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Preface
This manuscript represents the summary of my research activities since October, 2008.

These activities were performed under a joint PhD degree program between Roberval

laboratory (UMR 7337) at Université de Technologie de Compiègne (UTC), France and

Institut für Mikrotechnik at Technische Universität (IMT-TU) Braunschweig, Germany.

The work presented deals with the realization of an integrated miniature positioning

system. It combines the design and development of a positioning platform and a long

range optical displacement sensor. From the perspective to be used either as a stand alone

system or a subsystem to pre-existing macro scale positioning machines in macro/micro

realm, the design of the positioning platform has been optimized to reach overall small

foot print size for whole positioning system.

While taking into account the international aspect of this work and the joint PhD

degree program agreement signed by both universities, the writing of this thesis report

has been carried out in English language except the abstract which is written in English,

German and French languages.





Abstract
Modern positioning systems are significantly applied in many engineering fields dealing
with products emerging from different technologies at macro-, micro- and nano scale.
These systems are the back-bone systems behind any manipulation task in these ar-
eas. Currently, miniaturization trend have led numerous scientific communities to realize
down scaled versions of these systems with a footprint size up to few hundreds of mil-
limeters. These miniature positioning systems are cost effective solutions in many micro
applications.

This thesis presents the development of a miniature positioning system integrated
with a non contact long range displacement sensor. The uniqueness of the presented po-
sitioning system lies in its simple design with ability to perform micrometer to millimeter
level strokes with pre-embedded auto guidance feature. Its design consists of a mobile
part driven with four electromagnetic linear motors. Each motor consists of a fixed two
phase current carrying planar electric drive coil and permanent magnet array that is re-
alized with 14 permanent magnets arranged in north-south configuration. In order to
achieve smooth motion a four point contact technique with hemispherical glass beads has
been adapted to minimize the adherence effect. The overall design of the planar position-
ing system have been optimized to achieve a footprint size of 80 mm x 80 mm. The device
can deliver motion within working range of 10×10 mm2 in xy-plane with sub micrometer
level resolution at a speed of 12 mm/s. The device is capable to deliver a rotation motion
of ±11◦about the z axis in the xy-plane.

Secondly, in order to measure the displacement performed by the mobile part, a non
contact long range linear displacement sensor has been designed. The overall dimensions
of the sensor were optimized using a geometrical model. The fabrication of the sensor has
been carried out via microfabrication in silicon material to achieve compact dimensions,
so that it could be integrated in the mobile part of the positioning system. The sensor
is able to provide 30.8 nm resolution with a linear measurement range of 12.5 mm. At
the end, a novel cross structure has been designed and fabricated using microfabrication
with the perspective to integrate the long range sensor.

Keywords: Permanent magnet array , Electromagnetic actuator, Positioning system,

Electric coil design, Optical sensor, Microfabrication, Thin layer coating, Anisotropic etch-

ing of silicon, Direct drive technology, Dry etching of silicon





Résumé
Les systèmes modernes de positionnement sont grandement utilisés dans de nombreux
domaines de l’ingénierie portant sur des produits issus de différentes technologies aux
échelles macro, micro et nano. Ces systèmes sont les pierres angulaire de toutes tâches
de manipulation à ces échelles. Actuellement, la tendance à la miniaturisation a entraîné
de nombreuses communautés scientifiques à réaliser des versions miniaturisées des ces
systèmes d’une taille allant jusqu’à quelques centaines de millimètres. Ces systèmes de
positionnement miniature deviennent alors des solutions adaptéess à de nombreuses ap-
plications à l’échelle microscopique.

Cette thèse présente la conception et le développement d’un système de position-
nement qui intègre un capteur de déplacement sans contact. L’originalité du système de
positionnement présenté réside dans sa conception épurée avec la possibilité d’effectuer
des déplacements micrométriques sur une étendue millimétrique avec une fonction de
guidage intégrée. Le dispositif est constitué d’une partie mobile entraînée par quatre mo-
teurs linéaires électromagnétiques. Chaque moteur est constitué d’un bobine fixe à deux
phases et d’une barre d’aimants réalisée avec 14 aimants permanents disposés dans une
configuration nord-sud. Afin que le mouvement s’effectue sans heurt la structure repose
sur quatre points grâce à des billes de verre hémisphériques dans le but de minimiser
l’effet d’adhérence. La conception globale du système de positionnement planaire a été
optimisée pour tenir sur une surface 80 mm×80 mm. Le dispositif peut se déplacer sur
une course de 10×10 mm2 dans le plan xy avec une résolution submicrométrique et à une
vitesse de 12 mm/s. De plus, le dispositif peut se déplacer en rotation (±11◦) autour de
l’axe z dans le plan xy.

En second lieu, afin de mesurer le déplacement effectué par la partie mobile et dans le
but d’asservir le système de positionnement, un capteur optique, sans contact, de longue
étendue de déplacement linéaire, a été conçu. Les dimensions globales et les perfor-
mances du capteur ont été optimisées en utilisant un modèle géométrique. Le réseau a
été microfabriqué en silicium dans un but de compacité, afin qu’il puisse être intégré dans
la partie mobile du système de positionnement. Le capteur est capable de fournir une
résolution de 30,8 nm sur une plage de mesure linéaire de 12.5 mm. Enfin, une structure
mobile a été conçue et microfabriquée en silicium avec l’objectif d’arriver à une meilleure
intégration du capteur longue étendue.

Mots-clés: Barre d’aimants permanents, Actionneur électromagnétique, Système de

positionnement, Bobines électriques, Entraînement direct, Capteur optique, Microfabrica-

tion, Gravure anisotrope du silicium, Dépôt de couches minces, Gravure à sec de silicium.





Zusammenfassung
Moderne Positioniersysteme werden in vielen aufstrebenden Bereichen der Technik einge-
setzt. Die Produkte stammen hierbei aus unterschiedlichen Technologiebereichen, die den
Makro-, Mikro- und Nano- Maßstab abdecken. Diese Systeme bilden die Basis jeder Ma-
nipulationsaufgabe, in diesen Bereichen. In jüngster Zeit hat der Miniaturisierungstrend
dazu geführt, dass in zahlreichen wissenschaftlichen Bereichen immer kleinere Versio-
nen von Systemen realisiert wurden. Die typischen Abmessungen wurden dabei auf
einige hundert Millimeter reduziert. Diese Miniatur Positioniersysteme sind kostengün-
stige Lösungen in vielen Mikro Anwendungen.

Die vorliegende Arbeit stellt die Entwicklung eines Miniatur-Positioniersystems dar,
in welches ein berührungsloser Wegsensor für lange Distanzen integriert wurde. Die
Einzigartigkeit dieses Positionierungssystems liegt in der Einfachheit der Konstruktion in
Kombination mit der Fähigkeit Bewegungen vom Mikrometer bis zum Millimeter Bere-
ich mittels einer eingebetteten Autopilotfunktion auszuführen. Das Design besteht aus
einem beweglichen Teil, welches mit vier elektrischen Linearmotoren angetrieben wird.
Jeder Motor besteht aus zwei Teilen: Einem planaren elektrisch angetriebenen Schlitten
und einer Anordnung von Permanentmagneten. Die Anordnung ist mit 14 Permanen-
tenmagneten in Nord-Süd Ausrichtung realisiert. Um eine sanfte Bewegung zu erreichen
wird eine Vierpunktauflage mit halbkugelförmigen Glasperlen verwendet. Hierdurch wer-
den Adhäsionseffekte minimiert. Das Positionierungssystem kann Bewegungen im Ar-
beitsbereich von 10×10 mm2 in der xy-Ebene mit Submikrometer Auflösung und einer
Geschwindigkeit von 12 mm/s ausführen. Das Gerät ist in der Lage eine Drehbewegung
von ±11◦ um die z-Achse in der xy-Ebene auszuführen.

Weiterhin wurde, um die Verschiebung des beweglichen Teils zu messen, ein kontak-
tloser Langstrecken-Wegsensor entworfen. Die Gesamtabmessungen des Sensors wurden
mit einem geometrischen Modell optimiert. Die Herstellung des Sensors wurde mittels
Mikrostrukturierung in Silizium ausgeführt um eine kompakte Abmessung zu erreichen,
so dass es in den beweglichen Teil des Positionierungssystems integriert werden kon-
nte. Der Sensor erreicht eine Auflösung von 30,8 nm in einem linearen Messbereich von
12.5 mm. Am Ende der Arbeit wurde eine neue Kreuz-Struktur konzipiert und hergestellt,
gleichfalls mit Hilfe der Mikrostrukturierungstechnik. Hieraus ergibt sich die Perspektive
den Langstrecken Wegsensor problemlos zu integrieren.

Schlüsselwörter: Permanentmagnet Array, Elektromagnetischer Antrieb, Positionier-

system, Elektrospulen, Direkter Antrieb, Optischer Sensor, Mikrotechnik, Anisotropes

Ätzen von Silizium, Dünnschichtabscheidung, Trockenätzen von Silizium.
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Introduction
The accelerated research and developments in the field of system miniaturization tech-

nology has played an important role over past sixty years after the invention of integrated

circuits in 1950s. These developments have introduced innovative products in our society.

Personal computers, digital camera, and smart phones are few of the triumphs of these

developments. The ever greater diversity, economy and power of integrated electronic

components have provided an inspiration to develop miniaturized mechatronic systems

in various engineering domains. The evolution of automobile industry is one of the promi-

nent examples in this era. Currently, automobiles are equipped with numerous systems

composed of sensors (pressure sensor, temperature sensor, light sensor, fuel sensor, etc.)

and actuators (micro valves, control switches, micro motors, etc.) to control the status of

an automobile via on-board computer to ensure the safety and comfort of the user.

Apart from this industrial sector, the success behind the increasing demand in mecha-

tronic systems is related to facilitate positioning/manipulation tasks in micro applications

such as cell manipulation in biomedicine, surface analysis in meteorology, etc. These

applications, demand modern positioning systems that should be able to deliver displace-

ment strokes with sub micrometer level accuracy, high precision and repeatability. Cur-

rently, the scale down versions of these modern positioning systems are often developed

with embedded functionalities such as multiple-DOF, integrated sensors, etc., by taking

into account the current miniaturization trend. Numerous solutions have been introduced

over time to economize these systems with compact dimensions. The work presented in

this thesis is also based on the development of a compact miniature positioning system

for micro applications.

The main objectives of the work presented in this manuscript include:

• Design and development of a miniaturized planar actuation platform that is able to

deliver millimeter level strokes with sub micrometer level resolution

• Design and development of a high resolution non contact long range displacement

measurement sensor

• Realization of an integrated compact miniature positioning system.

In order to reach these objective, the work presented in this manuscript is divided

into six chapters.



Introduction

Chapter 1 provides the state of the art regarding the different existing miniature multi-

DOF positioning systems. The classification of these systems have been carried out on the

basis of the actuation technologies. It also provides the state of the art related to the

different displacement measurement sensor technologies and their integration approach.

Chapter 2 is dedicated to the working principle and modelling of a planar actuation

system. At first, the concept of the actuation system is described along with the general

layout of the system. Due to the symmetrical design of the system, the construction

and functioning of a single linear electromagnetic actuator is discussed for the purpose

of simplification. In addition, analytical models have been realized and verified using

Finite Element Analysis (FEA). These models have been implemented to perform static

and dynamic simulations in order to evaluate the performance of the whole system in

open and closed loop control.

In chapter 3, the development of the Miniature Positioning System (MPS) prototype

has been carried out. In the first part, the detail design layout of the MPS and the con-

struction of its components have been discussed. Different design and fabrication solu-

tions have been presented to realize a two part based compact system with optimal foot

print dimensions on the basis of the concept introduced in chapter 2. Afterward, exper-

iments have been performed in order to examine the different motion characteristics of

the MPS in open and closed loop control.

Chapter 4 presents the design and development of a miniature long range optical

displacement sensor. The long range sensor concept and working principle have been

discussed and its geometrical optimisation has been carried out. In order to realize the

long range sensor, a microfabrication approach was used to fabricate the silicon grating.

Chapter 5 details the sensor integration approach into the MPS. A novel silicon mate-

rial based cross structure has been developed in order to facilitate the sensor integration

and reduce the fabrication/assembly errors. In this chapter, some initial experiments

have been conducted with whole system to provide an overview of the functioning of the

integrated positioning system.

Chapter 6 provides a general conclusion and perspectives regarding the work pre-

sented in this manuscript.

The details regarding the published and presented papers can be found in Appendix-

A.
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Chapter 1

State of the art

This chapter provides the literature review in the field of the miniature multi-DOF posi-

tioning systems. Current design trends and different actuation technologies have been

presented to realize these systems. Further, displacement sensors from their interaction

and integration aspect have been discussed. At the end, a conclusion has been carried out

based on the regarding actuation technique and displacement measurement sensors from

their compactness and integration point of view.

1.1 Mechanical positioning system

Mechanical positioning systems are back-bone systems behind every object manipulation

task. The functioning of these systems is based on the conversion of some form of input

energy (mostly electrical) into the mechanical motion. One whole positioning system

consists of single or multiple actuators, feedback sensors, mechanical platform, a central

control unit and a power source (see figure 1.1). These components perform their respec-

tive functions to achieve positioning tasks in a workspace. Actuators are the components

that convert input energy into specific tasks such as motion, force or a combination of

both. Sensors are the components that measure a physical quantity (for example posi-

tion, speed, force, etc.) and convert it into electrical signals that are interpreted by the

central control unit. The central control unit analyzes the signal according to the desired

inputs and generates respective electric signals to control the actuators. In addition, a

power source delivers the input power to these components. The task of a mechanical

structure is to provide a movable output platform and integrate the mobile parts of the

sensors and actuators to guide their operation during motion.

In general, positioning systems are employed in different applications in order to gain

high precision and automation in object handling/positioning tasks. For example, in the
semiconductor industries, the production of Integrated Circuits (ICs) such as Microproces-

sors, etc., is carried out on a semiconducting material such as silicon, using a multiple-step

3
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FIGURE 1.1: The schematic diagram of the functioning of a positioning system.

sequence of photolithographic and chemical processes. In photolithographic steps, micro

or nano level geometric patterns are transferred from photo mask to silicon substrate

(coated with light sensitive chemical “called photo resist”). High precision positioning

systems are used to align silicon wafers with photo masks during a photolithographic

process to ensure accurate transfer of geometric patterns.

In micromechanics field, micro mechanical parts (e.g. micro gears) are fabricated

and assembled. Different fabrication approaches have been realized such as microfabri-

cation (similar to the technology used in semiconductor industry), laser cutting, etc. Due

to the small size, human precision is not sufficient to handle these delicate mechanical

parts during manufacturing, assembly and inspection stages. In this scenario, position-

ing systems along with various tools are used to carefully manipulate these parts during

manufacturing, assembly and inspection.

In biomedicine, often single or multiple biological cells are cultured and studied in

response to certain medicine. These biological cell studies demand high resolution optical

and positioning systems for culturing and inspection.

In contact surface metrology, surface parameters (e.g. roughness, flatness, etc.) mea-

surement of micro components is often needed for their qualification. High resolution

positioning stages are applied as scanning platform to handle the part under the scanning

probe.

In early 90s, the researchers at the Mechanical Laboratory (MEL) in Japan have in-

troduced the micro factory concept by developing a small fabrication unit (overall size

625×490×380 mm3) which consists of a micro turning machine, micro milling machine,

micro drill machine, etc., [Okaz 04]. This concept could be employed as a solution to

reduce the unit production cost of the miniature components. In such desktop factories

the positioning of the components or raw material for machining can be realized with

miniature positioning conveyors [Benc 06].

Apart from the application area, the main task of a positioning system can be recog-

nized as object (e.g. part, raw material, etc.) conveyance, its manipulation or combi-

nation of both. In order to realize the above mentioned positioning tasks, conventional
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macro application based positioning systems are not cost effective solutions. For exam-

ple, in automated auto mobile industries, mechanical parts are fabricated on Computer

Numerically Controlled (CNC) machines (e.g. milling, turning, drilling, machines, etc.).

These machines are equipped with positioning stages to position the raw material in front

of the cutting tool during the machining process. The integration of such sized positioning

stages are inappropriate in micro applications and can lead to expensive, bulky overall

systems. However, the miniaturization trend has introduced numerous technological so-

lutions to realize down scale versions of these machines to make it compatible with the

micro world. This chapter discusses these kinds of solutions into positioning systems used

in the micro applications.

1.2 Innovation into the positioning systems

In order to realize Miniature Positioning System (MPS) designs, the choice of mechani-

cal structure, drive technology, sensor integration and fabrication technology have been

extensively studied. This section discusses the current developments in the positioning

systems. The descriptions regarding innovation into the positioning systems are mostly

taken from [Ahme 05, Benc 06, Wim 06, Ratc 06, Hell 09, Joub 12].

1.2.1 Mechanical design approach

The mechanical design of the positioning system is realized in either with serial or parallel

kinematics (figure 1.2). In serial kinematics, multiple single DOF positioning actuators

are assembled into a mechanical structure by stacking one after another. On the con-

trary, in parallel kinematics they are assembled into a mechanical structure in parallel

configuration. [Benc 06].

4DOF serial configuration
graphical representation PI nano cube (3 DOF)

Output platform

Z

θ

X

Y

4DOF parallel configuration
graphical representation

Output platform

PI Piezo Hexapod (6 DOF)

Z

θ

X

Y

(a) (b)

FIGURE 1.2: MPS mechanical design configuration (a) Serial kinematics (b) Parallel kine-
matics.

In micro applications, positioning systems realized with serial configuration provide

large stroke (up to centimeters) as compared to parallel configuration, but they suffer

from low stiffness, poor dynamics and large weight [Wim 06]. Moreover the first po-

sitioning device takes all the load of the rest of the devices and so on, which makes it

5
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more sensible to uncertainties (e.g. vibrations, assembly errors, etc.) that lead to accu-

mulation of precision errors. Despite having small stroke, parallel configuration based

positioning systems does not suffer from the above mentioned problems [Ratc 06]. This

makes parallel configuration a suitable candidate for the positioning systems used for mi-

cro application as the required maximum stroke size in these applications are up to few

millimeters.

1.2.2 Motion drive technology

According to the literature, the motion drives can be classified into Indirect drive tech-
nology and direct drive technology. Indirect drive technology is based on the mechanical

conversion of the rotary motion (often generated by the rotary motor) into linear mo-

tion [Ahme 05]. The positioning systems based on this technology have the driving part

(i.e. actuator, motor) indirectly coupled with the driven part (i.e. stage or platform) via

flexible or rigid mechanical coupling elements such as belts, lead screw, gear train, etc.

Positioning systems based on indirect drive technology have high load driving capacity

and simple control but they suffer from issues like backlash, low efficiency, low accuracy,

etc.,[Ratc 06]. The problems like these are unacceptable, especially when the positioning

systems are to be used for micro applications where high precision is one of the essential

parameters.

The alternate solution is direct drive technology in which the motion generated by

motors is directly transmitted to the driven part [Joub 12]. These drives eliminate the

need of the mechanical coupling elements thus making them more compact and suitable

for micro applications demanding high precision and accuracy [Hell 09]. Moreover, a

direct drive solution reduces the number of components, simplifies assembly and thus

reduces the overall cost of the positioning system.

1.2.3 Sensor interaction and integration approach

A sensor is a device that when exposed to a physical phenomenon (temperature, dis-

placement, force, etc.) produces an output signal (electrical, mechanical, magnetic,

etc.),[Bish 08]. Positioning measurement sensors can be classified into contact sensors

and non-contact sensors based on their interaction with a physical system. Contact sen-

sors need physical contact with the object being sensed. A potentiometer is one of the

examples of such sensors. This type of the position sensor often proves to be the simplest,

low cost solution in applications where contact with the target is acceptable,[Wils 05].

However, in micro manipulation tasks, contact type sensors can deteriorate the function-

ing of the positioning systems or vice versa. The most effective choice for these systems is

non-contact type sensors. These sensors do not need a physical contact to perform their

6
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FIGURE 1.3: Construction of (a) non-integrated (b) integrated positioning systems.

respective position sensing task. CCD Cameras, capacitive sensors and light detecting

sensors are few of the examples of non-contact sensors.

Modern positioning system designs are either integrated or non-integrated with the

non-contact displacement measurement sensors. In non-integrated approach the dis-

placement sensors are outside of the physical boundary of the positioning system (fig-

ure 1.3(a)). The main reason is that the dimensions of the sensor are too big to be

accommodated into the positioning system. For example, a high resolution camera can

be used as a sensor to measure the displacement via image processing technique, but its

volumetric size is too big to be integrated in the MPS. On the other hand, in integrated

approach the sensors are installed inside the physical boundary of the positioning system

(figure 1.3(b)). This approach involves fusion of complete sensor or sensor part directly

into the positioning systems. The integrated approach demands miniaturization of sensor

dimensions so that it could be easily accommodated within the geometrical dimensions

of the MPS. Microfabricated MPS are often integrated with sensors to achieve monolithic

and compact designs.

1.3 Miniature positioning system actuation technologies

The most common MPS actuation technologies are based on the use of active material

or the field interaction technique. The first trend is to utilize the physical deformation

characteristics of an active material (mostly a smart material) for the actuation purpose.

The second approach involves the interaction of the electric and/or magnetic field to

realize actuation forces. In micro applications, these trends can be classified with respect

to different actuation principles. According to the literature review, the most common

actuation principles adapted to realize multi-DOF MPSs are:

7
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• Actuation principles based on the

smart materials

• Thermal actuation principle

• Pneumatic actuation principle

• Electrostatic actuation principle

• Electromagnetic actuation principle

1.3.1 Actuation principles based on the smart materials

Smart material is a material that has one or more properties that can be significantly

changed in a controlled fashion by external stimuli, such as stress, electric or magnetic

fields, temperature. PZT (Lead zirconate titanate), Terfenol-D, Nickel-titanium alloys are

some of the examples of such materials that results in piezoelectric actuators, magne-

tostrictive actuators and Shape Memory Alloy (SMA) actuators,respectively. Currently,

PZT material is widely used for actuation purpose in MPS designs due to its instant re-

sponse and high energy conversion efficiency.

1.3.1.1 Mechanically Amplified Piezoelectric Actuators (MAPA)

The principle of piezoelectric actuator is based on piezoelectricity phenomenon. It was

first discovered in quartz by Jacques and Pierre Curie in 1880, [Beeb 04]. Piezoelectricity

is the ability of some materials (notably crystals, certain ceramics, and biological matter,

such as bone, DNA, and various proteins) to generate a difference of electric potential

in response to the applied mechanical stress (figure 1.4(a)). The effect is closely related

to the appearance of an electric dipole density within the material’s volume. An applied

stress induces charge surface densities on the electrodes deposited onto the piezoelectric

material. The piezoelectric effect is reversible, such as under the applied difference of

electric potential, the production of stress and/or strain can be observed. This inverse

piezo-effect can be utilized for actuation (figure 1.4(b)).

Piezoelectric actuators are usually formed by stacking multiple piezoceramic materi-

als (figure 1.4 (c)). This formation increases the displacement capacity of the actuator

Piezoceramic
material

Piezoelectric 
stack actuator

Polarization

F

Polarization

E Polarization

Commercially available 
piezoelectric actuators

®APA

PPA

Piezoelectric 
stack actuator

Mechanical  
amplifier

(c)
(a)

(b)

(d)

Δ
L

+L

FIGURE 1.4: (a) Direct and (b) Converse piezoelectric effect [Bish 08] (c) Piezoelectric
stack actuator [PI 12] (d) APA R© and PPA, Courtesy of CEDRAT technologies.
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due to the accumulated displacement of all the piezoceramic materials, [PI 12]. These

actuators can directly be used to realize multi-DOF MPSs, but they have very small stroke

(usually around 100 µm). In order to increase the working stroke, piezoelectric actuators

are used with mechanical amplification mechanisms [Cart 11]. Numerous mechanical

amplification mechanisms have been developed for positioning stages.

CEDRAT technologies have developed Amplified Piezoelectric Actuators (APA R©) and

Parallel Pre-stressed Actuators (PPA) (figure 1.4 (d)). They are solid state long-stroke

linear actuators that use an external deformable frame to pre-stress the piezo stacked

ceramics. The expansion of the active material with amplification mechanism results in

1 mm displacement. Based on this principle, they have developed a compact positioning

stage for the fiber positioning and micro scanning applications (figure 1.5(a)). In order to

measure the displacement, strain gauge type displacement sensors are integrated in the

design. Moreover, the MPS offers a maximum displacement of 25 µm in xy-plane with

0.2 nm resolution in closed loop [Cedr 11].

Sabri et al., have developed an integrated Si-PZT hybrid xy-stage (figure 1.5(b)). The

device consists of two PZT actuators with silicon based moonie amplification mechanism1

to amplify the work range in xy-plane. The micro stage was micro fabricated using Deep

Reactive Ion Etching (DRIE) technique and offers a maximum displacement of 80×60 µm2

in xy-plane. An integrated micro fabricated capacitive sensor was used to measure the

displacement of the micro stage.

Physik Instrumente2 has developed a parallel kinematic based PIMars XYZ Piezo Nano

MPS with direct PZT stack actuator for nano applications (figure 1.5(c)). The positioning

system has a mechanically amplified work range of 300×300×300 µm3. The device is

able to perform motion in xy-plane and offers z-axis vertical motion with pitch and yaw

functions. In addition, the device is integrated with capacitive sensor having a resolution

of 1 nm to measure the displacement [PI 12].

1.3.1.2 Stepping mode actuators

Another method to increase the work stroke in MPS is to use the actuators based on step

mode operation. The actuation principle of the stepping mode actuators is an inspiration

taken from the movement of some earthworms.

Inchworm actuator: The simplest linear inchworm actuator design comprises of

three independently driven actuators. Piezoelectric ceramics and magnetostrictive ma-

terials are the most common active material used in these actuators. These materials can

be configured in different ways, but the most typical one is depicted in figure 1.6(a) using

1The authors have measured the change in displacement using moonie angle (θmax = 2◦) of the ampli-
fication structure [Sabr 09].

2http://www.physikinstrumente.com
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FIGURE 1.5: (a) xy stage [Cedr 11] (b) Silicon xy micro stage [Sabr 09] (c) PIMars
TM

[PI 12]

Piezo Ceramics (PC). In this configuration, PC1 and PC3 are actuated to achieve fixation

during motion and PC2 is actuated along motion direction to realize “∆x” displacement.

The functioning of an inchworm actuator is presented in figure 1.6(a). The repetitive op-

eration of the three piezo ceramics PC1, PC2, PC3 is used to achieve linear displacement.

Inchworm actuators are capable to deliver unlimited strokes which depend on the

length of the rotor plane but they are slow in nature and their operating frequency band-

width is not more than a few tens of hertz [Pons 05]. They are mostly employed in the

single DOF positioning devices due to their operation. However, Wu et al., have developed

a compact planar micro-robot for micro conveyance (figure 1.6(b)). Their design consist

of a novel type of XY θ mechanism and a single piezo actuator employed with flexures.

The overall size of the robot is 20×20×12 mm3 and it provides an average 14 µm/step

along x- and y-axes and 27 arcsec/step of displacement resolution.

PI N512

®  NEXLINE actuator

Piezo
leg

Rotor
plane

Piezoceramic
stack actutaor

Flexure
hinge
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Pre-load
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direction
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FIGURE 1.6: (a) Inchworm actuator principle [Benc 06] (b) Micro robot developed by
Wu et al., [Wu 04] (c) PiezoWalk drive principle [PI 12](d) NEXLINE R© actuator and N-

512 Positioning stage [PI 12]
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PiezoWalk drives: These drives consist of piezo legs, that are actuated in multi-steps.

The piezo legs are piezoceramic shear modules that contract to release the rotor, and

then deforms to achieve next step. The continuous operation of each piezo leg displace

the rotor. The operation of these actuators are presented in figure 1.6 (c).

Physik Instrumente has developed a NEXLINE R© actuator. The actuator consists of a

runner and two piezoWalk drive modules (see figure 1.6 (d)). The continuous opera-

tion of these drive modules displaces the rotor along motion direction. This technology

has been used to realize a nano positioning system PI N-512 as shown in figure 1.6(d).

The positioning system provides 6×6 mm travel in a plane with 10 nm resolution. The

dimensions of the system is not provided.

Stick-slip actuator: The functioning of stick-slip actuator mainly consists of two

steps. In first step, a slow expansion of the Piezo Actuator (PA) moves the load along

the actuation direction using the driving object that is fixed to the PA (figure 1.7(a)). Due

to the static friction between the slider and the driving object a stick effect appears that

holds the driving object and load together. In second step, a rapid contraction of the PA

slides the driving object towards its initial position. Due to the rapid contraction, the

inertial force due to the mass of slider dominates the static friction forces between slider

and driving object (slip effect). With the assumption of no friction loss, this effect results

in the final displacement “∆x ”.

Based on this principle, A. Bergander has developed an xy-stage using four hemi-

spheric beads that result in point contact between the mobile part and driving object

(figure 1.7(b)). The rapid/slow deformation of the active materials along an axis results

in a linear motion. The prototype provides a displacement of 2 mm×2 mm in xy-plane.

The author has not disclosed further information regarding the prototype.

Stick

Slider

Piezo actuator

Stick

Slow expansion

Slip

Fast contraction

Initial state

Δx

Driving objectLoadGround
Mobile part

Active part

Spherical
point contact

Output
platform

Stick-slip
actuators

(a) (b) (c)

FIGURE 1.7: (a) Stick-slip actuator principle (b) [Berg 03] (c) “SMARPOD” [Smar 11]

SmarAct3 have developed a long travel range integrated MPS “SMARPOD” for micro

3http://www.smaract.de
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applications. The MPS has been realized with inclined assembly of stick-slip actuators

as shown in figure 1.7(c). In this configuration, the weight of the output platform has

been utilized for sticking effect during motion. It is able to perform motion at maximum

velocity of 10 mm/s and delivers a maximum linear (rotational) stroke of 20 mm (35◦)

with a resolution of 1 nm (1 µrad), respectively. Moreover the MPS has been integrated

with micro encoders for displacement measurement.

Friction-inertia drives: The operating principle of these drives are based on the re-

action caused when a mass is accelerated. The functioning of these actuators is similar in

concept as of stick-slip actuators. However, these actuators use the inertial force for the

actuation purpose. A slow expansion of active material, such as piezoceramic, drags the

inertial mass to be moved relative to the ground, while ensures the adhesion of the load

with the ground. The rapid contractions accelerate the inertial load towards each other.

In this scenario, the inertial force dominates the adhesion forces thus allowing the load to

move "∆x" as shown in figure 1.8(a). The movement can be realized in both directions by

reversing the rate of deformation phase (expansion/contraction) of the active material.

The design of inertial actuators is limited by the use of active materials with low response

time to generate rapid acceleration in deformations [Breg 98].

Zesch et al., have developed a 3DOF motion system called "Abalone" (figure 1.8(b)).

It has been realized with three friction-inertia drives to perform motion with unlimited

strokes within a theoretically infinite horizontal workspace. In the stepping mode, the

maximum speed of 1 mm/s in translation and 7 deg/s in rotation was achieved. In the

local range of the 6 mm travel the authors have reported a displacement resolution better

than 10 nm.

In another study, Nomura et al., developed an XY θ inertial driven micro robot based

on the principle described early in this section (see figure 1.8(c)). It integrates four PAs

connected with the main object and the counter object. When two parallel sets of PAs are

activated in the opposite manner, such as, one expanding but the other contracting, the

(b)
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actuator
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Piezo actuator
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Initial state
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Ground
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load

Δx
(a)

Piezo 
actuator

Counter object

Main object

(c)

FIGURE 1.8: (a) Friction-inertia drive principle (b) “Abalone” [Zesc 95] (c) [Nomu 07]
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inertial drive actuator will travel along one direction. When the other two are activated

in an opposite manner, the inertial drive actuator will travel towards another direction.

If either pair of PAs in a parallel position is activated in the same manner, the inertial

drive actuator will rotate. The robot is compact in design and provides a displacement

resolution of 17 nm with a maximum travel speed of 1 mm/s.

1.3.1.3 Ultrasonic linear motors

Ultrasonic motors utilize the vibration of the elastic body (stator) in the ultrasonic fre-

quency band and the reverse piezoelectric effect of the piezoceramic materials [Zhao 11].

These motors have two energy conversion processes. The first process converts electri-

cal energy into mechanical energy using reverse piezoelectric effect. The second process

changes vibration of the stator into macro one direction movement of the slider due to

the friction between the elastic body and slider (figure 1.9(a)). For optimal operation,

the slider and elastic body must be maintained in contact at all times. The most common

technique is to use the weight of the slider to ensure permanent contact.

(b)

Mobile
object

Resonator

External 
normal force

Support

X
Y

Z
F

Fixed 
frame

Tip

Leaf 
springsTuning blocks

Piezo

(c)(a)

Moving direction of the slider

Elliptical
motion

Traveling wave
on driving surface

Slider

Stator

FIGURE 1.9: (a) Ultrasonic linear motor principle (b) [Mino 96] (c) [Devo 04]

In general, these motors have been adapted for planar applications in two different

manners. The first approach is to use a deformable membrane excited by reverse piezo-

electric effect. Minotti et al., have used this solution as shown in figure 1.9(b). Their

design consists of a piezoceramic material based membrane (Resonator) which is polar-

ized perpendicular to the motion plane (i.e. along z-axis). The motion forces in xy-plane

are achieved by generating stationary standing waves by polarizing the resonator with

out-of-phase voltage. The pads situated directly on the resonator create a frictional con-

tact between mobile object and the pad surface which transmit the force to move the

mobile object. The weight of the mobile object is used to maintain the contact with the

resonator [Mino 96].

The second approach is to assemble multiple ultrasonic linear motors to realize a

multi-DOF positioning system. Devos et al., have developed a xy-planar drive based on

this approach that combines the fast positioning capability of the resonant motors for
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fine positioning in the nanometer range [Devo 04]. A pair of piezoelectric actuators is

assembled to a pair of tuning blocks along each axis (figure 1.9(d)). These tuning blocks

are in contact with the cube and acts as deformable legs. Upon excitation, each pair of

legs describe an elliptical trajectory in the plane corresponding to the excited pair, thus

realizing a planar motion of the cube in xy-plane. A maximum speed of 60 mm/s speed

under no load conditions was reported by the authors.

1.3.2 Thermal actuation principle

Thermal actuators are based on the thermal expansion of materials (mostly solids) when

subjected to a heating source. In MPS designs, thermal expansion/contraction of the

material are carried out based on resistive heating technique. It involves the utilization

of the current carrying coil wrapped around or embedded in the material to generate

heat based on joule heating effect. Bimetal and bimorph type configurations are more

commonly adapted to realize linear actuation. In bimetal, two same sized metals but

having different coefficient of thermal expansion are assembled together (figure 1.10(a)).

Upon resistive heating, the material with higher value of coefficient of thermal expansion

will expand more with respect to other which results in motion.

Similarly, a bimorph consists of two metallic arms (referred as hot and cold arms)

fabricated in the same material (figure 1.10 (b)). In this configuration the cross section

of the hot arm is smaller than the cold arm. when current is injected in the bimorph, the

hot arm will expand more due to smaller cross section relative to the cold arm. Due to the

difference in volumetric expansion an actuation can be realized. Figure 1.10(c) represents

another approach to realize linear motion by means of applying fixed constraints. In

this approach the expansion legs have same cross section and material. When heated,

the expansion legs will experience change in dimensions. In order to compensate the

change in length due to temperature rise, an in-plane deformation will be realized by the

expansion legs which will move the translating shuttle.

