0

be a characteristic length of the heart and T h
0

be a
characteristic time of a cardiac cycle. In the same idea, we denote by �

0

a characteristic
conductivity, C0

m a characteristic membrane capacitance, and u
0

a characteristic potential.
We set

ui,e(~x, t) = u
0

ũi,e

Ä ~x
Lh
0

,
t

T h
0

ä
, Cm = Cm,0C̃m, and �i,e = �

0

�̃i,e,

We assume that Itotion(ui � ue) can be written as

Itotion(ui � ue) = Itotion,0(u0

)Ĩtotion(ũi � ũe).

All quantities denoted by a tilde are dimensionless quantities. We obtain from (2.12), the
dimensionless system
8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

~r~x · (�̃i~r~x ũi) = 0, ⌦
Lh
0

i

~r~x · (�̃e~r~x ũe) = 0, ⌦
Lh
0

e

�̃i~r~x ũi · ~ni = �̃e~r~x ũe · ~ni, �
Lh
0

m

��̃i~r~x ũi · ~ni =
Lh
0

Cm,0

�
0

T h
0

C̃m
@ũi � ũe

@t
+

Lh
0

Itotion,0(u0

)

�
0

u
0

Ĩtotion(ũi � ũe), �
Lh
0

m ,

(2.13)

where ⌦
Lh
0

i,e and �
Lh
0

m are rescaled by Lh
0

. We define " – the parameter which tends to zero in the
homogenization process – as the ratio between the length of a cell denoted by lc = 10�2cm
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and Lh
0

= 10cm. This implies that " is the order of 10�3. We study the dimensionless quantity

Lh
0

Cm,0

�
0

T h
0

with T h
0

of the order of 1s, Cm,0 of 10�6mF.cm�2 and �
0

of 10�2S.cm�1 and we see that the
quantity is of the same order of " and can be set to " by a small modification of the reference
quantities. We assume that the term Itotion,0(u0

) allows to have

Lh
0

Itotion,0(u0

)

�
0

u
0

of the order of " and to set it to ". To study the mathematical properties of this problem, we
consider a family of such problems where " tends to and characterizes the limit equation.
The fact that " is small means that the microscopic scale and the macroscopic scale are
well separated. For the sake of clarity, we do not keep the tilde notation but we write the
dependance in ".

We use the results of the 2-scale convergence, see [2, 5] for the homogenization process.
This classical method has been used in many fields of science and engineering.

We denote by Y the micro-structure corresponding to a cardiac cell, see Figure 2.2. This
micro-structure is decomposed into two parts: the intracellular part Yi and the extracellular
part Ye. The intra and the extra-cellular domains are separated by �Y . We recall that " is
a characteristic length of this cell. The global position vector is denoted by ~x and the local
position vector by ~y. We have

~y =
1

"
~x.

We define the domain ⌦ = ⌦"
i [ ⌦"

e by "-periodicity and we denote by �" the boundary
between the intra- and the extra-cellular domains ⌦"

i and ⌦"
e. We assume that ⌦"

i and ⌦"
i are

a union of cells and we have

⌦"
i,e =

[

k

("Yi,e + "~wk) = "
[

k

(Yi,e + ~wk) (2.14)

and then
�" =

[

k

("�Y + "~wk) = "
[

k

(�Y + ~wk), (2.15)

with ~wk is the vector corresponding to the translation between the cell considered and the
reference cell. The objective is to homogenize the following problem, i.e. study the conver-
gence when " tends to zero

8
>>>><

>>>>:

~r~x · (�i,e~r~x u"
i,e) = 0, ⌦"

i,e

�i~r~x u"
i · ~ni = �e~r~x u"

e · ~ni, �"

��i~r~x u"
i · ~ni = "

⇣
Cm

@(u"
i � u"

e)

@t
+ Itotion(u"

i � u"
e)
⌘
, �".

(2.16)
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In order to have a unique solution, we add the conditions
Z

⌦

"
i,e

u"
i,e = 0.

We study the simplified case Itotion = ↵(u"
i � u"

e) � �(~x, t), with ↵ > 0 and assuming � reg-
ular sufficiently. The associated variational problem is find (u"

i , u
"
e) 2 C1(0, T ; H1(⌦"

i )) ⇥
C1(0, T ; H1(⌦"

e)) such that 8(v"i , v
"
e) 2 H1(⌦"

i ) ⇥ H1(⌦"
e),

⇣
�i~r~x u"

i , ~r~x v"i
⌘

⌦

"
i

+
⇣
�e~r~x u"

e, ~r~x v"e
⌘

⌦

"
e

+ "Cm

D@(u"
i � u"

e)

@t
, v"i � v"e

E

�

"

+ "↵
D
u"
i � u"

e, v
"
i � v"e

E

�

"
= "

D
�, v"i � v"e

E

�

"
. (2.17)

The regularity that we assume here is strong compared to the classical results of existence
and unicity. We make this choice for the sake of simplicity. We take v"i,e = @tu"

i,e in (2.17) in
order to derive an a priori estimate and we obtain

1

2
@t
h⇣
�i~r~x u"

i , ~r~x u"
i

⌘

⌦

"
i

+
⇣
�e~r~x u"

e, ~r~x u"
e

⌘

⌦

"
e

+ "↵
D
u"
i � u"

e, u
"
i � u"

e

E

�

"

i

= �"Cm

D@(u"
i � u"

e)

@t
,
@(u"

i � u"
e)

@t

E

�

"
+ "

D
�,
@(u"

i � u"
e)

@t

E

�

"
. (2.18)

We define

E"(t) =
⇣
�i~r~x u"

i , ~r~x u"
i

⌘

⌦

"
i

+
⇣
�e~r~x u"

e, ~r~x u"
e

⌘

⌦

"
e

+ "↵ku"
i � u"

ek2L2
(�

"
)

.

By integrating (2.17) between 0 and t, we obtain

1

2
E"(t) � 1

2
E"(0) = �"Cm

Z t

0

D@(u"
i � u"

e)

@s
,
@(u"

i � u"
e)

@s

E

�

"
ds + "

Z t

0

D
�,
@(u"

i � u"
e)

@s

E

�

"
ds,

 "
Z t

0

D
�(~x, s),

@(u"
i � u"

e)

@s
(~x, s)

E

�

"
,

 "
D
�(~x, t), (u"

i � u"
e)(~x, t)

E

�

"
� "

D
�(~x, 0), (u"

i � u"
e)(~x, 0)

E

�

"

�"
Z t

0

D@�
@s

(~x, s), (u"
i � u"

e)(~x, s)
E

�

"
ds.

We study the first and the third terms of this inequality separately. We start with

"
D
�(~x, t), (u"

i � u"
e)(~x, t)

E

�

"
 "k�(~x, t)kL2

(�

"
)

k(u"
i � u"

e)(~x, t)kL2
(�

"
)

 "
1
2 k�(~x, t)kL2

(�

"
)

↵� 1
2

»
E"(t)

 1

2
"k�(~x, t)k2L2

(�

"
)

↵�1r
1

+
1

2r
1

E"(t), 8r
1

> 0.
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The third term becomes

�"
Z t

0

D@�(~x, s)

@s
, (u"

i � u"
e)(~x, s)

E

�

"
ds  "

Z t

0

k@s�(~x, s)kL2
(�

"
)

k(u"
i � u"

e)(~x, s)kL2
(�

"
)

ds

 sup
s2[0,t]

⇣
"

1
2 tk@s�(~x, s)kL2

(�

"
)

↵� 1
2

»
E"(~x, s)

⌘

 sup
s2[0,t]

⇣1

2
"t2k@s�(~x, s)k2L2

(�

"
)

↵�1r
2

+
1

2r
2

E"(s)
⌘
, 8r

2

> 0,

 1

2
"t2↵�1r

2

sup
[0,t]

k@s�(~x, s)k2L2
(�

"
)

+
1

2r
2

sup
[0,t]

E"(s), 8r
2

> 0.

This implies

1

2
E"(t)  1

2
E"(0) � "

D
�(0), (u"

i � u"
e)(0)

E

�

"
+

1

2
"k�(~x, t)k2L2

(�

"
)

↵�1r
1

+
1

2r
1

E"(t)

+
1

2
"t2↵�1r

2

sup
[0,t]

k@s�(~x, s)k2L2
(�

"
)

+
1

2r
2

sup
[0,t]

E"(s), 8r
1

, r
2

> 0.

With r
1

= r
2

= 4, we have

1

4
sup
[0,T ]

E"(t)  1

2
E"(0) � "

D
�(0), (u"

i � u"
e)(0)

E

�

"
+ 2" sup

[0,T ]

k�(~x, t)k2L2
(�

"
)

↵�1

+2"T 2↵�1 sup
[0,T ]

k@t�(~x, t)k2L2
(�

"
)

.

We suppose that � is regular enough to have

" sup
[0,T ]

k�(~x, t)k2L2
(�

"
)

and " sup
[0,T ]

k@t�(~x, t)k2L2
(�

"
)

bounded. Note that |�"| = O("�1). With regular initial conditions, we finally obtain

k~r~x u"
ik2L2

(⌦

"
i )

+ k~r~x u"
ek2L2

(⌦

"
e)

+ "ku"
i � u"

ek2L2
(�

"
)

 C, (2.19)

where C is independent of ". According to the Poincaré inequality and (2.19), (u"
i,e)" are

uniformly bounded in H1(⌦"
i,e). The same method can be applied with time derivatives, as

soon as � is regular enough, and allows to obtain that (@tu"
i,e)" is uniformly bounded in the

same norm. We denote by ·̃ the extension by zero in ⌦ of the following functions

ũ"
i =

�����
u"
i ⌦"

i ,
0 ⌦"

e,
ũ"
e =

�����
0 ⌦"

i ,
u"
e ⌦"

e,

CV V V
‡~r~x u"

i =

�����
~r~x u"

i ⌦"
i ,

0 ⌦"
e,

CV V V
‡~r~x u"

e =

�����
0 ⌦"

i ,
~r~x u"

e ⌦"
e,

� =

�����
�i ⌦"

i ,
�e ⌦"

e.
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According to the variational form (2.17), we search (ũ"
i , ũ"

e,

CV V V
‡~r~x u"

i ,

CV V V
‡~r~x u"

e) with (u"
i , u

"
e) 2

C1(0, T ; H1(⌦"
i )) ⇥ C1(0, T ; H1(⌦"

e)) verifying 8v"i , v"e 2 H1(⌦)

⇣
�i

CV V V
‡~r~x u"

i , ~r~x v"i
⌘

⌦

+
⇣
�e

CV V V
‡~r~x u"

e, ~r~x v"e
⌘

⌦

+"Cm

D@(ũ"
i � ũ"

e)

@t
, v"i �v"e

E

�

"
+"↵

D
ũ"
i�ũ"

e, v
"
i �v"e

E

�

"

= "
D
�, v"i � v"e

E

�

"
. (2.20)

The a priori estimation (2.19) allows to apply the 2-scale convergence – see [2, 5]. We fix t
and when " tends to zero, we have

8
>>>>>>><

>>>>>>>:

ũ"
i ! u0

i (~x, t)�Yi(~y), 8t,
ũ"
e ! u0

e(~x, t)�Ye(~y), 8t,
CV V V
‡~r~x u"

i ! (~r~x u0

i + ~r~y u1

i )�Yi(~y), 8t,
CV V V
‡~r~x u"

e ! (~r~x u0

e + ~r~y u1

e)�Ye(~y), 8t,

(2.21)

where �Yi and �Ye are the characteristic functions of Yi and Ye respectively and with u0

i , u0

e 2
C0(0, T ; H1(⌦)) and u1

i , u1

e 2 C0(0, T ; L2(⌦; H1

] (Y )/R)), where H1

] (Y ) is the completion for
the norm H1(Y ) of C1

] (Y ), the space of infinitely differentiable functions that are periodic
of period Y .

Remark 1. The 2-scale convergence ũ"
i 2 C1(0, T ; L2(⌦)) ! u0

i (~x)�Yi(~y), 8t means that there
exists a function f " such that

Z

⌦

ũ"
i (~x) v

⇣
~x,

1

"
~x
⌘

d~x �
Z

⌦

Z

Yi

u0

i (~x) v(~x, ~y) d~yd~x = f "(t), 8t, 8v 2 L2(⌦ ⇥ Y ), (2.22)

with supt |f "(t)| tends to zero.

The theory of the 2-scale homogenization is applied in a static case, see [2], but we also
need the convergences of the following proposition.

Proposition 1. The functions u0

i , u0

e 2 C1(0, T ; H1(⌦)) and we have
®
@tũ"

i ! @tu0

i (~x, t)�Yi(~y), 8t,
@tũ"

e ! @tu0

e(~x, t)�Ye(~y), 8t.
(2.23)

Proof. We have (u"
i , u

"
e) 2 C1(0, T ; H1(⌦"

i )) ⇥ C1(0, T ; H1(⌦"
e)) and we can apply the 2-scale

convergence to @tũ"
i and @tũ"

e. We obtain
®
@tũ"

i ! w0

i (~x, t)�Yi(~y), 8t,
@tũ"

e ! w0

e(~x, t)�Ye(~y), 8t.
(2.24)

We want to show that w0

i = @tu0

i . There exists a function g" such that
⇣
@tũ

"
i , v

⌘

⌦

�
⇣
w0

i , v
⌘

Yi⇥⌦

= g"(t), 8t, 8v 2 H1(⌦)
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with supt |g"(t)| tends to zero. We integrate this equation in time between 0 and T and using
an integration by parts, we have

Z T

0

Z

⌦

@tũ
"
i v�

Z T

0

Z

Yi⇥⌦

w0

i v =
Z

⌦

ũ"
i (T ) v�

Z

⌦

ũ"
i (0) v�

Z

Yi⇥⌦

Z T

0

w0

i v =
Z T

0

g"(t), 8T.

Making tend " to zero, we obtain
Z

Yi⇥⌦

u0

i (T ) v �
Z

Yi⇥⌦

u0

i (0) v =
Z

Yi⇥⌦

Z T

0

w0

i v, 8T

and then

u0

i (T ) � u0

i (0) =
Z T

0

w0

i , 8T.

This last equation implies that u0

i is time-differentiable and w0

i = @tu0

i . We can use the same
method for u0

e.

We use test functions of the form v"i,e = v0i,e(~x) + "v1i,e(~x, ~x
" ) and (2.20) becomes

⇣
�i

CV V V
‡~r~x u"

i , ~r~x v0i + ~r~y v1i + "~r~x v1i
⌘

⌦

+
⇣
�e

CV V V
‡~r~x u"

e, ~r~x v0i + ~r~y v1i + "~r~x v1e
⌘

⌦

+ "Cm

D@(ũ"
i � ũ"

e)

@t
, v0i + "v1i � v0e � "v1e

E

�

"

+ "↵
D
ũ"
i � ũ"

e, v
0

i + "v1i � v0e � "v1e
E

�

"
= "

D
�, v0i + "v1i � v0e � "v1e

E

�

"
. (2.25)

We want to apply the results of the 2-scale convergence but the surface terms need a more
detailed analysis. The following proposition gives the convergence of the surface term.

Proposition 2. Let (u")" be a bounded sequence in H1(⌦"
i,e) and ũ" its extension in H1(⌦). We

define u0 the two scale limit of the sequence (ũ")", i.e.

ũ" !
"!0

u0(~x)�Yi,e(~y).

Then we have, for all v : (~x, ~y ) 7! v(~x, ~y ) 2 D(⌦, C1
] (Y )), where D(⌦, C1

] (Y )) is the space of
continuous functions on ⌦ with values in C1

] (Y ) and having compact supports.

"
Z

�

"
u"(~x) v

⇣
~x,
~x

"

⌘
d �" �!

Z

⌦

u0(~x)
Z

�Y

v(~x, ~y ) d �Y d~x. (2.26)

Proof. We consider here the intra-cellular case and the same arguments can be applied for
the extra-cellular case. We define w : (~x, ~y ) 7! w(~x, ~y ) periodic in Y as satisfying, for each ~x
(seen here as a parameter),

8
<

:
�~y w(~x, ·) =

1

|Yi|
Z

�Y

v(~x, ~y )d �Y in Yi,

~r~y w(~x, ~y ) · ~n
�Y

(~y) = v(~x, ~y ) on �Y ,
(2.27)
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and Z

Yi

w(~x, ~y ) dYi = 0.

We can see that w(~x, ·) 2 H1(Yi) is well defined, i.e. the compatibility assumptions are
satisfied. Substituting v in the left term of (2.26) we find

"
Z

�

"
u"(~x) v

⇣
~x,
~x

"

⌘
d �" = "

Z

�

"
u"(~x) ~r~y w

⇣
~x,
~x

"

⌘
· ~n

�Y

⇣~x
"

⌘
d �". (2.28)

Without limiting the generality, ⌦"
i is assumed to be a union of cells "Yi (see (2.14)). Then

using (2.15), we can show that

~n
�Y

⇣~x
"

⌘
= ~n(~x), ~x 2 �".

Applying Green’s formula in (2.28), we have

"
Z

�

"
u"(~x) v

⇣
~x,
~x

"

⌘
d �" = "

Z

�

"
u"(~x) ~r~y w

⇣
~x,
~x

"

⌘
· ~n d �"

= "
Z

⌦

"
i

u"(~x)~r ·
ï
~r~y w

⇣
~x,
~x

"

⌘ò
d~x + "

Z

⌦

"
i

~ru"(~x) · ~r~y w
⇣
~x,
~x

"

⌘
d~x.

The last term in the RHS vanishes in the limit. Indeed, ~ru"(~x) is uniformly bounded in
L2(⌦"

i ) by assumption and ~r~y w is also bounded due to the regularity assumption of v.
Then, we remark that

"
Z

⌦

"
i

u"(~x)~r ·
ï
~r~y w

⇣
~x,
~x

"

⌘ò
d~x =

Z

⌦

"
i

u"(~x)�~y w
⇣
~x,
~x

"

⌘
d~x + "

Z

⌦

"
i

u"(~x)~r~x · ~r~y w
⇣
~x,
~x

"

⌘
d~x.

The last term also vanishes in the limit as w(~x, ~y ) is regular in ~x, still due to the regularity
property of v. Finally we have

Z

⌦

"
i

u"(~x)�~y w
⇣
~x,
~x

"

⌘
d~x =

Z

⌦

ũ"(~x)�~y w
⇣
~x,
~x

"

⌘
d~x =

1

|Yi|
Z

⌦

ũ"(~x)
Z

�Y

v(~x, ~y )d �Y d~x.

Using (2.22) with v corresponds here to
R
�Y

v(~x, ~y )d �Y , the two scale convergence of (ũ")"
implies

1

|Yi|
Z

⌦

"
i

ũ"(~x)
Z

�Y

v(~x, ~y ) d �Y d~x �! 1

|Yi|
Z

⌦

Z

Yi

u0(~x)
Z

�Y

v(~x, ~y ) d �Y d~y d~x.

As
u0(~x)

Z

�Y

v(~x, ~y ) d �Y

is independent of ~y, we obtain

1

|Yi|
Z

⌦

"
i

ũ"(~x)
Z

�Y

v(~x, ~y ) d �Y d~x �!
Z

⌦

u0(~x)
Z

�Y

v(~x, ~y ) d �Y d~x.
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This last convergence completes the proof.

With the test functions v"i,e = v0i,e(~x) + "v1i,e(~x, ~x
" ), Proposition 2 directly gives

"
Z

�

"
u"
i,e v"i,ed �" �! |�Y |

Z

⌦

u0

i,ev
0

i,ed~x. (2.29)

Using (2.21) and (2.29) to ũ"
i , ũ"

e, @tũ"
i and @tũ"

e we obtain

⇣
�i(~r~x u0

i + ~r~y u1

i ), ~r~x v0i + ~r~y v1i
⌘

Yi⇥⌦

+
⇣
�e(~r~x u0

e + ~r~y u1

e), ~r~x v0e + ~r~y v1e
⌘

Ye⇥⌦

+ |�Y |Cm

⇣@(u0

i � u0

e)

@t
, v0i � v0e

⌘

⌦

+ |�Y |↵
⇣
u0

i � u0

e, v
0

i � v0e
⌘

⌦

= |�Y |
⇣
�, v0i � v0e

⌘

⌦

. (2.30)

In order to obtain the cell problem in Yi, we take v0i = v0e = v1e = 0 and (2.30) becomes
⇣
�i(~r~x u0

i + ~r~y u1

i ), ~r~y v1i
⌘

Yi⇥⌦

= 0.

Using the classical method of the cell problem, see [2, 5] for the method, we decompose u1

i

in the form

u1

i =
3X

j=1

X j
i @xju0

i ,

and the variational form of the cell problem is find X j
i , j = 1..3 such that

⇣
~r~y X j

i , ~r~y w
⌘

Yi

= �
⇣
~e j , ~r~y w

⌘

Yi

, 8w 2 H1

] . (2.31)

The associated effective medium is the tensor ~~Ti defined by

(
~~Ti)j,k =

Z

Yi

(~r~y X j
i + ~e j) · (~r~y X k

i + ~e k)dYi.

We define ~~J X
i the Jacobian matrix of the function Xi = (X 1

i , X 2

i , X 3

i ) and we can show that

~~Ti =
Z

Yi

(
~~I +

Ä ~~J X
i

ä|
)dYi = |Yi|~~I +

Z

Yi

Ä ~~J X
i

ä|
dYi.

We use exactly the same method in order to find the cell problem in the extracellular domain
Ye and the effective medium ~~Te. We take v1i = v1e = v0e = 0 in (2.30) and we obtain

⇣
�i(~r~x u0

i + ~r~y u1

i ), ~r~~x
v0i
⌘

Yi⇥⌦

+ |�Y |Cm

⇣@(u0

i � u0

e)

@t
, v0i
⌘

⌦

+ |�Y |↵
⇣
u0

i � u0

e, v
0

i

⌘

⌦

= |�Y |
⇣
�, v0i

⌘

⌦

. (2.32)
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Using the decomposition of u1

i =
P

3

j=1

X j
i @xju0

i and ~r~x u0

i =
P

3

j=1

@xju0

i~e
j , we obtain

⇣
�i(~r~x u0

i + ~r~y u1

i ), ~r~x v0i
⌘

Yi⇥⌦

=
⇣
�i

3X
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(~e j + ~r~y X j
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⌘
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=
⇣
�i
~~Ti
~r~x u0

i , ~r~x v0i
⌘

⌦

,

and this implies that

⇣
�i
~~Ti
~r~x u0

i , ~r~x v0i
⌘

⌦

+ |�Y |Cm

⇣@(u0
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⇣
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i �u0
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⇣
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,

and for the extracellular potential

⇣
�e
~~Te
~r~x u0

e, ~r~x v0e
⌘

⌦

�|�Y |Cm

⇣@(u0

i � u0
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⌘
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⇣
u0

i�u0

e, v
0

e

⌘

⌦

= �|�Y |
⇣
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⌘

⌦

.

Denoting by Am = |�Y |
|Y | – the ratio of membrane area per unit volume – the homogenization

of the microscopic bidomain model gives
8
>>>>><

>>>>>:

�~r~x · �i|Y |
~~Ti
~r~x u0

i = Am

⇣
Cm

@(u0

i � u0

e)

@t
+ (↵(u0
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e) � �)
⌘
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e)
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e) � �)
⌘
, on ⌦ ⇥ (0, T ),

where ~~Ti,e = |Yi,e|~~I +
R
Yi,e

Ä ~~J X
i,e

ä|
dYi,e with Xi,e the solutions of the cell problems. We define

~~�i,e =
�i,e
|Y |

~~Ti,e = �i,e
|Yi|
|Y |
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=
|Yi|
|Y |

F 2

RT
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1

|Y |
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RT

NX

k=1

(zk)
2Dkc

k
i

Z

Yi,e

Ä ~~J X
i,e

ä|
dYi,e (2.33)

A classical article for the homogenization of the microscopic bidomain model is [33]. In
this article, another epsilon "̃ is defined as "̃ =

q
dc

Rm�i
with dc the diameter of a unit cell and

Rm the surface resistivity of the membrane. The convergence is not proven in this article but
in the appendix of [13] a formal proof using the 2-scale convergence is given. In [13], the
"̃ parameter is considered. As "̃ does not correspond to a characteristic length of a cell, we
cannot write

⌦"̃
i,e =

[

k

("̃Yi,e + "̃ ~wk) and �"̃ =
[

k

("̃�Y + "̃ ~wk),

but another type of decomposition is possible. Indeed, in [13], ⌫ = �e
�i

is introduced and the
cell is defined by

Y "̃
i,e = ⌦i,e \ Y "̃ with Y "̃ = [0, "̃]2 ⇥ [0, ⌫"̃],
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i.e. Y has the following form Y = [0, 1]2 ⇥ [0, ⌫]. The quantity ⌫ is interpreted as a ratio
between the length and the diameter of an elongated cardiac cell, see Figure 2.2 for example.
It seems surprising to use a conductivity parameter as a geometric parameter. The results
obtained in [13] are the same as ours, but compared to our analysis, the proof is very formal
and in particular, the study of the surface term is not detailed. It should also be noted that in
[3, 36], the same type of results can be proved using the theory of �-convergence.

We suppose that this homogenization can be extended to any ionic current Itotion. In prac-
tice we do not solve the cell equations given in (2.31) in Yi and its equivalent in Ye. However,
we consider an anisotropy due to the fact that the electrical conductivity is higher along than
across the cardiac fiber directions, see Section 2.3.2 for more details.

Remark 2. In [19], an homogenization of the gap junctions is given. In these articles, two sep-
arate domains corresponding to two different cells are considered. The bidomain model, and not
only the intra-cellular equation, is written in each cell. A complete homogenization of the intra-
cellular domain with the gap junctions and the extra-cellular domain could be an interesting
perspective for future works.

2.1.3.2 Bidomain model

These equations can be rewritten as
8
>>><

>>>:

Am

⇣
Cm

@Vm

@t
+ Itotion

⌘
� ~r~x ·

Ä
~~�i · ~r~x Vm

ä

= ~r~x ·
Ä
~~�i · ~r~x ue

ä
, on ⌦ ⇥ (0, T ),

~r~x ·
⇣Ä
~~�i + ~~�e

ä
· ~r~x ue

⌘
= �~r~x ·

Ä
~~�i · ~r~x Vm

ä
, on ⌦ ⇥ (0, T ).

We add boundary conditions on @⌦. At the cell level, we observe that the intra-cellular
current ~|i does not spread outside the heart. Then we have the first following boundary
condition,

(~~�i · ~r~x ui) · ~n@⌦ = 0, on @⌦,

with ~n@⌦, the exterior normal of @⌦. In terms of Vm and ue, we obtain

(~~�i · ~r~x Vm) · ~n@⌦ = �(~~�i · ~r~x ue) · ~n@⌦, on @⌦.

We suppose in this study that the heart is electrically isolated, i.e. the heart is not coupled
with the thorax and we have

(~~�e · ~r~x ue) · ~n@⌦ = 0, on @⌦.
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We finally obtain
8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Am

⇣
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@Vm

@t
+ Itotion

⌘
� ~r~x ·

Ä
~~�i · ~r~x Vm

ä

= ~r~x ·
Ä
~~�i · ~r~x ue

ä
, on ⌦ ⇥ (0, T ),

~r~x ·
⇣Ä
~~�i + ~~�e

ä
· ~r~x ue

⌘
= �~r~x ·

Ä
~~�i · ~r~x Vm

ä
, on ⌦ ⇥ (0, T ),

~~�i · ~r~x Vm · ~n@⌦ = �~~�i · ~r~x ue · ~n@⌦, on @⌦ ⇥ (0, T ),

~~�e · ~r~x ue · ~n@⌦ = 0, on @⌦ ⇥ (0, T ).

(2.34)

This model is commonly used in simulations of cardiac electrophysiology. The bidomain
model is able to take into account different electrical conductivities of the intracellular and
extracellular spaces.

2.1.4 Ionic models representing the cell activity

This part concerns the description of the term Itotion which appears in (2.34). Ionic models
represent the transmembrane currents and other cellular ionic processes which give rise to
action potentials. We can see in Figure 2.3 the different states of a cell. Initially the cell is
at the resting potential near �80mV and is polarized. Due to a stimulus, the cell becomes
depolarized very quickly. The depolarization is at the origin of the mechanical activity of the
cell. After this depolarization, the repolarization of the cell begins. During this phase, the cell
is in refractory phase which means that a new stimulus cannot trigger a new depolarization.
The form of the action potential varies in the heart. Figure 2.4 gives a presentation of these
various forms. The term Itotion aims at describing these different states of the cell with various
levels of details according to the choice of the ionic model. In terms of modeling, action
potentials are produced as a result of ionic currents that pass across the cell membrane,
triggering a depolarization or repolarization of the membrane over time. The currents are
produced by the displacement of ionic species across the membrane through ionic channels.
The channels open and close in response to various stimuli that regulate the transport of
ions across the membrane. Each type of channel is highly selective for a specific ion, the
most important of which being Na+, K+, Ca2+, and Cl�, and different types of channels
sensitive to a given ion can also exist with different kinetics governing their opening and
closing. Many physiological models exist in the literature, see [43] for a survey of various
models. Historically, the first action potential model is the Hodgkin-Huxley model [20]. In
order to understand the complexity of physiological models, we present a brief description of
the Hodgkin-Huxley model, the most important model in all of the physiological theory, see
[22], originally formulated for neurons. In fact, the Hodgkin-Huxley theory had a remarkable
influence on electrophysiology and is the basis of all action potential models. As seen before,
the cell membrane can be modeled as a combined resistor and capacitor,

Cm
@Vm

@t
+ Itotion,
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�80

20

Vm

Figure 2.3: Action potential i.e. the different states of a cell

Figure 2.4: Electrical response of each type of cardiac cell, inspired from [18]
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with the ionic current Itotion decomposed into two parts,

Itotion = Iion � Iapp. (2.35)

The term Iapp corresponds to the external stimulus current. The transmembrane current Iion
proposed by the Hodgkin-Huxley model consists of

Iion = INa + IK + Il,

with the sodium current INa, the potassium current IK , and the leakage current Il which
concerns various ions and primarily chloride ions. The currents are determined by

INa = gNa(Vm � ENa),

IK = gK(Vm � EK),

Il = gK(Vm � El),

where gNa, gK and gl are the conductances and ENa, EK and El, the equilibrium voltages
of the currents INa, IK and Il respectively. The conductance gl is supposed to be constant
and the other conductances are defined by

gNa = m3hḡNa,

gK = m4ḡK ,

with ḡNa and ḡK are the maximal conductances of the sodium and potassium currents, re-
spectively. The dimensionless state variables m, n and the inactivation variable h verify

dw

dt
= ↵w(1 � w) � �ww, w = m, n, h,

where ↵w and �w, w = m, n, h, are the voltage-dependent rate constants and control the
activation and inactivation of the variables m, n and h. An adaptation of this model to the
cardiac action potential is given with the Noble model, see [34]. More complex models – with
many ionic currents – were based on the Noble model. We can cite the Luo-Rudy model [26]
for the ventricles (19 ionic currents and 30 other variables) and the Courtemanche-Ramirez-
Nattel model [14] for the atria (12 ionic currents and 20 other variables, see Figure 2.5),
for example. The number of variables of these complex models increase the number of or-
dinary differential equations coupled with the bidomain model and can induce significant
computation times.

All the above-described models are physiological models. As already explained, these
models describe the detailed ionic exchanges. Other models – named phenomenological
models – are an approximation of the ionic channels. These models are intended to describe
the excitability process with a lower complexity. With only one (or a few) additional vari-
able(s) w named the state variable(s) – and then only one (or a few) ordinary differential
equation(s) – these models are able to reproduce the depolarization or repolarization of the
membrane. The first phenomenological model is the FitzHugh-Nagumo model described in
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Figure 2.5: A presentation of the Courtemanche model, a classical ionic model for the atria

[16, 30],

Iion = kVm(Vm � a)(Vm � 1) + w, (2.36)
dw

dt
+ g(Vm, w) = 0,

with
g(Vm, w) = �"(�Vm � w),

and with k and a, positive constants. A more widely phenomenological accepted model for
ventricular action potential is the Mitchell-Schaeffer model presented in [27],

Iion =
w

⌧in
(Vm)2(Vm � 1) � Vm

⌧out
, (2.37)

dw

dt
+ g(Vm, w) = 0,

with

g(Vm, w) =

8
>>>><

>>>>:

w � 1

⌧open
if Vm  vgate,

w

⌧close
if Vm > vgate

(2.38)

and with ⌧open, ⌧close, ⌧in, ⌧out and vgate, positive constants. We use this phenomenological
model for the simulations in Section 2.3. Figure 2.6 gives the form of an action potential
with the Mitchell-Schaeffer model. We can also see in this figure the area of influence of
each parameter.
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⌧close

⌧in

⌧out

⌧open

Figure 2.6: An action potential with Mitchell-Schaeffer model (and influence of parameters)

2.1.5 Existence and uniqueness of the bidomain model

We recall that the bidomain model can be written in the following form
8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Am

⇣
Cm

@Vm

@t
+ Itotion

⌘
� ~r~x ·

Ä
~~�i · ~r~x Vm

ä

= ~r~x ·
Ä
~~�i · ~r~x ue

ä
, on ⌦ ⇥ (0, T ),

~r~x ·
⇣Ä
~~�i + ~~�e

ä
~r~x ue

⌘
= �~r~x ·

Ä
~~�i · ~r~x Vm

ä
, on ⌦ ⇥ (0, T ),

(~~�i · ~r~x Vm) · ~n@⌦ = �(~~�i · ~r~x ue) · ~n@⌦, on @⌦ ⇥ (0, T ),

(~~�e · ~r~x ue) · ~n@⌦ = 0, on @⌦ ⇥ (0, T ).

(2.39)

The problem is complemented with initial conditions

Vm(0, ~x) = V 0

m(~x), 8x 2 ⌦.

We notice that ue is defined up to a constant. We fix this constant by enforcing the following
condition Z

⌦

ue = 0

on the extra-cellular potential. These equations are coupled with one or more ordinary dif-
ferential equations governing Itotion, see Section 2.1.4 for more details.

The existence and uniqueness of the bidomain model has been studied for different ionic
models in the literature. The first analysis of the bidomain model has been reported in [12].
The proof is valid for the FitzHugh-Nagumo ionic model (2.36) and is based on a reformula-
tion of the equations in terms of an abstract evolutionary variational inequality. The analysis
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for a simplified ionic model, i.e. when Iion(Vm, · · · ) = Iion(Vm), has been presented in [4].
For example in this article, it is shown that – under assumptions on the ionic term and on the
diffusion tensors and if Vm(0) 2 L2(⌦) – a unique solution (ui, ue, Vm) 2 L2

Ä
0, T, H1

0

(⌦)
ä

with Vm = ui � ue exists and verifies @tVm 2 L2

Ä
0, T, (H1

0

(⌦))0
ä
. In a more recent work [8],

existence and uniqueness of a solution are proved for the bidomain model with a class of
general ionic models (including FitzHugh-Nagumo, Aliev-Panfilov [1] and MacCulloch [7]),
using a semi-group approach. Finally, in [48], existence, uniqueness and some regularity
with a generalized phase-I Luo-Rudy ionic model [26] are proved.

Remark 3. In practice, we only represent the transmembrane potential in the results of the
simulations. Indeed, the diffusion of the front propagation and also the evolution of action
potential is represented by the transmembrane potential. A simplified version of the bidomain
model named the monodomain model exists, see [11] for more details,

8
>><

>>:

Am

⇣
Cm

@Vm

@t
+ Itotion,m

⌘
� ~r~x ·

Ä
~~�m · ~r~x Vm

ä
= 0, on ⌦ ⇥ (0, T ),

(~~�m · ~r~x Vm) · ~n@⌦ = 0, on @⌦ ⇥ (0, T ).

(2.40)

This model can be obtained in the case where the intra- and the extra-cellular domains have the
same anisotropic ratio, i.e.

~~�i = �~~�e.

We use the bidomain model because the monodomain model is a restrictive case and we need to
have the knowledge of the extra-cellular potential in order to compute electrocardiograms, see
Chapter 6.

2.2 Mechanical bidomain model

In this part, we are interested in the effects of mechanical deformation on the heart
electrical activity. In Section 2.2.1, we give the notations and the kinematical definitions. In
Section 2.2.2, we establish the conservation laws: the mass conservation and the principle of
virtual work for the solid and the charge conservation for the ionic species. In Section 2.2.3,
we give the constitutive laws and we finish in Section 2.2.4 by the presentation of the modi-
fied bidomain model.

2.2.1 Classical definitions

We consider the heart as a deformable porous medium. However, in a first approximation,
we will neglect the fluid flows hence consider an equivalent solid medium. This medium
occupies at time t the space domain ⌦(t) with boundary @⌦(t). We denote by (⌦

0

, @⌦
0

)
the reference configuration, not necessarily corresponding to (⌦(0), @⌦(0)). We consider a
material point M

0

at position ~⇠ in ⌦
0

. The trajectory of the point M
0

is defined by the curve
~x(t) = ~�(~⇠, t). The total Lagrangian formulation consists in considering the physical and
mechanical quantities of interest in the variable ~⇠ 2 ⌦

0

. The deformation is then a unique
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mapping from the reference configuration to the current configuration giving the position of
each material point over time,

~� :

®
⌦̄
0

⇥ [0, T ] ! R3

(~⇠, t) 7! ~x(t) = ~�(~⇠, t).

We define the displacement ~y by ~y(~⇠, t) = ~x � ~⇠ = ~�(~⇠, t) � ~⇠ and the gradient by

~~F (~⇠, t) = ~r~⇠
~� = ~~1 + ~r~⇠

~y.

We denote by d⌦ the volume measure in the reference configuration. The deformed volume
is then given by Jd⌦ with J = det

~~F and the deformed area vector by J
~~F�T · ~dS.

The local changes of geometry are given by the Green-Lagrange strain tensor denoted by ~~e
and defined by

~~e =
1

2
(~r~⇠

~y + (~r~⇠
~y )| + (~r~⇠

~y )| · ~r~⇠
~y ).

The linearized expression of ~~e is

~~" =
1

2
(~r~⇠

~y + (~r~⇠
~y )|).

2.2.2 Conservation laws

2.2.2.1 Principle of virtual work for the solid

We start with the mass conservation law of the solid and we obtain

@⇢s
@t

+ ~r~x · (⇢s ~vs) = 0, ⌦(t), (2.41)

with ⇢s the solid density and ~vs the solid velocity. Using the mass conservation and the
conservation of momentum, we can derive Newton’s second law of motion,

~r~x · ~~�+ ⇢s ~f � ⇢s~�s = 0, ⌦(t), (2.42)

with ~�s the acceleration of the solid and ~~� the Cauchy stress tensor. The weak formulation of
this fundamental law of dynamics is given on the space of admissible displacements V (⌦(t)).
We obtain in the Eulerian and Lagrangian formulations

Z

⌦(t)

Ä~~� : ~~" (~v⇤
1

) � ⇢s(~f � ~�s) · ~v⇤
1

ä
d⌦ �

Z

@⌦(t)

~t · ~v⇤
1

dS = 0, 8~v⇤
1

2 V (⌦(t)), (2.43)
Z

⌦0

Ä~~⇤ : d~y ~~e · ~v⇤
1

� ⇢
0

(~f � ~�s) · ~v⇤
1

ä
d⌦ �

Z

@⌦0

~t
0

· ~v⇤
1

dS = 0, 8~v⇤
1

2 V (0), (2.44)



2.2. Mechanical bidomain model 59

with

d~y ~~e =
1

2

Ä~~F T · ~r~⇠
~v⇤ + (~r~⇠

~v⇤)| · ~~F
ä

⇢
0

(⇠) = J⇢s(x(⇠, t), t),

~~⇤ = J
~~F�1

~~�
~~F�T ,

and ~t
0

= Jk~~F�T · ~n
0

k~t.

2.2.2.2 Charge conservation

We denote by ~vi,k,r and ~ve,k,s, the relative velocities of the species k in the intra and
extracellular domains respectively. These relative velocities correspond to the ionic velocities
in the classical bidomain model. In this part, the species also moves due to the transport
effect of the solid with velocity ~vs. Then the flux of the species k in the intra and extracellular
domains is respectively defined by

~|i,k = ~|i,k,r + ~|i,k,s = ci,k(~vi,k,r + ~vs),

~|e,k = ~|e,k,r + ~|e,k,s = ce,k(~ve,k,r + ~vs),

with ci,k, ce,k the concentrations of the species k in the intra and extracellular domains,
respectively. We denote by �i and �e, the volume fractions of the intra- and extra-cellular
domains respectively. We suppose that �i and �e are constant in space and time for the sake
of simplicity. Based on the previous analysis of the homogenization process in fixed domain,
the conservation matter is directly extended at the macroscopic level and the equations are
posed in ⌦(t). Indeed, the conservation of matter gives

8
>>>><

>>>>:

�i
@ci,k
@t

+ �i~r~x · ~|i,k + Am µi,k = 0, ⌦(t),

�e
@ce,k
@t

+ �e~r~x · ~|e,k + Am µe,k = 0, ⌦(t).

(2.45)

where µe,k and µi,k correspond to the membrane interactions. The fact – that any charge
accumulation on one side of the membrane is automatically balanced by a charge on the
other side – allows to have

pi + pe =
NX

k=1

zkpi,k +
NX

k=1

zkpe,k = 0, ⌦(t).

The formulation (2.45) is a mixture theory like formulation. The mixture theory is a purely
macroscopic framework in which the cardiac medium is considered to be made of a super-
position of intra- and extra-cellular phases at each point. This theory can be applied in many
situations, even if the studied domain does not have a periodic or a quasi-periodic struc-
ture. Here, the mixture consists of N ionic species distributed in the intra- and extra-cellular
domains and directly gives (2.45).
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This method can be compared with the classical method which consists of a microscopic
model followed by a homogenization presented in Section 2.1. In order to justify this conser-
vation law, we present the relation with the first part. The homogenization needs a periodic
domain but this hypothesis is not necessary in the mixture theory. We can compare (2.45)
with (2.1) posed in each subdomain ⌦i and ⌦e. We have with the microscopic model,

8
><

>:

@tc
"
i,k + ~r~x · ~| "i,k = 0, ⌦"

i ,

@tc
"
e,k + ~r~x · ~| "e,k = 0, ⌦"

e,
~| "i,k · ~ni � ~| "e,k · ~ni = 0, �",

(2.46)

with " defined as Section 2.1.3.1. Defining

~| "i,k · ~ni = " p"i ,

we have the following variational formulation, 8vi, ve,

⇣
@tc

"
i,k, vi

⌘

⌦

"
i

�
⇣
~| "i,k, ~r~x vi

⌘

⌦

"
i

+
⇣
@tc

"
e,k, ve

⌘

⌦

"
e

�
⇣
~| "e,k, ~r~x ve

⌘

⌦

"
e

+ "
D
p"i , vi � ve

E

�

"
= 0.

(2.47)

We suppose that we have enough regularity so that the surface term converges as in Section
2.1.3.1, i.e. there exists pi such that

"
D
p"i , vi � ve

E

�

"
! |�Y |

⇣
pi, vi � ve

⌘

⌦

.

The 2-scale convergence implies that there exist ci,k, ce,k, ~|i,k,~|e,k such that 8vi, ve,

|Yi|
⇣
@tci,k, vi

⌘

⌦

� |Yi|
⇣
~|i,k, ~r~x vi

⌘

⌦

+ |Ye|
⇣
@tce,k, ve

⌘

⌦

� |Ye|
⇣
~|e,k, ~r~x ve

⌘

⌦

+ |�Y |
⇣
pi, vi � ve

⌘

⌦

= 0. (2.48)

We then obtain 8
>>>>><

>>>>>:

|Yi|
|Y |@tci,k +

|Yi|
|Y |

~r~x · ~|i,k +
|�Y |
|Y | pi = 0, ⌦,

|Ye|
|Y | @tce,k +

|Ye|
|Y |

~r~x · ~|e,k � |�Y |
|Y | pi = 0, ⌦.

(2.49)

We see that this homogenization process in the periodic case gives exactly (2.45) presented
in the mixture theory.

Using the electroneutrality assumption, we obtain

⇢i = F
NX

k=1

zkci,k + ⇢0i = 0, and ⇢e = F
NX

k=1

zkce,k + ⇢0e = 0,

with ⇢0i , ⇢
0

e the background charge densities, F the Faraday constant and zk the valence of
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the ionic species k. The background density corresponds to the ionic species which are in
the fluid but do not move through the membrane because of the very weak permeability
of the membrane for these ionic species. For example, in most ionic models, we neglect
the variation of the chloride ions and we only consider the potassium, the sodium and the
calcium. The electroneutrality assumption implies

F
NX

k=1

zkci,k = �⇢0i , and F
NX

k=1

zkce,k = �⇢0e. (2.50)

2.2.2.3 Generalized bidomain model

The total flux ~|i in the intracellular domain is defined by ~|i = ~|i,r + ~|i,s with

~|i,r = F
nX

k=1

zk~|i,k,r = F
nX

k=1

zkci,k~vi,k,r

and

~|i,s = F
nX

k=1

zkci,k~vs = �⇢0i ~vs,

We have the same definition for ~|e,

~|e = ~|e,r + ~|e,s = F
nX

k=1

zkce,k~ve,k,r � ⇢0e ~vs. (2.51)

Using (2.45) and the definition of the flux, we then obtain a generalization of the bidomain
model 8

>><

>>:

@(�i⇢0i + �e⇢0e)

@t
+ �i~r~x · ~|i + �e~r~x · ~|e = 0,

�i
@⇢0i
@t

+ �i~r~x · ~|i + Ampi = 0,
(2.52)

We obtain for the first equation of (2.52) in the Eulerian and Lagrangian formulations,

Z

⌦(t)

Ç
@(�i⇢0i + �e⇢0e)

@t
v⇤
2

+ ~r~x · (�i~|i + �e~|e)v
⇤
2

å
d⌦

=
Z

⌦0

Ç
@(�iR0

i + �eR0

e)

@t
v⇤
2

+ ~r~⇠
· (�i ~Ji + �e ~Je)v

⇤
2

å
d⌦ = 0, 8v⇤

2

, (2.53)

with
~Ji = J

~~F�1~|i, ~Je = J
~~F�1~|e,

R0

i = J⇢0i , and R0

e = J⇢0e.
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2.2.2.4 Conservation laws

We finally obtain
8
>>>>>>>>>><

>>>>>>>>>>:

~r~x · ~~�+ ⇢s ~f � ⇢s~�s = 0, ⌦(t), Newton’s second law of motion

@(�i⇢0i + �e⇢0e)

@t |~x
+ �i~r~x · ~|i + �e~r~x · ~|e = 0, ⌦(t), Bidomain model

�i
@⇢0i
@t |~x

+ �i~r~x · ~|i + Ampi = 0, ⌦(t), Bidomain model.

(2.54)
We need constitutive laws in order for this model to be complete. The constitutive laws will
concern ~~� for the mechanical part and ~|i,e, pi for the bidomain part.

2.2.3 Constitutive laws

This section gives the constitutive laws.

2.2.3.1 Stress tensor

We suppose that the stress tensor is the sum of different contributions. We use the classi-
cal decomposition of the stress tensor in cardiac mechanical model, for more details see for
example [10].

2.2.3.2 Nernst-Planck equation

We use the detailed presentation of the Nernst-Planck equation given in Section 2.1.2.1
of the classical bidomain model. Necessarily, the study of the Nernst-Planck equation must
be done at the cellular level and the epsilon notation is used in order to distinguish the mi-
croscopic scale from the macroscopic scale. The presentation of the Nernst-Planck equation
is essential to understand how velocity appears in the friction force and the result is the rel-
ative velocity and not the complete velocity. In fact, the friction force is independent of the
solid displacement. Then the Nernst-Planck equation – when the domain moves – gives the
flux of the species ~| "i,k,r = c"i,k~v

"
i,k,r in the intracellular domain and we have,

~| "i,k,r = �RTq

Fµk

~r~x c"i,k +
zkqc"i,k

µk

~E"
i

= �Dk

Ä
~r~x c"i,k � Fzkc"i,k

RT
~E"
i

ä
, (2.55)

with Dk = RTq
Fµk

, the diffusion coefficient of the species k and the electric field denoted by ~E"
i .

