
HAL Id: tel-01077947
https://theses.hal.science/tel-01077947

Submitted on 27 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a resilient service oriented computing based on
ad-hoc web service compositions in dynamic

environments
Wenbin Li

To cite this version:
Wenbin Li. Towards a resilient service oriented computing based on ad-hoc web service compositions
in dynamic environments. Engineering Sciences [physics]. INSA de Lyon, 2014. English. �NNT :
2014ISAL0032�. �tel-01077947�

https://theses.hal.science/tel-01077947
https://hal.archives-ouvertes.fr

N° d’ordre 2014ISAL0032
Année 2014

Thèse

Towards a Resilient Service-Oriented Computing
based on Ad-hoc Web Service Compositions
in Dynamic Environments

Présentée devant
L’institut national des sciences appliquées de Lyon

Pour obtenir
Le grade de docteur

Formation doctorale : Informatique

École doctorale : École Doctorale Informatique et Mathématiques

Par
Wenbin LI
(Maîtrise en Informatique)

Soutenue le 27 Mars 2014 devant la Commission d’Examen

Jury

CAUVET Corine Professeur, Université d’Aix-Marseille Raporteur

FRONT Agnès Maître de Conférences, HDR, Université Pierre Mendès Raporteur

MALEFANT Jacques Professeur, Université Pierre et Marie Curie Président

EXPOSITO Ernesto Maître de Conférences, HDR, INSA de Toulouse Examinateur

BADR Youakim Maître de Conférences, HDR, INSA de Lyon Directeur de Thèse

BIENNIER Frédérique Professeur, INSA de Lyon Co-directrice de Thèse

Laboratoire de recherche: Laboratoire d’Informatique en Image et Systèmes
d’information (LIRIS)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

i

Abstract

The Service-Oriented Computing (SOC) promotes assembling software
components into loosely-coupled networks of services, to create flexible,
agile applications and business processes that span organizations and com-
puting platforms. Due to the distributed and asynchronous nature of Web
services, the Web service composition process plays an important role in
achieving SOC. In dynamic environments by which contextual information
such as Web service properties and composition requirements often change,
the composition process is thus affected and, consequently, should be able
to adapt composite applications to changes at design time and runtime. Un-
fortunately, current Service-Oriented Architecture (SOA) and Web service
composition approaches lack of the ability to deal with continuous and un-
predictable changes. Building resilient service-oriented architectures that
are adaptable to endogenous and exogenous changes in dynamic environ-
ments reveal a drastic challenge to current composition processes. In addi-
tion, current composition processes provide a limited support for business
users to specify their requirements in business languages to automatically
compose business processes (i.e., composite services). By such, the gap be-
tween business requirements and composition requirements related to Web
services increases the complexity of developing adaptable SOA-based ap-
plications and processes in dynamic environments.

To overcome these challenges, we introduce the concept of Resili-
ent Service-Oriented Computing (rSOC) to construct resilient SOA-based
applications driven by business requirements in dynamic environments. To
this end, the resilient SOA is defined as a set of models that affect and are
affected by each other, and relies on a model-to-model transformation ap-
proach to ensure SOA adaptability and evolution. In this thesis, we particu-
larly focus on two models: a three-level composition requirement model
and a Web service composition model, to establish the foundation for a re-
silient SOA as follows: firstly, composition requirements are modeled in
three levels, i.e., business-centric, capability-focused and rule-driven. Par-
ticularly the business-centric requirement model provides business users
with a structured natural language to specify requirements; secondly, a two-
phase requirement transformation process builds the rule-driven Web ser-
vice composition requirement model from the business-centric requirement
model as set of composition rules, expressing multi-objective constraints
that affect the composition process and its dynamic environment; thirdly,
an ad-hoc Web service composition approach is introduced to flexibly con-
struct composite services without predefined composition plans. Particular-
ly, composition rules generated in composition process may affect other
model(s) in the resilient SOA, such as composition requirement model, and
recursively invoke the model-to-model transformation approach to replan
the ad-hoc Web service composition approach.

Keywords: Web service – service-oriented computing – service-oriented
architecture – service composition – composition requirement – service
capability – resilient – ad-hoc – dynamic environment

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

ii

Résumé

L'informatique orientée services (SOC) favorise l'assemblage de compo-
sants logiciels indépendants pour créer des applications et processus métier
flexibles et agiles. Le processus de composition des services Web joue un
rôle important dans la réalisation des architectures orientées services (SOA).
Dans les environnements dynamiques dans lesquels des informations con-
textuelles changent souvent, le processus de composition est souvent affec-
té pendant les phases de conception et d’exécution. Ce processus devrait
par conséquence être en mesure de s'adapter aux changements en temps de
conception et exécution. A présent, les architectures orientées services et
les mécanismes automatiques de composition de services Web ne parvien-
nent pas à faire face aux changements continus et imprévisibles. Construire
des architectures orientées services qui s'adaptent aux changements dans
des environnements dynamiques révèle un défi pour les processus de com-
position de services Web. En outre, les processus de composition actuelles
offrent un support limité pour les utilisateurs professionnels de spécifier
leurs exigences métier afin générer automatiquement les processus métiers
(services Web composites). Par cela, l'écart entre les exigences fonction-
nelles et non-fonctionnelles au niveau métier et les exigences techniques
liées aux mécanismes de composition de services Web augmentent la com-
plexité du développement d'applications ou de processus métier adaptés aux
environnements dynamiques.

Pour remédier à ces défis, nous introduisons le concept de rési-
lience appliqué à l'informatique orientée services (nommé SOC résilient)
afin de construire des applications et processus métier dynamiques en res-
pectant les exigences métier dans des environnements dynamiques. La SOA
résilient est conçue comme un ensemble de modèles qui affectent, et sont
affectées par, d’autres modèles. Dans cette thèse, nos contributions, qui se
concentrent en particulier sur le modèle d’exigence de composition et le
modèle de composition des services Web, composent trois parties princi-
pales: tout d'abord le modèle de d’exigence est modélisé aux trois niveaux,
i.e., métier, capacité, et règle. Particulièrement, le modèle de d’exigence
métier offre aux utilisateurs un langage structuré à base de langage natu-
relle pour spécifier les processus métier; d'autre part, un processus de trans-
formation dérive par transformation un modèle d’exigence de composition
à base de règles. Chaque règle représente un ensemble de contraintes multi-
objectives concernant différentes variables liées au processus de composi-
tion et à son environnement dynamique. Troisièmement, une approche ad-
hoc de composition des services Web a été développée pour construire de
services composites sans plans de composition prédéfinis dans des environ-
nements dynamiques. L’approche de transformation de modèle-à-modèle
génère les règles qui sont récursivement utilisées pour modifier ces mo-
dèles et ensuite replanifiés une composition ad-hoc de services Web.

Mots-Clés: service Web – informatique orientée services – architecture
orientée services – composition des services – exigence de la
composition – capacité de service – résilient – ad-hoc – environnement
dynamique

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

iii

Acknowledgements

First of all, I would like thank my supervisor Professor Youakim Badr and
my co-supervisor Professor Frédérique Biennier for the invaluable discus-
sions and advice throughout the course of this research, without which this
dissertation would not have been achieved. Working with them during the
three-and-a-half years was an exciting adventure.

I own my thanks to Professors Corine Cauvet and Agnès Front for
spending their time in reviewing my dissertation and giving me the con-
structive suggestions.

I am grateful to Professors Jacques Malefant and Ernesto Exposito
for their participation in this jury.

I would also like to thank my colleges at INSA Lyon, Francis
Ouedraogo, Yong Peng, Ziyi Su, and Wei Zuo, for the pleasant time that we
passed together.

In particular, I express my sincere thanks to my parents. Their
unwavering support and encouragement have brought me to the completion
of this dissertation. You raise me up, to more than I can be.

Finally, special thanks to all the people whose names are not listed
here for helping me with this dissertation: to the ones who know they did,
and to the ones who do not.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI iv
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Table of Contents

Abstract ... i

Résumé ... ii

Acknowledgements ... iii

Chapter 1 General Introduction .. 1

1.1 Background ... 1

1.2 Research Challenges .. 6

1.3 Research Contributions .. 8

1.4 Motivation Scenario ... 14

1.5 Thesis Outline .. 18

Chapter 2 State of the Art .. 21

2.1 Service-oriented Computing Preliminaries .. 21

2.2 A Glance at Web Service Composition Approaches 29

2.3 Overview of Requirement Specifications in Web Service Composition 59

2.4 Managing Requirements ... 64

2.5 Executive Summary ... 69

Chapter 3 A Three-level Requirement Model for Ad-hoc Web Service Compositions73

3.1 Introduction ... 74

3.2 Related Work ... 76

3.3 General Process for Crisis Management .. 78

3.4 Three Levels of Composition Requirements .. 79

3.5 The Business-centric Requirement Model ... 82

3.6 The Capability-focused Requirement Model ... 88

3.7 The Rule-driven Web Service Composition Model 92

3.8 Conclusion ... 100

Chapter 4 Two-level Requirement Transformations ... 103

4.1 Introduction ... 104

4.2 The Requirement Transformation Framework 105

4.3 The Capability Matching Process ... 109

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI v
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

4.4 The Association Discovery Process .. 117

4.5 Conclusion ... 123

Chapter 5 Service Farming: An Ad-hoc Web Service Composition Approach 125

5.1 Introduction ... 126

5.2 The Service Model ... 129

5.3 Service Farming Composition Algorithm .. 132

5.4 The Dynamic Reconfiguration of Composite Web Services 145

5.5 Conclusion ... 151

Chapter 6 Implementation Architecture ... 153

6.1 Implementation Architecture .. 153

6.2 Experiment Results .. 157

6.3 Conclusion ... 162

Chapter 7 Research Perspectives ... 165

7.1 Research Contributions .. 165

7.2 Future Research Trends .. 168

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI vi
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Table of Figures

Figure 1.1 A General View of the Resilient SOC Paradigm ... 10
Figure 1.2 The Thesis Organization .. 20
Figure 2.1 SOA with Web Services .. 23
Figure 2.2 WSDL Document Representation .. 26
Figure 2.3 SOAP Message Structure .. 27
Figure 2.4 OWL-S Structure .. 28
Figure 2.5 ESB Architecture Pattern .. 29
Figure 2.6 A Conceptual Model of Automated Web Service Composition 33
Figure 2.7 Requirement Engineering Process .. 60
Figure 3.1 The Conceptual rSOC with Requirement Model ... 75
Figure 3.2 A General Crisis Management Process ... 78
Figure 3.3 The UML class diagrams of the Business-centric Requirement Model 85
Figure 3.4 The UML Class Diagram of the Capability-focused Model 90
Figure 3.5 Composite Services as Binary Trees .. 95
Figure 3.6 Structure Rules as Binary Trees ... 97
Figure 4.1 General Framework of Composition Requirements Transformation 106
Figure 4.2 Concept Matching between Different Requirement Models 108
Figure 4.3 The Capability Matching Process (Part 1) .. 115
Figure 4.4 The Capability Matching Process (Part 2) .. 116
Figure 4.5 The Association Discovery Process (Part 1) ... 122
Figure 4.6 The Association Discovery Process (Part 2) ... 123
Figure 5.1 The Conceptual rSOC with Service Farming .. 128
Figure 5.2 The Service Farming Flowchart ... 133
Figure 5.3 The Service Planting Stage .. 134
Figure 5.4 The Service Growing Stage ... 135
Figure 5.5 The Algorithm of Constructing ci≞rs.p .. 136
Figure 5.6 Service Growing: Constructing Candidate Composite Services 137
Figure 5.7 Service Growing: Constructing Entire Composite Services 138
Figure 5.8 The Service Harvesting Stage .. 139
Figure 5.9 The Utility Calculation .. 141
Figure 5.10 K-means Clustering Example ... 142
Figure 5.11 The Structure Rule Enrichment .. 143
Figure 5.12 The Service Evaluating Stage .. 144
Figure 5.13 The Service Substitution Algorithm ... 147
Figure 5.14 Service Substitution Example .. 148
Figure 5.15 The Web Service Composition Replanning .. 150
Figure 5.16 Composition Replanning Example ... 151
Figure 6.1 The Resilient SOA Framework .. 154
Figure 6.2 General Implementation of Service Framing Manager 155

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI vii
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Figure 6.3 Class Diagram of Service Farming Manager .. 156
Figure 6.4 Optimal Utility Increase .. 160
Figure 6.5 Average Time for Each Cycle by Varying k ... 161
Figure 6.6 Average Time for Each Cycle by Varying T ... 161
Figure 6.7 Scalability Evaluation ... 162

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI viii
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Table of Tables

Table 2.1 Comparison of Automated Composition Approaches ... 40
Table 2.2 A Global View on Web service Composition Approaches 58
Table 3.1 Major Features of SBVR Meta-model ... 84
Table 3.2 Business-Centric Requirement Examples .. 87
Table 3.3 Domain for a Dynamic Environment ... 88
Table 3.4 Web Service Capability Instances based Capability Model 93
Table 3.5 The Rule-driven Web Service Requirement ... 100
Table 4.1 Notation and Operator Legends ... 109
Table 4.2 Matching Relation of Capability Matching Principle 1..................................... 110
Table 4.3 Capability Matching Principle 1 Example ... 111
Table 4.4 Matching Relation of Capability Matching Principle 2..................................... 111
Table 4.5 Capability Matching Principle 2 Example ... 111
Table 4.6 Matching Relation of Capability Matching Principle 3..................................... 112
Table 4.7 Capability Matching Principle 3 Example ... 112
Table 4.8 Matching Relation of Capability Matching Principle 4..................................... 113
Table 4.9 Capability Matching Principle 4 Example ... 113
Table 4.10 Matching Relation of Capability Matching Principle 5 114
Table 4.11 Capability Matching Principle 5 Example .. 114
Table 4.12 Matching Relation of Capability Matching Principle 6 115
Table 4.13 Association Discovery Principle 1 Example .. 118
Table 4.14 Association Discovery Principle 2 Example .. 119
Table 4.15 Matching Relation of Association Discovery Principle 3................................ 119
Table 4.16 Association Discovery Principle 3 Example .. 120
Table 4.17 Matching Relation of Association Discovery Principle 4................................ 120
Table 4.18 Association Discovery Principle 4 Example .. 121
Table 4.19 Association Discovery Principle 5 Example .. 122
Table 5.1 Summary of the Set of Web Services and the Set of Composition Rules 129
Table 5.2 QoS Aggregation Examples .. 131
Table 5.3 Utility Calculation Example .. 141
Table 5.4 Clustering Example .. 143
Table 5.5 Structure Rule Enrichment Example.. 144
Table 5.6 Service Evaluating Example ... 145
Table 5.7 Calculation of QoS Constraints in Run Time ... 150
Table 6.1 Web Service Capability Instances ... 157
Table 6.2 Business-centric Requirement ... 158
Table 6.3 Service Farmimng Running Example .. 159
Table 6.4 The Service Farming Performance based on Different Cases 159

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 1
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Chapter 1

General Introduction

Background ... 1

Research Challenges .. 6

Research Contributions .. 8

Motivation Scenario ... 14

Thesis Outline .. 18

1.1 Background

Service-Oriented Computing promotes assembling application components
into a loosely coupled network of services, to create flexible, dynamic
business processes and agile applications that span organizations and com-
puting platforms [PAPA03]. This is achieved through a service-oriented ar-
chitecture (SOA), which is an architectural style that guides all aspects of
creating and using business processes throughout their life-cycle, packaged
as services. SOA defines and provides guidelines that allow different appli-
cations to exchange data and participate in building business processes, in-
dependent from operating systems and programming languages, underlying
applications [BRWI09]. Based on the SOA, Web services have became the
most popular technology to support interoperable machine-to-machine in-
teraction and achieve service-oriented computing over distributed Internet
due to its distributed and asynchronous nature.

According to W3C definition [FERR04], a Web service is “a soft-
ware system designed to support interoperable machine-to-machine inter-
action over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the
Web service in a manner prescribed by its description using SOAP messag-
es, typically conveyed using HTTP with an XML serialization in conjunc-
tion with other Web-related standards.”.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 2
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Due to their distributed and asynchronous nature, Web services
can be easily reused since they are loosely-coupled and platform-
independent software components. The Web Service Composition (WSC)
refers to the process of reusing existing atomic services and logically re-
combining them into composite services. The WSC provides an open and
standards-based approach for connecting Web services together in order to
build business processes. To this end, Web service standards are thus de-
signed to reduce the complexity of composing Web services, hence reduc-
ing time and costs, and increasing overall efficiency [KHAL03][WEER05].

Generally, Web service composition approaches can be classified
into two categories: static Web service composition approaches and dynam-
ic Web service composition approaches, concerning the design time and
runtime when Web services are composed [FOST04]. Static Web service
composition approaches mainly construct composite Web services at the
design time and then execute composite Web services (i.e., business pro-
cesses) at runtime, whereas dynamic Web service composition approaches
compose and execute Web services at runtime [FOST04]. Accordingly,
composition environments in which Web services are composed and exe-
cuted, can also be divided into two categories, i.e., static composition envi-
ronments and dynamic composition environments [MBKG09], according to
contextual information, which may influence the Web service composition
process and / or the execution of composite Web services. Contextual in-
formation refers to any information, events, variations or changes that may
occur during design and runtime, such as the availability of Web services,
the composition requirements, changes in Quality of Service, known as
QoS, (e.g., price, reputation, etc), degradation in system recourses (CPUs,
memory storages, and bandwidth), just to mention a few. In static environ-
ments, contextual information rarely change whereas they seriously impact
the composition process at design time and during the runtime in dynamic
environments since contextual information continuously changes over time.
In this context, contextual information may be generated by new Web ser-
vices that are added to service provider registries, unavailability of Web
services in composite services due to maintenance or overload reasons, or
changes in QoS attributes related to Web services.

In practice, many business domains or cases exist and assume that
the composition environment is a static, which shows their limits and
drawbacks regarding their adaptation and evolution. In fact, information re-
lated to Web services may change while composite Web services are de-
signed or executed. By such, contextual information changes may invali-
date predefined Web service compositions. Dynamic Web service
composition approaches deal dynamic environments and should be able to

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 3
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

adapt the Web service composition process and the Web service execution
to environment changes and seek to minimize user interventions in order to
provide most appropriate composite services and satisfy user’s require-
ments. As a matter of fact, the SOA fails to support adaptable applications
and adaptable business processes in dynamic environments since it is una-
bile to deal with continuous and often unpredictable changes [RONA09]
through adaptable and dynamic Web service compositions. Most of current
dynamic Web service composition approaches require predefined general
composition plans to construct composite Web services [HAAM08]; the
general composition plan indicates the execution order of different actions
(usually represented as abstract Web services). The composition plan is
mainly defined by analyzing Web service functional properties, matching
their inputs and outputs’ messages. Dynamic Web service composition ap-
proaches usually discover and select concrete Web services for each action
in the composition plan and then integrate them following the composition
plan. Based on the composition plan, appropriate Web services are selected
with respect to their non-functional properties to construct the composite
Web service. The late binding term is often used to indicate the selection of
Web services based on their non-functional properties at runtime and be-
fore invoking constituent Web services [CHMT10]. However, we highlight
two shortcomings in current dynamic Web service composition approaches
[HAAM08]: firstly, when constructing a composite Web service, a prede-
fined composition plan without considering Web service non-functional
properties may not provide the best way to compose services with regard to
QoS properties. As a result, the composite service constructed upon the
predefined composition plan may not provide a global optimal QoS value in
the composite Web service since the composition plan does not provide a
global optimal composition solution; secondly, these approaches cannot
deal with some business cases where the composition plan can only be par-
tially defined or cannot be defined in advance. The crisis management is an
example of business applications where crises often occur abruptly, so the
exact actions to respond to a crisis cannot be precisely identified before a
crisis occurs and contextual information cannot be identified in advance
and collected from the crisis environment (e.g., witnesses, police reports,
weather conditions, etc.). In this context, building the crisis management
response process based on Web services to support complex crisis situa-
tions require a particular Web service composition approach without prede-
fined composition plans in dynamic environments. Moreover, rebuilding a
crisis management process when new contextual information are collected
from witnesses, for example, requires that the Web service composition
process should be updated if necessary. In such dynamic environment, de-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 4
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

veloping ad-hoc Web service composition processes without predefined
composition plans and adapting them to contextual changes reveal a partic-
ular challenge, as extending the SOA and current Web service composition
approaches to achieve an “resilient” service-oriented computing in which
the SOA adapts and evolves in response to internal and external changes in
dynamic environments.

In order to refer to the challenge, we introduce the resilient ser-
vice-oriented computing (rSOC) concept as “a service oriented computing
paradigm that flexibly constructs adaptable SOA-based applications and
adaptable business processes without predefined composition plans dealing
with continuous and unpredictable environment changes”. To this end, the
resilient service-oriented computing should establish foundations to ensure
SOA adaptability and its evolution in dynamic environments.

In our view, an adaptable Web service composition process is the
keystone to establish the resilient service computing. The ultimate objec-
tive of the Web service composition is to construct composite services to
satisfy user’s requirements, which does not only include functional re-
quirements, but also non-functional requirements as well. Functional re-
quirements describe “what a composite service should do” and define the
functionalities of the composite service to be constructed; whereas non-
functional requirements describe “how a composite service should do” and
specify the expected criteria on composite service’s attributes and all other
requirements that are excluded from functional requirements. Non-
functional properties of a single Web service or a composite Web service is
modeled as Quality of Service (QoS), which may include properties such as
performance, price, reputation, reliability, scalability, capacity, robustness,
exception handling, accuracy, integrity, accessibility, availability, interop-
erability, security, and network-related attributes, etc [ZBDK03]. Nowa-
days, more and more Web services are published by different providers
with same functionalities and different QoS values (e.g., price, reputation,
response time, etc.). Web service composition approaches thus should be
able to compose Web services satisfying particularly business requirements
while maximizing business user’s satisfaction by providing composite ser-
vices with better global QoS properties aggregated from atomic Web ser-
vice QoS properties. Constructing composite Web services and meeting re-
quirements imposed by users on both functional and non-functional
properties is proved to be a NP-hard problem [MBKG09] and AI-complete
problem [OHLK06].

Yet another disadvantage of Web service composition approaches
is that users should be familiar with technical backgrounds in order to com-
pose Web services (e.g., Workflow modeling, composition languages and

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 5
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

techniques, etc.). Most of all, existing Web service composition approaches
highly rely on the fact that users’ composition requirements formally de-
scribe necessary actions and constraints on functional and non-functional
properties to discover the set of relevant Web services: on one hand, exist-
ing Web service composition approaches often rely on different formalisms
to specify requirements on Web service properties and thus require compe-
tencies related to Web service standards (e.g., XML, UDDI, SOAP, WSDL,
OWL, etc.). For examples, Web service composition approaches based on
the Artificial Intelligence (AI) [LIZD10] require that users define goals and
rules in terms of formalized domain states, whereas Web service composi-
tion approaches based on workflows [SFKM11] require users’ to specify
control flows by means of logic operators and data flows. On the other
hand, existing requirement specification languages which are independent
from any specific Web service composition approaches (e.g., Business Pro-
cess Execution Language for Web Services (BPEL4WS) [MMVL05] or
Business Process Model and Notation (BPMN) [SKTB12]) remain too
technical for business users. By such, Web service composition approaches
still focus on the technical level as they require domain-specific knowledge
on Web services in to specify requirements. As a result, they fail to provide
business users with natural language-based notations or means to express
requirements at the business level and describe business objectives to be
achieved for discovering and composing Web services together.

In addition to adaptable Web service composition processes in dy-
namic environments, a resilient service oriented computing should be driv-
en by business requirements in order to establish useful foundations upon
which adaptable SOA-based applications and adaptable business processes
can be build to deal with real world applications.

For the before-mentioned reasons, our research strategy has par-
ticularly focuses on the Web service composition process and business re-
quirements to achieve a resilient service-oriented computing. By such, con-
structing resilient processes from Web services driven by business
requirements and adaptable to contextual changes in dynamic environments
provide the following benefits:

1) Allow business users to specify business requirements from
which both Web service functional and non-functional composition re-
quirements can be deduced prior to the Web service composition process;

2) Construct composite services to satisfy business users’ initial-
ized requirements and maximize global composite Web service QoS values
without predefined composition plans;

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 6
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

3) Build resilient SOA-based applications that are adaptive to in-
ternal and external environmental changes at design time and runtime in
dynamic environments.

1.2 Research Challenges

The lack of support in the SOA for contextual changes and business users
requires extending the SOA with requirement model at the business level
and adaptable Web service composition approaches to deal with contextual
changes in dynamic environment. In such context, we summarize our main
research question as:

“How to achieve a resilient service-oriented computing based on
an ad-hoc Web service composition process driven by business require-
ments in order to build adaptable composite Web services without prede-
fined composition plans?

To the end, how to adapt composite Web services accordingly to
endogenous and exogenous changes that may occur within and outside the
dynamic composition environment at design time and runtime?”

This research question is challenging, as business users are not
familiar with Web service technical details, and paradoxically, the resilient
SOC and Web service composition approaches are expected to deal with
business requirements and automatically compose Web services together.
During the Web service composition process, Web services are expected to
be composed without predefined composition plans; when several possible
composition solutions exist at the same time, Web service composition ap-
proach should also provide the optimal solution to maximize business users’
satisfaction. Finally composite Web services are expected to be automati-
cally adapted in response to changes in dynamic environments, when con-
textual information changes.

To answer the main research question, we identify a research
strategy to answer three interrelated sub-questions as follows.

1) How to specify business requirements based on business lan-
guages, such as structured English based languages, and to which extent
business users can specify adaptable Web service composition with busi-
ness languages?

In order to provide users with a business language-based specifi-
cation to build adaptable business processes and consequently specify com-
position requirements, the main question is how to model composition re-
quirements from a business perspective to meaningfully capture different
categories of business requirements at different abstraction levels. Since the
Web service composition process is driven by composition constraints on

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 7
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Web service properties and automatically manipulated by machines, the
challenge is to keep a balance between machine accessibility (e.g., technol-
ogy support, machine readable, …) and human understandability (e.g., ex-
pressiveness of goals, human readable, …).

 Deriving composition constraints from natural languages (e.g.,
English, French, etc.) without semantical and syntactical restrictions leads
to misunderstandings and ambiguity [SOMM07]; Conversely, technical de-
tails related to Web services should be avoided when specifying business
requirements in order to ensure that business users can directly express
their requirements without technical concerns and background.

In dynamic composition environments, contextual information re-
lated to the composition process change overtime. Changes in the environ-
ment do not only influence Web service composition processes but also re-
quire flexible mechanisms to adapt current composite Web service to
changes. In the case that composition requirements change at design time
and/or at runtime, Web services should be discovered based on updated re-
quirements. This leads to causal relationships among business requirements,
composition requirements, and contextual changes at design time and
runtime.

2) How to bridge the gap between business requirements ex-
pressed by business languages at the business level and composition re-
quirements manipulated by Web service composition approaches at the
technical level?

As mentioned before, current composition approaches still focus
on the technical level and require domain-specific knowledge on Web ser-
vices to specify composition requirements; in order to provide business us-
ers with business languages such as natural based languages to specify their
business objectives, composition requirements should be modeled with re-
spect to natural language-based specifications and then should be connected
with composition requirements manipulated by Web service composition
approaches. This leads to a gap between business requirements based on
natural languages describing business objectives, and composition require-
ments at the technical level describing Web service properties and other
technical details.

Bridging the gap between requirements at the business level and
the Web service level is challenging due to two reasons: requirements at the
business level and requirements at the technical level are defined in differ-
ent languages and scopes, thus a requirement transformation process is re-
quired to derive from business requirements to technical requirements to be
used by an adaptable Web service composition process; secondly, business
and Web service requirements are defined from two different perspectives;

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 8
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

business requirements are specified from a “request” perspective, which
describes what business users seek as business objectives, while technical-
level requirements are defined from an “offer” perspective, which describes
what Web services can provide (i.e., functionalities, utilities, etc…).
Roughly speaking, the transformation from a business model, consisting of
requirements from a request perspective to a Web service composition
model, consisting of technical requirements from an offering perspective,
leads to a business model to Web service composition model transfor-
mation.

3) How to construct ad-hoc composite Web services without com-
position plans in dynamic environments satisfying multiple constraints
while maximizing global QoS property values?

As mentioned in the previous paragraph, different constraints
should be also taken into account alongside business requirements when
composing Web services in dynamic environments. For examples, con-
straints, which are issued from different perspectives and reflecting endog-
enous and exogenous changes, may include control-flow constraints to de-
scribe expected execution orders between/among different Web services,
QoS constraints to describe expected values on Web service QoS attributes,
dependency constraints to describe implicit dependency relationships (e.g.,
Web service substitution, Web service recommendations, etc.) between
Web services and so on. Constraints in dynamic environments also include
the availability of Web services, the system recourses (e.g., CPUs, memory
stores, and bandwidth), etc. However, constructing composite services
while meeting multiple constraints is proved to be a NP-hard problem
[MBKG09]. Dealing with multiple constraints also makes the Web service
composition process difficult to be specified in advanced and leads to an
ad-hoc composition process that composes on-the-fly Web services without
predefined composition plans. The absence of an explicit composition plan
offers the advantage of finding optimal global QoS of the composite ser-
vices that maximize business users’ satisfaction and adapt composite Web
services to different contextual changes.

1.3 Research Contributions

The foremost objective of our research contributions is to provide founda-
tions to build a resilient service-oriented paradigm (rSOC) to flexibly con-
struct resilient SOA-based applications based on an ad-hoc Web service
composition process driven by business requirements in dynamic environ-
ments. A general view of the rSOC is presented in Figure 1.1. The main

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 9
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

idea behind the rSOC is to consider the SOA as a set of models and then
applying the General System Theory [SKYT05] to establish causal depend-
encies between models. From a system perspective, each model is a fine-
grained element since it focuses on specific changes (e.g., QoS, security,
fault tolerance, etc). Each model also affects and is affected by sibling
models through cybernetic loops such as feedback loops and control loops.
In our research activities, we particularly develop two models: the ad-hoc
Web service composition model, which is a central pillar in the rSOC and
plays a central role by ensuing the adaptability of the SOA through on-the-
fly Web service compositions, and the three-level requirement model,
which is also another pillar in the rSOC by extending the focus of the SOA
to businesses level from Web service technical requirements. All endoge-
nous and exogenous changes in the dynamic environment that occur during
design time and runtime can also be captured as models, consisting of vari-
ables to observe and control with respect to multiple constraints. As a result,
the rSOC can be viewed as a closed system of models, and each of the
models depends on and affects each other. Since models are considered fi-
ne-grained elements, the cybernetic loops show dependencies between them
and assume that they are static. However, the requirement model and the
ad-hoc composition model are particularly dynamic and evolve in response
to changes (e.g., new business logic or recompose Web services). The busi-
ness requirement model mainly guides the generation of the ad-hoc Web
service composition model and, consequently, controls the ad-hoc composi-
tion process. Reciprocally, the ad-hoc Web service composition model may
affect the requirement model during the composition process by relying on
sibling endogenous/exogenous models (e.g., fault tolerance model or secu-
rity model) to respectively propose new functionalities that might interest
the business users or suggest non-functional requirements (e.g., business
security objectives). In order to ensure the evolution of models when they
affect each other, the rSOC follows the dynamic data-driven application
system concept (DDDAS), which unifies applications and measurement
processes[DARE09]. The DDDAS concept entails “ […] the ability to in-
corporate dynamically data into an executing application simulation, and
in reverse, the ability of applications to dynamically steer measurement
processes”[DARE05]. Similarly, the rSOC entails the ability of the three-
level requirement model to dynamically steer the ad-hoc composition pro-
cess through Web service composition model, and in the reverse, the ability
of the Web service composition model to dynamically incorporate require-
ments into the requirement model. In order to ensure these abilities, rSOC
relies on model-to-model transformations.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 10
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Figure 1.1 A General View of the Resilient SOC Paradigm

Based on the rSOC paradigm in Figure 1.1, we propose a resilient
Service-Oriented Architecture (rSOA) consisting of four parts:

1- A three-level requirement model to support composition re-
quirement specifications based on either structured natural languages at the
business level or Web service composition languages at the technical level.

2- An ad-hoc Web service composition approach to compose Web
services without predefined composition plans while responding to contex-
tual information.

3- Endogenous changes models to represent contextual changes
that occur within the composition environments at design time and runtime.

4- Exogenous changes models to represent contextual changes that
occur outside the composition environments at design time and runtime.

Based on rSOA, firstly business users are expected to specify the
business requirements following a business requirement model to guide the
ad-hoc Web service composition approach, which takes into account all
constraints derived from the business requirements; when contextual
changes occur, either the Web service composition approach automatically
deals with changes without users’ interventions, or business requirements
are updated by business users to guide the Web service composition pro-
cess in response to endogenous and exogenous changes, which can be rep-
resented as models.

The endogenous changes may include:
1) Available Web services. The set of available Web services may

evolve as new Web services emerge from time to time and old
Web services are replaced, or existing Web services tempo-
rarily disconnected due to maintenance or overload.

2) Web Service Properties. Web Service functional and/or non-
functional properties changes mainly focus on QoS attribute
values such as the price of invoking a Web service is aug-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 11
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

mented or Web service functionalities such as a Web service
does not satisfy anymore user requirements.

3) System Recourses. System recourses supporting successful im-
plementation of the composition process concerns CPUs,
memory storages, bandwidth, and etc.

The exogenous changes may include:
1) Web Service Composition Requirements. Expected business

requirements can change during the composition process since
users simply express new needs or provide additional re-
quirements to tune the service composition.

2) Business Logic. When the business logic changes, the previ-
ous composition process may become no longer valid since it
does not respect the new business logic.

3) Security Concerns. Security attacks from outside of the com-
position environment will also influence or invalidate the
composition process. In addition, security vulnerabilities can
also be considered as endogenous changes.

In this thesis, our contributions focus on the three-level require-
ment model, the ad-hoc Web service composition model and their model-
to-model transformation process prior to ad-hoc Web service compositions.
We are particularly interested in how to model requirements for ad-hoc
Web service compositions at different levels, how to transform business re-
quirements into Web service composition requirements, and how to flexibly
construct composite service to satisfy requirements in dynamic environ-
ments. It is worth noting that we do not cover formal presentations for en-
dogenous and exogenous changes models but we advocate that these mod-
els can affect the Web service composition processes through multiple
constraints (e.g., substitution constrain rules, security constrain rules, etc.).

In order to achieve a resilient service-oriented computing based on
ad-hoc Web service compositions in dynamic environments, we firstly ap-
ply a structured natural language based requirements to capture business
users’ needs in terms of objectives, and develop a composition requirement
model including three levels to support both business users and technical
users. Secondly, we propose a transformation approach that transforms
structured English language-based business requirements to technical com-
position requirements by use of an intermediate model, namely the Web
service capability model; we introduce our ad-hoc Web service composition
approach in dynamic environments to compose Web services driven by
transformed technical requirements and adapt to different changes. In addi-
tion to the general view of the resilient Service Computing paradigm, our
contributions in this thesis mainly consist of the following.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 12
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

The Three-level Requirement Model: we model composition re-
quirement in three levels namely business-centric requirement, capability-
focused requirement, and rule-driven Web service requirement, allowing ei-
ther technical or business users can specify their composition requirements
and consequently compose and execute Web services to satisfy their re-
quirements. The reference model takes into account three main constraints
influencing Web service composition process: control flow constraints,
QoS constraints, and dependency constraints.

Business-centric requirement is modeled based on Semantics of
Business Vocabulary and Business Rules (SBVR), which is a structured
English and rule-based language to facilitate the collaboration among cus-
tomers, business experts, IT specialists, and developers. SBVR defines se-
mantics for vocabulary and rules in a domain of interest. Business-centric
requirement is specified by business users to describe the business objec-
tives, functional requirements and non-functional requirements to explicitly
provide a model of formal logic so requirements can be understood by both
computer programs and other users.

Capability-focused requirement is specified based on a proposed
Web service capability model. The semantics of a capability is captured via
a combination of action-verb and noun pairs, a set of attributes, describing
required resources, current states, and new states, which reflect changes in
the real world effects, and particularly, business objectives to achieve by
applying the capability. An objective can be achieved by one or more capa-
bilities each of which is semantically interlinked to other capabilities by
means of composition relationships. In order to capture different levels of
abstractions, the capability model is decomposed into three layers: the ca-
pability objective layer, the capability profile layer and the inter-capability
composition layer.

Rule-driven Web service requirement is modeled based on Web
service operations and different categories of composition rules, which are
correspondent to three categories of constraints introduced before. Compo-
sition rules are formalized for the direct use of future Web service compo-
sition process.

The Two-level Requirement Transformation: we present a top-
down composition requirement transformation process to transform busi-
ness-centric requirements to capability-focused requirement, and finally to
rule-driven Web service requirements. This approach consists of two pro-
cesses based on semantically keyword matching, i.e., the capability match-
ing process and the association discovery process.

Capability matching transforms business-centric requirements to
capability-focused requirements in order to derive available Web service

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 13
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

capability instances to satisfy users’ business-centric requirements. The as-
sociation discovery process discovers all Web services that are associated
with the capability instances from the previous step as well as derives dif-
ferent composition rules ready to be used by Web service compositions. As
our Web service capability model includes a capability objective layer to
describe business objectives to achieve by applying the capability, Web
service capability instance created based on capability model is conse-
quently connected to users’ business objectives described in business-
centric requirements, while all Web services are associated with at least
one capability instance created by domain experts or service providers, ca-
pability instances are also connected with Web service profiles. In the
whole transformation process, capability model is used as an intermediate
model to bridge the gap between composition requirements based on SBVR
and composition requirements in terms of composition rules.

The concept of capability denotes what an action does in terms of
changes in the state of entities that are involved in an interaction
[MLMB06]. The purpose of using capability is to describe what services
can do without needing to know all the details and, consequently, allows
users to discover and invoke services that perform particular kinds of oper-
ations in particular contexts. A cornerstone of the SOA is that capabilities
consolidate Web services and business processes [MLMB06].

The Ad-hoc Web Service Composition Approach driven by
Rules: we propose a novel Web service composition approach, called Ser-
vice Farming, which infers in a reasonable time the optimal composite ser-
vice. Our approach is ad-hoc in the sense that it composes Web service
without predefined composition plan by simultaneously selecting atomic
services and inferring the composition patterns between the selected ser-
vices so as to provide the best ways to compose services together with re-
gard to QoS. Here, the optimal composite service refers to the composite
service that satisfies all constraints imposed by the transformed rule-driven
Web service requirements, as well as possesses the largest value of Web
service utility. Service utility refers to the total satisfaction received by a
user from consuming a service, and in our approach, it is estimated based
on QoS values before service execution and calculated by a preference-
based utility calculation method. Multiple constraints are structured in
terms of composition rules to guide the composition process.

In order to adapt to dynamic composition environment, we provide
our service farming approach with two key measures, i.e., Web service sub-
stitution and composition replanning to ensure optimal composite service is
successfully executed when contextual changes occur.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 14
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

We develop a prototype to validate the resilient SOA. Based on a
motivation scenario of a train crash, we illustrate how business-centric re-
quirement is specified and gradually transformed to rule-driven Web ser-
vice requirements; and then our implemented Service Farming approach is
applied to compose Web services together to satisfy users’ initialized busi-
ness-centric requirements, we also discuss relations between the perfor-
mance and the values of different parameters in our approach.

1.4 Motivation Scenario

In order to explicitly present our composition requirement model, require-
ment transformation process, and ad-hoc Web service composition ap-
proach, we illustrate several SOA applications in dynamic environment. We
then present a motivation scenario of a train crash and make assumptions to
show how we can apply ad-hoc Web service composition in dynamic envi-
ronments to achieve resilient SOC.

1.4.1 Dynamic Environment

Web service composition environments, in which Web services
are composed and executed, can be divided into two categories according
to the contextual information influencing composition process: static
composition environment and dynamic composition environment. In static
Web service composition environments, contextual information influenc-
ing the composition process rarely changes and they are tolerated or ne-
glected; while in the dynamic composition environments, contextual in-
formation changes over time and should be handled to adapt the Web
service composition accordingly. In practice, assuming that Web service
composition environments are static is very reductive and somehow unre-
alistic due to the endogenous and exogenous changes that may occur dur-
ing design time and runtime.

We present hereafter several dynamic environment examples
where changes may occur during the composition processes. In response
to changes, Web service composition approach should be able to transpar-
ently adapt to environment changes with minimum business user interven-
tions and to provide most appropriate composite services that satisfy us-
er’s requirements. In the following, we illustrate some examples of
dynamic environments that are often used in application of real cases.

1) Pervasive Environments: Pervasive environment is a global
communication environment where a diffuse computing allows

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 15
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

computers and other mobile smart devices to automatically
recognize and locate each other; while the pervasive compu-
ting allow users to access every information using every de-
vice and over every network at every time [IBMO09]. This
environment is dynamic as personal computers and other
handheld devices are largely widespread everyday and take a
large part of information systems; On the other hand, the data
information in the environment may be distributed over large
areas through networks that range from a world-wide network
like the Internet to local peer-to-peer connections like for sen-
sors and are updated overtime [GRLP10]. For example, smart
phone has become more and more popular in daily life, ser-
vices delivered via phones are more often composed on the fly
instead of following a predefined composition plan to satisfy
users requirements since the available applications and other
devices change overtime in the environment and thus requires
an ad-hoc Web service composition approach.

2) Case Handling Environments: Case handling is a paradigm to
support flexible and knowledge intensive business processes
[AAWG05]. Unlike workflow management, which uses prede-
fined process control structures to determine what should be
done during a workflow process, case handling focuses on
what can be done to achieve a business goal. In case handling,
the knowledge worker in charge of a particular case actively
decides on how the goal of that case is reached, and the role of
a case handling system is assisting rather than guiding the
worker in doing so. Apparently, in case handling system a task
is accomplished via the interaction between workers and sys-
tems, the action to be proceeded or the resources to be selected
is determined at the last moment, and a predefined process
doesn’t exist. In this context, an ad-hoc service composition
approach can also be helpful to construct composition and cre-
ate the entire process with predefined composition plans.

3) Ad-hoc Collaboration Environments: Ad-hoc collaboration is
defined in [KOCK09] as “short-term, on demand, spontaneous,
and task-specific collaboration”. In ad-hoc collaboration envi-
ronment, a task is collaboratively achieved by teams, however
the typical characteristic of ad-hoc collaboration is that no
regularly time is scheduled for the collaboration among indi-
viduals, while the collaboration is rather established based on
real time task progress and environment information. The task

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 16
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

progress highly depends on all individuals in the team while
the performance of individuals tends cannot be precisely pre-
dicted, and thus the ad-hoc collaboration environment are
highly dynamic due to the collaborations established in real
time, and an ad-hoc Web service composition approach is able
to create the collaboration in an ad-hoc way.

4) Crisis management Environments: A crisis management is the
whole of processes, means and organizations, which allow a
group of actors to be prepared when a crisis appears[DEVL06].
A crisis usually causes negative facts and the objective of cri-
sis management is to control, reduce and recover from nega-
tive facts caused by a crisis (e.g., fire, injuries, buildings col-
lapses). The crisis management environment is dynamic as a
crisis often follows an evolutionary process and new facts and
events may occur and thus change the environment. In addi-
tion, crisis often occurs abruptly and processes to manage
them cannot be precisely defined in advance. The crisis man-
agement environment is thus dynamic and the environment re-
flects the changes varying from requirement changes, process-
es changes, to resources changes. Crisis management requires
an ad-hoc Web service composition approach since a crisis oc-
curs abruptly and a general composition plan cannot be pre-
cisely defined before a crisis occurs.

1.4.2 A Glance at the Crisis Management as a Dynamic Environment

A crisis is any event that is, or expected to lead to, an unstable and danger-
ous situation affecting an individual, group, community or whole society,
which is deemed to be negative changes in the security, economic, political,
societal or environmental affairs, especially when they occur abruptly, with
little or no warning [EHSA12]. The crisis management is generally divided
in four main steps in [TRBP11]:

- Crisis Prevention, which aims at reducing the probability of cri-
sis appearance;

- Crisis Preparation, which aims at defining the actors’ abilities,
identifying and preparing the means for crisis response;

- Crisis Response, which aims at solving problems caused by the
occurrence of a crisis;

- Crisis Re-establishment, which aims at restoring the subpart of
the world affected after the crisis.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 17
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

In our research work, we support step 2, 3, and 4 with dynamic
Web service compositions: when a crisis occurs, how to model crisis man-
agement requirements by using a business language, how to identify neces-
sary actions to manage crisis based on requirements, how to carry out dif-
ferent actions in simultaneous and cooperative ways in order to response
and re-establish from the crisis, and how to reconfigure crisis management
processes when crisis environments change.

1.4.3 Motivation Scenario: Train Crash Crisis Management
We introduce a motivation scenario of a crash of trains with nega-

tive facts are caused by the crisis, such as:
1) Injured Victims: drivers and passengers are hurt;
2) Caused Fire: a big fire is caused;
3) Interrupted Electricity: the electricity supply is interrupted in

the crisis spot;
4) Damaged Railway: the railways in the crisis spot are damaged.
In order to manage this crisis by using ad-hoc Web service com-

positions, we make the following assumptions:
1. The crisis management process is regarded as the execution of

composite Web services.
2. Different actions, which build up the crisis process, are regard-

ed as the execution of Web services.
3. The adaptation to changes is achieved by reconfiguring compo-

site Web services.
Based on these assumptions, our objective is to rapidly identify

appropriate Web services and compose them and execute the resulting
composite services in order to reduce and resolve negative facts. We identi-
fy three main features, which make our motivation scenario challenging
when using existing Web service composition approaches as follows:

1) Dynamicity: A crisis is often an evolutionary process, and ex-
tra internal or external events may change the crisis environment overtime.
Consequently crisis management processes need to be reconfigured. The
environment changes include: negative facts, such as local transport acci-
dents, explosions, etc.; new actions to do, such as a fire brigade is occupied
by another mission; new strategy to make in order to manage the crisis, and
so on.