Direction 
of motion

Contact pad

Metal with higher 
coefficient of thermal 
expansion

(a)

Direction 
of motion

Contact pad

Cold armFlexure

Hot arm

(b)

Direction 
of motion

Expansion
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Translating shuttle

(c)

FIGURE 1.10: Thermal actuator principle (a) bimetal (b) bimorphe (c) Geometrically
constrained single metal based actuator
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FIGURE 1.11: MEMS based xy-stages (a) [Lee 09] (b) [Lin 11] (c) µHexFlex [Culp 06]

Thermal actuators exhibit strong forces but the main drawbacks include their temper-

ature dependency and control difficulties which limits their application to MEMS based

MPS in order to optimize required input energy for actuation. Lee et al., have devel-

oped a novel micro xy-stage with SU-8 based polymer actuator based on thermal actua-

tion principle. The stage can deliver a maximum 41 µm displacement stroke at 250◦C.

The monolithic design consists of a sandwich structure integrated with the metal heat-

ing coils in between two layers of SU-8 material (figure 1.11(a)). The device carries a

0.5×0.5 mm2 shuttle [Lee 09]. In another study, Lin et al., have used constrained type

(see figure 1.10(c)) design approach to realize a 4-axis xy-micro stage to resolve anti-

shaking problem of an image sensor. The stage was micro fabricated using Inductively

Coupled Plasma (ICP) etching process (figure 1.11(b)).

Based on bimorph , C.S.Chen and M.L.Culpepper have developed a small-scale nano-

positioner (µHexFlex, see figure 1.12). It consists of six-axis compliant mechanism and

three pairs of two-axis thermo-mechanical micro-actuators. A Φ3 mm diameter prototype

provides a maximum range of 8.4×12.8×8.8 µm3 and 19.2 ×17.5 ×33.2 mrad3. The

displacement resolution of the device has been measured at 1Å. The device was created

using Deep Reactive Ion Etching (DRIE) technique [Culp 06].
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FIGURE 1.12: (a) Actuation principle (b) Single silicon leg (c) Micro conveyor [Ebef 00]
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Ebefors et al., have constructed a micro conveyance system based on arrays of mov-

able robust silicon legs. Figure 1.12(a) represents the step by step actuation technique

proposed by authors for moving a flat abject in the horizontal plane. The conveyance sys-

tem is realized with curved polyimide joint (figure 1.12(b)). These joints deform when

electrically heated, which create “∆z” and “∆x” displacement. When the heating is turned

off the polyamide joint returns to its original position. Based on this actuation concept,

the authors developed a platform composed of several polyamide actuators using heating

resistors [Ebef 00]. The fabricated conveyor (see figure 1.12(c)) consists of a 15×15 mm2

chip having 12 silicon legs to move a flat object at millimeter range. It can perform trans-

lational and rotational motion in horizontal plane. The maximum conveyance velocity of

12 mm/sec has been reported by the authors.

1.3.3 Pneumatic actuation principle

Positioning systems based on pneumatic actuation method utilize the pressure of the

compressed gas (i.e. air, nitrogen, etc.) injected via small inlets (called nozzles, see

figure 1.13(a)) to move and levitate the object at the same time. One of the methods to

generate an air-flow is by using several nozzles fabricated into a flat mechanical structure.

The inlets of the nozzles are controlled using pneumatic valves. The direction of motion

can be achieved by systematic operation of these pneumatic valves. Pneumatic actuation

technique is commonly adapted for small size and lightweight object conveyance. This

technology results in cleaner, non flammable and low cost object conveyance systems.

Based on this principle, Chapuis et al., have developed a distributed conveyance sys-

tem to move light objects. The system is constructed with 560 MEMS actuators in a

35 mm×35 mm conveyance area. The functioning of a single nozzle to levitate and move

the object is shown in figure 1.13(a). The inlet of the nozzle is controlled by using beam

electrode. When right side beam electrode is turned “ON”, the float moves toward right

object

object in levitation Single actuator

(a) (b)

Gas flow

Integration

Control unit

object in motion

FIGURE 1.13: Distributed conveyance system [Chap 04] (a) Object in levitation and mo-
tion states (b) MEMS actuators assembly
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FIGURE 1.14: Light weight object handling table [Berl 00] (a) Experimental prototype
(b) Schematic of a single pneumatic actuator

which allows the gas to flow from left side of the float through nozzle creating a right

ward thrust on the object. The various parts of the conveyer are shown in figure 1.13(b).

The basic cell size in the micro fabricated conveyance system is 1×1 mm2 and the size

of the nozzle is 165×590 µm2. The system utilizes nitrogen gas at 17 kPa and can carry

up to 4 mg weight. The conveyance system developed by Chapuis et al., is based on

digital actuation concept however the levitation position and motion speed can be set by

controlling the pressure of the inlet gas.

Berlin et al., have developed an active surface based flexible object integrated han-

dling system (figure 1.14(a)). 1152 MEMS based arrays of air valves and sensors located

in 30.5 cm×30.5 cm overall dimensions are used to levitate and control the motion of

a flexible planar object, such as a sheet of paper without any contact. Each air valve is

a tilted air jet module that acts as a pneumatic actuator (figure 1.14(b)). The airflow is

controlled by a membrane that is deformed electrostatically. An experimental device has

been manufactured and tested to validate the principle of this movement.

Delettre et al., have developed a new contactless conveyor system for handling clean

and delicate products using induced air flows (figure 1.15). The object is moved indirectly
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FIGURE 1.15: Conveyor system developed by A.Delettre et al., [Dele 11] (a) Sectioned
view (b) Global view (c) Experimental prototype
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by an air flow which is induced by strong vertical air jets. The induced air flow square

surface is of 120 mm×120 mm in dimensions. The system consists of an upper block

having an array of 15×15, 0.4 mm drilled holes (nozzles) and a lower block with 112

drilled holes in staggered rows. These holes are connected to two independent air inlets.

The network of holes creates the air cushion under the object to levitate and move in a

plane.

1.3.4 Electrostatic actuation principle

Electrostatic actuators are based on the well known Coulomb law, which was reported

in 1780. In these actuators, electrostatic charge arises from a build up or deficit of free

electrons in a material, which can exert an attractive or repulsive force on oppositely or

similarly charged objects respectively [Beeb 04]. The simplest design of these actuator

consists of two facing surfaces called electrodes (figure 1.16(a)). The force is derived

from the gradient of the electrostatic potential between the two electrodes.

Electrostatic actuators provide contact less actuation but the main drawback of these

actuators is their dependency on the electrode facing surface area and the air gap in-

between. This deeply effects the work range of these actuators which restrict their appli-

cation in micromechanical positioning system designs [Benc 06].

(a) (b)

FIGURE 1.16: Principle (a) Parallel-plate electrostatic actuator (b) An electrostatic comb
actuator, [Malu 04]

Comb drive actuator is one of the most adapted actuator in positioning systems based

on electrostatic actuation principle (see figure 1.16(b)). It consists of a comb shaped

mobile and fixed part. When an electric potential is applied, an opposite charge appears

along the comb teethes of the fixed and the mobile part facing each other. This generate

attractive force which results in a linear motion of the mobile part. Comb drive actuators

are compact and provide controllable precise positioning [Sun 08]. In multi-DOF posi-

tioning systems, two or more comb drive actuators are generally fabricated or assembled

together to achieve compact designs.

Liu et al.[Liu 07], have developed a 3DOF based nanopositioing stage (figure 1.17(a)).

It was micro fabricated using DRIE technology in a 500 µm thick Pyrex substrate. Four

orthogonally arranged comb drive actuators have been used to actuate a 1×1 mm2 center
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FIGURE 1.17: MEMS micro stages (a) Liu et al., [Liu 07] (b) Sun et al., [Sun 08] (c) Ji et
al., [Ji 10]

stage in xy-plane. A displacement of ±12.5 µm was reported by the authors. In addition,

a bottom electrode of 1 mm2 was fabricated under the center stage. The bottom electrode

and center stage acts as parallel-plate actuator. By this means Liu et al., have realized a

3.5 µm displacement in z-axis. The open loop repeatability of the stage was reported to

be 17.3 nm along all three axes. External optical microscope with a digital camera (reso-

lution: 2.58 nm) and an optical interferometer (resolution: 7.1 nm) was used to measure

planar and vertical displacement, respectively. The device is compact in nature but due

to its small size it does not integrate the positioning measurement sensors.

Similar kind of design has been proposed by Sun et al., [Sun 08]. They have de-

veloped an integrated micro xy-stage with a 2×2 mm2 movable table (figure 1.17(b)).

The stage is integrated with displacement measurement sensors. They have used double-

sided bulk-micromachining technology to fabricate their stage. The micro device is com-

posed of four comb actuators and piezoresistors with a full Wheatstone bridge circuit that

is used for displacement measurement. The integrated micro stage is able to deliver a

±10 µm displacement along a single a axis.

Ji et al.[Ji 10], have developed a micro positioner (figure 1.17(c)) for nano appli-

cations. The device is integrated with four orthogonally arranged comb-drive actuators

and capacitive sensors to measure in-plane displacement. The actuation force from comb

actuators is transmitted to the 520×520 µm2 center stage through 700 µm long tethering

beams. The positioner has a average range from ±6.64 µm.

Takahashi et al.[Taka 07], have developed an xy-stage mechanism for the 2D lens

scanner based on electrostatic actuation principle (figure 1.18(a)). The stage has a small

footprint (2×2 mm2) compared with an integrated silicon lens (dia 1 mm). The overall

device is dual layer design utilizing comb actuators with a double-gimbal structure to

perform 2D motion. It was fabricated in silicon-on-insulator (SOI) and offers a maximum

lateral displacement of 19 µm in the x-directions and 23 µm in the y-directions.
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(a) (b) (c)

FIGURE 1.18: (a) Takahashi et al., [Taka 07](b) Kim et al., [Kim 03] (c) Ultra small 3DOF
manipulator developed by Boudewijn de Jong [Jong 06]

For data storage applications, Kim et al.[Kim 03], have developed a small device that

consists of a 5×5 mm2 shuttle area (figure 1.18(b)). A 3×3 mm2 mirror plate was inte-

grated in order to measure in-plane static displacement by non contact laser displacement

sensor. The positioning range of the stage at 0.1 Hz was measured to be 36×36 µm2.

However, at 140 Hz the micro stage could deliver a maximum stroke of 50 µm in xy-

plane. The overall dimension of the micro stage is 17×17 mm2. A packaged Integrated

Circuit (IC) was made for installation purposes in data storage devices.

Boudewijn de Jong [Jong 06], has developed an ultra small planar 3DOF based paral-

lel kinematic manipulator micro fabricated in single-crystalline silicon wafer (figure 1.18(c)).

The purpose of this manipulator is to provide accurate and stable positioning of a small

sample (10×20×0.2 µm3) in nano applications. Three comb actuators (arranged at 120◦)

are used to actuate a triangular platform over ±10 µm stroke in the x- and y-directions

with a maximum rotation of ±2 µm. The displacement measurement was carried out

using image-processing technique by taking a set of pictures and counting the pixel reso-

lutions.

1.3.5 Electromagnetic actuation principle

Electromagnetic actuation principle is based on the appearance of the electromagnetic

force exerted on an electrically charged particle moving in the presence of a magnetic

field. The main advantages of actuators based on this principle include, hight speed,

fast response, simple design and low cost. In multi-DOF MPS designs, one of the major

problems is the appearance of frictional forces due to the mechanical contact between

mobile and fixed part of the MPS. One of the ways to reduce/eliminate this problem

is by levitating the mobile part using pneumatic drives (see section 1.3.3). However,

electromagnetic actuators can offer both translation and levitation in a single module,

thus making them a fruitful choice. The actuators realized with electromagnetic principle
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can be classified into three types based on the generation of the electromagnetic forces.

The description regarding these forces is mostly taken from [Mole 00, Furl 01, Benc 06].

1.3.5.1 Linear Induction Actuator (LIA)

The working principle of the LIA is based on the generation of the induction force. When

a conductive plane is exposed to a magnetic field, currents are induced in it according to

the Faraday’s law. The interaction between the induced currents (which lead to secondary

magnetic field according to Lenz’s law) and the magnetic field leads to induction forces.

A typical configuration of a LIA consists of a movable slider with conductor windings, a

fixed stator and a conducting material as shown in figure 1.19(a).

LIAs possess high temperature bearing capability and deliver extremely high speeds.

However, they are mostly applied in application-specific drives such as compressors,

pumps, etc., due some drawbacks. These include force-ripple effect, acoustic noise, high

power consumption due to absence of permanent magnets [Mole 00].

In mechatronics field, LIAs are often used to construct multi-DOF planar motors for

small object conveyance. For example, Dittrich et al., have developed an integrated planar

motor for heavy miniature component conveyance (figure 1.19(b)). Four orthogonally ar-

ranged LIAs were used to realize 3DOF motion on a copper sheet. In order to compensate

the weight of the planar motor (2.5 kg), air bearings have been used (details not pro-

vided). The planar actuator is able to carry 21.5 N load at maximum speed of 0.36 mm/s

and is integrated with two optical sensors (resolution 63.5 µm). Similar approach have

led Kumagai et al., to develop their 3DOF based planar actuator (figure 1.19(c)). They

have used three LIAs in delta (∆) configuration. The core of the planar actuator was real-

ized with 100 magnetic steel sheets resulting in a 4.8 kg total mass. The planar actuator

travels over a 1.5 mm copper sheet and offers a payload capacity of 60 N with a maxi-

mum 12 m/s2 acceleration. Three laser sensors were integrated in the planar actuator to

provide displacement parameters (details not provided).
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FIGURE 1.19: (a) LIA principle (b) Dittrich et al., [Ditt 06] (c) Kumagai et al., [Kuma 12]
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In order to achieve levitation of the heavy mobile part in compact MPS designs LIA’s

based levitation solution is often preferred over pneumatic leviation technique due to

their compactness. One of such solution was adapted by Jung et al., in their MPS design

as shown in figure 1.20(a). The 3DOF MPS proposed by authors was designed for a

maximum travel range of ±15 mm in xy-plane and ±1 mm in z-axis. The translation

(based on EMAs (see section 1.3.5.3)) and levitation (based on LIAs) motion are carried

out with independent solutions but the decoupling between the motion axes and the

levitation axes was not obtained. Later in 2010, Jung et al., have developed a contact-free

planar stage based on LIAs (figure 1.20(b)). In this design, the authors have employed air

bearings to levitate the mobile platform of the planar stage. The system was integrated

with capacitive sensor and it offers a working range of 10 mm×10 mm in a plane.
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Thrust coil
(translation)

Levitation sensor

Laser displacement
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Mirror

(b)

Upper air bearing Capacitive probe

   Interferometer
   Initializing air chuck
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Lower air bearing

FIGURE 1.20: LIAs based MPS proposed by Jung et al. (a) [Jung 05] (b) [Jung 10]

1.3.5.2 Linear Reluctance Actuator (LRA)

The principle of LRA is analogous to the flow of the electric energy in an electrical circuit.

In electric circuit, the electric field causes an electric current to follow the path of least

resistance. Similarly, in a magnetic circuit the magnetic field causes magnetic flux to

follow the path of least magnetic reluctance/resistance. In a magnetic circuit the magnetic

energy is stored rather than dissipating it like in electrical circuit. So, when the coil in

the magnetic circuit is energized, the reluctance force appears in order to minimize the

overall reluctance of the magnetic circuit.

LRAs are strong, compact and power economic actuators. The maximum force density

of the reluctance force depends on the saturation level of the yoke material, geometrical

parameters, material’s relative permeability and air gap. The construction of an LRA is

similar to LIA, but it requires one less element, since a coil and an iron target is enough

to generate reluctance forces (figure 1.21(a)). However, in micro applications, LRAs
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FIGURE 1.21: (a) LRA principle (b) Solution proposed by Lee et al., to control the pneu-
matic actuator [Lee 00] (c) Molanaar et al., [Mole 96]

suffers from complex yoke design and due to their non-linear behavior of current-to-

force relationship, the controller design is often very difficult [Mole 00]. Due to these

complications LRAs are mostly used in single-DOF motion applications. For example,

Lee et al.[Lee 00], have proposed a solution to control the z-axis motion using air bearings

with LRAs (figure 1.21(b)). The air bearing provide levitation and guidance along z-axis

whereas LRAs are implemented to produce an attraction force between the air bearing

and the base plate. A displacement resolution of 25 nm was obtained over 40 µm travel

range along z-axis.

Molanaar et al.[Mole 96], have proposed a design based on a Suspension and Propul-

sion Unit (SPU). It combines the active magnetic suspension (reluctance force) with direct

propulsion (Lorentz force). The design was proposed with three SPUs offering a 10 mm2

travel planar range (figure 1.21(c)). No further details can be found regarding the real-

ization of the prototype.

Based on the reluctance actuation principle, Pan et al.[Pan 11], have developed a

novel 2DOF planar motor for position control applications (figure 1.22). The guide rail

based planar actuator design provides a work stroke of 100 mm ×180 mm and has the
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(b) (c) (d)

Optical encoders for x and y axis

stator base

moving
platform

Coil
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FIGURE 1.22: (a) Building blocks of the stator (b) Interaction principle (c) Schematics of
the planar motor (d) Developed prototype Pan et al., [Pan 11]
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ability to withstand hostile operating conditions in industries. The stator of the planar

motor was realized with small sheets assembled together to form building blocks. These

building blocks are put together to realize the stator part of the planar motor. The motor

was integrated with optical encoders (resolution=1 µm) to measure the planar displace-

ment.

1.3.5.3 Electro-Magnetic Actuator (EMA)

Another approach to realize actuation for positioning systems based on electromagnetic

principle is to use EMAs. The principle of EMA is based on the generation of Lorentz

force. It originates due to the direct interaction between a current carrying electrical

conductor and a magnetic flux density prevailing around the conductor (figure 1.23(a)).

In comparison with LIAs and LRAs, EMAs are simple in design and are simple to control

due their linear current-to-force relationship [Mole 00]. The construction of EMA consists

of a movable slider and a fixed stator. According to the literature, two design solutions

are mostly used to realize MPS based on EMAs. The first approach is “moving coil and
fixed PMs technique” (figure 1.23(b)) and the second one is “moving PMs and fixed coil
technique” (figure 1.23(c)).
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FIGURE 1.23: (a) EMA principle (b) Moving coil and fixed PMs construction (c) Moving
PMs and fixed coil construction [Benc 06]

a) MPS realized with moving coil and fixed PMs technique

This construction technique is the inspiration taken from conventional rotary motors.

In these motors the permanent magnets are located at the stator part of the motor and

the rotor include the conductor windings. DC motors is one of the example of such

motors that are mostly found in the appliances. The same construction approach is being

followed in multi-DOF planar MPS based on EMAs. The electric coils are placed in the

slider part and PMs are fixed on the stator side (figure 1.23(b)). The main advantage of

this technique is the ability to extend the travel range of the MPS by adding more number

of PMs to the fixed stator. Due to this reason it is mostly applied for MPSs dedicated

for object conveyance purposes. In addition, the stator part for these MPSs are often
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constructed with PMs assembled in specific magnetic orientation to enhance the magnetic

field strength (see figure 1.23(b) for Halbach configuration of the PMs). This is because

the both sides of the PMs can not be exposed to current carrying coils which limits the

per unit area electromagnetic forces generation for the levitation and translation of the

mobile part.

Based on this technique, Hu et al., Yu et al., and Nguyen et al., have developed their

planar MPSs for conveyance application [Hu 06, Yu 10, Nguy 12]. The MPS developed by

Hu et al., provides six degrees of freedom and is driven by three EMAs (figure 1.24(a)).

The coils of these EMAs are embedded inside the ∆-shape platen that resulted in a 5.91 kg

total weight. Moreover, the stator part is realized with PMs matrix to form a concentrated

magnetic field. The positioner provides a travel range of 160 mm in a plane with a

displacement resolution of 20 nm. The displacement measurement was carried out using

three external laser interferometer sensors (resolution = 0.6 nm each). In similar fashion,

Yu et al., and Nguyen et al., have developed their compact MPSs with two and six coils,

respectively (figure 1.24 (b) and (c)). The overall weight of their platen resulted in 1.5

kg and 0.64 kg, respectively. The travel range of both MPSs is around 20 cm in a plane

with the positioning resolution of 8 µm. These positioners are compact in design but in

order to compensate the overall weight of the platen they are equipped with aerostatic

bearings (details not provided).
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FIGURE 1.24: Positioning systems developed by (a) Hu et al., [Hu 06] (b) Yu et al.,
[Yu 10] (c) Nguyen et al., [Nguy 12]

The application of the aerostatic bearings in the MPSs based on the moving coil and

fixed permanent magnet technique is often needed to first, levitate the heavy mobile part

and second, to remove the joule heat generated during their functioning. However, this

solution often reduces the availability of the potential space on the mobile part due to

the extensive wires or air manifold tubes that are connected to it (see figure 1.24). This

problem often leads to positioning limitation in a plane as the length of the mentioned

elements restricts the movement of mobile part to a certain range.

b) MPS realized with fixed coil and moving PMs technique
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In this technique, the permanent magnets are directly assembled to the slider (or

mobile part) and coils are fixed at the stator (figure 1.23(c)). The main advantages of

this technique includes, easy removal of joule heating without disturbing the functionality

of the MPS and possibility to realize wireless movable part which often provides a huge

margin to directly integrate external components (e.g. sensors, etc.). In literature, most

of the modern MPSs based on EMAs are realized with this technique. These systems

are often referred to Maglev (Magnetically levitated) systems as the mobile part in these

systems can be electromagnetically levitated.

Based on this technique, Trumper et al.[Trum 98], have developed their maglev micro

stage (figure 1.25(a)). The stage consists of four independent driving units to generate

levitation and translation forces. The authors have used PMs in Halbach configuration

to construct a Permanent Magnet Array (PMA). The stator of the stage was constructed

by wrapping the conductor around a non-ferromagnetic material block which helps in

to remove the joule heat generated due to the current flow. In order to measure the

translation displacement external interferometers were used with mirrors that were fixed

to the mobile part. Moreover, the stage was integrated with capacitive sensors to measure

the vertical motion. The maximum translational stroke is 50×50×0.4 mm3 with 5 nm

accuracy and rotation stroke is 600 µrad.

Similar approach has led Holmes et al.[Holm 00], from the same research team to

develop a MPS for scanned-probe microscopy application (figure 1.25(b)). The stage uti-

lizes four levitation linear motors to suspend and move the moving part (platen). Position

measurement was carried out using three interferometers and three capacitance probes

integrated inside the MPS volume. The MPS offers a resolution of 10 nm with a maximum

travel range of 25 mm×25 mm×0.1 mm along three axis. The overall weight of the mo-

bile part resulted in 12 kg. The mobile part was floated in the oil to reduce disturbances

such as heat and micro vibration during functioning.

In another study, two of the maglev systems were proposed by Kim et al.[Kim 07], as

shown in the figure 1.26. The ∆-maglev stage and Y-maglev stage have been developed

for multi-axes nano scale positioning tasks [Kim 07]. The ∆-maglev stage is constructed

with a pair of three horizontal and vertical electrical coils. Each pair shares a single

cylindrical permanent magnet that is attracted or repelled due to the generation of elec-

tromagnetic forces (figure 1.26(a)). The maximum planar travel range is 300 µm and

rotational range is 3.5 mrad with a resolution of 5 nm along all three axes.

The second generation stage (refers to Y-maglev stage) is based on same construction

approach as of ∆-maglev stage. However, it offers 15 times more travel range (5 mm×5

mm×7 mm) as compared to ∆-maglev stage. The maximum rotational range about z-axis

of Y-maglev stage is 5◦. These two types of MPS only integrate the capacitive sensors only
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FIGURE 1.25: Maglev positioning systems developed by (a) Trumper et al., [Trum 98] (b)
Holmes et al., [Holm 00]

to measure the displacement in levitation. In order to measure long range displacement

external laser interferometers were used.
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FIGURE 1.26: MPSs developed by Kim et al., [Kim 07] (a) Actuation principle and EMA
structure (b) ∆-maglev stage (c) Y-maglev stage

Chen et al., have developed two MPSs based on flexure and EMAs to achieve smooth

motion. The positioning stage presented in figure 1.27(a) utilizes six EMAs (three actua-

tors along each axis) to deliver the translation force to the flexures that are connected to

the mobile part (sample holder). The prototype delivers a ±50 µm displacement range

with a resolution of 50 nm measured via three integrated capacitive sensors. Later, the

same research group have used this concept to develop a compact 3DOF submicro posi-

tioner (figure 1.27(b)). It consists of a monolithic parallel flexure mechanism actuated

with four EMAs. Three optical and three fiber interferometer sensors were used to mea-

sure the displacement. The maximum travel range is limited to ±0.5 mm (due to fiber

interferometer sensor) in xy-plane. The resolution of the device was reported 5 µm.

Culpepper et al.[Culp 04], have developed a low cost nano-manipulator which utilizes

a monolithic spatial compliant mechanism (figure 1.27(c)). The manipulator delivers a
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FIGURE 1.27: MPSs constructed with EMAs and compliant mechanism (a) Chen et al.,
[Chen 04] (b) Chen et al., [Chen 10] (b) Culpepper et al., [Culp 04]

100 µm stroke along six-axis with a 23 nm resolution. The motion forces are generated

using three EMAs directly attached to spatial compliant mechanism. This manipulator

concept has led Culpepper et al., to build a thermally actuated planar stage (see fig-

ure 1.11(c)).

Gao et al., have developed a surface driven planar motion stage (figure 1.28(a)). The

stage delivers 3DOF motion and integrates a surface encoder (displacement sensors) to

measure the positing of a grid on the platen. Four orthogonally arranged coils and PMs

were used to actuate the platen. The overall dimensions (platen + stage base) of the

stage are 260×260×23 mm3 which resulted in a 10.2 kg total mass. The thrust force of

the stage along single axis was reported 1.6 N/A. However, this force is not enough to

move the heavy platen. To solve this problem, the authors have used four air bearings at

the extremities to compensate the weight of the platen. The stage offers a displacement

resolution of 20 nm in translation and 0.2" in rotation with a maximum travel range of

40 mm in xy-plane. The device is compact and the integrated surface encoder permits to

measure the displacement without any contact.

Dejima et al.[Deji 05], from the same research group have developed a positioning

(a) (b)

FIGURE 1.28: MPS developed by (a) Gao et al., [Gao 04] (b) Dejima et al., [Deji 05]
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system with integrated surface encoders proposed by Gao et al., [Gao 04]. The translation

and levitation characteristics of the heavy platen (24.9 kg) was achieved with EMAs and

air bearings, respectively. Moreover, in order to control and achieve multi-DOF motion of

the heavy platen, piezo actuators were vertically employed which resulted in a complex

design as shown in figure 1.28(b). The system is capable to deliver a displacement and

levitation stroke of 200 mm and 10 µm, respectively.

In micro component manufacturing industries, positioning systems capable to deliver

millimeter level strokes are often applied to transport the components during manufac-

turing. Electromagnetically actuated MPSs are mostly preferred due to their high speed

and ability to provide wireless designs. Lu et al., have developed one such positioning

system for long range motion applications (figure 1.29(a)). The authors have realized

the fixed part of the MPS with 3-phase planar coils fabricated in a 16 layer printed circuit

board and the mobile part consists of four magnet arrays fixed to a mobile platen (overall

weight 2.3 kg). To generate sufficient electromagnetic forces for translation and levitation

of the heavy platen the magnetic arrays are constructed with PMs arranged in Halbach

configuration and the thickness of the copper coils have been selected 210 µm to inject

high current values. The authors have reported an average planar motion resolution of

0.5 µm measured via an external stereo vision sensor (details not provided).

In another study, Gloess et al., have developed a novel positioning system with three

EMAs (figure 1.29(b)). Each EMA consists of two planar coils and a set of permanent

magnets arranged in Halbach configuration. The mobile platform of the system is wire

free and delivers a planar motion of 100 mm2 with 5 nm resolution in closed loop con-

trol. In order to get high stability in all 6-DOF the authors have developed a new 6D

sensor measurement system (optical+capacitive) installed beneath the mobile platform.

The sensing system utilizes a structured grid plate to measure the displacement. The

maximum speed of 100 mm/s (limited due to the controller) with a maximum carrying

load of 500 grams was reported by the authors.
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FIGURE 1.29: MPSs proposed by (a) Lu et al.[Lu 12] (b) Gloess et al.[Gloe 12]

Based on moving PMs and fixed current coils technique, N.Bencheikh at Roberval

laboratory of the Université de Technologié de Compiègne (UTC), developed a long range
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linear EMA to realize compact miniature conveyance device for desktop factories. In order

to achieve planar motion, the miniature conveyor was realized with four orthogonally

arranged EMAs assembled to a Zerodur cross structure (figure 1.30). The prototype is

able to perform xymotion in a plane and a rotation about z-axis. Each EMA is driven

using a two phase planar electric drive coils that are injected with 1.6 A (peak to peak)

currents. In order to measure the displacement, two non contact external fibre optic

sensors (resolution ≈ 2 nm). The conveyor prototype was designed for 5 mm×5 mm

travel in xy-plane but was tested for only 2 mm due to the limited range of the fiber optic

sensors. In addition, the resolution of the device was reported around 20 µm due to the

friction between the mobile and fixed part of the system. Further, a maximum rotation of

±8◦about z-axis was reported [Benc 06].
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FIGURE 1.30: Long range linear EMA and proposed solution to realize a 3DOF miniature
conveyor [Benc 06]

1.4 Miniature displacement measurement sensors

In modern positioning systems, non contact sensors are mostly preferred over contact

type sensors due to their ability to measure the motion characteristics such as displace-

ment, speed, acceleration, etc., of the mobile part (or rotor) without any interruption

during functioning of the positioning systems. These sensors provide higher dynamic re-

sponse with high measurement resolution, low or no hysteresis and can measure delicate

structures as compared to contact type sensors such as potentiometer, etc. [Lai 05]. A

wide variety of displacement sensors have been developed based on the principles of ca-

pacitive, inductive, magnetic and optical sensing. However, where the overall dimensions

of the positioning system reduce in to micro realm, the selection of appropriate sensor

becomes a challenging task from their operation and integration aspect.

In practice, optical sensors are probably the most popular for measuring position and

displacement. Their main advantages are simplicity, the absence of the loading effect, and

relatively long operating distances [Frad2004]. In addition, optical sensors are insensitive

to stray magnetic fields and electrostatic interferences as compared to non contact sensors
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based on capacitive, inductive and magnetic measurement principles. This makes optical

sensors a suitable choice for many MPSs used in sensitive applications. Concerning optical

displacement sensors, numerous designs have been reported in past, employing principle

of triangulation , interferometry , diffraction and speckle [Khia 07]. In most of these de-

signs the construction of the sensors mainly consists of a light source, a photodetector and

light guidance device that may include lenses, mirrors, optical fibers, etc. The light emit-

ted by the light source guides through the guidance device and hits the movable object

such as the mobile part of the MPS. The reflected and/or diffracted light is collected by

the photodetector which converts into electrical signals. These signals are manipulated by

the electronics behind these sensors which determines the displacement change at nano

meter level after interpolation. These components can easily be configured for desired

measuring tasks in systems but their large volume due to the light guidance devices do

not guarantee their integration into the MPSs as presented in [Kim 07, Jung 10]. In addi-

tion, multi-DOF positioning systems often demand multiple sensors to control the motion

behaviour in real time. In such scenario, the application of multiple optical sensors such

as laser interferometers along each motion axis increases the overall cost of the system.

Optical encoders are one of another solution that is adapted in several studies pre-

sented in previous section [Gao 04, Ditt 06, Smar 11, Pal 11, Kuma 12]. Their working

principle is mainly based on the measurement of the relative movement of a scale and

scanning reticle [Heid]. As compared to interferometers or sensors based on triangula-

tion principle, they are compact in volume and offer nano meter level resolution after

interpolation. The main advantages include their ability to measure at long range but

they are often one dimensional due to their design constraint. So, in order to measure

the motion characteristics in MPSs, numerous sensors are needed. In addition, in angular

optical encoders the scanning reticle has fixed axis which often leads to incompatibility

with MPS offering in-plane angular motion without fixed axis such as the case of planar

conveyors [Lu 12, Benc 06].

Fiber optic displacement sensors are one of most compact and cost effective solution

available in optical sensors [Kiss 74]. The light emitting and receiving probe in these

sensors is made of a bundle that consists of at least one emission and one receiving fiber.

In reflective principle based fiber optic displacement senors, the light injected by the LED

into the emission fiber exits from the probe and is reflected by a flat mirror. The reflected

light feeds through the reception fiber bundle that is connected to a photodiode on the

other end as shown in figure 1.31(a). When the facing mirror moves perpendicular to the

probe axis, the angle of incident light changes. This results in variation in the intensity of

the reflected light collected by the reception fiber which is interpreted by the photo diode.

The typical output response curve of this type of sensor is presented in figure 1.31(b).

Due to the small dimensions of the probe, their integration in compact MPS designs

31



Chapter 1. State of the art

Displacement

O
u

tp
u

t 
vo

lt
ag

e e
n

oz rae
ni

L

Mirror in translation

Fiber optic
probe

Emission
fiber

Reception
fiber

PhotodiodeLED

(a) (b)

FIGURE 1.31: (a) Fiber optic displacement sensor principle (b) Sensor response

is easy as compared to other optical sensors, as they can reach in congest places without

consuming too much space. Further, in order to measure the motion characteristics along

multiple axes the integration of multiple fiber optic probes does not affect the cost and

volume of the overall system. In addition, the arrangement of the fibers in the probe

can be used to measure two dimensional and angular displacement with nano meter

level resolution. However, their application in MPSs is not common as they exhibit small

working range (up to few hundred microns) in their high sensitivity region.

Prelle et al., at Roberval laboratory (UTC) have proposed a solution to extend the

linear working range of the fiber optic sensor up to several millimeters (figure 1.32(a)).

According to the literature [Prel 06], fiber optic sensors were used with small step like

structure “called grating” in their high sensitivity zone. In order to avoid discontinuity

during the displacement measurement two fiber optic probes (each Ø2 mm, L=10 mm)

were employed in the setup and a signal switching has been performed.

Later, Khiat et al., have developed an initial prototype of the sensor with the collab-

oration of Institut für Mikrotechnik, TU Braunschweig, Germany (figure 1.32(b)). The

optimal design of the prototype consists of two fiber optic probes (each, Ø1 mm, L=10

mm) and a flat gold coated grating (13×13×0.5 mm3). The grating was micro fabricated

in silicon material using wet etching technique [Khia 08]. The novel 2D sensor offers a
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Gratings at position x  1

Invalid measurement

Gratings at position x  2
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probe 1

FODS 
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Displacement direction

Gratings
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FIGURE 1.32: Long range sensor (a) working principle [Prel 06] (b) Prototype [Khia 08]
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resolution of 27.4 nm over a linear working range of 9 mm in a plane. Further details

regarding this sensor will be discussed later in this thesis.

1.5 Overview of the presented positioning systems

The presented actuation technologies have been analyzed on the basis of the physical

characteristics (e.g. maximum work stroke, overall size, etc.) of the developed position-

ing systems for micro applications. Table 1.1 represents some of these characteristics for

the MPSs discussed in the previous section.

