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Un grand merci aussi à tous les thésards et post-docs du CEREMADE, qui rendent la vie
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cessus de fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4 Calcul de la dimension fractale de Hausdorff des arbres de fragmenta-
tion malthusiens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1 Résumé

Nous nous intéressons à la notion d’arbre aléatoire, prise de différents points de vue. Ceux-
ci se classent en deux grandes familles : les arbres discrets et les arbres continus. Les arbres
discrets sont essentiellement les classiques graphes connexes sans cycles, éventuellement munis
d’une structure supplémentaire comme un plongement précis dans le plan ou diverses étiquettes
sur leurs sommets, et les arbres continus en sont une généralisation dans un cadre d’espaces
métriques.

L’étude mathématique d’arbres discrets aléatoires commence implicitement au milieu du
xixe siècle avec des travaux, hélas essentiellement disparus, du probabiliste français Irénée-Jules
Bienaymé, qui traitent de la probabilité d’extinction de familles. Bienaymé utilise un modèle de
généalogie simple appelé de nos jours modèle de Galton-Watson, d’après les deux mathémati-
ciens britanniques qui l’ont popularisé. La notion d’arbre aléatoire continu, quant à elle, est bien
plus récente : elle commence dans les années 1990 avec une série de trois articles fondateurs par
David Aldous [3],[4],[5], où est étudié le célèbre arbre continu brownien, qui s’interprète comme
la limite d’échelle de grands arbres généalogiques de Galton-Watson. Cet arbre brownien occupe
une place centrale dans le monde des arbres continus car on l’obtient comme limite d’échelle
de nombreux modèles d’arbres discrets (voir par exemple [42] et [24]), mais il existe une grande
variété d’arbres continus aléatoires, notamment les arbres de Lévy (initiés par le travail de Le
Gall et Le Jan [57] et proprement définis en tant qu’arbres par Duquesne et Le Gall dans [30])
et les arbres de fragmentation, ces derniers étant un des sujets principaux de notre travail.

Après un chapitre introductif sur la notion d’arbre continu, cette thèse se décompose en trois
grands chapitres, chacun avec son propre thème.

• Le chapitre 2 a trait aux arbres de fragmentation généraux. Dans le prolongement de [41],
nous nous intéressons à des arbres continus qui ont une propriété d’auto-similarité : tous
les sous-arbres au-dessus d’une certaine hauteur ont la même loi que l’arbre original à
un facteur de proportionnalité près, et ils sont indépendants conditionnellement à leurs
tailles. Ces arbres peuvent s’interpréter comme arbres généalogiques des processus dits de
fragmentation auto-similaire, premièrement étudiés par Jean Bertoin dans [9] et [10]. Après
leur construction, nous en faisons un étude géométrique, ce qui aboutit au calcul de leur
dimension fractale.

• Nous effectuons dans le chapitre 3 l’étude de la limite d’échelle d’une suite d’arbres k-aires
construite algorithmiquement. En s’inspirant d’un algorithme introduit par Rémy dans
[71] pour obtenir des arbres binaires plans uniformes, nous introduisons une suite d’arbres
discrets où chaque nœud a exactement k enfants, k étant un entier fixé. La taille de l’arbre
obtenu à l’instant n ∈ Z+ est alors de l’ordre de n1/k et nous montrons que, renormalisée, la
suite converge vers un arbre de fragmentation. Nous donnons aussi une manière de coupler
les arbres avec différentes valeurs de k de telle sorte qu’ils soient plongés les uns dans les
autres.

• Nous établissons dans le chapitre 4 la convergence en loi de grands arbres de Galton-
Watson critiques à plusieurs types vers un arbre infini. Il est bien connu qu’un arbre de
Galton-Watson tel que chaque individu a en moyenne un enfant, conditionné à avoir un
grand nombre de sommets, converge localement en distribution vers un arbre infini. Nous
généralisons ceci aux cas de populations à plusieurs types, où la loi de l’ensemble des enfants
de chaque individu dépend de son type. Nous appliquons ensuite ce résultat au domaine
des cartes planaires aléatoires. Une carte planaire est la donnée d’un graphe connexe et
d’un plongement de ce graphe dans la sphère, pris aux homéomorphismes directs de la
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sphère près. Nous montrons que, pour de nombreuses distributions de cartes aléatoires,
dont notamment les p-angulations uniformes pour p entier, la carte, conditionnée à avoir
un nombre de sommets qui tend vers l’infini, converge en loi vers une carte infinie.

Plusieurs de nos résultats traitent de la convergence d’une certaine suite d’arbres. Avant de
détailler plus, il convient d’expliciter ces notions, ainsi que d’autres préliminaires.

2 Notions de convergence d’arbres

Convergence locale d’arbres discrets. Tous les arbres (discrets ou continus) que nous consi-
dérerons seront enracinés, ce qui signifie qu’un point particulier sera sélectionné et sera appelé
racine, typiquement noté ρ ou ∅. Ceci permet de donner une interprétation généalogique à tout
arbre discret : si deux sommets x et y sont voisins, alors celui des deux qui est le plus proche de
la racine est le parent de l’autre. La hauteur d’un sommet est alors sa distance à la racine au
sens de la distance de graphe, et on peut aussi définir un arbre coupé à une certaine hauteur k :
si T est un arbre, ρ sa racine et k ∈ Z+ un entier, on note T6k l’ensemble des sommets de T
dont la hauteur est au plus k. Par exemple, T60 est le singleton {ρ} et T61 est composé de ρ et
de ses voisins.

Soit (Tn)n∈N une suite d’arbres discrets. On dit alors qu’elle converge localement vers un
arbre T si, pour tout entier k, la suite

(
(Tn)6k

)
n∈N stationne à T6k. Cette notion de convergence

est équivalente à la stationarité si l’arbre limite T est fini, mais est particulièrement intéressante
quand T est infini - on voit un arbre infini comme la limite projective de ses sous-arbres coupés.
Notamment, la convergence en loi d’une suite d’arbres aléatoires (Tn)n∈N vers un arbre aléatoire
T est alors équivalente à la convergence en loi de

(
(Tn)6k

)
n∈N vers T6k pour tout k.

Arbres réels, convergence au sens de Gromov-Hausdorff-Prokhorov. On appelle arbre
réel tout espace métrique connexe (T, d) tel que, pour tout choix de deux points x et y de T , il
existe un unique chemin continu injectif reliant x à y, chemin qui s’avère de plus être isométrique à
un segment. Dans la pratique, tous les arbres que nous considérerons seront compacts, enracinés,
et équipés d’une mesure de probabilité sur leur tribu borélienne. De la présence d’une racine,
on obtient de nouveau un point de vue généalogique sur l’arbre, en disant qu’un sommet x est
un ancêtre d’un autre sommet y si x se trouve sur le chemin entre la racine et y. On obtient
également une notion de hauteur, qui n’est rien d’autre que la distance à la racine.

La notion de convergence pour les arbres réels compacts enracinés et mesurés est celle de la
métrique de Gromov-Hausdorff-Prokhorov. Donnons nous deux arbres (T , d, ρ, µ) et (T ′, d′, ρ′, µ′)
et posons

dGHP(T , T ′) = inf
[

max
(
dZ,H(φ(T ), φ′(T ′)), dZ(φ(ρ), φ′(ρ′)), dZ,P(φ∗µ, φ

′
∗µ
′)],

où :

• la borne inférieure est prise sur tous les plongements isométriques φ et φ′ de (T , d) et
(T ′, d′) dans un même espace métrique (Z, dZ).

• dZ,H est la distance de Hausdorff entre deux parties compactes de Z.

• dZ,P est la distance de Prokhorov entre deux mesures de probabilité sur la tribu borélienne
de Z.

Cette notion permet de comparer deux arbres réels, ou même d’autres espaces métriques. On
montre notamment que, si dGHP(T , T ′) = 0 alors les deux arbres sont équivalents au sens où il
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existe un isométrie bijective entre les deux qui préserve égalements les mesures et les racines. La
fonction dGHP définit alors une métrique séparable et complète sur l’ensemble TW des classes
d’équivalence d’arbres réels compacts enracinés et mesurés (au sens ci-dessus), nous donnant
ainsi une notion de convergence et justifiant aussi la notion d’arbre aléatoire au sens de variable
aléatoire dans l’espace TW muni de sa tribu borélienne. Les propriétés essentielles de la topologie
sur TW sont données notamment dans [32] (mais avec une métrique différente) ainsi que [2] (sans
se restreindre à des arbres).

Deux exemples phares autour des arbres de Galton-Watson. Soit µ une mesure de
probabilité sur l’ensemble des entiers positifs ou nuls Z+. On appelle arbre de Galton-Watson de
loi de reproduction µ tout arbre aléatoire discret T tel que :

• le nombre d’enfants de la racine a pour loi µ.

• les sous-arbres issus des enfants de la racine sont indépendants entre eux et ont tous la
même loi que T .

Cet arbre peut être interprété comme l’arbre généalogique d’une population simple où les indi-
vidus n’interagissent pas entre eux et où le nombre d’enfants de chacun est aléatoire et a pour
loi µ. On ajoute l’hypothèse µ(1) < 1 pour retirer le cas dégénéré de l’arbre linéaire infini.

Il est bien connu que les arbres de Galton-Watson sont sujets à un phénomène de transition
de phase : appelant m la valeur moyenne de µ, si m 6 1 alors l’arbre T est fini presque sûrement,
alors que si m > 1 il est infini avec probabilité non nulle. Quand m = 1 on dit que la loi µ (ou
l’arbre T ) est critique, et l’arbre est presque-sûrement fini bien que l’espérance de son nombre
total de sommets soit infinie. Nous nous restreignons ici au cas critique.

Soit d le PGCD du support de µ. On remarque alors que le nombre total de sommets de T
doit être de la forme 1 + dn avec n ∈ Z+. Par exemple, si chaque individu a nécessairement un
nombre pair d’enfants, alors le nombre de sommets de T sera toujours impair. On note alors Tn
une version de T conditionnée à avoir 1 + dn enfants, évènement qui a une probabilité non-nulle
pour n suffisamment grand.

Depuis l’article de Kesten [51], on a cependant une notion de l’arbre T “conditionné à être

infini”. Cet arbre, noté T̂ , est remarquable car sa loi peut être obtenue à partir de celle de T en
biaisant par rapport à la taille : pour tout entier k, T̂6k a une densité par rapport à T , cette
densité étant le nombre Zk de sommets de hauteur k de T . Précisément, on a

E[f(T̂6k)] = E[Zkf(T6k)].

La description généalogique de T̂ est aussi intéressante : il est constitué d’une épine dorsale
infinie, c’est-à-dire un chemin infini partant de la racine, épine dorsale sur laquelle les sommets
ont une loi de reproduction particulière appelée µ̂, qui est une version biaisée par la taille de µ,
et qui vérifie, pour i ∈ Z+,

µ̂(i) = iµ(i).

En dehors de cette épine dorsale, les individus ont pour loi de reproduction µ.
Dans [49] ainsi que [1] sont données plusieurs manières de conditionner l’arbre T à être“grand”

de sorte qu’il converge en distribution vers T̂ , et on peut notamment conditionner par le nombre
de sommets : Tn converge en loi vers T̂ quand n tend vers l’infini.

La suite Tn peut aussi servir à illustrer un exemple d’arbres continus. En plus de la criticalité,
supposons que µ ait une variance finie, notée σ2. On munit également Tn de la mesure uniforme
sur ses sommets µn. On sait alors depuis les travaux d’Aldous (notamment [5]) que( σ

2
√
dn
Tn, µn

)
=⇒
n→∞

(
TBr, µBr

)
,
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où
(
TBr, µBr

)
est un arbre continu appelé l’arbre brownien. Cette convergence a lieu en loi pour la

topologie de Gromov-Hausdorff-Prokhorov (bien qu’Aldous n’utilisait pas encore ce formalisme).
Pour être précis, la notation σ

2
√
dn
Tn signifie que l’on regarde Tn comme un espace métrique

où toutes les arêtes sont en fait des segments de longueur σ
2
√
dn

. Beaucoup de modèles natu-

rels d’arbres aléatoires rentrent dans ce cadre d’arbres de Galton-Watson conditionnés, et c’est
pourquoi l’arbre brownien a une place centrale dans ce monde. On trouve cependant d’autres
limites d’échelle dans les cas où la variance est infinie, ce sont précisément les arbres de Lévy,
voir notamment [30].

3 Arbres de fragmentation généraux

3.1 Définitions

Dans ce premier travail, on s’intéresse à une classe d’arbres aléatoires particuliers appelés arbres
de fragmentation auto-similaires. Soit (T , d, ρ, µ) un arbre aléatoire compact mesuré et α un réel
strictement négatif. Pour t > 0, on note

(
Ti(t)

)
i∈N les composantes connexes de T>t = {x ∈

T : d(x, ρ) > t}, ordonnées par ordre décroissant de leur µ-masses. Pour lever les ambigüıtés,
si plusieurs composantes ont la même masse, on les ordonne uniformément, et s’il n’y a qu’un
nombre fini de composantes alors on complète la suite par une répétition de l’ensemble vide. Pour
chaque i, si Ti(t) est non vide, on note xi(t) l’unique point de hauteur t tel que Ti(t) ∪ {xi(t)}
soit connexe, point qui sera la racine de cet arbre. De plus, si µ

(
Ti(t)

)
est non-nul, on munit

Ti(t) de la mesure µTi(t), qui est la mesure µ conditionnée au sous-ensemble Ti(t).

Définition 1. On dit que (T , µ) est un arbre de fragmentation auto-similaire d’indice α si, pour
tout t > 0, on a p.s. µ(Ti(t)) > 0 pour chaque i ∈ N tel que Ti(t) soit non vide et, conditionnel-
lement à

(
µ(Ti(s)), i ∈ N, s 6 t

)
, les arbres

(
Ti(t) ∪ {xi(t)}, µTi(t)

)
i∈N sont tous indépendants et

chacun a la même loi que
(
µ(Ti(t))−αT ′, µ′

)
où (T ′, µ′) est une copie indépendante de (T , µ).

La condition α < 0 est nécessaire pour l’existence d’un tel arbre - avec α > 0, on obtiendrait
qu’il n’est pas borné, une contradiction.

Ces arbres ont été introduits dans [41], dans un contexte restreint : on y suppose que la
mesure µ est non-atomique et donne masse pleine à l’ensemble des feuilles de T . Notre travail est
donc en partie une généralisation des résultats de [41]. La première étape consiste à construire les
arbres de fragmentation et de caractériser leurs lois. Ceci passe par l’interprétation des arbres de
fragmentation en tant qu’arbres généalogiques d’une famille de processus appelés processus de
fragmentation, à valeurs dans l’ensemble des partitions de N. Commençons par quelques rappels
sur ces processus ainsi que les partitions aléatoires.

3.2 Processus de fragmentation auto-similaires

Soit N l’ensemble des entiers strictement positifs :

N = {1, 2, 3, . . .}.

Une partition π de N est représentée comme une suite infinie de blocs (πi)i∈N disjoints deux-à-
deux dont l’union recouvre tout N. Les blocs sont ordonnés de sorte que, pour i < j, le plus petit
élément de πi est inférieur à celui de πj , ce qui garantit un unique ordre possible. On appelle
PN l’ensemble de ces partitions, dont on fait un espace métrique compact en posant, pour deux
partitions π et π′, d(π, π′) = 2−n(π,π′) où n(π, π′) est l’entier maximal tel que π et π′ sont égales
sur les n premiers entiers, et l’infini si π = π′.
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Une partition aléatoire π est dite échangeable si, pour toute permutation σ de N, la partition
σπ, dont les blocs sont les images réciproques par σ des blocs de π, a même loi que π. Une
propriété des partitions aléatoires échangeables, démontrée initialement par Kingman dans [52],
est que tous les blocs d’une telle partition π admettent des fréquences asymptotiques presque
sûrement, la fréquence asymptotique |A| de toute partie A de N étant définie par la limite

|A| = lim
n→∞

#(A ∩ [n])

n

quand cette limite existe, et où [n] = {1, . . . , n}. La liste |π|↓ des fréquences asymptotiques des
blocs, ordonnée par ordre décroissant, est alors un élément de l’ensemble des partitions de l’unité

S↓ =
{

s = (si)i∈N : s1 > s2 > . . . > 0,
∑

si 6 1
}
,

que l’on métrise et rend compact en posant, pour deux partitions s = (si)i∈N et s′ = (s′i)i∈N,

d(s, s′) = sup
i∈N
|si − s′i|.

Si π est une partition échangeable, alors, sachant que |π|↓ = s, on peut reconstruire la loi de
π, par le procédé dit de la bôıte de peinture de Kingman : soit (Xi)i∈N une suite de variables
indépendantes et uniformes sur [0, 1]. On déclare alors que deux entiers i et j sont dans le même
bloc si et seulement siXi etXj sont dans le même intervalle de la forme [s1+. . .+sk, s1+. . .+sk+1)
avec k > 0. Si ν est la loi de s = (s1, s2, . . .), on appelle alors κν la loi de π. Les entiers i tels que
Xi >

∑∞
k=1 sk se retrouvent alors dans un singleton, on appelle ces singletons la poussière de π.

Soit α un réel. Un processus de fragmentation auto-similaire d’indice α est un processus
Π = (Π(t))t>0 satisfaisant les trois propriétés suivantes.

• Pour toute permutation σ de N, le processus σΠ =
(
σΠ(t)

)
t>0

a même loi que Π,

• Presque sûrement, pour tout temps t, Π(t) admet des fréquences asymptotiques,

• Les trajectoires de Π sont càdlàg,

• Pour tout t > 0, conditionnellement à Π(t) = π, les processus (Π(t + u) ∩ πi)u>0 sont
indépendants et chacun a la même loi que (Π(|πi|αu) ∩ πi)u>0.

Notons que la notation π ∩A où π est une partition de N et A un bloc représente la partition de
A donc les blocs sont obtenus en intersectant les blocs de π avec A. On interprète ceci comme le
fait que le bloc A est disloqué par la partition π.

Ces objets représentent le devenir d’une particule qui, au fur et à mesure du temps, se dégrade
en des particules plus petites. Ils ont été introduits par Bertoin dans [9] pour α = 0, puis pour
tout α dans [10]. On sait notamment caractériser leur loi par trois paramètres : l’indice d’auto-
similarité α, un coefficient d’érosion c qui est un réel positif ou nul, et une mesure σ-finie ν
sur S↓ qui intègre 1 − s1, appelée mesure de dislocation. Le coefficient c code le fait que, si un
entier i est dans un bloc A de Π(t), alors pendant un intervalle de temps dt, il a une probabilité
de l’ordre de c|A|αdt d’être envoyé dans un singleton entre t et t + dt. La mesure ν code les
dislocations soudaines de fragments : de manière informelle, pour π ∈ PN, alors un bloc A de Π
va être remplacé par A ∩ π avec probabilité |A|ακν(dπ)dt entre t et t+ dt.

On dit que la fragmentation est conservatrice si ν ne charge que des suites de somme totale
1 et si c = 0. Intuitivement, cela signifie qu’à faible échelle, la fragmentation ne perd pas de
masse et que la somme des fréquences asymptotiques des blocs reste égale à 1. Ceci n’est en fait
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pas vrai : si α < 0, alors le processus accélère d’autant que les fragments sont petits, au point
que l’on arrive en temps fini à la partition formée uniquement de singletons. Ce phénomène est
précisément étudié dans [40].

Par la suite on supposera toujours que α est strictement négatif et que le couple (c, ν) est
différent de (0, aδ1) pour tout a > 0 pour éviter le cas dégénéré du processus constamment égal
à la partition ayant pour seul bloc N.

3.3 Les arbres de fragmentation en tant qu’arbres généalogiques de
processus de fragmentation

Notre résultat, en deux parties, met en évidence une bijection entre les lois des arbres auto-
similaires et celles processus de fragmentation auto-similaires.

Proposition 3.1. Soit (T , µ) un arbre de fragmentation auto-similaire d’indice α. Soit (Pi)i∈N
une suite de points de T telle que, conditionnellement à (T , µ), les (Pi)i∈N soient indépendants
et de loi µ. Définissons alors un processus ΠT =

(
ΠT (t)

)
t>0

à valeurs dans PN de la manière

suivante : pour tout temps t > 0, deux entiers i et j sont dans le même bloc de ΠT (t) si et
seulement si Pi et Pj sont dans la même composante connexe de T>t. Alors ΠT est un processus
de fragmentation auto-similaire d’indice α.

La preuve de la Proposition 3.1 se fait de manière élémentaire à partir des définitions. Avec
plus de travail, on démontre le théorème suivant, qui implique en particulier que la distribution
de l’arbre de fragmentation (T , µ) est intégralement caractérisée par les paramètres du processus
de fragmentation ΠT .

Théorème 3.1. Pour tout triplet de paramètres (α, c, ν), il existe un arbre de fragmentation
auto-similaire unique en loi (T , µ) tel que le processus ΠT ait pour paramètres (α, c, ν).

Ce théorème justifie alors le fait que l’on puisse parler d’un arbre de fragmentation avec pour
paramètres (α, c, ν).

La preuve du Théorème 3.1 se fait en se donnant un processus de fragmentation Π avec
paramètres (α, c, ν), et en construisant à la main son arbre généalogique. Si on note, pour i ∈ N,
Di l’instant où i tombe dans un singleton de Π et, pour deux entiers distincts i et j, D{i,j}
l’instant à partir duquel i et j sont dans deux blocs différents, alors T peut être défini comme
l’arbre réel “minimal” tel que :

• pour chaque entier i, il y a un segment de longueur Di partant de la racine.

• pour i 6= j, les chemins correspondant à i et j se séparent à la hauteur D{i,j}.

L’extrémité du segment correspondant à un entier j est alors appelée le “point de mort” de j, et
est notée Qj . On notera également (j, t) le point de hauteur t de ce segment, pour t ∈ [0, Dj ]. La
Figure ?? ci-dessous donne un exemple dans le cas simplifié où on ne regarde que les 7 premiers
entiers.

On montre notamment que T , qui est plongé dans l’espace des suites sommables grâce à une
variation de la méthode dite du “stick-breaking” d’Aldous, est une fonction mesurable de Π, ce
qui implique que c’est effectivement une variable aléatoire.

Dans [41] était supposé le fait que la mesure sur l’arbre de fragmentation avait pour support
l’ensemble des feuilles et n’avait pas d’atomes, et en conséquence on obtenait que le processus
de fragmentation devait être conservatif. Ce n’est plus nécessairement le cas ici : on observe un
atome de µ à chaque point de branchement correspondant à une dislocation où de la masse est
perdue, et avec l’érosion on observe une composante à densité sur les branches de l’arbre.
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Figure 1 – Une coupe de T à sept entiers. On a par exemple ici D{1,4} = D{2,4} = t1,
D{5,6} = D{5,7} = t2, D{1,2} = D{2,3} = t3.

3.4 Calcul de la dimension fractale de Hausdorff des arbres de frag-
mentation malthusiens

Hypothèses malthusiennes. Soit c > 0 et ν une mesure de dislocation. On dit que le couple
(c, ν) est malthusien avec pour exposant malthusien p∗ > 0 si

cp∗ +

∫
S↓

(
1−

∞∑
i=1

sp
∗

i

)
dν(s) = 0.

Informellement, cela signifie que, si l’on regarde un processus de fragmentation (Π(t))t>0 ho-
mogène (c’est-à-dire dont l’indice d’auto-similarité est 0), alors le processus

(
M(t)

)
t>0

défini
par

M(t) =

∞∑
i=1

|Πi(t)|p
∗

est une martingale. Autrement dit, en mettant à la puissance p∗ les masses des fragments, une
forme de conservation apparait, bien que le processus ne soit pas conservatif. Notons que ceci est
perdu quand on passe à un indice d’auto-similarité α strictement négatif, à cause du phénomène
de singularité mentionné ci-dessus.

Dans la pratique, on a besoin d’une hypothèse malthusienne légèrement renforcée, ce que
nous appelons hypothèse (H) :

La fonction p 7→ cp+
∫
S↓(1−

∑
i s
p
i )ν(ds) ∈ [−∞,+∞) prend une valeur finie stric-

tement négative sur l’intervalle [0, 1].
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Valeur de la dimension. Sous (H), on peut explicitement calculer la dimension de Hausdorff
d’un arbre de fragmentation.

Théorème 3.2. Supposons que (c, ν) vérifie (H), et soit (T , µ) un arbre de fragmentation d’in-
dice α, de paramètre d’érosion c et de mesure de dislocation ν. Alors, presque sûrement, une
seule des deux assertions suivantes est vraie :

• l’ensemble des feuilles de T est dénombrable.

• la dimension de Hausdorff de l’ensemble des feuilles de T est égale à p∗

|α| .

Le premier évènement est en quelque sorte un cas dégénéré, et est analogue au fait qu’un
arbre de Galton-Watson surcritique a une probabilité non-nulle de s’éteindre. Il ne se produit
que si la mesure de dislocation donne de la masse au singleton formé de la suite nulle (0, 0, . . .).

Comme c’est le cas pour de nombreux calculs de dimensions de Hausdorff, la preuve du
Théorème 3.2 se fait deux parties : la majoration et la minoration. La majoration de la dimension
se fait de manière élémentaire, mais cependant sa minoration utilise des techniques assez élaborées
qui méritent d’être expliquées.

Une mesure sur les feuilles de l’arbre. La preuve de la minoration de la dimension de
Hausdorff de l’ensemble des feuilles de l’arbre de fragmentation commence avec la création d’une
mesure borélienne sur cet ensemble. Le définition de cette mesure nécessite d’abord l’étude de
certaines martingales associées au processus de fragmentation Π dont T est l’arbre généalogique.
Pour cela, on doit d’abord revenir à un processus de fragmentation homogène. Posons, pour i ∈ N
et t > 0,

τ−1
i (t) = inf

{
u :

∫ u

0

|Π(i)(r)|αdr > t
}
.

La notation π(i), où π est une partition de N, désigne le bloc de π qui contient i.
Grâce à cette famille de changements de temps, on peut se ramener à un processus homogène.

Pour être précis, pour t > 0, on appelle Π0(t) la partition telle que deux entiers i et j sont
dans le même bloc de Π0(t) si et seulement si j ∈ Π(i)(τ

−1
i (t)), et ceci définit un processus de

fragmentation avec pour paramètres (0, c, ν). On pose alors, pour i ∈ N, t > 0 et s > 0,

Mi,t(s) =

∞∑
j=1

|Π0
j (t+ s) ∩Π0

(i)(t)|
p∗ .

L’hypothèse malthusienne a pour conséquence que le processus
(
Mi,t(s)

)
s>0

est une martingale.

S’avérant de plus être positive et càdlàg, elle admet alors une limite à l’infini Wi,t que l’on nomme
Wi,t. Sous l’hypothèse que la martingale converge au sens L1, on démontre alors que la famille
(Wi,t, i ∈ N, t > 0) respecte la structure généalogique de Π0, au sens où

Wi,t =
∑

j∈Π0
(i)

(t)∩rep(Π0(s))

Wj,s,

où la notation rep(Π0(s)) signifie qu’on prend un unique entier par bloc de Π0(s). En conséquence
de ceci, on peut alors montrer qu’il existe une unique mesure µ∗ sur T , supportée par l’ensemble
de ses feuilles, telle que

∀i ∈ N, t > 0, µ∗(T(i,t+)) = Wi,τi(t),

où T(i,t+) désigne, parmi les différentes composantes connexes de T>t, celle qui contient le point
de mort Qi.
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L’étude de la mesure µ∗ passe par une version de Π0 biaisée par la taille du bloc contenant
1, qui fut introduite dans [13] : on peut définir un processus Π∗ = (Π∗(t))t>0 à valeurs dans PN
tel que

E
[
F ((Π∗(s))s6t)

]
= E

[
|Π0

1(t)|p
∗−1F

(
(Π0(s))s6t

)]
.

Le processus Π∗ se comporte tout à fait comme le processus de fragmentation Π0 mis à part le
fait que le fragment contenant 1 se disloque de manière différente des autres : sur un intervalle
[t, t+dt], Π0

1(t) est remplacé par Π0
1(t)∩π, non pas avec probabilité κν(dπ)dt mais avec probabilité

κ∗ν(dπ)dt, quantité que l’on définit par

κ∗ν(dπ) = |π1|p
∗−1κν(dπ).

Une conséquence de ceci est que, dans Π∗, l’entier 1 ne tombe pas dans un singleton en temps
fini, ce qui est connecté au fait que la mesure µ∗ charge uniquement les feuilles de T .

Une fois l’étude de la mesure µ∗ faite, la minoration de la dimension s’effectue en utilisant la
méthode de l’énergie de Frostman. Ceci consiste à trouver γ > 0 tel que

E
[∫
T

∫
T

(d(L,L′))−γdµ∗(L)dµ∗(L′)

]
<∞,

impliquant que γ minore la dimension cherchée. De manière similaire à ce qui est obtenu dans
[41], la borne inférieure obtenue par cette méthode s’avère souvent trop petite. Pour obtenir la
bonne borne, on effectue un élagage de l’arbre de la manière suivante :

• on choisit N ∈ N et, à chaque dislocation, on ne regarde que les N fragments les plus
grands.

• on choisit ε > 0 et, pour chaque dislocation dont le fragment le plus grand a une taille
relative supérieure à 1− ε, on ignore tous les autres fragments.

La méthode de Frostman s’applique bien à l’arbre tronqué et, en faisant tendre N vers l’infini
ainsi que ε vers 0, on arrive alors à obtenir une minoration par p∗

|α| de la dimension de Hausdorff.

4 Limite d’échelle d’une suite d’arbres k-aires

Le modèle. On se donne un entier k > 2 et on s’intéresse à une suite d’arbres (Tn(k))n∈Z+

définie par la récurrence aléatoire suivante :

• T0(k) est l’arbre formé d’une seule arête et deux sommets, l’un étant désigné comme racine.

• Pour n > 1, sachant Tn−1(k), on choisit uniformément l’une de ses arêtes et on ajoute au
milieu de cette arête un nouveau sommet, la séparant en deux. De ce nouveau sommet, on
fait partir k − 1 nouvelles arêtes, le reliant à k − 1 nouvelles feuilles.

L’arbre Tn(k) est également muni de la mesure uniforme sur ses feuilles, notée µn(k).
Cet algorithme est une généralisation de l’algorithme de Rémy utilisé dans [71] pour obtenir

des arbres binaires uniformes, qui correspond au cas où k = 2. Ces arbres binaires se trouvent en
réalité être des arbres de Galton-Watson conditionnés, et les travaux d’Aldous impliquent alors
que, renormalisé par

√
n, l’arbre Tn(2), muni de la mesure uniforme sur ses feuilles, converge en

loi vers un multiple scalaire de l’arbre brownien.(
Tn(2)

n1/2
, µn(2)

)
=⇒
n→∞

(
2
√

2TBr, µBr

)
(1)
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Figure 2 – Une représentation of Tn(3) pour n = 0, 1, 2, 3

Il y a de nombreuses façons de définir l’arbre brownien, une manière adaptée ici serait de dire
que c’est un arbre de fragmentation d’indice −1/2, sans érosion et dont les branchements sont
tous binaires, si bien que sa mesure de dislocation νBr est caractérisée par

νBr(ds1) =

√
2

π
s
−3/2
1 s

−3/2
2 1{s1>s2}ds1 =

√
2

π
s
−1/2
1 s

−1/2
2

(
1

1− s1
+

1

1− s2

)
1{s1>s2}ds1,

où s2 est implicitement égal à 1 − s1. La convergence 1 se trouve en fait être une convergence
presque sûre, ce qui a notamment été montré dans [24], où est traitée la convergence d’une autre
suite d’arbres avec un autre algorithme généralisant également le cas binaire.

Convergence. Notre résultat principal est le suivant :

Théorème 4.1. On a, lorsque n tend vers l’infini,(
Tn(k)

n1/k
, µn(k)

)
P

=⇒
n→∞

(Tk, µk)

où (Tk, µk) est un arbre de fragmentation d’indice −1/k, sans érosion et dont la mesure de

dislocation, appelée ν↓k est donnée par

ν↓k(ds1ds2 . . . dsk−1) =
(k − 1)!

k(Γ( 1
k ))k−1

k∏
i=1

s
−(1−1/k)
i

(
k∑
i=1

1

1− si

)
1{s1>s2>...>sk}ds1ds2 . . . dsk−1.

La quantité sk est ici implicitement définie par sk = 1 −
∑k−1
i=1 si, se qui rend la mesure ν↓k

conservative et “k-aire” aux sens où seuls les k premiers termes des suites considérées sont non-
nuls.

On perd en particulier la convergence presque sûre du cas binaire, pour obtenir à la place une
convergence en probabilité légèrement plus faible.

La preuve du Théorème 4.1 se fait en deux parties. D’un côté on montre que la suite
(n−1/kTn(k), µn(k))n∈N converge en probabilité, sans s’intéresser à la loi de l’arbre limite. Ceci
se fait en numérotant les feuilles de Tn(k) par ordre d’apparition dans l’algorithme. En appelant
ainsi (Lin)16i6(k−1)n+1 les feuilles de Tn(k), on montre que la distance entre Lin et Ljn, pour

deux entiers distincs i et j, se comporte comme n1/k quand n tend vers l’infini. Ceci permet de
définir l’arbre limite Tk, et des propriétés de tension permettent de montrer la convergence. On
utilise pour cela des résultats sur les processus dit de “restaurants chinois” étudiés notamment
par Pitman dans [69].

L’autre moitié de la preuve du Théorème 4.1 consiste à montrer la convergence en loi de
(n−1/kTn(k), µn(k))n∈N vers l’arbre de fragmentation considéré. On utilise alors la théorie des
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arbres Markov branchants. Informellement, on remarque que Tn(k) est auto-similaire à l’échelle
discrète. Plus précisément, soient X1

n, . . . , X
k
n des entiers aléatoires dont la somme vaut n et tels

que

P
[
(X1

n, . . . , X
k
n) = (λ1, . . . , λk)

]
=

1

k(Γ( 1
k ))k−1

(
k∏
i=1

Γ( 1
k + λi)

λi!

)
n!

Γ( 1
k + n+ 1)

λ1+1∑
j=1

λ1!

(λ1 − j + 1)!

(n− j + 1)!

n!

 .

Conditionnellement à (X1
n, . . . , X

k
n), soient T 1, . . . , T k des arbres indépendants tels que, pour tout

i ∈ [k], T i ait la même loi que TXin(k). Soit T l’arbre obtenu de la manière suivante : sa racine est

adjacente à une unique arête, à l’autre bout de laquelle on greffe T 1, . . . , T k. L’arbre T a alors la
même loi que Tn+1(k). Les limites d’échelle d’arbres Markov branchants ont été étudiées en détail
dans [42], et la convergence en loi s’obtient en étudiant les propriétés asymptotiques de la loi
de (X1

n, . . . , X
k
n) quand n tend vers l’infini. Précisément, notons (Y 1

n , . . . , Y
k
n ) le réordonnement

décroissant de (X1
n, . . . , X

k
n), et notons q̄↓n la loi de (

Y in
n )16i6k. On démontre que

(1− s1)q̄↓n(ds) =⇒
n→∞

(1− s1)ν↓k(ds),

et la convergence en loi de
(
n−1/kTn(k), µn(k)

)
est alors une conséquence du Théorème 5 de [42]

Couplage des arbres. Soit k′ < k, il est possible d’ “inclure” la suite (Tn(k′))n>0 à l’intérieur
de (Tn(k))n>0 grâce à un couplage bien choisi. Précisément, on définit par récurrence une suite
(Tn(k, k′))n>0 simultanément avec (Tn(k))n>0, de la manière suivante :

• T0(k, k′) est égal à T0(k).

• Pour n > 1, sachant Tn−1(k), ainsi que Tn−1(k, k′), deux cas se présentent. Si l’arête
sélectionnée pour construire Tn(k) n’est pas dans Tn−1(k, k′) alors on pose Tn(k, k′) =
Tn−1(k, k′). Si l’arête sélectionnée est dans Tn−1(k, k′), alors Tn(k, k′) est l’arbre obtenu en
ajoutant k′ − 1 des k − 1 nouvelles arêtes enracinées sur le nouveau nœud.

ρ

Figure 3 – Une représentation de T10(3) et T10(3, 2). Tous les “virages à gauche” de
T10(3) sont retirés pour obtenir T10(3, 2).

De l’inclusion de Tn(k, k′) dans Tn(k), on peut démontrer que

Tn(k, k′)

n1/k

P
=⇒
n→∞

Tk,k′ ,
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où Tk,k′ est un sous-arbre de Tk.
L’arbre Tn(k, k′) étant k′-aire, on s’attend à ce qu’il s’apparente à Tm(k′) pour un certain m.

Pour être précis, on démontre que la suite (Tn(k, k′))n∈Z+
a même loi que la suite (TIn(k′))n>0

où (In)n∈Z+
est une châıne de Markov simple indépendante de (Tn(k′))n∈Z+

. On peut démontrer

que, à une constante aléatoire près, In est équivalent à nk
′/k quand n tend vers l’infini, ce qui

implique

Tn(k)

n1/k

P
=⇒
n→∞

M T̃k′ ,

où T̃k′ est une copie de Tk′ et M une variable aléatoire strictement positive indépendante de T̃k′ .
Ceci démontre que, à constante aléatoire près, l’arbre Tk′ est inclus dans Tk. Par ailleurs, sachant
(Tk, µk), il est même possible de reconstruire une version de MTk′ incluse dans Tk, en choisissant
à chaque branchement k′ sous-arbres aléatoirement parmi les k présents.

5 Arbres de Galton-Watson multi-types critiques infinis

Nous généralisons la convergence locale en loi de grands arbres de Galton-Watson classiques
critiques vers l’arbre infini biaisé par la taille au cas d’arbres avec plusieurs types. Commençons
par définir ces arbres avec suffisamment de précision.

5.1 Arbres de Galton-Watson multi-types

Arbres plans et lois de Galton-Watson. Nous nous intéressons ici à des arbres plans, c’est-
à-dire des arbres munis d’un plongement dans le plan orienté. Nous nous contenterons de les voir
commes des arbres enracinés tels que l’ensemble des enfants de chaque sommet soit totalement
ordonné, ce qui permet effectivement de dessiner l’arbre dans le plan, en ordonnant ces sommets
de gauche à droite. Ces arbres seront de plus munis de types sur chaque sommet : on se donne
un entier K ∈ N représentant le nombre de types, et à chaque sommet u d’un arbre T , on associe
un type e(u) ∈ [K]. Pour tout sommet u de T , les types ordonnés de ses enfants forment alors
un élément de l’ensemble

WK =

∞⋃
n=0

[K]n.

Les arbres de Galton-Watson multi-types se définissent à partir d’une famille de lois de repro-
duction : pour tout type i ∈ [K], on se donne une mesure de probabilité ζ(i) surWK . De manière
informelle, un arbre de Galton-Watson avec loi de reproduction ζ = (ζ(i))i∈N est un arbre où la
descendance de chaque individu est indépendante des autres et, pour un sommet de type i ∈ [K],
la liste ordonnée des types de ses enfants a pour loi ζ(i). Ceci modélise la généalogie d’une popu-
lation d’individus à plusieurs types qui n’interagissent pas entre eux. Dans la pratique, on retire
les cas dégénérés où chaque ζ(i) a support dans [K], pour éviter les généalogies linéaires infinies.

Tout comme pour les arbres de Galton-Watson monotypes, on a une notion de criticalité pour
arbres de Galton-Watson multi-types, qui fait aussi intervenir la moyenne. Pour deux types i et
j, on note mi,j la moyenne du nombre d’enfants de type j d’un individu de type i - il s’agit
de l’espérance du nombre de fois qu’apparâıt j dans une variable ayant pour loi ζ(i). On définit
alors la matrice des moyennes M = (mi,j)i,j∈[K], et on dit que ζ est critique si le rayon spectral
de M est égal à 1. Si cette matrice est irréductible (au sens où, pour tout couple de types (i, j),
il existe n ∈ N tel que le coefficient (i, j) de Mn est non nul) alors les espaces propres à gauche
et à droite pour 1 sont tous deux de dimension 1. On y choisit respectivement deux éléments
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Figure 4 – Un exemple d’arbre à deux types. En admettant que les nœuds de type 1
soient représentés par des cercles © et les nœuds de type 2 par des carrés �, la racine
a un enfant de type 2, qui a lui même trois enfants, dont la liste des types est (1, 2, 2).

a = (a1, . . . , aK) et b = (b1, . . . , bK), qui vérifient
∑
i ai =

∑
i aibi = 1. Notons aussi que ai > 0

et bi > 0 pour tout i.

5.2 L’arbre infini.

On considère une famille de lois de reproduction critique ζ telle que la matrice M soit irréductible
et on considère un arbre de Galton-Watson à K types T dont la racine a pour type i ∈ [K]. On
définit pour n ∈ N la variable aléatoire

Xn =
∑
u∈Tn

be(u)

où Tn désigne l’ensemble des sommets avec hauteur n de T . La version infinie de T , notée T̂ , a
sa loi caractérisé par les formules

E
[
f(T̂6n)

]
=

1

bi
E [Xnf(T6n)] .

On vérifie que ceci définit bien la loi d’un arbre infini, notamment car le processus (Xn)n∈Z+ est

une martingale. On peut décrire T̂ de la manière suivante : il est composé d’une unique ligne
infinie partant de la racine appelée épine dorsale, dont les sommets ont une loi de reproduction
spéciale notée ζ̂, définie par

ζ̂(j)(w) =
1

bj

k∑
l=1

bwlζ
(j)(w),

où j est un type et w = (w1, . . . , wk) est une liste de types, et les autres sommets utilisent la
loi de reproduction usuelle ζ. Sachant que u est dans l’épine dorsale et que w est la liste des
types des enfants de u, l’élément suivant de l’épine dorsale sera le j-ème enfant avec probabilité
proportionelle à bwj .

Convergence de l’arbre conditionné vers un arbre infini. Tout comme dans le cas à un
type, nous obtenons que l’arbre T , conditionné à être “grand”, converge vers T̂ . Il faut cependant
faire un bon choix de conditionnement. Il se trouve que le plus adapté est de conditionner par
rapport au nombre d’éléments d’un unique type, et c’est pourquoi nous fixons un type j ∈ [K].
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Comme dans le cas monotype, des problèmes de périodicité apparaissent : le nombre d’éléments
de type j dans un arbre T dont la racine a pour type i est nécessairement de la forme βi + dn
avec n ∈ Z+. Nous n’expliciterons pas βi et d dans cette introduction.

Théorème 5.1. Soit T un arbre de Galton-Watson avec loi de reproduction ζ et dont la racine
a pour type i. Pour n ∈ Z+ tel que P(#jT = βi+dn) > 0, soit Tn une version de T conditionnée

à avoir βi + dn sommets de type j. Alors Tn converge en loi vers T̂ pour la convergence locale
des arbres multi-types.

Ce théorème contient en particulier le fait que Tn est bien défini pour n assez grand, autrement
dit que P(#jT = βi + dn) > 0 à partir d’un certain rang.

5.3 Une application pour les cartes planaires

La motivation du Théorème 5.1 était en fait d’en déduire un résultat de convergence locale de
grandes cartes planaires aléatoires. Donnons d’abord quelques rappels.

Cartes planaires et lois de Boltzmann. Une carte planaire m est un plongement d’un graphe
connexe fini dans la sphère fait en sorte que les arêtes ne se croisent pas, et pris aux homéomor-
phismes directs de la sphère près. Ces objets connaissent un grand succès chez les probabilistes
depuis le premier travail de Schaeffer [74] et le papier d’Angel et Schramm [7], notamment en
ce qui concerne l’étude de la convergence d’échelle et de la convergence locale de grandes cartes
aléatoires. On appelle face de la carte m toute composante connexe du complémentaire de m
dans la sphère, et on appelle degré d’une face le nombre d’arêtes qui la touchent, en comptant
deux fois toute arête rencontrée deux fois en faisant le tour de la face. L’ensemble des faces de
m est noté Fm.

Les cartes que nous étudierons seront enracinées, non pas en un sommet comme les arbres
mais en une arête orientée e, partant d’un sommet e− et pointant vers un sommet e+. Elles
seront également pointées, au sens ou un sommet r sera distingué. Ce pointage sert à l’étude de
cartes aléatoires mais n’interviendra pas dans la convergence. On note M l’ensemble de toutes
les cartes enracinées et pointées.

Soit q = (qn)n∈N une suite de poids positifs ou nuls. On utilise q pour associer un poids à
chaque carte enracinée pointée :

Wq(m, e, r) =
∏
f∈Fm

qdeg(f)

Si la suite q est admissible au sens où la somme

Zq =
∑

(m,e,r)∈M

Wq(m, e, r)

est finie, alors on peut définir une mesure de probabilité dite de Boltzmann Bq par

Bq(m, e, r) =
Wq(m, e, r)

Zq
.

Autrement dit, quand la somme totale des poids est finie, alors la probabilité d’obtenir une carte
particulière (m, e, r) est proportionelle à son poids.

L’admissibilité de la suite de poids q peut être caractérisée d’une autre manière. Pour deux
réels positifs ou nuls x et y, on pose

f•(x, y) =
∑
k,k′

(
2k + k′ + 1

k + 1

)(
k + k′

k

)
q2+2k+k′ x

kyk
′
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ainsi que

f�(x, y) =
∑
k,k′

(
2k + k′

k

)(
k + k′

k

)
q1+2k+k′ x

kyk
′
.

On sait d’après [65] que q est admissible si et seulement si le système

1− 1

x
= f•(x, y) (2)

y = f�(x, y) (3)

admet une solution telle que le rayon spectral de la matrice 0 0 x− 1
x
y∂xf

�(x, y) ∂yf
�(x, y) 0

x2

x−1∂xf
•(x, y) xy

x−1∂yf
•(x, y) 0


soit inférieur ou égal à 1. Cette solution est nécessairement unique, et on pose donc Z+

q = x et
Z�q = y. Pour des raisons qui apparaitront plus tard, on dira de plus que q est critique si le rayon
spectral de la matrice est en fait 1.