The drift current is larger than the diffusion current and dominates. Then (2.55) becomes

~| "i,k,r = Dk

Fzkc"i,k
RT

~E"
i , (2.56)
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and we have

~| "i,r = F
nX

k=1

zk~|
"
i,k,r = �i ~E

"
i , ⌦(t), (2.57)

with

�i =
F2

RT

nX

k=1

(zk)
2Dkc

"
i,k, (2.58)

the conductivity coefficient that we have supposed to be constant even if it depends on c"i,k.
The electrostatic force ~Ei is related to an electrostatic potential u"

i by ~E"
i = �~r~x u"

i . We
finally obtain

~| "i,r = ��i~r~x u"
i . (2.59)

With the same analysis in the extracellular domain, we obtain

~| "e,r = ��e~r~x u"
e. (2.60)

Using the previous homogenization process, we know that at the macroscopic scale there
exist two diffusion tensors defined from a cell problem such that

�i~|i,r = �~~�i · ~r~x ui, ⌦(t) (2.61)

and
�e~|e,r = �~~�e · ~r~x ue, ⌦(t). (2.62)

We recall that ~~�i (and also ~~�e) has the following form

~~�i = �i�i
~~I + cell terms,

but that in practice, we do not compute the solution of the cell problems. However we take
into account the fibers of the cardiac muscle which correspond to preferred directions for the
signal. We can remark that we need to use the microscopic scale and the information issued
from the homogenization process in order to establish these constitutive laws.

2.2.3.3 Membrane behavior

As previously explained, the membrane is composed of a combined resistor and capacitor.
We assume that the ionic species of the membrane layer are fixed to the membrane and we
then infer

pi = Cm
@Vm

@t

����
~⇠
+ Itotion(Vm, · · · ), ⌦(t). (2.63)

We use an ionic model – as explained in Section 2.1.4 – for the term Iion.



64

2.2.4 Modified bidomain model

We finally obtain 8~v⇤
1

, v⇤
2

, v⇤
3

,

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Z

⌦(t)

⇣~~� : ~~" (~v⇤
1

) � ⇢s(~f � ~�s) · ~v⇤
1

⌘
d⌦ �

Z

@⌦(t)

~t · ~v⇤
1

dS = 0,

Z

⌦(t)

Ç
@(�i⇢0i + �e⇢0e)

@t
� ~r~x ·

Ä
(�i⇢

0

i + �e⇢
0

e)~vs
ä

�~r~x ·
Ä
~~�i · ~r~x ui + ~~�e · ~r~x ue

äå
v⇤
2

d⌦ = 0,

Z

⌦(t)

Ç
�i
@⇢0i
@t

� �i~r~x ·
Ä
⇢0i~vs

ä
� ~r~x ·

Ä
~~�i · ~r~x ui

ä
+ Am

⇣
Cm

@Vm

@t

����
~⇠
+ Itotion

⌘å
v⇤
3

d⌦ = 0.

(2.64)
This model can be rewritten in the Lagrangian framework
8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Z

⌦0

Ä~~⇤ : d~y ~~e · ~v⇤
1

� ⇢
0

(~f � ~�s) · ~v⇤
1

ä
d⌦ �

Z

@⌦0

~t
0

· ~v⇤
1

dS = 0,

Z

⌦0

Ç
@(�iR0

i + �eR0

e)

@t
� ~r~⇠

·
Ä
(�iR

0

i + �eR
0

e)
~~F�1~vs

ä

�~r~⇠
·
Ä~~⌃i · ~r~⇠

ui +
~~⌃e · ~r~⇠

ue

äå
v⇤
2

d⌦ = 0,

Z

⌦0

Ç
�i
@R0

i

@t
� �i~r~⇠

·
Ä
R0

i
~~F�1~vs

ä
� ~r~⇠

·
Ä~~⌃i · ~r~⇠

ui

ä
+ Am

⇣
Cm

@Vm

@t

����
~⇠
+ Itotion

⌘å
v⇤
3

d⌦ = 0,

(2.65)
where

~~⌃i,e = J
~~F�1 · ~~�i,e · ~~F�T . (2.66)

Comparing to the bidomain model, new terms appear which contain the background
densities and the solid velocity. The equations are written in moving domains. Some remarks
about this model are presented in the following section.

2.2.5 Remarks about the modified bidomain model

2.2.5.1 Background density and incompressibility

In the classical bidomain model, we assume that ⇢0i and ⇢0e are constant in time but
it is not necessarily a correct assumption in moving domain. In fact, when the material
is incompressible, we have @t⇢0i = @t⇢0e = 0 but if the material is compressible, we must
consider these new source terms.

We can also consider the assumption of ⇢0i and ⇢0e constant in space and in which case,
we have

~r~x · (�i⇢
0

i + �e⇢
0

e)~vs = (�i⇢
0

i + �e⇢
0

e)~r~x · ~vs.
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In the case of incompressibility of the material we have ~r~x ·~vs = 0, i.e. J = 1 and we finally
obtain

~r~x · (�i⇢
0

i + �e⇢
0

e)~vs = 0.

In the intracellular domain the fluid cannot move, hence the intracellular medium is an
incompressible material. We cannot suppose this concerning the extracellular domain. In
fact, during systole, the blood fluid cannot move but it is not verified during the diastole.
Depending on the incompressibility hypothesis, we have real source terms or not. The terms
will probably not have a large impact.

2.2.5.2 Conductivity

As previously said, the conductivities parameters depend on ce,k and ci,k but are consid-
ered constant as generally done in the literature and in particular in the homogenization
process. This particularity has been also noted in [35]. The influence of this dependence is
unknown and should be studied in order to quantify it.

2.2.5.3 Boundary conditions

The modified bidomain model requires boundary conditions. Concerning the two un-
knowns ui and ue, we can use the same boundary conditions of the classical bidomain model,

(~~�i · ~r~x ui) · ~n@⌦ = 0, on @⌦(t)

and
(~~�e · ~r~x ue) · ~n@⌦ = 0, on @⌦(t),

where ~n@⌦ is the exterior normal of @⌦(t).

2.2.5.4 Comparison with Mechano-Electrical Feedback

We want to compare our results with the literature and in particular, with the Mechano-
Electrical Feedback (MEF) [42, 32, 23, 24]. In this work, we study the impact of the displace-
ments in the conservation laws whereas in MEF, it is generally done through the constitutive
laws. Indeed, in MEF, various changes are considered as for example through the diffusion
tensors, the membrane capacitance Cm and/or the ionic current Iion – with in particular, the
consideration of the stretch-activated channels in [23, 24]. In theses studies, ~r~⇠

ui,e is used
instead of ~r~x ui,e in our work. For the intra-cellular tensor, it could be justified by the fact
that the number of the gap junctions is maybe the most important cause of the ions displace-
ment and not the actual distance. A full homogenization process with the consideration of
the gap junctions is necessary – for more detail see Remark 2 – if we want to validate this
hypothesis. However, this hypothesis cannot be applied in the extra-cellular domain.

As explained in Section 2.2.5.1, we do not expect an important influence of the new
source terms and this implies that the main consideration of the displacements impact in
our work is ~r~x ui,e. As detailed in what follows, in order to take into account the directions
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of the fibers in the cardiac muscle, we assume in this work, that the diffusion tensors are
decomposed into two parts

~~�i,e = �ti,e
~~I + (�li,e � �ti,e)~⌧ ⌦ ~⌧,

where the vector ~⌧ is of unit length and parallel to the local fiber direction, and �li,e and �ti,e
are the conductivity coefficients in the intra- and extra-cellular mediums measured along
and across – respectively – the fiber direction. In this work �l,ti,e are constant and the impact
of the displacements on the diffusion tensors is only represented in the fact that the fibers are
displaced with the heart. A consideration of the impact also in �l,ti,e using the MEF could be
very interesting. However, if we compare the mechano-electrical model presented in [32, 23]
with our model in Lagrangian framework (2.65), we remark that the results appear to be very
close for the diffusion tensors. Indeed, in [32, 23], the diffusion tensors are defined by

~~⌃i,e = J
~~F�1 · ~~F�T · ~~�i,e,

to be compared with (2.66) above. As the method which justifies this choice is not detailed,
we do not know if it means that the diffusion tensors are changed in order to replace ~r~x ui,e

in the case where ~~F�1 and ~~�i,e commute (e.g. in 1D). It is one of the perspectives of this
work to better understand this difference. Then the impact in the ionic current, still using
the MEF, is also an other very interesting perspective.

2.3 Numerical part

In this section we give a brief presentation of the numerical method of the bidomain
model that we have used and we present some simulations in a fixed and then in a moving
domain. The space and time discretizations used in the simulations are presented in Sec-
tion 2.3.1 and correspond to the discretizations presented in [6]. In collaboration with Elisa
Schenone, PhD student in REO Inria team, we implemented these procedures in the finite
element library named FELiScE1 developed at Inria.

2.3.1 Space and time discretization

The discretization in space is performed by applying the finite element method to an
appropriate weak formulation of the bidomain model. The bidomain model (2.39) coupled
with one ODE for example can be rewritten in a weak form as follows. For all t > 0, find

1
http://felisce.gforge.inria.fr

http://felisce.gforge.inria.fr
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Vm(·, t) 2 H1, ue()·, t) 2 H1 and w(·, t) 2 L1 with
R
⌦

ue = 0, such that
8
>>>>>>>><

>>>>>>>>:

Am

Z

⌦

⇣
Cm

@Vm

@t
+ Iion(Vm, w)

⌘
�+

Z

⌦

h
~~�i ·
Ä
~rVm + ~rue

äi
· ~r�

= Am

Z

⌦

Iapp�,
Z

⌦

h
(~~�i + ~~�e) · ~rue

i
· ~r +

Z

⌦

h
~~�i · ~rVm

i
· ~r = 0,

@tw + g(Vm, w) = 0, on ⌦,

(2.67)

for all �, 2 H1 such that
R
⌦

 = 0. The current Iapp is a given applied current stimulus as
seen in (2.35).

All the simulations in this thesis except the last part are performed by applying the finite
element method to the previous weak formulation of the bidomain model.

The resulting system is discretized in time by combining a second-order implicit scheme
(backward differentiation formulae, see [39]) with an explicit treatment of the ionic current.
Let N 2 N⇤ be a given integer and consider a uniform partition {tn, tn+1

}
0nN�1

with
tn = nT/N = n�t of the time interval [0, T ]. Denote by (V n

m, un
e , wn) the approximation of

(Vm, ue, w) obtained at time tn.
Then, (V n+1

m , un+1

e , wn+1) is computed as follows. For 0  n  N � 1,

Algorithm

1. We compute the second order extrapolation of V n+1

m by ũn+1

m = 2V n
m � V n�1

m .

2. We solve for wn+1,

1

�t

⇣3

2
wn+1 � 2wn +

1

2
wn�1

⌘
+ g(ũn+1

m , wn) = 0.

3. We solve for (V n+1

m , un+1

e ) with
R
⌦

un+1

e = 0,

8
>>>>><

>>>>>:

Am

Z

⌦

Cm

�t

⇣3

2
V n+1

m � 2V n
m +

1

2
V n�1

m

⌘
�+

Z

⌦

h
~~�i ·
Ä
~rV n+1

m + ~run+1

e

äi
· ~r�

= Am

Z

⌦

î
Iapp � Iion(ũn+1

m , wn+1)
ó
�,

Z

⌦

h
(~~�i + ~~�e) · ~run+1

e

i
· ~r +

Z

⌦

h
~~�i · ~rV n+1

m

i
· ~r = 0.

2.3.2 Heart conductivity

Cardiac muscle has a fiber architecture. The electrical conductivity is higher along than
across the fiber direction. As previously discussed, the anisotropy of the intracellular and
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extracellular media is included in our model through the conductivity tensors

~~�i,e = �ti,e
~~g + (�li,e � �ti,e)~⌧ ⌦ ~⌧,

where ~~g denotes the metric tensor – the components of which are given by the identity matrix
in an orthonormal coordinate system – the vector ~⌧ is of unit length and parallel to the local
fiber direction, and �li and �ti are the conductivity coefficients in the intra-cellular medium
measured along and across – respectively – the fiber direction, and likewise for �le and �te in
the extra-cellular medium.

2.3.3 External stimulus

The cells need an activation to become depolarized. Physiologically, the activation wave
begins at the sinus node in the right atrium and the signal then propagates throughout the
heart. In fact, the sinus node is the heart’s natural pacemaker. The sinus node generates an
electrical impulse during a small period of time denoted by tstim at each cardiac cycle. Then
for each simulation (with a realistic mesh or not) the applied current Iapp is a space - time
dependent function of the following form

Iapp(~x, t) =

®
I0app 8~x 2 ⌦stim, 8t 2 [0, tstim],
0 otherwise.

where ⌦stim corresponds to the stimulation area.

2.3.4 Simulations of the ventricles in realistic case

We present a simulation of the bidomain model in a ventricle realistic mesh in a healthy
case. This simulation is very much inspired by what was done in [6] that can be considered
as the starting point of this thesis from the numerical viewpoint. There were some differences
between the simulation of this section and the simulations of [6]. In fact, in collaboration
with Elisa Schenone when implementing the bidomain model in the finite element library
FELiScE, we devised a more realistic ventricle mesh and we adapted the parameters of the
ionic model and the applied stimulus for this new geometry. In Chapter 6, a coupled model of
the whole heart with a classical 3D model for the ventricles and an asymptotic surface-based
– presented in Chapter 3 – for the very fine atria is presented in order to obtain full simulated
electrocardiograms. In Chapter 6, we use a more realistic phenomenological model called
the Minimal model for human Ventricular action potentials (MV) for the ventricles introduced
by [9].

Realistic mesh and fibers position of the ventricles We start with the Zygote2 heart
model, a geometric model derived from anatomical data. We used the 3-matic software to
obtain a computationally-correct surface mesh and the Yams meshing software to refine the
surface mesh, see [17]. Then, we meshed the volume of the two ventricles using Ghs3d and

2
www.3dscience.com

www.3dscience.com
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Figure 2.7: Mesh (left) and fibers directions (right) of the ventricles

�te �le �ti �li
6.0 10�4 2.0 10�3 2.0 10�4 2.0 10�3

Table 2.1: Conductivity parameters (all in S.cm�1)

Gmsh. In Chapter 6 we compare the volume, the mass and the valves diameters of the left
ventricle of this mesh with literature reports of normal human heart dimension indicators,
and the anatomy corresponds to ventricular end-systole, namely, when the ventricle chamber
is smallest. This configuration corresponds to the configuration in the heart cycle that has
the smallest amount of internal stresses. That is why this configuration is used in some
mechanical modeling studies [21]. We can see in Figure 2.7 (left) different views of the
whole heart mesh, which contains about 230,600 tetrahedrons. We recall that the intra and
extra -cellular tensors are defined by

~~�i,e = �ti,e
~~g + (�li,e � �ti,e)~⌧ ⌦ ~⌧,

in order to take into account the privileged direction of the fiber ~⌧ in the diffusion. We use
[45, 31] to prescribe the fibers in the ventricles, see Figure 2.7 (right). Table 2.1 gives the
value of the tensor parameters.
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⌧in ⌧out ⌧open ⌧ endo
close ⌧Mcell

close ⌧ epi
close ⌧RV

close Vmin Vmax vgate
(cm2.mA�1) (ms) (mV)

4.0 90.0 300.0 120.0 100.0 80.0 90.0 �80.0 20. �67.0

Table 2.2: Mitchell and Schaeffer parameters

Ionic model and parameters of the bidomain model We use the Mitchell-Schaeffer
model (2.37), (2.38) presented in [27] with a normalization of the model

8
>>>><

>>>>:

Itotion = Iapp +
w

⌧in
(Vm � Vmin)2(Vm � Vmax) � Vm � Vmin

⌧out(Vmax � Vmin)
,

dw

dt
+ g(Vm, w) = 0,

(2.68)

with

g(Vm, w) =

8
>>>><

>>>>:

w

⌧open
� 1

⌧open(Vmax � Vmin)
if Vm  vgate,

w

⌧close
if Vm > vgate

and with ⌧open, ⌧close, ⌧in, ⌧out and vgate, positive constants. The value of Vmin corresponds
to the value of the resting potential, i.e. when the cell is polarized, and the value of Vmax

corresponds to the maximal potential, i.e. when the cell just finishes to become depolarized.
Table 2.2 gives the parameter values that we have used. Different values of ⌧close are given in
this table because we consider an heterogeneous tissue. As previously shown in Figure 2.6,
this parameter corresponds to the length of the plateau phase which varies through the
thickness of the ventricles, see [49]. Here, we consider three layers in the left ventricle
⌧ endoclose near the endocardium, ⌧Mcells

close in the mid-myocardium (M-cells) and ⌧ epiclose near the
epicardium. For the sake of simplicity, we take a constant value ⌧RV

close in the right ventricle.
Other ionic models are adapted for the ventricles as for example the Minimal model for
human Ventricular action potentials [9] used in Chapter 6.

The values of the membrane parameters are Am = 200.0 cm�1 and Cm = 10�3 mF.cm�2.

External stimulus As previously explained and in Chapter 1, the activation wave begins
at the sinus node in the right atrium and it propagates to the ventricles through the atri-
oventricular node and reach the His-bundle, which activates the septum and the Purkinje
network to stimulate all the endocardium. Our model does not include the atria and in or-
der to model the electric activation wave in an appropriate and simple way, we stimulate a
part of the endocardium. We apply a given volume current density to a thin subendocardial
layer of the ventricles during a small period of time tstim. See [6] for more details about the
external ventricular stimulus.

Simulations The results are presented in Figures 2.8 and 2.10. Figure 2.8 displays the re-
polarization and depolarization of the ventricles during a cardiac cycle. The colors represent
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Transmembrane 
Potential

(mV)-80 20

Time = 0 ms Time = 5 ms Time = 10 ms

Time = 15 ms Time = 20 ms Time = 25 ms

Time = 30 ms Time = 40 ms Time = 90 ms

Time = 200 ms Time = 250 ms Time = 260 ms

Time = 270 ms Time = 280 ms

Figure 2.8: Depolarization and repolarization of the ventricles during a cardiac cycle.



72

Figure 2.9: Vertical section of the heart using for Figure 2.10.

the transmembrane potential over time. At the beginning, i.e. at t = 0ms the value of the
transmembrane potential is �80mV in all the ventricles. This value corresponds to the rest-
ing potential i.e. when the ventricles are polarized. The period t = 0ms to 35ms corresponds
to the depolarizing phase. The ventricles become depolarized starting with the endocardium
and finishing at the epicardium. Thereafter we can see that the whole heart remains depolar-
ized for some time, and at t = 200ms, we see that the repolarization of the heart has started.
In Figure 2.8, we only display a ventricular section of this simulation. Figure 2.9 shows the
selected section. This ventricular section allows to observe more details about the depolar-
ization and the repolarization of the ventricles. We can see that the endocardium is depo-
larized first. Then the signal propagates through the thickness and reaches the pericardium.
Figure 2.8 also allows to understand why the ventricles are considered as a heterogeneous
tissue. As the plateau phase varies across the left ventricle wall, the repolarization is not in
the same direction than the depolarization.

2.3.5 Simulations in moving domain

In this section, we present some simulations with the mechanical bidomain model studied
in Section 2.2. We simplify the coupled problem presented in (2.64) by neglecting the new
source terms. We suppose that we have a mesh deformation over time and we use it to find
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Time = 0 ms Time = 5 ms Time = 10 ms

Time = 15 ms Time = 20 ms Time = 25 ms

Time = 30 ms Time = 40 ms Time = 90 ms

Time = 200 ms Time = 250 ms Time = 260 ms

Time = 270 ms Time = 280 ms

-80

Transmembrane 
Potential

(mV) 20

Figure 2.10: Depolarization and repolarization of a ventricular section (see Figure 2.9) dur-
ing a cardiac cycle.
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for all t > 0, ue(·, t), Vm(·, t) 2 H1(⌦(t)) with
R
⌦(t) ue = 0 such that

8
>><

>>:

Z

⌦(t)

⇣
~~�i ·
Ä
~r~x Vm + ~r~x ue

ä⌘
· ~r~x � d⌦ +

Z

⌦(t)
AmCm

⇣@Vm

@t

����
~⇠
+ Itot]ion

⌘
� = 0 d⌦,

Z

⌦(t)

⇣
~~�i · ~r~x Vm + (~~�e + ~~�i) · ~r~x ue

⌘
· ~r~x  d⌦ = 0,

(2.69)

for all �,  2 H1(⌦(t)) with
R
⌦(t)  = 0. The condition

R
⌦(t) ue = 0 is necessary to have the

uniqueness of the solution. We consider here the heart as an incompressible material – at
least a quasi-incompressible material see [50] for more details – which justifies that we do
not take into account the new source terms obtained in Section 2.2.5.1.

In a first stage, we present a test case in order to verify the finite library FELiScE with a
moving domain.

2.3.5.1 Test case in heat equation

The deformable structure occupies at time t the space domain ⌦(t) with boundary @⌦(t).
We denote by (⌦

0

, @⌦
0

) the reference configuration, equal here to (⌦(0), @⌦(0)). The do-
main ⌦

0

is defined by [�0.5, 0.5] ⇥ [�0.5, 0.5] ⇥ [0, 1] and the deformation is defined by
~�(~⇠, t) =

⇣
1

k(t)⇠1,
1

k(t)⇠2, ⇠3
⌘
, with k(t) a time dependent function. It corresponds to a scaling

in the directions x and y. We define

~~F (~⇠, t) = ~r~⇠
~�.

We study the problem, find u 2 H1

0

(⌦(t)),
Z

⌦(t)
@tu v +

Z

⌦(t)

~r~x u · ~r~x v =
Z

⌦(t)
fv, 8v 2 H1

0

(⌦(t)). (2.70)

The Lagrangian representation of (2.70) is, find ũ 2 H1

0

(⌦
0

)

Z

⌦0

@tũ ṽ J +
Z

⌦0

~~F�1~r~⇠
ũ · ~~F�1~r~⇠

ṽ J =
Z

⌦0

f̃ ṽ J, 8ṽ 2 H1

0

(⌦
0

), (2.71)

with ũ = u � ~� and f̃ = f � ~�.

We want to solve the following problem
8
<

:
@tũ � (

~~F�1~r~⇠
ũ)2 = f̃, ⌦

0

ũ = 0, @⌦
0

(2.72)

The function ũ(~⇠, t) = (⇠
1

� 0.5)(⇠
1

+ 0.5)(⇠
2

� 0.5)(⇠
2

+ 0.5)⇠
3

(⇠
3

� 1.0)t is solution of
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0.00

�3.123 ⇥ 10�2

�1.562 ⇥ 10�2

Figure 2.11: Exact solution (left) and Computed solution (right)

Time (ms) 0 0.5 1.0 1.5 2.0

Norm l1 0 1.359 ⇥ 10�5 2.742 ⇥ 10�5 4.146 ⇥ 10�5 5.571 ⇥ 10�5

Table 2.3: Error norms

(2.72) with

f̃(~⇠, t) = (⇠
1

� 0.5)(⇠
1

+ 0.5)(⇠
2

� 0.5)(⇠
2

+ 0.5)⇠
3

(⇠
3

� 1.0)

�2k2(t)(⇠
2

� 0.5)(⇠
2

+ 0.5)⇠
3

(⇠
3

� 1.0)t

�2k2(t)(⇠
1

� 0.5)(⇠
1

+ 0.5)⇠
3

(⇠
3

� 1.0)t

�2(⇠
1

� 0.5)(⇠
1

+ 0.5)(⇠
2

� 0.5)(⇠
2

+ 0.5)t.

We compute the solution of (2.70) using FELiScE with

⌦̄(t) = [�0.5k(t), 0.5k(t)] ⇥ [�0.5k(t), 0.5k(t)] ⇥ [0, 1],

f(~x, t) = (k(t)x � 0.5)(k(t)x + 0.5)(k(t)y � 0.5)(k(t)y + 0.5)z(z � 1.0)

�2k2(t)(k(t)y � 0.5)(k(t)y + 0.5)z(z � 1.0)t

�2k2(t)(k(t)x � 0.5)(k(t)x + 0.5)z(z � 1.0)t

�2(k(t)x � 0.5)(k(t)x + 0.5)(k(t)y � 0.5)(k(t)y + 0.5)t.

and k(t) = 1.0
1.0+0.1t .

In Figure 2.11, we compare the exact solution ũ and the solution obtained with FELiScE.
We observe a good agreement. We also report in Table 2.3 the l1 difference between the true
and the computed solutions. These results allow to validate the test case in a deformable
domain.
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⌧in ⌧out ⌧open ⌧close vgate Vmin Vmax

(cm2.mA�1) (cm2.mA�1) (ms) (ms) (mV) (mV) (mV)

4.0 90.0 500.0 100.0 �67.0 �80.0 20.0

Table 2.4: Parameters of the Mitchell-Schaeffer model

Am Cm �i �e
(cm�1) (mF.cm�2) (S.cm�1) (S.cm�1)

200 10�3 2.5 ⇥ 10�4 9.0 ⇥ 10�4

Table 2.5: Parameters of the bidomain model
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25 30 35 40

0

0.16

0.02

Figure 2.12: Displacements of the small (top) and large (bottom) deformations
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0 5 10 15 20

25 30 35 40

�80

15

�35

Figure 2.13: Results with the fixed domain (top), with the small deformation (middle) and
with the large deformation (bottom)

0 5 10 15 20

25 30 35 40

0 0.08

Figure 2.14: Displacements of the space-dependent deformation
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0 5 10 15 20

25 30 35 40

�80

15

�35

1

Figure 2.15: Results with the fixed domain (top) and with the deformation (bottom)

2.3.5.2 Simulations of the bidomain model in moving domain

As previously explained, we want to compute the following problem. Find for all t > 0,
ue(·, t), Vm(·, t) 2 H1(⌦(t)) with

R
⌦(t) ue = 0 such that

8
>><

>>:

Z

⌦(t)

⇣
~~�i ·
Ä
~r~x Vm + ~r~x ue

ä⌘
· ~r~x � d⌦ +

Z

⌦(t)
AmCm

⇣@Vm

@t

����
~⇠
+ Itotion

⌘
� = 0 d⌦,

Z

⌦(t)

⇣
~~�i · ~r~x Vm + (~~�e + ~~�i) · ~r~x ue

⌘
· ~r~x  d⌦ = 0,

(2.73)

for all �,  2 H1(⌦(t)) with
R
⌦(t)  = 0.

We use the space and time discretization presented in Section 2.3.1. The displacement
of the mesh is prescribed. We also use the Mitchell-Schaeffer model. The parameters of the
Mitchell-Schaeffer model are listed in Table 2.4. Table 2.5 gives the other parameters of the
bidomain model. The reference domain – corresponding here to ⌦(0) – is a 3D third-cylinder,
with internal radius rmin = 4, external radius rmax = 6 and height h = 0.5 (all dimensions
are given in cm). In the following two cases (simple and more complex), we suppose that
we only have an homogeneous diffusion.

First simulation - simple case To start with, we present two different deformations given
by Figure 2.12. In these first two cases, the meshes move following the exterior normal
direction. The associated displacements are linear in time and the norm of the displacements
is constant in space. The second deformation is larger than the first deformation. In this
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Figure 2.16: Mesh (left) and fibers directions (right) of the left ventricle

case, we do not take into account the fibers.
The results are presented in Figure 2.13. The top corresponds to the solution without
deformation. The middle corresponds to the solution with the small deformation and we
can remark that the electrical signal is slowed. The solution with the large deformation is
given at the bottom and we can see that the deceleration of the signal is more important.
The two deformations increase the length of the domain and increase the distance that the
wave must cross.

Second simulation - more complex case During the second deformation, the mesh al-
ways moves following the exterior normal direction but the norm of the displacement is not
constant in space as we can see in Figure 2.14. The external surface of the mesh moves less
than the internal surface.
The results are presented in Figure 2.15. The solution with the classical bidomain model is
given at the top and the bottom corresponds to the mechanical bidomain model with the
naive heart deformation. The displacement near the internal surface is larger and the wave
near this surface decelerates more than the wave next to the external surface.

Simple ventricle deformation In this paragraph, we present a more realistic case. We use
a simplified one-ventricle mesh, see Figure 2.16, in which the left ventricle is considered as
symmetric with respect to two orthogonal planes. The anatomy corresponds to ventricular
end-systole, namely, when the ventricle chamber is smallest and is the reference configu-
ration for the mechanical modeling. The displacements of this left ventricle are the results
of a bio-mechanical simulation which has been performed by colleagues of the Inria team
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Figure 2.17: Volume of the left ventricle during a cardiac cycle
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�te �le �ti �li
4.0 10�3 1.2 10�2 1.2 10�3 1.2 10�2

Table 2.6: Conductivity parameters (all in S.cm�1) for the left ventricle case

M⌅DISIM. The bio-mechanical model is presented for example in [10]. In this model, the
electrical stimulation is an input which is represented by a very simplified action potential
(close to a crenel function). The electrical signal starts at the bottom of the left ventricle
– named the apex – and the wave rises along the ventricle at constant speed. We adapt our
electrical signal at this activation pattern.

Figure 2.17 recalls the time evolution of the left ventricle volume during a cardiac cycle.
The depolarization occurs when the ventricle chamber is largest and the repolarization when
the chamber is smallest. Figure 2.18 gives the evolution of various indicators of the left
ventricle during one cardiac cycle obtained by the bio-mechanical simulation. We see that
the volume of the left ventricle is higher than in a normal case. Indeed, the left ventricle
mesh is a bit large compared to a realistic case.

As previously, we present two simulations one in fixed domain and one in moving do-
main. The mesh used for the simulation in fixed domain corresponds to the mechanical
reference configuration. The conductivity parameters used for the bidomain model are given
in Table 2.6. The other parameters are the same as in Section 2.3.4 expect the value of ⌧close
which is constant and equals 90ms. Due to the large size of the left ventricle mesh, the con-
ductivity parameters are high compared to the realistic case presented in Section 2.3.4. The
results of a cardiac cycle are presented in Figure 2.19. At each time, the left corresponds to
the case in fixed domain and the right the results in moving domain. We apply the defor-
mation of the ventricles using the displacements. Boundary conditions are prescribed in the
apex. The left ventricle is depolarized (between 80 and 160ms) when the left atrium ejects
the blood in the ventricles, see Figure 1.5 in Chapter 1. This implies that the ventricular
chamber is greater and as can be seen in the figure, the duration of depolarization is then
longer. During the repolarization, the volume of the ventricles is smaller and the delay of
the signal is slightly caught. We also remark that the signal does not remains horizontal, see
for example t = 150ms and t = 300ms. The origin of this phenomenon is that the ventricle
contracts following the directions of the fibers, see Figure 2.16 and that the ventricle is larger
in one direction. Figure 2.20 allows to better understand these differences between the two
simulations. Indeed, the transmembrane potential for three nodes of the mesh is represented.
The green curves correspond to the fixed case and the purple to the moving case. For the
node near the apex, we do not see differences due to the boundary conditions. Furthermore,
this node is one of the first to be depolarized, i.e. the delay due to the filling of the ventricle
is not yet significant. In the other two nodes, the delay during the depolarization is signif-
icant and decreases a little during the repolarization. Indeed during the repolarization, the
ventricles are contracted. This more realistic case gives just an example of the impact of the
mechanical deformation of the heart on the electrical activation but remains very limited.
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Figure 2.19: Cardiac cycle of the left ventricle (in fixed domain at the left and in moving
domain at the right)
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Figure 2.20: Cardiac cycle of the left ventricle (in fixed domain at the left and in moving
domain without the mesh deformations at the right)
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Figure 2.21: Comparison of transmembrane potential Vm in three nodes of the mesh between
the fixed case (green) and the moving case (purple)
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2.3.5.3 Discussion

We obtain expected results, i.e. the effects obtained with a deformation are of the same
order than the deformation. The impact in the results seems to be comparable to these
obtained with the classical mechano-electrical models, which only consider changes in the
constitutive laws. One perspective of this work is to compare our mechanically deformed
bidomain model – which takes into account the heart deformation in conservation laws –
with the classical mechano-electrical model in a real case. We can also consider the new
source terms – see Section 2.2.5.1 – if we suppose that the heart is not incompressible.

Conclusion

In this chapter, we have presented the bidomain model, a classical electrophysiologi-
cal model. This description was divided into two main parts. The first part consisted of a
complete presentation of the equations of the bidomain model, with the model of cellular
activity, the considered electrical transmembrane conditions and the homogenization pro-
cess. The second part studied the effects of mechanical deformation on the heart electrical
signal based on the mixture theory. We concluded this chapter with a numerical part com-
posed of a simulation in realistic case of the ventricles with the classical bidomain model and
simulations in moving domain. We have also provided details on the discretization algorithm.
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Part II

3D AND SURFACE-BASED MODELS





Introduction of Part II

In the following part of this thesis, we are interested in the atrial electrophysiology. In-
deed, as you have seen in the previous chapter, we are able to provide realistic electrophysi-
ological numerical simulations but only for the ventricles. The specificity of the atria is that
they have very thin walls and this implies prohibitive computational times. Moreover the
atria mostly appear as thick surfaces in medical imaging. For all these reasons, we want
to derive a 2D electrophysiology model from a 3D model. This surface-based model should
be defined over the midsurface of the thin region and should take into account the strong
anisotropy variations across the thickness. It is the subject of Chapter 3 – the first chap-
ter of this part – which takes the form of an article [3] gathering the work carried out in
collaboration with D. Chapelle and J.-F. Gerbeau

A surface-based electrophysiology model relying on asymptotic analysis and motivated by
cardiac atria modeling.

Due to the strong anisotropy, we present in this article an asymptotic analysis of the dif-
fusion term. Following similar strategies used in shell mechanical modeling, we consider a
Galerkin reduction of the problem posed in a subspace given by polynomial variations of the
quantity of interest in the thickness variable - in our case quadratic polynomials. An asymp-
totic analysis then consists in studying the behavior of the diffusion model when varying the
thickness parameter " which is the ratio between between the size of the thickness and the
diameter of the midsurface while keeping the midsurface fixed. We find a limit problem in
keeping only the first term of the development after an integration along the thickness vari-
able. In this article, we give a proof of the weak convergence of the quadratic decomposition
of the 3D quantity to the solution of limit problem which is a surface-based model. The proof
of this weak convergence is inspired from methods using in shell mechanical modeling. We
also give in this article the strong convergence. Using the asymptotic analysis of the diffu-
sion problem, we propose a bidomain asymptotic model valid for thin cardiac structure as
atria. We validate this model by comparing simulations of the bidomain asymptotic model
with the classical bidomain model.

The strategy used for the passage between the weak and the strong convergence is also
adapted for the proof of the strong convergence of the 3D-shell model. This strong con-
vergence is given in Chapter 4 – the second chapter of this part – which is an article [2] in
collaboration with D. Chapelle

Strong convergence results for the asymptotic behavior of the 3D-shell model.

This article also contains an improved version of the proof of the weak convergence previ-
ously presented in [4, 1].
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CHAPTER 3
A surface-based electrophysiology model

relying on asymptotic analysis and motivated
by cardiac atria modeling

Abstract Computational electrophysiology is a very active field with tremendous potential
in medical applications, albeit it leads to highly intensive simulations. We here propose a
surface-based electrophysiology formulation, motivated by the modeling of thin structures
such as cardiac atria, which greatly reduces the size of the computational models. Moreover,
our model is specifically devised to retain the key features associated with the anisotropy in
the diffusion effects induced by the fiber architecture, with rapid variations across the thick-
ness that cannot be adequately represented by naive averaging strategies. Our proposed
model relies on a detailed asymptotic analysis in which we identify a limit model and estab-
lish strong convergence results. We also provide detailed numerical assessments that confirm
an excellent accuracy of the surface-based model – compared with the reference 3D model
– including in the representation of a complex phenomenon, namely, spiral waves.
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Abstract

Computational electrophysiology is a very active field with tremendous potential in med-
ical applications, albeit it leads to highly intensive simulations. We here propose a surface-
based electrophysiology formulation, motivated by the modeling of thin structures such as
cardiac atria, which greatly reduces the size of the computational models. Moreover, our
model is specifically devised to retain the key features associated with the anisotropy in the
di↵usion e↵ects induced by the fiber architecture, with rapid variations across the thickness
that cannot be adequately represented by naive averaging strategies. Our proposed model
relies on a detailed asymptotic analysis in which we identify a limit model and establish
strong convergence results. We also provide detailed numerical assessments that confirm
an excellent accuracy of the surface-based model – compared with the reference 3D model
– including in the representation of a complex phenomenon, namely, spiral waves.

Keywords: Computational electrophysiology; Asymptotic analysis; Thin domains; Cardiac
modeling
Mathematics Subject Classification (2010): 22E46, 53C35, 57S20

1 Introduction

Cardiac electrophysiology purports to describe and model chemical and electrical phenom-
ena taking place in the cardiac tissue, and which are responsible for activating the mechanical
contraction in the myocytes, namely, the cardiac muscle cells, see e.g. Refs. [16, 15, 19, 3] and
references therein. Given the frequent occurrence of pathologies – such as atrial fibrillation and
ventricular tachycardia – directly a↵ecting electrophysiology, hence impairing cardiac function,
the detailed understanding of the associated underlying mechanisms is particularly important.
In this context, there is a tremendous potential for modeling, in particular with models ad-
equately “personalized” to given patients, in order to guide medical decision in selecting the
best-adapted therapeutic strategy [18, 17]. For instance, personalized models may be used to
optimize the procedure called radio-frequency ablation that aims at treating cardiac arrythmias
– e.g., atrial fibrillation – by blocking some abnormal conduction pathways.

Computational electrophysiology modeling – when aiming at representing the behavior of
the global heart or whole subparts thereof, which of course is crucial when considering con-
duction phenomena and their incidence on cardiac function – is known to give rise to highly
intensive simulations [7, 9]. This is due, in particular, to the substantial refinements required in
the meshes in order to accurately capture the conduction waves. As personalized modeling gen-
erally involves the solution of inverse problems in order to estimate anatomical and biophysical
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parameters characterizing a given patient-specific model – in order to enable predictive mod-
eling – based on clinical data, this may lead to prohibitive computational times, indeed. The
same di�culty holds as regards optimization loops needed to adapt the therapeutic strategy.

Nevertheless, when considering the thin-ness of cardiac structures such as the atria, there
is clearly a case for modeling simplifications based on considering surface-based descriptions
– hence, in essence two-dimensional (2D) – instead of 3D models, very much in the spirit of
structural models – such as shells – in mechanics. Such mechanical models have been extensively
analyzed and provide extremely computationally-e↵ective formulations, with very limited loss
of accuracy when the structure is thin. As regards electrophysiology modeling, this path has
been scarcely explored. A frequently-argued explanation for that lies in the complexity of the
3D anatomical details that appear to be needed to accurately capture the relevant phenomena.
In particular, the fiber architecture of the muscle gives rise to strong anisotropy in the di↵usion
phenomena, and the fiber directions are known to be very rapidly varying across the thickness of
the cardiac walls, including in the atria [10]. This makes naive surface reductions of the models
based on isotropy or “average anisotropy” assumptions very inaccurate, and in fact altogether
unable to represent some complex conduction patterns [12].

The objective in this paper is to propose a surface-based electrophysiology model relying
on a detailed asymptotic analysis. This type of derivation – also available for shell structures
in mechanics, see e.g. Refs. [6, 4, 5] – provides a “mathematically justified” surface model
designed for thin structures. In our case, in order to incorporate the above-mentioned key
anatomical details, we include the rapid variations of the fiber direction within our asymptotic
analysis assumptions. We point out that some asymptotic derivations have also been performed
in earlier works,[14] albeit without taking into account the anisotropy and variations thereof.

An outline of the paper is as follows. In Sections 2 and 3 we recall some relevant elements
of cardiac electrophysiology modeling, and di↵erential geometry, respectively. Next, in Section
4 we formulate an asymptotic framework for an anisotropic di↵usion model with anisotropy
directions rapidly varying across the thickness, and we establish strong convergence results to
a limit model. This allows us to propose a surface-based electrophysiology model in Section 5,
with detailed numerical assessments.

2 Elements of cardiac electrophysiology

The electric wave propagating in the cardiac tissue can be represented by a nonlinear
reaction-di↵usion partial di↵erential equation (PDE), coupled with an ordinary di↵erential equa-
tion (ODE) representing cellular activity. Considering in particular the bidomain model – see
for example Refs. [16, 15, 19, 2] – equations can be written in terms of the extracellular potential
ue, the transmembrane potential Vm = ui �ue, with ui the intracellular potential, and the ionic
variable w, as

8
>>>>><

>>>>>:

Am

⇣
Cm

@Vm

@t
+ Iion(Vm, w)

⌘
� div

�~~�i · ~rVm

�

= div
�~~�i · ~rue

�
+ AmIapp, in B ⇥ (0, T ),

div
⇣�~~�i + ~~�e

� · ~rue

⌘
= � div

�~~�i · ~rVm

�
, in B ⇥ (0, T ),

@tw + g(Vm, w) = 0, in B ⇥ (0, T ),

(1)

where B denotes the 3D domain of interest, and with appropriate boundary conditions

( �~~�i · ~rue

� · ~n = ��~~�i · ~rVm

� · ~n, in @B ⇥ (0, T ),�~~�e · ~rue

� · ~n = 0, in @B ⇥ (0, T ),
(2)
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where Am is a positive constant denoting the ratio of membrane area per unit volume, Cm

the membrane capacitance per unit surface, Iion(Vm, w) a reaction term representing the ionic
current across the membrane, and Iapp a given applied stimulus current.

The current Iion can be described by a phenomenological model. In this study, the model
proposed by Mitchell and Schae↵er in Ref. [13] is considered. The functions g and Iion are then
given by

Iion(Vm, w) = �w(Vm � Vmin)2(Vmax � Vm)

⌧in(Vmax � Vmin)
+

Vm � Vmin

⌧out(Vmax � Vmin)
,

g(Vm, w) =

8
><

>:

w

⌧open
� 1

⌧open(Vmax � Vmin)2
if Vm < Vgate,

w

⌧close
if Vm � Vgate,

where ⌧in, ⌧out, ⌧open, ⌧close are given parameters and Vmin, Vmax, Vmin < Vgate < Vmax auxiliary
constants.

Cardiac muscle has a fiber architecture. The electrical conductivity is higher along than
across the fiber direction. The intracellular and extracellular media are therefore anisotropic.
This anisotropy is included in our model defining the conductivity tensors ~~�i and ~~�e by

~~�i,e = �ti,e
~~g + (�li,e � �ti,e)~⌧ ⌦ ~⌧ ,

where ~~g denotes the 3D metric tensor – the components of which are given by the identity matrix
in an orthonormal coordinate system, see e.g. Ref. [4] – the vector ~⌧ is of unit length and parallel
to the local fiber direction, and �li and �ti are the conductivity coe�cients in the intra-cellular
medium measured along and across – respectively – the fiber direction, and likewise for �le and
�te in the extra-cellular medium.

The bidomain model can be rewritten in weak form as follows. For all t > 0, find Vm(·, t) 2
H1, ue(·, t) 2 H1 and w(·, t) 2 L1 with

R
B ue = 0, such that

8
>>>>>>><

>>>>>>>:

Am

Z

B

⇣
Cm

@Vm

@t
+ Iion(Vm, w)

⌘
�+

Z

B

h
~~�i · �~rVm + ~rue

�i · ~r�

= Am

Z

B
Iapp(Vm, w)�,

Z

B

h
(~~�i + ~~�e) · ~rue

i
· ~r +

Z

B

h
~~�i · ~rVm

i
· ~r = 0,

@tw + g(Vm, w) = 0, in B,

for all �, 2 H1 such that
R
B  = 0.

With our motivation of deriving a 2D model valid for thin cardiac structures – the atrial
walls, in particular – and defined over the midsurface of the thin region, we observe that the
main di�culty in representing the anisotropy resulting from the preferred conduction direction
along the muscle fibers – which may rapidly vary across the thickness – arises from the di↵usion
term in the equations. Hence, in our mathematical analysis we will focus on this term, with the
primary concern of taking into account both major features, namely, anisotropic behavior and
heterogeneous distribution across the thickness.

3 Geometric preliminaries

The midsurface S of the body is described by a mapping ~� defined over !, with ! a domain of
R2, and with values in the three-dimensional Euclidean space E , see Figure 1. We assume that ~�
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S

B
~a1~a2

~a3~�

⇠1

⇠2

⇠3

⌦

!

Figure 1: Geometric domain and midsurface S descriptions

is as regular as needed. For the sake of simplicity in our asymptotic analysis we suppose that the
thickness of the body, denoted by d, is constant over S. We introduce L = diam(S) and " = d

L
a dimensionless thickness parameter. Note that this parameter is defined to be geometrically
intrinsic, namely, it is invariant with respect to changes in the geometric mapping ~� (hence, in
the coordinate system and its domain !) that preserve the surface.

Denoting by (⇠1, ⇠2) the coordinates used in R2 (hence in !), we define

~a↵(⇠1, ⇠2) = @↵~�(⇠1, ⇠2), ↵ = 1, 2.

We suppose that ~� is such that the vectors (~a↵)↵=1,2 form a basis – called the covariant basis
– for the tangential plane to the midsurface S at any point with coordinates in !. We also
introduce the contravariant basis (~a1,~a2) such that

~a↵(⇠1, ⇠2) · ~a�(⇠1, ⇠2) = ��↵, ↵,� = 1, 2, 8(⇠1, ⇠2) 2 !,

and we denote by
a↵� = ~a↵ · ~a� ,

the covariant components of the surface-attached metric tensor, see e.g. Ref. [4].

Remark 1 Introducing the 2 ⇥ 2 matrix A = (a↵�)↵,�=1,2, we have A�1 = (a↵�)↵,�=1,2 =
(~a↵ · ~a�)↵,�=1,2.

We denote by a the quantity a = k~a
1

⇥~a
2

k2, and the unit vector normal to the tangential plane
at any point with coordinates in ! is given by

~a
3

=
~a
1

⇥ ~a
2p

a
.

Defining now ⌦ = ! ⇥
i
�d

2
, +

d

2

h
, the 3D geometry is described by the mapping

~� :

⇢
⌦ �! E

(⇠1, ⇠2, ⇠3) 7�! ~�(⇠1, ⇠2) + ⇠3~a
3

(⇠1, ⇠2)

and the 3D geometric domain of interest is given by B = ~�
�
⌦
�
, see Figure 1. We also introduce

the 3D covariant basis

~g i(⇠
1, ⇠2, ⇠3) = @i~�(⇠1, ⇠2, ⇠3), i = 1, 2, 3, 8(⇠1, ⇠2, ⇠3) 2 ⌦,
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and the corresponding contravariant basis (~g 1,~g 2,~g 3)

~g i(⇠1, ⇠2, ⇠3) · ~g j(⇠
1, ⇠2, ⇠3) = �ji , i, j = 1, 2, 3, 8(⇠1, ⇠2, ⇠3) 2 ⌦.

The components of the 3D metric tensor ~~g in covariant form are then given by

gij = ~g i · ~g j .

Remark 2 Introducing the 3 ⇥ 3 matrix G = (gij)i,j=1,2,3, we have G�1 = (gij)i,j=1,2,3 =
(~g i · ~g j)i,j=1,2,3.

For a di↵erentiable scalar field defined over the surface the 2D gradient is given by

ru = @
1

u~a1 + @
2

u~a2,

whereas for a volume-defined quantity we have the 3D gradient

~ru = @
1

u~g 1 + @
2

u~g 2 + @
3

u~g 3.

We need a number of preliminary results that relate 3D quantities to surface quantities. For
the proofs of the three following propositions, see e.g. Ref. [4].