Piezoelectric based actuation principle offers great variety of linear actuators from

its application point of view. The MPS realized with piezoelectric actuators have a very

fast response time and provide a nano metric displacement resolution. However, their

direct application restricts their work strokes up to few hundreds of micrometers due

to the very small relative deformation (0.1%) of the piezoceramic material [Cart 11].

Their application in step-mode operation (see section 1.3.1.2) offers MPSs with large

displacement strokes but they are slow in nature. From integrated design perspective,

the integration of feedback sensors is often difficult in MPS based on step-mode operation

due to their design [Wu 04, Zesc 95].

Thermal and electrostatic actuation technology is often adapted for MPS used in

MEMS modules due to their small foot print size. MPS realized with thermal actua-

tors have high power density but at macro/meso scale these actuators deliver slower

response time. On the other hand, electrostatic actuators have very high frequency band-

width but the generated force are relatively low as compared to other actuation principles

[Karp 08]. However, the low current consumption characteristics of the electrostatic ac-

tuators makes them highly efficient. The main drawback of these actuators is their small

working strokes in a single module due to their optimal design and functional limitations.

Pneumatically actuated MPSs are clean and deliver strong output forces but due to the

digital control of the air flow control unit their accuracy is limited as compared to other

actuation technologies. Further, their scale down version is difficult to fabricate due to

the complex design of the nozzles. However, their strong output force characteristics are

often applied in electromagnetically actuated MPSs to achieve levitation and remove heat

generated due to the current flow in conductor at the same time.

Electromagnetic actuators are simple in design, easy to control and cost effective so-

lution in most of the positioning systems [Gilb 96]. Further, their application at macro,

meso and micro level scale have been well established as compared to other actuation

technologies. These actuators demonstrate very high operation speeds as reported by
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Table 1.1: Characteristics of the presented positioning systems

Ref. A.T DOF Dimensions Max. Stroke Res. Sensor
MPS based on smart material actuation principle

[Cedr 11] MAPA 2 50×50×20 mm3 25×25 µm2 2 nm *Capacitive

[Sabr 09] MAPA 2 45×40×1.4 mm3 80×60 µm2 - *Capacitive

[PI 12] MAPA 3 150×150×25 mm3 300× 300× 300 µm3 - Capacitive

[Wu 04] PIWA 3 20×20×12 mm3 Theoretically infinite 14 µm none

[PI N512] PWD 2 - 6×6 mm2 15 nm none

[Zesc 95] FID 3 38×38×9 mm3 6×6×6 mm3 10 nm none

[Smar 11] SSA 6 Ø110×45 mm2 20×20×10 mm3 1 nm *Encoder

[Nomu 07] FID 3 28×28×1.65 mm3 - 17 nm none

MPS based on thermal actuation principle
[Lee 09] EHR 2 2×2 mm2 41×41 µm2 - Camera

[Lin 11] EHR 2 8.8×8.8×0.2 mm3 25×25 µm2 - Camera

[Culp 06] EHR 6 Ø3 mm 8.4×12.8×8.8 µm3 0.1 nm Camera

[Ebef 00] EHR 3 15×15 mm2 - - Camera

MPS based on Pneumatic actuation principle
[Chap 04] - 3 35×35 mm2 Same as dimensions - -

[Berl 00] - 3 30.5×30.5 mm2 Same as dimensions - -

[Dele 11] - 3 120×120 mm2 Same as dimensions - -

MPS based on electrostatic actuation principle
[Liu 07] CD 3 4×4×0.5 mm3 ±12.5, 3.5 µm - Camera

[Sun 08] CD 2 - ±10 µm - *Piezoresistor

[Ji 10] CD 2 3.75×3.75 mm2 ±6.64 µm - *Capacitive

[Taka 07] CD 2 2×2 mm2 19×23 µm2 - Camera

[Kim 03] CD 2 17×17 mm2 36×36 µm2 - Laser

[Boud 10] CD 3 - ±10 µm, θ=2 µm - Camera

MPS based on electromagnetic actuation principle
[Ditt 06] LIA 3 4.6×4×2 cm3 ≈ facing surface area 31.75 µm *Optical

[Kuma 12] LIA 3 Ø180 mm ≈ facing surface area - *Optical

[Jung 05] LIA 3 30×30×20 mm3 - - *Laser

[Jung 10] LIA 3 - 10×10 mm2 - Interferometer

[Pan 11] LRA 2 340×350 mm2 100×180 mm2 - *Optical encoder

[Hu 06] EMA 6 95.25×190.5 mm2 160×160 mm2 20 nm Interferometer

[Yu 10] EMA 6 170×152×53 mm3 220×200 mm2 10 µm *Hall sensor

[Nguy 12] EMA 3 185.4×157.9 mm2 15.2×20.32 cm2 8 µm *Hall sensor

[Trum 98] EMA 3 - 80×69×17.5 mm3 5 nm Interferometer

[Holm 00] EMA 2 - 25×25×0.1 mm3 10 nm *Interferometer

[Kim 07] EMA 6 80×69×17.5 mm3 0.3×0.3×0.5 mm3 5 nm Interferometer

[Kim 07] EMA 6 115×127×112.7 mm3 5×5×0.5 mm3 4 nm Interferometer

[Chen 04] EMA 2 - 100×100 µm2 20 nm *Capacitive

[Chen 10] EMA 3 100×100×100 mm3 1×1 mm2 5 µm *Optical

[Culp 04] EMA 6 - 100×100×100 µm3 23 nm Camera

[Gao 04] EMA 3 260×260×23 mm3 40×40 mm2 20 nm *Encoder

[Deji 05] EMA 5 720×720×60 mm3 200×200×0.01 mm3 - *Multiple

[Lu 12] EMA 6 559×320×5.7 mm3 260×60×2.5 mm3 0.5 µm Interferometer

[Gloe 12] EMA 3 - 100×100×0.1 mm3 5 nm *Capacitive+optical

[Benc 06] EMA 3 100×100×20 mm3 5×5 mm2, ±8◦ 200 nm Fiber optics

Acronym used in the table
Mechanically Amplified Piezoelectric Actuator (MAPA), Piezo InchWorm Actuator (PIWA), Friction Inertia Drive
(FID), PiezoWalk Drive (PWD), Comb Drives (CD), Stick-slip actuator (SSA), ElectroMagnetic Actuator (EMA),
Linear Induction Actuator (LIA), Linear Reluctance Actuator (LRA), Electric Heat Resistor (EHR), Diameter (Ø)
Integrated inside the MPS (*), Displacement resolution (Res.), Actuator Type (A.T)
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several research groups [Gloe 12, Lu 12, Kim 07]. In order to realize contact less actua-

tion, their ability to generate levitation and translation forces in a single module makes

them more compact from their design aspect as compared to other actuation technologies.

In addition, this technology results in high actuation forces, long strokes (displacement),

low voltage control and bidirectional motion characteristics in MPSs [Voll 10, Mole 00].

From miniaturization point of view, MPSs realized with EMAs based actuation solution

is mostly preferred by several researchers due to their flexible design, fabrication (see

table 1.1). Further, the input energy required to realize the magnetic field in the case

of LIAs and LRAs is no more needed in EMAs due to the PMs which reduces the energy

consumption. In addition, these systems offers wire free mobile platforms which further

enhance their ability to integrate external components such as sensors, etc.

However, the miniaturization of this technology into the micro domain often lead to

two kinds of problems. First, the difficulty of fabricating small electric coils and PMs

and second reduction in output power due to the miniaturization. In order to solve the

first problem related to fabrication of the miniature components for MPSs realized with

EMAs, Micro System Technology (MST) have played an important role over the past few

years. Currently, PMs and electric coils can easily be realized with small dimensions

using micro fabrication technology. Concerning the reduction of output power due to the

miniaturization of PMs and electric coils there exist alternate solutions to compensate the

force losses due to the miniaturization of EMAs. One of the commonly adapted solution

is to levitate the mobile part of the MPS via aerostatic bearings during motion such as in

the cases [Deji 05, Gloe 12].

For precise positioning, feedback sensors play a vital role in controlling the motion

behaviour of these systems. Their selection is mostly carried out on the basis of their

compatibility with the MPS environment that include, actuation technology, overall vol-

ume, work stroke, etc. For example, in electromagnetically actuated MPSs, the applica-

tion of sensors based on capacitive, magnetic or inductive measurement principle are in

common as the electromagnetic field from the PMs can disturb their functionality. On the

other hand, optical sensors are the ones which can work in almost every environment.

The only constraint that limit their functionality is the quality of the reflecting surface. In

most of the MPSs presented in table 1.1, the displacement measurement has been carried

out using optical sensors, e.g. camera, interferometers, etc. However, due to their large

volume their integration is difficult. Fiber optic displacement sensors are easy to integrate

due to their small dimensions and offer nano meter level resolution. The only limitation

concerning these sensors is their ability to measure at long range. The research carried

out at our Roberval Laboratory, has led our team to realize a compact version of these

sensors to enhance their ability to measure at long range in two dimensions.

Taking into the account the presented actuation technologies, an analysis have been
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carried out in the following section to select a drive technology in order to realize a

multi-DOF MPS in this work.

1.6 Conclusion

In this section, based on the start of the art regarding the miniature positioning system

technologies presented in this chapter and summarized in table 1.1, different actuation

technologies have been evaluated in table 1.2 for different design parameters such as

working stroke, resolution, compactness, sensor integration, etc. From table 1.2, it can

be seen that smart material, thermal and electrostatic actuation based MPSs mostly suffer

from their small work stroke size. Different engineering solutions may be employed in

order to maximize their work stroke but it results in complex design of the whole MPS.

Pneumatic, induction and reluctance actuators based MPSs offer larger work strokes but

their poor resolution often limit their applications to conveyance systems. On the other

hand, Lorentz force actuator based MPS provide millimeter level strokes with possibility

to achieve nanometer level resolution. The only drawback in these MPSs is their smaller

output force. However, different solution can be employed to solve this problem. In this

work, Lorentz force actuator has been selected as a drive choice to realize the MPS.

TABLE 1.2: Drive choice in the multi-DOF miniature positioning systems

Principle Smart material Thermal Electrosta�c Pneuma�c Electromagne�c

Actuator
types

Piezo-
stack

actuator

Mechanically 
amplified
actuator

Stepping 
mode

actuator

Ultrasonic
motor

Bimorph
actuator

Comb
drive

-
Induc�on
actuator

Reluctance
actuator

Lorentz 
force 

actuator

Stroke size
(>1 mm) 100 µm 300 µm > 1 mm >1 mm 41 µm 36 µm >> 1 mm >>1 mm >>1 mm > 1 mm

Resolution 
(< 1 µm) 2 nm 2 nm 10 nm 20 nm 1 nm 1 nm 10 µm 10 µm 10 µm 5 nm

Response 
time (< 1ms)

Very fast Very fast Moderate Very fast Slow Fast Slow Fast Fast Fast

Output
force

Moderate

Moderate Moderate

Large Moderate Moderate Very large Very low Large Very large Moderate Low

Design
complexity High High Moderate Very high High High High Low

Sensor 
integration Easy Easy Difficult Difficult Difficult Moderate Moderate Easy Easy Moderate

Speed
(> 1 mm/s)

Very fast Very fast Slow Fast Slow Fast Slow Very fast Very fast Very fast

Miniaturization Very easy Easy Moderate Moderate Difficult Moderate Moderate Very hard Moderate Moderate

~~

~~

~~

~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~

~~ ~~

Strong advantage Strong drawbackWeak drawback

1.7 Thesis objectives

After selecting the actuation technology to realize a compact integrated MPS, the research

realized in this manuscript has been divided into three main tasks as shown in the fig-

ure 1.33. The description of these tasks are provided in the following text:

36



Chapter 1. State of the art

Task 1: The initial task is based on the improvement of the previous prototype developed

by the Dr. Nabil Bencheikh [Benc 06]. In this task, redesigning of the prototype

will be carried out in order to increase its planar working stroke while selecting a

minimum foot print size for the new miniature positioning system prototype. In

addition, the new design should be adaptable to integrate top and bottom side

planar electric drive coils to optimize its output characteristics such as load carrying

capacity, current input, etc.

Task 2: The second task deals with the improvement of the long range optical sensor. For

this task, the fabrication of the silicon gratings using microfabrication technology

will be carried out using the fabrication process proposed by Dr. Ali Khiat [Khia 07].

However, the main objectives behind this fabrication are to obtain improved surface

parameters for the silicon gratings and to achieve a micro machining process that

must deliver homogenous silicon gratings with better roughness and flatness pa-

rameters. In addition, taking into the design parameters of the new MPS design in

task 1, the geometrical parameters of the long range sensor will be optimized for

integration purpose.

Task 3: Finally, an integrated MPS capable to deliver 3DOF motion will be realized. For

this task, the silicon gratings will be integrated in the mobile part of the miniature

positioning system.

During each task, analytical models will be developed and experimentations will be

performed in order to validate the MPS design.

Realization of an 
Integrated 3DOF 

Miniature 
Positioning System

Task 1 Task 2

Task 3

Improvement of the 
long range optical 

sensor

Improvement of the  
3DOF planar 

actuation system

§ Fabrication of the 
silicon grating

§ Improving surface 
parameters 

§ Validation
§ …

§ Miniaturization
§ Improve assembly
§ Validation
§ …

Relative 
designing

FIGURE 1.33: Research objectives
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Principle and modeling of a miniature

planar actuation system

In this chapter the working principle and modeling of the planar actuator system has been

carried out. At first, the concept of the actuation system is described along with the gen-

eral layout of the system. Due to the symmetrical design of the system, the construction

and functioning of a single linear electromagnetic actuator is discussed for the purpose

of simplification. Then, analytical models have been realized and dynamic simulation

results are shown to evaluate the performance of the whole system in open and closed

loop control.

2.1 Miniature positioning system concept

The Miniature Positioning System (MPS) presented in this work is based on in-plane sym-

metrical assembly of four direct drive Linear1 Motors (LMs) as shown in the figure 2.1.

Each LM is an electromagnetic actuator based on the “moving magnets and fixed coils”
technique. The MPS consists of a mobile part and a fixed part. The mobile part consists

of four orthogonally arranged Permanent Magnet Arrays (PMAs) that are fixed to the

edges of a thin cross shaped platform, here called “cross structure”. The fixed part con-

sists of orthogonally arranged four Planar Electric Drive Coils (PEDC) in xy-plane. The

combination of a single PMA and facing PEDC acts as an LM. By this way four LMs such

as LMA, LMB, LMC and LMD, can be distinguished (see figure 2.1).

The functioning of the positioning system is tied up to the electromagnetic force gen-

erated by each LM. In order to perform displacement in xy-plane between any two posi-

tions P1 and P2, all four LMs can be used simultaneously to generate motion forces (see

figure 2.1(b)). If we assume no assembly errors between LMs situated along an axis,

the generated electromagnetic force is the sum of the forces generated by each LM along

1The term “Linear” represents single degrees-of-freedom of motion i.e. translation
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FIGURE 2.1: (a) General layout of the positioning system (b) planar motion concept

an axis. Moreover, in order to realize linear displacement along a single axis the device

only requires two active LMs. For example, to achieve linear displacement “∆x” along

x-axis, LMA and LMB can be used, similarly for “∆y” displacement along y-axis, LMC and

LMD can be used. The direction of the generated motion force depends on the direction

of injected current into each LM. So, by inverting the current in the PEDCs, the motion

direction can be reversed. In addition, if the direction of the current in the LMs situated

along an axis is reversed with respect to each other, a torque can be produced about the

center of the mobile part of the MPS. Hence, by this means a rotation of the mobile part

can be realized.

2.2 Actuation principle

The actuation principle of a single linear motor is based on generation of the Lorentz

forces. When a PM is placed near a current carrying conductor, an electromagnetic force

appears due to the magnetic field from the PM and magnetic field generated from the

electric current in the conductor. The relative interaction between two fields results in a

force ~F which appears over the PM (figure 2.2(a)). Taking into account the case that the

current carrying conductor is fixed and PM is free, the generated electromagnetic force

will move the PM in xz-plane in order to align the magnetic field relative to the magnetic

field of the conductor. The amount of this generated electromagnetic force (or Lorentz

force) can be computed using equation (2.1) [Furl 01].

F = I

∫
wire

dl ×Bext (2.1)

Where, F is the generated electromagnetic force, l is the length of the current carrying

conductor facing PM, I is the current in the conductor and Bext is the external magnetic
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flux density on the conductor, created by the PM.

The direction of the generated electromagnetic force on the permanent magnet de-

pends on the relative orientation of the PM magnetization and direction of the current

carrying conductor. Figure (2.2(b)), represents the different directions of the electromag-

netic force generated with respect to the orientation of the magnetization and direction

of the current. Depending on the relative position between the conductor and the PM, the

electromagnetic force F can be decomposed into its three components. For the purpose of

simplification, the 3D problem has been reduced to 2D by assuming that the conductor is

perfectly aligned along the length of the PM such as, in y-axis direction (see figure 2.2(a)).

The components of the electromagnetic force can be written as,

F =


Fx

Fy

Fz

 =


+Iy ·Bz · l

0

−Iy ·Bx · l

 (2.2)

The components Fx and Fz represents the translational and levitation forces in xz-

plane. The magnitude of these forces depends on the intensity of the magnetic flux den-

sity, magnitude of the current and length of the current carrying conductor facing the PM.

In order to increase the magnitude of the electromagnetic force, these parameters can be

altered toward maximum. However, their maximum value is often limited due to the de-

sign constraints. For example, the magnitude of the current depends on the cross sectional

area of the conductor. So, for a fixed cross sectional area of the conductor the increase in

the current could lead to Joule heating effect, which may either destroy or degrade the

remanent magnetization of the PM or the conductor itself. Similarly, the intensity of the

magnetic flux density from the PM depends on the volumetric shape, its material and its

relative distance from the current carrying conductor. For the same material, the inten-

sity of the magnetization is proportional to the increase in the geometrical dimensions,

however, increasing the geometrical dimensions means more weight, which may lead to
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reduction of usable net motion forces. Another way to increase the electromagnetic force

is to reduce the relative distance (known as air gap, “d” in the figure 2.2(a)) between the

conductor and PM. In MPSs, the above mentioned parameters are carefully dealt with as

they can change the overall performance the system.

2.2.1 Linear motor layout and its working principle

The actuation principle presented in the previous section is extended to realize long range

linear motion by adding a larger number of PMs and conductors in the mobile part and

the fixed part, respectively, as shown in figure 2.3. The combination of these parts results

in an LM that is able to perform continuous motion along ±x-axis . In order to illustrate

the functioning of the LM, the solutions regarding the construction of the mobile and

fixed part is first presented.

Mobile part (consist of PMA)

Motion 
direction

along -x-axis

Motion 
direction

along +x-axis

Fixed part (consist of current carrying conductor)

d

Z

X
Y

FIGURE 2.3: General layout of the long range LM

2.2.1.1 Permanent Magnets Array (PMA)

In order to realize the PMA, two types of PMs layouts are in practice as shown in fig-

ure 2.4. The first approach is to assemble the PMs in “Halbach array configuration”. In

this configuration PMs are combined with a spatially rotating pattern of the magnetiza-

tion which augments the magnetic field on the one side of the PMA while decrease the

magnetic field to near zero on the other side [Nguy 12]. This feature is very beneficial

Weak magnetic field on the top side

Top side of the PMA Top side of the PMA

Bottom side of the PMA

Concentrated magnetic on the bottom sidefield 

Y
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Z

d

d

Symmetrical magnetic field on both sides
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d

d

(a) (b)

FIGURE 2.4: (a) Halbach array configuration (b) North-South array configuration.
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in electromagnetic actuators designed for the MPS used in micro applications. However,

where this configuration results in the increase in the magnetic field is increased along

the one side of the PMA, the other side cannot be exposed to current carrying conductors

due to the unsymmetrical magnetic field (see [Benc 06]). Due to this reason the appli-

cation of this configuration is mostly limited in the designs where the availability of the

potential space for placing current carrying conductors on the both sides of the PMA is

difficult [Hu 06]. For example, in MPS based on the moving PMs and fixed current coils

technique, the current carrying conductors cannot be placed on the both sides due to the

design constraints. So, in such case the Halbach array configuration is suitable to increase

the magnetic field to the side which is exposed to conductor to gain more power.

The second approach is to assemble the PMs in “North-South (NS) array configura-

tion”. It consists of the assembly of the PMs with opposite magnetic orientation as shown

in figure 2.4(b). The NS array configuration is simple and offers several advantages in

MPS designs over Halbach array configuration. For example, the NS configuration offers

symmetrical magnetic field on top and bottom sides of the PMA as shown in figure 2.5.

So, in order to increase the magnitude of the electromagnetic forces, another set of con-

ductors can easily be applied with same characteristics.

FIGURE 2.5: Magnetic flux density on both sides of the NS array at an air gap d=170 µm

Furthermore, NS array requires a smaller number of phase current coils as compared

to Halbach array to generate continuous motion [Lu 12]. This feature of the NS array con-

figuration is very beneficial from miniaturization and control point of view. In addition,

from the PMs assembly perspective, Halbach arrays are difficult to realize and demand

positioning and bonding equipments to apply pressure to align and bond PMs in this con-

figuration with specific magnetic orientation [Kim 97]. On the other hand, the assembly

of the PMs in NS array configuration is very easy and does not need any equipment for

bonding and alignment due to the opposite orientation of the PMs magnetization. On the

basis of these conclusions, we have adapted NS configuration for the PMA in this thesis.
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2.2.1.2 Drive coil construction

In order to be in accordance with the magnetic pole orientation in PMA, the electrical

conductors can be arranged in various configurations to form multi-phase coils. These

coil formations that are mainly classified as “core based coil formation” and “planar coil

formation”, reduce the input current source lines.

The core based coil formation is realized by winding the electric conductor around

a ferromagnetic material such as soft iron (see figure 2.6(a)). The presence of the core

in this formation enhances the magnetic field strength which can be used to increase the

electromagnetic forces as in [Trum 98, Kim 07]. However, this coil formation demands

excessive length of the conductor and despite having more number of turns in the coil,

the interaction between the PMA and the coil itself remains in the area where the coil

is exposed to the magnetic field. This reduces the full usage (> 50%) of the coils with

respect to its volume. Furthermore, this coil formation is mostly realized with automated

machines to attain compactness and avoid improper shape due to manual winding.

(a) (b) (c)

Magnets array Permanent
Magnets array

Planar electric coils (2-phase)

Front viewSide  view

Electric Coils (3 phase)Permanent 
magnets array

Core

FIGURE 2.6: Different coil construction (a) Core based formation (b) Separated planar
formation (c) Overlapped planar formation [Benc 06]

The planar coil formation offers an economical solution in miniature systems due to

the absence of the core. It is realized by arranging the multi phase coils in a single plane

as shown in figure 2.6(a) and (b). The main advantage of the planar coils is their reduced

overall geometrical dimensions which increase their usability in terms of exposed coil sur-

face area. So, the need of excessive length is no more required due to the absence of the

core. In addition, this coil formation can easily be fabricated in to Printed Circuit Board

(PCB) which leads to uniform coil dimensions. However, this coil formation often leads

to reduction of electromagnetic forces due to the absence of core and fabrication limita-

tion to reach compact layouts for placing more number of conductors. In this scenario,

aerostatic bearing [Deji 05] or application of another set of planar coils on both sides of

the PMA can be employed to compensate the electromagnetic force loss [Benc 06].

One of the common issues related to the coils is the Joule heating due to the current

flow. The amount of this heat is a function of the geometrical and physical properties
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of the coils such as cross section, material, length, etc. So, to gain more power in LMs

these parameters are optimized based on application area. In addition, forced or natural

cooling (e.g. via gas or liquid) can be used to remove Joule heat. In core based coils

this is done by cooling the core and in planar coils an air cooling technique is commonly

adapted [Holm 00].

In this work, an overlapped planar coils formation approach has been adapted to

reach compact volume (32×20×0.035 mm3) of the Planar Electric Drive Coils (PEDC) of

the LM. In order to be in accordance with the magnetic pole orientation of the PMs in the

PMA and minimize the number of input currents source lines, the PEDC consists of two

phase coils as shown in figure 2.7(a). In addition, the coils have been been fabricated

onto a double sided 1.4 mm thick PCB to attain optimal geometric parameters such as

conductor length “l=20 mm”, height “hc=35 µm” and width “wc=250 µm”, etc. The

value of these parameters and the number of conductors in the PEDC depends on the

design (e.g. motion range, maximum input current, etc.) and PCB fabrication constraints.

The overlapped connections between the conductors in a single phase coil (on the top

side) have been carried out from the bottom side of the PCB using through holes called

“vias” as shown in the PCB model of the PEDC in figure 2.7(b).
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FIGURE 2.7: (a) Two phase coil and cross sectional view (b) PCB model of a PEDC

2.2.1.3 Working principle of the linear motor

The working principle of the LM to perform long range continuous motion is presented

in figure 2.8. To provide a better view of the concept, the PMA (i.e. mobile part) of the

LM is constructed with four PMs arranged in NS array configuration and the PEDC (i.e.

fixed part) is constructed with eight conductors representing two coils with currents “I1”
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and “I2” with a relative phase shift of “π/2” and are expressed as in equation (2.3).

I1 = Imax sin(ωt+ ϕi)

I2 = Imax sin(ωt+ (ϕi + π/2))
(2.3)

Where, Imax is the maximum amplitude, ω is the frequency and ϕi is the initial phase

of the current injected into the conductors of the PEDC.

In order to realize, long range continuous motion in xz-plane, the coil pitch “Pc” of

a single coil should be equal to the period of the PMA “Pm” (see figure 2.8(a)). This

condition ensures the alignment of the peak current amplitude with respect to the peak

magnetic flux density generated by the periodic magnetic poles of the PMA. As a result,

the current to magnetic field interaction leads to generation of Lorentz forces along same

direction.

To illustrate the working principle of the LM, the generation of the Lorentz forces

are presented in four steps at 8 discrete locations which indicates the position of the

conductors having currents “I1” and “I2”. During these steps, it can be seen that when
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PMA offers peak value of “Bz” the value of “Bx” is near zero and vice versa (figure 2.8 (b)

and (c)). This is due to the orientation of the PMs in the PMA.

When the currents are injected in the conductors, electromagnetic forces will appear

over each PM due to the interaction of the current I1 and magnetic flux density component

±Bz at the positions 1, 3, 5 and 7. These forces will move the PMA to distance “x” along

x-axis. At the same instant, the interaction of the current I2 in the conductors and ±Bx at

position 2, 4, 6 and 8 will generate levitation forces along z-axis.

In step 2, the translation forces will appear at positions 2, 4, 6 and 8 due to the inter-

action of the currents I2 and the peak magnetic flux density component “±Bz”. Similarly,

the levitation forces will appear at positions 1, 3, 5 and 7 due to the interaction of cur-

rents I1 and peak magnetic flux density component “±Bx”. The current shifting (i.e. from

I1 to I2 and vice versa) is because of the relative phase difference (π/2) to compensate the

periodic poles of the PMA (see figure 2.8 (a)). Further, in step 3 and 4, the translation

and levitation forces are generated in similar fashion which moves the PMA at “2x” and

“3x” distances from reference position. For the conductors length “l” along y-axis, the

total translation and levitation force is the sum of the individual forces appeared at each

conductor locations which are presented in the table 2.1.

TABLE 2.1: Generated electromagnetic force at different position during four steps

Position 1 2 3 4 5 6 7 8 Total force

Currents -I1 -I2 +I1 +I2 -I1 -I2 +I1 +I2 translation levitation

Step 1 +I1Bz +I2Bx +I1Bz +I2Bx +I1Bz +I2Bx +I1Bz +I2Bx 4I1Bz l 4I2Bxl

Step 2 +I2Bz +I1Bx +I2Bz +I1Bx +I2Bz +I1Bx +I2Bz 4I2Bz l 4I1Bxl

Step 3 +I2Bx +I1Bz +I2Bx +I1Bz +I2Bx +I1Bz +I2Bx 3I1Bz l 4I2Bxl

Step 4 +I1Bx +I2Bz +I1Bx +I2Bz +I1Bx +I2Bz 3I2Bz l 3I1Bxl

From the above table it can be seen that during all steps the generated translation

force at each conductor location is in the same direction due to which the PMA will

translate along +x-axis with respect to the PEDC. So, in similar way if the number of con-

ductors is increased in the PEDC, the travel range of the PMA can be increased. Moreover,

in order to increase the magnitude of the translation and levitation forces, the number

of PMs can be increased. In this scenario, the equation (2.4) represents the generalized

form of the total electromagnetic force due to currents I1 and I2 in the conductors.

Ftotal =


Fx

Fy

Fz

 =



l ·
n∑
i=1

(I1Bz(x, y, z))2i−1 + l ·
m∑
j=1

(I2Bz(x, y, z))2j

0

l ·
n∑
i=1

(I1Bx(x, y, z))2i−1 + l ·
m∑
j=1

(I2Bx(x, y, z))2j


(2.4)
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Where, i and j are the position index of the conductors, n and m are number of the

conductor with currents I1 and I2, respectively, Bx and Bz are the horizontal and verti-

cal magnetic flux density components, Fx and Fz are the total translation and levitation

forces.

In practice the distance between the adjacent conductors (in our case da=0.5mm,

see figure 2.7(a)) in the PEDC may be limited due to the fabrication constraints. In

this case, the force contribution due to current carrying conductors may lead to small

fluctuations during translation of the PMA. This is due to the insufficient overlap of the

generated translation force between two adjacent conductors during motion as shown in

figure 2.9(a)). In order to reduce this effect, W. J Kim [Kim 97] proposed to increase the

number of phase currents facing Halbach array. This ensures the generated electromag-

netic force overlap between the adjacent conductors and reduces the fluctuations during

motion. A Similar solution can also be applied to NS array by introducing another set of

current carrying coils (I3, I4) with relative phase shift of π/4 on the top side of the PMA

as shown in the figure 2.9(b) for a single period of the PMA. The value of the phase

shift depends on the number of input phase currents and the relative position of the coils.

However, in real case scenario the relative position of these conductors may vary due to

the fabrication or assembly errors. So, a corrective phase term “∆ϕi” can be added to

adapt these variations in the phase currents as presented in equation (2.5). Due to this

conductor arrangement, the total translation force generated over a period of the PMA is

the sum of the force contributed by each conductor.

I1 = Imax sin(ωt) I3 = Imax sin(ωt+ (π/4 + ∆ϕ3))

I2 = Imax sin(ωt+ (π/2 + ∆ϕ2)) I4 = Imax sin(ωt+ (3π/4 + ∆ϕ4))
(2.5)
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FIGURE 2.9: Contribution of currents in generation of translation force (a) two conduc-
tors (b) four conductors

In order to change the direction of the motion, the current phase lead-lag technique

is used. The relative phase difference of the injected currents is changed from +π/2 to
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-π/2 as shown in figure 2.10. Further, if a constant current is injected into the coils. The

mobile part (i.e. PMA) will lock its position with respect to the conductors. This effect is

due to the appearance of electromagnetic forces in opposite direction because of the NS

arrangement of the PMs in the PMA.

(a)

+I1 -I2 -I2-I1 +I1+I2 +I2-I1

Translation force Levitation force Translation force Levitation force

-I2 -I2 -I2 -I2+I1+I1 +I1+I1

(b)

Y
X

Z

FIGURE 2.10: (a) Direction of motion by changing the phase of the current I1 to -π/2 (b)
Influence of the steady state currents

In the following section, the single DOF based LMs solution has been used to realize

a planar motion system.

2.3 Long range planar motion

In order to realize long range planar motion system, multiple LMs based on the working

principle described in the previous section can be assembled to a mechanical structure.

The PMAs of the LMs are fixed to a mechanical structure which results in the mobile

part of the MPS. Similarly, the PEDCs of the LMs can be assembled accordingly to realize

the fixed part of the MPS. In order to assemble multiple LMs, two assembly approaches

can be proposed based on the orientation of the translation axes of the LMs as shown

in figure 2.11. In the first assembly approach, the translation axes of the LMs merge

at a single point and in the second approach the translation axes of the LMs results in

multiple merging points. Both methods are equally employed in miniature MPS designs,

however the second assembly approach offers an additional rotation motion about the

origin of the mobile part of the MPS as compared to the assembly approach presented in

figure 2.11(a).

In practice, LMs can be arranged in either “triangle” or “square” formation, e.g.

[Gloe 12, Lu 12]. The “triangle” formation demands three LMs arranged at 120◦ and

“square” formations are realized with four LMs arranged at 90◦. In “triangle” formation,

the linear motion is realized with three translation force components generated by each

LM but in the case of the “square” formation , two LMs are sufficient to generate the same

linear motion. In addition, during the planar motion, the additional LM in the “square”

formation increases the translation force capacity as compared to “triangle” formation in

which it remain the same [Mole 00]. Further, a simpler control can be employed with
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FIGURE 2.11: Architecture with motion axes of the LMs coincides at (a) single point (b)
multiple points

“square” formation and LMs situated along single axes can be controlled separately to

attain guidance during motion along single axis .

The MPS presented in this work is based on the orthogonal arrangement of four

LMs. However, instead of using a square plate like mechanical structure, a cross shaped

mechanical structure was adapted to achieve light weight of the mobile part [Benc 06].

The main goal behind selecting a cross shaped structure is to attain light weight for the

mobile part as the generated electromagnetic forces becomes smaller due to the reduction

in the dimensions of the PMs and limited magnitude of the injected current in the PEDC.

Based on the functioning of the LMs presented in the previous section, the motion of

the mobile part of the MPS can be generalized into four different ways as presented in

figure 2.12.
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FIGURE 2.12: (a) Unidirectional motion (b) Unidirectional motion with guidance (c)
planar motion

In the case of linear motion, two LMs are sufficient to drive the mobile part of the MPS

as shown in figure 2.12 (a). In this case the characteristics of the injected currents are kept

identical in the LMs located along motion axis. Further, the total generated translation

force will be the sum of the forces generated by individual LMs that are active. However,
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in real case scenario, these forces are not always identical. For example, the variation

in the magnetic field due to the dimension tolerances of the PMs or due to the PMA

assembly errors can lead to generation of different magnitude of the forces along an axis.

This variation may introduce a drift effect of the mobile part during linear motion. To

solve this problem, constant currents can be injected into the LMs situated perpendicular

to the motion axis (see figure 2.12 (b)). These constant currents will guide the mobile

part during linear motion and minimize the motion error due to the locking principle

presented in figure 2.10 (b).

To realize planar motion, all four LMs are injected with sinusoidal currents. In this

case the guidance along a single axis could not be achieved as shown in figure 2.12 (c).

As a result, due to the generation of non-identical forces along single axis a small rotation

may occur. However, because of this rotation a restoring torque (tz) appears over each

PMA during motion, which tends to align the mobile part with respect to PEDCs (see

figure 2.13(a)). This phenomenon occurs due to the variation in the magnetic flux dis-

tribution over the length of the conductors in the PEDC during small rotation [Benc 06].

The magnitude of the restoring torque depends on several parameters such the magnitude

of the injected current, the rotation angle, the air gap between the PMA and PEDC, etc.