Convergence vers une carte infinie. Posons

d = PGCD
(
{m ∈ N, q2m+2 > 0} ∪ {m ∈ 2Z+ + 1, qm+2 > 0}

)
.

On démontre que le nombre de sommets d’une carte M de loi Bq est nécessairement de la forme
2 + dn avec avec n ∈ Z+ et que, pour n suffisamment grand, M a effectivement 2 + dn sommets
avec probabilité non-nulle.

Théorème 5.2. Pour n ∈ N suffisamment grand, soit Mn une carte de loi Bq conditionnée à
avoir 2+dn sommets. Si q est critique, alors Mn converge en loi vers une carte infinie enracinée
M∞ quand n tend vers l’infini.

Quelques remarques sur la notion de carte infinie : on appelle ici carte infinie enracinée toute
suite (M i, ei)i∈Z+

de cartes enracinées (non pointées) finies telle que, pour i 6 j, M i soit égale
à la boule de rayon i dans M j : la carte formée par les sommets et arêtes de M j à distance
inférieure à i de (ej)−. Ces objets peuvent avoir une structure compliquée, et notamment il se
peut que tout dessin dans le plan des (M i, ei)i∈Z+ admette des points d’accumulation (au sens
de la topologie du plan). On démontre que ça n’est pas le cas pour M∞, qui reste ainsi une
carte “planaire”. La convergence en loi mentionée dans le Théorème 5.2 est alors une convergence
locale, au sens où chaque boule de rayon i de Mn converge en loi vers celle de M∞.

La preuve du Théorème 5.2, comme tant de preuves de résultats phares concernant des cartes,
utilise une méthode bijective. Inaugurées par la bijection de Cori-Vauquelin-Schaeffer ([23] puis
[74]), ces méthodes consistent à mettre en correspondance les cartes utilisées avec une certaine
famille d’arbres et à déduire des propriétés asymptotiques des arbres un théorème limite sur les
cartes. Nous utilisons ici la bijection introduite par Bouttier, Di Francesco et Guitter dans [19],
qui permet de tranformer tout carte enracinée et pointée en un arbre de à quatre types avec des
étiquettes sur ses sommets, et, de plus, envoie toute carte de loi Boltzmann critique vers un arbre
de Galton-Watson critique. Cette opération s’avérant être continue, le Théorème 5.2 devient un
corollaire du Théorème 5.1.

Cas des p-angulations. Soit p > 3 un entier. On appelle p-angulation toute carte planaire dont
toutes les faces ont pour degré p. Les cas p = 3 et p = 4 ont déjà fait l’object de plusieurs travaux.
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Pour p = 3, on a depuis [7] la convergence en loi de triangulations uniformes à n sommets, si on
se restreint aux triangulations sans boucles (arêtes reliant un sommet à lui-même) ou bien sans
boucles ni arêtes multiple, vers une carte infinie appelée triangulation planaire infinie uniforme
ou UIPT (pour l’anglais Uniform Infinite Planar Triangulation). Du côté p = 4, Krikun a montré
dans [53] que la quadrangulation uniforme à n face converge en distribution vers ce qu’on appelle
la quadrangulation planaire infinie ou UIPQ. L’UIPQ fut également étudiée à l’aide de méthodes
bijectives dans [21] et [26].

Le Théorème 5.2 s’adapte directement aux p-angulations, car on peut les représenter comme
des cartes Boltzmann critiques, et il est équivalent de les conditionner par leur nombre de faces
ou leur nombre de sommets. On obtient alors le résultat suivant :

Proposition 5.1. Pour n > 2, soit Mn une p-angulation uniforme parmi les p angulations à n
faces si n est pair et à 2n faces si n est impair. Alors Mn converge en loi vers une carte infinie
appelée p-angulation planaire infinie uniforme.

Récurrence de la carte infinie. Nous achevons ce travail par l’étude d’une première propriété
de la carte infinie : nous montrons qu’elle forme un graphe récurrent, au sens où la marche
aléatoire uniforme retourne presque sûrement à son point de départ en temps fini. Ceci est déjà
connu depuis l’article [38] de Gurel-Gurevich et Nachmias pour l’UIPQ et l’UIPT, mais l’outil
principal de cet article sert aussi à montrer la récurrence de M∞ pour toute suite de poids critique
q.

Soit (Gn, ρn)n∈N une suite de graphes planaires finis enracinés aléatoires qui converge locale-
ment en loi vers un graphe infini (G, ρ). On suppose que, conditionnellement à Gn, sa racine ρn
est choisie selon la mesure invariante de la marche aléatoire simple (c’est-à-dire que ρn est égal à
un sommet x avec probabilité proportionelle à son degré, qui est son nombre de voisins), et que
le degré de ρ dans G est borné exponentiellement au sens où

P[deg(ρ) > n] 6 e−cn

pour n assez grand et une certaine constante c > 0. Le Théorème 1.1 de [38] énonce alors que le
graphe G est récurrent.

Ceci s’applique aux cartes de loi Boltzmann conditionnées. Notamment, si une carte enracinée
et pointée (m, e, r) a pour loi Bq, on voit que l’arête orientée e est choisie uniformément, et donc
le sommet e− est distribué selon la mesure invariante. Le point important est donc de montrer
que le degré de ρ dans la carte M∞ est borné exponentiellement, ce qui se démontre à l’aide de
la construction de la carte par la bijection BDFG.

6 Conclusion et perspectives futures

Nous avons introduit dans cette thèse plusieurs nouveaux objets mathématiques. Naturellement,
avec de nouveaux objets apparaissent aussi de nouvelles questions. Nous mentionnons ici quelques
nouvelles avenues d’exploration.

• Le Chapitre 3 constitue une première étude de limites d’échelle d’arbres grandissant aléa-
toirement par une construction algorithmique. On s’attend à ce que nos résultats se gé-
néralisent et que l’on obtienne des limites similaires quand, au lieu d’ajouter une étoile
déterministe au milieu de l’arête choisie uniformément, on ajoute une structure un peu
plus riche. On peut notamment prendre le même algorithme qu’au Chapitre 3, mais choisir
le degré k du nouveau sommet aléatoirement à chaque étape, de manière i.i.d. Si la loi com-
mune admet une moyenne finie m, alors on s’attend à ce que la taille de l’arbre à l’étape n
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soit de l’ordre de n1/m. Il est possible de définir un arbre qui est le candidat pour l’arbre
limite, dont on s’attend à ce qu’il soit un arbre de fragmentation. Si de plus les degrés sont
bornés par un entier K, on s’attend aussi à ce que cet arbre se plonge naturellement dans
TK .

• Soit T un arbre de Galton-Watson à un type, de loi de reproduction µ sous-critique, c’est-
à-dire dont la moyenne est strictement inférieure à 1. Si l’on note Tn une version de T
conditionnée à avoir 1 + dn sommets (en prenant toujours d le PGCD du support de la
mesure µ), alors il est connu que Tn ne converge pas toujours vers un arbre biaisé par la
taille. Dans certains cas dits non-génériques, on obtient un arbre limite T ∗ de nature très
différente : il est constituée d’une épine dorsale finie, dont la longueur est une variable
géométrique, et dont le sommet final a un nombre infini d’enfants. On appelle l’apparition
d’un tel sommet un phénomène de condensation. On s’attend à ce que ceci s’applique aussi
aux arbres multi-types, et que cela s’étende aux cartes. Quelques progrès ont déjà été faits
dans cette direction dans le récent article [18] dans le cadre des cartes biparties, c’est-à-dire
les cartes dont les faces ont toutes des degrés pairs.

• Notre Théorème 5.2 s’applique à toute suite de poids critique q. Malheureusement, une
grande partie de l’ensemble de ses suites est inconnue : on ne connait essentiellement que
les suites à support fini (d’après la Proposition A.2 de [25], si q a est à support fini, alors on
peut la rendre critique en la multipliant par une constante bien choisie) ainsi que certains
cas bipartis étudiés dans [58]. Il serait intéressant de montrer que, si qn est équivalent à n−α

avec α > 3/2, alors la suite q peut être modifiée de sorte à être critique tout en donnant
un poids assez élevé aux faces de haut degré.
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We set up in this chapter the necessary background on continuum trees which will be used

throughout the next two chapters. It consists mostly of definitions and classical results on

the Gromov-Hausdorff-Prokhorov topology, but it also contains some new non-trivial work,

most notably Proposition 2.1 which gives us a simple way of defining a measure on any

compact R-tree.

1 R-trees and the GHP topology

1.1 R-trees

Definition 1.1. Let (T , d) be a metric space. We say that it is an R-tree if it satisfies the
following two conditions:
• for all x, y ∈ T , there exists a unique distance-preserving map φx,y from [0, d(x, y)] into

T such φx,y(0) = x and φx,y(d(x, y)) = y.
• for all continuous and one-to-one functions c: [0, 1]→ T , we have

c
(
[0, 1]

)
= φx,y

(
[0, d(x, y)]

)
, where x = c(0) and y = c(1).

For any x, y in a tree, we will denote by Jx, yK the image of φx,y, i.e. the path between x and
y.

Here is a simple characterization of R-trees which we will use in the future. It can be found
in [31], Theorem 3.40.

Proposition 1.2. A metric space (T , d) is an R-tree if and only if it is connected and satisfies
the following property, called the four-point condition:

∀x, y, u, v ∈ T , d(x, y) + d(u, v) 6 max
(
d(x, u) + d(y, v), d(x, v) + d(y, u)

)
.

By permuting x, y, u, v, one gets a more explicit form of the four-point condition: out of the
three numbers d(x, y) + d(u, v), d(x, u) + d(y, v) and d(x, v) + d(y, u), at least two are equal, and
the third one is smaller than or equal to the other two.

For commodity we will, for an R-tree (T , d) and a > 0, call aT the R-tree (T , ad) which is
the same tree as T , except that all distances have been rescaled by a.

1.2 Roots, partial orders and height functions

All the trees which we will consider will be rooted : we will fix a distinguished vertex ρ called the
root. This provides T with a great amount of additional structure, the first one being the notion
of height : for x ∈ T we call height of x its distance to the root, and write it as ht(x) = d(ρ, x).
We let also the total height of the tree ht(T ) be the supremum of the heights of all its points:

ht(T ) = sup
x∈T

ht(x).

We use the height function to define, for t > 0, the subset T6t = {x ∈ T : ht(x) 6 t}, as
well as the similarly defined T<t, T>t and T>t. Note that T6t and T<t are both R-trees, as well
as each of the connected components of T>t and T>t, which we will call the tree components of
T>t and T>t.

Having fixed a root also lets us define a partial order on T , by declaring that x 6 y if
x ∈ Jρ, yK. We will often take a genealogical standpoint and say that x is an ancestor of y in this
case, or simply that x is lower than y. We can then define for any x in T the subtree of T rooted
at x, which we will call Tx: it is the set {y ∈ T : y > x} of all the descendants of x. We will also
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say that two points x and y are on the same branch if they are comparable, i.e. if we have x 6 y
or y 6 x. For every subset S of T we can define the greatest common ancestor of S, which is
the highest point to be lower than all the elements of S. The greatest common ancestor of two
points x and y of T will be written x ∧ y.

One convenient property is that we can recover the metric from the order and the height
function. Indeed, for any two points x and y, we have d(x, y) = ht(x) + ht(y)− 2ht(x ∧ y).

Points of T can be classified into several categories. We call degree of x ∈ T the number of
connected components of Tx \ {x}. Points of degree 0 will be called leaves, and their set will be
called L(T ). We also call leaf of T any point L such that the TL = {L}. The set of leaves of T
will be written L(T ), and its complement is called the skeleton of T . Amongst the point of the
skeleton, those with degree greater than or equal to 2 are called branch points.

1.3 The Gromov-Hausdorff and Gromov-Hausdorff-Prokhorov metrics,
spaces of trees

Recall that, if A and B are two compact nonempty subsets of a metric space (Z, dZ), then the
Hausdorff distance between A and B is defined by

dZ,H(A,B) = inf{ε > 0 : A ⊂ Bε and B ⊂ Aε},

where Aε and Bε are the closed ε-enlargements of A and B (that is, Aε = {x ∈ E,∃a ∈
A, d(x, a) 6 ε} and the corresponding definition for B).

Now, if one considers two compact rooted R-trees (T , ρ, d) and (T ′, ρ′, d′), define their
Gromov-Hausdorff distance:

dGH(T , T ′) = inf

[
max

(
dZ,H

(
φ(T ), φ′(T ′)

)
, dZ

(
φ(ρ), φ′(ρ′)

))]
,

where the infimum is taken over all pairs of isometric embeddings φ and φ′ of T and T ′ in the
same metric space (Z, dZ).

We will also want to consider pairs (T , µ), where T (d and ρ being implicit) is a compact
rooted R-tree and µ a Borel probability measure on T . Between two such compact rooted
measured trees (T , µ) and (T ′, µ′), one can define the Gromov-Hausdorff-Prokhorov distance by

dGHP

(
(T , µ), (T ′, µ′)

)
= inf

[
max

(
dZ,H

(
φ(T ), φ′(T ′)

)
, dZ

(
φ(ρ), φ′(ρ′)

)
, dZ,P(φ∗µ, φ

′
∗µ
′)
)]
,

where the infimum is taken on the same space, and dZ,P denotes the Prokhorov distance between
two Borel probability measures on Z, defined by

dZ,P(ν, ν′) = inf
{
ε > 0 : ∀A ∈ B(E), ν(A) 6 ν′(Aε) + ε and ν′(A) 6 ν(Aε) + ε

}
.

for two probability measures ν and ν′. It is well-known that convergence for dZ,P is equivalent to
weak convergence of Borel probability measures on Z as soon as Z is separable, see for example
[17], Section 6. /

The metrics dGH and dGHP allow us to study spaces of trees. We let T (respectively TW ) be the
set of equivalence classes of compact rooted R-trees (respectively compact, rooted and measured
R-trees), where two trees are said to be equivalent if there is a root-preserving (respectively
root-preserving and measure-preserving) bijective isometry between them. It can be shown (see
in particular [32] and [2]) that these spaces are well-behaved.
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Proposition 1.3. The two functions dGH and dGHP are metrics on respectively T and TW , and
the spaces (T, dGH) and (TW , dGHP) are separable and complete.

We note that the topology induced on TW by dGHP was first introduced in [36], and was also
studied with a different metric in [33].

In practice, every R-tree which we study will be embedded in the space `1 of summable
real-valued sequences:

`1 = {x = (xi)i∈N :

∞∑
i=1

|xi| <∞},

which is equipped with its usual metric d`1 . Proof of convergence for dGH and dGHP will thus
always be done by proving the Hausdorff convergence of the sets and the Prokhorov convergence
of the measures.

1.4 Identifying trees by using their finite-dimensional marginals

We recall here what is essentially the method used by Aldous in [3], [4] and [5] to study trees,
which we will need in Chapter 3, Section 4.1. Let (T , d, ρ, µ) be a random rooted measured
compact R-tree. Conditionally on (T , d, ρ, µ), for k ∈ N, let X1, . . . , Xk be independant points
with distribution µ. We call k-dimensional marginal of T the random R-tree

( k⋃
i=1

Jρ,XiK, d, ρ,
∑k
i=1 δXi
k

)
.

Two properties are worthy of note:

• if the finite-dimensional marginals of the trees (T , µ) and (T ′, µ′) have the same distribution
and if we know that µ and µ′ are fully supported on T and T ′, then T and T ′ also have
the same distribution. This is because, as k goes to infinity, the k-dimensional marginals
converge almost surely to the tree in the GHP sense.

• if a sequence of trees (Tn, µn) converges in distribution to a tree (T , µ), then the finite-
dimensional marginals of (Tn, µn) converge in distribution to those of (T , µ). This is because
convergence of the marginals corresponds to convergence for a weaker topology called the
Gromov-Prokhorov topology, see in particular [37].

2 Nonincreasing functions and measures on trees

It is well-known that probability distributions, and in fact all Borel measures on R are char-
acterised by their cumulative distribution function. If µ is such a measure, we let, for x ∈ R,
Fµ(x) = µ

(
(∞, x]

)
, which is a right-continuous non-decreasing function which tends to 0 at −∞.

Conversely, for such a function F , there is a unique measure µ such that Fµ = F . We establish
here an analoguous theory for compact and rooted R-trees.

Let T be a compact rooted tree. Let m be a non-increasing function on T (for the nat-
ural ordering on T ) taking values in [0,∞). As with monotone functions of a real variable,
m satisfies some limiting properties everywhere. One can easily define the left-limit m(x−)
of m at any point x ∈ T , since Jρ, xK is isometric to a line segment, for example by setting
m(x−) = lim

t→ht(x)−
m(φρ,x(t)) (recall from Definition 1.1 that φρ,x is the parametrization of the

path from ρ to x). We say that m is left-continuous at a point x if m(x−) = m(x). Let us also
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define the additive right-limit m(x+): since T is compact, the set Tx \ {x} has countably many
connected components, say (Ti)i∈S for a finite or countable set S. Let, for all i ∈ S, xi ∈ Ti. We
then set

m(x+) =
∑
i∈S

lim
t→ht(x)+

m(φρ,xi(t)).

This is well-defined, because it does not depend on our choice of xi ∈ Ti for all i. Note also that,
by monotone convergence, we could swap the sum and the limit.

If µ is a finite Borel measure on T , then the function m defined by m(x) = µ(Tx) for x ∈ T
is easily seen to be non-increasing and left-continuous. One can also check that m(x)−m(x+) =
µ({x}) for all x ∈ T , and thus m(x) > m(x+). This function in fact completely characterizes
the measure µ.

Proposition 2.1. Let m be a decreasing, positive and left continuous function on T such that,
for all x ∈ T , m(x) > m(x+). Then there exists a unique Borel measure µ on T such that

∀x ∈ T , µ(Tx) = m(x).

The proof of Proposition 2.1 is non-trivial and requires its own section.

2.1 Proof of Proposition 2.1

We will want to apply a variant of Caratheodory’s extension theorem to a natural semi-ring of
subsets of the tree T which generates the Borel topology. The reader is invited to look in [28]
for definitions and its Theorem 3.2.4 which is the one we will use.

Definition 2.2. Let x ∈ T , and C be a finite subset of Tx. We say that C is a pre-cutset of Tx
if x 6 y for all y ∈ C and none of the elements of C are on the same branch as another. We
then let B(x,C) = Tx \

⋃
y∈C
Ty. Such a set is called a pre-ball. We let B be the set of all pre-balls

of T .

We introduce the notation [k] = {1, 2, . . . , k} for a positive integer k. Note that any set of
the form Tx \

⋃
i∈[k]

Txi is a pre-ball, even if one does not specify that {xi, i ∈ [k]} is a pre-cutset

of Tx. Indeed, if x is not on the same branch as xi for some i, then we can remove this one from
the union, if we have xi 6 x for some i then we have just written the empty set, and, if for some
i 6= j, we have xi 6 xj , we might as well remove xj from the union. All these removals leave us
with a pre-cutset of Tx. Also note that, given a pre-ball B, there exists a unique x ∈ T and a
finite pre-cutset C which is unique up to reordering such that B = B(x,C).

Lemma 2.3. B is a semi-ring which contains all the Tx for x ∈ T , and it generates the Borel
σ-field of T .

Proof. The fact that D contains all the sets of the form Tx for x ∈ T , as well as the empty set, is
in the definition. Stability by intersection is easily proven: let B

(
x, (xi)i∈[k]

)
and B

(
y, (yi)i∈[l]

)
be two pre-balls. If x and y are not on the same branch, then the intersection is the empty set,
and otherwise, we can assume y > x, and we are left with Tx \ (

⋃
i∈[k]

Txi ∪
⋃
j∈[l]

Tyj ) which is indeed

a pre-ball.
Now let B

(
x, (xi)i∈[k]

)
and B

(
y, (yi)i∈[l]

)
be two pre-balls, we want to check that

B
(
x, (xi)i∈[k]

)
\B
(
y, (yi)i∈[l]

)
is a finite union of disjoint pre-balls. Exceptionally, we will write
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here for any subset A of T , Ā = T \A, for clarity’s sake. We have:

B
(
x, (xi)i∈[k]

)
∩B

(
y, (yi)i∈[l]

)
= Tx ∩

⋂
i∈[k]

T̄xi ∩ (T̄y ∪
⋃
y∈[l]

Tyi)

= (Tx ∩ T̄y ∩
⋂
i∈[k]

T̄xi) ∪
⋃
y∈[l]

(Tx ∩ Tyi ∩
⋂
i∈[l]

T̄xi).

Since for every i, Tx ∩Tyi is either equal to Tx or Tyi , we do have a finite union of pre-balls. This
union is also disjoint, because T̄y, Ty1 , . . . , Tyl are all disjoint.

Finally, we want to check that D does indeed span the Borel σ-field of T , which will be proven
by showing that every open ball in T is the intersection of a countable amount of pre-balls. Let
x ∈ T and r > 0, and let B the closed ball centered at x with radius r. Let y be the unique
ancestor of x such that ht(y) = (ht(x) − r) ∨ 0. Since Ty is compact and B ∈ Ty is open, we
know that Ty \B has a countable amount of closed tree components, which we will call (Txi)i∈N.
Writing out B =

(
Ty \ ∪

i∈N
Txi
)
\ {y} then shows that it is indeed a countable intersection of

pre-balls. As a consequence, there exists at most one measure on T such that µ(Tx) = m(x) for
all x ∈ T : uniqueness in Proposition 2.1 is proven.

Lemma 2.4. For every x ∈ T and every finite pre-cutset C, we let

µ
(
B(x,C)

)
= m(x)−

∑
y∈C

m(y).

This defines a nonnegative function on D which is σ-additive.

Proof. Let us first prove the non-negativity of µ. This can be done by induction on the number
of elements k in the pre-cutset C = {xi, i ∈ [k]} of Tx. If k = 0 then there is nothing to do,
since µ(B(x, ∅)) = m(x) > 0 by definition. Now assume k > 1 and that non-negativity has been
proved up to k − 1. Let y be the greatest common ancestor of all the (xi)i∈[k], we have x 6 y,

and thus m(x) > m(y), and it will suffice to prove m(y)−
∑k
i=1m(xi) > 0. The set Ty \ {y} has

a finite, but strictly greater than 1 number of connected components which contain the points
(xi)i∈[k], let us call them C1, . . . , Cl, with 1 6 l 6 k. Since every Cl contains at most l−1 6 k−1
elements from the (xi)i∈[k], one can use the induction hypothesis in every Cj : for all j, let yj ∈ Cj
be such that, for all i such that xi ∈ Cj , yj 6 xi, then we have m(yj) >

∑
i: xi∈Cj

m(xi). Now, by

letting every yj converge to y, we end up with

m(y) > m(y+) >
∑
j

lim
yj→y+

m(yj) >
∑
i

m(xi)

which ends the proof of that µ is nonnegative.

The proof that µ is σ-additive on D will be done in three steps. First, we will prove that it is
finitely additive, i.e. that, if a pre-ball can be written as a finite disjoint union of pre-balls, then
the µ-masses add up properly. Next, we will prove that it is finitely subadditive, which means
that if a pre-ball B can be written as a subset of the finite union of other pre-balls B1, . . . , Bn, we
have µ(B) 6

∑
i µ(Bi). The σ-additivity itself will then be proved by proving both inequalities

separately.
First, we want to show that µ is finitely additive, i.e. that if a pre-ball B = B

(
x, (xi)i∈[k]

)
can be written as the disjoint union of pre-balls Bj = B

(
xj , (xji )i∈[kj ]

)
for 1 6 j 6 n, we have
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µ(B) =
∑
j µ(Bj). Note that since D is not stable under union, one cannot simply prove this for

n = 2 and then do a simple induction. We will indeed do an induction on n, but it will be a bit
more involved. The initial case, n = 1 is immediate. Now assume that n > 2 and that, for every
pre-ball which can be written as the disjoint union of fewer than n− 1 pre-balls, the masses add
up, and let B = B

(
x, (xi)i∈[k]

)
be a pre-ball which is the union of Bj = B

(
xj , (xji )i∈[kj ]

)
for

1 6 j 6 n. We are first going to show that we can restrict ourselves to the case where B = Tx. To
do this, first notice that, since the union is disjoint, for every i with 1 6 i 6 k, there is only one j,
which we will call j(i), such that xi is in the set {xjp, p ∈ [kj ]}. Thus, if we add Txi to the pre-ball

Bj(i) and do this for all i, the result is that Tx (which is none other than B ∪
⋃
i∈[k]

Txi) is written

as the disjoint union of pre-balls Aj = Bj ∪
⋃

i:j(i)=j

Txi . Since µ(Tx) = µ(B) +
∑k
i=1m(xi) and,

for all j, µ(Aj) = µ(Bj)+
∑

i:j(i)=j

m(xi), it suffices consider the case when B = Tx. By reordering,

one can also assume that x1 = x. Now, for every i with 1 6 i 6 k1, consider the pre-balls Bj

with j such that x1
i 6 xj . These are disjoint, and their union is none other than Tx1

i
, and they are

strictly less than n in number. The induction hypothesis then tells us that µ(Tx1
l
) is the sum of

µ(Bj) for such j. Repeat this for all i, and we get
∑n
j=2 µ(Bj) =

∑k1

i=1 µ(Tx1
i
) = µ(Tx)− µ(B1),

which is what we wanted.
Now we go on to µ’s finite subadditivity. This can actually be proven with pure measure

theory. Let B be a pre-ball and B1, . . . , Bn be pre-balls such that B ⊂ ∪
i∈[n]

Bi. Let us first start

with the case where n = 1, in other words, let us show that µ is nondecreasing: since D is a semi-
ring, B1 \B can be rewritten as a finite disjoint of pre-balls C1, . . . , Ck, and by finite additivity,
we have µ(B1) = µ(B)+

∑
j µ(Cj) > µ(B). Now, going back to the general case, one can assume

that for every i, we have Bi ⊂ B, because if it is not the case, one can replace Bi by Bi∩B. Now,
consider the sequence Ci defined by C1 = B1 and, for i > 2, Ci = Bi \ (B1∪B2 . . .∪Bi−1). Since
D is a semi-ring, every Bi can be written as the disjoint union of a finiteamount of pre-balls:

for every i, there exists disjoint pre-balls D1(i), . . . , Dk(i)(i) such that Ci =
k(i)
∪
j=1

Dj(i). By finite

additivity, we then have µ(B) =
∑n
i=1

∑k(i)
j=1 µ(Dj(i)). Now all that is left to do is show that,

for all i, we have
k(i)∑
j=1

µ(Dj(i)) 6 µ(Bi), which is immediate because Bi \ (
k(i)
∪
j=1

Dj(i)) is a disjoint

finite union of pre-balls.
Finally, we can move on to µ’s σ-additivity . Assume that a pre-ball B = B

(
x, (xi)i∈[k]

)
can

be written as the disjoint union of pre-balls Bj = B
(
xj , (xji )i∈[kj ]

)
for j ∈ N. Let us first prove

the easy inequality µ(B) >
∑
i µ(Bi). Fix n ∈ N, since B is a semi-ring, the set B \ ( ∪

16i6n
Bi)

is a finite disjoint union of pre-balls, which we will call C1, . . . , Ck. By finite additivity, we have
µ(B) =

∑n
i=1 µ(Bi) +

∑k
j=1 µ(Cj) >

∑n
i=1 µ(Bi), and we just need to take the limit. To prove

the reverse inequality, we will slightly modify our sets so that we can get a open cover of a
compact set, and bring ourselves back to the finite case. Let ε > 0. For every j such that xj 6= ρ
(and ε small enough), let xj(ε) be an ancestor of xj such that m(xj(ε))−m(xj) 6 ε2−j−1, and
if xj = ρ we keep xj(ε) = ρ. In the same vein, for 1 6 i 6 k, we choose an ancestor xi(ε) such
that m(xi(ε)) −m(xi) 6 1

k , and such that (xi(ε))i∈[k] is still a pre-cutset of Tx. Now consider,

for every j, the open set Dj which is equal to B
(
xj(ε), (xji )i∈[kj ]

)
\ {xj(ε)} if xj 6= ρ, and equal

to Bj otherwise. These form a cover of B
(
x, (xi(ε))i∈[k]

)
and therefore also cover its closure,

B
(
x, (xi(ε))i∈[k]

)
∪
⋃
i∈[k]

{xi(ε)}. Since T is compact, B
(
x, (xi(ε))i∈[k]

)
can be covered by a finite
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amount of the Dj , which we can assume are D1, . . . , Dn. We can then use finite subadditivity:

µ(B) = m(x)−
k∑
i=1

m(xi) 6 m(x)−
k∑
i=1

m(xi(ε)) + ε

6 µ(B(x, (xi(ε))i∈[k])) + ε 6
n∑
j=1

µ(Dj) + ε

6
∞∑
j=1

µ(Dj) + ε 6
∞∑
j=1

(
µ(Bj) + ε2−j−1

)
+ ε

6
∞∑
j=1

µ(Bj) + 2ε.

This gives us our final inequality.

Theorem 3.2.4 of [28] ends the proof of Proposition 2.1.

3 Gromov-Hausdorff-Prokhorov convergence of discrete trees
with edge-lengths

Let T be a rooted finite graph-theoretical tree: we think of it as a set of vertices equipped with
a set of edges E. For any non-negative function l on E, we let (Tl, dl) be the abstract R-tree
obtained from T by considering every edge e as a line segment with length l(e). Note that we
allow edges with length 0, in which case the edge is identified to a single point. Our aim in this
section is to give GHP results on Tl as l varies.

3.1 The stick-breaking embedding

We give here a practical way of constructing the R-tree Tl in `1. This is essentially a slightly
more general version of the one introduced by Aldous in [3]. This embedding has the convenient
property that, for x ∈ T , the path from the root ρ (which is embedded as the null vector) to x
is such that “the coordinates increase one at a time”, in the sense that

Jρ, xK =

∞⋃
n=0

[pn(x), pn+1(x)]

where, for n ∈ Z+, pn denotes the natural “orthogonal” projection on the first n coordinates (p0

being the null map) and where, for two points a and b in `1, [a, b] denotes the line segment from
a to b when looking at `1 as a vector space.

We choose a finite family of marked points (Qi)i∈[p] of Tl which includes all the leaves of
T , so that Tl = ∪pi=1Jρ,QiK. Let, for i ∈ [p], hi = ht(Qi) and, if we add another integer j,
hi,j = ht(Qi ∧Qj). Now, if j 6 i, let

Qji = max
16k6j

hk,i − max
16k6j−1

hk,i.

We then embed Qi in `1 as

Qi = (Q1
i , Q

2
i , . . . , Q

n
i , 0, 0, . . .)
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The set ∪pi=1J0, QiK is then indeed a version of Tl. Without going into details, it is a tree
because of the way we have built our paths and, by construction, the distances between the
(Qi)i∈[p] and the root are the correct ones.

3.2 GH and GHP convergence

We consider here a sequence (ln)n∈N of non-negative functions on the set of edges E, and state
in this section results concerning the convergence of the sequence (Tln)n∈N in the GH or GHP
sense.

Lemma 3.1. Assume that, for all e ∈ E, ln(e) converges to a non-negative number l(e) as n
goes to infinity. We then have

Tln
GH−→
n→∞

Tl.

In fact, it is sufficient to know that, for all leaves L and L′ of T , dln(L,L′) and dln(ρ, L) converge
as n goes to infinity.

Moreover, if we embed the trees in `1 with the stick-breaking method by using the leaves as
marked points, we have Hausdorff convergence in `1.

Proof. We just need to prove the Hausdorff convergence in `1 of the embedded versions of the
trees. For this, one only needs to notice that

d`1,H(Tln , Tl) 6
∑
e∈E
|ln(e)− l(e)|,

which converges to 0.
The proof of the second point is merely a matter of noticing that, if we know the distances

between the leaves (including the root), we can recover the complete metric structure by linear
operations.

Our next result mixes Proposition 2.1 and Lemma 3.1 to obtain a sufficient condition for
Gromov-Hausdorff-Prokhorov convergence. We keep the assumptions of Lemma 3.1, and also
assume that all the trees are embedded in `1, the marked points being the leaves of T .

Lemma 3.2. For n ∈ N, let µn be a probability measure on Tln with mn the corresponding
non-increasing function. Let S be any dense subset of Tl, and assume that, for all x ∈ S, there
exists a sequence (xn)n∈N, such that

• xn ∈ Tln for all n, xn converges to x as n goes to infinity,

• (Tln)xn converges to (Tl)x in the Hausdorff sense,

• mn(xn) converges to a number we call f(x).

We then have
(Tln , µn)

GHP−→
n→∞

(Tl, µ),

where µ is the unique probability measure on Tl such that, for all x ∈ Tl, µ((Tl)x) = f(x−), and
f(x−) is defined as

f(x−) = lim
y→x

y∈S∩[[ρ,x[[

f(y), (1.1)

and f(ρ−) = 1. More precisely, since we consider the versions of the trees embedded in `1, we
have Hausdorff convergence of the sets and Prokhorov convergence of the measures.
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Proof. Since Tl is compact, (∪Tln) ∪ Tl also is and Prokhorov’s theorem ensures us that a sub-
sequence of (µn)n∈N converges weakly. Without loss of generality, we can therefore assume that
(µn)n∈N converges to a measure µ on Tl, and we will show that µ must be as explicited in the
statement of the lemma. This will be done by showing the following double inequality for all
x ∈ S, which is inspired by the Portmanteau theorem,

µ
(
(Tl)x \ {x}

)
6 f(x) 6 µ

(
(Tl)x

)
. (1.2)

We start by showing the right part of (1.2): f(x) 6 µ
(
(Tl)x

)
. Let ε > 0, by Hausdorff convergence

in `1, for n large enough, we have (Tln)xn ⊂ ((Tl)x)ε (we recall that Aε is the closed ε-enlargement
of the subset A). Since we also have d`1,P(µn, µ) 6 ε for n large enough, we obtain

µn
(
(Tln)xn

)
6 µn

((
(Tl)x

)ε)
6 µ

((
(Tl)x

)2ε)
+ ε,

and making n tend to infinity then gives us

f(x) 6 µ
((

(Tl)x
)2ε)

+ ε.

Letting ε tend to 0 and using the fact that (Tl)x is closed gives us f(x) 6 µ
(
(Tl)x

)
.

A similar, slightly more involved argument will show that µ
(
(Tl)x \ {x}

)
6 f(x) for x ∈ S.

Let x ∈ S and let d + 1 be its degree (there is nothing to say if x is a leaf or the root). Let
T 1, . . . , T d be the tree components of (Tl)x \ {x} and let y1, . . . , yd be any points of T 1, . . . , T d

which also are in S. We give ourselves the corresponding sequences (y1
n)n∈N, . . . , (y

d
n)n∈N. Take

ε > 0, we have, for n large enough,

∪di=1

(
(Tl)yi

)
⊂ ∪di=1

(
(Tln)yin

)ε
,

and therefore, using the Prokhorov convergence of measures, for possibly larger n,

µ
(
∪di=1

(
(Tl)yi

))
6 µ

(
∪di=1

(
(Tln)yin

)ε)
6 µn

(
∪di=1

(
(Tln)yin

)2ε)
+ ε.

Since µn is supported on Tn, if we take 2ε < max
16i6d

d(yi, x), and n large enough, we obtain

µn

(
∪di=1

(
(Tln)yin

)2ε)
6 µn

(
(Tln)xn

)
,

and thus also have
µ
(
∪di=1

(
(Tl)yi

))
6 µn

(
(Tln)xn

)
+ ε.

Letting n tend to infinity and then ε tend to 0, we obtain

µ
(
∪di=1

(
(Tl)yi

))
6 f(x),

and finally we let all the yi tend to x, which makes the left-hand side tend to µ
(
(Tl)x \ {x}

)
.

Having proved (1.2), we only need to check that, calling m the decreasing function associated
to µ, m is equal to the left-limit of f as defined in (1.1), which is immediate: let x ∈ Tl\{ρ} and
evaluate (1.2) at a point y ∈ [[ρ, x[[∩S. By left-continuity of m, if we let y tend to x, both the
left and right members converge to m(x), while the middle one converges to f(x−), which ends
the proof.
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4 Subtrees and projections

Let (T , d, ρ) be a compact and rooted R-tree and T ′ be a compact and connected subset of T
containing ρ. The boundary ∂T ′ of T ′ in T is then finite or countable. We recall that Tx denotes
the subtree of T rooted at x, ∀x ∈ T , and similarly T ′x is the subtree of T ′ rooted at x, for
x ∈ T ′. We then have

T = T ′ ∪
⋃

x∈∂T ′
Tx

with only the elements of ∂T ′ being counted multiple times in this union.
For x ∈ T , there exists a highest ancestor of x which is in T ′. We call it π(x), and call the

map π the projection from T onto T ′. We consider it as a map from T to T , so that, for any
measure µ on T , π∗µ defines a measure on T (that only charges T ′).

Lemma 4.1. For any probability measure µ on T , π∗µ is the unique probability measure ν on
T ′ which satisfies

∀x ∈ T ′, ν(T ′x) = µ(Tx).

Proof. The fact that π∗µ satisfies the relation comes from the fact that, for all x ∈ T ′, we have
Tx = π−1(T ′x). Uniqueness is a consequence of Proposition 2.1.

Lemma 4.2. The map π is 1-Lipschitz whether one considers points of T , the Hausdorff distance
between compact subsets of T or the Prokhorov distance between probability measures on T :

• ∀x, y ∈ T , d
(
π(x), π(y)

)
6 d(x, y),

• for A and B non-empty compact subsets of T , dT ,H
(
π(A), π(B)

)
6 dT ,H(A,B),

• for any two probability measures µ and ν on T , dT ,P(π∗µ, π∗ν) 6 dT ,P(µ, ν).

Proof. Let x and y be elements of T . Assume first that x and y are on the same branch, and by
symmetry, we can restrict that to x 6 y. If both of them are in T ′ then π(x) = x and π(y) = y,
while if they are both not in T ′, then π(x) = π(y). If x is in T ′ but y is not, then π(y) ∈ [[x, y]].
In all these three cases, we have d(π(x), π(y)) 6 d(x, y). If x and y are not on the same branch
of T , one just needs to consider z = x ∧ y, use the fact that d(x, y) = d(x, z) + d(y, z) and use
the previous argument twice.

Let A and B be compact subsets of T and let ε such that A ⊂ Bε = {x ∈ T ,∃b ∈ B, d(x, b) 6
ε}. Let x ∈ π(A) and a ∈ A such that x = π(a) and then let b ∈ B such that d(a, b) 6 ε. We
then have d(x, π(b)) 6 ε and thus π(A) ⊂ π(B)ε. Reversing the roles of A and B then shows
that dT ,H(π(A), π(B)) 6 dT ,H(A,B).

Let µ and ν be two probability measures on T and let ε such that dP (µ, ν) 6 ε. Let A be a
measurable subset of T , we then have π∗µ(A) = µ

(
π−1(A)

)
6 ν

(
(π−1(A))ε

)
+ ε. We also have

(π−1(A))ε ⊂ π−1(Aε) and thus π∗µ(A) 6 π∗ν(Aε) + ε. Reversing the roles of µ and ν yields
dT ,P(π∗µ, π∗ν) 6 ε.

Let Zπ = sup
x∈T

d(x, π(x)). This quantity controls all of the difference between T and T ′, even

when measured:

Lemma 4.3. We have
Zπ = sup

x∈∂T ′
ht(Tx),
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and
dT ,H(T , T ′) = Zπ

and, for any measure µ on T ,

dT ,P(µ, π∗µ) 6 dT ,H(T , T ′).

Proof. The first point is a direct consequence from the fact that, if x ∈ T ′ then π(x) = x, while
if x ∈ T \ T ′, x ∈ Tπ(x). The second point is also a fairly straightforward consequence of the
definition of Zπ. The third point involves simple manipulations of the Prokhorov metric. Let
A be a subset of T . Since A ⊂ π−1(π(A)) and π(A) ⊂ AZπ , we automatically have µ(A) 6
π∗µ(π(A)) 6 π∗µ(AZπ ). On the other hand, we have π−1(A) ⊂ AZπ , which implies π∗µ(A) 6
µ(AZπ ).
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We show that the genealogy of any self-similar fragmentation process can be encoded in

a compact measured R-tree. Under some Malthusian hypotheses, we compute the fractal

Hausdorff dimension of this tree through the use of a natural measure on the set of its leaves.

This generalizes previous work of Haas and Miermont which was restricted to conservative

fragmentation processes.

1 Introduction

In this chapter, we study a family of trees derived from self-similar fragmentation processes.
Such processes describe the evolution of an object which constantly breaks down into smaller
fragments, each one then evolving independently from one another, just as the initial object
would, but with a rescaling of time by the size of the fragment to a certain power called the index
of self-similarity. This breaking down happens in two ways: erosion, a process by which part of
the object is continuously being shaved off and thrown away, and actual splittings of fragments
which are governed by a Poisson point process. Erosion is parametered by a nonnegative number
c called the erosion rate, while the splitting Poisson point process depends on a dislocation
measure ν on the space

S↓ = {s = (si)i∈N : s1 > s2 > . . . > 0,
∑

si 6 1}.

Precise definitions can be found in Section 2.
Our main inspiration is the 2004 article of Bénédicte Haas and Grégory Miermont [41]. Their

work focused on conservative fragmentations, where there is no erosion and splittings of fragments
do not change the total mass. They have shown that, when the index of self-similarity is negative,
the genealogy of a conservative fragmentation process can be encoded in a continuum random
tree, the genealogy tree of the fragmentation, which is compact and naturally equipped with a
probability measure on the set of its leaves. Our main goal here will be to generalize the results
they have obtained to the largest reasonable class of fragmentation processes: the conservation
hypothesis will be discarded, though the index of self-similarity will be kept negative. We will
show (Theorem 3.3) that we can still define some kind of fragmentation tree, but its natural
measure will not be supported by the leaves, and we thus step out of the classical continuum
random tree context set in [5].

That the measure of a general fragmentation tree gives mass to its skeleton will be a major
issue for us here, and its study will therefore involve creating a new measure on the leaves
of the tree. To do this we will restrict ourselves to Malthusian fragmentations. Informally,
for a fragmentation process to be Malthusian means that there is a number p∗ ∈ (0, 1] such
that, infinitesimally, calling (Xi(t))i∈N the sizes of the fragments of the process at time t, the
expectation of

∑
i∈NXi(t)

p∗ is constant. Such conservation properties will let us define and
study a family of martingales related to the tree and use them to define a Malthusian measure
µ∗ on the leaves of the tree. The use of this measure then lets us obtain the fractal Hausdorff
dimension of the set of leaves of the fragmentation tree, under a light regularity condition, called
“assumption (H)”, which is a reinforcement of the Malthusian hypothesis:

The function ψ defined on R by ψ(p) = cp+
∫
S↓(1−

∑
i s
p
i )ν(ds) ∈ [−∞,+∞) takes

at least one finite strictly negative value on the interval [0, 1].

Theorem 1.1. Assume (H) and that α < 0. Then, almost surely, if the set of leaves of the
fragmentation tree derived from an α-self-similar fragmentation process with erosion rate c and
dislocation measure ν is not countable, its Hausdorff dimension is equal to p∗

|α| .
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In [41], a dimension of 1
|α| was found for conservative fragmentation trees, also under a regularity

condition. We can see that non-conservation of mass makes the tree smaller in the sense of
dimension. Note as well that the event where the leaves of the tree are countable only has
positive probability if ν(0, 0, . . . , 0) > 0, that is, if a fragment can suddenly disappear without
giving any offspring.

The chapter is organized as follows: in Section 2 is presented the necessary background
on fragmentation processes. In Section 3 we construct the tree associated to a fragmentation
process with elementary methods, and give a few of its basic topological properties. The next
three sections form the proof of Theorem 1.1: we build in Section 4 the random measure µ∗ by
combining martingale methods and Proposition 2.1, we then give in Section 5 an interpretation
of this measure as a biased version of the distribution of the fragmentation tree, and in Section
6 we properly compute the Hausdorff dimension of the tree, using the results of Sections 4 and
5. Finally, Section 7 is dedicated various comments and applications, namely the effects of
varying the parameters and the fact one can interpret continuous time Galton-Watson trees as
fragmentation trees, giving us the Hausdorff dimension of their boundary.

Note: we use the convention that, when we take 0 to a nonpositive power, the result is 0. We
therefore abuse notation slightly by omitting an indicator function such as 1x 6=0 most of the
time. In particular, sums such as

∑
i∈N x

p
i are implicitly taken on the set of i such that xi 6= 0

even when p 6 0.

2 Background, preliminaries and some notation

2.1 Self-similar fragmentation processes

2.1.1 Partitions

We are going to look at two different kinds of partitions. The first ones are mass partitions. These
are nonincreasing sequences s = (s1, s2, . . .) with si > 0 for every i and such that

∑
i si 6 1.

These are to be considered as if a particle of mass 1 had split up into smaller particles, some of
its mass having turned into dust which is represented by s0 = 1 −

∑
i si. We call S↓ the set of

mass partitions, it can be metrized with the restriction of the uniform norm and is then compact.
The more important partitions we will consider here are the set-theoretic partitions of finite

and countable sets. For such a set S, we let PS be the set of partitions of S. The main
examples are of course the cases of partitions of N = {1, 2, 3, . . .} (for countable sets) and, for
n ∈ N, [n] = {1, 2, . . . , n}. Let us focus here on PN. A partition π ∈ PN will be written as a
countable sequence of subsets of N, called the blocks of the partition: π = (π1, π2, . . .) where
every intersection between two different blocks is empty and the union of all the blocks is N. The
blocks are ordered by increasing smallest element: π1 is the block containing 1, π2 is the block
containing the smallest integer not in π1, and so on. If π has finitely many blocks, we complete
the sequence with an infinite repeat of the empty set. (When not referring to a specific partition,
the word “block” simply means “subset of N”.)