2) Responsiveness: In order to avoid the continuous expansion of
negative facts caused by the crisis, the crisis management processes should
be created within a short time;

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 18
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

3) Abruption: Crisis often occur abruptly and thus appropriate ac-
tions and general composition plans to manage crisis cannot be precisely
defined before the crisis occurs;

Generally, crisis management processes are manually configured,
and then reconfigured when crisis domain changes. This requires the offic-
ers’ high familiarity of crisis domain, functionalities of all actions that to
be undertaken in addition to technical background to specify their require-
ments and decisions before building crisis management processes. Assum-
ing crisis management officers are not experts in specifying their crisis
management requirements based on technical language specification and
business processes. An alternative solution is to help them to express their
requirements in a structured English language to focus on business-centric
requirements to describe crisis management objectives such as “manage
train crisis in Paris” while taking into account some necessary actions, such
as “fire should be extinguished”, “victims should be assisted”, and “the to-
tal budget should be less than 20000 Euros” etc. Given such kind of re-
quirements, officers expect that Web services that support crisis tasks are
automatically discovered and consequently composed to satisfy require-
ments.

In the following chapters, we extend SOA with different models to
achieve resilient service-oriented computing in order to build ad-hoc pro-
cess and adapt it to contextual changes. The resilient SOA is such applied
to solve the following questions in the context of Web service compositions:

1) How officers are allowed to express their business-centric require-
ments in a structured natural language?

2) How to automatically discover Web services and derive constraints
on/among Web services based on users business-centric requirements?

3) How to construct and execute composite services to satisfy multiple
constraints imposed by the business-centric requirements?

4) How to adapt to composite Web services to the contextual changes?

1.5 Thesis Outline

As illustrated in Figure 1.2, the dissertation is structured as fol-

lows:
Chapter 1 describes our research motivations, research challenges

and presenting our major contributions.
Chapter 2 presents the state-of-the-art and covers research back-

ground related to our problematic. Firstly, we provide preliminaries on
SOA and Web services, and then we respectively discuss current approach-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 19
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

es for Web services composition, requirement specification and require-
ment transform.

Chapter 3 introduces our reference model for Web service compo-
sition requirements in three different levels: business-centric requirement,
capability-focused requirement, and rule-driven Web service requirements.

Chapter 4 presents our top-down and two-level requirement trans-
formation process that transform business-centric requirements to capabil-
ity-focused requirements and finally to rule-driven Web service require-
ment for the direct use of our ad-hoc Web service composition approach.

Chapter 5 presents our ad-hoc Web service composition approach,
called Service Farming, to construct composite services driven by trans-
formed rule-driven Web service requirements while maximizing users’ sat-
isfaction; we also present how we adapt our Web service composition ap-
proaches into dynamic composition environment by introducing two key
dynamic reconfiguration measures: service substitution and composition
replanning.

Chapter 6 illustrates the technical architecture and the implement-
ed prototype to compose Web services based on the train crash motivation
scenario, and also present experimental results.

Chapter 7 summarizes our work and outlines future research direc-
tions.

Some contributions in our thesis are disseminated in the following
international conferences:

-Wenbin LI, Youakim BADR, and Frederique BIENNIER, “Towards Natu-
ral-like Requirement based Web Service Composition” The 25th Interna-
tional Conference on Software & Systems Engineering and their Applica-
tions (ICSSEA 2013), Télécom ParisTech, Paris, France, November, 2013
-Wenbin LI, Youakim BADR, and Frederique BIENNIER, “Improving Web
Services Composition with User Requirement Transformation and Capabil-
ity Model” The 21st International Conference on Cooperative Information
Systems (CooPIS, OTM 2013), Graz, Austria, pp.300-307, September,
2013
-Wenbin LI, Youakim BADR, and Frederique BIENNIER, “Towards a Ca-
pability Model for Web Service Composition” IEEE 20th International
Conference on Web Services (IEEE ICWS 2103), Santa Clara, U.S.A.,
pp.609-610, June, 2013
-Wenbin LI, Youakim BADR, and Frederique BIENNIER, “Service Farm-
ing: An Adhoc and QoS-aware Web Service Composition Approach” The
28th Symposium On Applied Computing (ACM SAC 2013), Coimbra, Por-
tugal, pp. 750-756, March, 2013
-Wenbin LI, Youakim BADR, and Frederique BIENNIER, "Digital Ecosys-
tems: Challenges and Prospects" The 2012 ACM International Conference
on Management of Emergent Digital EcoSystems (ACM MEDES 2012),
Addis Ababa, Ethiopia, pp.117-122, October, 2012

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 20
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Figure 1.2 The Thesis Organization

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 21
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Chapter 2

State of the Art

 Service-oriented Computing Preliminaries .. 21

 A Glance at Web Service Composition Approaches 29

 Overview of Requirement Specifications in Web Service Composition 59

 Managing Requirements ... 64

 Executive Summary ... 69

Abstract: Web service composition approaches have received abundant re-
search attention to support business-to-business or enterprise application
integration. Many approaches are proposed to compose Web services to-
gether to satisfy users’ requirements in different contexts. This chapter
seeks to synthesize the state-of-the-art regarding Web service composition
approaches focusing on ad-hoc and dynamic perspective. From different
points of view, Web service compositions can be classified as manual,
semi-automated and automated composition; syntactic composition and se-
mantic composition; static composition and dynamic composition. In this
chapter, we firstly introduce the background of Web services and Service-
oriented Architecture (SOA), and then we investigate different Web service
composition approaches, in the following, we examine current techniques
and models to specify and transform requirements for Web service compo-
sitions. At last, we elucidate how these models and approaches are not ap-
propriate for an ad-hoc Web service composition approach driven by busi-
ness requirement specification to construct composite services in dynamic
environment without abstract composition plans.

2.1 Service-oriented Computing Preliminaries

Service-Oriented Computing is an emerging cross-disciplinary

paradigm for distributed computing that changes the way software applica-
tions are designed, architected, delivered and consumed. The SOC [HU-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 22
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

SI05] promotes the idea of composing self-contained services into a loosely
coupled agile software systems. The SOC utilizes services as fundamental
elements to support the development of rapid, low-cost and reusable dis-
tributed applications even in heterogeneous environments. Services are self
described, platform-agnostic computational elements, and perform func-
tions, which can be anything from simple requests to complicated business
processes.

The SOC relies on the SOA, which is a way of reorganizing soft-
ware applications and infrastructure into a set of interacting services [PA-
PA03]. The creation of SOA was inspired by the necessity to develop and
support complex cross-enterprise information systems that can be quickly
and cost-efficiently adapted to changes in the operational environment. In
order to construct business applications of loosely-coupled, autonomous
and reusable services, a list of principles has to be followed by services
when implementing SOA [ERL08]:

Standardized service contract. Services adhere to a communica-
tion agreement (also called service contract) as defined by service descrip-
tion documents. Within the same service inventory, services use the same
service description standards, such as Web Service Description Language
(WSDL);

Service loosely-coupling. Service contract is not tightly coupled
with customer requirements nor with service implementations. In this case
the service contract can evolve without affecting service consumers and
service implementations;

Service abstraction. Details in the service contract, services hide
their internal logic;

Service reusability. The service logic is arranged so that to pro-
mote its reuse.

Service autonomy. Services have a high level of control of the un-
derlying run-time execution environment;

Service statelessness. Services minimize resource consumption by
deferring the management of state information when necessary;

Service discoverability. Services are equipped with communica-
tive meta data by means of which they can be discovered by consumers;

Service composability. Services can be effectively composed into
new services with the functionality of arbitrary complexity.

These principles make business applications much more flexible
and significantly decrease the cost of their initial development and further
support. Following these principles, the conceptual SOA model includes
service consumer, service provider, and service registry to provide an inter-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 23
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

action environment for consuming, publishing, and discovering services,
and achieving certain goals [ZHAN08].

Figure 2.1 illustrates the implementation of SOA with Web ser-
vices [DUSC05]. A Web service is a specific kind of service use the Inter-
net as the communication medium and open Internet-based standards. A
Web service is identified by a Uniform Resource iIdentifier (URI), whose
public interfaces and bindings are defined and described using Extensible
Markup Language (XML). Its definition can be discovered by other soft-
ware systems. These systems may then interact with the Web service in a
manner prescribed by its definition, using XML-based messages conveyed
by Internet protocols.

Figure 2.1 SOA with Web Services

In Figure 2.1, the service provider creates or simply offers Web
services by describing Web service in a standard format i.e., XML, which
in turn is XML and publish them in a central Service Registry. The service
registry contains additional information about the service provider, such as
address and contact of the providing company, and technical details about
the Web service. The Service Consumer retrieves information from the reg-
istry and uses the service description obtained to bind to and invoke the
Web service.

In general, Web service has the following features that make itself
the best service model when developing SOA in heterogeneous environ-
ments [RAO04]:

Loosely Coupled: In software development, coupling typically re-
fers to the degree to which software components/modules depend upon
each other. Comparing with tightly-coupled components (e.g., Distributed
Component Object Model (DCOM) [REF95], Common Object Request
Broker Architecture (CORBA) [OBJE04]), Web services are autonomous
and operate independently from one another. The loosely coupled feature
enables Web services to locate and communicate with each other dynami-
cally at runtime.

Universal Accessibility: Web services can be defined, described
and discovered through the Web to enable an easy accessibility. Not only

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 24
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

users can locate appropriate Web services, but services can be described
and advertised so that they are possible to bind and interact with each other.

Standards Languages: Web services are described by standards
based on XML [WEER05]. Web services standards increase abstraction.
Although the cores of Web services may implemented by different pro-
gramming languages, the interface of Web services are described by uni-
form standard based XML languages.

Web services are considered to be self-contained, self-describing,
modular applications and can be published, located, and invoked across the
Web. Currently, they become the most prominent realization technology for
SOA [TSPI02][CDKN02]. When composing Web services, two parts of
Web service descriptions are especially important: Web service functional
properties and Web service non-functional properties including QoS. Web
service operations describe functional aspects of a Web service and are
generally identified by operation name, input and output messages; whereas
QoS is a broad concept that encompasses a number of non-functional prop-
erties of Web services, [ROPD06][MORD08][REYT07] define and repre-
sent different non-functional properties from the user’s perspective. These
properties apply both to atomic Web services and composite Web services
and include information such as:

Price: The price that a service user has to pay for invoking the
service.

Response time: The time interval between the moment when a ser-
vice is invoked and the moment when it is finished.

Reliability: The probability that a request is correctly responded
within the maximum expected time.

Availability: The probability that a service is available during the
request. The availability is calculated by dividing the downtime by uptime
(downtime ratio) and subtracting it from the maximum availability.

Reputation: The average ranking given to the service by end users
according to their own experiences.

Although SOA has its advantage of enables the creation of appli-
cations that are built by combining loosely coupled and interoperable Web
services, current SOA standard still has several drawbacks and thus require
improvements.

1. Inability to deal with continuous and often unpredictable
change [RONA09]. SOA has its standards to support describ-
ing, publishing and invocating Web services from different
standards. However, no standard has been widely established
to support dealing with exceptions occurred during invocating
single or list of Web services.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 25
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

2. Lack of support in business level. The development of service-
oriented architecture depends on the implementation of stand-
ard technologies that will be introduced in the following. In
order to compose Web services based on SOA, users are ex-
pected to be familiar with the technical standards: users should
not only be able to specify the composition requirements based
on technical languages, but also they are expected to deal with
any exception during composition processes in the technical
level. However, SOA lacks of appropriate models to support
business users who are not familiar with technical details to
use, which leads us to the assumption that Web services com-
position cannot be widely applied to business process design.

In order to develop resilient applications in dynamic environment,
we need build rSOC based on current SOA standard and provide system
with extra capabilities to deal with endogenous and exogenous change
changes and adapt to business levels. In the following, we illustrate tech-
nologies to support Web service descriptions and implementations.

2.1.1 WSDL

The Web Service Description Language (WSDL) is an XML for-

mat for describing Web services as a set of endpoints operating on messag-
es containing either document-oriented or procedure-oriented information
[CDKN02]. Operations and messages are described abstractly, and then
bound to a concrete network protocol and message format in order to define
an endpoint. Related concrete endpoints are combined into abstract end-
points. WSDL is designed to allow description of endpoints and their mes-
sages regardless of what message formats or network protocols are used to
communicate.

A WSDL document uses the following elements in the definition
of Web services as shown in Figure 2.2:

Types: the date represented by a container for data type definitions
using some type system (e.g., XML Schema);

Interface: the operations that can be performed, and the messages
that are used to perform the operation;

Operation: an abstract description of an action supported by the
service;

Binding: a concrete protocol and data format specification for a
particular port type;

Endnote: a single endpoint defined as a combination of a binding
and a network address;

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 26
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Service: a collection of related endpoints.
WSDL

description

Types

Interface
Operation

Output

Input

Binding

Service
Endnote

Figure 2.2 WSDL Document Representation

2.1.2 SOAP

The Simple Object Access Protocol (SOAP) is a protocol intended

for exchanging structured information in a decentralized, distributed envi-
ronment in order for services to be able to describe their capabilities, and to
allow applications on the Internet to use those capabilities. By means of
SOAP different object models can be bridged over the Internet and an open
mechanism is provided that allows applications to communicate with each
another [MMNJ07].

The basic elements of a SOAP message are depicted in Figure 2.3.
A SOAP message is an XML document that is sent via a communication
protocol, such as HTTP or SMTP. A message without attachments is made
up of an envelope, an optional SOAP header and a SOAP body. The op-
tional SOAPHeader element can include one or more headers, which carry
metadata about the message (e.g. information regarding the receiving and
sending parties). The SOAPBody element, which always follows the
SOAPHeader element, contains the message content. In case of an error,
SOAPBody carries fault and status information. A SOAP message can also
include one or more attachments in addition to the SOAP part, which must
contain XML content only.

In addition to the messages structure, SOAP also defines a pro-
cessing model, error handling mechanisms, an extensibility model, an RPC
convention and a protocol binding framework [WEER05].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 27
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Communications
Protocol
Envelope

(HTTP, SMTP)

SOAPPart

SOAPEnvelope

SOAPHeader

Header

Header

SOAPBody

XML Content

Figure 2.3 SOAP Message Structure

2.1.3 UDDI

The Universal Description, Discovery and Integration (UDDI)

[Oas04] is a group of Web-based registries that expose information about a
business or other entity. The UDDI provides extensions to the basic Web
Services technologies by creating a registry of Web services. A UDDI reg-
istration consists of three components: White Pages, Yellow Pages, and
Green Pages. White pages give information about the business supplying
the service; Yellow pages provide a classification of the service or business,
based on standard taxonomies; Green pages are used to describe how to ac-
cess a Web Service, with information on the service bindings [TAYL04].

The UDDI enables service consumers to quickly, easily, and dy-
namically find and transact with Web services. It provides the following
functionalities [KATT12]:

• Find Web services implementations that are based on a common
abstract interface definition.

• Query Web services providers that are classified according to a
known classification scheme.

• Issue a search for services based on a general keyword.
• Cache information about a Web service and then update at run-

time.

2.1.4 OWL-S
The WSDL only provides syntactical description of Web service

functionalities. Other researches attempt to annotate Web service with se-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 28
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

mantic description. OWL-S is an ontology built on top of Web Ontology
Language (OWL) for describing Semantic Web Services. It will enable us-
ers and software agents to automatically discover, invoke, compose, and
monitor Web resources offering services, under specified constraints
[MBHL04].

The OWL-S ontology has three main parts as shown in Figure 2.4:
the service profile, the process model and the grounding [MPMB05].
The service profile is used to describe what the service does. This infor-
mation is primary meant for human reading, and includes the service name
and description, limitations on applicability and quality of service, publish-
er and contact information. The process model describes how a client can
interact with the service. This description includes the sets of inputs, out-
puts, pre-conditions and results of the service execution. The service
grounding specifies the details that a client needs to interact with the ser-
vice, as communication protocols, message formats, port numbers, etc.

Figure 2.4 OWL-S Structure

2.1.5 Enterprise Service Bus Infrastructures
An enterprise service bus (ESB) is a software architecture model

used for designing and implementing the interaction and communication
between mutually interacting software applications in service-oriented ar-
chitecture (SOA) [KABH04].

ESB acts as an intermediary between service consumers and ser-
vice providers [PGPS11] as shown in Figure 2.5. Service consumers are de-
signed to interact with the ESB and the ESB is configured to route and
transform different kinds of request and response messages between service
consumers and service providers. There are vendor products that implement
many of the features described below in the supporting patterns and tactics
section.

In order to support the design of our proposed rSOC concept, we
introduce a work presented in [SAMI08] to achieve a resilient scatter-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 29
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

gather ESB messaging design with message-driven beans to resolve the
scatter-gather application integration problem when a requester sends an
asynchronous request to a number of providers, which send their replies
asynchronously to the requester.

Figure 2.5 ESB Architecture Pattern

In this work, one message-driven bean (MDB) receives a request
message from a requester and publishes it to multiple providers, while an-
other MDB aggregates the replies from the providers and sends the aggre-
gate to the requester. The scatter-gather design resilience relies on Enter-
prise JavaBeans (EJB) and Java Message Service (JMS) provider runtime
services, message delivery assured by the JMS provider, EJB transaction
management, and automatic triggering of an MDB resulting from arrival of
a message at the MDB-specified destination. The work focuses on the de-
sign and deployment of the scatter-gather components, and presents a good
reference on how to resolve the common scatter-gather application integra-
tion problem.

2.2 A Glance at Web Service Composition Approaches

Web service composition has become an emerging development

process to design and build complex inter-enterprise business applications
out of existing Web services. In the Web service composition, services
come in two flavors: atomic services and composite services. Atomic ser-
vice is a single Web service that cannot be divisible and is readily available
and deployable; composite services involve assembling existing atomic
Web services and other Web composite services that access and combine
information and functions from possibly multiple service providers.

When composing Web services, Web service discovery and Web
service selection are generally two important processes prior to Web ser-
vice composition. The Web service discovery aims at discovering specific
Web services from Web service registries based on certain functional re-
quirements. According to W3C consortium, Web service discovery is de-
fined as the act of locating a machine-processable description of a Web
service that may have been previously unknown and that meets certain
functional criteria [FERR04]. The Web service selection is to select appro-
priate Web services from results of the Web discovery process based on
non-functional requirements. The selected Web services are thus used to
construct composite services.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 30
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Different approaches tackle the problem of Web service composi-
tions, and can be classified into manual, semi-automated or automated
compositions [CHBB07]; syntactic or semantic Web service composition
[AGHS03][RASU05]; static or dynamic Web service composition
[DUSC05]; in addition, many approaches particularly focus on QoS to de-
rive and provide QoS-aware Web service compositions [ZBDK03]
[STRU10] [HLXZ11][SHCH11].

In the following, we synthesize the state of the art in Web service
composition approaches and we analyze them to which extent they can be
applied to develop ad-hoc composition in dynamic environment. We also
present and classify them, and conclude with their limitations in solving
our research challenges related to developing resilient SOA.

2.2.1 Manual, Semi-Automated and Automated Composition Approaches

Web service composition approaches can be classified into three
categories: manual, semi-automated and automated composition approaches
[RASU05] from the respective of facilitating the composition process by
reducing users’ interventions in the design and runtime. Early works mainly
contribute to manual and semi-automated Web service composition ap-
proaches, whereas recent researches mostly dedicate to automate Web ser-
vice composition processes.

2.2.1.1 Manual Composition Approaches
The manual Web composition is the Web service composition

process that is based on human intervention and deals with low-level pro-
gramming and implementation issues. Most manual composition approach-
es [ADHW05][TASW03][BESD03] expect users to generate specific and
executable workflow scripts to represent composite services and describe
their execution order, either graphically or through declarative languages.

A workflow consists of a sequence connected tasks [MMVL05]
and emphasis on the control flow. Composite services can be represented as
workflows [CASS01], since they include sets of atomic services together
with the control and data flows among Web services.

In order to manually build workflow or Web service-based pro-
cesses, many process modeling languages have been proposed such as
BPML, BPEL, etc. The Business Process Modeling Language (BPML) is a
meta-language for describing business processes [ADHW05]. Basic activi-
ties for sending, receiving, and invoking services are available, along with
structured activities that handle conditional choices, sequential and parallel
activities, joins, and looping. The BPML also supports the scheduling of

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

http://en.wikipedia.org/wiki/Flow

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 31
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

tasks at specific times. The Business Process Execution Language for Web
Services (BPEL4WS) is another low-level process modeling and execution
language for Web service compositions [WADH03]. The BPEL4WS pro-
vides notations for describing interactions of Web services, and thus allows
developers to implement composite Web services using simple monolithic
blocks.

Many manual Web service composition approaches rely on graph-
ical editors. Authors in [TASW03], for example, propose a graphical user
interface, called Triana, allowing users to select required services from a
toolbox and "drag-and-drop" them onto a canvas. Services are retrieved
from the UDDI registry keywords search. Another graphical editor
[CCMN04], called BPWS4J, has been proposed based on the BPEL-WS
language to extend the capabilities with programming languages such as
JAVA. BPWS4J integrates an Eclipse plug-in to allow the user to compose
a graph at the XML level. This composed graph, along with a WSDL doc-
ument for the composite service, is submitted to the execution engine.

Self-Serve [BESD03] is another state chart based editor that al-
lows users to build workflows by locating required services by using the
service builder. The service builder interacts with UDDI to retrieve service
meta-data and then executes the state chart in a P2P based execution model.

Despite these works, the potential number of suitable Web ser-
vices available online is extremely large, and is already beyond the human
capability to deal with the whole Web service composition process manual-
ly. Additionally, manual composition approaches are usually time-
consuming, error-prone and often not scalable processes. Therefore, con-
structing composite Web services with a semi automated or automated ap-
proaches is advantageous.

2.2.1.2 Semi-Automated Composition Approaches
The semi-automated service composition is a step forward than the

manual service composition in the sense that it makes recommendations for
Web service selection during the composition process [SIHP02]. Users then
select appropriate services from a shortlist of recommended services and
link them up in the desired execution order.

The myGrid framework [STRG03] allows users to compose, store
and execute workflows. Users browse a registry and select a workflow
template. This template is then submitted to the enactment engine which
asks users to select actual instances of the workflow components, e.g., Web
services.

In order to simplify the users’ selection process, many research
works seek to reduce the number of choices that users have to make when

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 32
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

composing Web services. For example, the semi-automated approach in
[SIHP02] proposes recommended Web services by matching Web services’
functional prosperities and filtering them based on non-functional proper-
ties when creating composite Web services. The composite service is then
executed by invoking each individual selected Web service and passing da-
ta between them according to the control flow.

In order to facilitate the modification of existing compositions
based on workflow, a framework is proposed in [CASH03] to provide assis-
tance to users by recommending Web services meeting users’ requirements.
When users add Web service to the workflow, they start by creating a ser-
vice template which indicates their intentions to extend the workflow func-
tionalities. The service template is sent to the Web service discovery mod-
ule, which returns a set of service object references that are ranked
according to their degree of similarity with respect to the service template.
Users then select the most appropriate Web services to accomplish their ob-
jectives. Furthermore, a knowledge-based advice system for service com-
position is proposed in [CSGT03], which uses domain knowledge and pro-
vides advice and guidance with respect to the selection, sequencing and
configuration of services. It additionally relies on semantically enriched
service descriptions to assist in the process of discovering available ser-
vices. The ability to exploit service descriptions facilitates the composition
specification process with respect to existing descriptions of Web resources.

The work presented in [DIPW08] reduces the number of choices
that users have to make by restricting the overall set of Web services by
ranking Web services so that the most desirable ones are presented first to
use. Authors in [ZAPG09] propose a rule-based approach for the semi-
automatic composition problem, giving end-user the control to guide the
overall composition process. End-users build the composition flow by se-
lecting constrained Web service types, called nodes. End-users connect
them using a set of control and data flow connectors. The specified nodes
will then be bounded to concrete Web service instances using a set of rule-
based queries satisfying the associated constraints. When compared to cur-
rent semi-automatic approaches, this approach is declarative, allows speci-
fying both functional and non-functional requirements, and provides con-
nectors that include both the data and control flow aspects.

An assistant goal oriented service composition approach is pro-
posed in [ALPA10] for semi-automatic compositions where the composi-
tion process is gradually generated by using a declarative oriented generic
composition plan. Users do to tell the system what to do but rather they es-
tablish and negotiate about goals and how to accomplish them. At each
composition step, the system proposes to users which new services can be

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 33
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

added to the composition and which kind of actions can be taken, based on
the current context, the composition objective and user preferences.

Although these representative semi-automated composition ap-
proaches solve some shortcomings of manual composition approaches, they
are still not scalable as the user is expected to browse a registry to select
appropriate services. In dynamic environment, semi-automated Web service
composition approaches highly rely on users’ intervention when contextual
information changes. To that end, many approaches for this purpose have
been proposed to fully automate Web service composition process.

2.2.1.3 Automated Composition Approaches

Compared to manual and semi-automated compositions, automated Web
service compositions generate the entirely composite service without hu-
man involvement. The automated Web service composition is defined as
“Given a query describing the composition goal and providing some inputs,
design automatically a composite service from the available services such
that if it is executed, it produces the required goal. [BABI12]” A conceptu-
al model of automated Web service composition is shown in Figure 2.6
[RAIK12].

The composer automatically derives executable compositions from
Web service descriptions and composition requirements. For different solu-
tions, structures of inputs and outputs may widely vary. Service descrip-
tions normally include specifications of service interfaces. Annotations
such as non-functional property annotations [ZBND04], and semantic anno-
tations [KVBF07], enable richer composition requirements [BKPP09].
Composition requirements express the users’ expectations about the service
composition. Finally, the outcome of the composer is an executable compo-
site service.

Figure 2.6 A Conceptual Model of Automated Web Service Composition

In the following, we cover automated Web service composition
approaches according to the reasoning mechanism they exploit namely,

• Automated composition based on finite state machine;
• Automated composition based on based on situation calculus;
• Automated composition based on based planning domain defi-

nition language;
• Automated composition based on rule-based planning;

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 34
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

• Automated composition based on theorem proving;
• Automated composition based on hierarchical task network.
We conclude this section with a comparison of all these approach-

es and provide insights from requirement specification and ad-hoc compo-
sition in dynamic environment perspectives.

2.2.1.3.1 Automated Composition based on Finite State Machine
The FSM is a mathematical model of computation conceived as

an abstract machine that can be in one of a finite number of states [CHU06].
The state of the machine is certain at a time, and it can change from one
state to another through transition. A particular FSM is defined by a list of
its states, and the triggering condition for each transition.

In [BCGL03], Web services to be composed are encoded as FSM
on the basis of their exported behaviors (i.e., protocols). The user specifies
a desired behavior of a composite service as a tree of actions which is,
again, transformed into FSM. By analyzing all available services, the ap-
proach provides how to construct a composite service from available Web
services. An extension of this work is presented in [BCGH05] allows for
advanced control flow requirements relying on semantic-like annotations of
Web services in terms of effects on the real world. It also addresses basic
data flow requirements in terms of data pieces that services can receive and
send. Another extension is proposed in [KAKS07] to compose Web ser-
vices based on a graph search algorithm. Component services and composi-
tion requirements are thus modeled as directed graphs with rich semantic
attributes. To make search more efficient, all services stored in the registry
are joined into an aggregated graph representing collective behavior of a
service system. Once a goal graph is specified, a search algorithm is used to
find solution in the aggregation graph.

Composition approaches based on finite state machine require the
composition requirements specified in terms of directed graphs with attrib-
utes but do not support requirement specification in business languages,
and moreover, they do not provide solutions to deal with contextual infor-
mation changes in dynamic environment.

2.2.1.3.2 Automated Composition based on Situation Calculus
Planning techniques are regarded as one of the most popular tech-

niques to automate Web service composition process in current research.
Planning is the process of thinking about and organizing the activities re-
quired to achieve a desired goal. It is proved in [CAST03] that the Web

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

http://en.wikipedia.org/wiki/Thinking

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 35
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

service composition problem can be viewed as a planning problem in which
state descriptions are ambiguous and operator definitions are incomplete.

One of the planning techniques used to automate Web service
composition process is situation calculus. The situation calculus is a logic
formalism designed for representing and planning about actions/tasks
[LALE05]. The situation calculus represents changing scenarios as a set
of first-order logic formulae. The basic elements of the calculus are: the ac-
tions that can be performed in the world; the fluent that describes the state
of the world, and the situations.

McIlraith et. al. [NAMC02][MCIL02] adapt and extend the Golog
language for automatic construction of Web services. Golog is a logic pro-
gramming language built on top of the situation calculus. The authors ad-
dress the Web service composition problem through the provision of gener-
ic processes and customizing constraints. The general idea of the work is
that software agents could reason about Web services to perform automatic
Web service discovery, execution, composition and inter-operation. User
request and constraints are presented by the first-order language of the situ-
ation calculus. Each Web service is conceived as an action. A knowledge
base provides a logical encoding of the preconditions and effects of the
Web service actions expressed with the situation calculus. Based on deduc-
tive reasoning, a composite service is then constructed as a set of atomic
services which connected by procedural programming language constructs
(if-then-else, while and so forth).

The work in [ZHAO10] extends the semantic of OWL-S through
semantic capabilities of the norm. Norm is also known as social norms
which is the common rules of conduct and standards of every member in a
social group or smaller groups. This work uses situation calculus to formal-
ly describe the norm in order to ensure the correctness of norm and the user
correct expression of various scene constraints, and provide more accurate
and subjective service in expression of the preferences. The situation calcu-
lus is applied to realize formal norm in order to ensure the accuracy of se-
mantic Web service composition.

Web service composition approaches based on situation calculus
expect composition tasks to be defined as a set of first-order logic formulae
which are difficult to use for users who are not familiar with technical de-
tails. In addition, before constructing composite services there is still a
considerable effort on modeling domain information such as the actions to
perform, the states of the world, and the situations, which also increases the
complexity of Web service composition.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

http://en.wikipedia.org/wiki/Logic
http://en.wikipedia.org/wiki/First-order_logic
http://en.wikipedia.org/wiki/Fluent_(artificial_intelligence)
http://en.wikipedia.org/wiki/First-order_logic

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 36
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

2.2.1.3.3 Automated Composition based on Planning Domain Defini-
tion Language
Planning Domain Definition Language (PDDL) is a standard en-

coding language for planning tasks. It expresses mediators, possible actions
and their structures, and action effects.

McDermott [MCDE02] present an approach to compose Web ser-
vices based on PDDL. When composing Web services, an estimated-
regression planner is used as a backward analysis of all possible actions to
achieve a goal to guide a forward search through situation space. The ad-
vantage of this work is a proposed new type of knowledge, called value of
an action, which persists and which is not treated as a truth literal. From
Web service construction perspective, the value of an action enables users
to distinguish the information transformation and the state change produced
by the execution of the service. The information, which is presented by the
input/output parameters are thought to be reusable, thus the data values can
be reused for the execution of multiple services.

When a plan is generated, an approach for translating the pro-
duced PDDL plans to OWL-S descriptions of the final composite Web ser-
vices is proposed in [FOLO03]. The result is a new Web service that can
later be discovered and invoked or take part in a new composition.

A similar work is introduced in [BOZH09] to support composing
Web services described by OWL-S based on PDDL. This work provides a
solution on how to translate OWL-S process models to the PDDL actions so
that PDDL can be applied to compose Web services.

PDDL is an encoding language for technical users to specify their
requirements and construct composite Web services; however, they are not
suitable for business users who specify their requirements in terms of busi-
ness objectives and expect Web services to be composed following busi-
ness languages based requirements.

2.2.1.3.4 Automated Composition based on Rule-based Planning
Rule-based planning refers to the planning process under guidance

of rules, which are structured and used to make deduction or choices.
The work presented in [POFO02] constructs composite Web ser-

vices using rule-based plan generation by modeling services by their pre-
conditions and post-conditions. A Web service is represented in the form of
a horn rule that denotes the post-conditions are achieved if the precondi-
tions are true. To create a composite service, the service requester only

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 37
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

needs to specify initial and final states, and then the plan generation can be
achieved using a rule-based expert system.

An similar approach is presented in [MEBE03] to generate com-
posite services from declarative descriptions by specifying the operations to
be performed through composition. This work uses composability rules to
determine whether two services are composable. The composition approach
consists of four phases. The specification phase enables descriptions of the
desired compositions using a language called Composite Service Specifica-
tion Language (CSSL). Second, the matchmaking phase uses composability
rules to generate composition plans that conform to user’s specifications. In
the selection phase, if more than one plan is generated, the user selects a
plan based on quality of composition (QoC) parameters (e.g. rank, cost,
etc.). In the generation phase, a detailed description of the composite ser-
vice is automatically generated and presented to the user. The main contri-
bution of this method relies on the composability rules, because they define
the possible Web service's attributes that could be used in service composi-
tion. Those rules can be used as a guideline for other Web service composi-
tion approaches.

The SECE (Sense Everything, Control Everything) is a platform
for context-aware service composition based on user-defined rules and on-
tology descriptions of services [BEAS12]. The SECE creates user-defined
rules based on the ontology descriptions of services to discover Web ser-
vices and to issue more complex queries for service discovery and compo-
sition.

The advantage of Web service composition approaches based rule-
based planning lies on its extensibility since composition approaches are
able to take into account new constraints by introducing new categories of
rules and accordingly updating composition algorithms. However, the in-
troduced approaches do not provide any solution for dealing with contextu-
al information changes in dynamic environment.

2.2.1.3.5 Automated Composition based Theorem Proving
Theorem proving refers to the proving of mathematical theo-

rems by computer programs and deals with the development of computer
programs that show that some statements are a logical consequence of a set
of statements [NEWB01].

Waldinger [WALD01] elaborates the Web service composition
from the theorem proving perspective based on automated deduction and
program synthesis. In this work, agents cooperate with each other to answer
a query, which is phrased as a theorem and the answer is extracted from a

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

http://en.wikipedia.org/wiki/Mathematical_proof
http://en.wikipedia.org/wiki/Mathematical_theorem
http://en.wikipedia.org/wiki/Mathematical_theorem
http://en.wikipedia.org/wiki/Computer_program

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 38
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

proof. Available Web services and user requirements are described in a
first-order language, and then constructive proofs are generated with a the-
orem prover. Finally, Web service composition descriptions are extracted
from particular proofs.

The framework introduced in [PAFL11] for the formal verification
of Web services composition is based on the proofs-as-processes paradigm
and enables inference rules of Classical Linear Logic (CLL) to be translat-
ed into π-calculus processes. In this context, composition is achieved by
representing available Web services as CLL sentences, proving the request-
ed composite service as a conjecture, and then extracting the constructed π-
calculus term from the proof. This work composes Web services by taking
into account both functional and non-functional requirements.

Web service composition based on theorem proving provides con-
tributions when composite services can be constructed from the exiting
Web services and show how composite services can be constructed; how-
ever, these approaches lack the capacity to provide optimal composite Web
services to maximize user’s satisfaction when many possible composite
Web services exist.

2.2.1.3.6 Automated Composition based on Hierarchical Task Network
Hierarchical task network (HTN) is an approach to automate plan-

ning in which the dependency among actions can be given in the form of
networks. Planning problems are thus specified in HTN by providing a set
of tasks, i.e., primitive tasks (i.e., actions that can be executed), compound
tasks (i.e., complex tasks composed of a sequence of actions), and goal
tasks (i.e., tasks satisfying conditions).

The SHOP2 planner, which is AI planner based on HTN, is ap-
plied to automatically compose Web services [SPWH04] by translating
OWL-S description of Web services to SHOP2. In particular, most control
constructs can be expressed by SHOP2 in an explicit way. The Web service
composition is thus conducted by recursively decomposing goal tasks and
searching compound tasks and primitive tasks satisfying the goal tasks.

Based on HTN and non-functional requirements, authors in
[LIN08] present an automatic Web service composition approach satisfying
user preferences as much as possible. Users express constraints over the
states and specify state trajectory corresponding to the plan using a special
preference language. The work mainly describes preferences augment ser-
vice compositions and how they are mapped into a planning language for
HTNs.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

http://en.wikipedia.org/wiki/%CE%A0-calculus
http://en.wikipedia.org/wiki/%CE%A0-calculus

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 39
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Authors in [KUXR09] consider that previous composition ap-
proaches based on HTN planning have not taken into account decomposi-
tions to a problem can lead to a variety of valid solutions. In [KUXR09], a
model of combining a Markov decision process model and HTN planning is
presented to address Web services composition. In this model, HTN plan-
ning is enhanced by decomposing a task in multiple ways and hence being
able to find more than one plan, taking into account both functional and
non-functional properties.

In general, the HTN is proved to be an effective planner to com-
pose Web services, however, composition based on HTN planning is based
on the notion of composite tasks that can be refined to atomic tasks using
predefined formalism, which requires a great deal of pre-processing work
in technical level.

2.2.1.3.7 Comparison and Limitations
Generally speaking, Web service composition based on planning

firstly converts the composition problem into planning problem by trans-
forming Web service descriptions and requirements into necessary planning
domain descriptions, and secondly different planners are applied to gener-
ate planning solutions to satisfy the goal states. At last, these planning solu-
tions are transformed into executable specifications like BPEL documents
or other XML-based descriptions, and executed through the corresponding
engines.

To compare different automated Web service composition ap-
proaches, we adopt the criteria introduced in [BCDD08] from four perspec-
tives:

Domain Independence: The approach is not exclusive to a specific
domain (e.g. travelling, automotive) but can be applied to any, allowing for
the solution of a broad range of problems;

Partial Observability: The approach is able to reason on incom-
plete information;

Non-determinism: The approach deals with actions that may lead
to different states depending on the values of some parameters (e.g. an if-
else construct)

Scalability: The approach is able to solve real-world composition
problems which often deal with a large number of services. A low scalabil-
ity means that this particular category of approaches becomes less efficient
as the number of associated services and/or their complexity rises. On the
contrary, a high scalability ensures that there is support for large numbers
of services and/or high levels of complexity.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 40
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Table 2.1 compares all automated composition approaches intro-
duced in section 2.2.1.3 based on different categories.
Table 2.1 Comparison of Automated Composition Approaches

Automated
Composition

Domain
Independence

Partial Ob-
servability

Non
Determinism

Scalability

FSM Yes Yes Yes Average
Situation
Calculus

Yes Yes Yes Average

PDDL No Yes No Good
Rule-based

Planning
Yes No No Varies

Theorem
Proving

Yes No No Good

HTN Yes Yes Yes Good
Based on Table 2.1, we conclude that automated composition ap-

proaches based on HTN planning is better than other planning based com-
position approaches since composition based on HTN planning has good
scalability, partial observaiblity, non-determinism, and it can be domain in-
dependent.

Despite the large spectrum of Web service composition approach-
es, there are still limitations when these approaches are applied to support
business requirements from business users and adapt to contextual changes
in dynamic environments. We elaborate the limitations as follows:

1) Composition requirement specifications highly rely on users’
technical background. Almost all beforementioned approaches requires that
users’ composition requirements are formally expressed in with technical or
formal methods. For example, in HTN based composition, users’ require-
ments need to be defined in the form of goal tasks which specify the exact
expected state that a composite service should achieve; whereas in theorem
proving based service compositions, composition requirements should be
defined as theorems. As a matter of fact, users should be familiar with the
composition domain and composition techniques. In addition, these ap-
proaches do not support business users to specify their requirements based
on general business objectives in a natural language; additionally, since the
goal (i.e., composition requirement) is expected to specifically describe the
future state of the domain, this makes the transformation from business-
centric requirements with general objectives to specific goal states difficult.

2) Web service composition requires pre-formalized domain de-
scription. Not only composition requirements should be formally defined
following technical details or formal methods, other composition domain
information should also be formalized according to different planners, such

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 41
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

as describing initial domain states, possible domain states, and different ac-
tions. Although automated service composition approaches significantly re-
duce the amount of manual work to construct composite services, a consid-
erable effort remains necessarily when modeling the composition domain
(e.g., service annotations, ontologies, goal abstract processes etc.). Moreo-
ver, current standard of Web service description cannot be directly adhered,
which apparently increases the complexity of Web service compositions.

3) Web service composition process is vulnerable to dynamic en-
vironment changes. Although the before introduced approaches can be ef-
fective to compose Web services under certain conditions, they do not easi-
ly adapt to contextual changes in dynamic environments. When changes
occur at rum time, existing composite Web services may be affected (e.g.,
disappearance of Web services participating in the composition). If dynam-
ic changes happen frequently, redesigning composition requirements and
accompanying specifications may become time consuming. As a result,
these solutions are usually applicable to a very limited set of real world
composition problems and cannot be largely adopted as general-purpose
compositions.

4) Web service composition does not fully take into account mul-
tiple constraints. As introduced before, multiple constraints such as control
flow constraints, QoS constraints, and dependency constraints, can influ-
ence Web service composition process, such as. Most of existing approach-
es provide composition solutions satisfying functional properties while few
approaches take into account users’ QoS constraints and QoS preference as
well; They neglect, for example, dependency relations between/among Web
services. In addition, control flow constraints are mainly considered by
matching input/output messages or precondition/effect on Web services to
be composed; however, they do not support composing Web services fol-
lowing users’ personalized control flow constraints, which indicate the pre-
ferred execution order for certain specific Web services or Web services
with the same operations.

2.2.2 Syntactic and Semantic based Composition Approaches

From a semantic perspective, Web service composition approach-
es can be classified into two categories: syntactic based Web service com-
positions and semantic based Web service compositions. Generally speak-
ing, Web service XML-based standards (e.g., WSDL, UDDI, etc.) focus on
syntax structures to facilitate machine processing; and are for syntax com-
position, whereas ontology-based standards (e.g., OWL-S, RDF, etc.) focus

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 42
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

on adding semantic information to Web service XML-based standards to
facilitate users’ manipulation.

2.2.2.1 Syntactic Web service Composition Approaches

The syntactic Web service composition refers to the composition

process in which Web services to be composed are described based on syn-
tactical languages, and the composition is thus proceeded based on syntac-
tic discovery, selection and composition.

 In tradition, Web services are described based on WSDL, outlin-
ing what input they expect and what output they return. WSDL is an XML
based language, which provides syntactic description of Web services.
BPML and BPEL4WS are also XML-based standards to support syntacti-
cally composing Web services into business processes. The work in
[KHAL03] proposes a Web service composition approach based on
BPEL4WS, this work analyzes the compositional aspects of the BPEL4WS
and identifies multiple interaction patterns, and support Web service com-
position lifecycle management.

The syntactic rule based approach for Web service compositions
in [PUHK06] derives a given desired input/output type from a collection of
available types of Web services using a prescribed set of rules with costs. A
solution based on dynamic programming is presented to solve the minimal
cost composition. The focus point of this work is in the case when only in-
put-output type information from the WSDL specifications is available.

Generally speaking, the core problem of syntactic Web service
composition is the syntactical matching, where output parameters of a Web
service can be used as input parameters of another Web service. To solve
this problem, many automatic Web service composition algorithms based
on AI planning techniques have been proposed [BOZH09][KUXR09]
[ZHAO10] [PAFL11][BEAS12].

However, the syntactic Web service composition was designed
primarily for machine and program interpretation and use, the inherent
meaning of information cannot be understood for computers and applica-
tions. In order to entirely automate Web service discovery and composition,
a framework that semantically describes Web services is needed for human
semantic and facilitating Web service composition.

2.2.2.2 Semantic Web service Composition Approaches
To overcome problems of interpretability and interoperability in

traditional Web service compositions, the semantic Web is proposed as a
list of standards to bring machine-understandable and human-transparent

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 43
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

descriptions to existing data and documents on syntactic Web services
[MOZE11]. Semantic Web means adding machine processable semantics to
data. With the help of well defined semantics, machines can understand in-
formation and process it on behalf of human users.

In semantic Web services, information needed to select, compose,
and respond to Web services can be encoded with semantic markup at the
Web service description. Semantic Web service composition is thus the
process of composing semantic Web services and promises for providing
the most suitable composite services to satisfy users’ requirements.

A key element to realize the Semantic Web is to develop a suita-
bly rich language for encoding and describing the Web content. Such a lan-
guage must have a well defined semantics, be sufficiently expressive to de-
scribe the complex interrelationships and constraints between the Web
objects, and be amenable to automated manipulation and reasoning with ac-
ceptable limits on time and resource requirements. RDF, WSMO, OWL-S
are current standards to support semantic Web service composition as fol-
lows:

The Resource Description Framework (RDF) is a foundation for
processing metadata and provides interoperability between applications that
exchange machine-understandable information on the Web [ALHE11].
RDF extends the linking structure of the Web to use URIs to name the rela-
tionship between things as well as the two ends of the link (this is usually
referred to as a “triple”). Using this simple model, structured and semi-
structured data can be mixed, exposed, and shared across different applica-
tions.

The WSMO is used for describing the semantics of Web services
[FEDO05]. It consists of four parts namely goals, ontologies, mediators,
and Web services. Goal defines the user desires. Ontologies define formal
semantics for the terms describing data to achieve interoperability among
other WSMO elements. Mediator is used to handle interoperability prob-
lems between different WSMO elements while Web service part describes
the functional behavior, precondition, post condition, control flow of an ex-
isting deployed service.