Proposition 1 Introducing the second and third fundamental forms respectively defined for all
↵,� = 1, 2 by

b↵� = ~a
3

· @�~a↵, c↵� =
X

�,µ=1,2

a�µb�↵bµ� ,

we have
g↵� = a↵� � 2⇠3b↵� + (⇠3)2c↵� , (3)

and, moreover,
g↵3 = 0, g

33

= 1. (4)

Proposition 2 For the volume measure given by dV =
p

g d⇠1d⇠2d⇠3, with g = (det(~g
1

,~g
2

,~g
3

))2 =
det(G), we have

g = a
�
1 � 2H⇠3 + K(⇠3)2

�
2

,

denoting by H and K the mean and Gaussian curvatures of the surface S, respectively. Assum-
ing that 1�2H⇠3+K(⇠3)2 is strictly positive over B̄, we then infer

p
g =

p
a
�
1�2H⇠3+K(⇠3)2

�

and 9� > 0,
p

g > �
p

a.

Proposition 3 There exist two strictly positive constants c
1

, c
2

such that, 8(⇠1, ⇠2, ⇠3) 2 ⌦,
8(x

1

, x
2

) 2 R2,

c
1

2X

↵,�=1

a↵�(⇠1, ⇠2)x↵x� 
2X

↵,�=1

g↵�(⇠1, ⇠2, ⇠3)x↵x�  c
2

2X

↵,�=1

a↵�(⇠1, ⇠2)x↵x� .

We can then show the following identity.

Lemma 1 8↵,� = 1, 2, there exist d↵� and e↵�, two functions of (⇠1, ⇠2) in L1(!), such that

g↵� =
1

�
1 � 2H⇠3 + K(⇠3)2

�
2

�
a↵� � 2⇠3d↵� + (⇠3)2e↵�

�
.

Proof According to Remarks 1 and 2, we have

A�1 =

✓
a11 a12

a12 a22

◆
=

1

a

✓
a
22

�a
12

�a
12

a
11

◆
, G�1 =

0

@
g11 g12 0
g12 g22 0
0 0 1

1

A =
1

g

0

@
g
22

�g
12

0
�g

12

g
11

0
0 0 1

1

A .

Using Propositions 1 and 2, we can then conclude. ⇤
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Finally, this directly implies the following result.

Proposition 4 8↵,� = 1, 2, g↵� = a↵� + ⇠3ḡ↵�, where ḡ↵� is a function bounded over B.

4 Limit model derivation by asymptotic analysis

4.1 Anisotropic di↵usion model

We introduce the space H1(B) defined by

H1(B) =

⇢
u : ⌦ ! R measurable,

Z

⌦

u2 dV,

Z

⌦

~ru · ~ru dV < +1
�

,

with the natural norm

kukH1
(B) =

✓Z

⌦

u2 dV +

Z

⌦

~ru · ~ru dV

◆ 1
2

.

We need to introduce boundary conditions associated with the di↵usion term that we want to

study. We suppose @! = �
1

[�
2

with �
1

of non-zero measure, and we define �i = �i⇥
i
�d

2

, +d
2

h
,

for i = 1, 2. We denote �
3

= @⌦ \ ��
1

[ �
2

�
, namely, the top and bottom surfaces. We consider

the following problem 8
>>><

>>>:

� div
�~~� · ~ru

�
= f, in ⌦,

u = 0, in �
1

,�~~� · ~ru
� · ~n = 0, in �

2

,�~~� · ~ru
� · ~n = 0, in �

3

,

(5)

where f 2 L2(B).
Defining V3D = H1(B) \ (BC), where (BC) corresponds to the Dirichlet boundary condition

on �
1

, the problem (5) can be rewritten in weak form as seeking u 2 V3D such that

A3D(u, v) = F 3D(v), 8v 2 V3D, (6)

where

A3D(u, v) =

Z

⌦

�~~� · ~ru
� · ~rv dV, F 3D(v) =

Z

⌦

fv dV, 8u, v 2 V3D.

Remark 3 The variational problem is here written in an intrinsic form, namely, indepen-
dently of any specific coordinate system, but of course it is very straightforward to obtain the
corresponding expressions using the tensor components, which we will consider soon with the
coordinates introduced in the previous section.

Assumption 1 We suppose that the di↵usion tensor ~~�(⇠) is:

• L1 on ⌦;

• symmetric positive definite for almost all ⇠ in ⌦;

• such that for almost all ⇠ 2 ⌦, for any ~⇢ 2 E,

c
1

k~⇢ k2  �~~�(⇠) · ~⇢ � · ~⇢,

for some strictly positive constant c
1

.

101



Remark 4 Due to the L1 character of ~~�(⇠) we also have

�~~�(⇠) · ~⇢ � · ~⇢  c
2

k~⇢ k2,

for some strictly positive c
2

, for any ~⇢ 2 E and for almost all ⇠ 2 ⌦.

A simple application of the Lax-Milgram theorem with the Poincaré inequality then provides
the following result.

Theorem 1 If Assumption 1 holds, there exists a unique u 2 V3D solution of (6).

4.2 Asymptotic problem formulation

Denoting dS =
p

a(⇠1, ⇠2) d⇠1d⇠2 the surface measure, we introduce the spaces L2(S) and
H1(S) by

L2(S) =

⇢
u : ! ! R measurable,

Z

!
u2 dS < +1

�
,

H1(S) =

⇢
u : ! ! R measurable,

Z

!
u2 dS,

Z

!
ru · ru dS < +1

�
,

with the natural norms

kukL2
(S) =

✓Z

!
u2 dS

◆ 1
2

, kukH1
(S) =

✓Z

!
u2 dS +

Z

!
ru · ru dS

◆ 1
2

.

We assume that the source term f is smooth enough to provide

f(⇠1, ⇠2, ⇠3) = f
0

(⇠1, ⇠2) + ⇠3f̄(⇠1, ⇠2, ⇠3),

where f
0

2 L2(S) and f̄ 2 L1(B). Regarding the modeling of the anisotropic conductivity, we

make the following assumption on the di↵usion tensor ~~�.

Assumption 2 We suppose that ~~� = �t ~~g + (�l � �t)~⌧ ⌦ ~⌧ , where �t and �l are two strictly
positive constants such that �t  �l. The vector ~⌧ is given by

~⌧(⇠1, ⇠2, ⇠3) = ⌧
0

(⇠1, ⇠2) cos

✓
2✓(⇠1, ⇠2)⇠3

d

◆
+ ⌧?

0

(⇠1, ⇠2) sin

✓
2✓(⇠1, ⇠2)⇠3

d

◆
, (7)

where ⌧
0

and ⌧?
0

are unit vectors and

• ⌧
0

belongs to the tangential plane to the midsurface S, at each point in !,

• ⌧?
0

= ~a
3

⇥ ⌧
0

i.e ⌧?
0

is orthogonal to ⌧
0

and belongs to the tangential plane.

Remark 5 The assumptions on ~~� translate the anisotropic behavior and heterogeneous distri-
bution across the thickness of the body, see Figure 2. Note that

• �l = �t gives the homogeneous case, namely, without any privileged direction;

• �t < �l implies

– if ✓ = 0, then ~⌧ is independent of ⇠3, i.e. the fiber orientation is constant across the
thickness, defined by the vector ⌧

0

;

– if ✓ 6= 0, the fibers rotate across the thickness by a total angle 2✓.
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⌧ 0

d

�✓

+✓

Figure 2: Fibers rotation across the thickness

Remark 6 We commit a slight abuse of notation in (7), since we have a 3D vector in the
left-hand side and surface-attached 2D vectors in the right-hand side. We could have instead
used a 3D notation for ⌧

0

and ⌧?
0

, but we made this choice to emphasize that they lie in the
tangential plane.

Remark 7 Assumption 2 implies Assumption 1.

An asymptotic analysis then consists in studying the behavior of the above di↵usion model
when varying the thickness parameter " while keeping the midsurface S and the parameter field
✓ fixed. The complete asymptotic analysis of this 3D anisotropic di↵usion problem is out of the
scope of our preliminary analysis, which primarily aims at guiding the formulation of a relevant
surface-based model. Hence, following similar strategies used in shell mechanical modeling,
we will instead consider a Galerkin reduction of the problem (6) posed in a subspace of V3D

given by polynomial variations of the quantity of interest in the thickness variable – in our case
quadratic polynomials – which can be seen as truncated Taylor expansions. We thus define
V = (H1(S) \ (BC0))3, where (BC0) corresponds to homogeneous Dirichlet boundary conditions
prescribed on �

1

, and we seek (u"
0

, u"
1

, u"
2

) 2 V such that

A3D
�
u"
0

+ ⇠3u"
1

+ (⇠3)2u"
2

, v
0

+ ⇠3v
1

+ (⇠3)2v
2

�
= F 3D

�
v
0

+ ⇠3v
1

+ (⇠3)2v
2

�
,

8(v
0

, v
1

, v
2

) 2 V, (8)

where we point out that the definitions of A3D and F 3D include a dependence on the varying
thickness parameter " – via the dependence of the reference domain ⌦ itself – even though this
is not reflected in the notation for compactness purposes.

Remark 8 A 3D asymptotic analysis – namely, of a sequence of solutions of (6) associated
with decreasing thickness parameter for the geometric domain – would require di↵erent tools,
starting with a scaling of the domain in the transverse direction in order to work on a fixed do-
main, see e.g. Ref. [6]. Here, we adopt a somewhat simpler strategy with a Galerkin projection
of the 3D model onto a subspace of functions that feature quadratic variations in the trans-
verse direction. Note that this is also a classical asymptotic approach in structural mechanics
and associated mathematical analysis, where it is known to provide important insight into the
limit asymptotic behavior [8, 4]. As a matter of fact, in shell models such Galerkin projections
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have been established to be asymptotically consistent with 3D elasticity, namely, the respective
asymptotic analyses provide the same limit models [5]. In addition, limit models obtained with
polynomial assumptions are also interesting in relation to Galerkin discretizations of the varia-
tional problem, e.g. with finite elements used with a single element – of possibly high polynomial
order – across the thickness.

If Assumption 2 holds, we can use Theorem 1 to show the existence and uniqueness of a
solution of (8) because {u

0

+ ⇠3u
1

+ (⇠3)2u
2

, (u
0

, u
1

, u
2

) 2 V} is a closed subspace of V3D.

Theorem 2 For any " = d
L > 0, there exists a unique (u"

0

, u"
1

, u"
2

) 2 V solution of (8).

We will now denote u" = u"
0

+ ⇠3u"
1

+(⇠3)2u"
2

2 V3D and study the behavior of this sequence
when the parameter " tends to zero.

4.3 Asymptotic analysis

In this section, we want to:

• identify a limit problem;

• show the existence and uniqueness of a solution to the limit problem;

• prove a preliminary weak convergence result;

• establish the strong convergence.

4.3.1 Limit problem

We start by considering the left-hand side of (8), i.e.
Z

⌦

�~~� · ~ru
� · ~rv dV = �t

Z

⌦

�~~g · ~ru
� · ~rv dV + (�l � �t)

Z

⌦

�
~⌧ ⌦ ~⌧ · ~ru

� · ~rv dV,

= �t
Z

⌦

~ru · ~rv dV + (�l � �t)

Z

⌦

�
~⌧ · ~ru

��
~⌧ · ~rv

�
dV, (9)

where we denote u = u
0

+ ⇠3u
1

+ (⇠3)2u
2

and v = v
0

+ ⇠3v
1

+ (⇠3)2v
2

, and we will analyze the
two integrals separately.

According to Proposition 4, we have

�t~ru · ~rv = �t
"

2X

↵,�=1

@↵u(a↵� + ⇠3ḡ↵�)@�v + u
1

v
1

+ 2⇠3
�
u
1

v
2

+ u
2

v
1

�
+ 4

�
⇠3
�
2

u
2

v
2

#
.

We can integrate all the polynomial terms in ⇠3 between �d
2

and +d
2

, and after integration the
first term in the asymptotic expansion is given by

d�t
Z

!

�ru
0

· rv
0

+ u
1

v
1

�
dS.

We can then denote by Al the bilinear form

Al

�
(u

0

, u
1

), (v
0

, v
1

)
�

= �t
Z

!

�ru
0

· rv
0

+ u
1

v
1

�
dS,

8(u
0

, u
1

), (v
0

, v
1

) 2 H1(S) ⇥ L2(S).
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Concerning next the second term in (9) we have

�
~⌧ · ~ru

��
~⌧ · ~rv

�
=

3X

i,j=1

(~⌧ · ~g i)(~⌧ · ~g j)@iu@jv

=
2X

↵,�=1

(~⌧ · ~g↵)(~⌧ · ~g�)@↵u@�v,

according to Assumption 2. Using the geometric definitions, we have that ~g↵(⇠1, ⇠2, ⇠3) =
~a↵(⇠1, ⇠2) + ⇠3 ~H↵(⇠1, ⇠2, ⇠3) with ~H↵ 2 L1(B), so that we can decompose (~⌧ · ~g↵)(~⌧ · ~g�) into

(~⌧ · ~g↵)(~⌧ · ~g�) =
h
(⌧

0

· ~a↵)(⌧
0

· ~a�) + ⇠3Jk(⇠
1, ⇠2, ⇠3)

i
cos2

✓
2✓⇠3

d

◆

+
h
(⌧?

0

· ~a↵)(⌧?
0

· ~a�) + ⇠3J?(⇠1, ⇠2, ⇠3)
i
sin2

✓
2✓⇠3

d

◆

+
h
(⌧

0

· ~a↵)(⌧?
0

· ~a�) + (⌧?
0

· ~a↵)(⌧
0

· ~a�)

+⇠3Ja(⇠1, ⇠2, ⇠3)
i
sin

✓
2✓⇠3

d

◆
cos

✓
2✓⇠3

d

◆
,

where Jk, J? et Ja are all L1(B). When integrating over ⇠3, the following integrals appear

In(✓) =
1

dn+1

Z d
2

� d
2

(⇠3)n cos2
✓

2✓⇠3

d

◆
d⇠3 =

1

2n+1

Z
1

�1

tn cos2(t✓)dt,

Jn(✓) =
1

dn+1

Z d
2

� d
2

(⇠3)n sin2

✓
2✓⇠3

d

◆
d⇠3 =

1

2n+1

Z
1

�1

tn sin2(t✓)dt,

Ln(✓) =
1

dn+1

Z d
2

� d
2

(⇠3)n cos

✓
2✓⇠3

d

◆
sin

✓
2✓⇠3

d

◆
d⇠3 =

1

2n+1

Z
1

�1

tn cos(t✓) sin(t✓)dt.

We can now as before identify the first term of the asymptotic expansion, which gives d Af
l with

Af
l (u0

, v
0

) = (�l � �t)

Z

!

⇣�
I
0

(✓) ⌧
0

⌦ ⌧
0

+ J
0

(✓) ⌧?
0

⌦ ⌧?
0

�·ru
0

⌘
· rv

0

dS,

where I
0

(✓) =
1

2
+

1

4✓
sin(2✓) and J

0

(✓) =
1

2
� 1

4✓
sin(2✓) = 1� I

0

(✓). Note that these functions

can be extended by continuity in 0, with values 1 and 0, respectively.

Remark 9 • I
0

(✓) > 0, J
0

(✓) � 0, 8✓ 2 R,

• J
0

(✓) = 0 (and I
0

(✓) = 1) if and only if ✓ = 0. In this case ~⌧(⇠1, ⇠2, ⇠3) = ⌧
0

(⇠1, ⇠2),
i.e. the fiber direction is independent of the thickness.

Using similar manipulations, the first term in the asymptotic expansion of the right-hand
side of (8) is given by dF

0

, with

F
0

(v
0

) =

Z

!
f
0

v
0

dS, 8v
0

2 H1(S).

Defining Vlim =
�
H1(S)\(BC0)

�⇥L2(S), our candidate limit problem finally consists in seeking
(ul

0

, ul
1

) 2 Vlim such that

Al

�
(ul

0

, ul
1

), (v
0

, v
1

)
�

+ Af
l (u

l
0

, v
0

) = F
0

(v
0

), 8(v
0

, v
1

) 2 Vlim. (10)
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Theorem 3 There exists a unique (ul
0

, ul
1

) 2 Vlim solution of (10).

Proof It is straightforward to see that the bilinear form in the left-hand side of (10) is con-
tinuous and coercive on Vlim, and symmetric, hence we can directly apply the Lax-Milgram
theorem. ⇤

Note that, choosing v
0

= 0 in (10), we can show that ul
1

= 0, and ul
0

2 H1(S) \ (BC0)
satisfies, 8v

0

2 H1(S) \ (BC0),

�t
Z

!
rul

0

· rv
0

dS + (�l � �t)

Z

!

⇣�
I
0

(✓) ⌧
0

⌦ ⌧
0

+ J
0

(✓) ⌧?
0

⌦ ⌧?
0

�·rul
0

⌘
· rv

0

dS

=

Z

!
f
0

v
0

dS. (11)

4.3.2 Weak convergence

Theorem 4 We have the following convergences:

• (u"
0

, u"
1

) converges weakly to (ul
0

, 0) in Vlim when " tends to 0,

• "u"
1

and "2u"
2

converge weakly to 0 in H1(S) when " tends to 0.

The proof of Theorem 4 is divided into two steps:

(i) The first step consists in proving that a subsequence of (u"
0

, u"
1

)" converges weakly to a
limit denoted by (um

0

, um
1

) 2 Vlim when " tends to 0.

(ii) In the second step, we show that um
0

= ul
0

, um
1

= 0 and we can infer the theorem.

(i) Weak convergence of a subsequence

Lemma 2 There exists one strictly positive constant C independent of " such that 8(v
0

, v
1

, v
2

) 2
V,

A3D(v, v) � C
h
"
�krv

0

kL2
(S) + kv

1

kL2
(S)

�
2

+ "3
�krv

1

kL2
(S) + kv

2

kL2
(S)

�
2

+ "5krv
2

k2L2
(S)

i
.

Lemma 3 There exists one strictly positive constant C 0 independent of " such that 8(v
0

, v
1

, v
2

) 2
V,

F 3D(v)  C 0
h
"
�krv

0

kL2
(S) + kv

1

kL2
(S)

�
+ "2

�krv
1

kL2
(S) + kv

2

kL2
(S)

�

+ "3krv
2

kL2
(S)

i
.
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We directly have Lemma 3. We must prove Lemma 2.
Proof Using Propositions 2 and 3, we have 8(v

0

, v
1

, v
2

) 2 V,

A3D(v, v) = �t
Z

⌦

~rv · ~rv dV + (�l � �t)

Z

⌦

�
~⌧ ⌦ ~⌧ · ~rv

� · ~rv dV

� �t
Z

⌦

~rv · ~rv dV

� � �t
Z

⌦

~rv · ~rv
p

a d⇠

� � �t
Z

⌦

✓ X

↵�=1,2

g↵�@↵v@�v + v2
1

+ 4⇠3v
1

v
2

+ 4
�
⇠3
�
2

v2
2

◆p
a d⇠

� c

Z

⌦

✓ X

↵�=1,2

a↵�@↵v@�v + v2
1

+ 4⇠3v
1

v
2

+ 4
�
⇠3
�
2

v2
2

◆p
a d⇠

� c

Z

⌦

�rv · rv + v2
1

+ 4⇠3v
1

v
2

+ 4
�
⇠3
�
2

v2
2

�p
a d⇠,

with ⌦ dependent on ". We use the decomposition of v and we integrate over ⇠3

A3D(v, v) � c

Z

!

⇣
"(rv

0

· rv
0

+ v2
1

) +
"3

12
(rv

1

· rv
1

+ 4v2
2

) +
"3

6
rv

0

· rv
2

+
"5

80
rv

2

· rv
2

⌘
dS.

Using the Young inequality on the cross term, we have for almost all (⇠1, ⇠2) 2 !, and for all
r > 0,

2rv
0

(⇠1, ⇠2) · rv
2

(⇠1, ⇠2) � �1

r
rv

0

(⇠1, ⇠2) · rv
0

(⇠1, ⇠2) � rrv
2

(⇠1, ⇠2) · rv
2

(⇠1, ⇠2).

With r = 1

10

"2, we obtain 8(v
0

, v
1

, v
2

) 2 V,

A3D(v, v) � c

Z

!

⇣"
6
rv

0

· rv
0

+ "v2
1

+
"3

12
(rv

1

· rv
1

+ 4v2
2

) +
"5

240
rv

2

· rv
2

⌘
dS

� C
h
"
�krv

0

kL2
(S) + kv

1

kL2
(S)

�
2

+ "3
�krv

1

kL2
(S) + kv

2

kL2
(S)

�
2

+"5krv
2

k2L2
(S)

i
.

⇤

These two lemmas directly allow to show the following result.

Lemma 4 There exists a strictly positive constant C independent of " such that
�kru"

0

kL2
(S) + ku"

1

kL2
(S)

�
+ "

�kru"
1

kL2
(S) + ku"

2

kL2
(S)

�
+ "2kru"

2

kL2
(S)  C.

Using Lemma 4, we can quickly finish the first step. According to the Poincaré inequality (�
1

of non-zero measure) and Lemma 4, u"
0

, "u"
1

et "2u"
2

are uniformly bounded in the H1(S)-norm
and u"

1

and "u"
2

are uniformly bounded in the L2(S)-norm. We can then extract a subsequence
(also denoted by ") such that there exists (um

0

, um
1

, ũm
1

, um
2

, ũm
2

) 2 H1(S) ⇥ L2(S) ⇥ H1(S) ⇥
L2(S) ⇥ H1(S) such that (u"

0

, u"
1

, "u"
1

, "u"
2

, "2u"
2

) converges weakly to (um
0

, um
1

, ũm
1

, um
2

, ũm
2

) in
H1(S) ⇥ L2(S) ⇥ H1(S) ⇥ L2(S) ⇥ H1(S).

Remark 10 We can show that ũm
1

= 0, since by compact injection "u"
1

L2
(S)! ũm

1

. Likewise,
ũm
2

= 0.
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(ii) Convergence to the solution of the limit problem

Lemma 5 8(v
0

, v
1

, v
2

) 2 V,

• 1

d
A3D(u", v) = Al

�
(u"

0

, u"
1

), (v
0

, v
1

)
�

+ Af
l (u

"
0

, v
0

) + O("),

• 1

d
F 3D(v) = F

0

(v
0

) + O(").

With Lemma 5 we can quickly conclude. According to Theorem 2, indeed, we have 8v 2 V ,
A3D(u", v) = F 3D(v) and Lemma 5 gives

Al

�
(u"

0

, u"
1

), (v
0

, v
1

)
�

+ Af
l (u

"
0

, v
0

) = F
0

(v
0

) + O("), 8(v
0

, v
1

) 2 Vlim. (12)

Making " tend to 0 in (12) and according to the first step, we have

Al

�
(um

0

, um
1

), (v
0

, v
1

)
�

+ Af
l (u

m
0

, v
0

) = F
0

(v
0

), 8(v
0

, v
1

) 2 Vlim.

Using Theorem 3, we obtain that (um
0

, um
1

) = (ul
0

, 0) where ul
0

verifies Problem (11). The limits
(um

0

, um
1

, ũm
1

, ũm
2

) = (ul
0

, 0, 0, 0) are independent of the subsequence so that we can infer the
theorem. To complete the proof of Theorem 4, we must now show Lemma 5.
Proof

A3D(u", v) = �t
Z

⌦

~ru" · ~rv dV + (�l � �t)

Z

⌦

�
~⌧ ⌦ ~⌧ · ~ru"

� · ~rv dV, 8(v
0

, v
1

, v
2

) 2 V,

with ⌦ dependent on ". We start by studying the first term of A3D(u", v), i.e.

�t
Z

⌦

~ru" · ~rv dV = �t
Z

⌦

~ru" · ~rv
p

a d⇠ + �t
Z

⌦

⇠3~ru" · ~rv
p

a(�2H + K⇠3)d⇠.

If we can show that �t
Z

⌦

~ru" · ~rv
p

a d⇠ converges when " tends to 0, then �t
Z

⌦

⇠3~ru" ·
~rv

p
a(�2H + K⇠3)d⇠ converges to 0 when " tends to 0, so that we just need to study the first

term.

�t
Z

⌦

~ru" · ~rv
p

a d⇠

= �t
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⌦

✓ X
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�
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2
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⌦

✓ X
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v
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�
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2

v
1

�
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◆p
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+�t
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⌦

X

↵�=1,2

⇠3ḡ↵�@↵u"@�v
p

a d⇠.

For the same reason, we just need to show that �t
Z

⌦

⇣
ru" · rv + u"

1

v
1

+ 2⇠3
�
u"
1

v
2

+ u"
2

v
1

�
+

4
�
⇠3
�
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u"
2

v
2

⌘p
a d⇠ converges when " tends to 0.
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We can apply the same method with the second term of A3D(u", v) and we infer that we

only need to show that (�l � �t)

Z

⌦

�
~⌧ ⌦ ~⌧ · ru"

� · rv
p

a d⇠ converges when " tends to 0. We

define A3D
0

by 8(u
0

, u
1

, u
2

), (v
0

, v
1

, v
2

) 2 V,

A3D
0

(u, v) = �t
Z

⌦

�ru · rv + u
1

v
1

+ 2⇠3
�
u
1

v
2

+ u
2

v
1

�
+ 4

�
⇠3
�
2

u
2

v
2

�p
a d⇠

+ (�l � �t)

Z

⌦

�
~⌧ ⌦ ~⌧ · ru
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We have that

109



• "

Z

!
L
1

(✓)
⇣�
⌧?
0

⌦ ⌧
0

· ru"
0

� · rv
1

+
�
⌧
0

⌦ ⌧?
0

· ru"
0

� · rv
1

⌘
dS !

"!0

0, because ku"
0

kH1
(S) is

bounded,

• "

Z

!
L
1

(✓)
⇣�
⌧?
0

⌦ ⌧
0

· ru"
1

� · rv
0

+
�
⌧
0

⌦ ⌧?
0

· ru"
1

� · rv
0

⌘
dS !

"!0

0, because ũm
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) 2 V, and this concludes the proof of the

theorem. ⇤

4.3.3 Strong convergence

We will complete our asymptotic analysis by proving that the convergences established in
the previous section also hold – in fact – in the strong sense. Defining the two bilinear forms

Ãf
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⇢
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) �! Vect(~a
1

,~a
2

)
⌧ 7�! ~a

3

⇥ ⌧
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tends to zero with ", where we denote Al(u, v)2 = Al

�
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�
, and similarly for Ãf
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l . In fact, D" is constructed so that the expression
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appearing when developing D", gathers the main lower-order terms in the expansion A3D(u", u")
as expressed in the following lemma, shown like in the proof of Lemma 5.
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Lemma 6
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where the degree of ⇠3 in the terms of
1

d
R(u") =

1

L"
R(u") is high enough to have the convergence

to 0 when " tends to 0.

We can now state and prove our final convergence result.

Theorem 5 We have the following convergences:

• (u"
0
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1
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0
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• "u"
1
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2
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In addition, "u"
2
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we will decompose the proof into two steps:
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• in the first step, we show that D" + D̃" !
"!0

0,

• in the second step, we show that D̃" � ⌘
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0

(ul
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" and using Lemma 6, we have
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The equation (13) then becomes D" + D̃" = O("), which concludes the first step.
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so that the result holds if we can show the positiveness of ˜̃D" defined by

˜̃D" = (�l � �t)


d2

Z

!

�
I
2

� L2

1

J
0

�
⌧
0

⌦ ⌧
0

· ru"
1

· ru"
1

dS

+2d3
Z

!

�
L
3

� L
1

J
2

J
0

�
⌧?
0

⌦ ⌧
0

· ru"
1

· ru"
2

dS

�

+(�l � �t)d4
Z

!

�
J
4

� J2

2

J
0

�
⌧?
0

⌦ ⌧?
0

· ru"
2

· ru"
2

dS

+(�l � �t)


d2

Z

!

�
J
2

� L2

1

I
0

�
⌧?
0

⌦ ⌧?
0

· ru"
1

· ru"
1

dS

+2d3
Z

!

�
L
3

� L
1

I
2

I
0

�
⌧
0

⌦ ⌧?
0

· ru"
1

· ru"
2

dS

�

+(�l � �t)d4
Z

!

�
I
4

� I2
2

I
0

�
⌧
0

⌦ ⌧
0

· ru"
2

· ru"
2

dS.

We can decompose ˜̃D" into two sums of the form au2 + 2cuv + bv2. We then use the property

that au2 + 2cuv + bv2 is positive for all (u, v) if and only if a, b � 0 and c2  ab. Therefore, ˜̃D"

is positive if and only if
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The inequalities in the left and center columns are simple consequences of the Cauchy-Schwarz
inequality, while those in the right column can easily be checked analytically using, e.g., symbolic
computation software. ⇤

Remark 11 Various possible extensions can be considered for the asymptotic setting assump-
tions:

• There is no particular di�culty in considering non-homogeneous Neumann boundary con-
ditions on the lateral surface �

2

in the asymptotic analysis, with similar assumptions as
for f regarding ⇠3-regularity.

• We conjecture that polynomial assumptions of higher degree could be handled in a similar
manner and would provide similar convergence results to the same limits.

• We could also consider more general forms of the angular variations of the fibers across
the thickness of the type

~⌧(⇠1, ⇠2, ⇠3) = ⌧
0

(⇠1, ⇠2) cos ✓
�
⇠1, ⇠2, 2⇠3/d

�
+ ⌧?

0

(⇠1, ⇠2) sin ✓
�
⇠1, ⇠2, 2⇠3/d

�
,

which would lead to extended definitions of the geometric coe�cients Ii, Ji and Li. The
convergence proofs could then be performed verbatim up to the final chains of inequalities
to be satisfied by these coe�cients, which would have to be checked on a case-by-case
basis, except for those directly following from the Cauchy-Schwarz inequality. Other types
of scaling of the transverse coordinate could also be investigated in the definition of the
fiber direction, e.g. with d↵ substituted for d, but our objective here was to obtain a finite
variation of the angle across the thickness in view of the applications considered.
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5 Surface-based bidomain model and numerical assessments

Following our above detailed asymptotic analysis, we directly adapt the result to propose
the surface-based bidomain model, for all t > 0, find Vm(·, t) 2 H1(S), ue(·, t) 2 H1(S) and
w(·, t) 2 L1(S) with

R
! ue dS = 0, such that

8
>>>>>>><

>>>>>>>:

Am

Z

!

⇣
Cm

@Vm

@t
+ Iion(Vm, w)

⌘
� dS +

Z

!

⇣
� i · �rVm + rue

�⌘ · r� dS

= Am

Z

!
Iapp(Vm, w)� dS,

Z

!

⇣
(� i + � e) · rue

⌘
· r dS +

Z

!

⇣
� i · rVm

⌘
· r dS = 0,

@tw + g(Vm, w) = 0, in ! ⇥ (0, T ).

(14)

for all �, 2 H1(S) such that
R
!  dS = 0 and with � i,e = �ti,e a + (�li,e � �ti,e)(I0(✓)⌧0 ⌦ ⌧

0

+

J
0

(✓)⌧?
0

⌦ ⌧?
0

), where a denotes the surface-based metric tensor – namely, the restriction of the
3D metric tensor to vectors lying in the tangential plane – and recalling that ⌧

0

is a unit vector
parallel to the local fiber direction on the midsurface, 2✓ is the angle between the fiber directions
on the lower and upper boundary surfaces – referred to as the endocardium and epicardium,
respectively, in the heart – and I

0

(✓) = 1

2

+ 1

4✓ sin(2✓), J
0

(✓) = 1

2

� 1

4✓ sin(2✓).
We will now perform a numerical assessment of our proposed model by comparing the results

given by the 3D model (1) and the surface model (14) for two di↵erent geometries. For these
comparisons, we limit ourselves to the Mitchell-Schae↵er model to avoid undue technicalities
in the ionic model calibration and solution, although of course other ionic models could be
considered, e.g. more adapted to the atria cells. The values of the parameters used in the
simulations are given in Table 1. The tests are performed with the finite element library
FELiScE, developed at Inria. We use P

1

-Lagrange finite elements, and as time discretization
scheme a standard Backward Di↵erentiation Formula (BDF) of order two, see e.g. Ref. [1].
Although we primarily aim at a numerical assessment of the reduced model, we will use realistic
values characteristic of atrial electrophysiology for all dimensions and parameters.

Table 1: Cell membrane parameters

Am Cm ⌧in ⌧out ⌧open ⌧close Vgate Vmin Vmax

(cm�1) (mF.cm�2) (cm2.mA�1) (cm2.mA�1) (ms) (ms) (mV) (mV) (mV)
200.0 10�3 4.0 90.0 100.0 100.0 �67.0 �80.0 20.0

5.1 Planar test case

In this first test case, the 3D domain is a rectangular cuboid with dimensions 10 ⇥ 10 ⇥ 0.2
(all dimensions given in cm), hence the midsurface is a 10 ⇥ 10 square, which we discretize into
200 elements in each direction, namely, 40,401 vertices and 80,000 triangular elements. The
3D mesh is obtained by extrusion of the 2D mesh using 4 elements across the thickness, which
gives 202,005 vertices and 960,000 tetrahedral elements. The conductivities are �ti = 4.0 10�4,
�te = 2.2 10�3, �li = 4.0 10�3, �le = 4.0 10�3, (all in S.cm�1 ). The fiber directions in the 3D
mesh vary across the thickness only, and by an angle ⇡

4

between

0

@
cos

�
⇡
8

�

sin
�
⇡
8

�

0

1

A and

0

@
cos

�
3⇡
8

�

sin
�
3⇡
8

�

0

1

A .
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Therefore, on the midsurface the fiber direction is aligned with the vector

⌧
0

=

p
2

2

0

@
1
1
0

1

A ,

and we have ✓ = ⇡
8

.
The model is initialized at t = 0 with Vm = �80 mV, ue = 0mV, and we trigger the wave

by applying a current Iapp = 0.5 mA.cm�2 in a circle (or cylindrical region in 3D) centered at
(0 , 5) and of radius r = 0.55 during 1 ms.

30.0 50.0 60.0

70.0 100.0 120.0

140.0 170.0

�56.25

�80.00

�32.50

�8.75

15.00

Figure 3: Planar test case – Comparison of asymptotic surface model (left) 3D model (center)
and 2D naive model (right) on the midsurface at 8 consecutive times

0.00

30.00

7.50

15.00

22.50

30.0 50.0 60.0 70.0 100.0 140.0

Figure 4: Planar test case – Point-wise di↵erence between the 3D model and the asymptotic
surface model on the midsurface (to be compared with the typical variation range of the trans-
membrane potential, i.e. about 100 mV)

In Figure 3, we compare the transmembrane potential given by the asymptotic surface
model, the 3D model and a naive 2D model obtained by taking the value of the 3D conductivity
tensor on the midsurface, namely, with � i,e = �ti,e a + (�li,e � �ti,e)⌧0 ⌦ ⌧

0

. We observe an
excellent agreement between the asymptotic surface model and the 3D model, whereas the
naive model exhibits a slower front wave in the direction perpendicular to the midsurface fiber.
In addition, we plot in Figure 4 the di↵erence |uref,3D �u2D| on the midsurface. We notice that
the di↵erences between these two models are very limited and are narrowly concentrated near
the wave front.

We also report in Table 2 the normalized l1 and l2 di↵erences between the asymptotic

surface and the 3D models, i.e. supnodes|uref,3D�u2D|
Vmax�Vmin

and 1

Vmax�Vmin

�
1

]Nodes

P
nodes |uref,3D �

u2D|2� 1
2 , respectively. Note that Vmax � Vmin is a typical normalizing constant, very similar
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Table 2: Planar test case – Error norms between the 3D and asymptotic surface models, on the
midsurface

T(ms) 30 50 60 70 100 140
| · |1 1.081 10�1 1.582 10�1 1.792 10�1 2.364 10�1 3.172 10�1 3.687 10�1

| · |l2 6.764 10�3 1.179 10�2 1.442 10�2 1.624 10�2 1.933 10�2 1.934 10�2

Table 3: Planar test case – Error norms between the 3D and naive 2D models, on the midsurface

T(ms) 30 50 60 70 100 140
| · |1 4.772 10�1 7.447 10�1 8.339 10�1 9.281 10�1 1.000 1.000
| · |l2 4.020 10�2 8.218 10�2 1.035 10�1 1.151 10�1 1.530 10�1 1.757 10�1

to the L1-norm of uref,3D and also meaningful from a modeling standpoint since it appears
in the ionic model. The relative l1 errors appear to be quite high, but when closely studying
Figures 3 and 4 we see that this corresponds to very small shifts in the front location, which
due to the dramatic steepness of the front induces significant – albeit very localized – errors.
This is confirmed by the l2 error values that are much smaller, indeed. We also point out that
these errors are quite stable over time. Table 3 shows the same quantities when the asymptotic
surface model is substituted by the naive 2D model. These results quantitatively confirm the
superiority of the asymptotic model with respect to the naive model, and the excellent accuracy
of the asymptotic model shows the relevance of the asymptotic analysis carried out in the
previous sections when the fiber orientation rapidly varies across the thickness.

5.2 Spiral wave re-entry on a cylinder

This test case is motivated by so-called spiral waves, a fascinating phenomenon in cardiac
electrophysiology, also very important in that it is often argued to be responsible for atrial or
ventricular fibrillation, see e.g. Ref. [11]. This complex behavior provides a challenging test
case for our proposed model, and we will also consider a non-planar geometry, indeed.

The domain is a 3D half-cylinder, with internal radius rmin = 4.9, external radius rmax = 5.1
and height h = 10 (all dimensions again given in cm). Thus, the midsurface is a half-cylinder
of radius 5.0 and height 10. The 3D mesh contains 105,080 vertices and 499,080 tetrahedral
elements with 4 elements across the thickness, and the 2D mesh has 21,016 vertices and 41,590
triangular elements. The fiber directions in the 3D geometry vary across the thickness by an
angle ⇡

2

around the midsurface direction given by the vector

⌧
0

=
1

5

0

@
�y
x
0

1

A ,

so that the fiber directions in the 2D mesh are characterized by this ⌧
0

and ✓ = ⇡
4

. For this
experiment, the conductivities are �ti = 4.0 10�4, �te = 2.2 10�3, �li = 4.0 10�3, �le = 4.0 10�3

(in S.cm�1).
In order to initiate a spiral wave, we follow the procedure used in Ref. [9]. The model is

initialized at t = 0 with Vm = �80 mV, ue = 0mV, and we first generate a wave in the horizontal
direction. Once the wave front has formed, it starts traveling along the cylinder (see Figure 5
at t = 80.0 ms). Just after the end of the repolarization (see Figure 5 at t = 300.0 ms), we
depolarize a second region at time t = 375.0 ms. The new depolarization front revolves around
the region that has just started repolarizing, which triggers a spiral wave.
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Figure 5: Spiral wave on cylinder – Comparison of asymptotic surface model (left), 3D model
(center) and naive 2D model (right) on the midsurface at 8 consecutive times

80.0 300.0 390.0 700.0 800.0 900.0

11.50

0.00

23.00

34.50

46.00

Figure 6: Spiral wave on cylinder – Point-wise di↵erence between the 3D model and the asymp-
totic surface model on the midsurface (to be compared with the typical variation range of the
transmembrane potential, i.e. about 100 mV)

Table 4: Spiral wave on cylinder – Error norms between the 3D and asymptotic surface models,
on the midsurface

T(ms) 80 300 390 700 800 900
| · |1 2.351 10�1 1.467 10�2 3.747 10�2 1.525 10�1 4.913 10�1 4.229 10�1

| · |l2 8.375 10�3 2.315 10�3 2.797 10�3 2.019 10�2 3.744 10�2 3.228 10�2

Table 5: Spiral wave on cylinder – Error norms between the 3D and naive 2D models, on the
midsurface

T(ms) 80 300 390 700 800 900
| · |1 9.110 10�1 1.026 10�1 2.338 10�1 9.548 10�1 9.525 10�1 8.788 10�1

| · |l2 1.419 10�1 4.645 10�2 4.026 10�2 4.169 10�1 4.542 10�1 4.318 10�1

We display in Figure 5 the results obtained with the 3D and surface models at successive
times, and in Figure 6 the point-wise di↵erence |uref,3D � u2D| is plotted on the midsurface.
As in the planar test case experiment, the di↵erences between the 3D and asymptotic surface
models are quite limited and very narrowly concentrated along the wave front. By contrast,
the naive 2D model appears to be of poor accuracy, and in fact altogether destroys the spiral
wave after 40 ms. This is fully confirmed by Tables 4 and 5 showing the normalized di↵erences
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in norms l1 and l2 (less than 4% in l2-norm, here, for the asymptotic model). These results
substantiate the validity of our proposed surface-based electrophysiology model to accurately
represent such complex behaviors, and including over long time spans.
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CHAPTER 4
Strong convergence results for the

asymptotic behavior of the 3D-shell model

Abstract We revisit the asymptotic convergence properties – with respect to the thickness
parameter – of the earlier-proposed 3D-shell model. This shell model is very attractive for
engineering applications, in particular due to the possibility of directly using a general 3D
constitutive law in the corresponding finite element formulations. We establish strong con-
vergence results for the 3D-shell model in the two main types of asymptotic regimes, namely,
bending- and membrane-dominated behavior. This is an important achievement, as it com-
pletely substantiates the asymptotic consistency of the 3D-shell model with 3D linearized
isotropic elasticity.
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1 Introduction

The mechanical behavior of thin shells has been described and discussed since the early ages
of structural mechanics, albeit only much more recently has the problem been mathematically
addressed with the point of view of asymptotic analysis, see [11, 21, 8] and references therein.
The major benefits of such asymptotic analyses – in which the convergence of sequences of solu-
tions associated with decreasing thickness of the structure is investigated – have been to justify
earlier-introduced limit models – in particular the so-called membrane and pure bending models
– and to shed light on what type of convergence can be expected, with subtle accompanying
features such as boundary layers, see, e.g., [12, 19].

Shell models are in essence surface-based, namely, they are described by equations posed on
a surface, i.e., the midsurface of the structure, in general, see in particular [16] for a classical
example of shell model. Via an adequate geometric description of this surface based on a chart
that maps a two-dimensional (2D) reference domain to the actual surface immersed in the
Euclidean space, the model equations can be expressed as partial di↵erential equations (PDEs)
posed in the 2D reference domain. Consequently, appropriate discretization procedures can be
defined, in particular with finite elements [4]. However, such models and discretizations thereof
are seldom used in engineering practice nowadays. A first type of reason for this lies in the
di�culties associated with the geometric definition of the surface, not well-suited to geometries
typically produced by computer-aided design (CAD) systems. A second limitation – probably
even more important – of classical shell models in the engineering context pertains to the need
of considering wide varieties of material properties generally characterized in three-dimensional
(3D) continuum mechanics, whereas these shell models have “built-in” constitutive assumptions
allowing little latitude for material variations.
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By contrast, so-called “general shell elements” [3] or “degenerated solid shell elements”
[1] are finite elements designed for shell structures – albeit directly based on 3D variational
formulations, hence they can be accordingly used with 3D constitutive equations, without any
reference to a given continuous shell model. In fact, it was later shown in [7] – see also [8] –
that there exists an implicit shell model underlying these finite element methods. Furthermore,
this underlying model was proven to be asymptotically consistent with 3D linearized isotropic
elasticity, meaning that asymptotic analyses for this shell model and for 3D elasticity reveal the
same limit models, whether the asymptotic behavior be of membrane- or bending-dominated
type [6]. Nevertheless, general shell elements still feature a limitation regarding the material
law, as they require the use of a “plane stress” assumption, which is not straightforward to
implement in the case of non-linear stress-strain laws.

The 3D-shell model and corresponding finite elements as proposed in [9] were introduced to
completely overcome any restriction in the use of 3D constitutive equations, namely, they are
posed as a 3D variational formulation in which 3D material laws can be used without any prior
transformation. In addition, these 3D-shell models and elements employ quadratic kinematical
assumptions across the thickness – instead of essentially linear expressions of displacements for
classical shell models and elements – which allows for a more accurate description of complex
deformation fields. This model was also shown to be asymptotically consistent with 3D elas-
ticity, albeit only based on weak convergence results [8]. We may also refer to [18, 20, 2] for
earlier results in similar approaches applied to plate theory. In the present paper we revisit the
convergence results of the continuous 3D-shell model, and we show that convergence also holds
in the strong sense, again for the two main types of asymptotic behavior. We point out that
our new results are obtained under the same assumptions as in [9, 8], albeit the di↵erence lies
in the improved techniques of proof.

In the next section, we recall the 3D-shell model formulation and properties, before pro-
ceeding to introduce the asymptotic setting and analyze the asymptotic convergence behavior
in Section 3.

2 Model description

2.1 Geometry

We consider a thin three-dimensional (3D) volume assumed to be defined by a midsurface S,
and a thickness parameter t that may vary over the extent of S. The surface S is described by
a mapping ~� defined over !, with ! a domain of IR2, and with values in the three-dimensional
Euclidean space E . Namely, we have S = ~�(!), and we assume that ~� is as regular as needed, so
that we can introduce and employ the usual concepts of di↵erential geometry, for which we will
only give a brief summary, and refer to [8] – see also [14, 11] – for a more detailed exposition.
We start with the so-called surface covariant basis

~a↵ = ~�,↵ =
@~�

@⇠↵
(⇠1, ⇠2), (⇠1, ⇠2) 2 !. (1)

Note that we employ the standard convention that Greek indices vary in {1, 2}, whereas Latin
indices used later will vary in {1, 2, 3}. We then assume that the vectors (~a

1

,~a
2

) provide a
well-defined basis of the plane tangential to the midsurface, with the condition

k~a
1

^ ~a
2

k > 0, 8(⇠1, ⇠2) 2 !,

and we can thus introduce the unit normal vector

~a
3

=
~a
1

^ ~a
2

k~a
1

^ ~a
2

k . (2)
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Figure 1: Geometrical description of thin 3D body

Alternatively, the contravariant basis – denoted with superscripts – is defined by

~a↵ · ~a� = �↵� ,

where � denotes the Kronecker symbol. The surface metric tensor – also called first fundamental
form of the surface – is then associated with the components

a↵� = ~a↵ · ~a� , a↵� = ~a↵ · ~a� ,

in covariant and contravariant forms, respectively. Intrinsic surface measures can be expressed
as

dS =
p

a d⇠1d⇠2, with a = k~a
1

^ ~a
2

k2 = a
11

a
22

� (a
12

)2.

We next recall that the covariant components of the curvature tensor – also called second
fundamental form – are given by

b↵� = ~a
3

· ~a↵,� , (3)

while the third fundamental form is defined by

c↵� = b�↵b�� , with b�↵ = a�µbµ↵,

where we use the Einstein convention of implicit summation for repeated indices – namely, for
both � and µ here. Finally, we will need the concept of surface-based covariant di↵erentiation
of vectors, defined by

u↵|� = u↵,� � ��
↵�u�,

where the comma denotes standard derivatives, and with the so-called surface Christo↵el sym-
bols given by

��
↵� = ~a� · ~a↵,� .

Defining now the 3D domain

⌦ =

⇢
(⇠1, ⇠2, ⇠3) 2 IR3 |(⇠1, ⇠2) 2 !, ⇠3 2

i
� t(⇠1, ⇠2)

2
, +

t(⇠1, ⇠2)

2

h�
, (4)

the 3D geometry is described by the mapping ~�

~�(⇠1, ⇠2, ⇠3) = ~�(⇠1, ⇠2) + ⇠3~a
3

(⇠1, ⇠2), (⇠1, ⇠2, ⇠3) 2 ⌦, (5)
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and the region of the Euclidean space occupied by the thin body is given by B = ~�
�
⌦
�
, see

Figure 1. We will assume that the thickness does not degenerate anywhere, namely,

t(⇠1, ⇠2) > 0, 8(⇠1, ⇠2) 2 !. (6)

Accordingly, we can now define the 3D covariant basis

~gi = ~�,i =
@~�

@⇠i
(⇠1, ⇠2, ⇠3), (⇠1, ⇠2, ⇠3) 2 ⌦.