In order to identify the amount of the restoring torque, an analysis has been performed

in a semi-analytical software RADIA R© by rotating the PMA at a small angle (α= ±5◦) in

the xy-plane with respect to the PEDC. For an injected current of 1A in the PEDC of a

single LM, the amount of the restoring torque (tz) on the PMA at different air gap values

is shown in figure 2.13(b).
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FIGURE 2.13: (a) Small rotation (b) Restoring torque

2.4 Modeling

In this section analytical modeling of the MPS has been carried out. For the purpose of

simplification, the modeling has been performed for a single LM due to the symmetrical
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design of the MPS. At first, the magnetic flux density distribution model have been real-

ized. Then, the electromagnetic force computation model is presented. At the end, the

mechanical model has been realized in this section. These models have been implemented

with MATLABr to study the dynamic behaviour of the system.

2.4.1 Magnetic flux density distribution model

The PMs used in our application are parallelepiped in shape with each having cross sec-

tion 1×1 mm2 and length 6 mm. Due to the finite length of the PMs, a three dimensional

analytical model based on surface charge model was realized to compute the external

magnetic flux density components Bext at any point P(x, y, z) located outside the PMA.

However, some assumptions have been carried out. These assumptions include, identical

physical characteristics of all PMs in the PMA, perfect alignment of magnetic polarization

of each PM along z-axis in free space and no variation in magnetization along the length

of the PMs. Based on these assumptions, a single PM with is reduced to a distribution of

equivalent magnetic charge as shown in figure 2.14 [Furl 01].

x

x2x1

z1

z2
z

m

Front view

l
x

z

y

h

w

m

z

x
y

x
z

y

- - - -

+ + + +

+Br

-Br

m

z

x
y

Isometric 
view

y

y2y1

z1

z2
z

m

Side view

FIGURE 2.14: Reduction of a single PM to equivalent magnetic charge distribution and
its 2D representation in reference frame

For a PM with the center located at "m" and dimensions (x2−x1), (y2− y1), (z2− z1) along

three axes the analytical expression for magnetic flux density components Bx, Bz at any

point located outside a single PM is provided in equation (2.6) [Furl 01].

Bx (x, y, z) = µ0Ms

4π

2∑
k=1

2∑
m=1

(−1)k+m ln

(
(y−y1)+((x−xm)2+(y−y1)2+(z−zk)2)

1/2

(y−y2)+((x−xm)2+(y−y2)2+(z−zk)2)
1/2

)

By (x, y, z) = µ0Ms

4π

2∑
k=1

2∑
m=1

(−1)k+m ln

(
(x−x1)+((x−x1)2+(y−ym)2+(z−zk)2)

1/2

(x−x2)+((x−x2)2+(y−ym)2+(z−zk)2)
1/2

)

Bz (x, y, z) = µ0Ms

4π

2∑
k=1

2∑
n=1

2∑
m=1

(−1)k+n+m × tan−1
(

(x−xn)(y−ym)(z−zk)−1

((x−xn)2+(y−ym)2+(z−zk)2)
1/2

)
(2.6)

where, Bx, By and Bz are the magnetic flux density components (T) along x-, y- and z-

axis, respectively. µ0 is the magnetic permeability of air (4π × 10−7 N·A−2) and Ms is the

magnetization of the permanent magnet (A/m).
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In similar fashion, the solution presented in (2.6) is used to construct the magnetic

flux density distribution model for "R" PMs assembled with NS configuration in a PMA.

All PMs are reduced to the distribution of equivalent magnetic charge as shown in the

figure 2.15.
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FIGURE 2.15: Reduction of the PMs in a PMA to equivalent magnetic charge distribution

The total magnetic field solution at any point in three dimensional space outside the

PMA is the sum of the contribution of each PM assembled in the PMA at that point and is

calculated using equation (2.7) [Furl 01].

Bext (x, y, z) =
R∑
i=1

(−1)i ×B(i)
ext (x, y, z) (2.7)

Where Bext represents the external magnetic flux density component Bx, By and Bz
that is computed using (2.6) and "i" is the index of the PM in the PMA.

The analytical model presented in (2.7) was implemented with MATLAB for a PMA

with four PMs to illustrate the magnetic flux distribution in xy-plane. Moreover for simu-

lation the vertical distance "z", which represents the air gap between PMA and conductors,

was kept constant at 100 µm. Figure 2.16 represents the three magnetic flux density com-

ponents of the PMA in free space.
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FIGURE 2.16: Reduction of single PM into equivalent current distribution

It can be concluded that over the PMA length (along y-axis), the By component of

the magnetic field remains constant except at the edges of the PMA where its value is

around 0.3 T. This effect is due to the concentrated magnetic field near the ends of PMs.
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However, in our studies we have neglected this component in order to reduce the mag-

netic flux density computation time during our simulations. The main reason behind

this assumption is that the contribution of this magnetic flux density component in the

generation of the electromagnetic force is very small (see table 2.2). In addition, during

motion the Bx and Bz magnetics field components are the ones responsible to generate

translation and levitation forces. So, in this scenario the assumption for neglecting the By
component can be justified.

Validation of the analytical model

In order to validate the magnetic flux density computation model for a PMA that con-

sists of 14 PMs each having a cross section 1×1 mm2, length 6 mm and remanent mag-

netization Br=1.43 T was carried out using MATLAB c©. The Bx and Bz magnetic field

components generated by the PMA at an air gap of 100 µm were compared to Finite El-

ement Analysis (FEA) result that was realized in COMSOL R© with 8×105 mesh elements.

The comparison of both components is shown in figure 2.17. The result reveals a good

agreement with relative error in the order of 10−5 T.
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FIGURE 2.17: Comparison of the magnetic flux density components

In addition, another study has been performed to validate the analytical model (2.7)

in the case of the small rotation of the mobile part about z-axis. In this case the Bx and

Bz magnetic flux density components over the length of the conductor will vary due to

the relative angle between the PMA and PEDC. So, a simulation has been performed in

MATLAB c© by rotating the PMA (consists of 4 PMs) at an angle "θ" as shown in figure 2.18.

In order to implement the model in rotation case, the magnetic field computations have

been carried out by meshing the PEDC along the length of the conductors. For a conductor

length of 20 mm, the Bx and Bz were computed with 20000 mesh elements where each

mesh element represents an increment of dx =1 µm along the length of the conductor in

x-axis.

54



Chapter 2. Principle and Modeling

θ

Rotation 
axis

PEDC

PMA

Inward PM magnetization direction

Outward PM magnetization direction

Y

X

Z

Length of conductor

Mesh 
elements

dx

FIGURE 2.18: Magnetic flux density measurement in rotation

Figure 2.19 represents the comparison of magnetic field components (Bx and Bz)

computed via analytical model (2.7) and FEA at θ=0◦, 2.5◦,5◦ rotation angles. From the

comparison, a good agreement was found between the FEA and analytical model, thus

this model can be used to represent the magnetic field variation over the length of PEDC.
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5° 2.5°

0°

5°

FEA
Analytical

FEA
Analytical

FIGURE 2.19: Comparison of the magnetic flux density components

Conclusion: The described analytical model is able to compute magnetic field compo-

nents during translation and rotation motion. However, in rotation case the magnetic

field computation time was found to be around 9.7 seconds as compared to translation

case which is around 0.83 s. The reason of large computation time in rotation case is total

number of mesh elements required to precisely compute the Bx and Bz over the conduc-

tors. Whereas, in translation case the number of these mesh elements can be significantly

reduced with the assumption that the coils remain parallel to the PMAs. In addition, It

can also be noted that the simulation is performed for a PMA realized with four PMs and

in our case the PMA of single LM is realized with 14 PMs which further increases the

magnetic flux density computation time. Numerous solutions can be adapted to minimize
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the computation time such as with the help of Look Up Tables (LUT) the magnetic cal-

culations can be done off line during dynamic simulations. However, due to the motion

characteristics of the MPS proposed in this thesis, the translation and rotation cases are

dealt separately because the rotation of the mobile can only be achieved by changing the

direction of the injected currents in the PEDC.

2.4.2 Electromagnetic force and torque computation

The total force generated by a single LM is the sum of the individual forces that appear

over each PM in the PMA and are computed using equation (2.8). Where, the Bext is the

external magnetic flux density component in xz-plane. Its computation has been carried

out using (2.7). The superscript (k) denotes the relative position index for the magnetic

flux density computation with respect to I1 and I2 current carrying coils in a PEDC. The N
denotes the total number of the current carrying conductors in a single coil. In addition,

the total force about the center of the MPS is the vector sum of the electromagnetic forces

generated by each LM of the MPS. Further, due to the generated electromagnetic force

along an axis, a torque will appear about the center of the stage. The amount of this

torque for single LM was computed using equation (2.9). Where, r is the distance from

the center of the PMA to the center of the mobile part (see figure 2.18).

Felectromagnetic = N
2∑

k=1

Ik
∫

wire

dl ×B(k)
ext (2.8)

~τz = r × ~Felectromagnetic (2.9)

In order to identify the magnitude of the generated electromagnetic force and torque,

a static analysis has been performed for a single LM that consists of a PMA having 14

PMs and a PEDC having 60 conductors representing two phase coil currents. For a 0.8 A

amplitude of injected currents in the PEDC at air gap of 100 µm the results are presented

in table 2.2. It can be seen that the analytic computation provides a very good agreement

with the relatively very small error in comparison with the results obtained with RADIA R©.

In addition, it can be seen that the magnitude of the Fy is very small as compared to Fx
and Fz. This is due to reason that the currents in PEDC are parallel to the length of PMA,

so the effect of this force is neglected in our dynamic simulations.

Units Radia R© Analytical model Error

Translation force (Fx) mN 36.61 36.91 2.98×10−1
Levitation force (Fz) mN 55.36 55.32 3.45×10−2
Force (Fy) mN 3.55×10−10 8.17×10−12 3.63×10−10
Torque (τz) N.mm 1.025 1.026 2.40×10−4

Table 2.2: Static analysis of the electromagnetic force and torque for a single LM
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2.4.3 Mechanical model

The fixed part of the MPS is insulated using a thin glass layer (thickness 130 µm) to

provide a smooth motion surface for the mobile part due to the copper height (35 µm).

Further, due to the assembly constraints the mobile part of the MPS is supported with

the help of four hemispherical glass beads (see figure 2.20(a)). The detailed discussion

regarding these assembly constraints has been carried out in the next chapter. The inte-

gration of the glass beads and thickness of the glass layer impose an air gap constraint

as shown in the figure 2.20 (b). This air gap reduces the magnetic field intensity near to

the coils which as a result reduces the magnitude of the generated electromagnetic force.

Numerous solutions can be applied in order to increase the amount of generated elec-

tromagnetic forces. For example, increasing the number of PMs in the PMA can further

increase the magnitude of the electromagnetic forces to compensate the reduction force

loss due to the air gap. In addition, the smaller value of insulation layer can also improve

the motion performance of the LM.
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FIGURE 2.20: (a) Layout of the MPS with mechanical support (b) Detail view of a single
LM with glass bead support

Due to the mechanical contact between the mobile part and the fixed part a friction

force will appear as shown in figure 2.20(b). This friction force is defined as static and

dynamic friction forces during the translation of the mobile part. In addition due to the

generation of the levitation force during motion, the net weight (Wnet = W − Fz) has

been used to compute these forces using equation (2.10).

Fstatic = Wnet × µstatic
Fdynamic = Wnet × µdynamic × sign(ν)

(2.10)

57



Chapter 2. Principle and Modeling

where, µstatic and µdynamic are the static and dynamic friction coefficients. ν is the

velocity of the mobile part. In our study the static friction coefficient was experimentally

measured (µstatic = 0.47) using an inclined plane technique, however, the dynamic fric-

tion coefficient (µdynamic = 0.43) was approximated due to the difficulty to distinguish

between the two coefficients during experimentation. In addition, no data regarding dy-

namic friction was found for the material that is used as an insulation layer. In order

to implement the friction force during dynamic simulations, the condition presented in

equation 2.11 was adapted. According to this condition, if the generated electromag-

netic forces enters in the range of [-Fstatic, +Fstatic] its value is set to zero. Otherwise,

translation force (Fnet) is computed using dynamic friction.{
if Fnet < Fstatic ⇒ Fnet = 0

if Fnet > Fstatic ⇒ Fnet = Ftotal − Fdynamic
(2.11)

While neglecting the thermal and hysteresis effect as disturbances, Newton’s second

law is used to develop the general solution for translation as given in equation (2.12).

The total displacement is computed with double integration of the acceleration ẍ (m·s−2)
of the mobile part.

Fnet − Ff = Mẍ

⇒ x =
1

M

x

t0−t1

(Ftotal − Ff ) dt2
(2.12)

where M represents the total mass of the mobile part in kg, t represent the time in

seconds and x is the total displacement realized by the mobile part in meters.

Similarly due to small rotation about the center of the mobile part, the friction force

will exert a resistive torque about the center of the stage. The amount of this torque

is computed using ~τf=R×~Ff , where R is the radial distance of the glass bead from the

center of the mobile part (see figure 2.20 (b)). In addition, the torque generated by a

single LM is computed via equation (2.9). The rotation angle realized by a single LM

about the z-axis is computed using equation (2.13) by double integration of the angular

acceleration θ̈z (rad·s−2).
τnet − τf = Jθ̈z

⇒ θz =
1

J

x

t0−t1

(τnet − τf ) dt2
(2.13)

where τnet= R×~Fnet is the net torque in N.m, J is moment of inertia of the mobile

part in kg.m2, t represent the time in seconds and θz is the rotation angle about z-axis in

radians.
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2.5 Dynamic simulation of the MPS

In this section, the dynamic simulations have been carried out in order to study the mo-

tion behaviour of the MPS. Due to the symmetrical MPS design the control model will

be discussed for a single LM. The analytical models developed in the previous section

concerning a single LM has been implemented with MATLAB Simulink c©. Further, the

total weight (5.8×10−3kg) of the mobile part (i.e. weight of the four PMA and the cross

structure) was used during dynamic simulations.

For simplification purpose, the air gap (d) between the mobile part and the fixed part

of the MPS was set to a constant value of 130 µm. This air gap represents the distance

between the four PMA and their respective PEDCs. This constant value was adapted due

to the reason that the residual levitation force (Fz − W ) during motion is small (≈ 10

mN per LM) for a maximum current value of 0.8 A. So, it was assumed that the levitation

forces generated by each LM only helps to overcome the adhesion forces between the

mobile part and fixed part due to the mechanical contact by compensating the weight of

the mobile part during motion. In addition, due to the identical characteristics of each LM

it was assumed that the small rotations do not occur to reduce simulation time. This is

because, the similar characteristics of each LM lead to the generation of the same amount

of translation forces, so the torque generated by each LM located along a single axis about

the center of the mobile part will theoretically cancel each other.

2.5.1 Description of the simulation parameters for a single LM

On the basis of the assumptions presented above, a single LM was modeled with 14 PMs

in a PMA with each PM having dimensions 1×1×6 mm3 and remanent magnetization

Br=1.43 T as shown in figure 2.21. The PEDC was modeled with an array of 50 conduc-

tors separated by a distance (da) of 500 µm and with each having length (Lc) of 20 mm.

These conductors represent the two phase coils with currents I1 and I2 flowing through

them with a relative phase difference of π/2. The pitch of a single coil turn is 2 mm which

is equivalent to the period of the PMA (2π).
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Z

d

daCoil pitch

2π 1 mm Y
X

Z

d
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Lc
Current direction in conductor

D
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Section view (DD)(2D view of the LM)

I1
I2

Cross
structure

FIGURE 2.21: Detail description of a single LM attached to the cross structure
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2.5.2 Open loop control

The open loop control of a single LM is presented in figure 2.22. The currents I1 and I2
are generated and injected to the force computation model to compute the Lorentz forces.

This model takes into account the magnetic model (see equation (2.7) ) to compute the

magnetic flux density distribution of the PMA at the relative position (x, z) of the mobile

part. The initial position of the PMA in order to compute the magnetic flux density was

selected as (x0=0, z0=air gap). Further, the generated Lorentz force was inserted in to

the mechanical model which calculates the displacement realized by the mobile part via

equation (2.12). To realize these calculations, a 10−3 s simulation step size was selected in

MATLAB Simulink c© which corresponds to 1 kHz frequency of sinusoidal currents injected

into the PEDC.
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FIGURE 2.22: Schematic layout of the open loop control of a single LM

To perform a periodic backward and forward translation motion, the phase lead and

phase lag concept was used by changing the phase of the current I1 from +π/2 to −π/2

with respect to current I2 as shown in figure 2.23.
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FIGURE 2.23: Currents I1 and I2 to realize forward and backward linear motion

To realize linear motion, a half period of sinusoidal currents are injected into the two

LMs situated along a single axis. Figure 2.24 represents the three cycles of the forward

and backward displacement realized by the mobile part along x-axis. The total displace-

ment realized by the mobile part between the position A and position B was found to be

889.13 µm. The displacement loss can be explained by the dynamic friction effect dur-

ing motion. Further, as only two motors are used to realize the linear motion, the total
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weight of the mobile part is supported by the levitation forces generated by only two LMs.

In addition, it can be seen that an adherence effect appears at positions A and B. At these

positions the magnitude of the currents becomes very small which leads to generation of

small levitation forces. These forces are not high enough to overcome static friction (see

equation (2.11)) and as a result the mobile part does not perform any motion.

Friction
loss

Adherence
effect

Motion
direction

Position B

Position A

Y

X

Z

FIGURE 2.24: Open loop model of single LM

The displacement loss due to the dynamic friction during motion depends on the

amplitude of the inject currents. For example, by employing a smaller amplitude of the

currents, the displacement loss increases and vice versa. However, due to the open loop

control, this loss is expected as the current value can not be adjusted during motion.

In addition, during planar motion all four motors lead to the generation of much larger

levitation forces which results in a total displacement of 961.73 µm along single axis. In

our studies, this open loop control have been used to evaluate the experimental results.

2.5.3 Closed loop control

For precise positioning, a Proportional-Integral (PI) controller was adapted to the open

loop control of a single LM as shown in figure 2.25. This control was selected due to

its simple application and its ability to exhibit no steady state error due to the integrator

[Benc 06]. In our application, this controller was used to control the sinusoidal currents

(see equation (2.14)) that have been injected to the PEDC in order to generate electro-

magnetic forces for translation.

I1 = Imax sin(ωt+ ϕi)

I2 = Imax sin(ωt+ (ϕi + π/2))
(2.14)
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Where Imax (A) is maximum current amplitude, ω (rad/s) is the frequency of the

current, ϕi (radians) is the initial current phase and t is the time in seconds.

Sinus
generator

Compute force Mechanical
model

Magnetic flux
density model

I1

I2

X

(x,z)

(x ,z )0 0

Initial 
condition

Bext

FLPI
Controller

ω

:	Actual	displacement	X		

:	Desired	displacement	X 	D

Δx

X

XD

+-

FIGURE 2.25: Schematic layout of the closed loop control of a single LM

The PI control algorithm presented in equation 2.15 has been adapted in order to re-

duce the displacement error (∆x=XD-X) by changing the frequency ω of injected currents

during motion of the mobile part. Where XD (m) is the desired displacement, X (m) is

the actual displacement realized by the mobile part, KP (Hz/m) is proportional gain and

KI (Hz/m) is the integral gain. From this control it can be concluded that the frequency

of the currents I1 and I2 tends toward zero when the displacement error reduces.

ω = 2π ·

∣∣∣∣∣∣KP ·∆x +KI

∫
t0→t1

∆x dt

∣∣∣∣∣∣ (2.15)

Figure 2.26 represents the desired and actual displacement for different displacement

steps such as 1 mm, 2 mm and 100 µm realized by the mobile part with 0.8 A sinusoidal

currents. The KP = 7.5×10−3 and KI = 5.5×10−3 was selected for the simulations to

avoid any overshoot with respect to the desired displacement. The settling time within
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the range of 2% value of the desired displacement value was found to be around 0.4 s in

1 mm and 2 mm case and 0.37 s in 100 µm.

Furthermore, a sinusoidal displacement with an amplitude of 100 µm (peak to peak)

has been carried out to evaluate the motion tracking of the mobile part along single axis.

The simulated result is presented in figure 2.27(a). In order to compare the result with

the desired displacement values, a tracking error plot was realized by subtracting the

desired displacement from simulated displacement response as shown in figure 2.27(b).

It can be evaluated from the results that the PI control tends to retain the error with

in ±0.5 µm range. The displacement error peaks in the tracking error plot indicate the

adherence effect.

(a)

(b)

Adherence 
effect

FIGURE 2.27: (a) Sinusoidal displacement response (b) Displacement error along x-axis

Regarding the planar motion behaviour, all four LMs are simultaneously used to gen-

erate translation and levitation forces. A 100 µm displacement in xy-plane has been

realized by injecting 0.8 A currents into all four LMs. A ramp function with a slope of

10 µm/s was selected as a desired profile to gradually increase the displacement change.

The results presented in figure 2.28 illustrate that the mobile part experiences a time

delay, (Td=0.35 s) in order to realize the desired displacement trajectory. This is due

to the adherence effect as for a very small displacement change, the magnitude of the

generated electromagnetic forces are less than the static friction force. As a result, the

mobile part does not perform motion. However, after this zone the controller adjusts the

injected currents to achieve the desired displacement trajectory.

In addition, a 100 µm circular motion has been realized by using the same controller

gain parameters adapted as in sinusoidal displacement case along single axis. The results

presented in figure 2.29 show the response of four cycles of the circular motion profile

realized by the mobile part in the xy-plane. From the results it can be concluded that
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FIGURE 2.28: Linear motion realized by the mobile part in xy-plane

the controller successfully adapts the desired displacement profile however at angles 0,

90, 180 and 270◦ the response becomes linear due to the adherence effect as explained

previously.
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view A

Zoom 
view B

Adherence
effect

FIGURE 2.29: Simulated results of circular motion realized by the mobile part in xy-plane

The open and closed loop model developed in this section have been used to compare

the experimental results in this thesis. In addition, due to the difficulty to adapt the real

case scenario regarding the small variations in the forces generated by all four LMs, the

small rotation effects are not simulated here in this work. However, the error generated

by these small rotations during motion is very small due to the auto alignment feature

of the mobile part with respect to the fixed part. In future studies, these errors may be

included in order to investigate their influence during motion.
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2.6 Conclusion

In this chapter, a Lorentz force based compact positioning system with a stack of four

LMs in parallel configuration is presented. The overall design of the system consists of a

mobile and a fixed part. The uniqueness of the proposed MPS lies in its simple design and

ability to perform millimeter level strokes with pre-embedded auto guidance feature.

At first, the long range motion concept of the MPS has been explained with a func-

tioning of a single LM due to the symmetrical design of the MPS proposed in this work.

Further, taking into account the earlier research that has been carried out at our Roberval

laboratory [Benc 06], the solutions adapted in order to realize the miniature drive compo-

nents such as planar coils and permanent magnet array have been presented. In addition,

a cross structure based orthogonal assembly of the four LMs has been selected to attain

a symmetrical design. This assembly approach enhances the magnitude of the electro-

magnetic forces along single motion axis and reduces the number of input source lines.

After description regarding the planar assembly and planar motion concept, modeling

have been carried out in order to simulate the motion behaviour of the MPS. A three di-

mensional magnetic flux distribution model has been presented along with Lorentz force

computation model. In addition, the mechanical modeling has been carried out which in-

tegrates both electromagnetic force computation model and friction forces computation

model due to the mechanical support.

At the end, the developed analytical models have been used to evaluate the dynamic

performances of the MPS in open loop control. For precise positioning, a PI control was

adapted to realize a closed loop control model. From the simulation, the developed

models have been evaluated by subjecting the MPS to different motion scenarios in open

loop and closed loop control.
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Realization of the prototype and

experimentation

In this chapter, the development of the MPS prototype and it’s assessment to realize planar

motion have been carried out. In the first part of this chapter, the detail design layout

of the MPS and construction of it’s components will be discussed. In addition, different

design and fabrication solutions adapted to realize two parts based compact MPS will be

presented. In the second part of this chapter, experimentations have been carried out in

order to examine the different motion characteristics of the MPS in open and closed loop

control. Different linear and planar motion trajectories have been realized to examine the

dynamic behaviour of the complete system.

3.1 Design layout of the prototype and component

description

The detail layout of the electromagnetically actuated MPS prototype is presented in fig-

ure 3.1 (a). As described in the previous chapter, it consists of two main parts that is a

mobile part and a fixed part. The mobile part has been realized by assembling a mechan-

ical cross structure with four PMAs. In order to support the mobile part over the fixed

part, point contact technique was selected by fixing four glass beads from the bottom side

of the mobile part as shown in figure 3.1 (b). The fixed part consists of four orthogonally

arranged PEDCs fabricated into a single PCB to avoid assembly errors. In addition, a

square through cavity was realized to fix a set of glass layers to support the mobile part

(see figure 3.1 (b)). In order to illustrate the design parameters of the MPS in detail, the

development of each component will be first presented in this section.
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FIGURE 3.1: (a) Design layout of the MPS prototype (b) Detail view of the center

3.1.1 Mechanical cross structure

The mechanical structure of the mobile part is presented in figure 3.2. The design param-

eters of this structure was earlier proposed in the study [Benc 06]. According to this study,

the cross structure design offers a 50% lighter weight as compared to square plate design

for the same outer dimensions and material. The overall dimensions of the cross structure

was selected in order to reduce/eliminate the generation of the parasitic magnetic field

at the center area of the cross structure due to the PMAs. This magnetic field can disturb

the functioning of the mobile part or any current carrying miniature component installed

at the center area, e.g. displacement sensors, etc.
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FIGURE 3.2: Geometrical design and fabricated mechanical cross structure
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In addition, the cross structure design was realized in a 1 mm thick Zerodurr glass

material via conventional machining (see figure 3.2(b)). This material was selected be-

cause of its low density (2530 kg·m−3), high strength (90.3 GPa) and low thermal de-

formation coefficient (0.02×10−10 K−1) [Scho 10]. In our MPS prototype, we have used

the same mechanical cross structure to build the mobile part due to the above mentioned

characteristics. The weight of the fabricated cross structure presented in figure 3.2(b),

is 2.3×10−3 Kg. This small weight is due to the selected design dimensions and low

density of the Zerodurr material, which is an additional advantage as it results in the

construction of a light weight mobile part after assembling the four PMAs and sensory

components.

3.1.2 Permanent Magnet Array (PMA)

The translation forces can be generated with even a single period of PMs arranged with NS

arrangement in a PMA as described in previous chapter. However, in order to compensate

the total weight (8.41 g) of the mobile part with generated levitation force during motion,

the PMA of a single LM has been realized with 14 PMs. The total weight of the mobile

mainly includes the weight of the mechanical structure (2.3 g), weight of all four PMAs

(2.4 g) and the weight of the mirror cube used for displacement measurement (≈ 3.7 g).

In the mobile part, the number of PMs assembled in a set of PMA are limited due to the

edge dimension of the Zerodurr cross structure. Moreover, each PM is parallelepiped in

shape with the cross section 1×1 mm2 and length 6 mm. These dimensions for a single PM

were selected in manner to align the magnetization poles with respect to the pitch of the

coil in the PEDC (see section 2.2.1.3) and reduce the Joule heating effect by minimizing

the overall resistance of the PEDC designed for 10 mm displacement stroke. To realize

the PMA with these specifications, the PMs were purchased from supermagnete1 GmbH in

Neodymium Iron Boron (NdFeB) material with gold coating to protect it from corrosion.

This material was selected because of its high remanent magnetization (1.41-1.47 T) and

high coercive force (1138-1043 kA/m) [Benc 06]. These characteristics of this material

lead to the generation of high electromagnetic forces in miniature design.

3.1.2.1 Mobile part assembly

In practice, the PMA was realized by first finding the orientation of a single PM with

the help of a reference PM2 with marked South pole. Then, by fixing the first PM on a

flat surface to avoid its orientation due to earth magnetic field, the rest of the PMs are

placed near to it one by one to form a set of 14 PMs. Due to the opposite magnetic

pole orientation, the PMs orient and attach automatically to the set of the PMA. This self

1http://www.supermagnete.de
2Honeywell, 101MG7, http://www.radiospares-fr.rs/
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assembly is fairly easy as it does not require any precise alignment tools or bonding agent.

Figure 3.3 (a) represents the real view of a PMA.

After realizing the four sets of PMAs, each one is fixed to the side edges of the

Zerodurr cross structure as shown in figure 3.3 (b). A thin layer of cyanoacrylate glue

was applied to the assembly area (1×14 mm2) and the PMA with pre-assembled PMs in

NS configuration was manually pressed against the assembly area for a short period of

time. This assembly approach was selected from the perspective to use both sides of the

PMA with the help of two PCBs placing on top side and bottom side of the PMA due to the

magnetic field symmetry. In addition, the separation distances (d1 and d2) between the

top and bottom PEDCs with respect to PMA surfaces can manually be adjusted to achieve

desired electromagnetic forces (see figure 3.3 (c)).

Scale in 
millimeters

(a)

PMA

(b)

Cross structure
edge

Assembly 
area

(c)

Conductor

PMA

PCB (bottom side)

PCB (top side)

Cross structured1

d2

FIGURE 3.3: (a) Real view of a single PMA (b) Assembly approach (c) Implementation of
top and bottom PEDCs over PMA

The separation distance is one of the most important parameters in the generation of

the levitation forces to compensate the overall weight of the mobile part. Moreover, as de-

scribed in the previous chapter, the friction force value depends on the residual levitation

forces (Fnet=Fz-W) generated during motion. So, in order to identify the maximum limit

of the separation distance "d" between the mobile part and fixed part, a static analysis has

been performed in RADIA R© to compute the levitation force (Fz) with 0.8 A currents in the

PEDC for different air gap values. The total levitation force is the sum of the levitation

forces generated by each active LM during motion.

Figure 3.4(a), represents the generated levitation force in two motion scenarios of

the mobile part, i.e. linear motion along single axis and planar motion in xy-plane. For

both cases, the residual levitation forces (Fnet=Fz-W) have been computed using the total

weight of the mobile part (W = 82.50 mN) as shown in figure 3.4(b). From analysis, it has

been concluded that for worst motion case scenario when only two LMs are used to com-

pensate the total weight of the mobile part, the separation distance between the PMA and

PEDC must be less then 140 µm to avoid the adherence effect during motion. In planar

motion case scenario, all four LMs are used so at separation distance of 140 µm between
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the mobile part and the fixed part the magnitude of the residual levitation force becomes

very large. Due to this effect, the load carrying capacity can be increased accordingly.

Adherence zone

 (W≥Fz)

Surface of 
the PMA

(a) (b)Usable
range

FIGURE 3.4: (a) Levitation force generated in linear and planar motion cases at different
air gaps (b) Residual levitation force

Several solutions may be adapted to realize the separation distance between the mo-

bile part and the fixed part. For example, the solution proposed in [Benc 06] was to use

a flat glass layer (thickness≈ 130 µm) as shown in figure 3.5(a). However, this solution

demands a small assembly offset to avoid any contact between the mobile part and the

glass layer due to mechanical deformation of the cross structure when subjected to small

load. The main drawback of this approach is that the separation distance can not be mini-

mized due to the thickness of the glass layer. In our design an alternate solution has been

adapted by fixing four 0.5 mm diameter hemispherical glass beads to the cross structure

to achieve a much smaller separation distance (d = z2 − z1) as shown in figure 3.5(b).

Further, to support the mobile part, the glass layer has been fixed at z1 distance in a

through cavity realized in the fixed part (see figure 3.1(b)). These glass beads have been

glued to the bottom side of the cross structure as shown in figure 3.5(c).

3.1.3 Fixed part

In order to construct the fixed part of the MPS, first, the designing of a single PEDC

that consists of two phase coils with currents I1 and I2 has been carried out. For a PMA

with a foot print area (wc×lc) of 6×14 mm2, the PEDC was designed with an array of

52 conductors, each having length l=20 mm and separated by a distance 500 µm. This

separation distance (a) was selected to attain a coil pitch (Pc) of 2 mm in order to align

the magnetic poles of the PMs in the PMA with respect to conductors. Further, due to

the PCB fabrication constraints, a conductor width (w) of 250 µm was adapted which

results in an air gap (m) of 250 µm between adjacent conductors as shown in the cross

section view in figure 3.6(a). Moreover, the number of the conductors and their length
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FIGURE 3.5: (a) Use of glass layer (b) Variable separation distance via point contact
approach (c) Complete mobile part

parameter in a single coil of the PEDC have been optimized to achieve minimum coil

resistance (0.86 Ω) to reduce Joule heating. The selected design parameters of the PEDC

led to an foot print area of 384 mm2 for a single LM.

After defining the design parameters of a single PEDC, the fixed part of the MPS was

constructed with a circular array of the orthogonally separated four PEDCs in xy-plane.

The center to center distance (D= 56 mm) between the PEDCs situated along single axis

was selected due to the dimensions of the mobile part as shown in figure 3.6(a). While

taking in to account the PCB fabrication edge tolerances (f1, f2) of 2 mm, the minimum

foot print size (L×W) of the fixed part was set to 80×80 mm2. In addition, at the center

of the fixed part, a through cavity of 30×30 mm2 dimensions was defined in order to fix

the glass layers to support the mobile part. These dimensions were selected in order to

avoid complexity during assembly of the mirrors into the PCB.

3.1.3.1 Motion range

The planar motion range of the mobile part with above mentioned fixed part dimensions

are found to be 10×10 mm2 about the center of the fixed part in xy-plane. This range

is limited due to the length (wp) of the PEDC which can be increased by adding more

number of conductors in the PEDC. However, the addition of conductors may lead to

problems like conductor overlap (see figure 3.6(a)) and increase in the overall resistance

of the coil. In our MPS design, we have avoided these constraints in order to reduce the

fabrication complexity of the PCB.

For the selected design parameters of the fixed part, the rotation range of the mobile

part about z-axis can be geometrically defined. A geometrical limit for which all the PMAs

remain in the boundary of their respective PEDC (see figure 3.6(b)) has been selected
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FIGURE 3.6: (a) Fixed part dimensions along with partial view of the PMAs aligned to
each PEDC (b) Rotation of the mobile part

in our case. This choice has been made in order to continuously expose the current

carrying conductors to the full width (wc) of the PMA which is necessary to realize a

symmetrical torque along both axes of the mobile part. On the contrary, if the PMA

exits the PEDC area, a sudden reduction in translation force over the PMA may appear

which can lead to unsymmetrical torques along both axes, thus making it more difficult

to control. In addition, this geometrical limit also eliminates the possibility of any contact

between the PMAs and the power connectors that are located at the corners as shown in

figure 3.6(b). Based on this geometrical limit, the maximum rotation of the mobile part

can be geometrically calculated using equation (3.1).

tan θ 6

[
wp − 2wc

(D − lc)− 2l

]
(3.1)

This equation takes into account the geometrical parameters of the fixed part and the

mobile part (see figure 3.6) to determine the maximum rotation limit of the mobile part.

However, apart from the geometrical calculation, the magnetic field distribution of the

PMAs over PEDC is one of the main criteria that limits the rotation capacity. As presented

in the previous chapter, the increase in the relative angle between PMA and PEDC in xy-

plane, results in the reduction of the torque about the center of the mobile part due to

the magnetic field variation over PEDC. In this scenario, the injected currents will not be

able to rotate the mobile part for large (i.e., >10◦) rotation angles.
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3.1.3.2 Printed Circuit Board (PCB) fabrication

In order to realize the fixed part, the PCB layouts was designed in CadSoft EAGLE PCB

Design Software3 to meet commercial PCB fabrication standards. The approach for fabri-

cating the PEDCs on a single PCB was selected to eliminate assembly errors and achieve

uniform dimensions i.e. copper width, height, air gap, etc.