A partition can also be interpreted as an equivalence relation on N: for a partition π and two
integers i and j, we will write i ∼π j if i and j are in the same block of π. We will also call π(i)

the block of π containing i.
We now have two ways to identify the blocks of a partition π: either with their rank in the

partition’s order or with their smallest element. Most of the time one will be more useful than
the other, but sometimes we will want to mix both, which is why we will call rep(π) the set of
smallest elements of blocks of π.
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Let B be a block. For all π ∈ PN, we let π ∩B be the restriction of π to B, i.e. the partition
of B whose blocks are, up to reordering, the (πi ∩B)i∈N.

We say that a partition π is finer than another partition π′ if every block of π is a subset of
a block of π′. This defines a partial order on the set of partitions.

Intersection and union operators can be defined on partitions: let X be a set and, for x ∈ X,
πx be a partition. Then we let ∩

x∈X
πx be the unique partition π̃ to satisfy ∀i, j ∈ N, i ∼π̃ j ⇔

∀x ∈ X, i ∼πx j. The blocks of ∩
x∈X

πx are the intersections of blocks of the (πx)x∈X . Similarly,

assuming that all the (πx)x∈X are comparable, then we define ∪
x∈X

πx to be the unique partition

π̃ such that, ∀i, j ∈ N, i ∼π̃ j ⇔ ∃x ∈ X, i ∼πx j.
We endow PN with a metric: for two partitions π and π′, let n(π, π′) be the largest integer

n such that π ∩ [n] and π′ ∩ [n] are equal (n(π, π′) = ∞ if π = π′) and let d(π, π′) = 2−n(π,π′).
This defines a distance function on PN, which in fact satisfies the ultra-metric triangle inequality.
This metric provides a topology on PN, for which convergence is simply characterized: a sequence
(πn)n∈N of partitions converges to a partition π if, and only if, for every k, there exists nk such
that πn ∩ [k] = π ∩ [k] for n larger than nk. The metric also provides PN with a Borel σ-field,
which is easily checked to be the σ-field generated by the restriction maps, i.e. the functions
which which map π to π ∩ [n] for all integers n.

Let S and S′ be two sets with a bijection f : S → S′. Then we can easily transform
partitions of S′ into partitions of S: let π be a partition of S′, we let fπ be the partition defined
by: ∀i, j ∈ S, i ∼fπ j ⇔ f(i) ∼π f(j). This can be used to generalize the metric d to PS for
infinite S (note that the notion of convergence does not depend on the chosen bijection), and
then π 7→ fπ is easily seen to be continuous.

Special attention is given to the case where f is a permutation: we call permutation of N any
bijection σ of N onto itself. A PN-valued random variable (or random partition) Π is said to be
exchangeable if, for all permutations σ, σΠ has the same law as Π.

Let B be a block. If the limit limn→∞
1
n#(B ∩ [n]) exists then we write it |B| and call it the

asymptotic frequency or more simply mass of B. If all the blocks of a partition π have asymptotic
frequencies, then we call |π|↓ their sequence in decreasing order, which is an element of S↓. This
defines a measurable, but not continuous, map.

A well-known theorem of Kingman from the paper [52] links exchangeable random partitions
of N and random mass partitions through the“paintbox construction”. More precisely: let s ∈ S↓,
and (Ui)i∈N be independent uniform variables on [0, 1], we define a random partition Πs by

∀i 6= j, i ∼Πs j ⇔ ∃k, Ui, Uj ∈ [

k∑
p=1

sp,

k+1∑
p=1

sp).

This random partition is exchangeable, all its blocks have asymptotic frequencies, and |Πs|↓ = s.
By calling κs the law of Πs, Kingman’s theorem states that, for any exchangeable random
partition Π, there exists a random mass partition S such that, conditionally on S, Π has law
κS . A useful consequence of this theorem is found in [11], Corollary 2.4: for any integer k,
conditionally on the variable S, the asymptotic frequency |Π(k)| of the block containing k exists
almost surely and is a size-biased pick amongst the terms of S, which means that its distribution
is
∑
i SiδSi + S0δS0

(with S0 = 1−
∑
i∈N

Si).

Let Π and Ψ be two independent exchangeable random partitions. Then, for any i and j, the
block Πi ∩ Ψj of Π ∩ Ψ almost surely has asymptotic frequency |Πi||Ψj |. This stays true if we
take countably many partitions, as is stated in [11], Corollary 2.5.
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2.1.2 Definition of fragmentation processes

Partition-valued fragmentation processes were first introduced in [9] (homogeneous processes
only) and [10] (the general self-similar kind).

Definition 2.1. Let Π =
(
Π(t)

)
t>0

be a PN-valued process with càdlàg paths, which satisfies

Π(0) = (N, ∅, ∅, . . .), which is exchangeable as a process (i.e. for all permutations σ, the process(
σΠ(t)

)
t>0

has the same law as Π and such that, almost surely, for all t > 0, all the blocks of

Π(t) have asymptotic frequencies. Let α be any real number. We say that Π is a self-similar
fragmentation process with index α if it also satisfies the following self-similar fragmentation
property: for all t > 0, given Π(t) = π, the processes

(
Π(t + s) ∩ πi

)
s>0

(for all integers i) are

mutually independent, and each one has the same distribution as
(
Π(|πi|α(s)) ∩ πi

)
s>0

.

When α = 0, we will say that Π is a homogeneous fragmentation process instead of 0-self-
similar fragmentation process.

Remark 2.2. One can give a Markov process structure to an α-self-similar fragmentation process
Π by defining, for any partition π, the law of Π starting from π. Let (Πi)i∈N be independent copies
of Π (each one starting at (N, ∅, . . .) ), then we let, for all t > 0, Π(t) be the partition whose
blocks are exactly those of (Πi(|πi|αt) ∩ πi

)
i∈N. In this case the process isn’t exchangeable with

respect to all permutations of N, but only with respect to permutations which stabilize the blocks
of the initial value π.

We see fragmentation processes as random variables in the space D = D([0,+∞),PN), which
is the set of càdlàg functions from [0,+∞) to PN. An element of D will typically be written
as (πt)t>0. This space can be metrized with the Skorokhod metric and is then Polish. More
importantly, the Borel σ-algebra on D is then the σ-algebra spanned by the evaluation functions
(πt)t>0 7→ πs (for s > 0), implying that the law of a process is characterized by its finite-
dimensional marginal distributions. The definition of the Skorokhod metric and generalities on
the subject can be read in [48], Section VI.1.

Let us give a lemma which makes self-similarity easier to handle at times:

Lemma 2.3. Let (Π(t))t>0 be any exchangeable PN-valued process, and A any infinite block. Take
any bijection f from A to N, then the two PA-valued processes (Π(t)∩A)t>0 and (fΠ(t))t>0 have
the same law.

Proof. For all n ∈ N, let An = {f−1(1), f−1(2), . . . , f−1(n)}. Recall then that, with the σ-
algebra which we have on PA, we only need to check that, for all n ∈ N, (Π|An) has the same law
as f(Π ∩ [n]). If G is a nonnegative measurable function on D([0,+∞),PAn), we have, by using
the fact that the restriction of f from [n] to An can be extended to a bijection of N onto itself

E[G(Π ∩An)] = E
[
G
(
(fΠ) ∩An

)]
= E

[
G(f(Π ∩ [n]))

]
,

which is all we need.

This lemma will make it easier to show the fragmentation property for some D-valued pro-
cesses we will build throughout the chapter.

2.1.3 Characterization and Poissonian construction

A famous result of Bertoin (detailed in [11], Chapter 3) states that the law of a self-similar
fragmentation process is characterized by three parameters: the index of self-similarity α, an
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erosion coefficient c > 0 and a dislocation measure ν, which is a σ-finite measure on S↓ such
that

ν(1, 0, 0, . . .) = 0 and

∫
S↓

(1− s1)ν(ds) <∞.

Bertoin’s result can be formulated this way: for any fragmentation process, there exists a
unique triple (α, c, ν) such that our process has the same distribution as the process which we
are about to explicitly construct.

First let us describe how to build a fragmentation process with parameters (0, 0, ν) which
we will call Π0,0. Let κν(dπ) =

∫
S↓ κs(dπ)ν(ds) where κs(dπ) denotes the paintbox measure

on PN corresponding to s ∈ S↓. For every integer k, let (∆k
t )t>0 be a Poisson point process

with intensity κν , such that these processes are all independent. Now let Π0,0(t) be the process
defined by Π0,0(0) = (N, ∅, ∅, . . .) and which jumps when there is an atom (∆k

t ): we replace the
k-th block of Π0,0(t−) by its intersection with ∆k

t . This might not seem well-defined since the
Poisson point process can have infinitely many atoms. However, one can check (as we will do
in Section 5.2 in a slightly different case) that this is well defined by restricting to the first N
integers and taking the limit when N goes to infinity.

To get a (0, c, ν)-fragmentation which we will call Π0,c, take a sequence (Ti)i∈N of exponential
variables with parameter c which are independent from each other and independent from Π0,0.
Then, for all t, let Π0,c(t) be the same partition as Π0,0(t) except that we force all integers i such
that Ti 6 t to be in a singleton if they were not already.

Finally, an (α, c, ν)-fragmentation can then be obtained by applying a Lamperti-type time-
change to all the blocks of Π0,c: let, for all i and t,

τi(t) = inf
{
u,

∫ u

0

|Π0,c
(i) (r)|−αdr > t

}
.

Then, for all t, let Πα,c(t) be the partition such that two integers i and j are in the same block
of Πα,c(t) if and only if j ∈ Π0,c

(i) (τi(t)). Note that if t >
∫∞

0
|Π0,c

(i) (r)|−αdr, then the value of

τi(t) is infinite, and i is in a singleton of Πα,c(t). Note also that the time transformation is easily
inverted: for s ∈ [0,∞), we have

τ−1
i (s) = inf

{
u,

∫ u

0

|Πα,c
(i) (r)|+αdr > s

}
.

This time-change can in fact be done for any element π of D: since, for all i ∈ N and t > 0,
τi(t) is a measurable function of Π0,c, there exists a measurable function Gα from D to D which
maps Π0,c to Πα,c.

Let us once and for all fix our notations for the processes: in the whole chapter, c and ν will
be fixed (with c 6= 0 or ν not of the form aδ(1,0,0,...), a > 0, to remove the trivial case of constant
fragmentations), however we will often jump between a homogeneous (0, c, ν)-fragmentation and
the associated self-similar (α, c, ν)-fragmentation, with α < 0 fixed. This is why we will rename
things and let Π = Π0,c as well as Πα = Πα,c. We then let (Ft)t>0 be the canonical filtration
associated to Π and (Gt)t>0 the one associated to Πα.

2.1.4 A few key results

One simple but important consequence of the Poissonian construction is that the notation
|Πα

(i)(t
−)| is well-defined for all i and t: it is equal to both the limit, as s increases to t, of

|Πα
(i)(s)|, and the asymptotic frequency of the block of Πα(t−) containing i.
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For every integer i, let Gi be the canonical filtration of the process
(
Πα

(i)(t)
)
t>0

, and consider a

family of random times (Li)i∈N such that Li is a Gi-stopping time for all i. We say that (Li)i∈N is
a stopping line if, for all integers i and j, j ∈ Πα

(i)(Li) implies Li = Lj . Under this condition, Πα

then satisfies an extended fragmentation property (proved in [11], Lemma 3.14): we can define
for every t a partition Πα(L + t) whose blocks are the (Πα

(i)(Li + t))i∈N. Then conditionally on

the sigma-field GL generated by the Gi(Li) (i ∈ N), the process (Πα(L+ t))t>0 has the same law
as a version ofΠ starting at Πα(L).

One of the main tools of the study of fragmentation processes is the tagged fragment : we
specifically look at the block of Πα containing the integer 1 (or any other fixed integer). Of
particular interest, its mass can be written in terms of Lévy processes: one can write, for all t,
|Πα

(1)(t)| = e−ξτ(t) where ξ is a killed subordinator with Laplace exponent φ defined for nonneg-
ative q by

φ(q) = c(q + 1) +

∫
S↓

(1−
∞∑
n=1

sq+1
n )ν(ds),

and τ(t) is defined for all t by τ(t) = inf
{
u,
∫ u

0
eαξrdr > t

}
. Note that standard results on

Poisson measures then imply that, if q ∈ R is such that
∫
S↓(1 −

∑∞
n=1 s

q+1
n )ν(ds) > −∞, then

we still have E[e−qξt1{ξt<∞}] = e−tφ(q).
In particular, the first time t such that the singleton {1} is a block of Πα(t) is equal to∫∞

0
eαξsds, the exponential functional of the Lévy process αξ, which has been studied for example

in [20]. In particular it is finite a.s. whenever α is strictly negative and Π is not constant.

3 The fragmentation tree

3.1 Main result

We are going to show a bijective correspondence between the laws of fragmentation processes
with negative index and a certain class of random trees. We fix from now on an index α < 0.
If (T , µ) is a measured tree and S is a measurable subset of T with µ(S) > 0, we let µS be the
measure µ conditioned on S, which is a probability measure on S.

Definition 3.1. Let (T , µ) be a random variable in TW . For all t > 0, let T1(t), T2(t), . . . be
the connected components of T>t, and let, for all i, xi(t) be the point of T with height t which
makes Ti(t) ∪ {xi(t)} connected. We say that T is self-similar with index α if µ(Ti(t)) > 0 for
all choices of t > 0 and i and if, for any t > 0, conditionally on

(
µ
(
Ti(s)

)
, i ∈ N, s 6 t

)
, the trees(

Ti(t) ∪ {xi(t)}, µTi(t)
)
i∈N are independent and, for any i, (Ti(t) ∪ {xi(t)}, µTi(t)) has the same

law as (µ(Ti(t))−αT ′, µ′) where (T ′, µ′) is an independent copy of (T , µ).

The similarity with the definition of an α-self-similar fragmentation process must be pointed
out: in both definitions, the main point is that each “component” of the process after a certain
time is independent of all the others and has the same law as the initial process, up to rescaling.
In fact, the following is an straightforward consequence of our definitions:

Proposition 3.2. Assume that (T , µ) is a self-similar tree with index of similarity α. Let
(Pi)i∈N be an exchangeable sequence of variables directed by µ (i.e. conditionally on µ, they are
independent and all have distribution µ). Define for every t > 0 a partition ΠT (t) by saying
that i and j are in the same block of ΠT (t) if and only if Pi and Pj are in the same connected
component of T>t (in particular an integer i is in a singleton if ht(Pi) 6 t). Then ΠT is an
α-self-similar fragmentation process.
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Proof. First of all, we need to check that, for all t > 0, ΠT (t) is a random variable. We therefore
fix t > 0 and notice that the definition of ΠT (t) entails that, for all i ∈ N and j ∈ N,

i ∼ΠT (t) j ⇔ ht(Pi ∧ Pj) > t,

which is a measurable event. Thus, for all integers n and all partitions π of [n], the event
{ΠT (t)∩ [n] = π} is also measurable. It then follows that ΠT (t)∩ [n] is measurable for all n ∈ N,
and therefore ΠT (t) itself is measurable.

Next we need to check that ΠT is càdlàg. It is immediate from the definition that ΠT
is decreasing (in the sense that ΠT (s) is finer than ΠT (t) for s > t), and then that, for any t,
ΠT (t) = ∪

s>t
ΠT (s), and thus the process is right-continuous. Similarly, the process has a left-limit

at t for all t, which is indentified as ΠT (t−) = ∩
s<t

ΠT (s).

Exchangeability as a process of ΠT is an immediate consequence of the exchangeability of
the sequence (Pi)i∈N.

The fact that, almost surely, all the blocks of ΠT (t) for t > 0 have asymptotic frequencies
is a consequence of the Glivenko-Cantelli theorem (see [28], Theorem 11.4.2). For i > 2, let
Yi = ht(P1 ∧ Pi), then, for t < Yi, 1 and i are in the same block of ΠT (t), and for t > Yi, they
are not. Then we have, for all t > 0,

#(ΠT (t) ∩ [n])(1) = 1 +
n∑
i=2

1Yi>t.

It then follows from the Glivenko-Cantelli theorem (applied conditionally on T , µ and P1) that,
with probability one, for all t > 0, 1

n#(ΠT (t) ∩ [n])(1) converges as n goes to infinity, the limit
being the µ-mass of the tree component of T>t containing P1 (or 0 if ht(P1) < t). By replacing
1 with any integer i, we get the almost sure existence of the asymptotic frequencies of ΠT at all
times.

Let us now check that ΠT (0) = (N, ∅, . . .) almost surely, which amounts to saying that T \{ρ}
is connected. Apply the self-similar fragmentation property at time 0: the tree T1(0)∪{ρ} (as in
Definition 3.1) has the same law as T up to a random multiplicative constant, and T1 is almost
surely connected by definition. Thus T \ {ρ} is almost surely connected. A similar argument
also shows that µ({ρ}) is almost surely equal to zero.

Finally, we need to check the α-self-similar fragmentation property for ΠT . Let t > 0 and
π = ΠT (t). For every integer k, we let i(k) be the unique integer such that k ∈ πi(k) and, for
every i, we let Ti(t) be the tree component of T>t containing the points Pk with k ∈ N such that
i(k) = i (if πi is a singleton, then Ti(t) is the empty set). We also add the natural rooting point xi
of Ti(t). Since, for all k, i(k) is measurable knowing ΠT (t), we get that, conditionally on (T , µ)
and ΠT (t), Pk is distributed according to µTi(k)

. From the independence property in Definition
3.1 then follows that the (ΠT (t+ .)∩ πi)i∈N are independent. We now just need to identify their
law. If i ∈ N is such that πi is a singleton then there is nothing to do. Otherwise πi is infinite:
let f be any bijection N → πi, and rename the points Pk with k such that i(k) = i by letting
P ′k = Pf(k). By the self-similarity of the tree, the partition-valued process built from Ti ∪ {xi}
and the P ′j (with j ∈ N) has the same law as ΠT (|πi|−αs)s>0, and therefore ΠT (t + .) ∩ πi has

the same law as
(
fΠi(|πi|αs)

)
s>0

, which is what we wanted.

Our main result is a kind of converse of this proposition, in law.

Theorem 3.3. Let Πα be a non-constant fragmentation process with index of similarity α < 0.
Then there exists a random α-self-similar tree (TΠα , µΠα) such that ΠTΠα

has the same law as
Πα.
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Remark 3.4. This is analogous to a recent result obtained by Chris Haulk and Jim Pitman
in [46], which concerns exchangeable hierarchies. An exchangeable hierarchy can be seen as a
fragmentation of N where one has forgotten time. Haulk and Pitman show that, just as with
self-similar fragmentations, in law, every exchangeable hierarchy can be sampled from a random
measured tree.

The rest of this section is dedicated to the proof of Theorem 3.3. We fix from now on a
fragmentation process Πα (defined on a certain probability space Ω) and will build the tree T
and the measure µ (now omitting the index Πα).

3.2 The genealogy tree of a fragmentation

We are here going to give an explicit description of T which has the caveat of not showing that
T is a random variable, i.e. a dGH -measurable function of Πα (something we will do in the
following section). Since this construction is completely deterministic, we will slightly change
our assumptions and at first consider a single element π of D which is decreasing (the partitions
get finer with time). For every integer i, let Di be the smallest time at which i is in a singleton
of π and for every block B with at least two elements, let DB be the smallest time at which all
the elements of B are not in the same block of π anymore. We will assume that π is such that
all these are finite.

Proposition 3.5. There is, up to bijective isometries which preserve roots, a unique complete
rooted R-tree T equipped with points (Qi)i∈N such that:

(i) For all i, ht(Qi) = Di.
(ii) For all pairs of integers i and j, we have ht(Qi ∧Qj) = D{i,j}.
(iii) The set ∪

i∈N
Jρ,QiK is dense in T .

T will then be called the genealogy tree of π and for all i, Qi will be called the death point of
i.

Proof. Let first prove the uniqueness of T . We give ourselves another tree T ′ with root ρ′ and
points (Q′i)i∈N which also satisfy (i), (ii) and (iii). First note that, if i and j are two integers
such that Qi = Qj , then D{i,j} = Di = Dj and thus Q′i = Q′j . This allows us to define a bijection
f between the two sets {ρ} ∪ {Qi, i ∈ N} and {ρ′} ∪ {Q′i, i ∈ N} by letting f(ρ) = ρ′ and, for
all i, f(Qi) = Q′i. Now recall that we can recover the metric from the height function and the
partial order: we have, for all i and j, d(Qi, Qj) = Di+Dj −2D{i,j}, and the same is true in T ′.
Thus f is isometric and we can (uniquely) extend it to a bijective isometry between ∪

i∈N
Jρ,QiK

and ∪
i∈N

Jρ′, Q′iK, by letting, for i ∈ N and t ∈ [0, Di], f(φρ,Qi(t)) = φρ′,Q′i(t). To check that this

is well defined, we just need to note that, if i, j and t are such that φρ,Qi(t) = φρ,Qj (t), then
t 6 D{i,j} and thus we also have φρ′,Q′i(t) = φρ′,Q′j (t). This extension is still an isometry because
it preserves the height and the partial order and is surjective by definition, thus it is a bijection.
By standard properties of metric completions, f then extends into a bijective isometry between
T and T ′.

To prove the existence of T , we are going to give an abstract construction of it. Let

A0 = {(i, t), i ∈ N, 0 6 t 6 Di}.

A point (i, t) of A0 should be thought of as representing the block π(i)(t). We equip A0 with the
pseudo-distance function d defined such: for all x = (i, t) and y = (j, s) in A0,

d(x, y) = t+ s− 2 min(D{i,j}, s, t).
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(equivalently, d(x, y) = t + s − 2D{i,j} if D{i,j} 6 s, t and d(x, y) = |t − s| otherwise.) Let us
check that d verifies the four-point inequality from Chapter 1, Proposition 1.2(which in particular,
implies the triangle inequality). Let x = (i, t), y = (j, s), u = (k, a), v = (l, b) be in A0, we want
to check that, out of min(D{i,j}, t, s) + min(D{k,l}, a, b), min(D{i,k}, t, a) + min(D{j,l}, s, b) and
min(D{i,l}, t, b) + min(D{j,k}, s, a), two are equal and the third one is bigger. Now, there are, up
to reordering, two possible cases: either i and j split from k and l at the same time or i splits
from {j, k, l} at time t1 > 0, then splits j from {k, l} at time t2 > t1 and then splits k from l at
time t3 > t2. After distinguishing these two cases, the problem can be brute-forced through.

Now we want to get an actual metric space out of A0: this is done by identifying two points
of A0 which represent the same block. More precisely, let us define an equivalence relation
∼ on A0 by saying that, for every pair of points (i, t) and (j, s), (i, t) ∼ (j, s) if and only if
d
(
(i, t), (j, s)

)
= 0 (which means that s = t and that i ∼Π(t−) j). Then we let A we the quotient

set of A0 by this relation:
A = A0/ ∼ .

The pseudo-metric d passes through the quotient and becomes an actual metric. Even better,
the four-point condition also passes through the quotient, and A is trivially path-connected:
every point (i, t) has a simple path connecting it to (i, 0) ∼ (1, 0), namely the path (i, s)06s6t.
Therefore, A is an R-tree, and we will root it at ρ = (1, 0). Finally, we let T be the metric
completion of A. It is still a tree, since the four-point condition and connectedness easily pass
over to completions.

It is simple to see that T does satisfy assumptions (i), (ii), (iii) by choosing Qi = (i,Di) for
all i: (i) and (iii) are immediate, and (ii) comes from the definition of d, which is such that for
all i and j, d

(
(i,Di), (j,Dj)

)
= Di +Dj − 2Di,j .

The natural order on T is simply described in terms of π:

Proposition 3.6. Let (i, t) and (j, s) be in A. We have (i, t) 6 (j, s) if and only if t 6 s and j
and i are in the same block of π(t−).

Proof. By definition, we have (i, t) 6 (j, s) if and only if (i, t) is on the segment joining the root
and (j, s). Since this segment is none other than (j, u)u6s, this means that (i, t) 6 (j, s) if and
only if t 6 s and (i, t) ∼ (j, t). Now, recall that (i, t) ∼ (j, t) if and only if 2t− 2 min(Di,j , t) = 0,
i.e. if and only if t 6 Di,j , and then notice that this last equation is equivalent to the fact that i
and j are in the same block of π(t−). This ends the proof.

The genealogy tree has a canonical measure to go with it, at least under a few conditions:
assume that T is compact, that, for all times t, π(t−) has asymptotic frequencies, and that, for
all i, the function t 7→ |π(i)(t

−)| (the asymptotic frequency of the block of π(t−) containing i)
is left-continuous (this is not necessarily true, but when it is true it implies that the notation is
in fact not ambiguous). Then Proposition 2.1 from Chapter 1 tells us that there exists a unique
measure µ on T such that, for all (i, t) ∈ T , µ(Ti,t) = |π(i)(t

−)|.

3.3 A family of subtrees, embeddings in `1, and measurability

Proposition 3.7. There exists a measurable function TREE : D → TW such that, when Πα is
a self-similar fragmentation process, TREE(Πα) is the genealogy tree T of Πα equipped with its
natural measure.
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This will be proven by providing an embedding of T in the space `1 of summable real-valued
sequences:

`1 = {x = (xi)i∈N;

∞∑
i=1

|xi| <∞}

and approximating T by a family of simpler subtrees. For any finite block B, let TB be the tree
obtained just as before but limiting ourselves to the integers which are in B:

TB = {(i, t), i ∈ B, 0 6 t 6 Di}/ ∼ .

1

2

3

4

5

6

7

t1

t2

t3

Figure 2.1: A representation of T[7]. Here, D[7] = t1, D{5,6,7} = t2 and D{1,2,3} = t3.

Do notice that we keep the times (Di)i and that we do not change them to the time where
i is in a singleton of π ∩ B. Every TB is easily seen to be an R-tree since it is a path-connected
subset of T , and is also easily seen to be compact since it is just a finite union of segments. Also
note that one can completely describe TB by saying that it is the reunion of segments indexed
by B, such that the segment indexed by integer i has length Di and two segments indexed by
integers i and j split at height D{i,j}.

The tree TB is also equipped with a measure called µB , which we define by

µB =
1

#B

∑
i∈B

δQi .

The stick-breaking embedding of Chapter 1, Section 3.1 provides a simultaneous embedding
of TB in `1 for all B which is compatible with the natural inclusion of these trees, i.e. the fact
that if B ⊂ C, TB ⊂ TC . The set of marked points used for the construction is the set of death
points (Qi)i∈B for each B.

The following lemma ensures that we are doing measurable operations.
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Lemma 3.8. For every finite block B, there exists a measurable function TREEB : D → TW
such that, when π is a decreasing element of D such that Di is finite for all i, TREEB(π) is the
tree TB defined above, equipped with the measure µB.

Proof. Note that, since the set of decreasing functions in D is measurable and all the Di all also
measurable functions, we only need to define TREEB in our case of interest, and can set it to be
any measurable function otherwise.

We will now in fact prove that TB is a measurable function of π as a compact subset of
`1 with the Hausdorff metric. First notice that, for all i, Qi is a measurable function of π
(this is because all of its coordinates are themselves measurable). Note then that the map
x → J0, xK = ∪∞n=0[pn(x), pn+1(x)] from `1 to the set of its compact subsets is a 1-Lipschitz
continuous function of x. This follows from the fact that, for every n ∈ N, and given two points
x = (xi)i∈N and y = (yi)i∈N,

dH({pn(x) + txn+1en+1, t ∈ [0, 1]}, {pn(y) + tyn+1en+1, t ∈ [0, 1]}) 6 ||pn+1(x− y)||
6 ||x− y||.

Then finally notice that the union operator is continuous for the Hausdorff distance. Combining
these three facts, one gets that TB = ∪

i∈B
J0, QiK is indeed a measurable function of π.

The fact that µB is also a measurable function of π is immediate since all the Qi are measur-
able.

Lemma 3.9. For all t > 0 and ε > 0, let Nε
t be the number of blocks of π(t) which are not

completely reduced to singletons by time t + ε. If, for any choice of t and ε, Nε
t is finite, then

the sequence (T[n])n∈N is Cauchy for d`1,H , and the limit is isometric to T . In particular, T is
compact.

Proof. We first want to show that the points (Qi)i∈N are tight in the sense that for every ε > 0,
there exists an integer n such that any point Qj is within distance ε of a certain Qi with i 6 n.
The proof of this is essentially the same as the second half of the proof of Lemma 5 in [41], so
we will not burden ourselves with the details here. The main idea is that, for any integer l, all
the points Qi with i such that ht(Qi) ∈ (lε, (l + 1)ε] can be covered by a finite number of balls
centered on points of height belonging to ((l − 1)ε, lε] because of our assumption.

From this, it is easy to see that the sequence (T[n])n∈N is Cauchy. Let ε > 0, we take n just
as in earlier. For m > n, we then have

d`1,H(T[n], T[m]) 6 max
n+16i6m

(
d(Qi, T[n])

)
6 ε.

However, since our sequence is increasing, its limit has no choice but to be the completion of the
union. By the uniqueness property of the genealogy tree, this limit is T .

Lemma 3.10. The process Πα almost surely satisfies the hypothesis of Lemma 3.9.

Proof. Once again, we refer to [41], where this is proved in the first half of Lemma 5. The fact
that we are restricted to conservative fragmentations in [41] does not change the details of the
computations.

Thus we have in particular proven that the genealogy tree of Πα is compact. Let us now turn
to the convergence of the measures µB to the measure on the genealogy tree.
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Lemma 3.11. Assume that T is compact, that, for all t, all the blocks of π(t−) and π(t) have
asymptotic frequencies, and that, for all i, the function t 7→ |π(i)(t

−)| (the asymptotic frequency
of the block of π(t−) containing i) is left-continuous. Then the sequence (µ[n])n∈N of measures
on T converges to µ.

Proof. Since T is compact, Prokhorov’s theorem assures us that a subsequence of (µ[n])n∈N
converges, and we will call its limit µ′. Use of the portmanteau theorem (see [17]) will show
that µ′(T(i,t)) = |π(i)(t

−)| for (i, t) ∈ T , and the uniqueness part of Proposition 2.1 will imply
that µ′ and µ must be equal. Let us introduce the notation T(i,t+) = ∪s>tT(i,s) (this is a
sub-tree of T , with its root removed). Notice that, for all n, by definition of µ[n], we have

µ[n](T(i,t)) = 1
n#
(
π(i)(t

−) ∩ [n]
)

and µ[n](T(i,t+)) = 1
n#
(
π(i)(t) ∩ [n]

)
and, by definition of the

asymptotic frequency of a block, these do indeed converge to |π(i)(t
−)| and |π(i)(t)|. Since T(i,t) is

closed in T and T(i,t+) is open in T , the portmanteau theorem tells us that µ′(T(i,t+)) > |π(i)(t)|
and µ′(T(i,t)) 6 |π(i)(t

−)|. By writing out

T(i,t) =
⋂
n∈N
T(i,(t− 1

n )+),

we then get
µ′(T(i,t)) > lim

s→t−
µ′(T(i,s+)) > lim

s→t−
|π(i)(s)| > |π(i)(t

−)|.

Thus µ′(T(i,t)) = |π(i)(t
−)| for all choices of i and t, and Proposition 2.1 shows that µ′ = µ.

This ends the proof of the lemma.

Note that, if we assume that |π(i)(t)| is right-continuous in t for all i, a similar argument
would show that µ(T(i,t+)) = |π(i)(t)| for all i and t.

Combining everything we have done so far shows that, under a few conditions, (T[n], µ[n])
converges as n goes to infinity to (T , µ) in the dGHP sense. We can now define the function
TREE which was announced in Proposition 3.7. The set of decreasing elements π of D such
that the sequence (T[n], µ[n])n∈N converges is measurable since every element of that sequence is
measurable. Outside of this set, TREE can have any fixed value. Inside of this set, we let TREE
be the aforementioned limit. Since, in the case of the fragmentation process Πα, the conditions
for convergence are met, TREE(Πα) is indeed the genealogy tree of Πα.

3.4 Proof of Theorem 3.3

We let (T , µ) = TREE(Πα) and want to show that it is indeed an α-self-similar tree as defined
earlier. Let t > 0, and let π = Πα(t). For all i ∈ N such that πi is not a singleton, let
Ti(t) be the connected component of {x ∈ T , ht(x) > t} containing Qj for all j ∈ πi, and let
xi = (j, t) for any such j. We let also fi be any bijection: N→ πi and Ψi be the process defined by
Ψi(s) = fi

(
Πα(t+|πi|−αs)∩πi

)
for s > 0. Let us show that, for all i, (|πi|α(Ti(t)∪{xi}), µTi(t)) =

TREE(Ψi). First, Ti(t)∪{xi} is compact since it is a closed subset of T . The death points of Ψi,
which we will call (Q′j)j∈N are easily found: for all j ∈ N, we let Q′j = Qf(j), it is in Ti since f(j)
is in πi. By the definition of Ψ, these points have the right distances between them. Similarly, the
measure is the expected one: for (j, s) ∈ Ti, we have µ(Tj,s) = |Πα

(j)(s
−)| = |πi||Ψ(j)((s − t)−)|,

which is what was expected.
From the equation (|πi|α(Ti(t) ∪ {xi}), µTi(t)) = TREE(Ψi) will come the α-self-similarity

property. Recall that
Gt = σ(Πα(s), s 6 t)
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and let
Ct = σ(|Πα

i (s)|, s 6 t, i ∈ N) = σ(µ(Ti(s)), s 6 t, i ∈ N).

We know that, conditionally on Ft, the law of the sequence (Ψi)i∈N is that of a sequence of
independent copies of Πα. Since this law is fixed and Ct ⊂ Ft, we deduce that this is also the
law of the sequence conditionally on Ct. Applying TREE then says that, conditionally on Ct, the
(|πi|α(Ti(t) ∪ {xi}), µTi(t))i∈N are mutually independent and have the same law as (T , µ) for all
choices of i ∈ N.

Finally, we need to check that the fragmentation process derived from (T , µ) has the same
law as Πα. Let (Pi)i∈N be an exchangeable sequence of T -valued variables directed by µ. The
partition-valued process ΠT defined in Proposition 3.2 is an α-self-similar fragmentation process.
To check that it has the same law as Πα, one only needs to check that it has almost surely
the same asymptotic frequencies as Πα. Indeed, Bertoin’s Poissonian construction shows that
the distribution of the asymptotic frequencies of a fragmentation process determine α, c and ν.
Let t > 0, take any non-singleton block B of ΠT (t), and let C be the connected component of
{x ∈ T , ht(x) > t} containing Pi for all i ∈ B. By the law of large numbers, we have |B| = µ(C)
almost surely. Thus the nonzero asymptotic frequencies of the blocks of ΠT (t) are the µ-masses
of the connected components of T>t, which are of course the asymptotic frequencies of the blocks
of Πα(t). We then get this equality for all t almost surely by first looking only at rational times
and then using right-continuity.

3.5 Leaves of the fragmentation tree

Definition 3.12. There are three kinds of points in T = TREE(Πα):
-skeleton points, which are of the form (i, t) with t < Di.
-“dead” leaves, which come from the sudden total disappearance of a block: they are the points

(i,Di) such that |Πα
(i)(D

−
i )| 6= 0 but Πα(Di) ∩ Πα

(i)(D
−
i ) is only made of singletons. These only

exist if ν gives some mass to (0, 0, . . .), and are the leaves which are atoms of µ.
-“proper” leaves, which are either of the form (i,Di) such that |Πα

(i)(D
−
i )| = 0 or which are

limits of sequences of the form (in, tn)n∈N such that (tn)n∈N is strictly increasing and |Πα
(in)(tn)|

tends to 0 as n goes to infinity.

Note that, if ν is conservative and the erosion coefficient is zero, then not only are there no
dead leaves, but all the (i,Di) are proper leaves: none of the processes (|Πα

(i)(t)|)t<Di suddenly
jump to 0. On the other hand, if ν is not conservative or if there is some erosion, then all the
(i,Di) are either skeleton points or dead leaves, and all the proper leaves can only be obtained
by taking limits, which implies that µ does not charge the proper leaves at all.

Recall the construction of the α-self-similar fragmentation process through a homogeneous
fragmentation process, which we call Π, and the time changes τi defined, for all i and t by
τi(t) = inf{u,

∫ u
0
|Π(i)(r)|−αdr > t}. Notice also that if t > Di, τi(t) =∞.

Proposition 3.13. Let (in, tn)n∈N be a strictly increasing sequence of points of the skeleton of
T , which converges in T . The following are equivalent:

(i) |Πα
(in)(t

−
n )| goes to 0 as n tends to infinity, making the limit of (in, tn)n∈N a proper leaf.

(ii) τin(tn) goes to infinity as n tends to infinity.

Proof. To show that (ii) implies (i), first note that, for every pair (i, t) which is in T , we have by
definition t > τi(t)|Πα

(i)(t
−)||α|. Since T is bounded, the product τin(tn)|Πα

(in)(t
−
n )||α| must stay

bounded. Thus, if one factor tends to infinity, the other one must tend to 0. For the converse,
let us show that if (ii) does not hold, then (i) also does not. Assume that τ(in)(tn) converges
to a finite number l. Now we know that, because of the Poissonian way that Π is constructed,
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∩
n∈N

Π(in)(τin(tn)) is a block of Π(l−). Let i be in this block, we can now assume that in = i for all

n, and that tn converges to Di as n goes to infinity, with τ(i)(Di) = l. The limit of |Πα
(i)(t

−
n )| as n

tends to infinity is then |Π(i)(l
−)|, which is nonzero because the subordinator − log(|Π(i)(t)|)t>0

cannot continuously reach infinity in finite time.

General leaves of T can also be described the following way: let L be a leaf. For all t < ht(L),
L has a unique ancestor with height t. This ancestor is a skeleton point of the form (j, t) with
j ∈ N. Letting iL(t) be the smallest element of Π(j)(t

−), then (iL(t), t)t<ht(L) is a kind of
canonical description of the path going to L and uniquely determines L.

4 Malthusian fragmentations, martingales, and applications

In order to study the fractal structure of T in detail, we will need some additional assumptions
on c and ν: we turn to the Malthusian setting which was first introduced by Bertoin and Gnedin
in [12], albeit in a very different environment, since they were interested in fragmentations with
a nonnegative index of self-similarity.

4.1 Malthusian hypotheses and additive martingales

In this section, we will mostly be concerned with homogeneous fragmentations: (Π(t))t>0 is the
(ν, 0, c)-fragmentation process derived from a point process (∆t, kt)t>0, with dislocation measure
ν and erosion coefficient c, and (Ft)t>0 is the canonical filtration of the point process.

We first start with a few analytical preliminaries. For convenience’s sake, we will do a
translation of the variable p of the Laplace exponent φ defined in Section 2.1.4:

Lemma 4.1. For all real p, let ψ(p) = φ(p − 1) = cp +
∫
S↓(1 −

∑
i s
p
i )dν(s). Then ψ(p) ∈

[−∞,+∞), and this function is strictly increasing and concave on the set where it is finite.

Proof. The only difficult point here is to prove for all real p that ψ(p) ∈ [−∞,+∞). In other
words, we want to give an upper bound to 1−

∑
i s
p
i which is integrable with respect to ν. Such

a bound is for example 1− sp1. Indeed, by letting Cp = supx∈[0,1[
1−xp
1−x (which is finite), we have

1− sp1 6 Cp(1− s1), and 1− s1 is integrable by assumption.

Note that, even for negative p, as soon as φ(p) > −∞, we have, for all t,

E
[
|Π(1)(t)|p1{|Π(1)(t)|>0}

]
= e−tφ(p).

This follows from the description of the Lévy measure of the subordinator ξt = − log |Π(1)(t)|
(see [9], Theorem 3).

Definition 4.2. We say that the pair (c, ν) is Malthusian if there exists a strictly positive number
p∗ (which is necessarily unique), called the Malthusian exponent such that

φ(p∗ − 1) = ψ(p∗) = cp∗ +

∫
S↓

(
1−

∞∑
i=1

sp
∗

i

)
dν(s) = 0.

The typical example of pairs (c, ν) with a Malthusian exponent are conservative fragmenta-
tions, where c = 0 and

∑
i si = 1 ν-almost everywhere. In that case, the Malthusian exponent

is simply 1. Note that assumption (H) defined in the introduction implies the existence of the
Malthusian exponent, since ψ(1) > 0 for all choices of ν and c.

49



We assume from now on the existence of the Malthusian exponent p∗. This allows us to
define, for i ∈ N, t > 0 and s > 0,

Mi,t(s) =

∞∑
j=1

|Πj(t+ s) ∩Π(i)(t)|p
∗
.

This is the sum of the sizes of the blocks of the part of the fragmentation which is issued from
Πi(t), each one taken to the p∗-th power. In the case of i = 1, t = 0, we let M(s) = M1,0(s),
the sum of the sizes of all the blocks of Π(s) to the p∗-th power. These processes are interesting
because the Malthusian hypothesis naturally makes them martingales.

Proposition 4.3. For all i ∈ N and t > 0, the process
(
Mi,t(s)

)
s>0

is a càdlàg martingale with

respect to the filtration (Ft+s)s>0.

Proof. Let us first notice that, as a consequence of the fragmentation property, for every (i, t), the
process

(
Mi,t(s)

)
s>0

has the same law as a copy of the process (M(s))s>0 which is independent

of Ft, multiplied by |Π(i)(t)|p
∗

(which is an Ft-measurable variable). Thus, we only need to prove
the martingale property for (M(s))s>0. Recall that, given π ∈ PN, rep(π) is the set of integers
which are the smallest element of the block of π containing them and let t > 0 and s > 0, we
have

E[M(t+ s) | Fs] = E

 ∑
i∈rep(Π(s))

Mi,s(t) | Fs


=
∑
i∈N

E[1{
i∈rep(Π(s))

}Mi,s(t) | Fs]

=
∑
i∈N

1{
i∈rep

(
Π(s)

)}|Π(i)(s)|p
∗
E[M(t)]

=
∑

i∈rep
(

Π(s)
) |Π(i)(s)|p

∗
E[M(t)]

= M(s)E[M(t)].

Thus we only need to show that E[M(t)] = 1 for all t and our proof will be complete. To do
this, one uses the fact that, since Π(t) is an exchangeable partition, the asymptotic frequency
of the block containing 1 is a size-biased pick from the asymptotic frequencies of all the blocks.
This tells us that

E

[∑
i

|Πi(t)|p∗
]

= E

[∑
i

|Πi(t)||Πi(t)|p∗−1
1|Π(i)(t)|6=0

]
= E[|Π(1)(t)|p

∗−1
1{|Π(i)(t)|6=0}]

= exp[−tφ(p∗ − 1)]

= 1.

We refer to [13] for the proof that (M(t))t>0 is càdlàg (it is assumed in [13] that c = 0 and
that ν is conservative but these assumptions have no effect on the proof).

Since these martingales are nonnegative, they all converge almost surely. For integer i and
real t, we will call Wi,t the limit of the martingale Mi,t on the event where this martingale
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converges. We also write W instead of W1,0 for simplicity. Our goal is now to investigate these
limits. To this effect, let us introduce a family of integrability conditions indexed by a parameter
q > 1: we let (Mq) be the assumption that∫

S↓

∣∣∣∣∣1−
∞∑
i=1

sp
∗

i

∣∣∣∣∣
q

ν(ds) <∞.

We will assume through the rest of this section that there exists some q > 1 such that (Mq)
holds.

The following is a generalization of Theorem 1.1 and Proposition 1.5 of [11] which were
restricted to the case where ν has finite total mass.

Proposition 4.4. Assume (Mq) for some q > 1. Then the martingale (M(t))t>0 converges to
W in Lq.

Proof. We will first show that the martingale
(
M(t)

)
t>0

is purely discontinuous in the sense of

[27], which we will do by proving that it has finite variation on any bounded interval [0, T ] with

T > 0. To this effect, write, for all t, M(t) = e−cp
∗t
∑
i

(
Xi(t)

)p∗
where the (Xi(t))i∈N are the

sizes of the blocks of a homogeneous fragmentation with dislocation measure ν, but no erosion.
Since the product of a bounded nonincreasing function with a bounded function of finite variation
has finite variation, we only need to check that t 7→

∑
iXi(t)

p∗ has finite variation on [0, T ]. Since
this function is just a sum of jumps, its total variation is equal to the sum of the absolute values

of these jumps. Thus we want to show that |
∑
t6T

∑
i

(
Xi(t)

)p∗ − (Xi(t
−)
)p∗ | is finite. This sum

is equal to
∑
t6T

ecp
∗t|M(t) −M(t−)|, which is bounded above by ecp

∗T
∑
t6T
|M(t) −M(t−)|. We

will not show the finiteness of this sum, because it can be done by computing its expectation
similarly to our next computation.

Knowing that the martingale is purely discontinuous, according to [59] (at the bottom of page
299), to show that the martingale is bounded in Lq, one only needs to show that the sum of the
q − th powers of its jumps is bounded in L1, i.e. that

E
[∑

t

|M(t)−M(t−)|q
]
<∞.