Since the WSDL standard operates at the syntactic level and lacks
the semantic expressivity needed to represent the requirements and capabil-
ities of Web Services, WSDL-S is proposed as a new standard to semanti-
cally annotate WSDL interfaces and operations as well as XML Schema
types, linking them to concepts in ontologies [AFMN05]. The annotation
mechanism is independent of ontology or mapping languages. WSDL-S
keeps the semantic model outside WSDL, making the approach independent
from any ontology language. However, without describing how to use of

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 44
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

annotations in different languages, it is rather difficult to formally define
requests, queries or matching between service requests and service descrip-
tions. As a result, WSDL-S may be successful in annotating WSDL with
semantic information, but does not offer any support for automated service
discovery and composition.

The OWL-S is almost the most popular standard to describe se-
mantic Web services and support semantic Web service composition, as it
overcomes the limitations of WSDL-S and provides extra support for se-
mantic based Web service discovery and composition. OWL-S [ALHE11]
is a high level language used for describing Web services properties which
builds on top of earlier languages such as RDF and RDF Schema. OWL-S
consists of a set of ontologies designed for describing and reasoning over
service descriptions. It consists of three parts namely service profile, pro-
cess model and grounding. Service profile includes general information and
describes what Web services will do; process model describes how the ser-
vice will perform functionally; grounding describes how to access Web
services. In a more detailed perspective, a composite Web service can be
viewed as a process, which is specified by a subclass of Service Model
called process ontology. A process enables users to automatically discover,
invoke, compose and execute Web services under certain conditions
[MBHL04].

In addition to the standards describing semantic Web services,
many approaches are proposed to semantically compose Web services to
satisfy users’ requirements.

Since BPEL4WS provides only syntactic support for Web service
composition, a bottom-up semantic Web service composition approach is
proposed in [MAMC03] to adapt BPEL4WS for the Semantic Web. This
work collects service profiles into a repository and exploits their semantics
to query for partners. Then, it integrates semantic services descriptions que-
rying into BPWS4J, which is an engine that implements a subset of the fea-
tures defined in the BPEL4WS specification. Since the BPWS4J is not ex-
tensible, they construct a Semantic Discovery Service to work within
BPWS4J’s perspective as an aggregator of Web services. However, this
work requires users’ intervention and does not support the automated inte-
gration and composition of Web services functionalities.

The Internet Reasoning Service (IRS-III) in [DCHS04] is a
framework which supports the creation, publication, composition and exe-
cution of semantic Web service according to the WSMO ontology. D. Sell
et al. introduce in [SHDM04] a graphical tool that supports users by defin-
ing dynamic compositions in IRS-III and recommending goals according to
the context at each step of the composition process.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 45
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Roughly speaking, the IRS Web service composition is suitable
for representing a service description as a process in OWL-S. However in
IRS-III, the notion of goal refers to a general description of a problem and
can be solved by different Web services. A goal describes a problem to be
solved and represents the knowledge required for matching the problem to
a set of Web service descriptions. In order to integrate OWL-S into IRS-III,
the work introduced in [HDMC04] explain how ontologies describing a
service in OWL-S specification (that uses the Process Model for modeling
and describing Web services) are mapped to the WSMO ontology (that uses
the notion of goal) and translated to be used by IRS-III. This work extends
the potential of IRS-III in the sense that the separation of goals and Web
services makes the Web service composition process more flexible.

Although such approaches provide solutions for semantic Web
service composition, they still require user’ specific knowledge of domain
ontology to specify composition requirements, i.e., goals, and focus only on
constructing composite services to satisfy users’ functional requirements.

The Active Semantic Web Service (ASWS) [CHSA06] allow
causal users to reason about their actions at runtime in order to compose
autonomously and automatically Web services. In this work, the user inter-
acts with an ASWS mediator that behaves as an agent asking for a set of
requirements to search for the appropriate services that provide as a result
one or more of the needed requirements. When ASWS receives the required
action definition, it processes the next requirement. As a consequence, the
user interacts with the mediator service that collects actions that enables it
to satisfy user’s requirements. This work provides a new means to help
business users to specify their requirements and then automatically com-
pose Web services to satisfy their requirements; however, the requirement
specification process involves repeated interactions between users and the
system (i.e., ASWS).

The Processes with Adaptive Web Services (PAWS) in [ACMP07]
deploys the annotated Business Process Execution Language (BPEL) pro-
cess with local and global QoS constraints on individual Web services or
composite services. Through negotiations, the service retrieval module
finds the best service that has the required interface and does not violate
constraints on each task in the process. Multiple candidate services are se-
lected for each task and for each process; only one candidate service is exe-
cuted by the BPEL engine. The PAWS also allows faulty services to be re-
placed with other candidate services and provides the recovery actions to
undo the results of the faulty services.

In [ZNBP08], a goal-directed service composition and optimiza-
tion framework is presented. The Web service composition is expressed as

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 46
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

a goal directed problem that takes three inputs, namely domain specific
composition rules, description of business objectives and description of
business assumptions. The initial step in the composition process relies on
a backward chaining where the composition rule creates a chain backwards
from the business objectives until the initial state is reached and there are
no more rules. The second step relies on a forward chaining, where some
additional services are added to the composition schema produced during
the first step to complete it. These steps deal with the control flow aspects
of the composition. The final step relies on a data flow interface to add the
data flow to the composition. The entire Web service composition process
is supported by service ontology which specifies a common semantic model
and defines concepts that are used by all participants in the process.

Roughly speaking, the idea of semantic Web services is to de-
scribe Web service interfaces semantically in a machine-readable manner,
thus enabling automatic Web service discovery and composition. Compared
to syntactic Web service composition approaches, semantic Web service
composition has apparently its advantage in combining data and Web ser-
vices from different sources without losing their meaning, interpreting
meanings of Web services’ input and output messages, and providing ma-
chine readable and human understandable composition solutions.

2.2.3 QoS-aware Web Service Composition Approaches

The Web with available Web services constitutes a growing and

dynamic changing environment; more and more Web services with same
functional attributes and similar QoS are published every day. How to dis-
cover and select component Web services from a list of service candidates
with same operations and different QoS has become a key issue in Web
service composition context. While some Web service composition ap-
proaches construct only composite services based on requirements on func-
tional properties [GBNA08][LIN08] [KBBG08][KASE09], alternative ap-
proaches seek to provide composition solution satisfying functional
requirements while taking into account composite services’ QoS. These ap-
proaches are known as QoS-aware Web service compositions.

In the presence of multiple Web services with overlapping or iden-
tical functionality, users unavoidably discriminate Web service offerings
based on their QoS. When constructing composite services, the QoS of the
resulting composite service is a determinant factor to ensure user’s satisfac-
tion, based on QoS aggregation methods that calculate QoS values of com-
posite services. For example, a QoS aggregation method using workflow
patterns is introduced in [JARM04] to determine the QoS of a Web service

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 47
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

composition by aggregating the QoS dimensions of individual services.
This allows verifying whether a set of services selected for composition
satisfies QoS requirements for the whole composition. The QoS aggrega-
tion builds upon abstract composition patterns, which represent basic struc-
tural elements, like sequence, iterative, or parallel execution. This work
models a Web service composition as a graph, and transforms it into a
graph of composition patterns based on structural elements and QoS prop-
erties of individual Web services. A different approach of deriving QoS of
composite services is proposed in [JAMG05] by following an aggregation
approach and well-known workflow patterns defined in [DTKB03]. The au-
thors analyze workflow patterns for their suitability and applicability to
composition and they derive a set of composition patterns. Additionally,
they define a simple QoS model consisting of execution time, cost, encryp-
tion, throughput, and uptime probability and QoS aggregation formulas for
each pattern. The computation of the overall QoS is then realized by per-
forming a stepwise graph transformation, that identifies patterns in a graph,
calculates its QoS according to aggregation functions. The composition is
repeated until the graph is completely processed and only one single node
remains. The main disadvantage of these methods for QoS aggregation is
that they do not consider the measurement scales of different QoS attributes
when calculating the aggregated QoS values. For example, certain QoS at-
tribute may be measured by different measurement scales, and thus requires
different aggregation methods.

Since QoS preferences become one of the most crucial criteria for
composing Web services, users may have different requirements and pref-
erences regarding QoS of Web services. The QoS-aware approaches are
therefore required to maximize the QoS properties of composite service by
taking into account users’ constraints and preferences.

The QoS-aware middleware for Web service composition in
[ZBND04] presents a multi-dimensional QoS model consisting of price, du-
ration, reputation, success rate and availability attributes. Each service is
associated with a quality vector containing all QoS attributes for each oper-
ation of a service. The basic idea is to split a composition into multiple ex-
ecution paths based on their notations that a composition is specified using
a state chart diagram. The user is required to define an execution plan ex-
pressing for every task in the composition, a service exists that implements
the operations required for that task. The QoS-aware composition lies in
two steps: the local optimization and the global optimization. During the
local optimization, the system tries to find all candidate Web services that
implement the given task. Each service is assigned a quality vector and user
defined scores for different quality constraints. These constraints are then

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 48
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

used to compute a score for each candidate service. Based on multiple cri-
teria decision making, a service is chosen when it fulfills all requirements
and has the highest score. The global optimization comes with integer pro-
gramming that has variables, an objective function and a set of constraints
as an input. The optimization problem is then solved using an integer pro-
gramming solver.

Authors in [BRPB08] present Amadeus, a holistic service-oriented
environment for QoS-aware Grid workflows. Amadeus considers user re-
quirements, in terms of QoS constraints, during workflow specification,
planning, and execution. Workflows and associated QoS constraints are
specified at a high level using intuitive graphical notations. A user specifies
the workflow with a UML-based Grid workflow modeling and visualization
tool by composing predefined workflow elements. For each workflow ele-
ment different properties may be specified that indicate the user’s QoS re-
quirements. A set of QoS-aware service-oriented components is provided
for workflow planning to support automatic constraint-based service nego-
tiation and workflow optimization.

QoS-aware composition is considered as one of the most im-
portant crucial issues for Web service composition since it determines the
final performance of the resulting composite services and is directly related
to the user satisfaction. Most of QoS-aware composition approaches espe-
cially those before mentioned in this section, work in static composition
environment. Assuming that QoS properties are stable is very reductive.
QoS properties are often subject to changes. In the next section, we discuss
Web service composition from static and dynamic perspectives.

2.2.4 Static Composition and Dynamic Composition Approaches
As introduced in Chapter 1, composition environments, in which

Web services are composed and executed, can be divided into two catego-
ries according to contextual information influencing the composition pro-
cess: static composition environment and dynamic composition environ-
ment. In the static environment, contextual information in composition
process rarely changes while in the dynamic composition environment,
contextual information influencing composition process changes over time.

In composition environments, Web service composition approach-
es can also be classified into two categories concerning the design time and
runtime during which Web services are composed and executed, namely
static Web service composition and dynamic Web service composition. The
main difference between static and dynamic compositions stems from the
point of time at which a concrete atomic Web service is integrated into the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 49
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

composition. Static approaches select services during the design time;
whereas the dynamic approaches select services during the run-time.

According to [FOST04], “Static Web service compositions are
known at design time and are bound to a composition at design time. Dy-
namic Web service compositions are one or many compositions in which
Web services are not known at design time, and which are discovered or
their properties resolved based upon a criteria process set at run time.”

2.2.4.1 Static Web service Composition Approaches

The before mentioned composition approaches, especially those

are based on process modeling standards such as BPEL4WS and BPML,
and Web service composition approaches that are based on AI planning are
mainly static composition approaches, as they lack of proper support for
contextual information and environmental changes, when constituting Web
services suddenly become unavailable during the execution of composite
services, the Web service composition should be regenerated.

In addition to the composition approaches based on modeling
standards and AI planning technique introduced before, we cite Bea Web-
Logic [REF10] and Microsoft Biztalk [REF13A] as examples of static Web
service composition, which are two platforms that compose Web services.
BizTalk Server, which is both an application server and an application inte-
gration server, provides business process automation while Bea WebLogic
is an application server to develop, compose, deploy and manage Web ser-
vices and applications in large distributed environments. Microsoft Biztalk
enables the automation of business processes, through the use
of adapters which are tailored to communicate with different software sys-
tems.

Most of composition approaches work fine in static composition
environments where Web services involved in compositions or other con-
textual information such as requirements not or rarely change. However,
static Web service compositions are not flexible in the sense that they are
not adaptive to the runtime changes such as service providers publish newer
services, or services are replaced by other ones, current Web service com-
positions become inconsistent. In that case, it is unavoidable to reconstruct
the composite service. Service composition approaches should be able to
dynamically modify Web service compositions in simple and effective
ways and adapt to dynamic environments.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 50
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

2.2.4.2 Dynamic Web service Composition Approaches

Ideally, Web service composition should be able to transparently

adapt to dynamic environment changes and to users’ requirements with
minimal or no human intervention. Dynamic Web service composition aims
at overcoming the problems which are apparent in static Web service com-
position. It refers to compose complex services on the fly, in which ser-
vices are composed at run-time and adapted to contextual information or
environmental changes.

Most of existing dynamic Web service composition approaches re-
ly on predefined abstract composition plans and service selection models at
runtime. In this process, Web service composition and execution processes
are interleaved in order to provide on the fly composition solutions.

An abstract composition plan includes a number of actions (usual-
ly represented as abstract Web services) to be achieved. It indicates the ap-
propriate execution order of different abstract Web services by analyzing
their functional properties. The selection phase aims at selecting atomic
services for each abstract service and integrating them in the composition
plan at runtime to construct specific composite service. The abstract com-
position plan is manually predefined by users [SING03] or automatically
generated [YUZL07]. Dynamic composition approaches thus enable the au-
tomatic selection of atomic Web services at runtime and compose them to
create executable composite services.

Some research efforts attempt to provide reference solutions for
dynamic compositions. The approach in [MEHS00] proposes to build ad-
hoc workflow by composing Web services. The general idea of ad-hoc
workflow is to generate one template process in advance considering dif-
ferent possibilities, and then according to specific requirements, each com-
position task is derived from the template process that can be modified to
meet different requirements.

The EFlow [CIJK00] is a platform presented by HP for the speci-
fication, enactment and management of composite services. A composite
service is modeled by a graph that defines the order of execution among the
nodes in the process. The graph is created manually but it can be updated
dynamically. Three types of nodes are introduced (e.g., service, decision
and event nodes). Service nodes represent invocation of atomic or compo-
site services; decision nodes specify alternatives and rules controlling the
execution flow; Event nodes enable service processes to send and receive
several types of events. Although the graph is specified manually, the
EFlow automatically binds the nodes with concrete services. The dentition
of a service node contains a search recipe that can be used to query actual

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 51
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

service either at process design time or at runtime in order to provide dy-
namic composition solutions. However, the dynamic selection process only
provides results satisfy functional requirements but they do not consider
Web service non-functional properties.

The Self-Serv environment proposed in [BESD03] uses a P2P-
based Web service composition model to enable the declarative composi-
tion of new services from existing ones, the dynamic selection of services,
and peer-to-peer orchestration of composite service executions. The Web
service composition is then manipulated by state chart, and the concept of
service container is introduced to facilitate the composition of a potentially
large and changing set of services: a container is a service that aggregates
several other substitutable services that provide a common capability. Dur-
ing the composition process, Self-Serv postpones the decision of which
specific service handles a given invocation until the moment of invocation.
For each state (ST), Self-Serv generates a state coordinator, in which ser-
vice providers are associated with the state ST hosts. At runtime, the coor-
dinator of ST is responsible for 1) receiving notifications of completion
from other state coordinators and determining from these notifications
when to enter state, 2) invoking the service labeling ST, and 3) notifying
the coordinators of the states that might need to be entered next that the
service execution is complete.

A framework to construct composite Web services is proposed in
[GRJA05] to compose Web services while taking into account both Web
services’ both functional and non-functional properties. An abstract compo-
site model is firstly generated, containing all the necessary information that
can be used in service discovery and selection. Suitable Web services are
then handled by the discovery process based on the semantic descriptions
matchmaking. At last, a finalized concrete composite service is obtained
and executed. Another user requirements oriented dynamic Web service
composition framework is introduced in [XQYB09], where dynamic Web
service composition is preceded based on functional and non-functional re-
quirements; With user requirements in OWL-S, the composition process
firstly uses JSHOP2 technique [RAAN07] to generate an abstract service
plan to satisfy user functional requirements. The Web service selection
problem is then converted into a multi-objective optimization problem, us-
ing the multi-objective ant colony optimization (MOACO). The abstract
service plan is concretized into a concrete workflow based on non-
functional requirements, and then transformed into BPEL4WS.

In [KASE09] the authors present a composition framework allow-
ing modeling and scheduling composite Web services under user con-
straints. The composition starts with a manual modeling of an abstract

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 52
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

workflow using a graphical interface depicting template of services which
must be used. The framework finds concrete services to create a composite
service fulfilling the user constraints. The advantage of this work is to
compose Web services while considering the dependency relations between
Web services. This work provides a good reference for modeling depend-
ency relation between/among Web services.

A conceptual modeling approach for dynamic Web service com-
position is proposed in [GTSS11], in which the life-cycle for the dynamic
composition of services is modeled in three phases, i.e., design, configura-
tion and enactment phases. The design phase consists of modeling behavior
and requirements using conceptual models. On the service provider side
Web service interfaces and behaviors are modeled, and on the service user
side requirements are specified by abstract service models. The configura-
tion phase deals with the discovery, composition, selection and mediation
of service candidates satisfying user requirements. In the enactment phase,
an execution engine binds the abstract service model with selected services,
executes the service calls and monitors the calls. During execution, it re-
places failed service calls and performs auditing for QoS.

When an abstract composition plan is generated, the dynamic ser-
vice selection is the important issue to deal with and the result of service
selection directly affects the reusing and composition of services.

Authors in [SULY08] proposed an iterative selection algorithm for
distributed environments which aggregate local optimum services to meet
environment changes. The idea is to select one Web service from each
group of Web service candidates independently while using a given utility
function, values of different QoS criteria are then mapped to a single utility
value and the service with maximum utility value is selected. The dynamic
Web service selection algorithm based on markov decision process (MDP)
in [FJWP10] considers the dynamic Web service composition problem as a
dynamic optimization process, and the algorithm measures the credibility
of services and the weight of QoS. By focusing on user’s QoS preference,
the preference based selection approach in [LASG07] determines the
weight according to the maximum request utility for each composite service
configuration, and combines declarative logic-based matching rules to
overcome the lack of random selection of Web services. A multi-QoS based
local optimal model of service selection (MLOMSS) is presented in
[JIAN10] to provide important grounds to choose the best service, by using
an ordinary utility function as a numerical scale of ordering local services.
This work provides a solution to select Web service candidates based on
users’ preference and objective/goals.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 53
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

These representative dynamic selection approaches are efficient in
terms of computation time, but they cannot verify global QoS constraints
for composite services, since Web services are selected individually and
sometimes non-functional requirements cannot be satisfied.

In addition to these, man approaches seek to use local optimal
strategy to filter candidate services for each abstract service, and then con-
duct service selection from the candidate services that have never been fil-
tered out using global optimal policy to ensure non-functional requirements
are satisfied both locally and globally.

In order to guarantee both local and global QoS constraints, an op-
timization approach for the composition of Web services is introduced in
[ARPE06] to allow specifying QoS constraints both at local and global lev-
els. The optimization is modeled as a mixed integer linear programming
problem. In addition, Web service selection and Web services execution are
interleaved. Authors in [LSYF09] propose a heuristic algorithm to optimize
composition and service selection in order to meet the user's QoS expecta-
tions. The optimization is carried under two level constraints of global and
local optimization, a mathematical model is given for each layer, using the
convex hull frontier method to select Web services.

A QoS-based dynamic service composition approach for Web ser-
vices with ant colony optimization is proposed in [ZCFJ10] to optimize the
global utility function for QoS. If such a combination is found to form a
path including Web services, the aggregated QoS of this path is regarded as
optimal. The novelty of this work lies with the multi-objective optimal-path
selection modeling for QoS-based dynamic Web service composition. An-
other work that combines ant colony algorithm and genetic algorithm to-
gether to provide dynamic Web service selection transforms the problem of
selecting optimal Web services for composite Web service into selection of
the optimal path in the weighted directed acyclic graph [YSLZ10] while the
experimental results indicated the validity and more efficiency of this work.

Moreover, certain factors in the composition environment make
the dynamic composition process tedious. In some case, many possible
compositions exist instead of only one possible composition; the selection
of compositions depends on the requirements and updated domain infor-
mation. Two motivation scenarios are presented to describe this kind of
problem [LKMC06][ZNBP08]. In this process, it is impossible to predefine
every aspect of its composition schema due to the inherent complexity. It is
extremely time consuming to enumerate all the possible options exhaustive-
ly. The control flow is determined by the data generated in real time. When
abstract composition plan is difficult to generate in design time, this calls
for dynamic generation of composite service plan based on domain infor-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 54
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

mation. Authors in [LKMC06] propose an event-driven dynamic Web ser-
vices composition for automation of business processes. Event-Condition-
Action (ECA) rules are applied to generate the composition plan automati-
cally and dynamically. Two types of ECA rules are defined as backward
chain rule and forward chain rule. A backward chain rule specifies various
pre-conditions (i.e. list of tasks that should be completed before a given
task is initiated) for various tasks involved in the plan; while a forward rule
is the form of an ECA rule where this work treats the completion of a task
as an event and checks if the given condition is satisfied then executes the
given action which is in turn execution of some other task. As an extension
of this work, the dynamic composition and optimization proposed in
[ZNBP08] couples the abstract composition plan and quality-driven selec-
tion approach in one single framework to ensure that the generated compo-
site services comply with business rules. This approach can perform pro-
cess adaptation and optimization in compliance with organization’s
business rules systematically. Compared to other dynamic composition ap-
proaches, this approach is able to produce composite services rooted in a
rich process model. Nevertheless it still requires a predefined abstract pro-
cess model as a reference to consider all possible compositions, and then
generates or extracts an executable composite service from the predefined
process model by selecting and integrating appropriate Web services. How-
ever, it is difficult to consider in practice all possible actions and their con-
nections to provide a predefined abstract composition plan, and requires
that users are familiar with composition domain, functionalities and con-
nections of all domain actions.

Although many approaches deal with the dynamic Web service
composition problem in the way of “selecting services after generating
composition plan”, we summarize the limitations of these approaches as
follows:

1) Constructing composite services by selecting atomic services
based on an abstract composition plans may limit the global QoS of compo-
site services, because predefined composition plans without considering
specific QoS profile may not provide the best way to aggregate QoS of
atomic services;

2) These approaches lack of support to construct composite ser-
vices without complete abstract composition plans, as in certain cases (e.g.,
to manage a crisis that occurs abruptly) a composition plan cannot be pre-
cisely predefined.

In sum, Web service composition approach which is able to adapt
to dynamic environment while provide composition solutions with optimal
QoS remains an open challenge.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 55
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

2.2.4.3 Adapting Composition Approaches to Dynamic Environments

In addition to dynamic Web service composition approaches, some

static Web composition approaches can be extended to deal with dynamic
environment changes at runtime. In this context, we mainly focus on two
research trends: Web service substitution and composition replanning.

The Web service substitution is the process of replacing failing
constituting Web services in service compositions with new Web services;
while the composition replanning is the process of re-adjusting and updat-
ing the Web service composition during runtime. As a result, some com-
mon Web service composition approaches have been extended and adapted
to dynamic environment to deal with the following changes:

1) Constituting Web services become unavailable during the exe-
cution of composite services. Unavailable service case can be caused by
different unforeseen reasons such as Web service overloaded, or discon-
nected for maintenance, etc.

2) Constituting Web services properties change/update during the
execution of composite services. Changes in Web service properties may
affect functional properties and QoS properties: when a Web service’s
functional property changes, the Web service becomes incompatible result-
ing composite service may no longer satisfy user’s requirements; when a
Web service’s QoS changes, the global QoS of the resulting composite ser-
vice is also updated, and consequently the resulting composite service is no
longer satisfying user’s non-functional requirements.

3) Any other endogenous/exogenous changes introduced in Sec-
tion 1.3.

Although Web service substitution and composition replanning
may not be effective when dynamic environments (i.e., available services,
services properties) intensively changes occur frequently (e.g., every sec-
ond), Web service substitution and composition replanning are able to
adapt to the environment changes in most of the real cases. In addition, in
order to provide efficient Web service substitution and composition replan-
ning solutions when composition environment changes, monitoring mecha-
nisms are necessarily required to monitor the execution of composite ser-
vices and properties of all constituting Web services. When changes occur,
the composition system is expected to detect and recompose Web services.

A similarity network is presented in [CHER13] for semantic Web
services substitution. In the network, nodes are Web services operations
and links join similar operations. The networks are built from a model that
represents similarity relationships between Web services operations func-
tionalities. Two operations are similar if they share common features re-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 56
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

garding their input and output parameter sets. Four similarity measures
based on the comparison of input and output parameters values of Web ser-
vices operations are presented, and a set of functions that represent differ-
ent degrees of similarity between operations are introduced. However, this
works considers only functional properties when substituting a Web service
but does not consider QoS properties.

A Web service substitution based on preferences over non-
functional attributes is presented in [SABH09], where a preference net-
works is used for representing and reasoning about preferences over non-
functional properties. Two variants of the service substitution problem,
namely, context-insensitive and context-sensitive substitution are identified:
the former assumes that the preferred substitution can be identified inde-
pendent of the context, i.e., the other constituents in the composition,
whereas the latter takes into account the context of the substitution. The
Web service substitution is preceded by computing preferred substitution
using a TCP-net model [BRDS06] of preferences over nonfunctional attrib-
utes.

In addition to these, authors in [VARB08] propose a semantic-
based registry to implement a dynamic substitution of services in highly
unpredictable contexts. A framework to reduce the complexity of service
substitution is presented in [ATZI09], which organizes available services
into groups and scales up with groups instead of services. Authors in
[CCGP09] provides another runtime adaptation approach to bind each ab-
stract service to a set of atomic services instead of one single atomic ser-
vice, and selecting the most appropriate service to meet broader range QoS
requirements.

Web service substitution cannot be effective in certain cases,
however, in some other cases, substitution of unavailable/updated Web ser-
vices can cause that the actual QoS values of new constructed composite
service are against global QoS requirements; and in other cases, contextual
changes may require the reconfiguration of Web service compositions, such
as business logic change or users’ decision change and thus the previous
compositions are no longer valid. To avoid this kind of situations, it is nec-
essary to reconsider and regenerate the service composition, i.e., to re-
select the Web services to compose and to remake the composition patterns
by which they are composed. Most of composition replanning approaches
are based on AI planning techniques [HILM04][YAPZ10], as introduced in
automated composition section, and are applied to regenerate the composite
service when its execution is suspended. An OWL-S service composition
planner is proposed in [KLGE05] called OWLS-Xplan, that allows for fast
and flexible composition of OWL-S services in the semantic Web. Web

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 57
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

services and domain descriptions that are specified in the planning domain
description language PDDL 2.1, and invokes an efficient AI planner Xplan
to generate a service composition plan sequence that satisfies a given goal.
Xplan extends an action based Fast Forward-planner with a HTN planning
and re-planning component. These replanning approaches share the same
limitations as composition based on AI planning.

A QoS-aware replanning approach is presented in [CPEV05] to
trigger replanning opportunities during composite service execution. Re-
planning is triggered as soon as it is possible to predict that the actual ser-
vice QoS will deviate from the initial estimates, and then the part of the
service workflow that still has to be executed, will be determined and re-
planned by remaking the bindings between abstract and concrete services.
The triggering algorithm proposed permits an early activation of the re-
planning, so to prevent risks as soon as possible. A proxy architecture is
used to enable dynamic binding and replanning. Another replanning mech-
anism is proposed in [BSRH07] to adapt the execution plan to the actual
behavior of already executed services by a dynamic service selection at
runtime, and thus ensure that the QoS requirements will still be met. The
replanning problem is modeled as an optimization problem, which is solved
by a heuristic. However, these replanning approaches are still preceded
from the perspective of selecting appropriate Web services and integrating
them into a predefined workflow, and again have the limitation that abstract
composition plan may limit the global QoS of composite services, which
may influence users’ satisfaction.

In conclusion, comparing to dynamic Web service composition,
Web service substitution and composition replanning can enable static
composition approach to be adaptive to dynamic environment changes in
most cases, however, in order to maximize user’s satisfaction, a more effec-
tive replanning approach is still required to regenerate composite services
without predefined abstract composition plan and provide optimal replan-
ning results with regard to QoS values.

2.2.5 A Brief Conclusion

Table 2.2 summarizes our Web service composition classification

and gives a global view on the representative approaches introduced in this
section.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 58
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Table 2.2 A Global View on Web service Composition Approaches

Manual Semi-automated Automated

 Static Dynamic Static Dynamic
Sy

nt
ac

ti
c

[BESD03]
[KHAL03]
[TASW03]
[WADH03]
[CCMN04]
[ADHW05]

[ACMP07](*)

[CASH03]
[SIHP02](*)
[ZAPG09](*)

[STRG03]
[ALPA10]

[MCIL02]
[KAKS07]
[ZHYA08]

[MEBE03](*)
[PUHK06](*)
[CASA12](*)

[CIJK00]
[MEHS00]
[BESD03]
[HILM04]

[CPEV05](*)
[SULY08](*)
[LSYF09](*)
[ZCFJ10](*)
[YSLZ10](*)

Se
m

an
ti

c

[MAMC03] [DIPW08](*)
[SHDM04]
[CHSA06]

[XCPM06](*)

[BCGH05]
[MEWE06]
[BOZH09]
[ZHAO10]
[PAFL11]

[ZBND04](*)
[WRGS07](*)
[BRPB08](*)
[LIN08](*)

[ALRI09](*)
[KUXR09](*)
[BEAS12](*)

[LKMC06]
[KAKG07]

[GRJA05](*)
[LASG07](*)
[VARB08](*)
[ZNBP08](*)
[SABH09](*)
[XQYB09](*)
[YAPZ10](*)
[GTSS11](*)
[CHER13](*)
[ZIVB13](*)

(*) means that this approach is a QoS-aware approach

From Table 2.2 we can see most of manual composition approach-
es are static and syntactic approaches; early researches on semi-automated
and automated Web service composition also focuses on statically and syn-
tactically composing Web services, and then with semantic Web and dy-
namic composition environment become more important, the research focus
point has gradually switched from syntactic, static composition to semantic,
dynamic composition; recent researches mainly focus on providing solu-
tions for automated, dynamic, semantic and QoS-aware Web service com-
position. However, as introduced before, current automated dynamic Web
service composition approaches rely on general composition plans to com-
pose Web services and require users’ high technical background to specific
composition requirements, in this context, an ad-hoc Web service composi-
tion driven by business requirements to construct composite services with-
out composition plan in dynamic environment is urgent needed to promote
the popularity and adaptability of Web service composition. After survey-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 59
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

ing the related work on Web service composition, in the following we in-
vestigate the related work on requirement models for Web service composi-
tion.

2.3 Overview of Requirement Specifications in Web Service Composition

A requirement is a singular documented physical and functional need that a
particular product or process must be able to perform. The requirement is
defined in [YOUN01] as “a statement that identifies a necessary attribute,
capability, characteristic, or quality of a system in order for it to have value
and utility to a user”. Composition requirement refers to the constraints im-
posed on Web service composition process, and needs to be satisfied by the
composition result. There are many different ways to document require-
ments. One common way is to use textual descriptions only; other ways to
document requirements include use cases and customized document tem-
plates; for certain systems (e.g., Web service composition systems), re-
quirements may even be documented as formal specifications.

In this section, we firstly introduce the general concept of re-
quirement engineering, and then we analyze and survey current composi-
tion requirement models that are needed to initialize Web service composi-
tion process.

2.3.1 Requirement Engineering

Engineering refers to the creation of cost effective solution to practical
problems by applying scientific knowledge [SHAW90]; while requirements
engineering (RE) is defined in [NUEA00] as the branch of software engi-
neering concerned with the real world goals for functions of and constrains
on the software systems. It is also concerned with the relationship of these
factors to precise specifications of software behavior and their evolution
overtime and across software families.

The activities involved in requirements engineering vary widely,
depending on the type of system being developed and the specific practices
of the organization(s) involved. The typical activities for requirements en-
gineering are introduced in [ZAVE97] including:

• Requirements inception;
• Requirements identification: to identify new requirements;
• Requirements analysis and negotiation: to check requirements and

resolving stakeholder conflicts;

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

http://en.wikipedia.org/w/index.php?title=Requirements_inception&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Requirements_identification&action=edit&redlink=1
http://en.wikipedia.org/wiki/Requirements_analysis

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 60
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

• Requirements specification: to document the requirements in a re-
quirements document;

• System modeling: to derive models of the system, often using a
notation such as the Unified Modeling Language;

• Requirements validation: to check that the documented require-
ments and models are consistent and meet stakeholder needs;

• Requirements management: to manage changes to the requirements
as the system is developed and put into use.
These activities are sometimes presented as chronological stages

although, in practice, there is considerable interleaving of these activities.
Figure 2.7 presents a general process of requirement engineering.

Figure 2.7 Requirement Engineering Process

There is a significant number of RE tools with different features
for different requirement engineering purposes and activities. Here we
briefly present several representative tools to support requirement engineer-
ing.

Giorgini et al. [GMMZ05] present a tool called ST-Tool for the
design and verification of functional and security requirements, as security
must be dealt with early on during the requirements phase. ST-Tool kernel
has an architecture comprised of three major parts: Editor Module, Graph-
ical-layer Manager Module, and Data-layer Manager Module. Editor mod-
ule allows designers to edit secure models as graphs where nodes are actors
and services, and arcs are relationships; graphical-layer manager module
aims to manage graphical objects, and it supports goal refinement by asso-
ciating a goal diagram with each actor; data-layer manager module is re-
sponsible for maintaining data corresponding to graphical objects.

Gregoriades and Sutclie [GRSU05] described a method and a tool
called System Requirements Analyze (SRA) with which to validate non-

Feasibility
study

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

Feasibility
report

System
models

User and system
requirements

Requirements
document

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Requirements_management

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 61
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

functional requirements in complex socio-technical systems. This tool can
validate system reliability and operational performance requirements using
scenario-based testing. Scenarios are transformed into sequences of task
steps and the reliability of human agents performing tasks with computer-
ized technology is assessed using Bayesian Belief Network (BN) models.
The tool tests system performance within an envelope of environmental
variations and reports the number of tests that pass a benchmark threshold.
Moreover SRA is able to diagnose problematic areas in scenarios represent-
ing pathways through system models, assists in the identification of their
causes, and supports comparison of alternative requirements specifications
and system designs. It is suitable for testing socio-technical systems where
operational scenarios are sequential and deterministic, in domains where
designs are incrementally modified so set up costs of the BNs can be de-
frayed over multiple tests.

An empirical research to explore the use of mobile RE tools in
practice is introduced in [MSGO06]. A mobile scenario tool Mobile Sce-
nario Presenter (MSP) is presented to discover requirements directly in the
user’s work context. The MSP allows its user to discover and document re-
quirements systematically in the workplace using structured scenarios. The
MSP user walks through scenarios of future system behavior and observes
current system behavior at the same time. The results from 3 evaluation
studies demonstrate that these tools can support workplace requirements
discovery and documentation.

Hall [6] presented the motivations for and problems with large
scale scenarios, and a method called LSS (Large Scale Scenario), which us-
es automated and semi-automated techniques for description, maintenance
and communication, with the use of large scale scenarios in RE. LSS helps
acquire, represent, and use large scale scenarios in a way that is practical
computationally and in human effort. Two application domains are used to
illustrate the approach: live military training instrumentation and electronic
mail servers and demonstrates the practical and beneficial use of LSS in ar-
chitectural modeling of a complex, real-world system design.

A Requirement Engineering (RE) tool is presented in [JIEB07]
containing a knowledge base to support RE process development and selec-
tion of RE techniques. The tool is built based on the Framework for Re-
quirements Engineering pRocess dEvelopment (FRERE). The major merits
of the tool over others is that the tool uses knowledge representation to
manage the knowledge of the RE process and its technique, thus assisting
development of the most suitable RE process for a software project.

Software development tools are presented in [LEPV10] which can
be synchronized with RE tools for requirements collaborative access pur-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 62
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

pose. This work suggests use collaboration tools all along the product life
cycle to let developer work together, stay together, and achieve results to-
gether in software development process. The collaboration tools introduced
in this work include version-control systems, trackers, build tools, modelers,
knowledge centers, communication tools, and Web 2.0 applications.

Since requirement is a large subject and covers different topics, in
our work, we focus only on requirement specification and provide models
to help user specify composition requirements. Generally speaking, re-
quirement specification methods can be categorized as:

• Structured natural language: standard forms, templates, decision
tables;

• Program description languages: abstract features to specify re-
quirements by defining an operational model;

• Requirements specification languages: special purpose languages
with tool support;

• Graphical notations;
• Mathematical specifications.

2.3.2 Requirement Models in Web Service Compositions

In this section, we investigate composition requirement models of
Web service composition approaches from three main categories of Web
service composition approaches based on their techniques: Web service
composition based on Workflow, Web service composition based on AI
planning, and model-driven Web service composition.

We have presented the Web service composition approaches based
on workflow [CASH03][BSRH07][BRPB08] and Web service composition
based on AI planning [PEER05][STVV11] earlier in this chapter.

In Web service composition approaches based on workflow, users’
requirements are mainly specified in terms of workflow that indicates nec-
essary actions to be preceded and their logic execution order. When con-
structing/executing a composite service, atomic Web services are selected
and invoked correspondent to each action defined in the workflow, and then
the composite service is accordingly executed following the predefined ex-
ecution orders. The specification of composition requirement in workflow-
based approaches highly relies on the users’ familiarity with each composi-
tion component’ function as it requires users to describe all necessary ac-
tions and all possible execution relations among these actions.

Alternatively, Web service composition approaches based on AI
planning or other automated composition approaches requires users to spec-
ify their composition requirements in different technical languages with re-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 63
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

spect to different used planning/heuristic techniques; moreover, composi-
tion approaches based on AI planning requires pre-formalized domain in-
formation, and the domain information includes the descriptions of initial
domain state, possible domain states, and different actions that can be per-
formed.

Model-driven approaches for Web service composition approaches
use models to describe user requirements, information structures, abstract
business processes, component services and component service interactions.
The models are independent of executable composition specifications, but
can be transformed into executable composition specifications. The com-
mon of model-driven approach is to model the service orchestration by us-
ing a formal model such as UML activity diagram and then specify a trans-
formation to executable workflow models, such as BPEL [DUHO01]. The
work in [SKGS04] uses UML activity models to define compositions. In
this work, existing WSDL specifications are transformed into UML models,
which in turn are arranged to create new service composition; the composi-
tion can then be transformed into executable code such as WS-BPEL, and
deployed on a workflow engine. The approach introduced in [GRJA05] en-
tails separation of the fundamental composition logic from particular com-
position specifications (e.g., BPEL and BPML) in order to raise the level of
abstraction. UML is used to provide a high level of abstraction, and to ena-
ble direct mapping to other standards, such as BPEL4WS. The Object Con-
straint Language (OCL) is used to express business rules and to describe
the process flow. Business rules can be used to structure and schedule ser-
vice composition, and to describe service selection and service bindings.
The process of service composition development consists of service defini-
tion, scheduling, construction, and execution. The specifications of compo-
sition requirements in these approaches are mainly based on different UML
diagrams: UML class diagrams are used to represent the state parts of
compositions, i.e., Web service interface, QoS properties; while UML ac-
tivity diagrams are used to represent the behavior parts, which describe the
composition operations, interactions of component Web services, and con-
trol flow. Similar to composition approaches based on workflow, the speci-
fication of composition requirement still relies on the users’ familiarity
with each composition component’ function and their composition relations;
and the composition approaches share the same limitations as composition
approaches based on workflow.

Web service composition approaches require users to specify
composition requirements in a formal technical language, in order to com-
pose Web services based on natural requirements, transformation approach-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 64
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

es are required to transform natural requirements to formal requirements
that are be directly used by Web service composition approaches.

Since most of composition approaches do not support requirement
specification based on natural or structured natural language, we then sur-
vey the requirement transformation approaches that transform natural or
structured natural language to other formats of technical languages.

2.4 Managing Requirements

Model transformation is one of the basic principles of Model

Driven Architecture (MDA). To build a software system, a sequence of
transformations is performed, starting from requirements and ending with
implementation. Requirement transformation is the process of generation of
a target requirement from a source requirement, according to a transfor-
mation description.

In this section, we firstly introduce the concept of Model Driven
Architecture and Model Driven Development (MDD), and then present
general requirement transformation approaches, at last we investigate the
transformation approaches for Web service composition requirements.

2.4.1 Model Driven Architectures and Model Driven Development

MDA is an approach to using models in software development.

The MDA is a specification that provides a set of guidelines for structuring
specifications expressed as models. Using the MDA methodology, system
functionality may first be defined as a Platform-Independent Model (PIM)
through an appropriate domain specific language. Given a platform defini-
tion model such as CORBA, .Net etc., the PIM may then be translated to
one or more Platform-Specific Models (PSM) for the actual implementation,
using different domain specific languages, or a general purpose language
such as Java, C#, etc. The translations between the PIM and PSMs are nor-
mally performed using automated tools, like model transformation tools
[SISO09]. During the model transformation, the MDA prescribes certain
kinds of models to be used, how those models may be prepared and the re-
lationships of the different kinds of models.

Generally, the MDA follows four main principles as follows
[BEBG05]:

1. Models expressed in a well-defined notation are a cornerstone to
understanding systems for enterprise-scale solutions.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 65
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

2. The building of systems can be organized around a set of models
by imposing a series of transformations between models, orga-
nized into an architectural framework of layers and transfor-
mations.

3. A formal underpinning for describing models in a set of meta
models facilitates meaningful integration and transformation
among models, and is the basis for automation through tools.

4. Acceptance and broad adoption of this model-based approach re-
quires industry standards to provide openness to consumers, and
foster competition among vendors.
In order to give a concrete idea of the MDA concept, we illustrate

two examples based on the MDA as follows:
Rewriting Systems: The theory of rewrite systems is of relevance

to many areas of computer science, such as in the syntax description for
programming languages and in the derivation of distributed algorithms. A
rewrite system is a set of entities of type X→Y, where → is the so-called
rewrite operator and X, Y text strings formed with constants taken from
some alphabet. A entity is applied to a given string S in the usual way by
replacing zero or more occurrences of the production’s left-hand side in S
with its right-hand side [RÖNN96].

Grammar Compilers: A grammar compiler is a computer pro-
gram (or set of programs) that transforms source code written in a pro-
gramming language (the source language) into another computer language
(the target language, often having a binary form known as object code)
[WONN07]. The most common reason to use grammar complier is to trans-
form source code is to create an executable program.

2.4.2 General Requirement Transformation

The requirement transformation can be generally divided into
three categories: transformation based on traceability [YUBL10], transfor-
mation based on behavior trees [DROM03], and transformation based on
model transformation [AYWO09]. Requirements traceability refers to the
ability to define, capture and follow the traces left by requirements on other
elements of the software development environment and the trace left by
those elements on requirements. Traceability is the ability to link require-
ments to corresponding analysis and design models, code, test cases, and
other software artifacts. Requirement Behavior Trees are used to capture all
the fragments of behavior in each individual natural language requirement
by a process of rigorous, intent-preserving and vocabulary-preserving
translation. The translation process can uncover a range of defects in origi-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 66
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

nal natural language requirements. Model transformation is defines as the
automatic generation of a target model from a source model, according to a
transformation definition that consists of a set of transformation rules that
together describe how a model in the source language can be transformed
into a model in the target language. For each category, authors in [JASA12]
list approaches to derive UML use cases and activity diagrams from other
formalized requirements. This survey provides a good reference of general
methodologies for requirement transformation, however, these approaches
are designated to transform formalized requirements into other formalized
requirements; and they do not provide solutions for structured natural re-
quirement transformation. A systematic review is presented in [YUBL11]
to examine existing works that transform textual requirements into analysis
models. An analysis model is a description of what a system is required to
do functionally, and aims to be less ambiguous and more correct and con-
sistent than textual requirements [BRDU10]. As the direct automatic trans-
formation of natural language requirements to analyze models is very diffi-
cult due to the inherent ambiguities of natural language, most of the
research [GREM04][SAMK04][FKMS07] achieve a manual or semi-
automated transformation and requires user’s intervention during the trans-
formation process; other automated methods [MICH96][SLFE04][SASO05]
are only effective on natural requirements defined by given patterns.

Due to the difficulty on automating natural requirement transfor-
mation, alternative researches work on structured natural requirements (in-
stead of natural requirements) based on SBVR, and provide transformation
solutions. Authors in [AFBA11] present a solution that transforms SBVR
requirements into UML class models; while authors in [RAPH08] proposes
a more powerful method that transforms requirements based on SBVR into
a set of UML diagrams, which includes Activity Diagram, Sequence Dia-
gram, and Class Diagram. The focus point of these works is to derive UML
diagrams from requirements based on SBVR and support future software
development; however, they are not suitable for requirement transformation
in the context of Web service composition: on one hand, as in the context
of Web service composition, instead of developing new Web services to
satisfy the initialized requirements, existing Web services with constraints
are expected to be discovered and to be composed to satisfy the initialized
requirements; on the other hand, although certain composition approaches
take into account composition requirements in terms of UML diagrams,
they share the same limitations with composition approaches based on
workflow, and require user’s technical background to specify the require-
ments.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 67
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

2.4.3 Requirement Transformation for Web service composition

In the context of Web services, requirement transformations play

an important role in Web service composition approaches, as they provide
casual or business users with an appropriate requirement language to speci-
fy their needs and accordingly transform their requirements into require-
ment convenient to discover and compose Web services. In addition, Web
service composition can be regarded as one special case of requirement
transformation, as it connects business process and Web service together
and transforms individual Web services into business process.