After developing the PCB design, it was fabricated from Multi Circuit Boards Ltd4 into

a 1.5 thick double sided PCB as shown in figure 3.7. The connection between the coil

turns of a single coil have been carried out from the bottom side using through vias as

shown in the enhanced view of the bottom side. In order to facilitate the mounting and

alignment process of the PCB during experimentation, some alignment and mounting

holes have been fabricated.

PEDC of a linear motor

Through
cavity

230 x 30 mm

Phase 1Phase 2

Bottom side connection via

Bottom side connectionsCurrent source connector via

Alignment
and

mounting 
holes

(a) (b)

FIGURE 3.7: Fabricated PCB (a) Bottom view (b) Top view

Furthermore, to support the mobile part (via glass beads) over the fixed part, a set of

glass layer were installed at the center cavity of the PCB. This set of glass layers consists

of a 130 µm thick fine glass layer and a 0.7 mm thick supportive glass layer. The highly

polished surface of the fine glass layer was used to achieve the smaller value of friction

coefficient between the glass beads and glass layer it self. However, the direct installation

of this layer in the PCB cavity was avoided in order to eliminate the possibility of any

deflection due to the weight of the mobile part. In addition, the handling of this glass

layer was difficult due to its less thickness. So, to solve these problems, an additional

chrome coated glass layer with dimensions 30×30×0.7 mm 3 was used. Another purpose,

for using this coated thick glass layer was to achieve a reflective surface so that the fixed

part can be leveled using a laser during experimentations.
3http://www.cadsoftusa.com/
4http://www.multi-circuit-boards.eu/
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In order to assemble the set of glass layers in the PCB through cavity, the process

presented in figure 3.8 has been adapted to realize a 100 µm air gap between the mobile

and the fixed part of the MPS. The assembly has been carried out from the bottom side

of the PCB. A combination of different set of glass layers (e.g. glass layer A, B and glass

wafer, see figure 3.8) having different thickness was used to achieve the desired height

in the through cavity of the PCB to assemble the chrome coated supportive glass layer.

In addition, the copper track height (35 µm) along with the height of the glass beads

that are assembled to the mobile part (see figure 3.5) have been taken into account to

compute the required assembly height to generate 100 µm air gap. After acquiring the

assembly height, the supportive glass layer was fixed to the PCB along its edges from the

bottom side using cyanoacrylate glue. Upon successive bonding, the PCB with assembled

supportive glass layer was released and the fine glass layer was glued on the supportive

glass layer from the top side as shown in the figure 3.8.
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(thickness 0.6 mm)

0.1 mm

PCB

Glass beads

Adhesive

0.5 mm
Mobile part

FIGURE 3.8: Assembly of the set of glass layer into the PCB through cavity

3.1.4 Analysis of the MPS prototype components

The proposed MPS is designed for conveyance purpose and precise positioning in micro

applications. This implies that in practice, the center of the mobile part will be installed

with a small load. However, due to the electromagnetic actuation principle and design

parameters adapted for the MPS, the influence of the LMs on that load need to be assessed

in order to qualify the design for experimentation. So, in this section, some analyses have

been performed in order to examine different influential parameters at the center of the

mobile part.
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3.1.4.1 Influence of magnetic field generated by PMAs

In the mobile part, the PMs assembled to the cross structure will generate some parasitic

magnetic field. This can disturb the characteristics of any object susceptible to mag-

netic field placed at the center area of the cross structure (14×14 mm2) as shown in

figure 3.9(a). For example, in biomedicine applications, this parasitic magnetic field can

alter the characteristics of micro cells in the specimen. So, a study has been conducted in

order to identify the magnitude of this parasitic magnetic field. This study indicates that

the magnetic induction due to the PMAs is 1.28×10−5 T. From the results presented in

figure 3.9(b) it was concluded that the magnetic induction generated by the PMAs is very

small. So, its influence on any object placed at the center area can be neglected.

1 2

3

4

Analysis
zone

-5

×10

FIGURE 3.9: Magnetic induction at the center of the mobile part

In addition, a single PMA (e.g. PMA at position 1) will also be subjected to a static

magnetic force due to the rest of the PMAs (i.e. PMAs located at position 2,3,4) in the

assembly. An analysis has been performed in RADIA R© which revealed that for the se-

lected design dimensions of the mobile part, the magnitude of the static magnetic forces

is 3.83 µN. This force is very small and its influence is negligible as compared to the

electromagnetic forces generated by a single LM (i.e. 35 mN).

3.1.4.2 Influence of the vibrations

During functioning of the MPS, the horizontal component of the electromagnetic force

(Fx) is responsible to drive the mobile part, whereas, the vertical component (Fz) tends

to levitate the mobile part. However, the magnitude of this force does not remain con-

stant and as result a small variation in the form of vibrations occurs. The influence of

these vibrations generated by each LM can lead to a resonance condition in which the

Zerodur R© cross structure can fail. In order to examine the influence of these vibrations,

first, an analysis has been carried out in order to determine the natural frequency of the

structure.
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Modes 1 2 3 4 5 6

Structure without load (Hz) 3320 7340 7340 12400 12700 15700
Structure with load (100 g) (Hz) 665 4152 4507 6711 7027 7304

TABLE 3.1: Natural frequencies of the Zerodur R© cross structure, [Benc 06]

Table 3.1 represents the corresponding natural frequencies for the first six modes

of the cross structure. These frequencies limit the MPS to be used at certain speeds.

For example, the displacement at speed 33 mm/s corresponds to the injected current

frequency of 3300 Hz, which represents the first mode of the cross structure. During our

experiments, the maximum frequency that has been employed is 1 kHz which corresponds

to a speed of 10 mm/s. Due to this constraint, the MPS cannot be used at the frequencies

presented in table 3.1. However, the interval between the two natural frequencies can be

used.

In order to examine the structure under vibrations, an analysis has been carried out

(in the Abaqus software) by employing a sinusoidal displacement of 10 µm at the extrem-

ities (the faces where PMAs have been attached). The displacement of the center of the

cross structure is plotted as a function of excitation frequencies at the extremities of the

cross structure.

FIGURE 3.10: Response of the cross structure with excitation frequency

The analysis reveals two resonance frequencies for which the amplitude (195 and 174

µm) is 10 times more then the source amplitude (10 µm). These resonance frequencies

correspond to the 1st and 6th modes. From the results it can be concluded that the cross

structure cannot be used at higher frequencies. However, in our experimentation, the

zerodur R© cross structure has been used at lower frequencies (< 1kHz) which is three

times less excitation frequency then to reach the first mode of vibration.
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3.1.4.3 Assembly errors and their correction

In practice, the manual assembly of the mobile part can results in some relative assembly

errors between the PMAs located along a single axis of the mobile part as shown in

figure 3.11. These errors can lead to misalignment of the generated electromagnetic

force along an axis during motion. For example, in the case presented in figure 3.11(a),

the forces generated about the center of the each PMA located along an axis (e.g. x-axis)

are offset by a relative distance of ∆x (mm). Due to this offset a small rotation about the

center of the mobile part may appear. In order to solve this problem, the relative phase of

the injected currents (I1, I2 and I3, I4) between the LMs situated along single axis has been

modified by adding a corrective term (∆ψx) as presented in equation 3.2. In addition,

this solution is valid for any misalignment between the LMs along y-axis or the PEDCs

along both axes.

I1 = Imax sin(ωt+ ∆ψx)

I2 = Imax sin(ωt+ (π
2

+ ∆ψx))︸ ︷︷ ︸
Currents in the PEDC1 of the LM1

I3 = Imax sin(ωt)

I4 = Imax sin(ωt+ π
2
)︸ ︷︷ ︸

Currents in the PEDC2 of the LM2

(3.2)

with,

∆ψx =
2π∆x

Pm
(3.3)

where, Pm is the period of the PMA (in our case, Pm = 2 mm), ω and Imax is the

frequency and amplitude of the injected currents, respectively.
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FIGURE 3.11: Assembly errors in the mobile part

Figure 3.11(b) represents angular misalignment error ∆α (degrees) of a single PMA

along an axis. The appearance of this error is linked to several parameters such as fab-

rication tolerances of the PMs, improper machining of the cross structure edge, uneven

thickness of the bonding resin between the PMA and the cross structure, etc. The presence

of this error results in non uniform distribution of the magnetic field over the conductors

in the PEDC. As a result, during motion the auto alignment feature of the LMs will tend to
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align the PMA with respect to conductors in the PEDC by generating a small torque. How-

ever, due to the parallel architecture of the MPS, the auto alignment feature will leads to

misalignment of other PMAs with respect to their facing PEDCs. As a result, a repetitive

torque will appear during motion along a single axis thus resulting in displacement loss.

Unfortunately this kind of error cannot be resolved by adjusting the parameters of the

injected current such as amplitude, current phase, etc. In our case, to eliminate this error,

the defective PMAs were disassembled and then again re-assembled to the cross structure

using some alignment tools.

The assembly errors presented in this section are mainly tied up to the assembly

procedure and small assembly area on the cross structure. So, in order to solve this

assembly problem a new cross structure has been proposed and developed. The detail

description of this cross structure is presented in chapter 5. In our initial prototype, the

motion loss due to a small rotation error (∆α ≈ 0.75◦) was carefully reduced by injecting

constant currents in the PEDCs parallel to the motion axis.

3.2 Experimentation

In this section, the motion characteristics of the initial MPS prototype have been evalu-

ated. However, before realizing the experimental setup of the whole MPS, first an experi-

ment was performed in order to measure the real magnetic field generated by the PMAs.

This is necessary firstly, to verify the orientation of the PMs in each set of the PMA and

secondly to examine the real value of the magnetic field generated by the PMAs. In the

following section, the detail description of this experiment is presented.

3.2.1 Measurement of the real magnetic induction

The real magnetic induction was measured using a Hall sensor (A1301) fabricated by Al-

legro Microsystems Inc5 and its characteristics are mentioned in table 3.2. This sensor was

selected due to its small size and simple application. Further, it provides a correspond-

ing output voltage when exposed to an external magnetic field, which can be acquired

though data acquisition modules in real time. The magnitude of the sensor output volt-

age depends on the intensity and direction of the applied magnetic field. So, in our case,

the only limitation of this sensor is that it only interprets the vertical component (i.e. Bz
component) of the magnetic field. However, this is sufficient in order to verify the mag-

netic induction strength, the orientation of PMAs and the magnetic model developed in

the previous chapter.

To realize the magnetic induction measurement task, the schematic layout presented

in figure 3.12 has been adapted. A motorized linear stage (Newport, M-MFC25CC) was

5http://www.allegromicro.com/
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Characteristics Value

Source voltage 5V (4.5-6V)
Induction without limit
Sensitivity 2.5 (2.0-3.0) mV/Gauss
Source current 9 mA
Utilization temperature -20◦C to +85 ◦C

TABLE 3.2: Characteristics of the Hall sensor A1301

used to translate the PMA (attached to the cross structure) beneath the Hall sensor.

In order to drive/control the linear stage, the command signals were generated using

LabView R© software. These signals are sent to the dedicated Newport controller which

generates corresponding driving voltage for the linear stage.

Newport controller Newport linear stage

Hall sensor®NI  DAQ (PCI-6030E)

Computer Relative motion

FIGURE 3.12: Magnetic induction measurement principle

Similarly, the output voltage generated by the Hall sensor is acquired using the analog

channels of the National Instrument data acquisition modules (NI R© PCI-6030E) in real

time. These voltage data were processed and stored using Labview R©software.

In practice, the described components have been assembled together to realize the

experimental setup. Both, Hall sensor and the PMA have been insulated from the metallic

components using non-magnetic supports (1) and (2) as shown in figure 3.13(a). This

insulation is necessary in order to avoid any kind of disturbances during experimentation

such as magnet-metal attraction, thermal variation, etc. Further, the Hall sensor was fixed

to a manual linear stage (Newport, UMR 5.16) using a mechanical support to adjust the

air gap "d" between the PMA surface and Hall sensor along z-axis (see figure 3.13(b)). An

additional glass wafer was fixed on top of the non-magnetic support (2) in order to avoid

any free suspension of PMAs due to the small surface area of the non-magnetic support

(2). This is done in order to avoid the scenario in which, small vibration (generated by

the mobile part of the motorized linear stage during motion) can propagate into the PMAs

and can break them from the cross structure edge.

a) Calibration of the Hall sensor: After realizing the experimental setup, first, the

calibration of the Hall sensor has been preformed. This task has been carried out with

the help of a reference PM by placing it beneath the Hall sensor instead of the PMAs in

the mobile part of the MPS. The fabricator of this PM has provided reference magnetic
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FIGURE 3.13: Magnetic induction measurement (a) Schematic layout (b) Experimental
setup with enhanced view of the Hall sensor and a single PMA

induction values at different air gaps (see table 3.3). After leveling the Hall senor with

respect to the reference PM, it was vertically moved (i.e., along z-axis, see figure 3.13(a))

with the help of the manual linear stage. The output voltage from the Hall sensor and the

reference PM magnetic induction values (provided by the fabricator) are plotted against

the displacement as shown in figure 3.14(a). Moreover, polynomial fits have been applied

to the data to acquire a relationship with respect to displacement. Further, the expressions

obtained have been used to construct the relationship between output voltages in terms

of the applied magnetic field as shown in figure 3.14(b). A linear fit is then applied in

order to determine the sensitivity of the Hall sensor which was found to be 25.13 V/T

(2.513 mV/Gauss). The value of the sensitivity is in good agreement with the Hall sensor

manufacturer value (see table 3.2).

The precision error of the Hall sensor measurement was carried out by measuring

the magnetic induction of the reference PM at the air gaps provided by the fabricator.

However, the measurement for the first air gap value (i.e., d = 0.25 mm) could not be

carried out as the Hall element in the sensor is located 0.5 mm inside the sensor package

(see data sheet of A1301). For the rest, the measured values of the magnetic induction

are presented in the table 3.3. The results show a very good agreement between the

measured and reference magnetic induction values with a very small precision error of ≈
1.1 mT. The influence of this error can easily be neglected.

b) Magnetic induction measurement of the PMAs: After calibration of the sensor, the

PMAs in the mobile part of the MPS have been analyzed. A 200 µm air gap (d) between

Hall sensor and PMA surface was selected to avoid any physical contact during measure-

ment. After adjusting these parameters, the mobile part of the MPS is translated for 18
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(a) (b)

FIGURE 3.14: Hall sensor calibration curves

Air gap (mm) 0.25 0.76 1.27 2.54 3.81 5.08

Reference magnetic induction (T) 0.105 0.090 0.075 0.047 0.029 0.019
Measured magnetic induction (T) - 0.091 0.076 0.046 0.028 0.018

TABLE 3.3: Comparison of the magnetic induction values at different air gaps

mm beneath the Hall sensor with a speed of 20 µm step/s using the motorized linear

stage. At each step, the output voltage of the Hall sensor is stored using Labview R© soft-

ware. After doing so, the comparison between the result obtained for a single PMA and

FEA results have been performed. A good agreement was found between both results as

presented in figure 3.15(a). In addition, the small variation in the experimental results

is due to the non uniform dimensions of the PMs assembled in a PMA. This problem is

mainly linked to fabrication tolerances (±100 µm) which can not be controlled in com-

mercially purchased PMs.

Furthermore, an analysis has been performed to measure the magnetic flux density

variation between the PMAs along both axis (see figure 3.15(b)). This analysis is neces-

sary to avoid large variation in the magnetic field which can deteriorate the performance

of the MPS. From the analysis the mean value of these variations was found to be 0.006 T

with a standard deviation of ±0.015 T. So, the influence of these small variations on

the generation of the electromagnetic forces has been neglected as compared to the elec-

tromagnetic forces generated by the real magnetic flux density generated by each PMA.

After analyzing the PMAs, the experiments have been carried out in order to evalu-

ate different motion characteristics of the MPS. The description of these experiments is

presented in the following section.
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FIGURE 3.15: (a) Comparison of magnetic flux density (b) Magnetic flux density variation
along both axes

3.2.2 Performance assessment of initial MPS prototype

To demonstrate the motion characteristics of the initial MPS prototype, first the descrip-

tion of the experimental setup and the details regarding the experimental components

that had been employed in order to control the prototype will be presented in this sec-

tion. Afterward, the different motion performances such as speed, displacement range,

etc., in open and closed loop control will be presented.

3.2.2.1 Realization of the experimental setup

To demonstrate the actual motion characteristics of the MPS prototype, first the experi-

mental setup has been realized. This mechanical setup consists of two types of mechanical

mountings as shown in the pictorial view along a single axis as shown in the figure 3.16.

Initially, the MPS prototype mounting has been carried out by installing the fixed part

(see figure 3.8) onto the tilt stage (A). In addition, due to small height of the tilt stage,

a mechanical support (1) was used to acquire the proper height of the fixed part relative

to the feedback sensor. The whole mechanical setup of the MPS was fixed on the experi-

mental platform. Afterward, the fixed part of the MPS was leveled with the help of a flat

mirror and a laser as depicted in the figure 3.16. Furthermore, a gold coated mirror cube

was fixed on the mobile part to facilitates the measurement via non contact technique

along both axes in xy-plane. At the end, the complete mobile part was placed on top of

the fixed part.

After realizing the MPS prototype mounting, the feedback sensor mounting has been

realized. To examine the planar motion characteristics during experimentation, two Fiber
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Optic Displacement Sensor (FODS) probes have been installed to measure the displace-

ment realized by the mobile part along both axes in xy-plane (see figure 3.17(a)). In order

to position/calibrate these sensors in front of the mirror cube, different components (e.g.

Lab jack, tilt stage, manual and motorized linear stages, mechanical supports, etc.) have

been assembled together to realize a set of the feed back sensor mounting as shown in

the figure 3.16.
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FIGURE 3.16: Pictorial view of the mechanical setup along single axis

Figure 3.17(a) represents the real view of the MPS with two FODSs. During exper-

imentation, the role of each sensor employed in the setup is provided in figure 3.17(b)

and (c). For example, in linear motion case presented in figure 3.17(b), the FODSy that

is installed along the motion axis (i.e. y-axis) has been used to measure the change in

the displacement ∆y between two positions (1) and (2) of the mirror cube. At the same

time, the FODSx which is installed perpendicular to the motion axis (i.e. x-axis) is used

to measure the motion straightness and drift effect of the mobile part during experimen-

tation.

Similarly, in the case of planar motion, both FODSs have been used to measure the

change in the displacements (∆x and ∆y) in the xy-plane as shown in the figure 3.17(c).

3.2.2.2 Realization of the motion control unit

After realizing the complete experimental setup, the schematic layout presented in fig-

ure 3.18 has been adapted to drive and control the MPS prototype. The control signals

were generated via LabView R© software and fed to the Voltage to Current convertors using
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FIGURE 3.17: (a) Real view of the experimental setup (b) Top view, displacement mea-
surement in linear motion case (c) Top view, displacement measurement in planar motion

case

NI R© DAQ output module to generate controlling currents for the LMs of the MPS. Fur-

thermore, the motion realized by the mobile part has been measured using two FODSs

installed in the experimental setup. Each sensor consists of a FODS probe and a signal

processing unit. The output of the FODS is acquired using NI R© DAQ input module via

LabView R© in real time.

Voltage to 
current convertor

MPS
(PEDCs of  LMs )

FODS signal 
processing unit FODS  probe

PCI-6733

PCI-6030E

®NI  I/O
hardware
modules Measured 

Signal Light

Control signal Control current

Motion 
detection
via mirror

(Volts)

(Volts) (A)®LabView  
Software

FIGURE 3.18: Schematic layout of the experiment

In the following text, the details description of each component employed in order to

realize the motion control unit have been discussed.

Data Acquisition Boards (DAQ)

In our experiment setup, two types of the DAQs (purchased from National instrument)

have been used. The typical characteristics of these cards are presented in table 3.4.
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The input and output of these cards have been managed via an interface developed in

LabView R© software.

NI R© Analog Analog Resolution Sampling Application
DAQ card input ports output ports frequency

PCI-6733 0 8 16 bit 1 MHz Output
PCI-6030E 16 2 16 bit 200 kHz Input

TABLE 3.4: Specification of the NI R© DAQs used in the experiment

The PCI-6733 card is used as an output device to feed the voltage signals (generated

via Labview R© interface) to the voltage-to-current convertors. Whereas, PCI-6036E card

has been used as an input device to treat the input voltage signals attained by the FODS.

Both cards have 16 bits resolution and can be calibrated to a maximum voltage range of

±10 V. The voltage resolution of these cards have been computed via equation 3.4

Voltage resolution =
∆V

2n
=
Vmax − Vmin

2n
(3.4)

Where, ∆V is the voltage range and n is the number of bits of the NI R© DAQ. According

to the equation 3.4, for a voltage range of 10 V, the smallest voltage increment that have

been realized with PCI-6733 card is 0.15 mV at its 8 analog output channels. Similarly,

for the same voltage range, the input PCI-6030E device is able to measure the smallest

voltage value of 0.15 mV.

Voltage-to-Current converter (V-C)

In order to drive the LMs of in the MPS prototype, the driving currents have been gener-

ated using V-C converters. According to the literature presented previously in this chapter

it has been concluded that 0.8 A current per coils of the PEDC is sufficient to drive the

MPS prototype. So, by taking into account different parameters such as resistance of the

each coil in the PEDCs, maximum output of the PCI-6733 DAQ, etc., the converters used

in our experiment are able to generate ±3 A for a voltage range ±10 V with a frequency

bandwidth of 50 kHz (see figure 3.19(a)). These converters have two input voltage chan-

nels (to feed PCI-6733 DAQ output voltage) and two output current channels to inject

currents into each coils in a single PEDC. Two pairs of such converters were used in order

to drive all four LMs individually.

In addition, to examine the output current generated over a single channel, a ramp

of input voltage signal with an increment of 0.25 V was applied for a load of 2Ω. Fig-

ure 3.19(b) represents the output current generated over each channel which indicates

that the voltage to current conversion is linear with a linearity error less then 1%.
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(a)

(b)

Output
current channel

Input voltage
channel

FIGURE 3.19: Voltage to current converter unit and its characteristic curve

Fiber Optic Displacement Sensor (FODS)

During the experimentation, the displacement measurement of the mobile part has been

carried out via non contact technique in order to avoid any disturbances due to the func-

tioning of the feedback sensor or vice versa. In addition, due to the compact size of the

MPS prototype the application of conventional sensors in this configuration was difficult.

In our experiments, two FODS have been employed to measure the position of the mobile

part (see figure 3.17(a)). This type of sensor has been developed in an earlier research

that was carried out by Dr. Damping Wang at our Roberval laboratory (UTC) [Wang 99].

It consists of a sensor probe and a signal processing unit as shown in the figure 3.20. The

FODS probe transmit and collect light whereas, the signal processing unit which consists

of the electronic circuitry that interprets the light into voltage and vice versa.

Some of the main advantages of using this sensor include, the small dimensions of

the probe (Ø2 mm, Length = 10 mm) due to which it can be used in the congest places,

non-magnetic FODS probe which eliminates its susceptibility to electromagnetic effects

and its nano-meter level resolution [Prel 06].

(a) (b)

FIGURE 3.20: (a) FODS probe (b) FODS signal processing unit
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a) Working principle of the FODS:

The FODS probe consists of a bundle of five fibers (one emission fiber and four reception

fibers) combined together in a steel cladding as shown in figure 3.21(a). The centrally

located emission fiber emits light that is generated via a Light Emitting Diode (LED) in

the FODS signal processing unit. Upon placing a flat mirror target in front of the probe,

the light is reflected and is collected by the reception fibers situated around the emission

fiber. The received light is translated into voltage with the help of a Photo Diode (PhD) in

the FODS signal processing unit. The amount of reflected light is a function of the linear

displacement between the sensor probe and the flat mirror placed perpendicular to the

FODS probe. So, by this means, if the flat mirror is displaced in front of the FODS probe,

the variation in the amount of light received by the reception fibers leads to the variation

in the output voltage.

(a) (b)
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FIGURE 3.21: FODS (a) Working principle (b) Characteristic curve, Vout =f(∆d)

The typical output voltage characteristic curve of the FODS used in our studies, as

a function of the change in the distance (∆d=d2-d1) of the flat mirror from the FODS

probe, consists of four zones (see figure 3.21(b)). The zone (1) is termed as "Dead zone"

because the sensor exhibits very low (<1 V) output voltage as no light is collected by the

reception fibers in this zone. In addition, the range of this zone is few microns and the

sensor exhibits non linear characteristics. In the zone (2), the FODS response is linear

and exhibits maximum sensitivity with respect to other zones. The span of this zone is

around 200 µm which depends on the linearity criterion (usually <1%) and reflectivity of

the mirror [Benc 06]. Upon further increasing the distance between the FODS probe and

the flat mirror, the output response of the FODS enters in the zone (3) which is termed

as "transition zone" in figure 3.21(b). In this zone, the output of the FODS reaches to its

peak voltage value (≈ 13 V) and start to decrease with respect to increase in the distance.

Moreover, in zone (4) the sensor response is non linear. As compared to other zones,

the span of this zone for displacement measurement is large (≈4 mm). However, the
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sensitivity of the FODS decreases with respect to increase in the displacement and the

usable range for displacement measurement is around 2.75 mm. In our experiment, the

FODSs have been used in zone (2) for high resolution measurement and in zone (4) for

long range measurement.

b) Calibration of the FODS in the experiment

The FODSs installed in our experiment have been calibrated using the mechanical setup

presented in figure 3.16. At first, a constant current is injected along a single axis to

align the mobile part with respect to the PEDCs. Then, the FODSx and FODSy situated

along x- and y-axis, respectively, were sequentially calibrated by moving it away from

the mirror cube with the help of motorized linear stage (see figure 3.16). In addition,

a Labview R© software has been used for data acquisition and drive the motorized linear

stage at 20 µm/s speed. The data acquisition frequency was 100 Hz which represents the

band width of the FODS sensor. Furthermore, due to the maximum input voltage limit of

the NI R© DAQ 6036E, the calibration of the FODS was carried out in the range of 0-10 V.

Due to this limitation, the complete range of the linear zone was reduced to 140 µm as

the NI R© DAQ saturates at 10V.

Figure 3.22 represents the sensitivity curves for the linear and and non linear zones

of the FODSx and FODSy. For a linearity criterion <1%, the functional range for displace-

ment measurement with high resolution was found to be 80 µm for both sensors in linear

zone and 2.5 mm in the non linear zone. The variation in the sensitivity curves of the

FODSx and the FODSy is mostly due to the electronics of the sensors. In linear zone, the

displacement measurement resolution of the FODSx and FODSy was found to be 8 nm

and 11 nm, respectively.
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FIGURE 3.22: Sensitivity curves both FODSs in (a) Linear zone (b) Non linear zone
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After calibrating the FODSs along both axes, experiments have been carried out in

open and closed loop control by injecting the currents in the PEDCs to drive the mobile

part of the MPS. In the following section, the experiment results are presented and dis-

cussed. However, in order to elaborate these results, the LMs have been named as LMA,

LMB, LMC and LMD according to the convention adapted in the figure 2.1 (b) for the

purpose of simplification. The LMA, LMB are situated along y-axis and when injected

with sinusoidal currents they drive the mobile part along x-axis. Similarly, LMC and LMD

are situated along x-axis and are responsible to drive the mobile part along y-axis.

3.2.2.3 Performance of the MPS in open loop control

a) Linear displacement: At first, linear displacement characteristics of the MPS proto-

type have been evaluated. In order to do so, a half period of 2 Hz sinusoidal currents

(I1, I2) with 0.8 A (peak) amplitude was injected into the PEDCs of LMA, LMB to realize

motion along x-axis. The sampling frequency of the injected currents was 100 Hz and

FODS was used in the nonlinear zone to measure the long range displacement carried

out by the mobile part. In addition, a constant current of 0.8 A was also injected into the

PEDCs of the LMC and LMD to avoid any drift effect during linear motion.

Figure 3.23 represents three cycles of repeated motion of the mobile part along x-axis

between position A and B. In addition, the experimental result has been compared with

the simulation results. The mean value of the simulated and experimental positions A (B)

were found to be 66.67 µm (955.85 µm) and 65.01 µm (928.59 µm), respectively. The

large difference between experimental and simulated results at position B is because of

the low sensitivity of the FODS in zone (2) of the sensor.

Theoretically, for a half period of the sinusoidal signal the mobile part should perform

a displacement of 1000 µm. However, the net displacement realized by the mobile part

was found to be 863.58 µm via experiment and 889.18 µm via simulation. The loss

between theoretical displacement and the real/simulation results is mainly due to the

friction effect. However, despite this friction loss, the experimental results provide a good

correlation with the simulated results thus validates the analytical model.

b) Position repeatability: In order to measure the position repeatability of the MPS

prototype, a 10 cycles test was performed in similar fashion as discussed in the linear

displacement section. For a mean displacement of 854.54 µm between position A and

position B along x-axis, the position repeatability error was calculated to be 4.41 µm. The

relative error was computed to be 3.03%. This result shows that the MPS exhibits a small

repeatability error which can be further reduced with a closed loop control.

c) Straightness: Another test has been carried out to measure the motion straightness

during motion of the mobile part. For this test, the injected current characteristics were
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FIGURE 3.23: Linear displacement along x-axis

kept same as described in the linear displacement section. However, both FODSx and

FODSy have been used simultaneously to measure the axial displacement (along the x-

axis) and lateral displacements (along the y-axis) as depicted in the figure 3.13(b). The

FODSy was used in its nonlinear zone and FODSx was used in its linear zone. The exper-

imental results are presented in figure 3.24(a). For the ease of observation, the lateral

displacement result has been magnified by 100.

(a) (b)

Half cycle between 
position A and B

FIGURE 3.24: Rectitude of the MPS in linear motion (a) Axial and lateral displacement
(b) Real lateral displacement

During motion, the straightness error is not only because of the lateral displacement,

but also due to the assembly error of the mirror cube. Due to the manual assembly of

the mirror cube, the mirror cube surface is not parallel to the FODSx. The angle between

the displacement axis and the mirror cube surface facing FODSx was measured to be

0.92◦. However, since the FODSx was used in its linear zone so the real straightness

was computed by subtracting this error due to the mirror cube. From figure 3.24(b), the

straightness for 1000 µm displacement was calculated to be 2.353 µm with a standard

deviation of 0.568 µm. Similarly, for the 500 µm displacement, the straightness error was
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found to be 1.991 µm with a standard deviation of 0.460 µm. These results reveal the

auto alignment characteristics of the LMs as discussed in chapter 2.

d) XY Linear profile: In order to study the xy displacement, all four LMs were used

simultaneously. Both FODSx and FODSy were used in their nonlinear zone to measure

the long stroke xy linear displacement as shown in figure 3.17(c). A 30 cycle test of

linear trajectory in the xy-plane was performed by injecting one period of 1 Hz sinusoidal

currents with 0.8 A per coil (peak-to-peak) amplitude.

From the result shown in figure 3.25(a), it can be seen that the trajectory is repeat-

able from position A to B and vice versa. However, the mobile part deviates in backward

trajectory (from position B to position A). This hysteresis is due to the appearance of dif-

ferent torques along an axis which is caused by the assembly error. Taking into account

the drift effect during motion and variable sensitivity of the FODSs in non linear zone the

amount of linear profile hysteresis in xy-plane was found to be 57 µm. In order to mini-

mize this error, one solution is to reduce the assembly errors at design level by realizing

a cross structure with geometrically pre-defined through cavities. In addition, this error

can be reduced by adapting a feedback control to minimize the trajectory deviation in

real time.

e) Velocity response: The velocity response was measured along x-axis using FODSx
and presented in figure 3.25(b). This test has been realized by injecting the sinusoidal

currents I1 and I2 in the LMA and LMB at different control signal frequencies.

The experimentally measured velocities along with theoretical values for 10 cycles of

linear travel along single axis, are provided in table 3.5. The variation in the experimental

results are due to several phenomenons that occur during translation (e.g. micro rota-

tions, drift effect, etc.). In addition, it can be seen in figure 3.25(b) that as the velocity

increases the displacement loss also increases. However, from table 3.5, it can be seen

that the real velocities are in good agreement with the theoretical values. Furthermore,

the maximum speed is around 12 mm/s which is limited due to the inertia of the mobile

part of the MPS.

Control signal frequency (Hz) 0.5 1 2 4 5 6

Theoretical velocity (mm/s) 1 2 4 8 10 12
Measured velocity (mm/s) 1.013 2.016 4.007 8.006 9.954 11.088

±0.002 ±0.017 ±0.011 ±0.041 ±0.086 ±0.149
Relative error (%) 1.3 0.8 0.175 0.075 0.46 7.6

TABLE 3.5: Velocity response of the MPS prototype in open loop control
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FIGURE 3.25: (a) xy-profile (b) Velocity response of the MPS

After realizing the open loop tests, MPS prototype motion characteristics have been

analyzed in closed loop control. The description of these experiments are presented in

the following text.

3.2.2.4 Performance of the MPS in closed loop control

In this section, the motion of the MPS prototype has been controlled via a PI controller.

The desired displacement was achieved by changing the frequency (ω) of the controlling

currents with respect to the error computed between desired and real displacement. The

selection of PI controller gains depends on several parameters such as dynamics of the

prototype, sensitivity of the FODS, etc. To identify the controller gains (KP and KI) the

linear zone of the FODS has been used as the sensitivity remains constant in this zone.

In practice, there are several uncertainties that change the output of the MPS. For

example, micro rotations during linear travel and real system motion error can change

the sensitivity of the FODSs, impurities (such as dust) can change the sticking and friction

force, etc. These uncertainties require complex multi-physics analyses and significant

computational time, programming and experimentation. So, instead of using the global

gain values for the PI controller, an approximation was carried out by selecting different

gain values such as (KP = 0.077, KI = 0.010) for x-axis and (KP = 0.085, KI = 0.012 )

for y-axis in a manner to avoid any overshoot.

a) Square step response: At first, the step response of the MPS has been realized for

two cycles at short stroke within the range of the linear zone of the FODSx. The results

obtained have been compared with the simulation results and a good agreement was

found (see figure 3.26(a)). Afterward, for the same gain values, the step responses of the

MPS in long strokes (i.e. 0.5, 1, 1.5 and 2 mm) were carried out by using the FODSx in

its non linear zone (see figure 3.26(b)). The average settling time was computed to be

0.921 s (5%) for long strokes and 0.256 s (5%) for short stroke.
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FIGURE 3.26: Step response of the MPS (a) Short stroke (b) Long stroke

The variation between the simulated results and experimental results in long stroke

is mainly due to the application of the FODSx in its non linear zone where the sensitivity

varies with respect to the displacement. Furthermore, to measure the position repeatabil-

ity and precision of the MPS, 10 cycles of square steps have been conducted along x-axis

in similar fashion as described previously. The experimental and simulated results are

provided in table 3.6. From the experimental results it can be seen that, in short stroke,

precision of the MPS reaches 31 nm with a repeatability error of 25 nm. Where as in

long strokes this error is less then 1 µm. In addition, the variation in the simulated and

experimental results is mainly due to the adhesion effect and FODS characteristics.

