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RESUME: 
Les lipases sont des enzymes ubiquitaires présentant un grand intérêt industriel. Leurs applications sont diverses 
dans la pharmacie, la chimie fine, la santé, l’agro-alimentaire, les cosmétiques, l’environnement et l’énergie, entre 
autre. L’intérêt de ces enzymes a conduit à caractériser ces enzymes, à mieux comprendre leur mécanisme 
réactionnel et leur cinétique, et à établir des méthodes efficaces de production en système d’expression 
homologue et hétérologue. Plus récemment, l’ingénierie enzymatique permet d’améliorer les caractéristiques des 
enzymes telles que l’activité, la sélectivité, la thermo-stabilité et la tolérance à des pH extrêmes et aux solvants 
organiques.  

Ce projet de thèse s’est fixé deux objectifs principaux: premièrement, la purification et la fonctionnalisation 
d’acides gras poly-insaturés de type Omega-3 (PUFAs), et spécialement l’acide cis-4, 7, 10, 13, 16, 19-
docosahexaénoique (DHA) et deuxièmement la production de lipides structurés. Le DHA présente des propriétés 
anti-thrombose et anti-inflammatoire qui permettent de réduire les facteurs de risque de l’arthrite, du cancer, de 
maladies cardiovasculaires, de l’asthme, du diabète et de la maladie d’Alzheimer. 

Un premier objectif fut de produire une molécule pharmaceutique, le nicotinyl DHA ester, actuellement en essai 
clinique pour le traitement des arythmies cardiaques. Le co-substrat du DHA est le nicotinol (3-
hydroxymethylpyridine), un alcool appartenant au groupe de la pro-vitamine B. Après absorption, il est 
rapidement converti en acide nicotinique (Vitamine B3) qui possède la propriété de décroitre les acides gras libres 
dans le plasma, les triglycérides, et d’augmenter dans le plasma la concentration des lipoprotéines bénéfiques. 
La trans-esterification enzymatique entre l’ester éthylique du DHA et le nicotinol a été optimisée dans le but de 
synthétiser un ester présentant les propriétés cumulatives des deux réactants. Après la sélection de l’enzyme 
optimale (lipase immobilisée de Candida antarctica; Novozyme 435) et le choix du milieu réactionnel (milieu sans 
solvant), le procédé a été optimisé. Une conversion supérieure à 97 % a été obtenu en 4 heures avec 45 g.L-1 
d’enzyme. Dans ces conditions, une productivité de 4.2 g de produit .h-1.g d’enzyme-1 a été obtenue.  

Ce projet nécessite une haute pureté en DHA. Un procédé de purification enzymatique a été choisi car cela 
permet de travailler dans des conditions à faible température ce qui est un pre-requis car le DHA est sensible à 
l’oxydation. Les lipases sont capables de discriminer entre les acides gras en fonction de la longueur de chaine et 
du degré d’insaturation. Les lipases agissent par résolution cinétique, en réagissant plus efficacement avec les 
acides gras saturés et mono-insaturés qu’avec les PUFAs résistants. Il reste toujours d’un grand intérêt de 
découvrir des enzymes spécifiques pour la purification du DHA. La lipase YLL2 de Yarrowia lipolytica apparait 
comme un bon candidat car elle est homologue à une des lipases les plus efficaces, la lipase de Thermomyces 
lanuginosus. YLL2 a permis d’obtenir une discrimination très efficace, Les raisons de la sélectivité de l’enzyme 
ont été identifiées : il s’agit du positionnement de la double liaison la plus proche de la fonction carboxylique. La 
concentration en DHA la plus élevée a été obtenue avec YLL2 (73%) avec un pourcentage de récupération du 
DHA-EE de 89%. YLL2 est par conséquent l’enzyme décrite  la plus efficace pour la purification du DHA. 

Devant le grand intérêt de cette enzyme pour la purification du DHA, la mutagénèse ciblée dans le site actif a été 
utilisée pour améliorer la sélectivité de cette enzyme. L’analyse de la structure 3D et les alignements avec des 
lipases homologues a permis de choisir les cibles de mutagénèse dirigée. Les acides aminés cibles ont été 
changés de manière à restreindre ou élargir le site actif. De ce premier screening de variantes deux positions ont 
permis d’améliorer la spécificité de l’enzyme, les positions I100 et V235. Finalement la saturation de ces 2 
positions a été réalisée et les performances de ces variantes analysées.  

Le dernier objectif de la thèse était la production de lipides structurés (SL) par acidolysis enzymatique entre l'huile 
d'olive vierge et les acides caprylic ou capric utilisant la lipase YLL2 immobilisé. Le SL obtenu devrait être riche 
en acide oléique à la position sn-2 tandis que les C8:0 et C10:0 devraient être principalement estérifiés aux 
positions sn-1,3. YLL2 immobilisé sur Accurel 1000 a été testé dans un système sans solvant. La réaction 
d’acidolysis d'huile d'olive avec C8:0 ou C10:0 catalysé par YLL2 immobilisé a été optimisée avec la 
méthodologie de surface de réponse (RSM). 

 
MOTS CLES: 
Lipase, Yarrowia lipolytica, Omega-3, huile de poisson, purification, DHA, mutagenèse, sélectivité, lipids 
structurés, immobilisation. 
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ABSTRACT: 
Lipases are ubiquitous enzymes, widespread in nature. Their applications are extended to a wide variety of 
industries including pharmacy, fine chemistry, health, food, cosmetics, environment and energy, among others. 
The variety of lipases applications led to increased research to characterize them and better understand their 
kinetics and reaction mechanisms and to establish methods for lipase production in homologous and 
heterologous expression systems. Enzymatic engineering allowed the improvement of lipase characteristics such 
as activity, selectivity, thermostability and tolerance to extreme pH and organic solvents. Enzyme selectivity 
improvement is one of the most interesting characteristics that can be changed by enzymatic engineering.  

This thesis project studies the use of lipases for two main objectives: lipase-catalyzed purification and 
functionalization of Omega-3 polyunsaturated fatty acids (PUFAs), especially cis-4, 7, 10, 13, 16, 19-
docosahexaenoic acid (DHA) and production of structured lipids. DHA presents anti-thrombotic and anti-
inflammatory properties that reduce risk factors of arthritis rheumatoid, cancer, cardiovascular diseases, 
myocardial infarction, bronchial asthma, inflammatory intestinal diseases, diabetes and Alzheimer’s disease. 

DHA was used for the synthesis of a pharmaceutical molecule, the nicotinyl DHA ester, tried in clinical assay for 
the treatment of cardiac arrhythmia. The co-substrate of the reaction was nicotinol (3-hydroxymethylpyridine), an 
alcohol from the group B pro-vitamin. After absorption, it is rapidly converted into nicotinic acid (Vitamin B3) that 
presents the ability to substantially decrease plasma free fatty acid, triglyceride, VLDL and LDL levels and to raise 
the plasma concentration of protective HDL (high density lipoproteins). The enzymatic trans-esterification of DHA 
ethyl esters with nicotinol was optimised in order to synthesise an ester presenting the cumulative properties of 
the two reactants. After enzyme (immobilized lipase from Candida antarctica; Novozym 435) and reaction medium 
(solvent-free system) selection, the process was optimised. A conversion to nicotinyl-DHA superior to 97 % was 
obtained in 4 hours using 45 g.L-1 of enzyme. In these conditions, a productivity of 4.2 g of product .h-1.g of 
enzyme-1 was obtained.  

This project requires DHA of high purity. Enzymatic purification was chosen for the production of DHA 
concentrates since this method enables the purification to be operated under mild conditions, which is preferable 
since DHA is susceptible to oxidation. Lipases are able to discriminate between fatty acids in function of their 
chain length and saturation degree in three types of reactions: hydrolysis, trans-esterification, and esterification. 
Lipases act by kinetic resolution, reacting more efficiently with the bulk of saturated and mono-unsaturated fatty 
acids than with the more resistant PUFAs. The objective was the discovery of more specific enzymes for DHA 
purification. The lipase Lip2 from Yarrowia lipolytica (YLL2) appears as a good candidate since it is homologous 
to one of the most efficient lipase, the lipase from Thermomyces lanuginosus. YLL2 enables a high discrimination 
to be obtained, enzyme selectivity being principally due to the positioning of the double-bond the closest from the 
carboxylic group. The highest concentration of DHA was obtained with YLL2 (73%) with a recovery percentage of 
DHA-EE of 89%. YLL2 is consequently the most efficient described lipase for DHA purification. 

Further research was carried out using site directed mutagenesis to improve YLL2 from Y. lipolytica. Using its 
three dimensional structure and alignment with homologous lipases, targets for site directed mutagenesis were 
chosen in the active site. Chosen amino acids were substituted by two amino acids of different sizes. From the 
screening of variants two positions with promising specificities where chosen, positions I100 and V235. Finally 
saturation of both positions and the analysis of their performances in the selected reactions were carried out.  

The last objective studied in the thesis was the production of structured lipids (SL) by enzymatic acidolysis 
between virgin olive oil and caprylic or capric acids using immobilized Lip2 from Y. lipolytica. The SL obtained 
should be rich in oleic acid at the sn-2 position while C8:0 and C10:0 should be mainly esterified at the sn-1,3 
positions. Lip2 from Y. lipolytica immobilized on Accurel MP 1000 was tested in a solvent-free system. In addition, 
the acidolysis reaction of olive oil with C8:0 or C10:0 catalyzed by immobilized YLL2 was optimized by response 
surface methodology (RSM). 
 

KEY WORDS: 

Lipase, Yarrowia lipolytica, Omega-3, fish oils, purification, DHA, mutagenesis, selectivity, structured 
lipids, immobilization. 
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Introduction 

 

Lipases are ubiquitous enzymes, widespread in nature. Their first applications were in the 

food industry, mainly for the production of dairy products. Lipases were first isolated from 

bacteria in the early nineteenth century and the associated research continuously increased 

due to the particular characteristics of these enzymes. Since then, their applications have 

extended to a wide variety of industries including pharmaceutical, fine chemistry, health, 

cosmetics, environmental and bioenergy, among others. The variety of lipases applications 

led to increased research to characterize them and better understand their kinetics, reaction 

mechanisms and selectivities. Later, continuous research established methods for lipase 

production in homologous and heterologous expression systems. Understanding how 

lipases work encouraged researches to improve these enzymes in function of their industrial 

applications. Enzymatic engineering allowed the improvement of lipases characteristics such 

as activity, selectivity, thermostability and tolerance to extreme pH and organic solvents. 

This technique changes the enzyme at a molecular level, modifying one or several 

characteristics at the same time. Enzyme selectivity improvement is one of the most 

interesting characteristics that can be changed by enzymatic engineering. Enzymes 

improvements can be achieved by two different approaches, rational engineering or directed 

evolution. The rational approach is based on the analysis of the relationships structure-

function of the biocatalyst, enabling the selection of targets for site directed mutagenesis, for 

example the amino acids in the active site of the enzyme. This technique requires the 

knowledge of the three dimensional structure of the enzyme and a complete study and 

comprehension of the molecular level mechanisms involved. Directed evolution is an 

approach that selects a biocatalyst with improved properties from a library of enzyme 

variants produced randomly by engineering. This method does not require knowledge of the 

structural or molecular properties of the enzyme, but a high throughput screening method is 

required to allow fast testing of a large library of variants.  

 

This thesis project studies the use of lipase for two main objectives: lipase-catalyzed 

purification and functionalization of Omega-3 polyunsaturated fatty acids (PUFAs), especially 

cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid (DHA) and production of structured lipids. 

DHA presents anti-thrombotic and anti-inflammatory properties that reduce risk factors of 

arthritis rheumatoid, cancer, cardiovascular diseases, myocardial infarction, bronchial 

asthma, inflammatory intestinal diseases, diabetes and Alzheimer’s disease. 

 

The final objective of this work is to develop a process for the production of a pharmaceutical 

molecule, the nicotinyl ester of DHA, which could be used in prevention and treatment of 
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cardiovascular diseases. The main property of this molecule is to be a cardiac antiarrhythmic 

agent. The co-substrate of the reaction is nicotinol (3-hydroxymethylpyridine), an alcohol 

from the group B pro-vitamin. After absorption, nicotinol is rapidly converted into nicotinic 

acid (Vitamin B3). Nicotinic acid has the ability to substantially decrease plasma free fatty 

acid, triglyceride, VLDL and LDL (very low and low density lipoproteins) levels and to raise 

the plasma concentration of protective HDL (high density lipoproteins). For a pharmaceutical 

purpose, the use of DHA of high purity is crucial. The main source of DHA is fish oil which 

contains around 25% DHA.  

 

The selectivity of lipases was studied to produce Omega-3 polyunsaturated fatty acid 

concentrates rich in DHA. Enzymatic purification was chosen for the production of 

concentrates since this method enables the purification to be operated under mild conditions, 

which is preferable since DHA is susceptible to oxidation. Lipases are able to discriminate 

between fatty acids in function of their chain length and/or saturation degree in three types of 

reactions: hydrolysis, trans-esterification, and esterification. Lipases act by kinetic resolution, 

reacting more efficiently with the bulk of saturated and mono-unsaturated fatty acids than 

with the more resistant PUFAs. Indeed, the 5 and 6 double bonds, in EPA (cis-5, 8, 11, 14, 

17-eicosapentaenoic acid) and DHA respectively, enhance steric hindrance in the active site 

of the lipases.  

 

A second objective was the discovery of more specific enzymes for PUFAs purification, such 

as Lip2 from Yarrowia lipolytica, which can be compared with the lipases identified in the 

bibliography as efficient, Thermomyces lanuginosus lipase and the lipases from Candida 

rugosa. These lipases were studied by comparing their ability to concentrate DHA-EE in the 

ester fraction by hydrolysing a tuna oil ethyl ester mixture (FOEE) with a high reaction yield.  

 

It is possible that these lipases will not be sufficiently active and selective to fulfil industrial 

requests, DHA purity higher than 85% with high yields of DHA recovery. In consequence, it 

will be considered to improve the selectivity of the best enzyme using enzyme engineering 

tools.  

 

The last objective studied in the thesis was the production of structured lipids (SL) by 

enzymatic acidolysis between virgin olive oil and caprylic or capric acids using immobilized 

Lip2 from Y. lipolytica. The SL obtained should be rich in oleic acid at the sn-2 position while 

C8:0 and C10:0 should be mainly esterified at the sn-1,3 positions. Lip2 from Y. lipolytica 

immobilized on Accurel MP 1000 was tested in a solvent-free system. In addition, the 

acidolysis reaction of olive oil with C8:0 or C10:0 catalyzed by immobilized YLL2 was 
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optimized by response surface methodology (RSM) as a function of the molar ratio free fatty 

acids/triacylglycerols (FFA/TAG), temperature and reaction time.  

 

This manuscript is organized in three chapters. The first chapter, the literature review is 

divided in four parts: 

 

∼ Publication 1, Part I: Lipases: An Overview, in Lipases and Phospholipases, Methods 

and Protocols in the series: Methods in Molecular Biology, Vol. 861, Sandoval, 

Georgina (Ed.), 2012. 

∼ Part II: Lip2 from Yarrowia lipolytica.  

∼ Part III: Omega-3 polyunsaturated fatty acids. 

∼ Part IV: Structured Lipids. 

 

The second chapter presents the results, written in the form of research articles: 

 

∼ Publication 2: Enzymatic trans-esterification of a highly concentrated long chain ω-3 

polyunsaturated fatty acid ethyl ester with a group B pro-vitamin alcohol for 

prevention and treatment of cardiovascular diseases. 

∼ Publication 3: Yarrowia lipolytica lipase Lip2: an efficient enzyme for the production of 

DHA ethyl esters concentrates. 

∼ Publication 4: Site directed mutagenesis improved specificity of Lip2 from Yarrowia 

lipolytica towards DHA ethyl ester purification. 

∼ Publication 5: Optimization of medium chain length fatty acid incorporation into olive 

oil catalysed by immobilized Lip2 from Yarrowia lipolytica. 

The third chapter presents the general conclusion and perspectives for future work.  
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Lipases 

 

1. Definition of lipases 

 

Lipases are serine hydrolases defined as triacylglycerol acylhydrolases (E.C. 3.1.1.3) and 

should be differentiated from esterases (E.C. 3.1.1.1) by the nature of their substrates. 

Indeed, the first criteria used to distinguish these two types of enzymes, i.e. activation by the 

presence of an interface, also called “interfacial activation”, was found unsuitable for the 

classification of such enzymes as some lipases did not exhibit such phenomenon. Prominent 

cases of this phenomenon are Lip4 from Candida rugosa (Tang et al., 2001) and C. 

antarctica B (Uppenberg et al., 1994). Moreover, lipases and esterases consensus motifs 

described by ProSite database (Hofmann et al., 1999) are very close. Therefore, lipases 

were later defined as enzymes capable of hydrolyzing carboxyl esters of long-chain 

acylglycerol (≥10 carbon atoms), while esterases hydrolyze carboxyl esters of short-chain 

acylglycerol (≤ 10 carbon atoms). Nevertheless, as both enzymes show a broad substrate 

specificity, both criteria should be considered (Verger, 1997; Chahinian et al., 2002). Fojan 

et al. also proposed a novel approach to distinguish between esterases and lipases based 

on the study of the amino acid composition and protein surface electrostatic distribution 

(Fojan et al., 2000). Cutinases usually catalyze the hydrolysis of ester bonds in cutine 

polymers, but, as they are also capable of hydrolyzing long chain and short chain 

triglycerides without requirement of interfacial activation, they are considered as 

intermediates between lipases and esterases. This last, cutinases, will not be discussed in 

this review. 

 

2. Reaction catalyzed by lipases 

 

2.1 Hydrolysis reaction 

 

Lipases naturally catalyze the hydrolysis of the ester bond of tri-, di- and mono- glycerides 

into fatty acids and glycerol (Figure 1). Nevertheless, as shown in Figure 1, they are also 

active on a broad range of substrates. In all cases, the reaction is carried out at the interface 

of a biphasic system reaction. This biphasic system results from the presence of an 

immiscible organic phase, containing the hydrophobic substrate, in water.  
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Acidolysis reaction 

R1 C O R3

O

+ R2 C OH

O

R2 C O R3

O

+R1 C OH

O

Alcoholysis reaction 

R1 C O R3

O

+ R1 C O R2

O

+R2 OH OH R3

Interesterification reaction 

R1 C O R3

O

+ R1 C O R4

O

+R2 C O R4

O

R2 C O R3

O

I. Hydrolysis 

R1 C O R2

O

+ H2O R1 C OH

O

+ R2 OH

II. Synthesis

a      Esterification

R1 C OH

O

R2 OH R1 C O R2

O

+ H2O+

b      Transesterification

Esterification

Aminolysis reaction 

R1 C O R3

O

+ R1 C O R4

O

+

Amidation

R1 C OH

O

NH2 R2 R1 C NH R2

O

+ H2O+

R2 C NH R4

O

R2 C NH R3

O

Thioesterification

R1 C OH

O

SH R2 R1 C S R2

O

+ H2O+

 

 

Figure 1. Reactions catalyzed by lipases. 
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2.2 Synthesis reactions 

 

Lipases, in thermodynamic favorable conditions (i.e. low water activity), also catalyze a large 

variety of synthesis reactions which can be classified in two main types of reactions, i.e. 

esterification and transesterification (Reis et al., 2009). As shown on Figure 1, esterification 

is the reaction where a fatty acid is linked, through the action of the enzyme, to an alcohol by 

a covalent bond, producing an ester and releasing a water molecule. Thio-esterification and 

amidation are similar reactions but with a thiol or an amine as substrates. Transesterification 

groups alcoholysis, acidolysis, aminolysis and interesterification reactions.  

 

Usually, these synthesis reactions occur in a medium with low thermodynamic water activity, 

the thermodynamic activity being a measure of the molecule availability in a solvent. The 

medium then consists in a free-solvent system (molten medium) or in an organic solvent. 

 

Finally, lipases are also capable of expressing other annex activities such as phospholipase, 

lysophospholipase, cholesterol esterase, cutinase or amidase activities, (Svendsen, 2000).  

 

3. Sources of lipases, physiologic role and regulation of the expression 

 

First lipases were isolated by Eijkmann from Bacillus prodigiosus, B. pyocyaneus and B. 

fluorescens, currently known as Serratia marcescens, Pseudomonas aeruginosa and P. 

fluorescens, respectively (Eijkmann, 1901). Nowadays, it is recognized that lipases are 

produced by various organisms, including animals, plants and microorganisms (Vakhlu and 

Kour, 2006). Most animal lipases are obtained from the pancreas of cattle, sheep, hogs and 

pigs. Unfortunately lipases extracted from animal pancreas are rarely pure enough to be 

used in the food industry. For example, pig pancreatic lipase is polluted by trace amounts of 

trypsine which generate a bitter taste (Vakhlu and Kour, 2006). Other impurities include 

animal viruses and hormones. Therefore, due to the ease of production and abundance, 

most studied and industrially used lipases are obtained from microbial sources. Moreover, 

compared to bacterial lipases, lipases from GRAS (Generally Recognized As Safe) yeast 

sources are widely accepted and used in several industries including food processing 

(Vakhlu and Kour, 2006). Some of the major lipases used in industrial processes will be 

discussed in section 6. 

 

Due to the importance and wide variety of lipases applications, different techniques have 

been developed in order to isolate lipases from various sources. Due to their ability to use fat 

as the only carbon source, microorganisms producing lipases were isolated from food 
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spoilage, where they are responsible for the flavor change of dairy products such as cheese, 

or from oily environments (sewage, rubbish dump sites and oil mill effluent). For instance, a 

cold adapted lipase was isolated from a Pseudomonas sp. strain (Choo et al., 1998) by 

screening soil samples from Alaska directly on solid media plates. With the same method, a 

thermostable lipase from Geobacillus zalihae was isolated from a palm oil mill effluent by 

inoculation into an enriched liquid medium containing olive oil as carbon source (Rahman et 

al., 2007). More recently new lipases were successfully isolated from the lipolytica proteome 

of subcutaneous and visceral adipocytes (Schicher et al., 2010), as well as from activated 

sludge (Nabarlatz et al., 2010). Nevertheless, this direct method can not be applied to 

uncultivable organisms and do not allow the isolation of the gene encoding the lipase.  

 

For the last ten years, new methods were developed to allow the discovery of lipase genes. 

These metagenomic approaches are applicable to uncultivable organisms. These include 

the screening of DNA libraries, created from lipase-producing microorganisms by PCR with 

degenerate oligonucleotides complementary to lipase gene conserved regions as probe (Bell 

et al., 2002). An alternative to this method is functional metagenomic, i.e. the cloning of a so-

called metagenome isolated from environmental DNA and its expression in a host for further 

screening of its hydrolytic activity (Henne et al., 2000; Zuo et al., 2010). An increasing 

number of methods, that will be discussed in chapter 3, have been developed to allow the 

detection of lipolytic activities (Hasan et al., 2009). 

 

Lipases are known to have several physiological functions. In eukaryotes they are key 

components of lipid and lipoprotein metabolism (Sharma et al., 2001). As so, they are 

produced in the digestive system to hydrolyze absorbed triglycerides. Their production would 

be activated by a hormone sensitive regulation system when the energy demand increases, 

thus initiating the degradation of reserve triglycerides. In insects, lipases are mainly found in 

muscles, plasma, digestive organs and salivary glands (Pahoja and Sethar, 2002). In plants, 

lipases are mainly located in seeds, as part of the energy reserve tissues, and carry out the 

hydrolysis of reserve triglycerides necessary for the seed germination and further growth of 

the plant (Adlercreutz et al., 1997). Lipases in plants also have an important role in the 

metabolism, rearrangement and degradation of chlorophyll and the ripening of fruits 

(Tsuchiya et al., 1999). Besides, they were also postulated to play a defensive role since 

their production was found to be induced in the presence of pathogens (Stintzi et al., 1993). 

Microorganisms use the production of extracellular lipases in order to hydrolyze the 

triglycerides in the media and facilitate the ingestion of lipids.  
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Lipase expression in microorganisms is mainly regulated by environmental factors, as an 

extracellular response to a medium deprived in nutriments. Their production will therefore be 

activated by a cell density regulation system when the microorganism reaches the stationary 

phase or at the beginning of the growth phase in order to use the stored lipids (Olukoshi and 

Packter, 1994; Wagner and Daum, 2005). In most microorganisms the presence of lipids 

and fatty acids as carbon sources induce the production of these extracellular enzymes, thus 

allowing them to grow on spoiled soil.  

 

4. Structure and catalytic mechanism 

 

The first lipase structures were obtained from Rhizomucor miehei (Brady et al., 1990) and 

the pancreatic human lipase (Winkler et al., 1990). Nowadays, several hundreds of lipase 

sequences are listed in databases and amongst one hundred three dimensional lipases 

structures are available in the Protein Data Base (http://www.rcsb.org/pdb/home/). However 

these one hundred structures represent lipases of only thirty one organisms, since the same 

lipase can have several structures in different conformations or with different substrates. 

These include fungal lipases such as those from Thermomyces lanuginosus (Derewenda et 

al., 1994b), Rhizopus oryzae and niveus (Derewenda et al., 1994b; Kohno et al., 1996), C. 

antarctica Lipase B and Lipase A (Uppenberg et al., 1994; Ericsson et al., 2008), C. rugosa 

(Grochulski et al., 1993b), Geotrichum candidum (Schrag and Cygler, 1993), Penicillium 

camembertii and expansum (Derewenda et al., 1994a; Bian et al., 2010) and Yarrowia 

lipolytica (Bordes et al., 2010). As well, the known structures of bacterial lipases include 

those from B. subtilis (van Pouderoyen et al., 2001), Pseudomonas sp. (Angkawidjaja et al., 

2007), P. aeruginosa (Nardini et al., 2000), P. cepacia (Kim et al., 1997; Schrag et al., 1997), 

P. glumae (Noble et al., 1993), Chromobacterium viscosum (Lang et al., 1996),  G. 

thermocatenulatus (Carrasco-Lopez et al., 2009), G. stearothermophilus (Jeong et al., 2002; 

Tyndall et al., 2002), G. zalihae (Matsumura et al., 2008), Photobacterium sp (Jung et al., 

2008), S. marcescens (Meier et al., 2007), Staphylococcus hyicus (Tiesinga et al., 2007), 

and Streptomyces exfoliatus (Wei et al., 1998). In addition, the structures of Archaeoglobus 

fulgidus lipase (Chen et al., 2009), bovine bile lipase (Wang et al., 1997), dog (Roussel et 

al., 1998a), horse (Bourne et al., 1994), rat (Roussel et al., 1998b) and Guinea pig 

(WithersMartinez et al., 1996) pancreatic lipase have been obtained. Lipases from C. 

rugosa, C. antarctica, P. aeruginosa T. lanuginosus and C. viscosum have a wide variety of 

industrial applications, (cf. 6). 

 

 

 



 

 

T
ab

le
 1

. S
um

m
ar

y 
of

 th
e 

st
ru

ct
ur

al
 d

at
a 

av
ai

la
bl

e 
fo

r 
so

m
e 

ex
te

ns
iv

el
y 

st
ud

ie
d 

lip
as

es
. 

 L
ip

as
e 

P
D

B
 e

n
tr

y 
C

at
al

yt
ic

 t
ri

ad
 

O
xy

an
io

n
 h

o
le

 
L

id
 

R
ef

er
en

ce
 

B
ur

kh
ol

de
ria

 c
ep

ac
ia

 

1O
IL

 
2L

IP
 3

LI
P

 
4L

IP
 5

LI
P

 
1H

Q
D

 
1Y

S
1 

1Y
S

2 

S
87

, D
26

4,
 H

28
6 

L1
7,

Q
88

 
Y

12
9-

L1
49

 

(K
im

 e
t a

l.,
 1

99
7)

 
(S

ch
ra

g 
et

 a
l.,

 1
99

7)
 

(L
an

g 
et

 a
l.,

 1
99

8)
 

(L
ui

c 
et

 a
l.,

 2
00

1)
 

(M
ez

ze
tti

 e
t a

l.,
 2

00
5)

 

C
an

di
da

 a
nt

ar
ct

ic
a 

B
 

1T
C

A
 1

T
C

B
  T

C
C

 
1L

B
S

 1
LB

T
 

3I
C

V
 3

IC
W

 
S

10
5,

 D
18

7,
 H

22
4 

T
40

, Q
10

6 
- 

(U
pp

en
be

rg
 e

t a
l.,

 1
99

4)
 

(U
pp

en
be

rg
 e

t a
l.,

 1
99

5)
 

(Q
ia

n 
et

 a
l.,

 2
00

9)
 

C
an

di
da

 r
ug

os
a 

1C
R

L 
1T

R
H

 
1L

P
N

 1
LP

O
 1

LP
P

 
1L

P
M

 1
LP

S
 

S
20

9,
 E

34
1,

 H
44

9 
G

12
4,

 A
21

0 
E

66
-P

92
 

(G
ro

ch
ul

sk
i e

t a
l.,

 1
99

3b
) 

(G
ro

ch
ul

sk
i e

t a
l.,

 1
99

4c
) 

(G
ro

ch
ul

sk
i e

t a
l.,

 1
99

4a
) 

(C
yg

le
r 

et
 a

l.,
 1

99
4)

 

R
hi

zo
m

uc
or

 m
ie

he
i 

1T
G

L 
3T

G
L 

4T
G

L 
5T

G
L 

S
14

4,
D

20
3,

H
25

7 
S

82
,L

14
5 

S
83

-P
96

 

(B
ra

dy
 e

t a
l.,

 1
99

0)
 

(B
rz

oz
ow

sk
i e

t a
l.,

 1
99

2)
 

(D
er

ew
en

da
 e

t a
l.,

 1
99

2a
) 

(B
rz

oz
ow

sk
i e

t a
l.,

 1
99

1)
 

R
hi

zo
pu

s 
de

le
m

ar
 

1T
IC

_A
,B

 
S

14
5,

 D
20

4,
 H

25
7 

T
83

, L
14

6 
N

84
-F

95
 

(D
er

ew
en

da
 e

t a
l.,

 1
99

4b
) 

T
he

rm
om

yc
es

 la
nu

gi
no

su
s 

1T
IB

 
1D

T
3 

1D
T

5 
1D

T
E

  1
D

U
4 

 1
E

IN
 

1G
T

6 
S

14
6,

 D
20

1,
 H

25
8 

S
83

, L
14

7 
R

84
-F

95
 

(D
er

ew
en

da
 e

t a
l.,

 1
99

4b
) 

(B
rz

oz
ow

sk
i e

t a
l.,

 2
00

0)
 

(Y
ap

ou
dj

ia
n 

et
 a

l.,
 2

00
2)

 

H
um

an
 p

an
cr

ea
tic

 li
pa

se
 

1N
8S

 
2P

V
S

 2
O

X
E

 
S

15
3,

 H
26

4,
 D

17
7 

F
78

, L
15

4 
- 

(V
an

til
be

ur
gh

 e
t a

l.,
 1

99
2)

 
(E

yd
ou

x 
et

 a
l.,

 2
00

8)
 

  

  Part I: Lipases                                                                                             Chapter I: Literature Review 

 

  40 



Part I: Lipases  Chapter I: Literature Review 
 

 41 

Structurally speaking, lipases are characterized by a common α / β hydrolase fold and a 

conserved catalytic triad. Most lipases also possess the consensus motif G-X1-S-X2-G. 

From their structures and the residues forming the oxyanion hole (amino acids of the lipase 

active site that stabilize the reaction intermediate) and catalytic triad, microbial lipases and 

esterases can be grouped in fifteen superfamilies and thirty two homologous families (Pleiss 

et al., 2000a). These structural elements will be discussed below. Table 1 gives a summary 

of the structural data available for some extensively studied lipases.  

 

 4.1 The α / β hydrolase fold 

 

The study of lipases three-dimensional structures showed the presence of a conserved 

alpha/beta-hydrolase fold, which is widely expanded in hydrolytic enzymes of different 

origins, such as proteases, haloalkane dehalogenases, acetylcholinesterases, dienelactone 

hydrolases and serine carboxypeptidases (Jaeger et al., 1999). The alpha/beta-hydrolase 

fold is generally composed of a central, parallel β-sheet of eight beta-strands, with only the 

second strand antiparallel (β2). Strands β3 to β8 are connected by α helices arranged on the 

sides of the central β sheet (Figure 2).  

 

Some variations of the α / β fold were found in several lipases. The variations of the fold 

consist in differences in the amount of α helices, β sheets, loops length and architecture of 

the substrate binding sites (Pleiss et al., 1998; Jaeger et al., 1999; van Pouderoyen et al., 

2001).  

 

Lipases are also characterized by the presence of disulphide bridges that give the enzyme 

stability and are often important for their catalytic activity.  

 

4.2 The catalytic triad 

 

The catalytic triad, which is conserved among lipases, consists in a serine as nucleophile, an 

aspartate/glutamate as the acidic residue and a histidine (Brady et al., 1990; Winkler et al., 

1990). It is similar to the one observed in serine proteases but with a different order in the 

sequence (Ollis et al., 1992). In the alpha/beta-hydrolase fold the catalytic serine is located 

after the sheet β5 and before the following α-helix, the aspartate or glutamate is found after 

the β7 sheet and the histidine is located in a loop after the β8 sheet (Derewenda et al., 

1992b). Recently, a new subclass of esterase/lipase was reported, in which the G-X1-S-X2-

G consensus sequence containing the catalytic serine is replaced by a GDSL sequence 

located closer to the N-terminus (Akoh et al., 2004).  
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Figure 2. The alpha/beta-hydrolase fold where α- helices are represented by spirals and β 

strands are indicated by arrows. The active-site residues are shown as circles. Adapted from 

(Jaeger et al., 1999). 

 

4.3 The oxyanion hole 

 

The tetrahedral intermediate formed during the catalytic mechanism of lipases is stabilized 

by the presence of hydrogen bonds with two amino acids that form the so-called lipase 

oxyanion hole. These aminoacids stabilize the intermediate through hydrogen bonds 

between their backbone amide proton and the oxygen of the substrate carbonyl group (see 

section 4.6) (Pleiss et al., 2000a).  

 

The first residue of the oxyanion hole is located in the N-terminal part of lipases, in the loop 

between the strand β3 and the αA helix. Depending on the sequence surrounding this first 

residue, Pleiss et al. (Pleiss et al., 2000a) identified two types of oxyanion holes: GX and 

GGGX, which are shown in Figure 3. The second residue of the oxyanion hole is the X2 

residue of the consensus sequence G-X1-S-X2-G, located after strand β5 in the structurally 

conserved nucleophilic elbow common to all lipases. The oxyanion hole can either be 

preformed in the closed conformation without the geometrical modification produced during 

the opening of the lid, or only formed upon the opening of the lid (see section 4.4).  
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Figure 3. Two types of oxyanion holes. (a) GX type in R. miehei lipase (PDB entry 4TGL): 

diethylphosphonate stabilized by hydrogen bonds with S82 and Leu145. (b) GGGX type in 

C. rugosa lipase (PDB entry 1LPM): (1R)-menthyl hexyl phosphonate stabilized by hydrogen 

bonds with G124 and Ala210. Substrate is shown in black and hydrogen bonds are 

schematized by dotted lines. 
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The type of oxyanion hole plays an important role in the specificities of lipases toward their 

substrates. Indeed, lipases with the GX type usually hydrolyze substrates with medium and 

long carbon chain length, while the GGGX type is found in short length specific lipases and 

carboxylesterases. Fungal lipases have the oxyanion hole type GX, where X is either a 

serine or threonine, and in most cases they possess a third amino acid, aspartic or 

asparagine, which also contributes to stabilize the oxyanion hole through a hydrogen bond 

(Pleiss et al., 2000a).  

 

A third type of oxyanion hole, type Y, was identified by Fischer et al. (Fischer et al., 2006). In 

type Y the oxyanion hole is formed by the hydroxyl group of a strictly conserved tyrosine side 

chain. This type is found in lipase A from C. antarctica (family abh38) and few esterases 

such as cocaine esterases (Pleiss, 2009; Widmann et al., 2010) . 

 

GDSL enzymes do not have the so-called nucleophilic elbow, and their oxyanion hole seems 

to have a particular structure: the catalytic Ser serves as a proton donor in the oxyanion 

hole, together with a highly conserved glycine and asparagine. This tri-residue constituted 

oxyanion hole was proposed to compensate for the lack of hydrogen bond of the 

intermediate with the catalytic histidine (Akoh et al., 2004).  

 

4.4 Lipases α-helical loop, the lid 

 

The resolution of the first three-dimensional structures of lipases from Rhizomucor miehei 

and human pancreatic lipase (Brady et al., 1990; Winkler et al., 1990) enabled the 

identification of a lid over the active site. The lid is composed of one or more α helices, 

joined to the main structure of the enzyme by a flexible structure. It is a mobile element, 

which uncovers the active site in the presence of a lipid-water interface, generating a 

conformational change and thus enabling the access of the substrate to the active site 

(Derewenda and Derewenda, 1991; Grochulski et al., 1993a; Grochulski et al., 1994b; 

Brzozowski et al., 2000). This mechanism, known as interfacial activation, explains the non 

Michaelis-Menten behavior observed with most lipases. Indeed, lipase activity increases 

dramatically when the substrate concentration is high enough to form micelles and 

emulsions (Fickers et al., 2008; Reis et al., 2009), and thus gives sigmoid curves when the 

reaction initial rate is plotted against the substrate concentration. When the interface is 

absent, the entrance to the active site is blocked and the enzyme is inactive. Figure 4 shows 

R. miehei lipase in its opened and closed conformation. The lid in its closed conformation 

obstructs the entrance of the substrate, diethyl phosphonate, while the open lid allows 
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access to the active site (Moore et al., 2001). Table 1 gives the amino acids that form the lid 

of the lipases from B. cepacia, C. rugosa, R. miehei, Rhizopus delemar and T. lanuginosus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Rhizomucor miehei lipase. In purple its open conformation with diethyl 

phosphonate, PDB 4TGL, (Derewenda et al., 1992a) and in blue its closed conformation, 

PDB: 3TGL, (Brzozowski et al., 1992). 

 

4.5 Substrate binding site 

 

The active site of lipases is located in the inside of a pocket on the top of the central β sheet 

of the protein structure. The surface of the pocket’s border mainly consists in hydrophobic 

residues in order to interact with the hydrophobic substrate. The active sites of lipases differ 

in their shape, size, deepness of the pocket and physicochemical characteristics of their 

amino acids (Pleiss et al., 1998). Pleiss et al., 1998 classified lipases in three groups 

according to the geometry of their binding site (Figure 5). The first group has a hydrophobic, 

crevice-like binding site located near the surface of the protein. Lipases from Rhizomucor 

and Rhizopus display such a crevice-like binding site. The second group has a funnel-like 

binding site. This group includes lipases from C. antarctica, Burkholderia sp. and P. cepacia, 

LID 

Open 

Closed 
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as well as mammalian pancreas. The last group has a tunnel-like binding site and comprises 

lipases from C. rugosa.  

 

Source Top View 

Rhizomucor 

miehei lipase 

 

 

 

 
 

Candida 

antarctica 

Lipase B 

 

 

 

 
 

Candida 
 rugosa  
lipase 

  

  
 

 

Figure 5. Shape of the three types of binding site of lipases as identified by (Pleiss et al., 

1998). 
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4.6 Catalytic mechanism 

 

The catalytic mechanism of lipases is shown in Figure 6. The mechanism starts by an 

acylation. This step consists in the transfer of a proton between the aspartate, the histidine 

and the serine residues of the lipase, causing the activation of the hydroxyl group of the 

catalytic serine. As a consequence, the hydroxyl residue of the serine, with subsequently 

increased nucleophilicity, attacks the carbonyl group of the substrate. The first tetrahedral 

intermediate is formed with a negative charge on the oxygen of the carbonyl group. The 

oxyanion hole stabilizes the charge distribution and reduces the state energy of the 

tetrahedral intermediate by forming at least two hydrogen bonds. The deacylation step then 

takes place, where a nucleophile attacks the enzyme, releasing the product and 

regenerating the enzyme. This nucleophile can be either water in the case of hydrolysis or 

an alcohol in the case of alcoholysis.  

 

5. Selectivity 

 

Lipase selectivity is related to its preference to perform given reactions. Three types of 

selectivity can be distinguished: type-selectivity, regioselectivity, and enantioselectivity. The 

basis of these types of selectivity is discussed below. 

 

5.1 Type-selectivity  

 

Type-selectivity is associated to the preference for a given substrate, for example tri, di or 

monoglycerides. For instance, a monoacylglycerol lipase isolated from human erythrocytes 

was shown to hydrolyze only mono-oleoylglycerol, compared to the corresponding di and tri-

glycerides (Sommadelpero et al., 1995). This selectivity also refers to the preference of 

lipases towards short, medium or long chain fatty acids and to the degree of unsaturation 

and potential substitutions of the substrate. The preference of a lipase for acyl groups of 

different sizes is directly influenced by the shape of its binding site (cf. 4.5), and the nature of 

the amino acids composing this binding site. Indeed, the very homologous C. rugosa lipase 

isoforms differ in chain length specificity due to slight modifications of the amino acids in 

their tunnel-shaped binding site (Lopez et al., 2004). In addition lipases can show chemo-

selectivity which is the specificity of lipases toward a specific chemical group.  
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5.2 Regioselectivity  

 

Regioselectivity is defined as the preferential attack of lipases toward a given ester bond in 

the glycerol backbone of triglycerides, i.e. primary or secondary ester bond. Regioselectivity 

can be sn-1(3), or sn-2 (Figure 7). Lang et al. crystallized the lipase from B. cepacia with 

triglyceride analogues and could unambiguously detect four binding pockets for the 

triglycerides (Lang et al., 1998). The binding pockets include the oxyanion hole and three 

pockets that accommodate the sn-1, sn-2 and sn-3 fatty acid chains. The size and 

hydrophobicity of these different pockets will control the regioselectivity of lipases.  

 

C

CH2

OCR2

O C

CH2 O C R1

O

O

H

R3

O

Ester bonds hydrolyzed by lipases

sn1

sn2

sn3

 

Figure 7. Identification of the ester bonds potentially hydrolyzed by lipases in a triacylglycerol 

molecule.  

 

Most microbial lipases hydrolyze the sn-1(3) positions of triglycerides and only few are 

capable of hydrolyzing the sn-2 position. Lipases with sn-1(3) specificity are produced by R. 

arrizhus, Aspergillus níger, Y. lipolytica, R. miehei, R. delemar and T. lanuginosus. Lipases 

with sn-2 specificity are unusual, and include those from Staphylococcus (Horchani et al., 

2010) and lipase C from Geotrichum sp FO401B (Ota et al., 2000). Finally, some lipases are 

non specific lipases that act at randomly on the triglycerides. Examples of non regio specific 

lipases are those from S. aureus (Vadehra and Harmon, 1967), S. hyicus (Vanoort et al., 

1989), Corynebacterium acnes (Hassing, 1971), C. viscosum (Sugiura and Isobe, 1975) and 

C. antarctica. 

 

 5.3 Enantioselectivity 

 

A chiral molecule is a molecule with an asymmetric center, which can adopt two 

enantiomeric forms, R and S. Enantiomers R and S are non-superimposable mirror images 

of each other (Figure 8), whose chemical properties, such as melting point, solubility and 

reactivity, are very similar. However they often have different biological properties. As a 

matter of fact, a given enantiomer might show therapeutic activity, while the other might be 
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inactive or even toxic (Soykova Pachnerova, 1963). Enantioselectivity refers to the 

preference of lipases towards a particular enantiomer of a chiral molecule, in a chemical 

reaction implying a racemate mixture (mixture of both enantiomers). Enantioselectivity is 

thus of great interest in the pharmaceutical industry.  

 

 

 

 

Figure 8. Representation of a chiral alanine in its two possible enantiomeric forms R and S. 

The chiral center is represented by an asterisk. 

 
 

An empirical rule based on the relative size of the substituents at the stereocenter was 

proposed for the reaction of lipases with secondary alcohols (Kazlauskas et al., 1991). This 

rule was also relevant to predict enantioselectivity of lipases for hydrolysis and 

transesterification reactions, the substrate being an ester or an alcohol, respectively. 

Unfortunately, rules predicting the enantioselectivity of lipases towards primary alcohols are 

far less reliable, even though natural substrates of lipases, i.e. esters of long chain fatty acid 

with glycerol, fall in this category. The X-ray resolution of substrate-enzyme complexes 

structures, additionally to molecular modelling of the tetrahedral intermediate or docking of 

the substrate in the active site, helped deepen the comprehension of lipase 

enantioselectivity (Bordes et al., 2009). By comparing the microbial lipases from C. 

antarctica (lipase B), R. oryzae, R. miehei and C. rugosa and their interaction with a 

trioctanoin substrate, Pleiss and collaborators highlighted the importance of both the 

topology of the binding site (and of a particular His-gap motif implying the catalytic histidine), 

and the structure of the substrate (flexible/rigid character of the sn-2 substituent) to explain 

lipase stereopreference (i.e. sn-1 versus sn-3 ester bond) (Pleiss et al., 2000b). Besides the 

interaction in the active site and the nature of the substrate, stereospecificity was also shown 

to be dependent on physicochemical factors such as temperature and solvent. Finally, it 

happens that enantioselectivity can be explained neither by structural nor by energetic 

analysis. By use of a novel in silico approach based on efficient path-planning algorithms, 

Guieysse et al. explained the enantioselectivy of B. cepacia lipase towards (R,S)-

NH2

O

OH

NH2

O

OH

L(S)-alanine D(R)-alanine 
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bromophenylacetic acid ethyl ester by the relative accessibility of the enantiomers to the 

catalytic center (Guieysse et al., 2008).  

 

6. Applications 

 

Enzymes are key components in a large number of industrial fields. Actually, their worldwide 

market was estimated in US $4.7 billions in 2008 (CBDM.T®, 2008), and was anticipated to 

reach US $7 billions in 2013 with an average annual increase of 6.3% per year (Freedonia, 

2009). The sole US enzyme demand is expected to reach US $2.8 billion in 2014, with a 

market distribution of 29% in pharmaceuticals, 18% in biofuels, 14% in food and beverage 

associated processes, 11% in research and biotechnology and the rest in industrial fields 

such as animal feed, pulp and paper processes, cosmetics and cleaning products 

(Freedonia, 2010). In this context, lipases are the third largest group of commercialized 

enzymes, after proteases and carbohydrases, and represent one billion dollar per year 

(Hasan et al., 2006). 

 

Lipases are of great importance in the industry due to their stability in organic solvents, their 

wide variety of substrates, their selectivity and their ability to catalyze reactions without 

addition of expensive cofactors. Moreover, they are also easily produced and active at 

ambient conditions.  

 

Therefore, lipases are used in many different industrial areas such as: 

 

∼ Food industry, including production of dairy products, such as cheese, modification 

of fats and oils (e.g. manufacture of butter and margarine, new cooking oils), 

production of baby food and structured lipids with unique properties (e.g. cocoa 

butter equivalent, human milk substitute, high or reduced calorie fats, poly 

unsaturated fatty acids PUFA enriched oils). They are used as emulsifiers in the 

improvement of baked products and pasta and as additives in animal feeding 

(Pignede et al., 2000a; Houde et al., 2004; Aloulou et al., 2007b). Finally, they are 

also used to modify flavours and produce fragrance compounds.  