This expected value can be computed with the Master formula for Poisson point processes
(see [72], page 475). Recall from Section 2.1.2 the construction of Π through a family of Poisson
point processes ((∆k(t))t>0)k∈N: for t and k such that there is an atom ∆k(t), the k-th block of
Π(t−) is replaced by its intersection with ∆k(t). We then have

E

∑
t>0

|M(t)−M(t−)|q
 = E

 ∞∑
k=1

∑
t>0

|Πk(t−)|qp
∗

(∣∣∣1− ∞∑
i=1

|∆k
i (t)|p

∗
∣∣∣)q


= E

[∫ ∞
0

∑
k

|Πk(t−)|qp
∗
dt

]∫
S↓

∣∣1−∑
i

sp
∗

i

∣∣qdν(s)

=

∫ ∞
0

e−tψ(qp∗)dt

∫
S↓

∣∣1−∑
i

sp
∗

i

∣∣qdν(s).

Since qp∗ > p∗, we have ψ(qp∗) > 0 and thus the expectation is finite.
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Proposition 4.5. Assume that E[W ] = 1 (which is equivalent to assuming that the martingale(
M(t)

)
t>0

converges in L1). Then, almost surely, if Π does not die in finite time then W is

strictly positive.

Proof. We discretize the problem and only look at integer times: for n ∈ N, let Zn is the number
of blocks of Π(n) which have nonzero mass. The process (Zn)n∈N is a Galton-Watson process
(possibly taking infinite values. See Appendix A to check that standard results stay true in this
case). If it is critical or subcritical then there is nothing to say, and if it is supercritical, notice
that the event {W = 0} is hereditary (in the sense that W = 0 if and only if all the Wi,1 are
also zero). This implies that the probability of the event {W = 0} is either equal to 1 or to the
probability of extinction. But since E[W ] = 1, W cannot be 0 almost surely and thus {W = 0}
and the event of extinction have the same probabilities. Since {W = 0} is a subset of the event
of extinction, W is nonzero almost surely on nonextinction.

The following proposition states the major properties of these martingale limits.

Proposition 4.6. There exists an event of probability 1 on which the following are true:
(i) For every i and t, the martingale Mi,t converges to Wi,t.
(ii) For every integer i, and any times t and s with s > t, we have

Wi,t =
∑

j∈Π(i)(t)∩rep
(

Π(s)
)Wj,s.

(iii) For every i, the function t 7→Wi,t is nonincreasing and right-continuous. The left-limits
can be described as follows: for every t, we have

Wi,t− =
∑

j∈Π(i)(t−)∩rep(Π(t))

Wj,t.

To prove this we will need the help of several lemmas. The first is an intermediate version of
point (ii)

Lemma 4.7. For any integer i and any times t and s such that s > t, there exists an event of
probability 1 on which the martingales Mi,t and Mj,s converge for all j and we have the relation

Wi,t =
∑

j∈Π(i)(t)∩rep(Π(s))

Wj,s.

Proof. For clarity’s sake, we are going to restrict ourselves to the case where i = 1 and t = 0,
but the proof for the other cases is similar. We have, for all r > s,

M(r) =
∑

j∈rep(Π(s))

Mj,s(r − s).

We cannot immediately take the limits as r goes to ∞ because we do not have any kind of
dominated convergence under the sum. However, Fatou’s Lemma does give us the inequality

W >
∑

j∈rep(Π(s))

Wj,s.
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To show that these are actually equal almost surely, we show that their expectations are equal.
We know that E[W ] = 1 and that, for all j ∈ N and s > 0, one can write Wj,s = |Π(j)(s)|p

∗
W ′j,s

where W ′j,s is a copy of W which is independent of Fs. We thus have

E

 ∑
j∈rep(Π(s))

Wj,s

 = E

∑
j∈N

1{
j∈rep(Π(s))

}|Π(j)(s)|p
∗
W ′j,s


=
∑
j∈N

E[1{
j∈rep(Π(s))

}|Π(j)(s)|p
∗
W ′j,s]

=
∑
j∈N

E[W ′j,s]E[1{
j∈rep(Π(s))

}|Π(j)(s)|p
∗
]

=
∑
j∈N

E[1{
j∈rep(Π(s))

}|Π(j)(s)|p
∗
]

= E[M(s)]

= 1.

Lemma 4.8. For every pair of integers i and j, let fi,j be a nonnegative function defined on
[0,+∞). For every i, we let fi be the function

∑
j fi,j, and we also let f =

∑
i fi. We assume

that, for every i and j, the function fi,j converges at infinity to a limit called li,j, and we also
assume that f converges, its limit being l =

∑
i,j li,j. Then, for every i, the function fi also

converges at infinity and its limit is li =
∑
j li,j.

Proof. We are going to prove that lim inf fi = lim sup fi = li for all i. Let N be any integer,
taking the upper limit in the relation f >

∑
i6N fi gives us l >

∑
i6N lim sup fi, and by taking

the limit as N goes to infinity, we have l >
∑
i lim sup fi. Similarly, for every i, the relation

fi =
∑
j fi,j gives us lim inf fi >

∑
j li,j . We thus have the following chain:∑

i,j

li,j 6
∑
i

lim inf fi 6
∑
i

lim sup fi 6
∑
i,j

li,j ,

and this implies that, for every i, lim inf fi = lim sup fi = li.

Proof of Proposition 4.6: let t < s be two times and assume that the martingale Mj,s

converges for all j, and also assume the relation W =
∑

j∈rep(Π(s))

Wj,s. Apply Lemma 4.8

with, for nonnegative r, f(r) = M(s + r), fi(r) = 1{i∈rep(Π(t))}Mi,t(r + s − t) and fi,j(r) =
1{i∈rep(Π(t))}1{j∈repΠ(s)∩Π(i)(t)}Mj,s(r). Then, for all i, the martingale Mi,t does indeed converge,
and point (ii) of the proposition is none other than the relation li =

∑
j li,j . We also get that

W =
∑
i∈repΠ(t)Wi,t and thus can use the same reasoning to obtain Wi,r =

∑
j∈Π(i)(r)∩repΠ(t)

Wj,t

for all r < t < s.
By Lemma 4.7, the assumption of the previous paragraph is true for any value of s with

probability 1, we then obtain points (i) and (ii) by taking a sequence of values of s tending to
infinity.

We can turn ourselves to point (iii). Fixing an integer i, it is clear that t 7→ Wi,t is non-
increasing. Right-continuity is obtained by the monotone convergence theorem, noticing that
Π(i)(t) ∩ rep(Π(s)) is the increasing union, as u decreases to t, of sets Π(i)(u) ∩ rep(Π(s)). Sim-
ilarly, the fact that Wi,t− =

∑
j∈Π(i)(t−)∩rep(Π(t))Wj,t is only a matter of noticing that Π(i)(t

−)
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is the decreasing intersection, as u increases to t, of sets Π(i)(u) and taking the infimum on both
sides of the relation Wi,u =

∑
j∈Π(i)(u)∩rep(Π(t))Wj,t.

From now on we will restrict ourselves to the aforementioned almost-sure event: all the
additive martingales are now assumed to converge, and the limits satisfy the natural additive
properties.

4.2 A measure on the leaves of the fragmentation tree.

In this section we are going to assume that E[W ] = 1. We let T be the genealogy tree of the
self-similar process Πα and are going to use the martingale limits to define a new measure on T .

Theorem 4.9. On an event with probability one, there exists a unique measure µ∗ on T which
is fully supported by the proper leaves of T and which satisfies

∀i ∈ N, t > 0, µ∗(T(i,t+)) = Wi,τi(t).

where Ti,t+ is as defined in the proof of Lemma 3.11: T(i,t+) = ∪s>tT(i,s).

Proof. This will be a natural consequence of Proposition 2.1 from Chapter 1, and our previous
study of the convergence of additive martingales. Note that, since, for all (i, t) ∈ T , we have

T(i,t) =
⋃

j∈Π(i)(t−)∩rep
(

Π(t)
)T(j,t+),

any candidate for µ∗ would then have to satisfy, for every (i, t), the relation

µ∗(T(i,t)) =
∑

j∈Π(i)(t−)∩rep(Π(t))

Wj,τi(t) = Wi,(τi(t))− .

We thus know that we can apply Proposition 2.1 to the functionm defined bym(i, t) = Wi,(τi(t))− .
This function is indeed decreasing and left-continuous on T , and we also have, for every point
(i, t) of T , m

(
(i, t)+

)
= m(i, t) in the sense of Section 2.2.4 (this is point (iii) of Proposition

4.6). Thus µ∗ exists and is unique, and we only now need to check that it is fully supported by
the set of proper leaves of T . To do this, notice first that, by Proposition 3.13, the complement
of the set of proper leaves can be written as ∪N∈N{(i, s), i ∈ N, τi(s) 6 N}, and then that, for
every integer N ,

µ∗
(
{(i, s), i ∈ N, τi(s) 6 N}

)
= W −

∑
i∈rep(Π(N))

Wi,N = 0.

The measure µ∗ has total mass W , which is in general not 1. However, having assumed that
E[W ] = 1, we will be able to create some probability measures involving µ∗. The following one
can be interpreted as the “distribution” of the process of the size of the fragment associated to a
leaf with “distribution” µ∗. Recall first that to every leaf L of T corresponds a family of integers
(iL(t))t<ht(L) such that, for all t, iL(t) is the smallest integer such that (iL(t), t) 6 L in T .

Proposition 4.10. Define a probability measure Q on the space D([0,+∞)) of càdlàg functions
from [0,+∞) to [0,+∞) by setting, for all nonnegative measurable functionals F : D([0,+∞))→
[0,+∞),

Q(F ) = E
[∫
T
F
(
(|Πα

(iL(t))(t)|)t>0

)
µ∗(dL)

]
.
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Let (xt)t>0 be the canonical process, and let ζ be the time-change defined for all t > 0 by:

ζ(t) = inf
{
u,

∫ u

0

xαt dr > u
}
.

Under the law Q, the process (ξt)t>0 defined by ξt = − log(xζ(t)) for all t > 0 is a subordinator
whose Laplace exponent φ∗ satisfies, for p such that ψ(p+ p∗) is defined:

φ∗(p) = cp+

∫
S↓

(∑
i

(1− spi )s
p∗

i

)
ν(ds) = ψ(p+ p∗).

As before, the function φ∗ can be seen as defined on R, in which case it takes values in
[−∞,∞).

Proof. Let us first show that, given a nonnegative and measurable function f on [0,+∞) and a
time t, we have

Q(f(xζ(t))) = E

[∑
i

|Πi(t)|p
∗
f(|Πi(t)|)

]
. (2.1)

To do this, notice first that we have Πα
(iL(t))(τ

−1
iL(t)(t)) = Π(iL(t))(t). Thus, using the definition of

µ∗, one can change the integral with the respect to µ∗ into a sum on the different blocks of Π(t):

Q(f(xζ(t))) = E

 ∑
i∈rep(Π(t))

Wi,tf(|Π(i)(t)|)

 .
Finally, with the fragmentation property, one can write, for all t and i, Wi,t = |Π(i)(t)|p

∗
W ′i,t

where W ′i,t is a copy of W which is independent of |Π(t)|. Since E[W ] = 1, we get formula (2.1).

Applying this to the function f defined by f(x) = xp gives us our moments formula:

Q(e−pξ1) = Q(xpζ(1)) = E

[∑
i

|Πi(1)|p
∗+p

]
= E[|Π1(1)|p+p

∗−1] = exp[−
(
φ(p+ p∗ − 1)

)
].

Independence and stationarity of the increments is proved the same way. Let s < t, f be
any nonnegative measurable functions on R and G be any nonnegative measurable function on
D([0, s]). Let us apply the fragmentation property for Π at time s: for i ∈ rep

(
Π(s)

)
, the

partition of Π(i)(s) formed by the blocks of Π(t) which are subsets of Π(i)(s) can be written as

Π(i)(s) ∩Πi(t− s) where
(
Πi(u)

)
u>0

is an independent copy of Π. Thus one can write

Q[f
(xζ(t)
xζ(s)

)
G
(
(xζ(u))u6s

)
]

= E

 ∑
i∈repΠ(s)

|Π(i)(s)|p
∗
G
(
(|Π(i)(u)|)u6s

)∑
j∈N

W i
j |Πi

j(t− s)|p
∗
f
(
|Πi
j(t− s)|

) ,
where the W i

j are copies of W independent of anything happening before time t, which all have
expectation 1. We thus get

Q
[
f(
xζ(t)

xζ(s)
)G
(
(xζ(u))u6s

)]
= E

 ∑
i∈repΠ(s)

|Π(i)(s)|p
∗
G((|Π(i)(u)|)u6s)

E

∑
j

|Πi(t− s)|p
∗
f
(
|Πj(t− s)|

) ,
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which is what we wanted.

Lemma 4.11. Assume that ν integrates the quantity
∑
i log(si)s

p∗

i and let p = sup{q ∈ R :

φ∗(−q) > −∞}. Then if γ < 1 +
p

|α| , we have

E
[∫
T
ht(L)−γµ∗(dL)

]
<∞.

Proof. We know that the height of the leaf is equal to the death time of the fragment it marks:
ht(L) = inf{t : τiL(t)(t) =∞}. Thus we can write, using the measure Q

E
[∫
T
ht(L)−γµ∗(dL)

]
= Q[I−γ ],

where I =
∫∞

0
eαξtdt is the exponential functional of the subordinator ξ with Laplace exponent

φ∗. Following the proof of Proposition 2 in [15], one has, if 1 < γ < 1 +
p

|α| ,

Q[I−γ ] =
−φ∗(−|α|(γ − 1))

γ − 1
Q[I−γ+1].

By induction we then only need to show that Q[I−γ ] is finite for γ ∈ (0, 1], and thus only need
to show that Q[I−1] is finite. However, it is well known (see for example [14]) that Q[I−1] =

(φ∗)′(0+) = c−
∫
S↓(
∑
i log(si)s

p∗

i )ν(ds), which is finite by assumption.

The assumption that
∫
S↓(
∑
i log(si)s

p∗

i )ν(ds) is finite is for example verified when ν has finite
total mass, and (H) is satisfied: pick δ > 0 such that ψ(p∗−δ) > −∞, then pick K > 0 such that

| log(x)| 6 Kx−δ for all x ∈ (0, 1], then one can bound
∑
i | log(si)|sp

∗

i by K −K(1−
∑
i s
p∗−δ
i )

which is indeed integrable.

5 Tilted probability measures and a tree with a marked
leaf

Recall that D is the space of càdlàg PN-valued functions on [0,+∞), and that it is endowed with
the σ-field generated by all the evaluation functions. For all t > 0, let us introduce the space Dt
of càdlàg functions from [0, t] to PN, which we endow with the product σ-field.

As was done in [13], we are going in this section to use the additive martingale to construct
a new probability measure under which our fragmentation process has a special tagged fragment
such that, heuristically, for all t, the tagged fragment is equal to a block Πi(t) of Π(t) with
“probability” |Πi(t)|p

∗
. Tagging a fragment will be done by forcing the integer 1 to be in it, and

for this we need some additional notation. If π is a partition of N, we let Rπ be its restriction to
N′ = N \ {1}. Partitions of N′ can still be denoted as sequences of blocks ordered with increasing
least elements. Given a partition π of N′ and any integer i, we let Hi(π) be the partition of N
obtained by inserting 1 in the i-th block of π. Similarly, let us also define a way to insert the
integer 1 in a finite-time fragmentation process with state space the partitions of N′. Let i ∈ N,
t > 0 and let

(
π(s)

)
s6t

be a family of partitions of N′. Now let j be any element of πi(t) (if this

block is empty then the choice won’t matter, one can just define Ht
i (π) to be any fixed process)

and, for all 0 6 s 6 t, let Ht
i (π)(s) be the partition which is the same as π(s), except that 1
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is added to the block containing j. This defines a function Ht
i which maps a process taking

values in PN′ to processes taking value in PN. What is important to note is that, if we now take(
π(s)

)
06s6t

∈ Dt, then the process
(
Ht
iR(π)(s)

)
06s6t

is càdlàg (because the restrictions to finite

subsets of N are pure-jump with finite numbers of jumps) and the map Ht
iR from Dt to itself is

also measurable (because, for all s, Ht
i (π)(s) is a measurable function of π(s) and π(t)).

5.1 Tilting the measure of a single partition

Here, we are going to work in a simple setting: we consider a random exchangeable partition of
N called Π which has a positive Malthusian exponent p∗, in the sense that E

[∑
i |Πi|p

∗]
= 1.

Note that this implies that E
[
|Π1|p

∗−1
1|Π1|6=0

]
= 1 as well (we will omit the indicator function

from now on).

Let us define two new random partitions Π∗ and Π′ through their distributions: we let, for
nonegative measurable functions f on PN,

E∗[f(Π∗)] = E

[∑
i

|RΠi|p
∗
f(HiRΠ)

]

and
E′[f(Π′)] = E

[
|Π1|p

∗−1f(Π)
]
.

These relations do define probability measures because p∗ is the Malthusian exponent of Π, as
can be checked by taking f = 1. We now state a few properties of these distributions.

Proposition 5.1. (i) The two random partitions Π∗ and Π′ have the same distribution.
(ii) If we call m the law of the asymptotic frequencies of the blocks of Π, and m′ the law of

the asymptotic frequencies of the blocks of Π′, we have

m′(ds) =
(∑

i

sp
∗

i

)
m(ds).

In particular, with probability 1, Π′ is not the partition made uniquely of singletons.
(iii) Conditionally on the asymptotic frequencies of its blocks, the law of Π′ (or Π∗) can be

described as follows: the restriction of the partition to N′ is built with a standard paintbox process
from the law m′. Then, conditionally on RΠ′, for every integer i, 1 is inserted in the block RΠ′i

with probability
|RΠ′i|

p∗∑
j |RΠ′j |p

∗ .

Proof. Item (i) is a simple consequence of the paintbox description of Π: we know that, condi-
tionally on the restriction of Π to N′, the integer 1 will be inserted in one of these blocks in a
size-biased manner. Thus we get, for nonnegative measurable f ,

E′[f(Π′)] = E
[
|Π1|p

∗−1f(Π)
]

= E
[∑

i

|RΠi||RΠi|p
∗−1f(HiRΠ)

]
= E∗[f(Π∗)].

To prove (ii), we just need to use the definition of the law of Π′: take any positive measurable
function f on S↓, we have

E′[f(|Π′|↓)] = E[|Π1|p
∗−1f(|Π|↓)] =

∫
S↓

(
∑
i

sis
p∗−1
i )f(s)m(ds) =

∫
S↓

(
∑
i

sp
∗

i )f(s)m(ds),

which is all we need.
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For (iii), first use the definition of Π∗ to notice that its restriction to N′ is exchangeable: if
we take a measurable function f on PN′ and a permutation σ of N′, we have

E∗[f(σ(RΠ∗))] = E
[
(
∑
i

|RΠi|p
∗
)f(σ(RΠ))

]
= E

[
(
∑
i

|σRΠi|p
∗
)f(σ(RΠ))

]
= E

[
(
∑
i

|RΠi|p
∗
)f(RΠ)

]
= E∗[f(RΠ∗)].

This exchangeability and Kingman’s theorem then imply that the restriction of Π∗ to N′ can
indeed be built with a paintbox process. Now we only need to identify which block contains 1,
that is, find the distribution of Π∗ conditionally of RΠ∗. Thus, we take a nonegative measurable
function f on PN and another one g on PN′ and compute E∗[f(Π∗)g(RΠ∗)]:

E∗[f(Π∗)g(RΠ∗)] = E
[∑

i

|(RΠ)i|p
∗
f(HiRΠ)g(RΠ)

]

= E

∑
j

|(RΠ)j |p
∗

(∑
i

|(RΠ)i|p
∗∑

j |(RΠ)j |p∗
f(HiRΠ)

)
g(RΠ)


= E∗

[(∑
i

|(RΠ∗)i|p
∗∑

j |(RΠ∗)j |p∗
f(HiRΠ∗)

)
g(RΠ∗)

]
.

This ends the proof.

5.2 Tilting a fragmentation process

Here we aim to generalize the previous procedure to a homogeneous exchangeable fragmentation
process. Let t > 0, we are going to define two random processes

(
Π∗(s)

)
s6t

and
(
Π′(s)

)
s6t

, with

corresponding expectation operators E∗t and E′t, by letting, for measurable functions F on Dt,

E∗t
[
F ((Π∗(s))s6t)

]
= E

[∑
i

|(RΠ(t))i|p
∗
F
(
(Ht

iRΠ(s))s6t
)]

and
E′t
[
F ((Π′(s))s6t)

]
= E

[
|Π1(t)|p

∗−1F
(
(Π(s))s6t

)]
.

For the same reason as before, these define probability measures. We then want to use Kol-
mogorov’s consistency theorem to extend these two probability measures to D. To do this we
have to check that, if u < t and (Π∗(s))s6t has law P∗t , then (Π∗(s))s6u has law P∗u, and the same
for Π′. The argument is that the block of Π∗(t) that 1 is inserted in only matters through its ances-
tor at time u: if i and j are such that (RΠ∗(t))j ⊂ (RΠ∗(u))i then (Ht

jΠ(s))s6u = (Hu
i Π(s))s6u.
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Taking any nonnegative measurable function F on D, we have

E∗t
[
F
(
(Π∗(s))s6u

)]
= E

[∑
j

|(RΠ(t))j |p
∗
F
(
(Ht

jΠ(s))s6u
)]

= E
[∑

i

∑
j:(RΠ∗(t))j⊂(RΠ∗(u))i

|(RΠ(t))j |p
∗
F
(
(Hu

i Π(s))s6u
)]

= E
[∑

i

F
(
(Hu

i Π(s))s6u
) ∑
j:(RΠ∗(t))j⊂(RΠ∗(u))i

|(RΠ(t))j |p
∗
]

= E
[∑

i

F
(
(Hu

i Π(s))s6u
)
|(RΠ(u))i|p

∗
]
.

The last equation comes from the martingale property of the additive martingale Mk,u where k is
any integer in

(
RΠ(u)

)
i
. Consistency for Π′ is a little bit simpler: it is once again a consequence

of the fact that the process (M ′t)t>0 which we define by M ′t = |Π1(t)|p∗−1
1{|Π1(t)|6=0} for all

t is a martingale, which itself is an immediate consequence of the homogeneous fragmentation
property.

Kolmogorov’s consistency theorem then implies that there exist two random processes
(
Π∗(t)

)
t>0

and
(
Π′(t)

)
t>0

defined on probability spaces with probability measures P∗ and P′ and expecta-

tion operators E∗ and E′ such that, for any t > 0 and any nonnegative measurable function F
on Dt,

E∗
[
F
(
(Π∗(s))s6t

)
] = E

[∑
i

|(RΠ(t))i|p
∗
F
(
(Ht

iΠ(s))s6t
)]

(2.2)

and
E′[F

(
(Π′(s))s6t

)
] = E

[
|Π1(t)|p

∗−1F
(
(Π(s))s6t

)]
.

Just as in the previous section, these two definitions are in fact equivalent:

Proposition 5.2. The two processes (Π∗(t))t>0 and (Π′(t))t>0 have the same law.

To prove this, we only need to show that these two processes have the same finite-dimensional
marginal distributions. The 1-dimensional marginals have already been proven to be the same
and we will continue with an induction argument which uses the fact that the homogeneous
fragmentation property generalizes to P∗ and P′.

Lemma 5.3. Let t > 0, and Ψ∗ and Ψ′ be independent copies of respectively Π∗ and Π′. Then,
conditionally on (Π∗(s), s 6 t), the process

(
Π∗(t+s)

)
s>0

has the same law as
(
Π∗(t)∩Ψ∗(s)

)
s>0

and, conditionally on (Π′(s), s 6 t), the process
(
Π′(t + s)

)
s>0

has the same law as (Π′(t) ∩
Ψ′(s))s>0.

Proof. Let t > 0 and u > 0, let F be a nonnegative measurable function on Dt and G be a
nonnegative measurable function on Du. We have, by the fragmentation property,

E∗
[
F
(
(Π∗(s))06s6t

)
G
(
(Π∗(t+ s)

)
06s6u

)]
= E

[∑
i

|(RΠ(t+ u))i|p
∗
F
((
Ht+u
i RΠ(s)

)
06s6t

)
G
((
Ht+u
i RΠ(t+ s))06s6u

)]

= E

[∑
i

|R(Π(t) ∩Ψ(u))i|p
∗
F
((
Ht+u
i RΨ

)
06s6t

)
G
(
Ht+u
i

(
RΠ(t) ∩Ψ(s)

)
06s6u

)]
,
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where Ψ is an independent copy of Π. The key now is to notice that a block of Π(t) ∩ Ψ(s) is
the intersection of a block of Π(t) and a block of Ψ(s). Thus we replace our sum over integers
(representing blocks of Π(t)∩Ψ(s)) by two sums, one for the blocks of Π(t) and another for those
of Ψ(s).

E∗
[
F
(
(Π(s))06s6t

)
G
(
(Π(t+ s))06s6u

)]
= E

[∑
i

∑
j

|RΠi(t)|p
∗
|RΨj(t)

p∗ |F
(
(Ht

iRΠ(s))06s6t
)
G
((
Ht
iRΠ(t) ∩Hu

j Ψ(s)
)

06s6u

)]

= E∗
[
F
(
(Π(s))06s6t

)
G
(
(Π(t) ∩Ψ(s))06s6u

)]
.

The proof for Π′ again uses the same ideas but is simpler, so we will omit it.

We can now complete the proof of Proposition 5.2: we show by induction that the finite-
dimensional marginals of Π∗ and Π′ have the same distribution. Take an integer n, let t1 < t2 <
. . . < tn+1 and assume that we have shown that

(
Π∗(t1), . . . ,Π∗(tn)

)
and

(
Π′(t1), . . . ,Π′(tn)

)
have the same law. Let Ψ be an independent copy of Π∗(tn+1 − tn) (which is then also an
independent copy of Π′(tn+1 − tn) ), then

(
Π∗(t1), . . . ,Π∗(tn+1)

) (d)
=
(
Π∗(t1), . . . ,Π∗(tn),Π∗(tn) ∩Ψ

)
(d)
=
(
Π′(t1), . . . ,Π′(tn+1)

)
,

and the proof is complete.

We can now proceed to the main part of this section, which is the description of Π∗ with
Poisson point processes. First, we let κ∗ν be the measure on PN defined by

κ∗ν(dπ) = |π1|p
∗−1

1{|π1|6=0}dκν(dπ),

where κν is as in section 2.1.3 (a paintbox procedure where the asymptotic frequencies have
distribution ν).

Let
(
∆1(t)

)
t>0

be a P.p.p. with intensity k∗ν and, for all k > 2,
(
∆k(t)

)
t>0

a P.p.p. with

intensity κν . Let also T2, T3, . . . be exponential variables with parameter c (note that there is no
T1 in here). We assume that these variables are all independent. With these, we can create a
PN-valued process Π∗, just as is done in the case of classical fragmentation processes. We start
with Π∗(0) = (N, ∅, ∅, . . .). For every t such that there is an atom ∆k(t), we let Π∗(t) be equal to
Π∗(t−), except that we replace the block Π∗k(t−) by its intersection with all the blocks of ∆k(t).
Also, for every i, we let Π∗(Ti) be equal to Π∗(T−i ), except that the integer i is removed from
its block and placed into a singleton. Just as in the classical case, it might not be clear that this
is well-defined. To make sure that it is the case, we are going to restrict this to finite subsets of
N. Let n ∈ N, we now only need to look at integers k 6 n and times t such that ∆k(t) splits [n]
into at least two blocks. Conveniently enough, this set is in fact finite: indeed, we have

κν({[n] is split into two or more blocks}) =

∫
S↓

(1−
∞∑
i=1

sni )ν(ds) 6
∫
S↓

(1− sn1 )ν(ds) <∞,
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as well as

κ∗ν
(
{[n] is split into two or more blocks}

)
=

∫
S↓

(1−
∞∑
i=1

sni )

∞∑
i=1

sp
∗

i ν(ds)

= cp∗ +

∫
S↓

(1−
∞∑
i=1

sni

∞∑
i=1

sp
∗

i )ν(ds)

6
∫
S↓

(1− sp
∗+n

1 )ν(ds)

<∞.

Since the set (T2, . . . , Tn) is also finite, the previous operations can be applied without ambiguity.
From this, we get, for all t, a sequence

(
Π∗(t)∩ [n]

)
n∈N of compatible partitions, which determine

a unique partition Π∗(t) of N.

Theorem 5.4. The process
(
Π∗(t)

)
t>0

constructed does have the distribution defined by 2.2.

Proof. We start by extending the measure P′, so that it contains not only the fragmentation
process, but also the underlying Poisson point processes and exponential variables: for t 6 0,
and any nonegative measurable function F , let

E′t
[
F
(
(∆i(t)s6t)i∈N, (Ti)i∈N′

)]
= E

[
|Π1(t)|p

∗−1F
(
(∆i(t)s6t)i∈N, (Ti)i∈N′

)]
(remember that, under P, (∆1(t)s6t) is a P.p.p. with intensity kν , and not k∗ν .) These probability
measures are still compatible, and we can still use Kolmogorov’s theorem to extend them to a
single measure P′. Note that under P′, 1 never falls in a singleton, which is why we have ignored
T1. With this new law P′, the partition-valued process

(
Π′(t)

)
t>0

is indeed built from the point

processes
(
∆k(t)

)
t>0

with k ∈ N and the Ti with i ∈ N, and all we need to do is now find their

joint distribution. We start with the harder part, which is finding the law of
(
∆1(t)

)
t>0

, and

will use a Laplace transform method and the exponential formula for Poisson point processes. If
t > 0 and f is a nonnegative measurable function on PN × R, we have

E′[e−
∑
s6t f(∆1

s,s)] = E
[
|Π1(t)|p

∗−1
1{|Π1(t)|6=0}e

−
∑
s6t f(∆1

s,s)
]

= e−cte−ct(p
∗−1)E

[∏
s6t

|∆1
1(s)|p

∗−1
1|∆1

1(s)|6=0e
−

∑
s6t f(∆1(s),s)

]

= e−ctp
∗
E

exp

−∑
s6t

(−(p∗ − 1) log(|∆1
1(s)|) + f(∆1(s), s))


= e−ctp

∗
exp

(
−
∫ t

0

∫
PN

(1− e−(−(p∗−1) log(|π1|)+f(π,s)))κν(dπ)ds

)
= e−ctp

∗
exp

(
−
∫ t

0

∫
PN

(1− |π1|p
∗−1e−f(π,s))κν(dπ)ds

)
Now we use the the Malthusian hypothesis: we have cp∗ +

∫
S↓(1−

∑
sp
∗

i )dν(s) = 0. Translating
this in terms of kν , we have∫

PN

(1− |π1|p
∗−1)κν(dπ) =

∫
S↓

(∑
i

si(1− sp
∗−1
i ) + s0

)
ν(ds)

= −cp∗.
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Thus, in the last integral with respect to kν , we can replace 1 by |π1|p
∗−1, if we subtract cp∗

outside of the integral:

E′[e−
∑
s6t f(∆1

s,s)] = e−ctp
∗

exp

(
−
∫ t

0

(−cp∗ +

∫
PN

(|π1|p
∗−1 − |π1|p

∗−1e−f(π,s))κν(dπ))ds

)
= exp

(
−
∫ t

0

∫
PN

(1− e−f(π,s))|π1|p
∗−1κν(dπ)ds

)
.

This means that the point process
(
∆1(t)

)
t>0

does indeed have the law of a Poisson point process

with intensity |π1|p
∗−1dκν(π).

Let us now prove that the point processes and random variables are independent from each
other and that, except for

(
∆1
t

)
t>0

, they have the same law as under P. Take n ∈ N and t > 0,

for every i ∈ [n], Fi a nonnegative measurable function on the space of random measures on
PN × [0, t], and for 2 6 i 6 n, a nonnegative measurable function gi on R. Using independence
properties under P, we have

E′
[
n∏
i=1

Fi((∆
i(s))s6t)

n∏
i=2

gi(Ti)

]

= E

∏
s6t

|∆1
1(s)|p

∗−1
1|∆1

1(s)|6=0F1

((
∆1(s)

)
s6t

) n∏
i=2

Fi((∆
i(s))s6t)gi(Ti)


= E

∏
s6t

|∆1
1(s)|p

∗−1
1|∆1

1(s)|6=0F1((∆1(s))s6t)

 n∏
i=2

E
[
Fi((∆

i(s))s6t)
] n∏
i=2

E[gi(Ti)]

= E′
[
F1

(
(∆1(s)s6t)

)] n∏
i=2

E
[
Fi((∆

i(s)s6t))
] n∏
i=2

E[gi(Ti)],

which is all we need.

Remark 5.5. Here is an alternative description of a Poisson point process
(
∆1(t)

)
t>0

with inten-

sity k∗ν . Let
(
s(t), i(t)

)
t>0

be a S↓×N-valued Poisson point process with intensity sp
∗

i ν(ds)#(di),

where # is the counting measure on N (otherwise said,
(
s(t)

)
t>0

has intensity
∑
i s
p∗

i ν(ds) and

i(t) is equal to an integer j with probability
sp
∗
j∑
i s
p∗
i

). When there is an atom, construct a partition

of N′ using the paintbox method (using for example a coupled process of uniform variables), and
then add 1 to the i(t)-th block, where the blocks are ordered in decreasing order of their asymptotic
frequencies.

5.3 Link between µ∗ and P∗.

Let T be the fragmentation tree derived from Πα, equipped with its list of death points (Qi)i∈N,
as well as the measure µ∗ which has total mass W , and we keep the assumption that E[W ] = 1.
Given any leaf L, we can build a new partition process (Πα

L(t))t>0 from this, by declaring the
“new death point” of 1 to be L. More precisely, for all t > 0, the restriction of Πα

L(t) to N′ is the
same as that of Πα(t), while 1 is put in the block containing all the integers j such that Qj is
in the same tree component of T>t as L. As in the proof of Proposition 3.2, one can show that
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Πα
L is decreasing and in D. Our main result here is that, if L is chosen with “distribution” µ∗,

then Πα
L has the same distribution as the Π∗,α, where Π∗,α is the “α-self-similar” version of Π∗,

obtained through the usual time-change.

Proposition 5.6. Let F be any nonnegative measurable function of D, then
∫
T F (Πα

L)µ∗(dL) is
a random variable and we have

E
[∫
T
F (Πα

L)µ∗(dL)

]
= E∗[F (Π∗,α)].

Proof. For any leaf L of T , we let ΠL = G−α(Πα
L), then Πα

L = Gα(ΠL) (recall from Section
2.1.3 that Gα and G−α are the measurable functions which transform Π to Πα and back). By
renaming, we are reduced to proving that, for any nonnegative measurable function F on D,∫
T F (ΠL)µ∗(dL) is a random variable and

E
[∫
T
F (ΠL)µ∗(dL)

]
= E∗[F (Π∗)].

We letM(F ) =
∫
T F (ΠL)µ∗(dL). Assume first that F is of the form F

(
(π(s))s>0

)
= K

(
(π(s))06s6t

)
,

for a certain t > 0 and a function K on Dt. We then have, by definition of µ∗,

M(F ) =
∑
i

|RΠi(t)|p
∗
XiK((Ht

i (RΠ)(s))06s6t),

where Xi is defined for all i by Xi =
Wj,t

|RΠi(t)|p∗
for any choice of j ∈ Πi(t), so Xi has the same

law as W and is independent of
(
Π(s)

)
s6t

. We thus know that M(F ) is a random variable such

that

E[M(F )] = E[W ]E

[∑
i

|RΠi(t)|p
∗
K
(

(Ht
i (RΠ)(s))06s6t

)]
= E∗[F (Π∗)].

A measure theory argument then extends this to any nonnegative measurable function F . Let A
be the set of measurable subsets A ∈ D such that M(1A) is a random variable and E[M(1A)] =
P∗[Π∗ ∈ A]. Standard properties of integrals show that A is a monotone class, and since it
contains the generating π-system of sets of the form A = {π ∈ D, (π(s))06s6t ∈ B} with t > 0
and B ⊂ Dt, the monotone class theorem implies that A is D’s Borel σ-field. We then conclude
by approximating F by linear combinations of indicator functions.

5.4 Marking two points

We now want to go further and mark two points of T with distribution µ∗. However, in order
to avoid having to manipulate partitions with both integers 1 and 2 being forced into certain
blocks, we will instead work with the tree T ∗ = TREE(Π∗,α). To make sure that this is properly
defined, we need to check that Π∗,α satisfies the hypotheses of Lemmas 3.9 and 3.11. The
first one is immediate because, for all t > 0, when restricted to the complement of Π∗,α1 (t),(
Π∗,α(s)

)
s>t

is an α-self-similar fragmentation process, while the second one comes from the

Poissonian construction.
Let us give an alternate description of T ∗ which we will use here. Let

(
∆(t)

)
t>0

be a Poisson

point process with intensity measure κ∗ν , and, for all t > 0, ξ(t) = e−ct
∏
s6t |∆(s)|. From this

we define the usual time-change: for all t > 0, τ(t) = inf{u,
∫ u

0
ξ(t)−αdr > t}. The tree T ∗ is
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then made of a spine of length T = τ−1(∞) on which we have attached many small independent
copies of T . More precisely, for each t such that (∆(s))s>0 has an atom at time τ(t), we graft
on the spine at height t a number of trees equal to the number of blocks of ∆(t) minus one (an
infinite amount if ∆t has infinitely many). These are indexed by j > 2 and, for every such j, we

graft precisely a copy of
(

(ξ(t−)|∆j(t)|)−αT , (ξ(t−)|∆j(t)|)µ
)

, which will be called (T ′j,t, µ′j,t).
All of these then naturally come with their copy of µ∗ which we will call µ∗i,t. These can then all
be added to obtain a measure µ∗∗ on T ∗, which satisfies, for all (i, t) ∈ T ∗,

µ∗∗(T ∗i,t+) = lim
s→∞

∑
j∈Π∗(τi(t)+s)∩rep(Π∗(τi(t)))

|Π∗j (t+ s)|p
∗
.

The measure µ∗∗ is the natural analogue of µ∗ on the biased tree.
We will need a Gromov-Hausdorff-type metric for trees with two extra marked points: let

(T , ρ, d) and (T ′, ρ′, d′) be two compact rooted trees, and then let (x, y) ∈ T 2 and (x′, y′) ∈ (T ′)2.
We now let the 2-pointed Gromov-Hausdorff d2

GH

(
(T , x, y), (T ′, x′, y′)

)
be equal to

inf
[

max
(
dZ,H(φ(T ), φ′(T ′)), dZ(φ(ρ), φ′(ρ′)), dZ(φ(x), φ′(x′)), dZ(φ(y), φ′(y′))

)]
,

where the infimum is once again taken on all possible isometric embeddings φ and φ′ of T and
T ′ in a common space Z. Taking classes of such trees up to the relation d2

GH , we then get a
Polish space T2 which is the set of 2-pointed compact trees. For more details in a more general
context (pointed metric spaces instead of trees), the reader can refer to [66], Section 6.4.

Proposition 5.7. Let F be any nonnegative measurable function on T2. Then∫
T F (T , L, L′)µ∗(dL)µ∗(dL′) is a random variable, and we have

E
[∫
T

∫
T
F (T , L, L′)µ∗(dL)µ∗(dL′)

]
= E∗

[∫
T ∗
F (T ∗, L1, L

′)µ∗∗(dL′)

]
.

Proof. As in the proof of Proposition 5.6, we let Πα
L be the fragmentation-like process obtained

by setting the leaf L as the new death point of the integer 1 in T , and then we let ΠL be its homo-
geneous version. The other leaf L′ will be represented by a sequence of integers

(
jαL′(t)

)
06t<ht(L′)

where, for all t with 0 6 t < ht(L′), jαL′(t) is the smallest integer j 6= 1 such that (j, t) 6 L′

in T ∗. We then let
(
jL′(t)

)
t>0

we the image of (jαL′(t))06t6ht(L′) through the reverse Lamperti

transformation.
Notice that (T , L, L′) is the image of

(
ΠL(t), jL′(t)

)
t>0

by a measurable function. Indeed,

going back to the representation in `1 of our trees, T is no more than TREE(Πα
L), L1 is Q1,

while L′ is the limit as t goes to infinity of QjL′ (t).
Thus, with some renaming, we now just need to check that, if F is a nonnegative measurable

function on the space of PN × N-valued càdlàg functions (equipped with the product σ-algebra
generated by the evaluation functions), then

∫
T F

(
(ΠL(t), jL′(t))t>0

)
µ∗(dL)µ∗(dL′) is a random

variable, and

E
[∫
T

∫
T
F
((

ΠL(t), jL′(t)
)
t>0

)
µ∗(dL)µ∗(dL′)

]
= E∗

[∫
T ∗
F
((

Π∗(t), jL′(t)
)
t>0

)
µ∗∗i,t(dL

′)

]
.

This will be done the same way as before: suppose that F is of the form K
(
(π(s), j(s))06s6t

)
,

then one can write∫
T

∫
T
F
((

ΠL(t), jL′(t)
)
t>0

)
µ∗(dL)µ∗(dL′) =

∫
T

∑
j

Wj(t),tK
((

ΠL(s), j(s)
)

06s6t

)
µ∗(dL).
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(In the right-hand side, j(s) denotes the smallest element of the block of ΠL(s) which contains
(ΠL(t))j .) By Proposition 5.6, this is a random variable, and we know that its expectation is
equal to

E∗
∑

j

|Π∗j (t)|p
∗
K
((

Π∗(s), j(s)
)

06s6t

) = E∗
[∫
T ∗
F
((

Π∗(t), jL′(t)
)
t>0

)
µ∗∗(dL′)

]
.

A monotone class argument similar to the one at the end of Proposition 5.6 ends the proof.

6 The Hausdorff dimension of T
The reader is invited to read [34] for the basics on the Hausdorff dimension dimH of a set, which
we will not recall here.

6.1 The result

Theorem 6.1. Assume (H), that is that the function ψ takes at least one strictly negative value
on [0, 1]. Then there exists a Malthusian exponent p∗ for (c, ν) and, almost surely, on the event
that Π does not die in finite time, we have

dimH
(
L(T )

)
=
p∗

|α|
.

If Π does die in finite time, then the leaves of T form a countable set, which has dimension 0.

The last statement is a consequence of Proposition 3.13: if Π does die in finite time, then
there are no proper leaves, which implies that every leaf of T is the death point of some integer.

6.2 The lower bound

An elaborate use of Frostman’s lemma (Theorem 4.13 in [34]) with the measure µ∗ combined

with a truncation of the tree similar to what was done in [41] will show that dimH
(
L(T )

)
> p∗

|α|
almost surely when Π does not die in finite time.

6.2.1 A first lower bound

Here we assume that E[W ] = 1, and thus Π dies in finite time if and only if µ∗ is the zero

measure. We also assume the integrability condition
∫
S↓(
∑
i | log(si)|sp

∗

i )ν(ds) < ∞ of Lemma
4.11.

Lemma 6.2. Recall that p = sup{q ∈ R : φ∗(−q) > −∞}, and let also

A = sup{a 6 p∗ :

∫
S↓

∑
i 6=j

sp
∗−a
i sp

∗

j ν(ds) <∞, } ∈ [0, p∗].

On the event where Π does not die in finite time, we have the lower bound:

dimH(L(T )) >
A ∧ (|α|+ p)

|α|
.
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Proof. We want to apply Proposition 5.7 to the function F defined on the space T2 by F (T , ρ, d, x, y) =
d(x, y)−γ1x 6=y, where γ > 0. To do this we need to check that it is measurable, which can be done
by showing that d(x, y) is continuous. In fact, it is even Lipschitz-continuous: for all (T , ρ, d, x, y)
and (T ′, ρ′, d′, x′, y′) and any embeddings φ and φ′ of T and T ′ in a common Z, we have

|d(x, y)− d′(x′, y′)| = |dZ(φ(x), φ(y))− dZ(φ′(x′), φ′(y′))| 6 dZ(φ(x), φ′(x′)) + dZ(φ(y), φ′(y′))

and then taking the infimum, we obtain

|d(x, y)− d′(x′, y′)| 6 2d2
GH

(
(T , x, y), (T ′, x′, y′)

)
.

Applying Proposition 5.7 to F , we then get

E
[∫
T

∫
T

(d(L,L′))−γµ∗(dL)µ∗(dL′)

]
= E∗

[∫
T ∗

(d(L1, L
′))−γµ∗∗(dL′)

]
.

Recall the Poisson description of T ∗ of Section 5.4. Let, for all relevant j > 2 and t >
0, Xj,t be the root of T ′j,t and Zj,t =

∫
T ′j,t

d(L′, Xk,t)
−γµ∗(dL′). One can then write Zj,t =(

ξ(t−)|∆j(t)|
)p∗+αγ

(Ij,t)
−γ where Ii,t is a copy of I (defined in the proof of Lemma 4.11) which

is independent from the process (∆)t>0 and all the other T ′k,s for (k, s) 6= (j, t). Thus, the process
(∆t, (Ij,t)j>2)t>0 is a Poisson point process whose intensity is the product of κ∗ν and the law of
an infinite sequence of i.i.d. copies of I. We then have

E∗
[∫

d(L1, L
′)γµ∗(dL′)

]
= E∗

∑
t>0

∑
j>2

∫
T ′j,t

d(L1, L
′)−γµ∗∗(dL′)


6 E∗

∑
t>0

∑
j>2

∫
T ′j,t

d(L′, Xi,t)
−γµ∗∗(dL′)


= E∗

∑
t>0

∑
j>2

(
ξ(t−)|∆j(t)|

)p∗+αγ
(Ij,t)

−γ


= Q

[
I−γ ]E∗

[ ∫
ξp
∗+αγ
t− dt

] ∫
S↓

∑
i

sp
∗

i

∑
j 6=i

sp
∗+αγ
j ν(ds).

The last equality directly comes from the Master Formula for Poisson point processes.
We have a product of three factors, and we want to know when they are finite. The case of the

first factor has already been studied in Lemma 4.11, we know that it is finite when γ < 1 +
p

|α| .