Desired displacement (µm) 50 500 1000 1500 2000

Simulation results (µm) 50.265 500.93 1000.302 1499.325 1999.855
Measured displacement (µm) 49.975 499.793 999.815 1500.387 2000.174

±0.031 ±0.268 ±0.309 ±0.451 ±0.36

TABLE 3.6: Position repeatability in 10 cycles square steps test

c) Step train response: A step train motion is one of the most common operations

for the MPSs applied in micro applications. For example, in the semiconductor industry

this type of motion is used to achieve high quality processing in products such as ICs.

Therefore in order to validate this characteristic an experiment along x-axis, with each

step equal to 100 µm and moving toward ± 0.5 mm has been conducted. The gain

parameters have been kept same as in the case of step response. A very good agreement

was observed among the experimental and desired results as shown in figure 3.27. The

average settling time (5%) for 100 µm in continuous step was measured to be 306.2 ms.
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From this result it can be evaluated that the MPS prototype is able to perform repeatable

desired displacement tasks.

FIGURE 3.27: Step train profile response along x-axis

d) Triangular response: To illustrate the tracking ability of the MPS, a triangular profile

test has been performed. The mobile part of the MPS was guided along the x-axis with

the desired triangular profile of 0.5 mm amplitude. The experimental results show a very

good agreement (see figure 3.28). However the friction effect can be observed as shown

in the zoom view of the figure 3.28. From tracking error plot the magnitude of this friction

effect was computed to be 28.38 µm. In the time interval [1 s, 5 s] the positioning stage

starts moving and the sticking effect value falls to 5.63 µm due to the dynamics of the

MPS. Moreover, the Root Mean Square (RMS) tracking error in zone [1 s, 5 s] remains in

the range of 5.134 µm with a standard deviation of ± 0.929 µm. These performances can

be improved with the help of more appropriate controller.

e) Planar motion: To achieve planar motion performances of the MPS all four LMs

are operated simultaneously. For the same controller gain values adapted in the case of

the step response, figure 3.29 (a) represents a 5 cycle test for 1 mm linear displacement

realized by the mobile part of the MPS in xy-plane. The average linear displacement was

found to be 1.039 mm with a standard deviation of ± 0.937 µm. The chaotic behavior in

zone 1 (see figure 3.29 (a)) is due to the friction effect. As the displacement error falls

towards zero, the magnitude of the currents that are injected in the PEDCs along motion

direction also reduces, thus the relative value of adhesion forces increases with respect

to the generated electromagnetic force. This problem can be solved by using adaptive PI

controller. However, it can be seen that the open loop hysteresis effect (see figure 3.25(a))

has been eliminated.

In similar fashion, another test was carried out in order to realize a circular motion in

xy-plane. Sinusoidal signals with an amplitude of 100 µm (peak-to-peak) with a sampling
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FIGURE 3.28: Motion behaviour of the MPS with triangular profile along single axis

rate of 100 Hz were used as desired displacements along both axes to realize a 100 µm in

diameter circular profile at 0.1 Hz. Furthermore, the amplitude of the injected currents

were kept 0.8 A in all four LMs. Figure 3.25(b) represents three circular trajectories. In

order to measure the tracking error, the real displacement measured along both axes via

FODSx and FODSy were analyzed separately. This analysis revealed a means value of the

tracking error of 2.459 µm with a standard deviation of ± 0.831 µm along both axes.

(a) (b)

FIGURE 3.29: (a) Linear motion in xy-plane (b) ± 50 µm circular planar trajectory
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3.3 Conclusion

A long range MPS design has been realized in this chapter. In the first part, the design

layout and the description regarding the components used to realize the prototype have

been presented. Different solutions regarding the selection overall design parameters of

the fixed and mobile part of the MPS have been discussed. It was concluded that with

an overall foot print size of 80×80 mm2 of the fixed part, the MPS is able to deliver a

theoretical motion range of 10×10 mm2 in xy-plane. In addition, some analyses have

been performed in order to qualify the MPS design for long range motion application by

taking into account the influence of the magnetic field, vibration and the assembly errors

generated over each LM.

In the second part, experimentation has been carried out in order to examine the

motion characteristics of the MPS prototype in open and closed loop control. It has been

concluded that the MPS is able to deliver variable stroke ranging from few micrometers

to 2 mm (limited due to the sensors) with sub micrometer level accuracy. Furthermore,

by adapting separate controls for LMs along each axis the MPS is able to perform planar

motions in xy-plane.
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Chapter 4

Development of a long range linear

displacement sensor

This chapter provides the developments regarding the realization of a long range dis-

placement measurement optical sensor. At first, the architecture and working principle

of the fiber optic sensor in its common configuration along with its different performance

parameters such as resolution, measurement range, etc., will be discussed. Afterward, the

long range sensor principle and its fabrication approach will be presented. At the end,

experimentation have been carried out in order to validate the functioning of the long

range displacement measurement sensor.

4.1 Description of the fiber optic displacement sensor

The architecture of the Fiber Optic Displacement Sensor (FODS) used in our study con-

sists of three main components such as a Signal Processing Unit (SPU), a fibre optic cable

(consists of a bundle of one emission fiber and four reception fibers combined into an

FODS probe) and a reflective target surface as shown in figure 4.1. The SPU consists of

the electronic circuitry which controls a Light Emitting Diode (LED) to generate a light at

670 nm wavelength and a Photo Diode (PD) with a detection zone of 1 mm2 to convert

the collected light via reception fibers into the electrical signals.

The fiber optic cable consists of five multimodes PolyMethyl MethAcrylate (PMMA)

fibers (purchased from OMRON1 manufacturers) which are combined in a Ø 2 mm steel

probe. In the FODS probe, the emission fiber (Ø 486 ±10 µm) is located in the center

whereas, the reception fibers (each having Ø 240 ±10 µm) are symmetrically located

around the emission fiber (figure 4.1). The numerical aperture of both types of fibers in

the FODS probe is 0.46 [Khia 08].

1http://www.ia.omron.com/
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In addition, a reflective target surface (e.g., flat mirror) is needed in order to realize

the complete displacement sensor.

FODS 
probe

Mirror in 
translation

Emission fibre

Reception fibres

Injected light

Lenses Fibre 
bundle

PD

LED

Illuminated zone

1. Signal processing unit 2. Fibre optic cable 3. Target surface

FIGURE 4.1: Schematic layout of the architecture of the fiber optic displacement sensor

The working principle of the sensor is based on injecting light into the emission fiber

which illuminates the flat mirror upon leaving the FODS probe. Due to the light reflection

principle, the flat mirror reflects the incident light inside the illuminated zone which

is received by the reception fibers located around the emission fiber in the probe (see

figure 4.1). This received light travels via reception fibers toward the PD installed in the

SPU which converts it into output voltage. The amount of collected light by the reception

fibers depends on the position of the flat mirror from the sensor probe. So, by moving the

flat mirror perpendicularly with respect to the FODS probe surface (see sub figure 4.2),

the amount of the collected light changes which results in the output voltage variation.

This change in output voltage can be plotted with respect to the distance between the

FODS probe and flat mirror as shown in the figure 4.2.

FIGURE 4.2: FODS working principle and its experimentally measured output voltage
curve with respect to the position of the flat mirror
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4.1.1 Characteristics of the sensor in its common configuration

In this section, the typical characteristics of the FODS, when used in its common config-

uration2 will be discussed. From figure 4.2 it can be seen that the output voltage of the

sensor delivers a linear and non linear relation with respect to the distance between FODS

probe and flat mirror. Despite the ability of the sensor to measure the displacement up

to few millimeters when used in its non linear zone, the resolution of the sensor remains

very poor [Benc 06]. On the other hand, in linear zone the FODS can reach to a very

high displacement measurement resolution (up to few nano meters). In this work, our

main objective is to realize a long range displacement sensor while utilizing the linear

zone of the FODS due to its high sensitivity in this zone. For this task, first, the different

characteristics of the sensor such as sensitivity, resolution, range, etc., of the FODS in the

linear zone will be presented.

4.1.1.1 Sensitivity, measurement range and resolution of the sensor

In the linear zone, the sensitivity of the FODS can be determined by applying a linear

fit. In order to achieve a best linear fit, the range of the linear zone (i.e., 200 µm, see

figure 4.3(a)) is often reduced to minimize the linearity error. The slope of the best

linear fit (i.e., change in the output voltage (∆V) with respect to the change in the dis-

tance (∆d) between the flat mirror and the sensor probe) represents the sensitivity of

the sensor. Furthermore, the sensitivity of the sensor can be mathematically written as

in equation (4.1). The FODS used in our study delivers a 60 mV/µm sensitivity over the

range of 130 µm with 0.67% linearity error.

Saxial =
∆V

∆d
(4.1)

Where, Saxial (V·mm−1) represents the axial sensitivity of the FODS.

The axial resolution (Raxial) of the sensor can be determined using the sensitivity

(Saxial) and Root Mean Square (RMS) noise (Nrms) of the output voltage of the sensor. It

can be mathematically written as in equation (4.2).

Raxial =
Nrms

Saxial
(4.2)

Obviously, the greater is the value of the sensitivity the better is the resolution. In

addition, if the RMS noise of the output voltage is low, the sensor can reach nanometer

level resolution. Figure 4.3(b) represents the 2 nm resolution of the FODS that is achieved

by displacing a flat mirror perpendicularly away from the sensor probe.

2Common configuration represents when the flat mirror is displaced perpendicularly from the FODS
probe surface, see sub figure 4.2
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FIGURE 4.3: FODS (a) sensitivity its linear zone (b) resolution [Prel 06]

In practice, there are several factors that influence the output characteristics of the

FODS which limits its functionality during experimentation. For example, in order to

obtain higher sensitivity the quality of the target surface plays an important role. Its

characteristics can be defined using parameters such as its roughness, flatness and the

reflectivity factor. Higher values of the roughness and the flatness of the surface can

lead to high value of the RMS noise and linearity error of the FODS during its application

[Khia 07]. According to the earlier studies conducted in [Wang 99], it has been concluded

that in order to obtain nanometer level resolution of the FODS, the roughness and flatness

values of the reflective surface be less then 10 nm and λ/10 (where, λ ∈ [400 nm : 700

nm]), respectively. In addition to these surface parameters, gold coated surfaces lead

better sensitivity for a light with a wavelength higher 650 nm due to its higher coefficient

of the reflectivity (≈ 0.98), [Khia 07].

The main limitation of the FODS while using it in linear zone is its displacement

measurement range. This means that its application in its common configuration into the

MPS developed in the previous chapter will eventually limit the motion range of the MPS

to a maximum value of 200 µm. For this reason, in the following section a solution has

been proposed in order to realize a compact miniature long range displacement sensor.

4.2 Long range displacement sensor principle

In order to extend the displacement measurement range of the FODS while using it in its

linear zone, Prelle et al., [Prel 06] proposed a solution in an earlier study conducted at

Roberval laboratory. This solution is based on moving the flat mirror at angle (α) with

respect to the FODS probe surface as shown in figure 4.4(b). This change in displacement

direction increases the measurement range of the sensor by the (sinα)−1 ratio. Figure 4.4

represents a comparative study between two motion direction cases of the flat mirror (see

figure 4.4(a) and (b)). From the results it can be seen that in common configuration (i.e.,
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α=90◦) the measured displacement range is 200 µm. On the other hand, if the mirror is

moved with an angle (α=45◦) with respect to the probe axis, the measured range of the

sensor rises up to 283 µm which represents a 40% increase in the range with respect to

the common configuration case.
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FIGURE 4.4: (a) Common configuration of the mirror and FODS probe (b) Tilted mirror
configuration (c) Increase in the sensor range [Prel 06]

A consequence of the proposed solution is that the sensitivity and resolution of the

FODS becomes the function of the displacement angle (α). The new sensitivity (Sα) and

resolution (Rα) of the sensor with respect to the axial sensitivity and resolution (i.e., when

α=90◦) can be mathematically written as in equation (4.3).

Sα = Saxial sinα

Rα =
Raxial

sinα

(4.3)

From the above equation it can be seen that the sensitivity of the sensor will de-

crease with decrease in mirror displacement angle (α). This effect can be seen in the

figure 4.4(c) as the slope of the linearized zone in the case of α=45◦ is reduced as com-

pared to the case, α=90◦. This indicates that the resolution of the sensor will deteriorate.

However, it will remain in the range of few nanometers. For example, if the axial resolu-

tion of the sensor is 2 nm, the lateral resolution (Rα) will be around 2.828 nm for α=45◦.

Indeed, the value of the lateral resolution is the function of Raxial and α, but the sensor

operates in the linear zone.
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4.2.1 Extending the solution to realize long range measurement

Even with the 40% increase in the measurement range by moving a single mirror at angle

(α=45◦) with respect to FODS probe surface, it still cannot be employed to measure

the long range (millimeter level) displacement. So, to solve this problem, the proposed

method has been further extended to implement the FODS with a set of tilted mirrors

configuration here called “grating” as shown in figure 4.5. A grating consists of a series

of repeated tilted mirror (termed as “grating step”), each inclined at angle α as shown in

figure 4.5.

21

1 2Fixed FODS 
probes

Valid measurement

Invalid measurement

Valid measurement

Invalid measurement

Grating at position x  1

Grating at position x  2

Displacement direction of the grating

Displacement direction of the grating

Single
tilted mirror

dx

α

Probe axes

FIGURE 4.5: Long range sensor concept

The main advantage of this approach is that the measurement range of the sensor

becomes a function of the number of the grating steps. So, in order to measure the dis-

placement over millimeter level range, more grating steps can be added. In addition,

since the sensor is used in its linear zone it will exhibit high sensitivity over each grating

step. However, this solution leads to displacement measurement continuity issue during

the transition between two adjacent grating steps because a single FODS probe will pro-

vide invalid measurement when it illuminates two adjacent grating steps, simultaneously

(see figure 4.5). In order to solve this problem, two FODSs are needed to avoid the cross-

ing edge difficulty by means of switching the measurement in between the FODS probes

[Prel 06]. For example, in figure 4.5, it can be seen that when grating is at position x1,

FODS probe (1) is in front of the grating step and provides a valid measurement while

FODS (2) illuminates two grating steps at the same time, thus providing an invalid mea-

surement. Similarly, if the grating are moved laterally to a distance “dx”, the FODS probes

(1) and (2) will provide invalid and valid measurement respectively, at position x2.
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The proposed design of the long range sensor depends on different geometric param-

eters such as height and length of the grating steps, FODS probe dimensions, etc. In

order to determine these parameters a geometric modelling has been carried out in the

following section.

4.3 Geometrical optimisation of the long range sensor

In this section, the geometrical modeling has been realized in order to compute the opti-

mal design parameters of the gratings to achieve smallest possible limit of the resolution

(few nanometers). From equation (4.3), it can be seen that the lateral resolution (Rα) is

inversely proportional to the sin (α). So, in order to decrease the lateral resolution (Rα),

the angle (α) should be as large as possible. However, the value of this angle depends

on several geometric parameters as shown in the figure 4.6. The description of these

parameters are provided in table 4.1.

Φ

Φe

Φz

ds
x

dx

α

δ

δ

β

l

h

Grating
edge

FODS probe 
axis

Grating
bottom edge

limit

Grating
Top edge

limit

FODS security
distance limit

Fiber optic probe

Grating displacement direction

Illuminated  surface
Emitted light

α
Raxial

Rα

FIGURE 4.6: Enhanced two dimensional view of a single grating step with FODS probe

Symbol Definition Symbol Definition

Φe Emission fiber diameter h Height of the grating step

Φ FODS probe diameter l Length of the grating step

β Half angle of the numerical aperture ds Security distance

α Angle of the grating step dx Distance: probe/ step = x·sin α

Φz Diameter of the illuminated zone δ Bottom angle of the grating step

TABLE 4.1: Definition of the FODS probe and grating step parameters

The diameter of the illuminated zone (Φz) as a function of the emission fiber diameter

(Φe) can be mathematically defined as in equation (4.4).

Φz = Φe + 2d tan β (4.4)
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The relation represents that (Φz) is a function of the numerical aperture of the emis-

sion fiber and the distance between the FODS probe and grating surface (d=ds+dx).

Since the numerical aperture is constant once the fibers have been selected, the illumi-

nated surface becomes a function of the distance between the probe and gratings (d).

However, this distance consists of a constant value of the security distance (ds) and the

distance (dx) that varies with respect to the change in the axial displacement (x) between

the FODS probe and gratings. If the diameter of the illuminated surface (Φz) is less than

the grating step length (l) the displacement measurement will be valid for a single probe.

As explained earlier, the FODS will be employed in its linear zone because of its high

sensitivity and resolution. Due to the sensor characteristics in this zone the sensor probe

will be placed very near to the gratings. However, in order to avoid any collision between

the sensor probe and the gratings during experimentation, the security distance (ds) need

to be fixed. Taking in account the diameter of the FODS probe, equation (4.5) provides

the basic criterion in order to select the security distance with respect to the inclination

of the grating step (α) [Prel 06].

ds >
Φ

2
tanα (4.5)

4.3.1 Influence of the FODS probe dimensions

The selection of the FODS probe dimensions is one of the important task in the geometric

optimisation of the gratings. From equation (4.5), it can been seen that, for a fixed value

of the security distance (ds) between the sensor probe and the grating step, the diameter

of the FODS probe is inversely proportional to the tan(α). So, by increasing the grating

step angle (α), the diameter of the FODS probe needs to be reduced accordingly. However,

in reality the selection of the FODS probe diameter (Φ) is not a free choice as it depends

on several design/fabrication parameters (e.g., numbers, diameter, arrangement, metallic

protection of the fibres, etc.,) in commercially purchased fibers.

In order to realize a long range displacement sensor, the FODS probe used in this work

consists of Ø2 mm. With these sensor probe diameter, it was concluded in an earlier study

conducted at Roberval laboratory, that for a minimum security distance (ds=30 µm), a

maximum grating step angle (α) of 3.81◦ can be achieved. For this grating step angle, a

15 nm lateral resolution (Rα) was reported for 1 nm axial resolution (Raxial) of the FODS

in [Prel 06]. Indeed, in order to improve the lateral resolution of the sensor, the grating

step angle (α) needs to be increased. However, for a fixed value of the security distance

(i.e., 30 µm) the increase in the grating step angle (α) imposes limitation on the distance

(d) between the FODS probe and the grating step.

Figure 4.7 represents the comparison between the sensor probe employed with two

types of the gratings having parameters (α1, l1) and (α2, l2) where (α1<α2) and (l1>l2).
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Assuming that the grating with length (l1) provides a maximum grating step angle of

(α1) with FODS probe (Ø1=2 mm) as presented in case (a), the maximum perpendicular

distance (d1) between the sensor probe and the grating step will be limited to a value of

130 µm due to the working range of the FODS in linear zone (see sub section 4.1.1.1).

Now, if the FODS probe is used with the grating having length l2, the grating step angle

(α2) will lead to a distance (d2) for the same security distance (ds) to avoid any collision

between the FODS probe and grating (see case (b), figure 4.7). However, the value of

this distance (d2) will be greater than distance (d1) and as a result the diameter of the

illuminated zone (Φz) will become larger due to the increase in the distance (i.e., d1→d2).

This will lead to a smaller or invalid measurement length over grating step length (l2) due

to the grating step angle (α2).

In order to solve this problem, Khiat et al.[Khia 07], proposed to reduce the diameter

of the commercially purchased FODS probe. By this way, the sensor probe can easily be

placed at the same distance (d1) in front of the grating step with parameters (α2, l2) as

shown in the case (c) of the figure 4.7.
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FIGURE 4.7: Selection of the FODS probe for geometric modeling

4.3.1.1 Reduction of the FODS probe diameter

In order to reduce the diameter of the FODS probe, conventional machining approach was

selected to reduce the thickness of the steel cladding material that encapsulates the fiber

bundle [Khia 07]. However, the machining of the FODS probe described in section 4.1

was not possible as the thickness of the metallic part of the FODS probe was very small

(see figure 4.8(a)). So, a new FODS probe has been purchased from OMRON manufac-

turers. This new sensor consists of seven PMMA fibers each having 175±10 µm diameter

and numerical aperture 0.46. Furthermore, the thickness of the metallic part of this new

probe allowed us to remove 500 µm from both sides of the probe as depicted in the fig-

ure 4.8(b). The new width dimension of the sensor probe was obtained as 1 mm. A
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further reduction of the metallic part was avoided in order to leave some metallic pro-

tection to hold the fiber bundle intact after machining as shown in the figure 4.8 (c).

Φ2 mm1 mm

Material removed

Metal protection

Limited cladding material

Initial diameter = Φ 2 mm

Final width 
(1 mm)

(a) (b) (c)

FIGURE 4.8: (a) Old FODS probe with limited cladding material (b) New FODS probe
with six reception fibers (c) Real view of the machined new FODS probe

With this new FODS probe, the functioning of the sensor remains the same as de-

scribed in the section 4.1. The fiber located at the center of the probe acts as an emission

fiber and the other six fibers situated around the emission fiber are the reception fibers.

However, due to the larger number of the reception fibers in the sensor probe and change

in the diameter of the fibers in the bundle, an experiment was carried out to determine

the range of the linear zone by moving away a flat mirror in front of the new FODS probe

(similar to the case presented in figure 4.2). The range of the linear zone of the new FODS

was found to be 170 µm. However, after applying a linear fit it has been concluded that

for a linearized zone of 130 µm the sensor delivers a maximum sensitivity of 88 mV/µm

with a linearity error less than 1%. Based on this information, during geometric model

simulation the maximum value of the distance (d) between the FODS probe and grating

step has been fixed to 130 µm.

4.3.2 FODS signal overlap criteria

According to the working principle of the long range sensor, a single FODS probe will lead

to signal discontinuation (see figure 4.9(a)). A set of two FODS probes are needed in this

case. However, it is not necessary that the application of two FODS probes will provide

continuous signal measurement. For example, in the figure 4.9(b) it can been seen that,

even with two FODS probes, there is a signal interruption which leads to the disconti-

nuity in the displacement measurement. This is due to the relative distance between the

two probes with respect to the grating step. To achieve continuity, a signal overlap (xo)
is needed to properly switch between the two sensors as shown in the figure 4.9(c). In

addition, it is necessary that in the overlap zone both sensor should provide valid mea-

surement. So in this scenario, the relative distance (δE) between the two sensor probes
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(see figure 4.9(d)) has been selected using equation (4.6).

δE = (n+
1

2
) l (4.6)

where, the term n represents a number of the grating step. This parameter is added

to avoid the placement complication of the two FODS probe on adjacent grating steps

due to their diameters. Moreover, it can been seen in the figure 4.9(d), that the relative

distance between the FODS probes (δE) has been defined with respect to the centre of

the grating step length to obtain a symmetrical overlap zone at the start and end of the

FODS signals (see figure 4.9(c)).
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FIGURE 4.9: FODS signal(a) with single probe (b) with two probes without overlap (c)
with two probes with overlap [Prel 06] (d) overlap distance setting

4.3.3 Selection of the bottom grating angle

The value of the bottom angle (δ) of the grating depends on the fabrication procedure

adapted to realize the gratings. In practice, this angle can be selected in two different

ways for the same grating step angle (α) as shown in the figure 4.10. However, in the

second case (when δ > 90◦, see figure 4.10(b)) the real length of the grating (lr) becomes

smaller as compared to the first case (when δ < 90◦, see figure 4.10(a)). This reduction in

real length (lr) is due to increase in the transition zone length, ∆l=hr cos(δ-90◦), where

a single FODS probe illuminates two adjacent grating steps at the same time. In addition,

this increase in the transition zone length (∆l) can not be neglected and as a result, in

order to achieve valid signal overlap, the distance between two FODS probes (δE2) needs

to be increased by a factor ∆l cos(α) as compared to the case where δ < 90◦.

Taking into account the fabrication constraints (e.g., machining tolerance, residual

radii at the bottom of the grating due to the tool tip, etc.), in our study, the selection of

the bottom angle of the grating has been carried out using criteria, δ ≤ 90◦, as shown
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FIGURE 4.10: Bottom angle grating choices (a) 0◦<δ ≤ 90◦ (b) 180◦>δ > 90◦

in the figure 4.10(a). The main advantage of this approach is that the useful length (l)
depends on the height (h) and angle (α) of the grating even if lr > l. So, the residual

length of the grating (∆l) can easily be discarded with respect to the case presented in

figure 4.10(b). As a result, to achieve valid signal overlap, the distance between two FODS

probes (δE) remains the same. For our simulations, the value of the bottom angle of the

grating (δ) was kept 70.53◦. This value corresponds to the crystallographic orientation of

the slow etching planes (i.e., {111} plane) of the silicon when planar grating is realized

via microfabrication in single crystal silicon substrate. The choice regarding the selection

of this angle (δ) is discussed in the section 4.4.1.4.

4.3.4 Simulation results

By taking into account all these geometrical constraints, a simulation in MATLAB R© has

been carried out for the FODS probe having 1 mm diameter. A 30 µm security distance

(ds) along with 30 µm signal overlap criteria have been selected on the basis of earlier

studies in [Prel 06, Khia 07]. Furthermore, during simulation a condition has been em-

ployed that if the overlap zone xo is less than 30 µm or the distance (d) between the

sensor probes and grating step increases beyond 130 µm (i.e., outside the linear zone of

the FODS), the output solution for the theoretical resolution result is set to zero. This

condition was adapted for the purpose of simplification in order to facilitates the analysis

of the output solutions.

Figure 4.11 represents, the theoretical lateral resolution (Rα) of sensor with respect

to the length (l) and height (h) of the grating step. From the results it has been concluded

that, for the optimal real length (lr = 653 µm) and height (hr = 96 µm) of a grating step,

the maximum grating step angle (α) was found to be 8.29◦. In addition, the useful length

(l) over a single grating step was computed to be 621 µm for the selected value of the

bottom grating angle (δ=70.53◦). Using equation 4.3, the theoretical limit of the reso-

lution of the long range displacement sensor with these optimal geometrical parameters
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was computed to be 7 nm for a theoretical axial resolution of 1 nm.
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FIGURE 4.11: Limit of the sensor resolution as a function of the grating length and height

Moreover, to validate the signal overlap criteria, the theoretical axial displacement

(dx=x· sinα) obtained via simulation has been plotted with respect to the theoretical lat-

eral displacement (x) of the grating as shown in the figure 4.12. An overlap of 30 µm was

found which satisfy the requirement for the continuous displacement measurement by

switching the signal between two FODSs.
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FIGURE 4.12: Theoretical results to represent the overlap between two FODS probe mea-
surement based on the optimal dimensions computed via simulation
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4.4 Microfabrication of the planar grating

After determining the optimal geometric parameters of the grating, its fabrication has

been carried out. According to the previous studies conducted in [Khia 07] at Roberval

laboratory (UTC), it was decided to fabricate this grating via microfabrication. This fabri-

cation technology was selected in order to achieve overall small dimensions of the planar

grating with high surface quality (i.e., roughness and flatness parameters in the range of

few nanometers) of the grating steps. These characteristics are very difficult to acquire

via conventional machining techniques (e.g., shaping, milling, etc.) due to the fabrication

constraints such as machine/tool tolerance, material handling, etc. In addition, microfab-

rication technology leads to the production of miniature components with dimensions

from the scale of few micrometer to several millimeter with high accuracy and microm-

eter level fabrication tolerances. Furthermore, the parallel fabrication (also known as

“batch processing”) vastly reduce the fabrication cost thus making it more economical

solution as compared to conventional fabrication techniques with mechanical tools.

Microfabrication technology is based on collection of different technologies such as

lithography, etching, polishing, etc., to fabricate micro components. It has been widely

used in the microelectronics industry to realize micro components such as Integrated

Circuits (ICs) over the past sixty years. However, this technology demands precise posi-

tioning/machining tools for pattern processing, etching solutions for realizing three di-

mensional structures and most importantly the dust free fabrication environment (known

as “clean rooms”) in order to avoid any contamination during microfabrication process.

In order to meet these standards, in this work the microfabrication of the planar grating

has been carried out at the Institute für Mikrotechnik3, Technische Universität (IMT-TU)

Braunschweig, Germany which specializes in this technology.

In general, to realize 3D microstructure, the whole microfabrication process can be

described as shown in figure 4.13. Initially, the material selection (in the form of wafers)

is usually carried out as the machining of different materials demands different fabrica-

tion techniques. For example, materials such as glass, aluminum, copper, etc., cannot be

machined with respect to their atomic structure whereas, silicon can be machined with

respect to its crystallographic orientation. In addition, the choice of the microfabrication

techniques is usually carried out with respect to the need of the three dimensional shapes

in the selected material.

Once the microfabrication technique and the material are defined, a mask with de-

sired patterns is designed and fabricated. Afterwards, the wafers are prepared for ma-

chining by adding different inorganic layers (e.g., silicon dioxide (SiO2), silicon nitride

(Si3N4), etc.,) that serves as masking layers. In addition, the desired pattern is transferred

3http://www.imt.tu-bs.de/
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via photolithography using the developed mask. The transferred pattern is developed and

sacrificial layers are removed to expose the desired areas for machining. Next, the wafers

are etched using chemical solutions to form 3D shape in the wafers, once the desired

structures are achieved, a post processing of the wafers are carried out which includes

verification of the desired 3D structure, removal of sacrificial layers, etc. In the end, the

specimens (refers to three dimensional structures) are coated if needed and cut from the

wafer with the help of precise cutting tools.

Material selection & 
choice of microfabrication

approach

Finishing
(e.g., metal coating, 

specimen cutting, etc.)

Mask designing
and its fabrication

Post processing
(e.g., validate the geometric

parameters, etc.)

Wafer processing
(e.g., patterning, 

mask transfer, etc.)

Etching of the 
wafer 

(Realization of 3D structures)

FIGURE 4.13: Schematic layout of the overall microfabrication process

In the following text, the presented micro fabrication steps are discussed in detail in

order to realize planar gratings at IMT- TU Braunschweig.

4.4.1 Selection of the material and micromachining approach

In our study, a grating has been machined into silicon material. This material is selected

due to its low sensitivity to temperature change (2.6×10−6 ◦C) and high melting point

temperature (1413.85 ◦C) which makes this material more interesting as most of the mi-

crofabrication process (e.g., deposition of sacrificial layers, etc.) is often performed at

high temperature (between 80◦C and 180◦C). Due to these listed or non listed character-

istics, silicon material is used in many electronic devices such as diodes, transistors, etc.,

for their important electrical properties.

4.4.1.1 Classification of silicon material

Silicon material is classified into three different types depending upon its crystalline form

as depicted in figure 4.14. The simplest form of the silicon is known as the amorphous
form in which the atoms are randomly oriented. The polycrystalline form consists of ran-

domly oriented grains. However, in each grain the orientation of the atoms are along

single direction (see figure 4.14(b)). The third form of the silicon which is mostly used

in microfabrication is known as monocrystalline form. In this form, the atoms of the sili-

con material are perfectly oriented along single direction which allows it to be machined
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along specific crystallographic orientation via microfabrication. Commercially, monocrys-

talline silicon are fabricated in the form of a circular wafer/substrate as shown in the

figure 4.14(b) with marker (a flat or a notch) to identify the crystallographic orientation

of the silicon crystal.

Amorphous Polycrystalline Monocrystalline Silicon substrate

Single grain

Flat

FIGURE 4.14: Different forms of the silicon material [Dech 06]

The silicon crystal has a Face Centered Cubic (FCC) structure in which each silicon

atom forms the covalent bonds with four adjacent atoms (see figure 4.15(a)). It is also

known as diamond structure [Butt 94]. In a Single Crystal Silicon (SCS)4 wafer, the

crystallographic orientation of the silicon crystal is determined using Miller indices. As

an example, figure 4.15(b) represents, three crystallographic planes (i.e., {100}, {110},
{111}) formed in cubic-crystal unit cell of silicon. According to literature, along these

planes silicon exhibits different physical properties such as piezoresistivity and Young’s

modulus values which lies between that of steel and aluminum. However, it is much

lighter than these two materials which increases its significance in the MEMS applica-

tions to fabricated light weight components. In addition, all planes parallel to each other

exhibit the same physical characteristics [Khia 07]

(100) (110) (111)

X

Z

Y

X

Z

Y

X

Z

Y

(a) (b)

FIGURE 4.15: (a) FCC structure of the silicon (b) Different crystallographic planes in
silicon crystal [Rive 04]

4Single Crystal Silicon (SCS) is referred to Monocrystalline silicon
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4.4.1.2 Micromachining of silicon material

Micromachining of the SCS material is usually carried out by removing the silicon ma-

terial from the substrate via chemical process known as “etching”. In this process, the

etching agent such as a corrosive liquid (e.g., Potassium Hydroxide (KOH), etc.) or a

chemically active ionized gas (known as plasma) is used to chemically react with the

unprotected parts of the silicon substrate (see figure 4.16(a)). In literature, the etching

with liquid and plasma are also referred as “wet etching" and “dry etching" technolo-

gies, respectively. In microfabrication field, both techniques are significantly employed.

However, wet etching approach is mostly preferred due to its low cost, simplicity and

high degree of selectivity of silicon material over dry etching [Mado 02]. In this study, to

realize three dimensional planar grating in SCS material, we have selected wet etching

approach due to the above mentioned characteristics.

4.4.1.3 Wet isotropic/anisotropic etching

Based on the selected etching approach (i.e., wet etching) in the previous sub section,

the removal of the silicon material can be carried out in two different manners. First

approach consists of non-directional removal of material from the silicon substrate which

is also known as “Isotropic etching”. In this approach, the etching agent (usually aqueous

acidic solutions containing HydroFloric acid (HF) with Nitric acid (HNO3) reacts with the

unprotected parts of the substrate in all directions with the same etching rate. Moreover,

the wet isotropic etching is a diffusion limited process, so the only restriction in this

etching approach is that the final structure will always be rounded (see figure 4.16(b)).

54.74°

<111> plane

<100> plane
(a) (b) (c)

Silicon material

Chemical reaction
with unprotected

area of silicon

Silicon 
material

Isotropic etching Anisotropic etchingMask Mask

FIGURE 4.16: (a) Silicon substrate with mask (b) Isotropic etching (c) Anisotropic etching

Another approach to machine silicon is known as “Anisotropic etching”. In this ap-

proach, basic solutions (e.g., KOH in water) are mostly used to remove the material in

order to realize three dimensional structures in SCS substrate. In this approach, the etch

rate of different crystallographic planes (see figure 4.15(b)) varies with respect to differ-

ent etching parameters such as temperature and concentration of the etching solution.

The study of J.March et al., highlights these variations in the etching rate of different

crystallographic planes with respect to the variation of etching temperature and solution
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concentration (see figure 4.17). From this study, it can be observed that the etching rate of

the {111} plane is very slow as compared to {110} and {100} planes. In wet anisotropic

etching, {111} planes are referred as etch stops and the final shape of the etched struc-

tures in SCS substrate is determined with the help of these slow-etching planes as shown

in the figure 4.16(c).
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FIGURE 4.17: Etch rate as a function of etching solution (a) Temperature (b) Concentra-
tion [Marc 98]

4.4.1.4 Selection of the SCS substrate to realize gratings

In order to achieve a particular geometry for the grating (see figure 4.6), we have selected

wet anisotropic etching technique. However, since the functional structure of the grating

after wet anisotropic etching of the silicon is determined by {111} plane, a specific ori-

entation of the silicon crystal in SCS substrate was needed to obtain a grating step angle

α=8.29◦. In practice, the silicon wafers are cut from silicon ingot and the anisotropic

etching of silicon wafer with (100) plane as wafer surface, delivers (111) planes as side

walls of the etched structures. The opening angle of these side walls with respect to the

normal of the (100) wafer surface has a value of 70.53◦ [Klum 95].