∼ Detergents and cleaning agents, as additives since they are active and stable at 

high temperatures and alkaline pH. They are also essential in the production of soap, 

dish washing products, dry cleaning solvents and contact lens cleaning (Pandey et 

al., 1999; Hasan et al., 2006).  
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∼ Fine chemicals. In the pharmaceutical industry for the production of pure 

enantiomers through resolution of racemic mixtures (e.g. chiral molecules such as 

prostaglandins, cephalosporines, non-steroid anti-inflammatory drugs, hydantoins 

and penicillins). Chiral molecules are also used as herbicides in the agrochemical 

industry (Jaeger and Eggert, 2002). In the perfumes and cosmetic industry, they are 

employed to produce surfactants and scents, and as emollients in personal care 

products.  

∼ Medical applications, an alternative application of lipases is as diagnostic tools, 

since their presence and level can indicate an infection or disease, and as new drugs 

for treatment of digestive aids and high cholesterol levels (Hasan et al., 2006).  

∼ Pulp and paper industry, in pitch control, for removal of triglycerides and waxes. 

Moreover, their presence increases whiteness and reduces the pollution in waste 

waters.  

∼ Lipase bioremediation and environmental processes such as treatment of 

residual waters rich in oil, degradation of organic debris and sewage treatment from 

a wide range of industries (Hasan et al., 2006). They are also used to degrade 

petroleum hydrocarbons in oils spills.  

∼ Energy industry, production of lubricants, biodiesel an biokerosene from renewable 

sources by transesterification of vegetable/animal oils (Jaeger and Eggert, 2002). 

They are also used to produce additives that decrease the viscosity of biodiesel.  

∼ Further applications include production of biopolymers such as polyphenols, 

polysaccharides and polyesters (Jaeger and Eggert, 2002), lipase-mediated 

lipophilization, production of biosensors and modification of phenolic acids and 

antioxidants. Textile industry also uses lipases for enzymatic wash and jeans 

treatment (Hasan et al., 2006).  

 

Table 2 summarizes some of the applications of lipases. 

 

The application of lipases in industrial processes requires, in most cases, an over expression 

of the gene of interest in order to obtain larger quantities of the desired lipase. The 

production method and further purification of the desired enzyme will depend on the quantity 

and purity needed for a given application. Lipases are mainly produced by submerged 

fermentation (Sharma et al., 2001), however they can also be produced by solid state 

fermentation (Chisti and Flickinger, 2009). The purification methods used in the industry 

should be rapid, efficient, inexpensive and high yielding. Purification methods often involve a 

first concentration step, also known as pre-purification, by precipitation, ultra-filtration or 
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organic solvent extraction (Gupta et al., 2004). These techniques generate lipases employed 

in the cleaning agents industry. However pharmaceutical applications will require highly 

purified enzymes. Further enzyme purification is mainly achieved by hydrophobic or affinity 

chromatography, immunopurification, reversed micellar system and membrane processes 

(Gupta et al., 2004). Some commercial lipases available in the market are listed in Table 3. 

 

Table 3. Commercially available lipases, (Jaeger and Reetz, 1998; Houde et al., 2004; 

Vakhlu and Kour, 2006; Aimee Mireille Alloue et al., 2008). 

Type Source Form Producing company 

Fungal Candida rugosa Powder 
Atlus Biologics, Amano, Biocatalysts, 
Boehringer Mannheim, Meito 
Sangyo, Fluka, Genzyme, Sigma 

 Candida antarctica A/B  Immobilized 
Boehringer Mannheim, Novo 
Nordisk, Sigma 

 Thermomyces 
lanuginosus Immobilized Novo Nordisk, Boehringer Mannheim 

 Rhizomucor miehei  Immobilized/Liquid Novo Nordisk, Biocatalysts, Amano 

 Yarrowia lipolytica Powder Amano, Artechno S.A. 

 Geotricumcandidum Liquid Boehringer Mannheim, Novo Nordisk 

Bacterial Burkholderia cepacia  Powder Amano, Fluka, Boehringer Mannheim 

 Pseudomonas 
alcaligenes  Powder 

Gist-Brocades, Genencor 
International 

 Pseudomonas 
mendocina  Powder  Genencor International  

 Chromobacterium 
viscosum  Liquid Asahi, Biocatalysts 

Animal Pig pancreatic lipase Granulated Solvay pharma 
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Lip2 from Yarrowia lipolytica 

 

The non-conventional yeast of Yarrowia lipolytica is considered as a potential host for the 

production of proteins due to its high secretion levels (Guieysse et al., 2004; Fickers et al., 

2011). This yeast produces one extracellular lipase (Lip2) and two cell bound lipases (Lip7 

and Lip8) (Pignede et al., 2000a), which have been characterized (Pignede et al., 2000a; 

Fickers et al., 2005b). The sequence analysis of the lipases from Y. lipolytica showed 76% 

identity between Lip7 and Lip8, 33.9% between Lip2 and Lip7 and 35.2% between Lip2 and 

Lip8 (Fickers et al., 2005b). Lip2 is responsible for all the extracellular lipase activity of Y. 

lipolytica (Pignede et al., 2000a) and is easily adaptable for production and secretion of the 

lipase. Lip2 has been studied and characterized by several research teams (Pignede et al., 

2000a; Aloulou et al., 2007b; Yu et al., 2007a; Yu et al., 2007b; Bordes et al., 2010). 

 

1. Characteristics  

 

The mature Lip2 from Y. lipolytica is a glycosylated protein of 38 kDa and 301 amino acids 

encoded by the Lip2 gene (Pignede et al., 2000a; Yu et al., 2007b). The Lip2 gene encodes 

334 amino acids, from which the first 33 represent a signal peptide or prepro (Yu et al., 

2007a). The prepro has 13 amino acids, followed by four X-Ala or X-Pro dipeptides 

(substrates of diamino peptidases), a 12 amino acids pro region and a Lys-Arg dipeptide 

(substrate of the endopeptidase encoded by the gene XPR6 in Y. lipolytica) (Pignede et al., 

2000a). Four different isoforms of Lip2, with different glycosylation patterns and molecular 

weights between 36.874 and 38.485 kDa, have been identified (Aloulou et al., 2007b). 

 

 1.1 Structure 

 

Lip2 from Y. lipolytica has homology with the fungal lipases from R. miehei, PDB: 3TGL 

(Brzozowski et al., 1992) and 4TGL (Derewenda et al., 1992a), sequence identity 29%, 

sequence homology 46 %, gap 16 %; R. niveus, PDB: 1LGY (Kohno et al., 1996), sequence 

identity 33%, sequence homology 47 %, gap 17% and T. lanuginosus, PDB: 1GT6 

(Yapoudjian et al., 2002), sequence identity 31 %, sequence homology 47%, gap 14% 

(Bordes et al., 2009).  

 

Lip2 is an extracellular lipase, which is a type of protein that in general have several 

disulphide bonds which are crucial for their structure and stabilization of their tertiary 

structure and essential for protein structure and function (Bordes et al., 2009; Bordes et al., 

2010). The crystal structure of Lip2 (1.7 Å resolution) (Figure 9) shows that this lipase has a 
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typical α/β-hydrolase fold and four disulfide bridges (Cys30-Cys299, Cys43-Cys47, Cys120-

Cys123, Cys265-Cys273), having only one free Cys residue (Cys244) (Bordes et al., 2010). 

The crystal structure also showed confirmed the two glycosylation sites at N113 and N134 

(Jolivet et al., 2007; Bordes et al., 2010).  

 

The catalytic triad of Lip2 is formed by the Ser162, located in the nucleophilic elbow after the 

β5 sheet, the ASP230 and the His289 found after the β7 and β8 sheets, respectively. Lip2 

catalytic Ser shows a typical GxSxG lipase signature which in this case is GHSLG. The 

residues involved in the oxyanion hole are the Leu163, positioned next to the catalytic 

Ser162, and a rather hydrophilic residue the Thr88, located in a loop after the β3 sheet next 

to a Gly residue (Bordes et al., 2009). This oxyanion hole is of the GX type which usually 

hydrolyzes substrates with medium and long carbon chain length (Pleiss et al., 2000b). Asp 

97 is the anchor residue, which interacts through a hydrogen bond with the side chain of the 

hydrophilic residue of the oxyanion hole in the open form of the lipase.  

 

As explained in the previous section another important structural element of lipases is the lid. 

The lid is a mobile element composed of one or more α helices, which uncovers the active 

site in the presence of a lipid-water interface, generating a conformational change that 

enables the access of the substrate to the active site. From the homology analysis with R. 

miehei, R. niveus and T. lanuginosus in Lip2 the lid is formed by the residues between Thr88 

and Leu105 (Bordes et al., 2009). 

 

 1.2 Catalytic properties 

 

Optimal temperature and pH for Lip2 have been studied by several authors (Pignede et al., 

2000a; Aloulou et al., 2007b; Yu et al., 2007a; Yu et al., 2007b). Lip2 from Y. lipolytica is 

active in a pH range of 4 to 8, having its optimal pH between 6 and 8.0, depending on the 

substrates and experimental conditions (Yu et al., 2007b; Fickers et al., 2011). This enzyme 

is stable between pH of 3.5 to 9.0 (Fickers et al., 2011) but it suffers irreversible inactivation 

at pH of 3.0 and 8.5 (Aloulou et al., 2007b).  

 

Lip2 is active at low temperatures (5°C) and is rapidly deactivated over 50°C, with an optimal 

temperature between 30°C and 40°C (Destain et al., 1997; Aloulou et al., 2007b; Yu et al., 

2007b). Immobilized Lip2 has been used in bulk polymerization at high temperatures, up to 

150°C (Sandoval et al., 2010). A Lip2 variant with improved thermostability was recently 

isolated by error prone PCR (Bordes et al., 2011). In this variant the free cysteine 244 was 
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replaced by an alanine and had a half life time 127 fold higher at 60°C when compared with 

the wild type (1.5 min to 3h). 

 

Lip2 activity is also affected by the presence of solvents and metal ions. Lip2 preserved 90% 

of its activity after contact for 30 min at 30°C with 10% acetone, methanol, ethanol, 

isopropanol and DMSO (Yu et al., 2007b). However, it was deactivated in the presence of 

acetonitrile in the same conditions. After exposure with 20% organic solvent no activity was 

detected in acetone, ethanol and isopropanol. Nevertheless, it conserved 60% of its activity 

in methanol and 95% in DMSO. Lip2 activity increases in the presence of Ca2+ and Mg2+ and 

is inhibited by Zn2+, Ni2+ and Cu2+ (Yu et al., 2007b).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Ribbon representation of the structure of Lip2 from Y. lipolytica, PDB 3O0D 

(Bordes et al., 2010). The lid (T88–L105) is shown in blue, the catalytic triad (S162, D230, 

and H289) in red sticks and the glycosylation residues in green sticks (N113 and N134). 
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 1.3 Substrate specificity 

 

The substrate specificity of Lip2 was studied for different triglycerides and fatty acid methyl 

esters with different chain length. Lip2 shows higher activity toward triglycerides than 

hydrophilic esters, such as fatty acids methyl esters (Yu et al., 2007b).  For triglycerides, 

Lip2 was found highly active versus tricaprylin, olive oil and triolein (Aloulou et al., 2007b; Yu 

et al., 2007a). For fatty acid methyl esters, Lip2 showed activity towards C12-C16 methyl 

esters, with a higher preference towards methyl myristate (Yu et al., 2007b). Lip2 

stereoselectivity was studied following the hydrolysis of triolein and the release of partial 

glycerides (Aloulou et al., 2007b). Monoglycerides concentration continuously increased until 

66% hydrolysis, phase at which triglycerides and diglycerides had almost disappeared. This 

profile is characteristic of sn-1,3 lipases since they produce 2-monoglycerides and can not 

hydrolyse the ester bond at the sn-2 position. Lip2 stereoselectivity toward chemically alike 

but sterically non equivalent ester groups, showed a slight stereopreference for the 

hydrolysis of the ester bond at the sn-3 position compared to the sn-1 position of the 

triglyceride (Aloulou et al., 2007b). However, the apparent stereopreference changed 

according to the hydrolysis degree and the diglycerides excess slightly reversed after 25% of 

lipolysis.  

	  

2. Cloning and production  

 

Overexpression of Lip2 has been studied due the wide range of applications this lipase 

could have. The Lip2 gene was cloned and expressed in Y. lipolytica using the JMP3 

integrative multi-copy vector under the control of the POX2 promoter (Pignede et al., 2000b; 

Nicaud et al., 2002). The POX2 promoter allows high lipase production and is inducible by 

oleic acid or methyl oleate (Fickers et al., 2005a). The multi-copy strain JMY184 produced 

up to 1500 U/ml in a flask culture, while the lipase produced by the wild type had an activity 

of 50 U/ml (Pignede et al., 2000a; Pignede et al., 2000b). Another strategy was the chemical 

mutagenesis, using N-methyl-N′-nitro-N-nitrosoguanidine, to isolated overproducing mutants 

from the Y. lipolytica strain CBS6303 (Destain et al., 1997; Fickers et al., 2003). The second 

generation mutant LgX64.81 had a lipase activity over 1100 U/ml (Destain et al., 1997). The 

LgX64.81 mutant was later improved by amplification of the Lip2 gene, producing the 

JMY1105 strain (Fickers et al., 2005c). This strain produced a lipase with an activity of 

26450 U/ml in a batch culture, using olive oil and tryptone as carbon and nitrogen sources. 

Feeding tryptone and olive oil at the end of the exponential growth phase led to a lipase 

production of 158246 U/ml after 80h in a 20 liters fed batch fermentor.  
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Lip2 production, from a non-genetically modified strain, is of interest from a biotechnological 

point of view and has been optimized in batch and fed batch bioreactors. The overproducing 

mutant LgX64.81, grown in a 20 litres fermentor, showed that feeding with a complete 

medium grave a two fold increase in lipase production (2000 U/ml) while glucose and olive 

oil addition gave a three fold increase (Fickers et al., 2009). This same mutant, LgX64.81, 

produced 2145 U/ml in a 32h batch culture with a medium supplemented with 10 g/l of 

tryptone (Turki et al., 2010). Production was optimized by a stepwise feeding strategy, with 

methyl oleate and tryptone, and by decoupling cell growth and lipase production phases, 

leading to a production of 10000 U/ml after 80h. Lip2 has also been successfully produced in 

a large sale fermentor (2000lt), using a mixture of whey powder, corn steep liquor, glucose 

and olive oil as medium (Fickers et al., 2006). After 53h fermentation an activity of 1100 U/ml 

was obtained.   

 

Fed-batch production in a mineral medium was also attempted (Leblond et al., 2009). The 

synthetic medium provided sources for Y. lipolytica growth and protein expression using 

oleic acid as inducer of the promoter POX2. Growth phase was carried out using glucose as 

sole carbon source, reaching 60g/L of biomass after 15h at 28°C and pH 6. For the protein 

expression phase the carbon source was switched to oleic acid in a fed batch mode. After 

other 50h fermentation the biomass reached a concentration of 100g/L with 60000 U/ml of 

lipase activity in triolein and 380 U/ml of p-NPB activity (Figure 10).  

 

 
Figure 10. Production of Lip2 from Y. lipolytica in mineral medium. Batch system for biomass 

production using glucose as carbon source; fed-batch for protein expression using oleic acid 

as carbon source, indicated with a dash line. p Glucose concentration (g/L) u Biomass 

(g/L) ¡ p-NPB activity (U/ml). 
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The Lip2 gene has also been heterologously produced in Pichia pastoris (Aloulou et al., 

2007a; Yu et al., 2007a). Lip2 was expressed in the methylotrophic yeast P. pastoris X-33 

and secreted using the secretion signal peptide (α-factor) from S. cerevisiae and under the 

control of the methanol inducible promoter AOX1 (Yu et al., 2007a). After fed batch culture, a 

lipase activity of 12500 U/ml was reached.  

 

2.1 Improving Lip2 using Y. lipolytica as an expression system 

 

Y. lipolytica is a good host for gene expression and secretion; it has been successfully used 

to produce plasmids and proteins from several organisms (Nicaud et al., 2002; Madzak et 

al., 2004). This system shows high secretion and is efficient in post-translational 

modifications (Barth and Gaillardin, 1996). In addition, strains deleted for extracellular 

proteases and lipases allow high protein purity in the supernatant (Pignede et al., 2000a; 

Nicaud et al., 2002; Fickers et al., 2005b).  

 

Y. lipolytica was used to develop a high-throughput screening protocol using Lip2 as 

expressed enzyme (Bordes et al., 2007; Cambon et al., 2010) and was later used for 

directed evolution of this enzyme (Bordes et al., 2009). The Lip2 gene was carried by the 

expression cassette contained in plasmid JMP8 (Figure 11), flanked by two zeta regions and 

composed of URA3 marker (ura3d1), POX2 promoter and Lip2 gene. The expression 

cassette (Figure 12A) can be recovered by NotI digestion and used directly in Y. lipolytica 

transformation. This research resulted in the construction of the stain JMY1212, which 

contains a zeta docking platform that allows integrations at a specific site avoiding the 

random insertion observed in strain JMY1165 (Figure 12B -12C). With strain JMY1165 a 

coefficient variance of 36.3% for the full process (transformation, picking, expression and 

activity test) was obtained. The new strain JMY1212 allows high transformation frequency 

and lower coefficient variance of 18.9% for transformation, growth and expression of protein 

(Bordes et al., 2007).  

 

Strain JMY1212 is the first expression system that allows direct comparison of activities 

between the enzymes or variants directly from the supernatants (Cambon et al., 2010). The 

zeta docking platform forced the integration of the expression cassette at this locus. Analysis 

of 102 transformants expressing Lip2 from Y. lipolytica showed that only one transformant 

had abnormal activity (57% increase) (Figure 13). The other variants had a normal 

distribution, with a coefficient variation of 9.1% where the interval mean ± two standard 

deviations represents 95% of the transformants. This strain was used to compare the 

activities of Lip2 mono mutants library in position 232, crucial for enantiomer discrimination. 
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The 95% confidence intervals around the mean enabled variant activities to be statistically 

compared. The high reproducibility in the expression levels avoids protein purification and 

quantification steps for false positives and avoids real positives from being discarded. 
 

 
 

Figure 11. Schematic diagram of JMP8 expression vector. Vector contains the ura3d1 

marker for selection of Ura+ transformants in Y. lipolytica, the kanamycin gene (KanR) for 

selection in E. coli and Lip2 gene expressed under the control of the POX2 promoter.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 12. (A) Expression cassette flanked by the zeta region, liberated from the plasmid 

upon NotI digestion (Pignede et al., 2000b). Expression cassette (B) Random insertion in 

strain JMY1165 (C) Unique and targeted integration at the zeta platform in strain JMY1212.  

A 

JMY1212 
Zeta platform at LEU2 locus 
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JMY1165 
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Figure 13. Comparison of the experimental activity distribution (represented as a histogram) 

with the theoretical normal distribution with a mean of 62.9 U/ml and a standard deviation of 

6.7 U/ml (represented as a line) for 102 transformants. 
 

Using this platform the enantioselectivity of Lip2, for the resolution of 2-bromo-arylacetic acid 

esters, an important class of chemical intermediates in the pharmaceutical industry, was 

improved (Bordes et al., 2009). Using site directed mutagenesis to the substrate binding site 

the enantioselectivity was modified. Five amino acid residues (T88, V94, V97, V232 and 

V2385) from the active site and in direct contact with the substrate were selected, since they 

could potentially be involved in the enzyme selectivity. Position V232 was found essential for 

the discrimination of enantiomers, variants V232A had enhanced enantioselectivity and 

variant V232L had selectivity inversion. Position V232 was saturated and the screening of 

this library identified variant V232S with a highly increased E value (>200) and an eight-fold 

increase in activity.  

 

Thermostability of Lip2 has also been improved using the high efficient Y. lipolytica 

expression system (Bordes et al., 2011). This lipase has low thermostability at temperatures 

higher than 40°C, however it is a promising candidates for many industrial applications. 

Using error prone PCR, the screening of the library identified a thermostable variant where 

the free cysteine 244 mutated for an alanine. Saturation of position 244 showed that thermal 

denaturation is caused by the presence of a cysteine in this position.  
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3. Applications 

 

Some of the most important applications of Lip2 are summarized in Table 4. This lipase can 

be use in several areas such as bioremediation, fine chemistry, food and pharmaceutical 

industries. In addition, due to its homology to the lipases from R. miehei and T. lanuginosus 

it could be used for the purification of polyunsaturated fatty acids of the Omega-3 family, 

such as docosahexaenoic and eicosapentaenoic acid, and for the production of structural 

lipids (1,3 specificity), which are two of the objectives of this research work.  

 

Table 4. Industrial applications of Lip2 from Yarrowia lipolytica. 

Industry Product or application Reference 

Bioremediation  

Treatment for olive mill and oil industry waste 
waters. 

(Lanciotti et al., 2005) 
(Scioli and Vollaro, 1997) 
(Wu et al., 2009) 

Treatment of palm oil mill effluent. (Oswal et al., 2002) 

Treatment of seafood wastes. (Yano et al., 2008) 

Bioremediation of crude oil contamination. (Zinjarde and Pant, 2002) 

Fine chemistry 

Polyester synthesis: ring-opening polymerization 
reaction of ε-caprolactone. 

(Barrera-Rivera et al., 
2008) 

Optically pure amines: resolving agents, chiral 
adjuvant, and chiral synthetic building blocks, e.g. 
(±)α-phenylethyl amine. 

(Wen et al., 2008) 

Production secondary metabolites: ciric ans 
isocitric, γ and δ lactones, and dicarboxylic  acids.  (Thevenieau et al., 2009) 

Food industry 
Synthesis of MAG. 
Maturation of cheeses. 
Dry fermented sausages. 

(Esmelindro et al., 2008) 
(Suzzi et al., 2001) 
(Wyder et al., 1999) 
(Gardini et al., 2001) 

Pharmaceutical 
industry 

Substitution therapy for exocrine pancreatic 
insufficiency. (Leblond and Mouz, 2007) 

Resolution of racemic mixtures: e.g. 2-halogeno-
carboxylic acids, intermediates in the synthesis 
pathways of drugs and ibuprofen. 

(Guieysse et al., 2004) 
(Cancino et al., 2008) 
(Bordes et al., 2009) 
(Liu et al., 2009) 
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Omega-3 polyunsaturated fatty acids 

 

1. Fatty acids 

 

Oils and fats are derived from fatty acids and are used to store energy. They represent the 

most important and abundant compounds in foods (Badui et al., 1993 ). Fatty acids (FA) are 

carboxylic acids with hydrocarbon tails of 4 to 36 carbons and with a terminal carboxyl group 

(-COOH). The fatty acids can be saturated or unsaturated. Saturated fatty acids have 

between four and twenty four carbons (Table 5) and their basic formula is:  

 

CH3-(CH2)n -COOH 

 

Some examples are the butyric acid, found in milk fat and the lauric acid, which abounds in 

coconut and palmitic oils. The foods rich in saturated fats are milk and meat, and their 

derivatives.  

 

Unsaturated fatty acids have double bonds in the chain, between one and six, and they can 

be monounsaturated or polyunsaturated. The instaurations can have cis or trans 

configuration. Unsaturated fatty acids produced naturally have a cis configuration in the 

double bonds. However trans fatty acids are found in dairy products and meats, as well as in 

vegetal oils as a consequence of the hydrogenation process. A high consumption of trans 

fatty acids increases the levels of low density lipoproteins (LDL) and reduces the 

concentration of high density lipoproteins (HDL) (Lehninger et al., 2005). Lipoproteins 

transport triacylglycerols and cholesterol esters through the blood. There are four main 

groups, the chylomicrons, which are the biggest and with lowest density, the very low density 

lipoproteins (VLDL), the low density lipoproteins (LDL) and the high density lipoproteins 

(HDL). Each one has different amounts of triacylglycerols, cholesterol, phospholipids and 

proteins (Gunstone et al., 1994 ; Lehninger et al., 2005). 

 

Unsaturated fatty acids are found in vegetal and fish oils (Table 6). The oleic acid is found in 

all vegetal oils, mainly in olive oil. The polyunsaturated fatty acids (PUFA) of the Omega-6 

family, which is the linoleic acid, are found in corn, safflower, soy bean and sunflower oils 

(Badui et al., 1993 ). Fish is rich in polyunsaturated fatty acids of the Omega-3 family. The 

two fatty acids that represent the largest proportion in fish are the eicosapentaenoic, EPA, 

and docosahexaenoic, DHA (Botanical-Online, 2011). 
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Table 5. Saturated fatty acids. 

Common name Scientific 
name Abbreviation Formula Sources 

Butyric acid Butanoic acid C 4:0 CH3(CH2)2COOH Ruminant milk 

Caproic acid Hexanoic acid C 6:0 CH3(CH2)4COOH Ruminant milk 

Caprylic acid Octanoic acid C 8:0 CH3(CH2)6COOH Ruminant milk and 
coconut oil 

Capric acid Decanoic acid C 10:0 CH3(CH2)8COOH Ruminant milk and 
coconut oil 

Lauric acid Dodecanoic 
acid C 12:0 CH3(CH2)10COOH Coconut oil and palm oil  

Myristic acid Tetradecanoic 
acid C 14:0 CH3(CH2)12COOH Coconut, palm and 

other vegetable oils 

Pentadecanoic 
acid 

Pentadecanoic 
acid C 15:0 CH3(CH2)13COOH Uncommon in all 

tissues 

Palmitic acid Hexadecanoic 
acid C 16:0 CH3(CH2)14COOH Common in all fats 

Stearic acid Octadecanoic 
acid C 18:0 CH3(CH2)16COOH Animal fats and cacao 

Arachidic acid Eicosanoic 
acid C 20:0 CH3(CH2)18COOH Pig lard and peanut oil  

Behenic acid Docosanoic 
acid C 22:0 CH3(CH2)20COOH Rare in all tissues 

Lignoceric acid Tetracosanoic 
acid C 24:0 CH3(CH2)22COOH Rare in all tissues 

 

The smallest lipids that fatty acids can form are the triacylglycerols (TAG). Triacylglycerols 

consist of three fatty acids, each one with an ester bond to a glycerol molecule (Figure 14). 

The glycerol has each one of the three hydroxyl groups esterified to the fatty acids, which 

can be saturated or unsaturated. Triacylglycerols can have the same or different fatty acids 

in the three positions. These compounds are essential for the formation of more complex 

lipids which are stored as fats and oils and lipases are required in order to hydrolyze them 

and release the fatty acids (Lehninger et al., 2005).  
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Figure 14. Triacylglycerol 

 

Lipids represent a wide variety of chemical compounds which are mainly characterized by 

their insolubility in water. However they are soluble in certain organic solvents such as 

chloroform, hexane, benzene and ethanol (Spiller, 1996). They have several biological 

functions that can be classified in four major groups: storage, structural, signalling and 

transport. Most of the organisms use them to store energy as oils and fats since they 

release more energy than sugars during their oxidation process. Mammals accumulate lipids 

as fats in several adipose tissue sites while fishes accumulate them as oils. In plants, lipids 

are stored as protective oils with characteristic scents and flavors. One of their most 

important structural functions is their presence as phospholipids and sterols in the biological 

membrane. Lipids form a double film in the membranes, known as bilipid layer, which acts 

as a barrier to polar molecules and ions. There are five general types of membranes: 

glycerophospholipids, galactolipids, sulfolipids, sphingolipids and sterols (Lehninger et al., 

2005). 

 

Other functions include acting as enzymes co-factors, electron carriers, chaperons, 

emulsifiers, hormones and intracellular messengers. These lipids have an active role in the 

metabolic traffic as metabolites and messengers. They can act as signals, hormones that 

travel in the blood from one tissue to another or as intracellular messengers that generate 

an external response, since they can act like binding sites on the membrane. Another 

function is as eicosanoids, derivates from the fatty acids involved, among others, in the 

reproductive functions and the blood pressure regulation. Three types of eicosanoids are 

present prostaglandins, thromboxanes and leukotrienes. The prostaglandins affect the blood 

flow in specific organs and their response affect hormones like epinephrine and glucagon. 

The thromboxanes are involved in the production of clots and the leukotrienes are strong 

biological signs. In electron transference reactions they operate as enzymatic cofactors. 

Lipids can also act as molecules capable of visible light absorption (Lehninger et al., 2005).  

Other functions include thermal isolation and they provide mechanical protection. 
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Table 6. Unsaturated fatty acids.  

Common name Scientific name Abbreviation Formula Sources 

Caproleic acid 9-decenoic acid C10:1 n-1 C9H17COOH Ruminant milk 

Lauroleic acid 2-dodecenoic acid C12:1 n-3 C11H21COOH Cow milk 

Myristoleic acid 9-tetradecenoic acid C14:1 n-5 C13H25COOH Fish oils 

Palmitoleic acid 9-hexadecenoic acid C16:1 n-7 C15H29COOH Macadamia nut and 
fish oils 

Oleic acid 9-octadenoic acid C18:1 n-9 C17H33COOH Vegetable oils 

Vaccenic acid 11-octadecenoic acid C18:1 n-7 C17H33COOH Ruminant fat 

Gadoleic acid 9-eicosenoic acid C20:1 n-11 C19H37COOH Fish oils 

Cetoleic acid 11-docosenoic acid C22:1 n-11 C21H41COOH Fish oils 

Erucic acid 13-docosenoic acid C22:1 n-9 C21H41COOH Colza oil 

Linoleic acid 9,12-octadecadienoic 
acid C18:2 n-6 C17H31COOH Vegetable oils  

Linolenic acid 9,12,15-
octadecatrienoic acid C18: 3 n-3 C17H29COOH Soy bean and other 

vegetal oils 

Gamma linolenic 
acid 

6,9,12-
octadecatrienoic acid C18:3 n-6 C17H29COOH Onagra and borage 

oil 

Stearidonic acid 
6,9,12,15-

octadecatetraenoic 
acid 

C18:4 n-3 C17H27COOH Fish oils and onagra 
and borage seeds 

Araquidonic acid 5,8,11,14-
eicosatetraenoic acid C20:4 n-6 C19H31COOH Fish oils 

Eicosapentaenoic 
acid 

5,8,11,14,17-
eicosapentaenoic acid C20:5 n-3 C19H29COOH Fish oils 

Docosapentaenoic 
acid  

7,10,13,16,19-
docosapentaenoic acid C22:5 n-3 C21H33COOH Fish oils 

Docosahexaenoic 
acid 

4,7,10,13,16,19-
docosahexaenoic acid C22:6 n-3 C21H31COOH Fish oils 
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1.1 Essential fatty acids 

 

The essential fatty acids (EFAs) are those indispensable for human health but can not be 

synthesized in the organism. The essential fatty acids are the linoleic acid, Omega -6 and 

the linolenic acid, Omega-3 (University of Maryland Medical Center, 2011). Both of them 

have important roles in brain functions, as well as in growth, normal development of the 

organism and synthesis of prostaglandins. In general they stimulate skin and hair growth, 

they regulate the metabolism, maintain bone health and preserve reproductive capability 

(Botanical-Online, 2011; University of Maryland Medical Center, 2011).   

 

1.1.1 Omega-6 

 

The most important fatty acid in the Omega-6 family is the gamma linolenic acid (GLA) 

which is a polyunsaturated fatty acid (Figure 11). In processed foods the linolenic acid is 

saturated with hydrogen in order to increase its stability, unfortunately this process produces 

trans fatty acids. The seeds oils from black currant, borage and evening primrose are rich in 

linolenic acid, as well as walnut, avocado, sunflower, sesame and wheat oils (Botanical-

Online, 2011; University of Maryland Medical Center, 2011). Other fatty acids of the Omega-

6 family are the arachidonic acid (Figure 15), predecessor in the synthesis of prostaglandins, 

and the homo-gamma-linoleic acid (Table 7) (Botanical-Online, 2011; University of Maryland 

Medical Center, 2011). The arachidonic acid is found in meat and egg.   

 

 

       

  (a) 
 

  

  (b) 

 

  

   (c) 
 

 

Figure 15. Structure of (a) gamma linolenic acid (b) homo-gamma-linolenic acid and (c) 

arachidonic acid (Lipomics Technologies, 2009). 
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Table 7. Fatty acids of the Omeg-6 family (Lipomics Technologies, 2009) 

Common name Abbreviation Structure Scientific name 

Linoleic acid 18:2 (n−6) 

OH

O

 

9,12-octadecadienoic 
acid 

Gamma linolenic 
acid 18:3 (n−6) 

O

OH

 

6,9,12-octadecatrienoic 
acid 

Eicosadienoic acid 20:2 (n−6) 
COOH

 
11,14-eicosadienoic acid 

Homo-γ-linolenic 
acid 20:3 (n−6) 

OH

O

 

8,11,14-eicosatrienoic 
acid 

Arachidonic acid  20:4 (n−6) 

O

OH

 

5,8,11,14-
eicosatetraenoic acid 

Docosadienoic acid 22:2 (n−6) 

OH

O

 

13,16-docosadienoic 
acid 

Adrenic acid  22:4 (n−6) 

OH

O

 

7,10,13,16-
docosatetraenoic acid 

Docosapentaenoic 
acid 22:5 (n−6) 

OH

O

 

4,7,10,13,16-
docosapentaenoic acid 
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Some functions of the Omega-6 in the organism are the formation of cell membranes and 

the production of hormones, maintaining a good functioning of the immune system, the 

development of the retina and appropriate functioning of neurons and chemical 

transmissions. However there are other benefits that these compounds proportionate to the 

organism. Some of the benefits to the circulatory system include the reduction in the amount 

of cholesterol, the prevention in the formation of clods in the arteries and a reduction of the 

blood pressure (University of Maryland Medical Center, 2011). It also protects the organism 

against heart attacks, apoplexies and angina, among others (Botanical-Online, 2011).   

 

Fatty acids of the Omega-6 family have been used in the treatment of nervous anorexia, in 

order to avoid metabolic complications related with the deficiency of these polyunsaturated 

fatty acids. They also have anti-inflammatory properties, which make them appropriate in the 

treatment of articulation diseases such as rheumatoid arthritis. Linoleic acid also helps with 

the production of prostaglandins which makes it useful in the treatment of premenstrual 

syndrome (University of Maryland Medical Center, 2011). Another application of these fatty 

acids is in the diabetic treatment because it helps to maintain the insulin levels and its 

consumption prevents diseases of the nervous system.  In Mexico according with the IMSS 

(Mexican Institute of Social Security) the diabetes is the first cause of death in the country 

with 21, 388 deaths in the country in 2007 (El Universal, 2008).  

 

The deficiency of the essential fatty acids can induce the loss of bone density and 

osteoporosis, reason why their appropriate consumption is necessary. Pharmaceutical 

supplements of GLA and EPA keep and increase the bone density, they improve the 

calcium absorption and reduce the calcium loss by urine (University of Maryland Medical 

Center, 2011). This fatty acid could be used in the alcoholism treatment by reducing the 

anxiety and the hepatic damage. It is also given to allergic people who can have low blood 

levels of this fatty (University of Maryland Medical Center, 2011).   

 

The gamma linoleic acid can be used externally for skin diseases such as eczemas 

(University of Maryland Medical Center, 2011). Some clinical researches have shown that 

the linoleic acid is capable of reducing the amount of acne and psoriasis on the skin by 

reducing the amount of facial oil. Some properties of the linoleic acid are anti-inflammatory, 

anti-esclerotic, anti-hemorragic and hepatoprotector among others (Botanical-Online, 2011).   
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        1.1.2 Omega-3 

 

Omega-3 is a family of polyunsaturated fatty acids. The most important fatty acids of the 

Omega-3 family are the α-linolenic acid, ALA, the eicosapentaenoic acid, EPA and the 

docosahexaenoic acid, DHA (Figure 16). The body is capable of converting the ingested 

ALA to EPA and DHA, which are more readily available in the body. Unfortunately the 

amount of ALA that can be converted is less than 10% of the amount ingested (Figure 17) 

(Caballero et al., 2006).  

 

ALA can be found in vegetable seeds such as linseed, canola and nuts among others. EPA 

is found in blue fish oil and breast milk. Blue fish oil and some microscopic microalgaes are 

also rich in DHA. The main sources of Omega-3 are blue fish, salmon, tuna, halibut, herring, 

mackerel, anchovies and sardines, which are rich in EPA and DHA, the fish oil and the 

vegetable oils of linseed, canola and nuts. Other important sources are lettuce, soy, 

spinaches, strawberries, cucumbers, Brussels sprouts, pineapples, almonds and nuts 

(Botanical-Online, 2011). Table 8 shows other fatty acids of the Omega-3 family.  

 

The functions in the organism of the Omega-3 fatty acids are similar those of the Omega-6 

(Botanical-Online, 2011). They have a crucial role in normal growth and development, in 

addition to healthy brain functions, like memory and performance (University of Maryland 

Medical Center, 2011). DHA is an important structural component of the gray matter of the 

brain, eye retina and hearth tissue (Ward and Singh, 2005). These fatty acids reduce 

inflammation and reduce risk factors of diseases such as arthritis, cancer and heart 

diseases, myocardial infarction or bronchial asthma (Rubio-Rodriguez et al., 2009). The 

deficiency of Omega-3 can provoke fatigue, dry skin, heart problems, poor circulation, 

depression and memory loss, among others.  

 
Omega-6 family  Omega-3 family 

Linoleic acid (18:2)  α-linolenic acid (18:3) 
¼ Δ6-desaturase ¼ 

γ-Linolenic acid (18:3)  Octadecatraenoic acid (18:4) 
¼ elongase ¼ 

Dihomo-γ-linolenic acid (20:3)  Eicosatetraeonic acid (20:4) 
¼ Δ5-desaturase ¼ 

Araquidonic acid (20:4)  Eicosapentaenoic acid (20:5) 
¼ elongase ¼ 

Adrenic acid (22:4)  Docosapentaenoic acid (22:5) 
¼ Δ4-desaturase ¼ 

Docosapentaenoic acid (22:5)  Docosahexaenoic acid (22:6) 

Figure 17. Metabolism of fatty acids from the Omega-6 and Omega-3 family, (Carvalho et 

al., 2003). 
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Figure 16. I Linear structure II Three dimensional structure of (a) ALA (b) EPA y (c) DHA.  

 

They also have a cardio protector effect, which is a property of interest considering that the 

cardiovascular diseases represent the first cause of death in many countries around the 

world, which make them an important health problem (WHO, 2009). Each year the average 

of hearth disease deaths is of 102.9 deaths per 100,000 people around the world.  
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Table 8. Fatty acids of the Omeg-3 family (Lipomics Technologies, 2009). 

Common name Abbreviation Formula Scientific name 

α-linolenic acid  
ALA 18:3 (n−3) 

OH

O

 

cis-9,12,15-
octadecatrienoic acid 

Stearidonic  acid  
STD 18:4 (n−3) 

OH

O

 

cis-6,9,12,15-
octadecatetraenoic acid 

Eicosatrienoic acid 
ETA 20:3 (n−3) 

OH

O  

cis-11,14,17-
eicosatrienoic acid 

Eicosatetraenoic acid 20:4 (n−3) 

OH

O

 

cis-8,11,14,17-
eicosatetraenoic acid 

Eicosapentaenoic acid 
EPA 20:5 (n−3) 

OOH

 

cis-5,8,11,14,17-
eicosapentaenoic acid 

Docosapentaenoic acid 
 DPA 22:5 (n−3) 

OH

O

 

cis-7,10,13,16,19-
docosapentaenoic acid 

Docosahexaenoic acid 
DHA 22:6 (n−3) 

OH

O

 

cis-4,7,10,13,16,19-
docosahexaenoic acid 

Tetracosahexaenoic acid 24:6 (n−3) 

O

OH

 

cis-6,9,12,15,18,21-
tetracosahexaenoic acid 
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Omega-3 induces the production of eicosanoids, compounds that make the blood less 

viscous and reduce the formation of clods in the blood vessels. Some of their benefits 

include the diminishment of the blood pressure, the reduction of the cholesterol and 

triacylglycerol levels and they also prevent arrhythmia (Botanical-Online, 2011). Besides 

they aid the dilatation of the blood vessels increasing the irrigations of different organs. The 

Omega-3 acid ethyl esters have been prescribed in the treatment of very high 

triacylglycerols in blood (Sadovky and Kris-Etherton, 2009). In addition they have the ability 

of reducing the growth of cancer cells and they prevent breast, prostate and colon cancer. 

The Omega-3 is basic in the development vision and nervous system. It can also be used in 

the treatment of Attention deficit/hyperactivity disorder (ADHD) (University of Maryland 

Medical Center, 2011).  

 

Omega-3 have anti-inflammatory properties which are used in the treatment of arthritis 

rheumatoid, psoriasis and lupus, as well as inflammatory intestinal diseases. Their ingestion 

helps maintaining a metal equilibrium and reduces the risk of depression. They ensure skin 

health and prevent diseases like prioriasis. The consumption of Omega-3 is essential during 

pregnancy to ensure a healthy development of the fetus brain (Botanical-Online, 2011) and 

it has been shown that they reduce premature pregnancies (Olsen and Secher, 2002). 

Clinical studies show that Omega-3 fatty acids increase calcium levels in the body and 

improve strength and reduce osteoporosis (University of Maryland Medical Center, 2011). 

The ethyl ester form of the Omega-3 has also been used in medical treatments. The ethyl 

ester of EPA (E-EPA) has been used in the treatment of arteriosclerosis obliterans (Shimada 

et al., 1997d).  

 

The appropriate functioning of the organism requires an optimal relationship in the 

consumption of Omega-3 and Omega-6, which is a ratio of 4:1, Omega-6 to Omega-3. 

However in most diets the consumption of Omega-6 is higher than the optimal, reaching up 

between 11 and 30 times more Omega-6 than Omega-3. The appropriate intake of Omega-3 

is of 1.6 g/day for men and 1.1 g/day for women, (Table 9) (IOM, 2005). An excess in the 

consumption of Omega-6 can contribute to the development of long term diseases such as 

cancer, asthma, arthritis, depression and hearth diseases (University of Maryland Medical 

Center, 2011).   
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Table 9 Amount of EPA and DHA in fish (Kris-Etherton et al., 2002; Caballero et al., 2006) 

Fish DHA + EPA content 
g/3-oz serving fish Fish DHA + EPA content 

g/3-oz serving fish 

Sardines 0.98-1.7 Sole 0.42 

Wild trout 0.84 Oyster 0.37-1.17 

Fresh Tuna 0.24-1.28 Salmon 0.68-1.83  

Halibut 0.4-1.0 Shrimp 0.27  

Cod 0.13-0.24 Clam 0.24  

Mackerel 0.34-1.57 Lobster 0.07-0.41  

Herring 1.71-1.81 Alaska crab 0.35  

Halibut 0.4-1.0 

Commercial products 
Cod liver oil 
Omega-3 concentrates 
Omacor 

 
0.19  
0.5  

0.85  
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2. Concentrates of Omega-3 

 

The necessity to have an appropriate consumption of polyunsaturated fatty acids has 

increased the interest of researchers and industries to produce Omega-3 concentrates from 

marine oils. Marine oils can be concentrated as triacylglycerols, as free fatty acids (FFA) or 

their esters (Shahidi and Wanasundara, 1998) and are the most important source of Omega-

3 polyunsaturated fatty acids (ω-3 PUFA). These oils are the most common raw material 

used to prepare ω-3 PUFA concentrates, from which the production of concentrates with 

high percentages of EPA and DHA are the most important.  Some alternative sources of ω-3 

PUFA are single cell oils (Ward and Singh, 2005). The marine protists and dinoflagellates 

species of Thraustochytrium, Schizochytrium and Crypthecodinium are good sources of 

DHA and the microalgaes like Phaeodactylum and Monodus are rich in EPA. Other 

alternative source that has been studied is the species belonging to the fungal genus 

Mortierella, which mainly produce ARA and EPA (Dyal and Narine, 2005).	  

 

Different methods are used for concentrating the ω-3 PUFA, which include adsorption 

chromatography, molecular or fractional distillation, low temperature crystallization, urea 

complexation, supercritical fluid extraction, and enzymatic splitting (Figure 18). A brief 

explanation of these techniques will be described in the following paragraphs.  

 

Adsorption chromatography is a method in which the fatty acids are separated according to 

their carbon number or unsaturation degree (Shahidi and Wanasundara, 1998). Some 

chromatography techniques that have been used are high performance liquid 

chromatography (Tokiwa et al., 1981; Beebe et al., 1988; Perrut, 1988), silver resin 

chromatography (Adlof and Emiken, 1985) and column chromatography on silver nitrate 

impregnated silica gel (Teshima et al., 1978). More recent attempts have used selective 

extraction to enrich polyunsaturated fatty acid methyl esters from fish oil with π-complexing 

sorbents (Li et al., 2009). This technique can increase the amount of polyunsaturated fatty 

acid methyl esters from 18 to 80%.  

 

The distillation method is capable of a partial separation of fatty acid esters in a mixture. This 

method is based on the different boiling points and molecular weights of the fatty acids under 

low pressure. The most common method is the fractional distillation of fatty acid methyl 

esters at reduced pressure (Shahidi and Wanasundara, 1998). The low temperature 

crystallization method explodes the different solubilities of triacylglycerols, fatty acids, esters 

and other lipids in organic solvents. The PUFA are soluble at low temperatures while long 
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chain saturated fatty acids crystallize. The urea complexation method can be used to 

separate the fatty acids, or their esters, since their presence changes the structure and 

diameter of the crystallized urea. Using this method the saturated fatty acids of a mixture are 

crystallized with urea and filtrated, leaving a liquid fraction rich in ω-3 PUFA (Shahidi et al., 

1994). The supercritical fluid extraction technique uses gases that have solvent properties 

when are taken above their critical value. The separation of PUFA with this technique is 

based on the different molecular size of the molecules involved (Mishra et al., 1993; Riha 

and Brunner, 2000). Riha and Brunner used supercritical carbon dioxide fractioning to 

separate fish oil fatty acid ethyl esters. Supercritical fluid chromatography can concentrate 

the DHA and EPA ethyl esters (Alkio et al., 2000). This technique can produce DHA ester 

concentrates with 95%wt purity using CO2 as the mobile phase at 65°C and 145 bar and 

octadecyl silane-type reversed- phase silica as the stationary phase.  

 

 

 
 

Figure 18. Techniques used for concentrating the ω-3 PUFA. 

 

Another method of interest is the enzymatic splitting. The purification and concentration of ω-

3 PUFA can be achieved by esterification, transesterification or hydrolysis (Figure 19) 

(Shahidi and Wanasundara, 1998; Carvalho et al., 2003). Lipases have been used to 

produce concentrates of eicosapentaenoic acid and docosahexaenoic acid from fish oil. 

Purification Techniques 

Molecular or fractional distillation Enzymatic reactions Adsorption chromatography 

Supercritical fluid extraction Low temperature 
crystallization 

HPLC 

Silver resin chromatography 

Silver nitrate silica gel 

π-complexing 
sorbents  

Hydrolysis 

Transesterification 

Esterification 

Urea 
complexation 
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Figure 19. Reactions catalyzed by lipases for ω-3 PUFA purification. 