We infer [8]
~g↵ = (��↵ � ⇠3b�↵)~a�, ~g

3

= ~a
3

, (7)

and the following covariant components for the 3D metric tensor gij = ~gi · ~gj
g↵� = a↵� � 2⇠3b↵� + (⇠3)2c↵� , g↵3 = 0, g

33

= 1. (8)

We will also use the contravariant 3D basis vectors such that

~g i · ~gj = �ij ,

and the contravariant components of the 3D metric tensor given by gij = ~g i · ~g j . Finally, the
volume measure is expressed as

dV =
p

g d⇠1d⇠2d⇠3,

with
g = [(~g

1

^ ~g
2

) · ~g
3

]2 = a
�
1 � 2H⇠3 + K(⇠3)2

�
2

,

where H and K respectively denote the mean and Gaussian curvatures of the surface. Note in
passing that this shows that the condition g > 0 necessary for the mapping ~� to be well-defined
is equivalent to 1 � 2H⇠3 + K(⇠3)2 > 0, namely also to

t(⇠1, ⇠2) < 2|R
min

(⇠1, ⇠2)|, 8(⇠1, ⇠2) 2 !,

where R
min

denotes the radius of curvature of smallest absolute value at the specific point
considered, condition that we will henceforth assume to be satisfied.

2.2 3D-shell model

We start by recalling the formulation of linearized isotropic elasticity expressed for B using
the above-introduced curvilinear coordinates. The variational formulation reads

A3D(~U, ~V ) = F 3D(~V ), (9)

for any ~V in a space of suitable test functions satisfying adequate boundary conditions, with

A3D(~U, ~V ) =

Z

⌦

H ijkleij(~U)ekl(~V ) dV, F 3D(~V ) =

Z

⌦

~F · ~V dV.

In these expressions, ~F represents the external loading – assumed to be volume-distributed here
– while the linearized strain tensor appearing in A3D is defined by

eij(~V ) =
1

2

�
~V,i · ~gj + ~V,j · ~gi

�
,
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and the fourth-order constitutive tensor by

H ijkl = L
1

gijgkl + L
2

(gikgjl + gilgjk), (10)

with L
1

and L
2

the Lamé constants, i.e.,

L
1

= E
⌫

(1 + ⌫)(1 � 2⌫)
, L

2

=
E

2(1 + ⌫)
(11)

if we classically denote Young’s modulus and Poisson’s ratio by E and ⌫, respectively. Note
that this entails the simplifications

(
H↵��3(= H↵�3� = H�3↵� = H3�↵�) = 0, 8↵, �, � = 1, 2

H↵333(= H3↵33 = H33↵3 = H333↵) = 0, 8↵ = 1, 2
(12)

The 3D-shell model is defined as the variational projection of the 3D model onto the space
of displacement functions having quadratic expressions in the ⇠3-variable. Namely, defining

(
A3Ds(~u, ~✓, ~% ;~v, ~⌘,~& ) = A3D

�
~u + ⇠3~✓ + (⇠3)2~%,~v + ⇠3~⌘ + (⇠3)2~&

�

F 3Ds(~v, ~⌘,~& ) = F 3D
�
~v + ⇠3~⌘ + (⇠3)2~&

�

we consider the variational equation

A3Ds(~u, ~✓, ~% ;~v, ~⌘,~& ) = F 3Ds(~v, ~⌘,~& ), (13)

see also [13, 5] for discussions on this type of kinematical assumption. With these specific
displacement functions, we have the following identities for the linearized strains [9, 8]

8
><

>:

e↵�(~U) = �↵�(~u ) + ⇠3 �̂↵�(~u, ~✓ ) + (⇠3)2 k↵�(~✓, ~% ) + (⇠3)3l↵�(~% )

e↵3(~U) = ⇣↵(~u, ~✓ ) + ⇠3 m↵(~✓, ~% ) + (⇠3)2 n↵(~% )

e
33

(~U) = �(~✓ ) + ⇠3 p(~% )

(14)

where 8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�↵�(~u ) = 1

2

(u↵|� + u�|↵) � b↵�u
3

�̂↵�(~u, ~✓ ) = 1

2

(✓↵|� + ✓�|↵ � b�↵u�|� � b��u�|↵) � b↵�✓
3

+ c↵�u
3

k↵�(~✓, ~% ) = 1

2

(%↵|� + %�|↵ � b�↵✓�|� � b��✓�|↵) � b↵�%
3

+ c↵�✓
3

l↵�(~% ) = �1

2

(b�↵%�|� + b��%�|↵) + c↵�%
3

⇣↵(~u, ~✓ ) = 1

2

(✓↵ + b�↵u� + u
3,↵)

m↵(~✓, ~% ) = 1

2

(2%↵ + ✓
3,↵)

n↵(~% ) = 1

2

(�b�↵%� + %
3,↵)

�(~✓ ) = ✓
3

p(~% ) = 2%
3

(15)

In our analyses we will use intrinsic Sobolev norms on S and B, namely, integrating with
surface and volume measures, respectively, and employing covariant derivatives whenever needed
[8]. These norms are equivalent to the usual Sobolev norms defined on ! and ⌦, respectively,
albeit they are intrinsic, i.e., they do not depend on the particular choice of coordinate system
used to describe the actual geometry. In the sequel, we will also use the subscripts 0 and 1 to
denote the intrinsic norms of L2(S) and H1(S), respectively.

Then, defining the space V3Ds =
⇥
H1(S) \ BC⇤3 where BC symbolically denotes functions

having vanishing trace on a part of non-zero measure of the boundary @! – namely, Dirichlet
(i.e. essential) boundary conditions – we recall the following result [9, 8], where we use the
symbol C to denote a generic strictly positive constant.
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Proposition 1 Assuming that ~F 2 L2(B), there is a unique (~u, ~✓, ~% ) in V3Ds that satisfies (13)
for any (~v, ~⌘,~& ) in V3Ds, and we have

k~u, ~✓, ~% kH1
(S)  Ck~FkL2

(B). (16)

3 Asymptotic analysis

3.1 Asymptotic setting

We now proceed to recast the above problem in an asymptotic framework. Denoting by L
an overall characteristic dimension of the surface, – e.g., the diameter – and

t
min

= inf
(⇠1,⇠2)2!

t(⇠1, ⇠2) > 0,

we define the dimensionless thickness parameter

" =
t
min

L
,

and

l(⇠1, ⇠2) =
t(⇠1, ⇠2)

"
=

t(⇠1, ⇠2)

t
min

L,

hence inf
(⇠1,⇠2)2! l(⇠1, ⇠2) = L, and we call l the thickness profile. We then consider a sequence

of shell geometries obtained by fixing the midsurface S and thickness profile l, and varying the
" parameter. We subsequently seek a scaling of the loading in the form

~F = "⇢�1 ~G, (17)

with ~G independent of ", and the parameter ⇢ chosen so that the associated sequence of solutions
(~u", ~✓ ", ~% ") 2 V3Ds satisfying

A3Ds(~u", ~✓ ", ~% ";~v, ~⌘,~& ) = F 3Ds(~v, ~⌘,~& ), 8(~v, ~⌘,~& ) 2 V3Ds, (18)

has a non-zero finite limit energy-wise, namely, so that "�⇢F 3Ds(~u", ~✓ ", ~% ") has a non-zero finite
limit. Note that the expressions of A3Ds and F 3Ds include a dependence on " even though this
is not reflected in their notations for the sake of compactness. It can be shown that there is
at most one value of this scaling parameter for which this convergence holds, and that such a
value necessarily satisfies [8]

1  ⇢  3. (19)

Several cases may then arise depending on the contents of the particular subspace

V3Ds
0

= {(~v, ~⌘,~& ) 2 V3Ds, such that

�↵�(~v ) = 0, ⇣↵(~v, ~⌘ ) = 0, �(~⌘ ) = 0, 8↵, � = 1, 2}, (20)

called the subspace of pure bending displacements. More specifically, we will distinguish two
situations according to whether we have

V3Ds
0

\ {(~v, ~⌘,~0 ) 2 V3Ds} = {(~0,~0,~0)},

in which case we say that pure bending is inhibited. By contrast, the situation when V3Ds
0

has non-trivial contents is referred to as non-inhibited pure bending. Both cases are frequently
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encountered in actual shells, depending on the surface geometry and on the boundary conditions
considered, see [8] in particular.

Let us introduce some definitions and notation that will be needed in our asymptotic analysis.
We will assume that the scaled loading ~G in (17) is of the form

~G(⇠1, ⇠2, ⇠3) = ~G
0

(⇠1, ⇠2) + ⇠3 ~B(⇠1, ⇠2, ⇠3), (21)

where ~G
0

is in L2(S) and ~B is a bounded function over B, uniformly in ". We then define

G3Ds(~v ) =

Z

!
l ~G

0

· ~v dS. (22)

We now define the bilinear forms

A3Ds
m

(~u, ~✓;~v, ~⌘ ) =

Z

!
l
h
0H↵��µ�↵�(~u )��µ(~v ) + 0H↵�33

�
�↵�(~u )�(~⌘ ) + �↵�(~v )�(~✓ )

�

+ 40H↵3�3⇣↵(~u, ~✓ )⇣�(~v, ~⌘ ) + 0H3333�(~✓ )�(~⌘ )
i
dS, (23)

A3Ds
b

(~u, ~✓, ~%;~v, ~⌘,~& ) =

Z

!

l3

12

h
0H↵��µ�̂↵�(~u, ~✓ )�̂�µ(~v, ~⌘ ) + 0H↵�33

�
�̂↵�(~u, ~✓ )p(~& )

+ �̂↵�(~v, ~⌘ )p(~% )
�

+ 40H↵3�3m↵(~✓, ~% )m�(~⌘,~& ) + 0H3333p(~% )p(~& )
i
dS, (24)

where
0H ijkl = H ijkl|⇠3=0

. (25)

We will also use the following expansion of this constitutive tensor

H ijkl(⇠1, ⇠2, ⇠3) = 0H ijkl(⇠1, ⇠2) + ⇠3H̄ ijkl(⇠1, ⇠2, ⇠3), (26)

with H̄ ijkl(⇠1, ⇠2, ⇠3) bounded over B since the geometry is smooth.
Let us introduce the norm

k~v, ~⌘,~& k
b

=
⇣
k~vk2

1

+ k⌘k2
1

+ k⌘
3

k2
0

+ k&
3

k2
0

+ k& +
1

2
r⌘

3

k2
0

⌘ 1
2
, (27)

and the semi-norm
k~v, ~⌘ k

m

= A3Ds
m

(~v, ~⌘;~v, ~⌘ )
1
2 . (28)

Note that we classically use the underbar notation to denote tensors attached to the tangential
plane of the surface S, namely with component indices ranging in {1, 2} – e.g. first-order tensors
correspond to vectors lying in the tangential plane, second-order tensors to linear mappings
within this vector space, and so on – see [8] for more detail. As we will see in the following
lemma, when pure bending is inhibited k·k

m

is a norm. In this lemma we recall some equivalence
properties for the above norms or semi-norms – established in [8] in a straightforward manner
– in which we dispense with indicating the (obvious) operands of strain tensors to alleviate the
notation.

Lemma 1 We have an equivalence of norms – or semi-norms, when applicable – between:

1. k~v, ~⌘ k
m

and
⇣
k�k2

0

+ k⇣k2
0

+ k�k2
0

⌘
1/2

;

2. k~v, ~⌘,~& k
b

and
⇣
k�k2

0

+ k⇣k2
0

+ k�k2
0

+ k�̂k2
0

+ kmk2
0

+ kpk2
0

⌘ 1
2
;

128



3. k~v, ~⌘,~& k
1

and
⇣
k�k2

0

+ k⇣k2
0

+ k�k
0

+ k�̂k2
0

+ kmk2
0

+ kpk2
0

+ kkk2
0

+ knk2
0

⌘ 1
2
.

Note that none of the norm – or semi-norm – expressions used in this lemma depends on ",
hence all these equivalence properties hold independently of ".

In our below asymptotic analyses we will use a decomposition of A3Ds obtained by using
(12), (14), and the change of variables ⇠3 = "⇠, viz.

A3Ds(~u, ~✓, ~%;~v, ~⌘,~& ) = I
1

+ I
2

+ I
3

+ I
4

+ I
5

, (29)

with

I
1

(~U, ~V ) = "

Z

!

Z l/2

�l/2
H↵��µ

⇥
�↵�(~u ) + "⇠�̂↵�(~u, ~✓ ) + "2(⇠)2k↵�(~✓, ~% ) + "3(⇠)3l↵�(~% )

⇤

⇥ ⇥
��µ(~v ) + "⇠�̂�µ(~v, ~⌘ ) + "2(⇠)2k�µ(~⌘,~& ) + "3(⇠)3l�µ(~& )

⇤p
g d⇠d⇠1d⇠2, (30)

I
2

(~U, ~V ) = "

Z

!

Z l/2

�l/2
4H↵3�3

⇥
⇣↵(~u, ~✓ ) + "⇠m↵(~✓, ~% ) + "2(⇠)2n↵(~% )

⇤

⇥ ⇥
⇣�(~v, ~⌘ ) + "⇠m�(~⌘,~& ) + "2(⇠)2n�(~& )

⇤p
g d⇠d⇠1d⇠2, (31)

I
3

(~U, ~V ) = "

Z

!

Z l/2

�l/2
H3333

⇥
�(~✓ ) + "⇠p(~% )

⇤ ⇥ ⇥
�(~⌘ ) + "⇠p(~& )

⇤p
g d⇠d⇠1d⇠2, (32)

I
4

(~U, ~V ) = "

Z

!

Z l/2

�l/2
H↵�33

⇥
�↵�(~u ) + "⇠�̂↵�(~u, ~✓ ) + "2(⇠)2k↵�(~✓, ~% ) + "3(⇠)3l↵�(~% )

⇤

⇥ ⇥
�(~⌘ ) + "⇠p(~& )

⇤p
g d⇠d⇠1d⇠2, (33)

I
5

(~U, ~V ) = "

Z

!

Z l/2

�l/2
H↵�33

⇥
�↵�(~v ) + "⇠�̂↵�(~v, ~⌘ ) + "2(⇠)2k↵�(~⌘,~& ) + "3(⇠)3l↵�(~& )

⇤

⇥ ⇥
�(~✓ ) + "⇠p(~% )

⇤p
g d⇠d⇠1d⇠2, (34)

using the compact notation

~U = ~u + ⇠3~✓ + (⇠3)2~%, ~V = ~v + ⇠3~⌘ + (⇠3)2~&.

Similarly, the linear form F 3Ds gives

F 3Ds(~v, ~⌘,~& ) = "

Z

!

Z l/2

�l/2

~F · ⇥~v + "⇠~⌘ + "2(⇠)2~&
⇤p

g d⇠d⇠1d⇠2. (35)

Finally, we will henceforth denote by C generic constants independent of ", and by R" scalar
quantities that tend to zero with ".
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3.2 Non-inhibited pure bending

We start with the case of non-inhibited pure bending, namely, when

V3Ds
0

\ {(~v, ~⌘,~0 ) 2 V3Ds} 6= {(~0,~0,~0)}.

In this case, as in more standard shell models the expected asymptotic behavior is that of a
penalization mechanism in which the solution “tends to belong” to the constrained subspace
V3Ds
0

, associated with a scaling parameter ⇢ = 3, see [8] and references therein.
We then define V3Ds

b

as the completion of V3Ds for the norm k · k
b

. We will also use the
space V3Ds

0b

, defined as the completion of V3Ds
0

for k · k
b

, which is identified as

V3Ds
0b

= {(~v, ~⌘,~& ) 2 V3Ds
b

such that �↵�(~v ) = 0,

⇣↵(~v, ~⌘ ) = 0, �(~⌘ ) = 0, 8↵, � = 1, 2}.

Using the proposed scaling ⇢ = 3, the tentative limit problem reads:
Find (~u0, ~✓ 0, ~% 0) 2 V3Ds

0b

such that

A3Ds
b

(~u0, ~✓ 0, ~% 0;~v, ~⌘,~& ) = G3Ds(~v ), 8(~v, ~⌘,~& ) 2 V3Ds
0b

. (36)

Note that the right-hand side of this variational formulation defines a linear form in V3Ds
0b

(although this completed space may contain elements that do not belong to V3Ds) since

|
Z

!
l ~G

0

· ~v dS|  Ck~G
0

k
0

k~vk
0

 Ck~G
0

k
0

k~v, ~⌘,~& k
b

, 8(~v, ~⌘,~& ) 2 V3Ds
b

, (37)

hence this variational problem is well-posed by construction. In this framework we have the
following weak convergence [9, 8].

Lemma 2 The solution (~u", ~✓ ", ~% ") of Problem (18) converges weakly in V3Ds
b

, as " goes to 0,

to (~u0, ~✓ 0, ~% 0) 2 V3Ds
0b

solution of (36).

We proceed to establish the corresponding strong convergence, for which we will use the
following uniform bound obtained in the proof of Lemma 2

1

"
k~u", ~✓ "k

m

+ k~u", ~✓ ", ~% "k
b

+ "k~u", ~✓ ", ~% "k
1

 C. (38)

Proposition 2 The solution (~u", ~✓ ", ~% ") of Problem (18) converges strongly in V3Ds
b

to (~u0, ~✓ 0, ~% 0) 2
V3Ds
0b

solution of (36), as " goes to 0. Moreover, we have that 1

"k~u", ~✓ "k
m

and "k~u", ~✓ ", ~% "k
1

both tend to zero.

Proof Considering the decomposition (29) we first have

I
1

(~U ", ~U ") = "

Z

!
l 0H↵��µ

⇣
�↵�(~u")��µ(~u") +

t2

6
�↵�(~u")k�µ(~✓ ", ~% ")

+
t2

12
�̂↵�(~u", ~✓ ")�̂�µ(~u", ~✓ ") +

t4

80
k↵�(~✓ ", ~% ")k�µ(~✓ ", ~% ")

⌘p
a d⇠1d⇠2 + Ī

1

(~U ", ~U ")

= 0I
1

(~U ", ~U ") + Ī
1

(~U ", ~U "),

in which we can show that
1

"3
Ī
1

(~U ", ~U ") = R" using (38) and Lemma 1. Defining next

D
1," =

Z

!

l3

12
0H↵��µ�̂↵�(~u" � ~u0, ~✓ " � ~✓ 0)�̂�µ(~u" � ~u0, ~✓ " � ~✓ 0) dS,

130



and

D0
1," =

Z

!

l3

12
0H↵��µ�̂↵�(~u", ~✓ ")�̂�µ(~u", ~✓ ") dS,

we develop D
1,", and by using Lemma 2 we obtain

D
1," = D0

1," +

Z

!

l3

12
0H↵��µ

⇣
�̂↵�(~u0, ~✓ 0)�̂�µ(~u0, ~✓ 0) � 2�̂↵�(~u", ~✓ ")�̂�µ(~u0, ~✓ 0) dS

⌘

= D0
1," �

Z

!

l3

12
0H↵��µ�̂↵�(~u0, ~✓ 0)�̂�µ(~u0, ~✓ 0) dS + R", (39)

with

D0
1," =

1

"3
0I
1

(~U ", ~U ") � 1

"2

Z

!
l 0H↵��µ�↵�(~u")��µ(~u") dS

�
Z

!

l3

6
0H↵��µ�↵�(~u")k�µ(~✓ ", ~% ") dS � "2

Z

!

l5

80
0H↵��µk↵�(~✓ ", ~% ")k�µ(~✓ ", ~% ") dS. (40)

We proceed likewise with the other terms in (29). For

I
2

(~U ", ~U ") = "

Z

!
4l 0H↵3�3

⇣
⇣↵(~u", ~✓ ")⇣�(~u", ~✓ ") +

t2

6
⇣↵(~u", ~✓ ")n�(~% ")

+
t2

12
m↵(~✓ ", ~% ")m�(~✓ ", ~% ") +

t4

80
n↵(~% ")n�(~% ")

⌘p
a d⇠1d⇠2 + Ī

2

(~U ", ~U ")

= 0I
2

(~U ", ~U ") + Ī
2

(~U ", ~U "),

we can show that
1

"3
Ī
2

(~U ", ~U ") = R", and defining

D
2," =

Z

!

l3

3
0H↵3�3m↵(~✓ " � ~✓ 0, ~% " � ~% 0)m�(~✓ " � ~✓ 0, ~% " � ~% 0) dS,

and

D0
2," =

Z

!

l3

3
0H↵3�3m↵(~✓ ", ~% ")m�(~✓ ", ~% ") dS,

we obtain

D
2," = D0

2," �
Z

!

l3

3
0H↵3�3m↵(~✓ 0, ~% 0)m�(~✓ 0, ~% 0) dS + R", (41)

with

D0
2," =

1

"3
0I
2

(~U ", ~U ") � 1

"2

Z

!
4l 0H↵3�3⇣↵(~u", ~✓ ")⇣�(~u", ~✓ ") dS

�
Z

!

2l3

3
0H↵3�3⇣↵(~u", ~✓ ")n�(~% ") dS � "2

Z

!

l5

20
0H↵3�3n↵(~% ")n�(~% ") dS. (42)

Next, for

I
3

(~U ", ~U ") = "

Z

!
l 0H3333

⇣�
�(~✓ ")

�
2

+
t2

12

�
p(~% ")

�
2

⌘p
a d⇠1d⇠2 + Ī

3

(~U ", ~U ")

= 0I
3

(~U ", ~U ") + Ī
3

(~U ", ~U "),
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we have
1

"3
Ī
3

(~U ", ~U ") = R", and defining

D
3," =

Z

!

l3

12
0H3333

�
p(~% ") � p(~% 0)

�
2

dS,

and

D0
3," =

Z

!

l3

12
0H3333

�
p(~% ")

�
2

dS,

we obtain

D
3," = D0

3," �
Z

!

l3

12
0H3333

�
p(~% 0)

�
2

dS + R", (43)

with

D0
3," =

1

"3
0I
3

(~U ", ~U ") � 1

"2

Z

!
l 0H3333

�
�(~✓ ")

�
2

dS. (44)

Finally, for the last two terms I
4

(~U ", ~U ") = I
5

(~U ", ~U "), denoting

I
4

(~U ", ~U ") = "

Z

!
l 0H↵�33

⇣
�↵�(~u")�(~✓ ") +

t2

12
�̂↵�(~u", ~✓ ")p(~% ")

+
t2

12
k↵�(~✓ ", ~% ")�(~✓ ")

⌘p
a d⇠1d⇠2 + Ī

4

(~U ", ~U ")

= 0I
4

(~U ", ~U ") + Ī
4

(~U ", ~U "),

we can show that
1

"3
Ī
4

(~U ", ~U ") = R", and with

D
4," =

Z

!

l3

12
0H↵�33�̂↵�(~u" � ~u0, ~✓ " � ~✓ 0) p(~% " � ~% 0) dS,

and

D0
4," =

Z

!

l3

12
0H↵�33�̂↵�(~u", ~✓ ")p(~% ") dS,

we obtain

D
4," = D0

4," �
Z

!

l3

12
0H↵�33�̂↵�(~u0, ~✓ 0)p(~% 0) dS + R", (45)

with

D0
4," =

1

"3
0I
4

(~U ", ~U ") � 1

"2

Z

!
l 0H↵�33�↵�(~u")�(~✓ ") dS

�
Z

!

l3

12
0H↵�33k↵�(~✓ ", ~% ")�(~✓ ") dS. (46)

Defining now D" = D
1," + D

2," + D
3," + 2D

4,", D0
" = D0

1," + D0
2," + D0

3," + 2D0
4," and Ī =

Ī
1

+ Ī
2

+ Ī
3

+ 2Ī
4

, and using (40), (42), (44) and (46), we obtain

D0
" =

1

"3
A3Ds(~U ", ~U " ) � Ī

"3
� D̃",
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with

D̃" =
1

"2

Z

!
l 0H↵��µ�↵�(~u")��µ(~u") dS +

Z

!

l3

6
0H↵��µ�↵�(~u")k�µ(~✓ ", ~% ") dS

+"2
Z

!

l5

80
0H↵��µk↵�(~✓ ", ~% ")k�µ(~✓ ", ~% ") dS +

1

"2

Z

!
4l 0H↵3�3⇣↵(~u", ~✓ ")⇣�(~u", ~✓ ") dS

+

Z

!

2l3

3
0H↵3�3n↵(~% ")⇣�(~u", ~✓ ") dS + "2

Z

!

l5

20
0H↵3�3n↵(~% ")n�(~% ") dS

+
1

"2

Z

!
l 0H3333

�
�(~✓ ")

�
2

dS +
2

"2

Z

!
l 0H↵�33�↵�(~u")�(~✓ ") dS

+2

Z

!

l3

12
0H↵�33k↵�(~✓ ", ~% ")�(~✓ ") dS.

Using the variational equation (18) and recalling "�3Ī = R" we get

D0
" =

1

"3
F 3Ds(~U ") � D̃" + R", (47)

while we have by using (36) together with (39), (41), (43) and (45)

D" = D0
" � A3Ds

b

(~u0, ~✓ 0, ~% 0; ~u0, ~✓ 0, ~% 0) + R" = D0
" � G3Ds(~u0) + R",

which yields, when substituting (47),

D" =
1

"3
F 3Ds(~U ") � G3Ds(~u0) � D̃" + R" = �D̃" + R",

using the weak convergence. We have thus obtained

D" + D̃" = R". (48)

Clearly, D" � 0, and to complete the proof we will now show that

D̃" � C
⇣ 1

"2
k�k2

0

+
1

"2
k⇣k2

0

+
1

"2
k�k

0

+ "2kkk2
0

+ "2knk2
0

⌘
. (49)

Defining the tensorial components
8
><

>:

f↵� = 1

"�↵�(~u") + l2"
12

k↵�(~✓ ", ~% ")

f↵3 = 1

"⇣↵(~u", ~✓ ") + l2"
12

n↵(~% ")

f
33

= 1

"�(
~✓ ")

we have
Z

!
l 0H ijklfijfkl dS =

Z

!
l 0H↵��µf↵�f�µ dS + 2

Z

!
l 0H↵�33f↵�f

33

dS

+ 4

Z

!
l 0H↵3�3f↵3f�3 dS +

Z

!
l 0H3333f

33

f
33

dS,

hence,

D̃" =

Z

!
l 0H ijklfijfkl dS + "2

Z

!
l5
⇣ 1

80
� 1

144

⌘
0H↵��µk↵�(~✓ ", ~% ")k�µ(~✓ ", ~% ") dS

+"2
Z

!
4l5

⇣ 1

80
� 1

144

⌘
0H↵3�3n↵(~% ")n�(~% ") dS

� C

Z

!
l 0H ijklfijfkl dS,
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which implies (49). Therefore, due to (48) both D" and D̃" tend to zero. Then, with D̃"

converging to zero and (38), we directly infer

1

"
k~u", ~✓ "k

m

"!0�! 0, "k~u", ~✓ ", ~% "k
1

"!0�! 0, (50)

recalling Lemma 1. Hence, k~u", ~✓ "k
m

tends to zero a fortiori, and combined with D" converging
to zero this finally proves that (~u", ~✓ ", ~% ") converges strongly in V3Ds

b

to (~u0, ~✓ 0, ~% 0), and all
the claims of the Proposition are thus established. ⇤

Remark 1 The asymptotic behavior is essentially of a penalization type in this case – as for
the bending-dominated behavior of classical shell models [8] – since the limit solution lies in
the constrained subspace V3Ds

0b

, albeit also with some secondary features of singular perturbation
here, since the regularity of V3Ds

b

is lower than that of the original space V3Ds, except for the
first-order term ~v in the polynomial expression, recall (27).

Remark 2 The displacement of any point within the shell body being given by

~U " = ~u"(⇠1, ⇠2) + ⇠3~✓ "(⇠1, ⇠2) + (⇠3)2~% "(⇠1, ⇠2), ⇠3 2 " ⇥
i
� l(⇠1, ⇠2)

2
, +

l(⇠1, ⇠2)

2

h
, (51)

the additional convergence results (50) directly imply uniform convergence properties of ~U " to ~u0

in H1(S), e.g., when taking ⇠3/("l) as a parameter, such as for the the top and bottom surfaces
of the shell.

3.3 Inhibited pure bending

We now assume
V3Ds
0

\ {(~v, ~⌘,~0 ) 2 V3Ds} = {(~0,~0,~0)},

in which case k~v, ~⌘ k
m

gives a norm, and we accordingly introduce V3Ds
m

as the completion of
V\ = {(~v, ~⌘ ) such that (~v, ~⌘,~0) 2 V3Ds} with respect to this norm. The convergence of the
asymptotic behavior will then be obtained in this space for the scaling corresponding to ⇢ = 1,
and the candidate limit problem reads:
Find (~um, ~✓m) 2 V3Ds

m

such that

A3Ds
m

(~um, ~✓m;~v, ~⌘ ) = G3Ds(~v ), 8(~v, ~⌘ ) 2 V3Ds
m

. (52)

We point out that, in order to obtain a well-posed limit problem, we need to enforce that
G3Ds 2 (V3Ds

m

)0, namely, that

��
Z

!
l ~G

0

· ~v dS
��  Ck~v, ~⌘ k

m

, 8(~v, ~⌘ ) 2 V3Ds
m

, (53)

which we call the condition of admissible loading for membrane-dominated behavior, see [8, 21]
and references therein for discussions on this condition. Provided this condition is satisfied, the
variational problem (52) is clearly well-posed, by construction.

We start by proving weak convergence, in a more detailed form than in [9, 8].

Lemma 3 Assuming that G3Ds 2 (V3Ds
m

)0, we have that
�
~u", ~✓ "

�
converges weakly in V3Ds

m

, as

" goes to 0, to (~um, ~✓m) solution of (52). Moreover, "2~% " converges weakly in H1(S) to 0.

134



Proof We divide the proof into two steps.
i) Extraction of weakly-converging sequence and preliminary identifications. We can establish
the following uniform bound on the sequence of solutions [9, 8]

k~u", ~✓ "k
m

+ "k~u", ~✓ ", ~% "k
b

+ "2k~u", ~✓ ", ~% "k
1

 C. (54)

Hence, we can extract a subsequence – also denoted by (~u", ~✓ ", ~% ") for convenience – such that
we have the weak convergence of (~u", ~✓ ") to some (~uw, ~✓w) in V3Ds

m

, together with the weak
convergence of "2~% " to some ~% w in H1(S). We will now show that

~% w = 0. (55)

Recalling the second equivalence of norms in Lemma 1 and the expressions of m↵ and p in (15),
the boundedness of "k~u", ~✓ ", ~% "k

b

implies that "(2%"↵+✓"
3,↵) and "%"

3

are both bounded in L2(S).

Therefore, "2(2%"↵ + ✓"
3,↵) and "2%"

3

tend to zero in L2(S), which already shows that ⇢w
3

= 0.

Moreover, since "2⇢↵ tends to ⇢w↵ in L2(S), we infer that "2✓"
3,↵ tends to �2⇢w↵ in L2(S). On

the other hand, the boundedness of k~u", ~✓ "k
m

implies that ✓"
3

is bounded in L2(S). Hence, "2✓"
3

tends to zero in L2(S), thus also in the distribution sense. As a consequence, "2✓"
3,↵ also tends

to zero in the distribution sense, which shows that ⇢w↵ = 0, hence (55) is proven.

ii) Identification of weak limit (~uw, ~✓w). We will again use the decomposition (29), and similar
notation as in the proof of Proposition 2 for

Ii(~U, ~V ) = 0Ii(~U, ~V ) + Īi(~U, ~V ), i = 1, . . . , 5, (56)

where of course all the mixed terms present in the above-defined expressions of 0Ii(~U, ~U) are
symmetrized in 0Ii(~U, ~V ). Starting with the first term, we have

0I
1

(~U ", ~V ) = "

Z

!
l 0H↵��µ

⇣
�↵�(~u")��µ(~v ) +

t2

12
�↵�(~u")k�µ(~⌘,~& )

+
t2

12
�↵�(~v )k�µ(~✓ ", ~% ") +

t2

12
�̂↵�(~u", ~✓ ")�̂�µ(~v, ~⌘ )

+
t4

80
k↵�(~✓ ", ~% ")k�µ(~⌘,~& )

⌘
dS,

and we can easily show for the remainder that "�1Ī
1

tends to zero based on (54). Concerning
"�1 0I

1

, the weak convergence of (~u", ~✓ ") implies that the first term under the integral tends to
Z

!
l 0H↵��µ �↵�(~uw)��µ(~v ) dS,

and the uniform bound (54) directly implies that all other terms tend to zero, except for the
third one which requires further analysis. We have

"2k�µ(~✓ ", ~% ") = "2
⇣1

2
(%"�|µ + %"µ|�) � b�µ%"

3

� 1

2
(b↵�✓"↵|µ + b↵µ✓"↵|�) + c�µ✓"

3

⌘
,

and the weak convergence of "2~% " to zero in H1(S) implies that the terms with ~% " tend to zero
weakly in L2(S). Then from the boundedness of "k~u", ~✓ ", ~% "k

b

in (54) and recalling (27) we
infer that the terms with ~✓ " tend to zero strongly in L2(S). This shows that all terms but the
first one vanish in "�1 0I

1

in the limit, hence

"�1I
1

(~U ", ~V )
"!0�!

Z

!
l 0H↵��µ �↵�(~uw)��µ(~v ) dS. (57)
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All the other terms in the decomposition (29) can be handled with very similar arguments,
which leads to

"�1I
2

(~U ", ~V )
"!0�!

Z

!
4l 0H↵3�3⇣↵(~uw, ~✓w)⇣�(~v, ~⌘ ) dS, (58)

"�1I
3

(~U ", ~V )
"!0�!

Z

!
l 0H3333�(~✓w)�(~⌘ ) dS, (59)

"�1I
4

(~U ", ~V )
"!0�!

Z

!
l 0H↵�33�↵�(~uw)�(~⌘ ) dS, (60)

"�1I
5

(~U ", ~V )
"!0�!

Z

!
l 0H↵�33�↵�(~v )�(~✓w) dS. (61)

Therefore, in the variational formulation (18) we have

"�1A3Ds(~u", ~✓ ", ~% ";~v, ~⌘,~& )
"!0�! A3Ds

m

(~uw, ~✓w;~v, ~⌘ ).

Moreover, it is straightforward to show that

"�1F 3Ds(~v, ~⌘,~& )
"!0�! G3Ds(~v ).

Finally, taking the limit of (18) multiplied by "�1, we see that (~uw, ~✓w) satisfies

A3Ds
m

(~uw, ~✓w;~v, ~⌘ ) = G3Ds(~v ),

for any (~v, ~⌘ ) 2 V\, hence also for any (~v, ~⌘ ) 2 V3Ds
m

since V\ is dense in V3Ds
m

by construction
of the latter space. This shows that (~uw, ~✓w) = (~um, ~✓m) for the weak convergence of the
extracted subsequence, hence this convergence holds for the whole original sequence since the
limit is hereby uniquely characterized. ⇤

We are now in a position to prove the final result of this paper, namely, that the convergence
is in fact strong in this case also.

Proposition 3 Assuming that G3Ds 2 (V3Ds
m

)0, we have that
�
~u", ~✓ "

�
converges strongly in

V3Ds
m

, as " goes to 0, to (~um, ~✓m) solution of (52). Furthermore, "k~u", ~✓ ", ~% "k
b

and "2k~u", ~✓ ", ~% "k
1

both tend to zero.

Proof We again use the decomposition (29) and the splitting (56), both defined as in the
proof of Proposition 2. Starting with I

1

(~U ", ~U "), based on (54) we can now easily see that
"�1Ī

1

(~U ", ~U ") = R". We then define the following new quantities (di↵erent from those intro-
duced in the proof of Proposition 2 with the same notation), where the key point of this proof
lies in an appropriate combination of strain tensors at various orders, viz.

D
1," =

Z

!
l 0H↵��µ

⇣
�↵�(~u" � ~um) +

t2

12
k↵�(~✓ ", ~% ")

⌘⇣
��µ(~u" � ~um) +

t2

12
k�µ(~✓ ", ~% ")

⌘
dS,

and

D0
1," =

Z

!
l 0H↵��µ

⇣
�↵�(~u") +

t2

12
k↵�(~✓ ", ~% ")

⌘⇣
��µ(~u") +

t2

12
k�µ(~✓ ", ~% ")

⌘
dS,

and we have

D
1," = D0

1,"+

Z

!
l 0H↵��µ�↵�(~um)��µ(~um)dS�

Z

!
2l 0H↵��µ

⇣
�↵�(~u")+

t2

12
k↵�(~✓ ", ~% ")

⌘
��µ(~um)dS.
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Using the weak convergence properties of Lemma 3 and (54), we infer that

Z

!
2l 0H↵��µ

⇣
�↵�(~u") +

t2

12
k↵�(~✓ ", ~% ")

⌘
��µ(~um)dS

"!0�!
Z

!
2l 0H↵��µ�↵�(~um)��µ(~um)dS,

hence,

D
1," = D0

1," �
Z

!
l 0H↵��µ�↵�(~um)��µ(~um)dS + R". (62)

and D0
1," is related to 0I

1

(~U ", ~U ") by

D0
1," =

1

"
0I
1

(~U ", ~U ") �
Z

!
l 0H↵��µ

⇣ t2

12
�̂↵�(~u", ~✓ ")�̂�µ(~u", ~✓ ") +

t4

180
k↵�(~✓ ", ~% ")k�µ(~✓ ", ~% ")

⌘
dS.

(63)
Proceeding similarly for the other terms in the decomposition (29), we have

"�1Īi(~U
", ~U ") = R", i = 1, . . . , 5.

Also, defining

D
2," =

Z

!
4l 0H↵3�3

⇣
⇣↵(~u" � ~um, ~✓ " � ~✓m) +

t2

12
n↵(~% ")

⌘⇣
⇣�(~u" � ~um, ~✓ " � ~✓m) +

t2

12
n�(~% ")

⌘
dS,

D0
2," =

Z

!
4l 0H↵3�3

⇣
⇣↵(~u", ~✓ ") +

t2

12
n↵(~% ")

⌘⇣
⇣�(~u", ~✓ ") +

t2

12
n�(~% ")

⌘
dS,

we obtain

D
2," = D0

2," �
Z

!
4l 0H↵3�3⇣↵(~um, ~✓m)⇣�(~um, ~✓m) dS + R", (64)

D0
2," =

1

"
0I
2

(~U ", ~U ") �
Z

!
l 0H↵3�3

⇣ t2

12
m↵(~✓ ", ~% ")m�(~✓ ", ~% ") +

t4

180
n↵(~% ")n�(~% ")

⌘
dS. (65)

Likewise, for

D
3," =

Z

!
l 0H3333

�
�(~✓ " � ~✓m)

�
2

dS, D0
3," =

Z

!
l 0H3333

�
�(~✓ ")

�
2

dS,

we have

D
3," = D0

3," �
Z

!
l 0H3333

�
�(~✓m)

�
2

dS + R", (66)

D0
3," =

1

"
0I
3

(~U ", ~U ") �
Z

!
l 0H3333

t2

12

�
p(~% ")

�
2

dS. (67)

Finally, for

D
4," =

Z

!
l 0H↵�33

⇣
�↵�(~u" � ~um) +

t2

12
k↵�(~✓ ", ~% ")

⌘
�(~✓ " � ~✓m) dS,

D0
4," =

Z

!
l 0H↵�33

⇣
�↵�(~u") +

t2

12
k↵�(~✓ ", ~% ")

⌘
�(~✓ ") dS,

we infer

D
4," = D0

4," �
Z

!
l 0H↵�33�↵�(~um)�(~✓m) dS + R", (68)

D0
4," =

1

"
0I
4

(~U ", ~U ") �
Z

!
l 0H↵�33 t2

12
�̂↵�(~u", ~✓ ")p(~% ") dS. (69)
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We again define D" = D
1," + D

2," + D
3," + 2D

4,", D0
" = D0

1," + D0
2," + D0

3," + 2D0
4," and Ī =

Ī
1

+ Ī
2

+ Ī
3

+ 2Ī
4

, and we recall that "�1Ī = R". Gathering now (63), (65), (67) and (69), we
get

D0
" =

1

"
A3Ds(~U ", ~U ") � 1

"
Ī(~U ", ~U ") � D̃",

for

D̃" =

Z

!
l 0H↵��µ

⇣ t2

12
�̂↵�(~u", ~✓ ")�̂�µ(~u", ~✓ ") +

t4

180
k↵�(~✓ ", ~% ")k�µ(~✓ ", ~% ")

⌘
dS

+

Z

!
l 0H↵3�3

⇣ t2

12
m↵(~✓ ", ~% ")m�(~✓ ", ~% ") +

t4

180
n↵(~% ")n�(~% ")

⌘
dS

+

Z

!
l 0H3333

t2

12

�
p(~% ")

�
2

dS + 2

Z

!
l 0H↵�33 t2

12
�̂↵�(~u", ~✓ ")p(~% ") dS.

hence,

D0
" =

1

"
F 3Ds(~U ") � D̃" + R", (70)

using the variational equation (18). On the other hand, using (52) together with (62), (64),
(66) and (68) we have

D" = D0
" � A3Ds

m

(~um, ~✓m; ~um, ~✓m) + R" = D0
" � G3Ds(~um) + R".

This gives when substituting (70)

D" =
1

"
F 3Ds(~U ") � D̃" � G3Ds(~um) + R" = �D̃" + R",

invoking the weak convergence. We have thus found

D" + D̃" = R", (71)

with D" � 0 by construction, and it is straightforward to see that

D̃" � C
⇣
"2k�̂k2

0

+ "2kmk2
0

+ "2kpk2
0

+ "4kkk2
0

+ "4knk2
0

⌘
. (72)

Therefore, we infer that D" and D̃" both tend to zero. Then, (72) implies that all the terms
with coe�cient t2 appearing in the definitions of D

1,", D
2," and D

4," tend to zero, hence D"

tending to zero leads to k~u" � ~um, ~✓ " � ~✓mk
m

"!0�! 0. Finally, (72) also shows the additional
convergence properties

"k~u", ~✓ ", ~% "k
b

"!0�! 0, "2k~u", ~✓ ", ~% "k
1

"!0�! 0, (73)

recalling the equivalences of norms stated in Lemma 1. ⇤

Remark 3 The asymptotic behavior is entirely of singular perturbation type in this case [17],
albeit with perturbation terms arising at several orders and with combinations thereof, which
requires some rather subtle handling of these combinations in the convergence proofs.

Remark 4 In this case also, we have convergence of the displacements within the shell body
– as expressed in (51) – to the limit solution ~um, uniformly with respect to the parameter given
by ⇠3/("l), albeit here in the norm provided by k�k

0

. This is a straightforward consequence of

the additional convergence properties given in (73), indeed.
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4 Concluding remarks

We have revisited the convergence properties of the 3D-shell model proposed in [9], and
established strong convergence results for the two main types of asymptotic regimes, namely,
bending- and membrane-dominated behavior. This is an important result, as it completely
substantiates the asymptotic consistency of the 3D-shell model with 3D elasticity.

As mentioned in the introduction, the finite element discretization of the 3D-shell model
is quite straightforward – even more so than for general shell elements due to the possibility
of directly employing a general 3D constitutive law in the 3D-shell finite element formulation
– and these elements are already available in some widely-used finite element software1, indeed.
Of course, special care must be exerted to avoid the very serious numerical pathologies associ-
ated with shell model discretizations – numerical locking phenomena, in particular – albeit the
e↵ective techniques already designed for general shell elements can be rather directly extended
to 3D-shells [8, 15, 10].
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Part III

APPLICATIONS OF THE SURFACE-BASED

BIDOMAIN MODEL





Introduction of Part III

Chapter 3 gives an innovative asymptotic electrophysiological model valid for thin car-
diac structures as for example atria. We present in this part some medical applications of
this asymptotic model.

In Chapter 5 – the first chapter of this part – we apply the surface bidomain model in
a real geometry of the atria. We prescribe the positions at the fibers at the endocardium
(inner surface) and at the epicardium (outer surface) of the atria using literature. Then the
position of the fibers at the midsurface and also the value of the total angle variation – which
are the two informations that we need for using the surface bidomain model – are deduced.
The fast and the slow conductions bundles which are specific to the atria are determined. For
the ionic current we use the Courtemanche-Ramirez-Nattel model [2] adapted to the atria.
Simulations are presented in the following article [1]

Surface-based electrophysiology modeling and assessment of physiological simulations in atria

which is a proceeding of the FIMH conference in collaboration with J.-F. Gerbeau, M. Hocini,
M. Haïssaguerre and D. Chapelle. Our surface simulation is compared and is in very good
adequacy with 3D simulations founded in the literature [5, 4, 3], and we give these compar-
isons in the article.

Using a coupled bidomain model with the surface bidomain model for the atria and the
classical 3D model for the ventricles, we obtain electrophysiological simulations of the whole
heart. The simulations are used in order to produce full electrocardiograms which contain
the PQRST waves. An electrocardiogram is a graphic representation of the electrical activity
of the heart. The principe is to measure the differences between two different positions of the
body surface. A classical electrocardiogram has twelve derivations. Using a weak coupling
between the heart mesh and the body mesh – more precisely Robin boundary conditions –
we consider a diffusion of the extra-cellular potential in the whole body. Then with the value
of potential at 9 positions of the body surface, we obtain the 12 derivations of a classical
electrocardiogram. This work takes the form of a pre-print article

Numerical simulations of full electrocardiogram cycles

in collaboration with J.-F. Gerbeau and E. Schenone given in Chapter 6.
As previously said, we take into account the fast and the slow conductions bundles of

the atria in this work. As we will see, two different methods are used in this part. In the
first chapter of this part, we modify the value of the conductivity parameters in these various
bundles. This method is not very justified. That is why, we use a second method which con-
sists in directly modifying a parameter of the Courtemanche-Ramirez-Nattel (CRN) model.
In [6], we also modify some parameters of the 0D CRN model in order to adapt the model
to 3D cases.
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CHAPTER 5
Surface-based electrophysiology modeling

and assessment of physiological simulations
in atria

Abstract The objective of this paper is to assess a previously-proposed surface-based elec-
trophysiology model with detailed atrial simulations. This model – derived and substanti-
ated by mathematical arguments – is specifically designed to address thin structures such
as atria, and to take into account strong anisotropy effects related to fiber directions with
possibly rapid variations across the wall thickness. The simulation results are in excellent
adequacy with previous studies, and confirm the importance of anisotropy effects and varia-
tions thereof. Furthermore, this surface-based model provides dramatic computational ben-
efits over 3D models with preserved accuracy.
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Abstract

The objective of this paper is to assess a previously-proposed surface-based electrophys-
iology model with detailed atrial simulations. This model – derived and substantiated by
mathematical arguments – is specifically designed to address thin structures such as atria,
and to take into account strong anisotropy e↵ects related to fiber directions with possi-
bly rapid variations across the wall thickness. The simulation results are in excellent ade-
quacy with previous studies, and confirm the importance of anisotropy e↵ects and variations
thereof. Furthermore, this surface-based model provides dramatic computational benefits
over 3D models with preserved accuracy.

Keywords: Electrophysiology modeling; Asymptotic analysis; Cardiology

1 Introduction

There is a very important medical need for modeling the electrical activity of the heart
in general, and in the atria in particular, e.g. with a view to therapy planning assistance in
radiofrequency ablation for patients su↵ering from atrial fibrillation [10]. In addition to generic
di�culties inherent to electrophysiology modeling, namely, modeling complexity and computa-
tional intensiveness, atria modeling features specific di�culties, in particular due to their very
thin walls – mostly apparent as thick surfaces in medical imaging – which requires much refined
meshes. Moreover, there is a major challenge in taking into account the anisotropy resulting
from the preferred conduction direction along the muscle fibers, which is also known to vary
extremely rapidly across the wall thickness [7].

The electrical wave propagating in the cardiac tissue can be represented by a nonlinear
reaction-di↵usion partial di↵erential equation (PDE), coupled with ordinary di↵erential equa-
tions (ODEs) representing cellular activity. In this study, we consider the 2D – namely, surface-
based – model proposed and mathematically substantiated in [1], derived from the bidomain
model (see for example [12, 11, 13]), and defined over the midsurface of the thin region. This
surface-based model was specifically designed for thin cardiac structures – the atrial walls, in
particular – and takes into account the strong anisotropy variations across the thickness. This
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Figure 1: Atrial mesh posterior (left) and anterior (right) views, with main specific regions

LA indicators at ventricular end-systole Normal (from [2, 8]) LA model dimensions
diameter (cm) 2.8–4.0 3.0

major axis (cm) 4.1–6.1 4.65
area (cm2) 15.0–20.0 15.9

volume (ml) 41–75 47
diameters of pulmonary veins (cm) 1.1–1.5 1.14–1.45

Table 1: Assessment of left atrial dimension indicators

model was already successfully numerically assessed in [1] by comparing the resulting simula-
tions with reference 3D simulations on thin domains of simple geometries, with dramatic bene-
fits in computation times. Our objective here is to further assess this model with physiological
simulations of the atrial electrophysiology.