For the second factor to be finite we simply need φ∗(p∗ + αγ) > 0, which is true as soon as

p∗ + αγ > 0 i.e. when γ < p∗

|α| . Finally, by definition of A, the third factor is finite as soon as

γ < A
|α| . Since A 6 p∗ by definition, Frostman’s lemma implies Lemma ??.

6.2.2 A reduced fragmentation and the corresponding subtree

Let N ∈ N and ε > 0, we define a function GN,ε from S↓ to S↓ by

GN,ε(s) =

{
(s1, . . . , sN , 0, 0, . . .) if s1 6 1− ε
(s1, 0, 0, . . .) if s1 > 1− ε.
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A similar function can be defined on partitions on PN. If a partition π does not have asymptotic
frequencies (a measurable event which doesn’t concern us), we let GN,ε(π) = π. If it does, we

first reorder its blocks by decreasing order of their asymptotic frequencies by letting, for all i, π↓i
be the block with i-th highest asymptotic frequency (if there is a tie, we just rank those blocks
by increasing order of their first elements). Then we let

GN,ε(π) =

{
(π↓1 , . . . , π

↓
N , singletons) if |π↓1 | 6 1− ε

(π↓1 , singletons) if |π↓1 | > 1− ε.

We let νN,ε be the image of ν by GN,ε. Then the image of kν by GN,ε on PN is kνN,ε . The
following is immediate.

Proposition 6.3. Let
(
(∆k

t )t>0, k ∈ N
)

be a family of independant Poisson point processes with

intensity kν , then
(
(GN,ε(∆

k
t ))t>0, k ∈ N

)
is a family of independant Poisson point processes

with intensity kνN,ε . Using them, one gets two coupled fragmentation processes (Π(t))t>0 and
(ΠN,ε(t))t>0 such that, for all t, ΠN,ε(t) is finer than Π(t). Also, TN,ε, the tree built from
(ΠN,ε(t))t>0, is naturally a subset of T .

6.2.3 Using the reduced fragmentation

Recall the concave function ψ defined from R to [−∞,+∞) by

ψ(p) = cp+

∫
S↓

(1−
∑
i

spi )ν(ds).

We now assume (H): there exists p > 0 such that −∞ < ψ(p) < 0.

Proposition 6.4. For N ∈ N ∪ {∞}, ε ∈ [0, 1] and p ∈ R, define the reduced Laplace exponent
ψN,ε(p) = cp+

∫
S↓(1−

∑
i s
p
i )νN,ε(ds). One can then write

ψN,ε(p) = cp+

∫
S↓

((
1−

N∑
i=1

spi

)
1{s161−ε} + (1− sp1)1{s1>1−ε}

)
ν(ds).

(i) This is a nonincreasing function of N and a nondecreasing function of ε.
(ii) We have ψ(p) = inf

N,ε
ψN,ε(p).

(iii) There exist N0 and ε0 such that, for N > N0 and ε < ε0, the pair (c, νN,ε) satisfies (H)
and has a Malthusian exponent p∗N,ε.

(iv) We have p∗ = sup
N,ε

p∗N,ε.

Proof. The first point is immediate. The second one is a straightforward application of the
monotone convergence theorem as N tends to infinity and ε tends to 0, which is valid because
we have, for all s, the upper bound(

1−
N∑
i=1

spi

)
1{s161−ε} + (1− sp1)1{s1>1−ε} 6 (1− sp1) 6 Cp(1− s1),

and (1− s1) is ν-integrable.
The third point is a direct consequence of the second: let p ∈ [0, 1] such that ψ(p) < 0, there

exist N0 and ε0 such that ψN0,ε0(p) < 0. Then by monotonicity, for all N > N0 and ε < ε0,
ψN,ε(p) < 0 and thus νN,ε has a Malthusian exponent p∗N,ε.
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Now for the last point: first notice that, for all N and ε, we have φN,ε(p
∗) > φ(p∗) = 0 and

thus, if it exists, p∗N,ε is smaller than or equal to p∗. Then, for p < p∗, by taking N large enough
and ε small enough, we have ψN,ε(p) < 0 and thus p∗N,ε > p. This concludes the proof.

Proposition 6.5. For all N and ε such that p∗N,ε exists, and for all q > 1, the measure νN,ε

satisfies assumption (Mq):
∫
S↓ |1−

∑∞
i=1 s

p∗N,ε
i |q νN,ε(ds) <∞.

Proof. It is simply a matter of bounding (1−
∑N
i=1 s

p∗N,ε
i )1s161−ε + (1− sp

∗
N,ε

1 )1s1>1−ε in such a
way that both the upper and lower bound’s absolute values have an integrable q-th power. For
the upper bound, write(

1−
N∑
i=1

s
p∗N,ε
i

)
1{s161−ε} + (1− sp

∗
N,ε

1 )1{s1>1−ε} 6 1− sp
∗
N,ε

1 6 Cp∗N,ε(1− s1)

and since q > 1, we can bound (1−s1)q by 1−s1 which is integrable. For the lower bound, write(
1−

N∑
i=1

s
p∗N,ε
i

)
1{s161−ε} + (1− sp

∗
N,ε

1 )1{s1>1−ε} > (1−N)1{s161−ε}

and then note that, since ν integrates 1− s1, the set {s1 6 1− ε} has finite measure.

Proposition 6.6. Let N, ε be such that p∗N,ε exists. Let then AN,ε and p
N,ε

corresponding

quantities to A and p (see Lemma ??), replacing ν by νN,ε. Then AN,ε = p∗N,ε and p
N,ε
> p∗N,ε.

Proof. The important fact to note here is that, since 1 − s1 is integrable with respect to ν, we
have ν({s1 6 1− ε}) <∞. Now notice that, for all p < p∗N,ε, we have

∫
S↓

∞∑
i=1

(1− s−pi )s
p∗N,ε
i νN,ε(ds) = cp∗N,ε +

∫
S↓

(
1−

∞∑
i=1

s
p∗N,ε−p
i

)
νN,ε(ds)

= cp∗N,ε +

∫
S↓

(
1−

N∑
i=1

s
p∗N,ε−p
i 1{s161−ε} + (1− sp

∗
N,ε−p

1 )1{s1>1−ε}

)
ν(ds)

> cp∗N,ε − (N − 1)ν({s1 6 1− ε})
> −∞.

This shows that p
N,ε
> p∗N,ε. Similarly, for a < p∗N,ε, we have∫

S↓

∑
i 6=j

s
p∗N,ε−a
i s

p∗N,ε
j νN,ε(ds) =

∫
S↓

∑
i 6=j6N

s
p∗N,ε−a
i s

p∗N,ε
j 1{s161−ε}ν(ds)

6 N2ν({s1 6 1− ε})
<∞.

Thus AN,ε = p∗N,ε

By applying Lemma ?? for N tending to infinity and ε going to 0 (recall that (Mq) does
imply E[W ] = 1), we immediately obtain the following:
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Proposition 6.7. Assume (H). Then, on the event where at least one of the ΠN,ε does not die
in finite time, we almost surely have

dimH(T ) >
supN,ε p

∗
N,ε

|α|
=
p∗

|α|
.

Thus, to complete our proof, we want to check the following lemma:

Lemma 6.8. Almost surely, if Π does not die in finite time, then for N large enough and ε
small enough, ΠN,ε also does not.

Proof. We will argue using Galton-Watson processes. Let, for all integers n, Z(n) be the number
of non-singleton and nonempty blocks of Π(n) and, for all N and ε, ZN,ε(n) be the number
of non-singleton and nonempty blocks of ΠN,ε(n). These are Galton-Watson processes, which
might take infinite values. We want to show that, on the event that Z doesn’t die, there exist N
and ε such that ZN,ε also survives. Letting q be the extinction probability of Z and qN,ε be the
extinction probability of ZN,ε, this will be proved by showing that q = inf

N,ε
qN,ε. By monotonicity

properties, this infimum is actually equal to q′ = lim
N→∞

qN, 1
N

.

Assume that q < 1 (otherwise there is nothing to prove). This implies that E[Z(1)] > 1,
and by monotone convergence, there exists N such that E[ZN, 1

N
(1)] > 1, and thus qN, 1

N
< 1.

Let, for x ∈ [0, 1], F (x) = E[xZ(1)] and, for all N and ε, FN,ε(x) = E[xZN,ε(1)]. The sequence
of nondecreasing functions (FN, 1

N
)N∈N converges simply to F . Since F is continuous on the

compact interval [0, qN, 1
N

], the convergence is in fact uniform on this interval. We can take the

limit in the relation FN, 1
N

(qN, 1
N

) = qN, 1
N

and get F (q′) = q′. Since q′ < 1 and since F only has

two fixed points on [0, 1] which are q and 1, we obtain that q = q′.

We have thus proved the lower bound of Theorem 6.1: assuming (H), almost surely, if Π does

not die in finite time, then dimH
(
L(T )

)
> p∗

|α| .

6.3 Upper bound

Here we will not need the existence of an exact Malthusian exponent, and we will simply let

p′ = inf
{
p > 0, ψ(p) > 0

}
.

Proposition 6.9. We have almost surely

dimH
(
L(T )

)
6

p′

|α|
.

This statement is in fact slightly stronger than the upper bound of Theorem 6.1. In particular
it states that, if there exists p 6 0 such that ψ(p) > 0, then the Hausdorff dimension of the set
of leaves of T is almost surely equal to zero.

Proof. We will find a good covering of the set of proper leaves, in the same spirit as in [41], but
which takes account of the sudden death of whole fragments. Let ε > 0. For all i ∈ N, let

tεi = inf{t > 0 : |Π(i)(t)| < ε}.

Note that this is in fact a stopping line as defined in section 2.1.4. We next define an exchangeable
partition Πε by saying that integers i and j are in the same block if Π(i)(t

ε
i ) = Π(j)(t

ε
j). This
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should be thought of as the partition formed by the blocks of Π the instant they get small enough.
Now, for all integers i, consider

τε(i) = sup
j∈Π(i)(t

ε
i )

inf{t > tεi : |Π(j)(t)| = 0} − tεi ,

the time this block has left before it is completely reduced to dust. This allows us to define our
covering. For all integers i, we let bεi be the vertex of [0, Qi] at distance tεi from the root. We
take a closed ball with center bεi and radius τε(i). These balls are the same if we take two integers
in the same block of Πε, so we will only need to consider one integer i representing each block of
Πε.

Let us check that this covers all of the proper leaves of T . Let L be a proper leaf and(
i(t)
)

06t6ht(L)
be any sequence of integers such that, for all 0 6 t 6 ht(L), (i(t), t) 6 L in T . By

definition of a proper leaf, |Π(i(t))(t)| does not suddenly jump to zero, so there exists a t < ht(L)
such that 0 < |Π(i(t))(t)| 6 ε. This implies that L is in the closed ball centered at bεi(t) with
radius τε(i(t)).

The covering is also fine in the sense that supi τ
ε
i goes to 0 as ε goes to 0; indeed, if that

wasn’t the case, one would have a sequence (in)n∈N and a positive number η such that τ2−n

in
> η

for all n. By compactness, one could then take a limit point x or a sequence (b2
−n

in
)n∈N , and we

would have µ(Tx) = 0 despite x not being a leaf, a contradiction.
Now, for 0 < γ 6 1, we have, summing one integer i per block of Πε, and using the extended

fragmentation property with the stopping line (tεi )i∈N,

E

 ∑
i∈rep(Πε)

(τε(i))
γ
|α|

 6 E

 ∑
i∈rep(Πε)

E
[
τγ/|α|

]
|Πε

(i)|
γ


6 E

[
τγ/|α|

]
E

 ∑
i∈rep(Πε)

|Πε
(i)|

γ

 .
Since τ has exponential moments (see [40], Proposition 14), the first expectation is finite and we
only need to check when the second one is finite. Since Πε is an exchangeable partition, we know
that, given its asymptotic frequencies, the asymptotic frequency of the block containing 1 is a
size-biased pick among them and we therefore have

E

[∑
i

|Πε
i |γ
]

= E
[
|Πε

1|γ−1
1{|Πε1|6=0}

]
= E

[
|Π1(Tε)|γ−1

1{|Π1(Tε)|6=0}
]

6 E
[
|Π1(T−0 )|γ−1

]
,

where Tε = inf{t, |Π1(t)| 6 ε} and T0 = inf{t, |Π1(t)| = 0}. Now recall that, up to a time-change
which does not concern us here, the process (|Π1(t)|t>0) is the exponential of the opposite of
a killed subordinator (ξ(t))t>0 with Laplace exponent φ. This last expectation can be easily
computed: let k be the killing rate of ξ and φ0 = φ − k, φ0 is then the Laplace exponent of a
subordinator ξ′ which evolves as ξ, but is not killed. By considering an independent exponential
random time T with parameter k and killing ξ′ at time T , one obtains a process with the same
distribution as ξ. We thus have

E[e−(γ−1)ξT− ] = E[e−(γ−1)ξ′
T− ] =

∫ ∞
0

ke−kte−t
(
φ0(γ−1)

)
dt =

∫ ∞
0

ke−φ(γ−1)tdt.
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Thus, if ψ(γ) > 0, then γ
|α| is greater than the Hausdorff dimension of the leaves of T .

7 Some comments and applications

7.1 Comparison with previous results

In [41], the dimension of some conservative fragmentation trees was computed. The result was, as
expected, 1

|α| , but this was obtained with very different assumptions on the dislocation measure:

Proposition 7.1. Let ν be a conservative dislocation measure, α < 0, and let T be a fragmenta-
tion tree with parameters (α, 0, ν). Assume that ν satisfies the assumption (H′) which we define
by ∫

S↓
(s−1

1 − 1)ν(ds) <∞.

Then, almost surely, we have

dimH(L(T )) =
1

|α|
.

This result complements ours - neither (H) nor (H′) is stronger than the other, which we are
going to show by producing two corresponding examples.

For all n > 2, let sn1 = 1− 1
n and, for i > 2, sni = S

n
1

i(log(i))2 , where S =
(∑∞

i=2
1

(i(log(i))2)

)−1

(this ensures that
∑
i s
n
i = 1). Let then sn = (sni )i∈N ∈ S↓ and

ν1 =
∑
n>2

1

n
δsn .

We will show that this σ-finite measure on S↓ is a dislocation measure which satisfies (H′) but
not (H). First,

∫
S↓(1 − s1)ν1(ds) =

∑
n>2

1
n2 < ∞ so we do have a dislocation measure. Next,

let us check (H′):∫
S↓

(s−1
1 − 1)ν1(ds) =

∑
n>2

1

n
(

n

n− 1
− 1) =

∑
n>2

1

n(n− 1)
<∞.

Finally, (H) is not verified: indeed, for any p < 1, n > 2 and i > 2, (sni )p = Sp

np

(
i(log(i))2

)−p
which is the general term of a divergent series.

Now we are going to do the same on the other side. For all n ∈ N, let tn1 = 1
n and, for

i > 2, let tni = T (1 − 1
n ) 1

i2 , where T =
(∑∞

i=2( 1
i2 )
)−1

. Since tn2 > tn1 for large n, the sequence
tn = (tni )i∈N is not a mass partition (despite its sum being equal to 1), and we will solve this

problem by splitting its terms. Let N(n) =
⌈
tn2
tn1

⌉
, and then let un = (uni )n∈N ∈ S↓ such that

un1 = tn1 and, for i > 2, uni =
tnk
N(n) where k is such that i ∈ {(k−2)N(n)+2, . . . , (k−1)N(n)+1}.

In other words, un starts with tn1 , and then every term of tn is divided by N(n) and repeated
N(n) times. Now let us define

ν2 =
∑
n∈N

1

n2
δun .
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The measure ν2 integrates 1− s1 since it is finite, but
∑
n∈N

1
n2 ( 1

tn1
− 1) =

∑
n∈N

1
n −

1
n2 =∞, so

(H′) is not verified. On the other hand, for any p < 1, we have∫
S↓

∑
i

sp
∗

i ν2(ds) =
∑
n∈N

1

n2

 1

np
+N(n)

(T (1− 1
n )

N(n)

)p(∑
i>2

1

i2p
) ,

which is finite as soon as p > 1
2 , since N(n) is asymptotically equivalent to Tn

4 as n goes to
infinity. Thus ν2 satisfies (H).

7.2 Influence of parameters on the Malthusian exponent

We will here investigate what happens when we change some parameters of the fragmentation
process. We start with a“basic” function ψ to which we will add either a constant (which amounts
to increasing ν({(0, 0, . . .)}) ) or a linear part (which amounts to adding some erosion). We let
p0 = inf{p > 0, ψ(p) > −∞}. We also exclude the trivial case where ν(s2 > 0) = 0, where the
tree is always a line segment.

7.2.1 Influence of the killing rate

We assume here that ν((0, 0, . . .)) = 0, which implies that ψ(0) < 0, while we do not make any
assumptions on the erosion parameter c > 0. We will quickly study how the Malthusian exponent
changes when we add to ν a component of the form kδ(0,0,...) with k > 0. Let therefore, for k > 0,
νk = ν + kδ(0,0,...) and, for p ∈ R, ψk(p) = cp+

∫
S↓(1−

∑
i s
p
i )νk(ds) = ψ(p) + k and, if it exists,

p∗(k) the only number in (0, 1] which nulls the function ψk.

Proposition 7.2. Assume (H) for (c, ν), that is ψ(p+
0 ) < 0, and let kmax = |ψ(p+

0 )|. Then,
for k ∈ [0, kmax), the pair (c, νk) also satisfies (H). Letting p∗(kmax) = p0 (though it is not a
Malthusian exponent in our sense when p0 = 0), the function p∗(k) on [0, kmax] is the inverse
function of −ψ. It is thus strictly decreasing and is differentiable as many times as ψ. For
k > kmax, (H) is no longer satisfied (in fact there is no Malthusian exponent if k > kmax),
however we have in this case p0 = inf{p > 0, ψk(p) > 0} which is the equivalent of p′ in Section
6.3.

7.2.2 Influence of erosion

Here we do not make any assumptions of ν, and let, for nonnegative c and any p, ψc(p) =
cp +

∫
S↓(1 −

∑
i s
p
i )ν(ds). Note that, unlike in the previous section, the standard coupling

between (α, c, ν)-fragmentations of Section 2.1.3 for all c > 0 is such that, almost surely, if for
one c, Π0,c dies in finite time, then Π = Π0,c dies in finite time for all c. Thus, placing ourselves
on the event where they do not die in a finite time, and calling Tc = TREE(Πα,c), we have

dimH(L(Tc)) = p∗(c)
|α| , p∗(c) being the corresponding Malthusian exponent.

Proposition 7.3. Assume (H) for (0, ν), that is ψ(p+
0 ) < 0. If p0 = 0 then the couple (c, ν)

satisfies (H) for all c, and its Malthusian exponent p∗(c) tends to zero as c tends to infinity with
the following asymptotics:

p∗(c) ∼
c→∞

|ψ(0)|
c

.

If p0 > 0, then (c, ν) satisfies (H) for c < cmax with cmax =
|ψ(p+

0 )|
p0

. By setting p∗(cmax) = p0,

the function c → p∗(c) is decreasing and is differentiable as many times as ψ is. For c > cmax

(H) is no longer satisfied, however we do have p0 = inf{p > 0, ψk(p) > 0}.

72



7.3 An application to the boundary of Galton-Watson trees

In this part we generalize some simple well-known results on the boundary of discrete Galton-
Watson trees (see for example [47]) to trees where the lifetime of an individual is exponentially
distributed. Unsurprisingly, the Hausdorff dimension of this boundary is the same in both cases.

Let ξ =
∑
piδi be a probability measure on N ∪ {0} which is supercritical in the sense that

m =
∑
i ipi > 1. Let T be a Galton-Watson tree with offspring distribution ξ and such that

the individuals have exponential lifetimes with parameter 1. Seeing T as an R-tree, we define
a new metric on it by changing the length of every edge: let a ∈ (1,∞) and e be an edge of T
connecting a parent and the child, we define the new length of e to be the old length of e times
a−n, where the parent is in the n-th generation of the Galton-Watson process. We let d′ be this
new metric.

The metric completion of (T , d′) can then be seen as T ∪ ∂T where ∂T are points at the end
of the infinite rays of T .

Proposition 7.4. On the event where T is infinite, we have

dimH(∂T ) =
logm

log a
.

Proof. We start with the case where there exists N ∈ N such that, for i > N + 1, pi = 0. We
aim to identify (T , d′) as a fragmentation tree and apply Theorem 1.1. To do this, we first have
to build a measure µ on it, as usual with Proposition 2.1. Let x ∈ T , and let n be its generation,
we then let m(x) = 1

Nn . What this means is that the mass of the whole tree is 1, then each of
the subtrees spawned by the death of the initial ancestor have mass 1

N , then the death of each
of these spawns trees with mass 1

N2 , and so on.
We leave to the reader the details of the proof that (T , d′, µ) is a fragmentation tree, the

corresponding parameters being c = 0, α = − log a
logN and ν =

∑
piδsi , with si = (si1, s

i
2, . . .) such

that sij = 1
N if j 6 i and sij = 0 otherwise. One method of proof would be to couple T with an

actual (α, 0, ν)-fragmentation process which would be obtained by constructing the death points
one by one, following the tree and choosing a branch uniformly at each branching point, which
is possible since the branching points of T form a countable set.

We then just need to compute the Malthusian exponent and check condition (H). We are

looking for a number p∗ such that
∫
S↓(1−

∑N
i=1 s

p∗

i )ν(ds) = 0. This can be rewritten:

∫
S↓

(1−
N∑
j=1

sp
∗

j )ν(ds) =
∑
i

pi(1− i
1

Np∗
)

= 1− m

Np∗
.

Thus we have p∗ = logm
logN . Condition (H) is also easily checked, since ψ(0) = 1−m < 0 and

we thus get

dimH(∂T ) =
p∗

|α|
=

logm

log a
.

The proof in the general case is once again done with a truncation argument, as in Section
6.2.3: once again leaving the details, we let, for all N ∈ N, ξN be the law of X ∧N where X has
law ξ. The monotone convergence theorem shows that the average of ξN converges to that of ξ,
and the tree T with offspring distribution ξ can be simultaneously coupled with trees (TN )N∈N
with offspring distributions (ξN )N∈N, such that T has finite height (for its original metric) if and
only if all the (TN )N∈N also do.
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A Possibly infinite Galton-Watson processes

The purpose of this section is to extend the most basic results from the theory of discrete time
Galton-Watson processes to the case where one parent may have an infinite amount of children.
We refer to [45] for the classical results. Let Z be a random variable taking values in Z+ ∪ {∞}
with P[Z > 1] 6= 1, and (Zin)i,n∈N be independent copies of Z. Let also, for x > 0, F (x) = E[xZ ].

We define the process (Xn)n∈N by X1 = 1 and, for all n, Xn+1 =
∑Xn
i=1 Z

i
n.

Proposition A.1. The following are all true:
(i) Almost surely, X either hits 0 in finite time or tends to infinity.
(ii) If X hits the infinite value once, then it stays there almost surely.
(iii) If E[Z] > 1 then the function F has two fixed points on [0, 1]: one is the probability of

extinction q, and the other is 1. If E[Z] 6 1 then q = 1 and F only has one fixed point.

Proof. The proof of (i) is the same proof as in the classical case. For (ii), it is only a matter
of seeing that, if we have Xn = ∞ for some n, then P[Z = 0] 6= 1 and E[Z] > 0, thus Xn+1 is
infinite by the law of large numbers. For (iii), in the case where P[Z = ∞] 6= 0, we first show
that q 6= 1 by taking an integer k such that E[min(Z, k)] > 1, and noticing that X dominates
the classical Galton-Watson process where we have replaced, for all n and i, Zin by min(Zin, k),
which is supercritical and thus has an extinction probability which is different from 1. Then, the
fact that q is a fixed point of F and that F has at most two fixed points on [0, 1] are proved the
same way as in the classical case.
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Chapter 3

Scaling limits of k-ary growing
trees
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For each integer k > 2, we introduce a sequence of k-ary discrete trees constructed recursively

by choosing at each step an edge uniformly among the present edges and grafting on “its

middle” k − 1 new edges. When k = 2, this corresponds to a well-known algorithm which

was first introduced by Rémy. Our main result concerns the asymptotic behavior of these

trees as the number of steps n of the algorithm becomes large: for all k, the sequence of

k-ary trees grows at speed n1/k towards a k-ary random real tree that belongs to the family

of self-similar fragmentation trees. This convergence is proved with respect to the Gromov-

Hausdorff-Prokhorov topology. We also study embeddings of the limiting trees when k

varies.

1 Introduction

The model. Let k > 2 be an integer. We introduce a growing sequence
(
Tn(k)

)
n∈Z+

of k-ary

discrete trees, constructed recursively as follows:

• Step 0: T0(k) is the tree with one edge and two vertices: one root, one leaf.

• Step n: given Tn−1(k), choose uniformly at random one of its edges and graft on “its
middle” (k− 1) new edges, that is split the selected edge into two so as to obtain two edges
separated by a new vertex, and then add k − 1 new edges to the new vertex.

23

1

12

3

1

23

12

3
1

23 23

1

ρ ρ ρρ

Figure 3.1: A representation of Tn(3) for n = 0, 1, 2, 3. The edges are also labelled as
explained in the paragraph just above Theorem 1.3.

For all n, this gives a tree Tn(k) with (k− 1)n+ 1 leaves, n internal nodes and kn+ 1 edges.
In the case where k = 2, edges are added one by one and our model corresponds to an algorithm
introduced by Rémy [71] to generate trees uniformly distributed among the set of binary trees
with n+ 1 labelled leaves. Many other dynamical models of trees growing by adding edges one
by one exist in the literature, see for example [75, 16, 73, 35, 22].

Scaling limits. We are interested in the description of the metric structure of the growing tree
Tn(k) as n becomes large. For k = 2, it is easy to explicitly compute the distribution of Tn(2) (see
for example [62]), which turns out to be that of a binary critical Galton-Watson tree conditioned
to have 2n + 2 nodes (after forgetting the order). According to the original work of Aldous on
scaling limits of Galton-Watson trees [5], the tree Tn(2) then grows at speed n1/2 towards a
multiple of the Brownian continuum random tree (Brownian CRT). To be precise, viewing Tn(2)
for n ∈ Z+ as an R-trees by considering that its edges all have length 1, and endowing it with
the uniform probability measure on its leaves, which we denote by µn(2), we then have(

Tn(2)

n1/2
, µn(2)

)
a.s.−→
n→∞

(
2
√

2TBr, µBr

)
(3.1)
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for the GHP-topology, where (TBr, µBr) is a random compact R-tree called the Brownian contin-
uum random tree (Brownian CRT for short). We point out that the almost sure convergence was
not proved initially in [5], which states, in a more general setting, convergence in distribution of
rescaled Galton-Watson trees. However, it is implicit in [69] and [61]. See also [24, Theorem 5]
for an explicit statement.

Many classes of random trees are known to converge after rescaling towards the Brownian
CRT. However, other limits are also possible, amongst which two important classes of random
R-trees: the class of Lévy trees introduced by Duquesne, Le Gall and Le Jan [57, 29, 30] (which
is the class of all possible limits in distribution of rescaled sequences of Galton-Watson trees
[29]) and the class of self-similar fragmentation trees which were studied in Chapter 1 (which is
the class of scaling limits of the so-called Markov branching trees [42, 43]). We will see in this
chapter that the sequence (Tn(k), n > 0) has a scaling limit which to this second category.

The Brownian CRT belongs to the family of fragmentation trees, as shown in [10]. Its index

of self-similarity is −1/2, its erosion coefficient is 0 and its dislocation measure ν↓2 is binary,
conservative and such that

ν↓2 (ds1) =

√
2

π
s
−3/2
1 s

−3/2
2 1{s1>s2}ds1 =

√
2

π
s
−1/2
1 s

−1/2
2

(
1

1− s1
+

1

1− s2

)
1{s1>s2}ds1,

with s2 = 1 − s1. Of course the constraint s1 > s2 is here equivalent to s1 > 1/2, but we keep
the first notation in view of generalizations.

Our main goal is to generalize the convergence (3.1) to the sequences of trees
(
Tn(k)

)
n∈Z+

for all integers k > 2. For reasons which will be apparent later on, we will want to consider mass
partitions which are not necessarily ordered with the decreasing order, and will only reorder them
when specifically looking at dislocation measures. We thus work with Sk, the closed (k − 1)-
dimensional simplex and its variant Sk,6 of dimension k obtained by allowing the sum to be less
than 1,

Sk =

{
s = (s1, s2, ..., sk) ∈ [0, 1]k :

k∑
i=1

si = 1

}
; Sk,6 =

{
s = (s1, s2, ..., sk) ∈ [0, 1]k :

k∑
i=1

si 6 1

}
.

Both spaces are endowed with the distance

dk(s, s′) =

k∑
i=1

|si − s′i|,

which makes them compact. The Lebesgue measure on Sk can be written as ds =
∏k−1
i=1 dsi,

with sk being implicitly defined by 1−
∑k−1
i=1 si, whereas that on Sk,6 should be understood as

ds =
∏k
i=1 dsi.

Theorem 1.1. Let µn(k) be the uniform measure on the leaves of Tn(k). There exists a k-ary
R-tree Tk, endowed with a probability measure on its leaves µk, such that(

Tn(k)

n1/k
, µn(k)

)
P−→ (Tk, µk)

for the GHP-topology. The measured tree (Tk, µk) is a fragmentation tree with index of self-

similarity −1/k and erosion coefficient 0. Its dislocation measure ν↓k is supported on Sk and is
defined by

ν↓k(ds) =
(k − 1)!

k(Γ( 1
k ))k−1

k∏
i=1

s
−(1−1/k)
i

(
k∑
i=1

1

1− si

)
1{s1>s2>...>sk}ds,
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where Γ stands for Euler’s Gamma function.

Note that the convergence is a little weaker than (3.1) since it is only a convergence in
probability. However some smaller objects akin to finite dimensional marginals of Tn(k) converge

almost surely as we will see later in Proposition 3.1. Note also that ν↓k is a σ-finite measure on
Sk such that ∫

Sk
(1− s1)ν↓k(ds) <∞

but with infinite total mass. This fact implies in particular that the leaves of the tree Tk are
dense in Tk (see [41, Theorem 1]).

Since the limiting tree is a fragmentation tree, we immediately have its Hausdorff dimension.
Indeed, we know from [41, Theorem 2] that the Hausdorff dimension of a conservative fragmen-
tation tree with index of self-similarity α < 0 and dislocation measure ν (and no erosion) is equal
to max(|α|−1, 1) provided that the measure ν integrates (s−1

1 − 1). Here,∫
Sk

(s−1
1 − 1)ν↓k(ds) 6

∫
Sk
k−1(1− s1)ν↓k(ds) <∞

since s1 > s2 > ... > sk together with
∑k
i=1 si = 1 implies that s1 > 1/k.

Corollary 1.2. The Hausdorff dimension of tree Tk is almost surely k.

Remark. From the recursive construction of the sequence (Tn(k)) one could believe at first sight
that the trees Tn(k), n > 0, as well as their continuous counterparts Tk, are invariant under
uniform re-rooting (which means that the law of the tree re-rooted at a leaf chosen uniformly at
random is the same as the initial tree). However, this is only true for k = 2. For k = 2, this is a
well-known property of the Brownian CRT (see [4]). For k > 3, it is easy to check for small values
of n that this property is not satisfied for Tn(k). In the continuous setting, it is known that a
fragmentation tree which has the property of invariance under re-rooting necessarily belongs to
the family of stable Lévy trees ([44]). It is also well-known that, up to a multiplicative scaling,
the unique stable Lévy tree without vertices of infinite degree is the Brownian CRT ([30]). Hence
Tk is not invariant under uniform re-rooting for k > 3.

Labels on edges and subtrees. Partly for technical reasons, we want to label all the edges of
Tn(k), with the exception of the edge adjacent to the root, with integers from 1 to k (see Figure
3.1 for an illustration). We do this recursively. The unique edge of T0(k) has no label since it is
adjacent to the root. Given Tn(k) and its labels, focus on the new vertex added in the middle
of the selected edge. This edge was split into two: one new edge going towards the root, the
other going away from it. Have the edge going towards the root keep the original label of the
selected edge (no label if it is adjacent to the root), and have the other one be labelled 1. The
k−1 new edges added after that will be labelled 2, . . . , k, say uniformly at random (actually, the
way these k − 1 additional edges are labelled is not important for our purpose, but the index 1
is important).

Now fix 2 6 k′ < k. We consider, for all n, the k′-ary subtree of Tk(n) obtained by discarding
all edges with label larger than or equal to k′ + 1 as well as their descendants. This subtree is
denoted by Tk,k′(n). We are interested in the sequence of subtrees (Tk,k′(n), n > 0), because up
to a (discrete) time-change in n, it is distributed as the sequence (Tk′(n), n > 0) (see Lemma
4.5). As a consequence, we will see that a rescaled version of Tk′ is nested in Tk. Moreover this
version can be identified as a non-conservative fragmentation tree. All this is precisely stated in
the following theorem.
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Theorem 1.3. For each n ∈ Z+, endow Tn(k) with the uniform probability on its leaves µn(k)
and Tn(k, k′) with the image of this probability by the projection on Tn(k, k′). This image measure
is denoted by µn(k, k′). Then((Tn(k)

n1/k
, µn(k)

)
,
(Tn(k, k′)

n1/k
, µn(k, k′)

))
P−→

n→∞

(
(Tk, µk), (Tk,k′ , µk,k′)

)
for the GHP-topology, where Tk,k′ is a closed subtree of Tk and (Tk,k′ , µk,k′) has the distribution
of a non-conservative fragmentation tree with index −1/k and no erosion. Its dislocation measure

ν↓k,k′ is supported on Sk′,6 and defined by

ν↓k,k′(ds) =
(k′ − 1)!

k(Γ( 1
k ))k′−1Γ(1− k′

k )
× 1

(1−
∑k′

i=1 si)
k′/k

k′∏
i=1

s
−(1−1/k)
i

 k′∑
i=1

1

1− si

1{s1>...>sk′}ds.

Moreover,

Tk,k′
(d)
= M

1/k′

k′/k,1/k · Tk′ (3.2)

where in the right side, Mk′/k,1/k has a generalized Mittag-Leffler distribution with parameters
(k′/k, 1/k) and is independent of Tk′ .

The identity (3.2) is similar to results established in [24] on the embedding of stable Lévy
trees. The precise definition of generalized Mittag-Leffler distribution will be recalled in Section
4. In that section we will also see how to extract a random rescaled version of Tk′ directly from
the limiting fragmentation tree Tk by adequately pruning subtrees on each of its branch point
(Proposition 4.6).

Organization of the chapter. We will use two approaches to prove our results. The first
one, developed in Section 2, consists in checking that the sequence (Tn(k), n > 0) possesses
the so-called Markov branching property and then use results of Haas and Miermont [42] on
scaling limits of Markov branching trees to obtain the convergence in distribution of the rescaled
trees (Tn(k)) towards a fragmentation tree. Our second approach, in Section 3, is based on
urn schemes and the Chinese restaurant process of Pitman [69]. It provides us the convergence
in probability of the rescaled trees (Tn(k)) towards a compact R-tree, but does not allow us to
identify the limiting tree as a fragmentation tree. Combination of these two approaches then fully
proves Theorem 1.1. In Section 3, we also treat the convergence in probability of the rescaled
subtrees (Tn(k, k′)). The distribution of the limit will be identified in Section 4, hence giving
the convergence results of Theorem 1.3. Lastly, still in Section 4, we study the embedding of the
limiting trees Tk as k varies: for all k′ < k, we show how to extract directly from Tk a tree with
the distribution of Tk,k′ and prove the relation (3.2).

From now on, k and k′ are fixed, with 2 6 k′ < k. To lighten notation, we will use,
until Section 3.5, Tn instead of Tn(k) and T ′n instead of Tn(k, k′).

2 Convergence in distribution and identification of the limit

In this section, we use Theorem 5 of [42] on the scaling limits of Markov branching trees to obtain
the convergence in distribution of the rescaled trees n−1/kTn and identify the limit distribution.
While the method used in Section 3 will yield a stronger convergence, convergence in probability,
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that approach does not allow us to identify the distribution of the limit. We will also set up here
some material needed to identify the distribution of the limit of the subtrees n−1/kT ′n, which will
be done in Section 4.

Let n ∈ Z+ and consider the tree Tn+1. Its root is connected to only one edge, after which
there are k subtrees. These subtrees can be identified by the label given to their first edge, and
we call them (T in)i∈[k], where i ∈ [k] refers to the edge number i. For all i ∈ [k], we let Xi

n be the
number of internal nodes of T in and we let qn be the distribution of (Xi

n)i∈[k] seen as an element
of

Ckn =

{
λ = (λ1, ..., λk) ∈ Zk+ :

k∑
i=1

λi = n

}
.

To use the results of [42], we have to check

(i) that the sequence (Tn) is Markov branching, which roughly means that conditionally on
their sizes, the trees (T in)i∈[k] are mutually independent and have, respectively on i ∈ [k],
the same distribution as TXin ;

(ii) that appropriately rescaled, the distribution qn converges.

We start by studying this probability qn in Section 2.1 and then prove the Markov branching
property and get the limit distribution in Section 2.2.

2.1 Description and asymptotics of the measure qn

Let q̄n be the distribution of (Xi
n/n)i∈[k], it is a probability measure on Sk, ∀n > 1. As we will

see below in Proposition 2.1, the continuous scaling limit of these distributions is the measure
νk on Sk defined by

νk(ds) =
1

k(Γ( 1
k ))k−1

1

1− s1

k∏
i=1

s
−(1−1/k)
i ds.

Note the dissymmetry between the index 1 and the others. This is due the fact that the subtree
T 1
n is often much larger than the other ones, since, in the n-th step of the recursive construction,

in the case where the new k − 1 edges are added on the edge adjacent to the root, the subtree
T 1
n has n internal nodes whereas the k − 1 other ones have none.

Since we are also interested in describing the asymptotic behaviour of the subtrees T ′n, we will
also need to consider, for n > 1, the probability measures q′n on Sk′,6 obtained by considering
the first k′ elements of (Xi

n/n)i∈[k]. Their continuous scaling limit (see Corollary ??) is denoted
by νk,k′ and defined on Sk′,6 by

νk,k′(ds) =
1

k(Γ( 1
k ))k′−1Γ(1− k′/k)

× 1

(1− s1) (1−
∑k′

i=1 si)
k′/k

k′∏
i=1

s
−(1−1/k)
i ds.

For s ∈ Sk, we let s↓ be the sequence obtained by reordering the elements of s in the decreasing
order. This map is continuous from Sk to Sk. For any measure µ on Sk, let µ↓ be the image of
µ by it.

Examples. For instance, one can check that the measure ν↓k associated to νk indeed coincides

with the definition of ν↓k in Theorem 1.1. And similarly for the measure ν↓k,k′ and its expression
in Theorem 1.3.

The main goal of this section is to prove the following result.

82



Proposition 2.1. We have the following weak convergence of measures on Sk:

n1/k(1− s1)q̄n(ds) ⇒
n→∞

(1− s1)νk(ds).

As a consequence,
n1/k(1− s1)q̄↓n(ds) ⇒

n→∞
(1− s1)ν↓k(ds).

The symmetric Dirichlet measure on Sk with parameter k−1 is Γ(1/k)−k(
∏k
i=1 si)

−(1−1/k)ds.
It is well-known and easy to check that this defines a probability measure on Sk. As a direct
consequence, we see that ∫

Sk
(1− s1)νk(ds) =

Γ(1/k)

k
.

More generally, we will need several times the well-known fact that for any integer K > 2 and
all K-uplets α1, ..., αK > 0, ∫

SK

K∏
i=1

sαi−1
i ds =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi
) , (3.3)

where xK = 1−
∑K−1
i=1 xi.

The results of Proposition 2.1 can easily be transferred to q′n:

Corollary 2.2. We have the following weak convergences of measures on Sk′,6:

n1/k(1− s1)q̄′n(ds) ⇒
n→∞

(1− s1)νk,k′(ds)

and,
n1/k(1− s1)(q̄′n)↓(ds) ⇒

n→∞
(1− s1)ν↓k,k′(ds).

In order to prove Proposition 2.1, we start by explicitly computing the measure qn in Section
2.1.1. We then set up preliminary lemmas in Section 2.1.2 and lastly turn to the proofs of
Proposition 2.1 and Corollary ?? in Section 2.1.3.

2.1.1 The measure qn

Proposition 2.3. For all λ ∈ Ckn,

qn(λ) =
1

k(Γ( 1
k ))k−1

(
k∏
i=1

Γ( 1
k + λi)

λi!

)
n!

Γ( 1
k + n+ 1)

λ1+1∑
j=1

λ1!

(λ1 − j + 1)!

(n− j + 1)!

n!

 .

Proof. Let N1, . . . , Nn+1 be the n + 1 internal nodes of Tn+1, listed in order of apparition, and
let J be the random variable such that NJ is the first node encountered after the root of Tn.
Recall that T 1

n , . . . , T
k
n denote the ordered subtrees rooted at NJ . For λ ∈ Ckn and j ∈ N, we first

compute the probability pj(λ) that J = j, T 1
n contains the nodes N1, . . . , Nj−1, Nj+1, Nλ1+1,

T 2
n contains the nodes Nλ1+2, . . . , Nλ1+λ2+1 and so on until T kn , which contains the nodes
Nλ1+...+λk−1+2, . . . , Nn+1. This probability is null for j > λ1 + 1. For 1 6 j 6 λ1 + 1, since each
edge is chosen with probability 1/(1 + kp) when constructing Tp+1 from Tp, p > 1, we get

pj(λ) =
1

1 + k(j − 1)

λ1+1∏
p=j+1

1 + k(p− 2)

1 + k(p− 1)

k∏
i=2

λi∏
p=1

1 + k(p− 1)

1 + k(λ1 + . . .+ λi−1 + p)

=

∏k
i=1

∏λi−1
p=1 (1 + kp)∏n

p=j−1(1 + kp)
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(by convention, a product indexed by the empty set is equal to 1). Note that pj(λ) = p1(λ) for
all j 6 λ1 + 1. Note also that this probability does not change if we permute the indices of nodes
Nj+1, . . . , Nn (both the numerator and the denominator have the same factors, just in different
orders). We thus have

qn(λ) =

λ1+1∑
j=1

(n− j + 1)!

(λ1 − j + 1)!
∏k
i=2 λi!

p1(λ)

=
n!∏n

p=1(1 + pk)

k∏
i=1

∏λi−1
p=1 (1 + pk)

λi!

λ1+1∑
j=1

λ1!

(λ1 − j + 1)!

(n− j + 1)!

n!
.

The proof is then ended by using the fact that Γ( 1
k + q) = Γ( 1

k )k−q
∏q−1
p=0(1 + kp) for any

q ∈ Z+.

2.1.2 Preliminary lemmas

The proof of Proposition 2.1 relies on the convergence of some Riemann sums. To set up these
convergences, we first rewrite qn(λ), n > 1, in the form

qn(λ) =
1

kΓ( 1
k )k−1

∏k
i=1 γk(λi)

(n+ 1)γk(n+ 1)
βn

(
λ1

n

)
, (3.4)

where, for all x > 0,

γk(x) =
Γ( 1

k + x)

Γ(1 + x)

and, for all x ∈ [0, 1] and n ∈ N,

βn(x) = 1 +

bnxc∑
j=1

nx(nx− 1) . . . (nx− j + 1)

n(n− 1) . . . (n− j + 1)
.

Lemma 2.4. The following convergence of functions

x 7→ n1−1/kγk(nx) −→
n→∞

x 7→ x−(1−1/k)

holds uniformly on all compact subsets of (0, 1]. Moreover, there exists a finite constant A such
that γk(x) 6 Ax−(1−1/k) for all x > 0.

Proof. Pointwise convergence comes from a direct application of Stirling’s formula. The unifor-
mity of this convergence on all compact subsets of (0, 1] can be proved by a standard monotonicity
argument (sometimes known as Dini’s Theorem): we only need to notice that γk is a nonincreas-
ing function of x > 0. This can be done through differentiating; indeed, γk is differentiable and
we have, for all x > 0,

γ′k(x) =
Γ′( 1

k + x)Γ(x+ 1)− Γ( 1
k + x)Γ′(x+ 1)

(Γ(x+ 1))2
.

Notice that the function x 7→ Γ′(x)/Γ(x) is nondecreasing on (0,+∞), since the Gamma function
is logarithmically convex (see for example [8]). Therefore, the derivative of γk is indeed nonposi-
tive. Lastly, the domination of γk by a constant times the power function x−(1−1/k) for all x > 0
follows immediately from Stirling’s formula and the fact that γk is continuous on [0,+∞).
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Lemma 2.5. The function βn converges uniformly to the function x 7→ (1−x)−1 on all compact
subsets of [0, 1). Moreover (1− x)βn(x) 6 1 for all x ∈ [0, 1] and all n ∈ N.

Proof. The proof works on the same principle as the previous one: since βn is obviously a
nondecreasing function, we only need to show that the sequence converges pointwise. This is
immediate for x = 0, and will be done with the help of the dominated convergence theorem in
the other cases. Note that, for all x ∈ [0, 1] and j ∈ N

nx(nx− 1) . . . (nx− j + 1)

n(n− 1) . . . (n− j + 1)
−→
n→∞

xj and
nx(nx− 1) . . . (nx− j + 1)

n(n− 1) . . . (n− j + 1)
6 xj , ∀n ∈ N, j 6 bnxc,

which is summable for x ∈ [0, 1). The dominated convergence theorem then ensures us that
βn(x) converges to

∑∞
j=0 x

j = (1− x)−1 uniformly on all compact subsets of [0, 1).

Lemma 2.6. The sequence of measures n
1
k (1− s1)q̄n(ds) satisfies:

∀ε > 0,∃η > 0,∀n ∈ N, n
1
k

∑
λ∈Ckn

(
1− λ1

n

)
qn(λ)1{∃i,λi<ηn} < ε.