 

 2.1 Esterification  

 

The lipases from Chromobacterium viscosum and Candida cylindracea were used for the   

selective esterification reaction between glycerol and individual FFA, including EPA and 

DHA (Osada et al., 1992). The esterification with C. viscosum lipases had a reaction yield 

between 89-95%for EPA and DHA, while C. cylindracea had a reaction yield of 71-75% for 

EPA and of 63% for DHA. Similar experiments were carried out between ω-3 PUFA 

concentrates, containing 23.8% EPA and 53.1% DHA, and glycerol, in order to produce 

acylglycerols (He and Shahidi, 1997). These researchers tested the commercial lipases from 
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C. viscosum, Rhizomucor miehei, Pseudomonas sp., Candida rugosa, Rhizopus niveus, 

Aspergillus niger and Rhizopus oryzae. The degree of synthesis was of 68.5%, 44.1%, 

46.0%, 13.9%, 0%, 0% and 39.8% respectively. Under optimal reaction conditions (0.4 g of 

ω-3 PUFA concentrates, 4 g of glycerol, 40 mg of lipase, 0.5 g of molecular sieve and 1ml of 

isooctane), with C. viscosum lipase the maximal yield was of 94.3%, with a relative content 

of TAG of 37.4%, 43.1% for diglycerols and 13.8% of monoglycerols.  

 

This reaction has also been studied by Medina et al. (Medina et al., 1999). The synthesis of 

triacylglycerols by enzymatic esterification of PUFA with glycerol was catalyzed by Candida 

antarctica lipase (Novozym 435). The reaction was performed with 100mg of enzyme, 9ml of 

hexane, at 50ºC and a molar ratio of 1.2:3 glycerol to PUFA. The triacylglyceride yield was of 

93.5% using cod liver oil PUFA concentrate, generating a product with 25.7% EPA and 

44.7% DHA. Similar experiments were developed by Lie and Molin (Lie and Molin, 1992). 

The lipases from R. miehei and C. viscosum incorporated free PUFA into glycerol to a 

concentration of 75% and 80%, respectively. Both lipases showed a slight preference for 

EPA over DHA. Using the commercial lipase from C. viscosum immobilized, Tanaka et al. 

were able to produce a triglyceride with 46.2% DHA (Tanaka et al., 1994). 

 

The esterification reaction has also been used to separate the EPA and DHA in fish oil 

(Halldorsson et al., 2003). The reaction used FFA with glycerol and was catalyzed by R. 

miehei lipase (Lipozyme RM IM) at 40ºC with a lipase amount of 10%. Under these 

conditions most of the FFA and the EPA were converted to acylglycerols and the DHA was 

concentrated in the residual FFA. Using FFA from tuna oil with an initial proportion of 5% 

EPA and 25% DHA the esterification converted 90% to acylglycerols in 48h. The FFA 

fraction had a DHA concentration of 78% and only 3% of EPA, and 79% of the DHA was 

recovered. The EPA recovered in the acylglycerol fraction represented 91% (Halldorsson et 

al., 2003).  

 

Concentrates of ω-3 PUFA can also be produced as monoacylglycerols (MAG) (Pawongrat 

et al., 2007). MAG rich in EPA and DHA were produced by glycerolysis of tuna oil FFA, 

catalyzed with Lipase AK, from Pseudomonas fluorescens (Amano). The conditions of the 

reaction were 10% w/v of tuna oil in ter-butyl methyl ether, molar ratio of 3:1 glycerol to tuna 

oil, water with 4%wt in glycerol and 45ºC. A 24h reaction yielded 24.6% of MAG with 56%wt 

content of ω-3 PUFA. 
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An alternative source of ω-3 PUFA is the effluents of the sardine canning industry which 

have up to 10% of EPA and 10% DHA (Schmitt-Rozieres et al., 2000). The recovery of the 

fatty acids required a pre-treatment of the effluents that included removing solid particles, 

proteins and peptides. The obtained oil was hydrolyzed and the EPA and DHA enriched from 

the free fatty acid fraction by enzymatic esterification with butanol. The enzymes tested were 

R. miehei (Lipozyme IM60) and immobilized C. rugosa lipase on Amberlite IRC50 cation-

exchange resin. R. miehei enriched up to 80% DHA but did not increase the concentration of 

EPA (12%). The C. rugosa lipase enriched EPA to 30% and DHA to 41.0%. FFA produced 

as by-products in the seafood industry, are rich in DHA (46%wt) and were used to produced 

a TAG rich in DHA using R. miehei lipase (Lipozyme RM IM) (Nagao et al., 2011). The TAG 

produced had high concentrations of DHA which was distributed 51.7%mol in the sn-1,3 

positions and 17.3%mol in the sn-2 position.  
 

Thanks to its specificity, a great amount of research has focus on the application of the 

enzyme of C. rugosa to purify the PUFA content (Jonzo et al., 2000). Jonzo et al. used two 

isoforms A (Lip1 isoform) and B (mixture of Lip2 and Lip3 isoforms) of the C. rugosa lipase 

(Lipase My) that were purified and immobilized in Duolite A 568. The selective esterification 

was performed between FFA from sardine oils and cholesterol. Both isoforms had 

preference toward saturated and monosaturated fatty acids. The esterification with Lip A 

produced an unesterified FFA fraction enriched four times in DHA which increase its content 

from 7.4 to 32%, with a recovery of 95%. The unesterifed FFA fraction was enriched 3.4 

times when LipB was used, increasing the percentage from 7.42 to 25.3% with 93.8 

recovery. The selectivity toward EPA was less and its concentration change from 10.59% to 

5.21% and 12.11% with Lip A and Lip B respectively (Figure 20).  

 

2.2 Transesterification  

 

The transesterification reaction with lipases can also be used to produce concentrates of ω-3 

PUFA. The alcoholysis reaction of fish oil with ethanol released the saturated and 

monosaturated fatty acids as ethyl esters concentrating the polyunsaturated fatty acids in the 

acylglycerol mixture. The Pseudomonas species lipases show the highest activity toward the 

saturated and monounsaturated fatty acids in the fish oil, and a lower specificity toward EPA 

and DHA. The initial triacylglycerol substrate concentration was of 15.9% EPA and 9.8% 

DHA, obtaining a final concentration of 46% EPA + DHA, after a reaction of 24h at 20°C, 

with 90% recovery for EPA and 80%for DHA (Haraldsson et al., 1997). The Pseudomonas 

species lipases are some of the few lipases that favour towards DHA as a substrate over 

EPA.  
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Figure 20. Esterification of fatty acids from sardine oil and cholesterol with immobilized Lip A 

(A) or Lip B (B) at 40°C in cyclohexane for 24 h (Jonzo et al., 2000). 

 

The commercial lipase from R. miehei (Lipozyme OM-60, Novozymes) was used for the 

acidolysis reaction to enrich the ω-3 PUFA from menhaden oil under supercritical carbon 

dioxide conditions, using a concentrate of ω-3 PUFA (Lin et al., 2006). After 

transesterification, saponification and urea inclusion, 80.1%wt of ω-3 PUFA was 

concentrated with a concentration of 29.4%wt EPA and 41.8%wt DHA. The optimal pressure 

and temperature were 103.4 bars and 50°C.  

 

The purification of ethyl esters of fish oils represents another approach to produce 

concentrates of ω-3 PUFA. The ethyl docosahexaenoate (E-DHA) was purified by 

alcoholysis of fatty acid ethyl esters using the immobilized lipase from R. delemar (Ta-lipase, 

120000 U/g; Tanabe Seiyaku) (Shimada et al., 1997d). The original tuna oil had a 23%mol 

content of E-DHA. The alcoholysis reaction was carried out at 30°C, with a molar ratio of 1:3 

E-tuna to lauryl alcohol and 4%v of lipase. After 50h of reaction the E-DHA content was 

increased from 23 to 52%mol with a 90% recovery. Using ethyl esters mixtures with high 

contents of E-DHA, 45%mol and 60%mol, after a 50h reaction the content of this ester 

increased to 72%mol and 83% mol respectively, with more than 90% recovery.  

A 

B 
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Optimization of the purification of ethyl esters of DHA was conducted by the same authors 

(Shimada et al., 1998). The selective alcoholysis of ethyl esters from tuna oil, with R. 

delemar lipase (Ta-lipase), efficiently enriched the E-DHA. As mentioned in the previous 

paragraph, the alcoholysis can increased the content of E-DHA in the unreacted ethyl ester 

fraction from 23 to 49%mol with 90% recovery. Unfortunately the concentration of ethyl 

eicosapentaenoate (E-EPA) also increased. The concentration of E-EPA was reduced using 

the lipase from R. miehei (Lipozyme IM). The alcoholysis reaction conditions were 30ºC, with 

a molar ratio of 1:3 ethyl ester to lauryl alcohol and 4%wt of R. miehei lipase. This reaction 

effectively increases the E-DHA content from 45 to 74%mol and reduced the concentration 

of E-EPA from 12 to 6.2%mol. Using a higher molar ratio of ethyl esters/lauryl alcohol 

increased the E-DHA content from 60 to 93% and decreased the E-EPA content from 8.6 to 

2.9%. 

 

This reaction has been used to efficiently separate EPA and DHA acid in fish oil (Haraldsson 

and Kristinsson, 1998). The ethanolysis reaction was carried out with R. miehei, (Lipozyme 

IM) at 20ºC with stoichiometric amount of ethanol (Figure 21). The original amount of PUFA 

in the tuna oil was 6% EPA and 23% DHA and after 24h transesterification 65% was 

converted into ethyl esters. The residual glyceride fraction had 49% DHA and 6% EPA with 

90% DHA recovery in the glyceride mixture and 60% EPA recovery in the ethyl ester 

fraction.  
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O
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Figure 21. Ethanolysis reaction between PUFA of tuna oil and R. miehei lipase, (Haraldsson 

and Kristinsson, 1998). 

 

The preparation of highly purified concentrates of eicosapentaenoic acid and 

docosahexaenoic acid were produced by a three step process: lipase catalyzed alcoholysis 

with Pseudomonas sp. lipase (PSL), combined with short distillation separation and 

ethanolysis with C. antarctica lipase (CAL) (Figure 22) (Breivik et al., 1997). The 

transesterification reaction conditions were room temperature with a stoichiometric amount 

of ethanol. This reaction concentrated the EPA and DHA from 14.9% and 9.8% to 40.1% of 
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EPA+DHA. After distillation the concentration increased to 47.3% EPA+DHA. Finally the 

ethanolysis with CAL showed complete conversion to DHA and EPA ethyl esters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Preparation of highly purified concentrates of EPA and DHA. PSL is 

Pseudomonas sp. lipase and CAL is C. antarctica lipase (Breivik et al., 1997). 

 

 2.3 Hydrolysis  
 

Lipases present a mechanism of resistance toward long chain PUFA. The presence of cis 

bonds in the fatty acid chain of PUFAs allows them to bend and causes a steric effect 

between the terminal methyl group and the ester bond (Bottino et al., 1967). As a result, the 

lipases cannot reach the ester linkage between these fatty acids and the glycerol. The 

saturated and monounsaturated fatty acids do not present barriers to the lipases so they are 

easily removed from fish oils by lipase hydrolysis to produce Omega-3 concentrates rich in 

EPA and DHA (Shahidi and Wanasundara, 1998). Some advantages of the lipase-assisted 

hydrolysis include that it is performed under mild pH and temperature conditions, it avoids 

the oxidation of the cis bonds in the PUFA, it requires less energy as a production system 
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and it increases the product selectivity (Sun et al., 2002). Some examples of lipase assisted 

purification of fish oils are presented in Table 10.  

 

Table 10. Purification of fish oils by lipase catalyzed hydrolysis.  

Substrates Lipase Purity (%) References 

Cod Liver Oil 
22% ω-3 PUFA 

T. lanuginosus 40% ω-3  
(Hoshino and Yamane, 1990) C. cylindracea 50% ω-3  

A. niger 50% ω-3  
Fish oil 

25% DHA C. cylindracea 53% DHA (Tanaka et al., 1992). 

Tuna Oil 
32% EPA+DHA G. candidum 48.7% EPA+DHA (Shimada et al., 1994). 

Anchovy Oil 
27% PUFA R. miehei 39.6% PUFA (Ustun et al., 1997) 

Chilean Fish Oil 
30.3% ω-3 PUFA 

C. rugosa 48.9.% ω-3  (McNeill et al., 1996) G. candidum 46.0% ω-3  
Sea Blubber Oil 

20.2% ω-3 PUFA C. cylindracea 45% ω-3  (Wanasundara and Shahidi, 1998b) 
54.3% ω-3  (Wanasundara and Shahidi, 1998a) 

Menhaden Oil 
30% ω-3 PUFA 

R. oryzae 44.6% ω-3  (Wanasundara and Shahidi, 1998b) 
C. cylindracea 54.5% ω-3 (Wanasundara and Shahidi, 1998a) 

Sardine Oil 
48.3%  ω-3 PUFA 

26.9% EPA 
13.6% DHA 

C. rugosa 
33.7% EPA 
29.9% DHA 
63.8% ω-3 (Okada and Morrissey, 2007) 

C. cylindracea 31.9% EPA 
26.5% DHA 

Marine fish oil Pancreatic 
phospholipase A2 

24% EPA 
40% DHA (Tocher et al., 1986) 

Marine fish oil 
2.9% EPA 

22.5% DHA 
 

Penicillium 
abeanum 

3% EPA 
47.3% DHA 

(Sugihara et al., 1996) C. cylindracea 4.3% EPA 
42.8% DHA 

G. candidum 3.7% EPA 
36% DHA 

Cod oil 
12.2% EPA 
6.9% DHA 

P. fluorescens   

(Kojima et al., 2006) AK-lipase 16.8% EPA 
44.6% DHA 

HU-lipase 43.1% EPA  
7% DHA 

Salmon oil 
30.1% ω-3 PUFA A. niger 45% ω-3  (Carvalho et al., 2009) 

Oil from Nile perch 
viscera T. lanuginosus 38% DHA (Mbatia et al., 2010) 

 

The lipases from Thermomyces lanuginosus (Novozymes), C. cylindracea (Meito Sangyo), 

A. niger (Amano), Rhizopus delemar (Amano), Geotrichum candidum (Amano) and porcine 

pancreas (crude) (Sigma Chemical Co.) were tested to concentrate the ω-3 PUFA of cod 

liver oil, CLO, and refine sardine oil, RSO, as triacylglycerols (Hoshino and Yamane, 1990). 

The initial amount of ω-3 PUFA in CLO was of 22% and it was increased to 50% with the 

lipase of C. cylindracea and A. niger, and up to 40%, 38%, 35% and 32% with the lipases of 
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T. lanuginosus, R. delemar, G. candidum and porcine pancreas respectively. The hydrolysis 

with C. cylindracea lipase increased the amount of DHA while keeping the amount EPA 

almost constant. On the other hand, the lipase from A. niger concentrated DHA and partially 

concentrated EPA. After extended hydrolysis these two enzymes hydrolyzed the EPA. The 

other four enzymes concentrated the DHA with a small increment in the amount of EPA. The 

hydrolysis of RSO with an initial concentration of ω-3 PUFA of 28% presented a hydrolysis, 

with C. cylindracea and A. niger, similar to the one obtained with CLO, reaching up to 50% 

the amount of ω-3 PUFA.   

 

The hydrolysis has been used to concentrate the amount of DHA in a fish oil glyceride 

mixture of triglyceride, diglyceride and monoglyceride (Tanaka et al., 1992). The lipases 

used were C. cylindracea (Meito Sangyo), A. niger (Amano), Pseudomonas sp. (Amano), R. 

delemar (Lyberg and Adlercreutz), Rhizopus javanicus (Amano) and C. viscosum (Asahi 

Chemical). The original fish oil glyceride mixture had 13.3% EPA and 5.9% DHA. After the 

hydrolysis, the free fatty acids were removed from the mixture and the glyceride mixture 

analyzed. After a 70% hydrolysis of the reaction mixture with the lipase of C. cylindracea, the 

amount of DHA increased to 30% while the amount of EPA decreased to 70% less than the 

original mixture. The other lipases did not showed changes in the concentration of DHA and 

EPA. The hydrolysis of a tuna oil mixture rich in DHA (25.1%) with C. cylindracea lipase 

increased the content of DHA to 53.1%.  

 

The ability of the lipase from C. cylindracea to discriminate between different fatty acids of 

marine oils and wax esters was studied by (Lie and Lambertsen, 1986). The triacylglycerols 

in fish oils were hydrolyzed faster than the esters and the enzyme showed preference in the 

hydrolysis of the C14 to C18 saturated and monounsaturated fatty acids. The long chain 

monoenes (20:1 and 22:1) and the polyunsaturated fatty acids C18:4, EPA and DHA were 

resistant to the hydrolysis in both, the triacylglycerols and the wax esters. 

 

The enzyme from G. candidum, was used for concentrating the EPA and DHA in the 

glyceride fraction of tuna oil (Shimada et al., 1994). The hydrolysis was carried out at 30°C 

for 16h and after a 33.5% hydrolysis the resulting glycerides increased its concentration of 

DHA and EPA from 32.1% to 48.7%. A second hydrolysis was performed and produced 

glycerides with 57.5% of DHA and EPA with a recovery of 81.5% of the initial DHA end EPA. 

This hydrolysis product had an 85.5% of triacylglycerols.  
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Comparable experiments were carried out to produced an enriched glyceride mixture of 

PUFA from anchovy oil with 27% of PUFA (7.6% EPA, 12.7% DHA) (Ustun et al., 1997). The 

enzyme used was R. miehei (Lipozyme) lipase that is not specific toward PUFA. After a 3 h 

hydrolysis at 35°C with a pH of 4.0 the amount of PUFA in the glyceride mixture was of 

39.6% with only 2% lost as free fatty acids.  

 

The ability of different enzymes to selectively enrich the amount of ω-3 PUFA was later 

studied by (McNeill et al., 1996). The commercial enzymes screened were C. rugosa (Meito 

Sangyo), G. candidum (Amano), R. niveus (Amano), R. miehei (Novozymes), T. lanuginosus 

(Novozymes) and C. viscosum (Shizuoka, Japan), and the oil used was Chilean fish oil. The 

hydrolysis with C. rugosa or G. candidum lipases showed the highest increment in the DHA 

and EPA concentration in the acylglycerols. C. rugosa lipase increased the concentration of 

total ω-3 PUFA from 30.3 to 48.9% and the lipase from G. candidum to 46%. The lipase from 

C. rugosa has strong discrimination toward DHA but moderate discrimination against EPA.  

 

Other marine oils that have been enriched in their ω-3 PUFA content by hydrolysis are the 

sea blubber oil (SBO) and the menhaden oil (MHO) (Wanasundara and Shahidi, 1998b). 

The lipases tested were A. niger (AN) (Amano), R. miehei (RM) (Novo Nordisk), R. oryzae 

(RO) (Amano), R. niveus (RN) (Amano), C. cylindracea (CC) (Amano), C. viscosum (CV) 

(Asahi Chemicals), G. candidum (GC) (Amano) and Pseudomonas sp (PS) (Amano). The 

total ω-3 PUFA content after hydrolysis in the mixture of monoglycerides, diglycerides, and 

triacylglycerols, is shown in the following figure (Figure 23).  

 

All lipases concentrated the ω-3 PUFA content from both oils. The CC lipase significantly 

increased the total ω-3 PUFA content of EPA and DHA in SBO from 20.2 to 45%, but 

extended hydrolysis reduced the amount of EPA. This lipase reached a maximum ω-3 PUFA 

concentration in SBO of 9.75% EPA, 8.61% DPA and 24.0% DHA and of 18.5% EPA, 3.62% 

DPA and 17.3% DHA in MHO. The RO lipase was able of concentrate the DHA of both oils, 

but the amount of EPA decreased from 6.4 to 4.3% in SBO and from 13.2 to 12.5% in MHO. 

In the MHO the total ω-3 PUFA content increased from 30% to 44.6, 44.1 and 41.7% by RO, 

CC and GC lipase respectively, where the corresponding DHA content increased from 10.1 

to 23.5, 17.3 and 14.8% for these three lipases. In the SBO the RO, GC, MM, PS, CV, RN 

and AN lipases reached 33.2, 30.6, 29.3, 26.1, 25.5, 25.3, and 24.6% respectively. After 

further research the optimal conditions were obtained for the hydrolysis with CC lipase 

(Wanasundara and Shahidi, 1998a). A maximum of 54.3% total ω−3 PUFA was obtained 

from SBO with an enzyme concentration of 308 U/g oil, 40h reaction at 37°C.  From MHO a 
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maximum of 54.5% total ω-3 PUFA was obtained with an enzyme concentration of 340 U/g 

oil. 

 
Figure 23. Fatty acid content of SBO and MHO after hydrolysis (Shahidi and Wanasundara, 1998) 

 

Further research regarding the concentration of sardine oil (Sardinops sagax) produced a ω-

3 PUFA concentrate (Okada and Morrissey, 2007). The commercially available microbial 

lipases used were C. rugosa (CR, Sigma–Aldrich), C. cylindracea (CC, Fluka Chemie AG), 

Mucor javanicus (MJ, Aldrich) and A. niger (AN, Aldrich) and the PUFA fraction in the crude 

oil was of 48.29%. The sardine oil was rapidly hydrolyzed and the highest hydrolysis was 

obtained with CR (78.4%) and CC (69.33%) enzymes, in agreement with previous 

researches (Figure 24). This research revealed that the EPA concentration depends on the 

enzyme and enzyme concentration while DHA is affected by enzyme and reaction time. 

Using CR the EPA increased from 26.87 to 33.74% in 1.5h and then remained constant, 

while the DHA content increased from 13.63% to 23.12% in the same time but kept 

increasing and reached 29.94% (Figure 25). The highest PUFA concentration was found 

with CR after 6h hydrolysis reaching 63.86%. In the same reaction time using CC the 

concentration of EPA increased to 31.91% and the DHA concentration reached 22.65%, 

26.16% and 26.54% in 1.5, 6 and 9 hours.  
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Figure 24. Degree of hydrolysis (%) of hydrolyzed sardine oil by lipases at 37°C. � CR 

250U; � CR 500U; ¯ CC 250U; ¿CC 500U; r MJ 250U; p MJ 500U; £ AN 250U; ¢ AN 

500U, (Okada and Morrissey, 2007) 

 

Supplementary research regarding the concentration of DHA in the glyceride fraction by 

hydrolysis of tuna oil, using C. rugosa lipase was performed by Japanese researchers (Yan 

et al., 2002). The hydrolysis conditions were 40°C with phosphate buffer. After 28h reaction 

the concentration of DHA increased almost three times, reaching a concentration in the 

acylglycerol fraction of 56%.  

 

Other lipases that have been used to enriched marine fish oil in ω-3 PUFA are the 

pancreatic phospholipase A2 (Tocher et al., 1986) and the Penicillium abeanum lipase 

(Sugihara et al., 1996). The method of Tocher et al. is based on the specificity of the enzyme 

to the ester bond of the sn-2 position which is rich in EPA and DHA. The free fatty acids oil 

concentrate obtained had a concentration of 24% EPA and 40% DHA. The lipase of P. 

abeanum hydrolyzes the sn-1and sn-3 position nine times faster than the sn-2 position and 

has lower activity to the ester bonds of the PUFA. After hydrolysis with P. abeanum the tuna 

oil increased its concentration of EPA from 2.9 to 3.0% and from 22.5 to 47.3% with 67% 

recovery of DHA. In comparison with other enzymes under the same reaction conditions C. 

cylindracea produced a concentrate with 4.3% EPA and 42.8% DHA and G. candidum one 

with 3.7% EPA and 36.0 DHA, with 86% and 94% of DHA recovery respectively.  
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Figure 25. Changes in 16:0, 16:1n - 7, EPA, and DHA concentration (wt/wt%) in final  w-3 

PUFA concentrate with lipases from (a) CR, (b) CC, (c) MJ and (d) AN during hydrolysis at 

37 °C. ¯ 16:0 with 250 U; ¿ 16:0 with CR 500 U; � 16:1n-7 with 250 U; � 16:1n- 7 with 

500 U; £ EPA with 250 U; ¢ EPA with 500 U; r DHA with 250 U; p DHA with 500 U 

(Okada and Morrissey, 2007). 

 

The specificity of the commercially available non immobilized lipases from C. rugosa, R. 

miehei (Amano), T. lanuginosus, P. fluorescens (Amano) and Pseudomonas cepacia 

(Amano) towards EPA and DHA in the hydrolysis of fish oils, squid oil and methyl esters was 

studied by (Lyberg and Adlercreutz, 2008). All the lipases were able to discriminate against 

EPA and DHA, being less hydrolyzed as methyl esters. The lipase from C. rugosa showed 

the highest discrimination toward methyl docosahexaenoate followed by the lipases from T. 

lanuginosus and R. miehei. However in the fish and squid oils the highest discrimination 

against DHA was achieved by the T. lanuginosus and R. miehei lipases. Concerning EPA 

the highest discrimination was observed by P. fluorescens in all three systems (Haraldsson 

et al., 1997; Lyberg and Adlercreutz, 2008). Regarding regioselectivity, all lipases showed a 

sn-1, sn-3 specificity, except C. rugosa. Applying these enzymes to enrich the glyceride 

fraction of fish oil showed enrichment by T. lanuginosus and R. miehei in the early stages; 

however the highest overall enrichment was achieved by C. rugosa but with elevated losses. 

The concentration of EPA was observed with the lipases from P. cepacia and P. fluorescens.  
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The hydrolysis specificity of two lipases produced by P. fluorescens (AK-lipase and HU-

lipase) toward C20 fatty acids with a Δ5 unsaturated double bond was studied by (Kojima et 

al., 2006). The HU-lipase had no specificity regarding the Δ5 unsaturated bond but showed 

low reactivity for DHA. The Ak-lipase was less reactive toward C20 fatty acids with this Δ5 

unsaturated bond. The lipase catalyzed hydrolysis of cod oil (12.2% EPA, 6.9% DHA) 

followed by urea adduction produced FFA with 43.1% EPA and 7% DHA with HU-lipase. 

Under the same reaction conditions the hydrolysis of cuttlefish oil with AK-lipase increase 

the amount of EPA from 14.2to 16.8% and that of DHA from 16.3 to 44.6% in the hydrolyzed 

FFA fraction.  

 

The concentration of the content of ω-3 PUFA (30.1%) in the residual acylglycerol fraction of 

salmon oil was attempted using native lipases from A. niger, R. javanicus and Penicillium 

solitum (Carvalho et al., 2009). All the lipases had 1,3-specificity, which preserved the PUFA 

in the sn-2 position during hydrolysis. The most efficient enzyme was the lipase from A. niger 

which after a 60% hydrolysis, increased the content of DHA from 14.4 to 34% with a final 

total ω-3 PUFA content of 45% after 24h reaction at 45ºC. The hydrolysis with the other 

lipases was only of 20% and 3% respectively.  

 

More recently the release of ω-3 PUFA from sardine oil by hydrolysis, using commercial 

lipases immobilized in different supports was studied (Fernandez-Lorente et al., 2011a; 

Fernandez-Lorente et al., 2011b). The lipases from C. antarctica lipase B, T. lanuginosus 

and R. miehei were immobilized in the porous support octyl-Sepharose (Fernandez-Lorente 

et al., 2011b). C. antarctica lipase B showed the highest selectivity towards PUFA versus 

oleic and palmitic acid, while T. lanuginosus and R. miehei lipases showed higher selectivity 

toward EPA versus DHA. The lipases from C. antarctica lipase B, T. lanuginosus and R. 

miehei, C. rugosa, R. oryzae, P. fluorescens and Y. lipolytica were immobilized in octyl 

Sepharose CL-4B and CNBr-Sepharose (Fernandez-Lorente et al., 2011a). The enzymes 

immobilized in octyl-sepharose were more active and had higher selectivity toward EPA. 

Immobilized Y. lipolytica lipase was the most selective while the P. fluorescens immobilized 

lipase was the most active but not selective. All the lipases hydrolyzed EPA faster than DHA 

and can be used to release a mixture of ω-3 PUFA or pure DHA by a first selective release 

of EPA.  

 

Another source of fish oil and ω-3 PUFA are the viscera from the fish processing industry, 

which are generally considered waste. An attempt to increase the concentration of EPA and 

DHA by hydrolysis, using Atlantic salmon (Salmo salar L.) viscera as a source of fish oil, was 
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performed by (Sun et al., 2002). The commercially available lipases from Amano	  tested were 

derived from A. niger, P. fluorescens, C. rugosa, R. oryzae, M. javanicus, and P. cepacia. 

The concentration of EPA and DHA was obtained by hydrolysis and further isolation of the 

acylglycerols. The reaction conditions were 35°C for 20h. The highest hydrolysis, 70%, was 

achieved with the C. rugosa lipase after 80h. The concentration of EPA and DHA in the 

acylglycerol fraction was increased by the lipases from P. cepacia and C. rugosa. The 

concentration of EPA+DHA decreased with C. rugosa after 12h hydrolysis.  

 

Alternative, oil was extracted from Nile perch viscera, and EPA and DHA were enriched in 

the glyceride fraction (Mbatia et al., 2010). Enzymatic hydrolysis was carried out with lipases 

from C. rugosa, T. lanuginosus and P. cepacia. The sn-2 position of this oil was rich in 

palmitic acid, representing 51%, whit only 16% of EPA. DHA was equally distributed in the 

three position of the TAG. The highest enrichment of EPA and DHA was obtained with C. 

rugosa lipase, since it is a non-regioselective enzyme that effectively hydrolyzed the palmitic 

acid in the sn-2 position. This lipase increased EPA from 3% to 6%mol and DHA from 9% to 

23%mol with recoveries of 42% and 55% respectively. T. lanuginosus lipase was unable to 

enrich EPA but increase DHA up to 38% mol with a recovery of 39%.  

 

The optimization of the hydrolysis system using emulsions has also been studied (Byun et 

al., 2007; Koike et al., 2007). In the research of Byun et al., sardine oils were hydrolyzed in a 

water emulsion system by six commercially available lipases, lipases from porcine pancreas, 

C. rugosa, C. cylindracea, R. niveus, M. miehei and Pseudomonas sp. The optimal emulsion 

system found had a water-oil ratio of 40%(w/v), pH of 80.1, 40°C and gelatin as emulsifier. 

The sardine oil hydrolysis in the emulsion system was 50% higher than in the non-emulsion 

system. The degree of hydrolysis after 24h was higher with the Pseudomonas sp. lipase. 

The profile of the fatty acids in the acylglycerol fraction after hydrolysis in the emulsion 

system is shown in the following table (Table 11).  

 

Table 11. Fatty acids of acylglycerols fractions of sardine oil hydrolyzed by various lipases, 

SFA: saturated fatty acids, MUFA: monounsaturated fatty acids and PUFA: polyunsaturated 

fatty acids (Byun et al., 2007) 

Fatty acids Pseudomonas 
sp 

Candida 
cylindracea 

Porcine 
pancreas 

Candida 
rugosa Sardine oil 

SFA 46.5 48.4 42.8 50.2 60.2 

MUFA 32.5 33.6 30.9 33.7 19.8 

PUFA 21.0 18.0 26.3 16.1 20.0 

Total 100.0 100.0 100.0 100.0 100.0 
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Koike et al. also increased the amount of DHA in the acylglycerol fraction by performing the 

hydrolysis reaction in a water oil microemulsion using soybean lecithin as emulsifier (Koike 

et al., 2007) (Figure 26). The lipase chosen was the lipase from C. rugosa (Fluka) because 

of its steric hindrance with the ester bonded DHA. The hydrolytic specificity of this enzyme is 

toward saturated and mono saturated fatty acids. The optimal conditions were found at a 

lecithin concentration close to the critical micelle concentration in organic solvent. This 

technique increased the DHA concentration in the triacylglycerols to 97%.  

 
         

 

 

 

 

 

 

 

 

 

 

Figure 26. Microemulsion system, FA represent the different fatty acids present in fish oil 

(Koike et al., 2007). 

 

 2.4 Combined techniques 

 

The combination of concentration methods has also been studied. A two step method, 

hydrolysis and selective esterification, offers the possibility of increasing the concentration of 

DHA (Moore and McNeill, 1996; Shimada et al., 1997a; Shimada et al., 1997b). Moore and 

McNeill used the lipase from C. rugosa (Amano) to hydrolyze Chilean fish oil and produce a 

glyceride fraction enriched in DHA (14.2 to 39.5%) and almost depleted in EPA (10.1 to 

7.5%). The esterification step was carried out with R. miehei lipase (Novo).  
 

Shimada et al. (1997b) chemically hydrolyzed tuna oils with a NaOH-ethanol solution to 

release the DHA, creating a FFA mixture with 23.2% DHA. The second step was the 

selective esterification of the FFA mixture with lauryl alcohol catalyzed by R. delemar lipase 

(Meito Sangyo). After a 20h reaction at 30°C, 72% of the FFA mixture was esterified and 

DHA was purified to 73% with 84% recovered in the unesterified fraction. In order to further 

increase the percentage of DHA in the unesterified fraction, this fraction was extracted and 

esterified again with R. delemar and C. rugosa lipase. After a second esterification with C. 
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rugosa DHA was purified to 83% with an 81% recovery of the initial but only 15% 

esterification. Using R. delemar lipase the second esterification reached 30% and DHA was 

purified to 89% recovering 71% of the initial content.  

 

Optimization of the method was developed using enzymatic hydrolysis (Shimada et al., 

1997a). The tuna oil (22.9%wt DHA) was hydrolyzed with Pseudomonas sp. lipase (Lipase 

AK, Amano), which has strong activity toward DHA. This lipase has preference toward DHA 

ester over the EPA ester, resulting in a FFA mixture rich in DHA (24.2%). Under the reaction 

conditions of 2.5 g of oils, 2.5 g of water and 5000U of lipase at 40ºC, after 48h 83%of the 

tuna oils DHA was recovered as FFA. The enzyme used for esterification was the lipase 

from R. delemar (Ta-lipase; Tanabe Seiyaku) because it esterifies selectively the other fatty 

acids present over DHA. The selective esterification was conducted at 30ºC, with a mole 

ratio of 1:2 FFA to lauryl alcohol, catalyzed with R. delemar lipase and with a reaction time of 

20h. After esterification the concentration of DHA in the unesterified fraction increased from 

24 to 72%wt, with 68.5% recovery. Once again a second esterification was performed under 

the same conditions and the DHA content increased to 91% with 60.3% recovery.   
 

Some research has focused on the combination of chemical and enzymatic techniques in 

order to produce better PUFA concentrates (Gamez-Meza et al., 2003). Gamez-Meza et al. 

used the enzymatic hydrolysis to release the EPA and DHA of fish oil as free fatty acids 

(FFA). The FFA would be further concentrated using urea complexation. The hydrolysis of 

sardine oil was accomplished with commercial lipases from Pseudomonas, three 

immobilized (PS-CI, PS-CII and PS-DI) and two soluble lipases one from P. fluorescens and 

the other from P. cepacia (AK-20 and PS-30). The immobilized enzymes had higher EPA 

and DHA hydrolysis over the soluble enzymes (Figure 27). The highest degree of hydrolysis 

was obtained after 24h, with the PS-CI enzyme, releasing 81.5% of EPA and 72.3% of DHA, 

from the original content in the oil. The urea complexation reduced the content of saturated 

FFA (14:0, 16:0, 18:0, and 20:0) and monounsaturated FFA (16:1 and 18:1). Using the 

hydrolyzed mixture from PD-CI, urea complexation enriched the EPA from 14.5 to 46.2% 

and the DHA from 12.5 to 40.3%.  

 

Another combination of purification techniques is hydrolysis, filtration and re-esterification 

(Linder et al., 2002). The hydrolysis was carried out with a specific sn-1 sn-3 hydrolytic 

lipase from Aspergillus oryzae (Novozyme SP 398). After a 40% hydrolysis in 24h the 

acylglycerol and fatty acid fractions were filtrated to separate the saturated fatty acids. After 

filtration the content of PUFA increased from 39.2 to 43.3%mol. The FFA were re-esterified 

with the 1,3-specific R. miehei (Lipozyme IM). The 90% re-esterification took 48h, producing 
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a mixture with 22.1% monoglycerides, 28.7% diglycerides and 43.4% triacylglycerols without 

modifying the PUFA content.  
 

2.5 Patents  

 

Some of the patents that exist to produce PUFA concentrates are presented in the following 

paragraph. A Japanese patent concentrates EPA and DHA using different lipases like C. 

cylindracea, A. niger and R. miehei. By selective hydrolysis the ester concentration of EPA 

reached 25% and 17%for DHA (Noguchi and Hibino, 1984). Other patent describes the 

process for concentrating and separating PUFA esters (Makoto and Hideki, 1992). The 

method separates EPA ester by a three step process. First a solution of fatty acid esters in a 

nonpolar solvent is placed in contact with zeolite so the EPA ester is adsorbed. Then the 

impurities are desorbed from the zeolite and finally the EPA ester is desorbed using a polar 

solvent. Another patent describes a process for making a mixture of PUFA esters (Luthria, 

2002). The process is based on transesterification of oil from Schizochytrium sp. and alcohol 

in a base media to produce fatty acid esters. The next step is urea complexation to produce 

a urea fraction with saturated fatty acid esters and a liquid fraction with PUFA esters. This 

process can generate a methyl ester mixture with 23.4%wt DPA and 65.2%wt DHA 
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Figure 27. Enzymatic hydrolysis of EPA and DHA of sardine oil by different Pseudomonas 

lipases at 40°C and pH 7.0. Amount of enzyme (% w/w oil): � 0.25; £, 0.50; r, 0.75 

(Gamez-Meza et al., 2003).  



Part III: Omega-3 polyunsaturated fatty acids  Chapter I: Literature Review 
 

 103 

3. Conclusions 

 

Lipases are able to discriminate between fatty acids in function of their chain length and 

saturation degree in three types of reactions: hydrolysis, trans-esterification, and 

esterification. These enzymes react more efficiently with the bulk of saturated and mono-

unsaturated fatty acids than with the more resistant PUFAs. Indeed, the 5 and 6 double 

bonds, in EPA and DHA respectively, enhance steric hindrance in the active site of the 

lipases.  

 

Lipases present different discrimination depending of the reaction used for ω-3 purification. 

Reactions can be classified in their order of efficiency: hydrolysis of triacylglycerides, 

esterification of free fatty acids and the most efficient one, hydrolysis of fatty acid ethyl 

esters. Therefore, the hydrolysis of fish oil or fish oils ethyl esters with lipases represent one 

of the most viable techniques for the purification of DHA since it can be carried out under 

mild conditions and the high specificity of the lipases does not generate undesirable by-

products.  

 

Several lipases have been used to concentrate ω-3 PUFAs, being T. lanuginosus, C. rugosa  

and R. miehei the most efficient ones. However, these lipases are incapable of producing 

concentrates with purities high enough for pharmaceutical applications. Discovering more 

specific enzymes for PUFAs purification is still a great challenge. In this thesis, the 

potentialities of the lipase Lip2 from Yarrowia lipolytica are investigated, in comparison with 

the lipases identified as efficient from T. lanuginosus and C. rugosa. However is possible 

that no lipases will be sufficiently active and selective to fulfil industrial requests, DHA purity 

higher than 85% with high yields of DHA recovery. Therefore, selectivity improvements of 

the lipases can be achieved using enzyme engineering tools.  
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Structured Lipids 

 

1. Introduction 

 

The production of fats and oils in 2011 was over 176 million tons (REA Holdings PLC, 2012). 

However many oils are not appropriate for human consumption, so they require specific 

modifications.  Structured lipids are also known as functional lipids and can be produced by 

new chemical or technological techniques such as genetic engineering and enzymatic 

reactions. Structured lipids (SL) can be defined as triacylglycerols (TAG) that have been 

chemically or enzymatically modified in order to have specific fatty acids in the different 

positions of the glycerol (Iwasaki et al., 1999; Iwasaki and Yamane, 2000). The SL have 

modified properties to meet specific nutrition requirements and functional applications for 

food and pharmaceutical industries (Xu, 2000). Some desired nutritional benefits include the 

composition of the fatty acids, the concentration of essential fatty acids and the composition 

of the triacylglycerols (Gunstone, 2002).  

 

The TAG composition modifies the way they are metabolized in the organism (digestion and 

absorption) and it changes its physical characteristics, like melting point and crystallization 

pattern. The dietary TAG cannot be absorbed as so and needs to be converted into more 

soluble products, so they are digested by the sn-1,3 regiospecific gastric lipase. This lipase 

has preference for short and medium chain TAG, over long chain TAG (Reis et al., 2009). 

 

The production of SL searches the development of modified lipids without the negative 

health effects exhibited by hydrogenated fats, where a decrease in the amount of 

unsaturated and essential fatty acids and the formation of trans isomers is observed (Wilkes, 

2006). There are several methods that can be used to produce SL and they can be classified 

as technological or biological. The technological methods include mixing, distillation, urea 

fractionation, fractionation, hydrogenation, chemical and enzymatic interesterification. The 

biological methods are domestication of wild crops, modification of oils from a conventional 

approach, production of oils using genetic engineering techniques in oilseed crops and 

production of single cell oils (Willis and Marangoni, 1999).  

 

The most interesting technological method is transesterification. Chemical and enzymatic 

transesterification are the best choice for post production modification of vegetable oils 

(Willis and Marangoni, 1999).  Chemical transesterification can be defined as the shuffling of 

the fatty acids moieties within and among the TAG until they reach thermodynamic 

equilibrium (Marangoni and Rousseau, 1995). This method was first used in order to 
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improve the crystallization properties of lards. It has also been used in the margarine 

industry, to change the melting point profile of solid fats, to improve the compatibility of 

triacylglycerols and to change the emulsifying properties and crystallization behaviour 

(Wilkes, 2006). This method does not modify the original composition of the unsaturated 

fatty acids and avoids the production of trans isomers. The most common catalyst is an 

alkali metal. The catalyst can be destroyed by acid, water or peroxide, so all the impurities 

must be removed. The five main steps of chemical interesterification are: pre-treatment, 

reaction with the catalyst, deactivation, bleaching and deodorization of the interesterified 

fats. Chemical interesterification has low cost production and is easily scaled up. However, 

the disadvantages include random acyl transfers and changes of the original position of the 

fatty acids in the sn-2 position of the TAG (Willis and Marangoni, 1999; Gunstone, 2002; 

Gunstone, 2003). In vegetal oils the polyunsaturated fatty acid are mainly esterified in the 

sn-2 position where they can provide nutritional benefits.  

 

Chemical interesterification has been used to produce mixtures of butterfat and corn oil that 

can be used as butter analogues richer in PUFA but with similar organoleptic properties to 

butter (Rodrigues and Gioielli, 2003). A fat stock blend was produced by chemical 

interesterification of palm stearin and olive oil (da Silva et al., 2010) . It has also been used 

to enrich tuna oil with ω-3 PUFA, in order to avoid overconsumption of fish oils, which are 

also rich in cholesterol and saturated fatty acids (Klinkesorn et al., 2004). Chemical 

interesterification between ω-3 methyl esters and tuna oil, using sodium methoxide as 

catalyst, produced highest incorporation of EPA and DHA after 5 hours reaction at 80°C. 

The percentage of EPA in the triglyceride increased almost 70% and almost 50% for DHA.  

 

2. Enzymatic production of structured lipids 

 

Enzymatic interesterification has several advantages over the chemical process, since it can 

be developed under mild conditions, like low temperature and atmospheric pressure, the 

process can be performed in continuous mode, the products are free of impurities and the 

catalyst, the enzyme, can be reused (Xu, 2000; Neklyudov and Ivankin, 2002; de Castro et 

al., 2004). In addition the enzyme shows high stability in organic solvents, it does not require 

the presence of co-factors, is highly specific and can be improved by genetic engineering 

(Xu, 2000; de Castro et al., 2004). However, enzymatic interesterification has shown several 

problems in industrial implementation including the scale-up of the process and the cost of 

the enzyme, especially for the production of low added-value commodity fats for food 

industry and when biocatalysts with low operational stability are used.   
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By designing a SL with a precise chemical structure, the nutritional and pharmaceutical 

properties can be controlled. Since the synthesis of SL requires specific modifications, 

chemical interesterification is inadequate due to the random products it generates. The 

application of enzymatic interesterification, with specific lipases, promises the desired 

products due to the lipases fatty acid selectivity and regiospecificity (Willis and Marangoni, 

1999). In most cases, the production of SL is achieved using immobilized enzymes since the 

immobilization process increases the stability and life of the enzyme, it is cost efficient and is 

easily removed from the reaction medium (Holm and Cowan, 2008). Immobilized lipases are 

an essential tool for the modification of lipids and they reduce the environmental impact of 

the process (Holm and Cowan, 2008). Nonetheless the amount and variety of commercial 

immobilized lipases is limited. Currently, new lipases are being obtained and new supports 

and immobilization methods are being used for the production of structured lipids. 

 

Table  12. Lipases for the production of structured lipids. (L) long-chain fatty acids, (S) short-

chain fatty acids and (M) medium-chain fatty acids. (Xu, 2000) 

Lipase source Fatty acid 
specificity 

Regio specificity 
(sn) 

Aspergillus niger S, M, L 1, 3 >> 2 

Candida lipolytica S, M, L 1, 3 > 2 

Humicola lanuginosa S, M, L 1, 3 >> 2 

Mucor javanicus M, L >> S 1, 3 > 2 

Rhizomucor miehei S > M, L 1 > 3 >> 2 

Pancreatic S > M, L 1, 3 

Pre-gastric S, M >> L 1, 3 

Penicillium roquefortii S, M >> L 1, 3 

Rhizopus delemar M, L >> S 1, 3 >> 2 

Rhizopus javanicus M, L > S 1, 3 > 2 

Rhizopus japonicus S, M, L 1, 3 > 2 

Rhizopus niveus M, L > S 1, 3 > 2 

Rhizopus oryzae M, L > S 1, 3 >>> 2 

Pseudomonas fluofescens M, L > S 1, 3 > 2 

Pseudomonas sp S, M, L 1, 3 > 2 

Rhizopus arrhizus S, M > L 1, 3 
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The sn-1,3-specific lipases are the most important tool for the production of SL since these 

enzymes react on the sn-1 and sn-3 bonds without modifying the groups in the sn-2 position. 

Different lipases can be used for SL production, however in recent years most research has 

been focus in microbial lipases and recombinant or mutant lipases (Xu, 2000). The sn-1,3-

specific lipases from A. niger, M. javanicus, R. miehei, Rhizopus arrhizus, R. delemar and R. 

niveus are useful catalysts for interesterification (Gunstone, 2001). Table 12 shows some 

lipases used for SL production.  

 

In addition to the lipases, the production of SL requires vegetables oils or animal fats and 

oils as raw material. The selection of the appropriate oils is essential for the design of the 

SL. Table 13 shows some examples of oils and fats rich in a specific fatty acid in the sn-2 

position and those rich in a specific triacylglycerol (TAG). However the current production of 

oilseeds has decreased since the use of cultivable land is in competition between the 

production of grains and oilseeds. In addition, the market demand of grains and oil seeds 

has increased since they are also used as raw material in the production of biofuels (López 

Pérez, 2008). Therefore, the interest of producing SL from industrial residues and non-edible 

oils has increased. 

 
Table 13. Oils rich in a specific fatty acid in the sn-2 position and those rich in a specific 

TAG. (P) Palmitic acid, (O) Oleic acid and (St) Stearic acid (Xu, 2000). 