For our application, the selection of the silicon substrate has been carried out on

the basis of the study conducted in [Khia 07]. In this study, two possible configurations

have been reported to achieve (111) plane of the silicon crystal at 8.29◦. These two

configurations have been identified by cutting the silicon ingot along either the direction

of {110} or {100} planes of the silicon crystal. The first configuration leads to a bottom

grating angle, δ=109.47◦, between the intersection of the {111} planes as shown in

the planar special case (1) in the figure 4.18(a). On the other hand, if the cutting of

the silicon ingot (at α=8.29◦) is carried out along the direction of the {100} plane, the

intersection of the {111} planes yield a bottom grating angle of δ=70.53◦ (see planar

special case (2), figure 4.18(a)). Both types of the configurations can be used to realize

planar grating. However, the grating realized with first configuration (see figure 4.18(b))
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will lead to higher value of the transition zone length (∆l, see section 4.3.3) as compared

to the second configuration (see figure 4.18(c)).
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FIGURE 4.18: (a) Possible crystallographic configuration of the silicon wafer (b) Special
case (1), α=8.29◦ and δ=109.47◦ (c) Special case (2), α=8.29◦ and δ=70.53◦

Taking into account these configurations, we have selected the special case (2) in

order to fabricate the silicon grating for the development of long range displacement sen-

sor. So, based on this configuration {111} 8.30◦-off, Ø100 mm, silicon wafers with both

sides polished have been purchased form Silchem5 company in Germany. A thickness of

380 µm for the commercially purchased silicon wafers was selected from the perspective

to integrate the planar grating into the MPS prototype (see next chapter for details).

4.4.2 Mask design and its fabrication

After selecting the silicon wafer, the design and fabrication of the mask have been carried

out for the photolithography process. Based on the dimensions for the planar grating

computed via Matlab R© simulation, the 2D structures of the grating have been designed

in the form of clear areas (w= 614.5 µm) and rectangular stripes6(t=33 µm) as shown

in figure 4.19. The value of the (w) parameter was computed using equation (4.7).

w = l · [cos(α)]−1 (4.7)

where, l is the useful length of the gratings step, α is the grating step angle.

The overall mask design has been optimized to achieve 32 planar grating specimens

in single process during experimentation. In addition, a 14×14 mm2 footprint dimensions

5http://www.silchem.de/
6The optimal value of the rectangular stripes width (t=33 µm) was selected after experimentation.

117



Chapter 4. Development of a long range linear displacement sensor

for each planar grating was selected in accordance with the mobile part dimensions of the

MPS designed in the previous chapter.
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FIGURE 4.19: Layout of the mask with enhanced view of a single grating specimen

The design presented in figure 4.19 has been realized with AutoCAD and was written

on a blank mask using a mask writer machine (see figure 4.20(a), step 1). The mask

used in our study consists of a pre-coated square glass plate with a layer of chrome and

photoresist on one side. So, during mask writing process, the mask writer transfer the

design by exposing the photoresist with a laser spot. The mask writing direction was

carefully selected to achieve smooth edges along the length of the stripes (see figure 4.19).

In addition, some alignment structures have been designed in order to align the silicon

wafer with respect to its crystallographic orientation during photolithography process.

Once the mask writing processing was completed, the exposed photoresist was de-

veloped using a chemical solution consists of a mixture of AZ 351B (50 ml) solution

and water (250 ml) (see figure 4.20(a), step 2). After developing the photoresist, the

chrome is etched using a chemical solution (composition: 51 g of Ceric ammonium nitrate

[(NH4)2Ce(NO3)6] + 324 ml of Perchloric acid [HClO4]). This solution etched the chrome

in the areas where it is not protected by the developed photoresist (see figure 4.20(a),

step 3). After etching the chrome, the mask has been rinsed and inspected under micro-

scope to verify the structures. After verification, the photoresist is removed with the help

of acetone and ethanol (see figure 4.20(a), step 4). The finished mask consists of trans-

parent and non-transparent (covered with chrome) areas as shown in the figure 4.20(b).
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FIGURE 4.20: (a) Fabrication steps of the mask (b) Real view of the fabricated mask

4.4.3 Microfabrication of the silicon grating

After developing the mask, the micromachining of the silicon grating has been carried

out. As described earlier, the main principle behind micromachining of silicon gratings

is based on the deposition of inorganic layers which serves as masking layers during wet

anisotropic etching process. In addition, chemical solutions such as Potassium Hydrox-

ide (KOH) or TetraMethylAmmonium Hydroxide (TMAH) are used to remove the silicon

material to form three dimensional structures. In this work, the overall process to realize

silicon gratings for long range displacement sensor consists of 10 steps as shown in the

figure 4.21. Initially the silicon substrate has been cleaned and inspected for any micro

defects (e.g., pin holes, scratches, contamination, etc.) under microscope. In step 2, dif-

ferent masking layers have been realized on the silicon wafer. First, a 300 nm thick layer

of silicon nitride (Si3N4) followed by a 300 nm thick layer of silicon dioxide (SiO2) were

realized using Plasma Enhanced Chemically Vapor Disposition (PECVD) machine on the

both sides of the silicon wafer (see figure 4.21). After deposition of these layers, a layer

of the positive photoresist (ma-P1215) was realized on both sides of the silicon wafer. For

this process, 1 ml of the positive photoresist was spun on the top and bottom side of the

substrate at 3000 rpm. The photoresist has been cured during each step by performing a

soft baking for 1 min at 100◦C . This soft baking is necessary in order to avoid any damage

(i.e., scratching) to the photoresist layer in the following step.

In step 4, the photoresist on the top side of the substrate was exposed to the Ultra

Violet (UV) light for 8 seconds using the mask shown in the figure 4.20(b). During

this process, the pattern of the mask is aligned to the crystal orientation of the silicon
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wafer. This is done by aligning the flat of the silicon wafer with respect to the alignment

structures on the mask (see figure 4.20(b)). The wafer alignment process followed by

photoresist exposure process has been carried out using a mask aligner/exposure machine

(EV240). This machine is equipped with different systems such as optical alignment

system, mask handling system, etc., in order to transfer the mask pattern on the wafer.

After exposing the photoresist to UV-light, it was then developed using ma-D331 de-

veloper solution (see step 4, figure 4.21). During this process, an exact image of the

mask pattern forms on the silicon wafer as exposed photoresist dissolves in the developer

solution. Moreover, the characteristics of the photoresist in the areas where it has been

protected by the pattern of the mask (i.e., due to structured chrome layer) changes. The

photoresist development time depends on several parameters such as saturation level of

the ma-D331 solution, exposure time, structure dimensions, etc. In our case this time

was found to be 25 seconds. After the development process, the structured photoresist

was inspected under microscope for any irregularities such as improper transfer of the

structure, over etching, etc. This inspection is necessary because if there is any problems

regarding the development of the photoresist, it should be carried out again or else it can

lead to improper etching in following steps and the silicon wafer may become unusable.

After the inspection, the developed silicon wafer is hard baked at 110◦C for 5 minutes.

After the development of the photoresist, Hydrofluoric acid (HF) solution (Concen-

tration 40%, buffered 1:2) was used to etch the silicon dioxide layer (see step 5, fig-

ure 4.21). In this step, the photoresist acts as a masking layer, So the unprotected areas

where SiO2 layers is exposed to the HF solution undergoes chemical reaction. The etching

of SiO2 in HF solution is an isotropic process and the etch rate depends on the concen-

tration of the etching solution as well as the etch depth (i.e., thickness of the SiO2 layer).

In our case, the etch rate of the SiO2 in the buffered HF solution was found to be around

46 nm/min. So, in order to etch 300 nm thick layer of SiO2 layer the Silicon wafer was

placed in the HF solution for 6 minutes and 30 seconds. After etching the SiO2 layer,

the substrate is rinsed with deionized water in Quick Dump Rinser (QDR) machine to

remove all the traces of the HF acid. After properly rinsing the wafer, the it was dried

using a spin dryer machine and an inspection has been performed to validate the etching

of the SiO2 layer.

After etching the SiO2 layer, the photoresist has been removed using acetone and

ethanol (see step 6, figure 4.21). The removal of the photoresist was necessary in order to

avoid any contamination in the Phosphoric acid (H3PO4) solution used for Si3N4 etching.

In step 7, the Si3N4 layer has been etched using 100% concentrated H3PO4 solution at

180◦C . During this process, the structured SiO2 layer serves as masking layer. So, the

areas where Si3N4 layers is not protected by SiO2 are etched. The etching rate of the

Si3N4 layer is very slow (≈6 nm/min) in the H3PO4 solution. It takes around 45 minutes
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to etch the 300 nm thick Si3N4 layer. After etching is finished, the wafer was rinsed, dried

and an inspection under the microscope has been carried out to verify the structures

etched in the Si3N4 layer. At this point the silicon surface of the wafer is exposed to

realize grating (see step 7, figure 4.21).

In order to etch silicon, two alkaline solutions (i.e., KOH and TMAH) are mostly used

in microfabrication field due to their lower environmental pollution and better surface

smoothness [Bisw 06]. However, in the study conducted by Dr. Ali Khiat, it was concluded

that silicon etching with TMAH solution leads to smaller values of surface roughness

(19 ± 3 nm) and flatness (70 ± 13) as compared to silicon etching with KOH solution

[Khia 07]. In this work, our main objective regarding the fabrication of silicon grating

is to achieve further lower values for the described parameters. So, we have decided to

realize silicon grating with 25% TMAH concentrated solution. During this process, the

Si3N4 layer serves as masking layer. The silicon etching has been carried out for 4 hours

with an average silicon etch rate of 0.37 µm/min.
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FIGURE 4.21: Micromachining process to realize three dimensional planar silicon gratings

During the etching process, the solution has been constantly stirred using a magnetic

stirrer and the height of the silicon grating steps has been measured using a surface

profilometer machine. In addition, the profile of the etched surface has been carefully

inspected. Upon finishing the silicon etching process, the wafer was rinsed and dried in

order to eliminate the traces of TMAH solution. Afterward, the layers of the Si3N4 and

SiO2 were removed using 40% concentrated HF solution (see step 9, figure 4.21). During

this process, these layers dissolve into the HF solution thus leaving the etched silicon
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substrate behind. After removing Si3N4 and SiO2 layers, the silicon wafer was rinsed in

QDR machine to eliminate the traces of HF solution using deionized water.

In step 10, the microfabricated silicon grating were coated with different metals

(mostly gold, aluminum, chrome) to improve their surface characteristics such reflectivity

index, roughness and flatness parameters [Khia 07]. This process was carried out using

a Physical Vapor Deposition (PVD) machine. In this machine, the metal being deposited

such as gold, aluminum, chrome, etc., on the silicon wafer is converted into vapor in a

vacuumed chamber. The concept of the PVD sputtering (that has been carried out in IMT)

is based on the ejecting the target material atoms (metal to be sputtered on silicon) with

high-energy particles in vacuum environment. These atoms condensate on the surface of

the wafer thus forms a fine layer of the metal. In MEMS, PVD sputtering is one of the

most widely used techniques to deposit various metallic films on wafers such as platinum,

tungsten, etc.

After metal sputtering process, the grating specimens from the wafer were cut using

a diamond cutting machine. For this task, the final wafer was coated with 2 ml of the

photoresist ma-1215 to protect the gratings from any particles or other contamination

during cutting process. After cutting, the silicon grating specimens have been released

from the silicon wafer and cleaned using Acetone and ethanol. Figure 4.22(a) represents

three different planar gratings, each having dimensions 14×14×0.38 mm3 and coated

with 300 nm thick chrome, aluminium and gold material, respectively. To provide a better

view of the grating steps, figure 4.22(c) represents the Scanning Electron Microscope

(SEM) image of the edge of the gold coated grating. In this figure the grating step (i.e.,

the slowest etch plane {111}) and different parameters such as height, angle and length

can be clearly identified.
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FIGURE 4.22: (a) Microfabricated silicon gratings (b) SEM image of the grating edge
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After fabricating the silicon grating specimens, some analyses have been carried out

in order to qualify it for the long range sensor application. In the following section, the

descriptions regarding these analyses are presented.

4.5 Silicon grating analysis

The microfabricated silicon gratings have been examined using ZygoTM(New view 200)

white light interferometric microscope at Roberval laboratory at UTC, France. Our main

objective behind this analysis is to extract good quality silicon gratings. The quality of

these gratings has been characterized by measuring the values of their surface roughness

(Ra) and Peak-Valley (PV) parameters over each grating step (for details, see Annex B).

The PV parameter is the difference between the two extreme points of the surface which

can also be interpreted as the flatness of the grating step. Furthermore, since the illumi-

nated zone diameter (Φz) of the FODS probe (see figure 4.6) varies between 200 µm to

300 µm over a single grating step, these parameters have been analyzed for a length of

550 µm for each grating step.

Figure 4.23 represents an image of a single measurement zone via ZygoTM(New view

200) microscope. The roughness and PV parameters in this zone were found to be 15 nm

and 95 nm. From figure 4.23, it can be seen that the grating surface is not uniform which

means that the values of these parameters will vary over each grating step. So, in order

to estimate the average roughness and PV values of the complete planar grating, each

grating step has been analyzed separately over its length by taking into account different

measurement zones (see figure 4.24(a)).

FIGURE 4.23: An image of a single measurement zone on the gold coated silicon grating
step measured using ZygoTM200 interferometer machine

The measured values of the Ra and flatness (i.e., PV value) are presented in fig-

ure 4.24(b). From the result the average values of the surface roughness and flatness were
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found to be 14.9 and 72.8 with measurement uncertainty of type A7 ± 4 nm and± 12 nm,

respectively. The variation in the Ra and PV values over each grating step depends on dif-

ferent silicon micromachining parameters such as temperature and concentration of the

etching solution, residue of the Si3N4 or SiO2, etc. In our case, the first set of the silicon

grating have been fabricated with 25% concentrated TMAH solution at 80◦C and from

the result presented in the figure 4.24(b), it can be concluded that the variation in Ra and

PV values remains very low for these etching parameters. However, the average values of

the roughness and flatness of the silicon grating is very high as compared to our desired

objectives that is to achieve these values in the order of few nanometers.
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FIGURE 4.24: (a) Measurement zones (b) Ra and PV values over each grating step

In the following subsection, some studies have been conducted in order to first, iden-

tify the influence of main etching parameters and second, to improve the surface char-

acteristics of the silicon gratings. These studies have been carried out for silicon grating

machined with TMAH solution.

4.5.1 Improvement of the grating surface characteristics

In practice, the optimisation of the surface roughness and flatness parameters using wet

anisotropic etching technique is not an easy task as it depends on several etching param-

eters. However, the temperature and concentration (expressed in “%wt” ) of the etching

solution are the two main parameters that often lead to different silicon etching rates.

This variation in the silicon etching rate results in different final surface quality [Marc 98].

According to the literature [Seid 90], high concentration of TMAH solution exhibit low

silicon etch rate but around 2.5% TMAH concentration a higher silicon etch rate (≈0.65)

7Type A uncertainty is equal to the standard deviation divided by the square root of the number of
measurement [Khia 07].
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can be achieved (see figure 4.25(a)). However, Shikida et al.[Shik 01] have concluded

in their study that despite high silicon etch rate at lower TMAH concentration, the final

surface roughness value often deteriorates due to the appearance of hill locks8 during wet

etching of silicon (e.g., see figure 4.25(b)). On the other hand, the silicon etching with

25% TMAH solution leads to very smooth surface as shown in figure 4.25(c).
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FIGURE 4.25: (a) Silicon etch rate at different TMAH concentration [Seid 90],
Hill lock formation (b) with 5% TMAH solution (c) with 25% TMAH solution

As mentioned above, etching temperature is another main parameter that variates

the etch rate. So, in order to study the influence of the temperature in our case, we

have performed a set of experiments. The silicon gratings etched with 25% concentrated

TMAH solution at different temperature has been examined with ZygoTM microscope for

surface roughness and flatness parameters. Figure 4.26(a) represents the variation of Ra
and PV values. It can been seen that at lower etching temperature the etch rate of the

silicon is very low (see figure 4.26(b)) which results in high roughness and flatness values.

However, at higher temperature the silicon etch rate is very high and the resulting surface

provides lower roughness and flatness values. In addition, the total etch time required

to completely etch the silicon grating steps is decreased. From these measured results,

we concluded that at 80◦C , the average surface roughness and PV values always remain

less than 20 nm and 90 nm, respectively (see figure 4.26(a)). At this concentration and

temperature of the TMAH solution the average silicon etch rate and total etching time

were found to be 0.37 µm/min and 3.5 hours, respectively.

Chemical polishing: One of the techniques to achieve a flat surface is to perform chemi-

cal polishing after anisotropic etching. Since, the solutions used in the chemical polishing

process exhibit isotropic etch characteristics (i.e., the solutions do not etch the silicon

material with respect to its crystallographic orientation (see subsection 4.4.1.3)) they can

be used to remove the sharp peaks on the final etched silicon surface [Boge 67]. Earlier,

8hill lock formation represents the appearance of small pyramids on the surface during anisotropic
etching of silicon
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(a) (b)

FIGURE 4.26: (a) Ra and PV values of silicon gratings at different temperature
(b) Etch rate and total etch time

Dr. Ali Khiat, used a mixture of different acids to realize the isotropic etching solution in

order to perform this process on the silicon grating fabricated with 40% KOH at 80◦C .

The solution was realized with following composition [Khia 07],

• 45.45% of Nitiric acid (HNO3)

• 27.27% of Hydrofluoric acid (HF), Concentration 40%

• 27.27% of Acetic acid (CH3COOH), Concentration 98%

• 0.5 ml Bromine (Br) for 100 ml of all three acids

This isotropic solution was used to treat the silicon grating at the silicon etch rate of

0.1 µm/min at 21◦C . In his study, the surface treatment of silicon grating realized with

KOH solution was carried out for three etch duration such as 5 min, 7.5 min and 10 min.

From experiments, it was concluded that the isotropic polishing of the silicon grating lead

to degradation of the surface (see figure 4.27(a)). In order to validate this effect at lower

duration time (i.e.,< 5 min), we have used the same solution to treat the surface of the

silicon grating fabricated with TMAH solution. Our objective was to polish the surface by

removing few nanometers. So, four etch durations such as 0.5 min, 1 min, 2 min, 3 min

were used to treat the silicon grating specimens (without metal coating) with average

values of Ra= 27 nm and PV=114 nm. During experimentation, it was observed that

the irregularities on the silicon grating steps were reduced (see figure 4.28(b)), however

after analysis it was concluded that the final surface quality degraded even on lower etch

durations as shown in the figure 4.27(b).

At high etch duration (i.e., 3 min), the surface irregularities completely diminishes

but it leads to high roughness and flatness values. As a result, it was observed that the

final grating surface becomes less reflective even when coated with a 300 nm thick gold

layer. From our results, it was concluded that isotropic polishing is not suitable in our

application so, further studies regarding the isotropic polishing were not conducted.
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FIGURE 4.27: Isotropic polishing of silicon gratings etched with (a) 40% KOH
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FIGURE 4.28: Silicon grating step surface quality (a) before treatment (b) after
0.5 min (c) after 3 min

Addition of the Isopropyl alcohol: The addition of Isopropyl alcohol (IPA) during wet

anisotropic etching of silicon, particularly with TMAH solution, is another approach to

achieve final etched silicon surface with low roughness value. According to the litera-

ture, the exact role of the IPA during wet anisotropic etching of silicon has not yet been

fully understood. However, as discussed earlier, one of the main reason of the surface

deterioration is hill lock formation during wet etching [Zube 11, Sund 05]. Among many

reasons for the appearance of hill locks is often linked to oxygen precipitates that results

in small bubbles on the silicon surface during chemical reaction. These bubbles serve as

temporary mask which leads to non homogenous etch rate of different crystallographic

planes of the silicon [Shik 01].

In order to improve the final surface characteristics of the silicon grating in our study,

we have performed several experiments by adding 250 ml of IPA solution to 1 litre of the

25% TMAH solution at 80◦C . In figure 4.29 the comparison between the etched surface of

the silicon grating obtained via 25% TMAH solution and that with the 25% TMAH+IPA

solution can be clearly observed. With only 25% TMAH, the etched grating step often

starts to deteriorate after 3 hours, which leads to appearance of small pits when all step

in the planar grating are etched (see, SEM image, figure 4.29(a)). On the other hand, the

addition of IPA solution leads to very smooth surface through out the etching process and
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as a result the final surface quality remains very good (figure 4.29(b)).
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FIGURE 4.29: Silicon etched with 25% TMAH at 80◦C (a) without IPA (b) with
IPA

In addition, during fabrication it was observed that with IPA solution, the average

silicon etch rate dropped to 0.1 µm/min as compared to the etch rate 3.7 µm/min when

silicon grating is etched with 25% TMAH alone. According to the literature [Zube 01],

this behaviour can be explained by the adsorption of IPA on the etched surface that re-

stricts the TMAH attack and as result the silicon etch rate remarkably reduces [Zube 01].

However, our main objective was to achieve high quality surface for the silicon grating

and the addition of IPA solution significantly improves the final quality of the silicon

gratings in our application. To identify the final surface characteristics of the silicon grat-

ing obtained via two fabrication techniques, two specimens have been examined with

ZygoTM machine after coating with 300 nm thick gold. The average roughness and flat-

ness parameters of the silicon grating fabricated with 25% TMAH solution at 80◦C were

found to be 14±4 nm and 73±12 nm (see figure 4.24), respectively. On the other hand,

the addition of IPA solution leads to the average roughness and flatness values of 9±3 nm

and 35±7 nm, respectively (see figure 4.30). Also, it has been observed that, with the ad-

dition of IPA solution, the variation in the described values are very low over each grating

steps of the planar grating.
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FIGURE 4.30: (a) Ra and PV values over each grating step (b) Image taken
over a measurement zone with ZygoTM interferometer machine

Deposition of the metal on silicon grating: The deposition of metal on the final etched

silicon grating serves two purposes. First, to improve the surface reflectivity and sec-

ond, to improve the surface roughness and flatness parameters [Khia 07]. The metal

deposition is mostly carried out in a vacuum chamber as shown in the block diagram in

figure 4.31(a). This chamber is equipped with a pump mechanism to create a high vac-

uum (<10−5 mbar). According to Hertz and Knudsen [Dani 04], when a pure substance

is placed in a vacuum, it establishes its equilibrium state between solid or liquid phase

and gaseous phase at pressure known as saturated vapor pressure. This characteristics

is very important for evaporation process. At this pressure, the localized heating of the

source metal (i.e., aluminium, gold, etc.), by focusing an electron beam on its surface,

thermally releases the atoms from source metal which condensates on the substrate thus

forming a metallic film. The thickness of this deposited film can be controlled by changing

parameters such as temperature, heating time, etc.

For our application, we have deposited the silicon gratings that was etched with 25%

TMAH+IPA solution at 80◦C solution with three different metals, i.e., chrome (Cr), alu-

minium (Al) and gold (Au). In order to compare the surface quality, the thickness of these

metal layers have been kept same (i.e., 300 nm). After examining with the ZygoTM micro-

scope, it has been observed that with the deposition of metallic layer, the silicon surface

characteristics improves (see figure 4.22(b)). It can be seen that with 300 nm gold the

grating surface roughness and flatness parameters are lower than with 300 nm coated

layer of chrome or aluminium. So, on basis of these results and high coefficient of reflec-

tivity (≈ 0.98), gold coating leads to further improvement of surface characteristics of the

silicon grating.

Apart from the different surface improvement techniques, the final surface character-

istics of the silicon grating also depends on the fabrication constraints such as tempera-

ture and concentration variation of the TMAH solution during etching process, presence
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FIGURE 4.31: (a) Evaporation process in vacuum [Dani 04] (b) Ra and PV values with
different metal coating

of dust particles and/or misalignment of silicon wafer flat with respect to mask during

photolithography process, etc. In the literature [Khia 07], numerous solutions have been

proposed regarding these constraints in order to acquire good quality gratings. However,

in our study the microfabrication of the silicon grating have been conducted repeatedly in

order to extract best silicon gratings per single silicon substrate in terms of their roughness

and flatness values.

4.5.2 Conclusion regarding the silicon grating microfabrication

The microfabrication of the silicon grating for long range sensor application has been car-

ried out in SCS material via wet anisotropic etching technique at IMT- TU Braunschweig.

Furthermore, these silicon gratings have been realized with 25% TMAH solution at 80◦C .

The analysis of the best grating achieved via this process revealed an average surface

roughness and flatness values of 14.9 ± 4 nm and 72.8 ± 12 nm, respectively. In order

to improve these values different techniques have been studied and it was concluded that

the addition of IPA to TMAH solution at 80◦C leads to better surface quality. In addi-

tion, with the help of a 300 nm gold layer deposition, the average roughness and flatness

values of the silicon gratings fabricated with 25% TMAH+IPA solution were found to be

9.35 ± 3 nm and 35.08 ± 7 nm, respectively.

4.6 Long range linear displacement sensor validation

After realizing the silicon gratings with microfabrication at IMT- TU Braunschweig, exper-

iments have been carried out at Roberval laboratory at UTC Compiègne, to validate the

long range displacement sensor. For this task, a 300 nm gold coated silicon grating with

characteristics, Ra= 9.35 ± 3 nm and PV=35.08 ± 7 nm was used with two FODS probes.
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In addition, an experimental setup has been realized by fixing the silicon grating on top

of a Newport tilt platform which is driven by two motorized linear stages (Newport MFA

25CC) in xy-plane (see figure 4.32(a)). Moreover, a mechanical support in aluminium

was realized to hold two FODS probes over the silicon grating. In order to position the

FODS probes (e.g., rotation about its axis or height adjustment) with respect to silicon

grating, additional devices such as tilt stages, manual linear stages, etc., (no shown in the

figure) have been used.

At first, the axial calibration of both FODSs have been carried out in order to deter-

mine their typical characteristics such as sensitivity, measurement range, etc. In order to

do so, the grating has been levelled in xy-plane using a levelling mirror and laser. Then,

both of the FODS probes have been adjusted perpendicularly with respect to the flat grat-

ing steps. After adjustment, the axial calibration has been carried out by moving away

both FODS probes along axial direction with respect to their facing grating steps (see

figure 4.6(b)). The output voltages from both sensors have been plotted with respect to

the axial displacement and linear fits have been applied as shown in the figure 4.33(a).

From figure, with the help of linear fits, the sensitivities of the FODS1 and FODS2 were

found to be 87.98 mV/µm and 82.85 mV/µm, respectively. The difference between the

sensitives of both sensors is due to various factors such as deterioration of the PhD and

its coupling with the reception fibers in the SPU, etc.
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FIGURE 4.32: (a) Experimental setup of the long range displacement sensor (b) Enhanced
view of the FODS probes and gold coated silicon grating

After axial calibration, the sensitivities of the both sensors have been measured in

lateral direction (i.e., along the length of the planar grating). It is done by first placing

the FODS probes near to the silicon gratings at the security distance 30 µm and then

carefully moving the silicon grating along y-axis with the help of motorized linear stage.
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Similar to the axial calibration, the lateral sensitivities of the both sensors have been

measured over a single grating step located in front of each FODS probe. The output

voltage values of the sensors have been stored using LabView R© software and plotted with

respect to the lateral displacement (i.e., 400 µm) as shown in the figure 4.33(a). After

applying the linear fits, the lateral sensitives of the FODS1 and FODS2 were found to be

12.70 mV/µm and 11.96 mV/µm, respectively. The reduction in the sensitives is due to

the fact that the grating steps are at 8.29◦ as discussed earlier in the section 4.2.
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FIGURE 4.33: (a) Calibration curves of the two FODSs along axial and lateral directions
with respect to silicon grating (b) Sensor noise

After determining the axial and lateral sensitivities, the RMS noise (in volts) of the

both sensors has been measured without moving the grating and FODS probes (see fig-

ure 4.33(b)). The measured noise values of both sensors are due to the electronics of the

SPU and deterioration of the electronic components such as PhD, coupling elements e.g.,

wires, connectors, etc. Taking into account all these parameters, the RMS noise of both

sensors were found to be ±0.368 mV and ±0.412 mV as shown in the figure 4.33(b). Ta-

ble 4.2 enlists different measured characteristics of both FODSs used with silicon grating.

FODS probe 1 FODS probe 2 Units

Calibration results of the both sensors along axial direction, i.e., α = 90◦

Sensitivity Saxial 87.98 82.85 mV/µm
Sensor noise (RMS) Nrms 0.368 0.412 mV
Measurement range daxial 130 140 µm
Linearity error LEaxial 0.86 0.73 %
Calibration results of the both sensors along lateral direction, i.e., α = 8.29◦

Sensitivity Sα 12.7 11.95 mV/µm
Measurement range dy 400 400 µm
Linearity error LEα 0.67 0.73 %

TABLE 4.2: Characteristics of the two FODS probes used with silicon grating
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After calibrating both FODSs, the silicon grating was displaced with the help of the mo-

torized linear stage situated along y-axis (see figure 4.32(a)). In order to avoid any

vibrations due to the motion of the linear stage, the translation speed was kept 1 µm/s.

The experiment was carried out in open loop by measuring the output voltage response

of both FODSs using a LabView R© software.

FODS probe 1 FODS probe 2Zoom A

FIGURE 4.34: Output voltage response of the long range sensor

During experiment, the output voltages from both sensors have been recorded after

each 1 µm displacement step over the range of 12.35 mm as shown in the figure 4.34.

From the presented results it can be seen that both sensors exhibit a linear and a non

linear zone. In the linear zone, the sensitivities of both sensors remain the same which

means that the sensor probes are in front of the grating step. On the other hand, the

non linear zone represents the output voltage due to the transition of the FODS probe

between two adjacent grating steps. For better explanation, an enhanced view of the

output voltage is presented in figure 4.35 in which the linear zones and non linear zones

can easily be identified. In our study, the linear zones of the both sensors have been used

to validate the working principle of the long range sensor. These linear zones have been

filtered within an output voltage range of 3.25 V to 8.75 V which represents the start limit

and end limits of the linear zone of both senors.

Moreover, in order to switch between both FODS probes for continuous measurement,

the signal overlap (see figure 4.35) between the linear zone provided by both sensors

was found to be 37 µm. This signal overlap value is higher than the one computed via

simulation (i.e., 30 µm) in section 4.3.4. This increment can be explained by the slight

orientation of the silicon gratings with respect to FODS probes axis in xy-plane (see sub

figure 4.35) which results in motion of the silicon gratings along y1-axis. In practice, this
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problem arises due to the manual assembly of different component (e.g., linear stages,

tilt stage, FODS handling mechanism, etc.) to realize the experimental setup. Despite

these assembly errors, the increment in the signal overlap is very small as compared to

the simulated results. So, in our calculations its effect has been neglected for the purpose

of simplification.
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FIGURE 4.35: Zoom A: enhanced view of the output voltage signals

To measure the linear sensitivity of the long range sensor, the output voltages of the

both FODSs have been accumulated as shown in the figure 4.36(a). From the presented

result, the switching between the linear zones of FODSs can easily be observed. A linear

fit was employed on the accumulated voltage curve to determine the average sensitivity of

the long range linear displacement sensor. From the linear fit, the average sensitivity was

found to be 12.63 ± 0.21 mV/µm with a linearity error less than 0.83%. Figure 4.36(b),

represents the linearity error in the measurement over the long full length of the planar

grating along y-axis. In figure 4.36(b), it can be observed that measurement error consists

of periodic peaks. These peaks often appear due to the variation in the flatness of the

grating steps as discussed previously in this chapter.

The accuracy of the long range sensor can be computed by the square root of the

quadratic sum of different errors such as amplitude of the sensor noise (± 0.20 mVrms,

see figure 4.33(b)), quantification noise (± 5 V/216 = ± 0.076 mV) and linearity error

0.83% (or ± 36.63 mV at full scale of 5.5 V, see figure 4.36(b)). After calculations, the

RMS value of the uncertainty was found to be ± 36.63 mV. So, by taking into account the

above mentioned average linear sensitivity (i.e., 12.63 mV/µm) for long range sensor, the

uncertainty in the measurement was found to be ± 3 µm.

From the above text, the RMS noise value (± 0.20 mVrms) with average linear sensi-

tivity (12.63 mV/µm) over complete length of grating, were used to compute theoretical

limit of resolution, i.e., 30.8 nm. This resolution value is 4.4 times more than the simula-

tion result (i.e., 7 nm) as discussed in section 4.3.4. This deterioration in the resolution
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FIGURE 4.36: (a) Accumulated output voltage of both sensors probes (b) Linearity error

value can be explained by the low sensitivity and RMS noise values of the FODSs used

with silicon grating due to the degradation of the electronics components with time. In

order to verify the theoretical resolution value (i.e., 30.8 nm) an experimental setup has

been realized as shown in the figure 4.37. The silicon grating was displaced beneath

FODS probes using a piezo actuator (PI 845-10). The motion of the piezo actuator was

controlled using a Labview R© software. A continuous linear displacement step size of

30.8 nm was realized for 10 seconds and the output response of the long range sensor

was measured in terms of displacement. Figure 4.37 (b), represents the measured dis-

placement. From the result, it has been concluded the long range sensor is capable to

provide a 30.8 nm resolution with a standard deviation of ± 0.27 nm.
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FIGURE 4.37: (a) Experimental setup (b) Limit of resolution, 30.8 ± 0.27 nm

Figure 4.38(a), shows the accumulated output voltage of the long range linear sen-

sor, when the silicon grating is translated in xy-plane at an angle ψ=45◦. This task was
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achieved by using both motorized linear stages situated along x- and y-axis, simulta-

neously (see figure 4.32(a)). The output voltage acquired via both FODSs have been

treated in similar fashion as described earlier in this section. From the result, it was

concluded that the linear sensitivity of the long range sensor is reduced to 8.47 mV/µm

(measured with a linear fit) in comparison to the linear sensitivity that was achieved in

the case of translation only along y-axis (i.e., 12.63 mV/µm). As discussed earlier in

this chapter, the sensitivity of the FODS used in our study depends on the motion di-

rection of the silicon grating. So, in the planar motion case, when the silicon grating

is moved at an angle ψ=45◦ in xy-plane, the theoretical linear sensitivity (Sψ) of the

long range sensor can be computed with the help of lateral sensitivity of the sensor, i.e.,

12.63×cosψ=8.93 mV/µm. The measured value of the sensitivity (8.47 mV/µm) is very

close to the computed value. The small difference is due to the fact that the motion of

the silicon grating have not been carried exactly at angle of 45◦ in xy-plane. So, in order

to identify the real angle, the measured value of the sensitivity (8.47 mV/µm) was used

to compute the real displacement angle (i.e., 47.88◦).