2 Model

2.1 Atrial mesh

We produced a surface mesh representing the mid-surface of the two atria. Starting from
the Zygote1 heart model – a geometric model based on actual anatomical data – we used the
3-matic2 software to obtain a computationally-correct surface mesh, and the Yams [5] meshing
software to further process and refine the surface mesh. Figure 1 shows the posterior and anterior
views of the mesh, which contains about 26,000 triangles and 13,500 vertices. The anatomy
corresponds to ventricular end-systole, namely, when the atrial chamber has its greatest internal
volume. This anatomical surface was compared with literature reports of normal human atrial
dimension indicators, see for example [2, 8], and found to be within standard ranges, see Table 1.

1
www.3dscience.com

2
www.materialise.com
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Figure 2: Fibers directions at the endocardium (top-left) and epicardium (top-right), angle ✓
(bottom-left), and angular variation visualization (bottom-right)

2.2 Fibers

Cardiac tissue has a fiber architecture. As the electrical conductivity is higher along than
across the fiber direction, fiber orientation is very important in electric activation propagation.
The specificities of the atria are that the walls are very thin, and that fibers orientations may
vary extremely rapidly across the thickness. We use [7, 9] to identify and prescribe the fibers
directions at the endocardium and epicardium, see Figure 2. This figure also displays the angle
✓, defined as half of the angular variation between the endocardium and the epicardium.

2.3 Surface-based bidomain model

We denote by S the midsurface of the wall. The variational bidomain surface model that we
propose can be written in terms of the extracellular potential ue, the transmembrane potential
Vm = ui�ue, with ui the intracellular potential, as follows [1]. Find (Vm, ue) with

R
S ue dS = 0,

such that for all t > 0,

8
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(1)

also with
R
S  dS = 0, and where Am is a positive constant denoting the ratio of membrane

area per unit volume, Cm the membrane capacitance per unit surface, Iion(Vm) a reaction term
representing the ionic current across the membrane and also depending on local ionic variables
satisfying additional ODEs, and Iapp a given applied stimulus current.
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tissue PM CT BB IRA FO SN

�ti 2.2 10�4 3.3 10�4 6.6 10�4 1.045 10�3 8.250 10�5 2.2 10�4 2.2 10�4

�li 2.2 10�3 3.894 10�3 9.570 10�3 1.639 10�2 9.735 10�4 2.002 10�3 2.002 10�3

�te 9.0 10�4 1.350 10�3 2.7 10�3 4.275 10�3 3.375 10�4 9.0 10�4 9.0 10�4

�le 2.2 10�3 3.690 10�3 8.550 10�3 1.435 10�2 9.225 10�4 2.070 10�3 2.070 10�3

Table 2: Conductivity parameters

We define the intra- and extra-cellular di↵usion tensors � i and � e by

� i,e = �ti,eI + (�li,e � �ti,e)
⇥
I
0

(✓)⌧
0

⌦ ⌧
0

+ J
0

(✓)⌧?
0

⌦ ⌧?
0

⇤
, (2)

where I denotes the identity tensor in the tangential plane – also sometimes called the surface
metric tensor – ⌧

0

is a unit vector parallel to the local fiber direction on the atria midsurface, and
⌧?
0

such that (⌧
0

, ⌧?
0

) gives an orthonormal basis of the tangential plane. The e↵ect of angular
variations enters the model through the coe�cients I

0

(✓) = 1

2

+ 1

4✓ sin(2✓) and J
0

(✓) = 1�I
0

(✓).
Note that J

0

(✓) = 0 (and I
0

(✓) = 1) if and only if ✓ = 0 – namely, constant direction across the
thickness – and then � i,e = �ti,eI + (�li,e � �ti,e)⌧0 ⌦ ⌧

0

as expected for a single fiber direction.
By contrast, angular variations make I

0

decrease and J
0

increase in (2), which renders di↵usion
“more isotropic”. This model derived from a detailed asymptotic analysis thus allows to take
into account the rapid variations of the fiber direction.

The current Iion can be described by a physiological or a phenomenological model. In this
study, the physiological model proposed by Courtemanche, Ramirez and Nattel in [3] – most
widely accepted for atria modeling – is considered.

The values of the membrane parameters are Am = 200.0 cm�1 and Cm = 10�3 mF.cm�2.
The values of the conductivity parameters vary substantially depending on the specific areas
considered and are given in Table 2 (all in S.cm�1). The Bachmann bundle (BB), the Crista
Terminalis (CT) and the pectinate muscles (PM) are regions of established fast conduction. By
contrast, the Fossa Ovalis (FO) and the Isthmus of the right atrial floor (IRA) are regions of
known slow conduction. All these specific regions are depicted in Figure 1.

The two atria are connected via two regions only – in the mesh connectivity, hence also in
terms of electrical conduction – namely, the Bachmann bundle and the Fossa Ovalis.

3 Simulations results

Figure 3 displays the simulation results obtained with the above-described model. Activation
is initiated at the sinus node with a stimulus of 2 ms in duration and su�cient strength to cause
the initiation of a propagating wavefront. We compare our results to several 3D modeling
studies [9, 6, 4].

As observed in the figure, by 30 ms the wave quickly spreads along the Crista Terminalis
as a consequence of the high conductivity in this part. Importantly, the depolarizing wave has
now traversed the Bachmann bundle and the first activation of the left atrium has occurred
at 29.6 ms. This compares very well with the findings of the modeling study [6] giving the
left atrium activation at 29.7 ms. At t = 40 ms, we clearly see the e↵ect of the anisotropy of
the Crista Terminalis, and of the pectinate muscles already observed in [9], as the wavefront
becomes nearly triangular – as also seen in [6]. The wavefront has encircled the superior Vena
Cava. The Fossa Ovalis, which is the second atrial connection, becomes active (42.8 ms). By
50 ms, because of the rapid conduction in the Bachmann bundle, the wave spreads to the left
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Figure 3: Simulation of atrial depolarization

Figure 4: Simulations of atrial depolarization for homogeneous case i.e ✓ = 0 (top) and for
homogeneous and isotropic case (bottom)
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Figure 5: Activation time maps for the three cases: anisotropic-heterogeneous (left), anisotropic-
homogeneous (middle) and isotropic-homogeneous (right)

atrial appendage and has activated a substantial part of the left atrial wall. The Fossa Ovalis
is very active. The activation of the right atrial appendage is complete. At t = 60 ms, in the
right atrium the floor is the last part that remains unexcited. The wave has encircled the mouth
of the left atrial appendage at 72.8 ms. By t = 80 ms, the only part that remains una↵ected
by the wave in the right atrium is the isthmus, because of the reduced conductivity there. In
the left atrium, at t = 90 ms we can see three separate wavefronts, also obtained in [6, 4]. The
depolarization of the left atrial appendage is complete at 95.8 ms. At 100ms, only a small
part of the left atrium in the shape of a parallelepiped is still inactive. The depolarization of
the right and left atrium are complete at 101.8 ms and 109.6 ms, respectively. This is in good
adequacy with the timings found in [6], namely, 99.3 ms and 108.2 ms, respectively, while [9]
gives 115.0 ms for the left atrium, and [4] 119.0 ms.

4 Discussion

For comparison purposes, we also display in Figure 4-top simulation results obtained when
disregarding the fiber direction variations across the thickness, namely, when taking ✓ = 0.
We observe major di↵erences with the above-discussed physiological simulation. In particular,
the anisotropy e↵ects characteristic of the Crista Terminalis are much less clearly seen, and the
triangular shape is hardly observed, indeed. Overall, the activation timings are longer, in partic-
ular due to slower propagation in the Crista Terminalis, with complete depolarization occurring
as late as 116.2 ms and 115.4 ms for the right and left atria, respectively. The last results dis-
played in Figure 4-bottom correspond to an homogeneous and isotropic tissue throughout. We
increased the homogeneous conductivity with �i = 8.0 10�4 S.cm�1 and �e = 3.1 10�3 S.cm�1

to obtain roughly comparable depolarization timings. The resulting activation profile, however,
is totally unrealistic – as already noted in [9] – see Figure 5 displaying the activation time maps
for the three cases analyzed.

5 Concluding remarks

We have presented detailed simulation results of a surface-based electrophysiology bidomain
model applied with an anatomical model of the atria. The results obtained are in excellent
adequacy with previous studies, and confirm the importance of fiber-related anisotropy e↵ects
and of their strong variations across the wall thickness. Furthermore, this surface-based model
provides dramatic computational benefits over 3D models with preserved accuracy [1]. Further
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perspectives include applications to radio-frequency ablation planning assistance, for which
computational e↵ectiveness – less than 3 minutes for a complete simulation on a standard
workstation – will be of great value.
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CHAPTER 6
Numerical simulations of full

electrocardiogram cycles

Abstract This work is dedicated to the simulation of the whole electrical activity and its cor-
responding body surface potential, including the standard electrocardiograms (ECGs). ECG
is the most used exam providing an interpretation of the cardiac electrical activity, since it
represents a non-invasive and inexpensive procedure. In order to reproduce a realistic ECG
including P, QRS and T waves, we introduce a cardiac electrophysiology model which takes
into account ventricles and atria. First, a realistic heart mesh is presented. The ventricular
part is considered as a standard volume mesh, while the atria are modeled by a surface.
The mathematical model is based on the bidomain equations, which represent one of the
most used model for cardiac electrophysiology. As we deal with an hybrid mesh, the usual
bidomain equations are used in the ventricle volume part of the domain, while an anisotropic
atrial surface-based model is applied. The bidomain model is coupled with two ionic models:
on the atrial surface we use the physiological model by Courtemanche, Ramirez and Nattel,
while in the ventricular part we apply the Minimal model for human Ventricular action po-
tentials (MV) by Bueno-Orovio, Cherry and Fenton. In order to obtain the ECGs, the heart
is weakly coupled to the body by a Robin boundary condition based on a resistor-capacitor
transmission condition. Then, a healthy ECG and some pathological cases - in particular a
Wolff-Parkinson-White syndrome - are analyzed and we use our simulation tools to study
more sophisticated signals as those provided by a vest of electrodes.
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Abstract

This work is dedicated to the simulation of the whole electrical activity and its corre-
sponding body surface potential, including the standard electrocardiograms (ECGs). ECG
is the most used exam providing an interpretation of the cardiac electrical activity, since it
represents a non-invasive and inexpensive procedure. In order to reproduce a realistic ECG
including P, QRS and T waves, we introduce a cardiac electrophysiology model which takes
into account ventricles and atria. First, a realistic heart mesh is presented. The ventricular
part is considered as a standard volume mesh, while the atria are modeled by a surface.
The mathematical model is based on the bidomain equations, which represent one of the
most used model for cardiac electrophysiology. As we deal with an hybrid mesh, the usual
bidomain equations are used in the ventricle volume part of the domain, while an anisotropic
atrial surface-based model is applied. The bidomain model is coupled with two ionic models:
on the atrial surface we use the physiological model by Courtemanche, Ramirez and Nattel,
while in the ventricular part we apply the Minimal model for human Ventricular action po-
tentials (MV) by Bueno-Orovio, Cherry and Fenton. In order to obtain the ECGs, the heart
is weakly coupled to the body by a Robin boundary condition based on a resistor-capacitor
transmission condition. Then, a healthy ECG and some pathological cases - in particular a
Wol↵-Parkinson-White syndrome - are analyzed and we use our simulation tools to study
more sophisticated signals as those provided by a vest of electrodes.

Keywords: Electrocardiograms, bidomain model, atria, ventricles

Introduction

Cardiac electrophysiology is the study of the electrical activity of the heart [47, 50]. Over the
past decades, huge progress has been made in the mathematical modeling of this field. Various
models which represent the evolution of the potential in the membrane have been developed as
for example [42, 34, 14] for the physiological models and [17, 40, 39, 6] for the phenomenological
models. These models which correspond to one (or more) ordinary di↵erential equation(s) can
be coupled with di↵usion terms in order to obtain 3D simulations as for example in [19] where
a generalized FitzHugh–Nagumo model [1] is used and leads to realistic ventricular simulations.
More complex reaction di↵usion models – as the bidomain model initially introduced by [53]
and its first approximation the monodomain model – are also available in the literature. In [12],
a comparison between the bidomain model and the monodomain model is given in 3D test cases.
For the atrial simulations we can cite [21, 32] which use a monodomain model. In this study, we
want to introduce a detailed modeling of the human heart in order to obtain realistic simulations
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of the whole heart (atria and ventricles). We consider a coupled bidomain model: a standard
3D bidomain model for the ventricles [53, 47] and an asymptotic surface-based bidomain model,
presented in [8] and validated with simulations in [13], for the atria. Two di↵erent ionic models
are used: the physiological model proposed by Courtemanche, Ramirez and Nattel in [14] on
the atrial surface, and the Minimal model for human Ventricular action potentials (MV) model
proposed by Bueno-Orovio, Cherry and Fenton in [6], in the ventricles. The coupled bidomain
model allows us to obtain electrophysiological simulations of the whole heart. We want to assess
these simulations by generating the full electrocardiograms which contain the PQRST waves.

The electrocardiogram (ECG) is a non-invasive recording of the cardiac electrical activity [35,
54]. The standard 12-lead ECG is constructed using 9 electrode measures of the body skin
potential. This non-invasive and inexpensive procedure is the most used medical tool for the
detection of pathologies of the electrical state of a patient. The modeling of realistic ECGs
is an important step in the development of patient-specific models using medical ECG data.
The mathematical modeling is known as the forward problem of electrocardiography (see for
instance [33]) based on three main elements: a model for the heart, a model for the body
di↵usion and heart-body transmission conditions. Several simulations of ECGs are given in
the literature. For example in [26, 44, 33, 31, 52], numerical simulations of ECGs using a
bidomain or a monodomain model are given, and in particular the 12-lead ECG appear in
[44, 52]. However, these simulations are not always realistic and only concern the ventricles. In
[4], more realistic ventricular results based on detailed modeling assumptions, in particular for
the torso transmission conditions, have been presented. More recently, we can cite [48] where
full electrocardiogram cycles are obtained but for a very simple geometry and [28] where a
study of the repolarization wave T is given. In our work, the coupled bidomain model presented
previously and a signal di↵usion in the whole body are considered. The coupling conditions
between the heart and the body are based on the resistor-capacitor coupling condition presented
in [4] and lead to a Robin boundary condition. The first contribution on this work concerns
the detailed modeling assumptions with in particular a surface-volume bidomain model coupled
with two adapted ionic models and also complex torso transmission conditions. The quality of
our results is also a progress, in particular in the precordial leads V1-V6. Furthermore, using the
classical criteria found in the literature, a detailed evaluation of our results is given and allows
us to validate them. Pathological cases are also investigated in order to show the capability of
our model to predict the features used by medical doctors to detect a disease.

Here is the outline of this article. In a first part, a whole surface (atria) and volume
(ventricles) mesh adapted for finite elements is described. We compare this mesh with literature
reports of normal human heart dimension indicators found for example in [10, 16, 11]. The
second part concerns the modeling assumptions with the presentation of the coupled atria-
ventricles model and we present the electrophysiological simulations of the whole heart. We
conclude this part with the coupling conditions between the heart and the rest of the body.
The third part concerns the simulations of the standard 12-lead ECG. A healthy case is given
and validated by numerous criteria for a normal electrocardiogram. Some pathological cases
are also studied. In particular we show simulations of the Wol↵-Parkison-White syndrome,
a pathology caused by the presence of an abnormal accessory electrical conduction pathway
between the atria and the ventricles. In the last part, we give a principal components analysis
of the potential measured by an electrode vest. In particular, the correlation between the signals
of di↵erent electrodes is studied. We also give an analysis of the dependence of the electrode
measures with respect to their positions on the body.
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Left Ventricle Volume (ml) Mass (g) Mitral (cm) Aortic (cm)

Measures 53.7 111.3 2.9 2.3
Reference 46 ± 11 112 ± 27 2.5 ± 0.4 2.3 ± 0.2

Left Atrium Major axis (cm) Area (cm2) Volume (ml) Pulmonary Veins (cm)

Measures 4.65 15.9 47 1.14 � 1.45
Reference 3.4 ± 0.6 17.5 ± 2.5 58 ± 34 1.3 ± 0.2

Table 1: Comparisons of the model dimensions with typical end-systolic values found in the
literature [10, 25, 43, 16, 56, 11, 29]

1 Whole heart mesh

To obtain full cycle ECGs, the first step is to build a whole heart realistic mesh. The ventri-
cles can be easily obtained from medical imaging and meshed in 3D. On the contrary, the atria
have a very thin wall which makes them di�cult to image in 3D. In addition, generating a 3D
mesh on these very thin volumes would dramatically, and uselessly, increase the computational
cost. For these reasons, we choose to model the geometry of the atria as a surface. We therefore
obtain an hybrid mesh, made of tetrahedra in the ventricles and of triangles in the atria.

The heart model used in this work is obtained from an anatomical data set called Zygote1.
The 3-matic software is used to obtain a surface mesh satisfying the standard quality criteria of
a finite element mesh, and the Yams software to refine the surface mesh [18]. Then, the volume
of the two ventricles is meshed using Gmsh software. We can see in Figure 1 di↵erent views of
the whole heart mesh, which contains about 230,600 tetrahedra, 73,500 triangles and 67,300
vertices. A simplified mesh of the body (Fig. 1), including the lungs and the ribs, is also built
from the Zygote data set and the aforementioned software. The body mesh contains 408,171
tetrahedra, 89,222 triangles and 85,196 vertices.

The mechanical deformation of the heart is not taken into account in this work. The
dimensions of the fixed domain correspond to the end of the systole (small ventricles, large
atria). Table 1 shows a comparison of a few dimensions of the geometrical model with standard
end-systolic values. The following quantities are compared: left ventricle volume and mass,
mitral and aortic valves diameters, left atrium major axis, area, volume and four pulmonary
veins diameters. We observe a good agreement with the values found in the literature [10, 25, 43].
We also have a good agreement for the diameters of mitral [16] and aortic [56] valves, the surface
of the left atrium [11, 29].

Cardiac tissue has a fiber architecture. The electrical conductivity is higher along the fibers
than in the transverse direction. This implies that the fiber orientation is very important
in the study of the electrical activity of the heart. To identify and to prescribe the fibers
at the endocardium and at the epicardium of the atria, we use [22, 23, 32]. As we can see in
Figure 2 (top), the fibers orientation may vary extremely quickly across the thickness. The colors
represent the angle ✓ defined as half of the angular di↵erence between the endocardium and the
epicardium. We use [41, 49] to prescribe the fibers in the ventricles, see Figure 2 (bottom).

Figure 3 represents a schematic view of the heart conduction system in a healthy heart: the
sinus and atrioventricular nodes, the Bachmann’s bundle and the Purkinje fibers. In this work,
the atrio-ventricular node and the Purkinje fibers are not explicitly modeled (see below).

1
www.3dscience.com
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Figure 1: Whole heart mesh (right) and body mesh (left).

2 Modeling assumptions

In this section, we present the electrophysiology equations and the ionic models used in the
ventricles and the atria. We also present the coupling conditions between the atria and the
ventricles and between the heart and the body.

2.1 Bidomain model

In order to describe the electrical potential in the heart, we use the standard nonlinear
reaction-di↵usion equations known as the bidomain equations (see for instance [47, 50]). In
terms of extracellular potential ue and transmembrane potential Vm = ui � ue, with ui the
intracellular potential, the bidomain model reads

8
<

:
Am

⇣
Cm

@Vm

@t
+ Iion(Vm, w

1

, . . . , wn)
⌘

� div
�~~�i · ~rVm

�
= div

�~~�i · ~rue

�
+ AmIapp,

div
⇣�~~�i + ~~�e

� · ~rue

⌘
= � div

�~~�i · ~rVm

�
,

(1)

in B ⇥ (0, T ), where B denotes the 3D domain of interest, Am is a positive constant denoting
the ratio of membrane area per unit volume, Cm the membrane capacitance per unit surface,
Iion the ionic current which depends on n ionic variables w

1

, . . . , wn and Iapp a given applied
stimulus current.

We assume that the heart is isolated from the body, so that the first boundary condition is

�~~�e · ~rue

� · ~n = 0, in @B ⇥ (0, T ), (2)

while the second one comes from the fact that the intra-cellular current cannot propagate outside
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Figure 2: Fibers directions at the atrial endocardium (top-left) and atrial epicardium (top-
right), and in ventricles (bottom).

Figure 3: Heart conduction system
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the heart tissue [53]

�~~�i · ~rue

� · ~n = ��~~�i · ~rVm

� · ~n, in @B ⇥ (0, T ). (3)

In order to define the Iion term, equations (1) must be coupled with a ionic model, i.e. a
system of nonlinear ordinary di↵erential equations (ODEs). In this work, for the ventricular
domain, we apply the Minimal model for human Ventricular action potentials (MV) introduced
in [6]. MV is a phenomenological model associated with three ionic currents and three gate
variables, and governed by 28 parameters.

As previously explained, the fiber architecture of the cardiac muscle is considered. In order
to include the anisotropy between the orthogonal and the tangent direction of the fibers, the
conductivity tensors ~~�i and ~~�e are defined by

~~�i,e = �v,ti,e
~~I + (�v,li,e � �v,ti,e )~⌧ ⌦ ~⌧ ,

where
~~I denotes the 3D identity matrix, the vector ~⌧ is of unit length and parallel to the local

fiber direction, and �v,li,e and �v,ti,e are respectively the conductivity coe�cients in the intra- and
extra-cellular ventricular medium measured along and across the fiber direction.

The bidomain model can be rewritten in weak form as follows. For all t > 0, find Vm(·, t) 2
H1(B), ue(·, t) 2 H1(B) and w

1

(·, t), . . . , wn(·, t) 2 L1(B) with
R
B ue = 0, such that
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Z
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Z
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h
~~�i · ~rVm

i
· ~r = 0,

(4)

for all �, 2 H1(B) such that
R
B  = 0. Under some regularity assumptions, we have existence

and uniqueness of a solution of the bidomain model, see e.g. [5]. The hypothesis
R
B ue = 0 is

necessary in order to have uniqueness and we show in Section 2.3 how to adapt this condition
when atria and ventricles are coupled.

2.2 Surface bidomain model

As explained in Section 1, we have a surface mesh for the atria. Then, we need a surface
model. In this study, we consider the surface-based model presented and mathematically studied
in [8], derived from the volume bidomain model, and defined over the midsurface of the thin
region. This surface-based model was obtained from a rigorous asymptotic analysis and was
specifically designed for thin cardiac structures, as the atria for example. It takes into account
the strong anisotropy variations across the thickness and it is extremely attractive in term of
computation time compared to its 3D counterpart. We denote by S the midsurface of the
wall and we denote by H1(S) the associated space. The surface-based bidomain model can be
rewritten in weak form as follows, for all t > 0, find Vm(·, t) 2 H1(S), ue(·, t) 2 H1(S) and
w
1

(·, t), . . . , wn(·, t) 2 L1(S) with
R
S ue = 0, such that

8
>>>>><

>>>>>:

Am

Z

S

⇣
Cm

@Vm

@t
+ Iion(Vm, w

1

, . . . , wn)
⌘
�+

Z

S

⇣
� i · �rVm + rue

�⌘ · r�

= Am

Z

S
Iapp�,

Z

S

⇣
(� i + � e) · rue

⌘
· r +

Z

S

⇣
� i · rVm

⌘
· r = 0,

(5)
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for all �, 2 H1(S) such that
R
S  = 0. We denote by �a,li,e and �a,ti,e the conductivity coe�cients

in the intra- and extra-cellular atrial medium measured along and across the fiber direction.
We define the intra- and extra-cellular di↵usion tensors � i and � e by

� i,e = �a,ti,e I + (�a,li,e � �a,ti,e )
⇥
I
0

(✓)⌧
0

⌦ ⌧
0

+ J
0

(✓)⌧?
0

⌦ ⌧?
0

⇤
, (6)

where I denotes the identity tensor in the tangential plane, ⌧
0

is a unit vector parallel to the local

fiber direction on the atria midsurface, and ⌧?
0

such that (⌧
0

, ⌧?
0

) gives an orthonormal basis
of the tangential plane. We use the fibers direction at the endocardium and at the epicardium
to define the fibers direction ⌧

0

on the atria midsurface and the angle variation ✓ between
the endocardium and the epicardium. The e↵ect of angular variations appears in the model
with the coe�cients I

0

(✓) = 1

2

+ 1

4✓ sin(2✓) and J
0

(✓) = 1 � I
0

(✓). Note that J
0

(✓) = 0 (and
I
0

(✓) = 1) if and only if ✓ = 0, which corresponds to a constant direction in the thickness and

then � i,e = �a,ti,e I + (�a,li,e � �a,ti,e ) ⌧
0

⌦ ⌧
0

. By contrast, important angular variations make I
0

decrease and J
0

increase in (6) and the di↵usion becomes more isotropic. In [13] this model was
compared to several 3D models proposed in the literature [15, 21, 37].

The physiological model introduced by Courtemanche, Ramirez and Nattel in [14] – a classic
atrial model – is considered (12 ionic currents and 20 other variables). The two atria are
connected only by two regions, the Bachmann bundle and the Fossa Ovalis. We refer to [13]
for more details.

2.3 Simulations on the whole heart

Coupled model From a mathematical point of view, volume and surface models are incom-
patible. It would be erroneous to solve them separately because the uniqueness criterion for the
first model is not consistent with the second one. As seen in Sections 2.1 and 2.2, the unique
solution ue(·, t) 2 H1(B) of (4) is s.t.

R
B ue = 0 and the unique solution ue(·, t) 2 H1(S) of (5)

is s.t.
R
S ue = 0. That is why we consider a whole domain B[S and a new global criterion. The

resulting coupled problem should be justified mathematically, but it is well-posed at discrete
level. Let ⌦h = Bh [ Sh, where Bh is the mesh of the ventricles and Sh is the mesh of the atria,
and let Lh be the line such that Bh \Sh = Lh. We denote by �

˜

⌦

u the restriction of a function u

to a subdomain ⌦̃. The finite dimensional approximation space Vh is then defined by: uh 2 Vh

if and only if uh is continuous in ⌦h, �Bh
uh 2 H1(Bh), �Sh

uh 2 H1(Sh), and
R
Bh

uh = 0. Using
(4), (5), the full model reads, find (ue,h, Vm,h) 2 Vh such that 8�, 2 Vh,
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(7)

Connection surface As previously mentioned, the atrioventricular node is the only pathway
for the electrical signal between the atria and the ventricles. From a physiological point of view,
a fibrous skeleton separates atria boundaries from ventricles epicardium. This layer isolates the
atrial cells from the ventricular ones [36, 38]. We propose to model this fibrous skeleton with
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�bodyT �bonesT �lungsT

3.0 10�4 1.2 10�4 2.0 10�5

Table 2: Torso conductivity parameters (all in S.cm�1)

Figure 4: Left - Surface connection between the atria and the ventricles, Right - Kent bundle

a thin layer of the atrial surface, represented on the left of Figure 4. The idea is that in this
area there is only a low conduction of the extracellular potential. In this region, denoted by
Sc ⇢ S, the intracellular conductivity is set to zero and the extracellular conductivity denoted
by �s,te is very low (see Table 3). Finally, the surface and volume bidomain equations are solved
simultaneously on this “hybrid” domain (7) with

~~�i,e = �v,ti,e
~~I + (�v,li,e � �v,ti,e )~⌧ ⌦ ~⌧ ,

� i,e = �a,ti,e I + (�a,li,e � �a,ti,e )
⇥
I
0

(✓)⌧
0

⌦ ⌧
0

+ J
0

(✓)⌧?
0

⌦ ⌧?
0

⇤
, in S \ Sc,

� i = 0, and � e = �s,te I, in Sc.

Parameters and applied currents The values of the membrane parameters are Am =
200.0 cm�1 and Cm = 10�3 mF.cm�2 for the whole heart. The conductivity takes di↵erent
values depending on the region in the ventricles and atria (Table 3).

In the atria, the regions of fast conduction are the Bachmann bundle (BB), see Figure 3,
the Crista Terminalis (CT) and the pectinate muscles (PM). By contrast, the Fossa Ovalis
(FO) is a region of slow conduction. In order to model the di↵erent propagation velocities, we
modify the values of gNa, the maximal conductance of the Na2+ current INa. Table 4 gives the

�v,te �v,le �v,ti �v,li �a,te �a,le �a,ti �a,li �s,te

6.0 10�4 2.0 10�3 2.0 10�4 2.0 10�3 9.0 10�4 2.5 10�3 2.5 10�4 2.5 10�3 7.5 10�7

Table 3: Conductivity parameters (all in S.cm�1)
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regular tissue PM CT BB FO

7.8 11.7 31.2 46.8 3.9

Table 4: Maximal conductance gNa in the di↵erent atrial areas (all in nS.pF�1)

EPI ENDO M RV

[6] 30.0181 40.0 91.0 /
heart 25.0 40.0 61.0 26.0

Table 5: Changed ionic parameter ⌧so1 of MV compared to [6]

parameters used for gNa. Furthermore, the action potential duration is forced to be shorter,
i.e. the parameter gks is five times bigger than in [14].

In the ventricles, we modify the duration of the plateau too. In the MV model, we change
the values of ⌧so1 parameter in order to reduce the action potential duration for epicardial,
endocardial and midmyocardial cells. This heterogeneity is considered in the left ventricle, for
the positivity of T wave [55]. In the right ventricle, the cells are considered homogeneous and
their parameters are taken as in the left ventricle epicardium, except for ⌧so1 (Table 5).

Activation is initiated at the sinus node with a stimulus of 2ms which triggers a depolar-
ization wavefront in the atria (Figure 3). For the sake of simplicity, the atrioventricular node,
which is the only electrical connection between the atria and the ventricles, is not modeled with
a sophisticated physiological model. Instead, the excitation is triggered in the ventricle after a
parameterized delay (in healthy condition, we choose to start it at 190 ms). Similarly, the fast
conduction in the Purkinje fibers (Figure 3) in modeled with a predefined stimulus pattern: a
time-dependent thin subendocardial layer is activated by an external current on both right and
left ventricles (see [4] for more details).

Simulation results The various simulations of this article are performed with the finite
element library FELiScE 2, developed at Inria by the REO and M⌅DISIM teams. The numerical
methods used to solve problem (7) are presented in [4]. Figure 5 shows a full cardiac cycle. The
corresponding first lead electrocardiogram is also represented. The electrical signal starts at
the sinus node where the atrial depolarization (AD) begins. By 50 ms the wave quickly spreads
along the Crista Terminalis as a consequence of the high conductivity in this part. Importantly,
because of the rapid conduction in the Bachmann bundle, the wave spreads to the left atrial
appendage and activates a substantial part of the left atrial wall. The depolarization of the right
and left atria terminates at 100ms and 110ms, respectively. The ventricular depolarization
begins at 190 ms. During this period, the atrial repolarization (AR) occurs. As we can see in
the figure, at 200 ms the endocardium of the ventricles rapidly depolarizes. Then, the wave
propagates across the ventricles. The repolarization ends at 430ms in the right ventricle and
at 470 ms in the left ventricle.

2.4 Coupling with the body

The last step in order to obtain an electrocardiogram is to couple the heart model with a
di↵usion problem in the rest of the body

� div(�T ~ruT ) = 0, in ⌦T , (8)

2
http://felisce.gforge.inria.fr
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Figure 5: Simulations of heart depolarization in a healthy case with the corresponding electro-
cardiogram first lead
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coupling condition (10)

166



where the electrical conductivity �T takes di↵erent scalar values in the ribs and the lungs (see
[7] and Table 2).

On the body surface @⌦ext
T , an homogeneous Neumann boundary condition is imposed

�T ~ruT · ~n = 0. To define the transmission conditions at the heart-body interface @⌦H , we
assume that the extracellular current does not flow through the pericardium (isolated heart
assumption):

~~�e · ~rue · ~n = 0 (9)

and we consider the resistor-capacitor conditions presented in [4]:

Rp(�T ~ruT ) · ~n = RpCp
@(ue � uT )

@t
+ (ue � uT ) (10)

where Cp and Rp stand for the capacitance and resistance of the pericardium, respectively.
Condition (9) is an approximation that has been shown not to a↵ect too much the shape

of the ECG in [4]. It allows us to solve the heart-body system as a one-way coupled problem,
which dramatically reduced its computational cost.

Condition (10) allows us to model the fact that the transmission of potential through the
pericardium is not perfect, and can be di↵erent for the ventricles and the atria. In this work,
we take Rp = 102 ⌦.cm2 on the surface in contact with the ventricles and Rp = 105 ⌦.cm2 on
the surface in contact with the atria. We neglect the capacitor e↵ect by taking Cp = 0 mF.cm2

in (10). The transmission between the heart and the body is therefore modeled as a Robin
boundary condition:

Rp(�T ~ruT ) · ~n + uT = ue, @⌦H . (11)

Figure 6 shows the body surface potential corresponding to the simulation shown in Figure 5.

2.5 Electrocardiogram computation

A standard electrocardiogram is based on the body surface potential recorded by 9 elec-
trodes (�ECG = {R, L, F, V

1

, . . . , V
6

}, see Figure 7). These measures are combined to define 12
di↵erences of potential, known as the 12 leads of the standard ECG:

I = uT (L) � uT (R) aV R = 1.5(uT (R) � uw)
II = uT (F ) � uT (R) aV L = 1.5(uT (L) � uw)
III = uT (F ) � uT (L) aV F = 1.5(uT (F ) � uw)
V 1 = uT (V

1

) � uw V 4 = uT (V
4

) � uw

V 2 = uT (V
2

) � uw V 5 = uT (V
5

) � uw

V 3 = uT (V
3

) � uw V 6 = uT (V
6

) � uw

where uw = 1

3

(uT (L) + uT (R) + uT (F )) is the Wilson potential [35].

3 Healthy and pathological numerical simulations of electrocar-
diograms

In this Section, we present the ECGs provided by the aforementioned model in healthy and
pathological conditions. The healthy ECG is obtained by carefully choosing the parameters of
the model in order to match most of the qualitative and quantitative features of a physiological
ECG. To obtain the pathological ECGs, the approach is di↵erent: starting from the nominal
values corresponding to a healthy ECGs, we modify the parameters in order to model the
physical characteristics of the pathology. Then we observe the e↵ects of these modifications on
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Figure 7: Standard 9 electrodes locations and first and second ECG leads.

the numerical ECG, and we compare its features with the ones described in the literature. It
is important to emphasize that, for the pathological cases, the parameters are not intentionally
fixed to match a given ECG. Thus, if the ECGs obtained after modeling the diseases look like
those obtained on real patients, it gives confidence in the prediction capabilities of the model.

3.1 Healthy electrocardiograms

Figure 9 shows the simulated electrocardiogram in a healthy case, corresponding to the
simulation of Figure 5. An electrocardiogram is typically described by distinguishing five events
during the heartbeat, called P, Q, R, S and T “waves” (we will keep this standard terminology
even though these events have nothing to do with waves). The P wave corresponds to the
atrial depolarization, the QRS complex corresponds to the ventricular depolarization, the T
wave corresponds to the ventricular repolarization. The typical durations of each wave, or each
interval, are given in Table 6.

Table 6 also presents the durations of the simulated healthy ECG of Figure 9. These
durations are obtained in the numerical ECG from the landmarks defined according to the
following rules: the P wave (resp. QRS complex) starts if 1% of the atria (resp. ventricles) is
activated (i.e. if the transmembrane potential Vm is greater than a threshold voltage Vgate); the
P wave (resp. QRS complex) ends when 99% of the atria (resp. ventricles) are activated; the T
wave starts when 20% of the ventricles are repolarized (i.e. Vm  0); the T wave ends when 99%
of the ventricles are fully repolarized (Vm  0). If the minimal value of Vm is Vmin = �80mV and
its maximal value Vmax = 20mV, we define Vgate = �67mV, which corresponds to a threshold
voltage ✓w = 0.13 in the MV model.

Table 7 gives the main features of each wave in a normal electrocardiogram. Interestingly,
the simulated ECG verifies almost all the expected criteria. We only observe a discrepancy in
the aVL lead, but this lead is not the most important one for the ECG interpretation.

To qualitatively assess the waves amplitude and orientation (but not their duration), Fig-
ure 10, which shows the normal variations of wave amplitude measured in adults [54], is ex-
tremely convenient. A visual comparison of Figures 9 and 10 shows that, for almost every lead,
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P PR Q QR S QRS QT
wave interval wave interval wave interval interval

Typical < 0.12 0.12 < 0.04 < 0.03 V 1 � V 2 < 0.04 < 0.10 0.35
Duration to 0.21 < 0.05 V 5 � V 6 to 0.45

Healthy 0.08 0.19 0.015 0.015 V 1 � V 2 0.01 0.04 0.29
ECG 0.02 V 5 � V 6

Table 6: Durations of the simulated healthy ECG of Figure 9 compared with typical durations
[54] (all in s)

Wave/Interval Description Simulated ECG

 0.25mV X 0.2mV
P wave positive I, II, V3 to V6 X

negative aVR X
limb leads  25% of R X

Q wave precordial leads  15% of R X
always negative X except for aVL

limb leads  2mV X
R wave precordial leads  3mV X

always positive, negative in aVR X
R wave progression, see Figure 8 X

always negative X
S wave small I, II, V5, V6 X

important V1 to V3 X
�0.05mV to 0.1mV X

ST interval isoelectric X
displacement of 0.02mV in V1, V3 X

T wave positive I, II, V3 to V6 X
negative aVR (follow the QRS) X

Table 7: Criteria for a typical electrocardiogram [54] compared with simulated ECG of Figure 9

each wave of our numerical ECG is in the range of the normal values. Note that in Figure 10,
the length of each wave was arbitrarily chosen as its maximal normal duration. This is the
reason why the full PQRST duration is so long in this schematic.

Here is another qualitative assessment. The R wave is known to have an important property
in the precordial leads: it uniformly progresses from a RS complex in V1-V2 to a QRS complex
in V5-V6 via a RS complex in V3-V4. The top of Figure 8, which represents this R variation, is
extracted from [54]. The bottom of the same Figure shows the results of our simulation. Again,
the qualitative agreement is very satisfactory.

A last qualitative comment is in order: we note that the P wave presents some oscillations in
all the leads of the numerical ECG. The explanation of these oscillations is the brutal changes
of the fibers’ direction in the atria. It is also possible that the surface representation of the atria
accentuate these oscillations.

3.2 Pathological electrocardiograms

In this Section, we modify the protocol of the simulation that provided the healthy ECG
(Figure 9) in order to simulate di↵erent cardiac pathologies. Then we verify if the numerical
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Figure 8: R wave progression in the precordial leads: schematic view from [54] in the top, and
simulated ECG in the bottom
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Figure 9: Healthy electrocardiogram corresponding to simulation of Figure 5 (voltages (mV)
versus time (ms))
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Figure 10: Normal variations of amplitude measurements in adults healthy ECG [54]
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�

�

Figure 11: Di↵erent pathologies

ECGs present the main features that allow a medical doctor to detect the pathology. The
di↵erent pathologies are schematically represented in Figure 11, along with the most important
leads in each case.

3.2.1 Left and right ventricular block

We start with a left or a right bundle branch block. In a healthy case, the right and the
left ventricles are activated simultaneously. Now, in order to simulate a left (or a right) bundle
branch block, the initial activation is blocked in the left (resp. right) ventricle. In the top-
left of Figure 11, we can see a left ventricular block. In order to obtain a left (resp. right)
bundle branch block, the depolarization of the left (resp. right) Purkinje fibers is delayed as
indicated in [4]. Results are reported in Figure 12 for the left and right bundle branch blocks.
We recognize the main characteristics of a bundle branch block. In particular, we can see that
leads V1 and V6 correspond to a left ventricular block described in Figure 11. We can see a
larger QRS and a lead V1 without Q-wave [35]. The QRS-complex exceeds 0.12 seconds in both
cases. Furthermore, it can be seen in Figure 12 that the duration between the beginning of the
QRS complex and its last positive wave in V1 (resp. V6) exceeds 0.04 seconds which is a sign
of right (resp. left) bundle branch block [35].

3.2.2 Bachmann’s bundle block

In the heart conduction system, the Bachmann’s bundle connects the left atrium with the
right atrium and is the preferential path for electrical activation of the left atrium. A Bach-
mann’s bundle block is represented at the top-right of Figure 11. It is characterized by the
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Figure 12: Left and Right Bundle Brunch Block – Healthy case in red, LBBB in blue and RBBB
in green (voltages (mV) versus time (ms))
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Figure 13: A Bachmann’s Bundle Block – Healthy case in red, BBB in blue (voltages (mV)
versus time (ms))
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Figure 14: Wenckebach atrioventricular block (voltages (mV) versus time (ms))

presence of P-wave duration that equals or exceeds 0.12 seconds and presents usually a bimodal
morphology, especially in leads I, II, aVF and the lead III becomes biphasic, as we can see in
Figure 11. This is a very specific sign of left atrial enlargement [20, 35]. We simulate it by
decreasing the maximal conductance gNa = 7.8 in the Bachmann’s bundle. The results are
given in Figure 13. The more important the block, the more negative the P wave on lead III.
A negative P wave in the third lead corresponds to the retrograde depolarization of the left
atrium. The morphology of the simulated P wave is in very good agreement with the criteria
given in [2, 3] for various degrees of Bachmann’s bundle blocks.

3.2.3 Atrioventricular block

An atrioventricular block (or AV block) is a damage of the conduction between atria and
ventricles. Under normal conductions, the atrioventricular node is activated by the atrial wave
and it delays the activation by approximately 0.12 seconds. This delay is extremely important
since it allows the atria to eject all their blood into the ventricles before the ventricular con-
traction. The bottom-left of Figure 11 represents an atrioventricular block. There are di↵erent
degrees and types of atrioventricular blocks [35]. We consider here a Wenckebach atrioventric-
ular block. To obtain it, we progressively increase the ventricular activation time: the delay
between atrial and ventricular stimulus is 190 ms in the first beat, 220 ms in the second one,
260 ms in the third one, and at the fourth beat the ventricles are not stimulated at all. The
Wenckebach block is characterized by a progressive prolongation of the PR interval on consec-
utive beats followed by a blocked P wave. After the missing QRS complex, the PR interval
resets and the cycle repeats. Figure 14 correctly represents these features.

3.2.4 Wol↵-Parkinson-White syndrome

The Wol↵-Parkinson-White syndrome is one of the numerous pathologies of the conduction
system of the heart. It corresponds to a pre-excitation syndrome and is caused by the presence
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Figure 15: Wol↵-Parkinson-White syndrome – Healthy case in red and WPW in blue (voltages
(mV) versus time (ms))

of an abnormal electrical conduction pathway between the atria and the ventricles, named the
Kent bundle. Electrical signals travel down this abnormal pathway and may stimulate the
ventricles prematurely. In the bottom-right of Figure 11, we can see a schematic of the Wol↵-
Parkison-White syndrome. We model the abnormal pathway by stimulating a ventricle area
near of the atria represented at the right of Figure 4. The Wol↵-Parkinson-White syndrome
is commonly diagnosed with the electrocardiogram [46]. It is characterized by a delta wave, a
slurring of the initial segment of the QRS complex, due to the arrival of the impulses at ventricles
via the abnormal route, which is associated with a short PR interval. Another feature is a QRS
complex widening with a total duration greater than 0.12 seconds. We can indeed observe these
characteristics, in particular the delta wave in Figure 15.

3.3 Comparison with the Mitchell-Schae↵er model

In this section we are interested in assessing the impact of the ionic model on the ECG
simulation. In particular, we apply the technique described above to the Mitchell and Schae↵er
model [39] which is a one-current phenomenological ionic model, appreciated for its simplicity.

The Mitchell and Schae↵er model is applied with the same conductivity parameters (ex-
cepted for some atrial areas, read below) and the same initial stimulus as described above in
the case of more accurate models such as the Courtemanche and the MV models. Table 8 gives
the value of the Mitchell-Schae↵er parameters. In order to correctly reproduce the T wave, we
take into account three layers of cells in the left ventricles and an homogeneous tissue in the
right ventricle as described in Section 2.3. The parameter that varies according to the type
of cell is the ⌧close parameter, whose values are reported in Table 8. On the atria surface, the
repolarization “propagates” in the same direction as the depolarization. We therefore take a
constant value for ⌧close, equals to 100ms. As previously explained, we changed the values of
the maximal conductance gNa in the di↵erent atrial areas in the Courtemanche-Ramirez-Nattel
model in order to take into account these bundles. The Mitchell-Schae↵er model does not al-
low the same flexibility then we decide to directly modify the value of conductivity parameters
even if this is probably less physiological. The atrial conductivities are modified as reported in
Table 9 in order to represent the di↵erent slow and fast bundles.

Figure 16 shows the ECGs obtained with the Mitchell and Scha↵er (MS) model and the
combined Courtemanche/MV model. We can see that the results are very close. With the
MS model some oscillations in the P wave and the QRS complex are fixed, but the R wave
progression in precordial leads is less precise and the T wave of V2 and V3 is not satisfactory.
It is interesting to note that the results of the simulations are robust with respect to the choice
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⌧in ⌧out ⌧open ⌧ endoclose ⌧Mcell

close ⌧ epiclose ⌧RVclose Vmin Vmax Vgate

(cm2.mA�1) (ms) (mV)

4.0 90.0 300.0 120.0 100.0 80.0 90.0 �80.0 20. �67.0

Table 8: Mitchell and Schae↵er parameters and constants (di↵erent values of ⌧close are given
because of an heterogeneous tissue is considered, see [4])

regular tissue PM CT BB FO

�a,ti 2.5 10�4 4.5 10�4 7.5 10�4 1.19 10�3 2.5 10�4

�a,te 9.0 10�4 1.35 10�3 2.7 10�3 4.3 10�3 9.0 10�4

�a,li 2.5 10�3 4.5 10�3 1.09 10�2 1.86 10�2 2.27 10�3

�a,le 2.5 10�3 4.5 10�3 1.09 10�2 1.86 10�2 2.27 10�3

Table 9: Atrial conductivity parameters (all in S.cm�1) for the Mitchell-Schae↵er model

of the ionic model: the Courtemanche/MV model in general gives better results, but it can
be replaced by the MS model in order to reduce the computational costs without a↵ecting too
much the ECG. This remark is especially important if the ECG simulator has to be used for
inverse problems: in that case, a model with a reduced number of parameters is probably more
suitable.
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Figure 16: ECGs obtained with di↵erent ionic models – Courtemanche/MV ionic model in red
and Mitchell and Schae↵er model in blue (voltages (mV) versus time (ms))
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4 Electrodes vest

Figure 17: Human body mesh, electrodes vest (left) and clustering results (right).

In the previous sections, we focused on the 12-lead ECG because it is widely used in practice,
and it can be easily assessed with the medical literature. But our simulator can of course provide
more sophisticated measurements, like those obtained with electrodes vests.

First PC
Second PC
Third PC
Fourth PC

Atrial Dep.
Ventr. Dep.
Ventr. Repol.

Figure 18: Principal components analysis on electrodes vest signals
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Many studies on this topic have been carried out: on the forward problem and the analysis
of useful number the electrodes to catch the signal (see for instance [27, 24]) and on the inverse
problem of reconstruction of the potential on the heart surface, see e.g. [45, 51]. Our objective
here is less ambitious: we just show an example of a statistical analysis that can be done with
the measures provided by our ECG simulator.

To do so, we simulate a “virtual” electrodes vest which contains NECG = 1, 236 electrodes.
In Figure 17(left) the body part of the mesh is shown, the measures points are all the nodes
of the mesh in the red part. The heart geometry used in this study contains N@⌦H

= 28, 510
boundary vertices. We compute the body surface potential as described in Section 2.
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40

Clustering
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Figure 19: Clustering agglomeration of electrodes measures potential using euclidean distance
and complete linkage. Red lines indicates the subdivision in six groups.