Fatty acid abundant 
in the sn-2 position Oils Individual TAG Oils rich in individual 

TAG 

Short-chain Artificial oils: tributyrin, 
tricaproin, etc. Tributyrin Artificial tributyrin 

 

Medium-chain Artificial oils: medium-
chain triacylglycerols 

Medium chain 
TAG 

Artificial medium-chain 
triacylglycerols 

Lauric Coconut oil Tripalmitin Palm stearin, urushi wax 

Palmitic Human milk fat, palm 
stearin,lard, urushi wax POP Palm oil mid fraction 

Chinese vegetable tallow 

Stearic 
Fully hydrogenated 
soybean oil, canola oil, 
etc. 

Triolein 
High oleic sunflower oil 
and canola oil, 
olive oil, teaseed oil 

Oleic 

High oleic sunflower oil, 
teaseed oil, olive oil, high 
oleic canola oil, palm oil 
mid-fraction, cocoa butter, 
Chinese vegetable tallow 

StOSt Sal fats, mango fat,  
kokum fat, shea oil 

Linoleic 
Safflower oil, sunflower oil, 
corn oil, soybean oil, 
cottonseed oil 

Tristearin 
Fully hydrogenated 
soybean oil and 
canola oil 

Linolenic Linseed oil, perilla oil Trilinolein Safflower oil, sunflower oil 

EPA and DHA 
Fish oils, microbial oils rich 
in long-chain  
polyunsaturated fatty acids  

Trilinolenin Linseed oil 
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The main types of SL can be classified, according to the FA present and their distribution in 

the glycerol backbone as: AAA, ABA, AAB and ABC types (Figure 28) (Iwasaki and Yamane, 

2000). From these SL, type AAA can be synthesized chemically or enzymatically between 

glycerol and FA. However, the other types of SL require a regiospecific lipase. ABA type 

lipids can be synthesized with sn-1,3 lipases by catalyzing the reaction between two TAG or 

between one TAG and FFA or their ethyl ester. This type can also be produced from the 

acylation of glycerol and FFA with a sn-1,3 lipases in order to produced 1,3-diacyl-sn-

glycerol and finalizing the reaction with a chemical acylation of the sn-2 position. ABB type is 

produced by the monosubstitution of the sn-1 or the sn-3 position of TAG with FFA or their 

ethyl esters. ABB and ABC types can be obtained with lipases that show higher sn-1 or sn-3 

position stereo preference.  

 
Type of structured lipid Structure 

 

Mono acid 
triacylglycerol 

 

Type AAA 

 
 
 
 
 
 
 

 
 
 

 
Di-acid triacylglycerol 

  
Type ABA  
 
 
 
 
Type AAB 

 
 
 
 
 
 
 

   
 
 
 
 
 

 
 

Tri-acid triacylglycerol 

  
 

Type ABC 

 
 
 
 
 
 
 
 
 
 

 
Figure 28. Classification of structured lipids. A, B and C represent any fatty acid but they are 

not identical. Types AAB and ABC have chiral centers indicated by *  (Iwasaki and Yamane, 

2000). 
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2.1 Cocoa butter equivalent and modified butter fats. 

 

One successful application of enzymatic interesterification is the modification of the 

intermediate fraction of palm oil, to produce a cocoa butter equivalent, CBE. The process 

exchanges the palmitic acid in the sn-1 and sn-3 position for stearic acid, without changing 

the oleic acid in the sn-2 position (Gunstone, 2001). CBE can also be produced by 

interesterification of tea seed oil with methyl palmitate and methyl stearate using immobilized 

pancreatic lipase as catalyst and reaching similar characteristics to those of cocoa butter 

(Wang et al., 2006a). Immobilized pancreatic lipase was also used to catalyze the production 

of CBE from the acidolysis reaction between refined olive pomace oil with palmitic and 

stearic acid (Ciftci et al., 2009). Using a high enzyme load of 40%, a molar ratio of 1:2:6 oil to 

palmitic and stearic acid at 45°C, maximum conversion was obtained after 3h. The product 

obtained showed no drastic differences from cocoa butter.  

 

CBE can also be obtained by the incorporation of palmitic and stearic acid into triolein using 

Lipozyme RM IM (Ciftci et al., 2008). Under optimal conditions (10h, 45°C, enzyme load 

20% and molar ratio 1:3:3 triolein to palmitic and stearic acid), the main TAG obtained were 

1,3-dipalmitoyl-2-oleoyl--glycerol (POP), 1(3)-palmitoyl-3(1)-stearoyl-2-oleoyl-glycerol (POS) 

and 1,3-distearoyl-2-oleoyl-glycerol (SOS) with a percentage of 15.2%, 30.4% and 15.2%, 

respectively.  

 

Butter fat can be modified by interesterification with oleic acid using the immobilized lipase 

from M. circinelloides (Balcao et al., 1998a). The amount of total saturated TAG decreased 

by 27% and the percentage of oleic acid in the TAG increased 27%, by reducing the 

presence of lauric, myristic and palmitic acids. Further research was carried out with the 

immobilized commercial enzyme from M. javanicus reducing the amount of lauric, myristic 

and palmitic acid in butter fat (Balcao et al., 1998b). 

 

 2.2 Modified oils 

 

A substitute of margarine fat was produced by interesterification of two products of the palm 

oil industry, palm stearin and palm kern olein (Zainal and Yusoff, 1999). The 

interesterification reaction was catalyzed with the immobilized lipase of R. miehei at 60°, with 

a reaction time of 5h. The thermal characteristics of the product were comparable to those of 

the commercial margarines and it contained less than 0.5% of trans fats.  
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Oils can also bee modified in their fatty acid composition to change their original 

characteristics. One example is the enzyme catalyzed acidolysis between sunflower oil and 

a mixture of palmitic and stearic acid (Carrin and Crapiste, 2008). This reaction was carried 

out in a batch reactor using Lipozyme RM IM as catalyst, with a temperature between 50-

60°C and a reaction time of 24-48h. The product had different melting profiles from those of 

the sunflower oil. Lipozyme RM IM was also used in a packed bed reactor to catalyse the 

interesterification of palm kernel oil with soybean oil obtaining an interesterification 

percentage of 19.6% (Nelson Moreno and Aide Perea, 2008).  

 

Corn and canola oils were enriched with conjugated linolenic acid from bitter ground seed oil 

fatty acids (Elibal et al., 2011). Using a 10% enzyme load of the immobilized lipase from T. 

lanuginosus (Lipozyme TL IM) after 3h reaction, the optimal conditions for corn oil were 

53.5°C and a ratio of 5.9:1 fatty acids to oil, which gave an incorporation of 41.4%. With the 

same enzyme load and reaction time, optimal conditions for canola oil were 54.2°C and a 

molar ratio of 6.8:1 with an incorporation of 37%. 

 

 2.3 Human milk fat substitutes 

 

Human milk fat (HMF) contains long-chain fatty acids, namely oleic (30-35%), palmitic (20-

30%), linoleic (7-14%) and stearic acids (5.7-8%). Unlike in vegetable oils and in cow milk 

fat, in HMF, palmitic acid, the major saturated fatty acid, is mostly esterified at the sn-2 

position of the triacylglycerols, while unsaturated fatty acids are at the external positions. 

 

Human milk fat substitutes (HMFS) can be produced by interesterification of tripalmitin with 

oleic acid or methyl oleate. This SL has palmitic acid in the sn-2 position and oleic acid in the 

sn-1,3 positions, OPO , making it similar to human milk fat. OPO was synthesized using Lip1 

from C. rugosa at 45°C, obtaining an incorporation of oleic acid of 37.7% with methyl oleate 

as acyl donor and of 26.3% with oleic acid (Srivastava et al., 2006). The same researches 

also produced OPO using Lipozyme RM IM as biocatalyst, reaching an incorporation of 

49.4% at 65°C with methyl oleate as acyl donor. OPO was also produced using a lipase 

from Bacillus stearothermophilus which showed good thermo stability and conversion of 50% 

in 48h (Guncheva et al., 2008). Lipase DF from R. oryzae can catalyse the production of 

OPO in short reaction times, obtaining an oleic acid incorporation of 50.4% in 1h (Esteban et 

al., 2011). The production of HMFS from tripalmitin and oleic acid, in solvent-free media, 

catalysed by commercial immobilized lipases (Lipozyme TL IM, Lipozyme RM IM and 

Novozym 435), Candida parapsilosis lipase/acyltransferase (Tecelão et al., 2010), Carica 
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papaya latex (Tecelão et al., 2012b) and a heterologous R. oryzae lipase (Tecelão et al., 

2012a) was also reported.  

 

Chen et al. (2004) produced OPO from palm oil using a three-step method (Chen et al., 

2004). The first step consisted of a low temperature fractionation of palm oil fatty acids to 

produce two acid fractions, one rich in palmitic acid (87.8%) and the second one rich in oleic 

acid (96%). The palmitic acid was transformed to ethyl palmitate by selective enzymatic 

esterification with ethanol, obtaining a concentration of 98.3%. In the second step, tripalmitin 

was obtained from the esterification reaction between ethyl palmitate and glycerol using 

Novozym 435. The final step was the production of OPO from tripalmitin and oleic acid using 

the lipase IM 60 from R. miehei. The product had 74%mol OPO with an incorporation of oleic 

acid of 66% and the sn-2 position had 90.7% mol of palmitic acid. OPO was also efficiently 

produced with a two step process (Schmid et al., 1998). The first step consisted in the 

alcoholysis of tripalmitin with ethanol, using R. miehei commercial immobilized lipase to 

produce sn-2-monopalmitin with a purity of 95%. The second step consisted in the 

esterification with oleic acid for the synthesis of OPO with a yield of 72%. 

 

Lard can be modified into human milk fat substitute by acidolysis with soybean oil fatty acids 

using Lipozyme RM IM (Yang et al., 2003). The optimal reaction conditions found were 

temperature 61°C, water content 3.5%, lard to fatty acids molar ratio 1:2.4, enzyme load 

13.7% and reaction time 1h, obtaining a product similar to human milk fat. The same 

reaction was studied using a packed bed reactor with Lipozyme RM IM and producing a 

human milk fat substitute on a kg scale (Nielsen et al., 2006). However, the human milk fat 

substitute had lower oxidative stability than commercial products.  

 

Human milk fat substitute rich in γ−linolenic acid was obtained from enzymatic 

interesterification of tripalmitin with hazelnut fatty acid and γ−linolenic acid in hexane, using 

the lipases Lipozyme RM IM and TL IM (Sahin et al., 2005). Incorporation percentages of 

10% for γ−linolenic and 45% for oleic acid were obtained with both enzymes after 24h 

reaction at 55°C with molar ratios of 1:14.8 and1:14, total fatty acid to tripalmitin, for RM IM 

and TL IM respectively. Another human milk fat analogue rich in stearidonic acid was 

produced by acidolysis between the FFA and tripalmitin using Lipozyme TL IM (SilRoy and 

Ghosh, 2011). The enrichment of butter oil milk fat with conjugated linoleic acid was carried 

out with immobilized lipases from C. antarctica and M. miehei (Garcia et al., 2001). They 

were capable of reaching 80-90% interesterification of conjugated linoleic acid in a packed 

bed reactor with C. antarctica. Enrichment of human fat substitute with medium chain fatty 
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acids was also studied (Ilyasoglu et al., 2011). Reaction between tripalmitin and MCFA was 

catalyzed by Lipozyme RM IM and, under optimal conditions, a SL with 12.8% caprylic acid, 

10.6% capric acid and 30% palmitic acid was obtained.  

 

Human milk fat substitutes enriched with palmitic and DHA acids at the sn-2 position and 

oleic acid at the sn-1 and sn-3 positions were also produced using a four-step process 

(Robles et al., 2011). First, tuna oil rich in palmitic acid and DHA was obtained, followed by a 

purification of these TAG. The third step consisted in the incorporation of oleic acid in the sn-

1 and sn-3 positions and keeping the palmitic acid and DHA in the sn-2 position, using the 

sn-1,3 selective lipase from R. oryzae. The final step was the purification of the SL. Another 

attempt to produce human milk fat substitute rich in ω-3 PUFA, from tripalmitin and a 

concentrate of in ω-3 PUFA rich in DHA, using commercial lipases and the 

lipase/acyltransferase of Candida parapsilosis, showed that the highest incorporation was 

obtained with Novozym 435 (21.6%) and Lipozyme TM IM (20%) while Candida parapsilosis 

lipase only gave 8.5% (Tecelão et al., 2010). 

 

This method has also been used in the preparation of infant formulas that could be used as 

substitutes of breast milk (Maduko et al., 2007). A SL, similar to human milk fat, composed 

mainly of palmitic, oleic and linoleic acid was produced by enzymatic interesterification of 

tripalmitin and coconut, safflower and soybean oils, using the immobilized enzyme from R. 

miehei, Lipozyme RM IM. The milk fat substitute with highest resemblance to human milk fat 

was obtained after 12h reaction at 55°C with a molar ratio of 1:1 tripalmitin to vegetable oil 

blend. This blend was incorporated to skim caprine milk to obtain a human milk analogue 

based on goat milk.  

 

 2.4 Oils enriched with ω-3 PUFA 

 

Using the appropriate enzyme, long chain polyunsaturated fatty acids, such as EPA and 

DHA, can be introduced to vegetable oils in order to increase their nutritional value. Blends 

of  (i) palm stearin and soybean oil (Osorio et al., 2001), (ii) palm stearin and palm kernel oil 

(Osório et al., 2006; Osório et al., 2008; Pires et al., 2008; Osório et al., 2009b; Osório et al., 

2009a) were efficiently enriched with ω-3 PUFA in the absence of solvent, using commercial 

immobilized lipases or immobilized C. parapsilosis enzyme, either in batch or in continuous 

reactors. The immobilized C. antarctica lipase (Novozym 435) was also used to incorporate 

EPA ethyl ester into primrose oil (Akoh et al., 1996). After a 24 h interesterification reaction, 

the content of EPA increased to 43%. DHA was also incorporated into primrose oil using 
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Novozym 435 (Senanayake and Shahidi, 2004). The highest incorporation of DHA was 

obtained after 24h and a molar ratio of 1:3 oil to DHA, obtaining 37.4% of DHA in the SL. 

 

The enrichment of borage oil with DHA, using Novozym 435, was optimized using response 

surface methodology (Senanayake and Shahidi, 2002b). The predicted model gave maximal 

incorporation of DHA using the minimum amount of enzyme possible. Predicted optimal 

conditions were an enzyme activity of 165U, a reaction time of 24h at 50°C which produced 

a DHA incorporation of 34.1%. The results obtained under the predicted conditions gave a 

DHA incorporation of 35.6%. Borage oil was also modified by the incorporation of capric acid 

and EPA using Novozym 435, and R. miehei (Lipozyme IM60) (Akoh and Moussata, 1998). 

R. miehei lipase incorporated 10.2% of EPA and 26.3% of capric acid in the sn-1,3 positions, 

while C. antarctica lipase incorporated 8.8% of EPA and 15.5% of capric acid in the three 

positions.  

 

Using the lipase of R. miehei, ω-3 PUFA were introduced into nut oil (Sridhar and 

Lakshminarayana, 1992) and soybean oil (Akimoto et al., 2003), reaching a concentration of 

9.5% EPA and 8% DHA and 10.1% EPA and 34.1% DHA, respectively. The enrichment of 

coconut oil with ω-3 and ω-6 PUFA, using R. miehei lipase, was optimized by response 

surface methodology (Rao et al., 2002). Predicted optimal conditions for the incorporation of 

ω-3, were a molar ratio of 1:4 coconut oil to PUFA after a reaction of 34h at 54°C. For ω-6 

incorporation, predicted optimal conditions were a molar ratio of 1:3 coconut oil to PUFA, a 

reaction time of 48.5h with a temperature of 39°C. Under these predicted conditions the 

maximal incorporation of ω-3 was of 13.65% and of 45.5% for ω-6. Response surface 

methodology was also used to optimize the acidolysis of soybean oil with FFA from sardine 

oil using R. miehei lipase (Lipozyme RM IM) (de Araujo et al., 2011). Highest incorporation 

of EPA and DHA reached 9.2% with a molar ratio of 3:1 FFA to oil, 12h reaction, 40°C and 

10% enzyme load.  

 

Another long chain polyunsaturated fatty acid that can be introduced in vegetable oils is the 

α-linolenic acid, ALA. This PUFA was introduced into rice bran oil using R. miehei 

immobilized lipase (Chopra et al., 2011). The highest incorporation obtained was of 18% 

under optimal conditions, such as temperature 37.5°C, reaction time 4.5h, a substrate ratio 

of 1-1.9 and an enzyme load of 1-2%.  

 

The lipase of Pseudomonas sp. (PS-30) was used to catalyze the acidolysis reaction 

between high laurate canola oil and the ω-3 PUFA DHA and EPA (Hamam et al., 2005; 
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Hamam and Shahidi, 2005b). The system was optimized by response surface methodology. 

Optimal conditions for DHA incorporation were 4.79% enzyme load, 46.1°C and 31.1h, 

giving an incorporation of 37.3%. Regarding EPA, the optimal conditions were 4.6% enzyme 

load, 40°C and 26.2h, which gave an incorporation degree of 61.6%.  

 

Different enzymes were tested for their ability to incorporate long chain fatty acids into 

triolein (Hamam and Shahidi, 2007), trilinolein and trilinolenin (Hamam and Shahidi, 2008). 

The studied lipases were C. antarctica (Novozym 435), R. miehei (Lipozyme-1M), 

Pseudomonas sp. (PS-30), A. niger (AP-12), and C. rugosa (AY-30). The incorporation of 

stearic, α-linolenic, γ-linolenic, arachidonic acids and DPA, into triolein, was higher with R. 

miehei lipase. However, the highest incorporation of linoleic acid, EPA and DHA into triolein 

was found with Pseudomonas sp. lipase.  Also, this lipase incorporated the highest amount 

of stearic acid (C18) and ω-6 fatty acids into trilinolein showing preference for the C18 and 

for the γ-linolenic acid (ω-6). With C. antarctica and R. miehei lipases, the highest 

incorporation of ω-3 PUFA into trilinolein with preference for the α-linolenic acid was 

observed. Regarding trilinolenin, R. miehei and Pseudomonas sp. lipases showed to be the 

best biocatalysts for the incorporation of C18 and ω-3 fatty acids, preferring stearic acid 

(C18) and EPA (ω-3). The better incorporation of ω-6 was found with Pseudomonas sp., C. 

rugosa and M. miehei lipases.  

 

Enzymatic acidolysis has also been used to enrich fish oils with ω-3 polyunsaturated fatty 

acids. The sn-1,3 lipase from R. miehei was used to catalyze the acidolysis reaction 

between ω-3 PUFA and menhaden oil under supercritical carbon dioxide conditions, in order 

to increase their PUFA content (Lin et al., 2006). Using R. miehei lipase, an increase of 10% 

of ω-3 PUFA in cod liver oil was achieved (Yamane et al., 1993). EPA and DHA were 

introduced into sardine oil using the lipase from Pseudomonas sp., producing an oil with 

65% EPA and DHA (Adachi et al., 1993).  

 

2.5. Structured lipids type MLM 

 

MLM are SL which have medium chain fatty acids (MCFA), between 6 and 10 carbons, in 

the sn-1 and sn-3 position, and long chain fatty acids (LCFA), with more than 12 carbons, in 

the sn-2 position. These SL do not show the health problems related with the long chain 

TAG (LLL) and have desired nutritional, energetic and pharmaceutical properties (Huang 

and Akoh, 1996). The pancreatic lipase preferably hydrolyzes the sn-1 and sn-3 position with 

MCFA over the LCFA, thus the sn-2 monoacylglycerols are easily absorbed in the intestine 
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(Iwasaki and Yamane, 2000). MLM are used as easily accessible energy sources for 

patients with absorption problems (Huang and Akoh, 1996) since their hydrolysis and 

absorption rate is faster than for LLL triacylglycerols (Jandacek et al., 1987). In addition, 

since MCFA present lower caloric value than the long chain fatty acids (5 kcal/g against 9 

kcal/g) and are metabolized as glucose, therefore not stored as fat tissue in the human body, 

MLM can be used in low caloric foods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Synthesis of MLM (A) Interesterification between LLL and MMM. (B) Acidolysis of 

LLL and MCFA or MCFA esters. (Iwasaki and Yamane, 2000) 

 

MLM can be produced from a mixture of medium chain TAG (MMM) and LLL, using sn-1,3 

lipases. This reaction generates a mixture of TAG which is easily recovered as a TAG 

fraction by removing the catalyst. However, the TAG fraction has several species (MLM, 

LML, MLL, LMM, MMM and LLL) which are hard to isolate. So, this method is preferred for 

the modification of the physical properties of a mixture (Iwasaki and Yamane, 2000). Another 

strategy for the production of MLM is the lipase catalyzed reaction between LLL and an 

excess of MCFA of their ethyl esters (Figure 29). This reaction will specifically substitute the 

FA in the sn-1 and sn-3 position with MCFA without modifying the FA in the sn-2 position, 

producing triacylglycerols with one MCFA and two LCFA or triacylglycerols with two MCFA 

and one LCFA (Gunstone, 2001). The TAG obtained from the reaction can be separated 

from the FA or methyl esters by molecular distillation (Iwasaki and Yamane, 2000). Between 

FA and their ethyl esters, the reaction rate as acyl donor is higher for the ethyl esters. In 

addition, the interesterification rate is higher for long chain alcohols, followed by 

triacylglycerols, methyl esters and glycerol (Huang and Akoh, 1996).  
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2.5.1 MLM enriched with caprylic acid 

 

One of the most interesting MLM is the SL with caprylic acid in the sn-1,3 positions and an 

unsaturated or polyunsaturated fatty acid in the sn-2 position (Figure 30). Using the 

commercial immobilized lipases from R. miehei (IM60) and C. antarctica (SP435) this SL 

was obtained by interesterification of caprylic acid ethyl ester and triolein in a solvent system 

(Huang and Akoh, 1996). The reaction product, using with R. miehei lipase as catalyst, had 

41.7% dicaprylolein, 46% monocaprlylolein and 12.3% triolein; while with C. antarctica lipase 

the reaction produced 62% dicaprylolein, 33.5% monocaprlylolein and 4.5% triolein.  

 

The immobilized sn-1,3 specific lipase from R. delemar was used to catalyze the reaction 

between safflower or linseed oil and caprylic acid at 30°C (Shimada et al., 1996b). Under 

these conditions, between 45-50%mol of the TAG fatty acids were substituted by caprylic 

acid and the enzyme remained active for 55 cycles of 48h. Recovering the TAG and 

repeating the reaction with caprylic acid increased the incorporation of this fatty acid. After 

three cycles, all the sn-1,3 positions were substituted with caprylic acid.  

 

 

 

 

 

 

 

 

 

 

Figure 30. Production of MLM with a non specific lipase (Huang and Akoh, 1996). 

 

This SL can also be produced by incorporating caprylic acid intro perilla oil (Kim et al., 2002). 

Using the commercial immobilized enzymes from R. miehei (Lipozyme IM) and T. 

lanuginosus (Lipozyme TL IM) in a hexane system, after 24h the incorporation was of 48.5% 

mol and 51.4% mol respectively. Lipozyme TL IM was used to catalyze the acidolysis 

reaction between soybean oil and caprylic acid (Li et al., 2008). The reaction was carried out 

in a solvent-free system and the optimal conditions to obtain a caprylic incorporation of 

27%mol, were 16% enzyme load, molar ratio of 1:4 caprylic acid to soybean oil, 4% of water, 

with a temperature of 40°C, agitation of 150rpm and a reaction time of 20 h.  
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The commercial immobilized enzymes from R. miehei (IM 60) was used to catalyze the 

acidolysis reaction between peanut oil and caprylic acid (Lee and Akoh, 1998). The best 

conditions found were 50°C, reaction time of 72h and molar ratio of 1:2 peanut oil to caprylic 

acid reaching 30% incorporation.  Immobilized lipase from R. miehei (Lipozyme RM IM) and 

from Pichia lynferdii NRRL Y-7723 were used to produced a MLM by the acidolysis reaction 

between borage oil and caprylic acid (Kim et al., 2010). Incorporation of caprylic acid was of 

48.7% with Lipozyme RM IM, at 40°C, and of 47.5% for NRRL Y-7723 at low temperatures 

between 10°C and 15°C. 

 

The heterologous enzyme of R. oryzae immobilized in Eupergit was used to produce a MLM 

from olive oil and caprylic or capric acids (Nunes et al., 2011b). The reaction was carried out 

at 40°C, with a molar ratio of 1:2 olive oil to FFA and after 24h, caprylic acid incorporation 

was of 21.6% and 34.8% for capric acid. Caprylic acid was also introduced into olive oil 

using a bench-scale continuous packed bed reactor with the lipase from R. miehei 

(Lipozyme IM 60) (Fomuso and Akoh, 2002). Optimal production was obtained with a flow 

rate of 1mL/min, residence time of 2.7h, temperature of 60°C and molar ratio oil 1:5, olive oil 

to caprylic acid. This reactor system was also used to catalyze the reaction between palm 

olein and caprylic acid (Lai et al., 2005). After 24h reaction in the reactor the incorporation of 

caprylic acid was of 30.5%. A pilot continuous packed bed reactor was used for the 

incorporation of caprylic acid into rapeseed and safflower oil catalyzed by R. miehei lipase 

(Lipozyme IM) (Xu et al., 1998). 

 

The incorporation degree of caprylic acid into vegetable oils depends on the composition of 

the original oil (SilRoy and Ghosh, 2011). Silroy and Ghosh (2011) analyzed the 

incorporation of caprylic acid to rice bran, ground nut and mustard oils using C. antarctica 

lipase (Novozym 435). Incorporation after 72h was of 30.8%, 34.2% and19.5% for rice bran, 

ground nut and mustard oils, respectively.  

 

Other applications of enzymatic acidolysis include the production of SL rich in 1,3-dicapryloy-

2-γ-linolenoyl glycerol from borage oil rich in γ−linolenic acid and caprylic acid, using the 

immobilized lipase from R. oryzae (Kawashima et al., 2002). Using a ratio of 1:2, oil to 

caprylic acid, in a continuous reactor with 15g of immobilized lipase from R. oryzae at 30°C, 

the reaction produced 44.5%mol of the desired SL and after purification the concentration 

increased to 56.6%mol. This reaction was also carried out in a packed bed continuous 

reactor using R. delemar lipase in a solvent-free system (Shimada et al., 1999). At 30°C, 

with a flow rate of 4.5 mL/h with 8g of the immobilized enzyme, the incorporation of caprylic 

acid was of 50-55% mol and the reactor was stable for 60 days. The products were 
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separated by molecular distillation and further analysis showed that the caprylic acid was 

only incorporated in the sn-1 and sn-3 positions.  

 

Structured lipids rich in caprylic acid and conjugated linoleic acid, CLA, are also of interest. A 

SL rich in caprylic acid in the sn-1 and sn-3 positions and CLA in the sn-2 position were 

synthesized by acidolysis of TAG rich in CLA with caprylic acid, using R. miehei immobilized 

lipase and a molar ratio of 1:10, triglyceride to fatty acid (Kawashima et al., 2004). This SL 

was also produced using coconut oil rich in CLA and tricaprylin, catalyzing the reaction with 

R. miehei immobilized lipase at 65°C for 48h, under nitrogen (Rocha-Uribe and Hernandez, 

2004). 

 

Caprylic acid was also introduced into chicken fat using Carica papaya latex as lipase (Lee 

and Foglia, 2000). Optimal conditions were 1:2 molar ratio, chicken fat to caprylic acid, and 

temperature of 65°C obtaining an incorporation of 23.4%. C. papaya lipase latex was also 

studied for its ability to incorporate MCFA esters into tripalmitin (Gandhi and Mukherjee, 

2001).  

 

SL rich in caprylic acid can also be produced using two triacylglycerols as substrates. 

Soumanou et al. (1997) used tricaprylin and peanut oil and the immobilized microbial lipases 

from R. miehei, Candida sp. and C. viscosum as catalysts. The best results were obtained 

with R. miehei lipase, at 50°C, having a yield of SL of 79%. Using a two-step process, a 

MLM with caprylic acid in the sn-1,3 positions and oleic or linoleic acid in the sn-2 position, 

was produced from peanut oil and caprylic acid (Soumanou et al., 1998). The first step 

consisted in the production of 2-MAG by ethanolysis of peanut oil with immobilized R. 

delemar lipase. The second step was the esterification of the 2-MAG, producing a SL that 

had 90% of the caprylic acid in the sn-1,3 positions and 98.5% of the sn-2 position had 

unsaturated fatty acid.  

 

 2.5.2 MLM enriched with capric acid 

 

Another MLM of interest is the SL with capric acid in the sn-1,3 positions and an unsaturated 

or polyunsaturated fatty acid in the sn-2 position. Capric acid was introduced into lard using 

the commercial immobilized lipase TL IM from T. lanuginosus, reaching an incorporation 

percentage of 50.14% mol (Zhao et al., 2006; Zhao et al., 2007). The optimal conditions 

were, 5-10% of enzyme load, a reaction time of 24h, with a molar ratio of 1:2, lard to capric 

acid, and a temperature of 50-55°C. The commercial immobilized lipase Lipozyme TL IM 

was also used to introduce capric acid into olive oil (Oh et al., 2009). The reaction was 
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carried out with a molar ratio of 1:3 olive oil to capric acid and a temperature of 50°C and 

after 8h an incorporation of 50% mol was obtained.  

 

This SL was produced using the commercial immobilized lipases IM 60 from R. miehei and 

SP 435 from C. antarctica to catalyze the reaction between tricaprin and trilinolein (Lee and 

Akoh, 1997). This reaction produced two types of SL: one with two molecules of capric acid 

and another with two molecules of linoleic acid. A similar SL was produced from tricaprin and 

tristearin using immobilized R. miehei lipase (Lipozyme IM 60) with an enzyme load of 10% 

and a molar ratio of 1:1 (Akoh and Yee, 1997). Under the best reaction conditions the 

product had 84.7% of modified TAG.  

 

MLM containing capric acid were obtained by acidolysis of virgin olive oil, in hexane or in 

solvent-free media, using commercial immobilized lipases (Nunes et al., 2011a) or in the 

absence of a solvent using a heterologous lipase from R. oryzae immobilized in different 

supports, as catalysts (Nunes et al., 2011b; Nunes et al., 2012a; Nunes et al., 2012b).  

 

 2.5.3 MLM enriched with polyunsaturated fatty acids.  

 

Other structured lipids of interest are the MLM enriched with polyunsaturated fatty acids like 

EPA and DHA in the sn-2 position. The polyunsaturated fatty acids present a higher 

absorption in the organism when they are present as triacylglycerols rather than as their 

methyl or ethyl esters forms. Also, their absorption is higher when the PUFA are located in 

the sn-2 position, position that is not hydrolyzed by the pancreatic lipase (Lawson and 

Hughes, 1988). It has also been shown than the methyl and ethyl ester forms of the PUFA 

are hydrolyzed four times slower than the corresponding triacylglycerols (Yang et al., 1989).	  

 

This type of SL has been produced by a two step process, production of 2-

monoacylglycerols (2-MAG) rich in PUFA from fish oils by ethanolysis, with a sn-1,3 specific 

lipase, followed by a lipase catalyzed esterification with caprylic acid or its ester (Irimescu et 

al., 2001a; Muñío et al., 2009) . This reaction produces a SL rich in caprylic acid in the sn-1 

and sn-3 positions and a PUFA in the sn-2 position. Irimescu et al. (2001) produced the 2-

MAG from fish oil using immobilized C. antarctica lipase (Novozym 435) with a yield of 

92.5% and 43.5% of the fatty acids in the sn-2 position was DHA. Using the immobilized R. 

miehei lipase (Lipozyme RM IM) the reaction between the 2-MAG and ethyl caprylate gave 

85.3% of TAG with two caprylic acids in the sn-1,3 positions, 13% TAG with one caprylic 

acid and 1.7% of tricaprylin. From the di-substituted TAG 51%wt had DHA in the sn-2 

position. To increase the purity of the SL, the sn-2-MAG were produced by ethanolysis of 
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tridocosahexaenoylglycerol or trieicosapentaenoylglycerol, with immobilized C. antarctica 

lipase (Novozym 435) followed by re-esterification with immobilized R. miehei lipase 

(Lipozyme RM IM) (Irimescu et al., 2001b). Muñío et al. (2009) also produced the sn-2-MAG 

rich in PUFA using Novozym 435, with a reaction yield of 65%, and the esterification 

reaction, using immobilized lipase D from R. oryzae, showed an incorporation percentage of 

64%.  

 

Kawashima et al. (2001) modified the two-step process by changing the production of sn-2-

MAG by the production of TAG rich in PUFA in the three positions (Kawashima et al., 2001). 

C. antarctica lipase was used for the production of TAG rich in PUFA and R. delemar lipase 

was used for their acidolysis with caprylic acid, reaching an incorporation of 41%mol. After 

three successive acidolysis reactions the content of caprylic acid reached 66% mol. 

Following the two step process, 1,3-dicapryloyl-2-eicosapentaenoylglycerol was synthesized 

from tri-eicosapentaenoylglycerol (tri-EPA) and ethyl caprylate (Irimescu et al., 2000). 

Immobilized C. antarctica lipase was used for the production of tri-EPA and R. miehei 

immobilized lipase for the esterification reaction of tri-EPA and ethyl caprylate, which had a 

yield of 91%. Nagao et al. produced the same type of SL by producing oil rich in arachidonic 

acid in the sn-2 position using C. rugosa lipase, followed by an acidolysis with R. oryzae 

lipase that produced a SL with an incorporation degree of caprylic acid of 44% (Nagao et al., 

2003). 

 

The immobilized lipase from R. delemar was also used for the synthesis of MLM rich in 

functional fatty acids in the sn-2 position in a one step process (Shimada et al., 1996a; 

Shimada et al., 1997c). The desired MLM with caprylic acid in the sn-1,3 positions and DHA 

in the sn-2 position was obtained from the lipase catalyzed reaction between tuna oil and 

caprylic acid. This enzyme was capable of substituting 65% of the tuna oil FA in the sn-1,3 

positions with caprylic acid and all the resulting TAG were mono of disubstituted. Using a 

packed bed reactor in a solvent-free system, the incorporation of caprylic acid into tuna oil 

was of 45% and 91% of the caprylic acid was incorporated in the sn-1,3 positions (Hita et al., 

2007).  

 

Similar experiments were carried out using R. miehei immobilized lipase to catalyze the 

acidolysis reaction between menhaden oil and caprylic acid (Akoh and Moussata, 2001). 

Under optimal conditions, the SL had 29.5% of caprylic acid and the PUFA in the fish oils 

remained unmodified. This SL was also produced in a packed bed reactor at 65°C, a molar 

ratio of 4-5 and a residence time of 180-220min obtaining a caprylic acid incorporation of 

38.8% (Xu et al., 2000). A packed bed reactor was also used by Camacho Paez et al. (2002) 
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to produced a SL from cod liver oil and caprylic acid using immobilized R. miehei lipase 

(Lipozyme RM IM) (Camacho Paez et al., 2002). The produced SL had 57% caprylic acid, 

5.1%, EPA, 10% DHA and 6.3% palmitic acid.  

 

A similar SL was produced by acidolysis reaction between capric acid and fish oil rich in EPA 

and DHA, using the immobilized R. miehei lipase (Jennings and Akoh, 1999; Senanayake 

and Shahidi, 2002a). Jennings and Akoh (1999) reached after 24h, in a hexane system, a 

capric acid incorporation of 43% which was higher than that obtained in the solvent free 

system, which only reached 31.8%. After optimization, capric acid incorporation reached 

65.4%, in the hexane system, and 56.4% in the solvent-free system. The optimal reaction 

conditions found by Senanayake and Shahidi (2002a) were molar ratio 1:3 oil to fatty acids, 

temperature of 45°C, reaction time of 24h and an enzyme load of 10%(w/w of substrates) 

obtaining a SL with 2.3% EPA, 7.6% DHA and 27.1% capric acid.  

 

The lipases from R. miehei and Pseudomonas sp. KWI-56 were used to catalyse the 

reaction between single cell oils, rich in DHA and DPA, with caprylic acid (Iwasaki et al., 

1999; Yankah and Akoh, 2000). The incorporation degree of caprylic acid was of 23% mol 

with R. miehei lipase, while with Pseudomonas lipase was of 65% (Iwasaki et al., 1999). 

These results prove that each lipase has different specificity toward different PUFAs. With R. 

miehei lipase, Yankah and Akoh (2000) obtained a caprylic acid molar incorporation of 

47.6%.  

 

The incorporation of capric acid into single cell oils rich in DHA and DPA were studied using 

five commercial lipases, C. antarctica, R. miehei, Pseudomonas sp., A. niger and C. rugosa 

(Hamam and Shahidi, 2005a). The highest incorporation of capric acid was obtained with 

Pseudomonas sp. lipase (27.9%) and this acid was esterified mainly in the sn-1,3 positions, 

while DHA and DPA were found in the sn-2 position.  

 

 2.6 Other Structured Lipids 

 

A reduced calorie SL was produced by the incorporation of caproic and butyric acid into 

triolein, obtaining a mixture of MLM and a lipid with short chains fatty acids (SCFA) in the sn-

1,3 positions and a LCFA in the sn-2 position (SLS) (Fomuso and Akoh, 1997). The optimal 

condition were found with a molar ratio of 1:4:4 triolein, caproic acid and butyric acid, with 

10% enzyme load of R. miehei lipase (IM 60) at 55°C. After 24h reaction the product had 

49% of di-substituted and 38% of mono-substituted TAG. SL rich in caproic acid can also 

been obtained by interesterification between trilinolein and tricaproin with R. miehei lipase 
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(IM 60) and C. antarctica lipase (SP 435) (Fomuso and Akoh, 1998). Reaction was carried 

out with a molar ratio of 1:2 trilinolein to tricaproin, in hexane at 45°C, catalyzed by Lipozyme 

IM 60, and 55°C for SP 435. The products obtained with IM 60 had 53.5% of TAG with two 

molecules of caproic acid and 22.2% of TAG with one molecule of caproic acid, and the 

products from SP 435 reaction had 41% and 18% respectively. The reaction was optimized 

by changing tricaproin as acyl donor for caproic acid.  

 

SL can also be produced for coating applications in the food industry (Sellappan and Akoh, 

2000). These lipids were produced by acidolysis of tristearin with oleic and lauric acid in a 

hexane solvent system, using Lipozyme IM60 as lipase. The reaction product was more 

effective than cocoa butter in the prevention of moisture absorption.  

 

Other SL that have been successfully produced are: 1,3-dilauroyl-2-oleoylglycerol (LaOLa), 

obtained with a purity of 70% after enzymatic acidolysis between triolein and lauric acid with 

catalyzed by immobilized R. miehei lipase (Miura et al., 1999); 1,3-distearoyl-2-oleoylglycerol 

and 1(3)-2-dioleoyl-1(3)-monostearoyl glycerol with purities of 36% and 27% respectively, 

produced from the acidolysis of rapeseed oil with stearic acid or methyl stearate, catalyzed 

by  immobilized R. arrhizus (Gitlesen et al., 1995); monoleyl-1(3)-cinnamate and dioleyl-2-

cinnamate synthesized  with Novozym 435 from cinnamoylated lipids and triolein (Karboune 

et al., 2005); nutraceutical phenolic lipids synthesized from dihydrocaffeic acid and flaxseed 

oil (Sabally et al., 2006); phospholipids obtained from the reaction between soybean 

phospholipids and free fatty acids, catalyzed by Lipozyme TL IM (Peng et al., 2002) and low 

calorie SL produced by acidolysis of stearic acid with triacetin, incorporating the stearic acid 

into the sn-1 and sn-3 positions, using Chirazyme L-2 as catalyst and obtaining 88% of  the 

desired SL (Yang et al., 2001). 

 

3. Conclusions 

 

SL are of great interest since they avoid health problems related with long chain TAG and 

have targeted nutritional, pharmaceutical and energetic properties. MLM represent one of 

the most interesting SL since they present lower caloric value than the natural fats and 

can be used as easily accessible energy sources for patients with absorption problems. 

Enzymatic synthesis, using specific lipases, represents the most effective method mainly 

due to the high specificity of the process. In this work we study the ability of the immobilized 

lipase Lip2 from Y. lipolytica to produce MLM type structured lipids.   
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This part of the thesis presents the functionalization of polyunsaturated fatty acids Omega-3 

(ω3-PUFAs). We studied the production of a pharmaceutical molecule, which is in clinical 

trial for the treatment of cardiac arrhythmia by the french company Laboratoires Pierre 

Fabre. This molecule, the DHA-nicotinol, is an ester enzymatically-synthesised by the 

transesterification of cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid (DHA) ethyl ester with 

nicotinol.  

 

Omega-3 PUFAs are of interest since cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid (DHA) 

and cis-5, 8, 11, 14, 17-eicosapentaenoic acid (EPA), the most important Omega-3, present 

anti-thrombotic and anti-inflammatory properties that reduce risk factors of arthritis 

rheumatoid, cancer, cardiovascular diseases, myocardial infarction, bronchial asthma, 

inflammatory intestinal diseases, diabetes and Alzheimer’s disease.  

 

The co-substrate is the nicotinol (3-hydroxymethylpyridine), an alcohol from the group B pro-

vitamins. Nicotinol is the alcohol derived from nicotinic acid, also known as niacin (Vitamin 

B3) which after absorption, is rapidly converted into nicotinic acid. The nicotinic acid 

presents the ability to substantially decrease plasma free fatty acid, triglyceride, VLDL (very-

low-density lipoprotein) and LDL (low-density lipoprotein) levels and to raise the plasma 

concentration of protective HDL (high-density lipoprotein). DHA-nicotinol would present the 

cumulative properties of the two reactants.  

 

In addition to enzyme and reaction medium selection, the enzymatic trans-esterification of 

DHA ethyl esters with nicotinol was optimised by varying the medium, working temperature, 

enzyme/substrate and ester/alcohol ratios. Finally we maximised both the kinetics and the 

conversion obtained at equilibrium. 
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Abstract 

Consumption of Omega-3 polyunsaturated fatty acids (ω3-PUFAs), especially 

eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), reduces 

the incidence of cardiovascular diseases. Nicotinol, an alcohol from the group B pro-vitamin, 

is recommended in dyslipidemia, hypercholesterolemia and hyperlipidemia treatment due to 

its degradation in nicotinic acid. The enzymatic trans-esterification of highly concentrated 

ω3-PUFAs ethyl esters with nicotinol was optimised in order to synthesise an ester 

presenting the cumulative properties of the two reactants. Commercially immobilised lipase 

B from Candida antractica, Novozyme 435, used at a temperature of 60°C, was 

demonstrated to be the best catalyst. An eco-compatible solvent free system enabled 

enzyme activity, conversion at thermodynamic equilibrium and volumetric productivity to be 

maximized. From both kinetic and thermodynamic points of view, it was demonstrated 

crucial to evacuate ethanol co-product from the reaction medium. Using nitrogen bubbling, 

97% conversion of DHA ethyl ester to DHA-nicotinol was obtained in 4 hours using 45 g.L-1 

of enzyme. In these conditions, a productivity of 4.2 g of product ⋅h-1⋅g of enzyme-1 was 

obtained.  
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1. Introduction 

 

Several epidemiological studies among populations consuming high quantities of fish have 

demonstrated an inverse relationship between its consumption and cardiovascular diseases. 

Omega-3 polyunsaturated fatty acids (ω3-PUFAs), especially eicosapentaenoic acid (EPA, 

20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have been presumed to be the active 

compounds. These fatty acids are essential for mammalians growth and development, and 

as their synthesis in the organism from α-linolenic acid is low, a dietary intake is therefore 

indispensable (Caballero et al., 2006). Dietary uptake of ω3-PUFAs can be provided as a 

triglyceride or a phopsholipid form, as found in fish or fish oil, or as a purified and 

concentrated ethyl ester form. In both cases, EPA and DHA exhibit a positive effect in 

prevention and/or treatment of cardiovascular diseases and in modulating the corresponding 

risk factors (Connor, 2000).  

 

EPA and DHA benefits are multiple and independent. Particularly, they are known to lower 

the plasma triglyceride, very low density lipoprotein (VLDL) -cholesterol and low density 

lipoproteins (LDL) -cholesterol levels and to slowly raise the high density lipoproteins (HDL) -

cholesterol level (Nestel et al., 1984; Singer et al., 1984; Phillipson et al., 1985; Kinsella, 

1986; Sullivan et al., 1986; Singh and Chandra, 1988; Sacks and Katan, 2002). Thus, they 

are used in the treatment of hyperlipidemia and hypercholesterolemia (Goodfellow et al., 

2000; Castaño et al., 2006; Ros and Laguna, 2006). The mechanism of this lowering effect 

is thought to be caused by a decrease in the triglyceride synthesis in the liver following the 

inhibition of acyl-coenzyme A (1,2 diacylglycerol-o-acyl-transferase) and the induction of the 

peroxisomal β-oxydation in the liver (Rustan et al., 1988).  

 

Moreover, several clinical studies conducted with high concentrated EPA/DHA supplements 

concluded that they induce a reduction of coronary disease risks (Balk et al., 2006) and 

mortality due to coronary heart attacks (Leaf et al., 2003; Harris and von Schacky, 2004; 

Harris et al., 2008; Lavie et al., 2009). The principal cause of these deaths is persistent 

ventricular arrhythmias, usually ventricular fibrillation (Leaf et al., 2003; Harris et al., 2008). 

EPA and DHA have the ability to modulate cardiomyocyte electrical activity (Leaf et al., 

1999). In addition, the refractory period of the cardiac cycle is also prolonged. These two 

effects affect directly myocyte’s activity, stabilizing them and therefore making them resistant 

to arrhythmias. 

 



Publication 2  Chapter II: Results 
 

 165 

Finally, EPA and DHA present other advantages: reduction of blood pressure, decrease of 

platelet aggregation, induction endothelial relaxation (Pownall et al., 1999; Geleijnse et al., 

2002; Balk et al., 2006; Harris et al., 2008), non steroidal anti-inflammatory properties. 

Contrary to Omega-6 fatty acids (ω6-PUFAs), ω3-PUFAs are precursors of 3-series 

prostanoids and 5-series leukotrienes, both associated with anti-inflammatory and anti-

thrombotic properties (Calder, 2001; Simopoulos, 2002; Mori and Beilin, 2004; Ton et al., 

2005). 

 

In the present study, we propose the synthesis of esters combining ω3-PUFAs and nicotinol 

(3-hydroxymethylpyridine), an alcohol chosen among pro-vitamins belonging to the group B. 

Nicotinol is the alcohol derived from nicotinic acid, also known as niacin (Vitamin B3) 

(Szapary and Rader, 2001). After absorption, nicotinol is rapidly converted into nicotinic acid. 

At relatively high doses, not covered by the endogenous production from tryptophan via the 

kynurenine pathway, nicotinic acid has the ability to substantially decrease plasma free fatty 

acid, triglyceride, VLDL and LDL levels and to raise the plasma concentration of protective 

HDL (Harris et al., 1997). Nicotinic acid could be used in treatment of dyslipidemia, 

hypercholesterolemia and hyperlipidemia (Szapary and Rader, 2001).  