A framework for performing dynamic service composition is illus-
trated in [LÉSP08]. This framework contains four basic components as se-
mantic analyzer, composition factory, property aggregator, and matcher to
compose Web services by exploiting the semantic matchmaking between
service inputs and outputs. Especially, this framework can take as input
both natural language and formalized requirements: the natural language
requirements are expected to be transformed into formalized ones using a
built-in Semantic Analyzer, however, the transformation solution is not
provided in the framework.

A Web service composition approach from natural language re-
quirement is introduced in [BCVM06]. This work describes an approach to
derive formal specifications of Web Service compositions on the basis of
the interpretation of informal user requests expressed in restricted natural
language. Each user request is processed against a natural language vocabu-
lary that includes lexical constructs designed to convey the operations' se-
mantics, in order to recognize and extract fundamental functional require-
ments implied by the request, and associate them to entries of known
service operations. In addition, the request interpreter extracts from the re-
quest the overall service logic, expressed in terms of a set of modular tem-
plates describing control and data flow among the selected operations. The
result is a composition specification that associates on demand each user
request to a new composed service. That specification is formal and can
thus be transformed in an executable flow document for a target service
composition engine. This is an interesting work in Web service composi-
tion domain to compose Web services based on natural request; the idea of
this work is to ask users to describe the whole composition based on natural
language, and then to transform the composition in natural language to
formal language for execution. However, this work still cannot solve our
research problem which is to compose Web services based on business ob-
jectives instead of describing exact service composition; given user’s busi-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 68
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

ness-centric requirements containing business objectives in structured natu-
ral language, our objective is to discover what kind of Web services can
satisfy the business objectives and how they are composed to satisfy user’
business-centric requirement. Requirement transformation is indispensable
to solve our research problems.

A model-driven based approach for Web service composition is
introduced in [CAMS06]. Their paper presents MIDAS, a framework that
proposes multi-level modeling of service compositions: composite services
are specified using computation independent models, which are mapped
(transformed) into platform independent models and in turn are again
mapped into platform specific models. In MIDAS, platform specific models
are represented using WS-BPEL. This work presents a good reference for
Web service composition and requirement transformation, however, this
paper only presents a general architecture but without any implementation
details.

In addition, Web service discovery can be regarded a special case
of transformation solution for composition requirement, as the objective of
Web service discovery is to derive existing Web services from users’ re-
quirements in other forms.

Authors in [MUCH12] classify Web service discovery into two
categories as syntactical discovery based on keywords and semantic dis-
covery based on ontology concerning the language by which Web services
are described. As counterpart to discovering Web services based on func-
tional properties, approaches in survey [PHKH12] attempt to discover Web
services based on functionality and QoS to satisfy both functional and non-
functional requirements. A number of discovery approaches are introduced
in to facilitate service discovery process, which can be generally summa-
rized into three categories from the technologies used in Web service dis-
covery process.

The first one is to discover services by enhancing requirement
based on metadata. the approach presented in [PAAB07] expands user’s re-
quirement by combining ontologies and latent semantic indexing. The re-
quirement vector is build according to the domain ontology while the de-
scription vector is built by extracting features from WSDL profiles. The
discovery process is achieved by matching the description vectors against
requirement vectors. Authors in [GCBG10] propose a Web service discov-
ery approach for BPEL process. In this approach, user requirements are ex-
pressed as a service behavior model. BPEL specification is transformed to a
behavior graph using flattening strategy, and the matching is transformed to
graph matching problem.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 69
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

The second category is to add additional tools in traditional dis-
covery framework. A push model for Web service discovery is presented in
[NAQA08] where service requesters are provided with service notification
prior to discovery. The discover process is divided into two phases in a lim-
ited time period, i.e., subscription phase that allows user to subscribe spe-
cific requirements, and notification phase that newly registered Web ser-
vices are added to match with user’s requirements. Authors in [APRT06]
present the VitaLab system to discover Web services based on indexing us-
ing hash table. They implement indexing on WSDL descriptions which are
parsed using Streaming API for XML. The hash table maintains the map-
ping from each requirement into two lists of service names for request and
response respectively, to get a list of services that satisfy a particular re-
quirement.

The third one is to minimize total search area in service discovery
process. Web service discovery based on keyword clustering and concept
expansion is suggested in [ZZMX08], where similarity matrix of words in
domain ontology is calculated and is used for semantic reasoning to find
matching service. Through classification and subsumption of concept, the
computing complexity is reduced. Authors in [WEHH10] propose to divide
search in three layers by applying filters at each layer and thus minimizing
search area. Three layers for service matching are service category match-
ing, service functionality matching and quality of service matching.

These approaches are effective to discover Web services from us-
er’s requirements but they do not support to discover constraints on these
Web services. By discovering Web services prior to the composition, the
composition approaches still requires users’ further manual specification of
constraints on/among Web services. In addition, specifying constraints on
Web services is closely related to WSDL profiles and QoS ontological-
based descriptions, which make discovery processes inconvenient to causal
users and their requirements in a real business context. Unfortunately, we
do not find any work answering our research question which provides au-
tomated transformation solution to derive both Web services and multiple
constraints from composition requirements that are defined in natu-
ral/structured natural languages.

2.5 Executive Summary

In this chapter, we organize and introduce the state of the art from
three parts: Web service composition approaches, composition require-
ments models and composition requirement transformation approaches. For

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 70
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

each part, we introduce representative models or approaches in current re-
searches, and then analyze and conclude their limitation. Consequently, we
come out with the conclusion that an ad-hoc Web service composition ap-
proach driven by structured natural language requirement is required to
compose Web services without predefined composition plans in dynamic
environments.

Firstly, we analyze a large number of existing Web service com-
position approaches, and classify them into different categories from dif-
ferent views influencing composition process. From the view of composi-
tion automation degree, Web service composition approaches can be
classified as manual, semi-automated and automated Web service composi-
tion; from the view of semiotics in Web service composition, Web service
composition approaches can be classified as syntactic Web service compo-
sition and semantic Web service composition; from the view of composi-
tion agility, Web service composition approaches can be classified as static
Web service composition and dynamic Web service composition; in addi-
tion, a large number of Web services with same functionalities and similar
QoS profiles has become available on daily basis, QoS-aware composition
approach is indispensable to compose Web services while taking into both
functional and non-functional requirements.

Automated composition approach is able to automatically generate
the entire composite service without human involvement, however, current
automated composition approaches highly rely on users’ technical back-
ground to specify composition requirement, and also requires pre-
formalized domain description, which make them not suitable for business
users who prefer to specify their composition requirement in terms of busi-
ness objectives; a Web service composition approach driven by business
requirements is thus required to automatically discover and compose Web
service to satisfy users’ initialized requirement. Moreover, dynamic com-
position environment imposes more constraints on Web service composi-
tion approaches, dynamic composition approaches are able to dynamically
modify the Web service composition in a simple and effective way when
composition environment changes, however, dynamic composition ap-
proaches requires predefined abstract composition plans to construct com-
posite services, which may not provide the best composition result with re-
gard to global QoS; alternatively, Web service substitution and composition
replanning are able to adapt to the environment changes in most of the real
cases, thus based on the two measures, common Web service composition
approaches can be adapted to dynamic environment. A more effective re-
planning approach is still required to regenerate composite services without

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 71
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

predefined abstract composition plan and provide optimal replanning re-
sults with regard to QoS values.

In order to compose Web service driven by business requirements
while overcoming the limitations in current researches, we propose an au-
tomated, semantic QoS-aware Web service composition approach in dy-
namic environment which will be introduced in detail in Chapter 5: in order
to provide the optimal composition result with regard to QoS value, instead
of selecting services after generating a composition plan, our approach
simultaneously selects atomic services and infer their composition patterns
to ensure that services are composed in the best way with regard to QoS
values; in order to better adapt to changes in the environment, we apply a
heuristic to compose Web services while provide our approach with Web
service substitution and composition replanning mechanisms. Our Web ser-
vice composition approach is able to take into account control flow con-
straints, QoS constraints, dependency constraints, as well as user’s prefer-
ence when composing Web services while provide an optimal Web service
with regard to QoS values to satisfy users’ requirements and maximize us-
er’s satisfaction.

And then, we analyze current composition requirement models
that are needed to initialize Web service composition process; since most of
composition approaches do not support requirement specification based on
natural or structured natural language, we then survey the requirement
transformation approaches that transform natural or structured natural lan-
guage to formal technical languages. By analyzing existing requirement
transformation approaches, we conclude that the requirements that are
transformed in these approaches are actually defined from the same per-
spective by use of different languages or models; if requirements are de-
fined from different perspectives, these approaches lack the ability to iden-
tify the connections between requirements from different perspectives, and
thus cannot provide the transformation solution. In our research context, a
requirement transformation solution is required to transform business-
centric requirements in terms of business objectives to composition re-
quirements directly manipulated by Web service composition describing
which Web services can satisfy business objectives and how they are ex-
pected to be composed.

Aiming at overcoming different limitations introduced above, we
present our contribution in the following chapters, an ad-hoc Web service
composition approach driven by structured natural language requirements
in dynamic environments.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 72
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 73
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Chapter 3

A Three-level Requirement Model for Ad-hoc
Web Service Compositions

Introduction ... 74

Related Work ... 76

General Process for Crisis Management .. 78

Three Levels of Composition Requirements .. 79

The Business-centric Requirement Model ... 82

The Capability-focused Requirement Model ... 88

The Rule-driven Web Service Composition Model 92

Conclusion ... 100

Abstract: In order to provide current SOA with business level support to al-
low either business or technical users to express their requirement models,
we build our resilient SOC by use of a three-level requirement model to fo-
cus on requirements at different levels, i.e., the business-centric require-
ment model, the capability-focused requirement model and the rule-driven
Web service composition requirement model. Since our multi-level re-
quirement approach relies on the capability model as an intermediate model
for requirements transformation, we survey related works that attempt to
model Web service capabilities and highlight their limits and drawbacks
with respect to our requirement approach. We then develop the three levels
of requirements by providing definitions and general specification formal-
isms. Since the ultimate goal of our requirement models is to guide the
Web service composition process from casual user perspective, we develop
an end-to-end requirement transformation process in the next chapter to
transform business-centric requirements into capability-focused require-
ment model and finally generate rules to represent Web service require-
ments to be used in ad-hoc Web service composition approach in dynamic
environments.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 74
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

3.1 Introduction

A requirement is a singular documented physical and functional need that a
particular product or process must be able to perform. A requirement is of-
ten defined as “a statement that identifies a necessary attribute, capability,
characteristic, or quality of a system in order for it to have value and utility
to a user” [YOUN01].

Many different ways to document requirements range from high-
level abstract statements of services or system constraints to detailed math-
ematical specifications. The common ways to specify requirements are to
use textual descriptions, UML use cases, customized document templates,
or formal specifications [YUBL11].

Composition requirements refer to constraints imposed on the
Web service composition process, and need to be satisfied by composite
Web services. Generally, composition requirements do not only describe
Web services to be composed, but also include constraints on/among these
Web services (e.g., control flow constraints, functional and non-functional
properties constraints, and dependency constraints, etc.).

Current SOA lacks of the support for business users who prefer to
express the composition requirements in business language and expect to
accordingly discover and select Web services. And consequently, most of
existing Web service composition approaches [DUSC05] such as workflow
techniques and Artificial Intelligence planning focus on “how-to-do” to
compose Web services together and highly rely on the fact that users’ com-
position requirements are defined in formal languages to describe necessary
actions and set constraints on these actions. However, composition ap-
proaches still focus on the technical level and require domain-specific
knowledge on Web services to specify requirements. Nevertheless, business
users prefer to describe their business objectives and requirements to be
achieved in natural-like languages such as SBVR rather than technical lan-
guages. The gap between user’s business-centric requirements describing
business objectives and composition requirements describing technical de-
tails and properties of Web services makes Web service composition un-
practical in real context of usage.

In order to fill the gap between business-centric requirements and
rule-driven Web service composition requirements, we introduce a Web
service capability model as an intermediate model to connect business-
centric requirements and rule-driven Web service composition requirements
together, and based on the capability model we model composition re-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 75
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

quirements in three levels: business-centric requirement, capability-focused
requirement and rule-driven Web service requirement. Figure 3.1 presents
the three-level requirement model within the context of our proposed rSOC.

Figure 3.1 The Conceptual rSOC with Requirement Model

From Figure 3.1, we can see that the three levels of composition
requirements are connected in a top-down way by requirement transfor-
mation processes. Any new requirement at the business level or any contex-
tual changes occurred in the environment will be propagated and impacted
the Web service composition model, which consequently guides an ad-hoc
composition without any predefined composition plan. In this chapter, we
introduce each requirement model and define formalisms to specify them.
In Chapter 4 , we discuss the transformation approach and introduce the ad-
hoc composition approach in Chapter 5 .

The concept of capability denotes what an action does in terms of
changes in the state of known or unknown entities that are involved in an
interaction. Our motivation use a capability model as intermediate model is
that capability describes what Web services can do without describing all
details related to functional and nonfunctional properties, and consequently
the capability model enables to automatically discover and compose Web
services that perform particular kinds of operations in particular contexts;
A cornerstone of Service-Oriented Architecture is that capabilities consoli-
date Web services and business processes [MLMB06]. Nevertheless, ser-
vice capability modeling or capability description raises a challenge on how
to meaningfully capture different levels of abstractions from a functional
perspective and keep the balance between machine accessibility (e.g., tech-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 76
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

nology support, machine readable, …) and human understandability (e.g.,
expressiveness of goals, human readable, …).

In this chapter, we firstly survey the research work on capability
model, and respectively introduce our three-level requirement model for
ad-hoc Web service composition.

3.2 Related Work

Since we use capability model as an intermediate model for re-
quirements transformation, we survey the related work on Web service ca-
pability modeling in this section.

A capability is a functional description of a Web service describ-
ing constraints on the input and output of a service through the notions of
preconditions, assumptions, post conditions, and effects, and interfaces that
specify how the service behaves in order to achieve its functionality
[RBML06]. As an emerging field to model Web services, the concept of
Web service capability has not drawn the research community attention as
it deserves. Current approaches for capability modeling are in fact part of
efforts for describing related concepts such as business processes, service
descriptions and search requests [BHDZ12]. Thus most of current capabil-
ity models are created only based on the functionalities and QoS of Web
services, and are not practical to facilitate either requirement modeling or
service discovery process. The difference between services and Web ser-
vices are described in [KLPT04][PREI04] as:

Web services are means to find or buy services. For example, a
user may want to travel from Innsbruck to Venice and he is looking for a
service that provides this to him. The service may be provided by an airline
or a train company. This is the service he is looking for. In order to find
(and buy) the service he is accessing a Web service, which will not provide
him the service to travel from Innsbruck to Venice (he needs a plane or a
train) but it may help him to find this service [KLPT04]. A Web service is a
computational entity, which is able, by invocation, to achieve a goal. A
service, in contrast, is the actual value provided by this invocation
[PREI04]. Based on this, Web service capability should be modeled as the
real ability of a Web service instead of the operations a Web service can
carry out.

Focusing on the existing Web service capability models, one pop-
ular theme to model Web service capability is based on the IOPE paradigm,
in which the Web service capability is described as constraints on inputs
and outputs through the notions of pre-conditions and effects [PKPS02]

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 77
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

[KVBF07]. By such, the Web service capability is modeled as a functional
description of a Web service describing constraints on the input and
output of a service through the notions of preconditions, assumptions,
post conditions, and effects, and interfaces that specify how the ser-
vice behaves in order to achieve its functionality. The capability is syn-
tactically [PKPS02] or semantically [KVBF07] described based on ontolo-
gy, which is part of a larger service ontology. However, the main focus
point of these capability models are the operations that Web services can
carry out from an offer perspective. In this context, they are not expressive
enough to represent what Web services can really perform and to be con-
nected with business-centric requirements defined from a request perspec-
tive.

Capability models based on case-frame are interesting alternatives
to IOPE models since they describe abilities that services can perform. The
case-frame based representations are one of the most expressive and flexi-
ble means to represent the capabilities of intelligent agents [GERH99]
[WICK00]. The case frame provides a convenient way of structuring the
description of what behaviors, actions or capabilities a service provides.
Roughly speaking, the capability model is expressed as action verbs and in-
formational attributes, structuring the description of what behaviors or ac-
tions a service provides.

A Web service capability model based on case-frame is introduced
in [OAHE03] to describe what services can do. The capability model em-
phasizes on action verb and informational attributes to provide enough in-
formation for users to identify and locate alternative services without hu-
man intervention. A capability is described by an action verb that expresses
what the capability does. To allow for the fact that different verbs may be
used to express the same action, synonyms and ontological source are pro-
vided. The ability to provide alternatives to the primary verb assists simi-
larity matching of capabilities. An extended capability model is proposed in
[BHDZ12] where the Web service capability is modeled as an action verb
and a set of attributes and their values supported by domain ontology. This
capability model specifies three types of informational attributes depending
on the source of their values, i.e., consumer or context attributes, provider
(Pro) attributes, consumer then Provider attributes. In general, three sources
are involved in a scenario of capability consumption. In addition, semantic
links as generalization and specification relations are introduced between
different capabilities. The meta model is implemented based on RDF and
makes use of Linked Data to define capability attributes as well as their
values.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 78
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Modeling Web service capability based on case-frames shows
more expressiveness to describe the real ability of a Web service. However,
we argue that describing service capabilities only based on action verb and
attributes are oversimplified and causes ambiguity without explicit descrip-
tions of the domain by which service capabilities are manipulated. A more
expressive Web capability model is required to represent different levels of
abstraction, to capture business-centric requirements, and derive potential
Web services and constraints reflecting the business aspects that the capa-
bility can satisfy.

3.3 General Process for Crisis Management

In order to facilitate the presentation of our three-level requirement model
for Web service compositions, we briefly introduce a motivation to present
a general process of crisis management in a dynamic environment as shown
in Figure 3.2.

Figure 3.2 A General Crisis Management Process

As illustrated in Figure 3.2, when a crisis occurs, the first step is
to specify crisis management requirements after assessing and evaluating
the crisis domain; the second one is to identify and select necessary actions
based on crisis management requirements; the third step is to build crisis
management process, enabling different actions working together; the
fourth step is to deploy the crisis management process to reduce and re-
solve negative events.

During the execution of the crisis management process, the do-
main is a dynamic environment and objective to changes that may occur in-
side or outside the crisis management process, such as other negative facts

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 79
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

are caused, or certain actions are not available due to other emergencies. In
such environment, crisis management process needs to be reconfigured and
adapted to contextual changes. Since current SOA does not support dealing
with continuous and unpredictable changes, extending SOA with extra ca-
pabilities is required to build resilient applications in dynamic environ-
ments.

Based on this scenario, some actions examples are necessary to
build up the crisis management process on the fly. Information collect in
the context of crisis are often incomplete and the actions to perform to
manage the train crash crisis are listed as follows:

1) Alert Public: to alert public about the crisis;
2) Evacuate Population: to evacuate the population around the

crisis spot;
3) Transport Victim: to transport victims to the hospital or other

medical institutions;
4) Assist Victim: to assist victims to receive medical treatment;
5) Extinguish Fire: to extinguish the fire on the crisis spot;
6) Recover Electricity: to recover the electricity supply on the

crisis spot;
7) Clear Site: to clear the crisis site;
8) Repair Railway: to repair the railway on the crisis spot.
In the following sections, we firstly provide conceptual models of

requirement and then illustrate examples based on our crisis management.

3.4 Three Levels of Composition Requirements

Since the ad-hoc Web service composition is the keystone to de-
velop the resilient service oriented architectures adaptable to dynamic envi-
ronments, we introduce a three-level requirement model to simultaneously
capture requirements at business level and Web service level to allow either
business or technical concerns to be expressed from different perspectives.

In this section, we model composition requirements in three levels
with increasing technical details, i.e., Business-centric Requirements,
Capability-focused Requirements, and Rule-driven Web Service Re-
quirements. This model provides a reference for composition requirements
modeling and allows either business or technical people expressing their
composition requirements from different perspectives.

We introduce each level from its definition and general require-
ment specification methods in this section, and illustrate our proposed for-
mal requirement model in the following sections.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 80
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

3.4.1 The Business-centric Requirements (BCR)

Definition: the business-centric requirement model refers to busi-
ness objectives and rules that are expressed in a natural structured language
to describe users’ business actions to be performed. Actions are concretized
with composite Web services build on-the-fly and validate by users.

Requirement Specifications: the natural language is often used to
express business activities and concerns. The natural language is
any language which arises in an unpremeditated fashion as the result of the
innate facility for language possessed by the human intellect [LYON91].
The natural language is typically used for communication, and can be spo-
ken, signed or written. However, expressing Web service composition re-
quirements based on natural language (NL) is difficult due to three main
reasons [SOMM07]:

1) Specifications that writers use to express their intentions may
not be exactly understood by readers. This leads to misunderstandings be-
cause of the ambiguity of natural language (synonyms, anonyms, ….);

2) Specifying natural language-based requirements is over flexible,
as same concepts can be completely interpreted in different ways;

3) Requirements written in natural language are difficult to modu-
larize (encapsulate), which makes tracing the effects of a requirements
change difficult.

We specify the business-centric requirement model, which later
will derive the Web service compositions, with the Semantics of Business
Vocabulary and Business Rules (SBVR). The SBVR, as a standard of
the Object Management Group (OMG), is intended to be formal and de-
tailed natural language declarative descriptions of complex entities, such as
businesses [HEND05]. It allows formalizing complex compliance rules,
such as enterprise operational rules, security policies, standard compliance,
or regulatory compliance rules. Our choice of the SBVR to model require-
ments is motivated by two main reasons.

1) The SBVR is a formal business rule language with a natural lan-
guage interface, which implies that either casual users or domain expert can ex-
press their requirements with natural language-based expressions.

2) Compared to other semantic ontology languages or business rules
(i.e., Description Logic and Semantic Web Rule Language), the SBVR provides
structured natural language-based vocabularies to define rich business vocabu-
laries and specify rules by reducing ambiguity caused by the natural language.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

http://en.wikipedia.org/wiki/Language
http://en.wikipedia.org/wiki/Sign_language
http://en.wikipedia.org/wiki/Writing
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Natural_language

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 81
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

The business-focused requirement model specifies what a user
wants to do with a structured English language based on the SBVR, and
represents the primary actions by which they define the operative way to
reach their objectives and perform their actions. The business-centric re-
quirement model and its specifications are discussed in section 3.5.

3.4.2 The Capability-focused Requirements (CFR)

Definition: The capability-focused requirement model refers to
Web service capability expressed based on what Web services are can do
functionally without provide technical details and being less ambiguous and
more consistent than textual requirement specifications.

Requirement Specifications: Currently Web services are described
based on technical languages, such as WSDL and OWL-S, by which Web
services are defined from the perspective of offering, i.e., what kind of op-
eration Web services can carry out. Descriptions are only based on Web
service operations and, unfortunately, these technical specifications cannot
really describe the real ability that Web services can perform. The differ-
ence between Web service operations and Web service capabilities is ex-
tensively discussed in [KLPT04] as “ […] Web services are means to find
or buy services. For example, customer may want to travel from Innsbruck
to Venice and he is looking for a service that provides this to him. The ser-
vice may be provided by an airline or a train company. This is the service
he is looking for. In order to find (and buy) the service he is accessing a
Web service, which will not provide him the service to travel from Inns-
bruck to Venice (for this he needs a plane or a train) but it may help him to
find this service.” Based on this example, the Web service operation
“BookAirlineTicket” provides an access to the travel service, or the “capa-
bility of travelling”.

In addition, current Web service description languages, such as
WSDL, only focus on Web service operations (e.g., BookAirlineTicket) but
they fail to present the real ability (e.g., capability of traveling) that a Web
service can perform. The gap between user’s objective descriptions (e.g.,
travel) and Web service’s operation descriptions (e.g., BookAirlineTicket)
requires to extend Web service descriptions with a capability model to de-
scribe the real ability that Web services can perform instead of describing
their operations. As we have chosen to build the Web service capability
model as an intermediate to fill the gap between business requirements and
Web service composition requirements, we develop the Web service capa-
bility model to describe what Web services can do, what are their required
resources, and their states, which reflect changes in the real world effects,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 82
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

and what are the business objectives that Web services have to achieve
[LIBB13A].

The capability-focused model and its specifications are introduced
in Section 3.6.

3.4.3 The Rule-driven Web Service Requirements (WSR)

Definition: The rule-driven Web service requirement model refers
to Web service composition constraints that are expressed based on func-
tional and non-functional properties as well as multiple constraints among
Web services.

Requirement Specifications: Since Web service requirements di-
rectly used to guide the Web service composition process, we specify on
Web service requirements from two perspectives based on rules:

1) Requirements on Web service functional and non functional
properties;

2) Multiple constraints on relationships among Web services par-
ticipating in the composition process.

We develop an extensible Web service composition model based
on a set of rules to specify multiple constraints on/among Web services (i.e.,
control flow constraints, Quality of Service constraints, and dependency
constraints). Without loss of generality, new composition rules can be add-
ed and are directly took into account in the Web service composition ap-
proach presented in Chapter 6 .

The rule-driven composition model mainly consists of three cate-
gories of rules:

1) The structure rules define constrains on the control flow be-
tween Web services that must be respected by the Web service composition
process.

2) The local and global rules define constrains on non-functional
properties that participant Web services and composite Web services must
be respected during the Web service composition process.

3) The dependency rules represent constraints on relationships that
may exist between Web services.

The rule-driven requirement model and its specifications are in-
troduced in Section 3.7.

3.5 The Business-centric Requirement Model

As before-mentioned, the business-centric requirement model is built based
on a subset of the SBVR [FAYA13]. The SBVR defines semantics for vo-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 83
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

cabulary and rules in a business domain of interest. It is a common formal
rule-based language that facilitates the collaboration among customers,
business experts, and IT specialists. Before introducing and specifying
business requirements, we briefly introduce SBVR to illustrate its main
characteristics.

3.5.1 Introducing SBVR

The SBVR defines structured-based natural languages for docu-
menting semantics of business vocabularies, business facts, and business
rules. It contains linguistic terms for conceptual modeling and captures ex-
pressions as formal logic structures. The SBVR vocabulary allows one to
formally specify representations of concepts, definitions, instances, and
rules of any knowledge domain with structured set of terms in natural lan-
guage that reduce ambiguity cased by free text in natural languages.

Roughly speaking, SBVR consists of two parts, i.e., SBVR facts
and SBVR rules. SBVR facts are defined based on noun concepts and fact
types (i.e., simply relations among noun concepts) whereas SBVR rules are
defined based on modal operators, quantifiers, qualifiers and SBVR facts.
Table 3.1 summarizes SBVR concepts and provides some examples. In this
table, we underline nouns and instances, italicize the fact types, and double-
underline the modal operators, quantifiers, and qualifiers. In addition,
SBVR supports standard logical operators such as “and”, “or”, “if”, and
“not” just to mention a few.

The SBVR business vocabularies define noun concepts, fact types,
and individual instances of both noun concepts and fact types;

Noun concepts describe terms, representing classes. Noun con-
cepts form class hierarchies via subtype relationships, providing basis for
subsumption reasoning. In the example of “An ambulance is a kind of vehi-
cle.” Ambulance and vehicle are both noun concepts. The instance “ambu-
lance” plays the role of “vehicle” in the SBVR rule “At least 20 vehicles
should transport victims”.

Fact types describe identify relationships among one or more
roles. Every fact type has a fixed number of roles, which are the kinds of
things that can participate in the corresponding relationships.

Unary fact types capture aspects of a single instance, such as "Fire
is extinguished".

Binary fact types capture relationships among two roles, such as
"Fireman extinguishes fire".

Ternary and larger arity fact types are also possible, such as
“Fireman extinguishes fire before electricity is recovered.”

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 84
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Table 3.1 Major Features of SBVR Meta-model

Semantics of Business Vocabulary and Business Rules
Business Vocabulary Business Rules

Noun Concept: classes
 e.g., fireman, fire
Fact Types: relationships among noun concepts
 e.g., fireman extinguishes fire
Instance
 e.g., Paris is a Place

Modal Operators
 e.g., necessity, possibility, …
Quantifier
 e.g., each, at least one, …
Qualifier: additional fact types
 e.g., the date of the crisis

SBVR rules are defined based on SBVR facts with modal opera-
tors, quantifiers, qualifiers, and conditions as follows:

Modal operators are defined by the use of alethic and deontic
modalities from the world of philosophy and logic [HALP06].

The alethic modalities include for example:
 it is necessary that …
 it is possible/impossible that …

They enable structural rules such as:
“It is possible that a victim is assisted by more than one doctor.”

The deontic modalities include for example:
 it is obligatory that …
 it is permitted/forbidden that …
They describe behavioral rules such as:
 “It is obligatory that at least 10 firemen extinguish fire.”
The primary distinction between structural rules and behavioral

rules is that structural rules define characteristics of a model itself and thus
cannot be violated, whereas behavioral rules specify expectations of users
with the understanding that such expectations are not always met.

Qualifiers are defined to qualify different roles in the fact type,
such as “more than”, “at least”, etc. For example, a SBVR with qualifier is
“It is necessary that total response time is less than 4h.”

Quantifiers are defined to quantify different roles in the fact type,
such as ''of'', 'the'', etc. For example, of the SBVR with qualifier is “The
place of the crisis is Paris”.

In conclusion, SBVR facts are defined based on noun concepts
and fact types (i.e., simply relations among noun concepts); while SBVR
rules are defined based on SBVR facts and modal operators with optional
quantifiers and qualifiers.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 85
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

3.5.2 The Business-centric Requirement Model

We model user’s business-centric requirements by using a subset of SBVR
terms. Based on the motivation scenario as an example, we show how users
express their business requirements. The business-centric requirement
model (BR) includes three categories of constrains, namely Functional Re-
quirements (FR), Non-functional Requirement (NR), and the Contextual in-
formation (CTT). The business-centric requirements are thus incorporates
functional concerns, non-functional concerns and contextual information
related to a specific domain of interest as follows: BR = FR ∪ NR ∪ CTT

Figure 3.3 shows the UML class diagram of the business-centric re-
quirement model, including different categories of constraints expressed with
SBVR terms and vocabularies.

Facts

Nonfunctional
Requirement

Business-centric
Requirement

NounConcept FactType

BusinessRule

Quantifier Modal OperatorQualifier

1
0..*

Functional
Requirement

1
0..*

Objective

Action

Contextual
Information

1
1..*

1

1..*

1

1..*

1

1..*
1

1..*

11..*

1

1..*

1 1..*

1

1

1

11

1

11..*
1

1

Figure 3.3 The UML class diagrams of the Business-centric Requirement Model

3.5.2.1 Functional Requirements
Functional requirements describe users’ general objectives and neces-

sary actions that are expected to be carried out. FR consist of two parts:
a) Objective descriptions include a list of ultimate objectives (obj)

based on SBVR facts in order to describe users’ general goals to be achieved,
such as:

FR.Objective = {obj1, obj2, …, objn}, where obji is one of the objectives to
achieve.

Functional requirements can thus have one or more objectives. For ex-
ample, in the crisis management crisis scenario, the objective , “to manage train
crisis”, can be described as: FR.Objective = {Manage train crisis}.

b) Action descriptions includes a list of actions to be performed in re-
sponse to contextual information or internal/external events generated by the dy-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 86
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

namic environments in order to support the objectives such as: FR.Action =
{a1, a2, …, an}, while aj information generated by endogenous or exogenous
changes in the environments and expressed in terms of SBVR fact types.

For example, in the crisis management crisis scenario, expected actions
can be described in terms of “Fire must be extinguished”, “Victims must be as-
sisted”, etc.By such, FR.Action = {“Fire must be extinguished”, “Victims must
be assisted.”}

3.5.2.2 Non-functional Requirements
Non-functional requirements (NF) describe different constraints

on/among actions (nf) that are expected to be carried out such as:
NF = {nf1, nf2, …, nfn}, where nfi is a non-functional requirement ex-

pressed based on SBVR rules, specifying a list of constraints.
We introduce three categories of constraints such as :
a) Control-Flow Constraints which indicate the expected control re-

lationship or execution order between different actions. They are also defined
with SBVR rules and fact types such as “before/after”, “while”, and “if …, then
…” such as:

i) The “before” and “after” fact types denote a sequential relationship
between two different actions and indicate that an action is directly followed by
the application of another action.

In this example, “It is obligatory that the victims are assisted after the
victims are transported.” The action assist is followed by the action transport.

ii) The “while” fact type denotes a concurrent relationship between
two actions and indicates that the application of one action can be occurred with
the application of another action.

In this example, “It is necessary that the victims are being transported
while the fire is being extinguished, both actions, transport and distinguish, are
performed concurrently.

iii) The “if…, then …” fact type denotes a condition execution order
between two actions and indicates that the application of one action relies on the
successful application of another action.

In this example, If the fire is extinguished, then the electricity must be
recovered, the action recover should be accrued out whether the action extin-
guish is successfully performed.

b) Property constraints refer to expected properties or attributes asso-
ciated with actions and they are defined based on SBVR rules and quantifiers,
such as “more than” and “at least” to annotate actions with additional attributes:

nf1: It is obligatory that at least 10 firemen extinguish fire
nf2: It is obligatory that total response time is less than 4hours
nf3: It is obligatory that the cost of assisting victims is less than 2000€.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 87
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

c) Dependency Constraints indicate dependency relationships be-
tween actions. They refer to implicit relationship between different actions de-
fined by means of SBVR operator such as “maybe” and “must not”. For exam-
ple, two actions A, and B can be related with dependency relationship patterns
such as:

If A is selected, B may be selected.
If A is selected, B must not be selected.

3.5.2.3 Contextual Information
The contextual information (CTT) describes the domain of interest

with facts and additional information such as date, location, etc. The set of con-
textual information, CTT, is expressed with SBVR facts such as:

CTT = {ctt1, ctt2, …, cttn}, where ctti denotes a domain state
The following examples express contextual information with SBVR

notations:
ctt1: Crisis place is Pairs.
ctt2: Crisis date is 2013/03/01.
Table 3.2 provides an example of business-centric requirements related

to the motivation scenario.
Table 3.2 Business-Centric Requirement Examples

FR.Objective obj1: Manage train crisis

FR.Action

a1: Fire must be extinguished.
a2: Victims must be assisted.
a3: Railways must be repaired.
a4: Electricity must be recovered.

Non-functional
Requirement

nf1: It is obligatory that at least 10 firemen extinguish fire.
nf2: It is necessary that total response time is less than 4 hours.
nf3: It is necessary that the cost of assisting victims is less than 2000€.
nf4: It is obligatory that the electricity is recovered after the fire is extin-
guished.

Contextual
Information

ctt1: Crisis place is Pairs.
ctt2: Crisis date is 2013/03/01.

3.5.3 Domains of dynamic environments
Since SBVR is a domain specific language, the domain should be prede-
fined by domain experts in order to support the specifications of business
requirement based on SBVR as well as support later business requirement
transformations into Web service composition requirements. In the motiva-
tion scenario, the specific crisis domain, i.e., the train crash crisis, should

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 88
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

be described by domain experts with SBVR terms independent from any
particular crisis, place, time and different kind of actors.

To this end, we define the Domain, which mainly describes the
dynamic environment by defining different concepts and their relationships.
Table 3.3 illustrates the Domain definition for the train crash crisis envi-
ronment with SBVR terms, fact types, rules and modalities.
Table 3.3 Domain for a Dynamic Environment

3.6 The Capability-focused Requirement Model

As discussed early in this chapter, current capability models attempt to specify
Web service capabilities in terms of they can do. Unfortunately, they fail to pro-

Noun concepts:
 (Crisis) traffic crisis, accident, terrorist attack, train crash, fire, …
 (Person) fireman, doctor, victim, repairman, electrician, policeman, …
 (Organization) fire brigade, hospital, EDF, rail station, police station
 (Vehicle) train, car, ambulance, plane, taxi, …
 (Facility) railway, …
 (Location) city, airport, school, hospital, …
 (Date) MM/DD/YY
 (Properties) response time, price, cost, …
Facts Types:
 (attributive)
 Fire brigade has firemen.
 Hospital has doctors.
 EDF has electrician.
 Rail station has repairmen.
 (unary)
 A crisis is observed.
 (binary)
 Web service provides capabilities.
 Capability responses to crisis.
 Fireman distinguishes fire.
 Doctor assists victims.
 Repairman repairs railway.
 Electrician recovers electricity.
 Cleaner cleans site.
Concept Deviation:
 A victim is an injured person.
 A doctor is a person who assists victim.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 89
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

vide sufficient expressiveness to capture both user’s business objectives in dy-
namic environments and facilitate the discovery of appropriate Web services
with respect to business requirements imposed by business objectives. In this
section, we introduce the three-layer capability-focused model to formalize
business requirements terms of Web service capabilities and enable the discov-
ery of Web services before building ad-hoc composite Web services in dynamic
environments [LIBB13B].

The three-layer capability-focused model describes Web service capa-
bilities from different perspectives, namely request, offer, and composition per-
spectives. By such, it plays an important role as an intermediate in the multi-
level requirement models proposed in the context of resilient service-oriented
architectures. The capability-focused model consists of three layers, correspond-
ing to these perspectives namely: 1) the capability objective layer, which de-
scribes business objectives that Web service capabilities should achieve; 2) the
capability profile layer, which describes capabilities as action-verb and noun
pairs, as well as attributes, representing abilities that Web services can perform;
3) the inter-capability composition layer, which establish relationships among
Web service capabilities to facilitate the generation of rules used at the rule-
driven Web service composition model.

The Web service capability model, CAP, is defined as a tuple such
as: CAP = <id, OL, PL, CL>,

where id denotes an identifier related to this Web service capabil-
ity, OL, PL and CL are respectively the capability objective layer, the capa-
bility profile layer, and the inter-capability composition layer.

Capability instances, denoted as cap, are specific examples created fol-
lowing our proposed capability model. Capability instance are mainly created by
service providers or domain experts, and they are associated with Web services.
A capability instance can be associated with one or more Web services.

Figure 3.4 shows the detailed UML class diagram of the capability-
focused model that we discuss its components in the following sections.

3.6.1 The Capability Objective Layer

Connecting business requirements and objectives specified by
business users with Web service capabilities leads us to model Web service
capabilities from the “request perspective” to describe what kind of objec-
tives can be achieved by enabling Web service capabilities. An objective
can thus be achieved by one or more capabilities each of which is semanti-
cally interlinked to other capabilities by means of composition relation-
ships as described in the inter-capability composition layer.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 90
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Name

-ActionVerb
-Noun

Capability Objective Layer

Capability Model
-Capability ID

Capability Profile Layer

Inter-capability Composition Layer

Attribute
-AttrName
-AttrScale
-AttrValue

CapabilityRelation

Support Cooperation

1
0..*

Objective
-ActionVerb
-Noun

1

0..*

CapabilityComposition

1
1

1
1

1

1

1

1
1
1

1
0..*

Web Service

1

12

1..*
1

etc.

Figure 3.4 The UML Class Diagram of the Capability-focused Model

Roughly speaking, the capability objective layer consists of one or
more objectives (obj) described by ActionVerb and a Noun pairs [OAHE03]
expressed in SBVR terms. The ActionVerb concept is introduced in [OA-
HE03] to model Web service capabilities in a natural language in order to
define what is the action being applied by Web services. In our context, the
ActionVerb and Noun pairs define Web service capabilities from the request
perspective to present which objectives that a capability can satisfy.

In order to facilitate the matching between objectives, and consequent-
ly between verbs and nouns, we associate domain specific ontologies to action-
verbs and nouns to ensure semantic interoperability and share similar concepts
with different names. The objective layer, OL, of the capability-focused model,
CAP, is defined as:

CAP.OL = {obj1, obj2, …, objn}, where each objective obji is defined
as obji = <action_verbi, nouni>.

An objective can be associated with different capabilities while one
capability can have achieve multiple objectives. For example, the objective of
the “repair railway” capability, can be “manage accident”, or “maintain facility”.
In this case, CAP.OL = {<manage, accident>, <maintain, facility >}.

3.6.2 The Capability Profile Layer

The capability profile layer is defined in terms of a capability name
(cname) and a list of attributes (attr), describing the real ability and the busi-
ness features that a Web service performs. The capability profile layer PL is
defined as

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 91
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

CAP.PL = {cname, attr1, …, attrn}
In a similar way to the capability objective layer, the capability name is

defined as a pair of an ActionVerb and a Noun. However, the capability name
describes the real ability that the Web service can perform whereas the capabil-
ity objective describes the objective that the capability can satisfy.

Each attribute attri is defined in terms of attribute name (attr_name)
and attribute value (attr_value). The formal presentation of the capability name
and attributes are:

cname = <action_verbi, nouni>,
attri = <attr_namei, attr_valuei>,

where attr_namei is the name of attribute, and attr_valuei is the value of
this attribute.

For example, a Web service capability to extinguish fire can pro-
vide maximum 40 firemen for one task at the same time, its capability pro-
file layer is defined as CAP.PL = {<extinguish, fire >, <AvailableFiremen,
40>}.

3.6.3 The Inter-capability Composition Layer

In order to extend the Web service capability with new capabilities, we
establish semantic links between existing Web service capabilities to “integrate”
together. These links enable different capabilities to be “composed” in order to
satisfy new business requirements. We add the inter-capability composition lay-
er in the capability model. The inter-capability composition layer consists of dif-
ferent inter-capability compositions (cc) describing relationships between exist-
ing capabilities. The inter-capability composition layer is defined as:

CAP.CL = {cci, cc2, …, ccn},where each capability composition, cci, is
defined as a tuple such as cci = <capp, capq, rel, p>,

The capp and capq denote two Web service capability ID; the rel is the
type of binary relationship associating two capabilities; the p is the relationship
property associated to the capability composition, which can be either static or
dynamic.

The static property means that the capability composition is persistent
and predefined by Web service providers or domain experts whereas the dynam-
ic property means that the composition is automatically and temporarily generat-
ed based on user’s business requirements.

We identify five types of composition relationships among pair of Web
service capabilities as follows:

1) The Cooperation relationship indicates that two capabilities are
requried to achieve a task, satisfying certain requriements. For exmaple, in order

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 92
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

to extinguish a big fire, the extinguish fire capability and check building map
capability are required together.

2) The Support relationship indicates that the applicaiton of one
capability depends on the application of another capabilty. For example, in order
to assist victims to receive medical treatement, victims should be firstly
transported to the medical treatement centers.

3) The Condition relationship describes conditionel situation among
capabilities, which means that the execution of one capability in this relation
depends on the sucessful execution of its previous capabilty. For example, the
electricity should be recovered only after the fire is extinguished.

4) The Promotion relationship recommends that two capabilities
should be applied together to satisfy a requirement since they provide extra ben-
efits whether they combine together. For exmaple, the transport victims
capability provided by one hospital is more efficient to be applied the assist
victims capability that is provided by the same hospital.

5) The Competition relationship describes that two capabilities are
somehow similar and one of them is enough to satisfy a business requirement or
objective. For example, several capabilities to assist victim to receive medical
treatments with different hospitals are some redundant and in competitive with
each other.

Table 3.4 illustrates the capability-focused model with its layers
through examples extracted from the motivation scenario. Each capability model
is associated with one or more Web services and domain specific ontologies.
Based on Web service capability model, the capability-focused model (CFR) for
Web service compositions is modeled as a list of capability instances (capi) :

CFR = {cap1, cap2, …, capn}

3.7 The Rule-driven Web Service Composition Model

The Web services composition process relies on requirements and con-

straints defined on functional and non-functional properties related to composite
Web services and Web service participants in composite Web services. The
composition process is the keystone upon which we build resilient service ori-
ented architectures, which are capable of adapting and surviving to endogenous
and exogenous changes. To this end, we focus on two fundamental characteris-
tics of the composition process as being ad-hoc and adaptable to changes. In or-
der to provide a flexible Web service composition process dedicated to ad-hoc
compositions without predefined composition plans, we define a rule-driven
composition approach, including a set of various rules to express these con-
straints. The rule-based approach also provides flexibility to easily extend the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 93
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

rules or add new rules. It also provides adaptability to changes caused internally
and externally by the dynamic environment in which Web services operate.
Table 3.4 Web Service Capability Instances based Capability Model

ID
Capability Objec-

tive Layer

Capability Profile Layer Inter-capability Composi-

tion Layer capability name attributes

cap1
{<response to, cri-

sis>}
<alert, public> {(AvailableRegion, France)}

cap2.1 {<manage, crisis>} <evacuate, population> {(AvailablePlace, France)}

cap2.2 {<manage, crisis>} <evacuate, population>
{(AvailablePlace, Mar-

seille)}

cap3
{<manage, crisis>,

< rescue, people>}
<transport, victim>

{(MaxTransportNumber,

10)}
{cap3, cap4, Support, static}

cap4
{<manage, crisis>,

<rescue, people>}
<assist, victim> {(MaxAssistNumber, 300)} {cap3, cap4, Support, static }

cap5.1 {<manage, crisis>} <extinguish, fire> {(AvailableFiremen, 40)}

{cap5.1, cap5.2, Cooperation,

dynamic}

{cap5.1, cap7, Support, static}

cap5.2
{<manage, emer-

gence>}
<put out, fire> {(AvailableFiremen, 70)}

{cap5.1, cap5.2, Cooperation,

dynamic}

{cap5.2, cap7, Support, static}

cap6 {<manage, crisis>} <clear, site> {(AvailableDate, 24/7)}

cap7
{<manage, acci-

dent>}
<recover, electricity>

{cap5.1, cap7, Support, static}

{cap5.2, cap7, Support, static}

cap8
{<manage, crisis>,

<maintain, facility>}
<repair, railway>

As we will explain in Chapter 5 , the composition approach hinges on
heuristics and multi-objective constraints, which are best expressed in term of
rules. Each rule is intended to focus on a specific aspect of the composition pro-
cess and its environment (e.g., control flow constructs, QoS properties, business,
information security, fault tolerance, monitoring, dependability, etc.). By such,
rules connect the Web service composition process to various internal and exter-
nal variables in the composition environment. These variables affect and are af-
fected by each other. They can be collected together into different models with
respect to their concerns such as business requirements, security objectives, tol-
erance policies etc. To this end, the rule-driven composition model is somehow
connected to various models described by various variables to observe and up-
date (e.g., business model, security model, tolerance model, …). Generally
speaking, the rule-driven composition model is affected and affects all these
models, which lead us to the fundamental idea of developing the resilient service
oriented architecture. In sum, the rule-driven composition model is a central
model upon which the ad-hoc composition and the adaptability to changes are

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 94
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

guaranteed through transformation mechanism between models based feedback
and control loops.