Proof. We use (??). By individually bounding all the instances of γk(x) by Ax−(1−1/k) and
(1− x)βn(x) by 1 we are reduced to showing

∀ε > 0,∃η > 0,∀n ∈ N,
∑
λ∈Ckn

k∏
i=1

λ
−(1−1/k)
i 1{∃i,λi<ηn} < ε.

By virtue of symmetry, we can restrict ourselves to the case where λ is nonincreasing. The
condition ∃i, λi < ηn then boils down to λk < ηn. Summation over λ nonincreasing and in ∈ Ckn
is done by choosing first λk then λk−1, going on until λ2, the first term λ1 being then implicitly
defined as n− λ2 − . . .− λk. Let ε > 0, it is enough to find η > 0 such that, for any n ∈ N,

bηnc∑
λk=1

bn/(k−1)c∑
λk−1=λk

. . .

bn/2c∑
λ2=λ3

1{λ1>λ2}

k∏
i=1

λ
−(1−1/k)
i < ε.

By using λ1 > n/k, we obtain

bηnc∑
λk=1

bn/(k−1)c∑
λk−1=λk

. . .

bn/2c∑
λ2=λ3

1{λ1>λ2}

k∏
i=1

λ
−(1−1/k)
i 6

(n
k

)−(1−1/k)
bηnc∑
λk=1

bn/(k−1)c∑
λk−1=1

. . .

bn/2c∑
λ2=1

k∏
i=2

λ
−(1−1/k)
i .

Standard comparison results between series and integrals imply that, since the function t 7→
t−(1−1/k) is nonincreasing and has an infinite integral on [1,∞), there exists a finite constant B

such that, for all n > 1,
∑n
j=1 j

−(1−1/k) 6 Bn
1
k . We thus get

bηnc∑
λk=1

bn/(k−1)c∑
λk−1=λk

. . .

bn/2c∑
λ2=λ3

1{λ1>λ2}

k∏
i=1

λ
−(1−1/k)
i 6 B′η

1
kn−(1−1/k)η

1
k (n

1
k )k−1 6 B′′η

1
k

where B′ and B′′ are finite constants. Choosing η 6 (B′′)−kε makes our sum smaller than ε for
all choices of n.
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2.1.3 Proof of Proposition 2.1 and Corollary ??

Proof of Proposition 2.1. First note that since (1− s1)νk(ds) is a finite measure on Sk and since
νk(∃i : si = 0) = 0, for all ε > 0 there exists a η > 0 such that

∫
Sk(1 − s1)1{∃i:si<η}νk(ds) < ε.

Together with Lemma 2.5, this implies that Proposition 2.1 will be proved once we have checked
that

n
1
k

∫
Sk

(1− s1)f(s)

k∏
i=1

1{si>η}q̄n(ds) −→
n→∞

∫
Sk

(1− s1)f(s)

k∏
i=1

1{si>η}νk(ds)

for all η > 0 and all continuous functions f on Sk . In the following, we fix such a real number
η > 0 and a function f . Using the expression (??) and Lemmas 2.3 and 2.4, we see that

n
1
k

∫
Sk

(1− s1)f(s)

k∏
i=1

1{si>η}q̄n(ds) ∼
n→∞

n1−k

kΓ( 1
k )k−1

∑
λ∈Ckn

f

(
λ

n

) k∏
i=1

(
λi
n

)−(1−1/k)

1{λi>ηn}.

We conclude by noticing that this last term is in fact a Riemann sum of a (Riemann) integrable
function on [0, 1]k−1: to sum over λ ∈ Ckn, we only need to choose λ1, . . . , λn−1 in {0, ..., n} such
that n− (λ1 + . . .+ λn−1) > 0. Standard results on Riemann sums then imply that it converges
towards the integral ∫

Sk
(1− s1)f(s)

k∏
i=1

1{si>η}νk(ds).

The convergence of the decreasing versions of the measures follows immediately. A continuous
function f on Sk being fixed, we let gf be the function defined on Sk by gf (s) = (1−s↓1)f(s↓)/(1−
s1). The function gf is then continuous and bounded on Sk (there is no singularity when s1 = 1

since s↓1 = s1 as soon as s1 > 1/2). By the first part of this proof, we then have

n
1
k

∫
Sk

(1− s1)f(s)q̄↓n(ds) = n
1
k

∫
Sk

(1− s↓1)f(s↓)q̄n(ds) = n
1
k

∫
Sk

(1− s1)gf (s)dq̄n(s)

→
n→∞

∫
Sk

(1− s1)gf (s)νk(ds) =

∫
Sk

(1− s1)f(s)ν↓k(ds).

�

Proof of Corollary ??. Let f be a continuous function on Sk′,6 and assume for the moment that
k′ 6 k − 2. Applying first Proposition 2.1 and then the identity (3.3), we get

n1/k

∫
Sk′,6

f(s)(1− s1)q′n(ds) −→
n→∞

1

k(Γ( 1
k ))k−1

∫
Sk
f(s1, ..., s

′
k)

k∏
i=1

s
−(1−1/k)
i ds

=
1

k(Γ( 1
k ))k−1

∫
Sk′,6

f(s)

k′∏
i=1

s
−(1−1/k)
i

(∫(
0,1−

∑k′
i=1 si

]k−1−k′

k∏
i=k′+1

s
−(1−1/k)
i dsk′+1 . . . dsk−1

)
ds

=
1

k(Γ( 1
k ))k−1

∫
Sk′,6

f(s)

k′∏
i=1

s
−(1−1/k)
i

 Γ( 1
k )k−k

′

Γ (1− k′/k)

1−
k′∑
i=1

si

−k
′/k
 ds,

which gives the result for k′ 6 k−2. For k′ = k−1 the calculation is more direct since we do not
need (3.3). Finally, the convergence of decreasing measures follows immediately by mimicking
the end of the proof of Proposition 2.1. �
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2.2 Markov branching property and identification of the limit

Proposition 2.7 (Markov branching property). Let n ∈ Z+. Conditionally on (Xi
n)i∈[k], the

(T in)i∈[k] are mutually independent and, for i ∈ [k], T in has the same law as TXin .

Proof. We prove this statement by induction on n ∈ Z+. Starting with n = 0, we have Xi
0 = 0

and T i0 = T0 for all i, everything is deterministic.
Assume now that the Markov branching property has been proven until some integer n− 1,

and let us prove it for n. Let e be the random selected edge of Tn−1 used to build Tn and let
J be the random variable defined by: J = j if e is an edge of T jn−1 with j ∈ [k], and J = 0 if
e is the edge adjacent to the root of Tn. Note that J and Tn are independent conditionally on
(Xi

n−1)i∈[k]. Let us then determine the law of (T in, i ∈ [k]) conditionally on J and (Xi
n)i∈[k].

If J = j 6= 0 then (T in)i∈[k]\{j} is the same sequence as (T in−1)i∈[k]\{j} and we have added

an extra edge to T jn−1. Hence, for all j 6 k and (x1, ..., xk) ∈ Ckn, with xj > 1, we have for all
k-uplet of rooted k-ary trees (t1, ..., tk) with respectively x1, ..., xk internal nodes,

P
(
∀i ∈ [k], T in = ti | ∀i ∈ [k], Xi

n = xi, J = j
)

= P
(
∀i ∈ [k] \ {j}, T in−1 = ti, T

j
n = tj | ∀i ∈ [k] \ {j}, Xi

n−1 = xi, J = j
)

= P
(
∀i ∈ [k] \ {j}, T in−1 = ti | ∀i ∈ [k] \ {j}, Xi

n−1 = xi, J = j
)
P
(
Txj = tj

)
=

∏k
i=1 P

(
T ixi = ti

)
where we have used that a conditioned uniform variable is uniform in the set of conditioning to
get the second equality and then that J and Tn are independent conditionally on (Xi

n−1)i∈[k],
together with the Markov branching property at n− 1, to get the third equality.

When J = 0, (T in)i6k = (Tn, T0, . . . , T0). Since T0 is deterministic and the event {J = 0} is
independent of Tn, the distribution of (T in)i∈[k] conditional on J = 0 and (Xi

n)i∈[k] = (n, 0, ..., 0)
is indeed the same as that of sequence of independent random variables (Tn, T0, . . . , T0).

Finally, since the distribution of (T in)i∈[k] conditionally on J and (Xi
n)i∈[k] is independent of

J , one can remove J in the conditioning, which ends the proof.

We now have the material to prove the convergence in distribution of n−1/kTn and identify
its limit as a fragmentation tree.

Proof of Theorem 1.1 (convergence in distribution part). Theorem 5 of [42] concerns
sequences of Markov branching trees indexed by their number of leaves, however our sequence
(Tn) is indexed by the number of internal nodes of the tree. This is not a real problem since
Tn has 1 + (k − 1)n leaves for all n, the sequence (Tn)n∈N can be seen as a sequence of Markov
branching trees (T ◦p )p∈1+(k−1)N indexed by their number of leaves. For all p ∈ 1 + (k − 1)N, we
let q̄◦p denote its associated splitting distribution, that is, if p = 1+(k−1)n, q̄◦p is the distribution
on Sk of the sequence (

1 + (k − 1)Xi
n−1

1 + (k − 1)n

)
i∈[k]

.

As an immediate consequence of Proposition 2.1, we have that

(k − 1)−1/kp1/k(1− s1)q̄◦,↓p (ds) ⇒
p→∞

p∈1+(k−1)N

(1− s1)ν↓k(ds). (3.5)
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Indeed, for any bounded Lipschitz function f : Sk → R, let gf : Sk → R be defined by gf (s) =
(1− s1)f(s). Then gf is also Lipschitz, say with Lipschitz constant cg. It is then easy to see that

n1/k

∣∣∣∣∣∣E
[
g

((
1 + (k − 1)Xi

n−1

1 + (k − 1)n

)↓)]
− E

[
g

((
Xi
n−1

n− 1

)↓)]∣∣∣∣∣∣ 6 n1/k2kcg
1 + (k − 1)n

→
n→∞

0.

Together with Proposition 2.1 this immediately leads to (??).
Hence the sequence (T ◦p )p∈1+(k−1)N is Markov branching with a splitting distribution sequence

(q̄◦p) satisfying (??). This is exactly the hypotheses we need to apply Theorem 5 of [42], except
that this theorem is stated for sequences of Markov branching trees indexed by the full set N,
not by one of its subsets. However, without any modifications, it could easily be adapted to that
setting. Hence we obtain from this theorem that(

(k − 1)1/kp−1/kT ◦p , µ
◦
p

)
−→
p→∞

p∈1+(k−1)N

(Tk, µk)

where µ◦p is the uniform probability on the leaves of (T ◦p ) and (Tk, µk) the fragmentation tree
of Theorem 1.1. This convergence holds in distribution, for the GHP topology. Otherwise said,
(n−1/kTn) endowed with the uniform probability on its leaves converges in distribution towards
(Tk, µk). �

3 Convergence in probability and joint convergence

This section is dedicated to improving the convergence in distribution we have just obtained. We
will construct the limiting tree in the space `1 of summable real-valued sequences (equipped with
its usual metric d`1), and convergence will be proved by using subtrees akin to finite-dimensional
marginals. The almost sure convergence of these marginals can be proved using urn schemes
and results concerning Chinese restaurant processes, as studied by Pitman in [69, Chapter 3].
Tightness properties will extend this to the convergence of (n−1/kTn, µn). Unfortunately, almost
sure convergence is lost by this method and we are left with convergence in probability. Also,
due to some technical issues, we first have to study the Gromov-Hausdorff convergence of the
non-measured trees before adding the measures.

3.1 Finite-dimensional marginals and the limiting tree

In this section we will need to define an ordering of the leaves of Tn for n ∈ Z+, calling them
(Lin)i∈[(k−1)n+1]. They are labelled by order of apparition: the single leaf of T0 is called L1

0,

while, given Tn and its leaves, the leaves L1
n+1, . . . , L

(k−1)n+1
n+1 of Tn+1 are those inherited from

Tn, and the leaves L
(k−1)n+2
n+1 , . . . , L

(k−1)n+k
n+1 are the leaves at the ends of the new edges labelled

2, 3, . . . , k respectively.
Let p ∈ Z+. For all n > p, consider the subtree T pn of Tn spanned by the root and all the

leaves Lin with i ∈ [(k − 1)p+ 1]:

T pn =

(k−1)p+1⋃
i=1

Jρ, LinK.

The tree T pn has the same graph structure as Tp, however the metric structure isn’t the same:
the distance between two vertices of T pn is the same as the distance between the corresponding
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L1
10

ρ

Figure 3.2: Colour-coding of the tables of T10 (here k = 3). The green table has one
client, the red table has five and the blue table has four.

vertices of Tn. The study of the sequence (T pn)n>p for all p will give us much information on the
sequence (Tn, µn)n∈Z+ .

Proposition 3.1. Let p ∈ Z+. We have, in the Gromov-Hausdorff sense, as n goes to infinity:

T pn
n1/k

a.s.−→ T p, (3.6)

where T p is a rooted compact R-tree with (k − 1)p+ 1 leaves which we will call (Li)i∈[(k−1)p+1].

Under a suitable embedding in `1, for p′ < p, T p′ is none other than the subtree of T p spanned
by the root and the leaves Li for i ∈ [(k − 1)p′ + 1], making this notation unambiguous.

Proof. The proof hinges on our earlier description of T pn for n > p: it is the graph Tp, but with
distances inherited from Tn. As explained in Lemma 3.1, we only need to show that, for i and
j smaller than (k − 1)p+ 1, both n−1/kd(Lin, L

j
n) and n−1/kd(ρ, Lin) have finite limits as n goes

to infinity. We first concentrate on the case of n−1/kd(ρ, L1
n). This could be done by noticing

that (d(ρ, L1
n))n>0 is a Markov chain and using martingale methods, however, in view of what

will follow, we will use the theory of Chinese restaurant processes.
For n ∈ N, we consider a set of tables indexed by the vertices of Tn which are strictly between

ρ and L1
n. We then let the number of clients on the table indexed by a vertex v be the number

of internal nodes u of Tn such that v is the branch point of u and Ln1 (including the case u = v).
Let us check that this process is part of the two-parameter family introduced by Pitman in

[69], Chapter 3, with parameters (1/k, 1/k). Indeed, assume that, at time n ∈ N, we have l ∈ N
tables with respectively n1, . . . , nl clients (the tables can be ordered by their order of apparition
in the construction). For any i 6 l, table i corresponds to a subset of Tn with kni−1 edges, thus
there is a probability of (kni − 1)/(kn + 1) that the next client comes to this table. This next
client will sit at a new table if the selected edge is between ρ and L1

n, an event with probability
(l + 1)/(kn+ 1).

Since, for all n, d(ρ, L1
n) is equal to the number of tables plus one, Theorem 3.8 of [69] tells

us that n−1/kd(ρ, L1
n) converges almost surely towards a (1/k, 1/k)-generalized Mittag-Leffler

random variable (the definition of generalized Mittag-Leffler distributions is recalled in Section
4.2, however we will not need here the exact distribution of this limit). The cases of d(ρ, Lin)
and d(Lin, L

j
n) for i 6= j can be treated very much the same way: the main difference is that the

tables of the restaurant process are now indexed by the nodes between Lin and Ljn, and they have

89



a non-trivial initial configuration. Lemma 3.1 finally implies that n−1/kT pn does converge a.s. to
a tree with (k − 1)p+ 1 leaves in the Gromov-Hausdorff sense.

The trees (T p, p ∈ Z+) and (T pn , p ∈ Z+, n ∈ Z+) can be embedded in `1 using the stick-
breaking method of Chapter 1, Section 3.1. By taking as marked points the leaves, it is indeed
the case that this embedding respects the natural inclusion T p ⊂ T p+1.

Under this embedding in `1 we let

T = ∪∞p=0T p,

which is also an R-tree. We will see in Lemma 3.4 and Proposition 3.5 that this tree is compact
and is the limiting tree for n−1/kTn, the tree which was called Tk in the introduction.

3.2 A tightness property

To move from the convergence of T pn for all p ∈ N to the convergence of Tn, we need some kind
of compactness to not be bothered by the choice of p, which the following proposition gives.

Proposition 3.2. For all ε > 0 and η > 0, there exists an integer p such that, for n large
enough,

P
(
d`1,H(T pn , Tn) > n

1
k η
)
< ε.

The same is then true if we replace p by any greater integer p′.

Before proving this proposition, we need an intermediate result. Fix p ∈ Z+. All the variables
in the following lemma depend on a variable n > p, however we omit mentioning n for the sake
of readability.

Lemma 3.3. Let v1, . . . , vN be the internal nodes of Tn which are part of T pn but are not branch
points of T pn , listed in order of apparition. At each of these vertices are rooted k−1 subtrees of Tn
which we call (Sij ; j 6 N, i 6 k − 1), Sij being the tree rooted at vj with a unique edge adjacent

to vj, this edge having label i+ 1. Letting, for j 6 N and i 6 k− 1, Y ij be the number of internal

nodes of Sij then, conditionally on (Y lq ; q 6 N, l 6 k − 1), the tree Sij has the same distribution
as TY ij .

Furthermore, these subtrees allow us to define some restaurant processes by letting n vary: for
j 6 N , let Sj = ∪k−1

i=1 S
i
j, and Yj be the number of vertices of Sj, including vj but excluding all

leaves. Considering Sj as a table with Yj clients for all j, we have defined a restaurant process
whose initial configuration is zero tables at time n = p and has parameters (1/k, p+ 1/k).

The subtrees (Sij) are also conditionally independent, however this will not be useful to us.

Proof. The proof that Sij is, conditionally on (Y lq ; q 6 N, l 6 k − 1), distributed as TY ij is a

straightforward induction on n. We will not give details since this is very similar to the Markov
branching property (Proposition 2.6) but the main point is that, conditionally on the event that
the selected edge at a step of the algorithm is an edge of Sij , this edge is then uniform amongst

the edges of Sij .
The restaurant process nature of these subtrees is proved just as in Proposition 3.1: if table Sj

has Yj clients at time n > p, then the subtree Sj has kYj−1 edges, and a new client will therefore
be added to this table with probability (kYj − 1)/(kn + 1), while a new table is formed with
probability (kp+N + 1)/(kn+ 1). These are indeed the transition probabilities of a restaurant
process with parameters (1/k, p+ 1/k) taken at time n− p.
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ρ

Figure 3.3: The tree T10 seen as an extension of T4 (k = 3). The colored sections
correspond to the tables of the Chinese restaurant, each table corresponding to two
subtrees.

Proof of Proposition 3.2. We will need Lemma 33 of [42]: since the sequence (Tn)n∈Z+ is
Markov branching and we have the convergence of measures of Proposition 2.1, we obtain that,
for any q > 0, there exists a finite constant Cq such that, for any ε > 0 and n ∈ N,

P
(
ht(Tn) > εn1/k

)
6
Cq
εq
.

Choosing q > k, applying this to all of the Sij conditionally on Y ij (j 6 N, i 6 k − 1), and using
the simple fact that

d`1,H(T pn , Tn) 6 max
i,j

ht(Sji ),

we obtain

P
(
d`1,H(T pn , Tn) > ηn1/k | (Y ij )i,j

)
6
∑
i,j

P
(
ht(Sij) > ηn

1
k | (Y ij )i,j

)

6
∑
i,j

P

(
ht(Sij) > η

( n
Y ij

) 1
k

(Y ij )
1
k | (Y ij )i,j

)

6
Cq
ηq

∑
i,j

(
Y ij
n

) q
k

6
Cq
ηq

∑
j

(
Yj
n

) q
k

.

Let us now reorder the (Yj) in decreasing order. Theorem 3.2 of [69] states the following conver-
gence for all j as n goes to infinity:

Yj
n

a.s.−→ Vj

where (Vj)j∈N is a Poisson-Dirichlet random variable with parameters (1/k, p+ 1/k). By writing
out, for each j, (Yj)

q
k 6 (Y1)

q
k−1Yj , we then get

lim sup
n→∞

P
(
d`1,H(T pn , Tn) > ηn1/k

)
6
Cq
ηq

E[(V1)
q
k−1].
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We then use an estimation of the density of V1 found in Proposition 19 of [70] to obtain

E[(V1)
q
k−1] 6

Γ(p+ 1 + 1
k )

Γ(p+ 2
k )Γ(1− 1

k )

∫ 1

0

u
q−1
k −2(1− u)

2
k+p−1du

6
Γ(p+ 1 + 1

k )Γ( q−1
k − 1)Γ(p+ 2

k )

Γ(p+ 2
k )Γ(1− 1

k )Γ(p− 1 + q+1
k )

.

As p goes to infinity, this is, up to a constant, equivalent to p2− qk , which tends to 0 if we take
q > 2k, thus ending the proof.

3.3 Gromov-Hausdorff convergence

Lemma 3.4. As p tends to infinity, we have the following convergence, in the sense of Hausdorff
convergence for compact subsets of `1:

T p a.s.−→ T .

In particular, the tree T is in fact compact and T p converges a.s. to T in the Gromov-Hausdorff
sense.

Proof. Let us first prove that the sequence (T p)p∈N is Cauchy in probability for the Hausdorff
distance in `1, in the sense of [50], Chapter 3: we want to show that, for any ε > 0 and η > 0,
if p and q are large enough, P

(
d`1,H(T p, T q) > η

)
< ε. Let therefore η > 0 and ε > 0. We have,

for integers p and q,

P
(
d`1,H(T p, T q) > η

)
= P

(
lim
n→∞

n−1/kd`1,H(T pn , T
q
n) > η

)
6 lim inf

n→∞
P
(
n−1/kd`1,H(T pn , T

q
n) > η

)
6 lim inf

n→∞
P
(
d`1,H(T pn , Tn) + d`1,H(T qn , Tn) > n1/kη

)
6 lim sup

n→∞
P
(
d`1,H(T pn , Tn) > n1/k η

2

)
+ lim sup

n→∞
P
(
d`1,H(T qn , Tn) > n1/k η

2

)
.

Thus, by Proposition 3.2, choosing p and q large enough yields

P
(
d`1,H(T p, T q) > η

)
6 ε.

Since the Hausdorff metric on the set of nonempty compact subsets of `1 is complete, the sequence
(T p)p∈N does converge in probability, and thus has an a.s. converging subsequence. Since it is
also monotonous (in the sense of inclusion of subsets), it in fact does converge to a limit we call
L, and we only need to show that L = T . Since L is a compact subset of `1 and contains T p for
all p, we have T ⊂ L. On the other hand, assuming the existence of a point x ∈ L \ T would
yield ε > 0 such that d`1(x, T ) > ε and also d`1(x, T p) > ε for all p, negating the Hausdorff
convergence of T p to L.

Proposition 3.5. We have
Tn
n1/k

P−→ T

as n goes to infinity, in the Gromov-Hausdorff sense.
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Proof. All the work has already been done, we only need to stick the pieces together. Let n ∈ N
and p 6 n, we use the triangle inequality:

dGH

(
Tn
n1/k

, T
)
6 dGH

(
Tn
n1/k

,
T pn
n1/k

)
+ dGH

(
T pn
n1/k

, T p
)

+ dGH(T p, T ).

For η > 0, we then have

P

(
dGH

(
Tn
n1/k

, T
)
> η

)

6 P

(
dGH

(
Tn
n1/k

,
T pn
n1/k

)
>
η

3

)
+ P

(
dGH

(
T pn
n1/k

, T p
)
>
η

3

)
+ P

(
dGH(T p, T ) >

η

3

)
.

Let ε > 0. By Lemma 3.4 and Proposition 3.2, there exists p such that the third term of the sum
is smaller than ε, and the first term also is for all n large enough. Apply then Proposition 3.1
with this fixed p, to make the second term smaller than ε for large n, and the proof is over.

3.4 Adding in the measures

We now know that T is compact. This compactness will enable us to properly obtain a measure
on T and the desired GHP convergence. For all n and p 6 n, let µpn be the image of µn by the
projection from Tn to T pn (see Chapter 1, Section 4 for the definition of the projection). Let also,
for all p, πp be the projection from T to T p. We start by proving an extension of Proposition
3.1 to the measured case.

Proposition 3.6. There exists a probability measure µp on T p such that, in the GHP sense,( T pn
n1/k

, µpn

)
a.s.→ (T p, µp).

What’s more, we have, for p′ > p, µp = (πp)∗µ
p′ .

Proof. We aim to apply Lemma 3.2 from Chapter 1. The trees T pn and T p in `1 with the stick-
breaking method, by sequentially adding the leaves according to their indices, as recalled at the
end of the proof of Proposition 3.1.

The first step to apply Chapter 1, Lemma 3.2 is then to find an appropriate dense subset
of T p. Since we know from Section 2 that the distribution of the metric space T is that of a
fragmentation tree and that the dislocation measure νk has infinite total mass, Theorem 1 from
[41] tells us that it is leaf-dense. As a consequence, its branch points are also dense. Let Sp be
the set of points of T p which are also branch points of T , we then know that Sp is a dense subset
of T p. In fact Sp can be simply explicited:

Sp = {Li ∧ Lj ; i 6 (k − 1)p+ 1 or j 6 (k − 1)p+ 1}

(recall that {Li, i > 1} is the set of leaves of T that belong to ∪∞p=0T p). Let i and j be integers

such that either i or j is smaller than or equal to (k − 1)p+ 1, and let x = Li ∧ Lj . For n such
that i 6 (k− 1)n+ 1 and j 6 (k− 1)n+ 1, define xn as the branch point in Tn of Lin and Ljn. It
is immediate that xn converges to x, and moreover, calling (T pn)xn the subtree of descendants of
xn in (T pn), that (T pn)xn converges to T px (the subtree of descendants of x in T p) in the Hausdorff
sense in `1. What is left for us to do is to prove that µpn

((
T pn
)
xn

)
= µn

(
(Tn)xn

)
converges a.s. as
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n goes to infinity. To this effect, we let Zn be the number of internal nodes of (Tn)xn , including
xn itself. Since we have

µn
(
(Tn)xn

)
=

(k − 1)Zn + 1

(k − 1)n+ 1
,

convergence of µn
(
(Tn)xn

)
as n goes to infinity is equivalent to convergence of n−1Zn. However

the distribution of Zn is governed by a simple recursion: for all n, given Zn, Zn+1 = Zn + 1
with probability (kZn)/(1 + kn), while Zn+1 = Zn with the complementary probability. It is
then easy to check that the rescaled process (Zn/(kn+1))n∈N is a nonnegative martingale, hence
converges a.s.. Then, so does µn

(
(Tn)xn

)
= n−1Zn. Hence we can apply Chapter 1, Lemma 3.2

to conclude.
The fact that µp = (πp)∗µ

p+1 is then a direct consequence of the fact that µpn = (πpn)∗µ
p+1
n

for all n: for any x in Sp, we have µpn
((
T pn
)
xn

)
= µp+1

n

((
T p+1
n

)
xn

)
and, letting n tend to

infinity (and taking left-continuous versions in x as stated in Chapter 1, Lemma 3.2), we obtain
µp
(
(T p)x

)
= µp+1

(
(T p+1)x

)
, and Lemma 4.1 ends the proof.

Lemma 3.7. As p tends to infinity, µp converges a.s. to a probability measure µ on T which
satisfies, for all p, µp = (πp)∗µ

Proof. Since T is compact, Lemma 2.1 shows that we can define a unique measure µ on T such
that, for all p and x ∈ T p, µ(Tx) = µp(T px ) (Proposition 3.6 assures us that this is well-defined
since it does not depend on the choice of p). By definition, we then have µp = (πp)∗µ for all p,
and Lemma 4.3 ends the proof.

Proof of Theorem 1.1 (convergence in probability part). We want to prove that( Tn
n1/k

, µn

)
P→ (T , µ). (3.7)

Once this will be done, the distribution of (T , µ) will be that of the fragmentation tree mentioned
in Theorem 1.1, since we have already proved the convergence in distribution to that measured
tree in Section 2. To get (??), notice that Lemma 4.3 directly improves Proposition 3.2, since we
can replace the GH distance by the GHP distance, adding the measures µn and µpn respectively
to the trees Tn and T pn . Once we know this, as well as Proposition 3.6 and Lemma 3.7, the same
proof as that of Proposition 3.5 works.

3.5 Joint convergence

For the sake of clarity, we return to the notations of the introduction: for n ∈ Z+, Tn(k) is
the tree at the n-th step of the algorithm, its scaling limit is Tk. For p 6 n, we let T pn(k) and
T pk be the respective finite-dimensional marginals we have studied, endowed, respectively, with
the probability measures µpn(k) and µpk. Let k′ be an integer with 2 6 k′ < k. Recall now that
Tn(k, k′) is the subtree of Tn(k) obtained by discarding all edges with labels greater than or equal
to k′ + 1, as well as their descendants. The objective of this section is to prove the convergence
in probability of n−1/kTn(k, k′) by using what we know of the convergence of n−1/kTn(k). This
method once again fails to give the distribution of the limiting tree, which will be obtained in
Section 4.1.

For all n, the tree Tn(k, k′) comes with a measure µn(k, k′) which is the image of µn(k) by
the projection from Tn(k) onto Tn(k, k′). Similarly, for p 6 n, define

T pn(k, k′) = Tn(k, k′) ∩ T pn(k),
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and the image measure µpn(k, k′). For fixed p, the almost sure convergence of n−1/kT pn(k) to T pk
as n goes to infinity allows us to extend the edge labellings to T pk , and thus define T pk,k′ and µpk,k′

in analogous fashion. Note that the sequence
(
n−1/kT pn(k, k′), µpn(k, k′)

)
converges almost surely

to (T pk,k′ , µ
p
k,k′) as n goes to infinity, by using Lemmas 3.1 and 3.2 and imitating the proofs of

Propositions 3.1 and 3.6. Finally, considering again versions of all these trees embedded in `1

via the stick-breaking construction, we let

Tk,k′ = ∪∞p=0T
p
k,k′ .

Clearly, Tk,k′ ⊂ Tk and we let µk,k′ be the image of µk under the projection from Tk onto Tk,k′ .
Proof of Theorem 1.3 (convergence in probability part). What we want to show is that
the sequence of measured trees

(
n−1/kTn(k, k′), µn(k, k′)

)
converges in probability to (Tk,k′ , µk,k′)

as n goes to infinity, and it is in fact a simple consequence of Lemma 4.2. Indeed, this lemma
directly gives us the fact that, for p 6 n,

dGHP

((T pn(k, k′)

n1/k
, µpn(k, k′)

)
,
(Tn(k, k′)

n1/k
, µn(k, k′)

))
6 dGHP

(( T pn
n1/k

, µpn

)
,
( Tn
n1/k

, µn

))
,

as well as, for any p,

dGHP

(
(T pk,k′ , µ

p
k,k′), (Tk,k′ , µk,k′)

)
6 dGHP

(
(T pk , µ

p
k), (Tk, µk)

)
.

Since we know that (T pk , µ
p
k) → (Tk, µk) a.s. as p → ∞, that

(
n−1/kT pn(k, k′), µpn(k, k′)

)
→

(T pk,k′ , µ
p
k,k′) a.s. for all p as n→∞, and that there exists a GHP version of Proposition 3.2 (see

the convergence in probability part of the proof of Theorem 1.1), the proof can then be ended
just as that of Proposition 3.5. �

4 Stacking the limiting trees

This section is devoted to the study of Tk,k′ , seen as a subtree of Tk. We start by giving the
distribution of the measured tree (Tk,k′ , µk,k′), then move on to prove (3.2), which is the last
part of Theorem 1.3, and then finally show that, even without the construction algorithm, one
can extract from Tk a tree distributed as Tk,k′ .

4.1 The distribution of (Tk,k′ , µk,k′)

In Section 2, the distribution of Tk was obtained by using the main theorem of [42]. We would
like to do the same with Tk,k′ , but the issue is that the results of [42] are restricted to conservative
fragmentations. The aim of this section is therefore to concisely show that the arguments used in
[42] still apply in our context and prove the last part of Theorem 1.3: that (Tk,k′ , d, ρ, µk,k′) has

the distribution of a fragmentation tree with index −1/k and dislocation measure ν↓k,k′ (which

was defined in Theorem 1.3). For reference, we let (T 0, d0, ρ0, µ0) be such a fragmentation tree.
We are going to use the method of finite-dimensional marginals introduced in Chapter 1,

Section 1.4. In our cases, for both (Tk,k′ , µk,k′) and (T 0, µ0), we know that the measure is
fully supported on the tree. For T 0, this is because it is a self-similar fragmentation tree with
infinite dislocation measure, by using [41, Theorem 1]. The same theorem shows that µk is
fully supported on Tk, and by projection, µk,k′ is fully supported on Tk,k′ . What this entails
is that, since (n−1/kTn(k, k′), µn(k, k′)) converges in probability to (Tk,k′ , µk,k′), we can prove
that (Tk,k′ , µk,k′) and (T 0, µ0) have the same distribution by showing that the finite-dimensional
marginals of (n−1/kTn(k, k′), µn(k, k′)) converge to those of (T 0, µ0).

Our method of proof will use interpretations of those trees using partition-valued processes.
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4.1.1 Partitions of finite sets with holes

In order to interpret the sequence
(
Tn(k, k′)

)
n∈Z+

as a sequence of Markov branching trees, we

are going to need an alternative notion of partitions of finite sets. Let A be a finite subset of
N. We call partition with holes of A any partition π of A in the usual sense except that some of
the singletons will be marked as holes. Holes are marked by saying that they have “size” zero:
#πi = 0, even though the singleton block πi is not actually empty. We then let λ(π) be the list
of the sizes of the blocks of π, in decreasing order, without writing the zeroes. For example, if
A = [5], then the partition π =

(
{1, 4, 5}, {2}, {3}

)
is a partition with one hole when we specify

#{2} = 0 and #{3} = 1, and then λ(π) = (3, 1). We let P ′A be the set of partitions with holes
of A.

The main reason we introduce these new partitions is to clearly identify the nature of single-
tons of partitions of N when restricted to finite sets. If π is a partition of N, then the partition
π ∩ A of A really has two kinds of singletons: those who are singletons of π, and which will be
singletons for any choice of A, and those who just happen to be singletons because A is not large
enough. This is why we now identify π ∩A as a partition with holes by saying that, if an integer
i ∈ A is in a singleton of π then it is in a hole of π ∩A.

4.1.2 Seeing
(
Tn(k, k′)

)
n∈Z+

as non-conservative Markov branching trees

As in Section 2.2, we will want to match the approach of [42] and index the trees not by their
number of internal nodes, but by the number of leaves of Tn(k). This is why we let, for n ∈ N,
rn = (k − 1)n + 1, and then (T ◦rn , µ

◦
rn) =

(
Tn(k), µn(k)

)
and (T •rn , µ

•
rn) =

(
Tn(k, k′), µn(k, k′)

)
.

Similarly, we let (q◦rn)↓ and (q•rn)↓ be the associated splitting distributions: (q◦rn)↓ is the distribu-

tion of
(
(k− 1)Xi + 1

)
i∈[k]

where (Xi)i∈[k] has distribution q↓n−1, while (q•rn)↓ is the distribution

of
(
(k − 1)Xi + 1

)
i∈[k′′]

where (Xi)i∈[k] has distribution (q′n−1)↓. For coherence, we also let

(q•1)↓ = (q̄•1)↓ = δ(0), the Dirac mass on the sequence with only term 0.
For r ∈ (k−1)N+1, and A a subset of N such that #A = r, let p◦A be the probability measure

on P ′A defined the following way: take a partition λ of r with distribution (q◦r )↓ and then choose
a random partition π of A such that λ(π) = λ, uniformly amongst such partitions. Similarly, we
let p•A be the distribution of the partition obtained if we take λ with distribution (q•r )↓ instead.

We will want to represent T •r as some discrete variant of a “fragmentation tree”. To do so,
first let P1(r), . . . , Pr(r) be a uniform ordering of the leaves of T ◦r . Next, let Q1(r), . . . , Qr(r) be
their respective projections on T •r . Now, for n ∈ Z+, let Π(r)(n) be the partition of [r] defined
the following way: an integer i is in a hole if ht

(
Qi(r)

)
6 n and, for two integers i and j which

are not in a hole, they are in the same block if ht
(
Qi(r) ∧ Qj(r)

)
> n. Since the sequence(

Tn(k)
)
n∈Z+

is Markov branching, the distribution of (Π(r)(n))n∈Z+
can be described by the

following induction:

• Π(r)(0) = [r] almost surely.

• Conditionally on Π(r)(n) = (π1, . . . , πp), let
(
π′(l)

)
l∈[p]

be independent variables, each with

distribution p•πl , then Π(r)(n + 1) has the same distribution as the partition obtained by
fragmenting every block πl into π′(l).

This makes T •r a discrete analogue of a fragmentation tree, also equipped with a set of
death points. Moreover, the measure µ•r is the empirical measure associated to the death points
Q1(r), . . . , Qr(r).

We also mention the natural coupling between p◦[r] and p•[r] which comes from this construction.

Of course, Π(r)(1) has distribution p•[r]. Consider the partition without holes π′ of [r] obtained
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by saying that two integers i and j are in the same block if ht
(
Pi(r) ∧ Pj(r)

)
> 1, where

P1(r), . . . , Pr(r) are the earlier mentioned leaves in uniform order. This partition has distribution
p◦[r], and since the holes of Π(r)(1) correspond to the integers i such that Pi(r) 6= Qi(r) and

ht(Qi) = 1, the non-hole blocks of Π(r)(1) are all indeed blocks of π′.

4.1.3 Convergence of 1-dimensional marginals

For r ∈ (k−1)Z++1, let X(r) ∈ T •r have distribution µ•r . We will show that, as n tends to infinity,
n−1/kd

(
ρ,X(rn)

)
converges in distribution to the height of a point of T 0 with distribution µ0.

Our proof will essentially be the same as that of Lemma 28 in [42], and will use the same main
ingredient which is Theorem 2 of [39].

By exchangeability, we can assume that X(r) = Q1(r). This enables us to use a Markov
chain: let Mm = #Π1(m) for m ∈ Z+. This is a decreasing Markov chain on Z+, with starting
value r and for which 0 is an absorbing state. Moreover, its transition probabilites do not depend
on r, and, calling them (pa,b)a,b∈Z+

, are simply characterized by

r∑
b=0

f(b)pr,b =
∑

λ=(λ1,...,λk′ )∈Zk
′

+ :
∑k′
i=1 λi6r

(q•r )↓(λ)
( k′∑
i=1

f(λi)
λi
r

+ f(0)
r −

∑k′

i=1 λi
r

)

for a measurable function f .
With this and Corollary ??, it then follows that the measure n1/k(1−x)

∑rn
b=0 prn,bδb/rn(dx)

converges weakly to ∫
Sk′,6

( k′∑
i=1

(1− si)siδsi +
(

1−
k′∑
i=1

si

)
δ0

)
ν↓k,k′(ds).

Theorem 2 of [39] is then applicable and shows that, when renormalized by n−1/k, the height of
X(rn) does converge in distribution to the height of a point of T 0 with distribution µ0, which, as
explained in Chapter 2, Section 2.1.4 can be written

∫∞
0

e−ξt/kdt, where (ξs)s>0 is a subordinator

with Laplace exponent defined for q > 0 by
∫
Sk′,6

(1−
∑k′

i=1 s
q+1
i )ν↓k,k′(ds).

4.1.4 Convergence of l-dimensional marginals for l > 2

The general proof of convergence of the finite-dimensional marginals requires an induction, which
we have already initialized at l = 1. The main ingredient for the l-th step will be investigating
the structure or T •r (respectively T 0) around the branch point of X1(r), . . . , Xl(r) (respectively
X0

1 , . . . , X
0
l ), which are independent with distribution µ•r (respectively µ0) and this will be done

by studying the respective discrete and continuous fragmentation processes at the time where l
different integers split. More precisely, our aim is to prove the following proposition:

Proposition 4.1. Let (Π(t))t>0 be a partition-valued fragmentation process with parameters
(−1/k, 0, νk,k′). Recall from Chapter 2, Section 3.2 that D[l] is the time from which integers
1, . . . , l are not all in the same block of (Π(t))t>0. We let in analoguous fashion Drn

[l] be the time

from which Π(rn) splits the block [l]. We then have the following convergence in distribution as
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n goes to infinity:(
Drn

[l]

n1/k
, [l] ∩Π(rn)(Drn

[l] ),
( #Π

(rn)
(i) (Drn

[l] )

rn
, 1 6 i 6 l

))
(4.8)

=⇒
n→∞

(
D[l], [l] ∩Π(D[l]),

(
|Π(i)(D[l]), 1 6 i 6 l

))
The proof of this proposition will be split in several steps. The following two lemmas state

the distributions of the right-hand side and left-hand side of (??), while the one after that gives
in some fashion the scaling limit of the measure p•rn . In all three lemmas, in order to manipulate
information on π ∩ [l] (where π is a random partition studied in the current lemma), we look at
an event where it is equal to a particular partition of [l] called π′. This partition will have some
holes, and we call π′i1 , . . . , π

′
ib

the blocks of π′ which are not holes. Once we are on this event,
the information on the sizes of the blocks containing the first l integers is entirely contained in(
|πij |, 1 6 j 6 b

)
(replacing the asymptotic frequency by cardinality if π is a partition of a finite

set).

Lemma 4.2. If f and g are functions from (0,∞) to R and h from (0,∞)b to R, all nonnegative
and measurable, we have

E

[
f
(
D[l]

)
g
(
|Π1(D−[l]|)

)
h
(( |Πij (D[l])|
|Π1(D−[l]|)

)
, 1 6 j 6 b

)
1{Π(D[l])∩[l]=π′}

]

=

∫ ∞
0

f(u)duE
[
|Π1(u)|l−1+1/kg(|Π1(u)|)

] ∫
PN

κ↓νk,k′ (dπ)h(|πij |, 1 6 j 6 b)1{π∩[l]=π′}

Proof. This is an elementary computation involving the Poissonian construction and the Lamperti-
type time-change, which were both explained in Chapter 2, Section 2.1.3. We do not reproduce
the computation which was already done in [42], Proposition 18.

For the next lemma, we introduce the notation (a)b = a(a− 1) . . . (a− b+ 1) for nonnegative
integers a and b, and also add (−1)b = 0 for any b.

Lemma 4.3. If f and g are functions from (0,∞) to R and h from (0,∞)b to R, all nonnegative
and measurable, we have

E

[
f
(
D

(r)
[l]

)
g
(
#Π

(r)
1 (D

(r)
[l] − 1)

)
h
(

#Π
(r)
ij

(D
(r)
[l] ), 1 6 j 6 b

)
1{[l]∩Π(r)(D

(r)

[l]
)=π′}

]

=
∑
t∈N

E

[
(#Π

(r)
1 (t− 1)− 1)l−1

(r − 1)l−1
f(t)g

(
#Π

(r)
1 (t− 1)

)
p•Π(r)(t−1)

(
h(|πij |, 1 6 j 6 b)1{[l]∩π=π′}

)]

Proof. We refer to the proof of Lemma 27 in [42]. The general idea is that t ∈ N represents the

possible values of D
(r)
[l] and that the fraction

(#Π
(r)
1 (t−1)−1)l−1

(r−1)l−1
is the probability that [l] is not yet

split at time t− 1, conditionally on (#Π
(r)
1 (p), p 6 t− 1).

Lemma 4.4. Let g : (0,∞)b → R be a continuous function with compact support, then

(rn)1/kp•[rn]

(
g
(#πij
rn

, 1 6 j 6 b
)
1{π∩[l]=π′}

)
→

n→∞

∫
PN

κνk,k′ (dπ)g(|πij |, 1 6 j 6 b)1{π∩[l]=π′}
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Proof. This is our equivalent version of Lemma 26 in [39]. We could prove it by using similar
methods (though the presence of holes would require several modifications), however we can here
use the coupling between p•[rn] and p◦[rn] explained at the end of Section 4.1.2 and not do any
computations.

Consider all partitions of [l] with holes π′′ such that any non-hole block of π′ is a block of π′′.
We call these blocks π′′

ĩ1
, . . . , π′′

ĩb
. The coupling between p•[rn] and p◦[rn] then shows that

p•[rn]

(
g
(#πij
rn

, 1 6 j 6 b
)
1{π∩[l]=π′}

)
=
∑
π′′

p◦[rn]

(
g
(#πĩj
rn

, 1 6 j 6 b
)
1{π∩[l]=π′′}

)
,

where we sum over all such possible π′′. There also exists a coupling between the measures κνk,k′
and κνk such that all non-hole blocks of one partition are blocks of the other one. It can be
obtained by slightly specifying how we do the paintbox construction. For s ∈ Sk, let (Ui)i∈N be
independent uniform variables in [0, 1], and let two partitions π1 and π2 be defined such: two
integers i and j are in the same block of π1 and π2 if Ui and Uj are in the same interval of

the form [
∑m
p=1 sp,

∑m+1
p=1 sp), with the exception that, for i such that Ui >

∑k′

p=1 sp, i is in a

singleton of π2. Taking a “random” sequence s with “distribution” νk yields our coupling, and we
thus have∫

PN

κνk,k′ (dπ)g(|πij |, 1 6 j 6 b)1{π∩[l]=π′} =
∑
π′′

∫
PN

κνk(dπ)g(|πĩj |, 1 6 j 6 b)1{π∩[l]=π′′}.

Now, since the measures q◦rn and νk are conservative, we can use Lemma 26 from [39], and we
have, for any fixed π′′,

(rn)1/kp◦[rn]

(
g
(#πĩj
rn

, 1 6 j 6 b
)
1{π∩[l]=π′′}

)
→

n→∞

∫
PN

κνk(dπ)g(|πĩj |, 1 6 j 6 b)1{π∩[l]=π′′}.

The proof is then ended by summing over all possible π′′.