 

We hypothesized that EPA, DHA and nicotinol positive effects would be additional and even 

synergistic, after adsorption in the organism and lipase-catalysed hydrolysis. Here, we 

investigated the possibility of catalysing the trans-esterification reaction between DHA ethyl 

ester and nicotinol using an enzymatic route with triacylglycerol lipases (EC.3.1.1.3). The 

mild temperature used in enzyme processes will prevent the polyunsaturated fatty acid 

oxidation. A preliminary study will be carried out in a given reaction medium to choose the 

most promising commercially available triacylglycerol lipase. Then the reaction will be 

optimised by varying the medium, working temperature, enzyme/substrate and ester/alcohol 

ratios. Finally the enzymatic process will be optimised to maximise both the kinetics and the 

conversion obtained at equilibrium.  
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2. Materiel and Methods 

 

2.1 Materials 

 

Commercial immobilised lipases Novozyme 435 (immobilized form of Candida antarctica 

lipase), Lipozyme RM IM (immobilized form of Rhyzomucor miehei lipase) and Lipozyme TL 

IM (immobilized form of Thermomyces lanuginosa) were a gift from Novozyme (Denmark). 

Lipase PS Amano IM was a gift from Amano (Japan), (Table 1). High concentrated ω3-

PUFAs ethyl esters (from tuna oil) containing 80% molar of DHA and 12% molar of EPA 

(OMEGAVIE®) were purchased from Polaris (France). Nicotinol was purchased from Acros 

organics (Geel, Belgium). 3 Å molecular sieve was purchased from Sigma Chemical Co. (St. 

Louis, MO, USA). All other chemicals and solvents (2methyl 2butanol, hexane, 5-methyl 2 

hexanone, acetonitrile and acetone) were of purity higher of 99% and purchased from Acros 

Organics (Geel, Belgium). Solvents and nicotinol were dried using 3Å molecular sieves 

activated overnight at 350°C. 

 

Table 1. Characteristics of the immobilized lipases tested for transesterification between 

DHA-ethyl ester and nicotinol.  

Commercial name Enzyme origin Support Hydrophobicity/ 
philicity Source 

Novozym 435 Candida 
antarctica form B 

Lewatit VP OC 
1600 

Medium 
hydrophobic 

Novozymes 
(Denmark) 

Lipozyme RM IM Rhizomucor 
miehei Duolite A568 Hydrophilic Novozymes 

(Denmark) 

Lipozyme TL IM Thermomyces 
lanuginosa Silica granules Hydrophilic Novozymes 

(Denmark) 

Lipase PS Amano IM Burkholderia 
cepacia 

Diatomaceous 
earth Hydrophilic Amano 

(Japan) 
 
2.2 Reaction 

 

2.2.1 In solvent 

 

For enzyme selection, reactions were carried out in glass tubes under magnetic agitation, 

containing ω3-PUFAs ethyl esters (0.1 M, 0.36 g) and nicotinol (0.15 M, 0.16 g) (1.5 molar 

ratio) in 10 ml of 2-methyl-2-butanol (2M2B). Reactions were started by the addition of 25 

mg of the enzyme, representing 7% w/w of the DHA ethyl ester. The trans-esterification was 

conducted at 40°C for enzyme selection (Lipozyme RM IM®, Lipozyme TL IM, Lipase PS 

Amano IM and Novozyme 435). In all further experiments with Novozyme 435 the reaction 

temperature was of 60°C.  
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Samples (150µL) were withdrawn at various time intervals and centrifuged at 13000 rpm 

during 3 minutes for enzyme removing, using an Eppendorf centrifuge 5415D. The samples 

were appropriately diluted in hexane and analysed by gas chromatography. 

 

2.2.2 In solvent free medium 

 

Reactions were carried out in glass tubes containing 3ml of a mixture of ω3-PUFAs ethyl 

esters and nicotinol. A molar ratio between substrates of 1, 1.5 and 3 were used 

corresponding to DHA ethyl ester 1.98, 1.8 and 1.43 M and nicotinol 1.98, 2.7 and 4.3 M 

respectively. Reactions were started by the addition of 135 mg of Novozyme 435, 

representing 7% w/w of the DHA ethyl ester. The trans-esterification was conducted at 60°C 

with Novozyme 435. Reactant compositions were determined by taking samples (75µL) from 

the reaction medium at different times. A fraction (25µL), previously centrifuged 3 minutes at 

13000 rpm, is diluted 500-fold in n-hexane for gas chromatography analysis. 

 

2.3 Analysis of the samples 

 

Samples were analysed by gas chromatography with a GC device 6890N, Agilent 

technologie. Separation was ensured by a HP-5 column (30 m length x 0.32 mm internal 

diameter and 0.25 µm thickness, Variant Inc., USA) connected to a flame ionization detector 

(FID). The following conditions were used: carrier gas He (25 ml/min), air and hydrogen flow 

of 300 mL/min and 30 mL/min. The temperature program used for the ethyl estes analysis 

was the following:  180ºC for 15 minutes, increase from 180ºC to 250ºC at 6°C/ min, hold for 

10 minutes at 250ºC, increase from 250°C to 280°C at 10°C/ min and hold for 8 minutes. 
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3. Results and Discussion 

 

3.1 Enzyme selection 

 

As the objective of the study was the rapid development of an industrial process with 

economical pertinence for the trans-esterification of DHA ethyl ester with nicotinol (pyridin-3-

ylmethanol), only commercial immobilised lipases were tested. Four lipases were selected, 

Novozyme 435, Lipozyme RM IM, Lipozyme TL IM and Lipase PS Amano IM, and assessed 

in 2-methyl-2-butanol (2M2B) with a 1.5 molar ratio nicotinol/DHA ethyl ester and 7% 

enzyme/ester (w/w). This first enzyme screening was performed at 40°C, temperature at 

which the four enzymes are reported to be stable. Lipozyme RM IM and Lipozyme TL IM 

showed low activity, with DHA ethyl ester conversion of only 2% and 8%, respectively, after 

72 hours of reaction. Lipase PS Amano IM was more active but still only 22% of DHA ethyl 

ester conversion was achieved in 72 hours. Finally, Novozyme 435 was found to be the most 

efficient enzyme leading to 19% of DHA ethyl ester conversion in 1 hour. This enzyme is 

well-known for its high temperature stability and 60°C is a common working temperature 

over long period (Slotema et al., 2003). In these conditions, 26% of DHA ethyl ester 

conversion is reached in 1 hour, which represents an increase of 38% compared to the 

result obtained at 40°C. From these results, Novozyme 435 was selected for further 

improvements, choosing 60°C as the working temperature. 

 

3.2 Reaction medium selection 

 

The choice of the reaction medium is crucial because it will influence the enzyme activity and 

stability, conversion at thermodynamic equilibrium, solubility of substrates and products and 

consequently enzyme reuse and productivity and the stability of the reactor. In our case, 

selection of the reaction medium was first dictated by the difficulty to solubilise two 

substrates of different polarities. Indeed DHA ethyl ester is very hydrophobic whereas 

nicotinol is very polar. Nicotinol is not soluble at 40°C in n-hexane, cyclohexane and heptane 

and therefore no reaction was observed in such hydrophobic media (data not shown). This 

phenomenon was attributed to the adsorption of the nicotinol on enzyme support leading to 

mass transfer limitations. Different solvents of medium polarity and usually well-tolerated by 

enzymes were then tested: 5-methyl-2-hexanone, 2 methyl 2 butanol (2M2B) and 

acetonitrile. Undoubtedly, the ideal medium would consist in using a solvent free system 

(SFS) only composed by the reactants: high volumetric productivities would be obtained in 

an eco-compatible environment. Even if DHA ethyl ester and nicotinol are not miscible, it 

was decided to test this reaction system. The same enzyme / DHA ethyl ester weight ratio 
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(g/g) was used with and without solvent in order to be able to compare the results. Table 2 

shows the percentage of DHA ethyl esters esterified under the tested conditions. 

 

It was demonstrated that it is crucial to use dry solvents to avoid a parasite reaction, the 

hydrolysis of the ethyl ester. This one is largely reduced in the solvent free system (data not 

shown). 

 

Table 2. Percentage of DHA ethyl ester conversion to DHA-Nicotinol. DHA:nicotinol ratio 

was 1:1.5 and the temperature 60°C. Novozyme 435: 7 % w/w of the DHA ethyl ester. 

Solvent Boiling 
point (°C) 

log P* 
DHA ethyl ester Conversion (%) 

30 minute 6 hours 

Acetonitrile 82 -0.34 10.8 35 

2M2B 102 0.89 12.4 38 

5-methyl-2-hexanone 145 1.88 25.4 41 

Solvent free system - - 34.5 43 

* log P : n-Octanol/WaterPartition Coefficient 

 

The highest enzyme activity (after 30 minutes of reaction) and final conversion (after 6 hours 

of reaction) were obtained with the solvent free system (43% of conversion in 6 hours). If a 

solvent was used, the highest conversions were obtained with 5-methyl-2-hexanone (41%), 

closely followed by 2M2B (38%). Even if 5-methyl-2-hexanone enabled better results to be 

obtained, 2M2B was estimated to be the best solvent due to a lower bowling point which will 

minimise the energy costs of the purification process and the higher flammability hazard of 

5-methyl-2-hexanone (Sciencelab, 2011). The solvent free system and 2M2B were thus 

selected for further improvements.  

 

3.3 Improvement of enzyme kinetic and conversion at equilibrium 

 

At thermodynamic equilibrium, the reaction conversion reached only 38 % and 43 % in 

2M2B and in the solvent free-system respectively. This equilibrium might be shifted by either 

evaporating the formed ethanol or/and by increasing the ratio between alcohol and ester. 

The first strategy would have the extra advantage of decreasing a possible ethanol 

inhibition, largely described in the literature (Marty et al., 1997). To confirm this hypothesis 

the reaction was carried out in open tubes in order to favour ethanol evaporation (Table 3). 
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Table 3. Percentage of DHA conversion to DHA-Nicotinol in closed and open system. 

DHA:nicotinol ratio was 1:1.5 and the temperature 60°C. Novozyme 435: 7 % w/w of the 

DHA ethyl ester. 

Solvent 

DHA ethyl ester Conversion (%) 

Closed tube  Open tube 
30 min in 2M2B 
15 min in SFS 6 hours 30 min in 2M2B 

15 min in SFS 6 hours 

2M2B 12.4 37.5 19.8 71.5 

Solvent free system 19.5 43.0 22.3 74.2 

 

In both reaction media, enzyme activity was higher using open tubes (60 and 14 % increase 

in 2M2B and SFS respectively). This result could be attributed to ethanol inhibition. The fact 

that ethanol evaporation seems to be less efficient in SFS could be attributed to the high 

solubility of ethanol in the nicotinol phase leading to a reduction of its thermodynamic 

activity. Use of open tubes enabled the thermodynamic equilibrium to be largely shifted, 

reaching 71.5% and 74.2 % in 6 hours in 2M2B and in SFS respectively.  

 

The value of the ratio DHA ethyl ester:nicotinol was also investigated to optimize both kinetic 

and thermodynamic equilibrium. The tested ratios were 1:1, 1:1.5 and 1:3 in 2M2B and SFS, 

with Novozyme 435 at 60°C (Figure 1). In 2M2B, higher DHA ethyl ester:nicotinol ratios lead 

to both less enzyme activity and less conversions at thermodynamic equilibrium, indicating 

that nicotinol might act as an inhibitor. The highest conversion obtained in 2M2B using a 

ratio 1:1 was of 95% after 24h, while whit the ratios 1:1.5 and 1:3 the conversions obtained 

after 24h were of 90% and 83% respectively.  

 

In SFS, the reaction is twice more efficient than in 2M2B, 40 % conversion being obtained in 

30 minutes. Moreover, the kinetic is poorly affected by the reactant ratio. At equilibrium, the 

best performances were obtained with a stoechiometric ratio and a 1.5 ratio leading to 97% 

conversion in 24 h. For the ratio 1:3, conversion is lower (83%) which could be explained by 

a less efficient ethanol evaporation due to nicotinol excess. In addition it can be postulated 

that after 30 minutes of reaction, when the kinetic progress is largely reduced, the limiting 

step is shifting from the enzyme activity to the ethanol removal from the medium. 
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Figure 1. Percentage of esterification of DHA ethyl ester to DHA-Nicotinol with different DHA 

ethyl ester : Nicotinol ratios in the 2M2B (A) and solvent free systems (B). (¿) 2M2B ratio 

1:1, (¢)2M2B ratio 1:1.5, 2M2B ratio 1:3 (p), (¯) solvent free 1:1, (£) solvent free 1:1.5 

and (r) solvent free 1:3. Temperature 60°C. Novozyme 435: 25mg in 2M2B and 135mg in 

SFS (7% w/w). 

 

The solvent free system appears to be the optimal reaction system, as it enables the 

conversion obtained at thermodynamic equilibrium to be maximised (97%) using low DHA 

ethyl ester:Nicotinol ratio. In addition, the high concentration of DHA ethyl ester will permit 

high volumetric productivity to be obtained and the development of a friendly environmental 

process, since the absence of solvent is undoubtedly a crucial advantage. This reaction 

system was consequently chosen for further process improvement.  

 

3.4 Optimization of the solvent free system 

 

The selected conditions were a temperature of 60°C, a Novozyme 435 concentration of 45 

g/L (7% w/w enzyme/DHA ethyl ester) and a ratio DHA ethyl ester:Nicotinol of 1:1 or 1:1.5. 

Ethanol removal was found crucial for this reaction both from a kinetic point of view and to 

maximise the conversion at the thermodynamic equilibrium. As it was postulated that the 

limiting phenomenon during the reaction becomes the ethanol removal, another strategy for 

ethanol removal was investigated: nitrogen bubbling. This process would present the extra 

advantage of avoiding the oxidation of the DHA ester. 
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Undoubtedly, our hypothesis was verified: removal of ethanol from the reaction medium with 

nitrogen bubbling enabled very high conversions (superior to 94%) to be achieved in only 4 

hours (Figure 2). In the open system reactor, 48 hours were required to obtain the same 

yield. A 1.5 DHA ethyl ester:nicotinol ratio appeared optimal with 99% conversion in 4 hours, 

since at a lower ratio (1:1) the reaction only reached 94% in 6h. At the end of the reaction, it 

is easy to get rid of the residual nicotinol by simple decantation In addition, in the reactor 

under nitrogen bubbling no oxidation of the ω3-PUFAs was observed.  
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Figure 2. Percentage of DHA ethyl ester conversion with a solvent free system using two 

different reactors and two reaction ratios of DHA ethyl ester : nicotinol: (�) under N2 

bubbling ratio 1:1, (p) under N2 bubbling ratio 1:1.5, (¯) open reactor ratio 1:1 and (£) 

open reactor ratio 1:1.5. Temperature 60°C. Novozyme 435: 135mg (7% w/w). 
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4. Conclusions 

 

Using Novozyme 435 for the transesterification reaction between DHA-ethyl ester and 

nicotinol is an excellent option for the production of DHA-Nicotinol, a pharmaceutical product 

that can be used in prevention and treatment of cardiovascular diseases. We found a system 

which is solvent free, has 99% yield in 4 hours, works at 60° C and the nitrogen bubbling 

highly reduces the oxidation of ω3-PUFAs. The absence of solvents and the short reaction 

times allow the development of an economical process. Indeed, in these conditions, a 

productivity of 4.2 g of product .h-1.g of enzyme-1 was obtained. 

 

. 
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The efficient production of the targeted molecule DHA-nicotinol required the development of 

a supply route of high purity DHA ethyl ester. The selectivity of lipases was studied to 

produce Omega-3 polyunsaturated fatty acid concentrates rich in DHA in the form of ethyl 

ester. Enzymatic purification was chosen for the production of concentrates since this 

method enables the purification to be operated under mild conditions, which is preferable 

since DHA is susceptible to oxidation. Lipases are able to discriminate between fatty acids in 

function of their chain length and/or saturation degree in three types of reactions: hydrolysis, 

trans-esterification, and esterification. Lipases act by kinetic resolution, reacting more 

efficiently with the bulk of saturated and mono-unsaturated fatty acids than with the more 

resistant PUFAs. Indeed, the 5 and 6 double bonds, in EPA (cis-5, 8, 11, 14, 17-

eicosapentaenoic acid) and DHA respectively, enhance steric hindrance in the active site of 

the lipases. Enzymatic hydrolysis was the chosen reaction.  

 

Screening of lipases led to the discovery of a more specific enzyme for PUFAs purification, 

the lipase Lip2 from Yarrowia lipolytica, which can be compared with the lipases identified in 

the bibliography as efficient, Thermomyces lanuginosus lipase and the lipases from Candida 

rugosa. These lipases were studied by comparing their ability to concentrate DHA-EE in the 

ester fraction by hydrolysing a tuna oil ethyl ester mixture (FOEE) with a high reaction yield. 

An analysis of the different ethyl esters hydrolysis allowed us to better understand the 

specificity of the tested lipases. 
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Abstract 

The production of Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) concentrates rich in 

cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) was studied using lipase-catalyzed 

hydrolysis of a tuna oil ethyl ester mixture. The lipases from Yarrowia lipolytica (YLL2), 

Thermomyces lanuginosus (TLL) and Candida rugosa (CRL1, CRL3 and CRL4) were tested. 

Candida rugosa lipases discriminate principally esters in function of their chain length, with a 

low discrimination of DHA versus γ-linolenate, 11-eicosenoate, arachidonate, EPA and DPA 

ethyl esters. On the contrary, YLL2 and TLL enable a better discrimination to be obtained, 

enzyme selectivity being principally due to the positioning of the double-bond the closest 

from the carboxylic group. YLL2 enables the highest concentrations of DHA (77%) and ω3 

esters (89.5 %) to be obtained. YLL2 is consequently the most effective described lipase for 

DHA purification both from kinetic, purity and yield points of view. 

 

Key words: Lipases, enzymatic hydrolysis, PUFA concentrates, docosahexaenoic acid, DHA 
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1. Introduction 

 

Omega-3 (ω−3) polyunsaturated fatty acids (PUFAs) interest has increased due to their 

beneficial effects on human health. In particular, cis-4, 7, 10, 13, 16, 19-docosahexaenoic 

acid (DHA, C22:6) and cis-5, 8, 11, 14, 17-eicosapentaeonic acid (EPA, C20:5) which 

present anti-thrombotic and anti-inflammatory properties that reduce risk factors of arthritis 

rheumatoid, cancer, cardiovascular diseases, myocardial infarction, bronchial asthma, 

inflammatory intestinal diseases, diabetes and Alzheimer’s disease (Carvalho et al., 2009; 

Okada and Morrissey, 2008; Rubio-Rodriguez et al., 2010). DHA is an important structural 

component of brain gray matter, eye retina and hearth tissue, and it is required during 

pregnancy for appropriate fetus development (Castro-Gonzalez, 2002; Ward and Singh, 

2005). Deficiency of ω−3 can provoke fatigue, dry skin, heart problems, poor circulation, 

depression and memory loss, among others.  

 

An optimal ratio of Omega-6 (ω-6) over ω-3 of 4:1 is recommended in diet. However, in most 

diets, especially in Western diets, the consumption of ω-3 is higher than optimal, reaching 

ratios higher than 10. The appropriate intake of ω-3 is of 1.6g/day for men and 1.1g/day for 

women (IOM, 2005). The most important sources of ω-3 are fish oils, but their 

triacylglycerols contain more than 50 different fatty acids. Therefore, is recommended to 

consume concentrated forms of ω−3 in order to minimize daily lipid intake and decrease 

saturated and mono-saturated fatty acid consumption.  

 

Several methods were developed to concentrate ω-3 PUFAs, including adsorption 

chromatography, molecular distillation, low temperature crystallization, urea complexation, 

supercritical fluid extraction and enzymatic reaction (Rubio-Rodriguez et al., 2010). This last 

method enables the purification to be operated under mild conditions, which is preferable 

since EPA and DHA are susceptible to oxidation. Lipases are able to discriminate between 

fatty acids in function of their chain length and saturation degree in three types of reactions: 

hydrolysis, trans-esterification, and esterification (Carvalho et al., 2003; Shahidi and 

Wanasundara, 1998). Lipases act by kinetic resolution, reacting more efficiently with the bulk 

of saturated and mono-unsaturated fatty acids than with the more resistant PUFAs (Shahidi 

and Wanasundara, 1998). Indeed, the 5 and 6 double bonds, in EPA and DHA respectively, 

enhance steric hindrance in the active site of the lipases. Lipases present different 

discrimination depending of the reaction used for ω-3 purification. Reactions can be 

classified in their order of efficiency: hydrolysis of tri-acylglycerides, esterification of free fatty 

acids and the most efficient, hydrolysis of fatty acid ethyl esters (Mbatia et al., 2010; 
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Shimada et al., 1997a; Shimada et al., 1997b). Several lipases have been used to 

concentrate ω-3 PUFAs. Some examples include Thermomyces lanuginosus (Hoshino and 

Yamane, 1990; Lyberg and Adlercreutz, 2008; McNeill et al., 1996), Candida rugosa (Byun 

et al., 2007; Hoshino and Yamane, 1990; Koike et al., 2007; McNeill et al., 1996; Okada and 

Morrissey, 2007; Sun et al., 2002; Tanaka et al., 1992; Wanasundara and Shahidi, 1998; 

Yan et al., 2002), Aspergillus niger (Carvalho et al., 2009; Hoshino and Yamane, 1990; 

Okada and Morrissey, 2007; Sun et al., 2002; Tanaka et al., 1992; Wanasundara and 

Shahidi, 1998), Pseudomonas sp. (Byun et al., 2007; Koike et al., 2007; Kojima et al., 2006; 

Lyberg and Adlercreutz, 2008; Sun et al., 2002; Tanaka et al., 1992; Wanasundara and 

Shahidi, 1998), Rhizopus javanicus (Carvalho et al., 2009; Tanaka et al., 1992), Rhizomucor 

miehei (Byun et al., 2007; Koike et al., 2007; Lyberg and Adlercreutz, 2008; McNeill et al., 

1996; Ustun et al., 1997; Wanasundara and Shahidi, 1998), Rhizopus niveus (Byun et al., 

2007; Koike et al., 2007; McNeill et al., 1996), R. oryzae (Sun et al., 2002; Wanasundara 

and Shahidi, 1998) and Mucor javanicus (Okada and Morrissey, 2007).  

 

Lipases can also discriminate between EPA and DHA, which is required due to the specific 

medical application of each fatty acid (Shimada et al., 1998b). Most lipases such as lipases 

from Geotrichum candidum, C. rugosa and T. lanuginosus prefer EPA over DHA, due to a 

higher steric hindrance with DHA, cause by the two additional carbons and mainly to the 

presence of a double bond one carbon closer from the carboxyl group in DHA (Halldorsson 

et al., 2003; Lyberg and Adlercreutz, 2008). Nevertheless, lipases from Pseudomonas 

species showed DHA preference over EPA, which can be considered as an inconvenient 

(Lyberg and Adlercreutz, 2008). 

 

Discovering more specific enzymes for PUFAs purification is still a great challenge. In this 

paper, the potentialities of the lipase Lip2 from Yarrowia lipolytica (YLL2) are investigated, in 

comparison with the lipases identified as efficient, T. lanuginosus lipase (TLL) and Lip1 

(CRL1), Lip3 (CRL3) and Lip4 (CRL4) from C. rugosa. These lipases were studied by 

comparing their ability to concentrate DHA-EE and EPA-EE in the ester fraction by 

hydrolysing a tuna oil ethyl ester mixture (FOEE). Discrimination between PUFAs and 

especially between EPA and DHA will be considered. A special attention will be given to the 

recovery yield of ω−3 esters, especially DHA ethyl ester. 
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 2. Material and methods 

 

2.1 Materials 

 

Tuna oil ethyl esters mixture with 25% DHA and 5% EPA was kindly donated by Pierre 

Fabre (France). The ethyl ester mixture composition was analyzed with gas chromatography 

using the GC method described below. Commercial ethyl esters standards were bought from 

Nu-Chek-Prep, Inc. (Minnesota, USA). Peptone, tryptone and yeast extract were purchased 

from (Difco, Paris, France). Unless stated other chemicals of commercial grade were 

purchased from Sigma/Aldrich. 

 

2.2 Lipases 

 

The extracellular lipase Lip2 from Y. lipolytica was expressed in Y. lipolytica strain JMY1212 

under the control of the POX2 promoter inducible by oleic acid (Bordes et al., 2007). Lipases 

from T. lanuginosus and C. rugosa were expressed in Y. lipolytica strain JMY1212 with the 

plasmid JMP62-TEF-Ura-Ex, a derivative of JMP62 (Nicaud et al., 2002) where the POX2 

promoter was substituted by the constitutive TEF promoter inducible by glucose (Muller et 

al., 1998). Methods for the construction and lipase expression in Y. lipolytica are described 

elsewhere (Piamtongkam et al., 2011).  

 

2.3 Lipases production 

 

YLL2, TLL, CRL1, CRL3 and CRL4 were produced in Erlenmeyer flasks (500 mL) containing 

50 mL medium Y1T2O3/ Y1T2D5 made of yeast extract (10 g/L), bactotryptone (20 g/L), and 

either oleic acid (30 g/L) or glucose (50 g/L), buffered with phosphate buffer (100 mM, pH 

6.8) and inoculated with an overnight preculture grown in YPD (yeast extract 10 g/L, 

bactopeptone 10 g/L, and glucose 10 g/L) at an initial cell density of OD600 = 0.5. Cells were 

incubated at 28 °C until complete oleic acid/glucose consumption. Cells were removed by 

centrifugation (10 000 rpm for 10 min) and supernatants were directly used in the reactions.  

 

2.4 Lipase activity assay 

 

Lipase activity of the culture supernatant was determined by monitoring the hydrolysis of p-

nitrophenyl butyrate (p-NPB) into butyric acid and p-nitrophenol. The method was optimized 

using 2-methyl-butan-2-ol (2M2B) as solvent to solubilise p-nitrophenyl butyrate. Lipase 

activity was measured in 96-well microplates filled with 20 µL of the lipase supernatant, 175 
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µL of a 100 mM phosphate buffer pH 7.2 containing 100 mM NaCl. The reaction started with 

the addition of 5 µL p-NPB (40 mM in 2M2B) and activity was measured by following 

absorbance at 405 nm at 25 °C for 10 min using the VersaMax tunable microplate reader 

(Molecular Devices, Rennes, France). One unit of lipase activity was defined as the amount 

of enzyme required to release 1 µmol of butyric acid per min at 25 °C and pH 7.2. 

 

2.5 Hydrolysis reaction  

 

The reaction was carried out at room temperature in 1.5ml eppendorf tubes containing 0.5 

ml of 100 mM fish oils ethyl esters mixture (FOEE) in decane containing 25% DHA and 5% 

EPA and 0.5 ml of aqueous enzymatic solution. The mixture was shaken in a Vortex Genie 2 

(D. Dutscher, Brumat, France). The progress of the reaction was followed at regular time 

intervals by taking samples from the organic phase. 50 µL of organic phase were taken and 

dissolved in 300 µL of hexane, followed by saponification of the free fatty acids (FFA) with 

500 µL of saturated Na2HCO3. The resulting organic phase was analysed with a GC device 

(6890N, Algilent technologie) equipped with a capillary HP-5 column (30 m length x 0.32 mm 

internal diameter and 0.25 µm thickness, Variant Inc., USA) connected to a FID detector. 

Injector, in split mode ratio 20, and detector temperatures were set at 250°C and 270°C 

respectively.The following conditions were used: carrier gas He (25 ml/min), air and 

hydrogen flow of 300 mL/min and 30 mL/min. The temperature program used for the ethyl 

esters analysis was the following:  180ºC for 15 minutes, 180ºC to 250ºC at 7 °C/ min, and 

hold for 10 minutes at 250ºC. 

 

2.6 Successive hydrolysis  

 

Successive hydrolysis was carried out with a final reaction volume of 10ml equally 

distributed in 2ml eppendorf tubes preserving the same FOEE-enzyme solution ratio as 

before, at room temperature and agitated by vortex. The progress of the reaction was 

followed by taking samples from the organic phase at regular time intervals and they were 

treated and analysed as specified in section 2.4. The reaction was stopped after 5h for YLL2 

and TLL and the organic phase recovered. FFA were removed by saponification with 

saturated Na2HCO3 and the reaction was re-started by the addition of fresh enzyme with a 

FOEE-enzyme solution ratio of 1:1(v/v).  
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3. Results and discussion 

 

3.1 Characterization of fish oil ethyl esters preparation 

 

The tuna oil ester mixture composition is given in Table 1. The main components, 

representing 89.6% in mole of the mixture, are in order of quantity in molar percentage, ethyl 

esters of DHA (23.6%), palmitic acid (21.4%), oleic acid (13.2%), palmitoleic acid (6.7%), 

stearic acid (5.6%), EPA (5.2%), myristic acid (4.7%), alpha linolenic acid (2.2%), 

arachidonic acid (1.7%), linoleic acid (1.6%), gamma linolenic acid (1.2%), DPA (1.0%) and 

11-eicosanoate (0.9%). Other esters represent each less than 0.9%. 

 

3.2 Enzyme production using Y. lipolytica expression system.  

 

The main extracellular lipase from the yeast Y. lipolytica (YLL2) the lipase from T. 

lanuginosus (TLL) and the three main lipases from C. rugosa (CRL1, CRL3 and CRL4) were 

cloned in the strain JMY1212 of Y. lipolytica, dedicated to enzyme expression and enzyme 

activity comparison (Bordes et al., 2007; Cambon et al., 2010). In this strain, the expression 

cassette containing the lipase gene under the control of POX2 (YLL2) or TEF (TLL, CRL1, 

CRL3, CRL4) promoters is integrated in the yeast genome at a specific site by homologous 

insertion at the LEU2 locus. This method avoids multiple integrations of the lipase gene and 

differences in expression level due to a random insertion. For each construction, after yeast 

transformation, five independent clones were cultivated for enzyme production. A standard 

deviation inferior to 10% was obtained for the five clones of each enzyme, indicating that all 

clones owned a single copy of the lipase gene. Enzyme activities were measured using the 

classical test of hydrolysis of the p-nitro phenol butyrate and are shown in Table 2.  

 

Table 2. Characteristics of microbial lipases used.  

Source Lipase Abbreviation Activity (U/ml)a 

Yarrowia lipolytica Lip2 YLL2 38.7  

Thermomyces lanuginosus - TLL 26.2  

Candida rugosa 

Lip1 CRL1 42.3  

Lip3 CRL3 1.8  

Lip4 CRL4 11.3  
a µmol of p-nitrophenol liberated per minute and ml of enzyme. 
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Table 1. Composition of the mixture of ethyl esters from tuna oil (FOEE). 

Ethyl esters 

Scientific name Common name 
Abbreviation 

Δ double bond positions 
Omega family 

MW %Mol 

Ethyl tetradecanoate Ethyl myristate  C14:0 254.41 4.7 

Ethyl Hexadecanoate Ethyl palmitate  C16:0 284.5 21.4 

Ethyl 9-Hexadecenoate Ethyl palmitoleate  C16:1, Δ 9, ω-7 282.48 6.7 

Ethyl octadecanoate Ethyl stearate  C18:0 312.48 5.6 

Ethyl 9-Octadecenoate Ethyl oleate  C18:1, Δ 9, ω-9 310.48 13.2 

Ethyl 9,12 Octadecadienoate Ethyl linoleate  C18:2, Δ 9,12, ω-6 308.5 1.6 

Ethyl 9,12,15 Octadecatrienoate Ethyl alpha 
linolenate  αC18:3, Δ 9,12,15, ω-3 306.5 2.2 

Ethyl 6,9,12 octadecatrienoate Ethyl gamma 
linolenate  γC18:3, Δ 6,9,12,  ω-6 306.48 1.2 

Ethyl Eicosanoate Ethyl arachidate  C20:0 340.6 0.1 

Ethyl 11-Eicosenoate  C20:1, Δ 11, ω-9 338.54 0.9 

Ethyl 11,14 Eicosadienoate  C20:2, Δ 11,14, ω-6 336.48 0.5 

Ethyl 11,14,17 Eicosatrienoate Ethyl ETA  C20:3, Δ 11,14,17, ω-3 334.5 0.1 

Ethyl 8,11,14 Eicosatrienoate Ethyl hommogamma 
linolenate  C20:3, Δ 8,11,14, ω-6 334.48 0.1 

Ethyl 5,8,11,14-
eicosatetraenoate 

Ethyl arachidonate, 
Ethyl ARA   C20:4, Δ 5,8,11,14, ω-6 332.48 1.7 

Ethyl 5,8,11,14,17 
Eicosapentaenoate Ethyl EPA  C20:5, Δ 5,8,11,14,17, ω-3 330.5 5.2 

Ethyl Docosaenoate Ethyl behenate  C22:0 368.6 0.2 

Ethyl 13,16 Docosadienoate  C22:2, Δ 13.16, ω-6 364.57 0.4 

Ethyl 7,10,13,16 
Docosatetraenoate  C22:4, Δ 7,10,13,16, ω-6 360.59 0.6 

Ethyl 7,10,13,16,19 
Docosapentaenoate Ethyl DPA  C22:5, Δ 7,10,13.16,19, ω-3 358.5 1.0 

Ethyl 4, 7, 10, 13, 16, 19-
Docosahexaenoate Ethyl DHA  C22:6, Δ 4,7,10,13.16,19, ω-3 356.5 23.6 

Ethyl 15-Tetracosenoate Ethyl nervonate C24:1, Δ15,  ω-9 394.6 0.4 

Others*    329.37 8.4 

* Calculated using an average molecular weight of 329.37 

 

Three enzymes, CRL1, YLL2 and TLL, presented high activities, 42.3, 38.7 and 26.2 U/mL, 

respectively. CRL4 showed a medium activity, approximately the quarter of the most active 

enzyme CRL1. Finally, CRL3 was the less active enzyme with only 4% of the activity of the 

most efficient enzyme. On a SDS protein gel, the level of expression is similar for the five 
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lipases (data not shown). These differences in activity are specific of the p-NPB substrate 

and do not foresee of their respective activities during the reaction of interest. 

 

3.3 Analysis of enzyme performances for DHA and/or ω3 purification 

 

Hydrolysis of the FOEE was carried out in a biphasic system (FOEE in decane / enzyme in 

water, v/v) with the five studied enzymes. During the hydrolysis reaction, the lipases are 

expected to efficiently hydrolyse the saturated and mono-, di and tri-unsaturated ethyl esters 

into free fatty acids, leaving under ester form the more resistant ones, the poly-unsaturated 

esters, especially EPA-EE and DHA-EE. A more ambitious objective would be to be able to 

discriminate between poly-unsaturated esters in order to obtain DHA-EE with a high purity. 

For each couple ester/enzyme, the initial rate of hydrolysis was determined. However, 

because the concentration of esters in the mixture is very different, ranging from 0.75 to 19.1 

mM for the thirteen main esters, initial rate is not the appropriate parameter to compare 

enzyme efficiencies versus the different esters. Considering that substrate concentrations 

are largely inferior to affinity constants, the reaction was considered to follow a first-order 

kinetic. The efficiency coefficient, initial rate divided by initial ester concentration, for the 

different couples enzyme/substrate are given in the Table 3.  

 

Table 3. Efficiency factor (ratio reaction rate / initial concentration) of the five enzymes 

against the thirteen main ethyl esters. C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, α C18:3, γ 

C18:3, C20:1, ARA, EPA, DHA, DPA stand for myristate, palmitate, palmitoleate, stearate, 

oleate, linoleate, α-linolenate, γ−linolenate, 11-eicosenoate, arachidonate, 

eicosapentaenoate, docosahexaenoate, docosapentaenoate ethyl esters, respectively. 

Enzyme 
Efficiency factor (1/d) 

C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 αC18:3 γC18:3 C20 :1 ARA EPA DHA DPA 

YLL2 9.6 8.6 20.7 6.8 23.1 13.8 5.8 0.5 5.5 2.8 2.9 0.9 6.4 
TLL 6.7 6.1 6.9 5.7 6.3 5.2 4.8 1.3 5.4 1.9 2.1 1.1 3.0 

CRL1 0.29 0.32 0.78 0.09 0.61 0.61 0.24 0.03 0.01 0.00 0.06 0.02 0.12 

CRL3 0.28 0.36 0.81 0.11 0.49 0.44 0.16 0.03 0.07 0.03 0.04 0.04 0.00 

CRL4 0.33 0.62 0.73 0.40 0.74 0.45 0.21 0.05 0.02 0.00 0.13 0.00 0.04 
 

Another way to analyse these results is to calculate the competitive factor α, which 

evaluates the capacity of one enzyme to discriminate between the different ethyl esters 

(Lyberg and Adlercreutz, 2008). The competitive factor is defined by the following equation 

(1): 
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where [P]o is the initial ethyl palmitoleate concentration, taken as reference substrate since it 

is one the ethyl ester most hydrolysed by all the enzymes, [P] is the ethyl palmitoleate 

concentration at time t, [Ester]o are the initial ethyl esters concentrations and [Ester] are their 

concentrations at time t. A high α indicates a low activity toward a specific ethyl ester and 

consequently a higher discrimination versus this ethyl ester. The competitive factors α are 

shown in Table 4. 

 

Table 4. Competitive factor α for the different lipases calculated after 6 hours reaction for 

YLL2 and TLL and after 24 hours for the three lipases from C. rugosa. 

Enzyme C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 αC18:3 γC18:3 C20 :1 ARA EPA DHA DPA 

YLL2 2.5 2.9 1 3.7 0.9 1.7 2.5 13.5 3.2 10.3 9.1 29.4 3.9 
TLL 1.0 1.2 1 1.3 1.1 1.4 1.5 5.9 1.3 4.1 3.6 10.5 1.4 
CRL1 4.4 3.9 1 16.9 1.6 1.6 5.5 46.6 >100 >100 26.3 82.8 12.0 

CRL3 5.1 3.7 1 14.1 2.5 2.8 9.6 47.0 22.5 48.5 39.4 36.7 >100 

CRL4 3.3 1.4 1 2.6 1.0 2.2 5.6 27.6 78.0 >100 9.1 >100 32.1 
 

Whatever the considered ester, YLL2 is the most efficient enzyme, being in average 2 times 

more active than the lipase TLL, the second most efficient enzyme. In comparison, YLL2 

was 1.5 more active than TLL during hydrolysis of pNPB. Nevertheless, this activity ratio 

between the two enzymes depends of the considered ester, demonstrating differences in 

enzyme selectivities. YLL2 presents a largely higher activity than TLL for ethyl-oleate, 

palmitoleate and linolenate (3.7, 3.0 and 2.7 times more active respectively), whereas for 

ethyl myristate, palmitate, stearate, α linolenate, arachidonate and EPA, the ratio is inferior 

at 2 (between 1.2 and 1.4). For ethyl 11-eicosenoate and DHA, the two enymes present 

approximately the same activity. Finally, γ linolenate is less recognised by YLL2 than TLL. 

The three lipases from C. rugosa are one or two orders of magnitude less active than YLL2. 

Surprisingly, CRL3, which presented a low p-NPB hydrolysis activity, is here as efficient as 

its two homologous enzymes. 
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Both factors, efficiency coefficient and α, show that YLL2 presents a large preference for 

mono unsaturated esters, ethyl palmitoleate and oleate being 141% and 240% better 

hydrolysed than their corresponding saturated esters (Tables 3 and 4). In the family of C18 

esters, additional double bonds have a negative effect on the enzyme activity, e.g. -40% and 

-75% for C18:2 and C18:3 respectively, compared to activity versus ethyl oleate. In this 

family, ethyl γ linolenate (γ C18:3, Δ6ω6) stands out, with an hydrolysis 10 times less efficient 

than the one obtained with ethyl α linolenate (αC18:3, Δ9ω3). After DHA, γ linolenate is the 

most recalcitrant ester with an α factor of 13.5. The presence of a double bond at position 6 

(Δ6), six carbons from the carboxyl group, causes steric hindrance unfavourable for enzyme 

activity. Regarding TLL, it presents no large differences in specificities for esters with chain 

lengths from C14 to C18, except for the γ C18:3, as observed with YLL2. 

 

Ethyl ARA and EPA, from the C20 ester family , show the same behaviour for both lipases 

activity. They are hydrolysed 8 and 3 times less efficiently than ethyl oleate respectively for 

the two enzymes and 2 and 2.5 times than α-linolenate. Their α factors are around 10 and 4 

for YLL2 and TLL respectively. The presence of an extra double in position 17 of ethyl EPA 

(C20:5, Δ5,8,11,14,17) compared with ethyl ARA (C20:4, Δ5,8,11,14) has no influence on 

the two enzymes activities. Other C20 esters, including the saturated C20:0 and the three 

unsaturated C20:1 (Δ11), C20:2 (Δ11,14) and C20:3 (Δ11,14,17), present a high efficiency 

coefficient around 6 and 5 day-1 for YLL2 and TLL respectively, in the same order of 

magnitude with the one obtained with α-linolenate esters (data not shown). Consequently, 

the low activity of both enzymes versus ethyl ARA and EPA is principally due to the 

presence of the double bond the closest of the ester group in position Δ5.  

 

DHA-EE is the poorest hydrolysed ester, 26 and 6 times less efficiently hydrolysed than ethyl 

oleate for YLL2 and TLL respectively. The α factor is of 29 and 11 for the two enzymes, 

respectively. The high number of carbon is not responsible of enzyme selectivity since DPA 

(Δ7,10,13,16,19) (Table 3), C22:0, C22:2 (Δ13,16), C22:4 (Δ7,10,13,16) and even C24:1 

(Δ15) (data not shown) present efficiency coefficient higher than 5.4 day-1. The presence of 

the double bond the closest to the ester group, at position Δ4, appears more important.  

 

In summary, for the two tested mucorales lipases, discrimination versus esters is principally 

due to the position of the double bond the closest from the carboxylic group (Table 5). If the 

double bond the closest to the ester group is at least at the position 7, reactivity is high with 

an optimum with mono-unsaturated esters. On the contrary, a double bond at positions 4, 5 

and 6 are unfavourable for YLL2 and TLL enzyme activities. DHA the only member of the Δ4 
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family is the most resistant ester for both enzymes. Surprisingly, ethyl gamma linolenate, the 

only member of the Δ6 family, is more resistant than the two members of the Δ5 families, 

ethyl ARA and EPA, for both enzymes. It has been previously reported that lipases show 

higher discrimination against fatty acids with their first double bond at a carbon with an even 

number (cis-4, cis-6) than the rest of them (cis-5, cis-9) (Jachmanian et al., 1996; Lyberg 

and Adlercreutz, 2008; Mbatia et al., 2010; Mukherjee et al., 1993). It was suggested that 

this lipase discrimination might be caused by an anti-orientation of the fatty acids with cis-4, 

cis-6 unsaturation (Jachmanian et al., 1996; Mukherjee et al., 1993). In addition, YLL2 

presents higher discrimination of DHA in comparison with TLL (α of 29 against 10). This is a 

crucial advantage to obtain a high purity DHA-EE concentrate. 

 

Table 5. Efficiency factor of YLL2 and TLL against the fish oil ethyl esters classified 

according to the position of the double bond the closest from the ester group. 

Efficiency factor (day-1) 

Enzyme Δ4 Δ5 Δ6 Δ7 Δ9 Δ11 Δ13 Δ15 Saturated 
FA 

YLL2 0.9 2.4 1.2 4.4 19.9 4.5 2.9 4.3 8.4 

TLL 1.1 1.9 0.8 2.5 6.2 4.6 4.3 3.9 6.1 

 

Concerning the lipases from C. rugosa, the most important result is the low average activity 

observed, representing only 3-4% of the activity of YLL2. This low activity can be related to 

the special topology of their active sites. Indeed, the binding pocket of C. rugosa lipases is 

exceptional: it is a tunnel of 25 Å length, with the catalytic triad located at the mouth of the 

tunnel (Grochulski et al., 1994). In consequence the fatty acyl chain has to be introduced into 

the tunnel, which can be less effective than the positioning in a crevice at the surface of the 

protein, like in mucorales lipases. A general trend is that CRL1 and CRL3 present a marked 

preference for mono and di-unsaturated esters. CRL4, on the contrary, is not so selective 

from this point of view. This result was previously observed during hydrolysis of sardine oil 

with commercial C. rugosa lipase, in its free form and immobilized in chitosan-alginate-CaCl2 

(Okada and Morrissey, 2008; Okada and Morrissey, 2007) and during esterification of 

sardine oil fatty acids (Jonzo et al., 2000).   

 

Another clear trend is that the three lipases from C. rugosa show a strong preference for 

esters with chain length smaller than C20, due to the tunnel topology of their active site. For 

CRL1 and CRL3, after 24 hours of reaction, 40% of the esters with chain length between 14 

and 18 carbons (except ethyl γ linolenate) were converted, compared to only 4% of esters 

with chain length of 20 carbons and higher, including ethyl γ linolenate. For CRL4, the 
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selectivity for these two groups of esters is higher, hydrolysing 58% of the first group (C14:0 

to C18:2) and 1% of the second group. The positioning of the double bond the closest to the 

carboxylic group is also of importance for esters with chain length smaller than C20, being 

the ethyl γ linolenate one order of magnitude less recognised than α ethyl linolenate. Indeed 

γ-linolenic acid has been previously reported as a poor substrate for C. rugosa lipase 

(Shimada et al., 1998a). 

 

The highest DHA purity (41.8%) was obtained with the lipase YLL2 after 6 hours of reaction 

(Table 6). A recovery of DHA of 89.1% was obtained. TLL arrived in second position in term 

of performances with 39.5% of DHA-EE purity and 89% of DHA recovery. With lipases of C. 

rugosa, the DHA recovery is higher, superior to 95%, but the purity is lower, even after 24 h 

reaction.  

 

From this analysis of the enzymes performance it can be concluded that C. rugosa lipases 

are only efficient to purify esters with a number of carbon higher than 20, but this mixture will 

be contaminated with ethyl γ linolenate. They would be useful to purify a mixture rich in ω3 

esters, especially CRL4 since it is unable to hydrolyse DHA-EE. The yield of ω3 recovery will 

be high, close theoretically to 93% (α ethyl linolenate being consumed). However, high 

purities of DHA will not be obtained since the lipases from C. rugosa present low reactivities 

versus γ linolenate, ARA, EPA and DPA. Considering a perfect separation between esters 

with carbon number lower and higher (plus γ linolenate) than C20, a maximum purity of ω3 

esters of 78% would be achieved, 60% for DHA and 73% for a mixture EPA/DHA. 

 

On the other hand, the two mucorales lipases can recognize some ω3 esters such as α ethyl 

linolenate, ethyl ETA, ethyl DPA and even ethyl EPA. Therefore the yield of ω3 recovery will 

be lower than with CR lipases (Table 6). However, the expected DHA purity is higher with 

mucorales lipases than with CR lipases, since they consume the main part of esters 

containing more than 18 carbons, being γ linolenate the ester which would be the most 

difficult to separate from DHA. YLL2 is more efficient than TLL because ARA, EPA and DPA 

ethyl esters are better recognised and DHA discrimination is higher.  

 

In consequence, it was chosen to optimise the reaction only with Y. lipolytica and T. 

lanuginosus lipases. In addition, this choice is supported by the higher activities of these two 

enzymes compared with CRL activities, which would decrease the cost of purification. 
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Table 6. Purity and recovery of EPA-EE, DHA-EE and ω3 ethyl ester mixture with the five 

different enzymes. Reaction time 6 hours for YLL2 and TLL and 24 hours for the three 

lipases from C. rugosa. 