In this section, we only focus on the Web service requirement model
and the specification of its rules to set multiple constraints on Web service prop-
erties and among Web services participating in the composition. In Chapter 5 ,
we introduce the ad-hoc composition approach.

3.7.1 Specifying Web Service Requirements

We define different types of Web service (generally denoted by si)
as follows:

1) Abstract Service: An abstract service ai represents a task to be
achieved.

Set of abstract service: Wa is denoted as the set of abstract ser-
vices.

ai∈Wa, Wa = {a1, a2, …, }
2) Atomic Service: An atomic service ti represents a specific ser-

vice to achieve a task.
Set of atomic service: Wt is denoted as the set of atomic services.

ti∈Wt, Wt = {t1, t2, …, }
3) Composite Service: A composite service ci is the atomic ser-

vices composed in a logic order to achieve tasks.
Set of composite service Wc: Wc is denoted as the set of compo-

site services.
ci∈Wa, Wa = {c1, c2, …, }

The set of Web services for composition is denoted as W, which is
the union of Wa, Wt, and Wc: W = Wa∪Ws∪Wc. si denotes a generic ser-
vice from Wa, Wt, or Wc.

Each Web service si is defined by its service profile (SP) consist-
ing of Identifier(id), Input(I), Output(O), Operation(Op), and QoS(Q).

SP = <id, I, O, Op, QoS>,
where,
- id is the identifier of a Web service.
- I = {i1, i2 …}, is a set of input messages (ii) of a Web service.
- O = {o1, o2 …}, is a set of output messages (oi) of a Web service.
- Op = {op1, op2, … } is the set of operations (opi) of a Web ser-

vice. The operation of a Web service is defined as: given the required input
messages, the execution of the service generates the correspondent output
messages.

- QoS = {Q1, Q2, …} is the set of QoS attributes (Qi) of a Web
service.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 95
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

3.7.2 Composition Patterns and Composite Services

In order to represent the composition relations between different Web

services, we identify four types of composition patterns, which cover most of the
structures specified by composition languages or workflow patterns
[MMVL05][WADH02]:

1) Sequence Pattern: sequential execution of si and sj, denoted by
“si⧁sj”, which means sj is executed after the successful execution of si.

2) Parallel Pattern: parallel execution of si and sj, denoted by “si⦷sj”,
which means si and sj are triggered and executed at the same time.

3) Selection Pattern: selective execution of si and sj denoted by
“si⦸sj”, which means si or sj is executed in a composite service.

4) Iteration Pattern: iterative execution of si, denoted by “!si”, which
means si is iteratively executed in the finite times.

The set of composition patterns is denoted as CP, CP = {⧁, ⦷, ⦸, !}.
In our context, we denoted a composite service as ci; each compo-

site service ci is regarded as a pair of atomic or composite services com-
posed together following one composition pattern, and we use the binary
tree model to represent and manipulate composite services. The reason why
we choose binary tree model to represent composite services is to facilitate
the service decomposition process which will be introduced in detail in
chapter 6.

The formal expression of a composite service ci is defined as: ci =
<sL, sR, cp>, where sL and sR are the left and right sub-tree representing two
services, cp indicates the composition pattern between two sub trees, cp ∈
{⧁, ⦷, ⦸, !}. Figure 3.5 shows the binary tree presentation of three com-
posite services.

Figure 3.5 Composite Services as Binary Trees

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 96
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

3.7.3 Composition Rules

In order to model multiple constraints in the Web service composition

process, we structure different constraints in terms of Composition Rules. We
identify four categories of composition rules namely Structure Rules, Con-
straint Rules, Dependency Rules and Matching Rules.

3.7.3.1 Structure Rules
A structure rule represents constraints on the control flow in the Web

service composition process. A structure rule consists of two Web services and
their composition patterns to progressively construct potential composite ser-
vices.

We use two subscripts to denote a structure rule, and a structure rule is
denoted as rs.i, where the subscript s denotes that this composition rule is a struc-
ture rule while the subscript i denotes the identifier of this structure rule. The set
of structure rule is denoted as Rs,

Rs = {rs.1, rs.2, …, }, rs.i ∈ Rs
A structure rule rs.i is defined as a triple,

rs.i = <sl, sr, cp>, rs.i ∈ Rs, Rs⊆ W × W × CP
where, sl and sr are the two sub services in the structure rule, sl∈W,

sr∈W, and cp indicates the composition pattern between the two services, cp ∈
CP. We introduce an example of a structure rule rs.1 as

rs.1 = <ExtinguishFire_AWS, RecoverElectricity_AWS, ⧁>
The example given above means that the Web service to recover elec-

tricity should be sequentially composed with the Web service to extinguish fire.
We also use the binary tree model to manipulate structure rules as

shown in Figure 3.6: the leaf nodes of a structure rule are ab-
stract/atomic/composite services, while the inner and root nodes are composition
patterns. Since we use the same model to represent composite services and struc-
ture rules, apparently we can 1) construct a composite service following a struc-
ture rule; 2) generate a structure rule following composite service.

We identify two sub types of structure rules as follows:
-Abstract Structure Rule: An abstract structure rule is a structure rule

in which all of its constituent services are abstract services. An abstract structure
rule is denoted as rsa.

-Concrete Structure Rule: A concrete structure rule is a structure rule
a structure rule in which all of its constituent services are atomic or composite
services. A concrete structure rule is denoted as rsc.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 97
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Figure 3.6 Structure Rules as Binary Trees

3.7.3.2 Constraint Rules
A constraint rule represents the constraints on the value of Web service

QoS attributes in the Web service composition process. A constraint rule gathers
QoS constraints related to individual atomic services and entire composite ser-
vices.

We use two subscripts to denote a constraint rule, and a constraint rule
is denoted as rc.i, where the subscript c denotes that this composition rule is a
constraint rule while the subscript i denotes the identifier of this constraint rule.
The set of constraint rule is denoted as Rc,

Rc = {rc.1, rc.2, …, }, rc.i ∈ Rc

The set of constraint rule is composed as,
Rc ⊆ QoS × P × V,

where QoS is the set of QoS attributes to be constrained, P is the set of operators
P = {=, ≠, >, ≥, <, ≤, ⊇, ⊉}, V indicates the set of the constraint values of QoS
attributes.

We specify two sub types of constraint rules and individually give its
formalization.

-Local Constraint Rules: a local constraint rule is a constraint rule
which describes the constraint on a QoS attribute of single abstract service ai or
atomic service ti. A local constraint rule is denoted as rlc, and is defined as

rlc.i = < si.Qj, p, v >
where p∈P, v∈V, si∈Wa∪Wt. si.Qj is the QoS attribute j of service si.
We introduce an example of a local constraint rule rlc.1 as

Rlc.1 = < AssistVictim.price, <, 200euros>
The example given above means that the price of the Web service to

assist victims should be less than 200 euros.
- Global Constraint Rules: a global constraint rule is a constraint rule

which describes the constraint on a QoS attribute of all composite services. A
global constraint rule is denoted as rgc, and is defined as

rgc.i = < Qj, p, v >,
where p∈P, v∈V. Qj is the QoS attribute j of all composite services.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 98
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

We introduce an example of a global constraint rule rgc.1 as
rgc.1 = <crisis_response.response_time, <, 2h>

The example given above means that the response time of the compo-
site service should be less than 2 hours.

3.7.3.3 Dependency Rules
The loosely-coupled is a fundamental property of the service ori-

ented architecture and seek to increase reusability of Web services in dif-
ferent composition scenarios. Most of Web service discovery and Webs
service selection assume that Web services are independent from each other
and loosely coupled. However, this assumption is very reductive since im-
plicit relationship may exist between Web services that are participated in
previous composition (collaboration relationships) or have different func-
tional or non-functional properties (competition relationships). Without
loss of generality, Web services may depend on each other and provide new
insight to discover, select and compose Web services. In addition, depend-
ency among Web services may be imposed by the business requirements.
Thus, there has been an increasing research interest in composing services
based on social networks to provide service composition models. Depend-
ency relations help to connect individual Web services together and select
optimal Web service in the Web service composition process.

For these reasons, we introduce the service dependency rules (e.g.,
collaboration, substitution, exclusion, etc.) to connect services together and
enable Web service compositions with new capabilities. A dependency rule
represents the dependency constraints among Web services and is denoted
as rd.i, where the subscript d denotes that the rule is a dependency while the
subscript i denotes the rule identifier. The set of dependency rules is denot-
ed by Rd such as : Rd = {rd.1, rd.2, …, }, rd.i ∈ Rs;

Each dependency rule rd.i is defined as a triple
rd.i = <tl, tr, dp>, rd.i ∈ Rd, Rd⊆ Wt × Wt × DP,

where tl, tr are two constituent atomic services in the dependency rule, tl∈Wt,
tr∈Wt, and dp indicates the dependency relation between the two services, DP is
the set of dependency relation, dp ∈ DP.

We identify three types of dependency relations namely “Optimal
Composed” denoted as “⊞”, “Excluded” denoted as “⨂”, and “Substitut-
ed” denoted as “⦿”, hence, DP = {⊞, ⨂, ⦿}.

-Optimal Composed (⊞): Two atomic services ti and tj have the
dependency relation of “⊞” means that if ti and tj are composed together,
they will together provide additional benefits (e.g. lower price, lower costs)
or satisfaction.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 99
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

-Excluded (⨂): Two atomic services ti and tj have the dependency
relation of “⨂” means that ti and tj are excluded in a composite service.

-Substituted (⦿): Two atomic services ti and tj have the depend-
ency relation of “⦿” means tj can be substituted by ti in a composite ser-
vice.

Substituted dependency relation is special case of excluded rela-
tion. For each atomic service ti in Wt, we calculate the QoS similarity be-
tween ti and its excluded services to find the most similar atomic services
as the substituted services of ti. The calculation of QoS similarity is intro-
duced in the Chapter 5 .

3.7.3.4 Matching Rules
The execution of Web services requires some benefits to be sacrificed

(e.g., money to be paid) or some value to be satisfied (e.g. expected traveling
date is inputted), which are defined as Web service input; and the execution of
Web services also results in the availability of other benefits (e.g., users’ satis-
faction) or value (e.g., delivered products), which are defined as Web service
output. The output of one service may be used or partially used as an input of
another service.

A matching rule specifies constraints on the output of one Web service
connected to the input of another Web service. A matching rule consists of two
Web services to indicate that two Web service can be composed with each other
by analyzing their input and output messages.

The set of matching is denoted as Rm such as Rm = {rm.1, rm.2, …, },
where rm.i is a matching rule defined as

rm.i = <sl, sr, CP`>, rm.i ∈ Rm, Rm⊆ Wt × Wt, CP`⊆CP
where sl, sr are two constituent services in the matching rule, sl∈W, sr∈W, and
CP` is the subset of composition pattern set CP which indicates in which pat-
tern(s) the two constituent services can be composed together;

Matching rules are applied to determine whether two services can
be composed together according to their input and output relations. In a
matching rule rm.i = <si, sj, CP`>, if CP`≠∅, then the matching rule rm.i
means that service sj can be composed with service si according to their in-
put and output relations, denoted by M(si, sj).

The matching rules are not transformed from users’ business-
centric requirements but automatically generated based on the following
principles:

Pinciple 1. (si⧁sj) ^ (si.O⊇sj.I)=> M(si, sj);
Pinciple 2. si⦷sj => M(si, sj);
Pinciple 3. (si⦸sj) ^ (si.O⊇sj.I)=> M(si, sj);
Pinciple 4. !si => M(si, si);

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 100
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

The set of composition rule is denoted R, and it is the union of set
of structure rule, set of constraint rule, set of dependency rules and set of
matching rules. And a composition rule from the set of composition rules is
denoted as ri,

R = Rs∪Rc∪Rd∪Rm, R = {r1, r2, …, rn}, ri ∈ R.
 The Web service requirement (WSR) is modeled as a list of Web

services, structure rules, constraint rules and dependency rules:
WSR = {s1,s2, …, sm, r1, r2, …, rn}, ri ∈ Rs∪Rc∪Rd

In Table 3.5, we present the context free grammar for the rule-
driven Web service composition model.

Table 3.5 The Rule-driven Web Service Requirement

3.8 Conclusion

In order to flexibly build resilient application in dynamic environment,
rSOC requires support in business level to model business requirements and

CompositionRules::= (CompositionRule, CompositionRules) | CompositionRules | ∅
CompositionRule ::= StructureRules | ConstraintRules | DependencyRules

StructureRules::= Service StructureOperator Service | Service StructureOperator StructureRule
StructureOperator:= ⧁ | ⦷ | ⦸ | !

DependencyRules ::= AService DependencyOperator AService
DependencyOperator::= ⊞ | ⨂ | ⦿

ConstrainRules::= LocalConstraint | GlobalConstraint | ContextualConstraint
LocalConstraint::= AService.QoSAttribute ConstraintOperator Value
GlobalConstraint::= CService.QoSAttribute ConstraintOperator Value
ContextualConstraint::= Service.QoSAttribute ConstraintOperator Parameter
ConstraintOperator::= < | ≤ | > | ≥ | = | ⊆
Value::= Literal | Number Unit

Unit::= (Unit / Unit) | % | min | …
Service::= AService | CService
AService::= Literal
CService::= Literal
QoSAttribute::= Literal
Parameter::= Literal
Literal::= [A-Za-z0-9#] | [A-Za-z]
Number::= [0-9#]*

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 101
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

accordingly discover and compose Web services to satisfy the business re-
quirements. However, current SOA lacks the capability to construct compo-
site Web services driven by business requirements defined in natural-like
language in terms of objectives. And consequently, most of current compo-
sition approaches highly reply on the fact that composition requirements
are well formalized based on technical languages, but they fail to provide
business users with a natural means to express their business objectives. In
this chapter, we firstly survey the related work of Web service capability
models and then present our requirement model for ad-hoc Web service
composition.

Web service capability models are presented in two categories:
capability models based on IOPE and capability models based on case-
frame. Frame-based approaches to model Web service capability make a
step beyond the classical IOPE paradigm, as they feature both of the busi-
ness and functional characteristics in Web service description. However,
describing service capabilities only based on action verb and attributes are
oversimplified and may cause ambiguity without explicit descriptions of
the domain by which service capabilities are manipulated. A more expres-
sive Web capability model is required to capture business requirements, to
represent different levels of abstraction, and to derive potential Web ser-
vices and constraints reflecting the business aspects that the capability can
satisfy.

We then model requirement for Web service composition in three
different levels, i.e., business-centric requirement, capability-focused re-
quirement and rule-driven Web service requirement allowing either tech-
nical or business users can specify their composition requirements and con-
sequently compose and execute Web services to satisfy their requirements.

Business-centric requirements are modeled based on a structured
English language, i.e., SBVR, to capture users’ business objectives, ex-
pected actions and different constraints in a structured natural way. SBVR
are intended to formalize the semantics of domain-specific vocabularies,
business facts, and rules. User requirements represent the primary means by
which they define the operative way to reach their objectives and perform
their actions. Business-centric requirements incorporate functional con-
cerns (i.e., concept nouns and verbs), non-functional concerns (i.e., rules
and fact types) and contextual domain information specified with the for-
mal use of natural language to explicitly provide a model of formal logic so
requirements can be understood by computer programs.

As an intermediate level for the requirement transformation from
business level, we model capability-focused requirements based on a Web
service capability model to describe what a Web service can really provide.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 102
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

The semantics of a capability is captured via a combination of an action-
verb pair, a set of attributes, describing required resources, current states,
and new states, which reflect changes in the real world effects, and, par-
ticularly, a business objective to achieve by applying the capability. An ob-
jective can be achieved by one or more capabilities each of which is seman-
tically interlinked to other capabilities by means of capability relationships.

In the level of Web service requirement, we structured different
kinds of constraints in Web service composition process in terms of com-
position rules, and give formal definition for each type of composition rule.
All composition rules describe the constraints on/among Web services thus
they can be directly taken into account when applying Web service compo-
sition approaches. Since all the constraints are formalized by in terms of
rules, the set of categories of composition rules is easy to be enriched by
structuring other factors (e.g., resources, mediation, etc.) that influence
composition process, and by updating the composition algorithm, our ap-
proach is extensible to take into account of other constraints (composition
rules) in service composition process.

The main values of our three-level requirement model for ad-hoc
Web service composition are as follows: firstly it captures users’ objectives
in the business level and enables business objectives driven Web service
composition; secondly, it extends current Web service descriptions by a ca-
pability model which describes what Web services can do without describ-
ing technical details; thirdly, it connects together composition requirements
in business level and composition requirements in technical level to facili-
tate composition process driven by business requirements.

In the next chapter, we provide an end-to-end transformation solu-
tion to transform business-centric requirement to capability-focused re-
quirement and finally to rule-driven Web service requirement, so that the
composition requirement can be used by our Web service composition ap-
proach presented in Chapter 6 .

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 103
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Chapter 4

Two-level Requirement Transformations

Introduction ... 104

The Requirement Transformation Framework 105

The Capability Matching Process ... 109

The Association Discovery Process .. 117

Conclusion ... 123

Abstract: Since different models describe endogenous and exogenous
changes that may occur in the dynamic environment, ensuring the intercon-
nectivity between them is mandatory to enable adaptability of the resilient
service-oriented architecture in response to changes. The ability of models
to affect and be affected by each other is also the most salient characteristic
of the resilient service oriented architecture by comparison to dependable,
autonomic or self-organizing architectures. The flexibility of compositing
Web services without predefined plans is yet an important characteristic.

In order to connect models and guarantee the flexibility and
adaptability characteristics, we develop a transformational approach be-
tween models. In our work, we focus on a business requirement model and
a Web service composition model since they are the fundamental models
upon which SOA-based applications and business processes are built. To
this end, we have developed in the previous chapter the business-focused
requirement model and the rule-driven Web service composition model. We
have also introduced an intermediary model describing Web service capa-
bility in terms of SBVR business facts and rules. In this chapter, we discuss
the transformational approach to derive rule-driven Web service require-
ment model from the business-focused requirement model. We particularly
introduce the capability matching and association discovery processes to
successfully transform business-centric requirements to capability-focused
requirements, and finally to rule-driven Web service requirements. In fact,
the capability matching process discovers all Web service capabilities that
satisfy business-centric requirements, and if necessary, it dynamically gen-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 104
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

erates capability compositions, whereas the association discovery process
discovers all Web services that are associated with the Web service capa-
bilities and automatically generates composition rules.

Without loss of generality, the ad-hoc Web service composition
model can also be overloaded with requirements issued from other models
(e.g., information security policy model, tolerance model, service level
agreement model, …) since any requirement can be represented a constraint
rule on Web services and among Web services. Since the ad-hoc Web ser-
vice composition approach presented in next chapter applies a multi-
objective and optimization techniques to find out optimal composite Web
services, any additional rule can be further applied by modifying the com-
position logic.

4.1 Introduction

Business-centric requirements specified in structured natural language ex-
pressions cannot be directly used by most of Web service composition ap-
proaches. As result, a requirement transformation approach is required to
transform structured natural language based requirements to formalized re-
quirements that can be directly used by Web service composition processes,
and accordingly composed together in order to satisfy business users’ re-
quirements.

The requirement transformation is the process of generating target
requirements from source requirements, according to a transformation
strategy. Current research work related to requirement transformations can
be generally divided into two categories: Natural language-driven require-
ment transformation approaches translate free text requirements or semi-
structured natural language based requirements into formalized and well-
structured requirements whereas model-driven requirement transformation
approaches transform requirements between different technical and well-
structured models.

Concerning natural language-driven requirements transformation
approaches, the direct automated transformation of natural language based
requirements to formalized requirements is very difficult due to the inher-
ent ambiguities of natural languages [GREM04][SAMK04][FKMS07]
whereas manual or semi-automated transformations require often user’s in-
terventions during the transformation process or assisted patterns
[MICH96][SLFE04][SASO05]. Alternative research work have focused on
structured natural-based requirements such as SBVR, instead of natural
language-based requirements) to provide controlled and valid transfor-
mation solutions (i.e., SBVR to UML diagrams) [AFBA11][RAPH08].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 105
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Most of these works remain efficient in developing new Web services to
satisfy initialized requirements but inappropriate with multiple constraints
and existing Web services which are expected to be discovered and com-
posed in order to satisfy initialized requirements.

The emergence of the UML leads to the development of model
driven architectures supported by model transformation and particularly the
requirement transformation between different UML diagrams [YUBL10]
[DROM03][AYWO09]. However, these approaches are designated to trans-
form formalized requirements into other formalized requirements and they
do not provide solutions for natural-like requirement transformation.

By comparing existing requirement transformation approaches, we
observe that requirements that are transformed are actually defined from
the same perspective, such as all requirements are defined from the per-
spective of Web service standards despite the usage of different languages
or models (e.g., transformation from OWL-S to WSDL); if requirements
are defined from different perspectives, such as business perspective and
Web service technical perspective, these approaches lack the ability to
identify connections between requirements in these perspectives, and con-
sequently cannot provide obvious transformation mechanisms. For example,
in our proposed composition requirement model presented in chapter 3,
three level composition requirements are defined from three different per-
spectives (i.e., business objectives and Web service operations) ; they are
rather than the same requirements (e.g., Web service operations) that are
defined by different languages (e.g., WSDL, OWL-S). The divergence of
perspectives and level of details raise a particular challenge for traditional
requirement transformation approaches as how to transform requirements
defined in different levels and from different perspectives.

To solve this challenge, we develop a requirement transformation
framework to derive ad-hoc Web service requirement model from business-
centric requirement models such as the business-centric requirement model.
In our contribution, we discuss how to derive capabilities and Web services
to satisfy business-centric requirement defined from the perspective of
business objectives, and how business-centric requirements can be trans-
formed to constrain capabilities and Web services.

4.2 The Requirement Transformation Framework

In this section, we introduce the general framework for transforming busi-
ness models into Web service composition models in order to composite
Web services in dynamic environments. The transformation is a top-down
process consisting of two-phase processes (i.e., capability matching and as-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 106
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

sociation discovery processes) to deduce Web services from business-
centric requirements for a potential Web service composition. It identifies
all constraints on functional and non-functional properties related to indi-
vidual Web services and/or composite Web services. In addition, con-
straints on Web services are modeled as a set of composition rules to guide
the ad-hoc Web service composition process. The transformation approach
does not only discover Web services but it also deduces constraints on Web
services from business-centric requirements.

The general framework of our requirement transformation is de-
scribed in Figure 4.1 [LIBB13C] and includes a generic process of the fol-
lowing two steps:

Figure 4.1 General Framework of Composition Requirements Transformation

Step 1. Capability Matching. The Capability matching process is
applied to discover all capability profiles that satisfy user’s business-
centric requirements, in the meantime, additional capability compositions
will be automatically generated in the inter-capability composition layer of

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 107
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

capability instances according to the information specified in business-
centric requirements.

Step 2. Association Discovery. The Association discovery pro-
cess discovers all Web services that are associated with capability profiles.
Composition rules are automatically generated based on the capability
composition as well as business-centric requirements.

Step 3. Web Service Composition. All discovered Web services
and composition rules are used as the input of Web service composition ap-
proach to construct composite services satisfying users’ business-centric
requirements.

In the requirement transformation framework, one key operation is
the concept matching between two concepts from requirements in different
levels to decide whether they are related to each other or not. The concepts
to be matched can be action verbs and nouns found in capability profiles,
Web service QoS attributes as described by Web service profiles, etc. Our
concept matching process extends the matching algorithm presented in
[MEBA10] with semantic capabilities based on the domain ontology.

When matching the concept A against the concept B, we identify
three cases that represent a successful matching between A and B:

1) Exact Match, which is denoted by A=B, means that the con-
cepts A and B are exactly the same. For example, the SBVR fact type “ex-
tinguish” and the action verb “extinguish” in the capability profile layer,
are semantically and syntactically similar (A = B).

2) Similar Match which is denoted by A≈B means that the two
concepts A and B are synonyms,

For example, The SBVR fact type “put out” and the action verb
“extinguish” in the capability profile layer are synonym (A ≈ B).

3) Subsumes Match, which is denoted by AsubB, means that the
Concept B is super class of concept A in the domain ontology,.

For example, the SBVR noun concept “victim” is a sub concept of
the action-verb “person” from the capability profile layer (AsubB).

The result of matching concept is one of the following two cases:
Successful Matching: when A and B match each other according

to any of the three above cases, denoted by A≞B.
Failed Matching: when A and B do not satisfy any of the three

above cases, denoted by ¬(A≞B).
 The general matching relations between different concepts from

different multi-level requirement models are graphical illustrated in Figure
4.2.

.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 108
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Figure 4.2 Concept Matching between Different Requirement Models

In Figure 4.2, the aggregation relation between two concepts de-

scribe one concept is constituent part of the other. The association relation
between Web service and capability model describes the fact that Web ser-
vices are associated with capability description to provide extra capability
description. The matching relation between two concepts presents the con-
cept matching between two concepts to decide whether they are related to
each other or not.

In particular, the matching relations between different concepts
ensure the connectivity among the business-centric requirement model, the
capability-focused requirement model and the rule-driven Web service re-
quirement model as described as follows:

- Functional requirements in the business-centric requirement
model should be matched against the capability objective layer and the ca-
pability profile layer of capability model to discover capabilities that satis-
fy the objectives and action defined by functional requirements;

- Non-functional requirements should be matched against the pro-
file layer of capability model to exclude the capability that do not satisfy
non-functional requirements from the primary capability matching results,
and then generate capability compositions at the inter-capability composi-
tion layer.

- Contextual information is also used to match against the capabil-
ity profile layer of capability model to delete the capability instances that
do not satisfy non-functional requirements from the primary capability
matching results.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 109
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

After discovering necessary capability instances, all Web services
associated with the discovered capability instances are consequently dis-
covered. Non-functional requirements and inter-capability compositions
layer of capability model are also used to match against Web services in
order to generate different categories of composition rules.

The transformation process is presented with additional details in
the following sections. We introduce notations and operators in Table 4.1
to facilitate the presentation of the requirement transformation process.
Table 4.1 Notation and Operator Legends

Notation Meaning
S The set of all Web services in Web service registry;
s A Web service;
CAP The set of all capability instances in Web service registry;
cap A capability instance;
S` The set of derived Web services;
CAP` The set of derived capability instances;
R` The set of derived composition rules;
rs A structure rule;
rc A constraint rule;
rd A dependency rule;
Operator Meaning
¬ Negation
^ Conjunction
∨ Disjunction
=> If…, then….
A≞B The matching between concept A and B is successful.(*)
⊫(condition) The condition is satisfied.
⊯(condition) The condition is not satisfied.
si►capj Web service si is associated with capability capj.

tj~ai
The atomic service tj is one of the discovered services to achieve the
action represented by the abstract service ai.

(*)To be more precise, we use NounConcept or FactType to represent all noun con-
cepts or fact types in one sentence described based on the SBVR terms. For a concept A,
the matching A≞NounConcept /FactType is successful when the concept A can be suc-
cessfully matched against any of the noun concept/ fact type.

4.3 The Capability Matching Process

Business-centric requirements are defined from the “request” per-

spective based on business objectives while Web service capability is mod-
eled from “offering” perspective, indicating what a Web service can really

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 110
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

provide. When transforming business-centric requirements to capability-
focused requirements, the capability matching algorithm discovers availa-
ble capability instances that satisfy user’s objectives and actions as defined
in business-centric requirements; when certain nonfunctional requirement
defined in business-centric requirements cannot be satisfied, the capability
matching process will try to compose capabilities to satisfy requirements.

In order to transform business-centric requirements to capability-
focused requirements, the capability matching process matches different
concepts from the business-centric requirement model and the capability
model following six predefined principles.
Capabitliy Matching Principle 1.
Functional reuqirement of business-centric requirements (BCR) is used to
match against capability objective layer (OL) and capability name in capa-
bility profile layer (PL) of capability instances in the Web service registry
and all capability instances satisfying one objective and one action defined
in functional requirements (FR) are discovered as the primary capability
matching result.

Matching relations between functional requirements and the capa-
bility model is presented in Table 4.2. In the detail matching relation table,
the two columns in the left and right respectively list two concepts to be
matched; the field column in the table introduces the field where a concept
is defined while the concept column introduces the name of the concept.
Table 4.2 Matching Relation of Capability Matching Principle 1

Business-Centric Requirement Model Capability Model
Field Concept

Matching
against

Concept Field
BCR.FR.Objective fact type action verb CAP.OL
BCR.FR.Objective noun concept noun CAP.OL
BCR.FR.Action fact type action verb CAP.PL.cname
BCR.FR.Action noun concept noun CAP.PL.cname

For example, when giving a functional requirement specified as in
Table 4.3, a capability instance cap1.1 satisfying both one objective and one
action of FR is discovered as shown in Table 4.3.

As illustrated in Table 4.3, the objective layer of the capability
instance cap1.1 can successfully match with the objective “obj1: Manage
train crisis” defined as functional requirement, while the capability name
can successfully match the action “a1: Fire must be extinguished.” defined
in functional requirement.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 111
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Capabitliy Matching Principle 2.
Non-functional requirement of business-centric requirements (BCR) are
matched against the capability profile layer (PL) of capabilities and the ca-
pabilities dissatisfying rules specified in the nonfunctional requirements
(NR) will be deleted from the primary capability matching result.
Table 4.3 Capability Matching Principle 1 Example

BCR.FR.Objective obj1: Manage train crisis

BCR.FR.Action a1: Fire must be extinguished.

Successful matching

ID Capability Objective Layer
Capability Profile Layer

capability name

cap1.1 {<manage, crisis>} <extinguish, fire>

The detail matching relations from capability matching principle 2
is presented in Table 4.4.
Table 4.4 Matching Relation of Capability Matching Principle 2

Business-Centric Requirement Model Capability Model
Field Concept

Matching
against

Concept Field
BCR.NR noun concept attribute name CAP.PL
BCR.NR quantifier attribute value CAP.PL

For example, when giving a non-functional requirement specified
as shown in Table 4.5, a capability instance dissatisfying this requirement
is found as shown in Table 4.5 and will be delted from the primary result.
Table 4.5 Capability Matching Principle 2 Example

As illustrated in Table 4.5, the attribute “AvailabileFiremen” in

the capability instance cap1.1 has successfully matched with the non-
functional requirement “nr1: It is obligatory that at least 40 firemen
extinguish fire”. However, the value of the attribute “AvailabileFiremen”
is “30” and it does not satisfy the quantifier “at least 40”, thus the
capability instance cap1.1 will be deleted from the primary capability
matching result.

BCR.NR nr1: It is obligatory that at least 40 firemen extinguish fire.

Successful matching

ID Capability Objective Layer
Capability Profile Layer

capability name attributes

cap1.1 {<manage, crisis>} <extinguish, fire> {(AvailableFiremen, 30)}

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 112
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Capabitliy Matching Principle 3.
Contextual information (CTT) of business-centric requirements (BCR) are
matched against capability profile layer (PL) of capabilities and the capa-
bilities dissatisfying rules specified in nonfunctional requirements (NR)
will be deleted from the primary result.

The detail matching relations from capability matching principle 3
is presented in Table 4.6.
Table 4.6 Matching Relation of Capability Matching Principle 3

Business-Centric Requirement Model Capability Model
Field Concept

Matching
against

Concept Field
BCR.CTT noun concept attribute name CAP.PL
BCR.CTT instance attribute value CAP.PL

For example, when giving a context information “ctt1: Crisis place
is Pairs.” as shown in Table 4.7, a capability instance cap2.1 the attribute
dissatisfying this requirement is found as shown in Table 4.7 and will be
delted from the primary result.
Table 4.7 Capability Matching Principle 3 Example

BCR.CTT ctt1: Crisis place is Pairs.

Successful matching

ID Capability Objective Layer
Capability Profile Layer

capability name attributes

cap2.1 {<manage, crisis>}
<evacuate,
population>

{(AvailablePlace,
Marseille)}

As illustrated in Table 4.7, the attribute “AvailablePlace” in the
capability instance cap2.1 has successfully matched with the contextual
information “ctt1: Crisis place is Pairs.” However, the value of the attribute
“AvailablePlace” is “Marseille” and it does not satisfy the instance “Pairs”,
thus the capability instance cap2.1 will be deleted from the primary
capability matching result.
Capabitliy Matching Principle 4.
For one non-functional requirement (NR) from business-centric require-
ments (BCR), if this non-functional requirement can succesful match againt
other capability instances but no capability instance can satisfy this non-
fucntional requirement, dynamic capability composition based on
cooperation relation will be generated to satisfy this requirement by
composing more capabilities; if composing more capabilities cannot satisfy
this requirement, then eventually this requirement cannot be satisfied.

The detail matching relations from capability matching principle 4
is presented in Table 4.8.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 113
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Table 4.8 Matching Relation of Capability Matching Principle 4

Business-Centric Requirement Model Capability Model
Field Concept

Matching
against

Concept Field
BCR.NR noun concept attribute name CAP.PL
BCR.NR quantifier attribute value CAP.PL

For example, when giving a non-functional requirement “nr1: It is
obligatory that at least 40 firemen extinguish fire.” specified as shown Ta-
ble 4.9, two capability instances cap1.1 and cap1.2 dissatisfying this
requirement are found as shown in Table 4.9, and a capability composition
is automatically generated to satisfy this non-functional requirement.
Table 4.9 Capability Matching Principle 4 Example

As illustrated in Table 4.9, the attribute “AvailabileFiremen” in
the capability instance cap1.1 and cap1.2 has successfully matched with the
non-functional requirement “nr1: It is obligatory that at least 40 firemen
extinguish fire”. However, the values of the attribute “AvailabileFiremen”
of cap1.1 and cap1.2 are respectively “30” and “20” and neither of cap1.1 or
cap1.2 satisfies the quantifier “at least 40”. Thus a capability composition
“{cap1.1, cap1.2, Cooperation, dynamic}” is automatially generated in the
inter-capability composition layer of each capability instance, in which the
cap1.1 and cap1.2 are composed by cooperation relation providing available
50 firemen to satisfy the non-functional requirement nr1.

The detail matching relations from capability matching principle 5
is presented in Table 4.10.

For example, when giving a non-functional requirement “nr1: It is
obligatory that the electricity is recovered after the fire is extinguished.”
specified as shown in Table 4.11, two capability instances cap1.1 and cap3.1
successful matching this requirement are found, and a capability
composition is automatically generated following this non-functional
requirement.

BCR.NR nr1: It is obligatory that at least 40 firemen extinguish fire.

Successful matching

ID Capability Objective Layer
Capability Profile Layer Inter-capability Composition

Layer capability name attributes

cap1.1 {<manage, crisis>} <extinguish, fire>
{(Available-
Firemen, 30)}

{cap1.1, cap1.2, Coopera-
tion, dynamic}

cap1.2 {<manage, crisis>} <extinguish, fire>
{(Available-
Firemen, 20)}

{cap1.1, cap1.2, Coopera-
tion, dynamic}

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 114
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Capabitliy Matching Principle 5.
If one non-functional requirement (NR) from business-centric requirements
(BCR) defines control flow constraints by use of SBVR fact types: “be-
fore/after”, “while”, and “if …, then …”, a dynamic capability composition
will be generated:

1) A support capability composition will be generated if SBVR
fact type “before/after” is used;

2) A cooperation capability composition will be generated if
SBVR fact type “while” is used;

3) A condition capability composition will be generated if SBVR
fact type “if …, then …” is used.
Table 4.10 Matching Relation of Capability Matching Principle 5

Business-Centric Requirement Model Capability Model
Field Concept

Matching
against

Concept Field
BCR.NR noun concept noun CAP.PL.cname
BCR.NR fact type action verb CAP.PL.cname

Table 4.11 Capability Matching Principle 5 Example

As illustrated in Table 4.11, the capability name “<extinguish,
fire>” in the capability instance cap1.1 has successfully matched with the
non-functional requirement “nr1: It is obligatory that the electricity is re-
covered after the fire is extinguished.”, while the capability name <recover,
electricity>” in the capability instance cap1.1 has also successfully matched
with the same non-functional requirement. A capability composition
“{cap1.1, cap3.1, Support, dynamic}” is automatially generated in the inter-
capability composition layer of each capability instance, in which the cap1.1
and cap3.2 are composed by support relation to satisfy the non-functional
requirement nr1.

BCR.NR nr1: It is obligatory that the electricity is recovered after the fire is extinguished.

Successful matching

ID Capability Objective Layer
Capability Profile Layer Inter-capability

Composition Layer capability name attributes

cap1.1 {<manage, crisis>} <extinguish, fire>
{(Available-
Firemen, 30)}

{cap1.1, cap3.1, Support,
dynamic}

cap3.1 {<manage, accident>}
<recover,
electricity>

{cap1.1, cap3.1, Support,
dynamic}

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 115
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Capabitliy Matching Principle 6.
If one non-functional requirement (NR) from business-centric requirements
(BCR) defines dependency constraints by use of SBVR modal operators:
“maybe”, and “must not”, a dynamic capability composition will be
generated:

1) A promotion capability composition will be generated if SBVR
operator “maybe” is used;

2) A competition capability composition will be generated if
SBVR operator type “must not” is used.

The detail matching relations from capability matching principle 6
is presented in Table 4.12.
Table 4.12 Matching Relation of Capability Matching Principle 6

Business-Centric Requirement Model Capability Model
Field Concept

Matching
against

Concept Field
BCR.NR noun concept noun CAP.PL.cname
BCR.NR fact type action verb CAP.PL.cname

Following the six principles, capability matching process firstly
discover all capability instances satisfying the objectives and actions
defined in functional requirements in business-centric requirement model;
and then delete the capability instances that do not satisfy certain non-
functional requirements or context information; at last dynamic capability
compositions are automatically generated according to different constraints
specified by non-functional requirements.

The detail capability matching process is formalized in Figure 4.3
and Figure 4.4.

Figure 4.3 The Capability Matching Process (Part 1)

Capability Matching Process
Input: BCR, CAP;
Step 1. CAP` = ∅;
Step 2. (Principle 1)
 ∀capi∈CAP,
∃objj∈capi.OL, ∃objp∈FR.Objective, ∃aq∈FR.Action,
 (capi.objj.noun≞FR.objp.NounConcept)^ (ca-
pi.objj.action_verb≞FR.objp.FactType) ^
 (capi.cname.noun≞FR.iq.NounConcept)^ (ca-
pi.cname.action_verb≞FR.aq.FactType)
 => CAP` = CAP`∪{capi};

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 116
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Figure 4.4 The Capability Matching Process (Part 2)

Step 3. (Principle 4)
 ∀capi∈CAP`, ∃attrj∈capi.PL, ∃nro∈NR, ∃quantifier∈nro,
 (capi.attrj.attr_name≞nro.NounConcept)^
 (capi.attrj.attr_value⊯(nro.quantifier))
 => ∃capm∈CAP, ∃attrp∈capm.PL, ∃capn∈CAP, ∃attrq∈capn.PL,
 (capm.attrp.attr_name≞nro.NounConcept)^
 (capn.attrq.attr_name≞nro.NounConcept)
 => generate capm.CL.ccx = capm.CL.ccy = <capm, capn, Cooperation, dy-
namic>
Step 4. (Principle 2)
 ∀capi∈CAP`,
 ∃attrj∈capi.PL, ∃nro∈NR, ∃quantifier∈nro,
 (capi.attrj.attr_name≞nro.NounConcept)^ (ca-
pi.attrj.attr_value⊯(nro.quantifier))
 => CAP` = CAP` - {capi};
Step 5. (Principle 3)
 ∀capi∈CAP`,
 ∃attrj∈capi.PL, ∃ctto∈CONTEXT,
 (capi.attrj.attr_name≞nro.NounConcept)^ (ca-
pi.attrj.attr_value⊯(NounConcept))
 => CAP` = CAP` - {capi};
Step 6. (Principle 5)
∀capm∈CAP`, ∀capn∈CAP`,
∃nro∈NR,
(capm.cname.noun≞NR.nro.NounConcept)^
(capm.cname.action_verb≞NR.nro.FactType)^
(capn.cname.noun≞NR.nro.NounConcept)^
(capn.cname.action_verb≞NR.nro.FactType)^
((“after”∈NR.nro.FactType)∨(“before”∈NR.nro.FactType)
∨(“while”∈NR.nro.FactType)∨(“if…then…”∈NR.nro.FactType))
=> generate capm.CL.ccx = capm.CL.ccy = <capm, capn, rel, dynamic>:
(“after”∈NR.nro.FactType)∨(“before”∈NR.nro.FactType) => rel = Support;
(“while”∈NR.nro.FactType) => rel = Cooperation;
(“if…then…”∈NR.nro.FactType) => rel = Condition;
Step 7. (Principle 6)
∀capm∈CAP`, ∀capn∈CAP`,
∃nro∈NR,
(capm.cname.noun≞NR.nro.NounConcept)^
(capm.cname.action_verb≞NR.nro.FactType)^
(capn.cname.noun≞NR.nro.NounConcept)^
(capn.cname.action_verb≞NR.nro.FactType)^
((“maybe”∈NR.nro. ModalOperators)∨(“must not”∈NR.nro.ModalOperators))
=> generate capm.CL.ccx = capm.CL.ccy = <capm, capn, rel, dynamic>:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 117
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

4.4 The Association Discovery Process

When given the derived capability instances from capability
matching process, association discovery process transforms the capability-
focused requirement into rule-driven Web service requirement. Association
discovery process discovers all Web services that are associated with capa-
bility instances from capability matching process, and generates different
categories of composition rules based on capability compositions and non-
functional requirement.

 The association discovery process matches different concepts
from business-centric requirement model, capability model and rule-driven
Web service requirement model, and transform requirements following five
association discovery principles.
Association Discovery Principle 1
For each discovered capability instance from capability matching process,
all Web services that are associated with this capability are discovered as
association discovery result; in the meantime, for all the atomic services
that are associated with the same capability instance, an abstract service is
generated to represent their similar operations.

For example, for a capability instance cap1.1, three Web services t1,
t2, t3 are associated with this capability instance: t1►cap1.1, t2►cap1.1, and
t3►cap1.1. The capability instance and Web service profiles are presented in
Table 4.13, and t1, t2, and t3 are all discovered as association discovery re-
sult, and an abstract service a1 is generated. We get t1~a1, t2~a1, and t3~a1.
Association Discovery Principle 2.
If a capability composition based on Support, Cooperation or Condition re-
lation is defined in the inter-capability composition layer of a capability in-
stance, a structure rule will be generated between all Web services that are
associated with the two capabilities within the capability composition:

1) A structure rule with sequence composition pattern is generated
if the capability composition is defined by use of Support relation;

2) A structure rule with parallel composition pattern is generated
if the capability composition is defined by use of Cooperation relation;

3) A structure rule with selection composition pattern is generated
if the capability composition is defined by use of Condition relation.

For example, two capability instances cap1.1 and cap1.2 have the
same the inter-capability composition layer. Two Web services t1 and t2 are
associated with cap1.1 while one Web service t3 is associated with cap1.2.
The capability instances and Web service profiles are presented in Table
4.14. Following association discovery principle 1, a structure rule with par-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 118
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

allel composition pattern will be generated between all Web services asso-
ciated with cap1.1 and all Web services associated with cap1.2, and the gen-
erated structure rules are:

rs.1 = <a1, a2, ⦷>, t1~a1, t2~a1, t3~a2
Table 4.13 Association Discovery Principle 1 Example

Association Discovery Principle 3.
If one nonfunctional requirement (NR) in of business-centric requirements
(BCR) describes a property constraint on one capability, then a local con-
straint rule will be generated on all the Web services that are associated
with these capabilities: the quantifier in NR is be used to generate con-
straint rule’s expression while the QoS attribute which successfully match-
es against the noun concept in NR is the attribute to be constrained.

The detail matching relations between non-functional requirement,
capability model and Web service model is presented in Table 4.15.

For example, Table 4.16 presents a non-functional requirement nr1,
a capability instance cap1.1, and three Web services t1, t2 and t3 that are
associated with cap1.1.