Finally, we are interested in analyzing the dependence on the electrodes measures compared
to their positions on the body. A hierarchical clustering analysis is made, the 1, 236 measures
are compared using an Euclidean distance between the curves and a complete linkage is applied
(for further details on the clustering analysis see for instance [30]). In Figure 19, the tree
produced by the clustering process is shown. We observe that a main subdivision into three
wide groups is made while a second step of clustering suggests the subdivision into six smaller
groups of signals. Then, let us divide the points measured into 6 groups, which is the number
of precordial leads of a standard ECG too. In Figure 17 (right) the groups are shown. We
observe that three bigger areas are defined and then a more precise definition of the cluster is
given in the heart correspondence. In Figure 20 we plot the signals belonging to the six clusters.
We can see a sort of P wave and QRS complex progressions between the first three clusters:
the amplitude of P waves in the first cluster is higher than in cluster number 2, while in the
third one is almost zero; the QRS complex changes in amplitude, it is higher in the first and
third clusters and smaller in the second one. On the opposite, the clusters 4, 5, and 6 could be
mismatched with the first ones.
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#1 #2 #3

#4 #5 #6

Figure 20: Signals in di↵erent clusters as shown in Figure 4. Black lines indicate the “mean”
point (dots of Figure 4)

Then, we re-apply the principal components decomposition on the 6 centers of the cluster,
i.e. the points indicated in Figure 17 (right). Comparing results of Figure 21 with Figure 18
we observe that the first principal component is again the most important one, and the same
curves represents the first, second and third principal components.

We can conclude two di↵erent statistical approaches – the principal components decompo-
sition and the hierarchical clustering analysis – suggest that it is not necessary to have a very
high number of skin electrodes to describe the body surface potential. It seems that a limited
number of correctly positioned electrodes would be enough to represent most of the features of
the signal.

5 Conclusions

We have presented a comprehensive model for the simulation of full cycle ECGs. The main
ingredients are: a volume bidomain system in the ventricles with the MV ionic model, a surface
bidomain system in the atria with the Courtemanche ionic model, a one-way coupling between
the heart and the torso through a resistor transmission condition.

This modeling e↵ort leads to realistic ECGs in healthy and in four pathological cases: left
and right bundle branch blocks, Bachmann’s bundle block, AV block and Wol↵-Parkinson-White
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Figure 21: Principal components analysis on 6 electrodes signals.

syndrome. In the healthy case, we showed that similar results could been obtained with the
one-current phenomenological ionic model proposed by Mitchell and Schae↵er.

This work could be improved in di↵erent directions. More physiological model of the atrio-
ventricular node and the Purkinjie fibers could be included. A strong coupling with the torso
could be done to assess the impact of the one-way coupling assumption. The electromechanical
simulations presented in [9] could be extended to include the atria and performed with the
present electrical model of the heart.

References

[1] R. R. Aliev and A. V. Panfilov. A simple two-variable model of cardiac excitation. Chaos,
Solitons & Fractals, 7(3):293–301, 1996.
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Part IV

INVERSE PROBLEMS





Introduction of Part IV

As seen in Chapter 6, we are now able to obtain very realistic simulations of the elec-
trophysiology of the whole heart. The objective of this last part is to adapt the bidomain
models – 3D and asymptotic – to each patient using available medical data. A data assimi-
lation procedure purports to take into account the various sources of information – data and
model – in order to obtain an estimation of the real trajectory.

Chapter 7 Introduction to data assimilation, the first chapter of this part, is a data assim-
ilation introduction. Variational and sequential methods are presented. Sequential methods
are used in this work. In this context, a discrepancy compares the data with the solution of
the observer model and the objective is then construct a gain operator. Joint state-parameter
estimation allows to use two different gains, one for the state and one for the parameters of
the model. The first strategy inspired from variational methods consists in constructing the
gain following a particular criterion and leads to optimal observers. The second strategy –
initially introduced by Luenberger – consists in choosing a correction as the simplest possible
in order to circumvent the curse of dimensionality of the optimal observers. The presentation
of a procedure of a joint state-parameter estimation with a Luenberger-like observer for the
state space due to the large dimension of this space and a reduced-order Kalman-like filter
for the parameters space is given.

Finally, the objective of Chapter 8 is to propose a Luenberger-like state estimator for
the reaction-diffusion models adapted to available data – here the depolarization maps –
coupled with a parameter Kalman-like estimator. This chapter takes the form of a pre-print
article

A Luenberger observer for the reaction-diffusion model assimilating front position data

in collaboration with D. Chapelle and P. Moireau. Just for the sake of simplicity, we use in
this chapter the monodomain model, see Remark 3, in Chapter 2 which is a simple reaction-
diffusion model. As we want to assimilate the depolarization maps which give the position
of the depolarization front at different times, the objective is to compare two propagation
fronts. That is why we introduce the eikonal curvature equation which is an asymptotic sim-
plified model of the monodomain model. Indeed, the curvature eikonal equation models the
propagation of the action potential without the modeling of the action potential itself. This
means that this model only focuses on the dynamics of the front propagation. Using methods
developed in image processing in order to detect objects in an image, we present an effective
state estimator for the eikonal curvature equation. Finally, using an inverted asymptotic
analysis, the state observer is carried over to the initial monodomain model. Simulations
validate this state estimator. We couple this state observer with a Reduced-order Unscented
Kalman Filter (RoUKF) and we can find the model parameters for a specific patient. The-
ses problematics appear in other application fields where models (reaction-diffusion) and
data (front position) are similar, as the fire propagation or the tumor growth. That is why
the presentation of the Luenberger state observer is given in a more general case and only
simulations are applied in the electrophysiological framework.





CHAPTER 7
Introduction to data assimilation

Abstract This chapter gives a quick overview of data assimilation methods in order to intro-
duce the next chapter. The data assimilation framework began in the context of meteorology
and oceanography and now appears in various application fields. Two actors are involved
in data assimilation: the model and the data. The model is a set of coupled – non-linear –
partial differential equations which is a good approximation of the target solution. However,
there are uncertainties on the initial condition and/or on the model parameters, and the
objective is to assimilate available data of the target solution. An introduction of the princi-
ples of data assimilation is given with a brief presentation of the variational and sequential
methods. Optimal observers in the sense of Bensoussan – the Kalman-like filters – and their
main drawback – the computation of a full matrix – are presented. Luenberger filters which
offer an alternative of the optimal filters are also introduced. The presentation of a joint
state and parameters strategy with a Luenberger filter for the state and an optimal filter – the
Reduced-order Unscented Kalman Filter – for the parameters completes this chapter.
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Introduction

Historically, the data assimilation framework began in the context of meteorology and
oceanography, see [22, 33, 40] for details and environmental sciences continue to be a very
active application field for data assimilation [5, 31]. In the context of life sciences, it has
become very popular, in particular in cardiac mechanics, see [8, 36, 10] and also in elec-
trophysiology, [11, 12]. In the field of fire propagation, the works [26, 35] can be directly
compared with our work since similar models – a reaction diffusion model or an eikonal
equation – are used.

In the data assimilation framework, there are two complementary actors: the model and
the data. In most cases, the model is a set of coupled partial differential equations – as
for example the bidomain model presented in Chapter 2 – which can be non-linear. The
model is considered as a good potential approximation on the real trajectory but relies on
uncertain parameters, initial condition and boundary conditions. Even the geometry can
contain some errors. The data provide available information on the real trajectory but they
are partial (in time and space) and often contain a non negligible part of error due to the
measurement process. Then a data assimilation procedure aims at combining the various
sources of information in order to construct an estimation of the real system.

The objective of Chapter 8 is to give an effective state observer – a model which con-
tains an additional term which allows to incorporate the data – adapted to a reaction diffu-
sion model. The available medical data that we consider are the depolarization maps, a.k.a.
isochrones. In a more general case, these data correspond to the knowledge of the front po-
sition of a reaction-diffusion model at different times. We also want to couple this effective
state observer with a parameter observer. The objective of this chapter is to introduce Chap-
ter 8. It just aims at giving to the reader a brief overview of the numerous methods in data
assimilation and refers to the literature for more details. We do not attempt to give a full or
a mathematically-detailed presentation of data assimilation.

To that purpose, the first section of this chapter gives an introduction to the principles
of data assimilation. In a second section, an overview of sequential and variational methods
is presented. In Section 7.3 and 7.4, a presentation of optimal observers – the Kalman-like
filters – is given. However the Kalman-like filters leads to the famous curse of dimension-
ality [2] which makes it numerically intractable for partial differential equations (PDE). An
alternative method – initially introduced by Luenberger in finite dimension [25] – exists. In
the PDE world, these alternative methods have been popularized with the nudging termi-
nology [17, 39]. The literature shows that this type of method can be applied in numerous
application fields, as for example conservation laws [23], waves [6, 7], elasticity [30] or
fluid-structure interaction [4]. The determination of the nudging coefficients [42, 38, 41] or
the restoring of the initial condition [1, 34, 16] have known new improvements. The last sec-
tion gives a complete joint state and parameters estimation methodology [10]. We present
the procedure where a nudging observer is defined on the state space – due to the large
dimension of this space – and a reduced-order Kalman-like filter is used for the parameter
space. Numerical prediction-correction time schemes are also presented.
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7.1 Principles of data assimilation

To start with, let us introduce some standard notations used in data assimilation. Let x
be the state of the system, i.e the solution of a system of partial differential equations. We
denote by X the state space, and by A the dynamical operator of the system verified by x, i.e
x satisfies the following model

ẋ(t) = A(x, ✓, t). (7.1)

The dynamical operator A can be non-linear. Here, ✓ represents the set of unknown model
parameters. Contrary to the state space which could be infinite-dimensional or at least of a
large dimension (for example the dimension of a finite element or finite difference space),
the set of parameters is generally small. Indeed, even if we take into account distributed
parameters, their variations can be considered as smooth and a discretization of the domain
in large regions is sufficient. Prescribing x(0) and ✓, we assume that the problem is well-
posed. In practice, we just have an a priori on the initial condition x(0) and on the values of
the parameters represented by ✓. That is why we decompose them into two parts

x(0) = x• + ⇣x and ✓ = ✓• + ⇣✓,

where x• and ✓• are the known parts (or a priori) and ⇣x and ⇣✓ the uncertainties. The
complete problem then reads 8

><

>:

ẋ(t) = A(x, ✓, t)
x(0) = x• + ⇣x

✓(0) = ✓• + ⇣✓.
(7.2)

We can rewrite this problem considering together x and ✓ with
8
><

>:

[̇x(t) = [A([x, t)

[x(0) =

Ç
x•
✓•

å
+ ⇣,

(7.3)

where
[x =

Ç
x
✓

å
, ⇣ =

Ç
⇣x

⇣✓

å

and
[A =

Ç
A 0
0 0

å

is the augmented model.
We assume that we have at our disposal some observations of a real trajectory denoted

by x⇧ and we define by z the observations of x⇧. In many cases, an observation operator
denoted by H represents the data generation procedure from x⇧, i.e.

z(t) = H(x⇧(t), t) + �(t), (7.4)

where � represents the error inherent to the measurement process. The parameters are gen-
erally not observed and we expect to retrieve them with the data assimilation procedure.
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This observation operator allows to map the state space X to the observation space denoted
by Z. A simple case is when the observation corresponds to the restriction of a sub-domain
of the state space X . Let ✓⇧ the parameters of the real trajectory and we define

[x⇧ =

Ç
x⇧

✓⇧

å

We denote by [H, the augmented operator defined such that

z(t) = [H([x⇧(t), t) + �(t),

with a null part on the parameters as the parameters are not observed. In some cases, we
just have an implicit relation [30] between the observations z and x⇧ of the following form

D(z(t), x⇧(t)) = 0,

where D is the discrepancy instead of (7.4). We denote by [D the augmented discrepancy.

7.2 Overview of variational and sequential methods

7.2.1 From variational methods . . .

We start with the presentation of variational methods. A good strategy in data assimila-
tion consists in minimizing a criterion. This criterion is composed of two parts. Variational
methods seek to minimize a functional that balances the confidence one has in the a priori
values x• and ✓• and the confidence in the data with the comparison of the observations z
with the observations H(x̂) derived from the solution x̂ of the observer. The minimization of
the criterion, typically least-square based, reads

JT (⇣) =
1

2
k⇣k2Xic

+
1

2

Z T

0

kz(t) � [H([x⇣T (t), t)k2Zdt, (7.5)

where Xic is the space of initial conditions. We denote by M a metric on the observation space
Z and by [P

0

, the inverse of a metric of Xic which can be interpreted in a stochastic context as
an initial uncertainty covariance. Both operators M and [P

0

are self-adjoint. Estimating ⇣ by
minimizing JT under the constraint of the dynamics (7.1) is known as 4D-var strategy [5, 8].
Obviously, in more general cases, (7.5) reads

JT (⇣) =
1

2
k⇣k2Xic

+
1

2

Z T

0

k[D(z(t), [x⇣T (t))k2Zdt. (7.6)

Linear case In what follows, we assume for the sake of simplicity that the dynamical op-
erator [A and the observation operator [H are linear. Furthermore we suppose, for simplicity,
that the state space X and the observation space Z are finite dimensional spaces. The min-
imization of JT is performed with respect to the unknown ⇣. Using a minimizing sequence
(existence) and the fact that JT is convex (uniqueness), we can show that the minimization
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of JT admits a unique solution. We denote by ⇣min
T this optimal value. The dependence in

the time parameter T is important. The condition which characterizes the optimal value is

dJT (⇣)|⇣min
T

= 0.

We differentiate the functional and we obtain, 8⇣̄,

dJT (⇣) · ⇣̄ = ⇣|[P�1

0

⇣̄ �
Z T

0

Ä
z � [H([x⇣T )

ä|
M[H d⇣

[x⇣T · ⇣̄.

Remarking that
@t(d⇣

[x⇣T ) = [Ad⇣
[x⇣T and d⇣(

[x⇣T )|t=0
= 1,

and defining the so-called adjoint variable [pT as the solution of the adjoint problem
(

˙[pT (t) + [A|[pT (t) = �[H|M(z � [H[x⇣T ),
[pT (T ) = 0,

the gradient of the functional JT becomes

dJT (⇣) · ⇣̄ = ⇣|[P�1

0

⇣̄ � [pT (0)|⇣̄.

The optimal value ⇣min
T is then defined by

⇣min
T = [P

0

[pT (0).

To conclude, the variational method consists in solving the two ends problem, find [xT , [pT

such that 8
>>>>><

>>>>>:

˙̂
[xT (t) = [A[xT (t)
[xT (0) = [x• + [P

0

[pT (0)
˙̃

[pT (t) = �[A|[pT (t) � [H|M(z(t) � [H[xT (t))
[pT (T ) = 0

(7.7)

The variational method can be used for every model and that is why this method is very inter-
esting. However, as seen previously, the computation of the adjoint problem is necessary in
order to minimize of JT under constraint. This may lead to prohibitive computational times.
Indeed, the gradient based descent algorithm used for the minimization requires numerous
iterations of the direct and adjoint models.

7.2.2 . . . To sequential methods

Sequential methods consist in constructing an estimator (x̂, ✓̂) by coupling the model and
the observations z. As previously presented, if the observation space Z is equipped with
standard operations, we can compare z with the value of H(x̂(t), t) by

z � H(x̂(t), t)
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and in some cases, we just have an implicit relation defined by

D(z, x̂(t)) = 0,

where D is called the discrepancy. Then, in sequential methods, the dynamics of system is
modified. This new system is named the observer and reads

8
><

>:

[̇̂x(t) = [A([̂x, ✓, t) + [G
Ä
[D(z, [̂x)

ä

[̂x(0) =

Ç
x̂•
✓•

å
,

(7.8)

where [G is the gain operator, also called the filter. The goal of a sequential method is thus
to find a discrepancy and a gain [G such that

lim
t!+1

[̂x = [x,

where [x is the solution of (7.3).

Remark 4. We can use two different gains – one for the state space and one for the parameters
space – using the joint state and parameter strategy introduced in [10].

Two different strategies that we will present in Sections 7.3 and 7.4 can be used in
order to find an effective gain [G. The first method, called the optimal observer, consists in
constructing the gain from the optimal criterion by defining

[̂x(t) = [x⇣
min
t (t),

where

⇣min
t = Argmin⇣Jt(⇣) = Argmin⇣

Ç
1

2
k⇣kXic +

1

2

Z t

0

kz � [H([x⇣T )kZ
å

and [x⇣min
t the solution of

8
>><

>>:

˙̇
[x⇣min

t (t) = [A([x⇣min
t , t)

[x⇣min
t (0) =

Ç
x•
✓•

å
+ ⇣min

t .
(7.9)

In linear cases, it leads to the well-known Kalman-Bucy filter, [20, 3] and in non-linear
cases, it derives from a Hamilton-Jacobi-Bellman solution [15]. Due to the complexity of this
equation, many approximated solutions exist as for example the Extended Kalman filter [37],
the Unscented Kalman filter, [19] and the Ensemble Kalman filter, [14]. We can remark that
the great advantage of the optimal filter is that it can be defined for every model and every
observation operator. The biggest drawback is that without an uncertainty space reduction,
the filter is very costly and often impossible to compute. Concerning the reduction of the
uncertainty space, we will present later in this document a strategy called reduced-order
optimal filters that allows to circumvent the computation of the full optimal gain. Besides, a
second strategy exists in order to circumvent the curse of dimensionality. This method is not
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relying on the optimal criterion minimization. Initially introduced by Luenberger [24, 25],
the idea is to introduce a correction such that the error between the observed trajectory and
the observer system tends to zero. This correction is chosen as the simplest possible to avoid
prohibitive additional computational times with respect to the original computational times
necessary for the resolution of the direct model.

A joint state and parameter estimation can be applied. We recall that

[x =

Ç
x
✓

å
,

where x is the state and ✓ are the parameters. We can use two different gains in (7.8), one
for the state and one for the parameters following the strategy presented in [29] and the
observer model becomes

8
>>>><

>>>>:

˙̂x(t) = A(x̂, ✓, t) + GxÄD(z, x̂)
ä

˙̂✓(t) = G✓
Ä
D(z, x̂)

ä

x̂(0) = x̂•,
✓(0) = ✓•.

(7.10)

The strategy consists in taking an optimal-based filter for the parameters space due to the
relatively small dimension of the parameters space and taking a physically-based Luenberger
observer on the large dimensional state. The coupled observer is proved to converge under
assumptions in linear cases and can be extended to non-linear cases.

7.3 Optimal observers

We are interested in sequential methods. As previously explained, the first strategy –
corresponding to optimal observers – consists in constructing the gain operator such that

[̂x(t) = [x⇣
min
t (t).

7.3.1 Linear case: The Kalman-Bucy filter

In linear cases, it leads to the well-known Kalman-Bucy filter – also called the Kalman
filter – initially introduced in [20]. We use the same context as for the variational methods,
i.e the dynamical operator [A and the observation operator [H are linear and the state space
X and the observation space Z are finite dimensional spaces. The Kalman-Bucy method
consists in reformulating the minimization problem (7.7) into a sequential formulation. In
[3], the following theorem is proved

Theorem 1. There is a relation between both solutions [xT and [pT of the minimization problem
(7.7) of the following form

[xT (t) = [̂x(t) + [P(t)[pT (t),

with [̂x and [P independent of T .
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Problem (7.7) becomes
8
<

:
[̇̂x(t) + ˙[P(t)[pT (t) + [P(t) ˙[pT (t) = [A[̂x(t) + [A[P(t)[pT (t)

˙[pT (t) = �[A|[pT (t) � [H|Mz(t) + [H|M[H[̂x(t) + [H|M[H[P(t)[pT (t),

and this implies

[̇̂x(t) = �[P(t)
Ä
�[A|[pT (t) � [H|Mz(t) + [H|M[H[̂x(t) + [H|M[H[P(t)[pT (t)

ä
(7.11)

+[A[̂x(t) � ˙[P(t)[pT (t) + [A[P(t)[pT (t) (7.12)

=
Ä
� ˙[P(t) + [A[P(t) + [P(t)[A| � [P(t)[H|M[H[P(t)

ä
[pT (t) (7.13)

+[A[̂x(t) � [P(t)[H|M([H[̂x(t) � z(t)). (7.14)

If [P verifies the following Riccati equation
(

˙[P(t) = [A[P(t) + [P(t)[A| � [P[H|M[H[P(t),
[P(0) = [P

0

,
(7.15)

the coupled model (7.11) becomes
(

[̇̂x(t) = [A[̂x(t) + [P(t)[H|M(z(t) � [H[̂x(t)),
[̂x(0) = [x•(= [xT (0) � [P(0)[pT (0)).

We can deduce the expression of the Kalman gain [G = [P[H|M. The matrix [P following
the differential Riccati equation can be interpreted, from a probabilistic point of view, as the
covariance matrix of the estimation error. A prediction-correction scheme called the Kalman-
Bucy algorithm [3, 37] is used to discretize in time the Kalman-Bucy filter.

7.3.2 Non linear case

7.3.2.1 Approximate Kalman filters

The original Kalman filter is limited to a linear assumption. However, more complex
systems can be non-linear. Different approximations are developed for these non-linear cases.

Extended Kalman filter The most classical choice of gain in non-linear configuration is
given by the Extended Kalman filter (EKF) [37],

[G = [P(d[H)|M,

where [P verifies the following augmented Riccati equation

˙[P � d[A[P � [P(d[A)| + [P(d[H)|M(d[H)[P = 0.
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We recall that the operator [P solution of the previous equation is called covariance. As the
reader can see, the idea is to replace the non-linear mapping by their tangent operators.
The convergence of the EKF observer is verified for small errors by studying the linearized
dynamics of the estimation error [̃x = [x� [̂x, see for example [21]. Note that if we decompose
the operator [P on the state and on the parameter,

[P =

Ç
Pxx Px✓

(Px✓)| P✓✓

å
,

we have
8
>>>><

>>>>:

˙Pxx = dxAPxx + Pxx(dxA)| + d✓A(Px✓)| + Px✓(d✓A)| � Pxx(dxH)|MdxHPxx
˙P✓✓ = �(Px✓)|(dxH)|MdxHPx✓
˙Px✓ = dxAPx✓ + d✓AP✓✓ � Pxx(dxH)|MdxHPx✓

Pxx(0) = Px, P✓✓(0) = P✓ and Px✓(0) = 0.

where the two gains are given by

Gx = Pxx(dxH)|M

and
G✓ = (Px✓)|(dxH)|M.

The time-discretization of the optimal observers is based on the fact that the optimality
should be preserved also at the discrete level. We consider a stable and consistent discretiza-
tion of the original model 8

><

>:

ẋ(t) = A(x, ✓, t)
x(0) = x• + ⇣x

✓(0) = ✓• + ⇣✓
(7.16)

denoted by 8
><

>:

xn+1

= An+1|n(xn, ✓n, t)
x
0

= x• + ⇣x

✓
0

= ✓• + ⇣✓.
(7.17)

We define a discrete-time functional

J N
T (⇣) =

1

2
k⇣k2Xic

+
1

2

NX

k=0

kzk(t) � H(xk)k2Mk
, (7.18)

with Mn+1

= �tM a discretization of M since a fixed time-step �t is considered. The discrete-
time functional J N

T is consistent with respect to the continuous-time functional JT with this
choice of discrete observation norm Mn. The tangent of An+1|n is defined by

d [An+1|n =

Ç
dxAn+1|n d✓An+1|n

0 1

å
.
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As said previously, the time-discretization of an observer [̂x is a prediction-correction scheme.

Prediction-Correction Scheme

1. Prediction
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

x̂�n+1

= An+1|n(x̂+n , ✓̂+n )

✓̂�n+1

= ✓̂+n

Pxx�
n+1

= dxAn+1|nPxx+
n (dxAn+1|n)| + dxAn+1|nPx✓+

n (d✓An+1|n)|

+d✓An+1|n(Px✓+
n )|(dxAn+1|n)| + d✓An+1|nP✓✓+

n (d✓An+1|n)|

P✓✓�
n+1

= P✓✓+
n

Px✓�
n+1

= dxAn+1|nPx✓+
n + d✓An+1|nP✓✓+

n

2. Correction
8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

[P+

n+1

= [P�
n+1

� [P+

n+1

(d[Hn+1

)|Mn+1

d[Hn+1

[P�
n+1

Explicit scheme: [P+

n+1

=
Ä
(d[Hn+1

)|Mn+1

d[Hn+1

+ ([P�
n+1

)�1

ä�1

Gx
n+1

= Pxx+
n+1

(dxHn+1

))|Mn+1

Gˆ✓
n+1

= Px✓+
n+1

(dxHn+1

))|Mn+1

x̂+n+1

= x̂�n+1

+ Gx
n+1

(zn+1

� Hn+1

Ä
x̂�n+1

)
ä

✓̂+n+1

= ✓̂�n+1

+ Gˆ✓
n+1

(zn+1

� Hn+1

Ä
x̂�n+1

)
ä

Unscented Kalman filter The Unscented Kalman Filter (UKF) [19] is another alternative
for state and parameters estimation in non-linear cases. This more recent method was ini-
tially introduced to circumvent the main computational disadvantage of the EKF method
– namely the computation of the tangent operators of the model and observation operators.
From a stochastic point of view, [P�

n and [P+

n can be seen as a priori and a posteriori covari-
ances and [x�n and [x+n can be interpreted as a priori and a posteriori means. The UKF is a
discrete-time estimator based on sampling particles – called sigma points – whose role is to
replace the tangent computations. We introduce the so-called p unitary sampling points sp[i]

and the p weights ↵i as

pX

i=1

↵isp[i] = 0 and
pX

i=1

↵isp[i] · (sp[i])| = 1.

The main idea of UKF is in the choice of these sampling particles. Indeed, the particular
choice of sampling points can be justified from a stochastic point of view and is explained
for example in [18]. The sigma points are generated around the estimated values based on
the covariance estimation. This choice can also be interpreted in a deterministic framework.
The method consists in replacing the tangent operators by finite difference approximations.
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We then need to define the points which allow to compute a correct finite difference at a
given point. The choice can be made such that the distance between the points – that we
need to determine – and the given point corresponds to the order of magnitude of the uncer-
tainties [28]. We also have a sampling-prediction-correction scheme with a simple numerical
implementation.

Sampling-Prediction-Correction Scheme

1. Sampling  
x̂[i]+n

✓̂[i]+n

!

=

Ç
x̂+n
✓̂+n

å
+
»

[P+

n sp[i]

2. Prediction
8
>>>>>>><

>>>>>>>:

x̂�n+1

=
Pp

i=1

↵iAn|n+1

(x̂[i]+n , ✓̂[i]+n ) and x̂[i]�n+1

= An|n+1

(x̂[i]+n , ✓̂[i]+n )

✓̂�n+1

=
Pp

i=1

↵i✓̂[i]+n = ✓̂+n and ✓̂[i]�n+1

= ✓̂[i]+n

[P�
n+1

=
Pp

i=1

↵i

 
x̂[i]�n+1

� x̂�n+1

✓̂[i]+n � ✓̂�n+1

! 
x̂[i]�n+1

� x̂�n+1

✓̂[i]+n � ✓̂�n+1

!|

3. Observations (of the observer model)
z[i]�n+1

= Hn+1

(x̂[i]�n+1

) and z�n+1

=
pX

i=1

↵iz[i]�n+1

4. Correction
8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

P
[xz =

Pp
i=1

↵i

 
x̂[i]�n+1

� x̂�n+1

✓̂[i]�n+1

� ✓̂�n+1

!

(z[i]�n+1

� z�n+1

)| =

Ç
Pxz
n+1

⇥
⇥ P✓z

n+1

å

Pzz =
Pp

i=1

↵i(z[i]�n+1

� z�n+1

)(z[i]�n+1

� z�n+1

)|

[Gx
n+1

= Pxz
n+1

(Pzz
n+1

)�1

[G✓
n+1

= P✓z
n+1

(Pzz
n+1

)�1

x̂+n+1

= x̂�n+1

+ [Gx
n+1

(zn+1

� z�n+1

)

✓̂+n+1

= ✓̂�n+1

+ [G✓
n+1

(zn+1

� z�n+1

)

[P+

n+1

= [P�
n+1

� P
[xz(Pzz)�1(P

[xz)|

Other approximated Kalman filters have been developed as for example the Ensemble
Kalman filter (EnKF) [14] which follows a similar approach. The main difference concerns
the choice of the particles and their numbers since in practice the EnKF relies on a signifi-
cantly increased number of particles.

7.3.2.2 Reduced-order optimal filters

As seen in the previous section, the optimal filter in the linear case and its various ap-
proximate filters in non-linear cases can be formulated. We recall that their great advantage
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is that they can be applied with any dynamics. However, these optimal filters have an impor-
tant drawback which is the prohibitive computation of the full covariance matrix [P. One first
strategy is to use reduced-order for the covariance operators. A typical example of order re-
duction occurs when we restrict the uncertainty space to a parameter space. In other words,
we consider only the problem of identification without considering other type of errors like
some initial condition errors.

To begin with, let us consider the general reduced order formulation. We will then see
its implications in an identification context. For the sake of simplicity we recall that the state
space is considered as finite dimensional even if its dimension can be very large. The main
idea behind the reduced order strategy is to consider a SVD decomposition of [P of the form

8t, [P(t) = [L(t)U�1(t)[L(t)|,

with U an invertible matrix of small size r and [L an extension operator. For linear operators,
we can prove, see [29], that this decomposition is stable over time and that the Riccati
equation (7.15) leads to the two following systems with admissible computational times

[̇L = [A[L and U̇ = [L|[H|MZ
[H[L. (7.19)

In non-linear cases, extensions of these two systems have been developed. Note that a specific
analysis of the error produced by these approximations is then necessary. We present here
the Reduced-order EKF (RoEKF) and the Reduced-order UKF (RoUKF).

Reduced-order EKF The RoEKF replaces the non-linear operators by their tangent coun-
terparts in (7.19) following the idea of the EKF

[̇L = d[A[L and U̇ = [L|(d[H)|MZ(d[H)[L.

A time and space discretization is directly given by the following prediction-correction
scheme.

Prediction-Correction Scheme

1. Prediction 8
<

:

[̂x�n+1

= [An+1|n([̂x+n )

[Ln+1

= d[An+1|n
[Ln

2. Correction 8
>>>><

>>>>:

Un+1

= Un + [L|n+1

(d[Hn+1

)|Mn+1

(d[Hn+1

)[Ln+1

[Gn+1

= [Pn+1

(d[Hn+1

)|Mn+1

[̂x+n+1

= [̂x�n+1

+ [Gn+1

(zn+1

� [Hn+1

([̂x�n+1

))
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Reduced-order UKF Now the Reduced-order strategy for the UKF filter denoted by RoUKF
(Reduced-order UKF) is presented [28, 27, 32]. We can directly use the Sampling-Prediction-
Correction scheme of the UKF and the decomposition of the covariance operator [P given by

8t, [P(t) = [L(t)U�1(t)[L(t)|

in order to obtain the RoUKF. Let the p unitary sampling points sp[i] and the p weights ↵i as
defined above

pX

i=1

↵isp[i] = 0 and
pX

i=1

↵isp[i] · (sp[i])| = 1.

We denote by D↵, the diagonal matrix of the p weights ↵i. Let (v[i])
1ip p values, we denote

by v[⇤], the following vector
v[⇤] =

Ä
v[1] · · · v[p]

ä|
.

In [28, 27], a study of the estimation error is given and in [10], the link with the singu-
lar evolutive interpolated Kalman filter (SEIK) introduced in [32] is given. The Sampling-
Prediction-Correction scheme of RoUKF is given. Since, in what follows, we apply the RoUKF
only on the parameters space, the time scheme given here separates the parameters from the
state.

Sampling-Prediction-Correction Scheme

1. Sampling 8
>><

>>:

Cn =
»

U�1

n 
x̂[i]+n

✓̂[i]+n

!

=

Ç
x̂+n
✓̂+n

å
+

Ç
Lx
n

L✓n

å
C|
nsp[i]

2. Prediction
8
><

>:

x̂�n+1

=
Pp

i=1

↵iAn|n+1

(x̂[i]+n , ✓̂[i]+n ) and x̂[i]�n+1

= An|n+1

(x̂[i]+n , ✓̂[i]+n )

✓̂�n+1

=
Pp

i=1

↵i✓̂[i]+n = ✓̂+n and ✓̂[i]�n+1

= ✓̂[i]+n

3. Observations (of the observer model)
z[i]�n+1

= Hn+1

(x̂[i]�n+1

) and z�n+1

=
pX

i=1

↵iz[i]�n+1

4. Correction
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Lx
n+1

= x̂[⇤]�n+1

D↵(sp[⇤])|

L✓n+1

= ✓̂[⇤]�n+1

D↵(sp[⇤])|

�n+1

= z[⇤]�n+1

D↵(sp[⇤])|

Un+1

= 1 + �|
n+1

Mn+1

�n+1

x̂+n+1

= x̂�n+1

+ Lx
n+1

U�1

n+1

�|
n+1

Mn+1

(zn+1

� z�n+1

)

✓̂+n+1

= ✓̂�n+1

+ L✓n+1

U�1

n+1

�|
n+1

Mn+1

(zn+1

� z�n+1

)
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7.4 Luenberger observers

An alternative method to the reduced-order strategy consists in building a filter which is
not based on an optimal criterion. This idea – originally introduced by Luenberger [24, 25] –
relies on the definition of the simplest possible filter such that the error between the observed
trajectory and the observer system tends to zero.

The so-called Luenberger filter in the finite dimension framework – also named nudg-
ing in the PDE community [17, 39] – consists in stabilizing the dynamics satisfied by the
estimation error

x̃ = x � x̂.

Most of the Luenberger filter are defined only for estimating the state – and we will see in
the sequel the possible strategy when we also expect to identify some parameters. We thus
consider a real trajectory {x(t), t 2 [0, T ]} resulting of the dynamics

®
ẋ(t) = A(x, t)
x(0) = x• + ⇣x.

(7.20)

The available observations of x are denoted by z and we assume that there exists an obser-
vation operator such that

z(t) = H(x(t), t) + �(t),

with � an additive noise induced by the measurement process. The objective is to find a state
filter Gx for the observer model

(
˙̂x(t) = A(x̂, t) + GxÄz(t) � H(x̂(t))

ä
,

x̂(0) = x̂•.
(7.21)

The estimation error x̃ verifies
(

˙̃x(t) = A(x, t) � A(x̂, t) � GxÄz(t) � H(x̂(t))
ä
,

ˆ̃x(0) = ⇣x.
(7.22)

First assume that A and H are linear operators, then the model of the estimation error be-
comes (

˙̃x(t) = (A � GxH)x̃ � Gx �,
ˆ̃x(0) = ⇣x.

(7.23)

We want to find a state filter which allows to control the estimation error dynamics. This
means that the objective is to suggest a gain operator such that A � GxH is a dissipative
operator.

We want to show that with the gain operator Gx = �H⇤ – where H⇤ is the adjoint operator
of the observation operator (for the corresponding metrics in the state and observations
spaces), and � a strictly positive value – is a possible choice. The dynamical system verified
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by the estimation error becomes
(

˙̃x(t) = (A � �H⇤H)x̃ � �H⇤ �
ˆ̃x(0) = ⇣x (7.24)

This system can be rewritten on the variational formulation as, find x̃ such that 8 ,
Z

⌦

˙̃x =
Z

⌦

Ax̃ � �
Z

⌦

H⇤Hx̃ � �
Z

⌦

H⇤ � 

and with  = x̃, we have

1

2

Z

⌦

@tx̃2 =
Z

⌦

Ax̃ · x̃ � �
Z

⌦

kHx̃k2Z � �
Z

⌦

�Hx̃,

and this automatically implies that the observer term �H⇤H is a stabilizing term for the
system of the estimation error assuming the noise � is controlled.

In the non-linear case, a classical strategy is to replace the operators by their tangent
counterparts. Indeed, when the error is small, we have the following approximation if we
neglect the noise

z � H(x̂) ⇡ z � H(x) + dH(x̂)(x � x̂) ⇡ dH(x̂)x̃

and in this case the gain is defined by

Gx = �dH(x̂)⇤.

In some cases, we just have an implicit relation between the observations z and the estimator
x̂ of the following form

D(z(t), x̂(t)) = 0,

where D is the discrepancy. This leads to the following definition of the gain

Gx = ��(dD(z, x̂))⇤.

Heat model Let us illustrate this Luenberger observer in the case of the Heat equation. We
consider the diffusion problem

8
><

>:

ẋ = �x + f, ⌦ ⇥ [0, T ]
x(0) = x• + ⇣x, ⌦

x = 0, @⌦ ⇥ [0, T ].
(7.25)

We consider two real separable Hilbert spaces V and U and we suppose that V is dense in U
so that by identifying U and its dual U 0, we have V ⇢ U ⇢ V 0, where each space is dense in
the following. We denote by W ([0, T ], V ) the space

W ([0, T ], V ) = {x, x 2 L2([0, T ], V ), ẋ 2 L2([0, T ], V 0)}.
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Here we consider that U = L2(⌦), V = H1

0

(⌦) and then V 0 = H�1(⌦). Using Theorem 1
and Theorem 2 given in [13] on page 512, there exists a unique solution of the associated
variational problem of (7.25) in W ([0, T ], H1

0

(⌦)) if f 2 L2([0, T ], H�1(⌦)) and x(0) 2 L2(⌦).
Using Theorem 1 on page 473 in [13], we have x 2 C([0, T ], L2(⌦)). This implies that for
all t 2 [0, T ], x(t) 2 L2(⌦). We assume that we have at our disposal the observations on a
sub-domain denoted by ! and the following observer is then well-defined

H :

®
L2(⌦) ! L2(!)

x 7! x|!
. (7.26)

We have
z = x|! + � = Hx + �.

We search the adjoint of this observer

D
H⇤z,�

E

L2
(⌦)

=
D

z, H�
E

L2
(!)

=
Z

!
z�|! =

Z

⌦

z�|!

and then the adjoint is given by

8z 2 L2(!), H⇤z = 1!z 2 L2(⌦).

This implies that the observer model verifies
8
><

>:

˙̂x = �x̂ + �1!(z � x̂|!) + f, in ⌦
x̂(0) = x•, in ⌦

x̂ = 0, in @⌦

(7.27)

By applying (7.4) at the previous observer, the variational problem of the error model is
given by find x̃ 2 H1

0

(⌦) such that 8 2 H1

0

(⌦),
Z

⌦

˙̃x = �
Z

⌦

rx̃ · r � �
Z

!
x̃ � �

Z

!
� .

The correction term then adds dissipation. We denote by µn, the eigenvalues of the diffusion
problem (7.25), i.e. the eigenvalues of the Laplacian operator �. We also define µ̃n as the
eigenvalues of the error problem, i.e. the eigenvalues of the operator � � �H⇤H. We can
prove the following result

µ̃n < µn, (7.28)

where µ̃n decreases when � increases. The proof is based on the Courant-Fish theorem in
infinite dimension.

Theorem 2. (Courant-Fisher) Let M be a coercive symmetric operator and µ
1

� µ
2

� · · · �
µn � · · · its eigenvalues. Then

µn = inf
W⇢H1

0 (⌦)

dim(W )=k

sup
y2W\{0}

(My, y)L2

kykL2
.
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Applying this theorem to M = �� and M̃ = M + �H⇤H, we can prove that

�µ̃n > �µn,

and this directly implies (7.28).
We can quickly discuss the choice of � in this case. As the reader can see in the error

model, the term containing the noise � increases proportionally to �. The value of � is then
balanced versus the value of �. We also study the limit when � ! +1 in order to see
if we can find a second condition for the choice of �. If we neglect the noise �, the limit
corresponds to z = Hx̂. Then the best method to choose the value of � is by controlling the
value of the noise.

7.5 A complete joint state and parameters methodology

(ˆ[1]+
n , ✓̂[1]+

n )(ˆ[2]+
n , ✓̂[2]+

n ) (ˆ[p]+
n , ✓̂[p]+

n )

(ˆ[1]�
n+1, ✓̂

[1]�
n+1)(ˆ

[2]�
n+1, ✓̂

[2]�
n+1) (ˆ[p]�

n+1, ✓̂
[p]�
n+1)

(ˆ[1]�+
n+1 , ✓̂[1]�

n+1)(ˆ
[2]�+
n+1 , ✓̂[2]�

n+1) (ˆ[p]�+
n+1 , ✓̂[p]�

n+1)

(ˆ+
n , ✓̂+

n )

(ˆ+
n+1, ✓̂

+
n+1)

Sampling

State (and parameter)
prediction

State correction

Parametric correction

Figure 7.1: Sampling-Prediction-Correction with a nudging filter on the state space and a
RoUKF for the parameters space

We will now combined the sequential strategies presented below in order to propose a
joint state and parameters estimation of the form of (7.10). Hence, two different gains – one
for the state and one for the parameters – have to be defined. On the state space, we build
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a Luenberger filter and the following chapter will be devoted to the presentation of a very
efficient observer for reaction diffusion models based on a nudging strategy. Then, the small
dimension of the parameters space allows us to use a reduced-order optimal filter typically a
RoUKF. The resulting joint sampling-prediction-correction scheme given below is illustrated
in Figure 7.1.

Joint state (Luenberger) - parameters (RoUKF) scheme
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In practice, the discretization of the adjoint operator H⇤
n+1

is more complicated (with
implicit terms see [9]) but the objective here is to give an idea of the discretization of a joint
state and parameters estimator.

This strategy was initially introduced and analyzed by [29, 28]. In a few words, the
idea is that the state observer stabilizes the state uncertainties. This allows to restrict the
uncertainty to the parameter space, and then the reduced-order filtering strategy is valid to
handle the identification.



Bibliography 207

Bibliography

[1] D. Auroux and J. Blum. Back and forth nudging algorithm for data assimilation prob-
lems. Comptes Rendus Mathematique, 340(12):873–878, 2005.

[2] R. Bellman. Dynamic programming and Lagrange multipliers. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 42(10):767, 1956.

[3] A. Bensoussan. Filtrage optimal des systèmes linéaires. Dunod, 1971.

[4] C. Bertoglio, D. Chapelle, M. A. Fernández, J.-F. Gerbeau, and P. Moireau. State ob-
servers of a vascular fluid–structure interaction model through measurements in the
solid. Computer Methods in Applied Mechanics and Engineering, 256:149–168, 2013.

[5] J. Blum, F.-X. Le Dimet, and I. M. Navon. Data assimilation for geophysical fluids.
In R. Temam and J. Tribbia, editors, Handbook of Numerical Analysis: Computational
Methods for the Atmosphere and the Oceans. Elsevier, 2008.

[6] D. Chapelle, N. Cîndea, M. De Buhan, and P. Moireau. Exponential convergence of
an observer based on partial field measurements for the wave equation. Mathematical
Problems in Engineering, 2012, 2012.

[7] D. Chapelle, N. Cîndea, and P. Moireau. Improving convergence in numerical analysis
using observers—the wave-like equation case. Mathematical Models and Methods in
Applied Sciences, 22(12), 2012.

[8] D. Chapelle, M. Fragu, V. Mallet, and P. Moireau. Fundamental principles of data
assimilation underlying the verdandi library: applications to biophysical model person-
alization within euheart. Medical & Biological Eng & Computing, pages 1–13, 2012.

[9] D. Chapelle, A. Imperiale, and P. Moireau. Cardiac estimation from tagged-MR images.
In preparation.

[10] D. Chapelle, P. Moireau, and P. Le Tallec. Robust filtering for joint state-parameter esti-
mation in distributed mechanical systems. Discrete and Continuous Dynamical Systems,
(1–2):65–84, 2009.

[11] C. Corrado, J.-F. Gerbeau, and P. Moireau. Identification of an electrophysiological
model from combined ECG and MRI measurements. Conf. Bioengineering 2012, Oxford,
2012.

[12] C. Corrado, J.-F. Gerbeau, and P. Moireau. Identification of weakly coupled multi-
physics problems. application to the inverse problem of electrocardiology. Journal of
Computational Physics, 2014. In review.

[13] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science
and Technology: Volume 3 Spectral Theory and Applications, volume 3. Springer, 2000.

[14] G. Evensen. Data Assimilation: The Ensemble Kalman Filter. Springer, 2009.



208

[15] W. H. Fleming. Deterministic nonlinear filtering. Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(4), 25(3-4):435–454, 1997.

[16] G. Haine and K. Ramdani. Reconstructing initial data using observers: error analy-
sis of the semi-discrete and fully discrete approximations. Numerische Mathematik,
120(2):307–343, 2012.

[17] J. E. Hoke and R. A. Anthes. The initialization of numerical models by a dynamic-
initialization technique. Monthly Weather Review, 104(12):1551–1556, 1976.

[18] S. J. Julier and J. K. Uhlmann. Reduced sigma point filters for the propagation of
means and covariances through nonlinear transformations. In In Proceedings of the
2002 American Control Conference, volume 2, pages 887–892, 2002.

[19] S.J. Julier and J.K. Uhlmann. A new extension of the Kalman filter to nonlinear systems.
In Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and
Controls, 1997.

[20] R. Kalman and R. Bucy. New results in linear filtering and prediction theory. Trans.
ASME J. Basic. Eng., 83:95—108, 1961.

[21] A. J. Krener. The convergence of the Extended Kalman Filter. In Lecture Notes in Control
and Inform. Sci. Berlin: Springer, 286:173–182, 2003.

[22] F.-X. Le Dimet and O. Talagrand. Variational algorithms for analysis and assimilation
of meteorological observations: theoretical aspects. Tellus A, 38(2):97–110, 1986.

[23] K. Liu. Locally distributed control and damping for the conservative systems. SIAM
Journal on Control and Optimization, 35(5):1574–1590, 1997.

[24] D.G. Luenberger. Determining the State of a Linear with Observers of Low Dynamic Order.
PhD thesis, Stanford University, 1963.

[25] D.G. Luenberger. An introduction to observers. IEEE Transactions on Automatic Control,
16:596–602, 1971.

[26] J. Mandel, L.S. Bennethum, J.D. Beezley, J.L. Coen, C.C Douglas, L.P. Franca, M. Kim,
and A. Vodacek. A wildland fire model with data assimilation. Mathematics and Com-
puters in Simulation, 79(3):584–606, 2008.

[27] P. Moireau and D. Chapelle. Erratum of article "Reduced-order Unscented Kalman
Filtering with application to parameter identification in large-dimensional systems".
ESAIM: Control, Optimisation and Calculus of Variations, 17(2):406–409, 2011.

[28] P. Moireau and D. Chapelle. Reduced-order Unscented Kalman Filtering with applica-
tion to parameter identification in large-dimensional systems. ESAIM: Control, Optimi-
sation and Calculus of Variations, 17(2):380–405, 2011.



Bibliography 209

[29] P. Moireau, D. Chapelle, and P. Le Tallec. Joint state and parameter estimation for dis-
tributed mechanical systems. Computer Methods in Applied Mechanics and Engineering,
197:659–677, 2008.

[30] P. Moireau, D. Chapelle, and P. Le Tallec. Filtering for distributed mechanical sys-
tems using position measurements: Perspectives in medical imaging. Inverse Problems,
25(3):035010 (25pp), 2009.

[31] I. M. Navon. Data assimilation for numerical weather prediction: A review. In Data
Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Springer, 2009.

[32] D. T. Pham. Stochastic methods for sequential data assimilation in strongly nonlinear
systems. Monthly Weather Review, 129(5):1194–1207, 2001.

[33] Daley R. Atmospheric Data Analysis. Cambridge University Press, 1993.

[34] K. Ramdani, M. Tucsnak, and G. Weiss. Recovering the initial state of an infinite-
dimensional system using observers. Automatica, 46(10):1616–1625, 2010.

[35] C.M. Rochoux, B. Cuenot, S. Ricci, A. Trouvé, B. Delmotte, Se. Massart, R Paoli, and
R. Paugam. Data assimilation applied to combustion. Comptes Rendus Mécanique,
341:266–276, 2013.