Enzyme DHA 
purity (%) 

DHA 
recovery (%) 

EPA 
purity (%) 

EPA 
recovery (%) 

ω3 ester 
purity (%) 

ω3 ester 
recovery 

(%) 

YLL2 41.8 89.1 5.9 56.5 50.0 78.3 

TLL 39.5 89.0 6.5 66.6 48.6 80.5 

CRL1 31.4 98.2 6.7 94.4 41.7 95.8 

CRL3 30.3 95.6 6.7 95.9 41.0 95.1 

CRL4 37.2 100.0 7.0 86.6 48.5 97.6 
 

3.4 Optimisation of DHA and ω3 purification 

 

For the two mucorales lipases, the kinetic profile is similar, the concentration of the best 

recognised esters decreases rapidly and then remains constant. For instance, for YLL2 after 

two hours of reaction, 70% of palmitoleyl and oleyl esters were hydrolysed and even after 24 

hours, no more reaction was observed. The time at which for a specific ester, the reaction 

stops, depends on its recognition by the enzyme; lower recognition of an ester is translated 

in higher reaction time to complete the hydrolysis. For instance, the decrease in 

concentration of EPA, ARA, DHA continues for 24 hours. These observations led us to 

believe that each individual reaction stops due to a thermodynamic equilibrium and not to a 

problem of inhibition by fatty acids or ethanol. 

 

One technique previously used to further increase the purity of ω-3 from fish oils is 

successive hydrolysis with removal of side-products between each reaction (Okada and 

Morrissey, 2008; Shimada et al., 1998a; Shimada et al., 1994). Therefore, in order to 

increase the purity of DHA-EE in the mixture, three successive hydrolysis were performed 

with optimal reaction times (5h for YLL2 and TLL). Between each phase of reaction, fatty 

acids were removed by saponification and fresh enzyme was added. During this process, 

most of the ethanol was also removed. 

 

Each hydrolysis increased the percentage of DHA-EE to a different degree (Figure 1). After 

three hydrolysis, the highest purity of DHA-EE was obtained with YLL2, 73%, against 65% 

for TLL. This is in agreement with the results previously obtained. In addition, DHA-EE 

recovery was higher with YLL2, 89%, than with TLL, 85%.  
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Figure 1. Percentage of DHA-EE after three hydrolysis with YLL2 and TLL; recovery 

percentage for each hydrolysis is shown at the base of each column. Reaction time for each 

hydrolysis is 5 hours. 

 

Most of the esters were hydrolysed with a conversion superior to 90% (e.g. 94% for C14:0, 

C16:0, C16:1, C18:1; 93% for C18:0; 92% for C18:3 with YLL2 and 1% less in relative with 

TLL). Some esters are more resistant: 70% and 65% for C18:2 with YLL2 and TLL 

respectively; 50% and 33% for γC18:3. YLL2 and TLL hydrolysed respectively more than 

80% and 70% of EPA-EE reducing its concentration to 3% and 4.8% respectively. YLL2 

enables the ratio ω3/ω6 to be increased from 6.1 to 14.4 (8.6 for TLL) with a percentage of 

ω3 in the final mixture of 84.5% (79.4% for TLL). Another important result is that the content 

in saturated esters was considerably reduced from 34.4% to 6.7 % (7.9 % with TLL). 

 

Even if efficient, a process consisting of successive reactions, with intermediate elimination 

of side-products, is complex from an industrial point of view. In order to better understand 

the reasons explaining why the reaction stops, ethanol (50 mM) was added in the initial 

reaction mixture. Addition of 50 mM ethanol decreased the conversion at equilibrium by 

36%, In consequence, an experiment with an open reactor was tested in order to favour 

ethanol evaporation as it is formed. With this method an 89.5% purity of ω3 esters and 

77.1% of DHA were obtained. Ethyl EPA, γ-linolenate, palmitate, linoleate, ARA, oleate 

represent 3.2%, 2.4%, 2%, 1.7%, 1.2% and 0.8 % respectively. 
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4. Conclusions 

 

The lipase Lip2 from the yeast Yarrowia lipolytica is here described for the first time for 

purification of ω3 esters and especially DHA. It was demonstrated that this lipase is the most 

efficient from both a kinetic and selectivity point of view. A 90 % ω3 and 77 % DHA 

concentrate was obtained.  

We are currently working on the determination of key structural positions involved in PUFAs 

discrimination at a molecular level in order to select targets for mutagenesis and obtain 

variants with improved selectivity. 
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The screening of lipases for DHA ethyl ester purification showed that the extracellular lipase 

2 (YLL2) from the oleaginous yeast Yarrowia lipolytica is very efficient for the enrichment of 

DHA ethyl ester. Using wild-type enzyme of YLL2 a DHA purity of 73 % was obtained during 

ethyl ester mixture from tuna oil hydrolysis (initial DHA purity 23.6%, with 89 % DHA 

recovery. Lower performances were obtained with one of the best enzymes described to 

purify DHA, the T. lanuginosa lipase (65% DHA purity; 85 % DHA recovery). 

 

However these lipases are not sufficiently active and selective to fulfil the industrial 

requirements, DHA purity higher than 85% with high yields of DHA recovery. In 

consequence, it was considered to improve the selectivity of YLL2 using enzyme 

engineering tools. In order to produce a mutant of YLL2 highly selective enzyme evolution 

was carried out using site directed mutagenesis. Site directed mutagenesis targeted to the 

active site is generally the easiest and the most efficient method to improve an enzyme 

selectivity. Positions in the substrate binding site, the lid and the hydrophobic crevice and 

dent were selected for lipase selectivity improvements. Each one of these targets was 

substituted by two amino acids of different sizes and analysed by comparing their 

performance with the wild type enzyme. 
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Abstract 

Lipase 2 from Yarrowia lipolytica (YLL2) was shown to be an efficient catalyst for the 

purification of Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) especially cis-

4,7,10,13,16,19-docosahexaenoic acid (DHA), an important molecule in the pharmaceutical 

industry, from the complex lipidic mixture found in fish oil. On the basis of alignment with 

homologous lipases of known 3D-structure, 13 amino acid residues forming the hydrophobic 

substrate binding site of the lipase were selected for site-directed mutagenesis. The 

objectives were to improve enzyme activity and selectivity. Three amino acids of the lipase 

lid were proven to be important for enzyme activity and specificity: variants I98V and R99Q 

are 37% and 38% respectively more active than the WT lipase and more efficient to 

eliminate two recalcitrant esters, ARA and EPA (66 and 51 % respectively. Variant I100L is 

the most active tested enzyme during hydrolysis of polyunsaturated ARA and EPA esters 

(260% and 186 % respectively more active than the WT lipase). Variant V285L presents an 

affinity towards DHA ester lower than the WT lipase (competitive factor of 208 against 150 

for WT-YLL2). Finally, position 235 appears crucial for selectivity, variant V235F being the 

enzyme presenting the highest competitive factor for DHA of 411. The highest DHA-EE 

purities were obtained with I100L (44.0%), followed by L290A (43.9%), and V235L 

(43.3%),after 6 hours reaction. DHA-EE recovery yield for these variants was of 89.7%, 

90.4% and 97.3% respectively.   
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1. Introduction 

 

Omega-3 (ω−3) polyunsaturated fatty acids (PUFAs) interest has increased due to their 

beneficial effects on human health. In particular, cis-4, 7, 10, 13, 16, 19-docosahexaenoic 

acid (DHA, C22:6) and cis-5, 8, 11, 14, 17-eicosapentaeonic acid (EPA, C20:5) which 

present anti-thrombotic and anti-inflammatory properties that reduce risk factors of arthritis 

rheumatoid, cancer, cardiovascular diseases, myocardial infarction, bronchial asthma, 

inflammatory intestinal diseases, diabetes and Alzheimer’s disease (Okada and Morrissey, 

2008; Carvalho et al., 2009; Rubio-Rodriguez et al., 2010). Deficiency of ω−3 can provoke 

fatigue, dry skin, heart problems, poor circulation, depression and memory loss, among 

others.  

 

An optimal ratio of Omega-6 (ω-6) over ω-3 of 4:1 is recommended in diet. However, in most 

diets, especially in Western diets, the consumption of ω-3 is higher than optimal, reaching 

ratios higher than 10. The appropriate intake of ω-3 is of 1.6 g/day for men and 1.1 g/day for 

women (IOM, 2005). The most important sources of ω-3 are fish oils, but their 

triacylglycerols contain more than 50 different fatty acids. Therefore, it is recommended to 

consume concentrated forms of ω−3 in order to minimize daily lipid intake and decrease 

saturated and mono-saturated fatty acid consumption. Moreover, their use as substrates for 

pharmaceutical products requires high purity. For instance, nicotinyl DHA esters, 

synthesized via transesterification of DHA with nicotinol, presents cardia anti-arrhythmic 

properties (Brune et al., 2007; Séverac et al., 2012).  

 

Lipases are capable of concentrating ω−3 PUFAs, allowing the purification of fish oil to be 

operated under mild conditions, which is preferable since EPA and DHA are susceptible to 

oxidation. Lipases can discriminate between fatty acids in function of their chain length 

and/or saturation degree (Shahidi and Wanasundara, 1998; Carvalho et al., 2003). Enzymes 

with an active site in form of tunnel such as Candida rugosa lipases discriminate 

preferentially in function of the chain length of the acyl moiety. On the other hand, lipases 

with a open active site at the surface of the protein, such as Thermomyces lanuginosa 

lipase, discriminate in function of the position of the double bond closest from the carboxylic 

group (Casas-Godoy et al., 2012). In consequence, this last class of enzyme is the most 

efficient to obtain a high purity DHA ethyl ester  concentrate(DHA-EE), since DHA is the only 

fatty acid presenting a double bond at Δ4 position. Recently, the extracellular lipase Lip2 

from the oleaginous yeast Yarrowia lipolytica (YLL2) was demonstrated to be very efficient 

to enrich DHA. Using wild-type enzyme a DHA purity of 73 % was obtained during ethyl 
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ester mixture from tuna oil hydrolysis (initial DHA purity 23.6%, with 89 % DHA recovery 

(Casas-Godoy et al., 2012). Lower performances were obtained with one of the best 

enzymes described to purify DHA, the T. lanuginosa lipase (65% DHA purity; 85 % DHA 

recovery).  

 

YLL2 is consequently a good candidate to develop a highly selective catalyst using enzyme 

evolution. Site directed mutagenesis targeted to the active site is generally the easiest and 

the most efficient method to improve enzyme selectivity. Since only closed structure of YLL2 

is available (PDB code: 3O0D) (Bordes et al., 2010), homology with the related lipase from 

T. lanuginosa (sequence identity 31%, sequence homology 47%, gap 14%; PDB ID: 1GT6 

(Yapoudjian et al., 2002) was used to select amino acid targets for mutagenesis. 
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2. Material and methods 

 

2.1 Materials 

 

Tuna oil ethyl esters mixture with 25% DHA and 5% EPA was kindly donated by Pierre 

Fabre (France). The ethyl ester mixture composition was analyzed elsewhere (Casas-Godoy 

et al., 2012). Commercial ethyl esters standards were bought from Nu-Chek-Prep, Inc. 

(Minnesota, USA). Peptone, tryptone and yeast extract were purchased from (Difco, Paris, 

France). Unless stated other chemicals of commercial grade were purchased from 

Sigma/Aldrich. 

 

2.2 Construction of Lip2 variants 

 

The extracellular lipase Lip2 from Y. lipolytica was expressed in Y. lipolytica strain JMY1212 

(Bordes et al., 2007; Cambon et al., 2010). The plasmid JMP8 containing the expression 

cassette carrying the wild type LIP2 gene is described elsewhere (Scheib et al., 1999). The 

LIP2 gene encoding the extracellular lipase YLL2 was placed under the transcriptional 

control of the strong promoter POX2 inducible by oleic acid.  

 

The derivative plasmids carrying single amino acid changes in the LIP2 gene were 

constructed by site-directed mutagenesis using the QuikChangeTM site-directed 

mutagenesis kit (Stratagene). The procedure used the JMP8 double-stranded DNA vector 

and two synthetic complementary oligonucleotide primers with the desired mutation. The 

following primers and their complementary reverse complements were used to construct the 

variant enzymes: 

 

T88S: 5’-C CTT GTT ATT CGA GGA TCC CAC TCT CTG GAG G-3’; V94A: 5’-T CGA GGA 

ACC CAC TCT CTC GAG GAC GCC ATA ACC GAC ATC CG-3’; V94L: 5’-T CGA GGA 

ACC CAC TCT CTC GAG GAC CTC ATA ACC GAC ATC CG-3’; D97A: 5’-GAC GTC ATA 

ACC GCC ATC CGA ATC ATG CA-3’; D97V: 5’-GAC GTC ATA ACC GTC ATC CGA ATC 

ATG CA-3’; I98A: 5’-GTC ATA ACC GAC GCC CGA ATC ATG CAG GC-3’; I98V: 5’-GTC 

ATA ACC GAC GTC CGA ATC ATG CAG GC-3’; R99K: 5’-ATA ACC GAC GTC AAG ATC 

ATG CAG GCT CC-3’; R99Q: 5’-ATA ACC GAC GTC CAG ATC ATG CAG GCT CC-3’; 

I100A: 5’-ATA ACC GAC ATC CGA GCC ATG CAG GC-3’; I100L: 5’-ATA ACC GAC ATC 

CGA CTC ATG CAG GC-3’; F129I: 5’-CAC AAT GGC ATC ATC CAG TCC TAC-3’; I231F: 

5’-CGA GGA GAT TTC GTC CCT CAA GTG C-3’; I231V: 5’-CGA GGA GAT GTC GTC CCT 
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CAA GTG C-3’; V232A: 5’-GGA GAT ATC GCC CCT CAA GTG CCC TTC TGG GAC GGC 

TAC CAG CAC TGC-3’; V232L: 5’-GGA GAT ATC CTC CCT CAA GTG CCC TTC TGG 

GAC GGC TAC CAG CAC TGC-3’; V235A: 5’- C GTC CCT CAA GCC CCC TTC TGG G-3’; 

V235F: 5’- C GTC CCT CAA TTC CCC TTC TGG G-3’; V235L: 5’- C GTC CCT CAA CTC 

CCC TTC TGG G-3’; D239E: 5’-G CCC TTC TGG GAG GGT TAC CAG C-3’; D239K: 5’-G 

CCC TTC TGG AAG GGT TAC CAG C-3’; V285A: 5’-CTC CAG CAG GTC AAT GCC ATT 

GGT AAC CAT CTG CAG TAC-3’; V285L: 5’-CTC CAG CAG GTC AAT CTG ATT GGT 

AAC CAT CTG CAG TAC-3’; L290A: 5’-GGA AAC CAT GCC CAG TAC TTC GTC AC-3’; 

L290F: 5’-GGA AAC CAT TTC CAG TAC TTC GTC AC-3’. 

 

Mutations were confirmed by DNA sequencing (GATC Biotech, Konstanz, Germany). 

 

Escherichia coli DH5α strain was used to produce the desired plasmids. After E. coli 

transformation the different plasmids were extracted and digested by Not1 to release the 

expression cassette. The expression cassette, flanked by zeta regions and composed of 

URA3 marker (ura3d1), POX2 promoter (pPOX2), and LIP2 gene was used for 

transformation of Y. lipolytica strain JMY1212 described elsewhere (Bordes et al., 2007). 

This strain enables single integration of the expression cassette into the genome at a 

defined locus: the zeta docking platform.  

 

For each construction, after yeast transformation, five independent clones were cultivated for 

enzyme production. Clones were cultivated in 100mL Erlenmeyer flasks containing 10mL of 

YTO medium made of yeast extract (10 g/L), bactotryptone (20 g/L), and either oleic acid (10 

g/L), buffered with phosphate buffer (100 mM, pH 6.8). Stock solution of oleic acid (200 g of 

oleic acid/L, 5 g of Tween 40) was subjected to sonication three times for 1 min on ice for 

emulsification purposes. Cultures were stopped after total consumption of oleic acid, which 

was checked by centrifugation of the culture and visual analysis of the supernatant opacity. 

A standard deviation inferior to 10% was obtained for the five clones of each enzyme, 

indicating that all clones owned a single copy of the lipase gene. Enzyme activities were 

measured using the classical test of hydrolysis of the p-nitro phenol butyrate as decribed 

below.  

 

2.3 Lipases production 

 

YLL2 and its variants were produced in Erlenmeyer flasks (500 mL) containing 50 mL 

medium Y1T2O3 or Y1T2D5 made of yeast extract (10 g/L), bactotryptone (20 g/L), and either 
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oleic acid (30 g/L) or glucose (50 g/L), buffered with phosphate buffer (100 mM, pH 6.8) and 

inoculated with an overnight preculture grown in YPD (yeast extract 10 g/L, bactopeptone 10 

g/L, and glucose 10 g/L) at an initial cell density of OD600 = 0.5. Cells were incubated at 28 

°C until complete oleic acid consumption. Cells were removed by centrifugation (10 000 rpm 

for 10 min) and supernatants were directly used in the reactions.  

 

2.4 Lipase activity assay 

 

Lipase activity of the culture supernatant was determined by monitoring the hydrolysis of p-

nitrophenyl butyrate (p-NPB) into butyric acid and p-nitrophenol. The method was optimized 

using 2-methyl-butan-2-ol (2M2B) as solvent to solubilise p-nitrophenyl butyrate. Lipase 

activity was measured in 96-well microplates filled with 20 µL of the lipase supernatant, 175 

µL of a 100 mM phosphate buffer pH 7.2 containing 100 mM NaCl. The reaction started with 

the addition of 5 µL p-NPB (40 mM in 2M2B) and activity was measured by following 

absorbance at 405 nm at 25 °C for 10 min using the VersaMax tunable microplate reader 

(Molecular Devices, Rennes, France). One unit of lipase activity was defined as the amount 

of enzyme required to release 1 µmol of butyric acid per min at 25 °C and pH 7.2. 

 

2.5 Hydrolysis reaction  

 

The reaction was carried out at room temperature in 1.5mL eppendorf tubes containing 0.5 

mL of 100 mM fish oils ethyl esters mixture (FOEE) in decane containing 25% DHA and 5% 

EPA and 0.5 mL of aqueous enzymatic solution. The mixture was shaken in a Vortex Genie 

2 (D. Dutscher, Brumat, France). The progress of the reaction was followed at regular time 

intervals by taking samples from the organic phase. 50 µL of organic phase were taken and 

dissolved in 300 µL of hexane, followed by saponification of the free fatty acids (FFA) with 

500 µL of saturated Na2HCO3. The resulting organic phase was analysed with a GC device 

(6890N, Algilent technologie) equipped with a capillary HP-5 column (30 m length x 0.32 mm 

internal diameter and 0.25 µm thickness, Variant Inc., USA) connected to a FID detector. 

The following conditions were used: carrier gas He (25 mL/min), air and hydrogen flow of 

300 mL/min and 30 mL/min. The temperature program used for the ethyl esters analysis was 

the following:  180ºC for 15 minutes, 180ºC to 250ºC at 7 °C/ min, and hold for 10 minutes at 

250ºC. 
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3. Results and discussion 

 

3.1 Amino acid selection as target for site-directed mutagenesis  

 

Open 3D structure of YLL2 lipase with the lid in a position that allows accessibility to the 

catalytic serine is not available. The three-dimensional model was previously built by 

homology modelling techniques by using the structures of lipases from Rhizomucor miehei 

(4TGL) and T. lanuginosa (1GT6) as templates (Bordes et al., 2009) (Figure 1).  

 
Y.l: 1  VYTSTETSHIDQESY-NFFEKYARLANIGY---C--VGPGTKIFKPFNC-GLQCAH--FPNVELIEEFHDPRLIF 66   
T.l: 3             SQDLFNQFNLFAQYSAAAY---CGKNNDAPAG-TNITCTGNACPEVEKADATFLYSFED-SGVG 61   
R.m: 1   SINGGIRAATSQEI-NELTYYTTLSANSY---CRTVIPGAT----WDC--IHCDA--TEDLKIIKTWST--LIY 60   
R.n: 1   SDGGKVVAATTAQI-QEFTKYAGIAATAY---CRSVVPGNK----WDC--VQCQKWVPDGKIITTFTS---LLS 60   
USW          ASTQGISEDLYNRLVEMATISQAAYADLCNIPST--------IIKGEKIYNAQT------------- 46 
 
Y.l: 67  DVSGYLAVDHASKQIYLVIRGTHSLEDVITDIRIMQAPLTN--FDLAANISSTATCDDCLVHNGFIQSYNNTYN 138   
T.l: 62  DVTGFLALDNTNKLIVLSFRGSRSIENWIGNLNFDLKEIND-------------ICSGCRGHDGFTSSWRSVAD 122   
R.m: 61  DTNAMVARGDSEKTIYIVFRGSSSIRNWIADLTFVPVSYPP--------------VSGTKVHKGFLDSYGEVQN 120   
R.n: 61  DTNGYVLRSDKQKTIYLVFRGTNSFRSAITDIVFNFSDYKP--------------VKGAKVHAGFLSSYEQVVN 121   
USW      DINGWILRDDTSKEIITVFRGTGSDTNLQLDTNYTLTPFDT-----------LPQCNDCEVHGGYYIGWISVQD 
1put                SKVVYVSHDGTRRQLDVADGVSLMQAAVSNGIYDIVGDCGGSASCATCHVY 
 
Y.l: 139 QIGPKLDSVIEQYPD------YQIAVTGHSLGGAAALLFGINLK--VNGH---DPLVVTLGQ---------PIVG 193   
T.l: 123 TLRQKVEDAVREHPD------YRVVFTGHSLGGALATVAGADLR—-GNGY---DIDVFSYGA---------PRVG 177   
R.m: 121 ELVATVLDQFKQYPS------YKVAVTGHSLGGATALLCALDLYQREEGLSSSNLFLYTQGQ---------PRVG 180   
R.n: 122 DYFPVVQEQLTAHPT------YKVIVTGHSLGGAQALLAGMDLYQREPRLSPKNLSIFTVGG---------PRVG 181   
USW      QVESLVKQQASQYPD------YALTVTGHSLGASMAALTAAQLS--ATYD---NVRLYTFGE---------PRSG 
 
Y.l: 194 NAGFANWVDKLFFGQENPDVSKVSKDRKLYRITHRGDIVPQV-PFWDGYQHCSGEVFIDWPLIHPP-LSNVVMCQ 266  
T.l: 178 NRAFAEFLTV-------------QTGGTLYRITHTNDIVPRLPPREFGYSHSSPEYWIKSGTLVPVTRNDIVKIE 239  
R.m: 181 NPAFANYVVST--------------GIPYRRTVNERDIVPHLPPAAFGFLHAGSEYWITDN---SP--ETVQVCT 236  
R.n: 182 NPTFAYYVEST--------------GIPFQRTVHKRDIVPHVPPQSFGFLHPGVESWI---KSGTS---NVQICT 238  
USW      NQAFASYMNDAFQVSS-------PETTQYFRVTHSNDGIPNLPPADEGYAHGGVEYWSVD----PYSAQNTFVCT 
 
Y.l :267 GQ-SNKQCSAGNTLLQQVNVIGNHLQYF-VTEGVC 299  
T.l: 240 GI-DATGGNNQPNI---PDIP-AHLWYFGL-IGTC 268   
R.m: 237 SDLETSDCS--NSIVPFTSVL-DHLSYFGINTGLC 268   
R.n: 240 SEIETKDCS--NSIVPFTSIL-DHLSYFDINEGSC 268   
USW      GD-EVQCCEAQGGQ---GVND-AHTTYFGMTSGACTW 

 
Figure 1. . Multiple sequence alignment of Lip2 from Yarrowia lipolytica (Y.l.), Thermomyces 

lanuginosa (T.l.), Rhizomucor miehei (R.m.), Rhizopus niveus (R.n.), the feruloyl esterase 

from Aspergillus niger (1USW) and a fragment from a putidaredoxin from Pseudomonas 

putida (1put). Residues forming part of α helices and β  strands are coloured in magenta and 

green, respectively. The three catalytic residues are coloured in red, the two catalytic 

residue of the oxyanion hole in orange, the cysteines are blue-coloured and the lid is 

underlined. 

 

The overall structures are similar, the core of the fold is conserved and as expected, the 

most significant differences are seen in the regions of the surface loops. The three catalytic 

residues (S162, D230 and H289) and the two amino acids involved in the oxyanion hole 
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(T88 and L163) are perfectly superposed in these enzymes. The substrate binding site 

appears as a hydrophobic crevice located at the protein surface, with the catalytic triad 

exposed to the solvent. The hydrophobic crevice of YLL2 would consist of T88, V94, D97, 

I98, R99, I100, F129, L163, P190, V232, V235, P236, and Y241 (Scheib et al., 1999; Bordes 

et al., 2009; Bordes et al., 2010). The hydrophobic dent, where the sn-2 substituent of the 

glycerol backbone binds, is formed by I231, V283, V285 and L290.  

 

T88 is one of the two amino acids from the oxianion hole, which consists in two residues that 

give their backbone amide protons to stabilize the tetrahedral intermediate. Like other 

mucorales lipases, Lip2 belongs to the “GX” type lipase, which presents specificities for 

medium and long chain fatty acids (Pleiss et al., 2000). In mucorales lipases, this first 

residue of the oxyanion hole is either a threonine or a serine and it was previously 

demonstrated that other amino acids substitutions of this residue result in an inactive 

enzyme (Bordes et al., 2009). In consequence, the sole variant T88S was tested.  

 

V94, D97, I98, R99 and I100 belong to the lid, α-helix formed by residues comprised 

between T88 and L105 (Bordes et al., 2010). Amino acid residues I98-R99-I100 form a 

supplementary α-helical turn at the C-terminus of the lid that is not observed in any of the 

homologous fungal lipase. Variants V94A, V94L, V232A and V232L were already 

constructed in order to open up or to further restrain the active site topology in order to alter 

the enantiopreference of the enzyme during resolution of 2-bromo-arylacetic acid esters 

(Bordes et al., 2009). 

 

Position 97 was already saturated in a previous study and was identified as crucial for 

enzyme activity. Variants D97A and D97V being the most active variants (Bordes et al., 

2009) were tested in this study. Variants I98A, I98V, R99K, R99Q, I100A, I100L, F129I, 

V235A,  V235F and V235L were constructed to open up or to restrain the active site. P190 

and P236 are very well-conserved in the family of mucoral lipases. It was decided to not 

mutate these two positions. Amino acids of the hydrophobic dent were also targeted and the 

following variants were constructed: I231V, I231F, V285A, V285L, L290A and L290F. 

 

Variants activities were measured using the classical method of p-nitrophenyl butyrate (p-

NPB) hydrolysis (Table 1). All the variants produced presented activity, none of the 

mutations led to a complete loss of p-NPB activity. Variants D97A, D97V, F129I, displayed 

the lowest activities, approximately 25% of WT activity. On the contrary, variants I100A, 

V235A, and D239K presented a largely higher activity than the WT enzyme (1.6 to 2.1-fold 
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increase). On a SDS protein gel, the level of expression is similar for all the tested lipases 

(data not shown). These differences in activity are specific of the p-NPB substrate and do 

not foresee their respective activities during the reaction of interest, therefore, all variants 

were further tested for purification of DHA from FOEE. 

 

Table 1. p-Nitrophenol butyrate hydrolysis activity of wild type YLL2 and its variants. 

Enzyme Activity 
(U/mL)a Enzyme Activity 

(U/mL)a Enzyme Activity 
(U/mL)a 

WT 38.7 R99K 13.9 V235A 67.0 

T88S 12.2 R99Q 36.1 V235F 11.9 

V94A 12.8 I100A 62.5 D239E 20.7 

V94L 14.0 I100L 14.2 D239K 80.0 

D97A 8.5 F129I 9.9 V285A 62.7 

D97V 9.5 I231F 18.0 V285L 29.1 

I98A 23.8 I231V 18.5 L290A 53.1 

I98V 45.4 V232A 21.6 L290F 33.3 

  V232F 47.6   
a µmol of p-nitrophenol liberated per minute and mL of enzyme. 

 

3.2 Variant activity and selectivity towards FOEE 

 

Hydrolysis of the FOEE was carried out in a biphasic system (FOEE in decane / enzyme in 

water, v/v) with YLL2 and its variants. For each couple ester/enzyme, two factors were 

analyzed to evaluate the performance of YLL2 variants: efficiency coefficient (initial velocity 

divided by initial ethyl ester concentration (Table 2) and competitive factor α (Casas et al. 

2012). The competitive factor is defined by the following equation: 
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where [P]o is the initial ethyl palmitoleate concentration, taken as reference substrate since it 

is the ethyl ester most hydrolysed by all the enzymes, [P] is the ethyl palmitoleate 

concentration at time t, [Ester]o are the initial ethyl esters concentrations and [Ester] are their 

concentrations at time t. A high α indicates a low activity toward a specific ethyl ester and 

consequently a higher discrimination versus this ethyl ester. The competitive factors α are 

shown in Table 3. 
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Table 2. Efficiency factor of YLL2 (WT) and its variants against the twenty main ethyl esters. 

C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, α C18:3, C20:1, ARA, EPA, DHA, DPA stand for 

myristate, palmitate, palmitoleate, stearate, oleate, linoleate, α-linolenate, γ−linolenate, 11-

eicosenoate, arachidonate, eicosapentaenoate, docosahexaenoate, docosapentaenoate 

ethyl esters, respectively. 

Enzyme 
Efficiency factor (1/d) 

C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 αC18:3 C20 :1 ARA EPA DHA DPA 

WT 9.6 8.6 20.7 6.8 23.1 13.8 5.8 3.9 2.0 2.9 0.17 6.4 

I98A 3.7 3.5 11.1 2.8 10.0 8.2 2.8 2.9 1.1 1.2 0.1 2.0 

I98V 11.8 10.2 24.6 8.2 26.4 10.3 7.3 7.1 4.0 4.1 0.36 6.9 

R99Q 12.7 11.3 26.9 9.0 28.5 12.3 6.0 6.4 3.0 4.1 0.39 7.9 

I100A 2.5 2.3 3.6 2.0 3.4 3.1 2.1 2.7 1.2 1.3 0.07 1.49 

I100L 4.4 4.2 7.9 3.6 7.4 5.6 3.6 3.3 5.2 5.4 0.41 3.0 

V232A 1.5 1.1 2.8 0.7 4.2 0.5 0.6 0.6 0.8 0.9 0.17 1.18 

V232F 1.8 1.6 3.8 1.3 4.8 1.6 1.5 0.9 1.2 1.5 0.17 1.2 

V235A 2.58 2.07 4.54 2.11 4.60 2.20 0.7 1.1 1.53 2.07 0.29 1.1 

V235F 1.1 1.0 2.1 1.0 1.9 1.4 1.0 1.2 0.9 1.0 0.01 0.8 

V285A 12.5 12.1 27.5 10.5 26.3 19.3 9,3 7.5 3.9 4.1 0,61 6.1 

V285L 7,3 7,3 19,7 6,3 18,1 14,1 5,5 4,6 2,4 2,5 0,12 3,5 

L290A 10.7 12.0 20.8 9.2 25.6 14.6 4.5 2.3 3.3 5.8 0.18 6.2 
 

Variants were classified in function of their performances from both a kinetic and selectivity 

points of view, in comparison with wild-type YLL2 performances. From all the variants 

tested, variants V94A and D239K showed the same behaviour than WT-YLL2 (data not 

shown). The other two variants of these positions, V94L and D239E, showed reduced 

hydrolytic activity but preserved WT-YLL2 selectivity profile (data not shown). 

 

We find in a second group, variants with low hydrolysis activity (data not shown). D97A and 

D97V are part of it, with less than 5% of the average WT-YLL2 activity, which confirms that 

aspartic acid at position 97 is crucial for activity. Variant L290F, even if its p-NPB activity 

was good, it presents a low activity during ester hydrolysis (15% of the average WT-YLL2 

activity). It can be suspected that the bulky phenylalanine is unfavourable for the positioning 

of the fatty acid in the active site whatever the chain length. This was not the case for p-NPB 

catalysis, since activity of this variant is almost the same than WT-YLL2 activity, probably 

due to the lower steric hindrance of the substrate compared to component of FOEE. A 

smaller amino acid at this position, like an alanine, led on the contrary to a 30% global 

increase of the hydrolysis of all esters compared to WT-YLL2 activity. 
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Table 3. Competitive factor α for YLL2 (WT) and its variants. 

Enzyme C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 αC18:3 C20 :1 ARA EPA DHA DPA 

WT 2.5 2.9 1 3.7 0.9 1.7 2.5 3.2 10.3 9.1 150 3.9 

I98A 3.72 3.98 1 4.98 1.15 1.48 4.95 4.88 13.02 11.8 152 7.29 

I98V 2.54 3.00 1 3.82 0.90 2.99 4.85 4.46 9.44 8.02 114 4.62 

R99Q 2.67 3.04 1 3.93 0.91 2.79 4.68 5.69 17.80 9.26 102 4.54 

I100A 1.69 1.94 1 2.25 1.09 1.49 2.27 1.61 4.44 3.87 62 3.15 

I100L 2.36 2.48 1 3.02 1.11 1.69 3.01 3.27 1.86 1.76 48 3.72 

V232A 1.99 2.88 1 4.63 0.62 2.33 3.65 7.08 4.8 3.32 18 2.57 

V232F 2.05 2.40 1 3.01 0.85 2.43 4.80 4.43 3.19 2.60 26 3.55 

V235A 1.96 2.51 1 2.46 0.98 2.35 6.28 5.88 3.48 2.51 21 8.05 

V235F 1.96 2.30 1 2.25 1.15 1.53 2.17 1.81 2.65 2.19 401 2.93 

V285A 2.83 2.91 1 3.44 1.07 1.65 3.92 4.96 10.11 9.48 67 6.27 

V285L 3.22 3.21 1 3.77 1.11 1.52 4.36 5.19 10.37 9.93 208 7.07 

L290A 2.25 1.99 1 2.68 0.75 1.57 5.84 4.41 11.76 8.00 152 4.12 
 

 

Surprisingly, it was found in this group all variants of position V232, i.e. V232A, V232C, 

V232F, V232L, V232S and V232T, which presented a poor hydrolytic activity (15%, 23%, 

19%, 6%, 7% and 35% of the average WT-YLL2 activity, respectively) whereas their p-NPB 

hydrolysis activity was correct (data not shown except for V232A and V232F). Concerning 

selectivity, variants V232A, V232C, V232F, V232L and V232S presented a lower α factor 

than WT-YLL2 for long chain polyunsaturated fatty esters. For instance, the ratio of the 

hydrolysis rate of ethyl EPA versus ethyl linoleate one is of 41%, 22%, 38%, 54% and 53% 

respectively against 14% for the WT-YLL2. It is noticeable that variant 232C seems to be  no 

more capable of hydrolysing ethyl DHA. Variant I100A presents the same behaviour than 

V232A and V232F with low efficiency factors (25% of the WT-YLL2 one) and a ratio of the 

hydrolysis rate of ethyl EPA versus ethyl linoleate of 36%. In addition competitive factors α 

for saturated esters, di and tri-unsaturated esters are decreased indicating a better affinity 

for these substrates compared to monounsaturated esters. Another variant with low 

hydrolytic activity was F129I, representing only 25% of WT-YLL2 activity and no change in 

specificity.  

 

Other variants with lower activity than WT-YLL2 are T88S, I98A, R99K, I231F, I231V and 

D239E (data not shown except for I98A). The efficiency factor shows that all the members of 

this group showed higher preference versus C16:1 over C18:1, which is inversed selectivity 
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that the one presented by WT-YLL2. However, selectivity is globally the same for all these 

variants to the WT-YLL2 one.  

 

The last group consists of the most interesting variants. Variant V290A presents 11% higher 

activity than the WT-YLL2 (Table 2). Analysis of the competitive factor shows that its 

selectivity is globally the same than the WT-YLL2 (Table 3). It can be mentioned a better 

affinity for saturated esters, oleate and linolenate esters. On the contrary, as already 

mentioned, the presence of a bulky amino acid, a phenylalanine, at this position is 

detrimental for the positioning of all the esters in the active site. 

 

Variant V285A is more efficient than V290A, being 35% more efficient than WT-YLL2. 

Nevertheless, this variant is more active versus DHA ethyl ester than WT-YLL2 which is 

underlined by the competitive factor decreasing from 150 to 67. The second variant of these 

position, variant V285L, is slightly less efficient than WT-YLL2 (90% of its activity) (Table2). 

However it presents interest because its affinity versus DHA ester was found lower, with 

competitive factor of 208 against 156 for WT-YLL2. 

 

Variants I98V and R99Q have a similar behaviour; they are 17% and 24% more active in 

average than WT-YLL2 respectively (Table2). However, this increase in activity is especially 

high for ARA and EPA esters (respectively 69% and 44% increase in average for these two 

esters). Nevertheless, this positive effect is counterbalanced by the fact that DHA was also 

well-recognised which is underlined by the decrease of the competitive factor from 150 to 

114 and 102 respectively. 

 

Variant I100L is one of the most active tested enzymes during hydrolysis of polyunsaturated 

ARA and EPA esters (256 and 188 % respectively). In addition, it is accompanied by a large 

decrease in the hydrolysis of short and medium chain esters (42% in average of the WT-

YLL2). Unfortunately, catalysis of DHA ester is 2.5 times higher than the WT-YLL2. 

 

Finally, position V235 appeared important. Variants V235A and V235F are largely less 

active than the WT-YLL2 (25% and 13% respectively) (Table 2). On the contrary, variant 

V235L is equivalent to WT-YLL2 (data not shown). From the point of view of selectivity this 

variant are very different for DHA ester recognition. Variant V235A present a reduced 

competitive factor compared to WT-YLL2 (21 against 150) whereas variant V235F is less 

efficient with DHA-ester with a competitive factor of 401.  
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3.3 Purification of ω-3 ethyl esters 

 

The last factor analyzed was DHA-EE, EPA-EE and ω3 ethyl ester mixture purity and 

recovery (Table 4). Variants from positions D97, V232 and variants I100A and V235F did not 

produced high concentrations of DHA-EE due to a low hydrolytic ability of the enzymes with 

all the ethyl esters, including EPA-EE. The highest DHA-EE purities were obtained with 

I100L (44.0%), followed by L290A (43.9%), V235L (43.3%), D239K (43.0%) and V285L 

(43.0%) after 6 hours reaction. A recovery of DHA-EE over 88% was obtained with these 

five variants. R99Q gave a good concentration of DHA-EE (40.4%) but was the variant with 

the highest hydrolysis of DHA-EE. Regarding EPA-EE, it was best hydrolyse by I100L, 

followed by R99Q, V235L, I98V, L290A and D239K.  

 

Table 4. Purity and recovery of DHA-EE, EPA-EE and ω3 ethyl ester mixture with YLL2 and 

its variants. Reaction time 6 hours. 

Enzyme DHA 
purity (%) 

DHA 
recovery (%) 

EPA 
purity (%) 

EPA 
recovery (%) 

ω3 ester 
purity (%) 

ω3 ester 
recovery 

(%) 

WT 41.8 89.1 5.9 56.5 50.0 78.3 

D97A 24.7 97.0 5.4 97.4 33.6 97.0 

D97V 24.9 98.6 5.4 99.3 33.8 98.5 

I98A 40.2 97.9 5.9 65.7 45.8 91.2 

I98V 42.1 87.4 4.4 41.6 49.0 74.7 

R99Q 40.4 76.5 4.2 36.6 47.2 65.6 

I100A 33.5 95.3 6.1 79.1 42.8 90.4 

I100L 44.0 89.7 3.4 31.4 50.0 75.1 

V232A 28.9 95.3 5.4 80.6 38.0 93.0 

V232F 32.4 96.1 5.0 66.9 41.2 90.6 

V235A 32.9 91.8 4.8 61.3 41.4 85.7 

V235F 29.4 98.3 5.1 78.4 37.9 93.2 

V235L 43.3 88.2 4.4 40.9 50.3 75.6 

D239K 43.0 90.8 4.7 45.9 50.2 77.9 

V285A 42.5 84.1 4.8 43.5 48.9 88.5 

V285L 43.0 97.3 5.6 54.5 47.2 91.4 

L290A 43.9 90.4 4.6 43.9 50.8 77.2 
 

To summarise, variants from positions D97 and V232 show low hydrolytic activity, higher 

concentrations of DHA-EE were obtained with variants of position V232 after long reaction 

times (data not shown), while with variants of position D97 further concentration was not 

accomplish. Variant I98V showed a similar profile than WT and did not show improved 
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discrimination of DHA-EE. A similar behavior was found in D239K and L290A, two variants 

that slightly improved discrimination of DHA-EE. Variant R99Q is the variant that showed the 

highest hydrolysis of DHA-EE and it also increased its selectivity of EPA-EE. Variants of 

positions I100 and V235 showed important changes in the α factors for DHA-EE, differences 

in selectivity and good performance in purity and recovery of DHA-EE. In addition they 

showed an increase in EPA-EE selectivity.  

 

4. Conclusions 

 

Site directed mutagenesis allowed us to study the effect of specific position in the chain 

length selectivity of YLL2. Amino acids of the active site, the hydrophobic dent and the lid of 

the lipase have an important effect in the selectivity profile of this lipase and in its ability to 

discriminate DHA-EE. Enzyme selectivity is principally due to the positioning of the double-

bond the closest from the carboxylic group. Changes in the selectivity profile of the mutants 

and increased discrimination of DHA-EE were obtained. In addition inverse selectivity of 

certain ethyl esters was observed. Double substituted variants are now under construction to 

further improve enzyme selectivity versus DHA ester. 
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The last objective studied in the thesis was the production of structured lipids (SL) by 

enzymatic acidolysis between virgin olive oil and caprylic or capric acids using immobilized 

Lip2 from Y. lipolytica, lipase that has not been previously used for this application. The 

obtained SL should be rich in oleic acid at the sn-2 position while C8:0 and C10:0 should be 

mainly esterified at the sn-1,3 positions. Lip2 from Y. lipolytica was immobilized on Accurel 

MP 1000 and tested in a solvent-free system. In addition, the acidolysis reaction of olive oil 

with C8:0 or C10:0 catalyzed by immobilized YLL2 was optimized by response surface 

methodology (RSM) as a function of the molar ratio free fatty acids/triacylglycerols 

(FFA/TAG), temperature and reaction time.  

 
Results can be compared to incorporation of C8:0 in similar reactions using the commercial 

lipases Lipozyme RM IM and Lipozyme TL IM. The batch reactions were modeled and 

optimized using RSM. An excess of free fatty acids in the reaction mixture lead to acidic 

substrate inhibition, decreasing the initial reaction rate and the final incorporation degree. 

The best reaction conditions were the same for SL production with both fatty acids: molar 

ratio of 2:1 FFA/TAG, reaction temperature of 40°C and reaction time of 48h. Under these 

conditions, the SL produced had 25.6%mol of C8:0 and 21.3%mol of C10:0, which 

confirmed the validity of the model. Improvements of this reaction using the same enzyme 

could be reached by increasing the range of the parameters used in the RSM study.  
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Abstract 

 

Triacylglycerols (TAG) enriched with medium-chain fatty acids (M) present specific 

nutritional, energetic and pharmaceutical properties. Structured lipids (SL) were produced by 

acidolysis between virgin olive oil and caprylic (C8:0) or capric (C10:0) acids in solvent-free 

media, catalyzed by the main extracellular lipase from Yarrowia lipolytica lipase 2 (YLL2), 

immobilized in Accurel MP 1000. Response surface methodology was used for modeling 

and optimization of the reaction conditions catalyzed by immobilized YLL2. Central 

composite rotatable designs were performed as a function of the reaction time (2.5-49.5 h) 

and the molar ratio of medium chain fatty acid/TAG (MR; 0.6-7.4), for both acids, and also of 

temperature (32-48 ºC) for C8:0 experiments. As for capric acid, the incorporation of caprylic 

acid in olive oil showed not to depend of the temperature, within the tested range. The 

response surfaces, fitted to the experimental data, were described by a first-order 

polynomial equation, for C8:0 incorporation, and by a second-order polynomial equation for 

C10:0 incorporation. Under optimized conditions (48h reaction at 40°C, with a molar ratio of 

2:1 M/TAG) highest incorporation was reached for C8:0 (25.6%mol) and C10:0 (21.3%mol).  
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1. Introduction 

 

Structured lipids (SL) can be defined as triacylglycerols (TAG) that have been (i) 

restructured to change the fatty acids (FA) positions in the glycerol backbone, (ii) modified 

by the incorporation of new fatty acids or (iii) synthesized de novo to yield novel TAG, either 

chemically or enzymatically (Iwasaki et al., 1999; Iwasaki and Yamane, 2000; Osborn and 

Akoh, 2002). MLM type lipids are SL with medium chain length fatty acids (M), containing 

between 6 and 10 carbons, in the sn-1 and sn-3 positions, and long chain fatty acids (L), 

with more than 12 carbons, at the sn-2 position. This type of SL avoid health problems 

related with long chain TAG and have targeted nutritional, energetic and pharmaceutical 

properties (Huang and Akoh, 1996). MLM are used as easily accessible energy sources for 

patients with absorption problems (Huang and Akoh, 1996), because their hydrolysis and 

absorption rates are faster than those for long chain TAG (Jandacek et al., 1987), since 

gastric lipase prefers short and medium-chain length TAG, over long-chain length 

triacylglycerols (Reis et al., 2009). 

 

SL can be produced chemically or enzymatically using lipases as catalysts (triacylglycerol 

acylhydrolases, E.C. 3.1.1.3.) (Marangoni and Rousseau, 1995; Willis and Marangoni, 

1999). Both chemical and enzyme catalysis processes can be performed in continuous and 

do not require the presence of co-factors. However, enzyme catalysis has several 

advantages over chemical processes, since it can be carried out under mild conditions of 

temperature and at atmospheric pressure (Xu, 2000; Neklyudov and Ivankin, 2002; de 

Castro et al., 2004). In addition, lipases present (i) high selectivity (regio-, stereo- and typo- 

selectivities), leading to a decrease in side product synthesis (ii) high stability in organic 

solvents and (iii) their activity and selectivity can be improved by genetic engineering (Willis 

and Marangoni, 1999; Xu, 2000; de Castro et al., 2004; Kazlauskas and Bornscheuer, 

2008).  

 

By designing a SL with a precise chemical structure, the nutritional and pharmaceutical 

properties can be controlled. Triacylglycerols of MLM type can be produced by lipase-

catalyzed acidolysis between TAG and free fatty acids (FFA), either in solvent or in solvent-

free media (Lee and Akoh, 1998; Willis and Marangoni, 1999; Kawashima et al., 2001; 

Camacho Paez et al., 2002; Camacho et al., 2007; Hita et al., 2007; Li et al., 2008; Kim et 

al., 2010; Laura Foresti and Lujan Ferreira, 2010; Palla et al., 2012). The main problem of 

this method is the price of commercial enzymes, however, the use of immobilized and low-

cost non-commercial lipases has made this method potentially viable (Slotema et al., 2003; 

Wilkes, 2006; Severac et al., 2011b). The immobilization process of the enzyme may 
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increase its operational stability and enables a continuous process to be developed. It would 

also improve the cost efficiency and environmental impact of the process, since less energy 

is required, due to the low temperatures used and less product purification steps required 

(Holm and Cowan, 2008). Moreover, the immobilized biocatalyst is easily removed from the 

reaction medium.  