As illustrate in Table 4.16, the capability name of cap1.1 “<extin-
guish, fire>” sucessfully matches the non-functional requirement “nr1: It is
necessary that the response time of extinguish fire is less than 30m.” while
the noun concept “response time” in non-functional requirement nr1
successful matches against the QoS attribute “response time” of Web
services that are associated with the capability instance cap1.1, i.e., t1, t2,
and t3. A local constraint rule is generated following association discovery
principle 3 to constrain all Web services that are associated with capability

CAP ID
Capability Objective
Layer

Capability Profile Layer Inter-capability
Composition Layer capability name attributes

cap1.1 {<manage, crisis>} <extinguish, fire>
{(AvailableFiremen,
30)}

Associating with

WS ID Input Operation Name Output QoS

t1
(t1►cap1.1)

String: FirePlace CallCommandCenter
Boolean: Confirma-
tion

response_time =
20m

t2
(t2►cap1.1)

String: FireLocation SendFireBrigade
Integer: Fire-
menInTask

response_time =
10m

t3
(t3►cap1.1)

String: FirePlace
Integer: Required-
Firemen

RequireBrigade
Boolean: Confirma-
tion

response_time =
15m

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 119
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

instance cap1.1, which relate to the abstract service a1. The expression in the
constraint rule is genereated accroding to the quantifier of nr1 “less than
30m”, while the QoS attribute to be constrained is “response time”, thus the
generated constraint rule is:

rlc.1 = <a1.response time, <, 30m>, t1~a1, t2~a1, t3~a1

Table 4.14 Association Discovery Principle 2 Example

Table 4.15 Matching Relation of Association Discovery Principle 3

Business-Centric Requirement Model Capability Model
Field Concept

Matching
against

Concept Field
BCR.NR fact type action verb CAP.PL.cname
BCR.NR noun concept noun CAP.PL.cname
BCR.NR noun concept QoS attribute SP.QoS

CAP ID
Capability Objective
Layer

Capability Profile Layer Inter-capability
Composition Layer capability name attributes

cap1.1 {<manage, crisis>} <extinguish, fire>
{(AvailableFiremen,
30)}

{cap1.1, cap1.2, Co-
operation, dynam-
ic}

cap1.2 {<manage, crisis>} <extinguish, fire>
{(AvailableFiremen,
20)}

{cap1.1, cap1.2, Co-
operation, dynam-
ic}

Associating with

WS ID Input Operation Name Output QoS

t1
(t1►cap1.1)

String: FirePlace CallCommandCenter
Boolean: Confirma-
tion

response_time =
20m

t2
(t2►cap1.1)

String: FireLocation SendFireBrigade
Integer: Fire-
menInTask

response_time =
10m

t3
(t3►cap1.2)

String: FirePlace
Integer: Required-
Firemen

RequireBrigade
Boolean: Confirma-
tion

response_time =
15m

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 120
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Table 4.16 Association Discovery Principle 3 Example

Association Discovery Principle 4.
If one nonfunctional requirement (NR) in of business-centric requirements
(BCR) describes a property constraint on the expected business process,
then a global constraint rule will be generated to constrain the composite
services to be constructed: the quantifier in NR is be used to generate con-
straint rule’s expression while the QoS attribute which successfully match-
es against the noun concept in NR is the attribute to be constrained.

The detail matching relations between non-functional requirement,
capability model and Web service model is presented in Table 4.17.
Table 4.17 Matching Relation of Association Discovery Principle 4

Business-Centric Requirement Model Capability Model
Field Concept Matching

 against
Concept Field

BCR.NR noun concept QoS attribute SP.QoS
For example, Table 4.18 presents a non-functional requirement nr1,

and two Web services t1, and t2.
As illustrated in Table 4.18, the noun concept “total price” in non-

functional requirement nr1 “nr1: It is necessary that the total price is less
than 2000€.” successful matches against the QoS attribute “price”, a global
constraint rule is generated following association discovery principle 4 to
constrain all composite services. The expression in the constraint rule is
genereated accroding to the quantifier of nr1 “less than 2000€”, while the

BCR.NR nr1: It is necessary that the response time of extinguish fire is less than 30m.

Successful matching

CAP ID
Capability
Objective Layer

Capability Profile Layer Inter-capability
Composition Layer capability name attributes

cap1.1
{<manage,
 crisis>}

<extinguish, fire>
{(AvailableFiremen,
30)}

{cap1.1, cap1.2, Co-
operation, dynamic}

Associating with

WS ID Input Operation Name Output QoS

t1
(t1►cap1.1)

String: FirePlace CallCommandCenter
Boolean:
Confirmation

response_time =
20m

t2
(t2►cap1.1)

String: FireLoca-
tion

SendFireBrigade
Integer: Fire-
menInTask

response_time =
10m

t3
(t3►cap1.1)

String: FirePlace
Integer: Required-
Firemen

RequireBrigade
Boolean:
Confirmation

response_time =
15m

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 121
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

QoS attribute to be constrained is “price”, thus the generated constraint rule
is:

rgc.1 = <c.price, <, 2000€>
Table 4.18 Association Discovery Principle 4 Example

Association Discovery Principle 5.
If a capability composition based on Promotion or Competition relation is
defined in the inter-capability composition layer of a capability instance, a
dependency rule will be generated between all Web services that are asso-
ciated with the two capabilities within the capability composition:

1) A dependency rule with optimal composed dependency relation
is generated if the capability composition is defined by use of Promotion
relation;

2) A dependency rule with excluded dependency relation is gener-
ated if the capability composition is defined by use of Competition relation.

For example, two capability instances cap1.1 and cap1.2 have the
same inter-capability composition layer. The Web services t1 is associated
with cap1.1 while the Web service t2 is associated with cap1.2. The capability
instances i.e., cap1.1 and cap1.2, and Web service profiles i.e., t1 and t2 are
presented in Table 4.19. Following association discovery principle 5, a de-
pendency rule with excluded dependency relation will be generated be-
tween all Web services associated with cap1.1 and all Web services associ-
ated with cap1.2, and thus the generated dependency rule is:

rd.1 = <t1, t2, ⨂>
Following the five association discovery principles introduced

above, association discovery process firstly discover all Web services that
are associated with capability instances from capability matching process;
and then if a capability composition is defined in the inter-capability com-
position layer of capability instances, a structure/dependency rule will be
generated between the Web services that are associated with the two capa-
bilities within the capability composition, while if NR describes a con-
straint on certain/all capabilities, then a constraint rule will be generated to

BCR.NR nr1: It is necessary that the total price is less than 2000€.

Successful matching

WS ID Input Operation Name Output QoS

t1 String: FirePlace CallCommandCenter Boolean: Confirmation price = 500€

t2
String: VictimLo-
cation
String: Destination

SendAmbulance Float: EstimatedTime price = 100€

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 122
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

constrain all composite services. The detail association discovery process is
formalized in Figure 4.5 and Figure 4.6.
Table 4.19 Association Discovery Principle 5 Example

CAP ID
Capability Objective
Layer

Capability Profile Layer Inter-capability
Composition Lay-
er capability name attributes

cap1.1 {<manage, crisis>} <extinguish, fire>
{(AvailableFiremen,
30)}

{cap1.1, cap1.2,
Competition, stat-
ic}

cap1.2 {<manage, crisis>} <extinguish, fire>
{(AvailableFiremen,
20)}

{cap1.1, cap1.2,
Competition, stat-
ic}

Associating with

WS ID Input Operation Name Output QoS

t1
(t1►cap1.1)

String: FirePlace CallCommandCenter
Boolean: Confirma-
tion

response_time =
20m

t2
(t2►cap1.2)

String: FireLocation SendFireBrigade
Integer: Fire-
menInTask

response_time =
10m

Association Discovery Process
Input: BCR, CFR, S;
Step 1. S` = ∅; R` = ∅;
Step 2. (Principle 1)
 ∀capi∈CAP`, ∃sp∈S,
 (sp►capi) => S` = S`∪{sp};
 ∀si∈S`,
 generate si~aj => S` = S`∪{aj};
Step 3. (Principle 2)
 ∀capi∈CAP`, ∀capj∈CAP`,
 ∃cce∈(capi.CL∩capj.CL), ∃sp∈S`, ∃sq∈S`,
 (sp►capi) ^ (sq►capj) ^ (cce.rel = Support/Cooperation/Condition)
 => generate rs.m = <sp, sq, cp>:
 a) cce.rel = Support => cp = ⧁;
 b) cce.rel = Cooperation => cp= ⦷;
 c) cce.rel = Condition => cp = ⦸;
 R` = R`∪{rs.m};

Figure 4.5 The Association Discovery Process (Part 1)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 123
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Step 4. (Principle 3)
 ∀capi∈CAP`, ∀capj∈CAP`,
 ∃cce∈(capi.CL∩capj.CL), ∃sp∈S`, ∃sq∈S`,
 (sp►capi) ^ (sq►capj) ^ (cce.rel = Promotion/Competition)
 => generate rd.n = <sp, sq, dp>:
 a) cce.rel = Competition => dp = ⨂;
 b) cce.rel = Promotion => dp= ⊞;
 R` = R`∪{rd.n};
Step 5. (Principle 4)
 ∀capi∈CAP`, ∃sp∈S`, ∃qx∈sj.QoS, ∃nro∈NR, ∃quantifier∈nro,
 (qx≞nro.NounConcept) ^ (capi.cname.noun≞nro.NounConcept) ^
 (capi.cname.action_verb≞nro.FactType) ^ (sp►capi)
 => generate rlc.m = <sp.qx, nro.quantier>;
 R` = R`∪{rlc.m};
Step 6. (Principle 5)
 ∀capi∈CAP`, ∃sp∈S`, ∃qx∈sj.QoS, ∃nro∈NR, ∃quantifier∈nro,
 (qx≞nro.NounConcept)
 => generate rlc.m = <c.qx, nro.quantier>;
 R` = R`∪{rlc.m};
Output: WSR = S` ∪ R`;

4.5 Conclusion
Connecting different models is a crucial step in developing resilient SOA to
affect each model and dynamically update composite Web services (e.g.,
business processes) to changes. To this end, the transformation between re-
quirement models allows flexibility and adaptability of the resilient SOA
applications and business processes. Most requirement model transfor-
mation approaches have been developed to transform requirements defined
from the same perspective with different languages. However, they do not
provide efficient transformations when requirement models are defined
from different perspectives (e.g., businesses, Web service capability, Web
service operation, etc.).

In this chapter, we focused on our multi-level requirement models
and particularly discuss the transformation of the business-centered re-
quirement model into the Ad-hoc Web service composition model through
the Web service capability model. We introduce the transformation frame-
work to transform requirements defined from the business perspectives,
Web service capability and Web service operations. The requirement trans-

Figure 4.6 The Association Discovery Process (Part 2)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 124
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

formation framework consists of two processes, i.e., capability matching
and association discovery processes, which are mainly driven by a list of
predefined matching and discovery principles to match different concepts
(e.g., action verb, fact type, etc.) from three-level composition requirement
models so as to make links between business objectives and Web services.

In the two-phase transformation process, the capability matching
process discovers capability instances that satisfy business objectives by
matching concepts from business-centric requirement defined by SBVR and
Web service capability instances, and also transforms different kinds of
constraints into the form of capability compositions, which are dynamically
generated following predefined principles.

Once capability instances are discovered and capability composi-
tions are generated, association discovery discovers all Web services asso-
ciated with the resulting capability instances and generates composition
rules based on business-centric requirement and capability composition fol-
lowing predefined principles. The discovered Web services and generated
composition rules form the rule-driven Web service requirements that are
used as the input of Web service composition approaches, and guide the
composition processes.

Based on our requirement transformation process, business-centric
requirements describing business objectives with SBVR terms is trans-
formed to capability-focused requirements describing Web services’ real
abilities based on Web service capability model, and further transformed to
rule-driven Web service requirements that can be directly used by Web ser-
vice composition approaches. The main contribution of this chapter is that
we achieve a transformation between requirements that are defined from
different perspectives in different languages, as business-centric require-
ments are defined from the perspective of request based on SBVR while the
rule-driven Web service requirements are defined from the perspective of
offer based on composition rules.

In the next chapter, we present the ad-hoc Web service composi-
tion approach in dynamic environments, called Service Farming, which
constructs optimal composite services while taking into account all compo-
sition rules from rule-driven Web service requirements.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 125
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Chapter 5

Service Farming: An Ad-hoc Web Service
Composition Approach

Introduction ... 126

The Service Model ... 129

Service Farming Composition Algorithm .. 132

The Dynamic Reconfiguration of Composite Web Services 145

Conclusion ... 151

Abstract: As an architectural style, the service-oriented architecture sup-
ports information systems by quickly developing new applications or new
business processes, integrating existing self-contained and loosely-coupled
components (i.e., services). The prominent characteristics of the SOA,
such as agility, flexibility and reusability, are mainly ensured through the
composition process that integrates existing services into new composite
services or business processes. The composition process, as the core of the
SOA foundation, reveals challenges as to how automate service composi-
tions and update it to changes accordingly. As reported in the state of the
art chapter, most of composition approaches that attempt to automate the
dynamic composition processes require predefined abstract composition
plans. This may cause that the aggregated QoS values of composites service
are limited by the composition plan, since we will get different QoS aggre-
gation results by applying the same set of atomic services into different
composition plans. Our resilient SOA seeks to extend SOA capabilities, and
particularly the composition process, to build adaptable applications or
adaptable business processes without composition plans dealing with vari-
ous changes in dynamic environments. The resilient SOA assumes that the
composition process and internal/external changes in the dynamic environ-
ment can be specified with models that affect and are affected by each oth-
er. To this end, we build a rule-driven composition model based on which
we develop an ad-hoc composition approach. In our review, these contribu-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 126
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

tions establish the foundation towards a resilient SOA to build dynamic ap-
plications adaptable in dynamic environments.

In this chapter, we introduce the ad-hoc Web service composition
approach, called Service Farming, which aims at constructing an optimal
composite service in a reasonable time, and without predefined composition
plans. Based on a set of rules, the composite services attempt to particular-
ly satisfy business requirements while maximizing user’s satisfaction (e.g.,
business requirement model) and to generally satisfy multiple constraints
(e.g., models describing variable that may change in the environment). The
composition is ad-hoc in the sense that it constructs composite services by
simultaneously selecting atomic services and inferring the composition pat-
terns between the selected services based on the set of rules in order to pro-
vide the best ways to satisfy constraints (e.g., QoS changes) in both static
and dynamic composition environments.

5.1 Introduction

The Web service composition is achieved by reusing existing Web

services and logically recombining them into composite services in order to
create innovative Web services, often for a value that is higher than the
sum of the value of the separate Web services.

In the process of Web service composition, the functional re-
quirements should not only be satisfied, but the non-functional require-
ments imposed by users that must be taken into account as well. Functional
requirements describe what Web services do while non-functional proper-
ties include other requirements, which are not directly related to the func-
tionality provided by Web services. Based on non-functional requirements,
users can differentiate Web services with similar functionalities. Functional
requirements can also be regarded as which Web services should be execut-
ed; while non-functional requirement describe how they are executed: Non-
functional requirements play an important role in discovering, selecting and
composing Web services. However, constructing composite services while
meeting both functional and non-functional requirements imposed by users
is proved to be a NP-hard problem [MBKG09].

In dynamic Web service composition environments, constraints
on/among different Web services, such as control flow constraints, property
constraints, dependency constraints, and available Web services just to
mention a few, change overtime. When contextual information changes oc-
cur at the design time or runtime, the Web service composition approach
should be able to transparently adapt composite Web services to the envi-
ronment changes with minimum user interventions. This context also raises

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 127
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

a challenge as how to compose Web services while satisfying users’ re-
quirements as well as adapting to changes in the dynamic environment.

Many Web service composition approaches proceed with two
phase’s process to construct composite services: composition planning and
service selecting. Firstly, the composition planning phase aims at generat-
ing a composition plan with a number of actions to be achieved. Actions
are usually represented as abstract Web services. The composition plan in-
dicates the appropriate execution order of different abstract Web services
by analyzing their functional properties and matching their inputs and out-
puts’ messages [CAST03]. Secondly, the selection phase [ZBDK03] aims at
selecting atomic services for each abstract service and integrating them in
the composition plan to construct specific composite service. The second
process is mainly driven by requirements that imply local constraints on
Quality of Service (QoS) properties of atomic Web services and/or con-
straints concerning the global QoS properties of the resulting composite
service. The global QoS values are calculated through aggregation of QoS
values of constituent atomic Web services. This involves paying attention
on QoS in composition planning phase as it will impact the global composi-
tion result. This requires an “on-the-fly” composition process to be able to
contextualize the composition plans.

To overcome this challenge, we propose an ad-hoc service compo-
sition approach called “Service Farming”: given a set of abstract services to
be achieved and a list of already discovered atomic services for each ab-
stract service, the service farming objective is to step by step construct
composite services by identifying and refining a set of composition rules.
The Service Farming approach is an ad-hoc composition in the sense that it
simultaneously generates a composition plan and selects services to inte-
grate them into the composition plan. The Service Farming infers the opti-
mal composite service in a reasonable time. The optimal service refers to
the composite service found by Service Farming that satisfies both func-
tional and non-functional requirements, and possesses the largest value of
service utility. Service utility denotes the total satisfaction received by us-
ers from consuming a service. In our approach, the utility is estimated
based on QoS values and calculated by a proposed preference-based meth-
od. Within the context of the resilient service oriented architecture, Figure
5.1 presents the Service Farming approach as an ad-hoc Web service com-
position process to reflect changes or requirements imposed by models de-
scribing endogenous, exogenous changes as well as business requirements.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 128
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Figure 5.1 The Conceptual rSOC with Service Farming

As depicted in Figure 5.1 the Service Farming approach consists
of two main parts: the design time composition and the runtime adaptation.
When endogenous and exogenous changes occurs, if the changes do not
update the users’ requirements, the runtime adaption is activated to recon-
struct new composite services adapted to contextual changes; if the changes
influence users to update the composition requirements, business-centric
requirements or rule-driven Web service composition requirements will be
accordingly transformed and updated and thus used to guide the new Web
service composition process to reflect responses to changes and updated re-
quirements. In our contribution, we focus on how to compose Web services
together and how to adapt to the endogenous and exogenous changes to sat-
isfy users’ requirements; we do not model endogenous and exogenous
changes in the dynamic environment but we assume that different changes
can be detected by system monitors and thus affect our Web service com-
position processes.

In the following section, we propose the service model to specify
Web services and their functional and non-functional properties. We also
introduce the QoS aggregation model and necessary formal notations before
introducing the service farming composition approach.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 129
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

5.2 The Service Model

The service arming approach (SF) is defined as a tuple:

SF = < W, R, QAM, CA >,
where W is the set of Web services for Service Farming, R is

the set of composition rules, QAM is a QoS aggregation model, and CA
is the composition algorithm that applies models and rules into a service
set to construct composite services.

The definitions of the Web service set W and the composition
rule set R, which are introduced in Chapter 3 summarized in Table 5.1.
Table 5.1 Summary of the Set of Web Services and the Set of Composition Rules

Notation Meaning Notation Meaning
a An Abstract Service R Set of Composition Rules
t An Atomic Service rs A Structure Rule
c A Composite Service Rs Set of Structure Rules
s A Generic Service rc A Constraint Rule
Wa Set of Abstract Services Rc Set of Constraint Rules
Wt Set of Atomic Services rd A Dependency Rule
Wc Set of Composite Services Rd Set of Dependency Rules
W Service Set for Service Farming rm A Matching Rule
 Rm Set of Matching Rules

We introduce QoS aggregation model and some other notations in this
section to facilitate our presentation, and then illustrate detail service farming
composition algorithm in the next section.

5.2.1 QoS Aggregation Model

The QoS attributes refer to a broad concept that encompasses a number
of non-functional properties such as price, availability, reliability, and reputation
[OSET02]. QoS properties are applied both to stand-alone Web services and to
composite Web services as well. With the proliferation of Web services in busi-
ness processes and enterprise application integration, QoS properties in Web
services are becoming increasingly important from service providers and service
consuming perspectives. In order to calculate the QoS of composite services, a
QoS aggregation model is needed to take into account the fact that QoS involves
multiple dimensions. That is why the QoS of composite services is determined
by considering the QoS of its underlying component services.

 The QoS of a Web service is represented as a vector of attributes,
QoS = <Q1, Q2, …, Qn>,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 130
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

where n is the number of QoS attributes, Qj is the QoS attribute j. Each QoS at-
tribute is defined as a triple,

Qj = <naj, msj, qj >,
where naj is the name of this QoS attribute, msj is the measurement scale used to
measure this QoS attribute, qj is the value of this QoS attribute.

The QoS values of a service si is denoted as
si.Q = < qi.1, qi.2, …, qi.n >,

where qi.j is the value of the QoS attribute j of service si, si∈W.
In our work, we regard QoS as one part of Web service description,

and the QoS profile of a Web service can be directly obtained from Web service
description languages.

In order to calculate the QoS values of composite services, we develop
the QoS aggregation model to derive QoS values of composite services based
the QoS values of constituent atomic services. In Service Farming, we consider
both QoS attributes and pay particular attention to their measurement scales in
order to calculate QoS values of composite services by applying a pessimistic
approach presented in [MBKG09]. In the pessimistic approach, the worst QoS
values of all the possible executions of the composition are considered to deter-
mine the QoS values of a composite service. For example, to determine the re-
sponse time of a composite service composed by two atomic services following
the selection composition pattern, the longest response time is used to determine
the composite service QoS value.

Scales of measurement refer to ways in which variables are de-
fined and categorized [JACO99]. Different QoS attributes can be measured
with respect to one of the following scales:

1. Nominal Scale. The nominal scale just assigns labels to QoS attrib-
utes and does not express relationships between values. For example, the value
of QoS attribute “payment method” can be either “visa card” or “master card”,
both of them are payment methods. The relation between “visa card” and “mas-
ter card” does not exist.

2. Ordinal Scale. QoS attributes of ordinal scale have a logical or or-
dered relationship to each other. This scale permits the measurement of degrees
of difference. For example, the value of QoS attribute “security level” can be
low, middle, or high. By such scale, the high security level is better than low se-
curity level. However, the specific amount of difference between high security
level and low security level cannot be identified.

3. Interval Scale. For QoS attributes of interval scale, the distance be-
tween adjacent points are equal. However, the meaningful zero point does not
exist in this scale. For example, the value of QoS attribute “rating point” of a has
the scale values between “1”and “10”. The difference between vale “1” and val-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 131
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

ue “2” is the same as the difference between value “9” and value “10”. Never-
theless, the value “0” does not exist.

4. Ratio Scale. QoS attributes of interval scale have a meaningful zero
point. As a result, the distance between adjacent points is equal. For example,
the value of QoS attribute “response time” of can be 0 ms, 10 ms, 20 ms.

In our aggregation model, we take into account of measure scales
when aggregating QoS attributes by the Service Farming algorithm. In fact, the
measurement scale of the same QoS attribute may be different depending on the
service providers’ descriptions of their Web service profiles. For example, the
QoS attribute “security” can be roughly rated by low, middle or high, as an ordi-
nal scale; it can also be defined from the perspective of authentication mecha-
nism e.g., password, fingerprint, or voice, etc. which is a nominal scale. The
same QoS attributes maybe measured in different scales and thus should be dif-
ferently calculated during the aggregation process.

Since different QoS attributes requires different QoS aggregation
methods we illustrate in Table 5.2 a representative QoS aggregation methods
with respect to QoS attribute characteristics, measure scales and composition
patterns. The left column represents the aggregate value of QoS attributes
whereas the right side introduces the aggregation formulas for each composition
pattern, here k represents the iterative times.
Table 5.2 QoS Aggregation Examples

QoS Attribute Name Measure Scales
Composition Pattern Calculation Methods
Sequence Parallel Condition Iteration

Payment(PA) Nominal � pai

n

i=1

 � pai

n

i=1

 � pai

n

i=1

 � pai

n

i=1

Security (SE) Ordinal min(sei) min(sei) min(sei) min(sei)
Rating Point (RP) Interval min(rpi) min(rpi) min(rpi) min(rpi)

Response Time (RT) Ratio � rti

n

i=1

 max(rti) max(rti) rt*k

Reliability (RE) Ratio � rei

n

i=1

 � rei

n

i=1

 min(rei) rek

Price (P) Ratio � pi

n

i=1

 � pi

n

i=1

 max(pi) p*k

5.2.2 Notations for Web Service Composition based on Rules

In order to formalize service farming composition algorithm, we
introduce the following notations:

The part of operator (⧐). The notation tj⧐ck means that the
atomic service tj is one of the constituent atomic services of the composite

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 132
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

service ck. We regard an atomic service as the constituent service of itself,
denoted by tj ⧐tj, aj ∈ Wa, tj ∈ Wt, ck ∈ Wc.

The exclusion operator (⋈). The notation ci⋈cj means that any
of the constituent atomic services of ci and any of the constituent atomic
services of cj do not have the same functional operation.

ci⋈cj: ∀tp⧐ci, ∀tq⧐cj, ∄ak╞((sp~ak) ∧ (sq~ak)), sp∈Ws, sq∈Ws,
ak∈Wa, ci∈Wc, cj∈Wc.

The completion operator (≋). The notatio ci≋Wa means that each
abstract service from the abstract service set have a correspondent discov-
ered atomic service which is composed in composite service ci.

ci ≋ Wa: ∀ai ∈ Wa, ∃tj⧐ci ∧ tj╞(tj~ai).
The compliance operator (≞). cj≞ri means that the composite service

cj is constructed following the composition rule ri, where cj∈Wc, ri∈R;
The branch operator (in). The notation in(sj, ri) means that the ser-

vice sj is a constituent service in the composition rule ri, sj∈W, ri∈R;

5.3 Service Farming Composition Algorithm

The central idea of the Service Farming composition algorithm is

to simultaneously select atomic services and infer their composition pat-
terns following composition rules to ensure that services are composed in
the best way with regard to QoS aggregation.

Driven by requirements or constraints issued from various models,
at the design time, the Service Farming composition algorithm (CA) relies
on four stages (i.e., Service Planting, Service Growing, Service Harvesting,
and Service Evaluating), which are executed iteratively through cycles to
construct composite services.; at the runtime, when endogenous/exogenous
changes occur and requires reconfiguration of composition, two stages, i.e.,
service substitution and composition replanning are started to response to
contextual changes. The flowchart of Service Farming composition algo-
rithm is shown in Figure 5.2.

Service Farming algorithm starts with the input of the Web service
requirements (WSR) that is transformed from user’s business-centric re-
quirement. At the end of each cycle, new composition rules are generated
and thus used to guide the following composition cycles. The Service
Farming algorithm ends until an optimal composite service is found.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 133
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Figure 5.2 The Service Farming Flowchart

At the design time, the Service Planting stage focuses on the spec-
ification of composition rules according to WSR; the Service Growing
stage constructs entire composite services by simultaneously selecting
atomic services and their composition patterns, and the two selected Web
services are composed following structure rules (if a structure rule exists
indicating the composition pattern between the two selected Web services)
or input and output relations; in Service the Harvesting stage, additional
structure rules are generated by discovering knowledge represented by spe-
cific services and their composition patterns with higher QoS, so as to
guide service composition process in the following cycles; Composite ser-
vices are evaluated by comparing with results from previous cycles in Ser-
vice Evaluating Stage. If an optimal composite service is found according
to the stop condition, the optimal composite service will be deployed and
executed; otherwise, the service composition process needs to be restarted
over under the guidance of new enriched composition rules.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 134
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Input: WSR = S`∪R`
Step 1. Initialize set of composition rule
1.1. R = R`∪R;
Step 2. Initialize Services Set
2.1. ∀tx∈S`,
 tx⊫(Rc) => Wt = Wt∪{S`};
2.2. ∀ay∈Wa, Wa = Wa∪{ay};
2.3. Wc = ∅;

At the run time, when the execution of the optimal composite ser-
vice is suspended due to contextual changes, e.g., one or more Web ser-
vices are unavailable, the Service Farming algorithm will firstly try to sub-
stitute the unavailable Web service(s) by using Web services with similar
functionalities and utility value; alternatively when contextual changes im-
ply the modification of compositions, our algorithm conserves all infor-
mation of the executed part of composite service, generates composition
rules based on the executed part and starts over from the design time to re-
construct the unexecuted part of composite services.

In the following, we elaborate the service farming algorithm and
illustrate its stages with additional details.

5.3.1 The Service Planting Stage

At the beginning of each cycle, the main input for the service
farming algorithm is the rule-driven Web service requirements consisting
of the derived set of Web services S` and the set of composition rules R`
from requirement transformation processes. Two steps are carried out in the
Service Planting stage: It firstly focuses on initializing the set of composi-
tion rules by combing the composition rules from rule-driven Web service
requirement and the composition rules generated in previous cycles. It then
eliminates all atomic services that do not satisfy local constraint rules. The
process of service planting is formally presented in Figure 5.3.

The set of composition rules R is initialized by combining the set

of composition rules from rule-driven Web service requirements and previ-
ous cycles together; the set of abstract services Wa is from rule-driven Web
service requirement; all atomic services issued from the rule-driven Web
service requirements that respect constraint rules are added to the set of
atomic services Wa; the set of composite services Wc is empty at the begin-

Figure 5.3 The Service Planting Stage

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 135
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Step1. Construct candidate composite services
1.1. ∀ti∈Wt, Wc = Wc∪{ti};
1.2. ∀rsa.p∈R, construct ci≞rsa.p, Wc = Wc∪{ci};
Step2. Construct entire composite services
∀si∈Wc,
2.1. select sj∈Wc, sj⊫((si⋈sj) ^ M(si, sj));
2.2. ∃rc.q∈R, rc.q⊫(in(sj, rc.q) ^ in(si, rc.q)) => construct ci≞rc.i: ci = <rc.q.sL,
rc.q.sR, rc.q.cp>;

 else => randomly construct ci = <ci, sj, cp>, cp∈CP`;
2.3. Wc = Wc∪{ ci };
2.4. ci≋Wa => go to step 3.1;
 ¬(ci≋Wa) =>go to step 2.1;
Step 3. Composite service elimination
3.1. ∀ci∈Wc, ¬(ci≋Wa)=> Wc = Wc - {ci};

ning. When user’s business-centric requirement changes that leads to the
change of rule-driven Web service requirements, the services used to con-
struct composite services will correspondently be updated; if user’s re-
quirements are updated during the composition process, the set of composi-
tion rules R used to guide the service farming process will also be updated
to as to ensure that both functional and non-functional requirements are sat-
isfied during the composition process.

5.3.2 The Service Growing Stage

The Service Growing stage focuses on constructing composite
services satisfying both functional and non-functional requirements by in-
crementally applying composition rules to the set of atomic Web services
Wt. Web services are randomly selected and composed following composi-
tion rules; in case of no correspondent rules indicating the selected Web
services, the selected Web services are randomly composed in parallel or
sequential pattern. The process of constructing composite services is for-
mally depicted in Figure 5.4.

The general idea behind the Service Growing stage is to construct

composite services based on composition rules as following three steps:
Step 1. Construct candidate composite services. This step aims

at constructing preliminary candidate composite services from atomic ser-
vices. At the beginning of this step, all atomic service are regarded as can-
didate services; for each abstract structure rule in the composition rule set,
we construct a composite service following the structure rule.

Figure 5.4 The Service Growing Stage

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 136
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

rs.p is a concrete composition rule, written rrc.p.
Step 1. construct ci≞rc.q: ci = < rc.q.sL, rc.q.sR, rc.q.cp>.
rs.p is an abstract composition rule, written rsa.p.
Step 1. ∃am∈Wa, ∃an∈Wa, (am⊫(in(am, rsa.p)) ^ (an⊫(in(an, rsa.p)) => go to
step 2;
 else => recursively construct ck≞rsa.p.sL, cl≞rsa.p.sR, and construct
ci = <ck, cl, rsa.p.cp>;
Step 2. randomly select tx∈Wt, tx⊫(tx~am);
Step 3. ∃rsc.q∈R, rsc.q⊫(in(tx, rsc.q)) ^ (rsc.q.cp=rsa.p.cp) ^ (∃ty∈Wt, ty⊫((ty~an)
^ in(ty, rsc.q) ^ M(tx, ty)) => construct ci≞rsc.q;
 else => ∃rd.i∈R, ∀ty∈Wt, rd.i⊫(in(tx, rd.i) ^ in(ty, rd.i) ^ (rd.i.dp = ⊞)^
M(tx, ty)) => select ty∈Wt, and construct ci= < tx, ty, rsa.p.cp>;
 else => randomly select ty∈Wt, ty⊫((ty~an) ^ M(tx, ty)),
and construct ci= < tx, ty, rsa.p.cp>;

To be more precise, we then introduce the algorithm how to con-
struct a composite service cj following a structure rule rs.p. For a concrete
composition rule rsc.p, we construct composite services by using the left and
right sub services of rsc.p and their composition pattern indicated by rsc.p. For
an abstract composition rule rsa.q, we recursively construct composite ser-
vices corresponding to its left and right sub trees. The detail algorithm is
introduced in Figure 5.5.

This step is illustrated in Figure 5.6 through an example. As illus-

trated in Figure 5.6, an abstract structure rule ras.1 exists as “a3⦸a5”, and an
atomic service t3.1 is randomly selected as the Web service to achieve the
operation represented by the abstract service a3. If a concrete structure rule
exists, e.g., rcs.1, which indicates the composition pattern between the atom-
ic service t3.1 and another atomic service t5.? to achieve the operation repre-
sented by the abstract service a5, a composite service will be constructed
following the concrete structure rule rcs.1; if not, the dependency rule set
will be checked to see if a dependency rule exists, e.g., rd.1, which indicates
the optimal composed relation between the atomic service t3.1 and another
atomic service t5.? to achieve the operation represented by the abstract ser-
vice a5. If the dependency rule exists, we construct a composite service by
using of the two constituent services in the decency rule following the
composition pattern defined in the abstract structure rule ras.1; If a depend-
ency rule does not exist to indicate the optimal composed relation between
the atomic service t3.1 and another atomic service t5.?, then an atomic ser-
vice t5.? is randomly selected from all the atomic services achieving the op-

Figure 5.5 The Algorithm of Constructing ci≞rs.p

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 137
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

eration represented by the abstract service a5, and the atomic service t3.1 and
the randomly selected atomic service are composed together following the
composition pattern defined in the abstract structure rule ras.1. At last the
constructed composite service will be taken as a candidate service.

Figure 5.6 Service Growing: Constructing Candidate Composite Services

Step 2. Construct entire composite services. For each candidate
service constructed from step 1, we randomly select another candidate ser-
vice. If a concrete structure exists which indicates the composition pattern
between the two selected services, then the two selected services are com-
posed together following the concrete structure rule; otherwise, the two se-
lected services are composed together following their input and output rela-
tions. This step repeats until all candidate services contain all required
operations defined by abstract Web service set. This step is illustrated in
Figure 5.7 through an example.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 138
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Figure 5.7 Service Growing: Constructing Entire Composite Services

Step 3. Composite service elimination. When step 2 ends, step 3
eliminates all composite services that are generated in the middle of con-
structing process and do not satisfy the functional requirement defined by
abstract Web service set.

5.3.3 The Service Harvesting Stage

Based on the set of composite services (Wc) built by the Service

Growing stage, the Service Harvesting stage consists of three big steps as
follows; and for each big step, different small steps are proceeded as shown
in Figure 5.8.

Step 1. Preference-based Utility Calculation. Service Harvesting
stage calculates each service’s utility by use of a proposed preference-
based utility calculation method;

Step 2. Composite Services Clustering. Service Harvesting stage
applies k-means cluster algorithm to divide Wc into k clusters based on
composite services’ QoS similarity;

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 139
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Step 1.1. QoS Aggregation
Step 1.2. Composite Service Eliminate
Step 1.3. QoS Normalization
Step 1.4. Utility Calculation
Step 2.1. Cluster set of composite service
Step 2.2. Calculate average utility of each cluster
Step 2.3. Find the cluster with maximum average utility Wmax
Step 3.1. Decompose composite services from Wmax
Step 3.2. Count appearance time
Step 3.3. Generate structure rules

Step 3. Structure Rule Enrichment. Service Harvesting stage
decomposes all composite services from the cluster and enriches structure
rule set Rs according to their appearance time.

The central idea behind the Service Harvesting stage is that, after

clustering, composite services in the same cluster have more QoS similarity
than services in different clusters. Regarding the cluster with maximum av-
erage utility, we discover the reason why the composite services from the
cluster with maximum average utility possess higher utility than the com-
posite services from other clusters. We decompose these composites ser-
vices into small pieces of composite services and count their appearance
times. The composite services with higher appearance time are considered
to represent the common characteristics (higher utility) of the cluster with
the maximum average utility. In order to promote the appearance of these
constituent atomic/composite services in the composition process, we en-
rich composition rules by use of the composite services with higher appear-
ance time to guide service composition in the following cycles.

5.3.3.1 The Preference-based Utility Calculation
Utility refers to the total satisfaction received by a user from con-

suming a service. Apparently the higher the service’s QoS is, the higher
utility the service has. We proposed a utility calculation method to estimate
service utility before execution based on Web service’s QoS values and us-
er preferences. This method is divided into four steps: QoS aggregation,
Composite Service Elimination, QoS normalization and Utility Calculation.

QoS aggregation is carried out by use of the pessimistic model
presented in section 6.2 to calculate the QoS values of composite services.

Figure 5.8 The Service Harvesting Stage

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 140
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Once obtaining the QoS values of all composite services, compo-
site service elimination deletes all composite services that do not satisfy
global constraint rules.

QoS normalization aims at normalizing services’ QoS values by
transforming them into values between 0 and 1. qi.j represents the value of
QoS attribute j of service si, and q`i.j represents its normalized value,
si∈Wt∪Wc. We use qbest.j and qworst.j to represent the best and worst values
for QoS attribute j among all services. For example, the QoS attribute
“price”, qbest.price, is the lowest price value among all services while
qworst.price is the highest value. QoS normalization is preceded based on
different measurement scale of QoS attributes following formulas 5.1 to 5.3.

For QoS attributes measured by nominal scale,
 qi.j

, = 1 (5.1)
For each QoS attribute measured by ordinal scale, n is the number

of values that this attribute can obtain; since the value of each attribute j on
ordinal scale has its own rank, denoted as rankj (1st, 2nd, 3rd, …) to repre-
sent the order to each other, the value of the attribute j of service i is firstly
transformed from a ordinal value to a number, denoted as q*i.j: q*i.j = n –
rankj +1, and then q*i.j is transformed to a value between 0 and 1 following
formula 5.2.

For example, for the QoS attribute “security” which has three val-
ues as low, middle, and high, we get n = 3, vhigh = 3, vmiddle = 2, vlow = 1,
qbest = 3, qworst = 1.

 𝐪𝐢.𝐣
, = �

|𝟏−𝐪𝐢.𝐣
∗ |

𝐧−𝟏
 𝐢𝐟 𝐪𝐛𝐞𝐬𝐭.𝐣 ≠ 𝐪𝐰𝐨𝐫𝐬𝐭.𝐣

𝟏 𝐞𝐥𝐬𝐞
 (5.2)

For QoS attributes measured by interval or ratio scale,

 𝐪𝐢.𝐣
, = �

|𝐪𝐰𝐨𝐫𝐬𝐭.𝐣−𝐪𝐢.𝐣 |

|𝐪𝐛𝐞𝐬𝐭.𝐣−𝐪𝐰𝐨𝐫𝐬𝐭.𝐣|
 𝐢𝐟 𝐪𝐛𝐞𝐬𝐭.𝐣 ≠ 𝐪𝐰𝐨𝐫𝐬𝐭.𝐣

𝟏 𝐞𝐥𝐬𝐞
 (5.3)

Utility calculation is based on user’s predefined preference on
QoS attributes; all QoS attributes have the same preference if user do not
indicates the QoS preference. A user’s QoS preference is defined as a prior-
ity indication to n QoS attributes of all services: when service utility is cal-
culated, the QoS attributes with higher priority will be added more weight
than other QoS attributes with lower priority.

For QoS attribute qi, the user may indicate the priority level (i.e.,
1st, 2nd, 3rd…), denoted as pl.qi, and a QoS attribute has the least priority if
a user does not indicate its priority; the number of all priority levels are de-
noted as pn. For example, a user regards the price and response time are the
first and second important attributes influencing his satisfaction when con-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 141
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Step 1.1. QoS Aggregation.
∀ci∈Wc, calculate ci.Q.
Step 1.2. Composite Service Elimination.
∀ci∈Wc, ci⊯(Rc) => Wc = Wc – {ci}.
Step 1.3. QoS Normalization.
∀ci∈Wc, normalize ci.Q following formula 5.1, 5.2 and 5.3.
Step 1.4. Utility Calculation.
∀ci∈Wc, calculate ci.u following formula 5.4.

suming a service, the other two attributes of availability and security have
the lowest priority level. In this case, pn = 3, pl.price = 1, pl.response_time
= 2, pl.availability = 3 and pl.security = 3.

After normalization, the normalized QoS of si is denoted as si.Q`
= <q`i.1, q`i.2, …, q`i.n>, q`i.j∈[0, 1], si∈Wt∪Wc. The better the qi.j is, the
more the value of q`i.j is close to 1.

The utility of service si is denoted as si.u, and it is calculated by
use of formula 5.4.

𝐬𝐢.𝐮 =
∑ ��𝐩𝐧−𝐩𝐥.𝐪𝐢.𝐣+𝟏�∗𝐪𝐢.𝐣

` � 𝐧
𝐣=𝟏

∑ �𝐩𝐧−𝐩𝐥.𝐪𝐢.𝐣+𝟏�𝐧
𝐣=𝟏

 (5.4)

The proposed preference-based utility calculation method is for-
malized in Figure 5.9; while an example of utility calculation is illustrated
in Table 5.3.

Table 5.3 Utility Calculation Example

QoS Attributes < Security ResponseTime Reliability Price >
QoS Vector < High 32 97% 50 >

NormalizedQoS < 1 0.7894 0.8924 0.5689 >
Utility 0.8126

5.3.3.2 Clustering Composite Services
After calculating services utilities, we apply k-means algorithm to

cluster the set of composite services Wc and find the cluster with maximum
average utility, denoted as Wmax. Three steps are carried out:

Step 2.1. Cluster Wc by using the k-means algorithm and getting k
clusters;

Step 2.2. Calculate the average utility of each cluster;
Step 2.3. Find Wmax.
Roughly speaking, the K-means provides a simple and efficient

way to classify a set of data points into a fixed number of clusters
[HAKP12]. Data points are characterized by their n-dimensional vector <x1,
x2, …, xn>. The main idea of k-means is to define a centroid c = <xc.1,

Figure 5.9 The Utility Calculation

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 142
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

xc.2, …, xc.n> for every cluster and to associate each data point, dpi = <xi.1,
xi.2, …, xi.n> to the appropriate cluster by computing the shortest n-
dimensional Euclidian distance between the data point and each centroid;
And then the clusters’ centroids are then recomputed and data points are re-
associated to each cluster. The process repeats as introduced as follows:

Step 1. The algorithm arbitrarily selects k points as the initial clus-
ter centers (“means”).

Step 2. Each point in the dataset is assigned to the closed cluster,
based upon the Euclidean distance between each point and each cluster cen-
ter.

Step 3. Each cluster center is recomputed as the average of the
points in that cluster.

Steps 2 and 3 are repeated until all clusters converge. The conver-
gence normally means that either no observations change clusters when
steps 2 and 3 are repeated or when the changes do not make a difference in
the definition of the clusters.

The algorithm clusters the set of data points into k groups, where
k is provided as an input parameter. Figure 5.10 illustrates an example of
clustering process based on k-means algorithm.

Figure 5.10 K-means Clustering Example

In our context, ∀ci∈Wc, si.Q` = <q`i.1, q`i.2, …, q`i.n> is regard-
ed as the vector to apply cluster algorithm, and the distance formula 5.5
is used to measure QoS similarity between two services sm and sn:

 𝐃(𝐜𝐦,𝐜𝐧) = �∑ (𝐪𝐦,𝐣
` − 𝐪𝐧,𝐣

`)𝟐𝐧
𝐣=𝟏 (5.5)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 143
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Step 3.1. Decompose composite services
 ∀ci∈Wmax,
 decompose ci into repeatable set Wtemp:
 recursively construct: c1=ci.sL, c2=ci. sR, c3=(ci. sL). sL,
 c4=(ci. sL).sR,…;
Step 3.2. Count appearance time
 ∀cj∈Wtemp, count cj.at in Wtemp;
Step 3.3. Generate composition rules
3.1.∀cj∈Wtemp, cj.at>T => generate rsc.p= <cj.sL, cj.sR, cj.cp>;
3.2. R = {rsc.p}∪R;

Table 5.4 illustrates an example of the composite service set be-
fore clustering, and the composite service clusters after clustering.
Table 5.4 Clustering Example

CompositeService < Security ResponseTime Reliability Price >
c1 < 1 0.7894 0.8924 0.5689 >
c2 < 0.7894 0.6805 0.6781 0.9857 >
… …
cn < 1 0.4738 0.9784 0.3493 >

⇊ Clustering ⇊
Cluster No. Composite Services
1 { c1, c3, …, ci }
2 { c5, c7, …, cj }
… { c2, c4, …, cm }
k { c6, c8, …, cn }

5.3.3.3 The Structure Rule Enrichment
The structure rule set is continuously enriched in each cycle in or-

der to guide service composition in further cycles. Structure rule enrich-
ment consists of three steps as presented in Figure 5.11.

The notation ci.at is used to represent the appearance time of a

composite service ci; while T is the parameter indicating the appearance
time threshold. When the appearance time of a composite service ci is more
than T in the temporary and repeatable composite service set Wtemp, a com-
position rule will be created based on the composite service ci. An example
of the structure rule enrichment process is illustrated in Table 5.5. In the
given example, the appearance time threshold T is 12, while the appearance
time of three composite services c1, c2 and c3 are more or equal to 12, and

Figure 5.11 The Structure Rule Enrichment

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 144
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

the set of composition rules are enriched by three structure rules created
based on the composite service c1, c2 and c3.
Table 5.5 Structure Rule Enrichment Example

Wtemp AppearanceTime T=12 Results
c1 15

⇉Save to R⇉

R=R∪{c1, c2, c3}

c2 14
c3 12
c4 11
… …
cq 1

5.3.4 The Service Evaluating Stage
Service Evaluating stage evaluates the constructed composite ser-

vices by Service Farming and determines whether an optimal composite
service is found.