Moreover, the linearity error has been measured as shown in the figure 4.38(b)). It

was found to be ± 0.93% (or ± 47.35 mV) for a the full scale output of 5.5V over each

grating step. In the planar motion case, the new RMS value of the uncertainty was found

to be ± 47.36 mV. So, with the measured linear sensitivity (Sψ=8.47 mV/µm) value in

xy-plane, the uncertainty in the measurement was found to be ± 5.59 µm. In addition, by

taking into account the RMS noise value (± 0.20 mVrms) and the sensitivity of the sensor

(Sψ), the new limit of the resolution (Rψ) of the long range sensor in xy-plane was found

to be 47.22 nm. From these results, it has been concluded that in planar motion, the

resolution of the long range sensor deteriorates with respect to displacement angle.
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4.7 Uncertainty in the displacement measurement

In practice, the developed long range displacement sensor is sensible to certain physical

phenomenons such as vibrations, temperature variations, etc., which can lead to uncer-

tainty in the measured displacement. For example, due to the temperature variation, the

dimensions of the silicon grating can vary because of the thermal expansion coefficient

of silicon material. This can result in variation in the measured lengths with respect to

the temperature change. During our experiments, the silicon gratings have been used

at ambient temperature which did not influence the measured displacement. However,

steep change in the temperature can significantly deteriorate the output of the long range

sensor.

Thermal noise of the SPU consists of different electronic components. It can increase

the sensor noise which can reduce the limit of the resolution of the sensor. Moreover, in

chapter 3, it has been deduced that the mobile part of the MPS undergoes small vibra-

tions. From the perspective of integrated MPS design, the influence of these vibrations

will also introduce uncertainty in the displacement measurement via long range optical

sensor. In future, these uncertainty aspects of the long range optical sensor will be further

investigated to ensure high quality measurement.

4.8 Conclusion

A high resolution non contact linear sensor for long range displacement measurement has

been developed in this chapter. In the first part, the architecture and functioning of the

long range linear displacement sensor has been discussed in detail. In order to achieve

compact dimension for the long range linear sensor from the perspective to integrate it in

the MPS prototype, the dimensions of different components of the sensor were optimized

using a geometric model. In addition, the planar grating have been realized in silicon

material using wet anisotropic etching technique with TMAH solution. To improve the

surface roughness and flatness parameters of the silicon grating, different solutions have

been discussed. However, it was concluded that a concentrated solution containing 25%

TMAH and IPA at 80◦C lead to better surface quality. Furthermore, the deposition of a

300 nm gold coating improved the surface roughness and flatness parameters. With this

fabrication method, the best silicon grating obtained provided an average roughness and

flatness values of Ra= 9.35 ± 3 nm and PV=35.08 ± 7 nm, respectively.

After realizing the silicon grating, the experimental validation of the long range linear

displacement sensor was carried out. For this task, the silicon grating has been employed

with two FODSs. From the experimental results, it was concluded that the sensor is

capable to measure the displacement at a range of 12.5 mm with a high resolution of

30.8 nm in xy-plane.
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Microfabrication of novel cross

structure and sensor integration

This chapter presents the integration of long range sensor into the MPS prototype. In

order to facilitate the integration of silicon grating and PMAs into the mobile part of

the MPS prototype, first, a novel cross structure has been designed to reduce assembly

errors. This structure has been realized with microfabrication technology with the aim

to achieve compact dimensions. Later, different components of the MPS prototype have

been assembled together and experiments have been performed to validate the various

motion characteristics such as displacement range, resolution, etc.

5.1 Final MPS design layout and sensor integration

In this section, some design modifications have been carried out regarding the MPS pro-

totype. One of the main objectives behind these modifications is to reduce/eliminate the

assembly errors such as alignment errors between the PMAs situated along single axis in

the MPS, air gap variation between PMAs and PEDCs, etc. These errors appeared because

of the difficulty in handling the miniature PMAs and hemispherical glass beads during

their manual assembly with Zerodur R© cross structure. As a consequence, these assembly

errors often lead to deterioration in the mobile part displacement over the fixed part of

the MPS due to the generation of the non homogenous electromagnetic forces along a

single or both axes (see section 3.1.2).

Moreover, in order to integrate the long range sensor into the MPS, our aim was to fix

a set of silicon gratings on top of the mobile part along each axis (i.e., x- and y-axis) to

measure the long range displacement. Unfortunately, the addition of the silicon grating

onto the Zerodur R© cross structure will lead to an increase of 380 µm in the total height

of the mobile part of the MPS. This additional height value represents the thickness of

the silicon wafer in which silicon grating has been realized (see subsection 4.4.1.4). As a
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result, an air gap value greater than 380 µm is needed between PEDC (placed on the top

side) and PMAs to avoid any collision between silicon grating and PCB during functioning

of the MPS.

Taking into account the design/assembly constraints of the initial prototype, a novel

cross structure design has been proposed as shown in isometric view of the MPS in fig-

ure 5.1(a). The basic design of the new cross structure is similar to the Zerodur R© cross

structure. However, it consists of half depth cavities to place silicon gratings (each

14×14×0.38 mm3), through cavities (each 6×15×0.38 mm3) to fix PMAs of the LMs

and through holes (Ø1 mm) to fix the spherical glass beads (see figure 5.1(a)). In addi-

tion, the centre of the new cross structure was designed to hold a miniature component

with a footprint size of 12×12 mm2. The overall dimensions of the new cross structure

were kept 68×68 mm2 as shown in the figure 5.1(b). These dimensions have been se-

lected by taking into account the design parameters of the Zerodur R© cross structure and

the fixed part (i.e., PCB) of the MPS.

From the isometric view, it can be observed that the spherical glass beads have been

used to support the mobile part over the fixed part. The PEDC of each LM is insulated

with a 130 µm thick glass layer which also helps in providing a smooth motion surface for

the mobile part. In addition, for displacement measurement, two sets of silicon gratings

can be fixed inside the cavities as shown in the figure 5.1(b). The depth of these cavities

are equal to the height of the silicon grating i.e., 380 µm.
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FIGURE 5.1: (a) Isometric view of the MPS prototype (b) Schematic layout of the new
cross structure integrated with different components

The proposed cross structure design has been realized with microfabrication technol-

ogy in silicon material. This fabrication approach was selected due to its simplicity and
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ability to produce components with micro level fabrication tolerances. In our study, the

cross structure has been realized with dry (or plasma) isotropic etching technique in sili-

con material. The description regarding the microfabrication of the silicon cross structure

is presented in the following section.

5.2 Microfabrication of the novel cross structure

In this section, the microfabrication of the new cross structure in silicon material has

been carried out. This material was selected due to its lower density (2329 kg·m−3),
high strength1 (129.5 GPa) and low coefficient of thermal expansion (2.6×10−6/◦C)

[Mado 02]. The lower density of the silicon material leads a light weight cross struc-

ture design which interns results in increase in the load carrying capacity of the mobile

part in our application. Moreover, the microfabrication approach was selected due to the

complication in realizing the small dimensions of the proposed cross structure design such

as cross structure thickness (<1 mm), depth of cavities (380 µm), etc., with conventional

machining.

For microfabrication of the cross structure, the selection of the silicon wafer was car-

ried out irrespective of the its crystallographic plane orientation. The choice was made

due to the high silicon etch rate (≈1.5-1.8 µm/min) characteristics of the Inductively

Coupled Plasma (ICP) etching process to achieve structure with vertical side walls (see

figure 5.1). So, a Ø100 mm, standard {100} oriented silicon wafer with both side pol-

ished was selected to realize the cross structure. This wafer type was selected due to its

three times lower cost as compared to the one used to realize silicon grating in our study.

In addition, due to the height of the silicon grating, 0.8 mm thick silicon wafer was used

to fabricate deep cavities. This thickness value was selected to avoid maximum height of

the PMAs (i.e., 1 mm).

5.2.1 Design and development of the mask

After selecting the silicon wafer, the design and fabrication of the mask have been carried

out for photolithography process. In our study, the silicon cross structure was realized

in two steps to achieve cavities to hold the silicon grating. Initially the silicon wafer was

etched from top side to reach desired etch depth and later it was etched from bottom side

to realize through etched structures. For both of these steps, separate masks have been

designed to transfer the desired cross structure pattern. Figure 5.2 represents the optimal

designs for both masks used in top side and bottom side etching process. The designs

of both masks are similar in shape with an exception that mask# 1 contains additional

structures for cavities that will not be etched through during machining of silicon wafer.

1Silicon is an anisotropic material and its Young’s modulus value varies along its different crystalline
planes, i.e., 129.5 GPa (100 plane), 168 GPa (110 plane), 186.5 GPa (111 plane), [Mado 02].
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In these mask designs, some additional supports have been included to support the etched

cross structure in silicon wafer from falling during etching process (see 5.2).
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FIGURE 5.2: Design layout of the (a) top side mask (b) bottom side mask

After designing both of the masks in AutoCAD R© software, these two dimensional

designs have been transferred on the blank masks that consist of a square glass plate

which is pre-coated with chrome and photoresist layers on one side. This process was

carried out with mask writing machine by exposing the photoresist layer with a laser

spot. After writing process, the photoresist layer of the masks have been developed in

similar fashion as described in section 4.4.2 in the previous chapter. The dimensions of

the structures and profiles were verified under the microscope. After verification of the

masks, the fabrication of the silicon cross structure has been carried out. The description

regarding the microfabrication process is described in the following section.

5.2.2 Microfabrication process

The microfabrication of the cross structure in silicon material has been carried in 14 steps

as shown in the figure 5.3. Initially, the silicon wafer was cleaned and coated with a

600 nm thick aluminum layer on one side. This process was carried out via metal sputter-

ing process in PVD machine. This material serves as a protection mask during dry etching

process that is carried out in an ICP machine. After the aluminium deposition, a layer of

the photoresist was realized on top of it, by spinning 1 ml of positive photoresist (ma-

P1215) at 3000 rpm in order to transfer the mask pattern via photolithography technique

(see step 2, figure 5.3). A soft baking for 1 min at 100◦C was carried out to avoid any

kind of damage such as scratching during the mask alignment process in the next step.
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In step 3, the mask presented in figure 5.2(a), was used to expose the photoresist layer

to Ultra Violet (UV) light for 8 seconds. This process was realized with mask aligner/ex-

posure machine. During this process, the wafer flat was first aligned with respect to the

alignment structures on the mask. After exposure, the exposed photoresist was developed

in ma-D331 developer solution for 25 seconds. After verifying the developed structures

in the photoresist layer, the photoresist was cured for 5 min at 100◦C . Then, aluminum

etching was carried out with aluminium etching solution2 at 35◦C . After etching the alu-

minium layer, the wafer was rinsed with deionized water in Quick Dump Rinser (QDR)

machine and dried with spin drying machine. Then, the photoresist layer was removed

using acetone and ethanol and wafer was again washed (see figure 5.4(a)). After drying

the wafer, a 2 µm copper layer was realized on the bottom side (the side without struc-

tured aluminium) of the wafer with PVD metal sputtering machine (see step 5, figure 5.3).

This layer serves two purposes. First, it protects the bottom side from any contamination

and second, due to high thermal conductively of the copper (401 W/(m·K)) it helps in

cooling the wafer from the bottom side with liquid nitrogen, during ICP etching process.

In step 6, the silicon wafer is etched in ICP etching machine. During this process, the

structured aluminium layer serves as mask and the plasma in the ICP machine reacts with

the unprotected silicon material (on the top side on the silicon wafer). The silicon wafer

was etched from the top side for 4 hrs at an average silicon etch rate of 1.6 µm/min

(see figure 5.4(b)). After verification of the etch depth with Dektak profilometer, the

aluminium and copper layers have been remove using aluminum etching solution in step

7. In the aluminum etching solution both copper and aluminum layers have been removed

until no traces of these metals were observed via naked eye inspection. Then, the silicon

wafer was rinsed with deionized water in QDR and dried. At this point, the top face of

the silicon cross structure in the silicon wafer can be observed.

From step 8 to step 11, the process has been repeated in similar fashion as described

in step 2 to step 5, however during the exposure, mask # 2 (see figure 5.2(b)) was used.

During the alignment process, the etched alignment structures on the top face of the sili-

con wafer were used to align the mask and wafer. These etched alignment structures were

used to achieve an overlap between the outer profile of the silicon cross structure between

the bottom and top face to for through etching. Once the mask pattern is transferred into

aluminum layer and a 2 µm copper layer is realize as shown in the figure 5.4(c) and (d),

the dry isotropic etching was carried out on the bottom face of the silicon wafer in ICP

etching machine (see step 12, figure 5.3). The silicon wafer was etched until the struc-

tures are through etched. Upon finishing, the aluminium and copper layers are removed

with aluminium etching solution (see step 13, figure 5.3). At this point the silicon cross

structure profile is through etched. After cleaning the wafer in QDR, the silicon cross
2100 ml of the aluminium etching solution consists of 73% Phosphoric acid (H3PO4), 3.1% Nitric acid

(HNO3), 3.3% Acetic acid (CH3COOH) and 20.6% deionized water (H2O)
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structure has been released from the rest of the silicon wafer with diamond cutting ma-

chine. The inner parts of the cross structure have been removed by breaking the small

cross structure supports with diamond pen as shown in the figure 5.4(e). Afterwards the

cross structure is rinsed with ethanol and dried. The isometric view in step 13, figure 5.3

represents the final shape of the microfabricated silicon cross structure.
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FIGURE 5.3: Microfabrication process of the silicon cross structure

Figure 5.4 represents, some of the silicon wafer status during the different microfabri-

cation steps. The dicing of the silicon wafer was carried out along the silicon wafer cutting

line (see figure 5.4(e)). The final 800 µm thick silicon cross structure with through and

380 µm deep etched cavities is shown in the figure 5.4(f). In addition, a series of Ø1

mm through holes can be seen in structure. These holes have been used to insert spher-

ical glass beads to realize small separation between the mobile part and fixed part after

complete assembly.
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Figure 5.5 presents the images of the silicon cross structure that have been taken with

Scanning Electron Microscope (SEM). The inner and outer through etched silicon cross

structure profiles can easily be seen. Often, after ICP etching process, black silicon appear

can be seen on the deeply etched silicon surface. This black silicon is also referred as

silicon grass as shown in the figure 5.5(c). According to literature, the appearance of

silicon grass is often linked to the oxygen flow rate during the ICP etching process which

can be controlled by changing different control parameter such as pressure, gas flow rate,

etc.
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In our study, the influence of this silicon grass has been neglected due to their small

height. In addition, it has been observed that this black silicon often diminishes during

cleaning process of the final etched silicon wafer as shown in the figure 5.4(e). From

figure 5.5(a) and (b), the supports can be easily seen. After dicing the silicon wafer with

diamond cutting machine these supports are scratched with a diamond tip pen.

5.3 Final assembly and experimentation

After realizing the silicon cross structure, different components such as PMAs, glass beads,

and a mirror cube have been assembled together. An experimental setup has been realized

to validate the new cross structure deigns as shown in the figure 5.6(a). To hold the

fixed part of the MPS, an aluminum structure with dimensions 130×130×10 mm3 has

been fabricated. Two FODS probes have been installed to measure the displacement

performed by the mobile part in xy-plane. Both of the FODSs (i.e., FODSx and FODSy)

have been calibrated in similar fashion as described in section 3.2.2.2. After calibration,

the displacement measurement resolution of FODSxand FODSy were found to be 15 nm

and 12 nm, respectively.

Figure 5.6(b) represents the linear response of the silicon cross structure based MPS

along y-axis in open loop control. An amplitude of 0.8 A for the injected currents were

used in the PEDCs to generate electromagnetic forces. Figure 5.6(b) represents the sim-

ulated response (computed via model presented in section 2.5.2) and experimentally

measured response of the MPS. For simulation results the new values of the total weight

(i.e., 4.7 gms) of the mobile part have been used. In addition, since the glass beads are

not the similar to the one used earlier with Zerodur R© cross structure, the new friction

values have been experimentally determines using inclined plane technique. The new

values of the static friction coefficient (µstatic) and dynamic friction coefficient (µdynamic)

were found to be 0.21 and 0.18, respectively. For these parameters, the simulation result

revealed a net displacement of 973 µm for a theoretically expected displacement of 1 mm

along a single axis. Whereas from experimental results the displacement was found to be

978 µm. The small difference between the simulation and experimental results is mainly

due to the dynamics of the MPS. From analysis it has been concluded that in comparison

to our earlier prototype, the displacement loss due to friction is reduced by 11.78% in the

new MPS prototype.

In order to evaluate the planar motion characteristics of the MPS. All four LMs have

been injected with 0.8 A current. Figure 5.7(a) represents the linear profile in xy-plane.

From the results it can be seen that, the trajectory of the profile is nearly repeatable. The

small deviation between backward and forward motion is due to the characteristics of the

the FODSs in their non linear zone. However, the maximum deviation in the trajectory

was found to 7 µm. This less error indicates that the precise fabrication of the silicon
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FIGURE 5.6: (a) Experimental setup (b) Translation along y-axis

cross structure has significantly improved the motion characteristics by reducing the PMA

assembly errors. Another test concerning the planar motion has been carried out by

injecting the currents in all of the four LMs in a fashion that only one axis should deliver

motion at a time. This approach was adapted to realize 1 mm ×1 mm square motion

profile. A 500 Hz sampling frequency of the injected current were used to realize the

desired motion profile at 0.05 mm/s speed. Both of the FODS were used in their non

linear zones.
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Figure 5.7(b), represents the real motion profile. From the result it can be seen that,

the measured profile contains a drift effect. The drift effect is because the platform is

not perfectly leveled with respect to the horizontal plane. Nevertheless, the error in the

measured profile is very small.
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In addition, to validate the motion in closed loop control, all four LMs have been

injected with 0.8 A sinusoidal currents and the frequency of the injected current has been

adjusted via PI control as described in section 2.5.3. For desired displacement trajectory,

a sinusoidal signal with amplitude ±165 µm has been used to realize a circular profile

of 330 µm. From the results presented in figure 5.8 the tracking error was found to be

± 2.8 µm.

FIGURE 5.8: Circular motion profile

Figure 5.9, represents the integrated design. Four silicon gratings have been assem-

bled into the etched cavities. In addition, four FODS probes (each with dimensions

Ø1 mm) were used to measure the long range displacement. After the assembly, the

sensor have been calibrated and average sensitives were found to be 11.37 mV/µm for

x-axis sensor and 10.38 mV/µm for y-axis sensor with a linearity error less than 1% for

both FODSs. Taking into the RMS noise values, the resolution of both sensor was found

to be 43 nm and 69 nm, respectively. The degradation of the sensor resolution is mainly

due to the difficulty of positioning the FODS probes in front of the silicon gratings in the

cross structure.

In order to validate the concept, an experiment has been carried out in open loop

control to measure long range displacement. This choice was made due to the difficulty

in controller design. In future, the PI control will be modified to include the switching

behaviour of the long range sensor. However, in this study we have decided to measure

the output voltage with respect to the displacement performed by the mobile part. So,

for this task along a single axis, PEDCs have been injected with 0.8 A currents with a

sampling rate of 1 kHz. The objective was to realize the displacement at very slow speed

(i.e., 10 µm/s) along both axis separately.

Figure 5.10(a), represents the accumulated voltage along x-axis. This measurement

has been carried out over 7 mm displacement range. Theoretically, the travel range of

the MPS prototype is 10 mm, but due to the relative distance between two FODS probes
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FIGURE 5.9: Integrated sensor and its enhanced view

over each grating, the measurement can only be performed for a range of 7 mm. In

addition, another test has been carried out by driving the mobile platform along both

axes (i.e., x- and y-axis). Figure 5.10(b) represents the xy-plot that has been realized

with accumulated voltages achieved by both long range sensors. From the analysis, it has

been concluded that the integrated MPS prototypes is able to provide a travel range of

7×7 mm2 in xy-plane.
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FIGURE 5.10: Open loop response along x-axis and y-axis

In order to estimate the motion resolution of the MPS prototype, the long range sensor

can be used. Since, each grating step provides a measurable length of 621 µm. So, with

the help of the PI control, a step response test was conducted without signal switching

between two FODSs. For this task, the frequency of the currents in PEDCs have been

controlled in similar fashion as described earlier. From the results presented in figure 5.11

it has been concluded that the motion resolution of the MPS prototype is 1.367 µm with

a standard deviation of ± 0.285 µm.
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Mean value: 1.365 µm

Mean value: -0.00185 µm

 1.367 µm

FIGURE 5.11: Step response realized with long range displacement measurement sensor

In the end, to investigate the rotation behaviour of the mobile part, image processing

technique was used. A high resolution camera was fixed on top of the MPS prototype

as shown in the figure 5.12. The camera was focused on a sticker fixed at the center of

the stage. After calibrating the camera, four 1024 pixels×768 pixels (72 dpi of vertical

and horizontal) images were taken to identify the position of the predefined markers

(P1, P2, P3, P4, and P5) on the mobile part of the MPS. For one cycle by inverting the

directions of the 0.8 A (peak to peak) currents (one period of 2 Hz with 200 Hz sampling

frequency) were injected into PEDCs are along each axis thus creating a coupling effect

which allows the mobile part to rotate about its centre point P5 to its maximum range.

From captured images the calculated value for a single pixel is equal to 0.095 mm. By

identifying the markers on the mobile part via image processing algorithm developed in

Visual C++, the analysis of captured images revealed a maximum rotation angle between

-11.13±0.91◦and 10.97±0.69◦ about the centre point P5(319.97 pixels, 317.55 pixels).

This rotation is limited because of geometrical limit of the PEDCs and that of aluminium

structure. In future, advanced image processing algorithms along with control models will

be developed in order to control the rotation motion in real time with high resolution.

High resolution
camera

Focus
zone

P1
P1

P3 P3

P2

P4

P2

P5 P5

P4

FIGURE 5.12: Experimental setup to measure the rotation
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5.4 Conclusion

In this chapter, the design and development of a novel silicon cross structure has been pre-

sented. The integration concept of the sensor has been explained and the microfabrication

of this cross structure has been carried out via ICP etching technology. For fabrication,

two mask designs have been used to etch a standard silicon wafer in two steps, i.e., from

top side and bottom side. The detail microfabrication layout has been realized and silicon

cross structure has been fabricated. From the experimental results, it was concluded that

the new cross structure eliminates the PMA assembly errors and reduce the displacement

loss by 11.78% as compared to conventionally fabricated Zerodur R© cross structure.

At the end some additional experiments have been carried out to evaluate the motion

behaviour of the mobile part in xy-plane. In addition, open loop tests have been carried

out to verify the functionality of the integrated long range sensor. With PI control, a

displacement resolution of 1.37 µm has been achieved via measuring with integrated

long range silicon sensor. At the end, a rotation test has been carried out to measure the

maximum rotation range of the MPS. The rotation of the mobile part in our case is mainly

limited due to the aluminum fixture that has been developed to mount the fixed part of

the MPS. In our study, we used image processing technique to measure the maximum

rotation that can be realized by the MPS. From the experiment, it was concluded that

MPS is able to deliver a maximum rotation of ± 11◦ in xy-plane.
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Chapter 6

Conclusion and perspective

This chapter presents the conclusion by summarizing the works presented in the previous

chapters. In addition, a number of perspectives for future research on the basis of the

study presented in this thesis will be discussed.

6.1 General conclusion

The objectives of the work presented in this thesis concern the development a compact

miniature positioning system with integrated sensor that should be able to deliver mil-

limeter level displacement strokes in xy-plane in micro applications. In order to reach

our objective, first, a survey has been conducted to evaluate different existing technolo-

gies. Based on this survey, electromagnetic based direct drive actuation technology was

selected due to its characteristics such as high speed, ability to realize wireless mobile

part of the MPS, etc.

After selecting the drive technology, a long range MPS concept has been proposed in

chapter 2. The uniqueness of the proposed design lies in its simple design and ability to

perform millimeter level strokes in xy-plane with minimum possible overall dimensions

of the whole system. The functioning of the MPS has been explained for a single LM due

to its symmetrical design. Afterwards, different solutions have been discussed in order

to realize the miniature drive components such as planar coils and permanent magnet

arrays. Based on these solutions, a permanent magnet array with 14 Permanent Magnets

Array (PMA) assembled in North-South configuration have been proposed to realize a

compact long range LM. In order to achieve continuous motion of the mobile part, a

design of two phase Planar Electric Drive Coils (PEDC) has been proposed. After the

description of the long range motion concept for a single LM, the solution is then extended

to realize a miniature positioning system with a cross structure design.

After the description of the miniature positioning system, its modelling has been car-

ried out. For the purpose of simplification, models have been developed for a single LM
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due to the symmetry of the MPS design. These models have been used to simulate the

motion behaviour of the complete MPS prototype in open and closed loop control. From

the simulation results, it has been concluded that the proposed MPS design can deliver

millimeter level strokes in xy-plane.

In chapter 3, the proposed long range MPS design has been realized. In order to

do so, the design layout and the description regarding the components used to realize

the prototype have been discussed. Different solutions regarding the selection overall

design parameters of the fixed and mobile part of the MPS have been carried out. In

addition, analyses have been performed in order to qualify the MPS design for long range

motion application by taking into account the influence of the magnetic field, vibration

and the assembly errors generated over each LM. From these design and analysis, it

was concluded that with an overall foot print size of 80×80 mm2 of the fixed part, the

prospered MPS is able to deliver a theoretical motion range of 10×10 mm2 in xy-plane.

To verify the motion characteristics, experiments have been carried out in open loop

control. Then, a PI control has been developed in order to control the motion of the

mobile part by changing the frequency of the injected current in the PEDCs situated in the

fixed part of the MPS. From these experiments, it has been concluded that the MPS is able

to deliver variable stroke ranging from few micrometers to 2 mm with sub micrometer

level accuracy. In addition, the MPS prototype can perform motion in xy-plane. It was

also concluded that the maximum motion range of the MPS prototype was limited to 2

mm due to the fiber optic sensor used to measure the displacement range.

In order to solve the displacement measurement problem at long range (i.e., millime-

ter level), a high resolution non contact linear sensor has been realized in chapter 4. In

the first part, the architecture and functioning of the long range linear displacement sen-

sor has been discussed in detail. In order to achieve compact dimension for the long range

linear sensor from the perspective to integrate it in the mobile part of the MPS prototype,

the dimensions of the grating and sensor probe have been optimized using a geometric

model.

To realize the long range sensor, its planar grating have been realized in silicon

material by realizing a microfabrication process to etch the silicon gratings using wet

anisotropic etching technique in TMAH solution. Furthermore, to improve the surface

roughness and flatness parameters of the silicon grating, different solutions have been

discussed and experimentally tested. From the results obtained after the analysis of the

fabricated gratings, it was concluded that a concentrated solution containing 25% TMAH

and IPA at 80◦C lead to good surface quality. In addition, the deposition of a 300 nm

gold coating improves the surface roughness and flatness parameters. With this fabrica-

tion method, the best silicon grating obtained provided an average roughness and flatness

values of Ra = 9.35±3 nm and PV=35.08±7 nm, respectively.
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After realizing the silicon grating via microfabrication, experiments have been carried

out in order to validate the long range linear displacement sensor. For this task, the

silicon grating has been employed with two FODSs. From the experimental results, it was

concluded that the sensor is capable to measure the displacement at a range of 12.5 mm

with a high resolution of 30.8 nm in xy-plane.

In chapter 5, the integration of the long range sensor into the MPS prototype has been

carried out. In order to facilitate and reduce assembly errors during manual assembly

of the various components of the MPS, a novel cross structure in silicon material has

been developed via ICP etching technology. For fabrication, two mask designs have been

used to etch a standard silicon wafer in two steps, i.e., from top side and bottom side.

The detail microfabrication layout has been realized and silicon cross structure has been

fabricated. From the result, it has been concluded that the new cross structure eliminates

the PMA assembly error thus reduce the displacement loss by 11.78% as compared to

conventionally fabricated Zerodur R© cross structure.

At the end some additional experiments have been carried out to evaluate the motion

behaviour of the mobile part in xy-plane. In addition, open loop tests have been carried

out to verify the functionality of the integrated long range sensor. With PI control, a

displacement resolution of 1.37 µm has been achieved via measuring with long range

silicon sensor. At the end, a rotation test has been carried out to measure the maximum

rotation range of the MPS. The rotation of the mobile part in our case is mainly limited

due to the aluminum fixture that has been developed to mount the fixed part of the MPS.

In our study, we used image processing technique to measure the maximum rotation that

can be realized by the MPS. From the experiment, it was concluded that MPS is able to

deliver a maximum rotation angle of ± 11◦.

6.2 Perspectives

The MPS design presented in this work has a fixed planar stroke (i.e., 10×10 mm2). One

of the perspective regarding the proposed MPS design is to further optimize its architec-

ture to achieve larger strokes.

The rotation of the mobile is limited due to the length of the PEDCs. Based on the

practical experience with the MPS prototype developed in this work, it was observed that

the rotation of the mobile part in xy-plane does not entirely depend on the length of the

PEDCs. So, in future it will be a good approach to redesign these coils and realize new

models to simulate the rotation behaviour of the mobile part.

Concerning the payload capacity of the current MPS design which is limited to 11 grams,

different solutions may be employed to increase its payload capacity. For example, by in-

troducing another set of PEDC can increase the payload capacity due to the generation
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of more electromagnetic force. Alternatively, this solution can also be employed to re-

duce the power consumption. In future, benefits of applying a second set of PEDCs on

top of the mobile part need to be carried out. In addition, the sandwich structure based

MPS design could help in levitation of the mobile part which can significantly improve

the dynamics of the system due to elimination of the friction that appears because of the

mechanical contact between the mobile and fixed parts.

The integration of the long range sensor has been manually carried out. Though,

this solution seems suitable as silicon grating has been realized in a silicon wafer with

special crystallographic orientation. However, the direct fabrication of the silicon gratings

on the cross structure, is possible if the etching is preformed in silicon wafer with 111

crystallographic orientation at 45◦. This approach will reduce the fabrication time and

will eliminate manual assembly errors. The main complication that need to be assessed is

to realize a hybrid microfabrication process that should integrate wet anisotropic etching

followed by ICP etching process.

In future, the work presented in this thesis will be extended to realize compact smart

actuation platform for micro factories. In addition, from the control aspect, a dedicated

control will be developed in order to reduce the complexity of the displacement measure-

ment with long range linear displacement sensor.
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Appendix B

Measurement of the silicon grating surface characteristic

In chapter 4, section 4.5, the surface analysis of the micro fabricated silicon grating has

been carried out using white light interferometer machine ZygoTM (New view 200) at

Roberval laboratory UTC. The measurement principle this machine consists of passing a

white light through optical system and create interference fringes on the surface of the

specimen that is being analyzed. These fringes are recorded with a help of CCD sensor.

The objective lens is mounted on a vertical piezoelectric actuator which saves the interfer-

ogram at each altitude. Based on the saved information, a three dimensional topography

of the observed surface is realized and displayed. Similar to all optical measurement

techniques, there is no contact between the surface of the sample which avoids the dete-

rioration of the surface during measurement. Table B.1 represents the characteristics of

this ZygoTM microscope.
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Computer

TM
Zygo  
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FIGURE B.1: Schematics of the working principle and real view of the ZygoTM200 inter-
ferometer microscope

Table B.1: Typical characteristics of the ZygoTM 200 interferometer microscope

Vertical Spatial Vertical Observable Objective Scan Obervable
resolution resolution scan travel surface lens time parameters

0.1 nm
0.44 µm to

100 µm
140×110 µm2 to x2.5, x10 55 sec Macro/micro

8.8 µm 2.82×2.11 mm2 and x50 (Max.) roughness, waviness
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Appendix E. Measurement of the silicon grating surface characteristic

In order to examine the microfabricated silicon gratings, it has been placed beneath

the objective lens of the ZygoTM200 machine. After leveling the grating steps with respect

to the objective lens, the surface scan has been carried out. During analysis steps to exam-

ine the roughness and flatness parameters of the grating steps, the raw profile obtained

via scanning the surface has been filtered using a plane form. This process is often carried

out in order to remove any ambiguity concerning the leveling error of the grating step in

horizontal plane. Different surface filtering options (e.g., plane form, cylindrical form,

spherical form, etc.) can be carried out, however, since our grating steps are theoretically

flat so we have selected the removal of a plane form for filtering process in order to re-

move the leveling error factor. The residual profile consists of roughness and waviness

profiles as depicted in the figure B.2.
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FIGURE B.2: Measurement of grating surface characteristics and analysis steps

The Ra value has been measured from roughness profile using equation (B.1). Fur-

thermore, the PV value of the grating step surface has been measured from the waviness

profile by taking into account the value of the maximum peak and valley values [Khia 07].

Ra = 1
NM

ij=NM∑
ij=(1,1)

|zij − z̄|

PV = |zmax − zmin|
(B.1)

Where, nx, ny are the number of samples measured over a grating step and z̄ is the

mean value.
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Appendix C

Description of the motorized linear stage

During experimentations, Motorized linear stages have been employed to calibrate fiber

optic displacement sensors. These stages have been purchased from Newport1 Corpora-

tion. Figure C.1 represents the schematic layout and the real view of the MFA-CC linear

stage. It consists of a mobile part that is driven with a dc motor. The displacement of

the mobile part is measured with a built in motor mounted rotary encoder. This encoder

is able to deliver a resolution of 55 nm over a maximum linear displacement range of

25 mm. Further characteristics regarding the Newport motorized linear stage are pre-

sented in table C.1.

Mobile part
Fixed part

Motion direction

FIGURE C.1: Schematic layout and real view of the motorized linear stage

The linear stage was driven with a motion controlling unit ESP 100 that is coupled

with a computer via serial port (RS232) as shown in the figure C.2. In addition, a program

was developed in Labview R© software to communicate and generate control signals for

ESP controller in order to control/measure the position of the Newport linear stage.

1http://www.newport.com/
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Control 
signal

(Volts)

Driving current (A)

Computer

® LabVIEW Software

Serial port 
(RS232)

ESP 100
Motion controller

Newport MFA-CC
Linear stage

Position measured (V)

via built in encoder

FIGURE C.2: Schematic layout of the linear stage control

Table C.1: Characteristics of the Newport motorized linear stage
1. Design Details

Base material Stainless steel
Bearings Double row linear ball bearings
Drive Mechanism Backlash compensated leadscrew
Drive Screw Pitch (mm) 0.5
Reduction Gear MFA-CC: 1:14 and MFA-PP: 1:43
Feedback MFA-CC: Motor mounted rotary

encoder; 2,048 cts/rev. MFA-PP: None
Limit Switches Mechanical switches
Origin Uses motor side limit for homing,

typically < 4 µm repeatability
Motor MFA-CC: DC servo motor UE1724SR

MFA-PP: 2-phase stepper motor
UE16PP, 1 full step = 0.485 µm

Cable Length (m) 1.5

2. Specifications MFA-PP MFA-CC

Travel Range [in. (mm)] 1(25) 1(25)

Resolution (µm)** 0.00757 0.0175
Minimum Incremental Motion (µm) 0.1 0.1
Unidirectional Repeatability (µm) guaranteed 0.5 0.3
Bidirectional Repeatability (µm) guaranteed* 2.5 2
On Axis Accuracy (µm) guaranteed 8 8
Maximum Speed (mm/s) 0.3 2.5
Pitch / Yaw (µrad) guaranteed 200/100 200/100
* After backslash compensation **Equals 1/64 of a full step

3. Load characteristics

Cz (N) Normal center load capacity on bearings 50
-Cx, +Cx (N) Inverse/Direct load capacity on X axis 10
kax / kay (µrad/Nm) 100/120
Q Off-center load, Q≤Cz / (1 + D/20), D is Cantilever distance in mm
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