 

Commercial sn-1,3 immobilized lipases have been used for the modification of different oils 

such as olive, peanut, safflower, linseed and soybean oils, aimed at the production of MLM 

(Shimada et al., 1996; Lee and Akoh, 1998; Xu, 2000; Fomuso and Akoh, 2002; Kim et al., 

2002; Lai et al., 2005; Li et al., 2008; Nunes et al., 2011a). The most interesting MLM have 

caprylic (C8:0) or capric acid (C10:0) at the sn-1,3 positions and a monounsaturated (oleic 

acid, in general) or polyunsaturated fatty acid at the sn-2 position. These lipids have been 

synthesized using the commercial immobilized lipases from Rhizomucor miehei (Lipozyme 

RM IM) (Huang and Akoh, 1996; Lee and Akoh, 1998; Xu et al., 1998; Fomuso and Akoh, 

2002; Kim et al., 2002; Lai et al., 2005; Nunes et al., 2011a), Thermomyces lanuginosa 

(Lipozyme TL IM) (Jaeger et al., 1999; Kim et al., 2002; Zhao et al., 2007; Li et al., 2008; 

Nunes et al., 2011a), Candida antarctica (Novozym 435) (Huang and Akoh, 1996; Lee and 

Akoh, 1998; Nunes et al., 2011a; SilRoy and Ghosh, 2011) and Rhizopus oryzae 

(Kawashima et al., 2002). Nonetheless the variety of available commercial immobilized 

lipases is limited and the need of more efficient enzymes is always crucial.  

 

Currently, the search for new lipases, new supports and immobilization methods aimed at 

the production of structured lipids, is being carried out in order to lower the costs related with 

commercial immobilized lipases (Hita et al., 2007; Kim et al., 2010; Nunes et al., 2011b; 

Nunes et al., 2012; Palla et al., 2012; Rasera et al., 2012; Tecelao et al., 2012). Extracellular 

lipase Lip2 from Yarrowia lipolytica (YLL2) is a good candidate for the production of MLM 

since it is homologue to the sn-1,3, selective lipases from R. miehei (PDB codes: 3TGL 

(Brzozowski et al., 1992) and 4TGL (Derewenda et al., 1992); sequence identity 29%, 

sequence homology 46 %, gap 16 %) and T. lanuginosa (PDB ID: 1GT6 (Yapoudjian et al., 

2002); sequence identity 31 %, sequence homology 47%, gap 14%) (Aloulou et al., 2007; 

Bordes et al., 2009; Casas-Godoy et al., 2012). This new lipase presents very good 

hydrolytic activity towards tricaprylin, olive oil and triolein and was found very efficient as 

catalyst of several reactions (Fickers et al., 2011) (Yu et al., 2007a; Yu et al., 2007b). 

 

The objective of this study was the production of structured lipids by enzymatic acidolysis 

between virgin olive oil and caprylic or capric acids using this new enzyme, Lip2 from 

Yarrowia lipolytica. The SL obtained should be rich in oleic acid at the sn-2 position while 
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C8:0 and C10:0 should be mainly esterified at the sn-1,3 positions. Lip2 from Y. lipolytica 

immobilized on Accurel MP 1000 (YLL2) was tested in a solvent-free system. In addition, the 

acidolysis reaction of olive oil with C8:0 or C10:0 catalyzed by immobilized YLL2 was 

optimized by response surface methodology (RSM) as a function of the molar ratio free fatty 

acids/triacylglycerols (FFA/TAG), temperature and reaction time.  
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2. Material and methods 

 

2.1. Materials 

 

Extra virgin olive oil (acidity of 0.25% expressed as free oleic acid) was purchased from a 

local supermarket. The molar fatty acid profile of this olive oil was: 12.7%, C16:0; 2.9%, 

C18:0; 77.0 %, C18:1 and 7.3%, C18:2. Capric acid, caprylic acid and pure p-nitrophenyl 

butyrate were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Accurel MP1000 

(particle size under 1500mm) was purchased from Membrana GmbH (Wuppertal, Germany). 

Unless stated, other chemicals and solvents were p.a. and purchased from Sigma/Aldrich. 

 

2.2 Lipase production 

 

The extracellular lipase Lip2 from Y. lipolytica was expressed in the multi-copy strain 

JMY329 of Y. lipolytica under the control of the POX2 promoter inducible by oleic acid  

(Guieysse et al., 2004). Lipase was produced according to the procedure of Leblond et al. 

(Leblond et al., 2009) and Lip2 was recovered from the supernatant. 

 

2.3 Lipase Hydrolytic Activity Assay 

 

Free lipase activity was determined by monitoring the hydrolysis of p-nitrophenyl butyrate (p-

NPB) into butyric acid and p-nitrophenol. 2-methyl-butan-2-ol (2M2B) was used as solvent to 

solubilise p-nitrophenyl butyrate. Lipase activity was measured in 96-well microplates filled 

with 20 µL of lipase supernatant and 175 µL of a 100 mM phosphate buffer pH 7.2 

containing 100 mM NaCl. The reaction started with the addition of 5 µL p-NPB (40 mM in 

2M2B) and the activity was measured by following absorbance at 405 nm at 30°C for 10 min 

using the VersaMax tunable microplate reader (Molecular Devices, Rennes, France). One 

unit of lipase activity was defined as the amount of enzyme required to release 1 µmol of 

butyric acid per min at 25 °C and pH 7.2. 

 
Immobilized lipase activity was also determined by monitoring the hydrolysis of p-nitrophenyl 

butyrate (p-NPB) into butyric acid and p-nitrophenol. The reaction was carried out in 2mL 

eppendorfs containing 2mg of immobilized enzyme and 1.425ml of a 100 mM phosphate 

buffer pH 7.2 containing 100 mM NaCl. The reaction started with the addition of 75 µL p-

NPB (40 mM in 2M2B) and agitated by vortex at room temperature. The activity was 

measured by taking samples for 5min and measuring the absorbance at 405 using the 
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VersaMax tunable microplate reader (Molecular Devices, Rennes, France). One unit of 

lipase activity was defined as the amount of enzyme required to release 1 µmol of butyric 

acid per min at 25 °C and pH 7.2. 

 

2.4 Immobilization of Lip2 from Y. lipolytica 

 

Lip2 supernatant was recovered from the fermentation broth by centrifugation followed by 

filtration with 0.45µm and 0.22µm Millipore membrane filters. Lipase activity was obtained 

following the p-NPB method described in section 2.3. Before immobilization, Accurel support 

MP 1000 was activated by mixing with ethanol (10mL ethanol/g support) at room 

temperature for 30min. Then, 10 mL of water/g support were added and the solution was 

mixed for 30min. The support was filtered and washed three times with 50 mL of water. 

Finally, the support was dried by vacuum. A total activity of 7800U of Lip2 supernatant 

(activity 503 U/mL) was added per gram of activated support. The support, in contact with 

the enzyme solution, was shaken horizontally at 4°C for 72h, following the remaining activity 

in the supernatant. The support loaded with Lip2 (YLL2) was filtered from the enzymatic 

solution and dried in a closed chamber crossed by an air flow at room temperature. Finally 

the water activity (aw) was controlled at 0.52 by contact with the vapor phase of Mg(NO3)2 at 

room temperature. Immobilized enzyme was stored at 4°C.  

 

2.5 Acidolysis Reaction  

 

The substrate consisted of 3g of virgin olive oil and different amounts of caprylic (C8:0) or 

capric acid (C10:0) corresponding to molar ratios of FFA/TAG of 1:1 to 8:1. The immobilized 

lipase amount used was fixed (5 wt% of total substrates) and different temperatures (30-

50°C) were tested. Reactions were carried out in solvent-free system in thermostated-

capped cylindrical glass tubes under magnetic agitation.  

 

Screening experiments of the acidolysis were carried out in a solvent free media for 24 h. At 

the end of the reaction, the enzyme was removed by centrifugation and the reaction medium 

stored at 4°C until analysis. In time-course experiments the reactions were carried out under 

optimal reaction conditions predicted by RSM, during which samples were taken at different 

time intervals and stored until analysis. 
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2.6 Experimental Designs and Statistical Analysis 

 

Response Surface Methodology (Gacula and Singh, 1984) was used to model the acidolysis 

of virgin olive oil with caprylic or capric acids and to optimize the reaction conditions using 

immobilized YLL2.  

 

2.6.1 Screening experiments: molar ratio and temperature levels 

 

Molar ratios and temperature levels used in the experimental designs for reaction modeling 

and optimization of reaction conditions were chosen from the results of the 24h screening 

acidolysis reactions carried out with both acids. To investigate the effect of molar ratio on 

medium-chain fatty acid incorporation in olive oil, acidolysis experiments were performed at 

40ºC, using FFA/TAG molar ratios from 2:1 to 8:1. The effect of temperature in the range of 

30ºC to 50 ºC was investigated, maintaining the molar ratio FFA/TAG equal to 2:1 (the 

stoichiometric ratio for incorporation in positions 1 and 3 of a sn-1,3 lipase).    

 

2.6.2 Modeling acidolysis and optimization of reaction conditions 

 

For optimization with C8:0, 17 experiments (3 central points, 8 factorial points and 6 stars 

points) were carried out following the central composite rotatable design (CCRD), as a 

function of molar ratio (MR), temperature (T) and reaction time (t) (Table 1). Optimization 

with C10:0 was carried out with a total of 11 experiments (3 central points, 4 factorial points 

and 4 stars points) following the CCRD as a function of MR and reaction time (Table 2).  

 

The incorporation values of C8:0 and C10:0 into olive oil for all the CCRD experiments were 

analyzed using the software ‘‘Statistica TM’’, version 6, from Statsoft, Tulsa, USA. Linear 

and quadratic effects of the independent factors and their linear interactions on incorporation 

of medium chain fatty acids into olive oil were calculated. Their significance was evaluated 

by analysis of variance. Response surfaces were fitted to each set of estimated values, 

described by first or second-order polynomial equations. First and second-order coefficients 

of these equations are usually unknown and, therefore, are estimated from the experimental 

data by using the statistical principle of least squares. The fit of the models was evaluated by 

the determination coefficients (R2) and adjusted determination coefficient (Radj
2). In practice, 

R2 should be at least 0.75 or greater; being values above 0.90 very good (Haaland, 1989). 

By partial differentiation of these polynomial equations, it is possible to predict the reaction 

conditions required to obtain a maximal caprylic or capric acid incorporation value.  
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2.7 Model validation 

 

The models obtained by RSM were confirmed by time course experiments of 48h under the 

predicted optimal conditions. During the reaction, 200 µL samples were taken along 48 h 

and stored at 4°C until analysis. Reactions were performed in duplicate and average values 

of incorporation are reported. Results after 24 and 48h were compared with those predicted 

by the model.  

 

2.8 Analysis of reaction products 

 

The method used in order to separate the acylglycerols and the FFA of the acidolysis 

reaction was adapted from Muñio et al. (Muñío et al., 2009). 100µl of reaction product were 

dissolved in 1.2 mL of hexane and then the FFAs were neutralized with 1.2 mL of 0.5N KOH 

hydroethanolic solution (20% ethanol). After vigorous shaking the hexanic phase, containing 

the SL, was recovered and the hydroalcoholic phase was extracted once more with 1.2mL of 

hexane to increase SL recovery yield. After vigorous shaking, the second hexanic phase 

was recovered; both hexanic phases were mixed and the hexane evaporated. An 

acylglycerol mixture of TAGs, diacylglycerides (DAGs) and monoacylglycerides (MAGs) was 

recovered. 

 

Acylglycerols were analysed by HPLC to quantify the percentage of TAG, DAG and MAG 

present in the reaction products. The product free of fatty acids was analyzed using a 

Dionex Ultimate 3000 HPLC equipped with a 380-LC Evaporative Light Scattering Detector 

(Varian, USA) and a reverse-phase analytical Prontosyl C30 column (ICS, France) (250 x 

4mm x 5µm) (Severac et al., 2011a). The nebulization and evaporation temperatures were 

kept at 35 °C and 40 °C, respectively. The nitrogen flow-rate was fixed at 1 L/min. A 40-min 

ternary gradient with two linear gradient steps was employed: phase A was water with 0.1% 

of trifluoroacetic acid (TFA), phase B acetonitrile and phase C, 2-propanol:hexane (5:4, v/v). 

Gradients were as follows: 30% A + 70% B in 0 min, 100% B in 15 min, 50% B + 50% C in 

30 min, followed by isocratic elution with 50% B + 50% C for 10 min. The flow rate was 1 

mL/min and oven temperature was set at 40 °C. The identification was performed with 

reference to pure standards. Elution order was: monoacylglycerols, diacylglycerols and 

triacylglycerols. This method allows separation of sn1(3)-MAG/sn2-MAG forms and sn1,3-

DAG/sn1(3),2DAG forms. 
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The HPLC analysis of the samples after the neutralization of FFA, showed no presence of 

MAG and the percentage of DAG was less than 3%. The SL was analyzed from the 

acylglycerol fraction without removing the DAG because their percentage in the mixture was 

negligible. SL were methylated as previously described (Browse et al., 1986) using 

heptadecanoic acid methyl ester as internal standard. 1µL of the FAME solution was 

analyzed with a GC device (6890N, Agilent technology) equipped with a capillary HP-5 

column (30 m length x 0.32 mm internal diameter and 0.25 µm thickness, Variant Inc., USA) 

connected to a FID detector. Injector, in splitless mode, and detector temperatures were set 

at 250°C and 260°C respectively. The following conditions were used: carrier gas He (25 

mL/min), air and hydrogen flow of 350 mL/min and 35 mL/min. The temperature program 

used for the methyl esters analysis was the following:  60ºC for 1 minute, a temperature 

increase to 150ºC at 15 °C/ min, a plateau at 150°C for 1minute followed by a temperature 

increase to 220°C at 5°C/min and a final plateau at 220°C for 1 minute. 

 

2.9 Incorporation degree 

 

Results are presented as molar incorporation or incorporation degree of the desired fatty 

acid into the TAG. Incorporation degree is calculated using the following equation: 

 

 

 

 

where MFA are the moles of the medium chain fatty acid (C8:0 or C10:0) in the TAG and MT 

are the total moles of fatty acids in the acylglycerols. 
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3. Results and Discussion 

 

3.1 Immobilization of YLL2 

 

Two independent batches of lipase were produced and the load of lipase on the support was 

adjusted in order to get biocatalysts with the same activity. YLL2 from the fermentation had a 

high p-NPB activity of 503 U/mL, (c.f. 2.3). By following the enzyme activity in the 

supernatant, the amount of immobilized enzyme was calculated. After 72h, the enzyme 

activity in the supernatant remained constant representing between 60-65% of the initial 

activity. It can be assumed that the support was saturated and therefore no more enzyme 

could be adsorbed. The immobilized lipase was highly active with an activity of 400±10  U/g. 

 

3.2 Screening experiments: Molar ratio and temperature levels 

 

In the screening experiments, performed before modeling experiments, the acidolysis 

reactions were carried out in a solvent free system for 24h, at 40°C for different molar ratios 

(2:1 to 8:1;FFA/TAG) and at molar ratio of 2:1, FFA/TAG for different temperatures (30-

50°C). A solvent-free system, solely composed of the mixture of reactants, was considered 

to maximize volume productivity, to simplify the downstream processing and to develop a 

clean process. 

	  

For molar ratios 1:1 to 6:1 FFA/TAG (Figure 1A), molar incorporations were higher for C8:0 

than for C10:0, which could be explained by a higher reactivity of C8:0 compared to C10:0 

due to its polarity (LogP=2.78 and 4.09 respectively). C8:0 incorporation decreased from 

20.3%mol to 15.9%mol from molar ratio 2:1 to 4:1 FFA/TAG. In the same range of molar 

ratios, C10:0 incorporation remained constant (14.6%mol). With both medium chain length 

fatty acids, the incorporation degrees decreased with high molar ratios, probably due to an 

inhibitory effect caused by the high amounts of FFA in the reaction medium, which can 

cause a decrease in the reaction rate that would translate as lower incorporations since 

reaching the equilibriums takes longer reaction times. This phenomena will be studied in the 

time course reactions (Lee and Akoh, 1998; Li et al., 2008) (c.f. 3.4).  
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Figure 1. Caprylic (C8:0, n) or capric (C10:0, r) acid incorporations into virgin olive oil catalyzed by 

immobilized YLL2, after 24h in a solvent free medium (A) Effect of molar ratio at 40°C.  (B) Effect of 

temperature with a MR of 2:1, FFA/TAG. 

 

The effect of temperature was also evaluated within the range of 30-50°C (Figure 1B) at a 

molar FFA/TAG of 2:1. Temperature has not a large influence on the incorporation degree, 

especially for C10:0. From these results, the levels for the central composite rotatable 

design of molar ratio and temperature were calculated for C8:0 (Table 1). For C10:0, the 

temperature was fixed at 40°C and the tested molar ratio levels are shown in Table 2. In 

both systems reaction time was a studied factor. For each factor, five levels were tested: -α, 

-1, 0, 1 and α (Tables 1 and 2).  

 

3.3 Modeling incorporation of medium chain fatty acids into olive oil	  
 

The incorporation values of C8:0 or C10:0 into virgin olive oil, by acidolysis reaction, in 

solvent-free media, catalyzed by immobilized YLL2, under the conditions of the experimental 

designs followed, are presented in Tables 1 and 2.  
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Table 1. Coded and decoded experimental design matrix used (CCDR) as a function of 

molar ratio (MR) C8:0/TAG, temperature (T, ºC) and reaction time (t, h) and respective C8:0 

incorporation values. 

Experiment X1 X2 X3 
MR 

(C8:0/TAG) 
Temperature 

(ºC) 
Reaction 
time  (h) 

Incorporation 
of C8:0  
(% mol) 

1 -1 -1 -1 2 35 12 19.2 

2 -1 -1 1 2 35 40 24.3 

3 -1 1 -1 2 45 12 19.8 

4 -1 1 1 2 45 40 25.9 

5 1 -1 -1 6 35 12 8.3 

6 1 -1 1 6 35 40 14.2 

7 1 1 -1 6 45 12 7.0 

8 1 1 1 6 45 40 16.5 

9 -1.68 0 0 0.6 40 26 19.1 

10 1.68 0 0 7.4 40 26 8.5 

11 0 -1.68 0 4 31.6 26 15.1 

12 0 1.68 0 4 48.4 26 17.0 

13 0 0 -1.68 4 40 2,5 6.1 

14 0 0 1.68 4 40 49,5 23.2 

15 0 0 0 4 40 26 16.4 

16 0 0 0 4 40 26 15.4 

17 0 0 0 4 40 26 16.0 
 

Table 2. Coded and decoded experimental design matrix used (CCDR) as a function of 

molar ratio (MR) C10:0/TAG and reaction time (t, h) and respective C10:0 incorporation 

values. 

Experiment X1 X2 
MR 

(C10:0/TAG) 
Reaction time  

(h) 
Incorporation of 
C10:0 (% mol) 

1 -1 -1 2 10 11.5 

2 -1 1 2 42 18.6 

3 1 -1 6 10 8.3 

4 1 1 6 42 17.3 

5 -1,4 0 1.2 26 16.9 

6 1,4 0 6.8 26 9.7 

7 0 -1,4 4 3.4 3.0 

8 0 1,4 4 48.6 19.3 

9 0 0 4 26 14.6 

10 0 0 4 26 14.7 

11 0 0 4 26 14.5 
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Linear and quadratic main effects of molar ratio FFA/TAG, temperature (for C8:0 

experiments) and reaction time (for both acids) and linear interactions of factors on C8:0 or 

C10:0 incorporation into olive oil, as well as p values, are presented in Table 3. A positive or 

a negative linear effect of a particular factor (MR, temperature or reaction time), on the 

incorporation degree, means that an increase in the value of that factor results in an 

increase or reduction in the response, respectively. A negative (or positive) quadratic effect 

indicates that the response is described by a convex (or concave) response surface. 

 

Table 3. Linear and quadratic effects, linear interactions and respective p-values (values in 

parentheses) of molar ratio medium chain FFA/TAG (MR), temperature and reaction time on 

the acidolysis of olive oil with C8:0 or C10:0, catalyzed by immobilized YLL2.   

Factor C8:0 C10:0 

MR (linear term) -8.93 (0.0003) -3.68 (0.0333) 

MR (quadratic term) -0.53 (0.729) -0.45 (0.776) 

Temperature (linear term) 0.92 (0.516) - 

Temperature (quadratic term) 1.03 (0.508)  - 

Reaction time (linear term) 8.10 (0.0005) 9.80 (0.0006) 

Reaction time (quadratic term) 0.06 (0.966) -2.53 (0.152) 

MR by Temperature (linear interaction) -0.27 (0.883) - 

MR by Time (linear interaction) 1.02 (0.579) 0.88 (0.641) 

Temperature by Time (linear interaction) 1.19 (0.520) - 
 

For caprylic acid, results show that temperature has no significant effect in the incorporation 

of this fatty acid, neither at linear nor at quadratic levels (p>>0.05) (Table 3). In addition, no 

significant interactions between the factors were observed. However, molar ratio and 

reaction time have significant linear effects on C8:0 incorporation into olive oil. The negative 

linear effect of MR and the positive linear effect of reaction time indicate that the 

incorporation of C8:0 will increase with lower MR and a longer reaction time. Thus, caprylic 

acid incorporation into olive oil can be fitted to a flat response surface (Figure 2), described 

by a first-order polynomial equation (Table 4).  
 

 

 

 

 



Publication 5                      Chapter II: Results 
	  

	   236	  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Response surface fitted to the incorporation of caprylic (C8:0) or capric (C10:0) 

acids into virgin olive oil by acidolysis catalyzed by immobilized YLL2, as a function of 

reaction time and molar ratio FFA/TAG. 

 

Concerning capric acid incorporation, a negative linear effect of MR and a positive linear 

effect of reaction time were also observed. This system was also affected by a negative 

quadratic effect of reaction time generating a convex response surface (Figure 2) that can 

be described by a second-order polynomial equation (Table 4).  

 

The coefficient of determination (R2) and the adjusted coefficient of determination (R2
adj) of 

each system are also shown in Table 4. The high values of both R2 and R2
adj of these models 

indicate a good fit for caprylic acid (R2 = 0.89) incorporation and a very good fit for capric 

acid (R2=0.93) incorporation (Haaland, 1989). For these models, only significant effects (p ≤ 

0.05) and those having a confidence range smaller than the value of the effect (data not 

shown) were considered.  

 

Table 4. Model equations of the response surface fitted to the acidolysis of olive oil with 

caprylic or capric acid catalyzed by immobilized Lip2, as a function of molar ratio FFA/TAG 

(MR) and reaction time (t, h).  

System Model Equation R2 R2
adj 

Olive oil + C8:0 C8:0 %mol incorporation =	  17,41 - 2,23⋅MR + 0,289⋅t 0.89 0.88 

Olive oil + C10:0 C10:0 %mol incorporation =	  6,91 - 0,92⋅MR + 0,55⋅t -0,0047⋅t2 0.93 0.90 
 

A B 
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From the response-surfaces fitted to the experimental data points, no optimal points 

(maximum incorporation) were observed inside the considered experimental region. Thus, 

only the identification of the regions corresponding to higher incorporations could be 

achieved. It results evident that low molar ratios and high reaction times will give better 

incorporation degrees. For both systems, the highest incorporations inside the experimental 

domain should be reached at 40°C, with a molar ratio of 2:1 FFA/TAG and a reaction time of 

48h. Under these conditions, 26.8%mol incorporation is expected for C8:0 and 20.6%mol for 

C10:0. For C8:0, the model predicted an incorporation of 22.1%mol at 24h reaction time, 

which can be compared with the values obtained in the screening experiments (20.3%mol) 

at 40°C and under similar conditions (MR= 2:1). In addition, the preliminary results also 

showed an  incorporation of 15.9%mol at a MR of 4:1, similar to the incorporation predicted 

by the model (15.4%mol)..Regarding C10:0, the model predictions at a MR 2:1 and 4:1, after 

24 hours, were incorporations of 15.5%mol and 13.7%mol, respectively. These values are 

similar to the ones obtained in the preliminary experiments (14.6%mol).  

 

Previous studies, in solvent systems, showed that the incorporation of caprylic acid into corn 

(Ozturk et al., 2010) and perilla oils (Kim et al., 2002) with commercial immobilized lipases 

from T. lanuginosa (Lipozyme TL IM) (Kim et al., 2002; Ozturk et al., 2010) and R. miehei 

(Lipozyme RM IM) (Kim et al., 2002) reached maximum incorporations with high molar ratios. 

The optimum conditions for the incorporation of caprylic acid into corn oil with Lipozyme TL 

IM were: enzyme load 13.2%wt, molar ratio 3.9:1 FFA/TAG, temperature 50°C and reaction 

time of 3.1h (Ozturk et al., 2010). Under these conditions, the SL obtained had 21.5%mol of 

caprylic acid. Kim et al. (Kim et al., 2002) found that the highest incorporation of caprylic acid 

into perilla oil using Lipozyme TL IM and Lipozyme RM IM was obtained with a molar ratio of 

6:1 FFA/TAG, at 55°C and 24h. Incorporation degrees obtained were of 48.5%mol with 

Lipozyme RM IM and 63.8% with Lipozyme TL IM.  

 

However, in our system, low molar ratios are required, which has been previously reported 

in solvent-free reactions, with commercial (Lee and Akoh, 1998; Zhou et al., 2001; Li et al., 

2008) and non-commercial immobilized lipases (Nunes et al., 2011b; Nunes et al., 2012). 

Using Lipozyme RM IM, caprylic acid was introduced into peanut oil (Lee and Akoh, 1998), 

obtaining an incorporation of 30%mol with a molar ratio of 2:1 FFA/TAG, at 50°C. With 

Lipozyme TL IM used to catalyze a similar reaction, a molar incorporation of 27%mol of C8:0 

into soybean oil was reached after 50h reaction, at 40°C and with a molar ratio of 4:1 (Li et 

al., 2008). In these two systems, it was found that higher molar ratios reduced the 

incorporation degree due to acidic substrate inhibition. Using RSM the acidolysis reaction 

between caproic acid and rapeseed oil using Lipozyme RM IM was optimized (Zhou et al., 
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2001). Optimal reaction conditions were molar ratio 5:1 FFA/TAG, temperature 65°C, 

enzyme load 14%wt, water content 10% and reaction time 17h; under these conditions the 

incorporation degree obtained was of 55%mol.  

 

With the recombinant Rhizopus oryzae lipase (r-ROL) immobilized in Eupergit C, after 24-h 

acidolysis reaction of virgin olive oil with caprylic or capric acid, in solvent-free media, the 

maximum incorporation of caprylic (15.5%mol) or capric (33.3%mol) acids in TAG, predicted 

by RSM, occurs at 37ºC and 35ºC, respectively, and at C8:0/TAG of 2.8:1 or C10:0/TAG of 

3:1 (Nunes et al., 2012). The fermentation conditions used in r-ROL production, highly 

affected hydrolytic activity and in a lesser extent interesterification activity.  

 

3.4 Model validation 

 

In order to validate the models, the acidolysis reactions were carried out under the selected 

conditions that maximize fatty acid incorporation: temperature of 40°C, molar of 2:1 

FFA/TAG and reaction time of 48h. The fatty acid composition of the SL produced under 

these conditions is shown in Table 5. In addition, time-course reactions were carried out at 

40ºC for 48 h, at molar ratios of 1:1, 2:1 and 4:1 (Figure 3). The experimental incorporation 

degrees of caprylic acid after 48h were 26.2%mol, 25.6%mol and 16.6%mol for MR of 1:1, 

2:1 and 4:1, respectively. Results obtained with ratios of 1:1 and 2:1 are in good agreement 

with the predicted values by the first-order polynomial model (Table 4): 29.1%mol and 

26.8%mol, respectively. However, with the molar ratio 4:1, the model predicted a caprylic 

acid incorporation of 22.4%mol and only 16.6%mol incorporation was reached. After 48h, 

capric acid incorporations were of 21.0%mol, 21.3%mol and 17.3%mol for MR 1:1, 2:1 and 

4:1, respectively. In this system, all the results agree with the predicted values by the 

second-order polynomial model: 21.6%mol, 20.6%mol and 18.8%mol for MR of 1:1, 2:1 and 

4:1, respectively.  

 

It can also be observed in Figure 3 that, in both systems, the incorporation degrees and 

kinetics are similar for molar ratios of 1:1 and 2:1. The initial reaction rates at different 

substrate ratios were calculated using the experimental incorporation values obtained during 

the first 6h of reaction. For all the MR tested, reactions with C8:0 gave higher initial reaction 

rates than with C10:0, which confirms a higher preference of YLL2 towards caprylic acid 

over capric acid. However, previous reports state that YLL2 has higher activity towards 

methyl decanoate over methyl octanoate (Yu et al., 2007a; Yu et al., 2007b). Initial reaction 

rates with C8:0 (%mol incorporation of C8:0/h) were of 1.8, 1.4 and 0.5 for MR 1:1, 2:1 and 

4:1, respectively. The highest initial reaction rate was obtained with the MR of 1:1. 
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Nevertheless, final incorporation degrees were almost the same with MR 1:1 and 2:1. Initial 

reaction rates with C10:0 (%mol incorporation of C10:0/h) were of 1.3, 1.1 and 0.6 for MR 

1:1, 2:1 and 4:1, respectively. Again, the reaction with MR of 1:1 had a slightly higher initial 

rate but the final incorporation was similar with MR 1:1 and 2:1 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Time-course of acidolysis reaction of olive oil with caprylic (A) or capric (B) acids, 

for different MR FFA/TAG, under optimal temperature (40°C). Molar ratio FFA/TAG, 1:1 (u), 

2:1 (n) and 4:1 (p). 
 

 

Table 5. Fatty acid composition (%mol) of olive oil and the SL produced at a MR of 2:1 

FFA/TAG, after 48h at 40°C.  

Fatty acid Virgin olive oil 
SL 

C8:0 C10:0 

C8:0 - 25.6 - 

C10:0 - - 21.3 

C16:0 12.7 8.1 9.8 

C18:0 2.9 2.3 2.3 

C18:1 7.7 58.6 60.7 

C18:2 7.3 5.5 5.9 
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Figure 3 also shows that the initial reaction rates greatly decreased in both systems with MR 

of 4:1. The same behaviour was found in similar reactions using immobilized lipases from R. 

miehei (Lee and Akoh, 1998) and T. lanuginosa (Li et al., 2008), which are homologous with 

Lip2 from Y. lipolytica (Bordes et al., 2009), the recombinant R. oryzae lipase (Nunes et al., 

2012) and C. papaya latex (Tecelao et al., 2012). In addition, the final incorporations of C8:0 

and C10:0 with MR 4:1 were very similar, 16.6%mol and 17.3%mol, respectively. This 

confirms the presence of substrate inhibition, as suggested by the previous results and the 

negative linear effect of MR on caprylic and capric acids incorporation (c.f. 3.3). It has also 

been reported that increasing the amount of free fatty acids over a critical value in a 

substrate mixture causes acidic substrate inhibition, which leads to a reduction of the 

incorporation degree and of the initial reaction rate (Lee and Akoh, 1998). Also, a high 

content of free fatty acids generates an acidic condition of the aqueous phase around the 

enzyme absorbing the water of the interface required for optimal reaction activity (Zhao et al., 

2007; Li et al., 2008) and increasing the solubility of FFA (Yankah and Akoh, 2000).  
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4. Conclusions 

 

Production of structured lipids from olive oil and medium chain fatty acids (caprylic acid and 

capric acid) was successfully achieved with Lip2 from Y. lipolytica immobilized in Accurel MP 

1000. Results can be compared to incorporation of C8:0 in similar reactions using the 

commercial lipases Lipozyme RM IM (30%mol)(Lee and Akoh, 1998) and Lipozyme TL IM 

(27.01%mol)(Li et al., 2008). Comparing these results with the recombinant R. oryzae lipase 

(r-ROL) immobilized in Eupergit C(Nunes et al., 2012), under optimal conditions, the 

incorporation of C8:0 was higher with immobilized YLL2 (25.6%mol) that with immobilized r-

ROL (15.5%mol). Nevertheless, capric acid incorporation was higher with immobilized r-ROL 

(33.3%mol) than with immobilized YLL2 (21.3%mol). 

 

The batch reactions were modeled and optimized using RSM. An excess of free fatty acids 

in the reaction mixture lead to acidic substrate inhibition, decreasing the initial reaction rate 

and the final incorporation degree. The best reaction conditions were the same for SL 

production with both fatty acids: molar ratio of 2:1 FFA/TAG, reaction temperature of 40°C 

and reaction time of 48h. Under these conditions, the SL produced had 25.6%mol of C8:0 

and 21.3%mol of C10:0, which confirmed the validity of the model.  
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General conclusions and Perspectives 

 

Lipases are enzymes that have a wide range of applications in the industry. The increasing 

knowledge regarding this type of biocatalysts has pushed the research towards enzyme 

improvement in function of their applications. Enzymatic engineering allowed the 

improvement of lipases characteristics such as activity, thermostability and tolerance to 

extreme pH and organic solvents. Enzyme selectivity improvement is one of the most 

interesting characteristics that can be changed by enzymatic engineering.  

 

The first objective of this thesis was to efficiently produce a pharmaceutical molecule, tried in 

clinical assay for the treatment of cardiac arrhythmia by the french company Laboratoires 

Pierre Fabre. This molecule is an ester enzymatically-synthesised by the transesterification 

of cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid (DHA) ethyl ester with nicotinol. For the 

success of this application, it was necessary the development of a supply route of high purity 

DHA ethyl ester and an efficient process for its functionalization. 

 

Omega-3 PUFAs are of interest since cis-4, 7, 10, 13, 16, 19-docosahexaenoic acid (DHA) 

and cis-5, 8, 11, 14, 17-eicosapentaenoic acid (EPA), the most important Omega-3, present 

anti-thrombotic and anti-inflammatory properties that reduce risk factors of arthritis 

rheumatoid, cancer, cardiovascular diseases, myocardial infarction, bronchial asthma, 

inflammatory intestinal diseases, diabetes and Alzheimer’s disease.  

 

Nicotinol (3-hydroxymethylpyridine), an alcohol from the group B pro-vitamin, after 

absorption, is rapidly converted into nicotinic acid (Vitamin B3) that presents the ability to 

substantially decrease plasma free fatty acid, triglyceride, VLDL and LDL levels and to raise 

the plasma concentration of protective HDL. DHA-nicotinol would present the cumulative 

properties of the two reactants. The enzymatic trans-esterification of DHA ethyl esters with 

nicotinol was optimised. The screening of commercial enzymes led to the identification of the 

best catalyst, the immobilized lipase from Candida antarctica, (Novozym 435). Different 

solvents were tested and finally the best reactional medium was a solvent-free system, 

composed only of the mixture of the two reactants. The non-use of a solvent was greatly 

appreciated by the company. From both kinetic and thermodynamic points of view, it was 

demonstrated crucial to evacuate the co-product, ethanol, from the reaction medium. Using 

nitrogen bubbling, a conversion of DHA ethyl ester to nicotinyl-DHA superior to 97 % was 

obtained in 4 hours using 45 g.L-1 of enzyme. In these conditions, a productivity of 4.2 g of 

product .h-1.g of enzyme-1 was obtained. In addition, nitrogen bubbling prevents oxidation of 

the polyunsaturated ester. This system could be extrapolated for the production of similar 
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products using other alcohols such as panthenol, which is the alcohol derived from 

pantothenic acid (Vitamin B5) which has pronounced antioxidant and radioprotective effects. 

 

The second objective was to develop a supply route of high purity DHA ethyl ester. At the 

beginning of the thesis, it was not possible to obtain DHA ethyl ester with purity higher than 

90% at a reasonable price. In this thesis, enzymatic purification was explored. In the 

bibliography, lipase from Thermomyces lanuginosa and the lipases from Candida rugosa 

were described as the most efficient to purify ω3 esters but their selectivity is not sufficient to 

obtain DHA of high purity. It was then crucial to discover a new enzyme for our purpose. 

 

The lipase Lip2 from Yarrowia lipolytica (YLL2) appears as a good candidate since it is 

homologous to one of the most efficient lipase, the lipase from Thermomyces lanuginosus.  

During this research we proved that this lipase is an efficient enzyme for Omega-3 PUFAs 

purification. YLL2 produced concentrates rich in DHA ethyl ester (73%) with a recovery yield 

of 89%. This lipase was more efficient and more selective that T. lanuginosus and C. rugosa 

lipases. The highest concentration obtained with T. lanuginosus lipase was 65%. In addition, 

YLL2 presented a higher specific activity that allowed short reactions. 

 

The three lipases from C. rugosa show a strong preference for esters with chain length 

smaller than C20, due to the tunnel topology of their active site. The positioning of the 

double bond the closest to the carboxylic group is also of importance for esters with chain 

length smaller than C20, being the ethyl γ linolenate one order of magnitude less recognised 

than α ethyl linolenate. In consequence, a DHA ethyl ester of high purity could not be 

obtained, since the lipases from C. rugosa presented low relativities versus γ linolenate, 

ARA, EPA and DPA.  

 

On the other hand, mucorales lipases discriminate esters principally in function of the 

position of the double bond the closest from the carboxylic group, whatever the chain length. 

If the double bond the closest to the ester group is at least at the position 7, there is no large 

difference in reactivity. On the contrary, a double bond at positions 4, 5 and 6 are 

unfavourable. DHA the only member of the Δ4 family is the most resistant ester for both 

enzymes. In consequence, the expected DHA purity would be higher with mucorales lipases 

than with CR lipases, since they will consume the main part of esters containing more than 

18 carbons, being γ linolenate the ester which would be the most difficult to separate from 

DHA. YLL2 is more efficient than TLL because ARA, EPA and DPA ethyl esters are better 

recognised and DHA discrimination is higher. 
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YLL2 is consequently the best enzyme to undertake a strategy of enzyme evolution. Site-

directed mutagenesis targeted to amino acids of the active site is often the most efficient and 

rapid method to improve selectivity of an enzyme. Using its three dimensional structure and 

its alignment with the lipase from T. lanuginosus, which was crystallized with oleic acid in the 

active site, targets for site directed mutagenesis were chosen in the active site. Each one of 

these targets was substituted by two amino acids of different sizes and analysed by 

comparing their performance with the wild type enzyme. From the screening of variants two 

positions with important effects in specificity where chosen, positions I100 and V235. The 

clear effect of these two positions in the specificity of Lip2 led to saturation of both positions. 

This new variants showed higher discrimination of DHA-EE and different specificity profile. 

Further research of double mutants of positions I100 and V235 generated large knowledge 

of the specificity of Lip2 from Yarrowia lipolytica. More research regarding the positions that 

interact with I100 and V235 could help us to better understand the selectivity mechanism of 

this lipase.  

 

Finally we achieved the synthesis of structured lipids (SL) by enzymatic acidolysis between 

virgin olive oil and caprylic or capric acids using immobilized Lip2 from Y. lipolytica, a lipase 

never used before for this application. The SL obtained rich in oleic acid at the sn-2 position 

while C8:0 and C10:0 should be mainly esterified at the sn-1,3 positions. Lip2 from Y. 

lipolytica immobilized on Accurel MP 1000 was tested in a solvent-free system. In addition, 

the acidolysis reaction of olive oil with C8:0 or C10:0 catalyzed by immobilized YLL2 was 

optimized by response surface methodology (RSM) as a function of the molar ratio free fatty 

acids/triacylglycerols (FFA/TAG), temperature and reaction time. Results can be compared 

to incorporation of C8:0 in similar reactions using the commercial lipases Lipozyme RM IM 

and Lipozyme TL IM. The batch reactions were modeled and optimized using RSM. An 

excess of free fatty acids in the reaction mixture lead to acidic substrate inhibition, 

decreasing the initial reaction rate and the final incorporation degree. The best reaction 

conditions were the same for SL production with both fatty acids: molar ratio of 2:1 

FFA/TAG, reaction temperature of 40°C and reaction time of 48h. Under these conditions, 

the SL produced had 25.6%mol of C8:0 and 21.3%mol of C10:0, which confirmed the validity 

of the model. Improvements of this reaction using the same enzyme could be reached by 

increasing the range of the parameters used in the RSM study.  

 

Further work can be carried out in several of the objectives of this thesis. First of all for the 

DHA-EE purification the bioinformatics tools can be used for the discovery of new enzymes. 

For example the sequence analysis of YLL2 shows that in the Yarrowia clade there are five 

lipases from Candida phangngensis and one lipase form Canida galli closely related to Lip2 
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from Y. lipolytica (Figure 1). In addition there are thirty-one more lipases from C. 

phangngensis, C. galli and Y. lipolytica in this clade. The identity between these lipases is 

high, however the results from this work show that the amino acids in the active site are 

essential in enzyme selectivity. These lipases could have different specificities and can help 

to understand the mechanism of the lipase in the hydrolysis of fish oils ethyl esters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Yarrowia’s clade, lipases form Y. lipolytica are represented as LIP followed by the 

number of the lipase, lipases from C. phangngensis are represented as YAPH and the lipase 

from C. galli as YAGA. 

 

 

Enzymes could also be optimized by error prone PCR, this would require a robotic platform 

for the screening of mutants. In addition the robotic platform can be used for the 

development of a high throughout screening process for the selection of lipases with 
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different specificities. A colorimetric method would help study the selectivity of the lipases 

versus ethyl esters with different chain length.  Once the optimal enzyme is obtained it would 

be produced and used for the hydrolysis of fish oil ethyl esters and purification of DHA-EE. 

Reaction medium, temperature and reaction time would be then optimized for continuous 

reaction in a corning reactor. This reactor is optimal for a biphasic system since it creates 

micro-emulsions that allow good mass transfer.  

 

An alternative for the purification of DHA would be the esterification of fish oil fatty acids. 

Preliminary results showed higher initial reaction rate and differences in the specificity of the 

lipases than the one observed during hydrolysis.  

 

For the structured lipids production the reaction has to be studied using different reaction 

conditions. Fist of all the reaction has to be carried out with longer reaction times in order to 

reach the equilibrium and the amount of enzyme can be considered as a new factor. In 

addition some of the variants produced with changed selectivities could be used to produce 

SL and improve the reaction yield. Furthermore the concentrates of Omega-3 PUFAs 

produced by enzymatic purification could be used to enrich different vegetable oils and for 

the production of SL. 

 



 

 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  Résumé en Français 

 

  



 

 



Résumé en Français 
 
 

 257 

Chapitre I : Etude Bibliographique 

 

Publication 1, Partie I: Lipases 

 

1. Définition de lipases 

 

Les lipases sont serine hydrolases défini comme triacylglycerol acylhydrolases (E.C. 3.1.1.3) 

et devrait être différencié d'esterases (E.C. 3.1.1.1) par la nature de leurs substrats.  En 

effet, le premier critère pour distinguer ces deux types d'enzymes "l'activation interfaciale", a 

été trouvés insuffisant puisque certaines lipases n’exposent pas ce phénomène. Plus tars, 

les lipases ont été défini comme des enzymes capables d’hydrolyser acylglycerol carboxyl 

esters de longue chaîne (≥10 atomes de carbone), tandis que les esterases hydrolyze 

acylglycerol carboxyl esters de courte chaîne (≤10 atomes de carbone). Comme les deux 

enzymes montrent une large spécificité de substrat, on doit considérer les deux critères 

(Verger, 1997; Chahinian et al., 2002).  

 

2. Réactions catalysée par lipases 

 

Les lipases catalysent l'hydrolyse de la liaison ester de tri-, di- et mono- glycerides en  

acides gras et glycérol. Ils sont aussi actifs sur une large gamme de substrats. Dans tous les 

cas, la réaction est effectuée à l'interface d'une réaction en système biphasée.  

 

Les lipases, dans des conditions thermodynamiques favorables catalysent aussi une grande 

variété des réactions de synthèse qui peuvent se classer dans deux types,  esterification et 

transesterification (Resont et al., 2009). Esterification, thio-esterification et amidation sont 

des réactions similaires, mais avec un acide gras, un thiol ou une amine comme des 

substrats. Transesterification groupes les réactions d’alcoholysis, acidolysis, aminolysis et 

les réactions d’interesterification.  Les lipases peuvent aussi exprimer d'autres activités 

comme phospholipase, lysophospholipase, cholestérol esterase, cutinase ou des activités 

amidase, (Svendsen, 2000). 

 

3. Les sources, rôle physiologique et règlement de l'expression de lipases 

 

Aujourd'hui il est reconnu que les lipases sont produites par des divers organismes, y 

compris des animaux, des plantes et des micro-organismes (Vakhlu et Kour, 2006). Les 

lipases d’origine animale sont rarement assez pures pour être utilisé dans l'industrie 

alimentaire. Donc, le plus étudié et industriellement utilisé sont les lipases obtenues de 



Résumé en Français 
 
 

 258 

sources microbiennes. Les lipases de levures GRAS (Generally Recognized As Safe) sont 

largement acceptées et utilisées dans plusieurs industries incluant la transformation des 

aliments (Vakhlu et Kour, 2006). 

 

Les lipases ont différentes fonctions physiologiques. Dans des micro-organismes 

l’expression est réglée par des facteurs environnementaux comme une réponse 

extracellulaire à un milieu pauvre. Dans la plupart des micro-organismes la présence de 

lipides et des acides gras comme sources carboniques incitent la production de ces 

enzymes extracellulaires.  

 

4. Structure et mécanisme catalytique 

 

Les premières structures des lipases obtenues ont été des Rhizomucor miehei (Brady et al., 

1990) et la lipase pancréatique d'homme (Winkler et al., 1990). Des centaines de séquences 

de lipases se trouvent dans des bases de données et cent structures tridimensionnelles de 

lipases sont disponible dans Protein Data Base (http: // www.rcsb.org/pdb/home/). 

Cependant ces cent structures tridimensionnelles représentent lipases de seulement trente 

et un organismes, puisque la même lipase peut avoir plusieurs structures dans des 

conformations différentes, ou avec des substrats différents.  

 

En ce qui concerne ses caractéristiques structurales, les lipases ont une motif structuraux, le 

repliement α / β, et une triade catalytique conservée. La plupart des lipases possèdent aussi 

la séquence consensus G-X1-S-X2-G. De leurs structures et les résidus formant le trou 

oxyanion (les acides aminés du site actif lipase qui stabilisent l'intermédiaire de réaction) et 

la triade catalytique, les lipases microbien et les esterases peut être groupée dans quinze 

superfamilles et trente-deux familles homologues (Pleiss et al., 2000a).  

 

Le repliement α / β  se compose d’un feuillet β central avec huit brins majoritairement 

parallèles et seulement le brin β2 antiparallèle. Les brins β3 à β8 sont connectés par hélices 

α arrangé sur les côtés de la feuille β central (Figure 1). La triade catalytique est composée 

d’une sérine comme nucleophile, d’un acide aspartique/glutamique comme le résidu acide et 

d’une histidine. Dans le repliement α / β , la sérine catalytique est placée après le brin β5, 

l’histidine après le brin β8 et l’acide aspartique/glutamique après le brin β7.       
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Figure 1. Le repliement α / β  où les hélices α sont 

représenté par des spirales et les feuilles β par des 

flèches. Les résidus de site actif sont représentés par des 

cercles. 