Proof of Proposition 4.1. There is no significant difference between the proof of Proposition
4.1 and that of Lemma 29 in [42], so we only give the general idea here. We take a partition with
holes π′ of [l], and compactly supported functions f , g and h, and look at the quantity

E

[
f
(D(rn)

[l]

n1/k

)
g
(#Π

(rn)
1 (D

(rn)
[l] − 1)

rn

)
h
( #Π

(r)
ij

(D
(rn)
[l] )

#Π
(rn)
1 (D

(rn)
[l] − 1)

, 1 6 j 6 b
)
1{[l]∩Π(r)(D

(rn)

[l]
)=π′}

]
.

We apply Lemma 4.3 and normalize t ∈ N by n1/k to obtain that this expecation is equal to∫ ∞
n−1/k

f
(bun1/kc

n1/k

)
duE

[
(Π

(rn)
1 bn1/ku− 1c)l−1

(rn − 1)l−1
g
(Π

(rn)
1 (bn1/ku− 1c)

rn

)
n1/kp•Π(rn)(bn1/ku−1c−1)h

( #πij

Π
(rn)
1 (bn1/ku− 1c)

, 1 6 j 6 b
)]
.

Applying Lemma 4.4 and using the dominated convergence theorem finally leaves us with all
the terms of Lemma 4.2.

Proof by induction of convergence of l-dimensional marginals. Let X1(rn), . . . , Xl(rn)
be l independent points of Tn(k, k′) distributed as µn(k, k′) conditionally on

(
Tn(k, k′), µn(k, k′)

)
.
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We set out to prove that the tree

(
∪li=1 Jρ,Xi(rn)K,

1

l

l∑
i=1

δXi(rn)

)
.

converges to (
∪li=1 Jρ,X0

i K,
1

l

l∑
i=1

δX0
i

)
.

where X0
1 , . . . , Xl are independent points of T 0 with distribution µ0. We know of course that

X0
i can be seen as the death point of i in a fragmentation process, and first show that the same

is true for the Xi(rn).
We first want to show that we can replace Xi(rn) by Qrni for all i ∈ [l] and not change

the limit. To do this, first let Y1(rn), . . . , Yl(rn) be l independent points of Tn(k) with distri-
bution µn(k). Conditionally on the event where they are all distinct, they are distributed as
P1(rn), . . . , Pl(rn), and therefore, taking Xi(rn) as the projection on Tn(k, k′) of Yi(rn) for all
i, we get that (X1(rn), . . . , Xl(rn)) are distributed as Qrn1 , . . . , Qrnl . Moreover, the probability
of the event of conditioning tends to 1 as n goes to infinity, since this probability is equal to
r−l+1
n (rn − 1)l−1. This means that we can now focus on proving the convergence in distribution

of ( l⋃
i=1

Jρ,Q(rn)
i K,

1

l

l∑
i=1

δ
Q

(rn)
l

)
to ( l⋃

i=1

Jρ,Q0
i K,

1

l

l∑
i=1

δQ0
i

)
,

where Q0
1, . . . , Q

0
l are the death points of 1, . . . , l in a (−1/k, 0, ν↓k,k′)-fragmentation process. The

distribution of
(
∪li=1 Jρ,Q(rn)

i K, l−1
∑l
i=1 δQ(rn)

l

) can be characterized by saying that it is the

tree formed by having an initial segment of length Drn
[l] ending at a branch point, to which

we append independent trees, the distribution of which are determined by Π(rn)(Drn
[l] ) ∩ [l] and

(#Π
(rn)
(i) )i∈[l]. Precisely, let π′ = Π(rn)(Drn

[l] ) ∩ [l] and let i1, . . . , ib be the indices of the non-hole

blocks of π′. Then, for all j ∈ [b], let nj = #Π
(rn)
ij

(Drn
[l] ) and mj = #π′ij and graft a copy of the

mj-dimensional marginal of T •nj where the measure has been renormalized to have total mass

mj/l. Moreover, we give to the branchpoint mass 1 −
∑b
j=1mj/l. Applying Proposition 4.1 as

well as the induction hypothesis for each subtree then ends the proof.

4.2 Proof of (3.2)

For n > 0, let In denote the number of internal nodes of Tn(k) which are in Tn(k, k′).

Lemma 4.5. One has
(Tn(k, k′), n > 0) =

(
T̃In(k′), n > 0

)
,

where (T̃i(k
′), i > 0) is a sequence distributed as (Ti(k

′), i > 0) and independent of (In, n > 0).
Moreover, (In, n > 0) is a Markov chain with transition probabilities

P (In+1 = i+ 1 | In = i) = 1− P (In+1 = i | In = i) =
k′i+ 1

kn+ 1
,
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and as a consequence,
In
nk′/k

a.s.−→Mk′/k,1/k,

where the limit is a (k′/k, 1/k)-generalized Mittag-Leffler random variable.

We recall that a generalized Mittag-Leffler random variable Mα,θ with parameters α ∈ (0, 1)
and θ > −α has its distribution characterized by its positive moments, given by

E
[
Mp
α,θ

]
=

Γ(θ + 1)Γ(θ/α+ p+ 1)

Γ(θ/α+ 1)Γ(θ + pα+ 1)
, p > 0.

Proof. This proof is very similar to those of Lemma 8 and Lemma 9 of [24]. Given Ti(k) and
Ti(k, k

′) for 0 6 i 6 n, the new node added to get Tn+1(k) from Tn(k) will belong to Tn+1(k, k′)
if and only if the selected edge is in Tn(k, k′), which occurs with probability (k′In + 1)/(kn+ 1)
since k′In+1 is the number of edges of Tn(k, k′) and kn+1 that of Tn(k). Moreover, conditionally
to the fact that this new node belongs to Tn+1(k, k′), it is located uniformly at random on one
of the edges of Tn(k, k′), independently of the whole process (In, n > 0) and of Ti(k, k

′) for
0 6 i 6 I−1

In
− 1 where I−1

m := inf{n > 0 : In = m}, m > 0. From this, it should be clear that
the process defined for all i > 0 by

T̃i(k
′) = TI−1

i
(k, k′)

is distributed as (Ti(k
′), i > 0) and independent of (In, n > 0). Moreover, we have that

Tn(k, k′) = T̃i(k
′) if In = i, hence Tn(k, k′) = T̃In(k′).

Lastly, the few lines above show that (In, n > 0) is a Markov chain with the expected
transition probabilities. It turns out that these probabilities are identical to those of the number
of tables in a (k′/k, 1/k) Chinese restaurant process. Therefore, using again Theorem 3.8 in
[69], n−k

′/kIn converges almost surely towards a (k′/k, 1/k)-generalized Mittag-Leffler random
variable. �

Proof of (3.2). This is a straightforward consequence of the joint convergence in probability
settled in Theorem 1.3 and of Lemma 4.5. Indeed, we know that(

Tn(k)

n1/k
,
Tn(k, k′)

n1/k

)
P→

n→∞
(Tk, Tk,k′)

in the GH sense. Then, for n > 1,

Tn(k, k′)

n1/k
=
Tn(k, k′)

I
1/k′
n

×
(

In
nk′/k

)1/k′

.

On the one hand, the left hand side converges in probability towards Tk,k′ . On the other hand,
by Lemma 4.5 and since In converges a.s. to +∞,

Tn(k, k′)

I
1/k′
n

P→
n→∞

T̃k′ ,

where T̃k′ is distributed as Tk′ . Moreover this holds independently of the a.s. convergence of
In/n

k′/k towards the generalized Mittag-Leffler r.v. Mk′/k,1/k. The result follows by identifica-
tion of the limits. �
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4.3 Extracting a tree with distribution Tk′ from Tk
We know from the discrete approximation that there is a subtree of Tk which is distributed as

M
1/k′

k′/k,1/k ·Tk′ (or, equivalently, as a fragmentation tree with index −1/k and dislocation measure

ν↓k,k′). Our goal is now to explain how to extract such a tree directly from Tk. Our approach
strongly relies on the fact that (Tk, µk) is a fragmentation tree.

As a fragmentation tree, Tk has a countable number of branch points, almost surely. We
denote this set of branch points {b(n), n ∈ N}. For each n ∈ N, we recall that

Tb(n) =
{
v ∈ Tk : b(n) ∈ [[ρ, v]]

}
is the subtree of descendants of b(n) (ρ denotes the root of Tk). Since Tk is k-ary, the set
Tb(n)\{b(n)} has exactly k connected components. We label them as follows: Tb(n),1 is the
connected component with the largest µk-mass, Tb(n),2 is the connected component with the
second largest µk-mass, and so on (if two or more trees have the same mass, we label them
randomly).

For n ∈ N and i = 1, ..., k, let

si(n) =
µk(Tb(n),i)

µk(Tb(n))
.

Almost surely, for all n ∈ N, these quotients are well-defined, strictly positive and sum to 1.
We then mark the sequences s(n), independently for all n ∈ N, by associating to each sequence
s ∈ Sk an element s∗ ∈ Sk′,6 by deciding that for all 1 6 i1 < ... < ik′ 6 k

(s∗1, ..., s
∗
k′) = (si1 , ..., sik′ ) with probability

(k′ − 1)!(k − k′)!
(k − 1)!

∑
j∈{i1,...,i′k}

∏
16i 6=j6k(1− si)∑k

j=1

∏
16i 6=j6k(1− si)

.

(3.8)
This means that we attribute a weight

∏
i 6=j(1 − si) to the jth term of the sequence s, for all

1 6 j 6 k, and then choose at random a k′-uplet of terms (with strictly increasing indices) with a
probability proportional to the sum of their weights. One can easily check that, for any sequence
s, the quotient in (3.5) indeed defines a probability distribution since (k− 1)!/((k′− 1)!(k− k′)!)
is the number of k′-uplets (i1, ..., ik′), with 1 6 i1 < ... < ik′ 6 k, containing a given integer
j ∈ {1, ..., k}. For n ∈ N, if (s∗1(n), ..., s∗k′(n)) = (si1(n), ..., sik′ (n)), we then let

T ∗b(n) =
⋃

j∈{1,...,k}\{i1,...,ik′}

Tb(n),j .

Finally we set

T ∗k,k′ = Tk\
⋃
n∈N
T ∗b(n). (3.9)

In words, T ∗k,k′ is obtained from Tk by removing all groups of trees T ∗b(n) for n ∈ N. This tree

(which is well-defined almost surely) has the required distribution:

Proposition 4.6. The tree T ∗k,k′ is a non-conservative fragmentation tree, with index of self-

similarity −1/k and dislocation measure ν↓k,k′ .

Proof. Let (Ai)i∈N be an exchangeable sequence of leaves of Tk directed by µk. We know from
Chapter 2, Proposition 3.2 that the partition-valued process (Π(t))t>0 obtained by declaring, for
t > 0, that two different integers i and j are in the same block of Π(t) if Ai and Aj are in the
same connected component of {x ∈ Tk, ht(x) > t} is a partition-valued fragmentation process
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with dislocation measure ν↓k and self-similarity index −1/k (and no erosion). As explained
in Chapter 2, Section 2.1.3, the process Π can be constructed from a Poisson point process(
(∆(s), i(s)), s > 0

)
on PN × N, with intensity measure κν↓k

⊗#, where # denotes the counting

measure on N and κν↓k
is the measure on PN associated to νk by the paintbox method.

We then mark the Poisson point process as follows just as we marked elements of Sk earlier:
for each atom (∆(s), i(s)), we extract randomly k′ blocks of ∆(s) by setting

(∆∗1(s), ...,∆∗k′(s)) = (∆i1(s), ...,∆ik′ (s))

with probability

(k′ − 1)!(k − k′)!
(k − 1)!

∑
j∈{i1,...,i′k}

∏
16i 6=j6k(1− |∆(s)i|)∑k

j=1

∏
16i6=j6k(1− |∆(s)i)|

.

Then, we make ∆∗(s) into a partition of N with dust by putting every integer which is not
originally in a block ∆∗1(s), ...,∆∗k′(s) into a singleton. The process

(
(∆∗(s), i(s)), s > 0

)
is then

a marked Poisson point process with intensity κν↓,∗k
⊗#, where

κν↓,∗k
(dπ) =

∫
Sk′,6

κs(dπ)ν↓,∗k (ds) and

∫
Sk′,6

f(s)ν↓,∗k (ds) =

∫
Sk

E[f(s∗)]ν↓k(ds),

for all suitable test functions f . Now, the key-point is that

ν↓,∗k = ν↓k,k′ .

This is easy to check by using the definitions of ν↓k , ν↓k,k′ and of the marking procedure (3.5),
together with the identity (3.3). The details of this calculation are left to the reader.

To finish, let Π∗ be the (−1/k, 0, ν↓k,k′)-fragmentation process derived from the Poisson point

process
(
(∆∗(s), i(s)), s > 0

)
. For all i ∈ N, let D∗i = inf{t > 0, {i} ∈ Π∗(t)} and note that

D∗i 6 Di, where Di := inf{t > 0, {i} ∈ Π(t)} is the height of Ai in Tk. Let then A∗i be the unique
point of Tk belonging to the geodesic [[ρ,Ai]] which has height D∗i . It is not hard to see that T ∗k,k′ ,
defined by (??), is the closure of the subtree ∪i>1[[ρ,A∗i ]] of Tk spanned by the root and all the
vertices A∗i (almost surely). But by definition this closure is the genealogy tree of Π∗, in the sense

of Chapter 2, Proposition 3.5. Thus T ∗k,k′ has the distribution of a (−1/k, ν↓k,k′)-fragmentation
tree.
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Chapter 4

Infinite multi-type
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We show that large critical multi-type Galton-Watson trees, when conditioned to have a

large amount of vertices of one fixed type, converge locally in distribution to an infinite tree

which is analoguous to Kesten’s infinite monotype Galton-Watson tree. Use of the well-

known Bouttier-Di Francesco-Guitter bijection then allows us to apply this result to the

theory of random maps, showing that critical large Boltzmann-distributed random planar

maps converge in distribution to an infinite variant, which is in fact a recurrent planar graph.

1 Introduction

A planar map is a proper embedding of a finite connected planar graph in the sphere, taken up to
orientation-preserving homeomorphisms. These objects were first studied from a combinatorial
point of view in the works of Tutte in the 1960s (see for example [77]), and have since been of
use in different domains of mathematics, such as algebraic geometry (see for example [55]) and
theoretical physics (as in [6]). There has been great progress in their probabilistic study ever
since the work of Schaeffer [74], which has amongst other things led to finding the scaling limit
of many large random maps (we mention [67] and [56]).

Our subject of interest here is the local convergence of large random maps, which means
that we are not interested in scaling limits but in the combinatorial structure of a map around
a chosen root. Such problems were first studied by Angel and Schramm ([7]) and Krikun ([53]),
who showed that the distributions of uniform triangulations and quadrangulations with n vertices
converge weakly as n goes to infinity. Each limit is the distribution of an infinite random map,
respectively the uniform infinite planar triangulation (UIPT) and the uniform infinite planar
quadrangulation (UIPQ). Of particular interest to us is the paper [26] where the convergence
to the UIPQ is shown by a method involving the well-known Cori-Vauquelin-Schaeffer bijection
([74]).

We will generalize this to a large family of random maps called the class of Boltzmann-
distributed random maps. Let q = (qn)n∈N be a sequence of nonnegative numbers. We assign
to every finite planar map a weight which is equal to the product of the weights of its faces, the
weight of a face being qd where d is the number of edges adjacent to said face, counted with
multiplicity. If the sum of all the weights of all the maps is finite, then one can normalize this
into a probability distribution.

The use of the so-called Bouttier-Di Francesco-Guitter bijection (see [19], or Section 4.3)
allows us to obtain the convergence to infinite maps for a fairly large class of weight sequences q.
For q in this class, let (Mn, En) be a q-Boltzmann rooted map conditioned to have n vertices, our
main Theorem 5.1 states this sequence converges in distribution to a random map (M∞, E∞),
which we call the infinite q-Boltzmann map. Due to combinatorial reasons, we have to restrict
n to a lattice of the form 2 + dZ+ where d is an integer depending on the sequence q.

The class of weight sequences for which this is true is the class of critical (as defined in Section
4.2) sequences, which contains all sequences with finite support (up to multiplicative constants).
Taking qn = 1{n=p} with p > 3 gives us the case of the uniform p-angulation, making our results
an extension of what was known about the UIPT and UIPQ.

Local limits of Boltzmann random maps have notably been studied recently in [18]. A central
difference with our work here is the fact that the maps are supposed to be bipartite in [18] (the
weight sequence q is supported on the even integers). In this context, it is more natural to
condition maps by their number of edges instead of their number of vertices, leading to a result
which complements ours.

The proof of convergence to an infinite map hinges on a similar result for critical multi-type
Galton-Watson trees and forests, Theorem ??. This theorem itself generalizes the well-known
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fact that critical monotype Galton-Watson trees, when conditioned to be large, converge to an
infinite tree formed by a unique infinite spine to which many finite trees are grafted. This infinite
tree was first indirectly mentioned in [51], Lemma 1.14, and many details about the convergence
are given in [1] and [49]. One of its properties is that one can obtain its distribution from the
distribution of the finite tree by a size-biasing process, as is explained in [60].

As will be apparent when we discuss the Bouttier-Di Francesco-Guitter bijection in Section
4.3, we will want to condition multi-type Galton-Watson trees on the number of vertices of one
fixed type only, leaving the other types free. As it happens, such a conditioning is for now the
only one under which we are able to prove the local convergence of the tree to an infinite version.
The distribution of the infinite tree can once again be described by a size-biasing process from
the original tree, as explained in Proposition 3.1, something which was anticipated in [54].

A fairly important issue in Theorem ?? is the problem of periodicity: as with maps, a multi-
type Galton-Watson tree cannot have any number of vertices. To be precise, the number of
vertices of a fixed type in the tree is always in α + dZ+, where d only depends on the offspring
distribution and α also depends on the type of the root vertex. Particular care must thus be
taken when counting the vertices of forests or specific subtrees.

The chapter is split into two halves: we start by working on trees, and later on apply the
results to maps. To be precise, after recalling facts about multi-type Galton-Watson trees in
Section 2, we prove in Section 3 the convergence of large critical multi-type Galton-Watson
forests to their infinite counterpart. Section 4 then states the basic background on planar maps,
and we state and prove Theorem 5.1, our main theorem of convergence of maps, in Section 5.
The final section is then dedicated to an application, namely showing that the infinite Boltzmann
map is almost surely a recurrent graph.

2 Background on multi-type Galton-Watson trees

2.1 Basic definitions

Multi-type plane trees. We recall the standard formalism for family trees, first introduced by
Neveu in [68]. Let

U =

∞⋃
k=0

Nk

be the set of finite words on N, also known as the Ulam-Harris tree. Elements of U are written
as sequences u = u1u2 . . . uk, and we call |u| = k the height of u. We also let u− = u1u2 . . . uk−1

be the father of u when k > 0. In the case of the empty word ∅, we let |∅| = 0 and we do not
give it a father. If u = u1 . . . uk and v = v1 . . . vl are two words, we define their concatenation
uv = u1 . . . ukv1 . . . vl.

A plane tree is a subset t of U which satisfies the following conditions:

• ∅ ∈ t,

• u ∈ t \ {∅} ⇒ u− ∈ t,

• ∀u ∈ t,∃ku(t) ∈ Z+,∀j ∈ N, uj ∈ t⇔ j 6 ku(t).

Given a tree t and an integer n ∈ Z+, we let tn = {u ∈ t, |u| = n} and t6n = {u ∈ t, |u| 6 n}.
We call height of t the supremum ht(t) of the heights of all its elements. If u ∈ t, we let
tu = {v ∈ U , uv ∈ t} be the subtree of t rooted at u.
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Note that the finiteness of ku(t) for any vertex u implies that all the trees which we consider
are locally finite: a vertex can only have a finite number of neighbours. We do however allow
infinite trees.

Let now K ∈ N be an integer. A K-type tree is a pair (t, e) where t is a plane tree and e is a
function: t→ [K], which gives a type e(u) to every vertex u ∈ t. For a vertex u ∈ t, we also let
wt(u) =

(
e(u1), . . . , e(uku(t))

)
be the list of types of the ordered offspring of u. Note of course

that the knowledge of e(∅) and of all the wt(u), u ∈ t gives us the complete type function e.
We let

WK =

∞⋃
n=0

[K]n.

be the set of finite type-lists. Given such a list w ∈ WK and a type i ∈ [K], we let pi(w) =
#{j, wj = i} and p(w) = (pi(w))i∈[K]. This defines a natural projection from WK onto (Z+)K .
We also let |w| =

∑
i pi(w) be the length of w. Elements of WK should be seen as orderings of

types, such that the type i appears pi(w) times in the order w.

Offspring distributions. We call ordered offspring distribution any sequence ζ = (ζ(i))i∈[K]

where, for all i ∈ [K], ζ(i) is a probability distribution on WK . Letting µ(i) = (pi)∗ζ
(i) for all i,

we then call µ = (µ(i))i∈[K] the associated unordered offspring distribution.
We will always assume the condition

∃i ∈ [K], µ(i)

{z ∈ (Z+)k,

K∑
j=1

zj 6= 1
} > 0

to avoid degenerate cases which will lead to infinite linear trees.

Uniform orderings. Let us give details about a particular case of ordered offspring distribution.
For n = (ni)i∈[K] ∈ (Z+)K , we call uniform ordering of n any uniformly distributed random vari-
able on the set of words w ∈ WK satisfying p(w) = n. Such a random variable can be obtained
by taking the word (1, 1, . . . , 1, 2, . . . , 2, 3, . . . ,K, . . . ,K) (where each i is repeated ni times) and
applying a uniform permutation to it. Now let µ = (µ(i))i∈[K] be a family of distributions on

(Z+)K , we call uniform ordering of µ the ordered offspring distribution ζ = (ζ(i))i∈[K] where, for

each i, ζ(i) is the distribution of a uniform ordering of a random variable with distribution µ(i).

Galton-Watson distributions. We can now define the distribution of a K-type Galton-Watson
tree rooted at a vertex of type i ∈ [K] and with ordered offspring distribution ζ, which we call

P(i)
ζ , by

P(i)
ζ (t, e) = 1{e(∅)=i}

∏
u∈t

ζ(e(u))(wt(u)) (4.1)

for any finite tree (t, e). This formula only defines a sub-probability measure in general, however
in the cases which interest us (namely, critical offspring distributions, see the next section) we
will indeed have a probability distribution. In practice we are not interested in this formula as
much as in the branching property, which also characterizes these distributions: the types of the

children of the root of a tree (T,E) with law P(i)
ζ are determined by a random variable with law

ζ(i) and, conditionally on the offspring of the root being equal to a word w, the subtrees rooted

at points j with j ∈ [|w|] are independent, each one with distribution P(j)
ζ .

Criticality. Let M = (mi,j)i,j∈[K] be the K ×K matrix defined by

mi,j =
∑

z∈(Z+)K

zjµ
(i)(z), ∀i, j ∈ [K].
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We assume that M is irreducible, which means that, for all i and j in [K], there exists some power
p such that the (i, j)-th entry of Mp is nonzero. In this case, we know by the Perron-Frobenius
theorem that the spectral radius ρ of M is in fact an eigenvalue of M . We say that ζ (or µ, or
M) is subcritical if ρ < 1 and critical if ρ = 1, which both in particular impliy that equation
4.1 does define a probability distribution and that Galton-Watson trees with ordered offspring
distribution ζ are almost surely finite. We will always assume criticality in the rest of the chapter.
The Perron-Frobenius theorem also tells us that, up to multiplicative constants, the left and right
eigenvectors of M for ρ are unique. We call them a = (a1, . . . , aK) and b = (b1, . . . , bK) and
normalize them such that

∑
i ai =

∑
i aibi = 1, in which case their components are all strictly

positive.
The fact that b is a right-eigenvector of M translates as

bi =
∑

z∈(Z+)K

µ(i)(z)b · z,

where · is the usual dot product. One can deduce from this the existence of a martingale naturally

associated to the Galton-Watson tree. Let (T,E) have the distribution P(i)
ζ for some i ∈ [K]

and, for all n ∈ N and j ∈ [K], let Z
(j)
n be the number of vertices of T which have height n and

type j, and set Zn = (Z
(j)
n )j∈[K]. Define then, for n ∈ N,

Xn = b · Zn =

K∑
j=1

bjZ
(j)
n . (4.2)

The process (Xn)n∈Z+
is then a martingale.

Spatial trees. Later on in this paper we will be looking at spatial K-type trees, that is trees
coupled with labels on their vertices. We define a K-type spatial tree to be a triple (t, e, l) where
(t, e) is a K-type tree and l is any real-valued function on t. Note that, given t, e and l(∅), the
rest of l is completely determined by the differences l(u) − l(u−) for u ∈ t \ {∅}. This is why

we let, for u ∈ t, yu =
(
l(u1) − l(u), l(u2) − l(u), . . . , l

(
uku(t)

)
− l(u)

)
∈ R|wt(u)| be the list of

ordered label displacements of the offspring of u.

Consider, for all types i ∈ [K] and words w ∈ WK , a probability distribution ν
(i)
w on R|w|, as

well as a number ε. We let P(i,ε)
ζ,ν be the distribution of a triple (T,E,L) where (T,E) is a K-type

tree with distribution P(i)
ζ , the root ∅ has label ε and the label displacements

(
L(u1)− L(u),

L(u2)− L(u), . . . ,L(uku(T))− L(u)
)

(with u ∈ T) are all independent, each one having distri-

bution ν

(
E(u)

)
wT(u) conditionally on E(u) and wT(u).

Forests. We will not only look at trees but also at multi-type (and, when needed, labelled)
forests, a forest being defined as a ordered finite collection of trees: elements of the form (f , e, l) =(
(t1, e1, l1), . . . , (tp, ep, lp)

)
.

A Galton-Watson random forest will be a forest where the trees are mutually independent
and each one has a Galton-Watson distribution with the same ordered offspring distribution (and

label increment distribution, in the labelled case). We can thus let, for w ∈ WK , P(w)
ζ be the

distribution of (Ti,Ei)i∈[|w|] where the (Ti,Ei) are independent, and each (Ti,Ei) has distribu-

tion P(wi)
ζ and, given also a list of initial labels ε = (ε1, . . . , ε|w|), P

(w),(ε)
ζ,ν be the distribution of

(Ti,Ei,Li)i∈[|w|] where the terms of the sequence are independent and, for a given i, (Ti,Ei,Li)

has distribution P(wi,εi)
ζ,ν .
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All previous notation will be adapted to forests, for example, the height of a forest f is the
maximum of the heights of its elements, f6n is the forest where each tree has been cut at height
n, and so on.

Canonical variable notation. For readability, we will throughout the chapter use the canonical
variable (T,E), which is simply the identity function of the space of K-type trees, as well as
(T,E,L), (F,E) (F,E,L) when looking at labelled trees or forests. Thus we will, for instance,

write P(i)
ζ

(
(T,E) = (t, e)

)
instead of P(i)

ζ (t, e), for a given type i and a given K-type tree (t, e).

Local convergence of multi-type trees and forests. Take a sequence of K-type forests
(f (n), e(n))n∈N. We say that this sequence converges locally to a K-type forest (f , e) if, for

all k ∈ N, and n ∈ N large enough (depending on k), we have (f
(n)
6k , e

(n)
6k ) = (f6k, e6k).

This convergence can be metrized: we can for example set, for two K-type forests (f , e) and
(f ′, e′), d

(
(f , e), (f ′, e′)

)
= 1

1+p where p is the supremum of all integers k such that (f6k, e6k) =

(f ′6k, e
′
6k).

Convergence in distribution of random forests for this metric is simply characterized: if
(F(n),E(n))n∈N is a sequence of random K-type forests, it converges in distribution to a certain
random forest (F,E) if and only if, for all k ∈ N and finite K-type forests (f , e), the quantity

P
(
(F

(n)
6k ,E

(n)
6k ) = (f , e)

)
converges to P

(
(F6k,E6k) = (f , e)

)
.

All these definitions can directly be adapted to the case of spatial forests: when asking for
equality between the forests below height k, we also ask equality of the labels below this height.

2.2 The first generation of fixed type

In this section, the next and also later on in the chapter, we fix a reference type j ∈ [K], and
are interested in counting the number of vertices of type j in a Galton-Watson tree with ordered
offspring distribution ζ. A useful tool for this is the first generation of type j, that is, in a K-type
tree (t, e), the set of vertices of t with type j which have no ancestors of type j, except maybe

for the root. If (T,E) has distribution P(i)
ν for some type i, we let µi,j be the distribution of the

number of vertices in the first generation of type j of (T,E).

Lemma 2.1. For all types i, the average of the probability distribution µi,j is equal to

∞∑
k=0

kµi,j(k) =
bi
bj

Proof. For all i ∈ [K], let ci =
∑∞
k=0 kµi,j(k). The proof that ci = bi

bj
for all i is done in two

steps: first, show that cj = 1 and then that the vector c = (ci)i∈[K] is a right eigenvector of M
for the eigenvalue 1.

The fact that cj = 1 is proven in [65], Proposition 4. It is obtained by removing the types
different from j one by one, and noticing that criticality is conserved at every step until we are
left with a critical monotype Galton-Watson tree.

To prove that c is a right eigenvector of M , consider a type i ∈ [K] and apply the branching
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property at height 1 in a tree with distribution P(i)
ν , we get

ci =
∑

z∈(Z+)K

µ(i)(z)
( ∑
l∈[K]\{j}

zlcl + zj

)

=
∑

z∈(Z+)K

µ(i)(z)
( K∑
l=1

zlcl

)

=

K∑
l=1

mi,lcl.

Since
∑k
l=1mi,lcl is the i-th component of (Mc), the proof is complete.

2.3 Periodicity

We keep a fixed type j ∈ [K], and want to find out for which n it is possible for a tree with

distribution P(i)
ζ (for all types i ∈ [K]) to have n vertices of type j. We introduce the notation

#jt for the number of vertices of type j in any K-type tree t. Let d = gcd{n, µj,j(n) > 0}. It is

straightforward that, if T has distribution P(j)
ζ , #jT is always of the form 1 + dn with n ∈ Z+.

A similar statement is also true if the root has a different type:

Lemma 2.2. (i) For all i ∈ [k], there exists an integer βi ∈ {0, 1, . . . , d − 1} such that the
measure µi,j is supported on βi + dZ+.

(ii) Setting αi = βi + 1{i=j} for all i ∈ [K], the number of vertices of type j in a tree with

distribution P(i)
ζ is then always of the form αi + dn for some integer n.

(iii) For i ∈ [K] and w ∈ WK such that ζ(i)(w) > 0, we have

βi ≡
|w|∑
k=1

αwk (mod d).

Proof. The main point is to prove the existence of βi. We therefore choose two integers m and
n such that µi,j(n) > 0 and µi,j(m) > 0, and set out to prove n ≡ m (mod d). Note that,

under P(j)
ζ , the probability that there is a vertex of type i before the first generation of type j is

nonzero, because irreducibility could not be satisfied otherwise. Since such a vertex can have n
or m children in the first generation of type j, we obtain the existence of an integer p such that
µj,j(p) > 0 and µj,j(p+ n−m) > 0, which implies that d divides n−m.

Points (ii) and (iii) are both immediate consequence of the fact that the number of descen-
dants of type j of a vertex of type j is always a multiple of d.

Remark 2.3. We will later on indirectly prove that, for any type i ∈ [K], if n is large enough,
then P(i)(#jT = αi + dn) > 0.

3 Infinite multi-type Galton-Watson trees and forests

In this section we will consider unlabelled trees and forests with a critical ordered offspring
distribution ζ, and will omit mentioning ζ for readability purposes. We could in fact work with
spatial trees, however, since the labellings are done conditionally on the tree and in independent
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fashion for each vertex, the reader can check that the proofs do not change at all if we add the
labellings in.

Just as in the case of critical monotype Galton-Watson trees, multi-type trees have an infinite
variant which is obtained through a size-biasing method which was first introduced in [54].

3.1 Existence of the infinite forest

Proposition 3.1. There exists a unique probability measure P̂(w) on the space of infinite K-type
forests such that, for any n ∈ N and for any finite K-type forest (f , e) with height n,

P̂(w)
(
(F6n,E6n) = (f , e)

)
=

1

Zw

(∑
u∈fn

be(u)

)
P(w)

(
(F6n,E6n) = (f , e)

)
. (4.3)

The normalizing constant Zw is equal to
∑|w|
i=1 bwi = p(w) · b.

Proof. Our proof is structured as the one given in [60] for monotype trees. Let n ∈ N, we will

first define a probability distribution P̂(w)
n on the space of K-type forests with height exactly n

paired with a point of height n. Let (f , e) be such a forest and u ∈ fn, and set

P̂(w)
n

(
f , e, u

)
=
be(u)

Zw
P(w)

(
(F,E) = (f , e)

)
.

The martingale property of the process (Xn)n∈N defined by (4.2) under P(w) ensures us that we

do have probability measures: the total mass of P̂(w)
n is 1

Zw
E(w)
ζ (Xn) = p(w)·b

Zw
= 1.

We will check that these are compatible in the sense that, for n ∈ N, if (F,E, U) has distri-

bution P̂(w)
n+1 then (F6n,E6n, U

−) has distribution P̂(w)
n . Fix therefore (f , e) a K-type forest of

height n and u a vertex of t at height n. We have

P̂(w)
n+1

(
(F6n,E6n, U

−) = (f , e, u)
)

=
1

Zw
P(w)

(
(F6n,E6n) = (f , e)

) ∑
x∈WK

ζ(e(u))(x)

|x|∑
j=1

bxj

=
1

Zw
P(w)

(
(F6n,E6n) = (f , e)

) ∑
z∈(Z+)K

µ(e(u))(z) z · b

=
1

Zw
P(w)

(
(F6n,E6n) = (f , e)

)
be(u).

Kolmogorov’s consistency theorem then allows us to define a distribution P̂(w)
∞ on the set of

forests where one of the trees has a distinguished infinite path. Forgetting the infinite path then
gives us the distribution P̂(w) which we were looking for.

For n ∈ Z+, (f , e) a forest of height n+ 1 and u ∈ fn+1, we have

P̂(w)
n+1

(
(F,E, U) = (f , e, u) | (F6n,E6n, U

−) = (f6n, e6n, u
−)
)

=

be(u)

be(u−)
P(w)
n+1

(
(F,E) = (f , e) | (F6n,E6n) = (f6n, e6n)

)
.

From this formula follows a simple description of these infinite forests.
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Given a type i ∈ [K], a random tree with distribution P̂(i) can be described the following way:
it is made of a spine, that is an infinite ascending chain starting at the root, on which we have
grafted independent trees with offspring distribution ζ. Elements of the spine have a different
offspring distribution, called ζ̂, which is a size-biased version of ζ. It is defined by

ζ̂(j)(x) =
1

bj

|x|∑
l=1

bxlζ
(j)(x), (4.4)

with j ∈ [K] and x ∈ WK . Given an element of the spine u ∈ U and its offspring x ∈ WK ,
the probability that the next element of the spine is uj for j ∈ [|x|] is proportional to bxj , and
therefore equal to

bxj∑|x|
l=1 bxl

.

To get a forest with distribution P̂(w), let first J be a random variable taking values in [|w|]
such that J = j with probability proportional to bwj . Conditionally on J , let (TJ ,EJ) be a tree

with distribution P̂(J), and let (Ti,Ei), for i ∈ [|w|], i 6= J be a tree with distribution P(i), all

these trees being mutually independent. Then the forest (Ti,Ei)i∈[|w|] has distribution P̂(w).

Remark 3.2. Recall that a tree with law P(i) is finite for any i ∈ [K]. Therefore, a forest with

distribution P̂(w) can only have one infinite path, and thus we do not lose any information by

going from P̂(w)
∞ to P̂(w).

3.2 Convergence to the infinite forest

Let j ∈ [K] be any type and w ∈ WK be any word. Recall from Section 2.3 that d is the gcd of
the support of the measure µj,j , and let also αw =

∑
i αwi , such that the number of vertices of

type j in a forest with distribution P(w) is of the form αw + dn, with integer n.

Theorem 3.3. As n tends to infinity, a forest with distribution P(w), conditioned on having
αw + dn vertices of type j, converges in distribution to a forest with distribution P̂(w). In other
words, given a forest (f , e) of height k, we have

P(w)
(
(F6k,E6k) = (f , e) | #jF = αw + dn

)
−→
n→∞

P̂(w)
(
(F6k,E6k) = (f , e)

)
The proof of this theorem will rely on the following asymptotics, indexed by any word w ∈ WK

P(w)(#jF = αw + dn) ∼
n→∞

Zw

bj
P(j)

(
#jT = 1 + d(n+ p)

)
, ∀p ∈ Z (Hw)

We will prove that (Hw) holds for any word w and that both terms are nonzero for large enough
n (implying that the conditioning of the theorem is well-defined). Let us first prove that the
theorem is indeed a consequence of this. Take a forest (f , e) with height k, and let x be the
word obtained by taking the types of the vertices of f with height k (the order of the elements
x actually has no influence). For n large enough, we have

P(w)
(
(F6k,E6k) = (f , e) | #jF = αw + dn

)
=

P(w)
(
(F6k,E6k) = (f , e),#jF = αw + dn

)
P(w)(#jF = αw + dn)

= P(w)
(
(F6k,E6k) = (f , e)

)P(x)(#jF = αw + dn− q)
P(w)(#jF = αw + dn)
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where q is the number of vertices of f of type j which do not have height n. Repeatedly using
point (iii) of Lemma 2.2 shows that, if P(w)

(
(F6k), (E6k) = (f , e)

)
> 0 then αw − q must be

congruent to αx modulo d, giving us

P(w)
(
(F6k,E6k) = (f ,e) | #jF = αw + dn

)
= P(w)

(
(F6k), (E6k) = (f , e)

)P(x)
(
#jF = αx + d(n+ p)

)
P(w)(#jF = αw + dn)

for a certain integer p. Now if we let n tend to infinity, using both (Hw) and (Hx), we obtain

P(x)
(
#jF = αx + d(n+ p)

)
P(w)(#jF = αw + dn)

−→
n→∞

Zx

Zw
=

1

Zw

(∑
u∈fk

be(u)

)
,

which concludes the proof of Theorem ??.

3.3 Proof of (Hw)

Obtaining (Hw) for every word w will be done in several small steps. We will first prove it for
some fairly simple words and gradually enlarge the class of w for which it holds, until we have
every element of WK .

3.3.1 Ratio limit theorems for a random walk

Let (Sn)n∈N be a random walk which starts at 0 and whose jumps are all greater than or equal
to −1, their distribution being given by P(S1 = k) = µj,j(k + 1) for k > −1.

Lemma 3.4. For all α ∈ {0, . . . , d− 1} we have

P(Sα+dn = −α) ∼
n→∞

P(Sdn = 0) ∼
n→∞

P(Sd(n+1) = 0)

Proof. The first thing to notice is that the random walk (Sdnd )n∈N is irreducible, recurrent and
aperiodic on Z. First, it is indeed integer-valued because, by definition, for every n, Sn+1 ≡ Sn−1
(mod d), and thus we stay in the same class modulo d if we take d steps at a time. Irreducibility
comes from the fact that steps of (Sn)n∈N has a nonzero probability of being equal to −1 because
µj,j(0) > 0, and thus (Sdnd )n∈N can have positive jumps or jumps equal to −1. Since the jumps

of (Sn)n∈N are centered by Lemma 2.1, this makes (Sdnd )n∈N an irreducible and centered random
walk on Z, so that it is recurrent (see for example Theorem 8.2 in [50]). Finally, aperiodicity is
obtained from the fact that, if µj,j(n) > 0, then P(Sn = 0) > 0 by jumping straight to n− 1 and
going down to 0 one step at a time.

As a consequence of this, we can apply Spitzer’s strong ratio theorem (see [76], p.49) to the
random walk (Sdnd )n∈N. We obtain that, for any k ∈ Z,

P(Sdn = 0) ∼
n→∞

P(Sd(n+1) = 0) ∼
n→∞

P(Sdn = dk).

This proves the second half of Lemma 3.3, and can also be used to prove the first half. Let µ∗αj,j
be the distribution of the sum of α independent variables with distribution µj,j . For n ∈ N, we
then have

P(Sα+dn = −α) =
∑
p∈Z

P(Sdn = −α− p)µ∗αj,j(p+ α).
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Fatou’s lemma then gives us

lim inf
n→∞

P(Sα+dn = −α)

P(Sdn = 0)
>
∑
p∈Z

µ∗αj,j(p+ α) = 1

A similar argument also shows that

lim inf
n→∞

P(Sd(n+1) = 0)

P(Sα+dn = −α)
> 1,

and this ends the proof.

3.3.2 The case where w = (j, j . . . , j)

Consider a tree (T,E) with distribution P(j). Consider then the reduced tree Π(j)(T) where all
the vertices with types different from j have been erased but ancestral lines are kept (such that the
father of a vertex of Π(j)(T) is its closest ancestor of type j in T). This tree is precisely studied
in [65], where it is shown that it is a monotype Galton-Watson tree, its offspring distribution
naturally being µj,j . As a result, the well-known cyclic lemma (see [69], Sections 6.1 and 6.2)
tells us that

P(j)(#jT = 1 + dn) =
1

1 + dn
P(S1+dn = −1).

where (Sn)n∈N is the random walk defined in Section 3.3.1. This has two particular consequences.
The first one is that P(j)(#jT = 1 +dn) is nonzero for large n, as was first announced in Section
2.3, and the second is the fact that, thanks to Lemma 3.3, in order to prove (Hw) for a certain
word w, we can restrict ourselves to proving the asymptotic equivalence for a single value of p,
which will we take to be 0.

Consider now a word w = (j, j, . . . , j) of length k, where k is any integer. The cyclic lemma
can be adapted to forests (see [69] again), and we have

P(w)(#jF = k + dn) =
k

k + dn
P(Sk+dn = −k),

Lemma 3.3 then implies (Hw) in this case since Zw = kbj and αw = k.
The cases where w contains types different from j will be much less simple, and we first start

with an inequality.

3.3.3 A lower bound

Let w ∈ WK . In order to count the number of vertices of type j of a forest with distribution
P(w), we cut it at its first generation of type j.

P(w)(#jF = αw + dn) =

|w|∑
i=1

∞∑
ki=0

µwi,j(ki)P(j,...,j)(#jF = αw − q + dn)

where q is the number of times j appears in w and j is repeated k1 + k2, . . . + k|w| times in

P(j,...,j). By Lemma 2.2, part (iii), whenever µwi,j(ki) > 0, we have βwi ≡ ki (mod d), and thus
the use of H(j,...,j), combined with Fatou’s lemma, gives us the following lower bound:

lim inf
n→∞

P(w)(#jF = αw + dn)

P(j)(#jT = 1 + dn)
>
|w|∑
i=1

∑
ki

kiµwki ,j(ki).
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We can then use Lemma 2.1 to identify the right-hand side and obtain

lim inf
n→∞

P(w)(#jF = αw + dn)

P(j)(#jT = 1 + dn)
>
Zw

bj
. (4.5)

To prove the reverse inequality for the limsup, we will try to fit a forest with distribution
P(w) “inside” a tree with distribution P(j). We first need some additional notions.

3.3.4 The extension relation

Let (t, e) and (t′, e′) be two K-type trees. We say that t′ extends t, which we write t′ ` t
(omitting the type functions for clarity) if t′ can be obtained from t by grafting trees on the
leaves of t′. More precisely, t′ ` t if:

• t ⊂ t′.

• ∀u ∈ t, e(u) = e′(u).

• ∀u ∈ t′ \ t,∃v ∈ ∂t, w ∈ U : u = vw.

Here, ∂t is the set of leaves of t, that is the set of vertices v of t such that kv(t) = 0.

t t′

Figure 4.1: An example of a 2-type tree extending another. Here, t′ ` t.

This is once again adaptable to forests: if (f , e) and (f ′, e′) are two k-type forests, then we
say that f ′ ` f if they have the same number of tree components and each tree of f ′ extends the
corresponding tree of f .

This relation behaves well with Galton-Watson random forests. For example, the following
is immediate from the branching property:

Lemma 3.5. If (f , e) is a finite forest and w the list of types of the roots of its components, then

P(w)(F ` f) =
∏

u∈f\∂f

ζ(e(u))(wf (u))

Moreover, we have a generalization of the branching property: conditionally on F ` f , F is
obtained by appending independent trees at the leaves of f , and for every such leaf v, the tree
grafted at v has distribution P(e(v)).
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For infinite trees, we get a generalization of (4.3):

Lemma 3.6. If (f , e) is a finite forest, let x be the word formed by the types of the leaves of f
in lexicographical order. We have

P̂(w)(F ` f) =
Zx

Zw
P(w)(F ` f).

Proof. Let n be the height of f . Any forest of height n which extends f can be obtained by
adding after each leaf u of f a tree with height smaller than n− |u|. Let u1, . . . , up be the leaves
of f , and e1, . . . , ep be their types, we will append for all i a tree (ti, ei) to the leaf ui and call

the resulting forest (f̃ , ẽ), implicitly a function of f and t1, . . . , tp. Thus, recalling the notation
X for the martingale defined in equation (4.2),

P̂(w)(F ` f) =
∑

t1,...,tp

∑
v∈f̃n

bẽ(v)

Zw
P(w)

(
(F6n,E6n) = (f̃ , ẽ)

)
=

∑
t1,...,tp

p∑
i=1

∑
v∈ti

n−|ui|

bẽ(v)

Zw
P(w)(F ` f)

p∏
i=1

P(ei)(T6n−|ui| = ti)

=
P(w)(F ` f)

Zw

p∑
i=1

∑
t1,...,tp

∑
v∈ti

n−|ui|

bei(v)

p∏
i=1

P(ei)(T6n−|ui| = ti)

=
P(w)(F ` f)

Zw

p∑
i=1

E(ei)[Xn−|ui|]

=
P(w)(F ` f)

Zw

p∑
i=1

bei

=
Zx

Zw
P(w)(F ` f).