The composite service with the highest utility in each cycle is de-
noted as cmax.ln, and its utility is denoted by umax.ln, where ln is the number
of the service farming cycle.

From the first cycle to current cycle, the optimal composite ser-
vice found by the Service Farming algorithm, denoted by coptimal, is defined
as the composite service with the highest utility of all composite services in
all cycles. The utility of the optimal composite service is denoted by uoptimal.

The stop condition (SC) of Service Farming composition algo-
rithm is that within a period of t service farming cycles, uoptimal are not
augmented any more:
 SC: umaxln = umaxln-1 = umaxln-2 = … = umaxln-t = uoptimal (5.6)

This means that an optimal solution for the given composition problem
is found out and the optimal utility cannot be improved anymore by our ap-
proach.

The Service Evaluating stage in cycle ln is formalized in Figure
5.12, and an example of the service evaluating stage is presented in Table 5.6. In
the given example, the utility of the optimal composite service uoptimal is
0.8613 from cycle ln-t to ln, and within the period of t service farming cycles,
uoptimal are not augmented any more. In this case, Service Farming will stop
and execute the optimal composite service coptimal.

Step 1. Find cmax.ln, umax.ln and coptimal.
Step 2. SC is true => output and execute coptimal;
 else =>go to Service Planting stage of cycle ln+1.

Figure 5.12 The Service Evaluating Stage

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 145
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Table 5.6 Service Evaluating Example

Cycle(ln) 1 2 … ln-t-1 ln-t … ln
Uoptimal 0.4854 0.5254 … 0.8429 0.8613 … 0.8613

5.4 The Dynamic Reconfiguration of Composite Web Services

In the dynamic composition environment, the execution of compo-

site services may be interrupted due to endogenous and exogenous changes
in the environment. For examples, these changes may include variations in
Web service QoS, changes in business goals and requirements, detecting
fault events at runtime, assessing security vulnerably, or employing new
organizational decisions. Instead of considering changes as exceptions at
runtime and interrupt the composite Web service’s execution, we handle
exceptions with alternative solutions ranging from self-managed solutions,
such as Web service substitution as in fault tolerance, reconfiguring com-
posite Web services such as selecting new Web services based on their QoS,
or replanning the Web service composition process such as recomposing
unexecuted constituent Web services in composite Web services or replan-
ning the entire composite Web services, depending on the severity of
changes. Normally, the execution of a composite service is interrupted and
then cancelled when endogenous or exogenous changes occur; in our re-
search, we assume that a framework exists to suspend the execution of
composite services, to conserve all information regarding the part of com-
posite service which is already executed, and able to recover the execution
of composite service when an alternative composition is regenerated.

The general idea of our dynamic reconfiguration can be summa-
rized as follows: when the execution of composite services is interrupted
because of endogenous/exogenous changes of dynamic environment, the
service farming algorithm firstly tries to substitute the services which are
unavailable or change their functional/non-functional properties. On the
other hand, when endogenous/exogenous changes, such as user decision or
business logic changes, imply the re-composition of the composite services,
the service farming algorithm conserves all information regarding the exe-
cuted part of composite service, generates composition rules based on the
executed part and starts over from the design time to re-construct the sus-
pended part of composite service.

In the following section, we elaborate the service substitution and
the composition replanning as two stages that make the ad-hoc Web service
composition approach respectively respond to endogenous changes (e.g.,
Web service unavailable) and exogenous changes (e.g., business logic).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 146
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

5.4.1 The Service Substitution Stage

The Web service substitution is the process of replacing a Web
service by another Web services with same functionality and similar QoS
properties to ensure fault tolerance. When substituting Web services,
among the Web service candidates that offer desired functionalities, the
Web service composition process might select a Web service candidate
over others based on its non-functional attributes that best improves the
overall composition.

The Web service substitution process proceeds with the following
principles to choose candidate Web services for substitution:

Principle 1. The Web service for substitution provides same func-
tionalities as the Web service to be substituted.

Principle 2. The Web service for substitution has similar QoS pro-
file as the Web service to be substituted.

Principle 3. The Web service for substitution has higher utility
values than other candidate Web services.

Principle 4. The Web service for substitution satisfies both local
and global constraint rules.

For the optimal composite service coptimal, we denote Wu as the set
of atomic services to be substituted in coptimal, and c`optimal is used to repre-
sent the new composite service to be executed after substituting all atomic
services from Wu. For each ti∈Wu, we use Wti to represent the set of all
available Web services that provide the same functionalities as ti, thus we
have,

∀ti∈Wu, ∀tj∈Wti, ∃am∈Wa, am⊫((ti~am)^ (tj~am)).
In order to satisfy the four substitution principles, we introduce

the substitution coefficient (Sc) to quantify the similarity degree between
two atomic services that provide the same functionality following formula
5.7.

Sc(ti,tj) = 𝐭𝐣.𝐮
𝐃(𝐭𝐢,𝐭𝐣)

 ti∈Wu, tj∈Wti (5.7)

where the D(ti, tj) is the distance between of ti and tj QoS profiles, and the
tj.u is the utility of the atomic service tj. The higher the Sc(ti,tj) is, the more
the two services are globally similar. We develop the Service Substitution
algorithm in Figure 5.13 to integrate the Web service substitution with the con-
text of ad-hoc Web service composition.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 147
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Input: Wu ≠∅
Step 1. Create Substitution Set
 ∀ti∈Wu,
1.1. Wti = ∅;
1.2. ∃am∈Wa, ∃tj∈Wt, tj⊫((ti~am)^ (tj~am)) => Wti = Wti ∪{tj};
Step 2. Calculate Substitution Coefficient
 ∀ti∈Wu,
2.1. ∀tj∈Wti, calculate Sc(ti, tj);
2.2. Find t`j, ∀tj∈Wti, t`j⊫(Sc(ti, t`j)≥ Sc(ti, tj)) ;
2.3. Generate rd.i = <ti, t`j, ⦿>
Step 3. Evaluate c`optimal
 ∀ti∈Wu,

3.1. ∃rd.i∈R, ∃t`j∈Wt, t`j⊫(in(ti,rd.j)^ in(t`j,rd.j) ^ rd.j.dp=⦿) => substitute ti
by t`j, and construct c`optimal.
3.2. c`optimal⊫(Rc) => execute c`optimal.
 else =>go to composition replanning stage.

Three steps are proceeded to substitute services, which are intro-

duced as follows:
Step 1. Create Substitution Set. For each atomic service to be

substituted, we find all atomic services with same functionality as candi-
date services for substitution.

Step 2. Calculate Substitution Coefficient. For each candidate
service for substitution, we calculate its substitution coefficient, and choose
the atomic service with the highest value of substitution coefficient for sub-
stitution.

Step 3. Evaluate Composite Service. Before substituting, we cal-
culate if the new generated composite service satisfies constraint rules: if
yes, we proceed the substitution process and execute the new generation
composite service; otherwise, we go to the composition planning stage to
recompose services to response to changes.

Figure 5.14 illustrates a service substitution example based on our
proposed resilient service-oriented computing concept.

As shown in Figure 5.14, when an endogenous change occurs in
which one atomic service in the composition result is no more available,
service substitution stage starts to substitute the atomic service and con-
struct a new composite service to response to the endogenous change and
satisfy users’ initialized requirements.

Figure 5.13 The Service Substitution Algorithm

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 148
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Figure 5.14 Service Substitution Example

5.4.2 The Composition Replanning Stage

The service substitution within the ad-hoc Web service composi-
tion approach handles the exception case in which a Web service is substi-
tuted. In some situations, when business logic or users’ decision change,
simple substitutions of services cannot provide effective solutions to re-
sponse to changes. In this case, when the execution of composite service is
suspended because composition requirements have changed, the unexecuted
part of composite service needs to be reconstructed while preserving the re-
sult of the executed Web services. This re-composition is challenging as,
without user’s intervention, new constraints and new requirements used to
construct the unexecuted part of composite service need to be derived from
on the initialized constraints and requirements used in the previous Web

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 149
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

service composition process. In addition, combining the executed part and
the new constructed part should satisfy user’s initialized requirements.

Roughly speaking, when the coptimal is constructed at the design
time, it is executed at the runtime to satisfy business requirements. In the
case that the execution of coptimal is suspended and cannot be solved by
simply substituting services, we extend the ad-hoc Web composition algo-
rithm to develop a run-time adaptation mechanism to replan the unexecuted
part of the constructed optimal composite service.

We denote the executed part of coptimal as cpre, and the suspended
part of coptimal as cpost. The cpre and cpost are both composite services. The
problem of the replanning Web service composition attempts to construct
the cpost based on the coptimal and the cpre and satisfying user’s requirements.
According to Wa, Wt, Rs, and Rc used in the process of constructing the copti-

mal, we respectively denote W`a, W`t, R`s, and R`c as the set of abstract ser-
vices, the set of atomic services, the set of structure rules and the set of
constraint rules used in the process of constructing the cpost, while Rd re-
mains the same as originally derived from users’ business-centric require-
ments.

The composition replanning stage can be divided into five steps as
follows: 1) jointly integrate input messages of coptimal and output messages
of cpre as the input messages of the cpost; 2) generate W`a, W`t; 3) generate
R`s, and R`c; 4) apply the Service Farming composition algorithm to find an
optimal result for cpost; 5) integrate the output messages of cpre and cpost as
the final output messages of the composite Web service. Finally the output
of composition replanning stage is the optimal composite service by com-
posing cpre and cpost. The service substitution stage of the service farming
composition algorithm is formalized in Figure 5.15.

By using the same QoS attributes example introduced in Table
5.2,

Table 5.7 illustrates how to generate new global constraint rule
r`gc.i for composition replanning from the initialized global constraint rule
rgc.i. The left and middle columns show the constrained QoS attributes and
operator of r`gc.i, which are same to rgc.i; while the right column indicates
how to calculate the constraint value of the r`gc.i based on the constraint
value of rgc.i.

Figure 5.16 illustrates a composition replanning example based on
our proposed resilient service-oriented computing concept.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 150
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Step 1. Generate I.cpost
 I.cpost = I.coptimal ∪ O.cpre;
Step 2. Generate W`a and W`s
 2.1. ∀ai∈Wa, (∄ti→cpre╞(ti~ai)) => W`a = W`a ∪ {ai};
 2.2. ∀ti∈Wt, (si is unavailable) => Wt = Wt - {ti};
 2.3. ∀ti∈Wt, (∃aj ∈ W`a╞(ti ~ aj)), => W`t = W`t + {ti};
Step 3. Generate R`s and R`c
 3.1. ∀ras.i∈Rs, (∄ti→cpre╞(ti~ aj ^ in(aj, ras.i)) => R`s = R`s∪{ras.i};
 3.2. ∀rcs.i∈Rs, (∄ti→cpre╞(in(ti, rcs.i)) => R`s = R`s∪{rcs.i};
 3.3. ∀rlc.i∈Rc, (∄ti→cpre╞(in(ti, rlc.i)) => R`c = R`c∪{rlc.i};
 3.4. ∀rgc.i∈Rc, generate r`gc.i following table 6.3, R`c = R`c∪{rgc.i};
Step 4. Construct cpost
 4.1. Initialize composition rule base R` = R`s∪R`c∪Rd∪Rm;
 4.2. Apply Service Farming based on W`a, W`s, and R, and generate
cpost
Step 5. Generate O.cpost

O.cpost = O.pre ∪ O.cpost

Output: coptimal = <cpre, cpost, ⧁>

Table 5.7 Calculation of QoS Constraints in Run Time

r`gc.i.Qj = rgc.i.Qj r`gc.i.operator r`gc.i.value

Payment(PA) rgc.i.operator rgc.i.value
Response Time (RT) rgc.i.operator rgc.i.value - cpre.rt-sf.rt
Availability (AV) rgc.i.operator rgc.i.value/cpre.av
Reliability (RE) rgc.i.operator rgc.i.value/cpre.re
Price (P) rgc.i.operator rgc.i.value - cpre.p

From Figure 5.16 we can see that, when an exogenous change oc-

curs in which user decision changes and thus requires the reconfiguration
of Web service composition, composition replanning stage starts to con-
serve all information regarding the executed part of composite service cpre,
and start over from the design time to re-construct the unexecuted part of
composite service cpost, and finally the two parts of composite service cpre
and cpost, are taken as the final composition result to response to the exoge-
nous change and satisfy user’s updated requirements.

Figure 5.15 The Web Service Composition Replanning

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 151
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Figure 5.16 Composition Replanning Example

5.5 Conclusion

In this chapter, we focus on the ad-hoc Web service composition

approach within the framework of the resilient service-oriented architecture.
Based on the rule-driven Web service composition model, the Service
Farming composition algorithm adapts the composition process to both
static and dynamic environments. The Service Farming aims at, in a rea-
sonable time, constructing optimal composite services meeting multiple
constraints, particularly business requirements, while maximizing user’s
satisfaction. Instead of selecting atomic services based on a predefined
composition plan, the Service Farming relies on a heuristic to identify and

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 152
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

refine a set of composition rules through several cycles. The composition
process is achieved by simultaneously selecting atomic services and infer-
ring composition patterns between selected services following composition
rules.

The ad-hoc composition approach ensures that Web services in
static environment can be composed in an optimal way with regard to con-
straints on QoS values. In addition, it ensures that the composite Web ser-
vice is adaptable to endogenous and exogenous changes in dynamic envi-
ronments while satisfying multiple constraints (e.g., business re
requirements). The Service Farming provides several advantages such as:

1. Ad-hoc composition: The composition process is achieved by
simultaneously selecting atomic services and inferring composition patterns
to ensure that services are composed in the best way with respect to the
QoS aggregation. Since Web services are usually composed by discovering
and selecting services based on predefined composition plans, the aggre-
gated QoS values of composite services are thus calculated by following
the composition plan. This may lead to not having the best way to aggre-
gate QoS values of composite services because composition plans are gen-
erated without considering QoS profiles of specific atomic services.

2. Flexibility: Instead of giving a complete composition plan, by
means of the Service Farming approach, user is allowed to simply define a
set of abstract services without composition plans or even with partial or
whole composition plan(s). In these cases, the Service Farming approach is
able to flexibly construct optimal composite services.

3. Extensibility: The Service Farming approach is a rule-based ap-
proach which specify different internal and external variables in the envi-
ronment with various rules, and applies them to guide the service composi-
tion process. The categories of rules can be easily enriched by new rules to
reflect constraints in new models (e.g., security rules, resources rules, me-
diation rules, …) and consequently influence the ad-hoc composition pro-
cess. Since the ad-hoc Web service composition algorithm is based on mul-
tiple constraints, new rules can be easily considered and processed without
updating the algorithm logic and structure.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 153
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Chapter 6

Implementation Architecture

Implementation Architecture .. 153

Experiment Results .. 157

Conclusion ... 162

Abstract: In this chapter, we illustrate the development of the resilient ser-
vice oriented architecture based on models that affect and are affected by
each other to ensure adaptability and flexibility of SOA-based applications
or business processes in dynamic environments. In addition, we present the
technical architecture to implement the prototype of the ad-hoc Web ser-
vice composition approach based on users’ requirements. The prototype has
been developed in Java and used to conduct experiments and measure its
performance.

6.1 Implementation Architecture

In order to demonstrate the feasibility of our contribution, we have
developed a modular framework and implemented as illustrated in Figure
6.1, comprising different modules: the business-centric requirement man-
ager, the rule-driven Web service requirement manager, the capability
matching manager, the association discovery manager, the ad-hoc Web ser-
vice composition manager and the C-WSDL Web service registry.

The business-centric requirement manager is specified with a cus-
tomized version of the SBVR visual editor [REF13B] developed by the
OPAALS project to build SBVR-based Knowledge. In our prototype, the
capability matching manager implements the transformation process to de-
duce from business-centric requirements expressed with SBVR terms to the
set of capability instances, while the association discovery manager imple-
ments the transformation from capability instances to rule-driven Web ser-
vice requirements. The principles guiding the transformation processes in
the capability matching manager and the association discovery manager are

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 154
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

realized by the Query/View/Transformation (QVT) language, which is
a standard language for model transformation defined by Object Manage-
ment Group [REF11]. Based on the C-WSDL registry introduced in
[MTYB04], we have developed the C-WSDL registry to store Web service
WSDL profiles as well as their associated capability instances. The Web
service composition manager is developed based on our work on Web ser-
vice composition [LIBB13D], and finally the composite service is repre-
sented based on BEPL to be executed.

Figure 6.1 The Resilient SOA Framework

In this prototype, when business users express the business-centric
requirement based on SBVR, these requirements are firstly sent to busi-
ness-centric requirement manager. The requirement manager analyzes and
selects useful SBVR patterns (e.g., Fact Type, Noun, etc.) and sends them
to the capability matching manager to derive appropriate capability in-
stances from the C-WSDL registry by following capability matching prin-
ciples. The association discovery manager uses the derived capability in-
stances to discover Web services and generate composition rules following
the association discovery principles. At last, Web services and composition
rules are forwarded to the composition manager to compose services, satis-
fying users’ business-centric requirements. The composition monitors
simply detect contextual changes at design/runtime during the composition
process. The substitution and replanning manager adapts composite ser-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 155
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

vices to contextual changes; the business-centric requirement manager and
rule-driven requirement manager update the composition requirements if
users change their business requirements. New updated requirements are
thus used to guide a new composition process.

As illustrated in Figure 6.2, the module that implements the Web
service composition manger consists of five packages: the Service Farming
Registry, the Service Model, the Binary Tree Model, the Composition Rule
Model, and the Composition Pattern. The Service Model represents the
Web service descriptions with functional and non-functional properties,
while the Service Farming Registry specifies different category of Web
services, i.e., atomic service, abstract service and composite services and
provides additional information related to the service farming algorithm
such as normalized QoS, and service utility. The Composition Rule Model
specifies and manipulates different categories of composition rules; The
Binary Tree Model is mainly used as a flexible data structure to process
composite service and composition rules. The composition pattern package
implements the clustering algorithm and provides methods to decompose
composite services and enrich the set of composition rules.

All these packages are connected through interfaces to increase
modularity and are manipulated by the Service Farming Manger to imple-
ment the ad-hoc Web service composition process. The packages are gen-
eral illustrated in Figure 6.2; while their implementation details are briefly
illustrated in the UML class diagram in Figure 6.3.

Service Farming
Registry

Service Model Composition Rule
Model

Composition
Pattern

Binary Tree
Model

*

*
**

Service Farming
Manager

*
*

Figure 6.2 General Implementation of Service Framing Manager

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 156
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Figure 6.3 Class Diagram of Service Farming Manager

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 157
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

6.2 Experiment Results

To illustrate the resilient SOA framework and the implemented
modules, we have manually created several capability instances based on
our train crash crisis scenario (see Table 6.1) and associated Web services
with capability instances in the C-WSDL Web service registry. Based on
this scenario, the business-centric requirements are roughly illustrated in
Table 6.2.
Table 6.1 Web Service Capability Instances

ID
Capability Objective
Layer

Capability Profile Layer Inter-capability Composi-
tion Layer capability name attributes

cap1
{<response to, cri-
sis>}

<alert, public> {(AvailableRegion, France)}

cap2.1 {<manage, crisis>}
<evacuate,
population>

{(AvailablePlace, France)}

cap2.2 {<manage, crisis>}
<evacuate,
population>

{(AvailablePlace, Mar-
seille)}

cap3
{<manage, crisis>,
< rescue, people>}

<transport,
victim>

{(MaxTransportNumber,
100)}

{cap3, cap4, Support}

cap4
{<manage, crisis>,
<rescue, people>}

<assist, victim> {(MaxAssistNumber, 300)} {cap3, cap4, Support}

cap5.1 {<manage, crisis>}
<extinguish,
fire>

{(AvailableFiremen, 40)}
{cap5.1, cap5.2, Coopera-
tion}
{cap5.1, cap7, Support}

cap5.2
{<manage,
emergence>}

<put out, fire> {(AvailableFiremen, 70)}
{cap5.1, cap5.2, Coopera-
tion}
{cap5.2, cap7, Support}

cap6 {<manage, crisis>} <clear, site> {(AvailableDate, 24/7)}

cap7 {<manage, accident>}
<recover,
electricity>

{cap5.1, cap7, Support}
{cap5.2, cap7, Support}

cap8
{<manage, crisis>,
<maintain, facility>}

<repair,
railway>

The prototype is successfully used to illustrate the train crash cri-
sis scenario by specifying business-centric requirements and capabilities,
and gradually generating the set of composition rules. The composition
manager thus constructs composite services to satisfy the initialized busi-
ness-centric requirements.

Focusing our ad-hoc composition approach, we performed a series
of experiments on a Dell Laptop with an Intel Core 2 Quad processor at
2.53 GHz, 4 GB RAM, running Microsoft Windows 7. We also integrated

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 158
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

in our prototype the “Weka” Data Mining Package to perform k-means
cluster algorithm. Our experimentations consist of sets of different numbers
of abstract services (denoted as Na), and different numbers of atomic ser-
vices (denoted as Nt). For each abstract service, we manually create a num-
ber of atomic services by defining their QoS profiles with four QoS attrib-
utes (i.e., response time, price, availability, and reliability). The
performance of Service Farming is evaluated based on the motivation sce-
nario in Chapter 1 .
Table 6.2 Business-centric Requirement

FR.Objective obj1: Manage train crisis

FR.Action

i1: Public must be alerted.
i2: Population must be evacuated.
i3: Victims must be transported.
i4: Victims must be assisted.
i5: Fire must be extinguished.
i6: Electricity must be recovered.
i7: Crisis site must be cleared.
i8: Railways must be repaired.

NF

nf1: It is obligatory that at least 10 firemen extinguish fire.
nf2: It is necessary that total response time is less than 4h.
nf3: It is necessary that the cost of assisting victims is less than 2000€.
nf4: It is obligatory that victims are transported before victims are as-
sited.
nf5: It is obligatory that the electricity is recovered after the fire is ex-
tinguished.

Contextual
Information

ctt1: Crisis place is Pairs.
ctt2: Crisis date is 2013/03/01.

In order to provide a direct presentation of how Service Farming
works to compose Web service through iterative cycles, we illustrate, in
Table 6.3, a running example of Service Farming when given different val-
ues regarding different parameters.

For each 10 Service Farming cycles, we present the values of the
current cycle number, the execution time, the initialized structure rule in
the current cycle, the new generated structure rule in current cycle, and the
maximum utility of all composite services found by Service Farming. From
Table 6.3, we can see the evolution of these values, such as the structure
rules used to guide the composition for each cycle is gradually enriched and
the maximum utility of composite services found by Service Farming in-
creases through iterative cycles.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 159
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Table 6.3 Service Farmimng Running Example

ln
Execution Time

(ms)

Initialized rs

Number

Generated rs

Number
Max_Utility

1 0 1 0 0.6043252

10 40 35 3 0.6519924

20 115 87 5 0.6652112

30 228 133 4 0.6817733

40 228 178 3 0.7103989

50 379 223 4 0.7226891

60 470 265 4 0.7474910

70 681 308 2 0.7515423

80 870 335 3 0.7609771

90 1020 365 2 0.7609771

100 1220 394 3 0.7609771

Abstract Service Number = 6, Atomic Service Number = 50, Constraint Rule Number =4,

Dependency Rule Number = 2, k = 5, Tthreshold = 5, t = 50;

In order to test the flexibility of Service Farming approach to con-
struct composite services with or without predefined composition plans. We
defined three different sub-cases by initializing different number of compo-
sition rules derived from user’s requirements, which are shown in Table 6.4.
We set Na = 6, Nt = 30, k = 5, t = 50, T = 5 and carry on experimentations
on the three cases.

Table 6.4 The Service Farming Performance based on Different Cases

Case
No.

Initialized Structure Rule(s) Cycle Time(ms)

Case 1 {TransportVictim_AWS ⧁ AssistVictim_AWS} 85 1560

Case 2
{TransportVictim_AWS ⧁ AssistVictim_AWS,
ExtinguishFire_AWS ⧁ RecoverElectricity_AWS}

60 508

Case 3
{(((AlertPublic_AWS⧁ (TransportVictim_AWS ⧁
AssistVictim_AWS)) ⦷ (ExtinguishFire_AWS ⧁
RecoverElectricity_AWS)) ⧁ ClearSite_AWS}

12 120

The right two columns of Table 6.4 show the cycles and execution
time that service farming takes to find the optimal composition. Figure 6.4
presents the increase of uoptimal value on three different cases. Given differ-
ent composition rules, the Service Farming approach successfully finds op-
timal composite services following user requirements. Starting from the
Case 1, the increase of composition rules completeness (number of abstract
services that are included in composition rules) will significantly reduce the
execution time for finding optimal solutions since the composition patterns
between services that are indicated in composition rules are fixed. In the
case 3 the composition rule with all abstract services shows a complete

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

http://dict.cnki.net/dict_result.aspx?searchword=%e6%98%be%e8%91%97&tjType=sentence&style=&t=significantly

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 160
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

predefined composition plan, the problem of service composition becomes
only a problem of service selection based on an abstract composition plan.
Trough this experiments, Service Farming shows its ability to flexibly con-
struct the optimal composite services under the guidance of different ini-
tialized structure rules.

Figure 6.4 Optimal Utility Increase

Focusing on the case 1, we carry out experimentations to evaluate
the influence of different parameters on the Service Farming performance.
During our experiments, we have noticed that the repeated experiments on
the same set of requirements and the same set of services produce different
processes of optimal utility increase, but the execution time or number of
cycles that Service Farming takes to find optimal services are in a limited
range. This is because at the beginning, our approach composes services
based on a random selection process, and this makes the composition re-
sults in the several initial cycles differ from one to another; as Service
Farming is carrying on, the composition rules is gradually enriched, this
random process gradually turns into a utility promoted process to help find
the optimal solution.

Considering the parameter t, when given a large value of t, e.g., t
= 200, Service Farming is able to find the best solution of all the composi-
tion possibilities, however the execution cost is quite long; on the contrary,
if t is given a small value, e.g., t = 10, the execution time is reduced but the
optimal composite service found is probably a sub optimal solution.

Figure 6.5 and Figure 6.6 respectively show the average execution
time that each Service Farming cycle takes when given different values of
the parameters k and T. These figures present that the latter cycles take
more time than the previous cycles, as the number of composition rules in
latter cycles is greater than the number of rules in previous cycles, and the
composition approach takes more time in latter cycles on querying the in-
creased set of composition rules. As for the parameter of cluster number k,
the smaller the value of cluster number k is, the more time each cycle takes.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 161
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

This is because the number of composite services constructed in each cycle
is fixed, a smaller value of cluster number k will distribute more services in
each cluster, and thus the number of composition rules generated in each
cycle increases, and in a certain range, the smaller value of k will reduce
the total cycles that service farming takes to find the optimal solution; on
the other hand, in order to discover the representative constituent composite
services that make a cluster possess higher average utility than other clus-
ters, the value of k should not be too small, or else, even the composite ser-
vices with relative low values of QoS are decomposed. Concerning the val-
ue of T, when given a small value, each cycle takes more time but the total
execution time Service Farming takes to find optimal solution is reduced,
as the composition rule is enriched more rapidly; on the other hand, when T
is very small, the optimal solution is probably a local optimal composite
service, as constituent composite services with lower appearance time are
also enriched as composition rules. As a conclusion, the value of the pa-
rameters k and T should be adjusted through experiments according to the
number of Web services to composed in order to ensure the good perfor-
mance of Service Farming.

Figure 6.5 Average Time for Each Cycle by Varying k

Figure 6.6 Average Time for Each Cycle by Varying T

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 162
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Moreover, in order to test the scalability of Service Farming, we
apply the Service Farming on different Na and Nt without any initialized
composition rules to test its performance by analyzing the execution time
that Service Farming takes to find an optimal composition solution. The re-
sults are shown in Figure 6.7.

The results in Figure 6.7 are obtained by varying the value of Na
from 7 to 10, and the value of atomic service number for each abstract ser-
vice, denoted as Ns, from 5 to 20. The execution time of our service farm-
ing increases along with the rise of Na and Ns, while the increase trend is
approximately exponential which are similar to most of composition ap-
proaches based on AI planning. By focusing on the execution cost with
same Ns but different Na, the higher the Na is, the more time Service Farm-
ing takes, as Na reflects the complexity of selecting a composition pattern
between services, which is often more complex than selecting different ser-
vices for a fix composition plan.

Figure 6.7 Scalability Evaluation

6.3 Conclusion

In this chapter, we have presented the technical architecture of the resilient
service oriented framework and focused on the implementation of a proto-
type to test our proposed ad-hoc Web service composition approach. We at
first specify user’s requirements with SBVR terms following the business
centric requirements. The prototype gradually transforms SBVR-based re-
quirements into specific Web services and composition rules. At last, the
Service Farming is applied to compose Web services together. Our experi-
ments demonstrate the effectiveness of the proposed Web service composi-
tion approach in dynamic environments and the flexibility to compose Web
services with or without predefined composition plans. We also examined

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

http://dict.cnki.net/dict_result.aspx?searchword=%e8%bf%91%e4%bc%bc&tjType=sentence&style=&t=approximate

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 163
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

the performance of Service Farming through a series of experiments by
varying the number of Web services to show its scalability. Finally, we dis-
cuss the influences of different parameters’ values on the composition re-
sults and provide the strategy to set different parameters in order to quickly
construct optimal composite services.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 164
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 165
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Chapter 7

Research Perspectives

7.1 Research Contributions

Nowadays many enterprises publish their applications functionalities on the
Internet using Web services. This new generation of applications allows
greater efficiency and availability for businesses. In many cases, a single
service is not sufficient to respond to the user's request and thus Web ser-
vices should be combined together to achieve a specific requirement that
cannot be satisfied by a single Web service. Composing Web services while
meeting multiple constraints (e.g., control flow constraints, QoS constraints,
dependency constraints, etc.) from users’ requirements has been proved as
a NP-hard problem [MBKG09] and AI-complete problem [OHLK06].

Most automated dynamic Web composition approaches require a
predefined abstract composition plan to compose Web services together by
selecting specific Web service for each task in the composition plan and in-
tegrating them. However, in many cases of dynamic environments, a com-
position plan cannot be predefined in advance. An ad-hoc Web service
composition is thus needed to build adaptable composite Web services in
response to endogenous and exogenous changes that may occur in a dynam-
ic environment without a predefined composition plan.

Throughout this thesis, we deal with the main research question as
“How to achieve a resilient service-oriented computing based on an ad-hoc
Web service composition process driven by business requirements in order
to build adaptable composite Web services without predefined composition
plans? To the end, how to adapt composite Web services accordingly to en-
dogenous and exogenous changes that may occur within and outside the
dynamic composition environment at design time and runtime?”. To answer
this question, our contributions seek to achieve a resilient service oriented
computing by extending current SOA with a set of models, representing re-
quirements and changes that influence the Webs service compositions. In
the resilient service-oriented architecture, models affect and are affected by
each other. To this end, we particularly focus on the ad-hoc Web service
composition model and the three-level requirement model. To ensure con-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 166
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

nectivity between these three models and flexible Web service composition
processes, we develop a two-phase requirement transformation process. We
summarize the advantages of our contributions as follows.

1) The Three-level Requirement Model for Ad-hoc Web Ser-
vice Composition

Business-centric requirements are modelled based on the SBVR, a
formal business rule language with a structured natural language interface
that allows business users to specify composition requirements in terms of
business objectives, functional requirements and non-functional require-
ments.

Capability-focused requirements are modelled based on the Web
service capability model in terms of Web service capability instances. We
extend Web service descriptions with the capability model to describe what
a Web service really does instead of its operations. The Web service capa-
bility model describes the Web services as a list of objectives to achieve, a
list of attributes representing Web service abilities, and links to other capa-
bilities by means of composition relationships. Web service capability in-
stances are thus created by domain experts or service providers. Web ser-
vice capability connects Web services with business objectives that Web
services can achieve.

Rule-driven Web service requirements are modeled based on Web
service operations and different types of rules (i.e., structure rules, con-
straint rules, and dependency rules) to represent multiple constraints influ-
encing the Web service composition process. At this level, rule-driven Web
service requirements are able to be directly used by the proposed ad-hoc
Web service composition approach.

The value of this part of our contribution stems from providing a
structured natural language for business users’ to specify their composition
requirements and consequently compose and execute Web services that sat-
isfy the requirements; secondly, it allows either business users or technical
users’ to specify composition requirements based on different requirement
models. The Web service composition process can thus be initialized from
any level of the composition requirements by simply using our requirement
transformation process.

2) The Two-level Requirement Transformation for Ad-hoc
Web Service Composition: Capability Matching and Association Dis-
covery

We develop the capability matching process and the association
discovery process to transform business-centric requirements into capabil-
ity-focused requirements, and transform capability-focused requirements to
rule-driven Web service requirements. The requirement transformation pro-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 167
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

cess is semantically based on keywords matching between different levels
of requirement models.

The capability matching process focuses on deriving available
Web service capability instances from users’ business-centric requirements
by matching business-centric requirements and existing Web service capa-
bility instances. The association discovery process then discovers all Web
services that are associated with the capability instances from capability
matching results to find appropriate Web services. In addition, the Associa-
tion discovery process creates composition rules based on capability com-
positions as described by Web service capability instances.

Since existing requirement transformation approaches are only
able to transform requirements defined from the same perspective in differ-
ent language, the value of this contribution aims at providing an approach
to transform requirements defined from different perspectives in different
languages, as in our composition requirement models, business-centric re-
quirements are defined from the business perspective, capability-focused
requirements are defined from the Web service ability perspective , and
rule-driven Web service requirements are defined from the Web service op-
eration perspective.

3) The Ad-hoc Web Service Composition Approach: Service
Farming

The ad-hoc Web service composition approach aims to construct
Web services in dynamic environments without predefined composition
plans by simultaneously selecting atomic services and inferring the compo-
sition patterns between the selected services in order to provide the best
ways to compose services with regard to QoS.

The ad-hoc Web service composition approach consists of four
stages (i.e., Service Planting, Service Growing, Service Harvesting, and
Service Evaluating) that are executed iteratively through cycles to construct
composite services at design time. In each cycle, Service Farming compos-
es Web services by randomly selecting atomic services and inferring their
composition patterns following composition rules; It ends when an optimal
composition result is generated. At the runtime, when the composite Web
service’s execution is interrupted because of endogenous or exogenous
changes, the ad-hoc composition approach conserves all information of the
executed part of the composite service, generates composition rules based
on the executed part and starts over from the design time to re-construct the
unexecuted part of composite services.

The main value of this contribution is that the composition process
can compose Web services in an ad-hoc way in dynamic environments
without predefined composition plans. Instead of selecting specific Web

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 168
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

service after generating a general composition plan, the ad-hoc composition
is able to ensure that Web services are composed in the best way with re-
gard to QoS and user’s satisfaction is maximized.

In our work we present an end-to-end solution on how to compose
Web services driven by structured natural requirement in dynamic envi-
ronment without predefined composition plans: users firstly specify the
composition requirements flowing our requirement model for ad-hoc Web
service composition; and then the requirement transformation is applied to
transform requirements in business-level to requirements in technical-level
which can be directly used by our ad-hoc Web service composition; at last
Service Farming is used to construct optimal composite Web services to
satisfy users’ requirements. We implement our end-to-end Web service
composition approach and develop a prototype to validate it. The experi-
mental results introduced in Chapter 6 present the promising results.

7.2 Future Research Trends

The foremost aim of my research work is to establish foundations
for achieving resilient service oriented computing to develop resilient
SOA-based applications in dynamic environments. Nevertheless, the fol-
lowing research topics can be studied in the future to enhance the resilient
SOA framework:

1. Extending the resilient service oriented architecture with bi-
directional transformation between exogenous and endogenous models and
the ad-hoc Web service composition approach. In our work, we only pro-
vide two situations, i.e., service substitution and composition replanning, to
ensure composite services are successfully respond to changes in dynamic
environments. However, when dynamic environment changes frequently,
the two measures may be applied many times in one composition task, and
which would greatly reduces the efficiency of Web service composition
process. In the future work, we will investigate how to interleave the Web
service composition and Web service execution process by dividing one big
composition task into several small composition tasks; and thus for each
small composition task, we respectively construct a sub composition solu-
tion, and then send it for execution while generating a sub composition so-
lution for the next composition task. In addition, for different change model,
we will provide more mechanisms to adapt composition results to changes.

2. Extending the business-centric requirement model based on the
SBVR to provide users with natural means to specify other kinds of con-
straints in the Web service composition process, and accordingly provide
transformation solutions. Since in our work we only apply a subset of

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 169
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

SBVR to represent users’ business-centric requirements on control flow,
QoS and dependency constraints, we can extend the business-centric re-
quirement model by introducing other SBVR patterns to take into account
other kinds of constraints, such as resource constraints to describe the con-
sumed resources and take into account volatile resource environments when
composing Web services.

3. Extending Web service capability model to provide richer capa-
bility objective and profile description. Although we extend current frame-
case based Web service capability model by using a pair of noun and action
verb to describe the capability objectives and names, the expressiveness of
this capability model is still limited to capture business objectives in richer
context. We will further extend our proposed capability model to define
complex objectives and profiles so as to connect Web services with richer
business contexts.

4. Introducing new categories of composition rules to take into ac-
count multiple constraints. Since the ad-hoc Web service composition is
rule based and directly driven by composition rules that are transformed
from business-centric requirements. The set of categories of composition
rules is easy to be enriched by structuring variables that may change (e.g.,
resources, mediation, etc.) and influencing the composition process. To this
end, the composition approach should be updated since our approach is able
to take into account of multiple constraints during the composition process,
e.g., to introduce mediation rules to guarantee atomic services and ex-
change their input and output messages.

5. Carrying more experiments and benchmarks to study the char-
acteristics of the Service Farming. The experiment results in our work are
generated based on a preliminary motivation scenario of a crisis manage-
ment, and future work should also carry more experiments in different sce-
narios and different set of Web services to compare their performance with
other Web service composition approaches.

6. Verifying whether the set of capability instances from capabil-
ity matching process can entirely satisfy or not the business objectives de-
fined in business-centric requirements. In our work, we assume that after
capability matching, the set of derived capability instances should be able
to entirely satisfy the business objectives defined in business-centric re-
quirements. As a future work, we will investigate the Intuitionist Linear
Logic to proof whether a set of capabilities can entirely satisfy or not the
business-centric requirements.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 170
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 171
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Bibliography

[AAWG05] W. M. Van der Aalst, M. Weske, and D. Grünbauer, “Case Han-

dling: A New Paradigm for Business Process Support,” Data &
Knowledge Engineering, vol. 53, no. 2, pp. 129–162, 2005.

[ACMP07] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani,
“PAWS: A Framework for Executing Adaptive Web-Service Pro-
cesses,” IEEE Software, vol. 24, no. 6, pp. 39–46, 2007.

[ADHW05] W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, and P.
Wohed, Pattern Based Analysis of BPML (and WSCI). Brisbane:
Queensland University of Technology, 2005.

[AFBA11] H. Afreena and I. S. Bajwab, “Generating Uml Class Models
from Sbvr Software Requirements Specifications,” in Proceed-
ings of the 23rd Benelux Conference on Artificial Intelligence,
2011, pp. 23–32.

[AFMN05] R. Akkiraju, J. Farrell, J. Miller, and M. Nagarajan, Web Service
Semantics - WSDL-S. University of Georgia Research Foundation,
Inc., 2005.

[AGHS03] S. Agarwal, S. Handschuh, and S. Staab, “Surfing the Service
Web,” in Proceedings of the 2nd International Semantic Web
Conference, 2003, vol. 2870, pp. 211–226.

[ALHE11] D. Allemang and J. A. Hendler, Semantic Web for the Working
Ontologist Effective Modeling in Rdfs and Owl. Waltham, MA:
Morgan Kaufmann/Elsevier, 2011.

[ALPA10] A. Albreshne and J. Pasquier, “Semantic-Based Semi-Automatic
Web Service Composition,” Computer Department, Switzerland,
2010.

[ALRI09] M. Alrifai and T. Risse, “Combining Global Optimization with
Local Selection for Efficient Qos-Aware Service Composition,”
in Proceedings of the 18th International Conference on World
Wide Web, 2009, pp. 881–890.

[APRT06] M. Aiello, C. Platzer, F. Rosenberg, H. Tran, M. Vasko, and S.
Dustdar, “Web Service Indexing for Efficient Retrieval and Com-
position,” in Proceedings of the 8th IEEE International Confer-
ence on and Enterprise Computing, E-Commerce, and E-Services,
2006, pp. 63–63.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 172
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

[ARPE06] D. Ardagna and B. Pernici, “Global and Local QoS Guarantee in
Web Service Selection,” in Business Process Management Work-
shops, C. J. Bussler and A. Haller, Eds. Springer Berlin Heidel-
berg, 2006, pp. 32–46.

[ATZI09] D. Athanasopoulos, A. Zarras, and V. Issarny, “Service Substitu-
tion Revisited,” in Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, Washing-
ton, DC, USA, 2009, pp. 555–559.

[AYWO09] E. G. Aydal and J. Woodcock, “Automation of Model-Based
Testing Through Model Transformations,” in Proceedings of the
2009 Testing: Academic and Industrial Conference - Practice and
Research Techniques, Washington, DC, USA, 2009, pp. 63–71.

[BABI12] P. Bartalos and M. Bieliková, “Automatic Dynamic Web Service
Composition: A Survey and Problem Formalization,” Computing
and Informatics, vol. 30, no. 4, pp. 793–827, 2012.

[BCDD08] G. Baryannis, M. Carro, O. Danylevych, and S. Dustdar, Over-
view of the State of the Art in Composition and Coordination of
Services. S-CUBE Consortium, 2008.

[BCGH05] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Me-
cella, “Automatic Composition of Transition-Based Semantic
Web Services with Messaging,” in Proceedings of the 31st Inter-
national Conference on Very Large Data Bases, 2005, pp. 613–
624.

[BCGL03] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M.
Mecella, “Automatic Composition of E-services That Export
Their Behavior,” in Proceedings of the 11th International Con-
ference on Service Oriented Computing, 2003, pp. 43–58.

[BCVM06] A. Bosca, F. Corno, G. Valetto, and R. Maglione, “On-the-Fly
Construction of Web Services Compositions from Natural Lan-
guage Requests,” Journal of Software, vol. 1, no. 1, pp. 40–50,
2006.

[BEAS12] V. Beltran, K. Arabshian, and H. Schulzrinne, “Ontology-Based
User-Defined Rules and Context-Aware Service Composition
System,” in Proceedings of the 8th International Conference on
the Semantic Web, Berlin, Heidelberg, 2012, pp. 139–155.

[BEBG05] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development. Springer, 2005.

[BESD03] B. Benatallah, Q. Z. Sheng, and M. Dumas, “The Self-Serv Envi-
ronment for Web Services Composition,” Internet Computing,
IEEE, vol. 7, no. 1, pp. 40–48, 2003.

[BHDZ12] S. Bhiri, W. Derguech, and M. Zaremba, “Web Service Capabil-
ity Meta Model,” in Proceedings of the 8th International Confer-
ence on Web Information Systems and Technologies, 2012.

[BKPP09] P. Bertoli, R. Kazhamiakin, M. Paolucci, M. Pistore, H. Raik,
and M. Wagner, “Control Flow Requirements for Automated Ser-
vice Composition,” in Proceedings of the 7th International Con-
ference on Web Services, 2009, pp. 17–24.

[BOZH09] Y. Bo and Q. Zheng, “A method of semantic web service compo-
sition based PDDL,” in Proceedings of the 2nd IEEE Internation-
al Conference on Service-Oriented Computing and Applications,
2009, pp. 1–4.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 173
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

[BRDS06] R. I. Brafman, C. Domshlak, and S. E. Shimony, “On Graphical
Modeling of Preference and Importance,” Journal of Artificial In-
telligence Research, vol. 25, no. 1, pp. 389–424, Mar. 2006.

[BRDU10] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engi-
neering: Using Uml, Patterns, and Java. Boston: Prentice Hall,
2010.

[BRPB08] I. Brandic, S. Pllana, and S. Benkner, “Specification, Planning,
and Execution of Qos-Aware Grid Workflows Within the
Amadeus Environment,” Concurrency and Computation: Practice
and Experience, vol. 20, no. 4, pp. 331–345, Mar. 2008.

[BRWI09] G. Briscoe and P. De Wilde, “Computing of Applied Digital
Ecosystems,” in Proceedings of the International ACM Confer-
ence on Management of Emergent Digital EcoSystems, New York,
NY, USA, 2009, pp. 28–35.

[BSRH07] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz,
“Dynamic Replanning of Web Service Workflows,” in Proceed-
ings of the 2007 Inaugural IEEE International Conference on
Digital Ecosystems and Technologies, 2007, pp. 211 –216.

[CAMS06] V. D. Castro, E. Marcos, and M. L. Sanz, “A Model Driven
Method for Service Composition Modelling: A Case Study,” In-
ternational Journal of Web Engineering and Technology, vol. 2,
no. 4, pp. 335–353, Jul. 2006.

[CASA12] D. Calvanese and A. Santoso, “Best Service Synthesis in the
Weighted Roman Model,” in Proceedings of the 4th Central-
European Workshop on Services and their Composition, 2012,
vol. 847, pp. 42–49.

[CASH03] J. Cardoso and A. Sheth, “Semantic E-Workflow Composition,”
Journal of Intelligent Information Systems, vol. 21, no. 3, pp.
191–225, 2003.