 

L’intermédiaire tétraédrique formé au cours de la réaction catalytique est stabilisé par au 

moins deux liaisons hydrogène avec deux acides aminés qui forment le trou oxyanion. Le 

premier résidu du trou oxyanion est situé dans la région N-terminale des lipases, dans une 

boucle entre le brin β3 et l’hélice αA. Pleiss et al. (2000a) ont identifié deux types de trou 

oxyanion GX et GGGX. Le deuxième résidu du trou oxyanion est le résidu X2 de la 

séquence consensus G-X1-S-X2-G. Elle est positionnée après le brin β5 dans le coude 

nucléophile qui est très conservée chez les lipases. Le trou oxyanion peut être préformé 

dans la conformation fermée de la lipase, sans la modification géométrique produite pendant 

l'ouverture du volet, ou formé seulement sur l'ouverture du volet. 

 

La résolution des premières structures de lipases (Brady et al., 1990; Winkler et al., 1990) a 

permis l’identification d’une boucle qui couvre le site actif, le volet amphiphile. Le volet 

amphiphile est composé d'un ou plus hélices α, unis à la structure principale de l'enzyme par 

une structure flexible. C'est un élément mobile, qui découvre le site actif en présence d'une 

interface eau/lipide, et produit un changement conformationnel qui permet l'accès du 

substrat au site actif (Derewenda and Derewenda, 1991; Grochulski et al., 1993a; 

Grochulski et al., 1994b; Brzozowski et al., 2000). Ce mécanisme, connu comme l'activation 

interfaciale, explique le non Michaelis-Menten comportement observé dans la plupart des 

lipases. La Figure 2 montre la lipase de R. Miehei  dans sa conformation ouverte et fermée. 

Le volet amphiphile dans sa conformation fermée bloque l'entrée du substrat, diethyl 

phosphonate, tandis que le volet amphiphile ouvert permet l'accès au site actif (Moore et al., 

2001).  

 

Figure 4. Rhizomucor miehei lipase. En violet 

sa conformation ouverte avec diethyl 

phosphonate, PDB 4TGL, (Derewenda et al., 

1992a) et en bleu sa conformation fermée, 

PDB: 3TGL, (Brzozowski et al., 1992). 

Le site actif de lipases est localisé dans 

LID 

Open 

Closed 
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l'intérieur d'une poche sur le sommet de la feuille β centrale de la structure de la protéine. 

Les sites actifs de lipases diffèrent en leur forme, taille, profondeur de poche et 

caractéristiques de leurs acides aminés. Pleiss et al., (1998) ont classé les lipases en trois 

groupes en fonction de la topologie de leur site actif. Le premier groupe comprend des 

lipases avec une cavité hydrophobe proche de la surface, les lipases fongiques de type 

Rhizomucor miehei font partie de cette famille. Dans le deuxième groupe on trouve celles 

avec un site actif situé au fond d’un entonnoir, comme les lipases de Candida antarctica, 

Pseudomonas, la lipase pancréatique et la cutinase de mammifères. Dans le dernier groupe 

se trouvent les lipases avec un site actif en forme de tunnel, comme la lipase de Candida 

rugosa. 

 

Le mécanisme catalytique des lipases commence avec une étape d’acylation. Le transfert 

de proton entre l’acide aspartique, l’histidine et la sérine catalytique, entraîne l’attaque 

nucléophile de l’hydroxyle de la sérine sur le carbonyle du substrat. Un premier 

intermédiaire tétraédrique est alors formé qui porte une charge négative sur l’oxygène du 

groupe carbonyle. Dans l’étape de dé-acylation un nucléophile attaque l’enzyme, qui libère 

le produit et régénère l’enzyme. Ce nucléophile peut être une molécule d'eau (hydrolyse) ou 

un alcool (alcoholysis).  

 

5. Sélectivité 

 

La sélectivité des lipases est sa préférence pour catalyser des réactions. Trois types de 

sélectivité peuvent être distingués: typosélectivité, régiosélectivité et enantiosélectivité. La 

typosélectivité c’est la sélectivité vis-à-vis du substrat, mono-di-triglycérides, et des acides 

gras par rapport à la longueur de la chaîne carbonée, de ses substituants et du degré 

d’insaturation. La régiosélectivité c’est la sélectivité par rapport à la position préférentielle 

d’hydrolyse sur les triglycérides. La enantiosélectivité c’est la sélectivité entre deux 

énantiomères ou deux molécules chirales.  

 

6. Applications 

 

Les lipases sont très important dans l'industrie puisque leur stabilité dans des solvants 

organiques, leur large variété de substrats, leur sélectivité et leur capacité de catalyser des 

réactions sans cofactors. De plus, ils sont aussi facilement produits et actif aux conditions 

ambiantes. Les lipases sont utilisent dans l’industrie alimentaire, pour la production de 

détergents et agents nettoyants, l’industrie pharmaceutique, pour bioremédiation et la 

production de biocombustibles, parmi d’autres.  
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Partie II: Lip2 de Yarrowia lipolytica 

 

La levure Yarrowia lipolytica est une levure non conventionnelle qui se caractérise par sa 

capacité à sécréter des protéines hydrolytiques (Guieysse et al., 2004; Fickers et al., 2011). 

C’est une levure qui produit une enzyme extracellulaire Lip2 responsable de toute la activité 

extracellulaire et deux enzymes unies à la cellule (Lip7 and Lip8) (Pignede et al., 2000a). 

Cette partie c’est une revue sur la lipase 2 de Yarrowia lipolytica en incluant ses 

caractéristiques structurelles et catalytiques, la spécificité du substrat, son clonage et 

production, l’amélioration du système d’expression et ses applications.  

 

Partie III: Les acides gras polyinsaturés Oméga 3 

 

Les huiles et les graisses sont deriveés d'acides gras et sont utilisés pour stocker l'énergie. 

Les acides gras (FA) sont des acides carboxyliques avec une chaine d'hydrocarbure de 4 à 

36 carbones et avec une groupe terminal carboxyl (-COOH). Il y a des acides gras saturés 

et acide gras mono o polyinsaturés. La partie 1 de cette section décrit les types des acides 

gras, ses caractéristiques et ses fonctions. On trouve aussi les acides gras essentiels 

Omega-6 et Omega-3, ses caractéristiques, structures et fonctions. La partie 2 présent un 

revue sur les processus pour la obtention des concentrâtes de Omega-3 et les différentes 

techniques de purification principalement les techniques enzymatiques: estérification, 

transesterification et hydrolyse.  

 

Partie IV : Lipides Structurés 

 

Les lipides structurés sont des lipides fonctionnels qui peuvent être produit par techniques 

chimiques ou techniques comme les réactions enzymatiques. Les lipides structurés (SL) 

peuvent être définis comme triacylglycerols qui ont été modifié par techniques chimiques ou 

enzymatiques pour avoir des acides gras spécifiques dans les différentes positions du 

glycérol. Les SL ont des propriétés nutritionnelles spécifiques et des applications pour les 

industries alimentaires et pharmaceutiques. Cette partie c’est une revue sur les techniques 

enzymatiques pour la production de SL et les types des lipides structures. Une partie est 

dédiée aux lipides type MLM enrichis avec acide capric et caprylic, qui ont été produits 

pendant cette thèse.  

  



Résumé en Français 
 
 

 262 

Chapitre II : Résultats 

 

Ce projet de thèse s’est fixé deux objectifs principaux: premièrement, la purification et la 

fonctionnalisation d’acides gras poly-insaturés de type Omega-3 (PUFAs), et spécialement 

l’acide cis-4, 7, 10, 13, 16, 19-docosahexaénoique (DHA) et deuxièmement la production de 

lipides structurés. Le DHA présente des propriétés anti-thrombose et anti-inflammatoire qui 

permettent de réduire les facteurs de risque de l’arthrite, du cancer, de maladies 

cardiovasculaires, de l’asthme, du diabète et de la maladie d’Alzheimer. 

 

Publication 2: Trans-esterification enzymatique des éthyles esters des acides gras à 

chaîne longue de la série Omega-3 concentrées, avec une alcool des provitamine du 

groupe B pour la prévention et traitement de maladies cardiovasculaires. 

 

1. Introduction 

 

Les acides gras polyinsaturés de la série des ω3-PUFAs, en particulier les acides 

docosahexaénoique (DHA) et eicosapentaenoique (EPA), sont des molécules actives. Ces 

acides gras ont un effet positif dans la prévention et le traitement de maladies 

cardiovasculaires et la modulation des facteurs de risque correspondants. Ils sont utilisés 

dans le traitement de l’hyperlipidémie, de l´hypercholestérolémie et le l´hypertension. 

Plusieurs études cliniques conduites avec des suppléments des esters éthyliques d'EPA et 

de DHA concentrés ont conclu qu'ils incitent une réduction de risques d'insuffisance 

coronarienne (Balk et al., 2006) et mortalité par crises cardiaques coronaires (Leaf et al., 

2003; Harris and von Schacky, 2004; Harris et al., 2008; Lavie et al., 2009). Ces résultats 

ont été attribués à un effet de stabilisation des membranes cellulaires des cardiomycytes 

ventriculaires (Leaf et al., 1999), ce qui empêchent l’apparition d’arythmie maligne en 

présence de myocytes.  

 

Finalement, le EPA et DHA présentent d'autres avantages comme: la réduction de pression 

artériel, la diminution d'accumulation plaquettaire (Pownall et al., 1999; Geleijnse et al., 

2002; Balk et al., 2006; Harris et al., 2008) et ses non steroidal anti-inflammatoires 

propriétés. Contrairement à la série des ω6-PUFAs, les ω3-PUFAs sont les précurseurs de 3 

séries prostanoids et 5 séries leukotrienes, molécules associés à propriétés anti-

inflammatoires et anti-thrombotic (Calder, 2001; Simopoulos, 2002; Mori and Beilin, 2004; 

Ton et al., 2005). 
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Dans cette étude on propose la production de une molécule pharmaceutique entre le ω3-

PUFAs et le nictonitol, pour la obtention du nicotinyl DHA ester, actuellement en essai 

clinique pour le traitement des arythmies cardiaques. Le co-substrat du DHA est le nicotinol 

(3-hydroxymethylpyridine), un alcool appartenant au groupe de la pro-vitamine B. Après 

absorption, il est rapidement converti en acide nicotinique (Vitamine B3) qui possède la 

propriété de décroitre les acides gras libres dans le plasma, les triglycérides et d’augmenter 

dans le plasma la concentration des lipoprotéines bénéfiques. La trans-esterification 

enzymatique entre l’ester éthylique du DHA et le nicotinol a été catalysée par lipases. En 

plus la réaction a été optimisée en fonction de milieu, température, enzyme/substrat et 

ester/alcool ratio, dans le but de synthétiser un ester présentant les propriétés cumulatives 

des deux réactants.  

 

2. Matériels et méthodes 

 

Les matériels utilisés se trouvent dans la section 2.1. Également les techniques et 

procédures pour la réaction enzymatique avec et sans solvant et  les techniques d’analyse 

se présentent dans les sections 2.2 à 2.3. 

 

3. Résultats et discussion 

 

Comme l'objectif était le développement rapide d'un processus industriel pour la 

transesterification de l'éthyle ester de DHA (DHAEE) avec nicotinol (pyridin-3-ylmethanol), 

on a seulement testé des lipases immobilisées commerciales. Quatre lipases ont été 

choisis, Novozyme 435, Lipozyme RM IM, Lipozyme TL IM et Lipase PS Amano IM et 

évalués à 40°C, dans 2-methyl-2-butanol (2M2B) avec un ratio molaire de 1.5 

nicotinol/DHAEE et la relation d’enzyme/ester de 7 % (w/w). Lipozyme RM IM et Lipozyme 

TL IM ont montré une conversion basse. Avec PS Amano IM seulement 22% de conversion 

du DHAEE a été obtenu après 72h. Novozyme 435 a été l'enzyme la plus efficace avec 19% 

de conversion du DHAEE au bout de 1 heure. Cette enzyme est stable à 60°C. Dans ces 

conditions, 26% de conversion du DHAEE a été obtenu après 1 heure, qui représente une 

augmentation de 38% comparés au résultat obtenu à 40°C. De ces résultats, Novozyme 435 

a été choisi pour  améliorations, choisissant 60°C comme la température optimale. 

 

Le choix du milieu de réaction influencera l'activité de l’enzyme et sa stabilité, la conversion 

à l'équilibre thermodynamique, la solubilité de substrats et des produits et par conséquence 

la réutilisation et la productivité de l’enzyme et la stabilité du réacteur. Les solvants testées 
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sont été: 5-methyl-2-hexanone, 2 méthyle 2 butanol (2M2B) et acetonitrile. Le milieu idéal 

consisterait en un système sans solvant (SFS) seulement composé par les réactifs. Le 

même ratio enzyme/DHAEE (g/g) a été utilisé avec et sans solvant pour pouvoir comparer 

les résultats. Table 1 a les pourcentages de DHA estérifiés avec les conditions testées. 
 

Table 1. Pourcentage de conversion du DHAEE à DHA-Nicotinol. DHA/nicotinol ratio était 1:1.5 et la 

température 60°C. Novozyme 435: 7% w/w du DHAEE. 

Solvant 
Point 

d’ébullition 
(°C) 

log P* Conversion DHAEE (%) 

30 minute 6 hours 
Acetonitrile 82 -0.34 10.8 35 

2M2B 102 0.89 12.4 38 
5-methyl-2-hexanone 145 1.88 25.4 41 
Système sans solvant - - 34.5 43 

* log P : n-Octanol/Coefficient de partage d’eau 

 

L’activité d’enzyme (après que 30 minutes de réaction) et la conversion finale (après que 6 

heures de réaction) plus haute ont été obtenues avec le système sans solvant (43% de 

conversion au bout de 6 heures). Si un solvant a été utilisé, les conversions les plus hautes 

ont été obtenues avec 5-methyl-2-hexanone (41%), suivis par 2M2B (38%). Le système 

sans solvant (SFS) et le 2M2B ont été ainsi choisis pour améliorations. 

 

À l'équilibre thermodynamique, la conversion de réaction a atteint 38% et 43% avec 2M2B et 

sans solvant respectivement. Cet équilibre pourrait être changé par l'évaporation de 

l'éthanol formé ou/et en augmentant le ratio entre l'alcool et l'ester. Pour confirmer cette 

hypothèse la réaction a été effectuée dans des tubes ouverts pour favoriser l'évaporation 

d'éthanol (Table 2). 

 
Table 2. Pourcentage de conversion de DHAEE à DHA-Nicotinol dans système fermé et ouvert. Le 

ratio DHA:nicotinol était 1:1.5 et la température 60°C. N435: 7 % w/w de DHAEE. 

Solvant 

Conversion de DHA éthyle ester (%) 
Tube ouvert Tube fermée 

30 min 2M2B 
15 min SFS 6 heurs 30 min 2M2B 

15 min SFS 6 heurs 

2M2B 12.4 37.5 19.8 71.5 
Système sans solvant 19.5 43.0 22.3 74.2 

 

Pour le deux systèmes l’activité de l’enzyme été plus élevé avec les tubes ouverts. 

L'utilisation de tubes ouverts a permis changer l'équilibre thermodynamique atteignant 

71.5% et 74.2% des conversion au bout de 6 heures avec 2M2B et sans solvant 

respectivement. 
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Le ratio DHAEE:nicotinol a été aussi étudié pour optimiser la cinétique et l’équilibre 

thermodynamique. Les ratios testés étaient 1:1, 1:1.5 et 1:3 dans 2M2B et SFS, avec 

Novozyme 435 à 60°C (Figure 1). La conversion plus haute obtenue avec 2M2B été avec un 

ratio 1:1 en obtenant une conversion de 95% après 24h, tandis que avec les ratios 1:1.5 et 

1:3 les conversions obtenues après 24h ont été de 90% et 83% respectivement. Pour SFS, 

la réaction est deux fois plus efficace que avec 2M2B, la conversion a atteint 40% au bout 

de  30 minutes. À l'équilibre, les meilleures performances ont été obtenues avec un ratio 1:1 

et  1 :1.5 avec une conversion de 97% pour un réaction de 24 h. Le système sans solvant 

été optimal pour cette réaction et a été choisi pour optimisation.  

 

 

 

 

 

 

 

 
 

Figure 1. Pourcentage d'estérification de DHAEE à DHA-Nicotinol avec différents ratios, dans 2M2B 

(A) et SFS (B). (¿) 2M2B ratio 1:1, (¢) 2M2B ratio 1:1.5, 2M2B ratio 1:3 (p), (¯) SFS 1:1, (£) SFS 

1:1.5 and (r) SFS 1:3. Temperature 60°C. N435 (7% w/w). 

 

Les conditions choisies étaient : température de 60°C, 45 g/L de Novozyme 435 et un ratio 

DHA l'éthyle ester:Nicotinol de 1:1 ou 1:1.5. Enlever l'éthanol a été trouvé crucial pour cette 

réaction donc une autre stratégie a été examinée: bouillonnement d'azote. Ce processus 

présenterait l'avantage d'éviter l'oxydation de l'ester DHA. La réaction avec l'azote a donné 

des conversions très élevées (supérieur à 94%) au bout de 4 heures. Un ratio de 

DHAEE:nicotinol de 1.5 a apparu optimal avec une conversion de 99% dans 4 heures.  

 

4. Conclusions 

 

L’enzyme optimale a été la lipase immobilisée de Candida antarctica, Novozyme 435 et le 

choix du milieu réactionnel une milieu sans solvant. Une conversion supérieure à 99 % a été 

obtenue en 4 heures avec 45 g.L-1 d’enzyme. Dans ces conditions, une productivité de 4.2 

g de produit h-1.g d’enzyme-1 a été obtenue. 
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Publication 3: La lipase Lip2 de Yarrowia lipolytica: une enzyme efficace pour la 

production de concentrés des éthyle esters de DHA. 

 

1. Introduction 

 

L’intérêt pour les acides gras polyinsaturés (PUFAs) Oméga-3 (ω−3) a augmenté en raison 

de leurs effets positifs sur la santé. Particulièrement l’acide docosahexaenoic (DHA, C22:6) 

et l’acide eicosapentaeonic (EPA, C20:5) qui présentent propriétés anti-thrombotic et anti-

inflammatoires (Carvalho et al., 2009; Okada et Morrissey, 2008; Rubio-Rodriguez et al., 

2010). La manque de ω−3 peut provoquer fatigue, peau sèche, des problèmes du coeur, de 

mauvaise circulation, dépression et perte de mémoire, parmi d'autres. Le ratio optimal 

d’Omega-6 et ω−3 est de 4 :1, malheureusement dans la plupart des régimes, 

particulièrement les régimes occidentaux, la consommation de ω-3 est plus haut que 

l’optimal, atteignant des ratios plus haut que 10. 

 

Plusieurs méthodes ont été développées pour concentrer ω−3 PUFAS, y compris 

chromatographie d'adsorption, distillation moléculaire, cristallisation a basse température, 

complexation d’urée, extraction liquide supercritique et réaction enzymatique (Rubio-

Rodriguez et al., 2010). D’entre elles les réactions enzymatiques sont les plus intéressantes. 

Les lipases peuvent discriminer entre EPA et DHA, caractéristique important pour des 

applications médicales spécifiques.   

 

Un procédé de purification enzymatique a été choisi car cela permet de travailler dans des 

conditions à faible température ce qui est un pre-requis car le DHA est sensible à 

l’oxydation. Les lipases sont capables de discriminer entre les acides gras en fonction de la 

longueur de chaine et du degré d’insaturation. Les lipases agissent par résolution cinétique, 

en réagissant plus efficacement avec les acides gras saturés et mono-insaturés qu’avec les 

PUFAs résistants. Il reste toujours d’un grand intérêt de découvrir des enzymes spécifiques 

pour la purification du DHA. La lipase YLL2 de Yarrowia lipolytica apparait comme un bon 

candidat car elle est homologue à une des lipases les plus efficaces, la lipase de 

Thermomyces lanuginosus. En plus on a étudié les lipases Lip1 (CRL1), Lip3 (CRL3) et Lip4 

(CRL4) de Candida rugosa. Ces lipases ont été étudiés en comparant leur capacité de 

concentrer DHA-EE et EPA-EE dans la fraction d'ester par hydrolyse d’un mélange d'éthyle 

ester d'huile de thon (FOEE). On considérera la discrimination entre PUFAS et 

particulièrement entre le EPA et DHA.  
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2. Matériels et méthodes 

 

Les matériels utilisés se trouvent dans la section 2.1. Également les techniques et 

procédures pour la production de lipases, l’activité enzymatique, la réaction d’hydrolyse et 

les hydrolyses successives se présentent dans les sections 2.2 à 2.6. 

 

3. Résultats et discussion 

 

Les principaux composants du mélange d’éthyle esters d’huile de thon (FOEE) représentant 

89.6% mol du mélange et sont esters de DHA (23.6%), acide palmitic (21.4%), acide oléique 

(13.2%), acide palmitoléique (6.7%), acide stéarique (5.6%), EPA (5.2%), acide myristic 

(4.7%), acide alpha linolénique (2.2%), acide arachidonique (1.7%), acide linoléique (1.6%), 

acide gamma linolénique (1.2%), DPA (1.0%) et acide 11-eicosanoate (0.9%).  

 

La principale lipase extracellulaire de la levure Y. lipolytica (YLL2), la lipase de T. 

lanuginosus (TLL) et les trois principales lipases de C. rugosa (CRL1, CRL3 et CRL4) ont 

été expresse dans la souche JMY1212 de Y. lipolytica, souche spécialisé sur l'expression 

d'enzyme et la comparaison des activités enzymatiques. Les activités ont été obtenu avec le 

test d’hydrolyse de p-nitro phényle butyrate et se présentent dans la Table 1.  

 
Table 1. Caractéristiques des lipases.  

Source Lipase Abréviation Activité (U/ml)a 

Yarrowia lipolytica Lip2 YLL2 38.7  
Thermomyces lanuginosus - TLL 26.2  

Candida rugosa 
Lip1 CRL1 42.3  
Lip3 CRL3 1.8  
Lip4 CRL4 11.3  

a µmol de p-nitrophenol libéré per minute et ml d’enzyme. 

 

L’hydrolyse a été effectué dans un système bi-phasique (FOEE en decane / enzyme dans 

eau, v/v) avec le cinq lipases. Pendant la réaction les lipases devraient hydrolyser les éthyle 

esters saturés et mono-, di- et tri-insaturés et laisser les PUFA dans la forme ester. Comme 

la concentration d'esters dans le mélange est très différente, la vitesse initiale n'est pas le 

paramètre approprié pour comparer l'efficacité d'enzyme contre les différents esters. On 

donne le coefficient d'efficacité, la vitesse initiale divisé par la concentration initiale d'ester, 

pour les couples d'enzyme/substrat. On peut aussi calculer le factor de compétition α  pour 

évaluer la capacité de chaque enzyme pour discriminer entre les différents éthyles esters. 
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Une α élevé indique un activité faible versus une éthyle ester spécifique, donc un haute 

discrimination (Table 2).   

 
Table 2. Factor de compétition α pour les différentes lipases, obtenu après 6 heurs de 

réaction pour YLL2 and TLL et après 24 heurs pour les lipases de C. rugosa. 

Enzyme C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 αC18:3 γC18:3 C20 :1 ARA EPA DHA DPA 

YLL2 2.5 2.9 1 3.7 0.9 1.7 2.5 13.5 3.2 10.3 9.1 29.4 3.9 
TLL 1.0 1.2 1 1.3 1.1 1.4 1.5 5.9 1.3 4.1 3.6 10.5 1.4 
CRL1 4.4 3.9 1 16.9 1.6 1.6 5.5 46.6 >100 >100 26.3 82.8 12.0 

CRL3 5.1 3.7 1 14.1 2.5 2.8 9.6 47.0 22.5 48.5 39.4 36.7 >100 

CRL4 3.3 1.4 1 2.6 1.0 2.2 5.6 27.6 78.0 >100 9.1 >100 32.1 
 

Pour tous le esters YLL2 est l’enzyme plus efficace, étant 2 fois plus actif que TLL, la 

deuxième enzyme plus efficace. YLL2 présente une activité plus haute que TLL pour l'éthyle 

oleate, palmitoleate et linolenate (3.7, 3.0 et 2.7 fois plus actives respectivement), tandis que 

pour l'éthyle myristate, palmitate, stéarate, α linolenate, arachidonate et EPA, le ratio est 

inférieur à 2. Pour l'éthyle 11-eicosenoate et DHA, le deux enzymes présentent 

approximativement la même activité. Finalement le γ linolenate est moins reconnu par YLL2 

que par TLL. Le trois lipases de C. rugosa sont moins actifs que YLL2. Étonnamment, 

CRL3, qui a présenté une activité d'hydrolyse p-NPB basse, est ici aussi efficace que ses 

deux enzymes homologues. 

 

Pour YLL2 et TLL la discrimination contre des esters est fonction de la position de la double 

liaison la plus proche du groupe carboxylique. Si la double liaison plus proche au groupe 

d'ester est au moins à la position 7, la réactivité est haute avec un optimum pour les esters 

monoinsaturés. Au contraire, si la double liaison est aux positions 4, 5 et 6, l’activité est 

défavorable pour YLL2 et TLL. DHA le seul membre de la famille Δ4 est l'ester le plus 

résistant pour les deux enzymes. L'éthyle gamma linolenate, le seul membre de la 

famille Δ6, est plus résistante que les deux membres de la famille Δ5, éthyle ARA et éthyle 

EPA, pour les deux enzymes. Il a été précédemment rapporté que lipases montre une 

discrimination plus haute contre des acides gras avec leur premier double à un carbone 

avec un nombre pair (cis-4, cis-6) que le reste d’eux (cis-5, cis-9).  

 

Avec les lipases YLL2 et TLL la concentration des éthyles ester mieux reconnus diminue 

rapidement et après elle reste constante. Le temps à lequel la réaction de une  éthyle ester 

spécifique s’arrête dépend de sa reconnaissance par l’enzyme, ces observations nous font 

croire que chaque réaction individuelle s’arrête en raison d’un équilibre thermodynamique.   
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Pour augmenter la pureté de DHA-EE dans le mélange, trois hydrolyses successives ont été 

exécutées avec des temps de réaction optimaux (5h pour YLL2 et TLL). Entre chaque phase 

de réaction, les acides gras ont été enlevés par saponification et enzyme fraîche a été 

ajoutée. Pendant ce processus, la plupart de l'éthanol a été aussi enlevé. Chaque hydrolyse 

a augmenté le pourcentage de DHA-EE (Figure 1). Après trois hydrolyse, la pureté plus 

haute du DHA-EE a été obtenue avec YLL2, 73 %, contre 65 % avec TLL. La récupération 

du DHA-EE était plus haute avec YLL2, 89 %, qu'avec TLL, 85 %. 

       

                   
Figure 1. Pourcentage de 

DHA-EE après trois 

hydrolyses avec  YLL2 et 

TLL;  le pourcentage de 

récupération pour chaque 

hydrolyse se montre à la 

base de sa colonne. Temps 

de réaction 5h pour 

hydrolyse.   

 

 

Même si efficace, un processus consistant de réactions successives, est complexe d'un 

point de vue industriel. Pour mieux comprendre les raisons qui causent l’arrêt de réaction, 

éthanol (50 mm) a été ajoutés au mélange de réaction initial. L'addition d'éthanol a diminué 

la conversion à l'équilibre dans 36%. Une expérience avec un réacteur ouvert a été testée 

pour favoriser l'évaporation d'éthanol. Avec cette méthode une pureté de 89.5% de ω3 

esters et 77.1% de DHA ont été obtenus.  

 

4. Conclusions 

 

YLL2 a permis d’obtenir une discrimination très efficace. Les raisons de la sélectivité de 

l’enzyme ont été identifiées : il s’agit du positionnement de la double liaison la plus proche 

de la fonction carboxylique. La concentration en DHA la plus élevée a été obtenue avec 

YLL2 (77%) avec un pourcentage de récupération du DHA-EE de 89%. YLL2 est par 

conséquent l’enzyme décrite  la plus efficace pour la purification du DHA. 
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Publication 4: La mutagénèses dirigée améliorée la spécificité de Lip2 d'Yarrowia 

lipolytica vers la purification d'éthyle ester de DHA. 

 

1. Introduction 

 

L’intérêt pour les acides gras polyinsaturés (PUFAs) Oméga-3 (ω−3) a augmenté en raison 

de leurs effets positifs sur la santé. Particulièrement l’acide docosahexaenoic (DHA, C22:6) 

et l’acide eicosapentaeonic (EPA, C20:5) qui présentent propriétés anti-thrombotic et anti-

inflammatoires.  

 

La lipase Lip2 de Yarrowia lipolytica  est capable de purifier le éthyle ester du DHA. La 

concentration en DHA la plus élevée obtenu avec YLL2 été de 77% avec un pourcentage de 

récupération du DHA-EE de 89%. Devant le grand intérêt de l’enzyme Lip2 de Yarrowia 

lipolytica  pour la purification du DHA, la mutagénèse ciblée dans le site actif a été utilisée 

pour améliorer la sélectivité de cette enzyme. L’analyse de la structure 3D et les 

alignements avec des lipases homologues a permis de choisir les cibles de mutagénèse 

dirigée. Les acides aminés cibles ont été changés de manière à restreindre ou élargir le site 

actif.  

 

2. Matériels et méthodes 

 

Les matériels utilisés se trouvent dans la section 2.1. Également les techniques et 

procédures pour la construction de variantes de Lip2, production de lipases, l’activité 

enzymatique et la réaction d’hydrolyse se présentent dans les sections 2.2 à 2.5. 

 

3. Résultats et discussion 

 

Une structure 3D d'YLL2 avec le lid dans une position qui permet l'accessibilité à la serine 

catalytique n’est pas disponible. Le modèle tridimensionnel a été précédemment construit 

par techniques d’homologie en utilisant les structures de lipases de Rhizomucor miehei 

(4TGL) et T. lanuginosa (1GT6) comme des modèles (Bordes et al., 2009) (Figure 1). Les 

structures globales sont semblables, les différences plus significatives se trouvent dans la 

surface. Les trois résidus catalytiques (S162, D230 et H289) et les deux acides aminés 

impliqués dans le trou oxyanion (T88 et L163) sont parfaitement superposés dans ces 

enzymes. Le site de liaison de substrat apparaît comme une crevasse hydrophobe située à 

la surface de la protéine, avec la triade catalytique exposée au solvant. 



Résumé en Français 
 
 

 271 

 
Figure 1. L’alignement multiple de Lip2 de Yarrowia lipolytica (Y.l.), Thermomyces lanuginosa (T.l.), 

Rhizomucor miehei (R.m.), Rhizopus niveus (R.n.), le feruloyl esterase  d’Aspergillus niger (1USW) et 

un fragment de une putidaredoxin de Pseudomonas putida (1put). Le résidus des hélices α et feuilles 

β sont colores magenta et vert, respectivement. Le trois résidus catalytiques sont rouge, le deux 

résidus catalytique du trou oxyanion sont orange, les cystéines sont de couleur bleue et le lid est 

souligné. 

 

Les positions sélectionnés pour mutagenèse dirigée sont T88, V94, D97,I98, R99, I100, 

F129, I231, V232, V235, D239, V285 et L290. T88 c’est un acide amide du trou oxynion, et 

les acides amines V94, D97, I98, R99 et I100 font partie du lid. En plus les acides amines 

I98, R99 et I100 forment un tour d’hélices α supplémentaire au C-terminus. Les variantes 

des positions V94 et V232 ont été construites précédemment pour changer la enantio- 

préférence de la lipase. Les variantes I98A, I98V, R99K, R99Q, I100A, I100L, F129I, V235A, 

V235F et V235L ont été construites pour ouvrir ou fermer le site actif. Les activités en p-

nitrophenyl butyrate se trouvent sur la Table 1.  

 

Pour chaque réaction d’hydrolyse deux facteurs ont été analysés: le coefficient d’efficacité et 

le facteur de compétition α. Une α élevé indique un activité faible versus une éthyle ester 

spécifique, donc un haute discrimination. Les variantes ont été classifiées en fonction de 

leurs cinétique et sélectivité en comparaison avec YLL2 sauvage.  

Y.l: 1  VYTSTETSHIDQESY-NFFEKYARLANIGY---C--VGPGTKIFKPFNC-GLQCAH--FPNVELIEEFHDPRLIF 66   
T.l: 3             SQDLFNQFNLFAQYSAAAY---CGKNNDAPAG-TNITCTGNACPEVEKADATFLYSFED-SGVG 61   
R.m: 1   SINGGIRAATSQEI-NELTYYTTLSANSY---CRTVIPGAT----WDC--IHCDA--TEDLKIIKTWST--LIY 60   
R.n: 1   SDGGKVVAATTAQI-QEFTKYAGIAATAY---CRSVVPGNK----WDC--VQCQKWVPDGKIITTFTS---LLS 60   
USW          ASTQGISEDLYNRLVEMATISQAAYADLCNIPST--------IIKGEKIYNAQT------------- 46 
 
Y.l: 67  DVSGYLAVDHASKQIYLVIRGTHSLEDVITDIRIMQAPLTN--FDLAANISSTATCDDCLVHNGFIQSYNNTYN 138   
T.l: 62  DVTGFLALDNTNKLIVLSFRGSRSIENWIGNLNFDLKEIND-------------ICSGCRGHDGFTSSWRSVAD 122   
R.m: 61  DTNAMVARGDSEKTIYIVFRGSSSIRNWIADLTFVPVSYPP--------------VSGTKVHKGFLDSYGEVQN 120   
R.n: 61  DTNGYVLRSDKQKTIYLVFRGTNSFRSAITDIVFNFSDYKP--------------VKGAKVHAGFLSSYEQVVN 121   
USW      DINGWILRDDTSKEIITVFRGTGSDTNLQLDTNYTLTPFDT-----------LPQCNDCEVHGGYYIGWISVQD 
1put                SKVVYVSHDGTRRQLDVADGVSLMQAAVSNGIYDIVGDCGGSASCATCHVY 
 
Y.l: 139 QIGPKLDSVIEQYPD------YQIAVTGHSLGGAAALLFGINLK--VNGH---DPLVVTLGQ---------PIVG 193   
T.l: 123 TLRQKVEDAVREHPD------YRVVFTGHSLGGALATVAGADLR—-GNGY---DIDVFSYGA---------PRVG 177   
R.m: 121 ELVATVLDQFKQYPS------YKVAVTGHSLGGATALLCALDLYQREEGLSSSNLFLYTQGQ---------PRVG 180   
R.n: 122 DYFPVVQEQLTAHPT------YKVIVTGHSLGGAQALLAGMDLYQREPRLSPKNLSIFTVGG---------PRVG 181   
USW      QVESLVKQQASQYPD------YALTVTGHSLGASMAALTAAQLS--ATYD---NVRLYTFGE---------PRSG 
 
Y.l: 194 NAGFANWVDKLFFGQENPDVSKVSKDRKLYRITHRGDIVPQV-PFWDGYQHCSGEVFIDWPLIHPP-LSNVVMCQ 266  
T.l: 178 NRAFAEFLTV-------------QTGGTLYRITHTNDIVPRLPPREFGYSHSSPEYWIKSGTLVPVTRNDIVKIE 239  
R.m: 181 NPAFANYVVST--------------GIPYRRTVNERDIVPHLPPAAFGFLHAGSEYWITDN---SP--ETVQVCT 236  
R.n: 182 NPTFAYYVEST--------------GIPFQRTVHKRDIVPHVPPQSFGFLHPGVESWI---KSGTS---NVQICT 238  
USW      NQAFASYMNDAFQVSS-------PETTQYFRVTHSNDGIPNLPPADEGYAHGGVEYWSVD----PYSAQNTFVCT 
 
Y.l :267 GQ-SNKQCSAGNTLLQQVNVIGNHLQYF-VTEGVC 299  
T.l: 240 GI-DATGGNNQPNI---PDIP-AHLWYFGL-IGTC 268   
R.m: 237 SDLETSDCS--NSIVPFTSVL-DHLSYFGINTGLC 268   
R.n: 240 SEIETKDCS--NSIVPFTSIL-DHLSYFDINEGSC 268   
USW      GD-EVQCCEAQGGQ---GVND-AHTTYFGMTSGACTW 
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Table 1.Activité en p-Nitrophenol butyrate du WT de YLL2 et ses variantes. 

Enzyme Activité 
(U/mL)a Enzyme Activité 

(U/mL)a Enzyme Activité 
(U/mL)a 

WT 38.7 R99K 13.9 V235A 67.0 
T88S 12.2 R99Q 36.1 V235F 11.9 
V94A 12.8 I100A 62.5 D239E 20.7 
V94L 14.0 I100L 14.2 D239K 80.0 
D97A 8.5 F129I 9.9 V285A 62.7 
D97V 9.5 I231F 18.0 V285L 29.1 
I98A 23.8 I231V 18.5 L290A 53.1 
I98V 45.4 V232A 21.6 L290F 33.3 

  V232F 47.6   
a µmol of p-nitrophenol liberated per minute and mL of enzyme. 

 
Les variantes V94A et D239K avaient un comportement similaire à WT-YLL2. Les variantes 

avec un activité hydrolytique faible ont été D97V, D97A, L290F, V232A, V232C, V232F, 

V232L, V232S et V232T. Les variantes V232A, V232C, V232F, V232L et V232S ont un 

factor α plus faible que WT-YLL2 pour les éthyles esters polyinsaturés. La variante I100A a 

eu un coefficient d’efficacité faible et un α plus bas pour les esters saturés, di et tri insaturés. 

Les variantes T88S, I98A, R99K, I231F, I231V et D239E ont montré une préférence plus 

haute pour le C16:1 que pour le C18:1, qui est une sélectivité inversé que celui présenté par 

le WT-YLL2. Les variantes V290A, V285A, V285L, I98V, R99Q et I100L sont trouvées plus 

actives que WT-YLL2. La variante I100L été une des plus actives pour l’hydrolyse de ARA et 

EPA esters. Les variantes de la position V235 ont une sélectivité versus le DHA-EE avec 

facteurs de compétition plus faibles qu’il de WT-YLL2. De ce premier screening de variantes 

deux positions ont permis d’améliorer la spécificité de l’enzyme, les positions I100 et V235.  

 
Le dernière factor analyse été la pureté de DHA-EE, EPA-EE et ω3 éthyle ester mélange. 

Les variantes des positions D97, V232 et I100A et V235F n’ont pas produit hautes 

concentrations de DHA-EE. Les puretés de DHA-EE plus haute ont été obtenues avec I100L 

(44.0%), L290A (43.9%), V235L (43.3%), D239K (43.0%) and V285L (43.0%) après 6 

heures de réaction. Une récupération de DHA-EE plus haute de 88% a été obtenue avec 

ces cinq variantes. La hydrolyse plus grande de EP-EE a été trouvé avec I100L, R99Q, 

V235L, I98V, L290A et D239K. 

 

4. Conclusions 

 

La mutagenèse dirigée nous a permis d'étudier l'effet des positions spécifiques dans la 

sélectivité de longueur de chaîne d'YLL2. La sélectivité d'enzyme est principalement en 

raison du positionnement du double lien plus proche du groupe carboxylique. Des 

changements du profil de sélectivité des mutants et de la discrimination vers DHA-EE ont 

été obtenus.  
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Publication 5: Optimisation de l’incorporation des acides gras à chaîne moyenne 

dans l’huile d'olive catalysée par Lip2 d'Yarrowia lipolytica immobilisé. 

 

1. Introduction 

 

Les lipides Structurés (SL) peuvent être définis comme triacylglycerols (TAG) qui ont été (i) 

restructurés pour changer la position des acides gras (FA) sur le glycérol, (ii) modifié par 

l'incorporation de nouveaux acides gras ou (iii) synthétisé de novo pour produire une 

nouvelle TAG, a partir de un procès chimique ou enzymatique (Iwasaki et al., 1999; Iwasaki 

and Yamane, 2000; Osborn and Akoh, 2002). Les MLM sont des SL avec acides gras à 

moyenne chaîne (M), contenant entre 6 et 10 carbones, dans les positions sn-1 et sn-3, et 

des acides gras á longue chaîne (L), avec plus de 12 carbones, á la position sn-2. Ce type 

de SL évite des problèmes de santé liés avec les TAG á chaîne longue et ils ont des 

propriétés nutritionnelles, énergiques et pharmaceutiques.  

 

Les lipases immobilisées commerciaux ont été utilisées pour la modification des différents 

huiles comme d’olive, cacahuète, carthame et soja pour la production de MLM (Shimada et 

al., 1996; Lee and Akoh, 1998; Xu, 2000; Fomuso and Akoh, 2002; Kim et al., 2002; Lai et 

al., 2005; Li et al., 2008; Nunes et al., 2011a). Les MLM plus intéressant ont acide caprylic 

(C8:0) ou capric (C10 :0) dans les positions sn-1 et sn-3 et un acide monoinsaturé (acide 

oléique) ou polyinsaturé dans la position sn-2. 

 

L’objectif de cette étude était la production de lipides structurés (SL) par acidolysis 

enzymatique entre l'huile d'olive vierge et les acides caprylic ou capric utilisant la lipase Lip2 

de Yarrowia lipolytica (YLL2) immobilisé. Le SL obtenu devrait être riche en acide oléique à 

la position sn-2 tandis que les C8:0 et C10:0 devraient être principalement estérifiés aux 

positions sn-1,3. YLL2 immobilisé sur Accurel 1000 a été testé dans un système sans 

solvant. La réaction d’acidolysis d'huile d'olive avec C8:0 ou C10:0 catalysé par YLL2 

immobilisé a été optimisée avec la méthodologie de surface de réponse (RSM). 

 

2. Matériels et méthodes 

 

Les matériels utilisés se trouvent dans la section 2.1. Également les techniques et 

procédures pour la production d’enzyme, l’activité enzymatique, l’immobilisation d’enzyme, 

la réaction de acidolysis, le design expérimental, l'analyse statistique, la validation du model 

et l’analyse des produits se présentent dans les sections 2.2 à 2.8. 
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3. Résultats et discussion 

 

Les réactions de screening ont été effectuées dans un système sans solvant pour 24h, à 

40°C pour différents ratios molaires (2:1 à 8:1; FFA/TAG) et à ratio de molaire de 2:1, 

FFA/TAG pour différentes températures (30-50°C). Pour tous les ratios molaires les 

incorporations molaires étaient plus hautes pour C8:0 que pour C10:0. L'incorporation C8:0 

a diminué de 20.3%mol à 15.9%mol du ratio 2:1 à 4:1 FFA/TAG. Dans la même gamme de 

ratios molaires, l'incorporation de C10:0 a resté constant (14.6%mol). Pour C8:0 et C10:0 

l’incorporation a diminué avec hauts ratios molaires. La température n'a pas eu une grande 

influence sur le degré d'incorporation, particulièrement pour C10:0.  

 

Les valeurs d'incorporation de C8:0 ou C10:0 dans l'huile d'olive vierge, par la réaction 

acidolysis, sans solvant, catalysé par YLL2 immobilisé, dans les conditions des designs 

expérimentaux suivis, sont présentées dans les Tables 1 et 2 de la section 3.3 de cet 

publication. 

 

Les résultats montrent que pour l’acide caprylic la température n'a aucun effet significatif 

dans l'incorporation de cet acide gras. En plus, aucune interaction significative n’a pas été 

observée entre les facteurs. Le ratio molaire et le temps de réaction ont des effets linéaires 

significatifs sur l'incorporation C8:0 dans l'huile d'olive. L'incorporation d’acide carylic dans 

l'huile d'olive peut être adapté à une surface de réponse plate (Figure 1A), décrit par une 

équation de premier ordre (Table 1). 

 

 

 

 

 

 

 

 

 
Figure 1. Surface de réponse adaptée à l'incorporation des acides caprylic (C8:0) ou capric (C10:0) 

dans huile d'olive vierge par acidolysis catalysé par YLL2 immobilisé, comme une fonction de temps 

de réaction et ratio molaire FFA/TAG. 

 

A B 
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Dans l'incorporation acide capric on a observé une effet linéaire négatif de MR et un effet 

linéaire positif de temps de réaction. Ce système a été aussi affecté par un effet quadratique 

négatif de temps de réaction produisant une surface de réponse convexe (Figure 2B) qui 

peut être décrit par une équation de deuxième ordre (Table 1). Les hautes valeurs de R2 et 

R2
adj de ces modèles indiquent une bonne ajustement pour l'incorporation d’acide caprylic 

(R2 = 0.89) et une parfaite ajustement pour l'incorporation acide capric (R2=0.93) (Haaland, 

1989). 

 
Table 1. Équations modèles de la surface de réponse adaptée à l'acidolysis d'huile d'olive avec acide 

caprylic ou capric, catalysé par Lip2 immobilisé, comme une fonction de ratio molaire FFA/TAG (MR) 

et du temps de réaction (t, h). 

System Équation Model R2 R2
adj 

Huile d’olive + C8:0 C8:0 %mol incorporation = 17,41 - 2,23⋅MR + 0,289⋅t 0.89 0.88 

Huile d’olive + C10:0 C10:0 %mol incorporation = 6,91 - 0,92⋅MR + 0,55⋅t -0,0047⋅t2 0.93 0.90 
 

A partir des surfaces de réponse on a identifié les régions correspondant aux incorporations 

plus hautes. Pour les deux systèmes, les incorporations plus hautes à l'intérieur du domaine 

expérimental devraient être atteintes à 40°C, avec un ratio de molaire de 2:1 FFA/TAG et un 

temps de réaction de 48ème. Le modèle a été validé dans ces conditions, et la composition 

du SL obtenu se montre dans la Table 2.  

 
Table 2. Composition des acides gras (%mol) d’huile d’olive et SL obtenu a MR de 2:1 FFA/TAG, 

après 48h à 40°C.  

Fatty acid Virgin olive oil 
SL 

C8:0 C10:0 

C8:0 - 25.6 - 

C10:0 - - 21.3 

C16:0 12.7 8.1 9.8 

C18:0 2.9 2.3 2.3 

C18:1 7.7 58.6 60.7 

C18:2 7.3 5.5 5.9 
 

En plus on a suivi la cinétique de la réaction à 40ºC, pendant 48h, pour les ratios molaires 

de 1:1, 2:1 et 4:1, (Figure 3).  L'incorporation d'acide caprylic après 48h sont été 26.2%mol, 

25.6%mol et 16.6%mol pour MR de 1:1, 2:1 et 4:1, respectivement. Après 48h, les 

incorporations d’acide capric trouvées eté de 21.0%mol, 21.3%mol et 17.3%mol pour MR 

1:1, 2:1 et 4:1, respectivement. 
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Figure 3. Cinétiques de la réaction de acidolysis entre l’huile d’olive et les acides caprylic (A) ou 

capric (B), pour différents MR, à 40°C. Molar ratio FFA/TAG, 1:1 (u), 2:1 (n) and 4:1 (p). 

 

4. Conclusions 

 

La productions de SL a partir d’huile d’olive et acides gras á chaine moyenne a été réussie 

avec YLL2 immobilisé. Les meilleures conditions de réaction pour la production SL avec les 

deux acides gras sont été: ratio molaire de 2:1 FFA/TAG, température de réaction de 40°C 

et temps de réaction de 48h. Dans ces conditions, le SL produit avait 25.6%mol de C8:0 et 

21.3%mol de C10:0, qui a confirmé la validité du modèle. 
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