[36] J. Sainte-Marie, D. Chapelle, R. Cimrman, and M. Sorine. Modeling and estimation of
the cardiac electromechanical activity. Computers and Structures, 84:1743–1759, 2006.

[37] D. Simon. Optimal State Estimation: Kalman, H1, and Nonlinear Approaches. Wiley-
Interscience, 2006.

[38] D. R. Stauffer and J.-W. Bao. Optimal determination of nudging coefficients using the
adjoint equations. Tellus A, 45(5):358–369, 1993.

[39] D. R. Stauffer and N. L. Seaman. Use of four-dimensional data assimilation in a limited-
area mesoscale model. Part I: Experiments with synoptic-scale data. Monthly Weather
Review, 118(6):1250–1277, 1990.

[40] O. Talagrand. Assimilation of observations, an introduction. Journal-meteorological
society of japan series 2, 75:81–99, 1997.

[41] P.A. Vidard, F.-X. Le Dimet, and A. Piacentini. Determination of optimal nudging coef-
ficients. Tellus A, 55(1):1–15, 2003.

[42] X. Zou, I.M. Navon, and F.-X. Le Dimet. An optimal nudging data assimilation scheme
using parameter estimation. Quarterly Journal of the Royal Meteorological Society,
118(508):1163–1186, 1992.





CHAPTER 8
A joint state and parameter observer for the

reaction diffusion model. Application in
cardiac electrophysiology.

Abstract Data assimilation is a very active subject with various applications. The objective of
this work is to adapt complex reaction-diffusion models to some data in order to obtain very
realistic simulations for each case considered. A strategy which allows to estimate the state
and the parameters from available data corresponding to the front position at different times
is given. Different data assimilation methods are combined for the inverse problem: a Luen-
berger observer for the state space and a Reduced-order Unscented Kalman Filter (RoUKF)
for the parameters space. The origin of the efficient state observer is given. The data consist
of front maps such levels sets which naturally appears in imaging techniques in the detection
of objet (i.e. the segmentation) where an eikonal equation – representing the evolution of
the object contour which pursues the one sought – is solved. Moreover the reaction-diffusion
equation can be linked by an asymptotic analysis in the front direction to an eikonal equa-
tion. Using strategies developed in image processing in order to compare the contours, we
present a state observer of the eikonal equation. This observer is carried over to the initial
reaction-diffusion model by an inverted asymptotic analysis. Using shape derivatives theory,
this state observer is mathematically justified. One of the various application fields of this
work is cardiac electrophysiology where the bidomain or the monodomain models – both
reaction-diffusion models – are used and depolarization maps (ECGI) are available. Simula-
tions on realistic synthetic data demonstrate in the context of cardiac electrophysiology the
potential of this joint state-parameter approach and bring us closer to the personalization of
models to each patient.
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Abstract

Data assimilation is a very active subject with various applications. The objective of
this work is to adapt complex reaction-di↵usion models to some data in order to obtain
very realistic simulations for each case considered. A strategy which allows to estimate the
state and the parameters from available data corresponding to the front position at di↵erent
times is given. Di↵erent data assimilation methods are combined for the inverse problem:
a Luenberger observer for the state space and a Reduced-order Unscented Kalman Filter
(RoUKF) for the parameters space. The origin of the e�cient state observer is given. The
data consist of front maps such levels sets which naturally appears in imaging techniques
in the detection of objet (i.e. the segmentation) where an eikonal equation – representing
the evolution of the object contour which pursues the one sought – is solved. Moreover
the reaction-di↵usion equation can be linked by an asymptotic analysis in the front direc-
tion to an eikonal equation. Using strategies developed in image processing in order to
compare the contours, we present a state observer of the eikonal equation. This observer
is carried over to the initial reaction-di↵usion model by an inverted asymptotic analysis.
Using shape derivatives theory, this state observer is mathematically justified. One of the
various application fields of this work is cardiac electrophysiology where the bidomain or the
monodomain models – both reaction-di↵usion models – are used and depolarization maps
(ECGI) are available. Simulations on realistic synthetic data demonstrate in the context of
cardiac electrophysiology the potential of this joint state-parameter approach and bring us
closer to the personalization of models to each patient.
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Cardiac electrophysiology
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Introduction

Reaction-di↵usion models and simplified asymptotic models as the curvature eikonal equa-
tion [36, 30] appear in various application fields, for example in cardiac electrophysiology with
the bidomain model [57, 50] and its first approximation the monodomain model [12, 51]. In
wildland fire propagation, reaction di↵usion models are also used [2] and a third field is for
example the growth of tumors, see [56, 21]. As for all natural and physical systems, a great
di�culty consists in dealing with the many uncertain quantities which must be preserved for
running model simulations. These quantities include initial conditions and physical parameters
of the model – as for example the conductivity parameter – which are di�cult to measure.
Fortunately, other types of measurement exist and the objective is to use these available data in
order to circumvent the uncertainties corresponding to the dynamical model. Here, we consider
the propagation maps which give the position of the front at di↵erent times.
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Data assimilation aims at reducing the uncertainties and also at estimating uncertain quan-
tities as for example the model parameters. As we do not wish to precisely retrieve the initial
condition error and parameters error but just have a correct approximation of the state and
of the parameters, sequential – also called filtering – methods are adapted [33, 22, 38]. The
objective of this article is to give a joint state and parameter estimation with admissible com-
puting times where a Luenberger observer corrects the state and an optimal Kalman-like filter
converges to the real parameter. The main di�culties concern the non-linearity of a reaction-
di↵usion model and the nature of available data. Indeed, the comparison of the solution of a
reaction-di↵usion model with a propagation front is di�cult and a so-called discrepancy measure
needs to be defined. Data assimilation for the reaction di↵usion model is an active subject and
represents a real challenge because of the various application fields. In cardiac electrophysiology
in [16], a data assimilation combining electrical and mechanical measurements is given. The
electrical data considered is the classical electrocardiogram [40] using a Luenberger observer for
the mechanical state and an Unscented Kalman Filter for the electrical state and parameters.
For example, in wildland fire propagation, some studies [41, 49] assimilate front propagation
data with Kalman-like filters in order to predict the state. In [11] data assimilation methods
are given in order to identify some model parameters in application field of tumor growth. In
the same application field, we can also cite [28, 37] where optimization methods are developed
in order to identify parameters or find the spatial location of the origin of the tumor (initial
condition), whereas in [55] a statistical approach is considered in order to predict the patient
survival.

The outline of this paper is as follows. In a first section, we present the reaction-di↵usion
model and the available data that we want to assimilate. The second section concerns the state
estimator. We start with the presentation of an observer suitable for a reaction-di↵usion model
and front propagation data. Then we give the origin of the state estimator starting with the
presentation of an asymptotic eikonal equation. Using image processing techniques [9, 59], we
present an observer valid for the eikonal equation and we carry over the observer to the initial
reaction-di↵usion model by an inverted asymptotic analysis. The last but not least part of
this section gives a mathematically-justified study of the observer model and we prove that the
correction term stabilizes the model of the error. The third section concerns the parameter
estimation and the Reduced-order Unscented Kalman Filtering (RoUKF) [44, 43] is used. In
the last section, several numerical simulations in cardiac electrophysiology in 1D and 2D cases
are presented. These simulations validate, in a first part, the very e�cient state estimator. In
a second part, using a joint state-parameter strategy, we identify the conductivity parameter.
We finish this section with a state estimator simulation in a realistic case.

1 Position of the problem

1.1 Reaction-di↵usion model

We consider the following reaction-di↵usion model
8
<

:

@tu � ~r · (~~� · ~ru) = kf(u), B ⇥ (0, T ),

(~~� · ~ru) · ~n = 0, @B ⇥ (0, T ),
u(~x, 0) = u

0

(~x), B,

(1)

where u is the unknown, ~~� the di↵usion tensor. The reaction term f represents the variation of
u between two states: burned/not burned in fire propagation, sick/healthy in tumor growth and
depolarized/polarized in cardiac electrophysiology. For the sake of simplicity in what follows,
we denote by traveled-through region, the part of the domain B which is already burned, sick or
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depolarized, according to the application considered. A classical and simple term considered for
the reaction term is defined by f(u) = u(1 � u) but more complicated cases can be considered.
For example in cardiac electrophysiology, f depends on other variables and the reaction-di↵usion
model is then coupled with one or more ordinary di↵erential equations which model the evolution
of these other variables.

1.2 Available data

The objective of this work is to obtain simulations – adapted for example to an individual
patient or to an occurrence of wildland fire – by correcting and adapting the reaction-di↵usion
model with available data. Here, the data that we want to assimilate are the isochrone maps of
u. These maps give the front position at successive times. This means that data correspond to
the boundary of the traveled-through region at successive times. In practice the observations
are often partial in space and in time but using interpolations the whole observations can be
reconstructed.

2 State observer for the monodomain model

We denote by d the dimension of the domain B. Using these observations, we can define an
evolving manifold of dimension d � 1 (set of isolated points in 1D, curve in 2D and surface in
3D) as the boundary of the traveled-through domain. The objective is to find an observer able
to assimilate these data in the reaction-di↵usion model (1), i.e. an observer able to adapt to the
evolving manifold defined by the observation. Object detection in image processing uses similar
ideas [46, 9]. That is why we start with geometric preliminaries used in image processing.

2.1 Geometric preliminaries

The use of level sets to detect objects in an image is a classical method, see [46, 9]. We
define � which corresponds to the boundary of a domain ⌦in and which evolves in time. We
define �, a level set function associated with ⌦in by

� > 0 in ⌦in, � < 0 in B \ ⌦in and � = 0 in �.

We denote by zdata the object sought in image processing and by �data the boundary of this
object, with ⌦in

data the interior defined by �data. In this context, zdata is constant in time. In fact
in image processing, the objective is to detect a fixed object. All these notions are represented
in Figure 1 in a 2D case. The definition of an object will be discussed.

As a preliminary, we start by the presentation of various notations. We define H the one
dimensional Heaviside function by

H(�) =

8
<

:

0 if � < 0,
1 if � > 0,
1

2

if � = 0.

The directional derivative of the Heaviside function H in the normal direction ~n is defined by

�̂(�, ~x) = ~r�H � ��(~x) · ~n.

This function is the Dirac delta function of the multidimensional variable ~x and this distribution
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�data

�(t) = {x, �(x, t) = 0}

⌦

⌦data

⇤

Figure 1: In blue, the object to be detected is represented and the curve �(t) representing the
domain in red which evolves to the object.

is non-zero only on the interface �, i.e. where � = 0. We have

�̂(�, ~x) = ~r�H � ��(~x) · ~n

= H 0��(~x)
�
~r�(~x) ·

~r�(~x)

|~r�(~x)|
= H 0��(~x)

�|~r�(~x)|.
The Dirac delta function in one spatial dimension denoted by �, is defined as the derivative of
the Heaviside function H, i.e. �(�) = H 0(�). This allows to finally obtain

�̂(�, ~x) = �
�
�(~x)

�|~r�(~x)|. (2)

This gives the following property
Z

B
�̂(�, ~x) dB =

Z

�

 d�,

which shows that �̂ is independent of �.

2.2 State estimator the reaction-di↵usion model

We suppose that the target solution u satisfies
8
<

:

@tu � ~r · (~~� · ~r u) = kf(u), B ⇥ (0, T ),

(~~� · ~r u) · ~n = 0, @B ⇥ (0, T ),
u(~x, 0) = u

0

(~x), B.

(3)

In practice, we just have an a priori of the initial condition u
0

denoted by û
0

, and this means
that u

0

is decomposed into two parts

u
0

= û
0

+ ⇣,
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where ⇣ is the uncertainty. If we compute the solution of (3) with the initial condition û
0

, we
make an error. However, we have observations of the target solution and we want to define an
observer denoted by û which converges to the target solution u. We recall that these observations
correspond to the front position over time. The objective is to propose a Luenberger observer
[39] – also called nudging in PDE world [29, 53] – for the reaction-di↵usion model. Using these
observations, we can define t 7! �u(t) as the boundary of a region ⌦in

u (t) which corresponds
to the traveled-through region. We suppose that t 7! �u(t) is a closed boundary. From this
front corresponding to the observations, we define an object zu associated with u. The choice
of the exact definition of the object will be discussed. Of course in our case, the object zu varies
in time. In order to compare the observer solution û with the observations zu, we give some
definitions. Let c

th

be the value above which the solution changes state. This allows to define
the time-dependent region ⌦in

û – corresponding to the traveled-through region – by

⌦in

û (t) = {~x 2 B, û(~x, t) > c
th

}
with its boundary

�û(t) = {~x 2 B, û(~x, t) = c
th

}.

The averages of the zu in the interior of ⌦in

û and in the exterior are given by

C
1

(⌦in

û ) =

R
⌦

in
û

zud~x
R
⌦

in
û

d~x
and C

2

(⌦in

û ) =

R
B\⌦in

û

zud~x
R
B\⌦in

û

d~x
.

Using the definitions of Section 2.1, we have �̂(�û, ~x) = �̂{û=cth}. The model verified by û that
we propose is

8
>>><

>>>:

@tû � ~r · (~~� · ~r û) = kf(û)

+��̂(�û, ~x)↵(|~r û|)
⇣
��zu � C

1

(⌦in

û )
�
2

+
�
zu � C

2

(⌦in

û )
�
2

⌘
, B ⇥ (0, T ),

(~~� · ~r û) · ~n = 0, @B ⇥ (0, T ),
û(~x, 0) = û

0

(~x), B,

(4)

where � is a positive constant and ↵ corresponds to a strictly positive function to be chosen as
discussed later.

The correction term in the observer model does not have the classical form of the Luenberger
observer

Gu

�
D(zu, û)

�
,

where Gu is called the gain and D is the discrepancy which compares the solution of the observer
with the observations. However, a discrepancy D can be extracted formally and it is essential
for a joint state and parameter estimation as we will see in Section 3. This discrepancy is then
defined by

D(zu, û) =

Z

⌦

in
û

�
zu � C

1

(⌦in

û )
�
2

d~x +

Z

B\⌦in
û

�
zu � C

2

(⌦in

û )
�
2

d~x. (5)

As we will see, this discrepancy D naturally appears.
The following section gives the main ideas that justify the state estimator given in (4). In a

first step, the curvature eikonal equation, a simplified model derived from the reaction-di↵usion
model is introduced. The unknown of this eikonal equation is a level set of the depolarization
front of u. The eikonal equation gives the evolution of the depolarization front. Using methods
developed in image processing in order to detect objects in an image, a state observer for the
eikonal equation is presented. The third step consists in getting back to the reaction-di↵usion
model.
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2.3 Origin of the state estimator

2.3.1 Reaction-di↵usion model to the eikonal curvature equation

Simplified models of the reaction-di↵usion model exist. The curvature eikonal equation
model is one of them and this model focuses on the evolution of the front propagation. In
[36, 35], a derivation of an eikonal curvature equation is given for a reaction-di↵usion model. In
[3], a comparison of the errors between an eikonal equation and the front of a reaction-di↵usion
model is even done. As its name suggests, the eikonal curvature equation is obtained using a
change of variable which allows to only take into account the front change along the curvature.
The change of variable presented in [36, 35] is

~x = ~X(⇠, t) and t = ⌧,

with

• ⇠
1

the normal coordinate to �u a level set of u, i.e. the wave front location,

• ⇠
2

, ⇠
3

the coordinates of the moving level set surfaces.

For the sake of simplicity, we consider the di↵usion tensor ~~� = �, i.e. constant and isotropic
in space for this section. Using the Einstein implicit summation convention, the reaction-
di↵usion model (3) becomes in this new coordinate system

@u

@⌧
= �ailaik

@2u

@⇠l@⇠k
+ �

@ail
@xi

@u

@⇠l
+
@Xj

@⌧
ajk

@u

@⇠k
+ kf,

where (aij)ij is the inverse of the matrix with entries
⇣
@Xj

@⇠i

⌘

ij
. In [36, 35], the spatial scale

variation of ⇠
1

is supposed to be much shorter than the spatial scale variations of ⇠
2

and ⇠
3

,
namely there exists a small parameter " such that

ai1 = O(1) and aij = O("), 8i, 8j 6= 1.

This hypothesis means that the normal of the front changes faster than the tangent space.
This explains the name of the eikonal curvature equation. A second assumption is that u is
independent of ⇠

2

, ⇠
3

and ⌧ in the leading order ".

Remark 1 These assumptions correspond to choosing the coordinate system such that u only
depends on ⇠

1

. We can do an asymptotic analysis with u = u0(⇠
1

) + u1(⇠
1

)P 1(⇠
2

, ⇠
3

, ⌧) +
u2(⇠

1

)P 2(⇠
2

, ⇠
3

, ⌧) with P i polynomial functions with all terms of order i.

Denoting by ~a = (ai1)i the reaction-di↵usion model becomes

�|~a|2@
2u

@⇠2
1

+
⇣
� ~r~x · ~a +

@ ~X

@⌧
· ~a
⌘ @u

@⇠
1

+ kf(u) = O("), (6)

under the asymptotic assumptions. We choose the new coordinate system such that k = �|~a|2
and we identify this equation to

ku00 + kc
0

u0 + kf(u) = 0. (7)

In [1] the authors show that under assumptions on f , there exists a constant c
0

depending on
f such that there exists a strictly decreasing function u solution of (7). In the special case
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f(u) = u(1 � u), we have c
0

= 2
p

f 0(0) = 2. We use this mathematical theory and there exists
a constant c

0

depending on f such that

kc
0

= �~r~x · ~a +
@ ~X

@⌧
· ~a. (8)

We define from the observer solution u a level set associated with u, i.e.

�u > 0 if u > c
th

, �u < 0 if u < c
th

and �u = 0 if u = c
th

.

With �u a level set of u, we have
~a

|~a| = �
~r~x �u

|~r~x �u|
,

and it follows that

~a = �
p

kp
�

~r~x �u

|~r~x �u|
.

Then (8) becomes

kc
0

= �
p
�k ~r~x ·

⇣ ~r~x �u

|~r~x �u|
⌘

�
p

kp
�

@ ~X

@⌧
·
~r~x �u

|~r~x �u|
. (9)

As �u is constant along the wave front we have

~r~x�u · @
~X

@⌧
+
@�u
@⌧

= 0.

We then obtain p
kp
�

@⌧�u

|~r~x�u|
=

p
�k ~r~x ·

⇣ ~r~x �u

|~r~x �u|
⌘

+ kc
0

(10)

The curvature eikonal equation is then defined as

@t�u = |~r~x �u|
⇣
�~r~x ·

⇣ ~r~x �u

|~r~x �u|
⌘

+
p
�k c

0

⌘
, B ⇥ (0, T ). (11)

2.3.2 Energy minimization (link with the active contours without edges)

The method developed in image processing – for the detection of objects in an image – allows
us to propose a state estimator of the eikonal equation presented in (11). The definitions of the
geometrical notions used in this Section have been given in Section 2.1. The active contours
without edges method, see [46, 9] consists in minimizing the following energy

E(C̃
1

, C̃
2

,�) = µ length(�) + ⌫ area(⌦in) + �
1

Z

⌦

in

�
z(~x) � C̃

1

�
2

d~x

+ �
2

Z

B\⌦in

�
z(~x) � C̃

2

�
2

d~x. (12)

The constants µ, ⌫,�
1

,�
2

are positive in the active contours theory. Using (2), the length of �
and the area of ⌦in are defined by

length(�) =

Z
�(�)|~r�|d~x and area(⌦in) =

Z
H(�)d~x.

The first two terms of this energy are regularization terms and the last two terms correspond
to data discrepancy. Of course, in what follows we are interested in the last two terms. In a
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first stage, C
1

and C
2

are determined in order to have (C
1

, C
2

) = Argmin
˜C1, ˜C2

E(C̃
1

, C̃
2

,�). This

implies that

@E

@C̃
1

= �
1

Z

⌦

in
�2(z � C̃

1

)d~x = 0 and
@E

@C̃
2

= �
2

Z

B\⌦in
�2(z � C̃

2

)d~x = 0. (13)

This allows to determine C
1

and C
2

.

C
1

=

R
⌦

in zd~xR
⌦

in d~x
=

R
zH(�)d~xR
H(�)d~x

and C
2

=

R
B\⌦in zd~x
R
B\⌦in d~x

=

R
z(1 � H(�))d~xR
(1 � H(�))d~x

.

We remark that C
1

is the average of z inside � and C
2

is the average of z outside of �. In a
second stage, we are interested in the minimum of EC(�) = E(C

1

, C
2

,�). In [59], a computation
of the Fréchet derivative of E is done. Here, we just give the final result

⇣@EC

@�
,  
⌘

= �µ

Z
�(�)~r ·

⇣ ~r�

|~r�|
⌘
 d~x + µ

Z

@B

�(�)

|~r�|
@�

@n
 d~x. + ⌫

Z
�(�) d~x

+�
1

Z �
z(~x) � C

1

�
2

�(�) d~x � �
2

Z �
z(~x) � C

2

�
2

�(�) d~x.

However we use similar methods for the computation of others Fréchet derivatives presented in
Appendix B. We remark that the two averages C

1

and C
2

verify (13) and that this implies that

⇣@EC

@�
,  
⌘

=
⇣@E

@�
,  
⌘
. (14)

Using a gradient projection method, see also [59], the minimization of the energy EC (and also
E using (14)) amounts to finding � such that
8
>>><

>>>:

@�

@t
= µ �(�)~r ·

⇣ ~r�

|~r�|
⌘

� ⌫�(�) � �
1

�(�)
�
z � C

1

�
2

+ �
2

�(�)
�
z � C

2

�
2

, in B
�(�)

|~r�|
@�

@n
= 0, i.e.

@�

@n
= 0 in @B \ �.

(15)
We want to find a state estimator – denoted by �û – of the curvature eikonal equation (11)

using time activation maps. Using these observations, we define an object z�u which varies in
time. This object corresponds to the observations for the observer of the eikonal equation. As
previously said, the choice of the exact definition of the object will be discussed. Using the
previous analysis, we define

⌦in

�û
= {~x 2 B, �û(~x) > 0},

its boundary
��û

= {~x 2 B, �û(~x) = 0}.

and

C
1

(⌦in

�û
) =

R
⌦

in
�û

z�ud~x
R
⌦

in
�û

d~x
and C

2

(⌦in

�û
) =

R
B\⌦in

�û

z�ud~x
R
B\⌦in

�û

d~x

As we do not apprehend the influence of |~r�û| in

�(�û) =
1

|~r�û|
�̂(��û

, ~x)
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the state estimator for the eikonal equation is given by

@t�û = |~r�û|
⇣
�~r ·

⇣ ~r�û

|~r�û|
⌘

+
p
�k c

0

⌘

+ �↵(|~r�û|)�̂(��û
, ~x)
⇣
��z�u � C

1

(⌦in

�û
)
�
2

+
�
z�û

� C
2

(⌦in

�û
)
�
2

⌘
, B ⇥ (0, T ), (16)

where � is a positive constant and ↵ corresponds to a strictly positive function which will based
on the mathematical analysis.

2.3.3 Observer for the reaction-di↵usion model

We are interested in a state estimator for the reaction-di↵usion model inspired from the
state estimator of the curvature eikonal equation (11) defined in (16). We want to find the
correction terms of the reaction-di↵usion model which give the data terms in (16) during the
asymptotic analysis. We want that the terms of the observer appear in the parenthesis before
@û
@⇠1

in (6). We then assume that the state estimator of the reaction-di↵usion has the following
form

@tû = ~r~x · (�~r~x û) + kf(û)

+ ��̂(��û
, ~x)

↵(|~r~x �û|)
|~r~x �û|

~r~xg · ~r~x û
� �

z�û
� C

1

(⌦in

�û
)
�
2 � �z�û

� C
2

(⌦in

�û
)
�
2

�
. (17)

and we use the asymptotic analysis presented in Section 2.3.1 in order to determine the function
g. The same moving coordinate system gives

@û

@⌧
= �ailaik

@2û

@⇠l@⇠k
+ �

@ail
@xi

@û

@⇠l
+
@Xj

@⌧
ajk

@û

@⇠k
+ kf(û)

+ ��̂(��û
, ~x)

↵(|~r~x �û|)
|~r~x �û|

��
z�û

� C
1

�
2 � �z�û

� C
2

�
2

�
ailaik

@g

@⇠k

@û

@⇠l
. (18)

We suppose that û and g only depend on ⇠
1

and the previous equation becomes

�|~a|2@
2û

@⇠2
1

+

"
�~r~x · ~a +

@ ~X

@⌧
· ~a + ��̂(��û

, ~x)
↵(|~r~x �û|)

|~r~x �û|
⇣�

z�û
� C

1

�
2 � �z�û

� C
2

�
2

⌘
|~a|2 @g

@⇠
1

#
@û

@⇠
1

+ kf(û) = 0. (19)

As in Section 2.3.1, we choose the moving coordinate system in order to have k = �|~a|2 and
using [1], there exists a constant c

0

depending on f such that

kc
0

= �~r~x · ~a +
@ ~X

@⌧
· ~a + ��̂(��û

, ~x)
↵(|~r~x �û|)

|~r~x �û|
⇣�

z�û
� C

1

�
2 � �z�û

� C
2

�
2

⌘k

�

@g

@⇠
1

.

We suppose that @⇠1g equals a positive constant c̃ and it follows that

kc
0

= �~r~x · ~a +
@ ~X

@⌧
· ~a + ��̂(��û

, ~x)
↵(|~r~x �û|)

|~r~x �û|
⇣�

z�û
� C

1

�
2 � �z�û

� C
2

�
2

⌘k

�
c̃. (20)
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We recall that

~a = �
p

kp
�

~r~x �û

|~r~x �û|
and ~r~x�û · @

~X

@⌧
+
@�û
@⌧

= 0.

We finally obtain for the eikonal equation derived from (17)

@t�û = |~r~x �û|
⇣
�~r~x ·

⇣ ~r~x �û

|~r~x �û|
⌘

+
p

Dk c
0

+ ��̂(��û
, ~x)

↵(|~r~x �û|)
|~r~x �û|

⇣
��z�û

� C
1

(⌦in

�û
)
�
2

+
�
z�û

� C
2

(⌦in

�û
)
�
2

⌘ p
kp
D

c̃
⌘
.

and with � = �
p
kp
D

c̃ for i = 1, 2, we find (16). Using

@⇠1g = c̃ � 0 and @⇠2g = @⇠3g = 0,

we obtain
@x1g = c̃a

11

, @x2g = c̃a
21

and @x3g = c̃a
31

.

and we can determine

~r~xg = c̃~a = �c̃

p
kp
D

~r~x �û

|~r~x �û|
.

With this analysis, we obtain an observer for the reaction-di↵usion model (with the more general
case for the di↵usion tensor)

@tû = ~r~x · (~~� · ~r~x û) + kf(û)

+ ��̂(��û
, ~x)

↵(|~r~x �û|)
|~r~x �û|

~r~x �û

|~r~x �û|
· ~r~x û

⇣
��z�û

� C
1

(⌦in

�û
))
�
2

+
�
z�û

� C
2

(⌦in

�û
)
�
2

⌘
, (21)

with �û a level set associated with û, z�û
an object defined from the data and � a positive

constant.
This equation can be simplified using û � c

th

as a level set associated with û. Furthermore,
we directly have ⌦in

�û
= ⌦in

û , ��û
= �û and z�û

= zû using the definitions given in Section 2.2.
Then (21) becomes (4) as expected.

2.4 Mathematical analysis of the state observer

2.4.1 Model of ũ = u � û

We want to study the error defined by ũ = u � û. The target model verifying (3) and the
observer model (4), the error verifies the following model

8
>>><

>>>:

@tũ � ~r · (~~� · ~r ũ) = k(f(u) � f(û))

+��̂(�û, ~x)↵(|~r û|)
⇣�

zu � C
1

(⌦in

û )
�
2 � �zu � C

2

(⌦in

û )
�
2

⌘
, B ⇥ (0, T ),

(~~� · ~r ũ) · ~n = 0, @B ⇥ (0, T ),
ũ(~x, 0) = u

0

(~x) � û
0

(~x), B.

This problem can be rewritten in variational form and it becomes, find ũ(·, t) 2 H1(B) such
that 8� 2 H1(B), 8t 2 [0, T ],

Z

B
@tũ� d~x +

Z

B
~~� · ~r ũ · ~r� d~x =

Z

B
k(f(u) � f(û))� d~x

+�

Z

�û

↵(|~r û|)
⇣�

zu � C
1

(⌦in

û )
�
2 � �zu � C

2

(⌦in

û )
�
2

⌘
� d�û,

(22)
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where u(·, t), û(·, t) 2 H1(B) respectively satisfy, 8� 2 H1(B), 8t 2 [0, T ],

Z

B
@tu� d~x +

Z

B
~~� · ~r u · ~r� d~x =

Z

B
kf(u)� d~x, (23)

and Z

B
@tû� d~x +

Z

B
~~� · ~r û · ~r� d~x =

Z

B
kf(û)� d~x

+�

Z

�û

↵(|~r û|)
⇣
��zu � C

1

(⌦in

û )
�
2

+
�
zu � C

2

(⌦in

û )
�
2

⌘
��û.

(24)

In order to have a consistent observer we expect

�̂(�u, ~x)↵(|~r u|)
⇣�

zu � C
1

(⌦in

u )
�
2 � �zu � C

2

(⌦in

u )
�
2

⌘
= 0,

i.e. the correction term equals 0 for the target solution. In order to have this property, we need
some assumptions on zu.

Assumption 1 If C̄
1

is the average of zu in the interior of the object defined by ⌦in
u and C̄

2

the average of zu in the exterior B \ ⌦in
u , the value of zu on the front equals

C̄
1

+ C̄
2

2
.

If Assumption 1 holds, the term

�̂(�u, ~x)
⇣�

zu � C
1

(⌦in

u )
�
2 � �zu � C

2

(⌦in

u )
�
2

⌘
,

then becomes ✓
C̄
1

+ C̄
2

2
� C̄

1

◆
2

�
✓

C̄
1

+ C̄
2

2
� C̄

2

◆
2

= 0, on �u.

Now, we want to justify the observer model by showing that the correction term of the
observer model adds dissipation in the model of the error defined by ũ = u � û. Indeed, we
want to prove that by adding the correction term, the error between û and u decreases. We
compute the energy of the error model (22) applying � = ũ

1

2

Z

B
@tũ

2d~x = �
Z

B
~~� · ~r ũ · ~r ũ d~x +

Z

B
k(f(u) � f(û)) ũ d~x

+ �

Z

�û

↵(|~r û|)
⇣�

zu � C
1

(⌦in

û )
�
2 � �zu � C

2

(⌦in

û )
�
2

⌘
ũ d�û (25)

We denote by Q�û(�) the following form

Q�û(�) =

Z

�û

↵(|~r û|)
⇣�

zu � C
1

(⌦in

û )
�
2 � �zu � C

2

(⌦in

û )
�
2

⌘
� d�û.

If Q�û(ũ) is negative, the correction term adds dissipation in the error model and this provides a
preliminary mathematical justification for the choice of this observer. However, this sign cannot
be determined directly and we have to linearize Q�û(ũ).
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Link between the shape derivative and the level set formalism This section gives a
mathematically justified linearization of

Q�û(�) =

Z

�û

↵(|~r û|)
⇣�

zu � C
1

(⌦in

û )
�
2 � �zu � C

2

(⌦in

û )
�
2

⌘
� d�û. (26)

using the theory of the shape derivative. The main definitions and the main propositions of the
shape derivative theory are given in Appendix A. In Appendix B we provide a comparison with
a formal di↵erentiation of Q�û written as an integral over the whole domain, i.e.

Q�û(�) =

Z

B
�(û � c

th

)|~r û|↵(|~r û|)
⇣�

zu � C
1

(û � c
th

)
�
2 � �zu � C

2

(û � c
th

)
�
2

⌘
� d~x,

where C
1

and C
2

as seen dependent of û by

C
1

(û � c
th

) =

R
B z�uH(û � c

th

)d~xR
B H(û � c

th

)d~x
and C

2

(û � c
th

) =

R
B z�u

�
1 � H(û � c

th

)
�
d~xR

B
�
1 � H(û � c

th

)
�
d~x

.

The two methods of di↵erentiation are related and the link is important in order to compare

d
�û

Q�û and dûQ�û .

Indeed, the shape derivative theory allows to obtain a justified di↵erentiation of the first term
whereas the second term appears more directly when we linearize Q�û with respect to û. Using
Figure 2, we define ~ 

�û
the vector flow of shape derivative, and  û�cth the corresponding level

set variation. We want to find the relation between them and we have

�
(û � c

th

) +  û�cth

�
(~x + ~ 

�û
) = 0,

and this implies

û(~x) � c
th

+ ~r û(~x) · ~ 
�û

+  û�cth(~x) + O(k( û�cth ,
~ 
�û

)k2) = 0,

and
~r û(~x) · ~ 

�û
+  û�cth(~x) + O(k( û�cth ,

~ 
�û

)k2) = 0.

We see that we can look for a constant c such that

~ 
�û

= c~n
�û

= �c
~rû

|~rû| .

We obtain

c =
 û�cth

|~rû|
and we finally have

~ 
�û

=
 û�cth

|~rû| ~n�û
. (27)

The relation between the shape and the level set derivatives is then given by

⇣
dûQ�û(�);  û�cth

⌘
=
⇣
d
�û

Q�û(�);
 û�cth

|~rû| ~n�û

⌘
. (28)
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�û = {û = c }

~x + ~ �û

~ �û

~x

~n�û = �
~rû

|rû| =
1

c
~ �û

{û +  û�c = c }

Figure 2: Link between the level set and shape derivatives

2.4.2 Linearization of Q�û

Shape derivative of Q�û In Appendix A the shape derivative theory is presented. More
precisely, the proof of the following proposition is given in Section A.2.

Proposition 1 The shape derivative of Q�û is

�
d
�û

Q�û(�); ~ 
�û

�
=

Z

�û

↵(|~r û|)
⇣�

zu � C
1

(⌦in
û )
�
2 � �zu � C

2

(⌦in
û )
�
2

⌘
� ~ 

�û
· ~n

�û
d�û

�
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�û

↵0(|~r û|)
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1
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û )
�
2 � �zu � C

2
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�
2

⌘
� @~n�

�
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�û
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�

|~r û|� d�û

�
Z

�û

↵0(|~r û|)@2~n�û
û
⇣�

zu � C
1

(⌦in
û )
�
2 � �zu � C

2
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û )
�
2

⌘
� ~ 

�û
· ~n

�û
d�û

+2

Z

�û

↵(|~r û|)~rzu · ~n
�û

�
C
2

(⌦in
û ) � C

1

(⌦in
û )
�
� ~ 

�û
· ~n

�û
d�û

�2
1

|⌦in
û |
Z

�û

(zu � C
1

(⌦in
û )) ~ 

�û
· ~n

�û
d�û

Z

�û

↵(|~r û|)�zu � C
1

(⌦in
û )
�
� d�û

�2
1

|B \ ⌦in
û |

Z

�û

(zu � C
2

(⌦in
û )) ~ 

�û
· ~n

�û
d�û

Z

�û

↵(|~r û|)�zu � C
2

(⌦in
û )
�
� d�û

+

Z

�û

↵(|~r û|)
⇣�

zu � C
1

(⌦in
û )
�
2 � �zu � C

2

(⌦in
û )
�
2

⌘
~r� · ~ 

�û
d�û.

Linearization of Q�û We recall that the objective is to linearize Q�û(ũ). We have

Q�û(ũ) ⇡ Q�u(u) +
⇣
duQ�u(ũ); û � u

⌘
.

Using (28) and Assumption 1, we obtain

Q�û(ũ) ⇡ Q�u(u) +
⇣
d
�uQ�u(ũ);

û � u

|~ru| ~n�u

⌘

⇡ �
⇣
d
�uQ�u(ũ);

ũ

|~ru|~n�u

⌘
.

As a consequence, we are interested in the term

�
d
�uQ�u(ũ);

ũ

|~ru|~n�u

�
.
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Applying Proposition 1 and using again Assumption 1, we have

�
dQ�u(ũ);

ũ

|~ru|~n�u

�
= 2

Z

�u

↵(|~r u|)
|~ru|

~rzu(~x) · ~n
�u

�
C
2

(�u) � C
1

(�u)
�
ũ2 d�u

�2
1

|⌦in

û |
Z

�u

1

|~ru|(zu(~x) � C
1

(�u)) ũ d�u

Z

�u

↵(|~r u|)�zu(~x) � C
1

(�u)
�
ũ d�u

�2
1

|B \ ⌦in

û |

Z

�u

1

|~ru|(zu(~x) � C
2

(�u)) ũ d�u

Z

�u

↵(|~r u|)�zu(~x) � C
2

(�u)
�
ũ d�u (29)

=2
�
C̄
2

� C̄
1

� Z

�u

↵(|~r u|)
|~ru|

~rzu(~x) · ~n
�u ũ2 d�u

�2

✓
C̄
1

� C̄
2

2

◆
2⇣ 1

|⌦in

û | +
1

|B \ ⌦in

û |
⌘Z

�u

1

|~ru| ũ d�u

Z

�u

↵(|~r u|)ũ d�u.

In Appendix B, the same result is found by an alternative method using a direct di↵erentiation
of the expression in (26).

2.4.3 Stabilizing state estimator

We recall that we want to prove that Q�û(ũ) which appears in the error model (25) is
negative in order to show that this correction term adds dissipation in this model. The sign
cannot be directly determined and we linearize Q�û(ũ) as in the previous part. We obtain

Q�û(ũ) ⇡ �
⇣
d
�uQ�u(ũ);

ũ

|~ru|~n�u

⌘
, (30)

with
�
d
�uQ�u(ũ); ũ

|~ru|
~n
�u

�
given in (29). The following lemma gives the negativity of Q�û(ũ) by

proving the positivity of
�
d
�uQ�u(ũ); ũ

|~ru|
~n
�u

�
under assumptions. Let hzu be the wavelength

of the front zu defined by
1

hzu

= min
~x2�u

|~rzu(~x) · ~n|
|C̄

1

� C̄
2

| ,

which means that the steeper zu, the smaller hzu . An example of zu in 1D is given in what
follows.

Lemma 1 If the condition

1

hzu

� 1

4

⇣ 1

|⌦in
û | +

1

|B \ ⌦in
û |
⌘✓Z

�u

↵(|~r u|)|~ru| d�u

Z

�u

1

↵(|~r u|)|~ru| d�u

◆ 1
2

, (31)

holds, then
�
d
�uQ�u(ũ); ũ

|~ru|
~n
�u

�
is positive.

Proof Using the Cauchy-Schwarz inequality, we have
�����
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�u

1

|~ru| ũ d�u
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�����
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�u
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.
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The lemma is then deduced by

�
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Remark 2 Using the Cauchy-Schwarz inequality, we have

|�u|2 =
⇣Z

�u

p
fp
f

d�u

⌘
2 

Z

�u

f d�u

Z

�u

1

f
d�u

and we deduce ✓Z

�u

↵(|~r u|)|~ru| d�u

Z

�u

1

↵(|~r u|)|~ru| d�u

◆ 1
2

� |�u|. (32)

The particular case

↵(|~r u|) =
1

|~r u| , (33)

verifies the case of equality in (32). This means that this choice imposes fewer restrictions on
the data zu.

Theorem 1 If zu verifies (31), the term

Q�û(�) =

Z

�û

↵(|~r û|)
⇣�

zu � C
1

(⌦in
û )
�
2 � �zu � C

2

(⌦in
û )
�
2

⌘
� d�û.

is a stabilizing term of the model of the error ũ = u � û.

Proof We start with (25) and by using (30) which linearizes the correction term, and we have

1

2

Z

B
@tũ

2d~x = �
Z

B
~~� · ~r ũ · ~r ũ d~x +

Z

B
k(f(u) � f(û)) ũ d~x

�
⇣
d
�uQ�u(ũ);

ũ

|~ru|~n�u

⌘
+ O(kũk2).

We can conclude using Lemma 1. ⇤
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Figure 3: 1D object verifying Assumption 1

Example of a possible definition of zu in 1D As previously explained, we need some
assumptions on the definition of the object zu constructed from the observed front to avoid
consistency errors in the observation correction. Indeed, in the previous analysis, we suppose
that this object verifies Assumption 1. We present here the construction of such an object in
1D. We consider a case with one front and we construct an associated object as seen in Figure 3,
with z+u and z�u two constants such that z+u > z�u . The constant " is strictly positive and is
used in order to modify the wavelength of zu. In Figure 3, the wavelength hzu equals "|B \⌦in

u |.
We have

C̄
1

= C
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u ) = z+u � 1
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2

"

then
¯C1+ ¯C2

2
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2

, the front value of zu. Assumption 1 holds.

Then we can study the value of ~rzu(~x) · ~n in this particular case,

~rzu(~x) · ~n = �(zu)
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In order to simplify this equation we can choose z�u = �z+u and we have

�z0u(~x) =
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and
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û | +
1

|B \ ⌦in
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In the case (33), the condition (31) becomes
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� |�û|
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u |
⌘
/
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|B \ ⌦in

û |
⌘
.

This condition is very easy to verify. In practice the condition (31) given in Theorem 1 is not
restrictive.

2.4.4 Gradient projection method

We denote

J �û =
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⌦
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û

(zu � C
1
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û ))2d~x +
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and we want to di↵erentiate J �û using the shape derivative. Using Proposition 3, we obtain
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û )

Z

B\⌦in
û
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Furthermore by definition of C
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we directly have
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and then the shape derivative of J �û is given by
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Using the relation (28), we have
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Formally, we define

rJ �û = �̂(�û, ~x)↵(|~r u|)|~r u|
 

1

|~r û|
⇣�

zu � C
1

(⌦in

û )
�
2 � �zu � C

2

(⌦in

û )
�
2

⌘!
.

The term ↵ allows some flexibility in the choice of the identification norm. The observer model
(4) can be rewritten as

@tû = ~r · (~~� · ~r û) + kf(û) � �rJ �û

and we recognize a gradient projection method. This makes a link with image processing and
explain the choice of the discrepancy (5).

3 Parameter estimation

A very interesting aspect in data assimilation is the possibility to correct the uncertainties
on the state and to also identify some parameters. The estimation of the parameters is a real
issue. In this objective, we use the joint state and parameter strategy presented in [45] which
has been applied for the data assimilation of bio-mechanical models. The strategy has been
proposed to extend a possible Luenberger observer to a joint state and parameters estimation
by combining the Luenberger filter and an optimal filter reduced to the remaining parameter
space. Two di↵erent types of filter, one for the state and one for the parameters, are then used
i.e. 8

>>><

>>>:

˙̂u(t) = A(û, ✓, t) + Gu

�
D(z, û)

�

˙̂✓(t) = G✓

�
D(z, û)

�

û(0) = û
0

✓(0) = ✓
0

.

The uncertainties on the state space are handled with the Luenberger observer presented in
Section 2.2. In this work, the state correction term does not have the classical form Gu

�
D(z, û)

�

but a discrepancy defined in (5) can be extracted as explained in Section 2.4.4 and the joint
state and parameter estimation model reads

8
>>><

>>>:

˙̂u(t) = A(û, ✓, t) + OBSu(z, û)
˙̂✓(t) = G✓

�
D(z, û)

�

û(0) = x
0

✓̂(0) = ✓
0

A Reduced-order Unscented Kalman Filtering (RoUKF) [44] is used in order to handle the un-
certainties of the parameters. As previously explained, a Kalman-like method for the parameter
seems well-adapted due to the relatively small dimension of the parameters space.

4 Numerical simulations

4.1 Numerical methods

Algorithm for the state estimator This paragraph gives a space and time discretization
of the observer model

8
>>><

>>>:

@tû � ~r · (~~� · ~r û) = kf(û)

+��(û � c
th

)
⇣
��zu � C

1

(⌦in

û )
�
2

+
�
zu � C

2

(⌦in

û )
�
2

⌘
, B ⇥ (0, T ),

(~~� · ~r û) · ~n = 0, @B ⇥ (0, T ),
û(~x, 0) = û

0

(~x), B,

(34)
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Note that this corresponds to (4) with

↵(|~rû|) =
1

|~rû| .

We consider a space discretization – for example by finite di↵erence or by finite element –
denoted by Û = (Ûk)k. Let N 2 N⇤ be a given integer and consider a uniform partition
{tn, tn+1

}
0nN�1

with tn = nT/N = n�t of the time interval [0, T ]. We denote by Ûn =

(Ûk,n)k the approximation of Û obtained at time tn. For the sake of simplicity, we consider ~~�
constant in space and time. Denoting by Lp the Laplacian matrix, we define A✓ by A✓ = �Lp
with A✓ depending on the conductivity parameter (supposed here constant). And we denote by
F(·, ✓) the space discretization of kf(·). We consider an implicit discretization of the Laplacian
and an explicit discretization of the reaction term and the data terms, which leads to the
following prediction-correction time scheme

8
>>>>>>>><

>>>>>>>>:

Û�
n+1

� Û+

n

�t
= A✓Û�

n+1

+ F(Û+

n , ✓)

Û+

n+1

� Û�
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�t
= ��"(Û

�
n+1

� c
th

)


�
⇣
Zu
n+1

�
P

k H(Û�
k,n+1

� c
th

)Zu
k,n+1P

k H(Û�
k,n+1

� c
th

)

⌘
2

+
⇣
Zu
n+1

�
P

k

�
1 � H(Û�

k,n+1

� c
th

)
�
Zu
k,n+1P

k

�
1 � H(Û�

k,n+1

� c
th

)
�

⌘
2

�

(35)
where the discretization of the Dirac function �" is given as follows.

We introduce the real-valued continuous functions  by  (x) = 1

2

(1+cos(⇡x)) and a possible
discretization of the Dirac function in 1D is given by

�"(x) =

⇢
1

" (x" ) if |x|  ",
0 if |x| > "

,

with here " is a strictly positive constant. When considering the more general case

�̂(�û, ~x)↵(|~r û|),

the discretization of �̂(�, ~x) for a boundary � defined from a level set denoted here by � is
necessary. There is a di�culty in the discretization of �̂(�, ~x) in the case where the level set is
not a distance level set function, i.e. for example in our case because � = û � c

th

. Following
the discretization given in [19], the term " becomes a function and is defined by

"(~v, "
0

) =
|~v|

1

|~v| "0,

where |~v|
1

is the 1-norm of the vector ~v, |~v| the 2-norm, and "
0

a strictly positive constant. In
[19], the following approximation of �̂(�, ~x) is considered,

�"(|~r�|,"0)

⇣ �

|~r�|
⌘
= �"̄(�)|~r�|,

with "̄ = "
0

|~r�|
1

.
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Application of RoUKF to parameter identification For the sake of simplicity, the state
space is considered as finite dimensional. For the parameter identification, we use the RoUKF
filter which is a non-linear filter adapted from the linear Kalman filter [33]. The gain operator
of the Kalman filter is optimal in the sense of Bensoussan [5] and takes the following form

G✓ = PD|M,

where M is a metric on the observation space and P is called the covariance operator and
verifies a Ricatti equation. Approximate Kalman filters are developed in non-linear cases as
for example the Extended Kalman filter [52], the Unscented Kalman filter (UKF), [32] or the
Ensemble Kalman filter, [20]. The UKF is a discrete-time estimator based on sampling points
in the state space – called sigma points – whose role is to replace the tangent computations.
We introduce the so-called p unitary sampling points sp[i] and the p weights ↵i as

pX

i=1

↵isp[i] = 0 and
pX

i=1

↵isp[i] · (sp[i])T = Id.