3.3.5 The case where there is a tree t such that P(j)(T ` t) > 0 and w is the word
formed by the leaves of t

Let (t, e) be a tree with root of type j such that P(j)(T ` t) > 0. Let w be the word formed by
the types of the leaves of t, we will prove (Hw). We first need an intermediate lemma.

Lemma 3.7. There exists a a countable family of trees (t(2), e(2)), (t(3), e(3)) . . . such that, for
any K-type tree (t′, e′) with root of type j:

• either t ` t′.

• or t′ ` t.

• or there is a unique i such that t′ ` t(i).

Proof. For all k ∈ {2, 3, . . . , ht(t)}, take all the trees (t′, e′) which have height k and which
satisfy both (t′6k−1, e

′
6k−1) = (t6k−1, e6k−1) and (t′k, e

′
k) 6= (tk, ek). These are in countable

amount and we can therefore call them (t(i), e(i))i>2 in any order. Now for any tree (t′, e′) with
root of type j, by considering the highest integer k such that (t′6k−1, e

′
6k−1) = (t6k−1, e6k−1),

we directly obtain that, if none of t and t′ extend the other, then t extends one of the t(i).
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Now let (t(1), e(1)) = (t, e), and, for all i ∈ N, let also wi be the word formed by the types of
the leaves of t(i). Write

P(j)(#jT = 1 + dn) =

∞∑
i=1

P(j)(T ` t(i),#jT = 1 + dn) + P(j)(t ` T, t 6= T,#jT = 1 + dn)

=

∞∑
i=1

P(j)(T ` ti)P(wi)(#jF = 1− q(i) + dn) + P(j)(t ` T, t 6= T,#jT = 1 + dn)

where q(i) is the number of vertices of type j of t(i) which are not leaves. Divide by P(j)(#jT =
1 + dn) on both sides of the equation to obtain

∞∑
i=1

P(j)(T ` t(i))
P(wi)(#jF = 1− q(i) + dn)

P(j)(#jT = 1 + dn)
+ P(j)(t ` T | #jT = 1 + dn) = 1 (4.6)

Note that
P(j)(t ` T | #jT = 1 + dn)

tends to 0 as n tends to infinity. This is because we can bound it by P(ht(T) 6 ht(t) | #T =
1+dn) where here T is a monotype Galton-Watson tree with offspring distribution µj,j , and this
tends to 0 by the monotype case of Theorem ?? (proved for example in [49]), since the limiting
tree has infinite height.

By Lemma 2.2, we have 1 − q(i) ≡ αw(i) (mod d) for all i ∈ N, and thus, using the lower
bound 4.5, we have

lim inf
n→∞

P(j)(T ` t(i))
P(wi)(#jF = 1− q(i) + dn)

P(j)(#jT = 1 + dn)
> P(j)(T ` t(i))

Zwi

bj

for all i ∈ N. However, by Lemma 3.5 and Lemma 3.6, we have

∞∑
i=1

P(j)(T ` t(i))
Zwi

bj
=

∞∑
i=1

P̂(i)(T ` t(i)) = 1,

and thus, whenever P(j)(T ` t(i)) is nonzero, we must have

lim sup
n→∞

P(wi)(#jF = 1− q(i) + dn)

P(j)(#jT = 1 + dn)
6
Zwi

bj
,

which ends the proof of (Hw).

3.3.6 Removing one element from w

Lemma 3.8. Let w ∈ WK be such that (Hw) holds. Let m be any integer in [|w|] and let w̃ be
w, except that we remove wm from the list. Then (Hw̃) also holds.

Proof. For n ∈ N, we split the event {#jF = αw + dn} according to the first and second
generations of type j in the m-th tree of the forest. By calling k the number of vertices in the
first generation of type j issued from the m-th tree, and then i1, . . . , ik the numbers of vertices
in the first generation of type j of each corresponding subtree, we have

P(w)(#jF = αw+dn) =
∑
k

µwm,j(k)
∑

i1,...,ik

k∏
r=1

µj,j(ir)P(w̃i1+...+ir )(#jF = αw−k−1{wm=j}+dn)
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where w̃i1+...+ir is the word w where wm has been replaced by j, repeated i1+. . .+ir times. Note
that the term of the sum where k = 0 is to be interpreted as P(w̃)(#jF = αw − 1{wm=j} + dn).

We now use the same argument as in the end of the previous section: we first divide by
P(w)(#jF = αw + dn) to get

∑
k

µwm,j(k)
∑

i1,...,ik

k∏
r=1

µj,j(ir)
P(w̃r)(#jF = αw − k − 1{wm=j} + dn)

P(w)(#jF = αw + dn)
= 1.

For each choice of k and i1, . . . , ik, using lower bound 4.5 as well as (Hw), we have

lim inf
n→∞

µwm,j(k)

k∏
r=1

µj,j(ir)
P(w̃r)(#jF = αw − k − 1{wm=j} + dn)

P(w)(#jF = αw + dn)
> µwm,j(k)

k∏
r=1

µj,j(ir)
Zw̃ +

∑
r ir

Zw
.

A repeated use of point (iii) of Lemma 2.1 shows that these add up to 1, and thus, for k and

i1, . . . , ik such that µwm,j(k)
∏k
r=1 µj,j(ir) 6= 0, we do have

lim
n→∞

P(w̃r)(#jF = αw − k − 1{wm=j} + dn)

P(w̃)(#jF = αw + dn)
=
Zw̃ +

∑k
r=1 ir

Zw
.

By irreducibility, one can find k such that µwm,j(k) 6= 0, and by criticality one has µj,j(0) 6= 0,
meaning that we can take i1, . . . , ik all equal to zero, and this ends the proof.

3.3.7 End of the proof

By applying Lemma 3.7 repeatedly and using the fact that (Hw) stays true if we permute the
terms of w, we obtain that, if w and w′ are two words such that any type features fewer times
in w′ than in w, then (Hw) implies (Hw′). Thus, by Section 3.3.5, we now only need to show
the following lemma.

Lemma 3.9. For all nonnegative integers n1, . . . , nK , there exists a K-type tree (t, e) which has
more than ni leaves of type i for all i ∈ [K], and such that P(j)(T ` t) > 0.

Proof. The first step is showing that, for p large enough, the p-th generation of type j of T has
positive probability of having more than n1 + . . . + nK vertices, where the p-th generation of
type j is the set of vertices of type j which have exactly p ancestors of type j including the root.
This is immediate because the average of µj,j is 1 and we are not in a degenerate tree, and thus
the size of each generation of type j has positive probability of being strictly larger than the
previous generation.

Irreducibility then tells us that, after each vertex of the p-th generation of type j, there is a
positive probability of finding a vertex of type i for any i.

4 Background on random planar maps

4.1 Planar maps

As stated in the introduction, a planar map is a proper embedding m of a finite connected planar
graph in the sphere, in the sense that edges do not intersect. These are taken up to orientation-
preserving homeomorphisms of the sphere, thus making them combinatorial objects. We call
faces of a map m the connected components of its complement in the sphere, and let Fm be their
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set. The degree of a face f , denoted by deg(f), is the number of edges it is adjacent to, counting
multiplicity: we count every edge as many times as we encounter it when circling around f .

We are going to look at maps which are both rooted and pointed. These are triplets (m, e, r),
where m is a planar map, e is an oriented edge of m called the root edge, starting at a vertex e−

and pointing to a vertex e+, and r is a vertex of m. We callM the set of all such maps andMn

the set of such maps with n vertices for n ∈ N. A map (m, e, r) will be called positive (resp. null,
negative) if d(r, e+) = d(r, e−) + 1 (resp. d(r, e−), d(r, e−)− 1). We call M+, M0 and M− the
corresponding sets of maps and, for n ∈ N, M+

n , M0
n and M−n the corresponding sets of maps

which have n vertices. Since there is a trivial bijection between positive and negative maps, we
will mostly restrict ourselves to M+ and M0. By convention, we add to M+ the vertex map †,
which consists of one vertex, no edges and one face.

4.2 Boltzmann distributions

Let q = (qn)n∈N be a sequence of nonnegative numbers such that there exists i > 3 such that
qi > 0. For any map m, let

Wq(m) =
∏
f∈Fm

qdeg(f).

We say that the sequence q is admissible if the sum

Zq =
∑

(m,e,r)∈M

Wq(m)

is finite. When q is admissible, we can define the Boltzmann probability distribution Bq by
setting, for a pointed rooted map (m, e, r),

Bq(m, e, r) =
Wq(m)

Zq
.

We also introduce the versions ofBq conditioned to be positive or null: let Z+
q =

∑
(m,e,r)∈M+ Wq(m)

and Z0
q =

∑
(m,e,r)∈M0 Wq(m) and, for any map (m, e, r), B+

q (m, e, r) =
Wq(m)

Z+
q

if it is positive

and B0
q(m, e, r) =

Wq(m)
Z0

q
if it is null. Lastly, given an integer n, we introduce versions of Bq,

B+
q and B0

q where we also condition the map to have n vertices (for n such that this event has
positive probability), which we call Bnq , Bn,+q and Bn,0q

For nonnegative numbers x and y, let

f•(x, y) =
∑
k,k′

(
2k + k′ + 1

k + 1

)(
k + k′

k

)
q2+2k+k′ x

kyk
′

and

f�(x, y) =
∑
k,k′

(
2k + k′

k

)(
k + k′

k

)
q1+2k+k′ x

kyk
′
.

It was shown in [64], Proposition 1, that q is admissible if and only if the system

1− 1

x
= f•(x, y) (4.7)

y = f�(x, y) (4.8)

has a solution with x > 1, such that the spectral radius of the matrix
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 0 0 x− 1
x
y∂xf

�(x, y) ∂yf
�(x, y) 0

x2

x−1∂xf
•(x, y) xy

x−1∂yf
•(x, y) 0


is smaller than or equal to 1. The existence of such a solution implies its uniqueness, with x = Z+

q

and y =
√
Z0
q. We let Z�q =

√
Z0
q.

We then say that q is critical if the spectral radius of the aforementioned matrix is exactly 1.

4.3 The Bouttier-Di Francesco-Guitter bijection

In [19] was exposed a bijection between rooted and pointed maps and a certain class of 4-type
labelled trees called mobiles. Let us quickly recall the facts here, with a few variations to make
the bijection more adapted to our study.

4.3.1 Mobiles

A finite spatial 4-type tree (t, e, l) is called a mobile if the types satisfy the following conditions:

• The root has type 1 or 2,

• The children of a vertex of type 1 all have type 3,

• If a vertex has type 2, then it has only one child, which has type 4, except if it is the root,
if ∅ has type 2 then it has exactly two children, both of type 4,

• Vertices of type 3 and 4 can only have children of types 1 and 2,

and the labels satisfy the following conditions:

• Vertices of type 1 and 3 have integer labels, vertices of type 2 and 4 have labels in Z + 1
2 ,

• The root has label 0 if it is of type 1, 1
2 if it is of type 2,

• Vertices of type 3 or 4 have the same label as their father.

• If u ∈ t has type 3 or 4, let by convention u0 = uku(t) + 1 = u−. Then, for all i ∈
{1, . . . , ku(t + 1)}, l

(
ui+ 1

)
− l(ui) > − 1

2 (1{e(ui)=1} + 1{e(ui+1)=1}).

The notation ui+ 1 means that we are looking at i+ 1 as a letter, the word ui+ 1 being the
concatenation of u and i+ 1.

Traditionally, vertices of type 1 are represented as white circles ©, vertices of type 2 are
“flags” � while the other two types are dots •. Notice also that we do not need to mention the
labels of vertices with type 3 and 4 since the label of such a vertex is the same as that of its
father. We let TM be the set of finite mobiles, T+

M be the set of finite mobiles such that e(∅) = 1
and T0

M be the set of finite mobiles such that e(∅) = 2
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0, 1, 2, 3, . . .
− 1

2 ,
1
2 ,

3
2 , . . .

−1, 0, 1, 2, . . .

− 1
2 ,

1
2 ,

3
2 , . . .

Figure 4.2: The authorized labelling differences when circling around a vertex of type
3 or 4.

0

−1 − 1
2

−1

1
2

1 1

Figure 4.3: An example of a mobile, with root of type 1.

4.3.2 The bijection

Let (t, e, l) be a mobile and let us describe how to transform it into a map. Let v1, v2, . . . , vp
be, in order, the vertices of type 1 or 2 of t appearing in the standard contour process and
e1, e2, . . . , ep and l1, l2, . . . , lp be the corresponding types and labels. We refer to v1, . . . , vp as
the corners of the tree because a vertex will be visited a number of times equal to the number
of angular sectors around it delimited by the tree. Draw t in the plane and add an extra type 1
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vertex r outside of t, giving it label min
e(u)=1

l(u) − 1. Now, for every i ∈ [p], define the successor

of the i-th corner as the next corner of type 1 with label li − 1 if ei = 1 and li − 1
2 is ei = 2.

If there is no such vertex, then let its successor be r. In both cases, draw an arc between vi
and the successor. This construction can be done without having any of the arcs intersect. Now
erase all the original edges of the tree, as well as vertices of types 3 and 4. Erase as well all the
vertices of type 2, merging the corresponding pairs of arcs. We are left with a planar map, with
a distinguished vertex r. The root edge depends on the type of the root of the tree: if e(∅) = 1
then we let the root edge be the first arc which was drawn (have it point to ∅ for a positive map,
and away from ∅ for a negative map). If e(∅) = 2 then we let the root edge be the result of the
merging of the two edges adjacent to ∅, pointing to the successor of the first corner encountered
in the contour process.

This construction gives us two bijections: one between T+
M and M+ and one between T0

M

and M0, which we both call Ψ.

0

−1 − 1
2

−1

1
2

1 1

r

−2

Figure 4.4: Having added a vertex with label −2 to the mobile of Figure 4.3, we
transform it into a map.

It was shown in [64] that the BDFG bijection serves as a link between Galton-Watson mobiles
and Boltzmann maps.

Proposition 4.1. Consider and admissible weight sequence q and define an unordered 4-type
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offspring distribution µ by

µ(1)(0, 0, k, 0) =
1

Z+
q

(1− 1

Z+
q

)k

µ(2)(0, 0, 0, 1) = 1

µ(3)(k, k′, 0, 0) =
(Z+

q )k(Z�q)k
′(2k+k′+1

k+1

)(
k+k′

k

)
q2+2k+k′

f•(Z+
q , Z�q)

µ(4)(k, k′, 0, 0) =
(Z+

q )k(Z�q)k
′(2k+k′

k

)(
k+k′

k

)
q1+2k+k′

f�(Z+
q , Z�q)

.

Let then ζ be the ordered offspring distribution which is uniform ordering of µ, as explained
in Section 2.1. This offspring distribution is irreducible, and it is critical if the weight sequence
q is critical, while it is subcritical if q is admissible but not critical. Define also, for all ordered

offspring type-list w, ν
(i)
w as the uniform measure on the set D

(i)
w of allowed displacements to

have a mobile, which is precisely D
(i)
w = {0}|w| if i = 1 or i = 2 and

D(i)
w =

{
y = (yi)i∈[|w|] : ∀i ∈ {0, 1, . . . , |w|}, yi+1 − yi +

1

2
(1{wi=1} + 1{wi+1=1}) ∈ Z+

}
,

if i = 3 or i = 4, in which case we set by convention w0 = w|w|+1 = i− 2 and y0 = y|w|+1 = 0.
Then:

• if (T,E,L) has distribution P(1),(0)
ζ,ν , then the random map Ψ(T,E,L) has distribution B+

q .

• if (F,E,L) is a forest with distribution P(2,2),( 1
2 ,

1
2 )

ζ,ν , consider the mobile formed by merging

both tree components at their roots. The image of this mobile by Ψ has law B0
q.

Remark 4.2. The operation of merging two trees at their roots can be formalized the following
way. Consider two trees (t1, e1) (t2, e2) which are such that, in both trees, the root has type 2
and has a unique child, with type 4. For u ∈ t2 \ {∅}, we can write u = 1u2 . . . uk. Let then
u′ = 2u2 . . . uk, and let t′2 =

{
u′, u ∈ t2 \ {∅}

}
. We can now define t = t1 ∪ t′2, which is easily

checked to be a tree. Types can then simply be assigned by setting, for u ∈ t1, e(u) = e1(u) and,
for u ∈ t2 \ {∅}, e(u′) = e2(u).

This operation is of course continuous for the local convergence topology since, for any k ∈ Z+,
the k-th generation of t is completely determined by the k-th generations of t1 and t2.

Remark 4.3. If the weight sequence q is such that q2n+1 = 0 for all n ∈ Z+, then a q-
Boltzmann map is a.s. bipartite, which implies that there will be no vertices of type 2 or 4 in the
corresponding tree, in which case we consider the mobile as a tree with two types, and it stays
irreducible. Moreover, we then have Z�q = 0.

4.4 Infinite maps and local convergence

If (m, e) is a rooted map and k ∈ N, we let Bm,e(k) be the map formed by all vertices whose
graph distance to e+ is less than or equal to k, and all edges connecting such vertices, except if
the distance between each vertex and the e+ is exactly k. The map Bm,e(k) is still rooted at
the same oriented edge e. For two rooted maps (m, e) and (m′, e′), let d

(
(m, e), (m′, e′)

)
= 1

1+p

where p is the supremum of all integers k such that Bm,e(k) is equivalent to Bm′,e′(k). This
defines a metric on the set of rooted maps. Call then M the completion of this set. Elements
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of M which are not finite maps are then called infinite maps, which we mostly consider as a
sequence of compatible finite maps: (m, e) = (mi, ei)i∈N with (mi, ei) = Bmi+1,ei+1

(i) for all i.
Note in particular that infinite maps are not pointed.

As with trees and forests, convergence in distribution is simply characterized: if (Mn, En)n∈N
is a sequence of random rooted maps, one can check that it converges in distribution to a certain
random map (M,E) if and only if, for all finite deterministic maps (m′, e′) and all k ∈ N,
P
(
B(Mn,En)(k) = (m′, e′)

)
converges to P

(
B(M,E)(k) = (m′, e′)

)
5 Convergence to infinite Boltzmann maps

We now take a critical a critical weight sequence q, and take µ, ζ and ν as defined in Proposition
4.1. Since, in the BDFG bijection, the vertices of the map correspond to the vertices of type 1
of the tree (and one extra vertex), we expect Theorem ?? to tell us that Boltzmann maps with
large amounts of vertices converge locally. This section is dedicated to establishing the fact that
this is indeed the case.

Let d be the greatest common divisor of all integers m which are either such that q2m+2 > 0
or which are odd and such that qm+2 > 0:

d = gcd
({
m ∈ N : q2m+2 > 0} ∪ {m ∈ 2Z+ + 1 : qm+2 > 0

})
Theorem 5.1. For n ∈ N such that Bq gives mass to maps with n vertices, let (Mn, En, Rn) be
a variable with distribution Bnq . We then have

(Mn, En) =⇒
n→∞

n∈2+dZ+

(M∞, E∞)

in distribution for the local convergence, where (M∞, E∞) is an infinite rooted map which we call
the infinie q-Boltzmann map.

The choice of the subsequence (2 + dn)n∈Z+ is explained by the fact that the number of
vertices of a map with distribution Bq can only be of the form 2 + dn for integer n. This will be
explained in Section ??, as will be the fact that, for n large enough, Bq does give mass to maps
with 2 + dn vertices.

The infinite map (M∞, E∞) is moreover planar, in the sense that it is possible to embed it
in the plane in such a way that bounded subsets of the plane only encounter a finite number of
edges.

5.1 The example of uniform p-angulations

Here we take an integer p > 3 and consider maps which only have faces of degree p, which we
call p-angulations. The well-known Euler’s formula will show us that the number of faces of such
a map is directly connected to its number of vertices. Let m be a finite p-angulation, and let V
be its number of vertices, E be its number of edges and F be its number of faces. Since each
edge is adjacent to two faces, we have pF = 2E. Euler’s formula, on the other hand, states that
V − E + F = 2. Combining the two shows that

V = 2 + (
p

2
− 1)F.

At this point, we must split the discussion according to the parity of p.
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Uniform infinite 2p-angulation Let p > 2. It has been shown in [63] that the weight sequence q
defined by

qn =
(p− 1)p−1

pp
(

2p−2
p−1

) 1{n=2p}

is critical. Since the weight of a map here only depends on its number of faces (or vertices), it
is immediate that conditioning the distribution Bq to the set of maps with 2 + (p− 1)n vertices
yields the distribution of the uniform 2p-angulation with n faces. We thus obtain the following.

Proposition 5.2 (Uniform 2p-angulation). Let p > 2 and, for n ∈ N, let (Mn, En) be a uniform
rooted map amongst the set of rooted 2p-angulation with n faces. Then (Mn, En) converges
locally in distribution as n goes to infinity, the limit being a random rooted map which we call
the uniform infinite 2p-angulation.

In the case where 2p = 4, we obtain the local convergence in distribution of large uniform
quadrangulation to the UIPQ which was first obtained by Krikun in [53]. In fact our method
here ends up being essentially the same as that of [26], where we have used the BDFG bijection
in a situation where the simpler Cori-Vauquelin-Schaeffer bijection would have sufficed.

Uniform infinite 2p + 1-angulation Let p ∈ N and consider 2p + 1-angulations. It follows the
relation V = (p − 1/2)F that a 2p + 1-angulation must have an even number of faces, and, for
n ∈ N, a 2p+1-angulation with 2n faces has 2+(2p−1)n vertices. As in the even case, a uniform
2p + 1-angulation with a prescribed vertex can be seen as a conditioned Boltzmann-distributed
random map for the weight sequence q defined by

qn = α1{n=2p+1},

for any positive number α. It has been shown in [25], Proposition A.2 that there is one value of
α which makes this sequence critical. Theorem 5.1 then gives us the following.

Proposition 5.3 (Uniform infinite 2p+1-angulation). Let p ∈ N and, for n ∈ N, let (Mn, En) be
a uniform rooted map amongst the set of rooted 2p+ 1-angulation with 2n faces. Then (Mn, En)
converges locally in distribution as n goes to infinity, to a random rooted map called the uniform
infinite (2p+ 1)-angulation.

5.2 Proof of Theorem 5.1

The proof of Theorem 5.1 involves first showing the convergence for maps conditioned to be null
or positive by using the BDFG bijection and identifying the limiting map as the image of an
infinite tree by the bijection, and then removing the conditionings.

5.2.1 On the trees associated to Bq

We want to investigate the periodic structure of Galton-Watson trees with ordered offspring
distribution ν. We thus adopt the notations of Section 2.2 and 2.3, our reference type being 1:
for i in {1, 2, 3, 4}, µi,1 is the distribution of the size of the first generation of type 1 in a tree with

distribution P(i)
ζ , d is the greatest common divisor of the support of µ1,1 and, for i ∈ {1, 2, 3, 4},

βi is the common value of all elements of the support of µi,1 modulo d. To remove any confusion
with the previous section, we let d′ = gcd

(
{m ∈ N, q2m+2 > 0} ∪ {m ∈ 2Z+ + 1, qm+2 > 0}

)
,

which was called d in the previous section.

Lemma 5.4. We have
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• d = d′.

• β3 = 0.

Moreover, if the weight sequence q is not bipartite, then we also have

• 2β2 ≡ 1 (mod d).

• β4 = β2.

Proof. We first treat the bipartite case separately. In this case, types 1 and 3 alternate in tree,
and it is straightforward that d = gcd

(
{m ∈ N, q2m+2 > 0}

)
and that β3 = 0. We now assume

not to be in this case.
It is immediate that β3 = 0 and β4 = β2 because a vertex of type 1 or 2 can give birth to a

single vertex of type 2 or 4, respectively.
To prove the other two more interesting equations, first take m ∈ N such that q2m+2 > 0.

Using the fact that a vertex of type 3 can give birth to m vertices of type 1, one obtains m ≡ 0
(mod d).

Now take an odd integer m = 2n + 1 such that qm+2 = q2n+3 > 0. A vertex of type 3 can
then give birth to n vertices of type 1 and one vertex of type 2, and a vertex of type 4 can give
birth to n+ 1 vertices of type 1. We thus obtain n+ β2 ≡ 0 (mod d) and n+ 1 ≡ β2 (mod d).
Combining these nets us m = 2n+ 1 ≡ 0 (mod d) and 2β2 ≡ m+ 1 ≡ 1 (mod d).

We have thus shown 2βi ≡ 1 (mod d) and that d divides d′. To show that they are equal we
require some more refined analysis.

Notice that for words w = (k, k′, 0, 0) such that µ(3)(w) > 0, we have 2k + k′ ≡ 0 (mod d′).

Indeed, if k′ is even, letting n = k + k′

2 , we then have q2n+2 > 0, implying that d′ divides n,
while if k′ is odd, we let n = 2k + k′, and then qn+2 > 0 and therefore d′ divides n. Similarly,
if µ(4)(w) > 0, then 2k + k′ ≡ 1 (mod d′). Applying this repeatedly to a tree (t, e) such that

P(1)
ζ (T ` t) and such that all its leaves are of type 1 or 2, one obtains 2k + k′ = 0 (mod d′)

where k and k′ are respectively the number of leaves of type 1 and 2 in t. Taking (t, e) which
has only one generation of type 1, and we do obtain that d′ divides every member of the support
of µ1,1.

5.2.2 Infinite mobiles and the BDFG bijection

We call an infinite mobile any infinite 4-type labelled tree (t, e, l) which satisfies the conditions
of Section 4.3.2, which has a unique infinite spine and such that the labels of vertices of type 1
of the spine do not have a lower bound. We let TM be the set of all finite and infinite mobiles,

and split it in TM = T+

M ∪ T0

M as before.
The BDFG bijection Ψ can be naturally extended to TM . Let (t, e, l) ∈ TM , we let (un)n∈N

be the sequence of the elements of the spine. This sequence splits the tree in two: the part which
is on the left-hand side of the spine, and the part which is on the right-hand side. To be precise,
we say that v ∈ t is on the left-hand side of the spine if there exists three integers n, k and l such
that v = unk, un+1 = unl and k 6 l, and v is on the right-hand side if we have the same, but
with k > l.

This splitting allows us to define a contour process, but it has to be indexed by Z: since every
subtree branching out of the spine is finite, we can let

(
v(n)

)
n∈N be the contour process of the

left-hand side and
(
v(−n)

)
n∈N be the other half. This determines a unique sequence

(
v(n)

)
n∈Z.

Since we have assumed that the labels of the vertices of type 1 do not have a lower bound, the
notion of successor we used for finite trees is still valid, and in fact, unlike in the case of a finite
tree, we do not need to add an extra vertex. As in the finite case, we connect every vertex of
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type 1 or 2 to its successor, erase all the original edges of the tree, erase vertices of types 2, 3
and 4, merging the two edges adjacent to every vertex of type 2. This leaves us with an infinite
map (by construction, the arcs do not intersect, while the following Lemma 5.5 implies that it is
locally finite). We give this map a root edge which is determined with the same rules as in the
finite case, however it is not pointed. We call this rooted map Ψ(t, e, l).

Lemma 5.5. The extended BDFG function Ψ is continuous on TM .

Proof. Let (t, e, l) be an infinite mobile. We assume e(∅) = 1, the other case can be treated
the same way. For n ∈ N, we need to find p ∈ N such that, for another mobile (t′, e′, l′),
if (t6p, e6p, l6p) = (t6p, e6p, l6p) then Bm,e(n) = Bm′,e′(n), where (m, e, r) = Ψ(t, e, l) and
(m′, e′, r′) = Ψ(t′, e′, l′). Let s ∈ N be large enough such that all the arcs in Bm(n) connect
vertices of t6s, let x = inf

v∈t6s
l(v) and let u be any type 1 vertex of the spine such that l(u) < x−1.

Notice now that there are no arcs connecting t6s and the subtree above u. Indeed, the successor
of any vertex of t6s will be encountered below u while, if v is above u, l(v) > x would imply
that its successor is also above u, while l(v) 6 x − 1 would make it impossible for its successor
to be in B(t,l)(s). Taking p to be the height of u then ends the proof.

Lemma 5.6. For any infinite mobile (t, e, l), the infinite map Ψ(t, e, l) is planar, in the sense
that it can be embedded in the plane in such a way that bounded subsets of the plane only encounter
a finite number of edges.

Proof. We first start by embedding the mobile in the plane in a convenient way. We draw its
infinite spine as the subset {0} × Z+, where the child of (0, n) is (0, n+ 1) for n ∈ Z+. Starting
from this, we can then embed the tree in Z × Z+ such that the second coordinate of a vertex
is always its graph distance to the root, and also such that the children of any vertex u always
form a set of the type {(n,m), (n + 1,m), . . . , (n + ku(t) − 1,m)}, with n ∈ Z and m ∈ N and
their first coordinates are in the correct order. With such an embedding, it is also apparent that
there exists a continuous function f : R → R with is decreasing on (−∞, 0] and increasing on
[0,+∞), which has limit +∞ at both −∞ and +∞ such that t is strictly above the graph of f .

We point out an important fact of the bijection: let u be any corner of type 1 or 2 and let
v be its successor. Then, for any corner w of type 1 or 2 which is encountered between u and
v in the contour process of the mobile, the successor of w, which we call x, is then encountered
between w and v, and the arc between w and x is then enclosed between t and the arc connecting
u and v. From this fact, we obtain that all the arcs which connect two points on the left-hand
side of the tree can be embedded without any issues: first draw the arcs connecting the line of
successors starting at the root, and enclose in each of them the other necessary arcs.

The arcs which originate from the right-hand side of the tree are a more complex issue,
because some of them might start very high on the right-hand side, go around a large part of
the tree and end up high on the left-hand side. To make sure that these are well separated, we
introduce for n ∈ Z+ the “strip”

Sn =
{

(x, y) ∈ R2 : f(x)− n+ 1 6 y < f(x)− n
}

We now explore the right-hand side of the tree in counter-clockwise order and, when we encounter
the n-th corner of type 1 or 2, we join it to Sn. We point out that it is possible to do this in
such a way that second coordinate along the path is nondecreasing. We then do the same thing
for the corner’s successor, and then join both halves by a path which stays in Sn.

The paths we have drawn this way still do not intersect because of the “enclosure” property
as before, and this embedding is indeed such that bounded subsets of R2 only encounter a finite
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number of edges. This is because we have split these edges in parts which are in Sn, of which there
is only one for every n, and parts which originate from vertices of the tree and have nondecreasing
second coordinate, of which there are a finite amount in bounded subsets because there is a finite
amount of vertices of t with bounded second coordinate.

5.2.3 Behaviour of the labels on the spine of the infinite tree

Let (T,E,L) be a 4-tree with law P̂(1),(0)
ζ,ν or the tree obtained from merging both components of

a forest with distribution P̂(2,2),( 1
2 ,

1
2 )

ζ,ν at their roots. The aim of this section is to show that it is
an infinite mobile, that is, that the labels on the spine do not have a lower bound. Let us first
describe it quickly.

The root of the (T,E,L) has either type 1 and label 0, or type 2 and label 1/2, in which
case it has (exceptionally) two children of type 4, one of them (uniformly selected) being on the
spine. The vertices which are not on the spine have offspring distribution ζ, which was defined in
Proposition 4.1 as the uniform ordering of µ, while vertices which are on the spine have offspring
ζ̂, defined by (4.4). The distribution ζ̂ is itself the uniform ordering of a distribution µ̂ on (Z+)4

which we defined by

µ̂(i)(k1, k2, k3, k4) =
k1b1 + k2b2 + k3b3 + k4b4

bi
µ(i)(k1, k2, k3, k4)

for i ∈ [4] and k1, k2, k3, k4 ∈ Z+ and where b1, b2, b3, b4 are some positive numbers which depend

on q. The label displacement distribution ν
(i)
w for a type i ∈ [K] and a word w is then the

uniform distribution on the set D
(i)
w which was defined in Proposition 4.1.

Lemma 5.7. Let i ∈ {1, 2, 3, 4} and w ∈ W4 such that ζ
(i)
w > 0. Define the reversed word

←
w = (w|w|, . . . , w1), and, for a label sequence y = (yi)i∈[|w|], let

←
y = (−y|w|,−y|w|−1, . . . ,−y1).

The function which maps y to
←
y is a bijection between D

(i)
w and D

(i)
←
w

, sets which are defined in

Proposition 4.1.

As a corollary, we get that, if W has distribution ζ̂(i) for some i and Y has distribution ν
(i)
W

conditionally on W, then the pair (
←
W,

←
Y) has the same distribution as (W,Y).

Proof. If i = 1 or i = 2 then the result is immediate, since
←
w = w and D

(i)
w only has one element.

If i = 3 or i = 4, bijectivity of the map comes from the fact that reversing a sequence (and
eventually changing the signs of its elements) is an involutive operation, and thus we only need

to check that
←
y ∈ D(i)

←
w

for any displacement list y, which is straightforward given the definitions,

since (−y|w|+1−(i+1))− (−y|w|+1−i) = y|w|−i+1 − y|w|−i for i ∈ {0, . . . , |w|}.

Lemma 5.8. Let, for n ∈ Z+, Un be the (n+ 1)-th vertex of type 1 of the spine of T. We then
have

inf
n∈N

L(Un) = −∞.

Proof. Note that Un is well-defined for all n ∈ Z+, because the number of vertices of type 1
on the spine of T is a.s. infinite. Indeed, if it were not the case then all the vertices on the
spine after a certain height would have type 2 or 4, but since a vertex of type 4 has positive
probability of having at least one child of type 1, having an infinite sequence of vertices 2 and 4
has probability 0.
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Notice then that
(
L(Un)

)
n∈Z+

is in fact a centered random walk in Z. It is a random walk

because of the construction - the set of descendants of a vertex of type 1 of the spine will have

distribution P(1)
ζ . We can see that it is centered thanks to Lemma 5.7. Define the mirrored tree

(
←
T,
←
E,
←
L) by reversing the order of all the offspring of T. To precise, if u = u1u2 . . . un ∈ T,

then let, for i ∈ [n], vi = ku1...ui−1
− i + 1 and let then

←
u = v1 . . . vn. Let then

←
E(
←
u) = E(u)

and, define the labels
←
L on

←
T by

←
L(∅) = L(∅) and, for all u, y←

u
=
←
yu (as defined in Lemma

5.7). Since, for i ∈ [4] and w ∈ W4 the distribution ζ(i) is the uniform ordering of µ(i) and

ν
(i)
w is uniform on D

(i)
w , we obtain from Lemma 5.7 that (

←
T,
←
E,
←
L) has the same distribution as

(T,E,L). In particular, L(U1)− L(U0) has the same distribution as L(U0)− L(U1), making its
distribution centered. In particular, the centered random walk

(
L(Un)

)
n∈Z+

then has no upper

or lower bounds, for example by [50], Theorem 8.2.

5.2.4 Removing conditionings

The work done in the previous sections shows that maps with distributionBn,+q and Bn,0q converge
in distribution along the subsequence (2 + dn)n∈N (considering Bn,0q only in the non-bipartite
case). To show that maps with distribution Bnq converge, all that is left for us to do is to show
that the two quantities Bnq(M+

n ) and Bnq(M0
n) converge (along the same subsequence). Since

2Bnq(M+
n )+Bnq(M0

n) = 1, we can in fact restrict ourselves to showing that the quotient
Bnq (M+

n )

Bnq (M0
n)

converges. Elementary calculations on conditionings give us

Bnq(M+
n )

Bnq(M0
n)

=
Bq

(
(M,E,R) ∈M+ | (M,E,R) ∈Mn

)
Bq

(
(M,E,R) ∈M0 | (M,E,R) ∈Mn

)
=
B+

q

(
(M,E,R) ∈Mn

)
B0

q

(
(M,E,R) ∈Mn

) Bq(M+)

Bq(M0)
.

Recall that, in the BDFG bijection, the number of vertices of the map is exactly one more
than the number of vertices of type 1 in the mobile. As a consequence, we have

B+
q

(
(M,E,R) ∈Mn

)
B0

q

(
(M,E,R) ∈Mn

) =
P(1)
ζ

(
#1T = n− 1

)
P(2,2)

(
#1F = n− 1)

.

We then deduce from (Hw) and Lemma 5.4 that this quotient indeed converges as n converges
to infinity, along the (2 + dn)n∈N subsequence.

6 Recurrence of the infinite map

The aim of this section if to prove the following:

Theorem 6.1. The random rooted graph (M∞, E
+
∞) is almost surely recurrent.
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Our principal tool for the proof will be the main result of [38]: since (M∞, E
+
∞) is the limit in

distribution of
(
(Mn, E

+
n ), n ∈ N

)
, and since E+

n is chosen according to the stationary distribution
on Mn (that is, a vertex is chosen with probability proportional to its degree, i.e. its number of
adjacent edges), then Theorem 1.1 of [38] states that if we can find positive constants λ and C
such that, for all n ∈ N,

P(deg(E+) > n) 6 Ce−λn,

then Theorem 6.1 will be proven.
Before showing this bound, we need a few simple results concerning variables which such

exponential tails.

6.1 Around exponentially integrable variables

Let X be a nonnegative random variable. We say that X is exponentially integrable with param-
eter λ > 0 (which we will shorten as EI(λ) from now on, and simply EI if we are not interested
in the value of λ) if we have

E[eλX ] <∞.
The use of Markov’s inequality shows that this implies that the tail of X is bounded by an
exponential with parameter λ:

∀n ∈ N,P(X > n) 6 E[eλX ]e−λn.

The converse is no quite true, but almost is: if the tail of X is bounded by an exponential with
parameter λ, then X is EI(λ′) for λ′ < λ.

If X and Y are two EI(λ) variables then X+Y will be EI(λ′) for λ′ < λ
2 , simply by bounding

P(X + Y > n) by P(X > n
2 ) +P(Y > n

2 ). With an extra independence assumption, one can also
do random sums:

Lemma 6.2. Let (Xi)i∈N be i.i.d nonnegative variables which are EI(λ) for some λ > 0. Let
N be an independent integer-valued variable which is EI(µ) for some µ > 0. If E[eλX1 ] 6 eµ

(which is always possible by taking λ small enough), the the variable

Y =

N∑
i=1

Xi

is also EI(λ).

Proof. Conditioning on N and integrating with respect to all of the Xi, one immediately obtains

E[eλY ] = E
[
E[eλX1 ]N

]
,

and this is enough.

This could of course be generalized to the case where the (Xi) do not have the same distri-
bution, but uniformally bounded exponential moments - we will not need such a generalization.

6.2 The case of positive maps

Picture a mobile (T,E,L) with distribution P̂(1),(0)
ζ,ν : it has an infinite spine, and on its right and

left sides are grafted some finite trees. Since the BDFG bijection makes ∅ into e+, we will want
to show that ∅ has an exponentially integrable number of successors and is the successor of an
exponentially integrable number of vertices. We start with a simplified case.
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Proposition 6.3. Let A be a mobile with distribution P(1),(0)
ζ,ν conditioned to the event where ∅

has exactly one child. Let X be the number of corners of A for which ∅ is the successor. Then
X is an SE(λ) variable for a certain λ > 0.

Proof. Recall that X is the number of corners labelled 1 or 1
2 met before encountering a vertex

labelled 0 while circling counterclockwise around the tree A. We will separately treat corners of
types 1 and 2.

Let X1 be the number of corners of type 1 encountered. We claim that, for all n,

P(X1 = n | X1 > n) > α(1− 1

Z+
), (4.9)

where α > 0 is the probability that, given a vertex of type 3 labelled 1, its rightmost offspring
is of type 1 and has label 0. The fact that α is strictly positive comes from the fact that there
exists i > 3 such that qi > 0. In the case where such an i is different from 3, the vertex of type 3
can have offspring with at least one child of type 1, the uniform ordering of the offspring means
that this child can be the rightmost one, and the distribution of the label displacements shows
that it can have label 0. For the case where q3 > 0 and qi = 0 for i > 4, the type 3 vertex can
have a unique child of type 2 with label 1

2 , which can have a unique child of type 4 which can
have a unique child of type 1 with label 0.

Inequality (4.9) is obtained by recalling from Proposition 4.1 that the offspring of vertices of
type 1 is only made of vertices of type 3, and that their number follows a geometric distribution
with parameter 1− 1

Z+ . Thus, whenever we visit a corner of a type 1 vertex with label 1, there
is a 1 − 1

Z+ chance that this vertex has another child. This immediately gives us (4.9), and a
simple induction shows that X1 is indeed a SE variable.

Let now X2 be the number of vertices of type 2 with label 1
2 encountered before the first

vertex labelled. We insist that we count each vertex exactly once, when we meet them for the
first time on the counter-clockwise exploration path. Then the same argument as for vertices
of label 1 shows that P(X2 = n | X2 > n) > α′ for some strictly positive α′, and X2 is a SE
variable.

Since X 6 X1 + 2X2, we now have our conclusion.

The following lemma provides some additional on the structure T.

Lemma 6.4. Let n ∈ Z+, and let V be the n-th vertex of the spine of T to have type 1. Let also
Nr and Nl be the numbers of subtrees rooted at v on the right and left sides of the spine. These
variables are i.i.d. and their common distribution is geometric with parameter 1− 1

Z+ .

Proof. By combining Proposition 4.1 and Proposition 3.1, we obtain that the total offspring N
of V follows a size-biased geometric distribution: we have

P(N = k) =
k

(Z+)2
(1− 1

Z+
)k−1

for k > 1. Recall also that the child of V which is on the spine is chosen uniformly amongst the
offspring of V . We thus have

P(Nl = k,Nr = k′) =
P(N = 1 + k + k′)

1 + k + k′
= (

1

Z+
)(1− 1

Z+
)k+k′ ,

ending the proof.
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Proof of Theorem 6.1 for positive maps: First off, by Lemma 6.4, we know that ∅ has
an EI amount of children, since geometric variables are EI, and therefore has an EI amount of
successors. Next, look at all the subtrees of T which are rooted at ∅, excluding the subtree
containing the spine. These are in EI amount, all independent, and, by Proposition 6.3, the root
∅ is connected to an EI amount of vertices in each of them. Lemma 6.2 allows to combine all
of this: outside of the subtree containing the spine, ∅ is connected to an EI amount of vertices.
Thus we now only need to prove a variation of Proposition 6.3 for this very subtree. This is
done in the same way since, when doing the counterclockwise exploration process, the number
of children of a vertex of type 1 on the spine is still geometric by Lemma 6.4, while vertices of
type 2 only correspond to one corner.

6.3 The case of null maps

The situation for null maps is slightly different, because the vertex E+ is no longer the root of
the mobile. Consider a mobile (T,E,L) obtained by merging at their roots the two components

of a forest with distribution P̂(2,2),( 1
2 ,

1
2 )

ζ,ν , and let (M,E,R) be the map obtained after applying

the BDFG bijection. Recall that E+ is the first vertex of type 1 and label 0 encountered when
running the clockwise countour process of T. Note that it is either on the spine or on its left
side.

An adaptation of the reasoning used in the previous section will work and give us that the
number of vertices E+ is connected to is indeed EI. First, for the number such vertices which
are descendants of E+ in T, we find ourselves exactly back to the positive case: if E+ is not
on the spine then we apply Proposition 6.3 to an EI number of subtrees rooted at E+, and if
E+ is on the spine, we separate the subtrees on the left side of the spine, on the right side of
the spine and the subtree containing the spine. Secondly, we look for points of which E+ is the
successor, but which are not descendants of E+. These can be obtained by running both the
clockwise and counter-clockwise contour processes, starting at the root, and stopping them the
first time we reach a 0 label. The same arguments as in the proof of Proposition 6.3 show that
we encounter an EI number of vertices of labels 1 and 1

2 on the way, thus ending the complete
proof of Theorem 6.1.
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[29] Thomas Duquesne and Jean-François Le Gall. Probabilistic and fractal aspects of Lévy
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Résumé

Nous nous intéressons à trois problèmes issus du monde des arbres aléatoires discrets et continus.
Dans un premier lieu, nous faisons une étude générale des arbres de fragmentation auto-similaires,
étendant certains résultats de Haas et Miermont en 2006, notamment en calculant leur dimension
de Hausdorff sous des hypothèses malthusiennes.

Nous nous intéressons ensuite à une suite particulière d’arbres discrets k-aires, construite de
manière récursive avec un algorithme similaire à celui de Rémy de 1985. La taille de l’arbre
obtenu à la n-ième étape est de l’ordre de n1/k, et après renormalisation, on trouve que la suite
converge en probabilité vers un arbre de fragmentation. Nous étudions également des manières
de plonger ces arbres les uns dans les autres quand k varie.

Dans une dernière partie, nous démontrons la convergence locale en loi d’arbres de Galton-
Watson multi-types critiques quand on les conditionne à avoir un grand nombre de sommets
d’un certain type fixé. Nous appliquons ensuite ce résultat aux cartes planaires aléatoire pour
obtenir la convergence locale en loi de grandes cartes de loi de Boltzmann critique vers une carte
planaire infinie.

Abstract

We study three problems related to discrete and continuous random trees. First, we do a general
study of self-similar fragmentation trees, extending some results obtained by Haas and Miermont
in 2006, in particular by computing the Hausdorff dimension of these trees under some Malthusian
hypotheses.

We then work on a particular sequence of k-ary growing trees, defined recursively with a
similar method to Rémy’s algorithm from 1985. We show that the size of the tree obtained at
the n-th step if of order n1/k, and, after renormalization, we prove that the sequence convergences
to a fragmentation tree. We also study embeddings of the limiting trees as k varies.

In the last chapter, we show the local convergence in distribution of critical multi-type Galton-
Watson trees conditioned to have a large number of vertices of a fixed type. We then apply this
result to the world of random planar maps, obtaining that large critical Boltzmann-distributed
maps converge locally in distribution to an infinite planar map.
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