[CASS01] F. Casati, M. Sayal, and M.-C. Shan, “Developing E-Services for
Composing E-Services,” in Advanced Information Systems Engi-
neering, Springer Berlin Heidelberg, 2001, pp. 171–186.

[CAST03] M. Carman, L. Serafini, and P. Traverso, “Web Service Compo-
sition as Planning,” in Proceedings of the 23rd International
Conference on Automated Planning and Scheduling, 2003, pp.
1636–1642.

[CCGP09] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and R. Mi-
randola, “Qos-Driven Runtime Adaptation of Service Oriented
Architectures,” in Proceedings of the 7th Joint Meeting of the Eu-
ropean Software Engineering Conference and the Acm Sigsoft
Symposium on the Foundations of Software Engineering, New
York, NY, USA, 2009, pp. 131–140.

[CCMN04] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda, “Decentral-
ized Orchestration of Composite Web Services,” in Proceedings
of the Alternate Track on Web Services at the 13th International
World Wide Web Conference, 2004, pp. 134–143.

[CDKN02] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S.
Weerawarana, “Unraveling the Web Services Web: An Introduc-
tion to Soap, Wsdl, and Uddi,” IEEE Internet Computing, vol. 6,
no. 2, pp. 86–93, 2002.

[CHBB07] K. S. M. Chan, J. Bishop, and L. Baresi, “Survey and Compari-
son of Planning Techniques for Web Services Composition,” Se-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 174
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

mantic Web Services and Web Process Composition, pp. 43–54,
2007.

[CHER13] C. Cherifi, “Similarity Network for Semantic Web Services Sub-
stitution,” in Proceedings of the 24th International Conference on
Information Technologies, 2013.

[CHMT10] P. Châtel, J. Malenfant, and I. Truck, “QoS-based Late-Binding
of Service Invocations in Adaptive Business Processes,” in Pro-
ceedings of the 2010 IEEE International Conference on Web Ser-
vices, 2010, pp. 227–234.

[CHSA06] Y. Charif and N. Sabouret, “An Overview of Semantic Web Ser-
vices Composition Approaches,” Electronic Notes in Theoretical
Computer Science, vol. 146, no. 1, pp. 33–41, 2006.

[CHU06] P. P. Chu, “Finite State Machine: Principle and Practice,” in Rtl
Hardware Design Using Vhdl: Coding for Efficiency, Portability,
and Scalability, John Wiley & Sons, Inc., 2006, pp. 313–371.

[CIJK00] F. Casati, S. Ilnicki, L. J. Jin, V. Krishnamoorthy, and M. C.
Shan, “Adaptive and Dynamic Service Composition in eFlow,” in
Advanced Information Systems Engineering, 2000, pp. 13–31.

[CPEV05] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “Qos-
Aware Replanning of Composite Web Services,” in Proceedings
of the 2005 IEEE International Conference on Web Services,
2005, pp. 121–129.

[CSGT03] L. Chen et al., “Towards a Knowledge-Based Approach to Se-
mantic Service Composition,” in Proceedinds of the 2nd Interna-
tional Semantic Web Conference, 2003, pp. 319–334.

[DARE05] F. Darema, “Dynamic Data Driven Applications Systems: New
Capabilities for Application Simulations and Measurements,” in
Proceedings of the 5th International Conference on Computa-
tional Science - Volume Part II, Berlin, Heidelberg, 2005, pp.
610–615.

[DARE09] F. Darema, “Characterizing Dynamic Data Driven Applications
Systems (DDDAS) in Terms of a Computational Model,” in
Computational Science–ICCS 2009, Springer, 2009, pp. 447–448.

[DCHS04] J. Domingue, L. Cabral, F. Hakimpour, D. Sell, and E. Motta,
“IRS-III: A Platform and Infrastructure for Creating WSMO-
based Semantic Web Services,” in Proceedings of the Workshop
on WSMO Implementations, 2004, pp. 29–30.

[DEVL06] E. S. Devlin, Crisis Management Planning and Execution. CRC
Press, 2006.

[DIPW08] M. DiBernardo, R. Pottinger, and M. Wilkinson, “Semi-
Automatic Web Service Composition for the Life Sciences Using
the Biomoby Semantic Web Framework,” Journal of Biomedical
Informatics, vol. 41, no. 5, pp. 837–847, Oct. 2008.

[DROM03] R. G. Dromey, “From Requirements to Design: Formalizing the
Key Steps,” in Proceedings of the First International Conference
on Software Engineering and Formal Methods, 2003, pp. 2–11.

[DTKB03] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B.
Kiepuszewski, and A. P. Barros, “Workflow Patterns,” Distribut-
ed and Parallel Databases, vol. 14, no. 1, pp. 5–51, Jul. 2003.

[DUHO01] M. Dumas and A. H. M. ter Hofstede, “UML Activity Diagrams
as a Workflow Specification Language,” in Proceedings of the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 175
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

4th International Conference on the Unified Modeling Language,
Toronto, Canada, 2001, pp. 76–90.

[DUSC05] S. Dustdar and W. Schreiner, “A Survey on Web Services Com-
position,” International Journal of Web and Grid Services, vol. 1,
no. 1, pp. 1–30, 2005.

[EHSA12] Ehsan Rasoulinezhad, “Evaluation of Countries Solution Against
the U.s Economics Crisis Through a Multiple Attribute Decision
Model (madm),” Journal of Economics and International Finance,
vol. 4, no. 1, pp. 9–17, 2012.

[ERL08] T. Erl, SOA: Principles of Service Design. 2008.
[FAYA13] A. Fayoumi and L. Yang, “SBVR: Knowledge Definition, Vo-

cabulary Management, and Rules Integrations,” International
Journal of E-Business Development, vol. 2, no. 2, pp. 70–76, Jan.
2013.

[FEDO05] C. Feier and J. Domingue, WSMO Primer. 2005.
[FJWP10] X.-Q. Fan, C.-J. Jiang, J.-L. Wang, and S.-C. Pang, “Random-

QoS-Aware Reliable Web Service Composition,” Journal of
Software, vol. 20, no. 3, pp. 546–556, Mar. 2010.

[FKMS07] G. Fliedl et al., “Deriving Static and Dynamic Concepts from
Software Requirements Using Sophisticated Tagging,” Data
Knowl. Eng., vol. 61, no. 3, pp. 433–448, Jun. 2007.

[FOLO03] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for ex-
pressing temporal planning domains,” Journal of Artificial Intel-
ligence Research, vol. 20, p. 2003, 2003.

[FOST04] H. Foster, “Behaviour Analysis and Verification of Web Service
Compositions,” Imperial College London, 2004.

[GBNA08] Y. Gamha, N. Bennacer, G. V. Naquet, B. Ayeb, and L. B.
Romdhane, “A Framework for the Semantic Composition of Web
Services Handling User Constraints,” in Proceedings of the 2008
IEEE International Conference on Web Services, 2008, pp. 228–
237.

[GCBG10] D. Grigori, J. C. Corrales, M. Bouzeghoub, and A. Gater, “Rank-
ing BPEL Processes for Service Discovery,” IEEE Transactions
on Services Computing, vol. 3, no. 3, pp. 178–192, 2010.

[GERH99] A. T. Gerhard Wickler, “Capability Representations for Broker-
ing: A Survey,” Knowledge Engineering Review, pp. 1–70, 1999.

[GMMZ05] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, “ST-
tool: a CASE tool for security requirements engineering,” in Pro-
ceedings of the 13th IEEE International Conference on Require-
ments Engineering, 2005, pp. 451–452.

[GREM04] P. Grünbacher, A. Egyed, and N. Medvidovic, “Reconciling
Software Requirements and Architectures with Intermediate
Models,” Software and Systems Modeling, vol. 3, no. 3, pp. 235–
253, 2004.

[GRJA05] R. Grønmo and M. C. Jaeger, “Model-Driven Semantic Web
Service Composition,” in Proceedings of the 27th International
Conference on Software Engineering, 2005, p. 8–pp.

[GRLP10] Y. Gripay, F. Laforest, and J.-M. Petit, “A Simple (yet Powerful)
Algebra for Pervasive Environments,” in Proceedings of the 13th
International Conference on Extending Database Technology,
2010, pp. 359–370.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 176
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

[GRSU05] A. Gregoriades and A. Sutcliffe, “Scenario-Based Assessment of
Nonfunctional Requirements,” IEEE Transactions on Software
Engineering, vol. 31, no. 5, pp. 392–409, May. 2005.

[GTSS11] G. Grossmann, R. Thiagarajan, M. Schrefl, and M. Stumptner,
“Conceptual Modeling Approaches for Dynamic Web Service
Composition,” in The Evolution of Conceptual Modeling, R.
Kaschek and L. Delcambre, Eds. Springer Berlin Heidelberg,
2011, pp. 180–204.

[HAAM08] P. Harshavardhan, J. Akilandeswari, and M. Manjari, “Dynamic
Web Service Composition Problems and Solution -a Survey,”
MES Journal of Technology and Management, pp. 1–5, 2008.

[HAKP12] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and
Techniques. Burlington, MA: Elsevier, 2012.

[HALP06] T. Halpin, “Business Rule Modality,” in Proceedings of the 11th
Workshop on Exploring Modeling Methods in Systems Analysis
and Design, 2006.

[HDMC04] F. Hakimpour, J. Domingue, E. Motta, L. Cabral, and Y. Lei,
“Integration of OWL-S into IRS-III,” in Proceedinds of the First
AKT Workshop on Semantic Web Services, 2004, pp. 1–4.

[HEND05] S. Hendryx, Model-Driven Architecture and the Semantics of
Business Vocabulary and Business Rules. 2005.

[HILM04] M. W. Hilmar Schuschel, “Triggering Replanning in an Integrat-
ed Workflow Planning and Enactment System.,” in Proceedings
of the 8th East European Conference, 2004, pp. 322–335.

[HLXZ11] X. Han, Y. Liu, B. Xu, and G. Zhang, “A Survey on Qos-Aware
Dynamic Web Service Selection,” in Proceedinds of the 7th In-
ternational Conference on Wireless Communications, Networking
and Mobile Computing, 2011, pp. 1–5.

[HUSI05] M. N. Huhns and M. P. Singh, “Service-Oriented Computing:
Key Concepts and Principles,” IEEE Internet Computing, vol. 9,
no. 1, pp. 75–81, 2005.

[IBMO09] N. Ibrahim and F. L. Mouel, “A Survey on Service Composition
Middleware in Pervasive Environments,” International Journal of
Computer Science Issues, vol. 7, no. 4, pp. 1–12, 2009.

[JACO99] W. G. Jacoby, “Levels of Measurement and Political Research:
An Optimistic View,” American Journal of Political Science, vol.
43, no. 1, pp. 271–301, 1999.

[JAMG05] M. C. Jaeger, G. Mühl, and S. Golze, “Qos-Aware Composition
of Web Services: An Evaluation of Selection Algorithms,” in
Proceedings of the 2005 Confederated International Conference
on on the Move to Meaningful Internet Systems, R. Meersman and
Z. Tari, Eds. Springer Berlin Heidelberg, 2005, pp. 646–661.

[JARM04] M. C. Jaeger, G. Rojec-Goldmann, and G. Muhl, “Qos Aggrega-
tion for Web Service Composition Using Workflow Patterns,” in
Proceedings of the Eighth IEEE International Enterprise Distrib-
uted Object Computing Conference, 2004, pp. 149–159.

[JASA12] N. Jazuli Bin Kamarudin, N. F. M. Sani, and R. Atan, “Trans-
formation from Requirement into Behavior Design: A Review,”
in Proceedings of the 2012 International Conference on Infor-
mation Retrieval & Knowledge Management, 2012, pp. 153–157.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 177
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

[JIAN10] J.-Z. L. Jian-Qiang HU, “A Multi-QoS Based Local Optimal
Model of Service Selection,” Chinese Journal of Computers, vol.
33, no. 3, pp. 526–534, 2010.

[JIEB07] L. Jiang and A. Eberlein, “A Tool For Requirements Engineering
Process Development,” in Proceedings of the 31st Annual Inter-
national Computer Software and Applications Conference, Bei-
jing, China, 2007, pp. 319–325.

[KABH04] M. Keen et al., Patterns: Implementing an SOA Using an Enter-
prise Service Bus. IBM, International Technical Support Organi-
zation, 2004.

[KAKG07] R. Karunamurthy, F. Khendek, and R. H. Glitho, “A Business
Model for Dynamic Composition of Telecommunication Web
Services,” IEEE Communications Magazine, vol. 45, no. 7, pp.
36–43, 2007.

[KAKS07] S. Kalasapur, M. Kumar, and B. Shirazi, “Dynamic Service
Composition in Pervasive Computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 7, pp. 907–918,
2007.

[KASE09] E. Karakoc and P. Senkul, “Composing Semantic Web Services
Under Constraints,” Expert Systems with Applications, vol. 36, no.
8, pp. 11021–11029, Oct. 2009.

[KATT12] A. Kattepur, “Flexible Quality of Service Management of Web
Services Orchestrations,” Université Rennes 1, 2012.

[KBBG08] S. Kona, A. Bansal, M. B. Blake, and G. Gupta, “Generalized
Semantics-Based Service Composition,” in Proceedings of the
2008 IEEE International Conference on Web Services, 2008, pp.
219–227.

[KHAL03] R. Khalaf, “Service–Oriented Composition in BPEL4WS,” in
Proceedings of the Twelfth International World Wide Web Con-
ference, Budapest, Hungary, 2003.

[KLGE05] M. Klusch and A. Gerber, “Semantic Web Service Composition
Planning with Owls-Xplan,” in In Proceedings of the 1st Interna-
tional AAAI Fall Symposium on Agents and the Semantic Web,
2005, pp. 55–62.

[KLPT04] U. Keller, R. Lara, A. Polleres, I. Toma, M. Kifer, and D. Fensel,
Wsmo Web Service Discovery. 2004.

[KOCK09] N. Kock, Ed., E-Collaboration: Concepts, Methodologies, Tools,
and Applications. IGI Global, 2009.

[KUXR09] C. Kun, J. Xu, and S. Reiff-Marganiec, “Markov-HTN Planning
Approach to Enhance Flexibility of Automatic Web Service
Composition,” in Proceedings of the 2009 IEEE International
Conference on Web Services, 2009, pp. 9–16.

[KVBF07] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, “Sawsdl: Se-
mantic Annotations for Wsdl and Xml Schema,” Internet Compu-
ting, IEEE, vol. 11, no. 6, pp. 60–67, 2007.

[LALE05] G. Lakemeyer and H. J. Levesque, “Semantics for a Useful
Fragment of the Situation Calculus,” in Proceedings of the 19th
International Joint Conference on Artificial Intelligence, San
Francisco, CA, USA, 2005, pp. 490–496.

[LASG07] S. Lamparter, A. Ankolekar, R. Studer, and S. Grimm, “Prefer-
ence-based Selection of Highly Configurable Web Services,” in

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 178
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Proceedings of the 16th International Conference on World Wide
Web, New York, NY, USA, 2007, pp. 1013–1022.

[LEPV10] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaino, “Collab-
oration Tools for Global Software Engineering,” IEEE Software,
vol. 27, no. 2, pp. 52–55, Mar. 2010.

[LÉSP08] F. Lécué, E. Silva, and L. F. Pires, “A Framework for Dynamic
Web Services Composition,” in Emerging Web Services Technol-
ogy, Volume II, T. Gschwind and C. Pautasso, Eds. Birkhäuser
Basel, 2008, pp. 59–75.

[LIBB13A] W. Li, Y. Badr, and F. Biennier, “Improving Web Service Com-
position with User Requirement Transformation and Capability
Model,” in Proceedings of the On the Move to Meaningful Inter-
net Systems: OTM 2013 Conferences, 2013, pp. 300–307.

[LIBB13B] W. Li, Y. Badr, and F. Biennier, “Towards a Capability Model
for Web Service Composition,” in Proceedings of the 2013 IEEE
20th International Conference on Web Services, 2013, pp. 609–
610.

[LIBB13C] W. Li, Y. Badr, and F. Biennier, “Towards Natural-like Re-
quirement based Web Service Composition,” in Proceedings of
the 25th International Conference on Software & Systems Engi-
neering and their Applications, 2013, pp. 9–15.

[LIBB13D] W. Li, Y. Badr, and F. Biennier, “Service Farming: An Ad-Hoc
and Qos-Aware Web Service Composition Approach,” in Pro-
ceedings of the 28th Annual ACM Symposium on Applied Compu-
ting, New York, NY, USA, 2013, pp. 750–756.

[LIN08] N. Lin, “Web Service Composition with User Preferences,” in
Proceedings of the 5th European Semantic Web Conference, 2008,
pp. 629–643.

[LIZD10] X. Li, Q. Zhao, and Y. Dai, “A Semantic Web Service Composi-
tion Method Based on an Enhanced Planning Graph,” in Proceed-
ings of the 2010 International Conference on E-Business and E-
Government, 2010, pp. 2288–2291.

[LKMC06] Z. Laliwala, R. Khosla, P. Majumdar, and S. Chaudhary, “Se-
mantic and Rules Based Event-Driven Dynamic Web Services
Composition for Automation of Business Processes,” in Proceed-
ings of the 2006 IEEE Services Computing Workshops, 2006, pp.
175–182.

[LSYF09] D. Liu, Z. Shao, C. Yu, and G. Fan, “A Heuristic QoS-Aware
Service Selection Approach to Web Service Composition,” in
Proceedings of the Eigth IEEE/ACIS International Conference on
Computer and Information Science, 2009, pp. 1184–1189.

[LYON91] J. Lyons, Natural language and universal grammar. Cambridge,
U.K.: Cambridge University Press, 1991.

[MAMC03] D. J. Mandell and S. A. McIlraith, “Adapting Bpel4ws for the
Semantic Web: The Bottom-up Approach to Web Service In-
teroperation,” in Proceedings of the 2nd International Semantic
Web Conference, D. Fensel, K. Sycara, and J. Mylopoulos, Eds.
Springer Berlin Heidelberg, 2003, pp. 227–241.

[MBHL04] D. Martin, M. Burstein, J. Hobbs, and O. Lassila, OWL-S: Se-
mantic Markup for Web Services. 2004.

[MBKG09] N. Ben Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, and
V. Issarny, “QoS-Aware Service Composition in Dynamic Ser-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 179
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

vice Oriented Environments,” in Middleware 2009, vol. 5896, J.
M. Bacon and B. F. Cooper, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 123–142.

[MCDE02] D. McDermott, “Estimated-Regression Planning for Interactions
with Web Services,” in Proceedings of the Fourth International
Conference on Artificial Intelligence Planning Systems, 2002, vol.
2, pp. 204–211.

[MCIL02] S. Mcilraith, “Adapting Golog for composition of semantic web
Services,” in Proceedings of the 8th International Conference on
Knowledge Representation and Reasoning, 2002, pp. 482–493.

[MEBA10] G. Meditskos and N. Bassiliades, “Structural and Role-Oriented
Web Service Discovery with Taxonomies in Owl-S,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 2,
pp. 278–290, Feb. 2010.

[MEBE03] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Compos-
ing Web Services on the Semantic Web,” The VLDB Journal, vol.
12, no. 4, pp. 333–351, Nov. 2003.

[MEHS00] J. Meng, S. Helal, and S. Su, “An Ad-Hoc Workflow System Ar-
chitecture Based on Mobile Agents and Rule-Based Processing,”
in Proceedings of the First International Conference on Parallel
and Distributed Computing Techniques and Applications, 2000.

[MEWE06] H. Meyer and M. Weske, “Automated Service Composition Us-
ing Heuristic Search,” in Business Process Management, Springer,
2006, pp. 81–96.

[MICH96] L. Mich, “Nl-Oops: From Natural Language to Object Oriented
Requirements Using the Natural Language Processing System Lo-
lita,” Natural Language Engineering, vol. 2, no. 2, pp. 161–187,
Jun. 1996.

[MLMB06] C. MacKenzie, K. Laskey, F. McCabe, and P. Brown, Reference
Model for Service Oriented Architecture 1.0. 2006.

[MMNJ07] Martin Gudgin, Marc Hadley, Noah Mendelsohn, and Jean-
Jacques Moreau, SOAP Version 1.2. 2007.

[MMVL05] F. Moscato, N. Mazzocca, V. Vittorini, G. Di Lorenzo, P. Mosca,
and M. Magaldi, “Workflow Pattern Analysis in Web Services
Orchestration: The Bpel4ws Example,” in Proceedings of the
First International Conference on High Performance Computing
and Communications, Berlin, Heidelberg, 2005, pp. 395–400.

[MORD08] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive Moni-
toring and Service Adaptation for WS-BPEL,” in Proceedings of
the 17th International Conference on World Wide Web, New
York, NY, USA, 2008, pp. 815–824.

[MOZE11] R. Mohamad and F. Zeshan, “Semantic Web Service Composi-
tion Approaches_overview and Limitations,” Software Engineer-
ing and Computer Systems, pp. 283–290, 2011.

[MPMB05] D. Martin et al., “Bringing Semantics to Web Services: The
OWL-S Approach,” in Semantic Web Services and Web Process
Composition, J. Cardoso and A. Sheth, Eds. Springer Berlin Hei-
delberg, 2005, pp. 26–42.

[MSGO06] N. Maiden, N. Seyff, P. Grunbacher, O. Otojare, and K. Mit-
teregger, “Making Mobile Requirements Engineering Tools Usa-
ble and Useful,” in Proceedings of the 14th Ieee International
Conference on Requirements Engineering, 2006, pp. 29–38.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 180
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

[MTYB04] Z. MAAMAR, S. TATA, K. YETONGNON, and D.
BENSLIMANE, “A Goal-Based Approach to Engineering Capac-
ity-Driven Web Services,” The Knowledge Engineering Review,
pp. 1–17, 2004.

[MUCH12] D. Mukhopadhyay and A. Chougule, “A Survey on Web Service
Discovery Approaches,” Advances in Computer Science, Engi-
neering & Applications, pp. 1001–1012, 2012.

[NAMC02] S. Narayanan and S. A. McIlraith, “Simulation, Verification and
Automated Composition of Web Services,” in Proceedings of the
11th International Conference on World Wide Web, New York,
NY, USA, 2002, pp. 77–88.

[NAQA08] F. Nawaz, K. Qadir, and H. F. Ahmad, “Semreg-Pro: A Semantic
Based Registry for Proactive Web Service Discovery Using Pub-
lish-Subscribe Model,” in Proceedings of the Fourth Internation-
al Conference on Semantics, Knowledge and Grid, 2008, pp.
301–308.

[NEWB01] M. Newborn, Automated theorem proving: theory and practice.
New York: Springer, 2001.

[NUEA00] B. Nuseibeh and S. Easterbrook, “Requirements Engineering: A
Roadmap,” in Proceedings of the Conference on the Future of
Software Engineering, New York, NY, USA, 2000, pp. 35–46.

[OAHE03] P. Oaks, A. ter Hofstede, and D. Edmond, “Capabilities: De-
scribing What Services Can Do,” Proceedings of the First Inter-
national Conference on Service Oriented Computing, pp. 1–16,
2003.

[OBJE04] Object Management Group, Business Semantics of Business
Rules Request For Proposal. Object Management Group, 2004.

[OHLK06] S.-C. Oh, D. Lee, and S. R. Kumara, “A Comparative Illustration
of AI Planning-Based Web Services Composition,” ACM SI-
Gecom Exchanges, vol. 5, no. 5, pp. 1–10, 2006.

[OSET02] J. O’Sullivan, D. Edmond, and A. Ter Hofstede, “What’s in a
Service?,” Distributed Parallel Databases, vol. 12, no. 2–3, pp.
117–133, Sep. 2002.

[PAAB07] A. V. Paliwal, N. R. Adam, and C. Bornhovd, “Web Service Dis-
covery: Adding Semantics through Service Request Expansion
and Latent Semantic Indexing,” in Proceedings of the 2007 IEEE
International Conference on Services Computing, 2007, pp. 106–
113.

[PAFL11] P. Papapanagiotou and J. D. Fleuriot, “A Theorem Proving
Framework for the Formal Verification of Web Services Compo-
sition,” in Proceedings of the International Workshop on Auto-
mated Specification and Verification of Web Systems, 2011, pp.
1–16.

[PAPA03] M. P. Papazoglou, “Service-Oriented Computing: Concepts,
Characteristics and Directions,” in Proceedings of the Fourth In-
ternational Conference on Web Information Systems Engineering,
2003, pp. 3–12.

[PEER05] J. Peer, Web Service Composition as AI Planning – a Survey.
Switerland: University of St. Gallen, 2005.

[PGPS11] Philip Bianco, Grace A. Lewis, Paulo Merson, and Soumya
Simanta, Architecting Service-Oriented Systems. Carnegie Mellon
University, 2011.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 181
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

[PHKH12] R. Phalnikar and P. A. Khutade, “Survey of Qos Based Web Ser-
vice Discovery,” in Proceedings of the 2012 World Congress on
Information and Communication Technologies, 2012, pp. 657 –
661.

[PKPS02] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic
Matching of Web Services Capabilities,” Proceedings of the
First International Semantic Web Conference, pp. 333–347, 2002.

[POFO02] S. Ponnekanti and A. Fox, “Sword: A Developer Toolkit for Web
Service Composition,” in Proceedings of the 11th International
WWW Conference, 2002.

[PREI04] C. Preist, “A Conceptual Architecture for Semantic Web Ser-
vices,” in Proceedings of the Third International Semantic Web
Conference, 2004, pp. 395–409.

[PUHK06] K. Pu, V. Hristidis, and N. Koudas, “Syntactic Rule Based Ap-
proach Toweb Service Composition,” in Proceedings of the 22nd
International Conference on Data Engineering, Washington, DC,
USA, 2006, pp. 31–40.

[RAAN07] J. Ramírez and A. de Antonio, “Automated Planning and Re-
planning in an Intelligent Virtual Environments for Training,” in
Knowledge-Based Intelligent Information and Engineering Sys-
tems, B. Apolloni, R. J. Howlett, and L. Jain, Eds. Springer Ber-
lin Heidelberg, 2007, pp. 765–772.

[RAIK12] H. Raik, “Service Composition in Dynamic Environments: From
Theory to Practice,” University of Trento, 2012.

[RAO04] J. Rao, “Semantic Web Service Composition Via Logic-Based
Program Synthesis,” Norwegian University of Science and Tech-
nology, 2004.

[RAPH08] A. Raj, T. V. Prabhakar, and S. Hendryx, “Transformation of
Sbvr Business Design to UML Models,” in Proceedings of the 1st
India Software Engineering Conference, 2008, pp. 29–38.

[RASU05] J. Rao and X. Su, “A Survey of Automated Web Service Compo-
sition Methods,” in Proceedings of the First International Work-
shop on Semantic Web Services and Web Process Composition,
2005, pp. 43–54.

[RBML06] D. Roman et al., “WWW: WSMO, WSML, and WSMX in a Nut-
shell,” Proceedings of the 1st Annual Asian Semantic Web Con-
ference, pp. 516–522, 2006.

[REF10] Oracle, Deploying the BIG-IP System v10 with Oracle’s BEA
WebLogic. 2010.

[REF11] Object Management Group, Meta Object Facility (MOF) 2.0
Query/View/Transformation. Object Management Group, 2011.

[REF13A] Microsfot, What is BizTalk? 2013.
[REF13B] OPAALS, “SBVR Visual Editor,” SourceForge, 2013. [Online].

Available: http://sourceforge.net/projects/sbvrve/. [Accessed: 18-
Nov-2013].

[REF95] Microsoft Corporation, The Component Object Model Specifica-
tion. 1995.

[REYT07] S. Reiff-marganiec, H. Q. Yu, and M. Tilly, “Service selection
based on non-functional properties,” in Proceedings of Non Func-
tional Properties and Service Level Agreements in Service Ori-
ented Computing Workshop, 2007.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 182
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

[RONA09] Ronald SCHMELZER, Resilience: The Missing Word in the SOA
Conversation. 2009.

[RÖNN96] S. Rönn, “Invariants and Closures in the Theory of Rewrite Sys-
tems,” Formal Aspects of Computing, vol. 8, no. 4, pp. 463–478,
Jul. 1996.

[ROPD06] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Per-
formance and Dependability Attributes of Web Services,” in Pro-
ceedings of the 2006 International Conference on Web Services,
2006, pp. 205–212.

[SABH09] G. R. Santhanam, S. Basu, and V. Honavar, “Web Service Sub-
stitution Based on Preferences Over Non-Functional Attributes,”
in Proceedings of the 2009 IEEE International Conference on
Services Computing, Washington, DC, USA, 2009, pp. 210–217.

[SAMI08] Samir Nasser, Resilient Scatter-Gather ESB Messaging Design
with Message-Driven Beans. 2008.

[SAMK04] A. Salbrechter, H. Mayr, and C. Kop, “Mapping Pre-Designed
Business Process Models to UML,” in Proceedings of the 2004
International Conference on Software Engineering and Applica-
tions, 2004, pp. 400–405.

[SASO05] N. Samarasinghe and S. Somé, “Generating a Domain Model
from a Use Case Model,” in Proceedings of the 14th Internation-
al Conference on Intelligent and Adaptive Systems and Software
Engineering, 2005.

[SFKM11] Y. Syu, Y.-Y. FanJiang, J.-Y. Kuo, and S.-P. Ma, “Towards a
Genetic Algorithm Approach to Automating Workflow Composi-
tion for Web Services with Transactional and QoS-Awareness,”
in Proceeding of the 2011 2011 IEEE World Congress on Ser-
vices, 2011, pp. 295–302.

[SHAW90] M. Shaw, “Prospects for an Engineering Discipline of Software,”
IEEE Software, vol. 7, no. 6, pp. 15–24, Nov. 1990.

[SHCH11] Y. Shi and X. Chen, “A Survey on QoS-Aware Web Service
Composition,” in Proceedings of the Third International Confer-
ence on Multimedia Information Networking and Security, 2011,
pp. 283–287.

[SHDM04] D. Sell, F. Hakimpour, J. Domingue, E. Motta, and R. C. S.
Pacheco, “Interactive Composition of WSMO-Based Semantic
Web Services in IRS-III,” in Proceedings of the First Akt Work-
shop on Semantic Web Services, 2004.

[SIHP02] E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic Composition
of Web Services using Semantic Descriptions,” in Proceedings of
the 1st International Workshop on Web Services: Modeling, Ar-
chitecture and Infrastructure, 2002, pp. 17–24.

[SING03] M. P. Singh, “Distributed Enactment of Multiagent Workflows:
Temporal Logic for Web Service Composition,” in Proceedings
of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems, 2003, pp. 907–914.

[SISO09] Y. Singh and M. Sood, “Model Driven Architecture: A Perspec-
tive,” in Proceedings of the 2009 IEEE International Advance
Computing Conference, 2009, pp. 1644–1652.

[SKGS04] D. Skogan, R. Grønmo, and I. Solheim, “Web Service Composi-
tion in UML,” in Proceedings of the Eighth Ieee International

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 183
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

Enterprise Distributed Object Computing Conference, 2004, pp.
47–57.

[SKTB12] T. Skersys, L. Tutkute, and R. Butleris, “The Enrichment of
Bpmn Business Process Model with Sbvr Business Vocabulary
and Rules,” Journal of Computing and Information Technology,
vol. 20, no. 3, pp. 143–150, 2012.

[SKYT05] L. Skyttner, General Systems Theory Problems, Perspectives,
Practice. Singapore; Hackensack, NJ: World Scientific, 2005.

[SLFE04] K. Subramaniam, D. Liu, B. H. Far, and A. Eberlein, “UCDA:
Use Case Driven Development Assistant Tool for Class Model
Generation,” in Proceedings of the 16th International Conference
on Software Engineering and Knowledge Engineering, Banff,
Canada, 2004, vol. 324329.

[SOMM07] I. Sommerville, Software Engineering. Pearson Education, 2007.
[SPWH04] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “HTN plan-

ning for web service composition using SHOP2,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 1, no.
4, pp. 377–396, 2004.

[STRG03] R. D. Stevens, A. J. Robinson, and C. A. Goble, “Mygrid: Per-
sonalised Bioinformatics on the Information Grid,” Bioinformat-
ics, vol. 19, pp. 302–304, 2003.

[STRU10] A. Strunk, “QoS-Aware Service Composition: A Survey,” in
Proceedings of the IEEE 8th European Conference on Web Ser-
vices, 2010, pp. 67 –74.

[STVV11] T. G. Stavropoulos, D. Vrakas, and I. Vlahavas, “A Survey of
Service Composition in Ambient Intelligence Environments,” Ar-
tificial Intelligence Review, pp. 1–24, 2011.

[SULY08] S. Su, F. Li, and F. Yang, “Iterative Selection Algorithm for Ser-
vice Composition in Distributed Environments,” Science in China
Series F: Information Sciences, vol. 51, no. 11, pp. 1841–1856,
Oct. 2008.

[TASW03] I. Taylor, M. Shields, and I. Wang, “Distributed P2P Computing
Within Triana: A Galaxy Visualization Test Case,” in Proceed-
ings of the International Parallel and Distributed Processing
Symposium, 2003, pp. 8–15.

[TAYL04] I. J. Taylor, Peers in a Client-Server World: A Modern Perspec-
tive on Peer to Peer and Grid Computing. New York: Springer,
2004.

[TRBP11] S. Truptil, F. Bénaben, and H. Pingaud, “On-the-Fly Adaptation
of Crisis Response Information System,” in Proceedings of the
2011 International Conference on Management of Emergent
Digital EcoSystems, New York, USA, 2011, pp. 114–121.

[TSPI02] A. Tsalgatidou and T. Pilioura, “An Overview of Standards and
Related Technology in Web Services,” Distributed Parallel Da-
tabases, vol. 12, no. 2–3, pp. 135–162, Sep. 2002.

[VARB08] Y. Vanrompay, P. Rigole, and Y. Berbers, “Genetic Algorithm-
Based Optimization of Service Composition and Deployment,” in
Proceedings of the 3rd International Workshop on Services Inte-
gration in Pervasive Environments, New York, USA, 2008, pp.
13–18.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 184
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

[WADH02] P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter
Hofstede, Pattern Based Analysis of BPEL4WS. Brisbane, Aus-
tralia: Queensland University of Technology, 2002.

[WADH03] P. Wohed, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter
Hofstede, “Analysis of Web Services Composition Languages:
The Case of BPEL4WS,” in Proceeding of the 22nd International
Conference on Conceptual Modeling, 2003, pp. 200–215.

[WALD01] R. Waldinger, “Web Agents Cooperating Deductively,” in Pro-
ceedings of the First International Workshop on Formal Ap-
proaches to Agent-Based Systems, London, UK, 2001, pp. 250–
262.

[WEER05] S. Weerawarana, Web services platform architecture: SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Mes-
saging, and more. Upper Saddle River, NJ: Prentice Hall PTR,
2005.

[WEHH10] G. Wen-yue, Q. Hai-cheng, and C. Hong, “Semantic Web Ser-
vice Discovery Algorithm and Its Application on the Intelligent
Automotive Manufacturing System,” in Proceedings of the 2nd
IEEE International Conference on Information Management and
Engineering, 2010, pp. 601–604.

[WICK00] G. Wickler, Using Expressive and Flexible Action Representa-
tions to Reason about Capabilties for Intelligent Agent Coopera-
tion. Edinburgh, UK: The University of Edinburgh, 2000.

[WONN07] D. G. Wonnacott, “Attribute Grammars and the Teaching of
Compiler Design and Implementation,” Journal of Computing
Sciences in Colleges, vol. 22, no. 3, pp. 121–127, Jan. 2007.

[WRGS07] Z. Wu, A. Ranabahu, K. Gomadam, A. P. Sheth, and J. A. Miller,
“Automatic Composition of Semantic Web Services using Pro-
cess Mediation,” in Proceedings of the 9th International Confer-
ence on Enterprise Information Systems, 2007.

[XCPM06] M. Xu, J. Chen, Y. Peng, X. Mei, and C. Liu, “A Dynamic Se-
mantic Association-Based Web Service Composition Method,” in
Proceedings of the 2006 IEEE/WIC/ACM International Confer-
ence on Web Intelligence, Washington, DC, USA, 2006, pp. 666–
672.

[XQYB09] P. Xiaoming, F. Qiqing, H. Yahui, and Z. Bingjian, “A User Re-
quirements Oriented Dynamic Web Service Composition Frame-
work,” in Proceedings of the 2009 International Forum on Infor-
mation Technology and Applications, 2009, pp. 173–177.

[YAPZ10] Y. Yan, P. Poizat, and L. Zhao, “Repair vs. Recomposition for
Broken Service Compositions,” in Service-Oriented Computing, P.
P. Maglio, M. Weske, J. Yang, and M. Fantinato, Eds. Springer
Berlin Heidelberg, 2010, pp. 152–166.

[YOUN01] R. R. Young, Effective Requirements Practices. Addison-Wesley
Professional, 2001.

[YSLZ10] Z. Yang, C. Shang, Q. Liu, and C. Zhao, “A Dynamic Web Ser-
vices Composition Algorithm Based on the Combination of Ant
Colony Algorithm and Genetic Algorithm,” Journal of Computa-
tional Information Systems, vol. 6, no. 8, pp. 2617–2622, 2010.

[YUBL10] T. Yue, L. C. Briand, and Y. Labiche, “An Automated Approach
to Transform Use Cases into Activity Diagrams,” in Modelling
Foundations and Applications, Springer, 2010, pp. 337–353.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

Towards a Resilient Service-Oriented Computing based on Ad-hoc Web Service
Compositions in Dynamic Environments

Wenbin LI 185
Thèse en InfoMaths / 2014
Institut national des sciences appliquées de Lyon

[YUBL11] T. Yue, L. C. Briand, and Y. Labiche, “A Systematic Review of
Transformation Approaches Between User Requirements and
Analysis Models,” Requirements Engineering, vol. 16, no. 2, pp.
75–99, 2011.

[YUZL07] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient Algorithms for Web
Services Selection with End-to-End Qos Constraints,” ACM
Transactions on the Web, vol. 1, no. 1, p. 6–es, May. 2007.

[ZAPG09] E. Zahoor, O. Perrin, and C. Godart, “Rule-Based Semi Auto-
matic Web Services Composition,” in Proceedings of the 2009
World Conference on Services, 2009, pp. 805–812.

[ZAVE97] P. Zave, “Classification of Research Efforts in Requirements En-
gineering,” ACM Comput. Surv., vol. 29, no. 4, pp. 315–321, Dec.
1997.

[ZBDK03] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z.
Sheng, “Quality Driven Web Services Composition,” in Proceed-
ings of the 12th International Conference on World Wide Web,
New York, NY, USA, 2003, pp. 411–421.

[ZBND04] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “Qos-Aware Middleware for Web Services Com-
position,” IEEE Transactions on Software Engineering, vol. 30,
no. 5, pp. 311–327, 2004.

[ZCFJ10] W. Zhang, C. K. Chang, T. Feng, and H. Jiang, “QoS-Based Dy-
namic Web Service Composition with Ant Colony Optimization,”
in Proceedings of the IEEE 34th Annual Computer Software and
Applications Conference, 2010, pp. 493–502.

[ZHAN08] L.-J. L. Zhang, “Eic Editorial: Introduction to the Body of
Knowledge Areas of Services Computing,” IEEE Transactions on
Services Computing, no. 2, pp. 62–74, 2008.

[ZHAO10] J. Zhao, “Applications of Norm and Situation Calculus in the
Semantic Web Service Composition,” Journal of Software Engi-
neering and Applications, vol. 03, no. 08, pp. 776–783, 2010.

[ZHYA08] X. Zheng and Y. Yan, “An Efficient Syntactic Web Service
Composition Algorithm Based on the Planning Graph Model,” in
Proceedings of the 2008 IEEE International Conference on Web
Services, 2008, pp. 691–699.

[ZIVB13] E. Ziaka, D. Vrakas, and N. Bassiliades, “Web Service Composi-
tion Plans in OWL-S,” in Proceeding of the 3rd International
Conference on Agents and Artificial Intelligence, 2013, pp. 240–
254.

[ZNBP08] L. Zeng, A. H. H. Ngu, B. Benatallah, R. Podorozhny, and H. Lei,
“Dynamic Composition and Optimization of Web Services,” Dis-
tributed and Parallel Databases, vol. 24, no. 1–3, pp. 45–72, Oct.
2008.

[ZZMX08] J. Zhou, T. Zhang, H. Meng, L. Xiao, G. Chen, and D. Li, “Web
Service Discovery Based on Keyword Clustering and Ontology,”
in Proceeding of 2008 IEEE International Conference on Granu-
lar Computing, 2008, pp. 844–848.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0032/these.pdf
© [W. Li], [2014], INSA de Lyon, tous droits réservés

	Notice XML
	Page de titre
	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	Table of Figures
	Table of Tables
	Chapter 1 General Introduction
	1.1 Background
	1.2 Research Challenges
	1.3 Research Contributions
	1.4 Motivation Scenario
	1.4.1 Dynamic Environment
	1.4.2 A Glance at the Crisis Management as a Dynamic Environment
	1.4.3 Motivation Scenario: Train Crash Crisis Management

	1.5 Thesis Outline

	Chapter 2 State of the Art
	2.1 Service-oriented Computing Preliminaries
	2.1.1 WSDL
	2.1.2 SOAP
	2.1.3 UDDI
	2.1.4 OWL-S
	2.1.5 Enterprise Service Bus Infrastructures

	2.2 A Glance at Web Service Composition Approaches
	2.2.1 Manual, Semi-Automated and Automated Composition Approaches
	2.2.1.1 Manual Composition Approaches
	2.2.1.2 Semi-Automated Composition Approaches
	2.2.1.3 Automated Composition Approaches
	2.2.1.3.1 Automated Composition based on Finite State Machine
	2.2.1.3.2 Automated Composition based on Situation Calculus
	2.2.1.3.3 Automated Composition based on Planning Domain Definition Language
	2.2.1.3.4 Automated Composition based on Rule-based Planning
	2.2.1.3.5 Automated Composition based Theorem Proving
	2.2.1.3.6 Automated Composition based on Hierarchical Task Network
	2.2.1.3.7 Comparison and Limitations

	2.2.2 Syntactic and Semantic based Composition Approaches
	2.2.2.1 Syntactic Web service Composition Approaches
	2.2.2.2 Semantic Web service Composition Approaches

	2.2.3 QoS-aware Web Service Composition Approaches
	2.2.4 Static Composition and Dynamic Composition Approaches
	2.2.4.1 Static Web service Composition Approaches
	2.2.4.2 Dynamic Web service Composition Approaches
	2.2.4.3 Adapting Composition Approaches to Dynamic Environments

	2.2.5 A Brief Conclusion

	2.3 Overview of Requirement Specifications in Web Service Composition
	2.3.1 Requirement Engineering
	2.3.2 Requirement Models in Web Service Compositions

	2.4 Managing Requirements
	2.4.1 Model Driven Architectures and Model Driven Development
	2.4.2 General Requirement Transformation
	2.4.3 Requirement Transformation for Web service composition

	2.5 Executive Summary

	Chapter 3 A Three-level Requirement Model for Ad-hoc Web Service Compositions
	3.1 Introduction
	3.2 Related Work
	3.3 General Process for Crisis Management
	3.4 Three Levels of Composition Requirements
	3.4.1 The Business-centric Requirements (BCR)
	3.4.2 The Capability-focused Requirements (CFR)
	3.4.3 The Rule-driven Web Service Requirements (WSR)

	3.5 The Business-centric Requirement Model
	3.5.1 Introducing SBVR
	3.5.2 The Business-centric Requirement Model
	3.5.2.1 Functional Requirements
	3.5.2.2 Non-functional Requirements
	3.5.2.3 Contextual Information

	3.5.3 Domains of dynamic environments

	3.6 The Capability-focused Requirement Model
	3.6.1 The Capability Objective Layer
	3.6.2 The Capability Profile Layer
	3.6.3 The Inter-capability Composition Layer

	3.7 The Rule-driven Web Service Composition Model
	3.7.1 Specifying Web Service Requirements
	3.7.2 Composition Patterns and Composite Services
	3.7.3 Composition Rules
	3.7.3.1 Structure Rules
	3.7.3.2 Constraint Rules
	3.7.3.3 Dependency Rules
	3.7.3.4 Matching Rules

	3.8 Conclusion

	Chapter 4 Two-level Requirement Transformations
	4.1 Introduction
	4.2 The Requirement Transformation Framework
	4.3 The Capability Matching Process
	4.4 The Association Discovery Process
	4.5 Conclusion

	Chapter 5 Service Farming: An Ad-hoc Web Service Composition Approach
	5.1 Introduction
	5.2 The Service Model
	5.2.1 QoS Aggregation Model
	5.2.2 Notations for Web Service Composition based on Rules

	5.3 Service Farming Composition Algorithm
	5.3.1 The Service Planting Stage
	5.3.2 The Service Growing Stage
	5.3.3 The Service Harvesting Stage
	5.3.3.1 The Preference-based Utility Calculation
	5.3.3.2 Clustering Composite Services
	5.3.3.3 The Structure Rule Enrichment

	5.3.4 The Service Evaluating Stage

	5.4 The Dynamic Reconfiguration of Composite Web Services
	5.4.1 The Service Substitution Stage
	5.4.2 The Composition Replanning Stage

	5.5 Conclusion

	Chapter 6 Implementation Architecture
	6.1 Implementation Architecture
	6.2 Experiment Results
	6.3 Conclusion

	Chapter 7 Research Perspectives
	7.1 Research Contributions
	7.2 Future Research Trends

	Bibliography