From a stochastic point of view, these sampling points can be generated around the estimated
values based on the covariance estimation as explained for example in [31]. The optimal filters
have an important drawback, namely the computation of the covariance P which is a full matrix.
A classical strategy consists in using reduced-order for the covariance operators. For example,
we consider the following decomposition for P,

8t, P(t) = L(t)U�1(t)L(t)T

with U an invertible matrix of small size r and L an extension operator. This strategy leads to
the Reduced-order UKF (RoUKF). We denote by D↵, the diagonal matrix of the p weights ↵i.
We denote by sp[⇤] the matrix concatenating the sp[i] vectors side by side, and we do similarly for
other vectors. The above idea has been applied in [45] for parameter identification by reducing
the uncertainty space to the parameter space. This strategy is used and leads to the following
prediction correction scheme used in our simulations.
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Joint state (Luenberger observer) - parameters (RoUKF) scheme

1. Sampling 8
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5. RoUKF correction8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Lu
n+1
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Û+

n+1

= Û+�
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4.2 Numerical Results in cardiac electrophysiology

4.2.1 Cardiac electrophysiology

As previously explained, this work can directly be used in cardiac electrophysiology. Cardiac
electrophysiology describes the electrical phenomena which occur in the cardiac tissue and which
trigger the cardiac mechanical contraction. Due to the frequent electrical pathologies – such as
for example atrial fibrillation or ventricular bradycardia or tachycardia – which directly a↵ect
the origin of the heart contraction, the study of cardiac electrical mechanisms is very impor-
tant. Over the past decades, cardiac electrophysiological modeling has made huge progresses
and very realistic modeling and simulations are presented in the literature [13, 24, 12, 54, 26, 23],
in particular in pathological cases [30, 6, 51]. Various electrophysiological models – based on
a reaction-di↵usion model – exist as for example the bidomain model [57, 50] and its first ap-
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proximation the monodomain model [12, 51]. In order to obtain simulations adapted to each
patient, we want to assimilate some data corresponding to the depolarization maps. These data
are the isochrone maps of the transmembrane potential, called electrocardiographic imaging
(ECGI). An electrode vest gives the potential at various points on the body surface and an
inverse method allows to reconstruct the depolarization maps, see for example [48]. The bido-
main equation can be written – in terms of ue, the extracellular potential and Vm = ui � ue,
the transmembrane potential with ui, the intracellular potential – as

8
>><

>>:

Am

⇣
Cm@tVm + Iion(Vm, · · · )

⌘
� div

�~~�i · ~rVm

�

= div
�~~�i · ~rue

�
+ AmIapp, in B ⇥ (0, T ),

div
⇣�~~�i + ~~�e

� · ~rue

⌘
= � div

�~~�i · ~rVm

�
, in B ⇥ (0, T ),

(36)

where B denotes the domain of interest, and with appropriate boundary conditions

( �~~�i · ~rue

� · ~n = ��~~�i · ~rVm

� · ~n, in @B ⇥ (0, T ),�~~�e · ~rue

� · ~n = 0, in @B ⇥ (0, T ),
(37)

where Am is a positive constant denoting the ratio of membrane area per unit volume, Cm the
membrane capacitance per unit surface and Iapp a given applied stimulus current. The term
Iion(Vm, · · · ) – called the reaction term – represents the ionic current across the membrane. It
models the transmembrane potential evolution in the cell over time. Initially, the cell is at the
resting potential around �80mV (0mV in rescaling cases). Due to a stimulus, the cell becomes
depolarized very quickly and the value of the transmembrane potential is around 20mV (1mV
in rescaling cases). During the depolarization phase – called the plateau phase – the mechanical
contraction of the cell occurs. Then the repolarization of the cell begins. During this phase, the
cell is in refractory phase, This means that a new stimulus cannot trigger a new depolarization.
The reaction term Iion(Vm, · · · ) governs these di↵erent states of the cell. In order to describe
this complex process which occurs across the membrane, one (or more) ordinary di↵erential
equation(s) can be coupled with the previous bidomain equations. There is a large variety of
ionic models which represent the action potential. The extra-cellular potential ue is defined up
to a constant. In order to have a well-posed problem, the condition

R
B ue = 0 is added. The

existence and uniqueness of the bidomain model has been studied for di↵erent ionic models in
the literature, see for example [13, 4, 7, 58]. A particular case of the bidomain model is the
monodomain model, see [47],

(
Am

⇣
Cm@tVm + Iion(Vm, w)

⌘
� div

�~~�m · ~rVm

�
= AmIapp, in B ⇥ (0, T ),

�~~�m · ~rVm

� · ~n = 0, in @B ⇥ (0, T ).
(38)

We recall that we couple these monodomain or bidomain models with ionic models. There
is a di�culty in 3D cases that we do not consider in this work. In fact, the ECGI allows to
reconstruct the depolarization maps at the epicardium (outer surface) and sometimes at the
endocardium (inner surface) but not through the thickness. In this part, only 1D and 2D cases
are considered.

In a first section, we validate the Luenberger observer (4) in an electrophysiological frame-
work. We start with simple 1D cases with the monodomain model coupled with the Mitchell-
Schae↵er model [42]. Then we give a realistic medical case where a surface-based bidomain
model specifically adapted to the atria – the upper chambers of the heart – able to take into
account strong anisotropy in the atrial thickness, is used for the simulations. This model has
been proposed and mathematically justified in [10] and simulations in realistic cases have been
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Figure 4: Solution of the observer model (in green) compared to the target solution (in dashed
purple). Only an initial condition error is considered.

given in [14]. This surface-based model is coupled with the atrial physiological ionic model
called the Courtemanche-Ramirez-Nattel model [17]. As we will see, the Luenberger state ob-
server also gives very e�cient results in this realistic situation. We also provide a simulation
which represents a complex phenomenon, namely, spiral waves. The surface-based model cou-
pled with the Mitchell-Scha↵er is used. The excellent results confirm an excellent robustness of
the observer model.

In a second section, we give simulations – always in 1D – which validate the joint state-
parameter strategy previously introduced. We consider in this part the monodomain model
coupled with the Mitchell-Schae↵er model. The parameter that we estimate is the conductivity
parameter.

The 2D simulations are performed with the finite element library FELiScE 1, developed at
Inria by REO and M⌅DISIM teams.

4.2.2 Numerical simulations of the state observer

Simulations in 1D We recall that the monodomain model (38) coupled with the Mitchell-
Schae↵er model is considered in this section. The parameters are given in Table 1 and we
consider an isotropic and spacewise-constant di↵usion tensor

~~�m = �m
~~Id,

with �m, the conductivity constant. The same assumptions and parameters are used for all
1D cases, except in the cases when otherwise specified. The initial conditions are w = 1 and
Vm = 0mV. The stimulus is given by the term Iapp. The observations are generated with the
solution of the target model represented in the figures in dashed purple. When we assume an
initial condition error, this means that the stimulus domain of the observer domain is di↵erent
from the stimulus domain of the target model. The threshold constant equals 0.4mV. The

1
http://felisce.gforge.inria.fr
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Figure 5: Solution of the observer model (in green) compared to the target solution (in dashed
purple). Only an initial condition error is considered.

�m Am Cm ⌧in ⌧out
(S.cm�1) (cm�1) (mF.cm�2) (cm2.mA�1) (cm2.mA�1)

2.0 10�3 1 1 0.6 6

⌧open ⌧close Vmin Vmax Vgate

(ms) (ms) (mV) (mV) (mV)

120 300 0 1 0.13

Table 1: Model parameters

solution of the observer model is given in green. Here, we suppose that the parameters of the
model are known and we only consider an error in the initial condition. The first simulation is
given in Figure 4. The solution of the observer model adapts very well to the observations of
the target model. Figure 5 shows a case where a large delay is caught.

Validation of the state estimator in a realistic case In this section, the state estimator
is applied to a more realistic case. We consider a simulation of cardiac electrophysiology of
the two atria, the upper chambers of the heart. The specificity of the atria is that they have
very thin walls and a surface model can be considered. We use a surface-based bidomain model
[10] – derived from the classical bidomain model (36) – able to take into account the strong
anisotropy of the cardiac fibers in the atrial thickness. Indeed, the fibers vary through the wall
of the atria and a linear variation of the fibers of a total angle 2✓ between the endocardium
(inner surface) and the epicardium (outer surface) can be considered. This implies that the
di↵usion tensors have the following form

~~� i,e = �ti,e
~~I + (�li,e � �ti,e)

⇥
I
0

(✓)~⌧
0

⌦ ~⌧
0

+ J
0

(✓)~⌧?
0

⌦ ~⌧?
0

⇤
, (39)

where
~~I denotes the identity tensor in the tangential plane, ~⌧

0

is a unit vector parallel to the local
fiber direction on the atria midsurface, and ~⌧?

0

such that (~⌧
0

,~⌧?
0

) gives an orthonormal basis of
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Figure 6: Right atrium view. In the middle, the target solution, on the right, the solution with
a wrong initial condition without correction and on the left, the solution of the state observer
model.
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Figure 7: Left atrium view. In the middle, the target solution, on the right, the solution with
a wrong initial condition without correction and on the left, the solution of the state observer
model.
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Figure 8: Atrial simulation – Point-wise di↵erence between the observer model and the target
model (to be compared with the typical variation range of the transmembrane potential, i.e.
about 100 mV)

T(ms) 7.5 15 22.5 30 37.5 52.5 67.5 82.5
| · |l2 (obs) 8.14 10�2 1.15 10�1 9.47 10�2 6.11 10�2 1.66 10�2 1.41 10�2 1.69 10�2 1.59 10�2

| · |l2 8.16 10�2 1.34 10�1 1.75 10�1 2.16 10�1 2.31 10�1 2.34 10�1 2.65 10�1 2.19 10�1

Table 2: Atrial simulation – Error norm | · |l2 between the target solution and the observer
model (obs) on the second line and the model without correction on the third line.

the tangential plane. An asymptotic analysis which validates this model is given in [10]. The
ionic model used is the Courtemanche-Ramirez-Nattel model [17]. The position of the fibers,
the parameters and the slow and fast conduction bundles considered are given in [15]. We only
consider an error in the initial condition. This means that the sinus node, the natural pacemaker
of the heart, is not well located. Figures 6 and 7 give three points of view at di↵erent times
of the three following simulations: the target simulation in the middle, the simulation with the
wrong initial condition on the right, and the simulation of the state observer on the left. The
first remark that we can make is that even with a very small error in the initial condition the
results obtained without correction (on the right) are very di↵erent from the target solution (in
the middle). This shows the importance of a very e�cient state observer. The second remark
concerns the very good results of the state observer. As shown in Figure 6, at t= 40ms, the
state observer is very close to the target solution for the right atria part despite a delay in the
vertical direction and an advance in the horizontal direction at the origin. For the left part, we
also obtain very quickly a very good approximation as shown in Figure 7.

We also report for this case in Table 2 the l2 relative errors between the target model and
the observer model (second line) i.e.

1

Vmax � Vmin

⇣ 1

]Nodes

X

nodes

|uobs � utar|2
⌘ 1

2
,

where Vmax = 15mV and Vmin = �80mV. Note that Vmax � Vmin is a typical normalizing
constant of the potential. We compare this with the l2 di↵erence between the target model
and the model without correction (Table 2 third line). The l2 error values between the target
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Figure 9: Solution of the observer model (in green) compared to the target solution (in dashed
purple).

and the observer models are very small – inferior to 2% from t = 35ms – compared to the
error between the target and the model – of the order of 20% – and this shows the e�ciency
of the observer. We also point out that these errors are quite stable over time. Figure 8 plots
the di↵erence uobs � utar. At the beginning (first four times at the top), the absolute value of
the maximum di↵erence is around 90mV and we can see the early and the late areas. At the
bottom of Figure 8, the absolute value of the di↵erence is around 20mV. As seen in Figure 6, the
solution of the observer model is very close to the target solution and the value of 20mV – which
can be judged significant – is due to the discretization of the Dirac function. Indeed, as seen
in Section 4.1, the approximate Dirac function is non-zero in an interval of the order of " and
this implies some errors in the observer model discretized. This is confirmed in Figure 8 by the
narrow concentration of errors around the front. This can be improved by directly considering a
Garlekin discretization of the surface term using an adaptive mesh which follows and determines
the front [8].

Spiral waves A limitation occurs in the observer when the initial condition is not su�cient
to trigger an actual propagation. This may be of concern for complex patterns such as spiral
waves. We present a method which can be followed. First, we present this method in a 1D
case. The idea is to play on the constant c

th

, namely, the value above which the potential
becomes depolarized. In Figure 9, we take a large interval of initial condition but a very weak
stimulus. without correction, the solution returns to zero but with observations and a small
value of c

th

= 0.01mV, a depolarization is triggered as we will see in the figure. At t = 1ms, we
change the value of c

th

to a reasonable value equal to 0.4mV. The figure shows all the potential
of this method.

This method is motivated by so-called spiral waves, a fascinating phenomenon in cardiac
electrophysiology. The spiral waves are often considered as responsible for the atrial or ventric-
ular fibrillation, [34]. We consider a surface mesh of an half cylinder. We use the surface model
coupled with the Mitchell-Schae↵er model, the parameters and the direction of fibers given in
[10]. The results are presented in Figure 10. The procedure which allows to initiate spiral waves
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Figure 10: Spiral wave on a half cylinder. On the right, the target solution, and on the left, the
solution of the state observer model.

is presented for example in [24]. A first wave in the horizontal direction is generated. Once
the wave front has formed, it starts traveling along the cylinder (see the top line of Figure 10).
A second region is depolarized at t = 390ms (see the target solution (right) at t = 390ms in
Figure 10), just after the end of the repolarization. This depolarization signal rotates around
the region that has just been repolarized and triggers a spiral wave. This new stimulus repre-
sents a pathological area which triggers a wrong signal which implies the apparition of a spiral
wave. As it models a sick region of the heart, this region is unknown. That is why, for the
observer model, we depolarize a very big region with a very small stimulus using the method
presented just before in a 1D case. We play with the threshold, initially equal to �78mV, in
order to create the spiral wave for the observer model. As seen in Figure 10, the spiral wave is
initiated for the observer model and at t = 450ms, we change the value of c

th

to a reasonable
value equal to �67mV. The results obtained are excellent even if there is a small limitation for
the observer. Indeed, Figure 10 shows that it is di�cult for the observer to represent a smooth
front (see the interior of the spiral wave).

A medical procedure called radio-frequency ablation consists in treating cardiac arrythmias
(for example atrial fibrillation) by blocking these some abnormal conduction pathways [25].
Our personalized model may be used to optimize the procedure by detecting the position of
the sick region. As a perspective here we could imagine to reconstruct the initial condition
after choosing an appropriate parametrization of the initial condition and extending the joint
state-parameter estimation to this case.
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Figure 11: Left: Evolution of the estimated parameter �m = 0.007 S.cm�1 (top) and �m =
0.0007 S.cm�1 (bottom) toward the target parameter �m = 0.002 S.cm�1. Right: Solution of
the observer model with/without correction in green/blue compared to the target solution (in
dashed purple). Only an error in conductivity parameter is considered.

4.2.3 Numerical simulations of the joint state and parameter estimator (only 1D
cases)

Just for the sake of simplicity, we only consider 1D cases in this second part. The objective
is to show that a joint state and parameter strategy – based on the Luenberger observer coupled
with a RoUKF – allows to obtain the estimation of some parameters of the model.

Parameter estimator In this first case, we consider that the initial condition error is zero but
we have an error in the conductivity parameter. Hence we only apply the parameter observer.
We consider two di↵erent initial guesses for the conductivity parameter: �m = 0.007 S.cm�1

and �m = 0.0007 S.cm�1 instead of �m = 0.002 S.cm�1. On the left of Figure 11 we plot the
evolution of the conductivity parameters during the simulation runs of the data assimilation
method, with the initial wrong parameter �m = 0.007 S.cm�1 (resp. �m = 0.0007 S.cm�1) at
the top (resp. the bottom). We see that the mean value of the parameter (the green solid
line) and the standard deviations of the parameter (the green dashed lines) converge in the two
cases towards the correct value of the target model (the purple dashed line). As in the previous
cases, the right of Figure 11 gives for the two cases the potential of the target model in dashed
purple, and the solution of the observer model in green. In blue we represent the solution with
the wrong conductivity parameters �m = 0.007 S.cm�1 (top) and �m = 0.0007 S.cm�1 (bottom)
but without correction and this last curve shows that the parameter estimator is very e�cient
to retrieve the target parameter even from very inaccurate initial guesses.

Joint state and parameter estimator This second case is more complex. Indeed, we
consider an initial condition error coupled with a wrong conductivity parameter equal to
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Figure 12: Left: Evolution of the estimated parameter �m = 0.004 S.cm�1 toward the target
parameter �m = 0.002 S.cm�1 with only a parameter estimation (top) and a joint and state esti-
mation (bottom). Right: Solution of the observer model with/without correction in green/blue
compared to the target solution (in dashed purple). A small initial condition error is considered.

0.004 S.cm�1 instead of the target conductivity value 0.002 S.cm�1. In a first simulation, we
only try to perform a parameter identification without any state estimation in order to show the
importance of the state observer. We consider a case where the initial condition error is very
small, see Figure 12 (right-top) and a case with a larger initial condition error, see Figure 13
(right-top). In Figure 12 (left-top) and (resp. Figure 13 (left-top)), we plot the evolution of
the parameter. With the small initial condition error, the mean value of the parameter (green
solid line) converges to the target parameter but with a larger initial condition error, we do not
have convergence toward the target parameter. In a second simulation, we use a first strategy
of a joint state and parameter estimation, i.e. we couple the parameter estimator with the
state estimator. The results are presented in Figure 12 (bottom) and Figure 13 (middle). In
both cases, we obtain better results but in the case where the initial condition error is large, we
are not able to estimate the target parameter. Then we use a second strategy. During a first
time interval, we only use the state estimator in order to decrease the initial condition error
which prevents the convergence of the parameter estimator. When the state estimation error is
considered as su�ciently small, the parameter estimator is also applied. As shown in Figure 13
(bottom), we obtain a convergence toward the right parameter value with this method.
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Figure 13: Left: Evolution of the estimated parameter �m = 0.004 S.cm�1 with only a pa-
rameter estimation (top), a first joint and state estimation (middle) and a second joint and
state estimation (bottom). Right: Solution of the observer model with/without correction in
green/blue compared to the target solution (in dashed purple). A larger initial condition error
is considered.
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A Shape derivative theory

The first part of this appendix is an introduction – very much inspired from [18] and the
appendix of [27] – on shape derivatives. In a second part, the proof of Proposition 1 is given.

A.1 Introduction

Let � the boundary of an open and bounded space ⌦in 2 RN and we denote by ~n
�

, the
exterior normal vector to ⌦in. We suppose that ~ is a given vector field with compact support
in RN . We study the following problem

⇢
~y0(t) = ~ (~y(t)), 0  t  T
~y(0) = ~x,

(40)

with ~x 2 RN given. We define a mapping Tt : RN ! RN with Tt(~x) = ~y(t) as the flow with
respect to ~ . We then define

�t = Tt(�) and ⌦in = Tt(⌦
in).

Remark 3 If ~ 2 Ck
0

(RN ,RN ) then Tt 2 Ck(RN ,RN ), see [18].

We want to calculate the derivatives for functionals of the following form

J⌦

in
=

Z

⌦

in
f(⌦in, ~x) d~x and J� =

Z

�

f(�, ~x) d�.

We start with the case where f is independent of ⌦in (and �) respectively and we have the
Eulerian derivative of a domain integral.

Proposition 2 Suppose f 2 W 1,1
loc (RN ), then the functional

J⌦

in
=

Z

⌦

in
fd~x

is shape di↵erentiable for perturbation vector fields ~ 2 C1

0

(RN ;RN ). The Eulerian derivative

of J⌦

in
is given by

�
dJ⌦

in
; ~ 
�

=

Z

⌦

in
div(f ~ )d~x =

Z

�

f ~ · ~n
�

d�,

if � is of class C1.
Suppose f 2 W 2,1

loc (RN ) and � is a contour of class C1, then the functional

J� =

Z

�

fd�

is shape di↵erentiable for perturbation vector fields ~ 2 C1

0

(RN ;RN ) with

�
dJ�; ~ 

�
=

Z

�

�
@~n�

f + f
�
~ · ~n

�

d�,

where  = ~r~n
�

is the curvature of �.

We are now interested in the general case, i.e. when f depends on ⌦in and �. We define
two di↵erent derivatives.
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Definition 1 Suppose that f(�) belongs to an appropriate Banach space B(�) of functions on
� and let ~ 2 Ck

0

(RN ,RN ). We assume that f(�t) � Tt 2 B(�t), 8t 2]0, T [. If the limit

ḟ(�; ~ ) = lim
t!0

1

t

�
f(�t) � Tt � f(�)

�

exists in the strong (or weak) topology on B(�), then ḟ(�; ~ ) is called the strong (or weak)
material derivative of f at � in direction ~ .

We define the analog definition for f(⌦in).

Definition 2 We use the same hypothesis. If the limit

ḟ(⌦in; ~ ) = lim
t!0

1

t

�
f(⌦in

t ) � Tt � f(⌦in)
�

exists in the strong (or weak) topology on B(⌦in), then ḟ(⌦in; ~ ) is called the strong (or weak)
material derivative of f at ⌦in in direction ~ .

Remark 4 In the case where the function f : ⌦in ! R is independent of ⌦in, we have

lim
t!0

1

t

�
f(⌦in

t ) � Tt � f(⌦in)
�

= lim
t!0

1

t

�
f � Tt � f

�
= ~rf · T 0

0

= ~rf · ~ .

For this type of functions – which do not depend on ⌦in – we wan to define a derivative with
respect to ⌦in which must be zero. This is the goal of the following definition.

Definition 3 We suppose that the weak material derivative of f and the term ~rf · ~ exist in
B(⌦in). We then define

f 0(⌦in; ~ ) = ḟ(⌦in; ~ ) � ~rf · ~ 
and this new derivative is called the domain shape derivative of f at ⌦in in direction ~ .

Remark 5 We have now
f 0(⌦in; ~ ) = f 0(~ ) = 0,

when f is independent of ⌦in.

For boundary functions f(�) : � 7! R, the expression ~rf · ~ does not exist. In this case, we
define the boundary shape derivative as

f 0(�; ~ ) = ḟ(�; ~ ) � ~r�f · ~ ,

with
~r�f = ~rf̄

���
�

� @~n�
f̄~n

�

,

where f̄ is a smooth extension of f . In the case where f(�) = f(⌦in)
��
�

, we have a relation
between the boundary shape derivative and the domain shape derivative given by

f 0(�; ~ ) =
�
ḟ(⌦in; ~ ) � ~rf · ~ + @~n�

f~n
�

· ~ �
���
�

=
�
f 0(⌦in; ~ ) + @~n�

f~n
�

· ~ �
���
�

Using this definition of the shape derivative of f , we are able to calculate the Eulerian derivatives
for the shape functionals which concern us.
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Proposition 3 We suppose that the weak L1-material derivation ḟ and the shape derivation
f 0 2 L1 of f exist. Then

J⌦

in
=

Z

⌦

in
f(⌦in, ~x) d~x

is shape di↵erentiable and we have

�
dJ⌦

in
; ~ 
�

=

Z

⌦

in
f 0(⌦in; ~ )d~x +

Z

�

f ~ · ~n
�

d�.

For boundary functions f(�) we have

�
dJ�; ~ 

�
=

Z

�

⇣
f 0(�; ~ ) + f ~ · ~n

�

⌘
d�,

for

J� =

Z

�

f(�, ~x) d�.

If f(�) = f(⌦in)
��
�

, we obtain

�
dJ�; ~ 

�
=

Z

�

⇣
f 0(⌦in; ~ )

���
�

+
�
@~n�

f + f
�
~ · ~n

�

⌘
d�.

In our case, it is more complicated because f also depends on the variable t. Indeed we want
to di↵erentiate Z

�t

f(t, �t, ~x) d�t.

Adapting the proof we can generalize the previous proposition.

Proposition 4 We have

�
dJ�; ~ 

�
=

Z

�

⇣
f 0(�; ~ ) + f ~ · ~n

�

⌘
d� for J� =

Z

�t

f(t, �t, ~x) d�t.

If f(�) = f(⌦in)
��
�

, we obtain

�
dJ�; ~ 

�
=

Z

�

⇣
f 0(⌦in; ~ )

���
�

+
�
@~n�

f + f
�
~ · ~n

�

⌘
d�.

Remark 6 All this theory assumes a closed shape because we need to define the boundary � of
the space ⌦in. Furthermore the boundary terms disappear thanks to the Green formula.

A.2 Proof of Proposition 1

We want to prove Proposition 1 which gives the shape derivative of

Q�û(�) =

Z

�û

↵(|~r û|)
⇣�

zu � C
1

(⌦in

û )
�
2 � �zu � C

2

(⌦in

û )
�
2

⌘
� d�û.

We assume that �û, ⌦in

û and all the terms of Q�û are as regular as needed for the use of
the previous propositions. We want to use Proposition 4. We start with the boundary shape
derivative of each term appearing in Q�û . In a second stage, we give the space derivative @~n�

f
for each term and in a third paragraph, we gather the results.

245



Boundary shape derivative The subscript (·)0 denotes in this part the boundary shape
derivative. First, we want to compute the following derivative

✓
↵(|~r û|)

⇣�
zu � C

1

(⌦in

û )
�
2 � �zu � C

2

(⌦in

û )
�
2

⌘◆0

=
⇣
↵(|~r û|)

⌘0⇣�
zu � C

1

(⌦in

û )
�
2 � �zu � C

2

(⌦in

û )
�
2

⌘

+ ↵(|~r û|)
⇣�

zu � C
1

(⌦in

û )
�
2 � �zu � C

2

(⌦in

û )
�
2

⌘0
.

This term can be seen as of the form f(t, �û, ~x). The variable t only appears in the term ↵(|~r û|)
because of the function û. The first step is to compute

⇣
↵(|~r û|)

⌘0
. We define the normal flow

by

~ 
�û

=
 û�cth

|~rû| ~n�û
,

with ût = û + t û�cth . Using the previous definition and Proposition 4,
⇣
↵(|~r û|)

⌘0
can be

written as ⇣
↵(|~r û|)

⌘0
= @t|~x ↵(|~r û|) + ~r↵(|~r û|) · ~ 

�û
,

with

@t|~x ↵(|~r û|) = lim
t!0

1

t

�
↵(|~r(û + t û�cth)|) � ↵(|~r û|)�

= ↵0(|~r û|)
~r û

|~r û| · ~r û�cth

= �↵0(|~r û|)@~n�
 û�cth

using the Fréchet derivative of ~x 7! |~r û|. In order to finish this computation, we study the
following term

⇣�
zu(~x) � C

1

(⌦in

û )
�
2 � �zu(~x) � C

2

(⌦in

û )
�
2

⌘0

= �2C 0
1

(⌦in

û )
�
zu(~x) � C

1

(⌦in

û )
�

+ 2C 0
2

(⌦in

û )
�
zu(~x) � C

2

(⌦in

û )
�
.

We recall that C
1

and C
2

are defined by

C
1

(⌦in

û ) =

R
⌦

in
û

zu(~x)d~x
R
⌦

in
û

d~x

and using Proposition 3, the derivative of C
1

is given by

C 0
1

(⌦in

û ) =

⇣R
⌦

in
û

zu(~x)d~x
⌘0 ⇥ R

⌦

in
û

d~x �
⇣R

⌦

in
û

d~x
⌘0 ⇥ R

⌦

in
û

zu(~x)d~x

(
R
⌦

in
û

d~x)2
.

=

R
�û

zu(~x) ~ 
�û

· ~n
�û

d�ûR
⌦

in
û

d~x
�
R
�û

~ 
�û

· ~n
�û

d�û ⇥ C
1

(⌦in

û )
R
⌦

in
û

d~x

=
1

|⌦in

û |
Z

�û

(zu(~x) � C
1

(⌦in

û )) ~ 
�û

· ~n
�û

d�û.
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Using the same method, the derivative of C
2

is given by

C 0
2

(⌦in

û ) = � 1

|B \ ⌦in

û |

Z

�û

(zu(~x) � C
2

(⌦in

û )) ~ 
�û

· ~n
�û

d�û.

Space derivative In order to obtain the shape derivative of Q�û , we have to compute

~r
✓
↵(|~r û|)

⇣�
zu(~x) � C

1

(⌦in

û )
�
2 � �zu(~x) � C

2

(⌦in

û )
�
2

⌘◆
· ~n

�û

= ~r↵(|~r û|) · ~n
�û

⇣�
zu(~x) � C

1

(⌦in

û )
�
2 � �zu(~x) � C

2

(⌦in

û )
�
2

⌘

+ ↵(|~r û|) ~r
⇣�

zu(~x) � C
1

(⌦in

û )
�
2 � �zu(~x) � C

2

(⌦in

û )
�
2

⌘
· ~n

�û
.

Using the fact that |~r û| = �@~n�û
û(~x), we find

~r↵(|~r û|) · ~n
�û

= ↵0(|~r û|)~r�|~r û|� · ~n
�û

= ↵0(|~r û|)~r
✓

�@~n�û
û(~x)

◆
· ~n

�û

= �↵0(|~r û|)@2~n�û
û(~x).

and we finally obtain

~r
⇣�

zu(~x) � C
1

(⌦in

û )
�
2 � �zu(~x) � C

2

(⌦in

û )
�
2

⌘
· ~n

�û

= 2~rzu(~x) · ~n
�û

⇣
zu(~x) � C

1

(⌦in

û ) � �zu(~x) � C
2

(⌦in

û )
�⌘

= 2~rzu(~x) · ~n
�û

�
C
2

(⌦in

û ) � C
1

(⌦in

û )
�
.

By gathering the previous result, we obtain Proposition 1.
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B Level Set Formulation

In this appendix, we want to present a second method for the di↵erentiation of the shape
estimator using the level set formulation, but in this case the calculus is done formally. We
recall that

Q�û(�) =

Z

B
�(û � c

th

)|~r û|↵(|~r û|)
⇣�

zu � C
1

(û � c
th

)
�
2 � �zu � C

2

(û � c
th

)
�
2

⌘
� d~x.

We want to di↵erentiate a functional of the following form

Q�û =

Z

B
�(û � c

th

)|~r û|f(~x, û(~x), û).

We have

⇣
dQ�û ;  

⌘
=

Z

B
�0(û � c

th

)|~r û|f(~x, û(~x), û) d~x +

Z

B
�(û � c

th

)|~r û| �@ûf(~x, û(~x), û),  
�
d~x

+

Z

B
�(û � c

th

)
~r û

|~r û| · ~r f(~x, û(~x), û) d~x

=

Z

B
�0(û � c

th

)|~r û|f(~x, û(~x), û) d~x +

Z

B
�(û � c

th

)|~r û| �@ûf(~x, û(~x), û),  
�
d~x

�
Z

B
~r ·
✓
�(û � c

th

)f(~x, û(~x), û)
~r û

|~r û|

◆
 d~x

=

Z

B
�0(û � c

th

)|~r û|f(~x, û(~x), û) d~x +

Z

B
�(û � c

th

)|~r û| �@ûf(~x, û(~x), û),  
�
d~x

�
Z

B
�(û � c

th

)f(~x, û(~x), û)~r ·
~r û

|~r û|  d~x �
Z

B
�(û � c

th

)~rf(~x, û(~x), û) ·
~r û

|~r û|  d~x

�
Z

B
f(~x, û(~x), û)~r�(û � c

th

) ·
~r û

|~r û|  d~x

=

Z

B
�0(û � c

th

)|~r û|f(~x, û(~x), û) d~x +

Z

B
�(û � c

th

)|~r û| �@ûf(~x, û(~x), û),  
�
d~x

�
Z

B
�(û � c

th

)f(~x, û(~x), û)~r ·
~r û

|~r û|  d~x �
Z

B
�(û � c

th

)~rf(~x, û(~x), û) ·
~r û

|~r û|  d~x

�
Z

B
f(~x, û(~x), û)�0(û � c

th

)~r û ·
~r û

|~r û|  d~x

=

Z

B
�(û � c

th

)|~r û| �@ûf(~x, û(~x), û),  
�
d~x +

Z

B
�(û � c

th

)f(~x, û(~x), û) d~x

+

Z

B
�(û � c

th

)~rf(~x, û(~x), û) · ~n
�

 d~x,

where  is the curvature defined by

 = �~r ·
~r û

|~r û| .
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Remark 7 We do not take into account the boundary term @B
Z

@B

✓
�(û � cth)f(~x, û(~x), û)

1

|~r û|

◆
~r û · ~n d~x

which appears when using the divergence formula in the previous calculus. For example, we can
use this result

~r û · ~n = 0, in @B.

In the shape derivative theory, this term does not appear because the contour is supposed to be
closed and does not intersect the boundary of the domain.

In our case

f(~x, û(~x), û) = ↵(|~r û|)
⇣�

zu � C
1

(û � c
th

)
�
2 � �zu � C

2

(û � c
th

)
�
2

⌘
�.

Then the first term becomes
Z

B
�(û � c

th

)|~r û|
✓
@û
⇣
↵(|~r û|)

⇣�
zu � C

1

(û � c
th

)
�
2 � �zu � C

2

(û � c
th

)
�
2

⌘⌘
;  û�cth

◆
�

=

Z

B
�(û � c

th

)|~r û|↵0(|~r û|)
~r û

|~r û| · ~r û�cth

⇣�
zu � C

1

(û � c
th

)
�
2 � �zu � C

2

(û � c
th

)
�
2

⌘
�

� 2
⇣
@ûC1

(û � c
th

);  û�cth

⌘Z

B
�(û � c

th

)|~r û|↵(|~r û|)�zu � C
1

(û � c
th

)
�
� d~x

+ 2
⇣
@ûC2

(û � c
th

);  û�cth

⌘Z

B
�(û � c

th

)|~r û|↵(|~r û|)�zu � C
2

(û � c
th

)
�
� d~x

= �
Z

B
�(û � c

th

)|~r û|↵0(|~r û|)
⇣�

zu � C
1

(û � c
th

)
�
2 � �zu � C

2

(û � c
th

)
�
2

⌘
�@~n�û

 û�cth d~x

� 2
⇣
@ûC1

(û � c
th

);  û�cth

⌘Z

B
�(û � c

th

)|~r û|↵(|~r û|)�zu � C
1

(û � c
th

)
�
� d~x

+ 2
⇣
@ûC2

(û � c
th

);  û�cth

⌘Z

B
�(û � c

th

)|~r û|↵(|~r û|)�zu � C
2

(û � c
th

)
�
� d~x

= �
Z

�û

↵0(|~r û|)
⇣�

zu � C
1

(û � c
th

)
�
2 � �zu � C

2

(û � c
th

)
�
2

⌘
�@~n�û

 û�cth d�û

� 2
⇣
@ûC1

(û � c
th

);  û�cth

⌘Z

�û

↵(|~r û|)�zu � C
1

(û � c
th

)
�
� d�û

+ 2
⇣
@ûC2

(û � c
th

);  û�cth

⌘Z

�û

↵(|~r û|)�zu � C
2

(û � c
th

)
�
� d�û.

We recall that C
1

and C
2

are defined by

C
1

(û � c
th

) =

R
B zuH(û � c

th

)d~xR
B H(û � c

th

)d~x
and C

2

(û � c
th

) =

R
B zu(1 � H(û � c

th

))d~xR
B(1 � H(û � c

th

))d~x
.

We then have
⇣
@ûC1

(û � c
th

);  û�cth

⌘
=

R
B zu�(û � c

th

) û�cthd~x
R
B H(û � c

th

)d~x
�R

B H(û � c
th

)d~x
�
2

�
R
B zuH(û � c

th

)d~x
R
B �(û � c

th

) û�cthd~x�R
B H(û � c

th

)d~x
�
2

=
1

|⌦in

û |
Z

�û

1

|~r û|
�
zu � C

1

(û � c
th

)
�
 û�cthd�û.
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and also

⇣
@ûC2

(û � c
th

);  û�cth

⌘
= � 1

|B \ ⌦in

û |

Z

�û

1

|~r û|
�
zu � C

2

(û � c
th

)
�
 û�cthd�û.

We finally have for the first term

Z

B
�(û � c

th

)|~r û|@û
✓
↵(|~r û|)

⇣�
zu � C

1

(û � c
th

)
�
2 � �zu � C

2

(û � c
th

)
�
2

⌘◆
� d~x

= �
Z

�û

↵0(|~r û|)
⇣�

zu � C
1

(û � c
th

)
�
2 � �zu � C

2

(û � c
th

)
�
2

⌘
�@~n�û

 û�cth d�û

� 2
1

|⌦in

û |
Z

�û

1

|~r û|
�
zu � C

1

(û � c
th

)
�
 û�cthd�û

Z

�û

↵(|~r û|)�zu � C
1

(û � c
th

)
�
� d�û

� 2
1

|B \ ⌦in

û |

Z

�û

1

|~r û|
�
zu � C

2

(û � c
th

)
�
 û�cthd�û

Z

�û

↵(|~r û|)�zu � C
2

(û � c
th

)
�
� d�û.

We continue with the third term

Z

B
�(û � c

th

)~r
⇣
↵(|~r û|)

⇣�
zu � C

1

(û � c
th

)
�
2 � �zu � C

2

(û � c
th

)
�
2

⌘
�
⌘

· ~n
�û
 û�cth d~x

=

Z

B
�(û � c

th

)~r↵(|~r û|) · ~n
�û

⇣�
zu � C

1

(û � c
th

)
�
2 � �zu � C
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th

)
�
2

⌘
� û�cth d~x

+

Z
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�(û � c
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)↵(|~r û|)~r
⇣⇣�

zu � C
1

(û � c
th

)
�
2 � �zu � C

2
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th

)
�
2

⌘⌘
· ~n

�û
� û�cth d~x

+

Z

B
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th

)
⇣
↵(|~r û|)

⇣�
zu � C

1

(û � c
th

)
�
2 � �zu � C
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�û

�
C
2
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�û
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(û � c
th

)
�
� d�û
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↵(|~r û|)�zu � C
2
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� û�cth d�û
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�û
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Conclusion et Perspectives

De nombreuses pathologies cardio-vasculaires sont dues à des troubles électrophysiolo-
giques qui perturbent le rythme cardiaque. Les problèmes mathématiques qui se posent sur
ce sujet sont divers, ce qui explique que la littérature soit si abondante. Nous avons essayé
dans cette thèse d’apporter des contributions à ce vaste projet de modélisation dont le but
final est de produire des simulations – avec des temps de calcul raisonnables et adaptées à
chaque patient – pouvant aider les médecins. Les principaux enseignements et les conclu-
sions que nous avons tirés de ce travail sont donnés dans ce dernier chapitre. Les outils
innovants développés dans cette thèse amènent de nouvelles questions, et des perspectives
seront proposées. Nous commençons par une liste de conclusions et de perspectives par cha-
pitre. Les équations qui sont référencées renvoient vers celles données dans l’introduction.

Conclusions et perspectives par chapitre

Chapitre 2

Conclusions Une compréhension très profonde du modèle bidomaine posé sur un domaine
fixé est nécessaire si on veut pouvoir étudier l’impact des déformations mécaniques et pro-
poser une extension rigoureuse de ce modèle en domaine mobile. C’est pourquoi nous avons
proposé dans une première partie de ce chapitre une étude détaillée s’appuyant sur la litté-
rature de la mise en équation du modèle bidomaine. Nous avons vu aussi que le processus
d’homogénéisation conduit à un modèle qui peut être directement formulé dans le cadre
de la théorie des mélanges. Cependant, cette méthode donne moins d’informations dans le
cas périodique (pas de problème cellule identifié). Cette théorie nous a permis d’obtenir un
modèle bidomaine (4) prenant en compte les déformations mécaniques. Les simulations que
nous avons faites sous une hypothèse d’incompressibilité du cœur ont montré que l’incidence
des déplacements est du même ordre que le déplacement lui-même.

Perspectives Les gap junctions qui relient électriquement les cellules entre elles ne sont pas
considérées dans le processus d’homogénéisation. Une nouvelle analyse prenant en compte
ce qui est peut-être une deuxième échelle asymptotique est une première perspective à ce
travail. Dans [2], une homogénéisation des gap junctions est proposée mais c’est le modèle
bidomaine déjà homogénéisé, et non pas le modèle intra-cellulaire, qui est écrit dans chaque
cellule. Les gap junctions ne sont donc pas étudiées au niveau microscopique et une double
asymptotique n’est donc pas considérée.

Dans les simulations du modèle mécano-électrique (4), nous avons négligé certains
termes sous des hypothèses d’incompressibilité du cœur. De plus, la déformation mécanique
considérée manque de réalisme. Une prise en compte dans les simulations de tous les termes
devrait être faite, afin de réellement mesurer leur impact un à un. Enfin, le couplage avec un
modèle mécanique cardiaque performant [8] permettrait d’obtenir des simulations réalistes
que nous pourrions alors comparer avec les simulations obtenues dans la littérature [6, 3].
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Chapitre 3 et Chapitre 5

Conclusions L’objectif du Chapitre 3 était de trouver un modèle bidomaine réduit capable
de prendre en compte des fortes anisotropies dans l’épaisseur, situation rencontrée dans les
oreillettes cardiaques. En utilisant une analyse asymptotique, nous avons justifié et obtenu
un modèle bidomaine surfacique (12). La comparaison des simulations de ce modèle avec
le modèle 3D nous a montré que cette analyse était nécessaire et qu’un modèle naïf qui
moyenne l’anisotropie n’est pas suffisant, en particulier dans des cas pathologiques. La mise
en place des simulations sur une géométrie atriale réelle données dans le Chapitre 5 montre
la complexité des oreillettes. En plus de la variation des fibres dans l’épaisseur, la modéli-
sation des oreillettes nécessite la prise en compte des faisceaux rapides et lents ainsi qu’un
modèle ionique adapté si l’on souhaite obtenir des simulations réalistes.

Perspectives Grâce au modèle surfacique bidomaine (12) proposé dans le Chapitre 3, nous
sommes donc en mesure d’obtenir des simulations réalistes mais toujours à domaine fixé. Un
modèle mécanique surfacique des oreillettes pourrait aussi être dérivé. Comme la contraction
se fait principalement dans la direction des fibres, les mêmes questions de prise en compte
de l’anisotropie sont posées. C’est un projet ambitieux puisque les modèles de coques actuels
ne prennent pas en compte ce type d’anisotropie dans l’épaisseur. L’objectif global serait
d’avoir un jour un modèle surfacique d’oreillettes complet capable de prendre en compte les
phénomènes électriques et mécaniques ainsi que leurs interactions.

Chapitre 6

Conclusions Les excellents résultats que nous obtenons dans la simulation d’électrocardio-
grammes – que ce soit dans un cas sain ou dans des cas pathologiques – donnent confiance
dans le modèle bidomaine couplé, et en particulier dans le modèle bidomaine asympto-
tique que nous avons établi dans le Chapitre 3. Sans réglage supplémentaire sur le modèle
d’oreillettes, les ondes P ont le bon signe ce qui signifie que la direction du signal à chaque
instant dans nos simulations atriales est réaliste.

Ces simulations ont aussi été l’occasion de mieux comprendre l’interaction entre les
oreillettes et les ventricules. En effet bien qu’ils soient électriquement isolés, nous ne pou-
vons pas séparer chacune des deux simulations puisque le potentiel extra-cellulaire est défini
à une constante près. En séparant les deux simulations et donc en réglant la constante sépa-
rément, un dipôle artificiel serait créé.

Perspectives Toutes les simulations des électrocardiogrammes (ECGs) que nous proposons
sont effectuées sur une géométrie fixe. Il est intéressant de se demander quelles sont les
effets de la contraction cardiaque sur les ECGs. En effet les ventricules se contractent avec
un effet de torsion, ce qui peut avoir un impact sur la direction de propagation de l’onde et
induire une variation dans l’ECG.

Une deuxième perspective sur ce sujet est la prise en compte d’un vrai couplage
oreillettes-ventricules avec la modélisation du nœud atrio-ventriculaire ainsi que des fibres
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de Purkinje. En effet dans ce chapitre, les ventricules sont stimulés manuellement en appli-
quant un courant directement dans toute la zone proche des fibres de Purkinje.

Une dernière perspective serait de voir s’il est possible d’améliorer les conditions de cou-
plage que nous avons utilisées, par exemple avec une prise en compte du péricarde. L’idée
serait de mieux comprendre ce qui induit une amplitude de l’onde P si petite par rapport à
l’onde R des ventricules (de l’ordre de 1/5) alors que la surface externe des oreillettes est de
taille comparable à la surface externe des ventricules (de l’ordre de 2/3). La littérature mé-
dicale suggère que c’est dû à l’épaisseur du muscle cardiaque plus fin dans les oreillettes que
dans les ventricules. Peut-être qu’un couplage fort serait une solution à ce problème puisque
pour le moment avec le couplage faible, seul le potentiel sur l’épicarde se diffuse dans le
reste du corps.

Chapitre 8

Conclusions Dans ce chapitre, nous proposons un estimateur d’état (15) de type Luen-
berger [4] pour un modèle de réaction-diffusion et des données de type position de fronts.
Notre estimation d’état est compatible avec l’ajout d’un filtre de paramètres de type RoUKF
[5] afin d’estimer les paramètres du modèle. La mise en place de l’estimateur d’état nous
a montré qu’il était difficile de comparer une donnée de type ligne de niveau avec la solu-
tion d’un modèle de réaction diffusion. En jonglant avec plusieurs théories mathématiques
– comme l’analyse asymptotique, les techniques de traitement d’image ou encore les déri-
vées de forme – nous avons pu dériver et justifier cet estimateur. Les résultats sur données
synthétiques que nous obtenons sont excellents.

Perspectives Les simulations 1D et 2D de ce chapitre sur des données synthétiques
montrent tout le potentiel de l’observateur que nous proposons. Cependant, pour pouvoir
le valider définitivement, des simulations sur un cas réel – que ce soit dans le domaine de
l’électrophysiologie ou encore dans celui de la propagation de feu – est nécessaire. Une mé-
thode permettant d’identifier la condition initiale dans certains cas – comme les pathologies
où une onde spirale apparait – devrait être proposée. Concernant l’estimation paramétrique,
des simulations permettant de retrouver d’autres paramètres – comme par exemple ceux du
terme de réaction – ou encore le même paramètre mais décomposé dans plusieurs zones sont
envisagées. Pour finir, des cas où l’incertitude concerne plusieurs paramètres permettraient
d’étudier leur interaction les uns avec les autres.

Du point de vue numérique, des difficultés de discrétisation du terme de correction – qui
est un terme surfacique qui agit uniquement sur le front – ont été rencontrées. En effet, la
méthode qui consiste à discrétiser la fonction Dirac multidimensionnelle entraîne des oscil-
lations près du front. Une décomposition de Garlekin directement du terme surfacique – en
utilisant des maillages s’adaptant au front au cours du temps [1] – permettrait de répondre
à cette difficulté numérique. C’est une des perspectives de ce travail.

Pour finir, la dernière perspective concerne la difficulté du cas 3D en électrophysiologie.
En effet, la méthode qui permet de reconstruire les cartes de dépolarisation d’un patient
– c’est à dire la résolution d’un problème inverse à partir de signaux obtenus par une veste
d’électrode [7] – ne donne la position du front qu’à l’épicarde, surface externe du cœur
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(et parfois à l’endocarde, surface interne). Développer des techniques mathématiques per-
mettant d’appliquer l’observateur uniquement sur la surface externe du cœur est alors un
véritable enjeu.

Conclusion générale

Pour conclure, des outils innovants s’appuyant sur des théories mathématiques variées
ont été développés dans cette thèse. L’approche mathématique a toujours été appréhendée
dans le but d’améliorer la modélisation en électrophysiologie cardiaque.

Cette thèse a donc été l’occasion, à partir d’une problématique initiale principalement
médicale d’introduire, de développer ou d’utiliser des techniques, des outils ou encore des
théories appartenant au domaine mathématique. Nous avons dû aussi nous appuyer sur des
modélisations poussées développées dans le domaine biologique et parfois les formaliser du
point de vue mathématique.

Cette interdisciplinarité représente une difficulté pour ces sujets aux carrefours de plu-
sieurs sciences puisque cela demande des connaissances dans chacun des domaines. L’enjeu
de médiation qui permettra d’améliorer la communication entre spécialistes de domaines
différents est aussi très important. Cependant, cela apporte aux mathématiques purement
théoriques sous-jacentes un sens concret et un objectif stimulant. Nous espérons avec cette
thèse avoir offert des résultats novateurs et des réflexions pertinentes qui trouveront leur
place dans l’ensemble des outils médicaux – innovants et prometteurs – développés grâce à
la modélisation en médecine.
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